xref: /linux/drivers/scsi/libfc/fc_exch.c (revision 47902f3611b392209e2a412bf7ec02dca95e666d)
1 /*
2  * Copyright(c) 2007 Intel Corporation. All rights reserved.
3  * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
4  * Copyright(c) 2008 Mike Christie
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Maintained at www.Open-FCoE.org
20  */
21 
22 /*
23  * Fibre Channel exchange and sequence handling.
24  */
25 
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 
30 #include <scsi/fc/fc_fc2.h>
31 
32 #include <scsi/libfc.h>
33 #include <scsi/fc_encode.h>
34 
35 #include "fc_libfc.h"
36 
37 u16	fc_cpu_mask;		/* cpu mask for possible cpus */
38 EXPORT_SYMBOL(fc_cpu_mask);
39 static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
40 static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
41 struct workqueue_struct *fc_exch_workqueue;
42 
43 /*
44  * Structure and function definitions for managing Fibre Channel Exchanges
45  * and Sequences.
46  *
47  * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
48  *
49  * fc_exch_mgr holds the exchange state for an N port
50  *
51  * fc_exch holds state for one exchange and links to its active sequence.
52  *
53  * fc_seq holds the state for an individual sequence.
54  */
55 
56 /**
57  * struct fc_exch_pool - Per cpu exchange pool
58  * @next_index:	  Next possible free exchange index
59  * @total_exches: Total allocated exchanges
60  * @lock:	  Exch pool lock
61  * @ex_list:	  List of exchanges
62  *
63  * This structure manages per cpu exchanges in array of exchange pointers.
64  * This array is allocated followed by struct fc_exch_pool memory for
65  * assigned range of exchanges to per cpu pool.
66  */
67 struct fc_exch_pool {
68 	u16		 next_index;
69 	u16		 total_exches;
70 	spinlock_t	 lock;
71 	struct list_head ex_list;
72 };
73 
74 /**
75  * struct fc_exch_mgr - The Exchange Manager (EM).
76  * @class:	    Default class for new sequences
77  * @kref:	    Reference counter
78  * @min_xid:	    Minimum exchange ID
79  * @max_xid:	    Maximum exchange ID
80  * @ep_pool:	    Reserved exchange pointers
81  * @pool_max_index: Max exch array index in exch pool
82  * @pool:	    Per cpu exch pool
83  * @stats:	    Statistics structure
84  *
85  * This structure is the center for creating exchanges and sequences.
86  * It manages the allocation of exchange IDs.
87  */
88 struct fc_exch_mgr {
89 	enum fc_class	class;
90 	struct kref	kref;
91 	u16		min_xid;
92 	u16		max_xid;
93 	mempool_t	*ep_pool;
94 	u16		pool_max_index;
95 	struct fc_exch_pool *pool;
96 
97 	/*
98 	 * currently exchange mgr stats are updated but not used.
99 	 * either stats can be expose via sysfs or remove them
100 	 * all together if not used XXX
101 	 */
102 	struct {
103 		atomic_t no_free_exch;
104 		atomic_t no_free_exch_xid;
105 		atomic_t xid_not_found;
106 		atomic_t xid_busy;
107 		atomic_t seq_not_found;
108 		atomic_t non_bls_resp;
109 	} stats;
110 };
111 #define	fc_seq_exch(sp) container_of(sp, struct fc_exch, seq)
112 
113 /**
114  * struct fc_exch_mgr_anchor - primary structure for list of EMs
115  * @ema_list: Exchange Manager Anchor list
116  * @mp:	      Exchange Manager associated with this anchor
117  * @match:    Routine to determine if this anchor's EM should be used
118  *
119  * When walking the list of anchors the match routine will be called
120  * for each anchor to determine if that EM should be used. The last
121  * anchor in the list will always match to handle any exchanges not
122  * handled by other EMs. The non-default EMs would be added to the
123  * anchor list by HW that provides FCoE offloads.
124  */
125 struct fc_exch_mgr_anchor {
126 	struct list_head ema_list;
127 	struct fc_exch_mgr *mp;
128 	bool (*match)(struct fc_frame *);
129 };
130 
131 static void fc_exch_rrq(struct fc_exch *);
132 static void fc_seq_ls_acc(struct fc_seq *);
133 static void fc_seq_ls_rjt(struct fc_seq *, enum fc_els_rjt_reason,
134 			  enum fc_els_rjt_explan);
135 static void fc_exch_els_rec(struct fc_seq *, struct fc_frame *);
136 static void fc_exch_els_rrq(struct fc_seq *, struct fc_frame *);
137 
138 /*
139  * Internal implementation notes.
140  *
141  * The exchange manager is one by default in libfc but LLD may choose
142  * to have one per CPU. The sequence manager is one per exchange manager
143  * and currently never separated.
144  *
145  * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
146  * assigned by the Sequence Initiator that shall be unique for a specific
147  * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
148  * qualified by exchange ID, which one might think it would be.
149  * In practice this limits the number of open sequences and exchanges to 256
150  * per session.	 For most targets we could treat this limit as per exchange.
151  *
152  * The exchange and its sequence are freed when the last sequence is received.
153  * It's possible for the remote port to leave an exchange open without
154  * sending any sequences.
155  *
156  * Notes on reference counts:
157  *
158  * Exchanges are reference counted and exchange gets freed when the reference
159  * count becomes zero.
160  *
161  * Timeouts:
162  * Sequences are timed out for E_D_TOV and R_A_TOV.
163  *
164  * Sequence event handling:
165  *
166  * The following events may occur on initiator sequences:
167  *
168  *	Send.
169  *	    For now, the whole thing is sent.
170  *	Receive ACK
171  *	    This applies only to class F.
172  *	    The sequence is marked complete.
173  *	ULP completion.
174  *	    The upper layer calls fc_exch_done() when done
175  *	    with exchange and sequence tuple.
176  *	RX-inferred completion.
177  *	    When we receive the next sequence on the same exchange, we can
178  *	    retire the previous sequence ID.  (XXX not implemented).
179  *	Timeout.
180  *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
181  *	    E_D_TOV causes abort and calls upper layer response handler
182  *	    with FC_EX_TIMEOUT error.
183  *	Receive RJT
184  *	    XXX defer.
185  *	Send ABTS
186  *	    On timeout.
187  *
188  * The following events may occur on recipient sequences:
189  *
190  *	Receive
191  *	    Allocate sequence for first frame received.
192  *	    Hold during receive handler.
193  *	    Release when final frame received.
194  *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
195  *	Receive ABTS
196  *	    Deallocate sequence
197  *	Send RJT
198  *	    Deallocate
199  *
200  * For now, we neglect conditions where only part of a sequence was
201  * received or transmitted, or where out-of-order receipt is detected.
202  */
203 
204 /*
205  * Locking notes:
206  *
207  * The EM code run in a per-CPU worker thread.
208  *
209  * To protect against concurrency between a worker thread code and timers,
210  * sequence allocation and deallocation must be locked.
211  *  - exchange refcnt can be done atomicly without locks.
212  *  - sequence allocation must be locked by exch lock.
213  *  - If the EM pool lock and ex_lock must be taken at the same time, then the
214  *    EM pool lock must be taken before the ex_lock.
215  */
216 
217 /*
218  * opcode names for debugging.
219  */
220 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
221 
222 #define FC_TABLE_SIZE(x)   (sizeof(x) / sizeof(x[0]))
223 
224 /**
225  * fc_exch_name_lookup() - Lookup name by opcode
226  * @op:	       Opcode to be looked up
227  * @table:     Opcode/name table
228  * @max_index: Index not to be exceeded
229  *
230  * This routine is used to determine a human-readable string identifying
231  * a R_CTL opcode.
232  */
233 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
234 					      unsigned int max_index)
235 {
236 	const char *name = NULL;
237 
238 	if (op < max_index)
239 		name = table[op];
240 	if (!name)
241 		name = "unknown";
242 	return name;
243 }
244 
245 /**
246  * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
247  * @op: The opcode to be looked up
248  */
249 static const char *fc_exch_rctl_name(unsigned int op)
250 {
251 	return fc_exch_name_lookup(op, fc_exch_rctl_names,
252 				   FC_TABLE_SIZE(fc_exch_rctl_names));
253 }
254 
255 /**
256  * fc_exch_hold() - Increment an exchange's reference count
257  * @ep: Echange to be held
258  */
259 static inline void fc_exch_hold(struct fc_exch *ep)
260 {
261 	atomic_inc(&ep->ex_refcnt);
262 }
263 
264 /**
265  * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
266  *			 and determine SOF and EOF.
267  * @ep:	   The exchange to that will use the header
268  * @fp:	   The frame whose header is to be modified
269  * @f_ctl: F_CTL bits that will be used for the frame header
270  *
271  * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
272  * fh_seq_id, fh_seq_cnt and the SOF and EOF.
273  */
274 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
275 			      u32 f_ctl)
276 {
277 	struct fc_frame_header *fh = fc_frame_header_get(fp);
278 	u16 fill;
279 
280 	fr_sof(fp) = ep->class;
281 	if (ep->seq.cnt)
282 		fr_sof(fp) = fc_sof_normal(ep->class);
283 
284 	if (f_ctl & FC_FC_END_SEQ) {
285 		fr_eof(fp) = FC_EOF_T;
286 		if (fc_sof_needs_ack(ep->class))
287 			fr_eof(fp) = FC_EOF_N;
288 		/*
289 		 * From F_CTL.
290 		 * The number of fill bytes to make the length a 4-byte
291 		 * multiple is the low order 2-bits of the f_ctl.
292 		 * The fill itself will have been cleared by the frame
293 		 * allocation.
294 		 * After this, the length will be even, as expected by
295 		 * the transport.
