1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2007 Intel Corporation. All rights reserved. 4 * Copyright(c) 2008 Red Hat, Inc. All rights reserved. 5 * Copyright(c) 2008 Mike Christie 6 * 7 * Maintained at www.Open-FCoE.org 8 */ 9 10 /* 11 * Fibre Channel exchange and sequence handling. 12 */ 13 14 #include <linux/timer.h> 15 #include <linux/slab.h> 16 #include <linux/err.h> 17 #include <linux/export.h> 18 #include <linux/log2.h> 19 20 #include <scsi/fc/fc_fc2.h> 21 22 #include <scsi/libfc.h> 23 24 #include "fc_libfc.h" 25 26 u16 fc_cpu_mask; /* cpu mask for possible cpus */ 27 EXPORT_SYMBOL(fc_cpu_mask); 28 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */ 29 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */ 30 static struct workqueue_struct *fc_exch_workqueue; 31 32 /* 33 * Structure and function definitions for managing Fibre Channel Exchanges 34 * and Sequences. 35 * 36 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq. 37 * 38 * fc_exch_mgr holds the exchange state for an N port 39 * 40 * fc_exch holds state for one exchange and links to its active sequence. 41 * 42 * fc_seq holds the state for an individual sequence. 43 */ 44 45 /** 46 * struct fc_exch_pool - Per cpu exchange pool 47 * @next_index: Next possible free exchange index 48 * @total_exches: Total allocated exchanges 49 * @lock: Exch pool lock 50 * @ex_list: List of exchanges 51 * @left: Cache of free slot in exch array 52 * @right: Cache of free slot in exch array 53 * 54 * This structure manages per cpu exchanges in array of exchange pointers. 55 * This array is allocated followed by struct fc_exch_pool memory for 56 * assigned range of exchanges to per cpu pool. 57 */ 58 struct fc_exch_pool { 59 spinlock_t lock; 60 struct list_head ex_list; 61 u16 next_index; 62 u16 total_exches; 63 64 u16 left; 65 u16 right; 66 } ____cacheline_aligned_in_smp; 67 68 /** 69 * struct fc_exch_mgr - The Exchange Manager (EM). 70 * @class: Default class for new sequences 71 * @kref: Reference counter 72 * @min_xid: Minimum exchange ID 73 * @max_xid: Maximum exchange ID 74 * @ep_pool: Reserved exchange pointers 75 * @pool_max_index: Max exch array index in exch pool 76 * @pool: Per cpu exch pool 77 * @lport: Local exchange port 78 * @stats: Statistics structure 79 * 80 * This structure is the center for creating exchanges and sequences. 81 * It manages the allocation of exchange IDs. 82 */ 83 struct fc_exch_mgr { 84 struct fc_exch_pool __percpu *pool; 85 mempool_t *ep_pool; 86 struct fc_lport *lport; 87 enum fc_class class; 88 struct kref kref; 89 u16 min_xid; 90 u16 max_xid; 91 u16 pool_max_index; 92 93 struct { 94 atomic_t no_free_exch; 95 atomic_t no_free_exch_xid; 96 atomic_t xid_not_found; 97 atomic_t xid_busy; 98 atomic_t seq_not_found; 99 atomic_t non_bls_resp; 100 } stats; 101 }; 102 103 /** 104 * struct fc_exch_mgr_anchor - primary structure for list of EMs 105 * @ema_list: Exchange Manager Anchor list 106 * @mp: Exchange Manager associated with this anchor 107 * @match: Routine to determine if this anchor's EM should be used 108 * 109 * When walking the list of anchors the match routine will be called 110 * for each anchor to determine if that EM should be used. The last 111 * anchor in the list will always match to handle any exchanges not 112 * handled by other EMs. The non-default EMs would be added to the 113 * anchor list by HW that provides offloads. 114 */ 115 struct fc_exch_mgr_anchor { 116 struct list_head ema_list; 117 struct fc_exch_mgr *mp; 118 bool (*match)(struct fc_frame *); 119 }; 120 121 static void fc_exch_rrq(struct fc_exch *); 122 static void fc_seq_ls_acc(struct fc_frame *); 123 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason, 124 enum fc_els_rjt_explan); 125 static void fc_exch_els_rec(struct fc_frame *); 126 static void fc_exch_els_rrq(struct fc_frame *); 127 128 /* 129 * Internal implementation notes. 130 * 131 * The exchange manager is one by default in libfc but LLD may choose 132 * to have one per CPU. The sequence manager is one per exchange manager 133 * and currently never separated. 134 * 135 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field 136 * assigned by the Sequence Initiator that shall be unique for a specific 137 * D_ID and S_ID pair while the Sequence is open." Note that it isn't 138 * qualified by exchange ID, which one might think it would be. 139 * In practice this limits the number of open sequences and exchanges to 256 140 * per session. For most targets we could treat this limit as per exchange. 141 * 142 * The exchange and its sequence are freed when the last sequence is received. 143 * It's possible for the remote port to leave an exchange open without 144 * sending any sequences. 145 * 146 * Notes on reference counts: 147 * 148 * Exchanges are reference counted and exchange gets freed when the reference 149 * count becomes zero. 150 * 151 * Timeouts: 152 * Sequences are timed out for E_D_TOV and R_A_TOV. 153 * 154 * Sequence event handling: 155 * 156 * The following events may occur on initiator sequences: 157 * 158 * Send. 159 * For now, the whole thing is sent. 160 * Receive ACK 161 * This applies only to class F. 162 * The sequence is marked complete. 163 * ULP completion. 164 * The upper layer calls fc_exch_done() when done 165 * with exchange and sequence tuple. 166 * RX-inferred completion. 167 * When we receive the next sequence on the same exchange, we can 168 * retire the previous sequence ID. (XXX not implemented). 169 * Timeout. 170 * R_A_TOV frees the sequence ID. If we're waiting for ACK, 171 * E_D_TOV causes abort and calls upper layer response handler 172 * with FC_EX_TIMEOUT error. 173 * Receive RJT 174 * XXX defer. 175 * Send ABTS 176 * On timeout. 177 * 178 * The following events may occur on recipient sequences: 179 * 180 * Receive 181 * Allocate sequence for first frame received. 182 * Hold during receive handler. 183 * Release when final frame received. 184 * Keep status of last N of these for the ELS RES command. XXX TBD. 185 * Receive ABTS 186 * Deallocate sequence 187 * Send RJT 188 * Deallocate 189 * 190 * For now, we neglect conditions where only part of a sequence was 191 * received or transmitted, or where out-of-order receipt is detected. 192 */ 193 194 /* 195 * Locking notes: 196 * 197 * The EM code run in a per-CPU worker thread. 198 * 199 * To protect against concurrency between a worker thread code and timers, 200 * sequence allocation and deallocation must be locked. 201 * - exchange refcnt can be done atomicly without locks. 202 * - sequence allocation must be locked by exch lock. 203 * - If the EM pool lock and ex_lock must be taken at the same time, then the 204 * EM pool lock must be taken before the ex_lock. 205 */ 206 207 /* 208 * opcode names for debugging. 209 */ 210 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT; 211 212 /** 213 * fc_exch_name_lookup() - Lookup name by opcode 214 * @op: Opcode to be looked up 215 * @table: Opcode/name table 216 * @max_index: Index not to be exceeded 217 * 218 * This routine is used to determine a human-readable string identifying 219 * a R_CTL opcode. 220 */ 221 static inline const char *fc_exch_name_lookup(unsigned int op, char **table, 222 unsigned int max_index) 223 { 224 const char *name = NULL; 225 226 if (op < max_index) 227 name = table[op]; 228 if (!name) 229 name = "unknown"; 230 return name; 231 } 232 233 /** 234 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup() 235 * @op: The opcode to be looked up 236 */ 237 static const char *fc_exch_rctl_name(unsigned int op) 238 { 239 return fc_exch_name_lookup(op, fc_exch_rctl_names, 240 ARRAY_SIZE(fc_exch_rctl_names)); 241 } 242 243 /** 244 * fc_exch_hold() - Increment an exchange's reference count 245 * @ep: Echange to be held 246 */ 247 static inline void fc_exch_hold(struct fc_exch *ep) 248 { 249 atomic_inc(&ep->ex_refcnt); 250 } 251 252 /** 253 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields 254 * and determine SOF and EOF. 255 * @ep: The exchange to that will use the header 256 * @fp: The frame whose header is to be modified 257 * @f_ctl: F_CTL bits that will be used for the frame header 258 * 259 * The fields initialized by this routine are: fh_ox_id, fh_rx_id, 260 * fh_seq_id, fh_seq_cnt and the SOF and EOF. 261 */ 262 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp, 263 u32 f_ctl) 264 { 265 struct fc_frame_header *fh = fc_frame_header_get(fp); 266 u16 fill; 267 268 fr_sof(fp) = ep->class; 269 if (ep->seq.cnt) 270 fr_sof(fp) = fc_sof_normal(ep->class); 271 272 if (f_ctl & FC_FC_END_SEQ) { 273 fr_eof(fp) = FC_EOF_T; 274 if (fc_sof_needs_ack((enum fc_sof)ep->class)) 275 fr_eof(fp) = FC_EOF_N; 276 /* 277 * From F_CTL. 278 * The number of fill bytes to make the length a 4-byte 279 * multiple is the low order 2-bits of the f_ctl. 280 * The fill itself will have been cleared by the frame 281 * allocation. 282 * After this, the length will be even, as expected by 283 * the transport. 284 */ 285 fill = fr_len(fp) & 3; 286 if (fill) { 287 fill = 4 - fill; 288 /* TODO, this may be a problem with fragmented skb */ 289 skb_put(fp_skb(fp), fill); 290 hton24(fh->fh_f_ctl, f_ctl | fill); 291 } 292 } else { 293 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */ 294 fr_eof(fp) = FC_EOF_N; 295 } 296 297 /* Initialize remaining fh fields from fc_fill_fc_hdr */ 298 fh->fh_ox_id = htons(ep->oxid); 299 fh->fh_rx_id = htons(ep->rxid); 300 fh->fh_seq_id = ep->seq.id; 301 fh->fh_seq_cnt = htons(ep->seq.cnt); 302 } 303 304 /** 305 * fc_exch_release() - Decrement an exchange's reference count 306 * @ep: Exchange to be released 307 * 308 * If the reference count reaches zero and the exchange is complete, 309 * it is freed. 