1 /* 2 * Copyright(c) 2007 Intel Corporation. All rights reserved. 3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved. 4 * Copyright(c) 2008 Mike Christie 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Maintained at www.Open-FCoE.org 20 */ 21 22 /* 23 * Fibre Channel exchange and sequence handling. 24 */ 25 26 #include <linux/timer.h> 27 #include <linux/slab.h> 28 #include <linux/err.h> 29 30 #include <scsi/fc/fc_fc2.h> 31 32 #include <scsi/libfc.h> 33 #include <scsi/fc_encode.h> 34 35 #include "fc_libfc.h" 36 37 u16 fc_cpu_mask; /* cpu mask for possible cpus */ 38 EXPORT_SYMBOL(fc_cpu_mask); 39 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */ 40 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */ 41 struct workqueue_struct *fc_exch_workqueue; 42 43 /* 44 * Structure and function definitions for managing Fibre Channel Exchanges 45 * and Sequences. 46 * 47 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq. 48 * 49 * fc_exch_mgr holds the exchange state for an N port 50 * 51 * fc_exch holds state for one exchange and links to its active sequence. 52 * 53 * fc_seq holds the state for an individual sequence. 54 */ 55 56 /** 57 * struct fc_exch_pool - Per cpu exchange pool 58 * @next_index: Next possible free exchange index 59 * @total_exches: Total allocated exchanges 60 * @lock: Exch pool lock 61 * @ex_list: List of exchanges 62 * 63 * This structure manages per cpu exchanges in array of exchange pointers. 64 * This array is allocated followed by struct fc_exch_pool memory for 65 * assigned range of exchanges to per cpu pool. 66 */ 67 struct fc_exch_pool { 68 u16 next_index; 69 u16 total_exches; 70 spinlock_t lock; 71 struct list_head ex_list; 72 }; 73 74 /** 75 * struct fc_exch_mgr - The Exchange Manager (EM). 76 * @class: Default class for new sequences 77 * @kref: Reference counter 78 * @min_xid: Minimum exchange ID 79 * @max_xid: Maximum exchange ID 80 * @ep_pool: Reserved exchange pointers 81 * @pool_max_index: Max exch array index in exch pool 82 * @pool: Per cpu exch pool 83 * @stats: Statistics structure 84 * 85 * This structure is the center for creating exchanges and sequences. 86 * It manages the allocation of exchange IDs. 87 */ 88 struct fc_exch_mgr { 89 enum fc_class class; 90 struct kref kref; 91 u16 min_xid; 92 u16 max_xid; 93 mempool_t *ep_pool; 94 u16 pool_max_index; 95 struct fc_exch_pool *pool; 96 97 /* 98 * currently exchange mgr stats are updated but not used. 99 * either stats can be expose via sysfs or remove them 100 * all together if not used XXX 101 */ 102 struct { 103 atomic_t no_free_exch; 104 atomic_t no_free_exch_xid; 105 atomic_t xid_not_found; 106 atomic_t xid_busy; 107 atomic_t seq_not_found; 108 atomic_t non_bls_resp; 109 } stats; 110 }; 111 #define fc_seq_exch(sp) container_of(sp, struct fc_exch, seq) 112 113 /** 114 * struct fc_exch_mgr_anchor - primary structure for list of EMs 115 * @ema_list: Exchange Manager Anchor list 116 * @mp: Exchange Manager associated with this anchor 117 * @match: Routine to determine if this anchor's EM should be used 118 * 119 * When walking the list of anchors the match routine will be called 120 * for each anchor to determine if that EM should be used. The last 121 * anchor in the list will always match to handle any exchanges not 122 * handled by other EMs. The non-default EMs would be added to the 123 * anchor list by HW that provides FCoE offloads. 124 */ 125 struct fc_exch_mgr_anchor { 126 struct list_head ema_list; 127 struct fc_exch_mgr *mp; 128 bool (*match)(struct fc_frame *); 129 }; 130 131 static void fc_exch_rrq(struct fc_exch *); 132 static void fc_seq_ls_acc(struct fc_seq *); 133 static void fc_seq_ls_rjt(struct fc_seq *, enum fc_els_rjt_reason, 134 enum fc_els_rjt_explan); 135 static void fc_exch_els_rec(struct fc_seq *, struct fc_frame *); 136 static void fc_exch_els_rrq(struct fc_seq *, struct fc_frame *); 137 138 /* 139 * Internal implementation notes. 140 * 141 * The exchange manager is one by default in libfc but LLD may choose 142 * to have one per CPU. The sequence manager is one per exchange manager 143 * and currently never separated. 144 * 145 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field 146 * assigned by the Sequence Initiator that shall be unique for a specific 147 * D_ID and S_ID pair while the Sequence is open." Note that it isn't 148 * qualified by exchange ID, which one might think it would be. 149 * In practice this limits the number of open sequences and exchanges to 256 150 * per session. For most targets we could treat this limit as per exchange. 151 * 152 * The exchange and its sequence are freed when the last sequence is received. 153 * It's possible for the remote port to leave an exchange open without 154 * sending any sequences. 155 * 156 * Notes on reference counts: 157 * 158 * Exchanges are reference counted and exchange gets freed when the reference 159 * count becomes zero. 160 * 161 * Timeouts: 162 * Sequences are timed out for E_D_TOV and R_A_TOV. 163 * 164 * Sequence event handling: 165 * 166 * The following events may occur on initiator sequences: 167 * 168 * Send. 169 * For now, the whole thing is sent. 170 * Receive ACK 171 * This applies only to class F. 172 * The sequence is marked complete. 173 * ULP completion. 174 * The upper layer calls fc_exch_done() when done 175 * with exchange and sequence tuple. 176 * RX-inferred completion. 177 * When we receive the next sequence on the same exchange, we can 178 * retire the previous sequence ID. (XXX not implemented). 179 * Timeout. 180 * R_A_TOV frees the sequence ID. If we're waiting for ACK, 181 * E_D_TOV causes abort and calls upper layer response handler 182 * with FC_EX_TIMEOUT error. 183 * Receive RJT 184 * XXX defer. 185 * Send ABTS 186 * On timeout. 187 * 188 * The following events may occur on recipient sequences: 189 * 190 * Receive 191 * Allocate sequence for first frame received. 192 * Hold during receive handler. 193 * Release when final frame received. 194 * Keep status of last N of these for the ELS RES command. XXX TBD. 195 * Receive ABTS 196 * Deallocate sequence 197 * Send RJT 198 * Deallocate 199 * 200 * For now, we neglect conditions where only part of a sequence was 201 * received or transmitted, or where out-of-order receipt is detected. 202 */ 203 204 /* 205 * Locking notes: 206 * 207 * The EM code run in a per-CPU worker thread. 208 * 209 * To protect against concurrency between a worker thread code and timers, 210 * sequence allocation and deallocation must be locked. 211 * - exchange refcnt can be done atomicly without locks. 212 * - sequence allocation must be locked by exch lock. 213 * - If the EM pool lock and ex_lock must be taken at the same time, then the 214 * EM pool lock must be taken before the ex_lock. 215 */ 216 217 /* 218 * opcode names for debugging. 219 */ 220 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT; 221 222 #define FC_TABLE_SIZE(x) (sizeof(x) / sizeof(x[0])) 223 224 /** 225 * fc_exch_name_lookup() - Lookup name by opcode 226 * @op: Opcode to be looked up 227 * @table: Opcode/name table 228 * @max_index: Index not to be exceeded 229 * 230 * This routine is used to determine a human-readable string identifying 231 * a R_CTL opcode. 232 */ 233 static inline const char *fc_exch_name_lookup(unsigned int op, char **table, 234 unsigned int max_index) 235 { 236 const char *name = NULL; 237 238 if (op < max_index) 239 name = table[op]; 240 if (!name) 241 name = "unknown"; 242 return name; 243 } 244 245 /** 246 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup() 247 * @op: The opcode to be looked up 248 */ 249 static const char *fc_exch_rctl_name(unsigned int op) 250 { 251 return fc_exch_name_lookup(op, fc_exch_rctl_names, 252 FC_TABLE_SIZE(fc_exch_rctl_names)); 253 } 254 255 /** 256 * fc_exch_hold() - Increment an exchange's reference count 257 * @ep: Echange to be held 258 */ 259 static inline void fc_exch_hold(struct fc_exch *ep) 260 { 261 atomic_inc(&ep->ex_refcnt); 262 } 263 264 /** 265 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields 266 * and determine SOF and EOF. 267 * @ep: The exchange to that will use the header 268 * @fp: The frame whose header is to be modified 269 * @f_ctl: F_CTL bits that will be used for the frame header 270 * 271 * The fields initialized by this routine are: fh_ox_id, fh_rx_id, 272 * fh_seq_id, fh_seq_cnt and the SOF and EOF. 273 */ 274 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp, 275 u32 f_ctl) 276 { 277 struct fc_frame_header *fh = fc_frame_header_get(fp); 278 u16 fill; 279 280 fr_sof(fp) = ep->class; 281 if (ep->seq.cnt) 282 fr_sof(fp) = fc_sof_normal(ep->class); 283 284 if (f_ctl & FC_FC_END_SEQ) { 285 fr_eof(fp) = FC_EOF_T; 286 if (fc_sof_needs_ack(ep->class)) 287 fr_eof(fp) = FC_EOF_N; 288 /* 289 * From F_CTL. 290 * The number of fill bytes to make the length a 4-byte 291 * multiple is the low order 2-bits of the f_ctl. 292 * The fill itself will have been cleared by the frame 293 * allocation. 