296 		 */
297 		fill = fr_len(fp) & 3;
298 		if (fill) {
299 			fill = 4 - fill;
300 			/* TODO, this may be a problem with fragmented skb */
301 			skb_put(fp_skb(fp), fill);
302 			hton24(fh->fh_f_ctl, f_ctl | fill);
303 		}
304 	} else {
305 		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
306 		fr_eof(fp) = FC_EOF_N;
307 	}
308 
309 	/*
310 	 * Initialize remainig fh fields
311 	 * from fc_fill_fc_hdr
312 	 */
313 	fh->fh_ox_id = htons(ep->oxid);
314 	fh->fh_rx_id = htons(ep->rxid);
315 	fh->fh_seq_id = ep->seq.id;
316 	fh->fh_seq_cnt = htons(ep->seq.cnt);
317 }
318 
319 /**
320  * fc_exch_release() - Decrement an exchange's reference count
321  * @ep: Exchange to be released
322  *
323  * If the reference count reaches zero and the exchange is complete,
324  * it is freed.
325  */
326 static void fc_exch_release(struct fc_exch *ep)
327 {
328 	struct fc_exch_mgr *mp;
329 
330 	if (atomic_dec_and_test(&ep->ex_refcnt)) {
331 		mp = ep->em;
332 		if (ep->destructor)
333 			ep->destructor(&ep->seq, ep->arg);
334 		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
335 		mempool_free(ep, mp->ep_pool);
336 	}
337 }
338 
339 /**
340  * fc_exch_done_locked() - Complete an exchange with the exchange lock held
341  * @ep: The exchange that is complete
342  */
343 static int fc_exch_done_locked(struct fc_exch *ep)
344 {
345 	int rc = 1;
346 
347 	/*
348 	 * We must check for completion in case there are two threads
349 	 * tyring to complete this. But the rrq code will reuse the
350 	 * ep, and in that case we only clear the resp and set it as
351 	 * complete, so it can be reused by the timer to send the rrq.
352 	 */
353 	ep->resp = NULL;
354 	if (ep->state & FC_EX_DONE)
355 		return rc;
356 	ep->esb_stat |= ESB_ST_COMPLETE;
357 
358 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
359 		ep->state |= FC_EX_DONE;
360 		if (cancel_delayed_work(&ep->timeout_work))
361 			atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
362 		rc = 0;
363 	}
364 	return rc;
365 }
366 
367 /**
368  * fc_exch_ptr_get() - Return an exchange from an exchange pool
369  * @pool:  Exchange Pool to get an exchange from
370  * @index: Index of the exchange within the pool
371  *
372  * Use the index to get an exchange from within an exchange pool. exches
373  * will point to an array of exchange pointers. The index will select
374  * the exchange within the array.
375  */
376 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
377 					      u16 index)
378 {
379 	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
380 	return exches[index];
381 }
382 
383 /**
384  * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
385  * @pool:  The pool to assign the exchange to
386  * @index: The index in the pool where the exchange will be assigned
387  * @ep:	   The exchange to assign to the pool
388  */
389 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
390 				   struct fc_exch *ep)
391 {
392 	((struct fc_exch **)(pool + 1))[index] = ep;
393 }
394 
395 /**
396  * fc_exch_delete() - Delete an exchange
397  * @ep: The exchange to be deleted
398  */
399 static void fc_exch_delete(struct fc_exch *ep)
400 {
401 	struct fc_exch_pool *pool;
402 
403 	pool = ep->pool;
404 	spin_lock_bh(&pool->lock);
405 	WARN_ON(pool->total_exches <= 0);
406 	pool->total_exches--;
407 	fc_exch_ptr_set(pool, (ep->xid - ep->em->min_xid) >> fc_cpu_order,
408 			NULL);
409 	list_del(&ep->ex_list);
410 	spin_unlock_bh(&pool->lock);
411 	fc_exch_release(ep);	/* drop hold for exch in mp */
412 }
413 
414 /**
415  * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
416  *				the exchange lock held
417  * @ep:		The exchange whose timer will start
418  * @timer_msec: The timeout period
419  *
420  * Used for upper level protocols to time out the exchange.
421  * The timer is cancelled when it fires or when the exchange completes.
422  */
423 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
424 					    unsigned int timer_msec)
425 {
426 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
427 		return;
428 
429 	FC_EXCH_DBG(ep, "Exchange timer armed\n");
430 
431 	if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
432 			       msecs_to_jiffies(timer_msec)))
433 		fc_exch_hold(ep);		/* hold for timer */
434 }
435 
436 /**
437  * fc_exch_timer_set() - Lock the exchange and set the timer
438  * @ep:		The exchange whose timer will start
439  * @timer_msec: The timeout period
440  */
441 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
442 {
443 	spin_lock_bh(&ep->ex_lock);
444 	fc_exch_timer_set_locked(ep, timer_msec);
445 	spin_unlock_bh(&ep->ex_lock);
446 }
447 
448 /**
449  * fc_seq_send() - Send a frame using existing sequence/exchange pair
450  * @lport: The local port that the exchange will be sent on
451  * @sp:	   The sequence to be sent
452  * @fp:	   The frame to be sent on the exchange
453  */
454 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
455 		       struct fc_frame *fp)
456 {
457 	struct fc_exch *ep;
458 	struct fc_frame_header *fh = fc_frame_header_get(fp);
459 	int error;
460 	u32 f_ctl;
461 
462 	ep = fc_seq_exch(sp);
463 	WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
464 
465 	f_ctl = ntoh24(fh->fh_f_ctl);
466 	fc_exch_setup_hdr(ep, fp, f_ctl);
467 
468 	/*
469 	 * update sequence count if this frame is carrying
470 	 * multiple FC frames when sequence offload is enabled
471 	 * by LLD.
472 	 */
473 	if (fr_max_payload(fp))
474 		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
475 					fr_max_payload(fp));
476 	else
477 		sp->cnt++;
478 
479 	/*
480 	 * Send the frame.
481 	 */
482 	error = lport->tt.frame_send(lport, fp);
483 
484 	/*
485 	 * Update the exchange and sequence flags,
486 	 * assuming all frames for the sequence have been sent.
487 	 * We can only be called to send once for each sequence.
488 	 */
489 	spin_lock_bh(&ep->ex_lock);
490 	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
491 	if (f_ctl & (FC_FC_END_SEQ | FC_FC_SEQ_INIT))
492 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
493 	spin_unlock_bh(&ep->ex_lock);
494 	return error;
495 }
496 
497 /**
498  * fc_seq_alloc() - Allocate a sequence for a given exchange
499  * @ep:	    The exchange to allocate a new sequence for
500  * @seq_id: The sequence ID to be used
501  *
502  * We don't support multiple originated sequences on the same exchange.
503  * By implication, any previously originated sequence on this exchange
504  * is complete, and we reallocate the same sequence.
505  */
506 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
507 {
508 	struct fc_seq *sp;
509 
510 	sp = &ep->seq;
511 	sp->ssb_stat = 0;
512 	sp->cnt = 0;
513 	sp->id = seq_id;
514 	return sp;
515 }
516 
517 /**
518  * fc_seq_start_next_locked() - Allocate a new sequence on the same
519  *				exchange as the supplied sequence
520  * @sp: The sequence/exchange to get a new sequence for
521  */
522 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
523 {
524 	struct fc_exch *ep = fc_seq_exch(sp);
525 
526 	sp = fc_seq_alloc(ep, ep->seq_id++);
527 	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
528 		    ep->f_ctl, sp->id);
529 	return sp;
530 }
531 
532 /**
533  * fc_seq_start_next() - Lock the exchange and get a new sequence
534  *			 for a given sequence/exchange pair
535  * @sp: The sequence/exchange to get a new exchange for
536  */
537 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
538 {
539 	struct fc_exch *ep = fc_seq_exch(sp);
540 
541 	spin_lock_bh(&ep->ex_lock);
542 	sp = fc_seq_start_next_locked(sp);
543 	spin_unlock_bh(&ep->ex_lock);
544 
545 	return sp;
546 }
547 
548 /**
549  * fc_seq_exch_abort() - Abort an exchange and sequence
550  * @req_sp:	The sequence to be aborted
551  * @timer_msec: The period of time to wait before aborting
552  *
553  * Generally called because of a timeout or an abort from the upper layer.
554  */
555 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
556 			     unsigned int timer_msec)
557 {
558 	struct fc_seq *sp;
559 	struct fc_exch *ep;
560 	struct fc_frame *fp;
561 	int error;
562 
563 	ep = fc_seq_exch(req_sp);
564 
565 	spin_lock_bh(&ep->ex_lock);
566 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
567 	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
568 		spin_unlock_bh(&ep->ex_lock);
569 		return -ENXIO;
570 	}
571 
572 	/*
573 	 * Send the abort on a new sequence if possible.
574 	 */
575 	sp = fc_seq_start_next_locked(&ep->seq);
576 	if (!sp) {
577 		spin_unlock_bh(&ep->ex_lock);
578 		return -ENOMEM;
579 	}
580 
581 	ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
582 	if (timer_msec)
583 		fc_exch_timer_set_locked(ep, timer_msec);
584 	spin_unlock_bh(&ep->ex_lock);
585 
586 	/*
587 	 * If not logged into the fabric, don't send ABTS but leave
588 	 * sequence active until next timeout.
589 	 */
590 	if (!ep->sid)
591 		return 0;
592 
593 	/*
594 	 * Send an abort for the sequence that timed out.
