xref: /linux/drivers/scsi/isci/host.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "host.h"
62 #include "probe_roms.h"
63 #include "remote_device.h"
64 #include "request.h"
65 #include "scu_completion_codes.h"
66 #include "scu_event_codes.h"
67 #include "registers.h"
68 #include "scu_remote_node_context.h"
69 #include "scu_task_context.h"
70 
71 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
72 
73 #define smu_max_ports(dcc_value) \
74 	(\
75 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
76 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
77 	)
78 
79 #define smu_max_task_contexts(dcc_value)	\
80 	(\
81 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
82 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
83 	)
84 
85 #define smu_max_rncs(dcc_value) \
86 	(\
87 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
88 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
89 	)
90 
91 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
92 
93 /**
94  *
95  *
96  * The number of milliseconds to wait while a given phy is consuming power
97  * before allowing another set of phys to consume power. Ultimately, this will
98  * be specified by OEM parameter.
99  */
100 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
101 
102 /**
103  * NORMALIZE_PUT_POINTER() -
104  *
105  * This macro will normalize the completion queue put pointer so its value can
106  * be used as an array inde
107  */
108 #define NORMALIZE_PUT_POINTER(x) \
109 	((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
110 
111 
112 /**
113  * NORMALIZE_EVENT_POINTER() -
114  *
115  * This macro will normalize the completion queue event entry so its value can
116  * be used as an index.
117  */
118 #define NORMALIZE_EVENT_POINTER(x) \
119 	(\
120 		((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
121 		>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT	\
122 	)
123 
124 /**
125  * NORMALIZE_GET_POINTER() -
126  *
127  * This macro will normalize the completion queue get pointer so its value can
128  * be used as an index into an array
129  */
130 #define NORMALIZE_GET_POINTER(x) \
131 	((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
132 
133 /**
134  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
135  *
136  * This macro will normalize the completion queue cycle pointer so it matches
137  * the completion queue cycle bit
138  */
139 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
140 	((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
141 
142 /**
143  * COMPLETION_QUEUE_CYCLE_BIT() -
144  *
145  * This macro will return the cycle bit of the completion queue entry
146  */
147 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
148 
149 /* Init the state machine and call the state entry function (if any) */
150 void sci_init_sm(struct sci_base_state_machine *sm,
151 		 const struct sci_base_state *state_table, u32 initial_state)
152 {
153 	sci_state_transition_t handler;
154 
155 	sm->initial_state_id    = initial_state;
156 	sm->previous_state_id   = initial_state;
157 	sm->current_state_id    = initial_state;
158 	sm->state_table         = state_table;
159 
160 	handler = sm->state_table[initial_state].enter_state;
161 	if (handler)
162 		handler(sm);
163 }
164 
165 /* Call the state exit fn, update the current state, call the state entry fn */
166 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
167 {
168 	sci_state_transition_t handler;
169 
170 	handler = sm->state_table[sm->current_state_id].exit_state;
171 	if (handler)
172 		handler(sm);
173 
174 	sm->previous_state_id = sm->current_state_id;
175 	sm->current_state_id = next_state;
176 
177 	handler = sm->state_table[sm->current_state_id].enter_state;
178 	if (handler)
179 		handler(sm);
180 }
181 
182 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
183 {
184 	u32 get_value = ihost->completion_queue_get;
185 	u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
186 
187 	if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
188 	    COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
189 		return true;
190 
191 	return false;
192 }
193 
194 static bool sci_controller_isr(struct isci_host *ihost)
195 {
196 	if (sci_controller_completion_queue_has_entries(ihost)) {
197 		return true;
198 	} else {
199 		/*
200 		 * we have a spurious interrupt it could be that we have already
201 		 * emptied the completion queue from a previous interrupt */
202 		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
203 
204 		/*
205 		 * There is a race in the hardware that could cause us not to be notified
206 		 * of an interrupt completion if we do not take this step.  We will mask
207 		 * then unmask the interrupts so if there is another interrupt pending
208 		 * the clearing of the interrupt source we get the next interrupt message. */
209 		writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
210 		writel(0, &ihost->smu_registers->interrupt_mask);
211 	}
212 
213 	return false;
214 }
215 
216 irqreturn_t isci_msix_isr(int vec, void *data)
217 {
218 	struct isci_host *ihost = data;
219 
220 	if (sci_controller_isr(ihost))
221 		tasklet_schedule(&ihost->completion_tasklet);
222 
223 	return IRQ_HANDLED;
224 }
225 
226 static bool sci_controller_error_isr(struct isci_host *ihost)
227 {
228 	u32 interrupt_status;
229 
230 	interrupt_status =
231 		readl(&ihost->smu_registers->interrupt_status);
232 	interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
233 
234 	if (interrupt_status != 0) {
235 		/*
236 		 * There is an error interrupt pending so let it through and handle
237 		 * in the callback */
238 		return true;
239 	}
240 
241 	/*
242 	 * There is a race in the hardware that could cause us not to be notified
243 	 * of an interrupt completion if we do not take this step.  We will mask
244 	 * then unmask the error interrupts so if there was another interrupt
245 	 * pending we will be notified.
246 	 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
247 	writel(0xff, &ihost->smu_registers->interrupt_mask);
248 	writel(0, &ihost->smu_registers->interrupt_mask);
249 
250 	return false;
251 }
252 
253 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
254 {
255 	u32 index = SCU_GET_COMPLETION_INDEX(ent);
256 	struct isci_request *ireq = ihost->reqs[index];
257 
258 	/* Make sure that we really want to process this IO request */
259 	if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
260 	    ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
261 	    ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
262 		/* Yep this is a valid io request pass it along to the
263 		 * io request handler
264 		 */
265 		sci_io_request_tc_completion(ireq, ent);
266 }
267 
268 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
269 {
270 	u32 index;
271 	struct isci_request *ireq;
272 	struct isci_remote_device *idev;
273 
274 	index = SCU_GET_COMPLETION_INDEX(ent);
275 
276 	switch (scu_get_command_request_type(ent)) {
277 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
278 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
279 		ireq = ihost->reqs[index];
280 		dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
281 			 __func__, ent, ireq);
282 		/* @todo For a post TC operation we need to fail the IO
283 		 * request
284 		 */
285 		break;
286 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
287 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
288 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
289 		idev = ihost->device_table[index];
290 		dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
291 			 __func__, ent, idev);
292 		/* @todo For a port RNC operation we need to fail the
293 		 * device
294 		 */
295 		break;
296 	default:
297 		dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
298 			 __func__, ent);
299 		break;
300 	}
301 }
302 
303 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
304 {
305 	u32 index;
306 	u32 frame_index;
307 
308 	struct scu_unsolicited_frame_header *frame_header;
309 	struct isci_phy *iphy;
310 	struct isci_remote_device *idev;
311 
312 	enum sci_status result = SCI_FAILURE;
313 
314 	frame_index = SCU_GET_FRAME_INDEX(ent);
315 
316 	frame_header = ihost->uf_control.buffers.array[frame_index].header;
317 	ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
318 
319 	if (SCU_GET_FRAME_ERROR(ent)) {
320 		/*
321 		 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
322 		 * /       this cause a problem? We expect the phy initialization will
323 		 * /       fail if there is an error in the frame. */
324 		sci_controller_release_frame(ihost, frame_index);
325 		return;
326 	}
327 
328 	if (frame_header->is_address_frame) {
329 		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
330 		iphy = &ihost->phys[index];
331 		result = sci_phy_frame_handler(iphy, frame_index);
332 	} else {
333 
334 		index = SCU_GET_COMPLETION_INDEX(ent);
335 
336 		if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
337 			/*
338 			 * This is a signature fis or a frame from a direct attached SATA
339 			 * device that has not yet been created.  In either case forwared
340 			 * the frame to the PE and let it take care of the frame data. */
341 			index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
342 			iphy = &ihost->phys[index];
343 			result = sci_phy_frame_handler(iphy, frame_index);
344 		} else {
345 			if (index < ihost->remote_node_entries)
346 				idev = ihost->device_table[index];
347 			else
348 				idev = NULL;
349 
350 			if (idev != NULL)
351 				result = sci_remote_device_frame_handler(idev, frame_index);
352 			else
353 				sci_controller_release_frame(ihost, frame_index);
354 		}
355 	}
356 
357 	if (result != SCI_SUCCESS) {
358 		/*
359 		 * / @todo Is there any reason to report some additional error message
360 		 * /       when we get this failure notifiction? */
361 	}
362 }
363 
364 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
365 {
366 	struct isci_remote_device *idev;
367 	struct isci_request *ireq;
368 	struct isci_phy *iphy;
369 	u32 index;
370 
371 	index = SCU_GET_COMPLETION_INDEX(ent);
372 
373 	switch (scu_get_event_type(ent)) {
374 	case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
375 		/* / @todo The driver did something wrong and we need to fix the condtion. */
376 		dev_err(&ihost->pdev->dev,
377 			"%s: SCIC Controller 0x%p received SMU command error "
378 			"0x%x\n",
379 			__func__,
380 			ihost,
381 			ent);
382 		break;
383 
384 	case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
385 	case SCU_EVENT_TYPE_SMU_ERROR:
386 	case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
387 		/*
388 		 * / @todo This is a hardware failure and its likely that we want to
389 		 * /       reset the controller. */
390 		dev_err(&ihost->pdev->dev,
391 			"%s: SCIC Controller 0x%p received fatal controller "
392 			"event  0x%x\n",
393 			__func__,
394 			ihost,
395 			ent);
396 		break;
397 
398 	case SCU_EVENT_TYPE_TRANSPORT_ERROR:
399 		ireq = ihost->reqs[index];
400 		sci_io_request_event_handler(ireq, ent);
401 		break;
402 
403 	case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
404 		switch (scu_get_event_specifier(ent)) {
405 		case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
406 		case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
407 			ireq = ihost->reqs[index];
408 			if (ireq != NULL)
409 				sci_io_request_event_handler(ireq, ent);
410 			else
411 				dev_warn(&ihost->pdev->dev,
412 					 "%s: SCIC Controller 0x%p received "
413 					 "event 0x%x for io request object "
414 					 "that doesnt exist.\n",
415 					 __func__,
416 					 ihost,
417 					 ent);
418 
419 			break;
420 
421 		case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
422 			idev = ihost->device_table[index];
423 			if (idev != NULL)
424 				sci_remote_device_event_handler(idev, ent);
425 			else
426 				dev_warn(&ihost->pdev->dev,
427 					 "%s: SCIC Controller 0x%p received "
428 					 "event 0x%x for remote device object "
429 					 "that doesnt exist.\n",
430 					 __func__,
431 					 ihost,
432 					 ent);
433 
434 			break;
435 		}
436 		break;
437 
438 	case SCU_EVENT_TYPE_BROADCAST_CHANGE:
439 	/*
440 	 * direct the broadcast change event to the phy first and then let
441 	 * the phy redirect the broadcast change to the port object */
442 	case SCU_EVENT_TYPE_ERR_CNT_EVENT:
443 	/*
444 	 * direct error counter event to the phy object since that is where
445 	 * we get the event notification.  This is a type 4 event. */
446 	case SCU_EVENT_TYPE_OSSP_EVENT:
447 		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
448 		iphy = &ihost->phys[index];
449 		sci_phy_event_handler(iphy, ent);
450 		break;
451 
452 	case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
453 	case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
454 	case SCU_EVENT_TYPE_RNC_OPS_MISC:
455 		if (index < ihost->remote_node_entries) {
456 			idev = ihost->device_table[index];
457 
458 			if (idev != NULL)
459 				sci_remote_device_event_handler(idev, ent);
460 		} else
461 			dev_err(&ihost->pdev->dev,
462 				"%s: SCIC Controller 0x%p received event 0x%x "
463 				"for remote device object 0x%0x that doesnt "
464 				"exist.\n",
465 				__func__,
466 				ihost,
467 				ent,
468 				index);
469 
470 		break;
471 
472 	default:
473 		dev_warn(&ihost->pdev->dev,
474 			 "%s: SCIC Controller received unknown event code %x\n",
475 			 __func__,
476 			 ent);
477 		break;
478 	}
479 }
480 
481 static void sci_controller_process_completions(struct isci_host *ihost)
482 {
483 	u32 completion_count = 0;
484 	u32 ent;
485 	u32 get_index;
486 	u32 get_cycle;
487 	u32 event_get;
488 	u32 event_cycle;
489 
490 	dev_dbg(&ihost->pdev->dev,
491 		"%s: completion queue begining get:0x%08x\n",
492 		__func__,
493 		ihost->completion_queue_get);
494 
495 	/* Get the component parts of the completion queue */
496 	get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
497 	get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
498 
499 	event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
500 	event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
501 
502 	while (
503 		NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
504 		== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
505 		) {
506 		completion_count++;
507 
508 		ent = ihost->completion_queue[get_index];
509 
510 		/* increment the get pointer and check for rollover to toggle the cycle bit */
511 		get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
512 			     (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
513 		get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
514 
515 		dev_dbg(&ihost->pdev->dev,
516 			"%s: completion queue entry:0x%08x\n",
517 			__func__,
518 			ent);
519 
520 		switch (SCU_GET_COMPLETION_TYPE(ent)) {
521 		case SCU_COMPLETION_TYPE_TASK:
522 			sci_controller_task_completion(ihost, ent);
523 			break;
524 
525 		case SCU_COMPLETION_TYPE_SDMA:
526 			sci_controller_sdma_completion(ihost, ent);
527 			break;
528 
529 		case SCU_COMPLETION_TYPE_UFI:
530 			sci_controller_unsolicited_frame(ihost, ent);
531 			break;
532 
533 		case SCU_COMPLETION_TYPE_EVENT:
534 			sci_controller_event_completion(ihost, ent);
535 			break;
536 
537 		case SCU_COMPLETION_TYPE_NOTIFY: {
538 			event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
539 				       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
540 			event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
541 
542 			sci_controller_event_completion(ihost, ent);
543 			break;
544 		}
545 		default:
546 			dev_warn(&ihost->pdev->dev,
547 				 "%s: SCIC Controller received unknown "
548 				 "completion type %x\n",
549 				 __func__,
550 				 ent);
551 			break;
552 		}
553 	}
554 
555 	/* Update the get register if we completed one or more entries */
556 	if (completion_count > 0) {
557 		ihost->completion_queue_get =
558 			SMU_CQGR_GEN_BIT(ENABLE) |
559 			SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
560 			event_cycle |
561 			SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
562 			get_cycle |
563 			SMU_CQGR_GEN_VAL(POINTER, get_index);
564 
565 		writel(ihost->completion_queue_get,
566 		       &ihost->smu_registers->completion_queue_get);
567 
568 	}
569 
570 	dev_dbg(&ihost->pdev->dev,
571 		"%s: completion queue ending get:0x%08x\n",
572 		__func__,
573 		ihost->completion_queue_get);
574 
575 }
576 
577 static void sci_controller_error_handler(struct isci_host *ihost)
578 {
579 	u32 interrupt_status;
580 
581 	interrupt_status =
582 		readl(&ihost->smu_registers->interrupt_status);
583 
584 	if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
585 	    sci_controller_completion_queue_has_entries(ihost)) {
586 
587 		sci_controller_process_completions(ihost);
588 		writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
589 	} else {
590 		dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
591 			interrupt_status);
592 
593 		sci_change_state(&ihost->sm, SCIC_FAILED);
594 
595 		return;
596 	}
597 
598 	/* If we dont process any completions I am not sure that we want to do this.
