xref: /linux/drivers/scsi/hpsa.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <scsi/scsi_eh.h>
47 #include <scsi/scsi_dbg.h>
48 #include <linux/cciss_ioctl.h>
49 #include <linux/string.h>
50 #include <linux/bitmap.h>
51 #include <linux/atomic.h>
52 #include <linux/jiffies.h>
53 #include <linux/percpu-defs.h>
54 #include <linux/percpu.h>
55 #include <asm/unaligned.h>
56 #include <asm/div64.h>
57 #include "hpsa_cmd.h"
58 #include "hpsa.h"
59 
60 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
61 #define HPSA_DRIVER_VERSION "3.4.10-0"
62 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
63 #define HPSA "hpsa"
64 
65 /* How long to wait for CISS doorbell communication */
66 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
67 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
68 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
69 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
70 #define MAX_IOCTL_CONFIG_WAIT 1000
71 
72 /*define how many times we will try a command because of bus resets */
73 #define MAX_CMD_RETRIES 3
74 
75 /* Embedded module documentation macros - see modules.h */
76 MODULE_AUTHOR("Hewlett-Packard Company");
77 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
78 	HPSA_DRIVER_VERSION);
79 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
80 MODULE_VERSION(HPSA_DRIVER_VERSION);
81 MODULE_LICENSE("GPL");
82 
83 static int hpsa_allow_any;
84 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
85 MODULE_PARM_DESC(hpsa_allow_any,
86 		"Allow hpsa driver to access unknown HP Smart Array hardware");
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 	"Use 'simple mode' rather than 'performant mode'");
91 
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
134 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
135 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
136 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
137 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
138 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
139 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
140 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
141 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
142 	{0,}
143 };
144 
145 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
146 
147 /*  board_id = Subsystem Device ID & Vendor ID
148  *  product = Marketing Name for the board
149  *  access = Address of the struct of function pointers
150  */
151 static struct board_type products[] = {
152 	{0x3241103C, "Smart Array P212", &SA5_access},
153 	{0x3243103C, "Smart Array P410", &SA5_access},
154 	{0x3245103C, "Smart Array P410i", &SA5_access},
155 	{0x3247103C, "Smart Array P411", &SA5_access},
156 	{0x3249103C, "Smart Array P812", &SA5_access},
157 	{0x324A103C, "Smart Array P712m", &SA5_access},
158 	{0x324B103C, "Smart Array P711m", &SA5_access},
159 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
160 	{0x3350103C, "Smart Array P222", &SA5_access},
161 	{0x3351103C, "Smart Array P420", &SA5_access},
162 	{0x3352103C, "Smart Array P421", &SA5_access},
163 	{0x3353103C, "Smart Array P822", &SA5_access},
164 	{0x3354103C, "Smart Array P420i", &SA5_access},
165 	{0x3355103C, "Smart Array P220i", &SA5_access},
166 	{0x3356103C, "Smart Array P721m", &SA5_access},
167 	{0x1921103C, "Smart Array P830i", &SA5_access},
168 	{0x1922103C, "Smart Array P430", &SA5_access},
169 	{0x1923103C, "Smart Array P431", &SA5_access},
170 	{0x1924103C, "Smart Array P830", &SA5_access},
171 	{0x1926103C, "Smart Array P731m", &SA5_access},
172 	{0x1928103C, "Smart Array P230i", &SA5_access},
173 	{0x1929103C, "Smart Array P530", &SA5_access},
174 	{0x21BD103C, "Smart Array P244br", &SA5_access},
175 	{0x21BE103C, "Smart Array P741m", &SA5_access},
176 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
177 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
178 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
179 	{0x21C2103C, "Smart Array P440", &SA5_access},
180 	{0x21C3103C, "Smart Array P441", &SA5_access},
181 	{0x21C4103C, "Smart Array", &SA5_access},
182 	{0x21C5103C, "Smart Array P841", &SA5_access},
183 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
184 	{0x21C7103C, "Smart HBA H240", &SA5_access},
185 	{0x21C8103C, "Smart HBA H241", &SA5_access},
186 	{0x21C9103C, "Smart Array", &SA5_access},
187 	{0x21CA103C, "Smart Array P246br", &SA5_access},
188 	{0x21CB103C, "Smart Array P840", &SA5_access},
189 	{0x21CC103C, "Smart Array", &SA5_access},
190 	{0x21CD103C, "Smart Array", &SA5_access},
191 	{0x21CE103C, "Smart HBA", &SA5_access},
192 	{0x05809005, "SmartHBA-SA", &SA5_access},
193 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
194 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
195 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
196 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
197 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
198 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
199 };
200 
201 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
202 static const struct scsi_cmnd hpsa_cmd_busy;
203 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
204 static const struct scsi_cmnd hpsa_cmd_idle;
205 static int number_of_controllers;
206 
207 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
208 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
209 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
210 
211 #ifdef CONFIG_COMPAT
212 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
213 	void __user *arg);
214 #endif
215 
216 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
217 static struct CommandList *cmd_alloc(struct ctlr_info *h);
218 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
219 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
220 					    struct scsi_cmnd *scmd);
221 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
222 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
223 	int cmd_type);
224 static void hpsa_free_cmd_pool(struct ctlr_info *h);
225 #define VPD_PAGE (1 << 8)
226 
227 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
228 static void hpsa_scan_start(struct Scsi_Host *);
229 static int hpsa_scan_finished(struct Scsi_Host *sh,
230 	unsigned long elapsed_time);
231 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
232 
233 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
234 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
235 static int hpsa_slave_alloc(struct scsi_device *sdev);
236 static int hpsa_slave_configure(struct scsi_device *sdev);
237 static void hpsa_slave_destroy(struct scsi_device *sdev);
238 
239 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
240 static int check_for_unit_attention(struct ctlr_info *h,
241 	struct CommandList *c);
242 static void check_ioctl_unit_attention(struct ctlr_info *h,
243 	struct CommandList *c);
244 /* performant mode helper functions */
245 static void calc_bucket_map(int *bucket, int num_buckets,
246 	int nsgs, int min_blocks, u32 *bucket_map);
247 static void hpsa_free_performant_mode(struct ctlr_info *h);
248 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
249 static inline u32 next_command(struct ctlr_info *h, u8 q);
250 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
251 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
252 			       u64 *cfg_offset);
253 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
254 				    unsigned long *memory_bar);
255 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
256 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
257 				     int wait_for_ready);
258 static inline void finish_cmd(struct CommandList *c);
259 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
260 #define BOARD_NOT_READY 0
261 #define BOARD_READY 1
262 static void hpsa_drain_accel_commands(struct ctlr_info *h);
263 static void hpsa_flush_cache(struct ctlr_info *h);
264 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
265 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
266 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
267 static void hpsa_command_resubmit_worker(struct work_struct *work);
268 static u32 lockup_detected(struct ctlr_info *h);
269 static int detect_controller_lockup(struct ctlr_info *h);
270 
271 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
272 {
273 	unsigned long *priv = shost_priv(sdev->host);
274 	return (struct ctlr_info *) *priv;
275 }
276 
277 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
278 {
279 	unsigned long *priv = shost_priv(sh);
280 	return (struct ctlr_info *) *priv;
281 }
282 
283 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
284 {
285 	return c->scsi_cmd == SCSI_CMD_IDLE;
286 }
287 
288 static inline bool hpsa_is_pending_event(struct CommandList *c)
289 {
290 	return c->abort_pending || c->reset_pending;
291 }
292 
293 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
294 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
295 			u8 *sense_key, u8 *asc, u8 *ascq)
296 {
297 	struct scsi_sense_hdr sshdr;
298 	bool rc;
299 
300 	*sense_key = -1;
301 	*asc = -1;
302 	*ascq = -1;
303 
304 	if (sense_data_len < 1)
305 		return;
306 
307 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
308 	if (rc) {
309 		*sense_key = sshdr.sense_key;
310 		*asc = sshdr.asc;
311 		*ascq = sshdr.ascq;
312 	}
313 }
314 
315 static int check_for_unit_attention(struct ctlr_info *h,
316 	struct CommandList *c)
317 {
318 	u8 sense_key, asc, ascq;
319 	int sense_len;
320 
321 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
322 		sense_len = sizeof(c->err_info->SenseInfo);
323 	else
324 		sense_len = c->err_info->SenseLen;
325 
326 	decode_sense_data(c->err_info->SenseInfo, sense_len,
327 				&sense_key, &asc, &ascq);
328 	if (sense_key != UNIT_ATTENTION || asc == -1)
329 		return 0;
330 
331 	switch (asc) {
332 	case STATE_CHANGED:
333 		dev_warn(&h->pdev->dev,
334 			"%s: a state change detected, command retried\n",
335 			h->devname);
336 		break;
337 	case LUN_FAILED:
338 		dev_warn(&h->pdev->dev,
339 			"%s: LUN failure detected\n", h->devname);
340 		break;
341 	case REPORT_LUNS_CHANGED:
342 		dev_warn(&h->pdev->dev,
343 			"%s: report LUN data changed\n", h->devname);
344 	/*
345 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
346 	 * target (array) devices.
347 	 */
348 		break;
349 	case POWER_OR_RESET:
350 		dev_warn(&h->pdev->dev,
351 			"%s: a power on or device reset detected\n",
352 			h->devname);
353 		break;
354 	case UNIT_ATTENTION_CLEARED:
355 		dev_warn(&h->pdev->dev,
356 			"%s: unit attention cleared by another initiator\n",
357 			h->devname);
358 		break;
359 	default:
360 		dev_warn(&h->pdev->dev,
361 			"%s: unknown unit attention detected\n",
362 			h->devname);
363 		break;
364 	}
365 	return 1;
366 }
367 
368 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
369 {
370 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
371 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
372 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
373 		return 0;
374 	dev_warn(&h->pdev->dev, HPSA "device busy");
375 	return 1;
376 }
377 
378 static u32 lockup_detected(struct ctlr_info *h);
379 static ssize_t host_show_lockup_detected(struct device *dev,
380 		struct device_attribute *attr, char *buf)
381 {
382 	int ld;
383 	struct ctlr_info *h;
384 	struct Scsi_Host *shost = class_to_shost(dev);
385 
386 	h = shost_to_hba(shost);
387 	ld = lockup_detected(h);
388 
389 	return sprintf(buf, "ld=%d\n", ld);
390 }
391 
392 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
393 					 struct device_attribute *attr,
394 					 const char *buf, size_t count)
395 {
396 	int status, len;
397 	struct ctlr_info *h;
398 	struct Scsi_Host *shost = class_to_shost(dev);
399 	char tmpbuf[10];
400 
401 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
402 		return -EACCES;
403 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
404 	strncpy(tmpbuf, buf, len);
405 	tmpbuf[len] = '\0';
406 	if (sscanf(tmpbuf, "%d", &status) != 1)
407 		return -EINVAL;
408 	h = shost_to_hba(shost);
409 	h->acciopath_status = !!status;
410 	dev_warn(&h->pdev->dev,
411 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
412 		h->acciopath_status ? "enabled" : "disabled");
413 	return count;
414 }
415 
416 static ssize_t host_store_raid_offload_debug(struct device *dev,
417 					 struct device_attribute *attr,
418 					 const char *buf, size_t count)
419 {
420 	int debug_level, len;
421 	struct ctlr_info *h;
422 	struct Scsi_Host *shost = class_to_shost(dev);
423 	char tmpbuf[10];
424 
425 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
426 		return -EACCES;
427 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
428 	strncpy(tmpbuf, buf, len);
429 	tmpbuf[len] = '\0';
430 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
431 		return -EINVAL;
432 	if (debug_level < 0)
433 		debug_level = 0;
434 	h = shost_to_hba(shost);
435 	h->raid_offload_debug = debug_level;
436 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
437 		h->raid_offload_debug);
438 	return count;
439 }
440 
441 static ssize_t host_store_rescan(struct device *dev,
442 				 struct device_attribute *attr,
443 				 const char *buf, size_t count)
444 {
445 	struct ctlr_info *h;
446 	struct Scsi_Host *shost = class_to_shost(dev);
447 	h = shost_to_hba(shost);
448 	hpsa_scan_start(h->scsi_host);
449 	return count;
450 }
451 
452 static ssize_t host_show_firmware_revision(struct device *dev,
453 	     struct device_attribute *attr, char *buf)
454 {
455 	struct ctlr_info *h;
456 	struct Scsi_Host *shost = class_to_shost(dev);
457 	unsigned char *fwrev;
458 
459 	h = shost_to_hba(shost);
460 	if (!h->hba_inquiry_data)
461 		return 0;
462 	fwrev = &h->hba_inquiry_data[32];
463 	return snprintf(buf, 20, "%c%c%c%c\n",
464 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
465 }
466 
467 static ssize_t host_show_commands_outstanding(struct device *dev,
468 	     struct device_attribute *attr, char *buf)
469 {
470 	struct Scsi_Host *shost = class_to_shost(dev);
471 	struct ctlr_info *h = shost_to_hba(shost);
472 
473 	return snprintf(buf, 20, "%d\n",
474 			atomic_read(&h->commands_outstanding));
475 }
476 
477 static ssize_t host_show_transport_mode(struct device *dev,
478 	struct device_attribute *attr, char *buf)
479 {
480 	struct ctlr_info *h;
481 	struct Scsi_Host *shost = class_to_shost(dev);
482 
483 	h = shost_to_hba(shost);
484 	return snprintf(buf, 20, "%s\n",
485 		h->transMethod & CFGTBL_Trans_Performant ?
486 			"performant" : "simple");
487 }
488 
489 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
490 	struct device_attribute *attr, char *buf)
491 {
492 	struct ctlr_info *h;
493 	struct Scsi_Host *shost = class_to_shost(dev);
494 
495 	h = shost_to_hba(shost);
496 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
497 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
498 }
499 
500 /* List of controllers which cannot be hard reset on kexec with reset_devices */
501 static u32 unresettable_controller[] = {
502 	0x324a103C, /* Smart Array P712m */
503 	0x324b103C, /* Smart Array P711m */
504 	0x3223103C, /* Smart Array P800 */
505 	0x3234103C, /* Smart Array P400 */
506 	0x3235103C, /* Smart Array P400i */
507 	0x3211103C, /* Smart Array E200i */
508 	0x3212103C, /* Smart Array E200 */
509 	0x3213103C, /* Smart Array E200i */
510 	0x3214103C, /* Smart Array E200i */
511 	0x3215103C, /* Smart Array E200i */
512 	0x3237103C, /* Smart Array E500 */
513 	0x323D103C, /* Smart Array P700m */
514 	0x40800E11, /* Smart Array 5i */
515 	0x409C0E11, /* Smart Array 6400 */
516 	0x409D0E11, /* Smart Array 6400 EM */
517 	0x40700E11, /* Smart Array 5300 */
518 	0x40820E11, /* Smart Array 532 */
519 	0x40830E11, /* Smart Array 5312 */
520 	0x409A0E11, /* Smart Array 641 */
521 	0x409B0E11, /* Smart Array 642 */
522 	0x40910E11, /* Smart Array 6i */
523 };
524 
525 /* List of controllers which cannot even be soft reset */
526 static u32 soft_unresettable_controller[] = {
527 	0x40800E11, /* Smart Array 5i */
528 	0x40700E11, /* Smart Array 5300 */
529 	0x40820E11, /* Smart Array 532 */
530 	0x40830E11, /* Smart Array 5312 */
531 	0x409A0E11, /* Smart Array 641 */
532 	0x409B0E11, /* Smart Array 642 */
533 	0x40910E11, /* Smart Array 6i */
534 	/* Exclude 640x boards.  These are two pci devices in one slot
535 	 * which share a battery backed cache module.  One controls the
536 	 * cache, the other accesses the cache through the one that controls
537 	 * it.  If we reset the one controlling the cache, the other will
538 	 * likely not be happy.  Just forbid resetting this conjoined mess.
539 	 * The 640x isn't really supported by hpsa anyway.
540 	 */
541 	0x409C0E11, /* Smart Array 6400 */
542 	0x409D0E11, /* Smart Array 6400 EM */
543 };
544 
545 static u32 needs_abort_tags_swizzled[] = {
546 	0x323D103C, /* Smart Array P700m */
547 	0x324a103C, /* Smart Array P712m */
548 	0x324b103C, /* SmartArray P711m */
549 };
550 
551 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
552 {
553 	int i;
554 
555 	for (i = 0; i < nelems; i++)
556 		if (a[i] == board_id)
557 			return 1;
558 	return 0;
559 }
560 
561 static int ctlr_is_hard_resettable(u32 board_id)
562 {
563 	return !board_id_in_array(unresettable_controller,
564 			ARRAY_SIZE(unresettable_controller), board_id);
565 }
566 
567 static int ctlr_is_soft_resettable(u32 board_id)
568 {
569 	return !board_id_in_array(soft_unresettable_controller,
570 			ARRAY_SIZE(soft_unresettable_controller), board_id);
571 }
572 
573 static int ctlr_is_resettable(u32 board_id)
574 {
575 	return ctlr_is_hard_resettable(board_id) ||
576 		ctlr_is_soft_resettable(board_id);
577 }
578 
579 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
580 {
581 	return board_id_in_array(needs_abort_tags_swizzled,
582 			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
583 }
584 
585 static ssize_t host_show_resettable(struct device *dev,
586 	struct device_attribute *attr, char *buf)
587 {
588 	struct ctlr_info *h;
589 	struct Scsi_Host *shost = class_to_shost(dev);
590 
591 	h = shost_to_hba(shost);
592 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
593 }
594 
595 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
596 {
597 	return (scsi3addr[3] & 0xC0) == 0x40;
598 }
599 
600 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
601 	"1(+0)ADM", "UNKNOWN"
602 };
603 #define HPSA_RAID_0	0
604 #define HPSA_RAID_4	1
605 #define HPSA_RAID_1	2	/* also used for RAID 10 */
606 #define HPSA_RAID_5	3	/* also used for RAID 50 */
607 #define HPSA_RAID_51	4
608 #define HPSA_RAID_6	5	/* also used for RAID 60 */
609 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
610 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
611 
612 static ssize_t raid_level_show(struct device *dev,
613 	     struct device_attribute *attr, char *buf)
614 {
615 	ssize_t l = 0;
616 	unsigned char rlevel;
617 	struct ctlr_info *h;
618 	struct scsi_device *sdev;
619 	struct hpsa_scsi_dev_t *hdev;
620 	unsigned long flags;
621 
622 	sdev = to_scsi_device(dev);
623 	h = sdev_to_hba(sdev);
624 	spin_lock_irqsave(&h->lock, flags);
625 	hdev = sdev->hostdata;
626 	if (!hdev) {
627 		spin_unlock_irqrestore(&h->lock, flags);
628 		return -ENODEV;
629 	}
630 
631 	/* Is this even a logical drive? */
632 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
633 		spin_unlock_irqrestore(&h->lock, flags);
634 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
635 		return l;
636 	}
637 
638 	rlevel = hdev->raid_level;
639 	spin_unlock_irqrestore(&h->lock, flags);
640 	if (rlevel > RAID_UNKNOWN)
641 		rlevel = RAID_UNKNOWN;
642 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
643 	return l;
644 }
645 
646 static ssize_t lunid_show(struct device *dev,
647 	     struct device_attribute *attr, char *buf)
648 {
649 	struct ctlr_info *h;
650 	struct scsi_device *sdev;
651 	struct hpsa_scsi_dev_t *hdev;
652 	unsigned long flags;
653 	unsigned char lunid[8];
654 
655 	sdev = to_scsi_device(dev);
656 	h = sdev_to_hba(sdev);
657 	spin_lock_irqsave(&h->lock, flags);
658 	hdev = sdev->hostdata;
659 	if (!hdev) {
660 		spin_unlock_irqrestore(&h->lock, flags);
661 		return -ENODEV;
662 	}
663 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
664 	spin_unlock_irqrestore(&h->lock, flags);
665 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
666 		lunid[0], lunid[1], lunid[2], lunid[3],
667 		lunid[4], lunid[5], lunid[6], lunid[7]);
668 }
669 
670 static ssize_t unique_id_show(struct device *dev,
671 	     struct device_attribute *attr, char *buf)
672 {
673 	struct ctlr_info *h;
674 	struct scsi_device *sdev;
675 	struct hpsa_scsi_dev_t *hdev;
676 	unsigned long flags;
677 	unsigned char sn[16];
678 
679 	sdev = to_scsi_device(dev);
680 	h = sdev_to_hba(sdev);
681 	spin_lock_irqsave(&h->lock, flags);
682 	hdev = sdev->hostdata;
683 	if (!hdev) {
684 		spin_unlock_irqrestore(&h->lock, flags);
685 		return -ENODEV;
686 	}
687 	memcpy(sn, hdev->device_id, sizeof(sn));
688 	spin_unlock_irqrestore(&h->lock, flags);
689 	return snprintf(buf, 16 * 2 + 2,
690 			"%02X%02X%02X%02X%02X%02X%02X%02X"
691 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
692 			sn[0], sn[1], sn[2], sn[3],
693 			sn[4], sn[5], sn[6], sn[7],
694 			sn[8], sn[9], sn[10], sn[11],
695 			sn[12], sn[13], sn[14], sn[15]);
696 }
697 
698 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
699 	     struct device_attribute *attr, char *buf)
700 {
701 	struct ctlr_info *h;
702 	struct scsi_device *sdev;
703 	struct hpsa_scsi_dev_t *hdev;
704 	unsigned long flags;
705 	int offload_enabled;
706 
707 	sdev = to_scsi_device(dev);
708 	h = sdev_to_hba(sdev);
709 	spin_lock_irqsave(&h->lock, flags);
710 	hdev = sdev->hostdata;
711 	if (!hdev) {
712 		spin_unlock_irqrestore(&h->lock, flags);
713 		return -ENODEV;
714 	}
715 	offload_enabled = hdev->offload_enabled;
716 	spin_unlock_irqrestore(&h->lock, flags);
717 	return snprintf(buf, 20, "%d\n", offload_enabled);
718 }
719 
720 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
721 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
722 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
723 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
724 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
725 			host_show_hp_ssd_smart_path_enabled, NULL);
726 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
727 		host_show_hp_ssd_smart_path_status,
728 		host_store_hp_ssd_smart_path_status);
729 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
730 			host_store_raid_offload_debug);
731 static DEVICE_ATTR(firmware_revision, S_IRUGO,
732 	host_show_firmware_revision, NULL);
733 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
734 	host_show_commands_outstanding, NULL);
735 static DEVICE_ATTR(transport_mode, S_IRUGO,
736 	host_show_transport_mode, NULL);
737 static DEVICE_ATTR(resettable, S_IRUGO,
738 	host_show_resettable, NULL);
739 static DEVICE_ATTR(lockup_detected, S_IRUGO,
740 	host_show_lockup_detected, NULL);
741 
742 static struct device_attribute *hpsa_sdev_attrs[] = {
743 	&dev_attr_raid_level,
744 	&dev_attr_lunid,
745 	&dev_attr_unique_id,
746 	&dev_attr_hp_ssd_smart_path_enabled,
747 	&dev_attr_lockup_detected,
748 	NULL,
749 };
750 
751 static struct device_attribute *hpsa_shost_attrs[] = {
752 	&dev_attr_rescan,
753 	&dev_attr_firmware_revision,
754 	&dev_attr_commands_outstanding,
755 	&dev_attr_transport_mode,
756 	&dev_attr_resettable,
757 	&dev_attr_hp_ssd_smart_path_status,
758 	&dev_attr_raid_offload_debug,
759 	NULL,
760 };
761 
762 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
763 		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
764 
765 static struct scsi_host_template hpsa_driver_template = {
766 	.module			= THIS_MODULE,
767 	.name			= HPSA,
768 	.proc_name		= HPSA,
769 	.queuecommand		= hpsa_scsi_queue_command,
770 	.scan_start		= hpsa_scan_start,
771 	.scan_finished		= hpsa_scan_finished,
772 	.change_queue_depth	= hpsa_change_queue_depth,
773 	.this_id		= -1,
774 	.use_clustering		= ENABLE_CLUSTERING,
775 	.eh_abort_handler	= hpsa_eh_abort_handler,
776 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
777 	.ioctl			= hpsa_ioctl,
778 	.slave_alloc		= hpsa_slave_alloc,
779 	.slave_configure	= hpsa_slave_configure,
780 	.slave_destroy		= hpsa_slave_destroy,
781 #ifdef CONFIG_COMPAT
782 	.compat_ioctl		= hpsa_compat_ioctl,
783 #endif
784 	.sdev_attrs = hpsa_sdev_attrs,
785 	.shost_attrs = hpsa_shost_attrs,
786 	.max_sectors = 8192,
787 	.no_write_same = 1,
788 };
789 
790 static inline u32 next_command(struct ctlr_info *h, u8 q)
791 {
792 	u32 a;
793 	struct reply_queue_buffer *rq = &h->reply_queue[q];
794 
795 	if (h->transMethod & CFGTBL_Trans_io_accel1)
796 		return h->access.command_completed(h, q);
797 
798 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
799 		return h->access.command_completed(h, q);
800 
801 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
802 		a = rq->head[rq->current_entry];
803 		rq->current_entry++;
804 		atomic_dec(&h->commands_outstanding);
805 	} else {
806 		a = FIFO_EMPTY;
807 	}
808 	/* Check for wraparound */
809 	if (rq->current_entry == h->max_commands) {
810 		rq->current_entry = 0;
811 		rq->wraparound ^= 1;
812 	}
813 	return a;
814 }
815 
816 /*
817  * There are some special bits in the bus address of the
818  * command that we have to set for the controller to know
819  * how to process the command:
820  *
821  * Normal performant mode:
822  * bit 0: 1 means performant mode, 0 means simple mode.
823  * bits 1-3 = block fetch table entry
824  * bits 4-6 = command type (== 0)
825  *
826  * ioaccel1 mode:
827  * bit 0 = "performant mode" bit.
828  * bits 1-3 = block fetch table entry
829  * bits 4-6 = command type (== 110)
830  * (command type is needed because ioaccel1 mode
831  * commands are submitted through the same register as normal
832  * mode commands, so this is how the controller knows whether
833  * the command is normal mode or ioaccel1 mode.)
834  *
835  * ioaccel2 mode:
836  * bit 0 = "performant mode" bit.
837  * bits 1-4 = block fetch table entry (note extra bit)
838  * bits 4-6 = not needed, because ioaccel2 mode has
839  * a separate special register for submitting commands.
840  */
841 
842 /*
843  * set_performant_mode: Modify the tag for cciss performant
844  * set bit 0 for pull model, bits 3-1 for block fetch
845  * register number
846  */
847 #define DEFAULT_REPLY_QUEUE (-1)
848 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
849 					int reply_queue)
850 {
851 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
852 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
853 		if (unlikely(!h->msix_vector))
854 			return;
855 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
856 			c->Header.ReplyQueue =
857 				raw_smp_processor_id() % h->nreply_queues;
858 		else
859 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
860 	}
861 }
862 
863 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
864 						struct CommandList *c,
865 						int reply_queue)
866 {
867 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
868 
869 	/*
870 	 * Tell the controller to post the reply to the queue for this
871 	 * processor.  This seems to give the best I/O throughput.
872 	 */
873 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
874 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
875 	else
876 		cp->ReplyQueue = reply_queue % h->nreply_queues;
877 	/*
878 	 * Set the bits in the address sent down to include:
879 	 *  - performant mode bit (bit 0)
880 	 *  - pull count (bits 1-3)
881 	 *  - command type (bits 4-6)
882 	 */
883 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
884 					IOACCEL1_BUSADDR_CMDTYPE;
885 }
886 
887 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
888 						struct CommandList *c,
889 						int reply_queue)
890 {
891 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
892 		&h->ioaccel2_cmd_pool[c->cmdindex];
893 
894 	/* Tell the controller to post the reply to the queue for this
895 	 * processor.  This seems to give the best I/O throughput.
896 	 */
897 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
898 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
899 	else
900 		cp->reply_queue = reply_queue % h->nreply_queues;
901 	/* Set the bits in the address sent down to include:
902 	 *  - performant mode bit not used in ioaccel mode 2
903 	 *  - pull count (bits 0-3)
904 	 *  - command type isn't needed for ioaccel2
905 	 */
906 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
907 }
908 
909 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
910 						struct CommandList *c,
911 						int reply_queue)
912 {
913 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
914 
915 	/*
916 	 * Tell the controller to post the reply to the queue for this
917 	 * processor.  This seems to give the best I/O throughput.
918 	 */
919 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
920 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
921 	else
922 		cp->reply_queue = reply_queue % h->nreply_queues;
923 	/*
924 	 * Set the bits in the address sent down to include:
925 	 *  - performant mode bit not used in ioaccel mode 2
926 	 *  - pull count (bits 0-3)
927 	 *  - command type isn't needed for ioaccel2
928 	 */
929 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
930 }
931 
932 static int is_firmware_flash_cmd(u8 *cdb)
933 {
934 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
935 }
936 
937 /*
938  * During firmware flash, the heartbeat register may not update as frequently
939  * as it should.  So we dial down lockup detection during firmware flash. and
940  * dial it back up when firmware flash completes.
941  */
942 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
943 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
944 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
945 		struct CommandList *c)
946 {
947 	if (!is_firmware_flash_cmd(c->Request.CDB))
948 		return;
949 	atomic_inc(&h->firmware_flash_in_progress);
950 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
951 }
952 
953 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
954 		struct CommandList *c)
955 {
956 	if (is_firmware_flash_cmd(c->Request.CDB) &&
957 		atomic_dec_and_test(&h->firmware_flash_in_progress))
958 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
959 }
960 
961 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
962 	struct CommandList *c, int reply_queue)
963 {
964 	dial_down_lockup_detection_during_fw_flash(h, c);
965 	atomic_inc(&h->commands_outstanding);
966 	switch (c->cmd_type) {
967 	case CMD_IOACCEL1:
968 		set_ioaccel1_performant_mode(h, c, reply_queue);
969 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
970 		break;
971 	case CMD_IOACCEL2:
972 		set_ioaccel2_performant_mode(h, c, reply_queue);
973 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
974 		break;
975 	case IOACCEL2_TMF:
976 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
977 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
978 		break;
979 	default:
980 		set_performant_mode(h, c, reply_queue);
981 		h->access.submit_command(h, c);
982 	}
983 }
984 
985 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
986 {
987 	if (unlikely(hpsa_is_pending_event(c)))
988 		return finish_cmd(c);
989 
990 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
991 }
992 
993 static inline int is_hba_lunid(unsigned char scsi3addr[])
994 {
995 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
996 }
997 
998 static inline int is_scsi_rev_5(struct ctlr_info *h)
999 {
1000 	if (!h->hba_inquiry_data)
1001 		return 0;
1002 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1003 		return 1;
1004 	return 0;
1005 }
1006 
1007 static int hpsa_find_target_lun(struct ctlr_info *h,
1008 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1009 {
1010 	/* finds an unused bus, target, lun for a new physical device
1011 	 * assumes h->devlock is held
1012 	 */
1013 	int i, found = 0;
1014 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1015 
1016 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1017 
1018 	for (i = 0; i < h->ndevices; i++) {
1019 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1020 			__set_bit(h->dev[i]->target, lun_taken);
1021 	}
1022 
1023 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1024 	if (i < HPSA_MAX_DEVICES) {
1025 		/* *bus = 1; */
1026 		*target = i;
1027 		*lun = 0;
1028 		found = 1;
1029 	}
1030 	return !found;
1031 }
1032 
1033 static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1034 	struct hpsa_scsi_dev_t *dev, char *description)
1035 {
1036 	dev_printk(level, &h->pdev->dev,
1037 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1038 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1039 			description,
1040 			scsi_device_type(dev->devtype),
1041 			dev->vendor,
1042 			dev->model,
1043 			dev->raid_level > RAID_UNKNOWN ?
1044 				"RAID-?" : raid_label[dev->raid_level],
1045 			dev->offload_config ? '+' : '-',
1046 			dev->offload_enabled ? '+' : '-',
1047 			dev->expose_state);
1048 }
1049 
1050 /* Add an entry into h->dev[] array. */
1051 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
1052 		struct hpsa_scsi_dev_t *device,
1053 		struct hpsa_scsi_dev_t *added[], int *nadded)
1054 {
1055 	/* assumes h->devlock is held */
1056 	int n = h->ndevices;
1057 	int i;
1058 	unsigned char addr1[8], addr2[8];
1059 	struct hpsa_scsi_dev_t *sd;
1060 
1061 	if (n >= HPSA_MAX_DEVICES) {
1062 		dev_err(&h->pdev->dev, "too many devices, some will be "
1063 			"inaccessible.\n");
1064 		return -1;
1065 	}
1066 
1067 	/* physical devices do not have lun or target assigned until now. */
1068 	if (device->lun != -1)
1069 		/* Logical device, lun is already assigned. */
1070 		goto lun_assigned;
1071 
1072 	/* If this device a non-zero lun of a multi-lun device
1073 	 * byte 4 of the 8-byte LUN addr will contain the logical
1074 	 * unit no, zero otherwise.
1075 	 */
1076 	if (device->scsi3addr[4] == 0) {
1077 		/* This is not a non-zero lun of a multi-lun device */
1078 		if (hpsa_find_target_lun(h, device->scsi3addr,
1079 			device->bus, &device->target, &device->lun) != 0)
1080 			return -1;
1081 		goto lun_assigned;
1082 	}
1083 
1084 	/* This is a non-zero lun of a multi-lun device.
1085 	 * Search through our list and find the device which
1086 	 * has the same 8 byte LUN address, excepting byte 4.
1087 	 * Assign the same bus and target for this new LUN.
1088 	 * Use the logical unit number from the firmware.
1089 	 */
1090 	memcpy(addr1, device->scsi3addr, 8);
1091 	addr1[4] = 0;
1092 	for (i = 0; i < n; i++) {
1093 		sd = h->dev[i];
1094 		memcpy(addr2, sd->scsi3addr, 8);
1095 		addr2[4] = 0;
1096 		/* differ only in byte 4? */
1097 		if (memcmp(addr1, addr2, 8) == 0) {
1098 			device->bus = sd->bus;
1099 			device->target = sd->target;
1100 			device->lun = device->scsi3addr[4];
1101 			break;
1102 		}
1103 	}
1104 	if (device->lun == -1) {
1105 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1106 			" suspect firmware bug or unsupported hardware "
1107 			"configuration.\n");
1108 			return -1;
1109 	}
1110 
1111 lun_assigned:
1112 
1113 	h->dev[n] = device;
1114 	h->ndevices++;
1115 	added[*nadded] = device;
1116 	(*nadded)++;
1117 	hpsa_show_dev_msg(KERN_INFO, h, device,
1118 		device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1119 	device->offload_to_be_enabled = device->offload_enabled;
1120 	device->offload_enabled = 0;
1121 	return 0;
1122 }
1123 
1124 /* Update an entry in h->dev[] array. */
1125 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
1126 	int entry, struct hpsa_scsi_dev_t *new_entry)
1127 {
1128 	int offload_enabled;
1129 	/* assumes h->devlock is held */
1130 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1131 
1132 	/* Raid level changed. */
1133 	h->dev[entry]->raid_level = new_entry->raid_level;
1134 
1135 	/* Raid offload parameters changed.  Careful about the ordering. */
1136 	if (new_entry->offload_config && new_entry->offload_enabled) {
1137 		/*
1138 		 * if drive is newly offload_enabled, we want to copy the
1139 		 * raid map data first.  If previously offload_enabled and
1140 		 * offload_config were set, raid map data had better be
1141 		 * the same as it was before.  if raid map data is changed
1142 		 * then it had better be the case that
1143 		 * h->dev[entry]->offload_enabled is currently 0.
1144 		 */
1145 		h->dev[entry]->raid_map = new_entry->raid_map;
1146 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1147 	}
1148 	if (new_entry->hba_ioaccel_enabled) {
1149 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1150 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1151 	}
1152 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1153 	h->dev[entry]->offload_config = new_entry->offload_config;
1154 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1155 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1156 
1157 	/*
1158 	 * We can turn off ioaccel offload now, but need to delay turning
1159 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1160 	 * can't do that until all the devices are updated.
