1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries 4 * Copyright 2016 Microsemi Corporation 5 * Copyright 2014-2015 PMC-Sierra, Inc. 6 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; version 2 of the License. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 15 * NON INFRINGEMENT. See the GNU General Public License for more details. 16 * 17 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com 18 * 19 */ 20 21 #include <linux/module.h> 22 #include <linux/interrupt.h> 23 #include <linux/types.h> 24 #include <linux/pci.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/fs.h> 29 #include <linux/timer.h> 30 #include <linux/init.h> 31 #include <linux/spinlock.h> 32 #include <linux/compat.h> 33 #include <linux/blktrace_api.h> 34 #include <linux/uaccess.h> 35 #include <linux/io.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/completion.h> 38 #include <linux/moduleparam.h> 39 #include <scsi/scsi.h> 40 #include <scsi/scsi_cmnd.h> 41 #include <scsi/scsi_device.h> 42 #include <scsi/scsi_host.h> 43 #include <scsi/scsi_tcq.h> 44 #include <scsi/scsi_eh.h> 45 #include <scsi/scsi_transport_sas.h> 46 #include <scsi/scsi_dbg.h> 47 #include <linux/cciss_ioctl.h> 48 #include <linux/string.h> 49 #include <linux/bitmap.h> 50 #include <linux/atomic.h> 51 #include <linux/jiffies.h> 52 #include <linux/percpu-defs.h> 53 #include <linux/percpu.h> 54 #include <asm/unaligned.h> 55 #include <asm/div64.h> 56 #include "hpsa_cmd.h" 57 #include "hpsa.h" 58 59 /* 60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' 61 * with an optional trailing '-' followed by a byte value (0-255). 62 */ 63 #define HPSA_DRIVER_VERSION "3.4.20-200" 64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 65 #define HPSA "hpsa" 66 67 /* How long to wait for CISS doorbell communication */ 68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */ 69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */ 70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */ 71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */ 72 #define MAX_IOCTL_CONFIG_WAIT 1000 73 74 /*define how many times we will try a command because of bus resets */ 75 #define MAX_CMD_RETRIES 3 76 /* How long to wait before giving up on a command */ 77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ) 78 79 /* Embedded module documentation macros - see modules.h */ 80 MODULE_AUTHOR("Hewlett-Packard Company"); 81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 82 HPSA_DRIVER_VERSION); 83 MODULE_VERSION(HPSA_DRIVER_VERSION); 84 MODULE_LICENSE("GPL"); 85 MODULE_ALIAS("cciss"); 86 87 static int hpsa_simple_mode; 88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); 89 MODULE_PARM_DESC(hpsa_simple_mode, 90 "Use 'simple mode' rather than 'performant mode'"); 91 92 /* define the PCI info for the cards we can control */ 93 static const struct pci_device_id hpsa_pci_device_id[] = { 94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, 100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, 101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, 103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, 104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, 105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, 106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, 107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, 108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, 109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920}, 110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921}, 111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922}, 112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923}, 113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924}, 114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925}, 115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926}, 116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928}, 117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929}, 118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD}, 119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE}, 120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF}, 121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0}, 122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1}, 123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2}, 124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3}, 125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4}, 126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5}, 127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6}, 128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7}, 129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8}, 130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9}, 131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA}, 132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB}, 133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC}, 134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD}, 135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE}, 136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580}, 137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581}, 138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582}, 139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583}, 140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584}, 141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585}, 142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076}, 143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087}, 144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D}, 145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088}, 146 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f}, 147 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 148 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 149 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 150 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 151 {0,} 152 }; 153 154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 155 156 /* board_id = Subsystem Device ID & Vendor ID 157 * product = Marketing Name for the board 158 * access = Address of the struct of function pointers 159 */ 160 static struct board_type products[] = { 161 {0x40700E11, "Smart Array 5300", &SA5A_access}, 162 {0x40800E11, "Smart Array 5i", &SA5B_access}, 163 {0x40820E11, "Smart Array 532", &SA5B_access}, 164 {0x40830E11, "Smart Array 5312", &SA5B_access}, 165 {0x409A0E11, "Smart Array 641", &SA5A_access}, 166 {0x409B0E11, "Smart Array 642", &SA5A_access}, 167 {0x409C0E11, "Smart Array 6400", &SA5A_access}, 168 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access}, 169 {0x40910E11, "Smart Array 6i", &SA5A_access}, 170 {0x3225103C, "Smart Array P600", &SA5A_access}, 171 {0x3223103C, "Smart Array P800", &SA5A_access}, 172 {0x3234103C, "Smart Array P400", &SA5A_access}, 173 {0x3235103C, "Smart Array P400i", &SA5A_access}, 174 {0x3211103C, "Smart Array E200i", &SA5A_access}, 175 {0x3212103C, "Smart Array E200", &SA5A_access}, 176 {0x3213103C, "Smart Array E200i", &SA5A_access}, 177 {0x3214103C, "Smart Array E200i", &SA5A_access}, 178 {0x3215103C, "Smart Array E200i", &SA5A_access}, 179 {0x3237103C, "Smart Array E500", &SA5A_access}, 180 {0x323D103C, "Smart Array P700m", &SA5A_access}, 181 {0x3241103C, "Smart Array P212", &SA5_access}, 182 {0x3243103C, "Smart Array P410", &SA5_access}, 183 {0x3245103C, "Smart Array P410i", &SA5_access}, 184 {0x3247103C, "Smart Array P411", &SA5_access}, 185 {0x3249103C, "Smart Array P812", &SA5_access}, 186 {0x324A103C, "Smart Array P712m", &SA5_access}, 187 {0x324B103C, "Smart Array P711m", &SA5_access}, 188 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */ 189 {0x3350103C, "Smart Array P222", &SA5_access}, 190 {0x3351103C, "Smart Array P420", &SA5_access}, 191 {0x3352103C, "Smart Array P421", &SA5_access}, 192 {0x3353103C, "Smart Array P822", &SA5_access}, 193 {0x3354103C, "Smart Array P420i", &SA5_access}, 194 {0x3355103C, "Smart Array P220i", &SA5_access}, 195 {0x3356103C, "Smart Array P721m", &SA5_access}, 196 {0x1920103C, "Smart Array P430i", &SA5_access}, 197 {0x1921103C, "Smart Array P830i", &SA5_access}, 198 {0x1922103C, "Smart Array P430", &SA5_access}, 199 {0x1923103C, "Smart Array P431", &SA5_access}, 200 {0x1924103C, "Smart Array P830", &SA5_access}, 201 {0x1925103C, "Smart Array P831", &SA5_access}, 202 {0x1926103C, "Smart Array P731m", &SA5_access}, 203 {0x1928103C, "Smart Array P230i", &SA5_access}, 204 {0x1929103C, "Smart Array P530", &SA5_access}, 205 {0x21BD103C, "Smart Array P244br", &SA5_access}, 206 {0x21BE103C, "Smart Array P741m", &SA5_access}, 207 {0x21BF103C, "Smart HBA H240ar", &SA5_access}, 208 {0x21C0103C, "Smart Array P440ar", &SA5_access}, 209 {0x21C1103C, "Smart Array P840ar", &SA5_access}, 210 {0x21C2103C, "Smart Array P440", &SA5_access}, 211 {0x21C3103C, "Smart Array P441", &SA5_access}, 212 {0x21C4103C, "Smart Array", &SA5_access}, 213 {0x21C5103C, "Smart Array P841", &SA5_access}, 214 {0x21C6103C, "Smart HBA H244br", &SA5_access}, 215 {0x21C7103C, "Smart HBA H240", &SA5_access}, 216 {0x21C8103C, "Smart HBA H241", &SA5_access}, 217 {0x21C9103C, "Smart Array", &SA5_access}, 218 {0x21CA103C, "Smart Array P246br", &SA5_access}, 219 {0x21CB103C, "Smart Array P840", &SA5_access}, 220 {0x21CC103C, "Smart Array", &SA5_access}, 221 {0x21CD103C, "Smart Array", &SA5_access}, 222 {0x21CE103C, "Smart HBA", &SA5_access}, 223 {0x05809005, "SmartHBA-SA", &SA5_access}, 224 {0x05819005, "SmartHBA-SA 8i", &SA5_access}, 225 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access}, 226 {0x05839005, "SmartHBA-SA 8e", &SA5_access}, 227 {0x05849005, "SmartHBA-SA 16i", &SA5_access}, 228 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access}, 229 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access}, 230 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access}, 231 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access}, 232 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access}, 233 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access}, 234 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 235 }; 236 237 static struct scsi_transport_template *hpsa_sas_transport_template; 238 static int hpsa_add_sas_host(struct ctlr_info *h); 239 static void hpsa_delete_sas_host(struct ctlr_info *h); 240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, 241 struct hpsa_scsi_dev_t *device); 242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device); 243 static struct hpsa_scsi_dev_t 244 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, 245 struct sas_rphy *rphy); 246 247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy) 248 static const struct scsi_cmnd hpsa_cmd_busy; 249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle) 250 static const struct scsi_cmnd hpsa_cmd_idle; 251 static int number_of_controllers; 252 253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); 254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); 255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd, 256 void __user *arg); 257 static int hpsa_passthru_ioctl(struct ctlr_info *h, 258 IOCTL_Command_struct *iocommand); 259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, 260 BIG_IOCTL_Command_struct *ioc); 261 262 #ifdef CONFIG_COMPAT 263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd, 264 void __user *arg); 265 #endif 266 267 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 268 static struct CommandList *cmd_alloc(struct ctlr_info *h); 269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c); 270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, 271 struct scsi_cmnd *scmd); 272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 273 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, 274 int cmd_type); 275 static void hpsa_free_cmd_pool(struct ctlr_info *h); 276 #define VPD_PAGE (1 << 8) 277 #define HPSA_SIMPLE_ERROR_BITS 0x03 278 279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); 280 static void hpsa_scan_start(struct Scsi_Host *); 281 static int hpsa_scan_finished(struct Scsi_Host *sh, 282 unsigned long elapsed_time); 283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth); 284 285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 286 static int hpsa_slave_alloc(struct scsi_device *sdev); 287 static int hpsa_slave_configure(struct scsi_device *sdev); 288 static void hpsa_slave_destroy(struct scsi_device *sdev); 289 290 static void hpsa_update_scsi_devices(struct ctlr_info *h); 291 static int check_for_unit_attention(struct ctlr_info *h, 292 struct CommandList *c); 293 static void check_ioctl_unit_attention(struct ctlr_info *h, 294 struct CommandList *c); 295 /* performant mode helper functions */ 296 static void calc_bucket_map(int *bucket, int num_buckets, 297 int nsgs, int min_blocks, u32 *bucket_map); 298 static void hpsa_free_performant_mode(struct ctlr_info *h); 299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 300 static inline u32 next_command(struct ctlr_info *h, u8 q); 301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, 302 u32 *cfg_base_addr, u64 *cfg_base_addr_index, 303 u64 *cfg_offset); 304 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 305 unsigned long *memory_bar); 306 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id, 307 bool *legacy_board); 308 static int wait_for_device_to_become_ready(struct ctlr_info *h, 309 unsigned char lunaddr[], 310 int reply_queue); 311 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, 312 int wait_for_ready); 313 static inline void finish_cmd(struct CommandList *c); 314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h); 315 #define BOARD_NOT_READY 0 316 #define BOARD_READY 1 317 static void hpsa_drain_accel_commands(struct ctlr_info *h); 318 static void hpsa_flush_cache(struct ctlr_info *h); 319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, 320 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 321 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk); 322 static void hpsa_command_resubmit_worker(struct work_struct *work); 323 static u32 lockup_detected(struct ctlr_info *h); 324 static int detect_controller_lockup(struct ctlr_info *h); 325 static void hpsa_disable_rld_caching(struct ctlr_info *h); 326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 327 struct ReportExtendedLUNdata *buf, int bufsize); 328 static bool hpsa_vpd_page_supported(struct ctlr_info *h, 329 unsigned char scsi3addr[], u8 page); 330 static int hpsa_luns_changed(struct ctlr_info *h); 331 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, 332 struct hpsa_scsi_dev_t *dev, 333 unsigned char *scsi3addr); 334 335 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 336 { 337 unsigned long *priv = shost_priv(sdev->host); 338 return (struct ctlr_info *) *priv; 339 } 340 341 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 342 { 343 unsigned long *priv = shost_priv(sh); 344 return (struct ctlr_info *) *priv; 345 } 346 347 static inline bool hpsa_is_cmd_idle(struct CommandList *c) 348 { 349 return c->scsi_cmd == SCSI_CMD_IDLE; 350 } 351 352 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */ 353 static void decode_sense_data(const u8 *sense_data, int sense_data_len, 354 u8 *sense_key, u8 *asc, u8 *ascq) 355 { 356 struct scsi_sense_hdr sshdr; 357 bool rc; 358 359 *sense_key = -1; 360 *asc = -1; 361 *ascq = -1; 362 363 if (sense_data_len < 1) 364 return; 365 366 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr); 367 if (rc) { 368 *sense_key = sshdr.sense_key; 369 *asc = sshdr.asc; 370 *ascq = sshdr.ascq; 371 } 372 } 373 374 static int check_for_unit_attention(struct ctlr_info *h, 375 struct CommandList *c) 376 { 377 u8 sense_key, asc, ascq; 378 int sense_len; 379 380 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) 381 sense_len = sizeof(c->err_info->SenseInfo); 382 else 383 sense_len = c->err_info->SenseLen; 384 385 decode_sense_data(c->err_info->SenseInfo, sense_len, 386 &sense_key, &asc, &ascq); 387 if (sense_key != UNIT_ATTENTION || asc == 0xff) 388 return 0; 389 390 switch (asc) { 391 case STATE_CHANGED: 392 dev_warn(&h->pdev->dev, 393 "%s: a state change detected, command retried\n", 394 h->devname); 395 break; 396 case LUN_FAILED: 397 dev_warn(&h->pdev->dev, 398 "%s: LUN failure detected\n", h->devname); 399 break; 400 case REPORT_LUNS_CHANGED: 401 dev_warn(&h->pdev->dev, 402 "%s: report LUN data changed\n", h->devname); 403 /* 404 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external 405 * target (array) devices. 406 */ 407 break; 408 case POWER_OR_RESET: 409 dev_warn(&h->pdev->dev, 410 "%s: a power on or device reset detected\n", 411 h->devname); 412 break; 413 case UNIT_ATTENTION_CLEARED: 414 dev_warn(&h->pdev->dev, 415 "%s: unit attention cleared by another initiator\n", 416 h->devname); 417 break; 418 default: 419 dev_warn(&h->pdev->dev, 420 "%s: unknown unit attention detected\n", 421 h->devname); 422 break; 423 } 424 return 1; 425 } 426 427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c) 428 { 429 if (c->err_info->CommandStatus != CMD_TARGET_STATUS || 430 (c->err_info->ScsiStatus != SAM_STAT_BUSY && 431 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) 432 return 0; 433 dev_warn(&h->pdev->dev, HPSA "device busy"); 434 return 1; 435 } 436 437 static u32 lockup_detected(struct ctlr_info *h); 438 static ssize_t host_show_lockup_detected(struct device *dev, 439 struct device_attribute *attr, char *buf) 440 { 441 int ld; 442 struct ctlr_info *h; 443 struct Scsi_Host *shost = class_to_shost(dev); 444 445 h = shost_to_hba(shost); 446 ld = lockup_detected(h); 447 448 return sprintf(buf, "ld=%d\n", ld); 449 } 450 451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev, 452 struct device_attribute *attr, 453 const char *buf, size_t count) 454 { 455 int status, len; 456 struct ctlr_info *h; 457 struct Scsi_Host *shost = class_to_shost(dev); 458 char tmpbuf[10]; 459 460 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 461 return -EACCES; 462 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; 463 strncpy(tmpbuf, buf, len); 464 tmpbuf[len] = '\0'; 465 if (sscanf(tmpbuf, "%d", &status) != 1) 466 return -EINVAL; 467 h = shost_to_hba(shost); 468 h->acciopath_status = !!status; 469 dev_warn(&h->pdev->dev, 470 "hpsa: HP SSD Smart Path %s via sysfs update.\n", 471 h->acciopath_status ? "enabled" : "disabled"); 472 return count; 473 } 474 475 static ssize_t host_store_raid_offload_debug(struct device *dev, 476 struct device_attribute *attr, 477 const char *buf, size_t count) 478 { 479 int debug_level, len; 480 struct ctlr_info *h; 481 struct Scsi_Host *shost = class_to_shost(dev); 482 char tmpbuf[10]; 483 484 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 485 return -EACCES; 486 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; 487 strncpy(tmpbuf, buf, len); 488 tmpbuf[len] = '\0'; 489 if (sscanf(tmpbuf, "%d", &debug_level) != 1) 490 return -EINVAL; 491 if (debug_level < 0) 492 debug_level = 0; 493 h = shost_to_hba(shost); 494 h->raid_offload_debug = debug_level; 495 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n", 496 h->raid_offload_debug); 497 return count; 498 } 499 500 static ssize_t host_store_rescan(struct device *dev, 501 struct device_attribute *attr, 502 const char *buf, size_t count) 503 { 504 struct ctlr_info *h; 505 struct Scsi_Host *shost = class_to_shost(dev); 506 h = shost_to_hba(shost); 507 hpsa_scan_start(h->scsi_host); 508 return count; 509 } 510 511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device) 512 { 513 device->offload_enabled = 0; 514 device->offload_to_be_enabled = 0; 515 } 516 517 static ssize_t host_show_firmware_revision(struct device *dev, 518 struct device_attribute *attr, char *buf) 519 { 520 struct ctlr_info *h; 521 struct Scsi_Host *shost = class_to_shost(dev); 522 unsigned char *fwrev; 523 524 h = shost_to_hba(shost); 525 if (!h->hba_inquiry_data) 526 return 0; 527 fwrev = &h->hba_inquiry_data[32]; 528 return snprintf(buf, 20, "%c%c%c%c\n", 529 fwrev[0], fwrev[1], fwrev[2], fwrev[3]); 530 } 531 532 static ssize_t host_show_commands_outstanding(struct device *dev, 533 struct device_attribute *attr, char *buf) 534 { 535 struct Scsi_Host *shost = class_to_shost(dev); 536 struct ctlr_info *h = shost_to_hba(shost); 537 538 return snprintf(buf, 20, "%d\n", 539 atomic_read(&h->commands_outstanding)); 540 } 541 542 static ssize_t host_show_transport_mode(struct device *dev, 543 struct device_attribute *attr, char *buf) 544 { 545 struct ctlr_info *h; 546 struct Scsi_Host *shost = class_to_shost(dev); 547 548 h = shost_to_hba(shost); 549 return snprintf(buf, 20, "%s\n", 550 h->transMethod & CFGTBL_Trans_Performant ? 551 "performant" : "simple"); 552 } 553 554 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev, 555 struct device_attribute *attr, char *buf) 556 { 557 struct ctlr_info *h; 558 struct Scsi_Host *shost = class_to_shost(dev); 559 560 h = shost_to_hba(shost); 561 return snprintf(buf, 30, "HP SSD Smart Path %s\n", 562 (h->acciopath_status == 1) ? "enabled" : "disabled"); 563 } 564 565 /* List of controllers which cannot be hard reset on kexec with reset_devices */ 566 static u32 unresettable_controller[] = { 567 0x324a103C, /* Smart Array P712m */ 568 0x324b103C, /* Smart Array P711m */ 569 0x3223103C, /* Smart Array P800 */ 570 0x3234103C, /* Smart Array P400 */ 571 0x3235103C, /* Smart Array P400i */ 572 0x3211103C, /* Smart Array E200i */ 573 0x3212103C, /* Smart Array E200 */ 574 0x3213103C, /* Smart Array E200i */ 575 0x3214103C, /* Smart Array E200i */ 576 0x3215103C, /* Smart Array E200i */ 577 0x3237103C, /* Smart Array E500 */ 578 0x323D103C, /* Smart Array P700m */ 579 0x40800E11, /* Smart Array 5i */ 580 0x409C0E11, /* Smart Array 6400 */ 581 0x409D0E11, /* Smart Array 6400 EM */ 582 0x40700E11, /* Smart Array 5300 */ 583 0x40820E11, /* Smart Array 532 */ 584 0x40830E11, /* Smart Array 5312 */ 585 0x409A0E11, /* Smart Array 641 */ 586 0x409B0E11, /* Smart Array 642 */ 587 0x40910E11, /* Smart Array 6i */ 588 }; 589 590 /* List of controllers which cannot even be soft reset */ 591 static u32 soft_unresettable_controller[] = { 592 0x40800E11, /* Smart Array 5i */ 593 0x40700E11, /* Smart Array 5300 */ 594 0x40820E11, /* Smart Array 532 */ 595 0x40830E11, /* Smart Array 5312 */ 596 0x409A0E11, /* Smart Array 641 */ 597 0x409B0E11, /* Smart Array 642 */ 598 0x40910E11, /* Smart Array 6i */ 599 /* Exclude 640x boards. These are two pci devices in one slot 600 * which share a battery backed cache module. One controls the 601 * cache, the other accesses the cache through the one that controls 602 * it. If we reset the one controlling the cache, the other will 603 * likely not be happy. Just forbid resetting this conjoined mess. 604 * The 640x isn't really supported by hpsa anyway. 605 */ 606 0x409C0E11, /* Smart Array 6400 */ 607 0x409D0E11, /* Smart Array 6400 EM */ 608 }; 609 610 static int board_id_in_array(u32 a[], int nelems, u32 board_id) 611 { 612 int i; 613 614 for (i = 0; i < nelems; i++) 615 if (a[i] == board_id) 616 return 1; 617 return 0; 618 } 619 620 static int ctlr_is_hard_resettable(u32 board_id) 621 { 622 return !board_id_in_array(unresettable_controller, 623 ARRAY_SIZE(unresettable_controller), board_id); 624 } 625 626 static int ctlr_is_soft_resettable(u32 board_id) 627 { 628 return !board_id_in_array(soft_unresettable_controller, 629 ARRAY_SIZE(soft_unresettable_controller), board_id); 630 } 631 632 static int ctlr_is_resettable(u32 board_id) 633 { 634 return ctlr_is_hard_resettable(board_id) || 635 ctlr_is_soft_resettable(board_id); 636 } 637 638 static ssize_t host_show_resettable(struct device *dev, 639 struct device_attribute *attr, char *buf) 640 { 641 struct ctlr_info *h; 642 struct Scsi_Host *shost = class_to_shost(dev); 643 644 h = shost_to_hba(shost); 645 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); 646 } 647 648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 649 { 650 return (scsi3addr[3] & 0xC0) == 0x40; 651 } 652 653 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6", 654 "1(+0)ADM", "UNKNOWN", "PHYS DRV" 655 }; 656 #define HPSA_RAID_0 0 657 #define HPSA_RAID_4 1 658 #define HPSA_RAID_1 2 /* also used for RAID 10 */ 659 #define HPSA_RAID_5 3 /* also used for RAID 50 */ 660 #define HPSA_RAID_51 4 661 #define HPSA_RAID_6 5 /* also used for RAID 60 */ 662 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */ 663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2) 664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1) 665 666 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device) 667 { 668 return !device->physical_device; 669 } 670 671 static ssize_t raid_level_show(struct device *dev, 672 struct device_attribute *attr, char *buf) 673 { 674 ssize_t l = 0; 675 unsigned char rlevel; 676 struct ctlr_info *h; 677 struct scsi_device *sdev; 678 struct hpsa_scsi_dev_t *hdev; 679 unsigned long flags; 680 681 sdev = to_scsi_device(dev); 682 h = sdev_to_hba(sdev); 683 spin_lock_irqsave(&h->lock, flags); 684 hdev = sdev->hostdata; 685 if (!hdev) { 686 spin_unlock_irqrestore(&h->lock, flags); 687 return -ENODEV; 688 } 689 690 /* Is this even a logical drive? */ 691 if (!is_logical_device(hdev)) { 692 spin_unlock_irqrestore(&h->lock, flags); 693 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 694 return l; 695 } 696 697 rlevel = hdev->raid_level; 698 spin_unlock_irqrestore(&h->lock, flags); 699 if (rlevel > RAID_UNKNOWN) 700 rlevel = RAID_UNKNOWN; 701 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 702 return l; 703 } 704 705 static ssize_t lunid_show(struct device *dev, 706 struct device_attribute *attr, char *buf) 707 { 708 struct ctlr_info *h; 709 struct scsi_device *sdev; 710 struct hpsa_scsi_dev_t *hdev; 711 unsigned long flags; 712 unsigned char lunid[8]; 713 714 sdev = to_scsi_device(dev); 715 h = sdev_to_hba(sdev); 716 spin_lock_irqsave(&h->lock, flags); 717 hdev = sdev->hostdata; 718 if (!hdev) { 719 spin_unlock_irqrestore(&h->lock, flags); 720 return -ENODEV; 721 } 722 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 723 spin_unlock_irqrestore(&h->lock, flags); 724 return snprintf(buf, 20, "0x%8phN\n", lunid); 725 } 726 727 static ssize_t unique_id_show(struct device *dev, 728 struct device_attribute *attr, char *buf) 729 { 730 struct ctlr_info *h; 731 struct scsi_device *sdev; 732 struct hpsa_scsi_dev_t *hdev; 733 unsigned long flags; 734 unsigned char sn[16]; 735 736 sdev = to_scsi_device(dev); 737 h = sdev_to_hba(sdev); 738 spin_lock_irqsave(&h->lock, flags); 739 hdev = sdev->hostdata; 740 if (!hdev) { 741 spin_unlock_irqrestore(&h->lock, flags); 742 return -ENODEV; 743 } 744 memcpy(sn, hdev->device_id, sizeof(sn)); 745 spin_unlock_irqrestore(&h->lock, flags); 746 return snprintf(buf, 16 * 2 + 2, 747 "%02X%02X%02X%02X%02X%02X%02X%02X" 748 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 749 sn[0], sn[1], sn[2], sn[3], 750 sn[4], sn[5], sn[6], sn[7], 751 sn[8], sn[9], sn[10], sn[11], 752 sn[12], sn[13], sn[14], sn[15]); 753 } 754 755 static ssize_t sas_address_show(struct device *dev, 756 struct device_attribute *attr, char *buf) 757 { 758 struct ctlr_info *h; 759 struct scsi_device *sdev; 760 struct hpsa_scsi_dev_t *hdev; 761 unsigned long flags; 762 u64 sas_address; 763 764 sdev = to_scsi_device(dev); 765 h = sdev_to_hba(sdev); 766 spin_lock_irqsave(&h->lock, flags); 767 hdev = sdev->hostdata; 768 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) { 769 spin_unlock_irqrestore(&h->lock, flags); 770 return -ENODEV; 771 } 772 sas_address = hdev->sas_address; 773 spin_unlock_irqrestore(&h->lock, flags); 774 775 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address); 776 } 777 778 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, 779 struct device_attribute *attr, char *buf) 780 { 781 struct ctlr_info *h; 782 struct scsi_device *sdev; 783 struct hpsa_scsi_dev_t *hdev; 784 unsigned long flags; 785 int offload_enabled; 786 787 sdev = to_scsi_device(dev); 788 h = sdev_to_hba(sdev); 789 spin_lock_irqsave(&h->lock, flags); 790 hdev = sdev->hostdata; 791 if (!hdev) { 792 spin_unlock_irqrestore(&h->lock, flags); 793 return -ENODEV; 794 } 795 offload_enabled = hdev->offload_enabled; 796 spin_unlock_irqrestore(&h->lock, flags); 797 798 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) 799 return snprintf(buf, 20, "%d\n", offload_enabled); 800 else 801 return snprintf(buf, 40, "%s\n", 802 "Not applicable for a controller"); 803 } 804 805 #define MAX_PATHS 8 806 static ssize_t path_info_show(struct device *dev, 807 struct device_attribute *attr, char *buf) 808 { 809 struct ctlr_info *h; 810 struct scsi_device *sdev; 811 struct hpsa_scsi_dev_t *hdev; 812 unsigned long flags; 813 int i; 814 int output_len = 0; 815 u8 box; 816 u8 bay; 817 u8 path_map_index = 0; 818 char *active; 819 unsigned char phys_connector[2]; 820 821 sdev = to_scsi_device(dev); 822 h = sdev_to_hba(sdev); 823 spin_lock_irqsave(&h->devlock, flags); 824 hdev = sdev->hostdata; 825 if (!hdev) { 826 spin_unlock_irqrestore(&h->devlock, flags); 827 return -ENODEV; 828 } 829 830 bay = hdev->bay; 831 for (i = 0; i < MAX_PATHS; i++) { 832 path_map_index = 1<<i; 833 if (i == hdev->active_path_index) 834 active = "Active"; 835 else if (hdev->path_map & path_map_index) 836 active = "Inactive"; 837 else 838 continue; 839 840 output_len += scnprintf(buf + output_len, 841 PAGE_SIZE - output_len, 842 "[%d:%d:%d:%d] %20.20s ", 843 h->scsi_host->host_no, 844 hdev->bus, hdev->target, hdev->lun, 845 scsi_device_type(hdev->devtype)); 846 847 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) { 848 output_len += scnprintf(buf + output_len, 849 PAGE_SIZE - output_len, 850 "%s\n", active); 851 continue; 852 } 853 854 box = hdev->box[i]; 855 memcpy(&phys_connector, &hdev->phys_connector[i], 856 sizeof(phys_connector)); 857 if (phys_connector[0] < '0') 858 phys_connector[0] = '0'; 859 if (phys_connector[1] < '0') 860 phys_connector[1] = '0'; 861 output_len += scnprintf(buf + output_len, 862 PAGE_SIZE - output_len, 863 "PORT: %.2s ", 864 phys_connector); 865 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) && 866 hdev->expose_device) { 867 if (box == 0 || box == 0xFF) { 868 output_len += scnprintf(buf + output_len, 869 PAGE_SIZE - output_len, 870 "BAY: %hhu %s\n", 871 bay, active); 872 } else { 873 output_len += scnprintf(buf + output_len, 874 PAGE_SIZE - output_len, 875 "BOX: %hhu BAY: %hhu %s\n", 876 box, bay, active); 877 } 878 } else if (box != 0 && box != 0xFF) { 879 output_len += scnprintf(buf + output_len, 880 PAGE_SIZE - output_len, "BOX: %hhu %s\n", 881 box, active); 882 } else 883 output_len += scnprintf(buf + output_len, 884 PAGE_SIZE - output_len, "%s\n", active); 885 } 886 887 spin_unlock_irqrestore(&h->devlock, flags); 888 return output_len; 889 } 890 891 static ssize_t host_show_ctlr_num(struct device *dev, 892 struct device_attribute *attr, char *buf) 893 { 894 struct ctlr_info *h; 895 struct Scsi_Host *shost = class_to_shost(dev); 896 897 h = shost_to_hba(shost); 898 return snprintf(buf, 20, "%d\n", h->ctlr); 899 } 900 901 static ssize_t host_show_legacy_board(struct device *dev, 902 struct device_attribute *attr, char *buf) 903 { 904 struct ctlr_info *h; 905 struct Scsi_Host *shost = class_to_shost(dev); 906 907 h = shost_to_hba(shost); 908 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0); 909 } 910 911 static DEVICE_ATTR_RO(raid_level); 912 static DEVICE_ATTR_RO(lunid); 913 static DEVICE_ATTR_RO(unique_id); 914 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 915 static DEVICE_ATTR_RO(sas_address); 916 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, 917 host_show_hp_ssd_smart_path_enabled, NULL); 918 static DEVICE_ATTR_RO(path_info); 919 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH, 920 host_show_hp_ssd_smart_path_status, 921 host_store_hp_ssd_smart_path_status); 922 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL, 923 host_store_raid_offload_debug); 924 static DEVICE_ATTR(firmware_revision, S_IRUGO, 925 host_show_firmware_revision, NULL); 926 static DEVICE_ATTR(commands_outstanding, S_IRUGO, 927 host_show_commands_outstanding, NULL); 928 static DEVICE_ATTR(transport_mode, S_IRUGO, 929 host_show_transport_mode, NULL); 930 static DEVICE_ATTR(resettable, S_IRUGO, 931 host_show_resettable, NULL); 932 static DEVICE_ATTR(lockup_detected, S_IRUGO, 933 host_show_lockup_detected, NULL); 934 static DEVICE_ATTR(ctlr_num, S_IRUGO, 935 host_show_ctlr_num, NULL); 936 static DEVICE_ATTR(legacy_board, S_IRUGO, 937 host_show_legacy_board, NULL); 938 939 static struct device_attribute *hpsa_sdev_attrs[] = { 940 &dev_attr_raid_level, 941 &dev_attr_lunid, 942 &dev_attr_unique_id, 943 &dev_attr_hp_ssd_smart_path_enabled, 944 &dev_attr_path_info, 945 &dev_attr_sas_address, 946 NULL, 947 }; 948 949 static struct device_attribute *hpsa_shost_attrs[] = { 950 &dev_attr_rescan, 951 &dev_attr_firmware_revision, 952 &dev_attr_commands_outstanding, 953 &dev_attr_transport_mode, 954 &dev_attr_resettable, 955 &dev_attr_hp_ssd_smart_path_status, 956 &dev_attr_raid_offload_debug, 957 &dev_attr_lockup_detected, 958 &dev_attr_ctlr_num, 959 &dev_attr_legacy_board, 960 NULL, 961 }; 962 963 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\ 964 HPSA_MAX_CONCURRENT_PASSTHRUS) 965 966 static struct scsi_host_template hpsa_driver_template = { 967 .module = THIS_MODULE, 968 .name = HPSA, 969 .proc_name = HPSA, 970 .queuecommand = hpsa_scsi_queue_command, 971 .scan_start = hpsa_scan_start, 972 .scan_finished = hpsa_scan_finished, 973 .change_queue_depth = hpsa_change_queue_depth, 974 .this_id = -1, 975 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 976 .ioctl = hpsa_ioctl, 977 .slave_alloc = hpsa_slave_alloc, 978 .slave_configure = hpsa_slave_configure, 979 .slave_destroy = hpsa_slave_destroy, 980 #ifdef CONFIG_COMPAT 981 .compat_ioctl = hpsa_compat_ioctl, 982 #endif 983 .sdev_attrs = hpsa_sdev_attrs, 984 .shost_attrs = hpsa_shost_attrs, 985 .max_sectors = 2048, 986 .no_write_same = 1, 987 }; 988 989 static inline u32 next_command(struct ctlr_info *h, u8 q) 990 { 991 u32 a; 992 struct reply_queue_buffer *rq = &h->reply_queue[q]; 993 994 if (h->transMethod & CFGTBL_Trans_io_accel1) 995 return h->access.command_completed(h, q); 996 997 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 998 return h->access.command_completed(h, q); 999 1000 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { 1001 a = rq->head[rq->current_entry]; 1002 rq->current_entry++; 1003 atomic_dec(&h->commands_outstanding); 1004 } else { 1005 a = FIFO_EMPTY; 1006 } 1007 /* Check for wraparound */ 1008 if (rq->current_entry == h->max_commands) { 1009 rq->current_entry = 0; 1010 rq->wraparound ^= 1; 1011 } 1012 return a; 1013 } 1014 1015 /* 1016 * There are some special bits in the bus address of the 1017 * command that we have to set for the controller to know 1018 * how to process the command: 1019 * 1020 * Normal performant mode: 1021 * bit 0: 1 means performant mode, 0 means simple mode. 1022 * bits 1-3 = block fetch table entry 1023 * bits 4-6 = command type (== 0) 1024 * 1025 * ioaccel1 mode: 1026 * bit 0 = "performant mode" bit. 1027 * bits 1-3 = block fetch table entry 1028 * bits 4-6 = command type (== 110) 1029 * (command type is needed because ioaccel1 mode 1030 * commands are submitted through the same register as normal 1031 * mode commands, so this is how the controller knows whether 1032 * the command is normal mode or ioaccel1 mode.) 1033 * 1034 * ioaccel2 mode: 1035 * bit 0 = "performant mode" bit. 1036 * bits 1-4 = block fetch table entry (note extra bit) 1037 * bits 4-6 = not needed, because ioaccel2 mode has 1038 * a separate special register for submitting commands. 1039 */ 1040 1041 /* 1042 * set_performant_mode: Modify the tag for cciss performant 1043 * set bit 0 for pull model, bits 3-1 for block fetch 1044 * register number 1045 */ 1046 #define DEFAULT_REPLY_QUEUE (-1) 1047 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c, 1048 int reply_queue) 1049 { 1050 if (likely(h->transMethod & CFGTBL_Trans_Performant)) { 1051 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 1052 if (unlikely(!h->msix_vectors)) 1053 return; 1054 c->Header.ReplyQueue = reply_queue; 1055 } 1056 } 1057 1058 static void set_ioaccel1_performant_mode(struct ctlr_info *h, 1059 struct CommandList *c, 1060 int reply_queue) 1061 { 1062 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; 1063 1064 /* 1065 * Tell the controller to post the reply to the queue for this 1066 * processor. This seems to give the best I/O throughput. 1067 */ 1068 cp->ReplyQueue = reply_queue; 1069 /* 1070 * Set the bits in the address sent down to include: 1071 * - performant mode bit (bit 0) 1072 * - pull count (bits 1-3) 1073 * - command type (bits 4-6) 1074 */ 1075 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) | 1076 IOACCEL1_BUSADDR_CMDTYPE; 1077 } 1078 1079 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h, 1080 struct CommandList *c, 1081 int reply_queue) 1082 { 1083 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *) 1084 &h->ioaccel2_cmd_pool[c->cmdindex]; 1085 1086 /* Tell the controller to post the reply to the queue for this 1087 * processor. This seems to give the best I/O throughput. 1088 */ 1089 cp->reply_queue = reply_queue; 1090 /* Set the bits in the address sent down to include: 1091 * - performant mode bit not used in ioaccel mode 2 1092 * - pull count (bits 0-3) 1093 * - command type isn't needed for ioaccel2 1094 */ 1095 c->busaddr |= h->ioaccel2_blockFetchTable[0]; 1096 } 1097 1098 static void set_ioaccel2_performant_mode(struct ctlr_info *h, 1099 struct CommandList *c, 1100 int reply_queue) 1101 { 1102 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; 1103 1104 /* 1105 * Tell the controller to post the reply to the queue for this 1106 * processor. This seems to give the best I/O throughput. 1107 */ 1108 cp->reply_queue = reply_queue; 1109 /* 1110 * Set the bits in the address sent down to include: 1111 * - performant mode bit not used in ioaccel mode 2 1112 * - pull count (bits 0-3) 1113 * - command type isn't needed for ioaccel2 1114 */ 1115 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]); 1116 } 1117 1118 static int is_firmware_flash_cmd(u8 *cdb) 1119 { 1120 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; 1121 } 1122 1123 /* 1124 * During firmware flash, the heartbeat register may not update as frequently 1125 * as it should. So we dial down lockup detection during firmware flash. and 1126 * dial it back up when firmware flash completes. 