599 	 * We are in the middle of a hardware fault and should probably be reset.
600 	 */
601 	writel(0, &ihost->smu_registers->interrupt_mask);
602 }
603 
604 irqreturn_t isci_intx_isr(int vec, void *data)
605 {
606 	irqreturn_t ret = IRQ_NONE;
607 	struct isci_host *ihost = data;
608 
609 	if (sci_controller_isr(ihost)) {
610 		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
611 		tasklet_schedule(&ihost->completion_tasklet);
612 		ret = IRQ_HANDLED;
613 	} else if (sci_controller_error_isr(ihost)) {
614 		spin_lock(&ihost->scic_lock);
615 		sci_controller_error_handler(ihost);
616 		spin_unlock(&ihost->scic_lock);
617 		ret = IRQ_HANDLED;
618 	}
619 
620 	return ret;
621 }
622 
623 irqreturn_t isci_error_isr(int vec, void *data)
624 {
625 	struct isci_host *ihost = data;
626 
627 	if (sci_controller_error_isr(ihost))
628 		sci_controller_error_handler(ihost);
629 
630 	return IRQ_HANDLED;
631 }
632 
633 /**
634  * isci_host_start_complete() - This function is called by the core library,
635  *    through the ISCI Module, to indicate controller start status.
636  * @isci_host: This parameter specifies the ISCI host object
637  * @completion_status: This parameter specifies the completion status from the
638  *    core library.
639  *
640  */
641 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
642 {
643 	if (completion_status != SCI_SUCCESS)
644 		dev_info(&ihost->pdev->dev,
645 			"controller start timed out, continuing...\n");
646 	isci_host_change_state(ihost, isci_ready);
647 	clear_bit(IHOST_START_PENDING, &ihost->flags);
648 	wake_up(&ihost->eventq);
649 }
650 
651 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
652 {
653 	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
654 
655 	if (test_bit(IHOST_START_PENDING, &ihost->flags))
656 		return 0;
657 
658 	/* todo: use sas_flush_discovery once it is upstream */
659 	scsi_flush_work(shost);
660 
661 	scsi_flush_work(shost);
662 
663 	dev_dbg(&ihost->pdev->dev,
664 		"%s: ihost->status = %d, time = %ld\n",
665 		 __func__, isci_host_get_state(ihost), time);
666 
667 	return 1;
668 
669 }
670 
671 /**
672  * sci_controller_get_suggested_start_timeout() - This method returns the
673  *    suggested sci_controller_start() timeout amount.  The user is free to
674  *    use any timeout value, but this method provides the suggested minimum
675  *    start timeout value.  The returned value is based upon empirical
676  *    information determined as a result of interoperability testing.
677  * @controller: the handle to the controller object for which to return the
678  *    suggested start timeout.
679  *
680  * This method returns the number of milliseconds for the suggested start
681  * operation timeout.
682  */
683 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
684 {
685 	/* Validate the user supplied parameters. */
686 	if (!ihost)
687 		return 0;
688 
689 	/*
690 	 * The suggested minimum timeout value for a controller start operation:
691 	 *
692 	 *     Signature FIS Timeout
693 	 *   + Phy Start Timeout
694 	 *   + Number of Phy Spin Up Intervals
695 	 *   ---------------------------------
696 	 *   Number of milliseconds for the controller start operation.
697 	 *
698 	 * NOTE: The number of phy spin up intervals will be equivalent
699 	 *       to the number of phys divided by the number phys allowed
700 	 *       per interval - 1 (once OEM parameters are supported).
701 	 *       Currently we assume only 1 phy per interval. */
702 
703 	return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
704 		+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
705 		+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
706 }
707 
708 static void sci_controller_enable_interrupts(struct isci_host *ihost)
709 {
710 	BUG_ON(ihost->smu_registers == NULL);
711 	writel(0, &ihost->smu_registers->interrupt_mask);
712 }
713 
714 void sci_controller_disable_interrupts(struct isci_host *ihost)
715 {
716 	BUG_ON(ihost->smu_registers == NULL);
717 	writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
718 }
719 
720 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
721 {
722 	u32 port_task_scheduler_value;
723 
724 	port_task_scheduler_value =
725 		readl(&ihost->scu_registers->peg0.ptsg.control);
726 	port_task_scheduler_value |=
727 		(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
728 		 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
729 	writel(port_task_scheduler_value,
730 	       &ihost->scu_registers->peg0.ptsg.control);
731 }
732 
733 static void sci_controller_assign_task_entries(struct isci_host *ihost)
734 {
735 	u32 task_assignment;
736 
737 	/*
738 	 * Assign all the TCs to function 0
739 	 * TODO: Do we actually need to read this register to write it back?
740 	 */
741 
742 	task_assignment =
743 		readl(&ihost->smu_registers->task_context_assignment[0]);
744 
745 	task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
746 		(SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
747 		(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
748 
749 	writel(task_assignment,
750 		&ihost->smu_registers->task_context_assignment[0]);
751 
752 }
753 
754 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
755 {
756 	u32 index;
757 	u32 completion_queue_control_value;
758 	u32 completion_queue_get_value;
759 	u32 completion_queue_put_value;
760 
761 	ihost->completion_queue_get = 0;
762 
763 	completion_queue_control_value =
764 		(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
765 		 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
766 
767 	writel(completion_queue_control_value,
768 	       &ihost->smu_registers->completion_queue_control);
769 
770 
771 	/* Set the completion queue get pointer and enable the queue */
772 	completion_queue_get_value = (
773 		(SMU_CQGR_GEN_VAL(POINTER, 0))
774 		| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
775 		| (SMU_CQGR_GEN_BIT(ENABLE))
776 		| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
777 		);
778 
779 	writel(completion_queue_get_value,
780 	       &ihost->smu_registers->completion_queue_get);
781 
782 	/* Set the completion queue put pointer */
783 	completion_queue_put_value = (
784 		(SMU_CQPR_GEN_VAL(POINTER, 0))
785 		| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
786 		);
787 
788 	writel(completion_queue_put_value,
789 	       &ihost->smu_registers->completion_queue_put);
790 
791 	/* Initialize the cycle bit of the completion queue entries */
792 	for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
793 		/*
794 		 * If get.cycle_bit != completion_queue.cycle_bit
795 		 * its not a valid completion queue entry
796 		 * so at system start all entries are invalid */
797 		ihost->completion_queue[index] = 0x80000000;
798 	}
799 }
800 
801 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
802 {
803 	u32 frame_queue_control_value;
804 	u32 frame_queue_get_value;
805 	u32 frame_queue_put_value;
806 
807 	/* Write the queue size */
808 	frame_queue_control_value =
809 		SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
810 
811 	writel(frame_queue_control_value,
812 	       &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
813 
814 	/* Setup the get pointer for the unsolicited frame queue */
815 	frame_queue_get_value = (
816 		SCU_UFQGP_GEN_VAL(POINTER, 0)
817 		|  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
818 		);
819 
820 	writel(frame_queue_get_value,
821 	       &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
822 	/* Setup the put pointer for the unsolicited frame queue */
823 	frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
824 	writel(frame_queue_put_value,
825 	       &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
826 }
827 
828 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
829 {
830 	if (ihost->sm.current_state_id == SCIC_STARTING) {
831 		/*
832 		 * We move into the ready state, because some of the phys/ports
833 		 * may be up and operational.
834 		 */
835 		sci_change_state(&ihost->sm, SCIC_READY);
836 
837 		isci_host_start_complete(ihost, status);
838 	}
839 }
840 
841 static bool is_phy_starting(struct isci_phy *iphy)
842 {
843 	enum sci_phy_states state;
844 
845 	state = iphy->sm.current_state_id;
846 	switch (state) {
847 	case SCI_PHY_STARTING:
848 	case SCI_PHY_SUB_INITIAL:
849 	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
850 	case SCI_PHY_SUB_AWAIT_IAF_UF:
851 	case SCI_PHY_SUB_AWAIT_SAS_POWER:
852 	case SCI_PHY_SUB_AWAIT_SATA_POWER:
853 	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
854 	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
855 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
856 	case SCI_PHY_SUB_FINAL:
857 		return true;
858 	default:
859 		return false;
860 	}
861 }
862 
863 /**
864  * sci_controller_start_next_phy - start phy
865  * @scic: controller
866  *
867  * If all the phys have been started, then attempt to transition the
868  * controller to the READY state and inform the user
869  * (sci_cb_controller_start_complete()).
