1 /* imm.c -- low level driver for the IOMEGA MatchMaker 2 * parallel port SCSI host adapter. 3 * 4 * (The IMM is the embedded controller in the ZIP Plus drive.) 5 * 6 * My unofficial company acronym list is 21 pages long: 7 * FLA: Four letter acronym with built in facility for 8 * future expansion to five letters. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/blkdev.h> 15 #include <linux/parport.h> 16 #include <linux/workqueue.h> 17 #include <linux/delay.h> 18 #include <linux/slab.h> 19 #include <asm/io.h> 20 21 #include <scsi/scsi.h> 22 #include <scsi/scsi_cmnd.h> 23 #include <scsi/scsi_device.h> 24 #include <scsi/scsi_host.h> 25 26 /* The following #define is to avoid a clash with hosts.c */ 27 #define IMM_PROBE_SPP 0x0001 28 #define IMM_PROBE_PS2 0x0002 29 #define IMM_PROBE_ECR 0x0010 30 #define IMM_PROBE_EPP17 0x0100 31 #define IMM_PROBE_EPP19 0x0200 32 33 34 typedef struct { 35 struct pardevice *dev; /* Parport device entry */ 36 int base; /* Actual port address */ 37 int base_hi; /* Hi Base address for ECP-ISA chipset */ 38 int mode; /* Transfer mode */ 39 struct scsi_cmnd *cur_cmd; /* Current queued command */ 40 struct delayed_work imm_tq; /* Polling interrupt stuff */ 41 unsigned long jstart; /* Jiffies at start */ 42 unsigned failed:1; /* Failure flag */ 43 unsigned dp:1; /* Data phase present */ 44 unsigned rd:1; /* Read data in data phase */ 45 unsigned wanted:1; /* Parport sharing busy flag */ 46 wait_queue_head_t *waiting; 47 struct Scsi_Host *host; 48 struct list_head list; 49 } imm_struct; 50 51 static void imm_reset_pulse(unsigned int base); 52 static int device_check(imm_struct *dev); 53 54 #include "imm.h" 55 56 static inline imm_struct *imm_dev(struct Scsi_Host *host) 57 { 58 return *(imm_struct **)&host->hostdata; 59 } 60 61 static DEFINE_SPINLOCK(arbitration_lock); 62 63 static void got_it(imm_struct *dev) 64 { 65 dev->base = dev->dev->port->base; 66 if (dev->cur_cmd) 67 dev->cur_cmd->SCp.phase = 1; 68 else 69 wake_up(dev->waiting); 70 } 71 72 static void imm_wakeup(void *ref) 73 { 74 imm_struct *dev = (imm_struct *) ref; 75 unsigned long flags; 76 77 spin_lock_irqsave(&arbitration_lock, flags); 78 if (dev->wanted) { 79 parport_claim(dev->dev); 80 got_it(dev); 81 dev->wanted = 0; 82 } 83 spin_unlock_irqrestore(&arbitration_lock, flags); 84 } 85 86 static int imm_pb_claim(imm_struct *dev) 87 { 88 unsigned long flags; 89 int res = 1; 90 spin_lock_irqsave(&arbitration_lock, flags); 91 if (parport_claim(dev->dev) == 0) { 92 got_it(dev); 93 res = 0; 94 } 95 dev->wanted = res; 96 spin_unlock_irqrestore(&arbitration_lock, flags); 97 return res; 98 } 99 100 static void imm_pb_dismiss(imm_struct *dev) 101 { 102 unsigned long flags; 103 int wanted; 104 spin_lock_irqsave(&arbitration_lock, flags); 105 wanted = dev->wanted; 106 dev->wanted = 0; 107 spin_unlock_irqrestore(&arbitration_lock, flags); 108 if (!wanted) 109 parport_release(dev->dev); 110 } 111 112 static inline void imm_pb_release(imm_struct *dev) 113 { 114 parport_release(dev->dev); 115 } 116 117 /* This is to give the imm driver a way to modify the timings (and other 118 * parameters) by writing to the /proc/scsi/imm/0 file. 119 * Very simple method really... (Too simple, no error checking :( ) 120 * Reason: Kernel hackers HATE having to unload and reload modules for 121 * testing... 122 * Also gives a method to use a script to obtain optimum timings (TODO) 123 */ 124 static int imm_write_info(struct Scsi_Host *host, char *buffer, int length) 125 { 126 imm_struct *dev = imm_dev(host); 127 128 if ((length > 5) && (strncmp(buffer, "mode=", 5) == 0)) { 129 dev->mode = simple_strtoul(buffer + 5, NULL, 0); 130 return length; 131 } 132 printk("imm /proc: invalid variable\n"); 133 return -EINVAL; 134 } 135 136 static int imm_show_info(struct seq_file *m, struct Scsi_Host *host) 137 { 138 imm_struct *dev = imm_dev(host); 139 140 seq_printf(m, "Version : %s\n", IMM_VERSION); 141 seq_printf(m, "Parport : %s\n", dev->dev->port->name); 142 seq_printf(m, "Mode : %s\n", IMM_MODE_STRING[dev->mode]); 143 return 