1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 21 * The full GNU General Public License is included in this distribution 22 * in the file called LICENSE.GPL. 23 * 24 * BSD LICENSE 25 * 26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 27 * All rights reserved. 28 * 29 * Redistribution and use in source and binary forms, with or without 30 * modification, are permitted provided that the following conditions 31 * are met: 32 * 33 * * Redistributions of source code must retain the above copyright 34 * notice, this list of conditions and the following disclaimer. 35 * * Redistributions in binary form must reproduce the above copyright 36 * notice, this list of conditions and the following disclaimer in 37 * the documentation and/or other materials provided with the 38 * distribution. 39 * * Neither the name of Intel Corporation nor the names of its 40 * contributors may be used to endorse or promote products derived 41 * from this software without specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 54 */ 55 56 #include "isci.h" 57 #include "host.h" 58 #include "phy.h" 59 #include "scu_event_codes.h" 60 #include "probe_roms.h" 61 62 #undef C 63 #define C(a) (#a) 64 static const char *phy_state_name(enum sci_phy_states state) 65 { 66 static const char * const strings[] = PHY_STATES; 67 68 return strings[state]; 69 } 70 #undef C 71 72 /* Maximum arbitration wait time in micro-seconds */ 73 #define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700) 74 75 enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy) 76 { 77 return iphy->max_negotiated_speed; 78 } 79 80 static struct isci_host *phy_to_host(struct isci_phy *iphy) 81 { 82 struct isci_phy *table = iphy - iphy->phy_index; 83 struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]); 84 85 return ihost; 86 } 87 88 static struct device *sciphy_to_dev(struct isci_phy *iphy) 89 { 90 return &phy_to_host(iphy)->pdev->dev; 91 } 92 93 static enum sci_status 94 sci_phy_transport_layer_initialization(struct isci_phy *iphy, 95 struct scu_transport_layer_registers __iomem *reg) 96 { 97 u32 tl_control; 98 99 iphy->transport_layer_registers = reg; 100 101 writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX, 102 &iphy->transport_layer_registers->stp_rni); 103 104 /* 105 * Hardware team recommends that we enable the STP prefetch for all 106 * transports 107 */ 108 tl_control = readl(&iphy->transport_layer_registers->control); 109 tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH); 110 writel(tl_control, &iphy->transport_layer_registers->control); 111 112 return SCI_SUCCESS; 113 } 114 115 static enum sci_status 116 sci_phy_link_layer_initialization(struct isci_phy *iphy, 117 struct scu_link_layer_registers __iomem *llr) 118 { 119 struct isci_host *ihost = iphy->owning_port->owning_controller; 120 struct sci_phy_user_params *phy_user; 121 struct sci_phy_oem_params *phy_oem; 122 int phy_idx = iphy->phy_index; 123 struct sci_phy_cap phy_cap; 124 u32 phy_configuration; 125 u32 parity_check = 0; 126 u32 parity_count = 0; 127 u32 llctl, link_rate; 128 u32 clksm_value = 0; 129 u32 sp_timeouts = 0; 130 131 phy_user = &ihost->user_parameters.phys[phy_idx]; 132 phy_oem = &ihost->oem_parameters.phys[phy_idx]; 133 iphy->link_layer_registers = llr; 134 135 /* Set our IDENTIFY frame data */ 136 #define SCI_END_DEVICE 0x01 137 138 writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) | 139 SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) | 140 SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) | 141 SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) | 142 SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE), 143 &llr->transmit_identification); 144 145 /* Write the device SAS Address */ 146 writel(0xFEDCBA98, &llr->sas_device_name_high); 147 writel(phy_idx, &llr->sas_device_name_low); 148 149 /* Write the source SAS Address */ 150 writel(phy_oem->sas_address.high, &llr->source_sas_address_high); 151 writel(phy_oem->sas_address.low, &llr->source_sas_address_low); 152 153 /* Clear and Set the PHY Identifier */ 154 writel(0, &llr->identify_frame_phy_id); 155 writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id); 156 157 /* Change the initial state of the phy configuration register */ 158 phy_configuration = readl(&llr->phy_configuration); 159 160 /* Hold OOB state machine in reset */ 161 phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET); 162 writel(phy_configuration, &llr->phy_configuration); 163 164 /* Configure the SNW capabilities */ 165 phy_cap.all = 0; 166 phy_cap.start = 1; 167 phy_cap.gen3_no_ssc = 1; 168 phy_cap.gen2_no_ssc = 1; 169 phy_cap.gen1_no_ssc = 1; 170 if (ihost->oem_parameters.controller.do_enable_ssc) { 171 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe; 172 struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_idx]; 173 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev); 174 bool en_sas = false; 175 bool en_sata = false; 176 u32 sas_type = 0; 177 u32 sata_spread = 0x2; 178 u32 sas_spread = 0x2; 179 180 phy_cap.gen3_ssc = 1; 181 phy_cap.gen2_ssc = 1; 182 phy_cap.gen1_ssc = 1; 183 184 if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1) 185 en_sas = en_sata = true; 186 else { 187 sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level; 188 sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level; 189 190 if (sata_spread) 191 en_sata = true; 192 193 if (sas_spread) { 194 en_sas = true; 195 sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type; 196 } 197 198 } 199 200 if (en_sas) { 201 u32 reg; 202 203 reg = readl(&xcvr->afe_xcvr_control0); 204 reg |= (0x00100000 | (sas_type << 19)); 205 writel(reg, &xcvr->afe_xcvr_control0); 206 207 reg = readl(&xcvr->afe_tx_ssc_control); 208 reg |= sas_spread << 8; 209 writel(reg, &xcvr->afe_tx_ssc_control); 210 } 211 212 if (en_sata) { 213 u32 reg; 214 215 reg = readl(&xcvr->afe_tx_ssc_control); 216 reg |= sata_spread; 217 writel(reg, &xcvr->afe_tx_ssc_control); 218 219 reg = readl(&llr->stp_control); 220 reg |= 1 << 12; 221 writel(reg, &llr->stp_control); 222 } 223 } 224 225 /* The SAS specification indicates that the phy_capabilities that 226 * are transmitted shall have an even parity. Calculate the parity. 