xref: /linux/drivers/scsi/libfc/fc_exch.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2007 Intel Corporation. All rights reserved.
4  * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
5  * Copyright(c) 2008 Mike Christie
6  *
7  * Maintained at www.Open-FCoE.org
8  */
9 
10 /*
11  * Fibre Channel exchange and sequence handling.
12  */
13 
14 #include <linux/timer.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/export.h>
18 #include <linux/log2.h>
19 
20 #include <scsi/fc/fc_fc2.h>
21 
22 #include <scsi/libfc.h>
23 #include <scsi/fc_encode.h>
24 
25 #include "fc_libfc.h"
26 
27 u16	fc_cpu_mask;		/* cpu mask for possible cpus */
28 EXPORT_SYMBOL(fc_cpu_mask);
29 static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
30 static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
31 static struct workqueue_struct *fc_exch_workqueue;
32 
33 /*
34  * Structure and function definitions for managing Fibre Channel Exchanges
35  * and Sequences.
36  *
37  * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
38  *
39  * fc_exch_mgr holds the exchange state for an N port
40  *
41  * fc_exch holds state for one exchange and links to its active sequence.
42  *
43  * fc_seq holds the state for an individual sequence.
44  */
45 
46 /**
47  * struct fc_exch_pool - Per cpu exchange pool
48  * @next_index:	  Next possible free exchange index
49  * @total_exches: Total allocated exchanges
50  * @lock:	  Exch pool lock
51  * @ex_list:	  List of exchanges
52  * @left:	  Cache of free slot in exch array
53  * @right:	  Cache of free slot in exch array
54  *
55  * This structure manages per cpu exchanges in array of exchange pointers.
56  * This array is allocated followed by struct fc_exch_pool memory for
57  * assigned range of exchanges to per cpu pool.
58  */
59 struct fc_exch_pool {
60 	spinlock_t	 lock;
61 	struct list_head ex_list;
62 	u16		 next_index;
63 	u16		 total_exches;
64 
65 	u16		 left;
66 	u16		 right;
67 } ____cacheline_aligned_in_smp;
68 
69 /**
70  * struct fc_exch_mgr - The Exchange Manager (EM).
71  * @class:	    Default class for new sequences
72  * @kref:	    Reference counter
73  * @min_xid:	    Minimum exchange ID
74  * @max_xid:	    Maximum exchange ID
75  * @ep_pool:	    Reserved exchange pointers
76  * @pool_max_index: Max exch array index in exch pool
77  * @pool:	    Per cpu exch pool
78  * @lport:	    Local exchange port
79  * @stats:	    Statistics structure
80  *
81  * This structure is the center for creating exchanges and sequences.
82  * It manages the allocation of exchange IDs.
83  */
84 struct fc_exch_mgr {
85 	struct fc_exch_pool __percpu *pool;
86 	mempool_t	*ep_pool;
87 	struct fc_lport	*lport;
88 	enum fc_class	class;
89 	struct kref	kref;
90 	u16		min_xid;
91 	u16		max_xid;
92 	u16		pool_max_index;
93 
94 	struct {
95 		atomic_t no_free_exch;
96 		atomic_t no_free_exch_xid;
97 		atomic_t xid_not_found;
98 		atomic_t xid_busy;
99 		atomic_t seq_not_found;
100 		atomic_t non_bls_resp;
101 	} stats;
102 };
103 
104 /**
105  * struct fc_exch_mgr_anchor - primary structure for list of EMs
106  * @ema_list: Exchange Manager Anchor list
107  * @mp:	      Exchange Manager associated with this anchor
108  * @match:    Routine to determine if this anchor's EM should be used
109  *
110  * When walking the list of anchors the match routine will be called
111  * for each anchor to determine if that EM should be used. The last
112  * anchor in the list will always match to handle any exchanges not
113  * handled by other EMs. The non-default EMs would be added to the
114  * anchor list by HW that provides offloads.
115  */
116 struct fc_exch_mgr_anchor {
117 	struct list_head ema_list;
118 	struct fc_exch_mgr *mp;
119 	bool (*match)(struct fc_frame *);
120 };
121 
122 static void fc_exch_rrq(struct fc_exch *);
123 static void fc_seq_ls_acc(struct fc_frame *);
124 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
125 			  enum fc_els_rjt_explan);
126 static void fc_exch_els_rec(struct fc_frame *);
127 static void fc_exch_els_rrq(struct fc_frame *);
128 
129 /*
130  * Internal implementation notes.
131  *
132  * The exchange manager is one by default in libfc but LLD may choose
133  * to have one per CPU. The sequence manager is one per exchange manager
134  * and currently never separated.
135  *
136  * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
137  * assigned by the Sequence Initiator that shall be unique for a specific
138  * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
139  * qualified by exchange ID, which one might think it would be.
140  * In practice this limits the number of open sequences and exchanges to 256
141  * per session.	 For most targets we could treat this limit as per exchange.
142  *
143  * The exchange and its sequence are freed when the last sequence is received.
144  * It's possible for the remote port to leave an exchange open without
145  * sending any sequences.
146  *
147  * Notes on reference counts:
148  *
149  * Exchanges are reference counted and exchange gets freed when the reference
150  * count becomes zero.
151  *
152  * Timeouts:
153  * Sequences are timed out for E_D_TOV and R_A_TOV.
154  *
155  * Sequence event handling:
156  *
157  * The following events may occur on initiator sequences:
158  *
159  *	Send.
160  *	    For now, the whole thing is sent.
161  *	Receive ACK
162  *	    This applies only to class F.
163  *	    The sequence is marked complete.
164  *	ULP completion.
165  *	    The upper layer calls fc_exch_done() when done
166  *	    with exchange and sequence tuple.
167  *	RX-inferred completion.
168  *	    When we receive the next sequence on the same exchange, we can
169  *	    retire the previous sequence ID.  (XXX not implemented).
170  *	Timeout.
171  *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
172  *	    E_D_TOV causes abort and calls upper layer response handler
173  *	    with FC_EX_TIMEOUT error.
174  *	Receive RJT
175  *	    XXX defer.
176  *	Send ABTS
177  *	    On timeout.
178  *
179  * The following events may occur on recipient sequences:
180  *
181  *	Receive
182  *	    Allocate sequence for first frame received.
183  *	    Hold during receive handler.
184  *	    Release when final frame received.
185  *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
186  *	Receive ABTS
187  *	    Deallocate sequence
188  *	Send RJT
189  *	    Deallocate
190  *
191  * For now, we neglect conditions where only part of a sequence was
192  * received or transmitted, or where out-of-order receipt is detected.
193  */
194 
195 /*
196  * Locking notes:
197  *
198  * The EM code run in a per-CPU worker thread.
199  *
200  * To protect against concurrency between a worker thread code and timers,
201  * sequence allocation and deallocation must be locked.
202  *  - exchange refcnt can be done atomicly without locks.
203  *  - sequence allocation must be locked by exch lock.
204  *  - If the EM pool lock and ex_lock must be taken at the same time, then the
205  *    EM pool lock must be taken before the ex_lock.
206  */
207 
208 /*
209  * opcode names for debugging.
210  */
211 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
212 
213 /**
214  * fc_exch_name_lookup() - Lookup name by opcode
215  * @op:	       Opcode to be looked up
216  * @table:     Opcode/name table
217  * @max_index: Index not to be exceeded
218  *
219  * This routine is used to determine a human-readable string identifying
220  * a R_CTL opcode.
221  */
222 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
223 					      unsigned int max_index)
224 {
225 	const char *name = NULL;
226 
227 	if (op < max_index)
228 		name = table[op];
229 	if (!name)
230 		name = "unknown";
231 	return name;
232 }
233 
234 /**
235  * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
236  * @op: The opcode to be looked up
237  */
238 static const char *fc_exch_rctl_name(unsigned int op)
239 {
240 	return fc_exch_name_lookup(op, fc_exch_rctl_names,
241 				   ARRAY_SIZE(fc_exch_rctl_names));
242 }
243 
244 /**
245  * fc_exch_hold() - Increment an exchange's reference count
246  * @ep: Echange to be held
247  */
248 static inline void fc_exch_hold(struct fc_exch *ep)
249 {
250 	atomic_inc(&ep->ex_refcnt);
251 }
252 
253 /**
254  * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
255  *			 and determine SOF and EOF.
256  * @ep:	   The exchange to that will use the header
257  * @fp:	   The frame whose header is to be modified
258  * @f_ctl: F_CTL bits that will be used for the frame header
259  *
260  * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
261  * fh_seq_id, fh_seq_cnt and the SOF and EOF.
262  */
263 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
264 			      u32 f_ctl)
265 {
266 	struct fc_frame_header *fh = fc_frame_header_get(fp);
267 	u16 fill;
268 
269 	fr_sof(fp) = ep->class;
270 	if (ep->seq.cnt)
271 		fr_sof(fp) = fc_sof_normal(ep->class);
272 
273 	if (f_ctl & FC_FC_END_SEQ) {
274 		fr_eof(fp) = FC_EOF_T;
275 		if (fc_sof_needs_ack(ep->class))
276 			fr_eof(fp) = FC_EOF_N;
277 		/*
278 		 * From F_CTL.
279 		 * The number of fill bytes to make the length a 4-byte
280 		 * multiple is the low order 2-bits of the f_ctl.
281 		 * The fill itself will have been cleared by the frame
282 		 * allocation.
283 		 * After this, the length will be even, as expected by
284 		 * the transport.
285 		 */
286 		fill = fr_len(fp) & 3;
287 		if (fill) {
288 			fill = 4 - fill;
289 			/* TODO, this may be a problem with fragmented skb */
290 			skb_put(fp_skb(fp), fill);
291 			hton24(fh->fh_f_ctl, f_ctl | fill);
292 		}
293 	} else {
294 		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
295 		fr_eof(fp) = FC_EOF_N;
296 	}
297 
298 	/* Initialize remaining fh fields from fc_fill_fc_hdr */
299 	fh->fh_ox_id = htons(ep->oxid);
300 	fh->fh_rx_id = htons(ep->rxid);
301 	fh->fh_seq_id = ep->seq.id;
302 	fh->fh_seq_cnt = htons(ep->seq.cnt);
303 }
304 
305 /**
306  * fc_exch_release() - Decrement an exchange's reference count
307  * @ep: Exchange to be released
308  *
309  * If the reference count reaches zero and the exchange is complete,
310  * it is freed.
311  */
312 static void fc_exch_release(struct fc_exch *ep)
313 {
314 	struct fc_exch_mgr *mp;
315 
316 	if (atomic_dec_and_test(&ep->ex_refcnt)) {
317 		mp = ep->em;
318 		if (ep->destructor)
319 			ep->destructor(&ep->seq, ep->arg);
320 		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
321 		mempool_free(ep, mp->ep_pool);
322 	}
323 }
324 
325 /**
326  * fc_exch_timer_cancel() - cancel exch timer
327  * @ep:		The exchange whose timer to be canceled
328  */
329 static inline void fc_exch_timer_cancel(struct fc_exch *ep)
330 {
331 	if (cancel_delayed_work(&ep->timeout_work)) {
332 		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
333 		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
334 	}
335 }
336 
337 /**
338  * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
339  *				the exchange lock held
340  * @ep:		The exchange whose timer will start
341  * @timer_msec: The timeout period
342  *
343  * Used for upper level protocols to time out the exchange.
