xref: /linux/drivers/scsi/hpsa.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18 
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57 
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.14-0"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65 
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72 
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75 
76 /* Embedded module documentation macros - see modules.h */
77 MODULE_AUTHOR("Hewlett-Packard Company");
78 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
79 	HPSA_DRIVER_VERSION);
80 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
81 MODULE_VERSION(HPSA_DRIVER_VERSION);
82 MODULE_LICENSE("GPL");
83 
84 static int hpsa_allow_any;
85 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_allow_any,
87 		"Allow hpsa driver to access unknown HP Smart Array hardware");
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91 	"Use 'simple mode' rather than 'performant mode'");
92 
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
147 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 	{0,}
149 };
150 
151 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
152 
153 /*  board_id = Subsystem Device ID & Vendor ID
154  *  product = Marketing Name for the board
155  *  access = Address of the struct of function pointers
156  */
157 static struct board_type products[] = {
158 	{0x3241103C, "Smart Array P212", &SA5_access},
159 	{0x3243103C, "Smart Array P410", &SA5_access},
160 	{0x3245103C, "Smart Array P410i", &SA5_access},
161 	{0x3247103C, "Smart Array P411", &SA5_access},
162 	{0x3249103C, "Smart Array P812", &SA5_access},
163 	{0x324A103C, "Smart Array P712m", &SA5_access},
164 	{0x324B103C, "Smart Array P711m", &SA5_access},
165 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
166 	{0x3350103C, "Smart Array P222", &SA5_access},
167 	{0x3351103C, "Smart Array P420", &SA5_access},
168 	{0x3352103C, "Smart Array P421", &SA5_access},
169 	{0x3353103C, "Smart Array P822", &SA5_access},
170 	{0x3354103C, "Smart Array P420i", &SA5_access},
171 	{0x3355103C, "Smart Array P220i", &SA5_access},
172 	{0x3356103C, "Smart Array P721m", &SA5_access},
173 	{0x1921103C, "Smart Array P830i", &SA5_access},
174 	{0x1922103C, "Smart Array P430", &SA5_access},
175 	{0x1923103C, "Smart Array P431", &SA5_access},
176 	{0x1924103C, "Smart Array P830", &SA5_access},
177 	{0x1926103C, "Smart Array P731m", &SA5_access},
178 	{0x1928103C, "Smart Array P230i", &SA5_access},
179 	{0x1929103C, "Smart Array P530", &SA5_access},
180 	{0x21BD103C, "Smart Array P244br", &SA5_access},
181 	{0x21BE103C, "Smart Array P741m", &SA5_access},
182 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
183 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
184 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
185 	{0x21C2103C, "Smart Array P440", &SA5_access},
186 	{0x21C3103C, "Smart Array P441", &SA5_access},
187 	{0x21C4103C, "Smart Array", &SA5_access},
188 	{0x21C5103C, "Smart Array P841", &SA5_access},
189 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
190 	{0x21C7103C, "Smart HBA H240", &SA5_access},
191 	{0x21C8103C, "Smart HBA H241", &SA5_access},
192 	{0x21C9103C, "Smart Array", &SA5_access},
193 	{0x21CA103C, "Smart Array P246br", &SA5_access},
194 	{0x21CB103C, "Smart Array P840", &SA5_access},
195 	{0x21CC103C, "Smart Array", &SA5_access},
196 	{0x21CD103C, "Smart Array", &SA5_access},
197 	{0x21CE103C, "Smart HBA", &SA5_access},
198 	{0x05809005, "SmartHBA-SA", &SA5_access},
199 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
200 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
201 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
202 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
203 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
204 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
205 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
206 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
207 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
208 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
209 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
210 };
211 
212 static struct scsi_transport_template *hpsa_sas_transport_template;
213 static int hpsa_add_sas_host(struct ctlr_info *h);
214 static void hpsa_delete_sas_host(struct ctlr_info *h);
215 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
216 			struct hpsa_scsi_dev_t *device);
217 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
218 static struct hpsa_scsi_dev_t
219 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
220 		struct sas_rphy *rphy);
221 
222 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
223 static const struct scsi_cmnd hpsa_cmd_busy;
224 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
225 static const struct scsi_cmnd hpsa_cmd_idle;
226 static int number_of_controllers;
227 
228 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
229 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
230 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
231 
232 #ifdef CONFIG_COMPAT
233 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
234 	void __user *arg);
235 #endif
236 
237 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
238 static struct CommandList *cmd_alloc(struct ctlr_info *h);
239 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
240 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
241 					    struct scsi_cmnd *scmd);
242 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
243 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
244 	int cmd_type);
245 static void hpsa_free_cmd_pool(struct ctlr_info *h);
246 #define VPD_PAGE (1 << 8)
247 #define HPSA_SIMPLE_ERROR_BITS 0x03
248 
249 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
250 static void hpsa_scan_start(struct Scsi_Host *);
251 static int hpsa_scan_finished(struct Scsi_Host *sh,
252 	unsigned long elapsed_time);
253 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
254 
255 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
256 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_slave_alloc(struct scsi_device *sdev);
258 static int hpsa_slave_configure(struct scsi_device *sdev);
259 static void hpsa_slave_destroy(struct scsi_device *sdev);
260 
261 static void hpsa_update_scsi_devices(struct ctlr_info *h);
262 static int check_for_unit_attention(struct ctlr_info *h,
263 	struct CommandList *c);
264 static void check_ioctl_unit_attention(struct ctlr_info *h,
265 	struct CommandList *c);
266 /* performant mode helper functions */
267 static void calc_bucket_map(int *bucket, int num_buckets,
268 	int nsgs, int min_blocks, u32 *bucket_map);
269 static void hpsa_free_performant_mode(struct ctlr_info *h);
270 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
271 static inline u32 next_command(struct ctlr_info *h, u8 q);
272 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
273 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
274 			       u64 *cfg_offset);
275 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
276 				    unsigned long *memory_bar);
277 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
278 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
279 				     int wait_for_ready);
280 static inline void finish_cmd(struct CommandList *c);
281 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
282 #define BOARD_NOT_READY 0
283 #define BOARD_READY 1
284 static void hpsa_drain_accel_commands(struct ctlr_info *h);
285 static void hpsa_flush_cache(struct ctlr_info *h);
286 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
287 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
288 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
289 static void hpsa_command_resubmit_worker(struct work_struct *work);
290 static u32 lockup_detected(struct ctlr_info *h);
291 static int detect_controller_lockup(struct ctlr_info *h);
292 static void hpsa_disable_rld_caching(struct ctlr_info *h);
293 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
294 	struct ReportExtendedLUNdata *buf, int bufsize);
295 static int hpsa_luns_changed(struct ctlr_info *h);
296 
297 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
298 {
299 	unsigned long *priv = shost_priv(sdev->host);
300 	return (struct ctlr_info *) *priv;
301 }
302 
303 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
304 {
305 	unsigned long *priv = shost_priv(sh);
306 	return (struct ctlr_info *) *priv;
307 }
308 
309 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
310 {
311 	return c->scsi_cmd == SCSI_CMD_IDLE;
312 }
313 
314 static inline bool hpsa_is_pending_event(struct CommandList *c)
315 {
316 	return c->abort_pending || c->reset_pending;
317 }
318 
319 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
320 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
321 			u8 *sense_key, u8 *asc, u8 *ascq)
322 {
323 	struct scsi_sense_hdr sshdr;
324 	bool rc;
325 
326 	*sense_key = -1;
327 	*asc = -1;
328 	*ascq = -1;
329 
330 	if (sense_data_len < 1)
331 		return;
332 
333 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
334 	if (rc) {
335 		*sense_key = sshdr.sense_key;
336 		*asc = sshdr.asc;
337 		*ascq = sshdr.ascq;
338 	}
339 }
340 
341 static int check_for_unit_attention(struct ctlr_info *h,
342 	struct CommandList *c)
343 {
344 	u8 sense_key, asc, ascq;
345 	int sense_len;
346 
347 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
348 		sense_len = sizeof(c->err_info->SenseInfo);
349 	else
350 		sense_len = c->err_info->SenseLen;
351 
352 	decode_sense_data(c->err_info->SenseInfo, sense_len,
353 				&sense_key, &asc, &ascq);
354 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
355 		return 0;
356 
357 	switch (asc) {
358 	case STATE_CHANGED:
359 		dev_warn(&h->pdev->dev,
360 			"%s: a state change detected, command retried\n",
361 			h->devname);
362 		break;
363 	case LUN_FAILED:
364 		dev_warn(&h->pdev->dev,
365 			"%s: LUN failure detected\n", h->devname);
366 		break;
367 	case REPORT_LUNS_CHANGED:
368 		dev_warn(&h->pdev->dev,
369 			"%s: report LUN data changed\n", h->devname);
370 	/*
371 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
372 	 * target (array) devices.
373 	 */
374 		break;
375 	case POWER_OR_RESET:
376 		dev_warn(&h->pdev->dev,
377 			"%s: a power on or device reset detected\n",
378 			h->devname);
379 		break;
380 	case UNIT_ATTENTION_CLEARED:
381 		dev_warn(&h->pdev->dev,
382 			"%s: unit attention cleared by another initiator\n",
383 			h->devname);
384 		break;
385 	default:
386 		dev_warn(&h->pdev->dev,
387 			"%s: unknown unit attention detected\n",
388 			h->devname);
389 		break;
390 	}
391 	return 1;
392 }
393 
394 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
395 {
396 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
397 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
398 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
399 		return 0;
400 	dev_warn(&h->pdev->dev, HPSA "device busy");
401 	return 1;
402 }
403 
404 static u32 lockup_detected(struct ctlr_info *h);
405 static ssize_t host_show_lockup_detected(struct device *dev,
406 		struct device_attribute *attr, char *buf)
407 {
408 	int ld;
409 	struct ctlr_info *h;
410 	struct Scsi_Host *shost = class_to_shost(dev);
411 
412 	h = shost_to_hba(shost);
413 	ld = lockup_detected(h);
414 
415 	return sprintf(buf, "ld=%d\n", ld);
416 }
417 
418 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
419 					 struct device_attribute *attr,
420 					 const char *buf, size_t count)
421 {
422 	int status, len;
423 	struct ctlr_info *h;
424 	struct Scsi_Host *shost = class_to_shost(dev);
425 	char tmpbuf[10];
426 
427 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
428 		return -EACCES;
429 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
430 	strncpy(tmpbuf, buf, len);
431 	tmpbuf[len] = '\0';
432 	if (sscanf(tmpbuf, "%d", &status) != 1)
433 		return -EINVAL;
434 	h = shost_to_hba(shost);
435 	h->acciopath_status = !!status;
436 	dev_warn(&h->pdev->dev,
437 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
438 		h->acciopath_status ? "enabled" : "disabled");
439 	return count;
440 }
441 
442 static ssize_t host_store_raid_offload_debug(struct device *dev,
443 					 struct device_attribute *attr,
444 					 const char *buf, size_t count)
445 {
446 	int debug_level, len;
447 	struct ctlr_info *h;
448 	struct Scsi_Host *shost = class_to_shost(dev);
449 	char tmpbuf[10];
450 
451 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
452 		return -EACCES;
453 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
454 	strncpy(tmpbuf, buf, len);
455 	tmpbuf[len] = '\0';
456 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
457 		return -EINVAL;
458 	if (debug_level < 0)
459 		debug_level = 0;
460 	h = shost_to_hba(shost);
461 	h->raid_offload_debug = debug_level;
462 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
463 		h->raid_offload_debug);
464 	return count;
465 }
466 
467 static ssize_t host_store_rescan(struct device *dev,
468 				 struct device_attribute *attr,
469 				 const char *buf, size_t count)
470 {
471 	struct ctlr_info *h;
472 	struct Scsi_Host *shost = class_to_shost(dev);
473 	h = shost_to_hba(shost);
474 	hpsa_scan_start(h->scsi_host);
475 	return count;
476 }
477 
478 static ssize_t host_show_firmware_revision(struct device *dev,
479 	     struct device_attribute *attr, char *buf)
480 {
481 	struct ctlr_info *h;
482 	struct Scsi_Host *shost = class_to_shost(dev);
483 	unsigned char *fwrev;
484 
485 	h = shost_to_hba(shost);
486 	if (!h->hba_inquiry_data)
487 		return 0;
488 	fwrev = &h->hba_inquiry_data[32];
489 	return snprintf(buf, 20, "%c%c%c%c\n",
490 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
491 }
492 
493 static ssize_t host_show_commands_outstanding(struct device *dev,
494 	     struct device_attribute *attr, char *buf)
495 {
496 	struct Scsi_Host *shost = class_to_shost(dev);
497 	struct ctlr_info *h = shost_to_hba(shost);
498 
499 	return snprintf(buf, 20, "%d\n",
500 			atomic_read(&h->commands_outstanding));
501 }
502 
503 static ssize_t host_show_transport_mode(struct device *dev,
504 	struct device_attribute *attr, char *buf)
505 {
506 	struct ctlr_info *h;
507 	struct Scsi_Host *shost = class_to_shost(dev);
508 
509 	h = shost_to_hba(shost);
510 	return snprintf(buf, 20, "%s\n",
511 		h->transMethod & CFGTBL_Trans_Performant ?
512 			"performant" : "simple");
513 }
514 
515 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
516 	struct device_attribute *attr, char *buf)
517 {
518 	struct ctlr_info *h;
519 	struct Scsi_Host *shost = class_to_shost(dev);
520 
521 	h = shost_to_hba(shost);
522 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
523 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
524 }
525 
526 /* List of controllers which cannot be hard reset on kexec with reset_devices */
527 static u32 unresettable_controller[] = {
528 	0x324a103C, /* Smart Array P712m */
529 	0x324b103C, /* Smart Array P711m */
530 	0x3223103C, /* Smart Array P800 */
531 	0x3234103C, /* Smart Array P400 */
532 	0x3235103C, /* Smart Array P400i */
533 	0x3211103C, /* Smart Array E200i */
534 	0x3212103C, /* Smart Array E200 */
535 	0x3213103C, /* Smart Array E200i */
536 	0x3214103C, /* Smart Array E200i */
537 	0x3215103C, /* Smart Array E200i */
538 	0x3237103C, /* Smart Array E500 */
539 	0x323D103C, /* Smart Array P700m */
540 	0x40800E11, /* Smart Array 5i */
541 	0x409C0E11, /* Smart Array 6400 */
542 	0x409D0E11, /* Smart Array 6400 EM */
543 	0x40700E11, /* Smart Array 5300 */
544 	0x40820E11, /* Smart Array 532 */
545 	0x40830E11, /* Smart Array 5312 */
546 	0x409A0E11, /* Smart Array 641 */
547 	0x409B0E11, /* Smart Array 642 */
548 	0x40910E11, /* Smart Array 6i */
549 };
550 
551 /* List of controllers which cannot even be soft reset */
552 static u32 soft_unresettable_controller[] = {
553 	0x40800E11, /* Smart Array 5i */
554 	0x40700E11, /* Smart Array 5300 */
555 	0x40820E11, /* Smart Array 532 */
556 	0x40830E11, /* Smart Array 5312 */
557 	0x409A0E11, /* Smart Array 641 */
558 	0x409B0E11, /* Smart Array 642 */
559 	0x40910E11, /* Smart Array 6i */
560 	/* Exclude 640x boards.  These are two pci devices in one slot
561 	 * which share a battery backed cache module.  One controls the
562 	 * cache, the other accesses the cache through the one that controls
563 	 * it.  If we reset the one controlling the cache, the other will
564 	 * likely not be happy.  Just forbid resetting this conjoined mess.
565 	 * The 640x isn't really supported by hpsa anyway.
566 	 */
567 	0x409C0E11, /* Smart Array 6400 */
568 	0x409D0E11, /* Smart Array 6400 EM */
569 };
570 
571 static u32 needs_abort_tags_swizzled[] = {
572 	0x323D103C, /* Smart Array P700m */
573 	0x324a103C, /* Smart Array P712m */
574 	0x324b103C, /* SmartArray P711m */
575 };
576 
577 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
578 {
579 	int i;
580 
581 	for (i = 0; i < nelems; i++)
582 		if (a[i] == board_id)
583 			return 1;
584 	return 0;
585 }
586 
587 static int ctlr_is_hard_resettable(u32 board_id)
588 {
589 	return !board_id_in_array(unresettable_controller,
590 			ARRAY_SIZE(unresettable_controller), board_id);
591 }
592 
593 static int ctlr_is_soft_resettable(u32 board_id)
594 {
595 	return !board_id_in_array(soft_unresettable_controller,
596 			ARRAY_SIZE(soft_unresettable_controller), board_id);
597 }
598 
599 static int ctlr_is_resettable(u32 board_id)
600 {
601 	return ctlr_is_hard_resettable(board_id) ||
602 		ctlr_is_soft_resettable(board_id);
603 }
604 
605 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
606 {
607 	return board_id_in_array(needs_abort_tags_swizzled,
608 			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
609 }
610 
611 static ssize_t host_show_resettable(struct device *dev,
612 	struct device_attribute *attr, char *buf)
613 {
614 	struct ctlr_info *h;
615 	struct Scsi_Host *shost = class_to_shost(dev);
616 
617 	h = shost_to_hba(shost);
618 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
619 }
620 
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
622 {
623 	return (scsi3addr[3] & 0xC0) == 0x40;
624 }
625 
626 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
628 };
629 #define HPSA_RAID_0	0
630 #define HPSA_RAID_4	1
631 #define HPSA_RAID_1	2	/* also used for RAID 10 */
632 #define HPSA_RAID_5	3	/* also used for RAID 50 */
633 #define HPSA_RAID_51	4
634 #define HPSA_RAID_6	5	/* also used for RAID 60 */
635 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
638 
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
640 {
641 	return !device->physical_device;
642 }
643 
644 static ssize_t raid_level_show(struct device *dev,
645 	     struct device_attribute *attr, char *buf)
646 {
647 	ssize_t l = 0;
648 	unsigned char rlevel;
649 	struct ctlr_info *h;
650 	struct scsi_device *sdev;
651 	struct hpsa_scsi_dev_t *hdev;
652 	unsigned long flags;
653 
654 	sdev = to_scsi_device(dev);
655 	h = sdev_to_hba(sdev);
656 	spin_lock_irqsave(&h->lock, flags);
657 	hdev = sdev->hostdata;
658 	if (!hdev) {
659 		spin_unlock_irqrestore(&h->lock, flags);
660 		return -ENODEV;
661 	}
662 
663 	/* Is this even a logical drive? */
664 	if (!is_logical_device(hdev)) {
665 		spin_unlock_irqrestore(&h->lock, flags);
666 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
667 		return l;
668 	}
669 
670 	rlevel = hdev->raid_level;
671 	spin_unlock_irqrestore(&h->lock, flags);
672 	if (rlevel > RAID_UNKNOWN)
673 		rlevel = RAID_UNKNOWN;
674 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
675 	return l;
676 }
677 
678 static ssize_t lunid_show(struct device *dev,
679 	     struct device_attribute *attr, char *buf)
680 {
681 	struct ctlr_info *h;
682 	struct scsi_device *sdev;
683 	struct hpsa_scsi_dev_t *hdev;
684 	unsigned long flags;
685 	unsigned char lunid[8];
686 
687 	sdev = to_scsi_device(dev);
688 	h = sdev_to_hba(sdev);
689 	spin_lock_irqsave(&h->lock, flags);
690 	hdev = sdev->hostdata;
691 	if (!hdev) {
692 		spin_unlock_irqrestore(&h->lock, flags);
693 		return -ENODEV;
694 	}
695 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
696 	spin_unlock_irqrestore(&h->lock, flags);
697 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
698 		lunid[0], lunid[1], lunid[2], lunid[3],
699 		lunid[4], lunid[5], lunid[6], lunid[7]);
700 }
701 
702 static ssize_t unique_id_show(struct device *dev,
703 	     struct device_attribute *attr, char *buf)
704 {
705 	struct ctlr_info *h;
706 	struct scsi_device *sdev;
707 	struct hpsa_scsi_dev_t *hdev;
708 	unsigned long flags;
709 	unsigned char sn[16];
710 
711 	sdev = to_scsi_device(dev);
712 	h = sdev_to_hba(sdev);
713 	spin_lock_irqsave(&h->lock, flags);
714 	hdev = sdev->hostdata;
715 	if (!hdev) {
716 		spin_unlock_irqrestore(&h->lock, flags);
717 		return -ENODEV;
718 	}
719 	memcpy(sn, hdev->device_id, sizeof(sn));
720 	spin_unlock_irqrestore(&h->lock, flags);
721 	return snprintf(buf, 16 * 2 + 2,
722 			"%02X%02X%02X%02X%02X%02X%02X%02X"
723 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
724 			sn[0], sn[1], sn[2], sn[3],
725 			sn[4], sn[5], sn[6], sn[7],
726 			sn[8], sn[9], sn[10], sn[11],
727 			sn[12], sn[13], sn[14], sn[15]);
728 }
729 
730 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
731 	     struct device_attribute *attr, char *buf)
732 {
733 	struct ctlr_info *h;
734 	struct scsi_device *sdev;
735 	struct hpsa_scsi_dev_t *hdev;
736 	unsigned long flags;
737 	int offload_enabled;
738 
739 	sdev = to_scsi_device(dev);
740 	h = sdev_to_hba(sdev);
741 	spin_lock_irqsave(&h->lock, flags);
742 	hdev = sdev->hostdata;
743 	if (!hdev) {
744 		spin_unlock_irqrestore(&h->lock, flags);
745 		return -ENODEV;
746 	}
747 	offload_enabled = hdev->offload_enabled;
748 	spin_unlock_irqrestore(&h->lock, flags);
749 	return snprintf(buf, 20, "%d\n", offload_enabled);
750 }
751 
752 #define MAX_PATHS 8
753 static ssize_t path_info_show(struct device *dev,
754 	     struct device_attribute *attr, char *buf)
755 {
756 	struct ctlr_info *h;
757 	struct scsi_device *sdev;
758 	struct hpsa_scsi_dev_t *hdev;
759 	unsigned long flags;
760 	int i;
761 	int output_len = 0;
762 	u8 box;
763 	u8 bay;
764 	u8 path_map_index = 0;
765 	char *active;
766 	unsigned char phys_connector[2];
767 
768 	sdev = to_scsi_device(dev);
769 	h = sdev_to_hba(sdev);
770 	spin_lock_irqsave(&h->devlock, flags);
771 	hdev = sdev->hostdata;
772 	if (!hdev) {
773 		spin_unlock_irqrestore(&h->devlock, flags);
774 		return -ENODEV;
775 	}
776 
777 	bay = hdev->bay;
778 	for (i = 0; i < MAX_PATHS; i++) {
779 		path_map_index = 1<<i;
780 		if (i == hdev->active_path_index)
781 			active = "Active";
782 		else if (hdev->path_map & path_map_index)
783 			active = "Inactive";
784 		else
785 			continue;
786 
787 		output_len += scnprintf(buf + output_len,
788 				PAGE_SIZE - output_len,
789 				"[%d:%d:%d:%d] %20.20s ",
790 				h->scsi_host->host_no,
791 				hdev->bus, hdev->target, hdev->lun,
792 				scsi_device_type(hdev->devtype));
793 
794 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
795 			output_len += scnprintf(buf + output_len,
796 						PAGE_SIZE - output_len,
797 						"%s\n", active);
798 			continue;
799 		}
800 
801 		box = hdev->box[i];
802 		memcpy(&phys_connector, &hdev->phys_connector[i],
803 			sizeof(phys_connector));
804 		if (phys_connector[0] < '0')
805 			phys_connector[0] = '0';
806 		if (phys_connector[1] < '0')
807 			phys_connector[1] = '0';
808 		output_len += scnprintf(buf + output_len,
809 				PAGE_SIZE - output_len,
810 				"PORT: %.2s ",
811 				phys_connector);
812 		if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
813 			if (box == 0 || box == 0xFF) {
814 				output_len += scnprintf(buf + output_len,
815 					PAGE_SIZE - output_len,
816 					"BAY: %hhu %s\n",
817 					bay, active);
818 			} else {
819 				output_len += scnprintf(buf + output_len,
820 					PAGE_SIZE - output_len,
821 					"BOX: %hhu BAY: %hhu %s\n",
822 					box, bay, active);
823 			}
824 		} else if (box != 0 && box != 0xFF) {
825 			output_len += scnprintf(buf + output_len,
826 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
827 				box, active);
828 		} else
829 			output_len += scnprintf(buf + output_len,
830 				PAGE_SIZE - output_len, "%s\n", active);
831 	}
832 
833 	spin_unlock_irqrestore(&h->devlock, flags);
834 	return output_len;
835 }
836 
837 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
838 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
839 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
840 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
841 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
842 			host_show_hp_ssd_smart_path_enabled, NULL);
843 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
844 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
845 		host_show_hp_ssd_smart_path_status,
846 		host_store_hp_ssd_smart_path_status);
847 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
848 			host_store_raid_offload_debug);
849 static DEVICE_ATTR(firmware_revision, S_IRUGO,
850 	host_show_firmware_revision, NULL);
851 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
852 	host_show_commands_outstanding, NULL);
853 static DEVICE_ATTR(transport_mode, S_IRUGO,
854 	host_show_transport_mode, NULL);
855 static DEVICE_ATTR(resettable, S_IRUGO,
856 	host_show_resettable, NULL);
857 static DEVICE_ATTR(lockup_detected, S_IRUGO,
858 	host_show_lockup_detected, NULL);
859 
860 static struct device_attribute *hpsa_sdev_attrs[] = {
861 	&dev_attr_raid_level,
862 	&dev_attr_lunid,
863 	&dev_attr_unique_id,
864 	&dev_attr_hp_ssd_smart_path_enabled,
865 	&dev_attr_path_info,
866 	NULL,
867 };
868 
869 static struct device_attribute *hpsa_shost_attrs[] = {
870 	&dev_attr_rescan,
871 	&dev_attr_firmware_revision,
872 	&dev_attr_commands_outstanding,
873 	&dev_attr_transport_mode,
874 	&dev_attr_resettable,
875 	&dev_attr_hp_ssd_smart_path_status,
876 	&dev_attr_raid_offload_debug,
877 	&dev_attr_lockup_detected,
878 	NULL,
879 };
880 
881 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
882 		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
883 
884 static struct scsi_host_template hpsa_driver_template = {
885 	.module			= THIS_MODULE,
886 	.name			= HPSA,
887 	.proc_name		= HPSA,
888 	.queuecommand		= hpsa_scsi_queue_command,
889 	.scan_start		= hpsa_scan_start,
890 	.scan_finished		= hpsa_scan_finished,
891 	.change_queue_depth	= hpsa_change_queue_depth,
892 	.this_id		= -1,
893 	.use_clustering		= ENABLE_CLUSTERING,
894 	.eh_abort_handler	= hpsa_eh_abort_handler,
895 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
896 	.ioctl			= hpsa_ioctl,
897 	.slave_alloc		= hpsa_slave_alloc,
898 	.slave_configure	= hpsa_slave_configure,
899 	.slave_destroy		= hpsa_slave_destroy,
900 #ifdef CONFIG_COMPAT
901 	.compat_ioctl		= hpsa_compat_ioctl,
902 #endif
903 	.sdev_attrs = hpsa_sdev_attrs,
904 	.shost_attrs = hpsa_shost_attrs,
905 	.max_sectors = 8192,
906 	.no_write_same = 1,
907 };
908 
909 static inline u32 next_command(struct ctlr_info *h, u8 q)
910 {
911 	u32 a;
912 	struct reply_queue_buffer *rq = &h->reply_queue[q];
913 
914 	if (h->transMethod & CFGTBL_Trans_io_accel1)
915 		return h->access.command_completed(h, q);
916 
917 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
918 		return h->access.command_completed(h, q);
919 
920 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
921 		a = rq->head[rq->current_entry];
922 		rq->current_entry++;
923 		atomic_dec(&h->commands_outstanding);
924 	} else {
925 		a = FIFO_EMPTY;
926 	}
927 	/* Check for wraparound */
928 	if (rq->current_entry == h->max_commands) {
929 		rq->current_entry = 0;
930 		rq->wraparound ^= 1;
931 	}
932 	return a;
933 }
934 
935 /*
936  * There are some special bits in the bus address of the
937  * command that we have to set for the controller to know
938  * how to process the command:
939  *
940  * Normal performant mode:
941  * bit 0: 1 means performant mode, 0 means simple mode.