0; 144 } 145 146 #if IMM_DEBUG > 0 147 #define imm_fail(x,y) printk("imm: imm_fail(%i) from %s at line %d\n",\ 148 y, __func__, __LINE__); imm_fail_func(x,y); 149 static inline void 150 imm_fail_func(imm_struct *dev, int error_code) 151 #else 152 static inline void 153 imm_fail(imm_struct *dev, int error_code) 154 #endif 155 { 156 /* If we fail a device then we trash status / message bytes */ 157 if (dev->cur_cmd) { 158 dev->cur_cmd->result = error_code << 16; 159 dev->failed = 1; 160 } 161 } 162 163 /* 164 * Wait for the high bit to be set. 165 * 166 * In principle, this could be tied to an interrupt, but the adapter 167 * doesn't appear to be designed to support interrupts. We spin on 168 * the 0x80 ready bit. 169 */ 170 static unsigned char imm_wait(imm_struct *dev) 171 { 172 int k; 173 unsigned short ppb = dev->base; 174 unsigned char r; 175 176 w_ctr(ppb, 0x0c); 177 178 k = IMM_SPIN_TMO; 179 do { 180 r = r_str(ppb); 181 k--; 182 udelay(1); 183 } 184 while (!(r & 0x80) && (k)); 185 186 /* 187 * STR register (LPT base+1) to SCSI mapping: 188 * 189 * STR imm imm 190 * =================================== 191 * 0x80 S_REQ S_REQ 192 * 0x40 !S_BSY (????) 193 * 0x20 !S_CD !S_CD 194 * 0x10 !S_IO !S_IO 195 * 0x08 (????) !S_BSY 196 * 197 * imm imm meaning 198 * ================================== 199 * 0xf0 0xb8 Bit mask 200 * 0xc0 0x88 ZIP wants more data 201 * 0xd0 0x98 ZIP wants to send more data 202 * 0xe0 0xa8 ZIP is expecting SCSI command data 203 * 0xf0 0xb8 end of transfer, ZIP is sending status 204 */ 205 w_ctr(ppb, 0x04); 206 if (k) 207 return (r & 0xb8); 208 209 /* Counter expired - Time out occurred */ 210 imm_fail(dev, DID_TIME_OUT); 211 printk("imm timeout in imm_wait\n"); 212 return 0; /* command timed out */ 213 } 214 215 static int imm_negotiate(imm_struct * tmp) 216 { 217 /* 218 * The following is supposedly the IEEE 1284-1994 negotiate 219 * sequence. I have yet to obtain a copy of the above standard 220 * so this is a bit of a guess... 221 * 222 * A fair chunk of this is based on the Linux parport implementation 223 * of IEEE 1284. 224 * 225 * Return 0 if data available 226 * 1 if no data available 227 */ 228 229 unsigned short base = tmp->base; 230 unsigned char a, mode; 231 232 switch (tmp->mode) { 233 case IMM_NIBBLE: 234 mode = 0x00; 235 break; 236 case IMM_PS2: 237 mode = 0x01; 238 break; 239 default: 240 return 0; 241 } 242 243 w_ctr(base, 0x04); 244 udelay(5); 245 w_dtr(base, mode); 246 udelay(100); 247 w_ctr(base, 0x06); 248 udelay(5); 249 a = (r_str(base) & 0x20) ? 0 : 1; 250 udelay(5); 251 w_ctr(base, 0x07); 252 udelay(5); 253 w_ctr(base, 0x06); 254 255 if (a) { 256 printk 257 ("IMM: IEEE1284 negotiate indicates no data available.\n"); 258 imm_fail(tmp, DID_ERROR); 259 } 260 return a; 261 } 262 263 /* 264 * Clear EPP timeout bit. 265 */ 266 static inline void epp_reset(unsigned short ppb) 267 { 268 int i; 269 270 i = r_str(ppb); 271 w_str(ppb, i); 272 w_str(ppb, i & 0xfe); 273 } 274 275 /* 276 * Wait for empty ECP fifo (if we are in ECP fifo mode only) 277 */ 278 static inline void ecp_sync(imm_struct *dev) 279 { 280 int i, ppb_hi = dev->base_hi; 281 282 if (ppb_hi == 0) 283 return; 284 285 if ((r_ecr(ppb_hi) & 0xe0) == 0x60) { /* mode 011 == ECP fifo mode */ 286 for (i = 0; i < 100; i++) { 287 if (r_ecr(ppb_hi) & 0x01) 288 return; 289 udelay(5); 290 } 291 printk("imm: ECP sync failed as data still present in FIFO.\n"); 292 } 293 } 294 295 static int imm_byte_out(unsigned short base, const char *buffer, int len) 296 { 297 int i; 298 299 w_ctr(base, 0x4); /* apparently a sane mode */ 300 for (i = len >> 1; i; i--) { 301 w_dtr(base, *buffer++); 302 w_ctr(base, 0x5); /* Drop STROBE low */ 303 w_dtr(base, *buffer++); 304 w_ctr(base, 0x0); /* STROBE high + INIT low */ 305 } 306 w_ctr(base, 0x4); /* apparently a sane mode */ 307 return 1; /* All went well - we hope! */ 308 } 309 310 static int imm_nibble_in(unsigned short base, char *buffer, int len) 311 { 312 unsigned char l; 313 int i; 314 315 /* 316 * The following is based on documented timing signals 