294 * After this, the length will be even, as expected by 295 * the transport. 296 */ 297 fill = fr_len(fp) & 3; 298 if (fill) { 299 fill = 4 - fill; 300 /* TODO, this may be a problem with fragmented skb */ 301 skb_put(fp_skb(fp), fill); 302 hton24(fh->fh_f_ctl, f_ctl | fill); 303 } 304 } else { 305 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */ 306 fr_eof(fp) = FC_EOF_N; 307 } 308 309 /* 310 * Initialize remainig fh fields 311 * from fc_fill_fc_hdr 312 */ 313 fh->fh_ox_id = htons(ep->oxid); 314 fh->fh_rx_id = htons(ep->rxid); 315 fh->fh_seq_id = ep->seq.id; 316 fh->fh_seq_cnt = htons(ep->seq.cnt); 317 } 318 319 /** 320 * fc_exch_release() - Decrement an exchange's reference count 321 * @ep: Exchange to be released 322 * 323 * If the reference count reaches zero and the exchange is complete, 324 * it is freed. 325 */ 326 static void fc_exch_release(struct fc_exch *ep) 327 { 328 struct fc_exch_mgr *mp; 329 330 if (atomic_dec_and_test(&ep->ex_refcnt)) { 331 mp = ep->em; 332 if (ep->destructor) 333 ep->destructor(&ep->seq, ep->arg); 334 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE)); 335 mempool_free(ep, mp->ep_pool); 336 } 337 } 338 339 /** 340 * fc_exch_done_locked() - Complete an exchange with the exchange lock held 341 * @ep: The exchange that is complete 342 */ 343 static int fc_exch_done_locked(struct fc_exch *ep) 344 { 345 int rc = 1; 346 347 /* 348 * We must check for completion in case there are two threads 349 * tyring to complete this. But the rrq code will reuse the 350 * ep, and in that case we only clear the resp and set it as 351 * complete, so it can be reused by the timer to send the rrq. 352 */ 353 ep->resp = NULL; 354 if (ep->state & FC_EX_DONE) 355 return rc; 356 ep->esb_stat |= ESB_ST_COMPLETE; 357 358 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) { 359 ep->state |= FC_EX_DONE; 360 if (cancel_delayed_work(&ep->timeout_work)) 361 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */ 362 rc = 0; 363 } 364 return rc; 365 } 366 367 /** 368 * fc_exch_ptr_get() - Return an exchange from an exchange pool 369 * @pool: Exchange Pool to get an exchange from 370 * @index: Index of the exchange within the pool 371 * 372 * Use the index to get an exchange from within an exchange pool. exches 373 * will point to an array of exchange pointers. The index will select 374 * the exchange within the array. 375 */ 376 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool, 377 u16 index) 378 { 379 struct fc_exch **exches = (struct fc_exch **)(pool + 1); 380 return exches[index]; 381 } 382 383 /** 384 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool 385 * @pool: The pool to assign the exchange to 386 * @index: The index in the pool where the exchange will be assigned 387 * @ep: The exchange to assign to the pool 388 */ 389 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index, 390 struct fc_exch *ep) 391 { 392 ((struct fc_exch **)(pool + 1))[index] = ep; 393 } 394 395 /** 396 * fc_exch_delete() - Delete an exchange 397 * @ep: The exchange to be deleted 398 */ 399 static void fc_exch_delete(struct fc_exch *ep) 400 { 401 struct fc_exch_pool *pool; 402 403 pool = ep->pool; 404 spin_lock_bh(&pool->lock); 405 WARN_ON(pool->total_exches <= 0); 406 pool->total_exches--; 407 fc_exch_ptr_set(pool, (ep->xid - ep->em->min_xid) >> fc_cpu_order, 408 NULL); 409 list_del(&ep->ex_list); 410 spin_unlock_bh(&pool->lock); 411 fc_exch_release(ep); /* drop hold for exch in mp */ 412 } 413 414 /** 415 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the 416 * the exchange lock held 417 * @ep: The exchange whose timer will start 418 * @timer_msec: The timeout period 419 * 420 * Used for upper level protocols to time out the exchange. 421 * The timer is cancelled when it fires or when the exchange completes. 422 */ 423 static inline void fc_exch_timer_set_locked(struct fc_exch *ep, 424 unsigned int timer_msec) 425 { 426 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 427 return; 428 429 FC_EXCH_DBG(ep, "Exchange timer armed\n"); 430 431 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work, 432 msecs_to_jiffies(timer_msec))) 433 fc_exch_hold(ep); /* hold for timer */ 434 } 435 436 /** 437 * fc_exch_timer_set() - Lock the exchange and set the timer 438 * @ep: The exchange whose timer will start 439 * @timer_msec: The timeout period 440 */ 441 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec) 442 { 443 spin_lock_bh(&ep->ex_lock); 444 fc_exch_timer_set_locked(ep, timer_msec); 445 spin_unlock_bh(&ep->ex_lock); 446 } 447 448 /** 449 * fc_seq_send() - Send a frame using existing sequence/exchange pair 450 * @lport: The local port that the exchange will be sent on 451 * @sp: The sequence to be sent 452 * @fp: The frame to be sent on the exchange 453 */ 454 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, 455 struct fc_frame *fp) 456 { 457 struct fc_exch *ep; 458 struct fc_frame_header *fh = fc_frame_header_get(fp); 459 int error; 460 u32 f_ctl; 461 462 ep = fc_seq_exch(sp); 463 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT); 464 465 f_ctl = ntoh24(fh->fh_f_ctl); 466 fc_exch_setup_hdr(ep, fp, f_ctl); 467 468 /* 469 * update sequence count if this frame is carrying 470 * multiple FC frames when sequence offload is enabled 471 * by LLD. 472 */ 473 if (fr_max_payload(fp)) 474 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)), 475 fr_max_payload(fp)); 476 else 477 sp->cnt++; 478 479 /* 480 * Send the frame. 481 */ 482 error = lport->tt.frame_send(lport, fp); 483 484 /* 485 * Update the exchange and sequence flags, 486 * assuming all frames for the sequence have been sent. 487 * We can only be called to send once for each sequence. 488 */ 489 spin_lock_bh(&ep->ex_lock); 490 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */ 491 if (f_ctl & (FC_FC_END_SEQ | FC_FC_SEQ_INIT)) 492 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 493 spin_unlock_bh(&ep->ex_lock); 494 return error; 495 } 496 497 /** 498 * fc_seq_alloc() - Allocate a sequence for a given exchange 499 * @ep: The exchange to allocate a new sequence for 500 * @seq_id: The sequence ID to be used 501 * 502 * We don't support multiple originated sequences on the same exchange. 503 * By implication, any previously originated sequence on this exchange 504 * is complete, and we reallocate the same sequence. 505 */ 506 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id) 507 { 508 struct fc_seq *sp; 509 510 sp = &ep->seq; 511 sp->ssb_stat = 0; 512 sp->cnt = 0; 513 sp->id = seq_id; 514 return sp; 515 } 516 517 /** 518 * fc_seq_start_next_locked() - Allocate a new sequence on the same 519 * exchange as the supplied sequence 520 * @sp: The sequence/exchange to get a new sequence for 521 */ 522 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp) 523 { 524 struct fc_exch *ep = fc_seq_exch(sp); 525 526 sp = fc_seq_alloc(ep, ep->seq_id++); 527 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n", 528 ep->f_ctl, sp->id); 529 return sp; 530 } 531 532 /** 533 * fc_seq_start_next() - Lock the exchange and get a new sequence 534 * for a given sequence/exchange pair 535 * @sp: The sequence/exchange to get a new exchange for 536 */ 537 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp) 538 { 539 struct fc_exch *ep = fc_seq_exch(sp); 540 541 spin_lock_bh(&ep->ex_lock); 542 sp = fc_seq_start_next_locked(sp); 543 spin_unlock_bh(&ep->ex_lock); 544 545 return sp; 546 } 547 548 /** 549 * fc_seq_exch_abort() - Abort an exchange and sequence 550 * @req_sp: The sequence to be aborted 551 * @timer_msec: The period of time to wait before aborting 552 * 553 * Generally called because of a timeout or an abort from the upper layer. 554 */ 555 static int fc_seq_exch_abort(const struct fc_seq *req_sp, 556 unsigned int timer_msec) 557 { 558 struct fc_seq *sp; 559 struct fc_exch *ep; 560 struct fc_frame *fp; 561 int error; 562 563 ep = fc_seq_exch(req_sp); 564 565 spin_lock_bh(&ep->ex_lock); 566 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) || 567 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) { 568 spin_unlock_bh(&ep->ex_lock); 569 return -ENXIO; 570 } 571 572 /* 573 * Send the abort on a new sequence if possible. 