xref: /linux/drivers/scsi/libfc/fc_exch.c (revision 2c1ba398ac9da3305815f6ae8e95ae2b9fd3b5ff)
1 /*
2  * Copyright(c) 2007 Intel Corporation. All rights reserved.
3  * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
4  * Copyright(c) 2008 Mike Christie
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Maintained at www.Open-FCoE.org
20  */
21 
22 /*
23  * Fibre Channel exchange and sequence handling.
24  */
25 
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 
30 #include <scsi/fc/fc_fc2.h>
31 
32 #include <scsi/libfc.h>
33 #include <scsi/fc_encode.h>
34 
35 #include "fc_libfc.h"
36 
37 u16	fc_cpu_mask;		/* cpu mask for possible cpus */
38 EXPORT_SYMBOL(fc_cpu_mask);
39 static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
40 static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
41 static struct workqueue_struct *fc_exch_workqueue;
42 
43 /*
44  * Structure and function definitions for managing Fibre Channel Exchanges
45  * and Sequences.
46  *
47  * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
48  *
49  * fc_exch_mgr holds the exchange state for an N port
50  *
51  * fc_exch holds state for one exchange and links to its active sequence.
52  *
53  * fc_seq holds the state for an individual sequence.
54  */
55 
56 /**
57  * struct fc_exch_pool - Per cpu exchange pool
58  * @next_index:	  Next possible free exchange index
59  * @total_exches: Total allocated exchanges
60  * @lock:	  Exch pool lock
61  * @ex_list:	  List of exchanges
62  *
63  * This structure manages per cpu exchanges in array of exchange pointers.
64  * This array is allocated followed by struct fc_exch_pool memory for
65  * assigned range of exchanges to per cpu pool.
66  */
67 struct fc_exch_pool {
68 	u16		 next_index;
69 	u16		 total_exches;
70 
71 	/* two cache of free slot in exch array */
72 	u16		 left;
73 	u16		 right;
74 
75 	spinlock_t	 lock;
76 	struct list_head ex_list;
77 };
78 
79 /**
80  * struct fc_exch_mgr - The Exchange Manager (EM).
81  * @class:	    Default class for new sequences
82  * @kref:	    Reference counter
83  * @min_xid:	    Minimum exchange ID
84  * @max_xid:	    Maximum exchange ID
85  * @ep_pool:	    Reserved exchange pointers
86  * @pool_max_index: Max exch array index in exch pool
87  * @pool:	    Per cpu exch pool
88  * @stats:	    Statistics structure
89  *
90  * This structure is the center for creating exchanges and sequences.
91  * It manages the allocation of exchange IDs.
92  */
93 struct fc_exch_mgr {
94 	enum fc_class	class;
95 	struct kref	kref;
96 	u16		min_xid;
97 	u16		max_xid;
98 	mempool_t	*ep_pool;
99 	u16		pool_max_index;
100 	struct fc_exch_pool *pool;
101 
102 	/*
103 	 * currently exchange mgr stats are updated but not used.
104 	 * either stats can be expose via sysfs or remove them
105 	 * all together if not used XXX
106 	 */
107 	struct {
108 		atomic_t no_free_exch;
109 		atomic_t no_free_exch_xid;
110 		atomic_t xid_not_found;
111 		atomic_t xid_busy;
112 		atomic_t seq_not_found;
113 		atomic_t non_bls_resp;
114 	} stats;
115 };
116 
117 /**
118  * struct fc_exch_mgr_anchor - primary structure for list of EMs
119  * @ema_list: Exchange Manager Anchor list
120  * @mp:	      Exchange Manager associated with this anchor
121  * @match:    Routine to determine if this anchor's EM should be used
122  *
123  * When walking the list of anchors the match routine will be called
124  * for each anchor to determine if that EM should be used. The last
125  * anchor in the list will always match to handle any exchanges not
126  * handled by other EMs. The non-default EMs would be added to the
127  * anchor list by HW that provides FCoE offloads.
128  */
129 struct fc_exch_mgr_anchor {
130 	struct list_head ema_list;
131 	struct fc_exch_mgr *mp;
132 	bool (*match)(struct fc_frame *);
133 };
134 
135 static void fc_exch_rrq(struct fc_exch *);
136 static void fc_seq_ls_acc(struct fc_frame *);
137 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
138 			  enum fc_els_rjt_explan);
139 static void fc_exch_els_rec(struct fc_frame *);
140 static void fc_exch_els_rrq(struct fc_frame *);
141 
142 /*
143  * Internal implementation notes.
144  *
145  * The exchange manager is one by default in libfc but LLD may choose
146  * to have one per CPU. The sequence manager is one per exchange manager
147  * and currently never separated.
148  *
149  * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
150  * assigned by the Sequence Initiator that shall be unique for a specific
151  * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
152  * qualified by exchange ID, which one might think it would be.
153  * In practice this limits the number of open sequences and exchanges to 256
154  * per session.	 For most targets we could treat this limit as per exchange.
155  *
156  * The exchange and its sequence are freed when the last sequence is received.
157  * It's possible for the remote port to leave an exchange open without
158  * sending any sequences.
159  *
160  * Notes on reference counts:
161  *
162  * Exchanges are reference counted and exchange gets freed when the reference
163  * count becomes zero.
164  *
165  * Timeouts:
166  * Sequences are timed out for E_D_TOV and R_A_TOV.
167  *
168  * Sequence event handling:
169  *
170  * The following events may occur on initiator sequences:
171  *
172  *	Send.
173  *	    For now, the whole thing is sent.
174  *	Receive ACK
175  *	    This applies only to class F.
176  *	    The sequence is marked complete.
177  *	ULP completion.
178  *	    The upper layer calls fc_exch_done() when done
179  *	    with exchange and sequence tuple.
180  *	RX-inferred completion.
181  *	    When we receive the next sequence on the same exchange, we can
182  *	    retire the previous sequence ID.  (XXX not implemented).
183  *	Timeout.
184  *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
185  *	    E_D_TOV causes abort and calls upper layer response handler
186  *	    with FC_EX_TIMEOUT error.
187  *	Receive RJT
188  *	    XXX defer.
189  *	Send ABTS
190  *	    On timeout.
191  *
192  * The following events may occur on recipient sequences:
193  *
194  *	Receive
195  *	    Allocate sequence for first frame received.
196  *	    Hold during receive handler.
197  *	    Release when final frame received.
198  *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
199  *	Receive ABTS
200  *	    Deallocate sequence
201  *	Send RJT
202  *	    Deallocate
203  *
204  * For now, we neglect conditions where only part of a sequence was
205  * received or transmitted, or where out-of-order receipt is detected.
206  */
207 
208 /*
209  * Locking notes:
210  *
211  * The EM code run in a per-CPU worker thread.
212  *
213  * To protect against concurrency between a worker thread code and timers,
214  * sequence allocation and deallocation must be locked.
215  *  - exchange refcnt can be done atomicly without locks.
216  *  - sequence allocation must be locked by exch lock.
217  *  - If the EM pool lock and ex_lock must be taken at the same time, then the
218  *    EM pool lock must be taken before the ex_lock.
219  */
220 
221 /*
222  * opcode names for debugging.
223  */
224 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
225 
226 /**
227  * fc_exch_name_lookup() - Lookup name by opcode
228  * @op:	       Opcode to be looked up
229  * @table:     Opcode/name table
230  * @max_index: Index not to be exceeded
231  *
232  * This routine is used to determine a human-readable string identifying
233  * a R_CTL opcode.
234  */
235 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
236 					      unsigned int max_index)
237 {
238 	const char *name = NULL;
239 
240 	if (op < max_index)
241 		name = table[op];
242 	if (!name)
243 		name = "unknown";
244 	return name;
245 }
246 
247 /**
248  * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
249  * @op: The opcode to be looked up
250  */
251 static const char *fc_exch_rctl_name(unsigned int op)
252 {
253 	return fc_exch_name_lookup(op, fc_exch_rctl_names,
254 				   ARRAY_SIZE(fc_exch_rctl_names));
255 }
256 
257 /**
258  * fc_exch_hold() - Increment an exchange's reference count
259  * @ep: Echange to be held
260  */
261 static inline void fc_exch_hold(struct fc_exch *ep)
262 {
263 	atomic_inc(&ep->ex_refcnt);
264 }
265 
266 /**
267  * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
268  *			 and determine SOF and EOF.
269  * @ep:	   The exchange to that will use the header
270  * @fp:	   The frame whose header is to be modified
271  * @f_ctl: F_CTL bits that will be used for the frame header
272  *
273  * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
274  * fh_seq_id, fh_seq_cnt and the SOF and EOF.
275  */
276 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
277 			      u32 f_ctl)
278 {
279 	struct fc_frame_header *fh = fc_frame_header_get(fp);
280 	u16 fill;
281 
282 	fr_sof(fp) = ep->class;
283 	if (ep->seq.cnt)
284 		fr_sof(fp) = fc_sof_normal(ep->class);
285 
286 	if (f_ctl & FC_FC_END_SEQ) {
287 		fr_eof(fp) = FC_EOF_T;
288 		if (fc_sof_needs_ack(ep->class))
289 			fr_eof(fp) = FC_EOF_N;
290 		/*
291 		 * From F_CTL.
292 		 * The number of fill bytes to make the length a 4-byte
293 		 * multiple is the low order 2-bits of the f_ctl.
294 		 * The fill itself will have been cleared by the frame
295 		 * allocation.
296 		 * After this, the length will be even, as expected by
297 		 * the transport.
298 		 */
299 		fill = fr_len(fp) & 3;
300 		if (fill) {
301 			fill = 4 - fill;
302 			/* TODO, this may be a problem with fragmented skb */
303 			skb_put(fp_skb(fp), fill);
304 			hton24(fh->fh_f_ctl, f_ctl | fill);
305 		}
306 	} else {
307 		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
308 		fr_eof(fp) = FC_EOF_N;
309 	}
310 
311 	/*
312 	 * Initialize remainig fh fields
313 	 * from fc_fill_fc_hdr
314 	 */
315 	fh->fh_ox_id = htons(ep->oxid);
316 	fh->fh_rx_id = htons(ep->rxid);
317 	fh->fh_seq_id = ep->seq.id;
318 	fh->fh_seq_cnt = htons(ep->seq.cnt);
319 }
320 
321 /**
322  * fc_exch_release() - Decrement an exchange's reference count
323  * @ep: Exchange to be released
324  *
325  * If the reference count reaches zero and the exchange is complete,
326  * it is freed.