344  * The timer is cancelled when it fires or when the exchange completes.
345  */
346 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
347 					    unsigned int timer_msec)
348 {
349 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
350 		return;
351 
352 	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
353 
354 	fc_exch_hold(ep);		/* hold for timer */
355 	if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
356 				msecs_to_jiffies(timer_msec))) {
357 		FC_EXCH_DBG(ep, "Exchange already queued\n");
358 		fc_exch_release(ep);
359 	}
360 }
361 
362 /**
363  * fc_exch_timer_set() - Lock the exchange and set the timer
364  * @ep:		The exchange whose timer will start
365  * @timer_msec: The timeout period
366  */
367 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
368 {
369 	spin_lock_bh(&ep->ex_lock);
370 	fc_exch_timer_set_locked(ep, timer_msec);
371 	spin_unlock_bh(&ep->ex_lock);
372 }
373 
374 /**
375  * fc_exch_done_locked() - Complete an exchange with the exchange lock held
376  * @ep: The exchange that is complete
377  *
378  * Note: May sleep if invoked from outside a response handler.
379  */
380 static int fc_exch_done_locked(struct fc_exch *ep)
381 {
382 	int rc = 1;
383 
384 	/*
385 	 * We must check for completion in case there are two threads
386 	 * tyring to complete this. But the rrq code will reuse the
387 	 * ep, and in that case we only clear the resp and set it as
388 	 * complete, so it can be reused by the timer to send the rrq.
389 	 */
390 	if (ep->state & FC_EX_DONE)
391 		return rc;
392 	ep->esb_stat |= ESB_ST_COMPLETE;
393 
394 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
395 		ep->state |= FC_EX_DONE;
396 		fc_exch_timer_cancel(ep);
397 		rc = 0;
398 	}
399 	return rc;
400 }
401 
402 static struct fc_exch fc_quarantine_exch;
403 
404 /**
405  * fc_exch_ptr_get() - Return an exchange from an exchange pool
406  * @pool:  Exchange Pool to get an exchange from
407  * @index: Index of the exchange within the pool
408  *
409  * Use the index to get an exchange from within an exchange pool. exches
410  * will point to an array of exchange pointers. The index will select
411  * the exchange within the array.
412  */
413 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
414 					      u16 index)
415 {
416 	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
417 	return exches[index];
418 }
419 
420 /**
421  * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
422  * @pool:  The pool to assign the exchange to
423  * @index: The index in the pool where the exchange will be assigned
424  * @ep:	   The exchange to assign to the pool
425  */
426 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
427 				   struct fc_exch *ep)
428 {
429 	((struct fc_exch **)(pool + 1))[index] = ep;
430 }
431 
432 /**
433  * fc_exch_delete() - Delete an exchange
434  * @ep: The exchange to be deleted
435  */
436 static void fc_exch_delete(struct fc_exch *ep)
437 {
438 	struct fc_exch_pool *pool;
439 	u16 index;
440 
441 	pool = ep->pool;
442 	spin_lock_bh(&pool->lock);
443 	WARN_ON(pool->total_exches <= 0);
444 	pool->total_exches--;
445 
446 	/* update cache of free slot */
447 	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
448 	if (!(ep->state & FC_EX_QUARANTINE)) {
449 		if (pool->left == FC_XID_UNKNOWN)
450 			pool->left = index;
451 		else if (pool->right == FC_XID_UNKNOWN)
452 			pool->right = index;
453 		else
454 			pool->next_index = index;
455 		fc_exch_ptr_set(pool, index, NULL);
456 	} else {
457 		fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
458 	}
459 	list_del(&ep->ex_list);
460 	spin_unlock_bh(&pool->lock);
461 	fc_exch_release(ep);	/* drop hold for exch in mp */
462 }
463 
464 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
465 			      struct fc_frame *fp)
466 {
467 	struct fc_exch *ep;
468 	struct fc_frame_header *fh = fc_frame_header_get(fp);
469 	int error = -ENXIO;
470 	u32 f_ctl;
471 	u8 fh_type = fh->fh_type;
472 
473 	ep = fc_seq_exch(sp);
474 
475 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
476 		fc_frame_free(fp);
477 		goto out;
478 	}
479 
480 	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
481 
482 	f_ctl = ntoh24(fh->fh_f_ctl);
483 	fc_exch_setup_hdr(ep, fp, f_ctl);
484 	fr_encaps(fp) = ep->encaps;
485 
486 	/*
487 	 * update sequence count if this frame is carrying
488 	 * multiple FC frames when sequence offload is enabled
489 	 * by LLD.
490 	 */
491 	if (fr_max_payload(fp))
492 		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
493 					fr_max_payload(fp));
494 	else
495 		sp->cnt++;
496 
497 	/*
498 	 * Send the frame.
499 	 */
500 	error = lport->tt.frame_send(lport, fp);
501 
502 	if (fh_type == FC_TYPE_BLS)
503 		goto out;
504 
505 	/*
506 	 * Update the exchange and sequence flags,
507 	 * assuming all frames for the sequence have been sent.
508 	 * We can only be called to send once for each sequence.
509 	 */
510 	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
511 	if (f_ctl & FC_FC_SEQ_INIT)
512 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
513 out:
514 	return error;
515 }
516 
517 /**
518  * fc_seq_send() - Send a frame using existing sequence/exchange pair
519  * @lport: The local port that the exchange will be sent on
520  * @sp:	   The sequence to be sent
521  * @fp:	   The frame to be sent on the exchange
522  *
523  * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
524  * or indirectly by calling libfc_function_template.frame_send().
525  */
526 int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
527 {
528 	struct fc_exch *ep;
529 	int error;
530 	ep = fc_seq_exch(sp);
531 	spin_lock_bh(&ep->ex_lock);
532 	error = fc_seq_send_locked(lport, sp, fp);
533 	spin_unlock_bh(&ep->ex_lock);
534 	return error;
535 }
536 EXPORT_SYMBOL(fc_seq_send);
537 
538 /**
539  * fc_seq_alloc() - Allocate a sequence for a given exchange
540  * @ep:	    The exchange to allocate a new sequence for
541  * @seq_id: The sequence ID to be used
542  *
543  * We don't support multiple originated sequences on the same exchange.
544  * By implication, any previously originated sequence on this exchange
545  * is complete, and we reallocate the same sequence.
546  */
547 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
548 {
549 	struct fc_seq *sp;
550 
551 	sp = &ep->seq;
552 	sp->ssb_stat = 0;
553 	sp->cnt = 0;
554 	sp->id = seq_id;
555 	return sp;
556 }
557 
558 /**
559  * fc_seq_start_next_locked() - Allocate a new sequence on the same
560  *				exchange as the supplied sequence
561  * @sp: The sequence/exchange to get a new sequence for
562  */
563 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
564 {
565 	struct fc_exch *ep = fc_seq_exch(sp);
566 
567 	sp = fc_seq_alloc(ep, ep->seq_id++);
568 	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
569 		    ep->f_ctl, sp->id);
570 	return sp;
571 }
572 
573 /**
574  * fc_seq_start_next() - Lock the exchange and get a new sequence
575  *			 for a given sequence/exchange pair
576  * @sp: The sequence/exchange to get a new exchange for
577  */
578 struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
579 {
580 	struct fc_exch *ep = fc_seq_exch(sp);
581 
582 	spin_lock_bh(&ep->ex_lock);
583 	sp = fc_seq_start_next_locked(sp);
584 	spin_unlock_bh(&ep->ex_lock);
585 
586 	return sp;
587 }
588 EXPORT_SYMBOL(fc_seq_start_next);
589 
590 /*
591  * Set the response handler for the exchange associated with a sequence.
592  *
593  * Note: May sleep if invoked from outside a response handler.
594  */
595 void fc_seq_set_resp(struct fc_seq *sp,
596 		     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
597 		     void *arg)
598 {
599 	struct fc_exch *ep = fc_seq_exch(sp);
600 	DEFINE_WAIT(wait);
601 
602 	spin_lock_bh(&ep->ex_lock);
603 	while (ep->resp_active && ep->resp_task != current) {
604 		prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
605 		spin_unlock_bh(&ep->ex_lock);
606 
607 		schedule();
608 
609 		spin_lock_bh(&ep->ex_lock);
610 	}
611 	finish_wait(&ep->resp_wq, &wait);
612 	ep->resp = resp;
613 	ep->arg = arg;
614 	spin_unlock_bh(&ep->ex_lock);
615 }
616 EXPORT_SYMBOL(fc_seq_set_resp);
617 
618 /**
619  * fc_exch_abort_locked() - Abort an exchange
620  * @ep:	The exchange to be aborted
621  * @timer_msec: The period of time to wait before aborting
622  *
623  * Abort an exchange and sequence. Generally called because of a
624  * exchange timeout or an abort from the upper layer.
625  *
626  * A timer_msec can be specified for abort timeout, if non-zero
627  * timer_msec value is specified then exchange resp handler
628  * will be called with timeout error if no response to abort.
629  *
630  * Locking notes:  Called with exch lock held
631  *
632  * Return value: 0 on success else error code
633  */
634 static int fc_exch_abort_locked(struct fc_exch *ep,
635 				unsigned int timer_msec)
636 {
637 	struct fc_seq *sp;
638 	struct fc_frame *fp;
639 	int error;
640 
641 	FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
642 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
643 	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
644 		FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
645 			    ep->esb_stat, ep->state);
646 		return -ENXIO;
647 	}
648 
649 	/*
650 	 * Send the abort on a new sequence if possible.
651 	 */
652 	sp = fc_seq_start_next_locked(&ep->seq);
653 	if (!sp)
654 		return -ENOMEM;
655 
656 	if (timer_msec)
657 		fc_exch_timer_set_locked(ep, timer_msec);
658 
659 	if (ep->sid) {
660 		/*
661 		 * Send an abort for the sequence that timed out.
662 		 */
663 		fp = fc_frame_alloc(ep->lp, 0);
664 		if (fp) {
665 			ep->esb_stat |= ESB_ST_SEQ_INIT;
666 			fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
667 				       FC_TYPE_BLS, FC_FC_END_SEQ |
668 				       FC_FC_SEQ_INIT, 0);
669 			error = fc_seq_send_locked(ep->lp, sp, fp);
670 		} else {
671 			error = -ENOBUFS;
672 		}
673 	} else {
674 		/*
675 		 * If not logged into the fabric, don't send ABTS but leave
676 		 * sequence active until next timeout.
677 		 */
678 		error = 0;
679 	}
680 	ep->esb_stat |= ESB_ST_ABNORMAL;
681 	return error;
682 }
683 
684 /**
685  * fc_seq_exch_abort() - Abort an exchange and sequence
686  * @req_sp:	The sequence to be aborted
687  * @timer_msec: The period of time to wait before aborting
688  *
689  * Generally called because of a timeout or an abort from the upper layer.
