xref: /linux/drivers/scsi/libfc/fc_exch.c (revision 765532c8aaac624b5f8687af6d319c6a1138a257)
1 /*
2  * Copyright(c) 2007 Intel Corporation. All rights reserved.
3  * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
4  * Copyright(c) 2008 Mike Christie
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Maintained at www.Open-FCoE.org
20  */
21 
22 /*
23  * Fibre Channel exchange and sequence handling.
24  */
25 
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 
30 #include <scsi/fc/fc_fc2.h>
31 
32 #include <scsi/libfc.h>
33 #include <scsi/fc_encode.h>
34 
35 #include "fc_libfc.h"
36 
37 u16	fc_cpu_mask;		/* cpu mask for possible cpus */
38 EXPORT_SYMBOL(fc_cpu_mask);
39 static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
40 static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
41 struct workqueue_struct *fc_exch_workqueue;
42 
43 /*
44  * Structure and function definitions for managing Fibre Channel Exchanges
45  * and Sequences.
46  *
47  * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
48  *
49  * fc_exch_mgr holds the exchange state for an N port
50  *
51  * fc_exch holds state for one exchange and links to its active sequence.
52  *
53  * fc_seq holds the state for an individual sequence.
54  */
55 
56 /**
57  * struct fc_exch_pool - Per cpu exchange pool
58  * @next_index:	  Next possible free exchange index
59  * @total_exches: Total allocated exchanges
60  * @lock:	  Exch pool lock
61  * @ex_list:	  List of exchanges
62  *
63  * This structure manages per cpu exchanges in array of exchange pointers.
64  * This array is allocated followed by struct fc_exch_pool memory for
65  * assigned range of exchanges to per cpu pool.
66  */
67 struct fc_exch_pool {
68 	u16		 next_index;
69 	u16		 total_exches;
70 	spinlock_t	 lock;
71 	struct list_head ex_list;
72 };
73 
74 /**
75  * struct fc_exch_mgr - The Exchange Manager (EM).
76  * @class:	    Default class for new sequences
77  * @kref:	    Reference counter
78  * @min_xid:	    Minimum exchange ID
79  * @max_xid:	    Maximum exchange ID
80  * @ep_pool:	    Reserved exchange pointers
81  * @pool_max_index: Max exch array index in exch pool
82  * @pool:	    Per cpu exch pool
83  * @stats:	    Statistics structure
84  *
85  * This structure is the center for creating exchanges and sequences.
86  * It manages the allocation of exchange IDs.
87  */
88 struct fc_exch_mgr {
89 	enum fc_class	class;
90 	struct kref	kref;
91 	u16		min_xid;
92 	u16		max_xid;
93 	mempool_t	*ep_pool;
94 	u16		pool_max_index;
95 	struct fc_exch_pool *pool;
96 
97 	/*
98 	 * currently exchange mgr stats are updated but not used.
99 	 * either stats can be expose via sysfs or remove them
100 	 * all together if not used XXX
101 	 */
102 	struct {
103 		atomic_t no_free_exch;
104 		atomic_t no_free_exch_xid;
105 		atomic_t xid_not_found;
106 		atomic_t xid_busy;
107 		atomic_t seq_not_found;
108 		atomic_t non_bls_resp;
109 	} stats;
110 };
111 #define	fc_seq_exch(sp) container_of(sp, struct fc_exch, seq)
112 
113 /**
114  * struct fc_exch_mgr_anchor - primary structure for list of EMs
115  * @ema_list: Exchange Manager Anchor list
116  * @mp:	      Exchange Manager associated with this anchor
117  * @match:    Routine to determine if this anchor's EM should be used
118  *
119  * When walking the list of anchors the match routine will be called
120  * for each anchor to determine if that EM should be used. The last
121  * anchor in the list will always match to handle any exchanges not
122  * handled by other EMs. The non-default EMs would be added to the
123  * anchor list by HW that provides FCoE offloads.
124  */
125 struct fc_exch_mgr_anchor {
126 	struct list_head ema_list;
127 	struct fc_exch_mgr *mp;
128 	bool (*match)(struct fc_frame *);
129 };
130 
131 static void fc_exch_rrq(struct fc_exch *);
132 static void fc_seq_ls_acc(struct fc_frame *);
133 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
134 			  enum fc_els_rjt_explan);
135 static void fc_exch_els_rec(struct fc_frame *);
136 static void fc_exch_els_rrq(struct fc_frame *);
137 
138 /*
139  * Internal implementation notes.
140  *
141  * The exchange manager is one by default in libfc but LLD may choose
142  * to have one per CPU. The sequence manager is one per exchange manager
143  * and currently never separated.
144  *
145  * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
146  * assigned by the Sequence Initiator that shall be unique for a specific
147  * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
148  * qualified by exchange ID, which one might think it would be.
149  * In practice this limits the number of open sequences and exchanges to 256
150  * per session.	 For most targets we could treat this limit as per exchange.
151  *
152  * The exchange and its sequence are freed when the last sequence is received.
153  * It's possible for the remote port to leave an exchange open without
154  * sending any sequences.
155  *
156  * Notes on reference counts:
157  *
158  * Exchanges are reference counted and exchange gets freed when the reference
159  * count becomes zero.
160  *
161  * Timeouts:
162  * Sequences are timed out for E_D_TOV and R_A_TOV.
163  *
164  * Sequence event handling:
165  *
166  * The following events may occur on initiator sequences:
167  *
168  *	Send.
169  *	    For now, the whole thing is sent.
170  *	Receive ACK
171  *	    This applies only to class F.
172  *	    The sequence is marked complete.
173  *	ULP completion.
174  *	    The upper layer calls fc_exch_done() when done
175  *	    with exchange and sequence tuple.
176  *	RX-inferred completion.
177  *	    When we receive the next sequence on the same exchange, we can
178  *	    retire the previous sequence ID.  (XXX not implemented).
179  *	Timeout.
180  *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
181  *	    E_D_TOV causes abort and calls upper layer response handler
182  *	    with FC_EX_TIMEOUT error.
183  *	Receive RJT
184  *	    XXX defer.
185  *	Send ABTS
186  *	    On timeout.
187  *
188  * The following events may occur on recipient sequences:
189  *
190  *	Receive
191  *	    Allocate sequence for first frame received.
192  *	    Hold during receive handler.
193  *	    Release when final frame received.
194  *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
195  *	Receive ABTS
196  *	    Deallocate sequence
197  *	Send RJT
198  *	    Deallocate
199  *
200  * For now, we neglect conditions where only part of a sequence was
201  * received or transmitted, or where out-of-order receipt is detected.
202  */
203 
204 /*
205  * Locking notes:
206  *
207  * The EM code run in a per-CPU worker thread.
208  *
209  * To protect against concurrency between a worker thread code and timers,
210  * sequence allocation and deallocation must be locked.
211  *  - exchange refcnt can be done atomicly without locks.
212  *  - sequence allocation must be locked by exch lock.
213  *  - If the EM pool lock and ex_lock must be taken at the same time, then the
214  *    EM pool lock must be taken before the ex_lock.
215  */
216 
217 /*
218  * opcode names for debugging.
219  */
220 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
221 
222 /**
223  * fc_exch_name_lookup() - Lookup name by opcode
224  * @op:	       Opcode to be looked up
225  * @table:     Opcode/name table
226  * @max_index: Index not to be exceeded
227  *
228  * This routine is used to determine a human-readable string identifying
229  * a R_CTL opcode.
230  */
231 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
232 					      unsigned int max_index)
233 {
234 	const char *name = NULL;
235 
236 	if (op < max_index)
237 		name = table[op];
238 	if (!name)
239 		name = "unknown";
240 	return name;
241 }
242 
243 /**
244  * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
245  * @op: The opcode to be looked up
246  */
247 static const char *fc_exch_rctl_name(unsigned int op)
248 {
249 	return fc_exch_name_lookup(op, fc_exch_rctl_names,
250 				   ARRAY_SIZE(fc_exch_rctl_names));
251 }
252 
253 /**
254  * fc_exch_hold() - Increment an exchange's reference count
255  * @ep: Echange to be held
256  */
257 static inline void fc_exch_hold(struct fc_exch *ep)
258 {
259 	atomic_inc(&ep->ex_refcnt);
260 }
261 
262 /**
263  * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
264  *			 and determine SOF and EOF.
265  * @ep:	   The exchange to that will use the header
266  * @fp:	   The frame whose header is to be modified
267  * @f_ctl: F_CTL bits that will be used for the frame header
268  *
269  * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
270  * fh_seq_id, fh_seq_cnt and the SOF and EOF.
271  */
272 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
273 			      u32 f_ctl)
274 {
275 	struct fc_frame_header *fh = fc_frame_header_get(fp);
276 	u16 fill;
277 
278 	fr_sof(fp) = ep->class;
279 	if (ep->seq.cnt)
280 		fr_sof(fp) = fc_sof_normal(ep->class);
281 
282 	if (f_ctl & FC_FC_END_SEQ) {
283 		fr_eof(fp) = FC_EOF_T;
284 		if (fc_sof_needs_ack(ep->class))
285 			fr_eof(fp) = FC_EOF_N;
286 		/*
287 		 * From F_CTL.
288 		 * The number of fill bytes to make the length a 4-byte
289 		 * multiple is the low order 2-bits of the f_ctl.
290 		 * The fill itself will have been cleared by the frame
291 		 * allocation.
292 		 * After this, the length will be even, as expected by
293 		 * the transport.