595 	 */
596 	fp = fc_frame_alloc(ep->lp, 0);
597 	if (fp) {
598 		fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
599 			       FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
600 		error = fc_seq_send(ep->lp, sp, fp);
601 	} else
602 		error = -ENOBUFS;
603 	return error;
604 }
605 
606 /**
607  * fc_exch_timeout() - Handle exchange timer expiration
608  * @work: The work_struct identifying the exchange that timed out
609  */
610 static void fc_exch_timeout(struct work_struct *work)
611 {
612 	struct fc_exch *ep = container_of(work, struct fc_exch,
613 					  timeout_work.work);
614 	struct fc_seq *sp = &ep->seq;
615 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
616 	void *arg;
617 	u32 e_stat;
618 	int rc = 1;
619 
620 	FC_EXCH_DBG(ep, "Exchange timed out\n");
621 
622 	spin_lock_bh(&ep->ex_lock);
623 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
624 		goto unlock;
625 
626 	e_stat = ep->esb_stat;
627 	if (e_stat & ESB_ST_COMPLETE) {
628 		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
629 		spin_unlock_bh(&ep->ex_lock);
630 		if (e_stat & ESB_ST_REC_QUAL)
631 			fc_exch_rrq(ep);
632 		goto done;
633 	} else {
634 		resp = ep->resp;
635 		arg = ep->arg;
636 		ep->resp = NULL;
637 		if (e_stat & ESB_ST_ABNORMAL)
638 			rc = fc_exch_done_locked(ep);
639 		spin_unlock_bh(&ep->ex_lock);
640 		if (!rc)
641 			fc_exch_delete(ep);
642 		if (resp)
643 			resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
644 		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
645 		goto done;
646 	}
647 unlock:
648 	spin_unlock_bh(&ep->ex_lock);
649 done:
650 	/*
651 	 * This release matches the hold taken when the timer was set.
652 	 */
653 	fc_exch_release(ep);
654 }
655 
656 /**
657  * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
658  * @lport: The local port that the exchange is for
659  * @mp:	   The exchange manager that will allocate the exchange
660  *
661  * Returns pointer to allocated fc_exch with exch lock held.
662  */
663 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
664 					struct fc_exch_mgr *mp)
665 {
666 	struct fc_exch *ep;
667 	unsigned int cpu;
668 	u16 index;
669 	struct fc_exch_pool *pool;
670 
671 	/* allocate memory for exchange */
672 	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
673 	if (!ep) {
674 		atomic_inc(&mp->stats.no_free_exch);
675 		goto out;
676 	}
677 	memset(ep, 0, sizeof(*ep));
678 
679 	cpu = smp_processor_id();
680 	pool = per_cpu_ptr(mp->pool, cpu);
681 	spin_lock_bh(&pool->lock);
682 	index = pool->next_index;
683 	/* allocate new exch from pool */
684 	while (fc_exch_ptr_get(pool, index)) {
685 		index = index == mp->pool_max_index ? 0 : index + 1;
686 		if (index == pool->next_index)
687 			goto err;
688 	}
689 	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
690 
691 	fc_exch_hold(ep);	/* hold for exch in mp */
692 	spin_lock_init(&ep->ex_lock);
693 	/*
694 	 * Hold exch lock for caller to prevent fc_exch_reset()
695 	 * from releasing exch	while fc_exch_alloc() caller is
696 	 * still working on exch.
697 	 */
698 	spin_lock_bh(&ep->ex_lock);
699 
700 	fc_exch_ptr_set(pool, index, ep);
701 	list_add_tail(&ep->ex_list, &pool->ex_list);
702 	fc_seq_alloc(ep, ep->seq_id++);
703 	pool->total_exches++;
704 	spin_unlock_bh(&pool->lock);
705 
706 	/*
707 	 *  update exchange
708 	 */
709 	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
710 	ep->em = mp;
711 	ep->pool = pool;
712 	ep->lp = lport;
713 	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
714 	ep->rxid = FC_XID_UNKNOWN;
715 	ep->class = mp->class;
716 	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
717 out:
718 	return ep;
719 err:
720 	spin_unlock_bh(&pool->lock);
721 	atomic_inc(&mp->stats.no_free_exch_xid);
722 	mempool_free(ep, mp->ep_pool);
723 	return NULL;
724 }
725 
726 /**
727  * fc_exch_alloc() - Allocate an exchange from an EM on a
728  *		     local port's list of EMs.
729  * @lport: The local port that will own the exchange
730  * @fp:	   The FC frame that the exchange will be for
731  *
732  * This function walks the list of exchange manager(EM)
733  * anchors to select an EM for a new exchange allocation. The
734  * EM is selected when a NULL match function pointer is encountered
735  * or when a call to a match function returns true.
736  */
737 static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
738 				     struct fc_frame *fp)
739 {
740 	struct fc_exch_mgr_anchor *ema;
741 	struct fc_exch *ep;
742 
743 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
744 		if (!ema->match || ema->match(fp)) {
745 			ep = fc_exch_em_alloc(lport, ema->mp);
746 			if (ep)
747 				return ep;
748 		}
749 	}
750 	return NULL;
751 }
752 
753 /**
754  * fc_exch_find() - Lookup and hold an exchange
755  * @mp:	 The exchange manager to lookup the exchange from
756  * @xid: The XID of the exchange to look up
757  */
758 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
759 {
760 	struct fc_exch_pool *pool;
761 	struct fc_exch *ep = NULL;
762 
763 	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
764 		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
765 		spin_lock_bh(&pool->lock);
766 		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
767 		if (ep) {
768 			fc_exch_hold(ep);
769 			WARN_ON(ep->xid != xid);
770 		}
771 		spin_unlock_bh(&pool->lock);
772 	}
773 	return ep;
774 }
775 
776 
777 /**
778  * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
779  *		    the memory allocated for the related objects may be freed.
780  * @sp: The sequence that has completed
781  */
782 static void fc_exch_done(struct fc_seq *sp)
783 {
784 	struct fc_exch *ep = fc_seq_exch(sp);
785 	int rc;
786 
787 	spin_lock_bh(&ep->ex_lock);
788 	rc = fc_exch_done_locked(ep);
789 	spin_unlock_bh(&ep->ex_lock);
790 	if (!rc)
791 		fc_exch_delete(ep);
792 }
793 
794 /**
795  * fc_exch_resp() - Allocate a new exchange for a response frame
796  * @lport: The local port that the exchange was for
797  * @mp:	   The exchange manager to allocate the exchange from
798  * @fp:	   The response frame
799  *
800  * Sets the responder ID in the frame header.
801  */
802 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
803 				    struct fc_exch_mgr *mp,
804 				    struct fc_frame *fp)
805 {
806 	struct fc_exch *ep;
807 	struct fc_frame_header *fh;
808 
809 	ep = fc_exch_alloc(lport, fp);
810 	if (ep) {
811 		ep->class = fc_frame_class(fp);
812 
813 		/*
814 		 * Set EX_CTX indicating we're responding on this exchange.
815 		 */
816 		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
817 		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
818 		fh = fc_frame_header_get(fp);
819 		ep->sid = ntoh24(fh->fh_d_id);
820 		ep->did = ntoh24(fh->fh_s_id);
821 		ep->oid = ep->did;
822 
823 		/*
824 		 * Allocated exchange has placed the XID in the
825 		 * originator field. Move it to the responder field,
826 		 * and set the originator XID from the frame.
827 		 */
828 		ep->rxid = ep->xid;
829 		ep->oxid = ntohs(fh->fh_ox_id);
830 		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
831 		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
832 			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
833 
834 		fc_exch_hold(ep);	/* hold for caller */
835 		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
836 	}
837 	return ep;
838 }
839 
840 /**
841  * fc_seq_lookup_recip() - Find a sequence where the other end
842  *			   originated the sequence
843  * @lport: The local port that the frame was sent to
844  * @mp:	   The Exchange Manager to lookup the exchange from
845  * @fp:	   The frame associated with the sequence we're looking for
846  *
847  * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
848  * on the ep that should be released by the caller.
849  */
850 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
851 						 struct fc_exch_mgr *mp,
852 						 struct fc_frame *fp)
853 {
854 	struct fc_frame_header *fh = fc_frame_header_get(fp);
855 	struct fc_exch *ep = NULL;
856 	struct fc_seq *sp = NULL;
857 	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
858 	u32 f_ctl;
859 	u16 xid;
860 
861 	f_ctl = ntoh24(fh->fh_f_ctl);
862 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
863 
864 	/*
865 	 * Lookup or create the exchange if we will be creating the sequence.
866 	 */
867 	if (f_ctl & FC_FC_EX_CTX) {
868 		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
869 		ep = fc_exch_find(mp, xid);
870 		if (!ep) {
871 			atomic_inc(&mp->stats.xid_not_found);
872 			reject = FC_RJT_OX_ID;
873 			goto out;
874 		}
875 		if (ep->rxid == FC_XID_UNKNOWN)
876 			ep->rxid = ntohs(fh->fh_rx_id);
877 		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
878 			reject = FC_RJT_OX_ID;
879 			goto rel;
880 		}
881 	} else {
882 		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
883 
884 		/*
885 		 * Special case for MDS issuing an ELS TEST with a
886 		 * bad rxid of 0.
887 		 * XXX take this out once we do the proper reject.
888 		 */
889 		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
890 		    fc_frame_payload_op(fp) == ELS_TEST) {
891 			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
892 			xid = FC_XID_UNKNOWN;
893 		}
894 
895 		/*
896 		 * new sequence - find the exchange
897 		 */
898 		ep = fc_exch_find(mp, xid);
899 		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
900 			if (ep) {
901 				atomic_inc(&mp->stats.xid_busy);
902 				reject = FC_RJT_RX_ID;
903 				goto rel;
904 			}
905 			ep = fc_exch_resp(lport, mp, fp);
906 			if (!ep) {
907 				reject = FC_RJT_EXCH_EST;	/* XXX */
908 				goto out;
909 			}
910 			xid = ep->xid;	/* get our XID */
911 		} else if (!ep) {
912 			atomic_inc(&mp->stats.xid_not_found);
913 			reject = FC_RJT_RX_ID;	/* XID not found */
914 			goto out;
915 		}
916 	}
917 
918 	/*
919 	 * At this point, we have the exchange held.
920 	 * Find or create the sequence.
