xref: /linux/drivers/scsi/isci/host.c (revision cff4fa8415a3224a5abdd2b1dd7f431e4ea49366)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "host.h"
62 #include "probe_roms.h"
63 #include "remote_device.h"
64 #include "request.h"
65 #include "scu_completion_codes.h"
66 #include "scu_event_codes.h"
67 #include "registers.h"
68 #include "scu_remote_node_context.h"
69 #include "scu_task_context.h"
70 
71 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
72 
73 #define smu_max_ports(dcc_value) \
74 	(\
75 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
76 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
77 	)
78 
79 #define smu_max_task_contexts(dcc_value)	\
80 	(\
81 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
82 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
83 	)
84 
85 #define smu_max_rncs(dcc_value) \
86 	(\
87 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
88 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
89 	)
90 
91 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
92 
93 /**
94  *
95  *
96  * The number of milliseconds to wait while a given phy is consuming power
97  * before allowing another set of phys to consume power. Ultimately, this will
98  * be specified by OEM parameter.
99  */
100 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
101 
102 /**
103  * NORMALIZE_PUT_POINTER() -
104  *
105  * This macro will normalize the completion queue put pointer so its value can
106  * be used as an array inde
107  */
108 #define NORMALIZE_PUT_POINTER(x) \
109 	((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
110 
111 
112 /**
113  * NORMALIZE_EVENT_POINTER() -
114  *
115  * This macro will normalize the completion queue event entry so its value can
116  * be used as an index.
117  */
118 #define NORMALIZE_EVENT_POINTER(x) \
119 	(\
120 		((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
121 		>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT	\
122 	)
123 
124 /**
125  * NORMALIZE_GET_POINTER() -
126  *
127  * This macro will normalize the completion queue get pointer so its value can
128  * be used as an index into an array
129  */
130 #define NORMALIZE_GET_POINTER(x) \
131 	((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
132 
133 /**
134  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
135  *
136  * This macro will normalize the completion queue cycle pointer so it matches
137  * the completion queue cycle bit
138  */
139 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
140 	((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
141 
142 /**
143  * COMPLETION_QUEUE_CYCLE_BIT() -
144  *
145  * This macro will return the cycle bit of the completion queue entry
146  */
147 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
148 
149 /* Init the state machine and call the state entry function (if any) */
150 void sci_init_sm(struct sci_base_state_machine *sm,
151 		 const struct sci_base_state *state_table, u32 initial_state)
152 {
153 	sci_state_transition_t handler;
154 
155 	sm->initial_state_id    = initial_state;
156 	sm->previous_state_id   = initial_state;
157 	sm->current_state_id    = initial_state;
158 	sm->state_table         = state_table;
159 
160 	handler = sm->state_table[initial_state].enter_state;
161 	if (handler)
162 		handler(sm);
163 }
164 
165 /* Call the state exit fn, update the current state, call the state entry fn */
166 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
167 {
168 	sci_state_transition_t handler;
169 
170 	handler = sm->state_table[sm->current_state_id].exit_state;
171 	if (handler)
172 		handler(sm);
173 
174 	sm->previous_state_id = sm->current_state_id;
175 	sm->current_state_id = next_state;
176 
177 	handler = sm->state_table[sm->current_state_id].enter_state;
178 	if (handler)
179 		handler(sm);
180 }
181 
182 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
183 {
184 	u32 get_value = ihost->completion_queue_get;
185 	u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
186 
187 	if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
188 	    COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
189 		return true;
190 
191 	return false;
192 }
193 
194 static bool sci_controller_isr(struct isci_host *ihost)
195 {
196 	if (sci_controller_completion_queue_has_entries(ihost)) {
197 		return true;
198 	} else {
199 		/*
200 		 * we have a spurious interrupt it could be that we have already
201 		 * emptied the completion queue from a previous interrupt */
202 		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
203 
204 		/*
205 		 * There is a race in the hardware that could cause us not to be notified
206 		 * of an interrupt completion if we do not take this step.  We will mask
207 		 * then unmask the interrupts so if there is another interrupt pending
208 		 * the clearing of the interrupt source we get the next interrupt message. */
209 		writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
210 		writel(0, &ihost->smu_registers->interrupt_mask);
211 	}
212 
213 	return false;
214 }
215 
216 irqreturn_t isci_msix_isr(int vec, void *data)
217 {
218 	struct isci_host *ihost = data;
219 
220 	if (sci_controller_isr(ihost))
221 		tasklet_schedule(&ihost->completion_tasklet);
222 
223 	return IRQ_HANDLED;
224 }
225 
226 static bool sci_controller_error_isr(struct isci_host *ihost)
227 {
228 	u32 interrupt_status;
229 
230 	interrupt_status =
231 		readl(&ihost->smu_registers->interrupt_status);
232 	interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
233 
234 	if (interrupt_status != 0) {
235 		/*
236 		 * There is an error interrupt pending so let it through and handle
237 		 * in the callback */
238 		return true;
239 	}
240 
241 	/*
242 	 * There is a race in the hardware that could cause us not to be notified
243 	 * of an interrupt completion if we do not take this step.  We will mask
244 	 * then unmask the error interrupts so if there was another interrupt
245 	 * pending we will be notified.
246 	 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
247 	writel(0xff, &ihost->smu_registers->interrupt_mask);
248 	writel(0, &ihost->smu_registers->interrupt_mask);
249 
250 	return false;
251 }
252 
253 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
254 {
255 	u32 index = SCU_GET_COMPLETION_INDEX(ent);
256 	struct isci_request *ireq = ihost->reqs[index];
257 
258 	/* Make sure that we really want to process this IO request */
259 	if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
260 	    ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
261 	    ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
262 		/* Yep this is a valid io request pass it along to the
263 		 * io request handler
264 		 */
265 		sci_io_request_tc_completion(ireq, ent);
266 }
267 
268 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
269 {
270 	u32 index;
271 	struct isci_request *ireq;
272 	struct isci_remote_device *idev;
273 
274 	index = SCU_GET_COMPLETION_INDEX(ent);
275 
276 	switch (scu_get_command_request_type(ent)) {
277 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
278 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
279 		ireq = ihost->reqs[index];
280 		dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
281 			 __func__, ent, ireq);
282 		/* @todo For a post TC operation we need to fail the IO
283 		 * request
284 		 */
285 		break;
286 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
287 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
288 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
289 		idev = ihost->device_table[index];
290 		dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
291 			 __func__, ent, idev);
292 		/* @todo For a port RNC operation we need to fail the
293 		 * device
294 		 */
295 		break;
296 	default:
297 		dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
298 			 __func__, ent);
299 		break;
300 	}
301 }
302 
303 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
304 {
305 	u32 index;
306 	u32 frame_index;
307 
308 	struct scu_unsolicited_frame_header *frame_header;
309 	struct isci_phy *iphy;
310 	struct isci_remote_device *idev;
311 
312 	enum sci_status result = SCI_FAILURE;
313 
314 	frame_index = SCU_GET_FRAME_INDEX(ent);
315 
316 	frame_header = ihost->uf_control.buffers.array[frame_index].header;
317 	ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
318 
319 	if (SCU_GET_FRAME_ERROR(ent)) {
320 		/*
321 		 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
322 		 * /       this cause a problem? We expect the phy initialization will
323 		 * /       fail if there is an error in the frame. */
324 		sci_controller_release_frame(ihost, frame_index);
325 		return;
326 	}
327 
328 	if (frame_header->is_address_frame) {
329 		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
330 		iphy = &ihost->phys[index];
331 		result = sci_phy_frame_handler(iphy, frame_index);
332 	} else {
333 
334 		index = SCU_GET_COMPLETION_INDEX(ent);
335 
336 		if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
337 			/*
338 			 * This is a signature fis or a frame from a direct attached SATA
339 			 * device that has not yet been created.  In either case forwared
340 			 * the frame to the PE and let it take care of the frame data. */
341 			index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
342 			iphy = &ihost->phys[index];
343 			result = sci_phy_frame_handler(iphy, frame_index);
344 		} else {
345 			if (index < ihost->remote_node_entries)
346 				idev = ihost->device_table[index];
347 			else
348 				idev = NULL;
349 
350 			if (idev != NULL)
351 				result = sci_remote_device_frame_handler(idev, frame_index);
352 			else
353 				sci_controller_release_frame(ihost, frame_index);
354 		}
355 	}
356 
357 	if (result != SCI_SUCCESS) {
358 		/*
359 		 * / @todo Is there any reason to report some additional error message
360 		 * /       when we get this failure notifiction? */
361 	}
362 }
363 
364 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
365 {
366 	struct isci_remote_device *idev;
367 	struct isci_request *ireq;
368 	struct isci_phy *iphy;
369 	u32 index;
370 
371 	index = SCU_GET_COMPLETION_INDEX(ent);
372 
373 	switch (scu_get_event_type(ent)) {
374 	case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
375 		/* / @todo The driver did something wrong and we need to fix the condtion. */
376 		dev_err(&ihost->pdev->dev,
377 			"%s: SCIC Controller 0x%p received SMU command error "
378 			"0x%x\n",
379 			__func__,
380 			ihost,
381 			ent);
382 		break;
383 
384 	case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
385 	case SCU_EVENT_TYPE_SMU_ERROR:
386 	case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
387 		/*
388 		 * / @todo This is a hardware failure and its likely that we want to
389 		 * /       reset the controller. */
390 		dev_err(&ihost->pdev->dev,
391 			"%s: SCIC Controller 0x%p received fatal controller "
392 			"event  0x%x\n",
393 			__func__,
394 			ihost,
395 			ent);
396 		break;
397 
398 	case SCU_EVENT_TYPE_TRANSPORT_ERROR:
399 		ireq = ihost->reqs[index];
400 		sci_io_request_event_handler(ireq, ent);
401 		break;
402 
403 	case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
404 		switch (scu_get_event_specifier(ent)) {
405 		case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
406 		case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
407 			ireq = ihost->reqs[index];
408 			if (ireq != NULL)
409 				sci_io_request_event_handler(ireq, ent);
410 			else
411 				dev_warn(&ihost->pdev->dev,
412 					 "%s: SCIC Controller 0x%p received "
413 					 "event 0x%x for io request object "
414 					 "that doesnt exist.\n",
415 					 __func__,
416 					 ihost,
417 					 ent);
418 
419 			break;
420 
421 		case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
422 			idev = ihost->device_table[index];
423 			if (idev != NULL)
424 				sci_remote_device_event_handler(idev, ent);
425 			else
426 				dev_warn(&ihost->pdev->dev,
427 					 "%s: SCIC Controller 0x%p received "
428 					 "event 0x%x for remote device object "
429 					 "that doesnt exist.\n",
430 					 __func__,
431 					 ihost,
432 					 ent);
433 
434 			break;
435 		}
436 		break;
437 
438 	case SCU_EVENT_TYPE_BROADCAST_CHANGE:
439 	/*
440 	 * direct the broadcast change event to the phy first and then let
441 	 * the phy redirect the broadcast change to the port object */
442 	case SCU_EVENT_TYPE_ERR_CNT_EVENT:
443 	/*
444 	 * direct error counter event to the phy object since that is where
445 	 * we get the event notification.  This is a type 4 event. */