294 		 */
295 		fill = fr_len(fp) & 3;
296 		if (fill) {
297 			fill = 4 - fill;
298 			/* TODO, this may be a problem with fragmented skb */
299 			skb_put(fp_skb(fp), fill);
300 			hton24(fh->fh_f_ctl, f_ctl | fill);
301 		}
302 	} else {
303 		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
304 		fr_eof(fp) = FC_EOF_N;
305 	}
306 
307 	/*
308 	 * Initialize remainig fh fields
309 	 * from fc_fill_fc_hdr
310 	 */
311 	fh->fh_ox_id = htons(ep->oxid);
312 	fh->fh_rx_id = htons(ep->rxid);
313 	fh->fh_seq_id = ep->seq.id;
314 	fh->fh_seq_cnt = htons(ep->seq.cnt);
315 }
316 
317 /**
318  * fc_exch_release() - Decrement an exchange's reference count
319  * @ep: Exchange to be released
320  *
321  * If the reference count reaches zero and the exchange is complete,
322  * it is freed.
323  */
324 static void fc_exch_release(struct fc_exch *ep)
325 {
326 	struct fc_exch_mgr *mp;
327 
328 	if (atomic_dec_and_test(&ep->ex_refcnt)) {
329 		mp = ep->em;
330 		if (ep->destructor)
331 			ep->destructor(&ep->seq, ep->arg);
332 		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
333 		mempool_free(ep, mp->ep_pool);
334 	}
335 }
336 
337 /**
338  * fc_exch_done_locked() - Complete an exchange with the exchange lock held
339  * @ep: The exchange that is complete
340  */
341 static int fc_exch_done_locked(struct fc_exch *ep)
342 {
343 	int rc = 1;
344 
345 	/*
346 	 * We must check for completion in case there are two threads
347 	 * tyring to complete this. But the rrq code will reuse the
348 	 * ep, and in that case we only clear the resp and set it as
349 	 * complete, so it can be reused by the timer to send the rrq.
350 	 */
351 	ep->resp = NULL;
352 	if (ep->state & FC_EX_DONE)
353 		return rc;
354 	ep->esb_stat |= ESB_ST_COMPLETE;
355 
356 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
357 		ep->state |= FC_EX_DONE;
358 		if (cancel_delayed_work(&ep->timeout_work))
359 			atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
360 		rc = 0;
361 	}
362 	return rc;
363 }
364 
365 /**
366  * fc_exch_ptr_get() - Return an exchange from an exchange pool
367  * @pool:  Exchange Pool to get an exchange from
368  * @index: Index of the exchange within the pool
369  *
370  * Use the index to get an exchange from within an exchange pool. exches
371  * will point to an array of exchange pointers. The index will select
372  * the exchange within the array.
373  */
374 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
375 					      u16 index)
376 {
377 	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
378 	return exches[index];
379 }
380 
381 /**
382  * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
383  * @pool:  The pool to assign the exchange to
384  * @index: The index in the pool where the exchange will be assigned
385  * @ep:	   The exchange to assign to the pool
386  */
387 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
388 				   struct fc_exch *ep)
389 {
390 	((struct fc_exch **)(pool + 1))[index] = ep;
391 }
392 
393 /**
394  * fc_exch_delete() - Delete an exchange
395  * @ep: The exchange to be deleted
396  */
397 static void fc_exch_delete(struct fc_exch *ep)
398 {
399 	struct fc_exch_pool *pool;
400 
401 	pool = ep->pool;
402 	spin_lock_bh(&pool->lock);
403 	WARN_ON(pool->total_exches <= 0);
404 	pool->total_exches--;
405 	fc_exch_ptr_set(pool, (ep->xid - ep->em->min_xid) >> fc_cpu_order,
406 			NULL);
407 	list_del(&ep->ex_list);
408 	spin_unlock_bh(&pool->lock);
409 	fc_exch_release(ep);	/* drop hold for exch in mp */
410 }
411 
412 /**
413  * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
414  *				the exchange lock held
415  * @ep:		The exchange whose timer will start
416  * @timer_msec: The timeout period
417  *
418  * Used for upper level protocols to time out the exchange.
419  * The timer is cancelled when it fires or when the exchange completes.
420  */
421 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
422 					    unsigned int timer_msec)
423 {
424 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
425 		return;
426 
427 	FC_EXCH_DBG(ep, "Exchange timer armed\n");
428 
429 	if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
430 			       msecs_to_jiffies(timer_msec)))
431 		fc_exch_hold(ep);		/* hold for timer */
432 }
433 
434 /**
435  * fc_exch_timer_set() - Lock the exchange and set the timer
436  * @ep:		The exchange whose timer will start
437  * @timer_msec: The timeout period
438  */
439 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
440 {
441 	spin_lock_bh(&ep->ex_lock);
442 	fc_exch_timer_set_locked(ep, timer_msec);
443 	spin_unlock_bh(&ep->ex_lock);
444 }
445 
446 /**
447  * fc_seq_send() - Send a frame using existing sequence/exchange pair
448  * @lport: The local port that the exchange will be sent on
449  * @sp:	   The sequence to be sent
450  * @fp:	   The frame to be sent on the exchange
451  */
452 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
453 		       struct fc_frame *fp)
454 {
455 	struct fc_exch *ep;
456 	struct fc_frame_header *fh = fc_frame_header_get(fp);
457 	int error;
458 	u32 f_ctl;
459 
460 	ep = fc_seq_exch(sp);
461 	WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
462 
463 	f_ctl = ntoh24(fh->fh_f_ctl);
464 	fc_exch_setup_hdr(ep, fp, f_ctl);
465 	fr_encaps(fp) = ep->encaps;
466 
467 	/*
468 	 * update sequence count if this frame is carrying
469 	 * multiple FC frames when sequence offload is enabled
470 	 * by LLD.
471 	 */
472 	if (fr_max_payload(fp))
473 		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
474 					fr_max_payload(fp));
475 	else
476 		sp->cnt++;
477 
478 	/*
479 	 * Send the frame.
480 	 */
481 	error = lport->tt.frame_send(lport, fp);
482 
483 	/*
484 	 * Update the exchange and sequence flags,
485 	 * assuming all frames for the sequence have been sent.
486 	 * We can only be called to send once for each sequence.
487 	 */
488 	spin_lock_bh(&ep->ex_lock);
489 	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
490 	if (f_ctl & FC_FC_SEQ_INIT)
491 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
492 	spin_unlock_bh(&ep->ex_lock);
493 	return error;
494 }
495 
496 /**
497  * fc_seq_alloc() - Allocate a sequence for a given exchange
498  * @ep:	    The exchange to allocate a new sequence for
499  * @seq_id: The sequence ID to be used
500  *
501  * We don't support multiple originated sequences on the same exchange.
502  * By implication, any previously originated sequence on this exchange
503  * is complete, and we reallocate the same sequence.
504  */
505 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
506 {
507 	struct fc_seq *sp;
508 
509 	sp = &ep->seq;
510 	sp->ssb_stat = 0;
511 	sp->cnt = 0;
512 	sp->id = seq_id;
513 	return sp;
514 }
515 
516 /**
517  * fc_seq_start_next_locked() - Allocate a new sequence on the same
518  *				exchange as the supplied sequence
519  * @sp: The sequence/exchange to get a new sequence for
520  */
521 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
522 {
523 	struct fc_exch *ep = fc_seq_exch(sp);
524 
525 	sp = fc_seq_alloc(ep, ep->seq_id++);
526 	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
527 		    ep->f_ctl, sp->id);
528 	return sp;
529 }
530 
531 /**
532  * fc_seq_start_next() - Lock the exchange and get a new sequence
533  *			 for a given sequence/exchange pair
534  * @sp: The sequence/exchange to get a new exchange for
535  */
536 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
537 {
538 	struct fc_exch *ep = fc_seq_exch(sp);
539 
540 	spin_lock_bh(&ep->ex_lock);
541 	sp = fc_seq_start_next_locked(sp);
542 	spin_unlock_bh(&ep->ex_lock);
543 
544 	return sp;
545 }
546 
547 /**
548  * fc_seq_exch_abort() - Abort an exchange and sequence
549  * @req_sp:	The sequence to be aborted
550  * @timer_msec: The period of time to wait before aborting
551  *
552  * Generally called because of a timeout or an abort from the upper layer.
553  */
554 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
555 			     unsigned int timer_msec)
556 {
557 	struct fc_seq *sp;
558 	struct fc_exch *ep;
559 	struct fc_frame *fp;
560 	int error;
561 
562 	ep = fc_seq_exch(req_sp);
563 
564 	spin_lock_bh(&ep->ex_lock);
565 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
566 	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
567 		spin_unlock_bh(&ep->ex_lock);
568 		return -ENXIO;
569 	}
570 
571 	/*
572 	 * Send the abort on a new sequence if possible.
573 	 */
574 	sp = fc_seq_start_next_locked(&ep->seq);
575 	if (!sp) {
576 		spin_unlock_bh(&ep->ex_lock);
577 		return -ENOMEM;
578 	}
579 
580 	ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
581 	if (timer_msec)
582 		fc_exch_timer_set_locked(ep, timer_msec);
583 	spin_unlock_bh(&ep->ex_lock);
584 
585 	/*
586 	 * If not logged into the fabric, don't send ABTS but leave
587 	 * sequence active until next timeout.
588 	 */
589 	if (!ep->sid)
590 		return 0;
591 
592 	/*
593 	 * Send an abort for the sequence that timed out.
