xref: /linux/drivers/scsi/isci/host.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "host.h"
62 #include "probe_roms.h"
63 #include "remote_device.h"
64 #include "request.h"
65 #include "scu_completion_codes.h"
66 #include "scu_event_codes.h"
67 #include "registers.h"
68 #include "scu_remote_node_context.h"
69 #include "scu_task_context.h"
70 
71 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
72 
73 #define smu_max_ports(dcc_value) \
74 	(\
75 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
76 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
77 	)
78 
79 #define smu_max_task_contexts(dcc_value)	\
80 	(\
81 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
82 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
83 	)
84 
85 #define smu_max_rncs(dcc_value) \
86 	(\
87 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
88 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
89 	)
90 
91 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
92 
93 /**
94  *
95  *
96  * The number of milliseconds to wait while a given phy is consuming power
97  * before allowing another set of phys to consume power. Ultimately, this will
98  * be specified by OEM parameter.
99  */
100 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
101 
102 /**
103  * NORMALIZE_PUT_POINTER() -
104  *
105  * This macro will normalize the completion queue put pointer so its value can
106  * be used as an array inde
107  */
108 #define NORMALIZE_PUT_POINTER(x) \
109 	((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
110 
111 
112 /**
113  * NORMALIZE_EVENT_POINTER() -
114  *
115  * This macro will normalize the completion queue event entry so its value can
116  * be used as an index.
117  */
118 #define NORMALIZE_EVENT_POINTER(x) \
119 	(\
120 		((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
121 		>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT	\
122 	)
123 
124 /**
125  * NORMALIZE_GET_POINTER() -
126  *
127  * This macro will normalize the completion queue get pointer so its value can
128  * be used as an index into an array
129  */
130 #define NORMALIZE_GET_POINTER(x) \
131 	((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
132 
133 /**
134  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
135  *
136  * This macro will normalize the completion queue cycle pointer so it matches
137  * the completion queue cycle bit
138  */
139 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
140 	((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
141 
142 /**
143  * COMPLETION_QUEUE_CYCLE_BIT() -
144  *
145  * This macro will return the cycle bit of the completion queue entry
146  */
147 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
148 
149 /* Init the state machine and call the state entry function (if any) */
150 void sci_init_sm(struct sci_base_state_machine *sm,
151 		 const struct sci_base_state *state_table, u32 initial_state)
152 {
153 	sci_state_transition_t handler;
154 
155 	sm->initial_state_id    = initial_state;
156 	sm->previous_state_id   = initial_state;
157 	sm->current_state_id    = initial_state;
158 	sm->state_table         = state_table;
159 
160 	handler = sm->state_table[initial_state].enter_state;
161 	if (handler)
162 		handler(sm);
163 }
164 
165 /* Call the state exit fn, update the current state, call the state entry fn */
166 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
167 {
168 	sci_state_transition_t handler;
169 
170 	handler = sm->state_table[sm->current_state_id].exit_state;
171 	if (handler)
172 		handler(sm);
173 
174 	sm->previous_state_id = sm->current_state_id;
175 	sm->current_state_id = next_state;
176 
177 	handler = sm->state_table[sm->current_state_id].enter_state;
178 	if (handler)
179 		handler(sm);
180 }
181 
182 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
183 {
184 	u32 get_value = ihost->completion_queue_get;
185 	u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
186 
187 	if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
188 	    COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
189 		return true;
190 
191 	return false;
192 }
193 
194 static bool sci_controller_isr(struct isci_host *ihost)
195 {
196 	if (sci_controller_completion_queue_has_entries(ihost)) {
197 		return true;
198 	} else {
199 		/*
200 		 * we have a spurious interrupt it could be that we have already
201 		 * emptied the completion queue from a previous interrupt */
202 		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
203 
204 		/*
205 		 * There is a race in the hardware that could cause us not to be notified
206 		 * of an interrupt completion if we do not take this step.  We will mask
207 		 * then unmask the interrupts so if there is another interrupt pending
208 		 * the clearing of the interrupt source we get the next interrupt message. */
209 		writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
210 		writel(0, &ihost->smu_registers->interrupt_mask);
211 	}
212 
213 	return false;
214 }
215 
216 irqreturn_t isci_msix_isr(int vec, void *data)
217 {
218 	struct isci_host *ihost = data;
219 
220 	if (sci_controller_isr(ihost))
221 		tasklet_schedule(&ihost->completion_tasklet);
222 
223 	return IRQ_HANDLED;
224 }
225 
226 static bool sci_controller_error_isr(struct isci_host *ihost)
227 {
228 	u32 interrupt_status;
229 
230 	interrupt_status =
231 		readl(&ihost->smu_registers->interrupt_status);
232 	interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
233 
234 	if (interrupt_status != 0) {
235 		/*
236 		 * There is an error interrupt pending so let it through and handle
237 		 * in the callback */
238 		return true;
239 	}
240 
241 	/*
242 	 * There is a race in the hardware that could cause us not to be notified
243 	 * of an interrupt completion if we do not take this step.  We will mask
244 	 * then unmask the error interrupts so if there was another interrupt
245 	 * pending we will be notified.
246 	 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
247 	writel(0xff, &ihost->smu_registers->interrupt_mask);
248 	writel(0, &ihost->smu_registers->interrupt_mask);
249 
250 	return false;
251 }
252 
253 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
254 {
255 	u32 index = SCU_GET_COMPLETION_INDEX(ent);
256 	struct isci_request *ireq = ihost->reqs[index];
257 
258 	/* Make sure that we really want to process this IO request */
259 	if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
260 	    ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
261 	    ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
262 		/* Yep this is a valid io request pass it along to the
263 		 * io request handler
264 		 */
265 		sci_io_request_tc_completion(ireq, ent);
266 }
267 
268 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
269 {
270 	u32 index;
271 	struct isci_request *ireq;
272 	struct isci_remote_device *idev;
273 
274 	index = SCU_GET_COMPLETION_INDEX(ent);
275 
276 	switch (scu_get_command_request_type(ent)) {
277 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
278 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
279 		ireq = ihost->reqs[index];
280 		dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
281 			 __func__, ent, ireq);
282 		/* @todo For a post TC operation we need to fail the IO
283 		 * request
284 		 */
285 		break;
286 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
287 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
288 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
289 		idev = ihost->device_table[index];
290 		dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
291 			 __func__, ent, idev);
292 		/* @todo For a port RNC operation we need to fail the
293 		 * device
294 		 */
295 		break;
296 	default:
297 		dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
298 			 __func__, ent);
299 		break;
300 	}
301 }
302 
303 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
304 {
305 	u32 index;
306 	u32 frame_index;
307 
308 	struct scu_unsolicited_frame_header *frame_header;
309 	struct isci_phy *iphy;
310 	struct isci_remote_device *idev;
311 
312 	enum sci_status result = SCI_FAILURE;
313 
314 	frame_index = SCU_GET_FRAME_INDEX(ent);
315 
316 	frame_header = ihost->uf_control.buffers.array[frame_index].header;
317 	ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
318 
319 	if (SCU_GET_FRAME_ERROR(ent)) {
320 		/*
321 		 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
322 		 * /       this cause a problem? We expect the phy initialization will
323 		 * /       fail if there is an error in the frame. */
324 		sci_controller_release_frame(ihost, frame_index);
325 		return;
326 	}
327 
328 	if (frame_header->is_address_frame) {
329 		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
330 		iphy = &ihost->phys[index];
331 		result = sci_phy_frame_handler(iphy, frame_index);
332 	} else {
333 
334 		index = SCU_GET_COMPLETION_INDEX(ent);
335 
336 		if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
337 			/*
338 			 * This is a signature fis or a frame from a direct attached SATA
339 			 * device that has not yet been created.  In either case forwared
340 			 * the frame to the PE and let it take care of the frame data. */
341 			index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
342 			iphy = &ihost->phys[index];
343 			result = sci_phy_frame_handler(iphy, frame_index);
344 		} else {
345 			if (index < ihost->remote_node_entries)
346 				idev = ihost->device_table[index];
347 			else
348 				idev = NULL;
349 
350 			if (idev != NULL)
351 				result = sci_remote_device_frame_handler(idev, frame_index);
352 			else
353 				sci_controller_release_frame(ihost, frame_index);
354 		}
355 	}
356 
357 	if (result != SCI_SUCCESS) {
358 		/*
359 		 * / @todo Is there any reason to report some additional error message
360 		 * /       when we get this failure notifiction? */
361 	}
362 }
363 
364 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
365 {
366 	struct isci_remote_device *idev;
367 	struct isci_request *ireq;
368 	struct isci_phy *iphy;
369 	u32 index;
370 
371 	index = SCU_GET_COMPLETION_INDEX(ent);
372 
373 	switch (scu_get_event_type(ent)) {
374 	case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
375 		/* / @todo The driver did something wrong and we need to fix the condtion. */
376 		dev_err(&ihost->pdev->dev,
377 			"%s: SCIC Controller 0x%p received SMU command error "
378 			"0x%x\n",
379 			__func__,
380 			ihost,
381 			ent);
382 		break;
383 
384 	case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
385 	case SCU_EVENT_TYPE_SMU_ERROR:
386 	case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
387 		/*
388 		 * / @todo This is a hardware failure and its likely that we want to
389 		 * /       reset the controller. */
390 		dev_err(&ihost->pdev->dev,
391 			"%s: SCIC Controller 0x%p received fatal controller "
392 			"event  0x%x\n",
393 			__func__,
394 			ihost,
395 			ent);
396 		break;
397 
398 	case SCU_EVENT_TYPE_TRANSPORT_ERROR:
399 		ireq = ihost->reqs[index];
400 		sci_io_request_event_handler(ireq, ent);
401 		break;
402 
403 	case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
404 		switch (scu_get_event_specifier(ent)) {
405 		case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
406 		case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
407 			ireq = ihost->reqs[index];
408 			if (ireq != NULL)
409 				sci_io_request_event_handler(ireq, ent);
410 			else
411 				dev_warn(&ihost->pdev->dev,
412 					 "%s: SCIC Controller 0x%p received "
413 					 "event 0x%x for io request object "
414 					 "that doesnt exist.\n",
415 					 __func__,
416 					 ihost,
417 					 ent);
418 
419 			break;
420 
421 		case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
422 			idev = ihost->device_table[index];
423 			if (idev != NULL)
424 				sci_remote_device_event_handler(idev, ent);
425 			else
426 				dev_warn(&ihost->pdev->dev,
427 					 "%s: SCIC Controller 0x%p received "
428 					 "event 0x%x for remote device object "
429 					 "that doesnt exist.\n",
430 					 __func__,
431 					 ihost,
432 					 ent);
433 
434 			break;
435 		}
436 		break;
437 
438 	case SCU_EVENT_TYPE_BROADCAST_CHANGE:
439 	/*
440 	 * direct the broadcast change event to the phy first and then let
441 	 * the phy redirect the broadcast change to the port object */
442 	case SCU_EVENT_TYPE_ERR_CNT_EVENT:
443 	/*
444 	 * direct error counter event to the phy object since that is where
445 	 * we get the event notification.  This is a type 4 event. */
446 	case SCU_EVENT_TYPE_OSSP_EVENT:
447 		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
448 		iphy = &ihost->phys[index];
449 		sci_phy_event_handler(iphy, ent);
450 		break;
451 
452 	case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
453 	case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
454 	case SCU_EVENT_TYPE_RNC_OPS_MISC:
455 		if (index < ihost->remote_node_entries) {
456 			idev = ihost->device_table[index];
457 
458 			if (idev != NULL)
459 				sci_remote_device_event_handler(idev, ent);
460 		} else
461 			dev_err(&ihost->pdev->dev,
462 				"%s: SCIC Controller 0x%p received event 0x%x "
463 				"for remote device object 0x%0x that doesnt "
464 				"exist.\n",
465 				__func__,
466 				ihost,
467 				ent,
468 				index);
469 
470 		break;
471 
472 	default:
473 		dev_warn(&ihost->pdev->dev,
474 			 "%s: SCIC Controller received unknown event code %x\n",
475 			 __func__,
476 			 ent);
477 		break;
478 	}
479 }
480 
481 static void sci_controller_process_completions(struct isci_host *ihost)
482 {
483 	u32 completion_count = 0;
484 	u32 ent;
485 	u32 get_index;
486 	u32 get_cycle;
487 	u32 event_get;
488 	u32 event_cycle;
489 
490 	dev_dbg(&ihost->pdev->dev,
491 		"%s: completion queue begining get:0x%08x\n",
492 		__func__,
493 		ihost->completion_queue_get);
494 
495 	/* Get the component parts of the completion queue */
496 	get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
497 	get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
498 
499 	event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
500 	event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
501 
502 	while (
503 		NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
504 		== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
505 		) {
506 		completion_count++;
507 
508 		ent = ihost->completion_queue[get_index];
509 
510 		/* increment the get pointer and check for rollover to toggle the cycle bit */
511 		get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
512 			     (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
513 		get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
514 
515 		dev_dbg(&ihost->pdev->dev,
516 			"%s: completion queue entry:0x%08x\n",
517 			__func__,
518 			ent);
519 
520 		switch (SCU_GET_COMPLETION_TYPE(ent)) {
521 		case SCU_COMPLETION_TYPE_TASK:
522 			sci_controller_task_completion(ihost, ent);
523 			break;
524 
525 		case SCU_COMPLETION_TYPE_SDMA:
526 			sci_controller_sdma_completion(ihost, ent);
527 			break;
528 
529 		case SCU_COMPLETION_TYPE_UFI:
530 			sci_controller_unsolicited_frame(ihost, ent);
531 			break;
532 
533 		case SCU_COMPLETION_TYPE_EVENT:
534 			sci_controller_event_completion(ihost, ent);
535 			break;
536 
537 		case SCU_COMPLETION_TYPE_NOTIFY: {
538 			event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
539 				       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
540 			event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
541 
542 			sci_controller_event_completion(ihost, ent);
543 			break;
544 		}
545 		default:
546 			dev_warn(&ihost->pdev->dev,
547 				 "%s: SCIC Controller received unknown "
548 				 "completion type %x\n",
549 				 __func__,
550 				 ent);
551 			break;
552 		}
553 	}
554 
555 	/* Update the get register if we completed one or more entries */
556 	if (completion_count > 0) {
557 		ihost->completion_queue_get =
558 			SMU_CQGR_GEN_BIT(ENABLE) |
559 			SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
560 			event_cycle |
561 			SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
562 			get_cycle |
563 			SMU_CQGR_GEN_VAL(POINTER, get_index);
564 
565 		writel(ihost->completion_queue_get,
566 		       &ihost->smu_registers->completion_queue_get);
567 
568 	}
569 
570 	dev_dbg(&ihost->pdev->dev,
571 		"%s: completion queue ending get:0x%08x\n",
572 		__func__,
573 		ihost->completion_queue_get);
574 
575 }
576 
577 static void sci_controller_error_handler(struct isci_host *ihost)
578 {
579 	u32 interrupt_status;
580 
581 	interrupt_status =
582 		readl(&ihost->smu_registers->interrupt_status);
583 
584 	if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
585 	    sci_controller_completion_queue_has_entries(ihost)) {
586 
587 		sci_controller_process_completions(ihost);
588 		writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
589 	} else {
590 		dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
591 			interrupt_status);
592 
593 		sci_change_state(&ihost->sm, SCIC_FAILED);
594 
595 		return;
596 	}
597 
598 	/* If we dont process any completions I am not sure that we want to do this.
599 	 * We are in the middle of a hardware fault and should probably be reset.
600 	 */
601 	writel(0, &ihost->smu_registers->interrupt_mask);
602 }
603 
604 irqreturn_t isci_intx_isr(int vec, void *data)
605 {
606 	irqreturn_t ret = IRQ_NONE;
607 	struct isci_host *ihost = data;
608 
609 	if (sci_controller_isr(ihost)) {
610 		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
611 		tasklet_schedule(&ihost->completion_tasklet);
612 		ret = IRQ_HANDLED;
613 	} else if (sci_controller_error_isr(ihost)) {
614 		spin_lock(&ihost->scic_lock);
615 		sci_controller_error_handler(ihost);
616 		spin_unlock(&ihost->scic_lock);
617 		ret = IRQ_HANDLED;
618 	}
619 
620 	return ret;
621 }
622 
623 irqreturn_t isci_error_isr(int vec, void *data)
624 {
625 	struct isci_host *ihost = data;
626 
627 	if (sci_controller_error_isr(ihost))
628 		sci_controller_error_handler(ihost);
629 
630 	return IRQ_HANDLED;
631 }
632 
633 /**
634  * isci_host_start_complete() - This function is called by the core library,
635  *    through the ISCI Module, to indicate controller start status.
636  * @isci_host: This parameter specifies the ISCI host object
637  * @completion_status: This parameter specifies the completion status from the
638  *    core library.
639  *
640  */
641 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
642 {
643 	if (completion_status != SCI_SUCCESS)
644 		dev_info(&ihost->pdev->dev,
645 			"controller start timed out, continuing...\n");
646 	isci_host_change_state(ihost, isci_ready);
647 	clear_bit(IHOST_START_PENDING, &ihost->flags);
648 	wake_up(&ihost->eventq);
649 }
650 
651 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
652 {
653 	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
654 
655 	if (test_bit(IHOST_START_PENDING, &ihost->flags))
656 		return 0;
657 
658 	/* todo: use sas_flush_discovery once it is upstream */
659 	scsi_flush_work(shost);
660 
661 	scsi_flush_work(shost);
662 
663 	dev_dbg(&ihost->pdev->dev,
664 		"%s: ihost->status = %d, time = %ld\n",
665 		 __func__, isci_host_get_state(ihost), time);
666 
667 	return 1;
668 
669 }
670 
671 /**
672  * sci_controller_get_suggested_start_timeout() - This method returns the
673  *    suggested sci_controller_start() timeout amount.  The user is free to
674  *    use any timeout value, but this method provides the suggested minimum
675  *    start timeout value.  The returned value is based upon empirical
676  *    information determined as a result of interoperability testing.
677  * @controller: the handle to the controller object for which to return the
678  *    suggested start timeout.
679  *
680  * This method returns the number of milliseconds for the suggested start
681  * operation timeout.
682  */
683 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
684 {
685 	/* Validate the user supplied parameters. */
686 	if (!ihost)
687 		return 0;
688 
689 	/*
690 	 * The suggested minimum timeout value for a controller start operation:
691 	 *
692 	 *     Signature FIS Timeout
693 	 *   + Phy Start Timeout
694 	 *   + Number of Phy Spin Up Intervals
695 	 *   ---------------------------------
696 	 *   Number of milliseconds for the controller start operation.
697 	 *
698 	 * NOTE: The number of phy spin up intervals will be equivalent
699 	 *       to the number of phys divided by the number phys allowed
700 	 *       per interval - 1 (once OEM parameters are supported).
701 	 *       Currently we assume only 1 phy per interval. */
702 
703 	return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
704 		+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
705 		+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
706 }
707 
708 static void sci_controller_enable_interrupts(struct isci_host *ihost)
709 {
710 	BUG_ON(ihost->smu_registers == NULL);
711 	writel(0, &ihost->smu_registers->interrupt_mask);
712 }
713 
714 void sci_controller_disable_interrupts(struct isci_host *ihost)
715 {
716 	BUG_ON(ihost->smu_registers == NULL);
717 	writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
718 }
719 
720 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
721 {
722 	u32 port_task_scheduler_value;
723 
724 	port_task_scheduler_value =
725 		readl(&ihost->scu_registers->peg0.ptsg.control);
726 	port_task_scheduler_value |=
727 		(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
728 		 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
729 	writel(port_task_scheduler_value,
730 	       &ihost->scu_registers->peg0.ptsg.control);
731 }
732 
733 static void sci_controller_assign_task_entries(struct isci_host *ihost)
734 {
735 	u32 task_assignment;
736 
737 	/*
738 	 * Assign all the TCs to function 0
739 	 * TODO: Do we actually need to read this register to write it back?
740 	 */
741 
742 	task_assignment =
743 		readl(&ihost->smu_registers->task_context_assignment[0]);
744 
745 	task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
746 		(SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
747 		(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
748 
749 	writel(task_assignment,
750 		&ihost->smu_registers->task_context_assignment[0]);
751 
752 }
753 
754 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
755 {
756 	u32 index;
757 	u32 completion_queue_control_value;
758 	u32 completion_queue_get_value;
759 	u32 completion_queue_put_value;
760 
761 	ihost->completion_queue_get = 0;
762 
763 	completion_queue_control_value =
764 		(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
765 		 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
766 
767 	writel(completion_queue_control_value,
768 	       &ihost->smu_registers->completion_queue_control);
769 
770 
771 	/* Set the completion queue get pointer and enable the queue */
772 	completion_queue_get_value = (
773 		(SMU_CQGR_GEN_VAL(POINTER, 0))
774 		| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
775 		| (SMU_CQGR_GEN_BIT(ENABLE))
776 		| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
777 		);
778 
779 	writel(completion_queue_get_value,
780 	       &ihost->smu_registers->completion_queue_get);
781 
782 	/* Set the completion queue put pointer */
783 	completion_queue_put_value = (
784 		(SMU_CQPR_GEN_VAL(POINTER, 0))
785 		| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
786 		);
787 
788 	writel(completion_queue_put_value,
789 	       &ihost->smu_registers->completion_queue_put);
790 
791 	/* Initialize the cycle bit of the completion queue entries */
792 	for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
793 		/*
794 		 * If get.cycle_bit != completion_queue.cycle_bit
795 		 * its not a valid completion queue entry
796 		 * so at system start all entries are invalid */
797 		ihost->completion_queue[index] = 0x80000000;
798 	}
799 }
800 
801 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
802 {
803 	u32 frame_queue_control_value;
804 	u32 frame_queue_get_value;
805 	u32 frame_queue_put_value;
806 
807 	/* Write the queue size */
808 	frame_queue_control_value =
809 		SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
810 
811 	writel(frame_queue_control_value,
812 	       &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
813 
814 	/* Setup the get pointer for the unsolicited frame queue */
815 	frame_queue_get_value = (
816 		SCU_UFQGP_GEN_VAL(POINTER, 0)
817 		|  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
818 		);
819 
820 	writel(frame_queue_get_value,
821 	       &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
822 	/* Setup the put pointer for the unsolicited frame queue */
823 	frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
824 	writel(frame_queue_put_value,
825 	       &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
826 }
827 
828 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
829 {
830 	if (ihost->sm.current_state_id == SCIC_STARTING) {
831 		/*
832 		 * We move into the ready state, because some of the phys/ports
833 		 * may be up and operational.