227 */ 228 parity_check = phy_cap.all; 229 while (parity_check != 0) { 230 if (parity_check & 0x1) 231 parity_count++; 232 parity_check >>= 1; 233 } 234 235 /* If parity indicates there are an odd number of bits set, then 236 * set the parity bit to 1 in the phy capabilities. 237 */ 238 if ((parity_count % 2) != 0) 239 phy_cap.parity = 1; 240 241 writel(phy_cap.all, &llr->phy_capabilities); 242 243 /* Set the enable spinup period but disable the ability to send 244 * notify enable spinup 245 */ 246 writel(SCU_ENSPINUP_GEN_VAL(COUNT, 247 phy_user->notify_enable_spin_up_insertion_frequency), 248 &llr->notify_enable_spinup_control); 249 250 /* Write the ALIGN Insertion Ferequency for connected phy and 251 * inpendent of connected state 252 */ 253 clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED, 254 phy_user->in_connection_align_insertion_frequency); 255 256 clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL, 257 phy_user->align_insertion_frequency); 258 259 writel(clksm_value, &llr->clock_skew_management); 260 261 if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) { 262 writel(0x04210400, &llr->afe_lookup_table_control); 263 writel(0x020A7C05, &llr->sas_primitive_timeout); 264 } else 265 writel(0x02108421, &llr->afe_lookup_table_control); 266 267 llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT, 268 (u8)ihost->user_parameters.no_outbound_task_timeout); 269 270 switch (phy_user->max_speed_generation) { 271 case SCIC_SDS_PARM_GEN3_SPEED: 272 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3; 273 break; 274 case SCIC_SDS_PARM_GEN2_SPEED: 275 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2; 276 break; 277 default: 278 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1; 279 break; 280 } 281 llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate); 282 writel(llctl, &llr->link_layer_control); 283 284 sp_timeouts = readl(&llr->sas_phy_timeouts); 285 286 /* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */ 287 sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF); 288 289 /* Set RATE_CHANGE timeout value to 0x3B (59us). This ensures SCU can 290 * lock with 3Gb drive when SCU max rate is set to 1.5Gb. 291 */ 292 sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B); 293 294 writel(sp_timeouts, &llr->sas_phy_timeouts); 295 296 if (is_a2(ihost->pdev)) { 297 /* Program the max ARB time for the PHY to 700us so we 298 * inter-operate with the PMC expander which shuts down 299 * PHYs if the expander PHY generates too many breaks. 300 * This time value will guarantee that the initiator PHY 301 * will generate the break. 302 */ 303 writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME, 304 &llr->maximum_arbitration_wait_timer_timeout); 305 } 306 307 /* Disable link layer hang detection, rely on the OS timeout for 308 * I/O timeouts. 309 */ 310 writel(0, &llr->link_layer_hang_detection_timeout); 311 312 /* We can exit the initial state to the stopped state */ 313 sci_change_state(&iphy->sm, SCI_PHY_STOPPED); 314 315 return SCI_SUCCESS; 316 } 317 318 static void phy_sata_timeout(struct timer_list *t) 319 { 320 struct sci_timer *tmr = from_timer(tmr, t, timer); 321 struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer); 322 struct isci_host *ihost = iphy->owning_port->owning_controller; 323 unsigned long flags; 324 325 spin_lock_irqsave(&ihost->scic_lock, flags); 326 327 if (tmr->cancel) 328 goto done; 329 330 dev_dbg(sciphy_to_dev(iphy), 331 "%s: SCIC SDS Phy 0x%p did not receive signature fis before " 332 "timeout.\n", 333 __func__, 334 iphy); 335 336 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 337 done: 338 spin_unlock_irqrestore(&ihost->scic_lock, flags); 339 } 340 341 /** 342 * phy_get_non_dummy_port() - This method returns the port currently containing 343 * this phy. If the phy is currently contained by the dummy port, then the phy 344 * is considered to not be part of a port. 345 * 346 * @iphy: This parameter specifies the phy for which to retrieve the 347 * containing port. 348 * 349 * This method returns a handle to a port that contains the supplied phy. 350 * NULL This value is returned if the phy is not part of a real 351 * port (i.e. it's contained in the dummy port). !NULL All other 352 * values indicate a handle/pointer to the port containing the phy. 353 */ 354 struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy) 355 { 356 struct isci_port *iport = iphy->owning_port; 357 358 if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT) 359 return NULL; 360 361 return iphy->owning_port; 362 } 363 364 /* 365 * sci_phy_set_port() - This method will assign a port to the phy object. 366 */ 367 void sci_phy_set_port( 368 struct isci_phy *iphy, 369 struct isci_port *iport) 370 { 371 iphy->owning_port = iport; 372 373 if (iphy->bcn_received_while_port_unassigned) { 374 iphy->bcn_received_while_port_unassigned = false; 375 sci_port_broadcast_change_received(iphy->owning_port, iphy); 376 } 377 } 378 379 enum sci_status sci_phy_initialize(struct isci_phy *iphy, 380 struct scu_transport_layer_registers __iomem *tl, 381 struct scu_link_layer_registers __iomem *ll) 382 { 383 /* Perfrom the initialization of the TL hardware */ 384 sci_phy_transport_layer_initialization(iphy, tl); 385 386 /* Perofrm the initialization of the PE hardware */ 387 sci_phy_link_layer_initialization(iphy, ll); 388 389 /* There is nothing that needs to be done in this state just 390 * transition to the stopped state 391 */ 392 sci_change_state(&iphy->sm, SCI_PHY_STOPPED); 393 394 return SCI_SUCCESS; 395 } 396 397 /** 398 * sci_phy_setup_transport() - This method assigns the direct attached device ID for this phy. 399 * 400 * @iphy: The phy for which the direct attached device id is to 401 * be assigned. 