942  * bits 1-3 = block fetch table entry
943  * bits 4-6 = command type (== 0)
944  *
945  * ioaccel1 mode:
946  * bit 0 = "performant mode" bit.
947  * bits 1-3 = block fetch table entry
948  * bits 4-6 = command type (== 110)
949  * (command type is needed because ioaccel1 mode
950  * commands are submitted through the same register as normal
951  * mode commands, so this is how the controller knows whether
952  * the command is normal mode or ioaccel1 mode.)
953  *
954  * ioaccel2 mode:
955  * bit 0 = "performant mode" bit.
956  * bits 1-4 = block fetch table entry (note extra bit)
957  * bits 4-6 = not needed, because ioaccel2 mode has
958  * a separate special register for submitting commands.
959  */
960 
961 /*
962  * set_performant_mode: Modify the tag for cciss performant
963  * set bit 0 for pull model, bits 3-1 for block fetch
964  * register number
965  */
966 #define DEFAULT_REPLY_QUEUE (-1)
967 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
968 					int reply_queue)
969 {
970 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
971 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
972 		if (unlikely(!h->msix_vector))
973 			return;
974 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
975 			c->Header.ReplyQueue =
976 				raw_smp_processor_id() % h->nreply_queues;
977 		else
978 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
979 	}
980 }
981 
982 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
983 						struct CommandList *c,
984 						int reply_queue)
985 {
986 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
987 
988 	/*
989 	 * Tell the controller to post the reply to the queue for this
990 	 * processor.  This seems to give the best I/O throughput.
991 	 */
992 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
993 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
994 	else
995 		cp->ReplyQueue = reply_queue % h->nreply_queues;
996 	/*
997 	 * Set the bits in the address sent down to include:
998 	 *  - performant mode bit (bit 0)
999 	 *  - pull count (bits 1-3)
1000 	 *  - command type (bits 4-6)
1001 	 */
1002 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1003 					IOACCEL1_BUSADDR_CMDTYPE;
1004 }
1005 
1006 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1007 						struct CommandList *c,
1008 						int reply_queue)
1009 {
1010 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1011 		&h->ioaccel2_cmd_pool[c->cmdindex];
1012 
1013 	/* Tell the controller to post the reply to the queue for this
1014 	 * processor.  This seems to give the best I/O throughput.
1015 	 */
1016 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1017 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1018 	else
1019 		cp->reply_queue = reply_queue % h->nreply_queues;
1020 	/* Set the bits in the address sent down to include:
1021 	 *  - performant mode bit not used in ioaccel mode 2
1022 	 *  - pull count (bits 0-3)
1023 	 *  - command type isn't needed for ioaccel2
1024 	 */
1025 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1026 }
1027 
1028 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1029 						struct CommandList *c,
1030 						int reply_queue)
1031 {
1032 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1033 
1034 	/*
1035 	 * Tell the controller to post the reply to the queue for this
1036 	 * processor.  This seems to give the best I/O throughput.
1037 	 */
1038 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1039 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1040 	else
1041 		cp->reply_queue = reply_queue % h->nreply_queues;
1042 	/*
1043 	 * Set the bits in the address sent down to include:
1044 	 *  - performant mode bit not used in ioaccel mode 2
1045 	 *  - pull count (bits 0-3)
1046 	 *  - command type isn't needed for ioaccel2
1047 	 */
1048 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1049 }
1050 
1051 static int is_firmware_flash_cmd(u8 *cdb)
1052 {
1053 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1054 }
1055 
1056 /*
1057  * During firmware flash, the heartbeat register may not update as frequently
1058  * as it should.  So we dial down lockup detection during firmware flash. and
1059  * dial it back up when firmware flash completes.
1060  */
1061 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1062 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1063 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1064 		struct CommandList *c)
1065 {
1066 	if (!is_firmware_flash_cmd(c->Request.CDB))
1067 		return;
1068 	atomic_inc(&h->firmware_flash_in_progress);
1069 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1070 }
1071 
1072 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1073 		struct CommandList *c)
1074 {
1075 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1076 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1077 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1078 }
1079 
1080 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1081 	struct CommandList *c, int reply_queue)
1082 {
1083 	dial_down_lockup_detection_during_fw_flash(h, c);
1084 	atomic_inc(&h->commands_outstanding);
1085 	switch (c->cmd_type) {
1086 	case CMD_IOACCEL1:
1087 		set_ioaccel1_performant_mode(h, c, reply_queue);
1088 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1089 		break;
1090 	case CMD_IOACCEL2:
1091 		set_ioaccel2_performant_mode(h, c, reply_queue);
1092 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1093 		break;
1094 	case IOACCEL2_TMF:
1095 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1096 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1097 		break;
1098 	default:
1099 		set_performant_mode(h, c, reply_queue);
1100 		h->access.submit_command(h, c);
1101 	}
1102 }
1103 
1104 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1105 {
1106 	if (unlikely(hpsa_is_pending_event(c)))
1107 		return finish_cmd(c);
1108 
1109 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1110 }
1111 
1112 static inline int is_hba_lunid(unsigned char scsi3addr[])
1113 {
1114 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1115 }
1116 
1117 static inline int is_scsi_rev_5(struct ctlr_info *h)
1118 {
1119 	if (!h->hba_inquiry_data)
1120 		return 0;
1121 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1122 		return 1;
1123 	return 0;
1124 }
1125 
1126 static int hpsa_find_target_lun(struct ctlr_info *h,
1127 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1128 {
1129 	/* finds an unused bus, target, lun for a new physical device
1130 	 * assumes h->devlock is held
1131 	 */
1132 	int i, found = 0;
1133 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1134 
1135 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1136 
1137 	for (i = 0; i < h->ndevices; i++) {
1138 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1139 			__set_bit(h->dev[i]->target, lun_taken);
1140 	}
1141 
1142 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1143 	if (i < HPSA_MAX_DEVICES) {
1144 		/* *bus = 1; */
1145 		*target = i;
1146 		*lun = 0;
1147 		found = 1;
1148 	}
1149 	return !found;
1150 }
1151 
1152 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1153 	struct hpsa_scsi_dev_t *dev, char *description)
1154 {
1155 #define LABEL_SIZE 25
1156 	char label[LABEL_SIZE];
1157 
1158 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1159 		return;
1160 
1161 	switch (dev->devtype) {
1162 	case TYPE_RAID:
1163 		snprintf(label, LABEL_SIZE, "controller");
1164 		break;
1165 	case TYPE_ENCLOSURE:
1166 		snprintf(label, LABEL_SIZE, "enclosure");
1167 		break;
1168 	case TYPE_DISK:
1169 		if (dev->external)
1170 			snprintf(label, LABEL_SIZE, "external");
1171 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1172 			snprintf(label, LABEL_SIZE, "%s",
1173 				raid_label[PHYSICAL_DRIVE]);
1174 		else
1175 			snprintf(label, LABEL_SIZE, "RAID-%s",
1176 				dev->raid_level > RAID_UNKNOWN ? "?" :
1177 				raid_label[dev->raid_level]);
1178 		break;
1179 	case TYPE_ROM:
1180 		snprintf(label, LABEL_SIZE, "rom");
1181 		break;
1182 	case TYPE_TAPE:
1183 		snprintf(label, LABEL_SIZE, "tape");
1184 		break;
1185 	case TYPE_MEDIUM_CHANGER:
1186 		snprintf(label, LABEL_SIZE, "changer");
1187 		break;
1188 	default:
1189 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1190 		break;
1191 	}
1192 
1193 	dev_printk(level, &h->pdev->dev,
1194 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1195 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1196 			description,
1197 			scsi_device_type(dev->devtype),
1198 			dev->vendor,
1199 			dev->model,
1200 			label,
1201 			dev->offload_config ? '+' : '-',
1202 			dev->offload_enabled ? '+' : '-',
1203 			dev->expose_device);
1204 }
1205 
1206 /* Add an entry into h->dev[] array. */
1207 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1208 		struct hpsa_scsi_dev_t *device,
1209 		struct hpsa_scsi_dev_t *added[], int *nadded)
1210 {
1211 	/* assumes h->devlock is held */
1212 	int n = h->ndevices;
1213 	int i;
1214 	unsigned char addr1[8], addr2[8];
1215 	struct hpsa_scsi_dev_t *sd;
1216 
1217 	if (n >= HPSA_MAX_DEVICES) {
1218 		dev_err(&h->pdev->dev, "too many devices, some will be "
1219 			"inaccessible.\n");
1220 		return -1;
1221 	}
1222 
1223 	/* physical devices do not have lun or target assigned until now. */
1224 	if (device->lun != -1)
1225 		/* Logical device, lun is already assigned. */
1226 		goto lun_assigned;
1227 
1228 	/* If this device a non-zero lun of a multi-lun device
1229 	 * byte 4 of the 8-byte LUN addr will contain the logical
1230 	 * unit no, zero otherwise.
1231 	 */
1232 	if (device->scsi3addr[4] == 0) {
1233 		/* This is not a non-zero lun of a multi-lun device */
1234 		if (hpsa_find_target_lun(h, device->scsi3addr,
1235 			device->bus, &device->target, &device->lun) != 0)
1236 			return -1;
1237 		goto lun_assigned;
1238 	}
1239 
1240 	/* This is a non-zero lun of a multi-lun device.
1241 	 * Search through our list and find the device which
1242 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1243 	 * Assign the same bus and target for this new LUN.
1244 	 * Use the logical unit number from the firmware.
1245 	 */
1246 	memcpy(addr1, device->scsi3addr, 8);
1247 	addr1[4] = 0;
1248 	addr1[5] = 0;
1249 	for (i = 0; i < n; i++) {
1250 		sd = h->dev[i];
1251 		memcpy(addr2, sd->scsi3addr, 8);
1252 		addr2[4] = 0;
1253 		addr2[5] = 0;
1254 		/* differ only in byte 4 and 5? */
1255 		if (memcmp(addr1, addr2, 8) == 0) {
1256 			device->bus = sd->bus;
1257 			device->target = sd->target;
1258 			device->lun = device->scsi3addr[4];
1259 			break;
1260 		}
1261 	}
1262 	if (device->lun == -1) {
1263 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1264 			" suspect firmware bug or unsupported hardware "
1265 			"configuration.\n");
1266 			return -1;
1267 	}
1268 
1269 lun_assigned:
1270 
1271 	h->dev[n] = device;
1272 	h->ndevices++;
1273 	added[*nadded] = device;
1274 	(*nadded)++;
1275 	hpsa_show_dev_msg(KERN_INFO, h, device,
1276 		device->expose_device ? "added" : "masked");
1277 	device->offload_to_be_enabled = device->offload_enabled;
1278 	device->offload_enabled = 0;
1279 	return 0;
1280 }
1281 
1282 /* Update an entry in h->dev[] array. */
1283 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1284 	int entry, struct hpsa_scsi_dev_t *new_entry)
1285 {
1286 	int offload_enabled;
1287 	/* assumes h->devlock is held */
1288 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1289 
1290 	/* Raid level changed. */
1291 	h->dev[entry]->raid_level = new_entry->raid_level;
1292 
1293 	/* Raid offload parameters changed.  Careful about the ordering. */
1294 	if (new_entry->offload_config && new_entry->offload_enabled) {
1295 		/*
1296 		 * if drive is newly offload_enabled, we want to copy the
1297 		 * raid map data first.  If previously offload_enabled and
1298 		 * offload_config were set, raid map data had better be
1299 		 * the same as it was before.  if raid map data is changed
1300 		 * then it had better be the case that
1301 		 * h->dev[entry]->offload_enabled is currently 0.
1302 		 */
1303 		h->dev[entry]->raid_map = new_entry->raid_map;
1304 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1305 	}
1306 	if (new_entry->hba_ioaccel_enabled) {
1307 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1308 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1309 	}
1310 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1311 	h->dev[entry]->offload_config = new_entry->offload_config;
1312 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1313 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1314 
1315 	/*
1316 	 * We can turn off ioaccel offload now, but need to delay turning
1317 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1318 	 * can't do that until all the devices are updated.
1319 	 */
1320 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1321 	if (!new_entry->offload_enabled)
1322 		h->dev[entry]->offload_enabled = 0;
1323 
1324 	offload_enabled = h->dev[entry]->offload_enabled;
1325 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1326 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1327 	h->dev[entry]->offload_enabled = offload_enabled;
1328 }
1329 
1330 /* Replace an entry from h->dev[] array. */
1331 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1332 	int entry, struct hpsa_scsi_dev_t *new_entry,
1333 	struct hpsa_scsi_dev_t *added[], int *nadded,
1334 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1335 {
1336 	/* assumes h->devlock is held */
1337 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1338 	removed[*nremoved] = h->dev[entry];
1339 	(*nremoved)++;
1340 
1341 	/*
1342 	 * New physical devices won't have target/lun assigned yet
1343 	 * so we need to preserve the values in the slot we are replacing.
1344 	 */
1345 	if (new_entry->target == -1) {
1346 		new_entry->target = h->dev[entry]->target;
1347 		new_entry->lun = h->dev[entry]->lun;
1348 	}
1349 
1350 	h->dev[entry] = new_entry;
1351 	added[*nadded] = new_entry;
1352 	(*nadded)++;
1353 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1354 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1355 	new_entry->offload_enabled = 0;
1356 }
1357 
1358 /* Remove an entry from h->dev[] array. */
1359 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1360 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1361 {
1362 	/* assumes h->devlock is held */
1363 	int i;
1364 	struct hpsa_scsi_dev_t *sd;
1365 
1366 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1367 
1368 	sd = h->dev[entry];
1369 	removed[*nremoved] = h->dev[entry];
1370 	(*nremoved)++;
1371 
1372 	for (i = entry; i < h->ndevices-1; i++)
1373 		h->dev[i] = h->dev[i+1];
1374 	h->ndevices--;
1375 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1376 }
1377 
1378 #define SCSI3ADDR_EQ(a, b) ( \
1379 	(a)[7] == (b)[7] && \
1380 	(a)[6] == (b)[6] && \
1381 	(a)[5] == (b)[5] && \
1382 	(a)[4] == (b)[4] && \
1383 	(a)[3] == (b)[3] && \
1384 	(a)[2] == (b)[2] && \
1385 	(a)[1] == (b)[1] && \
1386 	(a)[0] == (b)[0])
1387 
1388 static void fixup_botched_add(struct ctlr_info *h,
1389 	struct hpsa_scsi_dev_t *added)
1390 {
1391 	/* called when scsi_add_device fails in order to re-adjust
1392 	 * h->dev[] to match the mid layer's view.
1393 	 */
1394 	unsigned long flags;
1395 	int i, j;
1396 
1397 	spin_lock_irqsave(&h->lock, flags);
1398 	for (i = 0; i < h->ndevices; i++) {
1399 		if (h->dev[i] == added) {
1400 			for (j = i; j < h->ndevices-1; j++)
1401 				h->dev[j] = h->dev[j+1];
1402 			h->ndevices--;
1403 			break;
1404 		}
1405 	}
1406 	spin_unlock_irqrestore(&h->lock, flags);
1407 	kfree(added);
1408 }
1409 
1410 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1411 	struct hpsa_scsi_dev_t *dev2)
1412 {
1413 	/* we compare everything except lun and target as these
1414 	 * are not yet assigned.  Compare parts likely
1415 	 * to differ first
1416 	 */
1417 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1418 		sizeof(dev1->scsi3addr)) != 0)
1419 		return 0;
1420 	if (memcmp(dev1->device_id, dev2->device_id,
1421 		sizeof(dev1->device_id)) != 0)
1422 		return 0;
1423 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1424 		return 0;
1425 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1426 		return 0;
1427 	if (dev1->devtype != dev2->devtype)
1428 		return 0;
1429 	if (dev1->bus != dev2->bus)
1430 		return 0;
1431 	return 1;
1432 }
1433 
1434 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1435 	struct hpsa_scsi_dev_t *dev2)
1436 {
1437 	/* Device attributes that can change, but don't mean
1438 	 * that the device is a different device, nor that the OS
1439 	 * needs to be told anything about the change.
1440 	 */
1441 	if (dev1->raid_level != dev2->raid_level)
1442 		return 1;
1443 	if (dev1->offload_config != dev2->offload_config)
1444 		return 1;
1445 	if (dev1->offload_enabled != dev2->offload_enabled)
1446 		return 1;
1447 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1448 		if (dev1->queue_depth != dev2->queue_depth)
1449 			return 1;
1450 	return 0;
1451 }
1452 
1453 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1454  * and return needle location in *index.  If scsi3addr matches, but not
1455  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1456  * location in *index.
1457  * In the case of a minor device attribute change, such as RAID level, just
1458  * return DEVICE_UPDATED, along with the updated device's location in index.
1459  * If needle not found, return DEVICE_NOT_FOUND.
1460  */
1461 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1462 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1463 	int *index)
1464 {
1465 	int i;
1466 #define DEVICE_NOT_FOUND 0
1467 #define DEVICE_CHANGED 1
1468 #define DEVICE_SAME 2
1469 #define DEVICE_UPDATED 3
1470 	if (needle == NULL)
1471 		return DEVICE_NOT_FOUND;
1472 
1473 	for (i = 0; i < haystack_size; i++) {
1474 		if (haystack[i] == NULL) /* previously removed. */
1475 			continue;
1476 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1477 			*index = i;
1478 			if (device_is_the_same(needle, haystack[i])) {
1479 				if (device_updated(needle, haystack[i]))
1480 					return DEVICE_UPDATED;
1481 				return DEVICE_SAME;
1482 			} else {
1483 				/* Keep offline devices offline */
1484 				if (needle->volume_offline)
1485 					return DEVICE_NOT_FOUND;
1486 				return DEVICE_CHANGED;
1487 			}
1488 		}
1489 	}
1490 	*index = -1;
1491 	return DEVICE_NOT_FOUND;
1492 }
1493 
1494 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1495 					unsigned char scsi3addr[])
1496 {
1497 	struct offline_device_entry *device;
1498 	unsigned long flags;
1499 
1500 	/* Check to see if device is already on the list */
1501 	spin_lock_irqsave(&h->offline_device_lock, flags);
1502 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1503 		if (memcmp(device->scsi3addr, scsi3addr,
1504 			sizeof(device->scsi3addr)) == 0) {
1505 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1506 			return;
1507 		}
1508 	}
1509 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1510 
1511 	/* Device is not on the list, add it. */
1512 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1513 	if (!device) {
1514 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1515 		return;
1516 	}
1517 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1518 	spin_lock_irqsave(&h->offline_device_lock, flags);
1519 	list_add_tail(&device->offline_list, &h->offline_device_list);
1520 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1521 }
1522 
1523 /* Print a message explaining various offline volume states */
1524 static void hpsa_show_volume_status(struct ctlr_info *h,
1525 	struct hpsa_scsi_dev_t *sd)
1526 {
1527 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1528 		dev_info(&h->pdev->dev,
1529 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1530 			h->scsi_host->host_no,
1531 			sd->bus, sd->target, sd->lun);
1532 	switch (sd->volume_offline) {
1533 	case HPSA_LV_OK:
1534 		break;
1535 	case HPSA_LV_UNDERGOING_ERASE:
1536 		dev_info(&h->pdev->dev,
1537 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1538 			h->scsi_host->host_no,
1539 			sd->bus, sd->target, sd->lun);
1540 		break;
1541 	case HPSA_LV_NOT_AVAILABLE:
1542 		dev_info(&h->pdev->dev,
1543 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1544 			h->scsi_host->host_no,
1545 			sd->bus, sd->target, sd->lun);
1546 		break;
1547 	case HPSA_LV_UNDERGOING_RPI:
1548 		dev_info(&h->pdev->dev,
1549 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1550 			h->scsi_host->host_no,
1551 			sd->bus, sd->target, sd->lun);
1552 		break;
1553 	case HPSA_LV_PENDING_RPI:
1554 		dev_info(&h->pdev->dev,
1555 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1556 			h->scsi_host->host_no,
1557 			sd->bus, sd->target, sd->lun);
1558 		break;
1559 	case HPSA_LV_ENCRYPTED_NO_KEY:
1560 		dev_info(&h->pdev->dev,
1561 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1562 			h->scsi_host->host_no,
1563 			sd->bus, sd->target, sd->lun);
1564 		break;
1565 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1566 		dev_info(&h->pdev->dev,
1567 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1568 			h->scsi_host->host_no,
1569 			sd->bus, sd->target, sd->lun);
1570 		break;
1571 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1572 		dev_info(&h->pdev->dev,
1573 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1574 			h->scsi_host->host_no,
1575 			sd->bus, sd->target, sd->lun);
1576 		break;
1577 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1578 		dev_info(&h->pdev->dev,
1579 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1580 			h->scsi_host->host_no,
1581 			sd->bus, sd->target, sd->lun);
1582 		break;
1583 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1584 		dev_info(&h->pdev->dev,
1585 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1586 			h->scsi_host->host_no,
1587 			sd->bus, sd->target, sd->lun);
1588 		break;
1589 	case HPSA_LV_PENDING_ENCRYPTION:
1590 		dev_info(&h->pdev->dev,
1591 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1592 			h->scsi_host->host_no,
1593 			sd->bus, sd->target, sd->lun);
1594 		break;
1595 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1596 		dev_info(&h->pdev->dev,
1597 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1598 			h->scsi_host->host_no,
1599 			sd->bus, sd->target, sd->lun);
1600 		break;
1601 	}
1602 }
1603 
1604 /*
1605  * Figure the list of physical drive pointers for a logical drive with
1606  * raid offload configured.
1607  */
1608 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1609 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1610 				struct hpsa_scsi_dev_t *logical_drive)
1611 {
1612 	struct raid_map_data *map = &logical_drive->raid_map;
1613 	struct raid_map_disk_data *dd = &map->data[0];
1614 	int i, j;
1615 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1616 				le16_to_cpu(map->metadata_disks_per_row);
1617 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1618 				le16_to_cpu(map->layout_map_count) *
1619 				total_disks_per_row;
1620 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1621 				total_disks_per_row;
1622 	int qdepth;
1623 
1624 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1625 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1626 
1627 	logical_drive->nphysical_disks = nraid_map_entries;
1628 
1629 	qdepth = 0;
1630 	for (i = 0; i < nraid_map_entries; i++) {
1631 		logical_drive->phys_disk[i] = NULL;
1632 		if (!logical_drive->offload_config)
1633 			continue;
1634 		for (j = 0; j < ndevices; j++) {
1635 			if (dev[j] == NULL)
1636 				continue;
1637 			if (dev[j]->devtype != TYPE_DISK)
1638 				continue;
1639 			if (is_logical_device(dev[j]))
1640 				continue;
1641 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1642 				continue;
1643 
1644 			logical_drive->phys_disk[i] = dev[j];
1645 			if (i < nphys_disk)
1646 				qdepth = min(h->nr_cmds, qdepth +
1647 				    logical_drive->phys_disk[i]->queue_depth);
1648 			break;
1649 		}
1650 
1651 		/*
1652 		 * This can happen if a physical drive is removed and
1653 		 * the logical drive is degraded.  In that case, the RAID
1654 		 * map data will refer to a physical disk which isn't actually
1655 		 * present.  And in that case offload_enabled should already
1656 		 * be 0, but we'll turn it off here just in case
1657 		 */
1658 		if (!logical_drive->phys_disk[i]) {
1659 			logical_drive->offload_enabled = 0;
1660 			logical_drive->offload_to_be_enabled = 0;
1661 			logical_drive->queue_depth = 8;
1662 		}
1663 	}
1664 	if (nraid_map_entries)
1665 		/*
1666 		 * This is correct for reads, too high for full stripe writes,
1667 		 * way too high for partial stripe writes
1668 		 */
1669 		logical_drive->queue_depth = qdepth;
1670 	else
1671 		logical_drive->queue_depth = h->nr_cmds;
1672 }
1673 
1674 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1675 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1676 {
1677 	int i;
1678 
1679 	for (i = 0; i < ndevices; i++) {
1680 		if (dev[i] == NULL)
1681 			continue;
1682 		if (dev[i]->devtype != TYPE_DISK)
1683 			continue;
1684 		if (!is_logical_device(dev[i]))
1685 			continue;
1686 
1687 		/*
1688 		 * If offload is currently enabled, the RAID map and
1689 		 * phys_disk[] assignment *better* not be changing
1690 		 * and since it isn't changing, we do not need to
1691 		 * update it.