1161 	 */
1162 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1163 	if (!new_entry->offload_enabled)
1164 		h->dev[entry]->offload_enabled = 0;
1165 
1166 	offload_enabled = h->dev[entry]->offload_enabled;
1167 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1168 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1169 	h->dev[entry]->offload_enabled = offload_enabled;
1170 }
1171 
1172 /* Replace an entry from h->dev[] array. */
1173 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1174 	int entry, struct hpsa_scsi_dev_t *new_entry,
1175 	struct hpsa_scsi_dev_t *added[], int *nadded,
1176 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1177 {
1178 	/* assumes h->devlock is held */
1179 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1180 	removed[*nremoved] = h->dev[entry];
1181 	(*nremoved)++;
1182 
1183 	/*
1184 	 * New physical devices won't have target/lun assigned yet
1185 	 * so we need to preserve the values in the slot we are replacing.
1186 	 */
1187 	if (new_entry->target == -1) {
1188 		new_entry->target = h->dev[entry]->target;
1189 		new_entry->lun = h->dev[entry]->lun;
1190 	}
1191 
1192 	h->dev[entry] = new_entry;
1193 	added[*nadded] = new_entry;
1194 	(*nadded)++;
1195 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1196 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1197 	new_entry->offload_enabled = 0;
1198 }
1199 
1200 /* Remove an entry from h->dev[] array. */
1201 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1202 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1203 {
1204 	/* assumes h->devlock is held */
1205 	int i;
1206 	struct hpsa_scsi_dev_t *sd;
1207 
1208 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1209 
1210 	sd = h->dev[entry];
1211 	removed[*nremoved] = h->dev[entry];
1212 	(*nremoved)++;
1213 
1214 	for (i = entry; i < h->ndevices-1; i++)
1215 		h->dev[i] = h->dev[i+1];
1216 	h->ndevices--;
1217 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1218 }
1219 
1220 #define SCSI3ADDR_EQ(a, b) ( \
1221 	(a)[7] == (b)[7] && \
1222 	(a)[6] == (b)[6] && \
1223 	(a)[5] == (b)[5] && \
1224 	(a)[4] == (b)[4] && \
1225 	(a)[3] == (b)[3] && \
1226 	(a)[2] == (b)[2] && \
1227 	(a)[1] == (b)[1] && \
1228 	(a)[0] == (b)[0])
1229 
1230 static void fixup_botched_add(struct ctlr_info *h,
1231 	struct hpsa_scsi_dev_t *added)
1232 {
1233 	/* called when scsi_add_device fails in order to re-adjust
1234 	 * h->dev[] to match the mid layer's view.
1235 	 */
1236 	unsigned long flags;
1237 	int i, j;
1238 
1239 	spin_lock_irqsave(&h->lock, flags);
1240 	for (i = 0; i < h->ndevices; i++) {
1241 		if (h->dev[i] == added) {
1242 			for (j = i; j < h->ndevices-1; j++)
1243 				h->dev[j] = h->dev[j+1];
1244 			h->ndevices--;
1245 			break;
1246 		}
1247 	}
1248 	spin_unlock_irqrestore(&h->lock, flags);
1249 	kfree(added);
1250 }
1251 
1252 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1253 	struct hpsa_scsi_dev_t *dev2)
1254 {
1255 	/* we compare everything except lun and target as these
1256 	 * are not yet assigned.  Compare parts likely
1257 	 * to differ first
1258 	 */
1259 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1260 		sizeof(dev1->scsi3addr)) != 0)
1261 		return 0;
1262 	if (memcmp(dev1->device_id, dev2->device_id,
1263 		sizeof(dev1->device_id)) != 0)
1264 		return 0;
1265 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1266 		return 0;
1267 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1268 		return 0;
1269 	if (dev1->devtype != dev2->devtype)
1270 		return 0;
1271 	if (dev1->bus != dev2->bus)
1272 		return 0;
1273 	return 1;
1274 }
1275 
1276 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1277 	struct hpsa_scsi_dev_t *dev2)
1278 {
1279 	/* Device attributes that can change, but don't mean
1280 	 * that the device is a different device, nor that the OS
1281 	 * needs to be told anything about the change.
1282 	 */
1283 	if (dev1->raid_level != dev2->raid_level)
1284 		return 1;
1285 	if (dev1->offload_config != dev2->offload_config)
1286 		return 1;
1287 	if (dev1->offload_enabled != dev2->offload_enabled)
1288 		return 1;
1289 	if (dev1->queue_depth != dev2->queue_depth)
1290 		return 1;
1291 	return 0;
1292 }
1293 
1294 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1295  * and return needle location in *index.  If scsi3addr matches, but not
1296  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1297  * location in *index.
1298  * In the case of a minor device attribute change, such as RAID level, just
1299  * return DEVICE_UPDATED, along with the updated device's location in index.
1300  * If needle not found, return DEVICE_NOT_FOUND.
1301  */
1302 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1303 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1304 	int *index)
1305 {
1306 	int i;
1307 #define DEVICE_NOT_FOUND 0
1308 #define DEVICE_CHANGED 1
1309 #define DEVICE_SAME 2
1310 #define DEVICE_UPDATED 3
1311 	for (i = 0; i < haystack_size; i++) {
1312 		if (haystack[i] == NULL) /* previously removed. */
1313 			continue;
1314 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1315 			*index = i;
1316 			if (device_is_the_same(needle, haystack[i])) {
1317 				if (device_updated(needle, haystack[i]))
1318 					return DEVICE_UPDATED;
1319 				return DEVICE_SAME;
1320 			} else {
1321 				/* Keep offline devices offline */
1322 				if (needle->volume_offline)
1323 					return DEVICE_NOT_FOUND;
1324 				return DEVICE_CHANGED;
1325 			}
1326 		}
1327 	}
1328 	*index = -1;
1329 	return DEVICE_NOT_FOUND;
1330 }
1331 
1332 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1333 					unsigned char scsi3addr[])
1334 {
1335 	struct offline_device_entry *device;
1336 	unsigned long flags;
1337 
1338 	/* Check to see if device is already on the list */
1339 	spin_lock_irqsave(&h->offline_device_lock, flags);
1340 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1341 		if (memcmp(device->scsi3addr, scsi3addr,
1342 			sizeof(device->scsi3addr)) == 0) {
1343 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1344 			return;
1345 		}
1346 	}
1347 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1348 
1349 	/* Device is not on the list, add it. */
1350 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1351 	if (!device) {
1352 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1353 		return;
1354 	}
1355 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1356 	spin_lock_irqsave(&h->offline_device_lock, flags);
1357 	list_add_tail(&device->offline_list, &h->offline_device_list);
1358 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1359 }
1360 
1361 /* Print a message explaining various offline volume states */
1362 static void hpsa_show_volume_status(struct ctlr_info *h,
1363 	struct hpsa_scsi_dev_t *sd)
1364 {
1365 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1366 		dev_info(&h->pdev->dev,
1367 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1368 			h->scsi_host->host_no,
1369 			sd->bus, sd->target, sd->lun);
1370 	switch (sd->volume_offline) {
1371 	case HPSA_LV_OK:
1372 		break;
1373 	case HPSA_LV_UNDERGOING_ERASE:
1374 		dev_info(&h->pdev->dev,
1375 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1376 			h->scsi_host->host_no,
1377 			sd->bus, sd->target, sd->lun);
1378 		break;
1379 	case HPSA_LV_UNDERGOING_RPI:
1380 		dev_info(&h->pdev->dev,
1381 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1382 			h->scsi_host->host_no,
1383 			sd->bus, sd->target, sd->lun);
1384 		break;
1385 	case HPSA_LV_PENDING_RPI:
1386 		dev_info(&h->pdev->dev,
1387 				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1388 				h->scsi_host->host_no,
1389 				sd->bus, sd->target, sd->lun);
1390 		break;
1391 	case HPSA_LV_ENCRYPTED_NO_KEY:
1392 		dev_info(&h->pdev->dev,
1393 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1394 			h->scsi_host->host_no,
1395 			sd->bus, sd->target, sd->lun);
1396 		break;
1397 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1398 		dev_info(&h->pdev->dev,
1399 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1400 			h->scsi_host->host_no,
1401 			sd->bus, sd->target, sd->lun);
1402 		break;
1403 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1404 		dev_info(&h->pdev->dev,
1405 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1406 			h->scsi_host->host_no,
1407 			sd->bus, sd->target, sd->lun);
1408 		break;
1409 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1410 		dev_info(&h->pdev->dev,
1411 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1412 			h->scsi_host->host_no,
1413 			sd->bus, sd->target, sd->lun);
1414 		break;
1415 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1416 		dev_info(&h->pdev->dev,
1417 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1418 			h->scsi_host->host_no,
1419 			sd->bus, sd->target, sd->lun);
1420 		break;
1421 	case HPSA_LV_PENDING_ENCRYPTION:
1422 		dev_info(&h->pdev->dev,
1423 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1424 			h->scsi_host->host_no,
1425 			sd->bus, sd->target, sd->lun);
1426 		break;
1427 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1428 		dev_info(&h->pdev->dev,
1429 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1430 			h->scsi_host->host_no,
1431 			sd->bus, sd->target, sd->lun);
1432 		break;
1433 	}
1434 }
1435 
1436 /*
1437  * Figure the list of physical drive pointers for a logical drive with
1438  * raid offload configured.
1439  */
1440 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1441 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1442 				struct hpsa_scsi_dev_t *logical_drive)
1443 {
1444 	struct raid_map_data *map = &logical_drive->raid_map;
1445 	struct raid_map_disk_data *dd = &map->data[0];
1446 	int i, j;
1447 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1448 				le16_to_cpu(map->metadata_disks_per_row);
1449 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1450 				le16_to_cpu(map->layout_map_count) *
1451 				total_disks_per_row;
1452 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1453 				total_disks_per_row;
1454 	int qdepth;
1455 
1456 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1457 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1458 
1459 	logical_drive->nphysical_disks = nraid_map_entries;
1460 
1461 	qdepth = 0;
1462 	for (i = 0; i < nraid_map_entries; i++) {
1463 		logical_drive->phys_disk[i] = NULL;
1464 		if (!logical_drive->offload_config)
1465 			continue;
1466 		for (j = 0; j < ndevices; j++) {
1467 			if (dev[j]->devtype != TYPE_DISK)
1468 				continue;
1469 			if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1470 				continue;
1471 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1472 				continue;
1473 
1474 			logical_drive->phys_disk[i] = dev[j];
1475 			if (i < nphys_disk)
1476 				qdepth = min(h->nr_cmds, qdepth +
1477 				    logical_drive->phys_disk[i]->queue_depth);
1478 			break;
1479 		}
1480 
1481 		/*
1482 		 * This can happen if a physical drive is removed and
1483 		 * the logical drive is degraded.  In that case, the RAID
1484 		 * map data will refer to a physical disk which isn't actually
1485 		 * present.  And in that case offload_enabled should already
1486 		 * be 0, but we'll turn it off here just in case
1487 		 */
1488 		if (!logical_drive->phys_disk[i]) {
1489 			logical_drive->offload_enabled = 0;
1490 			logical_drive->offload_to_be_enabled = 0;
1491 			logical_drive->queue_depth = 8;
1492 		}
1493 	}
1494 	if (nraid_map_entries)
1495 		/*
1496 		 * This is correct for reads, too high for full stripe writes,
1497 		 * way too high for partial stripe writes
1498 		 */
1499 		logical_drive->queue_depth = qdepth;
1500 	else
1501 		logical_drive->queue_depth = h->nr_cmds;
1502 }
1503 
1504 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1505 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1506 {
1507 	int i;
1508 
1509 	for (i = 0; i < ndevices; i++) {
1510 		if (dev[i]->devtype != TYPE_DISK)
1511 			continue;
1512 		if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1513 			continue;
1514 
1515 		/*
1516 		 * If offload is currently enabled, the RAID map and
1517 		 * phys_disk[] assignment *better* not be changing
1518 		 * and since it isn't changing, we do not need to
1519 		 * update it.
1520 		 */
1521 		if (dev[i]->offload_enabled)
1522 			continue;
1523 
1524 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1525 	}
1526 }
1527 
1528 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1529 	struct hpsa_scsi_dev_t *sd[], int nsds)
1530 {
1531 	/* sd contains scsi3 addresses and devtypes, and inquiry
1532 	 * data.  This function takes what's in sd to be the current
1533 	 * reality and updates h->dev[] to reflect that reality.
1534 	 */
1535 	int i, entry, device_change, changes = 0;
1536 	struct hpsa_scsi_dev_t *csd;
1537 	unsigned long flags;
1538 	struct hpsa_scsi_dev_t **added, **removed;
1539 	int nadded, nremoved;
1540 	struct Scsi_Host *sh = NULL;
1541 
1542 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1543 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1544 
1545 	if (!added || !removed) {
1546 		dev_warn(&h->pdev->dev, "out of memory in "
1547 			"adjust_hpsa_scsi_table\n");
1548 		goto free_and_out;
1549 	}
1550 
1551 	spin_lock_irqsave(&h->devlock, flags);
1552 
1553 	/* find any devices in h->dev[] that are not in
1554 	 * sd[] and remove them from h->dev[], and for any
1555 	 * devices which have changed, remove the old device
1556 	 * info and add the new device info.
1557 	 * If minor device attributes change, just update
1558 	 * the existing device structure.
1559 	 */
1560 	i = 0;
1561 	nremoved = 0;
1562 	nadded = 0;
1563 	while (i < h->ndevices) {
1564 		csd = h->dev[i];
1565 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1566 		if (device_change == DEVICE_NOT_FOUND) {
1567 			changes++;
1568 			hpsa_scsi_remove_entry(h, hostno, i,
1569 				removed, &nremoved);
1570 			continue; /* remove ^^^, hence i not incremented */
1571 		} else if (device_change == DEVICE_CHANGED) {
1572 			changes++;
1573 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1574 				added, &nadded, removed, &nremoved);
1575 			/* Set it to NULL to prevent it from being freed
1576 			 * at the bottom of hpsa_update_scsi_devices()
1577 			 */
1578 			sd[entry] = NULL;
1579 		} else if (device_change == DEVICE_UPDATED) {
1580 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1581 		}
1582 		i++;
1583 	}
1584 
1585 	/* Now, make sure every device listed in sd[] is also
1586 	 * listed in h->dev[], adding them if they aren't found
1587 	 */
1588 
1589 	for (i = 0; i < nsds; i++) {
1590 		if (!sd[i]) /* if already added above. */
1591 			continue;
1592 
1593 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1594 		 * as the SCSI mid-layer does not handle such devices well.
1595 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1596 		 * at 160Hz, and prevents the system from coming up.
1597 		 */
1598 		if (sd[i]->volume_offline) {
1599 			hpsa_show_volume_status(h, sd[i]);
1600 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1601 			continue;
1602 		}
1603 
1604 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1605 					h->ndevices, &entry);
1606 		if (device_change == DEVICE_NOT_FOUND) {
1607 			changes++;
1608 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1609 				added, &nadded) != 0)
1610 				break;
1611 			sd[i] = NULL; /* prevent from being freed later. */
1612 		} else if (device_change == DEVICE_CHANGED) {
1613 			/* should never happen... */
1614 			changes++;
1615 			dev_warn(&h->pdev->dev,
1616 				"device unexpectedly changed.\n");
1617 			/* but if it does happen, we just ignore that device */
1618 		}
1619 	}
1620 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1621 
1622 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1623 	 * any logical drives that need it enabled.
1624 	 */
1625 	for (i = 0; i < h->ndevices; i++)
1626 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1627 
1628 	spin_unlock_irqrestore(&h->devlock, flags);
1629 
1630 	/* Monitor devices which are in one of several NOT READY states to be
1631 	 * brought online later. This must be done without holding h->devlock,
1632 	 * so don't touch h->dev[]
1633 	 */
1634 	for (i = 0; i < nsds; i++) {
1635 		if (!sd[i]) /* if already added above. */
1636 			continue;
1637 		if (sd[i]->volume_offline)
1638 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1639 	}
1640 
1641 	/* Don't notify scsi mid layer of any changes the first time through
1642 	 * (or if there are no changes) scsi_scan_host will do it later the
1643 	 * first time through.
1644 	 */
1645 	if (hostno == -1 || !changes)
1646 		goto free_and_out;
1647 
1648 	sh = h->scsi_host;
1649 	/* Notify scsi mid layer of any removed devices */
1650 	for (i = 0; i < nremoved; i++) {
1651 		if (removed[i]->expose_state & HPSA_SCSI_ADD) {
1652 			struct scsi_device *sdev =
1653 				scsi_device_lookup(sh, removed[i]->bus,
1654 					removed[i]->target, removed[i]->lun);
1655 			if (sdev != NULL) {
1656 				scsi_remove_device(sdev);
1657 				scsi_device_put(sdev);
1658 			} else {
1659 				/*
1660 				 * We don't expect to get here.
1661 				 * future cmds to this device will get selection
1662 				 * timeout as if the device was gone.
1663 				 */
1664 				hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1665 					"didn't find device for removal.");
1666 			}
1667 		}
1668 		kfree(removed[i]);
1669 		removed[i] = NULL;
1670 	}
1671 
1672 	/* Notify scsi mid layer of any added devices */
1673 	for (i = 0; i < nadded; i++) {
1674 		if (!(added[i]->expose_state & HPSA_SCSI_ADD))
1675 			continue;
1676 		if (scsi_add_device(sh, added[i]->bus,
1677 			added[i]->target, added[i]->lun) == 0)
1678 			continue;
1679 		hpsa_show_dev_msg(KERN_WARNING, h, added[i],
1680 					"addition failed, device not added.");
1681 		/* now we have to remove it from h->dev,
1682 		 * since it didn't get added to scsi mid layer
1683 		 */
1684 		fixup_botched_add(h, added[i]);
1685 		added[i] = NULL;
1686 	}
1687 
1688 free_and_out:
1689 	kfree(added);
1690 	kfree(removed);
1691 }
1692 
1693 /*
1694  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1695  * Assume's h->devlock is held.
1696  */
1697 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1698 	int bus, int target, int lun)
1699 {
1700 	int i;
1701 	struct hpsa_scsi_dev_t *sd;
1702 
1703 	for (i = 0; i < h->ndevices; i++) {
1704 		sd = h->dev[i];
1705 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1706 			return sd;
1707 	}
1708 	return NULL;
1709 }
1710 
1711 static int hpsa_slave_alloc(struct scsi_device *sdev)
1712 {
1713 	struct hpsa_scsi_dev_t *sd;
1714 	unsigned long flags;
1715 	struct ctlr_info *h;
1716 
1717 	h = sdev_to_hba(sdev);
1718 	spin_lock_irqsave(&h->devlock, flags);
1719 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1720 		sdev_id(sdev), sdev->lun);
1721 	if (likely(sd)) {
1722 		atomic_set(&sd->ioaccel_cmds_out, 0);
1723 		sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
1724 	} else
1725 		sdev->hostdata = NULL;
1726 	spin_unlock_irqrestore(&h->devlock, flags);
1727 	return 0;
1728 }
1729 
1730 /* configure scsi device based on internal per-device structure */
1731 static int hpsa_slave_configure(struct scsi_device *sdev)
1732 {
1733 	struct hpsa_scsi_dev_t *sd;
1734 	int queue_depth;
1735 
1736 	sd = sdev->hostdata;
1737 	sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);
1738 
1739 	if (sd)
1740 		queue_depth = sd->queue_depth != 0 ?
1741 			sd->queue_depth : sdev->host->can_queue;
1742 	else
1743 		queue_depth = sdev->host->can_queue;
1744 
1745 	scsi_change_queue_depth(sdev, queue_depth);
1746 
1747 	return 0;
1748 }
1749 
1750 static void hpsa_slave_destroy(struct scsi_device *sdev)
1751 {
1752 	/* nothing to do. */
1753 }
1754 
1755 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1756 {
1757 	int i;
1758 
1759 	if (!h->ioaccel2_cmd_sg_list)
1760 		return;
1761 	for (i = 0; i < h->nr_cmds; i++) {
1762 		kfree(h->ioaccel2_cmd_sg_list[i]);
1763 		h->ioaccel2_cmd_sg_list[i] = NULL;
1764 	}
1765 	kfree(h->ioaccel2_cmd_sg_list);
1766 	h->ioaccel2_cmd_sg_list = NULL;
1767 }
1768 
1769 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1770 {
1771 	int i;
1772 
1773 	if (h->chainsize <= 0)
1774 		return 0;
1775 
1776 	h->ioaccel2_cmd_sg_list =
1777 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1778 					GFP_KERNEL);
1779 	if (!h->ioaccel2_cmd_sg_list)
1780 		return -ENOMEM;
1781 	for (i = 0; i < h->nr_cmds; i++) {
1782 		h->ioaccel2_cmd_sg_list[i] =
1783 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1784 					h->maxsgentries, GFP_KERNEL);
1785 		if (!h->ioaccel2_cmd_sg_list[i])
1786 			goto clean;
1787 	}
1788 	return 0;
1789 
1790 clean:
1791 	hpsa_free_ioaccel2_sg_chain_blocks(h);
1792 	return -ENOMEM;
1793 }
1794 
1795 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1796 {
1797 	int i;
1798 
1799 	if (!h->cmd_sg_list)
1800 		return;
1801 	for (i = 0; i < h->nr_cmds; i++) {
1802 		kfree(h->cmd_sg_list[i]);
1803 		h->cmd_sg_list[i] = NULL;
1804 	}
1805 	kfree(h->cmd_sg_list);
1806 	h->cmd_sg_list = NULL;
1807 }
1808 
1809 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1810 {
1811 	int i;
1812 
1813 	if (h->chainsize <= 0)
1814 		return 0;
1815 
1816 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1817 				GFP_KERNEL);
1818 	if (!h->cmd_sg_list) {
1819 		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1820 		return -ENOMEM;
1821 	}
1822 	for (i = 0; i < h->nr_cmds; i++) {
1823 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1824 						h->chainsize, GFP_KERNEL);
1825 		if (!h->cmd_sg_list[i]) {
1826 			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1827 			goto clean;
1828 		}
1829 	}
1830 	return 0;
1831 
1832 clean:
1833 	hpsa_free_sg_chain_blocks(h);
1834 	return -ENOMEM;
1835 }
1836 
1837 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
1838 	struct io_accel2_cmd *cp, struct CommandList *c)
1839 {
1840 	struct ioaccel2_sg_element *chain_block;
1841 	u64 temp64;
1842 	u32 chain_size;
1843 
1844 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
1845 	chain_size = le32_to_cpu(cp->data_len);
1846 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
1847 				PCI_DMA_TODEVICE);
1848 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1849 		/* prevent subsequent unmapping */
1850 		cp->sg->address = 0;
1851 		return -1;
1852 	}
1853 	cp->sg->address = cpu_to_le64(temp64);
1854 	return 0;
1855 }
1856 
1857 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
1858 	struct io_accel2_cmd *cp)
1859 {
1860 	struct ioaccel2_sg_element *chain_sg;
1861 	u64 temp64;
1862 	u32 chain_size;
1863 
1864 	chain_sg = cp->sg;
1865 	temp64 = le64_to_cpu(chain_sg->address);
1866 	chain_size = le32_to_cpu(cp->data_len);
1867 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
1868 }
1869 
1870 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1871 	struct CommandList *c)
1872 {
1873 	struct SGDescriptor *chain_sg, *chain_block;
1874 	u64 temp64;
1875 	u32 chain_len;
1876 
1877 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1878 	chain_block = h->cmd_sg_list[c->cmdindex];
1879 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1880 	chain_len = sizeof(*chain_sg) *
1881 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1882 	chain_sg->Len = cpu_to_le32(chain_len);
1883 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1884 				PCI_DMA_TODEVICE);
1885 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1886 		/* prevent subsequent unmapping */
1887 		chain_sg->Addr = cpu_to_le64(0);
1888 		return -1;
1889 	}
1890 	chain_sg->Addr = cpu_to_le64(temp64);
1891 	return 0;
1892 }
1893 
1894 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1895 	struct CommandList *c)
1896 {
1897 	struct SGDescriptor *chain_sg;
1898 
1899 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1900 		return;
1901 
1902 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1903 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1904 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1905 }
1906 
1907 
1908 /* Decode the various types of errors on ioaccel2 path.
1909  * Return 1 for any error that should generate a RAID path retry.
1910  * Return 0 for errors that don't require a RAID path retry.
1911  */
1912 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1913 					struct CommandList *c,
1914 					struct scsi_cmnd *cmd,
1915 					struct io_accel2_cmd *c2)
1916 {
1917 	int data_len;
1918 	int retry = 0;
1919 	u32 ioaccel2_resid = 0;
1920 
1921 	switch (c2->error_data.serv_response) {
1922 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
1923 		switch (c2->error_data.status) {
1924 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1925 			break;
1926 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1927 			cmd->result |= SAM_STAT_CHECK_CONDITION;
1928 			if (c2->error_data.data_present !=
1929 					IOACCEL2_SENSE_DATA_PRESENT) {
1930 				memset(cmd->sense_buffer, 0,
1931 					SCSI_SENSE_BUFFERSIZE);
1932 				break;
1933 			}
1934 			/* copy the sense data */
1935 			data_len = c2->error_data.sense_data_len;
1936 			if (data_len > SCSI_SENSE_BUFFERSIZE)
1937 				data_len = SCSI_SENSE_BUFFERSIZE;
1938 			if (data_len > sizeof(c2->error_data.sense_data_buff))
1939 				data_len =
1940 					sizeof(c2->error_data.sense_data_buff);
1941 			memcpy(cmd->sense_buffer,
1942 				c2->error_data.sense_data_buff, data_len);
1943 			retry = 1;
1944 			break;
1945 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1946 			retry = 1;
1947 			break;
1948 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1949 			retry = 1;
1950 			break;
1951 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1952 			retry = 1;
1953 			break;
1954 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1955 			retry = 1;
1956 			break;
1957 		default:
1958 			retry = 1;
1959 			break;
1960 		}
1961 		break;
1962 	case IOACCEL2_SERV_RESPONSE_FAILURE:
1963 		switch (c2->error_data.status) {
1964 		case IOACCEL2_STATUS_SR_IO_ERROR:
1965 		case IOACCEL2_STATUS_SR_IO_ABORTED:
1966 		case IOACCEL2_STATUS_SR_OVERRUN:
1967 			retry = 1;
1968 			break;
1969 		case IOACCEL2_STATUS_SR_UNDERRUN:
1970 			cmd->result = (DID_OK << 16);		/* host byte */
1971 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1972 			ioaccel2_resid = get_unaligned_le32(
1973 						&c2->error_data.resid_cnt[0]);
1974 			scsi_set_resid(cmd, ioaccel2_resid);
1975 			break;
1976 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
1977 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
1978 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
1979 			/* We will get an event from ctlr to trigger rescan */
1980 			retry = 1;
1981 			break;
1982 		default:
1983 			retry = 1;
1984 		}
1985 		break;
1986 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1987 		break;
1988 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1989 		break;
1990 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1991 		retry = 1;
1992 		break;
1993 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1994 		break;
1995 	default:
1996 		retry = 1;
1997 		break;
1998 	}
1999 
2000 	return retry;	/* retry on raid path? */
2001 }
2002 
2003 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2004 		struct CommandList *c)
2005 {
2006 	bool do_wake = false;
2007 
2008 	/*
2009 	 * Prevent the following race in the abort handler:
2010 	 *
2011 	 * 1. LLD is requested to abort a SCSI command
2012 	 * 2. The SCSI command completes
2013 	 * 3. The struct CommandList associated with step 2 is made available
2014 	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2015 	 * 5. Abort handler follows scsi_cmnd->host_scribble and
2016 	 *    finds struct CommandList and tries to aborts it
2017 	 * Now we have aborted the wrong command.
2018 	 *
2019 	 * Reset c->scsi_cmd here so that the abort or reset handler will know
2020 	 * this command has completed.  Then, check to see if the handler is
2021 	 * waiting for this command, and, if so, wake it.
2022 	 */
2023 	c->scsi_cmd = SCSI_CMD_IDLE;
2024 	mb();	/* Declare command idle before checking for pending events. */
2025 	if (c->abort_pending) {
2026 		do_wake = true;
2027 		c->abort_pending = false;
2028 	}
2029 	if (c->reset_pending) {
2030 		unsigned long flags;
2031 		struct hpsa_scsi_dev_t *dev;
2032 
2033 		/*
2034 		 * There appears to be a reset pending; lock the lock and
2035 		 * reconfirm.  If so, then decrement the count of outstanding
2036 		 * commands and wake the reset command if this is the last one.
2037 		 */
2038 		spin_lock_irqsave(&h->lock, flags);
2039 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2040 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2041 			do_wake = true;
2042 		c->reset_pending = NULL;
2043 		spin_unlock_irqrestore(&h->lock, flags);
2044 	}
2045 
2046 	if (do_wake)
2047 		wake_up_all(&h->event_sync_wait_queue);
2048 }
2049 
2050 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2051 				      struct CommandList *c)
2052 {
2053 	hpsa_cmd_resolve_events(h, c);
2054 	cmd_tagged_free(h, c);
2055 }
2056 
2057 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2058 		struct CommandList *c, struct scsi_cmnd *cmd)
2059 {
2060 	hpsa_cmd_resolve_and_free(h, c);
2061 	cmd->scsi_done(cmd);
2062 }
2063 
2064 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2065 {
2066 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2067 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2068 }
2069 
2070 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2071 {
2072 	cmd->result = DID_ABORT << 16;
2073 }
2074 
2075 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2076 				    struct scsi_cmnd *cmd)
2077 {
2078 	hpsa_set_scsi_cmd_aborted(cmd);
2079 	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2080 			 c->Request.CDB, c->err_info->ScsiStatus);
2081 	hpsa_cmd_resolve_and_free(h, c);
2082 }
2083 
2084 static void process_ioaccel2_completion(struct ctlr_info *h,
2085 		struct CommandList *c, struct scsi_cmnd *cmd,
2086 		struct hpsa_scsi_dev_t *dev)
2087 {
2088 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2089 
2090 	/* check for good status */
2091 	if (likely(c2->error_data.serv_response == 0 &&
2092 			c2->error_data.status == 0))
2093 		return hpsa_cmd_free_and_done(h, c, cmd);
2094 
2095 	/*
2096 	 * Any RAID offload error results in retry which will use
2097 	 * the normal I/O path so the controller can handle whatever's
2098 	 * wrong.
2099 	 */
2100 	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
2101 		c2->error_data.serv_response ==
2102 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2103 		if (c2->error_data.status ==
2104 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2105 			dev->offload_enabled = 0;
2106 
2107 		return hpsa_retry_cmd(h, c);
2108 	}
2109 
2110 	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2111 		return hpsa_retry_cmd(h, c);
2112 
2113 	return hpsa_cmd_free_and_done(h, c, cmd);
2114 }
2115 
2116 /* Returns 0 on success, < 0 otherwise. */
2117 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2118 					struct CommandList *cp)
2119 {
2120 	u8 tmf_status = cp->err_info->ScsiStatus;
2121 
2122 	switch (tmf_status) {
2123 	case CISS_TMF_COMPLETE:
2124 		/*
2125 		 * CISS_TMF_COMPLETE never happens, instead,
2126 		 * ei->CommandStatus == 0 for this case.
2127 		 */
2128 	case CISS_TMF_SUCCESS:
2129 		return 0;
2130 	case CISS_TMF_INVALID_FRAME:
2131 	case CISS_TMF_NOT_SUPPORTED:
2132 	case CISS_TMF_FAILED:
2133 	case CISS_TMF_WRONG_LUN:
2134 	case CISS_TMF_OVERLAPPED_TAG:
2135 		break;
2136 	default:
2137 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2138 				tmf_status);
2139 		break;
2140 	}
2141 	return -tmf_status;
2142 }
2143 
2144 static void complete_scsi_command(struct CommandList *cp)
2145 {
2146 	struct scsi_cmnd *cmd;
2147 	struct ctlr_info *h;
2148 	struct ErrorInfo *ei;
2149 	struct hpsa_scsi_dev_t *dev;
2150 	struct io_accel2_cmd *c2;
2151 
2152 	u8 sense_key;
2153 	u8 asc;      /* additional sense code */
2154 	u8 ascq;     /* additional sense code qualifier */
2155 	unsigned long sense_data_size;
2156 
2157 	ei = cp->err_info;
2158 	cmd = cp->scsi_cmd;
2159 	h = cp->h;
2160 	dev = cmd->device->hostdata;
2161 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2162 
2163 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2164 	if ((cp->cmd_type == CMD_SCSI) &&
2165 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2166 		hpsa_unmap_sg_chain_block(h, cp);
2167 
2168 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2169 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2170 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2171 
2172 	cmd->result = (DID_OK << 16); 		/* host byte */
2173 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2174 
2175 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2176 		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2177 
2178 	/*
2179 	 * We check for lockup status here as it may be set for
2180 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2181 	 * fail_all_oustanding_cmds()
2182 	 */
2183 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2184 		/* DID_NO_CONNECT will prevent a retry */
2185 		cmd->result = DID_NO_CONNECT << 16;
2186 		return hpsa_cmd_free_and_done(h, cp, cmd);
2187 	}
2188 
2189 	if ((unlikely(hpsa_is_pending_event(cp)))) {
2190 		if (cp->reset_pending)
2191 			return hpsa_cmd_resolve_and_free(h, cp);
2192 		if (cp->abort_pending)
2193 			return hpsa_cmd_abort_and_free(h, cp, cmd);
2194 	}
2195 
2196 	if (cp->cmd_type == CMD_IOACCEL2)
2197 		return process_ioaccel2_completion(h, cp, cmd, dev);
2198 
2199 	scsi_set_resid(cmd, ei->ResidualCnt);
2200 	if (ei->CommandStatus == 0)
2201 		return hpsa_cmd_free_and_done(h, cp, cmd);
2202 
2203 	/* For I/O accelerator commands, copy over some fields to the normal
2204 	 * CISS header used below for error handling.
2205 	 */
2206 	if (cp->cmd_type == CMD_IOACCEL1) {
2207 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2208 		cp->Header.SGList = scsi_sg_count(cmd);
2209 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2210 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2211 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2212 		cp->Header.tag = c->tag;
2213 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2214 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2215 
2216 		/* Any RAID offload error results in retry which will use
2217 		 * the normal I/O path so the controller can handle whatever's
2218 		 * wrong.
2219 		 */
2220 		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
2221 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2222 				dev->offload_enabled = 0;
2223 			return hpsa_retry_cmd(h, cp);
2224 		}
2225 	}
2226 
2227 	/* an error has occurred */
2228 	switch (ei->CommandStatus) {
2229 
2230 	case CMD_TARGET_STATUS:
2231 		cmd->result |= ei->ScsiStatus;
2232 		/* copy the sense data */
2233 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2234 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2235 		else
2236 			sense_data_size = sizeof(ei->SenseInfo);
2237 		if (ei->SenseLen < sense_data_size)
2238 			sense_data_size = ei->SenseLen;
2239 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2240 		if (ei->ScsiStatus)
2241 			decode_sense_data(ei->SenseInfo, sense_data_size,
2242 				&sense_key, &asc, &ascq);
2243 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2244 			if (sense_key == ABORTED_COMMAND) {
2245 				cmd->result |= DID_SOFT_ERROR << 16;
2246 				break;
2247 			}
2248 			break;
2249 		}
2250 		/* Problem was not a check condition
2251 		 * Pass it up to the upper layers...
2252 		 */
2253 		if (ei->ScsiStatus) {
2254 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2255 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2256 				"Returning result: 0x%x\n",
2257 				cp, ei->ScsiStatus,
2258 				sense_key, asc, ascq,
2259 				cmd->result);
2260 		} else {  /* scsi status is zero??? How??? */
2261 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2262 				"Returning no connection.\n", cp),
2263 
2264 			/* Ordinarily, this case should never happen,
2265 			 * but there is a bug in some released firmware
2266 			 * revisions that allows it to happen if, for
2267 			 * example, a 4100 backplane loses power and
2268 			 * the tape drive is in it.  We assume that
2269 			 * it's a fatal error of some kind because we
2270 			 * can't show that it wasn't. We will make it
2271 			 * look like selection timeout since that is
2272 			 * the most common reason for this to occur,
2273 			 * and it's severe enough.