870  */
871 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
872 {
873 	struct sci_oem_params *oem = &ihost->oem_parameters;
874 	struct isci_phy *iphy;
875 	enum sci_status status;
876 
877 	status = SCI_SUCCESS;
878 
879 	if (ihost->phy_startup_timer_pending)
880 		return status;
881 
882 	if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
883 		bool is_controller_start_complete = true;
884 		u32 state;
885 		u8 index;
886 
887 		for (index = 0; index < SCI_MAX_PHYS; index++) {
888 			iphy = &ihost->phys[index];
889 			state = iphy->sm.current_state_id;
890 
891 			if (!phy_get_non_dummy_port(iphy))
892 				continue;
893 
894 			/* The controller start operation is complete iff:
895 			 * - all links have been given an opportunity to start
896 			 * - have no indication of a connected device
897 			 * - have an indication of a connected device and it has
898 			 *   finished the link training process.
899 			 */
900 			if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
901 			    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
902 			    (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
903 			    (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) {
904 				is_controller_start_complete = false;
905 				break;
906 			}
907 		}
908 
909 		/*
910 		 * The controller has successfully finished the start process.
911 		 * Inform the SCI Core user and transition to the READY state. */
912 		if (is_controller_start_complete == true) {
913 			sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
914 			sci_del_timer(&ihost->phy_timer);
915 			ihost->phy_startup_timer_pending = false;
916 		}
917 	} else {
918 		iphy = &ihost->phys[ihost->next_phy_to_start];
919 
920 		if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
921 			if (phy_get_non_dummy_port(iphy) == NULL) {
922 				ihost->next_phy_to_start++;
923 
924 				/* Caution recursion ahead be forwarned
925 				 *
926 				 * The PHY was never added to a PORT in MPC mode
927 				 * so start the next phy in sequence This phy
928 				 * will never go link up and will not draw power
929 				 * the OEM parameters either configured the phy
930 				 * incorrectly for the PORT or it was never
931 				 * assigned to a PORT
932 				 */
933 				return sci_controller_start_next_phy(ihost);
934 			}
935 		}
936 
937 		status = sci_phy_start(iphy);
938 
939 		if (status == SCI_SUCCESS) {
940 			sci_mod_timer(&ihost->phy_timer,
941 				      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
942 			ihost->phy_startup_timer_pending = true;
943 		} else {
944 			dev_warn(&ihost->pdev->dev,
945 				 "%s: Controller stop operation failed "
946 				 "to stop phy %d because of status "
947 				 "%d.\n",
948 				 __func__,
949 				 ihost->phys[ihost->next_phy_to_start].phy_index,
950 				 status);
951 		}
952 
953 		ihost->next_phy_to_start++;
954 	}
955 
956 	return status;
957 }
958 
959 static void phy_startup_timeout(unsigned long data)
960 {
961 	struct sci_timer *tmr = (struct sci_timer *)data;
962 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
963 	unsigned long flags;
964 	enum sci_status status;
965 
966 	spin_lock_irqsave(&ihost->scic_lock, flags);
967 
968 	if (tmr->cancel)
969 		goto done;
970 
971 	ihost->phy_startup_timer_pending = false;
972 
973 	do {
974 		status = sci_controller_start_next_phy(ihost);
975 	} while (status != SCI_SUCCESS);
976 
977 done:
978 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
979 }
980 
981 static u16 isci_tci_active(struct isci_host *ihost)
982 {
983 	return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
984 }
985 
986 static enum sci_status sci_controller_start(struct isci_host *ihost,
987 					     u32 timeout)
988 {
989 	enum sci_status result;
990 	u16 index;
991 
992 	if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
993 		dev_warn(&ihost->pdev->dev,
994 			 "SCIC Controller start operation requested in "
995 			 "invalid state\n");
996 		return SCI_FAILURE_INVALID_STATE;
997 	}
998 
999 	/* Build the TCi free pool */
1000 	BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1001 	ihost->tci_head = 0;
1002 	ihost->tci_tail = 0;
1003 	for (index = 0; index < ihost->task_context_entries; index++)
1004 		isci_tci_free(ihost, index);
1005 
1006 	/* Build the RNi free pool */
1007 	sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1008 					 ihost->remote_node_entries);
1009 
1010 	/*
1011 	 * Before anything else lets make sure we will not be
1012 	 * interrupted by the hardware.
1013 	 */
1014 	sci_controller_disable_interrupts(ihost);
1015 
1016 	/* Enable the port task scheduler */
1017 	sci_controller_enable_port_task_scheduler(ihost);
1018 
1019 	/* Assign all the task entries to ihost physical function */
1020 	sci_controller_assign_task_entries(ihost);
1021 
1022 	/* Now initialize the completion queue */
1023 	sci_controller_initialize_completion_queue(ihost);
1024 
1025 	/* Initialize the unsolicited frame queue for use */
1026 	sci_controller_initialize_unsolicited_frame_queue(ihost);
1027 
1028 	/* Start all of the ports on this controller */
1029 	for (index = 0; index < ihost->logical_port_entries; index++) {
1030 		struct isci_port *iport = &ihost->ports[index];
1031 
1032 		result = sci_port_start(iport);
1033 		if (result)
1034 			return result;
1035 	}
1036 
1037 	sci_controller_start_next_phy(ihost);
1038 
1039 	sci_mod_timer(&ihost->timer, timeout);
1040 
1041 	sci_change_state(&ihost->sm, SCIC_STARTING);
1042 
1043 	return SCI_SUCCESS;
1044 }
1045 
1046 void isci_host_scan_start(struct Scsi_Host *shost)
1047 {
1048 	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1049 	unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1050 
1051 	set_bit(IHOST_START_PENDING, &ihost->flags);
1052 
1053 	spin_lock_irq(&ihost->scic_lock);
1054 	sci_controller_start(ihost, tmo);
1055 	sci_controller_enable_interrupts(ihost);
1056 	spin_unlock_irq(&ihost->scic_lock);
1057 }
1058 
1059 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1060 {
1061 	isci_host_change_state(ihost, isci_stopped);
1062 	sci_controller_disable_interrupts(ihost);
1063 	clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1064 	wake_up(&ihost->eventq);
1065 }
1066 
1067 static void sci_controller_completion_handler(struct isci_host *ihost)
1068 {
1069 	/* Empty out the completion queue */
1070 	if (sci_controller_completion_queue_has_entries(ihost))
1071 		sci_controller_process_completions(ihost);
1072 
1073 	/* Clear the interrupt and enable all interrupts again */
1074 	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1075 	/* Could we write the value of SMU_ISR_COMPLETION? */
1076 	writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1077 	writel(0, &ihost->smu_registers->interrupt_mask);
1078 }
1079 
1080 /**
1081  * isci_host_completion_routine() - This function is the delayed service
1082  *    routine that calls the sci core library's completion handler. It's
1083  *    scheduled as a tasklet from the interrupt service routine when interrupts
1084  *    in use, or set as the timeout function in polled mode.
1085  * @data: This parameter specifies the ISCI host object
1086  *
1087  */
1088 static void isci_host_completion_routine(unsigned long data)
1089 {
1090 	struct isci_host *ihost = (struct isci_host *)data;
1091 	struct list_head    completed_request_list;
1092 	struct list_head    errored_request_list;
1093 	struct list_head    *current_position;
1094 	struct list_head    *next_position;
1095 	struct isci_request *request;
1096 	struct isci_request *next_request;
1097 	struct sas_task     *task;
1098 	u16 active;
1099 
1100 	INIT_LIST_HEAD(&completed_request_list);
1101 	INIT_LIST_HEAD(&errored_request_list);
1102 
1103 	spin_lock_irq(&ihost->scic_lock);
1104 
1105 	sci_controller_completion_handler(ihost);
1106 
1107 	/* Take the lists of completed I/Os from the host. */
1108 
1109 	list_splice_init(&ihost->requests_to_complete,
1110 			 &completed_request_list);
1111 
1112 	/* Take the list of errored I/Os from the host. */
1113 	list_splice_init(&ihost->requests_to_errorback,
1114 			 &errored_request_list);
1115 
1116 	spin_unlock_irq(&ihost->scic_lock);
1117 
1118 	/* Process any completions in the lists. */
1119 	list_for_each_safe(current_position, next_position,
1120 			   &completed_request_list) {
1121 
1122 		request = list_entry(current_position, struct isci_request,
1123 				     completed_node);
1124 		task = isci_request_access_task(request);
1125 
1126 		/* Normal notification (task_done) */
1127 		dev_dbg(&ihost->pdev->dev,
1128 			"%s: Normal - request/task = %p/%p\n",
1129 			__func__,
1130 			request,
1131 			task);
1132 
1133 		/* Return the task to libsas */
1134 		if (task != NULL) {
1135 
1136 			task->lldd_task = NULL;
1137 			if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1138 
1139 				/* If the task is already in the abort path,
1140 				* the task_done callback cannot be called.
1141 				*/
1142 				task->task_done(task);
1143 			}
1144 		}
1145 
1146 		spin_lock_irq(&ihost->scic_lock);
1147 		isci_free_tag(ihost, request->io_tag);
1148 		spin_unlock_irq(&ihost->scic_lock);
1149 	}
1150 	list_for_each_entry_safe(request, next_request, &errored_request_list,
1151 				 completed_node) {
1152 
1153 		task = isci_request_access_task(request);
1154 
1155 		/* Use sas_task_abort */
1156 		dev_warn(&ihost->pdev->dev,
1157 			 "%s: Error - request/task = %p/%p\n",
1158 			 __func__,
1159 			 request,
1160 			 task);
1161 
1162 		if (task != NULL) {
1163 
1164 			/* Put the task into the abort path if it's not there
1165 			 * already.
1166 			 */
1167 			if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1168 				sas_task_abort(task);
1169 
1170 		} else {
1171 			/* This is a case where the request has completed with a
1172 			 * status such that it needed further target servicing,
1173 			 * but the sas_task reference has already been removed
1174 			 * from the request.  Since it was errored, it was not
1175 			 * being aborted, so there is nothing to do except free
1176 			 * it.
1177 			 */
1178 
1179 			spin_lock_irq(&ihost->scic_lock);
1180 			/* Remove the request from the remote device's list
1181 			* of pending requests.
1182 			*/
1183 			list_del_init(&request->dev_node);
1184 			isci_free_tag(ihost, request->io_tag);
1185 			spin_unlock_irq(&ihost->scic_lock);
1186 		}
1187 	}
1188 
1189 	/* the coalesence timeout doubles at each encoding step, so
1190 	 * update it based on the ilog2 value of the outstanding requests
1191 	 */
1192 	active = isci_tci_active(ihost);
1193 	writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1194 	       SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1195 	       &ihost->smu_registers->interrupt_coalesce_control);
1196 }
1197 
1198 /**
1199  * sci_controller_stop() - This method will stop an individual controller
1200  *    object.This method will invoke the associated user callback upon
1201  *    completion.  The completion callback is called when the following
1202  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1203  *    controller has been quiesced. This method will ensure that all IO
1204  *    requests are quiesced, phys are stopped, and all additional operation by
1205  *    the hardware is halted.
1206  * @controller: the handle to the controller object to stop.
1207  * @timeout: This parameter specifies the number of milliseconds in which the
1208  *    stop operation should complete.
1209  *
1210  * The controller must be in the STARTED or STOPPED state. Indicate if the
1211  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1212  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1213  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1214  * controller is not either in the STARTED or STOPPED states.
1215  */
1216 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1217 {
1218 	if (ihost->sm.current_state_id != SCIC_READY) {
1219 		dev_warn(&ihost->pdev->dev,
1220 			 "SCIC Controller stop operation requested in "
1221 			 "invalid state\n");
1222 		return SCI_FAILURE_INVALID_STATE;
1223 	}
1224 
1225 	sci_mod_timer(&ihost->timer, timeout);
1226 	sci_change_state(&ihost->sm, SCIC_STOPPING);
1227 	return SCI_SUCCESS;
1228 }
1229 
1230 /**
1231  * sci_controller_reset() - This method will reset the supplied core
1232  *    controller regardless of the state of said controller.  This operation is
1233  *    considered destructive.  In other words, all current operations are wiped
1234  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1235  *    requests are not aborted or completed at the actual remote device.
1236  * @controller: the handle to the controller object to reset.
1237  *
1238  * Indicate if the controller reset method succeeded or failed in some way.
1239  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1240  * the controller reset operation is unable to complete.