690  *
691  * Return value: 0 on success else error code
692  */
693 int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
694 {
695 	struct fc_exch *ep;
696 	int error;
697 
698 	ep = fc_seq_exch(req_sp);
699 	spin_lock_bh(&ep->ex_lock);
700 	error = fc_exch_abort_locked(ep, timer_msec);
701 	spin_unlock_bh(&ep->ex_lock);
702 	return error;
703 }
704 
705 /**
706  * fc_invoke_resp() - invoke ep->resp()
707  * @ep:	   The exchange to be operated on
708  * @fp:	   The frame pointer to pass through to ->resp()
709  * @sp:	   The sequence pointer to pass through to ->resp()
710  *
711  * Notes:
712  * It is assumed that after initialization finished (this means the
713  * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
714  * modified only via fc_seq_set_resp(). This guarantees that none of these
715  * two variables changes if ep->resp_active > 0.
716  *
717  * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
718  * this function is invoked, the first spin_lock_bh() call in this function
719  * will wait until fc_seq_set_resp() has finished modifying these variables.
720  *
721  * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
722  * ep->resp() won't be invoked after fc_exch_done() has returned.
723  *
724  * The response handler itself may invoke fc_exch_done(), which will clear the
725  * ep->resp pointer.
726  *
727  * Return value:
728  * Returns true if and only if ep->resp has been invoked.
729  */
730 static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
731 			   struct fc_frame *fp)
732 {
733 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
734 	void *arg;
735 	bool res = false;
736 
737 	spin_lock_bh(&ep->ex_lock);
738 	ep->resp_active++;
739 	if (ep->resp_task != current)
740 		ep->resp_task = !ep->resp_task ? current : NULL;
741 	resp = ep->resp;
742 	arg = ep->arg;
743 	spin_unlock_bh(&ep->ex_lock);
744 
745 	if (resp) {
746 		resp(sp, fp, arg);
747 		res = true;
748 	}
749 
750 	spin_lock_bh(&ep->ex_lock);
751 	if (--ep->resp_active == 0)
752 		ep->resp_task = NULL;
753 	spin_unlock_bh(&ep->ex_lock);
754 
755 	if (ep->resp_active == 0)
756 		wake_up(&ep->resp_wq);
757 
758 	return res;
759 }
760 
761 /**
762  * fc_exch_timeout() - Handle exchange timer expiration
763  * @work: The work_struct identifying the exchange that timed out
764  */
765 static void fc_exch_timeout(struct work_struct *work)
766 {
767 	struct fc_exch *ep = container_of(work, struct fc_exch,
768 					  timeout_work.work);
769 	struct fc_seq *sp = &ep->seq;
770 	u32 e_stat;
771 	int rc = 1;
772 
773 	FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
774 
775 	spin_lock_bh(&ep->ex_lock);
776 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
777 		goto unlock;
778 
779 	e_stat = ep->esb_stat;
780 	if (e_stat & ESB_ST_COMPLETE) {
781 		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
782 		spin_unlock_bh(&ep->ex_lock);
783 		if (e_stat & ESB_ST_REC_QUAL)
784 			fc_exch_rrq(ep);
785 		goto done;
786 	} else {
787 		if (e_stat & ESB_ST_ABNORMAL)
788 			rc = fc_exch_done_locked(ep);
789 		spin_unlock_bh(&ep->ex_lock);
790 		if (!rc)
791 			fc_exch_delete(ep);
792 		fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
793 		fc_seq_set_resp(sp, NULL, ep->arg);
794 		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
795 		goto done;
796 	}
797 unlock:
798 	spin_unlock_bh(&ep->ex_lock);
799 done:
800 	/*
801 	 * This release matches the hold taken when the timer was set.
802 	 */
803 	fc_exch_release(ep);
804 }
805 
806 /**
807  * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
808  * @lport: The local port that the exchange is for
809  * @mp:	   The exchange manager that will allocate the exchange
810  *
811  * Returns pointer to allocated fc_exch with exch lock held.
812  */
813 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
814 					struct fc_exch_mgr *mp)
815 {
816 	struct fc_exch *ep;
817 	unsigned int cpu;
818 	u16 index;
819 	struct fc_exch_pool *pool;
820 
821 	/* allocate memory for exchange */
822 	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
823 	if (!ep) {
824 		atomic_inc(&mp->stats.no_free_exch);
825 		goto out;
826 	}
827 	memset(ep, 0, sizeof(*ep));
828 
829 	cpu = get_cpu();
830 	pool = per_cpu_ptr(mp->pool, cpu);
831 	spin_lock_bh(&pool->lock);
832 	put_cpu();
833 
834 	/* peek cache of free slot */
835 	if (pool->left != FC_XID_UNKNOWN) {
836 		if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
837 			index = pool->left;
838 			pool->left = FC_XID_UNKNOWN;
839 			goto hit;
840 		}
841 	}
842 	if (pool->right != FC_XID_UNKNOWN) {
843 		if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
844 			index = pool->right;
845 			pool->right = FC_XID_UNKNOWN;
846 			goto hit;
847 		}
848 	}
849 
850 	index = pool->next_index;
851 	/* allocate new exch from pool */
852 	while (fc_exch_ptr_get(pool, index)) {
853 		index = index == mp->pool_max_index ? 0 : index + 1;
854 		if (index == pool->next_index)
855 			goto err;
856 	}
857 	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
858 hit:
859 	fc_exch_hold(ep);	/* hold for exch in mp */
860 	spin_lock_init(&ep->ex_lock);
861 	/*
862 	 * Hold exch lock for caller to prevent fc_exch_reset()
863 	 * from releasing exch	while fc_exch_alloc() caller is
864 	 * still working on exch.
865 	 */
866 	spin_lock_bh(&ep->ex_lock);
867 
868 	fc_exch_ptr_set(pool, index, ep);
869 	list_add_tail(&ep->ex_list, &pool->ex_list);
870 	fc_seq_alloc(ep, ep->seq_id++);
871 	pool->total_exches++;
872 	spin_unlock_bh(&pool->lock);
873 
874 	/*
875 	 *  update exchange
876 	 */
877 	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
878 	ep->em = mp;
879 	ep->pool = pool;
880 	ep->lp = lport;
881 	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
882 	ep->rxid = FC_XID_UNKNOWN;
883 	ep->class = mp->class;
884 	ep->resp_active = 0;
885 	init_waitqueue_head(&ep->resp_wq);
886 	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
887 out:
888 	return ep;
889 err:
890 	spin_unlock_bh(&pool->lock);
891 	atomic_inc(&mp->stats.no_free_exch_xid);
892 	mempool_free(ep, mp->ep_pool);
893 	return NULL;
894 }
895 
896 /**
897  * fc_exch_alloc() - Allocate an exchange from an EM on a
898  *		     local port's list of EMs.
899  * @lport: The local port that will own the exchange
900  * @fp:	   The FC frame that the exchange will be for
901  *
902  * This function walks the list of exchange manager(EM)
903  * anchors to select an EM for a new exchange allocation. The
904  * EM is selected when a NULL match function pointer is encountered
905  * or when a call to a match function returns true.
906  */
907 static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
908 				     struct fc_frame *fp)
909 {
910 	struct fc_exch_mgr_anchor *ema;
911 	struct fc_exch *ep;
912 
913 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
914 		if (!ema->match || ema->match(fp)) {
915 			ep = fc_exch_em_alloc(lport, ema->mp);
916 			if (ep)
917 				return ep;
918 		}
919 	}
920 	return NULL;
921 }
922 
923 /**
924  * fc_exch_find() - Lookup and hold an exchange
925  * @mp:	 The exchange manager to lookup the exchange from
926  * @xid: The XID of the exchange to look up
927  */
928 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
929 {
930 	struct fc_lport *lport = mp->lport;
931 	struct fc_exch_pool *pool;
932 	struct fc_exch *ep = NULL;
933 	u16 cpu = xid & fc_cpu_mask;
934 
935 	if (xid == FC_XID_UNKNOWN)
936 		return NULL;
937 
938 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
939 		pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
940 		       lport->host->host_no, lport->port_id, xid, cpu);
941 		return NULL;
942 	}
943 
944 	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
945 		pool = per_cpu_ptr(mp->pool, cpu);
946 		spin_lock_bh(&pool->lock);
947 		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
948 		if (ep == &fc_quarantine_exch) {
949 			FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
950 			ep = NULL;
951 		}
952 		if (ep) {
953 			WARN_ON(ep->xid != xid);
954 			fc_exch_hold(ep);
955 		}
956 		spin_unlock_bh(&pool->lock);
957 	}
958 	return ep;
959 }
960 
961 
962 /**
963  * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
964  *		    the memory allocated for the related objects may be freed.
965  * @sp: The sequence that has completed
966  *
967  * Note: May sleep if invoked from outside a response handler.
968  */
969 void fc_exch_done(struct fc_seq *sp)
970 {
971 	struct fc_exch *ep = fc_seq_exch(sp);
972 	int rc;
973 
974 	spin_lock_bh(&ep->ex_lock);
975 	rc = fc_exch_done_locked(ep);
976 	spin_unlock_bh(&ep->ex_lock);
977 
978 	fc_seq_set_resp(sp, NULL, ep->arg);
979 	if (!rc)
980 		fc_exch_delete(ep);
981 }
982 EXPORT_SYMBOL(fc_exch_done);
983 
984 /**
985  * fc_exch_resp() - Allocate a new exchange for a response frame
986  * @lport: The local port that the exchange was for
987  * @mp:	   The exchange manager to allocate the exchange from
988  * @fp:	   The response frame
989  *
990  * Sets the responder ID in the frame header.
991  */
992 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
993 				    struct fc_exch_mgr *mp,
994 				    struct fc_frame *fp)
995 {
996 	struct fc_exch *ep;
997 	struct fc_frame_header *fh;
998 
999 	ep = fc_exch_alloc(lport, fp);
1000 	if (ep) {
1001 		ep->class = fc_frame_class(fp);
1002 
1003 		/*
1004 		 * Set EX_CTX indicating we're responding on this exchange.
1005 		 */
1006 		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
1007 		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
1008 		fh = fc_frame_header_get(fp);
1009 		ep->sid = ntoh24(fh->fh_d_id);
1010 		ep->did = ntoh24(fh->fh_s_id);
1011 		ep->oid = ep->did;
1012 
1013 		/*
1014 		 * Allocated exchange has placed the XID in the
1015 		 * originator field. Move it to the responder field,
1016 		 * and set the originator XID from the frame.
1017 		 */
1018 		ep->rxid = ep->xid;
1019 		ep->oxid = ntohs(fh->fh_ox_id);
1020 		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1021 		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1022 			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1023 
1024 		fc_exch_hold(ep);	/* hold for caller */
1025 		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
1026 	}
1027 	return ep;
1028 }
1029 
1030 /**
1031  * fc_seq_lookup_recip() - Find a sequence where the other end
1032  *			   originated the sequence
1033  * @lport: The local port that the frame was sent to
1034  * @mp:	   The Exchange Manager to lookup the exchange from
1035  * @fp:	   The frame associated with the sequence we're looking for
1036  *
1037  * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1038  * on the ep that should be released by the caller.
1039  */
1040 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1041 						 struct fc_exch_mgr *mp,
1042 						 struct fc_frame *fp)
1043 {
1044 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1045 	struct fc_exch *ep = NULL;
1046 	struct fc_seq *sp = NULL;
1047 	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1048 	u32 f_ctl;
1049 	u16 xid;
1050 
1051 	f_ctl = ntoh24(fh->fh_f_ctl);
1052 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1053 
1054 	/*
1055 	 * Lookup or create the exchange if we will be creating the sequence.