2274 			 */
2275 
2276 			cmd->result = DID_NO_CONNECT << 16;
2277 		}
2278 		break;
2279 
2280 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2281 		break;
2282 	case CMD_DATA_OVERRUN:
2283 		dev_warn(&h->pdev->dev,
2284 			"CDB %16phN data overrun\n", cp->Request.CDB);
2285 		break;
2286 	case CMD_INVALID: {
2287 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2288 		print_cmd(cp); */
2289 		/* We get CMD_INVALID if you address a non-existent device
2290 		 * instead of a selection timeout (no response).  You will
2291 		 * see this if you yank out a drive, then try to access it.
2292 		 * This is kind of a shame because it means that any other
2293 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2294 		 * missing target. */
2295 		cmd->result = DID_NO_CONNECT << 16;
2296 	}
2297 		break;
2298 	case CMD_PROTOCOL_ERR:
2299 		cmd->result = DID_ERROR << 16;
2300 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2301 				cp->Request.CDB);
2302 		break;
2303 	case CMD_HARDWARE_ERR:
2304 		cmd->result = DID_ERROR << 16;
2305 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2306 			cp->Request.CDB);
2307 		break;
2308 	case CMD_CONNECTION_LOST:
2309 		cmd->result = DID_ERROR << 16;
2310 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2311 			cp->Request.CDB);
2312 		break;
2313 	case CMD_ABORTED:
2314 		/* Return now to avoid calling scsi_done(). */
2315 		return hpsa_cmd_abort_and_free(h, cp, cmd);
2316 	case CMD_ABORT_FAILED:
2317 		cmd->result = DID_ERROR << 16;
2318 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2319 			cp->Request.CDB);
2320 		break;
2321 	case CMD_UNSOLICITED_ABORT:
2322 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2323 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2324 			cp->Request.CDB);
2325 		break;
2326 	case CMD_TIMEOUT:
2327 		cmd->result = DID_TIME_OUT << 16;
2328 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2329 			cp->Request.CDB);
2330 		break;
2331 	case CMD_UNABORTABLE:
2332 		cmd->result = DID_ERROR << 16;
2333 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2334 		break;
2335 	case CMD_TMF_STATUS:
2336 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2337 			cmd->result = DID_ERROR << 16;
2338 		break;
2339 	case CMD_IOACCEL_DISABLED:
2340 		/* This only handles the direct pass-through case since RAID
2341 		 * offload is handled above.  Just attempt a retry.
2342 		 */
2343 		cmd->result = DID_SOFT_ERROR << 16;
2344 		dev_warn(&h->pdev->dev,
2345 				"cp %p had HP SSD Smart Path error\n", cp);
2346 		break;
2347 	default:
2348 		cmd->result = DID_ERROR << 16;
2349 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2350 				cp, ei->CommandStatus);
2351 	}
2352 
2353 	return hpsa_cmd_free_and_done(h, cp, cmd);
2354 }
2355 
2356 static void hpsa_pci_unmap(struct pci_dev *pdev,
2357 	struct CommandList *c, int sg_used, int data_direction)
2358 {
2359 	int i;
2360 
2361 	for (i = 0; i < sg_used; i++)
2362 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2363 				le32_to_cpu(c->SG[i].Len),
2364 				data_direction);
2365 }
2366 
2367 static int hpsa_map_one(struct pci_dev *pdev,
2368 		struct CommandList *cp,
2369 		unsigned char *buf,
2370 		size_t buflen,
2371 		int data_direction)
2372 {
2373 	u64 addr64;
2374 
2375 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2376 		cp->Header.SGList = 0;
2377 		cp->Header.SGTotal = cpu_to_le16(0);
2378 		return 0;
2379 	}
2380 
2381 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2382 	if (dma_mapping_error(&pdev->dev, addr64)) {
2383 		/* Prevent subsequent unmap of something never mapped */
2384 		cp->Header.SGList = 0;
2385 		cp->Header.SGTotal = cpu_to_le16(0);
2386 		return -1;
2387 	}
2388 	cp->SG[0].Addr = cpu_to_le64(addr64);
2389 	cp->SG[0].Len = cpu_to_le32(buflen);
2390 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2391 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2392 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2393 	return 0;
2394 }
2395 
2396 #define NO_TIMEOUT ((unsigned long) -1)
2397 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2398 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2399 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2400 {
2401 	DECLARE_COMPLETION_ONSTACK(wait);
2402 
2403 	c->waiting = &wait;
2404 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2405 	if (timeout_msecs == NO_TIMEOUT) {
2406 		/* TODO: get rid of this no-timeout thing */
2407 		wait_for_completion_io(&wait);
2408 		return IO_OK;
2409 	}
2410 	if (!wait_for_completion_io_timeout(&wait,
2411 					msecs_to_jiffies(timeout_msecs))) {
2412 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2413 		return -ETIMEDOUT;
2414 	}
2415 	return IO_OK;
2416 }
2417 
2418 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2419 				   int reply_queue, unsigned long timeout_msecs)
2420 {
2421 	if (unlikely(lockup_detected(h))) {
2422 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2423 		return IO_OK;
2424 	}
2425 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2426 }
2427 
2428 static u32 lockup_detected(struct ctlr_info *h)
2429 {
2430 	int cpu;
2431 	u32 rc, *lockup_detected;
2432 
2433 	cpu = get_cpu();
2434 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2435 	rc = *lockup_detected;
2436 	put_cpu();
2437 	return rc;
2438 }
2439 
2440 #define MAX_DRIVER_CMD_RETRIES 25
2441 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2442 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2443 {
2444 	int backoff_time = 10, retry_count = 0;
2445 	int rc;
2446 
2447 	do {
2448 		memset(c->err_info, 0, sizeof(*c->err_info));
2449 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2450 						  timeout_msecs);
2451 		if (rc)
2452 			break;
2453 		retry_count++;
2454 		if (retry_count > 3) {
2455 			msleep(backoff_time);
2456 			if (backoff_time < 1000)
2457 				backoff_time *= 2;
2458 		}
2459 	} while ((check_for_unit_attention(h, c) ||
2460 			check_for_busy(h, c)) &&
2461 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2462 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2463 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2464 		rc = -EIO;
2465 	return rc;
2466 }
2467 
2468 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2469 				struct CommandList *c)
2470 {
2471 	const u8 *cdb = c->Request.CDB;
2472 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2473 
2474 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2475 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2476 		txt, lun[0], lun[1], lun[2], lun[3],
2477 		lun[4], lun[5], lun[6], lun[7],
2478 		cdb[0], cdb[1], cdb[2], cdb[3],
2479 		cdb[4], cdb[5], cdb[6], cdb[7],
2480 		cdb[8], cdb[9], cdb[10], cdb[11],
2481 		cdb[12], cdb[13], cdb[14], cdb[15]);
2482 }
2483 
2484 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2485 			struct CommandList *cp)
2486 {
2487 	const struct ErrorInfo *ei = cp->err_info;
2488 	struct device *d = &cp->h->pdev->dev;
2489 	u8 sense_key, asc, ascq;
2490 	int sense_len;
2491 
2492 	switch (ei->CommandStatus) {
2493 	case CMD_TARGET_STATUS:
2494 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2495 			sense_len = sizeof(ei->SenseInfo);
2496 		else
2497 			sense_len = ei->SenseLen;
2498 		decode_sense_data(ei->SenseInfo, sense_len,
2499 					&sense_key, &asc, &ascq);
2500 		hpsa_print_cmd(h, "SCSI status", cp);
2501 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2502 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2503 				sense_key, asc, ascq);
2504 		else
2505 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2506 		if (ei->ScsiStatus == 0)
2507 			dev_warn(d, "SCSI status is abnormally zero.  "
2508 			"(probably indicates selection timeout "
2509 			"reported incorrectly due to a known "
2510 			"firmware bug, circa July, 2001.)\n");
2511 		break;
2512 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2513 		break;
2514 	case CMD_DATA_OVERRUN:
2515 		hpsa_print_cmd(h, "overrun condition", cp);
2516 		break;
2517 	case CMD_INVALID: {
2518 		/* controller unfortunately reports SCSI passthru's
2519 		 * to non-existent targets as invalid commands.
2520 		 */
2521 		hpsa_print_cmd(h, "invalid command", cp);
2522 		dev_warn(d, "probably means device no longer present\n");
2523 		}
2524 		break;
2525 	case CMD_PROTOCOL_ERR:
2526 		hpsa_print_cmd(h, "protocol error", cp);
2527 		break;
2528 	case CMD_HARDWARE_ERR:
2529 		hpsa_print_cmd(h, "hardware error", cp);
2530 		break;
2531 	case CMD_CONNECTION_LOST:
2532 		hpsa_print_cmd(h, "connection lost", cp);
2533 		break;
2534 	case CMD_ABORTED:
2535 		hpsa_print_cmd(h, "aborted", cp);
2536 		break;
2537 	case CMD_ABORT_FAILED:
2538 		hpsa_print_cmd(h, "abort failed", cp);
2539 		break;
2540 	case CMD_UNSOLICITED_ABORT:
2541 		hpsa_print_cmd(h, "unsolicited abort", cp);
2542 		break;
2543 	case CMD_TIMEOUT:
2544 		hpsa_print_cmd(h, "timed out", cp);
2545 		break;
2546 	case CMD_UNABORTABLE:
2547 		hpsa_print_cmd(h, "unabortable", cp);
2548 		break;
2549 	case CMD_CTLR_LOCKUP:
2550 		hpsa_print_cmd(h, "controller lockup detected", cp);
2551 		break;
2552 	default:
2553 		hpsa_print_cmd(h, "unknown status", cp);
2554 		dev_warn(d, "Unknown command status %x\n",
2555 				ei->CommandStatus);
2556 	}
2557 }
2558 
2559 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2560 			u16 page, unsigned char *buf,
2561 			unsigned char bufsize)
2562 {
2563 	int rc = IO_OK;
2564 	struct CommandList *c;
2565 	struct ErrorInfo *ei;
2566 
2567 	c = cmd_alloc(h);
2568 
2569 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2570 			page, scsi3addr, TYPE_CMD)) {
2571 		rc = -1;
2572 		goto out;
2573 	}
2574 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2575 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2576 	if (rc)
2577 		goto out;
2578 	ei = c->err_info;
2579 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2580 		hpsa_scsi_interpret_error(h, c);
2581 		rc = -1;
2582 	}
2583 out:
2584 	cmd_free(h, c);
2585 	return rc;
2586 }
2587 
2588 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2589 		unsigned char *scsi3addr, unsigned char page,
2590 		struct bmic_controller_parameters *buf, size_t bufsize)
2591 {
2592 	int rc = IO_OK;
2593 	struct CommandList *c;
2594 	struct ErrorInfo *ei;
2595 
2596 	c = cmd_alloc(h);
2597 	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2598 			page, scsi3addr, TYPE_CMD)) {
2599 		rc = -1;
2600 		goto out;
2601 	}
2602 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2603 			PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2604 	if (rc)
2605 		goto out;
2606 	ei = c->err_info;
2607 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2608 		hpsa_scsi_interpret_error(h, c);
2609 		rc = -1;
2610 	}
2611 out:
2612 	cmd_free(h, c);
2613 	return rc;
2614 }
2615 
2616 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2617 	u8 reset_type, int reply_queue)
2618 {
2619 	int rc = IO_OK;
2620 	struct CommandList *c;
2621 	struct ErrorInfo *ei;
2622 
2623 	c = cmd_alloc(h);
2624 
2625 
2626 	/* fill_cmd can't fail here, no data buffer to map. */
2627 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2628 			scsi3addr, TYPE_MSG);
2629 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2630 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2631 	if (rc) {
2632 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2633 		goto out;
2634 	}
2635 	/* no unmap needed here because no data xfer. */
2636 
2637 	ei = c->err_info;
2638 	if (ei->CommandStatus != 0) {
2639 		hpsa_scsi_interpret_error(h, c);
2640 		rc = -1;
2641 	}
2642 out:
2643 	cmd_free(h, c);
2644 	return rc;
2645 }
2646 
2647 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2648 			       struct hpsa_scsi_dev_t *dev,
2649 			       unsigned char *scsi3addr)
2650 {
2651 	int i;
2652 	bool match = false;
2653 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2654 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2655 
2656 	if (hpsa_is_cmd_idle(c))
2657 		return false;
2658 
2659 	switch (c->cmd_type) {
2660 	case CMD_SCSI:
2661 	case CMD_IOCTL_PEND:
2662 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2663 				sizeof(c->Header.LUN.LunAddrBytes));
2664 		break;
2665 
2666 	case CMD_IOACCEL1:
2667 	case CMD_IOACCEL2:
2668 		if (c->phys_disk == dev) {
2669 			/* HBA mode match */
2670 			match = true;
2671 		} else {
2672 			/* Possible RAID mode -- check each phys dev. */
2673 			/* FIXME:  Do we need to take out a lock here?  If
2674 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2675 			 * instead. */
2676 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
2677 				/* FIXME: an alternate test might be
2678 				 *
2679 				 * match = dev->phys_disk[i]->ioaccel_handle
2680 				 *              == c2->scsi_nexus;      */
2681 				match = dev->phys_disk[i] == c->phys_disk;
2682 			}
2683 		}
2684 		break;
2685 
2686 	case IOACCEL2_TMF:
2687 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
2688 			match = dev->phys_disk[i]->ioaccel_handle ==
2689 					le32_to_cpu(ac->it_nexus);
2690 		}
2691 		break;
2692 
2693 	case 0:		/* The command is in the middle of being initialized. */
2694 		match = false;
2695 		break;
2696 
2697 	default:
2698 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2699 			c->cmd_type);
2700 		BUG();
2701 	}
2702 
2703 	return match;
2704 }
2705 
2706 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2707 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2708 {
2709 	int i;
2710 	int rc = 0;
2711 
2712 	/* We can really only handle one reset at a time */
2713 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2714 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2715 		return -EINTR;
2716 	}
2717 
2718 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2719 
2720 	for (i = 0; i < h->nr_cmds; i++) {
2721 		struct CommandList *c = h->cmd_pool + i;
2722 		int refcount = atomic_inc_return(&c->refcount);
2723 
2724 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2725 			unsigned long flags;
2726 
2727 			/*
2728 			 * Mark the target command as having a reset pending,
2729 			 * then lock a lock so that the command cannot complete
2730 			 * while we're considering it.  If the command is not
2731 			 * idle then count it; otherwise revoke the event.
2732 			 */
2733 			c->reset_pending = dev;
2734 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
2735 			if (!hpsa_is_cmd_idle(c))
2736 				atomic_inc(&dev->reset_cmds_out);
2737 			else
2738 				c->reset_pending = NULL;
2739 			spin_unlock_irqrestore(&h->lock, flags);
2740 		}
2741 
2742 		cmd_free(h, c);
2743 	}
2744 
2745 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2746 	if (!rc)
2747 		wait_event(h->event_sync_wait_queue,
2748 			atomic_read(&dev->reset_cmds_out) == 0 ||
2749 			lockup_detected(h));
2750 
2751 	if (unlikely(lockup_detected(h))) {
2752 			dev_warn(&h->pdev->dev,
2753 				 "Controller lockup detected during reset wait\n");
2754 			mutex_unlock(&h->reset_mutex);
2755 			rc = -ENODEV;
2756 		}
2757 
2758 	if (unlikely(rc))
2759 		atomic_set(&dev->reset_cmds_out, 0);
2760 
2761 	mutex_unlock(&h->reset_mutex);
2762 	return rc;
2763 }
2764 
2765 static void hpsa_get_raid_level(struct ctlr_info *h,
2766 	unsigned char *scsi3addr, unsigned char *raid_level)
2767 {
2768 	int rc;
2769 	unsigned char *buf;
2770 
2771 	*raid_level = RAID_UNKNOWN;
2772 	buf = kzalloc(64, GFP_KERNEL);
2773 	if (!buf)
2774 		return;
2775 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2776 	if (rc == 0)
2777 		*raid_level = buf[8];
2778 	if (*raid_level > RAID_UNKNOWN)
2779 		*raid_level = RAID_UNKNOWN;
2780 	kfree(buf);
2781 	return;
2782 }
2783 
2784 #define HPSA_MAP_DEBUG
2785 #ifdef HPSA_MAP_DEBUG
2786 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2787 				struct raid_map_data *map_buff)
2788 {
2789 	struct raid_map_disk_data *dd = &map_buff->data[0];
2790 	int map, row, col;
2791 	u16 map_cnt, row_cnt, disks_per_row;
2792 
2793 	if (rc != 0)
2794 		return;
2795 
2796 	/* Show details only if debugging has been activated. */
2797 	if (h->raid_offload_debug < 2)
2798 		return;
2799 
2800 	dev_info(&h->pdev->dev, "structure_size = %u\n",
2801 				le32_to_cpu(map_buff->structure_size));
2802 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2803 			le32_to_cpu(map_buff->volume_blk_size));
2804 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2805 			le64_to_cpu(map_buff->volume_blk_cnt));
2806 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2807 			map_buff->phys_blk_shift);
2808 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2809 			map_buff->parity_rotation_shift);
2810 	dev_info(&h->pdev->dev, "strip_size = %u\n",
2811 			le16_to_cpu(map_buff->strip_size));
2812 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2813 			le64_to_cpu(map_buff->disk_starting_blk));
2814 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2815 			le64_to_cpu(map_buff->disk_blk_cnt));
2816 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2817 			le16_to_cpu(map_buff->data_disks_per_row));
2818 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2819 			le16_to_cpu(map_buff->metadata_disks_per_row));
2820 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
2821 			le16_to_cpu(map_buff->row_cnt));
2822 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2823 			le16_to_cpu(map_buff->layout_map_count));
2824 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2825 			le16_to_cpu(map_buff->flags));
2826 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
2827 			le16_to_cpu(map_buff->flags) &
2828 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2829 	dev_info(&h->pdev->dev, "dekindex = %u\n",
2830 			le16_to_cpu(map_buff->dekindex));
2831 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
2832 	for (map = 0; map < map_cnt; map++) {
2833 		dev_info(&h->pdev->dev, "Map%u:\n", map);
2834 		row_cnt = le16_to_cpu(map_buff->row_cnt);
2835 		for (row = 0; row < row_cnt; row++) {
2836 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
2837 			disks_per_row =
2838 				le16_to_cpu(map_buff->data_disks_per_row);
2839 			for (col = 0; col < disks_per_row; col++, dd++)
2840 				dev_info(&h->pdev->dev,
2841 					"    D%02u: h=0x%04x xor=%u,%u\n",
2842 					col, dd->ioaccel_handle,
2843 					dd->xor_mult[0], dd->xor_mult[1]);
2844 			disks_per_row =
2845 				le16_to_cpu(map_buff->metadata_disks_per_row);
2846 			for (col = 0; col < disks_per_row; col++, dd++)
2847 				dev_info(&h->pdev->dev,
2848 					"    M%02u: h=0x%04x xor=%u,%u\n",
2849 					col, dd->ioaccel_handle,
2850 					dd->xor_mult[0], dd->xor_mult[1]);
2851 		}
2852 	}
2853 }
2854 #else
2855 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2856 			__attribute__((unused)) int rc,
2857 			__attribute__((unused)) struct raid_map_data *map_buff)
2858 {
2859 }
2860 #endif
2861 
2862 static int hpsa_get_raid_map(struct ctlr_info *h,
2863 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2864 {
2865 	int rc = 0;
2866 	struct CommandList *c;
2867 	struct ErrorInfo *ei;
2868 
2869 	c = cmd_alloc(h);
2870 
2871 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2872 			sizeof(this_device->raid_map), 0,
2873 			scsi3addr, TYPE_CMD)) {
2874 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
2875 		cmd_free(h, c);
2876 		return -1;
2877 	}
2878 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2879 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2880 	if (rc)
2881 		goto out;
2882 	ei = c->err_info;
2883 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2884 		hpsa_scsi_interpret_error(h, c);
2885 		rc = -1;
2886 		goto out;
2887 	}
2888 	cmd_free(h, c);
2889 
2890 	/* @todo in the future, dynamically allocate RAID map memory */
2891 	if (le32_to_cpu(this_device->raid_map.structure_size) >
2892 				sizeof(this_device->raid_map)) {
2893 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2894 		rc = -1;
2895 	}
2896 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2897 	return rc;
2898 out:
2899 	cmd_free(h, c);
2900 	return rc;
2901 }
2902 
2903 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2904 		unsigned char scsi3addr[], u16 bmic_device_index,
2905 		struct bmic_identify_physical_device *buf, size_t bufsize)
2906 {
2907 	int rc = IO_OK;
2908 	struct CommandList *c;
2909 	struct ErrorInfo *ei;
2910 
2911 	c = cmd_alloc(h);
2912 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2913 		0, RAID_CTLR_LUNID, TYPE_CMD);
2914 	if (rc)
2915 		goto out;
2916 
2917 	c->Request.CDB[2] = bmic_device_index & 0xff;
2918 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
2919 
2920 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
2921 						NO_TIMEOUT);
2922 	ei = c->err_info;
2923 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2924 		hpsa_scsi_interpret_error(h, c);
2925 		rc = -1;
2926 	}
2927 out:
2928 	cmd_free(h, c);
2929 	return rc;
2930 }
2931 
2932 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2933 	unsigned char scsi3addr[], u8 page)
2934 {
2935 	int rc;
2936 	int i;
2937 	int pages;
2938 	unsigned char *buf, bufsize;
2939 
2940 	buf = kzalloc(256, GFP_KERNEL);
2941 	if (!buf)
2942 		return 0;
2943 
2944 	/* Get the size of the page list first */
2945 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2946 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2947 				buf, HPSA_VPD_HEADER_SZ);
2948 	if (rc != 0)
2949 		goto exit_unsupported;
2950 	pages = buf[3];
2951 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2952 		bufsize = pages + HPSA_VPD_HEADER_SZ;
2953 	else
2954 		bufsize = 255;
2955 
2956 	/* Get the whole VPD page list */
2957 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2958 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2959 				buf, bufsize);
2960 	if (rc != 0)
2961 		goto exit_unsupported;
2962 
2963 	pages = buf[3];
2964 	for (i = 1; i <= pages; i++)
2965 		if (buf[3 + i] == page)
2966 			goto exit_supported;
2967 exit_unsupported:
2968 	kfree(buf);
2969 	return 0;
2970 exit_supported:
2971 	kfree(buf);
2972 	return 1;
2973 }
2974 
2975 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2976 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2977 {
2978 	int rc;
2979 	unsigned char *buf;
2980 	u8 ioaccel_status;
2981 
2982 	this_device->offload_config = 0;
2983 	this_device->offload_enabled = 0;
2984 	this_device->offload_to_be_enabled = 0;
2985 
2986 	buf = kzalloc(64, GFP_KERNEL);
2987 	if (!buf)
2988 		return;
2989 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2990 		goto out;
2991 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2992 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2993 	if (rc != 0)
2994 		goto out;
2995 
2996 #define IOACCEL_STATUS_BYTE 4
2997 #define OFFLOAD_CONFIGURED_BIT 0x01
2998 #define OFFLOAD_ENABLED_BIT 0x02
2999 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3000 	this_device->offload_config =
3001 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3002 	if (this_device->offload_config) {
3003 		this_device->offload_enabled =
3004 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3005 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3006 			this_device->offload_enabled = 0;
3007 	}
3008 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3009 out:
3010 	kfree(buf);
3011 	return;
3012 }
3013 
3014 /* Get the device id from inquiry page 0x83 */
3015 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3016 	unsigned char *device_id, int buflen)
3017 {
3018 	int rc;
3019 	unsigned char *buf;
3020 
3021 	if (buflen > 16)
3022 		buflen = 16;
3023 	buf = kzalloc(64, GFP_KERNEL);
3024 	if (!buf)
3025 		return -ENOMEM;
3026 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3027 	if (rc == 0)
3028 		memcpy(device_id, &buf[8], buflen);
3029 	kfree(buf);
3030 	return rc != 0;
3031 }
3032 
3033 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3034 		void *buf, int bufsize,
3035 		int extended_response)
3036 {
3037 	int rc = IO_OK;
3038 	struct CommandList *c;
3039 	unsigned char scsi3addr[8];
3040 	struct ErrorInfo *ei;
3041 
3042 	c = cmd_alloc(h);
3043 
3044 	/* address the controller */
3045 	memset(scsi3addr, 0, sizeof(scsi3addr));
3046 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3047 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3048 		rc = -1;
3049 		goto out;
3050 	}
3051 	if (extended_response)
3052 		c->Request.CDB[1] = extended_response;
3053 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3054 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3055 	if (rc)
3056 		goto out;
3057 	ei = c->err_info;
3058 	if (ei->CommandStatus != 0 &&
3059 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3060 		hpsa_scsi_interpret_error(h, c);
3061 		rc = -1;
3062 	} else {
3063 		struct ReportLUNdata *rld = buf;
3064 
3065 		if (rld->extended_response_flag != extended_response) {
3066 			dev_err(&h->pdev->dev,
3067 				"report luns requested format %u, got %u\n",
3068 				extended_response,
3069 				rld->extended_response_flag);
3070 			rc = -1;
3071 		}
3072 	}
3073 out:
3074 	cmd_free(h, c);
3075 	return rc;
3076 }
3077 
3078 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3079 		struct ReportExtendedLUNdata *buf, int bufsize)
3080 {
3081 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3082 						HPSA_REPORT_PHYS_EXTENDED);
3083 }
3084 
3085 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3086 		struct ReportLUNdata *buf, int bufsize)
3087 {
3088 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3089 }
3090 
3091 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3092 	int bus, int target, int lun)
3093 {
3094 	device->bus = bus;
3095 	device->target = target;
3096 	device->lun = lun;
3097 }
3098 
3099 /* Use VPD inquiry to get details of volume status */
3100 static int hpsa_get_volume_status(struct ctlr_info *h,
3101 					unsigned char scsi3addr[])
3102 {
3103 	int rc;
3104 	int status;
3105 	int size;
3106 	unsigned char *buf;
3107 
3108 	buf = kzalloc(64, GFP_KERNEL);
3109 	if (!buf)
3110 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3111 
3112 	/* Does controller have VPD for logical volume status? */
3113 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3114 		goto exit_failed;
3115 
3116 	/* Get the size of the VPD return buffer */
3117 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3118 					buf, HPSA_VPD_HEADER_SZ);
3119 	if (rc != 0)
3120 		goto exit_failed;
3121 	size = buf[3];
3122 
3123 	/* Now get the whole VPD buffer */
3124 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3125 					buf, size + HPSA_VPD_HEADER_SZ);
3126 	if (rc != 0)
3127 		goto exit_failed;
3128 	status = buf[4]; /* status byte */
3129 
3130 	kfree(buf);
3131 	return status;
3132 exit_failed:
3133 	kfree(buf);
3134 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3135 }
3136 
3137 /* Determine offline status of a volume.
3138  * Return either:
3139  *  0 (not offline)
3140  *  0xff (offline for unknown reasons)
3141  *  # (integer code indicating one of several NOT READY states
3142  *     describing why a volume is to be kept offline)
3143  */
3144 static int hpsa_volume_offline(struct ctlr_info *h,
3145 					unsigned char scsi3addr[])
3146 {
3147 	struct CommandList *c;
3148 	unsigned char *sense;
3149 	u8 sense_key, asc, ascq;
3150 	int sense_len;
3151 	int rc, ldstat = 0;
3152 	u16 cmd_status;
3153 	u8 scsi_status;
3154 #define ASC_LUN_NOT_READY 0x04
3155 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3156 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3157 
3158 	c = cmd_alloc(h);
3159 
3160 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3161 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3162 	if (rc) {
3163 		cmd_free(h, c);
3164 		return 0;
3165 	}
3166 	sense = c->err_info->SenseInfo;
3167 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3168 		sense_len = sizeof(c->err_info->SenseInfo);
3169 	else
3170 		sense_len = c->err_info->SenseLen;
3171 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3172 	cmd_status = c->err_info->CommandStatus;
3173 	scsi_status = c->err_info->ScsiStatus;
3174 	cmd_free(h, c);
3175 	/* Is the volume 'not ready'? */
3176 	if (cmd_status != CMD_TARGET_STATUS ||
3177 		scsi_status != SAM_STAT_CHECK_CONDITION ||
3178 		sense_key != NOT_READY ||
3179 		asc != ASC_LUN_NOT_READY)  {
3180 		return 0;
3181 	}
3182 
3183 	/* Determine the reason for not ready state */
3184 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3185 
3186 	/* Keep volume offline in certain cases: */
3187 	switch (ldstat) {
3188 	case HPSA_LV_UNDERGOING_ERASE:
3189 	case HPSA_LV_UNDERGOING_RPI:
3190 	case HPSA_LV_PENDING_RPI:
3191 	case HPSA_LV_ENCRYPTED_NO_KEY:
3192 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3193 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3194 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3195 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3196 		return ldstat;
3197 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3198 		/* If VPD status page isn't available,
3199 		 * use ASC/ASCQ to determine state
3200 		 */
3201 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3202 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3203 			return ldstat;
3204 		break;
3205 	default:
3206 		break;
3207 	}
3208 	return 0;
3209 }
3210 
3211 /*
3212  * Find out if a logical device supports aborts by simply trying one.
3213  * Smart Array may claim not to support aborts on logical drives, but
3214  * if a MSA2000 * is connected, the drives on that will be presented
3215  * by the Smart Array as logical drives, and aborts may be sent to
3216  * those devices successfully.  So the simplest way to find out is
3217  * to simply try an abort and see how the device responds.
3218  */
3219 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3220 					unsigned char *scsi3addr)
3221 {
3222 	struct CommandList *c;
3223 	struct ErrorInfo *ei;
3224 	int rc = 0;
3225 
3226 	u64 tag = (u64) -1; /* bogus tag */
3227 
3228 	/* Assume that physical devices support aborts */
3229 	if (!is_logical_dev_addr_mode(scsi3addr))
3230 		return 1;
3231 
3232 	c = cmd_alloc(h);
3233 
3234 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3235 	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3236 	/* no unmap needed here because no data xfer. */
3237 	ei = c->err_info;
3238 	switch (ei->CommandStatus) {
3239 	case CMD_INVALID:
3240 		rc = 0;
3241 		break;
3242 	case CMD_UNABORTABLE:
3243 	case CMD_ABORT_FAILED:
3244 		rc = 1;
3245 		break;
3246 	case CMD_TMF_STATUS:
3247 		rc = hpsa_evaluate_tmf_status(h, c);
3248 		break;
3249 	default:
3250 		rc = 0;
3251 		break;
3252 	}
3253 	cmd_free(h, c);
3254 	return rc;
3255 }
3256 
3257 static int hpsa_update_device_info(struct ctlr_info *h,
3258 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3259 	unsigned char *is_OBDR_device)
3260 {
3261 
3262 #define OBDR_SIG_OFFSET 43
3263 #define OBDR_TAPE_SIG "$DR-10"
3264 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3265 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3266 
3267 	unsigned char *inq_buff;
3268 	unsigned char *obdr_sig;
3269 
3270 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3271 	if (!inq_buff)
3272 		goto bail_out;
3273 
3274 	/* Do an inquiry to the device to see what it is. */
3275 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3276 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3277 		/* Inquiry failed (msg printed already) */
3278 		dev_err(&h->pdev->dev,
3279 			"hpsa_update_device_info: inquiry failed\n");
3280 		goto bail_out;
3281 	}
3282 
3283 	this_device->devtype = (inq_buff[0] & 0x1f);
3284 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3285 	memcpy(this_device->vendor, &inq_buff[8],
3286 		sizeof(this_device->vendor));
3287 	memcpy(this_device->model, &inq_buff[16],
3288 		sizeof(this_device->model));
3289 	memset(this_device->device_id, 0,
3290 		sizeof(this_device->device_id));
3291 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
3292 		sizeof(this_device->device_id));
3293 
3294 	if (this_device->devtype == TYPE_DISK &&
3295 		is_logical_dev_addr_mode(scsi3addr)) {
3296 		int volume_offline;
3297 
3298 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3299 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3300 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3301 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3302 		if (volume_offline < 0 || volume_offline > 0xff)
3303 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3304 		this_device->volume_offline = volume_offline & 0xff;
3305 	} else {
3306 		this_device->raid_level = RAID_UNKNOWN;
3307 		this_device->offload_config = 0;
3308 		this_device->offload_enabled = 0;
3309 		this_device->offload_to_be_enabled = 0;
3310 		this_device->hba_ioaccel_enabled = 0;
3311 		this_device->volume_offline = 0;
3312 		this_device->queue_depth = h->nr_cmds;
3313 	}
3314 
3315 	if (is_OBDR_device) {
3316 		/* See if this is a One-Button-Disaster-Recovery device
3317 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3318 		 */
3319 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3320 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3321 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3322 						OBDR_SIG_LEN) == 0);
3323 	}
3324 	kfree(inq_buff);
3325 	return 0;
3326 
3327 bail_out:
3328 	kfree(inq_buff);
3329 	return 1;
3330 }
3331 
3332 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3333 			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3334 {
3335 	unsigned long flags;
3336 	int rc, entry;
3337 	/*
3338 	 * See if this device supports aborts.  If we already know
3339 	 * the device, we already know if it supports aborts, otherwise
3340 	 * we have to find out if it supports aborts by trying one.
3341 	 */
3342 	spin_lock_irqsave(&h->devlock, flags);
3343 	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3344 	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3345 		entry >= 0 && entry < h->ndevices) {
3346 		dev->supports_aborts = h->dev[entry]->supports_aborts;
3347 		spin_unlock_irqrestore(&h->devlock, flags);
3348 	} else {
3349 		spin_unlock_irqrestore(&h->devlock, flags);
3350 		dev->supports_aborts =
3351 				hpsa_device_supports_aborts(h, scsi3addr);
3352 		if (dev->supports_aborts < 0)
3353 			dev->supports_aborts = 0;
3354 	}
3355 }
3356 
3357 static unsigned char *ext_target_model[] = {
3358 	"MSA2012",
3359 	"MSA2024",
3360 	"MSA2312",
3361 	"MSA2324",
3362 	"P2000 G3 SAS",
3363 	"MSA 2040 SAS",
3364 	NULL,
3365 };
3366 
3367 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3368 {
3369 	int i;
3370 
3371 	for (i = 0; ext_target_model[i]; i++)
3372 		if (strncmp(device->model, ext_target_model[i],
3373 			strlen(ext_target_model[i])) == 0)
3374 			return 1;
3375 	return 0;
3376 }
3377 
3378 /* Helper function to assign bus, target, lun mapping of devices.
3379  * Puts non-external target logical volumes on bus 0, external target logical
3380  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3381  * Logical drive target and lun are assigned at this time, but
3382  * physical device lun and target assignment are deferred (assigned
3383  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3384  */
3385 static void figure_bus_target_lun(struct ctlr_info *h,
3386 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3387 {
3388 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
3389 
3390 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3391 		/* physical device, target and lun filled in later */
3392 		if (is_hba_lunid(lunaddrbytes))
3393 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3394 		else
3395 			/* defer target, lun assignment for physical devices */
3396 			hpsa_set_bus_target_lun(device, 2, -1, -1);
3397 		return;
3398 	}
3399 	/* It's a logical device */
3400 	if (is_ext_target(h, device)) {
3401 		/* external target way, put logicals on bus 1
3402 		 * and match target/lun numbers box
3403 		 * reports, other smart array, bus 0, target 0, match lunid
3404 		 */
3405 		hpsa_set_bus_target_lun(device,
3406 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
3407 		return;
3408 	}
3409 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3410 }
3411 
3412 /*
3413  * If there is no lun 0 on a target, linux won't find any devices.
3414  * For the external targets (arrays), we have to manually detect the enclosure
3415  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3416  * it for some reason.  *tmpdevice is the target we're adding,
3417  * this_device is a pointer into the current element of currentsd[]
3418  * that we're building up in update_scsi_devices(), below.