1127 */ 1128 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) 1129 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) 1130 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ) 1131 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, 1132 struct CommandList *c) 1133 { 1134 if (!is_firmware_flash_cmd(c->Request.CDB)) 1135 return; 1136 atomic_inc(&h->firmware_flash_in_progress); 1137 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; 1138 } 1139 1140 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, 1141 struct CommandList *c) 1142 { 1143 if (is_firmware_flash_cmd(c->Request.CDB) && 1144 atomic_dec_and_test(&h->firmware_flash_in_progress)) 1145 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 1146 } 1147 1148 static void __enqueue_cmd_and_start_io(struct ctlr_info *h, 1149 struct CommandList *c, int reply_queue) 1150 { 1151 dial_down_lockup_detection_during_fw_flash(h, c); 1152 atomic_inc(&h->commands_outstanding); 1153 /* 1154 * Check to see if the command is being retried. 1155 */ 1156 if (c->device && !c->retry_pending) 1157 atomic_inc(&c->device->commands_outstanding); 1158 1159 reply_queue = h->reply_map[raw_smp_processor_id()]; 1160 switch (c->cmd_type) { 1161 case CMD_IOACCEL1: 1162 set_ioaccel1_performant_mode(h, c, reply_queue); 1163 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); 1164 break; 1165 case CMD_IOACCEL2: 1166 set_ioaccel2_performant_mode(h, c, reply_queue); 1167 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); 1168 break; 1169 case IOACCEL2_TMF: 1170 set_ioaccel2_tmf_performant_mode(h, c, reply_queue); 1171 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); 1172 break; 1173 default: 1174 set_performant_mode(h, c, reply_queue); 1175 h->access.submit_command(h, c); 1176 } 1177 } 1178 1179 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c) 1180 { 1181 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE); 1182 } 1183 1184 static inline int is_hba_lunid(unsigned char scsi3addr[]) 1185 { 1186 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 1187 } 1188 1189 static inline int is_scsi_rev_5(struct ctlr_info *h) 1190 { 1191 if (!h->hba_inquiry_data) 1192 return 0; 1193 if ((h->hba_inquiry_data[2] & 0x07) == 5) 1194 return 1; 1195 return 0; 1196 } 1197 1198 static int hpsa_find_target_lun(struct ctlr_info *h, 1199 unsigned char scsi3addr[], int bus, int *target, int *lun) 1200 { 1201 /* finds an unused bus, target, lun for a new physical device 1202 * assumes h->devlock is held 1203 */ 1204 int i, found = 0; 1205 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); 1206 1207 bitmap_zero(lun_taken, HPSA_MAX_DEVICES); 1208 1209 for (i = 0; i < h->ndevices; i++) { 1210 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 1211 __set_bit(h->dev[i]->target, lun_taken); 1212 } 1213 1214 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); 1215 if (i < HPSA_MAX_DEVICES) { 1216 /* *bus = 1; */ 1217 *target = i; 1218 *lun = 0; 1219 found = 1; 1220 } 1221 return !found; 1222 } 1223 1224 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h, 1225 struct hpsa_scsi_dev_t *dev, char *description) 1226 { 1227 #define LABEL_SIZE 25 1228 char label[LABEL_SIZE]; 1229 1230 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL) 1231 return; 1232 1233 switch (dev->devtype) { 1234 case TYPE_RAID: 1235 snprintf(label, LABEL_SIZE, "controller"); 1236 break; 1237 case TYPE_ENCLOSURE: 1238 snprintf(label, LABEL_SIZE, "enclosure"); 1239 break; 1240 case TYPE_DISK: 1241 case TYPE_ZBC: 1242 if (dev->external) 1243 snprintf(label, LABEL_SIZE, "external"); 1244 else if (!is_logical_dev_addr_mode(dev->scsi3addr)) 1245 snprintf(label, LABEL_SIZE, "%s", 1246 raid_label[PHYSICAL_DRIVE]); 1247 else 1248 snprintf(label, LABEL_SIZE, "RAID-%s", 1249 dev->raid_level > RAID_UNKNOWN ? "?" : 1250 raid_label[dev->raid_level]); 1251 break; 1252 case TYPE_ROM: 1253 snprintf(label, LABEL_SIZE, "rom"); 1254 break; 1255 case TYPE_TAPE: 1256 snprintf(label, LABEL_SIZE, "tape"); 1257 break; 1258 case TYPE_MEDIUM_CHANGER: 1259 snprintf(label, LABEL_SIZE, "changer"); 1260 break; 1261 default: 1262 snprintf(label, LABEL_SIZE, "UNKNOWN"); 1263 break; 1264 } 1265 1266 dev_printk(level, &h->pdev->dev, 1267 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n", 1268 h->scsi_host->host_no, dev->bus, dev->target, dev->lun, 1269 description, 1270 scsi_device_type(dev->devtype), 1271 dev->vendor, 1272 dev->model, 1273 label, 1274 dev->offload_config ? '+' : '-', 1275 dev->offload_to_be_enabled ? '+' : '-', 1276 dev->expose_device); 1277 } 1278 1279 /* Add an entry into h->dev[] array. */ 1280 static int hpsa_scsi_add_entry(struct ctlr_info *h, 1281 struct hpsa_scsi_dev_t *device, 1282 struct hpsa_scsi_dev_t *added[], int *nadded) 1283 { 1284 /* assumes h->devlock is held */ 1285 int n = h->ndevices; 1286 int i; 1287 unsigned char addr1[8], addr2[8]; 1288 struct hpsa_scsi_dev_t *sd; 1289 1290 if (n >= HPSA_MAX_DEVICES) { 1291 dev_err(&h->pdev->dev, "too many devices, some will be " 1292 "inaccessible.\n"); 1293 return -1; 1294 } 1295 1296 /* physical devices do not have lun or target assigned until now. */ 1297 if (device->lun != -1) 1298 /* Logical device, lun is already assigned. */ 1299 goto lun_assigned; 1300 1301 /* If this device a non-zero lun of a multi-lun device 1302 * byte 4 of the 8-byte LUN addr will contain the logical 1303 * unit no, zero otherwise. 1304 */ 1305 if (device->scsi3addr[4] == 0) { 1306 /* This is not a non-zero lun of a multi-lun device */ 1307 if (hpsa_find_target_lun(h, device->scsi3addr, 1308 device->bus, &device->target, &device->lun) != 0) 1309 return -1; 1310 goto lun_assigned; 1311 } 1312 1313 /* This is a non-zero lun of a multi-lun device. 1314 * Search through our list and find the device which 1315 * has the same 8 byte LUN address, excepting byte 4 and 5. 1316 * Assign the same bus and target for this new LUN. 1317 * Use the logical unit number from the firmware. 1318 */ 1319 memcpy(addr1, device->scsi3addr, 8); 1320 addr1[4] = 0; 1321 addr1[5] = 0; 1322 for (i = 0; i < n; i++) { 1323 sd = h->dev[i]; 1324 memcpy(addr2, sd->scsi3addr, 8); 1325 addr2[4] = 0; 1326 addr2[5] = 0; 1327 /* differ only in byte 4 and 5? */ 1328 if (memcmp(addr1, addr2, 8) == 0) { 1329 device->bus = sd->bus; 1330 device->target = sd->target; 1331 device->lun = device->scsi3addr[4]; 1332 break; 1333 } 1334 } 1335 if (device->lun == -1) { 1336 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 1337 " suspect firmware bug or unsupported hardware " 1338 "configuration.\n"); 1339 return -1; 1340 } 1341 1342 lun_assigned: 1343 1344 h->dev[n] = device; 1345 h->ndevices++; 1346 added[*nadded] = device; 1347 (*nadded)++; 1348 hpsa_show_dev_msg(KERN_INFO, h, device, 1349 device->expose_device ? "added" : "masked"); 1350 return 0; 1351 } 1352 1353 /* 1354 * Called during a scan operation. 1355 * 1356 * Update an entry in h->dev[] array. 1357 */ 1358 static void hpsa_scsi_update_entry(struct ctlr_info *h, 1359 int entry, struct hpsa_scsi_dev_t *new_entry) 1360 { 1361 /* assumes h->devlock is held */ 1362 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1363 1364 /* Raid level changed. */ 1365 h->dev[entry]->raid_level = new_entry->raid_level; 1366 1367 /* 1368 * ioacccel_handle may have changed for a dual domain disk 1369 */ 1370 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1371 1372 /* Raid offload parameters changed. Careful about the ordering. */ 1373 if (new_entry->offload_config && new_entry->offload_to_be_enabled) { 1374 /* 1375 * if drive is newly offload_enabled, we want to copy the 1376 * raid map data first. If previously offload_enabled and 1377 * offload_config were set, raid map data had better be 1378 * the same as it was before. If raid map data has changed 1379 * then it had better be the case that 1380 * h->dev[entry]->offload_enabled is currently 0. 1381 */ 1382 h->dev[entry]->raid_map = new_entry->raid_map; 1383 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1384 } 1385 if (new_entry->offload_to_be_enabled) { 1386 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1387 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */ 1388 } 1389 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled; 1390 h->dev[entry]->offload_config = new_entry->offload_config; 1391 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror; 1392 h->dev[entry]->queue_depth = new_entry->queue_depth; 1393 1394 /* 1395 * We can turn off ioaccel offload now, but need to delay turning 1396 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we 1397 * can't do that until all the devices are updated. 1398 */ 1399 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled; 1400 1401 /* 1402 * turn ioaccel off immediately if told to do so. 1403 */ 1404 if (!new_entry->offload_to_be_enabled) 1405 h->dev[entry]->offload_enabled = 0; 1406 1407 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated"); 1408 } 1409 1410 /* Replace an entry from h->dev[] array. */ 1411 static void hpsa_scsi_replace_entry(struct ctlr_info *h, 1412 int entry, struct hpsa_scsi_dev_t *new_entry, 1413 struct hpsa_scsi_dev_t *added[], int *nadded, 1414 struct hpsa_scsi_dev_t *removed[], int *nremoved) 1415 { 1416 /* assumes h->devlock is held */ 1417 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1418 removed[*nremoved] = h->dev[entry]; 1419 (*nremoved)++; 1420 1421 /* 1422 * New physical devices won't have target/lun assigned yet 1423 * so we need to preserve the values in the slot we are replacing. 1424 */ 1425 if (new_entry->target == -1) { 1426 new_entry->target = h->dev[entry]->target; 1427 new_entry->lun = h->dev[entry]->lun; 1428 } 1429 1430 h->dev[entry] = new_entry; 1431 added[*nadded] = new_entry; 1432 (*nadded)++; 1433 1434 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced"); 1435 } 1436 1437 /* Remove an entry from h->dev[] array. */ 1438 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry, 1439 struct hpsa_scsi_dev_t *removed[], int *nremoved) 1440 { 1441 /* assumes h->devlock is held */ 1442 int i; 1443 struct hpsa_scsi_dev_t *sd; 1444 1445 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1446 1447 sd = h->dev[entry]; 1448 removed[*nremoved] = h->dev[entry]; 1449 (*nremoved)++; 1450 1451 for (i = entry; i < h->ndevices-1; i++) 1452 h->dev[i] = h->dev[i+1]; 1453 h->ndevices--; 1454 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed"); 1455 } 1456 1457 #define SCSI3ADDR_EQ(a, b) ( \ 1458 (a)[7] == (b)[7] && \ 1459 (a)[6] == (b)[6] && \ 1460 (a)[5] == (b)[5] && \ 1461 (a)[4] == (b)[4] && \ 1462 (a)[3] == (b)[3] && \ 1463 (a)[2] == (b)[2] && \ 1464 (a)[1] == (b)[1] && \ 1465 (a)[0] == (b)[0]) 1466 1467 static void fixup_botched_add(struct ctlr_info *h, 1468 struct hpsa_scsi_dev_t *added) 1469 { 1470 /* called when scsi_add_device fails in order to re-adjust 1471 * h->dev[] to match the mid layer's view. 1472 */ 1473 unsigned long flags; 1474 int i, j; 1475 1476 spin_lock_irqsave(&h->lock, flags); 1477 for (i = 0; i < h->ndevices; i++) { 1478 if (h->dev[i] == added) { 1479 for (j = i; j < h->ndevices-1; j++) 1480 h->dev[j] = h->dev[j+1]; 1481 h->ndevices--; 1482 break; 1483 } 1484 } 1485 spin_unlock_irqrestore(&h->lock, flags); 1486 kfree(added); 1487 } 1488 1489 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 1490 struct hpsa_scsi_dev_t *dev2) 1491 { 1492 /* we compare everything except lun and target as these 1493 * are not yet assigned. Compare parts likely 1494 * to differ first 1495 */ 1496 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 1497 sizeof(dev1->scsi3addr)) != 0) 1498 return 0; 1499 if (memcmp(dev1->device_id, dev2->device_id, 1500 sizeof(dev1->device_id)) != 0) 1501 return 0; 1502 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 1503 return 0; 1504 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 1505 return 0; 1506 if (dev1->devtype != dev2->devtype) 1507 return 0; 1508 if (dev1->bus != dev2->bus) 1509 return 0; 1510 return 1; 1511 } 1512 1513 static inline int device_updated(struct hpsa_scsi_dev_t *dev1, 1514 struct hpsa_scsi_dev_t *dev2) 1515 { 1516 /* Device attributes that can change, but don't mean 1517 * that the device is a different device, nor that the OS 1518 * needs to be told anything about the change. 1519 */ 1520 if (dev1->raid_level != dev2->raid_level) 1521 return 1; 1522 if (dev1->offload_config != dev2->offload_config) 1523 return 1; 1524 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled) 1525 return 1; 1526 if (!is_logical_dev_addr_mode(dev1->scsi3addr)) 1527 if (dev1->queue_depth != dev2->queue_depth) 1528 return 1; 1529 /* 1530 * This can happen for dual domain devices. An active 1531 * path change causes the ioaccel handle to change 1532 * 1533 * for example note the handle differences between p0 and p1 1534 * Device WWN ,WWN hash,Handle 1535 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003 1536 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004 1537 */ 1538 if (dev1->ioaccel_handle != dev2->ioaccel_handle) 1539 return 1; 1540 return 0; 1541 } 1542 1543 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 1544 * and return needle location in *index. If scsi3addr matches, but not 1545 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 1546 * location in *index. 1547 * In the case of a minor device attribute change, such as RAID level, just 1548 * return DEVICE_UPDATED, along with the updated device's location in index. 1549 * If needle not found, return DEVICE_NOT_FOUND. 1550 */ 1551 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 1552 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 1553 int *index) 1554 { 1555 int i; 1556 #define DEVICE_NOT_FOUND 0 1557 #define DEVICE_CHANGED 1 1558 #define DEVICE_SAME 2 1559 #define DEVICE_UPDATED 3 1560 if (needle == NULL) 1561 return DEVICE_NOT_FOUND; 1562 1563 for (i = 0; i < haystack_size; i++) { 1564 if (haystack[i] == NULL) /* previously removed. */ 1565 continue; 1566 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 1567 *index = i; 1568 if (device_is_the_same(needle, haystack[i])) { 1569 if (device_updated(needle, haystack[i])) 1570 return DEVICE_UPDATED; 1571 return DEVICE_SAME; 1572 } else { 1573 /* Keep offline devices offline */ 1574 if (needle->volume_offline) 1575 return DEVICE_NOT_FOUND; 1576 return DEVICE_CHANGED; 1577 } 1578 } 1579 } 1580 *index = -1; 1581 return DEVICE_NOT_FOUND; 1582 } 1583 1584 static void hpsa_monitor_offline_device(struct ctlr_info *h, 1585 unsigned char scsi3addr[]) 1586 { 1587 struct offline_device_entry *device; 1588 unsigned long flags; 1589 1590 /* Check to see if device is already on the list */ 1591 spin_lock_irqsave(&h->offline_device_lock, flags); 1592 list_for_each_entry(device, &h->offline_device_list, offline_list) { 1593 if (memcmp(device->scsi3addr, scsi3addr, 1594 sizeof(device->scsi3addr)) == 0) { 1595 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1596 return; 1597 } 1598 } 1599 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1600 1601 /* Device is not on the list, add it. */ 1602 device = kmalloc(sizeof(*device), GFP_KERNEL); 1603 if (!device) 1604 return; 1605 1606 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); 1607 spin_lock_irqsave(&h->offline_device_lock, flags); 1608 list_add_tail(&device->offline_list, &h->offline_device_list); 1609 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1610 } 1611 1612 /* Print a message explaining various offline volume states */ 1613 static void hpsa_show_volume_status(struct ctlr_info *h, 1614 struct hpsa_scsi_dev_t *sd) 1615 { 1616 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED) 1617 dev_info(&h->pdev->dev, 1618 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n", 1619 h->scsi_host->host_no, 1620 sd->bus, sd->target, sd->lun); 1621 switch (sd->volume_offline) { 1622 case HPSA_LV_OK: 1623 break; 1624 case HPSA_LV_UNDERGOING_ERASE: 1625 dev_info(&h->pdev->dev, 1626 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n", 1627 h->scsi_host->host_no, 1628 sd->bus, sd->target, sd->lun); 1629 break; 1630 case HPSA_LV_NOT_AVAILABLE: 1631 dev_info(&h->pdev->dev, 1632 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n", 1633 h->scsi_host->host_no, 1634 sd->bus, sd->target, sd->lun); 1635 break; 1636 case HPSA_LV_UNDERGOING_RPI: 1637 dev_info(&h->pdev->dev, 1638 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n", 1639 h->scsi_host->host_no, 1640 sd->bus, sd->target, sd->lun); 1641 break; 1642 case HPSA_LV_PENDING_RPI: 1643 dev_info(&h->pdev->dev, 1644 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n", 1645 h->scsi_host->host_no, 1646 sd->bus, sd->target, sd->lun); 1647 break; 1648 case HPSA_LV_ENCRYPTED_NO_KEY: 1649 dev_info(&h->pdev->dev, 1650 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n", 1651 h->scsi_host->host_no, 1652 sd->bus, sd->target, sd->lun); 1653 break; 1654 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: 1655 dev_info(&h->pdev->dev, 1656 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n", 1657 h->scsi_host->host_no, 1658 sd->bus, sd->target, sd->lun); 1659 break; 1660 case HPSA_LV_UNDERGOING_ENCRYPTION: 1661 dev_info(&h->pdev->dev, 1662 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n", 1663 h->scsi_host->host_no, 1664 sd->bus, sd->target, sd->lun); 1665 break; 1666 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: 1667 dev_info(&h->pdev->dev, 1668 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n", 1669 h->scsi_host->host_no, 1670 sd->bus, sd->target, sd->lun); 1671 break; 1672 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: 1673 dev_info(&h->pdev->dev, 1674 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n", 1675 h->scsi_host->host_no, 1676 sd->bus, sd->target, sd->lun); 1677 break; 1678 case HPSA_LV_PENDING_ENCRYPTION: 1679 dev_info(&h->pdev->dev, 1680 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n", 1681 h->scsi_host->host_no, 1682 sd->bus, sd->target, sd->lun); 1683 break; 1684 case HPSA_LV_PENDING_ENCRYPTION_REKEYING: 1685 dev_info(&h->pdev->dev, 1686 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n", 1687 h->scsi_host->host_no, 1688 sd->bus, sd->target, sd->lun); 1689 break; 1690 } 1691 } 1692 1693 /* 1694 * Figure the list of physical drive pointers for a logical drive with 1695 * raid offload configured. 1696 */ 1697 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h, 1698 struct hpsa_scsi_dev_t *dev[], int ndevices, 1699 struct hpsa_scsi_dev_t *logical_drive) 1700 { 1701 struct raid_map_data *map = &logical_drive->raid_map; 1702 struct raid_map_disk_data *dd = &map->data[0]; 1703 int i, j; 1704 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + 1705 le16_to_cpu(map->metadata_disks_per_row); 1706 int nraid_map_entries = le16_to_cpu(map->row_cnt) * 1707 le16_to_cpu(map->layout_map_count) * 1708 total_disks_per_row; 1709 int nphys_disk = le16_to_cpu(map->layout_map_count) * 1710 total_disks_per_row; 1711 int qdepth; 1712 1713 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES) 1714 nraid_map_entries = RAID_MAP_MAX_ENTRIES; 1715 1716 logical_drive->nphysical_disks = nraid_map_entries; 1717 1718 qdepth = 0; 1719 for (i = 0; i < nraid_map_entries; i++) { 1720 logical_drive->phys_disk[i] = NULL; 1721 if (!logical_drive->offload_config) 1722 continue; 1723 for (j = 0; j < ndevices; j++) { 1724 if (dev[j] == NULL) 1725 continue; 1726 if (dev[j]->devtype != TYPE_DISK && 1727 dev[j]->devtype != TYPE_ZBC) 1728 continue; 1729 if (is_logical_device(dev[j])) 1730 continue; 1731 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle) 1732 continue; 1733 1734 logical_drive->phys_disk[i] = dev[j]; 1735 if (i < nphys_disk) 1736 qdepth = min(h->nr_cmds, qdepth + 1737 logical_drive->phys_disk[i]->queue_depth); 1738 break; 1739 } 1740 1741 /* 1742 * This can happen if a physical drive is removed and 1743 * the logical drive is degraded. In that case, the RAID 1744 * map data will refer to a physical disk which isn't actually 1745 * present. And in that case offload_enabled should already 1746 * be 0, but we'll turn it off here just in case 1747 */ 1748 if (!logical_drive->phys_disk[i]) { 1749 dev_warn(&h->pdev->dev, 1750 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n", 1751 __func__, 1752 h->scsi_host->host_no, logical_drive->bus, 1753 logical_drive->target, logical_drive->lun); 1754 hpsa_turn_off_ioaccel_for_device(logical_drive); 1755 logical_drive->queue_depth = 8; 1756 } 1757 } 1758 if (nraid_map_entries) 1759 /* 1760 * This is correct for reads, too high for full stripe writes, 1761 * way too high for partial stripe writes 1762 */ 1763 logical_drive->queue_depth = qdepth; 1764 else { 1765 if (logical_drive->external) 1766 logical_drive->queue_depth = EXTERNAL_QD; 1767 else 1768 logical_drive->queue_depth = h->nr_cmds; 1769 } 1770 } 1771 1772 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h, 1773 struct hpsa_scsi_dev_t *dev[], int ndevices) 1774 { 1775 int i; 1776 1777 for (i = 0; i < ndevices; i++) { 1778 if (dev[i] == NULL) 1779 continue; 1780 if (dev[i]->devtype != TYPE_DISK && 1781 dev[i]->devtype != TYPE_ZBC) 1782 continue; 1783 if (!is_logical_device(dev[i])) 1784 continue; 1785 1786 /* 1787 * If offload is currently enabled, the RAID map and 1788 * phys_disk[] assignment *better* not be changing 1789 * because we would be changing ioaccel phsy_disk[] pointers 1790 * on a ioaccel volume processing I/O requests. 1791 * 1792 * If an ioaccel volume status changed, initially because it was 1793 * re-configured and thus underwent a transformation, or 1794 * a drive failed, we would have received a state change 1795 * request and ioaccel should have been turned off. When the 1796 * transformation completes, we get another state change 1797 * request to turn ioaccel back on. In this case, we need 1798 * to update the ioaccel information. 1799 * 1800 * Thus: If it is not currently enabled, but will be after 1801 * the scan completes, make sure the ioaccel pointers 1802 * are up to date. 1803 */ 1804 1805 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled) 1806 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]); 1807 } 1808 } 1809 1810 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 1811 { 1812 int rc = 0; 1813 1814 if (!h->scsi_host) 1815 return 1; 1816 1817 if (is_logical_device(device)) /* RAID */ 1818 rc = scsi_add_device(h->scsi_host, device->bus, 1819 device->target, device->lun); 1820 else /* HBA */ 1821 rc = hpsa_add_sas_device(h->sas_host, device); 1822 1823 return rc; 1824 } 1825 1826 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h, 1827 struct hpsa_scsi_dev_t *dev) 1828 { 1829 int i; 1830 int count = 0; 1831 1832 for (i = 0; i < h->nr_cmds; i++) { 1833 struct CommandList *c = h->cmd_pool + i; 1834 int refcount = atomic_inc_return(&c->refcount); 1835 1836 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, 1837 dev->scsi3addr)) { 1838 unsigned long flags; 1839 1840 spin_lock_irqsave(&h->lock, flags); /* Implied MB */ 1841 if (!hpsa_is_cmd_idle(c)) 1842 ++count; 1843 spin_unlock_irqrestore(&h->lock, flags); 1844 } 1845 1846 cmd_free(h, c); 1847 } 1848 1849 return count; 1850 } 1851 1852 #define NUM_WAIT 20 1853 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h, 1854 struct hpsa_scsi_dev_t *device) 1855 { 1856 int cmds = 0; 1857 int waits = 0; 1858 int num_wait = NUM_WAIT; 1859 1860 if (device->external) 1861 num_wait = HPSA_EH_PTRAID_TIMEOUT; 1862 1863 while (1) { 1864 cmds = hpsa_find_outstanding_commands_for_dev(h, device); 1865 if (cmds == 0) 1866 break; 1867 if (++waits > num_wait) 1868 break; 1869 msleep(1000); 1870 } 1871 1872 if (waits > num_wait) { 1873 dev_warn(&h->pdev->dev, 1874 "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n", 1875 __func__, 1876 h->scsi_host->host_no, 1877 device->bus, device->target, device->lun, cmds); 1878 } 1879 } 1880 1881 static void hpsa_remove_device(struct ctlr_info *h, 1882 struct hpsa_scsi_dev_t *device) 1883 { 1884 struct scsi_device *sdev = NULL; 1885 1886 if (!h->scsi_host) 1887 return; 1888 1889 /* 1890 * Allow for commands to drain 1891 */ 1892 device->removed = 1; 1893 hpsa_wait_for_outstanding_commands_for_dev(h, device); 1894 1895 if (is_logical_device(device)) { /* RAID */ 1896 sdev = scsi_device_lookup(h->scsi_host, device->bus, 1897 device->target, device->lun); 1898 if (sdev) { 1899 scsi_remove_device(sdev); 1900 scsi_device_put(sdev); 1901 } else { 1902 /* 1903 * We don't expect to get here. Future commands 1904 * to this device will get a selection timeout as 1905 * if the device were gone. 1906 */ 1907 hpsa_show_dev_msg(KERN_WARNING, h, device, 1908 "didn't find device for removal."); 1909 } 1910 } else { /* HBA */ 1911 1912 hpsa_remove_sas_device(device); 1913 } 1914 } 1915 1916 static void adjust_hpsa_scsi_table(struct ctlr_info *h, 1917 struct hpsa_scsi_dev_t *sd[], int nsds) 1918 { 1919 /* sd contains scsi3 addresses and devtypes, and inquiry 1920 * data. This function takes what's in sd to be the current 1921 * reality and updates h->dev[] to reflect that reality. 1922 */ 1923 int i, entry, device_change, changes = 0; 1924 struct hpsa_scsi_dev_t *csd; 1925 unsigned long flags; 1926 struct hpsa_scsi_dev_t **added, **removed; 1927 int nadded, nremoved; 1928 1929 /* 1930 * A reset can cause a device status to change 1931 * re-schedule the scan to see what happened. 1932 */ 1933 spin_lock_irqsave(&h->reset_lock, flags); 1934 if (h->reset_in_progress) { 1935 h->drv_req_rescan = 1; 1936 spin_unlock_irqrestore(&h->reset_lock, flags); 1937 return; 1938 } 1939 spin_unlock_irqrestore(&h->reset_lock, flags); 1940 1941 added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL); 1942 removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL); 1943 1944 if (!added || !removed) { 1945 dev_warn(&h->pdev->dev, "out of memory in " 1946 "adjust_hpsa_scsi_table\n"); 1947 goto free_and_out; 1948 } 1949 1950 spin_lock_irqsave(&h->devlock, flags); 1951 1952 /* find any devices in h->dev[] that are not in 1953 * sd[] and remove them from h->dev[], and for any 1954 * devices which have changed, remove the old device 1955 * info and add the new device info. 1956 * If minor device attributes change, just update 1957 * the existing device structure. 1958 */ 1959 i = 0; 1960 nremoved = 0; 1961 nadded = 0; 1962 while (i < h->ndevices) { 1963 csd = h->dev[i]; 1964 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 1965 if (device_change == DEVICE_NOT_FOUND) { 1966 changes++; 1967 hpsa_scsi_remove_entry(h, i, removed, &nremoved); 1968 continue; /* remove ^^^, hence i not incremented */ 1969 } else if (device_change == DEVICE_CHANGED) { 1970 changes++; 1971 hpsa_scsi_replace_entry(h, i, sd[entry], 1972 added, &nadded, removed, &nremoved); 1973 /* Set it to NULL to prevent it from being freed 1974 * at the bottom of hpsa_update_scsi_devices() 1975 */ 1976 sd[entry] = NULL; 1977 } else if (device_change == DEVICE_UPDATED) { 1978 hpsa_scsi_update_entry(h, i, sd[entry]); 1979 } 1980 i++; 1981 } 1982 1983 /* Now, make sure every device listed in sd[] is also 1984 * listed in h->dev[], adding them if they aren't found 1985 */ 1986 1987 for (i = 0; i < nsds; i++) { 1988 if (!sd[i]) /* if already added above. */ 1989 continue; 1990 1991 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS 1992 * as the SCSI mid-layer does not handle such devices well. 1993 * It relentlessly loops sending TUR at 3Hz, then READ(10) 1994 * at 160Hz, and prevents the system from coming up. 1995 */ 1996 if (sd[i]->volume_offline) { 1997 hpsa_show_volume_status(h, sd[i]); 1998 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline"); 1999 continue; 2000 } 2001 2002 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 2003 h->ndevices, &entry); 2004 if (device_change == DEVICE_NOT_FOUND) { 2005 changes++; 2006 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0) 2007 break; 2008 sd[i] = NULL; /* prevent from being freed later. */ 2009 } else if (device_change == DEVICE_CHANGED) { 2010 /* should never happen... */ 2011 changes++; 2012 dev_warn(&h->pdev->dev, 2013 "device unexpectedly changed.\n"); 2014 /* but if it does happen, we just ignore that device */ 2015 } 2016 } 2017 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices); 2018 2019 /* 2020 * Now that h->dev[]->phys_disk[] is coherent, we can enable 2021 * any logical drives that need it enabled. 2022 * 2023 * The raid map should be current by now. 2024 * 2025 * We are updating the device list used for I/O requests. 2026 */ 2027 for (i = 0; i < h->ndevices; i++) { 2028 if (h->dev[i] == NULL) 2029 continue; 2030 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled; 2031 } 2032 2033 spin_unlock_irqrestore(&h->devlock, flags); 2034 2035 /* Monitor devices which are in one of several NOT READY states to be 2036 * brought online later. This must be done without holding h->devlock, 2037 * so don't touch h->dev[] 2038 */ 2039 for (i = 0; i < nsds; i++) { 2040 if (!sd[i]) /* if already added above. */ 2041 continue; 2042 if (sd[i]->volume_offline) 2043 hpsa_monitor_offline_device(h, sd[i]->scsi3addr); 2044 } 2045 2046 /* Don't notify scsi mid layer of any changes the first time through 2047 * (or if there are no changes) scsi_scan_host will do it later the 2048 * first time through. 2049 */ 2050 if (!changes) 2051 goto free_and_out; 2052 2053 /* Notify scsi mid layer of any removed devices */ 2054 for (i = 0; i < nremoved; i++) { 2055 if (removed[i] == NULL) 2056 continue; 2057 if (removed[i]->expose_device) 2058 hpsa_remove_device(h, removed[i]); 2059 kfree(removed[i]); 2060 removed[i] = NULL; 2061 } 2062 2063 /* Notify scsi mid layer of any added devices */ 2064 for (i = 0; i < nadded; i++) { 2065 int rc = 0; 2066 2067 if (added[i] == NULL) 2068 continue; 2069 if (!(added[i]->expose_device)) 2070 continue; 2071 rc = hpsa_add_device(h, added[i]); 2072 if (!rc) 2073 continue; 2074 dev_warn(&h->pdev->dev, 2075 "addition failed %d, device not added.", rc); 2076 /* now we have to remove it from h->dev, 2077 * since it didn't get added to scsi mid layer 2078 */ 2079 fixup_botched_add(h, added[i]); 2080 h->drv_req_rescan = 1; 2081 } 2082 2083 free_and_out: 2084 kfree(added); 2085 kfree(removed); 2086 } 2087 2088 /* 2089 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * 2090 * Assume's h->devlock is held. 2091 */ 2092 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 2093 int bus, int target, int lun) 2094 { 2095 int i; 2096 struct hpsa_scsi_dev_t *sd; 2097 2098 for (i = 0; i < h->ndevices; i++) { 2099 sd = h->dev[i]; 2100 if (sd->bus == bus && sd->target == target && sd->lun == lun) 2101 return sd; 2102 } 2103 return NULL; 2104 } 2105 2106 static int hpsa_slave_alloc(struct scsi_device *sdev) 2107 { 2108 struct hpsa_scsi_dev_t *sd = NULL; 2109 unsigned long flags; 2110 struct ctlr_info *h; 2111 2112 h = sdev_to_hba(sdev); 2113 spin_lock_irqsave(&h->devlock, flags); 2114 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) { 2115 struct scsi_target *starget; 2116 struct sas_rphy *rphy; 2117 2118 starget = scsi_target(sdev); 2119 rphy = target_to_rphy(starget); 2120 sd = hpsa_find_device_by_sas_rphy(h, rphy); 2121 if (sd) { 2122 sd->target = sdev_id(sdev); 2123 sd->lun = sdev->lun; 2124 } 2125 } 2126 if (!sd) 2127 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 2128 sdev_id(sdev), sdev->lun); 2129 2130 if (sd && sd->expose_device) { 2131 atomic_set(&sd->ioaccel_cmds_out, 0); 2132 sdev->hostdata = sd; 2133 } else 2134 sdev->hostdata = NULL; 2135 spin_unlock_irqrestore(&h->devlock, flags); 2136 return 0; 2137 } 2138 2139 /* configure scsi device based on internal per-device structure */ 2140 #define CTLR_TIMEOUT (120 * HZ) 2141 static int hpsa_slave_configure(struct scsi_device *sdev) 2142 { 2143 struct hpsa_scsi_dev_t *sd; 2144 int queue_depth; 2145 2146 sd = sdev->hostdata; 2147 sdev->no_uld_attach = !sd || !sd->expose_device; 2148 2149 if (sd) { 2150 sd->was_removed = 0; 2151 queue_depth = sd->queue_depth != 0 ? 2152 sd->queue_depth : sdev->host->can_queue; 2153 if (sd->external) { 2154 queue_depth = EXTERNAL_QD; 2155 sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT; 2156 blk_queue_rq_timeout(sdev->request_queue, 2157 HPSA_EH_PTRAID_TIMEOUT); 2158 } 2159 if (is_hba_lunid(sd->scsi3addr)) { 2160 sdev->eh_timeout = CTLR_TIMEOUT; 2161 blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT); 2162 } 2163 } else { 2164 queue_depth = sdev->host->can_queue; 2165 } 2166 2167 scsi_change_queue_depth(sdev, queue_depth); 2168 2169 return 0; 2170 } 2171 2172 static void hpsa_slave_destroy(struct scsi_device *sdev) 2173 { 2174 struct hpsa_scsi_dev_t *hdev = NULL; 2175 2176 hdev = sdev->hostdata; 2177 2178 if (hdev) 2179 hdev->was_removed = 1; 2180 } 2181 2182 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h) 2183 { 2184 int i; 2185 2186 if (!h->ioaccel2_cmd_sg_list) 2187 return; 2188 for (i = 0; i < h->nr_cmds; i++) { 2189 kfree(h->ioaccel2_cmd_sg_list[i]); 2190 h->ioaccel2_cmd_sg_list[i] = NULL; 2191 } 2192 kfree(h->ioaccel2_cmd_sg_list); 2193 h->ioaccel2_cmd_sg_list = NULL; 2194 } 2195 2196 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h) 2197 { 2198 int i; 2199 2200 if (h->chainsize <= 0) 2201 return 0; 2202 2203 h->ioaccel2_cmd_sg_list = 2204 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list), 2205 GFP_KERNEL); 2206 if (!h->ioaccel2_cmd_sg_list) 2207 return -ENOMEM; 2208 for (i = 0; i < h->nr_cmds; i++) { 2209 h->ioaccel2_cmd_sg_list[i] = 2210 kmalloc_array(h->maxsgentries, 2211 sizeof(*h->ioaccel2_cmd_sg_list[i]), 2212 GFP_KERNEL); 2213 if (!h->ioaccel2_cmd_sg_list[i]) 2214 goto clean; 2215 } 2216 return 0; 2217 2218 clean: 2219 hpsa_free_ioaccel2_sg_chain_blocks(h); 2220 return -ENOMEM; 2221 } 2222 2223 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) 2224 { 2225 int i; 2226 2227 if (!h->cmd_sg_list) 2228 return; 2229 for (i = 0; i < h->nr_cmds; i++) { 2230 kfree(h->cmd_sg_list[i]); 2231 h->cmd_sg_list[i] = NULL; 2232 } 2233 kfree(h->cmd_sg_list); 2234 h->cmd_sg_list = NULL; 2235 } 2236 2237 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h) 2238 { 2239 int i; 2240 2241 if (h->chainsize <= 0) 2242 return 0; 2243 2244 h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list), 2245 GFP_KERNEL); 2246 if (!h->cmd_sg_list) 2247 return -ENOMEM; 2248 2249 for (i = 0; i < h->nr_cmds; i++) { 2250 h->cmd_sg_list[i] = kmalloc_array(h->chainsize, 2251 sizeof(*h->cmd_sg_list[i]), 2252 GFP_KERNEL); 2253 if (!h->cmd_sg_list[i]) 2254 goto clean; 2255 2256 } 2257 return 0; 2258 2259 clean: 2260 hpsa_free_sg_chain_blocks(h); 2261 return -ENOMEM; 2262 } 2263 2264 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h, 2265 struct io_accel2_cmd *cp, struct CommandList *c) 2266 { 2267 struct ioaccel2_sg_element *chain_block; 2268 u64 temp64; 2269 u32 chain_size; 2270 2271 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex]; 2272 chain_size = le32_to_cpu(cp->sg[0].length); 2273 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size, 2274 DMA_TO_DEVICE); 2275 if (dma_mapping_error(&h->pdev->dev, temp64)) { 2276 /* prevent subsequent unmapping */ 2277 cp->sg->address = 0; 2278 return -1; 2279 } 2280 cp->sg->address = cpu_to_le64(temp64); 2281 return 0; 2282 } 2283 2284 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h, 2285 struct io_accel2_cmd *cp) 2286 { 2287 struct ioaccel2_sg_element *chain_sg; 2288 u64 temp64; 2289 u32 chain_size; 2290 2291 chain_sg = cp->sg; 2292 temp64 = le64_to_cpu(chain_sg->address); 2293 chain_size = le32_to_cpu(cp->sg[0].length); 2294 dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE); 2295 } 2296 2297 static int hpsa_map_sg_chain_block(struct ctlr_info *h, 2298 struct CommandList *c) 2299 { 2300 struct SGDescriptor *chain_sg, *chain_block; 2301 u64 temp64; 2302 u32 chain_len; 2303 2304 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 2305 chain_block = h->cmd_sg_list[c->cmdindex]; 2306 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN); 2307 chain_len = sizeof(*chain_sg) * 2308 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries); 2309 chain_sg->Len = cpu_to_le32(chain_len); 2310 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len, 2311 DMA_TO_DEVICE); 2312 if (dma_mapping_error(&h->pdev->dev, temp64)) { 2313 /* prevent subsequent unmapping */ 2314 chain_sg->Addr = cpu_to_le64(0); 2315 return -1; 2316 } 2317 chain_sg->Addr = cpu_to_le64(temp64); 2318 return 0; 2319 } 2320 2321 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, 2322 struct CommandList *c) 2323 { 2324 struct SGDescriptor *chain_sg; 2325 2326 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries) 2327 return; 2328 2329 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 2330 dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr), 2331 le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE); 2332 } 2333 2334 2335 /* Decode the various types of errors on ioaccel2 path. 2336 * Return 1 for any error that should generate a RAID path retry. 2337 * Return 0 for errors that don't require a RAID path retry. 2338 */ 2339 static int handle_ioaccel_mode2_error(struct ctlr_info *h, 2340 struct CommandList *c, 2341 struct scsi_cmnd *cmd, 2342 struct io_accel2_cmd *c2, 2343 struct hpsa_scsi_dev_t *dev) 2344 { 2345 int data_len; 2346 int retry = 0; 2347 u32 ioaccel2_resid = 0; 2348 2349 switch (c2->error_data.serv_response) { 2350 case IOACCEL2_SERV_RESPONSE_COMPLETE: 2351 switch (c2->error_data.status) { 2352 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD: 2353 if (cmd) 2354 cmd->result = 0; 2355 break; 2356 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND: 2357 cmd->result |= SAM_STAT_CHECK_CONDITION; 2358 if (c2->error_data.data_present != 2359 IOACCEL2_SENSE_DATA_PRESENT) { 2360 memset(cmd->sense_buffer, 0, 2361 SCSI_SENSE_BUFFERSIZE); 2362 break; 2363 } 2364 /* copy the sense data */ 2365 data_len = c2->error_data.sense_data_len; 2366 if (data_len > SCSI_SENSE_BUFFERSIZE) 2367 data_len = SCSI_SENSE_BUFFERSIZE; 2368 if (data_len > sizeof(c2->error_data.sense_data_buff)) 2369 data_len = 2370 sizeof(c2->error_data.sense_data_buff); 2371 memcpy(cmd->sense_buffer, 2372 c2->error_data.sense_data_buff, data_len); 2373 retry = 1; 2374 break; 2375 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY: 2376 retry = 1; 2377 break; 2378 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON: 2379 retry = 1; 2380 break; 2381 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL: 2382 retry = 1; 2383 break; 2384 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED: 2385 retry = 1; 2386 break; 2387 default: 2388 retry = 1; 2389 break; 2390 } 2391 break; 2392 case IOACCEL2_SERV_RESPONSE_FAILURE: 2393 switch (c2->error_data.status) { 2394 case IOACCEL2_STATUS_SR_IO_ERROR: 2395 case IOACCEL2_STATUS_SR_IO_ABORTED: 2396 case IOACCEL2_STATUS_SR_OVERRUN: 2397 retry = 1; 2398 break; 2399 case IOACCEL2_STATUS_SR_UNDERRUN: 2400 cmd->result = (DID_OK << 16); /* host byte */ 2401 ioaccel2_resid = get_unaligned_le32( 2402 &c2->error_data.resid_cnt[0]); 2403 scsi_set_resid(cmd, ioaccel2_resid); 2404 break; 2405 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE: 2406 case IOACCEL2_STATUS_SR_INVALID_DEVICE: 2407 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED: 2408 /* 2409 * Did an HBA disk disappear? We will eventually 2410 * get a state change event from the controller but 2411 * in the meantime, we need to tell the OS that the 2412 * HBA disk is no longer there and stop I/O 2413 * from going down. This allows the potential re-insert 2414 * of the disk to get the same device node. 2415 */ 2416 if (dev->physical_device && dev->expose_device) { 2417 cmd->result = DID_NO_CONNECT << 16; 2418 dev->removed = 1; 2419 h->drv_req_rescan = 1; 2420 dev_warn(&h->pdev->dev, 2421 "%s: device is gone!