327  */
328 static void fc_exch_release(struct fc_exch *ep)
329 {
330 	struct fc_exch_mgr *mp;
331 
332 	if (atomic_dec_and_test(&ep->ex_refcnt)) {
333 		mp = ep->em;
334 		if (ep->destructor)
335 			ep->destructor(&ep->seq, ep->arg);
336 		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
337 		mempool_free(ep, mp->ep_pool);
338 	}
339 }
340 
341 /**
342  * fc_exch_done_locked() - Complete an exchange with the exchange lock held
343  * @ep: The exchange that is complete
344  */
345 static int fc_exch_done_locked(struct fc_exch *ep)
346 {
347 	int rc = 1;
348 
349 	/*
350 	 * We must check for completion in case there are two threads
351 	 * tyring to complete this. But the rrq code will reuse the
352 	 * ep, and in that case we only clear the resp and set it as
353 	 * complete, so it can be reused by the timer to send the rrq.
354 	 */
355 	ep->resp = NULL;
356 	if (ep->state & FC_EX_DONE)
357 		return rc;
358 	ep->esb_stat |= ESB_ST_COMPLETE;
359 
360 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
361 		ep->state |= FC_EX_DONE;
362 		if (cancel_delayed_work(&ep->timeout_work))
363 			atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
364 		rc = 0;
365 	}
366 	return rc;
367 }
368 
369 /**
370  * fc_exch_ptr_get() - Return an exchange from an exchange pool
371  * @pool:  Exchange Pool to get an exchange from
372  * @index: Index of the exchange within the pool
373  *
374  * Use the index to get an exchange from within an exchange pool. exches
375  * will point to an array of exchange pointers. The index will select
376  * the exchange within the array.
377  */
378 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
379 					      u16 index)
380 {
381 	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
382 	return exches[index];
383 }
384 
385 /**
386  * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
387  * @pool:  The pool to assign the exchange to
388  * @index: The index in the pool where the exchange will be assigned
389  * @ep:	   The exchange to assign to the pool
390  */
391 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
392 				   struct fc_exch *ep)
393 {
394 	((struct fc_exch **)(pool + 1))[index] = ep;
395 }
396 
397 /**
398  * fc_exch_delete() - Delete an exchange
399  * @ep: The exchange to be deleted
400  */
401 static void fc_exch_delete(struct fc_exch *ep)
402 {
403 	struct fc_exch_pool *pool;
404 	u16 index;
405 
406 	pool = ep->pool;
407 	spin_lock_bh(&pool->lock);
408 	WARN_ON(pool->total_exches <= 0);
409 	pool->total_exches--;
410 
411 	/* update cache of free slot */
412 	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
413 	if (pool->left == FC_XID_UNKNOWN)
414 		pool->left = index;
415 	else if (pool->right == FC_XID_UNKNOWN)
416 		pool->right = index;
417 	else
418 		pool->next_index = index;
419 
420 	fc_exch_ptr_set(pool, index, NULL);
421 	list_del(&ep->ex_list);
422 	spin_unlock_bh(&pool->lock);
423 	fc_exch_release(ep);	/* drop hold for exch in mp */
424 }
425 
426 /**
427  * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
428  *				the exchange lock held
429  * @ep:		The exchange whose timer will start
430  * @timer_msec: The timeout period
431  *
432  * Used for upper level protocols to time out the exchange.
433  * The timer is cancelled when it fires or when the exchange completes.
434  */
435 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
436 					    unsigned int timer_msec)
437 {
438 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
439 		return;
440 
441 	FC_EXCH_DBG(ep, "Exchange timer armed\n");
442 
443 	if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
444 			       msecs_to_jiffies(timer_msec)))
445 		fc_exch_hold(ep);		/* hold for timer */
446 }
447 
448 /**
449  * fc_exch_timer_set() - Lock the exchange and set the timer
450  * @ep:		The exchange whose timer will start
451  * @timer_msec: The timeout period
452  */
453 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
454 {
455 	spin_lock_bh(&ep->ex_lock);
456 	fc_exch_timer_set_locked(ep, timer_msec);
457 	spin_unlock_bh(&ep->ex_lock);
458 }
459 
460 /**
461  * fc_seq_send() - Send a frame using existing sequence/exchange pair
462  * @lport: The local port that the exchange will be sent on
463  * @sp:	   The sequence to be sent
464  * @fp:	   The frame to be sent on the exchange
465  */
466 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
467 		       struct fc_frame *fp)
468 {
469 	struct fc_exch *ep;
470 	struct fc_frame_header *fh = fc_frame_header_get(fp);
471 	int error;
472 	u32 f_ctl;
473 
474 	ep = fc_seq_exch(sp);
475 	WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
476 
477 	f_ctl = ntoh24(fh->fh_f_ctl);
478 	fc_exch_setup_hdr(ep, fp, f_ctl);
479 	fr_encaps(fp) = ep->encaps;
480 
481 	/*
482 	 * update sequence count if this frame is carrying
483 	 * multiple FC frames when sequence offload is enabled
484 	 * by LLD.
485 	 */
486 	if (fr_max_payload(fp))
487 		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
488 					fr_max_payload(fp));
489 	else
490 		sp->cnt++;
491 
492 	/*
493 	 * Send the frame.
494 	 */
495 	error = lport->tt.frame_send(lport, fp);
496 
497 	/*
498 	 * Update the exchange and sequence flags,
499 	 * assuming all frames for the sequence have been sent.
500 	 * We can only be called to send once for each sequence.
501 	 */
502 	spin_lock_bh(&ep->ex_lock);
503 	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
504 	if (f_ctl & FC_FC_SEQ_INIT)
505 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
506 	spin_unlock_bh(&ep->ex_lock);
507 	return error;
508 }
509 
510 /**
511  * fc_seq_alloc() - Allocate a sequence for a given exchange
512  * @ep:	    The exchange to allocate a new sequence for
513  * @seq_id: The sequence ID to be used
514  *
515  * We don't support multiple originated sequences on the same exchange.
516  * By implication, any previously originated sequence on this exchange
517  * is complete, and we reallocate the same sequence.
518  */
519 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
520 {
521 	struct fc_seq *sp;
522 
523 	sp = &ep->seq;
524 	sp->ssb_stat = 0;
525 	sp->cnt = 0;
526 	sp->id = seq_id;
527 	return sp;
528 }
529 
530 /**
531  * fc_seq_start_next_locked() - Allocate a new sequence on the same
532  *				exchange as the supplied sequence
533  * @sp: The sequence/exchange to get a new sequence for
534  */
535 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
536 {
537 	struct fc_exch *ep = fc_seq_exch(sp);
538 
539 	sp = fc_seq_alloc(ep, ep->seq_id++);
540 	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
541 		    ep->f_ctl, sp->id);
542 	return sp;
543 }
544 
545 /**
546  * fc_seq_start_next() - Lock the exchange and get a new sequence
547  *			 for a given sequence/exchange pair
548  * @sp: The sequence/exchange to get a new exchange for
549  */
550 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
551 {
552 	struct fc_exch *ep = fc_seq_exch(sp);
553 
554 	spin_lock_bh(&ep->ex_lock);
555 	sp = fc_seq_start_next_locked(sp);
556 	spin_unlock_bh(&ep->ex_lock);
557 
558 	return sp;
559 }
560 
561 /*
562  * Set the response handler for the exchange associated with a sequence.
563  */
564 static void fc_seq_set_resp(struct fc_seq *sp,
565 			    void (*resp)(struct fc_seq *, struct fc_frame *,
566 					 void *),
567 			    void *arg)
568 {
569 	struct fc_exch *ep = fc_seq_exch(sp);
570 
571 	spin_lock_bh(&ep->ex_lock);
572 	ep->resp = resp;
573 	ep->arg = arg;
574 	spin_unlock_bh(&ep->ex_lock);
575 }
576 
577 /**
578  * fc_seq_exch_abort() - Abort an exchange and sequence
579  * @req_sp:	The sequence to be aborted
580  * @timer_msec: The period of time to wait before aborting
581  *
582  * Generally called because of a timeout or an abort from the upper layer.
583  */
584 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
585 			     unsigned int timer_msec)
586 {
587 	struct fc_seq *sp;
588 	struct fc_exch *ep;
589 	struct fc_frame *fp;
590 	int error;
591 
592 	ep = fc_seq_exch(req_sp);
593 
594 	spin_lock_bh(&ep->ex_lock);
595 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
596 	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
597 		spin_unlock_bh(&ep->ex_lock);
598 		return -ENXIO;
599 	}
600 
601 	/*
602 	 * Send the abort on a new sequence if possible.
603 	 */
604 	sp = fc_seq_start_next_locked(&ep->seq);
605 	if (!sp) {
606 		spin_unlock_bh(&ep->ex_lock);
607 		return -ENOMEM;
608 	}
609 
610 	ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
611 	if (timer_msec)
612 		fc_exch_timer_set_locked(ep, timer_msec);
613 	spin_unlock_bh(&ep->ex_lock);
614 
615 	/*
616 	 * If not logged into the fabric, don't send ABTS but leave
617 	 * sequence active until next timeout.
618 	 */
619 	if (!ep->sid)
620 		return 0;
621 
622 	/*
623 	 * Send an abort for the sequence that timed out.