446 	case SCU_EVENT_TYPE_OSSP_EVENT:
447 		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
448 		iphy = &ihost->phys[index];
449 		sci_phy_event_handler(iphy, ent);
450 		break;
451 
452 	case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
453 	case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
454 	case SCU_EVENT_TYPE_RNC_OPS_MISC:
455 		if (index < ihost->remote_node_entries) {
456 			idev = ihost->device_table[index];
457 
458 			if (idev != NULL)
459 				sci_remote_device_event_handler(idev, ent);
460 		} else
461 			dev_err(&ihost->pdev->dev,
462 				"%s: SCIC Controller 0x%p received event 0x%x "
463 				"for remote device object 0x%0x that doesnt "
464 				"exist.\n",
465 				__func__,
466 				ihost,
467 				ent,
468 				index);
469 
470 		break;
471 
472 	default:
473 		dev_warn(&ihost->pdev->dev,
474 			 "%s: SCIC Controller received unknown event code %x\n",
475 			 __func__,
476 			 ent);
477 		break;
478 	}
479 }
480 
481 static void sci_controller_process_completions(struct isci_host *ihost)
482 {
483 	u32 completion_count = 0;
484 	u32 ent;
485 	u32 get_index;
486 	u32 get_cycle;
487 	u32 event_get;
488 	u32 event_cycle;
489 
490 	dev_dbg(&ihost->pdev->dev,
491 		"%s: completion queue begining get:0x%08x\n",
492 		__func__,
493 		ihost->completion_queue_get);
494 
495 	/* Get the component parts of the completion queue */
496 	get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
497 	get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
498 
499 	event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
500 	event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
501 
502 	while (
503 		NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
504 		== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
505 		) {
506 		completion_count++;
507 
508 		ent = ihost->completion_queue[get_index];
509 
510 		/* increment the get pointer and check for rollover to toggle the cycle bit */
511 		get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
512 			     (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
513 		get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
514 
515 		dev_dbg(&ihost->pdev->dev,
516 			"%s: completion queue entry:0x%08x\n",
517 			__func__,
518 			ent);
519 
520 		switch (SCU_GET_COMPLETION_TYPE(ent)) {
521 		case SCU_COMPLETION_TYPE_TASK:
522 			sci_controller_task_completion(ihost, ent);
523 			break;
524 
525 		case SCU_COMPLETION_TYPE_SDMA:
526 			sci_controller_sdma_completion(ihost, ent);
527 			break;
528 
529 		case SCU_COMPLETION_TYPE_UFI:
530 			sci_controller_unsolicited_frame(ihost, ent);
531 			break;
532 
533 		case SCU_COMPLETION_TYPE_EVENT:
534 		case SCU_COMPLETION_TYPE_NOTIFY: {
535 			event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
536 				       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
537 			event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
538 
539 			sci_controller_event_completion(ihost, ent);
540 			break;
541 		}
542 		default:
543 			dev_warn(&ihost->pdev->dev,
544 				 "%s: SCIC Controller received unknown "
545 				 "completion type %x\n",
546 				 __func__,
547 				 ent);
548 			break;
549 		}
550 	}
551 
552 	/* Update the get register if we completed one or more entries */
553 	if (completion_count > 0) {
554 		ihost->completion_queue_get =
555 			SMU_CQGR_GEN_BIT(ENABLE) |
556 			SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
557 			event_cycle |
558 			SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
559 			get_cycle |
560 			SMU_CQGR_GEN_VAL(POINTER, get_index);
561 
562 		writel(ihost->completion_queue_get,
563 		       &ihost->smu_registers->completion_queue_get);
564 
565 	}
566 
567 	dev_dbg(&ihost->pdev->dev,
568 		"%s: completion queue ending get:0x%08x\n",
569 		__func__,
570 		ihost->completion_queue_get);
571 
572 }
573 
574 static void sci_controller_error_handler(struct isci_host *ihost)
575 {
576 	u32 interrupt_status;
577 
578 	interrupt_status =
579 		readl(&ihost->smu_registers->interrupt_status);
580 
581 	if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
582 	    sci_controller_completion_queue_has_entries(ihost)) {
583 
584 		sci_controller_process_completions(ihost);
585 		writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
586 	} else {
587 		dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
588 			interrupt_status);
589 
590 		sci_change_state(&ihost->sm, SCIC_FAILED);
591 
592 		return;
593 	}
594 
595 	/* If we dont process any completions I am not sure that we want to do this.
596 	 * We are in the middle of a hardware fault and should probably be reset.
597 	 */
598 	writel(0, &ihost->smu_registers->interrupt_mask);
599 }
600 
601 irqreturn_t isci_intx_isr(int vec, void *data)
602 {
603 	irqreturn_t ret = IRQ_NONE;
604 	struct isci_host *ihost = data;
605 
606 	if (sci_controller_isr(ihost)) {
607 		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
608 		tasklet_schedule(&ihost->completion_tasklet);
609 		ret = IRQ_HANDLED;
610 	} else if (sci_controller_error_isr(ihost)) {
611 		spin_lock(&ihost->scic_lock);
612 		sci_controller_error_handler(ihost);
613 		spin_unlock(&ihost->scic_lock);
614 		ret = IRQ_HANDLED;
615 	}
616 
617 	return ret;
618 }
619 
620 irqreturn_t isci_error_isr(int vec, void *data)
621 {
622 	struct isci_host *ihost = data;
623 
624 	if (sci_controller_error_isr(ihost))
625 		sci_controller_error_handler(ihost);
626 
627 	return IRQ_HANDLED;
628 }
629 
630 /**
631  * isci_host_start_complete() - This function is called by the core library,
632  *    through the ISCI Module, to indicate controller start status.
633  * @isci_host: This parameter specifies the ISCI host object
634  * @completion_status: This parameter specifies the completion status from the
635  *    core library.
636  *
637  */
638 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
639 {
640 	if (completion_status != SCI_SUCCESS)
641 		dev_info(&ihost->pdev->dev,
642 			"controller start timed out, continuing...\n");
643 	isci_host_change_state(ihost, isci_ready);
644 	clear_bit(IHOST_START_PENDING, &ihost->flags);
645 	wake_up(&ihost->eventq);
646 }
647 
648 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
649 {
650 	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
651 
652 	if (test_bit(IHOST_START_PENDING, &ihost->flags))
653 		return 0;
654 
655 	/* todo: use sas_flush_discovery once it is upstream */
656 	scsi_flush_work(shost);
657 
658 	scsi_flush_work(shost);
659 
660 	dev_dbg(&ihost->pdev->dev,
661 		"%s: ihost->status = %d, time = %ld\n",
662 		 __func__, isci_host_get_state(ihost), time);
663 
664 	return 1;
665 
666 }
667 
668 /**
669  * sci_controller_get_suggested_start_timeout() - This method returns the
670  *    suggested sci_controller_start() timeout amount.  The user is free to
671  *    use any timeout value, but this method provides the suggested minimum
672  *    start timeout value.  The returned value is based upon empirical
673  *    information determined as a result of interoperability testing.
674  * @controller: the handle to the controller object for which to return the
675  *    suggested start timeout.
676  *
677  * This method returns the number of milliseconds for the suggested start
678  * operation timeout.
679  */
680 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
681 {
682 	/* Validate the user supplied parameters. */
683 	if (!ihost)
684 		return 0;
685 
686 	/*
687 	 * The suggested minimum timeout value for a controller start operation:
688 	 *
689 	 *     Signature FIS Timeout
690 	 *   + Phy Start Timeout
691 	 *   + Number of Phy Spin Up Intervals
692 	 *   ---------------------------------
693 	 *   Number of milliseconds for the controller start operation.
694 	 *
695 	 * NOTE: The number of phy spin up intervals will be equivalent
696 	 *       to the number of phys divided by the number phys allowed
697 	 *       per interval - 1 (once OEM parameters are supported).
698 	 *       Currently we assume only 1 phy per interval. */
699 
700 	return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
701 		+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
702 		+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
703 }
704 
705 static void sci_controller_enable_interrupts(struct isci_host *ihost)
706 {
707 	BUG_ON(ihost->smu_registers == NULL);
708 	writel(0, &ihost->smu_registers->interrupt_mask);
709 }
710 
711 void sci_controller_disable_interrupts(struct isci_host *ihost)
712 {
713 	BUG_ON(ihost->smu_registers == NULL);
714 	writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
715 }
716 
717 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
718 {
719 	u32 port_task_scheduler_value;
720 
721 	port_task_scheduler_value =
722 		readl(&ihost->scu_registers->peg0.ptsg.control);
723 	port_task_scheduler_value |=
724 		(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
725 		 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
726 	writel(port_task_scheduler_value,
727 	       &ihost->scu_registers->peg0.ptsg.control);
728 }
729 
730 static void sci_controller_assign_task_entries(struct isci_host *ihost)
731 {
732 	u32 task_assignment;
733 
734 	/*
735 	 * Assign all the TCs to function 0
736 	 * TODO: Do we actually need to read this register to write it back?
737 	 */
738 
739 	task_assignment =
740 		readl(&ihost->smu_registers->task_context_assignment[0]);
741 
742 	task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
743 		(SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
744 		(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
745 
746 	writel(task_assignment,
747 		&ihost->smu_registers->task_context_assignment[0]);
748 
749 }
750 
751 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
752 {
753 	u32 index;
754 	u32 completion_queue_control_value;
755 	u32 completion_queue_get_value;
756 	u32 completion_queue_put_value;
757 
758 	ihost->completion_queue_get = 0;
759 
760 	completion_queue_control_value =
761 		(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
762 		 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
763 
764 	writel(completion_queue_control_value,
765 	       &ihost->smu_registers->completion_queue_control);
766 
767 
768 	/* Set the completion queue get pointer and enable the queue */
769 	completion_queue_get_value = (
770 		(SMU_CQGR_GEN_VAL(POINTER, 0))
771 		| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
772 		| (SMU_CQGR_GEN_BIT(ENABLE))
773 		| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
774 		);
775 
776 	writel(completion_queue_get_value,
777 	       &ihost->smu_registers->completion_queue_get);
778 
779 	/* Set the completion queue put pointer */
780 	completion_queue_put_value = (
781 		(SMU_CQPR_GEN_VAL(POINTER, 0))
782 		| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
783 		);
784 
785 	writel(completion_queue_put_value,
786 	       &ihost->smu_registers->completion_queue_put);
787 
788 	/* Initialize the cycle bit of the completion queue entries */
789 	for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
790 		/*
791 		 * If get.cycle_bit != completion_queue.cycle_bit
792 		 * its not a valid completion queue entry
793 		 * so at system start all entries are invalid */
794 		ihost->completion_queue[index] = 0x80000000;
795 	}
796 }
797 
798 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
799 {
800 	u32 frame_queue_control_value;
801 	u32 frame_queue_get_value;
802 	u32 frame_queue_put_value;
803 
804 	/* Write the queue size */
805 	frame_queue_control_value =
806 		SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
807 
808 	writel(frame_queue_control_value,
809 	       &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
810 
811 	/* Setup the get pointer for the unsolicited frame queue */
812 	frame_queue_get_value = (
813 		SCU_UFQGP_GEN_VAL(POINTER, 0)
814 		|  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
815 		);
816 
817 	writel(frame_queue_get_value,
818 	       &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
819 	/* Setup the put pointer for the unsolicited frame queue */
820 	frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
821 	writel(frame_queue_put_value,
822 	       &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
823 }
824 
825 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
826 {
827 	if (ihost->sm.current_state_id == SCIC_STARTING) {
828 		/*
829 		 * We move into the ready state, because some of the phys/ports
830 		 * may be up and operational.