594 	 */
595 	fp = fc_frame_alloc(ep->lp, 0);
596 	if (fp) {
597 		fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
598 			       FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
599 		error = fc_seq_send(ep->lp, sp, fp);
600 	} else
601 		error = -ENOBUFS;
602 	return error;
603 }
604 
605 /**
606  * fc_exch_timeout() - Handle exchange timer expiration
607  * @work: The work_struct identifying the exchange that timed out
608  */
609 static void fc_exch_timeout(struct work_struct *work)
610 {
611 	struct fc_exch *ep = container_of(work, struct fc_exch,
612 					  timeout_work.work);
613 	struct fc_seq *sp = &ep->seq;
614 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
615 	void *arg;
616 	u32 e_stat;
617 	int rc = 1;
618 
619 	FC_EXCH_DBG(ep, "Exchange timed out\n");
620 
621 	spin_lock_bh(&ep->ex_lock);
622 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
623 		goto unlock;
624 
625 	e_stat = ep->esb_stat;
626 	if (e_stat & ESB_ST_COMPLETE) {
627 		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
628 		spin_unlock_bh(&ep->ex_lock);
629 		if (e_stat & ESB_ST_REC_QUAL)
630 			fc_exch_rrq(ep);
631 		goto done;
632 	} else {
633 		resp = ep->resp;
634 		arg = ep->arg;
635 		ep->resp = NULL;
636 		if (e_stat & ESB_ST_ABNORMAL)
637 			rc = fc_exch_done_locked(ep);
638 		spin_unlock_bh(&ep->ex_lock);
639 		if (!rc)
640 			fc_exch_delete(ep);
641 		if (resp)
642 			resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
643 		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
644 		goto done;
645 	}
646 unlock:
647 	spin_unlock_bh(&ep->ex_lock);
648 done:
649 	/*
650 	 * This release matches the hold taken when the timer was set.
651 	 */
652 	fc_exch_release(ep);
653 }
654 
655 /**
656  * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
657  * @lport: The local port that the exchange is for
658  * @mp:	   The exchange manager that will allocate the exchange
659  *
660  * Returns pointer to allocated fc_exch with exch lock held.
661  */
662 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
663 					struct fc_exch_mgr *mp)
664 {
665 	struct fc_exch *ep;
666 	unsigned int cpu;
667 	u16 index;
668 	struct fc_exch_pool *pool;
669 
670 	/* allocate memory for exchange */
671 	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
672 	if (!ep) {
673 		atomic_inc(&mp->stats.no_free_exch);
674 		goto out;
675 	}
676 	memset(ep, 0, sizeof(*ep));
677 
678 	cpu = get_cpu();
679 	pool = per_cpu_ptr(mp->pool, cpu);
680 	spin_lock_bh(&pool->lock);
681 	put_cpu();
682 	index = pool->next_index;
683 	/* allocate new exch from pool */
684 	while (fc_exch_ptr_get(pool, index)) {
685 		index = index == mp->pool_max_index ? 0 : index + 1;
686 		if (index == pool->next_index)
687 			goto err;
688 	}
689 	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
690 
691 	fc_exch_hold(ep);	/* hold for exch in mp */
692 	spin_lock_init(&ep->ex_lock);
693 	/*
694 	 * Hold exch lock for caller to prevent fc_exch_reset()
695 	 * from releasing exch	while fc_exch_alloc() caller is
696 	 * still working on exch.
697 	 */
698 	spin_lock_bh(&ep->ex_lock);
699 
700 	fc_exch_ptr_set(pool, index, ep);
701 	list_add_tail(&ep->ex_list, &pool->ex_list);
702 	fc_seq_alloc(ep, ep->seq_id++);
703 	pool->total_exches++;
704 	spin_unlock_bh(&pool->lock);
705 
706 	/*
707 	 *  update exchange
708 	 */
709 	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
710 	ep->em = mp;
711 	ep->pool = pool;
712 	ep->lp = lport;
713 	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
714 	ep->rxid = FC_XID_UNKNOWN;
715 	ep->class = mp->class;
716 	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
717 out:
718 	return ep;
719 err:
720 	spin_unlock_bh(&pool->lock);
721 	atomic_inc(&mp->stats.no_free_exch_xid);
722 	mempool_free(ep, mp->ep_pool);
723 	return NULL;
724 }
725 
726 /**
727  * fc_exch_alloc() - Allocate an exchange from an EM on a
728  *		     local port's list of EMs.
729  * @lport: The local port that will own the exchange
730  * @fp:	   The FC frame that the exchange will be for
731  *
732  * This function walks the list of exchange manager(EM)
733  * anchors to select an EM for a new exchange allocation. The
734  * EM is selected when a NULL match function pointer is encountered
735  * or when a call to a match function returns true.
736  */
737 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
738 					    struct fc_frame *fp)
739 {
740 	struct fc_exch_mgr_anchor *ema;
741 
742 	list_for_each_entry(ema, &lport->ema_list, ema_list)
743 		if (!ema->match || ema->match(fp))
744 			return fc_exch_em_alloc(lport, ema->mp);
745 	return NULL;
746 }
747 
748 /**
749  * fc_exch_find() - Lookup and hold an exchange
750  * @mp:	 The exchange manager to lookup the exchange from
751  * @xid: The XID of the exchange to look up
752  */
753 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
754 {
755 	struct fc_exch_pool *pool;
756 	struct fc_exch *ep = NULL;
757 
758 	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
759 		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
760 		spin_lock_bh(&pool->lock);
761 		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
762 		if (ep) {
763 			fc_exch_hold(ep);
764 			WARN_ON(ep->xid != xid);
765 		}
766 		spin_unlock_bh(&pool->lock);
767 	}
768 	return ep;
769 }
770 
771 
772 /**
773  * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
774  *		    the memory allocated for the related objects may be freed.
775  * @sp: The sequence that has completed
776  */
777 static void fc_exch_done(struct fc_seq *sp)
778 {
779 	struct fc_exch *ep = fc_seq_exch(sp);
780 	int rc;
781 
782 	spin_lock_bh(&ep->ex_lock);
783 	rc = fc_exch_done_locked(ep);
784 	spin_unlock_bh(&ep->ex_lock);
785 	if (!rc)
786 		fc_exch_delete(ep);
787 }
788 
789 /**
790  * fc_exch_resp() - Allocate a new exchange for a response frame
791  * @lport: The local port that the exchange was for
792  * @mp:	   The exchange manager to allocate the exchange from
793  * @fp:	   The response frame
794  *
795  * Sets the responder ID in the frame header.
796  */
797 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
798 				    struct fc_exch_mgr *mp,
799 				    struct fc_frame *fp)
800 {
801 	struct fc_exch *ep;
802 	struct fc_frame_header *fh;
803 
804 	ep = fc_exch_alloc(lport, fp);
805 	if (ep) {
806 		ep->class = fc_frame_class(fp);
807 
808 		/*
809 		 * Set EX_CTX indicating we're responding on this exchange.
810 		 */
811 		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
812 		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
813 		fh = fc_frame_header_get(fp);
814 		ep->sid = ntoh24(fh->fh_d_id);
815 		ep->did = ntoh24(fh->fh_s_id);
816 		ep->oid = ep->did;
817 
818 		/*
819 		 * Allocated exchange has placed the XID in the
820 		 * originator field. Move it to the responder field,
821 		 * and set the originator XID from the frame.
822 		 */
823 		ep->rxid = ep->xid;
824 		ep->oxid = ntohs(fh->fh_ox_id);
825 		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
826 		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
827 			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
828 
829 		fc_exch_hold(ep);	/* hold for caller */
830 		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
831 	}
832 	return ep;
833 }
834 
835 /**
836  * fc_seq_lookup_recip() - Find a sequence where the other end
837  *			   originated the sequence
838  * @lport: The local port that the frame was sent to
839  * @mp:	   The Exchange Manager to lookup the exchange from
840  * @fp:	   The frame associated with the sequence we're looking for
841  *
842  * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
843  * on the ep that should be released by the caller.
844  */
845 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
846 						 struct fc_exch_mgr *mp,
847 						 struct fc_frame *fp)
848 {
849 	struct fc_frame_header *fh = fc_frame_header_get(fp);
850 	struct fc_exch *ep = NULL;
851 	struct fc_seq *sp = NULL;
852 	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
853 	u32 f_ctl;
854 	u16 xid;
855 
856 	f_ctl = ntoh24(fh->fh_f_ctl);
857 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
858 
859 	/*
860 	 * Lookup or create the exchange if we will be creating the sequence.
861 	 */
862 	if (f_ctl & FC_FC_EX_CTX) {
863 		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
864 		ep = fc_exch_find(mp, xid);
865 		if (!ep) {
866 			atomic_inc(&mp->stats.xid_not_found);
867 			reject = FC_RJT_OX_ID;
868 			goto out;
869 		}
870 		if (ep->rxid == FC_XID_UNKNOWN)
871 			ep->rxid = ntohs(fh->fh_rx_id);
872 		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
873 			reject = FC_RJT_OX_ID;
874 			goto rel;
875 		}
876 	} else {
877 		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
878 
879 		/*
880 		 * Special case for MDS issuing an ELS TEST with a
881 		 * bad rxid of 0.
882 		 * XXX take this out once we do the proper reject.
883 		 */
884 		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
885 		    fc_frame_payload_op(fp) == ELS_TEST) {
886 			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
887 			xid = FC_XID_UNKNOWN;
888 		}
889 
890 		/*
891 		 * new sequence - find the exchange
892 		 */
893 		ep = fc_exch_find(mp, xid);
894 		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
895 			if (ep) {
896 				atomic_inc(&mp->stats.xid_busy);
897 				reject = FC_RJT_RX_ID;
898 				goto rel;
899 			}
900 			ep = fc_exch_resp(lport, mp, fp);
901 			if (!ep) {
902 				reject = FC_RJT_EXCH_EST;	/* XXX */
903 				goto out;
904 			}
905 			xid = ep->xid;	/* get our XID */
906 		} else if (!ep) {
907 			atomic_inc(&mp->stats.xid_not_found);
908 			reject = FC_RJT_RX_ID;	/* XID not found */
909 			goto out;
910 		}
911 	}
912 
913 	/*
914 	 * At this point, we have the exchange held.
915 	 * Find or create the sequence.
