1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 21 * The full GNU General Public License is included in this distribution 22 * in the file called LICENSE.GPL. 23 * 24 * BSD LICENSE 25 * 26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 27 * All rights reserved. 28 * 29 * Redistribution and use in source and binary forms, with or without 30 * modification, are permitted provided that the following conditions 31 * are met: 32 * 33 * * Redistributions of source code must retain the above copyright 34 * notice, this list of conditions and the following disclaimer. 35 * * Redistributions in binary form must reproduce the above copyright 36 * notice, this list of conditions and the following disclaimer in 37 * the documentation and/or other materials provided with the 38 * distribution. 39 * * Neither the name of Intel Corporation nor the names of its 40 * contributors may be used to endorse or promote products derived 41 * from this software without specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 54 */ 55 #include <linux/circ_buf.h> 56 #include <linux/device.h> 57 #include <scsi/sas.h> 58 #include "host.h" 59 #include "isci.h" 60 #include "port.h" 61 #include "probe_roms.h" 62 #include "remote_device.h" 63 #include "request.h" 64 #include "scu_completion_codes.h" 65 #include "scu_event_codes.h" 66 #include "registers.h" 67 #include "scu_remote_node_context.h" 68 #include "scu_task_context.h" 69 70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200 71 72 #define smu_max_ports(dcc_value) \ 73 (\ 74 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \ 75 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \ 76 ) 77 78 #define smu_max_task_contexts(dcc_value) \ 79 (\ 80 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \ 81 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \ 82 ) 83 84 #define smu_max_rncs(dcc_value) \ 85 (\ 86 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \ 87 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \ 88 ) 89 90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100 91 92 /** 93 * 94 * 95 * The number of milliseconds to wait while a given phy is consuming power 96 * before allowing another set of phys to consume power. Ultimately, this will 97 * be specified by OEM parameter. 98 */ 99 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500 100 101 /** 102 * NORMALIZE_PUT_POINTER() - 103 * 104 * This macro will normalize the completion queue put pointer so its value can 105 * be used as an array inde 106 */ 107 #define NORMALIZE_PUT_POINTER(x) \ 108 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK) 109 110 111 /** 112 * NORMALIZE_EVENT_POINTER() - 113 * 114 * This macro will normalize the completion queue event entry so its value can 115 * be used as an index. 116 */ 117 #define NORMALIZE_EVENT_POINTER(x) \ 118 (\ 119 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \ 120 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \ 121 ) 122 123 /** 124 * NORMALIZE_GET_POINTER() - 125 * 126 * This macro will normalize the completion queue get pointer so its value can 127 * be used as an index into an array 128 */ 129 #define NORMALIZE_GET_POINTER(x) \ 130 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK) 131 132 /** 133 * NORMALIZE_GET_POINTER_CYCLE_BIT() - 134 * 135 * This macro will normalize the completion queue cycle pointer so it matches 136 * the completion queue cycle bit 137 */ 138 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \ 139 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT)) 140 141 /** 142 * COMPLETION_QUEUE_CYCLE_BIT() - 143 * 144 * This macro will return the cycle bit of the completion queue entry 145 */ 146 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000) 147 148 /* Init the state machine and call the state entry function (if any) */ 149 void sci_init_sm(struct sci_base_state_machine *sm, 150 const struct sci_base_state *state_table, u32 initial_state) 151 { 152 sci_state_transition_t handler; 153 154 sm->initial_state_id = initial_state; 155 sm->previous_state_id = initial_state; 156 sm->current_state_id = initial_state; 157 sm->state_table = state_table; 158 159 handler = sm->state_table[initial_state].enter_state; 160 if (handler) 161 handler(sm); 162 } 163 164 /* Call the state exit fn, update the current state, call the state entry fn */ 165 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state) 166 { 167 sci_state_transition_t handler; 168 169 handler = sm->state_table[sm->current_state_id].exit_state; 170 if (handler) 171 handler(sm); 172 173 sm->previous_state_id = sm->current_state_id; 174 sm->current_state_id = next_state; 175 176 handler = sm->state_table[sm->current_state_id].enter_state; 177 if (handler) 178 handler(sm); 179 } 180 181 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost) 182 { 183 u32 get_value = ihost->completion_queue_get; 184 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK; 185 186 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) == 187 COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])) 188 return true; 189 190 return false; 191 } 192 193 static bool sci_controller_isr(struct isci_host *ihost) 194 { 195 if (sci_controller_completion_queue_has_entries(ihost)) 196 return true; 197 198 /* we have a spurious interrupt it could be that we have already 199 * emptied the completion queue from a previous interrupt 200 * FIXME: really!? 201 */ 202 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 203 204 /* There is a race in the hardware that could cause us not to be 205 * notified of an interrupt completion if we do not take this 206 * step. We will mask then unmask the interrupts so if there is 207 * another interrupt pending the clearing of the interrupt 208 * source we get the next interrupt message. 209 */ 210 spin_lock(&ihost->scic_lock); 211 if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) { 212 writel(0xFF000000, &ihost->smu_registers->interrupt_mask); 213 writel(0, &ihost->smu_registers->interrupt_mask); 214 } 215 spin_unlock(&ihost->scic_lock); 216 217 return false; 218 } 219 220 irqreturn_t isci_msix_isr(int vec, void *data) 221 { 222 struct isci_host *ihost = data; 223 224 if (sci_controller_isr(ihost)) 225 tasklet_schedule(&ihost->completion_tasklet); 226 227 return IRQ_HANDLED; 228 } 229 230 static bool sci_controller_error_isr(struct isci_host *ihost) 231 { 232 u32 interrupt_status; 233 234 interrupt_status = 235 readl(&ihost->smu_registers->interrupt_status); 236 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); 237 238 if (interrupt_status != 0) { 239 /* 240 * There is an error interrupt pending so let it through and handle 241 * in the callback */ 242 return true; 243 } 244 245 /* 246 * There is a race in the hardware that could cause us not to be notified 247 * of an interrupt completion if we do not take this step. We will mask 248 * then unmask the error interrupts so if there was another interrupt 249 * pending we will be notified. 250 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */ 251 writel(0xff, &ihost->smu_registers->interrupt_mask); 252 writel(0, &ihost->smu_registers->interrupt_mask); 253 254 return false; 255 } 256 257 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent) 258 { 259 u32 index = SCU_GET_COMPLETION_INDEX(ent); 260 struct isci_request *ireq = ihost->reqs[index]; 261 262 /* Make sure that we really want to process this IO request */ 263 if (test_bit(IREQ_ACTIVE, &ireq->flags) && 264 ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG && 265 ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index]) 266 /* Yep this is a valid io request pass it along to the 267 * io request handler 268 */ 269 sci_io_request_tc_completion(ireq, ent); 270 } 271 272 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent) 273 { 274 u32 index; 275 struct isci_request *ireq; 276 struct isci_remote_device *idev; 277 278 index = SCU_GET_COMPLETION_INDEX(ent); 279 280 switch (scu_get_command_request_type(ent)) { 281 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC: 282 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC: 283 ireq = ihost->reqs[index]; 284 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n", 285 __func__, ent, ireq); 286 /* @todo For a post TC operation we need to fail the IO 287 * request 288 */ 289 break; 290 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC: 291 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC: 292 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC: 293 idev = ihost->device_table[index]; 294 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n", 295 __func__, ent, idev); 296 /* @todo For a port RNC operation we need to fail the 297 * device 298 */ 299 break; 300 default: 301 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n", 302 __func__, ent); 303 break; 304 } 305 } 306 307 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent) 308 { 309 u32 index; 310 u32 frame_index; 311 312 struct scu_unsolicited_frame_header *frame_header; 313 struct isci_phy *iphy; 314 struct isci_remote_device *idev; 315 316 enum sci_status result = SCI_FAILURE; 317 318 frame_index = SCU_GET_FRAME_INDEX(ent); 319 320 frame_header = ihost->uf_control.buffers.array[frame_index].header; 321 ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE; 322 323 if (SCU_GET_FRAME_ERROR(ent)) { 324 /* 325 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will 326 * / this cause a problem? We expect the phy initialization will 327 * / fail if there is an error in the frame. */ 328 sci_controller_release_frame(ihost, frame_index); 329 return; 330 } 331 332 if (frame_header->is_address_frame) { 333 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 334 iphy = &ihost->phys[index]; 335 result = sci_phy_frame_handler(iphy, frame_index); 336 } else { 337 338 index = SCU_GET_COMPLETION_INDEX(ent); 339 340 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 341 /* 342 * This is a signature fis or a frame from a direct attached SATA 343 * device that has not yet been created. In either case forwared 344 * the frame to the PE and let it take care of the frame data. */ 345 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 346 iphy = &ihost->phys[index]; 347 result = sci_phy_frame_handler(iphy, frame_index); 348 } else { 349 if (index < ihost->remote_node_entries) 350 idev = ihost->device_table[index]; 351 else 352 idev = NULL; 353 354 if (idev != NULL) 355 result = sci_remote_device_frame_handler(idev, frame_index); 356 else 357 sci_controller_release_frame(ihost, frame_index); 358 } 359 } 360 361 if (result != SCI_SUCCESS) { 362 /* 363 * / @todo Is there any reason to report some additional error message 364 * / when we get this failure notifiction? */ 365 } 366 } 367 368 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent) 369 { 370 struct isci_remote_device *idev; 371 struct isci_request *ireq; 372 struct isci_phy *iphy; 373 u32 index; 374 375 index = SCU_GET_COMPLETION_INDEX(ent); 376 377 switch (scu_get_event_type(ent)) { 378 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR: 379 /* / @todo The driver did something wrong and we need to fix the condtion. */ 380 dev_err(&ihost->pdev->dev, 381 "%s: SCIC Controller 0x%p received SMU command error " 382 "0x%x\n", 383 __func__, 384 ihost, 385 ent); 386 break; 387 388 case SCU_EVENT_TYPE_SMU_PCQ_ERROR: 389 case SCU_EVENT_TYPE_SMU_ERROR: 390 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR: 391 /* 392 * / @todo This is a hardware failure and its likely that we want to 393 * / reset the controller. */ 394 dev_err(&ihost->pdev->dev, 395 "%s: SCIC Controller 0x%p received fatal controller " 396 "event 0x%x\n", 397 __func__, 398 ihost, 399 ent); 400 break; 401 402 case SCU_EVENT_TYPE_TRANSPORT_ERROR: 403 ireq = ihost->reqs[index]; 404 sci_io_request_event_handler(ireq, ent); 405 break; 406 407 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT: 408 switch (scu_get_event_specifier(ent)) { 409 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE: 410 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT: 411 ireq = ihost->reqs[index]; 412 if (ireq != NULL) 413 sci_io_request_event_handler(ireq, ent); 414 else 415 dev_warn(&ihost->pdev->dev, 416 "%s: SCIC Controller 0x%p received " 417 "event 0x%x for io request object " 418 "that doesnt exist.