310 */ 311 static void fc_exch_release(struct fc_exch *ep) 312 { 313 struct fc_exch_mgr *mp; 314 315 if (atomic_dec_and_test(&ep->ex_refcnt)) { 316 mp = ep->em; 317 if (ep->destructor) 318 ep->destructor(&ep->seq, ep->arg); 319 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE)); 320 mempool_free(ep, mp->ep_pool); 321 } 322 } 323 324 /** 325 * fc_exch_timer_cancel() - cancel exch timer 326 * @ep: The exchange whose timer to be canceled 327 */ 328 static inline void fc_exch_timer_cancel(struct fc_exch *ep) 329 { 330 if (cancel_delayed_work(&ep->timeout_work)) { 331 FC_EXCH_DBG(ep, "Exchange timer canceled\n"); 332 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */ 333 } 334 } 335 336 /** 337 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the 338 * the exchange lock held 339 * @ep: The exchange whose timer will start 340 * @timer_msec: The timeout period 341 * 342 * Used for upper level protocols to time out the exchange. 343 * The timer is cancelled when it fires or when the exchange completes. 344 */ 345 static inline void fc_exch_timer_set_locked(struct fc_exch *ep, 346 unsigned int timer_msec) 347 { 348 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 349 return; 350 351 FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec); 352 353 fc_exch_hold(ep); /* hold for timer */ 354 if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work, 355 msecs_to_jiffies(timer_msec))) { 356 FC_EXCH_DBG(ep, "Exchange already queued\n"); 357 fc_exch_release(ep); 358 } 359 } 360 361 /** 362 * fc_exch_timer_set() - Lock the exchange and set the timer 363 * @ep: The exchange whose timer will start 364 * @timer_msec: The timeout period 365 */ 366 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec) 367 { 368 spin_lock_bh(&ep->ex_lock); 369 fc_exch_timer_set_locked(ep, timer_msec); 370 spin_unlock_bh(&ep->ex_lock); 371 } 372 373 /** 374 * fc_exch_done_locked() - Complete an exchange with the exchange lock held 375 * @ep: The exchange that is complete 376 * 377 * Note: May sleep if invoked from outside a response handler. 378 */ 379 static int fc_exch_done_locked(struct fc_exch *ep) 380 { 381 int rc = 1; 382 383 /* 384 * We must check for completion in case there are two threads 385 * tyring to complete this. But the rrq code will reuse the 386 * ep, and in that case we only clear the resp and set it as 387 * complete, so it can be reused by the timer to send the rrq. 388 */ 389 if (ep->state & FC_EX_DONE) 390 return rc; 391 ep->esb_stat |= ESB_ST_COMPLETE; 392 393 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) { 394 ep->state |= FC_EX_DONE; 395 fc_exch_timer_cancel(ep); 396 rc = 0; 397 } 398 return rc; 399 } 400 401 static struct fc_exch fc_quarantine_exch; 402 403 /** 404 * fc_exch_ptr_get() - Return an exchange from an exchange pool 405 * @pool: Exchange Pool to get an exchange from 406 * @index: Index of the exchange within the pool 407 * 408 * Use the index to get an exchange from within an exchange pool. exches 409 * will point to an array of exchange pointers. The index will select 410 * the exchange within the array. 411 */ 412 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool, 413 u16 index) 414 { 415 struct fc_exch **exches = (struct fc_exch **)(pool + 1); 416 return exches[index]; 417 } 418 419 /** 420 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool 421 * @pool: The pool to assign the exchange to 422 * @index: The index in the pool where the exchange will be assigned 423 * @ep: The exchange to assign to the pool 424 */ 425 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index, 426 struct fc_exch *ep) 427 { 428 ((struct fc_exch **)(pool + 1))[index] = ep; 429 } 430 431 /** 432 * fc_exch_delete() - Delete an exchange 433 * @ep: The exchange to be deleted 434 */ 435 static void fc_exch_delete(struct fc_exch *ep) 436 { 437 struct fc_exch_pool *pool; 438 u16 index; 439 440 pool = ep->pool; 441 spin_lock_bh(&pool->lock); 442 WARN_ON(pool->total_exches <= 0); 443 pool->total_exches--; 444 445 /* update cache of free slot */ 446 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order; 447 if (!(ep->state & FC_EX_QUARANTINE)) { 448 if (pool->left == FC_XID_UNKNOWN) 449 pool->left = index; 450 else if (pool->right == FC_XID_UNKNOWN) 451 pool->right = index; 452 else 453 pool->next_index = index; 454 fc_exch_ptr_set(pool, index, NULL); 455 } else { 456 fc_exch_ptr_set(pool, index, &fc_quarantine_exch); 457 } 458 list_del(&ep->ex_list); 459 spin_unlock_bh(&pool->lock); 460 fc_exch_release(ep); /* drop hold for exch in mp */ 461 } 462 463 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp, 464 struct fc_frame *fp) 465 { 466 struct fc_exch *ep; 467 struct fc_frame_header *fh = fc_frame_header_get(fp); 468 int error = -ENXIO; 469 u32 f_ctl; 470 u8 fh_type = fh->fh_type; 471 472 ep = fc_seq_exch(sp); 473 474 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) { 475 fc_frame_free(fp); 476 goto out; 477 } 478 479 WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT)); 480 481 f_ctl = ntoh24(fh->fh_f_ctl); 482 fc_exch_setup_hdr(ep, fp, f_ctl); 483 fr_encaps(fp) = ep->encaps; 484 485 /* 486 * update sequence count if this frame is carrying 487 * multiple FC frames when sequence offload is enabled 488 * by LLD. 489 */ 490 if (fr_max_payload(fp)) 491 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)), 492 fr_max_payload(fp)); 493 else 494 sp->cnt++; 495 496 /* 497 * Send the frame. 498 */ 499 error = lport->tt.frame_send(lport, fp); 500 501 if (fh_type == FC_TYPE_BLS) 502 goto out; 503 504 /* 505 * Update the exchange and sequence flags, 506 * assuming all frames for the sequence have been sent. 507 * We can only be called to send once for each sequence. 508 */ 509 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */ 510 if (f_ctl & FC_FC_SEQ_INIT) 511 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 512 out: 513 return error; 514 } 515 516 /** 517 * fc_seq_send() - Send a frame using existing sequence/exchange pair 518 * @lport: The local port that the exchange will be sent on 519 * @sp: The sequence to be sent 520 * @fp: The frame to be sent on the exchange 521 * 522 * Note: The frame will be freed either by a direct call to fc_frame_free(fp) 523 * or indirectly by calling libfc_function_template.frame_send(). 524 */ 525 int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp) 526 { 527 struct fc_exch *ep; 528 int error; 529 ep = fc_seq_exch(sp); 530 spin_lock_bh(&ep->ex_lock); 531 error = fc_seq_send_locked(lport, sp, fp); 532 spin_unlock_bh(&ep->ex_lock); 533 return error; 534 } 535 EXPORT_SYMBOL(fc_seq_send); 536 537 /** 538 * fc_seq_alloc() - Allocate a sequence for a given exchange 539 * @ep: The exchange to allocate a new sequence for 540 * @seq_id: The sequence ID to be used 541 * 542 * We don't support multiple originated sequences on the same exchange. 543 * By implication, any previously originated sequence on this exchange 544 * is complete, and we reallocate the same sequence. 545 */ 546 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id) 547 { 548 struct fc_seq *sp; 549 550 sp = &ep->seq; 551 sp->ssb_stat = 0; 552 sp->cnt = 0; 553 sp->id = seq_id; 554 return sp; 555 } 556 557 /** 558 * fc_seq_start_next_locked() - Allocate a new sequence on the same 559 * exchange as the supplied sequence 560 * @sp: The sequence/exchange to get a new sequence for 561 */ 562 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp) 563 { 564 struct fc_exch *ep = fc_seq_exch(sp); 565 566 sp = fc_seq_alloc(ep, ep->seq_id++); 567 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n", 568 ep->f_ctl, sp->id); 569 return sp; 570 } 571 572 /** 573 * fc_seq_start_next() - Lock the exchange and get a new sequence 574 * for a given sequence/exchange pair 575 * @sp: The sequence/exchange to get a new exchange for 576 */ 577 struct fc_seq *fc_seq_start_next(struct fc_seq *sp) 578 { 579 struct fc_exch *ep = fc_seq_exch(sp); 580 581 spin_lock_bh(&ep->ex_lock); 582 sp = fc_seq_start_next_locked(sp); 583 spin_unlock_bh(&ep->ex_lock); 584 585 return sp; 586 } 587 EXPORT_SYMBOL(fc_seq_start_next); 588 589 /* 590 * Set the response handler for the exchange associated with a sequence. 591 * 592 * Note: May sleep if invoked from outside a response handler. 593 */ 594 void fc_seq_set_resp(struct fc_seq *sp, 595 void (*resp)(struct fc_seq *, struct fc_frame *, void *), 596 void *arg) 597 { 598 struct fc_exch *ep = fc_seq_exch(sp); 599 DEFINE_WAIT(wait); 600 601 spin_lock_bh(&ep->ex_lock); 602 while (ep->resp_active && ep->resp_task != current) { 603 prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE); 604 spin_unlock_bh(&ep->ex_lock); 605 606 schedule(); 607 608 spin_lock_bh(&ep->ex_lock); 609 } 610 finish_wait(&ep->resp_wq, &wait); 611 ep->resp = resp; 612 ep->arg = arg; 613 spin_unlock_bh(&ep->ex_lock); 614 } 615 EXPORT_SYMBOL(fc_seq_set_resp); 616 617 /** 618 * fc_exch_abort_locked() - Abort an exchange 619 * @ep: The exchange to be aborted 620 * @timer_msec: The period of time to wait before aborting 621 * 622 * Abort an exchange and sequence. Generally called because of a 623 * exchange timeout or an abort from the upper layer. 624 * 625 * A timer_msec can be specified for abort timeout, if non-zero 626 * timer_msec value is specified then exchange resp handler 627 * will be called with timeout error if no response to abort. 628 * 629 * Locking notes: Called with exch lock held 630 * 631 * Return value: 0 on success else error code 632 */ 633 static int fc_exch_abort_locked(struct fc_exch *ep, 634 unsigned int timer_msec) 635 { 636 struct fc_seq *sp; 637 struct fc_frame *fp; 638 int error; 639 640 FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec); 641 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) || 642 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) { 643 FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n", 644 ep->esb_stat, ep->state); 645 return -ENXIO; 646 } 647 648 /* 649 * Send the abort on a new sequence if possible. 650 */ 651 sp = fc_seq_start_next_locked(&ep->seq); 652 if (!sp) 653 return -ENOMEM; 654 655 if (timer_msec) 656 fc_exch_timer_set_locked(ep, timer_msec); 657 658 if (ep->sid) { 659 /* 660 * Send an abort for the sequence that timed out. 661 */ 662 fp = fc_frame_alloc(ep->lp, 0); 663 if (fp) { 664 ep->esb_stat |= ESB_ST_SEQ_INIT; 665 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid, 666 FC_TYPE_BLS, FC_FC_END_SEQ | 667 FC_FC_SEQ_INIT, 0); 668 error = fc_seq_send_locked(ep->lp, sp, fp); 669 } else { 670 error = -ENOBUFS; 671 } 672 } else { 673 /* 674 * If not logged into the fabric, don't send ABTS but leave 675 * sequence active until next timeout. 