624 	 */
625 	fp = fc_frame_alloc(ep->lp, 0);
626 	if (fp) {
627 		fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
628 			       FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
629 		error = fc_seq_send(ep->lp, sp, fp);
630 	} else
631 		error = -ENOBUFS;
632 	return error;
633 }
634 
635 /**
636  * fc_exch_timeout() - Handle exchange timer expiration
637  * @work: The work_struct identifying the exchange that timed out
638  */
639 static void fc_exch_timeout(struct work_struct *work)
640 {
641 	struct fc_exch *ep = container_of(work, struct fc_exch,
642 					  timeout_work.work);
643 	struct fc_seq *sp = &ep->seq;
644 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
645 	void *arg;
646 	u32 e_stat;
647 	int rc = 1;
648 
649 	FC_EXCH_DBG(ep, "Exchange timed out\n");
650 
651 	spin_lock_bh(&ep->ex_lock);
652 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
653 		goto unlock;
654 
655 	e_stat = ep->esb_stat;
656 	if (e_stat & ESB_ST_COMPLETE) {
657 		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
658 		spin_unlock_bh(&ep->ex_lock);
659 		if (e_stat & ESB_ST_REC_QUAL)
660 			fc_exch_rrq(ep);
661 		goto done;
662 	} else {
663 		resp = ep->resp;
664 		arg = ep->arg;
665 		ep->resp = NULL;
666 		if (e_stat & ESB_ST_ABNORMAL)
667 			rc = fc_exch_done_locked(ep);
668 		spin_unlock_bh(&ep->ex_lock);
669 		if (!rc)
670 			fc_exch_delete(ep);
671 		if (resp)
672 			resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
673 		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
674 		goto done;
675 	}
676 unlock:
677 	spin_unlock_bh(&ep->ex_lock);
678 done:
679 	/*
680 	 * This release matches the hold taken when the timer was set.
681 	 */
682 	fc_exch_release(ep);
683 }
684 
685 /**
686  * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
687  * @lport: The local port that the exchange is for
688  * @mp:	   The exchange manager that will allocate the exchange
689  *
690  * Returns pointer to allocated fc_exch with exch lock held.
691  */
692 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
693 					struct fc_exch_mgr *mp)
694 {
695 	struct fc_exch *ep;
696 	unsigned int cpu;
697 	u16 index;
698 	struct fc_exch_pool *pool;
699 
700 	/* allocate memory for exchange */
701 	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
702 	if (!ep) {
703 		atomic_inc(&mp->stats.no_free_exch);
704 		goto out;
705 	}
706 	memset(ep, 0, sizeof(*ep));
707 
708 	cpu = get_cpu();
709 	pool = per_cpu_ptr(mp->pool, cpu);
710 	spin_lock_bh(&pool->lock);
711 	put_cpu();
712 
713 	/* peek cache of free slot */
714 	if (pool->left != FC_XID_UNKNOWN) {
715 		index = pool->left;
716 		pool->left = FC_XID_UNKNOWN;
717 		goto hit;
718 	}
719 	if (pool->right != FC_XID_UNKNOWN) {
720 		index = pool->right;
721 		pool->right = FC_XID_UNKNOWN;
722 		goto hit;
723 	}
724 
725 	index = pool->next_index;
726 	/* allocate new exch from pool */
727 	while (fc_exch_ptr_get(pool, index)) {
728 		index = index == mp->pool_max_index ? 0 : index + 1;
729 		if (index == pool->next_index)
730 			goto err;
731 	}
732 	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
733 hit:
734 	fc_exch_hold(ep);	/* hold for exch in mp */
735 	spin_lock_init(&ep->ex_lock);
736 	/*
737 	 * Hold exch lock for caller to prevent fc_exch_reset()
738 	 * from releasing exch	while fc_exch_alloc() caller is
739 	 * still working on exch.
740 	 */
741 	spin_lock_bh(&ep->ex_lock);
742 
743 	fc_exch_ptr_set(pool, index, ep);
744 	list_add_tail(&ep->ex_list, &pool->ex_list);
745 	fc_seq_alloc(ep, ep->seq_id++);
746 	pool->total_exches++;
747 	spin_unlock_bh(&pool->lock);
748 
749 	/*
750 	 *  update exchange
751 	 */
752 	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
753 	ep->em = mp;
754 	ep->pool = pool;
755 	ep->lp = lport;
756 	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
757 	ep->rxid = FC_XID_UNKNOWN;
758 	ep->class = mp->class;
759 	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
760 out:
761 	return ep;
762 err:
763 	spin_unlock_bh(&pool->lock);
764 	atomic_inc(&mp->stats.no_free_exch_xid);
765 	mempool_free(ep, mp->ep_pool);
766 	return NULL;
767 }
768 
769 /**
770  * fc_exch_alloc() - Allocate an exchange from an EM on a
771  *		     local port's list of EMs.
772  * @lport: The local port that will own the exchange
773  * @fp:	   The FC frame that the exchange will be for
774  *
775  * This function walks the list of exchange manager(EM)
776  * anchors to select an EM for a new exchange allocation. The
777  * EM is selected when a NULL match function pointer is encountered
778  * or when a call to a match function returns true.
779  */
780 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
781 					    struct fc_frame *fp)
782 {
783 	struct fc_exch_mgr_anchor *ema;
784 
785 	list_for_each_entry(ema, &lport->ema_list, ema_list)
786 		if (!ema->match || ema->match(fp))
787 			return fc_exch_em_alloc(lport, ema->mp);
788 	return NULL;
789 }
790 
791 /**
792  * fc_exch_find() - Lookup and hold an exchange
793  * @mp:	 The exchange manager to lookup the exchange from
794  * @xid: The XID of the exchange to look up
795  */
796 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
797 {
798 	struct fc_exch_pool *pool;
799 	struct fc_exch *ep = NULL;
800 
801 	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
802 		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
803 		spin_lock_bh(&pool->lock);
804 		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
805 		if (ep && ep->xid == xid)
806 			fc_exch_hold(ep);
807 		spin_unlock_bh(&pool->lock);
808 	}
809 	return ep;
810 }
811 
812 
813 /**
814  * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
815  *		    the memory allocated for the related objects may be freed.
816  * @sp: The sequence that has completed
817  */
818 static void fc_exch_done(struct fc_seq *sp)
819 {
820 	struct fc_exch *ep = fc_seq_exch(sp);
821 	int rc;
822 
823 	spin_lock_bh(&ep->ex_lock);
824 	rc = fc_exch_done_locked(ep);
825 	spin_unlock_bh(&ep->ex_lock);
826 	if (!rc)
827 		fc_exch_delete(ep);
828 }
829 
830 /**
831  * fc_exch_resp() - Allocate a new exchange for a response frame
832  * @lport: The local port that the exchange was for
833  * @mp:	   The exchange manager to allocate the exchange from
834  * @fp:	   The response frame
835  *
836  * Sets the responder ID in the frame header.
837  */
838 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
839 				    struct fc_exch_mgr *mp,
840 				    struct fc_frame *fp)
841 {
842 	struct fc_exch *ep;
843 	struct fc_frame_header *fh;
844 
845 	ep = fc_exch_alloc(lport, fp);
846 	if (ep) {
847 		ep->class = fc_frame_class(fp);
848 
849 		/*
850 		 * Set EX_CTX indicating we're responding on this exchange.
851 		 */
852 		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
853 		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
854 		fh = fc_frame_header_get(fp);
855 		ep->sid = ntoh24(fh->fh_d_id);
856 		ep->did = ntoh24(fh->fh_s_id);
857 		ep->oid = ep->did;
858 
859 		/*
860 		 * Allocated exchange has placed the XID in the
861 		 * originator field. Move it to the responder field,
862 		 * and set the originator XID from the frame.
863 		 */
864 		ep->rxid = ep->xid;
865 		ep->oxid = ntohs(fh->fh_ox_id);
866 		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
867 		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
868 			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
869 
870 		fc_exch_hold(ep);	/* hold for caller */
871 		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
872 	}
873 	return ep;
874 }
875 
876 /**
877  * fc_seq_lookup_recip() - Find a sequence where the other end
878  *			   originated the sequence
879  * @lport: The local port that the frame was sent to
880  * @mp:	   The Exchange Manager to lookup the exchange from
881  * @fp:	   The frame associated with the sequence we're looking for
882  *
883  * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
884  * on the ep that should be released by the caller.
885  */
886 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
887 						 struct fc_exch_mgr *mp,
888 						 struct fc_frame *fp)
889 {
890 	struct fc_frame_header *fh = fc_frame_header_get(fp);
891 	struct fc_exch *ep = NULL;
892 	struct fc_seq *sp = NULL;
893 	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
894 	u32 f_ctl;
895 	u16 xid;
896 
897 	f_ctl = ntoh24(fh->fh_f_ctl);
898 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
899 
900 	/*
901 	 * Lookup or create the exchange if we will be creating the sequence.
902 	 */
903 	if (f_ctl & FC_FC_EX_CTX) {
904 		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
905 		ep = fc_exch_find(mp, xid);
906 		if (!ep) {
907 			atomic_inc(&mp->stats.xid_not_found);
908 			reject = FC_RJT_OX_ID;
909 			goto out;
910 		}
911 		if (ep->rxid == FC_XID_UNKNOWN)
912 			ep->rxid = ntohs(fh->fh_rx_id);
913 		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
914 			reject = FC_RJT_OX_ID;
915 			goto rel;
916 		}
917 	} else {
918 		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
919 
920 		/*
921 		 * Special case for MDS issuing an ELS TEST with a
922 		 * bad rxid of 0.
923 		 * XXX take this out once we do the proper reject.
924 		 */
925 		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
926 		    fc_frame_payload_op(fp) == ELS_TEST) {
927 			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
928 			xid = FC_XID_UNKNOWN;
929 		}
930 
931 		/*
932 		 * new sequence - find the exchange
933 		 */
934 		ep = fc_exch_find(mp, xid);
935 		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
936 			if (ep) {
937 				atomic_inc(&mp->stats.xid_busy);
938 				reject = FC_RJT_RX_ID;
939 				goto rel;
940 			}
941 			ep = fc_exch_resp(lport, mp, fp);
942 			if (!ep) {
943 				reject = FC_RJT_EXCH_EST;	/* XXX */
944 				goto out;
945 			}
946 			xid = ep->xid;	/* get our XID */
947 		} else if (!ep) {
948 			atomic_inc(&mp->stats.xid_not_found);
949 			reject = FC_RJT_RX_ID;	/* XID not found */
950 			goto out;
951 		}
952 	}
953 
954 	/*
955 	 * At this point, we have the exchange held.
956 	 * Find or create the sequence.
957 	 */
958 	if (fc_sof_is_init(fr_sof(fp))) {
959 		sp = &ep->seq;
960 		sp->ssb_stat |= SSB_ST_RESP;
961 		sp->id = fh->fh_seq_id;
962 	} else {
963 		sp = &ep->seq;
964 		if (sp->id != fh->fh_seq_id) {
965 			atomic_inc(&mp->stats.seq_not_found);
966 			if (f_ctl & FC_FC_END_SEQ) {
967 				/*
968 				 * Update sequence_id based on incoming last
969 				 * frame of sequence exchange. This is needed
970 				 * for FCoE target where DDP has been used
971 				 * on target where, stack is indicated only
972 				 * about last frame's (payload _header) header.