\n", 419 __func__, 420 ihost, 421 ent); 422 423 break; 424 425 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT: 426 idev = ihost->device_table[index]; 427 if (idev != NULL) 428 sci_remote_device_event_handler(idev, ent); 429 else 430 dev_warn(&ihost->pdev->dev, 431 "%s: SCIC Controller 0x%p received " 432 "event 0x%x for remote device object " 433 "that doesnt exist.\n", 434 __func__, 435 ihost, 436 ent); 437 438 break; 439 } 440 break; 441 442 case SCU_EVENT_TYPE_BROADCAST_CHANGE: 443 /* 444 * direct the broadcast change event to the phy first and then let 445 * the phy redirect the broadcast change to the port object */ 446 case SCU_EVENT_TYPE_ERR_CNT_EVENT: 447 /* 448 * direct error counter event to the phy object since that is where 449 * we get the event notification. This is a type 4 event. */ 450 case SCU_EVENT_TYPE_OSSP_EVENT: 451 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 452 iphy = &ihost->phys[index]; 453 sci_phy_event_handler(iphy, ent); 454 break; 455 456 case SCU_EVENT_TYPE_RNC_SUSPEND_TX: 457 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX: 458 case SCU_EVENT_TYPE_RNC_OPS_MISC: 459 if (index < ihost->remote_node_entries) { 460 idev = ihost->device_table[index]; 461 462 if (idev != NULL) 463 sci_remote_device_event_handler(idev, ent); 464 } else 465 dev_err(&ihost->pdev->dev, 466 "%s: SCIC Controller 0x%p received event 0x%x " 467 "for remote device object 0x%0x that doesnt " 468 "exist.\n", 469 __func__, 470 ihost, 471 ent, 472 index); 473 474 break; 475 476 default: 477 dev_warn(&ihost->pdev->dev, 478 "%s: SCIC Controller received unknown event code %x\n", 479 __func__, 480 ent); 481 break; 482 } 483 } 484 485 static void sci_controller_process_completions(struct isci_host *ihost) 486 { 487 u32 completion_count = 0; 488 u32 ent; 489 u32 get_index; 490 u32 get_cycle; 491 u32 event_get; 492 u32 event_cycle; 493 494 dev_dbg(&ihost->pdev->dev, 495 "%s: completion queue begining get:0x%08x\n", 496 __func__, 497 ihost->completion_queue_get); 498 499 /* Get the component parts of the completion queue */ 500 get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get); 501 get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get; 502 503 event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get); 504 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get; 505 506 while ( 507 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle) 508 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]) 509 ) { 510 completion_count++; 511 512 ent = ihost->completion_queue[get_index]; 513 514 /* increment the get pointer and check for rollover to toggle the cycle bit */ 515 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) << 516 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT); 517 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1); 518 519 dev_dbg(&ihost->pdev->dev, 520 "%s: completion queue entry:0x%08x\n", 521 __func__, 522 ent); 523 524 switch (SCU_GET_COMPLETION_TYPE(ent)) { 525 case SCU_COMPLETION_TYPE_TASK: 526 sci_controller_task_completion(ihost, ent); 527 break; 528 529 case SCU_COMPLETION_TYPE_SDMA: 530 sci_controller_sdma_completion(ihost, ent); 531 break; 532 533 case SCU_COMPLETION_TYPE_UFI: 534 sci_controller_unsolicited_frame(ihost, ent); 535 break; 536 537 case SCU_COMPLETION_TYPE_EVENT: 538 sci_controller_event_completion(ihost, ent); 539 break; 540 541 case SCU_COMPLETION_TYPE_NOTIFY: { 542 event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) << 543 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT); 544 event_get = (event_get+1) & (SCU_MAX_EVENTS-1); 545 546 sci_controller_event_completion(ihost, ent); 547 break; 548 } 549 default: 550 dev_warn(&ihost->pdev->dev, 551 "%s: SCIC Controller received unknown " 552 "completion type %x\n", 553 __func__, 554 ent); 555 break; 556 } 557 } 558 559 /* Update the get register if we completed one or more entries */ 560 if (completion_count > 0) { 561 ihost->completion_queue_get = 562 SMU_CQGR_GEN_BIT(ENABLE) | 563 SMU_CQGR_GEN_BIT(EVENT_ENABLE) | 564 event_cycle | 565 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) | 566 get_cycle | 567 SMU_CQGR_GEN_VAL(POINTER, get_index); 568 569 writel(ihost->completion_queue_get, 570 &ihost->smu_registers->completion_queue_get); 571 572 } 573 574 dev_dbg(&ihost->pdev->dev, 575 "%s: completion queue ending get:0x%08x\n", 576 __func__, 577 ihost->completion_queue_get); 578 579 } 580 581 static void sci_controller_error_handler(struct isci_host *ihost) 582 { 583 u32 interrupt_status; 584 585 interrupt_status = 586 readl(&ihost->smu_registers->interrupt_status); 587 588 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && 589 sci_controller_completion_queue_has_entries(ihost)) { 590 591 sci_controller_process_completions(ihost); 592 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status); 593 } else { 594 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__, 595 interrupt_status); 596 597 sci_change_state(&ihost->sm, SCIC_FAILED); 598 599 return; 600 } 601 602 /* If we dont process any completions I am not sure that we want to do this. 603 * We are in the middle of a hardware fault and should probably be reset. 604 */ 605 writel(0, &ihost->smu_registers->interrupt_mask); 606 } 607 608 irqreturn_t isci_intx_isr(int vec, void *data) 609 { 610 irqreturn_t ret = IRQ_NONE; 611 struct isci_host *ihost = data; 612 613 if (sci_controller_isr(ihost)) { 614 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 615 tasklet_schedule(&ihost->completion_tasklet); 616 ret = IRQ_HANDLED; 617 } else if (sci_controller_error_isr(ihost)) { 618 spin_lock(&ihost->scic_lock); 619 sci_controller_error_handler(ihost); 620 spin_unlock(&ihost->scic_lock); 621 ret = IRQ_HANDLED; 622 } 623 624 return ret; 625 } 626 627 irqreturn_t isci_error_isr(int vec, void *data) 628 { 629 struct isci_host *ihost = data; 630 631 if (sci_controller_error_isr(ihost)) 632 sci_controller_error_handler(ihost); 633 634 return IRQ_HANDLED; 635 } 636 637 /** 638 * isci_host_start_complete() - This function is called by the core library, 639 * through the ISCI Module, to indicate controller start status. 640 * @isci_host: This parameter specifies the ISCI host object 641 * @completion_status: This parameter specifies the completion status from the 642 * core library. 643 * 644 */ 645 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status) 646 { 647 if (completion_status != SCI_SUCCESS) 648 dev_info(&ihost->pdev->dev, 649 "controller start timed out, continuing...\n"); 650 clear_bit(IHOST_START_PENDING, &ihost->flags); 651 wake_up(&ihost->eventq); 652 } 653 654 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time) 655 { 656 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); 657 struct isci_host *ihost = ha->lldd_ha; 658 659 if (test_bit(IHOST_START_PENDING, &ihost->flags)) 660 return 0; 661 662 sas_drain_work(ha); 663 664 return 1; 665 } 666 667 /** 668 * sci_controller_get_suggested_start_timeout() - This method returns the 669 * suggested sci_controller_start() timeout amount. The user is free to 670 * use any timeout value, but this method provides the suggested minimum 671 * start timeout value. The returned value is based upon empirical 672 * information determined as a result of interoperability testing. 673 * @controller: the handle to the controller object for which to return the 674 * suggested start timeout. 675 * 676 * This method returns the number of milliseconds for the suggested start 677 * operation timeout. 678 */ 679 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost) 680 { 681 /* Validate the user supplied parameters. */ 682 if (!ihost) 683 return 0; 684 685 /* 686 * The suggested minimum timeout value for a controller start operation: 687 * 688 * Signature FIS Timeout 689 * + Phy Start Timeout 690 * + Number of Phy Spin Up Intervals 691 * --------------------------------- 692 * Number of milliseconds for the controller start operation. 693 * 694 * NOTE: The number of phy spin up intervals will be equivalent 695 * to the number of phys divided by the number phys allowed 696 * per interval - 1 (once OEM parameters are supported). 