402 * @device_id: The direct attached device ID to assign to the phy. 403 * This will either be the RNi for the device or an invalid RNi if there 404 * is no current device assigned to the phy. 405 */ 406 void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id) 407 { 408 u32 tl_control; 409 410 writel(device_id, &iphy->transport_layer_registers->stp_rni); 411 412 /* 413 * The read should guarantee that the first write gets posted 414 * before the next write 415 */ 416 tl_control = readl(&iphy->transport_layer_registers->control); 417 tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE); 418 writel(tl_control, &iphy->transport_layer_registers->control); 419 } 420 421 static void sci_phy_suspend(struct isci_phy *iphy) 422 { 423 u32 scu_sas_pcfg_value; 424 425 scu_sas_pcfg_value = 426 readl(&iphy->link_layer_registers->phy_configuration); 427 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE); 428 writel(scu_sas_pcfg_value, 429 &iphy->link_layer_registers->phy_configuration); 430 431 sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX); 432 } 433 434 void sci_phy_resume(struct isci_phy *iphy) 435 { 436 u32 scu_sas_pcfg_value; 437 438 scu_sas_pcfg_value = 439 readl(&iphy->link_layer_registers->phy_configuration); 440 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE); 441 writel(scu_sas_pcfg_value, 442 &iphy->link_layer_registers->phy_configuration); 443 } 444 445 void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas) 446 { 447 sas->high = readl(&iphy->link_layer_registers->source_sas_address_high); 448 sas->low = readl(&iphy->link_layer_registers->source_sas_address_low); 449 } 450 451 void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas) 452 { 453 struct sas_identify_frame *iaf; 454 455 iaf = &iphy->frame_rcvd.iaf; 456 memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE); 457 } 458 459 void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto) 460 { 461 proto->all = readl(&iphy->link_layer_registers->transmit_identification); 462 } 463 464 enum sci_status sci_phy_start(struct isci_phy *iphy) 465 { 466 enum sci_phy_states state = iphy->sm.current_state_id; 467 468 if (state != SCI_PHY_STOPPED) { 469 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", 470 __func__, phy_state_name(state)); 471 return SCI_FAILURE_INVALID_STATE; 472 } 473 474 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 475 return SCI_SUCCESS; 476 } 477 478 enum sci_status sci_phy_stop(struct isci_phy *iphy) 479 { 480 enum sci_phy_states state = iphy->sm.current_state_id; 481 482 switch (state) { 483 case SCI_PHY_SUB_INITIAL: 484 case SCI_PHY_SUB_AWAIT_OSSP_EN: 485 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: 486 case SCI_PHY_SUB_AWAIT_SAS_POWER: 487 case SCI_PHY_SUB_AWAIT_SATA_POWER: 488 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: 489 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: 490 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: 491 case SCI_PHY_SUB_FINAL: 492 case SCI_PHY_READY: 493 break; 494 default: 495 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", 496 __func__, phy_state_name(state)); 497 return SCI_FAILURE_INVALID_STATE; 498 } 499 500 sci_change_state(&iphy->sm, SCI_PHY_STOPPED); 501 return SCI_SUCCESS; 502 } 503 504 enum sci_status sci_phy_reset(struct isci_phy *iphy) 505 { 506 enum sci_phy_states state = iphy->sm.current_state_id; 507 508 if (state != SCI_PHY_READY) { 509 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", 510 __func__, phy_state_name(state)); 511 return SCI_FAILURE_INVALID_STATE; 512 } 513 514 sci_change_state(&iphy->sm, SCI_PHY_RESETTING); 515 return SCI_SUCCESS; 516 } 517 518 enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy) 519 { 520 enum sci_phy_states state = iphy->sm.current_state_id; 521 522 switch (state) { 523 case SCI_PHY_SUB_AWAIT_SAS_POWER: { 524 u32 enable_spinup; 525 526 enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control); 527 enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE); 528 writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control); 529 530 /* Change state to the final state this substate machine has run to completion */ 531 sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL); 532 533 return SCI_SUCCESS; 534 } 535 case SCI_PHY_SUB_AWAIT_SATA_POWER: { 536 u32 scu_sas_pcfg_value; 537 538 /* Release the spinup hold state and reset the OOB state machine */ 539 scu_sas_pcfg_value = 540 readl(&iphy->link_layer_registers->phy_configuration); 541 scu_sas_pcfg_value &= 542 ~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE)); 543 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET); 544 writel(scu_sas_pcfg_value, 545 &iphy->link_layer_registers->phy_configuration); 546 547 /* Now restart the OOB operation */ 548 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET); 549 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); 550 writel(scu_sas_pcfg_value, 551 &iphy->link_layer_registers->phy_configuration); 552 553 /* Change state to the final state this substate machine has run to completion */ 554 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN); 555 556 return SCI_SUCCESS; 557 } 558 default: 559 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", 560 __func__, phy_state_name(state)); 561 return SCI_FAILURE_INVALID_STATE; 562 } 563 } 564 565 static void sci_phy_start_sas_link_training(struct isci_phy *iphy) 566 { 567 /* continue the link training for the phy as if it were a SAS PHY 568 * instead of a SATA PHY. This is done because the completion queue had a SAS 569 * PHY DETECTED event when the state machine was expecting a SATA PHY event. 570 */ 571 u32 phy_control; 572 573 phy_control = readl(&iphy->link_layer_registers->phy_configuration); 574 phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD); 575 writel(phy_control, 576 &iphy->link_layer_registers->phy_configuration); 577 578 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN); 579 580 iphy->protocol = SAS_PROTOCOL_SSP; 581 } 582 583 static void sci_phy_start_sata_link_training(struct isci_phy *iphy) 584 { 585 /* This method continues the link training for the phy as if it were a SATA PHY 586 * instead of a SAS PHY. This is done because the completion queue had a SATA 587 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none 588 */ 589 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER); 590 591 iphy->protocol = SAS_PROTOCOL_SATA; 592 } 593 594 /** 595 * sci_phy_complete_link_training - perform processing common to 596 * all protocols upon completion of link training. 