1241  */
1242 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1243 {
1244 	switch (ihost->sm.current_state_id) {
1245 	case SCIC_RESET:
1246 	case SCIC_READY:
1247 	case SCIC_STOPPED:
1248 	case SCIC_FAILED:
1249 		/*
1250 		 * The reset operation is not a graceful cleanup, just
1251 		 * perform the state transition.
1252 		 */
1253 		sci_change_state(&ihost->sm, SCIC_RESETTING);
1254 		return SCI_SUCCESS;
1255 	default:
1256 		dev_warn(&ihost->pdev->dev,
1257 			 "SCIC Controller reset operation requested in "
1258 			 "invalid state\n");
1259 		return SCI_FAILURE_INVALID_STATE;
1260 	}
1261 }
1262 
1263 void isci_host_deinit(struct isci_host *ihost)
1264 {
1265 	int i;
1266 
1267 	/* disable output data selects */
1268 	for (i = 0; i < isci_gpio_count(ihost); i++)
1269 		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1270 
1271 	isci_host_change_state(ihost, isci_stopping);
1272 	for (i = 0; i < SCI_MAX_PORTS; i++) {
1273 		struct isci_port *iport = &ihost->ports[i];
1274 		struct isci_remote_device *idev, *d;
1275 
1276 		list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1277 			if (test_bit(IDEV_ALLOCATED, &idev->flags))
1278 				isci_remote_device_stop(ihost, idev);
1279 		}
1280 	}
1281 
1282 	set_bit(IHOST_STOP_PENDING, &ihost->flags);
1283 
1284 	spin_lock_irq(&ihost->scic_lock);
1285 	sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1286 	spin_unlock_irq(&ihost->scic_lock);
1287 
1288 	wait_for_stop(ihost);
1289 
1290 	/* disable sgpio: where the above wait should give time for the
1291 	 * enclosure to sample the gpios going inactive
1292 	 */
1293 	writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1294 
1295 	sci_controller_reset(ihost);
1296 
1297 	/* Cancel any/all outstanding port timers */
1298 	for (i = 0; i < ihost->logical_port_entries; i++) {
1299 		struct isci_port *iport = &ihost->ports[i];
1300 		del_timer_sync(&iport->timer.timer);
1301 	}
1302 
1303 	/* Cancel any/all outstanding phy timers */
1304 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1305 		struct isci_phy *iphy = &ihost->phys[i];
1306 		del_timer_sync(&iphy->sata_timer.timer);
1307 	}
1308 
1309 	del_timer_sync(&ihost->port_agent.timer.timer);
1310 
1311 	del_timer_sync(&ihost->power_control.timer.timer);
1312 
1313 	del_timer_sync(&ihost->timer.timer);
1314 
1315 	del_timer_sync(&ihost->phy_timer.timer);
1316 }
1317 
1318 static void __iomem *scu_base(struct isci_host *isci_host)
1319 {
1320 	struct pci_dev *pdev = isci_host->pdev;
1321 	int id = isci_host->id;
1322 
1323 	return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1324 }
1325 
1326 static void __iomem *smu_base(struct isci_host *isci_host)
1327 {
1328 	struct pci_dev *pdev = isci_host->pdev;
1329 	int id = isci_host->id;
1330 
1331 	return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1332 }
1333 
1334 static void isci_user_parameters_get(struct sci_user_parameters *u)
1335 {
1336 	int i;
1337 
1338 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1339 		struct sci_phy_user_params *u_phy = &u->phys[i];
1340 
1341 		u_phy->max_speed_generation = phy_gen;
1342 
1343 		/* we are not exporting these for now */
1344 		u_phy->align_insertion_frequency = 0x7f;
1345 		u_phy->in_connection_align_insertion_frequency = 0xff;
1346 		u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1347 	}
1348 
1349 	u->stp_inactivity_timeout = stp_inactive_to;
1350 	u->ssp_inactivity_timeout = ssp_inactive_to;
1351 	u->stp_max_occupancy_timeout = stp_max_occ_to;
1352 	u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1353 	u->no_outbound_task_timeout = no_outbound_task_to;
1354 	u->max_concurr_spinup = max_concurr_spinup;
1355 }
1356 
1357 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1358 {
1359 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1360 
1361 	sci_change_state(&ihost->sm, SCIC_RESET);
1362 }
1363 
1364 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1365 {
1366 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1367 
1368 	sci_del_timer(&ihost->timer);
1369 }
1370 
1371 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1372 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1373 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1374 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1375 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1376 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1377 
1378 /**
1379  * sci_controller_set_interrupt_coalescence() - This method allows the user to
1380  *    configure the interrupt coalescence.
1381  * @controller: This parameter represents the handle to the controller object
1382  *    for which its interrupt coalesce register is overridden.
1383  * @coalesce_number: Used to control the number of entries in the Completion
1384  *    Queue before an interrupt is generated. If the number of entries exceed
1385  *    this number, an interrupt will be generated. The valid range of the input
1386  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1387  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1388  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1389  *    interrupt coalescing timeout.
1390  *
1391  * Indicate if the user successfully set the interrupt coalesce parameters.
1392  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1393  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1394  */
1395 static enum sci_status
1396 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1397 					 u32 coalesce_number,
1398 					 u32 coalesce_timeout)
1399 {
1400 	u8 timeout_encode = 0;
1401 	u32 min = 0;
1402 	u32 max = 0;
1403 
1404 	/* Check if the input parameters fall in the range. */
1405 	if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1406 		return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1407 
1408 	/*
1409 	 *  Defined encoding for interrupt coalescing timeout:
1410 	 *              Value   Min      Max     Units
1411 	 *              -----   ---      ---     -----
1412 	 *              0       -        -       Disabled
1413 	 *              1       13.3     20.0    ns
1414 	 *              2       26.7     40.0
1415 	 *              3       53.3     80.0
1416 	 *              4       106.7    160.0
1417 	 *              5       213.3    320.0
1418 	 *              6       426.7    640.0
1419 	 *              7       853.3    1280.0
1420 	 *              8       1.7      2.6     us
1421 	 *              9       3.4      5.1
1422 	 *              10      6.8      10.2
1423 	 *              11      13.7     20.5
1424 	 *              12      27.3     41.0
1425 	 *              13      54.6     81.9
1426 	 *              14      109.2    163.8
1427 	 *              15      218.5    327.7
1428 	 *              16      436.9    655.4
1429 	 *              17      873.8    1310.7
1430 	 *              18      1.7      2.6     ms
1431 	 *              19      3.5      5.2
1432 	 *              20      7.0      10.5
1433 	 *              21      14.0     21.0
1434 	 *              22      28.0     41.9
1435 	 *              23      55.9     83.9
1436 	 *              24      111.8    167.8
1437 	 *              25      223.7    335.5
1438 	 *              26      447.4    671.1
1439 	 *              27      894.8    1342.2
1440 	 *              28      1.8      2.7     s
1441 	 *              Others Undefined */
1442 
1443 	/*
1444 	 * Use the table above to decide the encode of interrupt coalescing timeout
1445 	 * value for register writing. */
1446 	if (coalesce_timeout == 0)
1447 		timeout_encode = 0;
1448 	else{
1449 		/* make the timeout value in unit of (10 ns). */
1450 		coalesce_timeout = coalesce_timeout * 100;
1451 		min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1452 		max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1453 
1454 		/* get the encode of timeout for register writing. */
1455 		for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1456 		      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1457 		      timeout_encode++) {
1458 			if (min <= coalesce_timeout &&  max > coalesce_timeout)
1459 				break;
1460 			else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1461 				 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1462 				if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1463 					break;
1464 				else{
1465 					timeout_encode++;
1466 					break;
1467 				}
1468 			} else {
1469 				max = max * 2;
1470 				min = min * 2;
1471 			}
1472 		}
1473 
1474 		if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1475 			/* the value is out of range. */
1476 			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1477 	}
1478 
1479 	writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1480 	       SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1481 	       &ihost->smu_registers->interrupt_coalesce_control);
1482 
1483 
1484 	ihost->interrupt_coalesce_number = (u16)coalesce_number;
1485 	ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1486 
1487 	return SCI_SUCCESS;
1488 }
1489 
1490 
1491 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1492 {
1493 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1494 
1495 	/* set the default interrupt coalescence number and timeout value. */
1496 	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1497 }
1498 
1499 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1500 {
1501 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1502 
1503 	/* disable interrupt coalescence. */
1504 	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1505 }
1506 
1507 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1508 {
1509 	u32 index;
1510 	enum sci_status status;
1511 	enum sci_status phy_status;
1512 
1513 	status = SCI_SUCCESS;
1514 
1515 	for (index = 0; index < SCI_MAX_PHYS; index++) {
1516 		phy_status = sci_phy_stop(&ihost->phys[index]);
1517 
1518 		if (phy_status != SCI_SUCCESS &&
1519 		    phy_status != SCI_FAILURE_INVALID_STATE) {
1520 			status = SCI_FAILURE;
1521 
1522 			dev_warn(&ihost->pdev->dev,
1523 				 "%s: Controller stop operation failed to stop "
1524 				 "phy %d because of status %d.\n",
1525 				 __func__,
1526 				 ihost->phys[index].phy_index, phy_status);
1527 		}
1528 	}
1529 
1530 	return status;
1531 }
1532 
1533 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1534 {
1535 	u32 index;
1536 	enum sci_status port_status;
1537 	enum sci_status status = SCI_SUCCESS;
1538 
1539 	for (index = 0; index < ihost->logical_port_entries; index++) {
1540 		struct isci_port *iport = &ihost->ports[index];
1541 
1542 		port_status = sci_port_stop(iport);
1543 
1544 		if ((port_status != SCI_SUCCESS) &&
1545 		    (port_status != SCI_FAILURE_INVALID_STATE)) {
1546 			status = SCI_FAILURE;
1547 
1548 			dev_warn(&ihost->pdev->dev,
1549 				 "%s: Controller stop operation failed to "
1550 				 "stop port %d because of status %d.\n",
1551 				 __func__,
1552 				 iport->logical_port_index,
1553 				 port_status);
1554 		}
1555 	}
1556 
1557 	return status;
1558 }
1559 
1560 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1561 {
1562 	u32 index;
1563 	enum sci_status status;
1564 	enum sci_status device_status;
1565 
1566 	status = SCI_SUCCESS;
1567 
1568 	for (index = 0; index < ihost->remote_node_entries; index++) {
1569 		if (ihost->device_table[index] != NULL) {
1570 			/* / @todo What timeout value do we want to provide to this request? */
1571 			device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1572 
1573 			if ((device_status != SCI_SUCCESS) &&
1574 			    (device_status != SCI_FAILURE_INVALID_STATE)) {
1575 				dev_warn(&ihost->pdev->dev,
1576 					 "%s: Controller stop operation failed "
1577 					 "to stop device 0x%p because of "
1578 					 "status %d.\n",
1579 					 __func__,
1580 					 ihost->device_table[index], device_status);
1581 			}
1582 		}
1583 	}
1584 
1585 	return status;
1586 }
1587 
1588 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1589 {
1590 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1591 
1592 	/* Stop all of the components for this controller */
1593 	sci_controller_stop_phys(ihost);
1594 	sci_controller_stop_ports(ihost);
1595 	sci_controller_stop_devices(ihost);
1596 }
1597 
1598 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1599 {
1600 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1601 
1602 	sci_del_timer(&ihost->timer);
1603 }
1604 
1605 static void sci_controller_reset_hardware(struct isci_host *ihost)
1606 {
1607 	/* Disable interrupts so we dont take any spurious interrupts */
1608 	sci_controller_disable_interrupts(ihost);
1609 
1610 	/* Reset the SCU */
1611 	writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1612 
1613 	/* Delay for 1ms to before clearing the CQP and UFQPR. */
1614 	udelay(1000);
1615 
1616 	/* The write to the CQGR clears the CQP */
1617 	writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1618 
1619 	/* The write to the UFQGP clears the UFQPR */
1620 	writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1621 }
1622 
1623 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1624 {
1625 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1626 
1627 	sci_controller_reset_hardware(ihost);
1628 	sci_change_state(&ihost->sm, SCIC_RESET);
1629 }
1630 
1631 static const struct sci_base_state sci_controller_state_table[] = {
1632 	[SCIC_INITIAL] = {
1633 		.enter_state = sci_controller_initial_state_enter,
1634 	},
1635 	[SCIC_RESET] = {},
1636 	[SCIC_INITIALIZING] = {},
1637 	[SCIC_INITIALIZED] = {},
1638 	[SCIC_STARTING] = {
1639 		.exit_state  = sci_controller_starting_state_exit,
1640 	},
1641 	[SCIC_READY] = {
1642 		.enter_state = sci_controller_ready_state_enter,
1643 		.exit_state  = sci_controller_ready_state_exit,
1644 	},
1645 	[SCIC_RESETTING] = {
1646 		.enter_state = sci_controller_resetting_state_enter,
1647 	},
1648 	[SCIC_STOPPING] = {
1649 		.enter_state = sci_controller_stopping_state_enter,
1650 		.exit_state = sci_controller_stopping_state_exit,
1651 	},
1652 	[SCIC_STOPPED] = {},
1653 	[SCIC_FAILED] = {}
1654 };
1655 
1656 static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
1657 {
1658 	/* these defaults are overridden by the platform / firmware */
1659 	u16 index;
1660 
1661 	/* Default to APC mode. */
1662 	ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1663 
1664 	/* Default to APC mode. */
1665 	ihost->oem_parameters.controller.max_concurr_spin_up = 1;
1666 
1667 	/* Default to no SSC operation. */
1668 	ihost->oem_parameters.controller.do_enable_ssc = false;
1669 
1670 	/* Default to short cables on all phys. */
1671 	ihost->oem_parameters.controller.cable_selection_mask = 0;
1672 
1673 	/* Initialize all of the port parameter information to narrow ports. */
1674 	for (index = 0; index < SCI_MAX_PORTS; index++) {
1675 		ihost->oem_parameters.ports[index].phy_mask = 0;
1676 	}
1677 
1678 	/* Initialize all of the phy parameter information. */
1679 	for (index = 0; index < SCI_MAX_PHYS; index++) {
1680 		/* Default to 3G (i.e. Gen 2). */
1681 		ihost->user_parameters.phys[index].max_speed_generation =
1682 			SCIC_SDS_PARM_GEN2_SPEED;
1683 
1684 		/* the frequencies cannot be 0 */
1685 		ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
1686 		ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
1687 		ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1688 
1689 		/*
1690 		 * Previous Vitesse based expanders had a arbitration issue that
1691 		 * is worked around by having the upper 32-bits of SAS address
1692 		 * with a value greater then the Vitesse company identifier.