676 */ 677 error = 0; 678 } 679 ep->esb_stat |= ESB_ST_ABNORMAL; 680 return error; 681 } 682 683 /** 684 * fc_seq_exch_abort() - Abort an exchange and sequence 685 * @req_sp: The sequence to be aborted 686 * @timer_msec: The period of time to wait before aborting 687 * 688 * Generally called because of a timeout or an abort from the upper layer. 689 * 690 * Return value: 0 on success else error code 691 */ 692 int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec) 693 { 694 struct fc_exch *ep; 695 int error; 696 697 ep = fc_seq_exch(req_sp); 698 spin_lock_bh(&ep->ex_lock); 699 error = fc_exch_abort_locked(ep, timer_msec); 700 spin_unlock_bh(&ep->ex_lock); 701 return error; 702 } 703 704 /** 705 * fc_invoke_resp() - invoke ep->resp() 706 * @ep: The exchange to be operated on 707 * @fp: The frame pointer to pass through to ->resp() 708 * @sp: The sequence pointer to pass through to ->resp() 709 * 710 * Notes: 711 * It is assumed that after initialization finished (this means the 712 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are 713 * modified only via fc_seq_set_resp(). This guarantees that none of these 714 * two variables changes if ep->resp_active > 0. 715 * 716 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when 717 * this function is invoked, the first spin_lock_bh() call in this function 718 * will wait until fc_seq_set_resp() has finished modifying these variables. 719 * 720 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that 721 * ep->resp() won't be invoked after fc_exch_done() has returned. 722 * 723 * The response handler itself may invoke fc_exch_done(), which will clear the 724 * ep->resp pointer. 725 * 726 * Return value: 727 * Returns true if and only if ep->resp has been invoked. 728 */ 729 static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp, 730 struct fc_frame *fp) 731 { 732 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg); 733 void *arg; 734 bool res = false; 735 736 spin_lock_bh(&ep->ex_lock); 737 ep->resp_active++; 738 if (ep->resp_task != current) 739 ep->resp_task = !ep->resp_task ? current : NULL; 740 resp = ep->resp; 741 arg = ep->arg; 742 spin_unlock_bh(&ep->ex_lock); 743 744 if (resp) { 745 resp(sp, fp, arg); 746 res = true; 747 } 748 749 spin_lock_bh(&ep->ex_lock); 750 if (--ep->resp_active == 0) 751 ep->resp_task = NULL; 752 spin_unlock_bh(&ep->ex_lock); 753 754 if (ep->resp_active == 0) 755 wake_up(&ep->resp_wq); 756 757 return res; 758 } 759 760 /** 761 * fc_exch_timeout() - Handle exchange timer expiration 762 * @work: The work_struct identifying the exchange that timed out 763 */ 764 static void fc_exch_timeout(struct work_struct *work) 765 { 766 struct fc_exch *ep = container_of(work, struct fc_exch, 767 timeout_work.work); 768 struct fc_seq *sp = &ep->seq; 769 u32 e_stat; 770 int rc = 1; 771 772 FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state); 773 774 spin_lock_bh(&ep->ex_lock); 775 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 776 goto unlock; 777 778 e_stat = ep->esb_stat; 779 if (e_stat & ESB_ST_COMPLETE) { 780 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL; 781 spin_unlock_bh(&ep->ex_lock); 782 if (e_stat & ESB_ST_REC_QUAL) 783 fc_exch_rrq(ep); 784 goto done; 785 } else { 786 if (e_stat & ESB_ST_ABNORMAL) 787 rc = fc_exch_done_locked(ep); 788 spin_unlock_bh(&ep->ex_lock); 789 if (!rc) 790 fc_exch_delete(ep); 791 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT)); 792 fc_seq_set_resp(sp, NULL, ep->arg); 793 fc_seq_exch_abort(sp, 2 * ep->r_a_tov); 794 goto done; 795 } 796 unlock: 797 spin_unlock_bh(&ep->ex_lock); 798 done: 799 /* 800 * This release matches the hold taken when the timer was set. 801 */ 802 fc_exch_release(ep); 803 } 804 805 /** 806 * fc_exch_em_alloc() - Allocate an exchange from a specified EM. 807 * @lport: The local port that the exchange is for 808 * @mp: The exchange manager that will allocate the exchange 809 * 810 * Returns pointer to allocated fc_exch with exch lock held. 811 */ 812 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport, 813 struct fc_exch_mgr *mp) 814 { 815 struct fc_exch *ep; 816 unsigned int cpu; 817 u16 index; 818 struct fc_exch_pool *pool; 819 820 /* allocate memory for exchange */ 821 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC); 822 if (!ep) { 823 atomic_inc(&mp->stats.no_free_exch); 824 goto out; 825 } 826 memset(ep, 0, sizeof(*ep)); 827 828 cpu = raw_smp_processor_id(); 829 pool = per_cpu_ptr(mp->pool, cpu); 830 spin_lock_bh(&pool->lock); 831 832 /* peek cache of free slot */ 833 if (pool->left != FC_XID_UNKNOWN) { 834 if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) { 835 index = pool->left; 836 pool->left = FC_XID_UNKNOWN; 837 goto hit; 838 } 839 } 840 if (pool->right != FC_XID_UNKNOWN) { 841 if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) { 842 index = pool->right; 843 pool->right = FC_XID_UNKNOWN; 844 goto hit; 845 } 846 } 847 848 index = pool->next_index; 849 /* allocate new exch from pool */ 850 while (fc_exch_ptr_get(pool, index)) { 851 index = index == mp->pool_max_index ? 0 : index + 1; 852 if (index == pool->next_index) 853 goto err; 854 } 855 pool->next_index = index == mp->pool_max_index ? 0 : index + 1; 856 hit: 857 fc_exch_hold(ep); /* hold for exch in mp */ 858 spin_lock_init(&ep->ex_lock); 859 /* 860 * Hold exch lock for caller to prevent fc_exch_reset() 861 * from releasing exch while fc_exch_alloc() caller is 862 * still working on exch. 863 */ 864 spin_lock_bh(&ep->ex_lock); 865 866 fc_exch_ptr_set(pool, index, ep); 867 list_add_tail(&ep->ex_list, &pool->ex_list); 868 fc_seq_alloc(ep, ep->seq_id++); 869 pool->total_exches++; 870 spin_unlock_bh(&pool->lock); 871 872 /* 873 * update exchange 874 */ 875 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid; 876 ep->em = mp; 877 ep->pool = pool; 878 ep->lp = lport; 879 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */ 880 ep->rxid = FC_XID_UNKNOWN; 881 ep->class = mp->class; 882 ep->resp_active = 0; 883 init_waitqueue_head(&ep->resp_wq); 884 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout); 885 out: 886 return ep; 887 err: 888 spin_unlock_bh(&pool->lock); 889 atomic_inc(&mp->stats.no_free_exch_xid); 890 mempool_free(ep, mp->ep_pool); 891 return NULL; 892 } 893 894 /** 895 * fc_exch_alloc() - Allocate an exchange from an EM on a 896 * local port's list of EMs. 897 * @lport: The local port that will own the exchange 898 * @fp: The FC frame that the exchange will be for 899 * 900 * This function walks the list of exchange manager(EM) 901 * anchors to select an EM for a new exchange allocation. The 902 * EM is selected when a NULL match function pointer is encountered 903 * or when a call to a match function returns true. 904 */ 905 static struct fc_exch *fc_exch_alloc(struct fc_lport *lport, 906 struct fc_frame *fp) 907 { 908 struct fc_exch_mgr_anchor *ema; 909 struct fc_exch *ep; 910 911 list_for_each_entry(ema, &lport->ema_list, ema_list) { 912 if (!ema->match || ema->match(fp)) { 913 ep = fc_exch_em_alloc(lport, ema->mp); 914 if (ep) 915 return ep; 916 } 917 } 918 return NULL; 919 } 920 921 /** 922 * fc_exch_find() - Lookup and hold an exchange 923 * @mp: The exchange manager to lookup the exchange from 924 * @xid: The XID of the exchange to look up 925 */ 926 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid) 927 { 928 struct fc_lport *lport = mp->lport; 929 struct fc_exch_pool *pool; 930 struct fc_exch *ep = NULL; 931 u16 cpu = xid & fc_cpu_mask; 932 933 if (xid == FC_XID_UNKNOWN) 934 return NULL; 935 936 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { 937 pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:", 938 lport->host->host_no, lport->port_id, xid, cpu); 939 return NULL; 940 } 941 942 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) { 943 pool = per_cpu_ptr(mp->pool, cpu); 944 spin_lock_bh(&pool->lock); 945 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order); 946 if (ep == &fc_quarantine_exch) { 947 FC_LPORT_DBG(lport, "xid %x quarantined\n", xid); 948 ep = NULL; 949 } 950 if (ep) { 951 WARN_ON(ep->xid != xid); 952 fc_exch_hold(ep); 953 } 954 spin_unlock_bh(&pool->lock); 955 } 956 return ep; 957 } 958 959 960 /** 961 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and 962 * the memory allocated for the related objects may be freed. 963 * @sp: The sequence that has completed 964 * 965 * Note: May sleep if invoked from outside a response handler. 966 */ 967 void fc_exch_done(struct fc_seq *sp) 968 { 969 struct fc_exch *ep = fc_seq_exch(sp); 970 int rc; 971 972 spin_lock_bh(&ep->ex_lock); 973 rc = fc_exch_done_locked(ep); 974 spin_unlock_bh(&ep->ex_lock); 975 976 fc_seq_set_resp(sp, NULL, ep->arg); 977 if (!rc) 978 fc_exch_delete(ep); 979 } 980 EXPORT_SYMBOL(fc_exch_done); 981 982 /** 983 * fc_exch_resp() - Allocate a new exchange for a response frame 984 * @lport: The local port that the exchange was for 985 * @mp: The exchange manager to allocate the exchange from 986 * @fp: The response frame 987 * 988 * Sets the responder ID in the frame header. 989 */ 990 static struct fc_exch *fc_exch_resp(struct fc_lport *lport, 991 struct fc_exch_mgr *mp, 992 struct fc_frame *fp) 993 { 994 struct fc_exch *ep; 995 struct fc_frame_header *fh; 996 997 ep = fc_exch_alloc(lport, fp); 998 if (ep) { 999 ep->class = fc_frame_class(fp); 1000 1001 /* 1002 * Set EX_CTX indicating we're responding on this exchange. 1003 */ 1004 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */ 1005 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */ 1006 fh = fc_frame_header_get(fp); 1007 ep->sid = ntoh24(fh->fh_d_id); 1008 ep->did = ntoh24(fh->fh_s_id); 1009 ep->oid = ep->did; 1010 1011 /* 1012 * Allocated exchange has placed the XID in the 1013 * originator field. Move it to the responder field, 1014 * and set the originator XID from the frame. 