597 * @iphy: This parameter specifies the phy object for which link training 598 * has completed. 599 * @max_link_rate: This parameter specifies the maximum link rate to be 600 * associated with this phy. 601 * @next_state: This parameter specifies the next state for the phy's starting 602 * sub-state machine. 603 * 604 */ 605 static void sci_phy_complete_link_training(struct isci_phy *iphy, 606 enum sas_linkrate max_link_rate, 607 u32 next_state) 608 { 609 iphy->max_negotiated_speed = max_link_rate; 610 611 sci_change_state(&iphy->sm, next_state); 612 } 613 614 static const char *phy_event_name(u32 event_code) 615 { 616 switch (scu_get_event_code(event_code)) { 617 case SCU_EVENT_PORT_SELECTOR_DETECTED: 618 return "port selector"; 619 case SCU_EVENT_SENT_PORT_SELECTION: 620 return "port selection"; 621 case SCU_EVENT_HARD_RESET_TRANSMITTED: 622 return "tx hard reset"; 623 case SCU_EVENT_HARD_RESET_RECEIVED: 624 return "rx hard reset"; 625 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: 626 return "identify timeout"; 627 case SCU_EVENT_LINK_FAILURE: 628 return "link fail"; 629 case SCU_EVENT_SATA_SPINUP_HOLD: 630 return "sata spinup hold"; 631 case SCU_EVENT_SAS_15_SSC: 632 case SCU_EVENT_SAS_15: 633 return "sas 1.5"; 634 case SCU_EVENT_SAS_30_SSC: 635 case SCU_EVENT_SAS_30: 636 return "sas 3.0"; 637 case SCU_EVENT_SAS_60_SSC: 638 case SCU_EVENT_SAS_60: 639 return "sas 6.0"; 640 case SCU_EVENT_SATA_15_SSC: 641 case SCU_EVENT_SATA_15: 642 return "sata 1.5"; 643 case SCU_EVENT_SATA_30_SSC: 644 case SCU_EVENT_SATA_30: 645 return "sata 3.0"; 646 case SCU_EVENT_SATA_60_SSC: 647 case SCU_EVENT_SATA_60: 648 return "sata 6.0"; 649 case SCU_EVENT_SAS_PHY_DETECTED: 650 return "sas detect"; 651 case SCU_EVENT_SATA_PHY_DETECTED: 652 return "sata detect"; 653 default: 654 return "unknown"; 655 } 656 } 657 658 #define phy_event_dbg(iphy, state, code) \ 659 dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \ 660 phy_to_host(iphy)->id, iphy->phy_index, \ 661 phy_state_name(state), phy_event_name(code), code) 662 663 #define phy_event_warn(iphy, state, code) \ 664 dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \ 665 phy_to_host(iphy)->id, iphy->phy_index, \ 666 phy_state_name(state), phy_event_name(code), code) 667 668 669 static void scu_link_layer_set_txcomsas_timeout(struct isci_phy *iphy, u32 timeout) 670 { 671 u32 val; 672 673 /* Extend timeout */ 674 val = readl(&iphy->link_layer_registers->transmit_comsas_signal); 675 val &= ~SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_MASK); 676 val |= SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, timeout); 677 678 writel(val, &iphy->link_layer_registers->transmit_comsas_signal); 679 } 680 681 enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code) 682 { 683 enum sci_phy_states state = iphy->sm.current_state_id; 684 685 switch (state) { 686 case SCI_PHY_SUB_AWAIT_OSSP_EN: 687 switch (scu_get_event_code(event_code)) { 688 case SCU_EVENT_SAS_PHY_DETECTED: 689 sci_phy_start_sas_link_training(iphy); 690 iphy->is_in_link_training = true; 691 break; 692 case SCU_EVENT_SATA_SPINUP_HOLD: 693 sci_phy_start_sata_link_training(iphy); 694 iphy->is_in_link_training = true; 695 break; 696 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: 697 /* Extend timeout value */ 698 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED); 699 700 /* Start the oob/sn state machine over again */ 701 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 702 break; 703 default: 704 phy_event_dbg(iphy, state, event_code); 705 return SCI_FAILURE; 706 } 707 return SCI_SUCCESS; 708 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: 709 switch (scu_get_event_code(event_code)) { 710 case SCU_EVENT_SAS_PHY_DETECTED: 711 /* 712 * Why is this being reported again by the controller? 713 * We would re-enter this state so just stay here */ 714 break; 715 case SCU_EVENT_SAS_15: 716 case SCU_EVENT_SAS_15_SSC: 717 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS, 718 SCI_PHY_SUB_AWAIT_IAF_UF); 719 break; 720 case SCU_EVENT_SAS_30: 721 case SCU_EVENT_SAS_30_SSC: 722 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS, 723 SCI_PHY_SUB_AWAIT_IAF_UF); 724 break; 725 case SCU_EVENT_SAS_60: 726 case SCU_EVENT_SAS_60_SSC: 727 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS, 728 SCI_PHY_SUB_AWAIT_IAF_UF); 729 break; 730 case SCU_EVENT_SATA_SPINUP_HOLD: 731 /* 732 * We were doing SAS PHY link training and received a SATA PHY event 733 * continue OOB/SN as if this were a SATA PHY */ 734 sci_phy_start_sata_link_training(iphy); 735 break; 736 case SCU_EVENT_LINK_FAILURE: 737 /* Change the timeout value to default */ 738 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); 739 740 /* Link failure change state back to the starting state */ 741 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 742 break; 743 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: 744 /* Extend the timeout value */ 745 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED); 746 747 /* Start the oob/sn state machine over again */ 748 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 749 break; 750 default: 751 phy_event_warn(iphy, state, event_code); 752 return SCI_FAILURE; 753 } 754 return SCI_SUCCESS; 755 case SCI_PHY_SUB_AWAIT_IAF_UF: 756 switch (scu_get_event_code(event_code)) { 757 case SCU_EVENT_SAS_PHY_DETECTED: 758 /* Backup the state machine */ 759 sci_phy_start_sas_link_training(iphy); 760 break; 761 case SCU_EVENT_SATA_SPINUP_HOLD: 762 /* We were doing SAS PHY link training and received a 763 * SATA PHY event continue OOB/SN as if this were a 764 * SATA PHY 765 */ 766 sci_phy_start_sata_link_training(iphy); 767 break; 768 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: 769 /* Extend the timeout value */ 770 