1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 21 * The full GNU General Public License is included in this distribution 22 * in the file called LICENSE.GPL. 23 * 24 * BSD LICENSE 25 * 26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 27 * All rights reserved. 28 * 29 * Redistribution and use in source and binary forms, with or without 30 * modification, are permitted provided that the following conditions 31 * are met: 32 * 33 * * Redistributions of source code must retain the above copyright 34 * notice, this list of conditions and the following disclaimer. 35 * * Redistributions in binary form must reproduce the above copyright 36 * notice, this list of conditions and the following disclaimer in 37 * the documentation and/or other materials provided with the 38 * distribution. 39 * * Neither the name of Intel Corporation nor the names of its 40 * contributors may be used to endorse or promote products derived 41 * from this software without specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 54 */ 55 #include <linux/circ_buf.h> 56 #include <linux/device.h> 57 #include <scsi/sas.h> 58 #include "host.h" 59 #include "isci.h" 60 #include "port.h" 61 #include "host.h" 62 #include "probe_roms.h" 63 #include "remote_device.h" 64 #include "request.h" 65 #include "scu_completion_codes.h" 66 #include "scu_event_codes.h" 67 #include "registers.h" 68 #include "scu_remote_node_context.h" 69 #include "scu_task_context.h" 70 71 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200 72 73 #define smu_max_ports(dcc_value) \ 74 (\ 75 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \ 76 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \ 77 ) 78 79 #define smu_max_task_contexts(dcc_value) \ 80 (\ 81 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \ 82 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \ 83 ) 84 85 #define smu_max_rncs(dcc_value) \ 86 (\ 87 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \ 88 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \ 89 ) 90 91 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100 92 93 /** 94 * 95 * 96 * The number of milliseconds to wait while a given phy is consuming power 97 * before allowing another set of phys to consume power. Ultimately, this will 98 * be specified by OEM parameter. 99 */ 100 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500 101 102 /** 103 * NORMALIZE_PUT_POINTER() - 104 * 105 * This macro will normalize the completion queue put pointer so its value can 106 * be used as an array inde 107 */ 108 #define NORMALIZE_PUT_POINTER(x) \ 109 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK) 110 111 112 /** 113 * NORMALIZE_EVENT_POINTER() - 114 * 115 * This macro will normalize the completion queue event entry so its value can 116 * be used as an index. 117 */ 118 #define NORMALIZE_EVENT_POINTER(x) \ 119 (\ 120 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \ 121 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \ 122 ) 123 124 /** 125 * NORMALIZE_GET_POINTER() - 126 * 127 * This macro will normalize the completion queue get pointer so its value can 128 * be used as an index into an array 129 */ 130 #define NORMALIZE_GET_POINTER(x) \ 131 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK) 132 133 /** 134 * NORMALIZE_GET_POINTER_CYCLE_BIT() - 135 * 136 * This macro will normalize the completion queue cycle pointer so it matches 137 * the completion queue cycle bit 138 */ 139 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \ 140 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT)) 141 142 /** 143 * COMPLETION_QUEUE_CYCLE_BIT() - 144 * 145 * This macro will return the cycle bit of the completion queue entry 146 */ 147 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000) 148 149 /* Init the state machine and call the state entry function (if any) */ 150 void sci_init_sm(struct sci_base_state_machine *sm, 151 const struct sci_base_state *state_table, u32 initial_state) 152 { 153 sci_state_transition_t handler; 154 155 sm->initial_state_id = initial_state; 156 sm->previous_state_id = initial_state; 157 sm->current_state_id = initial_state; 158 sm->state_table = state_table; 159 160 handler = sm->state_table[initial_state].enter_state; 161 if (handler) 162 handler(sm); 163 } 164 165 /* Call the state exit fn, update the current state, call the state entry fn */ 166 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state) 167 { 168 sci_state_transition_t handler; 169 170 handler = sm->state_table[sm->current_state_id].exit_state; 171 if (handler) 172 handler(sm); 173 174 sm->previous_state_id = sm->current_state_id; 175 sm->current_state_id = next_state; 176 177 handler = sm->state_table[sm->current_state_id].enter_state; 178 if (handler) 179 handler(sm); 180 } 181 182 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost) 183 { 184 u32 get_value = ihost->completion_queue_get; 185 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK; 186 187 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) == 188 COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])) 189 return true; 190 191 return false; 192 } 193 194 static bool sci_controller_isr(struct isci_host *ihost) 195 { 196 if (sci_controller_completion_queue_has_entries(ihost)) { 197 return true; 198 } else { 199 /* 200 * we have a spurious interrupt it could be that we have already 201 * emptied the completion queue from a previous interrupt */ 202 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 203 204 /* 205 * There is a race in the hardware that could cause us not to be notified 206 * of an interrupt completion if we do not take this step. We will mask 207 * then unmask the interrupts so if there is another interrupt pending 208 * the clearing of the interrupt source we get the next interrupt message. */ 209 writel(0xFF000000, &ihost->smu_registers->interrupt_mask); 210 writel(0, &ihost->smu_registers->interrupt_mask); 211 } 212 213 return false; 214 } 215 216 irqreturn_t isci_msix_isr(int vec, void *data) 217 { 218 struct isci_host *ihost = data; 219 220 if (sci_controller_isr(ihost)) 221 tasklet_schedule(&ihost->completion_tasklet); 222 223 return IRQ_HANDLED; 224 } 225 226 static bool sci_controller_error_isr(struct isci_host *ihost) 227 { 228 u32 interrupt_status; 229 230 interrupt_status = 231 readl(&ihost->smu_registers->interrupt_status); 232 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); 233 234 if (interrupt_status != 0) { 235 /* 236 * There is an error interrupt pending so let it through and handle 237 * in the callback */ 238 return true; 239 } 240 241 /* 242 * There is a race in the hardware that could cause us not to be notified 243 * of an interrupt completion if we do not take this step. We will mask 244 * then unmask the error interrupts so if there was another interrupt 245 * pending we will be notified. 246 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */ 247 writel(0xff, &ihost->smu_registers->interrupt_mask); 248 writel(0, &ihost->smu_registers->interrupt_mask); 249 250 return false; 251 } 252 253 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent) 254 { 255 u32 index = SCU_GET_COMPLETION_INDEX(ent); 256 struct isci_request *ireq = ihost->reqs[index]; 257 258 /* Make sure that we really want to process this IO request */ 259 if (test_bit(IREQ_ACTIVE, &ireq->flags) && 260 ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG && 261 ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index]) 262 /* Yep this is a valid io request pass it along to the 263 * io request handler 264 */ 265 sci_io_request_tc_completion(ireq, ent); 266 } 267 268 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent) 269 { 270 u32 index; 271 struct isci_request *ireq; 272 struct isci_remote_device *idev; 273 274 index = SCU_GET_COMPLETION_INDEX(ent); 275 276 switch (scu_get_command_request_type(ent)) { 277 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC: 278 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC: 279 ireq = ihost->reqs[index]; 280 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n", 281 __func__, ent, ireq); 282 /* @todo For a post TC operation we need to fail the IO 283 * request 284 */ 285 break; 286 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC: 287 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC: 288 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC: 289 idev = ihost->device_table[index]; 290 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n", 291 __func__, ent, idev); 292 /* @todo For a port RNC operation we need to fail the 293 * device 294 */ 295 break; 296 default: 297 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n", 298 __func__, ent); 299 break; 300 } 301 } 302 303 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent) 304 { 305 u32 index; 306 u32 frame_index; 307 308 struct scu_unsolicited_frame_header *frame_header; 309 struct isci_phy *iphy; 310 struct isci_remote_device *idev; 311 312 enum sci_status result = SCI_FAILURE; 313 314 frame_index = SCU_GET_FRAME_INDEX(ent); 315 316 frame_header = ihost->uf_control.buffers.array[frame_index].header; 317 ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE; 318 319 if (SCU_GET_FRAME_ERROR(ent)) { 320 /* 321 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will 322 * / this cause a problem? We expect the phy initialization will 323 * / fail if there is an error in the frame. */ 324 sci_controller_release_frame(ihost, frame_index); 325 return; 326 } 327 328 if (frame_header->is_address_frame) { 329 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 330 iphy = &ihost->phys[index]; 331 result = sci_phy_frame_handler(iphy, frame_index); 332 } else { 333 334 index = SCU_GET_COMPLETION_INDEX(ent); 335 336 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 337 /* 338 * This is a signature fis or a frame from a direct attached SATA 339 * device that has not yet been created. In either case forwared 340 * the frame to the PE and let it take care of the frame data. */ 341 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 342 iphy = &ihost->phys[index]; 343 result = sci_phy_frame_handler(iphy, frame_index); 344 } else { 345 if (index < ihost->remote_node_entries) 346 idev = ihost->device_table[index]; 347 else 348 idev = NULL; 349 350 if (idev != NULL) 351 result = sci_remote_device_frame_handler(idev, frame_index); 352 else 353 sci_controller_release_frame(ihost, frame_index); 354 } 355 } 356 357 if (result != SCI_SUCCESS) { 358 /* 359 * / @todo Is there any reason to report some additional error message 360 * / when we get this failure notifiction? */ 361 } 362 } 363 364 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent) 365 { 366 struct isci_remote_device *idev; 367 struct isci_request *ireq; 368 struct isci_phy *iphy; 369 u32 index; 370 371 index = SCU_GET_COMPLETION_INDEX(ent); 372 373 switch (scu_get_event_type(ent)) { 374 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR: 375 /* / @todo The driver did something wrong and we need to fix the condtion. */ 376 dev_err(&ihost->pdev->dev, 377 "%s: SCIC Controller 0x%p received SMU command error " 378 "0x%x\n", 379 __func__, 380 ihost, 381 ent); 382 break; 383 384 case SCU_EVENT_TYPE_SMU_PCQ_ERROR: 385 case SCU_EVENT_TYPE_SMU_ERROR: 386 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR: 387 /* 388 * / @todo This is a hardware failure and its likely that we want to 389 * / reset the controller. */ 390 dev_err(&ihost->pdev->dev, 391 "%s: SCIC Controller 0x%p received fatal controller " 392 "event 0x%x\n", 393 __func__, 394 ihost, 395 ent); 396 break; 397 398 case SCU_EVENT_TYPE_TRANSPORT_ERROR: 399 ireq = ihost->reqs[index]; 400 sci_io_request_event_handler(ireq, ent); 401 break; 402 403 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT: 404 switch (scu_get_event_specifier(ent)) { 405 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE: 406 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT: 407 ireq = ihost->reqs[index]; 408 if (ireq != NULL) 409 sci_io_request_event_handler(ireq, ent); 410 else 411 dev_warn(&ihost->pdev->dev, 412 "%s: SCIC Controller 0x%p received " 413 "event 0x%x for io request object " 414 "that doesnt exist.