317 */ 318 w_ctr(base, 0x4); 319 for (i = len; i; i--) { 320 w_ctr(base, 0x6); 321 l = (r_str(base) & 0xf0) >> 4; 322 w_ctr(base, 0x5); 323 *buffer++ = (r_str(base) & 0xf0) | l; 324 w_ctr(base, 0x4); 325 } 326 return 1; /* All went well - we hope! */ 327 } 328 329 static int imm_byte_in(unsigned short base, char *buffer, int len) 330 { 331 int i; 332 333 /* 334 * The following is based on documented timing signals 335 */ 336 w_ctr(base, 0x4); 337 for (i = len; i; i--) { 338 w_ctr(base, 0x26); 339 *buffer++ = r_dtr(base); 340 w_ctr(base, 0x25); 341 } 342 return 1; /* All went well - we hope! */ 343 } 344 345 static int imm_out(imm_struct *dev, char *buffer, int len) 346 { 347 unsigned short ppb = dev->base; 348 int r = imm_wait(dev); 349 350 /* 351 * Make sure that: 352 * a) the SCSI bus is BUSY (device still listening) 353 * b) the device is listening 354 */ 355 if ((r & 0x18) != 0x08) { 356 imm_fail(dev, DID_ERROR); 357 printk("IMM: returned SCSI status %2x\n", r); 358 return 0; 359 } 360 switch (dev->mode) { 361 case IMM_EPP_32: 362 case IMM_EPP_16: 363 case IMM_EPP_8: 364 epp_reset(ppb); 365 w_ctr(ppb, 0x4); 366 #ifdef CONFIG_SCSI_IZIP_EPP16 367 if (!(((long) buffer | len) & 0x01)) 368 outsw(ppb + 4, buffer, len >> 1); 369 #else 370 if (!(((long) buffer | len) & 0x03)) 371 outsl(ppb + 4, buffer, len >> 2); 372 #endif 373 else 374 outsb(ppb + 4, buffer, len); 375 w_ctr(ppb, 0xc); 376 r = !(r_str(ppb) & 0x01); 377 w_ctr(ppb, 0xc); 378 ecp_sync(dev); 379 break; 380 381 case IMM_NIBBLE: 382 case IMM_PS2: 383 /* 8 bit output, with a loop */ 384 r = imm_byte_out(ppb, buffer, len); 385 break; 386 387 default: 388 printk("IMM: bug in imm_out()\n"); 389 r = 0; 390 } 391 return r; 392 } 393 394 static int imm_in(imm_struct *dev, char *buffer, int len) 395 { 396 unsigned short ppb = dev->base; 397 int r = imm_wait(dev); 398 399 /* 400 * Make sure that: 401 * a) the SCSI bus is BUSY (device still listening) 402 * b) the device is sending data 403 */ 404 if ((r & 0x18) != 0x18) { 405 imm_fail(dev, DID_ERROR); 406 return 0; 407 } 408 switch (dev->mode) { 409 case IMM_NIBBLE: 410 /* 4 bit input, with a loop */ 411 r = imm_nibble_in(ppb, buffer, len); 412 w_ctr(ppb, 0xc); 413 break; 414 415 case IMM_PS2: 416 /* 8 bit input, with a loop */ 417 r = imm_byte_in(ppb, buffer, len); 418 w_ctr(ppb, 0xc); 419 break; 420 421 case IMM_EPP_32: 422 case IMM_EPP_16: 423 case IMM_EPP_8: 424 epp_reset(ppb); 425 w_ctr(ppb, 0x24); 426 #ifdef CONFIG_SCSI_IZIP_EPP16 427 if (!(((long) buffer | len) & 0x01)) 428 insw(ppb + 4, buffer, len >> 1); 429 #else 430 if (!(((long) buffer | len) & 0x03)) 431 insl(ppb + 4, buffer, len >> 2); 432 #endif 433 else 434 insb(ppb + 4, buffer, len); 435 w_ctr(ppb, 0x2c); 436 r = !(r_str(ppb) & 0x01); 437 w_ctr(ppb, 0x2c); 438 ecp_sync(dev); 439 break; 440 441 default: 442 printk("IMM: bug in imm_ins()\n"); 443 r = 0; 444 break; 445 } 446 return r; 447 } 448 449 static int imm_cpp(unsigned short ppb, unsigned char b) 450 { 451 /* 452 * Comments on udelay values refer to the 453 * Command Packet Protocol (CPP) timing diagram. 454 */ 455 456 unsigned char s1, s2, s3; 457 w_ctr(ppb, 0x0c); 458 udelay(2); /* 1 usec - infinite */ 459 w_dtr(ppb, 0xaa); 460 udelay(10); /* 7 usec - infinite */ 461 w_dtr(ppb, 0x55); 462 udelay(10); /* 7 usec - infinite */ 463 w_dtr(ppb, 0x00); 464 udelay(10); /* 7 usec - infinite */ 465 w_dtr(ppb, 0xff); 466 udelay(10); /* 7 usec - infinite */ 467 s1 = r_str(ppb) & 0xb8; 468 w_dtr(ppb, 0x87); 469 udelay(10); /* 7 usec - infinite */ 470 s2 = r_str(ppb) & 0xb8; 471 w_dtr(ppb, 0x78); 472 udelay(10); /* 7 usec - infinite */ 473 s3 = r_str(ppb) & 0x38; 474 /* 475 * Values for b are: 476 * 0000 00aa Assign address aa to current device 477 * 0010 00aa Select device aa in EPP Winbond mode 478 * 0010 10aa Select device aa in EPP mode 479 * 0011 xxxx Deselect all devices 480 * 0110 00aa Test device aa 481 * 1101 00aa Select device aa in ECP mode 482 * 1110 00aa Select device aa in Compatible mode 483 */ 484 w_dtr(ppb, b); 485 udelay(2); /* 1 usec - infinite */ 486 w_ctr(ppb, 0x0c); 487 udelay(10); /* 7 usec - infinite */ 488 w_ctr(ppb, 0x0d); 489 udelay(2); /* 1 usec - infinite */ 490 w_ctr(ppb, 0x0c); 491 udelay(10); /* 7 usec - infinite */ 492 w_dtr(ppb, 0xff); 493 udelay(10); /* 7 usec - infinite */ 494 495 /* 496 * The following table is electrical pin values. 