1015 */ 1016 ep->rxid = ep->xid; 1017 ep->oxid = ntohs(fh->fh_ox_id); 1018 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT; 1019 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0) 1020 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 1021 1022 fc_exch_hold(ep); /* hold for caller */ 1023 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */ 1024 } 1025 return ep; 1026 } 1027 1028 /** 1029 * fc_seq_lookup_recip() - Find a sequence where the other end 1030 * originated the sequence 1031 * @lport: The local port that the frame was sent to 1032 * @mp: The Exchange Manager to lookup the exchange from 1033 * @fp: The frame associated with the sequence we're looking for 1034 * 1035 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold 1036 * on the ep that should be released by the caller. 1037 */ 1038 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport, 1039 struct fc_exch_mgr *mp, 1040 struct fc_frame *fp) 1041 { 1042 struct fc_frame_header *fh = fc_frame_header_get(fp); 1043 struct fc_exch *ep = NULL; 1044 struct fc_seq *sp = NULL; 1045 enum fc_pf_rjt_reason reject = FC_RJT_NONE; 1046 u32 f_ctl; 1047 u16 xid; 1048 1049 f_ctl = ntoh24(fh->fh_f_ctl); 1050 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0); 1051 1052 /* 1053 * Lookup or create the exchange if we will be creating the sequence. 1054 */ 1055 if (f_ctl & FC_FC_EX_CTX) { 1056 xid = ntohs(fh->fh_ox_id); /* we originated exch */ 1057 ep = fc_exch_find(mp, xid); 1058 if (!ep) { 1059 atomic_inc(&mp->stats.xid_not_found); 1060 reject = FC_RJT_OX_ID; 1061 goto out; 1062 } 1063 if (ep->rxid == FC_XID_UNKNOWN) 1064 ep->rxid = ntohs(fh->fh_rx_id); 1065 else if (ep->rxid != ntohs(fh->fh_rx_id)) { 1066 reject = FC_RJT_OX_ID; 1067 goto rel; 1068 } 1069 } else { 1070 xid = ntohs(fh->fh_rx_id); /* we are the responder */ 1071 1072 /* 1073 * Special case for MDS issuing an ELS TEST with a 1074 * bad rxid of 0. 1075 * XXX take this out once we do the proper reject. 1076 */ 1077 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ && 1078 fc_frame_payload_op(fp) == ELS_TEST) { 1079 fh->fh_rx_id = htons(FC_XID_UNKNOWN); 1080 xid = FC_XID_UNKNOWN; 1081 } 1082 1083 /* 1084 * new sequence - find the exchange 1085 */ 1086 ep = fc_exch_find(mp, xid); 1087 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) { 1088 if (ep) { 1089 atomic_inc(&mp->stats.xid_busy); 1090 reject = FC_RJT_RX_ID; 1091 goto rel; 1092 } 1093 ep = fc_exch_resp(lport, mp, fp); 1094 if (!ep) { 1095 reject = FC_RJT_EXCH_EST; /* XXX */ 1096 goto out; 1097 } 1098 xid = ep->xid; /* get our XID */ 1099 } else if (!ep) { 1100 atomic_inc(&mp->stats.xid_not_found); 1101 reject = FC_RJT_RX_ID; /* XID not found */ 1102 goto out; 1103 } 1104 } 1105 1106 spin_lock_bh(&ep->ex_lock); 1107 /* 1108 * At this point, we have the exchange held. 1109 * Find or create the sequence. 1110 */ 1111 if (fc_sof_is_init(fr_sof(fp))) { 1112 sp = &ep->seq; 1113 sp->ssb_stat |= SSB_ST_RESP; 1114 sp->id = fh->fh_seq_id; 1115 } else { 1116 sp = &ep->seq; 1117 if (sp->id != fh->fh_seq_id) { 1118 atomic_inc(&mp->stats.seq_not_found); 1119 if (f_ctl & FC_FC_END_SEQ) { 1120 /* 1121 * Update sequence_id based on incoming last 1122 * frame of sequence exchange. This is needed 1123 * for FC target where DDP has been used 1124 * on target where, stack is indicated only 1125 * about last frame's (payload _header) header. 1126 * Whereas "seq_id" which is part of 1127 * frame_header is allocated by initiator 1128 * which is totally different from "seq_id" 1129 * allocated when XFER_RDY was sent by target. 1130 * To avoid false -ve which results into not 1131 * sending RSP, hence write request on other 1132 * end never finishes. 1133 */ 1134 sp->ssb_stat |= SSB_ST_RESP; 1135 sp->id = fh->fh_seq_id; 1136 } else { 1137 spin_unlock_bh(&ep->ex_lock); 1138 1139 /* sequence/exch should exist */ 1140 reject = FC_RJT_SEQ_ID; 1141 goto rel; 1142 } 1143 } 1144 } 1145 WARN_ON(ep != fc_seq_exch(sp)); 1146 1147 if (f_ctl & FC_FC_SEQ_INIT) 1148 ep->esb_stat |= ESB_ST_SEQ_INIT; 1149 spin_unlock_bh(&ep->ex_lock); 1150 1151 fr_seq(fp) = sp; 1152 out: 1153 return reject; 1154 rel: 1155 fc_exch_done(&ep->seq); 1156 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */ 1157 return reject; 1158 } 1159 1160 /** 1161 * fc_seq_lookup_orig() - Find a sequence where this end 1162 * originated the sequence 1163 * @mp: The Exchange Manager to lookup the exchange from 1164 * @fp: The frame associated with the sequence we're looking for 1165 * 1166 * Does not hold the sequence for the caller. 1167 */ 1168 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp, 1169 struct fc_frame *fp) 1170 { 1171 struct fc_frame_header *fh = fc_frame_header_get(fp); 1172 struct fc_exch *ep; 1173 struct fc_seq *sp = NULL; 1174 u32 f_ctl; 1175 u16 xid; 1176 1177 f_ctl = ntoh24(fh->fh_f_ctl); 1178 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX); 1179 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id); 1180 ep = fc_exch_find(mp, xid); 1181 if (!ep) 1182 return NULL; 1183 if (ep->seq.id == fh->fh_seq_id) { 1184 /* 1185 * Save the RX_ID if we didn't previously know it. 1186 */ 1187 sp = &ep->seq; 1188 if ((f_ctl & FC_FC_EX_CTX) != 0 && 1189 ep->rxid == FC_XID_UNKNOWN) { 1190 ep->rxid = ntohs(fh->fh_rx_id); 1191 } 1192 } 1193 fc_exch_release(ep); 1194 return sp; 1195 } 1196 1197 /** 1198 * fc_exch_set_addr() - Set the source and destination IDs for an exchange 1199 * @ep: The exchange to set the addresses for 1200 * @orig_id: The originator's ID 1201 * @resp_id: The responder's ID 1202 * 1203 * Note this must be done before the first sequence of the exchange is sent. 1204 */ 1205 static void fc_exch_set_addr(struct fc_exch *ep, 1206 u32 orig_id, u32 resp_id) 1207 { 1208 ep->oid = orig_id; 1209 if (ep->esb_stat & ESB_ST_RESP) { 1210 ep->sid = resp_id; 1211 ep->did = orig_id; 1212 } else { 1213 ep->sid = orig_id; 1214 ep->did = resp_id; 1215 } 1216 } 1217 1218 /** 1219 * fc_seq_els_rsp_send() - Send an ELS response using information from 1220 * the existing sequence/exchange. 1221 * @fp: The received frame 1222 * @els_cmd: The ELS command to be sent 1223 * @els_data: The ELS data to be sent 1224 * 1225 * The received frame is not freed. 1226 */ 1227 void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd, 1228 struct fc_seq_els_data *els_data) 1229 { 1230 switch (els_cmd) { 1231 case ELS_LS_RJT: 1232 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan); 1233 break; 1234 case ELS_LS_ACC: 1235 fc_seq_ls_acc(fp); 1236 break; 1237 case ELS_RRQ: 1238 fc_exch_els_rrq(fp); 1239 break; 1240 case ELS_REC: 1241 fc_exch_els_rec(fp); 1242 break; 1243 default: 1244 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd); 1245 } 1246 } 1247 EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send); 1248 1249 /** 1250 * fc_seq_send_last() - Send a sequence that is the last in the exchange 1251 * @sp: The sequence that is to be sent 1252 * @fp: The frame that will be sent on the sequence 1253 * @rctl: The R_CTL information to be sent 1254 * @fh_type: The frame header type 1255 */ 1256 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp, 1257 enum fc_rctl rctl, enum fc_fh_type fh_type) 1258 { 1259 u32 f_ctl; 1260 struct fc_exch *ep = fc_seq_exch(sp); 1261 1262 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT; 1263 f_ctl |= ep->f_ctl; 1264 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0); 1265 fc_seq_send_locked(ep->lp, sp, fp); 1266 } 1267 1268 /** 1269 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame 1270 * @sp: The sequence to send the ACK on 1271 * @rx_fp: The received frame that is being acknoledged 1272 * 1273 * Send ACK_1 (or equiv.) indicating we received something. 1274 */ 1275 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp) 1276 { 1277 struct fc_frame *fp; 1278 struct fc_frame_header *rx_fh; 1279 struct fc_frame_header *fh; 1280 struct fc_exch *ep = fc_seq_exch(sp); 1281 struct fc_lport *lport = ep->lp; 1282 unsigned int f_ctl; 1283 1284 /* 1285 * Don't send ACKs for class 3. 1286 */ 1287 if (fc_sof_needs_ack(fr_sof(rx_fp))) { 1288 fp = fc_frame_alloc(lport, 0); 1289 if (!fp) { 1290 FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n"); 1291 return; 1292 } 1293 1294 fh = fc_frame_header_get(fp); 1295 fh->fh_r_ctl = FC_RCTL_ACK_1; 1296 fh->fh_type = FC_TYPE_BLS; 1297 1298 /* 1299 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1300 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1301 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1302 * Last ACK uses bits 7-6 (continue sequence), 1303 * bits 5-4 are meaningful (what kind of ACK to use). 1304 */ 1305 rx_fh = fc_frame_header_get(rx_fp); 1306 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1307 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1308 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ | 1309 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT | 1310 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1311 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1312 hton24(fh->fh_f_ctl, f_ctl); 1313 1314 fc_exch_setup_hdr(ep, fp, f_ctl); 1315 fh->fh_seq_id = rx_fh->fh_seq_id; 1316 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1317 fh->fh_parm_offset = htonl(1); /* ack single frame */ 1318 1319 fr_sof(fp) = fr_sof(rx_fp); 1320 if (f_ctl & FC_FC_END_SEQ) 1321 fr_eof(fp) = FC_EOF_T; 1322 else 1323 fr_eof(fp) = FC_EOF_N; 1324 1325 lport->tt.frame_send(lport, fp); 1326 } 1327 } 1328 1329 /** 1330 * fc_exch_send_ba_rjt() - Send BLS Reject 1331 * @rx_fp: The frame being rejected 1332 * @reason: The reason the frame is being rejected 1333 * @explan: The explanation for the rejection 1334 * 1335 * This is for rejecting BA_ABTS only. 1336 */ 1337 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp, 1338 enum fc_ba_rjt_reason reason, 1339 enum fc_ba_rjt_explan explan) 1340 { 1341 struct fc_frame *fp; 1342 struct fc_frame_header *rx_fh; 1343 struct fc_frame_header *fh; 1344 struct fc_ba_rjt *rp; 1345 struct fc_seq *sp; 1346 struct fc_lport *lport; 1347 unsigned int f_ctl; 1348 1349 lport = fr_dev(rx_fp); 1350 sp = fr_seq(rx_fp); 1351 fp = fc_frame_alloc(lport, sizeof(*rp)); 1352 if (!fp) { 1353 FC_EXCH_DBG(fc_seq_exch(sp), 1354 "Drop BA_RJT request, out of memory\n"); 1355 return; 1356 } 1357 fh = fc_frame_header_get(fp); 1358 rx_fh = fc_frame_header_get(rx_fp); 1359 1360 memset(fh, 0, sizeof(*fh) + sizeof(*rp)); 1361 1362 rp = fc_frame_payload_get(fp, sizeof(*rp)); 1363 rp->br_reason = reason; 1364 rp->br_explan = explan; 1365 1366 /* 1367 * seq_id, cs_ctl, df_ctl and param/offset are zero. 1368 */ 1369 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3); 1370 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3); 1371 fh->fh_ox_id = rx_fh->fh_ox_id; 1372 fh->fh_rx_id = rx_fh->fh_rx_id; 1373 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1374 fh->fh_r_ctl = FC_RCTL_BA_RJT; 1375 fh->fh_type = FC_TYPE_BLS; 1376 1377 /* 1378 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1379 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1380 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1381 * Last ACK uses bits 7-6 (continue sequence), 1382 * bits 5-4 are meaningful (what kind of ACK to use). 