834 		 */
835 		sci_change_state(&ihost->sm, SCIC_READY);
836 
837 		isci_host_start_complete(ihost, status);
838 	}
839 }
840 
841 static bool is_phy_starting(struct isci_phy *iphy)
842 {
843 	enum sci_phy_states state;
844 
845 	state = iphy->sm.current_state_id;
846 	switch (state) {
847 	case SCI_PHY_STARTING:
848 	case SCI_PHY_SUB_INITIAL:
849 	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
850 	case SCI_PHY_SUB_AWAIT_IAF_UF:
851 	case SCI_PHY_SUB_AWAIT_SAS_POWER:
852 	case SCI_PHY_SUB_AWAIT_SATA_POWER:
853 	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
854 	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
855 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
856 	case SCI_PHY_SUB_FINAL:
857 		return true;
858 	default:
859 		return false;
860 	}
861 }
862 
863 /**
864  * sci_controller_start_next_phy - start phy
865  * @scic: controller
866  *
867  * If all the phys have been started, then attempt to transition the
868  * controller to the READY state and inform the user
869  * (sci_cb_controller_start_complete()).
870  */
871 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
872 {
873 	struct sci_oem_params *oem = &ihost->oem_parameters;
874 	struct isci_phy *iphy;
875 	enum sci_status status;
876 
877 	status = SCI_SUCCESS;
878 
879 	if (ihost->phy_startup_timer_pending)
880 		return status;
881 
882 	if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
883 		bool is_controller_start_complete = true;
884 		u32 state;
885 		u8 index;
886 
887 		for (index = 0; index < SCI_MAX_PHYS; index++) {
888 			iphy = &ihost->phys[index];
889 			state = iphy->sm.current_state_id;
890 
891 			if (!phy_get_non_dummy_port(iphy))
892 				continue;
893 
894 			/* The controller start operation is complete iff:
895 			 * - all links have been given an opportunity to start
896 			 * - have no indication of a connected device
897 			 * - have an indication of a connected device and it has
898 			 *   finished the link training process.
899 			 */
900 			if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
901 			    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
902 			    (iphy->is_in_link_training == true && is_phy_starting(iphy))) {
903 				is_controller_start_complete = false;
904 				break;
905 			}
906 		}
907 
908 		/*
909 		 * The controller has successfully finished the start process.
910 		 * Inform the SCI Core user and transition to the READY state. */
911 		if (is_controller_start_complete == true) {
912 			sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
913 			sci_del_timer(&ihost->phy_timer);
914 			ihost->phy_startup_timer_pending = false;
915 		}
916 	} else {
917 		iphy = &ihost->phys[ihost->next_phy_to_start];
918 
919 		if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
920 			if (phy_get_non_dummy_port(iphy) == NULL) {
921 				ihost->next_phy_to_start++;
922 
923 				/* Caution recursion ahead be forwarned
924 				 *
925 				 * The PHY was never added to a PORT in MPC mode
926 				 * so start the next phy in sequence This phy
927 				 * will never go link up and will not draw power
928 				 * the OEM parameters either configured the phy
929 				 * incorrectly for the PORT or it was never
930 				 * assigned to a PORT
931 				 */
932 				return sci_controller_start_next_phy(ihost);
933 			}
934 		}
935 
936 		status = sci_phy_start(iphy);
937 
938 		if (status == SCI_SUCCESS) {
939 			sci_mod_timer(&ihost->phy_timer,
940 				      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
941 			ihost->phy_startup_timer_pending = true;
942 		} else {
943 			dev_warn(&ihost->pdev->dev,
944 				 "%s: Controller stop operation failed "
945 				 "to stop phy %d because of status "
946 				 "%d.\n",
947 				 __func__,
948 				 ihost->phys[ihost->next_phy_to_start].phy_index,
949 				 status);
950 		}
951 
952 		ihost->next_phy_to_start++;
953 	}
954 
955 	return status;
956 }
957 
958 static void phy_startup_timeout(unsigned long data)
959 {
960 	struct sci_timer *tmr = (struct sci_timer *)data;
961 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
962 	unsigned long flags;
963 	enum sci_status status;
964 
965 	spin_lock_irqsave(&ihost->scic_lock, flags);
966 
967 	if (tmr->cancel)
968 		goto done;
969 
970 	ihost->phy_startup_timer_pending = false;
971 
972 	do {
973 		status = sci_controller_start_next_phy(ihost);
974 	} while (status != SCI_SUCCESS);
975 
976 done:
977 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
978 }
979 
980 static u16 isci_tci_active(struct isci_host *ihost)
981 {
982 	return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
983 }
984 
985 static enum sci_status sci_controller_start(struct isci_host *ihost,
986 					     u32 timeout)
987 {
988 	enum sci_status result;
989 	u16 index;
990 
991 	if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
992 		dev_warn(&ihost->pdev->dev,
993 			 "SCIC Controller start operation requested in "
994 			 "invalid state\n");
995 		return SCI_FAILURE_INVALID_STATE;
996 	}
997 
998 	/* Build the TCi free pool */
999 	BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1000 	ihost->tci_head = 0;
1001 	ihost->tci_tail = 0;
1002 	for (index = 0; index < ihost->task_context_entries; index++)
1003 		isci_tci_free(ihost, index);
1004 
1005 	/* Build the RNi free pool */
1006 	sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1007 					 ihost->remote_node_entries);
1008 
1009 	/*
1010 	 * Before anything else lets make sure we will not be
1011 	 * interrupted by the hardware.
1012 	 */
1013 	sci_controller_disable_interrupts(ihost);
1014 
1015 	/* Enable the port task scheduler */
1016 	sci_controller_enable_port_task_scheduler(ihost);
1017 
1018 	/* Assign all the task entries to ihost physical function */
1019 	sci_controller_assign_task_entries(ihost);
1020 
1021 	/* Now initialize the completion queue */
1022 	sci_controller_initialize_completion_queue(ihost);
1023 
1024 	/* Initialize the unsolicited frame queue for use */
1025 	sci_controller_initialize_unsolicited_frame_queue(ihost);
1026 
1027 	/* Start all of the ports on this controller */
1028 	for (index = 0; index < ihost->logical_port_entries; index++) {
1029 		struct isci_port *iport = &ihost->ports[index];
1030 
1031 		result = sci_port_start(iport);
1032 		if (result)
1033 			return result;
1034 	}
1035 
1036 	sci_controller_start_next_phy(ihost);
1037 
1038 	sci_mod_timer(&ihost->timer, timeout);
1039 
1040 	sci_change_state(&ihost->sm, SCIC_STARTING);
1041 
1042 	return SCI_SUCCESS;
1043 }
1044 
1045 void isci_host_scan_start(struct Scsi_Host *shost)
1046 {
1047 	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1048 	unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1049 
1050 	set_bit(IHOST_START_PENDING, &ihost->flags);
1051 
1052 	spin_lock_irq(&ihost->scic_lock);
1053 	sci_controller_start(ihost, tmo);
1054 	sci_controller_enable_interrupts(ihost);
1055 	spin_unlock_irq(&ihost->scic_lock);
1056 }
1057 
1058 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1059 {
1060 	isci_host_change_state(ihost, isci_stopped);
1061 	sci_controller_disable_interrupts(ihost);
1062 	clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1063 	wake_up(&ihost->eventq);
1064 }
1065 
1066 static void sci_controller_completion_handler(struct isci_host *ihost)
1067 {
1068 	/* Empty out the completion queue */
1069 	if (sci_controller_completion_queue_has_entries(ihost))
1070 		sci_controller_process_completions(ihost);
1071 
1072 	/* Clear the interrupt and enable all interrupts again */
1073 	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1074 	/* Could we write the value of SMU_ISR_COMPLETION? */
1075 	writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1076 	writel(0, &ihost->smu_registers->interrupt_mask);
1077 }
1078 
1079 /**
1080  * isci_host_completion_routine() - This function is the delayed service
1081  *    routine that calls the sci core library's completion handler. It's
1082  *    scheduled as a tasklet from the interrupt service routine when interrupts
1083  *    in use, or set as the timeout function in polled mode.
1084  * @data: This parameter specifies the ISCI host object
1085  *
1086  */
1087 static void isci_host_completion_routine(unsigned long data)
1088 {
1089 	struct isci_host *ihost = (struct isci_host *)data;
1090 	struct list_head    completed_request_list;
1091 	struct list_head    errored_request_list;
1092 	struct list_head    *current_position;
1093 	struct list_head    *next_position;
1094 	struct isci_request *request;
1095 	struct isci_request *next_request;
1096 	struct sas_task     *task;
1097 	u16 active;
1098 
1099 	INIT_LIST_HEAD(&completed_request_list);
1100 	INIT_LIST_HEAD(&errored_request_list);
1101 
1102 	spin_lock_irq(&ihost->scic_lock);
1103 
1104 	sci_controller_completion_handler(ihost);
1105 
1106 	/* Take the lists of completed I/Os from the host. */
1107 
1108 	list_splice_init(&ihost->requests_to_complete,
1109 			 &completed_request_list);
1110 
1111 	/* Take the list of errored I/Os from the host. */
1112 	list_splice_init(&ihost->requests_to_errorback,
1113 			 &errored_request_list);
1114 
1115 	spin_unlock_irq(&ihost->scic_lock);
1116 
1117 	/* Process any completions in the lists. */
1118 	list_for_each_safe(current_position, next_position,
1119 			   &completed_request_list) {
1120 
1121 		request = list_entry(current_position, struct isci_request,
1122 				     completed_node);
1123 		task = isci_request_access_task(request);
1124 
1125 		/* Normal notification (task_done) */
1126 		dev_dbg(&ihost->pdev->dev,
1127 			"%s: Normal - request/task = %p/%p\n",
1128 			__func__,
1129 			request,
1130 			task);
1131 
1132 		/* Return the task to libsas */
1133 		if (task != NULL) {
1134 
1135 			task->lldd_task = NULL;
1136 			if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1137 
1138 				/* If the task is already in the abort path,
1139 				* the task_done callback cannot be called.
1140 				*/
1141 				task->task_done(task);
1142 			}
1143 		}
1144 
1145 		spin_lock_irq(&ihost->scic_lock);
1146 		isci_free_tag(ihost, request->io_tag);
1147 		spin_unlock_irq(&ihost->scic_lock);
1148 	}
1149 	list_for_each_entry_safe(request, next_request, &errored_request_list,
1150 				 completed_node) {
1151 
1152 		task = isci_request_access_task(request);
1153 
1154 		/* Use sas_task_abort */
1155 		dev_warn(&ihost->pdev->dev,
1156 			 "%s: Error - request/task = %p/%p\n",
1157 			 __func__,
1158 			 request,
1159 			 task);
1160 
1161 		if (task != NULL) {
1162 
1163 			/* Put the task into the abort path if it's not there
1164 			 * already.
1165 			 */
1166 			if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1167 				sas_task_abort(task);
1168 
1169 		} else {
1170 			/* This is a case where the request has completed with a
1171 			 * status such that it needed further target servicing,
1172 			 * but the sas_task reference has already been removed
1173 			 * from the request.  Since it was errored, it was not
1174 			 * being aborted, so there is nothing to do except free
1175 			 * it.
