1 /* imm.c -- low level driver for the IOMEGA MatchMaker 2 * parallel port SCSI host adapter. 3 * 4 * (The IMM is the embedded controller in the ZIP Plus drive.) 5 * 6 * My unofficial company acronym list is 21 pages long: 7 * FLA: Four letter acronym with built in facility for 8 * future expansion to five letters. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/blkdev.h> 15 #include <linux/parport.h> 16 #include <linux/workqueue.h> 17 #include <linux/delay.h> 18 #include <linux/slab.h> 19 #include <asm/io.h> 20 21 #include <scsi/scsi.h> 22 #include <scsi/scsi_cmnd.h> 23 #include <scsi/scsi_device.h> 24 #include <scsi/scsi_host.h> 25 26 /* The following #define is to avoid a clash with hosts.c */ 27 #define IMM_PROBE_SPP 0x0001 28 #define IMM_PROBE_PS2 0x0002 29 #define IMM_PROBE_ECR 0x0010 30 #define IMM_PROBE_EPP17 0x0100 31 #define IMM_PROBE_EPP19 0x0200 32 33 34 typedef struct { 35 struct pardevice *dev; /* Parport device entry */ 36 int base; /* Actual port address */ 37 int base_hi; /* Hi Base address for ECP-ISA chipset */ 38 int mode; /* Transfer mode */ 39 struct scsi_cmnd *cur_cmd; /* Current queued command */ 40 struct delayed_work imm_tq; /* Polling interrupt stuff */ 41 unsigned long jstart; /* Jiffies at start */ 42 unsigned failed:1; /* Failure flag */ 43 unsigned dp:1; /* Data phase present */ 44 unsigned rd:1; /* Read data in data phase */ 45 unsigned wanted:1; /* Parport sharing busy flag */ 46 unsigned int dev_no; /* Device number */ 47 wait_queue_head_t *waiting; 48 struct Scsi_Host *host; 49 struct list_head list; 50 } imm_struct; 51 52 static void imm_reset_pulse(unsigned int base); 53 static int device_check(imm_struct *dev); 54 55 #include "imm.h" 56 57 static inline imm_struct *imm_dev(struct Scsi_Host *host) 58 { 59 return *(imm_struct **)&host->hostdata; 60 } 61 62 static DEFINE_SPINLOCK(arbitration_lock); 63 64 static void got_it(imm_struct *dev) 65 { 66 dev->base = dev->dev->port->base; 67 if (dev->cur_cmd) 68 dev->cur_cmd->SCp.phase = 1; 69 else 70 wake_up(dev->waiting); 71 } 72 73 static void imm_wakeup(void *ref) 74 { 75 imm_struct *dev = (imm_struct *) ref; 76 unsigned long flags; 77 78 spin_lock_irqsave(&arbitration_lock, flags); 79 if (dev->wanted) { 80 if (parport_claim(dev->dev) == 0) { 81 got_it(dev); 82 dev->wanted = 0; 83 } 84 } 85 spin_unlock_irqrestore(&arbitration_lock, flags); 86 } 87 88 static int imm_pb_claim(imm_struct *dev) 89 { 90 unsigned long flags; 91 int res = 1; 92 spin_lock_irqsave(&arbitration_lock, flags); 93 if (parport_claim(dev->dev) == 0) { 94 got_it(dev); 95 res = 0; 96 } 97 dev->wanted = res; 98 spin_unlock_irqrestore(&arbitration_lock, flags); 99 return res; 100 } 101 102 static void imm_pb_dismiss(imm_struct *dev) 103 { 104 unsigned long flags; 105 int wanted; 106 spin_lock_irqsave(&arbitration_lock, flags); 107 wanted = dev->wanted; 108 dev->wanted = 0; 109 spin_unlock_irqrestore(&arbitration_lock, flags); 110 if (!wanted) 111 parport_release(dev->dev); 112 } 113 114 static inline void imm_pb_release(imm_struct *dev) 115 { 116 parport_release(dev->dev); 117 } 118 119 /* This is to give the imm driver a way to modify the timings (and other 120 * parameters) by writing to the /proc/scsi/imm/0 file. 121 * Very simple method really... (Too simple, no error checking :( ) 122 * Reason: Kernel hackers HATE having to unload and reload modules for 123 * testing... 124 * Also gives a method to use a script to obtain optimum timings (TODO) 125 */ 126 static int imm_write_info(struct Scsi_Host *host, char *buffer, int length) 127 { 128 imm_struct *dev = imm_dev(host); 129 130 if ((length > 5) && (strncmp(buffer, "mode=", 5) == 0)) { 131 dev->mode = simple_strtoul(buffer + 5, NULL, 0); 132 return length; 133 } 134 printk("imm /proc: invalid variable\n"); 135 return -EINVAL; 136 } 137 138 static int imm_show_info(struct seq_file *m, struct Scsi_Host *host) 139 { 140 imm_struct *dev = imm_dev(host); 141 142 seq_printf(m, "Version : %s\n", IMM_VERSION); 143 seq_printf(m, "Parport : %s\n", dev->dev->port->name); 144 seq_printf(m, "Mode : %s\n", IMM_MODE_STRING[dev->mode]); 145 return 0; 146 } 147 148 #if IMM_DEBUG > 0 149 #define