1056 	 */
1057 	if (f_ctl & FC_FC_EX_CTX) {
1058 		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
1059 		ep = fc_exch_find(mp, xid);
1060 		if (!ep) {
1061 			atomic_inc(&mp->stats.xid_not_found);
1062 			reject = FC_RJT_OX_ID;
1063 			goto out;
1064 		}
1065 		if (ep->rxid == FC_XID_UNKNOWN)
1066 			ep->rxid = ntohs(fh->fh_rx_id);
1067 		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1068 			reject = FC_RJT_OX_ID;
1069 			goto rel;
1070 		}
1071 	} else {
1072 		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
1073 
1074 		/*
1075 		 * Special case for MDS issuing an ELS TEST with a
1076 		 * bad rxid of 0.
1077 		 * XXX take this out once we do the proper reject.
1078 		 */
1079 		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1080 		    fc_frame_payload_op(fp) == ELS_TEST) {
1081 			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1082 			xid = FC_XID_UNKNOWN;
1083 		}
1084 
1085 		/*
1086 		 * new sequence - find the exchange
1087 		 */
1088 		ep = fc_exch_find(mp, xid);
1089 		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1090 			if (ep) {
1091 				atomic_inc(&mp->stats.xid_busy);
1092 				reject = FC_RJT_RX_ID;
1093 				goto rel;
1094 			}
1095 			ep = fc_exch_resp(lport, mp, fp);
1096 			if (!ep) {
1097 				reject = FC_RJT_EXCH_EST;	/* XXX */
1098 				goto out;
1099 			}
1100 			xid = ep->xid;	/* get our XID */
1101 		} else if (!ep) {
1102 			atomic_inc(&mp->stats.xid_not_found);
1103 			reject = FC_RJT_RX_ID;	/* XID not found */
1104 			goto out;
1105 		}
1106 	}
1107 
1108 	spin_lock_bh(&ep->ex_lock);
1109 	/*
1110 	 * At this point, we have the exchange held.
1111 	 * Find or create the sequence.
1112 	 */
1113 	if (fc_sof_is_init(fr_sof(fp))) {
1114 		sp = &ep->seq;
1115 		sp->ssb_stat |= SSB_ST_RESP;
1116 		sp->id = fh->fh_seq_id;
1117 	} else {
1118 		sp = &ep->seq;
1119 		if (sp->id != fh->fh_seq_id) {
1120 			atomic_inc(&mp->stats.seq_not_found);
1121 			if (f_ctl & FC_FC_END_SEQ) {
1122 				/*
1123 				 * Update sequence_id based on incoming last
1124 				 * frame of sequence exchange. This is needed
1125 				 * for FC target where DDP has been used
1126 				 * on target where, stack is indicated only
1127 				 * about last frame's (payload _header) header.
1128 				 * Whereas "seq_id" which is part of
1129 				 * frame_header is allocated by initiator
1130 				 * which is totally different from "seq_id"
1131 				 * allocated when XFER_RDY was sent by target.
1132 				 * To avoid false -ve which results into not
1133 				 * sending RSP, hence write request on other
1134 				 * end never finishes.
1135 				 */
1136 				sp->ssb_stat |= SSB_ST_RESP;
1137 				sp->id = fh->fh_seq_id;
1138 			} else {
1139 				spin_unlock_bh(&ep->ex_lock);
1140 
1141 				/* sequence/exch should exist */
1142 				reject = FC_RJT_SEQ_ID;
1143 				goto rel;
1144 			}
1145 		}
1146 	}
1147 	WARN_ON(ep != fc_seq_exch(sp));
1148 
1149 	if (f_ctl & FC_FC_SEQ_INIT)
1150 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1151 	spin_unlock_bh(&ep->ex_lock);
1152 
1153 	fr_seq(fp) = sp;
1154 out:
1155 	return reject;
1156 rel:
1157 	fc_exch_done(&ep->seq);
1158 	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1159 	return reject;
1160 }
1161 
1162 /**
1163  * fc_seq_lookup_orig() - Find a sequence where this end
1164  *			  originated the sequence
1165  * @mp:	   The Exchange Manager to lookup the exchange from
1166  * @fp:	   The frame associated with the sequence we're looking for
1167  *
1168  * Does not hold the sequence for the caller.
1169  */
1170 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1171 					 struct fc_frame *fp)
1172 {
1173 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1174 	struct fc_exch *ep;
1175 	struct fc_seq *sp = NULL;
1176 	u32 f_ctl;
1177 	u16 xid;
1178 
1179 	f_ctl = ntoh24(fh->fh_f_ctl);
1180 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1181 	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1182 	ep = fc_exch_find(mp, xid);
1183 	if (!ep)
1184 		return NULL;
1185 	if (ep->seq.id == fh->fh_seq_id) {
1186 		/*
1187 		 * Save the RX_ID if we didn't previously know it.
1188 		 */
1189 		sp = &ep->seq;
1190 		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1191 		    ep->rxid == FC_XID_UNKNOWN) {
1192 			ep->rxid = ntohs(fh->fh_rx_id);
1193 		}
1194 	}
1195 	fc_exch_release(ep);
1196 	return sp;
1197 }
1198 
1199 /**
1200  * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1201  * @ep:	     The exchange to set the addresses for
1202  * @orig_id: The originator's ID
1203  * @resp_id: The responder's ID
1204  *
1205  * Note this must be done before the first sequence of the exchange is sent.
1206  */
1207 static void fc_exch_set_addr(struct fc_exch *ep,
1208 			     u32 orig_id, u32 resp_id)
1209 {
1210 	ep->oid = orig_id;
1211 	if (ep->esb_stat & ESB_ST_RESP) {
1212 		ep->sid = resp_id;
1213 		ep->did = orig_id;
1214 	} else {
1215 		ep->sid = orig_id;
1216 		ep->did = resp_id;
1217 	}
1218 }
1219 
1220 /**
1221  * fc_seq_els_rsp_send() - Send an ELS response using information from
1222  *			   the existing sequence/exchange.
1223  * @fp:	      The received frame
1224  * @els_cmd:  The ELS command to be sent
1225  * @els_data: The ELS data to be sent
1226  *
1227  * The received frame is not freed.
1228  */
1229 void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1230 			 struct fc_seq_els_data *els_data)
1231 {
1232 	switch (els_cmd) {
1233 	case ELS_LS_RJT:
1234 		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1235 		break;
1236 	case ELS_LS_ACC:
1237 		fc_seq_ls_acc(fp);
1238 		break;
1239 	case ELS_RRQ:
1240 		fc_exch_els_rrq(fp);
1241 		break;
1242 	case ELS_REC:
1243 		fc_exch_els_rec(fp);
1244 		break;
1245 	default:
1246 		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1247 	}
1248 }
1249 EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1250 
1251 /**
1252  * fc_seq_send_last() - Send a sequence that is the last in the exchange
1253  * @sp:	     The sequence that is to be sent
1254  * @fp:	     The frame that will be sent on the sequence
1255  * @rctl:    The R_CTL information to be sent
1256  * @fh_type: The frame header type
1257  */
1258 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1259 			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1260 {
1261 	u32 f_ctl;
1262 	struct fc_exch *ep = fc_seq_exch(sp);
1263 
1264 	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1265 	f_ctl |= ep->f_ctl;
1266 	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1267 	fc_seq_send_locked(ep->lp, sp, fp);
1268 }
1269 
1270 /**
1271  * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1272  * @sp:	   The sequence to send the ACK on
1273  * @rx_fp: The received frame that is being acknoledged
1274  *
1275  * Send ACK_1 (or equiv.) indicating we received something.
1276  */
1277 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1278 {
1279 	struct fc_frame *fp;
1280 	struct fc_frame_header *rx_fh;
1281 	struct fc_frame_header *fh;
1282 	struct fc_exch *ep = fc_seq_exch(sp);
1283 	struct fc_lport *lport = ep->lp;
1284 	unsigned int f_ctl;
1285 
1286 	/*
1287 	 * Don't send ACKs for class 3.
1288 	 */
1289 	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1290 		fp = fc_frame_alloc(lport, 0);
1291 		if (!fp) {
1292 			FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1293 			return;
1294 		}
1295 
1296 		fh = fc_frame_header_get(fp);
1297 		fh->fh_r_ctl = FC_RCTL_ACK_1;
1298 		fh->fh_type = FC_TYPE_BLS;
1299 
1300 		/*
1301 		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1302 		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1303 		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1304 		 * Last ACK uses bits 7-6 (continue sequence),
1305 		 * bits 5-4 are meaningful (what kind of ACK to use).
1306 		 */
1307 		rx_fh = fc_frame_header_get(rx_fp);
1308 		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1309 		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1310 			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1311 			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1312 			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1313 		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1314 		hton24(fh->fh_f_ctl, f_ctl);
1315 
1316 		fc_exch_setup_hdr(ep, fp, f_ctl);
1317 		fh->fh_seq_id = rx_fh->fh_seq_id;
1318 		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1319 		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1320 
1321 		fr_sof(fp) = fr_sof(rx_fp);
1322 		if (f_ctl & FC_FC_END_SEQ)
1323 			fr_eof(fp) = FC_EOF_T;
1324 		else
1325 			fr_eof(fp) = FC_EOF_N;
1326 
1327 		lport->tt.frame_send(lport, fp);
1328 	}
1329 }
1330 
1331 /**
1332  * fc_exch_send_ba_rjt() - Send BLS Reject
1333  * @rx_fp:  The frame being rejected
1334  * @reason: The reason the frame is being rejected
1335  * @explan: The explanation for the rejection
1336  *
1337  * This is for rejecting BA_ABTS only.
1338  */
1339 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1340 				enum fc_ba_rjt_reason reason,
1341 				enum fc_ba_rjt_explan explan)
1342 {
1343 	struct fc_frame *fp;
1344 	struct fc_frame_header *rx_fh;
1345 	struct fc_frame_header *fh;
1346 	struct fc_ba_rjt *rp;
1347 	struct fc_seq *sp;
1348 	struct fc_lport *lport;
1349 	unsigned int f_ctl;
1350 
1351 	lport = fr_dev(rx_fp);
1352 	sp = fr_seq(rx_fp);
1353 	fp = fc_frame_alloc(lport, sizeof(*rp));
1354 	if (!fp) {
1355 		FC_EXCH_DBG(fc_seq_exch(sp),
1356 			     "Drop BA_RJT request, out of memory\n");
1357 		return;
1358 	}
1359 	fh = fc_frame_header_get(fp);
1360 	rx_fh = fc_frame_header_get(rx_fp);
1361 
1362 	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1363 
1364 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1365 	rp->br_reason = reason;
1366 	rp->br_explan = explan;
1367 
1368 	/*
1369 	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1370 	 */
1371 	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1372 	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1373 	fh->fh_ox_id = rx_fh->fh_ox_id;
1374 	fh->fh_rx_id = rx_fh->fh_rx_id;
1375 	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1376 	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1377 	fh->fh_type = FC_TYPE_BLS;
1378 
1379 	/*
1380 	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1381 	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1382 	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1383 	 * Last ACK uses bits 7-6 (continue sequence),
1384 	 * bits 5-4 are meaningful (what kind of ACK to use).