973 				 * Whereas "seq_id" which is part of
974 				 * frame_header is allocated by initiator
975 				 * which is totally different from "seq_id"
976 				 * allocated when XFER_RDY was sent by target.
977 				 * To avoid false -ve which results into not
978 				 * sending RSP, hence write request on other
979 				 * end never finishes.
980 				 */
981 				spin_lock_bh(&ep->ex_lock);
982 				sp->ssb_stat |= SSB_ST_RESP;
983 				sp->id = fh->fh_seq_id;
984 				spin_unlock_bh(&ep->ex_lock);
985 			} else {
986 				/* sequence/exch should exist */
987 				reject = FC_RJT_SEQ_ID;
988 				goto rel;
989 			}
990 		}
991 	}
992 	WARN_ON(ep != fc_seq_exch(sp));
993 
994 	if (f_ctl & FC_FC_SEQ_INIT)
995 		ep->esb_stat |= ESB_ST_SEQ_INIT;
996 
997 	fr_seq(fp) = sp;
998 out:
999 	return reject;
1000 rel:
1001 	fc_exch_done(&ep->seq);
1002 	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1003 	return reject;
1004 }
1005 
1006 /**
1007  * fc_seq_lookup_orig() - Find a sequence where this end
1008  *			  originated the sequence
1009  * @mp:	   The Exchange Manager to lookup the exchange from
1010  * @fp:	   The frame associated with the sequence we're looking for
1011  *
1012  * Does not hold the sequence for the caller.
1013  */
1014 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1015 					 struct fc_frame *fp)
1016 {
1017 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1018 	struct fc_exch *ep;
1019 	struct fc_seq *sp = NULL;
1020 	u32 f_ctl;
1021 	u16 xid;
1022 
1023 	f_ctl = ntoh24(fh->fh_f_ctl);
1024 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1025 	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1026 	ep = fc_exch_find(mp, xid);
1027 	if (!ep)
1028 		return NULL;
1029 	if (ep->seq.id == fh->fh_seq_id) {
1030 		/*
1031 		 * Save the RX_ID if we didn't previously know it.
1032 		 */
1033 		sp = &ep->seq;
1034 		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1035 		    ep->rxid == FC_XID_UNKNOWN) {
1036 			ep->rxid = ntohs(fh->fh_rx_id);
1037 		}
1038 	}
1039 	fc_exch_release(ep);
1040 	return sp;
1041 }
1042 
1043 /**
1044  * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1045  * @ep:	     The exchange to set the addresses for
1046  * @orig_id: The originator's ID
1047  * @resp_id: The responder's ID
1048  *
1049  * Note this must be done before the first sequence of the exchange is sent.
1050  */
1051 static void fc_exch_set_addr(struct fc_exch *ep,
1052 			     u32 orig_id, u32 resp_id)
1053 {
1054 	ep->oid = orig_id;
1055 	if (ep->esb_stat & ESB_ST_RESP) {
1056 		ep->sid = resp_id;
1057 		ep->did = orig_id;
1058 	} else {
1059 		ep->sid = orig_id;
1060 		ep->did = resp_id;
1061 	}
1062 }
1063 
1064 /**
1065  * fc_seq_els_rsp_send() - Send an ELS response using information from
1066  *			   the existing sequence/exchange.
1067  * @fp:	      The received frame
1068  * @els_cmd:  The ELS command to be sent
1069  * @els_data: The ELS data to be sent
1070  *
1071  * The received frame is not freed.
1072  */
1073 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1074 				struct fc_seq_els_data *els_data)
1075 {
1076 	switch (els_cmd) {
1077 	case ELS_LS_RJT:
1078 		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1079 		break;
1080 	case ELS_LS_ACC:
1081 		fc_seq_ls_acc(fp);
1082 		break;
1083 	case ELS_RRQ:
1084 		fc_exch_els_rrq(fp);
1085 		break;
1086 	case ELS_REC:
1087 		fc_exch_els_rec(fp);
1088 		break;
1089 	default:
1090 		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1091 	}
1092 }
1093 
1094 /**
1095  * fc_seq_send_last() - Send a sequence that is the last in the exchange
1096  * @sp:	     The sequence that is to be sent
1097  * @fp:	     The frame that will be sent on the sequence
1098  * @rctl:    The R_CTL information to be sent
1099  * @fh_type: The frame header type
1100  */
1101 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1102 			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1103 {
1104 	u32 f_ctl;
1105 	struct fc_exch *ep = fc_seq_exch(sp);
1106 
1107 	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1108 	f_ctl |= ep->f_ctl;
1109 	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1110 	fc_seq_send(ep->lp, sp, fp);
1111 }
1112 
1113 /**
1114  * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1115  * @sp:	   The sequence to send the ACK on
1116  * @rx_fp: The received frame that is being acknoledged
1117  *
1118  * Send ACK_1 (or equiv.) indicating we received something.
1119  */
1120 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1121 {
1122 	struct fc_frame *fp;
1123 	struct fc_frame_header *rx_fh;
1124 	struct fc_frame_header *fh;
1125 	struct fc_exch *ep = fc_seq_exch(sp);
1126 	struct fc_lport *lport = ep->lp;
1127 	unsigned int f_ctl;
1128 
1129 	/*
1130 	 * Don't send ACKs for class 3.
1131 	 */
1132 	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1133 		fp = fc_frame_alloc(lport, 0);
1134 		if (!fp)
1135 			return;
1136 
1137 		fh = fc_frame_header_get(fp);
1138 		fh->fh_r_ctl = FC_RCTL_ACK_1;
1139 		fh->fh_type = FC_TYPE_BLS;
1140 
1141 		/*
1142 		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1143 		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1144 		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1145 		 * Last ACK uses bits 7-6 (continue sequence),
1146 		 * bits 5-4 are meaningful (what kind of ACK to use).
1147 		 */
1148 		rx_fh = fc_frame_header_get(rx_fp);
1149 		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1150 		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1151 			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1152 			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1153 			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1154 		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1155 		hton24(fh->fh_f_ctl, f_ctl);
1156 
1157 		fc_exch_setup_hdr(ep, fp, f_ctl);
1158 		fh->fh_seq_id = rx_fh->fh_seq_id;
1159 		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1160 		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1161 
1162 		fr_sof(fp) = fr_sof(rx_fp);
1163 		if (f_ctl & FC_FC_END_SEQ)
1164 			fr_eof(fp) = FC_EOF_T;
1165 		else
1166 			fr_eof(fp) = FC_EOF_N;
1167 
1168 		lport->tt.frame_send(lport, fp);
1169 	}
1170 }
1171 
1172 /**
1173  * fc_exch_send_ba_rjt() - Send BLS Reject
1174  * @rx_fp:  The frame being rejected
1175  * @reason: The reason the frame is being rejected
1176  * @explan: The explanation for the rejection
1177  *
1178  * This is for rejecting BA_ABTS only.
1179  */
1180 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1181 				enum fc_ba_rjt_reason reason,
1182 				enum fc_ba_rjt_explan explan)
1183 {
1184 	struct fc_frame *fp;
1185 	struct fc_frame_header *rx_fh;
1186 	struct fc_frame_header *fh;
1187 	struct fc_ba_rjt *rp;
1188 	struct fc_lport *lport;
1189 	unsigned int f_ctl;
1190 
1191 	lport = fr_dev(rx_fp);
1192 	fp = fc_frame_alloc(lport, sizeof(*rp));
1193 	if (!fp)
1194 		return;
1195 	fh = fc_frame_header_get(fp);
1196 	rx_fh = fc_frame_header_get(rx_fp);
1197 
1198 	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1199 
1200 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1201 	rp->br_reason = reason;
1202 	rp->br_explan = explan;
1203 
1204 	/*
1205 	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1206 	 */
1207 	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1208 	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1209 	fh->fh_ox_id = rx_fh->fh_ox_id;
1210 	fh->fh_rx_id = rx_fh->fh_rx_id;
1211 	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1212 	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1213 	fh->fh_type = FC_TYPE_BLS;
1214 
1215 	/*
1216 	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1217 	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1218 	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1219 	 * Last ACK uses bits 7-6 (continue sequence),
1220 	 * bits 5-4 are meaningful (what kind of ACK to use).
1221 	 * Always set LAST_SEQ, END_SEQ.
1222 	 */
1223 	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1224 	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1225 		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1226 		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1227 	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1228 	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1229 	f_ctl &= ~FC_FC_FIRST_SEQ;
1230 	hton24(fh->fh_f_ctl, f_ctl);
1231 
1232 	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1233 	fr_eof(fp) = FC_EOF_T;
1234 	if (fc_sof_needs_ack(fr_sof(fp)))
1235 		fr_eof(fp) = FC_EOF_N;
1236 
1237 	lport->tt.frame_send(lport, fp);
1238 }
1239 
1240 /**
1241  * fc_exch_recv_abts() - Handle an incoming ABTS
1242  * @ep:	   The exchange the abort was on
1243  * @rx_fp: The ABTS frame
1244  *
1245  * This would be for target mode usually, but could be due to lost
1246  * FCP transfer ready, confirm or RRQ. We always handle this as an
1247  * exchange abort, ignoring the parameter.
1248  */
1249 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1250 {
1251 	struct fc_frame *fp;
1252 	struct fc_ba_acc *ap;
1253 	struct fc_frame_header *fh;
1254 	struct fc_seq *sp;
1255 
1256 	if (!ep)
1257 		goto reject;
1258 	spin_lock_bh(&ep->ex_lock);
1259 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1260 		spin_unlock_bh(&ep->ex_lock);
1261 		goto reject;
1262 	}
1263 	if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1264 		fc_exch_hold(ep);		/* hold for REC_QUAL */
1265 	ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1266 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1267 
1268 	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1269 	if (!fp) {
1270 		spin_unlock_bh(&ep->ex_lock);
1271 		goto free;
1272 	}
1273 	fh = fc_frame_header_get(fp);
1274 	ap = fc_frame_payload_get(fp, sizeof(*ap));
1275 	memset(ap, 0, sizeof(*ap));
1276 	sp = &ep->seq;
1277 	ap->ba_high_seq_cnt = htons(0xffff);
1278 	if (sp->ssb_stat & SSB_ST_RESP) {
1279 		ap->ba_seq_id = sp->id;
1280 		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1281 		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1282 		ap->ba_low_seq_cnt = htons(sp->cnt);
1283 	}
1284 	sp = fc_seq_start_next_locked(sp);
1285 	spin_unlock_bh(&ep->ex_lock);
1286 	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1287 	fc_frame_free(rx_fp);
1288 	return;
1289 
1290 reject:
1291 	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1292 free:
1293 	fc_frame_free(rx_fp);
1294 }
1295 
1296 /**
1297  * fc_seq_assign() - Assign exchange and sequence for incoming request
1298  * @lport: The local port that received the request
1299  * @fp:    The request frame
1300  *
1301  * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1302  * A reference will be held on the exchange/sequence for the caller, which
1303  * must call fc_seq_release().