1383 * Always set LAST_SEQ, END_SEQ. 1384 */ 1385 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1386 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1387 FC_FC_END_CONN | FC_FC_SEQ_INIT | 1388 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1389 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1390 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ; 1391 f_ctl &= ~FC_FC_FIRST_SEQ; 1392 hton24(fh->fh_f_ctl, f_ctl); 1393 1394 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp)); 1395 fr_eof(fp) = FC_EOF_T; 1396 if (fc_sof_needs_ack(fr_sof(fp))) 1397 fr_eof(fp) = FC_EOF_N; 1398 1399 lport->tt.frame_send(lport, fp); 1400 } 1401 1402 /** 1403 * fc_exch_recv_abts() - Handle an incoming ABTS 1404 * @ep: The exchange the abort was on 1405 * @rx_fp: The ABTS frame 1406 * 1407 * This would be for target mode usually, but could be due to lost 1408 * FCP transfer ready, confirm or RRQ. We always handle this as an 1409 * exchange abort, ignoring the parameter. 1410 */ 1411 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp) 1412 { 1413 struct fc_frame *fp; 1414 struct fc_ba_acc *ap; 1415 struct fc_frame_header *fh; 1416 struct fc_seq *sp; 1417 1418 if (!ep) 1419 goto reject; 1420 1421 FC_EXCH_DBG(ep, "exch: ABTS received\n"); 1422 fp = fc_frame_alloc(ep->lp, sizeof(*ap)); 1423 if (!fp) { 1424 FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n"); 1425 goto free; 1426 } 1427 1428 spin_lock_bh(&ep->ex_lock); 1429 if (ep->esb_stat & ESB_ST_COMPLETE) { 1430 spin_unlock_bh(&ep->ex_lock); 1431 FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n"); 1432 fc_frame_free(fp); 1433 goto reject; 1434 } 1435 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) { 1436 ep->esb_stat |= ESB_ST_REC_QUAL; 1437 fc_exch_hold(ep); /* hold for REC_QUAL */ 1438 } 1439 fc_exch_timer_set_locked(ep, ep->r_a_tov); 1440 fh = fc_frame_header_get(fp); 1441 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1442 memset(ap, 0, sizeof(*ap)); 1443 sp = &ep->seq; 1444 ap->ba_high_seq_cnt = htons(0xffff); 1445 if (sp->ssb_stat & SSB_ST_RESP) { 1446 ap->ba_seq_id = sp->id; 1447 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL; 1448 ap->ba_high_seq_cnt = fh->fh_seq_cnt; 1449 ap->ba_low_seq_cnt = htons(sp->cnt); 1450 } 1451 sp = fc_seq_start_next_locked(sp); 1452 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS); 1453 ep->esb_stat |= ESB_ST_ABNORMAL; 1454 spin_unlock_bh(&ep->ex_lock); 1455 1456 free: 1457 fc_frame_free(rx_fp); 1458 return; 1459 1460 reject: 1461 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID); 1462 goto free; 1463 } 1464 1465 /** 1466 * fc_seq_assign() - Assign exchange and sequence for incoming request 1467 * @lport: The local port that received the request 1468 * @fp: The request frame 1469 * 1470 * On success, the sequence pointer will be returned and also in fr_seq(@fp). 1471 * A reference will be held on the exchange/sequence for the caller, which 1472 * must call fc_seq_release(). 1473 */ 1474 struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp) 1475 { 1476 struct fc_exch_mgr_anchor *ema; 1477 1478 WARN_ON(lport != fr_dev(fp)); 1479 WARN_ON(fr_seq(fp)); 1480 fr_seq(fp) = NULL; 1481 1482 list_for_each_entry(ema, &lport->ema_list, ema_list) 1483 if ((!ema->match || ema->match(fp)) && 1484 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE) 1485 break; 1486 return fr_seq(fp); 1487 } 1488 EXPORT_SYMBOL(fc_seq_assign); 1489 1490 /** 1491 * fc_seq_release() - Release the hold 1492 * @sp: The sequence. 1493 */ 1494 void fc_seq_release(struct fc_seq *sp) 1495 { 1496 fc_exch_release(fc_seq_exch(sp)); 1497 } 1498 EXPORT_SYMBOL(fc_seq_release); 1499 1500 /** 1501 * fc_exch_recv_req() - Handler for an incoming request 1502 * @lport: The local port that received the request 1503 * @mp: The EM that the exchange is on 1504 * @fp: The request frame 1505 * 1506 * This is used when the other end is originating the exchange 1507 * and the sequence. 1508 */ 1509 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp, 1510 struct fc_frame *fp) 1511 { 1512 struct fc_frame_header *fh = fc_frame_header_get(fp); 1513 struct fc_seq *sp = NULL; 1514 struct fc_exch *ep = NULL; 1515 enum fc_pf_rjt_reason reject; 1516 1517 /* We can have the wrong fc_lport at this point with NPIV, which is a 1518 * problem now that we know a new exchange needs to be allocated 1519 */ 1520 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id)); 1521 if (!lport) { 1522 fc_frame_free(fp); 1523 return; 1524 } 1525 fr_dev(fp) = lport; 1526 1527 BUG_ON(fr_seq(fp)); /* XXX remove later */ 1528 1529 /* 1530 * If the RX_ID is 0xffff, don't allocate an exchange. 1531 * The upper-level protocol may request one later, if needed. 1532 */ 1533 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN)) 1534 return fc_lport_recv(lport, fp); 1535 1536 reject = fc_seq_lookup_recip(lport, mp, fp); 1537 if (reject == FC_RJT_NONE) { 1538 sp = fr_seq(fp); /* sequence will be held */ 1539 ep = fc_seq_exch(sp); 1540 fc_seq_send_ack(sp, fp); 1541 ep->encaps = fr_encaps(fp); 1542 1543 /* 1544 * Call the receive function. 1545 * 1546 * The receive function may allocate a new sequence 1547 * over the old one, so we shouldn't change the 1548 * sequence after this. 1549 * 1550 * The frame will be freed by the receive function. 1551 * If new exch resp handler is valid then call that 1552 * first. 1553 */ 1554 if (!fc_invoke_resp(ep, sp, fp)) 1555 fc_lport_recv(lport, fp); 1556 fc_exch_release(ep); /* release from lookup */ 1557 } else { 1558 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n", 1559 reject); 1560 fc_frame_free(fp); 1561 } 1562 } 1563 1564 /** 1565 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other 1566 * end is the originator of the sequence that is a 1567 * response to our initial exchange 1568 * @mp: The EM that the exchange is on 1569 * @fp: The response frame 1570 */ 1571 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1572 { 1573 struct fc_frame_header *fh = fc_frame_header_get(fp); 1574 struct fc_seq *sp; 1575 struct fc_exch *ep; 1576 enum fc_sof sof; 1577 u32 f_ctl; 1578 int rc; 1579 1580 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id)); 1581 if (!ep) { 1582 atomic_inc(&mp->stats.xid_not_found); 1583 goto out; 1584 } 1585 if (ep->esb_stat & ESB_ST_COMPLETE) { 1586 atomic_inc(&mp->stats.xid_not_found); 1587 goto rel; 1588 } 1589 if (ep->rxid == FC_XID_UNKNOWN) 1590 ep->rxid = ntohs(fh->fh_rx_id); 1591 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) { 1592 atomic_inc(&mp->stats.xid_not_found); 1593 goto rel; 1594 } 1595 if (ep->did != ntoh24(fh->fh_s_id) && 1596 ep->did != FC_FID_FLOGI) { 1597 atomic_inc(&mp->stats.xid_not_found); 1598 goto rel; 1599 } 1600 sof = fr_sof(fp); 1601 sp = &ep->seq; 1602 if (fc_sof_is_init(sof)) { 1603 sp->ssb_stat |= SSB_ST_RESP; 1604 sp->id = fh->fh_seq_id; 1605 } 1606 1607 f_ctl = ntoh24(fh->fh_f_ctl); 1608 fr_seq(fp) = sp; 1609 1610 spin_lock_bh(&ep->ex_lock); 1611 if (f_ctl & FC_FC_SEQ_INIT) 1612 ep->esb_stat |= ESB_ST_SEQ_INIT; 1613 spin_unlock_bh(&ep->ex_lock); 1614 1615 if (fc_sof_needs_ack(sof)) 1616 fc_seq_send_ack(sp, fp); 1617 1618 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T && 1619 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) == 1620 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) { 1621 spin_lock_bh(&ep->ex_lock); 1622 rc = fc_exch_done_locked(ep); 1623 WARN_ON(fc_seq_exch(sp) != ep); 1624 spin_unlock_bh(&ep->ex_lock); 1625 if (!rc) { 1626 fc_exch_delete(ep); 1627 } else { 1628 FC_EXCH_DBG(ep, "ep is completed already," 1629 "hence skip calling the resp\n"); 1630 goto skip_resp; 1631 } 1632 } 1633 1634 /* 1635 * Call the receive function. 1636 * The sequence is held (has a refcnt) for us, 1637 * but not for the receive function. 1638 * 1639 * The receive function may allocate a new sequence 1640 * over the old one, so we shouldn't change the 1641 * sequence after this. 1642 * 1643 * The frame will be freed by the receive function. 1644 * If new exch resp handler is valid then call that 1645 * first. 1646 */ 1647 if (!fc_invoke_resp(ep, sp, fp)) 1648 fc_frame_free(fp); 1649 1650 skip_resp: 1651 fc_exch_release(ep); 1652 return; 1653 rel: 1654 fc_exch_release(ep); 1655 out: 1656 fc_frame_free(fp); 1657 } 1658 1659 /** 1660 * fc_exch_recv_resp() - Handler for a sequence where other end is 1661 * responding to our sequence 1662 * @mp: The EM that the exchange is on 1663 * @fp: The response frame 1664 */ 1665 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1666 { 1667 struct fc_seq *sp; 1668 1669 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */ 1670 1671 if (!sp) 1672 atomic_inc(&mp->stats.xid_not_found); 1673 else 1674 atomic_inc(&mp->stats.non_bls_resp); 1675 1676 fc_frame_free(fp); 1677 } 1678 1679 /** 1680 * fc_exch_abts_resp() - Handler for a response to an ABT 1681 * @ep: The exchange that the frame is on 1682 * @fp: The response frame 1683 * 1684 * This response would be to an ABTS cancelling an exchange or sequence. 