831 		 */
832 		sci_change_state(&ihost->sm, SCIC_READY);
833 
834 		isci_host_start_complete(ihost, status);
835 	}
836 }
837 
838 static bool is_phy_starting(struct isci_phy *iphy)
839 {
840 	enum sci_phy_states state;
841 
842 	state = iphy->sm.current_state_id;
843 	switch (state) {
844 	case SCI_PHY_STARTING:
845 	case SCI_PHY_SUB_INITIAL:
846 	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
847 	case SCI_PHY_SUB_AWAIT_IAF_UF:
848 	case SCI_PHY_SUB_AWAIT_SAS_POWER:
849 	case SCI_PHY_SUB_AWAIT_SATA_POWER:
850 	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
851 	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
852 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
853 	case SCI_PHY_SUB_FINAL:
854 		return true;
855 	default:
856 		return false;
857 	}
858 }
859 
860 /**
861  * sci_controller_start_next_phy - start phy
862  * @scic: controller
863  *
864  * If all the phys have been started, then attempt to transition the
865  * controller to the READY state and inform the user
866  * (sci_cb_controller_start_complete()).
867  */
868 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
869 {
870 	struct sci_oem_params *oem = &ihost->oem_parameters;
871 	struct isci_phy *iphy;
872 	enum sci_status status;
873 
874 	status = SCI_SUCCESS;
875 
876 	if (ihost->phy_startup_timer_pending)
877 		return status;
878 
879 	if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
880 		bool is_controller_start_complete = true;
881 		u32 state;
882 		u8 index;
883 
884 		for (index = 0; index < SCI_MAX_PHYS; index++) {
885 			iphy = &ihost->phys[index];
886 			state = iphy->sm.current_state_id;
887 
888 			if (!phy_get_non_dummy_port(iphy))
889 				continue;
890 
891 			/* The controller start operation is complete iff:
892 			 * - all links have been given an opportunity to start
893 			 * - have no indication of a connected device
894 			 * - have an indication of a connected device and it has
895 			 *   finished the link training process.
896 			 */
897 			if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
898 			    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
899 			    (iphy->is_in_link_training == true && is_phy_starting(iphy))) {
900 				is_controller_start_complete = false;
901 				break;
902 			}
903 		}
904 
905 		/*
906 		 * The controller has successfully finished the start process.
907 		 * Inform the SCI Core user and transition to the READY state. */
908 		if (is_controller_start_complete == true) {
909 			sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
910 			sci_del_timer(&ihost->phy_timer);
911 			ihost->phy_startup_timer_pending = false;
912 		}
913 	} else {
914 		iphy = &ihost->phys[ihost->next_phy_to_start];
915 
916 		if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
917 			if (phy_get_non_dummy_port(iphy) == NULL) {
918 				ihost->next_phy_to_start++;
919 
920 				/* Caution recursion ahead be forwarned
921 				 *
922 				 * The PHY was never added to a PORT in MPC mode
923 				 * so start the next phy in sequence This phy
924 				 * will never go link up and will not draw power
925 				 * the OEM parameters either configured the phy
926 				 * incorrectly for the PORT or it was never
927 				 * assigned to a PORT
928 				 */
929 				return sci_controller_start_next_phy(ihost);
930 			}
931 		}
932 
933 		status = sci_phy_start(iphy);
934 
935 		if (status == SCI_SUCCESS) {
936 			sci_mod_timer(&ihost->phy_timer,
937 				      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
938 			ihost->phy_startup_timer_pending = true;
939 		} else {
940 			dev_warn(&ihost->pdev->dev,
941 				 "%s: Controller stop operation failed "
942 				 "to stop phy %d because of status "
943 				 "%d.\n",
944 				 __func__,
945 				 ihost->phys[ihost->next_phy_to_start].phy_index,
946 				 status);
947 		}
948 
949 		ihost->next_phy_to_start++;
950 	}
951 
952 	return status;
953 }
954 
955 static void phy_startup_timeout(unsigned long data)
956 {
957 	struct sci_timer *tmr = (struct sci_timer *)data;
958 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
959 	unsigned long flags;
960 	enum sci_status status;
961 
962 	spin_lock_irqsave(&ihost->scic_lock, flags);
963 
964 	if (tmr->cancel)
965 		goto done;
966 
967 	ihost->phy_startup_timer_pending = false;
968 
969 	do {
970 		status = sci_controller_start_next_phy(ihost);
971 	} while (status != SCI_SUCCESS);
972 
973 done:
974 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
975 }
976 
977 static u16 isci_tci_active(struct isci_host *ihost)
978 {
979 	return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
980 }
981 
982 static enum sci_status sci_controller_start(struct isci_host *ihost,
983 					     u32 timeout)
984 {
985 	enum sci_status result;
986 	u16 index;
987 
988 	if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
989 		dev_warn(&ihost->pdev->dev,
990 			 "SCIC Controller start operation requested in "
991 			 "invalid state\n");
992 		return SCI_FAILURE_INVALID_STATE;
993 	}
994 
995 	/* Build the TCi free pool */
996 	BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
997 	ihost->tci_head = 0;
998 	ihost->tci_tail = 0;
999 	for (index = 0; index < ihost->task_context_entries; index++)
1000 		isci_tci_free(ihost, index);
1001 
1002 	/* Build the RNi free pool */
1003 	sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1004 					 ihost->remote_node_entries);
1005 
1006 	/*
1007 	 * Before anything else lets make sure we will not be
1008 	 * interrupted by the hardware.
1009 	 */
1010 	sci_controller_disable_interrupts(ihost);
1011 
1012 	/* Enable the port task scheduler */
1013 	sci_controller_enable_port_task_scheduler(ihost);
1014 
1015 	/* Assign all the task entries to ihost physical function */
1016 	sci_controller_assign_task_entries(ihost);
1017 
1018 	/* Now initialize the completion queue */
1019 	sci_controller_initialize_completion_queue(ihost);
1020 
1021 	/* Initialize the unsolicited frame queue for use */
1022 	sci_controller_initialize_unsolicited_frame_queue(ihost);
1023 
1024 	/* Start all of the ports on this controller */
1025 	for (index = 0; index < ihost->logical_port_entries; index++) {
1026 		struct isci_port *iport = &ihost->ports[index];
1027 
1028 		result = sci_port_start(iport);
1029 		if (result)
1030 			return result;
1031 	}
1032 
1033 	sci_controller_start_next_phy(ihost);
1034 
1035 	sci_mod_timer(&ihost->timer, timeout);
1036 
1037 	sci_change_state(&ihost->sm, SCIC_STARTING);
1038 
1039 	return SCI_SUCCESS;
1040 }
1041 
1042 void isci_host_scan_start(struct Scsi_Host *shost)
1043 {
1044 	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1045 	unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1046 
1047 	set_bit(IHOST_START_PENDING, &ihost->flags);
1048 
1049 	spin_lock_irq(&ihost->scic_lock);
1050 	sci_controller_start(ihost, tmo);
1051 	sci_controller_enable_interrupts(ihost);
1052 	spin_unlock_irq(&ihost->scic_lock);
1053 }
1054 
1055 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1056 {
1057 	isci_host_change_state(ihost, isci_stopped);
1058 	sci_controller_disable_interrupts(ihost);
1059 	clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1060 	wake_up(&ihost->eventq);
1061 }
1062 
1063 static void sci_controller_completion_handler(struct isci_host *ihost)
1064 {
1065 	/* Empty out the completion queue */
1066 	if (sci_controller_completion_queue_has_entries(ihost))
1067 		sci_controller_process_completions(ihost);
1068 
1069 	/* Clear the interrupt and enable all interrupts again */
1070 	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1071 	/* Could we write the value of SMU_ISR_COMPLETION? */
1072 	writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1073 	writel(0, &ihost->smu_registers->interrupt_mask);
1074 }
1075 
1076 /**
1077  * isci_host_completion_routine() - This function is the delayed service
1078  *    routine that calls the sci core library's completion handler. It's
1079  *    scheduled as a tasklet from the interrupt service routine when interrupts
1080  *    in use, or set as the timeout function in polled mode.
1081  * @data: This parameter specifies the ISCI host object
1082  *
1083  */
1084 static void isci_host_completion_routine(unsigned long data)
1085 {
1086 	struct isci_host *ihost = (struct isci_host *)data;
1087 	struct list_head    completed_request_list;
1088 	struct list_head    errored_request_list;
1089 	struct list_head    *current_position;
1090 	struct list_head    *next_position;
1091 	struct isci_request *request;
1092 	struct isci_request *next_request;
1093 	struct sas_task     *task;
1094 
1095 	INIT_LIST_HEAD(&completed_request_list);
1096 	INIT_LIST_HEAD(&errored_request_list);
1097 
1098 	spin_lock_irq(&ihost->scic_lock);
1099 
1100 	sci_controller_completion_handler(ihost);
1101 
1102 	/* Take the lists of completed I/Os from the host. */
1103 
1104 	list_splice_init(&ihost->requests_to_complete,
1105 			 &completed_request_list);
1106 
1107 	/* Take the list of errored I/Os from the host. */
1108 	list_splice_init(&ihost->requests_to_errorback,
1109 			 &errored_request_list);
1110 
1111 	spin_unlock_irq(&ihost->scic_lock);
1112 
1113 	/* Process any completions in the lists. */
1114 	list_for_each_safe(current_position, next_position,
1115 			   &completed_request_list) {
1116 
1117 		request = list_entry(current_position, struct isci_request,
1118 				     completed_node);
1119 		task = isci_request_access_task(request);
1120 
1121 		/* Normal notification (task_done) */
1122 		dev_dbg(&ihost->pdev->dev,
1123 			"%s: Normal - request/task = %p/%p\n",
1124 			__func__,
1125 			request,
1126 			task);
1127 
1128 		/* Return the task to libsas */
1129 		if (task != NULL) {
1130 
1131 			task->lldd_task = NULL;
1132 			if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1133 
1134 				/* If the task is already in the abort path,
1135 				* the task_done callback cannot be called.