\n", 415 __func__, 416 ihost, 417 ent); 418 419 break; 420 421 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT: 422 idev = ihost->device_table[index]; 423 if (idev != NULL) 424 sci_remote_device_event_handler(idev, ent); 425 else 426 dev_warn(&ihost->pdev->dev, 427 "%s: SCIC Controller 0x%p received " 428 "event 0x%x for remote device object " 429 "that doesnt exist.\n", 430 __func__, 431 ihost, 432 ent); 433 434 break; 435 } 436 break; 437 438 case SCU_EVENT_TYPE_BROADCAST_CHANGE: 439 /* 440 * direct the broadcast change event to the phy first and then let 441 * the phy redirect the broadcast change to the port object */ 442 case SCU_EVENT_TYPE_ERR_CNT_EVENT: 443 /* 444 * direct error counter event to the phy object since that is where 445 * we get the event notification. This is a type 4 event. */ 446 case SCU_EVENT_TYPE_OSSP_EVENT: 447 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 448 iphy = &ihost->phys[index]; 449 sci_phy_event_handler(iphy, ent); 450 break; 451 452 case SCU_EVENT_TYPE_RNC_SUSPEND_TX: 453 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX: 454 case SCU_EVENT_TYPE_RNC_OPS_MISC: 455 if (index < ihost->remote_node_entries) { 456 idev = ihost->device_table[index]; 457 458 if (idev != NULL) 459 sci_remote_device_event_handler(idev, ent); 460 } else 461 dev_err(&ihost->pdev->dev, 462 "%s: SCIC Controller 0x%p received event 0x%x " 463 "for remote device object 0x%0x that doesnt " 464 "exist.\n", 465 __func__, 466 ihost, 467 ent, 468 index); 469 470 break; 471 472 default: 473 dev_warn(&ihost->pdev->dev, 474 "%s: SCIC Controller received unknown event code %x\n", 475 __func__, 476 ent); 477 break; 478 } 479 } 480 481 static void sci_controller_process_completions(struct isci_host *ihost) 482 { 483 u32 completion_count = 0; 484 u32 ent; 485 u32 get_index; 486 u32 get_cycle; 487 u32 event_get; 488 u32 event_cycle; 489 490 dev_dbg(&ihost->pdev->dev, 491 "%s: completion queue begining get:0x%08x\n", 492 __func__, 493 ihost->completion_queue_get); 494 495 /* Get the component parts of the completion queue */ 496 get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get); 497 get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get; 498 499 event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get); 500 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get; 501 502 while ( 503 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle) 504 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]) 505 ) { 506 completion_count++; 507 508 ent = ihost->completion_queue[get_index]; 509 510 /* increment the get pointer and check for rollover to toggle the cycle bit */ 511 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) << 512 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT); 513 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1); 514 515 dev_dbg(&ihost->pdev->dev, 516 "%s: completion queue entry:0x%08x\n", 517 __func__, 518 ent); 519 520 switch (SCU_GET_COMPLETION_TYPE(ent)) { 521 case SCU_COMPLETION_TYPE_TASK: 522 sci_controller_task_completion(ihost, ent); 523 break; 524 525 case SCU_COMPLETION_TYPE_SDMA: 526 sci_controller_sdma_completion(ihost, ent); 527 break; 528 529 case SCU_COMPLETION_TYPE_UFI: 530 sci_controller_unsolicited_frame(ihost, ent); 531 break; 532 533 case SCU_COMPLETION_TYPE_EVENT: 534 sci_controller_event_completion(ihost, ent); 535 break; 536 537 case SCU_COMPLETION_TYPE_NOTIFY: { 538 event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) << 539 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT); 540 event_get = (event_get+1) & (SCU_MAX_EVENTS-1); 541 542 sci_controller_event_completion(ihost, ent); 543 break; 544 } 545 default: 546 dev_warn(&ihost->pdev->dev, 547 "%s: SCIC Controller received unknown " 548 "completion type %x\n", 549 __func__, 550 ent); 551 break; 552 } 553 } 554 555 /* Update the get register if we completed one or more entries */ 556 if (completion_count > 0) { 557 ihost->completion_queue_get = 558 SMU_CQGR_GEN_BIT(ENABLE) | 559 SMU_CQGR_GEN_BIT(EVENT_ENABLE) | 560 event_cycle | 561 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) | 562 get_cycle | 563 SMU_CQGR_GEN_VAL(POINTER, get_index); 564 565 writel(ihost->completion_queue_get, 566 &ihost->smu_registers->completion_queue_get); 567 568 } 569 570 dev_dbg(&ihost->pdev->dev, 571 "%s: completion queue ending get:0x%08x\n", 572 __func__, 573 ihost->completion_queue_get); 574 575 } 576 577 static void sci_controller_error_handler(struct isci_host *ihost) 578 { 579 u32 interrupt_status; 580 581 interrupt_status = 582 readl(&ihost->smu_registers->interrupt_status); 583 584 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && 585 sci_controller_completion_queue_has_entries(ihost)) { 586 587 sci_controller_process_completions(ihost); 588 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status); 589 } else { 590 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__, 591 interrupt_status); 592 593 sci_change_state(&ihost->sm, SCIC_FAILED); 594 595 return; 596 } 597 598 /* If we dont process any completions I am not sure that we want to do this. 599 * We are in the middle of a hardware fault and should probably be reset. 600 */ 601 writel(0, &ihost->smu_registers->interrupt_mask); 602 } 603 604 irqreturn_t isci_intx_isr(int vec, void *data) 605 { 606 irqreturn_t ret = IRQ_NONE; 607 struct isci_host *ihost = data; 608 609 if (sci_controller_isr(ihost)) { 610 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 611 tasklet_schedule(&ihost->completion_tasklet); 612 ret = IRQ_HANDLED; 613 } else if (sci_controller_error_isr(ihost)) { 614 spin_lock(&ihost->scic_lock); 615 sci_controller_error_handler(ihost); 616 spin_unlock(&ihost->scic_lock); 617 ret = IRQ_HANDLED; 618 } 619 620 return ret; 621 } 622 623 irqreturn_t isci_error_isr(int vec, void *data) 624 { 625 struct isci_host *ihost = data; 626 627 if (sci_controller_error_isr(ihost)) 628 sci_controller_error_handler(ihost); 629 630 return IRQ_HANDLED; 631 } 632 633 /** 634 * isci_host_start_complete() - This function is called by the core library, 635 * through the ISCI Module, to indicate controller start status. 636 * @isci_host: This parameter specifies the ISCI host object 637 * @completion_status: This parameter specifies the completion status from the 638 * core library. 639 * 640 */ 641 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status) 642 { 643 if (completion_status != SCI_SUCCESS) 644 dev_info(&ihost->pdev->dev, 645 "controller start timed out, continuing...\n"); 646 isci_host_change_state(ihost, isci_ready); 647 clear_bit(IHOST_START_PENDING, &ihost->flags); 648 wake_up(&ihost->eventq); 649 } 650 651 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time) 652 { 653 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; 654 655 if (test_bit(IHOST_START_PENDING, &ihost->flags)) 656 return 0; 657 658 /* todo: use sas_flush_discovery once it is upstream */ 659 scsi_flush_work(shost); 660 661 scsi_flush_work(shost); 662 663 dev_dbg(&ihost->pdev->dev, 664 "%s: ihost->status = %d, time = %ld\n", 665 __func__, isci_host_get_state(ihost), time); 666 667 return 1; 668 669 } 670 671 /** 672 * sci_controller_get_suggested_start_timeout() - This method returns the 673 * suggested sci_controller_start() timeout amount. The user is free to 674 * use any timeout value, but this method provides the suggested minimum 675 * start timeout value. The returned value is based upon empirical 676 * information determined as a result of interoperability testing. 677 * @controller: the handle to the controller object for which to return the 678 * suggested start timeout. 679 * 680 * This method returns the number of milliseconds for the suggested start 681 * operation timeout. 682 */ 683 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost) 684 { 685 /* Validate the user supplied parameters. */ 686 if (!ihost) 687 return 0; 688 689 /* 690 * The suggested minimum timeout value for a controller start operation: 691 * 692 * Signature FIS Timeout 693 * + Phy Start Timeout 694 * + Number of Phy Spin Up Intervals 695 * --------------------------------- 696 * Number of milliseconds for the controller start operation. 697 * 698 * NOTE: The number of phy spin up intervals will be equivalent 699 * to the number of phys divided by the number phys allowed 700 * per interval - 1 (once OEM parameters are supported). 701 * Currently we assume only 1 phy per interval. */ 702 703 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT 704 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 705 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 706 } 707 708 static void sci_controller_enable_interrupts(struct isci_host *ihost) 709 { 710 BUG_ON(ihost->smu_registers == NULL); 711 writel(0, &ihost->smu_registers->interrupt_mask); 712 } 713 714 void sci_controller_disable_interrupts(struct isci_host *ihost) 715 { 716 BUG_ON(ihost->smu_registers == NULL); 717 writel(0xffffffff, &ihost->smu_registers->interrupt_mask); 718 } 719 720 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost) 721 { 722 u32 port_task_scheduler_value; 723 724 port_task_scheduler_value = 725 readl(&ihost->scu_registers->peg0.ptsg.control); 726 port_task_scheduler_value |= 727 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | 728 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE)); 729 writel(port_task_scheduler_value, 730 &ihost->scu_registers->peg0.ptsg.control); 731 } 732 733 static void sci_controller_assign_task_entries(struct isci_host *ihost) 734 { 735 u32 task_assignment; 736 737 /* 738 * Assign all the TCs to function 0 739 * TODO: Do we actually need to read this register to write it back? 740 */ 741 742 task_assignment = 743 readl(&ihost->smu_registers->task_context_assignment[0]); 744 745 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) | 746 (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) | 747 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE)); 748 749 writel(task_assignment, 750 &ihost->smu_registers->task_context_assignment[0]); 751 752 } 