1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 21 * The full GNU General Public License is included in this distribution 22 * in the file called LICENSE.GPL. 23 * 24 * BSD LICENSE 25 * 26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 27 * All rights reserved. 28 * 29 * Redistribution and use in source and binary forms, with or without 30 * modification, are permitted provided that the following conditions 31 * are met: 32 * 33 * * Redistributions of source code must retain the above copyright 34 * notice, this list of conditions and the following disclaimer. 35 * * Redistributions in binary form must reproduce the above copyright 36 * notice, this list of conditions and the following disclaimer in 37 * the documentation and/or other materials provided with the 38 * distribution. 39 * * Neither the name of Intel Corporation nor the names of its 40 * contributors may be used to endorse or promote products derived 41 * from this software without specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 54 */ 55 #include <linux/circ_buf.h> 56 #include <linux/device.h> 57 #include <scsi/sas.h> 58 #include "host.h" 59 #include "isci.h" 60 #include "port.h" 61 #include "host.h" 62 #include "probe_roms.h" 63 #include "remote_device.h" 64 #include "request.h" 65 #include "scu_completion_codes.h" 66 #include "scu_event_codes.h" 67 #include "registers.h" 68 #include "scu_remote_node_context.h" 69 #include "scu_task_context.h" 70 71 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200 72 73 #define smu_max_ports(dcc_value) \ 74 (\ 75 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \ 76 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \ 77 ) 78 79 #define smu_max_task_contexts(dcc_value) \ 80 (\ 81 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \ 82 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \ 83 ) 84 85 #define smu_max_rncs(dcc_value) \ 86 (\ 87 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \ 88 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \ 89 ) 90 91 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100 92 93 /** 94 * 95 * 96 * The number of milliseconds to wait while a given phy is consuming power 97 * before allowing another set of phys to consume power. Ultimately, this will 98 * be specified by OEM parameter. 99 */ 100 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500 101 102 /** 103 * NORMALIZE_PUT_POINTER() - 104 * 105 * This macro will normalize the completion queue put pointer so its value can 106 * be used as an array inde 107 */ 108 #define NORMALIZE_PUT_POINTER(x) \ 109 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK) 110 111 112 /** 113 * NORMALIZE_EVENT_POINTER() - 114 * 115 * This macro will normalize the completion queue event entry so its value can 116 * be used as an index. 117 */ 118 #define NORMALIZE_EVENT_POINTER(x) \ 119 (\ 120 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \ 121 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \ 122 ) 123 124 /** 125 * NORMALIZE_GET_POINTER() - 126 * 127 * This macro will normalize the completion queue get pointer so its value can 128 * be used as an index into an array 129 */ 130 #define NORMALIZE_GET_POINTER(x) \ 131 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK) 132 133 /** 134 * NORMALIZE_GET_POINTER_CYCLE_BIT() - 135 * 136 * This macro will normalize the completion queue cycle pointer so it matches 137 * the completion queue cycle bit 138 */ 139 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \ 140 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT)) 141 142 /** 143 * COMPLETION_QUEUE_CYCLE_BIT() - 144 * 145 * This macro will return the cycle bit of the completion queue entry 146 */ 147 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000) 148 149 /* Init the state machine and call the state entry function (if any) */ 150 void sci_init_sm(struct sci_base_state_machine *sm, 151 const struct sci_base_state *state_table, u32 initial_state) 152 { 153 sci_state_transition_t handler; 154 155 sm->initial_state_id = initial_state; 156 sm->previous_state_id = initial_state; 157 sm->current_state_id = initial_state; 158 sm->state_table = state_table; 159 160 handler = sm->state_table[initial_state].enter_state; 161 if (handler) 162 handler(sm); 163 } 164 165 /* Call the state exit fn, update the current state, call the state entry fn */ 166 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state) 167 { 168 sci_state_transition_t handler; 169 170 handler = sm->state_table[sm->current_state_id].exit_state; 171 if (handler) 172 handler(sm); 173 174 sm->previous_state_id = sm->current_state_id; 175 sm->current_state_id = next_state; 176 177 handler = sm->state_table[sm->current_state_id].enter_state; 178 if (handler) 179 handler(sm); 180 } 181 182 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost) 183 { 184 u32 get_value = ihost->completion_queue_get; 185 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK; 186 187 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) == 188 COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])) 189 return true; 190 191 return false; 192 } 193 194 static bool sci_controller_isr(struct isci_host *ihost) 195 { 196 if (sci_controller_completion_queue_has_entries(ihost)) { 197 return true; 198 } else { 199 /* 200 * we have a spurious interrupt it could be that we have already 201 * emptied the completion queue from a previous interrupt */ 202 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 203 204 /* 205 * There is a race in the hardware that could cause us not to be notified 206 * of an interrupt completion if we do not take this step. We will mask 207 * then unmask the interrupts so if there is another interrupt pending 208 * the clearing of the interrupt source we get the next interrupt message. */ 209 writel(0xFF000000, &ihost->smu_registers->interrupt_mask); 210 writel(0, &ihost->smu_registers->interrupt_mask); 211 } 212 213 return false; 214 } 215 216 irqreturn_t isci_msix_isr(int vec, void *data) 217 { 218 struct isci_host *ihost = data; 219 220 if (sci_controller_isr(ihost)) 221 tasklet_schedule(&ihost->completion_tasklet); 222 223 return IRQ_HANDLED; 224 } 225 226 static bool sci_controller_error_isr(struct isci_host *ihost) 227 { 228 u32 interrupt_status; 229 230 interrupt_status = 231 readl(&ihost->smu_registers->interrupt_status); 232 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); 233 234 if (interrupt_status != 0) { 235 /* 236 * There is an error interrupt pending so let it through and handle 237 * in the callback */ 238 return true; 239 } 240 241 /* 242 * There is a race in the hardware that could cause us not to be notified 243 * of an interrupt completion if we do not take this step. We will mask 244 * then unmask the error interrupts so if there was another interrupt 245 * pending we will be notified. 246 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */ 247 writel(0xff, &ihost->smu_registers->interrupt_mask); 248 writel(0, &ihost->smu_registers->interrupt_mask); 249 250 return false; 251 } 252 253 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent) 254 { 255 u32 index = SCU_GET_COMPLETION_INDEX(ent); 256 struct isci_request *ireq = ihost->reqs[index]; 257 258 /* Make sure that we really want to process this IO request */ 259 if (test_bit(IREQ_ACTIVE, &ireq->flags) && 260 ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG && 261 ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index]) 262 /* Yep this is a valid io request pass it along to the 263 * io request handler 264 */ 265 sci_io_request_tc_completion(ireq, ent); 266 } 267 268 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent) 269 { 270 u32 index; 271 struct isci_request *ireq; 272 struct isci_remote_device *idev; 273 274 index = SCU_GET_COMPLETION_INDEX(ent); 275 276 switch (scu_get_command_request_type(ent)) { 277 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC: 278 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC: 279 ireq = ihost->reqs[index]; 280 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n", 281 __func__, ent, ireq); 282 /* @todo For a post TC operation we need to fail the IO 283 * request 284 */ 285 break; 286 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC: 287 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC: 288 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC: 289 idev = ihost->device_table[index]; 290 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n", 291 __func__, ent, idev); 292 /* @todo For a port RNC operation we need to fail the 293 * device 294 */ 295 break; 296 default: 297 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n", 298 __func__, ent); 299 break; 300 } 301 } 302 303 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent) 304 { 305 u32 index; 306 u32 frame_index; 307 308 struct scu_unsolicited_frame_header *frame_header; 309 struct isci_phy *iphy; 310 struct isci_remote_device *idev; 311 312 enum sci_status result = SCI_FAILURE; 313 314 frame_index = SCU_GET_FRAME_INDEX(ent); 315 316 frame_header = ihost->uf_control.buffers.array[frame_index].header; 317 ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE; 318 319 if (SCU_GET_FRAME_ERROR(ent)) { 320 /* 321 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will 322 * / this cause a problem? We expect the phy initialization will 323 * / fail if there is an error in the frame. */ 324 sci_controller_release_frame(ihost, frame_index); 325 return; 326 } 327 328 if (frame_header->is_address_frame) { 329 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 330 iphy = &ihost->phys[index]; 331 result = sci_phy_frame_handler(iphy, frame_index); 332 } else { 333 334 index = SCU_GET_COMPLETION_INDEX(ent); 335 336 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 337 /* 338 * This is a signature fis or a frame from a direct attached SATA 339 * device that has not yet been created. In either case forwared 340 * the frame to the PE and let it take care of the frame data. */ 341 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 342 iphy = &ihost->phys[index]; 343 result = sci_phy_frame_handler(iphy, frame_index); 344 } else { 345 if (index < ihost->remote_node_entries) 346 idev = ihost->device_table[index]; 347 else 348 idev = NULL; 349 350 if (idev != NULL) 351 result = sci_remote_device_frame_handler(idev, frame_index); 352 else 353 sci_controller_release_frame(ihost, frame_index); 354 } 355 } 356 357 if (result != SCI_SUCCESS) { 358 /* 359 * / @todo Is there any reason to report some additional error message 360 * / when we get this failure notifiction? */ 361 } 362 } 363 364 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent) 365 { 366 struct isci_remote_device *idev; 367 struct isci_request *ireq; 368 struct isci_phy *iphy; 369 u32 index; 370 371 index = SCU_GET_COMPLETION_INDEX(ent); 372 373 switch (scu_get_event_type(ent)) { 374 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR: 375 /* / @todo The driver did something wrong and we need to fix the condtion. */ 376 dev_err(&ihost->pdev->dev, 377 "%s: SCIC Controller 0x%p received SMU command error " 378 "0x%x\n", 379 __func__, 380 ihost, 381 ent); 382 break; 383 384 case SCU_EVENT_TYPE_SMU_PCQ_ERROR: 385 case SCU_EVENT_TYPE_SMU_ERROR: 386 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR: 387 /* 388 * / @todo This is a hardware failure and its likely that we want to 389 * / reset the controller. */ 390 dev_err(&ihost->pdev->dev, 391 "%s: SCIC Controller 0x%p received fatal controller " 392 "event 0x%x\n", 393 __func__, 394 ihost, 395 ent); 396 break; 397 398 case SCU_EVENT_TYPE_TRANSPORT_ERROR: 399 ireq = ihost->reqs[index]; 400 sci_io_request_event_handler(ireq, ent); 401 break; 402 403 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT: 404 switch (scu_get_event_specifier(ent)) { 405 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE: 406 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT: 407 ireq = ihost->reqs[index]; 408 if (ireq != NULL) 409 sci_io_request_event_handler(ireq, ent); 410 else 411 dev_warn(&ihost->pdev->dev, 412 "%s: SCIC Controller 0x%p received " 413 "event 0x%x for io request object " 414 "that doesnt exist.