xref: /linux/drivers/scsi/isci/request.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 
56 #include "isci.h"
57 #include "task.h"
58 #include "request.h"
59 #include "scu_completion_codes.h"
60 #include "scu_event_codes.h"
61 #include "sas.h"
62 
63 static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
64 							int idx)
65 {
66 	if (idx == 0)
67 		return &ireq->tc->sgl_pair_ab;
68 	else if (idx == 1)
69 		return &ireq->tc->sgl_pair_cd;
70 	else if (idx < 0)
71 		return NULL;
72 	else
73 		return &ireq->sg_table[idx - 2];
74 }
75 
76 static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
77 					  struct isci_request *ireq, u32 idx)
78 {
79 	u32 offset;
80 
81 	if (idx == 0) {
82 		offset = (void *) &ireq->tc->sgl_pair_ab -
83 			 (void *) &ihost->task_context_table[0];
84 		return ihost->task_context_dma + offset;
85 	} else if (idx == 1) {
86 		offset = (void *) &ireq->tc->sgl_pair_cd -
87 			 (void *) &ihost->task_context_table[0];
88 		return ihost->task_context_dma + offset;
89 	}
90 
91 	return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
92 }
93 
94 static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
95 {
96 	e->length = sg_dma_len(sg);
97 	e->address_upper = upper_32_bits(sg_dma_address(sg));
98 	e->address_lower = lower_32_bits(sg_dma_address(sg));
99 	e->address_modifier = 0;
100 }
101 
102 static void sci_request_build_sgl(struct isci_request *ireq)
103 {
104 	struct isci_host *ihost = ireq->isci_host;
105 	struct sas_task *task = isci_request_access_task(ireq);
106 	struct scatterlist *sg = NULL;
107 	dma_addr_t dma_addr;
108 	u32 sg_idx = 0;
109 	struct scu_sgl_element_pair *scu_sg   = NULL;
110 	struct scu_sgl_element_pair *prev_sg  = NULL;
111 
112 	if (task->num_scatter > 0) {
113 		sg = task->scatter;
114 
115 		while (sg) {
116 			scu_sg = to_sgl_element_pair(ireq, sg_idx);
117 			init_sgl_element(&scu_sg->A, sg);
118 			sg = sg_next(sg);
119 			if (sg) {
120 				init_sgl_element(&scu_sg->B, sg);
121 				sg = sg_next(sg);
122 			} else
123 				memset(&scu_sg->B, 0, sizeof(scu_sg->B));
124 
125 			if (prev_sg) {
126 				dma_addr = to_sgl_element_pair_dma(ihost,
127 								   ireq,
128 								   sg_idx);
129 
130 				prev_sg->next_pair_upper =
131 					upper_32_bits(dma_addr);
132 				prev_sg->next_pair_lower =
133 					lower_32_bits(dma_addr);
134 			}
135 
136 			prev_sg = scu_sg;
137 			sg_idx++;
138 		}
139 	} else {	/* handle when no sg */
140 		scu_sg = to_sgl_element_pair(ireq, sg_idx);
141 
142 		dma_addr = dma_map_single(&ihost->pdev->dev,
143 					  task->scatter,
144 					  task->total_xfer_len,
145 					  task->data_dir);
146 
147 		ireq->zero_scatter_daddr = dma_addr;
148 
149 		scu_sg->A.length = task->total_xfer_len;
150 		scu_sg->A.address_upper = upper_32_bits(dma_addr);
151 		scu_sg->A.address_lower = lower_32_bits(dma_addr);
152 	}
153 
154 	if (scu_sg) {
155 		scu_sg->next_pair_upper = 0;
156 		scu_sg->next_pair_lower = 0;
157 	}
158 }
159 
160 static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
161 {
162 	struct ssp_cmd_iu *cmd_iu;
163 	struct sas_task *task = isci_request_access_task(ireq);
164 
165 	cmd_iu = &ireq->ssp.cmd;
166 
167 	memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
168 	cmd_iu->add_cdb_len = 0;
169 	cmd_iu->_r_a = 0;
170 	cmd_iu->_r_b = 0;
171 	cmd_iu->en_fburst = 0; /* unsupported */
172 	cmd_iu->task_prio = task->ssp_task.task_prio;
173 	cmd_iu->task_attr = task->ssp_task.task_attr;
174 	cmd_iu->_r_c = 0;
175 
176 	sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb,
177 		       sizeof(task->ssp_task.cdb) / sizeof(u32));
178 }
179 
180 static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
181 {
182 	struct ssp_task_iu *task_iu;
183 	struct sas_task *task = isci_request_access_task(ireq);
184 	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
185 
186 	task_iu = &ireq->ssp.tmf;
187 
188 	memset(task_iu, 0, sizeof(struct ssp_task_iu));
189 
190 	memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
191 
192 	task_iu->task_func = isci_tmf->tmf_code;
193 	task_iu->task_tag =
194 		(ireq->ttype == tmf_task) ?
195 		isci_tmf->io_tag :
196 		SCI_CONTROLLER_INVALID_IO_TAG;
197 }
198 
199 /**
200  * This method is will fill in the SCU Task Context for any type of SSP request.
201  * @sci_req:
202  * @task_context:
203  *
204  */
205 static void scu_ssp_reqeust_construct_task_context(
206 	struct isci_request *ireq,
207 	struct scu_task_context *task_context)
208 {
209 	dma_addr_t dma_addr;
210 	struct isci_remote_device *idev;
211 	struct isci_port *iport;
212 
213 	idev = ireq->target_device;
214 	iport = idev->owning_port;
215 
216 	/* Fill in the TC with the its required data */
217 	task_context->abort = 0;
218 	task_context->priority = 0;
219 	task_context->initiator_request = 1;
220 	task_context->connection_rate = idev->connection_rate;
221 	task_context->protocol_engine_index = ISCI_PEG;
222 	task_context->logical_port_index = iport->physical_port_index;
223 	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
224 	task_context->valid = SCU_TASK_CONTEXT_VALID;
225 	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
226 
227 	task_context->remote_node_index = idev->rnc.remote_node_index;
228 	task_context->command_code = 0;
229 
230 	task_context->link_layer_control = 0;
231 	task_context->do_not_dma_ssp_good_response = 1;
232 	task_context->strict_ordering = 0;
233 	task_context->control_frame = 0;
234 	task_context->timeout_enable = 0;
235 	task_context->block_guard_enable = 0;
236 
237 	task_context->address_modifier = 0;
238 
239 	/* task_context->type.ssp.tag = ireq->io_tag; */
240 	task_context->task_phase = 0x01;
241 
242 	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
243 			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
244 			      (iport->physical_port_index <<
245 			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
246 			      ISCI_TAG_TCI(ireq->io_tag));
247 
248 	/*
249 	 * Copy the physical address for the command buffer to the
250 	 * SCU Task Context
251 	 */
252 	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
253 
254 	task_context->command_iu_upper = upper_32_bits(dma_addr);
255 	task_context->command_iu_lower = lower_32_bits(dma_addr);
256 
257 	/*
258 	 * Copy the physical address for the response buffer to the
259 	 * SCU Task Context
260 	 */
261 	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
262 
263 	task_context->response_iu_upper = upper_32_bits(dma_addr);
264 	task_context->response_iu_lower = lower_32_bits(dma_addr);
265 }
266 
267 /**
268  * This method is will fill in the SCU Task Context for a SSP IO request.
269  * @sci_req:
270  *
271  */
272 static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
273 						      enum dma_data_direction dir,
274 						      u32 len)
275 {
276 	struct scu_task_context *task_context = ireq->tc;
277 
278 	scu_ssp_reqeust_construct_task_context(ireq, task_context);
279 
280 	task_context->ssp_command_iu_length =
281 		sizeof(struct ssp_cmd_iu) / sizeof(u32);
282 	task_context->type.ssp.frame_type = SSP_COMMAND;
283 
284 	switch (dir) {
285 	case DMA_FROM_DEVICE:
286 	case DMA_NONE:
287 	default:
288 		task_context->task_type = SCU_TASK_TYPE_IOREAD;
289 		break;
290 	case DMA_TO_DEVICE:
291 		task_context->task_type = SCU_TASK_TYPE_IOWRITE;
292 		break;
293 	}
294 
295 	task_context->transfer_length_bytes = len;
296 
297 	if (task_context->transfer_length_bytes > 0)
298 		sci_request_build_sgl(ireq);
299 }
300 
301 /**
302  * This method will fill in the SCU Task Context for a SSP Task request.  The
303  *    following important settings are utilized: -# priority ==
304  *    SCU_TASK_PRIORITY_HIGH.  This ensures that the task request is issued
305  *    ahead of other task destined for the same Remote Node. -# task_type ==
306  *    SCU_TASK_TYPE_IOREAD.  This simply indicates that a normal request type
307  *    (i.e. non-raw frame) is being utilized to perform task management. -#
308  *    control_frame == 1.  This ensures that the proper endianess is set so
309  *    that the bytes are transmitted in the right order for a task frame.
310  * @sci_req: This parameter specifies the task request object being
311  *    constructed.
312  *
313  */
314 static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
315 {
316 	struct scu_task_context *task_context = ireq->tc;
317 
318 	scu_ssp_reqeust_construct_task_context(ireq, task_context);
319 
320 	task_context->control_frame                = 1;
321 	task_context->priority                     = SCU_TASK_PRIORITY_HIGH;
322 	task_context->task_type                    = SCU_TASK_TYPE_RAW_FRAME;
323 	task_context->transfer_length_bytes        = 0;
324 	task_context->type.ssp.frame_type          = SSP_TASK;
325 	task_context->ssp_command_iu_length =
326 		sizeof(struct ssp_task_iu) / sizeof(u32);
327 }
328 
329 /**
330  * This method is will fill in the SCU Task Context for any type of SATA
331  *    request.  This is called from the various SATA constructors.
332  * @sci_req: The general IO request object which is to be used in
333  *    constructing the SCU task context.
334  * @task_context: The buffer pointer for the SCU task context which is being
335  *    constructed.
336  *
337  * The general io request construction is complete. The buffer assignment for
338  * the command buffer is complete. none Revisit task context construction to
339  * determine what is common for SSP/SMP/STP task context structures.
340  */
341 static void scu_sata_reqeust_construct_task_context(
342 	struct isci_request *ireq,
343 	struct scu_task_context *task_context)
344 {
345 	dma_addr_t dma_addr;
346 	struct isci_remote_device *idev;
347 	struct isci_port *iport;
348 
349 	idev = ireq->target_device;
350 	iport = idev->owning_port;
351 
352 	/* Fill in the TC with the its required data */
353 	task_context->abort = 0;
354 	task_context->priority = SCU_TASK_PRIORITY_NORMAL;
355 	task_context->initiator_request = 1;
356 	task_context->connection_rate = idev->connection_rate;
357 	task_context->protocol_engine_index = ISCI_PEG;
358 	task_context->logical_port_index = iport->physical_port_index;
359 	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
360 	task_context->valid = SCU_TASK_CONTEXT_VALID;
361 	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
362 
363 	task_context->remote_node_index = idev->rnc.remote_node_index;
364 	task_context->command_code = 0;
365 
366 	task_context->link_layer_control = 0;
367 	task_context->do_not_dma_ssp_good_response = 1;
368 	task_context->strict_ordering = 0;
369 	task_context->control_frame = 0;
370 	task_context->timeout_enable = 0;
371 	task_context->block_guard_enable = 0;
372 
373 	task_context->address_modifier = 0;
374 	task_context->task_phase = 0x01;
375 
376 	task_context->ssp_command_iu_length =
377 		(sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
378 
379 	/* Set the first word of the H2D REG FIS */
380 	task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
381 
382 	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
383 			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
384 			      (iport->physical_port_index <<
385 			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
386 			      ISCI_TAG_TCI(ireq->io_tag));
387 	/*
388 	 * Copy the physical address for the command buffer to the SCU Task
389 	 * Context. We must offset the command buffer by 4 bytes because the
390 	 * first 4 bytes are transfered in the body of the TC.
391 	 */
392 	dma_addr = sci_io_request_get_dma_addr(ireq,
393 						((char *) &ireq->stp.cmd) +
394 						sizeof(u32));
395 
396 	task_context->command_iu_upper = upper_32_bits(dma_addr);
397 	task_context->command_iu_lower = lower_32_bits(dma_addr);
398 
399 	/* SATA Requests do not have a response buffer */
400 	task_context->response_iu_upper = 0;
401 	task_context->response_iu_lower = 0;
402 }
403 
404 static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
405 {
406 	struct scu_task_context *task_context = ireq->tc;
407 
408 	scu_sata_reqeust_construct_task_context(ireq, task_context);
409 
410 	task_context->control_frame         = 0;
411 	task_context->priority              = SCU_TASK_PRIORITY_NORMAL;
412 	task_context->task_type             = SCU_TASK_TYPE_SATA_RAW_FRAME;
413 	task_context->type.stp.fis_type     = FIS_REGH2D;
414 	task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
415 }
416 
417 static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
418 							  bool copy_rx_frame)
419 {
420 	struct isci_stp_request *stp_req = &ireq->stp.req;
421 
422 	scu_stp_raw_request_construct_task_context(ireq);
423 
424 	stp_req->status = 0;
425 	stp_req->sgl.offset = 0;
426 	stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
427 
428 	if (copy_rx_frame) {
429 		sci_request_build_sgl(ireq);
430 		stp_req->sgl.index = 0;
431 	} else {
432 		/* The user does not want the data copied to the SGL buffer location */
433 		stp_req->sgl.index = -1;
434 	}
435 
436 	return SCI_SUCCESS;
437 }
438 
439 /**
440  *
441  * @sci_req: This parameter specifies the request to be constructed as an
442  *    optimized request.
443  * @optimized_task_type: This parameter specifies whether the request is to be
444  *    an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
445  *    value of 1 indicates NCQ.
446  *
447  * This method will perform request construction common to all types of STP
448  * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
449  * returns an indication as to whether the construction was successful.