1136 				*/
1137 				task->task_done(task);
1138 			}
1139 		}
1140 
1141 		spin_lock_irq(&ihost->scic_lock);
1142 		isci_free_tag(ihost, request->io_tag);
1143 		spin_unlock_irq(&ihost->scic_lock);
1144 	}
1145 	list_for_each_entry_safe(request, next_request, &errored_request_list,
1146 				 completed_node) {
1147 
1148 		task = isci_request_access_task(request);
1149 
1150 		/* Use sas_task_abort */
1151 		dev_warn(&ihost->pdev->dev,
1152 			 "%s: Error - request/task = %p/%p\n",
1153 			 __func__,
1154 			 request,
1155 			 task);
1156 
1157 		if (task != NULL) {
1158 
1159 			/* Put the task into the abort path if it's not there
1160 			 * already.
1161 			 */
1162 			if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1163 				sas_task_abort(task);
1164 
1165 		} else {
1166 			/* This is a case where the request has completed with a
1167 			 * status such that it needed further target servicing,
1168 			 * but the sas_task reference has already been removed
1169 			 * from the request.  Since it was errored, it was not
1170 			 * being aborted, so there is nothing to do except free
1171 			 * it.
1172 			 */
1173 
1174 			spin_lock_irq(&ihost->scic_lock);
1175 			/* Remove the request from the remote device's list
1176 			* of pending requests.
1177 			*/
1178 			list_del_init(&request->dev_node);
1179 			isci_free_tag(ihost, request->io_tag);
1180 			spin_unlock_irq(&ihost->scic_lock);
1181 		}
1182 	}
1183 
1184 }
1185 
1186 /**
1187  * sci_controller_stop() - This method will stop an individual controller
1188  *    object.This method will invoke the associated user callback upon
1189  *    completion.  The completion callback is called when the following
1190  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1191  *    controller has been quiesced. This method will ensure that all IO
1192  *    requests are quiesced, phys are stopped, and all additional operation by
1193  *    the hardware is halted.
1194  * @controller: the handle to the controller object to stop.
1195  * @timeout: This parameter specifies the number of milliseconds in which the
1196  *    stop operation should complete.
1197  *
1198  * The controller must be in the STARTED or STOPPED state. Indicate if the
1199  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1200  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1201  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1202  * controller is not either in the STARTED or STOPPED states.
1203  */
1204 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1205 {
1206 	if (ihost->sm.current_state_id != SCIC_READY) {
1207 		dev_warn(&ihost->pdev->dev,
1208 			 "SCIC Controller stop operation requested in "
1209 			 "invalid state\n");
1210 		return SCI_FAILURE_INVALID_STATE;
1211 	}
1212 
1213 	sci_mod_timer(&ihost->timer, timeout);
1214 	sci_change_state(&ihost->sm, SCIC_STOPPING);
1215 	return SCI_SUCCESS;
1216 }
1217 
1218 /**
1219  * sci_controller_reset() - This method will reset the supplied core
1220  *    controller regardless of the state of said controller.  This operation is
1221  *    considered destructive.  In other words, all current operations are wiped
1222  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1223  *    requests are not aborted or completed at the actual remote device.
1224  * @controller: the handle to the controller object to reset.
1225  *
1226  * Indicate if the controller reset method succeeded or failed in some way.
1227  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1228  * the controller reset operation is unable to complete.
1229  */
1230 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1231 {
1232 	switch (ihost->sm.current_state_id) {
1233 	case SCIC_RESET:
1234 	case SCIC_READY:
1235 	case SCIC_STOPPED:
1236 	case SCIC_FAILED:
1237 		/*
1238 		 * The reset operation is not a graceful cleanup, just
1239 		 * perform the state transition.
1240 		 */
1241 		sci_change_state(&ihost->sm, SCIC_RESETTING);
1242 		return SCI_SUCCESS;
1243 	default:
1244 		dev_warn(&ihost->pdev->dev,
1245 			 "SCIC Controller reset operation requested in "
1246 			 "invalid state\n");
1247 		return SCI_FAILURE_INVALID_STATE;
1248 	}
1249 }
1250 
1251 void isci_host_deinit(struct isci_host *ihost)
1252 {
1253 	int i;
1254 
1255 	isci_host_change_state(ihost, isci_stopping);
1256 	for (i = 0; i < SCI_MAX_PORTS; i++) {
1257 		struct isci_port *iport = &ihost->ports[i];
1258 		struct isci_remote_device *idev, *d;
1259 
1260 		list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1261 			if (test_bit(IDEV_ALLOCATED, &idev->flags))
1262 				isci_remote_device_stop(ihost, idev);
1263 		}
1264 	}
1265 
1266 	set_bit(IHOST_STOP_PENDING, &ihost->flags);
1267 
1268 	spin_lock_irq(&ihost->scic_lock);
1269 	sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1270 	spin_unlock_irq(&ihost->scic_lock);
1271 
1272 	wait_for_stop(ihost);
1273 	sci_controller_reset(ihost);
1274 
1275 	/* Cancel any/all outstanding port timers */
1276 	for (i = 0; i < ihost->logical_port_entries; i++) {
1277 		struct isci_port *iport = &ihost->ports[i];
1278 		del_timer_sync(&iport->timer.timer);
1279 	}
1280 
1281 	/* Cancel any/all outstanding phy timers */
1282 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1283 		struct isci_phy *iphy = &ihost->phys[i];
1284 		del_timer_sync(&iphy->sata_timer.timer);
1285 	}
1286 
1287 	del_timer_sync(&ihost->port_agent.timer.timer);
1288 
1289 	del_timer_sync(&ihost->power_control.timer.timer);
1290 
1291 	del_timer_sync(&ihost->timer.timer);
1292 
1293 	del_timer_sync(&ihost->phy_timer.timer);
1294 }
1295 
1296 static void __iomem *scu_base(struct isci_host *isci_host)
1297 {
1298 	struct pci_dev *pdev = isci_host->pdev;
1299 	int id = isci_host->id;
1300 
1301 	return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1302 }
1303 
1304 static void __iomem *smu_base(struct isci_host *isci_host)
1305 {
1306 	struct pci_dev *pdev = isci_host->pdev;
1307 	int id = isci_host->id;
1308 
1309 	return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1310 }
1311 
1312 static void isci_user_parameters_get(struct sci_user_parameters *u)
1313 {
1314 	int i;
1315 
1316 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1317 		struct sci_phy_user_params *u_phy = &u->phys[i];
1318 
1319 		u_phy->max_speed_generation = phy_gen;
1320 
1321 		/* we are not exporting these for now */
1322 		u_phy->align_insertion_frequency = 0x7f;
1323 		u_phy->in_connection_align_insertion_frequency = 0xff;
1324 		u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1325 	}
1326 
1327 	u->stp_inactivity_timeout = stp_inactive_to;
1328 	u->ssp_inactivity_timeout = ssp_inactive_to;
1329 	u->stp_max_occupancy_timeout = stp_max_occ_to;
1330 	u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1331 	u->no_outbound_task_timeout = no_outbound_task_to;
1332 	u->max_number_concurrent_device_spin_up = max_concurr_spinup;
1333 }
1334 
1335 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1336 {
1337 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1338 
1339 	sci_change_state(&ihost->sm, SCIC_RESET);
1340 }
1341 
1342 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1343 {
1344 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1345 
1346 	sci_del_timer(&ihost->timer);
1347 }
1348 
1349 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1350 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1351 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1352 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1353 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1354 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1355 
1356 /**
1357  * sci_controller_set_interrupt_coalescence() - This method allows the user to
1358  *    configure the interrupt coalescence.
1359  * @controller: This parameter represents the handle to the controller object
1360  *    for which its interrupt coalesce register is overridden.
1361  * @coalesce_number: Used to control the number of entries in the Completion
1362  *    Queue before an interrupt is generated. If the number of entries exceed
1363  *    this number, an interrupt will be generated. The valid range of the input
1364  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1365  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1366  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1367  *    interrupt coalescing timeout.
1368  *
1369  * Indicate if the user successfully set the interrupt coalesce parameters.