imm_fail(x,y) printk("imm: imm_fail(%i) from %s at line %d\n",\ 150 y, __func__, __LINE__); imm_fail_func(x,y); 151 static inline void 152 imm_fail_func(imm_struct *dev, int error_code) 153 #else 154 static inline void 155 imm_fail(imm_struct *dev, int error_code) 156 #endif 157 { 158 /* If we fail a device then we trash status / message bytes */ 159 if (dev->cur_cmd) { 160 dev->cur_cmd->result = error_code << 16; 161 dev->failed = 1; 162 } 163 } 164 165 /* 166 * Wait for the high bit to be set. 167 * 168 * In principle, this could be tied to an interrupt, but the adapter 169 * doesn't appear to be designed to support interrupts. We spin on 170 * the 0x80 ready bit. 171 */ 172 static unsigned char imm_wait(imm_struct *dev) 173 { 174 int k; 175 unsigned short ppb = dev->base; 176 unsigned char r; 177 178 w_ctr(ppb, 0x0c); 179 180 k = IMM_SPIN_TMO; 181 do { 182 r = r_str(ppb); 183 k--; 184 udelay(1); 185 } 186 while (!(r & 0x80) && (k)); 187 188 /* 189 * STR register (LPT base+1) to SCSI mapping: 190 * 191 * STR imm imm 192 * =================================== 193 * 0x80 S_REQ S_REQ 194 * 0x40 !S_BSY (????) 195 * 0x20 !S_CD !S_CD 196 * 0x10 !S_IO !S_IO 197 * 0x08 (????) !S_BSY 198 * 199 * imm imm meaning 200 * ================================== 201 * 0xf0 0xb8 Bit mask 202 * 0xc0 0x88 ZIP wants more data 203 * 0xd0 0x98 ZIP wants to send more data 204 * 0xe0 0xa8 ZIP is expecting SCSI command data 205 * 0xf0 0xb8 end of transfer, ZIP is sending status 206 */ 207 w_ctr(ppb, 0x04); 208 if (k) 209 return (r & 0xb8); 210 211 /* Counter expired - Time out occurred */ 212 imm_fail(dev, DID_TIME_OUT); 213 printk("imm timeout in imm_wait\n"); 214 return 0; /* command timed out */ 215 } 216 217 static int imm_negotiate(imm_struct * tmp) 218 { 219 /* 220 * The following is supposedly the IEEE 1284-1994 negotiate 221 * sequence. I have yet to obtain a copy of the above standard 222 * so this is a bit of a guess... 223 * 224 * A fair chunk of this is based on the Linux parport implementation 225 * of IEEE 1284. 226 * 227 * Return 0 if data available 228 * 1 if no data available 229 */ 230 231 unsigned short base = tmp->base; 232 unsigned char a, mode; 233 234 switch (tmp->mode) { 235 case IMM_NIBBLE: 236 mode = 0x00; 237 break; 238 case IMM_PS2: 239 mode = 0x01; 240 break; 241 default: 242 return 0; 243 } 244 245 w_ctr(base, 0x04); 246 udelay(5); 247 w_dtr(base, mode); 248 udelay(100); 249 w_ctr(base, 0x06); 250 udelay(5); 251 a = (r_str(base) & 0x20) ? 0 : 1; 252 udelay(5); 253 w_ctr(base, 0x07); 254 udelay(5); 255 w_ctr(base, 0x06); 256 257 if (a) { 258 printk 259 ("IMM: IEEE1284 negotiate indicates no data available.\n"); 260 imm_fail(tmp, DID_ERROR); 261 } 262 return a; 263 } 264 265 /* 266 * Clear EPP timeout bit. 267 */ 268 static inline void epp_reset(unsigned short ppb) 269 { 270 int i; 271 272 i = r_str(ppb); 273 w_str(ppb, i); 274 w_str(ppb, i & 0xfe); 275 } 276 277 /* 278 * Wait for empty ECP fifo (if we are in ECP fifo mode only) 279 */ 280 static inline void ecp_sync(imm_struct *dev) 281 { 282 int i, ppb_hi = dev->base_hi; 283 284 if (ppb_hi == 0) 285 return; 286 287 if ((r_ecr(ppb_hi) & 0xe0) == 0x60) { /* mode 011 == ECP fifo mode */ 288 for (i = 0; i < 100; i++) { 289 if (r_ecr(ppb_hi) & 0x01) 290 return; 291 udelay(5); 292 } 293 printk("imm: ECP sync failed as data still present in FIFO.\n"); 294 } 295 } 296 297 static int imm_byte_out(unsigned short base, const char *buffer, int len) 298 { 299 int i; 300 301 w_ctr(base, 0x4); /* apparently a sane mode */ 302 for (i = len >> 1; i; i--) { 303 w_dtr(base, *buffer++); 304 w_ctr(base, 0x5); /* Drop STROBE low */ 305 w_dtr(base, *buffer++); 306 w_ctr(base, 0x0); /* STROBE high + INIT low */ 307 } 308 w_ctr(base, 0x4); /* apparently a sane mode */ 309 return 1; /* All went well - we hope! */ 310 } 311 312 static int imm_nibble_in(unsigned short base, char *buffer, int len) 313 { 314 unsigned char l; 315 int i; 316 317 /* 318 * The following is based on documented timing signals 319 */ 320 w_ctr(base, 0x4); 321 for (i = len; i; i--) { 322 w_ctr(base, 0x6); 323 l = (r_str(base) & 0xf0) >> 4; 324 w_ctr(base, 0x5); 325 *buffer++ = (r_str(base) & 0xf0) | l; 