753 754 static void sci_controller_initialize_completion_queue(struct isci_host *ihost) 755 { 756 u32 index; 757 u32 completion_queue_control_value; 758 u32 completion_queue_get_value; 759 u32 completion_queue_put_value; 760 761 ihost->completion_queue_get = 0; 762 763 completion_queue_control_value = 764 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) | 765 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1)); 766 767 writel(completion_queue_control_value, 768 &ihost->smu_registers->completion_queue_control); 769 770 771 /* Set the completion queue get pointer and enable the queue */ 772 completion_queue_get_value = ( 773 (SMU_CQGR_GEN_VAL(POINTER, 0)) 774 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0)) 775 | (SMU_CQGR_GEN_BIT(ENABLE)) 776 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE)) 777 ); 778 779 writel(completion_queue_get_value, 780 &ihost->smu_registers->completion_queue_get); 781 782 /* Set the completion queue put pointer */ 783 completion_queue_put_value = ( 784 (SMU_CQPR_GEN_VAL(POINTER, 0)) 785 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0)) 786 ); 787 788 writel(completion_queue_put_value, 789 &ihost->smu_registers->completion_queue_put); 790 791 /* Initialize the cycle bit of the completion queue entries */ 792 for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) { 793 /* 794 * If get.cycle_bit != completion_queue.cycle_bit 795 * its not a valid completion queue entry 796 * so at system start all entries are invalid */ 797 ihost->completion_queue[index] = 0x80000000; 798 } 799 } 800 801 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost) 802 { 803 u32 frame_queue_control_value; 804 u32 frame_queue_get_value; 805 u32 frame_queue_put_value; 806 807 /* Write the queue size */ 808 frame_queue_control_value = 809 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES); 810 811 writel(frame_queue_control_value, 812 &ihost->scu_registers->sdma.unsolicited_frame_queue_control); 813 814 /* Setup the get pointer for the unsolicited frame queue */ 815 frame_queue_get_value = ( 816 SCU_UFQGP_GEN_VAL(POINTER, 0) 817 | SCU_UFQGP_GEN_BIT(ENABLE_BIT) 818 ); 819 820 writel(frame_queue_get_value, 821 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 822 /* Setup the put pointer for the unsolicited frame queue */ 823 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0); 824 writel(frame_queue_put_value, 825 &ihost->scu_registers->sdma.unsolicited_frame_put_pointer); 826 } 827 828 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status) 829 { 830 if (ihost->sm.current_state_id == SCIC_STARTING) { 831 /* 832 * We move into the ready state, because some of the phys/ports 833 * may be up and operational. 834 */ 835 sci_change_state(&ihost->sm, SCIC_READY); 836 837 isci_host_start_complete(ihost, status); 838 } 839 } 840 841 static bool is_phy_starting(struct isci_phy *iphy) 842 { 843 enum sci_phy_states state; 844 845 state = iphy->sm.current_state_id; 846 switch (state) { 847 case SCI_PHY_STARTING: 848 case SCI_PHY_SUB_INITIAL: 849 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: 850 case SCI_PHY_SUB_AWAIT_IAF_UF: 851 case SCI_PHY_SUB_AWAIT_SAS_POWER: 852 case SCI_PHY_SUB_AWAIT_SATA_POWER: 853 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: 854 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: 855 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: 856 case SCI_PHY_SUB_FINAL: 857 return true; 858 default: 859 return false; 860 } 861 } 862 863 /** 864 * sci_controller_start_next_phy - start phy 865 * @scic: controller 866 * 867 * If all the phys have been started, then attempt to transition the 868 * controller to the READY state and inform the user 869 * (sci_cb_controller_start_complete()). 870 */ 871 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost) 872 { 873 struct sci_oem_params *oem = &ihost->oem_parameters; 874 struct isci_phy *iphy; 875 enum sci_status status; 876 877 status = SCI_SUCCESS; 878 879 if (ihost->phy_startup_timer_pending) 880 return status; 881 882 if (ihost->next_phy_to_start >= SCI_MAX_PHYS) { 883 bool is_controller_start_complete = true; 884 u32 state; 885 u8 index; 886 887 for (index = 0; index < SCI_MAX_PHYS; index++) { 888 iphy = &ihost->phys[index]; 889 state = iphy->sm.current_state_id; 890 891 if (!phy_get_non_dummy_port(iphy)) 892 continue; 893 894 /* The controller start operation is complete iff: 895 * - all links have been given an opportunity to start 896 * - have no indication of a connected device 897 * - have an indication of a connected device and it has 898 * finished the link training process. 899 */ 900 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) || 901 (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) || 902 (iphy->is_in_link_training == true && is_phy_starting(iphy))) { 903 is_controller_start_complete = false; 904 break; 905 } 906 } 907 908 /* 909 * The controller has successfully finished the start process. 910 * Inform the SCI Core user and transition to the READY state. */ 911 if (is_controller_start_complete == true) { 912 sci_controller_transition_to_ready(ihost, SCI_SUCCESS); 913 sci_del_timer(&ihost->phy_timer); 914 ihost->phy_startup_timer_pending = false; 915 } 916 } else { 917 iphy = &ihost->phys[ihost->next_phy_to_start]; 918 919 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 920 if (phy_get_non_dummy_port(iphy) == NULL) { 921 ihost->next_phy_to_start++; 922 923 /* Caution recursion ahead be forwarned 924 * 925 * The PHY was never added to a PORT in MPC mode 926 * so start the next phy in sequence This phy 927 * will never go link up and will not draw power 928 * the OEM parameters either configured the phy 929 * incorrectly for the PORT or it was never 930 * assigned to a PORT 931 */ 932 return sci_controller_start_next_phy(ihost); 933 } 934 } 935 936 status = sci_phy_start(iphy); 937 938 if (status == SCI_SUCCESS) { 939 sci_mod_timer(&ihost->phy_timer, 940 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT); 941 ihost->phy_startup_timer_pending = true; 942 } else { 943 dev_warn(&ihost->pdev->dev, 944 "%s: Controller stop operation failed " 945 "to stop phy %d because of status " 946 "%d.\n", 947 __func__, 948 ihost->phys[ihost->next_phy_to_start].phy_index, 949 status); 950 } 951 952 ihost->next_phy_to_start++; 953 } 954 955 return status; 956 } 957 958 static void phy_startup_timeout(unsigned long data) 959 { 960 struct sci_timer *tmr = (struct sci_timer *)data; 961 struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer); 962 unsigned long flags; 963 enum sci_status status; 964 965 spin_lock_irqsave(&ihost->scic_lock, flags); 966 967 if (tmr->cancel) 968 goto done; 969 970 ihost->phy_startup_timer_pending = false; 971 972 do { 973 status = sci_controller_start_next_phy(ihost); 974 } while (status != SCI_SUCCESS); 975 976 done: 977 spin_unlock_irqrestore(&ihost->scic_lock, flags); 978 } 979 980 static u16 isci_tci_active(struct isci_host *ihost) 981 { 982 return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); 983 } 984 985 static enum sci_status sci_controller_start(struct isci_host *ihost, 986 u32 timeout) 987 { 988 enum sci_status result; 989 u16 index; 990 991 if (ihost->sm.current_state_id != SCIC_INITIALIZED) { 992 dev_warn(&ihost->pdev->dev, 993 "SCIC Controller start operation requested in " 994 "invalid state\n"); 995 return SCI_FAILURE_INVALID_STATE; 996 } 997 998 /* Build the TCi free pool */ 999 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8); 1000 ihost->tci_head = 0; 1001 ihost->tci_tail = 0; 1002 for (index = 0; index < ihost->task_context_entries; index++) 1003 isci_tci_free(ihost, index); 1004 1005 /* Build the RNi free pool */ 1006 sci_remote_node_table_initialize(&ihost->available_remote_nodes, 1007 ihost->remote_node_entries); 1008 1009 /* 1010 * Before anything else lets make sure we will not be 1011 * interrupted by the hardware. 1012 */ 1013 sci_controller_disable_interrupts(ihost); 1014 1015 /* Enable the port task scheduler */ 1016 sci_controller_enable_port_task_scheduler(ihost); 1017 1018 /* Assign all the task entries to ihost physical function */ 1019 sci_controller_assign_task_entries(ihost); 1020 1021 /* Now initialize the completion queue */ 1022 sci_controller_initialize_completion_queue(ihost); 1023 1024 /* Initialize the unsolicited frame queue for use */ 1025 sci_controller_initialize_unsolicited_frame_queue(ihost); 1026 1027 /* Start all of the ports on this controller */ 1028 for (index = 0; index < ihost->logical_port_entries; index++) { 1029 struct isci_port *iport = &ihost->ports[index]; 1030 1031 result = sci_port_start(iport); 1032 if (result) 1033 return result; 1034 } 1035 1036 sci_controller_start_next_phy(ihost); 1037 1038 sci_mod_timer(&ihost->timer, timeout); 1039 1040 sci_change_state(&ihost->sm, SCIC_STARTING); 1041 1042 return SCI_SUCCESS; 1043 } 1044 1045 void isci_host_scan_start(struct Scsi_Host *shost) 1046 { 1047 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; 1048 unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost); 1049 1050 set_bit(IHOST_START_PENDING, &ihost->flags); 1051 1052 spin_lock_irq(&ihost->scic_lock); 1053 sci_controller_start(ihost, tmo); 1054 sci_controller_enable_interrupts(ihost); 1055 spin_unlock_irq(&ihost->scic_lock); 1056 } 1057 1058 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status) 1059 { 1060 isci_host_change_state(ihost, isci_stopped); 1061 sci_controller_disable_interrupts(ihost); 1062 clear_bit(IHOST_STOP_PENDING, &ihost->flags); 1063 wake_up(&ihost->eventq); 1064 } 1065 1066 static void sci_controller_completion_handler(struct isci_host *ihost) 1067 { 1068 /* Empty out the completion queue */ 1069 if (sci_controller_completion_queue_has_entries(ihost)) 1070 sci_controller_process_completions(ihost); 1071 1072 /* Clear the interrupt and enable all interrupts again */ 1073 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 1074 /* Could we write the value of SMU_ISR_COMPLETION? */ 1075 writel(0xFF000000, &ihost->smu_registers->interrupt_mask); 1076 writel(0, &ihost->smu_registers->interrupt_mask); 1077 } 1078 1079 /** 1080 * isci_host_completion_routine() - This function is the delayed service 1081 * routine that calls the sci core library's completion handler. It's 1082 * scheduled as a tasklet from the interrupt service routine when interrupts 1083 * in use, or set as the timeout function in polled mode. 1084 * @data: This parameter specifies the ISCI host object 1085 * 1086 */ 1087 static void isci_host_completion_routine(unsigned long data) 1088 { 1089 struct isci_host *ihost = (struct isci_host *)data; 1090 struct list_head completed_request_list; 1091 struct list_head errored_request_list; 1092 struct list_head *current_position; 1093 struct list_head *next_position; 1094 struct isci_request *request; 1095 struct isci_request *next_request; 1096 struct sas_task *task; 1097 u16 active; 1098 1099 INIT_LIST_HEAD(&completed_request_list); 1100 INIT_LIST_HEAD(&errored_request_list); 1101 1102 spin_lock_irq(&ihost->scic_lock); 1103 1104 sci_controller_completion_handler(ihost); 1105 1106 /* Take the lists of completed I/Os from the host. */ 1107 1108 list_splice_init(&ihost->requests_to_complete, 1109 &completed_request_list); 1110 1111 /* Take the list of errored I/Os from the host. */ 1112 list_splice_init(&ihost->requests_to_errorback, 1113 &errored_request_list); 1114 1115 spin_unlock_irq(&ihost->scic_lock); 1116 1117 /* Process any completions in the lists. */ 1118 list_for_each_safe(current_position, next_position, 1119 &completed_request_list) { 1120 1121 request = list_entry(current_position, struct isci_request, 1122 completed_node); 1123 task = isci_request_access_task(request); 1124 1125 /* Normal notification (task_done) */ 1126 dev_dbg(&ihost->pdev->dev, 1127 "%s: Normal - request/task = %p/%p\n", 1128 __func__, 1129 request, 1130 task); 1131 1132 /* Return the task to libsas */ 1133 if (task != NULL) { 1134 1135 task->lldd_task = NULL; 1136 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 1137 1138 /* If the task is already in the abort path, 1139 * the task_done callback cannot be called. 