574 */ 575 sp = fc_seq_start_next_locked(&ep->seq); 576 if (!sp) { 577 spin_unlock_bh(&ep->ex_lock); 578 return -ENOMEM; 579 } 580 581 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL; 582 if (timer_msec) 583 fc_exch_timer_set_locked(ep, timer_msec); 584 spin_unlock_bh(&ep->ex_lock); 585 586 /* 587 * If not logged into the fabric, don't send ABTS but leave 588 * sequence active until next timeout. 589 */ 590 if (!ep->sid) 591 return 0; 592 593 /* 594 * Send an abort for the sequence that timed out. 595 */ 596 fp = fc_frame_alloc(ep->lp, 0); 597 if (fp) { 598 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid, 599 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0); 600 error = fc_seq_send(ep->lp, sp, fp); 601 } else 602 error = -ENOBUFS; 603 return error; 604 } 605 606 /** 607 * fc_exch_timeout() - Handle exchange timer expiration 608 * @work: The work_struct identifying the exchange that timed out 609 */ 610 static void fc_exch_timeout(struct work_struct *work) 611 { 612 struct fc_exch *ep = container_of(work, struct fc_exch, 613 timeout_work.work); 614 struct fc_seq *sp = &ep->seq; 615 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg); 616 void *arg; 617 u32 e_stat; 618 int rc = 1; 619 620 FC_EXCH_DBG(ep, "Exchange timed out\n"); 621 622 spin_lock_bh(&ep->ex_lock); 623 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 624 goto unlock; 625 626 e_stat = ep->esb_stat; 627 if (e_stat & ESB_ST_COMPLETE) { 628 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL; 629 spin_unlock_bh(&ep->ex_lock); 630 if (e_stat & ESB_ST_REC_QUAL) 631 fc_exch_rrq(ep); 632 goto done; 633 } else { 634 resp = ep->resp; 635 arg = ep->arg; 636 ep->resp = NULL; 637 if (e_stat & ESB_ST_ABNORMAL) 638 rc = fc_exch_done_locked(ep); 639 spin_unlock_bh(&ep->ex_lock); 640 if (!rc) 641 fc_exch_delete(ep); 642 if (resp) 643 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg); 644 fc_seq_exch_abort(sp, 2 * ep->r_a_tov); 645 goto done; 646 } 647 unlock: 648 spin_unlock_bh(&ep->ex_lock); 649 done: 650 /* 651 * This release matches the hold taken when the timer was set. 652 */ 653 fc_exch_release(ep); 654 } 655 656 /** 657 * fc_exch_em_alloc() - Allocate an exchange from a specified EM. 658 * @lport: The local port that the exchange is for 659 * @mp: The exchange manager that will allocate the exchange 660 * 661 * Returns pointer to allocated fc_exch with exch lock held. 662 */ 663 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport, 664 struct fc_exch_mgr *mp) 665 { 666 struct fc_exch *ep; 667 unsigned int cpu; 668 u16 index; 669 struct fc_exch_pool *pool; 670 671 /* allocate memory for exchange */ 672 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC); 673 if (!ep) { 674 atomic_inc(&mp->stats.no_free_exch); 675 goto out; 676 } 677 memset(ep, 0, sizeof(*ep)); 678 679 cpu = smp_processor_id(); 680 pool = per_cpu_ptr(mp->pool, cpu); 681 spin_lock_bh(&pool->lock); 682 index = pool->next_index; 683 /* allocate new exch from pool */ 684 while (fc_exch_ptr_get(pool, index)) { 685 index = index == mp->pool_max_index ? 0 : index + 1; 686 if (index == pool->next_index) 687 goto err; 688 } 689 pool->next_index = index == mp->pool_max_index ? 0 : index + 1; 690 691 fc_exch_hold(ep); /* hold for exch in mp */ 692 spin_lock_init(&ep->ex_lock); 693 /* 694 * Hold exch lock for caller to prevent fc_exch_reset() 695 * from releasing exch while fc_exch_alloc() caller is 696 * still working on exch. 697 */ 698 spin_lock_bh(&ep->ex_lock); 699 700 fc_exch_ptr_set(pool, index, ep); 701 list_add_tail(&ep->ex_list, &pool->ex_list); 702 fc_seq_alloc(ep, ep->seq_id++); 703 pool->total_exches++; 704 spin_unlock_bh(&pool->lock); 705 706 /* 707 * update exchange 708 */ 709 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid; 710 ep->em = mp; 711 ep->pool = pool; 712 ep->lp = lport; 713 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */ 714 ep->rxid = FC_XID_UNKNOWN; 715 ep->class = mp->class; 716 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout); 717 out: 718 return ep; 719 err: 720 spin_unlock_bh(&pool->lock); 721 atomic_inc(&mp->stats.no_free_exch_xid); 722 mempool_free(ep, mp->ep_pool); 723 return NULL; 724 } 725 726 /** 727 * fc_exch_alloc() - Allocate an exchange from an EM on a 728 * local port's list of EMs. 729 * @lport: The local port that will own the exchange 730 * @fp: The FC frame that the exchange will be for 731 * 732 * This function walks the list of exchange manager(EM) 733 * anchors to select an EM for a new exchange allocation. The 734 * EM is selected when a NULL match function pointer is encountered 735 * or when a call to a match function returns true. 736 */ 737 static struct fc_exch *fc_exch_alloc(struct fc_lport *lport, 738 struct fc_frame *fp) 739 { 740 struct fc_exch_mgr_anchor *ema; 741 struct fc_exch *ep; 742 743 list_for_each_entry(ema, &lport->ema_list, ema_list) { 744 if (!ema->match || ema->match(fp)) { 745 ep = fc_exch_em_alloc(lport, ema->mp); 746 if (ep) 747 return ep; 748 } 749 } 750 return NULL; 751 } 752 753 /** 754 * fc_exch_find() - Lookup and hold an exchange 755 * @mp: The exchange manager to lookup the exchange from 756 * @xid: The XID of the exchange to look up 757 */ 758 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid) 759 { 760 struct fc_exch_pool *pool; 761 struct fc_exch *ep = NULL; 762 763 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) { 764 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask); 765 spin_lock_bh(&pool->lock); 766 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order); 767 if (ep) { 768 fc_exch_hold(ep); 769 WARN_ON(ep->xid != xid); 770 } 771 spin_unlock_bh(&pool->lock); 772 } 773 return ep; 774 } 775 776 777 /** 778 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and 779 * the memory allocated for the related objects may be freed. 780 * @sp: The sequence that has completed 781 */ 782 static void fc_exch_done(struct fc_seq *sp) 783 { 784 struct fc_exch *ep = fc_seq_exch(sp); 785 int rc; 786 787 spin_lock_bh(&ep->ex_lock); 788 rc = fc_exch_done_locked(ep); 789 spin_unlock_bh(&ep->ex_lock); 790 if (!rc) 791 fc_exch_delete(ep); 792 } 793 794 /** 795 * fc_exch_resp() - Allocate a new exchange for a response frame 796 * @lport: The local port that the exchange was for 797 * @mp: The exchange manager to allocate the exchange from 798 * @fp: The response frame 799 * 800 * Sets the responder ID in the frame header. 801 */ 802 static struct fc_exch *fc_exch_resp(struct fc_lport *lport, 803 struct fc_exch_mgr *mp, 804 struct fc_frame *fp) 805 { 806 struct fc_exch *ep; 807 struct fc_frame_header *fh; 808 809 ep = fc_exch_alloc(lport, fp); 810 if (ep) { 811 ep->class = fc_frame_class(fp); 812 813 /* 814 * Set EX_CTX indicating we're responding on this exchange. 815 */ 816 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */ 817 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */ 818 fh = fc_frame_header_get(fp); 819 ep->sid = ntoh24(fh->fh_d_id); 820 ep->did = ntoh24(fh->fh_s_id); 821 ep->oid = ep->did; 822 823 /* 824 * Allocated exchange has placed the XID in the 825 * originator field. Move it to the responder field, 826 * and set the originator XID from the frame. 827 */ 828 ep->rxid = ep->xid; 829 ep->oxid = ntohs(fh->fh_ox_id); 830 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT; 831 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0) 832 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 833 834 fc_exch_hold(ep); /* hold for caller */ 835 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */ 836 } 837 return ep; 838 } 839 840 /** 841 * fc_seq_lookup_recip() - Find a sequence where the other end 842 * originated the sequence 843 * @lport: The local port that the frame was sent to 844 * @mp: The Exchange Manager to lookup the exchange from 845 * @fp: The frame associated with the sequence we're looking for 846 * 847 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold 848 * on the ep that should be released by the caller. 849 */ 850 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport, 851 struct fc_exch_mgr *mp, 852 struct fc_frame *fp) 853 { 854 struct fc_frame_header *fh = fc_frame_header_get(fp); 855 struct fc_exch *ep = NULL; 856 struct fc_seq *sp = NULL; 857 enum fc_pf_rjt_reason reject = FC_RJT_NONE; 858 u32 f_ctl; 859 u16 xid; 860 861 f_ctl = ntoh24(fh->fh_f_ctl); 862 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0); 863 864 /* 865 * Lookup or create the exchange if we will be creating the sequence. 