326 w_ctr(base, 0x4); 327 } 328 return 1; /* All went well - we hope! */ 329 } 330 331 static int imm_byte_in(unsigned short base, char *buffer, int len) 332 { 333 int i; 334 335 /* 336 * The following is based on documented timing signals 337 */ 338 w_ctr(base, 0x4); 339 for (i = len; i; i--) { 340 w_ctr(base, 0x26); 341 *buffer++ = r_dtr(base); 342 w_ctr(base, 0x25); 343 } 344 return 1; /* All went well - we hope! */ 345 } 346 347 static int imm_out(imm_struct *dev, char *buffer, int len) 348 { 349 unsigned short ppb = dev->base; 350 int r = imm_wait(dev); 351 352 /* 353 * Make sure that: 354 * a) the SCSI bus is BUSY (device still listening) 355 * b) the device is listening 356 */ 357 if ((r & 0x18) != 0x08) { 358 imm_fail(dev, DID_ERROR); 359 printk("IMM: returned SCSI status %2x\n", r); 360 return 0; 361 } 362 switch (dev->mode) { 363 case IMM_EPP_32: 364 case IMM_EPP_16: 365 case IMM_EPP_8: 366 epp_reset(ppb); 367 w_ctr(ppb, 0x4); 368 #ifdef CONFIG_SCSI_IZIP_EPP16 369 if (!(((long) buffer | len) & 0x01)) 370 outsw(ppb + 4, buffer, len >> 1); 371 #else 372 if (!(((long) buffer | len) & 0x03)) 373 outsl(ppb + 4, buffer, len >> 2); 374 #endif 375 else 376 outsb(ppb + 4, buffer, len); 377 w_ctr(ppb, 0xc); 378 r = !(r_str(ppb) & 0x01); 379 w_ctr(ppb, 0xc); 380 ecp_sync(dev); 381 break; 382 383 case IMM_NIBBLE: 384 case IMM_PS2: 385 /* 8 bit output, with a loop */ 386 r = imm_byte_out(ppb, buffer, len); 387 break; 388 389 default: 390 printk("IMM: bug in imm_out()\n"); 391 r = 0; 392 } 393 return r; 394 } 395 396 static int imm_in(imm_struct *dev, char *buffer, int len) 397 { 398 unsigned short ppb = dev->base; 399 int r = imm_wait(dev); 400 401 /* 402 * Make sure that: 403 * a) the SCSI bus is BUSY (device still listening) 404 * b) the device is sending data 405 */ 406 if ((r & 0x18) != 0x18) { 407 imm_fail(dev, DID_ERROR); 408 return 0; 409 } 410 switch (dev->mode) { 411 case IMM_NIBBLE: 412 /* 4 bit input, with a loop */ 413 r = imm_nibble_in(ppb, buffer, len); 414 w_ctr(ppb, 0xc); 415 break; 416 417 case IMM_PS2: 418 /* 8 bit input, with a loop */ 419 r = imm_byte_in(ppb, buffer, len); 420 w_ctr(ppb, 0xc); 421 break; 422 423 case IMM_EPP_32: 424 case IMM_EPP_16: 425 case IMM_EPP_8: 426 epp_reset(ppb); 427 w_ctr(ppb, 0x24); 428 #ifdef CONFIG_SCSI_IZIP_EPP16 429 if (!(((long) buffer | len) & 0x01)) 430 insw(ppb + 4, buffer, len >> 1); 431 #else 432 if (!(((long) buffer | len) & 0x03)) 433 insl(ppb + 4, buffer, len >> 2); 434 #endif 435 else 436 insb(ppb + 4, buffer, len); 437 w_ctr(ppb, 0x2c); 438 r = !(r_str(ppb) & 0x01); 439 w_ctr(ppb, 0x2c); 440 ecp_sync(dev); 441 break; 442 443 default: 444 printk("IMM: bug in imm_ins()\n"); 445 r = 0; 446 break; 447 } 448 return r; 449 } 450 451 static int imm_cpp(unsigned short ppb, unsigned char b) 452 { 453 /* 454 * Comments on udelay values refer to the 455 * Command Packet Protocol (CPP) timing diagram. 456 */ 457 458 unsigned char s1, s2, s3; 459 w_ctr(ppb, 0x0c); 460 udelay(2); /* 1 usec - infinite */ 461 w_dtr(ppb, 0xaa); 462 udelay(10); /* 7 usec - infinite */ 463 w_dtr(ppb, 0x55); 464 udelay(10); /* 7 usec - infinite */ 465 w_dtr(ppb, 0x00); 466 udelay(10); /* 7 usec - infinite */ 467 w_dtr(ppb, 0xff); 468 udelay(10); /* 7 usec - infinite */ 469 s1 = r_str(ppb) & 0xb8; 470 w_dtr(ppb, 0x87); 471 udelay(10); /* 7 usec - infinite */ 472 s2 = r_str(ppb) & 0xb8; 473 w_dtr(ppb, 0x78); 474 udelay(10); /* 7 usec - infinite */ 475 s3 = r_str(ppb) & 0x38; 476 /* 477 * Values for b are: 478 * 0000 00aa Assign address aa to current device 479 * 0010 00aa Select device aa in EPP Winbond mode 480 * 0010 10aa Select device aa in EPP mode 481 * 0011 xxxx Deselect all devices 482 * 0110 00aa Test device aa 483 * 1101 00aa Select device aa in ECP mode 484 * 1110 00aa Select device aa in Compatible mode 485 */ 486 w_dtr(ppb, b); 487 udelay(2); /* 1 usec - infinite */ 488 w_ctr(ppb, 0x0c); 489 udelay(10); /* 7 usec - infinite */ 490 w_ctr(ppb, 0x0d); 491 udelay(2); /* 1 usec - infinite */ 492 w_ctr(ppb, 0x0c); 493 udelay(10); /* 7 usec - infinite */ 494 w_dtr(ppb, 0xff); 495 udelay(10); /* 7 usec - infinite */ 496 497 /* 498 * The following table is electrical pin values. 