921 	 */
922 	if (fc_sof_is_init(fr_sof(fp))) {
923 		sp = fc_seq_start_next(&ep->seq);
924 		if (!sp) {
925 			reject = FC_RJT_SEQ_XS;	/* exchange shortage */
926 			goto rel;
927 		}
928 		sp->id = fh->fh_seq_id;
929 		sp->ssb_stat |= SSB_ST_RESP;
930 	} else {
931 		sp = &ep->seq;
932 		if (sp->id != fh->fh_seq_id) {
933 			atomic_inc(&mp->stats.seq_not_found);
934 			reject = FC_RJT_SEQ_ID;	/* sequence/exch should exist */
935 			goto rel;
936 		}
937 	}
938 	WARN_ON(ep != fc_seq_exch(sp));
939 
940 	if (f_ctl & FC_FC_SEQ_INIT)
941 		ep->esb_stat |= ESB_ST_SEQ_INIT;
942 
943 	fr_seq(fp) = sp;
944 out:
945 	return reject;
946 rel:
947 	fc_exch_done(&ep->seq);
948 	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
949 	return reject;
950 }
951 
952 /**
953  * fc_seq_lookup_orig() - Find a sequence where this end
954  *			  originated the sequence
955  * @mp:	   The Exchange Manager to lookup the exchange from
956  * @fp:	   The frame associated with the sequence we're looking for
957  *
958  * Does not hold the sequence for the caller.
959  */
960 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
961 					 struct fc_frame *fp)
962 {
963 	struct fc_frame_header *fh = fc_frame_header_get(fp);
964 	struct fc_exch *ep;
965 	struct fc_seq *sp = NULL;
966 	u32 f_ctl;
967 	u16 xid;
968 
969 	f_ctl = ntoh24(fh->fh_f_ctl);
970 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
971 	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
972 	ep = fc_exch_find(mp, xid);
973 	if (!ep)
974 		return NULL;
975 	if (ep->seq.id == fh->fh_seq_id) {
976 		/*
977 		 * Save the RX_ID if we didn't previously know it.
978 		 */
979 		sp = &ep->seq;
980 		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
981 		    ep->rxid == FC_XID_UNKNOWN) {
982 			ep->rxid = ntohs(fh->fh_rx_id);
983 		}
984 	}
985 	fc_exch_release(ep);
986 	return sp;
987 }
988 
989 /**
990  * fc_exch_set_addr() - Set the source and destination IDs for an exchange
991  * @ep:	     The exchange to set the addresses for
992  * @orig_id: The originator's ID
993  * @resp_id: The responder's ID
994  *
995  * Note this must be done before the first sequence of the exchange is sent.
996  */
997 static void fc_exch_set_addr(struct fc_exch *ep,
998 			     u32 orig_id, u32 resp_id)
999 {
1000 	ep->oid = orig_id;
1001 	if (ep->esb_stat & ESB_ST_RESP) {
1002 		ep->sid = resp_id;
1003 		ep->did = orig_id;
1004 	} else {
1005 		ep->sid = orig_id;
1006 		ep->did = resp_id;
1007 	}
1008 }
1009 
1010 /**
1011  * fc_seq_els_rsp_send() - Send an ELS response using infomation from
1012  *			   the existing sequence/exchange.
1013  * @sp:	      The sequence/exchange to get information from
1014  * @els_cmd:  The ELS command to be sent
1015  * @els_data: The ELS data to be sent
1016  */
1017 static void fc_seq_els_rsp_send(struct fc_seq *sp, enum fc_els_cmd els_cmd,
1018 				struct fc_seq_els_data *els_data)
1019 {
1020 	switch (els_cmd) {
1021 	case ELS_LS_RJT:
1022 		fc_seq_ls_rjt(sp, els_data->reason, els_data->explan);
1023 		break;
1024 	case ELS_LS_ACC:
1025 		fc_seq_ls_acc(sp);
1026 		break;
1027 	case ELS_RRQ:
1028 		fc_exch_els_rrq(sp, els_data->fp);
1029 		break;
1030 	case ELS_REC:
1031 		fc_exch_els_rec(sp, els_data->fp);
1032 		break;
1033 	default:
1034 		FC_EXCH_DBG(fc_seq_exch(sp), "Invalid ELS CMD:%x\n", els_cmd);
1035 	}
1036 }
1037 
1038 /**
1039  * fc_seq_send_last() - Send a sequence that is the last in the exchange
1040  * @sp:	     The sequence that is to be sent
1041  * @fp:	     The frame that will be sent on the sequence
1042  * @rctl:    The R_CTL information to be sent
1043  * @fh_type: The frame header type
1044  */
1045 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1046 			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1047 {
1048 	u32 f_ctl;
1049 	struct fc_exch *ep = fc_seq_exch(sp);
1050 
1051 	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1052 	f_ctl |= ep->f_ctl;
1053 	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1054 	fc_seq_send(ep->lp, sp, fp);
1055 }
1056 
1057 /**
1058  * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1059  * @sp:	   The sequence to send the ACK on
1060  * @rx_fp: The received frame that is being acknoledged
1061  *
1062  * Send ACK_1 (or equiv.) indicating we received something.
1063  */
1064 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1065 {
1066 	struct fc_frame *fp;
1067 	struct fc_frame_header *rx_fh;
1068 	struct fc_frame_header *fh;
1069 	struct fc_exch *ep = fc_seq_exch(sp);
1070 	struct fc_lport *lport = ep->lp;
1071 	unsigned int f_ctl;
1072 
1073 	/*
1074 	 * Don't send ACKs for class 3.
1075 	 */
1076 	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1077 		fp = fc_frame_alloc(lport, 0);
1078 		if (!fp)
1079 			return;
1080 
1081 		fh = fc_frame_header_get(fp);
1082 		fh->fh_r_ctl = FC_RCTL_ACK_1;
1083 		fh->fh_type = FC_TYPE_BLS;
1084 
1085 		/*
1086 		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1087 		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1088 		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1089 		 * Last ACK uses bits 7-6 (continue sequence),
1090 		 * bits 5-4 are meaningful (what kind of ACK to use).
1091 		 */
1092 		rx_fh = fc_frame_header_get(rx_fp);
1093 		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1094 		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1095 			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1096 			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1097 			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1098 		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1099 		hton24(fh->fh_f_ctl, f_ctl);
1100 
1101 		fc_exch_setup_hdr(ep, fp, f_ctl);
1102 		fh->fh_seq_id = rx_fh->fh_seq_id;
1103 		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1104 		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1105 
1106 		fr_sof(fp) = fr_sof(rx_fp);
1107 		if (f_ctl & FC_FC_END_SEQ)
1108 			fr_eof(fp) = FC_EOF_T;
1109 		else
1110 			fr_eof(fp) = FC_EOF_N;
1111 
1112 		lport->tt.frame_send(lport, fp);
1113 	}
1114 }
1115 
1116 /**
1117  * fc_exch_send_ba_rjt() - Send BLS Reject
1118  * @rx_fp:  The frame being rejected
1119  * @reason: The reason the frame is being rejected
1120  * @explan: The explaination for the rejection
1121  *
1122  * This is for rejecting BA_ABTS only.
1123  */
1124 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1125 				enum fc_ba_rjt_reason reason,
1126 				enum fc_ba_rjt_explan explan)
1127 {
1128 	struct fc_frame *fp;
1129 	struct fc_frame_header *rx_fh;
1130 	struct fc_frame_header *fh;
1131 	struct fc_ba_rjt *rp;
1132 	struct fc_lport *lport;
1133 	unsigned int f_ctl;
1134 
1135 	lport = fr_dev(rx_fp);
1136 	fp = fc_frame_alloc(lport, sizeof(*rp));
1137 	if (!fp)
1138 		return;
1139 	fh = fc_frame_header_get(fp);
1140 	rx_fh = fc_frame_header_get(rx_fp);
1141 
1142 	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1143 
1144 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1145 	rp->br_reason = reason;
1146 	rp->br_explan = explan;
1147 
1148 	/*
1149 	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1150 	 */
1151 	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1152 	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1153 	fh->fh_ox_id = rx_fh->fh_ox_id;
1154 	fh->fh_rx_id = rx_fh->fh_rx_id;
1155 	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1156 	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1157 	fh->fh_type = FC_TYPE_BLS;
1158 
1159 	/*
1160 	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1161 	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1162 	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1163 	 * Last ACK uses bits 7-6 (continue sequence),
1164 	 * bits 5-4 are meaningful (what kind of ACK to use).
1165 	 * Always set LAST_SEQ, END_SEQ.
1166 	 */
1167 	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1168 	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1169 		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1170 		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1171 	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1172 	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1173 	f_ctl &= ~FC_FC_FIRST_SEQ;
1174 	hton24(fh->fh_f_ctl, f_ctl);
1175 
1176 	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1177 	fr_eof(fp) = FC_EOF_T;
1178 	if (fc_sof_needs_ack(fr_sof(fp)))
1179 		fr_eof(fp) = FC_EOF_N;
1180 
1181 	lport->tt.frame_send(lport, fp);
1182 }
1183 
1184 /**
1185  * fc_exch_recv_abts() - Handle an incoming ABTS
1186  * @ep:	   The exchange the abort was on
1187  * @rx_fp: The ABTS frame
1188  *
1189  * This would be for target mode usually, but could be due to lost
1190  * FCP transfer ready, confirm or RRQ. We always handle this as an
1191  * exchange abort, ignoring the parameter.