866 */ 867 if (f_ctl & FC_FC_EX_CTX) { 868 xid = ntohs(fh->fh_ox_id); /* we originated exch */ 869 ep = fc_exch_find(mp, xid); 870 if (!ep) { 871 atomic_inc(&mp->stats.xid_not_found); 872 reject = FC_RJT_OX_ID; 873 goto out; 874 } 875 if (ep->rxid == FC_XID_UNKNOWN) 876 ep->rxid = ntohs(fh->fh_rx_id); 877 else if (ep->rxid != ntohs(fh->fh_rx_id)) { 878 reject = FC_RJT_OX_ID; 879 goto rel; 880 } 881 } else { 882 xid = ntohs(fh->fh_rx_id); /* we are the responder */ 883 884 /* 885 * Special case for MDS issuing an ELS TEST with a 886 * bad rxid of 0. 887 * XXX take this out once we do the proper reject. 888 */ 889 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ && 890 fc_frame_payload_op(fp) == ELS_TEST) { 891 fh->fh_rx_id = htons(FC_XID_UNKNOWN); 892 xid = FC_XID_UNKNOWN; 893 } 894 895 /* 896 * new sequence - find the exchange 897 */ 898 ep = fc_exch_find(mp, xid); 899 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) { 900 if (ep) { 901 atomic_inc(&mp->stats.xid_busy); 902 reject = FC_RJT_RX_ID; 903 goto rel; 904 } 905 ep = fc_exch_resp(lport, mp, fp); 906 if (!ep) { 907 reject = FC_RJT_EXCH_EST; /* XXX */ 908 goto out; 909 } 910 xid = ep->xid; /* get our XID */ 911 } else if (!ep) { 912 atomic_inc(&mp->stats.xid_not_found); 913 reject = FC_RJT_RX_ID; /* XID not found */ 914 goto out; 915 } 916 } 917 918 /* 919 * At this point, we have the exchange held. 920 * Find or create the sequence. 921 */ 922 if (fc_sof_is_init(fr_sof(fp))) { 923 sp = fc_seq_start_next(&ep->seq); 924 if (!sp) { 925 reject = FC_RJT_SEQ_XS; /* exchange shortage */ 926 goto rel; 927 } 928 sp->id = fh->fh_seq_id; 929 sp->ssb_stat |= SSB_ST_RESP; 930 } else { 931 sp = &ep->seq; 932 if (sp->id != fh->fh_seq_id) { 933 atomic_inc(&mp->stats.seq_not_found); 934 reject = FC_RJT_SEQ_ID; /* sequence/exch should exist */ 935 goto rel; 936 } 937 } 938 WARN_ON(ep != fc_seq_exch(sp)); 939 940 if (f_ctl & FC_FC_SEQ_INIT) 941 ep->esb_stat |= ESB_ST_SEQ_INIT; 942 943 fr_seq(fp) = sp; 944 out: 945 return reject; 946 rel: 947 fc_exch_done(&ep->seq); 948 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */ 949 return reject; 950 } 951 952 /** 953 * fc_seq_lookup_orig() - Find a sequence where this end 954 * originated the sequence 955 * @mp: The Exchange Manager to lookup the exchange from 956 * @fp: The frame associated with the sequence we're looking for 957 * 958 * Does not hold the sequence for the caller. 959 */ 960 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp, 961 struct fc_frame *fp) 962 { 963 struct fc_frame_header *fh = fc_frame_header_get(fp); 964 struct fc_exch *ep; 965 struct fc_seq *sp = NULL; 966 u32 f_ctl; 967 u16 xid; 968 969 f_ctl = ntoh24(fh->fh_f_ctl); 970 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX); 971 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id); 972 ep = fc_exch_find(mp, xid); 973 if (!ep) 974 return NULL; 975 if (ep->seq.id == fh->fh_seq_id) { 976 /* 977 * Save the RX_ID if we didn't previously know it. 978 */ 979 sp = &ep->seq; 980 if ((f_ctl & FC_FC_EX_CTX) != 0 && 981 ep->rxid == FC_XID_UNKNOWN) { 982 ep->rxid = ntohs(fh->fh_rx_id); 983 } 984 } 985 fc_exch_release(ep); 986 return sp; 987 } 988 989 /** 990 * fc_exch_set_addr() - Set the source and destination IDs for an exchange 991 * @ep: The exchange to set the addresses for 992 * @orig_id: The originator's ID 993 * @resp_id: The responder's ID 994 * 995 * Note this must be done before the first sequence of the exchange is sent. 996 */ 997 static void fc_exch_set_addr(struct fc_exch *ep, 998 u32 orig_id, u32 resp_id) 999 { 1000 ep->oid = orig_id; 1001 if (ep->esb_stat & ESB_ST_RESP) { 1002 ep->sid = resp_id; 1003 ep->did = orig_id; 1004 } else { 1005 ep->sid = orig_id; 1006 ep->did = resp_id; 1007 } 1008 } 1009 1010 /** 1011 * fc_seq_els_rsp_send() - Send an ELS response using infomation from 1012 * the existing sequence/exchange. 1013 * @sp: The sequence/exchange to get information from 1014 * @els_cmd: The ELS command to be sent 1015 * @els_data: The ELS data to be sent 1016 */ 1017 static void fc_seq_els_rsp_send(struct fc_seq *sp, enum fc_els_cmd els_cmd, 1018 struct fc_seq_els_data *els_data) 1019 { 1020 switch (els_cmd) { 1021 case ELS_LS_RJT: 1022 fc_seq_ls_rjt(sp, els_data->reason, els_data->explan); 1023 break; 1024 case ELS_LS_ACC: 1025 fc_seq_ls_acc(sp); 1026 break; 1027 case ELS_RRQ: 1028 fc_exch_els_rrq(sp, els_data->fp); 1029 break; 1030 case ELS_REC: 1031 fc_exch_els_rec(sp, els_data->fp); 1032 break; 1033 default: 1034 FC_EXCH_DBG(fc_seq_exch(sp), "Invalid ELS CMD:%x\n", els_cmd); 1035 } 1036 } 1037 1038 /** 1039 * fc_seq_send_last() - Send a sequence that is the last in the exchange 1040 * @sp: The sequence that is to be sent 1041 * @fp: The frame that will be sent on the sequence 1042 * @rctl: The R_CTL information to be sent 1043 * @fh_type: The frame header type 1044 */ 1045 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp, 1046 enum fc_rctl rctl, enum fc_fh_type fh_type) 1047 { 1048 u32 f_ctl; 1049 struct fc_exch *ep = fc_seq_exch(sp); 1050 1051 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT; 1052 f_ctl |= ep->f_ctl; 1053 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0); 1054 fc_seq_send(ep->lp, sp, fp); 1055 } 1056 1057 /** 1058 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame 1059 * @sp: The sequence to send the ACK on 1060 * @rx_fp: The received frame that is being acknoledged 1061 * 1062 * Send ACK_1 (or equiv.) indicating we received something. 1063 */ 1064 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp) 1065 { 1066 struct fc_frame *fp; 1067 struct fc_frame_header *rx_fh; 1068 struct fc_frame_header *fh; 1069 struct fc_exch *ep = fc_seq_exch(sp); 1070 struct fc_lport *lport = ep->lp; 1071 unsigned int f_ctl; 1072 1073 /* 1074 * Don't send ACKs for class 3. 1075 */ 1076 if (fc_sof_needs_ack(fr_sof(rx_fp))) { 1077 fp = fc_frame_alloc(lport, 0); 1078 if (!fp) 1079 return; 1080 1081 fh = fc_frame_header_get(fp); 1082 fh->fh_r_ctl = FC_RCTL_ACK_1; 1083 fh->fh_type = FC_TYPE_BLS; 1084 1085 /* 1086 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1087 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1088 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1089 * Last ACK uses bits 7-6 (continue sequence), 1090 * bits 5-4 are meaningful (what kind of ACK to use). 1091 */ 1092 rx_fh = fc_frame_header_get(rx_fp); 1093 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1094 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1095 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ | 1096 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT | 1097 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1098 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1099 hton24(fh->fh_f_ctl, f_ctl); 1100 1101 fc_exch_setup_hdr(ep, fp, f_ctl); 1102 fh->fh_seq_id = rx_fh->fh_seq_id; 1103 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1104 fh->fh_parm_offset = htonl(1); /* ack single frame */ 1105 1106 fr_sof(fp) = fr_sof(rx_fp); 1107 if (f_ctl & FC_FC_END_SEQ) 1108 fr_eof(fp) = FC_EOF_T; 1109 else 1110 fr_eof(fp) = FC_EOF_N; 1111 1112 lport->tt.frame_send(lport, fp); 1113 } 1114 } 1115 1116 /** 1117 * fc_exch_send_ba_rjt() - Send BLS Reject 1118 * @rx_fp: The frame being rejected 1119 * @reason: The reason the frame is being rejected 1120 * @explan: The explaination for the rejection 1121 * 1122 * This is for rejecting BA_ABTS only. 1123 */ 1124 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp, 1125 enum fc_ba_rjt_reason reason, 1126 enum fc_ba_rjt_explan explan) 1127 { 1128 struct fc_frame *fp; 1129 struct fc_frame_header *rx_fh; 1130 struct fc_frame_header *fh; 1131 struct fc_ba_rjt *rp; 1132 struct fc_lport *lport; 1133 unsigned int f_ctl; 1134 1135 lport = fr_dev(rx_fp); 1136 fp = fc_frame_alloc(lport, sizeof(*rp)); 1137 if (!fp) 1138 return; 1139 fh = fc_frame_header_get(fp); 1140 rx_fh = fc_frame_header_get(rx_fp); 1141 1142 memset(fh, 0, sizeof(*fh) + sizeof(*rp)); 1143 1144 rp = fc_frame_payload_get(fp, sizeof(*rp)); 1145 rp->br_reason = reason; 1146 rp->br_explan = explan; 1147 1148 /* 1149 * seq_id, cs_ctl, df_ctl and param/offset are zero. 1150 */ 1151 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3); 1152 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3); 1153 fh->fh_ox_id = rx_fh->fh_ox_id; 1154 fh->fh_rx_id = rx_fh->fh_rx_id; 1155 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1156 fh->fh_r_ctl = FC_RCTL_BA_RJT; 1157 fh->fh_type = FC_TYPE_BLS; 1158 1159 /* 1160 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1161 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1162 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1163 * Last ACK uses bits 7-6 (continue sequence), 1164 * bits 5-4 are meaningful (what kind of ACK to use). 