1140 */ 1141 task->task_done(task); 1142 } 1143 } 1144 1145 spin_lock_irq(&ihost->scic_lock); 1146 isci_free_tag(ihost, request->io_tag); 1147 spin_unlock_irq(&ihost->scic_lock); 1148 } 1149 list_for_each_entry_safe(request, next_request, &errored_request_list, 1150 completed_node) { 1151 1152 task = isci_request_access_task(request); 1153 1154 /* Use sas_task_abort */ 1155 dev_warn(&ihost->pdev->dev, 1156 "%s: Error - request/task = %p/%p\n", 1157 __func__, 1158 request, 1159 task); 1160 1161 if (task != NULL) { 1162 1163 /* Put the task into the abort path if it's not there 1164 * already. 1165 */ 1166 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) 1167 sas_task_abort(task); 1168 1169 } else { 1170 /* This is a case where the request has completed with a 1171 * status such that it needed further target servicing, 1172 * but the sas_task reference has already been removed 1173 * from the request. Since it was errored, it was not 1174 * being aborted, so there is nothing to do except free 1175 * it. 1176 */ 1177 1178 spin_lock_irq(&ihost->scic_lock); 1179 /* Remove the request from the remote device's list 1180 * of pending requests. 1181 */ 1182 list_del_init(&request->dev_node); 1183 isci_free_tag(ihost, request->io_tag); 1184 spin_unlock_irq(&ihost->scic_lock); 1185 } 1186 } 1187 1188 /* the coalesence timeout doubles at each encoding step, so 1189 * update it based on the ilog2 value of the outstanding requests 1190 */ 1191 active = isci_tci_active(ihost); 1192 writel(SMU_ICC_GEN_VAL(NUMBER, active) | 1193 SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)), 1194 &ihost->smu_registers->interrupt_coalesce_control); 1195 } 1196 1197 /** 1198 * sci_controller_stop() - This method will stop an individual controller 1199 * object.This method will invoke the associated user callback upon 1200 * completion. The completion callback is called when the following 1201 * conditions are met: -# the method return status is SCI_SUCCESS. -# the 1202 * controller has been quiesced. This method will ensure that all IO 1203 * requests are quiesced, phys are stopped, and all additional operation by 1204 * the hardware is halted. 1205 * @controller: the handle to the controller object to stop. 1206 * @timeout: This parameter specifies the number of milliseconds in which the 1207 * stop operation should complete. 1208 * 1209 * The controller must be in the STARTED or STOPPED state. Indicate if the 1210 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the 1211 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the 1212 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the 1213 * controller is not either in the STARTED or STOPPED states. 1214 */ 1215 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout) 1216 { 1217 if (ihost->sm.current_state_id != SCIC_READY) { 1218 dev_warn(&ihost->pdev->dev, 1219 "SCIC Controller stop operation requested in " 1220 "invalid state\n"); 1221 return SCI_FAILURE_INVALID_STATE; 1222 } 1223 1224 sci_mod_timer(&ihost->timer, timeout); 1225 sci_change_state(&ihost->sm, SCIC_STOPPING); 1226 return SCI_SUCCESS; 1227 } 1228 1229 /** 1230 * sci_controller_reset() - This method will reset the supplied core 1231 * controller regardless of the state of said controller. This operation is 1232 * considered destructive. In other words, all current operations are wiped 1233 * out. No IO completions for outstanding devices occur. Outstanding IO 1234 * requests are not aborted or completed at the actual remote device. 1235 * @controller: the handle to the controller object to reset. 1236 * 1237 * Indicate if the controller reset method succeeded or failed in some way. 1238 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if 1239 * the controller reset operation is unable to complete. 1240 */ 1241 static enum sci_status sci_controller_reset(struct isci_host *ihost) 1242 { 1243 switch (ihost->sm.current_state_id) { 1244 case SCIC_RESET: 1245 case SCIC_READY: 1246 case SCIC_STOPPED: 1247 case SCIC_FAILED: 1248 /* 1249 * The reset operation is not a graceful cleanup, just 1250 * perform the state transition. 1251 */ 1252 sci_change_state(&ihost->sm, SCIC_RESETTING); 1253 return SCI_SUCCESS; 1254 default: 1255 dev_warn(&ihost->pdev->dev, 1256 "SCIC Controller reset operation requested in " 1257 "invalid state\n"); 1258 return SCI_FAILURE_INVALID_STATE; 1259 } 1260 } 1261 1262 void isci_host_deinit(struct isci_host *ihost) 1263 { 1264 int i; 1265 1266 /* disable output data selects */ 1267 for (i = 0; i < isci_gpio_count(ihost); i++) 1268 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); 1269 1270 isci_host_change_state(ihost, isci_stopping); 1271 for (i = 0; i < SCI_MAX_PORTS; i++) { 1272 struct isci_port *iport = &ihost->ports[i]; 1273 struct isci_remote_device *idev, *d; 1274 1275 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) { 1276 if (test_bit(IDEV_ALLOCATED, &idev->flags)) 1277 isci_remote_device_stop(ihost, idev); 1278 } 1279 } 1280 1281 set_bit(IHOST_STOP_PENDING, &ihost->flags); 1282 1283 spin_lock_irq(&ihost->scic_lock); 1284 sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT); 1285 spin_unlock_irq(&ihost->scic_lock); 1286 1287 wait_for_stop(ihost); 1288 1289 /* disable sgpio: where the above wait should give time for the 1290 * enclosure to sample the gpios going inactive 1291 */ 1292 writel(0, &ihost->scu_registers->peg0.sgpio.interface_control); 1293 1294 sci_controller_reset(ihost); 1295 1296 /* Cancel any/all outstanding port timers */ 1297 for (i = 0; i < ihost->logical_port_entries; i++) { 1298 struct isci_port *iport = &ihost->ports[i]; 1299 del_timer_sync(&iport->timer.timer); 1300 } 1301 1302 /* Cancel any/all outstanding phy timers */ 1303 for (i = 0; i < SCI_MAX_PHYS; i++) { 1304 struct isci_phy *iphy = &ihost->phys[i]; 1305 del_timer_sync(&iphy->sata_timer.timer); 1306 } 1307 1308 del_timer_sync(&ihost->port_agent.timer.timer); 1309 1310 del_timer_sync(&ihost->power_control.timer.timer); 1311 1312 del_timer_sync(&ihost->timer.timer); 1313 1314 del_timer_sync(&ihost->phy_timer.timer); 1315 } 1316 1317 static void __iomem *scu_base(struct isci_host *isci_host) 1318 { 1319 struct pci_dev *pdev = isci_host->pdev; 1320 int id = isci_host->id; 1321 1322 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id; 1323 } 1324 1325 static void __iomem *smu_base(struct isci_host *isci_host) 1326 { 1327 struct pci_dev *pdev = isci_host->pdev; 1328 int id = isci_host->id; 1329 1330 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id; 1331 } 1332 1333 static void isci_user_parameters_get(struct sci_user_parameters *u) 1334 { 1335 int i; 1336 1337 for (i = 0; i < SCI_MAX_PHYS; i++) { 1338 struct sci_phy_user_params *u_phy = &u->phys[i]; 1339 1340 u_phy->max_speed_generation = phy_gen; 1341 1342 /* we are not exporting these for now */ 1343 u_phy->align_insertion_frequency = 0x7f; 1344 u_phy->in_connection_align_insertion_frequency = 0xff; 1345 u_phy->notify_enable_spin_up_insertion_frequency = 0x33; 1346 } 1347 1348 u->stp_inactivity_timeout = stp_inactive_to; 1349 u->ssp_inactivity_timeout = ssp_inactive_to; 1350 u->stp_max_occupancy_timeout = stp_max_occ_to; 1351 u->ssp_max_occupancy_timeout = ssp_max_occ_to; 1352 u->no_outbound_task_timeout = no_outbound_task_to; 1353 u->max_concurr_spinup = max_concurr_spinup; 1354 } 1355 1356 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm) 1357 { 1358 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1359 1360 sci_change_state(&ihost->sm, SCIC_RESET); 1361 } 1362 1363 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm) 1364 { 1365 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1366 1367 sci_del_timer(&ihost->timer); 1368 } 1369 1370 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853 1371 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280 1372 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000 1373 #define INTERRUPT_COALESCE_NUMBER_MAX 256 1374 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7 1375 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28 1376 1377 /** 1378 * sci_controller_set_interrupt_coalescence() - This method allows the user to 1379 * configure the interrupt coalescence. 1380 * @controller: This parameter represents the handle to the controller object 1381 * for which its interrupt coalesce register is overridden. 1382 * @coalesce_number: Used to control the number of entries in the Completion 1383 * Queue before an interrupt is generated. If the number of entries exceed 1384 * this number, an interrupt will be generated. The valid range of the input 1385 * is [0, 256]. A setting of 0 results in coalescing being disabled. 1386 * @coalesce_timeout: Timeout value in microseconds. The valid range of the 1387 * input is [0, 2700000] . A setting of 0 is allowed and results in no 1388 * interrupt coalescing timeout. 1389 * 1390 * Indicate if the user successfully set the interrupt coalesce parameters. 1391 * SCI_SUCCESS The user successfully updated the interrutp coalescence. 1392 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range. 