697 * Currently we assume only 1 phy per interval. */ 698 699 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT 700 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 701 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 702 } 703 704 static void sci_controller_enable_interrupts(struct isci_host *ihost) 705 { 706 set_bit(IHOST_IRQ_ENABLED, &ihost->flags); 707 writel(0, &ihost->smu_registers->interrupt_mask); 708 } 709 710 void sci_controller_disable_interrupts(struct isci_host *ihost) 711 { 712 clear_bit(IHOST_IRQ_ENABLED, &ihost->flags); 713 writel(0xffffffff, &ihost->smu_registers->interrupt_mask); 714 readl(&ihost->smu_registers->interrupt_mask); /* flush */ 715 } 716 717 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost) 718 { 719 u32 port_task_scheduler_value; 720 721 port_task_scheduler_value = 722 readl(&ihost->scu_registers->peg0.ptsg.control); 723 port_task_scheduler_value |= 724 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | 725 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE)); 726 writel(port_task_scheduler_value, 727 &ihost->scu_registers->peg0.ptsg.control); 728 } 729 730 static void sci_controller_assign_task_entries(struct isci_host *ihost) 731 { 732 u32 task_assignment; 733 734 /* 735 * Assign all the TCs to function 0 736 * TODO: Do we actually need to read this register to write it back? 737 */ 738 739 task_assignment = 740 readl(&ihost->smu_registers->task_context_assignment[0]); 741 742 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) | 743 (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) | 744 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE)); 745 746 writel(task_assignment, 747 &ihost->smu_registers->task_context_assignment[0]); 748 749 } 750 751 static void sci_controller_initialize_completion_queue(struct isci_host *ihost) 752 { 753 u32 index; 754 u32 completion_queue_control_value; 755 u32 completion_queue_get_value; 756 u32 completion_queue_put_value; 757 758 ihost->completion_queue_get = 0; 759 760 completion_queue_control_value = 761 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) | 762 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1)); 763 764 writel(completion_queue_control_value, 765 &ihost->smu_registers->completion_queue_control); 766 767 768 /* Set the completion queue get pointer and enable the queue */ 769 completion_queue_get_value = ( 770 (SMU_CQGR_GEN_VAL(POINTER, 0)) 771 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0)) 772 | (SMU_CQGR_GEN_BIT(ENABLE)) 773 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE)) 774 ); 775 776 writel(completion_queue_get_value, 777 &ihost->smu_registers->completion_queue_get); 778 779 /* Set the completion queue put pointer */ 780 completion_queue_put_value = ( 781 (SMU_CQPR_GEN_VAL(POINTER, 0)) 782 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0)) 783 ); 784 785 writel(completion_queue_put_value, 786 &ihost->smu_registers->completion_queue_put); 787 788 /* Initialize the cycle bit of the completion queue entries */ 789 for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) { 790 /* 791 * If get.cycle_bit != completion_queue.cycle_bit 792 * its not a valid completion queue entry 793 * so at system start all entries are invalid */ 794 ihost->completion_queue[index] = 0x80000000; 795 } 796 } 797 798 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost) 799 { 800 u32 frame_queue_control_value; 801 u32 frame_queue_get_value; 802 u32 frame_queue_put_value; 803 804 /* Write the queue size */ 805 frame_queue_control_value = 806 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES); 807 808 writel(frame_queue_control_value, 809 &ihost->scu_registers->sdma.unsolicited_frame_queue_control); 810 811 /* Setup the get pointer for the unsolicited frame queue */ 812 frame_queue_get_value = ( 813 SCU_UFQGP_GEN_VAL(POINTER, 0) 814 | SCU_UFQGP_GEN_BIT(ENABLE_BIT) 815 ); 816 817 writel(frame_queue_get_value, 818 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 819 /* Setup the put pointer for the unsolicited frame queue */ 820 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0); 821 writel(frame_queue_put_value, 822 &ihost->scu_registers->sdma.unsolicited_frame_put_pointer); 823 } 824 825 void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status) 826 { 827 if (ihost->sm.current_state_id == SCIC_STARTING) { 828 /* 829 * We move into the ready state, because some of the phys/ports 830 * may be up and operational. 831 */ 832 sci_change_state(&ihost->sm, SCIC_READY); 833 834 isci_host_start_complete(ihost, status); 835 } 836 } 837 838 static bool is_phy_starting(struct isci_phy *iphy) 839 { 840 enum sci_phy_states state; 841 842 state = iphy->sm.current_state_id; 843 switch (state) { 844 case SCI_PHY_STARTING: 845 case SCI_PHY_SUB_INITIAL: 846 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: 847 case SCI_PHY_SUB_AWAIT_IAF_UF: 848 case SCI_PHY_SUB_AWAIT_SAS_POWER: 849 case SCI_PHY_SUB_AWAIT_SATA_POWER: 850 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: 851 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: 852 case SCI_PHY_SUB_AWAIT_OSSP_EN: 853 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: 854 case SCI_PHY_SUB_FINAL: 855 return true; 856 default: 857 return false; 858 } 859 } 860 861 bool is_controller_start_complete(struct isci_host *ihost) 862 { 863 int i; 864 865 for (i = 0; i < SCI_MAX_PHYS; i++) { 866 struct isci_phy *iphy = &ihost->phys[i]; 867 u32 state = iphy->sm.current_state_id; 868 869 /* in apc mode we need to check every phy, in 870 * mpc mode we only need to check phys that have 871 * been configured into a port 872 */ 873 if (is_port_config_apc(ihost)) 874 /* pass */; 875 else if (!phy_get_non_dummy_port(iphy)) 876 continue; 877 878 /* The controller start operation is complete iff: 879 * - all links have been given an opportunity to start 880 * - have no indication of a connected device 881 * - have an indication of a connected device and it has 882 * finished the link training process. 883 */ 884 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) || 885 (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) || 886 (iphy->is_in_link_training == true && is_phy_starting(iphy)) || 887 (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) 888 return false; 889 } 890 891 return true; 892 } 893 894 /** 895 * sci_controller_start_next_phy - start phy 896 * @scic: controller 897 * 898 * If all the phys have been started, then attempt to transition the 899 * controller to the READY state and inform the user 900 * (sci_cb_controller_start_complete()). 901 */ 902 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost) 903 { 904 struct sci_oem_params *oem = &ihost->oem_parameters; 905 struct isci_phy *iphy; 906 enum sci_status status; 907 908 status = SCI_SUCCESS; 909 910 if (ihost->phy_startup_timer_pending) 911 return status; 912 913 if (ihost->next_phy_to_start >= SCI_MAX_PHYS) { 914 if (is_controller_start_complete(ihost)) { 915 sci_controller_transition_to_ready(ihost, SCI_SUCCESS); 916 sci_del_timer(&ihost->phy_timer); 917 ihost->phy_startup_timer_pending = false; 918 } 919 } else { 920 iphy = &ihost->phys[ihost->next_phy_to_start]; 921 922 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 923 if (phy_get_non_dummy_port(iphy) == NULL) { 924 ihost->next_phy_to_start++; 925 926 /* Caution recursion ahead be forwarned 927 * 928 * The PHY was never added to a PORT in MPC mode 929 * so start the next phy in sequence This phy 930 * will never go link up and will not draw power 931 * the OEM parameters either configured the phy 932 * incorrectly for the PORT or it was never 933 * assigned to a PORT 934 */ 935 return sci_controller_start_next_phy(ihost); 936 } 937 } 938 939 status = sci_phy_start(iphy); 940 941 if (status == SCI_SUCCESS) { 942 sci_mod_timer(&ihost->phy_timer, 943 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT); 944 ihost->phy_startup_timer_pending = true; 945 } else { 946 dev_warn(&ihost->pdev->dev, 947 "%s: Controller stop operation failed " 948 "to stop phy %d because of status " 949 "%d.\n", 950 __func__, 951 ihost->phys[ihost->next_phy_to_start].phy_index, 952 status); 953 } 954 955 ihost->next_phy_to_start++; 956 } 957 958 return status; 959 } 960 961 static void phy_startup_timeout(unsigned long data) 962 { 963 struct sci_timer *tmr = (struct sci_timer *)data; 964 struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer); 965 unsigned long flags; 966 enum sci_status status; 967 968 spin_lock_irqsave(&ihost->scic_lock, flags); 969 970 if (tmr->cancel) 971 goto done; 972 973 ihost->phy_startup_timer_pending = false; 974 975 do { 976 status = sci_controller_start_next_phy(ihost); 977 } while (status != SCI_SUCCESS); 978 979 done: 980 spin_unlock_irqrestore(&ihost->scic_lock, flags); 981 } 982 983 static u16 isci_tci_active(struct isci_host *ihost) 984 { 985 return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); 986 } 987 988 static enum sci_status sci_controller_start(struct isci_host *ihost, 989 u32 timeout) 990 { 991 enum sci_status result; 992 u16 index; 993 994 if (ihost->sm.current_state_id != SCIC_INITIALIZED) { 995 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 996 __func__, ihost->sm.current_state_id); 997 return SCI_FAILURE_INVALID_STATE; 998 } 999 1000 /* Build the TCi free pool */ 1001 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8); 1002 ihost->tci_head = 0; 1003 ihost->tci_tail = 0; 1004 for (index = 0; index < ihost->task_context_entries; index++) 1005 isci_tci_free(ihost, index); 1006 1007 /* Build the RNi free pool */ 1008 sci_remote_node_table_initialize(&ihost->available_remote_nodes, 1009 ihost->remote_node_entries); 1010 1011 /* 1012 * Before anything else lets make sure we will not be 1013 * interrupted by the hardware. 1014 */ 1015 sci_controller_disable_interrupts(ihost); 1016 1017 /* Enable the port task scheduler */ 1018 sci_controller_enable_port_task_scheduler(ihost); 1019 1020 /* Assign all the task entries to ihost physical function */ 1021 sci_controller_assign_task_entries(ihost); 1022 1023 /* Now initialize the completion queue */ 1024 sci_controller_initialize_completion_queue(ihost); 1025 1026 /* Initialize the unsolicited frame queue for use */ 1027 sci_controller_initialize_unsolicited_frame_queue(ihost); 1028 1029 /* Start all of the ports on this controller */ 1030 for (index = 0; index < ihost->logical_port_entries; index++) { 1031 struct isci_port *iport = &ihost->ports[index]; 1032 1033 result = sci_port_start(iport); 1034 if (result) 1035 return result; 1036 } 1037 1038 sci_controller_start_next_phy(ihost); 1039 1040 sci_mod_timer(&ihost->timer, timeout); 1041 1042 sci_change_state(&ihost->sm, SCIC_STARTING); 1043 1044 return SCI_SUCCESS; 1045 } 1046 1047 void isci_host_scan_start(struct Scsi_Host *shost) 1048 { 1049 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; 1050 unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost); 1051 1052 set_bit(IHOST_START_PENDING, &ihost->flags); 1053 1054 spin_lock_irq(&ihost->scic_lock); 1055 sci_controller_start(ihost, tmo); 1056 sci_controller_enable_interrupts(ihost); 1057 spin_unlock_irq(&ihost->scic_lock); 1058 } 1059 1060 static void isci_host_stop_complete(struct isci_host *ihost) 1061 { 1062 sci_controller_disable_interrupts(ihost); 1063 clear_bit(IHOST_STOP_PENDING, &ihost->flags); 1064 wake_up(&ihost->eventq); 1065 } 1066 1067 static void sci_controller_completion_handler(struct isci_host *ihost) 1068 { 1069 /* Empty out the completion queue */ 1070 if (sci_controller_completion_queue_has_entries(ihost)) 1071 sci_controller_process_completions(ihost); 1072 1073 /* Clear the interrupt and enable all interrupts again */ 1074 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 1075 /* Could we write the value of SMU_ISR_COMPLETION? */ 1076 writel(0xFF000000, &ihost->smu_registers->interrupt_mask); 1077 writel(0, &ihost->smu_registers->interrupt_mask); 1078 } 1079 1080 void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task) 1081 { 1082 task->lldd_task = NULL; 1083 if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) && 1084 !