916 	 */
917 	if (fc_sof_is_init(fr_sof(fp))) {
918 		sp = &ep->seq;
919 		sp->ssb_stat |= SSB_ST_RESP;
920 		sp->id = fh->fh_seq_id;
921 	} else {
922 		sp = &ep->seq;
923 		if (sp->id != fh->fh_seq_id) {
924 			atomic_inc(&mp->stats.seq_not_found);
925 			reject = FC_RJT_SEQ_ID;	/* sequence/exch should exist */
926 			goto rel;
927 		}
928 	}
929 	WARN_ON(ep != fc_seq_exch(sp));
930 
931 	if (f_ctl & FC_FC_SEQ_INIT)
932 		ep->esb_stat |= ESB_ST_SEQ_INIT;
933 
934 	fr_seq(fp) = sp;
935 out:
936 	return reject;
937 rel:
938 	fc_exch_done(&ep->seq);
939 	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
940 	return reject;
941 }
942 
943 /**
944  * fc_seq_lookup_orig() - Find a sequence where this end
945  *			  originated the sequence
946  * @mp:	   The Exchange Manager to lookup the exchange from
947  * @fp:	   The frame associated with the sequence we're looking for
948  *
949  * Does not hold the sequence for the caller.
950  */
951 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
952 					 struct fc_frame *fp)
953 {
954 	struct fc_frame_header *fh = fc_frame_header_get(fp);
955 	struct fc_exch *ep;
956 	struct fc_seq *sp = NULL;
957 	u32 f_ctl;
958 	u16 xid;
959 
960 	f_ctl = ntoh24(fh->fh_f_ctl);
961 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
962 	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
963 	ep = fc_exch_find(mp, xid);
964 	if (!ep)
965 		return NULL;
966 	if (ep->seq.id == fh->fh_seq_id) {
967 		/*
968 		 * Save the RX_ID if we didn't previously know it.
969 		 */
970 		sp = &ep->seq;
971 		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
972 		    ep->rxid == FC_XID_UNKNOWN) {
973 			ep->rxid = ntohs(fh->fh_rx_id);
974 		}
975 	}
976 	fc_exch_release(ep);
977 	return sp;
978 }
979 
980 /**
981  * fc_exch_set_addr() - Set the source and destination IDs for an exchange
982  * @ep:	     The exchange to set the addresses for
983  * @orig_id: The originator's ID
984  * @resp_id: The responder's ID
985  *
986  * Note this must be done before the first sequence of the exchange is sent.
987  */
988 static void fc_exch_set_addr(struct fc_exch *ep,
989 			     u32 orig_id, u32 resp_id)
990 {
991 	ep->oid = orig_id;
992 	if (ep->esb_stat & ESB_ST_RESP) {
993 		ep->sid = resp_id;
994 		ep->did = orig_id;
995 	} else {
996 		ep->sid = orig_id;
997 		ep->did = resp_id;
998 	}
999 }
1000 
1001 /**
1002  * fc_seq_els_rsp_send() - Send an ELS response using infomation from
1003  *			   the existing sequence/exchange.
1004  * @fp:	      The received frame
1005  * @els_cmd:  The ELS command to be sent
1006  * @els_data: The ELS data to be sent
1007  *
1008  * The received frame is not freed.
1009  */
1010 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1011 				struct fc_seq_els_data *els_data)
1012 {
1013 	switch (els_cmd) {
1014 	case ELS_LS_RJT:
1015 		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1016 		break;
1017 	case ELS_LS_ACC:
1018 		fc_seq_ls_acc(fp);
1019 		break;
1020 	case ELS_RRQ:
1021 		fc_exch_els_rrq(fp);
1022 		break;
1023 	case ELS_REC:
1024 		fc_exch_els_rec(fp);
1025 		break;
1026 	default:
1027 		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1028 	}
1029 }
1030 
1031 /**
1032  * fc_seq_send_last() - Send a sequence that is the last in the exchange
1033  * @sp:	     The sequence that is to be sent
1034  * @fp:	     The frame that will be sent on the sequence
1035  * @rctl:    The R_CTL information to be sent
1036  * @fh_type: The frame header type
1037  */
1038 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1039 			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1040 {
1041 	u32 f_ctl;
1042 	struct fc_exch *ep = fc_seq_exch(sp);
1043 
1044 	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1045 	f_ctl |= ep->f_ctl;
1046 	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1047 	fc_seq_send(ep->lp, sp, fp);
1048 }
1049 
1050 /**
1051  * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1052  * @sp:	   The sequence to send the ACK on
1053  * @rx_fp: The received frame that is being acknoledged
1054  *
1055  * Send ACK_1 (or equiv.) indicating we received something.
1056  */
1057 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1058 {
1059 	struct fc_frame *fp;
1060 	struct fc_frame_header *rx_fh;
1061 	struct fc_frame_header *fh;
1062 	struct fc_exch *ep = fc_seq_exch(sp);
1063 	struct fc_lport *lport = ep->lp;
1064 	unsigned int f_ctl;
1065 
1066 	/*
1067 	 * Don't send ACKs for class 3.
1068 	 */
1069 	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1070 		fp = fc_frame_alloc(lport, 0);
1071 		if (!fp)
1072 			return;
1073 
1074 		fh = fc_frame_header_get(fp);
1075 		fh->fh_r_ctl = FC_RCTL_ACK_1;
1076 		fh->fh_type = FC_TYPE_BLS;
1077 
1078 		/*
1079 		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1080 		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1081 		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1082 		 * Last ACK uses bits 7-6 (continue sequence),
1083 		 * bits 5-4 are meaningful (what kind of ACK to use).
1084 		 */
1085 		rx_fh = fc_frame_header_get(rx_fp);
1086 		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1087 		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1088 			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1089 			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1090 			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1091 		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1092 		hton24(fh->fh_f_ctl, f_ctl);
1093 
1094 		fc_exch_setup_hdr(ep, fp, f_ctl);
1095 		fh->fh_seq_id = rx_fh->fh_seq_id;
1096 		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1097 		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1098 
1099 		fr_sof(fp) = fr_sof(rx_fp);
1100 		if (f_ctl & FC_FC_END_SEQ)
1101 			fr_eof(fp) = FC_EOF_T;
1102 		else
1103 			fr_eof(fp) = FC_EOF_N;
1104 
1105 		lport->tt.frame_send(lport, fp);
1106 	}
1107 }
1108 
1109 /**
1110  * fc_exch_send_ba_rjt() - Send BLS Reject
1111  * @rx_fp:  The frame being rejected
1112  * @reason: The reason the frame is being rejected
1113  * @explan: The explaination for the rejection
1114  *
1115  * This is for rejecting BA_ABTS only.
1116  */
1117 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1118 				enum fc_ba_rjt_reason reason,
1119 				enum fc_ba_rjt_explan explan)
1120 {
1121 	struct fc_frame *fp;
1122 	struct fc_frame_header *rx_fh;
1123 	struct fc_frame_header *fh;
1124 	struct fc_ba_rjt *rp;
1125 	struct fc_lport *lport;
1126 	unsigned int f_ctl;
1127 
1128 	lport = fr_dev(rx_fp);
1129 	fp = fc_frame_alloc(lport, sizeof(*rp));
1130 	if (!fp)
1131 		return;
1132 	fh = fc_frame_header_get(fp);
1133 	rx_fh = fc_frame_header_get(rx_fp);
1134 
1135 	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1136 
1137 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1138 	rp->br_reason = reason;
1139 	rp->br_explan = explan;
1140 
1141 	/*
1142 	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1143 	 */
1144 	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1145 	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1146 	fh->fh_ox_id = rx_fh->fh_ox_id;
1147 	fh->fh_rx_id = rx_fh->fh_rx_id;
1148 	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1149 	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1150 	fh->fh_type = FC_TYPE_BLS;
1151 
1152 	/*
1153 	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1154 	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1155 	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1156 	 * Last ACK uses bits 7-6 (continue sequence),
1157 	 * bits 5-4 are meaningful (what kind of ACK to use).
1158 	 * Always set LAST_SEQ, END_SEQ.
1159 	 */
1160 	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1161 	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1162 		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1163 		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1164 	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1165 	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1166 	f_ctl &= ~FC_FC_FIRST_SEQ;
1167 	hton24(fh->fh_f_ctl, f_ctl);
1168 
1169 	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1170 	fr_eof(fp) = FC_EOF_T;
1171 	if (fc_sof_needs_ack(fr_sof(fp)))
1172 		fr_eof(fp) = FC_EOF_N;
1173 
1174 	lport->tt.frame_send(lport, fp);
1175 }
1176 
1177 /**
1178  * fc_exch_recv_abts() - Handle an incoming ABTS
1179  * @ep:	   The exchange the abort was on
1180  * @rx_fp: The ABTS frame
1181  *
1182  * This would be for target mode usually, but could be due to lost
1183  * FCP transfer ready, confirm or RRQ. We always handle this as an
1184  * exchange abort, ignoring the parameter.