1393 */ 1394 static enum sci_status 1395 sci_controller_set_interrupt_coalescence(struct isci_host *ihost, 1396 u32 coalesce_number, 1397 u32 coalesce_timeout) 1398 { 1399 u8 timeout_encode = 0; 1400 u32 min = 0; 1401 u32 max = 0; 1402 1403 /* Check if the input parameters fall in the range. */ 1404 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX) 1405 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1406 1407 /* 1408 * Defined encoding for interrupt coalescing timeout: 1409 * Value Min Max Units 1410 * ----- --- --- ----- 1411 * 0 - - Disabled 1412 * 1 13.3 20.0 ns 1413 * 2 26.7 40.0 1414 * 3 53.3 80.0 1415 * 4 106.7 160.0 1416 * 5 213.3 320.0 1417 * 6 426.7 640.0 1418 * 7 853.3 1280.0 1419 * 8 1.7 2.6 us 1420 * 9 3.4 5.1 1421 * 10 6.8 10.2 1422 * 11 13.7 20.5 1423 * 12 27.3 41.0 1424 * 13 54.6 81.9 1425 * 14 109.2 163.8 1426 * 15 218.5 327.7 1427 * 16 436.9 655.4 1428 * 17 873.8 1310.7 1429 * 18 1.7 2.6 ms 1430 * 19 3.5 5.2 1431 * 20 7.0 10.5 1432 * 21 14.0 21.0 1433 * 22 28.0 41.9 1434 * 23 55.9 83.9 1435 * 24 111.8 167.8 1436 * 25 223.7 335.5 1437 * 26 447.4 671.1 1438 * 27 894.8 1342.2 1439 * 28 1.8 2.7 s 1440 * Others Undefined */ 1441 1442 /* 1443 * Use the table above to decide the encode of interrupt coalescing timeout 1444 * value for register writing. */ 1445 if (coalesce_timeout == 0) 1446 timeout_encode = 0; 1447 else{ 1448 /* make the timeout value in unit of (10 ns). */ 1449 coalesce_timeout = coalesce_timeout * 100; 1450 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10; 1451 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10; 1452 1453 /* get the encode of timeout for register writing. */ 1454 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN; 1455 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX; 1456 timeout_encode++) { 1457 if (min <= coalesce_timeout && max > coalesce_timeout) 1458 break; 1459 else if (coalesce_timeout >= max && coalesce_timeout < min * 2 1460 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) { 1461 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout)) 1462 break; 1463 else{ 1464 timeout_encode++; 1465 break; 1466 } 1467 } else { 1468 max = max * 2; 1469 min = min * 2; 1470 } 1471 } 1472 1473 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1) 1474 /* the value is out of range. */ 1475 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1476 } 1477 1478 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) | 1479 SMU_ICC_GEN_VAL(TIMER, timeout_encode), 1480 &ihost->smu_registers->interrupt_coalesce_control); 1481 1482 1483 ihost->interrupt_coalesce_number = (u16)coalesce_number; 1484 ihost->interrupt_coalesce_timeout = coalesce_timeout / 100; 1485 1486 return SCI_SUCCESS; 1487 } 1488 1489 1490 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm) 1491 { 1492 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1493 1494 /* set the default interrupt coalescence number and timeout value. */ 1495 sci_controller_set_interrupt_coalescence(ihost, 0, 0); 1496 } 1497 1498 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm) 1499 { 1500 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1501 1502 /* disable interrupt coalescence. */ 1503 sci_controller_set_interrupt_coalescence(ihost, 0, 0); 1504 } 1505 1506 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost) 1507 { 1508 u32 index; 1509 enum sci_status status; 1510 enum sci_status phy_status; 1511 1512 status = SCI_SUCCESS; 1513 1514 for (index = 0; index < SCI_MAX_PHYS; index++) { 1515 phy_status = sci_phy_stop(&ihost->phys[index]); 1516 1517 if (phy_status != SCI_SUCCESS && 1518 phy_status != SCI_FAILURE_INVALID_STATE) { 1519 status = SCI_FAILURE; 1520 1521 dev_warn(&ihost->pdev->dev, 1522 "%s: Controller stop operation failed to stop " 1523 "phy %d because of status %d.\n", 1524 __func__, 1525 ihost->phys[index].phy_index, phy_status); 1526 } 1527 } 1528 1529 return status; 1530 } 1531 1532 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost) 1533 { 1534 u32 index; 1535 enum sci_status port_status; 1536 enum sci_status status = SCI_SUCCESS; 1537 1538 for (index = 0; index < ihost->logical_port_entries; index++) { 1539 struct isci_port *iport = &ihost->ports[index]; 1540 1541 port_status = sci_port_stop(iport); 1542 1543 if ((port_status != SCI_SUCCESS) && 1544 (port_status != SCI_FAILURE_INVALID_STATE)) { 1545 status = SCI_FAILURE; 1546 1547 dev_warn(&ihost->pdev->dev, 1548 "%s: Controller stop operation failed to " 1549 "stop port %d because of status %d.\n", 1550 __func__, 1551 iport->logical_port_index, 1552 port_status); 1553 } 1554 } 1555 1556 return status; 1557 } 1558 1559 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost) 1560 { 1561 u32 index; 1562 enum sci_status status; 1563 enum sci_status device_status; 1564 1565 status = SCI_SUCCESS; 1566 1567 for (index = 0; index < ihost->remote_node_entries; index++) { 1568 if (ihost->device_table[index] != NULL) { 1569 /* / @todo What timeout value do we want to provide to this request? */ 1570 device_status = sci_remote_device_stop(ihost->device_table[index], 0); 1571 1572 if ((device_status != SCI_SUCCESS) && 1573 (device_status != SCI_FAILURE_INVALID_STATE)) { 1574 dev_warn(&ihost->pdev->dev, 1575 "%s: Controller stop operation failed " 1576 "to stop device 0x%p because of " 1577 "status %d.\n", 1578 __func__, 1579 ihost->device_table[index], device_status); 1580 } 1581 } 1582 } 1583 1584 return status; 1585 } 1586 1587 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm) 1588 { 1589 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1590 1591 /* Stop all of the components for this controller */ 1592 sci_controller_stop_phys(ihost); 1593 sci_controller_stop_ports(ihost); 1594 sci_controller_stop_devices(ihost); 1595 } 1596 1597 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm) 1598 { 1599 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1600 1601 sci_del_timer(&ihost->timer); 1602 } 1603 1604 static void sci_controller_reset_hardware(struct isci_host *ihost) 1605 { 1606 /* Disable interrupts so we dont take any spurious interrupts */ 1607 sci_controller_disable_interrupts(ihost); 1608 1609 /* Reset the SCU */ 1610 writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control); 1611 1612 /* Delay for 1ms to before clearing the CQP and UFQPR. */ 1613 udelay(1000); 1614 1615 /* The write to the CQGR clears the CQP */ 1616 writel(0x00000000, &ihost->smu_registers->completion_queue_get); 1617 1618 /* The write to the UFQGP clears the UFQPR */ 1619 writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 1620 } 1621 1622 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm) 1623 { 1624 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1625 1626 sci_controller_reset_hardware(ihost); 1627 sci_change_state(&ihost->sm, SCIC_RESET); 1628 } 1629 1630 static const struct sci_base_state sci_controller_state_table[] = { 1631 [SCIC_INITIAL] = { 1632 .enter_state = sci_controller_initial_state_enter, 1633 }, 1634 [SCIC_RESET] = {}, 1635 [SCIC_INITIALIZING] = {}, 1636 [SCIC_INITIALIZED] = {}, 1637 [SCIC_STARTING] = { 1638 .exit_state = sci_controller_starting_state_exit, 1639 }, 1640 [SCIC_READY] = { 1641 .enter_state = sci_controller_ready_state_enter, 1642 .exit_state = sci_controller_ready_state_exit, 1643 }, 1644 [SCIC_RESETTING] = { 1645 .enter_state = sci_controller_resetting_state_enter, 1646 }, 1647 [SCIC_STOPPING] = { 1648 .enter_state = sci_controller_stopping_state_enter, 1649 .exit_state = sci_controller_stopping_state_exit, 1650 }, 1651 [SCIC_STOPPED] = {}, 1652 [SCIC_FAILED] = {} 1653 }; 1654 1655 static void sci_controller_set_default_config_parameters(struct isci_host *ihost) 1656 { 1657 /* these defaults are overridden by the platform / firmware */ 1658 u16 index; 1659 1660 /* Default to APC mode. */ 1661 ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE; 1662 1663 /* Default to APC mode. */ 1664 ihost->oem_parameters.controller.max_concurr_spin_up = 1; 1665 1666 /* Default to no SSC operation. */ 1667 ihost->oem_parameters.controller.do_enable_ssc = false; 1668 1669 /* Initialize all of the port parameter information to narrow ports. */ 1670 for (index = 0; index < SCI_MAX_PORTS; index++) { 1671 ihost->oem_parameters.ports[index].phy_mask = 0; 1672 } 1673 1674 /* Initialize all of the phy parameter information. */ 1675 for (index = 0; index < SCI_MAX_PHYS; index++) { 1676 /* Default to 6G (i.e. Gen 3) for now. */ 1677 ihost->user_parameters.phys[index].max_speed_generation = 3; 1678 1679 /* the frequencies cannot be 0 */ 1680 ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f; 1681 ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff; 1682 ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33; 1683 1684 /* 1685 * Previous Vitesse based expanders had a arbitration issue that 1686 * is worked around by having the upper 32-bits of SAS address 1687 * with a value greater then the Vitesse company identifier. 1688 * Hence, usage of 0x5FCFFFFF. */ 1689 ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id; 1690 ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF; 1691 } 1692 1693 ihost->user_parameters.stp_inactivity_timeout = 5; 1694 ihost->user_parameters.ssp_inactivity_timeout = 5; 1695 ihost->user_parameters.stp_max_occupancy_timeout = 5; 1696 ihost->user_parameters.ssp_max_occupancy_timeout = 20; 1697 ihost->user_parameters.no_outbound_task_timeout = 20; 1698 } 1699 1700 static void controller_timeout(unsigned long data) 1701 { 1702 struct sci_timer *tmr = (struct sci_timer *)data; 1703 struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer); 1704 struct sci_base_state_machine *sm = &ihost->sm; 1705 unsigned long flags; 1706 1707 spin_lock_irqsave(&ihost->scic_lock, flags); 1708 1709 if (tmr->cancel) 1710 goto done; 1711 1712 if (sm->current_state_id == SCIC_STARTING) 1713 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT); 1714 else if (sm->current_state_id == SCIC_STOPPING) { 1715 sci_change_state(sm, SCIC_FAILED); 1716 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT); 1717 } else /* / @todo Now what do we want to do in this case? */ 1718 dev_err(&ihost->pdev->dev, 1719 "%s: Controller timer fired when controller was not " 1720 "in a state being timed.\n", 1721 __func__); 1722 1723 done: 1724 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1725 } 1726 1727 static enum sci_status sci_controller_construct(struct isci_host *ihost, 1728 void __iomem *scu_base, 1729 void __iomem *smu_base) 1730 { 1731 u8 i; 1732 1733 sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL); 1734 1735 ihost->scu_registers = scu_base; 1736 ihost->smu_registers = smu_base; 1737 1738 sci_port_configuration_agent_construct(&ihost->port_agent); 1739 1740 /* Construct the ports for this controller */ 1741 for (i = 0; i < SCI_MAX_PORTS; i++) 1742 sci_port_construct(&ihost->ports[i], i, ihost); 1743 sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost); 1744 1745 /* Construct the phys for this controller */ 1746 for (i = 0; i < SCI_MAX_PHYS; i++) { 1747 /* Add all the PHYs to the dummy port */ 1748 sci_phy_construct(&ihost->phys[i], 1749 &ihost->ports[SCI_MAX_PORTS], i); 1750 } 1751 1752 ihost->invalid_phy_mask = 0; 1753 1754 sci_init_timer(&ihost->timer, controller_timeout); 1755 1756 /* Initialize the User and OEM parameters to default values. */ 1757 sci_controller_set_default_config_parameters(ihost); 1758 1759 return sci_controller_reset(ihost); 1760 } 1761 1762 int sci_oem_parameters_validate(struct sci_oem_params *oem) 1763 { 1764 int i; 1765 1766 for (i = 0; i < SCI_MAX_PORTS; i++) 1767 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX) 1768 return -EINVAL; 1769 1770 for (i = 0; i < SCI_MAX_PHYS; i++) 1771 if (oem->phys[i].sas_address.high == 0 && 1772 oem->phys[i].sas_address.low == 0) 1773 return -EINVAL; 1774 1775 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) { 1776 for (i = 0; i < SCI_MAX_PHYS; i++) 1777 if (oem->ports[i].phy_mask != 0) 1778 return -EINVAL; 1779 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 1780 u8 phy_mask = 0; 1781 1782 for (i = 0; i < SCI_MAX_PHYS; i++) 1783 phy_mask |= oem->ports[i].phy_mask; 1784 