450  */
451 static void sci_stp_optimized_request_construct(struct isci_request *ireq,
452 						     u8 optimized_task_type,
453 						     u32 len,
454 						     enum dma_data_direction dir)
455 {
456 	struct scu_task_context *task_context = ireq->tc;
457 
458 	/* Build the STP task context structure */
459 	scu_sata_reqeust_construct_task_context(ireq, task_context);
460 
461 	/* Copy over the SGL elements */
462 	sci_request_build_sgl(ireq);
463 
464 	/* Copy over the number of bytes to be transfered */
465 	task_context->transfer_length_bytes = len;
466 
467 	if (dir == DMA_TO_DEVICE) {
468 		/*
469 		 * The difference between the DMA IN and DMA OUT request task type
470 		 * values are consistent with the difference between FPDMA READ
471 		 * and FPDMA WRITE values.  Add the supplied task type parameter
472 		 * to this difference to set the task type properly for this
473 		 * DATA OUT (WRITE) case. */
474 		task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
475 								 - SCU_TASK_TYPE_DMA_IN);
476 	} else {
477 		/*
478 		 * For the DATA IN (READ) case, simply save the supplied
479 		 * optimized task type. */
480 		task_context->task_type = optimized_task_type;
481 	}
482 }
483 
484 
485 
486 static enum sci_status
487 sci_io_request_construct_sata(struct isci_request *ireq,
488 			       u32 len,
489 			       enum dma_data_direction dir,
490 			       bool copy)
491 {
492 	enum sci_status status = SCI_SUCCESS;
493 	struct sas_task *task = isci_request_access_task(ireq);
494 
495 	/* check for management protocols */
496 	if (ireq->ttype == tmf_task) {
497 		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
498 
499 		if (tmf->tmf_code == isci_tmf_sata_srst_high ||
500 		    tmf->tmf_code == isci_tmf_sata_srst_low) {
501 			scu_stp_raw_request_construct_task_context(ireq);
502 			return SCI_SUCCESS;
503 		} else {
504 			dev_err(&ireq->owning_controller->pdev->dev,
505 				"%s: Request 0x%p received un-handled SAT "
506 				"management protocol 0x%x.\n",
507 				__func__, ireq, tmf->tmf_code);
508 
509 			return SCI_FAILURE;
510 		}
511 	}
512 
513 	if (!sas_protocol_ata(task->task_proto)) {
514 		dev_err(&ireq->owning_controller->pdev->dev,
515 			"%s: Non-ATA protocol in SATA path: 0x%x\n",
516 			__func__,
517 			task->task_proto);
518 		return SCI_FAILURE;
519 
520 	}
521 
522 	/* non data */
523 	if (task->data_dir == DMA_NONE) {
524 		scu_stp_raw_request_construct_task_context(ireq);
525 		return SCI_SUCCESS;
526 	}
527 
528 	/* NCQ */
529 	if (task->ata_task.use_ncq) {
530 		sci_stp_optimized_request_construct(ireq,
531 							 SCU_TASK_TYPE_FPDMAQ_READ,
532 							 len, dir);
533 		return SCI_SUCCESS;
534 	}
535 
536 	/* DMA */
537 	if (task->ata_task.dma_xfer) {
538 		sci_stp_optimized_request_construct(ireq,
539 							 SCU_TASK_TYPE_DMA_IN,
540 							 len, dir);
541 		return SCI_SUCCESS;
542 	} else /* PIO */
543 		return sci_stp_pio_request_construct(ireq, copy);
544 
545 	return status;
546 }
547 
548 static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
549 {
550 	struct sas_task *task = isci_request_access_task(ireq);
551 
552 	ireq->protocol = SCIC_SSP_PROTOCOL;
553 
554 	scu_ssp_io_request_construct_task_context(ireq,
555 						  task->data_dir,
556 						  task->total_xfer_len);
557 
558 	sci_io_request_build_ssp_command_iu(ireq);
559 
560 	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
561 
562 	return SCI_SUCCESS;
563 }
564 
565 enum sci_status sci_task_request_construct_ssp(
566 	struct isci_request *ireq)
567 {
568 	/* Construct the SSP Task SCU Task Context */
569 	scu_ssp_task_request_construct_task_context(ireq);
570 
571 	/* Fill in the SSP Task IU */
572 	sci_task_request_build_ssp_task_iu(ireq);
573 
574 	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
575 
576 	return SCI_SUCCESS;
577 }
578 
579 static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
580 {
581 	enum sci_status status;
582 	bool copy = false;
583 	struct sas_task *task = isci_request_access_task(ireq);
584 
585 	ireq->protocol = SCIC_STP_PROTOCOL;
586 
587 	copy = (task->data_dir == DMA_NONE) ? false : true;
588 
589 	status = sci_io_request_construct_sata(ireq,
590 						task->total_xfer_len,
591 						task->data_dir,
592 						copy);
593 
594 	if (status == SCI_SUCCESS)
595 		sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
596 
597 	return status;
598 }
599 
600 enum sci_status sci_task_request_construct_sata(struct isci_request *ireq)
601 {
602 	enum sci_status status = SCI_SUCCESS;
603 
604 	/* check for management protocols */
605 	if (ireq->ttype == tmf_task) {
606 		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
607 
608 		if (tmf->tmf_code == isci_tmf_sata_srst_high ||
609 		    tmf->tmf_code == isci_tmf_sata_srst_low) {
610 			scu_stp_raw_request_construct_task_context(ireq);
611 		} else {
612 			dev_err(&ireq->owning_controller->pdev->dev,
613 				"%s: Request 0x%p received un-handled SAT "
614 				"Protocol 0x%x.\n",
615 				__func__, ireq, tmf->tmf_code);
616 
617 			return SCI_FAILURE;
618 		}
619 	}
620 
621 	if (status != SCI_SUCCESS)
622 		return status;
623 	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
624 
625 	return status;
626 }
627 
628 /**
629  * sci_req_tx_bytes - bytes transferred when reply underruns request
630  * @sci_req: request that was terminated early
631  */
632 #define SCU_TASK_CONTEXT_SRAM 0x200000
633 static u32 sci_req_tx_bytes(struct isci_request *ireq)
634 {
635 	struct isci_host *ihost = ireq->owning_controller;
636 	u32 ret_val = 0;
637 
638 	if (readl(&ihost->smu_registers->address_modifier) == 0) {
639 		void __iomem *scu_reg_base = ihost->scu_registers;
640 
641 		/* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
642 		 *   BAR1 is the scu_registers
643 		 *   0x20002C = 0x200000 + 0x2c
644 		 *            = start of task context SRAM + offset of (type.ssp.data_offset)
645 		 *   TCi is the io_tag of struct sci_request
646 		 */
647 		ret_val = readl(scu_reg_base +
648 				(SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
649 				((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
650 	}
651 
652 	return ret_val;
653 }
654 
655 enum sci_status sci_request_start(struct isci_request *ireq)
656 {
657 	enum sci_base_request_states state;
658 	struct scu_task_context *tc = ireq->tc;
659 	struct isci_host *ihost = ireq->owning_controller;
660 
661 	state = ireq->sm.current_state_id;
662 	if (state != SCI_REQ_CONSTRUCTED) {
663 		dev_warn(&ihost->pdev->dev,
664 			"%s: SCIC IO Request requested to start while in wrong "
665 			 "state %d\n", __func__, state);
666 		return SCI_FAILURE_INVALID_STATE;
667 	}
668 
669 	tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
670 
671 	switch (tc->protocol_type) {
672 	case SCU_TASK_CONTEXT_PROTOCOL_SMP:
673 	case SCU_TASK_CONTEXT_PROTOCOL_SSP:
674 		/* SSP/SMP Frame */
675 		tc->type.ssp.tag = ireq->io_tag;
676 		tc->type.ssp.target_port_transfer_tag = 0xFFFF;
677 		break;
678 
679 	case SCU_TASK_CONTEXT_PROTOCOL_STP:
680 		/* STP/SATA Frame
681 		 * tc->type.stp.ncq_tag = ireq->ncq_tag;
682 		 */
683 		break;
684 
685 	case SCU_TASK_CONTEXT_PROTOCOL_NONE:
686 		/* / @todo When do we set no protocol type? */
687 		break;
688 
689 	default:
690 		/* This should never happen since we build the IO
691 		 * requests */
692 		break;
693 	}
694 
695 	/* Add to the post_context the io tag value */
696 	ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
697 
698 	/* Everything is good go ahead and change state */
699 	sci_change_state(&ireq->sm, SCI_REQ_STARTED);
700 
701 	return SCI_SUCCESS;
702 }
703 
704 enum sci_status
705 sci_io_request_terminate(struct isci_request *ireq)
706 {
707 	enum sci_base_request_states state;
708 
709 	state = ireq->sm.current_state_id;
710 
711 	switch (state) {
712 	case SCI_REQ_CONSTRUCTED:
713 		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
714 		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
715 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
716 		return SCI_SUCCESS;
717 	case SCI_REQ_STARTED:
718 	case SCI_REQ_TASK_WAIT_TC_COMP:
719 	case SCI_REQ_SMP_WAIT_RESP:
720 	case SCI_REQ_SMP_WAIT_TC_COMP:
721 	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
722 	case SCI_REQ_STP_UDMA_WAIT_D2H:
723 	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
724 	case SCI_REQ_STP_NON_DATA_WAIT_D2H:
725 	case SCI_REQ_STP_PIO_WAIT_H2D:
726 	case SCI_REQ_STP_PIO_WAIT_FRAME:
727 	case SCI_REQ_STP_PIO_DATA_IN:
728 	case SCI_REQ_STP_PIO_DATA_OUT:
729 	case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED:
730 	case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG:
731 	case SCI_REQ_STP_SOFT_RESET_WAIT_D2H:
732 		sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
733 		return SCI_SUCCESS;
734 	case SCI_REQ_TASK_WAIT_TC_RESP:
735 		/* The task frame was already confirmed to have been
736 		 * sent by the SCU HW.  Since the state machine is
737 		 * now only waiting for the task response itself,
738 		 * abort the request and complete it immediately
739 		 * and don't wait for the task response.
740 		 */
741 		sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
742 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
743 		return SCI_SUCCESS;
744 	case SCI_REQ_ABORTING:
745 		/* If a request has a termination requested twice, return
746 		 * a failure indication, since HW confirmation of the first
747 		 * abort is still outstanding.
748 		 */
749 	case SCI_REQ_COMPLETED:
750 	default:
751 		dev_warn(&ireq->owning_controller->pdev->dev,
752 			 "%s: SCIC IO Request requested to abort while in wrong "
753 			 "state %d\n",
754 			 __func__,
755 			 ireq->sm.current_state_id);
756 		break;
757 	}
758 
759 	return SCI_FAILURE_INVALID_STATE;
760 }
761 
762 enum sci_status sci_request_complete(struct isci_request *ireq)
763 {
764 	enum sci_base_request_states state;
765 	struct isci_host *ihost = ireq->owning_controller;
766 
767 	state = ireq->sm.current_state_id;
768 	if (WARN_ONCE(state != SCI_REQ_COMPLETED,
769 		      "isci: request completion from wrong state (%d)\n", state))
770 		return SCI_FAILURE_INVALID_STATE;
771 
772 	if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
773 		sci_controller_release_frame(ihost,
774 						  ireq->saved_rx_frame_index);
775 
776 	/* XXX can we just stop the machine and remove the 'final' state? */
777 	sci_change_state(&ireq->sm, SCI_REQ_FINAL);
778 	return SCI_SUCCESS;
779 }
780 
781 enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
782 						  u32 event_code)
783 {
784 	enum sci_base_request_states state;
785 	struct isci_host *ihost = ireq->owning_controller;
786 
787 	state = ireq->sm.current_state_id;
788 
789 	if (state != SCI_REQ_STP_PIO_DATA_IN) {
790 		dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %d\n",
791 			 __func__, event_code, state);
792 
793 		return SCI_FAILURE_INVALID_STATE;
794 	}
795 
796 	switch (scu_get_event_specifier(event_code)) {
797 	case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
798 		/* We are waiting for data and the SCU has R_ERR the data frame.
799 		 * Go back to waiting for the D2H Register FIS
800 		 */
801 		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
802 		return SCI_SUCCESS;
803 	default:
804 		dev_err(&ihost->pdev->dev,
805 			"%s: pio request unexpected event %#x\n",
806 			__func__, event_code);
807 
808 		/* TODO Should we fail the PIO request when we get an
809 		 * unexpected event?
810 		 */
811 		return SCI_FAILURE;
812 	}
813 }
814 
815 /*
816  * This function copies response data for requests returning response data
817  *    instead of sense data.
818  * @sci_req: This parameter specifies the request object for which to copy
819  *    the response data.
820  */
821 static void sci_io_request_copy_response(struct isci_request *ireq)
822 {
823 	void *resp_buf;
824 	u32 len;
825 	struct ssp_response_iu *ssp_response;
826 	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
827 
828 	ssp_response = &ireq->ssp.rsp;
829 
830 	resp_buf = &isci_tmf->resp.resp_iu;
831 
832 	len = min_t(u32,
833 		    SSP_RESP_IU_MAX_SIZE,
834 		    be32_to_cpu(ssp_response->response_data_len));
835 
836 	memcpy(resp_buf, ssp_response->resp_data, len);
837 }
838 
839 static enum sci_status
840 request_started_state_tc_event(struct isci_request *ireq,
841 			       u32 completion_code)
842 {
843 	struct ssp_response_iu *resp_iu;
844 	u8 datapres;
845 
846 	/* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
847 	 * to determine SDMA status
848 	 */
849 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
850 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
851 		ireq->scu_status = SCU_TASK_DONE_GOOD;
852 		ireq->sci_status = SCI_SUCCESS;
853 		break;
854 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
855 		/* There are times when the SCU hardware will return an early
856 		 * response because the io request specified more data than is
857 		 * returned by the target device (mode pages, inquiry data,
858 		 * etc.).  We must check the response stats to see if this is
859 		 * truly a failed request or a good request that just got
860 		 * completed early.