1685 * The response can be either BA_ACC or BA_RJT 1686 */ 1687 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp) 1688 { 1689 struct fc_frame_header *fh; 1690 struct fc_ba_acc *ap; 1691 struct fc_seq *sp; 1692 u16 low; 1693 u16 high; 1694 int rc = 1, has_rec = 0; 1695 1696 fh = fc_frame_header_get(fp); 1697 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl, 1698 fc_exch_rctl_name(fh->fh_r_ctl)); 1699 1700 if (cancel_delayed_work_sync(&ep->timeout_work)) { 1701 FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n"); 1702 fc_exch_release(ep); /* release from pending timer hold */ 1703 return; 1704 } 1705 1706 spin_lock_bh(&ep->ex_lock); 1707 switch (fh->fh_r_ctl) { 1708 case FC_RCTL_BA_ACC: 1709 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1710 if (!ap) 1711 break; 1712 1713 /* 1714 * Decide whether to establish a Recovery Qualifier. 1715 * We do this if there is a non-empty SEQ_CNT range and 1716 * SEQ_ID is the same as the one we aborted. 1717 */ 1718 low = ntohs(ap->ba_low_seq_cnt); 1719 high = ntohs(ap->ba_high_seq_cnt); 1720 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 && 1721 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL || 1722 ap->ba_seq_id == ep->seq_id) && low != high) { 1723 ep->esb_stat |= ESB_ST_REC_QUAL; 1724 fc_exch_hold(ep); /* hold for recovery qualifier */ 1725 has_rec = 1; 1726 } 1727 break; 1728 case FC_RCTL_BA_RJT: 1729 break; 1730 default: 1731 break; 1732 } 1733 1734 /* do we need to do some other checks here. Can we reuse more of 1735 * fc_exch_recv_seq_resp 1736 */ 1737 sp = &ep->seq; 1738 /* 1739 * do we want to check END_SEQ as well as LAST_SEQ here? 1740 */ 1741 if (ep->fh_type != FC_TYPE_FCP && 1742 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ) 1743 rc = fc_exch_done_locked(ep); 1744 spin_unlock_bh(&ep->ex_lock); 1745 1746 fc_exch_hold(ep); 1747 if (!rc) 1748 fc_exch_delete(ep); 1749 if (!fc_invoke_resp(ep, sp, fp)) 1750 fc_frame_free(fp); 1751 if (has_rec) 1752 fc_exch_timer_set(ep, ep->r_a_tov); 1753 fc_exch_release(ep); 1754 } 1755 1756 /** 1757 * fc_exch_recv_bls() - Handler for a BLS sequence 1758 * @mp: The EM that the exchange is on 1759 * @fp: The request frame 1760 * 1761 * The BLS frame is always a sequence initiated by the remote side. 1762 * We may be either the originator or recipient of the exchange. 1763 */ 1764 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp) 1765 { 1766 struct fc_frame_header *fh; 1767 struct fc_exch *ep; 1768 u32 f_ctl; 1769 1770 fh = fc_frame_header_get(fp); 1771 f_ctl = ntoh24(fh->fh_f_ctl); 1772 fr_seq(fp) = NULL; 1773 1774 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ? 1775 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id)); 1776 if (ep && (f_ctl & FC_FC_SEQ_INIT)) { 1777 spin_lock_bh(&ep->ex_lock); 1778 ep->esb_stat |= ESB_ST_SEQ_INIT; 1779 spin_unlock_bh(&ep->ex_lock); 1780 } 1781 if (f_ctl & FC_FC_SEQ_CTX) { 1782 /* 1783 * A response to a sequence we initiated. 1784 * This should only be ACKs for class 2 or F. 1785 */ 1786 switch (fh->fh_r_ctl) { 1787 case FC_RCTL_ACK_1: 1788 case FC_RCTL_ACK_0: 1789 break; 1790 default: 1791 if (ep) 1792 FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n", 1793 fh->fh_r_ctl, 1794 fc_exch_rctl_name(fh->fh_r_ctl)); 1795 break; 1796 } 1797 fc_frame_free(fp); 1798 } else { 1799 switch (fh->fh_r_ctl) { 1800 case FC_RCTL_BA_RJT: 1801 case FC_RCTL_BA_ACC: 1802 if (ep) 1803 fc_exch_abts_resp(ep, fp); 1804 else 1805 fc_frame_free(fp); 1806 break; 1807 case FC_RCTL_BA_ABTS: 1808 if (ep) 1809 fc_exch_recv_abts(ep, fp); 1810 else 1811 fc_frame_free(fp); 1812 break; 1813 default: /* ignore junk */ 1814 fc_frame_free(fp); 1815 break; 1816 } 1817 } 1818 if (ep) 1819 fc_exch_release(ep); /* release hold taken by fc_exch_find */ 1820 } 1821 1822 /** 1823 * fc_seq_ls_acc() - Accept sequence with LS_ACC 1824 * @rx_fp: The received frame, not freed here. 1825 * 1826 * If this fails due to allocation or transmit congestion, assume the 1827 * originator will repeat the sequence. 1828 */ 1829 static void fc_seq_ls_acc(struct fc_frame *rx_fp) 1830 { 1831 struct fc_lport *lport; 1832 struct fc_els_ls_acc *acc; 1833 struct fc_frame *fp; 1834 struct fc_seq *sp; 1835 1836 lport = fr_dev(rx_fp); 1837 sp = fr_seq(rx_fp); 1838 fp = fc_frame_alloc(lport, sizeof(*acc)); 1839 if (!fp) { 1840 FC_EXCH_DBG(fc_seq_exch(sp), 1841 "exch: drop LS_ACC, out of memory\n"); 1842 return; 1843 } 1844 acc = fc_frame_payload_get(fp, sizeof(*acc)); 1845 memset(acc, 0, sizeof(*acc)); 1846 acc->la_cmd = ELS_LS_ACC; 1847 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0); 1848 lport->tt.frame_send(lport, fp); 1849 } 1850 1851 /** 1852 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT 1853 * @rx_fp: The received frame, not freed here. 1854 * @reason: The reason the sequence is being rejected 1855 * @explan: The explanation for the rejection 1856 * 1857 * If this fails due to allocation or transmit congestion, assume the 1858 * originator will repeat the sequence. 1859 */ 1860 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason, 1861 enum fc_els_rjt_explan explan) 1862 { 1863 struct fc_lport *lport; 1864 struct fc_els_ls_rjt *rjt; 1865 struct fc_frame *fp; 1866 struct fc_seq *sp; 1867 1868 lport = fr_dev(rx_fp); 1869 sp = fr_seq(rx_fp); 1870 fp = fc_frame_alloc(lport, sizeof(*rjt)); 1871 if (!fp) { 1872 FC_EXCH_DBG(fc_seq_exch(sp), 1873 "exch: drop LS_ACC, out of memory\n"); 1874 return; 1875 } 1876 rjt = fc_frame_payload_get(fp, sizeof(*rjt)); 1877 memset(rjt, 0, sizeof(*rjt)); 1878 rjt->er_cmd = ELS_LS_RJT; 1879 rjt->er_reason = reason; 1880 rjt->er_explan = explan; 1881 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0); 1882 lport->tt.frame_send(lport, fp); 1883 } 1884 1885 /** 1886 * fc_exch_reset() - Reset an exchange 1887 * @ep: The exchange to be reset 1888 * 1889 * Note: May sleep if invoked from outside a response handler. 1890 */ 1891 static void fc_exch_reset(struct fc_exch *ep) 1892 { 1893 struct fc_seq *sp; 1894 int rc = 1; 1895 1896 spin_lock_bh(&ep->ex_lock); 1897 ep->state |= FC_EX_RST_CLEANUP; 1898 fc_exch_timer_cancel(ep); 1899 if (ep->esb_stat & ESB_ST_REC_QUAL) 1900 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */ 1901 ep->esb_stat &= ~ESB_ST_REC_QUAL; 1902 sp = &ep->seq; 1903 rc = fc_exch_done_locked(ep); 1904 spin_unlock_bh(&ep->ex_lock); 1905 1906 fc_exch_hold(ep); 1907 1908 if (!rc) { 1909 fc_exch_delete(ep); 1910 } else { 1911 FC_EXCH_DBG(ep, "ep is completed already," 1912 "hence skip calling the resp\n"); 1913 goto skip_resp; 1914 } 1915 1916 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED)); 1917 skip_resp: 1918 fc_seq_set_resp(sp, NULL, ep->arg); 1919 fc_exch_release(ep); 1920 } 1921 1922 /** 1923 * fc_exch_pool_reset() - Reset a per cpu exchange pool 1924 * @lport: The local port that the exchange pool is on 1925 * @pool: The exchange pool to be reset 1926 * @sid: The source ID 1927 * @did: The destination ID 1928 * 1929 * Resets a per cpu exches pool, releasing all of its sequences 1930 * and exchanges. If sid is non-zero then reset only exchanges 1931 * we sourced from the local port's FID. If did is non-zero then 1932 * only reset exchanges destined for the local port's FID. 1933 */ 1934 static void fc_exch_pool_reset(struct fc_lport *lport, 1935 struct fc_exch_pool *pool, 1936 u32 sid, u32 did) 1937 { 1938 struct fc_exch *ep; 1939 struct fc_exch *next; 1940 1941 spin_lock_bh(&pool->lock); 1942 restart: 1943 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) { 1944 if ((lport == ep->lp) && 1945 (sid == 0 || sid == ep->sid) && 1946 (did == 0 || did == ep->did)) { 1947 fc_exch_hold(ep); 1948 spin_unlock_bh(&pool->lock); 1949 1950 fc_exch_reset(ep); 1951 1952 fc_exch_release(ep); 1953 spin_lock_bh(&pool->lock); 1954 1955 /* 1956 * must restart loop incase while lock 1957 * was down multiple eps were released. 1958 */ 1959 goto restart; 1960 } 1961 } 1962 pool->next_index = 0; 1963 pool->left = FC_XID_UNKNOWN; 1964 pool->right = FC_XID_UNKNOWN; 1965 spin_unlock_bh(&pool->lock); 1966 } 1967 1968 /** 1969 * fc_exch_mgr_reset() - Reset all EMs of a local port 1970 * @lport: The local port whose EMs are to be reset 1971 * @sid: The source ID 1972 * @did: The destination ID 1973 * 1974 * Reset all EMs associated with a given local port. Release all 1975 * sequences and exchanges. If sid is non-zero then reset only the 1976 * exchanges sent from the local port's FID. If did is non-zero then 1977 * reset only exchanges destined for the local port's FID. 1978 */ 1979 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did) 1980 { 1981 struct fc_exch_mgr_anchor *ema; 1982 unsigned int cpu; 1983 1984 list_for_each_entry(ema, &lport->ema_list, ema_list) { 1985 for_each_possible_cpu(cpu) 1986 fc_exch_pool_reset(lport, 1987 per_cpu_ptr(ema->mp->pool, cpu), 1988 sid, did); 1989 } 1990 } 1991 EXPORT_SYMBOL(fc_exch_mgr_reset); 1992 1993 /** 1994 * fc_exch_lookup() - find an exchange 1995 * @lport: The local port 1996 * @xid: The exchange ID 1997 * 1998 * Returns exchange pointer with hold for caller, or NULL if not found. 1999 */ 2000 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid) 2001 { 2002 struct fc_exch_mgr_anchor *ema; 2003 2004 list_for_each_entry(ema, &lport->ema_list, ema_list) 2005 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid) 2006 return fc_exch_find(ema->mp, xid); 2007 return NULL; 2008 } 2009 2010 /** 2011 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests 2012 * @rfp: The REC frame, not freed here. 2013 * 2014 * Note that the requesting port may be different than the S_ID in the request. 