1785 if (phy_mask == 0) 1786 return -EINVAL; 1787 } else 1788 return -EINVAL; 1789 1790 if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT || 1791 oem->controller.max_concurr_spin_up < 1) 1792 return -EINVAL; 1793 1794 return 0; 1795 } 1796 1797 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost) 1798 { 1799 u32 state = ihost->sm.current_state_id; 1800 1801 if (state == SCIC_RESET || 1802 state == SCIC_INITIALIZING || 1803 state == SCIC_INITIALIZED) { 1804 1805 if (sci_oem_parameters_validate(&ihost->oem_parameters)) 1806 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1807 1808 return SCI_SUCCESS; 1809 } 1810 1811 return SCI_FAILURE_INVALID_STATE; 1812 } 1813 1814 static u8 max_spin_up(struct isci_host *ihost) 1815 { 1816 if (ihost->user_parameters.max_concurr_spinup) 1817 return min_t(u8, ihost->user_parameters.max_concurr_spinup, 1818 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); 1819 else 1820 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up, 1821 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); 1822 } 1823 1824 static void power_control_timeout(unsigned long data) 1825 { 1826 struct sci_timer *tmr = (struct sci_timer *)data; 1827 struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer); 1828 struct isci_phy *iphy; 1829 unsigned long flags; 1830 u8 i; 1831 1832 spin_lock_irqsave(&ihost->scic_lock, flags); 1833 1834 if (tmr->cancel) 1835 goto done; 1836 1837 ihost->power_control.phys_granted_power = 0; 1838 1839 if (ihost->power_control.phys_waiting == 0) { 1840 ihost->power_control.timer_started = false; 1841 goto done; 1842 } 1843 1844 for (i = 0; i < SCI_MAX_PHYS; i++) { 1845 1846 if (ihost->power_control.phys_waiting == 0) 1847 break; 1848 1849 iphy = ihost->power_control.requesters[i]; 1850 if (iphy == NULL) 1851 continue; 1852 1853 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost)) 1854 break; 1855 1856 ihost->power_control.requesters[i] = NULL; 1857 ihost->power_control.phys_waiting--; 1858 ihost->power_control.phys_granted_power++; 1859 sci_phy_consume_power_handler(iphy); 1860 } 1861 1862 /* 1863 * It doesn't matter if the power list is empty, we need to start the 1864 * timer in case another phy becomes ready. 1865 */ 1866 sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1867 ihost->power_control.timer_started = true; 1868 1869 done: 1870 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1871 } 1872 1873 void sci_controller_power_control_queue_insert(struct isci_host *ihost, 1874 struct isci_phy *iphy) 1875 { 1876 BUG_ON(iphy == NULL); 1877 1878 if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) { 1879 ihost->power_control.phys_granted_power++; 1880 sci_phy_consume_power_handler(iphy); 1881 1882 /* 1883 * stop and start the power_control timer. When the timer fires, the 1884 * no_of_phys_granted_power will be set to 0 1885 */ 1886 if (ihost->power_control.timer_started) 1887 sci_del_timer(&ihost->power_control.timer); 1888 1889 sci_mod_timer(&ihost->power_control.timer, 1890 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1891 ihost->power_control.timer_started = true; 1892 1893 } else { 1894 /* Add the phy in the waiting list */ 1895 ihost->power_control.requesters[iphy->phy_index] = iphy; 1896 ihost->power_control.phys_waiting++; 1897 } 1898 } 1899 1900 void sci_controller_power_control_queue_remove(struct isci_host *ihost, 1901 struct isci_phy *iphy) 1902 { 1903 BUG_ON(iphy == NULL); 1904 1905 if (ihost->power_control.requesters[iphy->phy_index]) 1906 ihost->power_control.phys_waiting--; 1907 1908 ihost->power_control.requesters[iphy->phy_index] = NULL; 1909 } 1910 1911 #define AFE_REGISTER_WRITE_DELAY 10 1912 1913 /* Initialize the AFE for this phy index. We need to read the AFE setup from 1914 * the OEM parameters 1915 */ 1916 static void sci_controller_afe_initialization(struct isci_host *ihost) 1917 { 1918 const struct sci_oem_params *oem = &ihost->oem_parameters; 1919 struct pci_dev *pdev = ihost->pdev; 1920 u32 afe_status; 1921 u32 phy_id; 1922 1923 /* Clear DFX Status registers */ 1924 writel(0x0081000f, &ihost->scu_registers->afe.afe_dfx_master_control0); 1925 udelay(AFE_REGISTER_WRITE_DELAY); 1926 1927 if (is_b0(pdev)) { 1928 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement 1929 * Timer, PM Stagger Timer */ 1930 writel(0x0007BFFF, &ihost->scu_registers->afe.afe_pmsn_master_control2); 1931 udelay(AFE_REGISTER_WRITE_DELAY); 1932 } 1933 1934 /* Configure bias currents to normal */ 1935 if (is_a2(pdev)) 1936 writel(0x00005A00, &ihost->scu_registers->afe.afe_bias_control); 1937 else if (is_b0(pdev) || is_c0(pdev)) 1938 writel(0x00005F00, &ihost->scu_registers->afe.afe_bias_control); 1939 1940 udelay(AFE_REGISTER_WRITE_DELAY); 1941 1942 /* Enable PLL */ 1943 if (is_b0(pdev) || is_c0(pdev)) 1944 writel(0x80040A08, &ihost->scu_registers->afe.afe_pll_control0); 1945 else 1946 writel(0x80040908, &ihost->scu_registers->afe.afe_pll_control0); 1947 1948 udelay(AFE_REGISTER_WRITE_DELAY); 1949 1950 /* Wait for the PLL to lock */ 1951 do { 1952 afe_status = readl(&ihost->scu_registers->afe.afe_common_block_status); 1953 udelay(AFE_REGISTER_WRITE_DELAY); 1954 } while ((afe_status & 0x00001000) == 0); 1955 1956 if (is_a2(pdev)) { 1957 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */ 1958 writel(0x7bcc96ad, &ihost->scu_registers->afe.afe_pmsn_master_control0); 1959 udelay(AFE_REGISTER_WRITE_DELAY); 1960 } 1961 1962 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) { 1963 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id]; 1964 1965 if (is_b0(pdev)) { 1966 /* Configure transmitter SSC parameters */ 1967 writel(0x00030000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control); 1968 udelay(AFE_REGISTER_WRITE_DELAY); 1969 } else if (is_c0(pdev)) { 1970 /* Configure transmitter SSC parameters */ 1971 writel(0x0003000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control); 1972 udelay(AFE_REGISTER_WRITE_DELAY); 1973 1974 /* 1975 * All defaults, except the Receive Word Alignament/Comma Detect 1976 * Enable....(0xe800) */ 1977 writel(0x00004500, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0); 1978 udelay(AFE_REGISTER_WRITE_DELAY); 1979 } else { 1980 /* 1981 * All defaults, except the Receive Word Alignament/Comma Detect 1982 * Enable....(0xe800) */ 1983 writel(0x00004512, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0); 1984 udelay(AFE_REGISTER_WRITE_DELAY); 1985 1986 writel(0x0050100F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1); 1987 udelay(AFE_REGISTER_WRITE_DELAY); 1988 } 1989 1990 /* 1991 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX) 1992 * & increase TX int & ext bias 20%....(0xe85c) */ 1993 if (is_a2(pdev)) 1994 writel(0x000003F0, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); 1995 else if (is_b0(pdev)) { 1996 /* Power down TX and RX (PWRDNTX and PWRDNRX) */ 1997 writel(0x000003D7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); 1998 udelay(AFE_REGISTER_WRITE_DELAY); 1999 2000 /* 2001 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX) 2002 * & increase TX int & ext bias 20%....(0xe85c) */ 2003 writel(0x000003D4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); 2004 } else { 2005 writel(0x000001E7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); 2006 udelay(AFE_REGISTER_WRITE_DELAY); 2007 2008 /* 2009 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX) 2010 * & increase TX int & ext bias 20%....(0xe85c) */ 2011 writel(0x000001E4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); 2012 } 2013 udelay(AFE_REGISTER_WRITE_DELAY); 2014 2015 if (is_a2(pdev)) { 2016 /* Enable TX equalization (0xe824) */ 2017 writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control); 2018 udelay(AFE_REGISTER_WRITE_DELAY); 2019 } 2020 2021 /* 2022 * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On), 2023 * RDD=0x0(RX Detect Enabled) ....(0xe800) */ 2024 writel(0x00004100, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0); 2025 udelay(AFE_REGISTER_WRITE_DELAY); 2026 2027 /* Leave DFE/FFE on */ 2028 if (is_a2(pdev)) 2029 writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0); 2030 else if (is_b0(pdev)) { 2031 writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0); 2032 udelay(AFE_REGISTER_WRITE_DELAY); 2033 /* Enable TX equalization (0xe824) */ 2034 writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control); 2035 } else { 2036 writel(0x0140DF0F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control1); 2037 udelay(AFE_REGISTER_WRITE_DELAY); 2038 2039 writel(0x3F6F103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0); 2040 udelay(AFE_REGISTER_WRITE_DELAY); 2041 2042 /* Enable TX equalization (0xe824) */ 2043 writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control); 2044 } 2045 2046 udelay(AFE_REGISTER_WRITE_DELAY); 2047 2048 writel(oem_phy->afe_tx_amp_control0, 2049 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0); 2050 udelay(AFE_REGISTER_WRITE_DELAY); 2051 2052 writel(oem_phy->afe_tx_amp_control1, 2053 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1); 2054 udelay(AFE_REGISTER_WRITE_DELAY); 2055 2056 writel(oem_phy->afe_tx_amp_control2, 2057 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2); 2058 udelay(AFE_REGISTER_WRITE_DELAY); 2059 2060 writel(oem_phy->afe_tx_amp_control3, 2061 &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3); 2062 udelay(AFE_REGISTER_WRITE_DELAY); 2063 } 2064 2065 /* Transfer control to the PEs */ 2066 writel(0x00010f00, &ihost->scu_registers->afe.afe_dfx_master_control0); 2067 udelay(AFE_REGISTER_WRITE_DELAY); 2068 } 2069 2070 static void sci_controller_initialize_power_control(struct isci_host *ihost) 2071 { 2072 sci_init_timer(&ihost->power_control.timer, power_control_timeout); 2073 2074 memset(ihost->power_control.requesters, 0, 2075 sizeof(ihost->power_control.requesters)); 2076 2077 ihost->power_control.phys_waiting = 0; 2078 ihost->power_control.phys_granted_power = 0; 2079 } 2080 2081 static enum sci_status sci_controller_initialize(struct isci_host *ihost) 2082 { 2083 struct sci_base_state_machine *sm = &ihost->sm; 2084 enum sci_status result = SCI_FAILURE; 2085 unsigned long i, state, val; 2086 2087 if (ihost->sm.current_state_id != SCIC_RESET) { 2088 dev_warn(&ihost->pdev->dev, 2089 "SCIC Controller initialize operation requested " 2090 "in invalid state\n"); 2091 return SCI_FAILURE_INVALID_STATE; 2092 } 2093 2094 sci_change_state(sm, SCIC_INITIALIZING); 2095 2096 sci_init_timer(&ihost->phy_timer, phy_startup_timeout); 2097 2098 ihost->next_phy_to_start = 0; 2099 ihost->phy_startup_timer_pending = false; 2100 2101 sci_controller_initialize_power_control(ihost); 2102 2103 /* 2104 * There is nothing to do here for B0 since we do not have to 2105 * program the AFE registers. 