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED); 771 772 /* Start the oob/sn state machine over again */ 773 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 774 break; 775 case SCU_EVENT_LINK_FAILURE: 776 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); 777 fallthrough; 778 case SCU_EVENT_HARD_RESET_RECEIVED: 779 /* Start the oob/sn state machine over again */ 780 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 781 break; 782 default: 783 phy_event_warn(iphy, state, event_code); 784 return SCI_FAILURE; 785 } 786 return SCI_SUCCESS; 787 case SCI_PHY_SUB_AWAIT_SAS_POWER: 788 switch (scu_get_event_code(event_code)) { 789 case SCU_EVENT_LINK_FAILURE: 790 /* Change the timeout value to default */ 791 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); 792 793 /* Link failure change state back to the starting state */ 794 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 795 break; 796 default: 797 phy_event_warn(iphy, state, event_code); 798 return SCI_FAILURE; 799 } 800 return SCI_SUCCESS; 801 case SCI_PHY_SUB_AWAIT_SATA_POWER: 802 switch (scu_get_event_code(event_code)) { 803 case SCU_EVENT_LINK_FAILURE: 804 /* Change the timeout value to default */ 805 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); 806 807 /* Link failure change state back to the starting state */ 808 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 809 break; 810 case SCU_EVENT_SATA_SPINUP_HOLD: 811 /* These events are received every 10ms and are 812 * expected while in this state 813 */ 814 break; 815 816 case SCU_EVENT_SAS_PHY_DETECTED: 817 /* There has been a change in the phy type before OOB/SN for the 818 * SATA finished start down the SAS link traning path. 819 */ 820 sci_phy_start_sas_link_training(iphy); 821 break; 822 823 default: 824 phy_event_warn(iphy, state, event_code); 825 return SCI_FAILURE; 826 } 827 return SCI_SUCCESS; 828 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: 829 switch (scu_get_event_code(event_code)) { 830 case SCU_EVENT_LINK_FAILURE: 831 /* Change the timeout value to default */ 832 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); 833 834 /* Link failure change state back to the starting state */ 835 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 836 break; 837 case SCU_EVENT_SATA_SPINUP_HOLD: 838 /* These events might be received since we dont know how many may be in 839 * the completion queue while waiting for power 840 */ 841 break; 842 case SCU_EVENT_SATA_PHY_DETECTED: 843 iphy->protocol = SAS_PROTOCOL_SATA; 844 845 /* We have received the SATA PHY notification change state */ 846 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN); 847 break; 848 case SCU_EVENT_SAS_PHY_DETECTED: 849 /* There has been a change in the phy type before OOB/SN for the 850 * SATA finished start down the SAS link traning path. 851 */ 852 sci_phy_start_sas_link_training(iphy); 853 break; 854 default: 855 phy_event_warn(iphy, state, event_code); 856 return SCI_FAILURE; 857 } 858 return SCI_SUCCESS; 859 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: 860 switch (scu_get_event_code(event_code)) { 861 case SCU_EVENT_SATA_PHY_DETECTED: 862 /* 863 * The hardware reports multiple SATA PHY detected events 864 * ignore the extras */ 865 break; 866 case SCU_EVENT_SATA_15: 867 case SCU_EVENT_SATA_15_SSC: 868 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS, 869 SCI_PHY_SUB_AWAIT_SIG_FIS_UF); 870 break; 871 case SCU_EVENT_SATA_30: 872 case SCU_EVENT_SATA_30_SSC: 873 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS, 874 SCI_PHY_SUB_AWAIT_SIG_FIS_UF); 875 break; 876 case SCU_EVENT_SATA_60: 877 case SCU_EVENT_SATA_60_SSC: 878 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS, 879 SCI_PHY_SUB_AWAIT_SIG_FIS_UF); 880 break; 881 case SCU_EVENT_LINK_FAILURE: 882 /* Change the timeout value to default */ 883 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); 884 885 /* Link failure change state back to the starting state */ 886 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 887 break; 888 case SCU_EVENT_SAS_PHY_DETECTED: 889 /* 890 * There has been a change in the phy type before OOB/SN for the 891 * SATA finished start down the SAS link traning path. */ 892 sci_phy_start_sas_link_training(iphy); 893 break; 894 default: 895 phy_event_warn(iphy, state, event_code); 896 return SCI_FAILURE; 897 } 898 899 return SCI_SUCCESS; 900 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: 901 switch (scu_get_event_code(event_code)) { 902 case SCU_EVENT_SATA_PHY_DETECTED: 903 /* Backup the state machine */ 904 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN); 905 break; 906 907 case SCU_EVENT_LINK_FAILURE: 908 /* Change the timeout value to default */ 909 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); 910 911 /* Link failure change state back to the starting state */ 912 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 913 break; 914 915 default: 916 phy_event_warn(iphy, state, event_code); 917 return SCI_FAILURE; 918 } 919 return SCI_SUCCESS; 920 case SCI_PHY_READY: 921 switch (scu_get_event_code(event_code)) { 922 case SCU_EVENT_LINK_FAILURE: 923 /* Set default timeout */ 924 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); 925 926 /* Link failure change state back to the starting state */ 927 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 928 break; 929 case SCU_EVENT_BROADCAST_CHANGE: 930 case SCU_EVENT_BROADCAST_SES: 931 case SCU_EVENT_BROADCAST_RESERVED0: 932 case SCU_EVENT_BROADCAST_RESERVED1: 933 case SCU_EVENT_BROADCAST_EXPANDER: 934 case SCU_EVENT_BROADCAST_AEN: 935 /* Broadcast change received. Notify the port. */ 936 if (phy_get_non_dummy_port(iphy) != NULL) 937 sci_port_broadcast_change_received(iphy->owning_port, iphy); 938 else 939 iphy->bcn_received_while_port_unassigned = true; 940 break; 941 case SCU_EVENT_BROADCAST_RESERVED3: 942 case SCU_EVENT_BROADCAST_RESERVED4: 943 default: 944 phy_event_warn(iphy, state, event_code); 945 return SCI_FAILURE_INVALID_STATE; 946 } 947 return SCI_SUCCESS; 948 case SCI_PHY_RESETTING: 949 switch (scu_get_event_code(event_code)) { 950 case