1692 		 */
1693 		if (dev[i]->offload_enabled)
1694 			continue;
1695 
1696 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1697 	}
1698 }
1699 
1700 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1701 {
1702 	int rc = 0;
1703 
1704 	if (!h->scsi_host)
1705 		return 1;
1706 
1707 	if (is_logical_device(device)) /* RAID */
1708 		rc = scsi_add_device(h->scsi_host, device->bus,
1709 					device->target, device->lun);
1710 	else /* HBA */
1711 		rc = hpsa_add_sas_device(h->sas_host, device);
1712 
1713 	return rc;
1714 }
1715 
1716 static void hpsa_remove_device(struct ctlr_info *h,
1717 			struct hpsa_scsi_dev_t *device)
1718 {
1719 	struct scsi_device *sdev = NULL;
1720 
1721 	if (!h->scsi_host)
1722 		return;
1723 
1724 	if (is_logical_device(device)) { /* RAID */
1725 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1726 						device->target, device->lun);
1727 		if (sdev) {
1728 			scsi_remove_device(sdev);
1729 			scsi_device_put(sdev);
1730 		} else {
1731 			/*
1732 			 * We don't expect to get here.  Future commands
1733 			 * to this device will get a selection timeout as
1734 			 * if the device were gone.
1735 			 */
1736 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1737 					"didn't find device for removal.");
1738 		}
1739 	} else /* HBA */
1740 		hpsa_remove_sas_device(device);
1741 }
1742 
1743 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1744 	struct hpsa_scsi_dev_t *sd[], int nsds)
1745 {
1746 	/* sd contains scsi3 addresses and devtypes, and inquiry
1747 	 * data.  This function takes what's in sd to be the current
1748 	 * reality and updates h->dev[] to reflect that reality.
1749 	 */
1750 	int i, entry, device_change, changes = 0;
1751 	struct hpsa_scsi_dev_t *csd;
1752 	unsigned long flags;
1753 	struct hpsa_scsi_dev_t **added, **removed;
1754 	int nadded, nremoved;
1755 
1756 	/*
1757 	 * A reset can cause a device status to change
1758 	 * re-schedule the scan to see what happened.
1759 	 */
1760 	if (h->reset_in_progress) {
1761 		h->drv_req_rescan = 1;
1762 		return;
1763 	}
1764 
1765 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1766 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1767 
1768 	if (!added || !removed) {
1769 		dev_warn(&h->pdev->dev, "out of memory in "
1770 			"adjust_hpsa_scsi_table\n");
1771 		goto free_and_out;
1772 	}
1773 
1774 	spin_lock_irqsave(&h->devlock, flags);
1775 
1776 	/* find any devices in h->dev[] that are not in
1777 	 * sd[] and remove them from h->dev[], and for any
1778 	 * devices which have changed, remove the old device
1779 	 * info and add the new device info.
1780 	 * If minor device attributes change, just update
1781 	 * the existing device structure.
1782 	 */
1783 	i = 0;
1784 	nremoved = 0;
1785 	nadded = 0;
1786 	while (i < h->ndevices) {
1787 		csd = h->dev[i];
1788 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1789 		if (device_change == DEVICE_NOT_FOUND) {
1790 			changes++;
1791 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1792 			continue; /* remove ^^^, hence i not incremented */
1793 		} else if (device_change == DEVICE_CHANGED) {
1794 			changes++;
1795 			hpsa_scsi_replace_entry(h, i, sd[entry],
1796 				added, &nadded, removed, &nremoved);
1797 			/* Set it to NULL to prevent it from being freed
1798 			 * at the bottom of hpsa_update_scsi_devices()
1799 			 */
1800 			sd[entry] = NULL;
1801 		} else if (device_change == DEVICE_UPDATED) {
1802 			hpsa_scsi_update_entry(h, i, sd[entry]);
1803 		}
1804 		i++;
1805 	}
1806 
1807 	/* Now, make sure every device listed in sd[] is also
1808 	 * listed in h->dev[], adding them if they aren't found
1809 	 */
1810 
1811 	for (i = 0; i < nsds; i++) {
1812 		if (!sd[i]) /* if already added above. */
1813 			continue;
1814 
1815 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1816 		 * as the SCSI mid-layer does not handle such devices well.
1817 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1818 		 * at 160Hz, and prevents the system from coming up.
1819 		 */
1820 		if (sd[i]->volume_offline) {
1821 			hpsa_show_volume_status(h, sd[i]);
1822 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1823 			continue;
1824 		}
1825 
1826 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1827 					h->ndevices, &entry);
1828 		if (device_change == DEVICE_NOT_FOUND) {
1829 			changes++;
1830 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1831 				break;
1832 			sd[i] = NULL; /* prevent from being freed later. */
1833 		} else if (device_change == DEVICE_CHANGED) {
1834 			/* should never happen... */
1835 			changes++;
1836 			dev_warn(&h->pdev->dev,
1837 				"device unexpectedly changed.\n");
1838 			/* but if it does happen, we just ignore that device */
1839 		}
1840 	}
1841 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1842 
1843 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1844 	 * any logical drives that need it enabled.
1845 	 */
1846 	for (i = 0; i < h->ndevices; i++) {
1847 		if (h->dev[i] == NULL)
1848 			continue;
1849 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1850 	}
1851 
1852 	spin_unlock_irqrestore(&h->devlock, flags);
1853 
1854 	/* Monitor devices which are in one of several NOT READY states to be
1855 	 * brought online later. This must be done without holding h->devlock,
1856 	 * so don't touch h->dev[]
1857 	 */
1858 	for (i = 0; i < nsds; i++) {
1859 		if (!sd[i]) /* if already added above. */
1860 			continue;
1861 		if (sd[i]->volume_offline)
1862 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1863 	}
1864 
1865 	/* Don't notify scsi mid layer of any changes the first time through
1866 	 * (or if there are no changes) scsi_scan_host will do it later the
1867 	 * first time through.
1868 	 */
1869 	if (!changes)
1870 		goto free_and_out;
1871 
1872 	/* Notify scsi mid layer of any removed devices */
1873 	for (i = 0; i < nremoved; i++) {
1874 		if (removed[i] == NULL)
1875 			continue;
1876 		if (removed[i]->expose_device)
1877 			hpsa_remove_device(h, removed[i]);
1878 		kfree(removed[i]);
1879 		removed[i] = NULL;
1880 	}
1881 
1882 	/* Notify scsi mid layer of any added devices */
1883 	for (i = 0; i < nadded; i++) {
1884 		int rc = 0;
1885 
1886 		if (added[i] == NULL)
1887 			continue;
1888 		if (!(added[i]->expose_device))
1889 			continue;
1890 		rc = hpsa_add_device(h, added[i]);
1891 		if (!rc)
1892 			continue;
1893 		dev_warn(&h->pdev->dev,
1894 			"addition failed %d, device not added.", rc);
1895 		/* now we have to remove it from h->dev,
1896 		 * since it didn't get added to scsi mid layer
1897 		 */
1898 		fixup_botched_add(h, added[i]);
1899 		h->drv_req_rescan = 1;
1900 	}
1901 
1902 free_and_out:
1903 	kfree(added);
1904 	kfree(removed);
1905 }
1906 
1907 /*
1908  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1909  * Assume's h->devlock is held.
1910  */
1911 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1912 	int bus, int target, int lun)
1913 {
1914 	int i;
1915 	struct hpsa_scsi_dev_t *sd;
1916 
1917 	for (i = 0; i < h->ndevices; i++) {
1918 		sd = h->dev[i];
1919 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1920 			return sd;
1921 	}
1922 	return NULL;
1923 }
1924 
1925 static int hpsa_slave_alloc(struct scsi_device *sdev)
1926 {
1927 	struct hpsa_scsi_dev_t *sd;
1928 	unsigned long flags;
1929 	struct ctlr_info *h;
1930 
1931 	h = sdev_to_hba(sdev);
1932 	spin_lock_irqsave(&h->devlock, flags);
1933 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1934 		struct scsi_target *starget;
1935 		struct sas_rphy *rphy;
1936 
1937 		starget = scsi_target(sdev);
1938 		rphy = target_to_rphy(starget);
1939 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
1940 		if (sd) {
1941 			sd->target = sdev_id(sdev);
1942 			sd->lun = sdev->lun;
1943 		}
1944 	} else
1945 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1946 					sdev_id(sdev), sdev->lun);
1947 
1948 	if (sd && sd->expose_device) {
1949 		atomic_set(&sd->ioaccel_cmds_out, 0);
1950 		sdev->hostdata = sd;
1951 	} else
1952 		sdev->hostdata = NULL;
1953 	spin_unlock_irqrestore(&h->devlock, flags);
1954 	return 0;
1955 }
1956 
1957 /* configure scsi device based on internal per-device structure */
1958 static int hpsa_slave_configure(struct scsi_device *sdev)
1959 {
1960 	struct hpsa_scsi_dev_t *sd;
1961 	int queue_depth;
1962 
1963 	sd = sdev->hostdata;
1964 	sdev->no_uld_attach = !sd || !sd->expose_device;
1965 
1966 	if (sd)
1967 		queue_depth = sd->queue_depth != 0 ?
1968 			sd->queue_depth : sdev->host->can_queue;
1969 	else
1970 		queue_depth = sdev->host->can_queue;
1971 
1972 	scsi_change_queue_depth(sdev, queue_depth);
1973 
1974 	return 0;
1975 }
1976 
1977 static void hpsa_slave_destroy(struct scsi_device *sdev)
1978 {
1979 	/* nothing to do. */
1980 }
1981 
1982 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1983 {
1984 	int i;
1985 
1986 	if (!h->ioaccel2_cmd_sg_list)
1987 		return;
1988 	for (i = 0; i < h->nr_cmds; i++) {
1989 		kfree(h->ioaccel2_cmd_sg_list[i]);
1990 		h->ioaccel2_cmd_sg_list[i] = NULL;
1991 	}
1992 	kfree(h->ioaccel2_cmd_sg_list);
1993 	h->ioaccel2_cmd_sg_list = NULL;
1994 }
1995 
1996 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1997 {
1998 	int i;
1999 
2000 	if (h->chainsize <= 0)
2001 		return 0;
2002 
2003 	h->ioaccel2_cmd_sg_list =
2004 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2005 					GFP_KERNEL);
2006 	if (!h->ioaccel2_cmd_sg_list)
2007 		return -ENOMEM;
2008 	for (i = 0; i < h->nr_cmds; i++) {
2009 		h->ioaccel2_cmd_sg_list[i] =
2010 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2011 					h->maxsgentries, GFP_KERNEL);
2012 		if (!h->ioaccel2_cmd_sg_list[i])
2013 			goto clean;
2014 	}
2015 	return 0;
2016 
2017 clean:
2018 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2019 	return -ENOMEM;
2020 }
2021 
2022 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2023 {
2024 	int i;
2025 
2026 	if (!h->cmd_sg_list)
2027 		return;
2028 	for (i = 0; i < h->nr_cmds; i++) {
2029 		kfree(h->cmd_sg_list[i]);
2030 		h->cmd_sg_list[i] = NULL;
2031 	}
2032 	kfree(h->cmd_sg_list);
2033 	h->cmd_sg_list = NULL;
2034 }
2035 
2036 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2037 {
2038 	int i;
2039 
2040 	if (h->chainsize <= 0)
2041 		return 0;
2042 
2043 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2044 				GFP_KERNEL);
2045 	if (!h->cmd_sg_list) {
2046 		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2047 		return -ENOMEM;
2048 	}
2049 	for (i = 0; i < h->nr_cmds; i++) {
2050 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2051 						h->chainsize, GFP_KERNEL);
2052 		if (!h->cmd_sg_list[i]) {
2053 			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2054 			goto clean;
2055 		}
2056 	}
2057 	return 0;
2058 
2059 clean:
2060 	hpsa_free_sg_chain_blocks(h);
2061 	return -ENOMEM;
2062 }
2063 
2064 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2065 	struct io_accel2_cmd *cp, struct CommandList *c)
2066 {
2067 	struct ioaccel2_sg_element *chain_block;
2068 	u64 temp64;
2069 	u32 chain_size;
2070 
2071 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2072 	chain_size = le32_to_cpu(cp->sg[0].length);
2073 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2074 				PCI_DMA_TODEVICE);
2075 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2076 		/* prevent subsequent unmapping */
2077 		cp->sg->address = 0;
2078 		return -1;
2079 	}
2080 	cp->sg->address = cpu_to_le64(temp64);
2081 	return 0;
2082 }
2083 
2084 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2085 	struct io_accel2_cmd *cp)
2086 {
2087 	struct ioaccel2_sg_element *chain_sg;
2088 	u64 temp64;
2089 	u32 chain_size;
2090 
2091 	chain_sg = cp->sg;
2092 	temp64 = le64_to_cpu(chain_sg->address);
2093 	chain_size = le32_to_cpu(cp->sg[0].length);
2094 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2095 }
2096 
2097 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2098 	struct CommandList *c)
2099 {
2100 	struct SGDescriptor *chain_sg, *chain_block;
2101 	u64 temp64;
2102 	u32 chain_len;
2103 
2104 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2105 	chain_block = h->cmd_sg_list[c->cmdindex];
2106 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2107 	chain_len = sizeof(*chain_sg) *
2108 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2109 	chain_sg->Len = cpu_to_le32(chain_len);
2110 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2111 				PCI_DMA_TODEVICE);
2112 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2113 		/* prevent subsequent unmapping */
2114 		chain_sg->Addr = cpu_to_le64(0);
2115 		return -1;
2116 	}
2117 	chain_sg->Addr = cpu_to_le64(temp64);
2118 	return 0;
2119 }
2120 
2121 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2122 	struct CommandList *c)
2123 {
2124 	struct SGDescriptor *chain_sg;
2125 
2126 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2127 		return;
2128 
2129 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2130 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2131 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2132 }
2133 
2134 
2135 /* Decode the various types of errors on ioaccel2 path.
2136  * Return 1 for any error that should generate a RAID path retry.
2137  * Return 0 for errors that don't require a RAID path retry.
2138  */
2139 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2140 					struct CommandList *c,
2141 					struct scsi_cmnd *cmd,
2142 					struct io_accel2_cmd *c2)
2143 {
2144 	int data_len;
2145 	int retry = 0;
2146 	u32 ioaccel2_resid = 0;
2147 
2148 	switch (c2->error_data.serv_response) {
2149 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2150 		switch (c2->error_data.status) {
2151 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2152 			break;
2153 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2154 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2155 			if (c2->error_data.data_present !=
2156 					IOACCEL2_SENSE_DATA_PRESENT) {
2157 				memset(cmd->sense_buffer, 0,
2158 					SCSI_SENSE_BUFFERSIZE);
2159 				break;
2160 			}
2161 			/* copy the sense data */
2162 			data_len = c2->error_data.sense_data_len;
2163 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2164 				data_len = SCSI_SENSE_BUFFERSIZE;
2165 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2166 				data_len =
2167 					sizeof(c2->error_data.sense_data_buff);
2168 			memcpy(cmd->sense_buffer,
2169 				c2->error_data.sense_data_buff, data_len);
2170 			retry = 1;
2171 			break;
2172 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2173 			retry = 1;
2174 			break;
2175 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2176 			retry = 1;
2177 			break;
2178 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2179 			retry = 1;
2180 			break;
2181 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2182 			retry = 1;
2183 			break;
2184 		default:
2185 			retry = 1;
2186 			break;
2187 		}
2188 		break;
2189 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2190 		switch (c2->error_data.status) {
2191 		case IOACCEL2_STATUS_SR_IO_ERROR:
2192 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2193 		case IOACCEL2_STATUS_SR_OVERRUN:
2194 			retry = 1;
2195 			break;
2196 		case IOACCEL2_STATUS_SR_UNDERRUN:
2197 			cmd->result = (DID_OK << 16);		/* host byte */
2198 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2199 			ioaccel2_resid = get_unaligned_le32(
2200 						&c2->error_data.resid_cnt[0]);
2201 			scsi_set_resid(cmd, ioaccel2_resid);
2202 			break;
2203 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2204 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2205 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2206 			/* We will get an event from ctlr to trigger rescan */
2207 			retry = 1;
2208 			break;
2209 		default:
2210 			retry = 1;
2211 		}
2212 		break;
2213 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2214 		break;
2215 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2216 		break;
2217 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2218 		retry = 1;
2219 		break;
2220 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2221 		break;
2222 	default:
2223 		retry = 1;
2224 		break;
2225 	}
2226 
2227 	return retry;	/* retry on raid path? */
2228 }
2229 
2230 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2231 		struct CommandList *c)
2232 {
2233 	bool do_wake = false;
2234 
2235 	/*
2236 	 * Prevent the following race in the abort handler:
2237 	 *
2238 	 * 1. LLD is requested to abort a SCSI command
2239 	 * 2. The SCSI command completes
2240 	 * 3. The struct CommandList associated with step 2 is made available
2241 	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2242 	 * 5. Abort handler follows scsi_cmnd->host_scribble and
2243 	 *    finds struct CommandList and tries to aborts it
2244 	 * Now we have aborted the wrong command.
2245 	 *
2246 	 * Reset c->scsi_cmd here so that the abort or reset handler will know
2247 	 * this command has completed.  Then, check to see if the handler is
2248 	 * waiting for this command, and, if so, wake it.
2249 	 */
2250 	c->scsi_cmd = SCSI_CMD_IDLE;
2251 	mb();	/* Declare command idle before checking for pending events. */
2252 	if (c->abort_pending) {
2253 		do_wake = true;
2254 		c->abort_pending = false;
2255 	}
2256 	if (c->reset_pending) {
2257 		unsigned long flags;
2258 		struct hpsa_scsi_dev_t *dev;
2259 
2260 		/*
2261 		 * There appears to be a reset pending; lock the lock and
2262 		 * reconfirm.  If so, then decrement the count of outstanding
2263 		 * commands and wake the reset command if this is the last one.
2264 		 */
2265 		spin_lock_irqsave(&h->lock, flags);
2266 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2267 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2268 			do_wake = true;
2269 		c->reset_pending = NULL;
2270 		spin_unlock_irqrestore(&h->lock, flags);
2271 	}
2272 
2273 	if (do_wake)
2274 		wake_up_all(&h->event_sync_wait_queue);
2275 }
2276 
2277 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2278 				      struct CommandList *c)
2279 {
2280 	hpsa_cmd_resolve_events(h, c);
2281 	cmd_tagged_free(h, c);
2282 }
2283 
2284 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2285 		struct CommandList *c, struct scsi_cmnd *cmd)
2286 {
2287 	hpsa_cmd_resolve_and_free(h, c);
2288 	cmd->scsi_done(cmd);
2289 }
2290 
2291 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2292 {
2293 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2294 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2295 }
2296 
2297 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2298 {
2299 	cmd->result = DID_ABORT << 16;
2300 }
2301 
2302 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2303 				    struct scsi_cmnd *cmd)
2304 {
2305 	hpsa_set_scsi_cmd_aborted(cmd);
2306 	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2307 			 c->Request.CDB, c->err_info->ScsiStatus);
2308 	hpsa_cmd_resolve_and_free(h, c);
2309 }
2310 
2311 static void process_ioaccel2_completion(struct ctlr_info *h,
2312 		struct CommandList *c, struct scsi_cmnd *cmd,
2313 		struct hpsa_scsi_dev_t *dev)
2314 {
2315 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2316 
2317 	/* check for good status */
2318 	if (likely(c2->error_data.serv_response == 0 &&
2319 			c2->error_data.status == 0))
2320 		return hpsa_cmd_free_and_done(h, c, cmd);
2321 
2322 	/*
2323 	 * Any RAID offload error results in retry which will use
2324 	 * the normal I/O path so the controller can handle whatever's
2325 	 * wrong.
2326 	 */
2327 	if (is_logical_device(dev) &&
2328 		c2->error_data.serv_response ==
2329 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2330 		if (c2->error_data.status ==
2331 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2332 			dev->offload_enabled = 0;
2333 
2334 		return hpsa_retry_cmd(h, c);
2335 	}
2336 
2337 	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2338 		return hpsa_retry_cmd(h, c);
2339 
2340 	return hpsa_cmd_free_and_done(h, c, cmd);
2341 }
2342 
2343 /* Returns 0 on success, < 0 otherwise. */
2344 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2345 					struct CommandList *cp)
2346 {
2347 	u8 tmf_status = cp->err_info->ScsiStatus;
2348 
2349 	switch (tmf_status) {
2350 	case CISS_TMF_COMPLETE:
2351 		/*
2352 		 * CISS_TMF_COMPLETE never happens, instead,
2353 		 * ei->CommandStatus == 0 for this case.
2354 		 */
2355 	case CISS_TMF_SUCCESS:
2356 		return 0;
2357 	case CISS_TMF_INVALID_FRAME:
2358 	case CISS_TMF_NOT_SUPPORTED:
2359 	case CISS_TMF_FAILED:
2360 	case CISS_TMF_WRONG_LUN:
2361 	case CISS_TMF_OVERLAPPED_TAG:
2362 		break;
2363 	default:
2364 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2365 				tmf_status);
2366 		break;
2367 	}
2368 	return -tmf_status;
2369 }
2370 
2371 static void complete_scsi_command(struct CommandList *cp)
2372 {
2373 	struct scsi_cmnd *cmd;
2374 	struct ctlr_info *h;
2375 	struct ErrorInfo *ei;
2376 	struct hpsa_scsi_dev_t *dev;
2377 	struct io_accel2_cmd *c2;
2378 
2379 	u8 sense_key;
2380 	u8 asc;      /* additional sense code */
2381 	u8 ascq;     /* additional sense code qualifier */
2382 	unsigned long sense_data_size;
2383 
2384 	ei = cp->err_info;
2385 	cmd = cp->scsi_cmd;
2386 	h = cp->h;
2387 	dev = cmd->device->hostdata;
2388 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2389 
2390 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2391 	if ((cp->cmd_type == CMD_SCSI) &&
2392 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2393 		hpsa_unmap_sg_chain_block(h, cp);
2394 
2395 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2396 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2397 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2398 
2399 	cmd->result = (DID_OK << 16); 		/* host byte */
2400 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2401 
2402 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2403 		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2404 
2405 	/*
2406 	 * We check for lockup status here as it may be set for
2407 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2408 	 * fail_all_oustanding_cmds()
2409 	 */
2410 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2411 		/* DID_NO_CONNECT will prevent a retry */
2412 		cmd->result = DID_NO_CONNECT << 16;
2413 		return hpsa_cmd_free_and_done(h, cp, cmd);
2414 	}
2415 
2416 	if ((unlikely(hpsa_is_pending_event(cp)))) {
2417 		if (cp->reset_pending)
2418 			return hpsa_cmd_resolve_and_free(h, cp);
2419 		if (cp->abort_pending)
2420 			return hpsa_cmd_abort_and_free(h, cp, cmd);
2421 	}
2422 
2423 	if (cp->cmd_type == CMD_IOACCEL2)
2424 		return process_ioaccel2_completion(h, cp, cmd, dev);
2425 
2426 	scsi_set_resid(cmd, ei->ResidualCnt);
2427 	if (ei->CommandStatus == 0)
2428 		return hpsa_cmd_free_and_done(h, cp, cmd);
2429 
2430 	/* For I/O accelerator commands, copy over some fields to the normal
2431 	 * CISS header used below for error handling.
2432 	 */
2433 	if (cp->cmd_type == CMD_IOACCEL1) {
2434 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2435 		cp->Header.SGList = scsi_sg_count(cmd);
2436 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2437 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2438 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2439 		cp->Header.tag = c->tag;
2440 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2441 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2442 
2443 		/* Any RAID offload error results in retry which will use
2444 		 * the normal I/O path so the controller can handle whatever's
2445 		 * wrong.
2446 		 */
2447 		if (is_logical_device(dev)) {
2448 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2449 				dev->offload_enabled = 0;
2450 			return hpsa_retry_cmd(h, cp);
2451 		}
2452 	}
2453 
2454 	/* an error has occurred */
2455 	switch (ei->CommandStatus) {
2456 
2457 	case CMD_TARGET_STATUS:
2458 		cmd->result |= ei->ScsiStatus;
2459 		/* copy the sense data */
2460 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2461 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2462 		else
2463 			sense_data_size = sizeof(ei->SenseInfo);
2464 		if (ei->SenseLen < sense_data_size)
2465 			sense_data_size = ei->SenseLen;
2466 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2467 		if (ei->ScsiStatus)
2468 			decode_sense_data(ei->SenseInfo, sense_data_size,
2469 				&sense_key, &asc, &ascq);
2470 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2471 			if (sense_key == ABORTED_COMMAND) {
2472 				cmd->result |= DID_SOFT_ERROR << 16;
2473 				break;
2474 			}
2475 			break;
2476 		}
2477 		/* Problem was not a check condition
2478 		 * Pass it up to the upper layers...