861 		 */
862 		struct ssp_response_iu *resp = &ireq->ssp.rsp;
863 		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
864 
865 		sci_swab32_cpy(&ireq->ssp.rsp,
866 			       &ireq->ssp.rsp,
867 			       word_cnt);
868 
869 		if (resp->status == 0) {
870 			ireq->scu_status = SCU_TASK_DONE_GOOD;
871 			ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
872 		} else {
873 			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
874 			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
875 		}
876 		break;
877 	}
878 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
879 		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
880 
881 		sci_swab32_cpy(&ireq->ssp.rsp,
882 			       &ireq->ssp.rsp,
883 			       word_cnt);
884 
885 		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
886 		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
887 		break;
888 	}
889 
890 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
891 		/* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
892 		 * guaranteed to be received before this completion status is
893 		 * posted?
894 		 */
895 		resp_iu = &ireq->ssp.rsp;
896 		datapres = resp_iu->datapres;
897 
898 		if (datapres == 1 || datapres == 2) {
899 			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
900 			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
901 		} else {
902 			ireq->scu_status = SCU_TASK_DONE_GOOD;
903 			ireq->sci_status = SCI_SUCCESS;
904 		}
905 		break;
906 	/* only stp device gets suspended. */
907 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
908 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
909 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
910 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
911 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
912 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
913 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
914 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
915 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
916 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
917 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
918 		if (ireq->protocol == SCIC_STP_PROTOCOL) {
919 			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
920 					   SCU_COMPLETION_TL_STATUS_SHIFT;
921 			ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
922 		} else {
923 			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
924 					   SCU_COMPLETION_TL_STATUS_SHIFT;
925 			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
926 		}
927 		break;
928 
929 	/* both stp/ssp device gets suspended */
930 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
931 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
932 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
933 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
934 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
935 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
936 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
937 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
938 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
939 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
940 		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
941 				   SCU_COMPLETION_TL_STATUS_SHIFT;
942 		ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
943 		break;
944 
945 	/* neither ssp nor stp gets suspended. */
946 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
947 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
948 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
949 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
950 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
951 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
952 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
953 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
954 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
955 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
956 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
957 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
958 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
959 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
960 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
961 	default:
962 		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
963 				   SCU_COMPLETION_TL_STATUS_SHIFT;
964 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
965 		break;
966 	}
967 
968 	/*
969 	 * TODO: This is probably wrong for ACK/NAK timeout conditions
970 	 */
971 
972 	/* In all cases we will treat this as the completion of the IO req. */
973 	sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
974 	return SCI_SUCCESS;
975 }
976 
977 static enum sci_status
978 request_aborting_state_tc_event(struct isci_request *ireq,
979 				u32 completion_code)
980 {
981 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
982 	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
983 	case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
984 		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
985 		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
986 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
987 		break;
988 
989 	default:
990 		/* Unless we get some strange error wait for the task abort to complete
991 		 * TODO: Should there be a state change for this completion?
992 		 */
993 		break;
994 	}
995 
996 	return SCI_SUCCESS;
997 }
998 
999 static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1000 						       u32 completion_code)
1001 {
1002 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1003 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1004 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1005 		ireq->sci_status = SCI_SUCCESS;
1006 		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1007 		break;
1008 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1009 		/* Currently, the decision is to simply allow the task request
1010 		 * to timeout if the task IU wasn't received successfully.
1011 		 * There is a potential for receiving multiple task responses if
1012 		 * we decide to send the task IU again.
1013 		 */
1014 		dev_warn(&ireq->owning_controller->pdev->dev,
1015 			 "%s: TaskRequest:0x%p CompletionCode:%x - "
1016 			 "ACK/NAK timeout\n", __func__, ireq,
1017 			 completion_code);
1018 
1019 		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1020 		break;
1021 	default:
1022 		/*
1023 		 * All other completion status cause the IO to be complete.
1024 		 * If a NAK was received, then it is up to the user to retry
1025 		 * the request.
1026 		 */
1027 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1028 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1029 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1030 		break;
1031 	}
1032 
1033 	return SCI_SUCCESS;
1034 }
1035 
1036 static enum sci_status
1037 smp_request_await_response_tc_event(struct isci_request *ireq,
1038 				    u32 completion_code)
1039 {
1040 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1041 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1042 		/* In the AWAIT RESPONSE state, any TC completion is
1043 		 * unexpected.  but if the TC has success status, we
1044 		 * complete the IO anyway.
1045 		 */
1046 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1047 		ireq->sci_status = SCI_SUCCESS;
1048 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1049 		break;
1050 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1051 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1052 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1053 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1054 		/* These status has been seen in a specific LSI
1055 		 * expander, which sometimes is not able to send smp
1056 		 * response within 2 ms. This causes our hardware break
1057 		 * the connection and set TC completion with one of
1058 		 * these SMP_XXX_XX_ERR status. For these type of error,
1059 		 * we ask ihost user to retry the request.
1060 		 */
1061 		ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1062 		ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1063 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1064 		break;
1065 	default:
1066 		/* All other completion status cause the IO to be complete.  If a NAK
1067 		 * was received, then it is up to the user to retry the request
1068 		 */
1069 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1070 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1071 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1072 		break;
1073 	}
1074 
1075 	return SCI_SUCCESS;
1076 }
1077 
1078 static enum sci_status
1079 smp_request_await_tc_event(struct isci_request *ireq,
1080 			   u32 completion_code)
1081 {
1082 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1083 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1084 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1085 		ireq->sci_status = SCI_SUCCESS;
1086 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1087 		break;
1088 	default:
1089 		/* All other completion status cause the IO to be
1090 		 * complete.  If a NAK was received, then it is up to
1091 		 * the user to retry the request.
1092 		 */
1093 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1094 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1095 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1096 		break;
1097 	}
1098 
1099 	return SCI_SUCCESS;
1100 }
1101 
1102 static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1103 {
1104 	struct scu_sgl_element *sgl;
1105 	struct scu_sgl_element_pair *sgl_pair;
1106 	struct isci_request *ireq = to_ireq(stp_req);
1107 	struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1108 
1109 	sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1110 	if (!sgl_pair)
1111 		sgl = NULL;
1112 	else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1113 		if (sgl_pair->B.address_lower == 0 &&
1114 		    sgl_pair->B.address_upper == 0) {
1115 			sgl = NULL;
1116 		} else {
1117 			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1118 			sgl = &sgl_pair->B;
1119 		}
1120 	} else {
1121 		if (sgl_pair->next_pair_lower == 0 &&
1122 		    sgl_pair->next_pair_upper == 0) {
1123 			sgl = NULL;
1124 		} else {
1125 			pio_sgl->index++;
1126 			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1127 			sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1128 			sgl = &sgl_pair->A;
1129 		}
1130 	}
1131 
1132 	return sgl;
1133 }
1134 
1135 static enum sci_status
1136 stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1137 					u32 completion_code)
1138 {
1139 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1140 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1141 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1142 		ireq->sci_status = SCI_SUCCESS;
1143 		sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1144 		break;
1145 
1146 	default:
1147 		/* All other completion status cause the IO to be
1148 		 * complete.  If a NAK was received, then it is up to
1149 		 * the user to retry the request.
1150 		 */
1151 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1152 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1153 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1154 		break;
1155 	}
1156 
1157 	return SCI_SUCCESS;
1158 }
1159 
1160 #define SCU_MAX_FRAME_BUFFER_SIZE  0x400  /* 1K is the maximum SCU frame data payload */
1161 
1162 /* transmit DATA_FIS from (current sgl + offset) for input
1163  * parameter length. current sgl and offset is alreay stored in the IO request
1164  */
1165 static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1166 	struct isci_request *ireq,
1167 	u32 length)
1168 {
1169 	struct isci_stp_request *stp_req = &ireq->stp.req;
1170 	struct scu_task_context *task_context = ireq->tc;
1171 	struct scu_sgl_element_pair *sgl_pair;
1172 	struct scu_sgl_element *current_sgl;
1173 
1174 	/* Recycle the TC and reconstruct it for sending out DATA FIS containing
1175 	 * for the data from current_sgl+offset for the input length
1176 	 */
1177 	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1178 	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1179 		current_sgl = &sgl_pair->A;
1180 	else
1181 		current_sgl = &sgl_pair->B;
1182 
1183 	/* update the TC */
1184 	task_context->command_iu_upper = current_sgl->address_upper;
1185 	task_context->command_iu_lower = current_sgl->address_lower;
1186 	task_context->transfer_length_bytes = length;
1187 	task_context->type.stp.fis_type = FIS_DATA;
1188 
1189 	/* send the new TC out. */
1190 	return sci_controller_continue_io(ireq);
1191 }
1192 
1193 static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1194 {
1195 	struct isci_stp_request *stp_req = &ireq->stp.req;
1196 	struct scu_sgl_element_pair *sgl_pair;
1197 	struct scu_sgl_element *sgl;
1198 	enum sci_status status;
1199 	u32 offset;
1200 	u32 len = 0;
1201 
1202 	offset = stp_req->sgl.offset;
1203 	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1204 	if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1205 		return SCI_FAILURE;
1206 
1207 	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1208 		sgl = &sgl_pair->A;
1209 		len = sgl_pair->A.length - offset;
1210 	} else {
1211 		sgl = &sgl_pair->B;
1212 		len = sgl_pair->B.length - offset;
1213 	}
1214 
1215 	if (stp_req->pio_len == 0)
1216 		return SCI_SUCCESS;
1217 
1218 	if (stp_req->pio_len >= len) {
1219 		status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1220 		if (status != SCI_SUCCESS)
1221 			return status;
1222 		stp_req->pio_len -= len;
1223 
1224 		/* update the current sgl, offset and save for future */
1225 		sgl = pio_sgl_next(stp_req);
1226 		offset = 0;
1227 	} else if (stp_req->pio_len < len) {
1228 		sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1229 
1230 		/* Sgl offset will be adjusted and saved for future */
1231 		offset += stp_req->pio_len;
1232 		sgl->address_lower += stp_req->pio_len;
1233 		stp_req->pio_len = 0;
1234 	}
1235 
1236 	stp_req->sgl.offset = offset;
1237 
1238 	return status;
1239 }
1240 
1241 /**
1242  *
1243  * @stp_request: The request that is used for the SGL processing.
1244  * @data_buffer: The buffer of data to be copied.
1245  * @length: The length of the data transfer.
1246  *
1247  * Copy the data from the buffer for the length specified to the IO reqeust SGL
1248  * specified data region. enum sci_status
1249  */
1250 static enum sci_status
1251 sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1252 						  u8 *data_buf, u32 len)
1253 {
1254 	struct isci_request *ireq;
1255 	u8 *src_addr;
1256 	int copy_len;
1257 	struct sas_task *task;
1258 	struct scatterlist *sg;
1259 	void *kaddr;
1260 	int total_len = len;
1261 
1262 	ireq = to_ireq(stp_req);
1263 	task = isci_request_access_task(ireq);
1264 	src_addr = data_buf;
1265 
1266 	if (task->num_scatter > 0) {
1267 		sg = task->scatter;
1268 
1269 		while (total_len > 0) {
1270 			struct page *page = sg_page(sg);
1271 
1272 			copy_len = min_t(int, total_len, sg_dma_len(sg));
1273 			kaddr = kmap_atomic(page, KM_IRQ0);
1274 			memcpy(kaddr + sg->offset, src_addr, copy_len);
1275 			kunmap_atomic(kaddr, KM_IRQ0);
1276 			total_len -= copy_len;
1277 			src_addr += copy_len;
1278 			sg = sg_next(sg);
1279 		}
1280 	} else {
1281 		BUG_ON(task->total_xfer_len < total_len);
1282 		memcpy(task->scatter, src_addr, total_len);
1283 	}
1284 
1285 	return SCI_SUCCESS;
1286 }
1287 
1288 /**
1289  *
1290  * @sci_req: The PIO DATA IN request that is to receive the data.
1291  * @data_buffer: The buffer to copy from.
1292  *
1293  * Copy the data buffer to the io request data region. enum sci_status
1294  */
1295 static enum sci_status sci_stp_request_pio_data_in_copy_data(
1296 	struct isci_stp_request *stp_req,
1297 	u8 *data_buffer)
1298 {
1299 	enum sci_status status;
1300 
1301 	/*
1302 	 * If there is less than 1K remaining in the transfer request
1303 	 * copy just the data for the transfer */
1304 	if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1305 		status = sci_stp_request_pio_data_in_copy_data_buffer(
1306 			stp_req, data_buffer, stp_req->pio_len);
1307 
1308 		if (status == SCI_SUCCESS)
1309 			stp_req->pio_len = 0;
1310 	} else {
1311 		/* We are transfering the whole frame so copy */
1312 		status = sci_stp_request_pio_data_in_copy_data_buffer(
1313 			stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1314 
1315 		if (status == SCI_SUCCESS)
1316 			stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1317 	}
1318 
1319 	return status;
1320 }
1321 
1322 static enum sci_status
1323 stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1324 					      u32 completion_code)
1325 {
1326 	enum sci_status status = SCI_SUCCESS;
1327 
1328 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1329 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1330 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1331 		ireq->sci_status = SCI_SUCCESS;
1332 		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1333 		break;
1334 
1335 	default:
1336 		/* All other completion status cause the IO to be
1337 		 * complete.  If a NAK was received, then it is up to
1338 		 * the user to retry the request.
1339 		 */
1340 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1341 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1342 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1343 		break;
1344 	}
1345 
1346 	return status;
1347 }
1348 
1349 static enum sci_status
1350 pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1351 			      u32 completion_code)
1352 {
1353 	enum sci_status status = SCI_SUCCESS;
1354 	bool all_frames_transferred = false;
1355 	struct isci_stp_request *stp_req = &ireq->stp.req;
1356 
1357 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1358 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1359 		/* Transmit data */
1360 		if (stp_req->pio_len != 0) {
1361 			status = sci_stp_request_pio_data_out_transmit_data(ireq);
1362 			if (status == SCI_SUCCESS) {
1363 				if (stp_req->pio_len == 0)
1364 					all_frames_transferred = true;
1365 			}
1366 		} else if (stp_req->pio_len == 0) {
1367 			/*
1368 			 * this will happen if the all data is written at the
1369 			 * first time after the pio setup fis is received
1370 			 */
1371 			all_frames_transferred  = true;
1372 		}
1373 
1374 		/* all data transferred. */
1375 		if (all_frames_transferred) {
1376 			/*
1377 			 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1378 			 * and wait for PIO_SETUP fis / or D2H REg fis. */
1379 			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1380 		}
1381 		break;
1382 
1383 	default:
1384 		/*
1385 		 * All other completion status cause the IO to be complete.