1385 	 * Always set LAST_SEQ, END_SEQ.
1386 	 */
1387 	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1388 	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1389 		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1390 		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1391 	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1392 	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1393 	f_ctl &= ~FC_FC_FIRST_SEQ;
1394 	hton24(fh->fh_f_ctl, f_ctl);
1395 
1396 	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1397 	fr_eof(fp) = FC_EOF_T;
1398 	if (fc_sof_needs_ack(fr_sof(fp)))
1399 		fr_eof(fp) = FC_EOF_N;
1400 
1401 	lport->tt.frame_send(lport, fp);
1402 }
1403 
1404 /**
1405  * fc_exch_recv_abts() - Handle an incoming ABTS
1406  * @ep:	   The exchange the abort was on
1407  * @rx_fp: The ABTS frame
1408  *
1409  * This would be for target mode usually, but could be due to lost
1410  * FCP transfer ready, confirm or RRQ. We always handle this as an
1411  * exchange abort, ignoring the parameter.
1412  */
1413 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1414 {
1415 	struct fc_frame *fp;
1416 	struct fc_ba_acc *ap;
1417 	struct fc_frame_header *fh;
1418 	struct fc_seq *sp;
1419 
1420 	if (!ep)
1421 		goto reject;
1422 
1423 	FC_EXCH_DBG(ep, "exch: ABTS received\n");
1424 	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1425 	if (!fp) {
1426 		FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1427 		goto free;
1428 	}
1429 
1430 	spin_lock_bh(&ep->ex_lock);
1431 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1432 		spin_unlock_bh(&ep->ex_lock);
1433 		FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1434 		fc_frame_free(fp);
1435 		goto reject;
1436 	}
1437 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1438 		ep->esb_stat |= ESB_ST_REC_QUAL;
1439 		fc_exch_hold(ep);		/* hold for REC_QUAL */
1440 	}
1441 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1442 	fh = fc_frame_header_get(fp);
1443 	ap = fc_frame_payload_get(fp, sizeof(*ap));
1444 	memset(ap, 0, sizeof(*ap));
1445 	sp = &ep->seq;
1446 	ap->ba_high_seq_cnt = htons(0xffff);
1447 	if (sp->ssb_stat & SSB_ST_RESP) {
1448 		ap->ba_seq_id = sp->id;
1449 		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1450 		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1451 		ap->ba_low_seq_cnt = htons(sp->cnt);
1452 	}
1453 	sp = fc_seq_start_next_locked(sp);
1454 	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1455 	ep->esb_stat |= ESB_ST_ABNORMAL;
1456 	spin_unlock_bh(&ep->ex_lock);
1457 
1458 free:
1459 	fc_frame_free(rx_fp);
1460 	return;
1461 
1462 reject:
1463 	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1464 	goto free;
1465 }
1466 
1467 /**
1468  * fc_seq_assign() - Assign exchange and sequence for incoming request
1469  * @lport: The local port that received the request
1470  * @fp:    The request frame
1471  *
1472  * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1473  * A reference will be held on the exchange/sequence for the caller, which
1474  * must call fc_seq_release().
1475  */
1476 struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1477 {
1478 	struct fc_exch_mgr_anchor *ema;
1479 
1480 	WARN_ON(lport != fr_dev(fp));
1481 	WARN_ON(fr_seq(fp));
1482 	fr_seq(fp) = NULL;
1483 
1484 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1485 		if ((!ema->match || ema->match(fp)) &&
1486 		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1487 			break;
1488 	return fr_seq(fp);
1489 }
1490 EXPORT_SYMBOL(fc_seq_assign);
1491 
1492 /**
1493  * fc_seq_release() - Release the hold
1494  * @sp:    The sequence.
1495  */
1496 void fc_seq_release(struct fc_seq *sp)
1497 {
1498 	fc_exch_release(fc_seq_exch(sp));
1499 }
1500 EXPORT_SYMBOL(fc_seq_release);
1501 
1502 /**
1503  * fc_exch_recv_req() - Handler for an incoming request
1504  * @lport: The local port that received the request
1505  * @mp:	   The EM that the exchange is on
1506  * @fp:	   The request frame
1507  *
1508  * This is used when the other end is originating the exchange
1509  * and the sequence.
1510  */
1511 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1512 			     struct fc_frame *fp)
1513 {
1514 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1515 	struct fc_seq *sp = NULL;
1516 	struct fc_exch *ep = NULL;
1517 	enum fc_pf_rjt_reason reject;
1518 
1519 	/* We can have the wrong fc_lport at this point with NPIV, which is a
1520 	 * problem now that we know a new exchange needs to be allocated
1521 	 */
1522 	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1523 	if (!lport) {
1524 		fc_frame_free(fp);
1525 		return;
1526 	}
1527 	fr_dev(fp) = lport;
1528 
1529 	BUG_ON(fr_seq(fp));		/* XXX remove later */
1530 
1531 	/*
1532 	 * If the RX_ID is 0xffff, don't allocate an exchange.
1533 	 * The upper-level protocol may request one later, if needed.
1534 	 */
1535 	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1536 		return fc_lport_recv(lport, fp);
1537 
1538 	reject = fc_seq_lookup_recip(lport, mp, fp);
1539 	if (reject == FC_RJT_NONE) {
1540 		sp = fr_seq(fp);	/* sequence will be held */
1541 		ep = fc_seq_exch(sp);
1542 		fc_seq_send_ack(sp, fp);
1543 		ep->encaps = fr_encaps(fp);
1544 
1545 		/*
1546 		 * Call the receive function.
1547 		 *
1548 		 * The receive function may allocate a new sequence
1549 		 * over the old one, so we shouldn't change the
1550 		 * sequence after this.
1551 		 *
1552 		 * The frame will be freed by the receive function.
1553 		 * If new exch resp handler is valid then call that
1554 		 * first.
1555 		 */
1556 		if (!fc_invoke_resp(ep, sp, fp))
1557 			fc_lport_recv(lport, fp);
1558 		fc_exch_release(ep);	/* release from lookup */
1559 	} else {
1560 		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1561 			     reject);
1562 		fc_frame_free(fp);
1563 	}
1564 }
1565 
1566 /**
1567  * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1568  *			     end is the originator of the sequence that is a
1569  *			     response to our initial exchange
1570  * @mp: The EM that the exchange is on
1571  * @fp: The response frame
1572  */
1573 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1574 {
1575 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1576 	struct fc_seq *sp;
1577 	struct fc_exch *ep;
1578 	enum fc_sof sof;
1579 	u32 f_ctl;
1580 	int rc;
1581 
1582 	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1583 	if (!ep) {
1584 		atomic_inc(&mp->stats.xid_not_found);
1585 		goto out;
1586 	}
1587 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1588 		atomic_inc(&mp->stats.xid_not_found);
1589 		goto rel;
1590 	}
1591 	if (ep->rxid == FC_XID_UNKNOWN)
1592 		ep->rxid = ntohs(fh->fh_rx_id);
1593 	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1594 		atomic_inc(&mp->stats.xid_not_found);
1595 		goto rel;
1596 	}
1597 	if (ep->did != ntoh24(fh->fh_s_id) &&
1598 	    ep->did != FC_FID_FLOGI) {
1599 		atomic_inc(&mp->stats.xid_not_found);
1600 		goto rel;
1601 	}
1602 	sof = fr_sof(fp);
1603 	sp = &ep->seq;
1604 	if (fc_sof_is_init(sof)) {
1605 		sp->ssb_stat |= SSB_ST_RESP;
1606 		sp->id = fh->fh_seq_id;
1607 	}
1608 
1609 	f_ctl = ntoh24(fh->fh_f_ctl);
1610 	fr_seq(fp) = sp;
1611 
1612 	spin_lock_bh(&ep->ex_lock);
1613 	if (f_ctl & FC_FC_SEQ_INIT)
1614 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1615 	spin_unlock_bh(&ep->ex_lock);
1616 
1617 	if (fc_sof_needs_ack(sof))
1618 		fc_seq_send_ack(sp, fp);
1619 
1620 	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1621 	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1622 	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1623 		spin_lock_bh(&ep->ex_lock);
1624 		rc = fc_exch_done_locked(ep);
1625 		WARN_ON(fc_seq_exch(sp) != ep);
1626 		spin_unlock_bh(&ep->ex_lock);
1627 		if (!rc)
1628 			fc_exch_delete(ep);
1629 	}
1630 
1631 	/*
1632 	 * Call the receive function.
1633 	 * The sequence is held (has a refcnt) for us,
1634 	 * but not for the receive function.
1635 	 *
1636 	 * The receive function may allocate a new sequence
1637 	 * over the old one, so we shouldn't change the
1638 	 * sequence after this.
1639 	 *
1640 	 * The frame will be freed by the receive function.
1641 	 * If new exch resp handler is valid then call that
1642 	 * first.
1643 	 */
1644 	if (!fc_invoke_resp(ep, sp, fp))
1645 		fc_frame_free(fp);
1646 
1647 	fc_exch_release(ep);
1648 	return;
1649 rel:
1650 	fc_exch_release(ep);
1651 out:
1652 	fc_frame_free(fp);
1653 }
1654 
1655 /**
1656  * fc_exch_recv_resp() - Handler for a sequence where other end is
1657  *			 responding to our sequence
1658  * @mp: The EM that the exchange is on
1659  * @fp: The response frame
1660  */
1661 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1662 {
1663 	struct fc_seq *sp;
1664 
1665 	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1666 
1667 	if (!sp)
1668 		atomic_inc(&mp->stats.xid_not_found);
1669 	else
1670 		atomic_inc(&mp->stats.non_bls_resp);
1671 
1672 	fc_frame_free(fp);
1673 }
1674 
1675 /**
1676  * fc_exch_abts_resp() - Handler for a response to an ABT
1677  * @ep: The exchange that the frame is on
1678  * @fp: The response frame
1679  *
1680  * This response would be to an ABTS cancelling an exchange or sequence.
1681  * The response can be either BA_ACC or BA_RJT
1682  */
1683 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1684 {
1685 	struct fc_frame_header *fh;
1686 	struct fc_ba_acc *ap;
1687 	struct fc_seq *sp;
1688 	u16 low;
1689 	u16 high;
1690 	int rc = 1, has_rec = 0;
1691 
1692 	fh = fc_frame_header_get(fp);
1693 	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1694 		    fc_exch_rctl_name(fh->fh_r_ctl));
1695 
1696 	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1697 		FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1698 		fc_exch_release(ep);	/* release from pending timer hold */
1699 	}
1700 
1701 	spin_lock_bh(&ep->ex_lock);
1702 	switch (fh->fh_r_ctl) {
1703 	case FC_RCTL_BA_ACC:
1704 		ap = fc_frame_payload_get(fp, sizeof(*ap));
1705 		if (!ap)
1706 			break;
1707 
1708 		/*
1709 		 * Decide whether to establish a Recovery Qualifier.
1710 		 * We do this if there is a non-empty SEQ_CNT range and
1711 		 * SEQ_ID is the same as the one we aborted.