SCU_EVENT_HARD_RESET_TRANSMITTED: 951 /* Link failure change state back to the starting state */ 952 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 953 break; 954 default: 955 phy_event_warn(iphy, state, event_code); 956 return SCI_FAILURE_INVALID_STATE; 957 } 958 return SCI_SUCCESS; 959 default: 960 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", 961 __func__, phy_state_name(state)); 962 return SCI_FAILURE_INVALID_STATE; 963 } 964 } 965 966 enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index) 967 { 968 enum sci_phy_states state = iphy->sm.current_state_id; 969 struct isci_host *ihost = iphy->owning_port->owning_controller; 970 enum sci_status result; 971 unsigned long flags; 972 973 switch (state) { 974 case SCI_PHY_SUB_AWAIT_IAF_UF: { 975 u32 *frame_words; 976 struct sas_identify_frame iaf; 977 978 result = sci_unsolicited_frame_control_get_header(&ihost->uf_control, 979 frame_index, 980 (void **)&frame_words); 981 982 if (result != SCI_SUCCESS) 983 return result; 984 985 sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32)); 986 if (iaf.frame_type == 0) { 987 u32 state; 988 989 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags); 990 memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf)); 991 spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags); 992 if (iaf.smp_tport) { 993 /* We got the IAF for an expander PHY go to the final 994 * state since there are no power requirements for 995 * expander phys. 996 */ 997 state = SCI_PHY_SUB_FINAL; 998 } else { 999 /* We got the IAF we can now go to the await spinup 1000 * semaphore state 1001 */ 1002 state = SCI_PHY_SUB_AWAIT_SAS_POWER; 1003 } 1004 sci_change_state(&iphy->sm, state); 1005 result = SCI_SUCCESS; 1006 } else 1007 dev_warn(sciphy_to_dev(iphy), 1008 "%s: PHY starting substate machine received " 1009 "unexpected frame id %x\n", 1010 __func__, frame_index); 1011 1012 sci_controller_release_frame(ihost, frame_index); 1013 return result; 1014 } 1015 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: { 1016 struct dev_to_host_fis *frame_header; 1017 u32 *fis_frame_data; 1018 1019 result = sci_unsolicited_frame_control_get_header(&ihost->uf_control, 1020 frame_index, 1021 (void **)&frame_header); 1022 1023 if (result != SCI_SUCCESS) 1024 return result; 1025 1026 if ((frame_header->fis_type == FIS_REGD2H) && 1027 !(frame_header->status & ATA_BUSY)) { 1028 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, 1029 frame_index, 1030 (void **)&fis_frame_data); 1031 1032 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags); 1033 sci_controller_copy_sata_response(&iphy->frame_rcvd.fis, 1034 frame_header, 1035 fis_frame_data); 1036 spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags); 1037 1038 /* got IAF we can now go to the await spinup semaphore state */ 1039 sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL); 1040 1041 result = SCI_SUCCESS; 1042 } else 1043 dev_warn(sciphy_to_dev(iphy), 1044 "%s: PHY starting substate machine received " 1045 "unexpected frame id %x\n", 1046 __func__, frame_index); 1047 1048 /* Regardless of the result we are done with this frame with it */ 1049 sci_controller_release_frame(ihost, frame_index); 1050 1051 return result; 1052 } 1053 default: 1054 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", 1055 __func__, phy_state_name(state)); 1056 return SCI_FAILURE_INVALID_STATE; 1057 } 1058 1059 } 1060 1061 static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm) 1062 { 1063 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1064 1065 /* This is just an temporary state go off to the starting state */ 1066 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN); 1067 } 1068 1069 static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm) 1070 { 1071 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1072 struct isci_host *ihost = iphy->owning_port->owning_controller; 1073 1074 sci_controller_power_control_queue_insert(ihost, iphy); 1075 } 1076 1077 static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm) 1078 { 1079 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1080 struct isci_host *ihost = iphy->owning_port->owning_controller; 1081 1082 sci_controller_power_control_queue_remove(ihost, iphy); 1083 } 1084 1085 static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm) 1086 { 1087 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1088 struct isci_host *ihost = iphy->owning_port->owning_controller; 1089 1090 sci_controller_power_control_queue_insert(ihost, iphy); 1091 } 1092 1093 static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm) 1094 { 1095 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1096 struct isci_host *ihost = iphy->owning_port->owning_controller; 1097 1098 sci_controller_power_control_queue_remove(ihost, iphy); 1099 } 1100 1101 static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm) 1102 { 1103 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1104 1105 sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT); 1106 } 1107 1108 static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm) 1109 { 1110 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1111 1112 sci_del_timer(&iphy->sata_timer); 1113 } 1114 1115 static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm) 1116 { 1117 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1118 1119 sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT); 1120 } 1121 1122 static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm) 1123 { 1124 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1125 1126 sci_del_timer(&iphy->sata_timer); 1127 } 1128 1129 static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm) 1130 { 1131 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1132 1133 if (sci_port_link_detected(iphy->owning_port, iphy)) { 1134 1135 /* 1136 * Clear the PE suspend condition so we can actually 1137 * receive SIG FIS 1138 * The hardware will not respond to the XRDY until the PE 1139 * suspend condition is cleared. 