\n", __func__); 2422 } else 2423 /* 2424 * Retry by sending down the RAID path. 2425 * We will get an event from ctlr to 2426 * trigger rescan regardless. 2427 */ 2428 retry = 1; 2429 break; 2430 default: 2431 retry = 1; 2432 } 2433 break; 2434 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: 2435 break; 2436 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: 2437 break; 2438 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: 2439 retry = 1; 2440 break; 2441 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: 2442 break; 2443 default: 2444 retry = 1; 2445 break; 2446 } 2447 2448 if (dev->in_reset) 2449 retry = 0; 2450 2451 return retry; /* retry on raid path? */ 2452 } 2453 2454 static void hpsa_cmd_resolve_events(struct ctlr_info *h, 2455 struct CommandList *c) 2456 { 2457 struct hpsa_scsi_dev_t *dev = c->device; 2458 2459 /* 2460 * Reset c->scsi_cmd here so that the reset handler will know 2461 * this command has completed. Then, check to see if the handler is 2462 * waiting for this command, and, if so, wake it. 2463 */ 2464 c->scsi_cmd = SCSI_CMD_IDLE; 2465 mb(); /* Declare command idle before checking for pending events. */ 2466 if (dev) { 2467 atomic_dec(&dev->commands_outstanding); 2468 if (dev->in_reset && 2469 atomic_read(&dev->commands_outstanding) <= 0) 2470 wake_up_all(&h->event_sync_wait_queue); 2471 } 2472 } 2473 2474 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h, 2475 struct CommandList *c) 2476 { 2477 hpsa_cmd_resolve_events(h, c); 2478 cmd_tagged_free(h, c); 2479 } 2480 2481 static void hpsa_cmd_free_and_done(struct ctlr_info *h, 2482 struct CommandList *c, struct scsi_cmnd *cmd) 2483 { 2484 hpsa_cmd_resolve_and_free(h, c); 2485 if (cmd && cmd->scsi_done) 2486 cmd->scsi_done(cmd); 2487 } 2488 2489 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c) 2490 { 2491 INIT_WORK(&c->work, hpsa_command_resubmit_worker); 2492 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work); 2493 } 2494 2495 static void process_ioaccel2_completion(struct ctlr_info *h, 2496 struct CommandList *c, struct scsi_cmnd *cmd, 2497 struct hpsa_scsi_dev_t *dev) 2498 { 2499 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 2500 2501 /* check for good status */ 2502 if (likely(c2->error_data.serv_response == 0 && 2503 c2->error_data.status == 0)) { 2504 cmd->result = 0; 2505 return hpsa_cmd_free_and_done(h, c, cmd); 2506 } 2507 2508 /* 2509 * Any RAID offload error results in retry which will use 2510 * the normal I/O path so the controller can handle whatever is 2511 * wrong. 2512 */ 2513 if (is_logical_device(dev) && 2514 c2->error_data.serv_response == 2515 IOACCEL2_SERV_RESPONSE_FAILURE) { 2516 if (c2->error_data.status == 2517 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) { 2518 hpsa_turn_off_ioaccel_for_device(dev); 2519 } 2520 2521 if (dev->in_reset) { 2522 cmd->result = DID_RESET << 16; 2523 return hpsa_cmd_free_and_done(h, c, cmd); 2524 } 2525 2526 return hpsa_retry_cmd(h, c); 2527 } 2528 2529 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev)) 2530 return hpsa_retry_cmd(h, c); 2531 2532 return hpsa_cmd_free_and_done(h, c, cmd); 2533 } 2534 2535 /* Returns 0 on success, < 0 otherwise. */ 2536 static int hpsa_evaluate_tmf_status(struct ctlr_info *h, 2537 struct CommandList *cp) 2538 { 2539 u8 tmf_status = cp->err_info->ScsiStatus; 2540 2541 switch (tmf_status) { 2542 case CISS_TMF_COMPLETE: 2543 /* 2544 * CISS_TMF_COMPLETE never happens, instead, 2545 * ei->CommandStatus == 0 for this case. 2546 */ 2547 case CISS_TMF_SUCCESS: 2548 return 0; 2549 case CISS_TMF_INVALID_FRAME: 2550 case CISS_TMF_NOT_SUPPORTED: 2551 case CISS_TMF_FAILED: 2552 case CISS_TMF_WRONG_LUN: 2553 case CISS_TMF_OVERLAPPED_TAG: 2554 break; 2555 default: 2556 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n", 2557 tmf_status); 2558 break; 2559 } 2560 return -tmf_status; 2561 } 2562 2563 static void complete_scsi_command(struct CommandList *cp) 2564 { 2565 struct scsi_cmnd *cmd; 2566 struct ctlr_info *h; 2567 struct ErrorInfo *ei; 2568 struct hpsa_scsi_dev_t *dev; 2569 struct io_accel2_cmd *c2; 2570 2571 u8 sense_key; 2572 u8 asc; /* additional sense code */ 2573 u8 ascq; /* additional sense code qualifier */ 2574 unsigned long sense_data_size; 2575 2576 ei = cp->err_info; 2577 cmd = cp->scsi_cmd; 2578 h = cp->h; 2579 2580 if (!cmd->device) { 2581 cmd->result = DID_NO_CONNECT << 16; 2582 return hpsa_cmd_free_and_done(h, cp, cmd); 2583 } 2584 2585 dev = cmd->device->hostdata; 2586 if (!dev) { 2587 cmd->result = DID_NO_CONNECT << 16; 2588 return hpsa_cmd_free_and_done(h, cp, cmd); 2589 } 2590 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex]; 2591 2592 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 2593 if ((cp->cmd_type == CMD_SCSI) && 2594 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries)) 2595 hpsa_unmap_sg_chain_block(h, cp); 2596 2597 if ((cp->cmd_type == CMD_IOACCEL2) && 2598 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN)) 2599 hpsa_unmap_ioaccel2_sg_chain_block(h, c2); 2600 2601 cmd->result = (DID_OK << 16); /* host byte */ 2602 2603 /* SCSI command has already been cleaned up in SML */ 2604 if (dev->was_removed) { 2605 hpsa_cmd_resolve_and_free(h, cp); 2606 return; 2607 } 2608 2609 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) { 2610 if (dev->physical_device && dev->expose_device && 2611 dev->removed) { 2612 cmd->result = DID_NO_CONNECT << 16; 2613 return hpsa_cmd_free_and_done(h, cp, cmd); 2614 } 2615 if (likely(cp->phys_disk != NULL)) 2616 atomic_dec(&cp->phys_disk->ioaccel_cmds_out); 2617 } 2618 2619 /* 2620 * We check for lockup status here as it may be set for 2621 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by 2622 * fail_all_oustanding_cmds() 2623 */ 2624 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) { 2625 /* DID_NO_CONNECT will prevent a retry */ 2626 cmd->result = DID_NO_CONNECT << 16; 2627 return hpsa_cmd_free_and_done(h, cp, cmd); 2628 } 2629 2630 if (cp->cmd_type == CMD_IOACCEL2) 2631 return process_ioaccel2_completion(h, cp, cmd, dev); 2632 2633 scsi_set_resid(cmd, ei->ResidualCnt); 2634 if (ei->CommandStatus == 0) 2635 return hpsa_cmd_free_and_done(h, cp, cmd); 2636 2637 /* For I/O accelerator commands, copy over some fields to the normal 2638 * CISS header used below for error handling. 2639 */ 2640 if (cp->cmd_type == CMD_IOACCEL1) { 2641 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; 2642 cp->Header.SGList = scsi_sg_count(cmd); 2643 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList); 2644 cp->Request.CDBLen = le16_to_cpu(c->io_flags) & 2645 IOACCEL1_IOFLAGS_CDBLEN_MASK; 2646 cp->Header.tag = c->tag; 2647 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); 2648 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); 2649 2650 /* Any RAID offload error results in retry which will use 2651 * the normal I/O path so the controller can handle whatever's 2652 * wrong. 2653 */ 2654 if (is_logical_device(dev)) { 2655 if (ei->CommandStatus == CMD_IOACCEL_DISABLED) 2656 dev->offload_enabled = 0; 2657 return hpsa_retry_cmd(h, cp); 2658 } 2659 } 2660 2661 /* an error has occurred */ 2662 switch (ei->CommandStatus) { 2663 2664 case CMD_TARGET_STATUS: 2665 cmd->result |= ei->ScsiStatus; 2666 /* copy the sense data */ 2667 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) 2668 sense_data_size = SCSI_SENSE_BUFFERSIZE; 2669 else 2670 sense_data_size = sizeof(ei->SenseInfo); 2671 if (ei->SenseLen < sense_data_size) 2672 sense_data_size = ei->SenseLen; 2673 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); 2674 if (ei->ScsiStatus) 2675 decode_sense_data(ei->SenseInfo, sense_data_size, 2676 &sense_key, &asc, &ascq); 2677 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 2678 switch (sense_key) { 2679 case ABORTED_COMMAND: 2680 cmd->result |= DID_SOFT_ERROR << 16; 2681 break; 2682 case UNIT_ATTENTION: 2683 if (asc == 0x3F && ascq == 0x0E) 2684 h->drv_req_rescan = 1; 2685 break; 2686 case ILLEGAL_REQUEST: 2687 if (asc == 0x25 && ascq == 0x00) { 2688 dev->removed = 1; 2689 cmd->result = DID_NO_CONNECT << 16; 2690 } 2691 break; 2692 } 2693 break; 2694 } 2695 /* Problem was not a check condition 2696 * Pass it up to the upper layers... 2697 */ 2698 if (ei->ScsiStatus) { 2699 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 2700 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 2701 "Returning result: 0x%x\n", 2702 cp, ei->ScsiStatus, 2703 sense_key, asc, ascq, 2704 cmd->result); 2705 } else { /* scsi status is zero??? How??? */ 2706 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 2707 "Returning no connection.\n", cp), 2708 2709 /* Ordinarily, this case should never happen, 2710 * but there is a bug in some released firmware 2711 * revisions that allows it to happen if, for 2712 * example, a 4100 backplane loses power and 2713 * the tape drive is in it. We assume that 2714 * it's a fatal error of some kind because we 2715 * can't show that it wasn't. We will make it 2716 * look like selection timeout since that is 2717 * the most common reason for this to occur, 2718 * and it's severe enough. 2719 */ 2720 2721 cmd->result = DID_NO_CONNECT << 16; 2722 } 2723 break; 2724 2725 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 2726 break; 2727 case CMD_DATA_OVERRUN: 2728 dev_warn(&h->pdev->dev, 2729 "CDB %16phN data overrun\n", cp->Request.CDB); 2730 break; 2731 case CMD_INVALID: { 2732 /* print_bytes(cp, sizeof(*cp), 1, 0); 2733 print_cmd(cp); */ 2734 /* We get CMD_INVALID if you address a non-existent device 2735 * instead of a selection timeout (no response). You will 2736 * see this if you yank out a drive, then try to access it. 2737 * This is kind of a shame because it means that any other 2738 * CMD_INVALID (e.g. driver bug) will get interpreted as a 2739 * missing target. */ 2740 cmd->result = DID_NO_CONNECT << 16; 2741 } 2742 break; 2743 case CMD_PROTOCOL_ERR: 2744 cmd->result = DID_ERROR << 16; 2745 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n", 2746 cp->Request.CDB); 2747 break; 2748 case CMD_HARDWARE_ERR: 2749 cmd->result = DID_ERROR << 16; 2750 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n", 2751 cp->Request.CDB); 2752 break; 2753 case CMD_CONNECTION_LOST: 2754 cmd->result = DID_ERROR << 16; 2755 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n", 2756 cp->Request.CDB); 2757 break; 2758 case CMD_ABORTED: 2759 cmd->result = DID_ABORT << 16; 2760 break; 2761 case CMD_ABORT_FAILED: 2762 cmd->result = DID_ERROR << 16; 2763 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n", 2764 cp->Request.CDB); 2765 break; 2766 case CMD_UNSOLICITED_ABORT: 2767 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ 2768 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n", 2769 cp->Request.CDB); 2770 break; 2771 case CMD_TIMEOUT: 2772 cmd->result = DID_TIME_OUT << 16; 2773 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n", 2774 cp->Request.CDB); 2775 break; 2776 case CMD_UNABORTABLE: 2777 cmd->result = DID_ERROR << 16; 2778 dev_warn(&h->pdev->dev, "Command unabortable\n"); 2779 break; 2780 case CMD_TMF_STATUS: 2781 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */ 2782 cmd->result = DID_ERROR << 16; 2783 break; 2784 case CMD_IOACCEL_DISABLED: 2785 /* This only handles the direct pass-through case since RAID 2786 * offload is handled above. Just attempt a retry. 2787 */ 2788 cmd->result = DID_SOFT_ERROR << 16; 2789 dev_warn(&h->pdev->dev, 2790 "cp %p had HP SSD Smart Path error\n", cp); 2791 break; 2792 default: 2793 cmd->result = DID_ERROR << 16; 2794 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 2795 cp, ei->CommandStatus); 2796 } 2797 2798 return hpsa_cmd_free_and_done(h, cp, cmd); 2799 } 2800 2801 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c, 2802 int sg_used, enum dma_data_direction data_direction) 2803 { 2804 int i; 2805 2806 for (i = 0; i < sg_used; i++) 2807 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr), 2808 le32_to_cpu(c->SG[i].Len), 2809 data_direction); 2810 } 2811 2812 static int hpsa_map_one(struct pci_dev *pdev, 2813 struct CommandList *cp, 2814 unsigned char *buf, 2815 size_t buflen, 2816 enum dma_data_direction data_direction) 2817 { 2818 u64 addr64; 2819 2820 if (buflen == 0 || data_direction == DMA_NONE) { 2821 cp->Header.SGList = 0; 2822 cp->Header.SGTotal = cpu_to_le16(0); 2823 return 0; 2824 } 2825 2826 addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction); 2827 if (dma_mapping_error(&pdev->dev, addr64)) { 2828 /* Prevent subsequent unmap of something never mapped */ 2829 cp->Header.SGList = 0; 2830 cp->Header.SGTotal = cpu_to_le16(0); 2831 return -1; 2832 } 2833 cp->SG[0].Addr = cpu_to_le64(addr64); 2834 cp->SG[0].Len = cpu_to_le32(buflen); 2835 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */ 2836 cp->Header.SGList = 1; /* no. SGs contig in this cmd */ 2837 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */ 2838 return 0; 2839 } 2840 2841 #define NO_TIMEOUT ((unsigned long) -1) 2842 #define DEFAULT_TIMEOUT 30000 /* milliseconds */ 2843 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 2844 struct CommandList *c, int reply_queue, unsigned long timeout_msecs) 2845 { 2846 DECLARE_COMPLETION_ONSTACK(wait); 2847 2848 c->waiting = &wait; 2849 __enqueue_cmd_and_start_io(h, c, reply_queue); 2850 if (timeout_msecs == NO_TIMEOUT) { 2851 /* TODO: get rid of this no-timeout thing */ 2852 wait_for_completion_io(&wait); 2853 return IO_OK; 2854 } 2855 if (!wait_for_completion_io_timeout(&wait, 2856 msecs_to_jiffies(timeout_msecs))) { 2857 dev_warn(&h->pdev->dev, "Command timed out.\n"); 2858 return -ETIMEDOUT; 2859 } 2860 return IO_OK; 2861 } 2862 2863 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c, 2864 int reply_queue, unsigned long timeout_msecs) 2865 { 2866 if (unlikely(lockup_detected(h))) { 2867 c->err_info->CommandStatus = CMD_CTLR_LOCKUP; 2868 return IO_OK; 2869 } 2870 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs); 2871 } 2872 2873 static u32 lockup_detected(struct ctlr_info *h) 2874 { 2875 int cpu; 2876 u32 rc, *lockup_detected; 2877 2878 cpu = get_cpu(); 2879 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); 2880 rc = *lockup_detected; 2881 put_cpu(); 2882 return rc; 2883 } 2884 2885 #define MAX_DRIVER_CMD_RETRIES 25 2886 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 2887 struct CommandList *c, enum dma_data_direction data_direction, 2888 unsigned long timeout_msecs) 2889 { 2890 int backoff_time = 10, retry_count = 0; 2891 int rc; 2892 2893 do { 2894 memset(c->err_info, 0, sizeof(*c->err_info)); 2895 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 2896 timeout_msecs); 2897 if (rc) 2898 break; 2899 retry_count++; 2900 if (retry_count > 3) { 2901 msleep(backoff_time); 2902 if (backoff_time < 1000) 2903 backoff_time *= 2; 2904 } 2905 } while ((check_for_unit_attention(h, c) || 2906 check_for_busy(h, c)) && 2907 retry_count <= MAX_DRIVER_CMD_RETRIES); 2908 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 2909 if (retry_count > MAX_DRIVER_CMD_RETRIES) 2910 rc = -EIO; 2911 return rc; 2912 } 2913 2914 static void hpsa_print_cmd(struct ctlr_info *h, char *txt, 2915 struct CommandList *c) 2916 { 2917 const u8 *cdb = c->Request.CDB; 2918 const u8 *lun = c->Header.LUN.LunAddrBytes; 2919 2920 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n", 2921 txt, lun, cdb); 2922 } 2923 2924 static void hpsa_scsi_interpret_error(struct ctlr_info *h, 2925 struct CommandList *cp) 2926 { 2927 const struct ErrorInfo *ei = cp->err_info; 2928 struct device *d = &cp->h->pdev->dev; 2929 u8 sense_key, asc, ascq; 2930 int sense_len; 2931 2932 switch (ei->CommandStatus) { 2933 case CMD_TARGET_STATUS: 2934 if (ei->SenseLen > sizeof(ei->SenseInfo)) 2935 sense_len = sizeof(ei->SenseInfo); 2936 else 2937 sense_len = ei->SenseLen; 2938 decode_sense_data(ei->SenseInfo, sense_len, 2939 &sense_key, &asc, &ascq); 2940 hpsa_print_cmd(h, "SCSI status", cp); 2941 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) 2942 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n", 2943 sense_key, asc, ascq); 2944 else 2945 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus); 2946 if (ei->ScsiStatus == 0) 2947 dev_warn(d, "SCSI status is abnormally zero. " 2948 "(probably indicates selection timeout " 2949 "reported incorrectly due to a known " 2950 "firmware bug, circa July, 2001.)\n"); 2951 break; 2952 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 2953 break; 2954 case CMD_DATA_OVERRUN: 2955 hpsa_print_cmd(h, "overrun condition", cp); 2956 break; 2957 case CMD_INVALID: { 2958 /* controller unfortunately reports SCSI passthru's 2959 * to non-existent targets as invalid commands. 2960 */ 2961 hpsa_print_cmd(h, "invalid command", cp); 2962 dev_warn(d, "probably means device no longer present\n"); 2963 } 2964 break; 2965 case CMD_PROTOCOL_ERR: 2966 hpsa_print_cmd(h, "protocol error", cp); 2967 break; 2968 case CMD_HARDWARE_ERR: 2969 hpsa_print_cmd(h, "hardware error", cp); 2970 break; 2971 case CMD_CONNECTION_LOST: 2972 hpsa_print_cmd(h, "connection lost", cp); 2973 break; 2974 case CMD_ABORTED: 2975 hpsa_print_cmd(h, "aborted", cp); 2976 break; 2977 case CMD_ABORT_FAILED: 2978 hpsa_print_cmd(h, "abort failed", cp); 2979 break; 2980 case CMD_UNSOLICITED_ABORT: 2981 hpsa_print_cmd(h, "unsolicited abort", cp); 2982 break; 2983 case CMD_TIMEOUT: 2984 hpsa_print_cmd(h, "timed out", cp); 2985 break; 2986 case CMD_UNABORTABLE: 2987 hpsa_print_cmd(h, "unabortable", cp); 2988 break; 2989 case CMD_CTLR_LOCKUP: 2990 hpsa_print_cmd(h, "controller lockup detected", cp); 2991 break; 2992 default: 2993 hpsa_print_cmd(h, "unknown status", cp); 2994 dev_warn(d, "Unknown command status %x\n", 2995 ei->CommandStatus); 2996 } 2997 } 2998 2999 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr, 3000 u8 page, u8 *buf, size_t bufsize) 3001 { 3002 int rc = IO_OK; 3003 struct CommandList *c; 3004 struct ErrorInfo *ei; 3005 3006 c = cmd_alloc(h); 3007 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize, 3008 page, scsi3addr, TYPE_CMD)) { 3009 rc = -1; 3010 goto out; 3011 } 3012 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3013 NO_TIMEOUT); 3014 if (rc) 3015 goto out; 3016 ei = c->err_info; 3017 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3018 hpsa_scsi_interpret_error(h, c); 3019 rc = -1; 3020 } 3021 out: 3022 cmd_free(h, c); 3023 return rc; 3024 } 3025 3026 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h, 3027 u8 *scsi3addr) 3028 { 3029 u8 *buf; 3030 u64 sa = 0; 3031 int rc = 0; 3032 3033 buf = kzalloc(1024, GFP_KERNEL); 3034 if (!buf) 3035 return 0; 3036 3037 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC, 3038 buf, 1024); 3039 3040 if (rc) 3041 goto out; 3042 3043 sa = get_unaligned_be64(buf+12); 3044 3045 out: 3046 kfree(buf); 3047 return sa; 3048 } 3049 3050 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 3051 u16 page, unsigned char *buf, 3052 unsigned char bufsize) 3053 { 3054 int rc = IO_OK; 3055 struct CommandList *c; 3056 struct ErrorInfo *ei; 3057 3058 c = cmd_alloc(h); 3059 3060 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, 3061 page, scsi3addr, TYPE_CMD)) { 3062 rc = -1; 3063 goto out; 3064 } 3065 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3066 NO_TIMEOUT); 3067 if (rc) 3068 goto out; 3069 ei = c->err_info; 3070 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3071 hpsa_scsi_interpret_error(h, c); 3072 rc = -1; 3073 } 3074 out: 3075 cmd_free(h, c); 3076 return rc; 3077 } 3078 3079 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, 3080 u8 reset_type, int reply_queue) 3081 { 3082 int rc = IO_OK; 3083 struct CommandList *c; 3084 struct ErrorInfo *ei; 3085 3086 c = cmd_alloc(h); 3087 c->device = dev; 3088 3089 /* fill_cmd can't fail here, no data buffer to map. */ 3090 (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG); 3091 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); 3092 if (rc) { 3093 dev_warn(&h->pdev->dev, "Failed to send reset command\n"); 3094 goto out; 3095 } 3096 /* no unmap needed here because no data xfer. */ 3097 3098 ei = c->err_info; 3099 if (ei->CommandStatus != 0) { 3100 hpsa_scsi_interpret_error(h, c); 3101 rc = -1; 3102 } 3103 out: 3104 cmd_free(h, c); 3105 return rc; 3106 } 3107 3108 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, 3109 struct hpsa_scsi_dev_t *dev, 3110 unsigned char *scsi3addr) 3111 { 3112 int i; 3113 bool match = false; 3114 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 3115 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; 3116 3117 if (hpsa_is_cmd_idle(c)) 3118 return false; 3119 3120 switch (c->cmd_type) { 3121 case CMD_SCSI: 3122 case CMD_IOCTL_PEND: 3123 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes, 3124 sizeof(c->Header.LUN.LunAddrBytes)); 3125 break; 3126 3127 case CMD_IOACCEL1: 3128 case CMD_IOACCEL2: 3129 if (c->phys_disk == dev) { 3130 /* HBA mode match */ 3131 match = true; 3132 } else { 3133 /* Possible RAID mode -- check each phys dev. */ 3134 /* FIXME: Do we need to take out a lock here? If 3135 * so, we could just call hpsa_get_pdisk_of_ioaccel2() 3136 * instead. */ 3137 for (i = 0; i < dev->nphysical_disks && !match; i++) { 3138 /* FIXME: an alternate test might be 3139 * 3140 * match = dev->phys_disk[i]->ioaccel_handle 3141 * == c2->scsi_nexus; */ 3142 match = dev->phys_disk[i] == c->phys_disk; 3143 } 3144 } 3145 break; 3146 3147 case IOACCEL2_TMF: 3148 for (i = 0; i < dev->nphysical_disks && !match; i++) { 3149 match = dev->phys_disk[i]->ioaccel_handle == 3150 le32_to_cpu(ac->it_nexus); 3151 } 3152 break; 3153 3154 case 0: /* The command is in the middle of being initialized. */ 3155 match = false; 3156 break; 3157 3158 default: 3159 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n", 3160 c->cmd_type); 3161 BUG(); 3162 } 3163 3164 return match; 3165 } 3166 3167 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, 3168 u8 reset_type, int reply_queue) 3169 { 3170 int rc = 0; 3171 3172 /* We can really only handle one reset at a time */ 3173 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) { 3174 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n"); 3175 return -EINTR; 3176 } 3177 3178 rc = hpsa_send_reset(h, dev, reset_type, reply_queue); 3179 if (!rc) { 3180 /* incremented by sending the reset request */ 3181 atomic_dec(&dev->commands_outstanding); 3182 wait_event(h->event_sync_wait_queue, 3183 atomic_read(&dev->commands_outstanding) <= 0 || 3184 lockup_detected(h)); 3185 } 3186 3187 if (unlikely(lockup_detected(h))) { 3188 dev_warn(&h->pdev->dev, 3189 "Controller lockup detected during reset wait\n"); 3190 rc = -ENODEV; 3191 } 3192 3193 if (!rc) 3194 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0); 3195 3196 mutex_unlock(&h->reset_mutex); 3197 return rc; 3198 } 3199 3200 static void hpsa_get_raid_level(struct ctlr_info *h, 3201 unsigned char *scsi3addr, unsigned char *raid_level) 3202 { 3203 int rc; 3204 unsigned char *buf; 3205 3206 *raid_level = RAID_UNKNOWN; 3207 buf = kzalloc(64, GFP_KERNEL); 3208 if (!buf) 3209 return; 3210 3211 if (!hpsa_vpd_page_supported(h, scsi3addr, 3212 HPSA_VPD_LV_DEVICE_GEOMETRY)) 3213 goto exit; 3214 3215 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 3216 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64); 3217 3218 if (rc == 0) 3219 *raid_level = buf[8]; 3220 if (*raid_level > RAID_UNKNOWN) 3221 *raid_level = RAID_UNKNOWN; 3222 exit: 3223 kfree(buf); 3224 return; 3225 } 3226 3227 #define HPSA_MAP_DEBUG 3228 #ifdef HPSA_MAP_DEBUG 3229 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, 3230 struct raid_map_data *map_buff) 3231 { 3232 struct raid_map_disk_data *dd = &map_buff->data[0]; 3233 int map, row, col; 3234 u16 map_cnt, row_cnt, disks_per_row; 3235 3236 if (rc != 0) 3237 return; 3238 3239 /* Show details only if debugging has been activated. */ 3240 if (h->raid_offload_debug < 2) 3241 return; 3242 3243 dev_info(&h->pdev->dev, "structure_size = %u\n", 3244 le32_to_cpu(map_buff->structure_size)); 3245 dev_info(&h->pdev->dev, "volume_blk_size = %u\n", 3246 le32_to_cpu(map_buff->volume_blk_size)); 3247 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", 3248 le64_to_cpu(map_buff->volume_blk_cnt)); 3249 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", 3250 map_buff->phys_blk_shift); 3251 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", 3252 map_buff->parity_rotation_shift); 3253 dev_info(&h->pdev->dev, "strip_size = %u\n", 3254 le16_to_cpu(map_buff->strip_size)); 3255 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", 3256 le64_to_cpu(map_buff->disk_starting_blk)); 3257 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", 3258 le64_to_cpu(map_buff->disk_blk_cnt)); 3259 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", 3260 le16_to_cpu(map_buff->data_disks_per_row)); 3261 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", 3262 le16_to_cpu(map_buff->metadata_disks_per_row)); 3263 dev_info(&h->pdev->dev, "row_cnt = %u\n", 3264 le16_to_cpu(map_buff->row_cnt)); 3265 dev_info(&h->pdev->dev, "layout_map_count = %u\n", 3266 le16_to_cpu(map_buff->layout_map_count)); 3267 dev_info(&h->pdev->dev, "flags = 0x%x\n", 3268 le16_to_cpu(map_buff->flags)); 3269 dev_info(&h->pdev->dev, "encryption = %s\n", 3270 le16_to_cpu(map_buff->flags) & 3271 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF"); 3272 dev_info(&h->pdev->dev, "dekindex = %u\n", 3273 le16_to_cpu(map_buff->dekindex)); 3274 map_cnt = le16_to_cpu(map_buff->layout_map_count); 3275 for (map = 0; map < map_cnt; map++) { 3276 dev_info(&h->pdev->dev, "Map%u:\n", map); 3277 row_cnt = le16_to_cpu(map_buff->row_cnt); 3278 for (row = 0; row < row_cnt; row++) { 3279 dev_info(&h->pdev->dev, " Row%u:\n", row); 3280 disks_per_row = 3281 le16_to_cpu(map_buff->data_disks_per_row); 3282 for (col = 0; col < disks_per_row; col++, dd++) 3283 dev_info(&h->pdev->dev, 3284 " D%02u: h=0x%04x xor=%u,%u\n", 3285 col, dd->ioaccel_handle, 3286 dd->xor_mult[0], dd->xor_mult[1]); 3287 disks_per_row = 3288 le16_to_cpu(map_buff->metadata_disks_per_row); 3289 for (col = 0; col < disks_per_row; col++, dd++) 3290 dev_info(&h->pdev->dev, 3291 " M%02u: h=0x%04x xor=%u,%u\n", 3292 col, dd->ioaccel_handle, 3293 dd->xor_mult[0], dd->xor_mult[1]); 3294 } 3295 } 3296 } 3297 #else 3298 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, 3299 __attribute__((unused)) int rc, 3300 __attribute__((unused)) struct raid_map_data *map_buff) 3301 { 3302 } 3303 #endif 3304 3305 static int hpsa_get_raid_map(struct ctlr_info *h, 3306 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) 3307 { 3308 int rc = 0; 3309 struct CommandList *c; 3310 struct ErrorInfo *ei; 3311 3312 c = cmd_alloc(h); 3313 3314 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, 3315 sizeof(this_device->raid_map), 0, 3316 scsi3addr, TYPE_CMD)) { 3317 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n"); 3318 cmd_free(h, c); 3319 return -1; 3320 } 3321 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3322 NO_TIMEOUT); 3323 if (rc) 3324 goto out; 3325 ei = c->err_info; 3326 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3327 hpsa_scsi_interpret_error(h, c); 3328 rc = -1; 3329 goto out; 3330 } 3331 cmd_free(h, c); 3332 3333 /* @todo in the future, dynamically allocate RAID map memory */ 3334 if (le32_to_cpu(this_device->raid_map.structure_size) > 3335 sizeof(this_device->raid_map)) { 3336 dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); 3337 rc = -1; 3338 } 3339 hpsa_debug_map_buff(h, rc, &this_device->raid_map); 3340 return rc; 3341 out: 3342 cmd_free(h, c); 3343 return rc; 3344 } 3345 3346 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h, 3347 unsigned char scsi3addr[], u16 bmic_device_index, 3348 struct bmic_sense_subsystem_info *buf, size_t bufsize) 3349 { 3350 int rc = IO_OK; 3351 struct CommandList *c; 3352 struct ErrorInfo *ei; 3353 3354 c = cmd_alloc(h); 3355 3356 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize, 3357 0, RAID_CTLR_LUNID, TYPE_CMD); 3358 if (rc) 3359 goto out; 3360 3361 c->Request.CDB[2] = bmic_device_index & 0xff; 3362 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; 3363 3364 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3365 NO_TIMEOUT); 3366 if (rc) 3367 goto out; 3368 ei = c->err_info; 3369 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3370 hpsa_scsi_interpret_error(h, c); 3371 rc = -1; 3372 } 3373 out: 3374 cmd_free(h, c); 3375 return rc; 3376 } 3377 3378 static int hpsa_bmic_id_controller(struct ctlr_info *h, 3379 struct bmic_identify_controller *buf, size_t bufsize) 3380 { 3381 int rc = IO_OK; 3382 struct CommandList *c; 3383 struct ErrorInfo *ei; 3384 3385 c = cmd_alloc(h); 3386 3387 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize, 3388 0, RAID_CTLR_LUNID, TYPE_CMD); 3389 if (rc) 3390 goto out; 3391 3392 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3393 NO_TIMEOUT); 3394 if (rc) 3395 goto out; 3396 ei = c->err_info; 3397 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3398 hpsa_scsi_interpret_error(h, c); 3399 rc = -1; 3400 } 3401 out: 3402 cmd_free(h, c); 3403 return rc; 3404 } 3405 3406 static int hpsa_bmic_id_physical_device(struct ctlr_info *h, 3407 unsigned char scsi3addr[], u16 bmic_device_index, 3408 struct bmic_identify_physical_device *buf, size_t bufsize) 3409 { 3410 int rc = IO_OK; 3411 struct CommandList *c; 3412 struct ErrorInfo *ei; 3413 3414 c = cmd_alloc(h); 3415 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize, 3416 0, RAID_CTLR_LUNID, TYPE_CMD); 3417 if (rc) 3418 goto out; 3419 3420 c->Request.CDB[2] = bmic_device_index & 0xff; 3421 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; 3422 3423 hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3424 NO_TIMEOUT); 3425 ei = c->err_info; 3426 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3427 hpsa_scsi_interpret_error(h, c); 3428 rc = -1; 3429 } 3430 out: 3431 cmd_free(h, c); 3432 3433 return rc; 3434 } 3435 3436 /* 3437 * get enclosure information 3438 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number 3439 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure 3440 * Uses id_physical_device to determine the box_index. 3441 */ 3442 static void hpsa_get_enclosure_info(struct ctlr_info *h, 3443 unsigned char *scsi3addr, 3444 struct ReportExtendedLUNdata *rlep, int rle_index, 3445 struct hpsa_scsi_dev_t *encl_dev) 3446 { 3447 int rc = -1; 3448 struct CommandList *c = NULL; 3449 struct ErrorInfo *ei = NULL; 3450 struct bmic_sense_storage_box_params *bssbp = NULL; 3451 struct bmic_identify_physical_device *id_phys = NULL; 3452 struct ext_report_lun_entry *rle; 3453 u16 bmic_device_index = 0; 3454 3455 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN) 3456 return; 3457 3458 rle = &rlep->LUN[rle_index]; 3459 3460 encl_dev->eli = 3461 hpsa_get_enclosure_logical_identifier(h, scsi3addr); 3462 3463 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]); 3464 3465 if (encl_dev->target == -1 || encl_dev->lun == -1) { 3466 rc = IO_OK; 3467 goto out; 3468 } 3469 3470 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) { 3471 rc = IO_OK; 3472 goto out; 3473 } 3474 3475 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL); 3476 if (!bssbp) 3477 goto out; 3478 3479 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 3480 if (!id_phys) 3481 goto out; 3482 3483 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index, 3484 id_phys, sizeof(*id_phys)); 3485 if (rc) { 3486 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n", 3487 __func__, encl_dev->external, bmic_device_index); 3488 goto out; 3489 } 3490 3491 c = cmd_alloc(h); 3492 3493 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp, 3494 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD); 3495 3496 if (rc) 3497 goto out; 3498 3499 if (id_phys->phys_connector[1] == 'E') 3500 c->Request.CDB[5] = id_phys->box_index; 3501 else 3502 c->Request.CDB[5] = 0; 3503 3504 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3505 NO_TIMEOUT); 3506 if (rc) 3507 goto out; 3508 3509 ei = c->err_info; 3510 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3511 rc = -1; 3512 goto out; 3513 } 3514 3515 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port; 3516 memcpy(&encl_dev->phys_connector[id_phys->active_path_number], 3517 bssbp->phys_connector, sizeof(bssbp->phys_connector)); 3518 3519 rc = IO_OK; 3520 out: 3521 kfree(bssbp); 3522 kfree(id_phys); 3523 3524 if (c) 3525 cmd_free(h, c); 3526 3527 if (rc != IO_OK) 3528 hpsa_show_dev_msg(KERN_INFO, h, encl_dev, 3529 "Error, could not get enclosure information"); 3530 } 3531 3532 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h, 3533 unsigned char *scsi3addr) 3534 { 3535 struct ReportExtendedLUNdata *physdev; 3536 u32 nphysicals; 3537 u64 sa = 0; 3538 int i; 3539 3540 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL); 3541 if (!physdev) 3542 return 0; 3543 3544 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { 3545 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 3546 kfree(physdev); 3547 return 0; 3548 } 3549 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24; 3550 3551 for (i = 0; i < nphysicals; i++) 3552 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) { 3553 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]); 3554 break; 3555 } 3556 3557 kfree(physdev); 3558 3559 return sa; 3560 } 3561 3562 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr, 3563 struct hpsa_scsi_dev_t *dev) 3564 { 3565 int rc; 3566 u64 sa = 0; 3567 3568 if (is_hba_lunid(scsi3addr)) { 3569 struct bmic_sense_subsystem_info *ssi; 3570 3571 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL); 3572 if (!ssi) 3573 return; 3574 3575 rc = hpsa_bmic_sense_subsystem_information(h, 3576 scsi3addr, 0, ssi, sizeof(*ssi)); 3577 if (rc == 0) { 3578 sa = get_unaligned_be64(ssi->primary_world_wide_id); 3579 h->sas_address = sa; 3580 } 3581 3582 kfree(ssi); 3583 } else 3584 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr); 3585 3586 dev->sas_address = sa; 3587 } 3588 3589 static void hpsa_ext_ctrl_present(struct ctlr_info *h, 3590 struct ReportExtendedLUNdata *physdev) 3591 { 3592 u32 nphysicals; 3593 int i; 3594 3595 if (h->discovery_polling) 3596 return; 3597 3598 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1; 3599 3600 for (i = 0; i < nphysicals; i++) { 3601 if (physdev->LUN[i].device_type == 3602 BMIC_DEVICE_TYPE_CONTROLLER 3603 && !is_hba_lunid(physdev->LUN[i].lunid)) { 3604 dev_info(&h->pdev->dev, 3605 "External controller present, activate discovery polling and disable rld caching\n"); 3606 hpsa_disable_rld_caching(h); 3607 h->discovery_polling = 1; 3608 break; 3609 } 3610 } 3611 } 3612 3613 /* Get a device id from inquiry page 0x83 */ 3614 static bool hpsa_vpd_page_supported(struct ctlr_info *h, 3615 unsigned char scsi3addr[], u8 page) 3616 { 3617 int rc; 3618 int i; 3619 int pages; 3620 unsigned char *buf, bufsize; 3621 3622 buf = kzalloc(256, GFP_KERNEL); 3623 if (!buf) 3624 return false; 3625 3626 /* Get the size of the page list first */ 3627 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3628 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, 3629 buf, HPSA_VPD_HEADER_SZ); 3630 if (rc != 0) 3631 goto exit_unsupported; 3632 pages = buf[3]; 3633 if ((pages + HPSA_VPD_HEADER_SZ) <= 255) 3634 bufsize = pages + HPSA_VPD_HEADER_SZ; 3635 else 3636 bufsize = 255; 3637 3638 /* Get the whole VPD page list */ 3639 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3640 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, 3641 buf, bufsize); 3642 if (rc != 0) 3643 goto exit_unsupported; 3644 3645 pages = buf[3]; 3646 for (i = 1; i <= pages; i++) 3647 if (buf[3 + i] == page) 3648 goto exit_supported; 3649 exit_unsupported: 3650 kfree(buf); 3651 return false; 3652 exit_supported: 3653 kfree(buf); 3654 return true; 3655 } 3656 3657 /* 3658 * Called during a scan operation. 3659 * Sets ioaccel status on the new device list, not the existing device list 3660 * 3661 * The device list used during I/O will be updated later in 3662 * adjust_hpsa_scsi_table. 3663 */ 3664 static void hpsa_get_ioaccel_status(struct ctlr_info *h, 3665 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) 3666 { 3667 int rc; 3668 unsigned char *buf; 3669 u8 ioaccel_status; 3670 3671 this_device->offload_config = 0; 3672 this_device->offload_enabled = 0; 3673 this_device->offload_to_be_enabled = 0; 3674 3675 buf = kzalloc(64, GFP_KERNEL); 3676 if (!buf) 3677 return; 3678 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS)) 3679 goto out; 3680 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3681 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); 3682 if (rc != 0) 3683 goto out; 3684 3685 #define IOACCEL_STATUS_BYTE 4 3686 #define OFFLOAD_CONFIGURED_BIT 0x01 3687 #define OFFLOAD_ENABLED_BIT 0x02 3688 ioaccel_status = buf[IOACCEL_STATUS_BYTE]; 3689 this_device->offload_config = 3690 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); 3691 if (this_device->offload_config) { 3692 bool offload_enabled = 3693 !!(ioaccel_status & OFFLOAD_ENABLED_BIT); 3694 /* 3695 * Check to see if offload can be enabled. 