\n", 415 __func__, 416 ihost, 417 ent); 418 419 break; 420 421 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT: 422 idev = ihost->device_table[index]; 423 if (idev != NULL) 424 sci_remote_device_event_handler(idev, ent); 425 else 426 dev_warn(&ihost->pdev->dev, 427 "%s: SCIC Controller 0x%p received " 428 "event 0x%x for remote device object " 429 "that doesnt exist.\n", 430 __func__, 431 ihost, 432 ent); 433 434 break; 435 } 436 break; 437 438 case SCU_EVENT_TYPE_BROADCAST_CHANGE: 439 /* 440 * direct the broadcast change event to the phy first and then let 441 * the phy redirect the broadcast change to the port object */ 442 case SCU_EVENT_TYPE_ERR_CNT_EVENT: 443 /* 444 * direct error counter event to the phy object since that is where 445 * we get the event notification. This is a type 4 event. */ 446 case SCU_EVENT_TYPE_OSSP_EVENT: 447 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 448 iphy = &ihost->phys[index]; 449 sci_phy_event_handler(iphy, ent); 450 break; 451 452 case SCU_EVENT_TYPE_RNC_SUSPEND_TX: 453 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX: 454 case SCU_EVENT_TYPE_RNC_OPS_MISC: 455 if (index < ihost->remote_node_entries) { 456 idev = ihost->device_table[index]; 457 458 if (idev != NULL) 459 sci_remote_device_event_handler(idev, ent); 460 } else 461 dev_err(&ihost->pdev->dev, 462 "%s: SCIC Controller 0x%p received event 0x%x " 463 "for remote device object 0x%0x that doesnt " 464 "exist.\n", 465 __func__, 466 ihost, 467 ent, 468 index); 469 470 break; 471 472 default: 473 dev_warn(&ihost->pdev->dev, 474 "%s: SCIC Controller received unknown event code %x\n", 475 __func__, 476 ent); 477 break; 478 } 479 } 480 481 static void sci_controller_process_completions(struct isci_host *ihost) 482 { 483 u32 completion_count = 0; 484 u32 ent; 485 u32 get_index; 486 u32 get_cycle; 487 u32 event_get; 488 u32 event_cycle; 489 490 dev_dbg(&ihost->pdev->dev, 491 "%s: completion queue begining get:0x%08x\n", 492 __func__, 493 ihost->completion_queue_get); 494 495 /* Get the component parts of the completion queue */ 496 get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get); 497 get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get; 498 499 event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get); 500 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get; 501 502 while ( 503 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle) 504 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]) 505 ) { 506 completion_count++; 507 508 ent = ihost->completion_queue[get_index]; 509 510 /* increment the get pointer and check for rollover to toggle the cycle bit */ 511 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) << 512 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT); 513 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1); 514 515 dev_dbg(&ihost->pdev->dev, 516 "%s: completion queue entry:0x%08x\n", 517 __func__, 518 ent); 519 520 switch (SCU_GET_COMPLETION_TYPE(ent)) { 521 case SCU_COMPLETION_TYPE_TASK: 522 sci_controller_task_completion(ihost, ent); 523 break; 524 525 case SCU_COMPLETION_TYPE_SDMA: 526 sci_controller_sdma_completion(ihost, ent); 527 break; 528 529 case SCU_COMPLETION_TYPE_UFI: 530 sci_controller_unsolicited_frame(ihost, ent); 531 break; 532 533 case SCU_COMPLETION_TYPE_EVENT: 534 sci_controller_event_completion(ihost, ent); 535 break; 536 537 case SCU_COMPLETION_TYPE_NOTIFY: { 538 event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) << 539 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT); 540 event_get = (event_get+1) & (SCU_MAX_EVENTS-1); 541 542 sci_controller_event_completion(ihost, ent); 543 break; 544 } 545 default: 546 dev_warn(&ihost->pdev->dev, 547 "%s: SCIC Controller received unknown " 548 "completion type %x\n", 549 __func__, 550 ent); 551 break; 552 } 553 } 554 555 /* Update the get register if we completed one or more entries */ 556 if (completion_count > 0) { 557 ihost->completion_queue_get = 558 SMU_CQGR_GEN_BIT(ENABLE) | 559 SMU_CQGR_GEN_BIT(EVENT_ENABLE) | 560 event_cycle | 561 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) | 562 get_cycle | 563 SMU_CQGR_GEN_VAL(POINTER, get_index); 564 565 writel(ihost->completion_queue_get, 566 &ihost->smu_registers->completion_queue_get); 567 568 } 569 570 dev_dbg(&ihost->pdev->dev, 571 "%s: completion queue ending get:0x%08x\n", 572 __func__, 573 ihost->completion_queue_get); 574 575 } 576 577 static void sci_controller_error_handler(struct isci_host *ihost) 578 { 579 u32 interrupt_status; 580 581 interrupt_status = 582 readl(&ihost->smu_registers->interrupt_status); 583 584 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && 585 sci_controller_completion_queue_has_entries(ihost)) { 586 587 sci_controller_process_completions(ihost); 588 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status); 589 } else { 590 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__, 591 interrupt_status); 592 593 sci_change_state(&ihost->sm, SCIC_FAILED); 594 595 return; 596 } 597 598 /* If we dont process any completions I am not sure that we want to do this. 599 * We are in the middle of a hardware fault and should probably be reset. 600 */ 601 writel(0, &ihost->smu_registers->interrupt_mask); 602 } 603 604 irqreturn_t isci_intx_isr(int vec, void *data) 605 { 606 irqreturn_t ret = IRQ_NONE; 607 struct isci_host *ihost = data; 608 609 if (sci_controller_isr(ihost)) { 610 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 611 tasklet_schedule(&ihost->completion_tasklet); 612 ret = IRQ_HANDLED; 613 } else if (sci_controller_error_isr(ihost)) { 614 spin_lock(&ihost->scic_lock); 615 sci_controller_error_handler(ihost); 616 spin_unlock(&ihost->scic_lock); 617 ret = IRQ_HANDLED; 618 } 619 620 return ret; 621 } 622 623 irqreturn_t isci_error_isr(int vec, void *data) 624 { 625 struct isci_host *ihost = data; 626 627 if (sci_controller_error_isr(ihost)) 628 sci_controller_error_handler(ihost); 629 630 return IRQ_HANDLED; 631 } 632 633 /** 634 * isci_host_start_complete() - This function is called by the core library, 635 * through the ISCI Module, to indicate controller start status. 636 * @isci_host: This parameter specifies the ISCI host object 637 * @completion_status: This parameter specifies the completion status from the 638 * core library. 639 * 640 */ 641 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status) 642 { 643 if (completion_status != SCI_SUCCESS) 644 dev_info(&ihost->pdev->dev, 645 "controller start timed out, continuing...\n"); 646 isci_host_change_state(ihost, isci_ready); 647 clear_bit(IHOST_START_PENDING, &ihost->flags); 648 wake_up(&ihost->eventq); 649 } 650 651 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time) 652 { 653 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; 654 655 if (test_bit(IHOST_START_PENDING, &ihost->flags)) 656 return 0; 657 658 /* todo: use sas_flush_discovery once it is upstream */ 659 scsi_flush_work(shost); 660 661 scsi_flush_work(shost); 662 663 dev_dbg(&ihost->pdev->dev, 664 "%s: ihost->status = %d, time = %ld\n", 665 __func__, isci_host_get_state(ihost), time); 666 667 return 1; 668 669 } 670 671 /** 672 * sci_controller_get_suggested_start_timeout() - This method returns the 673 * suggested sci_controller_start() timeout amount. The user is free to 674 * use any timeout value, but this method provides the suggested minimum 675 * start timeout value. The returned value is based upon empirical 676 * information determined as a result of interoperability testing. 677 * @controller: the handle to the controller object for which to return the 678 * suggested start timeout. 679 * 680 * This method returns the number of milliseconds for the suggested start 681 * operation timeout. 682 */ 683 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost) 684 { 685 /* Validate the user supplied parameters. */ 686 if (!ihost) 687 return 0; 688 689 /* 690 * The suggested minimum timeout value for a controller start operation: 691 * 692 * Signature FIS Timeout 693 * + Phy Start Timeout 694 * + Number of Phy Spin Up Intervals 695 * --------------------------------- 696 * Number of milliseconds for the controller start operation. 697 * 698 * NOTE: The number of phy spin up intervals will be equivalent 699 * to the number of phys divided by the number phys allowed 700 * per interval - 1 (once OEM parameters are supported). 701 * Currently we assume only 1 phy per interval. */ 702 703 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT 704 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 705 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 706 } 707 708 static void sci_controller_enable_interrupts(struct isci_host *ihost) 709 { 710 BUG_ON(ihost->smu_registers == NULL); 711 writel(0, &ihost->smu_registers->interrupt_mask); 712 } 713 714 void sci_controller_disable_interrupts(struct isci_host *ihost) 715 { 716 BUG_ON(ihost->smu_registers == NULL); 717 writel(0xffffffff, &ihost->smu_registers->interrupt_mask); 718 } 719 720 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost) 721 { 722 u32 port_task_scheduler_value; 723 724 port_task_scheduler_value = 725 readl(&ihost->scu_registers->peg0.ptsg.control); 726 port_task_scheduler_value |= 727 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | 728 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE)); 729 writel(port_task_scheduler_value, 730 &ihost->scu_registers->peg0.ptsg.control); 731 } 732 733 static void sci_controller_assign_task_entries(struct isci_host *ihost) 734 { 735 u32 task_assignment; 736 737 /* 738 * Assign all the TCs to function 0 739 * TODO: Do we actually need to read this register to write it back? 740 */ 741 742 task_assignment = 743 readl(&ihost->smu_registers->task_context_assignment[0]); 744 745 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) | 746 (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) | 747 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE)); 748 749 writel(task_assignment, 750 &ihost->smu_registers->task_context_assignment[0]); 751 752 } 753 754 static void sci_controller_initialize_completion_queue(struct isci_host *ihost) 755 { 756 u32 index; 757 u32 completion_queue_control_value; 758 u32 completion_queue_get_value; 759 u32 completion_queue_put_value; 760 761 ihost->completion_queue_get = 0; 762 763 completion_queue_control_value = 764 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) | 765 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1)); 766 767 writel(completion_queue_control_value, 768 &ihost->smu_registers->completion_queue_control); 769 770 771 /* Set the completion queue get pointer and enable the queue */ 772 completion_queue_get_value = ( 773 (SMU_CQGR_GEN_VAL(POINTER, 0)) 774 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0)) 775 | (SMU_CQGR_GEN_BIT(ENABLE)) 776 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE)) 777 ); 778 779 writel(completion_queue_get_value, 780 &ihost->smu_registers->completion_queue_get); 781 782 /* Set the completion queue put pointer */ 783 completion_queue_put_value = ( 784 (SMU_CQPR_GEN_VAL(POINTER, 0)) 785 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0)) 786 ); 787 788 writel(completion_queue_put_value, 789 &ihost->smu_registers->completion_queue_put); 790 791 /* Initialize the cycle bit of the completion queue entries */ 792 for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) { 793 /* 794 * If get.cycle_bit != completion_queue.cycle_bit 795 * its not a valid completion queue entry 796 * so at system start all entries are invalid */ 797 ihost->completion_queue[index] = 0x80000000; 798 } 799 } 800 801 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost) 802 { 803 u32 frame_queue_control_value; 804 u32 frame_queue_get_value; 805 u32 frame_queue_put_value; 806 807 /* Write the queue size */ 808 frame_queue_control_value = 809 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES); 810 811 writel(frame_queue_control_value, 812 &ihost->scu_registers->sdma.unsolicited_frame_queue_control); 813 814 /* Setup the get pointer for the unsolicited frame queue */ 815 frame_queue_get_value = ( 816 SCU_UFQGP_GEN_VAL(POINTER, 0) 817 | SCU_UFQGP_GEN_BIT(ENABLE_BIT) 818 ); 819 820 writel(frame_queue_get_value, 821 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 822 /* Setup the put pointer for the unsolicited frame queue */ 823 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0); 824 writel(frame_queue_put_value, 825 &ihost->scu_registers->sdma.unsolicited_frame_put_pointer); 826 } 827 828 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status) 829 { 830 if (ihost->sm.current_state_id == SCIC_STARTING) { 831 /* 832 * We move into the ready state, because some of the phys/ports 833 * may be up and operational. 