1386 		 * If a NAK was received, then it is up to the user to retry
1387 		 * the request.
1388 		 */
1389 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1390 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1391 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1392 		break;
1393 	}
1394 
1395 	return status;
1396 }
1397 
1398 static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1399 								       u32 frame_index)
1400 {
1401 	struct isci_host *ihost = ireq->owning_controller;
1402 	struct dev_to_host_fis *frame_header;
1403 	enum sci_status status;
1404 	u32 *frame_buffer;
1405 
1406 	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1407 							       frame_index,
1408 							       (void **)&frame_header);
1409 
1410 	if ((status == SCI_SUCCESS) &&
1411 	    (frame_header->fis_type == FIS_REGD2H)) {
1412 		sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1413 							      frame_index,
1414 							      (void **)&frame_buffer);
1415 
1416 		sci_controller_copy_sata_response(&ireq->stp.rsp,
1417 						       frame_header,
1418 						       frame_buffer);
1419 	}
1420 
1421 	sci_controller_release_frame(ihost, frame_index);
1422 
1423 	return status;
1424 }
1425 
1426 enum sci_status
1427 sci_io_request_frame_handler(struct isci_request *ireq,
1428 				  u32 frame_index)
1429 {
1430 	struct isci_host *ihost = ireq->owning_controller;
1431 	struct isci_stp_request *stp_req = &ireq->stp.req;
1432 	enum sci_base_request_states state;
1433 	enum sci_status status;
1434 	ssize_t word_cnt;
1435 
1436 	state = ireq->sm.current_state_id;
1437 	switch (state)  {
1438 	case SCI_REQ_STARTED: {
1439 		struct ssp_frame_hdr ssp_hdr;
1440 		void *frame_header;
1441 
1442 		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1443 							      frame_index,
1444 							      &frame_header);
1445 
1446 		word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1447 		sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1448 
1449 		if (ssp_hdr.frame_type == SSP_RESPONSE) {
1450 			struct ssp_response_iu *resp_iu;
1451 			ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1452 
1453 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1454 								      frame_index,
1455 								      (void **)&resp_iu);
1456 
1457 			sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1458 
1459 			resp_iu = &ireq->ssp.rsp;
1460 
1461 			if (resp_iu->datapres == 0x01 ||
1462 			    resp_iu->datapres == 0x02) {
1463 				ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1464 				ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1465 			} else {
1466 				ireq->scu_status = SCU_TASK_DONE_GOOD;
1467 				ireq->sci_status = SCI_SUCCESS;
1468 			}
1469 		} else {
1470 			/* not a response frame, why did it get forwarded? */
1471 			dev_err(&ihost->pdev->dev,
1472 				"%s: SCIC IO Request 0x%p received unexpected "
1473 				"frame %d type 0x%02x\n", __func__, ireq,
1474 				frame_index, ssp_hdr.frame_type);
1475 		}
1476 
1477 		/*
1478 		 * In any case we are done with this frame buffer return it to
1479 		 * the controller
1480 		 */
1481 		sci_controller_release_frame(ihost, frame_index);
1482 
1483 		return SCI_SUCCESS;
1484 	}
1485 
1486 	case SCI_REQ_TASK_WAIT_TC_RESP:
1487 		sci_io_request_copy_response(ireq);
1488 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1489 		sci_controller_release_frame(ihost, frame_index);
1490 		return SCI_SUCCESS;
1491 
1492 	case SCI_REQ_SMP_WAIT_RESP: {
1493 		struct smp_resp *rsp_hdr = &ireq->smp.rsp;
1494 		void *frame_header;
1495 
1496 		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1497 							      frame_index,
1498 							      &frame_header);
1499 
1500 		/* byte swap the header. */
1501 		word_cnt = SMP_RESP_HDR_SZ / sizeof(u32);
1502 		sci_swab32_cpy(rsp_hdr, frame_header, word_cnt);
1503 
1504 		if (rsp_hdr->frame_type == SMP_RESPONSE) {
1505 			void *smp_resp;
1506 
1507 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1508 								      frame_index,
1509 								      &smp_resp);
1510 
1511 			word_cnt = (sizeof(struct smp_resp) - SMP_RESP_HDR_SZ) /
1512 				sizeof(u32);
1513 
1514 			sci_swab32_cpy(((u8 *) rsp_hdr) + SMP_RESP_HDR_SZ,
1515 				       smp_resp, word_cnt);
1516 
1517 			ireq->scu_status = SCU_TASK_DONE_GOOD;
1518 			ireq->sci_status = SCI_SUCCESS;
1519 			sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1520 		} else {
1521 			/*
1522 			 * This was not a response frame why did it get
1523 			 * forwarded?
1524 			 */
1525 			dev_err(&ihost->pdev->dev,
1526 				"%s: SCIC SMP Request 0x%p received unexpected "
1527 				"frame %d type 0x%02x\n",
1528 				__func__,
1529 				ireq,
1530 				frame_index,
1531 				rsp_hdr->frame_type);
1532 
1533 			ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1534 			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1535 			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1536 		}
1537 
1538 		sci_controller_release_frame(ihost, frame_index);
1539 
1540 		return SCI_SUCCESS;
1541 	}
1542 
1543 	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1544 		return sci_stp_request_udma_general_frame_handler(ireq,
1545 								       frame_index);
1546 
1547 	case SCI_REQ_STP_UDMA_WAIT_D2H:
1548 		/* Use the general frame handler to copy the resposne data */
1549 		status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1550 
1551 		if (status != SCI_SUCCESS)
1552 			return status;
1553 
1554 		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1555 		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1556 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1557 		return SCI_SUCCESS;
1558 
1559 	case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1560 		struct dev_to_host_fis *frame_header;
1561 		u32 *frame_buffer;
1562 
1563 		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1564 								       frame_index,
1565 								       (void **)&frame_header);
1566 
1567 		if (status != SCI_SUCCESS) {
1568 			dev_err(&ihost->pdev->dev,
1569 				"%s: SCIC IO Request 0x%p could not get frame "
1570 				"header for frame index %d, status %x\n",
1571 				__func__,
1572 				stp_req,
1573 				frame_index,
1574 				status);
1575 
1576 			return status;
1577 		}
1578 
1579 		switch (frame_header->fis_type) {
1580 		case FIS_REGD2H:
1581 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1582 								      frame_index,
1583 								      (void **)&frame_buffer);
1584 
1585 			sci_controller_copy_sata_response(&ireq->stp.rsp,
1586 							       frame_header,
1587 							       frame_buffer);
1588 
1589 			/* The command has completed with error */
1590 			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1591 			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1592 			break;
1593 
1594 		default:
1595 			dev_warn(&ihost->pdev->dev,
1596 				 "%s: IO Request:0x%p Frame Id:%d protocol "
1597 				  "violation occurred\n", __func__, stp_req,
1598 				  frame_index);
1599 
1600 			ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1601 			ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1602 			break;
1603 		}
1604 
1605 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1606 
1607 		/* Frame has been decoded return it to the controller */
1608 		sci_controller_release_frame(ihost, frame_index);
1609 
1610 		return status;
1611 	}
1612 
1613 	case SCI_REQ_STP_PIO_WAIT_FRAME: {
1614 		struct sas_task *task = isci_request_access_task(ireq);
1615 		struct dev_to_host_fis *frame_header;
1616 		u32 *frame_buffer;
1617 
1618 		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1619 								       frame_index,
1620 								       (void **)&frame_header);
1621 
1622 		if (status != SCI_SUCCESS) {
1623 			dev_err(&ihost->pdev->dev,
1624 				"%s: SCIC IO Request 0x%p could not get frame "
1625 				"header for frame index %d, status %x\n",
1626 				__func__, stp_req, frame_index, status);
1627 			return status;
1628 		}
1629 
1630 		switch (frame_header->fis_type) {
1631 		case FIS_PIO_SETUP:
1632 			/* Get from the frame buffer the PIO Setup Data */
1633 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1634 								      frame_index,
1635 								      (void **)&frame_buffer);
1636 
1637 			/* Get the data from the PIO Setup The SCU Hardware
1638 			 * returns first word in the frame_header and the rest
1639 			 * of the data is in the frame buffer so we need to
1640 			 * back up one dword
1641 			 */
1642 
1643 			/* transfer_count: first 16bits in the 4th dword */
1644 			stp_req->pio_len = frame_buffer[3] & 0xffff;
1645 
1646 			/* status: 4th byte in the 3rd dword */
1647 			stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1648 
1649 			sci_controller_copy_sata_response(&ireq->stp.rsp,
1650 							       frame_header,
1651 							       frame_buffer);
1652 
1653 			ireq->stp.rsp.status = stp_req->status;
1654 
1655 			/* The next state is dependent on whether the
1656 			 * request was PIO Data-in or Data out
1657 			 */
1658 			if (task->data_dir == DMA_FROM_DEVICE) {
1659 				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1660 			} else if (task->data_dir == DMA_TO_DEVICE) {
1661 				/* Transmit data */
1662 				status = sci_stp_request_pio_data_out_transmit_data(ireq);
1663 				if (status != SCI_SUCCESS)
1664 					break;
1665 				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1666 			}
1667 			break;
1668 
1669 		case FIS_SETDEVBITS:
1670 			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1671 			break;
1672 
1673 		case FIS_REGD2H:
1674 			if (frame_header->status & ATA_BUSY) {
1675 				/*
1676 				 * Now why is the drive sending a D2H Register
1677 				 * FIS when it is still busy?  Do nothing since
1678 				 * we are still in the right state.
1679 				 */
1680 				dev_dbg(&ihost->pdev->dev,
1681 					"%s: SCIC PIO Request 0x%p received "
1682 					"D2H Register FIS with BSY status "
1683 					"0x%x\n",
1684 					__func__,
1685 					stp_req,
1686 					frame_header->status);
1687 				break;
1688 			}
1689 
1690 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1691 								      frame_index,
1692 								      (void **)&frame_buffer);
1693 
1694 			sci_controller_copy_sata_response(&ireq->stp.req,
1695 							       frame_header,
1696 							       frame_buffer);
1697 
1698 			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1699 			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1700 			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1701 			break;
1702 
1703 		default:
1704 			/* FIXME: what do we do here? */
1705 			break;
1706 		}
1707 
1708 		/* Frame is decoded return it to the controller */
1709 		sci_controller_release_frame(ihost, frame_index);
1710 
1711 		return status;
1712 	}
1713 
1714 	case SCI_REQ_STP_PIO_DATA_IN: {
1715 		struct dev_to_host_fis *frame_header;
1716 		struct sata_fis_data *frame_buffer;
1717 
1718 		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1719 								       frame_index,
1720 								       (void **)&frame_header);
1721 
1722 		if (status != SCI_SUCCESS) {
1723 			dev_err(&ihost->pdev->dev,
1724 				"%s: SCIC IO Request 0x%p could not get frame "
1725 				"header for frame index %d, status %x\n",
1726 				__func__,
1727 				stp_req,
1728 				frame_index,
1729 				status);
1730 			return status;
1731 		}
1732 
1733 		if (frame_header->fis_type != FIS_DATA) {
1734 			dev_err(&ihost->pdev->dev,
1735 				"%s: SCIC PIO Request 0x%p received frame %d "
1736 				"with fis type 0x%02x when expecting a data "
1737 				"fis.\n",
1738 				__func__,
1739 				stp_req,
1740 				frame_index,
1741 				frame_header->fis_type);
1742 
1743 			ireq->scu_status = SCU_TASK_DONE_GOOD;
1744 			ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
1745 			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1746 
1747 			/* Frame is decoded return it to the controller */
1748 			sci_controller_release_frame(ihost, frame_index);
1749 			return status;
1750 		}
1751 
1752 		if (stp_req->sgl.index < 0) {
1753 			ireq->saved_rx_frame_index = frame_index;
1754 			stp_req->pio_len = 0;
1755 		} else {
1756 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1757 								      frame_index,
1758 								      (void **)&frame_buffer);
1759 
1760 			status = sci_stp_request_pio_data_in_copy_data(stp_req,
1761 									    (u8 *)frame_buffer);
1762 
1763 			/* Frame is decoded return it to the controller */
1764 			sci_controller_release_frame(ihost, frame_index);
1765 		}
1766 
1767 		/* Check for the end of the transfer, are there more
1768 		 * bytes remaining for this data transfer
1769 		 */
1770 		if (status != SCI_SUCCESS || stp_req->pio_len != 0)
1771 			return status;
1772 
1773 		if ((stp_req->status & ATA_BUSY) == 0) {
1774 			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1775 			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1776 			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1777 		} else {
1778 			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1779 		}
1780 		return status;
1781 	}
1782 
1783 	case SCI_REQ_STP_SOFT_RESET_WAIT_D2H: {
1784 		struct dev_to_host_fis *frame_header;
1785 		u32 *frame_buffer;
1786 
1787 		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1788 								       frame_index,
1789 								       (void **)&frame_header);
1790 		if (status != SCI_SUCCESS) {
1791 			dev_err(&ihost->pdev->dev,
1792 				"%s: SCIC IO Request 0x%p could not get frame "
1793 				"header for frame index %d, status %x\n",
1794 				__func__,
1795 				stp_req,
1796 				frame_index,
1797 				status);
1798 			return status;
1799 		}
1800 
1801 		switch (frame_header->fis_type) {
1802 		case FIS_REGD2H:
1803 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1804 								      frame_index,
1805 								      (void **)&frame_buffer);
1806 
1807 			sci_controller_copy_sata_response(&ireq->stp.rsp,
1808 							       frame_header,
1809 							       frame_buffer);
1810 
1811 			/* The command has completed with error */
1812 			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1813 			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1814 			break;
1815 
1816 		default:
1817 			dev_warn(&ihost->pdev->dev,
1818 				 "%s: IO Request:0x%p Frame Id:%d protocol "
1819 				 "violation occurred\n",
1820 				 __func__,
1821 				 stp_req,
1822 				 frame_index);
1823 
1824 			ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1825 			ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1826 			break;
1827 		}
1828 
1829 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1830 
1831 		/* Frame has been decoded return it to the controller */
1832 		sci_controller_release_frame(ihost, frame_index);
1833 
1834 		return status;
1835 	}
1836 	case SCI_REQ_ABORTING:
1837 		/*
1838 		 * TODO: Is it even possible to get an unsolicited frame in the
1839 		 * aborting state?