3696 */ 3697 if (offload_enabled) { 3698 rc = hpsa_get_raid_map(h, scsi3addr, this_device); 3699 if (rc) /* could not load raid_map */ 3700 goto out; 3701 this_device->offload_to_be_enabled = 1; 3702 } 3703 } 3704 3705 out: 3706 kfree(buf); 3707 return; 3708 } 3709 3710 /* Get the device id from inquiry page 0x83 */ 3711 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 3712 unsigned char *device_id, int index, int buflen) 3713 { 3714 int rc; 3715 unsigned char *buf; 3716 3717 /* Does controller have VPD for device id? */ 3718 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID)) 3719 return 1; /* not supported */ 3720 3721 buf = kzalloc(64, GFP_KERNEL); 3722 if (!buf) 3723 return -ENOMEM; 3724 3725 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 3726 HPSA_VPD_LV_DEVICE_ID, buf, 64); 3727 if (rc == 0) { 3728 if (buflen > 16) 3729 buflen = 16; 3730 memcpy(device_id, &buf[8], buflen); 3731 } 3732 3733 kfree(buf); 3734 3735 return rc; /*0 - got id, otherwise, didn't */ 3736 } 3737 3738 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 3739 void *buf, int bufsize, 3740 int extended_response) 3741 { 3742 int rc = IO_OK; 3743 struct CommandList *c; 3744 unsigned char scsi3addr[8]; 3745 struct ErrorInfo *ei; 3746 3747 c = cmd_alloc(h); 3748 3749 /* address the controller */ 3750 memset(scsi3addr, 0, sizeof(scsi3addr)); 3751 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 3752 buf, bufsize, 0, scsi3addr, TYPE_CMD)) { 3753 rc = -EAGAIN; 3754 goto out; 3755 } 3756 if (extended_response) 3757 c->Request.CDB[1] = extended_response; 3758 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3759 NO_TIMEOUT); 3760 if (rc) 3761 goto out; 3762 ei = c->err_info; 3763 if (ei->CommandStatus != 0 && 3764 ei->CommandStatus != CMD_DATA_UNDERRUN) { 3765 hpsa_scsi_interpret_error(h, c); 3766 rc = -EIO; 3767 } else { 3768 struct ReportLUNdata *rld = buf; 3769 3770 if (rld->extended_response_flag != extended_response) { 3771 if (!h->legacy_board) { 3772 dev_err(&h->pdev->dev, 3773 "report luns requested format %u, got %u\n", 3774 extended_response, 3775 rld->extended_response_flag); 3776 rc = -EINVAL; 3777 } else 3778 rc = -EOPNOTSUPP; 3779 } 3780 } 3781 out: 3782 cmd_free(h, c); 3783 return rc; 3784 } 3785 3786 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 3787 struct ReportExtendedLUNdata *buf, int bufsize) 3788 { 3789 int rc; 3790 struct ReportLUNdata *lbuf; 3791 3792 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize, 3793 HPSA_REPORT_PHYS_EXTENDED); 3794 if (!rc || rc != -EOPNOTSUPP) 3795 return rc; 3796 3797 /* REPORT PHYS EXTENDED is not supported */ 3798 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL); 3799 if (!lbuf) 3800 return -ENOMEM; 3801 3802 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0); 3803 if (!rc) { 3804 int i; 3805 u32 nphys; 3806 3807 /* Copy ReportLUNdata header */ 3808 memcpy(buf, lbuf, 8); 3809 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8; 3810 for (i = 0; i < nphys; i++) 3811 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8); 3812 } 3813 kfree(lbuf); 3814 return rc; 3815 } 3816 3817 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 3818 struct ReportLUNdata *buf, int bufsize) 3819 { 3820 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 3821 } 3822 3823 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 3824 int bus, int target, int lun) 3825 { 3826 device->bus = bus; 3827 device->target = target; 3828 device->lun = lun; 3829 } 3830 3831 /* Use VPD inquiry to get details of volume status */ 3832 static int hpsa_get_volume_status(struct ctlr_info *h, 3833 unsigned char scsi3addr[]) 3834 { 3835 int rc; 3836 int status; 3837 int size; 3838 unsigned char *buf; 3839 3840 buf = kzalloc(64, GFP_KERNEL); 3841 if (!buf) 3842 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3843 3844 /* Does controller have VPD for logical volume status? */ 3845 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) 3846 goto exit_failed; 3847 3848 /* Get the size of the VPD return buffer */ 3849 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, 3850 buf, HPSA_VPD_HEADER_SZ); 3851 if (rc != 0) 3852 goto exit_failed; 3853 size = buf[3]; 3854 3855 /* Now get the whole VPD buffer */ 3856 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, 3857 buf, size + HPSA_VPD_HEADER_SZ); 3858 if (rc != 0) 3859 goto exit_failed; 3860 status = buf[4]; /* status byte */ 3861 3862 kfree(buf); 3863 return status; 3864 exit_failed: 3865 kfree(buf); 3866 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3867 } 3868 3869 /* Determine offline status of a volume. 3870 * Return either: 3871 * 0 (not offline) 3872 * 0xff (offline for unknown reasons) 3873 * # (integer code indicating one of several NOT READY states 3874 * describing why a volume is to be kept offline) 3875 */ 3876 static unsigned char hpsa_volume_offline(struct ctlr_info *h, 3877 unsigned char scsi3addr[]) 3878 { 3879 struct CommandList *c; 3880 unsigned char *sense; 3881 u8 sense_key, asc, ascq; 3882 int sense_len; 3883 int rc, ldstat = 0; 3884 #define ASC_LUN_NOT_READY 0x04 3885 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04 3886 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02 3887 3888 c = cmd_alloc(h); 3889 3890 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD); 3891 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 3892 NO_TIMEOUT); 3893 if (rc) { 3894 cmd_free(h, c); 3895 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3896 } 3897 sense = c->err_info->SenseInfo; 3898 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) 3899 sense_len = sizeof(c->err_info->SenseInfo); 3900 else 3901 sense_len = c->err_info->SenseLen; 3902 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq); 3903 cmd_free(h, c); 3904 3905 /* Determine the reason for not ready state */ 3906 ldstat = hpsa_get_volume_status(h, scsi3addr); 3907 3908 /* Keep volume offline in certain cases: */ 3909 switch (ldstat) { 3910 case HPSA_LV_FAILED: 3911 case HPSA_LV_UNDERGOING_ERASE: 3912 case HPSA_LV_NOT_AVAILABLE: 3913 case HPSA_LV_UNDERGOING_RPI: 3914 case HPSA_LV_PENDING_RPI: 3915 case HPSA_LV_ENCRYPTED_NO_KEY: 3916 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: 3917 case HPSA_LV_UNDERGOING_ENCRYPTION: 3918 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: 3919 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: 3920 return ldstat; 3921 case HPSA_VPD_LV_STATUS_UNSUPPORTED: 3922 /* If VPD status page isn't available, 3923 * use ASC/ASCQ to determine state 3924 */ 3925 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) || 3926 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ)) 3927 return ldstat; 3928 break; 3929 default: 3930 break; 3931 } 3932 return HPSA_LV_OK; 3933 } 3934 3935 static int hpsa_update_device_info(struct ctlr_info *h, 3936 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, 3937 unsigned char *is_OBDR_device) 3938 { 3939 3940 #define OBDR_SIG_OFFSET 43 3941 #define OBDR_TAPE_SIG "$DR-10" 3942 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) 3943 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) 3944 3945 unsigned char *inq_buff; 3946 unsigned char *obdr_sig; 3947 int rc = 0; 3948 3949 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 3950 if (!inq_buff) { 3951 rc = -ENOMEM; 3952 goto bail_out; 3953 } 3954 3955 /* Do an inquiry to the device to see what it is. */ 3956 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 3957 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 3958 dev_err(&h->pdev->dev, 3959 "%s: inquiry failed, device will be skipped.\n", 3960 __func__); 3961 rc = HPSA_INQUIRY_FAILED; 3962 goto bail_out; 3963 } 3964 3965 scsi_sanitize_inquiry_string(&inq_buff[8], 8); 3966 scsi_sanitize_inquiry_string(&inq_buff[16], 16); 3967 3968 this_device->devtype = (inq_buff[0] & 0x1f); 3969 memcpy(this_device->scsi3addr, scsi3addr, 8); 3970 memcpy(this_device->vendor, &inq_buff[8], 3971 sizeof(this_device->vendor)); 3972 memcpy(this_device->model, &inq_buff[16], 3973 sizeof(this_device->model)); 3974 this_device->rev = inq_buff[2]; 3975 memset(this_device->device_id, 0, 3976 sizeof(this_device->device_id)); 3977 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8, 3978 sizeof(this_device->device_id)) < 0) { 3979 dev_err(&h->pdev->dev, 3980 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n", 3981 h->ctlr, __func__, 3982 h->scsi_host->host_no, 3983 this_device->bus, this_device->target, 3984 this_device->lun, 3985 scsi_device_type(this_device->devtype), 3986 this_device->model); 3987 rc = HPSA_LV_FAILED; 3988 goto bail_out; 3989 } 3990 3991 if ((this_device->devtype == TYPE_DISK || 3992 this_device->devtype == TYPE_ZBC) && 3993 is_logical_dev_addr_mode(scsi3addr)) { 3994 unsigned char volume_offline; 3995 3996 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 3997 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) 3998 hpsa_get_ioaccel_status(h, scsi3addr, this_device); 3999 volume_offline = hpsa_volume_offline(h, scsi3addr); 4000 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED && 4001 h->legacy_board) { 4002 /* 4003 * Legacy boards might not support volume status 4004 */ 4005 dev_info(&h->pdev->dev, 4006 "C0:T%d:L%d Volume status not available, assuming online.\n", 4007 this_device->target, this_device->lun); 4008 volume_offline = 0; 4009 } 4010 this_device->volume_offline = volume_offline; 4011 if (volume_offline == HPSA_LV_FAILED) { 4012 rc = HPSA_LV_FAILED; 4013 dev_err(&h->pdev->dev, 4014 "%s: LV failed, device will be skipped.\n", 4015 __func__); 4016 goto bail_out; 4017 } 4018 } else { 4019 this_device->raid_level = RAID_UNKNOWN; 4020 this_device->offload_config = 0; 4021 hpsa_turn_off_ioaccel_for_device(this_device); 4022 this_device->hba_ioaccel_enabled = 0; 4023 this_device->volume_offline = 0; 4024 this_device->queue_depth = h->nr_cmds; 4025 } 4026 4027 if (this_device->external) 4028 this_device->queue_depth = EXTERNAL_QD; 4029 4030 if (is_OBDR_device) { 4031 /* See if this is a One-Button-Disaster-Recovery device 4032 * by looking for "$DR-10" at offset 43 in inquiry data. 4033 */ 4034 obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; 4035 *is_OBDR_device = (this_device->devtype == TYPE_ROM && 4036 strncmp(obdr_sig, OBDR_TAPE_SIG, 4037 OBDR_SIG_LEN) == 0); 4038 } 4039 kfree(inq_buff); 4040 return 0; 4041 4042 bail_out: 4043 kfree(inq_buff); 4044 return rc; 4045 } 4046 4047 /* 4048 * Helper function to assign bus, target, lun mapping of devices. 4049 * Logical drive target and lun are assigned at this time, but 4050 * physical device lun and target assignment are deferred (assigned 4051 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 4052 */ 4053 static void figure_bus_target_lun(struct ctlr_info *h, 4054 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) 4055 { 4056 u32 lunid = get_unaligned_le32(lunaddrbytes); 4057 4058 if (!is_logical_dev_addr_mode(lunaddrbytes)) { 4059 /* physical device, target and lun filled in later */ 4060 if (is_hba_lunid(lunaddrbytes)) { 4061 int bus = HPSA_HBA_BUS; 4062 4063 if (!device->rev) 4064 bus = HPSA_LEGACY_HBA_BUS; 4065 hpsa_set_bus_target_lun(device, 4066 bus, 0, lunid & 0x3fff); 4067 } else 4068 /* defer target, lun assignment for physical devices */ 4069 hpsa_set_bus_target_lun(device, 4070 HPSA_PHYSICAL_DEVICE_BUS, -1, -1); 4071 return; 4072 } 4073 /* It's a logical device */ 4074 if (device->external) { 4075 hpsa_set_bus_target_lun(device, 4076 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff, 4077 lunid & 0x00ff); 4078 return; 4079 } 4080 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS, 4081 0, lunid & 0x3fff); 4082 } 4083 4084 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position, 4085 int i, int nphysicals, int nlocal_logicals) 4086 { 4087 /* In report logicals, local logicals are listed first, 4088 * then any externals. 4089 */ 4090 int logicals_start = nphysicals + (raid_ctlr_position == 0); 4091 4092 if (i == raid_ctlr_position) 4093 return 0; 4094 4095 if (i < logicals_start) 4096 return 0; 4097 4098 /* i is in logicals range, but still within local logicals */ 4099 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals) 4100 return 0; 4101 4102 return 1; /* it's an external lun */ 4103 } 4104 4105 /* 4106 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 4107 * logdev. The number of luns in physdev and logdev are returned in 4108 * *nphysicals and *nlogicals, respectively. 4109 * Returns 0 on success, -1 otherwise. 4110 */ 4111 static int hpsa_gather_lun_info(struct ctlr_info *h, 4112 struct ReportExtendedLUNdata *physdev, u32 *nphysicals, 4113 struct ReportLUNdata *logdev, u32 *nlogicals) 4114 { 4115 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { 4116 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 4117 return -1; 4118 } 4119 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24; 4120 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 4121 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n", 4122 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN); 4123 *nphysicals = HPSA_MAX_PHYS_LUN; 4124 } 4125 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) { 4126 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 4127 return -1; 4128 } 4129 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 4130 /* Reject Logicals in excess of our max capability. */ 4131 if (*nlogicals > HPSA_MAX_LUN) { 4132 dev_warn(&h->pdev->dev, 4133 "maximum logical LUNs (%d) exceeded. " 4134 "%d LUNs ignored.\n", HPSA_MAX_LUN, 4135 *nlogicals - HPSA_MAX_LUN); 4136 *nlogicals = HPSA_MAX_LUN; 4137 } 4138 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 4139 dev_warn(&h->pdev->dev, 4140 "maximum logical + physical LUNs (%d) exceeded. " 4141 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 4142 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 4143 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 4144 } 4145 return 0; 4146 } 4147 4148 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, 4149 int i, int nphysicals, int nlogicals, 4150 struct ReportExtendedLUNdata *physdev_list, 4151 struct ReportLUNdata *logdev_list) 4152 { 4153 /* Helper function, figure out where the LUN ID info is coming from 4154 * given index i, lists of physical and logical devices, where in 4155 * the list the raid controller is supposed to appear (first or last) 4156 */ 4157 4158 int logicals_start = nphysicals + (raid_ctlr_position == 0); 4159 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 4160 4161 if (i == raid_ctlr_position) 4162 return RAID_CTLR_LUNID; 4163 4164 if (i < logicals_start) 4165 return &physdev_list->LUN[i - 4166 (raid_ctlr_position == 0)].lunid[0]; 4167 4168 if (i < last_device) 4169 return &logdev_list->LUN[i - nphysicals - 4170 (raid_ctlr_position == 0)][0]; 4171 BUG(); 4172 return NULL; 4173 } 4174 4175 /* get physical drive ioaccel handle and queue depth */ 4176 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h, 4177 struct hpsa_scsi_dev_t *dev, 4178 struct ReportExtendedLUNdata *rlep, int rle_index, 4179 struct bmic_identify_physical_device *id_phys) 4180 { 4181 int rc; 4182 struct ext_report_lun_entry *rle; 4183 4184 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN) 4185 return; 4186 4187 rle = &rlep->LUN[rle_index]; 4188 4189 dev->ioaccel_handle = rle->ioaccel_handle; 4190 if ((rle->device_flags & 0x08) && dev->ioaccel_handle) 4191 dev->hba_ioaccel_enabled = 1; 4192 memset(id_phys, 0, sizeof(*id_phys)); 4193 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0], 4194 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys, 4195 sizeof(*id_phys)); 4196 if (!rc) 4197 /* Reserve space for FW operations */ 4198 #define DRIVE_CMDS_RESERVED_FOR_FW 2 4199 #define DRIVE_QUEUE_DEPTH 7 4200 dev->queue_depth = 4201 le16_to_cpu(id_phys->current_queue_depth_limit) - 4202 DRIVE_CMDS_RESERVED_FOR_FW; 4203 else 4204 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */ 4205 } 4206 4207 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device, 4208 struct ReportExtendedLUNdata *rlep, int rle_index, 4209 struct bmic_identify_physical_device *id_phys) 4210 { 4211 struct ext_report_lun_entry *rle; 4212 4213 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN) 4214 return; 4215 4216 rle = &rlep->LUN[rle_index]; 4217 4218 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle) 4219 this_device->hba_ioaccel_enabled = 1; 4220 4221 memcpy(&this_device->active_path_index, 4222 &id_phys->active_path_number, 4223 sizeof(this_device->active_path_index)); 4224 memcpy(&this_device->path_map, 4225 &id_phys->redundant_path_present_map, 4226 sizeof(this_device->path_map)); 4227 memcpy(&this_device->box, 4228 &id_phys->alternate_paths_phys_box_on_port, 4229 sizeof(this_device->box)); 4230 memcpy(&this_device->phys_connector, 4231 &id_phys->alternate_paths_phys_connector, 4232 sizeof(this_device->phys_connector)); 4233 memcpy(&this_device->bay, 4234 &id_phys->phys_bay_in_box, 4235 sizeof(this_device->bay)); 4236 } 4237 4238 /* get number of local logical disks. */ 4239 static int hpsa_set_local_logical_count(struct ctlr_info *h, 4240 struct bmic_identify_controller *id_ctlr, 4241 u32 *nlocals) 4242 { 4243 int rc; 4244 4245 if (!id_ctlr) { 4246 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n", 4247 __func__); 4248 return -ENOMEM; 4249 } 4250 memset(id_ctlr, 0, sizeof(*id_ctlr)); 4251 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr)); 4252 if (!rc) 4253 if (id_ctlr->configured_logical_drive_count < 255) 4254 *nlocals = id_ctlr->configured_logical_drive_count; 4255 else 4256 *nlocals = le16_to_cpu( 4257 id_ctlr->extended_logical_unit_count); 4258 else 4259 *nlocals = -1; 4260 return rc; 4261 } 4262 4263 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes) 4264 { 4265 struct bmic_identify_physical_device *id_phys; 4266 bool is_spare = false; 4267 int rc; 4268 4269 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 4270 if (!id_phys) 4271 return false; 4272 4273 rc = hpsa_bmic_id_physical_device(h, 4274 lunaddrbytes, 4275 GET_BMIC_DRIVE_NUMBER(lunaddrbytes), 4276 id_phys, sizeof(*id_phys)); 4277 if (rc == 0) 4278 is_spare = (id_phys->more_flags >> 6) & 0x01; 4279 4280 kfree(id_phys); 4281 return is_spare; 4282 } 4283 4284 #define RPL_DEV_FLAG_NON_DISK 0x1 4285 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2 4286 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4 4287 4288 #define BMIC_DEVICE_TYPE_ENCLOSURE 6 4289 4290 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes, 4291 struct ext_report_lun_entry *rle) 4292 { 4293 u8 device_flags; 4294 u8 device_type; 4295 4296 if (!MASKED_DEVICE(lunaddrbytes)) 4297 return false; 4298 4299 device_flags = rle->device_flags; 4300 device_type = rle->device_type; 4301 4302 if (device_flags & RPL_DEV_FLAG_NON_DISK) { 4303 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE) 4304 return false; 4305 return true; 4306 } 4307 4308 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED)) 4309 return false; 4310 4311 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK) 4312 return false; 4313 4314 /* 4315 * Spares may be spun down, we do not want to 4316 * do an Inquiry to a RAID set spare drive as 4317 * that would have them spun up, that is a 4318 * performance hit because I/O to the RAID device 4319 * stops while the spin up occurs which can take 4320 * over 50 seconds. 4321 */ 4322 if (hpsa_is_disk_spare(h, lunaddrbytes)) 4323 return true; 4324 4325 return false; 4326 } 4327 4328 static void hpsa_update_scsi_devices(struct ctlr_info *h) 4329 { 4330 /* the idea here is we could get notified 4331 * that some devices have changed, so we do a report 4332 * physical luns and report logical luns cmd, and adjust 4333 * our list of devices accordingly. 4334 * 4335 * The scsi3addr's of devices won't change so long as the 4336 * adapter is not reset. That means we can rescan and 4337 * tell which devices we already know about, vs. new 4338 * devices, vs. disappearing devices. 4339 */ 4340 struct ReportExtendedLUNdata *physdev_list = NULL; 4341 struct ReportLUNdata *logdev_list = NULL; 4342 struct bmic_identify_physical_device *id_phys = NULL; 4343 struct bmic_identify_controller *id_ctlr = NULL; 4344 u32 nphysicals = 0; 4345 u32 nlogicals = 0; 4346 u32 nlocal_logicals = 0; 4347 u32 ndev_allocated = 0; 4348 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 4349 int ncurrent = 0; 4350 int i, ndevs_to_allocate; 4351 int raid_ctlr_position; 4352 bool physical_device; 4353 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); 4354 4355 currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL); 4356 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL); 4357 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL); 4358 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 4359 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 4360 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL); 4361 4362 if (!currentsd || !physdev_list || !logdev_list || 4363 !tmpdevice || !id_phys || !id_ctlr) { 4364 dev_err(&h->pdev->dev, "out of memory\n"); 4365 goto out; 4366 } 4367 memset(lunzerobits, 0, sizeof(lunzerobits)); 4368 4369 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */ 4370 4371 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals, 4372 logdev_list, &nlogicals)) { 4373 h->drv_req_rescan = 1; 4374 goto out; 4375 } 4376 4377 /* Set number of local logicals (non PTRAID) */ 4378 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) { 4379 dev_warn(&h->pdev->dev, 4380 "%s: Can't determine number of local logical devices.\n", 4381 __func__); 4382 } 4383 4384 /* We might see up to the maximum number of logical and physical disks 4385 * plus external target devices, and a device for the local RAID 4386 * controller. 4387 */ 4388 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; 4389 4390 hpsa_ext_ctrl_present(h, physdev_list); 4391 4392 /* Allocate the per device structures */ 4393 for (i = 0; i < ndevs_to_allocate; i++) { 4394 if (i >= HPSA_MAX_DEVICES) { 4395 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." 4396 " %d devices ignored.\n", HPSA_MAX_DEVICES, 4397 ndevs_to_allocate - HPSA_MAX_DEVICES); 4398 break; 4399 } 4400 4401 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 4402 if (!currentsd[i]) { 4403 h->drv_req_rescan = 1; 4404 goto out; 4405 } 4406 ndev_allocated++; 4407 } 4408 4409 if (is_scsi_rev_5(h)) 4410 raid_ctlr_position = 0; 4411 else 4412 raid_ctlr_position = nphysicals + nlogicals; 4413 4414 /* adjust our table of devices */ 4415 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 4416 u8 *lunaddrbytes, is_OBDR = 0; 4417 int rc = 0; 4418 int phys_dev_index = i - (raid_ctlr_position == 0); 4419 bool skip_device = false; 4420 4421 memset(tmpdevice, 0, sizeof(*tmpdevice)); 4422 4423 physical_device = i < nphysicals + (raid_ctlr_position == 0); 4424 4425 /* Figure out where the LUN ID info is coming from */ 4426 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 4427 i, nphysicals, nlogicals, physdev_list, logdev_list); 4428 4429 /* Determine if this is a lun from an external target array */ 4430 tmpdevice->external = 4431 figure_external_status(h, raid_ctlr_position, i, 4432 nphysicals, nlocal_logicals); 4433 4434 /* 4435 * Skip over some devices such as a spare. 4436 */ 4437 if (phys_dev_index >= 0 && !tmpdevice->external && 4438 physical_device) { 4439 skip_device = hpsa_skip_device(h, lunaddrbytes, 4440 &physdev_list->LUN[phys_dev_index]); 4441 if (skip_device) 4442 continue; 4443 } 4444 4445 /* Get device type, vendor, model, device id, raid_map */ 4446 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice, 4447 &is_OBDR); 4448 if (rc == -ENOMEM) { 4449 dev_warn(&h->pdev->dev, 4450 "Out of memory, rescan deferred.\n"); 4451 h->drv_req_rescan = 1; 4452 goto out; 4453 } 4454 if (rc) { 4455 h->drv_req_rescan = 1; 4456 continue; 4457 } 4458 4459 figure_bus_target_lun(h, lunaddrbytes, tmpdevice); 4460 this_device = currentsd[ncurrent]; 4461 4462 *this_device = *tmpdevice; 4463 this_device->physical_device = physical_device; 4464 4465 /* 4466 * Expose all devices except for physical devices that 4467 * are masked. 4468 */ 4469 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device) 4470 this_device->expose_device = 0; 4471 else 4472 this_device->expose_device = 1; 4473 4474 4475 /* 4476 * Get the SAS address for physical devices that are exposed. 4477 */ 4478 if (this_device->physical_device && this_device->expose_device) 4479 hpsa_get_sas_address(h, lunaddrbytes, this_device); 4480 4481 switch (this_device->devtype) { 4482 case TYPE_ROM: 4483 /* We don't *really* support actual CD-ROM devices, 4484 * just "One Button Disaster Recovery" tape drive 4485 * which temporarily pretends to be a CD-ROM drive. 4486 * So we check that the device is really an OBDR tape 4487 * device by checking for "$DR-10" in bytes 43-48 of 4488 * the inquiry data. 4489 */ 4490 if (is_OBDR) 4491 ncurrent++; 4492 break; 4493 case TYPE_DISK: 4494 case TYPE_ZBC: 4495 if (this_device->physical_device) { 4496 /* The disk is in HBA mode. */ 4497 /* Never use RAID mapper in HBA mode. */ 4498 this_device->offload_enabled = 0; 4499 hpsa_get_ioaccel_drive_info(h, this_device, 4500 physdev_list, phys_dev_index, id_phys); 4501 hpsa_get_path_info(this_device, 4502 physdev_list, phys_dev_index, id_phys); 4503 } 4504 ncurrent++; 4505 break; 4506 case TYPE_TAPE: 4507 case TYPE_MEDIUM_CHANGER: 4508 ncurrent++; 4509 break; 4510 case TYPE_ENCLOSURE: 4511 if (!this_device->external) 4512 hpsa_get_enclosure_info(h, lunaddrbytes, 4513 physdev_list, phys_dev_index, 4514 this_device); 4515 ncurrent++; 4516 break; 4517 case TYPE_RAID: 4518 /* Only present the Smartarray HBA as a RAID controller. 4519 * If it's a RAID controller other than the HBA itself 4520 * (an external RAID controller, MSA500 or similar) 4521 * don't present it. 4522 */ 4523 if (!is_hba_lunid(lunaddrbytes)) 4524 break; 4525 ncurrent++; 4526 break; 4527 default: 4528 break; 4529 } 4530 if (ncurrent >= HPSA_MAX_DEVICES) 4531 break; 4532 } 4533 4534 if (h->sas_host == NULL) { 4535 int rc = 0; 4536 4537 rc = hpsa_add_sas_host(h); 4538 if (rc) { 4539 dev_warn(&h->pdev->dev, 4540 "Could not add sas host %d\n", rc); 4541 goto out; 4542 } 4543 } 4544 4545 adjust_hpsa_scsi_table(h, currentsd, ncurrent); 4546 out: 4547 kfree(tmpdevice); 4548 for (i = 0; i < ndev_allocated; i++) 4549 kfree(currentsd[i]); 4550 kfree(currentsd); 4551 kfree(physdev_list); 4552 kfree(logdev_list); 4553 kfree(id_ctlr); 4554 kfree(id_phys); 4555 } 4556 4557 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc, 4558 struct scatterlist *sg) 4559 { 4560 u64 addr64 = (u64) sg_dma_address(sg); 4561 unsigned int len = sg_dma_len(sg); 4562 4563 desc->Addr = cpu_to_le64(addr64); 4564 desc->Len = cpu_to_le32(len); 4565 desc->Ext = 0; 4566 } 4567 4568 /* 4569 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 4570 * dma mapping and fills in the scatter gather entries of the 4571 * hpsa command, cp. 4572 */ 4573 static int hpsa_scatter_gather(struct ctlr_info *h, 4574 struct CommandList *cp, 4575 struct scsi_cmnd *cmd) 4576 { 4577 struct scatterlist *sg; 4578 int use_sg, i, sg_limit, chained; 4579 struct SGDescriptor *curr_sg; 4580 4581 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 4582 4583 use_sg = scsi_dma_map(cmd); 4584 if (use_sg < 0) 4585 return use_sg; 4586 4587 if (!use_sg) 4588 goto sglist_finished; 4589 4590 /* 4591 * If the number of entries is greater than the max for a single list, 4592 * then we have a chained list; we will set up all but one entry in the 4593 * first list (the last entry is saved for link information); 4594 * otherwise, we don't have a chained list and we'll set up at each of 4595 * the entries in the one list. 4596 */ 4597 curr_sg = cp->SG; 4598 chained = use_sg > h->max_cmd_sg_entries; 4599 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg; 4600 scsi_for_each_sg(cmd, sg, sg_limit, i) { 4601 hpsa_set_sg_descriptor(curr_sg, sg); 4602 curr_sg++; 4603 } 4604 4605 if (chained) { 4606 /* 4607 * Continue with the chained list. Set curr_sg to the chained 4608 * list. Modify the limit to the total count less the entries 4609 * we've already set up. Resume the scan at the list entry 4610 * where the previous loop left off. 4611 */ 4612 curr_sg = h->cmd_sg_list[cp->cmdindex]; 4613 sg_limit = use_sg - sg_limit; 4614 for_each_sg(sg, sg, sg_limit, i) { 4615 hpsa_set_sg_descriptor(curr_sg, sg); 4616 curr_sg++; 4617 } 4618 } 4619 4620 /* Back the pointer up to the last entry and mark it as "last". */ 4621 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST); 4622 4623 if (use_sg + chained > h->maxSG) 4624 h->maxSG = use_sg + chained; 4625 4626 if (chained) { 4627 cp->Header.SGList = h->max_cmd_sg_entries; 4628 cp->Header.SGTotal = cpu_to_le16(use_sg + 1); 4629 if (hpsa_map_sg_chain_block(h, cp)) { 4630 scsi_dma_unmap(cmd); 4631 return -1; 4632 } 4633 return 0; 4634 } 4635 4636 sglist_finished: 4637 4638 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 4639 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */ 4640 return 0; 4641 } 4642 4643 static inline void warn_zero_length_transfer(struct ctlr_info *h, 4644 u8 *cdb, int cdb_len, 4645 const char *func) 4646 { 4647 dev_warn(&h->pdev->dev, 4648 "%s: Blocking zero-length request: CDB:%*phN\n", 4649 func, cdb_len, cdb); 4650 } 4651 4652 #define IO_ACCEL_INELIGIBLE 1 4653 /* zero-length transfers trigger hardware errors. */ 4654 static bool is_zero_length_transfer(u8 *cdb) 4655 { 4656 u32 block_cnt; 4657 4658 /* Block zero-length transfer sizes on certain commands. */ 4659 switch (cdb[0]) { 4660 case READ_10: 4661 case WRITE_10: 4662 case VERIFY: /* 0x2F */ 4663 case WRITE_VERIFY: /* 0x2E */ 4664 block_cnt = get_unaligned_be16(&cdb[7]); 4665 break; 4666 case READ_12: 4667 case WRITE_12: 4668 case VERIFY_12: /* 0xAF */ 4669 case WRITE_VERIFY_12: /* 0xAE */ 4670 block_cnt = get_unaligned_be32(&cdb[6]); 4671 break; 4672 case READ_16: 4673 case WRITE_16: 4674 case VERIFY_16: /* 0x8F */ 4675 block_cnt = get_unaligned_be32(&cdb[10]); 4676 break; 4677 default: 4678 return false; 4679 } 4680 4681 return block_cnt == 0; 4682 } 4683 4684 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) 4685 { 4686 int is_write = 0; 4687 u32 block; 4688 u32 block_cnt; 4689 4690 /* Perform some CDB fixups if needed using 10 byte reads/writes only */ 4691 switch (cdb[0]) { 4692 case WRITE_6: 4693 case WRITE_12: 4694 is_write = 1; 4695 fallthrough; 4696 case READ_6: 4697 case READ_12: 4698 if (*cdb_len == 6) { 4699 block = (((cdb[1] & 0x1F) << 16) | 4700 (cdb[2] << 8) | 4701 cdb[3]); 4702 block_cnt = cdb[4]; 4703 if (block_cnt == 0) 4704 block_cnt = 256; 4705 } else { 4706 BUG_ON(*cdb_len != 12); 4707 block = get_unaligned_be32(&cdb[2]); 4708 block_cnt = get_unaligned_be32(&cdb[6]); 4709 } 4710 if (block_cnt > 0xffff) 4711 return IO_ACCEL_INELIGIBLE; 4712 4713 cdb[0] = is_write ? WRITE_10 : READ_10; 4714 cdb[1] = 0; 4715 cdb[2] = (u8) (block >> 24); 4716 cdb[3] = (u8) (block >> 16); 4717 cdb[4] = (u8) (block >> 8); 4718 cdb[5] = (u8) (block); 4719 cdb[6] = 0; 4720 cdb[7] = (u8) (block_cnt >> 8); 4721 cdb[8] = (u8) (block_cnt); 4722 cdb[9] = 0; 4723 *cdb_len = 10; 4724 break; 4725 } 4726 return 0; 4727 } 4728 4729 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h, 4730 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 4731 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 4732 { 4733 struct scsi_cmnd *cmd = c->scsi_cmd; 4734 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; 4735 unsigned int len; 4736 unsigned int total_len = 0; 4737 struct scatterlist *sg; 4738 u64 addr64; 4739 int use_sg, i; 4740 struct SGDescriptor *curr_sg; 4741 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; 4742 4743 /* TODO: implement chaining support */ 4744 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) { 4745 atomic_dec(&phys_disk->ioaccel_cmds_out); 4746 return IO_ACCEL_INELIGIBLE; 4747 } 4748 4749 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); 4750 4751 if (is_zero_length_transfer(cdb)) { 4752 warn_zero_length_transfer(h, cdb, cdb_len, __func__); 4753 atomic_dec(&phys_disk->ioaccel_cmds_out); 4754 return IO_ACCEL_INELIGIBLE; 4755 } 4756 4757 if (fixup_ioaccel_cdb(cdb, &cdb_len)) { 4758 atomic_dec(&phys_disk->ioaccel_cmds_out); 4759 return IO_ACCEL_INELIGIBLE; 4760 } 4761 4762 c->cmd_type = CMD_IOACCEL1; 4763 4764 /* Adjust the DMA address to point to the accelerated command buffer */ 4765 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + 4766 (c->cmdindex * sizeof(*cp)); 4767 BUG_ON(c->busaddr & 0x0000007F); 4768 4769 use_sg = scsi_dma_map(cmd); 4770 if (use_sg < 0) { 4771 atomic_dec(&phys_disk->ioaccel_cmds_out); 4772 return use_sg; 4773 } 4774 4775 if (use_sg) { 4776 curr_sg = cp->SG; 4777 scsi_for_each_sg(cmd, sg, use_sg, i) { 4778 addr64 = (u64) sg_dma_address(sg); 4779 len = sg_dma_len(sg); 4780 total_len += len; 4781 curr_sg->Addr = cpu_to_le64(addr64); 4782 curr_sg->Len = cpu_to_le32(len); 4783 curr_sg->Ext = cpu_to_le32(0); 4784 curr_sg++; 4785 } 4786 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); 4787 4788 switch (cmd->sc_data_direction) { 4789 case DMA_TO_DEVICE: 4790 control |= IOACCEL1_CONTROL_DATA_OUT; 4791 break; 4792 case DMA_FROM_DEVICE: 4793 control |= IOACCEL1_CONTROL_DATA_IN; 4794 break; 4795 case DMA_NONE: 4796 control |= IOACCEL1_CONTROL_NODATAXFER; 4797 break; 4798 default: 4799 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 4800 cmd->sc_data_direction); 4801 BUG(); 4802 break; 4803 } 4804 } else { 4805 control |= IOACCEL1_CONTROL_NODATAXFER; 4806 } 4807 4808 c->Header.SGList = use_sg; 4809 /* Fill out the command structure to submit */ 4810 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF); 4811 cp->transfer_len = cpu_to_le32(total_len); 4812 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ | 4813 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK)); 4814 cp->control = cpu_to_le32(control); 4815 memcpy(cp->CDB, cdb, cdb_len); 4816 memcpy(cp->CISS_LUN, scsi3addr, 8); 4817 /* Tag was already set at init time. */ 4818 enqueue_cmd_and_start_io(h, c); 4819 return 0; 4820 } 4821 4822 /* 4823 * Queue a command directly to a device behind the controller using the 4824 * I/O accelerator path. 4825 */ 4826 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, 4827 struct CommandList *c) 4828 { 4829 struct scsi_cmnd *cmd = c->scsi_cmd; 4830 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4831 4832 if (!dev) 4833 return -1; 4834 4835 c->phys_disk = dev; 4836 4837 if (dev->in_reset) 4838 return -1; 4839 4840 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, 4841 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev); 4842 } 4843 4844 /* 4845 * Set encryption parameters for the ioaccel2 request 4846 */ 4847 static void set_encrypt_ioaccel2(struct ctlr_info *h, 4848 struct CommandList *c, struct io_accel2_cmd *cp) 4849 { 4850 struct scsi_cmnd *cmd = c->scsi_cmd; 4851 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4852 struct raid_map_data *map = &dev->raid_map; 4853 u64 first_block; 4854 4855 /* Are we doing encryption on this device */ 4856 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON)) 4857 return; 4858 /* Set the data encryption key index. */ 4859 cp->dekindex = map->dekindex; 4860 4861 /* Set the encryption enable flag, encoded into direction field. */ 4862 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK; 4863 4864 /* Set encryption tweak values based on logical block address 4865 * If block size is 512, tweak value is LBA. 4866 * For other block sizes, tweak is (LBA * block size)/ 512) 4867 */ 4868 switch (cmd->cmnd[0]) { 4869 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */ 4870 case READ_6: 4871 case WRITE_6: 4872 first_block = (((cmd->cmnd[1] & 0x1F) << 16) | 4873 (cmd->cmnd[2] << 8) | 4874 cmd->cmnd[3]); 4875 break; 4876 case WRITE_10: 4877 case READ_10: 4878 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */ 4879 case WRITE_12: 4880 case READ_12: 4881 first_block = get_unaligned_be32(&cmd->cmnd[2]); 4882 break; 4883 case WRITE_16: 4884 case READ_16: 4885 first_block = get_unaligned_be64(&cmd->cmnd[2]); 4886 break; 4887 default: 4888 dev_err(&h->pdev->dev, 4889 "ERROR: %s: size (0x%x) not supported for encryption\n", 4890 __func__, cmd->cmnd[0]); 4891 BUG(); 4892 break; 4893 } 4894 4895 if (le32_to_cpu(map->volume_blk_size) != 512) 4896 first_block = first_block * 4897 le32_to_cpu(map->volume_blk_size)/512; 4898 4899 cp->tweak_lower = cpu_to_le32(first_block); 4900 cp->tweak_upper = cpu_to_le32(first_block >> 32); 4901 } 4902 4903 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h, 4904 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 4905 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 4906 { 4907 struct scsi_cmnd *cmd = c->scsi_cmd; 4908 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; 4909 struct ioaccel2_sg_element *curr_sg; 4910 int use_sg, i; 4911 struct scatterlist *sg; 4912 u64 addr64; 4913 u32 len; 4914 u32 total_len = 0; 4915 4916 if (!cmd->device) 4917 return -1; 4918 4919 if (!cmd->device->hostdata) 4920 return -1; 4921 4922 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 4923 4924 if (is_zero_length_transfer(cdb)) { 4925 warn_zero_length_transfer(h, cdb, cdb_len, __func__); 4926 atomic_dec(&phys_disk->ioaccel_cmds_out); 4927 return IO_ACCEL_INELIGIBLE; 4928 } 4929 4930 if (fixup_ioaccel_cdb(cdb, &cdb_len)) { 4931 atomic_dec(&phys_disk->ioaccel_cmds_out); 4932 return IO_ACCEL_INELIGIBLE; 4933 } 4934 4935 c->cmd_type = CMD_IOACCEL2; 4936 /* Adjust the DMA address to point to the accelerated command buffer */ 4937 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + 4938 (c->cmdindex * sizeof(*cp)); 4939 BUG_ON(c->busaddr & 0x0000007F); 4940 4941 memset(cp, 0, sizeof(*cp)); 4942 cp->IU_type = IOACCEL2_IU_TYPE; 4943 4944 use_sg = scsi_dma_map(cmd); 4945 if (use_sg < 0) { 4946 atomic_dec(&phys_disk->ioaccel_cmds_out); 4947 return use_sg; 4948 } 4949 4950 if (use_sg) { 4951 curr_sg = cp->sg; 4952 if (use_sg > h->ioaccel_maxsg) { 4953 addr64 = le64_to_cpu( 4954 h->ioaccel2_cmd_sg_list[c->cmdindex]->address); 4955 curr_sg->address = cpu_to_le64(addr64); 4956 curr_sg->length = 0; 4957 curr_sg->reserved[0] = 0; 4958 curr_sg->reserved[1] = 0; 4959 curr_sg->reserved[2] = 0; 4960 curr_sg->chain_indicator = IOACCEL2_CHAIN; 4961 4962 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex]; 4963 } 4964 scsi_for_each_sg(cmd, sg, use_sg, i) { 4965 addr64 = (u64) sg_dma_address(sg); 4966 len = sg_dma_len(sg); 4967 total_len += len; 4968 curr_sg->address = cpu_to_le64(addr64); 4969 curr_sg->length = cpu_to_le32(len); 4970 curr_sg->reserved[0] = 0; 4971 curr_sg->reserved[1] = 0; 4972 curr_sg->reserved[2] = 0; 4973 curr_sg->chain_indicator = 0; 4974 curr_sg++; 4975 } 4976 4977 /* 4978 * Set the last s/g element bit 4979 */ 4980 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG; 4981 4982 switch (cmd->sc_data_direction) { 4983 case DMA_TO_DEVICE: 4984 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4985 cp->direction |= IOACCEL2_DIR_DATA_OUT; 4986 break; 4987 case DMA_FROM_DEVICE: 4988 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4989 cp->direction |= IOACCEL2_DIR_DATA_IN; 4990 break; 4991 case DMA_NONE: 4992 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4993 cp->direction |= IOACCEL2_DIR_NO_DATA; 4994 break; 4995 default: 4996 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 4997 cmd->sc_data_direction); 4998 BUG(); 4999 break; 5000 } 5001 } else { 5002 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 