1712 		 */
1713 		low = ntohs(ap->ba_low_seq_cnt);
1714 		high = ntohs(ap->ba_high_seq_cnt);
1715 		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1716 		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1717 		     ap->ba_seq_id == ep->seq_id) && low != high) {
1718 			ep->esb_stat |= ESB_ST_REC_QUAL;
1719 			fc_exch_hold(ep);  /* hold for recovery qualifier */
1720 			has_rec = 1;
1721 		}
1722 		break;
1723 	case FC_RCTL_BA_RJT:
1724 		break;
1725 	default:
1726 		break;
1727 	}
1728 
1729 	/* do we need to do some other checks here. Can we reuse more of
1730 	 * fc_exch_recv_seq_resp
1731 	 */
1732 	sp = &ep->seq;
1733 	/*
1734 	 * do we want to check END_SEQ as well as LAST_SEQ here?
1735 	 */
1736 	if (ep->fh_type != FC_TYPE_FCP &&
1737 	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1738 		rc = fc_exch_done_locked(ep);
1739 	spin_unlock_bh(&ep->ex_lock);
1740 
1741 	fc_exch_hold(ep);
1742 	if (!rc)
1743 		fc_exch_delete(ep);
1744 	if (!fc_invoke_resp(ep, sp, fp))
1745 		fc_frame_free(fp);
1746 	if (has_rec)
1747 		fc_exch_timer_set(ep, ep->r_a_tov);
1748 	fc_exch_release(ep);
1749 }
1750 
1751 /**
1752  * fc_exch_recv_bls() - Handler for a BLS sequence
1753  * @mp: The EM that the exchange is on
1754  * @fp: The request frame
1755  *
1756  * The BLS frame is always a sequence initiated by the remote side.
1757  * We may be either the originator or recipient of the exchange.
1758  */
1759 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1760 {
1761 	struct fc_frame_header *fh;
1762 	struct fc_exch *ep;
1763 	u32 f_ctl;
1764 
1765 	fh = fc_frame_header_get(fp);
1766 	f_ctl = ntoh24(fh->fh_f_ctl);
1767 	fr_seq(fp) = NULL;
1768 
1769 	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1770 			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1771 	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1772 		spin_lock_bh(&ep->ex_lock);
1773 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1774 		spin_unlock_bh(&ep->ex_lock);
1775 	}
1776 	if (f_ctl & FC_FC_SEQ_CTX) {
1777 		/*
1778 		 * A response to a sequence we initiated.
1779 		 * This should only be ACKs for class 2 or F.
1780 		 */
1781 		switch (fh->fh_r_ctl) {
1782 		case FC_RCTL_ACK_1:
1783 		case FC_RCTL_ACK_0:
1784 			break;
1785 		default:
1786 			if (ep)
1787 				FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1788 					    fh->fh_r_ctl,
1789 					    fc_exch_rctl_name(fh->fh_r_ctl));
1790 			break;
1791 		}
1792 		fc_frame_free(fp);
1793 	} else {
1794 		switch (fh->fh_r_ctl) {
1795 		case FC_RCTL_BA_RJT:
1796 		case FC_RCTL_BA_ACC:
1797 			if (ep)
1798 				fc_exch_abts_resp(ep, fp);
1799 			else
1800 				fc_frame_free(fp);
1801 			break;
1802 		case FC_RCTL_BA_ABTS:
1803 			if (ep)
1804 				fc_exch_recv_abts(ep, fp);
1805 			else
1806 				fc_frame_free(fp);
1807 			break;
1808 		default:			/* ignore junk */
1809 			fc_frame_free(fp);
1810 			break;
1811 		}
1812 	}
1813 	if (ep)
1814 		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1815 }
1816 
1817 /**
1818  * fc_seq_ls_acc() - Accept sequence with LS_ACC
1819  * @rx_fp: The received frame, not freed here.
1820  *
1821  * If this fails due to allocation or transmit congestion, assume the
1822  * originator will repeat the sequence.
1823  */
1824 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1825 {
1826 	struct fc_lport *lport;
1827 	struct fc_els_ls_acc *acc;
1828 	struct fc_frame *fp;
1829 	struct fc_seq *sp;
1830 
1831 	lport = fr_dev(rx_fp);
1832 	sp = fr_seq(rx_fp);
1833 	fp = fc_frame_alloc(lport, sizeof(*acc));
1834 	if (!fp) {
1835 		FC_EXCH_DBG(fc_seq_exch(sp),
1836 			    "exch: drop LS_ACC, out of memory\n");
1837 		return;
1838 	}
1839 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1840 	memset(acc, 0, sizeof(*acc));
1841 	acc->la_cmd = ELS_LS_ACC;
1842 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1843 	lport->tt.frame_send(lport, fp);
1844 }
1845 
1846 /**
1847  * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1848  * @rx_fp: The received frame, not freed here.
1849  * @reason: The reason the sequence is being rejected
1850  * @explan: The explanation for the rejection
1851  *
1852  * If this fails due to allocation or transmit congestion, assume the
1853  * originator will repeat the sequence.
1854  */
1855 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1856 			  enum fc_els_rjt_explan explan)
1857 {
1858 	struct fc_lport *lport;
1859 	struct fc_els_ls_rjt *rjt;
1860 	struct fc_frame *fp;
1861 	struct fc_seq *sp;
1862 
1863 	lport = fr_dev(rx_fp);
1864 	sp = fr_seq(rx_fp);
1865 	fp = fc_frame_alloc(lport, sizeof(*rjt));
1866 	if (!fp) {
1867 		FC_EXCH_DBG(fc_seq_exch(sp),
1868 			    "exch: drop LS_ACC, out of memory\n");
1869 		return;
1870 	}
1871 	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1872 	memset(rjt, 0, sizeof(*rjt));
1873 	rjt->er_cmd = ELS_LS_RJT;
1874 	rjt->er_reason = reason;
1875 	rjt->er_explan = explan;
1876 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1877 	lport->tt.frame_send(lport, fp);
1878 }
1879 
1880 /**
1881  * fc_exch_reset() - Reset an exchange
1882  * @ep: The exchange to be reset
1883  *
1884  * Note: May sleep if invoked from outside a response handler.
1885  */
1886 static void fc_exch_reset(struct fc_exch *ep)
1887 {
1888 	struct fc_seq *sp;
1889 	int rc = 1;
1890 
1891 	spin_lock_bh(&ep->ex_lock);
1892 	ep->state |= FC_EX_RST_CLEANUP;
1893 	fc_exch_timer_cancel(ep);
1894 	if (ep->esb_stat & ESB_ST_REC_QUAL)
1895 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1896 	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1897 	sp = &ep->seq;
1898 	rc = fc_exch_done_locked(ep);
1899 	spin_unlock_bh(&ep->ex_lock);
1900 
1901 	fc_exch_hold(ep);
1902 
1903 	if (!rc)
1904 		fc_exch_delete(ep);
1905 
1906 	fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1907 	fc_seq_set_resp(sp, NULL, ep->arg);
1908 	fc_exch_release(ep);
1909 }
1910 
1911 /**
1912  * fc_exch_pool_reset() - Reset a per cpu exchange pool
1913  * @lport: The local port that the exchange pool is on
1914  * @pool:  The exchange pool to be reset
1915  * @sid:   The source ID
1916  * @did:   The destination ID
1917  *
1918  * Resets a per cpu exches pool, releasing all of its sequences
1919  * and exchanges. If sid is non-zero then reset only exchanges
1920  * we sourced from the local port's FID. If did is non-zero then
1921  * only reset exchanges destined for the local port's FID.
1922  */
1923 static void fc_exch_pool_reset(struct fc_lport *lport,
1924 			       struct fc_exch_pool *pool,
1925 			       u32 sid, u32 did)
1926 {
1927 	struct fc_exch *ep;
1928 	struct fc_exch *next;
1929 
1930 	spin_lock_bh(&pool->lock);
1931 restart:
1932 	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1933 		if ((lport == ep->lp) &&
1934 		    (sid == 0 || sid == ep->sid) &&
1935 		    (did == 0 || did == ep->did)) {
1936 			fc_exch_hold(ep);
1937 			spin_unlock_bh(&pool->lock);
1938 
1939 			fc_exch_reset(ep);
1940 
1941 			fc_exch_release(ep);
1942 			spin_lock_bh(&pool->lock);
1943 
1944 			/*
1945 			 * must restart loop incase while lock
1946 			 * was down multiple eps were released.
1947 			 */
1948 			goto restart;
1949 		}
1950 	}
1951 	pool->next_index = 0;
1952 	pool->left = FC_XID_UNKNOWN;
1953 	pool->right = FC_XID_UNKNOWN;
1954 	spin_unlock_bh(&pool->lock);
1955 }
1956 
1957 /**
1958  * fc_exch_mgr_reset() - Reset all EMs of a local port
1959  * @lport: The local port whose EMs are to be reset
1960  * @sid:   The source ID
1961  * @did:   The destination ID
1962  *
1963  * Reset all EMs associated with a given local port. Release all
1964  * sequences and exchanges. If sid is non-zero then reset only the
1965  * exchanges sent from the local port's FID. If did is non-zero then
1966  * reset only exchanges destined for the local port's FID.
1967  */
1968 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1969 {
1970 	struct fc_exch_mgr_anchor *ema;
1971 	unsigned int cpu;
1972 
1973 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1974 		for_each_possible_cpu(cpu)
1975 			fc_exch_pool_reset(lport,
1976 					   per_cpu_ptr(ema->mp->pool, cpu),
1977 					   sid, did);
1978 	}
1979 }
1980 EXPORT_SYMBOL(fc_exch_mgr_reset);
1981 
1982 /**
1983  * fc_exch_lookup() - find an exchange
1984  * @lport: The local port
1985  * @xid: The exchange ID
1986  *
1987  * Returns exchange pointer with hold for caller, or NULL if not found.
1988  */
1989 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1990 {
1991 	struct fc_exch_mgr_anchor *ema;
1992 
1993 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1994 		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1995 			return fc_exch_find(ema->mp, xid);
1996 	return NULL;
1997 }
1998 
1999 /**
2000  * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
2001  * @rfp: The REC frame, not freed here.
2002  *
2003  * Note that the requesting port may be different than the S_ID in the request.