1185  */
1186 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1187 {
1188 	struct fc_frame *fp;
1189 	struct fc_ba_acc *ap;
1190 	struct fc_frame_header *fh;
1191 	struct fc_seq *sp;
1192 
1193 	if (!ep)
1194 		goto reject;
1195 	spin_lock_bh(&ep->ex_lock);
1196 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1197 		spin_unlock_bh(&ep->ex_lock);
1198 		goto reject;
1199 	}
1200 	if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1201 		fc_exch_hold(ep);		/* hold for REC_QUAL */
1202 	ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1203 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1204 
1205 	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1206 	if (!fp) {
1207 		spin_unlock_bh(&ep->ex_lock);
1208 		goto free;
1209 	}
1210 	fh = fc_frame_header_get(fp);
1211 	ap = fc_frame_payload_get(fp, sizeof(*ap));
1212 	memset(ap, 0, sizeof(*ap));
1213 	sp = &ep->seq;
1214 	ap->ba_high_seq_cnt = htons(0xffff);
1215 	if (sp->ssb_stat & SSB_ST_RESP) {
1216 		ap->ba_seq_id = sp->id;
1217 		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1218 		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1219 		ap->ba_low_seq_cnt = htons(sp->cnt);
1220 	}
1221 	sp = fc_seq_start_next_locked(sp);
1222 	spin_unlock_bh(&ep->ex_lock);
1223 	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1224 	fc_frame_free(rx_fp);
1225 	return;
1226 
1227 reject:
1228 	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1229 free:
1230 	fc_frame_free(rx_fp);
1231 }
1232 
1233 /**
1234  * fc_seq_assign() - Assign exchange and sequence for incoming request
1235  * @lport: The local port that received the request
1236  * @fp:    The request frame
1237  *
1238  * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1239  */
1240 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1241 {
1242 	struct fc_exch_mgr_anchor *ema;
1243 
1244 	WARN_ON(lport != fr_dev(fp));
1245 	WARN_ON(fr_seq(fp));
1246 	fr_seq(fp) = NULL;
1247 
1248 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1249 		if ((!ema->match || ema->match(fp)) &&
1250 		    fc_seq_lookup_recip(lport, ema->mp, fp) != FC_RJT_NONE)
1251 			break;
1252 	return fr_seq(fp);
1253 }
1254 
1255 /**
1256  * fc_exch_recv_req() - Handler for an incoming request
1257  * @lport: The local port that received the request
1258  * @mp:	   The EM that the exchange is on
1259  * @fp:	   The request frame
1260  *
1261  * This is used when the other end is originating the exchange
1262  * and the sequence.
1263  */
1264 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1265 			     struct fc_frame *fp)
1266 {
1267 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1268 	struct fc_seq *sp = NULL;
1269 	struct fc_exch *ep = NULL;
1270 	enum fc_pf_rjt_reason reject;
1271 
1272 	/* We can have the wrong fc_lport at this point with NPIV, which is a
1273 	 * problem now that we know a new exchange needs to be allocated
1274 	 */
1275 	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1276 	if (!lport) {
1277 		fc_frame_free(fp);
1278 		return;
1279 	}
1280 	fr_dev(fp) = lport;
1281 
1282 	BUG_ON(fr_seq(fp));		/* XXX remove later */
1283 
1284 	/*
1285 	 * If the RX_ID is 0xffff, don't allocate an exchange.
1286 	 * The upper-level protocol may request one later, if needed.
1287 	 */
1288 	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1289 		return lport->tt.lport_recv(lport, fp);
1290 
1291 	reject = fc_seq_lookup_recip(lport, mp, fp);
1292 	if (reject == FC_RJT_NONE) {
1293 		sp = fr_seq(fp);	/* sequence will be held */
1294 		ep = fc_seq_exch(sp);
1295 		fc_seq_send_ack(sp, fp);
1296 		ep->encaps = fr_encaps(fp);
1297 
1298 		/*
1299 		 * Call the receive function.
1300 		 *
1301 		 * The receive function may allocate a new sequence
1302 		 * over the old one, so we shouldn't change the
1303 		 * sequence after this.
1304 		 *
1305 		 * The frame will be freed by the receive function.
1306 		 * If new exch resp handler is valid then call that
1307 		 * first.
1308 		 */
1309 		if (ep->resp)
1310 			ep->resp(sp, fp, ep->arg);
1311 		else
1312 			lport->tt.lport_recv(lport, fp);
1313 		fc_exch_release(ep);	/* release from lookup */
1314 	} else {
1315 		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1316 			     reject);
1317 		fc_frame_free(fp);
1318 	}
1319 }
1320 
1321 /**
1322  * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1323  *			     end is the originator of the sequence that is a
1324  *			     response to our initial exchange
1325  * @mp: The EM that the exchange is on
1326  * @fp: The response frame
1327  */
1328 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1329 {
1330 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1331 	struct fc_seq *sp;
1332 	struct fc_exch *ep;
1333 	enum fc_sof sof;
1334 	u32 f_ctl;
1335 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1336 	void *ex_resp_arg;
1337 	int rc;
1338 
1339 	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1340 	if (!ep) {
1341 		atomic_inc(&mp->stats.xid_not_found);
1342 		goto out;
1343 	}
1344 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1345 		atomic_inc(&mp->stats.xid_not_found);
1346 		goto out;
1347 	}
1348 	if (ep->rxid == FC_XID_UNKNOWN)
1349 		ep->rxid = ntohs(fh->fh_rx_id);
1350 	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1351 		atomic_inc(&mp->stats.xid_not_found);
1352 		goto rel;
1353 	}
1354 	if (ep->did != ntoh24(fh->fh_s_id) &&
1355 	    ep->did != FC_FID_FLOGI) {
1356 		atomic_inc(&mp->stats.xid_not_found);
1357 		goto rel;
1358 	}
1359 	sof = fr_sof(fp);
1360 	sp = &ep->seq;
1361 	if (fc_sof_is_init(sof)) {
1362 		sp->ssb_stat |= SSB_ST_RESP;
1363 		sp->id = fh->fh_seq_id;
1364 	} else if (sp->id != fh->fh_seq_id) {
1365 		atomic_inc(&mp->stats.seq_not_found);
1366 		goto rel;
1367 	}
1368 
1369 	f_ctl = ntoh24(fh->fh_f_ctl);
1370 	fr_seq(fp) = sp;
1371 	if (f_ctl & FC_FC_SEQ_INIT)
1372 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1373 
1374 	if (fc_sof_needs_ack(sof))
1375 		fc_seq_send_ack(sp, fp);
1376 	resp = ep->resp;
1377 	ex_resp_arg = ep->arg;
1378 
1379 	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1380 	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1381 	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1382 		spin_lock_bh(&ep->ex_lock);
1383 		rc = fc_exch_done_locked(ep);
1384 		WARN_ON(fc_seq_exch(sp) != ep);
1385 		spin_unlock_bh(&ep->ex_lock);
1386 		if (!rc)
1387 			fc_exch_delete(ep);
1388 	}
1389 
1390 	/*
1391 	 * Call the receive function.
1392 	 * The sequence is held (has a refcnt) for us,
1393 	 * but not for the receive function.
1394 	 *
1395 	 * The receive function may allocate a new sequence
1396 	 * over the old one, so we shouldn't change the
1397 	 * sequence after this.
1398 	 *
1399 	 * The frame will be freed by the receive function.
1400 	 * If new exch resp handler is valid then call that
1401 	 * first.
1402 	 */
1403 	if (resp)
1404 		resp(sp, fp, ex_resp_arg);
1405 	else
1406 		fc_frame_free(fp);
1407 	fc_exch_release(ep);
1408 	return;
1409 rel:
1410 	fc_exch_release(ep);
1411 out:
1412 	fc_frame_free(fp);
1413 }
1414 
1415 /**
1416  * fc_exch_recv_resp() - Handler for a sequence where other end is
1417  *			 responding to our sequence
1418  * @mp: The EM that the exchange is on
1419  * @fp: The response frame
1420  */
1421 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1422 {
1423 	struct fc_seq *sp;
1424 
1425 	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1426 
1427 	if (!sp)
1428 		atomic_inc(&mp->stats.xid_not_found);
1429 	else
1430 		atomic_inc(&mp->stats.non_bls_resp);
1431 
1432 	fc_frame_free(fp);
1433 }
1434 
1435 /**
1436  * fc_exch_abts_resp() - Handler for a response to an ABT
1437  * @ep: The exchange that the frame is on
1438  * @fp: The response frame
1439  *
1440  * This response would be to an ABTS cancelling an exchange or sequence.
1441  * The response can be either BA_ACC or BA_RJT
1442  */
1443 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1444 {
1445 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1446 	void *ex_resp_arg;
1447 	struct fc_frame_header *fh;
1448 	struct fc_ba_acc *ap;
1449 	struct fc_seq *sp;
1450 	u16 low;
1451 	u16 high;
1452 	int rc = 1, has_rec = 0;
1453 
1454 	fh = fc_frame_header_get(fp);
1455 	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1456 		    fc_exch_rctl_name(fh->fh_r_ctl));
1457 
1458 	if (cancel_delayed_work_sync(&ep->timeout_work))
1459 		fc_exch_release(ep);	/* release from pending timer hold */
1460 
1461 	spin_lock_bh(&ep->ex_lock);
1462 	switch (fh->fh_r_ctl) {
1463 	case FC_RCTL_BA_ACC:
1464 		ap = fc_frame_payload_get(fp, sizeof(*ap));
1465 		if (!ap)
1466 			break;
1467 
1468 		/*
1469 		 * Decide whether to establish a Recovery Qualifier.
1470 		 * We do this if there is a non-empty SEQ_CNT range and
1471 		 * SEQ_ID is the same as the one we aborted.
1472 		 */
1473 		low = ntohs(ap->ba_low_seq_cnt);
1474 		high = ntohs(ap->ba_high_seq_cnt);
1475 		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1476 		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1477 		     ap->ba_seq_id == ep->seq_id) && low != high) {
1478 			ep->esb_stat |= ESB_ST_REC_QUAL;
1479 			fc_exch_hold(ep);  /* hold for recovery qualifier */
1480 			has_rec = 1;
1481 		}
1482 		break;
1483 	case FC_RCTL_BA_RJT:
1484 		break;
1485 	default:
1486 		break;
1487 	}
1488 
1489 	resp = ep->resp;
1490 	ex_resp_arg = ep->arg;
1491 
1492 	/* do we need to do some other checks here. Can we reuse more of
1493 	 * fc_exch_recv_seq_resp
1494 	 */
1495 	sp = &ep->seq;
1496 	/*
1497 	 * do we want to check END_SEQ as well as LAST_SEQ here?