499 * (BSY is inverted at the CTR register) 500 * 501 * BSY ACK POut SEL Fault 502 * S1 0 X 1 1 1 503 * S2 1 X 0 1 1 504 * S3 L X 1 1 S 505 * 506 * L => Last device in chain 507 * S => Selected 508 * 509 * Observered values for S1,S2,S3 are: 510 * Disconnect => f8/58/78 511 * Connect => f8/58/70 512 */ 513 if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x30)) 514 return 1; /* Connected */ 515 if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x38)) 516 return 0; /* Disconnected */ 517 518 return -1; /* No device present */ 519 } 520 521 static inline int imm_connect(imm_struct *dev, int flag) 522 { 523 unsigned short ppb = dev->base; 524 525 imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */ 526 imm_cpp(ppb, 0x30); /* Disconnect all devices */ 527 528 if ((dev->mode == IMM_EPP_8) || 529 (dev->mode == IMM_EPP_16) || 530 (dev->mode == IMM_EPP_32)) 531 return imm_cpp(ppb, 0x28); /* Select device 0 in EPP mode */ 532 return imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */ 533 } 534 535 static void imm_disconnect(imm_struct *dev) 536 { 537 imm_cpp(dev->base, 0x30); /* Disconnect all devices */ 538 } 539 540 static int imm_select(imm_struct *dev, int target) 541 { 542 int k; 543 unsigned short ppb = dev->base; 544 545 /* 546 * Firstly we want to make sure there is nothing 547 * holding onto the SCSI bus. 548 */ 549 w_ctr(ppb, 0xc); 550 551 k = IMM_SELECT_TMO; 552 do { 553 k--; 554 } while ((r_str(ppb) & 0x08) && (k)); 555 556 if (!k) 557 return 0; 558 559 /* 560 * Now assert the SCSI ID (HOST and TARGET) on the data bus 561 */ 562 w_ctr(ppb, 0x4); 563 w_dtr(ppb, 0x80 | (1 << target)); 564 udelay(1); 565 566 /* 567 * Deassert SELIN first followed by STROBE 568 */ 569 w_ctr(ppb, 0xc); 570 w_ctr(ppb, 0xd); 571 572 /* 573 * ACK should drop low while SELIN is deasserted. 574 * FAULT should drop low when the SCSI device latches the bus. 575 */ 576 k = IMM_SELECT_TMO; 577 do { 578 k--; 579 } 580 while (!(r_str(ppb) & 0x08) && (k)); 581 582 /* 583 * Place the interface back into a sane state (status mode) 584 */ 585 w_ctr(ppb, 0xc); 586 return (k) ? 1 : 0; 587 } 588 589 static int imm_init(imm_struct *dev) 590 { 591 if (imm_connect(dev, 0) != 1) 592 return -EIO; 593 imm_reset_pulse(dev->base); 594 mdelay(1); /* Delay to allow devices to settle */ 595 imm_disconnect(dev); 596 mdelay(1); /* Another delay to allow devices to settle */ 597 return device_check(dev); 598 } 599 600 static inline int imm_send_command(struct scsi_cmnd *cmd) 601 { 602 imm_struct *dev = imm_dev(cmd->device->host); 603 int k; 604 605 /* NOTE: IMM uses byte pairs */ 606 for (k = 0; k < cmd->cmd_len; k += 2) 607 if (!imm_out(dev, &cmd->cmnd[k], 2)) 608 return 0; 609 return 1; 610 } 611 612 /* 613 * The bulk flag enables some optimisations in the data transfer loops, 614 * it should be true for any command that transfers data in integral 615 * numbers of sectors. 616 * 617 * The driver appears to remain stable if we speed up the parallel port 618 * i/o in this function, but not elsewhere. 619 */ 620 static int imm_completion(struct scsi_cmnd *cmd) 621 { 622 /* Return codes: 623 * -1 Error 624 * 0 Told to schedule 625 * 1 Finished data transfer 626 */ 627 imm_struct *dev = imm_dev(cmd->device->host); 628 unsigned short ppb = dev->base; 629 unsigned long start_jiffies = jiffies; 630 631 unsigned char r, v; 632 int fast, bulk, status; 633 634 v = cmd->cmnd[0]; 635 bulk = ((v == READ_6) || 636 (v == READ_10) || (v == WRITE_6) || (v == WRITE_10)); 637 638 /* 639 * We only get here if the drive is ready to comunicate, 640 * hence no need for a full imm_wait. 641 */ 642 w_ctr(ppb, 0x0c); 643 r = (r_str(ppb) & 0xb8); 644 645 /* 646 * while (device is not ready to send status byte) 647 * loop; 648 */ 649 while (r != (unsigned char) 0xb8) { 650 /* 651 * If we have been running for more than a full timer tick 652 * then take a rest. 653 */ 654 if (time_after(jiffies, start_jiffies + 1)) 655 return 0; 656 657 /* 658 * FAIL if: 659 * a) Drive status is screwy (!ready && !present) 660 * b) Drive is requesting/sending more data than expected 661 */ 662 if (((r & 0x88) != 0x88) || (cmd->SCp.this_residual <= 0)) { 