834 */ 835 sci_change_state(&ihost->sm, SCIC_READY); 836 837 isci_host_start_complete(ihost, status); 838 } 839 } 840 841 static bool is_phy_starting(struct isci_phy *iphy) 842 { 843 enum sci_phy_states state; 844 845 state = iphy->sm.current_state_id; 846 switch (state) { 847 case SCI_PHY_STARTING: 848 case SCI_PHY_SUB_INITIAL: 849 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: 850 case SCI_PHY_SUB_AWAIT_IAF_UF: 851 case SCI_PHY_SUB_AWAIT_SAS_POWER: 852 case SCI_PHY_SUB_AWAIT_SATA_POWER: 853 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: 854 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: 855 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: 856 case SCI_PHY_SUB_FINAL: 857 return true; 858 default: 859 return false; 860 } 861 } 862 863 /** 864 * sci_controller_start_next_phy - start phy 865 * @scic: controller 866 * 867 * If all the phys have been started, then attempt to transition the 868 * controller to the READY state and inform the user 869 * (sci_cb_controller_start_complete()). 870 */ 871 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost) 872 { 873 struct sci_oem_params *oem = &ihost->oem_parameters; 874 struct isci_phy *iphy; 875 enum sci_status status; 876 877 status = SCI_SUCCESS; 878 879 if (ihost->phy_startup_timer_pending) 880 return status; 881 882 if (ihost->next_phy_to_start >= SCI_MAX_PHYS) { 883 bool is_controller_start_complete = true; 884 u32 state; 885 u8 index; 886 887 for (index = 0; index < SCI_MAX_PHYS; index++) { 888 iphy = &ihost->phys[index]; 889 state = iphy->sm.current_state_id; 890 891 if (!phy_get_non_dummy_port(iphy)) 892 continue; 893 894 /* The controller start operation is complete iff: 895 * - all links have been given an opportunity to start 896 * - have no indication of a connected device 897 * - have an indication of a connected device and it has 898 * finished the link training process. 899 */ 900 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) || 901 (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) || 902 (iphy->is_in_link_training == true && is_phy_starting(iphy)) || 903 (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) { 904 is_controller_start_complete = false; 905 break; 906 } 907 } 908 909 /* 910 * The controller has successfully finished the start process. 911 * Inform the SCI Core user and transition to the READY state. */ 912 if (is_controller_start_complete == true) { 913 sci_controller_transition_to_ready(ihost, SCI_SUCCESS); 914 sci_del_timer(&ihost->phy_timer); 915 ihost->phy_startup_timer_pending = false; 916 } 917 } else { 918 iphy = &ihost->phys[ihost->next_phy_to_start]; 919 920 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 921 if (phy_get_non_dummy_port(iphy) == NULL) { 922 ihost->next_phy_to_start++; 923 924 /* Caution recursion ahead be forwarned 925 * 926 * The PHY was never added to a PORT in MPC mode 927 * so start the next phy in sequence This phy 928 * will never go link up and will not draw power 929 * the OEM parameters either configured the phy 930 * incorrectly for the PORT or it was never 931 * assigned to a PORT 932 */ 933 return sci_controller_start_next_phy(ihost); 934 } 935 } 936 937 status = sci_phy_start(iphy); 938 939 if (status == SCI_SUCCESS) { 940 sci_mod_timer(&ihost->phy_timer, 941 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT); 942 ihost->phy_startup_timer_pending = true; 943 } else { 944 dev_warn(&ihost->pdev->dev, 945 "%s: Controller stop operation failed " 946 "to stop phy %d because of status " 947 "%d.\n", 948 __func__, 949 ihost->phys[ihost->next_phy_to_start].phy_index, 950 status); 951 } 952 953 ihost->next_phy_to_start++; 954 } 955 956 return status; 957 } 958 959 static void phy_startup_timeout(unsigned long data) 960 { 961 struct sci_timer *tmr = (struct sci_timer *)data; 962 struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer); 963 unsigned long flags; 964 enum sci_status status; 965 966 spin_lock_irqsave(&ihost->scic_lock, flags); 967 968 if (tmr->cancel) 969 goto done; 970 971 ihost->phy_startup_timer_pending = false; 972 973 do { 974 status = sci_controller_start_next_phy(ihost); 975 } while (status != SCI_SUCCESS); 976 977 done: 978 spin_unlock_irqrestore(&ihost->scic_lock, flags); 979 } 980 981 static u16 isci_tci_active(struct isci_host *ihost) 982 { 983 return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); 984 } 985 986 static enum sci_status sci_controller_start(struct isci_host *ihost, 987 u32 timeout) 988 { 989 enum sci_status result; 990 u16 index; 991 992 if (ihost->sm.current_state_id != SCIC_INITIALIZED) { 993 dev_warn(&ihost->pdev->dev, 994 "SCIC Controller start operation requested in " 995 "invalid state\n"); 996 return SCI_FAILURE_INVALID_STATE; 997 } 998 999 /* Build the TCi free pool */ 1000 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8); 1001 ihost->tci_head = 0; 1002 ihost->tci_tail = 0; 1003 for (index = 0; index < ihost->task_context_entries; index++) 1004 isci_tci_free(ihost, index); 1005 1006 /* Build the RNi free pool */ 1007 sci_remote_node_table_initialize(&ihost->available_remote_nodes, 1008 ihost->remote_node_entries); 1009 1010 /* 1011 * Before anything else lets make sure we will not be 1012 * interrupted by the hardware. 1013 */ 1014 sci_controller_disable_interrupts(ihost); 1015 1016 /* Enable the port task scheduler */ 1017 sci_controller_enable_port_task_scheduler(ihost); 1018 1019 /* Assign all the task entries to ihost physical function */ 1020 sci_controller_assign_task_entries(ihost); 1021 1022 /* Now initialize the completion queue */ 1023 sci_controller_initialize_completion_queue(ihost); 1024 1025 /* Initialize the unsolicited frame queue for use */ 1026 sci_controller_initialize_unsolicited_frame_queue(ihost); 1027 1028 /* Start all of the ports on this controller */ 1029 for (index = 0; index < ihost->logical_port_entries; index++) { 1030 struct isci_port *iport = &ihost->ports[index]; 1031 1032 result = sci_port_start(iport); 1033 if (result) 1034 return result; 1035 } 1036 1037 sci_controller_start_next_phy(ihost); 1038 1039 sci_mod_timer(&ihost->timer, timeout); 1040 1041 sci_change_state(&ihost->sm, SCIC_STARTING); 1042 1043 return SCI_SUCCESS; 1044 } 1045 1046 void isci_host_scan_start(struct Scsi_Host *shost) 1047 { 1048 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; 1049 unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost); 1050 1051 set_bit(IHOST_START_PENDING, &ihost->flags); 1052 1053 spin_lock_irq(&ihost->scic_lock); 1054 sci_controller_start(ihost, tmo); 1055 sci_controller_enable_interrupts(ihost); 1056 spin_unlock_irq(&ihost->scic_lock); 1057 } 1058 1059 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status) 1060 { 1061 isci_host_change_state(ihost, isci_stopped); 1062 sci_controller_disable_interrupts(ihost); 1063 clear_bit(IHOST_STOP_PENDING, &ihost->flags); 1064 wake_up(&ihost->eventq); 1065 } 1066 1067 static void sci_controller_completion_handler(struct isci_host *ihost) 1068 { 1069 /* Empty out the completion queue */ 1070 if (sci_controller_completion_queue_has_entries(ihost)) 1071 sci_controller_process_completions(ihost); 1072 1073 /* Clear the interrupt and enable all interrupts again */ 1074 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 1075 /* Could we write the value of SMU_ISR_COMPLETION? */ 1076 writel(0xFF000000, &ihost->smu_registers->interrupt_mask); 1077 writel(0, &ihost->smu_registers->interrupt_mask); 1078 } 1079 1080 /** 1081 * isci_host_completion_routine() - This function is the delayed service 1082 * routine that calls the sci core library's completion handler. It's 1083 * scheduled as a tasklet from the interrupt service routine when interrupts 1084 * in use, or set as the timeout function in polled mode. 1085 * @data: This parameter specifies the ISCI host object 1086 * 1087 */ 1088 static void isci_host_completion_routine(unsigned long data) 1089 { 1090 struct isci_host *ihost = (struct isci_host *)data; 1091 struct list_head completed_request_list; 1092 struct list_head errored_request_list; 1093 struct list_head *current_position; 1094 struct list_head *next_position; 1095 struct isci_request *request; 1096 struct isci_request *next_request; 1097 struct sas_task *task; 1098 u16 active; 1099 1100 INIT_LIST_HEAD(&completed_request_list); 1101 INIT_LIST_HEAD(&errored_request_list); 1102 1103 spin_lock_irq(&ihost->scic_lock); 1104 1105 sci_controller_completion_handler(ihost); 1106 1107 /* Take the lists of completed I/Os from the host. */ 1108 1109 list_splice_init(&ihost->requests_to_complete, 1110 &completed_request_list); 1111 1112 /* Take the list of errored I/Os from the host. */ 1113 list_splice_init(&ihost->requests_to_errorback, 1114 &errored_request_list); 1115 1116 spin_unlock_irq(&ihost->scic_lock); 1117 1118 /* Process any completions in the lists. */ 1119 list_for_each_safe(current_position, next_position, 1120 &completed_request_list) { 1121 1122 request = list_entry(current_position, struct isci_request, 1123 completed_node); 1124 task = isci_request_access_task(request); 1125 1126 /* Normal notification (task_done) */ 1127 dev_dbg(&ihost->pdev->dev, 1128 "%s: Normal - request/task = %p/%p\n", 1129 __func__, 1130 request, 1131 task); 1132 1133 /* Return the task to libsas */ 1134 if (task != NULL) { 1135 1136 task->lldd_task = NULL; 1137 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 1138 1139 /* If the task is already in the abort path, 1140 * the task_done callback cannot be called. 1141 */ 1142 task->task_done(task); 1143 } 1144 } 1145 1146 spin_lock_irq(&ihost->scic_lock); 1147 isci_free_tag(ihost, request->io_tag); 1148 spin_unlock_irq(&ihost->scic_lock); 1149 } 1150 list_for_each_entry_safe(request, next_request, &errored_request_list, 1151 completed_node) { 1152 1153 task = isci_request_access_task(request); 1154 1155 /* Use sas_task_abort */ 1156 dev_warn(&ihost->pdev->dev, 1157 "%s: Error - request/task = %p/%p\n", 1158 __func__, 1159 request, 1160 task); 1161 1162 if (task != NULL) { 1163 1164 /* Put the task into the abort path if it's not there 1165 * already. 