1498 	 */
1499 	if (ep->fh_type != FC_TYPE_FCP &&
1500 	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1501 		rc = fc_exch_done_locked(ep);
1502 	spin_unlock_bh(&ep->ex_lock);
1503 	if (!rc)
1504 		fc_exch_delete(ep);
1505 
1506 	if (resp)
1507 		resp(sp, fp, ex_resp_arg);
1508 	else
1509 		fc_frame_free(fp);
1510 
1511 	if (has_rec)
1512 		fc_exch_timer_set(ep, ep->r_a_tov);
1513 
1514 }
1515 
1516 /**
1517  * fc_exch_recv_bls() - Handler for a BLS sequence
1518  * @mp: The EM that the exchange is on
1519  * @fp: The request frame
1520  *
1521  * The BLS frame is always a sequence initiated by the remote side.
1522  * We may be either the originator or recipient of the exchange.
1523  */
1524 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1525 {
1526 	struct fc_frame_header *fh;
1527 	struct fc_exch *ep;
1528 	u32 f_ctl;
1529 
1530 	fh = fc_frame_header_get(fp);
1531 	f_ctl = ntoh24(fh->fh_f_ctl);
1532 	fr_seq(fp) = NULL;
1533 
1534 	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1535 			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1536 	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1537 		spin_lock_bh(&ep->ex_lock);
1538 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1539 		spin_unlock_bh(&ep->ex_lock);
1540 	}
1541 	if (f_ctl & FC_FC_SEQ_CTX) {
1542 		/*
1543 		 * A response to a sequence we initiated.
1544 		 * This should only be ACKs for class 2 or F.
1545 		 */
1546 		switch (fh->fh_r_ctl) {
1547 		case FC_RCTL_ACK_1:
1548 		case FC_RCTL_ACK_0:
1549 			break;
1550 		default:
1551 			FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1552 				    fh->fh_r_ctl,
1553 				    fc_exch_rctl_name(fh->fh_r_ctl));
1554 			break;
1555 		}
1556 		fc_frame_free(fp);
1557 	} else {
1558 		switch (fh->fh_r_ctl) {
1559 		case FC_RCTL_BA_RJT:
1560 		case FC_RCTL_BA_ACC:
1561 			if (ep)
1562 				fc_exch_abts_resp(ep, fp);
1563 			else
1564 				fc_frame_free(fp);
1565 			break;
1566 		case FC_RCTL_BA_ABTS:
1567 			fc_exch_recv_abts(ep, fp);
1568 			break;
1569 		default:			/* ignore junk */
1570 			fc_frame_free(fp);
1571 			break;
1572 		}
1573 	}
1574 	if (ep)
1575 		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1576 }
1577 
1578 /**
1579  * fc_seq_ls_acc() - Accept sequence with LS_ACC
1580  * @rx_fp: The received frame, not freed here.
1581  *
1582  * If this fails due to allocation or transmit congestion, assume the
1583  * originator will repeat the sequence.
1584  */
1585 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1586 {
1587 	struct fc_lport *lport;
1588 	struct fc_els_ls_acc *acc;
1589 	struct fc_frame *fp;
1590 
1591 	lport = fr_dev(rx_fp);
1592 	fp = fc_frame_alloc(lport, sizeof(*acc));
1593 	if (!fp)
1594 		return;
1595 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1596 	memset(acc, 0, sizeof(*acc));
1597 	acc->la_cmd = ELS_LS_ACC;
1598 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1599 	lport->tt.frame_send(lport, fp);
1600 }
1601 
1602 /**
1603  * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1604  * @rx_fp: The received frame, not freed here.
1605  * @reason: The reason the sequence is being rejected
1606  * @explan: The explanation for the rejection
1607  *
1608  * If this fails due to allocation or transmit congestion, assume the
1609  * originator will repeat the sequence.
1610  */
1611 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1612 			  enum fc_els_rjt_explan explan)
1613 {
1614 	struct fc_lport *lport;
1615 	struct fc_els_ls_rjt *rjt;
1616 	struct fc_frame *fp;
1617 
1618 	lport = fr_dev(rx_fp);
1619 	fp = fc_frame_alloc(lport, sizeof(*rjt));
1620 	if (!fp)
1621 		return;
1622 	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1623 	memset(rjt, 0, sizeof(*rjt));
1624 	rjt->er_cmd = ELS_LS_RJT;
1625 	rjt->er_reason = reason;
1626 	rjt->er_explan = explan;
1627 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1628 	lport->tt.frame_send(lport, fp);
1629 }
1630 
1631 /**
1632  * fc_exch_reset() - Reset an exchange
1633  * @ep: The exchange to be reset
1634  */
1635 static void fc_exch_reset(struct fc_exch *ep)
1636 {
1637 	struct fc_seq *sp;
1638 	void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1639 	void *arg;
1640 	int rc = 1;
1641 
1642 	spin_lock_bh(&ep->ex_lock);
1643 	ep->state |= FC_EX_RST_CLEANUP;
1644 	if (cancel_delayed_work(&ep->timeout_work))
1645 		atomic_dec(&ep->ex_refcnt);	/* drop hold for timer */
1646 	resp = ep->resp;
1647 	ep->resp = NULL;
1648 	if (ep->esb_stat & ESB_ST_REC_QUAL)
1649 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1650 	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1651 	arg = ep->arg;
1652 	sp = &ep->seq;
1653 	rc = fc_exch_done_locked(ep);
1654 	spin_unlock_bh(&ep->ex_lock);
1655 	if (!rc)
1656 		fc_exch_delete(ep);
1657 
1658 	if (resp)
1659 		resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1660 }
1661 
1662 /**
1663  * fc_exch_pool_reset() - Reset a per cpu exchange pool
1664  * @lport: The local port that the exchange pool is on
1665  * @pool:  The exchange pool to be reset
1666  * @sid:   The source ID
1667  * @did:   The destination ID
1668  *
1669  * Resets a per cpu exches pool, releasing all of its sequences
1670  * and exchanges. If sid is non-zero then reset only exchanges
1671  * we sourced from the local port's FID. If did is non-zero then
1672  * only reset exchanges destined for the local port's FID.
1673  */
1674 static void fc_exch_pool_reset(struct fc_lport *lport,
1675 			       struct fc_exch_pool *pool,
1676 			       u32 sid, u32 did)
1677 {
1678 	struct fc_exch *ep;
1679 	struct fc_exch *next;
1680 
1681 	spin_lock_bh(&pool->lock);
1682 restart:
1683 	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1684 		if ((lport == ep->lp) &&
1685 		    (sid == 0 || sid == ep->sid) &&
1686 		    (did == 0 || did == ep->did)) {
1687 			fc_exch_hold(ep);
1688 			spin_unlock_bh(&pool->lock);
1689 
1690 			fc_exch_reset(ep);
1691 
1692 			fc_exch_release(ep);
1693 			spin_lock_bh(&pool->lock);
1694 
1695 			/*
1696 			 * must restart loop incase while lock
1697 			 * was down multiple eps were released.
1698 			 */
1699 			goto restart;
1700 		}
1701 	}
1702 	spin_unlock_bh(&pool->lock);
1703 }
1704 
1705 /**
1706  * fc_exch_mgr_reset() - Reset all EMs of a local port
1707  * @lport: The local port whose EMs are to be reset
1708  * @sid:   The source ID
1709  * @did:   The destination ID
1710  *
1711  * Reset all EMs associated with a given local port. Release all
1712  * sequences and exchanges. If sid is non-zero then reset only the
1713  * exchanges sent from the local port's FID. If did is non-zero then
1714  * reset only exchanges destined for the local port's FID.
1715  */
1716 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1717 {
1718 	struct fc_exch_mgr_anchor *ema;
1719 	unsigned int cpu;
1720 
1721 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1722 		for_each_possible_cpu(cpu)
1723 			fc_exch_pool_reset(lport,
1724 					   per_cpu_ptr(ema->mp->pool, cpu),
1725 					   sid, did);
1726 	}
1727 }
1728 EXPORT_SYMBOL(fc_exch_mgr_reset);
1729 
1730 /**
1731  * fc_exch_lookup() - find an exchange
1732  * @lport: The local port
1733  * @xid: The exchange ID
1734  *
1735  * Returns exchange pointer with hold for caller, or NULL if not found.
1736  */
1737 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1738 {
1739 	struct fc_exch_mgr_anchor *ema;
1740 
1741 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1742 		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1743 			return fc_exch_find(ema->mp, xid);
1744 	return NULL;
1745 }
1746 
1747 /**
1748  * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1749  * @rfp: The REC frame, not freed here.
1750  *
1751  * Note that the requesting port may be different than the S_ID in the request.
1752  */
1753 static void fc_exch_els_rec(struct fc_frame *rfp)
1754 {
1755 	struct fc_lport *lport;
1756 	struct fc_frame *fp;
1757 	struct fc_exch *ep;
1758 	struct fc_els_rec *rp;
1759 	struct fc_els_rec_acc *acc;
1760 	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1761 	enum fc_els_rjt_explan explan;
1762 	u32 sid;
1763 	u16 rxid;
1764 	u16 oxid;
1765 
1766 	lport = fr_dev(rfp);
1767 	rp = fc_frame_payload_get(rfp, sizeof(*rp));
1768 	explan = ELS_EXPL_INV_LEN;
1769 	if (!rp)
1770 		goto reject;
1771 	sid = ntoh24(rp->rec_s_id);
1772 	rxid = ntohs(rp->rec_rx_id);
1773 	oxid = ntohs(rp->rec_ox_id);
1774 
1775 	ep = fc_exch_lookup(lport,
1776 			    sid == fc_host_port_id(lport->host) ? oxid : rxid);
1777 	explan = ELS_EXPL_OXID_RXID;
1778 	if (!ep)
1779 		goto reject;
1780 	if (ep->oid != sid || oxid != ep->oxid)
1781 		goto rel;
1782 	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1783 		goto rel;
1784 	fp = fc_frame_alloc(lport, sizeof(*acc));
1785 	if (!fp)
1786 		goto out;
1787 
1788 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1789 	memset(acc, 0, sizeof(*acc));
1790 	acc->reca_cmd = ELS_LS_ACC;
1791 	acc->reca_ox_id = rp->rec_ox_id;
1792 	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1793 	acc->reca_rx_id = htons(ep->rxid);
1794 	if (ep->sid == ep->oid)
1795 		hton24(acc->reca_rfid, ep->did);
1796 	else
1797 		hton24(acc->reca_rfid, ep->sid);
1798 	acc->reca_fc4value = htonl(ep->seq.rec_data);
1799 	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1800 						 ESB_ST_SEQ_INIT |
1801 						 ESB_ST_COMPLETE));
1802 	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1803 	lport->tt.frame_send(lport, fp);
1804 out:
1805 	fc_exch_release(ep);
1806 	return;
1807 
1808 rel:
1809 	fc_exch_release(ep);
1810 reject:
1811 	fc_seq_ls_rjt(rfp, reason, explan);
1812 }
1813 
1814 /**
1815  * fc_exch_rrq_resp() - Handler for RRQ responses
1816  * @sp:	 The sequence that the RRQ is on
1817  * @fp:	 The RRQ frame
1818  * @arg: The exchange that the RRQ is on
1819  *
1820  * TODO: fix error handler.