1370  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1371  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1372  */
1373 static enum sci_status
1374 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1375 					 u32 coalesce_number,
1376 					 u32 coalesce_timeout)
1377 {
1378 	u8 timeout_encode = 0;
1379 	u32 min = 0;
1380 	u32 max = 0;
1381 
1382 	/* Check if the input parameters fall in the range. */
1383 	if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1384 		return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1385 
1386 	/*
1387 	 *  Defined encoding for interrupt coalescing timeout:
1388 	 *              Value   Min      Max     Units
1389 	 *              -----   ---      ---     -----
1390 	 *              0       -        -       Disabled
1391 	 *              1       13.3     20.0    ns
1392 	 *              2       26.7     40.0
1393 	 *              3       53.3     80.0
1394 	 *              4       106.7    160.0
1395 	 *              5       213.3    320.0
1396 	 *              6       426.7    640.0
1397 	 *              7       853.3    1280.0
1398 	 *              8       1.7      2.6     us
1399 	 *              9       3.4      5.1
1400 	 *              10      6.8      10.2
1401 	 *              11      13.7     20.5
1402 	 *              12      27.3     41.0
1403 	 *              13      54.6     81.9
1404 	 *              14      109.2    163.8
1405 	 *              15      218.5    327.7
1406 	 *              16      436.9    655.4
1407 	 *              17      873.8    1310.7
1408 	 *              18      1.7      2.6     ms
1409 	 *              19      3.5      5.2
1410 	 *              20      7.0      10.5
1411 	 *              21      14.0     21.0
1412 	 *              22      28.0     41.9
1413 	 *              23      55.9     83.9
1414 	 *              24      111.8    167.8
1415 	 *              25      223.7    335.5
1416 	 *              26      447.4    671.1
1417 	 *              27      894.8    1342.2
1418 	 *              28      1.8      2.7     s
1419 	 *              Others Undefined */
1420 
1421 	/*
1422 	 * Use the table above to decide the encode of interrupt coalescing timeout
1423 	 * value for register writing. */
1424 	if (coalesce_timeout == 0)
1425 		timeout_encode = 0;
1426 	else{
1427 		/* make the timeout value in unit of (10 ns). */
1428 		coalesce_timeout = coalesce_timeout * 100;
1429 		min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1430 		max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1431 
1432 		/* get the encode of timeout for register writing. */
1433 		for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1434 		      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1435 		      timeout_encode++) {
1436 			if (min <= coalesce_timeout &&  max > coalesce_timeout)
1437 				break;
1438 			else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1439 				 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1440 				if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1441 					break;
1442 				else{
1443 					timeout_encode++;
1444 					break;
1445 				}
1446 			} else {
1447 				max = max * 2;
1448 				min = min * 2;
1449 			}
1450 		}
1451 
1452 		if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1453 			/* the value is out of range. */
1454 			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1455 	}
1456 
1457 	writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1458 	       SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1459 	       &ihost->smu_registers->interrupt_coalesce_control);
1460 
1461 
1462 	ihost->interrupt_coalesce_number = (u16)coalesce_number;
1463 	ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1464 
1465 	return SCI_SUCCESS;
1466 }
1467 
1468 
1469 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1470 {
1471 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1472 
1473 	/* set the default interrupt coalescence number and timeout value. */
1474 	sci_controller_set_interrupt_coalescence(ihost, 0x10, 250);
1475 }
1476 
1477 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1478 {
1479 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1480 
1481 	/* disable interrupt coalescence. */
1482 	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1483 }
1484 
1485 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1486 {
1487 	u32 index;
1488 	enum sci_status status;
1489 	enum sci_status phy_status;
1490 
1491 	status = SCI_SUCCESS;
1492 
1493 	for (index = 0; index < SCI_MAX_PHYS; index++) {
1494 		phy_status = sci_phy_stop(&ihost->phys[index]);
1495 
1496 		if (phy_status != SCI_SUCCESS &&
1497 		    phy_status != SCI_FAILURE_INVALID_STATE) {
1498 			status = SCI_FAILURE;
1499 
1500 			dev_warn(&ihost->pdev->dev,
1501 				 "%s: Controller stop operation failed to stop "
1502 				 "phy %d because of status %d.\n",
1503 				 __func__,
1504 				 ihost->phys[index].phy_index, phy_status);
1505 		}
1506 	}
1507 
1508 	return status;
1509 }
1510 
1511 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1512 {
1513 	u32 index;
1514 	enum sci_status port_status;
1515 	enum sci_status status = SCI_SUCCESS;
1516 
1517 	for (index = 0; index < ihost->logical_port_entries; index++) {
1518 		struct isci_port *iport = &ihost->ports[index];
1519 
1520 		port_status = sci_port_stop(iport);
1521 
1522 		if ((port_status != SCI_SUCCESS) &&
1523 		    (port_status != SCI_FAILURE_INVALID_STATE)) {
1524 			status = SCI_FAILURE;
1525 
1526 			dev_warn(&ihost->pdev->dev,
1527 				 "%s: Controller stop operation failed to "
1528 				 "stop port %d because of status %d.\n",
1529 				 __func__,
1530 				 iport->logical_port_index,
1531 				 port_status);
1532 		}
1533 	}
1534 
1535 	return status;
1536 }
1537 
1538 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1539 {
1540 	u32 index;
1541 	enum sci_status status;
1542 	enum sci_status device_status;
1543 
1544 	status = SCI_SUCCESS;
1545 
1546 	for (index = 0; index < ihost->remote_node_entries; index++) {
1547 		if (ihost->device_table[index] != NULL) {
1548 			/* / @todo What timeout value do we want to provide to this request? */
1549 			device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1550 
1551 			if ((device_status != SCI_SUCCESS) &&
1552 			    (device_status != SCI_FAILURE_INVALID_STATE)) {
1553 				dev_warn(&ihost->pdev->dev,
1554 					 "%s: Controller stop operation failed "
1555 					 "to stop device 0x%p because of "
1556 					 "status %d.\n",
1557 					 __func__,
1558 					 ihost->device_table[index], device_status);
1559 			}
1560 		}
1561 	}
1562 
1563 	return status;
1564 }
1565 
1566 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1567 {
1568 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1569 
1570 	/* Stop all of the components for this controller */
1571 	sci_controller_stop_phys(ihost);
1572 	sci_controller_stop_ports(ihost);
1573 	sci_controller_stop_devices(ihost);
1574 }
1575 
1576 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1577 {
1578 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1579 
1580 	sci_del_timer(&ihost->timer);
1581 }
1582 
1583 static void sci_controller_reset_hardware(struct isci_host *ihost)
1584 {
1585 	/* Disable interrupts so we dont take any spurious interrupts */
1586 	sci_controller_disable_interrupts(ihost);
1587 
1588 	/* Reset the SCU */
1589 	writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1590 
1591 	/* Delay for 1ms to before clearing the CQP and UFQPR. */
1592 	udelay(1000);
1593 
1594 	/* The write to the CQGR clears the CQP */
1595 	writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1596 
1597 	/* The write to the UFQGP clears the UFQPR */
1598 	writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1599 }
1600 
1601 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1602 {
1603 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1604 
1605 	sci_controller_reset_hardware(ihost);
1606 	sci_change_state(&ihost->sm, SCIC_RESET);
1607 }
1608 
1609 static const struct sci_base_state sci_controller_state_table[] = {
1610 	[SCIC_INITIAL] = {
1611 		.enter_state = sci_controller_initial_state_enter,
1612 	},
1613 	[SCIC_RESET] = {},
1614 	[SCIC_INITIALIZING] = {},
1615 	[SCIC_INITIALIZED] = {},
1616 	[SCIC_STARTING] = {
1617 		.exit_state  = sci_controller_starting_state_exit,
1618 	},
1619 	[SCIC_READY] = {
1620 		.enter_state = sci_controller_ready_state_enter,
1621 		.exit_state  = sci_controller_ready_state_exit,
1622 	},
1623 	[SCIC_RESETTING] = {
1624 		.enter_state = sci_controller_resetting_state_enter,
1625 	},
1626 	[SCIC_STOPPING] = {
1627 		.enter_state = sci_controller_stopping_state_enter,
1628 		.exit_state = sci_controller_stopping_state_exit,
1629 	},
1630 	[SCIC_STOPPED] = {},
1631 	[SCIC_FAILED] = {}
1632 };
1633 
1634 static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
1635 {
1636 	/* these defaults are overridden by the platform / firmware */
1637 	u16 index;
1638 
1639 	/* Default to APC mode. */
1640 	ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1641 
1642 	/* Default to APC mode. */
1643 	ihost->oem_parameters.controller.max_concurrent_dev_spin_up = 1;
1644 
1645 	/* Default to no SSC operation. */
1646 	ihost->oem_parameters.controller.do_enable_ssc = false;
1647 
1648 	/* Initialize all of the port parameter information to narrow ports. */
1649 	for (index = 0; index < SCI_MAX_PORTS; index++) {
1650 		ihost->oem_parameters.ports[index].phy_mask = 0;
1651 	}
1652 
1653 	/* Initialize all of the phy parameter information. */
1654 	for (index = 0; index < SCI_MAX_PHYS; index++) {
1655 		/* Default to 6G (i.e. Gen 3) for now. */
1656 		ihost->user_parameters.phys[index].max_speed_generation = 3;
1657 
1658 		/* the frequencies cannot be 0 */
1659 		ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
1660 		ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
1661 		ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1662 
1663 		/*
1664 		 * Previous Vitesse based expanders had a arbitration issue that
1665 		 * is worked around by having the upper 32-bits of SAS address
1666 		 * with a value greater then the Vitesse company identifier.
1667 		 * Hence, usage of 0x5FCFFFFF. */
1668 		ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
1669 		ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
1670 	}
1671 
1672 	ihost->user_parameters.stp_inactivity_timeout = 5;
1673 	ihost->user_parameters.ssp_inactivity_timeout = 5;
1674 	ihost->user_parameters.stp_max_occupancy_timeout = 5;
1675 	ihost->user_parameters.ssp_max_occupancy_timeout = 20;
1676 	ihost->user_parameters.no_outbound_task_timeout = 20;
1677 }
1678 
1679 static void controller_timeout(unsigned long data)
1680 {
1681 	struct sci_timer *tmr = (struct sci_timer *)data;
1682 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1683 	struct sci_base_state_machine *sm = &ihost->sm;
1684 	unsigned long flags;
1685 
1686 	spin_lock_irqsave(&ihost->scic_lock, flags);
1687 
1688 	if (tmr->cancel)
1689 		goto done;
1690 
1691 	if (sm->current_state_id == SCIC_STARTING)
1692 		sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1693 	else if (sm->current_state_id == SCIC_STOPPING) {
1694 		sci_change_state(sm, SCIC_FAILED);
1695 		isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1696 	} else	/* / @todo Now what do we want to do in this case? */
1697 		dev_err(&ihost->pdev->dev,
1698 			"%s: Controller timer fired when controller was not "
1699 			"in a state being timed.\n",
1700 			__func__);
1701 
1702 done:
1703 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1704 }
1705 
1706 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1707 						void __iomem *scu_base,
1708 						void __iomem *smu_base)
1709 {
1710 	u8 i;
1711 
1712 	sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1713 
1714 	ihost->scu_registers = scu_base;
1715 	ihost->smu_registers = smu_base;
1716 
1717 	sci_port_configuration_agent_construct(&ihost->port_agent);
1718 
1719 	/* Construct the ports for this controller */
1720 	for (i = 0; i < SCI_MAX_PORTS; i++)
1721 		sci_port_construct(&ihost->ports[i], i, ihost);
1722 	sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1723 
1724 	/* Construct the phys for this controller */
1725 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1726 		/* Add all the PHYs to the dummy port */
1727 		sci_phy_construct(&ihost->phys[i],
1728 				  &ihost->ports[SCI_MAX_PORTS], i);
1729 	}
1730 
1731 	ihost->invalid_phy_mask = 0;
1732 
1733 	sci_init_timer(&ihost->timer, controller_timeout);
1734 
1735 	/* Initialize the User and OEM parameters to default values. */
1736 	sci_controller_set_default_config_parameters(ihost);
1737 
1738 	return sci_controller_reset(ihost);
1739 }
1740 
1741 int sci_oem_parameters_validate(struct sci_oem_params *oem)
1742 {
1743 	int i;
1744 
1745 	for (i = 0; i < SCI_MAX_PORTS; i++)
1746 		if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1747 			return -EINVAL;
1748 
1749 	for (i = 0; i < SCI_MAX_PHYS; i++)
1750 		if (oem->phys[i].sas_address.high == 0 &&
1751 		    oem->phys[i].sas_address.low == 0)
1752 			return -EINVAL;
1753 
1754 	if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1755 		for (i = 0; i < SCI_MAX_PHYS; i++)
1756 			if (oem->ports[i].phy_mask != 0)
1757 				return -EINVAL;
1758 	} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1759 		u8 phy_mask = 0;
1760 
1761 		for (i = 0; i < SCI_MAX_PHYS; i++)
1762 			phy_mask |= oem->ports[i].phy_mask;
1763 
1764 		if (phy_mask == 0)
1765 			return -EINVAL;
1766 	} else
1767 		return -EINVAL;
1768 
1769 	if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
1770 		return -EINVAL;
1771 
1772 	return 0;
1773 }
1774 
1775 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
1776 {
1777 	u32 state = ihost->sm.current_state_id;
1778 
1779 	if (state == SCIC_RESET ||
1780 	    state == SCIC_INITIALIZING ||
1781 	    state == SCIC_INITIALIZED) {
1782 
1783 		if (sci_oem_parameters_validate(&ihost->oem_parameters))
1784 			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1785 
1786 		return SCI_SUCCESS;
1787 	}
1788 
1789 	return SCI_FAILURE_INVALID_STATE;
1790 }
1791 
1792 static void power_control_timeout(unsigned long data)
1793 {
1794 	struct sci_timer *tmr = (struct sci_timer *)data;
1795 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1796 	struct isci_phy *iphy;
1797 	unsigned long flags;
1798 	u8 i;
1799 
1800 	spin_lock_irqsave(&ihost->scic_lock, flags);
1801 
1802 	if (tmr->cancel)
1803 		goto done;
1804 
1805 	ihost->power_control.phys_granted_power = 0;
1806 
1807 	if (ihost->power_control.phys_waiting == 0) {
1808 		ihost->power_control.timer_started = false;
1809 		goto done;
1810 	}
1811 
1812 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1813 
1814 		if (ihost->power_control.phys_waiting == 0)
1815 			break;
1816 
1817 		iphy = ihost->power_control.requesters[i];
1818 		if (iphy == NULL)
1819 			continue;
1820 
1821 		if (ihost->power_control.phys_granted_power >=
1822 		    ihost->oem_parameters.controller.max_concurrent_dev_spin_up)
1823 			break;
1824 
1825 		ihost->power_control.requesters[i] = NULL;
1826 		ihost->power_control.phys_waiting--;
1827 		ihost->power_control.phys_granted_power++;
1828 		sci_phy_consume_power_handler(iphy);
1829 	}
1830 
1831 	/*
1832 	 * It doesn't matter if the power list is empty, we need to start the
1833 	 * timer in case another phy becomes ready.