5003 cp->direction |= IOACCEL2_DIR_NO_DATA; 5004 } 5005 5006 /* Set encryption parameters, if necessary */ 5007 set_encrypt_ioaccel2(h, c, cp); 5008 5009 cp->scsi_nexus = cpu_to_le32(ioaccel_handle); 5010 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT); 5011 memcpy(cp->cdb, cdb, sizeof(cp->cdb)); 5012 5013 cp->data_len = cpu_to_le32(total_len); 5014 cp->err_ptr = cpu_to_le64(c->busaddr + 5015 offsetof(struct io_accel2_cmd, error_data)); 5016 cp->err_len = cpu_to_le32(sizeof(cp->error_data)); 5017 5018 /* fill in sg elements */ 5019 if (use_sg > h->ioaccel_maxsg) { 5020 cp->sg_count = 1; 5021 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0])); 5022 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) { 5023 atomic_dec(&phys_disk->ioaccel_cmds_out); 5024 scsi_dma_unmap(cmd); 5025 return -1; 5026 } 5027 } else 5028 cp->sg_count = (u8) use_sg; 5029 5030 if (phys_disk->in_reset) { 5031 cmd->result = DID_RESET << 16; 5032 return -1; 5033 } 5034 5035 enqueue_cmd_and_start_io(h, c); 5036 return 0; 5037 } 5038 5039 /* 5040 * Queue a command to the correct I/O accelerator path. 5041 */ 5042 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, 5043 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 5044 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 5045 { 5046 if (!c->scsi_cmd->device) 5047 return -1; 5048 5049 if (!c->scsi_cmd->device->hostdata) 5050 return -1; 5051 5052 if (phys_disk->in_reset) 5053 return -1; 5054 5055 /* Try to honor the device's queue depth */ 5056 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) > 5057 phys_disk->queue_depth) { 5058 atomic_dec(&phys_disk->ioaccel_cmds_out); 5059 return IO_ACCEL_INELIGIBLE; 5060 } 5061 if (h->transMethod & CFGTBL_Trans_io_accel1) 5062 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, 5063 cdb, cdb_len, scsi3addr, 5064 phys_disk); 5065 else 5066 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, 5067 cdb, cdb_len, scsi3addr, 5068 phys_disk); 5069 } 5070 5071 static void raid_map_helper(struct raid_map_data *map, 5072 int offload_to_mirror, u32 *map_index, u32 *current_group) 5073 { 5074 if (offload_to_mirror == 0) { 5075 /* use physical disk in the first mirrored group. */ 5076 *map_index %= le16_to_cpu(map->data_disks_per_row); 5077 return; 5078 } 5079 do { 5080 /* determine mirror group that *map_index indicates */ 5081 *current_group = *map_index / 5082 le16_to_cpu(map->data_disks_per_row); 5083 if (offload_to_mirror == *current_group) 5084 continue; 5085 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) { 5086 /* select map index from next group */ 5087 *map_index += le16_to_cpu(map->data_disks_per_row); 5088 (*current_group)++; 5089 } else { 5090 /* select map index from first group */ 5091 *map_index %= le16_to_cpu(map->data_disks_per_row); 5092 *current_group = 0; 5093 } 5094 } while (offload_to_mirror != *current_group); 5095 } 5096 5097 /* 5098 * Attempt to perform offload RAID mapping for a logical volume I/O. 5099 */ 5100 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, 5101 struct CommandList *c) 5102 { 5103 struct scsi_cmnd *cmd = c->scsi_cmd; 5104 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 5105 struct raid_map_data *map = &dev->raid_map; 5106 struct raid_map_disk_data *dd = &map->data[0]; 5107 int is_write = 0; 5108 u32 map_index; 5109 u64 first_block, last_block; 5110 u32 block_cnt; 5111 u32 blocks_per_row; 5112 u64 first_row, last_row; 5113 u32 first_row_offset, last_row_offset; 5114 u32 first_column, last_column; 5115 u64 r0_first_row, r0_last_row; 5116 u32 r5or6_blocks_per_row; 5117 u64 r5or6_first_row, r5or6_last_row; 5118 u32 r5or6_first_row_offset, r5or6_last_row_offset; 5119 u32 r5or6_first_column, r5or6_last_column; 5120 u32 total_disks_per_row; 5121 u32 stripesize; 5122 u32 first_group, last_group, current_group; 5123 u32 map_row; 5124 u32 disk_handle; 5125 u64 disk_block; 5126 u32 disk_block_cnt; 5127 u8 cdb[16]; 5128 u8 cdb_len; 5129 u16 strip_size; 5130 #if BITS_PER_LONG == 32 5131 u64 tmpdiv; 5132 #endif 5133 int offload_to_mirror; 5134 5135 if (!dev) 5136 return -1; 5137 5138 if (dev->in_reset) 5139 return -1; 5140 5141 /* check for valid opcode, get LBA and block count */ 5142 switch (cmd->cmnd[0]) { 5143 case WRITE_6: 5144 is_write = 1; 5145 fallthrough; 5146 case READ_6: 5147 first_block = (((cmd->cmnd[1] & 0x1F) << 16) | 5148 (cmd->cmnd[2] << 8) | 5149 cmd->cmnd[3]); 5150 block_cnt = cmd->cmnd[4]; 5151 if (block_cnt == 0) 5152 block_cnt = 256; 5153 break; 5154 case WRITE_10: 5155 is_write = 1; 5156 fallthrough; 5157 case READ_10: 5158 first_block = 5159 (((u64) cmd->cmnd[2]) << 24) | 5160 (((u64) cmd->cmnd[3]) << 16) | 5161 (((u64) cmd->cmnd[4]) << 8) | 5162 cmd->cmnd[5]; 5163 block_cnt = 5164 (((u32) cmd->cmnd[7]) << 8) | 5165 cmd->cmnd[8]; 5166 break; 5167 case WRITE_12: 5168 is_write = 1; 5169 fallthrough; 5170 case READ_12: 5171 first_block = 5172 (((u64) cmd->cmnd[2]) << 24) | 5173 (((u64) cmd->cmnd[3]) << 16) | 5174 (((u64) cmd->cmnd[4]) << 8) | 5175 cmd->cmnd[5]; 5176 block_cnt = 5177 (((u32) cmd->cmnd[6]) << 24) | 5178 (((u32) cmd->cmnd[7]) << 16) | 5179 (((u32) cmd->cmnd[8]) << 8) | 5180 cmd->cmnd[9]; 5181 break; 5182 case WRITE_16: 5183 is_write = 1; 5184 fallthrough; 5185 case READ_16: 5186 first_block = 5187 (((u64) cmd->cmnd[2]) << 56) | 5188 (((u64) cmd->cmnd[3]) << 48) | 5189 (((u64) cmd->cmnd[4]) << 40) | 5190 (((u64) cmd->cmnd[5]) << 32) | 5191 (((u64) cmd->cmnd[6]) << 24) | 5192 (((u64) cmd->cmnd[7]) << 16) | 5193 (((u64) cmd->cmnd[8]) << 8) | 5194 cmd->cmnd[9]; 5195 block_cnt = 5196 (((u32) cmd->cmnd[10]) << 24) | 5197 (((u32) cmd->cmnd[11]) << 16) | 5198 (((u32) cmd->cmnd[12]) << 8) | 5199 cmd->cmnd[13]; 5200 break; 5201 default: 5202 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ 5203 } 5204 last_block = first_block + block_cnt - 1; 5205 5206 /* check for write to non-RAID-0 */ 5207 if (is_write && dev->raid_level != 0) 5208 return IO_ACCEL_INELIGIBLE; 5209 5210 /* check for invalid block or wraparound */ 5211 if (last_block >= le64_to_cpu(map->volume_blk_cnt) || 5212 last_block < first_block) 5213 return IO_ACCEL_INELIGIBLE; 5214 5215 /* calculate stripe information for the request */ 5216 blocks_per_row = le16_to_cpu(map->data_disks_per_row) * 5217 le16_to_cpu(map->strip_size); 5218 strip_size = le16_to_cpu(map->strip_size); 5219 #if BITS_PER_LONG == 32 5220 tmpdiv = first_block; 5221 (void) do_div(tmpdiv, blocks_per_row); 5222 first_row = tmpdiv; 5223 tmpdiv = last_block; 5224 (void) do_div(tmpdiv, blocks_per_row); 5225 last_row = tmpdiv; 5226 first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); 5227 last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); 5228 tmpdiv = first_row_offset; 5229 (void) do_div(tmpdiv, strip_size); 5230 first_column = tmpdiv; 5231 tmpdiv = last_row_offset; 5232 (void) do_div(tmpdiv, strip_size); 5233 last_column = tmpdiv; 5234 #else 5235 first_row = first_block / blocks_per_row; 5236 last_row = last_block / blocks_per_row; 5237 first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); 5238 last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); 5239 first_column = first_row_offset / strip_size; 5240 last_column = last_row_offset / strip_size; 5241 #endif 5242 5243 /* if this isn't a single row/column then give to the controller */ 5244 if ((first_row != last_row) || (first_column != last_column)) 5245 return IO_ACCEL_INELIGIBLE; 5246 5247 /* proceeding with driver mapping */ 5248 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + 5249 le16_to_cpu(map->metadata_disks_per_row); 5250 map_row = ((u32)(first_row >> map->parity_rotation_shift)) % 5251 le16_to_cpu(map->row_cnt); 5252 map_index = (map_row * total_disks_per_row) + first_column; 5253 5254 switch (dev->raid_level) { 5255 case HPSA_RAID_0: 5256 break; /* nothing special to do */ 5257 case HPSA_RAID_1: 5258 /* Handles load balance across RAID 1 members. 5259 * (2-drive R1 and R10 with even # of drives.) 5260 * Appropriate for SSDs, not optimal for HDDs 5261 * Ensure we have the correct raid_map. 5262 */ 5263 if (le16_to_cpu(map->layout_map_count) != 2) { 5264 hpsa_turn_off_ioaccel_for_device(dev); 5265 return IO_ACCEL_INELIGIBLE; 5266 } 5267 if (dev->offload_to_mirror) 5268 map_index += le16_to_cpu(map->data_disks_per_row); 5269 dev->offload_to_mirror = !dev->offload_to_mirror; 5270 break; 5271 case HPSA_RAID_ADM: 5272 /* Handles N-way mirrors (R1-ADM) 5273 * and R10 with # of drives divisible by 3.) 5274 * Ensure we have the correct raid_map. 5275 */ 5276 if (le16_to_cpu(map->layout_map_count) != 3) { 5277 hpsa_turn_off_ioaccel_for_device(dev); 5278 return IO_ACCEL_INELIGIBLE; 5279 } 5280 5281 offload_to_mirror = dev->offload_to_mirror; 5282 raid_map_helper(map, offload_to_mirror, 5283 &map_index, ¤t_group); 5284 /* set mirror group to use next time */ 5285 offload_to_mirror = 5286 (offload_to_mirror >= 5287 le16_to_cpu(map->layout_map_count) - 1) 5288 ? 0 : offload_to_mirror + 1; 5289 dev->offload_to_mirror = offload_to_mirror; 5290 /* Avoid direct use of dev->offload_to_mirror within this 5291 * function since multiple threads might simultaneously 5292 * increment it beyond the range of dev->layout_map_count -1. 5293 */ 5294 break; 5295 case HPSA_RAID_5: 5296 case HPSA_RAID_6: 5297 if (le16_to_cpu(map->layout_map_count) <= 1) 5298 break; 5299 5300 /* Verify first and last block are in same RAID group */ 5301 r5or6_blocks_per_row = 5302 le16_to_cpu(map->strip_size) * 5303 le16_to_cpu(map->data_disks_per_row); 5304 if (r5or6_blocks_per_row == 0) { 5305 hpsa_turn_off_ioaccel_for_device(dev); 5306 return IO_ACCEL_INELIGIBLE; 5307 } 5308 stripesize = r5or6_blocks_per_row * 5309 le16_to_cpu(map->layout_map_count); 5310 #if BITS_PER_LONG == 32 5311 tmpdiv = first_block; 5312 first_group = do_div(tmpdiv, stripesize); 5313 tmpdiv = first_group; 5314 (void) do_div(tmpdiv, r5or6_blocks_per_row); 5315 first_group = tmpdiv; 5316 tmpdiv = last_block; 5317 last_group = do_div(tmpdiv, stripesize); 5318 tmpdiv = last_group; 5319 (void) do_div(tmpdiv, r5or6_blocks_per_row); 5320 last_group = tmpdiv; 5321 #else 5322 first_group = (first_block % stripesize) / r5or6_blocks_per_row; 5323 last_group = (last_block % stripesize) / r5or6_blocks_per_row; 5324 #endif 5325 if (first_group != last_group) 5326 return IO_ACCEL_INELIGIBLE; 5327 5328 /* Verify request is in a single row of RAID 5/6 */ 5329 #if BITS_PER_LONG == 32 5330 tmpdiv = first_block; 5331 (void) do_div(tmpdiv, stripesize); 5332 first_row = r5or6_first_row = r0_first_row = tmpdiv; 5333 tmpdiv = last_block; 5334 (void) do_div(tmpdiv, stripesize); 5335 r5or6_last_row = r0_last_row = tmpdiv; 5336 #else 5337 first_row = r5or6_first_row = r0_first_row = 5338 first_block / stripesize; 5339 r5or6_last_row = r0_last_row = last_block / stripesize; 5340 #endif 5341 if (r5or6_first_row != r5or6_last_row) 5342 return IO_ACCEL_INELIGIBLE; 5343 5344 5345 /* Verify request is in a single column */ 5346 #if BITS_PER_LONG == 32 5347 tmpdiv = first_block; 5348 first_row_offset = do_div(tmpdiv, stripesize); 5349 tmpdiv = first_row_offset; 5350 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row); 5351 r5or6_first_row_offset = first_row_offset; 5352 tmpdiv = last_block; 5353 r5or6_last_row_offset = do_div(tmpdiv, stripesize); 5354 tmpdiv = r5or6_last_row_offset; 5355 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); 5356 tmpdiv = r5or6_first_row_offset; 5357 (void) do_div(tmpdiv, map->strip_size); 5358 first_column = r5or6_first_column = tmpdiv; 5359 tmpdiv = r5or6_last_row_offset; 5360 (void) do_div(tmpdiv, map->strip_size); 5361 r5or6_last_column = tmpdiv; 5362 #else 5363 first_row_offset = r5or6_first_row_offset = 5364 (u32)((first_block % stripesize) % 5365 r5or6_blocks_per_row); 5366 5367 r5or6_last_row_offset = 5368 (u32)((last_block % stripesize) % 5369 r5or6_blocks_per_row); 5370 5371 first_column = r5or6_first_column = 5372 r5or6_first_row_offset / le16_to_cpu(map->strip_size); 5373 r5or6_last_column = 5374 r5or6_last_row_offset / le16_to_cpu(map->strip_size); 5375 #endif 5376 if (r5or6_first_column != r5or6_last_column) 5377 return IO_ACCEL_INELIGIBLE; 5378 5379 /* Request is eligible */ 5380 map_row = ((u32)(first_row >> map->parity_rotation_shift)) % 5381 le16_to_cpu(map->row_cnt); 5382 5383 map_index = (first_group * 5384 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) + 5385 (map_row * total_disks_per_row) + first_column; 5386 break; 5387 default: 5388 return IO_ACCEL_INELIGIBLE; 5389 } 5390 5391 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES)) 5392 return IO_ACCEL_INELIGIBLE; 5393 5394 c->phys_disk = dev->phys_disk[map_index]; 5395 if (!c->phys_disk) 5396 return IO_ACCEL_INELIGIBLE; 5397 5398 disk_handle = dd[map_index].ioaccel_handle; 5399 disk_block = le64_to_cpu(map->disk_starting_blk) + 5400 first_row * le16_to_cpu(map->strip_size) + 5401 (first_row_offset - first_column * 5402 le16_to_cpu(map->strip_size)); 5403 disk_block_cnt = block_cnt; 5404 5405 /* handle differing logical/physical block sizes */ 5406 if (map->phys_blk_shift) { 5407 disk_block <<= map->phys_blk_shift; 5408 disk_block_cnt <<= map->phys_blk_shift; 5409 } 5410 BUG_ON(disk_block_cnt > 0xffff); 5411 5412 /* build the new CDB for the physical disk I/O */ 5413 if (disk_block > 0xffffffff) { 5414 cdb[0] = is_write ? WRITE_16 : READ_16; 5415 cdb[1] = 0; 5416 cdb[2] = (u8) (disk_block >> 56); 5417 cdb[3] = (u8) (disk_block >> 48); 5418 cdb[4] = (u8) (disk_block >> 40); 5419 cdb[5] = (u8) (disk_block >> 32); 5420 cdb[6] = (u8) (disk_block >> 24); 5421 cdb[7] = (u8) (disk_block >> 16); 5422 cdb[8] = (u8) (disk_block >> 8); 5423 cdb[9] = (u8) (disk_block); 5424 cdb[10] = (u8) (disk_block_cnt >> 24); 5425 cdb[11] = (u8) (disk_block_cnt >> 16); 5426 cdb[12] = (u8) (disk_block_cnt >> 8); 5427 cdb[13] = (u8) (disk_block_cnt); 5428 cdb[14] = 0; 5429 cdb[15] = 0; 5430 cdb_len = 16; 5431 } else { 5432 cdb[0] = is_write ? WRITE_10 : READ_10; 5433 cdb[1] = 0; 5434 cdb[2] = (u8) (disk_block >> 24); 5435 cdb[3] = (u8) (disk_block >> 16); 5436 cdb[4] = (u8) (disk_block >> 8); 5437 cdb[5] = (u8) (disk_block); 5438 cdb[6] = 0; 5439 cdb[7] = (u8) (disk_block_cnt >> 8); 5440 cdb[8] = (u8) (disk_block_cnt); 5441 cdb[9] = 0; 5442 cdb_len = 10; 5443 } 5444 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, 5445 dev->scsi3addr, 5446 dev->phys_disk[map_index]); 5447 } 5448 5449 /* 5450 * Submit commands down the "normal" RAID stack path 5451 * All callers to hpsa_ciss_submit must check lockup_detected 5452 * beforehand, before (opt.) and after calling cmd_alloc 5453 */ 5454 static int hpsa_ciss_submit(struct ctlr_info *h, 5455 struct CommandList *c, struct scsi_cmnd *cmd, 5456 struct hpsa_scsi_dev_t *dev) 5457 { 5458 cmd->host_scribble = (unsigned char *) c; 5459 c->cmd_type = CMD_SCSI; 5460 c->scsi_cmd = cmd; 5461 c->Header.ReplyQueue = 0; /* unused in simple mode */ 5462 memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8); 5463 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT)); 5464 5465 /* Fill in the request block... */ 5466 5467 c->Request.Timeout = 0; 5468 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 5469 c->Request.CDBLen = cmd->cmd_len; 5470 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 5471 switch (cmd->sc_data_direction) { 5472 case DMA_TO_DEVICE: 5473 c->Request.type_attr_dir = 5474 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE); 5475 break; 5476 case DMA_FROM_DEVICE: 5477 c->Request.type_attr_dir = 5478 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ); 5479 break; 5480 case DMA_NONE: 5481 c->Request.type_attr_dir = 5482 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE); 5483 break; 5484 case DMA_BIDIRECTIONAL: 5485 /* This can happen if a buggy application does a scsi passthru 5486 * and sets both inlen and outlen to non-zero. ( see 5487 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 5488 */ 5489 5490 c->Request.type_attr_dir = 5491 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD); 5492 /* This is technically wrong, and hpsa controllers should 5493 * reject it with CMD_INVALID, which is the most correct 5494 * response, but non-fibre backends appear to let it 5495 * slide by, and give the same results as if this field 5496 * were set correctly. Either way is acceptable for 5497 * our purposes here. 5498 */ 5499 5500 break; 5501 5502 default: 5503 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 5504 cmd->sc_data_direction); 5505 BUG(); 5506 break; 5507 } 5508 5509 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ 5510 hpsa_cmd_resolve_and_free(h, c); 5511 return SCSI_MLQUEUE_HOST_BUSY; 5512 } 5513 5514 if (dev->in_reset) { 5515 hpsa_cmd_resolve_and_free(h, c); 5516 return SCSI_MLQUEUE_HOST_BUSY; 5517 } 5518 5519 c->device = dev; 5520 5521 enqueue_cmd_and_start_io(h, c); 5522 /* the cmd'll come back via intr handler in complete_scsi_command() */ 5523 return 0; 5524 } 5525 5526 static void hpsa_cmd_init(struct ctlr_info *h, int index, 5527 struct CommandList *c) 5528 { 5529 dma_addr_t cmd_dma_handle, err_dma_handle; 5530 5531 /* Zero out all of commandlist except the last field, refcount */ 5532 memset(c, 0, offsetof(struct CommandList, refcount)); 5533 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT)); 5534 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); 5535 c->err_info = h->errinfo_pool + index; 5536 memset(c->err_info, 0, sizeof(*c->err_info)); 5537 err_dma_handle = h->errinfo_pool_dhandle 5538 + index * sizeof(*c->err_info); 5539 c->cmdindex = index; 5540 c->busaddr = (u32) cmd_dma_handle; 5541 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle); 5542 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info)); 5543 c->h = h; 5544 c->scsi_cmd = SCSI_CMD_IDLE; 5545 } 5546 5547 static void hpsa_preinitialize_commands(struct ctlr_info *h) 5548 { 5549 int i; 5550 5551 for (i = 0; i < h->nr_cmds; i++) { 5552 struct CommandList *c = h->cmd_pool + i; 5553 5554 hpsa_cmd_init(h, i, c); 5555 atomic_set(&c->refcount, 0); 5556 } 5557 } 5558 5559 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index, 5560 struct CommandList *c) 5561 { 5562 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); 5563 5564 BUG_ON(c->cmdindex != index); 5565 5566 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 5567 memset(c->err_info, 0, sizeof(*c->err_info)); 5568 c->busaddr = (u32) cmd_dma_handle; 5569 } 5570 5571 static int hpsa_ioaccel_submit(struct ctlr_info *h, 5572 struct CommandList *c, struct scsi_cmnd *cmd, 5573 bool retry) 5574 { 5575 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 5576 int rc = IO_ACCEL_INELIGIBLE; 5577 5578 if (!dev) 5579 return SCSI_MLQUEUE_HOST_BUSY; 5580 5581 if (dev->in_reset) 5582 return SCSI_MLQUEUE_HOST_BUSY; 5583 5584 if (hpsa_simple_mode) 5585 return IO_ACCEL_INELIGIBLE; 5586 5587 cmd->host_scribble = (unsigned char *) c; 5588 5589 if (dev->offload_enabled) { 5590 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */ 5591 c->cmd_type = CMD_SCSI; 5592 c->scsi_cmd = cmd; 5593 c->device = dev; 5594 if (retry) /* Resubmit but do not increment device->commands_outstanding. */ 5595 c->retry_pending = true; 5596 rc = hpsa_scsi_ioaccel_raid_map(h, c); 5597 if (rc < 0) /* scsi_dma_map failed. */ 5598 rc = SCSI_MLQUEUE_HOST_BUSY; 5599 } else if (dev->hba_ioaccel_enabled) { 5600 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */ 5601 c->cmd_type = CMD_SCSI; 5602 c->scsi_cmd = cmd; 5603 c->device = dev; 5604 if (retry) /* Resubmit but do not increment device->commands_outstanding. */ 5605 c->retry_pending = true; 5606 rc = hpsa_scsi_ioaccel_direct_map(h, c); 5607 if (rc < 0) /* scsi_dma_map failed. */ 5608 rc = SCSI_MLQUEUE_HOST_BUSY; 5609 } 5610 return rc; 5611 } 5612 5613 static void hpsa_command_resubmit_worker(struct work_struct *work) 5614 { 5615 struct scsi_cmnd *cmd; 5616 struct hpsa_scsi_dev_t *dev; 5617 struct CommandList *c = container_of(work, struct CommandList, work); 5618 5619 cmd = c->scsi_cmd; 5620 dev = cmd->device->hostdata; 5621 if (!dev) { 5622 cmd->result = DID_NO_CONNECT << 16; 5623 return hpsa_cmd_free_and_done(c->h, c, cmd); 5624 } 5625 5626 if (dev->in_reset) { 5627 cmd->result = DID_RESET << 16; 5628 return hpsa_cmd_free_and_done(c->h, c, cmd); 5629 } 5630 5631 if (c->cmd_type == CMD_IOACCEL2) { 5632 struct ctlr_info *h = c->h; 5633 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 5634 int rc; 5635 5636 if (c2->error_data.serv_response == 5637 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) { 5638 /* Resubmit with the retry_pending flag set. */ 5639 rc = hpsa_ioaccel_submit(h, c, cmd, true); 5640 if (rc == 0) 5641 return; 5642 if (rc == SCSI_MLQUEUE_HOST_BUSY) { 5643 /* 5644 * If we get here, it means dma mapping failed. 5645 * Try again via scsi mid layer, which will 5646 * then get SCSI_MLQUEUE_HOST_BUSY. 5647 */ 5648 cmd->result = DID_IMM_RETRY << 16; 5649 return hpsa_cmd_free_and_done(h, c, cmd); 5650 } 5651 /* else, fall thru and resubmit down CISS path */ 5652 } 5653 } 5654 hpsa_cmd_partial_init(c->h, c->cmdindex, c); 5655 /* 5656 * Here we have not come in though queue_command, so we 5657 * can set the retry_pending flag to true for a driver initiated 5658 * retry attempt (I.E. not a SML retry). 5659 * I.E. We are submitting a driver initiated retry. 5660 * Note: hpsa_ciss_submit does not zero out the command fields like 5661 * ioaccel submit does. 5662 */ 5663 c->retry_pending = true; 5664 if (hpsa_ciss_submit(c->h, c, cmd, dev)) { 5665 /* 5666 * If we get here, it means dma mapping failed. Try 5667 * again via scsi mid layer, which will then get 5668 * SCSI_MLQUEUE_HOST_BUSY. 5669 * 5670 * hpsa_ciss_submit will have already freed c 5671 * if it encountered a dma mapping failure. 5672 */ 5673 cmd->result = DID_IMM_RETRY << 16; 5674 cmd->scsi_done(cmd); 5675 } 5676 } 5677 5678 /* Running in struct Scsi_Host->host_lock less mode */ 5679 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd) 5680 { 5681 struct ctlr_info *h; 5682 struct hpsa_scsi_dev_t *dev; 5683 struct CommandList *c; 5684 int rc = 0; 5685 5686 /* Get the ptr to our adapter structure out of cmd->host. */ 5687 h = sdev_to_hba(cmd->device); 5688 5689 BUG_ON(cmd->request->tag < 0); 5690 5691 dev = cmd->device->hostdata; 5692 if (!dev) { 5693 cmd->result = DID_NO_CONNECT << 16; 5694 cmd->scsi_done(cmd); 5695 return 0; 5696 } 5697 5698 if (dev->removed) { 5699 cmd->result = DID_NO_CONNECT << 16; 5700 cmd->scsi_done(cmd); 5701 return 0; 5702 } 5703 5704 if (unlikely(lockup_detected(h))) { 5705 cmd->result = DID_NO_CONNECT << 16; 5706 cmd->scsi_done(cmd); 5707 return 0; 5708 } 5709 5710 if (dev->in_reset) 5711 return SCSI_MLQUEUE_DEVICE_BUSY; 5712 5713 c = cmd_tagged_alloc(h, cmd); 5714 if (c == NULL) 5715 return SCSI_MLQUEUE_DEVICE_BUSY; 5716 5717 /* 5718 * This is necessary because the SML doesn't zero out this field during 5719 * error recovery. 5720 */ 5721 cmd->result = 0; 5722 5723 /* 5724 * Call alternate submit routine for I/O accelerated commands. 5725 * Retries always go down the normal I/O path. 5726 * Note: If cmd->retries is non-zero, then this is a SML 5727 * initiated retry and not a driver initiated retry. 5728 * This command has been obtained from cmd_tagged_alloc 5729 * and is therefore a brand-new command. 5730 */ 5731 if (likely(cmd->retries == 0 && 5732 !blk_rq_is_passthrough(cmd->request) && 5733 h->acciopath_status)) { 5734 /* Submit with the retry_pending flag unset. */ 5735 rc = hpsa_ioaccel_submit(h, c, cmd, false); 5736 if (rc == 0) 5737 return 0; 5738 if (rc == SCSI_MLQUEUE_HOST_BUSY) { 5739 hpsa_cmd_resolve_and_free(h, c); 5740 return SCSI_MLQUEUE_HOST_BUSY; 5741 } 5742 } 5743 return hpsa_ciss_submit(h, c, cmd, dev); 5744 } 5745 5746 static void hpsa_scan_complete(struct ctlr_info *h) 5747 { 5748 unsigned long flags; 5749 5750 spin_lock_irqsave(&h->scan_lock, flags); 5751 h->scan_finished = 1; 5752 wake_up(&h->scan_wait_queue); 5753 spin_unlock_irqrestore(&h->scan_lock, flags); 5754 } 5755 5756 static void hpsa_scan_start(struct Scsi_Host *sh) 5757 { 5758 struct ctlr_info *h = shost_to_hba(sh); 5759 unsigned long flags; 5760 5761 /* 5762 * Don't let rescans be initiated on a controller known to be locked 5763 * up. If the controller locks up *during* a rescan, that thread is 5764 * probably hosed, but at least we can prevent new rescan threads from 5765 * piling up on a locked up controller. 5766 */ 5767 if (unlikely(lockup_detected(h))) 5768 return hpsa_scan_complete(h); 5769 5770 /* 5771 * If a scan is already waiting to run, no need to add another 5772 */ 5773 spin_lock_irqsave(&h->scan_lock, flags); 5774 if (h->scan_waiting) { 5775 spin_unlock_irqrestore(&h->scan_lock, flags); 5776 return; 5777 } 5778 5779 spin_unlock_irqrestore(&h->scan_lock, flags); 5780 5781 /* wait until any scan already in progress is finished. */ 5782 while (1) { 5783 spin_lock_irqsave(&h->scan_lock, flags); 5784 if (h->scan_finished) 5785 break; 5786 h->scan_waiting = 1; 5787 spin_unlock_irqrestore(&h->scan_lock, flags); 5788 wait_event(h->scan_wait_queue, h->scan_finished); 5789 /* Note: We don't need to worry about a race between this 5790 * thread and driver unload because the midlayer will 5791 * have incremented the reference count, so unload won't 5792 * happen if we're in here. 5793 */ 5794 } 5795 h->scan_finished = 0; /* mark scan as in progress */ 5796 h->scan_waiting = 0; 5797 spin_unlock_irqrestore(&h->scan_lock, flags); 5798 5799 if (unlikely(lockup_detected(h))) 5800 return hpsa_scan_complete(h); 5801 5802 /* 5803 * Do the scan after a reset completion 5804 */ 5805 spin_lock_irqsave(&h->reset_lock, flags); 5806 if (h->reset_in_progress) { 5807 h->drv_req_rescan = 1; 5808 spin_unlock_irqrestore(&h->reset_lock, flags); 5809 hpsa_scan_complete(h); 5810 return; 5811 } 5812 spin_unlock_irqrestore(&h->reset_lock, flags); 5813 5814 hpsa_update_scsi_devices(h); 5815 5816 hpsa_scan_complete(h); 5817 } 5818 5819 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth) 5820 { 5821 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata; 5822 5823 if (!logical_drive) 5824 return -ENODEV; 5825 5826 if (qdepth < 1) 5827 qdepth = 1; 5828 else if (qdepth > logical_drive->queue_depth) 5829 qdepth = logical_drive->queue_depth; 5830 5831 return scsi_change_queue_depth(sdev, qdepth); 5832 } 5833 5834 static int hpsa_scan_finished(struct Scsi_Host *sh, 5835 unsigned long elapsed_time) 5836 { 5837 struct ctlr_info *h = shost_to_hba(sh); 5838 unsigned long flags; 5839 int finished; 5840 5841 spin_lock_irqsave(&h->scan_lock, flags); 5842 finished = h->scan_finished; 5843 spin_unlock_irqrestore(&h->scan_lock, flags); 5844 return finished; 5845 } 5846 5847 static int hpsa_scsi_host_alloc(struct ctlr_info *h) 5848 { 5849 struct Scsi_Host *sh; 5850 5851 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); 5852 if (sh == NULL) { 5853 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n"); 5854 return -ENOMEM; 5855 } 5856 5857 sh->io_port = 0; 5858 sh->n_io_port = 0; 5859 sh->this_id = -1; 5860 sh->max_channel = 3; 5861 sh->max_cmd_len = MAX_COMMAND_SIZE; 5862 sh->max_lun = HPSA_MAX_LUN; 5863 sh->max_id = HPSA_MAX_LUN; 5864 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS; 5865 sh->cmd_per_lun = sh->can_queue; 5866 sh->sg_tablesize = h->maxsgentries; 5867 sh->transportt = hpsa_sas_transport_template; 5868 sh->hostdata[0] = (unsigned long) h; 5869 sh->irq = pci_irq_vector(h->pdev, 0); 5870 sh->unique_id = sh->irq; 5871 5872 h->scsi_host = sh; 5873 return 0; 5874 } 5875 5876 static int hpsa_scsi_add_host(struct ctlr_info *h) 5877 { 5878 int rv; 5879 5880 rv = scsi_add_host(h->scsi_host, &h->pdev->dev); 5881 if (rv) { 5882 dev_err(&h->pdev->dev, "scsi_add_host failed\n"); 5883 return rv; 5884 } 5885 scsi_scan_host(h->scsi_host); 5886 return 0; 5887 } 5888 5889 /* 5890 * The block layer has already gone to the trouble of picking out a unique, 5891 * small-integer tag for this request. We use an offset from that value as 5892 * an index to select our command block. (The offset allows us to reserve the 5893 * low-numbered entries for our own uses.) 5894 */ 5895 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd) 5896 { 5897 int idx = scmd->request->tag; 5898 5899 if (idx < 0) 5900 return idx; 5901 5902 /* Offset to leave space for internal cmds. */ 5903 return idx += HPSA_NRESERVED_CMDS; 5904 } 5905 5906 /* 5907 * Send a TEST_UNIT_READY command to the specified LUN using the specified 5908 * reply queue; returns zero if the unit is ready, and non-zero otherwise. 5909 */ 5910 static int hpsa_send_test_unit_ready(struct ctlr_info *h, 5911 struct CommandList *c, unsigned char lunaddr[], 5912 int reply_queue) 5913 { 5914 int rc; 5915 5916 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ 5917 (void) fill_cmd(c, TEST_UNIT_READY, h, 5918 NULL, 0, 0, lunaddr, TYPE_CMD); 5919 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); 5920 if (rc) 5921 return rc; 5922 /* no unmap needed here because no data xfer. */ 5923 5924 /* Check if the unit is already ready. */ 5925 if (c->err_info->CommandStatus == CMD_SUCCESS) 5926 return 0; 5927 5928 /* 5929 * The first command sent after reset will receive "unit attention" to 5930 * indicate that the LUN has been reset...this is actually what we're 5931 * looking for (but, success is good too). 5932 */ 5933 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 5934 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 5935 (c->err_info->SenseInfo[2] == NO_SENSE || 5936 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 5937 return 0; 5938 5939 return 1; 5940 } 5941 5942 /* 5943 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary; 5944 * returns zero when the unit is ready, and non-zero when giving up. 5945 */ 5946 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h, 5947 struct CommandList *c, 5948 unsigned char lunaddr[], int reply_queue) 5949 { 5950 int rc; 5951 int count = 0; 5952 int waittime = 1; /* seconds */ 5953 5954 /* Send test unit ready until device ready, or give up. */ 5955 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) { 5956 5957 /* 5958 * Wait for a bit. do this first, because if we send 5959 * the TUR right away, the reset will just abort it. 5960 */ 5961 msleep(1000 * waittime); 5962 5963 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue); 5964 if (!rc) 5965 break; 5966 5967 /* Increase wait time with each try, up to a point. */ 5968 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 5969 waittime *= 2; 5970 5971 dev_warn(&h->pdev->dev, 5972 "waiting %d secs for device to become ready.\n", 5973 waittime); 5974 } 5975 5976 return rc; 5977 } 5978 5979 static int wait_for_device_to_become_ready(struct ctlr_info *h, 5980 unsigned char lunaddr[], 5981 int reply_queue) 5982 { 5983 int first_queue; 5984 int last_queue; 5985 int rq; 5986 int rc = 0; 5987 struct CommandList *c; 5988 5989 c = cmd_alloc(h); 5990 5991 /* 5992 * If no specific reply queue was requested, then send the TUR 5993 * repeatedly, requesting a reply on each reply queue; otherwise execute 5994 * the loop exactly once using only the specified queue. 5995 */ 5996 if (reply_queue == DEFAULT_REPLY_QUEUE) { 5997 first_queue = 0; 5998 last_queue = h->nreply_queues - 1; 5999 } else { 6000 first_queue = reply_queue; 6001 last_queue = reply_queue; 6002 } 6003 6004 for (rq = first_queue; rq <= last_queue; rq++) { 6005 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq); 6006 if (rc) 6007 break; 6008 } 6009 6010 if (rc) 6011 dev_warn(&h->pdev->dev, "giving up on device.\n"); 6012 else 6013 dev_warn(&h->pdev->dev, "device is ready.\n"); 6014 6015 cmd_free(h, c); 6016 return rc; 6017 } 6018 6019 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 6020 * complaining. Doing a host- or bus-reset can't do anything good here. 6021 */ 6022 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 6023 { 6024 int rc = SUCCESS; 6025 int i; 6026 struct ctlr_info *h; 6027 struct hpsa_scsi_dev_t *dev = NULL; 6028 u8 reset_type; 6029 char msg[48]; 6030 unsigned long flags; 6031 6032 /* find the controller to which the command to be aborted was sent */ 6033 h = sdev_to_hba(scsicmd->device); 6034 if (h == NULL) /* paranoia */ 6035 return FAILED; 6036 6037 spin_lock_irqsave(&h->reset_lock, flags); 6038 h->reset_in_progress = 1; 6039 spin_unlock_irqrestore(&h->reset_lock, flags); 6040 6041 if (lockup_detected(h)) { 6042 rc = FAILED; 6043 goto return_reset_status; 6044 } 6045 6046 dev = scsicmd->device->hostdata; 6047 if (!dev) { 6048 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__); 6049 rc = FAILED; 6050 goto return_reset_status; 6051 } 6052 6053 if (dev->devtype == TYPE_ENCLOSURE) { 6054 rc = SUCCESS; 6055 goto return_reset_status; 6056 } 6057 6058 /* if controller locked up, we can guarantee command won't complete */ 6059 if (lockup_detected(h)) { 6060 snprintf(msg, sizeof(msg), 6061 "cmd %d RESET FAILED, lockup detected", 6062 hpsa_get_cmd_index(scsicmd)); 6063 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 6064 rc = FAILED; 6065 goto return_reset_status; 6066 } 6067 6068 /* this reset request might be the result of a lockup; check */ 6069 if (detect_controller_lockup(h)) { 6070 snprintf(msg, sizeof(msg), 6071 "cmd %d RESET FAILED, new lockup detected", 6072 hpsa_get_cmd_index(scsicmd)); 6073 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 6074 rc = FAILED; 6075 goto return_reset_status; 6076 } 6077 6078 /* Do not attempt on controller */ 6079 if (is_hba_lunid(dev->scsi3addr)) { 6080 rc = SUCCESS; 6081 goto return_reset_status; 6082 } 6083 6084 if (is_logical_dev_addr_mode(dev->scsi3addr)) 6085 reset_type = HPSA_DEVICE_RESET_MSG; 6086 else 6087 reset_type = HPSA_PHYS_TARGET_RESET; 6088 6089 sprintf(msg, "resetting %s", 6090 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical "); 6091 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 6092 6093 /* 6094 * wait to see if any commands will complete before sending reset 6095 */ 6096 dev->in_reset = true; /* block any new cmds from OS for this device */ 6097 for (i = 0; i < 10; i++) { 6098 if (atomic_read(&dev->commands_outstanding) > 0) 6099 msleep(1000); 6100 else 6101 break; 6102 } 6103 6104 /* send a reset to the SCSI LUN which the command was sent to */ 6105 rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE); 6106 if (rc == 0) 6107 rc = SUCCESS; 6108 else 6109 rc = FAILED; 6110 6111 sprintf(msg, "reset %s %s", 6112 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ", 6113 rc == SUCCESS ? "completed successfully" : "failed"); 6114 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 6115 6116 return_reset_status: 6117 spin_lock_irqsave(&h->reset_lock, flags); 6118 h->reset_in_progress = 0; 6119 if (dev) 6120 dev->in_reset = false; 6121 spin_unlock_irqrestore(&h->reset_lock, flags); 6122 return rc; 6123 } 6124 6125 /* 6126 * For operations with an associated SCSI command, a command block is allocated 6127 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the 6128 * block request tag as an index into a table of entries. cmd_tagged_free() is 6129 * the complement, although cmd_free() may be called instead. 6130 * This function is only called for new requests from queue_command. 6131 */ 6132 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, 6133 struct scsi_cmnd *scmd) 6134 { 6135 int idx = hpsa_get_cmd_index(scmd); 6136 struct CommandList *c = h->cmd_pool + idx; 6137 6138 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) { 6139 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n", 6140 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1); 6141 /* The index value comes from the block layer, so if it's out of 6142 * bounds, it's probably not our bug. 6143 */ 6144 BUG(); 6145 } 6146 6147 if (unlikely(!hpsa_is_cmd_idle(c))) { 6148 /* 6149 * We expect that the SCSI layer will hand us a unique tag 6150 * value. Thus, there should never be a collision here between 6151 * two requests...because if the selected command isn't idle 6152 * then someone is going to be very disappointed. 6153 */ 6154 if (idx != h->last_collision_tag) { /* Print once per tag */ 6155 dev_warn(&h->pdev->dev, 6156 "%s: tag collision (tag=%d)\n", __func__, idx); 6157 if (scmd) 6158 scsi_print_command(scmd); 6159 h->last_collision_tag = idx; 6160 } 6161 return NULL; 6162 } 6163 6164 atomic_inc(&c->refcount); 6165 hpsa_cmd_partial_init(h, idx, c); 6166 6167 /* 6168 * This is a new command obtained from queue_command so 6169 * there have not been any driver initiated retry attempts. 6170 */ 6171 c->retry_pending = false; 6172 6173 return c; 6174 } 6175 6176 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c) 6177 { 6178 /* 6179 * Release our reference to the block. We don't need to do anything 6180 * else to free it, because it is accessed by index. 6181 */ 6182 (void)atomic_dec(&c->refcount); 6183 } 6184 6185 /* 6186 * For operations that cannot sleep, a command block is allocated at init, 6187 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 6188 * which ones are free or in use. Lock must be held when calling this. 6189 * cmd_free() is the complement. 6190 * This function never gives up and returns NULL. If it hangs, 6191 * another thread must call cmd_free() to free some tags. 6192 */ 6193 6194 static struct CommandList *cmd_alloc(struct ctlr_info *h) 6195 { 6196 struct CommandList *c; 6197 int refcount, i; 6198 int offset = 0; 6199 6200 /* 6201 * There is some *extremely* small but non-zero chance that that 6202 * multiple threads could get in here, and one thread could 6203 * be scanning through the list of bits looking for a free 6204 * one, but the free ones are always behind him, and other 6205 * threads sneak in behind him and eat them before he can 6206 * get to them, so that while there is always a free one, a 6207 * very unlucky thread might be starved anyway, never able to 6208 * beat the other threads. In reality, this happens so 6209 * infrequently as to be indistinguishable from never. 6210 * 6211 * Note that we start allocating commands before the SCSI host structure 6212 * is initialized. Since the search starts at bit zero, this 6213 * all works, since we have at least one command structure available; 6214 * however, it means that the structures with the low indexes have to be 6215 * reserved for driver-initiated requests, while requests from the block 6216 * layer will use the higher indexes. 6217 */ 6218 6219 for (;;) { 6220 i = find_next_zero_bit(h->cmd_pool_bits, 6221 HPSA_NRESERVED_CMDS, 6222 offset); 6223 if (unlikely(i >= HPSA_NRESERVED_CMDS)) { 6224 offset = 0; 6225 continue; 6226 } 6227 c = h->cmd_pool + i; 6228 refcount = atomic_inc_return(&c->refcount); 6229 if (unlikely(refcount > 1)) { 6230 cmd_free(h, c); /* already in use */ 6231 offset = (i + 1) % HPSA_NRESERVED_CMDS; 6232 continue; 6233 } 6234 set_bit(i & (BITS_PER_LONG - 1), 6235 h->cmd_pool_bits + (i / BITS_PER_LONG)); 6236 break; /* it's ours now. */ 6237 } 6238 hpsa_cmd_partial_init(h, i, c); 6239 c->device = NULL; 6240 6241 /* 6242 * cmd_alloc is for "internal" commands and they are never 6243 * retried. 