2004  */
2005 static void fc_exch_els_rec(struct fc_frame *rfp)
2006 {
2007 	struct fc_lport *lport;
2008 	struct fc_frame *fp;
2009 	struct fc_exch *ep;
2010 	struct fc_els_rec *rp;
2011 	struct fc_els_rec_acc *acc;
2012 	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2013 	enum fc_els_rjt_explan explan;
2014 	u32 sid;
2015 	u16 xid, rxid, oxid;
2016 
2017 	lport = fr_dev(rfp);
2018 	rp = fc_frame_payload_get(rfp, sizeof(*rp));
2019 	explan = ELS_EXPL_INV_LEN;
2020 	if (!rp)
2021 		goto reject;
2022 	sid = ntoh24(rp->rec_s_id);
2023 	rxid = ntohs(rp->rec_rx_id);
2024 	oxid = ntohs(rp->rec_ox_id);
2025 
2026 	explan = ELS_EXPL_OXID_RXID;
2027 	if (sid == fc_host_port_id(lport->host))
2028 		xid = oxid;
2029 	else
2030 		xid = rxid;
2031 	if (xid == FC_XID_UNKNOWN) {
2032 		FC_LPORT_DBG(lport,
2033 			     "REC request from %x: invalid rxid %x oxid %x\n",
2034 			     sid, rxid, oxid);
2035 		goto reject;
2036 	}
2037 	ep = fc_exch_lookup(lport, xid);
2038 	if (!ep) {
2039 		FC_LPORT_DBG(lport,
2040 			     "REC request from %x: rxid %x oxid %x not found\n",
2041 			     sid, rxid, oxid);
2042 		goto reject;
2043 	}
2044 	FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2045 		    sid, rxid, oxid);
2046 	if (ep->oid != sid || oxid != ep->oxid)
2047 		goto rel;
2048 	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2049 		goto rel;
2050 	fp = fc_frame_alloc(lport, sizeof(*acc));
2051 	if (!fp) {
2052 		FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2053 		goto out;
2054 	}
2055 
2056 	acc = fc_frame_payload_get(fp, sizeof(*acc));
2057 	memset(acc, 0, sizeof(*acc));
2058 	acc->reca_cmd = ELS_LS_ACC;
2059 	acc->reca_ox_id = rp->rec_ox_id;
2060 	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2061 	acc->reca_rx_id = htons(ep->rxid);
2062 	if (ep->sid == ep->oid)
2063 		hton24(acc->reca_rfid, ep->did);
2064 	else
2065 		hton24(acc->reca_rfid, ep->sid);
2066 	acc->reca_fc4value = htonl(ep->seq.rec_data);
2067 	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2068 						 ESB_ST_SEQ_INIT |
2069 						 ESB_ST_COMPLETE));
2070 	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2071 	lport->tt.frame_send(lport, fp);
2072 out:
2073 	fc_exch_release(ep);
2074 	return;
2075 
2076 rel:
2077 	fc_exch_release(ep);
2078 reject:
2079 	fc_seq_ls_rjt(rfp, reason, explan);
2080 }
2081 
2082 /**
2083  * fc_exch_rrq_resp() - Handler for RRQ responses
2084  * @sp:	 The sequence that the RRQ is on
2085  * @fp:	 The RRQ frame
2086  * @arg: The exchange that the RRQ is on
2087  *
2088  * TODO: fix error handler.
2089  */
2090 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2091 {
2092 	struct fc_exch *aborted_ep = arg;
2093 	unsigned int op;
2094 
2095 	if (IS_ERR(fp)) {
2096 		int err = PTR_ERR(fp);
2097 
2098 		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2099 			goto cleanup;
2100 		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2101 			    "frame error %d\n", err);
2102 		return;
2103 	}
2104 
2105 	op = fc_frame_payload_op(fp);
2106 	fc_frame_free(fp);
2107 
2108 	switch (op) {
2109 	case ELS_LS_RJT:
2110 		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2111 		/* fall through */
2112 	case ELS_LS_ACC:
2113 		goto cleanup;
2114 	default:
2115 		FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2116 			    op);
2117 		return;
2118 	}
2119 
2120 cleanup:
2121 	fc_exch_done(&aborted_ep->seq);
2122 	/* drop hold for rec qual */
2123 	fc_exch_release(aborted_ep);
2124 }
2125 
2126 
2127 /**
2128  * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2129  * @lport:	The local port to send the frame on
2130  * @fp:		The frame to be sent
2131  * @resp:	The response handler for this request
2132  * @destructor: The destructor for the exchange
2133  * @arg:	The argument to be passed to the response handler
2134  * @timer_msec: The timeout period for the exchange
2135  *
2136  * The exchange response handler is set in this routine to resp()
2137  * function pointer. It can be called in two scenarios: if a timeout
2138  * occurs or if a response frame is received for the exchange. The
2139  * fc_frame pointer in response handler will also indicate timeout
2140  * as error using IS_ERR related macros.
2141  *
2142  * The exchange destructor handler is also set in this routine.
2143  * The destructor handler is invoked by EM layer when exchange
2144  * is about to free, this can be used by caller to free its
2145  * resources along with exchange free.
2146  *
2147  * The arg is passed back to resp and destructor handler.
2148  *
2149  * The timeout value (in msec) for an exchange is set if non zero
2150  * timer_msec argument is specified. The timer is canceled when
2151  * it fires or when the exchange is done. The exchange timeout handler
2152  * is registered by EM layer.
2153  *
2154  * The frame pointer with some of the header's fields must be
2155  * filled before calling this routine, those fields are:
2156  *
2157  * - routing control
2158  * - FC port did
2159  * - FC port sid
2160  * - FC header type
2161  * - frame control
2162  * - parameter or relative offset
2163  */
2164 struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2165 				struct fc_frame *fp,
2166 				void (*resp)(struct fc_seq *,
2167 					     struct fc_frame *fp,
2168 					     void *arg),
2169 				void (*destructor)(struct fc_seq *, void *),
2170 				void *arg, u32 timer_msec)
2171 {
2172 	struct fc_exch *ep;
2173 	struct fc_seq *sp = NULL;
2174 	struct fc_frame_header *fh;
2175 	struct fc_fcp_pkt *fsp = NULL;
2176 	int rc = 1;
2177 
2178 	ep = fc_exch_alloc(lport, fp);
2179 	if (!ep) {
2180 		fc_frame_free(fp);
2181 		return NULL;
2182 	}
2183 	ep->esb_stat |= ESB_ST_SEQ_INIT;
2184 	fh = fc_frame_header_get(fp);
2185 	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2186 	ep->resp = resp;
2187 	ep->destructor = destructor;
2188 	ep->arg = arg;
2189 	ep->r_a_tov = lport->r_a_tov;
2190 	ep->lp = lport;
2191 	sp = &ep->seq;
2192 
2193 	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2194 	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2195 	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2196 	sp->cnt++;
2197 
2198 	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2199 		fsp = fr_fsp(fp);
2200 		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2201 	}
2202 
2203 	if (unlikely(lport->tt.frame_send(lport, fp)))
2204 		goto err;
2205 
2206 	if (timer_msec)
2207 		fc_exch_timer_set_locked(ep, timer_msec);
2208 	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2209 
2210 	if (ep->f_ctl & FC_FC_SEQ_INIT)
2211 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2212 	spin_unlock_bh(&ep->ex_lock);
2213 	return sp;
2214 err:
2215 	if (fsp)
2216 		fc_fcp_ddp_done(fsp);
2217 	rc = fc_exch_done_locked(ep);
2218 	spin_unlock_bh(&ep->ex_lock);
2219 	if (!rc)
2220 		fc_exch_delete(ep);
2221 	return NULL;
2222 }
2223 EXPORT_SYMBOL(fc_exch_seq_send);
2224 
2225 /**
2226  * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2227  * @ep: The exchange to send the RRQ on
2228  *
2229  * This tells the remote port to stop blocking the use of
2230  * the exchange and the seq_cnt range.
2231  */
2232 static void fc_exch_rrq(struct fc_exch *ep)
2233 {
2234 	struct fc_lport *lport;
2235 	struct fc_els_rrq *rrq;
2236 	struct fc_frame *fp;
2237 	u32 did;
2238 
2239 	lport = ep->lp;
2240 
2241 	fp = fc_frame_alloc(lport, sizeof(*rrq));
2242 	if (!fp)
2243 		goto retry;
2244 
2245 	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2246 	memset(rrq, 0, sizeof(*rrq));
2247 	rrq->rrq_cmd = ELS_RRQ;
2248 	hton24(rrq->rrq_s_id, ep->sid);
2249 	rrq->rrq_ox_id = htons(ep->oxid);
2250 	rrq->rrq_rx_id = htons(ep->rxid);
2251 
2252 	did = ep->did;
2253 	if (ep->esb_stat & ESB_ST_RESP)
2254 		did = ep->sid;
2255 
2256 	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2257 		       lport->port_id, FC_TYPE_ELS,
2258 		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2259 
2260 	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2261 			     lport->e_d_tov))
2262 		return;
2263 
2264 retry:
2265 	FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2266 	spin_lock_bh(&ep->ex_lock);
2267 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2268 		spin_unlock_bh(&ep->ex_lock);
2269 		/* drop hold for rec qual */
2270 		fc_exch_release(ep);
2271 		return;
2272 	}
2273 	ep->esb_stat |= ESB_ST_REC_QUAL;
2274 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2275 	spin_unlock_bh(&ep->ex_lock);
2276 }
2277 
2278 /**
2279  * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2280  * @fp: The RRQ frame, not freed here.
2281  */
2282 static void fc_exch_els_rrq(struct fc_frame *fp)
2283 {
2284 	struct fc_lport *lport;
2285 	struct fc_exch *ep = NULL;	/* request or subject exchange */
2286 	struct fc_els_rrq *rp;
2287 	u32 sid;
2288 	u16 xid;
2289 	enum fc_els_rjt_explan explan;
2290 
2291 	lport = fr_dev(fp);
2292 	rp = fc_frame_payload_get(fp, sizeof(*rp));
2293 	explan = ELS_EXPL_INV_LEN;
2294 	if (!rp)
2295 		goto reject;
2296 
2297 	/*
2298 	 * lookup subject exchange.
2299 	 */
2300 	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2301 	xid = fc_host_port_id(lport->host) == sid ?
2302 			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2303 	ep = fc_exch_lookup(lport, xid);
2304 	explan = ELS_EXPL_OXID_RXID;
2305 	if (!ep)
2306 		goto reject;
2307 	spin_lock_bh(&ep->ex_lock);
2308 	FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2309 		    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2310 	if (ep->oxid != ntohs(rp->rrq_ox_id))
2311 		goto unlock_reject;
2312 	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2313 	    ep->rxid != FC_XID_UNKNOWN)
2314 		goto unlock_reject;
2315 	explan = ELS_EXPL_SID;
2316 	if (ep->sid != sid)
2317 		goto unlock_reject;
2318 
2319 	/*
2320 	 * Clear Recovery Qualifier state, and cancel timer if complete.
2321 	 */
2322 	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2323 		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2324 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2325 	}
2326 	if (ep->esb_stat & ESB_ST_COMPLETE)
2327 		fc_exch_timer_cancel(ep);
2328 
2329 	spin_unlock_bh(&ep->ex_lock);
2330 
2331 	/*
2332 	 * Send LS_ACC.