663 imm_fail(dev, DID_ERROR); 664 return -1; /* ERROR_RETURN */ 665 } 666 /* determine if we should use burst I/O */ 667 if (dev->rd == 0) { 668 fast = (bulk 669 && (cmd->SCp.this_residual >= 670 IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 2; 671 status = imm_out(dev, cmd->SCp.ptr, fast); 672 } else { 673 fast = (bulk 674 && (cmd->SCp.this_residual >= 675 IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 1; 676 status = imm_in(dev, cmd->SCp.ptr, fast); 677 } 678 679 cmd->SCp.ptr += fast; 680 cmd->SCp.this_residual -= fast; 681 682 if (!status) { 683 imm_fail(dev, DID_BUS_BUSY); 684 return -1; /* ERROR_RETURN */ 685 } 686 if (cmd->SCp.buffer && !cmd->SCp.this_residual) { 687 /* if scatter/gather, advance to the next segment */ 688 if (cmd->SCp.buffers_residual--) { 689 cmd->SCp.buffer++; 690 cmd->SCp.this_residual = 691 cmd->SCp.buffer->length; 692 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); 693 694 /* 695 * Make sure that we transfer even number of bytes 696 * otherwise it makes imm_byte_out() messy. 697 */ 698 if (cmd->SCp.this_residual & 0x01) 699 cmd->SCp.this_residual++; 700 } 701 } 702 /* Now check to see if the drive is ready to comunicate */ 703 w_ctr(ppb, 0x0c); 704 r = (r_str(ppb) & 0xb8); 705 706 /* If not, drop back down to the scheduler and wait a timer tick */ 707 if (!(r & 0x80)) 708 return 0; 709 } 710 return 1; /* FINISH_RETURN */ 711 } 712 713 /* 714 * Since the IMM itself doesn't generate interrupts, we use 715 * the scheduler's task queue to generate a stream of call-backs and 716 * complete the request when the drive is ready. 717 */ 718 static void imm_interrupt(struct work_struct *work) 719 { 720 imm_struct *dev = container_of(work, imm_struct, imm_tq.work); 721 struct scsi_cmnd *cmd = dev->cur_cmd; 722 struct Scsi_Host *host = cmd->device->host; 723 unsigned long flags; 724 725 if (imm_engine(dev, cmd)) { 726 schedule_delayed_work(&dev->imm_tq, 1); 727 return; 728 } 729 /* Command must of completed hence it is safe to let go... */ 730 #if IMM_DEBUG > 0 731 switch ((cmd->result >> 16) & 0xff) { 732 case DID_OK: 733 break; 734 case DID_NO_CONNECT: 735 printk("imm: no device at SCSI ID %i\n", cmd->device->id); 736 break; 737 case DID_BUS_BUSY: 738 printk("imm: BUS BUSY - EPP timeout detected\n"); 739 break; 740 case DID_TIME_OUT: 741 printk("imm: unknown timeout\n"); 742 break; 743 case DID_ABORT: 744 printk("imm: told to abort\n"); 745 break; 746 case DID_PARITY: 747 printk("imm: parity error (???)\n"); 748 break; 749 case DID_ERROR: 750 printk("imm: internal driver error\n"); 751 break; 752 case DID_RESET: 753 printk("imm: told to reset device\n"); 754 break; 755 case DID_BAD_INTR: 756 printk("imm: bad interrupt (???)\n"); 757 break; 758 default: 759 printk("imm: bad return code (%02x)\n", 760 (cmd->result >> 16) & 0xff); 761 } 762 #endif 763 764 if (cmd->SCp.phase > 1) 765 imm_disconnect(dev); 766 767 imm_pb_dismiss(dev); 768 769 spin_lock_irqsave(host->host_lock, flags); 770 dev->cur_cmd = NULL; 771 cmd->scsi_done(cmd); 772 spin_unlock_irqrestore(host->host_lock, flags); 773 return; 774 } 775 776 static int imm_engine(imm_struct *dev, struct scsi_cmnd *cmd) 777 { 778 unsigned short ppb = dev->base; 779 unsigned char l = 0, h = 0; 780 int retv, x; 781 782 /* First check for any errors that may have occurred 783 * Here we check for internal errors 784 */ 785 if (dev->failed) 786 return 0; 787 788 switch (cmd->SCp.phase) { 789 case 0: /* Phase 0 - Waiting for parport */ 790 if (time_after(jiffies, dev->jstart + HZ)) { 791 /* 792 * We waited more than a second 793 * for parport to call us 794 */ 795 imm_fail(dev, DID_BUS_BUSY); 796 return 0; 797 } 798 return 1; /* wait until imm_wakeup claims parport */ 799 /* Phase 1 - Connected */ 800 case 1: 801 imm_connect(dev, CONNECT_EPP_MAYBE); 802 cmd->SCp.phase++; 803 804 /* Phase 2 - We are now talking to the scsi bus */ 805 case 2: 806 if (!imm_select(dev, scmd_id(cmd))) { 807 imm_fail(dev, DID_NO_CONNECT); 808 return 0; 809 } 810 cmd->SCp.phase++; 811 812 /* Phase 3 - Ready to accept a command */ 813 case 3: 814 w_ctr(ppb, 0x0c); 815 if (!