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 1085 if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) { 1086 /* Normal notification (task_done) */ 1087 dev_dbg(&ihost->pdev->dev, 1088 "%s: Normal - ireq/task = %p/%p\n", 1089 __func__, ireq, task); 1090 1091 task->task_done(task); 1092 } else { 1093 dev_dbg(&ihost->pdev->dev, 1094 "%s: Error - ireq/task = %p/%p\n", 1095 __func__, ireq, task); 1096 1097 sas_task_abort(task); 1098 } 1099 } 1100 if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags)) 1101 wake_up_all(&ihost->eventq); 1102 1103 if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags)) 1104 isci_free_tag(ihost, ireq->io_tag); 1105 } 1106 /** 1107 * isci_host_completion_routine() - This function is the delayed service 1108 * routine that calls the sci core library's completion handler. It's 1109 * scheduled as a tasklet from the interrupt service routine when interrupts 1110 * in use, or set as the timeout function in polled mode. 1111 * @data: This parameter specifies the ISCI host object 1112 * 1113 */ 1114 void isci_host_completion_routine(unsigned long data) 1115 { 1116 struct isci_host *ihost = (struct isci_host *)data; 1117 u16 active; 1118 1119 spin_lock_irq(&ihost->scic_lock); 1120 sci_controller_completion_handler(ihost); 1121 spin_unlock_irq(&ihost->scic_lock); 1122 1123 /* the coalesence timeout doubles at each encoding step, so 1124 * update it based on the ilog2 value of the outstanding requests 1125 */ 1126 active = isci_tci_active(ihost); 1127 writel(SMU_ICC_GEN_VAL(NUMBER, active) | 1128 SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)), 1129 &ihost->smu_registers->interrupt_coalesce_control); 1130 } 1131 1132 /** 1133 * sci_controller_stop() - This method will stop an individual controller 1134 * object.This method will invoke the associated user callback upon 1135 * completion. The completion callback is called when the following 1136 * conditions are met: -# the method return status is SCI_SUCCESS. -# the 1137 * controller has been quiesced. This method will ensure that all IO 1138 * requests are quiesced, phys are stopped, and all additional operation by 1139 * the hardware is halted. 1140 * @controller: the handle to the controller object to stop. 1141 * @timeout: This parameter specifies the number of milliseconds in which the 1142 * stop operation should complete. 1143 * 1144 * The controller must be in the STARTED or STOPPED state. Indicate if the 1145 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the 1146 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the 1147 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the 1148 * controller is not either in the STARTED or STOPPED states. 1149 */ 1150 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout) 1151 { 1152 if (ihost->sm.current_state_id != SCIC_READY) { 1153 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 1154 __func__, ihost->sm.current_state_id); 1155 return SCI_FAILURE_INVALID_STATE; 1156 } 1157 1158 sci_mod_timer(&ihost->timer, timeout); 1159 sci_change_state(&ihost->sm, SCIC_STOPPING); 1160 return SCI_SUCCESS; 1161 } 1162 1163 /** 1164 * sci_controller_reset() - This method will reset the supplied core 1165 * controller regardless of the state of said controller. This operation is 1166 * considered destructive. In other words, all current operations are wiped 1167 * out. No IO completions for outstanding devices occur. Outstanding IO 1168 * requests are not aborted or completed at the actual remote device. 1169 * @controller: the handle to the controller object to reset. 1170 * 1171 * Indicate if the controller reset method succeeded or failed in some way. 1172 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if 1173 * the controller reset operation is unable to complete. 1174 */ 1175 static enum sci_status sci_controller_reset(struct isci_host *ihost) 1176 { 1177 switch (ihost->sm.current_state_id) { 1178 case SCIC_RESET: 1179 case SCIC_READY: 1180 case SCIC_STOPPING: 1181 case SCIC_FAILED: 1182 /* 1183 * The reset operation is not a graceful cleanup, just 1184 * perform the state transition. 1185 */ 1186 sci_change_state(&ihost->sm, SCIC_RESETTING); 1187 return SCI_SUCCESS; 1188 default: 1189 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 1190 __func__, ihost->sm.current_state_id); 1191 return SCI_FAILURE_INVALID_STATE; 1192 } 1193 } 1194 1195 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost) 1196 { 1197 u32 index; 1198 enum sci_status status; 1199 enum sci_status phy_status; 1200 1201 status = SCI_SUCCESS; 1202 1203 for (index = 0; index < SCI_MAX_PHYS; index++) { 1204 phy_status = sci_phy_stop(&ihost->phys[index]); 1205 1206 if (phy_status != SCI_SUCCESS && 1207 phy_status != SCI_FAILURE_INVALID_STATE) { 1208 status = SCI_FAILURE; 1209 1210 dev_warn(&ihost->pdev->dev, 1211 "%s: Controller stop operation failed to stop " 1212 "phy %d because of status %d.\n", 1213 __func__, 1214 ihost->phys[index].phy_index, phy_status); 1215 } 1216 } 1217 1218 return status; 1219 } 1220 1221 1222 /** 1223 * isci_host_deinit - shutdown frame reception and dma 1224 * @ihost: host to take down 1225 * 1226 * This is called in either the driver shutdown or the suspend path. In 1227 * the shutdown case libsas went through port teardown and normal device 1228 * removal (i.e. physical links stayed up to service scsi_device removal 1229 * commands). In the suspend case we disable the hardware without 1230 * notifying libsas of the link down events since we want libsas to 1231 * remember the domain across the suspend/resume cycle 1232 */ 1233 void isci_host_deinit(struct isci_host *ihost) 1234 { 1235 int i; 1236 1237 /* disable output data selects */ 1238 for (i = 0; i < isci_gpio_count(ihost); i++) 1239 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); 1240 1241 set_bit(IHOST_STOP_PENDING, &ihost->flags); 1242 1243 spin_lock_irq(&ihost->scic_lock); 1244 sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT); 1245 spin_unlock_irq(&ihost->scic_lock); 1246 1247 wait_for_stop(ihost); 1248 1249 /* phy stop is after controller stop to allow port and device to 1250 * go idle before shutting down the phys, but the expectation is 1251 * that i/o has been shut off well before we reach this 1252 * function. 1253 */ 1254 sci_controller_stop_phys(ihost); 1255 1256 /* disable sgpio: where the above wait should give time for the 1257 * enclosure to sample the gpios going inactive 1258 */ 1259 writel(0, &ihost->scu_registers->peg0.sgpio.interface_control); 1260 1261 spin_lock_irq(&ihost->scic_lock); 1262 sci_controller_reset(ihost); 1263 spin_unlock_irq(&ihost->scic_lock); 1264 1265 /* Cancel any/all outstanding port timers */ 1266 for (i = 0; i < ihost->logical_port_entries; i++) { 1267 struct isci_port *iport = &ihost->ports[i]; 1268 del_timer_sync(&iport->timer.timer); 1269 } 1270 1271 /* Cancel any/all outstanding phy timers */ 1272 for (i = 0; i < SCI_MAX_PHYS; i++) { 1273 struct isci_phy *iphy = &ihost->phys[i]; 1274 del_timer_sync(&iphy->sata_timer.timer); 1275 } 1276 1277 del_timer_sync(&ihost->port_agent.timer.timer); 1278 1279 del_timer_sync(&ihost->power_control.timer.timer); 1280 1281 del_timer_sync(&ihost->timer.timer); 1282 1283 del_timer_sync(&ihost->phy_timer.timer); 1284 } 1285 1286 static void __iomem *scu_base(struct isci_host *isci_host) 1287 { 1288 struct pci_dev *pdev = isci_host->pdev; 1289 int id = isci_host->id; 1290 1291 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id; 1292 } 1293 1294 static void __iomem *smu_base(struct isci_host *isci_host) 1295 { 1296 struct pci_dev *pdev = isci_host->pdev; 1297 int id = isci_host->id; 1298 1299 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id; 1300 } 1301 1302 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm) 1303 { 1304 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1305 1306 sci_change_state(&ihost->sm, SCIC_RESET); 1307 } 1308 1309 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm) 1310 { 1311 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1312 1313 sci_del_timer(&ihost->timer); 1314 } 1315 1316 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853 1317 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280 1318 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000 1319 #define INTERRUPT_COALESCE_NUMBER_MAX 256 1320 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7 1321 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28 1322 1323 /** 1324 * sci_controller_set_interrupt_coalescence() - This method allows the user to 1325 * configure the interrupt coalescence. 1326 * @controller: This parameter represents the handle to the controller object 1327 * for which its interrupt coalesce register is overridden. 1328 * @coalesce_number: Used to control the number of entries in the Completion 1329 * Queue before an interrupt is generated. If the number of entries exceed 1330 * this number, an interrupt will be generated. The valid range of the input 1331 * is [0, 256]. A setting of 0 results in coalescing being disabled. 1332 * @coalesce_timeout: Timeout value in microseconds. The valid range of the 1333 * input is [0, 2700000] . A setting of 0 is allowed and results in no 1334 * interrupt coalescing timeout. 1335 * 1336 * Indicate if the user successfully set the interrupt coalesce parameters. 1337 * SCI_SUCCESS The user successfully updated the interrutp coalescence. 1338 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range. 