1176 			 */
1177 
1178 			spin_lock_irq(&ihost->scic_lock);
1179 			/* Remove the request from the remote device's list
1180 			* of pending requests.
1181 			*/
1182 			list_del_init(&request->dev_node);
1183 			isci_free_tag(ihost, request->io_tag);
1184 			spin_unlock_irq(&ihost->scic_lock);
1185 		}
1186 	}
1187 
1188 	/* the coalesence timeout doubles at each encoding step, so
1189 	 * update it based on the ilog2 value of the outstanding requests
1190 	 */
1191 	active = isci_tci_active(ihost);
1192 	writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1193 	       SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1194 	       &ihost->smu_registers->interrupt_coalesce_control);
1195 }
1196 
1197 /**
1198  * sci_controller_stop() - This method will stop an individual controller
1199  *    object.This method will invoke the associated user callback upon
1200  *    completion.  The completion callback is called when the following
1201  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1202  *    controller has been quiesced. This method will ensure that all IO
1203  *    requests are quiesced, phys are stopped, and all additional operation by
1204  *    the hardware is halted.
1205  * @controller: the handle to the controller object to stop.
1206  * @timeout: This parameter specifies the number of milliseconds in which the
1207  *    stop operation should complete.
1208  *
1209  * The controller must be in the STARTED or STOPPED state. Indicate if the
1210  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1211  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1212  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1213  * controller is not either in the STARTED or STOPPED states.
1214  */
1215 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1216 {
1217 	if (ihost->sm.current_state_id != SCIC_READY) {
1218 		dev_warn(&ihost->pdev->dev,
1219 			 "SCIC Controller stop operation requested in "
1220 			 "invalid state\n");
1221 		return SCI_FAILURE_INVALID_STATE;
1222 	}
1223 
1224 	sci_mod_timer(&ihost->timer, timeout);
1225 	sci_change_state(&ihost->sm, SCIC_STOPPING);
1226 	return SCI_SUCCESS;
1227 }
1228 
1229 /**
1230  * sci_controller_reset() - This method will reset the supplied core
1231  *    controller regardless of the state of said controller.  This operation is
1232  *    considered destructive.  In other words, all current operations are wiped
1233  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1234  *    requests are not aborted or completed at the actual remote device.
1235  * @controller: the handle to the controller object to reset.
1236  *
1237  * Indicate if the controller reset method succeeded or failed in some way.
1238  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1239  * the controller reset operation is unable to complete.
1240  */
1241 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1242 {
1243 	switch (ihost->sm.current_state_id) {
1244 	case SCIC_RESET:
1245 	case SCIC_READY:
1246 	case SCIC_STOPPED:
1247 	case SCIC_FAILED:
1248 		/*
1249 		 * The reset operation is not a graceful cleanup, just
1250 		 * perform the state transition.
1251 		 */
1252 		sci_change_state(&ihost->sm, SCIC_RESETTING);
1253 		return SCI_SUCCESS;
1254 	default:
1255 		dev_warn(&ihost->pdev->dev,
1256 			 "SCIC Controller reset operation requested in "
1257 			 "invalid state\n");
1258 		return SCI_FAILURE_INVALID_STATE;
1259 	}
1260 }
1261 
1262 void isci_host_deinit(struct isci_host *ihost)
1263 {
1264 	int i;
1265 
1266 	/* disable output data selects */
1267 	for (i = 0; i < isci_gpio_count(ihost); i++)
1268 		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1269 
1270 	isci_host_change_state(ihost, isci_stopping);
1271 	for (i = 0; i < SCI_MAX_PORTS; i++) {
1272 		struct isci_port *iport = &ihost->ports[i];
1273 		struct isci_remote_device *idev, *d;
1274 
1275 		list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1276 			if (test_bit(IDEV_ALLOCATED, &idev->flags))
1277 				isci_remote_device_stop(ihost, idev);
1278 		}
1279 	}
1280 
1281 	set_bit(IHOST_STOP_PENDING, &ihost->flags);
1282 
1283 	spin_lock_irq(&ihost->scic_lock);
1284 	sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1285 	spin_unlock_irq(&ihost->scic_lock);
1286 
1287 	wait_for_stop(ihost);
1288 
1289 	/* disable sgpio: where the above wait should give time for the
1290 	 * enclosure to sample the gpios going inactive
1291 	 */
1292 	writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1293 
1294 	sci_controller_reset(ihost);
1295 
1296 	/* Cancel any/all outstanding port timers */
1297 	for (i = 0; i < ihost->logical_port_entries; i++) {
1298 		struct isci_port *iport = &ihost->ports[i];
1299 		del_timer_sync(&iport->timer.timer);
1300 	}
1301 
1302 	/* Cancel any/all outstanding phy timers */
1303 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1304 		struct isci_phy *iphy = &ihost->phys[i];
1305 		del_timer_sync(&iphy->sata_timer.timer);
1306 	}
1307 
1308 	del_timer_sync(&ihost->port_agent.timer.timer);
1309 
1310 	del_timer_sync(&ihost->power_control.timer.timer);
1311 
1312 	del_timer_sync(&ihost->timer.timer);
1313 
1314 	del_timer_sync(&ihost->phy_timer.timer);
1315 }
1316 
1317 static void __iomem *scu_base(struct isci_host *isci_host)
1318 {
1319 	struct pci_dev *pdev = isci_host->pdev;
1320 	int id = isci_host->id;
1321 
1322 	return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1323 }
1324 
1325 static void __iomem *smu_base(struct isci_host *isci_host)
1326 {
1327 	struct pci_dev *pdev = isci_host->pdev;
1328 	int id = isci_host->id;
1329 
1330 	return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1331 }
1332 
1333 static void isci_user_parameters_get(struct sci_user_parameters *u)
1334 {
1335 	int i;
1336 
1337 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1338 		struct sci_phy_user_params *u_phy = &u->phys[i];
1339 
1340 		u_phy->max_speed_generation = phy_gen;
1341 
1342 		/* we are not exporting these for now */
1343 		u_phy->align_insertion_frequency = 0x7f;
1344 		u_phy->in_connection_align_insertion_frequency = 0xff;
1345 		u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1346 	}
1347 
1348 	u->stp_inactivity_timeout = stp_inactive_to;
1349 	u->ssp_inactivity_timeout = ssp_inactive_to;
1350 	u->stp_max_occupancy_timeout = stp_max_occ_to;
1351 	u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1352 	u->no_outbound_task_timeout = no_outbound_task_to;
1353 	u->max_concurr_spinup = max_concurr_spinup;
1354 }
1355 
1356 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1357 {
1358 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1359 
1360 	sci_change_state(&ihost->sm, SCIC_RESET);
1361 }
1362 
1363 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1364 {
1365 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1366 
1367 	sci_del_timer(&ihost->timer);
1368 }
1369 
1370 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1371 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1372 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1373 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1374 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1375 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1376 
1377 /**
1378  * sci_controller_set_interrupt_coalescence() - This method allows the user to
1379  *    configure the interrupt coalescence.
1380  * @controller: This parameter represents the handle to the controller object
1381  *    for which its interrupt coalesce register is overridden.
1382  * @coalesce_number: Used to control the number of entries in the Completion
1383  *    Queue before an interrupt is generated. If the number of entries exceed
1384  *    this number, an interrupt will be generated. The valid range of the input
1385  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1386  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1387  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1388  *    interrupt coalescing timeout.
1389  *
1390  * Indicate if the user successfully set the interrupt coalesce parameters.
1391  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1392  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1393  */
1394 static enum sci_status
1395 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1396 					 u32 coalesce_number,
1397 					 u32 coalesce_timeout)
1398 {
1399 	u8 timeout_encode = 0;
1400 	u32 min = 0;
1401 	u32 max = 0;
1402 
1403 	/* Check if the input parameters fall in the range. */
1404 	if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1405 		return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1406 
1407 	/*
1408 	 *  Defined encoding for interrupt coalescing timeout:
1409 	 *              Value   Min      Max     Units
1410 	 *              -----   ---      ---     -----
1411 	 *              0       -        -       Disabled
1412 	 *              1       13.3     20.0    ns
1413 	 *              2       26.7     40.0
1414 	 *              3       53.3     80.0
1415 	 *              4       106.7    160.0
1416 	 *              5       213.3    320.0
1417 	 *              6       426.7    640.0
1418 	 *              7       853.3    1280.0
1419 	 *              8       1.7      2.6     us
1420 	 *              9       3.4      5.1
1421 	 *              10      6.8      10.2
1422 	 *              11      13.7     20.5
1423 	 *              12      27.3     41.0
1424 	 *              13      54.6     81.9
1425 	 *              14      109.2    163.8
1426 	 *              15      218.5    327.7
1427 	 *              16      436.9    655.4
1428 	 *              17      873.8    1310.7
1429 	 *              18      1.7      2.6     ms
1430 	 *              19      3.5      5.2
1431 	 *              20      7.0      10.5
1432 	 *              21      14.0     21.0
1433 	 *              22      28.0     41.9
1434 	 *              23      55.9     83.9
1435 	 *              24      111.8    167.8
1436 	 *              25      223.7    335.5
1437 	 *              26      447.4    671.1
1438 	 *              27      894.8    1342.2
1439 	 *              28      1.8      2.7     s
1440 	 *              Others Undefined */
1441 
1442 	/*
1443 	 * Use the table above to decide the encode of interrupt coalescing timeout
1444 	 * value for register writing. */
1445 	if (coalesce_timeout == 0)
1446 		timeout_encode = 0;
1447 	else{
1448 		/* make the timeout value in unit of (10 ns). */
1449 		coalesce_timeout = coalesce_timeout * 100;
1450 		min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1451 		max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1452 
1453 		/* get the encode of timeout for register writing. */
1454 		for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1455 		      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1456 		      timeout_encode++) {
1457 			if (min <= coalesce_timeout &&  max > coalesce_timeout)
1458 				break;
1459 			else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1460 				 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1461 				if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1462 					break;
1463 				else{
1464 					timeout_encode++;
1465 					break;
1466 				}
1467 			} else {
1468 				max = max * 2;
1469 				min = min * 2;
1470 			}
1471 		}
1472 
1473 		if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1474 			/* the value is out of range. */
1475 			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1476 	}
1477 
1478 	writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1479 	       SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1480 	       &ihost->smu_registers->interrupt_coalesce_control);
1481 
1482 
1483 	ihost->interrupt_coalesce_number = (u16)coalesce_number;
1484 	ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1485 
1486 	return SCI_SUCCESS;
1487 }
1488 
1489 
1490 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1491 {