1840 		 */
1841 		sci_controller_release_frame(ihost, frame_index);
1842 		return SCI_SUCCESS;
1843 
1844 	default:
1845 		dev_warn(&ihost->pdev->dev,
1846 			 "%s: SCIC IO Request given unexpected frame %x while "
1847 			 "in state %d\n",
1848 			 __func__,
1849 			 frame_index,
1850 			 state);
1851 
1852 		sci_controller_release_frame(ihost, frame_index);
1853 		return SCI_FAILURE_INVALID_STATE;
1854 	}
1855 }
1856 
1857 static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
1858 						       u32 completion_code)
1859 {
1860 	enum sci_status status = SCI_SUCCESS;
1861 
1862 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1863 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1864 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1865 		ireq->sci_status = SCI_SUCCESS;
1866 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1867 		break;
1868 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
1869 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1870 		/* We must check ther response buffer to see if the D2H
1871 		 * Register FIS was received before we got the TC
1872 		 * completion.
1873 		 */
1874 		if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
1875 			sci_remote_device_suspend(ireq->target_device,
1876 				SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
1877 
1878 			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1879 			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1880 			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1881 		} else {
1882 			/* If we have an error completion status for the
1883 			 * TC then we can expect a D2H register FIS from
1884 			 * the device so we must change state to wait
1885 			 * for it
1886 			 */
1887 			sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
1888 		}
1889 		break;
1890 
1891 	/* TODO Check to see if any of these completion status need to
1892 	 * wait for the device to host register fis.
1893 	 */
1894 	/* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
1895 	 * - this comes only for B0
1896 	 */
1897 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_INV_FIS_LEN):
1898 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1899 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_R_ERR):
1900 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CMD_LL_R_ERR):
1901 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CRC_ERR):
1902 		sci_remote_device_suspend(ireq->target_device,
1903 			SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
1904 	/* Fall through to the default case */
1905 	default:
1906 		/* All other completion status cause the IO to be complete. */
1907 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1908 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1909 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1910 		break;
1911 	}
1912 
1913 	return status;
1914 }
1915 
1916 static enum sci_status
1917 stp_request_soft_reset_await_h2d_asserted_tc_event(struct isci_request *ireq,
1918 						   u32 completion_code)
1919 {
1920 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1921 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1922 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1923 		ireq->sci_status = SCI_SUCCESS;
1924 		sci_change_state(&ireq->sm, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG);
1925 		break;
1926 
1927 	default:
1928 		/*
1929 		 * All other completion status cause the IO to be complete.
1930 		 * If a NAK was received, then it is up to the user to retry
1931 		 * the request.
1932 		 */
1933 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1934 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1935 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1936 		break;
1937 	}
1938 
1939 	return SCI_SUCCESS;
1940 }
1941 
1942 static enum sci_status
1943 stp_request_soft_reset_await_h2d_diagnostic_tc_event(struct isci_request *ireq,
1944 						     u32 completion_code)
1945 {
1946 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1947 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1948 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1949 		ireq->sci_status = SCI_SUCCESS;
1950 		sci_change_state(&ireq->sm, SCI_REQ_STP_SOFT_RESET_WAIT_D2H);
1951 		break;
1952 
1953 	default:
1954 		/* All other completion status cause the IO to be complete.  If
1955 		 * a NAK was received, then it is up to the user to retry the
1956 		 * request.
1957 		 */
1958 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1959 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1960 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1961 		break;
1962 	}
1963 
1964 	return SCI_SUCCESS;
1965 }
1966 
1967 enum sci_status
1968 sci_io_request_tc_completion(struct isci_request *ireq,
1969 				  u32 completion_code)
1970 {
1971 	enum sci_base_request_states state;
1972 	struct isci_host *ihost = ireq->owning_controller;
1973 
1974 	state = ireq->sm.current_state_id;
1975 
1976 	switch (state) {
1977 	case SCI_REQ_STARTED:
1978 		return request_started_state_tc_event(ireq, completion_code);
1979 
1980 	case SCI_REQ_TASK_WAIT_TC_COMP:
1981 		return ssp_task_request_await_tc_event(ireq,
1982 						       completion_code);
1983 
1984 	case SCI_REQ_SMP_WAIT_RESP:
1985 		return smp_request_await_response_tc_event(ireq,
1986 							   completion_code);
1987 
1988 	case SCI_REQ_SMP_WAIT_TC_COMP:
1989 		return smp_request_await_tc_event(ireq, completion_code);
1990 
1991 	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1992 		return stp_request_udma_await_tc_event(ireq,
1993 						       completion_code);
1994 
1995 	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
1996 		return stp_request_non_data_await_h2d_tc_event(ireq,
1997 							       completion_code);
1998 
1999 	case SCI_REQ_STP_PIO_WAIT_H2D:
2000 		return stp_request_pio_await_h2d_completion_tc_event(ireq,
2001 								     completion_code);
2002 
2003 	case SCI_REQ_STP_PIO_DATA_OUT:
2004 		return pio_data_out_tx_done_tc_event(ireq, completion_code);
2005 
2006 	case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED:
2007 		return stp_request_soft_reset_await_h2d_asserted_tc_event(ireq,
2008 									  completion_code);
2009 
2010 	case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG:
2011 		return stp_request_soft_reset_await_h2d_diagnostic_tc_event(ireq,
2012 									    completion_code);
2013 
2014 	case SCI_REQ_ABORTING:
2015 		return request_aborting_state_tc_event(ireq,
2016 						       completion_code);
2017 
2018 	default:
2019 		dev_warn(&ihost->pdev->dev,
2020 			 "%s: SCIC IO Request given task completion "
2021 			 "notification %x while in wrong state %d\n",
2022 			 __func__,
2023 			 completion_code,
2024 			 state);
2025 		return SCI_FAILURE_INVALID_STATE;
2026 	}
2027 }
2028 
2029 /**
2030  * isci_request_process_response_iu() - This function sets the status and
2031  *    response iu, in the task struct, from the request object for the upper
2032  *    layer driver.
2033  * @sas_task: This parameter is the task struct from the upper layer driver.
2034  * @resp_iu: This parameter points to the response iu of the completed request.
2035  * @dev: This parameter specifies the linux device struct.
2036  *
2037  * none.
2038  */
2039 static void isci_request_process_response_iu(
2040 	struct sas_task *task,
2041 	struct ssp_response_iu *resp_iu,
2042 	struct device *dev)
2043 {
2044 	dev_dbg(dev,
2045 		"%s: resp_iu = %p "
2046 		"resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2047 		"resp_iu->response_data_len = %x, "
2048 		"resp_iu->sense_data_len = %x\nrepsonse data: ",
2049 		__func__,
2050 		resp_iu,
2051 		resp_iu->status,
2052 		resp_iu->datapres,
2053 		resp_iu->response_data_len,
2054 		resp_iu->sense_data_len);
2055 
2056 	task->task_status.stat = resp_iu->status;
2057 
2058 	/* libsas updates the task status fields based on the response iu. */
2059 	sas_ssp_task_response(dev, task, resp_iu);
2060 }
2061 
2062 /**
2063  * isci_request_set_open_reject_status() - This function prepares the I/O
2064  *    completion for OPEN_REJECT conditions.
2065  * @request: This parameter is the completed isci_request object.
2066  * @response_ptr: This parameter specifies the service response for the I/O.
2067  * @status_ptr: This parameter specifies the exec status for the I/O.
2068  * @complete_to_host_ptr: This parameter specifies the action to be taken by
2069  *    the LLDD with respect to completing this request or forcing an abort
2070  *    condition on the I/O.
2071  * @open_rej_reason: This parameter specifies the encoded reason for the
2072  *    abandon-class reject.
2073  *
2074  * none.
2075  */
2076 static void isci_request_set_open_reject_status(
2077 	struct isci_request *request,
2078 	struct sas_task *task,
2079 	enum service_response *response_ptr,
2080 	enum exec_status *status_ptr,
2081 	enum isci_completion_selection *complete_to_host_ptr,
2082 	enum sas_open_rej_reason open_rej_reason)
2083 {
2084 	/* Task in the target is done. */
2085 	set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2086 	*response_ptr                     = SAS_TASK_UNDELIVERED;
2087 	*status_ptr                       = SAS_OPEN_REJECT;
2088 	*complete_to_host_ptr             = isci_perform_normal_io_completion;
2089 	task->task_status.open_rej_reason = open_rej_reason;
2090 }
2091 
2092 /**
2093  * isci_request_handle_controller_specific_errors() - This function decodes
2094  *    controller-specific I/O completion error conditions.
2095  * @request: This parameter is the completed isci_request object.
2096  * @response_ptr: This parameter specifies the service response for the I/O.
2097  * @status_ptr: This parameter specifies the exec status for the I/O.
2098  * @complete_to_host_ptr: This parameter specifies the action to be taken by
2099  *    the LLDD with respect to completing this request or forcing an abort
2100  *    condition on the I/O.
2101  *
2102  * none.
2103  */
2104 static void isci_request_handle_controller_specific_errors(
2105 	struct isci_remote_device *idev,
2106 	struct isci_request *request,
2107 	struct sas_task *task,
2108 	enum service_response *response_ptr,
2109 	enum exec_status *status_ptr,
2110 	enum isci_completion_selection *complete_to_host_ptr)
2111 {
2112 	unsigned int cstatus;
2113 
2114 	cstatus = request->scu_status;
2115 
2116 	dev_dbg(&request->isci_host->pdev->dev,
2117 		"%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2118 		"- controller status = 0x%x\n",
2119 		__func__, request, cstatus);
2120 
2121 	/* Decode the controller-specific errors; most
2122 	 * important is to recognize those conditions in which
2123 	 * the target may still have a task outstanding that
2124 	 * must be aborted.
2125 	 *
2126 	 * Note that there are SCU completion codes being
2127 	 * named in the decode below for which SCIC has already
2128 	 * done work to handle them in a way other than as
2129 	 * a controller-specific completion code; these are left
2130 	 * in the decode below for completeness sake.
2131 	 */
2132 	switch (cstatus) {
2133 	case SCU_TASK_DONE_DMASETUP_DIRERR:
2134 	/* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2135 	case SCU_TASK_DONE_XFERCNT_ERR:
2136 		/* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2137 		if (task->task_proto == SAS_PROTOCOL_SMP) {
2138 			/* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2139 			*response_ptr = SAS_TASK_COMPLETE;
2140 
2141 			/* See if the device has been/is being stopped. Note
2142 			 * that we ignore the quiesce state, since we are
2143 			 * concerned about the actual device state.
2144 			 */
2145 			if (!idev)
2146 				*status_ptr = SAS_DEVICE_UNKNOWN;
2147 			else
2148 				*status_ptr = SAS_ABORTED_TASK;
2149 
2150 			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2151 
2152 			*complete_to_host_ptr =
2153 				isci_perform_normal_io_completion;
2154 		} else {
2155 			/* Task in the target is not done. */
2156 			*response_ptr = SAS_TASK_UNDELIVERED;
2157 
2158 			if (!idev)
2159 				*status_ptr = SAS_DEVICE_UNKNOWN;
2160 			else
2161 				*status_ptr = SAM_STAT_TASK_ABORTED;
2162 
2163 			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2164 
2165 			*complete_to_host_ptr =
2166 				isci_perform_error_io_completion;
2167 		}
2168 
2169 		break;
2170 
2171 	case SCU_TASK_DONE_CRC_ERR:
2172 	case SCU_TASK_DONE_NAK_CMD_ERR:
2173 	case SCU_TASK_DONE_EXCESS_DATA:
2174 	case SCU_TASK_DONE_UNEXP_FIS:
2175 	/* Also SCU_TASK_DONE_UNEXP_RESP: */
2176 	case SCU_TASK_DONE_VIIT_ENTRY_NV:       /* TODO - conditions? */
2177 	case SCU_TASK_DONE_IIT_ENTRY_NV:        /* TODO - conditions? */
2178 	case SCU_TASK_DONE_RNCNV_OUTBOUND:      /* TODO - conditions? */
2179 		/* These are conditions in which the target
2180 		 * has completed the task, so that no cleanup
2181 		 * is necessary.
2182 		 */
2183 		*response_ptr = SAS_TASK_COMPLETE;
2184 
2185 		/* See if the device has been/is being stopped. Note
2186 		 * that we ignore the quiesce state, since we are
2187 		 * concerned about the actual device state.
2188 		 */
2189 		if (!idev)
2190 			*status_ptr = SAS_DEVICE_UNKNOWN;
2191 		else
2192 			*status_ptr = SAS_ABORTED_TASK;
2193 
2194 		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2195 
2196 		*complete_to_host_ptr = isci_perform_normal_io_completion;
2197 		break;
2198 
2199 
2200 	/* Note that the only open reject completion codes seen here will be
2201 	 * abandon-class codes; all others are automatically retried in the SCU.
2202 	 */
2203 	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2204 
2205 		isci_request_set_open_reject_status(
2206 			request, task, response_ptr, status_ptr,
2207 			complete_to_host_ptr, SAS_OREJ_WRONG_DEST);
2208 		break;
2209 
2210 	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2211 
2212 		/* Note - the return of AB0 will change when
2213 		 * libsas implements detection of zone violations.