6244 */ 6245 c->retry_pending = false; 6246 6247 return c; 6248 } 6249 6250 /* 6251 * This is the complementary operation to cmd_alloc(). Note, however, in some 6252 * corner cases it may also be used to free blocks allocated by 6253 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and 6254 * the clear-bit is harmless. 6255 */ 6256 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 6257 { 6258 if (atomic_dec_and_test(&c->refcount)) { 6259 int i; 6260 6261 i = c - h->cmd_pool; 6262 clear_bit(i & (BITS_PER_LONG - 1), 6263 h->cmd_pool_bits + (i / BITS_PER_LONG)); 6264 } 6265 } 6266 6267 #ifdef CONFIG_COMPAT 6268 6269 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd, 6270 void __user *arg) 6271 { 6272 struct ctlr_info *h = sdev_to_hba(dev); 6273 IOCTL32_Command_struct __user *arg32 = arg; 6274 IOCTL_Command_struct arg64; 6275 int err; 6276 u32 cp; 6277 6278 if (!arg) 6279 return -EINVAL; 6280 6281 memset(&arg64, 0, sizeof(arg64)); 6282 if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf))) 6283 return -EFAULT; 6284 if (get_user(cp, &arg32->buf)) 6285 return -EFAULT; 6286 arg64.buf = compat_ptr(cp); 6287 6288 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6289 return -EAGAIN; 6290 err = hpsa_passthru_ioctl(h, &arg64); 6291 atomic_inc(&h->passthru_cmds_avail); 6292 if (err) 6293 return err; 6294 if (copy_to_user(&arg32->error_info, &arg64.error_info, 6295 sizeof(arg32->error_info))) 6296 return -EFAULT; 6297 return 0; 6298 } 6299 6300 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 6301 unsigned int cmd, void __user *arg) 6302 { 6303 struct ctlr_info *h = sdev_to_hba(dev); 6304 BIG_IOCTL32_Command_struct __user *arg32 = arg; 6305 BIG_IOCTL_Command_struct arg64; 6306 int err; 6307 u32 cp; 6308 6309 if (!arg) 6310 return -EINVAL; 6311 memset(&arg64, 0, sizeof(arg64)); 6312 if (copy_from_user(&arg64, arg32, 6313 offsetof(BIG_IOCTL32_Command_struct, buf))) 6314 return -EFAULT; 6315 if (get_user(cp, &arg32->buf)) 6316 return -EFAULT; 6317 arg64.buf = compat_ptr(cp); 6318 6319 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6320 return -EAGAIN; 6321 err = hpsa_big_passthru_ioctl(h, &arg64); 6322 atomic_inc(&h->passthru_cmds_avail); 6323 if (err) 6324 return err; 6325 if (copy_to_user(&arg32->error_info, &arg64.error_info, 6326 sizeof(arg32->error_info))) 6327 return -EFAULT; 6328 return 0; 6329 } 6330 6331 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd, 6332 void __user *arg) 6333 { 6334 switch (cmd) { 6335 case CCISS_GETPCIINFO: 6336 case CCISS_GETINTINFO: 6337 case CCISS_SETINTINFO: 6338 case CCISS_GETNODENAME: 6339 case CCISS_SETNODENAME: 6340 case CCISS_GETHEARTBEAT: 6341 case CCISS_GETBUSTYPES: 6342 case CCISS_GETFIRMVER: 6343 case CCISS_GETDRIVVER: 6344 case CCISS_REVALIDVOLS: 6345 case CCISS_DEREGDISK: 6346 case CCISS_REGNEWDISK: 6347 case CCISS_REGNEWD: 6348 case CCISS_RESCANDISK: 6349 case CCISS_GETLUNINFO: 6350 return hpsa_ioctl(dev, cmd, arg); 6351 6352 case CCISS_PASSTHRU32: 6353 return hpsa_ioctl32_passthru(dev, cmd, arg); 6354 case CCISS_BIG_PASSTHRU32: 6355 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 6356 6357 default: 6358 return -ENOIOCTLCMD; 6359 } 6360 } 6361 #endif 6362 6363 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 6364 { 6365 struct hpsa_pci_info pciinfo; 6366 6367 if (!argp) 6368 return -EINVAL; 6369 pciinfo.domain = pci_domain_nr(h->pdev->bus); 6370 pciinfo.bus = h->pdev->bus->number; 6371 pciinfo.dev_fn = h->pdev->devfn; 6372 pciinfo.board_id = h->board_id; 6373 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 6374 return -EFAULT; 6375 return 0; 6376 } 6377 6378 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 6379 { 6380 DriverVer_type DriverVer; 6381 unsigned char vmaj, vmin, vsubmin; 6382 int rc; 6383 6384 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 6385 &vmaj, &vmin, &vsubmin); 6386 if (rc != 3) { 6387 dev_info(&h->pdev->dev, "driver version string '%s' " 6388 "unrecognized.", HPSA_DRIVER_VERSION); 6389 vmaj = 0; 6390 vmin = 0; 6391 vsubmin = 0; 6392 } 6393 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 6394 if (!argp) 6395 return -EINVAL; 6396 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 6397 return -EFAULT; 6398 return 0; 6399 } 6400 6401 static int hpsa_passthru_ioctl(struct ctlr_info *h, 6402 IOCTL_Command_struct *iocommand) 6403 { 6404 struct CommandList *c; 6405 char *buff = NULL; 6406 u64 temp64; 6407 int rc = 0; 6408 6409 if (!capable(CAP_SYS_RAWIO)) 6410 return -EPERM; 6411 if ((iocommand->buf_size < 1) && 6412 (iocommand->Request.Type.Direction != XFER_NONE)) { 6413 return -EINVAL; 6414 } 6415 if (iocommand->buf_size > 0) { 6416 buff = kmalloc(iocommand->buf_size, GFP_KERNEL); 6417 if (buff == NULL) 6418 return -ENOMEM; 6419 if (iocommand->Request.Type.Direction & XFER_WRITE) { 6420 /* Copy the data into the buffer we created */ 6421 if (copy_from_user(buff, iocommand->buf, 6422 iocommand->buf_size)) { 6423 rc = -EFAULT; 6424 goto out_kfree; 6425 } 6426 } else { 6427 memset(buff, 0, iocommand->buf_size); 6428 } 6429 } 6430 c = cmd_alloc(h); 6431 6432 /* Fill in the command type */ 6433 c->cmd_type = CMD_IOCTL_PEND; 6434 c->scsi_cmd = SCSI_CMD_BUSY; 6435 /* Fill in Command Header */ 6436 c->Header.ReplyQueue = 0; /* unused in simple mode */ 6437 if (iocommand->buf_size > 0) { /* buffer to fill */ 6438 c->Header.SGList = 1; 6439 c->Header.SGTotal = cpu_to_le16(1); 6440 } else { /* no buffers to fill */ 6441 c->Header.SGList = 0; 6442 c->Header.SGTotal = cpu_to_le16(0); 6443 } 6444 memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN)); 6445 6446 /* Fill in Request block */ 6447 memcpy(&c->Request, &iocommand->Request, 6448 sizeof(c->Request)); 6449 6450 /* Fill in the scatter gather information */ 6451 if (iocommand->buf_size > 0) { 6452 temp64 = dma_map_single(&h->pdev->dev, buff, 6453 iocommand->buf_size, DMA_BIDIRECTIONAL); 6454 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) { 6455 c->SG[0].Addr = cpu_to_le64(0); 6456 c->SG[0].Len = cpu_to_le32(0); 6457 rc = -ENOMEM; 6458 goto out; 6459 } 6460 c->SG[0].Addr = cpu_to_le64(temp64); 6461 c->SG[0].Len = cpu_to_le32(iocommand->buf_size); 6462 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */ 6463 } 6464 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 6465 NO_TIMEOUT); 6466 if (iocommand->buf_size > 0) 6467 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL); 6468 check_ioctl_unit_attention(h, c); 6469 if (rc) { 6470 rc = -EIO; 6471 goto out; 6472 } 6473 6474 /* Copy the error information out */ 6475 memcpy(&iocommand->error_info, c->err_info, 6476 sizeof(iocommand->error_info)); 6477 if ((iocommand->Request.Type.Direction & XFER_READ) && 6478 iocommand->buf_size > 0) { 6479 /* Copy the data out of the buffer we created */ 6480 if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) { 6481 rc = -EFAULT; 6482 goto out; 6483 } 6484 } 6485 out: 6486 cmd_free(h, c); 6487 out_kfree: 6488 kfree(buff); 6489 return rc; 6490 } 6491 6492 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, 6493 BIG_IOCTL_Command_struct *ioc) 6494 { 6495 struct CommandList *c; 6496 unsigned char **buff = NULL; 6497 int *buff_size = NULL; 6498 u64 temp64; 6499 BYTE sg_used = 0; 6500 int status = 0; 6501 u32 left; 6502 u32 sz; 6503 BYTE __user *data_ptr; 6504 6505 if (!capable(CAP_SYS_RAWIO)) 6506 return -EPERM; 6507 6508 if ((ioc->buf_size < 1) && 6509 (ioc->Request.Type.Direction != XFER_NONE)) 6510 return -EINVAL; 6511 /* Check kmalloc limits using all SGs */ 6512 if (ioc->malloc_size > MAX_KMALLOC_SIZE) 6513 return -EINVAL; 6514 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) 6515 return -EINVAL; 6516 buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL); 6517 if (!buff) { 6518 status = -ENOMEM; 6519 goto cleanup1; 6520 } 6521 buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL); 6522 if (!buff_size) { 6523 status = -ENOMEM; 6524 goto cleanup1; 6525 } 6526 left = ioc->buf_size; 6527 data_ptr = ioc->buf; 6528 while (left) { 6529 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 6530 buff_size[sg_used] = sz; 6531 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 6532 if (buff[sg_used] == NULL) { 6533 status = -ENOMEM; 6534 goto cleanup1; 6535 } 6536 if (ioc->Request.Type.Direction & XFER_WRITE) { 6537 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 6538 status = -EFAULT; 6539 goto cleanup1; 6540 } 6541 } else 6542 memset(buff[sg_used], 0, sz); 6543 left -= sz; 6544 data_ptr += sz; 6545 sg_used++; 6546 } 6547 c = cmd_alloc(h); 6548 6549 c->cmd_type = CMD_IOCTL_PEND; 6550 c->scsi_cmd = SCSI_CMD_BUSY; 6551 c->Header.ReplyQueue = 0; 6552 c->Header.SGList = (u8) sg_used; 6553 c->Header.SGTotal = cpu_to_le16(sg_used); 6554 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 6555 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 6556 if (ioc->buf_size > 0) { 6557 int i; 6558 for (i = 0; i < sg_used; i++) { 6559 temp64 = dma_map_single(&h->pdev->dev, buff[i], 6560 buff_size[i], DMA_BIDIRECTIONAL); 6561 if (dma_mapping_error(&h->pdev->dev, 6562 (dma_addr_t) temp64)) { 6563 c->SG[i].Addr = cpu_to_le64(0); 6564 c->SG[i].Len = cpu_to_le32(0); 6565 hpsa_pci_unmap(h->pdev, c, i, 6566 DMA_BIDIRECTIONAL); 6567 status = -ENOMEM; 6568 goto cleanup0; 6569 } 6570 c->SG[i].Addr = cpu_to_le64(temp64); 6571 c->SG[i].Len = cpu_to_le32(buff_size[i]); 6572 c->SG[i].Ext = cpu_to_le32(0); 6573 } 6574 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST); 6575 } 6576 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 6577 NO_TIMEOUT); 6578 if (sg_used) 6579 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL); 6580 check_ioctl_unit_attention(h, c); 6581 if (status) { 6582 status = -EIO; 6583 goto cleanup0; 6584 } 6585 6586 /* Copy the error information out */ 6587 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 6588 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) { 6589 int i; 6590 6591 /* Copy the data out of the buffer we created */ 6592 BYTE __user *ptr = ioc->buf; 6593 for (i = 0; i < sg_used; i++) { 6594 if (copy_to_user(ptr, buff[i], buff_size[i])) { 6595 status = -EFAULT; 6596 goto cleanup0; 6597 } 6598 ptr += buff_size[i]; 6599 } 6600 } 6601 status = 0; 6602 cleanup0: 6603 cmd_free(h, c); 6604 cleanup1: 6605 if (buff) { 6606 int i; 6607 6608 for (i = 0; i < sg_used; i++) 6609 kfree(buff[i]); 6610 kfree(buff); 6611 } 6612 kfree(buff_size); 6613 return status; 6614 } 6615 6616 static void check_ioctl_unit_attention(struct ctlr_info *h, 6617 struct CommandList *c) 6618 { 6619 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 6620 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 6621 (void) check_for_unit_attention(h, c); 6622 } 6623 6624 /* 6625 * ioctl 6626 */ 6627 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd, 6628 void __user *argp) 6629 { 6630 struct ctlr_info *h = sdev_to_hba(dev); 6631 int rc; 6632 6633 switch (cmd) { 6634 case CCISS_DEREGDISK: 6635 case CCISS_REGNEWDISK: 6636 case CCISS_REGNEWD: 6637 hpsa_scan_start(h->scsi_host); 6638 return 0; 6639 case CCISS_GETPCIINFO: 6640 return hpsa_getpciinfo_ioctl(h, argp); 6641 case CCISS_GETDRIVVER: 6642 return hpsa_getdrivver_ioctl(h, argp); 6643 case CCISS_PASSTHRU: { 6644 IOCTL_Command_struct iocommand; 6645 6646 if (!argp) 6647 return -EINVAL; 6648 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 6649 return -EFAULT; 6650 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6651 return -EAGAIN; 6652 rc = hpsa_passthru_ioctl(h, &iocommand); 6653 atomic_inc(&h->passthru_cmds_avail); 6654 if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand))) 6655 rc = -EFAULT; 6656 return rc; 6657 } 6658 case CCISS_BIG_PASSTHRU: { 6659 BIG_IOCTL_Command_struct ioc; 6660 if (!argp) 6661 return -EINVAL; 6662 if (copy_from_user(&ioc, argp, sizeof(ioc))) 6663 return -EFAULT; 6664 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6665 return -EAGAIN; 6666 rc = hpsa_big_passthru_ioctl(h, &ioc); 6667 atomic_inc(&h->passthru_cmds_avail); 6668 if (!rc && copy_to_user(argp, &ioc, sizeof(ioc))) 6669 rc = -EFAULT; 6670 return rc; 6671 } 6672 default: 6673 return -ENOTTY; 6674 } 6675 } 6676 6677 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type) 6678 { 6679 struct CommandList *c; 6680 6681 c = cmd_alloc(h); 6682 6683 /* fill_cmd can't fail here, no data buffer to map */ 6684 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, 6685 RAID_CTLR_LUNID, TYPE_MSG); 6686 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ 6687 c->waiting = NULL; 6688 enqueue_cmd_and_start_io(h, c); 6689 /* Don't wait for completion, the reset won't complete. Don't free 6690 * the command either. This is the last command we will send before 6691 * re-initializing everything, so it doesn't matter and won't leak. 6692 */ 6693 return; 6694 } 6695 6696 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 6697 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, 6698 int cmd_type) 6699 { 6700 enum dma_data_direction dir = DMA_NONE; 6701 6702 c->cmd_type = CMD_IOCTL_PEND; 6703 c->scsi_cmd = SCSI_CMD_BUSY; 6704 c->Header.ReplyQueue = 0; 6705 if (buff != NULL && size > 0) { 6706 c->Header.SGList = 1; 6707 c->Header.SGTotal = cpu_to_le16(1); 6708 } else { 6709 c->Header.SGList = 0; 6710 c->Header.SGTotal = cpu_to_le16(0); 6711 } 6712 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 6713 6714 if (cmd_type == TYPE_CMD) { 6715 switch (cmd) { 6716 case HPSA_INQUIRY: 6717 /* are we trying to read a vital product page */ 6718 if (page_code & VPD_PAGE) { 6719 c->Request.CDB[1] = 0x01; 6720 c->Request.CDB[2] = (page_code & 0xff); 6721 } 6722 c->Request.CDBLen = 6; 6723 c->Request.type_attr_dir = 6724 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6725 c->Request.Timeout = 0; 6726 c->Request.CDB[0] = HPSA_INQUIRY; 6727 c->Request.CDB[4] = size & 0xFF; 6728 break; 6729 case RECEIVE_DIAGNOSTIC: 6730 c->Request.CDBLen = 6; 6731 c->Request.type_attr_dir = 6732 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6733 c->Request.Timeout = 0; 6734 c->Request.CDB[0] = cmd; 6735 c->Request.CDB[1] = 1; 6736 c->Request.CDB[2] = 1; 6737 c->Request.CDB[3] = (size >> 8) & 0xFF; 6738 c->Request.CDB[4] = size & 0xFF; 6739 break; 6740 case HPSA_REPORT_LOG: 6741 case HPSA_REPORT_PHYS: 6742 /* Talking to controller so It's a physical command 6743 mode = 00 target = 0. Nothing to write. 6744 */ 6745 c->Request.CDBLen = 12; 6746 c->Request.type_attr_dir = 6747 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6748 c->Request.Timeout = 0; 6749 c->Request.CDB[0] = cmd; 6750 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 6751 c->Request.CDB[7] = (size >> 16) & 0xFF; 6752 c->Request.CDB[8] = (size >> 8) & 0xFF; 6753 c->Request.CDB[9] = size & 0xFF; 6754 break; 6755 case BMIC_SENSE_DIAG_OPTIONS: 6756 c->Request.CDBLen = 16; 6757 c->Request.type_attr_dir = 6758 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6759 c->Request.Timeout = 0; 6760 /* Spec says this should be BMIC_WRITE */ 6761 c->Request.CDB[0] = BMIC_READ; 6762 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS; 6763 break; 6764 case BMIC_SET_DIAG_OPTIONS: 6765 c->Request.CDBLen = 16; 6766 c->Request.type_attr_dir = 6767 TYPE_ATTR_DIR(cmd_type, 6768 ATTR_SIMPLE, XFER_WRITE); 6769 c->Request.Timeout = 0; 6770 c->Request.CDB[0] = BMIC_WRITE; 6771 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS; 6772 break; 6773 case HPSA_CACHE_FLUSH: 6774 c->Request.CDBLen = 12; 6775 c->Request.type_attr_dir = 6776 TYPE_ATTR_DIR(cmd_type, 6777 ATTR_SIMPLE, XFER_WRITE); 6778 c->Request.Timeout = 0; 6779 c->Request.CDB[0] = BMIC_WRITE; 6780 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 6781 c->Request.CDB[7] = (size >> 8) & 0xFF; 6782 c->Request.CDB[8] = size & 0xFF; 6783 break; 6784 case TEST_UNIT_READY: 6785 c->Request.CDBLen = 6; 6786 c->Request.type_attr_dir = 6787 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6788 c->Request.Timeout = 0; 6789 break; 6790 case HPSA_GET_RAID_MAP: 6791 c->Request.CDBLen = 12; 6792 c->Request.type_attr_dir = 6793 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6794 c->Request.Timeout = 0; 6795 c->Request.CDB[0] = HPSA_CISS_READ; 6796 c->Request.CDB[1] = cmd; 6797 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 6798 c->Request.CDB[7] = (size >> 16) & 0xFF; 6799 c->Request.CDB[8] = (size >> 8) & 0xFF; 6800 c->Request.CDB[9] = size & 0xFF; 6801 break; 6802 case BMIC_SENSE_CONTROLLER_PARAMETERS: 6803 c->Request.CDBLen = 10; 6804 c->Request.type_attr_dir = 6805 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6806 c->Request.Timeout = 0; 6807 c->Request.CDB[0] = BMIC_READ; 6808 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS; 6809 c->Request.CDB[7] = (size >> 16) & 0xFF; 6810 c->Request.CDB[8] = (size >> 8) & 0xFF; 6811 break; 6812 case BMIC_IDENTIFY_PHYSICAL_DEVICE: 6813 c->Request.CDBLen = 10; 6814 c->Request.type_attr_dir = 6815 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6816 c->Request.Timeout = 0; 6817 c->Request.CDB[0] = BMIC_READ; 6818 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE; 6819 c->Request.CDB[7] = (size >> 16) & 0xFF; 6820 c->Request.CDB[8] = (size >> 8) & 0XFF; 6821 break; 6822 case BMIC_SENSE_SUBSYSTEM_INFORMATION: 6823 c->Request.CDBLen = 10; 6824 c->Request.type_attr_dir = 6825 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6826 c->Request.Timeout = 0; 6827 c->Request.CDB[0] = BMIC_READ; 6828 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION; 6829 c->Request.CDB[7] = (size >> 16) & 0xFF; 6830 c->Request.CDB[8] = (size >> 8) & 0XFF; 6831 break; 6832 case BMIC_SENSE_STORAGE_BOX_PARAMS: 6833 c->Request.CDBLen = 10; 6834 c->Request.type_attr_dir = 6835 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6836 c->Request.Timeout = 0; 6837 c->Request.CDB[0] = BMIC_READ; 6838 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS; 6839 c->Request.CDB[7] = (size >> 16) & 0xFF; 6840 c->Request.CDB[8] = (size >> 8) & 0XFF; 6841 break; 6842 case BMIC_IDENTIFY_CONTROLLER: 6843 c->Request.CDBLen = 10; 6844 c->Request.type_attr_dir = 6845 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6846 c->Request.Timeout = 0; 6847 c->Request.CDB[0] = BMIC_READ; 6848 c->Request.CDB[1] = 0; 6849 c->Request.CDB[2] = 0; 6850 c->Request.CDB[3] = 0; 6851 c->Request.CDB[4] = 0; 6852 c->Request.CDB[5] = 0; 6853 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER; 6854 c->Request.CDB[7] = (size >> 16) & 0xFF; 6855 c->Request.CDB[8] = (size >> 8) & 0XFF; 6856 c->Request.CDB[9] = 0; 6857 break; 6858 default: 6859 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 6860 BUG(); 6861 } 6862 } else if (cmd_type == TYPE_MSG) { 6863 switch (cmd) { 6864 6865 case HPSA_PHYS_TARGET_RESET: 6866 c->Request.CDBLen = 16; 6867 c->Request.type_attr_dir = 6868 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6869 c->Request.Timeout = 0; /* Don't time out */ 6870 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 6871 c->Request.CDB[0] = HPSA_RESET; 6872 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE; 6873 /* Physical target reset needs no control bytes 4-7*/ 6874 c->Request.CDB[4] = 0x00; 6875 c->Request.CDB[5] = 0x00; 6876 c->Request.CDB[6] = 0x00; 6877 c->Request.CDB[7] = 0x00; 6878 break; 6879 case HPSA_DEVICE_RESET_MSG: 6880 c->Request.CDBLen = 16; 6881 c->Request.type_attr_dir = 6882 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6883 c->Request.Timeout = 0; /* Don't time out */ 6884 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 6885 c->Request.CDB[0] = cmd; 6886 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; 6887 /* If bytes 4-7 are zero, it means reset the */ 6888 /* LunID device */ 6889 c->Request.CDB[4] = 0x00; 6890 c->Request.CDB[5] = 0x00; 6891 c->Request.CDB[6] = 0x00; 6892 c->Request.CDB[7] = 0x00; 6893 break; 6894 default: 6895 dev_warn(&h->pdev->dev, "unknown message type %d\n", 6896 cmd); 6897 BUG(); 6898 } 6899 } else { 6900 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 6901 BUG(); 6902 } 6903 6904 switch (GET_DIR(c->Request.type_attr_dir)) { 6905 case XFER_READ: 6906 dir = DMA_FROM_DEVICE; 6907 break; 6908 case XFER_WRITE: 6909 dir = DMA_TO_DEVICE; 6910 break; 6911 case XFER_NONE: 6912 dir = DMA_NONE; 6913 break; 6914 default: 6915 dir = DMA_BIDIRECTIONAL; 6916 } 6917 if (hpsa_map_one(h->pdev, c, buff, size, dir)) 6918 return -1; 6919 return 0; 6920 } 6921 6922 /* 6923 * Map (physical) PCI mem into (virtual) kernel space 6924 */ 6925 static void __iomem *remap_pci_mem(ulong base, ulong size) 6926 { 6927 ulong page_base = ((ulong) base) & PAGE_MASK; 6928 ulong page_offs = ((ulong) base) - page_base; 6929 void __iomem *page_remapped = ioremap(page_base, 6930 page_offs + size); 6931 6932 return page_remapped ? (page_remapped + page_offs) : NULL; 6933 } 6934 6935 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) 6936 { 6937 return h->access.command_completed(h, q); 6938 } 6939 6940 static inline bool interrupt_pending(struct ctlr_info *h) 6941 { 6942 return h->access.intr_pending(h); 6943 } 6944 6945 static inline long interrupt_not_for_us(struct ctlr_info *h) 6946 { 6947 return (h->access.intr_pending(h) == 0) || 6948 (h->interrupts_enabled == 0); 6949 } 6950 6951 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 6952 u32 raw_tag) 6953 { 6954 if (unlikely(tag_index >= h->nr_cmds)) { 6955 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 6956 return 1; 6957 } 6958 return 0; 6959 } 6960 6961 static inline void finish_cmd(struct CommandList *c) 6962 { 6963 dial_up_lockup_detection_on_fw_flash_complete(c->h, c); 6964 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI 6965 || c->cmd_type == CMD_IOACCEL2)) 6966 complete_scsi_command(c); 6967 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF) 6968 complete(c->waiting); 6969 } 6970 6971 /* process completion of an indexed ("direct lookup") command */ 6972 static inline void process_indexed_cmd(struct ctlr_info *h, 6973 u32 raw_tag) 6974 { 6975 u32 tag_index; 6976 struct CommandList *c; 6977 6978 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT; 6979 if (!bad_tag(h, tag_index, raw_tag)) { 6980 c = h->cmd_pool + tag_index; 6981 finish_cmd(c); 6982 } 6983 } 6984 6985 /* Some controllers, like p400, will give us one interrupt 6986 * after a soft reset, even if we turned interrupts off. 6987 * Only need to check for this in the hpsa_xxx_discard_completions 6988 * functions. 6989 */ 6990 static int ignore_bogus_interrupt(struct ctlr_info *h) 6991 { 6992 if (likely(!reset_devices)) 6993 return 0; 6994 6995 if (likely(h->interrupts_enabled)) 6996 return 0; 6997 6998 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " 6999 "(known firmware bug.) Ignoring.\n"); 7000 7001 return 1; 7002 } 7003 7004 /* 7005 * Convert &h->q[x] (passed to interrupt handlers) back to h. 7006 * Relies on (h-q[x] == x) being true for x such that 7007 * 0 <= x < MAX_REPLY_QUEUES. 7008 */ 7009 static struct ctlr_info *queue_to_hba(u8 *queue) 7010 { 7011 return container_of((queue - *queue), struct ctlr_info, q[0]); 7012 } 7013 7014 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) 7015 { 7016 struct ctlr_info *h = queue_to_hba(queue); 7017 u8 q = *(u8 *) queue; 7018 u32 raw_tag; 7019 7020 if (ignore_bogus_interrupt(h)) 7021 return IRQ_NONE; 7022 7023 if (interrupt_not_for_us(h)) 7024 return IRQ_NONE; 7025 h->last_intr_timestamp = get_jiffies_64(); 7026 while (interrupt_pending(h)) { 7027 raw_tag = get_next_completion(h, q); 7028 while (raw_tag != FIFO_EMPTY) 7029 raw_tag = next_command(h, q); 7030 } 7031 return IRQ_HANDLED; 7032 } 7033 7034 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) 7035 { 7036 struct ctlr_info *h = queue_to_hba(queue); 7037 u32 raw_tag; 7038 u8 q = *(u8 *) queue; 7039 7040 if (ignore_bogus_interrupt(h)) 7041 return IRQ_NONE; 7042 7043 h->last_intr_timestamp = get_jiffies_64(); 7044 raw_tag = get_next_completion(h, q); 7045 while (raw_tag != FIFO_EMPTY) 7046 raw_tag = next_command(h, q); 7047 return IRQ_HANDLED; 7048 } 7049 7050 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) 7051 { 7052 struct ctlr_info *h = queue_to_hba((u8 *) queue); 7053 u32 raw_tag; 7054 u8 q = *(u8 *) queue; 7055 7056 if (interrupt_not_for_us(h)) 7057 return IRQ_NONE; 7058 h->last_intr_timestamp = get_jiffies_64(); 7059 while (interrupt_pending(h)) { 7060 raw_tag = get_next_completion(h, q); 7061 while (raw_tag != FIFO_EMPTY) { 7062 process_indexed_cmd(h, raw_tag); 7063 raw_tag = next_command(h, q); 7064 } 7065 } 7066 return IRQ_HANDLED; 7067 } 7068 7069 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) 7070 { 7071 struct ctlr_info *h = queue_to_hba(queue); 7072 u32 raw_tag; 7073 u8 q = *(u8 *) queue; 7074 7075 h->last_intr_timestamp = get_jiffies_64(); 7076 raw_tag = get_next_completion(h, q); 7077 while (raw_tag != FIFO_EMPTY) { 7078 process_indexed_cmd(h, raw_tag); 7079 raw_tag = next_command(h, q); 7080 } 7081 return IRQ_HANDLED; 7082 } 7083 7084 /* Send a message CDB to the firmware. Careful, this only works 7085 * in simple mode, not performant mode due to the tag lookup. 7086 * We only ever use this immediately after a controller reset. 7087 */ 7088 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 7089 unsigned char type) 7090 { 7091 struct Command { 7092 struct CommandListHeader CommandHeader; 7093 struct RequestBlock Request; 7094 struct ErrDescriptor ErrorDescriptor; 7095 }; 7096 struct Command *cmd; 7097 static const size_t cmd_sz = sizeof(*cmd) + 7098 sizeof(cmd->ErrorDescriptor); 7099 dma_addr_t paddr64; 7100 __le32 paddr32; 7101 u32 tag; 7102 void __iomem *vaddr; 7103 int i, err; 7104 7105 vaddr = pci_ioremap_bar(pdev, 0); 7106 if (vaddr == NULL) 7107 return -ENOMEM; 7108 7109 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 7110 * CCISS commands, so they must be allocated from the lower 4GiB of 7111 * memory. 7112 */ 7113 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 7114 if (err) { 7115 iounmap(vaddr); 7116 return err; 7117 } 7118 7119 cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL); 7120 if (cmd == NULL) { 7121 iounmap(vaddr); 7122 return -ENOMEM; 7123 } 7124 7125 /* This must fit, because of the 32-bit consistent DMA mask. Also, 7126 * although there's no guarantee, we assume that the address is at 7127 * least 4-byte aligned (most likely, it's page-aligned). 7128 */ 7129 paddr32 = cpu_to_le32(paddr64); 7130 7131 cmd->CommandHeader.ReplyQueue = 0; 7132 cmd->CommandHeader.SGList = 0; 7133 cmd->CommandHeader.SGTotal = cpu_to_le16(0); 7134 cmd->CommandHeader.tag = cpu_to_le64(paddr64); 7135 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 7136 7137 cmd->Request.CDBLen = 16; 7138 cmd->Request.type_attr_dir = 7139 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE); 7140 cmd->Request.Timeout = 0; /* Don't time out */ 7141 cmd->Request.CDB[0] = opcode; 7142 cmd->Request.CDB[1] = type; 7143 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 7144 cmd->ErrorDescriptor.Addr = 7145 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd))); 7146 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo)); 7147 7148 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET); 7149 7150 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 7151 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 7152 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64) 7153 break; 7154 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 7155 } 7156 7157 iounmap(vaddr); 7158 7159 /* we leak the DMA buffer here ... no choice since the controller could 7160 * still complete the command. 7161 */ 7162 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 7163 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 7164 opcode, type); 7165 return -ETIMEDOUT; 7166 } 7167 7168 dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64); 7169 7170 if (tag & HPSA_ERROR_BIT) { 7171 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 7172 opcode, type); 7173 return -EIO; 7174 } 7175 7176 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 7177 opcode, type); 7178 return 0; 7179 } 7180 7181 #define hpsa_noop(p) hpsa_message(p, 3, 0) 7182 7183 static int hpsa_controller_hard_reset(struct pci_dev *pdev, 7184 void __iomem *vaddr, u32 use_doorbell) 7185 { 7186 7187 if (use_doorbell) { 7188 /* For everything after the P600, the PCI power state method 7189 * of resetting the controller doesn't work, so we have this 7190 * other way using the doorbell register. 7191 */ 7192 dev_info(&pdev->dev, "using doorbell to reset controller\n"); 7193 writel(use_doorbell, vaddr + SA5_DOORBELL); 7194 7195 /* PMC hardware guys tell us we need a 10 second delay after 7196 * doorbell reset and before any attempt to talk to the board 7197 * at all to ensure that this actually works and doesn't fall 7198 * over in some weird corner cases. 7199 */ 7200 msleep(10000); 7201 } else { /* Try to do it the PCI power state way */ 7202 7203 /* Quoting from the Open CISS Specification: "The Power 7204 * Management Control/Status Register (CSR) controls the power 7205 * state of the device. The normal operating state is D0, 7206 * CSR=00h. The software off state is D3, CSR=03h. To reset 7207 * the controller, place the interface device in D3 then to D0, 7208 * this causes a secondary PCI reset which will reset the 7209 * controller." */ 7210 7211 int rc = 0; 7212 7213 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 7214 7215 /* enter the D3hot power management state */ 7216 rc = pci_set_power_state(pdev, PCI_D3hot); 7217 if (rc) 7218 return rc; 7219 7220 msleep(500); 7221 7222 /* enter the D0 power management state */ 7223 rc = pci_set_power_state(pdev, PCI_D0); 7224 if (rc) 7225 return rc; 7226 7227 /* 7228 * The P600 requires a small delay when changing states. 7229 * Otherwise we may think the board did not reset and we bail. 7230 * This for kdump only and is particular to the P600. 7231 */ 7232 msleep(500); 7233 } 7234 return 0; 7235 } 7236 7237 static void init_driver_version(char *driver_version, int len) 7238 { 7239 memset(driver_version, 0, len); 7240 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); 7241 } 7242 7243 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) 7244 { 7245 char *driver_version; 7246 int i, size = sizeof(cfgtable->driver_version); 7247 7248 driver_version = kmalloc(size, GFP_KERNEL); 7249 if (!driver_version) 7250 return -ENOMEM; 7251 7252 init_driver_version(driver_version, size); 7253 for (i = 0; i < size; i++) 7254 writeb(driver_version[i], &cfgtable->driver_version[i]); 7255 kfree(driver_version); 7256 return 0; 7257 } 7258 7259 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, 7260 unsigned char *driver_ver) 7261 { 7262 int i; 7263 7264 for (i = 0; i < sizeof(cfgtable->driver_version); i++) 7265 driver_ver[i] = readb(&cfgtable->driver_version[i]); 7266 } 7267 7268 static int controller_reset_failed(struct CfgTable __iomem *cfgtable) 7269 { 7270 7271 char *driver_ver, *old_driver_ver; 7272 int rc, size = sizeof(cfgtable->driver_version); 7273 7274 old_driver_ver = kmalloc_array(2, size, GFP_KERNEL); 7275 if (!old_driver_ver) 7276 return -ENOMEM; 7277 driver_ver = old_driver_ver + size; 7278 7279 /* After a reset, the 32 bytes of "driver version" in the cfgtable 7280 * should have been changed, otherwise we know the reset failed. 7281 */ 7282 init_driver_version(old_driver_ver, size); 7283 read_driver_ver_from_cfgtable(cfgtable, driver_ver); 7284 rc = !memcmp(driver_ver, old_driver_ver, size); 7285 kfree(old_driver_ver); 7286 return rc; 7287 } 7288 /* This does a hard reset of the controller using PCI power management 7289 * states or the using the doorbell register. 7290 */ 7291 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id) 7292 { 7293 u64 cfg_offset; 7294 u32 cfg_base_addr; 7295 u64 cfg_base_addr_index; 7296 void __iomem *vaddr; 7297 unsigned long paddr; 7298 u32 misc_fw_support; 7299 int rc; 7300 struct CfgTable __iomem *cfgtable; 7301 u32 use_doorbell; 7302 u16 command_register; 7303 7304 /* For controllers as old as the P600, this is very nearly 7305 * the same thing as 7306 * 7307 * pci_save_state(pci_dev); 7308 * pci_set_power_state(pci_dev, PCI_D3hot); 7309 * pci_set_power_state(pci_dev, PCI_D0); 7310 * pci_restore_state(pci_dev); 7311 * 7312 * For controllers newer than the P600, the pci power state 7313 * method of resetting doesn't work so we have another way 7314 * using the doorbell register. 7315 */ 7316 7317 if (!ctlr_is_resettable(board_id)) { 7318 dev_warn(&pdev->dev, "Controller not resettable\n"); 7319 return -ENODEV; 7320 } 7321 7322 /* if controller is soft- but not hard resettable... */ 7323 if (!ctlr_is_hard_resettable(board_id)) 7324 return -ENOTSUPP; /* try soft reset later. */ 7325 7326 /* Save the PCI command register */ 7327 pci_read_config_word(pdev, 4, &command_register); 7328 pci_save_state(pdev); 7329 7330 /* find the first memory BAR, so we can find the cfg table */ 7331 rc = hpsa_pci_find_memory_BAR(pdev, &paddr); 7332 if (rc) 7333 return rc; 7334 vaddr = remap_pci_mem(paddr, 0x250); 7335 if (!vaddr) 7336 return -ENOMEM; 7337 7338 /* find cfgtable in order to check if reset via doorbell is supported */ 7339 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, 7340 &cfg_base_addr_index, &cfg_offset); 7341 if (rc) 7342 goto unmap_vaddr; 7343 cfgtable = remap_pci_mem(pci_resource_start(pdev, 7344 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); 7345 if (!cfgtable) { 7346 rc = -ENOMEM; 7347 goto unmap_vaddr; 7348 } 7349 rc = write_driver_ver_to_cfgtable(cfgtable); 7350 if (rc) 7351 goto unmap_cfgtable; 7352 7353 /* If reset via doorbell register is supported, use that. 7354 * There are two such methods. Favor the newest method. 7355 */ 7356 misc_fw_support = readl(&cfgtable->misc_fw_support); 7357 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; 7358 if (use_doorbell) { 7359 use_doorbell = DOORBELL_CTLR_RESET2; 7360 } else { 7361 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; 7362 if (use_doorbell) { 7363 dev_warn(&pdev->dev, 7364 "Soft reset not supported. Firmware update is required.\n"); 7365 rc = -ENOTSUPP; /* try soft reset */ 7366 goto unmap_cfgtable; 7367 } 7368 } 7369 7370 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); 7371 if (rc) 7372 goto unmap_cfgtable; 7373 7374 pci_restore_state(pdev); 7375 pci_write_config_word(pdev, 4, command_register); 7376 7377 /* Some devices (notably the HP Smart Array 5i Controller) 7378 need a little pause here */ 7379 msleep(HPSA_POST_RESET_PAUSE_MSECS); 7380 7381 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); 7382 if (rc) { 7383 dev_warn(&pdev->dev, 7384 "Failed waiting for board to become ready after hard reset\n"); 7385 goto unmap_cfgtable; 7386 } 7387 7388 rc = controller_reset_failed(vaddr); 7389 if (rc < 0) 7390 goto unmap_cfgtable; 7391 if (rc) { 7392 dev_warn(&pdev->dev, "Unable to successfully reset " 7393 "controller. Will try soft reset.\n"); 7394 rc = -ENOTSUPP; 7395 } else { 7396 dev_info(&pdev->dev, "board ready after hard reset.\n"); 7397 } 7398 7399 unmap_cfgtable: 7400 iounmap(cfgtable); 7401 7402 unmap_vaddr: 7403 iounmap(vaddr); 7404 return rc; 7405 } 7406 7407 /* 7408 * We cannot read the structure directly, for portability we must use 7409 * the io functions. 7410 * This is for debug only. 7411 */ 7412 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb) 7413 { 7414 #ifdef HPSA_DEBUG 7415 int i; 7416 char temp_name[17]; 7417 7418 dev_info(dev, "Controller Configuration information\n"); 7419 dev_info(dev, "------------------------------------\n"); 7420 for (i = 0; i < 4; i++) 7421 temp_name[i] = readb(&(tb->Signature[i])); 7422 temp_name[4] = '\0'; 7423 dev_info(dev, " Signature = %s\n", temp_name); 7424 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 7425 dev_info(dev, " Transport methods supported = 0x%x\n", 7426 readl(&(tb->TransportSupport))); 7427 dev_info(dev, " Transport methods active = 0x%x\n", 7428 readl(&(tb->TransportActive))); 7429 dev_info(dev, " Requested transport Method = 0x%x\n", 7430 readl(&(tb->HostWrite.TransportRequest))); 7431 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 7432 readl(&(tb->HostWrite.CoalIntDelay))); 7433 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 7434 readl(&(tb->HostWrite.CoalIntCount))); 7435 dev_info(dev, " Max outstanding commands = %d\n", 7436 readl(&(tb->CmdsOutMax))); 7437 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 7438 for (i = 0; i < 16; i++) 7439 temp_name[i] = readb(&(tb->ServerName[i])); 7440 temp_name[16] = '\0'; 7441 dev_info(dev, " Server Name = %s\n", temp_name); 7442 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 7443 readl(&(tb->HeartBeat))); 7444 #endif /* HPSA_DEBUG */ 7445 } 7446 7447 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 7448 { 7449 int i, offset, mem_type, bar_type; 7450 7451 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 7452 return 0; 7453 offset = 0; 7454 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 7455 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 7456 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 7457 offset += 4; 7458 else { 7459 mem_type = pci_resource_flags(pdev, i) & 7460 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 7461 switch (mem_type) { 7462 case PCI_BASE_ADDRESS_MEM_TYPE_32: 7463 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 7464 offset += 4; /* 32 bit */ 7465 break; 7466 case PCI_BASE_ADDRESS_MEM_TYPE_64: 7467 offset += 8; 7468 break; 7469 default: /* reserved in PCI 2.2 */ 7470 dev_warn(&pdev->dev, 7471 "base address is invalid\n"); 7472 return -1; 7473 } 7474 } 7475 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 7476 return i + 1; 7477 } 7478 return -1; 7479 } 7480 7481 static void hpsa_disable_interrupt_mode(struct ctlr_info *h) 7482 { 7483 pci_free_irq_vectors(h->pdev); 7484 h->msix_vectors = 0; 7485 } 7486 7487 static void hpsa_setup_reply_map(struct ctlr_info *h) 7488 { 7489 const struct cpumask *mask; 7490 unsigned int queue, cpu; 7491 7492 for (queue = 0; queue < h->msix_vectors; queue++) { 7493 mask = pci_irq_get_affinity(h->pdev, queue); 7494 if (!mask) 7495 goto fallback; 7496 7497 for_each_cpu(cpu, mask) 7498 h->reply_map[cpu] = queue; 7499 } 7500 return; 7501 7502 fallback: 7503 for_each_possible_cpu(cpu) 7504 h->reply_map[cpu] = 0; 7505 } 7506 7507 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 7508 * controllers that are capable. If not, we use legacy INTx mode. 7509 */ 7510 static int hpsa_interrupt_mode(struct ctlr_info *h) 7511 { 7512 unsigned int flags = PCI_IRQ_LEGACY; 7513 int ret; 7514 7515 /* Some boards advertise MSI but don't really support it */ 7516 switch (h->board_id) { 7517 case 0x40700E11: 7518 case 0x40800E11: 7519 case 0x40820E11: 7520 case 0x40830E11: 7521 break; 7522 default: 7523 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES, 7524 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY); 7525 if (ret > 0) { 7526 h->msix_vectors = ret; 7527 return 0; 7528 } 7529 7530 flags |= PCI_IRQ_MSI; 7531 break; 7532 } 7533 7534 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags); 7535 if (ret < 0) 7536 return ret; 7537 return 0; 7538 } 7539 7540 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id, 7541 bool *legacy_board) 7542 { 7543 int i; 7544 u32 subsystem_vendor_id, subsystem_device_id; 7545 7546 subsystem_vendor_id = pdev->subsystem_vendor; 7547 subsystem_device_id = pdev->subsystem_device; 7548 *board_id = ((subsystem_device_id << 16) & 0xffff0000) | 7549 subsystem_vendor_id; 7550 7551 if (legacy_board) 7552 *legacy_board = false; 7553 for (i = 0; i < ARRAY_SIZE(products); i++) 7554 if (*board_id == products[i].board_id) { 7555 if (products[i].access != &SA5A_access && 7556 products[i].access != &SA5B_access) 7557 return i; 7558 dev_warn(&pdev->dev, 7559 "legacy board ID: 0x%08x\n", 7560 *board_id); 7561 if (legacy_board) 7562 *legacy_board = true; 7563 return i; 7564 } 7565 7566 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id); 7567 if (legacy_board) 7568 *legacy_board = true; 7569 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ 7570 } 7571 7572 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 7573 unsigned long *memory_bar) 7574 { 7575 int i; 7576 7577 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 7578 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 7579 /* addressing mode bits already removed */ 7580 *memory_bar = pci_resource_start(pdev, i); 7581 dev_dbg(&pdev->dev, "memory BAR = %lx\n", 7582 *memory_bar); 7583 return 0; 7584 } 7585 dev_warn(&pdev->dev, "no memory BAR found\n"); 7586 return -ENODEV; 7587 } 7588 7589 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, 7590 int wait_for_ready) 7591 { 7592 int i, iterations; 7593 u32 scratchpad; 7594 if (wait_for_ready) 7595 iterations = HPSA_BOARD_READY_ITERATIONS; 7596 else 7597 iterations = HPSA_BOARD_NOT_READY_ITERATIONS; 7598 7599 for (i = 0; i < iterations; i++) { 7600 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); 7601 if (wait_for_ready) { 7602 if (scratchpad == HPSA_FIRMWARE_READY) 7603 return 0; 7604 } else { 7605 if (scratchpad != HPSA_FIRMWARE_READY) 7606 return 0; 7607 } 7608 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 7609 } 7610 dev_warn(&pdev->dev, "board not ready, timed out.