1821  */
1822 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1823 {
1824 	struct fc_exch *aborted_ep = arg;
1825 	unsigned int op;
1826 
1827 	if (IS_ERR(fp)) {
1828 		int err = PTR_ERR(fp);
1829 
1830 		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1831 			goto cleanup;
1832 		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1833 			    "frame error %d\n", err);
1834 		return;
1835 	}
1836 
1837 	op = fc_frame_payload_op(fp);
1838 	fc_frame_free(fp);
1839 
1840 	switch (op) {
1841 	case ELS_LS_RJT:
1842 		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1843 		/* fall through */
1844 	case ELS_LS_ACC:
1845 		goto cleanup;
1846 	default:
1847 		FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1848 			    "for RRQ", op);
1849 		return;
1850 	}
1851 
1852 cleanup:
1853 	fc_exch_done(&aborted_ep->seq);
1854 	/* drop hold for rec qual */
1855 	fc_exch_release(aborted_ep);
1856 }
1857 
1858 
1859 /**
1860  * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1861  * @lport:	The local port to send the frame on
1862  * @fp:		The frame to be sent
1863  * @resp:	The response handler for this request
1864  * @destructor: The destructor for the exchange
1865  * @arg:	The argument to be passed to the response handler
1866  * @timer_msec: The timeout period for the exchange
1867  *
1868  * The frame pointer with some of the header's fields must be
1869  * filled before calling this routine, those fields are:
1870  *
1871  * - routing control
1872  * - FC port did
1873  * - FC port sid
1874  * - FC header type
1875  * - frame control
1876  * - parameter or relative offset
1877  */
1878 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1879 				       struct fc_frame *fp,
1880 				       void (*resp)(struct fc_seq *,
1881 						    struct fc_frame *fp,
1882 						    void *arg),
1883 				       void (*destructor)(struct fc_seq *,
1884 							  void *),
1885 				       void *arg, u32 timer_msec)
1886 {
1887 	struct fc_exch *ep;
1888 	struct fc_seq *sp = NULL;
1889 	struct fc_frame_header *fh;
1890 	int rc = 1;
1891 
1892 	ep = fc_exch_alloc(lport, fp);
1893 	if (!ep) {
1894 		fc_frame_free(fp);
1895 		return NULL;
1896 	}
1897 	ep->esb_stat |= ESB_ST_SEQ_INIT;
1898 	fh = fc_frame_header_get(fp);
1899 	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1900 	ep->resp = resp;
1901 	ep->destructor = destructor;
1902 	ep->arg = arg;
1903 	ep->r_a_tov = FC_DEF_R_A_TOV;
1904 	ep->lp = lport;
1905 	sp = &ep->seq;
1906 
1907 	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
1908 	ep->f_ctl = ntoh24(fh->fh_f_ctl);
1909 	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
1910 	sp->cnt++;
1911 
1912 	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD)
1913 		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
1914 
1915 	if (unlikely(lport->tt.frame_send(lport, fp)))
1916 		goto err;
1917 
1918 	if (timer_msec)
1919 		fc_exch_timer_set_locked(ep, timer_msec);
1920 	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
1921 
1922 	if (ep->f_ctl & FC_FC_SEQ_INIT)
1923 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1924 	spin_unlock_bh(&ep->ex_lock);
1925 	return sp;
1926 err:
1927 	rc = fc_exch_done_locked(ep);
1928 	spin_unlock_bh(&ep->ex_lock);
1929 	if (!rc)
1930 		fc_exch_delete(ep);
1931 	return NULL;
1932 }
1933 
1934 /**
1935  * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
1936  * @ep: The exchange to send the RRQ on
1937  *
1938  * This tells the remote port to stop blocking the use of
1939  * the exchange and the seq_cnt range.
1940  */
1941 static void fc_exch_rrq(struct fc_exch *ep)
1942 {
1943 	struct fc_lport *lport;
1944 	struct fc_els_rrq *rrq;
1945 	struct fc_frame *fp;
1946 	u32 did;
1947 
1948 	lport = ep->lp;
1949 
1950 	fp = fc_frame_alloc(lport, sizeof(*rrq));
1951 	if (!fp)
1952 		goto retry;
1953 
1954 	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
1955 	memset(rrq, 0, sizeof(*rrq));
1956 	rrq->rrq_cmd = ELS_RRQ;
1957 	hton24(rrq->rrq_s_id, ep->sid);
1958 	rrq->rrq_ox_id = htons(ep->oxid);
1959 	rrq->rrq_rx_id = htons(ep->rxid);
1960 
1961 	did = ep->did;
1962 	if (ep->esb_stat & ESB_ST_RESP)
1963 		did = ep->sid;
1964 
1965 	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
1966 		       lport->port_id, FC_TYPE_ELS,
1967 		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
1968 
1969 	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
1970 			     lport->e_d_tov))
1971 		return;
1972 
1973 retry:
1974 	spin_lock_bh(&ep->ex_lock);
1975 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
1976 		spin_unlock_bh(&ep->ex_lock);
1977 		/* drop hold for rec qual */
1978 		fc_exch_release(ep);
1979 		return;
1980 	}
1981 	ep->esb_stat |= ESB_ST_REC_QUAL;
1982 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1983 	spin_unlock_bh(&ep->ex_lock);
1984 }
1985 
1986 /**
1987  * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
1988  * @fp: The RRQ frame, not freed here.
1989  */
1990 static void fc_exch_els_rrq(struct fc_frame *fp)
1991 {
1992 	struct fc_lport *lport;
1993 	struct fc_exch *ep = NULL;	/* request or subject exchange */
1994 	struct fc_els_rrq *rp;
1995 	u32 sid;
1996 	u16 xid;
1997 	enum fc_els_rjt_explan explan;
1998 
1999 	lport = fr_dev(fp);
2000 	rp = fc_frame_payload_get(fp, sizeof(*rp));
2001 	explan = ELS_EXPL_INV_LEN;
2002 	if (!rp)
2003 		goto reject;
2004 
2005 	/*
2006 	 * lookup subject exchange.
2007 	 */
2008 	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2009 	xid = fc_host_port_id(lport->host) == sid ?
2010 			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2011 	ep = fc_exch_lookup(lport, xid);
2012 	explan = ELS_EXPL_OXID_RXID;
2013 	if (!ep)
2014 		goto reject;
2015 	spin_lock_bh(&ep->ex_lock);
2016 	if (ep->oxid != ntohs(rp->rrq_ox_id))
2017 		goto unlock_reject;
2018 	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2019 	    ep->rxid != FC_XID_UNKNOWN)
2020 		goto unlock_reject;
2021 	explan = ELS_EXPL_SID;
2022 	if (ep->sid != sid)
2023 		goto unlock_reject;
2024 
2025 	/*
2026 	 * Clear Recovery Qualifier state, and cancel timer if complete.
2027 	 */
2028 	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2029 		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2030 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2031 	}
2032 	if (ep->esb_stat & ESB_ST_COMPLETE) {
2033 		if (cancel_delayed_work(&ep->timeout_work))
2034 			atomic_dec(&ep->ex_refcnt);	/* drop timer hold */
2035 	}
2036 
2037 	spin_unlock_bh(&ep->ex_lock);
2038 
2039 	/*
2040 	 * Send LS_ACC.