2479 		 */
2480 		if (ei->ScsiStatus) {
2481 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2482 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2483 				"Returning result: 0x%x\n",
2484 				cp, ei->ScsiStatus,
2485 				sense_key, asc, ascq,
2486 				cmd->result);
2487 		} else {  /* scsi status is zero??? How??? */
2488 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2489 				"Returning no connection.\n", cp),
2490 
2491 			/* Ordinarily, this case should never happen,
2492 			 * but there is a bug in some released firmware
2493 			 * revisions that allows it to happen if, for
2494 			 * example, a 4100 backplane loses power and
2495 			 * the tape drive is in it.  We assume that
2496 			 * it's a fatal error of some kind because we
2497 			 * can't show that it wasn't. We will make it
2498 			 * look like selection timeout since that is
2499 			 * the most common reason for this to occur,
2500 			 * and it's severe enough.
2501 			 */
2502 
2503 			cmd->result = DID_NO_CONNECT << 16;
2504 		}
2505 		break;
2506 
2507 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2508 		break;
2509 	case CMD_DATA_OVERRUN:
2510 		dev_warn(&h->pdev->dev,
2511 			"CDB %16phN data overrun\n", cp->Request.CDB);
2512 		break;
2513 	case CMD_INVALID: {
2514 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2515 		print_cmd(cp); */
2516 		/* We get CMD_INVALID if you address a non-existent device
2517 		 * instead of a selection timeout (no response).  You will
2518 		 * see this if you yank out a drive, then try to access it.
2519 		 * This is kind of a shame because it means that any other
2520 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2521 		 * missing target. */
2522 		cmd->result = DID_NO_CONNECT << 16;
2523 	}
2524 		break;
2525 	case CMD_PROTOCOL_ERR:
2526 		cmd->result = DID_ERROR << 16;
2527 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2528 				cp->Request.CDB);
2529 		break;
2530 	case CMD_HARDWARE_ERR:
2531 		cmd->result = DID_ERROR << 16;
2532 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2533 			cp->Request.CDB);
2534 		break;
2535 	case CMD_CONNECTION_LOST:
2536 		cmd->result = DID_ERROR << 16;
2537 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2538 			cp->Request.CDB);
2539 		break;
2540 	case CMD_ABORTED:
2541 		/* Return now to avoid calling scsi_done(). */
2542 		return hpsa_cmd_abort_and_free(h, cp, cmd);
2543 	case CMD_ABORT_FAILED:
2544 		cmd->result = DID_ERROR << 16;
2545 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2546 			cp->Request.CDB);
2547 		break;
2548 	case CMD_UNSOLICITED_ABORT:
2549 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2550 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2551 			cp->Request.CDB);
2552 		break;
2553 	case CMD_TIMEOUT:
2554 		cmd->result = DID_TIME_OUT << 16;
2555 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2556 			cp->Request.CDB);
2557 		break;
2558 	case CMD_UNABORTABLE:
2559 		cmd->result = DID_ERROR << 16;
2560 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2561 		break;
2562 	case CMD_TMF_STATUS:
2563 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2564 			cmd->result = DID_ERROR << 16;
2565 		break;
2566 	case CMD_IOACCEL_DISABLED:
2567 		/* This only handles the direct pass-through case since RAID
2568 		 * offload is handled above.  Just attempt a retry.
2569 		 */
2570 		cmd->result = DID_SOFT_ERROR << 16;
2571 		dev_warn(&h->pdev->dev,
2572 				"cp %p had HP SSD Smart Path error\n", cp);
2573 		break;
2574 	default:
2575 		cmd->result = DID_ERROR << 16;
2576 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2577 				cp, ei->CommandStatus);
2578 	}
2579 
2580 	return hpsa_cmd_free_and_done(h, cp, cmd);
2581 }
2582 
2583 static void hpsa_pci_unmap(struct pci_dev *pdev,
2584 	struct CommandList *c, int sg_used, int data_direction)
2585 {
2586 	int i;
2587 
2588 	for (i = 0; i < sg_used; i++)
2589 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2590 				le32_to_cpu(c->SG[i].Len),
2591 				data_direction);
2592 }
2593 
2594 static int hpsa_map_one(struct pci_dev *pdev,
2595 		struct CommandList *cp,
2596 		unsigned char *buf,
2597 		size_t buflen,
2598 		int data_direction)
2599 {
2600 	u64 addr64;
2601 
2602 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2603 		cp->Header.SGList = 0;
2604 		cp->Header.SGTotal = cpu_to_le16(0);
2605 		return 0;
2606 	}
2607 
2608 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2609 	if (dma_mapping_error(&pdev->dev, addr64)) {
2610 		/* Prevent subsequent unmap of something never mapped */
2611 		cp->Header.SGList = 0;
2612 		cp->Header.SGTotal = cpu_to_le16(0);
2613 		return -1;
2614 	}
2615 	cp->SG[0].Addr = cpu_to_le64(addr64);
2616 	cp->SG[0].Len = cpu_to_le32(buflen);
2617 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2618 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2619 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2620 	return 0;
2621 }
2622 
2623 #define NO_TIMEOUT ((unsigned long) -1)
2624 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2625 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2626 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2627 {
2628 	DECLARE_COMPLETION_ONSTACK(wait);
2629 
2630 	c->waiting = &wait;
2631 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2632 	if (timeout_msecs == NO_TIMEOUT) {
2633 		/* TODO: get rid of this no-timeout thing */
2634 		wait_for_completion_io(&wait);
2635 		return IO_OK;
2636 	}
2637 	if (!wait_for_completion_io_timeout(&wait,
2638 					msecs_to_jiffies(timeout_msecs))) {
2639 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2640 		return -ETIMEDOUT;
2641 	}
2642 	return IO_OK;
2643 }
2644 
2645 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2646 				   int reply_queue, unsigned long timeout_msecs)
2647 {
2648 	if (unlikely(lockup_detected(h))) {
2649 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2650 		return IO_OK;
2651 	}
2652 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2653 }
2654 
2655 static u32 lockup_detected(struct ctlr_info *h)
2656 {
2657 	int cpu;
2658 	u32 rc, *lockup_detected;
2659 
2660 	cpu = get_cpu();
2661 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2662 	rc = *lockup_detected;
2663 	put_cpu();
2664 	return rc;
2665 }
2666 
2667 #define MAX_DRIVER_CMD_RETRIES 25
2668 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2669 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2670 {
2671 	int backoff_time = 10, retry_count = 0;
2672 	int rc;
2673 
2674 	do {
2675 		memset(c->err_info, 0, sizeof(*c->err_info));
2676 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2677 						  timeout_msecs);
2678 		if (rc)
2679 			break;
2680 		retry_count++;
2681 		if (retry_count > 3) {
2682 			msleep(backoff_time);
2683 			if (backoff_time < 1000)
2684 				backoff_time *= 2;
2685 		}
2686 	} while ((check_for_unit_attention(h, c) ||
2687 			check_for_busy(h, c)) &&
2688 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2689 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2690 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2691 		rc = -EIO;
2692 	return rc;
2693 }
2694 
2695 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2696 				struct CommandList *c)
2697 {
2698 	const u8 *cdb = c->Request.CDB;
2699 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2700 
2701 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2702 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2703 		txt, lun[0], lun[1], lun[2], lun[3],
2704 		lun[4], lun[5], lun[6], lun[7],
2705 		cdb[0], cdb[1], cdb[2], cdb[3],
2706 		cdb[4], cdb[5], cdb[6], cdb[7],
2707 		cdb[8], cdb[9], cdb[10], cdb[11],
2708 		cdb[12], cdb[13], cdb[14], cdb[15]);
2709 }
2710 
2711 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2712 			struct CommandList *cp)
2713 {
2714 	const struct ErrorInfo *ei = cp->err_info;
2715 	struct device *d = &cp->h->pdev->dev;
2716 	u8 sense_key, asc, ascq;
2717 	int sense_len;
2718 
2719 	switch (ei->CommandStatus) {
2720 	case CMD_TARGET_STATUS:
2721 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2722 			sense_len = sizeof(ei->SenseInfo);
2723 		else
2724 			sense_len = ei->SenseLen;
2725 		decode_sense_data(ei->SenseInfo, sense_len,
2726 					&sense_key, &asc, &ascq);
2727 		hpsa_print_cmd(h, "SCSI status", cp);
2728 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2729 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2730 				sense_key, asc, ascq);
2731 		else
2732 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2733 		if (ei->ScsiStatus == 0)
2734 			dev_warn(d, "SCSI status is abnormally zero.  "
2735 			"(probably indicates selection timeout "
2736 			"reported incorrectly due to a known "
2737 			"firmware bug, circa July, 2001.)\n");
2738 		break;
2739 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2740 		break;
2741 	case CMD_DATA_OVERRUN:
2742 		hpsa_print_cmd(h, "overrun condition", cp);
2743 		break;
2744 	case CMD_INVALID: {
2745 		/* controller unfortunately reports SCSI passthru's
2746 		 * to non-existent targets as invalid commands.
2747 		 */
2748 		hpsa_print_cmd(h, "invalid command", cp);
2749 		dev_warn(d, "probably means device no longer present\n");
2750 		}
2751 		break;
2752 	case CMD_PROTOCOL_ERR:
2753 		hpsa_print_cmd(h, "protocol error", cp);
2754 		break;
2755 	case CMD_HARDWARE_ERR:
2756 		hpsa_print_cmd(h, "hardware error", cp);
2757 		break;
2758 	case CMD_CONNECTION_LOST:
2759 		hpsa_print_cmd(h, "connection lost", cp);
2760 		break;
2761 	case CMD_ABORTED:
2762 		hpsa_print_cmd(h, "aborted", cp);
2763 		break;
2764 	case CMD_ABORT_FAILED:
2765 		hpsa_print_cmd(h, "abort failed", cp);
2766 		break;
2767 	case CMD_UNSOLICITED_ABORT:
2768 		hpsa_print_cmd(h, "unsolicited abort", cp);
2769 		break;
2770 	case CMD_TIMEOUT:
2771 		hpsa_print_cmd(h, "timed out", cp);
2772 		break;
2773 	case CMD_UNABORTABLE:
2774 		hpsa_print_cmd(h, "unabortable", cp);
2775 		break;
2776 	case CMD_CTLR_LOCKUP:
2777 		hpsa_print_cmd(h, "controller lockup detected", cp);
2778 		break;
2779 	default:
2780 		hpsa_print_cmd(h, "unknown status", cp);
2781 		dev_warn(d, "Unknown command status %x\n",
2782 				ei->CommandStatus);
2783 	}
2784 }
2785 
2786 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2787 			u16 page, unsigned char *buf,
2788 			unsigned char bufsize)
2789 {
2790 	int rc = IO_OK;
2791 	struct CommandList *c;
2792 	struct ErrorInfo *ei;
2793 
2794 	c = cmd_alloc(h);
2795 
2796 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2797 			page, scsi3addr, TYPE_CMD)) {
2798 		rc = -1;
2799 		goto out;
2800 	}
2801 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2802 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2803 	if (rc)
2804 		goto out;
2805 	ei = c->err_info;
2806 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2807 		hpsa_scsi_interpret_error(h, c);
2808 		rc = -1;
2809 	}
2810 out:
2811 	cmd_free(h, c);
2812 	return rc;
2813 }
2814 
2815 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2816 	u8 reset_type, int reply_queue)
2817 {
2818 	int rc = IO_OK;
2819 	struct CommandList *c;
2820 	struct ErrorInfo *ei;
2821 
2822 	c = cmd_alloc(h);
2823 
2824 
2825 	/* fill_cmd can't fail here, no data buffer to map. */
2826 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2827 			scsi3addr, TYPE_MSG);
2828 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2829 	if (rc) {
2830 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2831 		goto out;
2832 	}
2833 	/* no unmap needed here because no data xfer. */
2834 
2835 	ei = c->err_info;
2836 	if (ei->CommandStatus != 0) {
2837 		hpsa_scsi_interpret_error(h, c);
2838 		rc = -1;
2839 	}
2840 out:
2841 	cmd_free(h, c);
2842 	return rc;
2843 }
2844 
2845 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2846 			       struct hpsa_scsi_dev_t *dev,
2847 			       unsigned char *scsi3addr)
2848 {
2849 	int i;
2850 	bool match = false;
2851 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2852 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2853 
2854 	if (hpsa_is_cmd_idle(c))
2855 		return false;
2856 
2857 	switch (c->cmd_type) {
2858 	case CMD_SCSI:
2859 	case CMD_IOCTL_PEND:
2860 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2861 				sizeof(c->Header.LUN.LunAddrBytes));
2862 		break;
2863 
2864 	case CMD_IOACCEL1:
2865 	case CMD_IOACCEL2:
2866 		if (c->phys_disk == dev) {
2867 			/* HBA mode match */
2868 			match = true;
2869 		} else {
2870 			/* Possible RAID mode -- check each phys dev. */
2871 			/* FIXME:  Do we need to take out a lock here?  If
2872 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2873 			 * instead. */
2874 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
2875 				/* FIXME: an alternate test might be
2876 				 *
2877 				 * match = dev->phys_disk[i]->ioaccel_handle
2878 				 *              == c2->scsi_nexus;      */
2879 				match = dev->phys_disk[i] == c->phys_disk;
2880 			}
2881 		}
2882 		break;
2883 
2884 	case IOACCEL2_TMF:
2885 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
2886 			match = dev->phys_disk[i]->ioaccel_handle ==
2887 					le32_to_cpu(ac->it_nexus);
2888 		}
2889 		break;
2890 
2891 	case 0:		/* The command is in the middle of being initialized. */
2892 		match = false;
2893 		break;
2894 
2895 	default:
2896 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2897 			c->cmd_type);
2898 		BUG();
2899 	}
2900 
2901 	return match;
2902 }
2903 
2904 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2905 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2906 {
2907 	int i;
2908 	int rc = 0;
2909 
2910 	/* We can really only handle one reset at a time */
2911 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2912 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2913 		return -EINTR;
2914 	}
2915 
2916 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2917 
2918 	for (i = 0; i < h->nr_cmds; i++) {
2919 		struct CommandList *c = h->cmd_pool + i;
2920 		int refcount = atomic_inc_return(&c->refcount);
2921 
2922 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2923 			unsigned long flags;
2924 
2925 			/*
2926 			 * Mark the target command as having a reset pending,
2927 			 * then lock a lock so that the command cannot complete
2928 			 * while we're considering it.  If the command is not
2929 			 * idle then count it; otherwise revoke the event.
2930 			 */
2931 			c->reset_pending = dev;
2932 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
2933 			if (!hpsa_is_cmd_idle(c))
2934 				atomic_inc(&dev->reset_cmds_out);
2935 			else
2936 				c->reset_pending = NULL;
2937 			spin_unlock_irqrestore(&h->lock, flags);
2938 		}
2939 
2940 		cmd_free(h, c);
2941 	}
2942 
2943 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2944 	if (!rc)
2945 		wait_event(h->event_sync_wait_queue,
2946 			atomic_read(&dev->reset_cmds_out) == 0 ||
2947 			lockup_detected(h));
2948 
2949 	if (unlikely(lockup_detected(h))) {
2950 		dev_warn(&h->pdev->dev,
2951 			 "Controller lockup detected during reset wait\n");
2952 		rc = -ENODEV;
2953 	}
2954 
2955 	if (unlikely(rc))
2956 		atomic_set(&dev->reset_cmds_out, 0);
2957 
2958 	mutex_unlock(&h->reset_mutex);
2959 	return rc;
2960 }
2961 
2962 static void hpsa_get_raid_level(struct ctlr_info *h,
2963 	unsigned char *scsi3addr, unsigned char *raid_level)
2964 {
2965 	int rc;
2966 	unsigned char *buf;
2967 
2968 	*raid_level = RAID_UNKNOWN;
2969 	buf = kzalloc(64, GFP_KERNEL);
2970 	if (!buf)
2971 		return;
2972 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2973 	if (rc == 0)
2974 		*raid_level = buf[8];
2975 	if (*raid_level > RAID_UNKNOWN)
2976 		*raid_level = RAID_UNKNOWN;
2977 	kfree(buf);
2978 	return;
2979 }
2980 
2981 #define HPSA_MAP_DEBUG
2982 #ifdef HPSA_MAP_DEBUG
2983 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2984 				struct raid_map_data *map_buff)
2985 {
2986 	struct raid_map_disk_data *dd = &map_buff->data[0];
2987 	int map, row, col;
2988 	u16 map_cnt, row_cnt, disks_per_row;
2989 
2990 	if (rc != 0)
2991 		return;
2992 
2993 	/* Show details only if debugging has been activated. */
2994 	if (h->raid_offload_debug < 2)
2995 		return;
2996 
2997 	dev_info(&h->pdev->dev, "structure_size = %u\n",
2998 				le32_to_cpu(map_buff->structure_size));
2999 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3000 			le32_to_cpu(map_buff->volume_blk_size));
3001 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3002 			le64_to_cpu(map_buff->volume_blk_cnt));
3003 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3004 			map_buff->phys_blk_shift);
3005 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3006 			map_buff->parity_rotation_shift);
3007 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3008 			le16_to_cpu(map_buff->strip_size));
3009 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3010 			le64_to_cpu(map_buff->disk_starting_blk));
3011 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3012 			le64_to_cpu(map_buff->disk_blk_cnt));
3013 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3014 			le16_to_cpu(map_buff->data_disks_per_row));
3015 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3016 			le16_to_cpu(map_buff->metadata_disks_per_row));
3017 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3018 			le16_to_cpu(map_buff->row_cnt));
3019 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3020 			le16_to_cpu(map_buff->layout_map_count));
3021 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3022 			le16_to_cpu(map_buff->flags));
3023 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
3024 			le16_to_cpu(map_buff->flags) &
3025 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3026 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3027 			le16_to_cpu(map_buff->dekindex));
3028 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3029 	for (map = 0; map < map_cnt; map++) {
3030 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3031 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3032 		for (row = 0; row < row_cnt; row++) {
3033 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3034 			disks_per_row =
3035 				le16_to_cpu(map_buff->data_disks_per_row);
3036 			for (col = 0; col < disks_per_row; col++, dd++)
3037 				dev_info(&h->pdev->dev,
3038 					"    D%02u: h=0x%04x xor=%u,%u\n",
3039 					col, dd->ioaccel_handle,
3040 					dd->xor_mult[0], dd->xor_mult[1]);
3041 			disks_per_row =
3042 				le16_to_cpu(map_buff->metadata_disks_per_row);
3043 			for (col = 0; col < disks_per_row; col++, dd++)
3044 				dev_info(&h->pdev->dev,
3045 					"    M%02u: h=0x%04x xor=%u,%u\n",
3046 					col, dd->ioaccel_handle,
3047 					dd->xor_mult[0], dd->xor_mult[1]);
3048 		}
3049 	}
3050 }
3051 #else
3052 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3053 			__attribute__((unused)) int rc,
3054 			__attribute__((unused)) struct raid_map_data *map_buff)
3055 {
3056 }
3057 #endif
3058 
3059 static int hpsa_get_raid_map(struct ctlr_info *h,
3060 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3061 {
3062 	int rc = 0;
3063 	struct CommandList *c;
3064 	struct ErrorInfo *ei;
3065 
3066 	c = cmd_alloc(h);
3067 
3068 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3069 			sizeof(this_device->raid_map), 0,
3070 			scsi3addr, TYPE_CMD)) {
3071 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3072 		cmd_free(h, c);
3073 		return -1;
3074 	}
3075 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3076 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3077 	if (rc)
3078 		goto out;
3079 	ei = c->err_info;
3080 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3081 		hpsa_scsi_interpret_error(h, c);
3082 		rc = -1;
3083 		goto out;
3084 	}
3085 	cmd_free(h, c);
3086 
3087 	/* @todo in the future, dynamically allocate RAID map memory */
3088 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3089 				sizeof(this_device->raid_map)) {
3090 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3091 		rc = -1;
3092 	}
3093 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3094 	return rc;
3095 out:
3096 	cmd_free(h, c);
3097 	return rc;
3098 }
3099 
3100 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3101 		unsigned char scsi3addr[], u16 bmic_device_index,
3102 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3103 {
3104 	int rc = IO_OK;
3105 	struct CommandList *c;
3106 	struct ErrorInfo *ei;
3107 
3108 	c = cmd_alloc(h);
3109 
3110 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3111 		0, RAID_CTLR_LUNID, TYPE_CMD);
3112 	if (rc)
3113 		goto out;
3114 
3115 	c->Request.CDB[2] = bmic_device_index & 0xff;
3116 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3117 
3118 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3119 				PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3120 	if (rc)
3121 		goto out;
3122 	ei = c->err_info;
3123 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3124 		hpsa_scsi_interpret_error(h, c);
3125 		rc = -1;
3126 	}
3127 out:
3128 	cmd_free(h, c);
3129 	return rc;
3130 }
3131 
3132 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3133 	struct bmic_identify_controller *buf, size_t bufsize)
3134 {
3135 	int rc = IO_OK;
3136 	struct CommandList *c;
3137 	struct ErrorInfo *ei;
3138 
3139 	c = cmd_alloc(h);
3140 
3141 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3142 		0, RAID_CTLR_LUNID, TYPE_CMD);
3143 	if (rc)
3144 		goto out;
3145 
3146 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3147 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3148 	if (rc)
3149 		goto out;
3150 	ei = c->err_info;
3151 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3152 		hpsa_scsi_interpret_error(h, c);
3153 		rc = -1;
3154 	}
3155 out:
3156 	cmd_free(h, c);
3157 	return rc;
3158 }
3159 
3160 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3161 		unsigned char scsi3addr[], u16 bmic_device_index,
3162 		struct bmic_identify_physical_device *buf, size_t bufsize)
3163 {
3164 	int rc = IO_OK;
3165 	struct CommandList *c;
3166 	struct ErrorInfo *ei;
3167 
3168 	c = cmd_alloc(h);
3169 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3170 		0, RAID_CTLR_LUNID, TYPE_CMD);
3171 	if (rc)
3172 		goto out;
3173 
3174 	c->Request.CDB[2] = bmic_device_index & 0xff;
3175 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3176 
3177 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3178 						NO_TIMEOUT);
3179 	ei = c->err_info;
3180 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3181 		hpsa_scsi_interpret_error(h, c);
3182 		rc = -1;
3183 	}
3184 out:
3185 	cmd_free(h, c);
3186 
3187 	return rc;
3188 }
3189 
3190 /*
3191  * get enclosure information
3192  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3193  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3194  * Uses id_physical_device to determine the box_index.