1693 		 * Hence, usage of 0x5FCFFFFF. */
1694 		ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
1695 		ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
1696 	}
1697 
1698 	ihost->user_parameters.stp_inactivity_timeout = 5;
1699 	ihost->user_parameters.ssp_inactivity_timeout = 5;
1700 	ihost->user_parameters.stp_max_occupancy_timeout = 5;
1701 	ihost->user_parameters.ssp_max_occupancy_timeout = 20;
1702 	ihost->user_parameters.no_outbound_task_timeout = 2;
1703 }
1704 
1705 static void controller_timeout(unsigned long data)
1706 {
1707 	struct sci_timer *tmr = (struct sci_timer *)data;
1708 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1709 	struct sci_base_state_machine *sm = &ihost->sm;
1710 	unsigned long flags;
1711 
1712 	spin_lock_irqsave(&ihost->scic_lock, flags);
1713 
1714 	if (tmr->cancel)
1715 		goto done;
1716 
1717 	if (sm->current_state_id == SCIC_STARTING)
1718 		sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1719 	else if (sm->current_state_id == SCIC_STOPPING) {
1720 		sci_change_state(sm, SCIC_FAILED);
1721 		isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1722 	} else	/* / @todo Now what do we want to do in this case? */
1723 		dev_err(&ihost->pdev->dev,
1724 			"%s: Controller timer fired when controller was not "
1725 			"in a state being timed.\n",
1726 			__func__);
1727 
1728 done:
1729 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1730 }
1731 
1732 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1733 						void __iomem *scu_base,
1734 						void __iomem *smu_base)
1735 {
1736 	u8 i;
1737 
1738 	sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1739 
1740 	ihost->scu_registers = scu_base;
1741 	ihost->smu_registers = smu_base;
1742 
1743 	sci_port_configuration_agent_construct(&ihost->port_agent);
1744 
1745 	/* Construct the ports for this controller */
1746 	for (i = 0; i < SCI_MAX_PORTS; i++)
1747 		sci_port_construct(&ihost->ports[i], i, ihost);
1748 	sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1749 
1750 	/* Construct the phys for this controller */
1751 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1752 		/* Add all the PHYs to the dummy port */
1753 		sci_phy_construct(&ihost->phys[i],
1754 				  &ihost->ports[SCI_MAX_PORTS], i);
1755 	}
1756 
1757 	ihost->invalid_phy_mask = 0;
1758 
1759 	sci_init_timer(&ihost->timer, controller_timeout);
1760 
1761 	/* Initialize the User and OEM parameters to default values. */
1762 	sci_controller_set_default_config_parameters(ihost);
1763 
1764 	return sci_controller_reset(ihost);
1765 }
1766 
1767 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1768 {
1769 	int i;
1770 
1771 	for (i = 0; i < SCI_MAX_PORTS; i++)
1772 		if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1773 			return -EINVAL;
1774 
1775 	for (i = 0; i < SCI_MAX_PHYS; i++)
1776 		if (oem->phys[i].sas_address.high == 0 &&
1777 		    oem->phys[i].sas_address.low == 0)
1778 			return -EINVAL;
1779 
1780 	if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1781 		for (i = 0; i < SCI_MAX_PHYS; i++)
1782 			if (oem->ports[i].phy_mask != 0)
1783 				return -EINVAL;
1784 	} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1785 		u8 phy_mask = 0;
1786 
1787 		for (i = 0; i < SCI_MAX_PHYS; i++)
1788 			phy_mask |= oem->ports[i].phy_mask;
1789 
1790 		if (phy_mask == 0)
1791 			return -EINVAL;
1792 	} else
1793 		return -EINVAL;
1794 
1795 	if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1796 	    oem->controller.max_concurr_spin_up < 1)
1797 		return -EINVAL;
1798 
1799 	if (oem->controller.do_enable_ssc) {
1800 		if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1801 			return -EINVAL;
1802 
1803 		if (version >= ISCI_ROM_VER_1_1) {
1804 			u8 test = oem->controller.ssc_sata_tx_spread_level;
1805 
1806 			switch (test) {
1807 			case 0:
1808 			case 2:
1809 			case 3:
1810 			case 6:
1811 			case 7:
1812 				break;
1813 			default:
1814 				return -EINVAL;
1815 			}
1816 
1817 			test = oem->controller.ssc_sas_tx_spread_level;
1818 			if (oem->controller.ssc_sas_tx_type == 0) {
1819 				switch (test) {
1820 				case 0:
1821 				case 2:
1822 				case 3:
1823 					break;
1824 				default:
1825 					return -EINVAL;
1826 				}
1827 			} else if (oem->controller.ssc_sas_tx_type == 1) {
1828 				switch (test) {
1829 				case 0:
1830 				case 3:
1831 				case 6:
1832 					break;
1833 				default:
1834 					return -EINVAL;
1835 				}
1836 			}
1837 		}
1838 	}
1839 
1840 	return 0;
1841 }
1842 
1843 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
1844 {
1845 	u32 state = ihost->sm.current_state_id;
1846 	struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
1847 
1848 	if (state == SCIC_RESET ||
1849 	    state == SCIC_INITIALIZING ||
1850 	    state == SCIC_INITIALIZED) {
1851 
1852 		if (sci_oem_parameters_validate(&ihost->oem_parameters,
1853 						pci_info->orom->hdr.version))
1854 			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1855 
1856 		return SCI_SUCCESS;
1857 	}
1858 
1859 	return SCI_FAILURE_INVALID_STATE;
1860 }
1861 
1862 static u8 max_spin_up(struct isci_host *ihost)
1863 {
1864 	if (ihost->user_parameters.max_concurr_spinup)
1865 		return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1866 			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1867 	else
1868 		return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1869 			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1870 }
1871 
1872 static void power_control_timeout(unsigned long data)
1873 {
1874 	struct sci_timer *tmr = (struct sci_timer *)data;
1875 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1876 	struct isci_phy *iphy;
1877 	unsigned long flags;
1878 	u8 i;
1879 
1880 	spin_lock_irqsave(&ihost->scic_lock, flags);
1881 
1882 	if (tmr->cancel)
1883 		goto done;
1884 
1885 	ihost->power_control.phys_granted_power = 0;
1886 
1887 	if (ihost->power_control.phys_waiting == 0) {
1888 		ihost->power_control.timer_started = false;
1889 		goto done;
1890 	}
1891 
1892 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1893 
1894 		if (ihost->power_control.phys_waiting == 0)
1895 			break;
1896 
1897 		iphy = ihost->power_control.requesters[i];
1898 		if (iphy == NULL)
1899 			continue;
1900 
1901 		if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1902 			break;
1903 
1904 		ihost->power_control.requesters[i] = NULL;
1905 		ihost->power_control.phys_waiting--;
1906 		ihost->power_control.phys_granted_power++;
1907 		sci_phy_consume_power_handler(iphy);
1908 
1909 		if (iphy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) {
1910 			u8 j;
1911 
1912 			for (j = 0; j < SCI_MAX_PHYS; j++) {
1913 				struct isci_phy *requester = ihost->power_control.requesters[j];
1914 
1915 				/*
1916 				 * Search the power_control queue to see if there are other phys
1917 				 * attached to the same remote device. If found, take all of
1918 				 * them out of await_sas_power state.
1919 				 */
1920 				if (requester != NULL && requester != iphy) {
1921 					u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1922 							  iphy->frame_rcvd.iaf.sas_addr,
1923 							  sizeof(requester->frame_rcvd.iaf.sas_addr));
1924 
1925 					if (other == 0) {
1926 						ihost->power_control.requesters[j] = NULL;
1927 						ihost->power_control.phys_waiting--;
1928 						sci_phy_consume_power_handler(requester);
1929 					}
1930 				}
1931 			}
1932 		}
1933 	}
1934 
1935 	/*
1936 	 * It doesn't matter if the power list is empty, we need to start the
1937 	 * timer in case another phy becomes ready.
1938 	 */
1939 	sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1940 	ihost->power_control.timer_started = true;
1941 
1942 done:
1943 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1944 }
1945 
1946 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1947 					       struct isci_phy *iphy)
1948 {
1949 	BUG_ON(iphy == NULL);
1950 
1951 	if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1952 		ihost->power_control.phys_granted_power++;
1953 		sci_phy_consume_power_handler(iphy);
1954 
1955 		/*
1956 		 * stop and start the power_control timer. When the timer fires, the
1957 		 * no_of_phys_granted_power will be set to 0
1958 		 */
1959 		if (ihost->power_control.timer_started)
1960 			sci_del_timer(&ihost->power_control.timer);
1961 
1962 		sci_mod_timer(&ihost->power_control.timer,
1963 				 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1964 		ihost->power_control.timer_started = true;
1965 
1966 	} else {
1967 		/*
1968 		 * There are phys, attached to the same sas address as this phy, are
1969 		 * already in READY state, this phy don't need wait.