1339 */ 1340 static enum sci_status 1341 sci_controller_set_interrupt_coalescence(struct isci_host *ihost, 1342 u32 coalesce_number, 1343 u32 coalesce_timeout) 1344 { 1345 u8 timeout_encode = 0; 1346 u32 min = 0; 1347 u32 max = 0; 1348 1349 /* Check if the input parameters fall in the range. */ 1350 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX) 1351 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1352 1353 /* 1354 * Defined encoding for interrupt coalescing timeout: 1355 * Value Min Max Units 1356 * ----- --- --- ----- 1357 * 0 - - Disabled 1358 * 1 13.3 20.0 ns 1359 * 2 26.7 40.0 1360 * 3 53.3 80.0 1361 * 4 106.7 160.0 1362 * 5 213.3 320.0 1363 * 6 426.7 640.0 1364 * 7 853.3 1280.0 1365 * 8 1.7 2.6 us 1366 * 9 3.4 5.1 1367 * 10 6.8 10.2 1368 * 11 13.7 20.5 1369 * 12 27.3 41.0 1370 * 13 54.6 81.9 1371 * 14 109.2 163.8 1372 * 15 218.5 327.7 1373 * 16 436.9 655.4 1374 * 17 873.8 1310.7 1375 * 18 1.7 2.6 ms 1376 * 19 3.5 5.2 1377 * 20 7.0 10.5 1378 * 21 14.0 21.0 1379 * 22 28.0 41.9 1380 * 23 55.9 83.9 1381 * 24 111.8 167.8 1382 * 25 223.7 335.5 1383 * 26 447.4 671.1 1384 * 27 894.8 1342.2 1385 * 28 1.8 2.7 s 1386 * Others Undefined */ 1387 1388 /* 1389 * Use the table above to decide the encode of interrupt coalescing timeout 1390 * value for register writing. */ 1391 if (coalesce_timeout == 0) 1392 timeout_encode = 0; 1393 else{ 1394 /* make the timeout value in unit of (10 ns). */ 1395 coalesce_timeout = coalesce_timeout * 100; 1396 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10; 1397 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10; 1398 1399 /* get the encode of timeout for register writing. */ 1400 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN; 1401 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX; 1402 timeout_encode++) { 1403 if (min <= coalesce_timeout && max > coalesce_timeout) 1404 break; 1405 else if (coalesce_timeout >= max && coalesce_timeout < min * 2 1406 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) { 1407 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout)) 1408 break; 1409 else{ 1410 timeout_encode++; 1411 break; 1412 } 1413 } else { 1414 max = max * 2; 1415 min = min * 2; 1416 } 1417 } 1418 1419 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1) 1420 /* the value is out of range. */ 1421 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1422 } 1423 1424 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) | 1425 SMU_ICC_GEN_VAL(TIMER, timeout_encode), 1426 &ihost->smu_registers->interrupt_coalesce_control); 1427 1428 1429 ihost->interrupt_coalesce_number = (u16)coalesce_number; 1430 ihost->interrupt_coalesce_timeout = coalesce_timeout / 100; 1431 1432 return SCI_SUCCESS; 1433 } 1434 1435 1436 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm) 1437 { 1438 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1439 u32 val; 1440 1441 /* enable clock gating for power control of the scu unit */ 1442 val = readl(&ihost->smu_registers->clock_gating_control); 1443 val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) | 1444 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) | 1445 SMU_CGUCR_GEN_BIT(XCLK_ENABLE)); 1446 val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE); 1447 writel(val, &ihost->smu_registers->clock_gating_control); 1448 1449 /* set the default interrupt coalescence number and timeout value. */ 1450 sci_controller_set_interrupt_coalescence(ihost, 0, 0); 1451 } 1452 1453 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm) 1454 { 1455 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1456 1457 /* disable interrupt coalescence. */ 1458 sci_controller_set_interrupt_coalescence(ihost, 0, 0); 1459 } 1460 1461 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost) 1462 { 1463 u32 index; 1464 enum sci_status port_status; 1465 enum sci_status status = SCI_SUCCESS; 1466 1467 for (index = 0; index < ihost->logical_port_entries; index++) { 1468 struct isci_port *iport = &ihost->ports[index]; 1469 1470 port_status = sci_port_stop(iport); 1471 1472 if ((port_status != SCI_SUCCESS) && 1473 (port_status != SCI_FAILURE_INVALID_STATE)) { 1474 status = SCI_FAILURE; 1475 1476 dev_warn(&ihost->pdev->dev, 1477 "%s: Controller stop operation failed to " 1478 "stop port %d because of status %d.\n", 1479 __func__, 1480 iport->logical_port_index, 1481 port_status); 1482 } 1483 } 1484 1485 return status; 1486 } 1487 1488 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost) 1489 { 1490 u32 index; 1491 enum sci_status status; 1492 enum sci_status device_status; 1493 1494 status = SCI_SUCCESS; 1495 1496 for (index = 0; index < ihost->remote_node_entries; index++) { 1497 if (ihost->device_table[index] != NULL) { 1498 /* / @todo What timeout value do we want to provide to this request? */ 1499 device_status = sci_remote_device_stop(ihost->device_table[index], 0); 1500 1501 if ((device_status != SCI_SUCCESS) && 1502 (device_status != SCI_FAILURE_INVALID_STATE)) { 1503 dev_warn(&ihost->pdev->dev, 1504 "%s: Controller stop operation failed " 1505 "to stop device 0x%p because of " 1506 "status %d.\n", 1507 __func__, 1508 ihost->device_table[index], device_status); 1509 } 1510 } 1511 } 1512 1513 return status; 1514 } 1515 1516 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm) 1517 { 1518 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1519 1520 sci_controller_stop_devices(ihost); 1521 sci_controller_stop_ports(ihost); 1522 1523 if (!sci_controller_has_remote_devices_stopping(ihost)) 1524 isci_host_stop_complete(ihost); 1525 } 1526 1527 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm) 1528 { 1529 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1530 1531 sci_del_timer(&ihost->timer); 1532 } 1533 1534 static void sci_controller_reset_hardware(struct isci_host *ihost) 1535 { 1536 /* Disable interrupts so we dont take any spurious interrupts */ 1537 sci_controller_disable_interrupts(ihost); 1538 1539 /* Reset the SCU */ 1540 writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control); 1541 1542 /* Delay for 1ms to before clearing the CQP and UFQPR. */ 1543 udelay(1000); 1544 1545 /* The write to the CQGR clears the CQP */ 1546 writel(0x00000000, &ihost->smu_registers->completion_queue_get); 1547 1548 /* The write to the UFQGP clears the UFQPR */ 1549 writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 1550 1551 /* clear all interrupts */ 1552 writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status); 1553 } 1554 1555 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm) 1556 { 1557 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1558 1559 sci_controller_reset_hardware(ihost); 1560 sci_change_state(&ihost->sm, SCIC_RESET); 1561 } 1562 1563 static const struct sci_base_state sci_controller_state_table[] = { 1564 [SCIC_INITIAL] = { 1565 .enter_state = sci_controller_initial_state_enter, 1566 }, 1567 [SCIC_RESET] = {}, 1568 [SCIC_INITIALIZING] = {}, 1569 [SCIC_INITIALIZED] = {}, 1570 [SCIC_STARTING] = { 1571 .exit_state = sci_controller_starting_state_exit, 1572 }, 1573 [SCIC_READY] = { 1574 .enter_state = sci_controller_ready_state_enter, 1575 .exit_state = sci_controller_ready_state_exit, 1576 }, 1577 [SCIC_RESETTING] = { 1578 .enter_state = sci_controller_resetting_state_enter, 1579 }, 1580 [SCIC_STOPPING] = { 1581 .enter_state = sci_controller_stopping_state_enter, 1582 .exit_state = sci_controller_stopping_state_exit, 1583 }, 1584 [SCIC_FAILED] = {} 1585 }; 1586 1587 static void controller_timeout(unsigned long data) 1588 { 1589 struct sci_timer *tmr = (struct sci_timer *)data; 1590 struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer); 1591 struct sci_base_state_machine *sm = &ihost->sm; 1592 unsigned long flags; 1593 1594 spin_lock_irqsave(&ihost->scic_lock, flags); 1595 1596 if (tmr->cancel) 1597 goto done; 1598 1599 if (sm->current_state_id == SCIC_STARTING) 1600 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT); 1601 else if (sm->current_state_id == SCIC_STOPPING) { 1602 sci_change_state(sm, SCIC_FAILED); 1603 isci_host_stop_complete(ihost); 1604 } else /* / @todo Now what do we want to do in this case? */ 1605 dev_err(&ihost->pdev->dev, 1606 "%s: Controller timer fired when controller was not " 1607 "in a state being timed.\n", 1608 __func__); 1609 1610 done: 1611 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1612 } 1613 1614 static enum sci_status sci_controller_construct(struct isci_host *ihost, 1615 void __iomem *scu_base, 1616 void __iomem *smu_base) 1617 { 1618 u8 i; 1619 1620 sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL); 1621 1622 ihost->scu_registers = scu_base; 1623 ihost->smu_registers = smu_base; 1624 1625 sci_port_configuration_agent_construct(&ihost->port_agent); 1626 1627 /* Construct the ports for this controller */ 1628 for (i = 0; i < SCI_MAX_PORTS; i++) 1629 sci_port_construct(&ihost->ports[i], i, ihost); 1630 sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost); 1631 1632 /* Construct the phys for this controller */ 1633 for (i = 0; i < SCI_MAX_PHYS; i++) { 1634 /* Add all the PHYs to the dummy port */ 1635 sci_phy_construct(&ihost->phys[i], 1636 &ihost->ports[SCI_MAX_PORTS], i); 1637 } 1638 1639 ihost->invalid_phy_mask = 0; 1640 1641 sci_init_timer(&ihost->timer, controller_timeout); 1642 1643 return sci_controller_reset(ihost); 1644 } 1645 1646 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version) 1647 { 1648 int i; 1649 1650 for (i = 0; i < SCI_MAX_PORTS; i++) 1651 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX) 1652 return -EINVAL; 1653 1654 for (i = 0; i < SCI_MAX_PHYS; i++) 1655 if (oem->phys[i].sas_address.high == 0 && 1656 oem->phys[i].sas_address.low == 0) 1657 return -EINVAL; 1658 1659 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) { 1660 for (i = 0; i < SCI_MAX_PHYS; i++) 1661 if (oem->ports[i].phy_mask != 0) 1662 return -EINVAL; 1663 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 1664 u8 phy_mask = 0; 1665 1666 for (i = 0; i < SCI_MAX_PHYS; i++) 1667 phy_mask |= oem->ports[i].phy_mask; 1668 1669 if (phy_mask == 0) 1670 return -EINVAL; 1671 } else 1672 return -EINVAL; 1673 1674 if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT || 1675 oem->controller.max_concurr_spin_up < 1) 1676 return -EINVAL; 1677 1678 if (oem->controller.do_enable_ssc) { 1679 if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1) 1680 return -EINVAL; 1681 1682 if (version >= ISCI_ROM_VER_1_1) { 1683 u8 test = oem->controller.ssc_sata_tx_spread_level; 1684 1685 switch (test) { 1686 case 0: 1687 case 2: 1688 case 3: 1689 case 6: 1690 case 7: 1691 break; 1692 default: 1693 return -EINVAL; 1694 } 1695 1696 test = oem->controller.ssc_sas_tx_spread_level; 1697 if (oem->controller.ssc_sas_tx_type == 0) { 1698 switch (test) { 1699 case 0: 1700 case 2: 1701 case 3: 1702 break; 1703 default: 1704 return -EINVAL; 1705 } 1706 } else if (oem->controller.ssc_sas_tx_type == 1) { 1707 switch (test) { 1708 case 0: 1709 case 3: 1710 case 6: 1711 break; 1712 default: 1713 return -EINVAL; 1714 } 1715 } 1716 } 1717 } 1718 1719 return 0; 1720 } 1721 1722 static u8 max_spin_up(struct isci_host *ihost) 1723 { 1724 if (ihost->user_parameters.max_concurr_spinup) 1725 return min_t(u8, ihost->user_parameters.max_concurr_spinup, 1726 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); 1727 else 1728 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up, 1729 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); 1730 } 1731 1732 static void power_control_timeout(unsigned long data) 1733 { 1734 struct sci_timer *tmr = (struct sci_timer *)data; 1735 struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer); 1736 struct isci_phy *iphy; 1737 unsigned long flags; 1738 u8 i; 1739 1740 spin_lock_irqsave(&ihost->scic_lock, flags); 1741 1742 if (tmr->cancel) 1743 goto done; 1744 1745 ihost->power_control.phys_granted_power = 0; 1746 1747 if (ihost->power_control.phys_waiting == 0) { 1748 ihost->power_control.timer_started = false; 1749 goto done; 1750 } 1751 1752 for (i = 0; i < SCI_MAX_PHYS; i++) { 1753 1754 if (ihost->power_control.phys_waiting == 0) 1755 break; 1756 1757 iphy = ihost->power_control.requesters[i]; 1758 if (iphy == NULL) 1759 continue; 1760 1761 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost)) 1762 break; 1763 1764 ihost->power_control.requesters[i] = NULL; 1765 ihost->power_control.phys_waiting--; 1766 ihost->power_control.phys_granted_power++; 1767 sci_phy_consume_power_handler(iphy); 1768 1769 if (iphy->protocol == SAS_PROTOCOL_SSP) { 1770 u8 j; 1771 1772 for (j = 0; j < SCI_MAX_PHYS; j++) { 1773 struct isci_phy *requester = ihost->power_control.requesters[j]; 1774 1775 /* 1776 * Search the power_control queue to see if there are other phys 1777 * attached to the same remote device. If found, take all of 1778 * them out of await_sas_power state. 