2333 	 */
2334 	fc_seq_ls_acc(fp);
2335 	goto out;
2336 
2337 unlock_reject:
2338 	spin_unlock_bh(&ep->ex_lock);
2339 reject:
2340 	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2341 out:
2342 	if (ep)
2343 		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2344 }
2345 
2346 /**
2347  * fc_exch_update_stats() - update exches stats to lport
2348  * @lport: The local port to update exchange manager stats
2349  */
2350 void fc_exch_update_stats(struct fc_lport *lport)
2351 {
2352 	struct fc_host_statistics *st;
2353 	struct fc_exch_mgr_anchor *ema;
2354 	struct fc_exch_mgr *mp;
2355 
2356 	st = &lport->host_stats;
2357 
2358 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2359 		mp = ema->mp;
2360 		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2361 		st->fc_no_free_exch_xid +=
2362 				atomic_read(&mp->stats.no_free_exch_xid);
2363 		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2364 		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2365 		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2366 		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2367 	}
2368 }
2369 EXPORT_SYMBOL(fc_exch_update_stats);
2370 
2371 /**
2372  * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2373  * @lport: The local port to add the exchange manager to
2374  * @mp:	   The exchange manager to be added to the local port
2375  * @match: The match routine that indicates when this EM should be used
2376  */
2377 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2378 					   struct fc_exch_mgr *mp,
2379 					   bool (*match)(struct fc_frame *))
2380 {
2381 	struct fc_exch_mgr_anchor *ema;
2382 
2383 	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2384 	if (!ema)
2385 		return ema;
2386 
2387 	ema->mp = mp;
2388 	ema->match = match;
2389 	/* add EM anchor to EM anchors list */
2390 	list_add_tail(&ema->ema_list, &lport->ema_list);
2391 	kref_get(&mp->kref);
2392 	return ema;
2393 }
2394 EXPORT_SYMBOL(fc_exch_mgr_add);
2395 
2396 /**
2397  * fc_exch_mgr_destroy() - Destroy an exchange manager
2398  * @kref: The reference to the EM to be destroyed
2399  */
2400 static void fc_exch_mgr_destroy(struct kref *kref)
2401 {
2402 	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2403 
2404 	mempool_destroy(mp->ep_pool);
2405 	free_percpu(mp->pool);
2406 	kfree(mp);
2407 }
2408 
2409 /**
2410  * fc_exch_mgr_del() - Delete an EM from a local port's list
2411  * @ema: The exchange manager anchor identifying the EM to be deleted
2412  */
2413 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2414 {
2415 	/* remove EM anchor from EM anchors list */
2416 	list_del(&ema->ema_list);
2417 	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2418 	kfree(ema);
2419 }
2420 EXPORT_SYMBOL(fc_exch_mgr_del);
2421 
2422 /**
2423  * fc_exch_mgr_list_clone() - Share all exchange manager objects
2424  * @src: Source lport to clone exchange managers from
2425  * @dst: New lport that takes references to all the exchange managers
2426  */
2427 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2428 {
2429 	struct fc_exch_mgr_anchor *ema, *tmp;
2430 
2431 	list_for_each_entry(ema, &src->ema_list, ema_list) {
2432 		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2433 			goto err;
2434 	}
2435 	return 0;
2436 err:
2437 	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2438 		fc_exch_mgr_del(ema);
2439 	return -ENOMEM;
2440 }
2441 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2442 
2443 /**
2444  * fc_exch_mgr_alloc() - Allocate an exchange manager
2445  * @lport:   The local port that the new EM will be associated with
2446  * @class:   The default FC class for new exchanges
2447  * @min_xid: The minimum XID for exchanges from the new EM
2448  * @max_xid: The maximum XID for exchanges from the new EM
2449  * @match:   The match routine for the new EM
2450  */
2451 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2452 				      enum fc_class class,
2453 				      u16 min_xid, u16 max_xid,
2454 				      bool (*match)(struct fc_frame *))
2455 {
2456 	struct fc_exch_mgr *mp;
2457 	u16 pool_exch_range;
2458 	size_t pool_size;
2459 	unsigned int cpu;
2460 	struct fc_exch_pool *pool;
2461 
2462 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2463 	    (min_xid & fc_cpu_mask) != 0) {
2464 		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2465 			     min_xid, max_xid);
2466 		return NULL;
2467 	}
2468 
2469 	/*
2470 	 * allocate memory for EM
2471 	 */
2472 	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2473 	if (!mp)
2474 		return NULL;
2475 
2476 	mp->class = class;
2477 	mp->lport = lport;
2478 	/* adjust em exch xid range for offload */
2479 	mp->min_xid = min_xid;
2480 
2481        /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2482 	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2483 		sizeof(struct fc_exch *);
2484 	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2485 		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2486 			min_xid - 1;
2487 	} else {
2488 		mp->max_xid = max_xid;
2489 		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2490 			(fc_cpu_mask + 1);
2491 	}
2492 
2493 	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2494 	if (!mp->ep_pool)
2495 		goto free_mp;
2496 
2497 	/*
2498 	 * Setup per cpu exch pool with entire exchange id range equally
2499 	 * divided across all cpus. The exch pointers array memory is
2500 	 * allocated for exch range per pool.
2501 	 */
2502 	mp->pool_max_index = pool_exch_range - 1;
2503 
2504 	/*
2505 	 * Allocate and initialize per cpu exch pool
2506 	 */
2507 	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2508 	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2509 	if (!mp->pool)
2510 		goto free_mempool;
2511 	for_each_possible_cpu(cpu) {
2512 		pool = per_cpu_ptr(mp->pool, cpu);
2513 		pool->next_index = 0;
2514 		pool->left = FC_XID_UNKNOWN;
2515 		pool->right = FC_XID_UNKNOWN;
2516 		spin_lock_init(&pool->lock);
2517 		INIT_LIST_HEAD(&pool->ex_list);
2518 	}
2519 
2520 	kref_init(&mp->kref);
2521 	if (!fc_exch_mgr_add(lport, mp, match)) {
2522 		free_percpu(mp->pool);
2523 		goto free_mempool;
2524 	}
2525 
2526 	/*
2527 	 * Above kref_init() sets mp->kref to 1 and then
2528 	 * call to fc_exch_mgr_add incremented mp->kref again,
2529 	 * so adjust that extra increment.
2530 	 */
2531 	kref_put(&mp->kref, fc_exch_mgr_destroy);
2532 	return mp;
2533 
2534 free_mempool:
2535 	mempool_destroy(mp->ep_pool);
2536 free_mp:
2537 	kfree(mp);
2538 	return NULL;
2539 }
2540 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2541 
2542 /**
2543  * fc_exch_mgr_free() - Free all exchange managers on a local port
2544  * @lport: The local port whose EMs are to be freed
2545  */
2546 void fc_exch_mgr_free(struct fc_lport *lport)
2547 {
2548 	struct fc_exch_mgr_anchor *ema, *next;
2549 
2550 	flush_workqueue(fc_exch_workqueue);
2551 	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2552 		fc_exch_mgr_del(ema);
2553 }
2554 EXPORT_SYMBOL(fc_exch_mgr_free);
2555 
2556 /**
2557  * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2558  * upon 'xid'.
2559  * @f_ctl: f_ctl
2560  * @lport: The local port the frame was received on
2561  * @fh: The received frame header
2562  */
2563 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2564 					      struct fc_lport *lport,
2565 					      struct fc_frame_header *fh)
2566 {
2567 	struct fc_exch_mgr_anchor *ema;
2568 	u16 xid;
2569 
2570 	if (f_ctl & FC_FC_EX_CTX)
2571 		xid = ntohs(fh->fh_ox_id);
2572 	else {
2573 		xid = ntohs(fh->fh_rx_id);
2574 		if (xid == FC_XID_UNKNOWN)
2575 			return list_entry(lport->ema_list.prev,
2576 					  typeof(*ema), ema_list);
2577 	}
2578 
2579 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2580 		if ((xid >= ema->mp->min_xid) &&
2581 		    (xid <= ema->mp->max_xid))
2582 			return ema;
2583 	}
2584 	return NULL;
2585 }
2586 /**
2587  * fc_exch_recv() - Handler for received frames
2588  * @lport: The local port the frame was received on
2589  * @fp:	The received frame
2590  */
2591 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2592 {
2593 	struct fc_frame_header *fh = fc_frame_header_get(fp);
2594 	struct fc_exch_mgr_anchor *ema;
2595 	u32 f_ctl;
2596 
2597 	/* lport lock ? */
2598 	if (!lport || lport->state == LPORT_ST_DISABLED) {
2599 		FC_LIBFC_DBG("Receiving frames for an lport that "
2600 			     "has not been initialized correctly\n");
2601 		fc_frame_free(fp);
2602 		return;
2603 	}
2604 
2605 	f_ctl = ntoh24(fh->fh_f_ctl);
2606 	ema = fc_find_ema(f_ctl, lport, fh);
2607 	if (!ema) {
2608 		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2609 				    "fc_ctl <0x%x>, xid <0x%x>\n",
2610 				     f_ctl,
2611 				     (f_ctl & FC_FC_EX_CTX) ?
2612 				     ntohs(fh->fh_ox_id) :
2613 				     ntohs(fh->fh_rx_id));
2614 		fc_frame_free(fp);
2615 		return;
2616 	}
2617 
2618 	/*
2619 	 * If frame is marked invalid, just drop it.
2620 	 */
2621 	switch (fr_eof(fp)) {
2622 	case FC_EOF_T:
2623 		if (f_ctl & FC_FC_END_SEQ)
2624 			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2625 		/* fall through */
2626 	case FC_EOF_N:
2627 		if (fh->fh_type == FC_TYPE_BLS)
2628 			fc_exch_recv_bls(ema->mp, fp);
2629 		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2630 			 FC_FC_EX_CTX)
2631 			fc_exch_recv_seq_resp(ema->mp, fp);
2632 		else if (f_ctl & FC_FC_SEQ_CTX)
2633 			fc_exch_recv_resp(ema->mp, fp);
2634 		else	/* no EX_CTX and no SEQ_CTX */
2635 			fc_exch_recv_req(lport, ema->mp, fp);
2636 		break;
2637 	default:
2638 		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2639 			     fr_eof(fp));
2640 		fc_frame_free(fp);
2641 	}
2642 }
2643 EXPORT_SYMBOL(fc_exch_recv);
2644 
2645 /**
2646  * fc_exch_init() - Initialize the exchange layer for a local port
2647  * @lport: The local port to initialize the exchange layer for
2648  */
2649 int fc_exch_init(struct fc_lport *lport)
2650 {
2651 	if (!lport->tt.exch_mgr_reset)
2652 		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2653 
2654 	return 0;
2655 }
2656 EXPORT_SYMBOL(fc_exch_init);
2657 
2658 /**
2659  * fc_setup_exch_mgr() - Setup an exchange manager
2660  */
2661 int fc_setup_exch_mgr(void)
2662 {
2663 	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2664 					 0, SLAB_HWCACHE_ALIGN, NULL);
2665 	if (!fc_em_cachep)
2666 		return -ENOMEM;
2667 
2668 	/*
2669 	 * Initialize fc_cpu_mask and fc_cpu_order. The
2670 	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2671 	 * to order of 2's * power and order is stored
2672 	 * in fc_cpu_order as this is later required in
2673 	 * mapping between an exch id and exch array index
2674 	 * in per cpu exch pool.
2675 	 *
2676 	 * This round up is required to align fc_cpu_mask
2677 	 * to exchange id's lower bits such that all incoming
2678 	 * frames of an exchange gets delivered to the same
2679 	 * cpu on which exchange originated by simple bitwise
2680 	 * AND operation between fc_cpu_mask and exchange id.
2681 	 */
2682 	fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2683 	fc_cpu_mask = (1 << fc_cpu_order) - 1;
2684 
2685 	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2686 	if (!fc_exch_workqueue)
2687 		goto err;
2688 	return 0;
2689 err:
2690 	kmem_cache_destroy(fc_em_cachep);
2691 	return -ENOMEM;
2692 }
2693 
2694 /**
2695  * fc_destroy_exch_mgr() - Destroy an exchange manager
2696  */
2697 void fc_destroy_exch_mgr(void)
2698 {
2699 	destroy_workqueue(fc_exch_workqueue);
2700 	kmem_cache_destroy(fc_em_cachep);
2701 }
2702