1304  */
1305 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1306 {
1307 	struct fc_exch_mgr_anchor *ema;
1308 
1309 	WARN_ON(lport != fr_dev(fp));
1310 	WARN_ON(fr_seq(fp));
1311 	fr_seq(fp) = NULL;
1312 
1313 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1314 		if ((!ema->match || ema->match(fp)) &&
1315 		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1316 			break;
1317 	return fr_seq(fp);
1318 }
1319 
1320 /**
1321  * fc_seq_release() - Release the hold
1322  * @sp:    The sequence.
1323  */
1324 static void fc_seq_release(struct fc_seq *sp)
1325 {
1326 	fc_exch_release(fc_seq_exch(sp));
1327 }
1328 
1329 /**
1330  * fc_exch_recv_req() - Handler for an incoming request
1331  * @lport: The local port that received the request
1332  * @mp:	   The EM that the exchange is on
1333  * @fp:	   The request frame
1334  *
1335  * This is used when the other end is originating the exchange
1336  * and the sequence.
1337  */
1338 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1339 			     struct fc_frame *fp)
1340 {
1341 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1342 	struct fc_seq *sp = NULL;
1343 	struct fc_exch *ep = NULL;
1344 	enum fc_pf_rjt_reason reject;
1345 
1346 	/* We can have the wrong fc_lport at this point with NPIV, which is a
1347 	 * problem now that we know a new exchange needs to be allocated
1348 	 */
1349 	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1350 	if (!lport) {
1351 		fc_frame_free(fp);
1352 		return;
1353 	}
1354 	fr_dev(fp) = lport;
1355 
1356 	BUG_ON(fr_seq(fp));		/* XXX remove later */
1357 
1358 	/*
1359 	 * If the RX_ID is 0xffff, don't allocate an exchange.
1360 	 * The upper-level protocol may request one later, if needed.
1361 	 */
1362 	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1363 		return lport->tt.lport_recv(lport, fp);
1364 
1365 	reject = fc_seq_lookup_recip(lport, mp, fp);
1366 	if (reject == FC_RJT_NONE) {
1367 		sp = fr_seq(fp);	/* sequence will be held */
1368 		ep = fc_seq_exch(sp);
1369 		fc_seq_send_ack(sp, fp);
1370 		ep->encaps = fr_encaps(fp);
1371 
1372 		/*
1373 		 * Call the receive function.
1374 		 *
1375 		 * The receive function may allocate a new sequence
1376 		 * over the old one, so we shouldn't change the
1377 		 * sequence after this.
1378 		 *
1379 		 * The frame will be freed by the receive function.
1380 		 * If new exch resp handler is valid then call that
1381 		 * first.
1382 		 */
1383 		if (ep->resp)
1384 			ep->resp(sp, fp, ep->arg);
1385 		else
1386 			lport->tt.lport_recv(lport, fp);
1387 		fc_exch_release(ep);	/* release from lookup */
1388 	} else {
1389 		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1390 			     reject);
1391 		fc_frame_free(fp);
1392 	}
1393 }
1394 
1395 /**
1396  * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1397  *			     end is the originator of the sequence that is a
1398  *			     response to our initial exchange
1399  * @mp: The EM that the exchange is on
1400  * @fp: The response frame
1401  */
1402 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1403 {
1404 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1405 	struct fc_seq *sp;
1406 	struct fc_exch *ep;
1407 	enum fc_sof sof;
1408 	u32 f_ctl;
1409 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1410 	void *ex_resp_arg;
1411 	int rc;
1412 
1413 	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1414 	if (!ep) {
1415 		atomic_inc(&mp->stats.xid_not_found);
1416 		goto out;
1417 	}
1418 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1419 		atomic_inc(&mp->stats.xid_not_found);
1420 		goto rel;
1421 	}
1422 	if (ep->rxid == FC_XID_UNKNOWN)
1423 		ep->rxid = ntohs(fh->fh_rx_id);
1424 	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1425 		atomic_inc(&mp->stats.xid_not_found);
1426 		goto rel;
1427 	}
1428 	if (ep->did != ntoh24(fh->fh_s_id) &&
1429 	    ep->did != FC_FID_FLOGI) {
1430 		atomic_inc(&mp->stats.xid_not_found);
1431 		goto rel;
1432 	}
1433 	sof = fr_sof(fp);
1434 	sp = &ep->seq;
1435 	if (fc_sof_is_init(sof)) {
1436 		sp->ssb_stat |= SSB_ST_RESP;
1437 		sp->id = fh->fh_seq_id;
1438 	} else if (sp->id != fh->fh_seq_id) {
1439 		atomic_inc(&mp->stats.seq_not_found);
1440 		goto rel;
1441 	}
1442 
1443 	f_ctl = ntoh24(fh->fh_f_ctl);
1444 	fr_seq(fp) = sp;
1445 	if (f_ctl & FC_FC_SEQ_INIT)
1446 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1447 
1448 	if (fc_sof_needs_ack(sof))
1449 		fc_seq_send_ack(sp, fp);
1450 	resp = ep->resp;
1451 	ex_resp_arg = ep->arg;
1452 
1453 	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1454 	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1455 	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1456 		spin_lock_bh(&ep->ex_lock);
1457 		resp = ep->resp;
1458 		rc = fc_exch_done_locked(ep);
1459 		WARN_ON(fc_seq_exch(sp) != ep);
1460 		spin_unlock_bh(&ep->ex_lock);
1461 		if (!rc)
1462 			fc_exch_delete(ep);
1463 	}
1464 
1465 	/*
1466 	 * Call the receive function.
1467 	 * The sequence is held (has a refcnt) for us,
1468 	 * but not for the receive function.
1469 	 *
1470 	 * The receive function may allocate a new sequence
1471 	 * over the old one, so we shouldn't change the
1472 	 * sequence after this.
1473 	 *
1474 	 * The frame will be freed by the receive function.
1475 	 * If new exch resp handler is valid then call that
1476 	 * first.
1477 	 */
1478 	if (resp)
1479 		resp(sp, fp, ex_resp_arg);
1480 	else
1481 		fc_frame_free(fp);
1482 	fc_exch_release(ep);
1483 	return;
1484 rel:
1485 	fc_exch_release(ep);
1486 out:
1487 	fc_frame_free(fp);
1488 }
1489 
1490 /**
1491  * fc_exch_recv_resp() - Handler for a sequence where other end is
1492  *			 responding to our sequence
1493  * @mp: The EM that the exchange is on
1494  * @fp: The response frame
1495  */
1496 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1497 {
1498 	struct fc_seq *sp;
1499 
1500 	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1501 
1502 	if (!sp)
1503 		atomic_inc(&mp->stats.xid_not_found);
1504 	else
1505 		atomic_inc(&mp->stats.non_bls_resp);
1506 
1507 	fc_frame_free(fp);
1508 }
1509 
1510 /**
1511  * fc_exch_abts_resp() - Handler for a response to an ABT
1512  * @ep: The exchange that the frame is on
1513  * @fp: The response frame
1514  *
1515  * This response would be to an ABTS cancelling an exchange or sequence.
1516  * The response can be either BA_ACC or BA_RJT
1517  */
1518 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1519 {
1520 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1521 	void *ex_resp_arg;
1522 	struct fc_frame_header *fh;
1523 	struct fc_ba_acc *ap;
1524 	struct fc_seq *sp;
1525 	u16 low;
1526 	u16 high;
1527 	int rc = 1, has_rec = 0;
1528 
1529 	fh = fc_frame_header_get(fp);
1530 	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1531 		    fc_exch_rctl_name(fh->fh_r_ctl));
1532 
1533 	if (cancel_delayed_work_sync(&ep->timeout_work))
1534 		fc_exch_release(ep);	/* release from pending timer hold */
1535 
1536 	spin_lock_bh(&ep->ex_lock);
1537 	switch (fh->fh_r_ctl) {
1538 	case FC_RCTL_BA_ACC:
1539 		ap = fc_frame_payload_get(fp, sizeof(*ap));
1540 		if (!ap)
1541 			break;
1542 
1543 		/*
1544 		 * Decide whether to establish a Recovery Qualifier.
1545 		 * We do this if there is a non-empty SEQ_CNT range and
1546 		 * SEQ_ID is the same as the one we aborted.
1547 		 */
1548 		low = ntohs(ap->ba_low_seq_cnt);
1549 		high = ntohs(ap->ba_high_seq_cnt);
1550 		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1551 		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1552 		     ap->ba_seq_id == ep->seq_id) && low != high) {
1553 			ep->esb_stat |= ESB_ST_REC_QUAL;
1554 			fc_exch_hold(ep);  /* hold for recovery qualifier */
1555 			has_rec = 1;
1556 		}
1557 		break;
1558 	case FC_RCTL_BA_RJT:
1559 		break;
1560 	default:
1561 		break;
1562 	}
1563 
1564 	resp = ep->resp;
1565 	ex_resp_arg = ep->arg;
1566 
1567 	/* do we need to do some other checks here. Can we reuse more of
1568 	 * fc_exch_recv_seq_resp
1569 	 */
1570 	sp = &ep->seq;
1571 	/*
1572 	 * do we want to check END_SEQ as well as LAST_SEQ here?