(r_str(ppb) & 0x80)) 816 return 1; 817 818 if (!imm_send_command(cmd)) 819 return 0; 820 cmd->SCp.phase++; 821 822 /* Phase 4 - Setup scatter/gather buffers */ 823 case 4: 824 if (scsi_bufflen(cmd)) { 825 cmd->SCp.buffer = scsi_sglist(cmd); 826 cmd->SCp.this_residual = cmd->SCp.buffer->length; 827 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); 828 } else { 829 cmd->SCp.buffer = NULL; 830 cmd->SCp.this_residual = 0; 831 cmd->SCp.ptr = NULL; 832 } 833 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1; 834 cmd->SCp.phase++; 835 if (cmd->SCp.this_residual & 0x01) 836 cmd->SCp.this_residual++; 837 /* Phase 5 - Pre-Data transfer stage */ 838 case 5: 839 /* Spin lock for BUSY */ 840 w_ctr(ppb, 0x0c); 841 if (!(r_str(ppb) & 0x80)) 842 return 1; 843 844 /* Require negotiation for read requests */ 845 x = (r_str(ppb) & 0xb8); 846 dev->rd = (x & 0x10) ? 1 : 0; 847 dev->dp = (x & 0x20) ? 0 : 1; 848 849 if ((dev->dp) && (dev->rd)) 850 if (imm_negotiate(dev)) 851 return 0; 852 cmd->SCp.phase++; 853 854 /* Phase 6 - Data transfer stage */ 855 case 6: 856 /* Spin lock for BUSY */ 857 w_ctr(ppb, 0x0c); 858 if (!(r_str(ppb) & 0x80)) 859 return 1; 860 861 if (dev->dp) { 862 retv = imm_completion(cmd); 863 if (retv == -1) 864 return 0; 865 if (retv == 0) 866 return 1; 867 } 868 cmd->SCp.phase++; 869 870 /* Phase 7 - Post data transfer stage */ 871 case 7: 872 if ((dev->dp) && (dev->rd)) { 873 if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) { 874 w_ctr(ppb, 0x4); 875 w_ctr(ppb, 0xc); 876 w_ctr(ppb, 0xe); 877 w_ctr(ppb, 0x4); 878 } 879 } 880 cmd->SCp.phase++; 881 882 /* Phase 8 - Read status/message */ 883 case 8: 884 /* Check for data overrun */ 885 if (imm_wait(dev) != (unsigned char) 0xb8) { 886 imm_fail(dev, DID_ERROR); 887 return 0; 888 } 889 if (imm_negotiate(dev)) 890 return 0; 891 if (imm_in(dev, &l, 1)) { /* read status byte */ 892 /* Check for optional message byte */ 893 if (imm_wait(dev) == (unsigned char) 0xb8) 894 imm_in(dev, &h, 1); 895 cmd->result = (DID_OK << 16) + (l & STATUS_MASK); 896 } 897 if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) { 898 w_ctr(ppb, 0x4); 899 w_ctr(ppb, 0xc); 900 w_ctr(ppb, 0xe); 901 w_ctr(ppb, 0x4); 902 } 903 return 0; /* Finished */ 904 break; 905 906 default: 907 printk("imm: Invalid scsi phase\n"); 908 } 909 return 0; 910 } 911 912 static int imm_queuecommand_lck(struct scsi_cmnd *cmd, 913 void (*done)(struct scsi_cmnd *)) 914 { 915 imm_struct *dev = imm_dev(cmd->device->host); 916 917 if (dev->cur_cmd) { 918 printk("IMM: bug in imm_queuecommand\n"); 919 return 0; 920 } 921 dev->failed = 0; 922 dev->jstart = jiffies; 923 dev->cur_cmd = cmd; 924 cmd->scsi_done = done; 925 cmd->result = DID_ERROR << 16; /* default return code */ 926 cmd->SCp.phase = 0; /* bus free */ 927 928 schedule_delayed_work(&dev->imm_tq, 0); 929 930 imm_pb_claim(dev); 931 932 return 0; 933 } 934 935 static DEF_SCSI_QCMD(imm_queuecommand) 936 937 /* 938 * Apparently the disk->capacity attribute is off by 1 sector 939 * for all disk drives. We add the one here, but it should really 940 * be done in sd.c. Even if it gets fixed there, this will still 941 * work. 942 */ 943 static int imm_biosparam(struct scsi_device *sdev, struct block_device *dev, 944 sector_t capacity, int ip[]) 945 { 946 ip[0] = 0x40; 947 ip[1] = 0x20; 948 ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]); 949 if (ip[2] > 1024) { 950 ip[0] = 0xff; 951 ip[1] = 0x3f; 952 ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]); 953 } 954 return 0; 955 } 956 957 static int imm_abort(struct scsi_cmnd *cmd) 958 { 959 imm_struct *dev = imm_dev(cmd->device->host); 960 /* 961 * There is no method for aborting commands since Iomega 962 * have tied the SCSI_MESSAGE line high in the interface 963 */ 964 965 switch (cmd->SCp.phase) { 966 case 0: /* Do not have access to parport */ 967 case 1: /* Have not connected to interface */ 968 dev->cur_cmd = NULL; /* Forget the problem */ 969 return SUCCESS; 970 break; 971 default: /* SCSI command sent, can not abort */ 972 return FAILED; 973 break; 974 } 975 } 976 977 static void imm_reset_pulse(unsigned int base) 978 { 979 w_ctr(base, 0x04); 980 w_dtr(base, 0x40); 981 udelay(1); 982 w_ctr(base, 0x0c); 983 w_ctr(base, 0x0d); 984 