3419  * lunzerobits is a bitmap that tracks which targets already have a
3420  * lun 0 assigned.
3421  * Returns 1 if an enclosure was added, 0 if not.
3422  */
3423 static int add_ext_target_dev(struct ctlr_info *h,
3424 	struct hpsa_scsi_dev_t *tmpdevice,
3425 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3426 	unsigned long lunzerobits[], int *n_ext_target_devs)
3427 {
3428 	unsigned char scsi3addr[8];
3429 
3430 	if (test_bit(tmpdevice->target, lunzerobits))
3431 		return 0; /* There is already a lun 0 on this target. */
3432 
3433 	if (!is_logical_dev_addr_mode(lunaddrbytes))
3434 		return 0; /* It's the logical targets that may lack lun 0. */
3435 
3436 	if (!is_ext_target(h, tmpdevice))
3437 		return 0; /* Only external target devices have this problem. */
3438 
3439 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3440 		return 0;
3441 
3442 	memset(scsi3addr, 0, 8);
3443 	scsi3addr[3] = tmpdevice->target;
3444 	if (is_hba_lunid(scsi3addr))
3445 		return 0; /* Don't add the RAID controller here. */
3446 
3447 	if (is_scsi_rev_5(h))
3448 		return 0; /* p1210m doesn't need to do this. */
3449 
3450 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3451 		dev_warn(&h->pdev->dev, "Maximum number of external "
3452 			"target devices exceeded.  Check your hardware "
3453 			"configuration.");
3454 		return 0;
3455 	}
3456 
3457 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3458 		return 0;
3459 	(*n_ext_target_devs)++;
3460 	hpsa_set_bus_target_lun(this_device,
3461 				tmpdevice->bus, tmpdevice->target, 0);
3462 	hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3463 	set_bit(tmpdevice->target, lunzerobits);
3464 	return 1;
3465 }
3466 
3467 /*
3468  * Get address of physical disk used for an ioaccel2 mode command:
3469  *	1. Extract ioaccel2 handle from the command.
3470  *	2. Find a matching ioaccel2 handle from list of physical disks.
3471  *	3. Return:
3472  *		1 and set scsi3addr to address of matching physical
3473  *		0 if no matching physical disk was found.
3474  */
3475 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3476 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3477 {
3478 	struct io_accel2_cmd *c2 =
3479 			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3480 	unsigned long flags;
3481 	int i;
3482 
3483 	spin_lock_irqsave(&h->devlock, flags);
3484 	for (i = 0; i < h->ndevices; i++)
3485 		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3486 			memcpy(scsi3addr, h->dev[i]->scsi3addr,
3487 				sizeof(h->dev[i]->scsi3addr));
3488 			spin_unlock_irqrestore(&h->devlock, flags);
3489 			return 1;
3490 		}
3491 	spin_unlock_irqrestore(&h->devlock, flags);
3492 	return 0;
3493 }
3494 
3495 /*
3496  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3497  * logdev.  The number of luns in physdev and logdev are returned in
3498  * *nphysicals and *nlogicals, respectively.
3499  * Returns 0 on success, -1 otherwise.
3500  */
3501 static int hpsa_gather_lun_info(struct ctlr_info *h,
3502 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3503 	struct ReportLUNdata *logdev, u32 *nlogicals)
3504 {
3505 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3506 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3507 		return -1;
3508 	}
3509 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3510 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3511 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3512 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3513 		*nphysicals = HPSA_MAX_PHYS_LUN;
3514 	}
3515 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3516 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3517 		return -1;
3518 	}
3519 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3520 	/* Reject Logicals in excess of our max capability. */
3521 	if (*nlogicals > HPSA_MAX_LUN) {
3522 		dev_warn(&h->pdev->dev,
3523 			"maximum logical LUNs (%d) exceeded.  "
3524 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
3525 			*nlogicals - HPSA_MAX_LUN);
3526 			*nlogicals = HPSA_MAX_LUN;
3527 	}
3528 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3529 		dev_warn(&h->pdev->dev,
3530 			"maximum logical + physical LUNs (%d) exceeded. "
3531 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3532 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3533 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3534 	}
3535 	return 0;
3536 }
3537 
3538 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3539 	int i, int nphysicals, int nlogicals,
3540 	struct ReportExtendedLUNdata *physdev_list,
3541 	struct ReportLUNdata *logdev_list)
3542 {
3543 	/* Helper function, figure out where the LUN ID info is coming from
3544 	 * given index i, lists of physical and logical devices, where in
3545 	 * the list the raid controller is supposed to appear (first or last)
3546 	 */
3547 
3548 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3549 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3550 
3551 	if (i == raid_ctlr_position)
3552 		return RAID_CTLR_LUNID;
3553 
3554 	if (i < logicals_start)
3555 		return &physdev_list->LUN[i -
3556 				(raid_ctlr_position == 0)].lunid[0];
3557 
3558 	if (i < last_device)
3559 		return &logdev_list->LUN[i - nphysicals -
3560 			(raid_ctlr_position == 0)][0];
3561 	BUG();
3562 	return NULL;
3563 }
3564 
3565 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
3566 {
3567 	int rc;
3568 	int hba_mode_enabled;
3569 	struct bmic_controller_parameters *ctlr_params;
3570 	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
3571 		GFP_KERNEL);
3572 
3573 	if (!ctlr_params)
3574 		return -ENOMEM;
3575 	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
3576 		sizeof(struct bmic_controller_parameters));
3577 	if (rc) {
3578 		kfree(ctlr_params);
3579 		return rc;
3580 	}
3581 
3582 	hba_mode_enabled =
3583 		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
3584 	kfree(ctlr_params);
3585 	return hba_mode_enabled;
3586 }
3587 
3588 /* get physical drive ioaccel handle and queue depth */
3589 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3590 		struct hpsa_scsi_dev_t *dev,
3591 		u8 *lunaddrbytes,
3592 		struct bmic_identify_physical_device *id_phys)
3593 {
3594 	int rc;
3595 	struct ext_report_lun_entry *rle =
3596 		(struct ext_report_lun_entry *) lunaddrbytes;
3597 
3598 	dev->ioaccel_handle = rle->ioaccel_handle;
3599 	if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
3600 		dev->hba_ioaccel_enabled = 1;
3601 	memset(id_phys, 0, sizeof(*id_phys));
3602 	rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3603 			GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3604 			sizeof(*id_phys));
3605 	if (!rc)
3606 		/* Reserve space for FW operations */
3607 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3608 #define DRIVE_QUEUE_DEPTH 7
3609 		dev->queue_depth =
3610 			le16_to_cpu(id_phys->current_queue_depth_limit) -
3611 				DRIVE_CMDS_RESERVED_FOR_FW;
3612 	else
3613 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3614 	atomic_set(&dev->ioaccel_cmds_out, 0);
3615 	atomic_set(&dev->reset_cmds_out, 0);
3616 }
3617 
3618 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3619 {
3620 	/* the idea here is we could get notified
3621 	 * that some devices have changed, so we do a report
3622 	 * physical luns and report logical luns cmd, and adjust
3623 	 * our list of devices accordingly.
3624 	 *
3625 	 * The scsi3addr's of devices won't change so long as the
3626 	 * adapter is not reset.  That means we can rescan and
3627 	 * tell which devices we already know about, vs. new
3628 	 * devices, vs.  disappearing devices.
3629 	 */
3630 	struct ReportExtendedLUNdata *physdev_list = NULL;
3631 	struct ReportLUNdata *logdev_list = NULL;
3632 	struct bmic_identify_physical_device *id_phys = NULL;
3633 	u32 nphysicals = 0;
3634 	u32 nlogicals = 0;
3635 	u32 ndev_allocated = 0;
3636 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3637 	int ncurrent = 0;
3638 	int i, n_ext_target_devs, ndevs_to_allocate;
3639 	int raid_ctlr_position;
3640 	int rescan_hba_mode;
3641 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3642 
3643 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3644 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3645 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3646 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3647 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3648 
3649 	if (!currentsd || !physdev_list || !logdev_list ||
3650 		!tmpdevice || !id_phys) {
3651 		dev_err(&h->pdev->dev, "out of memory\n");
3652 		goto out;
3653 	}
3654 	memset(lunzerobits, 0, sizeof(lunzerobits));
3655 
3656 	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3657 	if (rescan_hba_mode < 0)
3658 		goto out;
3659 
3660 	if (!h->hba_mode_enabled && rescan_hba_mode)
3661 		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3662 	else if (h->hba_mode_enabled && !rescan_hba_mode)
3663 		dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3664 
3665 	h->hba_mode_enabled = rescan_hba_mode;
3666 
3667 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3668 			logdev_list, &nlogicals))
3669 		goto out;
3670 
3671 	/* We might see up to the maximum number of logical and physical disks
3672 	 * plus external target devices, and a device for the local RAID
3673 	 * controller.
3674 	 */
3675 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3676 
3677 	/* Allocate the per device structures */
3678 	for (i = 0; i < ndevs_to_allocate; i++) {
3679 		if (i >= HPSA_MAX_DEVICES) {
3680 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3681 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
3682 				ndevs_to_allocate - HPSA_MAX_DEVICES);
3683 			break;
3684 		}
3685 
3686 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3687 		if (!currentsd[i]) {
3688 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3689 				__FILE__, __LINE__);
3690 			goto out;
3691 		}
3692 		ndev_allocated++;
3693 	}
3694 
3695 	if (is_scsi_rev_5(h))
3696 		raid_ctlr_position = 0;
3697 	else
3698 		raid_ctlr_position = nphysicals + nlogicals;
3699 
3700 	/* adjust our table of devices */
3701 	n_ext_target_devs = 0;
3702 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3703 		u8 *lunaddrbytes, is_OBDR = 0;
3704 
3705 		/* Figure out where the LUN ID info is coming from */
3706 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3707 			i, nphysicals, nlogicals, physdev_list, logdev_list);
3708 
3709 		/* skip masked non-disk devices */
3710 		if (MASKED_DEVICE(lunaddrbytes))
3711 			if (i < nphysicals + (raid_ctlr_position == 0) &&
3712 				NON_DISK_PHYS_DEV(lunaddrbytes))
3713 				continue;
3714 
3715 		/* Get device type, vendor, model, device id */
3716 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3717 							&is_OBDR))
3718 			continue; /* skip it if we can't talk to it. */
3719 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3720 		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3721 		this_device = currentsd[ncurrent];
3722 
3723 		/*
3724 		 * For external target devices, we have to insert a LUN 0 which
3725 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3726 		 * is nonetheless an enclosure device there.  We have to
3727 		 * present that otherwise linux won't find anything if
3728 		 * there is no lun 0.
3729 		 */
3730 		if (add_ext_target_dev(h, tmpdevice, this_device,
3731 				lunaddrbytes, lunzerobits,
3732 				&n_ext_target_devs)) {
3733 			ncurrent++;
3734 			this_device = currentsd[ncurrent];
3735 		}
3736 
3737 		*this_device = *tmpdevice;
3738 
3739 		/* do not expose masked devices */
3740 		if (MASKED_DEVICE(lunaddrbytes) &&
3741 			i < nphysicals + (raid_ctlr_position == 0)) {
3742 			if (h->hba_mode_enabled)
3743 				dev_warn(&h->pdev->dev,
3744 					"Masked physical device detected\n");
3745 			this_device->expose_state = HPSA_DO_NOT_EXPOSE;
3746 		} else {
3747 			this_device->expose_state =
3748 					HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
3749 		}
3750 
3751 		switch (this_device->devtype) {
3752 		case TYPE_ROM:
3753 			/* We don't *really* support actual CD-ROM devices,
3754 			 * just "One Button Disaster Recovery" tape drive
3755 			 * which temporarily pretends to be a CD-ROM drive.
3756 			 * So we check that the device is really an OBDR tape
3757 			 * device by checking for "$DR-10" in bytes 43-48 of
3758 			 * the inquiry data.
3759 			 */
3760 			if (is_OBDR)
3761 				ncurrent++;
3762 			break;
3763 		case TYPE_DISK:
3764 			if (i >= nphysicals) {
3765 				ncurrent++;
3766 				break;
3767 			}
3768 
3769 			if (h->hba_mode_enabled)
3770 				/* never use raid mapper in HBA mode */
3771 				this_device->offload_enabled = 0;
3772 			else if (!(h->transMethod & CFGTBL_Trans_io_accel1 ||
3773 				h->transMethod & CFGTBL_Trans_io_accel2))
3774 				break;
3775 
3776 			hpsa_get_ioaccel_drive_info(h, this_device,
3777 						lunaddrbytes, id_phys);
3778 			atomic_set(&this_device->ioaccel_cmds_out, 0);
3779 			ncurrent++;
3780 			break;
3781 		case TYPE_TAPE:
3782 		case TYPE_MEDIUM_CHANGER:
3783 			ncurrent++;
3784 			break;
3785 		case TYPE_ENCLOSURE:
3786 			if (h->hba_mode_enabled)
3787 				ncurrent++;
3788 			break;
3789 		case TYPE_RAID:
3790 			/* Only present the Smartarray HBA as a RAID controller.
3791 			 * If it's a RAID controller other than the HBA itself
3792 			 * (an external RAID controller, MSA500 or similar)
3793 			 * don't present it.
3794 			 */
3795 			if (!is_hba_lunid(lunaddrbytes))
3796 				break;
3797 			ncurrent++;
3798 			break;
3799 		default:
3800 			break;
3801 		}
3802 		if (ncurrent >= HPSA_MAX_DEVICES)
3803 			break;
3804 	}
3805 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3806 out:
3807 	kfree(tmpdevice);
3808 	for (i = 0; i < ndev_allocated; i++)
3809 		kfree(currentsd[i]);
3810 	kfree(currentsd);
3811 	kfree(physdev_list);
3812 	kfree(logdev_list);
3813 	kfree(id_phys);
3814 }
3815 
3816 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3817 				   struct scatterlist *sg)
3818 {
3819 	u64 addr64 = (u64) sg_dma_address(sg);
3820 	unsigned int len = sg_dma_len(sg);
3821 
3822 	desc->Addr = cpu_to_le64(addr64);
3823 	desc->Len = cpu_to_le32(len);
3824 	desc->Ext = 0;
3825 }
3826 
3827 /*
3828  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3829  * dma mapping  and fills in the scatter gather entries of the
3830  * hpsa command, cp.
3831  */
3832 static int hpsa_scatter_gather(struct ctlr_info *h,
3833 		struct CommandList *cp,
3834 		struct scsi_cmnd *cmd)
3835 {
3836 	struct scatterlist *sg;
3837 	int use_sg, i, sg_limit, chained, last_sg;
3838 	struct SGDescriptor *curr_sg;
3839 
3840 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3841 
3842 	use_sg = scsi_dma_map(cmd);
3843 	if (use_sg < 0)
3844 		return use_sg;
3845 
3846 	if (!use_sg)
3847 		goto sglist_finished;
3848 
3849 	/*
3850 	 * If the number of entries is greater than the max for a single list,
3851 	 * then we have a chained list; we will set up all but one entry in the
3852 	 * first list (the last entry is saved for link information);
3853 	 * otherwise, we don't have a chained list and we'll set up at each of
3854 	 * the entries in the one list.
3855 	 */
3856 	curr_sg = cp->SG;
3857 	chained = use_sg > h->max_cmd_sg_entries;
3858 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
3859 	last_sg = scsi_sg_count(cmd) - 1;
3860 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
3861 		hpsa_set_sg_descriptor(curr_sg, sg);
3862 		curr_sg++;
3863 	}
3864 
3865 	if (chained) {
3866 		/*
3867 		 * Continue with the chained list.  Set curr_sg to the chained
3868 		 * list.  Modify the limit to the total count less the entries
3869 		 * we've already set up.  Resume the scan at the list entry
3870 		 * where the previous loop left off.
3871 		 */
3872 		curr_sg = h->cmd_sg_list[cp->cmdindex];
3873 		sg_limit = use_sg - sg_limit;
3874 		for_each_sg(sg, sg, sg_limit, i) {
3875 			hpsa_set_sg_descriptor(curr_sg, sg);
3876 			curr_sg++;
3877 		}
3878 	}
3879 
3880 	/* Back the pointer up to the last entry and mark it as "last". */
3881 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
3882 
3883 	if (use_sg + chained > h->maxSG)
3884 		h->maxSG = use_sg + chained;
3885 
3886 	if (chained) {
3887 		cp->Header.SGList = h->max_cmd_sg_entries;
3888 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3889 		if (hpsa_map_sg_chain_block(h, cp)) {
3890 			scsi_dma_unmap(cmd);
3891 			return -1;
3892 		}
3893 		return 0;
3894 	}
3895 
3896 sglist_finished:
3897 
3898 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3899 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3900 	return 0;
3901 }
3902 
3903 #define IO_ACCEL_INELIGIBLE (1)
3904 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3905 {
3906 	int is_write = 0;
3907 	u32 block;
3908 	u32 block_cnt;
3909 
3910 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
3911 	switch (cdb[0]) {
3912 	case WRITE_6:
3913 	case WRITE_12:
3914 		is_write = 1;
3915 	case READ_6:
3916 	case READ_12:
3917 		if (*cdb_len == 6) {
3918 			block = (((u32) cdb[2]) << 8) | cdb[3];
3919 			block_cnt = cdb[4];
3920 		} else {
3921 			BUG_ON(*cdb_len != 12);
3922 			block = (((u32) cdb[2]) << 24) |
3923 				(((u32) cdb[3]) << 16) |
3924 				(((u32) cdb[4]) << 8) |
3925 				cdb[5];
3926 			block_cnt =
3927 				(((u32) cdb[6]) << 24) |
3928 				(((u32) cdb[7]) << 16) |
3929 				(((u32) cdb[8]) << 8) |
3930 				cdb[9];
3931 		}
3932 		if (block_cnt > 0xffff)
3933 			return IO_ACCEL_INELIGIBLE;
3934 
3935 		cdb[0] = is_write ? WRITE_10 : READ_10;
3936 		cdb[1] = 0;
3937 		cdb[2] = (u8) (block >> 24);
3938 		cdb[3] = (u8) (block >> 16);
3939 		cdb[4] = (u8) (block >> 8);
3940 		cdb[5] = (u8) (block);
3941 		cdb[6] = 0;
3942 		cdb[7] = (u8) (block_cnt >> 8);
3943 		cdb[8] = (u8) (block_cnt);
3944 		cdb[9] = 0;
3945 		*cdb_len = 10;
3946 		break;
3947 	}
3948 	return 0;
3949 }
3950 
3951 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3952 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3953 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3954 {
3955 	struct scsi_cmnd *cmd = c->scsi_cmd;
3956 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3957 	unsigned int len;
3958 	unsigned int total_len = 0;
3959 	struct scatterlist *sg;
3960 	u64 addr64;
3961 	int use_sg, i;
3962 	struct SGDescriptor *curr_sg;
3963 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3964 
3965 	/* TODO: implement chaining support */
3966 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3967 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3968 		return IO_ACCEL_INELIGIBLE;
3969 	}
3970 
3971 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3972 
3973 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3974 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3975 		return IO_ACCEL_INELIGIBLE;
3976 	}
3977 
3978 	c->cmd_type = CMD_IOACCEL1;
3979 
3980 	/* Adjust the DMA address to point to the accelerated command buffer */
3981 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3982 				(c->cmdindex * sizeof(*cp));
3983 	BUG_ON(c->busaddr & 0x0000007F);
3984 
3985 	use_sg = scsi_dma_map(cmd);
3986 	if (use_sg < 0) {
3987 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3988 		return use_sg;
3989 	}
3990 
3991 	if (use_sg) {
3992 		curr_sg = cp->SG;
3993 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3994 			addr64 = (u64) sg_dma_address(sg);
3995 			len  = sg_dma_len(sg);
3996 			total_len += len;
3997 			curr_sg->Addr = cpu_to_le64(addr64);
3998 			curr_sg->Len = cpu_to_le32(len);
3999 			curr_sg->Ext = cpu_to_le32(0);
4000 			curr_sg++;
4001 		}
4002 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4003 
4004 		switch (cmd->sc_data_direction) {
4005 		case DMA_TO_DEVICE:
4006 			control |= IOACCEL1_CONTROL_DATA_OUT;
4007 			break;
4008 		case DMA_FROM_DEVICE:
4009 			control |= IOACCEL1_CONTROL_DATA_IN;
4010 			break;
4011 		case DMA_NONE:
4012 			control |= IOACCEL1_CONTROL_NODATAXFER;
4013 			break;
4014 		default:
4015 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4016 			cmd->sc_data_direction);
4017 			BUG();
4018 			break;
4019 		}
4020 	} else {
4021 		control |= IOACCEL1_CONTROL_NODATAXFER;
4022 	}
4023 
4024 	c->Header.SGList = use_sg;
4025 	/* Fill out the command structure to submit */
4026 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4027 	cp->transfer_len = cpu_to_le32(total_len);
4028 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4029 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4030 	cp->control = cpu_to_le32(control);
4031 	memcpy(cp->CDB, cdb, cdb_len);
4032 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4033 	/* Tag was already set at init time. */
4034 	enqueue_cmd_and_start_io(h, c);
4035 	return 0;
4036 }
4037 
4038 /*
4039  * Queue a command directly to a device behind the controller using the
4040  * I/O accelerator path.
4041  */
4042 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4043 	struct CommandList *c)
4044 {
4045 	struct scsi_cmnd *cmd = c->scsi_cmd;
4046 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4047 
4048 	c->phys_disk = dev;
4049 
4050 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4051 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4052 }
4053 
4054 /*
4055  * Set encryption parameters for the ioaccel2 request
4056  */
4057 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4058 	struct CommandList *c, struct io_accel2_cmd *cp)
4059 {
4060 	struct scsi_cmnd *cmd = c->scsi_cmd;
4061 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4062 	struct raid_map_data *map = &dev->raid_map;
4063 	u64 first_block;
4064 
4065 	/* Are we doing encryption on this device */
4066 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4067 		return;
4068 	/* Set the data encryption key index. */
4069 	cp->dekindex = map->dekindex;
4070 
4071 	/* Set the encryption enable flag, encoded into direction field. */
4072 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4073 
4074 	/* Set encryption tweak values based on logical block address
4075 	 * If block size is 512, tweak value is LBA.
4076 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4077 	 */
4078 	switch (cmd->cmnd[0]) {
4079 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4080 	case WRITE_6:
4081 	case READ_6:
4082 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
4083 		break;
4084 	case WRITE_10:
4085 	case READ_10:
4086 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4087 	case WRITE_12:
4088 	case READ_12:
4089 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4090 		break;
4091 	case WRITE_16:
4092 	case READ_16:
4093 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4094 		break;
4095 	default:
4096 		dev_err(&h->pdev->dev,
4097 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4098 			__func__, cmd->cmnd[0]);
4099 		BUG();
4100 		break;
4101 	}
4102 
4103 	if (le32_to_cpu(map->volume_blk_size) != 512)
4104 		first_block = first_block *
4105 				le32_to_cpu(map->volume_blk_size)/512;
4106 
4107 	cp->tweak_lower = cpu_to_le32(first_block);
4108 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4109 }
4110 
4111 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4112 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4113 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4114 {
4115 	struct scsi_cmnd *cmd = c->scsi_cmd;
4116 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4117 	struct ioaccel2_sg_element *curr_sg;
4118 	int use_sg, i;
4119 	struct scatterlist *sg;
4120 	u64 addr64;
4121 	u32 len;
4122 	u32 total_len = 0;
4123 
4124 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4125 
4126 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4127 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4128 		return IO_ACCEL_INELIGIBLE;
4129 	}
4130 
4131 	c->cmd_type = CMD_IOACCEL2;
4132 	/* Adjust the DMA address to point to the accelerated command buffer */
4133 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4134 				(c->cmdindex * sizeof(*cp));
4135 	BUG_ON(c->busaddr & 0x0000007F);
4136 
4137 	memset(cp, 0, sizeof(*cp));
4138 	cp->IU_type = IOACCEL2_IU_TYPE;
4139 
4140 	use_sg = scsi_dma_map(cmd);
4141 	if (use_sg < 0) {
4142 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4143 		return use_sg;
4144 	}
4145 
4146 	if (use_sg) {
4147 		curr_sg = cp->sg;
4148 		if (use_sg > h->ioaccel_maxsg) {
4149 			addr64 = le64_to_cpu(
4150 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4151 			curr_sg->address = cpu_to_le64(addr64);
4152 			curr_sg->length = 0;
4153 			curr_sg->reserved[0] = 0;
4154 			curr_sg->reserved[1] = 0;
4155 			curr_sg->reserved[2] = 0;
4156 			curr_sg->chain_indicator = 0x80;
4157 
4158 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4159 		}
4160 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4161 			addr64 = (u64) sg_dma_address(sg);
4162 			len  = sg_dma_len(sg);
4163 			total_len += len;
4164 			curr_sg->address = cpu_to_le64(addr64);
4165 			curr_sg->length = cpu_to_le32(len);
4166 			curr_sg->reserved[0] = 0;
4167 			curr_sg->reserved[1] = 0;
4168 			curr_sg->reserved[2] = 0;
4169 			curr_sg->chain_indicator = 0;
4170 			curr_sg++;
4171 		}
4172 
4173 		switch (cmd->sc_data_direction) {
4174 		case DMA_TO_DEVICE:
4175 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4176 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4177 			break;
4178 		case DMA_FROM_DEVICE:
4179 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4180 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4181 			break;
4182 		case DMA_NONE:
4183 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4184 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4185 			break;
4186 		default:
4187 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4188 				cmd->sc_data_direction);
4189 			BUG();
4190 			break;
4191 		}
4192 	} else {
4193 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4194 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4195 	}
4196 
4197 	/* Set encryption parameters, if necessary */
4198 	set_encrypt_ioaccel2(h, c, cp);
4199 
4200 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4201 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4202 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4203 
4204 	cp->data_len = cpu_to_le32(total_len);
4205 	cp->err_ptr = cpu_to_le64(c->busaddr +
4206 			offsetof(struct io_accel2_cmd, error_data));
4207 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4208 
4209 	/* fill in sg elements */
4210 	if (use_sg > h->ioaccel_maxsg) {
4211 		cp->sg_count = 1;
4212 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4213 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4214 			scsi_dma_unmap(cmd);
4215 			return -1;
4216 		}
4217 	} else
4218 		cp->sg_count = (u8) use_sg;
4219 
4220 	enqueue_cmd_and_start_io(h, c);
4221 	return 0;
4222 }
4223 
4224 /*
4225  * Queue a command to the correct I/O accelerator path.
4226  */
4227 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4228 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4229 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4230 {
4231 	/* Try to honor the device's queue depth */
4232 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4233 					phys_disk->queue_depth) {
4234 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4235 		return IO_ACCEL_INELIGIBLE;
4236 	}
4237 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4238 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4239 						cdb, cdb_len, scsi3addr,
4240 						phys_disk);
4241 	else
4242 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4243 						cdb, cdb_len, scsi3addr,
4244 						phys_disk);
4245 }
4246 
4247 static void raid_map_helper(struct raid_map_data *map,
4248 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4249 {
4250 	if (offload_to_mirror == 0)  {
4251 		/* use physical disk in the first mirrored group. */
4252 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4253 		return;
4254 	}
4255 	do {
4256 		/* determine mirror group that *map_index indicates */
4257 		*current_group = *map_index /
4258 			le16_to_cpu(map->data_disks_per_row);
4259 		if (offload_to_mirror == *current_group)
4260 			continue;
4261 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4262 			/* select map index from next group */
4263 			*map_index += le16_to_cpu(map->data_disks_per_row);
4264 			(*current_group)++;
4265 		} else {
4266 			/* select map index from first group */
4267 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4268 			*current_group = 0;
4269 		}
4270 	} while (offload_to_mirror != *current_group);
4271 }
4272 
4273 /*
4274  * Attempt to perform offload RAID mapping for a logical volume I/O.
4275  */
4276 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4277 	struct CommandList *c)
4278 {
4279 	struct scsi_cmnd *cmd = c->scsi_cmd;
4280 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4281 	struct raid_map_data *map = &dev->raid_map;
4282 	struct raid_map_disk_data *dd = &map->data[0];
4283 	int is_write = 0;
4284 	u32 map_index;
4285 	u64 first_block, last_block;
4286 	u32 block_cnt;
4287 	u32 blocks_per_row;
4288 	u64 first_row, last_row;
4289 	u32 first_row_offset, last_row_offset;
4290 	u32 first_column, last_column;
4291 	u64 r0_first_row, r0_last_row;
4292 	u32 r5or6_blocks_per_row;
4293 	u64 r5or6_first_row, r5or6_last_row;
4294 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4295 	u32 r5or6_first_column, r5or6_last_column;
4296 	u32 total_disks_per_row;
4297 	u32 stripesize;
4298 	u32 first_group, last_group, current_group;
4299 	u32 map_row;
4300 	u32 disk_handle;
4301 	u64 disk_block;
4302 	u32 disk_block_cnt;
4303 	u8 cdb[16];
4304 	u8 cdb_len;
4305 	u16 strip_size;
4306 #if BITS_PER_LONG == 32
4307 	u64 tmpdiv;
4308 #endif
4309 	int offload_to_mirror;
4310 
4311 	/* check for valid opcode, get LBA and block count */
4312 	switch (cmd->cmnd[0]) {
4313 	case WRITE_6:
4314 		is_write = 1;
4315 	case READ_6:
4316 		first_block =
4317 			(((u64) cmd->cmnd[2]) << 8) |
4318 			cmd->cmnd[3];
4319 		block_cnt = cmd->cmnd[4];
4320 		if (block_cnt == 0)
4321 			block_cnt = 256;
4322 		break;
4323 	case WRITE_10:
4324 		is_write = 1;
4325 	case READ_10:
4326 		first_block =
4327 			(((u64) cmd->cmnd[2]) << 24) |
4328 			(((u64) cmd->cmnd[3]) << 16) |
4329 			(((u64) cmd->cmnd[4]) << 8) |
4330 			cmd->cmnd[5];
4331 		block_cnt =
4332 			(((u32) cmd->cmnd[7]) << 8) |
4333 			cmd->cmnd[8];
4334 		break;
4335 	case WRITE_12:
4336 		is_write = 1;
4337 	case READ_12:
4338 		first_block =
4339 			(((u64) cmd->cmnd[2]) << 24) |
4340 			(((u64) cmd->cmnd[3]) << 16) |
4341 			(((u64) cmd->cmnd[4]) << 8) |
4342 			cmd->cmnd[5];
4343 		block_cnt =
4344 			(((u32) cmd->cmnd[6]) << 24) |
4345 			(((u32) cmd->cmnd[7]) << 16) |
4346 			(((u32) cmd->cmnd[8]) << 8) |
4347 		cmd->cmnd[9];
4348 		break;
4349 	case WRITE_16:
4350 		is_write = 1;
4351 	case READ_16:
4352 		first_block =
4353 			(((u64) cmd->cmnd[2]) << 56) |
4354 			(((u64) cmd->cmnd[3]) << 48) |
4355 			(((u64) cmd->cmnd[4]) << 40) |
4356 			(((u64) cmd->cmnd[5]) << 32) |
4357 			(((u64) cmd->cmnd[6]) << 24) |
4358 			(((u64) cmd->cmnd[7]) << 16) |
4359 			(((u64) cmd->cmnd[8]) << 8) |
4360 			cmd->cmnd[9];
4361 		block_cnt =
4362 			(((u32) cmd->cmnd[10]) << 24) |
4363 			(((u32) cmd->cmnd[11]) << 16) |
4364 			(((u32) cmd->cmnd[12]) << 8) |
4365 			cmd->cmnd[13];
4366 		break;
4367 	default:
4368 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4369 	}
4370 	last_block = first_block + block_cnt - 1;
4371 
4372 	/* check for write to non-RAID-0 */
4373 	if (is_write && dev->raid_level != 0)
4374 		return IO_ACCEL_INELIGIBLE;
4375 
4376 	/* check for invalid block or wraparound */
4377 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4378 		last_block < first_block)
4379 		return IO_ACCEL_INELIGIBLE;
4380 
4381 	/* calculate stripe information for the request */
4382 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4383 				le16_to_cpu(map->strip_size);
4384 	strip_size = le16_to_cpu(map->strip_size);
4385 #if BITS_PER_LONG == 32
4386 	tmpdiv = first_block;
4387 	(void) do_div(tmpdiv, blocks_per_row);
4388 	first_row = tmpdiv;
4389 	tmpdiv = last_block;
4390 	(void) do_div(tmpdiv, blocks_per_row);
4391 	last_row = tmpdiv;
4392 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4393 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4394 	tmpdiv = first_row_offset;
4395 	(void) do_div(tmpdiv, strip_size);
4396 	first_column = tmpdiv;
4397 	tmpdiv = last_row_offset;
4398 	(void) do_div(tmpdiv, strip_size);
4399 	last_column = tmpdiv;
4400 #else
4401 	first_row = first_block / blocks_per_row;
4402 	last_row = last_block / blocks_per_row;
4403 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4404 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4405 	first_column = first_row_offset / strip_size;
4406 	last_column = last_row_offset / strip_size;
4407 #endif
4408 
4409 	/* if this isn't a single row/column then give to the controller */
4410 	if ((first_row != last_row) || (first_column != last_column))
4411 		return IO_ACCEL_INELIGIBLE;
4412 
4413 	/* proceeding with driver mapping */
4414 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4415 				le16_to_cpu(map->metadata_disks_per_row);
4416 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4417 				le16_to_cpu(map->row_cnt);
4418 	map_index = (map_row * total_disks_per_row) + first_column;
4419 
4420 	switch (dev->raid_level) {
4421 	case HPSA_RAID_0:
4422 		break; /* nothing special to do */
4423 	case HPSA_RAID_1:
4424 		/* Handles load balance across RAID 1 members.
4425 		 * (2-drive R1 and R10 with even # of drives.)
4426 		 * Appropriate for SSDs, not optimal for HDDs
4427 		 */
4428 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4429 		if (dev->offload_to_mirror)
4430 			map_index += le16_to_cpu(map->data_disks_per_row);
4431 		dev->offload_to_mirror = !dev->offload_to_mirror;
4432 		break;
4433 	case HPSA_RAID_ADM:
4434 		/* Handles N-way mirrors  (R1-ADM)
4435 		 * and R10 with # of drives divisible by 3.)
4436 		 */
4437 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4438 
4439 		offload_to_mirror = dev->offload_to_mirror;
4440 		raid_map_helper(map, offload_to_mirror,
4441 				&map_index, &current_group);
4442 		/* set mirror group to use next time */
4443 		offload_to_mirror =
4444 			(offload_to_mirror >=
4445 			le16_to_cpu(map->layout_map_count) - 1)
4446 			? 0 : offload_to_mirror + 1;
4447 		dev->offload_to_mirror = offload_to_mirror;
4448 		/* Avoid direct use of dev->offload_to_mirror within this
4449 		 * function since multiple threads might simultaneously
4450 		 * increment it beyond the range of dev->layout_map_count -1.