2214 		 */
2215 		isci_request_set_open_reject_status(
2216 			request, task, response_ptr, status_ptr,
2217 			complete_to_host_ptr, SAS_OREJ_RESV_AB0);
2218 		break;
2219 
2220 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2221 
2222 		isci_request_set_open_reject_status(
2223 			request, task, response_ptr, status_ptr,
2224 			complete_to_host_ptr, SAS_OREJ_RESV_AB1);
2225 		break;
2226 
2227 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2228 
2229 		isci_request_set_open_reject_status(
2230 			request, task, response_ptr, status_ptr,
2231 			complete_to_host_ptr, SAS_OREJ_RESV_AB2);
2232 		break;
2233 
2234 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2235 
2236 		isci_request_set_open_reject_status(
2237 			request, task, response_ptr, status_ptr,
2238 			complete_to_host_ptr, SAS_OREJ_RESV_AB3);
2239 		break;
2240 
2241 	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2242 
2243 		isci_request_set_open_reject_status(
2244 			request, task, response_ptr, status_ptr,
2245 			complete_to_host_ptr, SAS_OREJ_BAD_DEST);
2246 		break;
2247 
2248 	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2249 
2250 		isci_request_set_open_reject_status(
2251 			request, task, response_ptr, status_ptr,
2252 			complete_to_host_ptr, SAS_OREJ_STP_NORES);
2253 		break;
2254 
2255 	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2256 
2257 		isci_request_set_open_reject_status(
2258 			request, task, response_ptr, status_ptr,
2259 			complete_to_host_ptr, SAS_OREJ_EPROTO);
2260 		break;
2261 
2262 	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2263 
2264 		isci_request_set_open_reject_status(
2265 			request, task, response_ptr, status_ptr,
2266 			complete_to_host_ptr, SAS_OREJ_CONN_RATE);
2267 		break;
2268 
2269 	case SCU_TASK_DONE_LL_R_ERR:
2270 	/* Also SCU_TASK_DONE_ACK_NAK_TO: */
2271 	case SCU_TASK_DONE_LL_PERR:
2272 	case SCU_TASK_DONE_LL_SY_TERM:
2273 	/* Also SCU_TASK_DONE_NAK_ERR:*/
2274 	case SCU_TASK_DONE_LL_LF_TERM:
2275 	/* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2276 	case SCU_TASK_DONE_LL_ABORT_ERR:
2277 	case SCU_TASK_DONE_SEQ_INV_TYPE:
2278 	/* Also SCU_TASK_DONE_UNEXP_XR: */
2279 	case SCU_TASK_DONE_XR_IU_LEN_ERR:
2280 	case SCU_TASK_DONE_INV_FIS_LEN:
2281 	/* Also SCU_TASK_DONE_XR_WD_LEN: */
2282 	case SCU_TASK_DONE_SDMA_ERR:
2283 	case SCU_TASK_DONE_OFFSET_ERR:
2284 	case SCU_TASK_DONE_MAX_PLD_ERR:
2285 	case SCU_TASK_DONE_LF_ERR:
2286 	case SCU_TASK_DONE_SMP_RESP_TO_ERR:  /* Escalate to dev reset? */
2287 	case SCU_TASK_DONE_SMP_LL_RX_ERR:
2288 	case SCU_TASK_DONE_UNEXP_DATA:
2289 	case SCU_TASK_DONE_UNEXP_SDBFIS:
2290 	case SCU_TASK_DONE_REG_ERR:
2291 	case SCU_TASK_DONE_SDB_ERR:
2292 	case SCU_TASK_DONE_TASK_ABORT:
2293 	default:
2294 		/* Task in the target is not done. */
2295 		*response_ptr = SAS_TASK_UNDELIVERED;
2296 		*status_ptr = SAM_STAT_TASK_ABORTED;
2297 
2298 		if (task->task_proto == SAS_PROTOCOL_SMP) {
2299 			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2300 
2301 			*complete_to_host_ptr = isci_perform_normal_io_completion;
2302 		} else {
2303 			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2304 
2305 			*complete_to_host_ptr = isci_perform_error_io_completion;
2306 		}
2307 		break;
2308 	}
2309 }
2310 
2311 /**
2312  * isci_task_save_for_upper_layer_completion() - This function saves the
2313  *    request for later completion to the upper layer driver.
2314  * @host: This parameter is a pointer to the host on which the the request
2315  *    should be queued (either as an error or success).
2316  * @request: This parameter is the completed request.
2317  * @response: This parameter is the response code for the completed task.
2318  * @status: This parameter is the status code for the completed task.
2319  *
2320  * none.
2321  */
2322 static void isci_task_save_for_upper_layer_completion(
2323 	struct isci_host *host,
2324 	struct isci_request *request,
2325 	enum service_response response,
2326 	enum exec_status status,
2327 	enum isci_completion_selection task_notification_selection)
2328 {
2329 	struct sas_task *task = isci_request_access_task(request);
2330 
2331 	task_notification_selection
2332 		= isci_task_set_completion_status(task, response, status,
2333 						  task_notification_selection);
2334 
2335 	/* Tasks aborted specifically by a call to the lldd_abort_task
2336 	 * function should not be completed to the host in the regular path.
2337 	 */
2338 	switch (task_notification_selection) {
2339 
2340 	case isci_perform_normal_io_completion:
2341 
2342 		/* Normal notification (task_done) */
2343 		dev_dbg(&host->pdev->dev,
2344 			"%s: Normal - task = %p, response=%d (%d), status=%d (%d)\n",
2345 			__func__,
2346 			task,
2347 			task->task_status.resp, response,
2348 			task->task_status.stat, status);
2349 		/* Add to the completed list. */
2350 		list_add(&request->completed_node,
2351 			 &host->requests_to_complete);
2352 
2353 		/* Take the request off the device's pending request list. */
2354 		list_del_init(&request->dev_node);
2355 		break;
2356 
2357 	case isci_perform_aborted_io_completion:
2358 		/* No notification to libsas because this request is
2359 		 * already in the abort path.
2360 		 */
2361 		dev_dbg(&host->pdev->dev,
2362 			 "%s: Aborted - task = %p, response=%d (%d), status=%d (%d)\n",
2363 			 __func__,
2364 			 task,
2365 			 task->task_status.resp, response,
2366 			 task->task_status.stat, status);
2367 
2368 		/* Wake up whatever process was waiting for this
2369 		 * request to complete.
2370 		 */
2371 		WARN_ON(request->io_request_completion == NULL);
2372 
2373 		if (request->io_request_completion != NULL) {
2374 
2375 			/* Signal whoever is waiting that this
2376 			* request is complete.
2377 			*/
2378 			complete(request->io_request_completion);
2379 		}
2380 		break;
2381 
2382 	case isci_perform_error_io_completion:
2383 		/* Use sas_task_abort */
2384 		dev_dbg(&host->pdev->dev,
2385 			 "%s: Error - task = %p, response=%d (%d), status=%d (%d)\n",
2386 			 __func__,
2387 			 task,
2388 			 task->task_status.resp, response,
2389 			 task->task_status.stat, status);
2390 		/* Add to the aborted list. */
2391 		list_add(&request->completed_node,
2392 			 &host->requests_to_errorback);
2393 		break;
2394 
2395 	default:
2396 		dev_dbg(&host->pdev->dev,
2397 			 "%s: Unknown - task = %p, response=%d (%d), status=%d (%d)\n",
2398 			 __func__,
2399 			 task,
2400 			 task->task_status.resp, response,
2401 			 task->task_status.stat, status);
2402 
2403 		/* Add to the error to libsas list. */
2404 		list_add(&request->completed_node,
2405 			 &host->requests_to_errorback);
2406 		break;
2407 	}
2408 }
2409 
2410 static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2411 {
2412 	struct task_status_struct *ts = &task->task_status;
2413 	struct ata_task_resp *resp = (void *)&ts->buf[0];
2414 
2415 	resp->frame_len = sizeof(*fis);
2416 	memcpy(resp->ending_fis, fis, sizeof(*fis));
2417 	ts->buf_valid_size = sizeof(*resp);
2418 
2419 	/* If the device fault bit is set in the status register, then
2420 	 * set the sense data and return.
2421 	 */
2422 	if (fis->status & ATA_DF)
2423 		ts->stat = SAS_PROTO_RESPONSE;
2424 	else
2425 		ts->stat = SAM_STAT_GOOD;
2426 
2427 	ts->resp = SAS_TASK_COMPLETE;
2428 }
2429 
2430 static void isci_request_io_request_complete(struct isci_host *ihost,
2431 					     struct isci_request *request,
2432 					     enum sci_io_status completion_status)
2433 {
2434 	struct sas_task *task = isci_request_access_task(request);
2435 	struct ssp_response_iu *resp_iu;
2436 	unsigned long task_flags;
2437 	struct isci_remote_device *idev = isci_lookup_device(task->dev);
2438 	enum service_response response       = SAS_TASK_UNDELIVERED;
2439 	enum exec_status status         = SAS_ABORTED_TASK;
2440 	enum isci_request_status request_status;
2441 	enum isci_completion_selection complete_to_host
2442 		= isci_perform_normal_io_completion;
2443 
2444 	dev_dbg(&ihost->pdev->dev,
2445 		"%s: request = %p, task = %p,\n"
2446 		"task->data_dir = %d completion_status = 0x%x\n",
2447 		__func__,
2448 		request,
2449 		task,
2450 		task->data_dir,
2451 		completion_status);
2452 
2453 	spin_lock(&request->state_lock);
2454 	request_status = request->status;
2455 
2456 	/* Decode the request status.  Note that if the request has been
2457 	 * aborted by a task management function, we don't care
2458 	 * what the status is.
2459 	 */
2460 	switch (request_status) {
2461 
2462 	case aborted:
2463 		/* "aborted" indicates that the request was aborted by a task
2464 		 * management function, since once a task management request is
2465 		 * perfomed by the device, the request only completes because
2466 		 * of the subsequent driver terminate.
2467 		 *
2468 		 * Aborted also means an external thread is explicitly managing
2469 		 * this request, so that we do not complete it up the stack.
2470 		 *
2471 		 * The target is still there (since the TMF was successful).
2472 		 */
2473 		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2474 		response = SAS_TASK_COMPLETE;
2475 
2476 		/* See if the device has been/is being stopped. Note
2477 		 * that we ignore the quiesce state, since we are
2478 		 * concerned about the actual device state.
2479 		 */
2480 		if (!idev)
2481 			status = SAS_DEVICE_UNKNOWN;
2482 		else
2483 			status = SAS_ABORTED_TASK;
2484 
2485 		complete_to_host = isci_perform_aborted_io_completion;
2486 		/* This was an aborted request. */
2487 
2488 		spin_unlock(&request->state_lock);
2489 		break;
2490 
2491 	case aborting:
2492 		/* aborting means that the task management function tried and
2493 		 * failed to abort the request. We need to note the request
2494 		 * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the
2495 		 * target as down.
2496 		 *
2497 		 * Aborting also means an external thread is explicitly managing
2498 		 * this request, so that we do not complete it up the stack.
2499 		 */
2500 		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2501 		response = SAS_TASK_UNDELIVERED;
2502 
2503 		if (!idev)
2504 			/* The device has been /is being stopped. Note that
2505 			 * we ignore the quiesce state, since we are
2506 			 * concerned about the actual device state.
2507 			 */
2508 			status = SAS_DEVICE_UNKNOWN;
2509 		else
2510 			status = SAS_PHY_DOWN;
2511 
2512 		complete_to_host = isci_perform_aborted_io_completion;
2513 
2514 		/* This was an aborted request. */
2515 
2516 		spin_unlock(&request->state_lock);
2517 		break;
2518 
2519 	case terminating:
2520 
2521 		/* This was an terminated request.  This happens when
2522 		 * the I/O is being terminated because of an action on
2523 		 * the device (reset, tear down, etc.), and the I/O needs
2524 		 * to be completed up the stack.
2525 		 */
2526 		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2527 		response = SAS_TASK_UNDELIVERED;
2528 
2529 		/* See if the device has been/is being stopped. Note
2530 		 * that we ignore the quiesce state, since we are
2531 		 * concerned about the actual device state.
2532 		 */
2533 		if (!idev)
2534 			status = SAS_DEVICE_UNKNOWN;
2535 		else
2536 			status = SAS_ABORTED_TASK;
2537 
2538 		complete_to_host = isci_perform_aborted_io_completion;
2539 
2540 		/* This was a terminated request. */
2541 
2542 		spin_unlock(&request->state_lock);
2543 		break;
2544 
2545 	case dead:
2546 		/* This was a terminated request that timed-out during the
2547 		 * termination process.  There is no task to complete to
2548 		 * libsas.
2549 		 */
2550 		complete_to_host = isci_perform_normal_io_completion;
2551 		spin_unlock(&request->state_lock);
2552 		break;
2553 
2554 	default:
2555 
2556 		/* The request is done from an SCU HW perspective. */
2557 		request->status = completed;
2558 
2559 		spin_unlock(&request->state_lock);
2560 
2561 		/* This is an active request being completed from the core. */
2562 		switch (completion_status) {
2563 
2564 		case SCI_IO_FAILURE_RESPONSE_VALID:
2565 			dev_dbg(&ihost->pdev->dev,
2566 				"%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2567 				__func__,
2568 				request,
2569 				task);
2570 
2571 			if (sas_protocol_ata(task->task_proto)) {
2572 				isci_process_stp_response(task, &request->stp.rsp);
2573 			} else if (SAS_PROTOCOL_SSP == task->task_proto) {
2574 
2575 				/* crack the iu response buffer. */
2576 				resp_iu = &request->ssp.rsp;
2577 				isci_request_process_response_iu(task, resp_iu,
2578 								 &ihost->pdev->dev);
2579 
2580 			} else if (SAS_PROTOCOL_SMP == task->task_proto) {
2581 
2582 				dev_err(&ihost->pdev->dev,
2583 					"%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2584 					"SAS_PROTOCOL_SMP protocol\n",
2585 					__func__);
2586 
2587 			} else
2588 				dev_err(&ihost->pdev->dev,
2589 					"%s: unknown protocol\n", __func__);
2590 
2591 			/* use the task status set in the task struct by the
2592 			 * isci_request_process_response_iu call.