3195  */
3196 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3197 			unsigned char *scsi3addr,
3198 			struct ReportExtendedLUNdata *rlep, int rle_index,
3199 			struct hpsa_scsi_dev_t *encl_dev)
3200 {
3201 	int rc = -1;
3202 	struct CommandList *c = NULL;
3203 	struct ErrorInfo *ei = NULL;
3204 	struct bmic_sense_storage_box_params *bssbp = NULL;
3205 	struct bmic_identify_physical_device *id_phys = NULL;
3206 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3207 	u16 bmic_device_index = 0;
3208 
3209 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3210 
3211 	if (bmic_device_index == 0xFF00)
3212 		goto out;
3213 
3214 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3215 	if (!bssbp)
3216 		goto out;
3217 
3218 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3219 	if (!id_phys)
3220 		goto out;
3221 
3222 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3223 						id_phys, sizeof(*id_phys));
3224 	if (rc) {
3225 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3226 			__func__, encl_dev->external, bmic_device_index);
3227 		goto out;
3228 	}
3229 
3230 	c = cmd_alloc(h);
3231 
3232 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3233 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3234 
3235 	if (rc)
3236 		goto out;
3237 
3238 	if (id_phys->phys_connector[1] == 'E')
3239 		c->Request.CDB[5] = id_phys->box_index;
3240 	else
3241 		c->Request.CDB[5] = 0;
3242 
3243 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3244 						NO_TIMEOUT);
3245 	if (rc)
3246 		goto out;
3247 
3248 	ei = c->err_info;
3249 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3250 		rc = -1;
3251 		goto out;
3252 	}
3253 
3254 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3255 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3256 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3257 
3258 	rc = IO_OK;
3259 out:
3260 	kfree(bssbp);
3261 	kfree(id_phys);
3262 
3263 	if (c)
3264 		cmd_free(h, c);
3265 
3266 	if (rc != IO_OK)
3267 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3268 			"Error, could not get enclosure information\n");
3269 }
3270 
3271 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3272 						unsigned char *scsi3addr)
3273 {
3274 	struct ReportExtendedLUNdata *physdev;
3275 	u32 nphysicals;
3276 	u64 sa = 0;
3277 	int i;
3278 
3279 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3280 	if (!physdev)
3281 		return 0;
3282 
3283 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3284 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3285 		kfree(physdev);
3286 		return 0;
3287 	}
3288 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3289 
3290 	for (i = 0; i < nphysicals; i++)
3291 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3292 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3293 			break;
3294 		}
3295 
3296 	kfree(physdev);
3297 
3298 	return sa;
3299 }
3300 
3301 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3302 					struct hpsa_scsi_dev_t *dev)
3303 {
3304 	int rc;
3305 	u64 sa = 0;
3306 
3307 	if (is_hba_lunid(scsi3addr)) {
3308 		struct bmic_sense_subsystem_info *ssi;
3309 
3310 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3311 		if (ssi == NULL) {
3312 			dev_warn(&h->pdev->dev,
3313 				"%s: out of memory\n", __func__);
3314 			return;
3315 		}
3316 
3317 		rc = hpsa_bmic_sense_subsystem_information(h,
3318 					scsi3addr, 0, ssi, sizeof(*ssi));
3319 		if (rc == 0) {
3320 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3321 			h->sas_address = sa;
3322 		}
3323 
3324 		kfree(ssi);
3325 	} else
3326 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3327 
3328 	dev->sas_address = sa;
3329 }
3330 
3331 /* Get a device id from inquiry page 0x83 */
3332 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3333 	unsigned char scsi3addr[], u8 page)
3334 {
3335 	int rc;
3336 	int i;
3337 	int pages;
3338 	unsigned char *buf, bufsize;
3339 
3340 	buf = kzalloc(256, GFP_KERNEL);
3341 	if (!buf)
3342 		return 0;
3343 
3344 	/* Get the size of the page list first */
3345 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3346 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3347 				buf, HPSA_VPD_HEADER_SZ);
3348 	if (rc != 0)
3349 		goto exit_unsupported;
3350 	pages = buf[3];
3351 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3352 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3353 	else
3354 		bufsize = 255;
3355 
3356 	/* Get the whole VPD page list */
3357 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3358 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3359 				buf, bufsize);
3360 	if (rc != 0)
3361 		goto exit_unsupported;
3362 
3363 	pages = buf[3];
3364 	for (i = 1; i <= pages; i++)
3365 		if (buf[3 + i] == page)
3366 			goto exit_supported;
3367 exit_unsupported:
3368 	kfree(buf);
3369 	return 0;
3370 exit_supported:
3371 	kfree(buf);
3372 	return 1;
3373 }
3374 
3375 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3376 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3377 {
3378 	int rc;
3379 	unsigned char *buf;
3380 	u8 ioaccel_status;
3381 
3382 	this_device->offload_config = 0;
3383 	this_device->offload_enabled = 0;
3384 	this_device->offload_to_be_enabled = 0;
3385 
3386 	buf = kzalloc(64, GFP_KERNEL);
3387 	if (!buf)
3388 		return;
3389 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3390 		goto out;
3391 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3392 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3393 	if (rc != 0)
3394 		goto out;
3395 
3396 #define IOACCEL_STATUS_BYTE 4
3397 #define OFFLOAD_CONFIGURED_BIT 0x01
3398 #define OFFLOAD_ENABLED_BIT 0x02
3399 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3400 	this_device->offload_config =
3401 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3402 	if (this_device->offload_config) {
3403 		this_device->offload_enabled =
3404 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3405 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3406 			this_device->offload_enabled = 0;
3407 	}
3408 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3409 out:
3410 	kfree(buf);
3411 	return;
3412 }
3413 
3414 /* Get the device id from inquiry page 0x83 */
3415 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3416 	unsigned char *device_id, int index, int buflen)
3417 {
3418 	int rc;
3419 	unsigned char *buf;
3420 
3421 	if (buflen > 16)
3422 		buflen = 16;
3423 	buf = kzalloc(64, GFP_KERNEL);
3424 	if (!buf)
3425 		return -ENOMEM;
3426 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3427 	if (rc == 0)
3428 		memcpy(device_id, &buf[index], buflen);
3429 
3430 	kfree(buf);
3431 
3432 	return rc != 0;
3433 }
3434 
3435 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3436 		void *buf, int bufsize,
3437 		int extended_response)
3438 {
3439 	int rc = IO_OK;
3440 	struct CommandList *c;
3441 	unsigned char scsi3addr[8];
3442 	struct ErrorInfo *ei;
3443 
3444 	c = cmd_alloc(h);
3445 
3446 	/* address the controller */
3447 	memset(scsi3addr, 0, sizeof(scsi3addr));
3448 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3449 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3450 		rc = -1;
3451 		goto out;
3452 	}
3453 	if (extended_response)
3454 		c->Request.CDB[1] = extended_response;
3455 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3456 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3457 	if (rc)
3458 		goto out;
3459 	ei = c->err_info;
3460 	if (ei->CommandStatus != 0 &&
3461 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3462 		hpsa_scsi_interpret_error(h, c);
3463 		rc = -1;
3464 	} else {
3465 		struct ReportLUNdata *rld = buf;
3466 
3467 		if (rld->extended_response_flag != extended_response) {
3468 			dev_err(&h->pdev->dev,
3469 				"report luns requested format %u, got %u\n",
3470 				extended_response,
3471 				rld->extended_response_flag);
3472 			rc = -1;
3473 		}
3474 	}
3475 out:
3476 	cmd_free(h, c);
3477 	return rc;
3478 }
3479 
3480 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3481 		struct ReportExtendedLUNdata *buf, int bufsize)
3482 {
3483 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3484 						HPSA_REPORT_PHYS_EXTENDED);
3485 }
3486 
3487 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3488 		struct ReportLUNdata *buf, int bufsize)
3489 {
3490 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3491 }
3492 
3493 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3494 	int bus, int target, int lun)
3495 {
3496 	device->bus = bus;
3497 	device->target = target;
3498 	device->lun = lun;
3499 }
3500 
3501 /* Use VPD inquiry to get details of volume status */
3502 static int hpsa_get_volume_status(struct ctlr_info *h,
3503 					unsigned char scsi3addr[])
3504 {
3505 	int rc;
3506 	int status;
3507 	int size;
3508 	unsigned char *buf;
3509 
3510 	buf = kzalloc(64, GFP_KERNEL);
3511 	if (!buf)
3512 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3513 
3514 	/* Does controller have VPD for logical volume status? */
3515 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3516 		goto exit_failed;
3517 
3518 	/* Get the size of the VPD return buffer */
3519 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3520 					buf, HPSA_VPD_HEADER_SZ);
3521 	if (rc != 0)
3522 		goto exit_failed;
3523 	size = buf[3];
3524 
3525 	/* Now get the whole VPD buffer */
3526 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3527 					buf, size + HPSA_VPD_HEADER_SZ);
3528 	if (rc != 0)
3529 		goto exit_failed;
3530 	status = buf[4]; /* status byte */
3531 
3532 	kfree(buf);
3533 	return status;
3534 exit_failed:
3535 	kfree(buf);
3536 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3537 }
3538 
3539 /* Determine offline status of a volume.
3540  * Return either:
3541  *  0 (not offline)
3542  *  0xff (offline for unknown reasons)
3543  *  # (integer code indicating one of several NOT READY states
3544  *     describing why a volume is to be kept offline)
3545  */
3546 static int hpsa_volume_offline(struct ctlr_info *h,
3547 					unsigned char scsi3addr[])
3548 {
3549 	struct CommandList *c;
3550 	unsigned char *sense;
3551 	u8 sense_key, asc, ascq;
3552 	int sense_len;
3553 	int rc, ldstat = 0;
3554 	u16 cmd_status;
3555 	u8 scsi_status;
3556 #define ASC_LUN_NOT_READY 0x04
3557 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3558 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3559 
3560 	c = cmd_alloc(h);
3561 
3562 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3563 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3564 	if (rc) {
3565 		cmd_free(h, c);
3566 		return 0;
3567 	}
3568 	sense = c->err_info->SenseInfo;
3569 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3570 		sense_len = sizeof(c->err_info->SenseInfo);
3571 	else
3572 		sense_len = c->err_info->SenseLen;
3573 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3574 	cmd_status = c->err_info->CommandStatus;
3575 	scsi_status = c->err_info->ScsiStatus;
3576 	cmd_free(h, c);
3577 	/* Is the volume 'not ready'? */
3578 	if (cmd_status != CMD_TARGET_STATUS ||
3579 		scsi_status != SAM_STAT_CHECK_CONDITION ||
3580 		sense_key != NOT_READY ||
3581 		asc != ASC_LUN_NOT_READY)  {
3582 		return 0;
3583 	}
3584 
3585 	/* Determine the reason for not ready state */
3586 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3587 
3588 	/* Keep volume offline in certain cases: */
3589 	switch (ldstat) {
3590 	case HPSA_LV_UNDERGOING_ERASE:
3591 	case HPSA_LV_NOT_AVAILABLE:
3592 	case HPSA_LV_UNDERGOING_RPI:
3593 	case HPSA_LV_PENDING_RPI:
3594 	case HPSA_LV_ENCRYPTED_NO_KEY:
3595 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3596 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3597 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3598 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3599 		return ldstat;
3600 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3601 		/* If VPD status page isn't available,
3602 		 * use ASC/ASCQ to determine state
3603 		 */
3604 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3605 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3606 			return ldstat;
3607 		break;
3608 	default:
3609 		break;
3610 	}
3611 	return 0;
3612 }
3613 
3614 /*
3615  * Find out if a logical device supports aborts by simply trying one.
3616  * Smart Array may claim not to support aborts on logical drives, but
3617  * if a MSA2000 * is connected, the drives on that will be presented
3618  * by the Smart Array as logical drives, and aborts may be sent to
3619  * those devices successfully.  So the simplest way to find out is
3620  * to simply try an abort and see how the device responds.
3621  */
3622 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3623 					unsigned char *scsi3addr)
3624 {
3625 	struct CommandList *c;
3626 	struct ErrorInfo *ei;
3627 	int rc = 0;
3628 
3629 	u64 tag = (u64) -1; /* bogus tag */
3630 
3631 	/* Assume that physical devices support aborts */
3632 	if (!is_logical_dev_addr_mode(scsi3addr))
3633 		return 1;
3634 
3635 	c = cmd_alloc(h);
3636 
3637 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3638 	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3639 	/* no unmap needed here because no data xfer. */
3640 	ei = c->err_info;
3641 	switch (ei->CommandStatus) {
3642 	case CMD_INVALID:
3643 		rc = 0;
3644 		break;
3645 	case CMD_UNABORTABLE:
3646 	case CMD_ABORT_FAILED:
3647 		rc = 1;
3648 		break;
3649 	case CMD_TMF_STATUS:
3650 		rc = hpsa_evaluate_tmf_status(h, c);
3651 		break;
3652 	default:
3653 		rc = 0;
3654 		break;
3655 	}
3656 	cmd_free(h, c);
3657 	return rc;
3658 }
3659 
3660 static void sanitize_inquiry_string(unsigned char *s, int len)
3661 {
3662 	bool terminated = false;
3663 
3664 	for (; len > 0; (--len, ++s)) {
3665 		if (*s == 0)
3666 			terminated = true;
3667 		if (terminated || *s < 0x20 || *s > 0x7e)
3668 			*s = ' ';
3669 	}
3670 }
3671 
3672 static int hpsa_update_device_info(struct ctlr_info *h,
3673 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3674 	unsigned char *is_OBDR_device)
3675 {
3676 
3677 #define OBDR_SIG_OFFSET 43
3678 #define OBDR_TAPE_SIG "$DR-10"
3679 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3680 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3681 
3682 	unsigned char *inq_buff;
3683 	unsigned char *obdr_sig;
3684 	int rc = 0;
3685 
3686 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3687 	if (!inq_buff) {
3688 		rc = -ENOMEM;
3689 		goto bail_out;
3690 	}
3691 
3692 	/* Do an inquiry to the device to see what it is. */
3693 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3694 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3695 		/* Inquiry failed (msg printed already) */
3696 		dev_err(&h->pdev->dev,
3697 			"hpsa_update_device_info: inquiry failed\n");
3698 		rc = -EIO;
3699 		goto bail_out;
3700 	}
3701 
3702 	sanitize_inquiry_string(&inq_buff[8], 8);
3703 	sanitize_inquiry_string(&inq_buff[16], 16);
3704 
3705 	this_device->devtype = (inq_buff[0] & 0x1f);
3706 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3707 	memcpy(this_device->vendor, &inq_buff[8],
3708 		sizeof(this_device->vendor));
3709 	memcpy(this_device->model, &inq_buff[16],
3710 		sizeof(this_device->model));
3711 	memset(this_device->device_id, 0,
3712 		sizeof(this_device->device_id));
3713 	hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3714 		sizeof(this_device->device_id));
3715 
3716 	if (this_device->devtype == TYPE_DISK &&
3717 		is_logical_dev_addr_mode(scsi3addr)) {
3718 		int volume_offline;
3719 
3720 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3721 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3722 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3723 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3724 		if (volume_offline < 0 || volume_offline > 0xff)
3725 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3726 		this_device->volume_offline = volume_offline & 0xff;
3727 	} else {
3728 		this_device->raid_level = RAID_UNKNOWN;
3729 		this_device->offload_config = 0;
3730 		this_device->offload_enabled = 0;
3731 		this_device->offload_to_be_enabled = 0;
3732 		this_device->hba_ioaccel_enabled = 0;
3733 		this_device->volume_offline = 0;
3734 		this_device->queue_depth = h->nr_cmds;
3735 	}
3736 
3737 	if (is_OBDR_device) {
3738 		/* See if this is a One-Button-Disaster-Recovery device
3739 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3740 		 */
3741 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3742 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3743 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3744 						OBDR_SIG_LEN) == 0);
3745 	}
3746 	kfree(inq_buff);
3747 	return 0;
3748 
3749 bail_out:
3750 	kfree(inq_buff);
3751 	return rc;
3752 }
3753 
3754 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3755 			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3756 {
3757 	unsigned long flags;
3758 	int rc, entry;
3759 	/*
3760 	 * See if this device supports aborts.  If we already know
3761 	 * the device, we already know if it supports aborts, otherwise
3762 	 * we have to find out if it supports aborts by trying one.
3763 	 */
3764 	spin_lock_irqsave(&h->devlock, flags);
3765 	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3766 	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3767 		entry >= 0 && entry < h->ndevices) {
3768 		dev->supports_aborts = h->dev[entry]->supports_aborts;
3769 		spin_unlock_irqrestore(&h->devlock, flags);
3770 	} else {
3771 		spin_unlock_irqrestore(&h->devlock, flags);
3772 		dev->supports_aborts =
3773 				hpsa_device_supports_aborts(h, scsi3addr);
3774 		if (dev->supports_aborts < 0)
3775 			dev->supports_aborts = 0;
3776 	}
3777 }
3778 
3779 /*
3780  * Helper function to assign bus, target, lun mapping of devices.
3781  * Logical drive target and lun are assigned at this time, but
3782  * physical device lun and target assignment are deferred (assigned
3783  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3784 */
3785 static void figure_bus_target_lun(struct ctlr_info *h,
3786 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3787 {
3788 	u32 lunid = get_unaligned_le32(lunaddrbytes);
3789 
3790 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3791 		/* physical device, target and lun filled in later */
3792 		if (is_hba_lunid(lunaddrbytes))
3793 			hpsa_set_bus_target_lun(device,
3794 					HPSA_HBA_BUS, 0, lunid & 0x3fff);
3795 		else
3796 			/* defer target, lun assignment for physical devices */
3797 			hpsa_set_bus_target_lun(device,
3798 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3799 		return;
3800 	}
3801 	/* It's a logical device */
3802 	if (device->external) {
3803 		hpsa_set_bus_target_lun(device,
3804 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3805 			lunid & 0x00ff);
3806 		return;
3807 	}
3808 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3809 				0, lunid & 0x3fff);
3810 }
3811 
3812 
3813 /*
3814  * Get address of physical disk used for an ioaccel2 mode command:
3815  *	1. Extract ioaccel2 handle from the command.
3816  *	2. Find a matching ioaccel2 handle from list of physical disks.
3817  *	3. Return:
3818  *		1 and set scsi3addr to address of matching physical
3819  *		0 if no matching physical disk was found.
3820  */
3821 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3822 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3823 {
3824 	struct io_accel2_cmd *c2 =
3825 			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3826 	unsigned long flags;
3827 	int i;
3828 
3829 	spin_lock_irqsave(&h->devlock, flags);
3830 	for (i = 0; i < h->ndevices; i++)
3831 		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3832 			memcpy(scsi3addr, h->dev[i]->scsi3addr,
3833 				sizeof(h->dev[i]->scsi3addr));
3834 			spin_unlock_irqrestore(&h->devlock, flags);
3835 			return 1;
3836 		}
3837 	spin_unlock_irqrestore(&h->devlock, flags);
3838 	return 0;
3839 }
3840 
3841 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3842 	int i, int nphysicals, int nlocal_logicals)
3843 {
3844 	/* In report logicals, local logicals are listed first,
3845 	* then any externals.
3846 	*/
3847 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3848 
3849 	if (i == raid_ctlr_position)
3850 		return 0;
3851 
3852 	if (i < logicals_start)
3853 		return 0;
3854 
3855 	/* i is in logicals range, but still within local logicals */
3856 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3857 		return 0;
3858 
3859 	return 1; /* it's an external lun */
3860 }
3861 
3862 /*
3863  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3864  * logdev.  The number of luns in physdev and logdev are returned in
3865  * *nphysicals and *nlogicals, respectively.
3866  * Returns 0 on success, -1 otherwise.
3867  */
3868 static int hpsa_gather_lun_info(struct ctlr_info *h,
3869 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3870 	struct ReportLUNdata *logdev, u32 *nlogicals)
3871 {
3872 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3873 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3874 		return -1;
3875 	}
3876 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3877 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3878 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3879 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3880 		*nphysicals = HPSA_MAX_PHYS_LUN;
3881 	}
3882 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3883 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3884 		return -1;
3885 	}
3886 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3887 	/* Reject Logicals in excess of our max capability. */
3888 	if (*nlogicals > HPSA_MAX_LUN) {
3889 		dev_warn(&h->pdev->dev,
3890 			"maximum logical LUNs (%d) exceeded.  "
3891 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
3892 			*nlogicals - HPSA_MAX_LUN);
3893 			*nlogicals = HPSA_MAX_LUN;
3894 	}
3895 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3896 		dev_warn(&h->pdev->dev,
3897 			"maximum logical + physical LUNs (%d) exceeded. "
3898 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3899 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3900 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3901 	}
3902 	return 0;
3903 }
3904 
3905 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3906 	int i, int nphysicals, int nlogicals,
3907 	struct ReportExtendedLUNdata *physdev_list,
3908 	struct ReportLUNdata *logdev_list)
3909 {
3910 	/* Helper function, figure out where the LUN ID info is coming from
3911 	 * given index i, lists of physical and logical devices, where in
3912 	 * the list the raid controller is supposed to appear (first or last)
3913 	 */
3914 
3915 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3916 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3917 
3918 	if (i == raid_ctlr_position)
3919 		return RAID_CTLR_LUNID;
3920 
3921 	if (i < logicals_start)
3922 		return &physdev_list->LUN[i -
3923 				(raid_ctlr_position == 0)].lunid[0];
3924 
3925 	if (i < last_device)
3926 		return &logdev_list->LUN[i - nphysicals -
3927 			(raid_ctlr_position == 0)][0];
3928 	BUG();
3929 	return NULL;
3930 }
3931 
3932 /* get physical drive ioaccel handle and queue depth */
3933 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3934 		struct hpsa_scsi_dev_t *dev,
3935 		struct ReportExtendedLUNdata *rlep, int rle_index,
3936 		struct bmic_identify_physical_device *id_phys)
3937 {
3938 	int rc;
3939 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3940 
3941 	dev->ioaccel_handle = rle->ioaccel_handle;
3942 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3943 		dev->hba_ioaccel_enabled = 1;
3944 	memset(id_phys, 0, sizeof(*id_phys));
3945 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3946 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3947 			sizeof(*id_phys));
3948 	if (!rc)
3949 		/* Reserve space for FW operations */
3950 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3951 #define DRIVE_QUEUE_DEPTH 7
3952 		dev->queue_depth =
3953 			le16_to_cpu(id_phys->current_queue_depth_limit) -
3954 				DRIVE_CMDS_RESERVED_FOR_FW;
3955 	else
3956 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3957 }
3958 
3959 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3960 	struct ReportExtendedLUNdata *rlep, int rle_index,
3961 	struct bmic_identify_physical_device *id_phys)
3962 {
3963 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3964 
3965 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3966 		this_device->hba_ioaccel_enabled = 1;
3967 
3968 	memcpy(&this_device->active_path_index,
3969 		&id_phys->active_path_number,
3970 		sizeof(this_device->active_path_index));
3971 	memcpy(&this_device->path_map,
3972 		&id_phys->redundant_path_present_map,
3973 		sizeof(this_device->path_map));
3974 	memcpy(&this_device->box,
3975 		&id_phys->alternate_paths_phys_box_on_port,
3976 		sizeof(this_device->box));
3977 	memcpy(&this_device->phys_connector,
3978 		&id_phys->alternate_paths_phys_connector,
3979 		sizeof(this_device->phys_connector));
3980 	memcpy(&this_device->bay,
3981 		&id_phys->phys_bay_in_box,
3982 		sizeof(this_device->bay));
3983 }
3984 
3985 /* get number of local logical disks. */
3986 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3987 	struct bmic_identify_controller *id_ctlr,
3988 	u32 *nlocals)
3989 {
3990 	int rc;
3991 
3992 	if (!id_ctlr) {
3993 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3994 			__func__);
3995 		return -ENOMEM;
3996 	}
3997 	memset(id_ctlr, 0, sizeof(*id_ctlr));
3998 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3999 	if (!rc)
4000 		if (id_ctlr->configured_logical_drive_count < 256)
4001 			*nlocals = id_ctlr->configured_logical_drive_count;
4002 		else
4003 			*nlocals = le16_to_cpu(
4004 					id_ctlr->extended_logical_unit_count);
4005 	else
4006 		*nlocals = -1;
4007 	return rc;
4008 }
4009 
4010 
4011 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4012 {
4013 	/* the idea here is we could get notified
4014 	 * that some devices have changed, so we do a report
4015 	 * physical luns and report logical luns cmd, and adjust
4016 	 * our list of devices accordingly.
4017 	 *
4018 	 * The scsi3addr's of devices won't change so long as the
4019 	 * adapter is not reset.  That means we can rescan and
4020 	 * tell which devices we already know about, vs. new
4021 	 * devices, vs.  disappearing devices.
4022 	 */
4023 	struct ReportExtendedLUNdata *physdev_list = NULL;
4024 	struct ReportLUNdata *logdev_list = NULL;
4025 	struct bmic_identify_physical_device *id_phys = NULL;
4026 	struct bmic_identify_controller *id_ctlr = NULL;
4027 	u32 nphysicals = 0;
4028 	u32 nlogicals = 0;
4029 	u32 nlocal_logicals = 0;
4030 	u32 ndev_allocated = 0;
4031 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4032 	int ncurrent = 0;
4033 	int i, n_ext_target_devs, ndevs_to_allocate;
4034 	int raid_ctlr_position;
4035 	bool physical_device;
4036 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4037 
4038 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4039 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4040 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4041 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4042 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4043 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4044 
4045 	if (!currentsd || !physdev_list || !logdev_list ||
4046 		!tmpdevice || !id_phys || !id_ctlr) {
4047 		dev_err(&h->pdev->dev, "out of memory\n");
4048 		goto out;
4049 	}
4050 	memset(lunzerobits, 0, sizeof(lunzerobits));
4051 
4052 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4053 
4054 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4055 			logdev_list, &nlogicals)) {
4056 		h->drv_req_rescan = 1;
4057 		goto out;
4058 	}
4059 
4060 	/* Set number of local logicals (non PTRAID) */
4061 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4062 		dev_warn(&h->pdev->dev,
4063 			"%s: Can't determine number of local logical devices.\n",
4064 			__func__);
4065 	}
4066 
4067 	/* We might see up to the maximum number of logical and physical disks
4068 	 * plus external target devices, and a device for the local RAID
4069 	 * controller.
4070 	 */
4071 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4072 
4073 	/* Allocate the per device structures */
4074 	for (i = 0; i < ndevs_to_allocate; i++) {
4075 		if (i >= HPSA_MAX_DEVICES) {
4076 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4077 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4078 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4079 			break;
4080 		}
4081 
4082 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4083 		if (!currentsd[i]) {
4084 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4085 				__FILE__, __LINE__);
4086 			h->drv_req_rescan = 1;
4087 			goto out;
4088 		}
4089 		ndev_allocated++;
4090 	}
4091 
4092 	if (is_scsi_rev_5(h))
4093 		raid_ctlr_position = 0;
4094 	else
4095 		raid_ctlr_position = nphysicals + nlogicals;
4096 
4097 	/* adjust our table of devices */
4098 	n_ext_target_devs = 0;
4099 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4100 		u8 *lunaddrbytes, is_OBDR = 0;
4101 		int rc = 0;
4102 		int phys_dev_index = i - (raid_ctlr_position == 0);
4103 
4104 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4105 
4106 		/* Figure out where the LUN ID info is coming from */
4107 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4108 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4109 
4110 		/* skip masked non-disk devices */
4111 		if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4112 		   (physdev_list->LUN[phys_dev_index].device_type != 0x06) &&
4113 		   (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4114 			continue;
4115 
4116 		/* Get device type, vendor, model, device id */
4117 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4118 							&is_OBDR);
4119 		if (rc == -ENOMEM) {
4120 			dev_warn(&h->pdev->dev,
4121 				"Out of memory, rescan deferred.\n");
4122 			h->drv_req_rescan = 1;
4123 			goto out;
4124 		}
4125 		if (rc) {
4126 			dev_warn(&h->pdev->dev,
4127 				"Inquiry failed, skipping device.\n");
4128 			continue;
4129 		}
4130 
4131 		/* Determine if this is a lun from an external target array */
4132 		tmpdevice->external =
4133 			figure_external_status(h, raid_ctlr_position, i,
4134 						nphysicals, nlocal_logicals);
4135 
4136 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4137 		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4138 		this_device = currentsd[ncurrent];
4139 
4140 		/* Turn on discovery_polling if there are ext target devices.
4141 		 * Event-based change notification is unreliable for those.
4142 		 */
4143 		if (!h->discovery_polling) {
4144 			if (tmpdevice->external) {
4145 				h->discovery_polling = 1;
4146 				dev_info(&h->pdev->dev,
4147 					"External target, activate discovery polling.\n");
4148 			}
4149 		}
4150 
4151 
4152 		*this_device = *tmpdevice;
4153 		this_device->physical_device = physical_device;
4154 
4155 		/*
4156 		 * Expose all devices except for physical devices that
4157 		 * are masked.