1165 * Always set LAST_SEQ, END_SEQ. 1166 */ 1167 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1168 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1169 FC_FC_END_CONN | FC_FC_SEQ_INIT | 1170 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1171 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1172 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ; 1173 f_ctl &= ~FC_FC_FIRST_SEQ; 1174 hton24(fh->fh_f_ctl, f_ctl); 1175 1176 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp)); 1177 fr_eof(fp) = FC_EOF_T; 1178 if (fc_sof_needs_ack(fr_sof(fp))) 1179 fr_eof(fp) = FC_EOF_N; 1180 1181 lport->tt.frame_send(lport, fp); 1182 } 1183 1184 /** 1185 * fc_exch_recv_abts() - Handle an incoming ABTS 1186 * @ep: The exchange the abort was on 1187 * @rx_fp: The ABTS frame 1188 * 1189 * This would be for target mode usually, but could be due to lost 1190 * FCP transfer ready, confirm or RRQ. We always handle this as an 1191 * exchange abort, ignoring the parameter. 1192 */ 1193 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp) 1194 { 1195 struct fc_frame *fp; 1196 struct fc_ba_acc *ap; 1197 struct fc_frame_header *fh; 1198 struct fc_seq *sp; 1199 1200 if (!ep) 1201 goto reject; 1202 spin_lock_bh(&ep->ex_lock); 1203 if (ep->esb_stat & ESB_ST_COMPLETE) { 1204 spin_unlock_bh(&ep->ex_lock); 1205 goto reject; 1206 } 1207 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) 1208 fc_exch_hold(ep); /* hold for REC_QUAL */ 1209 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL; 1210 fc_exch_timer_set_locked(ep, ep->r_a_tov); 1211 1212 fp = fc_frame_alloc(ep->lp, sizeof(*ap)); 1213 if (!fp) { 1214 spin_unlock_bh(&ep->ex_lock); 1215 goto free; 1216 } 1217 fh = fc_frame_header_get(fp); 1218 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1219 memset(ap, 0, sizeof(*ap)); 1220 sp = &ep->seq; 1221 ap->ba_high_seq_cnt = htons(0xffff); 1222 if (sp->ssb_stat & SSB_ST_RESP) { 1223 ap->ba_seq_id = sp->id; 1224 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL; 1225 ap->ba_high_seq_cnt = fh->fh_seq_cnt; 1226 ap->ba_low_seq_cnt = htons(sp->cnt); 1227 } 1228 sp = fc_seq_start_next_locked(sp); 1229 spin_unlock_bh(&ep->ex_lock); 1230 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS); 1231 fc_frame_free(rx_fp); 1232 return; 1233 1234 reject: 1235 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID); 1236 free: 1237 fc_frame_free(rx_fp); 1238 } 1239 1240 /** 1241 * fc_exch_recv_req() - Handler for an incoming request where is other 1242 * end is originating the sequence 1243 * @lport: The local port that received the request 1244 * @mp: The EM that the exchange is on 1245 * @fp: The request frame 1246 */ 1247 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp, 1248 struct fc_frame *fp) 1249 { 1250 struct fc_frame_header *fh = fc_frame_header_get(fp); 1251 struct fc_seq *sp = NULL; 1252 struct fc_exch *ep = NULL; 1253 enum fc_sof sof; 1254 enum fc_eof eof; 1255 u32 f_ctl; 1256 enum fc_pf_rjt_reason reject; 1257 1258 /* We can have the wrong fc_lport at this point with NPIV, which is a 1259 * problem now that we know a new exchange needs to be allocated 1260 */ 1261 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id)); 1262 if (!lport) { 1263 fc_frame_free(fp); 1264 return; 1265 } 1266 1267 fr_seq(fp) = NULL; 1268 reject = fc_seq_lookup_recip(lport, mp, fp); 1269 if (reject == FC_RJT_NONE) { 1270 sp = fr_seq(fp); /* sequence will be held */ 1271 ep = fc_seq_exch(sp); 1272 sof = fr_sof(fp); 1273 eof = fr_eof(fp); 1274 f_ctl = ntoh24(fh->fh_f_ctl); 1275 fc_seq_send_ack(sp, fp); 1276 1277 /* 1278 * Call the receive function. 1279 * 1280 * The receive function may allocate a new sequence 1281 * over the old one, so we shouldn't change the 1282 * sequence after this. 1283 * 1284 * The frame will be freed by the receive function. 1285 * If new exch resp handler is valid then call that 1286 * first. 1287 */ 1288 if (ep->resp) 1289 ep->resp(sp, fp, ep->arg); 1290 else 1291 lport->tt.lport_recv(lport, sp, fp); 1292 fc_exch_release(ep); /* release from lookup */ 1293 } else { 1294 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n", 1295 reject); 1296 fc_frame_free(fp); 1297 } 1298 } 1299 1300 /** 1301 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other 1302 * end is the originator of the sequence that is a 1303 * response to our initial exchange 1304 * @mp: The EM that the exchange is on 1305 * @fp: The response frame 1306 */ 1307 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1308 { 1309 struct fc_frame_header *fh = fc_frame_header_get(fp); 1310 struct fc_seq *sp; 1311 struct fc_exch *ep; 1312 enum fc_sof sof; 1313 u32 f_ctl; 1314 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg); 1315 void *ex_resp_arg; 1316 int rc; 1317 1318 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id)); 1319 if (!ep) { 1320 atomic_inc(&mp->stats.xid_not_found); 1321 goto out; 1322 } 1323 if (ep->esb_stat & ESB_ST_COMPLETE) { 1324 atomic_inc(&mp->stats.xid_not_found); 1325 goto out; 1326 } 1327 if (ep->rxid == FC_XID_UNKNOWN) 1328 ep->rxid = ntohs(fh->fh_rx_id); 1329 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) { 1330 atomic_inc(&mp->stats.xid_not_found); 1331 goto rel; 1332 } 1333 if (ep->did != ntoh24(fh->fh_s_id) && 1334 ep->did != FC_FID_FLOGI) { 1335 atomic_inc(&mp->stats.xid_not_found); 1336 goto rel; 1337 } 1338 sof = fr_sof(fp); 1339 if (fc_sof_is_init(sof)) { 1340 sp = fc_seq_start_next(&ep->seq); 1341 sp->id = fh->fh_seq_id; 1342 sp->ssb_stat |= SSB_ST_RESP; 1343 } else { 1344 sp = &ep->seq; 1345 if (sp->id != fh->fh_seq_id) { 1346 atomic_inc(&mp->stats.seq_not_found); 1347 goto rel; 1348 } 1349 } 1350 f_ctl = ntoh24(fh->fh_f_ctl); 1351 fr_seq(fp) = sp; 1352 if (f_ctl & FC_FC_SEQ_INIT) 1353 ep->esb_stat |= ESB_ST_SEQ_INIT; 1354 1355 if (fc_sof_needs_ack(sof)) 1356 fc_seq_send_ack(sp, fp); 1357 resp = ep->resp; 1358 ex_resp_arg = ep->arg; 1359 1360 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T && 1361 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) == 1362 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) { 1363 spin_lock_bh(&ep->ex_lock); 1364 rc = fc_exch_done_locked(ep); 1365 WARN_ON(fc_seq_exch(sp) != ep); 1366 spin_unlock_bh(&ep->ex_lock); 1367 if (!rc) 1368 fc_exch_delete(ep); 1369 } 1370 1371 /* 1372 * Call the receive function. 1373 * The sequence is held (has a refcnt) for us, 1374 * but not for the receive function. 1375 * 1376 * The receive function may allocate a new sequence 1377 * over the old one, so we shouldn't change the 1378 * sequence after this. 1379 * 1380 * The frame will be freed by the receive function. 1381 * If new exch resp handler is valid then call that 1382 * first. 1383 */ 1384 if (resp) 1385 resp(sp, fp, ex_resp_arg); 1386 else 1387 fc_frame_free(fp); 1388 fc_exch_release(ep); 1389 return; 1390 rel: 1391 fc_exch_release(ep); 1392 out: 1393 fc_frame_free(fp); 1394 } 1395 1396 /** 1397 * fc_exch_recv_resp() - Handler for a sequence where other end is 1398 * responding to our sequence 1399 * @mp: The EM that the exchange is on 1400 * @fp: The response frame 1401 */ 1402 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1403 { 1404 struct fc_seq *sp; 1405 1406 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */ 1407 1408 if (!sp) 1409 atomic_inc(&mp->stats.xid_not_found); 1410 else 1411 atomic_inc(&mp->stats.non_bls_resp); 1412 1413 fc_frame_free(fp); 1414 } 1415 1416 /** 1417 * fc_exch_abts_resp() - Handler for a response to an ABT 1418 * @ep: The exchange that the frame is on 1419 * @fp: The response frame 1420 * 1421 * This response would be to an ABTS cancelling an exchange or sequence. 1422 * The response can be either BA_ACC or BA_RJT 1423 */ 1424 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp) 1425 { 1426 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg); 1427 void *ex_resp_arg; 1428 struct fc_frame_header *fh; 1429 struct fc_ba_acc *ap; 1430 struct fc_seq *sp; 1431 u16 low; 1432 u16 high; 1433 int rc = 1, has_rec = 0; 1434 1435 fh = fc_frame_header_get(fp); 1436 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl, 1437 fc_exch_rctl_name(fh->fh_r_ctl)); 1438 1439 if (cancel_delayed_work_sync(&ep->timeout_work)) 1440 fc_exch_release(ep); /* release from pending timer hold */ 1441 1442 spin_lock_bh(&ep->ex_lock); 1443 switch (fh->fh_r_ctl) { 1444 case FC_RCTL_BA_ACC: 1445 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1446 if (!ap) 1447 break; 1448 1449 /* 1450 * Decide whether to establish a Recovery Qualifier. 1451 * We do this if there is a non-empty SEQ_CNT range and 1452 * SEQ_ID is the same as the one we aborted. 