1834 	 */
1835 	sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1836 	ihost->power_control.timer_started = true;
1837 
1838 done:
1839 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1840 }
1841 
1842 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1843 					       struct isci_phy *iphy)
1844 {
1845 	BUG_ON(iphy == NULL);
1846 
1847 	if (ihost->power_control.phys_granted_power <
1848 	    ihost->oem_parameters.controller.max_concurrent_dev_spin_up) {
1849 		ihost->power_control.phys_granted_power++;
1850 		sci_phy_consume_power_handler(iphy);
1851 
1852 		/*
1853 		 * stop and start the power_control timer. When the timer fires, the
1854 		 * no_of_phys_granted_power will be set to 0
1855 		 */
1856 		if (ihost->power_control.timer_started)
1857 			sci_del_timer(&ihost->power_control.timer);
1858 
1859 		sci_mod_timer(&ihost->power_control.timer,
1860 				 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1861 		ihost->power_control.timer_started = true;
1862 
1863 	} else {
1864 		/* Add the phy in the waiting list */
1865 		ihost->power_control.requesters[iphy->phy_index] = iphy;
1866 		ihost->power_control.phys_waiting++;
1867 	}
1868 }
1869 
1870 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1871 					       struct isci_phy *iphy)
1872 {
1873 	BUG_ON(iphy == NULL);
1874 
1875 	if (ihost->power_control.requesters[iphy->phy_index])
1876 		ihost->power_control.phys_waiting--;
1877 
1878 	ihost->power_control.requesters[iphy->phy_index] = NULL;
1879 }
1880 
1881 #define AFE_REGISTER_WRITE_DELAY 10
1882 
1883 /* Initialize the AFE for this phy index. We need to read the AFE setup from
1884  * the OEM parameters
1885  */
1886 static void sci_controller_afe_initialization(struct isci_host *ihost)
1887 {
1888 	const struct sci_oem_params *oem = &ihost->oem_parameters;
1889 	struct pci_dev *pdev = ihost->pdev;
1890 	u32 afe_status;
1891 	u32 phy_id;
1892 
1893 	/* Clear DFX Status registers */
1894 	writel(0x0081000f, &ihost->scu_registers->afe.afe_dfx_master_control0);
1895 	udelay(AFE_REGISTER_WRITE_DELAY);
1896 
1897 	if (is_b0(pdev)) {
1898 		/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1899 		 * Timer, PM Stagger Timer */
1900 		writel(0x0007BFFF, &ihost->scu_registers->afe.afe_pmsn_master_control2);
1901 		udelay(AFE_REGISTER_WRITE_DELAY);
1902 	}
1903 
1904 	/* Configure bias currents to normal */
1905 	if (is_a2(pdev))
1906 		writel(0x00005A00, &ihost->scu_registers->afe.afe_bias_control);
1907 	else if (is_b0(pdev) || is_c0(pdev))
1908 		writel(0x00005F00, &ihost->scu_registers->afe.afe_bias_control);
1909 
1910 	udelay(AFE_REGISTER_WRITE_DELAY);
1911 
1912 	/* Enable PLL */
1913 	if (is_b0(pdev) || is_c0(pdev))
1914 		writel(0x80040A08, &ihost->scu_registers->afe.afe_pll_control0);
1915 	else
1916 		writel(0x80040908, &ihost->scu_registers->afe.afe_pll_control0);
1917 
1918 	udelay(AFE_REGISTER_WRITE_DELAY);
1919 
1920 	/* Wait for the PLL to lock */
1921 	do {
1922 		afe_status = readl(&ihost->scu_registers->afe.afe_common_block_status);
1923 		udelay(AFE_REGISTER_WRITE_DELAY);
1924 	} while ((afe_status & 0x00001000) == 0);
1925 
1926 	if (is_a2(pdev)) {
1927 		/* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
1928 		writel(0x7bcc96ad, &ihost->scu_registers->afe.afe_pmsn_master_control0);
1929 		udelay(AFE_REGISTER_WRITE_DELAY);
1930 	}
1931 
1932 	for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1933 		const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1934 
1935 		if (is_b0(pdev)) {
1936 			 /* Configure transmitter SSC parameters */
1937 			writel(0x00030000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1938 			udelay(AFE_REGISTER_WRITE_DELAY);
1939 		} else if (is_c0(pdev)) {
1940 			 /* Configure transmitter SSC parameters */
1941 			writel(0x0003000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1942 			udelay(AFE_REGISTER_WRITE_DELAY);
1943 
1944 			/*
1945 			 * All defaults, except the Receive Word Alignament/Comma Detect
1946 			 * Enable....(0xe800) */
1947 			writel(0x00004500, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1948 			udelay(AFE_REGISTER_WRITE_DELAY);
1949 		} else {
1950 			/*
1951 			 * All defaults, except the Receive Word Alignament/Comma Detect
1952 			 * Enable....(0xe800) */
1953 			writel(0x00004512, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1954 			udelay(AFE_REGISTER_WRITE_DELAY);
1955 
1956 			writel(0x0050100F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
1957 			udelay(AFE_REGISTER_WRITE_DELAY);
1958 		}
1959 
1960 		/*
1961 		 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1962 		 * & increase TX int & ext bias 20%....(0xe85c) */
1963 		if (is_a2(pdev))
1964 			writel(0x000003F0, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1965 		else if (is_b0(pdev)) {
1966 			 /* Power down TX and RX (PWRDNTX and PWRDNRX) */
1967 			writel(0x000003D7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1968 			udelay(AFE_REGISTER_WRITE_DELAY);
1969 
1970 			/*
1971 			 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1972 			 * & increase TX int & ext bias 20%....(0xe85c) */
1973 			writel(0x000003D4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1974 		} else {
1975 			writel(0x000001E7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1976 			udelay(AFE_REGISTER_WRITE_DELAY);
1977 
1978 			/*
1979 			 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1980 			 * & increase TX int & ext bias 20%....(0xe85c) */
1981 			writel(0x000001E4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1982 		}
1983 		udelay(AFE_REGISTER_WRITE_DELAY);
1984 
1985 		if (is_a2(pdev)) {
1986 			/* Enable TX equalization (0xe824) */
1987 			writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
1988 			udelay(AFE_REGISTER_WRITE_DELAY);
1989 		}
1990 
1991 		/*
1992 		 * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
1993 		 * RDD=0x0(RX Detect Enabled) ....(0xe800) */
1994 		writel(0x00004100, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1995 		udelay(AFE_REGISTER_WRITE_DELAY);
1996 
1997 		/* Leave DFE/FFE on */
1998 		if (is_a2(pdev))
1999 			writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2000 		else if (is_b0(pdev)) {
2001 			writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2002 			udelay(AFE_REGISTER_WRITE_DELAY);
2003 			/* Enable TX equalization (0xe824) */
2004 			writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2005 		} else {
2006 			writel(0x0140DF0F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control1);
2007 			udelay(AFE_REGISTER_WRITE_DELAY);
2008 
2009 			writel(0x3F6F103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2010 			udelay(AFE_REGISTER_WRITE_DELAY);
2011 
2012 			/* Enable TX equalization (0xe824) */
2013 			writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2014 		}
2015 
2016 		udelay(AFE_REGISTER_WRITE_DELAY);
2017 
2018 		writel(oem_phy->afe_tx_amp_control0,
2019 			&ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2020 		udelay(AFE_REGISTER_WRITE_DELAY);
2021 
2022 		writel(oem_phy->afe_tx_amp_control1,
2023 			&ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2024 		udelay(AFE_REGISTER_WRITE_DELAY);
2025 
2026 		writel(oem_phy->afe_tx_amp_control2,
2027 			&ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2028 		udelay(AFE_REGISTER_WRITE_DELAY);
2029 
2030 		writel(oem_phy->afe_tx_amp_control3,
2031 			&ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2032 		udelay(AFE_REGISTER_WRITE_DELAY);
2033 	}
2034 
2035 	/* Transfer control to the PEs */
2036 	writel(0x00010f00, &ihost->scu_registers->afe.afe_dfx_master_control0);
2037 	udelay(AFE_REGISTER_WRITE_DELAY);
2038 }
2039 
2040 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2041 {
2042 	sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2043 
2044 	memset(ihost->power_control.requesters, 0,
2045 	       sizeof(ihost->power_control.requesters));
2046 
2047 	ihost->power_control.phys_waiting = 0;
2048 	ihost->power_control.phys_granted_power = 0;
2049 }
2050 
2051 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2052 {
2053 	struct sci_base_state_machine *sm = &ihost->sm;
2054 	enum sci_status result = SCI_FAILURE;
2055 	unsigned long i, state, val;
2056 
2057 	if (ihost->sm.current_state_id != SCIC_RESET) {
2058 		dev_warn(&ihost->pdev->dev,
2059 			 "SCIC Controller initialize operation requested "
2060 			 "in invalid state\n");
2061 		return SCI_FAILURE_INVALID_STATE;
2062 	}
2063 
2064 	sci_change_state(sm, SCIC_INITIALIZING);
2065 
2066 	sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2067 
2068 	ihost->next_phy_to_start = 0;
2069 	ihost->phy_startup_timer_pending = false;
2070 
2071 	sci_controller_initialize_power_control(ihost);
2072 
2073 	/*
2074 	 * There is nothing to do here for B0 since we do not have to
2075 	 * program the AFE registers.