497 * (BSY is inverted at the CTR register) 498 * 499 * BSY ACK POut SEL Fault 500 * S1 0 X 1 1 1 501 * S2 1 X 0 1 1 502 * S3 L X 1 1 S 503 * 504 * L => Last device in chain 505 * S => Selected 506 * 507 * Observered values for S1,S2,S3 are: 508 * Disconnect => f8/58/78 509 * Connect => f8/58/70 510 */ 511 if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x30)) 512 return 1; /* Connected */ 513 if ((s1 == 0xb8) && (s2 == 0x18) && (s3 == 0x38)) 514 return 0; /* Disconnected */ 515 516 return -1; /* No device present */ 517 } 518 519 static inline int imm_connect(imm_struct *dev, int flag) 520 { 521 unsigned short ppb = dev->base; 522 523 imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */ 524 imm_cpp(ppb, 0x30); /* Disconnect all devices */ 525 526 if ((dev->mode == IMM_EPP_8) || 527 (dev->mode == IMM_EPP_16) || 528 (dev->mode == IMM_EPP_32)) 529 return imm_cpp(ppb, 0x28); /* Select device 0 in EPP mode */ 530 return imm_cpp(ppb, 0xe0); /* Select device 0 in compatible mode */ 531 } 532 533 static void imm_disconnect(imm_struct *dev) 534 { 535 imm_cpp(dev->base, 0x30); /* Disconnect all devices */ 536 } 537 538 static int imm_select(imm_struct *dev, int target) 539 { 540 int k; 541 unsigned short ppb = dev->base; 542 543 /* 544 * Firstly we want to make sure there is nothing 545 * holding onto the SCSI bus. 546 */ 547 w_ctr(ppb, 0xc); 548 549 k = IMM_SELECT_TMO; 550 do { 551 k--; 552 } while ((r_str(ppb) & 0x08) && (k)); 553 554 if (!k) 555 return 0; 556 557 /* 558 * Now assert the SCSI ID (HOST and TARGET) on the data bus 559 */ 560 w_ctr(ppb, 0x4); 561 w_dtr(ppb, 0x80 | (1 << target)); 562 udelay(1); 563 564 /* 565 * Deassert SELIN first followed by STROBE 566 */ 567 w_ctr(ppb, 0xc); 568 w_ctr(ppb, 0xd); 569 570 /* 571 * ACK should drop low while SELIN is deasserted. 572 * FAULT should drop low when the SCSI device latches the bus. 573 */ 574 k = IMM_SELECT_TMO; 575 do { 576 k--; 577 } 578 while (!(r_str(ppb) & 0x08) && (k)); 579 580 /* 581 * Place the interface back into a sane state (status mode) 582 */ 583 w_ctr(ppb, 0xc); 584 return (k) ? 1 : 0; 585 } 586 587 static int imm_init(imm_struct *dev) 588 { 589 if (imm_connect(dev, 0) != 1) 590 return -EIO; 591 imm_reset_pulse(dev->base); 592 mdelay(1); /* Delay to allow devices to settle */ 593 imm_disconnect(dev); 594 mdelay(1); /* Another delay to allow devices to settle */ 595 return device_check(dev); 596 } 597 598 static inline int imm_send_command(struct scsi_cmnd *cmd) 599 { 600 imm_struct *dev = imm_dev(cmd->device->host); 601 int k; 602 603 /* NOTE: IMM uses byte pairs */ 604 for (k = 0; k < cmd->cmd_len; k += 2) 605 if (!imm_out(dev, &cmd->cmnd[k], 2)) 606 return 0; 607 return 1; 608 } 609 610 /* 611 * The bulk flag enables some optimisations in the data transfer loops, 612 * it should be true for any command that transfers data in integral 613 * numbers of sectors. 614 * 615 * The driver appears to remain stable if we speed up the parallel port 616 * i/o in this function, but not elsewhere. 617 */ 618 static int imm_completion(struct scsi_cmnd *cmd) 619 { 620 /* Return codes: 621 * -1 Error 622 * 0 Told to schedule 623 * 1 Finished data transfer 624 */ 625 imm_struct *dev = imm_dev(cmd->device->host); 626 unsigned short ppb = dev->base; 627 unsigned long start_jiffies = jiffies; 628 629 unsigned char r, v; 630 int fast, bulk, status; 631 632 v = cmd->cmnd[0]; 633 bulk = ((v == READ_6) || 634 (v == READ_10) || (v == WRITE_6) || (v == WRITE_10)); 635 636 /* 637 * We only get here if the drive is ready to comunicate, 638 * hence no need for a full imm_wait. 639 */ 640 w_ctr(ppb, 0x0c); 641 r = (r_str(ppb) & 0xb8); 642 643 /* 644 * while (device is not ready to send status byte) 645 * loop; 646 */ 647 