2593 			 */
2594 			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2595 			response = task->task_status.resp;
2596 			status = task->task_status.stat;
2597 			break;
2598 
2599 		case SCI_IO_SUCCESS:
2600 		case SCI_IO_SUCCESS_IO_DONE_EARLY:
2601 
2602 			response = SAS_TASK_COMPLETE;
2603 			status   = SAM_STAT_GOOD;
2604 			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2605 
2606 			if (task->task_proto == SAS_PROTOCOL_SMP) {
2607 				void *rsp = &request->smp.rsp;
2608 
2609 				dev_dbg(&ihost->pdev->dev,
2610 					"%s: SMP protocol completion\n",
2611 					__func__);
2612 
2613 				sg_copy_from_buffer(
2614 					&task->smp_task.smp_resp, 1,
2615 					rsp, sizeof(struct smp_resp));
2616 			} else if (completion_status
2617 				   == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2618 
2619 				/* This was an SSP / STP / SATA transfer.
2620 				 * There is a possibility that less data than
2621 				 * the maximum was transferred.
2622 				 */
2623 				u32 transferred_length = sci_req_tx_bytes(request);
2624 
2625 				task->task_status.residual
2626 					= task->total_xfer_len - transferred_length;
2627 
2628 				/* If there were residual bytes, call this an
2629 				 * underrun.
2630 				 */
2631 				if (task->task_status.residual != 0)
2632 					status = SAS_DATA_UNDERRUN;
2633 
2634 				dev_dbg(&ihost->pdev->dev,
2635 					"%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2636 					__func__,
2637 					status);
2638 
2639 			} else
2640 				dev_dbg(&ihost->pdev->dev,
2641 					"%s: SCI_IO_SUCCESS\n",
2642 					__func__);
2643 
2644 			break;
2645 
2646 		case SCI_IO_FAILURE_TERMINATED:
2647 			dev_dbg(&ihost->pdev->dev,
2648 				"%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2649 				__func__,
2650 				request,
2651 				task);
2652 
2653 			/* The request was terminated explicitly.  No handling
2654 			 * is needed in the SCSI error handler path.
2655 			 */
2656 			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2657 			response = SAS_TASK_UNDELIVERED;
2658 
2659 			/* See if the device has been/is being stopped. Note
2660 			 * that we ignore the quiesce state, since we are
2661 			 * concerned about the actual device state.
2662 			 */
2663 			if (!idev)
2664 				status = SAS_DEVICE_UNKNOWN;
2665 			else
2666 				status = SAS_ABORTED_TASK;
2667 
2668 			complete_to_host = isci_perform_normal_io_completion;
2669 			break;
2670 
2671 		case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2672 
2673 			isci_request_handle_controller_specific_errors(
2674 				idev, request, task, &response, &status,
2675 				&complete_to_host);
2676 
2677 			break;
2678 
2679 		case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2680 			/* This is a special case, in that the I/O completion
2681 			 * is telling us that the device needs a reset.
2682 			 * In order for the device reset condition to be
2683 			 * noticed, the I/O has to be handled in the error
2684 			 * handler.  Set the reset flag and cause the
2685 			 * SCSI error thread to be scheduled.
2686 			 */
2687 			spin_lock_irqsave(&task->task_state_lock, task_flags);
2688 			task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2689 			spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2690 
2691 			/* Fail the I/O. */
2692 			response = SAS_TASK_UNDELIVERED;
2693 			status = SAM_STAT_TASK_ABORTED;
2694 
2695 			complete_to_host = isci_perform_error_io_completion;
2696 			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2697 			break;
2698 
2699 		case SCI_FAILURE_RETRY_REQUIRED:
2700 
2701 			/* Fail the I/O so it can be retried. */
2702 			response = SAS_TASK_UNDELIVERED;
2703 			if (!idev)
2704 				status = SAS_DEVICE_UNKNOWN;
2705 			else
2706 				status = SAS_ABORTED_TASK;
2707 
2708 			complete_to_host = isci_perform_normal_io_completion;
2709 			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2710 			break;
2711 
2712 
2713 		default:
2714 			/* Catch any otherwise unhandled error codes here. */
2715 			dev_dbg(&ihost->pdev->dev,
2716 				 "%s: invalid completion code: 0x%x - "
2717 				 "isci_request = %p\n",
2718 				 __func__, completion_status, request);
2719 
2720 			response = SAS_TASK_UNDELIVERED;
2721 
2722 			/* See if the device has been/is being stopped. Note
2723 			 * that we ignore the quiesce state, since we are
2724 			 * concerned about the actual device state.
2725 			 */
2726 			if (!idev)
2727 				status = SAS_DEVICE_UNKNOWN;
2728 			else
2729 				status = SAS_ABORTED_TASK;
2730 
2731 			if (SAS_PROTOCOL_SMP == task->task_proto) {
2732 				set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2733 				complete_to_host = isci_perform_normal_io_completion;
2734 			} else {
2735 				clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2736 				complete_to_host = isci_perform_error_io_completion;
2737 			}
2738 			break;
2739 		}
2740 		break;
2741 	}
2742 
2743 	switch (task->task_proto) {
2744 	case SAS_PROTOCOL_SSP:
2745 		if (task->data_dir == DMA_NONE)
2746 			break;
2747 		if (task->num_scatter == 0)
2748 			/* 0 indicates a single dma address */
2749 			dma_unmap_single(&ihost->pdev->dev,
2750 					 request->zero_scatter_daddr,
2751 					 task->total_xfer_len, task->data_dir);
2752 		else  /* unmap the sgl dma addresses */
2753 			dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2754 				     request->num_sg_entries, task->data_dir);
2755 		break;
2756 	case SAS_PROTOCOL_SMP: {
2757 		struct scatterlist *sg = &task->smp_task.smp_req;
2758 		struct smp_req *smp_req;
2759 		void *kaddr;
2760 
2761 		dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2762 
2763 		/* need to swab it back in case the command buffer is re-used */
2764 		kaddr = kmap_atomic(sg_page(sg), KM_IRQ0);
2765 		smp_req = kaddr + sg->offset;
2766 		sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2767 		kunmap_atomic(kaddr, KM_IRQ0);
2768 		break;
2769 	}
2770 	default:
2771 		break;
2772 	}
2773 
2774 	/* Put the completed request on the correct list */
2775 	isci_task_save_for_upper_layer_completion(ihost, request, response,
2776 						  status, complete_to_host
2777 						  );
2778 
2779 	/* complete the io request to the core. */
2780 	sci_controller_complete_io(ihost, request->target_device, request);
2781 	isci_put_device(idev);
2782 
2783 	/* set terminated handle so it cannot be completed or
2784 	 * terminated again, and to cause any calls into abort
2785 	 * task to recognize the already completed case.
2786 	 */
2787 	set_bit(IREQ_TERMINATED, &request->flags);
2788 }
2789 
2790 static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2791 {
2792 	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2793 	struct domain_device *dev = ireq->target_device->domain_dev;
2794 	struct sas_task *task;
2795 
2796 	/* XXX as hch said always creating an internal sas_task for tmf
2797 	 * requests would simplify the driver
2798 	 */
2799 	task = ireq->ttype == io_task ? isci_request_access_task(ireq) : NULL;
2800 
2801 	/* all unaccelerated request types (non ssp or ncq) handled with
2802 	 * substates
2803 	 */
2804 	if (!task && dev->dev_type == SAS_END_DEV) {
2805 		sci_change_state(sm, SCI_REQ_TASK_WAIT_TC_COMP);
2806 	} else if (!task &&
2807 		   (isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_high ||
2808 		    isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_low)) {
2809 		sci_change_state(sm, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED);
2810 	} else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2811 		sci_change_state(sm, SCI_REQ_SMP_WAIT_RESP);
2812 	} else if (task && sas_protocol_ata(task->task_proto) &&
2813 		   !task->ata_task.use_ncq) {
2814 		u32 state;
2815 
2816 		if (task->data_dir == DMA_NONE)
2817 			state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2818 		else if (task->ata_task.dma_xfer)
2819 			state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2820 		else /* PIO */
2821 			state = SCI_REQ_STP_PIO_WAIT_H2D;
2822 
2823 		sci_change_state(sm, state);
2824 	}
2825 }
2826 
2827 static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
2828 {
2829 	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2830 	struct isci_host *ihost = ireq->owning_controller;
2831 
2832 	/* Tell the SCI_USER that the IO request is complete */
2833 	if (!test_bit(IREQ_TMF, &ireq->flags))
2834 		isci_request_io_request_complete(ihost, ireq,
2835 						 ireq->sci_status);
2836 	else
2837 		isci_task_request_complete(ihost, ireq, ireq->sci_status);
2838 }
2839 
2840 static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
2841 {
2842 	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2843 
2844 	/* Setting the abort bit in the Task Context is required by the silicon. */
2845 	ireq->tc->abort = 1;
2846 }
2847 
2848 static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
2849 {
2850 	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2851 
2852 	ireq->target_device->working_request = ireq;
2853 }
2854 
2855 static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
2856 {
2857 	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2858 
2859 	ireq->target_device->working_request = ireq;
2860 }
2861 
2862 static void sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter(struct sci_base_state_machine *sm)
2863 {
2864 	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2865 
2866 	ireq->target_device->working_request = ireq;
2867 }
2868 
2869 static void sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter(struct sci_base_state_machine *sm)
2870 {
2871 	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2872 	struct scu_task_context *tc = ireq->tc;
2873 	struct host_to_dev_fis *h2d_fis;
2874 	enum sci_status status;
2875 
2876 	/* Clear the SRST bit */
2877 	h2d_fis = &ireq->stp.cmd;
2878 	h2d_fis->control = 0;
2879 
2880 	/* Clear the TC control bit */
2881 	tc->control_frame = 0;
2882 
2883 	status = sci_controller_continue_io(ireq);
2884 	WARN_ONCE(status != SCI_SUCCESS, "isci: continue io failure\n");
2885 }
2886 
2887 static const struct sci_base_state sci_request_state_table[] = {
2888 	[SCI_REQ_INIT] = { },
2889 	[SCI_REQ_CONSTRUCTED] = { },
2890 	[SCI_REQ_STARTED] = {
2891 		.enter_state = sci_request_started_state_enter,
2892 	},
2893 	[SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
2894 		.enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
2895 	},
2896 	[SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
2897 	[SCI_REQ_STP_PIO_WAIT_H2D] = {
2898 		.enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
2899 	},
2900 	[SCI_REQ_STP_PIO_WAIT_FRAME] = { },
2901 	[SCI_REQ_STP_PIO_DATA_IN] = { },
2902 	[SCI_REQ_STP_PIO_DATA_OUT] = { },
2903 	[SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
2904 	[SCI_REQ_STP_UDMA_WAIT_D2H] = { },
2905 	[SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED] = {
2906 		.enter_state = sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter,
2907 	},
2908 	[SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG] = {
2909 		.enter_state = sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter,
2910 	},
2911 	[SCI_REQ_STP_SOFT_RESET_WAIT_D2H] = { },
2912 	[SCI_REQ_TASK_WAIT_TC_COMP] = { },
2913 	[SCI_REQ_TASK_WAIT_TC_RESP] = { },
2914 	[SCI_REQ_SMP_WAIT_RESP] = { },
2915 	[SCI_REQ_SMP_WAIT_TC_COMP] = { },
2916 	[SCI_REQ_COMPLETED] = {
2917 		.enter_state = sci_request_completed_state_enter,
2918 	},
2919 	[SCI_REQ_ABORTING] = {
2920 		.enter_state = sci_request_aborting_state_enter,
2921 	},
2922 	[SCI_REQ_FINAL] = { },
2923 };
2924 
2925 static void
2926 sci_general_request_construct(struct isci_host *ihost,
2927 				   struct isci_remote_device *idev,
2928 				   struct isci_request *ireq)
2929 {
2930 	sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
2931 
2932 	ireq->target_device = idev;
2933 	ireq->protocol = SCIC_NO_PROTOCOL;
2934 	ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
2935 
2936 	ireq->sci_status   = SCI_SUCCESS;
2937 	ireq->scu_status   = 0;
2938 	ireq->post_context = 0xFFFFFFFF;
2939 }
2940 
2941 static enum sci_status
2942 sci_io_request_construct(struct isci_host *ihost,
2943 			  struct isci_remote_device *idev,
2944 			  struct isci_request *ireq)
2945 {
2946 	struct domain_device *dev = idev->domain_dev;
2947 	enum sci_status status = SCI_SUCCESS;
2948 
2949 	/* Build the common part of the request */
2950 	sci_general_request_construct(ihost, idev, ireq);
2951 
2952 	if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
2953 		return SCI_FAILURE_INVALID_REMOTE_DEVICE;
2954 
2955 	if (dev->dev_type == SAS_END_DEV)
2956 		/* pass */;
2957 	else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP))
2958 		memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
2959 	else if (dev_is_expander(dev))
2960 		/* pass */;
2961 	else
2962 		return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2963 
2964 	memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
2965 
2966 	return status;
2967 }
2968 
2969 enum sci_status sci_task_request_construct(struct isci_host *ihost,
2970 					    struct isci_remote_device *idev,
2971 					    u16 io_tag, struct isci_request *ireq)
2972 {
2973 	struct domain_device *dev = idev->domain_dev;
2974 	enum sci_status status = SCI_SUCCESS;
2975 
2976 	/* Build the common part of the request */
2977 	sci_general_request_construct(ihost, idev, ireq);
2978 
2979 	if (dev->dev_type == SAS_END_DEV ||
2980 	    dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) {
2981 		set_bit(IREQ_TMF, &ireq->flags);
2982 		memset(ireq->tc, 0, sizeof(struct scu_task_context));
2983 	} else
2984 		status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2985 
2986 	return status;
2987 }
2988 
2989 static enum sci_status isci_request_ssp_request_construct(
2990 	struct isci_request *request)
2991 {
2992 	enum sci_status status;
2993 
2994 	dev_dbg(&request->isci_host->pdev->dev,
2995 		"%s: request = %p\n",
2996 		__func__,
2997 		request);
2998 	status = sci_io_request_construct_basic_ssp(request);
2999 	return status;
3000 }
3001 
3002 static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3003 {
3004 	struct sas_task *task = isci_request_access_task(ireq);
3005 	struct host_to_dev_fis *fis = &ireq->stp.cmd;
3006 	struct ata_queued_cmd *qc = task->uldd_task;
3007 	enum sci_status status;
3008 
3009 	dev_dbg(&ireq->isci_host->pdev->dev,
3010 		"%s: ireq = %p\n",
3011 		__func__,
3012 		ireq);
3013 
3014 	memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3015 	if (!task->ata_task.device_control_reg_update)
3016 		fis->flags |= 0x80;
3017 	fis->flags &= 0xF0;
3018 
3019 	status = sci_io_request_construct_basic_sata(ireq);
3020 
3021 	if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3022 		   qc->tf.command == ATA_CMD_FPDMA_READ)) {
3023 		fis->sector_count = qc->tag << 3;
3024 		ireq->tc->type.stp.ncq_tag = qc->tag;
3025 	}
3026 
3027 	return status;
3028 }
3029 
3030 static enum sci_status
3031 sci_io_request_construct_smp(struct device *dev,
3032 			      struct isci_request *ireq,
3033 			      struct sas_task *task)
3034 {
3035 	struct scatterlist *sg = &task->smp_task.smp_req;
3036 	struct isci_remote_device *idev;
3037 	struct scu_task_context *task_context;
3038 	struct isci_port *iport;
3039 	struct smp_req *smp_req;
3040 	void *kaddr;
3041 	u8 req_len;
3042 	u32 cmd;
3043 
3044 	kaddr = kmap_atomic(sg_page(sg), KM_IRQ0);
3045 	smp_req = kaddr + sg->offset;
3046 	/*
3047 	 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3048 	 * functions under SAS 2.0, a zero request length really indicates
3049 	 * a non-zero default length.