udelay(50); 985 w_ctr(base, 0x0c); 986 w_ctr(base, 0x04); 987 } 988 989 static int imm_reset(struct scsi_cmnd *cmd) 990 { 991 imm_struct *dev = imm_dev(cmd->device->host); 992 993 if (cmd->SCp.phase) 994 imm_disconnect(dev); 995 dev->cur_cmd = NULL; /* Forget the problem */ 996 997 imm_connect(dev, CONNECT_NORMAL); 998 imm_reset_pulse(dev->base); 999 mdelay(1); /* device settle delay */ 1000 imm_disconnect(dev); 1001 mdelay(1); /* device settle delay */ 1002 return SUCCESS; 1003 } 1004 1005 static int device_check(imm_struct *dev) 1006 { 1007 /* This routine looks for a device and then attempts to use EPP 1008 to send a command. If all goes as planned then EPP is available. */ 1009 1010 static char cmd[6] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 1011 int loop, old_mode, status, k, ppb = dev->base; 1012 unsigned char l; 1013 1014 old_mode = dev->mode; 1015 for (loop = 0; loop < 8; loop++) { 1016 /* Attempt to use EPP for Test Unit Ready */ 1017 if ((ppb & 0x0007) == 0x0000) 1018 dev->mode = IMM_EPP_32; 1019 1020 second_pass: 1021 imm_connect(dev, CONNECT_EPP_MAYBE); 1022 /* Select SCSI device */ 1023 if (!imm_select(dev, loop)) { 1024 imm_disconnect(dev); 1025 continue; 1026 } 1027 printk("imm: Found device at ID %i, Attempting to use %s\n", 1028 loop, IMM_MODE_STRING[dev->mode]); 1029 1030 /* Send SCSI command */ 1031 status = 1; 1032 w_ctr(ppb, 0x0c); 1033 for (l = 0; (l < 3) && (status); l++) 1034 status = imm_out(dev, &cmd[l << 1], 2); 1035 1036 if (!status) { 1037 imm_disconnect(dev); 1038 imm_connect(dev, CONNECT_EPP_MAYBE); 1039 imm_reset_pulse(dev->base); 1040 udelay(1000); 1041 imm_disconnect(dev); 1042 udelay(1000); 1043 if (dev->mode == IMM_EPP_32) { 1044 dev->mode = old_mode; 1045 goto second_pass; 1046 } 1047 printk("imm: Unable to establish communication\n"); 1048 return -EIO; 1049 } 1050 w_ctr(ppb, 0x0c); 1051 1052 k = 1000000; /* 1 Second */ 1053 do { 1054 l = r_str(ppb); 1055 k--; 1056 udelay(1); 1057 } while (!(l & 0x80) && (k)); 1058 1059 l &= 0xb8; 1060 1061 if (l != 0xb8) { 1062 imm_disconnect(dev); 1063 imm_connect(dev, CONNECT_EPP_MAYBE); 1064 imm_reset_pulse(dev->base); 1065 udelay(1000); 1066 imm_disconnect(dev); 1067 udelay(1000); 1068 if (dev->mode == IMM_EPP_32) { 1069 dev->mode = old_mode; 1070 goto second_pass; 1071 } 1072 printk 1073 ("imm: Unable to establish communication\n"); 1074 return -EIO; 1075 } 1076 imm_disconnect(dev); 1077 printk 1078 ("imm: Communication established at 0x%x with ID %i using %s\n", 1079 ppb, loop, IMM_MODE_STRING[dev->mode]); 1080 imm_connect(dev, CONNECT_EPP_MAYBE); 1081 imm_reset_pulse(dev->base); 1082 udelay(1000); 1083 imm_disconnect(dev); 1084 udelay(1000); 1085 return 0; 1086 } 1087 printk("imm: No devices found\n"); 1088 return -ENODEV; 1089 } 1090 1091 /* 1092 * imm cannot deal with highmem, so this causes all IO pages for this host 1093 * to reside in low memory (hence mapped) 1094 */ 1095 static int imm_adjust_queue(struct scsi_device *device) 1096 { 1097 blk_queue_bounce_limit(device->request_queue, BLK_BOUNCE_HIGH); 1098 return 0; 1099 } 1100 1101 static struct scsi_host_template imm_template = { 1102 .module = THIS_MODULE, 1103 .proc_name = "imm", 1104 .show_info = imm_show_info, 1105 .write_info = imm_write_info, 1106 .name = "Iomega VPI2 (imm) interface", 1107 .queuecommand = imm_queuecommand, 1108 .eh_abort_handler = imm_abort, 1109 .eh_bus_reset_handler = imm_reset, 1110 .eh_host_reset_handler = imm_reset, 1111 .bios_param = imm_biosparam, 1112 .this_id = 7, 1113 .sg_tablesize = SG_ALL, 1114 .use_clustering = ENABLE_CLUSTERING, 1115 .can_queue = 1, 1116 .slave_alloc = imm_adjust_queue, 1117 }; 1118 1119 /*************************************************************************** 1120 * Parallel port probing routines * 1121 ***************************************************************************/ 1122 1123 static LIST_HEAD(imm_hosts); 1124 1125 /* 1126 * Finds the first available device number that can be alloted to the 1127 * new imm device and returns the address of the previous node so that 1128 * we can add to the tail and have a list in the ascending order. 