4158 		 */
4159 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4160 			this_device->expose_device = 0;
4161 		else
4162 			this_device->expose_device = 1;
4163 
4164 
4165 		/*
4166 		 * Get the SAS address for physical devices that are exposed.
4167 		 */
4168 		if (this_device->physical_device && this_device->expose_device)
4169 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4170 
4171 		switch (this_device->devtype) {
4172 		case TYPE_ROM:
4173 			/* We don't *really* support actual CD-ROM devices,
4174 			 * just "One Button Disaster Recovery" tape drive
4175 			 * which temporarily pretends to be a CD-ROM drive.
4176 			 * So we check that the device is really an OBDR tape
4177 			 * device by checking for "$DR-10" in bytes 43-48 of
4178 			 * the inquiry data.
4179 			 */
4180 			if (is_OBDR)
4181 				ncurrent++;
4182 			break;
4183 		case TYPE_DISK:
4184 			if (this_device->physical_device) {
4185 				/* The disk is in HBA mode. */
4186 				/* Never use RAID mapper in HBA mode. */
4187 				this_device->offload_enabled = 0;
4188 				hpsa_get_ioaccel_drive_info(h, this_device,
4189 					physdev_list, phys_dev_index, id_phys);
4190 				hpsa_get_path_info(this_device,
4191 					physdev_list, phys_dev_index, id_phys);
4192 			}
4193 			ncurrent++;
4194 			break;
4195 		case TYPE_TAPE:
4196 		case TYPE_MEDIUM_CHANGER:
4197 			ncurrent++;
4198 			break;
4199 		case TYPE_ENCLOSURE:
4200 			hpsa_get_enclosure_info(h, lunaddrbytes,
4201 						physdev_list, phys_dev_index,
4202 						this_device);
4203 			ncurrent++;
4204 			break;
4205 		case TYPE_RAID:
4206 			/* Only present the Smartarray HBA as a RAID controller.
4207 			 * If it's a RAID controller other than the HBA itself
4208 			 * (an external RAID controller, MSA500 or similar)
4209 			 * don't present it.
4210 			 */
4211 			if (!is_hba_lunid(lunaddrbytes))
4212 				break;
4213 			ncurrent++;
4214 			break;
4215 		default:
4216 			break;
4217 		}
4218 		if (ncurrent >= HPSA_MAX_DEVICES)
4219 			break;
4220 	}
4221 
4222 	if (h->sas_host == NULL) {
4223 		int rc = 0;
4224 
4225 		rc = hpsa_add_sas_host(h);
4226 		if (rc) {
4227 			dev_warn(&h->pdev->dev,
4228 				"Could not add sas host %d\n", rc);
4229 			goto out;
4230 		}
4231 	}
4232 
4233 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4234 out:
4235 	kfree(tmpdevice);
4236 	for (i = 0; i < ndev_allocated; i++)
4237 		kfree(currentsd[i]);
4238 	kfree(currentsd);
4239 	kfree(physdev_list);
4240 	kfree(logdev_list);
4241 	kfree(id_ctlr);
4242 	kfree(id_phys);
4243 }
4244 
4245 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4246 				   struct scatterlist *sg)
4247 {
4248 	u64 addr64 = (u64) sg_dma_address(sg);
4249 	unsigned int len = sg_dma_len(sg);
4250 
4251 	desc->Addr = cpu_to_le64(addr64);
4252 	desc->Len = cpu_to_le32(len);
4253 	desc->Ext = 0;
4254 }
4255 
4256 /*
4257  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4258  * dma mapping  and fills in the scatter gather entries of the
4259  * hpsa command, cp.
4260  */
4261 static int hpsa_scatter_gather(struct ctlr_info *h,
4262 		struct CommandList *cp,
4263 		struct scsi_cmnd *cmd)
4264 {
4265 	struct scatterlist *sg;
4266 	int use_sg, i, sg_limit, chained, last_sg;
4267 	struct SGDescriptor *curr_sg;
4268 
4269 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4270 
4271 	use_sg = scsi_dma_map(cmd);
4272 	if (use_sg < 0)
4273 		return use_sg;
4274 
4275 	if (!use_sg)
4276 		goto sglist_finished;
4277 
4278 	/*
4279 	 * If the number of entries is greater than the max for a single list,
4280 	 * then we have a chained list; we will set up all but one entry in the
4281 	 * first list (the last entry is saved for link information);
4282 	 * otherwise, we don't have a chained list and we'll set up at each of
4283 	 * the entries in the one list.
4284 	 */
4285 	curr_sg = cp->SG;
4286 	chained = use_sg > h->max_cmd_sg_entries;
4287 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4288 	last_sg = scsi_sg_count(cmd) - 1;
4289 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4290 		hpsa_set_sg_descriptor(curr_sg, sg);
4291 		curr_sg++;
4292 	}
4293 
4294 	if (chained) {
4295 		/*
4296 		 * Continue with the chained list.  Set curr_sg to the chained
4297 		 * list.  Modify the limit to the total count less the entries
4298 		 * we've already set up.  Resume the scan at the list entry
4299 		 * where the previous loop left off.
4300 		 */
4301 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4302 		sg_limit = use_sg - sg_limit;
4303 		for_each_sg(sg, sg, sg_limit, i) {
4304 			hpsa_set_sg_descriptor(curr_sg, sg);
4305 			curr_sg++;
4306 		}
4307 	}
4308 
4309 	/* Back the pointer up to the last entry and mark it as "last". */
4310 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4311 
4312 	if (use_sg + chained > h->maxSG)
4313 		h->maxSG = use_sg + chained;
4314 
4315 	if (chained) {
4316 		cp->Header.SGList = h->max_cmd_sg_entries;
4317 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4318 		if (hpsa_map_sg_chain_block(h, cp)) {
4319 			scsi_dma_unmap(cmd);
4320 			return -1;
4321 		}
4322 		return 0;
4323 	}
4324 
4325 sglist_finished:
4326 
4327 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4328 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4329 	return 0;
4330 }
4331 
4332 #define IO_ACCEL_INELIGIBLE (1)
4333 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4334 {
4335 	int is_write = 0;
4336 	u32 block;
4337 	u32 block_cnt;
4338 
4339 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4340 	switch (cdb[0]) {
4341 	case WRITE_6:
4342 	case WRITE_12:
4343 		is_write = 1;
4344 	case READ_6:
4345 	case READ_12:
4346 		if (*cdb_len == 6) {
4347 			block = get_unaligned_be16(&cdb[2]);
4348 			block_cnt = cdb[4];
4349 			if (block_cnt == 0)
4350 				block_cnt = 256;
4351 		} else {
4352 			BUG_ON(*cdb_len != 12);
4353 			block = get_unaligned_be32(&cdb[2]);
4354 			block_cnt = get_unaligned_be32(&cdb[6]);
4355 		}
4356 		if (block_cnt > 0xffff)
4357 			return IO_ACCEL_INELIGIBLE;
4358 
4359 		cdb[0] = is_write ? WRITE_10 : READ_10;
4360 		cdb[1] = 0;
4361 		cdb[2] = (u8) (block >> 24);
4362 		cdb[3] = (u8) (block >> 16);
4363 		cdb[4] = (u8) (block >> 8);
4364 		cdb[5] = (u8) (block);
4365 		cdb[6] = 0;
4366 		cdb[7] = (u8) (block_cnt >> 8);
4367 		cdb[8] = (u8) (block_cnt);
4368 		cdb[9] = 0;
4369 		*cdb_len = 10;
4370 		break;
4371 	}
4372 	return 0;
4373 }
4374 
4375 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4376 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4377 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4378 {
4379 	struct scsi_cmnd *cmd = c->scsi_cmd;
4380 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4381 	unsigned int len;
4382 	unsigned int total_len = 0;
4383 	struct scatterlist *sg;
4384 	u64 addr64;
4385 	int use_sg, i;
4386 	struct SGDescriptor *curr_sg;
4387 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4388 
4389 	/* TODO: implement chaining support */
4390 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4391 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4392 		return IO_ACCEL_INELIGIBLE;
4393 	}
4394 
4395 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4396 
4397 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4398 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4399 		return IO_ACCEL_INELIGIBLE;
4400 	}
4401 
4402 	c->cmd_type = CMD_IOACCEL1;
4403 
4404 	/* Adjust the DMA address to point to the accelerated command buffer */
4405 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4406 				(c->cmdindex * sizeof(*cp));
4407 	BUG_ON(c->busaddr & 0x0000007F);
4408 
4409 	use_sg = scsi_dma_map(cmd);
4410 	if (use_sg < 0) {
4411 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4412 		return use_sg;
4413 	}
4414 
4415 	if (use_sg) {
4416 		curr_sg = cp->SG;
4417 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4418 			addr64 = (u64) sg_dma_address(sg);
4419 			len  = sg_dma_len(sg);
4420 			total_len += len;
4421 			curr_sg->Addr = cpu_to_le64(addr64);
4422 			curr_sg->Len = cpu_to_le32(len);
4423 			curr_sg->Ext = cpu_to_le32(0);
4424 			curr_sg++;
4425 		}
4426 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4427 
4428 		switch (cmd->sc_data_direction) {
4429 		case DMA_TO_DEVICE:
4430 			control |= IOACCEL1_CONTROL_DATA_OUT;
4431 			break;
4432 		case DMA_FROM_DEVICE:
4433 			control |= IOACCEL1_CONTROL_DATA_IN;
4434 			break;
4435 		case DMA_NONE:
4436 			control |= IOACCEL1_CONTROL_NODATAXFER;
4437 			break;
4438 		default:
4439 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4440 			cmd->sc_data_direction);
4441 			BUG();
4442 			break;
4443 		}
4444 	} else {
4445 		control |= IOACCEL1_CONTROL_NODATAXFER;
4446 	}
4447 
4448 	c->Header.SGList = use_sg;
4449 	/* Fill out the command structure to submit */
4450 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4451 	cp->transfer_len = cpu_to_le32(total_len);
4452 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4453 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4454 	cp->control = cpu_to_le32(control);
4455 	memcpy(cp->CDB, cdb, cdb_len);
4456 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4457 	/* Tag was already set at init time. */
4458 	enqueue_cmd_and_start_io(h, c);
4459 	return 0;
4460 }
4461 
4462 /*
4463  * Queue a command directly to a device behind the controller using the
4464  * I/O accelerator path.
4465  */
4466 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4467 	struct CommandList *c)
4468 {
4469 	struct scsi_cmnd *cmd = c->scsi_cmd;
4470 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4471 
4472 	c->phys_disk = dev;
4473 
4474 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4475 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4476 }
4477 
4478 /*
4479  * Set encryption parameters for the ioaccel2 request
4480  */
4481 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4482 	struct CommandList *c, struct io_accel2_cmd *cp)
4483 {
4484 	struct scsi_cmnd *cmd = c->scsi_cmd;
4485 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4486 	struct raid_map_data *map = &dev->raid_map;
4487 	u64 first_block;
4488 
4489 	/* Are we doing encryption on this device */
4490 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4491 		return;
4492 	/* Set the data encryption key index. */
4493 	cp->dekindex = map->dekindex;
4494 
4495 	/* Set the encryption enable flag, encoded into direction field. */
4496 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4497 
4498 	/* Set encryption tweak values based on logical block address
4499 	 * If block size is 512, tweak value is LBA.
4500 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4501 	 */
4502 	switch (cmd->cmnd[0]) {
4503 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4504 	case WRITE_6:
4505 	case READ_6:
4506 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
4507 		break;
4508 	case WRITE_10:
4509 	case READ_10:
4510 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4511 	case WRITE_12:
4512 	case READ_12:
4513 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4514 		break;
4515 	case WRITE_16:
4516 	case READ_16:
4517 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4518 		break;
4519 	default:
4520 		dev_err(&h->pdev->dev,
4521 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4522 			__func__, cmd->cmnd[0]);
4523 		BUG();
4524 		break;
4525 	}
4526 
4527 	if (le32_to_cpu(map->volume_blk_size) != 512)
4528 		first_block = first_block *
4529 				le32_to_cpu(map->volume_blk_size)/512;
4530 
4531 	cp->tweak_lower = cpu_to_le32(first_block);
4532 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4533 }
4534 
4535 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4536 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4537 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4538 {
4539 	struct scsi_cmnd *cmd = c->scsi_cmd;
4540 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4541 	struct ioaccel2_sg_element *curr_sg;
4542 	int use_sg, i;
4543 	struct scatterlist *sg;
4544 	u64 addr64;
4545 	u32 len;
4546 	u32 total_len = 0;
4547 
4548 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4549 
4550 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4551 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4552 		return IO_ACCEL_INELIGIBLE;
4553 	}
4554 
4555 	c->cmd_type = CMD_IOACCEL2;
4556 	/* Adjust the DMA address to point to the accelerated command buffer */
4557 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4558 				(c->cmdindex * sizeof(*cp));
4559 	BUG_ON(c->busaddr & 0x0000007F);
4560 
4561 	memset(cp, 0, sizeof(*cp));
4562 	cp->IU_type = IOACCEL2_IU_TYPE;
4563 
4564 	use_sg = scsi_dma_map(cmd);
4565 	if (use_sg < 0) {
4566 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4567 		return use_sg;
4568 	}
4569 
4570 	if (use_sg) {
4571 		curr_sg = cp->sg;
4572 		if (use_sg > h->ioaccel_maxsg) {
4573 			addr64 = le64_to_cpu(
4574 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4575 			curr_sg->address = cpu_to_le64(addr64);
4576 			curr_sg->length = 0;
4577 			curr_sg->reserved[0] = 0;
4578 			curr_sg->reserved[1] = 0;
4579 			curr_sg->reserved[2] = 0;
4580 			curr_sg->chain_indicator = 0x80;
4581 
4582 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4583 		}
4584 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4585 			addr64 = (u64) sg_dma_address(sg);
4586 			len  = sg_dma_len(sg);
4587 			total_len += len;
4588 			curr_sg->address = cpu_to_le64(addr64);
4589 			curr_sg->length = cpu_to_le32(len);
4590 			curr_sg->reserved[0] = 0;
4591 			curr_sg->reserved[1] = 0;
4592 			curr_sg->reserved[2] = 0;
4593 			curr_sg->chain_indicator = 0;
4594 			curr_sg++;
4595 		}
4596 
4597 		switch (cmd->sc_data_direction) {
4598 		case DMA_TO_DEVICE:
4599 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4600 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4601 			break;
4602 		case DMA_FROM_DEVICE:
4603 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4604 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4605 			break;
4606 		case DMA_NONE:
4607 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4608 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4609 			break;
4610 		default:
4611 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4612 				cmd->sc_data_direction);
4613 			BUG();
4614 			break;
4615 		}
4616 	} else {
4617 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4618 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4619 	}
4620 
4621 	/* Set encryption parameters, if necessary */
4622 	set_encrypt_ioaccel2(h, c, cp);
4623 
4624 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4625 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4626 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4627 
4628 	cp->data_len = cpu_to_le32(total_len);
4629 	cp->err_ptr = cpu_to_le64(c->busaddr +
4630 			offsetof(struct io_accel2_cmd, error_data));
4631 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4632 
4633 	/* fill in sg elements */
4634 	if (use_sg > h->ioaccel_maxsg) {
4635 		cp->sg_count = 1;
4636 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4637 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4638 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4639 			scsi_dma_unmap(cmd);
4640 			return -1;
4641 		}
4642 	} else
4643 		cp->sg_count = (u8) use_sg;
4644 
4645 	enqueue_cmd_and_start_io(h, c);
4646 	return 0;
4647 }
4648 
4649 /*
4650  * Queue a command to the correct I/O accelerator path.
4651  */
4652 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4653 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4654 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4655 {
4656 	/* Try to honor the device's queue depth */
4657 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4658 					phys_disk->queue_depth) {
4659 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4660 		return IO_ACCEL_INELIGIBLE;
4661 	}
4662 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4663 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4664 						cdb, cdb_len, scsi3addr,
4665 						phys_disk);
4666 	else
4667 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4668 						cdb, cdb_len, scsi3addr,
4669 						phys_disk);
4670 }
4671 
4672 static void raid_map_helper(struct raid_map_data *map,
4673 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4674 {
4675 	if (offload_to_mirror == 0)  {
4676 		/* use physical disk in the first mirrored group. */
4677 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4678 		return;
4679 	}
4680 	do {
4681 		/* determine mirror group that *map_index indicates */
4682 		*current_group = *map_index /
4683 			le16_to_cpu(map->data_disks_per_row);
4684 		if (offload_to_mirror == *current_group)
4685 			continue;
4686 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4687 			/* select map index from next group */
4688 			*map_index += le16_to_cpu(map->data_disks_per_row);
4689 			(*current_group)++;
4690 		} else {
4691 			/* select map index from first group */
4692 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4693 			*current_group = 0;
4694 		}
4695 	} while (offload_to_mirror != *current_group);
4696 }
4697 
4698 /*
4699  * Attempt to perform offload RAID mapping for a logical volume I/O.
4700  */
4701 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4702 	struct CommandList *c)
4703 {
4704 	struct scsi_cmnd *cmd = c->scsi_cmd;
4705 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4706 	struct raid_map_data *map = &dev->raid_map;
4707 	struct raid_map_disk_data *dd = &map->data[0];
4708 	int is_write = 0;
4709 	u32 map_index;
4710 	u64 first_block, last_block;
4711 	u32 block_cnt;
4712 	u32 blocks_per_row;
4713 	u64 first_row, last_row;
4714 	u32 first_row_offset, last_row_offset;
4715 	u32 first_column, last_column;
4716 	u64 r0_first_row, r0_last_row;
4717 	u32 r5or6_blocks_per_row;
4718 	u64 r5or6_first_row, r5or6_last_row;
4719 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4720 	u32 r5or6_first_column, r5or6_last_column;
4721 	u32 total_disks_per_row;
4722 	u32 stripesize;
4723 	u32 first_group, last_group, current_group;
4724 	u32 map_row;
4725 	u32 disk_handle;
4726 	u64 disk_block;
4727 	u32 disk_block_cnt;
4728 	u8 cdb[16];
4729 	u8 cdb_len;
4730 	u16 strip_size;
4731 #if BITS_PER_LONG == 32
4732 	u64 tmpdiv;
4733 #endif
4734 	int offload_to_mirror;
4735 
4736 	/* check for valid opcode, get LBA and block count */
4737 	switch (cmd->cmnd[0]) {
4738 	case WRITE_6:
4739 		is_write = 1;
4740 	case READ_6:
4741 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
4742 		block_cnt = cmd->cmnd[4];
4743 		if (block_cnt == 0)
4744 			block_cnt = 256;
4745 		break;
4746 	case WRITE_10:
4747 		is_write = 1;
4748 	case READ_10:
4749 		first_block =
4750 			(((u64) cmd->cmnd[2]) << 24) |
4751 			(((u64) cmd->cmnd[3]) << 16) |
4752 			(((u64) cmd->cmnd[4]) << 8) |
4753 			cmd->cmnd[5];
4754 		block_cnt =
4755 			(((u32) cmd->cmnd[7]) << 8) |
4756 			cmd->cmnd[8];
4757 		break;
4758 	case WRITE_12:
4759 		is_write = 1;
4760 	case READ_12:
4761 		first_block =
4762 			(((u64) cmd->cmnd[2]) << 24) |
4763 			(((u64) cmd->cmnd[3]) << 16) |
4764 			(((u64) cmd->cmnd[4]) << 8) |
4765 			cmd->cmnd[5];
4766 		block_cnt =
4767 			(((u32) cmd->cmnd[6]) << 24) |
4768 			(((u32) cmd->cmnd[7]) << 16) |
4769 			(((u32) cmd->cmnd[8]) << 8) |
4770 		cmd->cmnd[9];
4771 		break;
4772 	case WRITE_16:
4773 		is_write = 1;
4774 	case READ_16:
4775 		first_block =
4776 			(((u64) cmd->cmnd[2]) << 56) |
4777 			(((u64) cmd->cmnd[3]) << 48) |
4778 			(((u64) cmd->cmnd[4]) << 40) |
4779 			(((u64) cmd->cmnd[5]) << 32) |
4780 			(((u64) cmd->cmnd[6]) << 24) |
4781 			(((u64) cmd->cmnd[7]) << 16) |
4782 			(((u64) cmd->cmnd[8]) << 8) |
4783 			cmd->cmnd[9];
4784 		block_cnt =
4785 			(((u32) cmd->cmnd[10]) << 24) |
4786 			(((u32) cmd->cmnd[11]) << 16) |
4787 			(((u32) cmd->cmnd[12]) << 8) |
4788 			cmd->cmnd[13];
4789 		break;
4790 	default:
4791 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4792 	}
4793 	last_block = first_block + block_cnt - 1;
4794 
4795 	/* check for write to non-RAID-0 */
4796 	if (is_write && dev->raid_level != 0)
4797 		return IO_ACCEL_INELIGIBLE;
4798 
4799 	/* check for invalid block or wraparound */
4800 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4801 		last_block < first_block)
4802 		return IO_ACCEL_INELIGIBLE;
4803 
4804 	/* calculate stripe information for the request */
4805 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4806 				le16_to_cpu(map->strip_size);
4807 	strip_size = le16_to_cpu(map->strip_size);
4808 #if BITS_PER_LONG == 32
4809 	tmpdiv = first_block;
4810 	(void) do_div(tmpdiv, blocks_per_row);
4811 	first_row = tmpdiv;
4812 	tmpdiv = last_block;
4813 	(void) do_div(tmpdiv, blocks_per_row);
4814 	last_row = tmpdiv;
4815 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4816 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4817 	tmpdiv = first_row_offset;
4818 	(void) do_div(tmpdiv, strip_size);
4819 	first_column = tmpdiv;
4820 	tmpdiv = last_row_offset;
4821 	(void) do_div(tmpdiv, strip_size);
4822 	last_column = tmpdiv;
4823 #else
4824 	first_row = first_block / blocks_per_row;
4825 	last_row = last_block / blocks_per_row;
4826 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4827 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4828 	first_column = first_row_offset / strip_size;
4829 	last_column = last_row_offset / strip_size;
4830 #endif
4831 
4832 	/* if this isn't a single row/column then give to the controller */
4833 	if ((first_row != last_row) || (first_column != last_column))
4834 		return IO_ACCEL_INELIGIBLE;
4835 
4836 	/* proceeding with driver mapping */
4837 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4838 				le16_to_cpu(map->metadata_disks_per_row);
4839 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4840 				le16_to_cpu(map->row_cnt);
4841 	map_index = (map_row * total_disks_per_row) + first_column;
4842 
4843 	switch (dev->raid_level) {
4844 	case HPSA_RAID_0:
4845 		break; /* nothing special to do */
4846 	case HPSA_RAID_1:
4847 		/* Handles load balance across RAID 1 members.
4848 		 * (2-drive R1 and R10 with even # of drives.)
4849 		 * Appropriate for SSDs, not optimal for HDDs
4850 		 */
4851 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4852 		if (dev->offload_to_mirror)
4853 			map_index += le16_to_cpu(map->data_disks_per_row);
4854 		dev->offload_to_mirror = !dev->offload_to_mirror;
4855 		break;
4856 	case HPSA_RAID_ADM:
4857 		/* Handles N-way mirrors  (R1-ADM)
4858 		 * and R10 with # of drives divisible by 3.)
4859 		 */
4860 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4861 
4862 		offload_to_mirror = dev->offload_to_mirror;
4863 		raid_map_helper(map, offload_to_mirror,
4864 				&map_index, &current_group);
4865 		/* set mirror group to use next time */
4866 		offload_to_mirror =
4867 			(offload_to_mirror >=
4868 			le16_to_cpu(map->layout_map_count) - 1)
4869 			? 0 : offload_to_mirror + 1;
4870 		dev->offload_to_mirror = offload_to_mirror;
4871 		/* Avoid direct use of dev->offload_to_mirror within this
4872 		 * function since multiple threads might simultaneously
4873 		 * increment it beyond the range of dev->layout_map_count -1.