4451 		 */
4452 		break;
4453 	case HPSA_RAID_5:
4454 	case HPSA_RAID_6:
4455 		if (le16_to_cpu(map->layout_map_count) <= 1)
4456 			break;
4457 
4458 		/* Verify first and last block are in same RAID group */
4459 		r5or6_blocks_per_row =
4460 			le16_to_cpu(map->strip_size) *
4461 			le16_to_cpu(map->data_disks_per_row);
4462 		BUG_ON(r5or6_blocks_per_row == 0);
4463 		stripesize = r5or6_blocks_per_row *
4464 			le16_to_cpu(map->layout_map_count);
4465 #if BITS_PER_LONG == 32
4466 		tmpdiv = first_block;
4467 		first_group = do_div(tmpdiv, stripesize);
4468 		tmpdiv = first_group;
4469 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
4470 		first_group = tmpdiv;
4471 		tmpdiv = last_block;
4472 		last_group = do_div(tmpdiv, stripesize);
4473 		tmpdiv = last_group;
4474 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
4475 		last_group = tmpdiv;
4476 #else
4477 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4478 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4479 #endif
4480 		if (first_group != last_group)
4481 			return IO_ACCEL_INELIGIBLE;
4482 
4483 		/* Verify request is in a single row of RAID 5/6 */
4484 #if BITS_PER_LONG == 32
4485 		tmpdiv = first_block;
4486 		(void) do_div(tmpdiv, stripesize);
4487 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
4488 		tmpdiv = last_block;
4489 		(void) do_div(tmpdiv, stripesize);
4490 		r5or6_last_row = r0_last_row = tmpdiv;
4491 #else
4492 		first_row = r5or6_first_row = r0_first_row =
4493 						first_block / stripesize;
4494 		r5or6_last_row = r0_last_row = last_block / stripesize;
4495 #endif
4496 		if (r5or6_first_row != r5or6_last_row)
4497 			return IO_ACCEL_INELIGIBLE;
4498 
4499 
4500 		/* Verify request is in a single column */
4501 #if BITS_PER_LONG == 32
4502 		tmpdiv = first_block;
4503 		first_row_offset = do_div(tmpdiv, stripesize);
4504 		tmpdiv = first_row_offset;
4505 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4506 		r5or6_first_row_offset = first_row_offset;
4507 		tmpdiv = last_block;
4508 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4509 		tmpdiv = r5or6_last_row_offset;
4510 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4511 		tmpdiv = r5or6_first_row_offset;
4512 		(void) do_div(tmpdiv, map->strip_size);
4513 		first_column = r5or6_first_column = tmpdiv;
4514 		tmpdiv = r5or6_last_row_offset;
4515 		(void) do_div(tmpdiv, map->strip_size);
4516 		r5or6_last_column = tmpdiv;
4517 #else
4518 		first_row_offset = r5or6_first_row_offset =
4519 			(u32)((first_block % stripesize) %
4520 						r5or6_blocks_per_row);
4521 
4522 		r5or6_last_row_offset =
4523 			(u32)((last_block % stripesize) %
4524 						r5or6_blocks_per_row);
4525 
4526 		first_column = r5or6_first_column =
4527 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4528 		r5or6_last_column =
4529 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4530 #endif
4531 		if (r5or6_first_column != r5or6_last_column)
4532 			return IO_ACCEL_INELIGIBLE;
4533 
4534 		/* Request is eligible */
4535 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4536 			le16_to_cpu(map->row_cnt);
4537 
4538 		map_index = (first_group *
4539 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4540 			(map_row * total_disks_per_row) + first_column;
4541 		break;
4542 	default:
4543 		return IO_ACCEL_INELIGIBLE;
4544 	}
4545 
4546 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4547 		return IO_ACCEL_INELIGIBLE;
4548 
4549 	c->phys_disk = dev->phys_disk[map_index];
4550 
4551 	disk_handle = dd[map_index].ioaccel_handle;
4552 	disk_block = le64_to_cpu(map->disk_starting_blk) +
4553 			first_row * le16_to_cpu(map->strip_size) +
4554 			(first_row_offset - first_column *
4555 			le16_to_cpu(map->strip_size));
4556 	disk_block_cnt = block_cnt;
4557 
4558 	/* handle differing logical/physical block sizes */
4559 	if (map->phys_blk_shift) {
4560 		disk_block <<= map->phys_blk_shift;
4561 		disk_block_cnt <<= map->phys_blk_shift;
4562 	}
4563 	BUG_ON(disk_block_cnt > 0xffff);
4564 
4565 	/* build the new CDB for the physical disk I/O */
4566 	if (disk_block > 0xffffffff) {
4567 		cdb[0] = is_write ? WRITE_16 : READ_16;
4568 		cdb[1] = 0;
4569 		cdb[2] = (u8) (disk_block >> 56);
4570 		cdb[3] = (u8) (disk_block >> 48);
4571 		cdb[4] = (u8) (disk_block >> 40);
4572 		cdb[5] = (u8) (disk_block >> 32);
4573 		cdb[6] = (u8) (disk_block >> 24);
4574 		cdb[7] = (u8) (disk_block >> 16);
4575 		cdb[8] = (u8) (disk_block >> 8);
4576 		cdb[9] = (u8) (disk_block);
4577 		cdb[10] = (u8) (disk_block_cnt >> 24);
4578 		cdb[11] = (u8) (disk_block_cnt >> 16);
4579 		cdb[12] = (u8) (disk_block_cnt >> 8);
4580 		cdb[13] = (u8) (disk_block_cnt);
4581 		cdb[14] = 0;
4582 		cdb[15] = 0;
4583 		cdb_len = 16;
4584 	} else {
4585 		cdb[0] = is_write ? WRITE_10 : READ_10;
4586 		cdb[1] = 0;
4587 		cdb[2] = (u8) (disk_block >> 24);
4588 		cdb[3] = (u8) (disk_block >> 16);
4589 		cdb[4] = (u8) (disk_block >> 8);
4590 		cdb[5] = (u8) (disk_block);
4591 		cdb[6] = 0;
4592 		cdb[7] = (u8) (disk_block_cnt >> 8);
4593 		cdb[8] = (u8) (disk_block_cnt);
4594 		cdb[9] = 0;
4595 		cdb_len = 10;
4596 	}
4597 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4598 						dev->scsi3addr,
4599 						dev->phys_disk[map_index]);
4600 }
4601 
4602 /*
4603  * Submit commands down the "normal" RAID stack path
4604  * All callers to hpsa_ciss_submit must check lockup_detected
4605  * beforehand, before (opt.) and after calling cmd_alloc
4606  */
4607 static int hpsa_ciss_submit(struct ctlr_info *h,
4608 	struct CommandList *c, struct scsi_cmnd *cmd,
4609 	unsigned char scsi3addr[])
4610 {
4611 	cmd->host_scribble = (unsigned char *) c;
4612 	c->cmd_type = CMD_SCSI;
4613 	c->scsi_cmd = cmd;
4614 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
4615 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4616 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4617 
4618 	/* Fill in the request block... */
4619 
4620 	c->Request.Timeout = 0;
4621 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4622 	c->Request.CDBLen = cmd->cmd_len;
4623 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4624 	switch (cmd->sc_data_direction) {
4625 	case DMA_TO_DEVICE:
4626 		c->Request.type_attr_dir =
4627 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4628 		break;
4629 	case DMA_FROM_DEVICE:
4630 		c->Request.type_attr_dir =
4631 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4632 		break;
4633 	case DMA_NONE:
4634 		c->Request.type_attr_dir =
4635 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4636 		break;
4637 	case DMA_BIDIRECTIONAL:
4638 		/* This can happen if a buggy application does a scsi passthru
4639 		 * and sets both inlen and outlen to non-zero. ( see
4640 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4641 		 */
4642 
4643 		c->Request.type_attr_dir =
4644 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4645 		/* This is technically wrong, and hpsa controllers should
4646 		 * reject it with CMD_INVALID, which is the most correct
4647 		 * response, but non-fibre backends appear to let it
4648 		 * slide by, and give the same results as if this field
4649 		 * were set correctly.  Either way is acceptable for
4650 		 * our purposes here.
4651 		 */
4652 
4653 		break;
4654 
4655 	default:
4656 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4657 			cmd->sc_data_direction);
4658 		BUG();
4659 		break;
4660 	}
4661 
4662 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4663 		hpsa_cmd_resolve_and_free(h, c);
4664 		return SCSI_MLQUEUE_HOST_BUSY;
4665 	}
4666 	enqueue_cmd_and_start_io(h, c);
4667 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
4668 	return 0;
4669 }
4670 
4671 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4672 				struct CommandList *c)
4673 {
4674 	dma_addr_t cmd_dma_handle, err_dma_handle;
4675 
4676 	/* Zero out all of commandlist except the last field, refcount */
4677 	memset(c, 0, offsetof(struct CommandList, refcount));
4678 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4679 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4680 	c->err_info = h->errinfo_pool + index;
4681 	memset(c->err_info, 0, sizeof(*c->err_info));
4682 	err_dma_handle = h->errinfo_pool_dhandle
4683 	    + index * sizeof(*c->err_info);
4684 	c->cmdindex = index;
4685 	c->busaddr = (u32) cmd_dma_handle;
4686 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4687 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4688 	c->h = h;
4689 	c->scsi_cmd = SCSI_CMD_IDLE;
4690 }
4691 
4692 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4693 {
4694 	int i;
4695 
4696 	for (i = 0; i < h->nr_cmds; i++) {
4697 		struct CommandList *c = h->cmd_pool + i;
4698 
4699 		hpsa_cmd_init(h, i, c);
4700 		atomic_set(&c->refcount, 0);
4701 	}
4702 }
4703 
4704 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4705 				struct CommandList *c)
4706 {
4707 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4708 
4709 	BUG_ON(c->cmdindex != index);
4710 
4711 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4712 	memset(c->err_info, 0, sizeof(*c->err_info));
4713 	c->busaddr = (u32) cmd_dma_handle;
4714 }
4715 
4716 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4717 		struct CommandList *c, struct scsi_cmnd *cmd,
4718 		unsigned char *scsi3addr)
4719 {
4720 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4721 	int rc = IO_ACCEL_INELIGIBLE;
4722 
4723 	cmd->host_scribble = (unsigned char *) c;
4724 
4725 	if (dev->offload_enabled) {
4726 		hpsa_cmd_init(h, c->cmdindex, c);
4727 		c->cmd_type = CMD_SCSI;
4728 		c->scsi_cmd = cmd;
4729 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
4730 		if (rc < 0)     /* scsi_dma_map failed. */
4731 			rc = SCSI_MLQUEUE_HOST_BUSY;
4732 	} else if (dev->hba_ioaccel_enabled) {
4733 		hpsa_cmd_init(h, c->cmdindex, c);
4734 		c->cmd_type = CMD_SCSI;
4735 		c->scsi_cmd = cmd;
4736 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
4737 		if (rc < 0)     /* scsi_dma_map failed. */
4738 			rc = SCSI_MLQUEUE_HOST_BUSY;
4739 	}
4740 	return rc;
4741 }
4742 
4743 static void hpsa_command_resubmit_worker(struct work_struct *work)
4744 {
4745 	struct scsi_cmnd *cmd;
4746 	struct hpsa_scsi_dev_t *dev;
4747 	struct CommandList *c = container_of(work, struct CommandList, work);
4748 
4749 	cmd = c->scsi_cmd;
4750 	dev = cmd->device->hostdata;
4751 	if (!dev) {
4752 		cmd->result = DID_NO_CONNECT << 16;
4753 		return hpsa_cmd_free_and_done(c->h, c, cmd);
4754 	}
4755 	if (c->reset_pending)
4756 		return hpsa_cmd_resolve_and_free(c->h, c);
4757 	if (c->abort_pending)
4758 		return hpsa_cmd_abort_and_free(c->h, c, cmd);
4759 	if (c->cmd_type == CMD_IOACCEL2) {
4760 		struct ctlr_info *h = c->h;
4761 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4762 		int rc;
4763 
4764 		if (c2->error_data.serv_response ==
4765 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4766 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4767 			if (rc == 0)
4768 				return;
4769 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4770 				/*
4771 				 * If we get here, it means dma mapping failed.
4772 				 * Try again via scsi mid layer, which will
4773 				 * then get SCSI_MLQUEUE_HOST_BUSY.
4774 				 */
4775 				cmd->result = DID_IMM_RETRY << 16;
4776 				return hpsa_cmd_free_and_done(h, c, cmd);
4777 			}
4778 			/* else, fall thru and resubmit down CISS path */
4779 		}
4780 	}
4781 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4782 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4783 		/*
4784 		 * If we get here, it means dma mapping failed. Try
4785 		 * again via scsi mid layer, which will then get
4786 		 * SCSI_MLQUEUE_HOST_BUSY.
4787 		 *
4788 		 * hpsa_ciss_submit will have already freed c
4789 		 * if it encountered a dma mapping failure.
4790 		 */
4791 		cmd->result = DID_IMM_RETRY << 16;
4792 		cmd->scsi_done(cmd);
4793 	}
4794 }
4795 
4796 /* Running in struct Scsi_Host->host_lock less mode */
4797 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4798 {
4799 	struct ctlr_info *h;
4800 	struct hpsa_scsi_dev_t *dev;
4801 	unsigned char scsi3addr[8];
4802 	struct CommandList *c;
4803 	int rc = 0;
4804 
4805 	/* Get the ptr to our adapter structure out of cmd->host. */
4806 	h = sdev_to_hba(cmd->device);
4807 
4808 	BUG_ON(cmd->request->tag < 0);
4809 
4810 	dev = cmd->device->hostdata;
4811 	if (!dev) {
4812 		cmd->result = DID_NO_CONNECT << 16;
4813 		cmd->scsi_done(cmd);
4814 		return 0;
4815 	}
4816 
4817 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4818 
4819 	if (unlikely(lockup_detected(h))) {
4820 		cmd->result = DID_NO_CONNECT << 16;
4821 		cmd->scsi_done(cmd);
4822 		return 0;
4823 	}
4824 	c = cmd_tagged_alloc(h, cmd);
4825 
4826 	/*
4827 	 * Call alternate submit routine for I/O accelerated commands.
4828 	 * Retries always go down the normal I/O path.
4829 	 */
4830 	if (likely(cmd->retries == 0 &&
4831 		cmd->request->cmd_type == REQ_TYPE_FS &&
4832 		h->acciopath_status)) {
4833 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4834 		if (rc == 0)
4835 			return 0;
4836 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4837 			hpsa_cmd_resolve_and_free(h, c);
4838 			return SCSI_MLQUEUE_HOST_BUSY;
4839 		}
4840 	}
4841 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4842 }
4843 
4844 static void hpsa_scan_complete(struct ctlr_info *h)
4845 {
4846 	unsigned long flags;
4847 
4848 	spin_lock_irqsave(&h->scan_lock, flags);
4849 	h->scan_finished = 1;
4850 	wake_up_all(&h->scan_wait_queue);
4851 	spin_unlock_irqrestore(&h->scan_lock, flags);
4852 }
4853 
4854 static void hpsa_scan_start(struct Scsi_Host *sh)
4855 {
4856 	struct ctlr_info *h = shost_to_hba(sh);
4857 	unsigned long flags;
4858 
4859 	/*
4860 	 * Don't let rescans be initiated on a controller known to be locked
4861 	 * up.  If the controller locks up *during* a rescan, that thread is
4862 	 * probably hosed, but at least we can prevent new rescan threads from
4863 	 * piling up on a locked up controller.
4864 	 */
4865 	if (unlikely(lockup_detected(h)))
4866 		return hpsa_scan_complete(h);
4867 
4868 	/* wait until any scan already in progress is finished. */
4869 	while (1) {
4870 		spin_lock_irqsave(&h->scan_lock, flags);
4871 		if (h->scan_finished)
4872 			break;
4873 		spin_unlock_irqrestore(&h->scan_lock, flags);
4874 		wait_event(h->scan_wait_queue, h->scan_finished);
4875 		/* Note: We don't need to worry about a race between this
4876 		 * thread and driver unload because the midlayer will
4877 		 * have incremented the reference count, so unload won't
4878 		 * happen if we're in here.
4879 		 */
4880 	}
4881 	h->scan_finished = 0; /* mark scan as in progress */
4882 	spin_unlock_irqrestore(&h->scan_lock, flags);
4883 
4884 	if (unlikely(lockup_detected(h)))
4885 		return hpsa_scan_complete(h);
4886 
4887 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4888 
4889 	hpsa_scan_complete(h);
4890 }
4891 
4892 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4893 {
4894 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4895 
4896 	if (!logical_drive)
4897 		return -ENODEV;
4898 
4899 	if (qdepth < 1)
4900 		qdepth = 1;
4901 	else if (qdepth > logical_drive->queue_depth)
4902 		qdepth = logical_drive->queue_depth;
4903 
4904 	return scsi_change_queue_depth(sdev, qdepth);
4905 }
4906 
4907 static int hpsa_scan_finished(struct Scsi_Host *sh,
4908 	unsigned long elapsed_time)
4909 {
4910 	struct ctlr_info *h = shost_to_hba(sh);
4911 	unsigned long flags;
4912 	int finished;
4913 
4914 	spin_lock_irqsave(&h->scan_lock, flags);
4915 	finished = h->scan_finished;
4916 	spin_unlock_irqrestore(&h->scan_lock, flags);
4917 	return finished;
4918 }
4919 
4920 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
4921 {
4922 	struct Scsi_Host *sh;
4923 	int error;
4924 
4925 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4926 	if (sh == NULL) {
4927 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
4928 		return -ENOMEM;
4929 	}
4930 
4931 	sh->io_port = 0;
4932 	sh->n_io_port = 0;
4933 	sh->this_id = -1;
4934 	sh->max_channel = 3;
4935 	sh->max_cmd_len = MAX_COMMAND_SIZE;
4936 	sh->max_lun = HPSA_MAX_LUN;
4937 	sh->max_id = HPSA_MAX_LUN;
4938 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
4939 	sh->cmd_per_lun = sh->can_queue;
4940 	sh->sg_tablesize = h->maxsgentries;
4941 	sh->hostdata[0] = (unsigned long) h;
4942 	sh->irq = h->intr[h->intr_mode];
4943 	sh->unique_id = sh->irq;
4944 	error = scsi_init_shared_tag_map(sh, sh->can_queue);
4945 	if (error) {
4946 		dev_err(&h->pdev->dev,
4947 			"%s: scsi_init_shared_tag_map failed for controller %d\n",
4948 			__func__, h->ctlr);
4949 			scsi_host_put(sh);
4950 			return error;
4951 	}
4952 	h->scsi_host = sh;
4953 	return 0;
4954 }
4955 
4956 static int hpsa_scsi_add_host(struct ctlr_info *h)
4957 {
4958 	int rv;
4959 
4960 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
4961 	if (rv) {
4962 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
4963 		return rv;
4964 	}
4965 	scsi_scan_host(h->scsi_host);
4966 	return 0;
4967 }
4968 
4969 /*
4970  * The block layer has already gone to the trouble of picking out a unique,
4971  * small-integer tag for this request.  We use an offset from that value as
4972  * an index to select our command block.  (The offset allows us to reserve the
4973  * low-numbered entries for our own uses.)
4974  */
4975 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
4976 {
4977 	int idx = scmd->request->tag;
4978 
4979 	if (idx < 0)
4980 		return idx;
4981 
4982 	/* Offset to leave space for internal cmds. */
4983 	return idx += HPSA_NRESERVED_CMDS;
4984 }
4985 
4986 /*
4987  * Send a TEST_UNIT_READY command to the specified LUN using the specified
4988  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
4989  */
4990 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
4991 				struct CommandList *c, unsigned char lunaddr[],
4992 				int reply_queue)
4993 {
4994 	int rc;
4995 
4996 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4997 	(void) fill_cmd(c, TEST_UNIT_READY, h,
4998 			NULL, 0, 0, lunaddr, TYPE_CMD);
4999 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5000 	if (rc)
5001 		return rc;
5002 	/* no unmap needed here because no data xfer. */
5003 
5004 	/* Check if the unit is already ready. */
5005 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5006 		return 0;
5007 
5008 	/*
5009 	 * The first command sent after reset will receive "unit attention" to
5010 	 * indicate that the LUN has been reset...this is actually what we're
5011 	 * looking for (but, success is good too).
5012 	 */
5013 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5014 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5015 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5016 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5017 		return 0;
5018 
5019 	return 1;
5020 }
5021 
5022 /*
5023  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5024  * returns zero when the unit is ready, and non-zero when giving up.
5025  */
5026 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5027 				struct CommandList *c,
5028 				unsigned char lunaddr[], int reply_queue)
5029 {
5030 	int rc;
5031 	int count = 0;
5032 	int waittime = 1; /* seconds */
5033 
5034 	/* Send test unit ready until device ready, or give up. */
5035 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5036 
5037 		/*
5038 		 * Wait for a bit.  do this first, because if we send
5039 		 * the TUR right away, the reset will just abort it.
5040 		 */
5041 		msleep(1000 * waittime);
5042 
5043 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5044 		if (!rc)
5045 			break;
5046 
5047 		/* Increase wait time with each try, up to a point. */
5048 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5049 			waittime *= 2;
5050 
5051 		dev_warn(&h->pdev->dev,
5052 			 "waiting %d secs for device to become ready.\n",
5053 			 waittime);
5054 	}
5055 
5056 	return rc;
5057 }
5058 
5059 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5060 					   unsigned char lunaddr[],
5061 					   int reply_queue)
5062 {
5063 	int first_queue;
5064 	int last_queue;
5065 	int rq;
5066 	int rc = 0;
5067 	struct CommandList *c;
5068 
5069 	c = cmd_alloc(h);
5070 
5071 	/*
5072 	 * If no specific reply queue was requested, then send the TUR
5073 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5074 	 * the loop exactly once using only the specified queue.
5075 	 */
5076 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5077 		first_queue = 0;
5078 		last_queue = h->nreply_queues - 1;
5079 	} else {
5080 		first_queue = reply_queue;
5081 		last_queue = reply_queue;
5082 	}
5083 
5084 	for (rq = first_queue; rq <= last_queue; rq++) {
5085 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5086 		if (rc)
5087 			break;
5088 	}
5089 
5090 	if (rc)
5091 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5092 	else
5093 		dev_warn(&h->pdev->dev, "device is ready.\n");
5094 
5095 	cmd_free(h, c);
5096 	return rc;
5097 }
5098 
5099 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5100  * complaining.  Doing a host- or bus-reset can't do anything good here.
5101  */
5102 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5103 {
5104 	int rc;
5105 	struct ctlr_info *h;
5106 	struct hpsa_scsi_dev_t *dev;
5107 	char msg[40];
5108 
5109 	/* find the controller to which the command to be aborted was sent */
5110 	h = sdev_to_hba(scsicmd->device);
5111 	if (h == NULL) /* paranoia */
5112 		return FAILED;
5113 
5114 	if (lockup_detected(h))
5115 		return FAILED;
5116 
5117 	dev = scsicmd->device->hostdata;
5118 	if (!dev) {
5119 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5120 		return FAILED;
5121 	}
5122 
5123 	/* if controller locked up, we can guarantee command won't complete */
5124 	if (lockup_detected(h)) {
5125 		sprintf(msg, "cmd %d RESET FAILED, lockup detected",
5126 				hpsa_get_cmd_index(scsicmd));
5127 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5128 		return FAILED;
5129 	}
5130 
5131 	/* this reset request might be the result of a lockup; check */
5132 	if (detect_controller_lockup(h)) {
5133 		sprintf(msg, "cmd %d RESET FAILED, new lockup detected",
5134 				hpsa_get_cmd_index(scsicmd));
5135 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5136 		return FAILED;
5137 	}
5138 
5139 	/* Do not attempt on controller */
5140 	if (is_hba_lunid(dev->scsi3addr))
5141 		return SUCCESS;
5142 
5143 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");
5144 
5145 	/* send a reset to the SCSI LUN which the command was sent to */
5146 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
5147 			   DEFAULT_REPLY_QUEUE);
5148 	sprintf(msg, "reset %s", rc == 0 ? "completed successfully" : "failed");
5149 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5150 	return rc == 0 ? SUCCESS : FAILED;
5151 }
5152 
5153 static void swizzle_abort_tag(u8 *tag)
5154 {
5155 	u8 original_tag[8];
5156 
5157 	memcpy(original_tag, tag, 8);
5158 	tag[0] = original_tag[3];
5159 	tag[1] = original_tag[2];
5160 	tag[2] = original_tag[1];
5161 	tag[3] = original_tag[0];
5162 	tag[4] = original_tag[7];
5163 	tag[5] = original_tag[6];
5164 	tag[6] = original_tag[5];
5165 	tag[7] = original_tag[4];
5166 }
5167 
5168 static void hpsa_get_tag(struct ctlr_info *h,
5169 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5170 {
5171 	u64 tag;
5172 	if (c->cmd_type == CMD_IOACCEL1) {
5173 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5174 			&h->ioaccel_cmd_pool[c->cmdindex];
5175 		tag = le64_to_cpu(cm1->tag);
5176 		*tagupper = cpu_to_le32(tag >> 32);
5177 		*taglower = cpu_to_le32(tag);
5178 		return;
5179 	}
5180 	if (c->cmd_type == CMD_IOACCEL2) {
5181 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5182 			&h->ioaccel2_cmd_pool[c->cmdindex];
5183 		/* upper tag not used in ioaccel2 mode */
5184 		memset(tagupper, 0, sizeof(*tagupper));
5185 		*taglower = cm2->Tag;
5186 		return;
5187 	}
5188 	tag = le64_to_cpu(c->Header.tag);
5189 	*tagupper = cpu_to_le32(tag >> 32);
5190 	*taglower = cpu_to_le32(tag);
5191 }
5192 
5193 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5194 	struct CommandList *abort, int reply_queue)
5195 {
5196 	int rc = IO_OK;
5197 	struct CommandList *c;
5198 	struct ErrorInfo *ei;
5199 	__le32 tagupper, taglower;
5200 
5201 	c = cmd_alloc(h);
5202 
5203 	/* fill_cmd can't fail here, no buffer to map */
5204 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5205 		0, 0, scsi3addr, TYPE_MSG);
5206 	if (h->needs_abort_tags_swizzled)
5207 		swizzle_abort_tag(&c->Request.CDB[4]);
5208 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5209 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5210 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5211 		__func__, tagupper, taglower);
5212 	/* no unmap needed here because no data xfer. */
5213 
5214 	ei = c->err_info;
5215 	switch (ei->CommandStatus) {
5216 	case CMD_SUCCESS:
5217 		break;
5218 	case CMD_TMF_STATUS:
5219 		rc = hpsa_evaluate_tmf_status(h, c);
5220 		break;
5221 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
5222 		rc = -1;
5223 		break;
5224 	default:
5225 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5226 			__func__, tagupper, taglower);
5227 		hpsa_scsi_interpret_error(h, c);
5228 		rc = -1;
5229 		break;
5230 	}
5231 	cmd_free(h, c);
5232 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5233 		__func__, tagupper, taglower);
5234 	return rc;
5235 }
5236 
5237 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5238 	struct CommandList *command_to_abort, int reply_queue)
5239 {
5240 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5241 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5242 	struct io_accel2_cmd *c2a =
5243 		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5244 	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5245 	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5246 
5247 	/*
5248 	 * We're overlaying struct hpsa_tmf_struct on top of something which
5249 	 * was allocated as a struct io_accel2_cmd, so we better be sure it
5250 	 * actually fits, and doesn't overrun the error info space.
5251 	 */
5252 	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5253 			sizeof(struct io_accel2_cmd));
5254 	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5255 			offsetof(struct hpsa_tmf_struct, error_len) +
5256 				sizeof(ac->error_len));
5257 
5258 	c->cmd_type = IOACCEL2_TMF;
5259 	c->scsi_cmd = SCSI_CMD_BUSY;
5260 
5261 	/* Adjust the DMA address to point to the accelerated command buffer */
5262 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5263 				(c->cmdindex * sizeof(struct io_accel2_cmd));
5264 	BUG_ON(c->busaddr & 0x0000007F);
5265 
5266 	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5267 	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5268 	ac->reply_queue = reply_queue;
5269 	ac->tmf = IOACCEL2_TMF_ABORT;
5270 	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5271 	memset(ac->lun_id, 0, sizeof(ac->lun_id));
5272 	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5273 	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5274 	ac->error_ptr = cpu_to_le64(c->busaddr +
5275 			offsetof(struct io_accel2_cmd, error_data));
5276 	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5277 }
5278 
5279 /* ioaccel2 path firmware cannot handle abort task requests.
5280  * Change abort requests to physical target reset, and send to the
5281  * address of the physical disk used for the ioaccel 2 command.
5282  * Return 0 on success (IO_OK)
5283  *	 -1 on failure
5284  */
5285 
5286 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5287 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5288 {
5289 	int rc = IO_OK;
5290 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5291 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5292 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5293 	unsigned char *psa = &phys_scsi3addr[0];
5294 
5295 	/* Get a pointer to the hpsa logical device. */
5296 	scmd = abort->scsi_cmd;
5297 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5298 	if (dev == NULL) {
5299 		dev_warn(&h->pdev->dev,
5300 			"Cannot abort: no device pointer for command.\n");
5301 			return -1; /* not abortable */
5302 	}
5303 
5304 	if (h->raid_offload_debug > 0)
5305 		dev_info(&h->pdev->dev,
5306 			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5307 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5308 			"Reset as abort",
5309 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5310 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5311 
5312 	if (!dev->offload_enabled) {
5313 		dev_warn(&h->pdev->dev,
5314 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5315 		return -1; /* not abortable */
5316 	}
5317 
5318 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
5319 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5320 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5321 		return -1; /* not abortable */
5322 	}
5323 
5324 	/* send the reset */
5325 	if (h->raid_offload_debug > 0)
5326 		dev_info(&h->pdev->dev,
5327 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5328 			psa[0], psa[1], psa[2], psa[3],
5329 			psa[4], psa[5], psa[6], psa[7]);
5330 	rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5331 	if (rc != 0) {
5332 		dev_warn(&h->pdev->dev,
5333 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5334 			psa[0], psa[1], psa[2], psa[3],
5335 			psa[4], psa[5], psa[6], psa[7]);
5336 		return rc; /* failed to reset */
5337 	}
5338 
5339 	/* wait for device to recover */
5340 	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5341 		dev_warn(&h->pdev->dev,
5342 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5343 			psa[0], psa[1], psa[2], psa[3],
5344 			psa[4], psa[5], psa[6], psa[7]);
5345 		return -1;  /* failed to recover */
5346 	}
5347 
5348 	/* device recovered */
5349 	dev_info(&h->pdev->dev,
5350 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5351 		psa[0], psa[1], psa[2], psa[3],
5352 		psa[4], psa[5], psa[6], psa[7]);
5353 
5354 	return rc; /* success */
5355 }
5356 
5357 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5358 	struct CommandList *abort, int reply_queue)
5359 {
5360 	int rc = IO_OK;
5361 	struct CommandList *c;
5362 	__le32 taglower, tagupper;
5363 	struct hpsa_scsi_dev_t *dev;
5364 	struct io_accel2_cmd *c2;
5365 
5366 	dev = abort->scsi_cmd->device->hostdata;
5367 	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5368 		return -1;
5369 
5370 	c = cmd_alloc(h);
5371 	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5372 	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5373 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5374 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5375 	dev_dbg(&h->pdev->dev,
5376 		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5377 		__func__, tagupper, taglower);
5378 	/* no unmap needed here because no data xfer. */
5379 
5380 	dev_dbg(&h->pdev->dev,
5381 		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5382 		__func__, tagupper, taglower, c2->error_data.serv_response);
5383 	switch (c2->error_data.serv_response) {
5384 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5385 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5386 		rc = 0;
5387 		break;
5388 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5389 	case IOACCEL2_SERV_RESPONSE_FAILURE:
5390 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5391 		rc = -1;
5392 		break;
5393 	default:
5394 		dev_warn(&h->pdev->dev,
5395 			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5396 			__func__, tagupper, taglower,
5397 			c2->error_data.serv_response);
5398 		rc = -1;
5399 	}
5400 	cmd_free(h, c);
5401 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5402 		tagupper, taglower);
5403 	return rc;
5404 }
5405 
5406 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5407 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5408 {
5409 	/*
5410 	 * ioccelerator mode 2 commands should be aborted via the
5411 	 * accelerated path, since RAID path is unaware of these commands,
5412 	 * but not all underlying firmware can handle abort TMF.
5413 	 * Change abort to physical device reset when abort TMF is unsupported.
5414 	 */
5415 	if (abort->cmd_type == CMD_IOACCEL2) {
5416 		if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5417 			return hpsa_send_abort_ioaccel2(h, abort,
5418 						reply_queue);
5419 		else
5420 			return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5421 							abort, reply_queue);
5422 	}
5423 	return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5424 }
5425 
5426 /* Find out which reply queue a command was meant to return on */
5427 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5428 					struct CommandList *c)
5429 {
5430 	if (c->cmd_type == CMD_IOACCEL2)
5431 		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5432 	return c->Header.ReplyQueue;
5433 }
5434 
5435 /*
5436  * Limit concurrency of abort commands to prevent
5437  * over-subscription of commands
5438  */
5439 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5440 {
5441 #define ABORT_CMD_WAIT_MSECS 5000
5442 	return !wait_event_timeout(h->abort_cmd_wait_queue,
5443 			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5444 			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5445 }
5446 
5447 /* Send an abort for the specified command.
5448  *	If the device and controller support it,
5449  *		send a task abort request.
5450  */
5451 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5452 {
5453 
5454 	int rc;
5455 	struct ctlr_info *h;
5456 	struct hpsa_scsi_dev_t *dev;
5457 	struct CommandList *abort; /* pointer to command to be aborted */
5458 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
5459 	char msg[256];		/* For debug messaging. */
5460 	int ml = 0;
5461 	__le32 tagupper, taglower;
5462 	int refcount, reply_queue;
5463 
5464 	if (sc == NULL)
5465 		return FAILED;
5466 
5467 	if (sc->device == NULL)
5468 		return FAILED;
5469 
5470 	/* Find the controller of the command to be aborted */
5471 	h = sdev_to_hba(sc->device);
5472 	if (h == NULL)
5473 		return FAILED;
5474 
5475 	/* Find the device of the command to be aborted */
5476 	dev = sc->device->hostdata;
5477 	if (!dev) {
5478 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5479 				msg);
5480 		return FAILED;
5481 	}
5482 
5483 	/* If controller locked up, we can guarantee command won't complete */
5484 	if (lockup_detected(h)) {
5485 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5486 					"ABORT FAILED, lockup detected");
5487 		return FAILED;
5488 	}
5489 
5490 	/* This is a good time to check if controller lockup has occurred */
5491 	if (detect_controller_lockup(h)) {
5492 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5493 					"ABORT FAILED, new lockup detected");
5494 		return FAILED;
5495 	}
5496 
5497 	/* Check that controller supports some kind of task abort */
5498 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5499 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5500 		return FAILED;
5501 
5502 	memset(msg, 0, sizeof(msg));
5503 	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5504 		h->scsi_host->host_no, sc->device->channel,
5505 		sc->device->id, sc->device->lun,
5506 		"Aborting command", sc);
5507 
5508 	/* Get SCSI command to be aborted */
5509 	abort = (struct CommandList *) sc->host_scribble;
5510 	if (abort == NULL) {
5511 		/* This can happen if the command already completed. */
5512 		return SUCCESS;
5513 	}
5514 	refcount = atomic_inc_return(&abort->refcount);
5515 	if (refcount == 1) { /* Command is done already. */
5516 		cmd_free(h, abort);
5517 		return SUCCESS;
5518 	}
5519 
5520 	/* Don't bother trying the abort if we know it won't work. */
5521 	if (abort->cmd_type != CMD_IOACCEL2 &&
5522 		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5523 		cmd_free(h, abort);
5524 		return FAILED;
5525 	}
5526 
5527 	/*
5528 	 * Check that we're aborting the right command.
5529 	 * It's possible the CommandList already completed and got re-used.
5530 	 */
5531 	if (abort->scsi_cmd != sc) {
5532 		cmd_free(h, abort);
5533 		return SUCCESS;
5534 	}
5535 
5536 	abort->abort_pending = true;
5537 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5538 	reply_queue = hpsa_extract_reply_queue(h, abort);
5539 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5540 	as  = abort->scsi_cmd;
5541 	if (as != NULL)
5542 		ml += sprintf(msg+ml,
5543 			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5544 			as->cmd_len, as->cmnd[0], as->cmnd[1],
5545 			as->serial_number);
5546 	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5547 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5548 
5549 	/*
5550 	 * Command is in flight, or possibly already completed
5551 	 * by the firmware (but not to the scsi mid layer) but we can't
5552 	 * distinguish which.  Send the abort down.