1492 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1493 
1494 	/* set the default interrupt coalescence number and timeout value. */
1495 	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1496 }
1497 
1498 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1499 {
1500 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1501 
1502 	/* disable interrupt coalescence. */
1503 	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1504 }
1505 
1506 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1507 {
1508 	u32 index;
1509 	enum sci_status status;
1510 	enum sci_status phy_status;
1511 
1512 	status = SCI_SUCCESS;
1513 
1514 	for (index = 0; index < SCI_MAX_PHYS; index++) {
1515 		phy_status = sci_phy_stop(&ihost->phys[index]);
1516 
1517 		if (phy_status != SCI_SUCCESS &&
1518 		    phy_status != SCI_FAILURE_INVALID_STATE) {
1519 			status = SCI_FAILURE;
1520 
1521 			dev_warn(&ihost->pdev->dev,
1522 				 "%s: Controller stop operation failed to stop "
1523 				 "phy %d because of status %d.\n",
1524 				 __func__,
1525 				 ihost->phys[index].phy_index, phy_status);
1526 		}
1527 	}
1528 
1529 	return status;
1530 }
1531 
1532 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1533 {
1534 	u32 index;
1535 	enum sci_status port_status;
1536 	enum sci_status status = SCI_SUCCESS;
1537 
1538 	for (index = 0; index < ihost->logical_port_entries; index++) {
1539 		struct isci_port *iport = &ihost->ports[index];
1540 
1541 		port_status = sci_port_stop(iport);
1542 
1543 		if ((port_status != SCI_SUCCESS) &&
1544 		    (port_status != SCI_FAILURE_INVALID_STATE)) {
1545 			status = SCI_FAILURE;
1546 
1547 			dev_warn(&ihost->pdev->dev,
1548 				 "%s: Controller stop operation failed to "
1549 				 "stop port %d because of status %d.\n",
1550 				 __func__,
1551 				 iport->logical_port_index,
1552 				 port_status);
1553 		}
1554 	}
1555 
1556 	return status;
1557 }
1558 
1559 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1560 {
1561 	u32 index;
1562 	enum sci_status status;
1563 	enum sci_status device_status;
1564 
1565 	status = SCI_SUCCESS;
1566 
1567 	for (index = 0; index < ihost->remote_node_entries; index++) {
1568 		if (ihost->device_table[index] != NULL) {
1569 			/* / @todo What timeout value do we want to provide to this request? */
1570 			device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1571 
1572 			if ((device_status != SCI_SUCCESS) &&
1573 			    (device_status != SCI_FAILURE_INVALID_STATE)) {
1574 				dev_warn(&ihost->pdev->dev,
1575 					 "%s: Controller stop operation failed "
1576 					 "to stop device 0x%p because of "
1577 					 "status %d.\n",
1578 					 __func__,
1579 					 ihost->device_table[index], device_status);
1580 			}
1581 		}
1582 	}
1583 
1584 	return status;
1585 }
1586 
1587 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1588 {
1589 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1590 
1591 	/* Stop all of the components for this controller */
1592 	sci_controller_stop_phys(ihost);
1593 	sci_controller_stop_ports(ihost);
1594 	sci_controller_stop_devices(ihost);
1595 }
1596 
1597 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1598 {
1599 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1600 
1601 	sci_del_timer(&ihost->timer);
1602 }
1603 
1604 static void sci_controller_reset_hardware(struct isci_host *ihost)
1605 {
1606 	/* Disable interrupts so we dont take any spurious interrupts */
1607 	sci_controller_disable_interrupts(ihost);
1608 
1609 	/* Reset the SCU */
1610 	writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1611 
1612 	/* Delay for 1ms to before clearing the CQP and UFQPR. */
1613 	udelay(1000);
1614 
1615 	/* The write to the CQGR clears the CQP */
1616 	writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1617 
1618 	/* The write to the UFQGP clears the UFQPR */
1619 	writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1620 }
1621 
1622 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1623 {
1624 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1625 
1626 	sci_controller_reset_hardware(ihost);
1627 	sci_change_state(&ihost->sm, SCIC_RESET);
1628 }
1629 
1630 static const struct sci_base_state sci_controller_state_table[] = {
1631 	[SCIC_INITIAL] = {
1632 		.enter_state = sci_controller_initial_state_enter,
1633 	},
1634 	[SCIC_RESET] = {},
1635 	[SCIC_INITIALIZING] = {},
1636 	[SCIC_INITIALIZED] = {},
1637 	[SCIC_STARTING] = {
1638 		.exit_state  = sci_controller_starting_state_exit,
1639 	},
1640 	[SCIC_READY] = {
1641 		.enter_state = sci_controller_ready_state_enter,
1642 		.exit_state  = sci_controller_ready_state_exit,
1643 	},
1644 	[SCIC_RESETTING] = {
1645 		.enter_state = sci_controller_resetting_state_enter,
1646 	},
1647 	[SCIC_STOPPING] = {
1648 		.enter_state = sci_controller_stopping_state_enter,
1649 		.exit_state = sci_controller_stopping_state_exit,
1650 	},
1651 	[SCIC_STOPPED] = {},
1652 	[SCIC_FAILED] = {}
1653 };
1654 
1655 static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
1656 {
1657 	/* these defaults are overridden by the platform / firmware */
1658 	u16 index;
1659 
1660 	/* Default to APC mode. */
1661 	ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1662 
1663 	/* Default to APC mode. */
1664 	ihost->oem_parameters.controller.max_concurr_spin_up = 1;
1665 
1666 	/* Default to no SSC operation. */
1667 	ihost->oem_parameters.controller.do_enable_ssc = false;
1668 
1669 	/* Initialize all of the port parameter information to narrow ports. */
1670 	for (index = 0; index < SCI_MAX_PORTS; index++) {
1671 		ihost->oem_parameters.ports[index].phy_mask = 0;
1672 	}
1673 
1674 	/* Initialize all of the phy parameter information. */
1675 	for (index = 0; index < SCI_MAX_PHYS; index++) {
1676 		/* Default to 6G (i.e. Gen 3) for now. */
1677 		ihost->user_parameters.phys[index].max_speed_generation = 3;
1678 
1679 		/* the frequencies cannot be 0 */
1680 		ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
1681 		ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
1682 		ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1683 
1684 		/*
1685 		 * Previous Vitesse based expanders had a arbitration issue that
1686 		 * is worked around by having the upper 32-bits of SAS address
1687 		 * with a value greater then the Vitesse company identifier.
1688 		 * Hence, usage of 0x5FCFFFFF. */
1689 		ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
1690 		ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
1691 	}
1692 
1693 	ihost->user_parameters.stp_inactivity_timeout = 5;
1694 	ihost->user_parameters.ssp_inactivity_timeout = 5;
1695 	ihost->user_parameters.stp_max_occupancy_timeout = 5;
1696 	ihost->user_parameters.ssp_max_occupancy_timeout = 20;
1697 	ihost->user_parameters.no_outbound_task_timeout = 20;
1698 }
1699 
1700 static void controller_timeout(unsigned long data)
1701 {
1702 	struct sci_timer *tmr = (struct sci_timer *)data;
1703 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1704 	struct sci_base_state_machine *sm = &ihost->sm;
1705 	unsigned long flags;
1706 
1707 	spin_lock_irqsave(&ihost->scic_lock, flags);
1708 
1709 	if (tmr->cancel)
1710 		goto done;
1711 
1712 	if (sm->current_state_id == SCIC_STARTING)
1713 		sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1714 	else if (sm->current_state_id == SCIC_STOPPING) {
1715 		sci_change_state(sm, SCIC_FAILED);
1716 		isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1717 	} else	/* / @todo Now what do we want to do in this case? */
1718 		dev_err(&ihost->pdev->dev,
1719 			"%s: Controller timer fired when controller was not "
1720 			"in a state being timed.\n",
1721 			__func__);
1722 
1723 done:
1724 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1725 }
1726 
1727 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1728 						void __iomem *scu_base,
1729 						void __iomem *smu_base)
1730 {
1731 	u8 i;
1732 
1733 	sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1734 
1735 	ihost->scu_registers = scu_base;
1736 	ihost->smu_registers = smu_base;
1737 
1738 	sci_port_configuration_agent_construct(&ihost->port_agent);
1739 
1740 	/* Construct the ports for this controller */
1741 	for (i = 0; i < SCI_MAX_PORTS; i++)
1742 		sci_port_construct(&ihost->ports[i], i, ihost);
1743 	sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1744 
1745 	/* Construct the phys for this controller */
1746 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1747 		/* Add all the PHYs to the dummy port */
1748 		sci_phy_construct(&ihost->phys[i],
1749 				  &ihost->ports[SCI_MAX_PORTS], i);
1750 	}
1751 
1752 	ihost->invalid_phy_mask = 0;
1753 
1754 	sci_init_timer(&ihost->timer, controller_timeout);
1755 
1756 	/* Initialize the User and OEM parameters to default values. */
1757 	sci_controller_set_default_config_parameters(ihost);
1758 
1759 	return sci_controller_reset(ihost);
1760 }
1761 
1762 int sci_oem_parameters_validate(struct sci_oem_params *oem)
1763 {
1764 	int i;
1765 
1766 	for (i = 0; i < SCI_MAX_PORTS; i++)
1767 		if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1768 			return -EINVAL;
1769 
1770 	for (i = 0; i < SCI_MAX_PHYS; i++)
1771 		if (oem->phys[i].sas_address.high == 0 &&
1772 		    oem->phys[i].sas_address.low == 0)
1773 			return -EINVAL;
1774 
1775 	if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1776 		for (i = 0; i < SCI_MAX_PHYS; i++)
1777 			if (oem->ports[i].phy_mask != 0)
1778 				return -EINVAL;
1779 	} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1780 		u8 phy_mask = 0;
1781 
1782 		for (i = 0; i < SCI_MAX_PHYS; i++)
1783 			phy_mask |= oem->ports[i].phy_mask;
1784 
1785 		if (phy_mask == 0)
1786 			return -EINVAL;
1787 	} else
1788 		return -EINVAL;
1789 
1790 	if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1791 	    oem->controller.max_concurr_spin_up < 1)
1792 		return -EINVAL;
1793 
1794 	return 0;
1795 }
1796 
1797 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
1798 {
1799 	u32 state = ihost->sm.current_state_id;
1800 
1801 	if (state == SCIC_RESET ||
1802 	    state == SCIC_INITIALIZING ||
1803 	    state == SCIC_INITIALIZED) {
1804 
1805 		if (sci_oem_parameters_validate(&ihost->oem_parameters))
1806 			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1807 
1808 		return SCI_SUCCESS;
1809 	}
1810 
1811 	return SCI_FAILURE_INVALID_STATE;
1812 }
1813 
1814 static u8 max_spin_up(struct isci_host *ihost)
1815 {
1816 	if (ihost->user_parameters.max_concurr_spinup)
1817 		return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1818 			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1819 	else
1820 		return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1821 			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1822 }
1823 
1824 static void power_control_timeout(unsigned long data)
1825 {
1826 	struct sci_timer *tmr = (struct sci_timer *)data;
1827 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1828 	struct isci_phy *iphy;
1829 	unsigned long flags;
1830 	u8 i;
1831 
1832 	spin_lock_irqsave(&ihost->scic_lock, flags);
1833 
1834 	if (tmr->cancel)
1835 		goto done;
1836 
1837 	ihost->power_control.phys_granted_power = 0;
1838 
1839 	if (ihost->power_control.phys_waiting == 0) {
1840 		ihost->power_control.timer_started = false;
1841 		goto done;
1842 	}
1843 
1844 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1845 
1846 		if (ihost->power_control.phys_waiting == 0)
1847 			break;
1848 
1849 		iphy = ihost->power_control.requesters[i];
1850 		if (iphy == NULL)
1851 			continue;
1852 
1853 		if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1854 			break;
1855 
1856 		ihost->power_control.requesters[i] = NULL;
1857 		ihost->power_control.phys_waiting--;
1858 		ihost->power_control.phys_granted_power++;
1859 		sci_phy_consume_power_handler(iphy);
1860 	}
1861 
1862 	/*
1863 	 * It doesn't matter if the power list is empty, we need to start the
1864 	 * timer in case another phy becomes ready.