\n"); 7611 return -ENODEV; 7612 } 7613 7614 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, 7615 u32 *cfg_base_addr, u64 *cfg_base_addr_index, 7616 u64 *cfg_offset) 7617 { 7618 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); 7619 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); 7620 *cfg_base_addr &= (u32) 0x0000ffff; 7621 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); 7622 if (*cfg_base_addr_index == -1) { 7623 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 7624 return -ENODEV; 7625 } 7626 return 0; 7627 } 7628 7629 static void hpsa_free_cfgtables(struct ctlr_info *h) 7630 { 7631 if (h->transtable) { 7632 iounmap(h->transtable); 7633 h->transtable = NULL; 7634 } 7635 if (h->cfgtable) { 7636 iounmap(h->cfgtable); 7637 h->cfgtable = NULL; 7638 } 7639 } 7640 7641 /* Find and map CISS config table and transfer table 7642 + * several items must be unmapped (freed) later 7643 + * */ 7644 static int hpsa_find_cfgtables(struct ctlr_info *h) 7645 { 7646 u64 cfg_offset; 7647 u32 cfg_base_addr; 7648 u64 cfg_base_addr_index; 7649 u32 trans_offset; 7650 int rc; 7651 7652 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 7653 &cfg_base_addr_index, &cfg_offset); 7654 if (rc) 7655 return rc; 7656 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, 7657 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); 7658 if (!h->cfgtable) { 7659 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n"); 7660 return -ENOMEM; 7661 } 7662 rc = write_driver_ver_to_cfgtable(h->cfgtable); 7663 if (rc) 7664 return rc; 7665 /* Find performant mode table. */ 7666 trans_offset = readl(&h->cfgtable->TransMethodOffset); 7667 h->transtable = remap_pci_mem(pci_resource_start(h->pdev, 7668 cfg_base_addr_index)+cfg_offset+trans_offset, 7669 sizeof(*h->transtable)); 7670 if (!h->transtable) { 7671 dev_err(&h->pdev->dev, "Failed mapping transfer table\n"); 7672 hpsa_free_cfgtables(h); 7673 return -ENOMEM; 7674 } 7675 return 0; 7676 } 7677 7678 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) 7679 { 7680 #define MIN_MAX_COMMANDS 16 7681 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS); 7682 7683 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands); 7684 7685 /* Limit commands in memory limited kdump scenario. */ 7686 if (reset_devices && h->max_commands > 32) 7687 h->max_commands = 32; 7688 7689 if (h->max_commands < MIN_MAX_COMMANDS) { 7690 dev_warn(&h->pdev->dev, 7691 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n", 7692 h->max_commands, 7693 MIN_MAX_COMMANDS); 7694 h->max_commands = MIN_MAX_COMMANDS; 7695 } 7696 } 7697 7698 /* If the controller reports that the total max sg entries is greater than 512, 7699 * then we know that chained SG blocks work. (Original smart arrays did not 7700 * support chained SG blocks and would return zero for max sg entries.) 7701 */ 7702 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h) 7703 { 7704 return h->maxsgentries > 512; 7705 } 7706 7707 /* Interrogate the hardware for some limits: 7708 * max commands, max SG elements without chaining, and with chaining, 7709 * SG chain block size, etc. 7710 */ 7711 static void hpsa_find_board_params(struct ctlr_info *h) 7712 { 7713 hpsa_get_max_perf_mode_cmds(h); 7714 h->nr_cmds = h->max_commands; 7715 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); 7716 h->fw_support = readl(&(h->cfgtable->misc_fw_support)); 7717 if (hpsa_supports_chained_sg_blocks(h)) { 7718 /* Limit in-command s/g elements to 32 save dma'able memory. */ 7719 h->max_cmd_sg_entries = 32; 7720 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries; 7721 h->maxsgentries--; /* save one for chain pointer */ 7722 } else { 7723 /* 7724 * Original smart arrays supported at most 31 s/g entries 7725 * embedded inline in the command (trying to use more 7726 * would lock up the controller) 7727 */ 7728 h->max_cmd_sg_entries = 31; 7729 h->maxsgentries = 31; /* default to traditional values */ 7730 h->chainsize = 0; 7731 } 7732 7733 /* Find out what task management functions are supported and cache */ 7734 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); 7735 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags)) 7736 dev_warn(&h->pdev->dev, "Physical aborts not supported\n"); 7737 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) 7738 dev_warn(&h->pdev->dev, "Logical aborts not supported\n"); 7739 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)) 7740 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n"); 7741 } 7742 7743 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) 7744 { 7745 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { 7746 dev_err(&h->pdev->dev, "not a valid CISS config table\n"); 7747 return false; 7748 } 7749 return true; 7750 } 7751 7752 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) 7753 { 7754 u32 driver_support; 7755 7756 driver_support = readl(&(h->cfgtable->driver_support)); 7757 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 7758 #ifdef CONFIG_X86 7759 driver_support |= ENABLE_SCSI_PREFETCH; 7760 #endif 7761 driver_support |= ENABLE_UNIT_ATTN; 7762 writel(driver_support, &(h->cfgtable->driver_support)); 7763 } 7764 7765 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result 7766 * in a prefetch beyond physical memory. 7767 */ 7768 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) 7769 { 7770 u32 dma_prefetch; 7771 7772 if (h->board_id != 0x3225103C) 7773 return; 7774 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 7775 dma_prefetch |= 0x8000; 7776 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 7777 } 7778 7779 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) 7780 { 7781 int i; 7782 u32 doorbell_value; 7783 unsigned long flags; 7784 /* wait until the clear_event_notify bit 6 is cleared by controller. */ 7785 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) { 7786 spin_lock_irqsave(&h->lock, flags); 7787 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 7788 spin_unlock_irqrestore(&h->lock, flags); 7789 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) 7790 goto done; 7791 /* delay and try again */ 7792 msleep(CLEAR_EVENT_WAIT_INTERVAL); 7793 } 7794 return -ENODEV; 7795 done: 7796 return 0; 7797 } 7798 7799 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h) 7800 { 7801 int i; 7802 u32 doorbell_value; 7803 unsigned long flags; 7804 7805 /* under certain very rare conditions, this can take awhile. 7806 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 7807 * as we enter this code.) 7808 */ 7809 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) { 7810 if (h->remove_in_progress) 7811 goto done; 7812 spin_lock_irqsave(&h->lock, flags); 7813 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 7814 spin_unlock_irqrestore(&h->lock, flags); 7815 if (!(doorbell_value & CFGTBL_ChangeReq)) 7816 goto done; 7817 /* delay and try again */ 7818 msleep(MODE_CHANGE_WAIT_INTERVAL); 7819 } 7820 return -ENODEV; 7821 done: 7822 return 0; 7823 } 7824 7825 /* return -ENODEV or other reason on error, 0 on success */ 7826 static int hpsa_enter_simple_mode(struct ctlr_info *h) 7827 { 7828 u32 trans_support; 7829 7830 trans_support = readl(&(h->cfgtable->TransportSupport)); 7831 if (!(trans_support & SIMPLE_MODE)) 7832 return -ENOTSUPP; 7833 7834 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 7835 7836 /* Update the field, and then ring the doorbell */ 7837 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 7838 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); 7839 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 7840 if (hpsa_wait_for_mode_change_ack(h)) 7841 goto error; 7842 print_cfg_table(&h->pdev->dev, h->cfgtable); 7843 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) 7844 goto error; 7845 h->transMethod = CFGTBL_Trans_Simple; 7846 return 0; 7847 error: 7848 dev_err(&h->pdev->dev, "failed to enter simple mode\n"); 7849 return -ENODEV; 7850 } 7851 7852 /* free items allocated or mapped by hpsa_pci_init */ 7853 static void hpsa_free_pci_init(struct ctlr_info *h) 7854 { 7855 hpsa_free_cfgtables(h); /* pci_init 4 */ 7856 iounmap(h->vaddr); /* pci_init 3 */ 7857 h->vaddr = NULL; 7858 hpsa_disable_interrupt_mode(h); /* pci_init 2 */ 7859 /* 7860 * call pci_disable_device before pci_release_regions per 7861 * Documentation/driver-api/pci/pci.rst 7862 */ 7863 pci_disable_device(h->pdev); /* pci_init 1 */ 7864 pci_release_regions(h->pdev); /* pci_init 2 */ 7865 } 7866 7867 /* several items must be freed later */ 7868 static int hpsa_pci_init(struct ctlr_info *h) 7869 { 7870 int prod_index, err; 7871 bool legacy_board; 7872 7873 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board); 7874 if (prod_index < 0) 7875 return prod_index; 7876 h->product_name = products[prod_index].product_name; 7877 h->access = *(products[prod_index].access); 7878 h->legacy_board = legacy_board; 7879 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | 7880 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); 7881 7882 err = pci_enable_device(h->pdev); 7883 if (err) { 7884 dev_err(&h->pdev->dev, "failed to enable PCI device\n"); 7885 pci_disable_device(h->pdev); 7886 return err; 7887 } 7888 7889 err = pci_request_regions(h->pdev, HPSA); 7890 if (err) { 7891 dev_err(&h->pdev->dev, 7892 "failed to obtain PCI resources\n"); 7893 pci_disable_device(h->pdev); 7894 return err; 7895 } 7896 7897 pci_set_master(h->pdev); 7898 7899 err = hpsa_interrupt_mode(h); 7900 if (err) 7901 goto clean1; 7902 7903 /* setup mapping between CPU and reply queue */ 7904 hpsa_setup_reply_map(h); 7905 7906 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); 7907 if (err) 7908 goto clean2; /* intmode+region, pci */ 7909 h->vaddr = remap_pci_mem(h->paddr, 0x250); 7910 if (!h->vaddr) { 7911 dev_err(&h->pdev->dev, "failed to remap PCI mem\n"); 7912 err = -ENOMEM; 7913 goto clean2; /* intmode+region, pci */ 7914 } 7915 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 7916 if (err) 7917 goto clean3; /* vaddr, intmode+region, pci */ 7918 err = hpsa_find_cfgtables(h); 7919 if (err) 7920 goto clean3; /* vaddr, intmode+region, pci */ 7921 hpsa_find_board_params(h); 7922 7923 if (!hpsa_CISS_signature_present(h)) { 7924 err = -ENODEV; 7925 goto clean4; /* cfgtables, vaddr, intmode+region, pci */ 7926 } 7927 hpsa_set_driver_support_bits(h); 7928 hpsa_p600_dma_prefetch_quirk(h); 7929 err = hpsa_enter_simple_mode(h); 7930 if (err) 7931 goto clean4; /* cfgtables, vaddr, intmode+region, pci */ 7932 return 0; 7933 7934 clean4: /* cfgtables, vaddr, intmode+region, pci */ 7935 hpsa_free_cfgtables(h); 7936 clean3: /* vaddr, intmode+region, pci */ 7937 iounmap(h->vaddr); 7938 h->vaddr = NULL; 7939 clean2: /* intmode+region, pci */ 7940 hpsa_disable_interrupt_mode(h); 7941 clean1: 7942 /* 7943 * call pci_disable_device before pci_release_regions per 7944 * Documentation/driver-api/pci/pci.rst 7945 */ 7946 pci_disable_device(h->pdev); 7947 pci_release_regions(h->pdev); 7948 return err; 7949 } 7950 7951 static void hpsa_hba_inquiry(struct ctlr_info *h) 7952 { 7953 int rc; 7954 7955 #define HBA_INQUIRY_BYTE_COUNT 64 7956 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 7957 if (!h->hba_inquiry_data) 7958 return; 7959 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 7960 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 7961 if (rc != 0) { 7962 kfree(h->hba_inquiry_data); 7963 h->hba_inquiry_data = NULL; 7964 } 7965 } 7966 7967 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id) 7968 { 7969 int rc, i; 7970 void __iomem *vaddr; 7971 7972 if (!reset_devices) 7973 return 0; 7974 7975 /* kdump kernel is loading, we don't know in which state is 7976 * the pci interface. The dev->enable_cnt is equal zero 7977 * so we call enable+disable, wait a while and switch it on. 7978 */ 7979 rc = pci_enable_device(pdev); 7980 if (rc) { 7981 dev_warn(&pdev->dev, "Failed to enable PCI device\n"); 7982 return -ENODEV; 7983 } 7984 pci_disable_device(pdev); 7985 msleep(260); /* a randomly chosen number */ 7986 rc = pci_enable_device(pdev); 7987 if (rc) { 7988 dev_warn(&pdev->dev, "failed to enable device.\n"); 7989 return -ENODEV; 7990 } 7991 7992 pci_set_master(pdev); 7993 7994 vaddr = pci_ioremap_bar(pdev, 0); 7995 if (vaddr == NULL) { 7996 rc = -ENOMEM; 7997 goto out_disable; 7998 } 7999 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET); 8000 iounmap(vaddr); 8001 8002 /* Reset the controller with a PCI power-cycle or via doorbell */ 8003 rc = hpsa_kdump_hard_reset_controller(pdev, board_id); 8004 8005 /* -ENOTSUPP here means we cannot reset the controller 8006 * but it's already (and still) up and running in 8007 * "performant mode". Or, it might be 640x, which can't reset 8008 * due to concerns about shared bbwc between 6402/6404 pair. 8009 */ 8010 if (rc) 8011 goto out_disable; 8012 8013 /* Now try to get the controller to respond to a no-op */ 8014 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n"); 8015 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 8016 if (hpsa_noop(pdev) == 0) 8017 break; 8018 else 8019 dev_warn(&pdev->dev, "no-op failed%s\n", 8020 (i < 11 ? "; re-trying" : "")); 8021 } 8022 8023 out_disable: 8024 8025 pci_disable_device(pdev); 8026 return rc; 8027 } 8028 8029 static void hpsa_free_cmd_pool(struct ctlr_info *h) 8030 { 8031 kfree(h->cmd_pool_bits); 8032 h->cmd_pool_bits = NULL; 8033 if (h->cmd_pool) { 8034 dma_free_coherent(&h->pdev->dev, 8035 h->nr_cmds * sizeof(struct CommandList), 8036 h->cmd_pool, 8037 h->cmd_pool_dhandle); 8038 h->cmd_pool = NULL; 8039 h->cmd_pool_dhandle = 0; 8040 } 8041 if (h->errinfo_pool) { 8042 dma_free_coherent(&h->pdev->dev, 8043 h->nr_cmds * sizeof(struct ErrorInfo), 8044 h->errinfo_pool, 8045 h->errinfo_pool_dhandle); 8046 h->errinfo_pool = NULL; 8047 h->errinfo_pool_dhandle = 0; 8048 } 8049 } 8050 8051 static int hpsa_alloc_cmd_pool(struct ctlr_info *h) 8052 { 8053 h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG), 8054 sizeof(unsigned long), 8055 GFP_KERNEL); 8056 h->cmd_pool = dma_alloc_coherent(&h->pdev->dev, 8057 h->nr_cmds * sizeof(*h->cmd_pool), 8058 &h->cmd_pool_dhandle, GFP_KERNEL); 8059 h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev, 8060 h->nr_cmds * sizeof(*h->errinfo_pool), 8061 &h->errinfo_pool_dhandle, GFP_KERNEL); 8062 if ((h->cmd_pool_bits == NULL) 8063 || (h->cmd_pool == NULL) 8064 || (h->errinfo_pool == NULL)) { 8065 dev_err(&h->pdev->dev, "out of memory in %s", __func__); 8066 goto clean_up; 8067 } 8068 hpsa_preinitialize_commands(h); 8069 return 0; 8070 clean_up: 8071 hpsa_free_cmd_pool(h); 8072 return -ENOMEM; 8073 } 8074 8075 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */ 8076 static void hpsa_free_irqs(struct ctlr_info *h) 8077 { 8078 int i; 8079 int irq_vector = 0; 8080 8081 if (hpsa_simple_mode) 8082 irq_vector = h->intr_mode; 8083 8084 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) { 8085 /* Single reply queue, only one irq to free */ 8086 free_irq(pci_irq_vector(h->pdev, irq_vector), 8087 &h->q[h->intr_mode]); 8088 h->q[h->intr_mode] = 0; 8089 return; 8090 } 8091 8092 for (i = 0; i < h->msix_vectors; i++) { 8093 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]); 8094 h->q[i] = 0; 8095 } 8096 for (; i < MAX_REPLY_QUEUES; i++) 8097 h->q[i] = 0; 8098 } 8099 8100 /* returns 0 on success; cleans up and returns -Enn on error */ 8101 static int hpsa_request_irqs(struct ctlr_info *h, 8102 irqreturn_t (*msixhandler)(int, void *), 8103 irqreturn_t (*intxhandler)(int, void *)) 8104 { 8105 int rc, i; 8106 int irq_vector = 0; 8107 8108 if (hpsa_simple_mode) 8109 irq_vector = h->intr_mode; 8110 8111 /* 8112 * initialize h->q[x] = x so that interrupt handlers know which 8113 * queue to process. 8114 */ 8115 for (i = 0; i < MAX_REPLY_QUEUES; i++) 8116 h->q[i] = (u8) i; 8117 8118 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) { 8119 /* If performant mode and MSI-X, use multiple reply queues */ 8120 for (i = 0; i < h->msix_vectors; i++) { 8121 sprintf(h->intrname[i], "%s-msix%d", h->devname, i); 8122 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler, 8123 0, h->intrname[i], 8124 &h->q[i]); 8125 if (rc) { 8126 int j; 8127 8128 dev_err(&h->pdev->dev, 8129 "failed to get irq %d for %s\n", 8130 pci_irq_vector(h->pdev, i), h->devname); 8131 for (j = 0; j < i; j++) { 8132 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]); 8133 h->q[j] = 0; 8134 } 8135 for (; j < MAX_REPLY_QUEUES; j++) 8136 h->q[j] = 0; 8137 return rc; 8138 } 8139 } 8140 } else { 8141 /* Use single reply pool */ 8142 if (h->msix_vectors > 0 || h->pdev->msi_enabled) { 8143 sprintf(h->intrname[0], "%s-msi%s", h->devname, 8144 h->msix_vectors ? "x" : ""); 8145 rc = request_irq(pci_irq_vector(h->pdev, irq_vector), 8146 msixhandler, 0, 8147 h->intrname[0], 8148 &h->q[h->intr_mode]); 8149 } else { 8150 sprintf(h->intrname[h->intr_mode], 8151 "%s-intx", h->devname); 8152 rc = request_irq(pci_irq_vector(h->pdev, irq_vector), 8153 intxhandler, IRQF_SHARED, 8154 h->intrname[0], 8155 &h->q[h->intr_mode]); 8156 } 8157 } 8158 if (rc) { 8159 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n", 8160 pci_irq_vector(h->pdev, irq_vector), h->devname); 8161 hpsa_free_irqs(h); 8162 return -ENODEV; 8163 } 8164 return 0; 8165 } 8166 8167 static int hpsa_kdump_soft_reset(struct ctlr_info *h) 8168 { 8169 int rc; 8170 hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER); 8171 8172 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); 8173 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY); 8174 if (rc) { 8175 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); 8176 return rc; 8177 } 8178 8179 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); 8180 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 8181 if (rc) { 8182 dev_warn(&h->pdev->dev, "Board failed to become ready " 8183 "after soft reset.\n"); 8184 return rc; 8185 } 8186 8187 return 0; 8188 } 8189 8190 static void hpsa_free_reply_queues(struct ctlr_info *h) 8191 { 8192 int i; 8193 8194 for (i = 0; i < h->nreply_queues; i++) { 8195 if (!h->reply_queue[i].head) 8196 continue; 8197 dma_free_coherent(&h->pdev->dev, 8198 h->reply_queue_size, 8199 h->reply_queue[i].head, 8200 h->reply_queue[i].busaddr); 8201 h->reply_queue[i].head = NULL; 8202 h->reply_queue[i].busaddr = 0; 8203 } 8204 h->reply_queue_size = 0; 8205 } 8206 8207 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) 8208 { 8209 hpsa_free_performant_mode(h); /* init_one 7 */ 8210 hpsa_free_sg_chain_blocks(h); /* init_one 6 */ 8211 hpsa_free_cmd_pool(h); /* init_one 5 */ 8212 hpsa_free_irqs(h); /* init_one 4 */ 8213 scsi_host_put(h->scsi_host); /* init_one 3 */ 8214 h->scsi_host = NULL; /* init_one 3 */ 8215 hpsa_free_pci_init(h); /* init_one 2_5 */ 8216 free_percpu(h->lockup_detected); /* init_one 2 */ 8217 h->lockup_detected = NULL; /* init_one 2 */ 8218 if (h->resubmit_wq) { 8219 destroy_workqueue(h->resubmit_wq); /* init_one 1 */ 8220 h->resubmit_wq = NULL; 8221 } 8222 if (h->rescan_ctlr_wq) { 8223 destroy_workqueue(h->rescan_ctlr_wq); 8224 h->rescan_ctlr_wq = NULL; 8225 } 8226 if (h->monitor_ctlr_wq) { 8227 destroy_workqueue(h->monitor_ctlr_wq); 8228 h->monitor_ctlr_wq = NULL; 8229 } 8230 8231 kfree(h); /* init_one 1 */ 8232 } 8233 8234 /* Called when controller lockup detected. */ 8235 static void fail_all_outstanding_cmds(struct ctlr_info *h) 8236 { 8237 int i, refcount; 8238 struct CommandList *c; 8239 int failcount = 0; 8240 8241 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */ 8242 for (i = 0; i < h->nr_cmds; i++) { 8243 c = h->cmd_pool + i; 8244 refcount = atomic_inc_return(&c->refcount); 8245 if (refcount > 1) { 8246 c->err_info->CommandStatus = CMD_CTLR_LOCKUP; 8247 finish_cmd(c); 8248 atomic_dec(&h->commands_outstanding); 8249 failcount++; 8250 } 8251 cmd_free(h, c); 8252 } 8253 dev_warn(&h->pdev->dev, 8254 "failed %d commands in fail_all\n", failcount); 8255 } 8256 8257 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value) 8258 { 8259 int cpu; 8260 8261 for_each_online_cpu(cpu) { 8262 u32 *lockup_detected; 8263 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); 8264 *lockup_detected = value; 8265 } 8266 wmb(); /* be sure the per-cpu variables are out to memory */ 8267 } 8268 8269 static void controller_lockup_detected(struct ctlr_info *h) 8270 { 8271 unsigned long flags; 8272 u32 lockup_detected; 8273 8274 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8275 spin_lock_irqsave(&h->lock, flags); 8276 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); 8277 if (!lockup_detected) { 8278 /* no heartbeat, but controller gave us a zero. */ 8279 dev_warn(&h->pdev->dev, 8280 "lockup detected after %d but scratchpad register is zero\n", 8281 h->heartbeat_sample_interval / HZ); 8282 lockup_detected = 0xffffffff; 8283 } 8284 set_lockup_detected_for_all_cpus(h, lockup_detected); 8285 spin_unlock_irqrestore(&h->lock, flags); 8286 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n", 8287 lockup_detected, h->heartbeat_sample_interval / HZ); 8288 if (lockup_detected == 0xffff0000) { 8289 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n"); 8290 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL); 8291 } 8292 pci_disable_device(h->pdev); 8293 fail_all_outstanding_cmds(h); 8294 } 8295 8296 static int detect_controller_lockup(struct ctlr_info *h) 8297 { 8298 u64 now; 8299 u32 heartbeat; 8300 unsigned long flags; 8301 8302 now = get_jiffies_64(); 8303 /* If we've received an interrupt recently, we're ok. */ 8304 if (time_after64(h->last_intr_timestamp + 8305 (h->heartbeat_sample_interval), now)) 8306 return false; 8307 8308 /* 8309 * If we've already checked the heartbeat recently, we're ok. 8310 * This could happen if someone sends us a signal. We 8311 * otherwise don't care about signals in this thread. 8312 */ 8313 if (time_after64(h->last_heartbeat_timestamp + 8314 (h->heartbeat_sample_interval), now)) 8315 return false; 8316 8317 /* If heartbeat has not changed since we last looked, we're not ok. */ 8318 spin_lock_irqsave(&h->lock, flags); 8319 heartbeat = readl(&h->cfgtable->HeartBeat); 8320 spin_unlock_irqrestore(&h->lock, flags); 8321 if (h->last_heartbeat == heartbeat) { 8322 controller_lockup_detected(h); 8323 return true; 8324 } 8325 8326 /* We're ok. */ 8327 h->last_heartbeat = heartbeat; 8328 h->last_heartbeat_timestamp = now; 8329 return false; 8330 } 8331 8332 /* 8333 * Set ioaccel status for all ioaccel volumes. 8334 * 8335 * Called from monitor controller worker (hpsa_event_monitor_worker) 8336 * 8337 * A Volume (or Volumes that comprise an Array set) may be undergoing a 8338 * transformation, so we will be turning off ioaccel for all volumes that 8339 * make up the Array. 8340 */ 8341 static void hpsa_set_ioaccel_status(struct ctlr_info *h) 8342 { 8343 int rc; 8344 int i; 8345 u8 ioaccel_status; 8346 unsigned char *buf; 8347 struct hpsa_scsi_dev_t *device; 8348 8349 if (!h) 8350 return; 8351 8352 buf = kmalloc(64, GFP_KERNEL); 8353 if (!buf) 8354 return; 8355 8356 /* 8357 * Run through current device list used during I/O requests. 8358 */ 8359 for (i = 0; i < h->ndevices; i++) { 8360 int offload_to_be_enabled = 0; 8361 int offload_config = 0; 8362 8363 device = h->dev[i]; 8364 8365 if (!device) 8366 continue; 8367 if (!hpsa_vpd_page_supported(h, device->scsi3addr, 8368 HPSA_VPD_LV_IOACCEL_STATUS)) 8369 continue; 8370 8371 memset(buf, 0, 64); 8372 8373 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr, 8374 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, 8375 buf, 64); 8376 if (rc != 0) 8377 continue; 8378 8379 ioaccel_status = buf[IOACCEL_STATUS_BYTE]; 8380 8381 /* 8382 * Check if offload is still configured on 8383 */ 8384 offload_config = 8385 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); 8386 /* 8387 * If offload is configured on, check to see if ioaccel 8388 * needs to be enabled. 8389 */ 8390 if (offload_config) 8391 offload_to_be_enabled = 8392 !!(ioaccel_status & OFFLOAD_ENABLED_BIT); 8393 8394 /* 8395 * If ioaccel is to be re-enabled, re-enable later during the 8396 * scan operation so the driver can get a fresh raidmap 8397 * before turning ioaccel back on. 8398 */ 8399 if (offload_to_be_enabled) 8400 continue; 8401 8402 /* 8403 * Immediately turn off ioaccel for any volume the 8404 * controller tells us to. Some of the reasons could be: 8405 * transformation - change to the LVs of an Array. 8406 * degraded volume - component failure 8407 */ 8408 hpsa_turn_off_ioaccel_for_device(device); 8409 } 8410 8411 kfree(buf); 8412 } 8413 8414 static void hpsa_ack_ctlr_events(struct ctlr_info *h) 8415 { 8416 char *event_type; 8417 8418 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) 8419 return; 8420 8421 /* Ask the controller to clear the events we're handling. */ 8422 if ((h->transMethod & (CFGTBL_Trans_io_accel1 8423 | CFGTBL_Trans_io_accel2)) && 8424 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || 8425 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { 8426 8427 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) 8428 event_type = "state change"; 8429 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) 8430 event_type = "configuration change"; 8431 /* Stop sending new RAID offload reqs via the IO accelerator */ 8432 scsi_block_requests(h->scsi_host); 8433 hpsa_set_ioaccel_status(h); 8434 hpsa_drain_accel_commands(h); 8435 /* Set 'accelerator path config change' bit */ 8436 dev_warn(&h->pdev->dev, 8437 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", 8438 h->events, event_type); 8439 writel(h->events, &(h->cfgtable->clear_event_notify)); 8440 /* Set the "clear event notify field update" bit 6 */ 8441 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); 8442 /* Wait until ctlr clears 'clear event notify field', bit 6 */ 8443 hpsa_wait_for_clear_event_notify_ack(h); 8444 scsi_unblock_requests(h->scsi_host); 8445 } else { 8446 /* Acknowledge controller notification events. */ 8447 writel(h->events, &(h->cfgtable->clear_event_notify)); 8448 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); 8449 hpsa_wait_for_clear_event_notify_ack(h); 8450 } 8451 return; 8452 } 8453 8454 /* Check a register on the controller to see if there are configuration 8455 * changes (added/changed/removed logical drives, etc.) which mean that 8456 * we should rescan the controller for devices. 8457 * Also check flag for driver-initiated rescan. 8458 */ 8459 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h) 8460 { 8461 if (h->drv_req_rescan) { 8462 h->drv_req_rescan = 0; 8463 return 1; 8464 } 8465 8466 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) 8467 return 0; 8468 8469 h->events = readl(&(h->cfgtable->event_notify)); 8470 return h->events & RESCAN_REQUIRED_EVENT_BITS; 8471 } 8472 8473 /* 8474 * Check if any of the offline devices have become ready 8475 */ 8476 static int hpsa_offline_devices_ready(struct ctlr_info *h) 8477 { 8478 unsigned long flags; 8479 struct offline_device_entry *d; 8480 struct list_head *this, *tmp; 8481 8482 spin_lock_irqsave(&h->offline_device_lock, flags); 8483 list_for_each_safe(this, tmp, &h->offline_device_list) { 8484 d = list_entry(this, struct offline_device_entry, 8485 offline_list); 8486 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8487 if (!hpsa_volume_offline(h, d->scsi3addr)) { 8488 spin_lock_irqsave(&h->offline_device_lock, flags); 8489 list_del(&d->offline_list); 8490 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8491 return 1; 8492 } 8493 spin_lock_irqsave(&h->offline_device_lock, flags); 8494 } 8495 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8496 return 0; 8497 } 8498 8499 static int hpsa_luns_changed(struct ctlr_info *h) 8500 { 8501 int rc = 1; /* assume there are changes */ 8502 struct ReportLUNdata *logdev = NULL; 8503 8504 /* if we can't find out if lun data has changed, 8505 * assume that it has. 8506 */ 8507 8508 if (!h->lastlogicals) 8509 return rc; 8510 8511 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL); 8512 if (!logdev) 8513 return rc; 8514 8515 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) { 8516 dev_warn(&h->pdev->dev, 8517 "report luns failed, can't track lun changes.\n"); 8518 goto out; 8519 } 8520 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) { 8521 dev_info(&h->pdev->dev, 8522 "Lun changes detected.\n"); 8523 memcpy(h->lastlogicals, logdev, sizeof(*logdev)); 8524 goto out; 8525 } else 8526 rc = 0; /* no changes detected. */ 8527 out: 8528 kfree(logdev); 8529 return rc; 8530 } 8531 8532 static void hpsa_perform_rescan(struct ctlr_info *h) 8533 { 8534 struct Scsi_Host *sh = NULL; 8535 unsigned long flags; 8536 8537 /* 8538 * Do the scan after the reset 8539 */ 8540 spin_lock_irqsave(&h->reset_lock, flags); 8541 if (h->reset_in_progress) { 8542 h->drv_req_rescan = 1; 8543 spin_unlock_irqrestore(&h->reset_lock, flags); 8544 return; 8545 } 8546 spin_unlock_irqrestore(&h->reset_lock, flags); 8547 8548 sh = scsi_host_get(h->scsi_host); 8549 if (sh != NULL) { 8550 hpsa_scan_start(sh); 8551 scsi_host_put(sh); 8552 h->drv_req_rescan = 0; 8553 } 8554 } 8555 8556 /* 8557 * watch for controller events 8558 */ 8559 static void hpsa_event_monitor_worker(struct work_struct *work) 8560 { 8561 struct ctlr_info *h = container_of(to_delayed_work(work), 8562 struct ctlr_info, event_monitor_work); 8563 unsigned long flags; 8564 8565 spin_lock_irqsave(&h->lock, flags); 8566 if (h->remove_in_progress) { 8567 spin_unlock_irqrestore(&h->lock, flags); 8568 return; 8569 } 8570 spin_unlock_irqrestore(&h->lock, flags); 8571 8572 if (hpsa_ctlr_needs_rescan(h)) { 8573 hpsa_ack_ctlr_events(h); 8574 hpsa_perform_rescan(h); 8575 } 8576 8577 spin_lock_irqsave(&h->lock, flags); 8578 if (!h->remove_in_progress) 8579 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work, 8580 HPSA_EVENT_MONITOR_INTERVAL); 8581 spin_unlock_irqrestore(&h->lock, flags); 8582 } 8583 8584 static void hpsa_rescan_ctlr_worker(struct work_struct *work) 8585 { 8586 unsigned long flags; 8587 struct ctlr_info *h = container_of(to_delayed_work(work), 8588 struct ctlr_info, rescan_ctlr_work); 8589 8590 spin_lock_irqsave(&h->lock, flags); 8591 if (h->remove_in_progress) { 8592 spin_unlock_irqrestore(&h->lock, flags); 8593 return; 8594 } 8595 spin_unlock_irqrestore(&h->lock, flags); 8596 8597 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) { 8598 hpsa_perform_rescan(h); 8599 } else if (h->discovery_polling) { 8600 if (hpsa_luns_changed(h)) { 8601 dev_info(&h->pdev->dev, 8602 "driver discovery polling rescan.\n"); 8603 hpsa_perform_rescan(h); 8604 } 8605 } 8606 spin_lock_irqsave(&h->lock, flags); 8607 if (!h->remove_in_progress) 8608 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, 8609 h->heartbeat_sample_interval); 8610 spin_unlock_irqrestore(&h->lock, flags); 8611 } 8612 8613 static void hpsa_monitor_ctlr_worker(struct work_struct *work) 8614 { 8615 unsigned long flags; 8616 struct ctlr_info *h = container_of(to_delayed_work(work), 8617 struct ctlr_info, monitor_ctlr_work); 8618 8619 detect_controller_lockup(h); 8620 if (lockup_detected(h)) 8621 return; 8622 8623 spin_lock_irqsave(&h->lock, flags); 8624 if (!h->remove_in_progress) 8625 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work, 8626 h->heartbeat_sample_interval); 8627 spin_unlock_irqrestore(&h->lock, flags); 8628 } 8629 8630 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h, 8631 char *name) 8632 { 8633 struct workqueue_struct *wq = NULL; 8634 8635 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr); 8636 if (!wq) 8637 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name); 8638 8639 return wq; 8640 } 8641 8642 static void hpda_free_ctlr_info(struct ctlr_info *h) 8643 { 8644 kfree(h->reply_map); 8645 kfree(h); 8646 } 8647 8648 static struct ctlr_info *hpda_alloc_ctlr_info(void) 8649 { 8650 struct ctlr_info *h; 8651 8652 h = kzalloc(sizeof(*h), GFP_KERNEL); 8653 if (!h) 8654 return NULL; 8655 8656 h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL); 8657 if (!h->reply_map) { 8658 kfree(h); 8659 return NULL; 8660 } 8661 return h; 8662 } 8663 8664 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 8665 { 8666 int rc; 8667 struct ctlr_info *h; 8668 int try_soft_reset = 0; 8669 unsigned long flags; 8670 u32 board_id; 8671 8672 if (number_of_controllers == 0) 8673 printk(KERN_INFO DRIVER_NAME "\n"); 8674 8675 rc = hpsa_lookup_board_id(pdev, &board_id, NULL); 8676 if (rc < 0) { 8677 dev_warn(&pdev->dev, "Board ID not found\n"); 8678 return rc; 8679 } 8680 8681 rc = hpsa_init_reset_devices(pdev, board_id); 8682 if (rc) { 8683 if (rc != -ENOTSUPP) 8684 return rc; 8685 /* If the reset fails in a particular way (it has no way to do 8686 * a proper hard reset, so returns -ENOTSUPP) we can try to do 8687 * a soft reset once we get the controller configured up to the 8688 * point that it can accept a command. 8689 */ 8690 try_soft_reset = 1; 8691 rc = 0; 8692 } 8693 8694 reinit_after_soft_reset: 8695 8696 /* Command structures must be aligned on a 32-byte boundary because 8697 * the 5 lower bits of the address are used by the hardware. and by 8698 * the driver. See comments in hpsa.h for more info. 8699 */ 8700 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 8701 h = hpda_alloc_ctlr_info(); 8702 if (!h) { 8703 dev_err(&pdev->dev, "Failed to allocate controller head\n"); 8704 return -ENOMEM; 8705 } 8706 8707 h->pdev = pdev; 8708 8709 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; 8710 INIT_LIST_HEAD(&h->offline_device_list); 8711 spin_lock_init(&h->lock); 8712 spin_lock_init(&h->offline_device_lock); 8713 spin_lock_init(&h->scan_lock); 8714 spin_lock_init(&h->reset_lock); 8715 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS); 8716 8717 /* Allocate and clear per-cpu variable lockup_detected */ 8718 h->lockup_detected = alloc_percpu(u32); 8719 if (!h->lockup_detected) { 8720 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n"); 8721 rc = -ENOMEM; 8722 goto clean1; /* aer/h */ 8723 } 8724 set_lockup_detected_for_all_cpus(h, 0); 8725 8726 rc = hpsa_pci_init(h); 8727 if (rc) 8728 goto clean2; /* lu, aer/h */ 8729 8730 /* relies on h-> settings made by hpsa_pci_init, including 8731 * interrupt_mode h->intr */ 8732 rc = hpsa_scsi_host_alloc(h); 8733 if (rc) 8734 goto clean2_5; /* pci, lu, aer/h */ 8735 8736 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no); 8737 h->ctlr = number_of_controllers; 8738 number_of_controllers++; 8739 8740 /* configure PCI DMA stuff */ 8741 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 8742 if (rc != 0) { 8743 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 8744 if (rc != 0) { 8745 dev_err(&pdev->dev, "no suitable DMA available\n"); 8746 goto clean3; /* shost, pci, lu, aer/h */ 8747 } 8748 } 8749 8750 /* make sure the board interrupts are off */ 8751 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8752 8753 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx); 8754 if (rc) 8755 goto clean3; /* shost, pci, lu, aer/h */ 8756 rc = hpsa_alloc_cmd_pool(h); 8757 if (rc) 8758 goto clean4; /* irq, shost, pci, lu, aer/h */ 8759 rc = hpsa_alloc_sg_chain_blocks(h); 8760 if (rc) 8761 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */ 8762 init_waitqueue_head(&h->scan_wait_queue); 8763 init_waitqueue_head(&h->event_sync_wait_queue); 8764 mutex_init(&h->reset_mutex); 8765 h->scan_finished = 1; /* no scan currently in progress */ 8766 h->scan_waiting = 0; 8767 8768 pci_set_drvdata(pdev, h); 8769 h->ndevices = 0; 8770 8771 spin_lock_init(&h->devlock); 8772 rc = hpsa_put_ctlr_into_performant_mode(h); 8773 if (rc) 8774 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */ 8775 8776 /* create the resubmit workqueue */ 8777 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan"); 8778 if (!h->rescan_ctlr_wq) { 8779 rc = -ENOMEM; 8780 goto clean7; 8781 } 8782 8783 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit"); 8784 if (!h->resubmit_wq) { 8785 rc = -ENOMEM; 8786 goto clean7; /* aer/h */ 8787 } 8788 8789 h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor"); 8790 if (!h->monitor_ctlr_wq) { 8791 rc = -ENOMEM; 8792 goto clean7; 8793 } 8794 8795 /* 8796 * At this point, the controller is ready to take commands. 