4874 		 */
4875 		break;
4876 	case HPSA_RAID_5:
4877 	case HPSA_RAID_6:
4878 		if (le16_to_cpu(map->layout_map_count) <= 1)
4879 			break;
4880 
4881 		/* Verify first and last block are in same RAID group */
4882 		r5or6_blocks_per_row =
4883 			le16_to_cpu(map->strip_size) *
4884 			le16_to_cpu(map->data_disks_per_row);
4885 		BUG_ON(r5or6_blocks_per_row == 0);
4886 		stripesize = r5or6_blocks_per_row *
4887 			le16_to_cpu(map->layout_map_count);
4888 #if BITS_PER_LONG == 32
4889 		tmpdiv = first_block;
4890 		first_group = do_div(tmpdiv, stripesize);
4891 		tmpdiv = first_group;
4892 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
4893 		first_group = tmpdiv;
4894 		tmpdiv = last_block;
4895 		last_group = do_div(tmpdiv, stripesize);
4896 		tmpdiv = last_group;
4897 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
4898 		last_group = tmpdiv;
4899 #else
4900 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4901 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4902 #endif
4903 		if (first_group != last_group)
4904 			return IO_ACCEL_INELIGIBLE;
4905 
4906 		/* Verify request is in a single row of RAID 5/6 */
4907 #if BITS_PER_LONG == 32
4908 		tmpdiv = first_block;
4909 		(void) do_div(tmpdiv, stripesize);
4910 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
4911 		tmpdiv = last_block;
4912 		(void) do_div(tmpdiv, stripesize);
4913 		r5or6_last_row = r0_last_row = tmpdiv;
4914 #else
4915 		first_row = r5or6_first_row = r0_first_row =
4916 						first_block / stripesize;
4917 		r5or6_last_row = r0_last_row = last_block / stripesize;
4918 #endif
4919 		if (r5or6_first_row != r5or6_last_row)
4920 			return IO_ACCEL_INELIGIBLE;
4921 
4922 
4923 		/* Verify request is in a single column */
4924 #if BITS_PER_LONG == 32
4925 		tmpdiv = first_block;
4926 		first_row_offset = do_div(tmpdiv, stripesize);
4927 		tmpdiv = first_row_offset;
4928 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4929 		r5or6_first_row_offset = first_row_offset;
4930 		tmpdiv = last_block;
4931 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4932 		tmpdiv = r5or6_last_row_offset;
4933 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4934 		tmpdiv = r5or6_first_row_offset;
4935 		(void) do_div(tmpdiv, map->strip_size);
4936 		first_column = r5or6_first_column = tmpdiv;
4937 		tmpdiv = r5or6_last_row_offset;
4938 		(void) do_div(tmpdiv, map->strip_size);
4939 		r5or6_last_column = tmpdiv;
4940 #else
4941 		first_row_offset = r5or6_first_row_offset =
4942 			(u32)((first_block % stripesize) %
4943 						r5or6_blocks_per_row);
4944 
4945 		r5or6_last_row_offset =
4946 			(u32)((last_block % stripesize) %
4947 						r5or6_blocks_per_row);
4948 
4949 		first_column = r5or6_first_column =
4950 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4951 		r5or6_last_column =
4952 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4953 #endif
4954 		if (r5or6_first_column != r5or6_last_column)
4955 			return IO_ACCEL_INELIGIBLE;
4956 
4957 		/* Request is eligible */
4958 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4959 			le16_to_cpu(map->row_cnt);
4960 
4961 		map_index = (first_group *
4962 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4963 			(map_row * total_disks_per_row) + first_column;
4964 		break;
4965 	default:
4966 		return IO_ACCEL_INELIGIBLE;
4967 	}
4968 
4969 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4970 		return IO_ACCEL_INELIGIBLE;
4971 
4972 	c->phys_disk = dev->phys_disk[map_index];
4973 
4974 	disk_handle = dd[map_index].ioaccel_handle;
4975 	disk_block = le64_to_cpu(map->disk_starting_blk) +
4976 			first_row * le16_to_cpu(map->strip_size) +
4977 			(first_row_offset - first_column *
4978 			le16_to_cpu(map->strip_size));
4979 	disk_block_cnt = block_cnt;
4980 
4981 	/* handle differing logical/physical block sizes */
4982 	if (map->phys_blk_shift) {
4983 		disk_block <<= map->phys_blk_shift;
4984 		disk_block_cnt <<= map->phys_blk_shift;
4985 	}
4986 	BUG_ON(disk_block_cnt > 0xffff);
4987 
4988 	/* build the new CDB for the physical disk I/O */
4989 	if (disk_block > 0xffffffff) {
4990 		cdb[0] = is_write ? WRITE_16 : READ_16;
4991 		cdb[1] = 0;
4992 		cdb[2] = (u8) (disk_block >> 56);
4993 		cdb[3] = (u8) (disk_block >> 48);
4994 		cdb[4] = (u8) (disk_block >> 40);
4995 		cdb[5] = (u8) (disk_block >> 32);
4996 		cdb[6] = (u8) (disk_block >> 24);
4997 		cdb[7] = (u8) (disk_block >> 16);
4998 		cdb[8] = (u8) (disk_block >> 8);
4999 		cdb[9] = (u8) (disk_block);
5000 		cdb[10] = (u8) (disk_block_cnt >> 24);
5001 		cdb[11] = (u8) (disk_block_cnt >> 16);
5002 		cdb[12] = (u8) (disk_block_cnt >> 8);
5003 		cdb[13] = (u8) (disk_block_cnt);
5004 		cdb[14] = 0;
5005 		cdb[15] = 0;
5006 		cdb_len = 16;
5007 	} else {
5008 		cdb[0] = is_write ? WRITE_10 : READ_10;
5009 		cdb[1] = 0;
5010 		cdb[2] = (u8) (disk_block >> 24);
5011 		cdb[3] = (u8) (disk_block >> 16);
5012 		cdb[4] = (u8) (disk_block >> 8);
5013 		cdb[5] = (u8) (disk_block);
5014 		cdb[6] = 0;
5015 		cdb[7] = (u8) (disk_block_cnt >> 8);
5016 		cdb[8] = (u8) (disk_block_cnt);
5017 		cdb[9] = 0;
5018 		cdb_len = 10;
5019 	}
5020 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5021 						dev->scsi3addr,
5022 						dev->phys_disk[map_index]);
5023 }
5024 
5025 /*
5026  * Submit commands down the "normal" RAID stack path
5027  * All callers to hpsa_ciss_submit must check lockup_detected
5028  * beforehand, before (opt.) and after calling cmd_alloc
5029  */
5030 static int hpsa_ciss_submit(struct ctlr_info *h,
5031 	struct CommandList *c, struct scsi_cmnd *cmd,
5032 	unsigned char scsi3addr[])
5033 {
5034 	cmd->host_scribble = (unsigned char *) c;
5035 	c->cmd_type = CMD_SCSI;
5036 	c->scsi_cmd = cmd;
5037 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5038 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5039 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5040 
5041 	/* Fill in the request block... */
5042 
5043 	c->Request.Timeout = 0;
5044 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5045 	c->Request.CDBLen = cmd->cmd_len;
5046 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5047 	switch (cmd->sc_data_direction) {
5048 	case DMA_TO_DEVICE:
5049 		c->Request.type_attr_dir =
5050 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5051 		break;
5052 	case DMA_FROM_DEVICE:
5053 		c->Request.type_attr_dir =
5054 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5055 		break;
5056 	case DMA_NONE:
5057 		c->Request.type_attr_dir =
5058 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5059 		break;
5060 	case DMA_BIDIRECTIONAL:
5061 		/* This can happen if a buggy application does a scsi passthru
5062 		 * and sets both inlen and outlen to non-zero. ( see
5063 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5064 		 */
5065 
5066 		c->Request.type_attr_dir =
5067 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5068 		/* This is technically wrong, and hpsa controllers should
5069 		 * reject it with CMD_INVALID, which is the most correct
5070 		 * response, but non-fibre backends appear to let it
5071 		 * slide by, and give the same results as if this field
5072 		 * were set correctly.  Either way is acceptable for
5073 		 * our purposes here.
5074 		 */
5075 
5076 		break;
5077 
5078 	default:
5079 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5080 			cmd->sc_data_direction);
5081 		BUG();
5082 		break;
5083 	}
5084 
5085 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5086 		hpsa_cmd_resolve_and_free(h, c);
5087 		return SCSI_MLQUEUE_HOST_BUSY;
5088 	}
5089 	enqueue_cmd_and_start_io(h, c);
5090 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5091 	return 0;
5092 }
5093 
5094 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5095 				struct CommandList *c)
5096 {
5097 	dma_addr_t cmd_dma_handle, err_dma_handle;
5098 
5099 	/* Zero out all of commandlist except the last field, refcount */
5100 	memset(c, 0, offsetof(struct CommandList, refcount));
5101 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5102 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5103 	c->err_info = h->errinfo_pool + index;
5104 	memset(c->err_info, 0, sizeof(*c->err_info));
5105 	err_dma_handle = h->errinfo_pool_dhandle
5106 	    + index * sizeof(*c->err_info);
5107 	c->cmdindex = index;
5108 	c->busaddr = (u32) cmd_dma_handle;
5109 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5110 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5111 	c->h = h;
5112 	c->scsi_cmd = SCSI_CMD_IDLE;
5113 }
5114 
5115 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5116 {
5117 	int i;
5118 
5119 	for (i = 0; i < h->nr_cmds; i++) {
5120 		struct CommandList *c = h->cmd_pool + i;
5121 
5122 		hpsa_cmd_init(h, i, c);
5123 		atomic_set(&c->refcount, 0);
5124 	}
5125 }
5126 
5127 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5128 				struct CommandList *c)
5129 {
5130 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5131 
5132 	BUG_ON(c->cmdindex != index);
5133 
5134 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5135 	memset(c->err_info, 0, sizeof(*c->err_info));
5136 	c->busaddr = (u32) cmd_dma_handle;
5137 }
5138 
5139 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5140 		struct CommandList *c, struct scsi_cmnd *cmd,
5141 		unsigned char *scsi3addr)
5142 {
5143 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5144 	int rc = IO_ACCEL_INELIGIBLE;
5145 
5146 	cmd->host_scribble = (unsigned char *) c;
5147 
5148 	if (dev->offload_enabled) {
5149 		hpsa_cmd_init(h, c->cmdindex, c);
5150 		c->cmd_type = CMD_SCSI;
5151 		c->scsi_cmd = cmd;
5152 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5153 		if (rc < 0)     /* scsi_dma_map failed. */
5154 			rc = SCSI_MLQUEUE_HOST_BUSY;
5155 	} else if (dev->hba_ioaccel_enabled) {
5156 		hpsa_cmd_init(h, c->cmdindex, c);
5157 		c->cmd_type = CMD_SCSI;
5158 		c->scsi_cmd = cmd;
5159 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5160 		if (rc < 0)     /* scsi_dma_map failed. */
5161 			rc = SCSI_MLQUEUE_HOST_BUSY;
5162 	}
5163 	return rc;
5164 }
5165 
5166 static void hpsa_command_resubmit_worker(struct work_struct *work)
5167 {
5168 	struct scsi_cmnd *cmd;
5169 	struct hpsa_scsi_dev_t *dev;
5170 	struct CommandList *c = container_of(work, struct CommandList, work);
5171 
5172 	cmd = c->scsi_cmd;
5173 	dev = cmd->device->hostdata;
5174 	if (!dev) {
5175 		cmd->result = DID_NO_CONNECT << 16;
5176 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5177 	}
5178 	if (c->reset_pending)
5179 		return hpsa_cmd_resolve_and_free(c->h, c);
5180 	if (c->abort_pending)
5181 		return hpsa_cmd_abort_and_free(c->h, c, cmd);
5182 	if (c->cmd_type == CMD_IOACCEL2) {
5183 		struct ctlr_info *h = c->h;
5184 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5185 		int rc;
5186 
5187 		if (c2->error_data.serv_response ==
5188 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5189 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5190 			if (rc == 0)
5191 				return;
5192 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5193 				/*
5194 				 * If we get here, it means dma mapping failed.
5195 				 * Try again via scsi mid layer, which will
5196 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5197 				 */
5198 				cmd->result = DID_IMM_RETRY << 16;
5199 				return hpsa_cmd_free_and_done(h, c, cmd);
5200 			}
5201 			/* else, fall thru and resubmit down CISS path */
5202 		}
5203 	}
5204 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5205 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5206 		/*
5207 		 * If we get here, it means dma mapping failed. Try
5208 		 * again via scsi mid layer, which will then get
5209 		 * SCSI_MLQUEUE_HOST_BUSY.
5210 		 *
5211 		 * hpsa_ciss_submit will have already freed c
5212 		 * if it encountered a dma mapping failure.
5213 		 */
5214 		cmd->result = DID_IMM_RETRY << 16;
5215 		cmd->scsi_done(cmd);
5216 	}
5217 }
5218 
5219 /* Running in struct Scsi_Host->host_lock less mode */
5220 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5221 {
5222 	struct ctlr_info *h;
5223 	struct hpsa_scsi_dev_t *dev;
5224 	unsigned char scsi3addr[8];
5225 	struct CommandList *c;
5226 	int rc = 0;
5227 
5228 	/* Get the ptr to our adapter structure out of cmd->host. */
5229 	h = sdev_to_hba(cmd->device);
5230 
5231 	BUG_ON(cmd->request->tag < 0);
5232 
5233 	dev = cmd->device->hostdata;
5234 	if (!dev) {
5235 		cmd->result = DID_NO_CONNECT << 16;
5236 		cmd->scsi_done(cmd);
5237 		return 0;
5238 	}
5239 
5240 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5241 
5242 	if (unlikely(lockup_detected(h))) {
5243 		cmd->result = DID_NO_CONNECT << 16;
5244 		cmd->scsi_done(cmd);
5245 		return 0;
5246 	}
5247 	c = cmd_tagged_alloc(h, cmd);
5248 
5249 	/*
5250 	 * Call alternate submit routine for I/O accelerated commands.
5251 	 * Retries always go down the normal I/O path.
5252 	 */
5253 	if (likely(cmd->retries == 0 &&
5254 		cmd->request->cmd_type == REQ_TYPE_FS &&
5255 		h->acciopath_status)) {
5256 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5257 		if (rc == 0)
5258 			return 0;
5259 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5260 			hpsa_cmd_resolve_and_free(h, c);
5261 			return SCSI_MLQUEUE_HOST_BUSY;
5262 		}
5263 	}
5264 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5265 }
5266 
5267 static void hpsa_scan_complete(struct ctlr_info *h)
5268 {
5269 	unsigned long flags;
5270 
5271 	spin_lock_irqsave(&h->scan_lock, flags);
5272 	h->scan_finished = 1;
5273 	wake_up_all(&h->scan_wait_queue);
5274 	spin_unlock_irqrestore(&h->scan_lock, flags);
5275 }
5276 
5277 static void hpsa_scan_start(struct Scsi_Host *sh)
5278 {
5279 	struct ctlr_info *h = shost_to_hba(sh);
5280 	unsigned long flags;
5281 
5282 	/*
5283 	 * Don't let rescans be initiated on a controller known to be locked
5284 	 * up.  If the controller locks up *during* a rescan, that thread is
5285 	 * probably hosed, but at least we can prevent new rescan threads from
5286 	 * piling up on a locked up controller.
5287 	 */
5288 	if (unlikely(lockup_detected(h)))
5289 		return hpsa_scan_complete(h);
5290 
5291 	/* wait until any scan already in progress is finished. */
5292 	while (1) {
5293 		spin_lock_irqsave(&h->scan_lock, flags);
5294 		if (h->scan_finished)
5295 			break;
5296 		spin_unlock_irqrestore(&h->scan_lock, flags);
5297 		wait_event(h->scan_wait_queue, h->scan_finished);
5298 		/* Note: We don't need to worry about a race between this
5299 		 * thread and driver unload because the midlayer will
5300 		 * have incremented the reference count, so unload won't
5301 		 * happen if we're in here.
5302 		 */
5303 	}
5304 	h->scan_finished = 0; /* mark scan as in progress */
5305 	spin_unlock_irqrestore(&h->scan_lock, flags);
5306 
5307 	if (unlikely(lockup_detected(h)))
5308 		return hpsa_scan_complete(h);
5309 
5310 	hpsa_update_scsi_devices(h);
5311 
5312 	hpsa_scan_complete(h);
5313 }
5314 
5315 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5316 {
5317 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5318 
5319 	if (!logical_drive)
5320 		return -ENODEV;
5321 
5322 	if (qdepth < 1)
5323 		qdepth = 1;
5324 	else if (qdepth > logical_drive->queue_depth)
5325 		qdepth = logical_drive->queue_depth;
5326 
5327 	return scsi_change_queue_depth(sdev, qdepth);
5328 }
5329 
5330 static int hpsa_scan_finished(struct Scsi_Host *sh,
5331 	unsigned long elapsed_time)
5332 {
5333 	struct ctlr_info *h = shost_to_hba(sh);
5334 	unsigned long flags;
5335 	int finished;
5336 
5337 	spin_lock_irqsave(&h->scan_lock, flags);
5338 	finished = h->scan_finished;
5339 	spin_unlock_irqrestore(&h->scan_lock, flags);
5340 	return finished;
5341 }
5342 
5343 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5344 {
5345 	struct Scsi_Host *sh;
5346 
5347 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5348 	if (sh == NULL) {
5349 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5350 		return -ENOMEM;
5351 	}
5352 
5353 	sh->io_port = 0;
5354 	sh->n_io_port = 0;
5355 	sh->this_id = -1;
5356 	sh->max_channel = 3;
5357 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5358 	sh->max_lun = HPSA_MAX_LUN;
5359 	sh->max_id = HPSA_MAX_LUN;
5360 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5361 	sh->cmd_per_lun = sh->can_queue;
5362 	sh->sg_tablesize = h->maxsgentries;
5363 	sh->transportt = hpsa_sas_transport_template;
5364 	sh->hostdata[0] = (unsigned long) h;
5365 	sh->irq = h->intr[h->intr_mode];
5366 	sh->unique_id = sh->irq;
5367 
5368 	h->scsi_host = sh;
5369 	return 0;
5370 }
5371 
5372 static int hpsa_scsi_add_host(struct ctlr_info *h)
5373 {
5374 	int rv;
5375 
5376 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5377 	if (rv) {
5378 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5379 		return rv;
5380 	}
5381 	scsi_scan_host(h->scsi_host);
5382 	return 0;
5383 }
5384 
5385 /*
5386  * The block layer has already gone to the trouble of picking out a unique,
5387  * small-integer tag for this request.  We use an offset from that value as
5388  * an index to select our command block.  (The offset allows us to reserve the
5389  * low-numbered entries for our own uses.)
5390  */
5391 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5392 {
5393 	int idx = scmd->request->tag;
5394 
5395 	if (idx < 0)
5396 		return idx;
5397 
5398 	/* Offset to leave space for internal cmds. */
5399 	return idx += HPSA_NRESERVED_CMDS;
5400 }
5401 
5402 /*
5403  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5404  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5405  */
5406 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5407 				struct CommandList *c, unsigned char lunaddr[],
5408 				int reply_queue)
5409 {
5410 	int rc;
5411 
5412 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5413 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5414 			NULL, 0, 0, lunaddr, TYPE_CMD);
5415 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5416 	if (rc)
5417 		return rc;
5418 	/* no unmap needed here because no data xfer. */
5419 
5420 	/* Check if the unit is already ready. */
5421 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5422 		return 0;
5423 
5424 	/*
5425 	 * The first command sent after reset will receive "unit attention" to
5426 	 * indicate that the LUN has been reset...this is actually what we're
5427 	 * looking for (but, success is good too).
5428 	 */
5429 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5430 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5431 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5432 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5433 		return 0;
5434 
5435 	return 1;
5436 }
5437 
5438 /*
5439  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5440  * returns zero when the unit is ready, and non-zero when giving up.
5441  */
5442 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5443 				struct CommandList *c,
5444 				unsigned char lunaddr[], int reply_queue)
5445 {
5446 	int rc;
5447 	int count = 0;
5448 	int waittime = 1; /* seconds */
5449 
5450 	/* Send test unit ready until device ready, or give up. */
5451 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5452 
5453 		/*
5454 		 * Wait for a bit.  do this first, because if we send
5455 		 * the TUR right away, the reset will just abort it.
5456 		 */
5457 		msleep(1000 * waittime);
5458 
5459 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5460 		if (!rc)
5461 			break;
5462 
5463 		/* Increase wait time with each try, up to a point. */
5464 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5465 			waittime *= 2;
5466 
5467 		dev_warn(&h->pdev->dev,
5468 			 "waiting %d secs for device to become ready.\n",
5469 			 waittime);
5470 	}
5471 
5472 	return rc;
5473 }
5474 
5475 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5476 					   unsigned char lunaddr[],
5477 					   int reply_queue)
5478 {
5479 	int first_queue;
5480 	int last_queue;
5481 	int rq;
5482 	int rc = 0;
5483 	struct CommandList *c;
5484 
5485 	c = cmd_alloc(h);
5486 
5487 	/*
5488 	 * If no specific reply queue was requested, then send the TUR
5489 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5490 	 * the loop exactly once using only the specified queue.
5491 	 */
5492 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5493 		first_queue = 0;
5494 		last_queue = h->nreply_queues - 1;
5495 	} else {
5496 		first_queue = reply_queue;
5497 		last_queue = reply_queue;
5498 	}
5499 
5500 	for (rq = first_queue; rq <= last_queue; rq++) {
5501 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5502 		if (rc)
5503 			break;
5504 	}
5505 
5506 	if (rc)
5507 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5508 	else
5509 		dev_warn(&h->pdev->dev, "device is ready.\n");
5510 
5511 	cmd_free(h, c);
5512 	return rc;
5513 }
5514 
5515 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5516  * complaining.  Doing a host- or bus-reset can't do anything good here.
5517  */
5518 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5519 {
5520 	int rc;
5521 	struct ctlr_info *h;
5522 	struct hpsa_scsi_dev_t *dev;
5523 	u8 reset_type;
5524 	char msg[48];
5525 
5526 	/* find the controller to which the command to be aborted was sent */
5527 	h = sdev_to_hba(scsicmd->device);
5528 	if (h == NULL) /* paranoia */
5529 		return FAILED;
5530 
5531 	if (lockup_detected(h))
5532 		return FAILED;
5533 
5534 	dev = scsicmd->device->hostdata;
5535 	if (!dev) {
5536 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5537 		return FAILED;
5538 	}
5539 
5540 	/* if controller locked up, we can guarantee command won't complete */
5541 	if (lockup_detected(h)) {
5542 		snprintf(msg, sizeof(msg),
5543 			 "cmd %d RESET FAILED, lockup detected",
5544 			 hpsa_get_cmd_index(scsicmd));
5545 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5546 		return FAILED;
5547 	}
5548 
5549 	/* this reset request might be the result of a lockup; check */
5550 	if (detect_controller_lockup(h)) {
5551 		snprintf(msg, sizeof(msg),
5552 			 "cmd %d RESET FAILED, new lockup detected",
5553 			 hpsa_get_cmd_index(scsicmd));
5554 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5555 		return FAILED;
5556 	}
5557 
5558 	/* Do not attempt on controller */
5559 	if (is_hba_lunid(dev->scsi3addr))
5560 		return SUCCESS;
5561 
5562 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5563 		reset_type = HPSA_DEVICE_RESET_MSG;
5564 	else
5565 		reset_type = HPSA_PHYS_TARGET_RESET;
5566 
5567 	sprintf(msg, "resetting %s",
5568 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5569 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5570 
5571 	h->reset_in_progress = 1;
5572 
5573 	/* send a reset to the SCSI LUN which the command was sent to */
5574 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5575 			   DEFAULT_REPLY_QUEUE);
5576 	sprintf(msg, "reset %s %s",
5577 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5578 		rc == 0 ? "completed successfully" : "failed");
5579 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5580 	h->reset_in_progress = 0;
5581 	return rc == 0 ? SUCCESS : FAILED;
5582 }
5583 
5584 static void swizzle_abort_tag(u8 *tag)
5585 {
5586 	u8 original_tag[8];
5587 
5588 	memcpy(original_tag, tag, 8);
5589 	tag[0] = original_tag[3];
5590 	tag[1] = original_tag[2];
5591 	tag[2] = original_tag[1];
5592 	tag[3] = original_tag[0];
5593 	tag[4] = original_tag[7];
5594 	tag[5] = original_tag[6];
5595 	tag[6] = original_tag[5];
5596 	tag[7] = original_tag[4];
5597 }
5598 
5599 static void hpsa_get_tag(struct ctlr_info *h,
5600 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5601 {
5602 	u64 tag;
5603 	if (c->cmd_type == CMD_IOACCEL1) {
5604 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5605 			&h->ioaccel_cmd_pool[c->cmdindex];
5606 		tag = le64_to_cpu(cm1->tag);
5607 		*tagupper = cpu_to_le32(tag >> 32);
5608 		*taglower = cpu_to_le32(tag);
5609 		return;
5610 	}
5611 	if (c->cmd_type == CMD_IOACCEL2) {
5612 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5613 			&h->ioaccel2_cmd_pool[c->cmdindex];
5614 		/* upper tag not used in ioaccel2 mode */
5615 		memset(tagupper, 0, sizeof(*tagupper));
5616 		*taglower = cm2->Tag;
5617 		return;
5618 	}
5619 	tag = le64_to_cpu(c->Header.tag);
5620 	*tagupper = cpu_to_le32(tag >> 32);
5621 	*taglower = cpu_to_le32(tag);
5622 }
5623 
5624 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5625 	struct CommandList *abort, int reply_queue)
5626 {
5627 	int rc = IO_OK;
5628 	struct CommandList *c;
5629 	struct ErrorInfo *ei;
5630 	__le32 tagupper, taglower;
5631 
5632 	c = cmd_alloc(h);
5633 
5634 	/* fill_cmd can't fail here, no buffer to map */
5635 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5636 		0, 0, scsi3addr, TYPE_MSG);
5637 	if (h->needs_abort_tags_swizzled)
5638 		swizzle_abort_tag(&c->Request.CDB[4]);
5639 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5640 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5641 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5642 		__func__, tagupper, taglower);
5643 	/* no unmap needed here because no data xfer. */
5644 
5645 	ei = c->err_info;
5646 	switch (ei->CommandStatus) {
5647 	case CMD_SUCCESS:
5648 		break;
5649 	case CMD_TMF_STATUS:
5650 		rc = hpsa_evaluate_tmf_status(h, c);
5651 		break;
5652 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
5653 		rc = -1;
5654 		break;
5655 	default:
5656 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5657 			__func__, tagupper, taglower);
5658 		hpsa_scsi_interpret_error(h, c);
5659 		rc = -1;
5660 		break;
5661 	}
5662 	cmd_free(h, c);
5663 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5664 		__func__, tagupper, taglower);
5665 	return rc;
5666 }
5667 
5668 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5669 	struct CommandList *command_to_abort, int reply_queue)
5670 {
5671 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5672 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5673 	struct io_accel2_cmd *c2a =
5674 		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5675 	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5676 	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5677 
5678 	/*
5679 	 * We're overlaying struct hpsa_tmf_struct on top of something which
5680 	 * was allocated as a struct io_accel2_cmd, so we better be sure it
5681 	 * actually fits, and doesn't overrun the error info space.