1573 	 */
1574 	if (ep->fh_type != FC_TYPE_FCP &&
1575 	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1576 		rc = fc_exch_done_locked(ep);
1577 	spin_unlock_bh(&ep->ex_lock);
1578 	if (!rc)
1579 		fc_exch_delete(ep);
1580 
1581 	if (resp)
1582 		resp(sp, fp, ex_resp_arg);
1583 	else
1584 		fc_frame_free(fp);
1585 
1586 	if (has_rec)
1587 		fc_exch_timer_set(ep, ep->r_a_tov);
1588 
1589 }
1590 
1591 /**
1592  * fc_exch_recv_bls() - Handler for a BLS sequence
1593  * @mp: The EM that the exchange is on
1594  * @fp: The request frame
1595  *
1596  * The BLS frame is always a sequence initiated by the remote side.
1597  * We may be either the originator or recipient of the exchange.
1598  */
1599 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1600 {
1601 	struct fc_frame_header *fh;
1602 	struct fc_exch *ep;
1603 	u32 f_ctl;
1604 
1605 	fh = fc_frame_header_get(fp);
1606 	f_ctl = ntoh24(fh->fh_f_ctl);
1607 	fr_seq(fp) = NULL;
1608 
1609 	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1610 			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1611 	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1612 		spin_lock_bh(&ep->ex_lock);
1613 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1614 		spin_unlock_bh(&ep->ex_lock);
1615 	}
1616 	if (f_ctl & FC_FC_SEQ_CTX) {
1617 		/*
1618 		 * A response to a sequence we initiated.
1619 		 * This should only be ACKs for class 2 or F.
1620 		 */
1621 		switch (fh->fh_r_ctl) {
1622 		case FC_RCTL_ACK_1:
1623 		case FC_RCTL_ACK_0:
1624 			break;
1625 		default:
1626 			FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1627 				    fh->fh_r_ctl,
1628 				    fc_exch_rctl_name(fh->fh_r_ctl));
1629 			break;
1630 		}
1631 		fc_frame_free(fp);
1632 	} else {
1633 		switch (fh->fh_r_ctl) {
1634 		case FC_RCTL_BA_RJT:
1635 		case FC_RCTL_BA_ACC:
1636 			if (ep)
1637 				fc_exch_abts_resp(ep, fp);
1638 			else
1639 				fc_frame_free(fp);
1640 			break;
1641 		case FC_RCTL_BA_ABTS:
1642 			fc_exch_recv_abts(ep, fp);
1643 			break;
1644 		default:			/* ignore junk */
1645 			fc_frame_free(fp);
1646 			break;
1647 		}
1648 	}
1649 	if (ep)
1650 		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1651 }
1652 
1653 /**
1654  * fc_seq_ls_acc() - Accept sequence with LS_ACC
1655  * @rx_fp: The received frame, not freed here.
1656  *
1657  * If this fails due to allocation or transmit congestion, assume the
1658  * originator will repeat the sequence.
1659  */
1660 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1661 {
1662 	struct fc_lport *lport;
1663 	struct fc_els_ls_acc *acc;
1664 	struct fc_frame *fp;
1665 
1666 	lport = fr_dev(rx_fp);
1667 	fp = fc_frame_alloc(lport, sizeof(*acc));
1668 	if (!fp)
1669 		return;
1670 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1671 	memset(acc, 0, sizeof(*acc));
1672 	acc->la_cmd = ELS_LS_ACC;
1673 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1674 	lport->tt.frame_send(lport, fp);
1675 }
1676 
1677 /**
1678  * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1679  * @rx_fp: The received frame, not freed here.
1680  * @reason: The reason the sequence is being rejected
1681  * @explan: The explanation for the rejection
1682  *
1683  * If this fails due to allocation or transmit congestion, assume the
1684  * originator will repeat the sequence.
1685  */
1686 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1687 			  enum fc_els_rjt_explan explan)
1688 {
1689 	struct fc_lport *lport;
1690 	struct fc_els_ls_rjt *rjt;
1691 	struct fc_frame *fp;
1692 
1693 	lport = fr_dev(rx_fp);
1694 	fp = fc_frame_alloc(lport, sizeof(*rjt));
1695 	if (!fp)
1696 		return;
1697 	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1698 	memset(rjt, 0, sizeof(*rjt));
1699 	rjt->er_cmd = ELS_LS_RJT;
1700 	rjt->er_reason = reason;
1701 	rjt->er_explan = explan;
1702 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1703 	lport->tt.frame_send(lport, fp);
1704 }
1705 
1706 /**
1707  * fc_exch_reset() - Reset an exchange
1708  * @ep: The exchange to be reset
1709  */
1710 static void fc_exch_reset(struct fc_exch *ep)
1711 {
1712 	struct fc_seq *sp;
1713 	void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1714 	void *arg;
1715 	int rc = 1;
1716 
1717 	spin_lock_bh(&ep->ex_lock);
1718 	ep->state |= FC_EX_RST_CLEANUP;
1719 	if (cancel_delayed_work(&ep->timeout_work))
1720 		atomic_dec(&ep->ex_refcnt);	/* drop hold for timer */
1721 	resp = ep->resp;
1722 	ep->resp = NULL;
1723 	if (ep->esb_stat & ESB_ST_REC_QUAL)
1724 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1725 	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1726 	arg = ep->arg;
1727 	sp = &ep->seq;
1728 	rc = fc_exch_done_locked(ep);
1729 	spin_unlock_bh(&ep->ex_lock);
1730 	if (!rc)
1731 		fc_exch_delete(ep);
1732 
1733 	if (resp)
1734 		resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1735 }
1736 
1737 /**
1738  * fc_exch_pool_reset() - Reset a per cpu exchange pool
1739  * @lport: The local port that the exchange pool is on
1740  * @pool:  The exchange pool to be reset
1741  * @sid:   The source ID
1742  * @did:   The destination ID
1743  *
1744  * Resets a per cpu exches pool, releasing all of its sequences
1745  * and exchanges. If sid is non-zero then reset only exchanges
1746  * we sourced from the local port's FID. If did is non-zero then
1747  * only reset exchanges destined for the local port's FID.
1748  */
1749 static void fc_exch_pool_reset(struct fc_lport *lport,
1750 			       struct fc_exch_pool *pool,
1751 			       u32 sid, u32 did)
1752 {
1753 	struct fc_exch *ep;
1754 	struct fc_exch *next;
1755 
1756 	spin_lock_bh(&pool->lock);
1757 restart:
1758 	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1759 		if ((lport == ep->lp) &&
1760 		    (sid == 0 || sid == ep->sid) &&
1761 		    (did == 0 || did == ep->did)) {
1762 			fc_exch_hold(ep);
1763 			spin_unlock_bh(&pool->lock);
1764 
1765 			fc_exch_reset(ep);
1766 
1767 			fc_exch_release(ep);
1768 			spin_lock_bh(&pool->lock);
1769 
1770 			/*
1771 			 * must restart loop incase while lock
1772 			 * was down multiple eps were released.
1773 			 */
1774 			goto restart;
1775 		}
1776 	}
1777 	spin_unlock_bh(&pool->lock);
1778 }
1779 
1780 /**
1781  * fc_exch_mgr_reset() - Reset all EMs of a local port
1782  * @lport: The local port whose EMs are to be reset
1783  * @sid:   The source ID
1784  * @did:   The destination ID
1785  *
1786  * Reset all EMs associated with a given local port. Release all
1787  * sequences and exchanges. If sid is non-zero then reset only the
1788  * exchanges sent from the local port's FID. If did is non-zero then
1789  * reset only exchanges destined for the local port's FID.
1790  */
1791 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1792 {
1793 	struct fc_exch_mgr_anchor *ema;
1794 	unsigned int cpu;
1795 
1796 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1797 		for_each_possible_cpu(cpu)
1798 			fc_exch_pool_reset(lport,
1799 					   per_cpu_ptr(ema->mp->pool, cpu),
1800 					   sid, did);
1801 	}
1802 }
1803 EXPORT_SYMBOL(fc_exch_mgr_reset);
1804 
1805 /**
1806  * fc_exch_lookup() - find an exchange
1807  * @lport: The local port
1808  * @xid: The exchange ID
1809  *
1810  * Returns exchange pointer with hold for caller, or NULL if not found.
1811  */
1812 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1813 {
1814 	struct fc_exch_mgr_anchor *ema;
1815 
1816 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1817 		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1818 			return fc_exch_find(ema->mp, xid);
1819 	return NULL;
1820 }
1821 
1822 /**
1823  * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1824  * @rfp: The REC frame, not freed here.
1825  *
1826  * Note that the requesting port may be different than the S_ID in the request.
1827  */
1828 static void fc_exch_els_rec(struct fc_frame *rfp)
1829 {
1830 	struct fc_lport *lport;
1831 	struct fc_frame *fp;
1832 	struct fc_exch *ep;
1833 	struct fc_els_rec *rp;
1834 	struct fc_els_rec_acc *acc;
1835 	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1836 	enum fc_els_rjt_explan explan;
1837 	u32 sid;
1838 	u16 rxid;
1839 	u16 oxid;
1840 
1841 	lport = fr_dev(rfp);
1842 	rp = fc_frame_payload_get(rfp, sizeof(*rp));
1843 	explan = ELS_EXPL_INV_LEN;
1844 	if (!rp)
1845 		goto reject;
1846 	sid = ntoh24(rp->rec_s_id);
1847 	rxid = ntohs(rp->rec_rx_id);
1848 	oxid = ntohs(rp->rec_ox_id);
1849 
1850 	ep = fc_exch_lookup(lport,
1851 			    sid == fc_host_port_id(lport->host) ? oxid : rxid);
1852 	explan = ELS_EXPL_OXID_RXID;
1853 	if (!ep)
1854 		goto reject;
1855 	if (ep->oid != sid || oxid != ep->oxid)
1856 		goto rel;
1857 	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1858 		goto rel;
1859 	fp = fc_frame_alloc(lport, sizeof(*acc));
1860 	if (!fp)
1861 		goto out;
1862 
1863 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1864 	memset(acc, 0, sizeof(*acc));
1865 	acc->reca_cmd = ELS_LS_ACC;
1866 	acc->reca_ox_id = rp->rec_ox_id;
1867 	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1868 	acc->reca_rx_id = htons(ep->rxid);
1869 	if (ep->sid == ep->oid)
1870 		hton24(acc->reca_rfid, ep->did);
1871 	else
1872 		hton24(acc->reca_rfid, ep->sid);
1873 	acc->reca_fc4value = htonl(ep->seq.rec_data);
1874 	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1875 						 ESB_ST_SEQ_INIT |
1876 						 ESB_ST_COMPLETE));
1877 	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1878 	lport->tt.frame_send(lport, fp);
1879 out:
1880 	fc_exch_release(ep);
1881 	return;
1882 
1883 rel:
1884 	fc_exch_release(ep);
1885 reject:
1886 	fc_seq_ls_rjt(rfp, reason, explan);
1887 }
1888 
1889 /**
1890  * fc_exch_rrq_resp() - Handler for RRQ responses
1891  * @sp:	 The sequence that the RRQ is on
1892  * @fp:	 The RRQ frame
1893  * @arg: The exchange that the RRQ is on
1894  *
1895  * TODO: fix error handler.