1192  */
1193 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1194 {
1195 	struct fc_frame *fp;
1196 	struct fc_ba_acc *ap;
1197 	struct fc_frame_header *fh;
1198 	struct fc_seq *sp;
1199 
1200 	if (!ep)
1201 		goto reject;
1202 	spin_lock_bh(&ep->ex_lock);
1203 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1204 		spin_unlock_bh(&ep->ex_lock);
1205 		goto reject;
1206 	}
1207 	if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1208 		fc_exch_hold(ep);		/* hold for REC_QUAL */
1209 	ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1210 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1211 
1212 	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1213 	if (!fp) {
1214 		spin_unlock_bh(&ep->ex_lock);
1215 		goto free;
1216 	}
1217 	fh = fc_frame_header_get(fp);
1218 	ap = fc_frame_payload_get(fp, sizeof(*ap));
1219 	memset(ap, 0, sizeof(*ap));
1220 	sp = &ep->seq;
1221 	ap->ba_high_seq_cnt = htons(0xffff);
1222 	if (sp->ssb_stat & SSB_ST_RESP) {
1223 		ap->ba_seq_id = sp->id;
1224 		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1225 		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1226 		ap->ba_low_seq_cnt = htons(sp->cnt);
1227 	}
1228 	sp = fc_seq_start_next_locked(sp);
1229 	spin_unlock_bh(&ep->ex_lock);
1230 	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1231 	fc_frame_free(rx_fp);
1232 	return;
1233 
1234 reject:
1235 	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1236 free:
1237 	fc_frame_free(rx_fp);
1238 }
1239 
1240 /**
1241  * fc_exch_recv_req() - Handler for an incoming request where is other
1242  *			end is originating the sequence
1243  * @lport: The local port that received the request
1244  * @mp:	   The EM that the exchange is on
1245  * @fp:	   The request frame
1246  */
1247 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1248 			     struct fc_frame *fp)
1249 {
1250 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1251 	struct fc_seq *sp = NULL;
1252 	struct fc_exch *ep = NULL;
1253 	enum fc_sof sof;
1254 	enum fc_eof eof;
1255 	u32 f_ctl;
1256 	enum fc_pf_rjt_reason reject;
1257 
1258 	/* We can have the wrong fc_lport at this point with NPIV, which is a
1259 	 * problem now that we know a new exchange needs to be allocated
1260 	 */
1261 	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1262 	if (!lport) {
1263 		fc_frame_free(fp);
1264 		return;
1265 	}
1266 
1267 	fr_seq(fp) = NULL;
1268 	reject = fc_seq_lookup_recip(lport, mp, fp);
1269 	if (reject == FC_RJT_NONE) {
1270 		sp = fr_seq(fp);	/* sequence will be held */
1271 		ep = fc_seq_exch(sp);
1272 		sof = fr_sof(fp);
1273 		eof = fr_eof(fp);
1274 		f_ctl = ntoh24(fh->fh_f_ctl);
1275 		fc_seq_send_ack(sp, fp);
1276 
1277 		/*
1278 		 * Call the receive function.
1279 		 *
1280 		 * The receive function may allocate a new sequence
1281 		 * over the old one, so we shouldn't change the
1282 		 * sequence after this.
1283 		 *
1284 		 * The frame will be freed by the receive function.
1285 		 * If new exch resp handler is valid then call that
1286 		 * first.
1287 		 */
1288 		if (ep->resp)
1289 			ep->resp(sp, fp, ep->arg);
1290 		else
1291 			lport->tt.lport_recv(lport, sp, fp);
1292 		fc_exch_release(ep);	/* release from lookup */
1293 	} else {
1294 		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1295 			     reject);
1296 		fc_frame_free(fp);
1297 	}
1298 }
1299 
1300 /**
1301  * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1302  *			     end is the originator of the sequence that is a
1303  *			     response to our initial exchange
1304  * @mp: The EM that the exchange is on
1305  * @fp: The response frame
1306  */
1307 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1308 {
1309 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1310 	struct fc_seq *sp;
1311 	struct fc_exch *ep;
1312 	enum fc_sof sof;
1313 	u32 f_ctl;
1314 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1315 	void *ex_resp_arg;
1316 	int rc;
1317 
1318 	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1319 	if (!ep) {
1320 		atomic_inc(&mp->stats.xid_not_found);
1321 		goto out;
1322 	}
1323 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1324 		atomic_inc(&mp->stats.xid_not_found);
1325 		goto out;
1326 	}
1327 	if (ep->rxid == FC_XID_UNKNOWN)
1328 		ep->rxid = ntohs(fh->fh_rx_id);
1329 	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1330 		atomic_inc(&mp->stats.xid_not_found);
1331 		goto rel;
1332 	}
1333 	if (ep->did != ntoh24(fh->fh_s_id) &&
1334 	    ep->did != FC_FID_FLOGI) {
1335 		atomic_inc(&mp->stats.xid_not_found);
1336 		goto rel;
1337 	}
1338 	sof = fr_sof(fp);
1339 	if (fc_sof_is_init(sof)) {
1340 		sp = fc_seq_start_next(&ep->seq);
1341 		sp->id = fh->fh_seq_id;
1342 		sp->ssb_stat |= SSB_ST_RESP;
1343 	} else {
1344 		sp = &ep->seq;
1345 		if (sp->id != fh->fh_seq_id) {
1346 			atomic_inc(&mp->stats.seq_not_found);
1347 			goto rel;
1348 		}
1349 	}
1350 	f_ctl = ntoh24(fh->fh_f_ctl);
1351 	fr_seq(fp) = sp;
1352 	if (f_ctl & FC_FC_SEQ_INIT)
1353 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1354 
1355 	if (fc_sof_needs_ack(sof))
1356 		fc_seq_send_ack(sp, fp);
1357 	resp = ep->resp;
1358 	ex_resp_arg = ep->arg;
1359 
1360 	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1361 	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1362 	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1363 		spin_lock_bh(&ep->ex_lock);
1364 		rc = fc_exch_done_locked(ep);
1365 		WARN_ON(fc_seq_exch(sp) != ep);
1366 		spin_unlock_bh(&ep->ex_lock);
1367 		if (!rc)
1368 			fc_exch_delete(ep);
1369 	}
1370 
1371 	/*
1372 	 * Call the receive function.
1373 	 * The sequence is held (has a refcnt) for us,
1374 	 * but not for the receive function.
1375 	 *
1376 	 * The receive function may allocate a new sequence
1377 	 * over the old one, so we shouldn't change the
1378 	 * sequence after this.
1379 	 *
1380 	 * The frame will be freed by the receive function.
1381 	 * If new exch resp handler is valid then call that
1382 	 * first.
1383 	 */
1384 	if (resp)
1385 		resp(sp, fp, ex_resp_arg);
1386 	else
1387 		fc_frame_free(fp);
1388 	fc_exch_release(ep);
1389 	return;
1390 rel:
1391 	fc_exch_release(ep);
1392 out:
1393 	fc_frame_free(fp);
1394 }
1395 
1396 /**
1397  * fc_exch_recv_resp() - Handler for a sequence where other end is
1398  *			 responding to our sequence
1399  * @mp: The EM that the exchange is on
1400  * @fp: The response frame
1401  */
1402 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1403 {
1404 	struct fc_seq *sp;
1405 
1406 	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1407 
1408 	if (!sp)
1409 		atomic_inc(&mp->stats.xid_not_found);
1410 	else
1411 		atomic_inc(&mp->stats.non_bls_resp);
1412 
1413 	fc_frame_free(fp);
1414 }
1415 
1416 /**
1417  * fc_exch_abts_resp() - Handler for a response to an ABT
1418  * @ep: The exchange that the frame is on
1419  * @fp: The response frame
1420  *
1421  * This response would be to an ABTS cancelling an exchange or sequence.
1422  * The response can be either BA_ACC or BA_RJT
1423  */
1424 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1425 {
1426 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1427 	void *ex_resp_arg;
1428 	struct fc_frame_header *fh;
1429 	struct fc_ba_acc *ap;
1430 	struct fc_seq *sp;
1431 	u16 low;
1432 	u16 high;
1433 	int rc = 1, has_rec = 0;
1434 
1435 	fh = fc_frame_header_get(fp);
1436 	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1437 		    fc_exch_rctl_name(fh->fh_r_ctl));
1438 
1439 	if (cancel_delayed_work_sync(&ep->timeout_work))
1440 		fc_exch_release(ep);	/* release from pending timer hold */
1441 
1442 	spin_lock_bh(&ep->ex_lock);
1443 	switch (fh->fh_r_ctl) {
1444 	case FC_RCTL_BA_ACC:
1445 		ap = fc_frame_payload_get(fp, sizeof(*ap));
1446 		if (!ap)
1447 			break;
1448 
1449 		/*
1450 		 * Decide whether to establish a Recovery Qualifier.
1451 		 * We do this if there is a non-empty SEQ_CNT range and
1452 		 * SEQ_ID is the same as the one we aborted.
1453 		 */
1454 		low = ntohs(ap->ba_low_seq_cnt);
1455 		high = ntohs(ap->ba_high_seq_cnt);
1456 		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1457 		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1458 		     ap->ba_seq_id == ep->seq_id) && low != high) {
1459 			ep->esb_stat |= ESB_ST_REC_QUAL;
1460 			fc_exch_hold(ep);  /* hold for recovery qualifier */
1461 			has_rec = 1;
1462 		}
1463 		break;
1464 	case FC_RCTL_BA_RJT:
1465 		break;
1466 	default:
1467 		break;
1468 	}
1469 
1470 	resp = ep->resp;
1471 	ex_resp_arg = ep->arg;
1472 
1473 	/* do we need to do some other checks here. Can we reuse more of
1474 	 * fc_exch_recv_seq_resp
1475 	 */
1476 	sp = &ep->seq;
1477 	/*
1478 	 * do we want to check END_SEQ as well as LAST_SEQ here?
1479 	 */
1480 	if (ep->fh_type != FC_TYPE_FCP &&
1481 	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1482 		rc = fc_exch_done_locked(ep);
1483 	spin_unlock_bh(&ep->ex_lock);
1484 	if (!rc)
1485 		fc_exch_delete(ep);
1486 
1487 	if (resp)
1488 		resp(sp, fp, ex_resp_arg);
1489 	else
1490 		fc_frame_free(fp);
1491 
1492 	if (has_rec)
1493 		fc_exch_timer_set(ep, ep->r_a_tov);
1494 
1495 }
1496 
1497 /**
1498  * fc_exch_recv_bls() - Handler for a BLS sequence
1499  * @mp: The EM that the exchange is on
1500  * @fp: The request frame
1501  *
1502  * The BLS frame is always a sequence initiated by the remote side.