1140 */ 1141 sci_phy_resume(iphy); 1142 1143 sci_mod_timer(&iphy->sata_timer, 1144 SCIC_SDS_SIGNATURE_FIS_TIMEOUT); 1145 } else 1146 iphy->is_in_link_training = false; 1147 } 1148 1149 static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm) 1150 { 1151 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1152 1153 sci_del_timer(&iphy->sata_timer); 1154 } 1155 1156 static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm) 1157 { 1158 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1159 1160 /* State machine has run to completion so exit out and change 1161 * the base state machine to the ready state 1162 */ 1163 sci_change_state(&iphy->sm, SCI_PHY_READY); 1164 } 1165 1166 /** 1167 * scu_link_layer_stop_protocol_engine() 1168 * @iphy: This is the struct isci_phy object to stop. 1169 * 1170 * This method will stop the struct isci_phy object. This does not reset the 1171 * protocol engine it just suspends it and places it in a state where it will 1172 * not cause the end device to power up. none 1173 */ 1174 static void scu_link_layer_stop_protocol_engine( 1175 struct isci_phy *iphy) 1176 { 1177 u32 scu_sas_pcfg_value; 1178 u32 enable_spinup_value; 1179 1180 /* Suspend the protocol engine and place it in a sata spinup hold state */ 1181 scu_sas_pcfg_value = 1182 readl(&iphy->link_layer_registers->phy_configuration); 1183 scu_sas_pcfg_value |= 1184 (SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | 1185 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) | 1186 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD)); 1187 writel(scu_sas_pcfg_value, 1188 &iphy->link_layer_registers->phy_configuration); 1189 1190 /* Disable the notify enable spinup primitives */ 1191 enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control); 1192 enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE); 1193 writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control); 1194 } 1195 1196 static void scu_link_layer_start_oob(struct isci_phy *iphy) 1197 { 1198 struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers; 1199 u32 val; 1200 1201 /** Reset OOB sequence - start */ 1202 val = readl(&ll->phy_configuration); 1203 val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | 1204 SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE) | 1205 SCU_SAS_PCFG_GEN_BIT(HARD_RESET)); 1206 writel(val, &ll->phy_configuration); 1207 readl(&ll->phy_configuration); /* flush */ 1208 /** Reset OOB sequence - end */ 1209 1210 /** Start OOB sequence - start */ 1211 val = readl(&ll->phy_configuration); 1212 val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); 1213 writel(val, &ll->phy_configuration); 1214 readl(&ll->phy_configuration); /* flush */ 1215 /** Start OOB sequence - end */ 1216 } 1217 1218 /** 1219 * scu_link_layer_tx_hard_reset() 1220 * @iphy: This is the struct isci_phy object to stop. 1221 * 1222 * This method will transmit a hard reset request on the specified phy. The SCU 1223 * hardware requires that we reset the OOB state machine and set the hard reset 1224 * bit in the phy configuration register. We then must start OOB over with the 1225 * hard reset bit set. 1226 */ 1227 static void scu_link_layer_tx_hard_reset( 1228 struct isci_phy *iphy) 1229 { 1230 u32 phy_configuration_value; 1231 1232 /* 1233 * SAS Phys must wait for the HARD_RESET_TX event notification to transition 1234 * to the starting state. */ 1235 phy_configuration_value = 1236 readl(&iphy->link_layer_registers->phy_configuration); 1237 phy_configuration_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE)); 1238 phy_configuration_value |= 1239 (SCU_SAS_PCFG_GEN_BIT(HARD_RESET) | 1240 SCU_SAS_PCFG_GEN_BIT(OOB_RESET)); 1241 writel(phy_configuration_value, 1242 &iphy->link_layer_registers->phy_configuration); 1243 1244 /* Now take the OOB state machine out of reset */ 1245 phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); 1246 phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET); 1247 writel(phy_configuration_value, 1248 &iphy->link_layer_registers->phy_configuration); 1249 } 1250 1251 static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm) 1252 { 1253 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1254 struct isci_port *iport = iphy->owning_port; 1255 struct isci_host *ihost = iport->owning_controller; 1256 1257 /* 1258 * @todo We need to get to the controller to place this PE in a 1259 * reset state 1260 */ 1261 sci_del_timer(&iphy->sata_timer); 1262 1263 scu_link_layer_stop_protocol_engine(iphy); 1264 1265 if (iphy->sm.previous_state_id != SCI_PHY_INITIAL) 1266 sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy); 1267 } 1268 1269 static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm) 1270 { 1271 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1272 struct isci_port *iport = iphy->owning_port; 1273 struct isci_host *ihost = iport->owning_controller; 1274 1275 scu_link_layer_stop_protocol_engine(iphy); 1276 scu_link_layer_start_oob(iphy); 1277 1278 /* We don't know what kind of phy we are going to be just yet */ 1279 iphy->protocol = SAS_PROTOCOL_NONE; 1280 iphy->bcn_received_while_port_unassigned = false; 1281 1282 if (iphy->sm.previous_state_id == SCI_PHY_READY) 1283 sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy); 1284 1285 sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL); 1286 } 1287 1288 static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm) 1289 { 1290 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1291 struct isci_port *iport = iphy->owning_port; 1292 struct isci_host *ihost = iport->owning_controller; 1293 1294 sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy); 1295 } 1296 1297 static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm) 1298 { 1299 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1300 1301 sci_phy_suspend(iphy); 1302 } 1303 1304 static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm) 1305 { 1306 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1307 1308 /* The phy is being reset, therefore deactivate it from the port. In 1309 * the resetting state we don't notify the user regarding link up and 1310 * link down notifications 1311 */ 1312 sci_port_deactivate_phy(iphy->owning_port, iphy, false); 1313 1314 if (iphy->protocol == SAS_PROTOCOL_SSP) { 1315 scu_link_layer_tx_hard_reset(iphy); 1316 } else { 1317 /* The SCU does not need to have a discrete reset state so 1318 * just go back to the starting state. 