1779 */ 1780 if (requester != NULL && requester != iphy) { 1781 u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr, 1782 iphy->frame_rcvd.iaf.sas_addr, 1783 sizeof(requester->frame_rcvd.iaf.sas_addr)); 1784 1785 if (other == 0) { 1786 ihost->power_control.requesters[j] = NULL; 1787 ihost->power_control.phys_waiting--; 1788 sci_phy_consume_power_handler(requester); 1789 } 1790 } 1791 } 1792 } 1793 } 1794 1795 /* 1796 * It doesn't matter if the power list is empty, we need to start the 1797 * timer in case another phy becomes ready. 1798 */ 1799 sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1800 ihost->power_control.timer_started = true; 1801 1802 done: 1803 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1804 } 1805 1806 void sci_controller_power_control_queue_insert(struct isci_host *ihost, 1807 struct isci_phy *iphy) 1808 { 1809 BUG_ON(iphy == NULL); 1810 1811 if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) { 1812 ihost->power_control.phys_granted_power++; 1813 sci_phy_consume_power_handler(iphy); 1814 1815 /* 1816 * stop and start the power_control timer. When the timer fires, the 1817 * no_of_phys_granted_power will be set to 0 1818 */ 1819 if (ihost->power_control.timer_started) 1820 sci_del_timer(&ihost->power_control.timer); 1821 1822 sci_mod_timer(&ihost->power_control.timer, 1823 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1824 ihost->power_control.timer_started = true; 1825 1826 } else { 1827 /* 1828 * There are phys, attached to the same sas address as this phy, are 1829 * already in READY state, this phy don't need wait. 1830 */ 1831 u8 i; 1832 struct isci_phy *current_phy; 1833 1834 for (i = 0; i < SCI_MAX_PHYS; i++) { 1835 u8 other; 1836 current_phy = &ihost->phys[i]; 1837 1838 other = memcmp(current_phy->frame_rcvd.iaf.sas_addr, 1839 iphy->frame_rcvd.iaf.sas_addr, 1840 sizeof(current_phy->frame_rcvd.iaf.sas_addr)); 1841 1842 if (current_phy->sm.current_state_id == SCI_PHY_READY && 1843 current_phy->protocol == SAS_PROTOCOL_SSP && 1844 other == 0) { 1845 sci_phy_consume_power_handler(iphy); 1846 break; 1847 } 1848 } 1849 1850 if (i == SCI_MAX_PHYS) { 1851 /* Add the phy in the waiting list */ 1852 ihost->power_control.requesters[iphy->phy_index] = iphy; 1853 ihost->power_control.phys_waiting++; 1854 } 1855 } 1856 } 1857 1858 void sci_controller_power_control_queue_remove(struct isci_host *ihost, 1859 struct isci_phy *iphy) 1860 { 1861 BUG_ON(iphy == NULL); 1862 1863 if (ihost->power_control.requesters[iphy->phy_index]) 1864 ihost->power_control.phys_waiting--; 1865 1866 ihost->power_control.requesters[iphy->phy_index] = NULL; 1867 } 1868 1869 static int is_long_cable(int phy, unsigned char selection_byte) 1870 { 1871 return !!(selection_byte & (1 << phy)); 1872 } 1873 1874 static int is_medium_cable(int phy, unsigned char selection_byte) 1875 { 1876 return !!(selection_byte & (1 << (phy + 4))); 1877 } 1878 1879 static enum cable_selections decode_selection_byte( 1880 int phy, 1881 unsigned char selection_byte) 1882 { 1883 return ((selection_byte & (1 << phy)) ? 1 : 0) 1884 + (selection_byte & (1 << (phy + 4)) ? 2 : 0); 1885 } 1886 1887 static unsigned char *to_cable_select(struct isci_host *ihost) 1888 { 1889 if (is_cable_select_overridden()) 1890 return ((unsigned char *)&cable_selection_override) 1891 + ihost->id; 1892 else 1893 return &ihost->oem_parameters.controller.cable_selection_mask; 1894 } 1895 1896 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy) 1897 { 1898 return decode_selection_byte(phy, *to_cable_select(ihost)); 1899 } 1900 1901 char *lookup_cable_names(enum cable_selections selection) 1902 { 1903 static char *cable_names[] = { 1904 [short_cable] = "short", 1905 [long_cable] = "long", 1906 [medium_cable] = "medium", 1907 [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */ 1908 }; 1909 return (selection <= undefined_cable) ? cable_names[selection] 1910 : cable_names[undefined_cable]; 1911 } 1912 1913 #define AFE_REGISTER_WRITE_DELAY 10 1914 1915 static void sci_controller_afe_initialization(struct isci_host *ihost) 1916 { 1917 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe; 1918 const struct sci_oem_params *oem = &ihost->oem_parameters; 1919 struct pci_dev *pdev = ihost->pdev; 1920 u32 afe_status; 1921 u32 phy_id; 1922 unsigned char cable_selection_mask = *to_cable_select(ihost); 1923 1924 /* Clear DFX Status registers */ 1925 writel(0x0081000f, &afe->afe_dfx_master_control0); 1926 udelay(AFE_REGISTER_WRITE_DELAY); 1927 1928 if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) { 1929 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement 1930 * Timer, PM Stagger Timer 1931 */ 1932 writel(0x0007FFFF, &afe->afe_pmsn_master_control2); 1933 udelay(AFE_REGISTER_WRITE_DELAY); 1934 } 1935 1936 /* Configure bias currents to normal */ 1937 if (is_a2(pdev)) 1938 writel(0x00005A00, &afe->afe_bias_control); 1939 else if (is_b0(pdev) || is_c0(pdev)) 1940 writel(0x00005F00, &afe->afe_bias_control); 1941 else if (is_c1(pdev)) 1942 writel(0x00005500, &afe->afe_bias_control); 1943 1944 udelay(AFE_REGISTER_WRITE_DELAY); 1945 1946 /* Enable PLL */ 1947 if (is_a2(pdev)) 1948 writel(0x80040908, &afe->afe_pll_control0); 1949 else if (is_b0(pdev) || is_c0(pdev)) 1950 writel(0x80040A08, &afe->afe_pll_control0); 1951 else if (is_c1(pdev)) { 1952 writel(0x80000B08, &afe->afe_pll_control0); 1953 udelay(AFE_REGISTER_WRITE_DELAY); 1954 writel(0x00000B08, &afe->afe_pll_control0); 1955 udelay(AFE_REGISTER_WRITE_DELAY); 1956 writel(0x80000B08, &afe->afe_pll_control0); 1957 } 1958 1959 udelay(AFE_REGISTER_WRITE_DELAY); 1960 1961 /* Wait for the PLL to lock */ 1962 do { 1963 afe_status = readl(&afe->afe_common_block_status); 1964 udelay(AFE_REGISTER_WRITE_DELAY); 1965 } while ((afe_status & 0x00001000) == 0); 1966 1967 if (is_a2(pdev)) { 1968 /* Shorten SAS SNW lock time (RxLock timer value from 76 1969 * us to 50 us) 1970 */ 1971 writel(0x7bcc96ad, &afe->afe_pmsn_master_control0); 1972 udelay(AFE_REGISTER_WRITE_DELAY); 1973 } 1974 1975 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) { 1976 struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id]; 1977 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id]; 1978 int cable_length_long = 1979 is_long_cable(phy_id, cable_selection_mask); 1980 int cable_length_medium = 1981 is_medium_cable(phy_id, cable_selection_mask); 1982 1983 if (is_a2(pdev)) { 1984 /* All defaults, except the Receive Word 1985 * Alignament/Comma Detect Enable....(0xe800) 1986 */ 1987 writel(0x00004512, &xcvr->afe_xcvr_control0); 1988 udelay(AFE_REGISTER_WRITE_DELAY); 1989 1990 writel(0x0050100F, &xcvr->afe_xcvr_control1); 1991 udelay(AFE_REGISTER_WRITE_DELAY); 1992 } else if (is_b0(pdev)) { 1993 /* Configure transmitter SSC parameters */ 1994 writel(0x00030000, &xcvr->afe_tx_ssc_control); 1995 udelay(AFE_REGISTER_WRITE_DELAY); 1996 } else if (is_c0(pdev)) { 1997 /* Configure transmitter SSC parameters */ 1998 writel(0x00010202, &xcvr->afe_tx_ssc_control); 1999 udelay(AFE_REGISTER_WRITE_DELAY); 2000 2001 /* All defaults, except the Receive Word 2002 * Alignament/Comma Detect Enable....(0xe800) 2003 */ 2004 writel(0x00014500, &xcvr->afe_xcvr_control0); 2005 udelay(AFE_REGISTER_WRITE_DELAY); 2006 } else if (is_c1(pdev)) { 2007 /* Configure transmitter SSC parameters */ 2008 writel(0x00010202, &xcvr->afe_tx_ssc_control); 2009 udelay(AFE_REGISTER_WRITE_DELAY); 2010 2011 /* All defaults, except the Receive Word 2012 * Alignament/Comma Detect Enable....(0xe800) 2013 */ 2014 writel(0x0001C500, &xcvr->afe_xcvr_control0); 2015 udelay(AFE_REGISTER_WRITE_DELAY); 2016 } 2017 2018 /* Power up TX and RX out from power down (PWRDNTX and 2019 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c) 2020 */ 2021 if (is_a2(pdev)) 2022 writel(0x000003F0, &xcvr->afe_channel_control); 2023 else if (is_b0(pdev)) { 2024 writel(0x000003D7, &xcvr->afe_channel_control); 2025 udelay(AFE_REGISTER_WRITE_DELAY); 2026 2027 writel(0x000003D4, &xcvr->afe_channel_control); 2028 } else if (is_c0(pdev)) { 2029 writel(0x000001E7, &xcvr->afe_channel_control); 2030 udelay(AFE_REGISTER_WRITE_DELAY); 2031 2032 writel(0x000001E4, &xcvr->afe_channel_control); 2033 } else if (is_c1(pdev)) { 2034 writel(cable_length_long ? 0x000002F7 : 0x000001F7, 2035 &xcvr->afe_channel_control); 2036 udelay(AFE_REGISTER_WRITE_DELAY); 2037 2038 writel(cable_length_long ? 0x000002F4 : 0x000001F4, 2039 &xcvr->afe_channel_control); 2040 } 2041 udelay(AFE_REGISTER_WRITE_DELAY); 2042 2043 if (is_a2(pdev)) { 2044 /* Enable TX equalization (0xe824) */ 2045 writel(0x00040000, &xcvr->afe_tx_control); 2046 udelay(AFE_REGISTER_WRITE_DELAY); 2047 } 2048 2049 if (is_a2(pdev) || is_b0(pdev)) 2050 /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, 2051 * TPD=0x0(TX Power On), RDD=0x0(RX Detect 2052 * Enabled) ....(0xe800) 2053 */ 2054 writel(0x00004100, &xcvr->afe_xcvr_control0); 2055 else if (is_c0(pdev)) 2056 writel(0x00014100, &xcvr->afe_xcvr_control0); 2057 else if (is_c1(pdev)) 2058 writel(0x0001C100, &xcvr->afe_xcvr_control0); 2059 udelay(AFE_REGISTER_WRITE_DELAY); 2060 2061 /* Leave DFE/FFE on */ 2062 if (is_a2(pdev)) 2063 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); 2064 else if (is_b0(pdev)) { 2065 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); 2066 udelay(AFE_REGISTER_WRITE_DELAY); 2067 /* Enable TX equalization (0xe824) */ 2068 writel(0x00040000, &xcvr->afe_tx_control); 2069 } else if (is_c0(pdev)) { 2070 writel(0x01400C0F, &xcvr->afe_rx_ssc_control1); 2071 udelay(AFE_REGISTER_WRITE_DELAY); 2072 2073 writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0); 2074 udelay(AFE_REGISTER_WRITE_DELAY); 2075 2076 /* Enable TX equalization (0xe824) */ 2077 writel(0x00040000, &xcvr->afe_tx_control); 2078 } else if (is_c1(pdev)) { 2079 writel(cable_length_long ? 0x01500C0C : 2080 cable_length_medium ? 0x01400C0D : 0x02400C0D, 2081 &xcvr->afe_xcvr_control1); 2082 udelay(AFE_REGISTER_WRITE_DELAY); 2083 2084 writel(0x000003E0, &xcvr->afe_dfx_rx_control1); 2085 udelay(AFE_REGISTER_WRITE_DELAY); 2086 2087 writel(cable_length_long ? 0x33091C1F : 2088 cable_length_medium ? 