1166 */ 1167 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) 1168 sas_task_abort(task); 1169 1170 } else { 1171 /* This is a case where the request has completed with a 1172 * status such that it needed further target servicing, 1173 * but the sas_task reference has already been removed 1174 * from the request. Since it was errored, it was not 1175 * being aborted, so there is nothing to do except free 1176 * it. 1177 */ 1178 1179 spin_lock_irq(&ihost->scic_lock); 1180 /* Remove the request from the remote device's list 1181 * of pending requests. 1182 */ 1183 list_del_init(&request->dev_node); 1184 isci_free_tag(ihost, request->io_tag); 1185 spin_unlock_irq(&ihost->scic_lock); 1186 } 1187 } 1188 1189 /* the coalesence timeout doubles at each encoding step, so 1190 * update it based on the ilog2 value of the outstanding requests 1191 */ 1192 active = isci_tci_active(ihost); 1193 writel(SMU_ICC_GEN_VAL(NUMBER, active) | 1194 SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)), 1195 &ihost->smu_registers->interrupt_coalesce_control); 1196 } 1197 1198 /** 1199 * sci_controller_stop() - This method will stop an individual controller 1200 * object.This method will invoke the associated user callback upon 1201 * completion. The completion callback is called when the following 1202 * conditions are met: -# the method return status is SCI_SUCCESS. -# the 1203 * controller has been quiesced. This method will ensure that all IO 1204 * requests are quiesced, phys are stopped, and all additional operation by 1205 * the hardware is halted. 1206 * @controller: the handle to the controller object to stop. 1207 * @timeout: This parameter specifies the number of milliseconds in which the 1208 * stop operation should complete. 1209 * 1210 * The controller must be in the STARTED or STOPPED state. Indicate if the 1211 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the 1212 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the 1213 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the 1214 * controller is not either in the STARTED or STOPPED states. 1215 */ 1216 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout) 1217 { 1218 if (ihost->sm.current_state_id != SCIC_READY) { 1219 dev_warn(&ihost->pdev->dev, 1220 "SCIC Controller stop operation requested in " 1221 "invalid state\n"); 1222 return SCI_FAILURE_INVALID_STATE; 1223 } 1224 1225 sci_mod_timer(&ihost->timer, timeout); 1226 sci_change_state(&ihost->sm, SCIC_STOPPING); 1227 return SCI_SUCCESS; 1228 } 1229 1230 /** 1231 * sci_controller_reset() - This method will reset the supplied core 1232 * controller regardless of the state of said controller. This operation is 1233 * considered destructive. In other words, all current operations are wiped 1234 * out. No IO completions for outstanding devices occur. Outstanding IO 1235 * requests are not aborted or completed at the actual remote device. 1236 * @controller: the handle to the controller object to reset. 1237 * 1238 * Indicate if the controller reset method succeeded or failed in some way. 1239 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if 1240 * the controller reset operation is unable to complete. 1241 */ 1242 static enum sci_status sci_controller_reset(struct isci_host *ihost) 1243 { 1244 switch (ihost->sm.current_state_id) { 1245 case SCIC_RESET: 1246 case SCIC_READY: 1247 case SCIC_STOPPED: 1248 case SCIC_FAILED: 1249 /* 1250 * The reset operation is not a graceful cleanup, just 1251 * perform the state transition. 1252 */ 1253 sci_change_state(&ihost->sm, SCIC_RESETTING); 1254 return SCI_SUCCESS; 1255 default: 1256 dev_warn(&ihost->pdev->dev, 1257 "SCIC Controller reset operation requested in " 1258 "invalid state\n"); 1259 return SCI_FAILURE_INVALID_STATE; 1260 } 1261 } 1262 1263 void isci_host_deinit(struct isci_host *ihost) 1264 { 1265 int i; 1266 1267 /* disable output data selects */ 1268 for (i = 0; i < isci_gpio_count(ihost); i++) 1269 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); 1270 1271 isci_host_change_state(ihost, isci_stopping); 1272 for (i = 0; i < SCI_MAX_PORTS; i++) { 1273 struct isci_port *iport = &ihost->ports[i]; 1274 struct isci_remote_device *idev, *d; 1275 1276 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) { 1277 if (test_bit(IDEV_ALLOCATED, &idev->flags)) 1278 isci_remote_device_stop(ihost, idev); 1279 } 1280 } 1281 1282 set_bit(IHOST_STOP_PENDING, &ihost->flags); 1283 1284 spin_lock_irq(&ihost->scic_lock); 1285 sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT); 1286 spin_unlock_irq(&ihost->scic_lock); 1287 1288 wait_for_stop(ihost); 1289 1290 /* disable sgpio: where the above wait should give time for the 1291 * enclosure to sample the gpios going inactive 1292 */ 1293 writel(0, &ihost->scu_registers->peg0.sgpio.interface_control); 1294 1295 sci_controller_reset(ihost); 1296 1297 /* Cancel any/all outstanding port timers */ 1298 for (i = 0; i < ihost->logical_port_entries; i++) { 1299 struct isci_port *iport = &ihost->ports[i]; 1300 del_timer_sync(&iport->timer.timer); 1301 } 1302 1303 /* Cancel any/all outstanding phy timers */ 1304 for (i = 0; i < SCI_MAX_PHYS; i++) { 1305 struct isci_phy *iphy = &ihost->phys[i]; 1306 del_timer_sync(&iphy->sata_timer.timer); 1307 } 1308 1309 del_timer_sync(&ihost->port_agent.timer.timer); 1310 1311 del_timer_sync(&ihost->power_control.timer.timer); 1312 1313 del_timer_sync(&ihost->timer.timer); 1314 1315 del_timer_sync(&ihost->phy_timer.timer); 1316 } 1317 1318 static void __iomem *scu_base(struct isci_host *isci_host) 1319 { 1320 struct pci_dev *pdev = isci_host->pdev; 1321 int id = isci_host->id; 1322 1323 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id; 1324 } 1325 1326 static void __iomem *smu_base(struct isci_host *isci_host) 1327 { 1328 struct pci_dev *pdev = isci_host->pdev; 1329 int id = isci_host->id; 1330 1331 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id; 1332 } 1333 1334 static void isci_user_parameters_get(struct sci_user_parameters *u) 1335 { 1336 int i; 1337 1338 for (i = 0; i < SCI_MAX_PHYS; i++) { 1339 struct sci_phy_user_params *u_phy = &u->phys[i]; 1340 1341 u_phy->max_speed_generation = phy_gen; 1342 1343 /* we are not exporting these for now */ 1344 u_phy->align_insertion_frequency = 0x7f; 1345 u_phy->in_connection_align_insertion_frequency = 0xff; 1346 u_phy->notify_enable_spin_up_insertion_frequency = 0x33; 1347 } 1348 1349 u->stp_inactivity_timeout = stp_inactive_to; 1350 u->ssp_inactivity_timeout = ssp_inactive_to; 1351 u->stp_max_occupancy_timeout = stp_max_occ_to; 1352 u->ssp_max_occupancy_timeout = ssp_max_occ_to; 1353 u->no_outbound_task_timeout = no_outbound_task_to; 1354 u->max_concurr_spinup = max_concurr_spinup; 1355 } 1356 1357 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm) 1358 { 1359 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1360 1361 sci_change_state(&ihost->sm, SCIC_RESET); 1362 } 1363 1364 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm) 1365 { 1366 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1367 1368 sci_del_timer(&ihost->timer); 1369 } 1370 1371 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853 1372 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280 1373 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000 1374 #define INTERRUPT_COALESCE_NUMBER_MAX 256 1375 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7 1376 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28 1377 1378 /** 1379 * sci_controller_set_interrupt_coalescence() - This method allows the user to 1380 * configure the interrupt coalescence. 1381 * @controller: This parameter represents the handle to the controller object 1382 * for which its interrupt coalesce register is overridden. 1383 * @coalesce_number: Used to control the number of entries in the Completion 1384 * Queue before an interrupt is generated. If the number of entries exceed 1385 * this number, an interrupt will be generated. The valid range of the input 1386 * is [0, 256]. A setting of 0 results in coalescing being disabled. 1387 * @coalesce_timeout: Timeout value in microseconds. The valid range of the 1388 * input is [0, 2700000] . A setting of 0 is allowed and results in no 1389 * interrupt coalescing timeout. 1390 * 1391 * Indicate if the user successfully set the interrupt coalesce parameters. 1392 * SCI_SUCCESS The user successfully updated the interrutp coalescence. 1393 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range. 1394 */ 1395 static enum sci_status 1396 sci_controller_set_interrupt_coalescence(struct isci_host *ihost, 1397 u32 coalesce_number, 1398 u32 coalesce_timeout) 1399 { 1400 u8 timeout_encode = 0; 1401 u32 min = 0; 1402 u32 max = 0; 1403 1404 /* Check if the input parameters fall in the range. */ 1405 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX) 1406 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1407 1408 /* 1409 * Defined encoding for interrupt coalescing timeout: 1410 * Value Min Max Units 1411 * ----- --- --- ----- 1412 * 0 - - Disabled 1413 * 1 13.3 20.0 ns 1414 * 2 26.7 40.0 1415 * 3 53.3 80.0 1416 * 4 106.7 160.0 1417 * 5 213.3 320.0 1418 * 6 426.7 640.0 1419 * 7 853.3 1280.0 1420 * 8 1.7 2.6 us 1421 * 9 3.4 5.1 1422 * 10 6.8 10.2 1423 * 11 13.7 20.5 1424 * 12 27.3 41.0 1425 * 13 54.6 81.9 1426 * 14 109.2 163.8 1427 * 15 218.5 327.7 1428 * 16 436.9 655.4 1429 * 17 873.8 1310.7 1430 * 18 1.7 2.6 ms 1431 * 19 3.5 5.2 1432 * 20 7.0 10.5 1433 * 21 14.0 21.0 1434 * 22 28.0 41.9 1435 * 23 55.9 83.9 1436 * 24 111.8 167.8 1437 * 25 223.7 335.5 1438 * 26 447.4 671.1 1439 * 27 894.8 1342.2 1440 * 28 1.8 2.7 s 1441 * Others Undefined */ 1442 1443 /* 1444 * Use the table above to decide the encode of interrupt coalescing timeout 1445 * value for register writing. */ 1446 if (coalesce_timeout == 0) 1447 timeout_encode = 0; 1448 else{ 1449 /* make the timeout value in unit of (10 ns). */ 1450 coalesce_timeout = coalesce_timeout * 100; 1451 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10; 1452 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10; 1453 1454 /* get the encode of timeout for register writing. */ 1455 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN; 1456 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX; 1457 timeout_encode++) { 1458 if (min <= coalesce_timeout && max > coalesce_timeout) 1459 break; 1460 else if (coalesce_timeout >= max && coalesce_timeout < min * 2 1461 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) { 1462 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout)) 1463 break; 1464 else{ 1465 timeout_encode++; 1466 break; 1467 } 1468 } else { 1469 max = max * 2; 1470 min = min * 2; 1471 } 1472 } 1473 1474 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1) 1475 /* the value is out of range. */ 1476 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1477 } 1478 1479 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) | 1480 SMU_ICC_GEN_VAL(TIMER, timeout_encode), 1481 &ihost->smu_registers->interrupt_coalesce_control); 1482 1483 1484 ihost->interrupt_coalesce_number = (u16)coalesce_number; 1485 ihost->interrupt_coalesce_timeout = coalesce_timeout / 100; 1486 1487 return SCI_SUCCESS; 1488 } 1489 1490 1491 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm) 1492 { 1493 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1494 1495 /* set the default interrupt coalescence number and timeout value. */ 1496 sci_controller_set_interrupt_coalescence(ihost, 0, 0); 1497 } 1498 1499 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm) 1500 { 1501 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1502 1503 /* disable interrupt coalescence. */ 1504 sci_controller_set_interrupt_coalescence(ihost, 0, 0); 1505 } 1506 1507 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost) 1508 { 1509 u32 index; 1510 enum sci_status status; 1511 enum sci_status phy_status; 1512 1513 status = SCI_SUCCESS; 1514 1515 for (index = 0; index < SCI_MAX_PHYS; index++) { 1516 phy_status = sci_phy_stop(&ihost->phys[index]); 1517 1518 if (phy_status != SCI_SUCCESS && 1519 phy_status != SCI_FAILURE_INVALID_STATE) { 1520 status = SCI_FAILURE; 1521 1522 dev_warn(&ihost->pdev->dev, 1523 "%s: Controller stop operation failed to stop " 1524 "phy %d because of status %d.