2015 */ 2016 static void fc_exch_els_rec(struct fc_frame *rfp) 2017 { 2018 struct fc_lport *lport; 2019 struct fc_frame *fp; 2020 struct fc_exch *ep; 2021 struct fc_els_rec *rp; 2022 struct fc_els_rec_acc *acc; 2023 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC; 2024 enum fc_els_rjt_explan explan; 2025 u32 sid; 2026 u16 xid, rxid, oxid; 2027 2028 lport = fr_dev(rfp); 2029 rp = fc_frame_payload_get(rfp, sizeof(*rp)); 2030 explan = ELS_EXPL_INV_LEN; 2031 if (!rp) 2032 goto reject; 2033 sid = ntoh24(rp->rec_s_id); 2034 rxid = ntohs(rp->rec_rx_id); 2035 oxid = ntohs(rp->rec_ox_id); 2036 2037 explan = ELS_EXPL_OXID_RXID; 2038 if (sid == fc_host_port_id(lport->host)) 2039 xid = oxid; 2040 else 2041 xid = rxid; 2042 if (xid == FC_XID_UNKNOWN) { 2043 FC_LPORT_DBG(lport, 2044 "REC request from %x: invalid rxid %x oxid %x\n", 2045 sid, rxid, oxid); 2046 goto reject; 2047 } 2048 ep = fc_exch_lookup(lport, xid); 2049 if (!ep) { 2050 FC_LPORT_DBG(lport, 2051 "REC request from %x: rxid %x oxid %x not found\n", 2052 sid, rxid, oxid); 2053 goto reject; 2054 } 2055 FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n", 2056 sid, rxid, oxid); 2057 if (ep->oid != sid || oxid != ep->oxid) 2058 goto rel; 2059 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid) 2060 goto rel; 2061 fp = fc_frame_alloc(lport, sizeof(*acc)); 2062 if (!fp) { 2063 FC_EXCH_DBG(ep, "Drop REC request, out of memory\n"); 2064 goto out; 2065 } 2066 2067 acc = fc_frame_payload_get(fp, sizeof(*acc)); 2068 memset(acc, 0, sizeof(*acc)); 2069 acc->reca_cmd = ELS_LS_ACC; 2070 acc->reca_ox_id = rp->rec_ox_id; 2071 memcpy(acc->reca_ofid, rp->rec_s_id, 3); 2072 acc->reca_rx_id = htons(ep->rxid); 2073 if (ep->sid == ep->oid) 2074 hton24(acc->reca_rfid, ep->did); 2075 else 2076 hton24(acc->reca_rfid, ep->sid); 2077 acc->reca_fc4value = htonl(ep->seq.rec_data); 2078 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP | 2079 ESB_ST_SEQ_INIT | 2080 ESB_ST_COMPLETE)); 2081 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0); 2082 lport->tt.frame_send(lport, fp); 2083 out: 2084 fc_exch_release(ep); 2085 return; 2086 2087 rel: 2088 fc_exch_release(ep); 2089 reject: 2090 fc_seq_ls_rjt(rfp, reason, explan); 2091 } 2092 2093 /** 2094 * fc_exch_rrq_resp() - Handler for RRQ responses 2095 * @sp: The sequence that the RRQ is on 2096 * @fp: The RRQ frame 2097 * @arg: The exchange that the RRQ is on 2098 * 2099 * TODO: fix error handler. 2100 */ 2101 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg) 2102 { 2103 struct fc_exch *aborted_ep = arg; 2104 unsigned int op; 2105 2106 if (IS_ERR(fp)) { 2107 int err = PTR_ERR(fp); 2108 2109 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT) 2110 goto cleanup; 2111 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, " 2112 "frame error %d\n", err); 2113 return; 2114 } 2115 2116 op = fc_frame_payload_op(fp); 2117 fc_frame_free(fp); 2118 2119 switch (op) { 2120 case ELS_LS_RJT: 2121 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n"); 2122 fallthrough; 2123 case ELS_LS_ACC: 2124 goto cleanup; 2125 default: 2126 FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n", 2127 op); 2128 return; 2129 } 2130 2131 cleanup: 2132 fc_exch_done(&aborted_ep->seq); 2133 /* drop hold for rec qual */ 2134 fc_exch_release(aborted_ep); 2135 } 2136 2137 2138 /** 2139 * fc_exch_seq_send() - Send a frame using a new exchange and sequence 2140 * @lport: The local port to send the frame on 2141 * @fp: The frame to be sent 2142 * @resp: The response handler for this request 2143 * @destructor: The destructor for the exchange 2144 * @arg: The argument to be passed to the response handler 2145 * @timer_msec: The timeout period for the exchange 2146 * 2147 * The exchange response handler is set in this routine to resp() 2148 * function pointer. It can be called in two scenarios: if a timeout 2149 * occurs or if a response frame is received for the exchange. The 2150 * fc_frame pointer in response handler will also indicate timeout 2151 * as error using IS_ERR related macros. 2152 * 2153 * The exchange destructor handler is also set in this routine. 2154 * The destructor handler is invoked by EM layer when exchange 2155 * is about to free, this can be used by caller to free its 2156 * resources along with exchange free. 2157 * 2158 * The arg is passed back to resp and destructor handler. 2159 * 2160 * The timeout value (in msec) for an exchange is set if non zero 2161 * timer_msec argument is specified. The timer is canceled when 2162 * it fires or when the exchange is done. The exchange timeout handler 2163 * is registered by EM layer. 2164 * 2165 * The frame pointer with some of the header's fields must be 2166 * filled before calling this routine, those fields are: 2167 * 2168 * - routing control 2169 * - FC port did 2170 * - FC port sid 2171 * - FC header type 2172 * - frame control 2173 * - parameter or relative offset 2174 */ 2175 struct fc_seq *fc_exch_seq_send(struct fc_lport *lport, 2176 struct fc_frame *fp, 2177 void (*resp)(struct fc_seq *, 2178 struct fc_frame *fp, 2179 void *arg), 2180 void (*destructor)(struct fc_seq *, void *), 2181 void *arg, u32 timer_msec) 2182 { 2183 struct fc_exch *ep; 2184 struct fc_seq *sp = NULL; 2185 struct fc_frame_header *fh; 2186 struct fc_fcp_pkt *fsp = NULL; 2187 int rc = 1; 2188 2189 ep = fc_exch_alloc(lport, fp); 2190 if (!ep) { 2191 fc_frame_free(fp); 2192 return NULL; 2193 } 2194 ep->esb_stat |= ESB_ST_SEQ_INIT; 2195 fh = fc_frame_header_get(fp); 2196 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id)); 2197 ep->resp = resp; 2198 ep->destructor = destructor; 2199 ep->arg = arg; 2200 ep->r_a_tov = lport->r_a_tov; 2201 ep->lp = lport; 2202 sp = &ep->seq; 2203 2204 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */ 2205 ep->f_ctl = ntoh24(fh->fh_f_ctl); 2206 fc_exch_setup_hdr(ep, fp, ep->f_ctl); 2207 sp->cnt++; 2208 2209 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) { 2210 fsp = fr_fsp(fp); 2211 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid); 2212 } 2213 2214 if (unlikely(lport->tt.frame_send(lport, fp))) 2215 goto err; 2216 2217 if (timer_msec) 2218 fc_exch_timer_set_locked(ep, timer_msec); 2219 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */ 2220 2221 if (ep->f_ctl & FC_FC_SEQ_INIT) 2222 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 2223 spin_unlock_bh(&ep->ex_lock); 2224 return sp; 2225 err: 2226 if (fsp) 2227 fc_fcp_ddp_done(fsp); 2228 rc = fc_exch_done_locked(ep); 2229 spin_unlock_bh(&ep->ex_lock); 2230 if (!rc) 2231 fc_exch_delete(ep); 2232 return NULL; 2233 } 2234 EXPORT_SYMBOL(fc_exch_seq_send); 2235 2236 /** 2237 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command 2238 * @ep: The exchange to send the RRQ on 2239 * 2240 * This tells the remote port to stop blocking the use of 2241 * the exchange and the seq_cnt range. 2242 */ 2243 static void fc_exch_rrq(struct fc_exch *ep) 2244 { 2245 struct fc_lport *lport; 2246 struct fc_els_rrq *rrq; 2247 struct fc_frame *fp; 2248 u32 did; 2249 2250 lport = ep->lp; 2251 2252 fp = fc_frame_alloc(lport, sizeof(*rrq)); 2253 if (!fp) 2254 goto retry; 2255 2256 rrq = fc_frame_payload_get(fp, sizeof(*rrq)); 2257 memset(rrq, 0, sizeof(*rrq)); 2258 rrq->rrq_cmd = ELS_RRQ; 2259 hton24(rrq->rrq_s_id, ep->sid); 2260 rrq->rrq_ox_id = htons(ep->oxid); 2261 rrq->rrq_rx_id = htons(ep->rxid); 2262 2263 did = ep->did; 2264 if (ep->esb_stat & ESB_ST_RESP) 2265 did = ep->sid; 2266 2267 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did, 2268 lport->port_id, FC_TYPE_ELS, 2269 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0); 2270 2271 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep, 2272 lport->e_d_tov)) 2273 return; 2274 2275 retry: 2276 FC_EXCH_DBG(ep, "exch: RRQ send failed\n"); 2277 spin_lock_bh(&ep->ex_lock); 2278 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) { 2279 spin_unlock_bh(&ep->ex_lock); 2280 /* drop hold for rec qual */ 2281 fc_exch_release(ep); 2282 return; 2283 } 2284 ep->esb_stat |= ESB_ST_REC_QUAL; 2285 fc_exch_timer_set_locked(ep, ep->r_a_tov); 2286 spin_unlock_bh(&ep->ex_lock); 2287 } 2288 2289 /** 2290 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests 2291 * @fp: The RRQ frame, not freed here. 2292 */ 2293 static void fc_exch_els_rrq(struct fc_frame *fp) 2294 { 2295 struct fc_lport *lport; 2296 struct fc_exch *ep = NULL; /* request or subject exchange */ 2297 struct fc_els_rrq *rp; 2298 u32 sid; 2299 u16 xid; 2300 enum fc_els_rjt_explan explan; 2301 2302 lport = fr_dev(fp); 2303 rp = fc_frame_payload_get(fp, sizeof(*rp)); 2304 explan = ELS_EXPL_INV_LEN; 2305 if (!rp) 2306 goto reject; 2307 2308 /* 2309 * lookup subject exchange. 2310 */ 2311 sid = ntoh24(rp->rrq_s_id); /* subject source */ 2312 xid = fc_host_port_id(lport->host) == sid ? 2313 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id); 2314 ep = fc_exch_lookup(lport, xid); 2315 explan = ELS_EXPL_OXID_RXID; 2316 if (!ep) 2317 goto reject; 2318 spin_lock_bh(&ep->ex_lock); 2319 FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n", 2320 sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id)); 2321 if (ep->oxid != ntohs(rp->rrq_ox_id)) 2322 goto unlock_reject; 2323 if (ep->rxid != ntohs(rp->rrq_rx_id) && 2324 ep->rxid != FC_XID_UNKNOWN) 2325 goto unlock_reject; 2326 explan = ELS_EXPL_SID; 2327 if (ep->sid != sid) 2328 goto unlock_reject; 2329 2330 /* 2331 * Clear Recovery Qualifier state, and cancel timer if complete. 