1453 */ 1454 low = ntohs(ap->ba_low_seq_cnt); 1455 high = ntohs(ap->ba_high_seq_cnt); 1456 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 && 1457 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL || 1458 ap->ba_seq_id == ep->seq_id) && low != high) { 1459 ep->esb_stat |= ESB_ST_REC_QUAL; 1460 fc_exch_hold(ep); /* hold for recovery qualifier */ 1461 has_rec = 1; 1462 } 1463 break; 1464 case FC_RCTL_BA_RJT: 1465 break; 1466 default: 1467 break; 1468 } 1469 1470 resp = ep->resp; 1471 ex_resp_arg = ep->arg; 1472 1473 /* do we need to do some other checks here. Can we reuse more of 1474 * fc_exch_recv_seq_resp 1475 */ 1476 sp = &ep->seq; 1477 /* 1478 * do we want to check END_SEQ as well as LAST_SEQ here? 1479 */ 1480 if (ep->fh_type != FC_TYPE_FCP && 1481 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ) 1482 rc = fc_exch_done_locked(ep); 1483 spin_unlock_bh(&ep->ex_lock); 1484 if (!rc) 1485 fc_exch_delete(ep); 1486 1487 if (resp) 1488 resp(sp, fp, ex_resp_arg); 1489 else 1490 fc_frame_free(fp); 1491 1492 if (has_rec) 1493 fc_exch_timer_set(ep, ep->r_a_tov); 1494 1495 } 1496 1497 /** 1498 * fc_exch_recv_bls() - Handler for a BLS sequence 1499 * @mp: The EM that the exchange is on 1500 * @fp: The request frame 1501 * 1502 * The BLS frame is always a sequence initiated by the remote side. 1503 * We may be either the originator or recipient of the exchange. 1504 */ 1505 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp) 1506 { 1507 struct fc_frame_header *fh; 1508 struct fc_exch *ep; 1509 u32 f_ctl; 1510 1511 fh = fc_frame_header_get(fp); 1512 f_ctl = ntoh24(fh->fh_f_ctl); 1513 fr_seq(fp) = NULL; 1514 1515 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ? 1516 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id)); 1517 if (ep && (f_ctl & FC_FC_SEQ_INIT)) { 1518 spin_lock_bh(&ep->ex_lock); 1519 ep->esb_stat |= ESB_ST_SEQ_INIT; 1520 spin_unlock_bh(&ep->ex_lock); 1521 } 1522 if (f_ctl & FC_FC_SEQ_CTX) { 1523 /* 1524 * A response to a sequence we initiated. 1525 * This should only be ACKs for class 2 or F. 1526 */ 1527 switch (fh->fh_r_ctl) { 1528 case FC_RCTL_ACK_1: 1529 case FC_RCTL_ACK_0: 1530 break; 1531 default: 1532 FC_EXCH_DBG(ep, "BLS rctl %x - %s received", 1533 fh->fh_r_ctl, 1534 fc_exch_rctl_name(fh->fh_r_ctl)); 1535 break; 1536 } 1537 fc_frame_free(fp); 1538 } else { 1539 switch (fh->fh_r_ctl) { 1540 case FC_RCTL_BA_RJT: 1541 case FC_RCTL_BA_ACC: 1542 if (ep) 1543 fc_exch_abts_resp(ep, fp); 1544 else 1545 fc_frame_free(fp); 1546 break; 1547 case FC_RCTL_BA_ABTS: 1548 fc_exch_recv_abts(ep, fp); 1549 break; 1550 default: /* ignore junk */ 1551 fc_frame_free(fp); 1552 break; 1553 } 1554 } 1555 if (ep) 1556 fc_exch_release(ep); /* release hold taken by fc_exch_find */ 1557 } 1558 1559 /** 1560 * fc_seq_ls_acc() - Accept sequence with LS_ACC 1561 * @req_sp: The request sequence 1562 * 1563 * If this fails due to allocation or transmit congestion, assume the 1564 * originator will repeat the sequence. 1565 */ 1566 static void fc_seq_ls_acc(struct fc_seq *req_sp) 1567 { 1568 struct fc_seq *sp; 1569 struct fc_els_ls_acc *acc; 1570 struct fc_frame *fp; 1571 1572 sp = fc_seq_start_next(req_sp); 1573 fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*acc)); 1574 if (fp) { 1575 acc = fc_frame_payload_get(fp, sizeof(*acc)); 1576 memset(acc, 0, sizeof(*acc)); 1577 acc->la_cmd = ELS_LS_ACC; 1578 fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS); 1579 } 1580 } 1581 1582 /** 1583 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT 1584 * @req_sp: The request sequence 1585 * @reason: The reason the sequence is being rejected 1586 * @explan: The explaination for the rejection 1587 * 1588 * If this fails due to allocation or transmit congestion, assume the 1589 * originator will repeat the sequence. 1590 */ 1591 static void fc_seq_ls_rjt(struct fc_seq *req_sp, enum fc_els_rjt_reason reason, 1592 enum fc_els_rjt_explan explan) 1593 { 1594 struct fc_seq *sp; 1595 struct fc_els_ls_rjt *rjt; 1596 struct fc_frame *fp; 1597 1598 sp = fc_seq_start_next(req_sp); 1599 fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*rjt)); 1600 if (fp) { 1601 rjt = fc_frame_payload_get(fp, sizeof(*rjt)); 1602 memset(rjt, 0, sizeof(*rjt)); 1603 rjt->er_cmd = ELS_LS_RJT; 1604 rjt->er_reason = reason; 1605 rjt->er_explan = explan; 1606 fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS); 1607 } 1608 } 1609 1610 /** 1611 * fc_exch_reset() - Reset an exchange 1612 * @ep: The exchange to be reset 1613 */ 1614 static void fc_exch_reset(struct fc_exch *ep) 1615 { 1616 struct fc_seq *sp; 1617 void (*resp)(struct fc_seq *, struct fc_frame *, void *); 1618 void *arg; 1619 int rc = 1; 1620 1621 spin_lock_bh(&ep->ex_lock); 1622 ep->state |= FC_EX_RST_CLEANUP; 1623 if (cancel_delayed_work(&ep->timeout_work)) 1624 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */ 1625 resp = ep->resp; 1626 ep->resp = NULL; 1627 if (ep->esb_stat & ESB_ST_REC_QUAL) 1628 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */ 1629 ep->esb_stat &= ~ESB_ST_REC_QUAL; 1630 arg = ep->arg; 1631 sp = &ep->seq; 1632 rc = fc_exch_done_locked(ep); 1633 spin_unlock_bh(&ep->ex_lock); 1634 if (!rc) 1635 fc_exch_delete(ep); 1636 1637 if (resp) 1638 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg); 1639 } 1640 1641 /** 1642 * fc_exch_pool_reset() - Reset a per cpu exchange pool 1643 * @lport: The local port that the exchange pool is on 1644 * @pool: The exchange pool to be reset 1645 * @sid: The source ID 1646 * @did: The destination ID 1647 * 1648 * Resets a per cpu exches pool, releasing all of its sequences 1649 * and exchanges. If sid is non-zero then reset only exchanges 1650 * we sourced from the local port's FID. If did is non-zero then 1651 * only reset exchanges destined for the local port's FID. 1652 */ 1653 static void fc_exch_pool_reset(struct fc_lport *lport, 1654 struct fc_exch_pool *pool, 1655 u32 sid, u32 did) 1656 { 1657 struct fc_exch *ep; 1658 struct fc_exch *next; 1659 1660 spin_lock_bh(&pool->lock); 1661 restart: 1662 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) { 1663 if ((lport == ep->lp) && 1664 (sid == 0 || sid == ep->sid) && 1665 (did == 0 || did == ep->did)) { 1666 fc_exch_hold(ep); 1667 spin_unlock_bh(&pool->lock); 1668 1669 fc_exch_reset(ep); 1670 1671 fc_exch_release(ep); 1672 spin_lock_bh(&pool->lock); 1673 1674 /* 1675 * must restart loop incase while lock 1676 * was down multiple eps were released. 1677 */ 1678 goto restart; 1679 } 1680 } 1681 spin_unlock_bh(&pool->lock); 1682 } 1683 1684 /** 1685 * fc_exch_mgr_reset() - Reset all EMs of a local port 1686 * @lport: The local port whose EMs are to be reset 1687 * @sid: The source ID 1688 * @did: The destination ID 1689 * 1690 * Reset all EMs associated with a given local port. Release all 1691 * sequences and exchanges. If sid is non-zero then reset only the 1692 * exchanges sent from the local port's FID. If did is non-zero then 1693 * reset only exchanges destined for the local port's FID. 1694 */ 1695 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did) 1696 { 1697 struct fc_exch_mgr_anchor *ema; 1698 unsigned int cpu; 1699 1700 list_for_each_entry(ema, &lport->ema_list, ema_list) { 1701 for_each_possible_cpu(cpu) 1702 fc_exch_pool_reset(lport, 1703 per_cpu_ptr(ema->mp->pool, cpu), 1704 sid, did); 1705 } 1706 } 1707 EXPORT_SYMBOL(fc_exch_mgr_reset); 1708 1709 /** 1710 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests 1711 * @sp: The sequence the REC is on 1712 * @rfp: The REC frame 1713 * 1714 * Note that the requesting port may be different than the S_ID in the request. 