5553 	 */
5554 	if (wait_for_available_abort_cmd(h)) {
5555 		dev_warn(&h->pdev->dev,
5556 			"%s FAILED, timeout waiting for an abort command to become available.\n",
5557 			msg);
5558 		cmd_free(h, abort);
5559 		return FAILED;
5560 	}
5561 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5562 	atomic_inc(&h->abort_cmds_available);
5563 	wake_up_all(&h->abort_cmd_wait_queue);
5564 	if (rc != 0) {
5565 		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5566 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5567 				"FAILED to abort command");
5568 		cmd_free(h, abort);
5569 		return FAILED;
5570 	}
5571 	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5572 	wait_event(h->event_sync_wait_queue,
5573 		   abort->scsi_cmd != sc || lockup_detected(h));
5574 	cmd_free(h, abort);
5575 	return !lockup_detected(h) ? SUCCESS : FAILED;
5576 }
5577 
5578 /*
5579  * For operations with an associated SCSI command, a command block is allocated
5580  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5581  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5582  * the complement, although cmd_free() may be called instead.
5583  */
5584 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5585 					    struct scsi_cmnd *scmd)
5586 {
5587 	int idx = hpsa_get_cmd_index(scmd);
5588 	struct CommandList *c = h->cmd_pool + idx;
5589 
5590 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5591 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5592 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5593 		/* The index value comes from the block layer, so if it's out of
5594 		 * bounds, it's probably not our bug.
5595 		 */
5596 		BUG();
5597 	}
5598 
5599 	atomic_inc(&c->refcount);
5600 	if (unlikely(!hpsa_is_cmd_idle(c))) {
5601 		/*
5602 		 * We expect that the SCSI layer will hand us a unique tag
5603 		 * value.  Thus, there should never be a collision here between
5604 		 * two requests...because if the selected command isn't idle
5605 		 * then someone is going to be very disappointed.
5606 		 */
5607 		dev_err(&h->pdev->dev,
5608 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
5609 			idx);
5610 		if (c->scsi_cmd != NULL)
5611 			scsi_print_command(c->scsi_cmd);
5612 		scsi_print_command(scmd);
5613 	}
5614 
5615 	hpsa_cmd_partial_init(h, idx, c);
5616 	return c;
5617 }
5618 
5619 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5620 {
5621 	/*
5622 	 * Release our reference to the block.  We don't need to do anything
5623 	 * else to free it, because it is accessed by index.  (There's no point
5624 	 * in checking the result of the decrement, since we cannot guarantee
5625 	 * that there isn't a concurrent abort which is also accessing it.)
5626 	 */
5627 	(void)atomic_dec(&c->refcount);
5628 }
5629 
5630 /*
5631  * For operations that cannot sleep, a command block is allocated at init,
5632  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5633  * which ones are free or in use.  Lock must be held when calling this.
5634  * cmd_free() is the complement.
5635  * This function never gives up and returns NULL.  If it hangs,
5636  * another thread must call cmd_free() to free some tags.
5637  */
5638 
5639 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5640 {
5641 	struct CommandList *c;
5642 	int refcount, i;
5643 	int offset = 0;
5644 
5645 	/*
5646 	 * There is some *extremely* small but non-zero chance that that
5647 	 * multiple threads could get in here, and one thread could
5648 	 * be scanning through the list of bits looking for a free
5649 	 * one, but the free ones are always behind him, and other
5650 	 * threads sneak in behind him and eat them before he can
5651 	 * get to them, so that while there is always a free one, a
5652 	 * very unlucky thread might be starved anyway, never able to
5653 	 * beat the other threads.  In reality, this happens so
5654 	 * infrequently as to be indistinguishable from never.
5655 	 *
5656 	 * Note that we start allocating commands before the SCSI host structure
5657 	 * is initialized.  Since the search starts at bit zero, this
5658 	 * all works, since we have at least one command structure available;
5659 	 * however, it means that the structures with the low indexes have to be
5660 	 * reserved for driver-initiated requests, while requests from the block
5661 	 * layer will use the higher indexes.
5662 	 */
5663 
5664 	for (;;) {
5665 		i = find_next_zero_bit(h->cmd_pool_bits,
5666 					HPSA_NRESERVED_CMDS,
5667 					offset);
5668 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5669 			offset = 0;
5670 			continue;
5671 		}
5672 		c = h->cmd_pool + i;
5673 		refcount = atomic_inc_return(&c->refcount);
5674 		if (unlikely(refcount > 1)) {
5675 			cmd_free(h, c); /* already in use */
5676 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
5677 			continue;
5678 		}
5679 		set_bit(i & (BITS_PER_LONG - 1),
5680 			h->cmd_pool_bits + (i / BITS_PER_LONG));
5681 		break; /* it's ours now. */
5682 	}
5683 	hpsa_cmd_partial_init(h, i, c);
5684 	return c;
5685 }
5686 
5687 /*
5688  * This is the complementary operation to cmd_alloc().  Note, however, in some
5689  * corner cases it may also be used to free blocks allocated by
5690  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5691  * the clear-bit is harmless.
5692  */
5693 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5694 {
5695 	if (atomic_dec_and_test(&c->refcount)) {
5696 		int i;
5697 
5698 		i = c - h->cmd_pool;
5699 		clear_bit(i & (BITS_PER_LONG - 1),
5700 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
5701 	}
5702 }
5703 
5704 #ifdef CONFIG_COMPAT
5705 
5706 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5707 	void __user *arg)
5708 {
5709 	IOCTL32_Command_struct __user *arg32 =
5710 	    (IOCTL32_Command_struct __user *) arg;
5711 	IOCTL_Command_struct arg64;
5712 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5713 	int err;
5714 	u32 cp;
5715 
5716 	memset(&arg64, 0, sizeof(arg64));
5717 	err = 0;
5718 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5719 			   sizeof(arg64.LUN_info));
5720 	err |= copy_from_user(&arg64.Request, &arg32->Request,
5721 			   sizeof(arg64.Request));
5722 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5723 			   sizeof(arg64.error_info));
5724 	err |= get_user(arg64.buf_size, &arg32->buf_size);
5725 	err |= get_user(cp, &arg32->buf);
5726 	arg64.buf = compat_ptr(cp);
5727 	err |= copy_to_user(p, &arg64, sizeof(arg64));
5728 
5729 	if (err)
5730 		return -EFAULT;
5731 
5732 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5733 	if (err)
5734 		return err;
5735 	err |= copy_in_user(&arg32->error_info, &p->error_info,
5736 			 sizeof(arg32->error_info));
5737 	if (err)
5738 		return -EFAULT;
5739 	return err;
5740 }
5741 
5742 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5743 	int cmd, void __user *arg)
5744 {
5745 	BIG_IOCTL32_Command_struct __user *arg32 =
5746 	    (BIG_IOCTL32_Command_struct __user *) arg;
5747 	BIG_IOCTL_Command_struct arg64;
5748 	BIG_IOCTL_Command_struct __user *p =
5749 	    compat_alloc_user_space(sizeof(arg64));
5750 	int err;
5751 	u32 cp;
5752 
5753 	memset(&arg64, 0, sizeof(arg64));
5754 	err = 0;
5755 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5756 			   sizeof(arg64.LUN_info));
5757 	err |= copy_from_user(&arg64.Request, &arg32->Request,
5758 			   sizeof(arg64.Request));
5759 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5760 			   sizeof(arg64.error_info));
5761 	err |= get_user(arg64.buf_size, &arg32->buf_size);
5762 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5763 	err |= get_user(cp, &arg32->buf);
5764 	arg64.buf = compat_ptr(cp);
5765 	err |= copy_to_user(p, &arg64, sizeof(arg64));
5766 
5767 	if (err)
5768 		return -EFAULT;
5769 
5770 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5771 	if (err)
5772 		return err;
5773 	err |= copy_in_user(&arg32->error_info, &p->error_info,
5774 			 sizeof(arg32->error_info));
5775 	if (err)
5776 		return -EFAULT;
5777 	return err;
5778 }
5779 
5780 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5781 {
5782 	switch (cmd) {
5783 	case CCISS_GETPCIINFO:
5784 	case CCISS_GETINTINFO:
5785 	case CCISS_SETINTINFO:
5786 	case CCISS_GETNODENAME:
5787 	case CCISS_SETNODENAME:
5788 	case CCISS_GETHEARTBEAT:
5789 	case CCISS_GETBUSTYPES:
5790 	case CCISS_GETFIRMVER:
5791 	case CCISS_GETDRIVVER:
5792 	case CCISS_REVALIDVOLS:
5793 	case CCISS_DEREGDISK:
5794 	case CCISS_REGNEWDISK:
5795 	case CCISS_REGNEWD:
5796 	case CCISS_RESCANDISK:
5797 	case CCISS_GETLUNINFO:
5798 		return hpsa_ioctl(dev, cmd, arg);
5799 
5800 	case CCISS_PASSTHRU32:
5801 		return hpsa_ioctl32_passthru(dev, cmd, arg);
5802 	case CCISS_BIG_PASSTHRU32:
5803 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5804 
5805 	default:
5806 		return -ENOIOCTLCMD;
5807 	}
5808 }
5809 #endif
5810 
5811 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5812 {
5813 	struct hpsa_pci_info pciinfo;
5814 
5815 	if (!argp)
5816 		return -EINVAL;
5817 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
5818 	pciinfo.bus = h->pdev->bus->number;
5819 	pciinfo.dev_fn = h->pdev->devfn;
5820 	pciinfo.board_id = h->board_id;
5821 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5822 		return -EFAULT;
5823 	return 0;
5824 }
5825 
5826 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5827 {
5828 	DriverVer_type DriverVer;
5829 	unsigned char vmaj, vmin, vsubmin;
5830 	int rc;
5831 
5832 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5833 		&vmaj, &vmin, &vsubmin);
5834 	if (rc != 3) {
5835 		dev_info(&h->pdev->dev, "driver version string '%s' "
5836 			"unrecognized.", HPSA_DRIVER_VERSION);
5837 		vmaj = 0;
5838 		vmin = 0;
5839 		vsubmin = 0;
5840 	}
5841 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5842 	if (!argp)
5843 		return -EINVAL;
5844 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5845 		return -EFAULT;
5846 	return 0;
5847 }
5848 
5849 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5850 {
5851 	IOCTL_Command_struct iocommand;
5852 	struct CommandList *c;
5853 	char *buff = NULL;
5854 	u64 temp64;
5855 	int rc = 0;
5856 
5857 	if (!argp)
5858 		return -EINVAL;
5859 	if (!capable(CAP_SYS_RAWIO))
5860 		return -EPERM;
5861 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
5862 		return -EFAULT;
5863 	if ((iocommand.buf_size < 1) &&
5864 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
5865 		return -EINVAL;
5866 	}
5867 	if (iocommand.buf_size > 0) {
5868 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
5869 		if (buff == NULL)
5870 			return -ENOMEM;
5871 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
5872 			/* Copy the data into the buffer we created */
5873 			if (copy_from_user(buff, iocommand.buf,
5874 				iocommand.buf_size)) {
5875 				rc = -EFAULT;
5876 				goto out_kfree;
5877 			}
5878 		} else {
5879 			memset(buff, 0, iocommand.buf_size);
5880 		}
5881 	}
5882 	c = cmd_alloc(h);
5883 
5884 	/* Fill in the command type */
5885 	c->cmd_type = CMD_IOCTL_PEND;
5886 	c->scsi_cmd = SCSI_CMD_BUSY;
5887 	/* Fill in Command Header */
5888 	c->Header.ReplyQueue = 0; /* unused in simple mode */
5889 	if (iocommand.buf_size > 0) {	/* buffer to fill */
5890 		c->Header.SGList = 1;
5891 		c->Header.SGTotal = cpu_to_le16(1);
5892 	} else	{ /* no buffers to fill */
5893 		c->Header.SGList = 0;
5894 		c->Header.SGTotal = cpu_to_le16(0);
5895 	}
5896 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
5897 
5898 	/* Fill in Request block */
5899 	memcpy(&c->Request, &iocommand.Request,
5900 		sizeof(c->Request));
5901 
5902 	/* Fill in the scatter gather information */
5903 	if (iocommand.buf_size > 0) {
5904 		temp64 = pci_map_single(h->pdev, buff,
5905 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5906 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
5907 			c->SG[0].Addr = cpu_to_le64(0);
5908 			c->SG[0].Len = cpu_to_le32(0);
5909 			rc = -ENOMEM;
5910 			goto out;
5911 		}
5912 		c->SG[0].Addr = cpu_to_le64(temp64);
5913 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
5914 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5915 	}
5916 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5917 	if (iocommand.buf_size > 0)
5918 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5919 	check_ioctl_unit_attention(h, c);
5920 	if (rc) {
5921 		rc = -EIO;
5922 		goto out;
5923 	}
5924 
5925 	/* Copy the error information out */
5926 	memcpy(&iocommand.error_info, c->err_info,
5927 		sizeof(iocommand.error_info));
5928 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5929 		rc = -EFAULT;
5930 		goto out;
5931 	}
5932 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
5933 		iocommand.buf_size > 0) {
5934 		/* Copy the data out of the buffer we created */
5935 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5936 			rc = -EFAULT;
5937 			goto out;
5938 		}
5939 	}
5940 out:
5941 	cmd_free(h, c);
5942 out_kfree:
5943 	kfree(buff);
5944 	return rc;
5945 }
5946 
5947 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5948 {
5949 	BIG_IOCTL_Command_struct *ioc;
5950 	struct CommandList *c;
5951 	unsigned char **buff = NULL;
5952 	int *buff_size = NULL;
5953 	u64 temp64;
5954 	BYTE sg_used = 0;
5955 	int status = 0;
5956 	u32 left;
5957 	u32 sz;
5958 	BYTE __user *data_ptr;
5959 
5960 	if (!argp)
5961 		return -EINVAL;
5962 	if (!capable(CAP_SYS_RAWIO))
5963 		return -EPERM;
5964 	ioc = (BIG_IOCTL_Command_struct *)
5965 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
5966 	if (!ioc) {
5967 		status = -ENOMEM;
5968 		goto cleanup1;
5969 	}
5970 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5971 		status = -EFAULT;
5972 		goto cleanup1;
5973 	}
5974 	if ((ioc->buf_size < 1) &&
5975 	    (ioc->Request.Type.Direction != XFER_NONE)) {
5976 		status = -EINVAL;
5977 		goto cleanup1;
5978 	}
5979 	/* Check kmalloc limits  using all SGs */
5980 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5981 		status = -EINVAL;
5982 		goto cleanup1;
5983 	}
5984 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5985 		status = -EINVAL;
5986 		goto cleanup1;
5987 	}
5988 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5989 	if (!buff) {
5990 		status = -ENOMEM;
5991 		goto cleanup1;
5992 	}
5993 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5994 	if (!buff_size) {
5995 		status = -ENOMEM;
5996 		goto cleanup1;
5997 	}
5998 	left = ioc->buf_size;
5999 	data_ptr = ioc->buf;
6000 	while (left) {
6001 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6002 		buff_size[sg_used] = sz;
6003 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6004 		if (buff[sg_used] == NULL) {
6005 			status = -ENOMEM;
6006 			goto cleanup1;
6007 		}
6008 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6009 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6010 				status = -EFAULT;
6011 				goto cleanup1;
6012 			}
6013 		} else
6014 			memset(buff[sg_used], 0, sz);
6015 		left -= sz;
6016 		data_ptr += sz;
6017 		sg_used++;
6018 	}
6019 	c = cmd_alloc(h);
6020 
6021 	c->cmd_type = CMD_IOCTL_PEND;
6022 	c->scsi_cmd = SCSI_CMD_BUSY;
6023 	c->Header.ReplyQueue = 0;
6024 	c->Header.SGList = (u8) sg_used;
6025 	c->Header.SGTotal = cpu_to_le16(sg_used);
6026 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6027 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6028 	if (ioc->buf_size > 0) {
6029 		int i;
6030 		for (i = 0; i < sg_used; i++) {
6031 			temp64 = pci_map_single(h->pdev, buff[i],
6032 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6033 			if (dma_mapping_error(&h->pdev->dev,
6034 							(dma_addr_t) temp64)) {
6035 				c->SG[i].Addr = cpu_to_le64(0);
6036 				c->SG[i].Len = cpu_to_le32(0);
6037 				hpsa_pci_unmap(h->pdev, c, i,
6038 					PCI_DMA_BIDIRECTIONAL);
6039 				status = -ENOMEM;
6040 				goto cleanup0;
6041 			}
6042 			c->SG[i].Addr = cpu_to_le64(temp64);
6043 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6044 			c->SG[i].Ext = cpu_to_le32(0);
6045 		}
6046 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6047 	}
6048 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6049 	if (sg_used)
6050 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6051 	check_ioctl_unit_attention(h, c);
6052 	if (status) {
6053 		status = -EIO;
6054 		goto cleanup0;
6055 	}
6056 
6057 	/* Copy the error information out */
6058 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6059 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6060 		status = -EFAULT;
6061 		goto cleanup0;
6062 	}
6063 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6064 		int i;
6065 
6066 		/* Copy the data out of the buffer we created */
6067 		BYTE __user *ptr = ioc->buf;
6068 		for (i = 0; i < sg_used; i++) {
6069 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6070 				status = -EFAULT;
6071 				goto cleanup0;
6072 			}
6073 			ptr += buff_size[i];
6074 		}
6075 	}
6076 	status = 0;
6077 cleanup0:
6078 	cmd_free(h, c);
6079 cleanup1:
6080 	if (buff) {
6081 		int i;
6082 
6083 		for (i = 0; i < sg_used; i++)
6084 			kfree(buff[i]);
6085 		kfree(buff);
6086 	}
6087 	kfree(buff_size);
6088 	kfree(ioc);
6089 	return status;
6090 }
6091 
6092 static void check_ioctl_unit_attention(struct ctlr_info *h,
6093 	struct CommandList *c)
6094 {
6095 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6096 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6097 		(void) check_for_unit_attention(h, c);
6098 }
6099 
6100 /*
6101  * ioctl
6102  */
6103 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6104 {
6105 	struct ctlr_info *h;
6106 	void __user *argp = (void __user *)arg;
6107 	int rc;
6108 
6109 	h = sdev_to_hba(dev);
6110 
6111 	switch (cmd) {
6112 	case CCISS_DEREGDISK:
6113 	case CCISS_REGNEWDISK:
6114 	case CCISS_REGNEWD:
6115 		hpsa_scan_start(h->scsi_host);
6116 		return 0;
6117 	case CCISS_GETPCIINFO:
6118 		return hpsa_getpciinfo_ioctl(h, argp);
6119 	case CCISS_GETDRIVVER:
6120 		return hpsa_getdrivver_ioctl(h, argp);
6121 	case CCISS_PASSTHRU:
6122 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6123 			return -EAGAIN;
6124 		rc = hpsa_passthru_ioctl(h, argp);
6125 		atomic_inc(&h->passthru_cmds_avail);
6126 		return rc;
6127 	case CCISS_BIG_PASSTHRU:
6128 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6129 			return -EAGAIN;
6130 		rc = hpsa_big_passthru_ioctl(h, argp);
6131 		atomic_inc(&h->passthru_cmds_avail);
6132 		return rc;
6133 	default:
6134 		return -ENOTTY;
6135 	}
6136 }
6137 
6138 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6139 				u8 reset_type)
6140 {
6141 	struct CommandList *c;
6142 
6143 	c = cmd_alloc(h);
6144 
6145 	/* fill_cmd can't fail here, no data buffer to map */
6146 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6147 		RAID_CTLR_LUNID, TYPE_MSG);
6148 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6149 	c->waiting = NULL;
6150 	enqueue_cmd_and_start_io(h, c);
6151 	/* Don't wait for completion, the reset won't complete.  Don't free
6152 	 * the command either.  This is the last command we will send before
6153 	 * re-initializing everything, so it doesn't matter and won't leak.
6154 	 */
6155 	return;
6156 }
6157 
6158 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6159 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6160 	int cmd_type)
6161 {
6162 	int pci_dir = XFER_NONE;
6163 	u64 tag; /* for commands to be aborted */
6164 
6165 	c->cmd_type = CMD_IOCTL_PEND;
6166 	c->scsi_cmd = SCSI_CMD_BUSY;
6167 	c->Header.ReplyQueue = 0;
6168 	if (buff != NULL && size > 0) {
6169 		c->Header.SGList = 1;
6170 		c->Header.SGTotal = cpu_to_le16(1);
6171 	} else {
6172 		c->Header.SGList = 0;
6173 		c->Header.SGTotal = cpu_to_le16(0);
6174 	}
6175 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6176 
6177 	if (cmd_type == TYPE_CMD) {
6178 		switch (cmd) {
6179 		case HPSA_INQUIRY:
6180 			/* are we trying to read a vital product page */
6181 			if (page_code & VPD_PAGE) {
6182 				c->Request.CDB[1] = 0x01;
6183 				c->Request.CDB[2] = (page_code & 0xff);
6184 			}
6185 			c->Request.CDBLen = 6;
6186 			c->Request.type_attr_dir =
6187 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6188 			c->Request.Timeout = 0;
6189 			c->Request.CDB[0] = HPSA_INQUIRY;
6190 			c->Request.CDB[4] = size & 0xFF;
6191 			break;
6192 		case HPSA_REPORT_LOG:
6193 		case HPSA_REPORT_PHYS:
6194 			/* Talking to controller so It's a physical command
6195 			   mode = 00 target = 0.  Nothing to write.
6196 			 */
6197 			c->Request.CDBLen = 12;
6198 			c->Request.type_attr_dir =
6199 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6200 			c->Request.Timeout = 0;
6201 			c->Request.CDB[0] = cmd;
6202 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6203 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6204 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6205 			c->Request.CDB[9] = size & 0xFF;
6206 			break;
6207 		case HPSA_CACHE_FLUSH:
6208 			c->Request.CDBLen = 12;
6209 			c->Request.type_attr_dir =
6210 					TYPE_ATTR_DIR(cmd_type,
6211 						ATTR_SIMPLE, XFER_WRITE);
6212 			c->Request.Timeout = 0;
6213 			c->Request.CDB[0] = BMIC_WRITE;
6214 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6215 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6216 			c->Request.CDB[8] = size & 0xFF;
6217 			break;
6218 		case TEST_UNIT_READY:
6219 			c->Request.CDBLen = 6;
6220 			c->Request.type_attr_dir =
6221 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6222 			c->Request.Timeout = 0;
6223 			break;
6224 		case HPSA_GET_RAID_MAP:
6225 			c->Request.CDBLen = 12;
6226 			c->Request.type_attr_dir =
6227 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6228 			c->Request.Timeout = 0;
6229 			c->Request.CDB[0] = HPSA_CISS_READ;
6230 			c->Request.CDB[1] = cmd;
6231 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6232 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6233 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6234 			c->Request.CDB[9] = size & 0xFF;
6235 			break;
6236 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6237 			c->Request.CDBLen = 10;
6238 			c->Request.type_attr_dir =
6239 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6240 			c->Request.Timeout = 0;
6241 			c->Request.CDB[0] = BMIC_READ;
6242 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6243 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6244 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6245 			break;
6246 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6247 			c->Request.CDBLen = 10;
6248 			c->Request.type_attr_dir =
6249 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6250 			c->Request.Timeout = 0;
6251 			c->Request.CDB[0] = BMIC_READ;
6252 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6253 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6254 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6255 			break;
6256 		default:
6257 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6258 			BUG();
6259 			return -1;
6260 		}
6261 	} else if (cmd_type == TYPE_MSG) {
6262 		switch (cmd) {
6263 
6264 		case  HPSA_DEVICE_RESET_MSG:
6265 			c->Request.CDBLen = 16;
6266 			c->Request.type_attr_dir =
6267 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6268 			c->Request.Timeout = 0; /* Don't time out */
6269 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6270 			c->Request.CDB[0] =  cmd;
6271 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6272 			/* If bytes 4-7 are zero, it means reset the */
6273 			/* LunID device */
6274 			c->Request.CDB[4] = 0x00;
6275 			c->Request.CDB[5] = 0x00;
6276 			c->Request.CDB[6] = 0x00;
6277 			c->Request.CDB[7] = 0x00;
6278 			break;
6279 		case  HPSA_ABORT_MSG:
6280 			memcpy(&tag, buff, sizeof(tag));
6281 			dev_dbg(&h->pdev->dev,
6282 				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6283 				tag, c->Header.tag);
6284 			c->Request.CDBLen = 16;
6285 			c->Request.type_attr_dir =
6286 					TYPE_ATTR_DIR(cmd_type,
6287 						ATTR_SIMPLE, XFER_WRITE);
6288 			c->Request.Timeout = 0; /* Don't time out */
6289 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6290 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6291 			c->Request.CDB[2] = 0x00; /* reserved */
6292 			c->Request.CDB[3] = 0x00; /* reserved */
6293 			/* Tag to abort goes in CDB[4]-CDB[11] */
6294 			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6295 			c->Request.CDB[12] = 0x00; /* reserved */
6296 			c->Request.CDB[13] = 0x00; /* reserved */
6297 			c->Request.CDB[14] = 0x00; /* reserved */
6298 			c->Request.CDB[15] = 0x00; /* reserved */
6299 		break;
6300 		default:
6301 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6302 				cmd);
6303 			BUG();
6304 		}
6305 	} else {
6306 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6307 		BUG();
6308 	}
6309 
6310 	switch (GET_DIR(c->Request.type_attr_dir)) {
6311 	case XFER_READ:
6312 		pci_dir = PCI_DMA_FROMDEVICE;
6313 		break;
6314 	case XFER_WRITE:
6315 		pci_dir = PCI_DMA_TODEVICE;
6316 		break;
6317 	case XFER_NONE:
6318 		pci_dir = PCI_DMA_NONE;
6319 		break;
6320 	default:
6321 		pci_dir = PCI_DMA_BIDIRECTIONAL;
6322 	}
6323 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6324 		return -1;
6325 	return 0;
6326 }
6327 
6328 /*
6329  * Map (physical) PCI mem into (virtual) kernel space
6330  */
6331 static void __iomem *remap_pci_mem(ulong base, ulong size)
6332 {
6333 	ulong page_base = ((ulong) base) & PAGE_MASK;
6334 	ulong page_offs = ((ulong) base) - page_base;
6335 	void __iomem *page_remapped = ioremap_nocache(page_base,
6336 		page_offs + size);
6337 
6338 	return page_remapped ? (page_remapped + page_offs) : NULL;
6339 }
6340 
6341 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6342 {
6343 	return h->access.command_completed(h, q);
6344 }
6345 
6346 static inline bool interrupt_pending(struct ctlr_info *h)
6347 {
6348 	return h->access.intr_pending(h);
6349 }
6350 
6351 static inline long interrupt_not_for_us(struct ctlr_info *h)
6352 {
6353 	return (h->access.intr_pending(h) == 0) ||
6354 		(h->interrupts_enabled == 0);
6355 }
6356 
6357 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6358 	u32 raw_tag)
6359 {
6360 	if (unlikely(tag_index >= h->nr_cmds)) {
6361 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6362 		return 1;
6363 	}
6364 	return 0;
6365 }
6366 
6367 static inline void finish_cmd(struct CommandList *c)
6368 {
6369 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6370 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6371 			|| c->cmd_type == CMD_IOACCEL2))
6372 		complete_scsi_command(c);
6373 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6374 		complete(c->waiting);
6375 }
6376 
6377 
6378 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
6379 {
6380 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
6381 #define HPSA_SIMPLE_ERROR_BITS 0x03
6382 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
6383 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
6384 	return tag & ~HPSA_PERF_ERROR_BITS;
6385 }
6386 
6387 /* process completion of an indexed ("direct lookup") command */
6388 static inline void process_indexed_cmd(struct ctlr_info *h,
6389 	u32 raw_tag)
6390 {
6391 	u32 tag_index;
6392 	struct CommandList *c;
6393 
6394 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6395 	if (!bad_tag(h, tag_index, raw_tag)) {
6396 		c = h->cmd_pool + tag_index;
6397 		finish_cmd(c);
6398 	}
6399 }
6400 
6401 /* Some controllers, like p400, will give us one interrupt
6402  * after a soft reset, even if we turned interrupts off.
6403  * Only need to check for this in the hpsa_xxx_discard_completions
6404  * functions.
6405  */
6406 static int ignore_bogus_interrupt(struct ctlr_info *h)
6407 {
6408 	if (likely(!reset_devices))
6409 		return 0;
6410 
6411 	if (likely(h->interrupts_enabled))
6412 		return 0;
6413 
6414 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6415 		"(known firmware bug.)  Ignoring.\n");
6416 
6417 	return 1;
6418 }
6419 
6420 /*
6421  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6422  * Relies on (h-q[x] == x) being true for x such that
6423  * 0 <= x < MAX_REPLY_QUEUES.
6424  */
6425 static struct ctlr_info *queue_to_hba(u8 *queue)
6426 {
6427 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6428 }
6429 
6430 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6431 {
6432 	struct ctlr_info *h = queue_to_hba(queue);
6433 	u8 q = *(u8 *) queue;
6434 	u32 raw_tag;
6435 
6436 	if (ignore_bogus_interrupt(h))
6437 		return IRQ_NONE;
6438 
6439 	if (interrupt_not_for_us(h))
6440 		return IRQ_NONE;
6441 	h->last_intr_timestamp = get_jiffies_64();
6442 	while (interrupt_pending(h)) {
6443 		raw_tag = get_next_completion(h, q);
6444 		while (raw_tag != FIFO_EMPTY)
6445 			raw_tag = next_command(h, q);
6446 	}
6447 	return IRQ_HANDLED;
6448 }
6449 
6450 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6451 {
6452 	struct ctlr_info *h = queue_to_hba(queue);
6453 	u32 raw_tag;
6454 	u8 q = *(u8 *) queue;
6455 
6456 	if (ignore_bogus_interrupt(h))
6457 		return IRQ_NONE;
6458 
6459 	h->last_intr_timestamp = get_jiffies_64();
6460 	raw_tag = get_next_completion(h, q);
6461 	while (raw_tag != FIFO_EMPTY)
6462 		raw_tag = next_command(h, q);
6463 	return IRQ_HANDLED;
6464 }
6465 
6466 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6467 {
6468 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6469 	u32 raw_tag;
6470 	u8 q = *(u8 *) queue;
6471 
6472 	if (interrupt_not_for_us(h))
6473 		return IRQ_NONE;
6474 	h->last_intr_timestamp = get_jiffies_64();
6475 	while (interrupt_pending(h)) {
6476 		raw_tag = get_next_completion(h, q);
6477 		while (raw_tag != FIFO_EMPTY) {
6478 			process_indexed_cmd(h, raw_tag);
6479 			raw_tag = next_command(h, q);
6480 		}
6481 	}
6482 	return IRQ_HANDLED;
6483 }
6484 
6485 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6486 {
6487 	struct ctlr_info *h = queue_to_hba(queue);
6488 	u32 raw_tag;
6489 	u8 q = *(u8 *) queue;
6490 
6491 	h->last_intr_timestamp = get_jiffies_64();
6492 	raw_tag = get_next_completion(h, q);
6493 	while (raw_tag != FIFO_EMPTY) {
6494 		process_indexed_cmd(h, raw_tag);
6495 		raw_tag = next_command(h, q);
6496 	}
6497 	return IRQ_HANDLED;
6498 }
6499 
6500 /* Send a message CDB to the firmware. Careful, this only works
6501  * in simple mode, not performant mode due to the tag lookup.
6502  * We only ever use this immediately after a controller reset.
6503  */
6504 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6505 			unsigned char type)
6506 {
6507 	struct Command {
6508 		struct CommandListHeader CommandHeader;
6509 		struct RequestBlock Request;
6510 		struct ErrDescriptor ErrorDescriptor;
6511 	};
6512 	struct Command *cmd;
6513 	static const size_t cmd_sz = sizeof(*cmd) +
6514 					sizeof(cmd->ErrorDescriptor);
6515 	dma_addr_t paddr64;
6516 	__le32 paddr32;
6517 	u32 tag;
6518 	void __iomem *vaddr;
6519 	int i, err;
6520 
6521 	vaddr = pci_ioremap_bar(pdev, 0);
6522 	if (vaddr == NULL)
6523 		return -ENOMEM;
6524 
6525 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
6526 	 * CCISS commands, so they must be allocated from the lower 4GiB of
6527 	 * memory.
6528 	 */
6529 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6530 	if (err) {
6531 		iounmap(vaddr);
6532 		return err;
6533 	}
6534 
6535 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6536 	if (cmd == NULL) {
6537 		iounmap(vaddr);
6538 		return -ENOMEM;
6539 	}
6540 
6541 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
6542 	 * although there's no guarantee, we assume that the address is at
6543 	 * least 4-byte aligned (most likely, it's page-aligned).
6544 	 */
6545 	paddr32 = cpu_to_le32(paddr64);
6546 
6547 	cmd->CommandHeader.ReplyQueue = 0;
6548 	cmd->CommandHeader.SGList = 0;
6549 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6550 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6551 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6552 
6553 	cmd->Request.CDBLen = 16;
6554 	cmd->Request.type_attr_dir =
6555 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6556 	cmd->Request.Timeout = 0; /* Don't time out */
6557 	cmd->Request.CDB[0] = opcode;
6558 	cmd->Request.CDB[1] = type;
6559 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6560 	cmd->ErrorDescriptor.Addr =
6561 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6562 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6563 
6564 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6565 
6566 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6567 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6568 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6569 			break;
6570 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6571 	}
6572 
6573 	iounmap(vaddr);
6574 
6575 	/* we leak the DMA buffer here ... no choice since the controller could
6576 	 *  still complete the command.
6577 	 */
6578 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6579 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6580 			opcode, type);
6581 		return -ETIMEDOUT;
6582 	}
6583 
6584 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6585 
6586 	if (tag & HPSA_ERROR_BIT) {
6587 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6588 			opcode, type);
6589 		return -EIO;
6590 	}
6591 
6592 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6593 		opcode, type);
6594 	return 0;
6595 }
6596 
6597 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6598 
6599 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6600 	void __iomem *vaddr, u32 use_doorbell)
6601 {
6602 
6603 	if (use_doorbell) {
6604 		/* For everything after the P600, the PCI power state method
6605 		 * of resetting the controller doesn't work, so we have this
6606 		 * other way using the doorbell register.
6607 		 */
6608 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
6609 		writel(use_doorbell, vaddr + SA5_DOORBELL);
6610 
6611 		/* PMC hardware guys tell us we need a 10 second delay after
6612 		 * doorbell reset and before any attempt to talk to the board
6613 		 * at all to ensure that this actually works and doesn't fall
6614 		 * over in some weird corner cases.
6615 		 */
6616 		msleep(10000);
6617 	} else { /* Try to do it the PCI power state way */
6618 
6619 		/* Quoting from the Open CISS Specification: "The Power
6620 		 * Management Control/Status Register (CSR) controls the power
6621 		 * state of the device.  The normal operating state is D0,
6622 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6623 		 * the controller, place the interface device in D3 then to D0,
6624 		 * this causes a secondary PCI reset which will reset the
6625 		 * controller." */
6626 
6627 		int rc = 0;
6628 
6629 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6630 
6631 		/* enter the D3hot power management state */
6632 		rc = pci_set_power_state(pdev, PCI_D3hot);
6633 		if (rc)
6634 			return rc;
6635 
6636 		msleep(500);
6637 
6638 		/* enter the D0 power management state */
6639 		rc = pci_set_power_state(pdev, PCI_D0);
6640 		if (rc)
6641 			return rc;
6642 
6643 		/*
6644 		 * The P600 requires a small delay when changing states.
6645 		 * Otherwise we may think the board did not reset and we bail.
6646 		 * This for kdump only and is particular to the P600.