1129 */ 1130 1131 static inline imm_struct *find_parent(void) 1132 { 1133 imm_struct *dev, *par = NULL; 1134 unsigned int cnt = 0; 1135 1136 if (list_empty(&imm_hosts)) 1137 return NULL; 1138 1139 list_for_each_entry(dev, &imm_hosts, list) { 1140 if (dev->dev_no != cnt) 1141 return par; 1142 cnt++; 1143 par = dev; 1144 } 1145 1146 return par; 1147 } 1148 1149 static int __imm_attach(struct parport *pb) 1150 { 1151 struct Scsi_Host *host; 1152 imm_struct *dev, *temp; 1153 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waiting); 1154 DEFINE_WAIT(wait); 1155 int ports; 1156 int modes, ppb; 1157 int err = -ENOMEM; 1158 struct pardev_cb imm_cb; 1159 1160 init_waitqueue_head(&waiting); 1161 1162 dev = kzalloc(sizeof(imm_struct), GFP_KERNEL); 1163 if (!dev) 1164 return -ENOMEM; 1165 1166 1167 dev->base = -1; 1168 dev->mode = IMM_AUTODETECT; 1169 INIT_LIST_HEAD(&dev->list); 1170 1171 temp = find_parent(); 1172 if (temp) 1173 dev->dev_no = temp->dev_no + 1; 1174 1175 memset(&imm_cb, 0, sizeof(imm_cb)); 1176 imm_cb.private = dev; 1177 imm_cb.wakeup = imm_wakeup; 1178 1179 dev->dev = parport_register_dev_model(pb, "imm", &imm_cb, dev->dev_no); 1180 if (!dev->dev) 1181 goto out; 1182 1183 1184 /* Claim the bus so it remembers what we do to the control 1185 * registers. [ CTR and ECP ] 1186 */ 1187 err = -EBUSY; 1188 dev->waiting = &waiting; 1189 prepare_to_wait(&waiting, &wait, TASK_UNINTERRUPTIBLE); 1190 if (imm_pb_claim(dev)) 1191 schedule_timeout(3 * HZ); 1192 if (dev->wanted) { 1193 printk(KERN_ERR "imm%d: failed to claim parport because " 1194 "a pardevice is owning the port for too long " 1195 "time!\n", pb->number); 1196 imm_pb_dismiss(dev); 1197 dev->waiting = NULL; 1198 finish_wait(&waiting, &wait); 1199 goto out1; 1200 } 1201 dev->waiting = NULL; 1202 finish_wait(&waiting, &wait); 1203 ppb = dev->base = dev->dev->port->base; 1204 dev->base_hi = dev->dev->port->base_hi; 1205 w_ctr(ppb, 0x0c); 1206 modes = dev->dev->port->modes; 1207 1208 /* Mode detection works up the chain of speed 1209 * This avoids a nasty if-then-else-if-... tree 1210 */ 1211 dev->mode = IMM_NIBBLE; 1212 1213 if (modes & PARPORT_MODE_TRISTATE) 1214 dev->mode = IMM_PS2; 1215 1216 /* Done configuration */ 1217 1218 err = imm_init(dev); 1219 1220 imm_pb_release(dev); 1221 1222 if (err) 1223 goto out1; 1224 1225 /* now the glue ... */ 1226 if (dev->mode == IMM_NIBBLE || dev->mode == IMM_PS2) 1227 ports = 3; 1228 else 1229 ports = 8; 1230 1231 INIT_DELAYED_WORK(&dev->imm_tq, imm_interrupt); 1232 1233 err = -ENOMEM; 1234 host = scsi_host_alloc(&imm_template, sizeof(imm_struct *)); 1235 if (!host) 1236 goto out1; 1237 host->io_port = pb->base; 1238 host->n_io_port = ports; 1239 host->dma_channel = -1; 1240 host->unique_id = pb->number; 1241 *(imm_struct **)&host->hostdata = dev; 1242 dev->host = host; 1243 if (!temp) 1244 list_add_tail(&dev->list, &imm_hosts); 1245 else 1246 list_add_tail(&dev->list, &temp->list); 1247 err = scsi_add_host(host, NULL); 1248 if (err) 1249 goto out2; 1250 scsi_scan_host(host); 1251 return 0; 1252 1253 out2: 1254 list_del_init(&dev->list); 1255 scsi_host_put(host); 1256 out1: 1257 parport_unregister_device(dev->dev); 1258 out: 1259 kfree(dev); 1260 return err; 1261 } 1262 1263 static void imm_attach(struct parport *pb) 1264 { 1265 __imm_attach(pb); 1266 } 1267 1268 static void imm_detach(struct parport *pb) 1269 { 1270 imm_struct *dev; 1271 list_for_each_entry(dev, &imm_hosts, list) { 1272 if (dev->dev->port == pb) { 1273 list_del_init(&dev->list); 1274 scsi_remove_host(dev->host); 1275 scsi_host_put(dev->host); 1276 parport_unregister_device(dev->dev); 1277 kfree(dev); 1278 break; 1279 } 1280 } 1281 } 1282 1283 static struct parport_driver imm_driver = { 1284 .name = "imm", 1285 .match_port = imm_attach, 1286 .detach = imm_detach, 1287 .devmodel = true, 1288 }; 1289 1290 static int __init imm_driver_init(void) 1291 { 1292 printk("imm: Version %s\n", IMM_VERSION); 1293 return parport_register_driver(&imm_driver); 1294 } 1295 1296 static void __exit imm_driver_exit(void) 1297 { 1298 parport_unregister_driver(&imm_driver); 1299 } 1300 1301 module_init(imm_driver_init); 1302 module_exit(imm_driver_exit); 1303 1304 MODULE_LICENSE("GPL"); 1305