2332 */ 2333 if (ep->esb_stat & ESB_ST_REC_QUAL) { 2334 ep->esb_stat &= ~ESB_ST_REC_QUAL; 2335 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */ 2336 } 2337 if (ep->esb_stat & ESB_ST_COMPLETE) 2338 fc_exch_timer_cancel(ep); 2339 2340 spin_unlock_bh(&ep->ex_lock); 2341 2342 /* 2343 * Send LS_ACC. 2344 */ 2345 fc_seq_ls_acc(fp); 2346 goto out; 2347 2348 unlock_reject: 2349 spin_unlock_bh(&ep->ex_lock); 2350 reject: 2351 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan); 2352 out: 2353 if (ep) 2354 fc_exch_release(ep); /* drop hold from fc_exch_find */ 2355 } 2356 2357 /** 2358 * fc_exch_update_stats() - update exches stats to lport 2359 * @lport: The local port to update exchange manager stats 2360 */ 2361 void fc_exch_update_stats(struct fc_lport *lport) 2362 { 2363 struct fc_host_statistics *st; 2364 struct fc_exch_mgr_anchor *ema; 2365 struct fc_exch_mgr *mp; 2366 2367 st = &lport->host_stats; 2368 2369 list_for_each_entry(ema, &lport->ema_list, ema_list) { 2370 mp = ema->mp; 2371 st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch); 2372 st->fc_no_free_exch_xid += 2373 atomic_read(&mp->stats.no_free_exch_xid); 2374 st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found); 2375 st->fc_xid_busy += atomic_read(&mp->stats.xid_busy); 2376 st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found); 2377 st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp); 2378 } 2379 } 2380 EXPORT_SYMBOL(fc_exch_update_stats); 2381 2382 /** 2383 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs 2384 * @lport: The local port to add the exchange manager to 2385 * @mp: The exchange manager to be added to the local port 2386 * @match: The match routine that indicates when this EM should be used 2387 */ 2388 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport, 2389 struct fc_exch_mgr *mp, 2390 bool (*match)(struct fc_frame *)) 2391 { 2392 struct fc_exch_mgr_anchor *ema; 2393 2394 ema = kmalloc(sizeof(*ema), GFP_ATOMIC); 2395 if (!ema) 2396 return ema; 2397 2398 ema->mp = mp; 2399 ema->match = match; 2400 /* add EM anchor to EM anchors list */ 2401 list_add_tail(&ema->ema_list, &lport->ema_list); 2402 kref_get(&mp->kref); 2403 return ema; 2404 } 2405 EXPORT_SYMBOL(fc_exch_mgr_add); 2406 2407 /** 2408 * fc_exch_mgr_destroy() - Destroy an exchange manager 2409 * @kref: The reference to the EM to be destroyed 2410 */ 2411 static void fc_exch_mgr_destroy(struct kref *kref) 2412 { 2413 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref); 2414 2415 mempool_destroy(mp->ep_pool); 2416 free_percpu(mp->pool); 2417 kfree(mp); 2418 } 2419 2420 /** 2421 * fc_exch_mgr_del() - Delete an EM from a local port's list 2422 * @ema: The exchange manager anchor identifying the EM to be deleted 2423 */ 2424 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema) 2425 { 2426 /* remove EM anchor from EM anchors list */ 2427 list_del(&ema->ema_list); 2428 kref_put(&ema->mp->kref, fc_exch_mgr_destroy); 2429 kfree(ema); 2430 } 2431 EXPORT_SYMBOL(fc_exch_mgr_del); 2432 2433 /** 2434 * fc_exch_mgr_list_clone() - Share all exchange manager objects 2435 * @src: Source lport to clone exchange managers from 2436 * @dst: New lport that takes references to all the exchange managers 2437 */ 2438 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst) 2439 { 2440 struct fc_exch_mgr_anchor *ema, *tmp; 2441 2442 list_for_each_entry(ema, &src->ema_list, ema_list) { 2443 if (!fc_exch_mgr_add(dst, ema->mp, ema->match)) 2444 goto err; 2445 } 2446 return 0; 2447 err: 2448 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list) 2449 fc_exch_mgr_del(ema); 2450 return -ENOMEM; 2451 } 2452 EXPORT_SYMBOL(fc_exch_mgr_list_clone); 2453 2454 /** 2455 * fc_exch_mgr_alloc() - Allocate an exchange manager 2456 * @lport: The local port that the new EM will be associated with 2457 * @class: The default FC class for new exchanges 2458 * @min_xid: The minimum XID for exchanges from the new EM 2459 * @max_xid: The maximum XID for exchanges from the new EM 2460 * @match: The match routine for the new EM 2461 */ 2462 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport, 2463 enum fc_class class, 2464 u16 min_xid, u16 max_xid, 2465 bool (*match)(struct fc_frame *)) 2466 { 2467 struct fc_exch_mgr *mp; 2468 u16 pool_exch_range; 2469 size_t pool_size; 2470 unsigned int cpu; 2471 struct fc_exch_pool *pool; 2472 2473 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN || 2474 (min_xid & fc_cpu_mask) != 0) { 2475 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n", 2476 min_xid, max_xid); 2477 return NULL; 2478 } 2479 2480 /* 2481 * allocate memory for EM 2482 */ 2483 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC); 2484 if (!mp) 2485 return NULL; 2486 2487 mp->class = class; 2488 mp->lport = lport; 2489 /* adjust em exch xid range for offload */ 2490 mp->min_xid = min_xid; 2491 2492 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */ 2493 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) / 2494 sizeof(struct fc_exch *); 2495 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) { 2496 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) + 2497 min_xid - 1; 2498 } else { 2499 mp->max_xid = max_xid; 2500 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / 2501 (fc_cpu_mask + 1); 2502 } 2503 2504 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep); 2505 if (!mp->ep_pool) 2506 goto free_mp; 2507 2508 /* 2509 * Setup per cpu exch pool with entire exchange id range equally 2510 * divided across all cpus. The exch pointers array memory is 2511 * allocated for exch range per pool. 2512 */ 2513 mp->pool_max_index = pool_exch_range - 1; 2514 2515 /* 2516 * Allocate and initialize per cpu exch pool 2517 */ 2518 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *); 2519 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool)); 2520 if (!mp->pool) 2521 goto free_mempool; 2522 for_each_possible_cpu(cpu) { 2523 pool = per_cpu_ptr(mp->pool, cpu); 2524 pool->next_index = 0; 2525 pool->left = FC_XID_UNKNOWN; 2526 pool->right = FC_XID_UNKNOWN; 2527 spin_lock_init(&pool->lock); 2528 INIT_LIST_HEAD(&pool->ex_list); 2529 } 2530 2531 kref_init(&mp->kref); 2532 if (!fc_exch_mgr_add(lport, mp, match)) { 2533 free_percpu(mp->pool); 2534 goto free_mempool; 2535 } 2536 2537 /* 2538 * Above kref_init() sets mp->kref to 1 and then 2539 * call to fc_exch_mgr_add incremented mp->kref again, 2540 * so adjust that extra increment. 2541 */ 2542 kref_put(&mp->kref, fc_exch_mgr_destroy); 2543 return mp; 2544 2545 free_mempool: 2546 mempool_destroy(mp->ep_pool); 2547 free_mp: 2548 kfree(mp); 2549 return NULL; 2550 } 2551 EXPORT_SYMBOL(fc_exch_mgr_alloc); 2552 2553 /** 2554 * fc_exch_mgr_free() - Free all exchange managers on a local port 2555 * @lport: The local port whose EMs are to be freed 2556 */ 2557 void fc_exch_mgr_free(struct fc_lport *lport) 2558 { 2559 struct fc_exch_mgr_anchor *ema, *next; 2560 2561 flush_workqueue(fc_exch_workqueue); 2562 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list) 2563 fc_exch_mgr_del(ema); 2564 } 2565 EXPORT_SYMBOL(fc_exch_mgr_free); 2566 2567 /** 2568 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending 2569 * upon 'xid'. 2570 * @f_ctl: f_ctl 2571 * @lport: The local port the frame was received on 2572 * @fh: The received frame header 2573 */ 2574 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl, 2575 struct fc_lport *lport, 2576 struct fc_frame_header *fh) 2577 { 2578 struct fc_exch_mgr_anchor *ema; 2579 u16 xid; 2580 2581 if (f_ctl & FC_FC_EX_CTX) 2582 xid = ntohs(fh->fh_ox_id); 2583 else { 2584 xid = ntohs(fh->fh_rx_id); 2585 if (xid == FC_XID_UNKNOWN) 2586 return list_entry(lport->ema_list.prev, 2587 typeof(*ema), ema_list); 2588 } 2589 2590 list_for_each_entry(ema, &lport->ema_list, ema_list) { 2591 if ((xid >= ema->mp->min_xid) && 2592 (xid <= ema->mp->max_xid)) 2593 return ema; 2594 } 2595 return NULL; 2596 } 2597 /** 2598 * fc_exch_recv() - Handler for received frames 2599 * @lport: The local port the frame was received on 2600 * @fp: The received frame 2601 */ 2602 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp) 2603 { 2604 struct fc_frame_header *fh = fc_frame_header_get(fp); 2605 struct fc_exch_mgr_anchor *ema; 2606 u32 f_ctl; 2607 2608 /* lport lock ? */ 2609 if (!lport || lport->state == LPORT_ST_DISABLED) { 2610 FC_LIBFC_DBG("Receiving frames for an lport that " 2611 "has not been initialized correctly\n"); 2612 fc_frame_free(fp); 2613 return; 2614 } 2615 2616 f_ctl = ntoh24(fh->fh_f_ctl); 2617 ema = fc_find_ema(f_ctl, lport, fh); 2618 if (!ema) { 2619 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor," 2620 "fc_ctl <0x%x>, xid <0x%x>\n", 2621 f_ctl, 2622 (f_ctl & FC_FC_EX_CTX) ? 2623 ntohs(fh->fh_ox_id) : 2624 ntohs(fh->fh_rx_id)); 2625 fc_frame_free(fp); 2626 return; 2627 } 2628 2629 /* 2630 * If frame is marked invalid, just drop it. 2631 */ 2632 switch (fr_eof(fp)) { 2633 case FC_EOF_T: 2634 if (f_ctl & FC_FC_END_SEQ) 2635 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl)); 2636 fallthrough; 2637 case FC_EOF_N: 2638 if (fh->fh_type == FC_TYPE_BLS) 2639 fc_exch_recv_bls(ema->mp, fp); 2640 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) == 2641 FC_FC_EX_CTX) 2642 fc_exch_recv_seq_resp(ema->mp, fp); 2643 else if (f_ctl & FC_FC_SEQ_CTX) 2644 fc_exch_recv_resp(ema->mp, fp); 2645 else /* no EX_CTX and no SEQ_CTX */ 2646 fc_exch_recv_req(lport, ema->mp, fp); 2647 break; 2648 default: 2649 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)", 2650 fr_eof(fp)); 2651 fc_frame_free(fp); 2652 } 2653 } 2654 EXPORT_SYMBOL(fc_exch_recv); 2655 2656 /** 2657 * fc_exch_init() - Initialize the exchange layer for a local port 2658 * @lport: The local port to initialize the exchange layer for 2659 */ 2660 int fc_exch_init(struct fc_lport *lport) 2661 { 2662 if (!lport->tt.exch_mgr_reset) 2663 lport->tt.exch_mgr_reset = fc_exch_mgr_reset; 2664 2665 return 0; 2666 } 2667 EXPORT_SYMBOL(fc_exch_init); 2668 2669 /** 2670 * fc_setup_exch_mgr() - Setup an exchange manager 2671 */ 2672 int fc_setup_exch_mgr(void) 2673 { 2674 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch), 2675 0, SLAB_HWCACHE_ALIGN, NULL); 2676 if (!fc_em_cachep) 2677 return -ENOMEM; 2678 2679 /* 2680 * Initialize fc_cpu_mask and fc_cpu_order. The 2681 * fc_cpu_mask is set for nr_cpu_ids rounded up 2682 * to order of 2's * power and order is stored 2683 * in fc_cpu_order as this is later required in 2684 * mapping between an exch id and exch array index 2685 * in per cpu exch pool. 2686 * 2687 * This round up is required to align fc_cpu_mask 2688 * to exchange id's lower bits such that all incoming 2689 * frames of an exchange gets delivered to the same 2690 * cpu on which exchange originated by simple bitwise 2691 * AND operation between fc_cpu_mask and exchange id. 2692 */ 2693 fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids)); 2694 fc_cpu_mask = (1 << fc_cpu_order) - 1; 2695 2696 fc_exch_workqueue = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 2697 "fc_exch_workqueue"); 2698 if (!fc_exch_workqueue) 2699 goto err; 2700 return 0; 2701 err: 2702 kmem_cache_destroy(fc_em_cachep); 2703 return -ENOMEM; 2704 } 2705 2706 /** 2707 * fc_destroy_exch_mgr() - Destroy an exchange manager 2708 */ 2709 void fc_destroy_exch_mgr(void) 2710 { 2711 destroy_workqueue(fc_exch_workqueue); 2712 kmem_cache_destroy(fc_em_cachep); 2713 } 2714