1503  * We may be either the originator or recipient of the exchange.
1504  */
1505 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1506 {
1507 	struct fc_frame_header *fh;
1508 	struct fc_exch *ep;
1509 	u32 f_ctl;
1510 
1511 	fh = fc_frame_header_get(fp);
1512 	f_ctl = ntoh24(fh->fh_f_ctl);
1513 	fr_seq(fp) = NULL;
1514 
1515 	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1516 			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1517 	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1518 		spin_lock_bh(&ep->ex_lock);
1519 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1520 		spin_unlock_bh(&ep->ex_lock);
1521 	}
1522 	if (f_ctl & FC_FC_SEQ_CTX) {
1523 		/*
1524 		 * A response to a sequence we initiated.
1525 		 * This should only be ACKs for class 2 or F.
1526 		 */
1527 		switch (fh->fh_r_ctl) {
1528 		case FC_RCTL_ACK_1:
1529 		case FC_RCTL_ACK_0:
1530 			break;
1531 		default:
1532 			FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1533 				    fh->fh_r_ctl,
1534 				    fc_exch_rctl_name(fh->fh_r_ctl));
1535 			break;
1536 		}
1537 		fc_frame_free(fp);
1538 	} else {
1539 		switch (fh->fh_r_ctl) {
1540 		case FC_RCTL_BA_RJT:
1541 		case FC_RCTL_BA_ACC:
1542 			if (ep)
1543 				fc_exch_abts_resp(ep, fp);
1544 			else
1545 				fc_frame_free(fp);
1546 			break;
1547 		case FC_RCTL_BA_ABTS:
1548 			fc_exch_recv_abts(ep, fp);
1549 			break;
1550 		default:			/* ignore junk */
1551 			fc_frame_free(fp);
1552 			break;
1553 		}
1554 	}
1555 	if (ep)
1556 		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1557 }
1558 
1559 /**
1560  * fc_seq_ls_acc() - Accept sequence with LS_ACC
1561  * @req_sp: The request sequence
1562  *
1563  * If this fails due to allocation or transmit congestion, assume the
1564  * originator will repeat the sequence.
1565  */
1566 static void fc_seq_ls_acc(struct fc_seq *req_sp)
1567 {
1568 	struct fc_seq *sp;
1569 	struct fc_els_ls_acc *acc;
1570 	struct fc_frame *fp;
1571 
1572 	sp = fc_seq_start_next(req_sp);
1573 	fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*acc));
1574 	if (fp) {
1575 		acc = fc_frame_payload_get(fp, sizeof(*acc));
1576 		memset(acc, 0, sizeof(*acc));
1577 		acc->la_cmd = ELS_LS_ACC;
1578 		fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1579 	}
1580 }
1581 
1582 /**
1583  * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1584  * @req_sp: The request sequence
1585  * @reason: The reason the sequence is being rejected
1586  * @explan: The explaination for the rejection
1587  *
1588  * If this fails due to allocation or transmit congestion, assume the
1589  * originator will repeat the sequence.
1590  */
1591 static void fc_seq_ls_rjt(struct fc_seq *req_sp, enum fc_els_rjt_reason reason,
1592 			  enum fc_els_rjt_explan explan)
1593 {
1594 	struct fc_seq *sp;
1595 	struct fc_els_ls_rjt *rjt;
1596 	struct fc_frame *fp;
1597 
1598 	sp = fc_seq_start_next(req_sp);
1599 	fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*rjt));
1600 	if (fp) {
1601 		rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1602 		memset(rjt, 0, sizeof(*rjt));
1603 		rjt->er_cmd = ELS_LS_RJT;
1604 		rjt->er_reason = reason;
1605 		rjt->er_explan = explan;
1606 		fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1607 	}
1608 }
1609 
1610 /**
1611  * fc_exch_reset() - Reset an exchange
1612  * @ep: The exchange to be reset
1613  */
1614 static void fc_exch_reset(struct fc_exch *ep)
1615 {
1616 	struct fc_seq *sp;
1617 	void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1618 	void *arg;
1619 	int rc = 1;
1620 
1621 	spin_lock_bh(&ep->ex_lock);
1622 	ep->state |= FC_EX_RST_CLEANUP;
1623 	if (cancel_delayed_work(&ep->timeout_work))
1624 		atomic_dec(&ep->ex_refcnt);	/* drop hold for timer */
1625 	resp = ep->resp;
1626 	ep->resp = NULL;
1627 	if (ep->esb_stat & ESB_ST_REC_QUAL)
1628 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1629 	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1630 	arg = ep->arg;
1631 	sp = &ep->seq;
1632 	rc = fc_exch_done_locked(ep);
1633 	spin_unlock_bh(&ep->ex_lock);
1634 	if (!rc)
1635 		fc_exch_delete(ep);
1636 
1637 	if (resp)
1638 		resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1639 }
1640 
1641 /**
1642  * fc_exch_pool_reset() - Reset a per cpu exchange pool
1643  * @lport: The local port that the exchange pool is on
1644  * @pool:  The exchange pool to be reset
1645  * @sid:   The source ID
1646  * @did:   The destination ID
1647  *
1648  * Resets a per cpu exches pool, releasing all of its sequences
1649  * and exchanges. If sid is non-zero then reset only exchanges
1650  * we sourced from the local port's FID. If did is non-zero then
1651  * only reset exchanges destined for the local port's FID.
1652  */
1653 static void fc_exch_pool_reset(struct fc_lport *lport,
1654 			       struct fc_exch_pool *pool,
1655 			       u32 sid, u32 did)
1656 {
1657 	struct fc_exch *ep;
1658 	struct fc_exch *next;
1659 
1660 	spin_lock_bh(&pool->lock);
1661 restart:
1662 	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1663 		if ((lport == ep->lp) &&
1664 		    (sid == 0 || sid == ep->sid) &&
1665 		    (did == 0 || did == ep->did)) {
1666 			fc_exch_hold(ep);
1667 			spin_unlock_bh(&pool->lock);
1668 
1669 			fc_exch_reset(ep);
1670 
1671 			fc_exch_release(ep);
1672 			spin_lock_bh(&pool->lock);
1673 
1674 			/*
1675 			 * must restart loop incase while lock
1676 			 * was down multiple eps were released.
1677 			 */
1678 			goto restart;
1679 		}
1680 	}
1681 	spin_unlock_bh(&pool->lock);
1682 }
1683 
1684 /**
1685  * fc_exch_mgr_reset() - Reset all EMs of a local port
1686  * @lport: The local port whose EMs are to be reset
1687  * @sid:   The source ID
1688  * @did:   The destination ID
1689  *
1690  * Reset all EMs associated with a given local port. Release all
1691  * sequences and exchanges. If sid is non-zero then reset only the
1692  * exchanges sent from the local port's FID. If did is non-zero then
1693  * reset only exchanges destined for the local port's FID.
1694  */
1695 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1696 {
1697 	struct fc_exch_mgr_anchor *ema;
1698 	unsigned int cpu;
1699 
1700 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1701 		for_each_possible_cpu(cpu)
1702 			fc_exch_pool_reset(lport,
1703 					   per_cpu_ptr(ema->mp->pool, cpu),
1704 					   sid, did);
1705 	}
1706 }
1707 EXPORT_SYMBOL(fc_exch_mgr_reset);
1708 
1709 /**
1710  * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1711  * @sp:	 The sequence the REC is on
1712  * @rfp: The REC frame
1713  *
1714  * Note that the requesting port may be different than the S_ID in the request.
1715  */
1716 static void fc_exch_els_rec(struct fc_seq *sp, struct fc_frame *rfp)
1717 {
1718 	struct fc_frame *fp;
1719 	struct fc_exch *ep;
1720 	struct fc_exch_mgr *em;
1721 	struct fc_els_rec *rp;
1722 	struct fc_els_rec_acc *acc;
1723 	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1724 	enum fc_els_rjt_explan explan;
1725 	u32 sid;
1726 	u16 rxid;
1727 	u16 oxid;
1728 
1729 	rp = fc_frame_payload_get(rfp, sizeof(*rp));
1730 	explan = ELS_EXPL_INV_LEN;
1731 	if (!rp)
1732 		goto reject;
1733 	sid = ntoh24(rp->rec_s_id);
1734 	rxid = ntohs(rp->rec_rx_id);
1735 	oxid = ntohs(rp->rec_ox_id);
1736 
1737 	/*
1738 	 * Currently it's hard to find the local S_ID from the exchange
1739 	 * manager.  This will eventually be fixed, but for now it's easier
1740 	 * to lookup the subject exchange twice, once as if we were
1741 	 * the initiator, and then again if we weren't.