while (r != (unsigned char) 0xb8) { 648 /* 649 * If we have been running for more than a full timer tick 650 * then take a rest. 651 */ 652 if (time_after(jiffies, start_jiffies + 1)) 653 return 0; 654 655 /* 656 * FAIL if: 657 * a) Drive status is screwy (!ready && !present) 658 * b) Drive is requesting/sending more data than expected 659 */ 660 if (((r & 0x88) != 0x88) || (cmd->SCp.this_residual <= 0)) { 661 imm_fail(dev, DID_ERROR); 662 return -1; /* ERROR_RETURN */ 663 } 664 /* determine if we should use burst I/O */ 665 if (dev->rd == 0) { 666 fast = (bulk 667 && (cmd->SCp.this_residual >= 668 IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 2; 669 status = imm_out(dev, cmd->SCp.ptr, fast); 670 } else { 671 fast = (bulk 672 && (cmd->SCp.this_residual >= 673 IMM_BURST_SIZE)) ? IMM_BURST_SIZE : 1; 674 status = imm_in(dev, cmd->SCp.ptr, fast); 675 } 676 677 cmd->SCp.ptr += fast; 678 cmd->SCp.this_residual -= fast; 679 680 if (!status) { 681 imm_fail(dev, DID_BUS_BUSY); 682 return -1; /* ERROR_RETURN */ 683 } 684 if (cmd->SCp.buffer && !cmd->SCp.this_residual) { 685 /* if scatter/gather, advance to the next segment */ 686 if (cmd->SCp.buffers_residual--) { 687 cmd->SCp.buffer++; 688 cmd->SCp.this_residual = 689 cmd->SCp.buffer->length; 690 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); 691 692 /* 693 * Make sure that we transfer even number of bytes 694 * otherwise it makes imm_byte_out() messy. 695 */ 696 if (cmd->SCp.this_residual & 0x01) 697 cmd->SCp.this_residual++; 698 } 699 } 700 /* Now check to see if the drive is ready to comunicate */ 701 w_ctr(ppb, 0x0c); 702 r = (r_str(ppb) & 0xb8); 703 704 /* If not, drop back down to the scheduler and wait a timer tick */ 705 if (!(r & 0x80)) 706 return 0; 707 } 708 return 1; /* FINISH_RETURN */ 709 } 710 711 /* 712 * Since the IMM itself doesn't generate interrupts, we use 713 * the scheduler's task queue to generate a stream of call-backs and 714 * complete the request when the drive is ready. 715 */ 716 static void imm_interrupt(struct work_struct *work) 717 { 718 imm_struct *dev = container_of(work, imm_struct, imm_tq.work); 719 struct scsi_cmnd *cmd = dev->cur_cmd; 720 struct Scsi_Host *host = cmd->device->host; 721 unsigned long flags; 722 723 if (imm_engine(dev, cmd)) { 724 schedule_delayed_work(&dev->imm_tq, 1); 725 return; 726 } 727 /* Command must of completed hence it is safe to let go... */ 728 #if IMM_DEBUG > 0 729 switch ((cmd->result >> 16) & 0xff) { 730 case DID_OK: 731 break; 732 case DID_NO_CONNECT: 733 printk("imm: no device at SCSI ID %i\n", cmd->device->id); 734 break; 735 case DID_BUS_BUSY: 736 printk("imm: BUS BUSY - EPP timeout detected\n"); 737 break; 738 case DID_TIME_OUT: 739 printk("imm: unknown timeout\n"); 740 break; 741 case DID_ABORT: 742 printk("imm: told to abort\n"); 743 break; 744 case DID_PARITY: 745 printk("imm: parity error (???)\n"); 746 break; 747 case DID_ERROR: 748 printk("imm: internal driver error\n"); 749 break; 750 case DID_RESET: 751 printk("imm: told to reset device\n"); 752 break; 753 case DID_BAD_INTR: 754 printk("imm: bad interrupt (???)\n"); 755 break; 756 default: 757 printk("imm: bad return code (%02x)\n", 758 (cmd->result >> 16) & 0xff); 759 } 760 #endif 761 762 if (cmd->SCp.phase > 1) 763 imm_disconnect(dev); 764 765 imm_pb_dismiss(dev); 766 767 spin_lock_irqsave(host->host_lock, flags); 768 dev->cur_cmd = NULL; 769 cmd->scsi_done(cmd); 770 spin_unlock_irqrestore(host->host_lock, flags); 771 return; 772 } 773 774 static int imm_engine(imm_struct *dev, struct scsi_cmnd *cmd) 775 { 776 unsigned short ppb = dev->base; 777 unsigned char l = 0, h = 0; 778 int retv, x; 779 780 /* First check for any errors that may have occurred 781 * Here we check for internal errors 782 */ 783 if (dev->failed) 784 return 0; 785 786 switch (cmd->SCp.phase) { 787 case 0: /* Phase 0 - Waiting for parport */ 788 if (time_after(jiffies, dev->jstart + HZ)) { 789 /* 790 * We waited more than a second 791 * for parport to call us 792 */ 793 imm_fail(dev, DID_BUS_BUSY); 794 return 0; 795 } 796 return 1; /* wait until imm_wakeup claims parport */ 797 /* Phase 1 - Connected */ 798 case 1: 799 imm_connect(dev, CONNECT_EPP_MAYBE); 800 cmd->SCp.phase++; 801 802 /* Phase 2 - We are now talking to the scsi bus */ 803 case 2: 804 if (!imm_select(dev, scmd_id(cmd))) { 805 imm_fail(dev, DID_NO_CONNECT); 806 return 0; 807 } 808 cmd->SCp.phase++; 809 810 /* Phase 3 - Ready to accept a command */ 811 case 3: 812 w_ctr(ppb, 0x0c); 813 if (!