1896  */
1897 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1898 {
1899 	struct fc_exch *aborted_ep = arg;
1900 	unsigned int op;
1901 
1902 	if (IS_ERR(fp)) {
1903 		int err = PTR_ERR(fp);
1904 
1905 		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1906 			goto cleanup;
1907 		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1908 			    "frame error %d\n", err);
1909 		return;
1910 	}
1911 
1912 	op = fc_frame_payload_op(fp);
1913 	fc_frame_free(fp);
1914 
1915 	switch (op) {
1916 	case ELS_LS_RJT:
1917 		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1918 		/* fall through */
1919 	case ELS_LS_ACC:
1920 		goto cleanup;
1921 	default:
1922 		FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1923 			    "for RRQ", op);
1924 		return;
1925 	}
1926 
1927 cleanup:
1928 	fc_exch_done(&aborted_ep->seq);
1929 	/* drop hold for rec qual */
1930 	fc_exch_release(aborted_ep);
1931 }
1932 
1933 
1934 /**
1935  * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1936  * @lport:	The local port to send the frame on
1937  * @fp:		The frame to be sent
1938  * @resp:	The response handler for this request
1939  * @destructor: The destructor for the exchange
1940  * @arg:	The argument to be passed to the response handler
1941  * @timer_msec: The timeout period for the exchange
1942  *
1943  * The frame pointer with some of the header's fields must be
1944  * filled before calling this routine, those fields are:
1945  *
1946  * - routing control
1947  * - FC port did
1948  * - FC port sid
1949  * - FC header type
1950  * - frame control
1951  * - parameter or relative offset
1952  */
1953 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1954 				       struct fc_frame *fp,
1955 				       void (*resp)(struct fc_seq *,
1956 						    struct fc_frame *fp,
1957 						    void *arg),
1958 				       void (*destructor)(struct fc_seq *,
1959 							  void *),
1960 				       void *arg, u32 timer_msec)
1961 {
1962 	struct fc_exch *ep;
1963 	struct fc_seq *sp = NULL;
1964 	struct fc_frame_header *fh;
1965 	int rc = 1;
1966 
1967 	ep = fc_exch_alloc(lport, fp);
1968 	if (!ep) {
1969 		fc_frame_free(fp);
1970 		return NULL;
1971 	}
1972 	ep->esb_stat |= ESB_ST_SEQ_INIT;
1973 	fh = fc_frame_header_get(fp);
1974 	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1975 	ep->resp = resp;
1976 	ep->destructor = destructor;
1977 	ep->arg = arg;
1978 	ep->r_a_tov = FC_DEF_R_A_TOV;
1979 	ep->lp = lport;
1980 	sp = &ep->seq;
1981 
1982 	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
1983 	ep->f_ctl = ntoh24(fh->fh_f_ctl);
1984 	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
1985 	sp->cnt++;
1986 
1987 	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD)
1988 		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
1989 
1990 	if (unlikely(lport->tt.frame_send(lport, fp)))
1991 		goto err;
1992 
1993 	if (timer_msec)
1994 		fc_exch_timer_set_locked(ep, timer_msec);
1995 	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
1996 
1997 	if (ep->f_ctl & FC_FC_SEQ_INIT)
1998 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1999 	spin_unlock_bh(&ep->ex_lock);
2000 	return sp;
2001 err:
2002 	fc_fcp_ddp_done(fr_fsp(fp));
2003 	rc = fc_exch_done_locked(ep);
2004 	spin_unlock_bh(&ep->ex_lock);
2005 	if (!rc)
2006 		fc_exch_delete(ep);
2007 	return NULL;
2008 }
2009 
2010 /**
2011  * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2012  * @ep: The exchange to send the RRQ on
2013  *
2014  * This tells the remote port to stop blocking the use of
2015  * the exchange and the seq_cnt range.
2016  */
2017 static void fc_exch_rrq(struct fc_exch *ep)
2018 {
2019 	struct fc_lport *lport;
2020 	struct fc_els_rrq *rrq;
2021 	struct fc_frame *fp;
2022 	u32 did;
2023 
2024 	lport = ep->lp;
2025 
2026 	fp = fc_frame_alloc(lport, sizeof(*rrq));
2027 	if (!fp)
2028 		goto retry;
2029 
2030 	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2031 	memset(rrq, 0, sizeof(*rrq));
2032 	rrq->rrq_cmd = ELS_RRQ;
2033 	hton24(rrq->rrq_s_id, ep->sid);
2034 	rrq->rrq_ox_id = htons(ep->oxid);
2035 	rrq->rrq_rx_id = htons(ep->rxid);
2036 
2037 	did = ep->did;
2038 	if (ep->esb_stat & ESB_ST_RESP)
2039 		did = ep->sid;
2040 
2041 	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2042 		       lport->port_id, FC_TYPE_ELS,
2043 		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2044 
2045 	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2046 			     lport->e_d_tov))
2047 		return;
2048 
2049 retry:
2050 	spin_lock_bh(&ep->ex_lock);
2051 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2052 		spin_unlock_bh(&ep->ex_lock);
2053 		/* drop hold for rec qual */
2054 		fc_exch_release(ep);
2055 		return;
2056 	}
2057 	ep->esb_stat |= ESB_ST_REC_QUAL;
2058 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2059 	spin_unlock_bh(&ep->ex_lock);
2060 }
2061 
2062 /**
2063  * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2064  * @fp: The RRQ frame, not freed here.
2065  */
2066 static void fc_exch_els_rrq(struct fc_frame *fp)
2067 {
2068 	struct fc_lport *lport;
2069 	struct fc_exch *ep = NULL;	/* request or subject exchange */
2070 	struct fc_els_rrq *rp;
2071 	u32 sid;
2072 	u16 xid;
2073 	enum fc_els_rjt_explan explan;
2074 
2075 	lport = fr_dev(fp);
2076 	rp = fc_frame_payload_get(fp, sizeof(*rp));
2077 	explan = ELS_EXPL_INV_LEN;
2078 	if (!rp)
2079 		goto reject;
2080 
2081 	/*
2082 	 * lookup subject exchange.
2083 	 */
2084 	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2085 	xid = fc_host_port_id(lport->host) == sid ?
2086 			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2087 	ep = fc_exch_lookup(lport, xid);
2088 	explan = ELS_EXPL_OXID_RXID;
2089 	if (!ep)
2090 		goto reject;
2091 	spin_lock_bh(&ep->ex_lock);
2092 	if (ep->oxid != ntohs(rp->rrq_ox_id))
2093 		goto unlock_reject;
2094 	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2095 	    ep->rxid != FC_XID_UNKNOWN)
2096 		goto unlock_reject;
2097 	explan = ELS_EXPL_SID;
2098 	if (ep->sid != sid)
2099 		goto unlock_reject;
2100 
2101 	/*
2102 	 * Clear Recovery Qualifier state, and cancel timer if complete.
2103 	 */
2104 	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2105 		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2106 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2107 	}
2108 	if (ep->esb_stat & ESB_ST_COMPLETE) {
2109 		if (cancel_delayed_work(&ep->timeout_work))
2110 			atomic_dec(&ep->ex_refcnt);	/* drop timer hold */
2111 	}
2112 
2113 	spin_unlock_bh(&ep->ex_lock);
2114 
2115 	/*
2116 	 * Send LS_ACC.
2117 	 */
2118 	fc_seq_ls_acc(fp);
2119 	goto out;
2120 
2121 unlock_reject:
2122 	spin_unlock_bh(&ep->ex_lock);
2123 reject:
2124 	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2125 out:
2126 	if (ep)
2127 		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2128 }
2129 
2130 /**
2131  * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2132  * @lport: The local port to add the exchange manager to
2133  * @mp:	   The exchange manager to be added to the local port
2134  * @match: The match routine that indicates when this EM should be used
2135  */
2136 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2137 					   struct fc_exch_mgr *mp,
2138 					   bool (*match)(struct fc_frame *))
2139 {
2140 	struct fc_exch_mgr_anchor *ema;
2141 
2142 	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2143 	if (!ema)
2144 		return ema;
2145 
2146 	ema->mp = mp;
2147 	ema->match = match;
2148 	/* add EM anchor to EM anchors list */
2149 	list_add_tail(&ema->ema_list, &lport->ema_list);
2150 	kref_get(&mp->kref);
2151 	return ema;
2152 }
2153 EXPORT_SYMBOL(fc_exch_mgr_add);
2154 
2155 /**
2156  * fc_exch_mgr_destroy() - Destroy an exchange manager
2157  * @kref: The reference to the EM to be destroyed
2158  */
2159 static void fc_exch_mgr_destroy(struct kref *kref)
2160 {
2161 	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2162 
2163 	mempool_destroy(mp->ep_pool);
2164 	free_percpu(mp->pool);
2165 	kfree(mp);
2166 }
2167 
2168 /**
2169  * fc_exch_mgr_del() - Delete an EM from a local port's list
2170  * @ema: The exchange manager anchor identifying the EM to be deleted
2171  */
2172 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2173 {
2174 	/* remove EM anchor from EM anchors list */
2175 	list_del(&ema->ema_list);
2176 	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2177 	kfree(ema);
2178 }
2179 EXPORT_SYMBOL(fc_exch_mgr_del);
2180 
2181 /**
2182  * fc_exch_mgr_list_clone() - Share all exchange manager objects
2183  * @src: Source lport to clone exchange managers from
2184  * @dst: New lport that takes references to all the exchange managers
2185  */
2186 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2187 {
2188 	struct fc_exch_mgr_anchor *ema, *tmp;
2189 
2190 	list_for_each_entry(ema, &src->ema_list, ema_list) {
2191 		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2192 			goto err;
2193 	}
2194 	return 0;
2195 err:
2196 	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2197 		fc_exch_mgr_del(ema);
2198 	return -ENOMEM;
2199 }
2200 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2201 
2202 /**
2203  * fc_exch_mgr_alloc() - Allocate an exchange manager
2204  * @lport:   The local port that the new EM will be associated with
2205  * @class:   The default FC class for new exchanges
2206  * @min_xid: The minimum XID for exchanges from the new EM
2207  * @max_xid: The maximum XID for exchanges from the new EM
2208  * @match:   The match routine for the new EM
2209  */
2210 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2211 				      enum fc_class class,
2212 				      u16 min_xid, u16 max_xid,
2213 				      bool (*match)(struct fc_frame *))
2214 {
2215 	struct fc_exch_mgr *mp;
2216 	u16 pool_exch_range;
2217 	size_t pool_size;
2218 	unsigned int cpu;
2219 	struct fc_exch_pool *pool;
2220 
2221 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2222 	    (min_xid & fc_cpu_mask) != 0) {
2223 		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2224 			     min_xid, max_xid);
2225 		return NULL;
2226 	}
2227 
2228 	/*
2229 	 * allocate memory for EM
2230 	 */
2231 	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2232 	if (!mp)
2233 		return NULL;
2234 
2235 	mp->class = class;
2236 	/* adjust em exch xid range for offload */
2237 	mp->min_xid = min_xid;
2238 	mp->max_xid = max_xid;
2239 
2240 	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2241 	if (!mp->ep_pool)
2242 		goto free_mp;
2243 
2244 	/*
2245 	 * Setup per cpu exch pool with entire exchange id range equally
2246 	 * divided across all cpus. The exch pointers array memory is
2247 	 * allocated for exch range per pool.