1742 	 */
1743 	em = fc_seq_exch(sp)->em;
1744 	ep = fc_exch_find(em, oxid);
1745 	explan = ELS_EXPL_OXID_RXID;
1746 	if (ep && ep->oid == sid) {
1747 		if (ep->rxid != FC_XID_UNKNOWN &&
1748 		    rxid != FC_XID_UNKNOWN &&
1749 		    ep->rxid != rxid)
1750 			goto rel;
1751 	} else {
1752 		if (ep)
1753 			fc_exch_release(ep);
1754 		ep = NULL;
1755 		if (rxid != FC_XID_UNKNOWN)
1756 			ep = fc_exch_find(em, rxid);
1757 		if (!ep)
1758 			goto reject;
1759 	}
1760 
1761 	fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*acc));
1762 	if (!fp) {
1763 		fc_exch_done(sp);
1764 		goto out;
1765 	}
1766 	sp = fc_seq_start_next(sp);
1767 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1768 	memset(acc, 0, sizeof(*acc));
1769 	acc->reca_cmd = ELS_LS_ACC;
1770 	acc->reca_ox_id = rp->rec_ox_id;
1771 	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1772 	acc->reca_rx_id = htons(ep->rxid);
1773 	if (ep->sid == ep->oid)
1774 		hton24(acc->reca_rfid, ep->did);
1775 	else
1776 		hton24(acc->reca_rfid, ep->sid);
1777 	acc->reca_fc4value = htonl(ep->seq.rec_data);
1778 	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1779 						 ESB_ST_SEQ_INIT |
1780 						 ESB_ST_COMPLETE));
1781 	sp = fc_seq_start_next(sp);
1782 	fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1783 out:
1784 	fc_exch_release(ep);
1785 	fc_frame_free(rfp);
1786 	return;
1787 
1788 rel:
1789 	fc_exch_release(ep);
1790 reject:
1791 	fc_seq_ls_rjt(sp, reason, explan);
1792 	fc_frame_free(rfp);
1793 }
1794 
1795 /**
1796  * fc_exch_rrq_resp() - Handler for RRQ responses
1797  * @sp:	 The sequence that the RRQ is on
1798  * @fp:	 The RRQ frame
1799  * @arg: The exchange that the RRQ is on
1800  *
1801  * TODO: fix error handler.
1802  */
1803 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1804 {
1805 	struct fc_exch *aborted_ep = arg;
1806 	unsigned int op;
1807 
1808 	if (IS_ERR(fp)) {
1809 		int err = PTR_ERR(fp);
1810 
1811 		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1812 			goto cleanup;
1813 		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1814 			    "frame error %d\n", err);
1815 		return;
1816 	}
1817 
1818 	op = fc_frame_payload_op(fp);
1819 	fc_frame_free(fp);
1820 
1821 	switch (op) {
1822 	case ELS_LS_RJT:
1823 		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1824 		/* fall through */
1825 	case ELS_LS_ACC:
1826 		goto cleanup;
1827 	default:
1828 		FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1829 			    "for RRQ", op);
1830 		return;
1831 	}
1832 
1833 cleanup:
1834 	fc_exch_done(&aborted_ep->seq);
1835 	/* drop hold for rec qual */
1836 	fc_exch_release(aborted_ep);
1837 }
1838 
1839 
1840 /**
1841  * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1842  * @lport:	The local port to send the frame on
1843  * @fp:		The frame to be sent
1844  * @resp:	The response handler for this request
1845  * @destructor: The destructor for the exchange
1846  * @arg:	The argument to be passed to the response handler
1847  * @timer_msec: The timeout period for the exchange
1848  *
1849  * The frame pointer with some of the header's fields must be
1850  * filled before calling this routine, those fields are:
1851  *
1852  * - routing control
1853  * - FC port did
1854  * - FC port sid
1855  * - FC header type
1856  * - frame control
1857  * - parameter or relative offset
1858  */
1859 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1860 				       struct fc_frame *fp,
1861 				       void (*resp)(struct fc_seq *,
1862 						    struct fc_frame *fp,
1863 						    void *arg),
1864 				       void (*destructor)(struct fc_seq *,
1865 							  void *),
1866 				       void *arg, u32 timer_msec)
1867 {
1868 	struct fc_exch *ep;
1869 	struct fc_seq *sp = NULL;
1870 	struct fc_frame_header *fh;
1871 	int rc = 1;
1872 
1873 	ep = fc_exch_alloc(lport, fp);
1874 	if (!ep) {
1875 		fc_frame_free(fp);
1876 		return NULL;
1877 	}
1878 	ep->esb_stat |= ESB_ST_SEQ_INIT;
1879 	fh = fc_frame_header_get(fp);
1880 	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1881 	ep->resp = resp;
1882 	ep->destructor = destructor;
1883 	ep->arg = arg;
1884 	ep->r_a_tov = FC_DEF_R_A_TOV;
1885 	ep->lp = lport;
1886 	sp = &ep->seq;
1887 
1888 	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
1889 	ep->f_ctl = ntoh24(fh->fh_f_ctl);
1890 	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
1891 	sp->cnt++;
1892 
1893 	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD)
1894 		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
1895 
1896 	if (unlikely(lport->tt.frame_send(lport, fp)))
1897 		goto err;
1898 
1899 	if (timer_msec)
1900 		fc_exch_timer_set_locked(ep, timer_msec);
1901 	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
1902 
1903 	if (ep->f_ctl & FC_FC_SEQ_INIT)
1904 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1905 	spin_unlock_bh(&ep->ex_lock);
1906 	return sp;
1907 err:
1908 	rc = fc_exch_done_locked(ep);
1909 	spin_unlock_bh(&ep->ex_lock);
1910 	if (!rc)
1911 		fc_exch_delete(ep);
1912 	return NULL;
1913 }
1914 
1915 /**
1916  * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
1917  * @ep: The exchange to send the RRQ on
1918  *
1919  * This tells the remote port to stop blocking the use of
1920  * the exchange and the seq_cnt range.
1921  */
1922 static void fc_exch_rrq(struct fc_exch *ep)
1923 {
1924 	struct fc_lport *lport;
1925 	struct fc_els_rrq *rrq;
1926 	struct fc_frame *fp;
1927 	u32 did;
1928 
1929 	lport = ep->lp;
1930 
1931 	fp = fc_frame_alloc(lport, sizeof(*rrq));
1932 	if (!fp)
1933 		goto retry;
1934 
1935 	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
1936 	memset(rrq, 0, sizeof(*rrq));
1937 	rrq->rrq_cmd = ELS_RRQ;
1938 	hton24(rrq->rrq_s_id, ep->sid);
1939 	rrq->rrq_ox_id = htons(ep->oxid);
1940 	rrq->rrq_rx_id = htons(ep->rxid);
1941 
1942 	did = ep->did;
1943 	if (ep->esb_stat & ESB_ST_RESP)
1944 		did = ep->sid;
1945 
1946 	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
1947 		       fc_host_port_id(lport->host), FC_TYPE_ELS,
1948 		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
1949 
1950 	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
1951 			     lport->e_d_tov))
1952 		return;
1953 
1954 retry:
1955 	spin_lock_bh(&ep->ex_lock);
1956 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
1957 		spin_unlock_bh(&ep->ex_lock);
1958 		/* drop hold for rec qual */
1959 		fc_exch_release(ep);
1960 		return;
1961 	}
1962 	ep->esb_stat |= ESB_ST_REC_QUAL;
1963 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1964 	spin_unlock_bh(&ep->ex_lock);
1965 }
1966 
1967 
1968 /**
1969  * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
1970  * @sp: The sequence that the RRQ is on
1971  * @fp: The RRQ frame
1972  */
1973 static void fc_exch_els_rrq(struct fc_seq *sp, struct fc_frame *fp)
1974 {
1975 	struct fc_exch *ep = NULL;	/* request or subject exchange */
1976 	struct fc_els_rrq *rp;
1977 	u32 sid;
1978 	u16 xid;
1979 	enum fc_els_rjt_explan explan;
1980 
1981 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1982 	explan = ELS_EXPL_INV_LEN;
1983 	if (!rp)
1984 		goto reject;
1985 
1986 	/*
1987 	 * lookup subject exchange.
1988 	 */
1989 	ep = fc_seq_exch(sp);
1990 	sid = ntoh24(rp->rrq_s_id);		/* subject source */
1991 	xid = ep->did == sid ? ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
1992 	ep = fc_exch_find(ep->em, xid);
1993 
1994 	explan = ELS_EXPL_OXID_RXID;
1995 	if (!ep)
1996 		goto reject;
1997 	spin_lock_bh(&ep->ex_lock);
1998 	if (ep->oxid != ntohs(rp->rrq_ox_id))
1999 		goto unlock_reject;
2000 	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2001 	    ep->rxid != FC_XID_UNKNOWN)
2002 		goto unlock_reject;
2003 	explan = ELS_EXPL_SID;
2004 	if (ep->sid != sid)
2005 		goto unlock_reject;
2006 
2007 	/*
2008 	 * Clear Recovery Qualifier state, and cancel timer if complete.
2009 	 */
2010 	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2011 		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2012 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2013 	}
2014 	if (ep->esb_stat & ESB_ST_COMPLETE) {
2015 		if (cancel_delayed_work(&ep->timeout_work))
2016 			atomic_dec(&ep->ex_refcnt);	/* drop timer hold */
2017 	}
2018 
2019 	spin_unlock_bh(&ep->ex_lock);
2020 
2021 	/*
2022 	 * Send LS_ACC.