6647 		 */
6648 		msleep(500);
6649 	}
6650 	return 0;
6651 }
6652 
6653 static void init_driver_version(char *driver_version, int len)
6654 {
6655 	memset(driver_version, 0, len);
6656 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6657 }
6658 
6659 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6660 {
6661 	char *driver_version;
6662 	int i, size = sizeof(cfgtable->driver_version);
6663 
6664 	driver_version = kmalloc(size, GFP_KERNEL);
6665 	if (!driver_version)
6666 		return -ENOMEM;
6667 
6668 	init_driver_version(driver_version, size);
6669 	for (i = 0; i < size; i++)
6670 		writeb(driver_version[i], &cfgtable->driver_version[i]);
6671 	kfree(driver_version);
6672 	return 0;
6673 }
6674 
6675 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6676 					  unsigned char *driver_ver)
6677 {
6678 	int i;
6679 
6680 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6681 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
6682 }
6683 
6684 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6685 {
6686 
6687 	char *driver_ver, *old_driver_ver;
6688 	int rc, size = sizeof(cfgtable->driver_version);
6689 
6690 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6691 	if (!old_driver_ver)
6692 		return -ENOMEM;
6693 	driver_ver = old_driver_ver + size;
6694 
6695 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
6696 	 * should have been changed, otherwise we know the reset failed.
6697 	 */
6698 	init_driver_version(old_driver_ver, size);
6699 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6700 	rc = !memcmp(driver_ver, old_driver_ver, size);
6701 	kfree(old_driver_ver);
6702 	return rc;
6703 }
6704 /* This does a hard reset of the controller using PCI power management
6705  * states or the using the doorbell register.
6706  */
6707 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6708 {
6709 	u64 cfg_offset;
6710 	u32 cfg_base_addr;
6711 	u64 cfg_base_addr_index;
6712 	void __iomem *vaddr;
6713 	unsigned long paddr;
6714 	u32 misc_fw_support;
6715 	int rc;
6716 	struct CfgTable __iomem *cfgtable;
6717 	u32 use_doorbell;
6718 	u16 command_register;
6719 
6720 	/* For controllers as old as the P600, this is very nearly
6721 	 * the same thing as
6722 	 *
6723 	 * pci_save_state(pci_dev);
6724 	 * pci_set_power_state(pci_dev, PCI_D3hot);
6725 	 * pci_set_power_state(pci_dev, PCI_D0);
6726 	 * pci_restore_state(pci_dev);
6727 	 *
6728 	 * For controllers newer than the P600, the pci power state
6729 	 * method of resetting doesn't work so we have another way
6730 	 * using the doorbell register.
6731 	 */
6732 
6733 	if (!ctlr_is_resettable(board_id)) {
6734 		dev_warn(&pdev->dev, "Controller not resettable\n");
6735 		return -ENODEV;
6736 	}
6737 
6738 	/* if controller is soft- but not hard resettable... */
6739 	if (!ctlr_is_hard_resettable(board_id))
6740 		return -ENOTSUPP; /* try soft reset later. */
6741 
6742 	/* Save the PCI command register */
6743 	pci_read_config_word(pdev, 4, &command_register);
6744 	pci_save_state(pdev);
6745 
6746 	/* find the first memory BAR, so we can find the cfg table */
6747 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6748 	if (rc)
6749 		return rc;
6750 	vaddr = remap_pci_mem(paddr, 0x250);
6751 	if (!vaddr)
6752 		return -ENOMEM;
6753 
6754 	/* find cfgtable in order to check if reset via doorbell is supported */
6755 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6756 					&cfg_base_addr_index, &cfg_offset);
6757 	if (rc)
6758 		goto unmap_vaddr;
6759 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
6760 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6761 	if (!cfgtable) {
6762 		rc = -ENOMEM;
6763 		goto unmap_vaddr;
6764 	}
6765 	rc = write_driver_ver_to_cfgtable(cfgtable);
6766 	if (rc)
6767 		goto unmap_cfgtable;
6768 
6769 	/* If reset via doorbell register is supported, use that.
6770 	 * There are two such methods.  Favor the newest method.
6771 	 */
6772 	misc_fw_support = readl(&cfgtable->misc_fw_support);
6773 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6774 	if (use_doorbell) {
6775 		use_doorbell = DOORBELL_CTLR_RESET2;
6776 	} else {
6777 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6778 		if (use_doorbell) {
6779 			dev_warn(&pdev->dev,
6780 				"Soft reset not supported. Firmware update is required.\n");
6781 			rc = -ENOTSUPP; /* try soft reset */
6782 			goto unmap_cfgtable;
6783 		}
6784 	}
6785 
6786 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6787 	if (rc)
6788 		goto unmap_cfgtable;
6789 
6790 	pci_restore_state(pdev);
6791 	pci_write_config_word(pdev, 4, command_register);
6792 
6793 	/* Some devices (notably the HP Smart Array 5i Controller)
6794 	   need a little pause here */
6795 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
6796 
6797 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6798 	if (rc) {
6799 		dev_warn(&pdev->dev,
6800 			"Failed waiting for board to become ready after hard reset\n");
6801 		goto unmap_cfgtable;
6802 	}
6803 
6804 	rc = controller_reset_failed(vaddr);
6805 	if (rc < 0)
6806 		goto unmap_cfgtable;
6807 	if (rc) {
6808 		dev_warn(&pdev->dev, "Unable to successfully reset "
6809 			"controller. Will try soft reset.\n");
6810 		rc = -ENOTSUPP;
6811 	} else {
6812 		dev_info(&pdev->dev, "board ready after hard reset.\n");
6813 	}
6814 
6815 unmap_cfgtable:
6816 	iounmap(cfgtable);
6817 
6818 unmap_vaddr:
6819 	iounmap(vaddr);
6820 	return rc;
6821 }
6822 
6823 /*
6824  *  We cannot read the structure directly, for portability we must use
6825  *   the io functions.
6826  *   This is for debug only.
6827  */
6828 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6829 {
6830 #ifdef HPSA_DEBUG
6831 	int i;
6832 	char temp_name[17];
6833 
6834 	dev_info(dev, "Controller Configuration information\n");
6835 	dev_info(dev, "------------------------------------\n");
6836 	for (i = 0; i < 4; i++)
6837 		temp_name[i] = readb(&(tb->Signature[i]));
6838 	temp_name[4] = '\0';
6839 	dev_info(dev, "   Signature = %s\n", temp_name);
6840 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6841 	dev_info(dev, "   Transport methods supported = 0x%x\n",
6842 	       readl(&(tb->TransportSupport)));
6843 	dev_info(dev, "   Transport methods active = 0x%x\n",
6844 	       readl(&(tb->TransportActive)));
6845 	dev_info(dev, "   Requested transport Method = 0x%x\n",
6846 	       readl(&(tb->HostWrite.TransportRequest)));
6847 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6848 	       readl(&(tb->HostWrite.CoalIntDelay)));
6849 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6850 	       readl(&(tb->HostWrite.CoalIntCount)));
6851 	dev_info(dev, "   Max outstanding commands = %d\n",
6852 	       readl(&(tb->CmdsOutMax)));
6853 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6854 	for (i = 0; i < 16; i++)
6855 		temp_name[i] = readb(&(tb->ServerName[i]));
6856 	temp_name[16] = '\0';
6857 	dev_info(dev, "   Server Name = %s\n", temp_name);
6858 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6859 		readl(&(tb->HeartBeat)));
6860 #endif				/* HPSA_DEBUG */
6861 }
6862 
6863 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6864 {
6865 	int i, offset, mem_type, bar_type;
6866 
6867 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
6868 		return 0;
6869 	offset = 0;
6870 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6871 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6872 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6873 			offset += 4;
6874 		else {
6875 			mem_type = pci_resource_flags(pdev, i) &
6876 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6877 			switch (mem_type) {
6878 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
6879 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6880 				offset += 4;	/* 32 bit */
6881 				break;
6882 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
6883 				offset += 8;
6884 				break;
6885 			default:	/* reserved in PCI 2.2 */
6886 				dev_warn(&pdev->dev,
6887 				       "base address is invalid\n");
6888 				return -1;
6889 				break;
6890 			}
6891 		}
6892 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6893 			return i + 1;
6894 	}
6895 	return -1;
6896 }
6897 
6898 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
6899 {
6900 	if (h->msix_vector) {
6901 		if (h->pdev->msix_enabled)
6902 			pci_disable_msix(h->pdev);
6903 		h->msix_vector = 0;
6904 	} else if (h->msi_vector) {
6905 		if (h->pdev->msi_enabled)
6906 			pci_disable_msi(h->pdev);
6907 		h->msi_vector = 0;
6908 	}
6909 }
6910 
6911 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6912  * controllers that are capable. If not, we use legacy INTx mode.
6913  */
6914 static void hpsa_interrupt_mode(struct ctlr_info *h)
6915 {
6916 #ifdef CONFIG_PCI_MSI
6917 	int err, i;
6918 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6919 
6920 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6921 		hpsa_msix_entries[i].vector = 0;
6922 		hpsa_msix_entries[i].entry = i;
6923 	}
6924 
6925 	/* Some boards advertise MSI but don't really support it */
6926 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6927 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6928 		goto default_int_mode;
6929 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6930 		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6931 		h->msix_vector = MAX_REPLY_QUEUES;
6932 		if (h->msix_vector > num_online_cpus())
6933 			h->msix_vector = num_online_cpus();
6934 		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6935 					    1, h->msix_vector);
6936 		if (err < 0) {
6937 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6938 			h->msix_vector = 0;
6939 			goto single_msi_mode;
6940 		} else if (err < h->msix_vector) {
6941 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6942 			       "available\n", err);
6943 		}
6944 		h->msix_vector = err;
6945 		for (i = 0; i < h->msix_vector; i++)
6946 			h->intr[i] = hpsa_msix_entries[i].vector;
6947 		return;
6948 	}
6949 single_msi_mode:
6950 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6951 		dev_info(&h->pdev->dev, "MSI capable controller\n");
6952 		if (!pci_enable_msi(h->pdev))
6953 			h->msi_vector = 1;
6954 		else
6955 			dev_warn(&h->pdev->dev, "MSI init failed\n");
6956 	}
6957 default_int_mode:
6958 #endif				/* CONFIG_PCI_MSI */
6959 	/* if we get here we're going to use the default interrupt mode */
6960 	h->intr[h->intr_mode] = h->pdev->irq;
6961 }
6962 
6963 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6964 {
6965 	int i;
6966 	u32 subsystem_vendor_id, subsystem_device_id;
6967 
6968 	subsystem_vendor_id = pdev->subsystem_vendor;
6969 	subsystem_device_id = pdev->subsystem_device;
6970 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6971 		    subsystem_vendor_id;
6972 
6973 	for (i = 0; i < ARRAY_SIZE(products); i++)
6974 		if (*board_id == products[i].board_id)
6975 			return i;
6976 
6977 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6978 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6979 		!hpsa_allow_any) {
6980 		dev_warn(&pdev->dev, "unrecognized board ID: "
6981 			"0x%08x, ignoring.\n", *board_id);
6982 			return -ENODEV;
6983 	}
6984 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6985 }
6986 
6987 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6988 				    unsigned long *memory_bar)
6989 {
6990 	int i;
6991 
6992 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6993 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6994 			/* addressing mode bits already removed */
6995 			*memory_bar = pci_resource_start(pdev, i);
6996 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6997 				*memory_bar);
6998 			return 0;
6999 		}
7000 	dev_warn(&pdev->dev, "no memory BAR found\n");
7001 	return -ENODEV;
7002 }
7003 
7004 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7005 				     int wait_for_ready)
7006 {
7007 	int i, iterations;
7008 	u32 scratchpad;
7009 	if (wait_for_ready)
7010 		iterations = HPSA_BOARD_READY_ITERATIONS;
7011 	else
7012 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7013 
7014 	for (i = 0; i < iterations; i++) {
7015 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7016 		if (wait_for_ready) {
7017 			if (scratchpad == HPSA_FIRMWARE_READY)
7018 				return 0;
7019 		} else {
7020 			if (scratchpad != HPSA_FIRMWARE_READY)
7021 				return 0;
7022 		}
7023 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7024 	}
7025 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7026 	return -ENODEV;
7027 }
7028 
7029 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7030 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7031 			       u64 *cfg_offset)
7032 {
7033 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7034 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7035 	*cfg_base_addr &= (u32) 0x0000ffff;
7036 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7037 	if (*cfg_base_addr_index == -1) {
7038 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7039 		return -ENODEV;
7040 	}
7041 	return 0;
7042 }
7043 
7044 static void hpsa_free_cfgtables(struct ctlr_info *h)
7045 {
7046 	if (h->transtable) {
7047 		iounmap(h->transtable);
7048 		h->transtable = NULL;
7049 	}
7050 	if (h->cfgtable) {
7051 		iounmap(h->cfgtable);
7052 		h->cfgtable = NULL;
7053 	}
7054 }
7055 
7056 /* Find and map CISS config table and transfer table
7057 + * several items must be unmapped (freed) later
7058 + * */
7059 static int hpsa_find_cfgtables(struct ctlr_info *h)
7060 {
7061 	u64 cfg_offset;
7062 	u32 cfg_base_addr;
7063 	u64 cfg_base_addr_index;
7064 	u32 trans_offset;
7065 	int rc;
7066 
7067 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7068 		&cfg_base_addr_index, &cfg_offset);
7069 	if (rc)
7070 		return rc;
7071 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7072 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7073 	if (!h->cfgtable) {
7074 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7075 		return -ENOMEM;
7076 	}
7077 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7078 	if (rc)
7079 		return rc;
7080 	/* Find performant mode table. */
7081 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7082 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7083 				cfg_base_addr_index)+cfg_offset+trans_offset,
7084 				sizeof(*h->transtable));
7085 	if (!h->transtable) {
7086 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7087 		hpsa_free_cfgtables(h);
7088 		return -ENOMEM;
7089 	}
7090 	return 0;
7091 }
7092 
7093 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7094 {
7095 #define MIN_MAX_COMMANDS 16
7096 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7097 
7098 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7099 
7100 	/* Limit commands in memory limited kdump scenario. */
7101 	if (reset_devices && h->max_commands > 32)
7102 		h->max_commands = 32;
7103 
7104 	if (h->max_commands < MIN_MAX_COMMANDS) {
7105 		dev_warn(&h->pdev->dev,
7106 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7107 			h->max_commands,
7108 			MIN_MAX_COMMANDS);
7109 		h->max_commands = MIN_MAX_COMMANDS;
7110 	}
7111 }
7112 
7113 /* If the controller reports that the total max sg entries is greater than 512,
7114  * then we know that chained SG blocks work.  (Original smart arrays did not
7115  * support chained SG blocks and would return zero for max sg entries.)
7116  */
7117 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7118 {
7119 	return h->maxsgentries > 512;
7120 }
7121 
7122 /* Interrogate the hardware for some limits:
7123  * max commands, max SG elements without chaining, and with chaining,
7124  * SG chain block size, etc.
7125  */
7126 static void hpsa_find_board_params(struct ctlr_info *h)
7127 {
7128 	hpsa_get_max_perf_mode_cmds(h);
7129 	h->nr_cmds = h->max_commands;
7130 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7131 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7132 	if (hpsa_supports_chained_sg_blocks(h)) {
7133 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7134 		h->max_cmd_sg_entries = 32;
7135 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7136 		h->maxsgentries--; /* save one for chain pointer */
7137 	} else {
7138 		/*
7139 		 * Original smart arrays supported at most 31 s/g entries
7140 		 * embedded inline in the command (trying to use more
7141 		 * would lock up the controller)
7142 		 */
7143 		h->max_cmd_sg_entries = 31;
7144 		h->maxsgentries = 31; /* default to traditional values */
7145 		h->chainsize = 0;
7146 	}
7147 
7148 	/* Find out what task management functions are supported and cache */
7149 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7150 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7151 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7152 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7153 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7154 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7155 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7156 }
7157 
7158 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7159 {
7160 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7161 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7162 		return false;
7163 	}
7164 	return true;
7165 }
7166 
7167 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7168 {
7169 	u32 driver_support;
7170 
7171 	driver_support = readl(&(h->cfgtable->driver_support));
7172 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7173 #ifdef CONFIG_X86
7174 	driver_support |= ENABLE_SCSI_PREFETCH;
7175 #endif
7176 	driver_support |= ENABLE_UNIT_ATTN;
7177 	writel(driver_support, &(h->cfgtable->driver_support));
7178 }
7179 
7180 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7181  * in a prefetch beyond physical memory.
7182  */
7183 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7184 {
7185 	u32 dma_prefetch;
7186 
7187 	if (h->board_id != 0x3225103C)
7188 		return;
7189 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7190 	dma_prefetch |= 0x8000;
7191 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7192 }
7193 
7194 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7195 {
7196 	int i;
7197 	u32 doorbell_value;
7198 	unsigned long flags;
7199 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7200 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7201 		spin_lock_irqsave(&h->lock, flags);
7202 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7203 		spin_unlock_irqrestore(&h->lock, flags);
7204 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7205 			goto done;
7206 		/* delay and try again */
7207 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7208 	}
7209 	return -ENODEV;
7210 done:
7211 	return 0;
7212 }
7213 
7214 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7215 {
7216 	int i;
7217 	u32 doorbell_value;
7218 	unsigned long flags;
7219 
7220 	/* under certain very rare conditions, this can take awhile.
7221 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7222 	 * as we enter this code.)
7223 	 */
7224 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7225 		if (h->remove_in_progress)
7226 			goto done;
7227 		spin_lock_irqsave(&h->lock, flags);
7228 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7229 		spin_unlock_irqrestore(&h->lock, flags);
7230 		if (!(doorbell_value & CFGTBL_ChangeReq))
7231 			goto done;
7232 		/* delay and try again */
7233 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7234 	}
7235 	return -ENODEV;
7236 done:
7237 	return 0;
7238 }
7239 
7240 /* return -ENODEV or other reason on error, 0 on success */
7241 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7242 {
7243 	u32 trans_support;
7244 
7245 	trans_support = readl(&(h->cfgtable->TransportSupport));
7246 	if (!(trans_support & SIMPLE_MODE))
7247 		return -ENOTSUPP;
7248 
7249 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7250 
7251 	/* Update the field, and then ring the doorbell */
7252 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7253 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7254 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7255 	if (hpsa_wait_for_mode_change_ack(h))
7256 		goto error;
7257 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7258 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7259 		goto error;
7260 	h->transMethod = CFGTBL_Trans_Simple;
7261 	return 0;
7262 error:
7263 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7264 	return -ENODEV;
7265 }
7266 
7267 /* free items allocated or mapped by hpsa_pci_init */
7268 static void hpsa_free_pci_init(struct ctlr_info *h)
7269 {
7270 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7271 	iounmap(h->vaddr);			/* pci_init 3 */
7272 	h->vaddr = NULL;
7273 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7274 	/*
7275 	 * call pci_disable_device before pci_release_regions per
7276 	 * Documentation/PCI/pci.txt
7277 	 */
7278 	pci_disable_device(h->pdev);		/* pci_init 1 */
7279 	pci_release_regions(h->pdev);		/* pci_init 2 */
7280 }
7281 
7282 /* several items must be freed later */
7283 static int hpsa_pci_init(struct ctlr_info *h)
7284 {
7285 	int prod_index, err;
7286 
7287 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7288 	if (prod_index < 0)
7289 		return prod_index;
7290 	h->product_name = products[prod_index].product_name;
7291 	h->access = *(products[prod_index].access);
7292 
7293 	h->needs_abort_tags_swizzled =
7294 		ctlr_needs_abort_tags_swizzled(h->board_id);
7295 
7296 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7297 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7298 
7299 	err = pci_enable_device(h->pdev);
7300 	if (err) {
7301 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7302 		pci_disable_device(h->pdev);
7303 		return err;
7304 	}
7305 
7306 	err = pci_request_regions(h->pdev, HPSA);
7307 	if (err) {
7308 		dev_err(&h->pdev->dev,
7309 			"failed to obtain PCI resources\n");
7310 		pci_disable_device(h->pdev);
7311 		return err;
7312 	}
7313 
7314 	pci_set_master(h->pdev);
7315 
7316 	hpsa_interrupt_mode(h);
7317 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7318 	if (err)
7319 		goto clean2;	/* intmode+region, pci */
7320 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7321 	if (!h->vaddr) {
7322 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7323 		err = -ENOMEM;
7324 		goto clean2;	/* intmode+region, pci */
7325 	}
7326 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7327 	if (err)
7328 		goto clean3;	/* vaddr, intmode+region, pci */
7329 	err = hpsa_find_cfgtables(h);
7330 	if (err)
7331 		goto clean3;	/* vaddr, intmode+region, pci */
7332 	hpsa_find_board_params(h);
7333 
7334 	if (!hpsa_CISS_signature_present(h)) {
7335 		err = -ENODEV;
7336 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7337 	}
7338 	hpsa_set_driver_support_bits(h);
7339 	hpsa_p600_dma_prefetch_quirk(h);
7340 	err = hpsa_enter_simple_mode(h);
7341 	if (err)
7342 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7343 	return 0;
7344 
7345 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7346 	hpsa_free_cfgtables(h);
7347 clean3:	/* vaddr, intmode+region, pci */
7348 	iounmap(h->vaddr);
7349 	h->vaddr = NULL;
7350 clean2:	/* intmode+region, pci */
7351 	hpsa_disable_interrupt_mode(h);
7352 	/*
7353 	 * call pci_disable_device before pci_release_regions per
7354 	 * Documentation/PCI/pci.txt
7355 	 */
7356 	pci_disable_device(h->pdev);
7357 	pci_release_regions(h->pdev);
7358 	return err;
7359 }
7360 
7361 static void hpsa_hba_inquiry(struct ctlr_info *h)
7362 {
7363 	int rc;
7364 
7365 #define HBA_INQUIRY_BYTE_COUNT 64
7366 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7367 	if (!h->hba_inquiry_data)
7368 		return;
7369 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7370 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7371 	if (rc != 0) {
7372 		kfree(h->hba_inquiry_data);
7373 		h->hba_inquiry_data = NULL;
7374 	}
7375 }
7376 
7377 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7378 {
7379 	int rc, i;
7380 	void __iomem *vaddr;
7381 
7382 	if (!reset_devices)
7383 		return 0;
7384 
7385 	/* kdump kernel is loading, we don't know in which state is
7386 	 * the pci interface. The dev->enable_cnt is equal zero
7387 	 * so we call enable+disable, wait a while and switch it on.
7388 	 */
7389 	rc = pci_enable_device(pdev);
7390 	if (rc) {
7391 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7392 		return -ENODEV;
7393 	}
7394 	pci_disable_device(pdev);
7395 	msleep(260);			/* a randomly chosen number */
7396 	rc = pci_enable_device(pdev);
7397 	if (rc) {
7398 		dev_warn(&pdev->dev, "failed to enable device.\n");
7399 		return -ENODEV;
7400 	}
7401 
7402 	pci_set_master(pdev);
7403 
7404 	vaddr = pci_ioremap_bar(pdev, 0);
7405 	if (vaddr == NULL) {
7406 		rc = -ENOMEM;
7407 		goto out_disable;
7408 	}
7409 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7410 	iounmap(vaddr);
7411 
7412 	/* Reset the controller with a PCI power-cycle or via doorbell */
7413 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7414 
7415 	/* -ENOTSUPP here means we cannot reset the controller
7416 	 * but it's already (and still) up and running in
7417 	 * "performant mode".  Or, it might be 640x, which can't reset
7418 	 * due to concerns about shared bbwc between 6402/6404 pair.
7419 	 */
7420 	if (rc)
7421 		goto out_disable;
7422 
7423 	/* Now try to get the controller to respond to a no-op */
7424 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7425 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7426 		if (hpsa_noop(pdev) == 0)
7427 			break;
7428 		else
7429 			dev_warn(&pdev->dev, "no-op failed%s\n",
7430 					(i < 11 ? "; re-trying" : ""));
7431 	}
7432 
7433 out_disable:
7434 
7435 	pci_disable_device(pdev);
7436 	return rc;
7437 }
7438 
7439 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7440 {
7441 	kfree(h->cmd_pool_bits);
7442 	h->cmd_pool_bits = NULL;
7443 	if (h->cmd_pool) {
7444 		pci_free_consistent(h->pdev,
7445 				h->nr_cmds * sizeof(struct CommandList),
7446 				h->cmd_pool,
7447 				h->cmd_pool_dhandle);
7448 		h->cmd_pool = NULL;
7449 		h->cmd_pool_dhandle = 0;
7450 	}
7451 	if (h->errinfo_pool) {
7452 		pci_free_consistent(h->pdev,
7453 				h->nr_cmds * sizeof(struct ErrorInfo),
7454 				h->errinfo_pool,
7455 				h->errinfo_pool_dhandle);
7456 		h->errinfo_pool = NULL;
7457 		h->errinfo_pool_dhandle = 0;
7458 	}
7459 }
7460 
7461 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7462 {
7463 	h->cmd_pool_bits = kzalloc(
7464 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7465 		sizeof(unsigned long), GFP_KERNEL);
7466 	h->cmd_pool = pci_alloc_consistent(h->pdev,
7467 		    h->nr_cmds * sizeof(*h->cmd_pool),
7468 		    &(h->cmd_pool_dhandle));
7469 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7470 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7471 		    &(h->errinfo_pool_dhandle));
7472 	if ((h->cmd_pool_bits == NULL)
7473 	    || (h->cmd_pool == NULL)
7474 	    || (h->errinfo_pool == NULL)) {
7475 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7476 		goto clean_up;
7477 	}
7478 	hpsa_preinitialize_commands(h);
7479 	return 0;
7480 clean_up:
7481 	hpsa_free_cmd_pool(h);
7482 	return -ENOMEM;
7483 }
7484 
7485 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7486 {
7487 	int i, cpu;
7488 
7489 	cpu = cpumask_first(cpu_online_mask);
7490 	for (i = 0; i < h->msix_vector; i++) {
7491 		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7492 		cpu = cpumask_next(cpu, cpu_online_mask);
7493 	}
7494 }
7495 
7496 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7497 static void hpsa_free_irqs(struct ctlr_info *h)
7498 {
7499 	int i;
7500 
7501 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7502 		/* Single reply queue, only one irq to free */
7503 		i = h->intr_mode;
7504 		irq_set_affinity_hint(h->intr[i], NULL);
7505 		free_irq(h->intr[i], &h->q[i]);
7506 		h->q[i] = 0;
7507 		return;
7508 	}
7509 
7510 	for (i = 0; i < h->msix_vector; i++) {
7511 		irq_set_affinity_hint(h->intr[i], NULL);
7512 		free_irq(h->intr[i], &h->q[i]);
7513 		h->q[i] = 0;
7514 	}
7515 	for (; i < MAX_REPLY_QUEUES; i++)
7516 		h->q[i] = 0;
7517 }
7518 
7519 /* returns 0 on success; cleans up and returns -Enn on error */
7520 static int hpsa_request_irqs(struct ctlr_info *h,
7521 	irqreturn_t (*msixhandler)(int, void *),
7522 	irqreturn_t (*intxhandler)(int, void *))
7523 {
7524 	int rc, i;
7525 
7526 	/*
7527 	 * initialize h->q[x] = x so that interrupt handlers know which
7528 	 * queue to process.
7529 	 */
7530 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7531 		h->q[i] = (u8) i;
7532 
7533 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7534 		/* If performant mode and MSI-X, use multiple reply queues */
7535 		for (i = 0; i < h->msix_vector; i++) {
7536 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7537 			rc = request_irq(h->intr[i], msixhandler,
7538 					0, h->intrname[i],
7539 					&h->q[i]);
7540 			if (rc) {
7541 				int j;
7542 
7543 				dev_err(&h->pdev->dev,
7544 					"failed to get irq %d for %s\n",
7545 				       h->intr[i], h->devname);
7546 				for (j = 0; j < i; j++) {
7547 					free_irq(h->intr[j], &h->q[j]);
7548 					h->q[j] = 0;
7549 				}
7550 				for (; j < MAX_REPLY_QUEUES; j++)
7551 					h->q[j] = 0;
7552 				return rc;
7553 			}
7554 		}
7555 		hpsa_irq_affinity_hints(h);
7556 	} else {
7557 		/* Use single reply pool */
7558 		if (h->msix_vector > 0 || h->msi_vector) {
7559 			if (h->msix_vector)
7560 				sprintf(h->intrname[h->intr_mode],
7561 					"%s-msix", h->devname);
7562 			else
7563 				sprintf(h->intrname[h->intr_mode],
7564 					"%s-msi", h->devname);
7565 			rc = request_irq(h->intr[h->intr_mode],
7566 				msixhandler, 0,
7567 				h->intrname[h->intr_mode],
7568 				&h->q[h->intr_mode]);
7569 		} else {
7570 			sprintf(h->intrname[h->intr_mode],
7571 				"%s-intx", h->devname);
7572 			rc = request_irq(h->intr[h->intr_mode],
7573 				intxhandler, IRQF_SHARED,
7574 				h->intrname[h->intr_mode],
7575 				&h->q[h->intr_mode]);
7576 		}
7577 		irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7578 	}
7579 	if (rc) {
7580 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7581 		       h->intr[h->intr_mode], h->devname);
7582 		hpsa_free_irqs(h);
7583 		return -ENODEV;
7584 	}
7585 	return 0;
7586 }
7587 
7588 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7589 {
7590 	int rc;
7591 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7592 
7593 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7594 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7595 	if (rc) {
7596 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7597 		return rc;
7598 	}
7599 
7600 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7601 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7602 	if (rc) {
7603 		dev_warn(&h->pdev->dev, "Board failed to become ready "
7604 			"after soft reset.\n");
7605 		return rc;
7606 	}
7607 
7608 	return 0;
7609 }
7610 
7611 static void hpsa_free_reply_queues(struct ctlr_info *h)
7612 {
7613 	int i;
7614 
7615 	for (i = 0; i < h->nreply_queues; i++) {
7616 		if (!h->reply_queue[i].head)
7617 			continue;
7618 		pci_free_consistent(h->pdev,
7619 					h->reply_queue_size,
7620 					h->reply_queue[i].head,
7621 					h->reply_queue[i].busaddr);
7622 		h->reply_queue[i].head = NULL;
7623 		h->reply_queue[i].busaddr = 0;
7624 	}
7625 	h->reply_queue_size = 0;
7626 }
7627 
7628 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7629 {
7630 	hpsa_free_performant_mode(h);		/* init_one 7 */
7631 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
7632 	hpsa_free_cmd_pool(h);			/* init_one 5 */
7633 	hpsa_free_irqs(h);			/* init_one 4 */
7634 	scsi_host_put(h->scsi_host);		/* init_one 3 */
7635 	h->scsi_host = NULL;			/* init_one 3 */
7636 	hpsa_free_pci_init(h);			/* init_one 2_5 */
7637 	free_percpu(h->lockup_detected);	/* init_one 2 */
7638 	h->lockup_detected = NULL;		/* init_one 2 */
7639 	if (h->resubmit_wq) {
7640 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
7641 		h->resubmit_wq = NULL;
7642 	}
7643 	if (h->rescan_ctlr_wq) {
7644 		destroy_workqueue(h->rescan_ctlr_wq);
7645 		h->rescan_ctlr_wq = NULL;
7646 	}
7647 	kfree(h);				/* init_one 1 */
7648 }
7649 
7650 /* Called when controller lockup detected. */
7651 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7652 {
7653 	int i, refcount;
7654 	struct CommandList *c;
7655 	int failcount = 0;
7656 
7657 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7658 	for (i = 0; i < h->nr_cmds; i++) {
7659 		c = h->cmd_pool + i;
7660 		refcount = atomic_inc_return(&c->refcount);
7661 		if (refcount > 1) {
7662 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7663 			finish_cmd(c);
7664 			atomic_dec(&h->commands_outstanding);
7665 			failcount++;
7666 		}
7667 		cmd_free(h, c);
7668 	}
7669 	dev_warn(&h->pdev->dev,
7670 		"failed %d commands in fail_all\n", failcount);
7671 }
7672 
7673 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7674 {
7675 	int cpu;
7676 
7677 	for_each_online_cpu(cpu) {
7678 		u32 *lockup_detected;
7679 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7680 		*lockup_detected = value;
7681 	}
7682 	wmb(); /* be sure the per-cpu variables are out to memory */
7683 }
7684 
7685 static void controller_lockup_detected(struct ctlr_info *h)
7686 {
7687 	unsigned long flags;
7688 	u32 lockup_detected;
7689 
7690 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7691 	spin_lock_irqsave(&h->lock, flags);
7692 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7693 	if (!lockup_detected) {
7694 		/* no heartbeat, but controller gave us a zero. */
7695 		dev_warn(&h->pdev->dev,
7696 			"lockup detected after %d but scratchpad register is zero\n",
7697 			h->heartbeat_sample_interval / HZ);
7698 		lockup_detected = 0xffffffff;
7699 	}
7700 	set_lockup_detected_for_all_cpus(h, lockup_detected);
7701 	spin_unlock_irqrestore(&h->lock, flags);
7702 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7703 			lockup_detected, h->heartbeat_sample_interval / HZ);
7704 	pci_disable_device(h->pdev);
7705 	fail_all_outstanding_cmds(h);
7706 }
7707 
7708 static int detect_controller_lockup(struct ctlr_info *h)
7709 {
7710 	u64 now;
7711 	u32 heartbeat;
7712 	unsigned long flags;
7713 
7714 	now = get_jiffies_64();
7715 	/* If we've received an interrupt recently, we're ok. */
7716 	if (time_after64(h->last_intr_timestamp +
7717 				(h->heartbeat_sample_interval), now))
7718 		return false;
7719 
7720 	/*
7721 	 * If we've already checked the heartbeat recently, we're ok.
7722 	 * This could happen if someone sends us a signal. We
7723 	 * otherwise don't care about signals in this thread.
7724 	 */
7725 	if (time_after64(h->last_heartbeat_timestamp +
7726 				(h->heartbeat_sample_interval), now))
7727 		return false;
7728 
7729 	/* If heartbeat has not changed since we last looked, we're not ok. */
7730 	spin_lock_irqsave(&h->lock, flags);
7731 	heartbeat = readl(&h->cfgtable->HeartBeat);
7732 	spin_unlock_irqrestore(&h->lock, flags);
7733 	if (h->last_heartbeat == heartbeat) {
7734 		controller_lockup_detected(h);
7735 		return true;
7736 	}
7737 
7738 	/* We're ok. */
7739 	h->last_heartbeat = heartbeat;
7740 	h->last_heartbeat_timestamp = now;
7741 	return false;
7742 }
7743 
7744 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7745 {
7746 	int i;
7747 	char *event_type;
7748 
7749 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7750 		return;
7751 
7752 	/* Ask the controller to clear the events we're handling. */
7753 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
7754 			| CFGTBL_Trans_io_accel2)) &&
7755 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7756 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7757 
7758 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7759 			event_type = "state change";
7760 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7761 			event_type = "configuration change";
7762 		/* Stop sending new RAID offload reqs via the IO accelerator */
7763 		scsi_block_requests(h->scsi_host);
7764 		for (i = 0; i < h->ndevices; i++)
7765 			h->dev[i]->offload_enabled = 0;
7766 		hpsa_drain_accel_commands(h);
7767 		/* Set 'accelerator path config change' bit */
7768 		dev_warn(&h->pdev->dev,
7769 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7770 			h->events, event_type);
7771 		writel(h->events, &(h->cfgtable->clear_event_notify));
7772 		/* Set the "clear event notify field update" bit 6 */
7773 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7774 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
7775 		hpsa_wait_for_clear_event_notify_ack(h);
7776 		scsi_unblock_requests(h->scsi_host);
7777 	} else {
7778 		/* Acknowledge controller notification events. */
7779 		writel(h->events, &(h->cfgtable->clear_event_notify));
7780 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7781 		hpsa_wait_for_clear_event_notify_ack(h);
7782 #if 0
7783 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7784 		hpsa_wait_for_mode_change_ack(h);
7785 #endif
7786 	}
7787 	return;
7788 }
7789 
7790 /* Check a register on the controller to see if there are configuration
7791  * changes (added/changed/removed logical drives, etc.) which mean that
7792  * we should rescan the controller for devices.
7793  * Also check flag for driver-initiated rescan.