1715 */ 1716 static void fc_exch_els_rec(struct fc_seq *sp, struct fc_frame *rfp) 1717 { 1718 struct fc_frame *fp; 1719 struct fc_exch *ep; 1720 struct fc_exch_mgr *em; 1721 struct fc_els_rec *rp; 1722 struct fc_els_rec_acc *acc; 1723 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC; 1724 enum fc_els_rjt_explan explan; 1725 u32 sid; 1726 u16 rxid; 1727 u16 oxid; 1728 1729 rp = fc_frame_payload_get(rfp, sizeof(*rp)); 1730 explan = ELS_EXPL_INV_LEN; 1731 if (!rp) 1732 goto reject; 1733 sid = ntoh24(rp->rec_s_id); 1734 rxid = ntohs(rp->rec_rx_id); 1735 oxid = ntohs(rp->rec_ox_id); 1736 1737 /* 1738 * Currently it's hard to find the local S_ID from the exchange 1739 * manager. This will eventually be fixed, but for now it's easier 1740 * to lookup the subject exchange twice, once as if we were 1741 * the initiator, and then again if we weren't. 1742 */ 1743 em = fc_seq_exch(sp)->em; 1744 ep = fc_exch_find(em, oxid); 1745 explan = ELS_EXPL_OXID_RXID; 1746 if (ep && ep->oid == sid) { 1747 if (ep->rxid != FC_XID_UNKNOWN && 1748 rxid != FC_XID_UNKNOWN && 1749 ep->rxid != rxid) 1750 goto rel; 1751 } else { 1752 if (ep) 1753 fc_exch_release(ep); 1754 ep = NULL; 1755 if (rxid != FC_XID_UNKNOWN) 1756 ep = fc_exch_find(em, rxid); 1757 if (!ep) 1758 goto reject; 1759 } 1760 1761 fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*acc)); 1762 if (!fp) { 1763 fc_exch_done(sp); 1764 goto out; 1765 } 1766 sp = fc_seq_start_next(sp); 1767 acc = fc_frame_payload_get(fp, sizeof(*acc)); 1768 memset(acc, 0, sizeof(*acc)); 1769 acc->reca_cmd = ELS_LS_ACC; 1770 acc->reca_ox_id = rp->rec_ox_id; 1771 memcpy(acc->reca_ofid, rp->rec_s_id, 3); 1772 acc->reca_rx_id = htons(ep->rxid); 1773 if (ep->sid == ep->oid) 1774 hton24(acc->reca_rfid, ep->did); 1775 else 1776 hton24(acc->reca_rfid, ep->sid); 1777 acc->reca_fc4value = htonl(ep->seq.rec_data); 1778 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP | 1779 ESB_ST_SEQ_INIT | 1780 ESB_ST_COMPLETE)); 1781 sp = fc_seq_start_next(sp); 1782 fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS); 1783 out: 1784 fc_exch_release(ep); 1785 fc_frame_free(rfp); 1786 return; 1787 1788 rel: 1789 fc_exch_release(ep); 1790 reject: 1791 fc_seq_ls_rjt(sp, reason, explan); 1792 fc_frame_free(rfp); 1793 } 1794 1795 /** 1796 * fc_exch_rrq_resp() - Handler for RRQ responses 1797 * @sp: The sequence that the RRQ is on 1798 * @fp: The RRQ frame 1799 * @arg: The exchange that the RRQ is on 1800 * 1801 * TODO: fix error handler. 1802 */ 1803 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg) 1804 { 1805 struct fc_exch *aborted_ep = arg; 1806 unsigned int op; 1807 1808 if (IS_ERR(fp)) { 1809 int err = PTR_ERR(fp); 1810 1811 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT) 1812 goto cleanup; 1813 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, " 1814 "frame error %d\n", err); 1815 return; 1816 } 1817 1818 op = fc_frame_payload_op(fp); 1819 fc_frame_free(fp); 1820 1821 switch (op) { 1822 case ELS_LS_RJT: 1823 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ"); 1824 /* fall through */ 1825 case ELS_LS_ACC: 1826 goto cleanup; 1827 default: 1828 FC_EXCH_DBG(aborted_ep, "unexpected response op %x " 1829 "for RRQ", op); 1830 return; 1831 } 1832 1833 cleanup: 1834 fc_exch_done(&aborted_ep->seq); 1835 /* drop hold for rec qual */ 1836 fc_exch_release(aborted_ep); 1837 } 1838 1839 1840 /** 1841 * fc_exch_seq_send() - Send a frame using a new exchange and sequence 1842 * @lport: The local port to send the frame on 1843 * @fp: The frame to be sent 1844 * @resp: The response handler for this request 1845 * @destructor: The destructor for the exchange 1846 * @arg: The argument to be passed to the response handler 1847 * @timer_msec: The timeout period for the exchange 1848 * 1849 * The frame pointer with some of the header's fields must be 1850 * filled before calling this routine, those fields are: 1851 * 1852 * - routing control 1853 * - FC port did 1854 * - FC port sid 1855 * - FC header type 1856 * - frame control 1857 * - parameter or relative offset 1858 */ 1859 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport, 1860 struct fc_frame *fp, 1861 void (*resp)(struct fc_seq *, 1862 struct fc_frame *fp, 1863 void *arg), 1864 void (*destructor)(struct fc_seq *, 1865 void *), 1866 void *arg, u32 timer_msec) 1867 { 1868 struct fc_exch *ep; 1869 struct fc_seq *sp = NULL; 1870 struct fc_frame_header *fh; 1871 int rc = 1; 1872 1873 ep = fc_exch_alloc(lport, fp); 1874 if (!ep) { 1875 fc_frame_free(fp); 1876 return NULL; 1877 } 1878 ep->esb_stat |= ESB_ST_SEQ_INIT; 1879 fh = fc_frame_header_get(fp); 1880 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id)); 1881 ep->resp = resp; 1882 ep->destructor = destructor; 1883 ep->arg = arg; 1884 ep->r_a_tov = FC_DEF_R_A_TOV; 1885 ep->lp = lport; 1886 sp = &ep->seq; 1887 1888 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */ 1889 ep->f_ctl = ntoh24(fh->fh_f_ctl); 1890 fc_exch_setup_hdr(ep, fp, ep->f_ctl); 1891 sp->cnt++; 1892 1893 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) 1894 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid); 1895 1896 if (unlikely(lport->tt.frame_send(lport, fp))) 1897 goto err; 1898 1899 if (timer_msec) 1900 fc_exch_timer_set_locked(ep, timer_msec); 1901 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */ 1902 1903 if (ep->f_ctl & FC_FC_SEQ_INIT) 1904 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 1905 spin_unlock_bh(&ep->ex_lock); 1906 return sp; 1907 err: 1908 rc = fc_exch_done_locked(ep); 1909 spin_unlock_bh(&ep->ex_lock); 1910 if (!rc) 1911 fc_exch_delete(ep); 1912 return NULL; 1913 } 1914 1915 /** 1916 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command 1917 * @ep: The exchange to send the RRQ on 1918 * 1919 * This tells the remote port to stop blocking the use of 1920 * the exchange and the seq_cnt range. 1921 */ 1922 static void fc_exch_rrq(struct fc_exch *ep) 1923 { 1924 struct fc_lport *lport; 1925 struct fc_els_rrq *rrq; 1926 struct fc_frame *fp; 1927 u32 did; 1928 1929 lport = ep->lp; 1930 1931 fp = fc_frame_alloc(lport, sizeof(*rrq)); 1932 if (!fp) 1933 goto retry; 1934 1935 rrq = fc_frame_payload_get(fp, sizeof(*rrq)); 1936 memset(rrq, 0, sizeof(*rrq)); 1937 rrq->rrq_cmd = ELS_RRQ; 1938 hton24(rrq->rrq_s_id, ep->sid); 1939 rrq->rrq_ox_id = htons(ep->oxid); 1940 rrq->rrq_rx_id = htons(ep->rxid); 1941 1942 did = ep->did; 1943 if (ep->esb_stat & ESB_ST_RESP) 1944 did = ep->sid; 1945 1946 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did, 1947 fc_host_port_id(lport->host), FC_TYPE_ELS, 1948 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0); 1949 1950 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep, 1951 lport->e_d_tov)) 1952 return; 1953 1954 retry: 1955 spin_lock_bh(&ep->ex_lock); 1956 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) { 1957 spin_unlock_bh(&ep->ex_lock); 1958 /* drop hold for rec qual */ 1959 fc_exch_release(ep); 1960 return; 1961 } 1962 ep->esb_stat |= ESB_ST_REC_QUAL; 1963 fc_exch_timer_set_locked(ep, ep->r_a_tov); 1964 spin_unlock_bh(&ep->ex_lock); 1965 } 1966 1967 1968 /** 1969 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests 1970 * @sp: The sequence that the RRQ is on 1971 * @fp: The RRQ frame 1972 */ 1973 static void fc_exch_els_rrq(struct fc_seq *sp, struct fc_frame *fp) 1974 { 1975 struct fc_exch *ep = NULL; /* request or subject exchange */ 1976 struct fc_els_rrq *rp; 1977 u32 sid; 1978 u16 xid; 1979 enum fc_els_rjt_explan explan; 1980 1981 rp = fc_frame_payload_get(fp, sizeof(*rp)); 1982 explan = ELS_EXPL_INV_LEN; 1983 if (!rp) 1984 goto reject; 1985 1986 /* 1987 * lookup subject exchange. 1988 */ 1989 ep = fc_seq_exch(sp); 1990 sid = ntoh24(rp->rrq_s_id); /* subject source */ 1991 xid = ep->did == sid ? ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id); 1992 ep = fc_exch_find(ep->em, xid); 1993 1994 explan = ELS_EXPL_OXID_RXID; 1995 if (!ep) 1996 goto reject; 1997 spin_lock_bh(&ep->ex_lock); 1998 if (ep->oxid != ntohs(rp->rrq_ox_id)) 1999 goto unlock_reject; 2000 if (ep->rxid != ntohs(rp->rrq_rx_id) && 2001 ep->rxid != FC_XID_UNKNOWN) 2002 goto unlock_reject; 2003 explan = ELS_EXPL_SID; 2004 if (ep->sid != sid) 2005 goto unlock_reject; 2006 2007 /* 2008 * Clear Recovery Qualifier state, and cancel timer if complete. 2009 */ 2010 if (ep->esb_stat & ESB_ST_REC_QUAL) { 2011 ep->esb_stat &= ~ESB_ST_REC_QUAL; 2012 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */ 2013 } 2014 if (ep->esb_stat & ESB_ST_COMPLETE) { 2015 if (cancel_delayed_work(&ep->timeout_work)) 2016 atomic_dec(&ep->ex_refcnt); /* drop timer hold */ 2017 } 2018 2019 spin_unlock_bh(&ep->ex_lock); 2020 2021 /* 2022 * Send LS_ACC. 2023 */ 2024 fc_seq_ls_acc(sp); 2025 goto out; 2026 2027 unlock_reject: 2028 spin_unlock_bh(&ep->ex_lock); 2029 reject: 2030 fc_seq_ls_rjt(sp, ELS_RJT_LOGIC, explan); 2031 out: 2032 fc_frame_free(fp); 2033 if (ep) 2034 fc_exch_release(ep); /* drop hold from fc_exch_find */ 2035 } 2036 2037 /** 2038 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs 2039 * @lport: The local port to add the exchange manager to 2040 * @mp: The exchange manager to be added to the local port 2041 * @match: The match routine that indicates when this EM should be used 2042 */ 2043 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport, 2044 struct fc_exch_mgr *mp, 2045 bool (*match)(struct fc_frame *)) 2046 { 2047 struct fc_exch_mgr_anchor *ema; 2048 2049 ema = kmalloc(sizeof(*ema), GFP_ATOMIC); 2050 if (!ema) 2051 return ema; 2052 2053 ema->mp = mp; 2054 ema->match = match; 2055 /* add EM anchor to EM anchors list */ 2056 