0x3315181F : 0x2B17161F, 2089 &xcvr->afe_rx_ssc_control0); 2090 udelay(AFE_REGISTER_WRITE_DELAY); 2091 2092 /* Enable TX equalization (0xe824) */ 2093 writel(0x00040000, &xcvr->afe_tx_control); 2094 } 2095 2096 udelay(AFE_REGISTER_WRITE_DELAY); 2097 2098 writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0); 2099 udelay(AFE_REGISTER_WRITE_DELAY); 2100 2101 writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1); 2102 udelay(AFE_REGISTER_WRITE_DELAY); 2103 2104 writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2); 2105 udelay(AFE_REGISTER_WRITE_DELAY); 2106 2107 writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3); 2108 udelay(AFE_REGISTER_WRITE_DELAY); 2109 } 2110 2111 /* Transfer control to the PEs */ 2112 writel(0x00010f00, &afe->afe_dfx_master_control0); 2113 udelay(AFE_REGISTER_WRITE_DELAY); 2114 } 2115 2116 static void sci_controller_initialize_power_control(struct isci_host *ihost) 2117 { 2118 sci_init_timer(&ihost->power_control.timer, power_control_timeout); 2119 2120 memset(ihost->power_control.requesters, 0, 2121 sizeof(ihost->power_control.requesters)); 2122 2123 ihost->power_control.phys_waiting = 0; 2124 ihost->power_control.phys_granted_power = 0; 2125 } 2126 2127 static enum sci_status sci_controller_initialize(struct isci_host *ihost) 2128 { 2129 struct sci_base_state_machine *sm = &ihost->sm; 2130 enum sci_status result = SCI_FAILURE; 2131 unsigned long i, state, val; 2132 2133 if (ihost->sm.current_state_id != SCIC_RESET) { 2134 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2135 __func__, ihost->sm.current_state_id); 2136 return SCI_FAILURE_INVALID_STATE; 2137 } 2138 2139 sci_change_state(sm, SCIC_INITIALIZING); 2140 2141 sci_init_timer(&ihost->phy_timer, phy_startup_timeout); 2142 2143 ihost->next_phy_to_start = 0; 2144 ihost->phy_startup_timer_pending = false; 2145 2146 sci_controller_initialize_power_control(ihost); 2147 2148 /* 2149 * There is nothing to do here for B0 since we do not have to 2150 * program the AFE registers. 2151 * / @todo The AFE settings are supposed to be correct for the B0 but 2152 * / presently they seem to be wrong. */ 2153 sci_controller_afe_initialization(ihost); 2154 2155 2156 /* Take the hardware out of reset */ 2157 writel(0, &ihost->smu_registers->soft_reset_control); 2158 2159 /* 2160 * / @todo Provide meaningfull error code for hardware failure 2161 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */ 2162 for (i = 100; i >= 1; i--) { 2163 u32 status; 2164 2165 /* Loop until the hardware reports success */ 2166 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME); 2167 status = readl(&ihost->smu_registers->control_status); 2168 2169 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED) 2170 break; 2171 } 2172 if (i == 0) 2173 goto out; 2174 2175 /* 2176 * Determine what are the actaul device capacities that the 2177 * hardware will support */ 2178 val = readl(&ihost->smu_registers->device_context_capacity); 2179 2180 /* Record the smaller of the two capacity values */ 2181 ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS); 2182 ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS); 2183 ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES); 2184 2185 /* 2186 * Make all PEs that are unassigned match up with the 2187 * logical ports 2188 */ 2189 for (i = 0; i < ihost->logical_port_entries; i++) { 2190 struct scu_port_task_scheduler_group_registers __iomem 2191 *ptsg = &ihost->scu_registers->peg0.ptsg; 2192 2193 writel(i, &ptsg->protocol_engine[i]); 2194 } 2195 2196 /* Initialize hardware PCI Relaxed ordering in DMA engines */ 2197 val = readl(&ihost->scu_registers->sdma.pdma_configuration); 2198 val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2199 writel(val, &ihost->scu_registers->sdma.pdma_configuration); 2200 2201 val = readl(&ihost->scu_registers->sdma.cdma_configuration); 2202 val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2203 writel(val, &ihost->scu_registers->sdma.cdma_configuration); 2204 2205 /* 2206 * Initialize the PHYs before the PORTs because the PHY registers 2207 * are accessed during the port initialization. 2208 */ 2209 for (i = 0; i < SCI_MAX_PHYS; i++) { 2210 result = sci_phy_initialize(&ihost->phys[i], 2211 &ihost->scu_registers->peg0.pe[i].tl, 2212 &ihost->scu_registers->peg0.pe[i].ll); 2213 if (result != SCI_SUCCESS) 2214 goto out; 2215 } 2216 2217 for (i = 0; i < ihost->logical_port_entries; i++) { 2218 struct isci_port *iport = &ihost->ports[i]; 2219 2220 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i]; 2221 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0]; 2222 iport->viit_registers = &ihost->scu_registers->peg0.viit[i]; 2223 } 2224 2225 result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent); 2226 2227 out: 2228 /* Advance the controller state machine */ 2229 if (result == SCI_SUCCESS) 2230 state = SCIC_INITIALIZED; 2231 else 2232 state = SCIC_FAILED; 2233 sci_change_state(sm, state); 2234 2235 return result; 2236 } 2237 2238 static int sci_controller_dma_alloc(struct isci_host *ihost) 2239 { 2240 struct device *dev = &ihost->pdev->dev; 2241 size_t size; 2242 int i; 2243 2244 /* detect re-initialization */ 2245 if (ihost->completion_queue) 2246 return 0; 2247 2248 size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32); 2249 ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma, 2250 GFP_KERNEL); 2251 if (!ihost->completion_queue) 2252 return -ENOMEM; 2253 2254 size = ihost->remote_node_entries * sizeof(union scu_remote_node_context); 2255 ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma, 2256 GFP_KERNEL); 2257 2258 if (!ihost->remote_node_context_table) 2259 return -ENOMEM; 2260 2261 size = ihost->task_context_entries * sizeof(struct scu_task_context), 2262 ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma, 2263 GFP_KERNEL); 2264 if (!ihost->task_context_table) 2265 return -ENOMEM; 2266 2267 size = SCI_UFI_TOTAL_SIZE; 2268 ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL); 2269 if (!ihost->ufi_buf) 2270 return -ENOMEM; 2271 2272 for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) { 2273 struct isci_request *ireq; 2274 dma_addr_t dma; 2275 2276 ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL); 2277 if (!ireq) 2278 return -ENOMEM; 2279 2280 ireq->tc = &ihost->task_context_table[i]; 2281 ireq->owning_controller = ihost; 2282 ireq->request_daddr = dma; 2283 ireq->isci_host = ihost; 2284 ihost->reqs[i] = ireq; 2285 } 2286 2287 return 0; 2288 } 2289 2290 static int sci_controller_mem_init(struct isci_host *ihost) 2291 { 2292 int err = sci_controller_dma_alloc(ihost); 2293 2294 if (err) 2295 return err; 2296 2297 writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower); 2298 writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper); 2299 2300 writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower); 2301 writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper); 2302 2303 writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower); 2304 writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper); 2305 2306 sci_unsolicited_frame_control_construct(ihost); 2307 2308 /* 2309 * Inform the silicon as to the location of the UF headers and 2310 * address table. 2311 */ 2312 writel(lower_32_bits(ihost->uf_control.headers.physical_address), 2313 &ihost->scu_registers->sdma.uf_header_base_address_lower); 2314 writel(upper_32_bits(ihost->uf_control.headers.physical_address), 2315 &ihost->scu_registers->sdma.uf_header_base_address_upper); 2316 2317 writel(lower_32_bits(ihost->uf_control.address_table.physical_address), 2318 &ihost->scu_registers->sdma.uf_address_table_lower); 2319 writel(upper_32_bits(ihost->uf_control.address_table.physical_address), 2320 &ihost->scu_registers->sdma.uf_address_table_upper); 2321 2322 return 0; 2323 } 2324 2325 /** 2326 * isci_host_init - (re-)initialize hardware and internal (private) state 2327 * @ihost: host to init 2328 * 2329 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or 2330 * one-time initialization objects like locks and waitqueues, are 2331 * not touched (they are initialized in isci_host_alloc) 2332 */ 2333 int isci_host_init(struct isci_host *ihost) 2334 { 2335 int i, err; 2336 enum sci_status status; 2337 2338 spin_lock_irq(&ihost->scic_lock); 2339 status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost)); 2340 spin_unlock_irq(&ihost->scic_lock); 2341 if (status != SCI_SUCCESS) { 2342 dev_err(&ihost->pdev->dev, 2343 "%s: sci_controller_construct failed - status = %x\n", 2344 __func__, 2345 status); 2346 return -ENODEV; 2347 } 2348 2349 spin_lock_irq(&ihost->scic_lock); 2350 status = sci_controller_initialize(ihost); 2351 spin_unlock_irq(&ihost->scic_lock); 2352 if (status != SCI_SUCCESS) { 2353 dev_warn(&ihost->pdev->dev, 2354 "%s: sci_controller_initialize failed -" 2355 " status = 0x%x\n", 2356 __func__, status); 2357 return -ENODEV; 2358 } 2359 2360 err = sci_controller_mem_init(ihost); 2361 if (err) 2362 return err; 2363 2364 /* enable sgpio */ 2365 writel(1, &ihost->scu_registers->peg0.sgpio.interface_control); 2366 for (i = 0; i < isci_gpio_count(ihost); i++) 2367 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); 2368 writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code); 2369 2370 return 0; 2371 } 2372 2373 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport, 2374 struct isci_phy *iphy) 2375 { 2376 switch (ihost->sm.current_state_id) { 2377 case SCIC_STARTING: 2378 sci_del_timer(&ihost->phy_timer); 2379 ihost->phy_startup_timer_pending = false; 2380 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, 2381 iport, iphy); 2382 sci_controller_start_next_phy(ihost); 2383 break; 2384 case SCIC_READY: 2385 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, 2386 iport, iphy); 2387 break; 2388 default: 2389 dev_dbg(&ihost->pdev->dev, 2390 "%s: SCIC Controller linkup event from phy %d in " 2391 "unexpected state %d\n", __func__, iphy->phy_index, 2392 ihost->sm.current_state_id); 2393 } 2394 } 2395 2396 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport, 2397 struct isci_phy *iphy) 2398 { 2399 switch (ihost->sm.current_state_id) { 2400 case SCIC_STARTING: 2401 case SCIC_READY: 2402 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent, 2403 iport, iphy); 2404 break; 2405 default: 2406 dev_dbg(&ihost->pdev->dev, 2407 "%s: SCIC Controller linkdown event from phy %d in " 2408 "unexpected state %d\n", 2409 __func__, 2410 iphy->phy_index, 2411 ihost->sm.current_state_id); 2412 } 2413 } 2414 2415 bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost) 2416 { 2417 u32 index; 2418 2419 for (index = 0; index < ihost->remote_node_entries; index++) { 2420 if ((ihost->device_table[index] != NULL) && 2421 (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING)) 2422 return true; 2423 } 2424 2425 return false; 2426 } 2427 2428 void sci_controller_remote_device_stopped(struct isci_host *ihost, 2429 struct isci_remote_device *idev) 2430 { 2431 if (ihost->sm.current_state_id != SCIC_STOPPING) { 2432 dev_dbg(&ihost->pdev->dev, 2433 "SCIC Controller 0x%p remote device stopped event " 2434 "from device 0x%p in unexpected state %d\n", 2435 ihost, idev, 2436 ihost->sm.current_state_id); 2437 return; 2438 } 2439 2440 if (!sci_controller_has_remote_devices_stopping(ihost)) 2441 isci_host_stop_complete(ihost); 2442 } 2443 2444 void sci_controller_post_request(struct isci_host *ihost, u32 request) 2445 { 2446 dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n", 2447 __func__, ihost->id, request); 2448 2449 writel(request, &ihost->smu_registers->post_context_port); 2450 } 2451 2452 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag) 2453 { 2454 u16 task_index; 2455 u16 task_sequence; 2456 2457 task_index = ISCI_TAG_TCI(io_tag); 2458 2459 if (task_index < ihost->task_context_entries) { 2460 struct isci_request *ireq = ihost->reqs[task_index]; 2461 2462 if (test_bit(IREQ_ACTIVE, &ireq->flags)) { 2463 task_sequence = ISCI_TAG_SEQ(io_tag); 2464 2465 if (task_sequence == ihost->io_request_sequence[task_index]) 2466 return ireq; 2467 } 2468 } 2469 2470 return NULL; 2471 } 2472 2473 /** 2474 * This method allocates remote node index and the reserves the remote node 2475 * context space for use. This method can fail if there are no more remote 2476 * node index available. 