2023 	 */
2024 	fc_seq_ls_acc(sp);
2025 	goto out;
2026 
2027 unlock_reject:
2028 	spin_unlock_bh(&ep->ex_lock);
2029 reject:
2030 	fc_seq_ls_rjt(sp, ELS_RJT_LOGIC, explan);
2031 out:
2032 	fc_frame_free(fp);
2033 	if (ep)
2034 		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2035 }
2036 
2037 /**
2038  * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2039  * @lport: The local port to add the exchange manager to
2040  * @mp:	   The exchange manager to be added to the local port
2041  * @match: The match routine that indicates when this EM should be used
2042  */
2043 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2044 					   struct fc_exch_mgr *mp,
2045 					   bool (*match)(struct fc_frame *))
2046 {
2047 	struct fc_exch_mgr_anchor *ema;
2048 
2049 	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2050 	if (!ema)
2051 		return ema;
2052 
2053 	ema->mp = mp;
2054 	ema->match = match;
2055 	/* add EM anchor to EM anchors list */
2056 	list_add_tail(&ema->ema_list, &lport->ema_list);
2057 	kref_get(&mp->kref);
2058 	return ema;
2059 }
2060 EXPORT_SYMBOL(fc_exch_mgr_add);
2061 
2062 /**
2063  * fc_exch_mgr_destroy() - Destroy an exchange manager
2064  * @kref: The reference to the EM to be destroyed
2065  */
2066 static void fc_exch_mgr_destroy(struct kref *kref)
2067 {
2068 	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2069 
2070 	mempool_destroy(mp->ep_pool);
2071 	free_percpu(mp->pool);
2072 	kfree(mp);
2073 }
2074 
2075 /**
2076  * fc_exch_mgr_del() - Delete an EM from a local port's list
2077  * @ema: The exchange manager anchor identifying the EM to be deleted
2078  */
2079 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2080 {
2081 	/* remove EM anchor from EM anchors list */
2082 	list_del(&ema->ema_list);
2083 	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2084 	kfree(ema);
2085 }
2086 EXPORT_SYMBOL(fc_exch_mgr_del);
2087 
2088 /**
2089  * fc_exch_mgr_list_clone() - Share all exchange manager objects
2090  * @src: Source lport to clone exchange managers from
2091  * @dst: New lport that takes references to all the exchange managers
2092  */
2093 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2094 {
2095 	struct fc_exch_mgr_anchor *ema, *tmp;
2096 
2097 	list_for_each_entry(ema, &src->ema_list, ema_list) {
2098 		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2099 			goto err;
2100 	}
2101 	return 0;
2102 err:
2103 	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2104 		fc_exch_mgr_del(ema);
2105 	return -ENOMEM;
2106 }
2107 
2108 /**
2109  * fc_exch_mgr_alloc() - Allocate an exchange manager
2110  * @lport:   The local port that the new EM will be associated with
2111  * @class:   The default FC class for new exchanges
2112  * @min_xid: The minimum XID for exchanges from the new EM
2113  * @max_xid: The maximum XID for exchanges from the new EM
2114  * @match:   The match routine for the new EM
2115  */
2116 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2117 				      enum fc_class class,
2118 				      u16 min_xid, u16 max_xid,
2119 				      bool (*match)(struct fc_frame *))
2120 {
2121 	struct fc_exch_mgr *mp;
2122 	u16 pool_exch_range;
2123 	size_t pool_size;
2124 	unsigned int cpu;
2125 	struct fc_exch_pool *pool;
2126 
2127 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2128 	    (min_xid & fc_cpu_mask) != 0) {
2129 		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2130 			     min_xid, max_xid);
2131 		return NULL;
2132 	}
2133 
2134 	/*
2135 	 * allocate memory for EM
2136 	 */
2137 	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2138 	if (!mp)
2139 		return NULL;
2140 
2141 	mp->class = class;
2142 	/* adjust em exch xid range for offload */
2143 	mp->min_xid = min_xid;
2144 	mp->max_xid = max_xid;
2145 
2146 	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2147 	if (!mp->ep_pool)
2148 		goto free_mp;
2149 
2150 	/*
2151 	 * Setup per cpu exch pool with entire exchange id range equally
2152 	 * divided across all cpus. The exch pointers array memory is
2153 	 * allocated for exch range per pool.
2154 	 */
2155 	pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2156 	mp->pool_max_index = pool_exch_range - 1;
2157 
2158 	/*
2159 	 * Allocate and initialize per cpu exch pool
2160 	 */
2161 	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2162 	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2163 	if (!mp->pool)
2164 		goto free_mempool;
2165 	for_each_possible_cpu(cpu) {
2166 		pool = per_cpu_ptr(mp->pool, cpu);
2167 		spin_lock_init(&pool->lock);
2168 		INIT_LIST_HEAD(&pool->ex_list);
2169 	}
2170 
2171 	kref_init(&mp->kref);
2172 	if (!fc_exch_mgr_add(lport, mp, match)) {
2173 		free_percpu(mp->pool);
2174 		goto free_mempool;
2175 	}
2176 
2177 	/*
2178 	 * Above kref_init() sets mp->kref to 1 and then
2179 	 * call to fc_exch_mgr_add incremented mp->kref again,
2180 	 * so adjust that extra increment.
2181 	 */
2182 	kref_put(&mp->kref, fc_exch_mgr_destroy);
2183 	return mp;
2184 
2185 free_mempool:
2186 	mempool_destroy(mp->ep_pool);
2187 free_mp:
2188 	kfree(mp);
2189 	return NULL;
2190 }
2191 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2192 
2193 /**
2194  * fc_exch_mgr_free() - Free all exchange managers on a local port
2195  * @lport: The local port whose EMs are to be freed
2196  */
2197 void fc_exch_mgr_free(struct fc_lport *lport)
2198 {
2199 	struct fc_exch_mgr_anchor *ema, *next;
2200 
2201 	flush_workqueue(fc_exch_workqueue);
2202 	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2203 		fc_exch_mgr_del(ema);
2204 }
2205 EXPORT_SYMBOL(fc_exch_mgr_free);
2206 
2207 /**
2208  * fc_exch_recv() - Handler for received frames
2209  * @lport: The local port the frame was received on
2210  * @fp:	   The received frame
2211  */
2212 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2213 {
2214 	struct fc_frame_header *fh = fc_frame_header_get(fp);
2215 	struct fc_exch_mgr_anchor *ema;
2216 	u32 f_ctl, found = 0;
2217 	u16 oxid;
2218 
2219 	/* lport lock ? */
2220 	if (!lport || lport->state == LPORT_ST_DISABLED) {
2221 		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2222 			     "has not been initialized correctly\n");
2223 		fc_frame_free(fp);
2224 		return;
2225 	}
2226 
2227 	f_ctl = ntoh24(fh->fh_f_ctl);
2228 	oxid = ntohs(fh->fh_ox_id);
2229 	if (f_ctl & FC_FC_EX_CTX) {
2230 		list_for_each_entry(ema, &lport->ema_list, ema_list) {
2231 			if ((oxid >= ema->mp->min_xid) &&
2232 			    (oxid <= ema->mp->max_xid)) {
2233 				found = 1;
2234 				break;
2235 			}
2236 		}
2237 
2238 		if (!found) {
2239 			FC_LPORT_DBG(lport, "Received response for out "
2240 				     "of range oxid:%hx\n", oxid);
2241 			fc_frame_free(fp);
2242 			return;
2243 		}
2244 	} else
2245 		ema = list_entry(lport->ema_list.prev, typeof(*ema), ema_list);
2246 
2247 	/*
2248 	 * If frame is marked invalid, just drop it.
2249 	 */
2250 	switch (fr_eof(fp)) {
2251 	case FC_EOF_T:
2252 		if (f_ctl & FC_FC_END_SEQ)
2253 			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2254 		/* fall through */
2255 	case FC_EOF_N:
2256 		if (fh->fh_type == FC_TYPE_BLS)
2257 			fc_exch_recv_bls(ema->mp, fp);
2258 		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2259 			 FC_FC_EX_CTX)
2260 			fc_exch_recv_seq_resp(ema->mp, fp);
2261 		else if (f_ctl & FC_FC_SEQ_CTX)
2262 			fc_exch_recv_resp(ema->mp, fp);
2263 		else
2264 			fc_exch_recv_req(lport, ema->mp, fp);
2265 		break;
2266 	default:
2267 		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2268 			     fr_eof(fp));
2269 		fc_frame_free(fp);
2270 	}
2271 }
2272 EXPORT_SYMBOL(fc_exch_recv);
2273 
2274 /**
2275  * fc_exch_init() - Initialize the exchange layer for a local port
2276  * @lport: The local port to initialize the exchange layer for
2277  */
2278 int fc_exch_init(struct fc_lport *lport)
2279 {
2280 	if (!lport->tt.seq_start_next)
2281 		lport->tt.seq_start_next = fc_seq_start_next;
2282 
2283 	if (!lport->tt.exch_seq_send)
2284 		lport->tt.exch_seq_send = fc_exch_seq_send;
2285 
2286 	if (!lport->tt.seq_send)
2287 		lport->tt.seq_send = fc_seq_send;
2288 
2289 	if (!lport->tt.seq_els_rsp_send)
2290 		lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2291 
2292 	if (!lport->tt.exch_done)
2293 		lport->tt.exch_done = fc_exch_done;
2294 
2295 	if (!lport->tt.exch_mgr_reset)
2296 		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2297 
2298 	if (!lport->tt.seq_exch_abort)
2299 		lport->tt.seq_exch_abort = fc_seq_exch_abort;
2300 
2301 	return 0;
2302 }
2303 EXPORT_SYMBOL(fc_exch_init);
2304 
2305 /**
2306  * fc_setup_exch_mgr() - Setup an exchange manager
2307  */
2308 int fc_setup_exch_mgr()
2309 {
2310 	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2311 					 0, SLAB_HWCACHE_ALIGN, NULL);
2312 	if (!fc_em_cachep)
2313 		return -ENOMEM;
2314 
2315 	/*
2316 	 * Initialize fc_cpu_mask and fc_cpu_order. The
2317 	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2318 	 * to order of 2's * power and order is stored
2319 	 * in fc_cpu_order as this is later required in
2320 	 * mapping between an exch id and exch array index
2321 	 * in per cpu exch pool.
2322 	 *
2323 	 * This round up is required to align fc_cpu_mask
2324 	 * to exchange id's lower bits such that all incoming
2325 	 * frames of an exchange gets delivered to the same
2326 	 * cpu on which exchange originated by simple bitwise
2327 	 * AND operation between fc_cpu_mask and exchange id.
2328 	 */
2329 	fc_cpu_mask = 1;
2330 	fc_cpu_order = 0;
2331 	while (fc_cpu_mask < nr_cpu_ids) {
2332 		fc_cpu_mask <<= 1;
2333 		fc_cpu_order++;
2334 	}
2335 	fc_cpu_mask--;
2336 
2337 	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2338 	if (!fc_exch_workqueue)
2339 		return -ENOMEM;
2340 	return 0;
2341 }
2342 
2343 /**
2344  * fc_destroy_exch_mgr() - Destroy an exchange manager
2345  */
2346 void fc_destroy_exch_mgr()
2347 {
2348 	destroy_workqueue(fc_exch_workqueue);
2349 	kmem_cache_destroy(fc_em_cachep);
2350 }
2351