8797 * Now, if reset_devices and the hard reset didn't work, try 8798 * the soft reset and see if that works. 8799 */ 8800 if (try_soft_reset) { 8801 8802 /* This is kind of gross. We may or may not get a completion 8803 * from the soft reset command, and if we do, then the value 8804 * from the fifo may or may not be valid. So, we wait 10 secs 8805 * after the reset throwing away any completions we get during 8806 * that time. Unregister the interrupt handler and register 8807 * fake ones to scoop up any residual completions. 8808 */ 8809 spin_lock_irqsave(&h->lock, flags); 8810 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8811 spin_unlock_irqrestore(&h->lock, flags); 8812 hpsa_free_irqs(h); 8813 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions, 8814 hpsa_intx_discard_completions); 8815 if (rc) { 8816 dev_warn(&h->pdev->dev, 8817 "Failed to request_irq after soft reset.\n"); 8818 /* 8819 * cannot goto clean7 or free_irqs will be called 8820 * again. Instead, do its work 8821 */ 8822 hpsa_free_performant_mode(h); /* clean7 */ 8823 hpsa_free_sg_chain_blocks(h); /* clean6 */ 8824 hpsa_free_cmd_pool(h); /* clean5 */ 8825 /* 8826 * skip hpsa_free_irqs(h) clean4 since that 8827 * was just called before request_irqs failed 8828 */ 8829 goto clean3; 8830 } 8831 8832 rc = hpsa_kdump_soft_reset(h); 8833 if (rc) 8834 /* Neither hard nor soft reset worked, we're hosed. */ 8835 goto clean7; 8836 8837 dev_info(&h->pdev->dev, "Board READY.\n"); 8838 dev_info(&h->pdev->dev, 8839 "Waiting for stale completions to drain.\n"); 8840 h->access.set_intr_mask(h, HPSA_INTR_ON); 8841 msleep(10000); 8842 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8843 8844 rc = controller_reset_failed(h->cfgtable); 8845 if (rc) 8846 dev_info(&h->pdev->dev, 8847 "Soft reset appears to have failed.\n"); 8848 8849 /* since the controller's reset, we have to go back and re-init 8850 * everything. Easiest to just forget what we've done and do it 8851 * all over again. 8852 */ 8853 hpsa_undo_allocations_after_kdump_soft_reset(h); 8854 try_soft_reset = 0; 8855 if (rc) 8856 /* don't goto clean, we already unallocated */ 8857 return -ENODEV; 8858 8859 goto reinit_after_soft_reset; 8860 } 8861 8862 /* Enable Accelerated IO path at driver layer */ 8863 h->acciopath_status = 1; 8864 /* Disable discovery polling.*/ 8865 h->discovery_polling = 0; 8866 8867 8868 /* Turn the interrupts on so we can service requests */ 8869 h->access.set_intr_mask(h, HPSA_INTR_ON); 8870 8871 hpsa_hba_inquiry(h); 8872 8873 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL); 8874 if (!h->lastlogicals) 8875 dev_info(&h->pdev->dev, 8876 "Can't track change to report lun data\n"); 8877 8878 /* hook into SCSI subsystem */ 8879 rc = hpsa_scsi_add_host(h); 8880 if (rc) 8881 goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8882 8883 /* Monitor the controller for firmware lockups */ 8884 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 8885 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); 8886 schedule_delayed_work(&h->monitor_ctlr_work, 8887 h->heartbeat_sample_interval); 8888 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker); 8889 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, 8890 h->heartbeat_sample_interval); 8891 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker); 8892 schedule_delayed_work(&h->event_monitor_work, 8893 HPSA_EVENT_MONITOR_INTERVAL); 8894 return 0; 8895 8896 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8897 kfree(h->lastlogicals); 8898 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8899 hpsa_free_performant_mode(h); 8900 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8901 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */ 8902 hpsa_free_sg_chain_blocks(h); 8903 clean5: /* cmd, irq, shost, pci, lu, aer/h */ 8904 hpsa_free_cmd_pool(h); 8905 clean4: /* irq, shost, pci, lu, aer/h */ 8906 hpsa_free_irqs(h); 8907 clean3: /* shost, pci, lu, aer/h */ 8908 scsi_host_put(h->scsi_host); 8909 h->scsi_host = NULL; 8910 clean2_5: /* pci, lu, aer/h */ 8911 hpsa_free_pci_init(h); 8912 clean2: /* lu, aer/h */ 8913 if (h->lockup_detected) { 8914 free_percpu(h->lockup_detected); 8915 h->lockup_detected = NULL; 8916 } 8917 clean1: /* wq/aer/h */ 8918 if (h->resubmit_wq) { 8919 destroy_workqueue(h->resubmit_wq); 8920 h->resubmit_wq = NULL; 8921 } 8922 if (h->rescan_ctlr_wq) { 8923 destroy_workqueue(h->rescan_ctlr_wq); 8924 h->rescan_ctlr_wq = NULL; 8925 } 8926 if (h->monitor_ctlr_wq) { 8927 destroy_workqueue(h->monitor_ctlr_wq); 8928 h->monitor_ctlr_wq = NULL; 8929 } 8930 kfree(h); 8931 return rc; 8932 } 8933 8934 static void hpsa_flush_cache(struct ctlr_info *h) 8935 { 8936 char *flush_buf; 8937 struct CommandList *c; 8938 int rc; 8939 8940 if (unlikely(lockup_detected(h))) 8941 return; 8942 flush_buf = kzalloc(4, GFP_KERNEL); 8943 if (!flush_buf) 8944 return; 8945 8946 c = cmd_alloc(h); 8947 8948 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 8949 RAID_CTLR_LUNID, TYPE_CMD)) { 8950 goto out; 8951 } 8952 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE, 8953 DEFAULT_TIMEOUT); 8954 if (rc) 8955 goto out; 8956 if (c->err_info->CommandStatus != 0) 8957 out: 8958 dev_warn(&h->pdev->dev, 8959 "error flushing cache on controller\n"); 8960 cmd_free(h, c); 8961 kfree(flush_buf); 8962 } 8963 8964 /* Make controller gather fresh report lun data each time we 8965 * send down a report luns request 8966 */ 8967 static void hpsa_disable_rld_caching(struct ctlr_info *h) 8968 { 8969 u32 *options; 8970 struct CommandList *c; 8971 int rc; 8972 8973 /* Don't bother trying to set diag options if locked up */ 8974 if (unlikely(h->lockup_detected)) 8975 return; 8976 8977 options = kzalloc(sizeof(*options), GFP_KERNEL); 8978 if (!options) 8979 return; 8980 8981 c = cmd_alloc(h); 8982 8983 /* first, get the current diag options settings */ 8984 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, 8985 RAID_CTLR_LUNID, TYPE_CMD)) 8986 goto errout; 8987 8988 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 8989 NO_TIMEOUT); 8990 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 8991 goto errout; 8992 8993 /* Now, set the bit for disabling the RLD caching */ 8994 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING; 8995 8996 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0, 8997 RAID_CTLR_LUNID, TYPE_CMD)) 8998 goto errout; 8999 9000 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE, 9001 NO_TIMEOUT); 9002 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 9003 goto errout; 9004 9005 /* Now verify that it got set: */ 9006 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, 9007 RAID_CTLR_LUNID, TYPE_CMD)) 9008 goto errout; 9009 9010 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 9011 NO_TIMEOUT); 9012 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 9013 goto errout; 9014 9015 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING) 9016 goto out; 9017 9018 errout: 9019 dev_err(&h->pdev->dev, 9020 "Error: failed to disable report lun data caching.\n"); 9021 out: 9022 cmd_free(h, c); 9023 kfree(options); 9024 } 9025 9026 static void __hpsa_shutdown(struct pci_dev *pdev) 9027 { 9028 struct ctlr_info *h; 9029 9030 h = pci_get_drvdata(pdev); 9031 /* Turn board interrupts off and send the flush cache command 9032 * sendcmd will turn off interrupt, and send the flush... 9033 * To write all data in the battery backed cache to disks 9034 */ 9035 hpsa_flush_cache(h); 9036 h->access.set_intr_mask(h, HPSA_INTR_OFF); 9037 hpsa_free_irqs(h); /* init_one 4 */ 9038 hpsa_disable_interrupt_mode(h); /* pci_init 2 */ 9039 } 9040 9041 static void hpsa_shutdown(struct pci_dev *pdev) 9042 { 9043 __hpsa_shutdown(pdev); 9044 pci_disable_device(pdev); 9045 } 9046 9047 static void hpsa_free_device_info(struct ctlr_info *h) 9048 { 9049 int i; 9050 9051 for (i = 0; i < h->ndevices; i++) { 9052 kfree(h->dev[i]); 9053 h->dev[i] = NULL; 9054 } 9055 } 9056 9057 static void hpsa_remove_one(struct pci_dev *pdev) 9058 { 9059 struct ctlr_info *h; 9060 unsigned long flags; 9061 9062 if (pci_get_drvdata(pdev) == NULL) { 9063 dev_err(&pdev->dev, "unable to remove device\n"); 9064 return; 9065 } 9066 h = pci_get_drvdata(pdev); 9067 9068 /* Get rid of any controller monitoring work items */ 9069 spin_lock_irqsave(&h->lock, flags); 9070 h->remove_in_progress = 1; 9071 spin_unlock_irqrestore(&h->lock, flags); 9072 cancel_delayed_work_sync(&h->monitor_ctlr_work); 9073 cancel_delayed_work_sync(&h->rescan_ctlr_work); 9074 cancel_delayed_work_sync(&h->event_monitor_work); 9075 destroy_workqueue(h->rescan_ctlr_wq); 9076 destroy_workqueue(h->resubmit_wq); 9077 destroy_workqueue(h->monitor_ctlr_wq); 9078 9079 hpsa_delete_sas_host(h); 9080 9081 /* 9082 * Call before disabling interrupts. 9083 * scsi_remove_host can trigger I/O operations especially 9084 * when multipath is enabled. There can be SYNCHRONIZE CACHE 9085 * operations which cannot complete and will hang the system. 9086 */ 9087 if (h->scsi_host) 9088 scsi_remove_host(h->scsi_host); /* init_one 8 */ 9089 /* includes hpsa_free_irqs - init_one 4 */ 9090 /* includes hpsa_disable_interrupt_mode - pci_init 2 */ 9091 __hpsa_shutdown(pdev); 9092 9093 hpsa_free_device_info(h); /* scan */ 9094 9095 kfree(h->hba_inquiry_data); /* init_one 10 */ 9096 h->hba_inquiry_data = NULL; /* init_one 10 */ 9097 hpsa_free_ioaccel2_sg_chain_blocks(h); 9098 hpsa_free_performant_mode(h); /* init_one 7 */ 9099 hpsa_free_sg_chain_blocks(h); /* init_one 6 */ 9100 hpsa_free_cmd_pool(h); /* init_one 5 */ 9101 kfree(h->lastlogicals); 9102 9103 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */ 9104 9105 scsi_host_put(h->scsi_host); /* init_one 3 */ 9106 h->scsi_host = NULL; /* init_one 3 */ 9107 9108 /* includes hpsa_disable_interrupt_mode - pci_init 2 */ 9109 hpsa_free_pci_init(h); /* init_one 2.5 */ 9110 9111 free_percpu(h->lockup_detected); /* init_one 2 */ 9112 h->lockup_detected = NULL; /* init_one 2 */ 9113 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */ 9114 9115 hpda_free_ctlr_info(h); /* init_one 1 */ 9116 } 9117 9118 static int __maybe_unused hpsa_suspend( 9119 __attribute__((unused)) struct device *dev) 9120 { 9121 return -ENOSYS; 9122 } 9123 9124 static int __maybe_unused hpsa_resume 9125 (__attribute__((unused)) struct device *dev) 9126 { 9127 return -ENOSYS; 9128 } 9129 9130 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume); 9131 9132 static struct pci_driver hpsa_pci_driver = { 9133 .name = HPSA, 9134 .probe = hpsa_init_one, 9135 .remove = hpsa_remove_one, 9136 .id_table = hpsa_pci_device_id, /* id_table */ 9137 .shutdown = hpsa_shutdown, 9138 .driver.pm = &hpsa_pm_ops, 9139 }; 9140 9141 /* Fill in bucket_map[], given nsgs (the max number of 9142 * scatter gather elements supported) and bucket[], 9143 * which is an array of 8 integers. The bucket[] array 9144 * contains 8 different DMA transfer sizes (in 16 9145 * byte increments) which the controller uses to fetch 9146 * commands. This function fills in bucket_map[], which 9147 * maps a given number of scatter gather elements to one of 9148 * the 8 DMA transfer sizes. The point of it is to allow the 9149 * controller to only do as much DMA as needed to fetch the 9150 * command, with the DMA transfer size encoded in the lower 9151 * bits of the command address. 9152 */ 9153 static void calc_bucket_map(int bucket[], int num_buckets, 9154 int nsgs, int min_blocks, u32 *bucket_map) 9155 { 9156 int i, j, b, size; 9157 9158 /* Note, bucket_map must have nsgs+1 entries. */ 9159 for (i = 0; i <= nsgs; i++) { 9160 /* Compute size of a command with i SG entries */ 9161 size = i + min_blocks; 9162 b = num_buckets; /* Assume the biggest bucket */ 9163 /* Find the bucket that is just big enough */ 9164 for (j = 0; j < num_buckets; j++) { 9165 if (bucket[j] >= size) { 9166 b = j; 9167 break; 9168 } 9169 } 9170 /* for a command with i SG entries, use bucket b. */ 9171 bucket_map[i] = b; 9172 } 9173 } 9174 9175 /* 9176 * return -ENODEV on err, 0 on success (or no action) 9177 * allocates numerous items that must be freed later 9178 */ 9179 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) 9180 { 9181 int i; 9182 unsigned long register_value; 9183 unsigned long transMethod = CFGTBL_Trans_Performant | 9184 (trans_support & CFGTBL_Trans_use_short_tags) | 9185 CFGTBL_Trans_enable_directed_msix | 9186 (trans_support & (CFGTBL_Trans_io_accel1 | 9187 CFGTBL_Trans_io_accel2)); 9188 struct access_method access = SA5_performant_access; 9189 9190 /* This is a bit complicated. There are 8 registers on 9191 * the controller which we write to to tell it 8 different 9192 * sizes of commands which there may be. It's a way of 9193 * reducing the DMA done to fetch each command. Encoded into 9194 * each command's tag are 3 bits which communicate to the controller 9195 * which of the eight sizes that command fits within. The size of 9196 * each command depends on how many scatter gather entries there are. 9197 * Each SG entry requires 16 bytes. The eight registers are programmed 9198 * with the number of 16-byte blocks a command of that size requires. 9199 * The smallest command possible requires 5 such 16 byte blocks. 9200 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte 9201 * blocks. Note, this only extends to the SG entries contained 9202 * within the command block, and does not extend to chained blocks 9203 * of SG elements. bft[] contains the eight values we write to 9204 * the registers. They are not evenly distributed, but have more 9205 * sizes for small commands, and fewer sizes for larger commands. 9206 */ 9207 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; 9208 #define MIN_IOACCEL2_BFT_ENTRY 5 9209 #define HPSA_IOACCEL2_HEADER_SZ 4 9210 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12, 9211 13, 14, 15, 16, 17, 18, 19, 9212 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES}; 9213 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16); 9214 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8); 9215 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) > 9216 16 * MIN_IOACCEL2_BFT_ENTRY); 9217 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16); 9218 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); 9219 /* 5 = 1 s/g entry or 4k 9220 * 6 = 2 s/g entry or 8k 9221 * 8 = 4 s/g entry or 16k 9222 * 10 = 6 s/g entry or 24k 9223 */ 9224 9225 /* If the controller supports either ioaccel method then 9226 * we can also use the RAID stack submit path that does not 9227 * perform the superfluous readl() after each command submission. 9228 */ 9229 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) 9230 access = SA5_performant_access_no_read; 9231 9232 /* Controller spec: zero out this buffer. */ 9233 for (i = 0; i < h->nreply_queues; i++) 9234 memset(h->reply_queue[i].head, 0, h->reply_queue_size); 9235 9236 bft[7] = SG_ENTRIES_IN_CMD + 4; 9237 calc_bucket_map(bft, ARRAY_SIZE(bft), 9238 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); 9239 for (i = 0; i < 8; i++) 9240 writel(bft[i], &h->transtable->BlockFetch[i]); 9241 9242 /* size of controller ring buffer */ 9243 writel(h->max_commands, &h->transtable->RepQSize); 9244 writel(h->nreply_queues, &h->transtable->RepQCount); 9245 writel(0, &h->transtable->RepQCtrAddrLow32); 9246 writel(0, &h->transtable->RepQCtrAddrHigh32); 9247 9248 for (i = 0; i < h->nreply_queues; i++) { 9249 writel(0, &h->transtable->RepQAddr[i].upper); 9250 writel(h->reply_queue[i].busaddr, 9251 &h->transtable->RepQAddr[i].lower); 9252 } 9253 9254 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); 9255 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); 9256 /* 9257 * enable outbound interrupt coalescing in accelerator mode; 9258 */ 9259 if (trans_support & CFGTBL_Trans_io_accel1) { 9260 access = SA5_ioaccel_mode1_access; 9261 writel(10, &h->cfgtable->HostWrite.CoalIntDelay); 9262 writel(4, &h->cfgtable->HostWrite.CoalIntCount); 9263 } else 9264 if (trans_support & CFGTBL_Trans_io_accel2) 9265 access = SA5_ioaccel_mode2_access; 9266 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 9267 if (hpsa_wait_for_mode_change_ack(h)) { 9268 dev_err(&h->pdev->dev, 9269 "performant mode problem - doorbell timeout\n"); 9270 return -ENODEV; 9271 } 9272 register_value = readl(&(h->cfgtable->TransportActive)); 9273 if (!(register_value & CFGTBL_Trans_Performant)) { 9274 dev_err(&h->pdev->dev, 9275 "performant mode problem - transport not active\n"); 9276 return -ENODEV; 9277 } 9278 /* Change the access methods to the performant access methods */ 9279 h->access = access; 9280 h->transMethod = transMethod; 9281 9282 if (!((trans_support & CFGTBL_Trans_io_accel1) || 9283 (trans_support & CFGTBL_Trans_io_accel2))) 9284 return 0; 9285 9286 if (trans_support & CFGTBL_Trans_io_accel1) { 9287 /* Set up I/O accelerator mode */ 9288 for (i = 0; i < h->nreply_queues; i++) { 9289 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); 9290 h->reply_queue[i].current_entry = 9291 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); 9292 } 9293 bft[7] = h->ioaccel_maxsg + 8; 9294 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, 9295 h->ioaccel1_blockFetchTable); 9296 9297 /* initialize all reply queue entries to unused */ 9298 for (i = 0; i < h->nreply_queues; i++) 9299 memset(h->reply_queue[i].head, 9300 (u8) IOACCEL_MODE1_REPLY_UNUSED, 9301 h->reply_queue_size); 9302 9303 /* set all the constant fields in the accelerator command 9304 * frames once at init time to save CPU cycles later. 9305 */ 9306 for (i = 0; i < h->nr_cmds; i++) { 9307 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; 9308 9309 cp->function = IOACCEL1_FUNCTION_SCSIIO; 9310 cp->err_info = (u32) (h->errinfo_pool_dhandle + 9311 (i * sizeof(struct ErrorInfo))); 9312 cp->err_info_len = sizeof(struct ErrorInfo); 9313 cp->sgl_offset = IOACCEL1_SGLOFFSET; 9314 cp->host_context_flags = 9315 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT); 9316 cp->timeout_sec = 0; 9317 cp->ReplyQueue = 0; 9318 cp->tag = 9319 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT)); 9320 cp->host_addr = 9321 cpu_to_le64(h->ioaccel_cmd_pool_dhandle + 9322 (i * sizeof(struct io_accel1_cmd))); 9323 } 9324 } else if (trans_support & CFGTBL_Trans_io_accel2) { 9325 u64 cfg_offset, cfg_base_addr_index; 9326 u32 bft2_offset, cfg_base_addr; 9327 9328 hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 9329 &cfg_base_addr_index, &cfg_offset); 9330 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64); 9331 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ; 9332 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg, 9333 4, h->ioaccel2_blockFetchTable); 9334 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset); 9335 BUILD_BUG_ON(offsetof(struct CfgTable, 9336 io_accel_request_size_offset) != 0xb8); 9337 h->ioaccel2_bft2_regs = 9338 remap_pci_mem(pci_resource_start(h->pdev, 9339 cfg_base_addr_index) + 9340 cfg_offset + bft2_offset, 9341 ARRAY_SIZE(bft2) * 9342 sizeof(*h->ioaccel2_bft2_regs)); 9343 for (i = 0; i < ARRAY_SIZE(bft2); i++) 9344 writel(bft2[i], &h->ioaccel2_bft2_regs[i]); 9345 } 9346 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 9347 if (hpsa_wait_for_mode_change_ack(h)) { 9348 dev_err(&h->pdev->dev, 9349 "performant mode problem - enabling ioaccel mode\n"); 9350 return -ENODEV; 9351 } 9352 return 0; 9353 } 9354 9355 /* Free ioaccel1 mode command blocks and block fetch table */ 9356 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h) 9357 { 9358 if (h->ioaccel_cmd_pool) { 9359 dma_free_coherent(&h->pdev->dev, 9360 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), 9361 h->ioaccel_cmd_pool, 9362 h->ioaccel_cmd_pool_dhandle); 9363 h->ioaccel_cmd_pool = NULL; 9364 h->ioaccel_cmd_pool_dhandle = 0; 9365 } 9366 kfree(h->ioaccel1_blockFetchTable); 9367 h->ioaccel1_blockFetchTable = NULL; 9368 } 9369 9370 /* Allocate ioaccel1 mode command blocks and block fetch table */ 9371 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h) 9372 { 9373 h->ioaccel_maxsg = 9374 readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); 9375 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) 9376 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; 9377 9378 /* Command structures must be aligned on a 128-byte boundary 9379 * because the 7 lower bits of the address are used by the 9380 * hardware. 9381 */ 9382 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % 9383 IOACCEL1_COMMANDLIST_ALIGNMENT); 9384 h->ioaccel_cmd_pool = 9385 dma_alloc_coherent(&h->pdev->dev, 9386 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), 9387 &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL); 9388 9389 h->ioaccel1_blockFetchTable = 9390 kmalloc(((h->ioaccel_maxsg + 1) * 9391 sizeof(u32)), GFP_KERNEL); 9392 9393 if ((h->ioaccel_cmd_pool == NULL) || 9394 (h->ioaccel1_blockFetchTable == NULL)) 9395 goto clean_up; 9396 9397 memset(h->ioaccel_cmd_pool, 0, 9398 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); 9399 return 0; 9400 9401 clean_up: 9402 hpsa_free_ioaccel1_cmd_and_bft(h); 9403 return -ENOMEM; 9404 } 9405 9406 /* Free ioaccel2 mode command blocks and block fetch table */ 9407 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h) 9408 { 9409 hpsa_free_ioaccel2_sg_chain_blocks(h); 9410 9411 if (h->ioaccel2_cmd_pool) { 9412 dma_free_coherent(&h->pdev->dev, 9413 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 9414 h->ioaccel2_cmd_pool, 9415 h->ioaccel2_cmd_pool_dhandle); 9416 h->ioaccel2_cmd_pool = NULL; 9417 h->ioaccel2_cmd_pool_dhandle = 0; 9418 } 9419 kfree(h->ioaccel2_blockFetchTable); 9420 h->ioaccel2_blockFetchTable = NULL; 9421 } 9422 9423 /* Allocate ioaccel2 mode command blocks and block fetch table */ 9424 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h) 9425 { 9426 int rc; 9427 9428 /* Allocate ioaccel2 mode command blocks and block fetch table */ 9429 9430 h->ioaccel_maxsg = 9431 readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); 9432 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES) 9433 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES; 9434 9435 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) % 9436 IOACCEL2_COMMANDLIST_ALIGNMENT); 9437 h->ioaccel2_cmd_pool = 9438 dma_alloc_coherent(&h->pdev->dev, 9439 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 9440 &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL); 9441 9442 h->ioaccel2_blockFetchTable = 9443 kmalloc(((h->ioaccel_maxsg + 1) * 9444 sizeof(u32)), GFP_KERNEL); 9445 9446 if ((h->ioaccel2_cmd_pool == NULL) || 9447 (h->ioaccel2_blockFetchTable == NULL)) { 9448 rc = -ENOMEM; 9449 goto clean_up; 9450 } 9451 9452 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h); 9453 if (rc) 9454 goto clean_up; 9455 9456 memset(h->ioaccel2_cmd_pool, 0, 9457 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool)); 9458 return 0; 9459 9460 clean_up: 9461 hpsa_free_ioaccel2_cmd_and_bft(h); 9462 return rc; 9463 } 9464 9465 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */ 9466 static void hpsa_free_performant_mode(struct ctlr_info *h) 9467 { 9468 kfree(h->blockFetchTable); 9469 h->blockFetchTable = NULL; 9470 hpsa_free_reply_queues(h); 9471 hpsa_free_ioaccel1_cmd_and_bft(h); 9472 hpsa_free_ioaccel2_cmd_and_bft(h); 9473 } 9474 9475 /* return -ENODEV on error, 0 on success (or no action) 9476 * allocates numerous items that must be freed later 9477 */ 9478 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 9479 { 9480 u32 trans_support; 9481 unsigned long transMethod = CFGTBL_Trans_Performant | 9482 CFGTBL_Trans_use_short_tags; 9483 int i, rc; 9484 9485 if (hpsa_simple_mode) 9486 return 0; 9487 9488 trans_support = readl(&(h->cfgtable->TransportSupport)); 9489 if (!(trans_support & PERFORMANT_MODE)) 9490 return 0; 9491 9492 /* Check for I/O accelerator mode support */ 9493 if (trans_support & CFGTBL_Trans_io_accel1) { 9494 transMethod |= CFGTBL_Trans_io_accel1 | 9495 CFGTBL_Trans_enable_directed_msix; 9496 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h); 9497 if (rc) 9498 return rc; 9499 } else if (trans_support & CFGTBL_Trans_io_accel2) { 9500 transMethod |= CFGTBL_Trans_io_accel2 | 9501 CFGTBL_Trans_enable_directed_msix; 9502 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h); 9503 if (rc) 9504 return rc; 9505 } 9506 9507 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1; 9508 hpsa_get_max_perf_mode_cmds(h); 9509 /* Performant mode ring buffer and supporting data structures */ 9510 h->reply_queue_size = h->max_commands * sizeof(u64); 9511 9512 for (i = 0; i < h->nreply_queues; i++) { 9513 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev, 9514 h->reply_queue_size, 9515 &h->reply_queue[i].busaddr, 9516 GFP_KERNEL); 9517 if (!h->reply_queue[i].head) { 9518 rc = -ENOMEM; 9519 goto clean1; /* rq, ioaccel */ 9520 } 9521 h->reply_queue[i].size = h->max_commands; 9522 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ 9523 h->reply_queue[i].current_entry = 0; 9524 } 9525 9526 /* Need a block fetch table for performant mode */ 9527 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * 9528 sizeof(u32)), GFP_KERNEL); 9529 if (!h->blockFetchTable) { 9530 rc = -ENOMEM; 9531 goto clean1; /* rq, ioaccel */ 9532 } 9533 9534 rc = hpsa_enter_performant_mode(h, trans_support); 9535 if (rc) 9536 goto clean2; /* bft, rq, ioaccel */ 9537 return 0; 9538 9539 clean2: /* bft, rq, ioaccel */ 9540 kfree(h->blockFetchTable); 9541 h->blockFetchTable = NULL; 9542 clean1: /* rq, ioaccel */ 9543 hpsa_free_reply_queues(h); 9544 hpsa_free_ioaccel1_cmd_and_bft(h); 9545 hpsa_free_ioaccel2_cmd_and_bft(h); 9546 return rc; 9547 } 9548 9549 static int is_accelerated_cmd(struct CommandList *c) 9550 { 9551 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2; 9552 } 9553 9554 static void hpsa_drain_accel_commands(struct ctlr_info *h) 9555 { 9556 struct CommandList *c = NULL; 9557 int i, accel_cmds_out; 9558 int refcount; 9559 9560 do { /* wait for all outstanding ioaccel commands to drain out */ 9561 accel_cmds_out = 0; 9562 for (i = 0; i < h->nr_cmds; i++) { 9563 c = h->cmd_pool + i; 9564 refcount = atomic_inc_return(&c->refcount); 9565 if (refcount > 1) /* Command is allocated */ 9566 accel_cmds_out += is_accelerated_cmd(c); 9567 cmd_free(h, c); 9568 } 9569 if (accel_cmds_out <= 0) 9570 break; 9571 msleep(100); 9572 } while (1); 9573 } 9574 9575 static struct hpsa_sas_phy *hpsa_alloc_sas_phy( 9576 struct hpsa_sas_port *hpsa_sas_port) 9577 { 9578 struct hpsa_sas_phy *hpsa_sas_phy; 9579 struct sas_phy *phy; 9580 9581 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL); 9582 if (!hpsa_sas_phy) 9583 return NULL; 9584 9585 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev, 9586 hpsa_sas_port->next_phy_index); 9587 if (!phy) { 9588 kfree(hpsa_sas_phy); 9589 return NULL; 9590 } 9591 9592 hpsa_sas_port->next_phy_index++; 9593 hpsa_sas_phy->phy = phy; 9594 hpsa_sas_phy->parent_port = hpsa_sas_port; 9595 9596 return hpsa_sas_phy; 9597 } 9598 9599 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy) 9600 { 9601 struct sas_phy *phy = hpsa_sas_phy->phy; 9602 9603 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy); 9604 if (hpsa_sas_phy->added_to_port) 9605 list_del(&hpsa_sas_phy->phy_list_entry); 9606 sas_phy_delete(phy); 9607 kfree(hpsa_sas_phy); 9608 } 9609 9610 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy) 9611 { 9612 int rc; 9613 struct hpsa_sas_port *hpsa_sas_port; 9614 struct sas_phy *phy; 9615 struct sas_identify *identify; 9616 9617 hpsa_sas_port = hpsa_sas_phy->parent_port; 9618 phy = hpsa_sas_phy->phy; 9619 9620 identify = &phy->identify; 9621 memset(identify, 0, sizeof(*identify)); 9622 identify->sas_address = hpsa_sas_port->sas_address; 9623 identify->device_type = SAS_END_DEVICE; 9624 identify->initiator_port_protocols = SAS_PROTOCOL_STP; 9625 identify->target_port_protocols = SAS_PROTOCOL_STP; 9626 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; 9627 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; 9628 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN; 9629 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN; 9630 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN; 9631 9632 rc = sas_phy_add(hpsa_sas_phy->phy); 9633 if (rc) 9634 return rc; 9635 9636 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy); 9637 list_add_tail(&hpsa_sas_phy->phy_list_entry, 9638 &hpsa_sas_port->phy_list_head); 9639 hpsa_sas_phy->added_to_port = true; 9640 9641 return 0; 9642 } 9643 9644 static int 9645 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port, 9646 struct sas_rphy *rphy) 9647 { 9648 struct sas_identify *identify; 9649 9650 identify = &rphy->identify; 9651 identify->sas_address = hpsa_sas_port->sas_address; 9652 identify->initiator_port_protocols = SAS_PROTOCOL_STP; 9653 identify->target_port_protocols = SAS_PROTOCOL_STP; 9654 9655 return sas_rphy_add(rphy); 9656 } 9657 9658 static struct hpsa_sas_port 9659 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node, 9660 u64 sas_address) 9661 { 9662 int rc; 9663 struct hpsa_sas_port *hpsa_sas_port; 9664 struct sas_port *port; 9665 9666 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL); 9667 if (!hpsa_sas_port) 9668 return NULL; 9669 9670 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head); 9671 hpsa_sas_port->parent_node = hpsa_sas_node; 9672 9673 port = sas_port_alloc_num(hpsa_sas_node->parent_dev); 9674 if (!port) 9675 goto free_hpsa_port; 9676 9677 rc = sas_port_add(port); 9678 if (rc) 9679 goto free_sas_port; 9680 9681 hpsa_sas_port->port = port; 9682 hpsa_sas_port->sas_address = sas_address; 9683 list_add_tail(&hpsa_sas_port->port_list_entry, 9684 &hpsa_sas_node->port_list_head); 9685 9686 return hpsa_sas_port; 9687 9688 free_sas_port: 9689 sas_port_free(port); 9690 free_hpsa_port: 9691 kfree(hpsa_sas_port); 9692 9693 return NULL; 9694 } 9695 9696 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port) 9697 { 9698 struct hpsa_sas_phy *hpsa_sas_phy; 9699 struct hpsa_sas_phy *next; 9700 9701 list_for_each_entry_safe(hpsa_sas_phy, next, 9702 &hpsa_sas_port->phy_list_head, phy_list_entry) 9703 hpsa_free_sas_phy(hpsa_sas_phy); 9704 9705 sas_port_delete(hpsa_sas_port->port); 9706 list_del(&hpsa_sas_port->port_list_entry); 9707 kfree(hpsa_sas_port); 9708 } 9709 9710 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev) 9711 { 9712 struct hpsa_sas_node *hpsa_sas_node; 9713 9714 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL); 9715 if (hpsa_sas_node) { 9716 hpsa_sas_node->parent_dev = parent_dev; 9717 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head); 9718 } 9719 9720 return hpsa_sas_node; 9721 } 9722 9723 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node) 9724 { 9725 struct hpsa_sas_port *hpsa_sas_port; 9726 struct hpsa_sas_port *next; 9727 9728 if (!hpsa_sas_node) 9729 return; 9730 9731 list_for_each_entry_safe(hpsa_sas_port, next, 9732 &hpsa_sas_node->port_list_head, port_list_entry) 9733 hpsa_free_sas_port(hpsa_sas_port); 9734 9735 kfree(hpsa_sas_node); 9736 } 9737 9738 static struct hpsa_scsi_dev_t 9739 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, 9740 struct sas_rphy *rphy) 9741 { 9742 int i; 9743 struct hpsa_scsi_dev_t *device; 9744 9745 for (i = 0; i < h->ndevices; i++) { 9746 device = h->dev[i]; 9747 if (!device->sas_port) 9748 continue; 9749 if (device->sas_port->rphy == rphy) 9750 return device; 9751 } 9752 9753 return NULL; 9754 } 9755 9756 static int hpsa_add_sas_host(struct ctlr_info *h) 9757 { 9758 int rc; 9759 struct device *parent_dev; 9760 struct hpsa_sas_node *hpsa_sas_node; 9761 struct hpsa_sas_port *hpsa_sas_port; 9762 struct hpsa_sas_phy *hpsa_sas_phy; 9763 9764 parent_dev = &h->scsi_host->shost_dev; 9765 9766 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev); 9767 if (!hpsa_sas_node) 9768 return -ENOMEM; 9769 9770 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address); 9771 if (!hpsa_sas_port) { 9772 rc = -ENODEV; 9773 goto free_sas_node; 9774 } 9775 9776 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port); 9777 if (!hpsa_sas_phy) { 9778 rc = -ENODEV; 9779 goto free_sas_port; 9780 } 9781 9782 rc = hpsa_sas_port_add_phy(hpsa_sas_phy); 9783 if (rc) 9784 goto free_sas_phy; 9785 9786 h->sas_host = hpsa_sas_node; 9787 9788 return 0; 9789 9790 free_sas_phy: 9791 hpsa_free_sas_phy(hpsa_sas_phy); 9792 free_sas_port: 9793 hpsa_free_sas_port(hpsa_sas_port); 9794 free_sas_node: 9795 hpsa_free_sas_node(hpsa_sas_node); 9796 9797 return rc; 9798 } 9799 9800 static void hpsa_delete_sas_host(struct ctlr_info *h) 9801 { 9802 hpsa_free_sas_node(h->sas_host); 9803 } 9804 9805 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, 9806 struct hpsa_scsi_dev_t *device) 9807 { 9808 int rc; 9809 struct hpsa_sas_port *hpsa_sas_port; 9810 struct sas_rphy *rphy; 9811 9812 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address); 9813 if (!hpsa_sas_port) 9814 return -ENOMEM; 9815 9816 rphy = sas_end_device_alloc(hpsa_sas_port->port); 9817 if (!rphy) { 9818 rc = -ENODEV; 9819 goto free_sas_port; 9820 } 9821 9822 hpsa_sas_port->rphy = rphy; 9823 device->sas_port = hpsa_sas_port; 9824 9825 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy); 9826 if (rc) 9827 goto free_sas_port; 9828 9829 return 0; 9830 9831 free_sas_port: 9832 hpsa_free_sas_port(hpsa_sas_port); 9833 device->sas_port = NULL; 9834 9835 return rc; 9836 } 9837 9838 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device) 9839 { 9840 if (device->sas_port) { 9841 hpsa_free_sas_port(device->sas_port); 9842 device->sas_port = NULL; 9843 } 9844 } 9845 9846 static int 9847 hpsa_sas_get_linkerrors(struct sas_phy *phy) 9848 { 9849 return 0; 9850 } 9851 9852 static int 9853 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier) 9854 { 9855 struct Scsi_Host *shost = phy_to_shost(rphy); 9856 struct ctlr_info *h; 9857 struct hpsa_scsi_dev_t *sd; 9858 9859 if (!shost) 9860 return -ENXIO; 9861 9862 h = shost_to_hba(shost); 9863 9864 if (!h) 9865 return -ENXIO; 9866 9867 sd = hpsa_find_device_by_sas_rphy(h, rphy); 9868 if (!sd) 9869 return -ENXIO; 9870 9871 *identifier = sd->eli; 9872 9873 return 0; 9874 } 9875 9876 static int 9877 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy) 9878 { 9879 return -ENXIO; 9880 } 9881 9882 static int 9883 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset) 9884 { 9885 return 0; 9886 } 9887 9888 static int 9889 hpsa_sas_phy_enable(struct sas_phy *phy, int enable) 9890 { 9891 return 0; 9892 } 9893 9894 static int 9895 hpsa_sas_phy_setup(struct sas_phy *phy) 9896 { 9897 return 0; 9898 } 9899 9900 static void 9901 hpsa_sas_phy_release(struct sas_phy *phy) 9902 { 9903 } 9904 9905 static int 9906 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates) 9907 { 9908 return -EINVAL; 9909 } 9910 9911 static struct sas_function_template hpsa_sas_transport_functions = { 9912 .get_linkerrors = hpsa_sas_get_linkerrors, 9913 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier, 9914 .get_bay_identifier = hpsa_sas_get_bay_identifier, 9915 .phy_reset = hpsa_sas_phy_reset, 9916 .phy_enable = hpsa_sas_phy_enable, 9917 .phy_setup = hpsa_sas_phy_setup, 9918 .phy_release = hpsa_sas_phy_release, 9919 .set_phy_speed = hpsa_sas_phy_speed, 9920 }; 9921 9922 /* 9923 * This is it. Register the PCI driver information for the cards we control 9924 * the OS will call our registered routines when it finds one of our cards. 9925 */ 9926 static int __init hpsa_init(void) 9927 { 9928 int rc; 9929 9930 hpsa_sas_transport_template = 9931 sas_attach_transport(&hpsa_sas_transport_functions); 9932 if (!hpsa_sas_transport_template) 9933 return -ENODEV; 9934 9935 rc = pci_register_driver(&hpsa_pci_driver); 9936 9937 if (rc) 9938 sas_release_transport(hpsa_sas_transport_template); 9939 9940 return rc; 9941 } 9942 9943 static void __exit hpsa_cleanup(void) 9944 { 9945 pci_unregister_driver(&hpsa_pci_driver); 9946 sas_release_transport(hpsa_sas_transport_template); 9947 } 9948 9949 static void __attribute__((unused)) verify_offsets(void) 9950 { 9951 #define VERIFY_OFFSET(member, offset) \ 9952 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset) 9953 9954 VERIFY_OFFSET(structure_size, 0); 9955 VERIFY_OFFSET(volume_blk_size, 4); 9956 VERIFY_OFFSET(volume_blk_cnt, 8); 9957 VERIFY_OFFSET(phys_blk_shift, 16); 9958 VERIFY_OFFSET(parity_rotation_shift, 17); 9959 VERIFY_OFFSET(strip_size, 18); 9960 VERIFY_OFFSET(disk_starting_blk, 20); 9961 VERIFY_OFFSET(disk_blk_cnt, 28); 9962 VERIFY_OFFSET(data_disks_per_row, 36); 9963 VERIFY_OFFSET(metadata_disks_per_row, 38); 9964 VERIFY_OFFSET(row_cnt, 40); 9965 VERIFY_OFFSET(layout_map_count, 42); 9966 VERIFY_OFFSET(flags, 44); 9967 VERIFY_OFFSET(dekindex, 46); 9968 /* VERIFY_OFFSET(reserved, 48 */ 9969 VERIFY_OFFSET(data, 64); 9970 9971 #undef VERIFY_OFFSET 9972 9973 #define VERIFY_OFFSET(member, offset) \ 9974 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset) 9975 9976 VERIFY_OFFSET(IU_type, 0); 9977 VERIFY_OFFSET(direction, 1); 9978 VERIFY_OFFSET(reply_queue, 2); 9979 /* VERIFY_OFFSET(reserved1, 3); */ 9980 VERIFY_OFFSET(scsi_nexus, 4); 9981 VERIFY_OFFSET(Tag, 8); 9982 VERIFY_OFFSET(cdb, 16); 9983 VERIFY_OFFSET(cciss_lun, 32); 9984 VERIFY_OFFSET(data_len, 40); 9985 VERIFY_OFFSET(cmd_priority_task_attr, 44); 9986 VERIFY_OFFSET(sg_count, 45); 9987 /* VERIFY_OFFSET(reserved3 */ 9988 VERIFY_OFFSET(err_ptr, 48); 9989 VERIFY_OFFSET(err_len, 56); 9990 /* VERIFY_OFFSET(reserved4 */ 9991 VERIFY_OFFSET(sg, 64); 9992 9993 #undef VERIFY_OFFSET 9994 9995 #define VERIFY_OFFSET(member, offset) \ 9996 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) 9997 9998 VERIFY_OFFSET(dev_handle, 0x00); 9999 VERIFY_OFFSET(reserved1, 0x02); 10000 VERIFY_OFFSET(function, 0x03); 10001 VERIFY_OFFSET(reserved2, 0x04); 10002 VERIFY_OFFSET(err_info, 0x0C); 10003 VERIFY_OFFSET(reserved3, 0x10); 10004 VERIFY_OFFSET(err_info_len, 0x12); 10005 VERIFY_OFFSET(reserved4, 0x13); 10006 VERIFY_OFFSET(sgl_offset, 0x14); 10007 VERIFY_OFFSET(reserved5, 0x15); 10008 VERIFY_OFFSET(transfer_len, 0x1C); 10009 VERIFY_OFFSET(reserved6, 0x20); 10010 VERIFY_OFFSET(io_flags, 0x24); 10011 VERIFY_OFFSET(reserved7, 0x26); 10012 VERIFY_OFFSET(LUN, 0x34); 10013 VERIFY_OFFSET(control, 0x3C); 10014 VERIFY_OFFSET(CDB, 0x40); 10015 VERIFY_OFFSET(reserved8, 0x50); 10016 VERIFY_OFFSET(host_context_flags, 0x60); 10017 VERIFY_OFFSET(timeout_sec, 0x62); 10018 VERIFY_OFFSET(ReplyQueue, 0x64); 10019 VERIFY_OFFSET(reserved9, 0x65); 10020 VERIFY_OFFSET(tag, 0x68); 10021 VERIFY_OFFSET(host_addr, 0x70); 10022 VERIFY_OFFSET(CISS_LUN, 0x78); 10023 VERIFY_OFFSET(SG, 0x78 + 8); 10024 #undef VERIFY_OFFSET 10025 } 10026 10027 module_init(hpsa_init); 10028 module_exit(hpsa_cleanup); 10029