list_add_tail(&ema->ema_list, &lport->ema_list); 2057 kref_get(&mp->kref); 2058 return ema; 2059 } 2060 EXPORT_SYMBOL(fc_exch_mgr_add); 2061 2062 /** 2063 * fc_exch_mgr_destroy() - Destroy an exchange manager 2064 * @kref: The reference to the EM to be destroyed 2065 */ 2066 static void fc_exch_mgr_destroy(struct kref *kref) 2067 { 2068 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref); 2069 2070 mempool_destroy(mp->ep_pool); 2071 free_percpu(mp->pool); 2072 kfree(mp); 2073 } 2074 2075 /** 2076 * fc_exch_mgr_del() - Delete an EM from a local port's list 2077 * @ema: The exchange manager anchor identifying the EM to be deleted 2078 */ 2079 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema) 2080 { 2081 /* remove EM anchor from EM anchors list */ 2082 list_del(&ema->ema_list); 2083 kref_put(&ema->mp->kref, fc_exch_mgr_destroy); 2084 kfree(ema); 2085 } 2086 EXPORT_SYMBOL(fc_exch_mgr_del); 2087 2088 /** 2089 * fc_exch_mgr_list_clone() - Share all exchange manager objects 2090 * @src: Source lport to clone exchange managers from 2091 * @dst: New lport that takes references to all the exchange managers 2092 */ 2093 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst) 2094 { 2095 struct fc_exch_mgr_anchor *ema, *tmp; 2096 2097 list_for_each_entry(ema, &src->ema_list, ema_list) { 2098 if (!fc_exch_mgr_add(dst, ema->mp, ema->match)) 2099 goto err; 2100 } 2101 return 0; 2102 err: 2103 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list) 2104 fc_exch_mgr_del(ema); 2105 return -ENOMEM; 2106 } 2107 2108 /** 2109 * fc_exch_mgr_alloc() - Allocate an exchange manager 2110 * @lport: The local port that the new EM will be associated with 2111 * @class: The default FC class for new exchanges 2112 * @min_xid: The minimum XID for exchanges from the new EM 2113 * @max_xid: The maximum XID for exchanges from the new EM 2114 * @match: The match routine for the new EM 2115 */ 2116 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport, 2117 enum fc_class class, 2118 u16 min_xid, u16 max_xid, 2119 bool (*match)(struct fc_frame *)) 2120 { 2121 struct fc_exch_mgr *mp; 2122 u16 pool_exch_range; 2123 size_t pool_size; 2124 unsigned int cpu; 2125 struct fc_exch_pool *pool; 2126 2127 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN || 2128 (min_xid & fc_cpu_mask) != 0) { 2129 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n", 2130 min_xid, max_xid); 2131 return NULL; 2132 } 2133 2134 /* 2135 * allocate memory for EM 2136 */ 2137 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC); 2138 if (!mp) 2139 return NULL; 2140 2141 mp->class = class; 2142 /* adjust em exch xid range for offload */ 2143 mp->min_xid = min_xid; 2144 mp->max_xid = max_xid; 2145 2146 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep); 2147 if (!mp->ep_pool) 2148 goto free_mp; 2149 2150 /* 2151 * Setup per cpu exch pool with entire exchange id range equally 2152 * divided across all cpus. The exch pointers array memory is 2153 * allocated for exch range per pool. 2154 */ 2155 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1); 2156 mp->pool_max_index = pool_exch_range - 1; 2157 2158 /* 2159 * Allocate and initialize per cpu exch pool 2160 */ 2161 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *); 2162 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool)); 2163 if (!mp->pool) 2164 goto free_mempool; 2165 for_each_possible_cpu(cpu) { 2166 pool = per_cpu_ptr(mp->pool, cpu); 2167 spin_lock_init(&pool->lock); 2168 INIT_LIST_HEAD(&pool->ex_list); 2169 } 2170 2171 kref_init(&mp->kref); 2172 if (!fc_exch_mgr_add(lport, mp, match)) { 2173 free_percpu(mp->pool); 2174 goto free_mempool; 2175 } 2176 2177 /* 2178 * Above kref_init() sets mp->kref to 1 and then 2179 * call to fc_exch_mgr_add incremented mp->kref again, 2180 * so adjust that extra increment. 2181 */ 2182 kref_put(&mp->kref, fc_exch_mgr_destroy); 2183 return mp; 2184 2185 free_mempool: 2186 mempool_destroy(mp->ep_pool); 2187 free_mp: 2188 kfree(mp); 2189 return NULL; 2190 } 2191 EXPORT_SYMBOL(fc_exch_mgr_alloc); 2192 2193 /** 2194 * fc_exch_mgr_free() - Free all exchange managers on a local port 2195 * @lport: The local port whose EMs are to be freed 2196 */ 2197 void fc_exch_mgr_free(struct fc_lport *lport) 2198 { 2199 struct fc_exch_mgr_anchor *ema, *next; 2200 2201 flush_workqueue(fc_exch_workqueue); 2202 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list) 2203 fc_exch_mgr_del(ema); 2204 } 2205 EXPORT_SYMBOL(fc_exch_mgr_free); 2206 2207 /** 2208 * fc_exch_recv() - Handler for received frames 2209 * @lport: The local port the frame was received on 2210 * @fp: The received frame 2211 */ 2212 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp) 2213 { 2214 struct fc_frame_header *fh = fc_frame_header_get(fp); 2215 struct fc_exch_mgr_anchor *ema; 2216 u32 f_ctl, found = 0; 2217 u16 oxid; 2218 2219 /* lport lock ? */ 2220 if (!lport || lport->state == LPORT_ST_DISABLED) { 2221 FC_LPORT_DBG(lport, "Receiving frames for an lport that " 2222 "has not been initialized correctly\n"); 2223 fc_frame_free(fp); 2224 return; 2225 } 2226 2227 f_ctl = ntoh24(fh->fh_f_ctl); 2228 oxid = ntohs(fh->fh_ox_id); 2229 if (f_ctl & FC_FC_EX_CTX) { 2230 list_for_each_entry(ema, &lport->ema_list, ema_list) { 2231 if ((oxid >= ema->mp->min_xid) && 2232 (oxid <= ema->mp->max_xid)) { 2233 found = 1; 2234 break; 2235 } 2236 } 2237 2238 if (!found) { 2239 FC_LPORT_DBG(lport, "Received response for out " 2240 "of range oxid:%hx\n", oxid); 2241 fc_frame_free(fp); 2242 return; 2243 } 2244 } else 2245 ema = list_entry(lport->ema_list.prev, typeof(*ema), ema_list); 2246 2247 /* 2248 * If frame is marked invalid, just drop it. 2249 */ 2250 switch (fr_eof(fp)) { 2251 case FC_EOF_T: 2252 if (f_ctl & FC_FC_END_SEQ) 2253 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl)); 2254 /* fall through */ 2255 case FC_EOF_N: 2256 if (fh->fh_type == FC_TYPE_BLS) 2257 fc_exch_recv_bls(ema->mp, fp); 2258 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) == 2259 FC_FC_EX_CTX) 2260 fc_exch_recv_seq_resp(ema->mp, fp); 2261 else if (f_ctl & FC_FC_SEQ_CTX) 2262 fc_exch_recv_resp(ema->mp, fp); 2263 else 2264 fc_exch_recv_req(lport, ema->mp, fp); 2265 break; 2266 default: 2267 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)", 2268 fr_eof(fp)); 2269 fc_frame_free(fp); 2270 } 2271 } 2272 EXPORT_SYMBOL(fc_exch_recv); 2273 2274 /** 2275 * fc_exch_init() - Initialize the exchange layer for a local port 2276 * @lport: The local port to initialize the exchange layer for 2277 */ 2278 int fc_exch_init(struct fc_lport *lport) 2279 { 2280 if (!lport->tt.seq_start_next) 2281 lport->tt.seq_start_next = fc_seq_start_next; 2282 2283 if (!lport->tt.exch_seq_send) 2284 lport->tt.exch_seq_send = fc_exch_seq_send; 2285 2286 if (!lport->tt.seq_send) 2287 lport->tt.seq_send = fc_seq_send; 2288 2289 if (!lport->tt.seq_els_rsp_send) 2290 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send; 2291 2292 if (!lport->tt.exch_done) 2293 lport->tt.exch_done = fc_exch_done; 2294 2295 if (!lport->tt.exch_mgr_reset) 2296 lport->tt.exch_mgr_reset = fc_exch_mgr_reset; 2297 2298 if (!lport->tt.seq_exch_abort) 2299 lport->tt.seq_exch_abort = fc_seq_exch_abort; 2300 2301 return 0; 2302 } 2303 EXPORT_SYMBOL(fc_exch_init); 2304 2305 /** 2306 * fc_setup_exch_mgr() - Setup an exchange manager 2307 */ 2308 int fc_setup_exch_mgr() 2309 { 2310 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch), 2311 0, SLAB_HWCACHE_ALIGN, NULL); 2312 if (!fc_em_cachep) 2313 return -ENOMEM; 2314 2315 /* 2316 * Initialize fc_cpu_mask and fc_cpu_order. The 2317 * fc_cpu_mask is set for nr_cpu_ids rounded up 2318 * to order of 2's * power and order is stored 2319 * in fc_cpu_order as this is later required in 2320 * mapping between an exch id and exch array index 2321 * in per cpu exch pool. 2322 * 2323 * This round up is required to align fc_cpu_mask 2324 * to exchange id's lower bits such that all incoming 2325 * frames of an exchange gets delivered to the same 2326 * cpu on which exchange originated by simple bitwise 2327 * AND operation between fc_cpu_mask and exchange id. 2328 */ 2329 fc_cpu_mask = 1; 2330 fc_cpu_order = 0; 2331 while (fc_cpu_mask < nr_cpu_ids) { 2332 fc_cpu_mask <<= 1; 2333 fc_cpu_order++; 2334 } 2335 fc_cpu_mask--; 2336 2337 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue"); 2338 if (!fc_exch_workqueue) 2339 return -ENOMEM; 2340 return 0; 2341 } 2342 2343 /** 2344 * fc_destroy_exch_mgr() - Destroy an exchange manager 2345 */ 2346 void fc_destroy_exch_mgr() 2347 { 2348 destroy_workqueue(fc_exch_workqueue); 2349 kmem_cache_destroy(fc_em_cachep); 2350 } 2351