\n", 1525 __func__, 1526 ihost->phys[index].phy_index, phy_status); 1527 } 1528 } 1529 1530 return status; 1531 } 1532 1533 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost) 1534 { 1535 u32 index; 1536 enum sci_status port_status; 1537 enum sci_status status = SCI_SUCCESS; 1538 1539 for (index = 0; index < ihost->logical_port_entries; index++) { 1540 struct isci_port *iport = &ihost->ports[index]; 1541 1542 port_status = sci_port_stop(iport); 1543 1544 if ((port_status != SCI_SUCCESS) && 1545 (port_status != SCI_FAILURE_INVALID_STATE)) { 1546 status = SCI_FAILURE; 1547 1548 dev_warn(&ihost->pdev->dev, 1549 "%s: Controller stop operation failed to " 1550 "stop port %d because of status %d.\n", 1551 __func__, 1552 iport->logical_port_index, 1553 port_status); 1554 } 1555 } 1556 1557 return status; 1558 } 1559 1560 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost) 1561 { 1562 u32 index; 1563 enum sci_status status; 1564 enum sci_status device_status; 1565 1566 status = SCI_SUCCESS; 1567 1568 for (index = 0; index < ihost->remote_node_entries; index++) { 1569 if (ihost->device_table[index] != NULL) { 1570 /* / @todo What timeout value do we want to provide to this request? */ 1571 device_status = sci_remote_device_stop(ihost->device_table[index], 0); 1572 1573 if ((device_status != SCI_SUCCESS) && 1574 (device_status != SCI_FAILURE_INVALID_STATE)) { 1575 dev_warn(&ihost->pdev->dev, 1576 "%s: Controller stop operation failed " 1577 "to stop device 0x%p because of " 1578 "status %d.\n", 1579 __func__, 1580 ihost->device_table[index], device_status); 1581 } 1582 } 1583 } 1584 1585 return status; 1586 } 1587 1588 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm) 1589 { 1590 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1591 1592 /* Stop all of the components for this controller */ 1593 sci_controller_stop_phys(ihost); 1594 sci_controller_stop_ports(ihost); 1595 sci_controller_stop_devices(ihost); 1596 } 1597 1598 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm) 1599 { 1600 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1601 1602 sci_del_timer(&ihost->timer); 1603 } 1604 1605 static void sci_controller_reset_hardware(struct isci_host *ihost) 1606 { 1607 /* Disable interrupts so we dont take any spurious interrupts */ 1608 sci_controller_disable_interrupts(ihost); 1609 1610 /* Reset the SCU */ 1611 writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control); 1612 1613 /* Delay for 1ms to before clearing the CQP and UFQPR. */ 1614 udelay(1000); 1615 1616 /* The write to the CQGR clears the CQP */ 1617 writel(0x00000000, &ihost->smu_registers->completion_queue_get); 1618 1619 /* The write to the UFQGP clears the UFQPR */ 1620 writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 1621 } 1622 1623 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm) 1624 { 1625 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1626 1627 sci_controller_reset_hardware(ihost); 1628 sci_change_state(&ihost->sm, SCIC_RESET); 1629 } 1630 1631 static const struct sci_base_state sci_controller_state_table[] = { 1632 [SCIC_INITIAL] = { 1633 .enter_state = sci_controller_initial_state_enter, 1634 }, 1635 [SCIC_RESET] = {}, 1636 [SCIC_INITIALIZING] = {}, 1637 [SCIC_INITIALIZED] = {}, 1638 [SCIC_STARTING] = { 1639 .exit_state = sci_controller_starting_state_exit, 1640 }, 1641 [SCIC_READY] = { 1642 .enter_state = sci_controller_ready_state_enter, 1643 .exit_state = sci_controller_ready_state_exit, 1644 }, 1645 [SCIC_RESETTING] = { 1646 .enter_state = sci_controller_resetting_state_enter, 1647 }, 1648 [SCIC_STOPPING] = { 1649 .enter_state = sci_controller_stopping_state_enter, 1650 .exit_state = sci_controller_stopping_state_exit, 1651 }, 1652 [SCIC_STOPPED] = {}, 1653 [SCIC_FAILED] = {} 1654 }; 1655 1656 static void sci_controller_set_default_config_parameters(struct isci_host *ihost) 1657 { 1658 /* these defaults are overridden by the platform / firmware */ 1659 u16 index; 1660 1661 /* Default to APC mode. */ 1662 ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE; 1663 1664 /* Default to APC mode. */ 1665 ihost->oem_parameters.controller.max_concurr_spin_up = 1; 1666 1667 /* Default to no SSC operation. */ 1668 ihost->oem_parameters.controller.do_enable_ssc = false; 1669 1670 /* Default to short cables on all phys. */ 1671 ihost->oem_parameters.controller.cable_selection_mask = 0; 1672 1673 /* Initialize all of the port parameter information to narrow ports. */ 1674 for (index = 0; index < SCI_MAX_PORTS; index++) { 1675 ihost->oem_parameters.ports[index].phy_mask = 0; 1676 } 1677 1678 /* Initialize all of the phy parameter information. */ 1679 for (index = 0; index < SCI_MAX_PHYS; index++) { 1680 /* Default to 3G (i.e. Gen 2). */ 1681 ihost->user_parameters.phys[index].max_speed_generation = 1682 SCIC_SDS_PARM_GEN2_SPEED; 1683 1684 /* the frequencies cannot be 0 */ 1685 ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f; 1686 ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff; 1687 ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33; 1688 1689 /* 1690 * Previous Vitesse based expanders had a arbitration issue that 1691 * is worked around by having the upper 32-bits of SAS address 1692 * with a value greater then the Vitesse company identifier. 1693 * Hence, usage of 0x5FCFFFFF. */ 1694 ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id; 1695 ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF; 1696 } 1697 1698 ihost->user_parameters.stp_inactivity_timeout = 5; 1699 ihost->user_parameters.ssp_inactivity_timeout = 5; 1700 ihost->user_parameters.stp_max_occupancy_timeout = 5; 1701 ihost->user_parameters.ssp_max_occupancy_timeout = 20; 1702 ihost->user_parameters.no_outbound_task_timeout = 2; 1703 } 1704 1705 static void controller_timeout(unsigned long data) 1706 { 1707 struct sci_timer *tmr = (struct sci_timer *)data; 1708 struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer); 1709 struct sci_base_state_machine *sm = &ihost->sm; 1710 unsigned long flags; 1711 1712 spin_lock_irqsave(&ihost->scic_lock, flags); 1713 1714 if (tmr->cancel) 1715 goto done; 1716 1717 if (sm->current_state_id == SCIC_STARTING) 1718 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT); 1719 else if (sm->current_state_id == SCIC_STOPPING) { 1720 sci_change_state(sm, SCIC_FAILED); 1721 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT); 1722 } else /* / @todo Now what do we want to do in this case? */ 1723 dev_err(&ihost->pdev->dev, 1724 "%s: Controller timer fired when controller was not " 1725 "in a state being timed.\n", 1726 __func__); 1727 1728 done: 1729 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1730 } 1731 1732 static enum sci_status sci_controller_construct(struct isci_host *ihost, 1733 void __iomem *scu_base, 1734 void __iomem *smu_base) 1735 { 1736 u8 i; 1737 1738 sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL); 1739 1740 ihost->scu_registers = scu_base; 1741 ihost->smu_registers = smu_base; 1742 1743 sci_port_configuration_agent_construct(&ihost->port_agent); 1744 1745 /* Construct the ports for this controller */ 1746 for (i = 0; i < SCI_MAX_PORTS; i++) 1747 sci_port_construct(&ihost->ports[i], i, ihost); 1748 sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost); 1749 1750 /* Construct the phys for this controller */ 1751 for (i = 0; i < SCI_MAX_PHYS; i++) { 1752 /* Add all the PHYs to the dummy port */ 1753 sci_phy_construct(&ihost->phys[i], 1754 &ihost->ports[SCI_MAX_PORTS], i); 1755 } 1756 1757 ihost->invalid_phy_mask = 0; 1758 1759 sci_init_timer(&ihost->timer, controller_timeout); 1760 1761 /* Initialize the User and OEM parameters to default values. */ 1762 sci_controller_set_default_config_parameters(ihost); 1763 1764 return sci_controller_reset(ihost); 1765 } 1766 1767 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version) 1768 { 1769 int i; 1770 1771 for (i = 0; i < SCI_MAX_PORTS; i++) 1772 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX) 1773 return -EINVAL; 1774 1775 for (i = 0; i < SCI_MAX_PHYS; i++) 1776 if (oem->phys[i].sas_address.high == 0 && 1777 oem->phys[i].sas_address.low == 0) 1778 return -EINVAL; 1779 1780 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) { 1781 for (i = 0; i < SCI_MAX_PHYS; i++) 1782 if (oem->ports[i].phy_mask != 0) 1783 return -EINVAL; 1784 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 1785 u8 phy_mask = 0; 1786 1787 for (i = 0; i < SCI_MAX_PHYS; i++) 1788 phy_mask |= oem->ports[i].phy_mask; 1789 1790 if (phy_mask == 0) 1791 return -EINVAL; 1792 } else 1793 return -EINVAL; 1794 1795 if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT || 1796 oem->controller.max_concurr_spin_up < 1) 1797 return -EINVAL; 1798 1799 if (oem->controller.do_enable_ssc) { 1800 if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1) 1801 return -EINVAL; 1802 1803 if (version >= ISCI_ROM_VER_1_1) { 1804 u8 test = oem->controller.ssc_sata_tx_spread_level; 1805 1806 switch (test) { 1807 case 0: 1808 case 2: 1809 case 3: 1810 case 6: 1811 case 7: 1812 break; 1813 default: 1814 return -EINVAL; 1815 } 1816 1817 test = oem->controller.ssc_sas_tx_spread_level; 1818 if (oem->controller.ssc_sas_tx_type == 0) { 1819 switch (test) { 1820 case 0: 1821 case 2: 1822 case 3: 1823 break; 1824 default: 1825 return -EINVAL; 1826 } 1827 } else if (oem->controller.ssc_sas_tx_type == 1) { 1828 switch (test) { 1829 case 0: 1830 case 3: 1831 case 6: 1832 break; 1833 default: 1834 return -EINVAL; 1835 } 1836 } 1837 } 1838 } 1839 1840 return 0; 1841 } 1842 1843 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost) 1844 { 1845 u32 state = ihost->sm.current_state_id; 1846 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev); 1847 1848 if (state == SCIC_RESET || 1849 state == SCIC_INITIALIZING || 1850 state == SCIC_INITIALIZED) { 1851 1852 if (sci_oem_parameters_validate(&ihost->oem_parameters, 1853 pci_info->orom->hdr.version)) 1854 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1855 1856 return SCI_SUCCESS; 1857 } 1858 1859 return SCI_FAILURE_INVALID_STATE; 1860 } 1861 1862 static u8 max_spin_up(struct isci_host *ihost) 1863 { 1864 if (ihost->user_parameters.max_concurr_spinup) 1865 return min_t(u8, ihost->user_parameters.max_concurr_spinup, 1866 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); 1867 else 1868 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up, 1869 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); 1870 } 1871 1872 static void power_control_timeout(unsigned long data) 1873 { 1874 struct sci_timer *tmr = (struct sci_timer *)data; 1875 struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer); 1876 struct isci_phy *iphy; 1877 unsigned long flags; 1878 u8 i; 1879 1880 spin_lock_irqsave(&ihost->scic_lock, flags); 1881 1882 if (tmr->cancel) 1883 goto done; 1884 1885 ihost->power_control.phys_granted_power = 0; 1886 1887 if (ihost->power_control.phys_waiting == 0) { 1888 ihost->power_control.timer_started = false; 1889 goto done; 1890 } 1891 1892 for (i = 0; i < SCI_MAX_PHYS; i++) { 1893 1894 if (ihost->power_control.phys_waiting == 0) 1895 break; 1896 1897 iphy = ihost->power_control.requesters[i]; 1898 if (iphy == NULL) 1899 continue; 1900 1901 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost)) 1902 break; 1903 1904 ihost->power_control.requesters[i] = NULL; 1905 ihost->power_control.phys_waiting--; 1906 ihost->power_control.phys_granted_power++; 1907 sci_phy_consume_power_handler(iphy); 1908 1909 if (iphy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) { 1910 u8 j; 1911 1912 for (j = 0; j < SCI_MAX_PHYS; j++) { 1913 struct isci_phy *requester = ihost->power_control.requesters[j]; 1914 1915 /* 1916 * Search the power_control queue to see if there are other phys 1917 * attached to the same remote device. If found, take all of 1918 * them out of await_sas_power state. 