1970 		 */
1971 		u8 i;
1972 		struct isci_phy *current_phy;
1973 
1974 		for (i = 0; i < SCI_MAX_PHYS; i++) {
1975 			u8 other;
1976 			current_phy = &ihost->phys[i];
1977 
1978 			other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1979 				       iphy->frame_rcvd.iaf.sas_addr,
1980 				       sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1981 
1982 			if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1983 			    current_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS &&
1984 			    other == 0) {
1985 				sci_phy_consume_power_handler(iphy);
1986 				break;
1987 			}
1988 		}
1989 
1990 		if (i == SCI_MAX_PHYS) {
1991 			/* Add the phy in the waiting list */
1992 			ihost->power_control.requesters[iphy->phy_index] = iphy;
1993 			ihost->power_control.phys_waiting++;
1994 		}
1995 	}
1996 }
1997 
1998 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1999 					       struct isci_phy *iphy)
2000 {
2001 	BUG_ON(iphy == NULL);
2002 
2003 	if (ihost->power_control.requesters[iphy->phy_index])
2004 		ihost->power_control.phys_waiting--;
2005 
2006 	ihost->power_control.requesters[iphy->phy_index] = NULL;
2007 }
2008 
2009 static int is_long_cable(int phy, unsigned char selection_byte)
2010 {
2011 	return !!(selection_byte & (1 << phy));
2012 }
2013 
2014 static int is_medium_cable(int phy, unsigned char selection_byte)
2015 {
2016 	return !!(selection_byte & (1 << (phy + 4)));
2017 }
2018 
2019 static enum cable_selections decode_selection_byte(
2020 	int phy,
2021 	unsigned char selection_byte)
2022 {
2023 	return ((selection_byte & (1 << phy)) ? 1 : 0)
2024 		+ (selection_byte & (1 << (phy + 4)) ? 2 : 0);
2025 }
2026 
2027 static unsigned char *to_cable_select(struct isci_host *ihost)
2028 {
2029 	if (is_cable_select_overridden())
2030 		return ((unsigned char *)&cable_selection_override)
2031 			+ ihost->id;
2032 	else
2033 		return &ihost->oem_parameters.controller.cable_selection_mask;
2034 }
2035 
2036 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
2037 {
2038 	return decode_selection_byte(phy, *to_cable_select(ihost));
2039 }
2040 
2041 char *lookup_cable_names(enum cable_selections selection)
2042 {
2043 	static char *cable_names[] = {
2044 		[short_cable]     = "short",
2045 		[long_cable]      = "long",
2046 		[medium_cable]    = "medium",
2047 		[undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
2048 	};
2049 	return (selection <= undefined_cable) ? cable_names[selection]
2050 					      : cable_names[undefined_cable];
2051 }
2052 
2053 #define AFE_REGISTER_WRITE_DELAY 10
2054 
2055 static void sci_controller_afe_initialization(struct isci_host *ihost)
2056 {
2057 	struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
2058 	const struct sci_oem_params *oem = &ihost->oem_parameters;
2059 	struct pci_dev *pdev = ihost->pdev;
2060 	u32 afe_status;
2061 	u32 phy_id;
2062 	unsigned char cable_selection_mask = *to_cable_select(ihost);
2063 
2064 	/* Clear DFX Status registers */
2065 	writel(0x0081000f, &afe->afe_dfx_master_control0);
2066 	udelay(AFE_REGISTER_WRITE_DELAY);
2067 
2068 	if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
2069 		/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2070 		 * Timer, PM Stagger Timer
2071 		 */
2072 		writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
2073 		udelay(AFE_REGISTER_WRITE_DELAY);
2074 	}
2075 
2076 	/* Configure bias currents to normal */
2077 	if (is_a2(pdev))
2078 		writel(0x00005A00, &afe->afe_bias_control);
2079 	else if (is_b0(pdev) || is_c0(pdev))
2080 		writel(0x00005F00, &afe->afe_bias_control);
2081 	else if (is_c1(pdev))
2082 		writel(0x00005500, &afe->afe_bias_control);
2083 
2084 	udelay(AFE_REGISTER_WRITE_DELAY);
2085 
2086 	/* Enable PLL */
2087 	if (is_a2(pdev))
2088 		writel(0x80040908, &afe->afe_pll_control0);
2089 	else if (is_b0(pdev) || is_c0(pdev))
2090 		writel(0x80040A08, &afe->afe_pll_control0);
2091 	else if (is_c1(pdev)) {
2092 		writel(0x80000B08, &afe->afe_pll_control0);
2093 		udelay(AFE_REGISTER_WRITE_DELAY);
2094 		writel(0x00000B08, &afe->afe_pll_control0);
2095 		udelay(AFE_REGISTER_WRITE_DELAY);
2096 		writel(0x80000B08, &afe->afe_pll_control0);
2097 	}
2098 
2099 	udelay(AFE_REGISTER_WRITE_DELAY);
2100 
2101 	/* Wait for the PLL to lock */
2102 	do {
2103 		afe_status = readl(&afe->afe_common_block_status);
2104 		udelay(AFE_REGISTER_WRITE_DELAY);
2105 	} while ((afe_status & 0x00001000) == 0);
2106 
2107 	if (is_a2(pdev)) {
2108 		/* Shorten SAS SNW lock time (RxLock timer value from 76
2109 		 * us to 50 us)
2110 		 */
2111 		writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
2112 		udelay(AFE_REGISTER_WRITE_DELAY);
2113 	}
2114 
2115 	for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2116 		struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id];
2117 		const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2118 		int cable_length_long =
2119 			is_long_cable(phy_id, cable_selection_mask);
2120 		int cable_length_medium =
2121 			is_medium_cable(phy_id, cable_selection_mask);
2122 
2123 		if (is_a2(pdev)) {
2124 			/* All defaults, except the Receive Word
2125 			 * Alignament/Comma Detect Enable....(0xe800)
2126 			 */
2127 			writel(0x00004512, &xcvr->afe_xcvr_control0);
2128 			udelay(AFE_REGISTER_WRITE_DELAY);
2129 
2130 			writel(0x0050100F, &xcvr->afe_xcvr_control1);
2131 			udelay(AFE_REGISTER_WRITE_DELAY);
2132 		} else if (is_b0(pdev)) {
2133 			/* Configure transmitter SSC parameters */
2134 			writel(0x00030000, &xcvr->afe_tx_ssc_control);
2135 			udelay(AFE_REGISTER_WRITE_DELAY);
2136 		} else if (is_c0(pdev)) {
2137 			/* Configure transmitter SSC parameters */
2138 			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2139 			udelay(AFE_REGISTER_WRITE_DELAY);
2140 
2141 			/* All defaults, except the Receive Word
2142 			 * Alignament/Comma Detect Enable....(0xe800)
2143 			 */
2144 			writel(0x00014500, &xcvr->afe_xcvr_control0);
2145 			udelay(AFE_REGISTER_WRITE_DELAY);
2146 		} else if (is_c1(pdev)) {
2147 			/* Configure transmitter SSC parameters */
2148 			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2149 			udelay(AFE_REGISTER_WRITE_DELAY);
2150 
2151 			/* All defaults, except the Receive Word
2152 			 * Alignament/Comma Detect Enable....(0xe800)
2153 			 */
2154 			writel(0x0001C500, &xcvr->afe_xcvr_control0);
2155 			udelay(AFE_REGISTER_WRITE_DELAY);
2156 		}
2157 
2158 		/* Power up TX and RX out from power down (PWRDNTX and
2159 		 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2160 		 */
2161 		if (is_a2(pdev))
2162 			writel(0x000003F0, &xcvr->afe_channel_control);
2163 		else if (is_b0(pdev)) {
2164 			writel(0x000003D7, &xcvr->afe_channel_control);
2165 			udelay(AFE_REGISTER_WRITE_DELAY);
2166 
2167 			writel(0x000003D4, &xcvr->afe_channel_control);
2168 		} else if (is_c0(pdev)) {
2169 			writel(0x000001E7, &xcvr->afe_channel_control);
2170 			udelay(AFE_REGISTER_WRITE_DELAY);
2171 
2172 			writel(0x000001E4, &xcvr->afe_channel_control);
2173 		} else if (is_c1(pdev)) {
2174 			writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2175 			       &xcvr->afe_channel_control);
2176 			udelay(AFE_REGISTER_WRITE_DELAY);
2177 
2178 			writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2179 			       &xcvr->afe_channel_control);
2180 		}
2181 		udelay(AFE_REGISTER_WRITE_DELAY);
2182 
2183 		if (is_a2(pdev)) {
2184 			/* Enable TX equalization (0xe824) */
2185 			writel(0x00040000, &xcvr->afe_tx_control);
2186 			udelay(AFE_REGISTER_WRITE_DELAY);
2187 		}
2188 
2189 		if (is_a2(pdev) || is_b0(pdev))
2190 			/* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2191 			 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2192 			 * Enabled) ....(0xe800)
2193 			 */
2194 			writel(0x00004100, &xcvr->afe_xcvr_control0);
2195 		else if (is_c0(pdev))
2196 			writel(0x00014100, &xcvr->afe_xcvr_control0);
2197 		else if (is_c1(pdev))
2198 			writel(0x0001C100, &xcvr->afe_xcvr_control0);
2199 		udelay(AFE_REGISTER_WRITE_DELAY);
2200 
2201 		/* Leave DFE/FFE on */
2202 		if (is_a2(pdev))
2203 			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2204 		else if (is_b0(pdev)) {
2205 			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2206 			udelay(AFE_REGISTER_WRITE_DELAY);
2207 			/* Enable TX equalization (0xe824) */
2208 			writel(0x00040000, &xcvr->afe_tx_control);
2209 		} else if (is_c0(pdev)) {
2210 			writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2211 			udelay(AFE_REGISTER_WRITE_DELAY);
2212 
2213 			writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2214 			udelay(AFE_REGISTER_WRITE_DELAY);
2215 
2216 			/* Enable TX equalization (0xe824) */
2217 			writel(0x00040000, &xcvr->afe_tx_control);
2218 		} else if (is_c1(pdev)) {
2219 			writel(cable_length_long ? 0x01500C0C :
2220 			       cable_length_medium ? 0x01400C0D : 0x02400C0D,
2221 			       &xcvr->afe_xcvr_control1);
2222 			udelay(AFE_REGISTER_WRITE_DELAY);
2223 
2224 			writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2225 			udelay(AFE_REGISTER_WRITE_DELAY);
2226 
2227 			writel(cable_length_long ? 0x33091C1F :
2228 			       cable_length_medium ? 0x3315181F : 0x2B17161F,
2229 			       &xcvr->afe_rx_ssc_control0);
2230 			udelay(AFE_REGISTER_WRITE_DELAY);
2231 
2232 			/* Enable TX equalization (0xe824) */
2233 			writel(0x00040000, &xcvr->afe_tx_control);
2234 		}
2235 
2236 		udelay(AFE_REGISTER_WRITE_DELAY);
2237 
2238 		writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2239 		udelay(AFE_REGISTER_WRITE_DELAY);
2240 
2241 		writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2242 		udelay(AFE_REGISTER_WRITE_DELAY);
2243 
2244 		writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2245 		udelay(AFE_REGISTER_WRITE_DELAY);
2246 
2247 		writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2248 		udelay(AFE_REGISTER_WRITE_DELAY);
2249 	}
2250 
2251 	/* Transfer control to the PEs */
2252 	writel(0x00010f00, &afe->afe_dfx_master_control0);
2253 	udelay(AFE_REGISTER_WRITE_DELAY);
2254 }
2255 
2256 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2257 {
2258 	sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2259 
2260 	memset(ihost->power_control.requesters, 0,
2261 	       sizeof(ihost->power_control.requesters));
2262 
2263 	ihost->power_control.phys_waiting = 0;
2264 	ihost->power_control.phys_granted_power = 0;
2265 }
2266 
2267 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2268 {
2269 	struct sci_base_state_machine *sm = &ihost->sm;
2270 	enum sci_status result = SCI_FAILURE;
2271 	unsigned long i, state, val;
2272 
2273 	if (ihost->sm.current_state_id != SCIC_RESET) {
2274 		dev_warn(&ihost->pdev->dev,
2275 			 "SCIC Controller initialize operation requested "
2276 			 "in invalid state\n");
2277 		return SCI_FAILURE_INVALID_STATE;
2278 	}
2279 
2280 	sci_change_state(sm, SCIC_INITIALIZING);
2281 
2282 	sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2283 
2284 	ihost->next_phy_to_start = 0;
2285 	ihost->phy_startup_timer_pending = false;
2286 
2287 	sci_controller_initialize_power_control(ihost);
2288 
2289 	/*
2290 	 * There is nothing to do here for B0 since we do not have to
2291 	 * program the AFE registers.