1865 	 */
1866 	sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1867 	ihost->power_control.timer_started = true;
1868 
1869 done:
1870 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1871 }
1872 
1873 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1874 					       struct isci_phy *iphy)
1875 {
1876 	BUG_ON(iphy == NULL);
1877 
1878 	if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1879 		ihost->power_control.phys_granted_power++;
1880 		sci_phy_consume_power_handler(iphy);
1881 
1882 		/*
1883 		 * stop and start the power_control timer. When the timer fires, the
1884 		 * no_of_phys_granted_power will be set to 0
1885 		 */
1886 		if (ihost->power_control.timer_started)
1887 			sci_del_timer(&ihost->power_control.timer);
1888 
1889 		sci_mod_timer(&ihost->power_control.timer,
1890 				 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1891 		ihost->power_control.timer_started = true;
1892 
1893 	} else {
1894 		/* Add the phy in the waiting list */
1895 		ihost->power_control.requesters[iphy->phy_index] = iphy;
1896 		ihost->power_control.phys_waiting++;
1897 	}
1898 }
1899 
1900 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1901 					       struct isci_phy *iphy)
1902 {
1903 	BUG_ON(iphy == NULL);
1904 
1905 	if (ihost->power_control.requesters[iphy->phy_index])
1906 		ihost->power_control.phys_waiting--;
1907 
1908 	ihost->power_control.requesters[iphy->phy_index] = NULL;
1909 }
1910 
1911 #define AFE_REGISTER_WRITE_DELAY 10
1912 
1913 /* Initialize the AFE for this phy index. We need to read the AFE setup from
1914  * the OEM parameters
1915  */
1916 static void sci_controller_afe_initialization(struct isci_host *ihost)
1917 {
1918 	const struct sci_oem_params *oem = &ihost->oem_parameters;
1919 	struct pci_dev *pdev = ihost->pdev;
1920 	u32 afe_status;
1921 	u32 phy_id;
1922 
1923 	/* Clear DFX Status registers */
1924 	writel(0x0081000f, &ihost->scu_registers->afe.afe_dfx_master_control0);
1925 	udelay(AFE_REGISTER_WRITE_DELAY);
1926 
1927 	if (is_b0(pdev)) {
1928 		/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1929 		 * Timer, PM Stagger Timer */
1930 		writel(0x0007BFFF, &ihost->scu_registers->afe.afe_pmsn_master_control2);
1931 		udelay(AFE_REGISTER_WRITE_DELAY);
1932 	}
1933 
1934 	/* Configure bias currents to normal */
1935 	if (is_a2(pdev))
1936 		writel(0x00005A00, &ihost->scu_registers->afe.afe_bias_control);
1937 	else if (is_b0(pdev) || is_c0(pdev))
1938 		writel(0x00005F00, &ihost->scu_registers->afe.afe_bias_control);
1939 
1940 	udelay(AFE_REGISTER_WRITE_DELAY);
1941 
1942 	/* Enable PLL */
1943 	if (is_b0(pdev) || is_c0(pdev))
1944 		writel(0x80040A08, &ihost->scu_registers->afe.afe_pll_control0);
1945 	else
1946 		writel(0x80040908, &ihost->scu_registers->afe.afe_pll_control0);
1947 
1948 	udelay(AFE_REGISTER_WRITE_DELAY);
1949 
1950 	/* Wait for the PLL to lock */
1951 	do {
1952 		afe_status = readl(&ihost->scu_registers->afe.afe_common_block_status);
1953 		udelay(AFE_REGISTER_WRITE_DELAY);
1954 	} while ((afe_status & 0x00001000) == 0);
1955 
1956 	if (is_a2(pdev)) {
1957 		/* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
1958 		writel(0x7bcc96ad, &ihost->scu_registers->afe.afe_pmsn_master_control0);
1959 		udelay(AFE_REGISTER_WRITE_DELAY);
1960 	}
1961 
1962 	for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1963 		const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1964 
1965 		if (is_b0(pdev)) {
1966 			 /* Configure transmitter SSC parameters */
1967 			writel(0x00030000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1968 			udelay(AFE_REGISTER_WRITE_DELAY);
1969 		} else if (is_c0(pdev)) {
1970 			 /* Configure transmitter SSC parameters */
1971 			writel(0x0003000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1972 			udelay(AFE_REGISTER_WRITE_DELAY);
1973 
1974 			/*
1975 			 * All defaults, except the Receive Word Alignament/Comma Detect
1976 			 * Enable....(0xe800) */
1977 			writel(0x00004500, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1978 			udelay(AFE_REGISTER_WRITE_DELAY);
1979 		} else {
1980 			/*
1981 			 * All defaults, except the Receive Word Alignament/Comma Detect
1982 			 * Enable....(0xe800) */
1983 			writel(0x00004512, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1984 			udelay(AFE_REGISTER_WRITE_DELAY);
1985 
1986 			writel(0x0050100F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
1987 			udelay(AFE_REGISTER_WRITE_DELAY);
1988 		}
1989 
1990 		/*
1991 		 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1992 		 * & increase TX int & ext bias 20%....(0xe85c) */
1993 		if (is_a2(pdev))
1994 			writel(0x000003F0, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1995 		else if (is_b0(pdev)) {
1996 			 /* Power down TX and RX (PWRDNTX and PWRDNRX) */
1997 			writel(0x000003D7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1998 			udelay(AFE_REGISTER_WRITE_DELAY);
1999 
2000 			/*
2001 			 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2002 			 * & increase TX int & ext bias 20%....(0xe85c) */
2003 			writel(0x000003D4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2004 		} else {
2005 			writel(0x000001E7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2006 			udelay(AFE_REGISTER_WRITE_DELAY);
2007 
2008 			/*
2009 			 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2010 			 * & increase TX int & ext bias 20%....(0xe85c) */
2011 			writel(0x000001E4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2012 		}
2013 		udelay(AFE_REGISTER_WRITE_DELAY);
2014 
2015 		if (is_a2(pdev)) {
2016 			/* Enable TX equalization (0xe824) */
2017 			writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2018 			udelay(AFE_REGISTER_WRITE_DELAY);
2019 		}
2020 
2021 		/*
2022 		 * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
2023 		 * RDD=0x0(RX Detect Enabled) ....(0xe800) */
2024 		writel(0x00004100, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2025 		udelay(AFE_REGISTER_WRITE_DELAY);
2026 
2027 		/* Leave DFE/FFE on */
2028 		if (is_a2(pdev))
2029 			writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2030 		else if (is_b0(pdev)) {
2031 			writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2032 			udelay(AFE_REGISTER_WRITE_DELAY);
2033 			/* Enable TX equalization (0xe824) */
2034 			writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2035 		} else {
2036 			writel(0x0140DF0F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control1);
2037 			udelay(AFE_REGISTER_WRITE_DELAY);
2038 
2039 			writel(0x3F6F103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2040 			udelay(AFE_REGISTER_WRITE_DELAY);
2041 
2042 			/* Enable TX equalization (0xe824) */
2043 			writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2044 		}
2045 
2046 		udelay(AFE_REGISTER_WRITE_DELAY);
2047 
2048 		writel(oem_phy->afe_tx_amp_control0,
2049 			&ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2050 		udelay(AFE_REGISTER_WRITE_DELAY);
2051 
2052 		writel(oem_phy->afe_tx_amp_control1,
2053 			&ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2054 		udelay(AFE_REGISTER_WRITE_DELAY);
2055 
2056 		writel(oem_phy->afe_tx_amp_control2,
2057 			&ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2058 		udelay(AFE_REGISTER_WRITE_DELAY);
2059 
2060 		writel(oem_phy->afe_tx_amp_control3,
2061 			&ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2062 		udelay(AFE_REGISTER_WRITE_DELAY);
2063 	}
2064 
2065 	/* Transfer control to the PEs */
2066 	writel(0x00010f00, &ihost->scu_registers->afe.afe_dfx_master_control0);
2067 	udelay(AFE_REGISTER_WRITE_DELAY);
2068 }
2069 
2070 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2071 {
2072 	sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2073 
2074 	memset(ihost->power_control.requesters, 0,
2075 	       sizeof(ihost->power_control.requesters));
2076 
2077 	ihost->power_control.phys_waiting = 0;
2078 	ihost->power_control.phys_granted_power = 0;
2079 }
2080 
2081 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2082 {
2083 	struct sci_base_state_machine *sm = &ihost->sm;
2084 	enum sci_status result = SCI_FAILURE;
2085 	unsigned long i, state, val;
2086 
2087 	if (ihost->sm.current_state_id != SCIC_RESET) {
2088 		dev_warn(&ihost->pdev->dev,
2089 			 "SCIC Controller initialize operation requested "
2090 			 "in invalid state\n");
2091 		return SCI_FAILURE_INVALID_STATE;
2092 	}
2093 
2094 	sci_change_state(sm, SCIC_INITIALIZING);
2095 
2096 	sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2097 
2098 	ihost->next_phy_to_start = 0;
2099 	ihost->phy_startup_timer_pending = false;
2100 
2101 	sci_controller_initialize_power_control(ihost);
2102 
2103 	/*
2104 	 * There is nothing to do here for B0 since we do not have to
2105 	 * program the AFE registers.
2106 	 * / @todo The AFE settings are supposed to be correct for the B0 but
2107 	 * /       presently they seem to be wrong. */
2108 	sci_controller_afe_initialization(ihost);
2109 
2110 
2111 	/* Take the hardware out of reset */
2112 	writel(0, &ihost->smu_registers->soft_reset_control);
2113 
2114 	/*
2115 	 * / @todo Provide meaningfull error code for hardware failure
2116 	 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2117 	for (i = 100; i >= 1; i--) {
2118 		u32 status;
2119 
2120 		/* Loop until the hardware reports success */
2121 		udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2122 		status = readl(&ihost->smu_registers->control_status);
2123 
2124 		if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2125 			break;
2126 	}
2127 	if (i == 0)
2128 		goto out;
2129 
2130 	/*
2131 	 * Determine what are the actaul device capacities that the
2132 	 * hardware will support */
2133 	val = readl(&ihost->smu_registers->device_context_capacity);
2134 
2135 	/* Record the smaller of the two capacity values */
2136 	ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2137 	ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2138 	ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2139 
2140 	/*
2141 	 * Make all PEs that are unassigned match up with the
2142 	 * logical ports
2143 	 */
2144 	for (i = 0; i < ihost->logical_port_entries; i++) {
2145 		struct scu_port_task_scheduler_group_registers __iomem
2146 			*ptsg = &ihost->scu_registers->peg0.ptsg;
2147 
2148 		writel(i, &ptsg->protocol_engine[i]);
2149 	}
2150 
2151 	/* Initialize hardware PCI Relaxed ordering in DMA engines */
2152 	val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2153 	val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2154 	writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2155 
2156 	val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2157 	val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2158 	writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2159 
2160 	/*
2161 	 * Initialize the PHYs before the PORTs because the PHY registers
2162 	 * are accessed during the port initialization.