2106 * / @todo The AFE settings are supposed to be correct for the B0 but 2107 * / presently they seem to be wrong. */ 2108 sci_controller_afe_initialization(ihost); 2109 2110 2111 /* Take the hardware out of reset */ 2112 writel(0, &ihost->smu_registers->soft_reset_control); 2113 2114 /* 2115 * / @todo Provide meaningfull error code for hardware failure 2116 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */ 2117 for (i = 100; i >= 1; i--) { 2118 u32 status; 2119 2120 /* Loop until the hardware reports success */ 2121 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME); 2122 status = readl(&ihost->smu_registers->control_status); 2123 2124 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED) 2125 break; 2126 } 2127 if (i == 0) 2128 goto out; 2129 2130 /* 2131 * Determine what are the actaul device capacities that the 2132 * hardware will support */ 2133 val = readl(&ihost->smu_registers->device_context_capacity); 2134 2135 /* Record the smaller of the two capacity values */ 2136 ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS); 2137 ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS); 2138 ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES); 2139 2140 /* 2141 * Make all PEs that are unassigned match up with the 2142 * logical ports 2143 */ 2144 for (i = 0; i < ihost->logical_port_entries; i++) { 2145 struct scu_port_task_scheduler_group_registers __iomem 2146 *ptsg = &ihost->scu_registers->peg0.ptsg; 2147 2148 writel(i, &ptsg->protocol_engine[i]); 2149 } 2150 2151 /* Initialize hardware PCI Relaxed ordering in DMA engines */ 2152 val = readl(&ihost->scu_registers->sdma.pdma_configuration); 2153 val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2154 writel(val, &ihost->scu_registers->sdma.pdma_configuration); 2155 2156 val = readl(&ihost->scu_registers->sdma.cdma_configuration); 2157 val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2158 writel(val, &ihost->scu_registers->sdma.cdma_configuration); 2159 2160 /* 2161 * Initialize the PHYs before the PORTs because the PHY registers 2162 * are accessed during the port initialization. 2163 */ 2164 for (i = 0; i < SCI_MAX_PHYS; i++) { 2165 result = sci_phy_initialize(&ihost->phys[i], 2166 &ihost->scu_registers->peg0.pe[i].tl, 2167 &ihost->scu_registers->peg0.pe[i].ll); 2168 if (result != SCI_SUCCESS) 2169 goto out; 2170 } 2171 2172 for (i = 0; i < ihost->logical_port_entries; i++) { 2173 struct isci_port *iport = &ihost->ports[i]; 2174 2175 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i]; 2176 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0]; 2177 iport->viit_registers = &ihost->scu_registers->peg0.viit[i]; 2178 } 2179 2180 result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent); 2181 2182 out: 2183 /* Advance the controller state machine */ 2184 if (result == SCI_SUCCESS) 2185 state = SCIC_INITIALIZED; 2186 else 2187 state = SCIC_FAILED; 2188 sci_change_state(sm, state); 2189 2190 return result; 2191 } 2192 2193 static enum sci_status sci_user_parameters_set(struct isci_host *ihost, 2194 struct sci_user_parameters *sci_parms) 2195 { 2196 u32 state = ihost->sm.current_state_id; 2197 2198 if (state == SCIC_RESET || 2199 state == SCIC_INITIALIZING || 2200 state == SCIC_INITIALIZED) { 2201 u16 index; 2202 2203 /* 2204 * Validate the user parameters. If they are not legal, then 2205 * return a failure. 2206 */ 2207 for (index = 0; index < SCI_MAX_PHYS; index++) { 2208 struct sci_phy_user_params *user_phy; 2209 2210 user_phy = &sci_parms->phys[index]; 2211 2212 if (!((user_phy->max_speed_generation <= 2213 SCIC_SDS_PARM_MAX_SPEED) && 2214 (user_phy->max_speed_generation > 2215 SCIC_SDS_PARM_NO_SPEED))) 2216 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2217 2218 if (user_phy->in_connection_align_insertion_frequency < 2219 3) 2220 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2221 2222 if ((user_phy->in_connection_align_insertion_frequency < 2223 3) || 2224 (user_phy->align_insertion_frequency == 0) || 2225 (user_phy-> 2226 notify_enable_spin_up_insertion_frequency == 2227 0)) 2228 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2229 } 2230 2231 if ((sci_parms->stp_inactivity_timeout == 0) || 2232 (sci_parms->ssp_inactivity_timeout == 0) || 2233 (sci_parms->stp_max_occupancy_timeout == 0) || 2234 (sci_parms->ssp_max_occupancy_timeout == 0) || 2235 (sci_parms->no_outbound_task_timeout == 0)) 2236 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2237 2238 memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms)); 2239 2240 return SCI_SUCCESS; 2241 } 2242 2243 return SCI_FAILURE_INVALID_STATE; 2244 } 2245 2246 static int sci_controller_mem_init(struct isci_host *ihost) 2247 { 2248 struct device *dev = &ihost->pdev->dev; 2249 dma_addr_t dma; 2250 size_t size; 2251 int err; 2252 2253 size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32); 2254 ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL); 2255 if (!ihost->completion_queue) 2256 return -ENOMEM; 2257 2258 writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower); 2259 writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper); 2260 2261 size = ihost->remote_node_entries * sizeof(union scu_remote_node_context); 2262 ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma, 2263 GFP_KERNEL); 2264 if (!ihost->remote_node_context_table) 2265 return -ENOMEM; 2266 2267 writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower); 2268 writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper); 2269 2270 size = ihost->task_context_entries * sizeof(struct scu_task_context), 2271 ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL); 2272 if (!ihost->task_context_table) 2273 return -ENOMEM; 2274 2275 ihost->task_context_dma = dma; 2276 writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower); 2277 writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper); 2278 2279 err = sci_unsolicited_frame_control_construct(ihost); 2280 if (err) 2281 return err; 2282 2283 /* 2284 * Inform the silicon as to the location of the UF headers and 2285 * address table. 2286 */ 2287 writel(lower_32_bits(ihost->uf_control.headers.physical_address), 2288 &ihost->scu_registers->sdma.uf_header_base_address_lower); 2289 writel(upper_32_bits(ihost->uf_control.headers.physical_address), 2290 &ihost->scu_registers->sdma.uf_header_base_address_upper); 2291 2292 writel(lower_32_bits(ihost->uf_control.address_table.physical_address), 2293 &ihost->scu_registers->sdma.uf_address_table_lower); 2294 writel(upper_32_bits(ihost->uf_control.address_table.physical_address), 2295 &ihost->scu_registers->sdma.uf_address_table_upper); 2296 2297 return 0; 2298 } 2299 2300 int isci_host_init(struct isci_host *ihost) 2301 { 2302 int err = 0, i; 2303 enum sci_status status; 2304 struct sci_user_parameters sci_user_params; 2305 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev); 2306 2307 spin_lock_init(&ihost->state_lock); 2308 spin_lock_init(&ihost->scic_lock); 2309 init_waitqueue_head(&ihost->eventq); 2310 2311 isci_host_change_state(ihost, isci_starting); 2312 2313 status = sci_controller_construct(ihost, scu_base(ihost), 2314 smu_base(ihost)); 2315 2316 if (status != SCI_SUCCESS) { 2317 dev_err(&ihost->pdev->dev, 2318 "%s: sci_controller_construct failed - status = %x\n", 2319 __func__, 2320 status); 2321 return -ENODEV; 2322 } 2323 2324 ihost->sas_ha.dev = &ihost->pdev->dev; 2325 ihost->sas_ha.lldd_ha = ihost; 2326 2327 /* 2328 * grab initial values stored in the controller object for OEM and USER 2329 * parameters 2330 */ 2331 isci_user_parameters_get(&sci_user_params); 2332 status = sci_user_parameters_set(ihost, &sci_user_params); 2333 if (status != SCI_SUCCESS) { 2334 dev_warn(&ihost->pdev->dev, 2335 "%s: sci_user_parameters_set failed\n", 2336 __func__); 2337 return -ENODEV; 2338 } 2339 2340 /* grab any OEM parameters specified in orom */ 2341 if (pci_info->orom) { 2342 status = isci_parse_oem_parameters(&ihost->oem_parameters, 2343 pci_info->orom, 2344 ihost->id); 2345 if (status != SCI_SUCCESS) { 2346 dev_warn(&ihost->pdev->dev, 2347 "parsing firmware oem parameters failed\n"); 2348 return -EINVAL; 2349 } 2350 } 2351 2352 status = sci_oem_parameters_set(ihost); 2353 if (status != SCI_SUCCESS) { 2354 dev_warn(&ihost->pdev->dev, 2355 "%s: sci_oem_parameters_set failed\n", 2356 __func__); 2357 return -ENODEV; 2358 } 2359 2360 tasklet_init(&ihost->completion_tasklet, 2361 isci_host_completion_routine, (unsigned long)ihost); 2362 2363 INIT_LIST_HEAD(&ihost->requests_to_complete); 2364 INIT_LIST_HEAD(&ihost->requests_to_errorback); 2365 2366 spin_lock_irq(&ihost->scic_lock); 2367 status = sci_controller_initialize(ihost); 2368 spin_unlock_irq(&ihost->scic_lock); 2369 if (status != SCI_SUCCESS) { 2370 dev_warn(&ihost->pdev->dev, 2371 "%s: sci_controller_initialize failed -" 2372 " status = 0x%x\n", 2373 __func__, status); 2374 return -ENODEV; 2375 } 2376 2377 err = sci_controller_mem_init(ihost); 2378 if (err) 2379 return err; 2380 2381 for (i = 0; i < SCI_MAX_PORTS; i++) 2382 isci_port_init(&ihost->ports[i], ihost, i); 2383 2384 for (i = 0; i < SCI_MAX_PHYS; i++) 2385 isci_phy_init(&ihost->phys[i], ihost, i); 2386 2387 /* enable sgpio */ 2388 writel(1, &ihost->scu_registers->peg0.sgpio.interface_control); 2389 for (i = 0; i < isci_gpio_count(ihost); i++) 2390 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); 2391 writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code); 2392 2393 for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) { 2394 struct isci_remote_device *idev = &ihost->devices[i]; 2395 2396 INIT_LIST_HEAD(&idev->reqs_in_process); 2397 INIT_LIST_HEAD(&idev->node); 2398 } 2399 2400 for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) { 2401 struct isci_request *ireq; 2402 dma_addr_t dma; 2403 2404 ireq = dmam_alloc_coherent(&ihost->pdev->dev, 2405 sizeof(struct isci_request), &dma, 2406 GFP_KERNEL); 2407 if (!ireq) 2408 return -ENOMEM; 2409 2410 ireq->tc = &ihost->task_context_table[i]; 2411 ireq->owning_controller = ihost; 2412 spin_lock_init(&ireq->state_lock); 2413 ireq->request_daddr = dma; 2414 ireq->isci_host = ihost; 2415 ihost->reqs[i] = ireq; 2416 } 2417 2418 return 0; 2419 } 2420 2421 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport, 2422 struct isci_phy *iphy) 2423 { 2424 switch (ihost->sm.current_state_id) { 2425 case SCIC_STARTING: 2426 sci_del_timer(&ihost->phy_timer); 2427 ihost->phy_startup_timer_pending = false; 2428 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, 2429 iport, iphy); 2430 sci_controller_start_next_phy(ihost); 2431 break; 2432 case SCIC_READY: 2433 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, 2434 iport, iphy); 2435 break; 2436 default: 2437 dev_dbg(&ihost->pdev->dev, 2438 "%s: SCIC Controller linkup event from phy %d in " 2439 "unexpected state %d\n", __func__, iphy->phy_index, 2440 ihost->sm.current_state_id); 2441 } 2442 } 2443 2444 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport, 2445 struct isci_phy *iphy) 2446 { 2447 switch (ihost->sm.current_state_id) { 2448 case SCIC_STARTING: 2449 case SCIC_READY: 2450 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent, 2451 iport, iphy); 2452 break; 2453 default: 2454 dev_dbg(&ihost->pdev->dev, 2455 "%s: SCIC Controller linkdown event from phy %d in " 2456 "unexpected state %d\n", 2457 __func__, 2458 iphy->phy_index, 2459 ihost->sm.current_state_id); 2460 } 2461 } 2462 2463 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost) 2464 { 2465 u32 index; 2466 2467 for (index = 0; index < ihost->remote_node_entries; index++) { 2468 if ((ihost->device_table[index] != NULL) && 2469 (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING)) 2470 return true; 2471 } 2472 2473 return false; 2474 } 2475 2476 void sci_controller_remote_device_stopped(struct isci_host *ihost, 2477 struct isci_remote_device *idev) 2478 { 2479 if (ihost->sm.current_state_id != SCIC_STOPPING) { 2480 dev_dbg(&ihost->pdev->dev, 2481 "SCIC Controller 0x%p remote device stopped event " 2482 "from device 0x%p in unexpected state %d\n", 2483 ihost, idev, 2484 ihost->sm.current_state_id); 2485 return; 2486 } 2487 2488 if (!sci_controller_has_remote_devices_stopping(ihost)) 2489 sci_change_state(&ihost->sm, SCIC_STOPPED); 2490 } 2491 2492 void sci_controller_post_request(struct isci_host *ihost, u32 request) 2493 { 2494 dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n", 2495 __func__, ihost->id, request); 2496 2497 writel(request, &ihost->smu_registers->post_context_port); 2498 } 2499 2500 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag) 2501 { 2502 u16 task_index; 2503 u16 task_sequence; 2504 2505 task_index = ISCI_TAG_TCI(io_tag); 2506 2507 if (task_index < ihost->task_context_entries) { 2508 struct isci_request *ireq = ihost->reqs[task_index]; 2509 2510 if (test_bit(IREQ_ACTIVE, &ireq->flags)) { 2511 task_sequence = ISCI_TAG_SEQ(io_tag); 2512 2513 if (task_sequence == ihost->io_request_sequence[task_index]) 2514 return ireq; 2515 } 2516 } 2517 2518 return NULL; 2519 } 2520 2521 /** 2522 * This method allocates remote node index and the reserves the remote node 2523 * context space for use. This method can fail if there are no more remote 2524 * node index available. 2525 * @scic: This is the controller object which contains the set of 2526 * free remote node ids 2527 * @sci_dev: This is the device object which is requesting the a remote node 2528 * id 2529 * @node_id: This is the remote node id that is assinged to the device if one 2530 * is available 2531 * 2532 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote 2533 * node index available. 2534 */ 2535 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost, 2536 struct isci_remote_device *idev, 2537 u16 *node_id) 2538 { 2539 u16 node_index; 2540 u32 remote_node_count = sci_remote_device_node_count(idev); 2541 2542 node_index = sci_remote_node_table_allocate_remote_node( 2543 &ihost->available_remote_nodes, remote_node_count 2544 ); 2545 2546 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 2547 ihost->device_table[node_index] = idev; 2548 2549 *node_id = node_index; 2550 2551 return SCI_SUCCESS; 2552 } 2553 2554 return SCI_FAILURE_INSUFFICIENT_RESOURCES; 2555 } 2556 2557 void sci_controller_free_remote_node_context(struct isci_host *ihost, 2558 struct isci_remote_device *idev, 2559 u16 node_id) 2560 { 2561 u32 remote_node_count = sci_remote_device_node_count(idev); 2562 2563 if (ihost->device_table[node_id] == idev) { 2564 ihost->device_table[node_id] = NULL; 2565 2566 sci_remote_node_table_release_remote_node_index( 2567 &ihost->available_remote_nodes, remote_node_count, node_id 2568 ); 2569 } 2570 } 2571 2572 void sci_controller_copy_sata_response(void *response_buffer, 2573 void *frame_header, 2574 void *frame_buffer) 2575 { 2576 /* XXX type safety? */ 2577 memcpy(response_buffer, frame_header, sizeof(u32)); 2578 2579 memcpy(response_buffer + sizeof(u32), 2580 frame_buffer, 2581 sizeof(struct dev_to_host_fis) - sizeof(u32)); 2582 } 2583 2584 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index) 2585 { 2586 if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index)) 2587 writel(ihost->uf_control.get, 2588 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 2589 } 2590 2591 void isci_tci_free(struct isci_host *ihost, u16 tci) 2592 { 2593 u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1); 2594 2595 ihost->tci_pool[tail] = tci; 2596 ihost->tci_tail = tail + 1; 2597 } 2598 2599 static u16 isci_tci_alloc(struct isci_host *ihost) 2600 { 2601 u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1); 2602 u16 tci = ihost->tci_pool[head]; 2603 2604 ihost->tci_head = head + 1; 2605 return tci; 2606 } 2607 2608 static u16 isci_tci_space(struct isci_host *ihost) 2609 { 2610 return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); 2611 } 2612 2613 u16 isci_alloc_tag(struct isci_host *ihost) 2614 { 2615 if (isci_tci_space(ihost)) { 2616 u16 tci = isci_tci_alloc(ihost); 2617 u8 seq = ihost->io_request_sequence[tci]; 2618 2619 return ISCI_TAG(seq, tci); 2620 } 2621 2622 return SCI_CONTROLLER_INVALID_IO_TAG; 2623 } 2624 2625 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag) 2626 { 2627 u16 tci = ISCI_TAG_TCI(io_tag); 2628 u16 seq = ISCI_TAG_SEQ(io_tag); 2629 2630 /* prevent tail from passing head */ 2631 if (isci_tci_active(ihost) == 0) 2632 return SCI_FAILURE_INVALID_IO_TAG; 2633 2634 if (seq == ihost->io_request_sequence[tci]) { 2635 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1); 2636 2637 isci_tci_free(ihost, tci); 2638 2639 return SCI_SUCCESS; 2640 } 2641 return SCI_FAILURE_INVALID_IO_TAG; 2642 } 2643 2644 enum sci_status sci_controller_start_io(struct isci_host *ihost, 2645 struct isci_remote_device *idev, 2646 struct isci_request *ireq) 2647 { 2648 enum sci_status status; 2649 2650 if (ihost->sm.current_state_id != SCIC_READY) { 2651 dev_warn(&ihost->pdev->dev, "invalid state to start I/O"); 2652 return SCI_FAILURE_INVALID_STATE; 2653 } 2654 2655 status = sci_remote_device_start_io(ihost, idev, ireq); 2656 if (status != SCI_SUCCESS) 2657 return status; 2658 2659 set_bit(IREQ_ACTIVE, &ireq->flags); 2660 sci_controller_post_request(ihost, ireq->post_context); 2661 return SCI_SUCCESS; 2662 } 2663 2664 enum sci_status sci_controller_terminate_request(struct isci_host *ihost, 2665 struct isci_remote_device *idev, 2666 struct isci_request *ireq) 2667 { 2668 /* terminate an ongoing (i.e. started) core IO request. This does not 2669 * abort the IO request at the target, but rather removes the IO 2670 * request from the host controller. 2671 */ 2672 enum sci_status status; 2673 2674 if (ihost->sm.current_state_id != SCIC_READY) { 2675 dev_warn(&ihost->pdev->dev, 2676 "invalid state to terminate request\n"); 2677 return SCI_FAILURE_INVALID_STATE; 2678 } 2679 2680 status = sci_io_request_terminate(ireq); 2681 if (status != SCI_SUCCESS) 2682 return status; 2683 2684 /* 2685 * Utilize the original post context command and or in the POST_TC_ABORT 2686 * request sub-type. 2687 */ 2688 sci_controller_post_request(ihost, 2689 ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT); 2690 return SCI_SUCCESS; 2691 } 2692 2693 /** 2694 * sci_controller_complete_io() - This method will perform core specific 2695 * completion operations for an IO request. After this method is invoked, 2696 * the user should consider the IO request as invalid until it is properly 2697 * reused (i.e. re-constructed). 2698 * @ihost: The handle to the controller object for which to complete the 2699 * IO request. 2700 * @idev: The handle to the remote device object for which to complete 2701 * the IO request. 2702 * @ireq: the handle to the io request object to complete. 2703 */ 2704 enum sci_status sci_controller_complete_io(struct isci_host *ihost, 2705 struct isci_remote_device *idev, 2706 struct isci_request *ireq) 2707 { 2708 enum sci_status status; 2709 u16 index; 2710 2711 switch (ihost->sm.current_state_id) { 2712 case SCIC_STOPPING: 2713 /* XXX: Implement this function */ 2714 return SCI_FAILURE; 2715 case SCIC_READY: 2716 status = sci_remote_device_complete_io(ihost, idev, ireq); 2717 if (status != SCI_SUCCESS) 2718 return status; 2719 2720 index = ISCI_TAG_TCI(ireq->io_tag); 2721 clear_bit(IREQ_ACTIVE, &ireq->flags); 2722 return SCI_SUCCESS; 2723 default: 2724 dev_warn(&ihost->pdev->dev, "invalid state to complete I/O"); 2725 return SCI_FAILURE_INVALID_STATE; 2726 } 2727 2728 } 2729 2730 enum sci_status sci_controller_continue_io(struct isci_request *ireq) 2731 { 2732 struct isci_host *ihost = ireq->owning_controller; 2733 2734 if (ihost->sm.current_state_id != SCIC_READY) { 2735 dev_warn(&ihost->pdev->dev, "invalid state to continue I/O"); 2736 return SCI_FAILURE_INVALID_STATE; 2737 } 2738 2739 set_bit(IREQ_ACTIVE, &ireq->flags); 2740 sci_controller_post_request(ihost, ireq->post_context); 2741 return SCI_SUCCESS; 2742 } 2743 2744 /** 2745 * sci_controller_start_task() - This method is called by the SCIC user to 2746 * send/start a framework task management request. 2747 * @controller: the handle to the controller object for which to start the task 2748 * management request. 2749 * @remote_device: the handle to the remote device object for which to start 2750 * the task management request. 2751 * @task_request: the handle to the task request object to start. 2752 */ 2753 enum sci_task_status sci_controller_start_task(struct isci_host *ihost, 2754 struct isci_remote_device *idev, 2755 struct isci_request *ireq) 2756 { 2757 enum sci_status status; 2758 2759 if (ihost->sm.current_state_id != SCIC_READY) { 2760 dev_warn(&ihost->pdev->dev, 2761 "%s: SCIC Controller starting task from invalid " 2762 "state\n", 2763 __func__); 2764 return SCI_TASK_FAILURE_INVALID_STATE; 2765 } 2766 2767 status = sci_remote_device_start_task(ihost, idev, ireq); 2768 switch (status) { 2769 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS: 2770 set_bit(IREQ_ACTIVE, &ireq->flags); 2771 2772 /* 2773 * We will let framework know this task request started successfully, 2774 * although core is still woring on starting the request (to post tc when 2775 * RNC is resumed.) 2776 */ 2777 return SCI_SUCCESS; 2778 case SCI_SUCCESS: 2779 set_bit(IREQ_ACTIVE, &ireq->flags); 2780 sci_controller_post_request(ihost, ireq->post_context); 2781 break; 2782 default: 2783 break; 2784 } 2785 2786 return status; 2787 } 2788 2789 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data) 2790 { 2791 int d; 2792 2793 /* no support for TX_GP_CFG */ 2794 if (reg_index == 0) 2795 return -EINVAL; 2796 2797 for (d = 0; d < isci_gpio_count(ihost); d++) { 2798 u32 val = 0x444; /* all ODx.n clear */ 2799 int i; 2800 2801 for (i = 0; i < 3; i++) { 2802 int bit = (i << 2) + 2; 2803 2804 bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i), 2805 write_data, reg_index, 2806 reg_count); 2807 if (bit < 0) 2808 break; 2809 2810 /* if od is set, clear the 'invert' bit */ 2811 val &= ~(bit << ((i << 2) + 2)); 2812 } 2813 2814 if (i < 3) 2815 break; 2816 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]); 2817 } 2818 2819 /* unless reg_index is > 1, we should always be able to write at 2820 * least one register 2821 */ 2822 return d > 0; 2823 } 2824 2825 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index, 2826 u8 reg_count, u8 *write_data) 2827 { 2828 struct isci_host *ihost = sas_ha->lldd_ha; 2829 int written; 2830 2831 switch (reg_type) { 2832 case SAS_GPIO_REG_TX_GP: 2833 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data); 2834 break; 2835 default: 2836 written = -EINVAL; 2837 } 2838 2839 return written; 2840 } 2841