2076 	 * / @todo The AFE settings are supposed to be correct for the B0 but
2077 	 * /       presently they seem to be wrong. */
2078 	sci_controller_afe_initialization(ihost);
2079 
2080 
2081 	/* Take the hardware out of reset */
2082 	writel(0, &ihost->smu_registers->soft_reset_control);
2083 
2084 	/*
2085 	 * / @todo Provide meaningfull error code for hardware failure
2086 	 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2087 	for (i = 100; i >= 1; i--) {
2088 		u32 status;
2089 
2090 		/* Loop until the hardware reports success */
2091 		udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2092 		status = readl(&ihost->smu_registers->control_status);
2093 
2094 		if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2095 			break;
2096 	}
2097 	if (i == 0)
2098 		goto out;
2099 
2100 	/*
2101 	 * Determine what are the actaul device capacities that the
2102 	 * hardware will support */
2103 	val = readl(&ihost->smu_registers->device_context_capacity);
2104 
2105 	/* Record the smaller of the two capacity values */
2106 	ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2107 	ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2108 	ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2109 
2110 	/*
2111 	 * Make all PEs that are unassigned match up with the
2112 	 * logical ports
2113 	 */
2114 	for (i = 0; i < ihost->logical_port_entries; i++) {
2115 		struct scu_port_task_scheduler_group_registers __iomem
2116 			*ptsg = &ihost->scu_registers->peg0.ptsg;
2117 
2118 		writel(i, &ptsg->protocol_engine[i]);
2119 	}
2120 
2121 	/* Initialize hardware PCI Relaxed ordering in DMA engines */
2122 	val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2123 	val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2124 	writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2125 
2126 	val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2127 	val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2128 	writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2129 
2130 	/*
2131 	 * Initialize the PHYs before the PORTs because the PHY registers
2132 	 * are accessed during the port initialization.
2133 	 */
2134 	for (i = 0; i < SCI_MAX_PHYS; i++) {
2135 		result = sci_phy_initialize(&ihost->phys[i],
2136 					    &ihost->scu_registers->peg0.pe[i].tl,
2137 					    &ihost->scu_registers->peg0.pe[i].ll);
2138 		if (result != SCI_SUCCESS)
2139 			goto out;
2140 	}
2141 
2142 	for (i = 0; i < ihost->logical_port_entries; i++) {
2143 		struct isci_port *iport = &ihost->ports[i];
2144 
2145 		iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2146 		iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2147 		iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2148 	}
2149 
2150 	result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2151 
2152  out:
2153 	/* Advance the controller state machine */
2154 	if (result == SCI_SUCCESS)
2155 		state = SCIC_INITIALIZED;
2156 	else
2157 		state = SCIC_FAILED;
2158 	sci_change_state(sm, state);
2159 
2160 	return result;
2161 }
2162 
2163 static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
2164 					       struct sci_user_parameters *sci_parms)
2165 {
2166 	u32 state = ihost->sm.current_state_id;
2167 
2168 	if (state == SCIC_RESET ||
2169 	    state == SCIC_INITIALIZING ||
2170 	    state == SCIC_INITIALIZED) {
2171 		u16 index;
2172 
2173 		/*
2174 		 * Validate the user parameters.  If they are not legal, then
2175 		 * return a failure.
2176 		 */
2177 		for (index = 0; index < SCI_MAX_PHYS; index++) {
2178 			struct sci_phy_user_params *user_phy;
2179 
2180 			user_phy = &sci_parms->phys[index];
2181 
2182 			if (!((user_phy->max_speed_generation <=
2183 						SCIC_SDS_PARM_MAX_SPEED) &&
2184 			      (user_phy->max_speed_generation >
2185 						SCIC_SDS_PARM_NO_SPEED)))
2186 				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2187 
2188 			if (user_phy->in_connection_align_insertion_frequency <
2189 					3)
2190 				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2191 
2192 			if ((user_phy->in_connection_align_insertion_frequency <
2193 						3) ||
2194 			    (user_phy->align_insertion_frequency == 0) ||
2195 			    (user_phy->
2196 				notify_enable_spin_up_insertion_frequency ==
2197 						0))
2198 				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2199 		}
2200 
2201 		if ((sci_parms->stp_inactivity_timeout == 0) ||
2202 		    (sci_parms->ssp_inactivity_timeout == 0) ||
2203 		    (sci_parms->stp_max_occupancy_timeout == 0) ||
2204 		    (sci_parms->ssp_max_occupancy_timeout == 0) ||
2205 		    (sci_parms->no_outbound_task_timeout == 0))
2206 			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2207 
2208 		memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
2209 
2210 		return SCI_SUCCESS;
2211 	}
2212 
2213 	return SCI_FAILURE_INVALID_STATE;
2214 }
2215 
2216 static int sci_controller_mem_init(struct isci_host *ihost)
2217 {
2218 	struct device *dev = &ihost->pdev->dev;
2219 	dma_addr_t dma;
2220 	size_t size;
2221 	int err;
2222 
2223 	size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2224 	ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2225 	if (!ihost->completion_queue)
2226 		return -ENOMEM;
2227 
2228 	writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
2229 	writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
2230 
2231 	size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2232 	ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
2233 							       GFP_KERNEL);
2234 	if (!ihost->remote_node_context_table)
2235 		return -ENOMEM;
2236 
2237 	writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
2238 	writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
2239 
2240 	size = ihost->task_context_entries * sizeof(struct scu_task_context),
2241 	ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2242 	if (!ihost->task_context_table)
2243 		return -ENOMEM;
2244 
2245 	ihost->task_context_dma = dma;
2246 	writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
2247 	writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
2248 
2249 	err = sci_unsolicited_frame_control_construct(ihost);
2250 	if (err)
2251 		return err;
2252 
2253 	/*
2254 	 * Inform the silicon as to the location of the UF headers and
2255 	 * address table.
2256 	 */
2257 	writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2258 		&ihost->scu_registers->sdma.uf_header_base_address_lower);
2259 	writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2260 		&ihost->scu_registers->sdma.uf_header_base_address_upper);
2261 
2262 	writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2263 		&ihost->scu_registers->sdma.uf_address_table_lower);
2264 	writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2265 		&ihost->scu_registers->sdma.uf_address_table_upper);
2266 
2267 	return 0;
2268 }
2269 
2270 int isci_host_init(struct isci_host *ihost)
2271 {
2272 	int err = 0, i;
2273 	enum sci_status status;
2274 	struct sci_user_parameters sci_user_params;
2275 	struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
2276 
2277 	spin_lock_init(&ihost->state_lock);
2278 	spin_lock_init(&ihost->scic_lock);
2279 	init_waitqueue_head(&ihost->eventq);
2280 
2281 	isci_host_change_state(ihost, isci_starting);
2282 
2283 	status = sci_controller_construct(ihost, scu_base(ihost),
2284 					  smu_base(ihost));
2285 
2286 	if (status != SCI_SUCCESS) {
2287 		dev_err(&ihost->pdev->dev,
2288 			"%s: sci_controller_construct failed - status = %x\n",
2289 			__func__,
2290 			status);
2291 		return -ENODEV;
2292 	}
2293 
2294 	ihost->sas_ha.dev = &ihost->pdev->dev;
2295 	ihost->sas_ha.lldd_ha = ihost;
2296 
2297 	/*
2298 	 * grab initial values stored in the controller object for OEM and USER
2299 	 * parameters
2300 	 */
2301 	isci_user_parameters_get(&sci_user_params);
2302 	status = sci_user_parameters_set(ihost, &sci_user_params);
2303 	if (status != SCI_SUCCESS) {
2304 		dev_warn(&ihost->pdev->dev,
2305 			 "%s: sci_user_parameters_set failed\n",
2306 			 __func__);
2307 		return -ENODEV;
2308 	}
2309 
2310 	/* grab any OEM parameters specified in orom */
2311 	if (pci_info->orom) {
2312 		status = isci_parse_oem_parameters(&ihost->oem_parameters,
2313 						   pci_info->orom,
2314 						   ihost->id);
2315 		if (status != SCI_SUCCESS) {
2316 			dev_warn(&ihost->pdev->dev,
2317 				 "parsing firmware oem parameters failed\n");
2318 			return -EINVAL;
2319 		}
2320 	}
2321 
2322 	status = sci_oem_parameters_set(ihost);
2323 	if (status != SCI_SUCCESS) {
2324 		dev_warn(&ihost->pdev->dev,
2325 				"%s: sci_oem_parameters_set failed\n",
2326 				__func__);
2327 		return -ENODEV;
2328 	}
2329 
2330 	tasklet_init(&ihost->completion_tasklet,
2331 		     isci_host_completion_routine, (unsigned long)ihost);
2332 
2333 	INIT_LIST_HEAD(&ihost->requests_to_complete);
2334 	INIT_LIST_HEAD(&ihost->requests_to_errorback);
2335 
2336 	spin_lock_irq(&ihost->scic_lock);
2337 	status = sci_controller_initialize(ihost);
2338 	spin_unlock_irq(&ihost->scic_lock);
2339 	if (status != SCI_SUCCESS) {
2340 		dev_warn(&ihost->pdev->dev,
2341 			 "%s: sci_controller_initialize failed -"
2342 			 " status = 0x%x\n",
2343 			 __func__, status);
2344 		return -ENODEV;
2345 	}
2346 
2347 	err = sci_controller_mem_init(ihost);
2348 	if (err)
2349 		return err;
2350 
2351 	for (i = 0; i < SCI_MAX_PORTS; i++)
2352 		isci_port_init(&ihost->ports[i], ihost, i);
2353 
2354 	for (i = 0; i < SCI_MAX_PHYS; i++)
2355 		isci_phy_init(&ihost->phys[i], ihost, i);
2356 
2357 	for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2358 		struct isci_remote_device *idev = &ihost->devices[i];
2359 
2360 		INIT_LIST_HEAD(&idev->reqs_in_process);
2361 		INIT_LIST_HEAD(&idev->node);
2362 	}
2363 
2364 	for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2365 		struct isci_request *ireq;
2366 		dma_addr_t dma;
2367 
2368 		ireq = dmam_alloc_coherent(&ihost->pdev->dev,
2369 					   sizeof(struct isci_request), &dma,
2370 					   GFP_KERNEL);
2371 		if (!ireq)
2372 			return -ENOMEM;
2373 
2374 		ireq->tc = &ihost->task_context_table[i];
2375 		ireq->owning_controller = ihost;
2376 		spin_lock_init(&ireq->state_lock);
2377 		ireq->request_daddr = dma;
2378 		ireq->isci_host = ihost;
2379 		ihost->reqs[i] = ireq;
2380 	}
2381 
2382 	return 0;
2383 }
2384 
2385 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2386 			    struct isci_phy *iphy)
2387 {
2388 	switch (ihost->sm.current_state_id) {
2389 	case SCIC_STARTING:
2390 		sci_del_timer(&ihost->phy_timer);
2391 		ihost->phy_startup_timer_pending = false;
2392 		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2393 						  iport, iphy);
2394 		sci_controller_start_next_phy(ihost);
2395 		break;
2396 	case SCIC_READY:
2397 		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2398 						  iport, iphy);
2399 		break;
2400 	default:
2401 		dev_dbg(&ihost->pdev->dev,
2402 			"%s: SCIC Controller linkup event from phy %d in "
2403 			"unexpected state %d\n", __func__, iphy->phy_index,
2404 			ihost->sm.current_state_id);
2405 	}
2406 }
2407 
2408 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2409 			      struct isci_phy *iphy)
2410 {
2411 	switch (ihost->sm.current_state_id) {
2412 	case SCIC_STARTING:
2413 	case SCIC_READY:
2414 		ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2415 						   iport, iphy);
2416 		break;
2417 	default:
2418 		dev_dbg(&ihost->pdev->dev,
2419 			"%s: SCIC Controller linkdown event from phy %d in "
2420 			"unexpected state %d\n",
2421 			__func__,
2422 			iphy->phy_index,
2423 			ihost->sm.current_state_id);
2424 	}
2425 }
2426 
2427 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2428 {
2429 	u32 index;
2430 
2431 	for (index = 0; index < ihost->remote_node_entries; index++) {
2432 		if ((ihost->device_table[index] != NULL) &&
2433 		   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2434 			return true;
2435 	}
2436 
2437 	return false;
2438 }
2439 
2440 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2441 					  struct isci_remote_device *idev)
2442 {
2443 	if (ihost->sm.current_state_id != SCIC_STOPPING) {
2444 		dev_dbg(&ihost->pdev->dev,
2445 			"SCIC Controller 0x%p remote device stopped event "
2446 			"from device 0x%p in unexpected state %d\n",
2447 			ihost, idev,
2448 			ihost->sm.current_state_id);
2449 		return;
2450 	}
2451 
2452 	if (!sci_controller_has_remote_devices_stopping(ihost))
2453 		sci_change_state(&ihost->sm, SCIC_STOPPED);
2454 }
2455 
2456 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2457 {
2458 	dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2459 		__func__, ihost->id, request);
2460 
2461 	writel(request, &ihost->smu_registers->post_context_port);
2462 }
2463 
2464 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2465 {
2466 	u16 task_index;
2467 	u16 task_sequence;
2468 
2469 	task_index = ISCI_TAG_TCI(io_tag);
2470 
2471 	if (task_index < ihost->task_context_entries) {
2472 		struct isci_request *ireq = ihost->reqs[task_index];
2473 
2474 		if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2475 			task_sequence = ISCI_TAG_SEQ(io_tag);
2476 
2477 			if (task_sequence == ihost->io_request_sequence[task_index])
2478 				return ireq;
2479 		}
2480 	}
2481 
2482 	return NULL;
2483 }
2484 
2485 /**
2486  * This method allocates remote node index and the reserves the remote node
2487  *    context space for use. This method can fail if there are no more remote
2488  *    node index available.