2477 * @scic: This is the controller object which contains the set of 2478 * free remote node ids 2479 * @sci_dev: This is the device object which is requesting the a remote node 2480 * id 2481 * @node_id: This is the remote node id that is assinged to the device if one 2482 * is available 2483 * 2484 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote 2485 * node index available. 2486 */ 2487 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost, 2488 struct isci_remote_device *idev, 2489 u16 *node_id) 2490 { 2491 u16 node_index; 2492 u32 remote_node_count = sci_remote_device_node_count(idev); 2493 2494 node_index = sci_remote_node_table_allocate_remote_node( 2495 &ihost->available_remote_nodes, remote_node_count 2496 ); 2497 2498 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 2499 ihost->device_table[node_index] = idev; 2500 2501 *node_id = node_index; 2502 2503 return SCI_SUCCESS; 2504 } 2505 2506 return SCI_FAILURE_INSUFFICIENT_RESOURCES; 2507 } 2508 2509 void sci_controller_free_remote_node_context(struct isci_host *ihost, 2510 struct isci_remote_device *idev, 2511 u16 node_id) 2512 { 2513 u32 remote_node_count = sci_remote_device_node_count(idev); 2514 2515 if (ihost->device_table[node_id] == idev) { 2516 ihost->device_table[node_id] = NULL; 2517 2518 sci_remote_node_table_release_remote_node_index( 2519 &ihost->available_remote_nodes, remote_node_count, node_id 2520 ); 2521 } 2522 } 2523 2524 void sci_controller_copy_sata_response(void *response_buffer, 2525 void *frame_header, 2526 void *frame_buffer) 2527 { 2528 /* XXX type safety? */ 2529 memcpy(response_buffer, frame_header, sizeof(u32)); 2530 2531 memcpy(response_buffer + sizeof(u32), 2532 frame_buffer, 2533 sizeof(struct dev_to_host_fis) - sizeof(u32)); 2534 } 2535 2536 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index) 2537 { 2538 if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index)) 2539 writel(ihost->uf_control.get, 2540 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 2541 } 2542 2543 void isci_tci_free(struct isci_host *ihost, u16 tci) 2544 { 2545 u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1); 2546 2547 ihost->tci_pool[tail] = tci; 2548 ihost->tci_tail = tail + 1; 2549 } 2550 2551 static u16 isci_tci_alloc(struct isci_host *ihost) 2552 { 2553 u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1); 2554 u16 tci = ihost->tci_pool[head]; 2555 2556 ihost->tci_head = head + 1; 2557 return tci; 2558 } 2559 2560 static u16 isci_tci_space(struct isci_host *ihost) 2561 { 2562 return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); 2563 } 2564 2565 u16 isci_alloc_tag(struct isci_host *ihost) 2566 { 2567 if (isci_tci_space(ihost)) { 2568 u16 tci = isci_tci_alloc(ihost); 2569 u8 seq = ihost->io_request_sequence[tci]; 2570 2571 return ISCI_TAG(seq, tci); 2572 } 2573 2574 return SCI_CONTROLLER_INVALID_IO_TAG; 2575 } 2576 2577 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag) 2578 { 2579 u16 tci = ISCI_TAG_TCI(io_tag); 2580 u16 seq = ISCI_TAG_SEQ(io_tag); 2581 2582 /* prevent tail from passing head */ 2583 if (isci_tci_active(ihost) == 0) 2584 return SCI_FAILURE_INVALID_IO_TAG; 2585 2586 if (seq == ihost->io_request_sequence[tci]) { 2587 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1); 2588 2589 isci_tci_free(ihost, tci); 2590 2591 return SCI_SUCCESS; 2592 } 2593 return SCI_FAILURE_INVALID_IO_TAG; 2594 } 2595 2596 enum sci_status sci_controller_start_io(struct isci_host *ihost, 2597 struct isci_remote_device *idev, 2598 struct isci_request *ireq) 2599 { 2600 enum sci_status status; 2601 2602 if (ihost->sm.current_state_id != SCIC_READY) { 2603 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2604 __func__, ihost->sm.current_state_id); 2605 return SCI_FAILURE_INVALID_STATE; 2606 } 2607 2608 status = sci_remote_device_start_io(ihost, idev, ireq); 2609 if (status != SCI_SUCCESS) 2610 return status; 2611 2612 set_bit(IREQ_ACTIVE, &ireq->flags); 2613 sci_controller_post_request(ihost, ireq->post_context); 2614 return SCI_SUCCESS; 2615 } 2616 2617 enum sci_status sci_controller_terminate_request(struct isci_host *ihost, 2618 struct isci_remote_device *idev, 2619 struct isci_request *ireq) 2620 { 2621 /* terminate an ongoing (i.e. started) core IO request. This does not 2622 * abort the IO request at the target, but rather removes the IO 2623 * request from the host controller. 2624 */ 2625 enum sci_status status; 2626 2627 if (ihost->sm.current_state_id != SCIC_READY) { 2628 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2629 __func__, ihost->sm.current_state_id); 2630 return SCI_FAILURE_INVALID_STATE; 2631 } 2632 status = sci_io_request_terminate(ireq); 2633 2634 dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n", 2635 __func__, status, ireq, ireq->flags); 2636 2637 if ((status == SCI_SUCCESS) && 2638 !test_bit(IREQ_PENDING_ABORT, &ireq->flags) && 2639 !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) { 2640 /* Utilize the original post context command and or in the 2641 * POST_TC_ABORT request sub-type. 2642 */ 2643 sci_controller_post_request( 2644 ihost, ireq->post_context | 2645 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT); 2646 } 2647 return status; 2648 } 2649 2650 /** 2651 * sci_controller_complete_io() - This method will perform core specific 2652 * completion operations for an IO request. After this method is invoked, 2653 * the user should consider the IO request as invalid until it is properly 2654 * reused (i.e. re-constructed). 2655 * @ihost: The handle to the controller object for which to complete the 2656 * IO request. 2657 * @idev: The handle to the remote device object for which to complete 2658 * the IO request. 2659 * @ireq: the handle to the io request object to complete. 2660 */ 2661 enum sci_status sci_controller_complete_io(struct isci_host *ihost, 2662 struct isci_remote_device *idev, 2663 struct isci_request *ireq) 2664 { 2665 enum sci_status status; 2666 u16 index; 2667 2668 switch (ihost->sm.current_state_id) { 2669 case SCIC_STOPPING: 2670 /* XXX: Implement this function */ 2671 return SCI_FAILURE; 2672 case SCIC_READY: 2673 status = sci_remote_device_complete_io(ihost, idev, ireq); 2674 if (status != SCI_SUCCESS) 2675 return status; 2676 2677 index = ISCI_TAG_TCI(ireq->io_tag); 2678 clear_bit(IREQ_ACTIVE, &ireq->flags); 2679 return SCI_SUCCESS; 2680 default: 2681 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2682 __func__, ihost->sm.current_state_id); 2683 return SCI_FAILURE_INVALID_STATE; 2684 } 2685 2686 } 2687 2688 enum sci_status sci_controller_continue_io(struct isci_request *ireq) 2689 { 2690 struct isci_host *ihost = ireq->owning_controller; 2691 2692 if (ihost->sm.current_state_id != SCIC_READY) { 2693 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2694 __func__, ihost->sm.current_state_id); 2695 return SCI_FAILURE_INVALID_STATE; 2696 } 2697 2698 set_bit(IREQ_ACTIVE, &ireq->flags); 2699 sci_controller_post_request(ihost, ireq->post_context); 2700 return SCI_SUCCESS; 2701 } 2702 2703 /** 2704 * sci_controller_start_task() - This method is called by the SCIC user to 2705 * send/start a framework task management request. 2706 * @controller: the handle to the controller object for which to start the task 2707 * management request. 2708 * @remote_device: the handle to the remote device object for which to start 2709 * the task management request. 2710 * @task_request: the handle to the task request object to start. 2711 */ 2712 enum sci_task_status sci_controller_start_task(struct isci_host *ihost, 2713 struct isci_remote_device *idev, 2714 struct isci_request *ireq) 2715 { 2716 enum sci_status status; 2717 2718 if (ihost->sm.current_state_id != SCIC_READY) { 2719 dev_warn(&ihost->pdev->dev, 2720 "%s: SCIC Controller starting task from invalid " 2721 "state\n", 2722 __func__); 2723 return SCI_TASK_FAILURE_INVALID_STATE; 2724 } 2725 2726 status = sci_remote_device_start_task(ihost, idev, ireq); 2727 switch (status) { 2728 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS: 2729 set_bit(IREQ_ACTIVE, &ireq->flags); 2730 2731 /* 2732 * We will let framework know this task request started successfully, 2733 * although core is still woring on starting the request (to post tc when 2734 * RNC is resumed.) 2735 */ 2736 return SCI_SUCCESS; 2737 case SCI_SUCCESS: 2738 set_bit(IREQ_ACTIVE, &ireq->flags); 2739 sci_controller_post_request(ihost, ireq->post_context); 2740 break; 2741 default: 2742 break; 2743 } 2744 2745 return status; 2746 } 2747 2748 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data) 2749 { 2750 int d; 2751 2752 /* no support for TX_GP_CFG */ 2753 if (reg_index == 0) 2754 return -EINVAL; 2755 2756 for (d = 0; d < isci_gpio_count(ihost); d++) { 2757 u32 val = 0x444; /* all ODx.n clear */ 2758 int i; 2759 2760 for (i = 0; i < 3; i++) { 2761 int bit = (i << 2) + 2; 2762 2763 bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i), 2764 write_data, reg_index, 2765 reg_count); 2766 if (bit < 0) 2767 break; 2768 2769 /* if od is set, clear the 'invert' bit */ 2770 val &= ~(bit << ((i << 2) + 2)); 2771 } 2772 2773 if (i < 3) 2774 break; 2775 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]); 2776 } 2777 2778 /* unless reg_index is > 1, we should always be able to write at 2779 * least one register 2780 */ 2781 return d > 0; 2782 } 2783 2784 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index, 2785 u8 reg_count, u8 *write_data) 2786 { 2787 struct isci_host *ihost = sas_ha->lldd_ha; 2788 int written; 2789 2790 switch (reg_type) { 2791 case SAS_GPIO_REG_TX_GP: 2792 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data); 2793 break; 2794 default: 2795 written = -EINVAL; 2796 } 2797 2798 return written; 2799 } 2800