1919 */ 1920 if (requester != NULL && requester != iphy) { 1921 u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr, 1922 iphy->frame_rcvd.iaf.sas_addr, 1923 sizeof(requester->frame_rcvd.iaf.sas_addr)); 1924 1925 if (other == 0) { 1926 ihost->power_control.requesters[j] = NULL; 1927 ihost->power_control.phys_waiting--; 1928 sci_phy_consume_power_handler(requester); 1929 } 1930 } 1931 } 1932 } 1933 } 1934 1935 /* 1936 * It doesn't matter if the power list is empty, we need to start the 1937 * timer in case another phy becomes ready. 1938 */ 1939 sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1940 ihost->power_control.timer_started = true; 1941 1942 done: 1943 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1944 } 1945 1946 void sci_controller_power_control_queue_insert(struct isci_host *ihost, 1947 struct isci_phy *iphy) 1948 { 1949 BUG_ON(iphy == NULL); 1950 1951 if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) { 1952 ihost->power_control.phys_granted_power++; 1953 sci_phy_consume_power_handler(iphy); 1954 1955 /* 1956 * stop and start the power_control timer. When the timer fires, the 1957 * no_of_phys_granted_power will be set to 0 1958 */ 1959 if (ihost->power_control.timer_started) 1960 sci_del_timer(&ihost->power_control.timer); 1961 1962 sci_mod_timer(&ihost->power_control.timer, 1963 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1964 ihost->power_control.timer_started = true; 1965 1966 } else { 1967 /* 1968 * There are phys, attached to the same sas address as this phy, are 1969 * already in READY state, this phy don't need wait. 1970 */ 1971 u8 i; 1972 struct isci_phy *current_phy; 1973 1974 for (i = 0; i < SCI_MAX_PHYS; i++) { 1975 u8 other; 1976 current_phy = &ihost->phys[i]; 1977 1978 other = memcmp(current_phy->frame_rcvd.iaf.sas_addr, 1979 iphy->frame_rcvd.iaf.sas_addr, 1980 sizeof(current_phy->frame_rcvd.iaf.sas_addr)); 1981 1982 if (current_phy->sm.current_state_id == SCI_PHY_READY && 1983 current_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS && 1984 other == 0) { 1985 sci_phy_consume_power_handler(iphy); 1986 break; 1987 } 1988 } 1989 1990 if (i == SCI_MAX_PHYS) { 1991 /* Add the phy in the waiting list */ 1992 ihost->power_control.requesters[iphy->phy_index] = iphy; 1993 ihost->power_control.phys_waiting++; 1994 } 1995 } 1996 } 1997 1998 void sci_controller_power_control_queue_remove(struct isci_host *ihost, 1999 struct isci_phy *iphy) 2000 { 2001 BUG_ON(iphy == NULL); 2002 2003 if (ihost->power_control.requesters[iphy->phy_index]) 2004 ihost->power_control.phys_waiting--; 2005 2006 ihost->power_control.requesters[iphy->phy_index] = NULL; 2007 } 2008 2009 static int is_long_cable(int phy, unsigned char selection_byte) 2010 { 2011 return !!(selection_byte & (1 << phy)); 2012 } 2013 2014 static int is_medium_cable(int phy, unsigned char selection_byte) 2015 { 2016 return !!(selection_byte & (1 << (phy + 4))); 2017 } 2018 2019 static enum cable_selections decode_selection_byte( 2020 int phy, 2021 unsigned char selection_byte) 2022 { 2023 return ((selection_byte & (1 << phy)) ? 1 : 0) 2024 + (selection_byte & (1 << (phy + 4)) ? 2 : 0); 2025 } 2026 2027 static unsigned char *to_cable_select(struct isci_host *ihost) 2028 { 2029 if (is_cable_select_overridden()) 2030 return ((unsigned char *)&cable_selection_override) 2031 + ihost->id; 2032 else 2033 return &ihost->oem_parameters.controller.cable_selection_mask; 2034 } 2035 2036 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy) 2037 { 2038 return decode_selection_byte(phy, *to_cable_select(ihost)); 2039 } 2040 2041 char *lookup_cable_names(enum cable_selections selection) 2042 { 2043 static char *cable_names[] = { 2044 [short_cable] = "short", 2045 [long_cable] = "long", 2046 [medium_cable] = "medium", 2047 [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */ 2048 }; 2049 return (selection <= undefined_cable) ? cable_names[selection] 2050 : cable_names[undefined_cable]; 2051 } 2052 2053 #define AFE_REGISTER_WRITE_DELAY 10 2054 2055 static void sci_controller_afe_initialization(struct isci_host *ihost) 2056 { 2057 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe; 2058 const struct sci_oem_params *oem = &ihost->oem_parameters; 2059 struct pci_dev *pdev = ihost->pdev; 2060 u32 afe_status; 2061 u32 phy_id; 2062 unsigned char cable_selection_mask = *to_cable_select(ihost); 2063 2064 /* Clear DFX Status registers */ 2065 writel(0x0081000f, &afe->afe_dfx_master_control0); 2066 udelay(AFE_REGISTER_WRITE_DELAY); 2067 2068 if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) { 2069 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement 2070 * Timer, PM Stagger Timer 2071 */ 2072 writel(0x0007FFFF, &afe->afe_pmsn_master_control2); 2073 udelay(AFE_REGISTER_WRITE_DELAY); 2074 } 2075 2076 /* Configure bias currents to normal */ 2077 if (is_a2(pdev)) 2078 writel(0x00005A00, &afe->afe_bias_control); 2079 else if (is_b0(pdev) || is_c0(pdev)) 2080 writel(0x00005F00, &afe->afe_bias_control); 2081 else if (is_c1(pdev)) 2082 writel(0x00005500, &afe->afe_bias_control); 2083 2084 udelay(AFE_REGISTER_WRITE_DELAY); 2085 2086 /* Enable PLL */ 2087 if (is_a2(pdev)) 2088 writel(0x80040908, &afe->afe_pll_control0); 2089 else if (is_b0(pdev) || is_c0(pdev)) 2090 writel(0x80040A08, &afe->afe_pll_control0); 2091 else if (is_c1(pdev)) { 2092 writel(0x80000B08, &afe->afe_pll_control0); 2093 udelay(AFE_REGISTER_WRITE_DELAY); 2094 writel(0x00000B08, &afe->afe_pll_control0); 2095 udelay(AFE_REGISTER_WRITE_DELAY); 2096 writel(0x80000B08, &afe->afe_pll_control0); 2097 } 2098 2099 udelay(AFE_REGISTER_WRITE_DELAY); 2100 2101 /* Wait for the PLL to lock */ 2102 do { 2103 afe_status = readl(&afe->afe_common_block_status); 2104 udelay(AFE_REGISTER_WRITE_DELAY); 2105 } while ((afe_status & 0x00001000) == 0); 2106 2107 if (is_a2(pdev)) { 2108 /* Shorten SAS SNW lock time (RxLock timer value from 76 2109 * us to 50 us) 2110 */ 2111 writel(0x7bcc96ad, &afe->afe_pmsn_master_control0); 2112 udelay(AFE_REGISTER_WRITE_DELAY); 2113 } 2114 2115 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) { 2116 struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id]; 2117 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id]; 2118 int cable_length_long = 2119 is_long_cable(phy_id, cable_selection_mask); 2120 int cable_length_medium = 2121 is_medium_cable(phy_id, cable_selection_mask); 2122 2123 if (is_a2(pdev)) { 2124 /* All defaults, except the Receive Word 2125 * Alignament/Comma Detect Enable....(0xe800) 2126 */ 2127 writel(0x00004512, &xcvr->afe_xcvr_control0); 2128 udelay(AFE_REGISTER_WRITE_DELAY); 2129 2130 writel(0x0050100F, &xcvr->afe_xcvr_control1); 2131 udelay(AFE_REGISTER_WRITE_DELAY); 2132 } else if (is_b0(pdev)) { 2133 /* Configure transmitter SSC parameters */ 2134 writel(0x00030000, &xcvr->afe_tx_ssc_control); 2135 udelay(AFE_REGISTER_WRITE_DELAY); 2136 } else if (is_c0(pdev)) { 2137 /* Configure transmitter SSC parameters */ 2138 writel(0x00010202, &xcvr->afe_tx_ssc_control); 2139 udelay(AFE_REGISTER_WRITE_DELAY); 2140 2141 /* All defaults, except the Receive Word 2142 * Alignament/Comma Detect Enable....(0xe800) 2143 */ 2144 writel(0x00014500, &xcvr->afe_xcvr_control0); 2145 udelay(AFE_REGISTER_WRITE_DELAY); 2146 } else if (is_c1(pdev)) { 2147 /* Configure transmitter SSC parameters */ 2148 writel(0x00010202, &xcvr->afe_tx_ssc_control); 2149 udelay(AFE_REGISTER_WRITE_DELAY); 2150 2151 /* All defaults, except the Receive Word 2152 * Alignament/Comma Detect Enable....(0xe800) 2153 */ 2154 writel(0x0001C500, &xcvr->afe_xcvr_control0); 2155 udelay(AFE_REGISTER_WRITE_DELAY); 2156 } 2157 2158 /* Power up TX and RX out from power down (PWRDNTX and 2159 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c) 2160 */ 2161 if (is_a2(pdev)) 2162 writel(0x000003F0, &xcvr->afe_channel_control); 2163 else if (is_b0(pdev)) { 2164 writel(0x000003D7, &xcvr->afe_channel_control); 2165 udelay(AFE_REGISTER_WRITE_DELAY); 2166 2167 writel(0x000003D4, &xcvr->afe_channel_control); 2168 } else if (is_c0(pdev)) { 2169 writel(0x000001E7, &xcvr->afe_channel_control); 2170 udelay(AFE_REGISTER_WRITE_DELAY); 2171 2172 writel(0x000001E4, &xcvr->afe_channel_control); 2173 } else if (is_c1(pdev)) { 2174 writel(cable_length_long ? 0x000002F7 : 0x000001F7, 2175 &xcvr->afe_channel_control); 2176 udelay(AFE_REGISTER_WRITE_DELAY); 2177 2178 writel(cable_length_long ? 0x000002F4 : 0x000001F4, 2179 &xcvr->afe_channel_control); 2180 } 2181 udelay(AFE_REGISTER_WRITE_DELAY); 2182 2183 if (is_a2(pdev)) { 2184 /* Enable TX equalization (0xe824) */ 2185 writel(0x00040000, &xcvr->afe_tx_control); 2186 udelay(AFE_REGISTER_WRITE_DELAY); 2187 } 2188 2189 if (is_a2(pdev) || is_b0(pdev)) 2190 /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, 2191 * TPD=0x0(TX Power On), RDD=0x0(RX Detect 2192 * Enabled) ....(0xe800) 2193 */ 2194 writel(0x00004100, &xcvr->afe_xcvr_control0); 2195 else if (is_c0(pdev)) 2196 writel(0x00014100, &xcvr->afe_xcvr_control0); 2197 else if (is_c1(pdev)) 2198 writel(0x0001C100, &xcvr->afe_xcvr_control0); 2199 udelay(AFE_REGISTER_WRITE_DELAY); 2200 2201 /* Leave DFE/FFE on */ 2202 if (is_a2(pdev)) 2203 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); 2204 else if (is_b0(pdev)) { 2205 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); 2206 udelay(AFE_REGISTER_WRITE_DELAY); 2207 /* Enable TX equalization (0xe824) */ 2208 writel(0x00040000, &xcvr->afe_tx_control); 2209 } else if (is_c0(pdev)) { 2210 writel(0x01400C0F, &xcvr->afe_rx_ssc_control1); 2211 udelay(AFE_REGISTER_WRITE_DELAY); 2212 2213 writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0); 2214 udelay(AFE_REGISTER_WRITE_DELAY); 2215 2216 /* Enable TX equalization (0xe824) */ 2217 writel(0x00040000, &xcvr->afe_tx_control); 2218 } else if (is_c1(pdev)) { 2219 writel(cable_length_long ? 0x01500C0C : 2220 cable_length_medium ? 0x01400C0D : 0x02400C0D, 2221 &xcvr->afe_xcvr_control1); 2222 udelay(AFE_REGISTER_WRITE_DELAY); 2223 2224 writel(0x000003E0, &xcvr->afe_dfx_rx_control1); 2225 udelay(AFE_REGISTER_WRITE_DELAY); 2226 2227 writel(cable_length_long ? 0x33091C1F : 2228 cable_length_medium ? 0x3315181F : 0x2B17161F, 2229 &xcvr->afe_rx_ssc_control0); 2230 udelay(AFE_REGISTER_WRITE_DELAY); 2231 2232 /* Enable TX equalization (0xe824) */ 2233 writel(0x00040000, &xcvr->afe_tx_control); 2234 } 2235 2236 udelay(AFE_REGISTER_WRITE_DELAY); 2237 2238 writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0); 2239 udelay(AFE_REGISTER_WRITE_DELAY); 2240 2241 writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1); 2242 udelay(AFE_REGISTER_WRITE_DELAY); 2243 2244 writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2); 2245 udelay(AFE_REGISTER_WRITE_DELAY); 2246 2247 writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3); 2248 udelay(AFE_REGISTER_WRITE_DELAY); 2249 } 2250 2251 /* Transfer control to the PEs */ 2252 writel(0x00010f00, &afe->afe_dfx_master_control0); 2253 udelay(AFE_REGISTER_WRITE_DELAY); 2254 } 2255 2256 static void sci_controller_initialize_power_control(struct isci_host *ihost) 2257 { 2258 sci_init_timer(&ihost->power_control.timer, power_control_timeout); 2259 2260 memset(ihost->power_control.requesters, 0, 2261 sizeof(ihost->power_control.requesters)); 2262 2263 ihost->power_control.phys_waiting = 0; 2264 ihost->power_control.phys_granted_power = 0; 2265 } 2266 2267 static enum sci_status sci_controller_initialize(struct isci_host *ihost) 2268 { 2269 struct sci_base_state_machine *sm = &ihost->sm; 2270 enum sci_status result = SCI_FAILURE; 2271 unsigned long i, state, val; 2272 2273 if (ihost->sm.current_state_id != SCIC_RESET) { 2274 dev_warn(&ihost->pdev->dev, 2275 "SCIC Controller initialize operation requested " 2276 "in invalid state\n"); 2277 return SCI_FAILURE_INVALID_STATE; 2278 } 2279 2280 sci_change_state(sm, SCIC_INITIALIZING); 2281 2282 sci_init_timer(&ihost->phy_timer, phy_startup_timeout); 2283 2284 ihost->next_phy_to_start = 0; 2285 ihost->phy_startup_timer_pending = false; 2286 2287 sci_controller_initialize_power_control(ihost); 2288 2289 /* 2290 * There is nothing to do here for B0 since we do not have to 2291 * program the AFE registers. 