2041 	 */
2042 	fc_seq_ls_acc(fp);
2043 	goto out;
2044 
2045 unlock_reject:
2046 	spin_unlock_bh(&ep->ex_lock);
2047 reject:
2048 	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2049 out:
2050 	if (ep)
2051 		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2052 }
2053 
2054 /**
2055  * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2056  * @lport: The local port to add the exchange manager to
2057  * @mp:	   The exchange manager to be added to the local port
2058  * @match: The match routine that indicates when this EM should be used
2059  */
2060 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2061 					   struct fc_exch_mgr *mp,
2062 					   bool (*match)(struct fc_frame *))
2063 {
2064 	struct fc_exch_mgr_anchor *ema;
2065 
2066 	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2067 	if (!ema)
2068 		return ema;
2069 
2070 	ema->mp = mp;
2071 	ema->match = match;
2072 	/* add EM anchor to EM anchors list */
2073 	list_add_tail(&ema->ema_list, &lport->ema_list);
2074 	kref_get(&mp->kref);
2075 	return ema;
2076 }
2077 EXPORT_SYMBOL(fc_exch_mgr_add);
2078 
2079 /**
2080  * fc_exch_mgr_destroy() - Destroy an exchange manager
2081  * @kref: The reference to the EM to be destroyed
2082  */
2083 static void fc_exch_mgr_destroy(struct kref *kref)
2084 {
2085 	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2086 
2087 	mempool_destroy(mp->ep_pool);
2088 	free_percpu(mp->pool);
2089 	kfree(mp);
2090 }
2091 
2092 /**
2093  * fc_exch_mgr_del() - Delete an EM from a local port's list
2094  * @ema: The exchange manager anchor identifying the EM to be deleted
2095  */
2096 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2097 {
2098 	/* remove EM anchor from EM anchors list */
2099 	list_del(&ema->ema_list);
2100 	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2101 	kfree(ema);
2102 }
2103 EXPORT_SYMBOL(fc_exch_mgr_del);
2104 
2105 /**
2106  * fc_exch_mgr_list_clone() - Share all exchange manager objects
2107  * @src: Source lport to clone exchange managers from
2108  * @dst: New lport that takes references to all the exchange managers
2109  */
2110 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2111 {
2112 	struct fc_exch_mgr_anchor *ema, *tmp;
2113 
2114 	list_for_each_entry(ema, &src->ema_list, ema_list) {
2115 		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2116 			goto err;
2117 	}
2118 	return 0;
2119 err:
2120 	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2121 		fc_exch_mgr_del(ema);
2122 	return -ENOMEM;
2123 }
2124 
2125 /**
2126  * fc_exch_mgr_alloc() - Allocate an exchange manager
2127  * @lport:   The local port that the new EM will be associated with
2128  * @class:   The default FC class for new exchanges
2129  * @min_xid: The minimum XID for exchanges from the new EM
2130  * @max_xid: The maximum XID for exchanges from the new EM
2131  * @match:   The match routine for the new EM
2132  */
2133 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2134 				      enum fc_class class,
2135 				      u16 min_xid, u16 max_xid,
2136 				      bool (*match)(struct fc_frame *))
2137 {
2138 	struct fc_exch_mgr *mp;
2139 	u16 pool_exch_range;
2140 	size_t pool_size;
2141 	unsigned int cpu;
2142 	struct fc_exch_pool *pool;
2143 
2144 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2145 	    (min_xid & fc_cpu_mask) != 0) {
2146 		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2147 			     min_xid, max_xid);
2148 		return NULL;
2149 	}
2150 
2151 	/*
2152 	 * allocate memory for EM
2153 	 */
2154 	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2155 	if (!mp)
2156 		return NULL;
2157 
2158 	mp->class = class;
2159 	/* adjust em exch xid range for offload */
2160 	mp->min_xid = min_xid;
2161 	mp->max_xid = max_xid;
2162 
2163 	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2164 	if (!mp->ep_pool)
2165 		goto free_mp;
2166 
2167 	/*
2168 	 * Setup per cpu exch pool with entire exchange id range equally
2169 	 * divided across all cpus. The exch pointers array memory is
2170 	 * allocated for exch range per pool.
2171 	 */
2172 	pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2173 	mp->pool_max_index = pool_exch_range - 1;
2174 
2175 	/*
2176 	 * Allocate and initialize per cpu exch pool
2177 	 */
2178 	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2179 	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2180 	if (!mp->pool)
2181 		goto free_mempool;
2182 	for_each_possible_cpu(cpu) {
2183 		pool = per_cpu_ptr(mp->pool, cpu);
2184 		spin_lock_init(&pool->lock);
2185 		INIT_LIST_HEAD(&pool->ex_list);
2186 	}
2187 
2188 	kref_init(&mp->kref);
2189 	if (!fc_exch_mgr_add(lport, mp, match)) {
2190 		free_percpu(mp->pool);
2191 		goto free_mempool;
2192 	}
2193 
2194 	/*
2195 	 * Above kref_init() sets mp->kref to 1 and then
2196 	 * call to fc_exch_mgr_add incremented mp->kref again,
2197 	 * so adjust that extra increment.
2198 	 */
2199 	kref_put(&mp->kref, fc_exch_mgr_destroy);
2200 	return mp;
2201 
2202 free_mempool:
2203 	mempool_destroy(mp->ep_pool);
2204 free_mp:
2205 	kfree(mp);
2206 	return NULL;
2207 }
2208 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2209 
2210 /**
2211  * fc_exch_mgr_free() - Free all exchange managers on a local port
2212  * @lport: The local port whose EMs are to be freed
2213  */
2214 void fc_exch_mgr_free(struct fc_lport *lport)
2215 {
2216 	struct fc_exch_mgr_anchor *ema, *next;
2217 
2218 	flush_workqueue(fc_exch_workqueue);
2219 	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2220 		fc_exch_mgr_del(ema);
2221 }
2222 EXPORT_SYMBOL(fc_exch_mgr_free);
2223 
2224 /**
2225  * fc_exch_recv() - Handler for received frames
2226  * @lport: The local port the frame was received on
2227  * @fp:	   The received frame
2228  */
2229 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2230 {
2231 	struct fc_frame_header *fh = fc_frame_header_get(fp);
2232 	struct fc_exch_mgr_anchor *ema;
2233 	u32 f_ctl, found = 0;
2234 	u16 oxid;
2235 
2236 	/* lport lock ? */
2237 	if (!lport || lport->state == LPORT_ST_DISABLED) {
2238 		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2239 			     "has not been initialized correctly\n");
2240 		fc_frame_free(fp);
2241 		return;
2242 	}
2243 
2244 	f_ctl = ntoh24(fh->fh_f_ctl);
2245 	oxid = ntohs(fh->fh_ox_id);
2246 	if (f_ctl & FC_FC_EX_CTX) {
2247 		list_for_each_entry(ema, &lport->ema_list, ema_list) {
2248 			if ((oxid >= ema->mp->min_xid) &&
2249 			    (oxid <= ema->mp->max_xid)) {
2250 				found = 1;
2251 				break;
2252 			}
2253 		}
2254 
2255 		if (!found) {
2256 			FC_LPORT_DBG(lport, "Received response for out "
2257 				     "of range oxid:%hx\n", oxid);
2258 			fc_frame_free(fp);
2259 			return;
2260 		}
2261 	} else
2262 		ema = list_entry(lport->ema_list.prev, typeof(*ema), ema_list);
2263 
2264 	/*
2265 	 * If frame is marked invalid, just drop it.
2266 	 */
2267 	switch (fr_eof(fp)) {
2268 	case FC_EOF_T:
2269 		if (f_ctl & FC_FC_END_SEQ)
2270 			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2271 		/* fall through */
2272 	case FC_EOF_N:
2273 		if (fh->fh_type == FC_TYPE_BLS)
2274 			fc_exch_recv_bls(ema->mp, fp);
2275 		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2276 			 FC_FC_EX_CTX)
2277 			fc_exch_recv_seq_resp(ema->mp, fp);
2278 		else if (f_ctl & FC_FC_SEQ_CTX)
2279 			fc_exch_recv_resp(ema->mp, fp);
2280 		else	/* no EX_CTX and no SEQ_CTX */
2281 			fc_exch_recv_req(lport, ema->mp, fp);
2282 		break;
2283 	default:
2284 		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2285 			     fr_eof(fp));
2286 		fc_frame_free(fp);
2287 	}
2288 }
2289 EXPORT_SYMBOL(fc_exch_recv);
2290 
2291 /**
2292  * fc_exch_init() - Initialize the exchange layer for a local port
2293  * @lport: The local port to initialize the exchange layer for
2294  */
2295 int fc_exch_init(struct fc_lport *lport)
2296 {
2297 	if (!lport->tt.seq_start_next)
2298 		lport->tt.seq_start_next = fc_seq_start_next;
2299 
2300 	if (!lport->tt.exch_seq_send)
2301 		lport->tt.exch_seq_send = fc_exch_seq_send;
2302 
2303 	if (!lport->tt.seq_send)
2304 		lport->tt.seq_send = fc_seq_send;
2305 
2306 	if (!lport->tt.seq_els_rsp_send)
2307 		lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2308 
2309 	if (!lport->tt.exch_done)
2310 		lport->tt.exch_done = fc_exch_done;
2311 
2312 	if (!lport->tt.exch_mgr_reset)
2313 		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2314 
2315 	if (!lport->tt.seq_exch_abort)
2316 		lport->tt.seq_exch_abort = fc_seq_exch_abort;
2317 
2318 	if (!lport->tt.seq_assign)
2319 		lport->tt.seq_assign = fc_seq_assign;
2320 
2321 	return 0;
2322 }
2323 EXPORT_SYMBOL(fc_exch_init);
2324 
2325 /**
2326  * fc_setup_exch_mgr() - Setup an exchange manager
2327  */
2328 int fc_setup_exch_mgr()
2329 {
2330 	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2331 					 0, SLAB_HWCACHE_ALIGN, NULL);
2332 	if (!fc_em_cachep)
2333 		return -ENOMEM;
2334 
2335 	/*
2336 	 * Initialize fc_cpu_mask and fc_cpu_order. The
2337 	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2338 	 * to order of 2's * power and order is stored
2339 	 * in fc_cpu_order as this is later required in
2340 	 * mapping between an exch id and exch array index
2341 	 * in per cpu exch pool.
2342 	 *
2343 	 * This round up is required to align fc_cpu_mask
2344 	 * to exchange id's lower bits such that all incoming
2345 	 * frames of an exchange gets delivered to the same
2346 	 * cpu on which exchange originated by simple bitwise
2347 	 * AND operation between fc_cpu_mask and exchange id.
2348 	 */
2349 	fc_cpu_mask = 1;
2350 	fc_cpu_order = 0;
2351 	while (fc_cpu_mask < nr_cpu_ids) {
2352 		fc_cpu_mask <<= 1;
2353 		fc_cpu_order++;
2354 	}
2355 	fc_cpu_mask--;
2356 
2357 	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2358 	if (!fc_exch_workqueue)
2359 		return -ENOMEM;
2360 	return 0;
2361 }
2362 
2363 /**
2364  * fc_destroy_exch_mgr() - Destroy an exchange manager
2365  */
2366 void fc_destroy_exch_mgr()
2367 {
2368 	destroy_workqueue(fc_exch_workqueue);
2369 	kmem_cache_destroy(fc_em_cachep);
2370 }
2371