(r_str(ppb) & 0x80)) 814 return 1; 815 816 if (!imm_send_command(cmd)) 817 return 0; 818 cmd->SCp.phase++; 819 820 /* Phase 4 - Setup scatter/gather buffers */ 821 case 4: 822 if (scsi_bufflen(cmd)) { 823 cmd->SCp.buffer = scsi_sglist(cmd); 824 cmd->SCp.this_residual = cmd->SCp.buffer->length; 825 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); 826 } else { 827 cmd->SCp.buffer = NULL; 828 cmd->SCp.this_residual = 0; 829 cmd->SCp.ptr = NULL; 830 } 831 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1; 832 cmd->SCp.phase++; 833 if (cmd->SCp.this_residual & 0x01) 834 cmd->SCp.this_residual++; 835 /* Phase 5 - Pre-Data transfer stage */ 836 case 5: 837 /* Spin lock for BUSY */ 838 w_ctr(ppb, 0x0c); 839 if (!(r_str(ppb) & 0x80)) 840 return 1; 841 842 /* Require negotiation for read requests */ 843 x = (r_str(ppb) & 0xb8); 844 dev->rd = (x & 0x10) ? 1 : 0; 845 dev->dp = (x & 0x20) ? 0 : 1; 846 847 if ((dev->dp) && (dev->rd)) 848 if (imm_negotiate(dev)) 849 return 0; 850 cmd->SCp.phase++; 851 852 /* Phase 6 - Data transfer stage */ 853 case 6: 854 /* Spin lock for BUSY */ 855 w_ctr(ppb, 0x0c); 856 if (!(r_str(ppb) & 0x80)) 857 return 1; 858 859 if (dev->dp) { 860 retv = imm_completion(cmd); 861 if (retv == -1) 862 return 0; 863 if (retv == 0) 864 return 1; 865 } 866 cmd->SCp.phase++; 867 868 /* Phase 7 - Post data transfer stage */ 869 case 7: 870 if ((dev->dp) && (dev->rd)) { 871 if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) { 872 w_ctr(ppb, 0x4); 873 w_ctr(ppb, 0xc); 874 w_ctr(ppb, 0xe); 875 w_ctr(ppb, 0x4); 876 } 877 } 878 cmd->SCp.phase++; 879 880 /* Phase 8 - Read status/message */ 881 case 8: 882 /* Check for data overrun */ 883 if (imm_wait(dev) != (unsigned char) 0xb8) { 884 imm_fail(dev, DID_ERROR); 885 return 0; 886 } 887 if (imm_negotiate(dev)) 888 return 0; 889 if (imm_in(dev, &l, 1)) { /* read status byte */ 890 /* Check for optional message byte */ 891 if (imm_wait(dev) == (unsigned char) 0xb8) 892 imm_in(dev, &h, 1); 893 cmd->result = (DID_OK << 16) + (l & STATUS_MASK); 894 } 895 if ((dev->mode == IMM_NIBBLE) || (dev->mode == IMM_PS2)) { 896 w_ctr(ppb, 0x4); 897 w_ctr(ppb, 0xc); 898 w_ctr(ppb, 0xe); 899 w_ctr(ppb, 0x4); 900 } 901 return 0; /* Finished */ 902 break; 903 904 default: 905 printk("imm: Invalid scsi phase\n"); 906 } 907 return 0; 908 } 909 910 static int imm_queuecommand_lck(struct scsi_cmnd *cmd, 911 void (*done)(struct scsi_cmnd *)) 912 { 913 imm_struct *dev = imm_dev(cmd->device->host); 914 915 if (dev->cur_cmd) { 916 printk("IMM: bug in imm_queuecommand\n"); 917 return 0; 918 } 919 dev->failed = 0; 920 dev->jstart = jiffies; 921 dev->cur_cmd = cmd; 922 cmd->scsi_done = done; 923 cmd->result = DID_ERROR << 16; /* default return code */ 924 cmd->SCp.phase = 0; /* bus free */ 925 926 schedule_delayed_work(&dev->imm_tq, 0); 927 928 imm_pb_claim(dev); 929 930 return 0; 931 } 932 933 static DEF_SCSI_QCMD(imm_queuecommand) 934 935 /* 936 * Apparently the disk->capacity attribute is off by 1 sector 937 * for all disk drives. We add the one here, but it should really 938 * be done in sd.c. Even if it gets fixed there, this will still 939 * work. 940 */ 941 static int imm_biosparam(struct scsi_device *sdev, struct block_device *dev, 942 sector_t capacity, int ip[]) 943 { 944 ip[0] = 0x40; 945 ip[1] = 0x20; 946 ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]); 947 if (ip[2] > 1024) { 948 ip[0] = 0xff; 949 ip[1] = 0x3f; 950 ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]); 951 } 952 return 0; 953 } 954 955 static int imm_abort(struct scsi_cmnd *cmd) 956 { 957 imm_struct *dev = imm_dev(cmd->device->host); 958 /* 959 * There is no method for aborting commands since Iomega 960 * have tied the SCSI_MESSAGE line high in the interface 961 */ 962 963 switch (cmd->SCp.phase) { 964 case 0: /* Do not have access to parport */ 965 case 1: /* Have not connected to interface */ 966 dev->cur_cmd = NULL; /* Forget the problem */ 967 return SUCCESS; 968 break; 969 default: /* SCSI command sent, can not abort */ 970 return FAILED; 971 break; 972 } 973 } 974 975 static void imm_reset_pulse(unsigned int base) 976 { 977 w_ctr(base, 0x04); 978 w_dtr(base, 0x40); 979 udelay(1); 980 w_ctr(base, 0x0c); 981 w_ctr(base, 0x0d); 982 udelay(50); 983 w_ctr(base, 0x0c); 984 w_ctr(base, 0x04); 985 } 986 987 static int imm_reset(struct scsi_cmnd *cmd) 988 { 989 imm_struct *dev = imm_dev(cmd->device->host); 990 991 if (cmd->SCp.phase) 992 imm_disconnect(dev); 993 dev->cur_cmd = NULL; /* Forget the problem */ 994 995 imm_connect(dev, CONNECT_NORMAL); 996 imm_reset_pulse(dev->base); 997 mdelay(1); /* device settle delay */ 998 imm_disconnect(dev); 999 mdelay(1); /* device settle delay */ 1000 return SUCCESS; 1001 } 1002 1003 static int device_check(imm_struct *dev) 1004 { 1005 /* This routine looks for a device and then attempts to use EPP 1006 to send a command. If all goes as planned then EPP is available. */ 1007 1008 static char cmd[6] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 1009 int loop, old_mode, status, k, ppb = dev->base; 1010 unsigned char l; 1011 1012 old_mode = dev->mode; 1013 for (loop = 0; loop < 8; loop++) { 1014 /* Attempt to use EPP for Test Unit Ready */ 1015 if ((ppb & 0x0007) == 0x0000) 1016 dev->mode = IMM_EPP_32; 1017 1018 second_pass: 1019 imm_connect(dev, CONNECT_EPP_MAYBE); 1020 /* Select SCSI device */ 1021 if (!imm_select(dev, loop)) { 1022 imm_disconnect(dev); 1023 continue; 1024 } 1025 printk("imm: Found device at ID %i, Attempting to use %s\n", 1026 loop, IMM_MODE_STRING[dev->mode]); 1027 1028 /* Send SCSI command */ 1029 status = 1; 1030 w_ctr(ppb, 0x0c); 1031 for (l = 0; (l < 3) && (status); l++) 1032 status = imm_out(dev, &cmd[l << 1], 2); 1033 1034 if (!status) { 1035 imm_disconnect(dev); 1036 imm_connect(dev, CONNECT_EPP_MAYBE); 1037 imm_reset_pulse(dev->base); 1038 udelay(1000); 1039 imm_disconnect(dev); 1040 udelay(1000); 1041 if (dev->mode == IMM_EPP_32) { 1042 dev->mode = old_mode; 1043 goto second_pass; 1044 } 1045 printk("imm: Unable to establish communication\n"); 1046 return -EIO; 1047 } 1048 w_ctr(ppb, 0x0c); 1049 1050 k = 1000000; /* 1 Second */ 1051 do { 1052 l = r_str(ppb); 1053 k--; 1054 udelay(1); 1055 } while (!(l & 0x80) && (k)); 1056 1057 l &= 0xb8; 1058 1059 if (l != 0xb8) { 1060 imm_disconnect(dev); 1061 imm_connect(dev, CONNECT_EPP_MAYBE); 1062 imm_reset_pulse(dev->base); 1063 udelay(1000); 1064 imm_disconnect(dev); 1065 udelay(1000); 1066 if (dev->mode == IMM_EPP_32) { 1067 dev->mode = old_mode; 1068 goto second_pass; 1069 } 1070 printk 1071 ("imm: Unable to establish communication\n"); 1072 return -EIO; 1073 } 1074 imm_disconnect(dev); 1075 printk 1076 ("imm: Communication established at 0x%x with ID %i using %s\n", 1077 ppb, loop, IMM_MODE_STRING[dev->mode]); 1078 imm_connect(dev, CONNECT_EPP_MAYBE); 1079 imm_reset_pulse(dev->base); 1080 udelay(1000); 1081 imm_disconnect(dev); 1082 udelay(1000); 1083 return 0; 1084 } 1085 printk("imm: No devices found\n"); 1086 return -ENODEV; 1087 } 1088 1089 /* 1090 * imm cannot deal with highmem, so this causes all IO pages for this host 1091 * to reside in low memory (hence mapped) 1092 */ 1093 static int imm_adjust_queue(struct scsi_device *device) 1094 { 1095 blk_queue_bounce_limit(device->request_queue, BLK_BOUNCE_HIGH); 1096 return 0; 1097 } 1098 1099 static struct scsi_host_template imm_template = { 1100 .module = THIS_MODULE, 1101 .proc_name = "imm", 1102 .show_info = imm_show_info, 1103 .write_info = imm_write_info, 1104 .name = "Iomega VPI2 (imm) interface", 1105 .queuecommand = imm_queuecommand, 1106 .eh_abort_handler = imm_abort, 1107 .eh_bus_reset_handler = imm_reset, 1108 .eh_host_reset_handler = imm_reset, 1109 .bios_param = imm_biosparam, 1110 .this_id = 7, 1111 .sg_tablesize = SG_ALL, 1112 .cmd_per_lun = 1, 1113 .use_clustering = ENABLE_CLUSTERING, 1114 .can_queue = 1, 1115 .slave_alloc = imm_adjust_queue, 1116 }; 1117 1118 /*************************************************************************** 1119 * Parallel port probing routines * 1120 ***************************************************************************/ 1121 1122 static LIST_HEAD(imm_hosts); 1123 1124 static int __imm_attach(struct parport *pb) 1125 { 1126 struct Scsi_Host *host; 1127 imm_struct *dev; 1128 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waiting); 1129 DEFINE_WAIT(wait); 1130 int ports; 1131 int modes, ppb; 1132 int err = -ENOMEM; 1133 1134 init_waitqueue_head(&waiting); 1135 1136 dev = kzalloc(sizeof(imm_struct), GFP_KERNEL); 1137 if (!dev) 1138 return -ENOMEM; 1139 1140 1141 dev->base = -1; 1142 dev->mode = IMM_AUTODETECT; 1143 INIT_LIST_HEAD(&dev->list); 1144 1145 dev->dev = parport_register_device(pb, "imm", NULL, imm_wakeup, 1146 NULL, 0, dev); 1147 1148 if (!dev->dev) 1149 goto out; 1150 1151 1152 /* Claim the bus so it remembers what we do to the control 1153 * registers. [ CTR and ECP ] 1154 */ 1155 err = -EBUSY; 1156 dev->waiting = &waiting; 1157 prepare_to_wait(&waiting, &wait, TASK_UNINTERRUPTIBLE); 1158 if (imm_pb_claim(dev)) 1159 schedule_timeout(3 * HZ); 1160 if (dev->wanted) { 1161 printk(KERN_ERR "imm%d: failed to claim parport because " 1162 "a pardevice is owning the port for too long " 1163 "time!\n", pb->number); 1164 imm_pb_dismiss(dev); 1165 dev->waiting = NULL; 1166 finish_wait(&waiting, &wait); 1167 goto out1; 1168 } 1169 dev->waiting = NULL; 1170 finish_wait(&waiting, &wait); 1171 ppb = dev->base = dev->dev->port->base; 1172 dev->base_hi = dev->dev->port->base_hi; 1173 w_ctr(ppb, 0x0c); 1174 modes = dev->dev->port->modes; 1175 1176 /* Mode detection works up the chain of speed 1177 * This avoids a nasty if-then-else-if-... tree 1178 */ 1179 dev->mode = IMM_NIBBLE; 1180 1181 if (modes & PARPORT_MODE_TRISTATE) 1182 dev->mode = IMM_PS2; 1183 1184 /* Done configuration */ 1185 1186 err = imm_init(dev); 1187 1188 imm_pb_release(dev); 1189 1190 if (err) 1191 goto out1; 1192 1193 /* now the glue ... */ 1194 if (dev->mode == IMM_NIBBLE || dev->mode == IMM_PS2) 1195 ports = 3; 1196 else 1197 ports = 8; 1198 1199 INIT_DELAYED_WORK(&dev->imm_tq, imm_interrupt); 1200 1201 err = -ENOMEM; 1202 host = scsi_host_alloc(&imm_template, sizeof(imm_struct *)); 1203 if (!host) 1204 goto out1; 1205 host->io_port = pb->base; 1206 host->n_io_port = ports; 1207 host->dma_channel = -1; 1208 host->unique_id = pb->number; 1209 *(imm_struct **)&host->hostdata = dev; 1210 dev->host = host; 1211 list_add_tail(&dev->list, &imm_hosts); 1212 err = scsi_add_host(host, NULL); 1213 if (err) 1214 goto out2; 1215 scsi_scan_host(host); 1216 return 0; 1217 1218 out2: 1219 list_del_init(&dev->list); 1220 scsi_host_put(host); 1221 out1: 1222 parport_unregister_device(dev->dev); 1223 out: 1224 kfree(dev); 1225 return err; 1226 } 1227 1228 static void imm_attach(struct parport *pb) 1229 { 1230 __imm_attach(pb); 1231 } 1232 1233 static void imm_detach(struct parport *pb) 1234 { 1235 imm_struct *dev; 1236 list_for_each_entry(dev, &imm_hosts, list) { 1237 if (dev->dev->port == pb) { 1238 list_del_init(&dev->list); 1239 scsi_remove_host(dev->host); 1240 scsi_host_put(dev->host); 1241 parport_unregister_device(dev->dev); 1242 kfree(dev); 1243 break; 1244 } 1245 } 1246 } 1247 1248 static struct parport_driver imm_driver = { 1249 .name = "imm", 1250 .attach = imm_attach, 1251 .detach = imm_detach, 1252 }; 1253 1254 static int __init imm_driver_init(void) 1255 { 1256 printk("imm: Version %s\n", IMM_VERSION); 1257 return parport_register_driver(&imm_driver); 1258 } 1259 1260 static void __exit imm_driver_exit(void) 1261 { 1262 parport_unregister_driver(&imm_driver); 1263 } 1264 1265 module_init(imm_driver_init); 1266 module_exit(imm_driver_exit); 1267 1268 MODULE_LICENSE("GPL"); 1269