2292 * / @todo The AFE settings are supposed to be correct for the B0 but 2293 * / presently they seem to be wrong. */ 2294 sci_controller_afe_initialization(ihost); 2295 2296 2297 /* Take the hardware out of reset */ 2298 writel(0, &ihost->smu_registers->soft_reset_control); 2299 2300 /* 2301 * / @todo Provide meaningfull error code for hardware failure 2302 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */ 2303 for (i = 100; i >= 1; i--) { 2304 u32 status; 2305 2306 /* Loop until the hardware reports success */ 2307 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME); 2308 status = readl(&ihost->smu_registers->control_status); 2309 2310 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED) 2311 break; 2312 } 2313 if (i == 0) 2314 goto out; 2315 2316 /* 2317 * Determine what are the actaul device capacities that the 2318 * hardware will support */ 2319 val = readl(&ihost->smu_registers->device_context_capacity); 2320 2321 /* Record the smaller of the two capacity values */ 2322 ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS); 2323 ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS); 2324 ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES); 2325 2326 /* 2327 * Make all PEs that are unassigned match up with the 2328 * logical ports 2329 */ 2330 for (i = 0; i < ihost->logical_port_entries; i++) { 2331 struct scu_port_task_scheduler_group_registers __iomem 2332 *ptsg = &ihost->scu_registers->peg0.ptsg; 2333 2334 writel(i, &ptsg->protocol_engine[i]); 2335 } 2336 2337 /* Initialize hardware PCI Relaxed ordering in DMA engines */ 2338 val = readl(&ihost->scu_registers->sdma.pdma_configuration); 2339 val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2340 writel(val, &ihost->scu_registers->sdma.pdma_configuration); 2341 2342 val = readl(&ihost->scu_registers->sdma.cdma_configuration); 2343 val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2344 writel(val, &ihost->scu_registers->sdma.cdma_configuration); 2345 2346 /* 2347 * Initialize the PHYs before the PORTs because the PHY registers 2348 * are accessed during the port initialization. 2349 */ 2350 for (i = 0; i < SCI_MAX_PHYS; i++) { 2351 result = sci_phy_initialize(&ihost->phys[i], 2352 &ihost->scu_registers->peg0.pe[i].tl, 2353 &ihost->scu_registers->peg0.pe[i].ll); 2354 if (result != SCI_SUCCESS) 2355 goto out; 2356 } 2357 2358 for (i = 0; i < ihost->logical_port_entries; i++) { 2359 struct isci_port *iport = &ihost->ports[i]; 2360 2361 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i]; 2362 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0]; 2363 iport->viit_registers = &ihost->scu_registers->peg0.viit[i]; 2364 } 2365 2366 result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent); 2367 2368 out: 2369 /* Advance the controller state machine */ 2370 if (result == SCI_SUCCESS) 2371 state = SCIC_INITIALIZED; 2372 else 2373 state = SCIC_FAILED; 2374 sci_change_state(sm, state); 2375 2376 return result; 2377 } 2378 2379 static enum sci_status sci_user_parameters_set(struct isci_host *ihost, 2380 struct sci_user_parameters *sci_parms) 2381 { 2382 u32 state = ihost->sm.current_state_id; 2383 2384 if (state == SCIC_RESET || 2385 state == SCIC_INITIALIZING || 2386 state == SCIC_INITIALIZED) { 2387 u16 index; 2388 2389 /* 2390 * Validate the user parameters. If they are not legal, then 2391 * return a failure. 2392 */ 2393 for (index = 0; index < SCI_MAX_PHYS; index++) { 2394 struct sci_phy_user_params *user_phy; 2395 2396 user_phy = &sci_parms->phys[index]; 2397 2398 if (!((user_phy->max_speed_generation <= 2399 SCIC_SDS_PARM_MAX_SPEED) && 2400 (user_phy->max_speed_generation > 2401 SCIC_SDS_PARM_NO_SPEED))) 2402 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2403 2404 if (user_phy->in_connection_align_insertion_frequency < 2405 3) 2406 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2407 2408 if ((user_phy->in_connection_align_insertion_frequency < 2409 3) || 2410 (user_phy->align_insertion_frequency == 0) || 2411 (user_phy-> 2412 notify_enable_spin_up_insertion_frequency == 2413 0)) 2414 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2415 } 2416 2417 if ((sci_parms->stp_inactivity_timeout == 0) || 2418 (sci_parms->ssp_inactivity_timeout == 0) || 2419 (sci_parms->stp_max_occupancy_timeout == 0) || 2420 (sci_parms->ssp_max_occupancy_timeout == 0) || 2421 (sci_parms->no_outbound_task_timeout == 0)) 2422 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2423 2424 memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms)); 2425 2426 return SCI_SUCCESS; 2427 } 2428 2429 return SCI_FAILURE_INVALID_STATE; 2430 } 2431 2432 static int sci_controller_mem_init(struct isci_host *ihost) 2433 { 2434 struct device *dev = &ihost->pdev->dev; 2435 dma_addr_t dma; 2436 size_t size; 2437 int err; 2438 2439 size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32); 2440 ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL); 2441 if (!ihost->completion_queue) 2442 return -ENOMEM; 2443 2444 writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower); 2445 writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper); 2446 2447 size = ihost->remote_node_entries * sizeof(union scu_remote_node_context); 2448 ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma, 2449 GFP_KERNEL); 2450 if (!ihost->remote_node_context_table) 2451 return -ENOMEM; 2452 2453 writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower); 2454 writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper); 2455 2456 size = ihost->task_context_entries * sizeof(struct scu_task_context), 2457 ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL); 2458 if (!ihost->task_context_table) 2459 return -ENOMEM; 2460 2461 ihost->task_context_dma = dma; 2462 writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower); 2463 writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper); 2464 2465 err = sci_unsolicited_frame_control_construct(ihost); 2466 if (err) 2467 return err; 2468 2469 /* 2470 * Inform the silicon as to the location of the UF headers and 2471 * address table. 2472 */ 2473 writel(lower_32_bits(ihost->uf_control.headers.physical_address), 2474 &ihost->scu_registers->sdma.uf_header_base_address_lower); 2475 writel(upper_32_bits(ihost->uf_control.headers.physical_address), 2476 &ihost->scu_registers->sdma.uf_header_base_address_upper); 2477 2478 writel(lower_32_bits(ihost->uf_control.address_table.physical_address), 2479 &ihost->scu_registers->sdma.uf_address_table_lower); 2480 writel(upper_32_bits(ihost->uf_control.address_table.physical_address), 2481 &ihost->scu_registers->sdma.uf_address_table_upper); 2482 2483 return 0; 2484 } 2485 2486 int isci_host_init(struct isci_host *ihost) 2487 { 2488 int err = 0, i; 2489 enum sci_status status; 2490 struct sci_user_parameters sci_user_params; 2491 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev); 2492 2493 spin_lock_init(&ihost->state_lock); 2494 spin_lock_init(&ihost->scic_lock); 2495 init_waitqueue_head(&ihost->eventq); 2496 2497 isci_host_change_state(ihost, isci_starting); 2498 2499 status = sci_controller_construct(ihost, scu_base(ihost), 2500 smu_base(ihost)); 2501 2502 if (status != SCI_SUCCESS) { 2503 dev_err(&ihost->pdev->dev, 2504 "%s: sci_controller_construct failed - status = %x\n", 2505 __func__, 2506 status); 2507 return -ENODEV; 2508 } 2509 2510 ihost->sas_ha.dev = &ihost->pdev->dev; 2511 ihost->sas_ha.lldd_ha = ihost; 2512 2513 /* 2514 * grab initial values stored in the controller object for OEM and USER 2515 * parameters 2516 */ 2517 isci_user_parameters_get(&sci_user_params); 2518 status = sci_user_parameters_set(ihost, &sci_user_params); 2519 if (status != SCI_SUCCESS) { 2520 dev_warn(&ihost->pdev->dev, 2521 "%s: sci_user_parameters_set failed\n", 2522 __func__); 2523 return -ENODEV; 2524 } 2525 2526 /* grab any OEM parameters specified in orom */ 2527 if (pci_info->orom) { 2528 status = isci_parse_oem_parameters(&ihost->oem_parameters, 2529 pci_info->orom, 2530 ihost->id); 2531 if (status != SCI_SUCCESS) { 2532 dev_warn(&ihost->pdev->dev, 2533 "parsing firmware oem parameters failed\n"); 2534 return -EINVAL; 2535 } 2536 } 2537 2538 status = sci_oem_parameters_set(ihost); 2539 if (status != SCI_SUCCESS) { 2540 dev_warn(&ihost->pdev->dev, 2541 "%s: sci_oem_parameters_set failed\n", 2542 __func__); 2543 return -ENODEV; 2544 } 2545 2546 tasklet_init(&ihost->completion_tasklet, 2547 isci_host_completion_routine, (unsigned long)ihost); 2548 2549 INIT_LIST_HEAD(&ihost->requests_to_complete); 2550 INIT_LIST_HEAD(&ihost->requests_to_errorback); 2551 2552 spin_lock_irq(&ihost->scic_lock); 2553 status = sci_controller_initialize(ihost); 2554 spin_unlock_irq(&ihost->scic_lock); 2555 if (status != SCI_SUCCESS) { 2556 dev_warn(&ihost->pdev->dev, 2557 "%s: sci_controller_initialize failed -" 2558 " status = 0x%x\n", 2559 __func__, status); 2560 return -ENODEV; 2561 } 2562 2563 err = sci_controller_mem_init(ihost); 2564 if (err) 2565 return err; 2566 2567 for (i = 0; i < SCI_MAX_PORTS; i++) 2568 isci_port_init(&ihost->ports[i], ihost, i); 2569 2570 for (i = 0; i < SCI_MAX_PHYS; i++) 2571 isci_phy_init(&ihost->phys[i], ihost, i); 2572 2573 /* enable sgpio */ 2574 writel(1, &ihost->scu_registers->peg0.sgpio.interface_control); 2575 for (i = 0; i < isci_gpio_count(ihost); i++) 2576 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); 2577 writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code); 2578 2579 for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) { 2580 struct isci_remote_device *idev = &ihost->devices[i]; 2581 2582 INIT_LIST_HEAD(&idev->reqs_in_process); 2583 INIT_LIST_HEAD(&idev->node); 2584 } 2585 2586 for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) { 2587 struct isci_request *ireq; 2588 dma_addr_t dma; 2589 2590 ireq = dmam_alloc_coherent(&ihost->pdev->dev, 2591 sizeof(struct isci_request), &dma, 2592 GFP_KERNEL); 2593 if (!ireq) 2594 return -ENOMEM; 2595 2596 ireq->tc = &ihost->task_context_table[i]; 2597 ireq->owning_controller = ihost; 2598 spin_lock_init(&ireq->state_lock); 2599 ireq->request_daddr = dma; 2600 ireq->isci_host = ihost; 2601 ihost->reqs[i] = ireq; 2602 } 2603 2604 return 0; 2605 } 2606 2607 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport, 2608 struct isci_phy *iphy) 2609 { 2610 switch (ihost->sm.current_state_id) { 2611 case SCIC_STARTING: 2612 sci_del_timer(&ihost->phy_timer); 2613 ihost->phy_startup_timer_pending = false; 2614 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, 2615 iport, iphy); 2616 sci_controller_start_next_phy(ihost); 2617 break; 2618 case SCIC_READY: 2619 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, 2620 iport, iphy); 2621 break; 2622 default: 2623 dev_dbg(&ihost->pdev->dev, 2624 "%s: SCIC Controller linkup event from phy %d in " 2625 "unexpected state %d\n", __func__, iphy->phy_index, 2626 