2292 	 * / @todo The AFE settings are supposed to be correct for the B0 but
2293 	 * /       presently they seem to be wrong. */
2294 	sci_controller_afe_initialization(ihost);
2295 
2296 
2297 	/* Take the hardware out of reset */
2298 	writel(0, &ihost->smu_registers->soft_reset_control);
2299 
2300 	/*
2301 	 * / @todo Provide meaningfull error code for hardware failure
2302 	 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2303 	for (i = 100; i >= 1; i--) {
2304 		u32 status;
2305 
2306 		/* Loop until the hardware reports success */
2307 		udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2308 		status = readl(&ihost->smu_registers->control_status);
2309 
2310 		if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2311 			break;
2312 	}
2313 	if (i == 0)
2314 		goto out;
2315 
2316 	/*
2317 	 * Determine what are the actaul device capacities that the
2318 	 * hardware will support */
2319 	val = readl(&ihost->smu_registers->device_context_capacity);
2320 
2321 	/* Record the smaller of the two capacity values */
2322 	ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2323 	ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2324 	ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2325 
2326 	/*
2327 	 * Make all PEs that are unassigned match up with the
2328 	 * logical ports
2329 	 */
2330 	for (i = 0; i < ihost->logical_port_entries; i++) {
2331 		struct scu_port_task_scheduler_group_registers __iomem
2332 			*ptsg = &ihost->scu_registers->peg0.ptsg;
2333 
2334 		writel(i, &ptsg->protocol_engine[i]);
2335 	}
2336 
2337 	/* Initialize hardware PCI Relaxed ordering in DMA engines */
2338 	val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2339 	val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2340 	writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2341 
2342 	val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2343 	val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2344 	writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2345 
2346 	/*
2347 	 * Initialize the PHYs before the PORTs because the PHY registers
2348 	 * are accessed during the port initialization.
2349 	 */
2350 	for (i = 0; i < SCI_MAX_PHYS; i++) {
2351 		result = sci_phy_initialize(&ihost->phys[i],
2352 					    &ihost->scu_registers->peg0.pe[i].tl,
2353 					    &ihost->scu_registers->peg0.pe[i].ll);
2354 		if (result != SCI_SUCCESS)
2355 			goto out;
2356 	}
2357 
2358 	for (i = 0; i < ihost->logical_port_entries; i++) {
2359 		struct isci_port *iport = &ihost->ports[i];
2360 
2361 		iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2362 		iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2363 		iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2364 	}
2365 
2366 	result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2367 
2368  out:
2369 	/* Advance the controller state machine */
2370 	if (result == SCI_SUCCESS)
2371 		state = SCIC_INITIALIZED;
2372 	else
2373 		state = SCIC_FAILED;
2374 	sci_change_state(sm, state);
2375 
2376 	return result;
2377 }
2378 
2379 static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
2380 					       struct sci_user_parameters *sci_parms)
2381 {
2382 	u32 state = ihost->sm.current_state_id;
2383 
2384 	if (state == SCIC_RESET ||
2385 	    state == SCIC_INITIALIZING ||
2386 	    state == SCIC_INITIALIZED) {
2387 		u16 index;
2388 
2389 		/*
2390 		 * Validate the user parameters.  If they are not legal, then
2391 		 * return a failure.
2392 		 */
2393 		for (index = 0; index < SCI_MAX_PHYS; index++) {
2394 			struct sci_phy_user_params *user_phy;
2395 
2396 			user_phy = &sci_parms->phys[index];
2397 
2398 			if (!((user_phy->max_speed_generation <=
2399 						SCIC_SDS_PARM_MAX_SPEED) &&
2400 			      (user_phy->max_speed_generation >
2401 						SCIC_SDS_PARM_NO_SPEED)))
2402 				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2403 
2404 			if (user_phy->in_connection_align_insertion_frequency <
2405 					3)
2406 				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2407 
2408 			if ((user_phy->in_connection_align_insertion_frequency <
2409 						3) ||
2410 			    (user_phy->align_insertion_frequency == 0) ||
2411 			    (user_phy->
2412 				notify_enable_spin_up_insertion_frequency ==
2413 						0))
2414 				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2415 		}
2416 
2417 		if ((sci_parms->stp_inactivity_timeout == 0) ||
2418 		    (sci_parms->ssp_inactivity_timeout == 0) ||
2419 		    (sci_parms->stp_max_occupancy_timeout == 0) ||
2420 		    (sci_parms->ssp_max_occupancy_timeout == 0) ||
2421 		    (sci_parms->no_outbound_task_timeout == 0))
2422 			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2423 
2424 		memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
2425 
2426 		return SCI_SUCCESS;
2427 	}
2428 
2429 	return SCI_FAILURE_INVALID_STATE;
2430 }
2431 
2432 static int sci_controller_mem_init(struct isci_host *ihost)
2433 {
2434 	struct device *dev = &ihost->pdev->dev;
2435 	dma_addr_t dma;
2436 	size_t size;
2437 	int err;
2438 
2439 	size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2440 	ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2441 	if (!ihost->completion_queue)
2442 		return -ENOMEM;
2443 
2444 	writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
2445 	writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
2446 
2447 	size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2448 	ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
2449 							       GFP_KERNEL);
2450 	if (!ihost->remote_node_context_table)
2451 		return -ENOMEM;
2452 
2453 	writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
2454 	writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
2455 
2456 	size = ihost->task_context_entries * sizeof(struct scu_task_context),
2457 	ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2458 	if (!ihost->task_context_table)
2459 		return -ENOMEM;
2460 
2461 	ihost->task_context_dma = dma;
2462 	writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
2463 	writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
2464 
2465 	err = sci_unsolicited_frame_control_construct(ihost);
2466 	if (err)
2467 		return err;
2468 
2469 	/*
2470 	 * Inform the silicon as to the location of the UF headers and
2471 	 * address table.
2472 	 */
2473 	writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2474 		&ihost->scu_registers->sdma.uf_header_base_address_lower);
2475 	writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2476 		&ihost->scu_registers->sdma.uf_header_base_address_upper);
2477 
2478 	writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2479 		&ihost->scu_registers->sdma.uf_address_table_lower);
2480 	writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2481 		&ihost->scu_registers->sdma.uf_address_table_upper);
2482 
2483 	return 0;
2484 }
2485 
2486 int isci_host_init(struct isci_host *ihost)
2487 {
2488 	int err = 0, i;
2489 	enum sci_status status;
2490 	struct sci_user_parameters sci_user_params;
2491 	struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
2492 
2493 	spin_lock_init(&ihost->state_lock);
2494 	spin_lock_init(&ihost->scic_lock);
2495 	init_waitqueue_head(&ihost->eventq);
2496 
2497 	isci_host_change_state(ihost, isci_starting);
2498 
2499 	status = sci_controller_construct(ihost, scu_base(ihost),
2500 					  smu_base(ihost));
2501 
2502 	if (status != SCI_SUCCESS) {
2503 		dev_err(&ihost->pdev->dev,
2504 			"%s: sci_controller_construct failed - status = %x\n",
2505 			__func__,
2506 			status);
2507 		return -ENODEV;
2508 	}
2509 
2510 	ihost->sas_ha.dev = &ihost->pdev->dev;
2511 	ihost->sas_ha.lldd_ha = ihost;
2512 
2513 	/*
2514 	 * grab initial values stored in the controller object for OEM and USER
2515 	 * parameters
2516 	 */
2517 	isci_user_parameters_get(&sci_user_params);
2518 	status = sci_user_parameters_set(ihost, &sci_user_params);
2519 	if (status != SCI_SUCCESS) {
2520 		dev_warn(&ihost->pdev->dev,
2521 			 "%s: sci_user_parameters_set failed\n",
2522 			 __func__);
2523 		return -ENODEV;
2524 	}
2525 
2526 	/* grab any OEM parameters specified in orom */
2527 	if (pci_info->orom) {
2528 		status = isci_parse_oem_parameters(&ihost->oem_parameters,
2529 						   pci_info->orom,
2530 						   ihost->id);
2531 		if (status != SCI_SUCCESS) {
2532 			dev_warn(&ihost->pdev->dev,
2533 				 "parsing firmware oem parameters failed\n");
2534 			return -EINVAL;
2535 		}
2536 	}
2537 
2538 	status = sci_oem_parameters_set(ihost);
2539 	if (status != SCI_SUCCESS) {
2540 		dev_warn(&ihost->pdev->dev,
2541 				"%s: sci_oem_parameters_set failed\n",
2542 				__func__);
2543 		return -ENODEV;
2544 	}
2545 
2546 	tasklet_init(&ihost->completion_tasklet,
2547 		     isci_host_completion_routine, (unsigned long)ihost);
2548 
2549 	INIT_LIST_HEAD(&ihost->requests_to_complete);
2550 	INIT_LIST_HEAD(&ihost->requests_to_errorback);
2551 
2552 	spin_lock_irq(&ihost->scic_lock);
2553 	status = sci_controller_initialize(ihost);
2554 	spin_unlock_irq(&ihost->scic_lock);
2555 	if (status != SCI_SUCCESS) {
2556 		dev_warn(&ihost->pdev->dev,
2557 			 "%s: sci_controller_initialize failed -"
2558 			 " status = 0x%x\n",
2559 			 __func__, status);
2560 		return -ENODEV;
2561 	}
2562 
2563 	err = sci_controller_mem_init(ihost);
2564 	if (err)
2565 		return err;
2566 
2567 	for (i = 0; i < SCI_MAX_PORTS; i++)
2568 		isci_port_init(&ihost->ports[i], ihost, i);
2569 
2570 	for (i = 0; i < SCI_MAX_PHYS; i++)
2571 		isci_phy_init(&ihost->phys[i], ihost, i);
2572 
2573 	/* enable sgpio */
2574 	writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2575 	for (i = 0; i < isci_gpio_count(ihost); i++)
2576 		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2577 	writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2578 
2579 	for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2580 		struct isci_remote_device *idev = &ihost->devices[i];
2581 
2582 		INIT_LIST_HEAD(&idev->reqs_in_process);
2583 		INIT_LIST_HEAD(&idev->node);
2584 	}
2585 
2586 	for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2587 		struct isci_request *ireq;
2588 		dma_addr_t dma;
2589 
2590 		ireq = dmam_alloc_coherent(&ihost->pdev->dev,
2591 					   sizeof(struct isci_request), &dma,
2592 					   GFP_KERNEL);
2593 		if (!ireq)
2594 			return -ENOMEM;
2595 
2596 		ireq->tc = &ihost->task_context_table[i];
2597 		ireq->owning_controller = ihost;
2598 		spin_lock_init(&ireq->state_lock);
2599 		ireq->request_daddr = dma;
2600 		ireq->isci_host = ihost;
2601 		ihost->reqs[i] = ireq;
2602 	}
2603 
2604 	return 0;
2605 }
2606 
2607 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2608 			    struct isci_phy *iphy)
2609 {
2610 	switch (ihost->sm.current_state_id) {
2611 	case SCIC_STARTING:
2612 		sci_del_timer(&ihost->phy_timer);
2613 		ihost->phy_startup_timer_pending = false;
2614 		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2615 						  iport, iphy);
2616 		sci_controller_start_next_phy(ihost);
2617 		break;
2618 	case SCIC_READY:
2619 		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2620 						  iport, iphy);
2621 		break;
2622 	default:
2623 		dev_dbg(&ihost->pdev->dev,
2624 			"%s: SCIC Controller linkup event from phy %d in "
2625 			"unexpected state %d\n", __func__, iphy->phy_index,
2626 			ihost->sm.current_state_id);
2627 	}
2628 }
2629 
2630 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2631 			      struct isci_phy *iphy)
2632 {
2633 	switch (ihost->sm.current_state_id) {
2634 	case SCIC_STARTING:
2635 	case SCIC_READY:
2636 		ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2637 						   iport, iphy);
2638 		break;
2639 	default:
2640 		dev_dbg(&ihost->pdev->dev,
2641 			"%s: SCIC Controller linkdown event from phy %d in "
2642 			"unexpected state %d\n",
2643 			__func__,
2644 			iphy->phy_index,
2645 			ihost->sm.current_state_id);
2646 	}
2647 }
2648 
2649 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2650 {
2651 	u32 index;
2652 
2653 	for (index = 0; index < ihost->remote_node_entries; index++) {
2654 		if ((ihost->device_table[index] != NULL) &&
2655 		   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2656 			return true;
2657 	}
2658 
2659 	return false;
2660 }
2661 
2662 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2663 					  struct isci_remote_device *idev)
2664 {
2665 	if (ihost->sm.current_state_id != SCIC_STOPPING) {
2666 		dev_dbg(&ihost->pdev->dev,
2667 			"SCIC Controller 0x%p remote device stopped event "
2668 			"from device 0x%p in unexpected state %d\n",
2669 			ihost, idev,
2670 			ihost->sm.current_state_id);
2671 		return;
2672 	}
2673 
2674 	if (!sci_controller_has_remote_devices_stopping(ihost))
2675 		sci_change_state(&ihost->sm, SCIC_STOPPED);
2676 }
2677 
2678 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2679 {
2680 	dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2681 		__func__, ihost->id, request);
2682 
2683 	writel(request, &ihost->smu_registers->post_context_port);
2684 }
2685 
2686 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2687 {
2688 	u16 task_index;
2689 	u16 task_sequence;
2690 
2691 	task_index = ISCI_TAG_TCI(io_tag);
2692 
2693 	if (task_index < ihost->task_context_entries) {
2694 		struct isci_request *ireq = ihost->reqs[task_index];
2695 
2696 		if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2697 			task_sequence = ISCI_TAG_SEQ(io_tag);
2698 
2699 			if (task_sequence == ihost->io_request_sequence[task_index])
2700 				return ireq;
2701 		}
2702 	}
2703 
2704 	return NULL;
2705 }
2706 
2707 /**
2708  * This method allocates remote node index and the reserves the remote node
2709  *    context space for use. This method can fail if there are no more remote
2710  *    node index available.