2248 	 */
2249 	pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2250 	mp->pool_max_index = pool_exch_range - 1;
2251 
2252 	/*
2253 	 * Allocate and initialize per cpu exch pool
2254 	 */
2255 	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2256 	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2257 	if (!mp->pool)
2258 		goto free_mempool;
2259 	for_each_possible_cpu(cpu) {
2260 		pool = per_cpu_ptr(mp->pool, cpu);
2261 		pool->left = FC_XID_UNKNOWN;
2262 		pool->right = FC_XID_UNKNOWN;
2263 		spin_lock_init(&pool->lock);
2264 		INIT_LIST_HEAD(&pool->ex_list);
2265 	}
2266 
2267 	kref_init(&mp->kref);
2268 	if (!fc_exch_mgr_add(lport, mp, match)) {
2269 		free_percpu(mp->pool);
2270 		goto free_mempool;
2271 	}
2272 
2273 	/*
2274 	 * Above kref_init() sets mp->kref to 1 and then
2275 	 * call to fc_exch_mgr_add incremented mp->kref again,
2276 	 * so adjust that extra increment.
2277 	 */
2278 	kref_put(&mp->kref, fc_exch_mgr_destroy);
2279 	return mp;
2280 
2281 free_mempool:
2282 	mempool_destroy(mp->ep_pool);
2283 free_mp:
2284 	kfree(mp);
2285 	return NULL;
2286 }
2287 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2288 
2289 /**
2290  * fc_exch_mgr_free() - Free all exchange managers on a local port
2291  * @lport: The local port whose EMs are to be freed
2292  */
2293 void fc_exch_mgr_free(struct fc_lport *lport)
2294 {
2295 	struct fc_exch_mgr_anchor *ema, *next;
2296 
2297 	flush_workqueue(fc_exch_workqueue);
2298 	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2299 		fc_exch_mgr_del(ema);
2300 }
2301 EXPORT_SYMBOL(fc_exch_mgr_free);
2302 
2303 /**
2304  * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2305  * upon 'xid'.
2306  * @f_ctl: f_ctl
2307  * @lport: The local port the frame was received on
2308  * @fh: The received frame header
2309  */
2310 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2311 					      struct fc_lport *lport,
2312 					      struct fc_frame_header *fh)
2313 {
2314 	struct fc_exch_mgr_anchor *ema;
2315 	u16 xid;
2316 
2317 	if (f_ctl & FC_FC_EX_CTX)
2318 		xid = ntohs(fh->fh_ox_id);
2319 	else {
2320 		xid = ntohs(fh->fh_rx_id);
2321 		if (xid == FC_XID_UNKNOWN)
2322 			return list_entry(lport->ema_list.prev,
2323 					  typeof(*ema), ema_list);
2324 	}
2325 
2326 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2327 		if ((xid >= ema->mp->min_xid) &&
2328 		    (xid <= ema->mp->max_xid))
2329 			return ema;
2330 	}
2331 	return NULL;
2332 }
2333 /**
2334  * fc_exch_recv() - Handler for received frames
2335  * @lport: The local port the frame was received on
2336  * @fp:	The received frame
2337  */
2338 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2339 {
2340 	struct fc_frame_header *fh = fc_frame_header_get(fp);
2341 	struct fc_exch_mgr_anchor *ema;
2342 	u32 f_ctl;
2343 
2344 	/* lport lock ? */
2345 	if (!lport || lport->state == LPORT_ST_DISABLED) {
2346 		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2347 			     "has not been initialized correctly\n");
2348 		fc_frame_free(fp);
2349 		return;
2350 	}
2351 
2352 	f_ctl = ntoh24(fh->fh_f_ctl);
2353 	ema = fc_find_ema(f_ctl, lport, fh);
2354 	if (!ema) {
2355 		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2356 				    "fc_ctl <0x%x>, xid <0x%x>\n",
2357 				     f_ctl,
2358 				     (f_ctl & FC_FC_EX_CTX) ?
2359 				     ntohs(fh->fh_ox_id) :
2360 				     ntohs(fh->fh_rx_id));
2361 		fc_frame_free(fp);
2362 		return;
2363 	}
2364 
2365 	/*
2366 	 * If frame is marked invalid, just drop it.
2367 	 */
2368 	switch (fr_eof(fp)) {
2369 	case FC_EOF_T:
2370 		if (f_ctl & FC_FC_END_SEQ)
2371 			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2372 		/* fall through */
2373 	case FC_EOF_N:
2374 		if (fh->fh_type == FC_TYPE_BLS)
2375 			fc_exch_recv_bls(ema->mp, fp);
2376 		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2377 			 FC_FC_EX_CTX)
2378 			fc_exch_recv_seq_resp(ema->mp, fp);
2379 		else if (f_ctl & FC_FC_SEQ_CTX)
2380 			fc_exch_recv_resp(ema->mp, fp);
2381 		else	/* no EX_CTX and no SEQ_CTX */
2382 			fc_exch_recv_req(lport, ema->mp, fp);
2383 		break;
2384 	default:
2385 		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2386 			     fr_eof(fp));
2387 		fc_frame_free(fp);
2388 	}
2389 }
2390 EXPORT_SYMBOL(fc_exch_recv);
2391 
2392 /**
2393  * fc_exch_init() - Initialize the exchange layer for a local port
2394  * @lport: The local port to initialize the exchange layer for
2395  */
2396 int fc_exch_init(struct fc_lport *lport)
2397 {
2398 	if (!lport->tt.seq_start_next)
2399 		lport->tt.seq_start_next = fc_seq_start_next;
2400 
2401 	if (!lport->tt.seq_set_resp)
2402 		lport->tt.seq_set_resp = fc_seq_set_resp;
2403 
2404 	if (!lport->tt.exch_seq_send)
2405 		lport->tt.exch_seq_send = fc_exch_seq_send;
2406 
2407 	if (!lport->tt.seq_send)
2408 		lport->tt.seq_send = fc_seq_send;
2409 
2410 	if (!lport->tt.seq_els_rsp_send)
2411 		lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2412 
2413 	if (!lport->tt.exch_done)
2414 		lport->tt.exch_done = fc_exch_done;
2415 
2416 	if (!lport->tt.exch_mgr_reset)
2417 		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2418 
2419 	if (!lport->tt.seq_exch_abort)
2420 		lport->tt.seq_exch_abort = fc_seq_exch_abort;
2421 
2422 	if (!lport->tt.seq_assign)
2423 		lport->tt.seq_assign = fc_seq_assign;
2424 
2425 	if (!lport->tt.seq_release)
2426 		lport->tt.seq_release = fc_seq_release;
2427 
2428 	return 0;
2429 }
2430 EXPORT_SYMBOL(fc_exch_init);
2431 
2432 /**
2433  * fc_setup_exch_mgr() - Setup an exchange manager
2434  */
2435 int fc_setup_exch_mgr(void)
2436 {
2437 	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2438 					 0, SLAB_HWCACHE_ALIGN, NULL);
2439 	if (!fc_em_cachep)
2440 		return -ENOMEM;
2441 
2442 	/*
2443 	 * Initialize fc_cpu_mask and fc_cpu_order. The
2444 	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2445 	 * to order of 2's * power and order is stored
2446 	 * in fc_cpu_order as this is later required in
2447 	 * mapping between an exch id and exch array index
2448 	 * in per cpu exch pool.
2449 	 *
2450 	 * This round up is required to align fc_cpu_mask
2451 	 * to exchange id's lower bits such that all incoming
2452 	 * frames of an exchange gets delivered to the same
2453 	 * cpu on which exchange originated by simple bitwise
2454 	 * AND operation between fc_cpu_mask and exchange id.
2455 	 */
2456 	fc_cpu_mask = 1;
2457 	fc_cpu_order = 0;
2458 	while (fc_cpu_mask < nr_cpu_ids) {
2459 		fc_cpu_mask <<= 1;
2460 		fc_cpu_order++;
2461 	}
2462 	fc_cpu_mask--;
2463 
2464 	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2465 	if (!fc_exch_workqueue)
2466 		goto err;
2467 	return 0;
2468 err:
2469 	kmem_cache_destroy(fc_em_cachep);
2470 	return -ENOMEM;
2471 }
2472 
2473 /**
2474  * fc_destroy_exch_mgr() - Destroy an exchange manager
2475  */
2476 void fc_destroy_exch_mgr(void)
2477 {
2478 	destroy_workqueue(fc_exch_workqueue);
2479 	kmem_cache_destroy(fc_em_cachep);
2480 }
2481