ihost->sm.current_state_id); 2627 } 2628 } 2629 2630 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport, 2631 struct isci_phy *iphy) 2632 { 2633 switch (ihost->sm.current_state_id) { 2634 case SCIC_STARTING: 2635 case SCIC_READY: 2636 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent, 2637 iport, iphy); 2638 break; 2639 default: 2640 dev_dbg(&ihost->pdev->dev, 2641 "%s: SCIC Controller linkdown event from phy %d in " 2642 "unexpected state %d\n", 2643 __func__, 2644 iphy->phy_index, 2645 ihost->sm.current_state_id); 2646 } 2647 } 2648 2649 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost) 2650 { 2651 u32 index; 2652 2653 for (index = 0; index < ihost->remote_node_entries; index++) { 2654 if ((ihost->device_table[index] != NULL) && 2655 (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING)) 2656 return true; 2657 } 2658 2659 return false; 2660 } 2661 2662 void sci_controller_remote_device_stopped(struct isci_host *ihost, 2663 struct isci_remote_device *idev) 2664 { 2665 if (ihost->sm.current_state_id != SCIC_STOPPING) { 2666 dev_dbg(&ihost->pdev->dev, 2667 "SCIC Controller 0x%p remote device stopped event " 2668 "from device 0x%p in unexpected state %d\n", 2669 ihost, idev, 2670 ihost->sm.current_state_id); 2671 return; 2672 } 2673 2674 if (!sci_controller_has_remote_devices_stopping(ihost)) 2675 sci_change_state(&ihost->sm, SCIC_STOPPED); 2676 } 2677 2678 void sci_controller_post_request(struct isci_host *ihost, u32 request) 2679 { 2680 dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n", 2681 __func__, ihost->id, request); 2682 2683 writel(request, &ihost->smu_registers->post_context_port); 2684 } 2685 2686 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag) 2687 { 2688 u16 task_index; 2689 u16 task_sequence; 2690 2691 task_index = ISCI_TAG_TCI(io_tag); 2692 2693 if (task_index < ihost->task_context_entries) { 2694 struct isci_request *ireq = ihost->reqs[task_index]; 2695 2696 if (test_bit(IREQ_ACTIVE, &ireq->flags)) { 2697 task_sequence = ISCI_TAG_SEQ(io_tag); 2698 2699 if (task_sequence == ihost->io_request_sequence[task_index]) 2700 return ireq; 2701 } 2702 } 2703 2704 return NULL; 2705 } 2706 2707 /** 2708 * This method allocates remote node index and the reserves the remote node 2709 * context space for use. This method can fail if there are no more remote 2710 * node index available. 2711 * @scic: This is the controller object which contains the set of 2712 * free remote node ids 2713 * @sci_dev: This is the device object which is requesting the a remote node 2714 * id 2715 * @node_id: This is the remote node id that is assinged to the device if one 2716 * is available 2717 * 2718 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote 2719 * node index available. 2720 */ 2721 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost, 2722 struct isci_remote_device *idev, 2723 u16 *node_id) 2724 { 2725 u16 node_index; 2726 u32 remote_node_count = sci_remote_device_node_count(idev); 2727 2728 node_index = sci_remote_node_table_allocate_remote_node( 2729 &ihost->available_remote_nodes, remote_node_count 2730 ); 2731 2732 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 2733 ihost->device_table[node_index] = idev; 2734 2735 *node_id = node_index; 2736 2737 return SCI_SUCCESS; 2738 } 2739 2740 return SCI_FAILURE_INSUFFICIENT_RESOURCES; 2741 } 2742 2743 void sci_controller_free_remote_node_context(struct isci_host *ihost, 2744 struct isci_remote_device *idev, 2745 u16 node_id) 2746 { 2747 u32 remote_node_count = sci_remote_device_node_count(idev); 2748 2749 if (ihost->device_table[node_id] == idev) { 2750 ihost->device_table[node_id] = NULL; 2751 2752 sci_remote_node_table_release_remote_node_index( 2753 &ihost->available_remote_nodes, remote_node_count, node_id 2754 ); 2755 } 2756 } 2757 2758 void sci_controller_copy_sata_response(void *response_buffer, 2759 void *frame_header, 2760 void *frame_buffer) 2761 { 2762 /* XXX type safety? */ 2763 memcpy(response_buffer, frame_header, sizeof(u32)); 2764 2765 memcpy(response_buffer + sizeof(u32), 2766 frame_buffer, 2767 sizeof(struct dev_to_host_fis) - sizeof(u32)); 2768 } 2769 2770 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index) 2771 { 2772 if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index)) 2773 writel(ihost->uf_control.get, 2774 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 2775 } 2776 2777 void isci_tci_free(struct isci_host *ihost, u16 tci) 2778 { 2779 u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1); 2780 2781 ihost->tci_pool[tail] = tci; 2782 ihost->tci_tail = tail + 1; 2783 } 2784 2785 static u16 isci_tci_alloc(struct isci_host *ihost) 2786 { 2787 u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1); 2788 u16 tci = ihost->tci_pool[head]; 2789 2790 ihost->tci_head = head + 1; 2791 return tci; 2792 } 2793 2794 static u16 isci_tci_space(struct isci_host *ihost) 2795 { 2796 return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); 2797 } 2798 2799 u16 isci_alloc_tag(struct isci_host *ihost) 2800 { 2801 if (isci_tci_space(ihost)) { 2802 u16 tci = isci_tci_alloc(ihost); 2803 u8 seq = ihost->io_request_sequence[tci]; 2804 2805 return ISCI_TAG(seq, tci); 2806 } 2807 2808 return SCI_CONTROLLER_INVALID_IO_TAG; 2809 } 2810 2811 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag) 2812 { 2813 u16 tci = ISCI_TAG_TCI(io_tag); 2814 u16 seq = ISCI_TAG_SEQ(io_tag); 2815 2816 /* prevent tail from passing head */ 2817 if (isci_tci_active(ihost) == 0) 2818 return SCI_FAILURE_INVALID_IO_TAG; 2819 2820 if (seq == ihost->io_request_sequence[tci]) { 2821 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1); 2822 2823 isci_tci_free(ihost, tci); 2824 2825 return SCI_SUCCESS; 2826 } 2827 return SCI_FAILURE_INVALID_IO_TAG; 2828 } 2829 2830 enum sci_status sci_controller_start_io(struct isci_host *ihost, 2831 struct isci_remote_device *idev, 2832 struct isci_request *ireq) 2833 { 2834 enum sci_status status; 2835 2836 if (ihost->sm.current_state_id != SCIC_READY) { 2837 dev_warn(&ihost->pdev->dev, "invalid state to start I/O"); 2838 return SCI_FAILURE_INVALID_STATE; 2839 } 2840 2841 status = sci_remote_device_start_io(ihost, idev, ireq); 2842 if (status != SCI_SUCCESS) 2843 return status; 2844 2845 set_bit(IREQ_ACTIVE, &ireq->flags); 2846 sci_controller_post_request(ihost, ireq->post_context); 2847 return SCI_SUCCESS; 2848 } 2849 2850 enum sci_status sci_controller_terminate_request(struct isci_host *ihost, 2851 struct isci_remote_device *idev, 2852 struct isci_request *ireq) 2853 { 2854 /* terminate an ongoing (i.e. started) core IO request. This does not 2855 * abort the IO request at the target, but rather removes the IO 2856 * request from the host controller. 2857 */ 2858 enum sci_status status; 2859 2860 if (ihost->sm.current_state_id != SCIC_READY) { 2861 dev_warn(&ihost->pdev->dev, 2862 "invalid state to terminate request\n"); 2863 return SCI_FAILURE_INVALID_STATE; 2864 } 2865 2866 status = sci_io_request_terminate(ireq); 2867 if (status != SCI_SUCCESS) 2868 return status; 2869 2870 /* 2871 * Utilize the original post context command and or in the POST_TC_ABORT 2872 * request sub-type. 2873 */ 2874 sci_controller_post_request(ihost, 2875 ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT); 2876 return SCI_SUCCESS; 2877 } 2878 2879 /** 2880 * sci_controller_complete_io() - This method will perform core specific 2881 * completion operations for an IO request. After this method is invoked, 2882 * the user should consider the IO request as invalid until it is properly 2883 * reused (i.e. re-constructed). 2884 * @ihost: The handle to the controller object for which to complete the 2885 * IO request. 2886 * @idev: The handle to the remote device object for which to complete 2887 * the IO request. 2888 * @ireq: the handle to the io request object to complete. 2889 */ 2890 enum sci_status sci_controller_complete_io(struct isci_host *ihost, 2891 struct isci_remote_device *idev, 2892 struct isci_request *ireq) 2893 { 2894 enum sci_status status; 2895 u16 index; 2896 2897 switch (ihost->sm.current_state_id) { 2898 case SCIC_STOPPING: 2899 /* XXX: Implement this function */ 2900 return SCI_FAILURE; 2901 case SCIC_READY: 2902 status = sci_remote_device_complete_io(ihost, idev, ireq); 2903 if (status != SCI_SUCCESS) 2904 return status; 2905 2906 index = ISCI_TAG_TCI(ireq->io_tag); 2907 clear_bit(IREQ_ACTIVE, &ireq->flags); 2908 return SCI_SUCCESS; 2909 default: 2910 dev_warn(&ihost->pdev->dev, "invalid state to complete I/O"); 2911 return SCI_FAILURE_INVALID_STATE; 2912 } 2913 2914 } 2915 2916 enum sci_status sci_controller_continue_io(struct isci_request *ireq) 2917 { 2918 struct isci_host *ihost = ireq->owning_controller; 2919 2920 if (ihost->sm.current_state_id != SCIC_READY) { 2921 dev_warn(&ihost->pdev->dev, "invalid state to continue I/O"); 2922 return SCI_FAILURE_INVALID_STATE; 2923 } 2924 2925 set_bit(IREQ_ACTIVE, &ireq->flags); 2926 sci_controller_post_request(ihost, ireq->post_context); 2927 return SCI_SUCCESS; 2928 } 2929 2930 /** 2931 * sci_controller_start_task() - This method is called by the SCIC user to 2932 * send/start a framework task management request. 2933 * @controller: the handle to the controller object for which to start the task 2934 * management request. 2935 * @remote_device: the handle to the remote device object for which to start 2936 * the task management request. 2937 * @task_request: the handle to the task request object to start. 2938 */ 2939 enum sci_task_status sci_controller_start_task(struct isci_host *ihost, 2940 struct isci_remote_device *idev, 2941 struct isci_request *ireq) 2942 { 2943 enum sci_status status; 2944 2945 if (ihost->sm.current_state_id != SCIC_READY) { 2946 dev_warn(&ihost->pdev->dev, 2947 "%s: SCIC Controller starting task from invalid " 2948 "state\n", 2949 __func__); 2950 return SCI_TASK_FAILURE_INVALID_STATE; 2951 } 2952 2953 status = sci_remote_device_start_task(ihost, idev, ireq); 2954 switch (status) { 2955 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS: 2956 set_bit(IREQ_ACTIVE, &ireq->flags); 2957 2958 /* 2959 * We will let framework know this task request started successfully, 2960 * although core is still woring on starting the request (to post tc when 2961 * RNC is resumed.) 2962 */ 2963 return SCI_SUCCESS; 2964 case SCI_SUCCESS: 2965 set_bit(IREQ_ACTIVE, &ireq->flags); 2966 sci_controller_post_request(ihost, ireq->post_context); 2967 break; 2968 default: 2969 break; 2970 } 2971 2972 return status; 2973 } 2974 2975 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data) 2976 { 2977 int d; 2978 2979 /* no support for TX_GP_CFG */ 2980 if (reg_index == 0) 2981 return -EINVAL; 2982 2983 for (d = 0; d < isci_gpio_count(ihost); d++) { 2984 u32 val = 0x444; /* all ODx.n clear */ 2985 int i; 2986 2987 for (i = 0; i < 3; i++) { 2988 int bit = (i << 2) + 2; 2989 2990 bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i), 2991 write_data, reg_index, 2992 reg_count); 2993 if (bit < 0) 2994 break; 2995 2996 /* if od is set, clear the 'invert' bit */ 2997 val &= ~(bit << ((i << 2) + 2)); 2998 } 2999 3000 if (i < 3) 3001 break; 3002 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]); 3003 } 3004 3005 /* unless reg_index is > 1, we should always be able to write at 3006 * least one register 3007 */ 3008 return d > 0; 3009 } 3010 3011 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index, 3012 u8 reg_count, u8 *write_data) 3013 { 3014 struct isci_host *ihost = sas_ha->lldd_ha; 3015 int written; 3016 3017 switch (reg_type) { 3018 case SAS_GPIO_REG_TX_GP: 3019 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data); 3020 break; 3021 default: 3022 written = -EINVAL; 3023 } 3024 3025 return written; 3026 } 3027