1319 */ 1320 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 1321 } 1322 } 1323 1324 static const struct sci_base_state sci_phy_state_table[] = { 1325 [SCI_PHY_INITIAL] = { }, 1326 [SCI_PHY_STOPPED] = { 1327 .enter_state = sci_phy_stopped_state_enter, 1328 }, 1329 [SCI_PHY_STARTING] = { 1330 .enter_state = sci_phy_starting_state_enter, 1331 }, 1332 [SCI_PHY_SUB_INITIAL] = { 1333 .enter_state = sci_phy_starting_initial_substate_enter, 1334 }, 1335 [SCI_PHY_SUB_AWAIT_OSSP_EN] = { }, 1336 [SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { }, 1337 [SCI_PHY_SUB_AWAIT_IAF_UF] = { }, 1338 [SCI_PHY_SUB_AWAIT_SAS_POWER] = { 1339 .enter_state = sci_phy_starting_await_sas_power_substate_enter, 1340 .exit_state = sci_phy_starting_await_sas_power_substate_exit, 1341 }, 1342 [SCI_PHY_SUB_AWAIT_SATA_POWER] = { 1343 .enter_state = sci_phy_starting_await_sata_power_substate_enter, 1344 .exit_state = sci_phy_starting_await_sata_power_substate_exit 1345 }, 1346 [SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = { 1347 .enter_state = sci_phy_starting_await_sata_phy_substate_enter, 1348 .exit_state = sci_phy_starting_await_sata_phy_substate_exit 1349 }, 1350 [SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = { 1351 .enter_state = sci_phy_starting_await_sata_speed_substate_enter, 1352 .exit_state = sci_phy_starting_await_sata_speed_substate_exit 1353 }, 1354 [SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = { 1355 .enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter, 1356 .exit_state = sci_phy_starting_await_sig_fis_uf_substate_exit 1357 }, 1358 [SCI_PHY_SUB_FINAL] = { 1359 .enter_state = sci_phy_starting_final_substate_enter, 1360 }, 1361 [SCI_PHY_READY] = { 1362 .enter_state = sci_phy_ready_state_enter, 1363 .exit_state = sci_phy_ready_state_exit, 1364 }, 1365 [SCI_PHY_RESETTING] = { 1366 .enter_state = sci_phy_resetting_state_enter, 1367 }, 1368 [SCI_PHY_FINAL] = { }, 1369 }; 1370 1371 void sci_phy_construct(struct isci_phy *iphy, 1372 struct isci_port *iport, u8 phy_index) 1373 { 1374 sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL); 1375 1376 /* Copy the rest of the input data to our locals */ 1377 iphy->owning_port = iport; 1378 iphy->phy_index = phy_index; 1379 iphy->bcn_received_while_port_unassigned = false; 1380 iphy->protocol = SAS_PROTOCOL_NONE; 1381 iphy->link_layer_registers = NULL; 1382 iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN; 1383 1384 /* Create the SIGNATURE FIS Timeout timer for this phy */ 1385 sci_init_timer(&iphy->sata_timer, phy_sata_timeout); 1386 } 1387 1388 void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index) 1389 { 1390 struct sci_oem_params *oem = &ihost->oem_parameters; 1391 u64 sci_sas_addr; 1392 __be64 sas_addr; 1393 1394 sci_sas_addr = oem->phys[index].sas_address.high; 1395 sci_sas_addr <<= 32; 1396 sci_sas_addr |= oem->phys[index].sas_address.low; 1397 sas_addr = cpu_to_be64(sci_sas_addr); 1398 memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr)); 1399 1400 iphy->sas_phy.enabled = 0; 1401 iphy->sas_phy.id = index; 1402 iphy->sas_phy.sas_addr = &iphy->sas_addr[0]; 1403 iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd; 1404 iphy->sas_phy.ha = &ihost->sas_ha; 1405 iphy->sas_phy.lldd_phy = iphy; 1406 iphy->sas_phy.enabled = 1; 1407 iphy->sas_phy.iproto = SAS_PROTOCOL_ALL; 1408 iphy->sas_phy.tproto = 0; 1409 iphy->sas_phy.role = PHY_ROLE_INITIATOR; 1410 iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED; 1411 iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN; 1412 memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd)); 1413 } 1414 1415 1416 /** 1417 * isci_phy_control() - This function is one of the SAS Domain Template 1418 * functions. This is a phy management function. 1419 * @sas_phy: This parameter specifies the sphy being controlled. 1420 * @func: This parameter specifies the phy control function being invoked. 1421 * @buf: This parameter is specific to the phy function being invoked. 1422 * 1423 * status, zero indicates success. 1424 */ 1425 int isci_phy_control(struct asd_sas_phy *sas_phy, 1426 enum phy_func func, 1427 void *buf) 1428 { 1429 int ret = 0; 1430 struct isci_phy *iphy = sas_phy->lldd_phy; 1431 struct asd_sas_port *port = sas_phy->port; 1432 struct isci_host *ihost = sas_phy->ha->lldd_ha; 1433 unsigned long flags; 1434 1435 dev_dbg(&ihost->pdev->dev, 1436 "%s: phy %p; func %d; buf %p; isci phy %p, port %p\n", 1437 __func__, sas_phy, func, buf, iphy, port); 1438 1439 switch (func) { 1440 case PHY_FUNC_DISABLE: 1441 spin_lock_irqsave(&ihost->scic_lock, flags); 1442 scu_link_layer_start_oob(iphy); 1443 sci_phy_stop(iphy); 1444 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1445 break; 1446 1447 case PHY_FUNC_LINK_RESET: 1448 spin_lock_irqsave(&ihost->scic_lock, flags); 1449 scu_link_layer_start_oob(iphy); 1450 sci_phy_stop(iphy); 1451 sci_phy_start(iphy); 1452 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1453 break; 1454 1455 case PHY_FUNC_HARD_RESET: 1456 if (!port) 1457 return -ENODEV; 1458 1459 ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy); 1460 1461 break; 1462 case PHY_FUNC_GET_EVENTS: { 1463 struct scu_link_layer_registers __iomem *r; 1464 struct sas_phy *phy = sas_phy->phy; 1465 1466 r = iphy->link_layer_registers; 1467 phy->running_disparity_error_count = readl(&r->running_disparity_error_count); 1468 phy->loss_of_dword_sync_count = readl(&r->loss_of_sync_error_count); 1469 phy->phy_reset_problem_count = readl(&r->phy_reset_problem_count); 1470 phy->invalid_dword_count = readl(&r->invalid_dword_counter); 1471 break; 1472 } 1473 1474 default: 1475 dev_dbg(&ihost->pdev->dev, 1476 "%s: phy %p; func %d NOT IMPLEMENTED!\n", 1477 __func__, sas_phy, func); 1478 ret = -ENOSYS; 1479 break; 1480 } 1481 return ret; 1482 } 1483