2711  * @scic: This is the controller object which contains the set of
2712  *    free remote node ids
2713  * @sci_dev: This is the device object which is requesting the a remote node
2714  *    id
2715  * @node_id: This is the remote node id that is assinged to the device if one
2716  *    is available
2717  *
2718  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2719  * node index available.
2720  */
2721 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2722 							    struct isci_remote_device *idev,
2723 							    u16 *node_id)
2724 {
2725 	u16 node_index;
2726 	u32 remote_node_count = sci_remote_device_node_count(idev);
2727 
2728 	node_index = sci_remote_node_table_allocate_remote_node(
2729 		&ihost->available_remote_nodes, remote_node_count
2730 		);
2731 
2732 	if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2733 		ihost->device_table[node_index] = idev;
2734 
2735 		*node_id = node_index;
2736 
2737 		return SCI_SUCCESS;
2738 	}
2739 
2740 	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2741 }
2742 
2743 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2744 					     struct isci_remote_device *idev,
2745 					     u16 node_id)
2746 {
2747 	u32 remote_node_count = sci_remote_device_node_count(idev);
2748 
2749 	if (ihost->device_table[node_id] == idev) {
2750 		ihost->device_table[node_id] = NULL;
2751 
2752 		sci_remote_node_table_release_remote_node_index(
2753 			&ihost->available_remote_nodes, remote_node_count, node_id
2754 			);
2755 	}
2756 }
2757 
2758 void sci_controller_copy_sata_response(void *response_buffer,
2759 				       void *frame_header,
2760 				       void *frame_buffer)
2761 {
2762 	/* XXX type safety? */
2763 	memcpy(response_buffer, frame_header, sizeof(u32));
2764 
2765 	memcpy(response_buffer + sizeof(u32),
2766 	       frame_buffer,
2767 	       sizeof(struct dev_to_host_fis) - sizeof(u32));
2768 }
2769 
2770 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2771 {
2772 	if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2773 		writel(ihost->uf_control.get,
2774 			&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2775 }
2776 
2777 void isci_tci_free(struct isci_host *ihost, u16 tci)
2778 {
2779 	u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2780 
2781 	ihost->tci_pool[tail] = tci;
2782 	ihost->tci_tail = tail + 1;
2783 }
2784 
2785 static u16 isci_tci_alloc(struct isci_host *ihost)
2786 {
2787 	u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2788 	u16 tci = ihost->tci_pool[head];
2789 
2790 	ihost->tci_head = head + 1;
2791 	return tci;
2792 }
2793 
2794 static u16 isci_tci_space(struct isci_host *ihost)
2795 {
2796 	return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2797 }
2798 
2799 u16 isci_alloc_tag(struct isci_host *ihost)
2800 {
2801 	if (isci_tci_space(ihost)) {
2802 		u16 tci = isci_tci_alloc(ihost);
2803 		u8 seq = ihost->io_request_sequence[tci];
2804 
2805 		return ISCI_TAG(seq, tci);
2806 	}
2807 
2808 	return SCI_CONTROLLER_INVALID_IO_TAG;
2809 }
2810 
2811 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2812 {
2813 	u16 tci = ISCI_TAG_TCI(io_tag);
2814 	u16 seq = ISCI_TAG_SEQ(io_tag);
2815 
2816 	/* prevent tail from passing head */
2817 	if (isci_tci_active(ihost) == 0)
2818 		return SCI_FAILURE_INVALID_IO_TAG;
2819 
2820 	if (seq == ihost->io_request_sequence[tci]) {
2821 		ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2822 
2823 		isci_tci_free(ihost, tci);
2824 
2825 		return SCI_SUCCESS;
2826 	}
2827 	return SCI_FAILURE_INVALID_IO_TAG;
2828 }
2829 
2830 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2831 					struct isci_remote_device *idev,
2832 					struct isci_request *ireq)
2833 {
2834 	enum sci_status status;
2835 
2836 	if (ihost->sm.current_state_id != SCIC_READY) {
2837 		dev_warn(&ihost->pdev->dev, "invalid state to start I/O");
2838 		return SCI_FAILURE_INVALID_STATE;
2839 	}
2840 
2841 	status = sci_remote_device_start_io(ihost, idev, ireq);
2842 	if (status != SCI_SUCCESS)
2843 		return status;
2844 
2845 	set_bit(IREQ_ACTIVE, &ireq->flags);
2846 	sci_controller_post_request(ihost, ireq->post_context);
2847 	return SCI_SUCCESS;
2848 }
2849 
2850 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2851 						 struct isci_remote_device *idev,
2852 						 struct isci_request *ireq)
2853 {
2854 	/* terminate an ongoing (i.e. started) core IO request.  This does not
2855 	 * abort the IO request at the target, but rather removes the IO
2856 	 * request from the host controller.
2857 	 */
2858 	enum sci_status status;
2859 
2860 	if (ihost->sm.current_state_id != SCIC_READY) {
2861 		dev_warn(&ihost->pdev->dev,
2862 			 "invalid state to terminate request\n");
2863 		return SCI_FAILURE_INVALID_STATE;
2864 	}
2865 
2866 	status = sci_io_request_terminate(ireq);
2867 	if (status != SCI_SUCCESS)
2868 		return status;
2869 
2870 	/*
2871 	 * Utilize the original post context command and or in the POST_TC_ABORT
2872 	 * request sub-type.
2873 	 */
2874 	sci_controller_post_request(ihost,
2875 				    ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2876 	return SCI_SUCCESS;
2877 }
2878 
2879 /**
2880  * sci_controller_complete_io() - This method will perform core specific
2881  *    completion operations for an IO request.  After this method is invoked,
2882  *    the user should consider the IO request as invalid until it is properly
2883  *    reused (i.e. re-constructed).
2884  * @ihost: The handle to the controller object for which to complete the
2885  *    IO request.
2886  * @idev: The handle to the remote device object for which to complete
2887  *    the IO request.
2888  * @ireq: the handle to the io request object to complete.
2889  */
2890 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2891 					   struct isci_remote_device *idev,
2892 					   struct isci_request *ireq)
2893 {
2894 	enum sci_status status;
2895 	u16 index;
2896 
2897 	switch (ihost->sm.current_state_id) {
2898 	case SCIC_STOPPING:
2899 		/* XXX: Implement this function */
2900 		return SCI_FAILURE;
2901 	case SCIC_READY:
2902 		status = sci_remote_device_complete_io(ihost, idev, ireq);
2903 		if (status != SCI_SUCCESS)
2904 			return status;
2905 
2906 		index = ISCI_TAG_TCI(ireq->io_tag);
2907 		clear_bit(IREQ_ACTIVE, &ireq->flags);
2908 		return SCI_SUCCESS;
2909 	default:
2910 		dev_warn(&ihost->pdev->dev, "invalid state to complete I/O");
2911 		return SCI_FAILURE_INVALID_STATE;
2912 	}
2913 
2914 }
2915 
2916 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2917 {
2918 	struct isci_host *ihost = ireq->owning_controller;
2919 
2920 	if (ihost->sm.current_state_id != SCIC_READY) {
2921 		dev_warn(&ihost->pdev->dev, "invalid state to continue I/O");
2922 		return SCI_FAILURE_INVALID_STATE;
2923 	}
2924 
2925 	set_bit(IREQ_ACTIVE, &ireq->flags);
2926 	sci_controller_post_request(ihost, ireq->post_context);
2927 	return SCI_SUCCESS;
2928 }
2929 
2930 /**
2931  * sci_controller_start_task() - This method is called by the SCIC user to
2932  *    send/start a framework task management request.
2933  * @controller: the handle to the controller object for which to start the task
2934  *    management request.
2935  * @remote_device: the handle to the remote device object for which to start
2936  *    the task management request.
2937  * @task_request: the handle to the task request object to start.
2938  */
2939 enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2940 					       struct isci_remote_device *idev,
2941 					       struct isci_request *ireq)
2942 {
2943 	enum sci_status status;
2944 
2945 	if (ihost->sm.current_state_id != SCIC_READY) {
2946 		dev_warn(&ihost->pdev->dev,
2947 			 "%s: SCIC Controller starting task from invalid "
2948 			 "state\n",
2949 			 __func__);
2950 		return SCI_TASK_FAILURE_INVALID_STATE;
2951 	}
2952 
2953 	status = sci_remote_device_start_task(ihost, idev, ireq);
2954 	switch (status) {
2955 	case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2956 		set_bit(IREQ_ACTIVE, &ireq->flags);
2957 
2958 		/*
2959 		 * We will let framework know this task request started successfully,
2960 		 * although core is still woring on starting the request (to post tc when
2961 		 * RNC is resumed.)
2962 		 */
2963 		return SCI_SUCCESS;
2964 	case SCI_SUCCESS:
2965 		set_bit(IREQ_ACTIVE, &ireq->flags);
2966 		sci_controller_post_request(ihost, ireq->post_context);
2967 		break;
2968 	default:
2969 		break;
2970 	}
2971 
2972 	return status;
2973 }
2974 
2975 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2976 {
2977 	int d;
2978 
2979 	/* no support for TX_GP_CFG */
2980 	if (reg_index == 0)
2981 		return -EINVAL;
2982 
2983 	for (d = 0; d < isci_gpio_count(ihost); d++) {
2984 		u32 val = 0x444; /* all ODx.n clear */
2985 		int i;
2986 
2987 		for (i = 0; i < 3; i++) {
2988 			int bit = (i << 2) + 2;
2989 
2990 			bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2991 						       write_data, reg_index,
2992 						       reg_count);
2993 			if (bit < 0)
2994 				break;
2995 
2996 			/* if od is set, clear the 'invert' bit */
2997 			val &= ~(bit << ((i << 2) + 2));
2998 		}
2999 
3000 		if (i < 3)
3001 			break;
3002 		writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
3003 	}
3004 
3005 	/* unless reg_index is > 1, we should always be able to write at
3006 	 * least one register
3007 	 */
3008 	return d > 0;
3009 }
3010 
3011 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
3012 		    u8 reg_count, u8 *write_data)
3013 {
3014 	struct isci_host *ihost = sas_ha->lldd_ha;
3015 	int written;
3016 
3017 	switch (reg_type) {
3018 	case SAS_GPIO_REG_TX_GP:
3019 		written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
3020 		break;
3021 	default:
3022 		written = -EINVAL;
3023 	}
3024 
3025 	return written;
3026 }
3027