7794  */
7795 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7796 {
7797 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7798 		return 0;
7799 
7800 	h->events = readl(&(h->cfgtable->event_notify));
7801 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
7802 }
7803 
7804 /*
7805  * Check if any of the offline devices have become ready
7806  */
7807 static int hpsa_offline_devices_ready(struct ctlr_info *h)
7808 {
7809 	unsigned long flags;
7810 	struct offline_device_entry *d;
7811 	struct list_head *this, *tmp;
7812 
7813 	spin_lock_irqsave(&h->offline_device_lock, flags);
7814 	list_for_each_safe(this, tmp, &h->offline_device_list) {
7815 		d = list_entry(this, struct offline_device_entry,
7816 				offline_list);
7817 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
7818 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
7819 			spin_lock_irqsave(&h->offline_device_lock, flags);
7820 			list_del(&d->offline_list);
7821 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
7822 			return 1;
7823 		}
7824 		spin_lock_irqsave(&h->offline_device_lock, flags);
7825 	}
7826 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
7827 	return 0;
7828 }
7829 
7830 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7831 {
7832 	unsigned long flags;
7833 	struct ctlr_info *h = container_of(to_delayed_work(work),
7834 					struct ctlr_info, rescan_ctlr_work);
7835 
7836 
7837 	if (h->remove_in_progress)
7838 		return;
7839 
7840 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
7841 		scsi_host_get(h->scsi_host);
7842 		hpsa_ack_ctlr_events(h);
7843 		hpsa_scan_start(h->scsi_host);
7844 		scsi_host_put(h->scsi_host);
7845 	}
7846 	spin_lock_irqsave(&h->lock, flags);
7847 	if (!h->remove_in_progress)
7848 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7849 				h->heartbeat_sample_interval);
7850 	spin_unlock_irqrestore(&h->lock, flags);
7851 }
7852 
7853 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
7854 {
7855 	unsigned long flags;
7856 	struct ctlr_info *h = container_of(to_delayed_work(work),
7857 					struct ctlr_info, monitor_ctlr_work);
7858 
7859 	detect_controller_lockup(h);
7860 	if (lockup_detected(h))
7861 		return;
7862 
7863 	spin_lock_irqsave(&h->lock, flags);
7864 	if (!h->remove_in_progress)
7865 		schedule_delayed_work(&h->monitor_ctlr_work,
7866 				h->heartbeat_sample_interval);
7867 	spin_unlock_irqrestore(&h->lock, flags);
7868 }
7869 
7870 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
7871 						char *name)
7872 {
7873 	struct workqueue_struct *wq = NULL;
7874 
7875 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7876 	if (!wq)
7877 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
7878 
7879 	return wq;
7880 }
7881 
7882 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7883 {
7884 	int dac, rc;
7885 	struct ctlr_info *h;
7886 	int try_soft_reset = 0;
7887 	unsigned long flags;
7888 	u32 board_id;
7889 
7890 	if (number_of_controllers == 0)
7891 		printk(KERN_INFO DRIVER_NAME "\n");
7892 
7893 	rc = hpsa_lookup_board_id(pdev, &board_id);
7894 	if (rc < 0) {
7895 		dev_warn(&pdev->dev, "Board ID not found\n");
7896 		return rc;
7897 	}
7898 
7899 	rc = hpsa_init_reset_devices(pdev, board_id);
7900 	if (rc) {
7901 		if (rc != -ENOTSUPP)
7902 			return rc;
7903 		/* If the reset fails in a particular way (it has no way to do
7904 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
7905 		 * a soft reset once we get the controller configured up to the
7906 		 * point that it can accept a command.
7907 		 */
7908 		try_soft_reset = 1;
7909 		rc = 0;
7910 	}
7911 
7912 reinit_after_soft_reset:
7913 
7914 	/* Command structures must be aligned on a 32-byte boundary because
7915 	 * the 5 lower bits of the address are used by the hardware. and by
7916 	 * the driver.  See comments in hpsa.h for more info.
7917 	 */
7918 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7919 	h = kzalloc(sizeof(*h), GFP_KERNEL);
7920 	if (!h) {
7921 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
7922 		return -ENOMEM;
7923 	}
7924 
7925 	h->pdev = pdev;
7926 
7927 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7928 	INIT_LIST_HEAD(&h->offline_device_list);
7929 	spin_lock_init(&h->lock);
7930 	spin_lock_init(&h->offline_device_lock);
7931 	spin_lock_init(&h->scan_lock);
7932 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
7933 	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
7934 
7935 	/* Allocate and clear per-cpu variable lockup_detected */
7936 	h->lockup_detected = alloc_percpu(u32);
7937 	if (!h->lockup_detected) {
7938 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
7939 		rc = -ENOMEM;
7940 		goto clean1;	/* aer/h */
7941 	}
7942 	set_lockup_detected_for_all_cpus(h, 0);
7943 
7944 	rc = hpsa_pci_init(h);
7945 	if (rc)
7946 		goto clean2;	/* lu, aer/h */
7947 
7948 	/* relies on h-> settings made by hpsa_pci_init, including
7949 	 * interrupt_mode h->intr */
7950 	rc = hpsa_scsi_host_alloc(h);
7951 	if (rc)
7952 		goto clean2_5;	/* pci, lu, aer/h */
7953 
7954 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
7955 	h->ctlr = number_of_controllers;
7956 	number_of_controllers++;
7957 
7958 	/* configure PCI DMA stuff */
7959 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
7960 	if (rc == 0) {
7961 		dac = 1;
7962 	} else {
7963 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
7964 		if (rc == 0) {
7965 			dac = 0;
7966 		} else {
7967 			dev_err(&pdev->dev, "no suitable DMA available\n");
7968 			goto clean3;	/* shost, pci, lu, aer/h */
7969 		}
7970 	}
7971 
7972 	/* make sure the board interrupts are off */
7973 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7974 
7975 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
7976 	if (rc)
7977 		goto clean3;	/* shost, pci, lu, aer/h */
7978 	rc = hpsa_alloc_cmd_pool(h);
7979 	if (rc)
7980 		goto clean4;	/* irq, shost, pci, lu, aer/h */
7981 	rc = hpsa_alloc_sg_chain_blocks(h);
7982 	if (rc)
7983 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
7984 	init_waitqueue_head(&h->scan_wait_queue);
7985 	init_waitqueue_head(&h->abort_cmd_wait_queue);
7986 	init_waitqueue_head(&h->event_sync_wait_queue);
7987 	mutex_init(&h->reset_mutex);
7988 	h->scan_finished = 1; /* no scan currently in progress */
7989 
7990 	pci_set_drvdata(pdev, h);
7991 	h->ndevices = 0;
7992 	h->hba_mode_enabled = 0;
7993 
7994 	spin_lock_init(&h->devlock);
7995 	rc = hpsa_put_ctlr_into_performant_mode(h);
7996 	if (rc)
7997 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
7998 
7999 	/* hook into SCSI subsystem */
8000 	rc = hpsa_scsi_add_host(h);
8001 	if (rc)
8002 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8003 
8004 	/* create the resubmit workqueue */
8005 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8006 	if (!h->rescan_ctlr_wq) {
8007 		rc = -ENOMEM;
8008 		goto clean7;
8009 	}
8010 
8011 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8012 	if (!h->resubmit_wq) {
8013 		rc = -ENOMEM;
8014 		goto clean7;	/* aer/h */
8015 	}
8016 
8017 	/*
8018 	 * At this point, the controller is ready to take commands.
8019 	 * Now, if reset_devices and the hard reset didn't work, try
8020 	 * the soft reset and see if that works.
8021 	 */
8022 	if (try_soft_reset) {
8023 
8024 		/* This is kind of gross.  We may or may not get a completion
8025 		 * from the soft reset command, and if we do, then the value
8026 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8027 		 * after the reset throwing away any completions we get during
8028 		 * that time.  Unregister the interrupt handler and register
8029 		 * fake ones to scoop up any residual completions.
8030 		 */
8031 		spin_lock_irqsave(&h->lock, flags);
8032 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8033 		spin_unlock_irqrestore(&h->lock, flags);
8034 		hpsa_free_irqs(h);
8035 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8036 					hpsa_intx_discard_completions);
8037 		if (rc) {
8038 			dev_warn(&h->pdev->dev,
8039 				"Failed to request_irq after soft reset.\n");
8040 			/*
8041 			 * cannot goto clean7 or free_irqs will be called
8042 			 * again. Instead, do its work
8043 			 */
8044 			hpsa_free_performant_mode(h);	/* clean7 */
8045 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8046 			hpsa_free_cmd_pool(h);		/* clean5 */
8047 			/*
8048 			 * skip hpsa_free_irqs(h) clean4 since that
8049 			 * was just called before request_irqs failed
8050 			 */
8051 			goto clean3;
8052 		}
8053 
8054 		rc = hpsa_kdump_soft_reset(h);
8055 		if (rc)
8056 			/* Neither hard nor soft reset worked, we're hosed. */
8057 			goto clean9;
8058 
8059 		dev_info(&h->pdev->dev, "Board READY.\n");
8060 		dev_info(&h->pdev->dev,
8061 			"Waiting for stale completions to drain.\n");
8062 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8063 		msleep(10000);
8064 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8065 
8066 		rc = controller_reset_failed(h->cfgtable);
8067 		if (rc)
8068 			dev_info(&h->pdev->dev,
8069 				"Soft reset appears to have failed.\n");
8070 
8071 		/* since the controller's reset, we have to go back and re-init
8072 		 * everything.  Easiest to just forget what we've done and do it
8073 		 * all over again.
8074 		 */
8075 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8076 		try_soft_reset = 0;
8077 		if (rc)
8078 			/* don't goto clean, we already unallocated */
8079 			return -ENODEV;
8080 
8081 		goto reinit_after_soft_reset;
8082 	}
8083 
8084 	/* Enable Accelerated IO path at driver layer */
8085 	h->acciopath_status = 1;
8086 
8087 
8088 	/* Turn the interrupts on so we can service requests */
8089 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8090 
8091 	hpsa_hba_inquiry(h);
8092 
8093 	/* Monitor the controller for firmware lockups */
8094 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8095 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8096 	schedule_delayed_work(&h->monitor_ctlr_work,
8097 				h->heartbeat_sample_interval);
8098 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8099 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8100 				h->heartbeat_sample_interval);
8101 	return 0;
8102 
8103 clean9: /* wq, sh, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8104 	kfree(h->hba_inquiry_data);
8105 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8106 	hpsa_free_performant_mode(h);
8107 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8108 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8109 	hpsa_free_sg_chain_blocks(h);
8110 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8111 	hpsa_free_cmd_pool(h);
8112 clean4: /* irq, shost, pci, lu, aer/h */
8113 	hpsa_free_irqs(h);
8114 clean3: /* shost, pci, lu, aer/h */
8115 	scsi_host_put(h->scsi_host);
8116 	h->scsi_host = NULL;
8117 clean2_5: /* pci, lu, aer/h */
8118 	hpsa_free_pci_init(h);
8119 clean2: /* lu, aer/h */
8120 	if (h->lockup_detected) {
8121 		free_percpu(h->lockup_detected);
8122 		h->lockup_detected = NULL;
8123 	}
8124 clean1:	/* wq/aer/h */
8125 	if (h->resubmit_wq) {
8126 		destroy_workqueue(h->resubmit_wq);
8127 		h->resubmit_wq = NULL;
8128 	}
8129 	if (h->rescan_ctlr_wq) {
8130 		destroy_workqueue(h->rescan_ctlr_wq);
8131 		h->rescan_ctlr_wq = NULL;
8132 	}
8133 	kfree(h);
8134 	return rc;
8135 }
8136 
8137 static void hpsa_flush_cache(struct ctlr_info *h)
8138 {
8139 	char *flush_buf;
8140 	struct CommandList *c;
8141 	int rc;
8142 
8143 	if (unlikely(lockup_detected(h)))
8144 		return;
8145 	flush_buf = kzalloc(4, GFP_KERNEL);
8146 	if (!flush_buf)
8147 		return;
8148 
8149 	c = cmd_alloc(h);
8150 
8151 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8152 		RAID_CTLR_LUNID, TYPE_CMD)) {
8153 		goto out;
8154 	}
8155 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8156 					PCI_DMA_TODEVICE, NO_TIMEOUT);
8157 	if (rc)
8158 		goto out;
8159 	if (c->err_info->CommandStatus != 0)
8160 out:
8161 		dev_warn(&h->pdev->dev,
8162 			"error flushing cache on controller\n");
8163 	cmd_free(h, c);
8164 	kfree(flush_buf);
8165 }
8166 
8167 static void hpsa_shutdown(struct pci_dev *pdev)
8168 {
8169 	struct ctlr_info *h;
8170 
8171 	h = pci_get_drvdata(pdev);
8172 	/* Turn board interrupts off  and send the flush cache command
8173 	 * sendcmd will turn off interrupt, and send the flush...
8174 	 * To write all data in the battery backed cache to disks
8175 	 */
8176 	hpsa_flush_cache(h);
8177 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8178 	hpsa_free_irqs(h);			/* init_one 4 */
8179 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8180 }
8181 
8182 static void hpsa_free_device_info(struct ctlr_info *h)
8183 {
8184 	int i;
8185 
8186 	for (i = 0; i < h->ndevices; i++) {
8187 		kfree(h->dev[i]);
8188 		h->dev[i] = NULL;
8189 	}
8190 }
8191 
8192 static void hpsa_remove_one(struct pci_dev *pdev)
8193 {
8194 	struct ctlr_info *h;
8195 	unsigned long flags;
8196 
8197 	if (pci_get_drvdata(pdev) == NULL) {
8198 		dev_err(&pdev->dev, "unable to remove device\n");
8199 		return;
8200 	}
8201 	h = pci_get_drvdata(pdev);
8202 
8203 	/* Get rid of any controller monitoring work items */
8204 	spin_lock_irqsave(&h->lock, flags);
8205 	h->remove_in_progress = 1;
8206 	spin_unlock_irqrestore(&h->lock, flags);
8207 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8208 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8209 	destroy_workqueue(h->rescan_ctlr_wq);
8210 	destroy_workqueue(h->resubmit_wq);
8211 
8212 	/* includes hpsa_free_irqs - init_one 4 */
8213 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8214 	hpsa_shutdown(pdev);
8215 
8216 	hpsa_free_device_info(h);		/* scan */
8217 
8218 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8219 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8220 	if (h->scsi_host)
8221 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8222 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8223 	hpsa_free_performant_mode(h);			/* init_one 7 */
8224 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8225 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8226 
8227 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8228 
8229 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8230 	h->scsi_host = NULL;				/* init_one 3 */
8231 
8232 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8233 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8234 
8235 	free_percpu(h->lockup_detected);		/* init_one 2 */
8236 	h->lockup_detected = NULL;			/* init_one 2 */
8237 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8238 	kfree(h);					/* init_one 1 */
8239 }
8240 
8241 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8242 	__attribute__((unused)) pm_message_t state)
8243 {
8244 	return -ENOSYS;
8245 }
8246 
8247 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8248 {
8249 	return -ENOSYS;
8250 }
8251 
8252 static struct pci_driver hpsa_pci_driver = {
8253 	.name = HPSA,
8254 	.probe = hpsa_init_one,
8255 	.remove = hpsa_remove_one,
8256 	.id_table = hpsa_pci_device_id,	/* id_table */
8257 	.shutdown = hpsa_shutdown,
8258 	.suspend = hpsa_suspend,
8259 	.resume = hpsa_resume,
8260 };
8261 
8262 /* Fill in bucket_map[], given nsgs (the max number of
8263  * scatter gather elements supported) and bucket[],
8264  * which is an array of 8 integers.  The bucket[] array
8265  * contains 8 different DMA transfer sizes (in 16
8266  * byte increments) which the controller uses to fetch
8267  * commands.  This function fills in bucket_map[], which
8268  * maps a given number of scatter gather elements to one of
8269  * the 8 DMA transfer sizes.  The point of it is to allow the
8270  * controller to only do as much DMA as needed to fetch the
8271  * command, with the DMA transfer size encoded in the lower
8272  * bits of the command address.
8273  */
8274 static void  calc_bucket_map(int bucket[], int num_buckets,
8275 	int nsgs, int min_blocks, u32 *bucket_map)
8276 {
8277 	int i, j, b, size;
8278 
8279 	/* Note, bucket_map must have nsgs+1 entries. */
8280 	for (i = 0; i <= nsgs; i++) {
8281 		/* Compute size of a command with i SG entries */
8282 		size = i + min_blocks;
8283 		b = num_buckets; /* Assume the biggest bucket */
8284 		/* Find the bucket that is just big enough */
8285 		for (j = 0; j < num_buckets; j++) {
8286 			if (bucket[j] >= size) {
8287 				b = j;
8288 				break;
8289 			}
8290 		}
8291 		/* for a command with i SG entries, use bucket b. */
8292 		bucket_map[i] = b;
8293 	}
8294 }
8295 
8296 /*
8297  * return -ENODEV on err, 0 on success (or no action)
8298  * allocates numerous items that must be freed later
8299  */
8300 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8301 {
8302 	int i;
8303 	unsigned long register_value;
8304 	unsigned long transMethod = CFGTBL_Trans_Performant |
8305 			(trans_support & CFGTBL_Trans_use_short_tags) |
8306 				CFGTBL_Trans_enable_directed_msix |
8307 			(trans_support & (CFGTBL_Trans_io_accel1 |
8308 				CFGTBL_Trans_io_accel2));
8309 	struct access_method access = SA5_performant_access;
8310 
8311 	/* This is a bit complicated.  There are 8 registers on
8312 	 * the controller which we write to to tell it 8 different
8313 	 * sizes of commands which there may be.  It's a way of
8314 	 * reducing the DMA done to fetch each command.  Encoded into
8315 	 * each command's tag are 3 bits which communicate to the controller
8316 	 * which of the eight sizes that command fits within.  The size of
8317 	 * each command depends on how many scatter gather entries there are.
8318 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
8319 	 * with the number of 16-byte blocks a command of that size requires.
8320 	 * The smallest command possible requires 5 such 16 byte blocks.
8321 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8322 	 * blocks.  Note, this only extends to the SG entries contained
8323 	 * within the command block, and does not extend to chained blocks
8324 	 * of SG elements.   bft[] contains the eight values we write to
8325 	 * the registers.  They are not evenly distributed, but have more
8326 	 * sizes for small commands, and fewer sizes for larger commands.
8327 	 */
8328 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8329 #define MIN_IOACCEL2_BFT_ENTRY 5
8330 #define HPSA_IOACCEL2_HEADER_SZ 4
8331 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8332 			13, 14, 15, 16, 17, 18, 19,
8333 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8334 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8335 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8336 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8337 				 16 * MIN_IOACCEL2_BFT_ENTRY);
8338 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8339 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8340 	/*  5 = 1 s/g entry or 4k
8341 	 *  6 = 2 s/g entry or 8k
8342 	 *  8 = 4 s/g entry or 16k
8343 	 * 10 = 6 s/g entry or 24k
8344 	 */
8345 
8346 	/* If the controller supports either ioaccel method then
8347 	 * we can also use the RAID stack submit path that does not
8348 	 * perform the superfluous readl() after each command submission.
8349 	 */
8350 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8351 		access = SA5_performant_access_no_read;
8352 
8353 	/* Controller spec: zero out this buffer. */
8354 	for (i = 0; i < h->nreply_queues; i++)
8355 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8356 
8357 	bft[7] = SG_ENTRIES_IN_CMD + 4;
8358 	calc_bucket_map(bft, ARRAY_SIZE(bft),
8359 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8360 	for (i = 0; i < 8; i++)
8361 		writel(bft[i], &h->transtable->BlockFetch[i]);
8362 
8363 	/* size of controller ring buffer */
8364 	writel(h->max_commands, &h->transtable->RepQSize);
8365 	writel(h->nreply_queues, &h->transtable->RepQCount);
8366 	writel(0, &h->transtable->RepQCtrAddrLow32);
8367 	writel(0, &h->transtable->RepQCtrAddrHigh32);
8368 
8369 	for (i = 0; i < h->nreply_queues; i++) {
8370 		writel(0, &h->transtable->RepQAddr[i].upper);
8371 		writel(h->reply_queue[i].busaddr,
8372 			&h->transtable->RepQAddr[i].lower);
8373 	}
8374 
8375 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8376 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8377 	/*
8378 	 * enable outbound interrupt coalescing in accelerator mode;
8379 	 */
8380 	if (trans_support & CFGTBL_Trans_io_accel1) {
8381 		access = SA5_ioaccel_mode1_access;
8382 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8383 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8384 	} else {
8385 		if (trans_support & CFGTBL_Trans_io_accel2) {
8386 			access = SA5_ioaccel_mode2_access;
8387 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8388 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8389 		}
8390 	}
8391 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8392 	if (hpsa_wait_for_mode_change_ack(h)) {
8393 		dev_err(&h->pdev->dev,
8394 			"performant mode problem - doorbell timeout\n");
8395 		return -ENODEV;
8396 	}
8397 	register_value = readl(&(h->cfgtable->TransportActive));
8398 	if (!(register_value & CFGTBL_Trans_Performant)) {
8399 		dev_err(&h->pdev->dev,
8400 			"performant mode problem - transport not active\n");
8401 		return -ENODEV;
8402 	}
8403 	/* Change the access methods to the performant access methods */
8404 	h->access = access;
8405 	h->transMethod = transMethod;
8406 
8407 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8408 		(trans_support & CFGTBL_Trans_io_accel2)))
8409 		return 0;
8410 
8411 	if (trans_support & CFGTBL_Trans_io_accel1) {
8412 		/* Set up I/O accelerator mode */
8413 		for (i = 0; i < h->nreply_queues; i++) {
8414 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8415 			h->reply_queue[i].current_entry =
8416 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8417 		}
8418 		bft[7] = h->ioaccel_maxsg + 8;
8419 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8420 				h->ioaccel1_blockFetchTable);
8421 
8422 		/* initialize all reply queue entries to unused */
8423 		for (i = 0; i < h->nreply_queues; i++)
8424 			memset(h->reply_queue[i].head,
8425 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
8426 				h->reply_queue_size);
8427 
8428 		/* set all the constant fields in the accelerator command
8429 		 * frames once at init time to save CPU cycles later.
8430 		 */
8431 		for (i = 0; i < h->nr_cmds; i++) {
8432 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8433 
8434 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
8435 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
8436 					(i * sizeof(struct ErrorInfo)));
8437 			cp->err_info_len = sizeof(struct ErrorInfo);
8438 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
8439 			cp->host_context_flags =
8440 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8441 			cp->timeout_sec = 0;
8442 			cp->ReplyQueue = 0;
8443 			cp->tag =
8444 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8445 			cp->host_addr =
8446 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8447 					(i * sizeof(struct io_accel1_cmd)));
8448 		}
8449 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
8450 		u64 cfg_offset, cfg_base_addr_index;
8451 		u32 bft2_offset, cfg_base_addr;
8452 		int rc;
8453 
8454 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8455 			&cfg_base_addr_index, &cfg_offset);
8456 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8457 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8458 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8459 				4, h->ioaccel2_blockFetchTable);
8460 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8461 		BUILD_BUG_ON(offsetof(struct CfgTable,
8462 				io_accel_request_size_offset) != 0xb8);
8463 		h->ioaccel2_bft2_regs =
8464 			remap_pci_mem(pci_resource_start(h->pdev,
8465 					cfg_base_addr_index) +
8466 					cfg_offset + bft2_offset,
8467 					ARRAY_SIZE(bft2) *
8468 					sizeof(*h->ioaccel2_bft2_regs));
8469 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
8470 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8471 	}
8472 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8473 	if (hpsa_wait_for_mode_change_ack(h)) {
8474 		dev_err(&h->pdev->dev,
8475 			"performant mode problem - enabling ioaccel mode\n");
8476 		return -ENODEV;
8477 	}
8478 	return 0;
8479 }
8480 
8481 /* Free ioaccel1 mode command blocks and block fetch table */
8482 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8483 {
8484 	if (h->ioaccel_cmd_pool) {
8485 		pci_free_consistent(h->pdev,
8486 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8487 			h->ioaccel_cmd_pool,
8488 			h->ioaccel_cmd_pool_dhandle);
8489 		h->ioaccel_cmd_pool = NULL;
8490 		h->ioaccel_cmd_pool_dhandle = 0;
8491 	}
8492 	kfree(h->ioaccel1_blockFetchTable);
8493 	h->ioaccel1_blockFetchTable = NULL;
8494 }
8495 
8496 /* Allocate ioaccel1 mode command blocks and block fetch table */
8497 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8498 {
8499 	h->ioaccel_maxsg =
8500 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8501 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8502 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8503 
8504 	/* Command structures must be aligned on a 128-byte boundary
8505 	 * because the 7 lower bits of the address are used by the
8506 	 * hardware.
8507 	 */
8508 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8509 			IOACCEL1_COMMANDLIST_ALIGNMENT);
8510 	h->ioaccel_cmd_pool =
8511 		pci_alloc_consistent(h->pdev,
8512 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8513 			&(h->ioaccel_cmd_pool_dhandle));
8514 
8515 	h->ioaccel1_blockFetchTable =
8516 		kmalloc(((h->ioaccel_maxsg + 1) *
8517 				sizeof(u32)), GFP_KERNEL);
8518 
8519 	if ((h->ioaccel_cmd_pool == NULL) ||
8520 		(h->ioaccel1_blockFetchTable == NULL))
8521 		goto clean_up;
8522 
8523 	memset(h->ioaccel_cmd_pool, 0,
8524 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8525 	return 0;
8526 
8527 clean_up:
8528 	hpsa_free_ioaccel1_cmd_and_bft(h);
8529 	return -ENOMEM;
8530 }
8531 
8532 /* Free ioaccel2 mode command blocks and block fetch table */
8533 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8534 {
8535 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8536 
8537 	if (h->ioaccel2_cmd_pool) {
8538 		pci_free_consistent(h->pdev,
8539 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8540 			h->ioaccel2_cmd_pool,
8541 			h->ioaccel2_cmd_pool_dhandle);
8542 		h->ioaccel2_cmd_pool = NULL;
8543 		h->ioaccel2_cmd_pool_dhandle = 0;
8544 	}
8545 	kfree(h->ioaccel2_blockFetchTable);
8546 	h->ioaccel2_blockFetchTable = NULL;
8547 }
8548 
8549 /* Allocate ioaccel2 mode command blocks and block fetch table */
8550 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8551 {
8552 	int rc;
8553 
8554 	/* Allocate ioaccel2 mode command blocks and block fetch table */
8555 
8556 	h->ioaccel_maxsg =
8557 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8558 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8559 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8560 
8561 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8562 			IOACCEL2_COMMANDLIST_ALIGNMENT);
8563 	h->ioaccel2_cmd_pool =
8564 		pci_alloc_consistent(h->pdev,
8565 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8566 			&(h->ioaccel2_cmd_pool_dhandle));
8567 
8568 	h->ioaccel2_blockFetchTable =
8569 		kmalloc(((h->ioaccel_maxsg + 1) *
8570 				sizeof(u32)), GFP_KERNEL);
8571 
8572 	if ((h->ioaccel2_cmd_pool == NULL) ||
8573 		(h->ioaccel2_blockFetchTable == NULL)) {
8574 		rc = -ENOMEM;
8575 		goto clean_up;
8576 	}
8577 
8578 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8579 	if (rc)
8580 		goto clean_up;
8581 
8582 	memset(h->ioaccel2_cmd_pool, 0,
8583 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8584 	return 0;
8585 
8586 clean_up:
8587 	hpsa_free_ioaccel2_cmd_and_bft(h);
8588 	return rc;
8589 }
8590 
8591 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8592 static void hpsa_free_performant_mode(struct ctlr_info *h)
8593 {
8594 	kfree(h->blockFetchTable);
8595 	h->blockFetchTable = NULL;
8596 	hpsa_free_reply_queues(h);
8597 	hpsa_free_ioaccel1_cmd_and_bft(h);
8598 	hpsa_free_ioaccel2_cmd_and_bft(h);
8599 }
8600 
8601 /* return -ENODEV on error, 0 on success (or no action)
8602  * allocates numerous items that must be freed later
8603  */
8604 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8605 {
8606 	u32 trans_support;
8607 	unsigned long transMethod = CFGTBL_Trans_Performant |
8608 					CFGTBL_Trans_use_short_tags;
8609 	int i, rc;
8610 
8611 	if (hpsa_simple_mode)
8612 		return 0;
8613 
8614 	trans_support = readl(&(h->cfgtable->TransportSupport));
8615 	if (!(trans_support & PERFORMANT_MODE))
8616 		return 0;
8617 
8618 	/* Check for I/O accelerator mode support */
8619 	if (trans_support & CFGTBL_Trans_io_accel1) {
8620 		transMethod |= CFGTBL_Trans_io_accel1 |
8621 				CFGTBL_Trans_enable_directed_msix;
8622 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
8623 		if (rc)
8624 			return rc;
8625 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
8626 		transMethod |= CFGTBL_Trans_io_accel2 |
8627 				CFGTBL_Trans_enable_directed_msix;
8628 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
8629 		if (rc)
8630 			return rc;
8631 	}
8632 
8633 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8634 	hpsa_get_max_perf_mode_cmds(h);
8635 	/* Performant mode ring buffer and supporting data structures */
8636 	h->reply_queue_size = h->max_commands * sizeof(u64);
8637 
8638 	for (i = 0; i < h->nreply_queues; i++) {
8639 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8640 						h->reply_queue_size,
8641 						&(h->reply_queue[i].busaddr));
8642 		if (!h->reply_queue[i].head) {
8643 			rc = -ENOMEM;
8644 			goto clean1;	/* rq, ioaccel */
8645 		}
8646 		h->reply_queue[i].size = h->max_commands;
8647 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
8648 		h->reply_queue[i].current_entry = 0;
8649 	}
8650 
8651 	/* Need a block fetch table for performant mode */
8652 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8653 				sizeof(u32)), GFP_KERNEL);
8654 	if (!h->blockFetchTable) {
8655 		rc = -ENOMEM;
8656 		goto clean1;	/* rq, ioaccel */
8657 	}
8658 
8659 	rc = hpsa_enter_performant_mode(h, trans_support);
8660 	if (rc)
8661 		goto clean2;	/* bft, rq, ioaccel */
8662 	return 0;
8663 
8664 clean2:	/* bft, rq, ioaccel */
8665 	kfree(h->blockFetchTable);
8666 	h->blockFetchTable = NULL;
8667 clean1:	/* rq, ioaccel */
8668 	hpsa_free_reply_queues(h);
8669 	hpsa_free_ioaccel1_cmd_and_bft(h);
8670 	hpsa_free_ioaccel2_cmd_and_bft(h);
8671 	return rc;
8672 }
8673 
8674 static int is_accelerated_cmd(struct CommandList *c)
8675 {
8676 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
8677 }
8678 
8679 static void hpsa_drain_accel_commands(struct ctlr_info *h)
8680 {
8681 	struct CommandList *c = NULL;
8682 	int i, accel_cmds_out;
8683 	int refcount;
8684 
8685 	do { /* wait for all outstanding ioaccel commands to drain out */
8686 		accel_cmds_out = 0;
8687 		for (i = 0; i < h->nr_cmds; i++) {
8688 			c = h->cmd_pool + i;
8689 			refcount = atomic_inc_return(&c->refcount);
8690 			if (refcount > 1) /* Command is allocated */
8691 				accel_cmds_out += is_accelerated_cmd(c);
8692 			cmd_free(h, c);
8693 		}
8694 		if (accel_cmds_out <= 0)
8695 			break;
8696 		msleep(100);
8697 	} while (1);
8698 }
8699 
8700 /*
8701  *  This is it.  Register the PCI driver information for the cards we control
8702  *  the OS will call our registered routines when it finds one of our cards.
8703  */
8704 static int __init hpsa_init(void)
8705 {
8706 	return pci_register_driver(&hpsa_pci_driver);
8707 }
8708 
8709 static void __exit hpsa_cleanup(void)
8710 {
8711 	pci_unregister_driver(&hpsa_pci_driver);
8712 }
8713 
8714 static void __attribute__((unused)) verify_offsets(void)
8715 {
8716 #define VERIFY_OFFSET(member, offset) \
8717 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8718 
8719 	VERIFY_OFFSET(structure_size, 0);
8720 	VERIFY_OFFSET(volume_blk_size, 4);
8721 	VERIFY_OFFSET(volume_blk_cnt, 8);
8722 	VERIFY_OFFSET(phys_blk_shift, 16);
8723 	VERIFY_OFFSET(parity_rotation_shift, 17);
8724 	VERIFY_OFFSET(strip_size, 18);
8725 	VERIFY_OFFSET(disk_starting_blk, 20);
8726 	VERIFY_OFFSET(disk_blk_cnt, 28);
8727 	VERIFY_OFFSET(data_disks_per_row, 36);
8728 	VERIFY_OFFSET(metadata_disks_per_row, 38);
8729 	VERIFY_OFFSET(row_cnt, 40);
8730 	VERIFY_OFFSET(layout_map_count, 42);
8731 	VERIFY_OFFSET(flags, 44);
8732 	VERIFY_OFFSET(dekindex, 46);
8733 	/* VERIFY_OFFSET(reserved, 48 */
8734 	VERIFY_OFFSET(data, 64);
8735 
8736 #undef VERIFY_OFFSET
8737 
8738 #define VERIFY_OFFSET(member, offset) \
8739 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8740 
8741 	VERIFY_OFFSET(IU_type, 0);
8742 	VERIFY_OFFSET(direction, 1);
8743 	VERIFY_OFFSET(reply_queue, 2);
8744 	/* VERIFY_OFFSET(reserved1, 3);  */
8745 	VERIFY_OFFSET(scsi_nexus, 4);
8746 	VERIFY_OFFSET(Tag, 8);
8747 	VERIFY_OFFSET(cdb, 16);
8748 	VERIFY_OFFSET(cciss_lun, 32);
8749 	VERIFY_OFFSET(data_len, 40);
8750 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
8751 	VERIFY_OFFSET(sg_count, 45);
8752 	/* VERIFY_OFFSET(reserved3 */
8753 	VERIFY_OFFSET(err_ptr, 48);
8754 	VERIFY_OFFSET(err_len, 56);
8755 	/* VERIFY_OFFSET(reserved4  */
8756 	VERIFY_OFFSET(sg, 64);
8757 
8758 #undef VERIFY_OFFSET
8759 
8760 #define VERIFY_OFFSET(member, offset) \
8761 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8762 
8763 	VERIFY_OFFSET(dev_handle, 0x00);
8764 	VERIFY_OFFSET(reserved1, 0x02);
8765 	VERIFY_OFFSET(function, 0x03);
8766 	VERIFY_OFFSET(reserved2, 0x04);
8767 	VERIFY_OFFSET(err_info, 0x0C);
8768 	VERIFY_OFFSET(reserved3, 0x10);
8769 	VERIFY_OFFSET(err_info_len, 0x12);
8770 	VERIFY_OFFSET(reserved4, 0x13);
8771 	VERIFY_OFFSET(sgl_offset, 0x14);
8772 	VERIFY_OFFSET(reserved5, 0x15);
8773 	VERIFY_OFFSET(transfer_len, 0x1C);
8774 	VERIFY_OFFSET(reserved6, 0x20);
8775 	VERIFY_OFFSET(io_flags, 0x24);
8776 	VERIFY_OFFSET(reserved7, 0x26);
8777 	VERIFY_OFFSET(LUN, 0x34);
8778 	VERIFY_OFFSET(control, 0x3C);
8779 	VERIFY_OFFSET(CDB, 0x40);
8780 	VERIFY_OFFSET(reserved8, 0x50);
8781 	VERIFY_OFFSET(host_context_flags, 0x60);
8782 	VERIFY_OFFSET(timeout_sec, 0x62);
8783 	VERIFY_OFFSET(ReplyQueue, 0x64);
8784 	VERIFY_OFFSET(reserved9, 0x65);
8785 	VERIFY_OFFSET(tag, 0x68);
8786 	VERIFY_OFFSET(host_addr, 0x70);
8787 	VERIFY_OFFSET(CISS_LUN, 0x78);
8788 	VERIFY_OFFSET(SG, 0x78 + 8);
8789 #undef VERIFY_OFFSET
8790 }
8791 
8792 module_init(hpsa_init);
8793 module_exit(hpsa_cleanup);
8794