3050 	 */
3051 	if (smp_req->req_len == 0) {
3052 		switch (smp_req->func) {
3053 		case SMP_DISCOVER:
3054 		case SMP_REPORT_PHY_ERR_LOG:
3055 		case SMP_REPORT_PHY_SATA:
3056 		case SMP_REPORT_ROUTE_INFO:
3057 			smp_req->req_len = 2;
3058 			break;
3059 		case SMP_CONF_ROUTE_INFO:
3060 		case SMP_PHY_CONTROL:
3061 		case SMP_PHY_TEST_FUNCTION:
3062 			smp_req->req_len = 9;
3063 			break;
3064 			/* Default - zero is a valid default for 2.0. */
3065 		}
3066 	}
3067 	req_len = smp_req->req_len;
3068 	sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3069 	cmd = *(u32 *) smp_req;
3070 	kunmap_atomic(kaddr, KM_IRQ0);
3071 
3072 	if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3073 		return SCI_FAILURE;
3074 
3075 	ireq->protocol = SCIC_SMP_PROTOCOL;
3076 
3077 	/* byte swap the smp request. */
3078 
3079 	task_context = ireq->tc;
3080 
3081 	idev = ireq->target_device;
3082 	iport = idev->owning_port;
3083 
3084 	/*
3085 	 * Fill in the TC with the its required data
3086 	 * 00h
3087 	 */
3088 	task_context->priority = 0;
3089 	task_context->initiator_request = 1;
3090 	task_context->connection_rate = idev->connection_rate;
3091 	task_context->protocol_engine_index = ISCI_PEG;
3092 	task_context->logical_port_index = iport->physical_port_index;
3093 	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3094 	task_context->abort = 0;
3095 	task_context->valid = SCU_TASK_CONTEXT_VALID;
3096 	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3097 
3098 	/* 04h */
3099 	task_context->remote_node_index = idev->rnc.remote_node_index;
3100 	task_context->command_code = 0;
3101 	task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3102 
3103 	/* 08h */
3104 	task_context->link_layer_control = 0;
3105 	task_context->do_not_dma_ssp_good_response = 1;
3106 	task_context->strict_ordering = 0;
3107 	task_context->control_frame = 1;
3108 	task_context->timeout_enable = 0;
3109 	task_context->block_guard_enable = 0;
3110 
3111 	/* 0ch */
3112 	task_context->address_modifier = 0;
3113 
3114 	/* 10h */
3115 	task_context->ssp_command_iu_length = req_len;
3116 
3117 	/* 14h */
3118 	task_context->transfer_length_bytes = 0;
3119 
3120 	/*
3121 	 * 18h ~ 30h, protocol specific
3122 	 * since commandIU has been build by framework at this point, we just
3123 	 * copy the frist DWord from command IU to this location. */
3124 	memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3125 
3126 	/*
3127 	 * 40h
3128 	 * "For SMP you could program it to zero. We would prefer that way
3129 	 * so that done code will be consistent." - Venki
3130 	 */
3131 	task_context->task_phase = 0;
3132 
3133 	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3134 			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3135 			       (iport->physical_port_index <<
3136 				SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3137 			      ISCI_TAG_TCI(ireq->io_tag));
3138 	/*
3139 	 * Copy the physical address for the command buffer to the SCU Task
3140 	 * Context command buffer should not contain command header.
3141 	 */
3142 	task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3143 	task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3144 
3145 	/* SMP response comes as UF, so no need to set response IU address. */
3146 	task_context->response_iu_upper = 0;
3147 	task_context->response_iu_lower = 0;
3148 
3149 	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3150 
3151 	return SCI_SUCCESS;
3152 }
3153 
3154 /*
3155  * isci_smp_request_build() - This function builds the smp request.
3156  * @ireq: This parameter points to the isci_request allocated in the
3157  *    request construct function.
3158  *
3159  * SCI_SUCCESS on successfull completion, or specific failure code.
3160  */
3161 static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3162 {
3163 	struct sas_task *task = isci_request_access_task(ireq);
3164 	struct device *dev = &ireq->isci_host->pdev->dev;
3165 	enum sci_status status = SCI_FAILURE;
3166 
3167 	status = sci_io_request_construct_smp(dev, ireq, task);
3168 	if (status != SCI_SUCCESS)
3169 		dev_dbg(&ireq->isci_host->pdev->dev,
3170 			 "%s: failed with status = %d\n",
3171 			 __func__,
3172 			 status);
3173 
3174 	return status;
3175 }
3176 
3177 /**
3178  * isci_io_request_build() - This function builds the io request object.
3179  * @ihost: This parameter specifies the ISCI host object
3180  * @request: This parameter points to the isci_request object allocated in the
3181  *    request construct function.
3182  * @sci_device: This parameter is the handle for the sci core's remote device
3183  *    object that is the destination for this request.
3184  *
3185  * SCI_SUCCESS on successfull completion, or specific failure code.
3186  */
3187 static enum sci_status isci_io_request_build(struct isci_host *ihost,
3188 					     struct isci_request *request,
3189 					     struct isci_remote_device *idev)
3190 {
3191 	enum sci_status status = SCI_SUCCESS;
3192 	struct sas_task *task = isci_request_access_task(request);
3193 
3194 	dev_dbg(&ihost->pdev->dev,
3195 		"%s: idev = 0x%p; request = %p, "
3196 		"num_scatter = %d\n",
3197 		__func__,
3198 		idev,
3199 		request,
3200 		task->num_scatter);
3201 
3202 	/* map the sgl addresses, if present.
3203 	 * libata does the mapping for sata devices
3204 	 * before we get the request.
3205 	 */
3206 	if (task->num_scatter &&
3207 	    !sas_protocol_ata(task->task_proto) &&
3208 	    !(SAS_PROTOCOL_SMP & task->task_proto)) {
3209 
3210 		request->num_sg_entries = dma_map_sg(
3211 			&ihost->pdev->dev,
3212 			task->scatter,
3213 			task->num_scatter,
3214 			task->data_dir
3215 			);
3216 
3217 		if (request->num_sg_entries == 0)
3218 			return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3219 	}
3220 
3221 	status = sci_io_request_construct(ihost, idev, request);
3222 
3223 	if (status != SCI_SUCCESS) {
3224 		dev_dbg(&ihost->pdev->dev,
3225 			 "%s: failed request construct\n",
3226 			 __func__);
3227 		return SCI_FAILURE;
3228 	}
3229 
3230 	switch (task->task_proto) {
3231 	case SAS_PROTOCOL_SMP:
3232 		status = isci_smp_request_build(request);
3233 		break;
3234 	case SAS_PROTOCOL_SSP:
3235 		status = isci_request_ssp_request_construct(request);
3236 		break;
3237 	case SAS_PROTOCOL_SATA:
3238 	case SAS_PROTOCOL_STP:
3239 	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3240 		status = isci_request_stp_request_construct(request);
3241 		break;
3242 	default:
3243 		dev_dbg(&ihost->pdev->dev,
3244 			 "%s: unknown protocol\n", __func__);
3245 		return SCI_FAILURE;
3246 	}
3247 
3248 	return SCI_SUCCESS;
3249 }
3250 
3251 static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3252 {
3253 	struct isci_request *ireq;
3254 
3255 	ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3256 	ireq->io_tag = tag;
3257 	ireq->io_request_completion = NULL;
3258 	ireq->flags = 0;
3259 	ireq->num_sg_entries = 0;
3260 	INIT_LIST_HEAD(&ireq->completed_node);
3261 	INIT_LIST_HEAD(&ireq->dev_node);
3262 	isci_request_change_state(ireq, allocated);
3263 
3264 	return ireq;
3265 }
3266 
3267 static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3268 						     struct sas_task *task,
3269 						     u16 tag)
3270 {
3271 	struct isci_request *ireq;
3272 
3273 	ireq = isci_request_from_tag(ihost, tag);
3274 	ireq->ttype_ptr.io_task_ptr = task;
3275 	ireq->ttype = io_task;
3276 	task->lldd_task = ireq;
3277 
3278 	return ireq;
3279 }
3280 
3281 struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3282 					       struct isci_tmf *isci_tmf,
3283 					       u16 tag)
3284 {
3285 	struct isci_request *ireq;
3286 
3287 	ireq = isci_request_from_tag(ihost, tag);
3288 	ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3289 	ireq->ttype = tmf_task;
3290 
3291 	return ireq;
3292 }
3293 
3294 int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3295 			 struct sas_task *task, u16 tag)
3296 {
3297 	enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3298 	struct isci_request *ireq;
3299 	unsigned long flags;
3300 	int ret = 0;
3301 
3302 	/* do common allocation and init of request object. */
3303 	ireq = isci_io_request_from_tag(ihost, task, tag);
3304 
3305 	status = isci_io_request_build(ihost, ireq, idev);
3306 	if (status != SCI_SUCCESS) {
3307 		dev_dbg(&ihost->pdev->dev,
3308 			 "%s: request_construct failed - status = 0x%x\n",
3309 			 __func__,
3310 			 status);
3311 		return status;
3312 	}
3313 
3314 	spin_lock_irqsave(&ihost->scic_lock, flags);
3315 
3316 	if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3317 
3318 		if (isci_task_is_ncq_recovery(task)) {
3319 
3320 			/* The device is in an NCQ recovery state.  Issue the
3321 			 * request on the task side.  Note that it will
3322 			 * complete on the I/O request side because the
3323 			 * request was built that way (ie.
3324 			 * ireq->is_task_management_request is false).
3325 			 */
3326 			status = sci_controller_start_task(ihost,
3327 							    idev,
3328 							    ireq);
3329 		} else {
3330 			status = SCI_FAILURE;
3331 		}
3332 	} else {
3333 		/* send the request, let the core assign the IO TAG.	*/
3334 		status = sci_controller_start_io(ihost, idev,
3335 						  ireq);
3336 	}
3337 
3338 	if (status != SCI_SUCCESS &&
3339 	    status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3340 		dev_dbg(&ihost->pdev->dev,
3341 			 "%s: failed request start (0x%x)\n",
3342 			 __func__, status);
3343 		spin_unlock_irqrestore(&ihost->scic_lock, flags);
3344 		return status;
3345 	}
3346 
3347 	/* Either I/O started OK, or the core has signaled that
3348 	 * the device needs a target reset.
3349 	 *
3350 	 * In either case, hold onto the I/O for later.
3351 	 *
3352 	 * Update it's status and add it to the list in the
3353 	 * remote device object.
3354 	 */
3355 	list_add(&ireq->dev_node, &idev->reqs_in_process);
3356 
3357 	if (status == SCI_SUCCESS) {
3358 		isci_request_change_state(ireq, started);
3359 	} else {
3360 		/* The request did not really start in the
3361 		 * hardware, so clear the request handle
3362 		 * here so no terminations will be done.
3363 		 */
3364 		set_bit(IREQ_TERMINATED, &ireq->flags);
3365 		isci_request_change_state(ireq, completed);
3366 	}
3367 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
3368 
3369 	if (status ==
3370 	    SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3371 		/* Signal libsas that we need the SCSI error
3372 		 * handler thread to work on this I/O and that
3373 		 * we want a device reset.
3374 		 */
3375 		spin_lock_irqsave(&task->task_state_lock, flags);
3376 		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3377 		spin_unlock_irqrestore(&task->task_state_lock, flags);
3378 
3379 		/* Cause this task to be scheduled in the SCSI error
3380 		 * handler thread.
3381 		 */
3382 		isci_execpath_callback(ihost, task,
3383 				       sas_task_abort);
3384 
3385 		/* Change the status, since we are holding
3386 		 * the I/O until it is managed by the SCSI
3387 		 * error handler.
3388 		 */
3389 		status = SCI_SUCCESS;
3390 	}
3391 
3392 	return ret;
3393 }
3394