2163 	 */
2164 	for (i = 0; i < SCI_MAX_PHYS; i++) {
2165 		result = sci_phy_initialize(&ihost->phys[i],
2166 					    &ihost->scu_registers->peg0.pe[i].tl,
2167 					    &ihost->scu_registers->peg0.pe[i].ll);
2168 		if (result != SCI_SUCCESS)
2169 			goto out;
2170 	}
2171 
2172 	for (i = 0; i < ihost->logical_port_entries; i++) {
2173 		struct isci_port *iport = &ihost->ports[i];
2174 
2175 		iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2176 		iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2177 		iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2178 	}
2179 
2180 	result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2181 
2182  out:
2183 	/* Advance the controller state machine */
2184 	if (result == SCI_SUCCESS)
2185 		state = SCIC_INITIALIZED;
2186 	else
2187 		state = SCIC_FAILED;
2188 	sci_change_state(sm, state);
2189 
2190 	return result;
2191 }
2192 
2193 static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
2194 					       struct sci_user_parameters *sci_parms)
2195 {
2196 	u32 state = ihost->sm.current_state_id;
2197 
2198 	if (state == SCIC_RESET ||
2199 	    state == SCIC_INITIALIZING ||
2200 	    state == SCIC_INITIALIZED) {
2201 		u16 index;
2202 
2203 		/*
2204 		 * Validate the user parameters.  If they are not legal, then
2205 		 * return a failure.
2206 		 */
2207 		for (index = 0; index < SCI_MAX_PHYS; index++) {
2208 			struct sci_phy_user_params *user_phy;
2209 
2210 			user_phy = &sci_parms->phys[index];
2211 
2212 			if (!((user_phy->max_speed_generation <=
2213 						SCIC_SDS_PARM_MAX_SPEED) &&
2214 			      (user_phy->max_speed_generation >
2215 						SCIC_SDS_PARM_NO_SPEED)))
2216 				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2217 
2218 			if (user_phy->in_connection_align_insertion_frequency <
2219 					3)
2220 				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2221 
2222 			if ((user_phy->in_connection_align_insertion_frequency <
2223 						3) ||
2224 			    (user_phy->align_insertion_frequency == 0) ||
2225 			    (user_phy->
2226 				notify_enable_spin_up_insertion_frequency ==
2227 						0))
2228 				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2229 		}
2230 
2231 		if ((sci_parms->stp_inactivity_timeout == 0) ||
2232 		    (sci_parms->ssp_inactivity_timeout == 0) ||
2233 		    (sci_parms->stp_max_occupancy_timeout == 0) ||
2234 		    (sci_parms->ssp_max_occupancy_timeout == 0) ||
2235 		    (sci_parms->no_outbound_task_timeout == 0))
2236 			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2237 
2238 		memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
2239 
2240 		return SCI_SUCCESS;
2241 	}
2242 
2243 	return SCI_FAILURE_INVALID_STATE;
2244 }
2245 
2246 static int sci_controller_mem_init(struct isci_host *ihost)
2247 {
2248 	struct device *dev = &ihost->pdev->dev;
2249 	dma_addr_t dma;
2250 	size_t size;
2251 	int err;
2252 
2253 	size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2254 	ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2255 	if (!ihost->completion_queue)
2256 		return -ENOMEM;
2257 
2258 	writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
2259 	writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
2260 
2261 	size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2262 	ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
2263 							       GFP_KERNEL);
2264 	if (!ihost->remote_node_context_table)
2265 		return -ENOMEM;
2266 
2267 	writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
2268 	writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
2269 
2270 	size = ihost->task_context_entries * sizeof(struct scu_task_context),
2271 	ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2272 	if (!ihost->task_context_table)
2273 		return -ENOMEM;
2274 
2275 	ihost->task_context_dma = dma;
2276 	writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
2277 	writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
2278 
2279 	err = sci_unsolicited_frame_control_construct(ihost);
2280 	if (err)
2281 		return err;
2282 
2283 	/*
2284 	 * Inform the silicon as to the location of the UF headers and
2285 	 * address table.
2286 	 */
2287 	writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2288 		&ihost->scu_registers->sdma.uf_header_base_address_lower);
2289 	writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2290 		&ihost->scu_registers->sdma.uf_header_base_address_upper);
2291 
2292 	writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2293 		&ihost->scu_registers->sdma.uf_address_table_lower);
2294 	writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2295 		&ihost->scu_registers->sdma.uf_address_table_upper);
2296 
2297 	return 0;
2298 }
2299 
2300 int isci_host_init(struct isci_host *ihost)
2301 {
2302 	int err = 0, i;
2303 	enum sci_status status;
2304 	struct sci_user_parameters sci_user_params;
2305 	struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
2306 
2307 	spin_lock_init(&ihost->state_lock);
2308 	spin_lock_init(&ihost->scic_lock);
2309 	init_waitqueue_head(&ihost->eventq);
2310 
2311 	isci_host_change_state(ihost, isci_starting);
2312 
2313 	status = sci_controller_construct(ihost, scu_base(ihost),
2314 					  smu_base(ihost));
2315 
2316 	if (status != SCI_SUCCESS) {
2317 		dev_err(&ihost->pdev->dev,
2318 			"%s: sci_controller_construct failed - status = %x\n",
2319 			__func__,
2320 			status);
2321 		return -ENODEV;
2322 	}
2323 
2324 	ihost->sas_ha.dev = &ihost->pdev->dev;
2325 	ihost->sas_ha.lldd_ha = ihost;
2326 
2327 	/*
2328 	 * grab initial values stored in the controller object for OEM and USER
2329 	 * parameters
2330 	 */
2331 	isci_user_parameters_get(&sci_user_params);
2332 	status = sci_user_parameters_set(ihost, &sci_user_params);
2333 	if (status != SCI_SUCCESS) {
2334 		dev_warn(&ihost->pdev->dev,
2335 			 "%s: sci_user_parameters_set failed\n",
2336 			 __func__);
2337 		return -ENODEV;
2338 	}
2339 
2340 	/* grab any OEM parameters specified in orom */
2341 	if (pci_info->orom) {
2342 		status = isci_parse_oem_parameters(&ihost->oem_parameters,
2343 						   pci_info->orom,
2344 						   ihost->id);
2345 		if (status != SCI_SUCCESS) {
2346 			dev_warn(&ihost->pdev->dev,
2347 				 "parsing firmware oem parameters failed\n");
2348 			return -EINVAL;
2349 		}
2350 	}
2351 
2352 	status = sci_oem_parameters_set(ihost);
2353 	if (status != SCI_SUCCESS) {
2354 		dev_warn(&ihost->pdev->dev,
2355 				"%s: sci_oem_parameters_set failed\n",
2356 				__func__);
2357 		return -ENODEV;
2358 	}
2359 
2360 	tasklet_init(&ihost->completion_tasklet,
2361 		     isci_host_completion_routine, (unsigned long)ihost);
2362 
2363 	INIT_LIST_HEAD(&ihost->requests_to_complete);
2364 	INIT_LIST_HEAD(&ihost->requests_to_errorback);
2365 
2366 	spin_lock_irq(&ihost->scic_lock);
2367 	status = sci_controller_initialize(ihost);
2368 	spin_unlock_irq(&ihost->scic_lock);
2369 	if (status != SCI_SUCCESS) {
2370 		dev_warn(&ihost->pdev->dev,
2371 			 "%s: sci_controller_initialize failed -"
2372 			 " status = 0x%x\n",
2373 			 __func__, status);
2374 		return -ENODEV;
2375 	}
2376 
2377 	err = sci_controller_mem_init(ihost);
2378 	if (err)
2379 		return err;
2380 
2381 	for (i = 0; i < SCI_MAX_PORTS; i++)
2382 		isci_port_init(&ihost->ports[i], ihost, i);
2383 
2384 	for (i = 0; i < SCI_MAX_PHYS; i++)
2385 		isci_phy_init(&ihost->phys[i], ihost, i);
2386 
2387 	/* enable sgpio */
2388 	writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2389 	for (i = 0; i < isci_gpio_count(ihost); i++)
2390 		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2391 	writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2392 
2393 	for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2394 		struct isci_remote_device *idev = &ihost->devices[i];
2395 
2396 		INIT_LIST_HEAD(&idev->reqs_in_process);
2397 		INIT_LIST_HEAD(&idev->node);
2398 	}
2399 
2400 	for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2401 		struct isci_request *ireq;
2402 		dma_addr_t dma;
2403 
2404 		ireq = dmam_alloc_coherent(&ihost->pdev->dev,
2405 					   sizeof(struct isci_request), &dma,
2406 					   GFP_KERNEL);
2407 		if (!ireq)
2408 			return -ENOMEM;
2409 
2410 		ireq->tc = &ihost->task_context_table[i];
2411 		ireq->owning_controller = ihost;
2412 		spin_lock_init(&ireq->state_lock);
2413 		ireq->request_daddr = dma;
2414 		ireq->isci_host = ihost;
2415 		ihost->reqs[i] = ireq;
2416 	}
2417 
2418 	return 0;
2419 }
2420 
2421 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2422 			    struct isci_phy *iphy)
2423 {
2424 	switch (ihost->sm.current_state_id) {
2425 	case SCIC_STARTING:
2426 		sci_del_timer(&ihost->phy_timer);
2427 		ihost->phy_startup_timer_pending = false;
2428 		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2429 						  iport, iphy);
2430 		sci_controller_start_next_phy(ihost);
2431 		break;
2432 	case SCIC_READY:
2433 		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2434 						  iport, iphy);
2435 		break;
2436 	default:
2437 		dev_dbg(&ihost->pdev->dev,
2438 			"%s: SCIC Controller linkup event from phy %d in "
2439 			"unexpected state %d\n", __func__, iphy->phy_index,
2440 			ihost->sm.current_state_id);
2441 	}
2442 }
2443 
2444 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2445 			      struct isci_phy *iphy)
2446 {
2447 	switch (ihost->sm.current_state_id) {
2448 	case SCIC_STARTING:
2449 	case SCIC_READY:
2450 		ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2451 						   iport, iphy);
2452 		break;
2453 	default:
2454 		dev_dbg(&ihost->pdev->dev,
2455 			"%s: SCIC Controller linkdown event from phy %d in "
2456 			"unexpected state %d\n",
2457 			__func__,
2458 			iphy->phy_index,
2459 			ihost->sm.current_state_id);
2460 	}
2461 }
2462 
2463 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2464 {
2465 	u32 index;
2466 
2467 	for (index = 0; index < ihost->remote_node_entries; index++) {
2468 		if ((ihost->device_table[index] != NULL) &&
2469 		   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2470 			return true;
2471 	}
2472 
2473 	return false;
2474 }
2475 
2476 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2477 					  struct isci_remote_device *idev)
2478 {
2479 	if (ihost->sm.current_state_id != SCIC_STOPPING) {
2480 		dev_dbg(&ihost->pdev->dev,
2481 			"SCIC Controller 0x%p remote device stopped event "
2482 			"from device 0x%p in unexpected state %d\n",
2483 			ihost, idev,
2484 			ihost->sm.current_state_id);
2485 		return;
2486 	}
2487 
2488 	if (!sci_controller_has_remote_devices_stopping(ihost))
2489 		sci_change_state(&ihost->sm, SCIC_STOPPED);
2490 }
2491 
2492 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2493 {
2494 	dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2495 		__func__, ihost->id, request);
2496 
2497 	writel(request, &ihost->smu_registers->post_context_port);
2498 }
2499 
2500 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2501 {
2502 	u16 task_index;
2503 	u16 task_sequence;
2504 
2505 	task_index = ISCI_TAG_TCI(io_tag);
2506 
2507 	if (task_index < ihost->task_context_entries) {
2508 		struct isci_request *ireq = ihost->reqs[task_index];
2509 
2510 		if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2511 			task_sequence = ISCI_TAG_SEQ(io_tag);
2512 
2513 			if (task_sequence == ihost->io_request_sequence[task_index])
2514 				return ireq;
2515 		}
2516 	}
2517 
2518 	return NULL;
2519 }
2520 
2521 /**
2522  * This method allocates remote node index and the reserves the remote node
2523  *    context space for use. This method can fail if there are no more remote
2524  *    node index available.