2489  * @scic: This is the controller object which contains the set of
2490  *    free remote node ids
2491  * @sci_dev: This is the device object which is requesting the a remote node
2492  *    id
2493  * @node_id: This is the remote node id that is assinged to the device if one
2494  *    is available
2495  *
2496  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2497  * node index available.
2498  */
2499 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2500 							    struct isci_remote_device *idev,
2501 							    u16 *node_id)
2502 {
2503 	u16 node_index;
2504 	u32 remote_node_count = sci_remote_device_node_count(idev);
2505 
2506 	node_index = sci_remote_node_table_allocate_remote_node(
2507 		&ihost->available_remote_nodes, remote_node_count
2508 		);
2509 
2510 	if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2511 		ihost->device_table[node_index] = idev;
2512 
2513 		*node_id = node_index;
2514 
2515 		return SCI_SUCCESS;
2516 	}
2517 
2518 	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2519 }
2520 
2521 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2522 					     struct isci_remote_device *idev,
2523 					     u16 node_id)
2524 {
2525 	u32 remote_node_count = sci_remote_device_node_count(idev);
2526 
2527 	if (ihost->device_table[node_id] == idev) {
2528 		ihost->device_table[node_id] = NULL;
2529 
2530 		sci_remote_node_table_release_remote_node_index(
2531 			&ihost->available_remote_nodes, remote_node_count, node_id
2532 			);
2533 	}
2534 }
2535 
2536 void sci_controller_copy_sata_response(void *response_buffer,
2537 				       void *frame_header,
2538 				       void *frame_buffer)
2539 {
2540 	/* XXX type safety? */
2541 	memcpy(response_buffer, frame_header, sizeof(u32));
2542 
2543 	memcpy(response_buffer + sizeof(u32),
2544 	       frame_buffer,
2545 	       sizeof(struct dev_to_host_fis) - sizeof(u32));
2546 }
2547 
2548 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2549 {
2550 	if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2551 		writel(ihost->uf_control.get,
2552 			&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2553 }
2554 
2555 void isci_tci_free(struct isci_host *ihost, u16 tci)
2556 {
2557 	u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2558 
2559 	ihost->tci_pool[tail] = tci;
2560 	ihost->tci_tail = tail + 1;
2561 }
2562 
2563 static u16 isci_tci_alloc(struct isci_host *ihost)
2564 {
2565 	u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2566 	u16 tci = ihost->tci_pool[head];
2567 
2568 	ihost->tci_head = head + 1;
2569 	return tci;
2570 }
2571 
2572 static u16 isci_tci_space(struct isci_host *ihost)
2573 {
2574 	return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2575 }
2576 
2577 u16 isci_alloc_tag(struct isci_host *ihost)
2578 {
2579 	if (isci_tci_space(ihost)) {
2580 		u16 tci = isci_tci_alloc(ihost);
2581 		u8 seq = ihost->io_request_sequence[tci];
2582 
2583 		return ISCI_TAG(seq, tci);
2584 	}
2585 
2586 	return SCI_CONTROLLER_INVALID_IO_TAG;
2587 }
2588 
2589 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2590 {
2591 	u16 tci = ISCI_TAG_TCI(io_tag);
2592 	u16 seq = ISCI_TAG_SEQ(io_tag);
2593 
2594 	/* prevent tail from passing head */
2595 	if (isci_tci_active(ihost) == 0)
2596 		return SCI_FAILURE_INVALID_IO_TAG;
2597 
2598 	if (seq == ihost->io_request_sequence[tci]) {
2599 		ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2600 
2601 		isci_tci_free(ihost, tci);
2602 
2603 		return SCI_SUCCESS;
2604 	}
2605 	return SCI_FAILURE_INVALID_IO_TAG;
2606 }
2607 
2608 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2609 					struct isci_remote_device *idev,
2610 					struct isci_request *ireq)
2611 {
2612 	enum sci_status status;
2613 
2614 	if (ihost->sm.current_state_id != SCIC_READY) {
2615 		dev_warn(&ihost->pdev->dev, "invalid state to start I/O");
2616 		return SCI_FAILURE_INVALID_STATE;
2617 	}
2618 
2619 	status = sci_remote_device_start_io(ihost, idev, ireq);
2620 	if (status != SCI_SUCCESS)
2621 		return status;
2622 
2623 	set_bit(IREQ_ACTIVE, &ireq->flags);
2624 	sci_controller_post_request(ihost, ireq->post_context);
2625 	return SCI_SUCCESS;
2626 }
2627 
2628 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2629 						 struct isci_remote_device *idev,
2630 						 struct isci_request *ireq)
2631 {
2632 	/* terminate an ongoing (i.e. started) core IO request.  This does not
2633 	 * abort the IO request at the target, but rather removes the IO
2634 	 * request from the host controller.
2635 	 */
2636 	enum sci_status status;
2637 
2638 	if (ihost->sm.current_state_id != SCIC_READY) {
2639 		dev_warn(&ihost->pdev->dev,
2640 			 "invalid state to terminate request\n");
2641 		return SCI_FAILURE_INVALID_STATE;
2642 	}
2643 
2644 	status = sci_io_request_terminate(ireq);
2645 	if (status != SCI_SUCCESS)
2646 		return status;
2647 
2648 	/*
2649 	 * Utilize the original post context command and or in the POST_TC_ABORT
2650 	 * request sub-type.
2651 	 */
2652 	sci_controller_post_request(ihost,
2653 				    ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2654 	return SCI_SUCCESS;
2655 }
2656 
2657 /**
2658  * sci_controller_complete_io() - This method will perform core specific
2659  *    completion operations for an IO request.  After this method is invoked,
2660  *    the user should consider the IO request as invalid until it is properly
2661  *    reused (i.e. re-constructed).
2662  * @ihost: The handle to the controller object for which to complete the
2663  *    IO request.
2664  * @idev: The handle to the remote device object for which to complete
2665  *    the IO request.
2666  * @ireq: the handle to the io request object to complete.
2667  */
2668 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2669 					   struct isci_remote_device *idev,
2670 					   struct isci_request *ireq)
2671 {
2672 	enum sci_status status;
2673 	u16 index;
2674 
2675 	switch (ihost->sm.current_state_id) {
2676 	case SCIC_STOPPING:
2677 		/* XXX: Implement this function */
2678 		return SCI_FAILURE;
2679 	case SCIC_READY:
2680 		status = sci_remote_device_complete_io(ihost, idev, ireq);
2681 		if (status != SCI_SUCCESS)
2682 			return status;
2683 
2684 		index = ISCI_TAG_TCI(ireq->io_tag);
2685 		clear_bit(IREQ_ACTIVE, &ireq->flags);
2686 		return SCI_SUCCESS;
2687 	default:
2688 		dev_warn(&ihost->pdev->dev, "invalid state to complete I/O");
2689 		return SCI_FAILURE_INVALID_STATE;
2690 	}
2691 
2692 }
2693 
2694 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2695 {
2696 	struct isci_host *ihost = ireq->owning_controller;
2697 
2698 	if (ihost->sm.current_state_id != SCIC_READY) {
2699 		dev_warn(&ihost->pdev->dev, "invalid state to continue I/O");
2700 		return SCI_FAILURE_INVALID_STATE;
2701 	}
2702 
2703 	set_bit(IREQ_ACTIVE, &ireq->flags);
2704 	sci_controller_post_request(ihost, ireq->post_context);
2705 	return SCI_SUCCESS;
2706 }
2707 
2708 /**
2709  * sci_controller_start_task() - This method is called by the SCIC user to
2710  *    send/start a framework task management request.
2711  * @controller: the handle to the controller object for which to start the task
2712  *    management request.
2713  * @remote_device: the handle to the remote device object for which to start
2714  *    the task management request.
2715  * @task_request: the handle to the task request object to start.
2716  */
2717 enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2718 					       struct isci_remote_device *idev,
2719 					       struct isci_request *ireq)
2720 {
2721 	enum sci_status status;
2722 
2723 	if (ihost->sm.current_state_id != SCIC_READY) {
2724 		dev_warn(&ihost->pdev->dev,
2725 			 "%s: SCIC Controller starting task from invalid "
2726 			 "state\n",
2727 			 __func__);
2728 		return SCI_TASK_FAILURE_INVALID_STATE;
2729 	}
2730 
2731 	status = sci_remote_device_start_task(ihost, idev, ireq);
2732 	switch (status) {
2733 	case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2734 		set_bit(IREQ_ACTIVE, &ireq->flags);
2735 
2736 		/*
2737 		 * We will let framework know this task request started successfully,
2738 		 * although core is still woring on starting the request (to post tc when
2739 		 * RNC is resumed.)
2740 		 */
2741 		return SCI_SUCCESS;
2742 	case SCI_SUCCESS:
2743 		set_bit(IREQ_ACTIVE, &ireq->flags);
2744 		sci_controller_post_request(ihost, ireq->post_context);
2745 		break;
2746 	default:
2747 		break;
2748 	}
2749 
2750 	return status;
2751 }
2752