2525  * @scic: This is the controller object which contains the set of
2526  *    free remote node ids
2527  * @sci_dev: This is the device object which is requesting the a remote node
2528  *    id
2529  * @node_id: This is the remote node id that is assinged to the device if one
2530  *    is available
2531  *
2532  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2533  * node index available.
2534  */
2535 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2536 							    struct isci_remote_device *idev,
2537 							    u16 *node_id)
2538 {
2539 	u16 node_index;
2540 	u32 remote_node_count = sci_remote_device_node_count(idev);
2541 
2542 	node_index = sci_remote_node_table_allocate_remote_node(
2543 		&ihost->available_remote_nodes, remote_node_count
2544 		);
2545 
2546 	if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2547 		ihost->device_table[node_index] = idev;
2548 
2549 		*node_id = node_index;
2550 
2551 		return SCI_SUCCESS;
2552 	}
2553 
2554 	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2555 }
2556 
2557 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2558 					     struct isci_remote_device *idev,
2559 					     u16 node_id)
2560 {
2561 	u32 remote_node_count = sci_remote_device_node_count(idev);
2562 
2563 	if (ihost->device_table[node_id] == idev) {
2564 		ihost->device_table[node_id] = NULL;
2565 
2566 		sci_remote_node_table_release_remote_node_index(
2567 			&ihost->available_remote_nodes, remote_node_count, node_id
2568 			);
2569 	}
2570 }
2571 
2572 void sci_controller_copy_sata_response(void *response_buffer,
2573 				       void *frame_header,
2574 				       void *frame_buffer)
2575 {
2576 	/* XXX type safety? */
2577 	memcpy(response_buffer, frame_header, sizeof(u32));
2578 
2579 	memcpy(response_buffer + sizeof(u32),
2580 	       frame_buffer,
2581 	       sizeof(struct dev_to_host_fis) - sizeof(u32));
2582 }
2583 
2584 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2585 {
2586 	if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2587 		writel(ihost->uf_control.get,
2588 			&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2589 }
2590 
2591 void isci_tci_free(struct isci_host *ihost, u16 tci)
2592 {
2593 	u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2594 
2595 	ihost->tci_pool[tail] = tci;
2596 	ihost->tci_tail = tail + 1;
2597 }
2598 
2599 static u16 isci_tci_alloc(struct isci_host *ihost)
2600 {
2601 	u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2602 	u16 tci = ihost->tci_pool[head];
2603 
2604 	ihost->tci_head = head + 1;
2605 	return tci;
2606 }
2607 
2608 static u16 isci_tci_space(struct isci_host *ihost)
2609 {
2610 	return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2611 }
2612 
2613 u16 isci_alloc_tag(struct isci_host *ihost)
2614 {
2615 	if (isci_tci_space(ihost)) {
2616 		u16 tci = isci_tci_alloc(ihost);
2617 		u8 seq = ihost->io_request_sequence[tci];
2618 
2619 		return ISCI_TAG(seq, tci);
2620 	}
2621 
2622 	return SCI_CONTROLLER_INVALID_IO_TAG;
2623 }
2624 
2625 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2626 {
2627 	u16 tci = ISCI_TAG_TCI(io_tag);
2628 	u16 seq = ISCI_TAG_SEQ(io_tag);
2629 
2630 	/* prevent tail from passing head */
2631 	if (isci_tci_active(ihost) == 0)
2632 		return SCI_FAILURE_INVALID_IO_TAG;
2633 
2634 	if (seq == ihost->io_request_sequence[tci]) {
2635 		ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2636 
2637 		isci_tci_free(ihost, tci);
2638 
2639 		return SCI_SUCCESS;
2640 	}
2641 	return SCI_FAILURE_INVALID_IO_TAG;
2642 }
2643 
2644 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2645 					struct isci_remote_device *idev,
2646 					struct isci_request *ireq)
2647 {
2648 	enum sci_status status;
2649 
2650 	if (ihost->sm.current_state_id != SCIC_READY) {
2651 		dev_warn(&ihost->pdev->dev, "invalid state to start I/O");
2652 		return SCI_FAILURE_INVALID_STATE;
2653 	}
2654 
2655 	status = sci_remote_device_start_io(ihost, idev, ireq);
2656 	if (status != SCI_SUCCESS)
2657 		return status;
2658 
2659 	set_bit(IREQ_ACTIVE, &ireq->flags);
2660 	sci_controller_post_request(ihost, ireq->post_context);
2661 	return SCI_SUCCESS;
2662 }
2663 
2664 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2665 						 struct isci_remote_device *idev,
2666 						 struct isci_request *ireq)
2667 {
2668 	/* terminate an ongoing (i.e. started) core IO request.  This does not
2669 	 * abort the IO request at the target, but rather removes the IO
2670 	 * request from the host controller.
2671 	 */
2672 	enum sci_status status;
2673 
2674 	if (ihost->sm.current_state_id != SCIC_READY) {
2675 		dev_warn(&ihost->pdev->dev,
2676 			 "invalid state to terminate request\n");
2677 		return SCI_FAILURE_INVALID_STATE;
2678 	}
2679 
2680 	status = sci_io_request_terminate(ireq);
2681 	if (status != SCI_SUCCESS)
2682 		return status;
2683 
2684 	/*
2685 	 * Utilize the original post context command and or in the POST_TC_ABORT
2686 	 * request sub-type.
2687 	 */
2688 	sci_controller_post_request(ihost,
2689 				    ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2690 	return SCI_SUCCESS;
2691 }
2692 
2693 /**
2694  * sci_controller_complete_io() - This method will perform core specific
2695  *    completion operations for an IO request.  After this method is invoked,
2696  *    the user should consider the IO request as invalid until it is properly
2697  *    reused (i.e. re-constructed).
2698  * @ihost: The handle to the controller object for which to complete the
2699  *    IO request.
2700  * @idev: The handle to the remote device object for which to complete
2701  *    the IO request.
2702  * @ireq: the handle to the io request object to complete.
2703  */
2704 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2705 					   struct isci_remote_device *idev,
2706 					   struct isci_request *ireq)
2707 {
2708 	enum sci_status status;
2709 	u16 index;
2710 
2711 	switch (ihost->sm.current_state_id) {
2712 	case SCIC_STOPPING:
2713 		/* XXX: Implement this function */
2714 		return SCI_FAILURE;
2715 	case SCIC_READY:
2716 		status = sci_remote_device_complete_io(ihost, idev, ireq);
2717 		if (status != SCI_SUCCESS)
2718 			return status;
2719 
2720 		index = ISCI_TAG_TCI(ireq->io_tag);
2721 		clear_bit(IREQ_ACTIVE, &ireq->flags);
2722 		return SCI_SUCCESS;
2723 	default:
2724 		dev_warn(&ihost->pdev->dev, "invalid state to complete I/O");
2725 		return SCI_FAILURE_INVALID_STATE;
2726 	}
2727 
2728 }
2729 
2730 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2731 {
2732 	struct isci_host *ihost = ireq->owning_controller;
2733 
2734 	if (ihost->sm.current_state_id != SCIC_READY) {
2735 		dev_warn(&ihost->pdev->dev, "invalid state to continue I/O");
2736 		return SCI_FAILURE_INVALID_STATE;
2737 	}
2738 
2739 	set_bit(IREQ_ACTIVE, &ireq->flags);
2740 	sci_controller_post_request(ihost, ireq->post_context);
2741 	return SCI_SUCCESS;
2742 }
2743 
2744 /**
2745  * sci_controller_start_task() - This method is called by the SCIC user to
2746  *    send/start a framework task management request.
2747  * @controller: the handle to the controller object for which to start the task
2748  *    management request.
2749  * @remote_device: the handle to the remote device object for which to start
2750  *    the task management request.
2751  * @task_request: the handle to the task request object to start.
2752  */
2753 enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2754 					       struct isci_remote_device *idev,
2755 					       struct isci_request *ireq)
2756 {
2757 	enum sci_status status;
2758 
2759 	if (ihost->sm.current_state_id != SCIC_READY) {
2760 		dev_warn(&ihost->pdev->dev,
2761 			 "%s: SCIC Controller starting task from invalid "
2762 			 "state\n",
2763 			 __func__);
2764 		return SCI_TASK_FAILURE_INVALID_STATE;
2765 	}
2766 
2767 	status = sci_remote_device_start_task(ihost, idev, ireq);
2768 	switch (status) {
2769 	case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2770 		set_bit(IREQ_ACTIVE, &ireq->flags);
2771 
2772 		/*
2773 		 * We will let framework know this task request started successfully,
2774 		 * although core is still woring on starting the request (to post tc when
2775 		 * RNC is resumed.)
2776 		 */
2777 		return SCI_SUCCESS;
2778 	case SCI_SUCCESS:
2779 		set_bit(IREQ_ACTIVE, &ireq->flags);
2780 		sci_controller_post_request(ihost, ireq->post_context);
2781 		break;
2782 	default:
2783 		break;
2784 	}
2785 
2786 	return status;
2787 }
2788 
2789 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2790 {
2791 	int d;
2792 
2793 	/* no support for TX_GP_CFG */
2794 	if (reg_index == 0)
2795 		return -EINVAL;
2796 
2797 	for (d = 0; d < isci_gpio_count(ihost); d++) {
2798 		u32 val = 0x444; /* all ODx.n clear */
2799 		int i;
2800 
2801 		for (i = 0; i < 3; i++) {
2802 			int bit = (i << 2) + 2;
2803 
2804 			bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2805 						       write_data, reg_index,
2806 						       reg_count);
2807 			if (bit < 0)
2808 				break;
2809 
2810 			/* if od is set, clear the 'invert' bit */
2811 			val &= ~(bit << ((i << 2) + 2));
2812 		}
2813 
2814 		if (i < 3)
2815 			break;
2816 		writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2817 	}
2818 
2819 	/* unless reg_index is > 1, we should always be able to write at
2820 	 * least one register
2821 	 */
2822 	return d > 0;
2823 }
2824 
2825 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
2826 		    u8 reg_count, u8 *write_data)
2827 {
2828 	struct isci_host *ihost = sas_ha->lldd_ha;
2829 	int written;
2830 
2831 	switch (reg_type) {
2832 	case SAS_GPIO_REG_TX_GP:
2833 		written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
2834 		break;
2835 	default:
2836 		written = -EINVAL;
2837 	}
2838 
2839 	return written;
2840 }
2841