5682 	 */
5683 	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5684 			sizeof(struct io_accel2_cmd));
5685 	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5686 			offsetof(struct hpsa_tmf_struct, error_len) +
5687 				sizeof(ac->error_len));
5688 
5689 	c->cmd_type = IOACCEL2_TMF;
5690 	c->scsi_cmd = SCSI_CMD_BUSY;
5691 
5692 	/* Adjust the DMA address to point to the accelerated command buffer */
5693 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5694 				(c->cmdindex * sizeof(struct io_accel2_cmd));
5695 	BUG_ON(c->busaddr & 0x0000007F);
5696 
5697 	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5698 	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5699 	ac->reply_queue = reply_queue;
5700 	ac->tmf = IOACCEL2_TMF_ABORT;
5701 	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5702 	memset(ac->lun_id, 0, sizeof(ac->lun_id));
5703 	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5704 	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5705 	ac->error_ptr = cpu_to_le64(c->busaddr +
5706 			offsetof(struct io_accel2_cmd, error_data));
5707 	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5708 }
5709 
5710 /* ioaccel2 path firmware cannot handle abort task requests.
5711  * Change abort requests to physical target reset, and send to the
5712  * address of the physical disk used for the ioaccel 2 command.
5713  * Return 0 on success (IO_OK)
5714  *	 -1 on failure
5715  */
5716 
5717 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5718 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5719 {
5720 	int rc = IO_OK;
5721 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5722 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5723 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5724 	unsigned char *psa = &phys_scsi3addr[0];
5725 
5726 	/* Get a pointer to the hpsa logical device. */
5727 	scmd = abort->scsi_cmd;
5728 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5729 	if (dev == NULL) {
5730 		dev_warn(&h->pdev->dev,
5731 			"Cannot abort: no device pointer for command.\n");
5732 			return -1; /* not abortable */
5733 	}
5734 
5735 	if (h->raid_offload_debug > 0)
5736 		dev_info(&h->pdev->dev,
5737 			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5738 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5739 			"Reset as abort",
5740 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5741 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5742 
5743 	if (!dev->offload_enabled) {
5744 		dev_warn(&h->pdev->dev,
5745 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5746 		return -1; /* not abortable */
5747 	}
5748 
5749 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
5750 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5751 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5752 		return -1; /* not abortable */
5753 	}
5754 
5755 	/* send the reset */
5756 	if (h->raid_offload_debug > 0)
5757 		dev_info(&h->pdev->dev,
5758 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5759 			psa[0], psa[1], psa[2], psa[3],
5760 			psa[4], psa[5], psa[6], psa[7]);
5761 	rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5762 	if (rc != 0) {
5763 		dev_warn(&h->pdev->dev,
5764 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5765 			psa[0], psa[1], psa[2], psa[3],
5766 			psa[4], psa[5], psa[6], psa[7]);
5767 		return rc; /* failed to reset */
5768 	}
5769 
5770 	/* wait for device to recover */
5771 	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5772 		dev_warn(&h->pdev->dev,
5773 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5774 			psa[0], psa[1], psa[2], psa[3],
5775 			psa[4], psa[5], psa[6], psa[7]);
5776 		return -1;  /* failed to recover */
5777 	}
5778 
5779 	/* device recovered */
5780 	dev_info(&h->pdev->dev,
5781 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5782 		psa[0], psa[1], psa[2], psa[3],
5783 		psa[4], psa[5], psa[6], psa[7]);
5784 
5785 	return rc; /* success */
5786 }
5787 
5788 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5789 	struct CommandList *abort, int reply_queue)
5790 {
5791 	int rc = IO_OK;
5792 	struct CommandList *c;
5793 	__le32 taglower, tagupper;
5794 	struct hpsa_scsi_dev_t *dev;
5795 	struct io_accel2_cmd *c2;
5796 
5797 	dev = abort->scsi_cmd->device->hostdata;
5798 	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5799 		return -1;
5800 
5801 	c = cmd_alloc(h);
5802 	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5803 	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5804 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5805 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5806 	dev_dbg(&h->pdev->dev,
5807 		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5808 		__func__, tagupper, taglower);
5809 	/* no unmap needed here because no data xfer. */
5810 
5811 	dev_dbg(&h->pdev->dev,
5812 		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5813 		__func__, tagupper, taglower, c2->error_data.serv_response);
5814 	switch (c2->error_data.serv_response) {
5815 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5816 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5817 		rc = 0;
5818 		break;
5819 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5820 	case IOACCEL2_SERV_RESPONSE_FAILURE:
5821 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5822 		rc = -1;
5823 		break;
5824 	default:
5825 		dev_warn(&h->pdev->dev,
5826 			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5827 			__func__, tagupper, taglower,
5828 			c2->error_data.serv_response);
5829 		rc = -1;
5830 	}
5831 	cmd_free(h, c);
5832 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5833 		tagupper, taglower);
5834 	return rc;
5835 }
5836 
5837 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5838 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5839 {
5840 	/*
5841 	 * ioccelerator mode 2 commands should be aborted via the
5842 	 * accelerated path, since RAID path is unaware of these commands,
5843 	 * but not all underlying firmware can handle abort TMF.
5844 	 * Change abort to physical device reset when abort TMF is unsupported.
5845 	 */
5846 	if (abort->cmd_type == CMD_IOACCEL2) {
5847 		if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5848 			return hpsa_send_abort_ioaccel2(h, abort,
5849 						reply_queue);
5850 		else
5851 			return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5852 							abort, reply_queue);
5853 	}
5854 	return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5855 }
5856 
5857 /* Find out which reply queue a command was meant to return on */
5858 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5859 					struct CommandList *c)
5860 {
5861 	if (c->cmd_type == CMD_IOACCEL2)
5862 		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5863 	return c->Header.ReplyQueue;
5864 }
5865 
5866 /*
5867  * Limit concurrency of abort commands to prevent
5868  * over-subscription of commands
5869  */
5870 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5871 {
5872 #define ABORT_CMD_WAIT_MSECS 5000
5873 	return !wait_event_timeout(h->abort_cmd_wait_queue,
5874 			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5875 			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5876 }
5877 
5878 /* Send an abort for the specified command.
5879  *	If the device and controller support it,
5880  *		send a task abort request.
5881  */
5882 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5883 {
5884 
5885 	int rc;
5886 	struct ctlr_info *h;
5887 	struct hpsa_scsi_dev_t *dev;
5888 	struct CommandList *abort; /* pointer to command to be aborted */
5889 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
5890 	char msg[256];		/* For debug messaging. */
5891 	int ml = 0;
5892 	__le32 tagupper, taglower;
5893 	int refcount, reply_queue;
5894 
5895 	if (sc == NULL)
5896 		return FAILED;
5897 
5898 	if (sc->device == NULL)
5899 		return FAILED;
5900 
5901 	/* Find the controller of the command to be aborted */
5902 	h = sdev_to_hba(sc->device);
5903 	if (h == NULL)
5904 		return FAILED;
5905 
5906 	/* Find the device of the command to be aborted */
5907 	dev = sc->device->hostdata;
5908 	if (!dev) {
5909 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5910 				msg);
5911 		return FAILED;
5912 	}
5913 
5914 	/* If controller locked up, we can guarantee command won't complete */
5915 	if (lockup_detected(h)) {
5916 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5917 					"ABORT FAILED, lockup detected");
5918 		return FAILED;
5919 	}
5920 
5921 	/* This is a good time to check if controller lockup has occurred */
5922 	if (detect_controller_lockup(h)) {
5923 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5924 					"ABORT FAILED, new lockup detected");
5925 		return FAILED;
5926 	}
5927 
5928 	/* Check that controller supports some kind of task abort */
5929 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5930 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5931 		return FAILED;
5932 
5933 	memset(msg, 0, sizeof(msg));
5934 	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5935 		h->scsi_host->host_no, sc->device->channel,
5936 		sc->device->id, sc->device->lun,
5937 		"Aborting command", sc);
5938 
5939 	/* Get SCSI command to be aborted */
5940 	abort = (struct CommandList *) sc->host_scribble;
5941 	if (abort == NULL) {
5942 		/* This can happen if the command already completed. */
5943 		return SUCCESS;
5944 	}
5945 	refcount = atomic_inc_return(&abort->refcount);
5946 	if (refcount == 1) { /* Command is done already. */
5947 		cmd_free(h, abort);
5948 		return SUCCESS;
5949 	}
5950 
5951 	/* Don't bother trying the abort if we know it won't work. */
5952 	if (abort->cmd_type != CMD_IOACCEL2 &&
5953 		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5954 		cmd_free(h, abort);
5955 		return FAILED;
5956 	}
5957 
5958 	/*
5959 	 * Check that we're aborting the right command.
5960 	 * It's possible the CommandList already completed and got re-used.
5961 	 */
5962 	if (abort->scsi_cmd != sc) {
5963 		cmd_free(h, abort);
5964 		return SUCCESS;
5965 	}
5966 
5967 	abort->abort_pending = true;
5968 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5969 	reply_queue = hpsa_extract_reply_queue(h, abort);
5970 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5971 	as  = abort->scsi_cmd;
5972 	if (as != NULL)
5973 		ml += sprintf(msg+ml,
5974 			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5975 			as->cmd_len, as->cmnd[0], as->cmnd[1],
5976 			as->serial_number);
5977 	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5978 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5979 
5980 	/*
5981 	 * Command is in flight, or possibly already completed
5982 	 * by the firmware (but not to the scsi mid layer) but we can't
5983 	 * distinguish which.  Send the abort down.
5984 	 */
5985 	if (wait_for_available_abort_cmd(h)) {
5986 		dev_warn(&h->pdev->dev,
5987 			"%s FAILED, timeout waiting for an abort command to become available.\n",
5988 			msg);
5989 		cmd_free(h, abort);
5990 		return FAILED;
5991 	}
5992 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5993 	atomic_inc(&h->abort_cmds_available);
5994 	wake_up_all(&h->abort_cmd_wait_queue);
5995 	if (rc != 0) {
5996 		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5997 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5998 				"FAILED to abort command");
5999 		cmd_free(h, abort);
6000 		return FAILED;
6001 	}
6002 	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6003 	wait_event(h->event_sync_wait_queue,
6004 		   abort->scsi_cmd != sc || lockup_detected(h));
6005 	cmd_free(h, abort);
6006 	return !lockup_detected(h) ? SUCCESS : FAILED;
6007 }
6008 
6009 /*
6010  * For operations with an associated SCSI command, a command block is allocated
6011  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6012  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6013  * the complement, although cmd_free() may be called instead.
6014  */
6015 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6016 					    struct scsi_cmnd *scmd)
6017 {
6018 	int idx = hpsa_get_cmd_index(scmd);
6019 	struct CommandList *c = h->cmd_pool + idx;
6020 
6021 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6022 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6023 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6024 		/* The index value comes from the block layer, so if it's out of
6025 		 * bounds, it's probably not our bug.
6026 		 */
6027 		BUG();
6028 	}
6029 
6030 	atomic_inc(&c->refcount);
6031 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6032 		/*
6033 		 * We expect that the SCSI layer will hand us a unique tag
6034 		 * value.  Thus, there should never be a collision here between
6035 		 * two requests...because if the selected command isn't idle
6036 		 * then someone is going to be very disappointed.
6037 		 */
6038 		dev_err(&h->pdev->dev,
6039 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6040 			idx);
6041 		if (c->scsi_cmd != NULL)
6042 			scsi_print_command(c->scsi_cmd);
6043 		scsi_print_command(scmd);
6044 	}
6045 
6046 	hpsa_cmd_partial_init(h, idx, c);
6047 	return c;
6048 }
6049 
6050 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6051 {
6052 	/*
6053 	 * Release our reference to the block.  We don't need to do anything
6054 	 * else to free it, because it is accessed by index.  (There's no point
6055 	 * in checking the result of the decrement, since we cannot guarantee
6056 	 * that there isn't a concurrent abort which is also accessing it.)
6057 	 */
6058 	(void)atomic_dec(&c->refcount);
6059 }
6060 
6061 /*
6062  * For operations that cannot sleep, a command block is allocated at init,
6063  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6064  * which ones are free or in use.  Lock must be held when calling this.
6065  * cmd_free() is the complement.
6066  * This function never gives up and returns NULL.  If it hangs,
6067  * another thread must call cmd_free() to free some tags.
6068  */
6069 
6070 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6071 {
6072 	struct CommandList *c;
6073 	int refcount, i;
6074 	int offset = 0;
6075 
6076 	/*
6077 	 * There is some *extremely* small but non-zero chance that that
6078 	 * multiple threads could get in here, and one thread could
6079 	 * be scanning through the list of bits looking for a free
6080 	 * one, but the free ones are always behind him, and other
6081 	 * threads sneak in behind him and eat them before he can
6082 	 * get to them, so that while there is always a free one, a
6083 	 * very unlucky thread might be starved anyway, never able to
6084 	 * beat the other threads.  In reality, this happens so
6085 	 * infrequently as to be indistinguishable from never.
6086 	 *
6087 	 * Note that we start allocating commands before the SCSI host structure
6088 	 * is initialized.  Since the search starts at bit zero, this
6089 	 * all works, since we have at least one command structure available;
6090 	 * however, it means that the structures with the low indexes have to be
6091 	 * reserved for driver-initiated requests, while requests from the block
6092 	 * layer will use the higher indexes.
6093 	 */
6094 
6095 	for (;;) {
6096 		i = find_next_zero_bit(h->cmd_pool_bits,
6097 					HPSA_NRESERVED_CMDS,
6098 					offset);
6099 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6100 			offset = 0;
6101 			continue;
6102 		}
6103 		c = h->cmd_pool + i;
6104 		refcount = atomic_inc_return(&c->refcount);
6105 		if (unlikely(refcount > 1)) {
6106 			cmd_free(h, c); /* already in use */
6107 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6108 			continue;
6109 		}
6110 		set_bit(i & (BITS_PER_LONG - 1),
6111 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6112 		break; /* it's ours now. */
6113 	}
6114 	hpsa_cmd_partial_init(h, i, c);
6115 	return c;
6116 }
6117 
6118 /*
6119  * This is the complementary operation to cmd_alloc().  Note, however, in some
6120  * corner cases it may also be used to free blocks allocated by
6121  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6122  * the clear-bit is harmless.
6123  */
6124 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6125 {
6126 	if (atomic_dec_and_test(&c->refcount)) {
6127 		int i;
6128 
6129 		i = c - h->cmd_pool;
6130 		clear_bit(i & (BITS_PER_LONG - 1),
6131 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6132 	}
6133 }
6134 
6135 #ifdef CONFIG_COMPAT
6136 
6137 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6138 	void __user *arg)
6139 {
6140 	IOCTL32_Command_struct __user *arg32 =
6141 	    (IOCTL32_Command_struct __user *) arg;
6142 	IOCTL_Command_struct arg64;
6143 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6144 	int err;
6145 	u32 cp;
6146 
6147 	memset(&arg64, 0, sizeof(arg64));
6148 	err = 0;
6149 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6150 			   sizeof(arg64.LUN_info));
6151 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6152 			   sizeof(arg64.Request));
6153 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6154 			   sizeof(arg64.error_info));
6155 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6156 	err |= get_user(cp, &arg32->buf);
6157 	arg64.buf = compat_ptr(cp);
6158 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6159 
6160 	if (err)
6161 		return -EFAULT;
6162 
6163 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6164 	if (err)
6165 		return err;
6166 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6167 			 sizeof(arg32->error_info));
6168 	if (err)
6169 		return -EFAULT;
6170 	return err;
6171 }
6172 
6173 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6174 	int cmd, void __user *arg)
6175 {
6176 	BIG_IOCTL32_Command_struct __user *arg32 =
6177 	    (BIG_IOCTL32_Command_struct __user *) arg;
6178 	BIG_IOCTL_Command_struct arg64;
6179 	BIG_IOCTL_Command_struct __user *p =
6180 	    compat_alloc_user_space(sizeof(arg64));
6181 	int err;
6182 	u32 cp;
6183 
6184 	memset(&arg64, 0, sizeof(arg64));
6185 	err = 0;
6186 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6187 			   sizeof(arg64.LUN_info));
6188 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6189 			   sizeof(arg64.Request));
6190 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6191 			   sizeof(arg64.error_info));
6192 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6193 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6194 	err |= get_user(cp, &arg32->buf);
6195 	arg64.buf = compat_ptr(cp);
6196 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6197 
6198 	if (err)
6199 		return -EFAULT;
6200 
6201 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6202 	if (err)
6203 		return err;
6204 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6205 			 sizeof(arg32->error_info));
6206 	if (err)
6207 		return -EFAULT;
6208 	return err;
6209 }
6210 
6211 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6212 {
6213 	switch (cmd) {
6214 	case CCISS_GETPCIINFO:
6215 	case CCISS_GETINTINFO:
6216 	case CCISS_SETINTINFO:
6217 	case CCISS_GETNODENAME:
6218 	case CCISS_SETNODENAME:
6219 	case CCISS_GETHEARTBEAT:
6220 	case CCISS_GETBUSTYPES:
6221 	case CCISS_GETFIRMVER:
6222 	case CCISS_GETDRIVVER:
6223 	case CCISS_REVALIDVOLS:
6224 	case CCISS_DEREGDISK:
6225 	case CCISS_REGNEWDISK:
6226 	case CCISS_REGNEWD:
6227 	case CCISS_RESCANDISK:
6228 	case CCISS_GETLUNINFO:
6229 		return hpsa_ioctl(dev, cmd, arg);
6230 
6231 	case CCISS_PASSTHRU32:
6232 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6233 	case CCISS_BIG_PASSTHRU32:
6234 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6235 
6236 	default:
6237 		return -ENOIOCTLCMD;
6238 	}
6239 }
6240 #endif
6241 
6242 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6243 {
6244 	struct hpsa_pci_info pciinfo;
6245 
6246 	if (!argp)
6247 		return -EINVAL;
6248 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6249 	pciinfo.bus = h->pdev->bus->number;
6250 	pciinfo.dev_fn = h->pdev->devfn;
6251 	pciinfo.board_id = h->board_id;
6252 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6253 		return -EFAULT;
6254 	return 0;
6255 }
6256 
6257 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6258 {
6259 	DriverVer_type DriverVer;
6260 	unsigned char vmaj, vmin, vsubmin;
6261 	int rc;
6262 
6263 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6264 		&vmaj, &vmin, &vsubmin);
6265 	if (rc != 3) {
6266 		dev_info(&h->pdev->dev, "driver version string '%s' "
6267 			"unrecognized.", HPSA_DRIVER_VERSION);
6268 		vmaj = 0;
6269 		vmin = 0;
6270 		vsubmin = 0;
6271 	}
6272 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6273 	if (!argp)
6274 		return -EINVAL;
6275 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6276 		return -EFAULT;
6277 	return 0;
6278 }
6279 
6280 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6281 {
6282 	IOCTL_Command_struct iocommand;
6283 	struct CommandList *c;
6284 	char *buff = NULL;
6285 	u64 temp64;
6286 	int rc = 0;
6287 
6288 	if (!argp)
6289 		return -EINVAL;
6290 	if (!capable(CAP_SYS_RAWIO))
6291 		return -EPERM;
6292 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6293 		return -EFAULT;
6294 	if ((iocommand.buf_size < 1) &&
6295 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6296 		return -EINVAL;
6297 	}
6298 	if (iocommand.buf_size > 0) {
6299 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6300 		if (buff == NULL)
6301 			return -ENOMEM;
6302 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6303 			/* Copy the data into the buffer we created */
6304 			if (copy_from_user(buff, iocommand.buf,
6305 				iocommand.buf_size)) {
6306 				rc = -EFAULT;
6307 				goto out_kfree;
6308 			}
6309 		} else {
6310 			memset(buff, 0, iocommand.buf_size);
6311 		}
6312 	}
6313 	c = cmd_alloc(h);
6314 
6315 	/* Fill in the command type */
6316 	c->cmd_type = CMD_IOCTL_PEND;
6317 	c->scsi_cmd = SCSI_CMD_BUSY;
6318 	/* Fill in Command Header */
6319 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6320 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6321 		c->Header.SGList = 1;
6322 		c->Header.SGTotal = cpu_to_le16(1);
6323 	} else	{ /* no buffers to fill */
6324 		c->Header.SGList = 0;
6325 		c->Header.SGTotal = cpu_to_le16(0);
6326 	}
6327 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6328 
6329 	/* Fill in Request block */
6330 	memcpy(&c->Request, &iocommand.Request,
6331 		sizeof(c->Request));
6332 
6333 	/* Fill in the scatter gather information */
6334 	if (iocommand.buf_size > 0) {
6335 		temp64 = pci_map_single(h->pdev, buff,
6336 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6337 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6338 			c->SG[0].Addr = cpu_to_le64(0);
6339 			c->SG[0].Len = cpu_to_le32(0);
6340 			rc = -ENOMEM;
6341 			goto out;
6342 		}
6343 		c->SG[0].Addr = cpu_to_le64(temp64);
6344 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6345 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6346 	}
6347 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6348 	if (iocommand.buf_size > 0)
6349 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6350 	check_ioctl_unit_attention(h, c);
6351 	if (rc) {
6352 		rc = -EIO;
6353 		goto out;
6354 	}
6355 
6356 	/* Copy the error information out */
6357 	memcpy(&iocommand.error_info, c->err_info,
6358 		sizeof(iocommand.error_info));
6359 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6360 		rc = -EFAULT;
6361 		goto out;
6362 	}
6363 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6364 		iocommand.buf_size > 0) {
6365 		/* Copy the data out of the buffer we created */
6366 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6367 			rc = -EFAULT;
6368 			goto out;
6369 		}
6370 	}
6371 out:
6372 	cmd_free(h, c);
6373 out_kfree:
6374 	kfree(buff);
6375 	return rc;
6376 }
6377 
6378 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6379 {
6380 	BIG_IOCTL_Command_struct *ioc;
6381 	struct CommandList *c;
6382 	unsigned char **buff = NULL;
6383 	int *buff_size = NULL;
6384 	u64 temp64;
6385 	BYTE sg_used = 0;
6386 	int status = 0;
6387 	u32 left;
6388 	u32 sz;
6389 	BYTE __user *data_ptr;
6390 
6391 	if (!argp)
6392 		return -EINVAL;
6393 	if (!capable(CAP_SYS_RAWIO))
6394 		return -EPERM;
6395 	ioc = (BIG_IOCTL_Command_struct *)
6396 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
6397 	if (!ioc) {
6398 		status = -ENOMEM;
6399 		goto cleanup1;
6400 	}
6401 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6402 		status = -EFAULT;
6403 		goto cleanup1;
6404 	}
6405 	if ((ioc->buf_size < 1) &&
6406 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6407 		status = -EINVAL;
6408 		goto cleanup1;
6409 	}
6410 	/* Check kmalloc limits  using all SGs */
6411 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6412 		status = -EINVAL;
6413 		goto cleanup1;
6414 	}
6415 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6416 		status = -EINVAL;
6417 		goto cleanup1;
6418 	}
6419 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6420 	if (!buff) {
6421 		status = -ENOMEM;
6422 		goto cleanup1;
6423 	}
6424 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6425 	if (!buff_size) {
6426 		status = -ENOMEM;
6427 		goto cleanup1;
6428 	}
6429 	left = ioc->buf_size;
6430 	data_ptr = ioc->buf;
6431 	while (left) {
6432 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6433 		buff_size[sg_used] = sz;
6434 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6435 		if (buff[sg_used] == NULL) {
6436 			status = -ENOMEM;
6437 			goto cleanup1;
6438 		}
6439 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6440 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6441 				status = -EFAULT;
6442 				goto cleanup1;
6443 			}
6444 		} else
6445 			memset(buff[sg_used], 0, sz);
6446 		left -= sz;
6447 		data_ptr += sz;
6448 		sg_used++;
6449 	}
6450 	c = cmd_alloc(h);
6451 
6452 	c->cmd_type = CMD_IOCTL_PEND;
6453 	c->scsi_cmd = SCSI_CMD_BUSY;
6454 	c->Header.ReplyQueue = 0;
6455 	c->Header.SGList = (u8) sg_used;
6456 	c->Header.SGTotal = cpu_to_le16(sg_used);
6457 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6458 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6459 	if (ioc->buf_size > 0) {
6460 		int i;
6461 		for (i = 0; i < sg_used; i++) {
6462 			temp64 = pci_map_single(h->pdev, buff[i],
6463 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6464 			if (dma_mapping_error(&h->pdev->dev,
6465 							(dma_addr_t) temp64)) {
6466 				c->SG[i].Addr = cpu_to_le64(0);
6467 				c->SG[i].Len = cpu_to_le32(0);
6468 				hpsa_pci_unmap(h->pdev, c, i,
6469 					PCI_DMA_BIDIRECTIONAL);
6470 				status = -ENOMEM;
6471 				goto cleanup0;
6472 			}
6473 			c->SG[i].Addr = cpu_to_le64(temp64);
6474 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6475 			c->SG[i].Ext = cpu_to_le32(0);
6476 		}
6477 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6478 	}
6479 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6480 	if (sg_used)
6481 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6482 	check_ioctl_unit_attention(h, c);
6483 	if (status) {
6484 		status = -EIO;
6485 		goto cleanup0;
6486 	}
6487 
6488 	/* Copy the error information out */
6489 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6490 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6491 		status = -EFAULT;
6492 		goto cleanup0;
6493 	}
6494 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6495 		int i;
6496 
6497 		/* Copy the data out of the buffer we created */
6498 		BYTE __user *ptr = ioc->buf;
6499 		for (i = 0; i < sg_used; i++) {
6500 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6501 				status = -EFAULT;
6502 				goto cleanup0;
6503 			}
6504 			ptr += buff_size[i];
6505 		}
6506 	}
6507 	status = 0;
6508 cleanup0:
6509 	cmd_free(h, c);
6510 cleanup1:
6511 	if (buff) {
6512 		int i;
6513 
6514 		for (i = 0; i < sg_used; i++)
6515 			kfree(buff[i]);
6516 		kfree(buff);
6517 	}
6518 	kfree(buff_size);
6519 	kfree(ioc);
6520 	return status;
6521 }
6522 
6523 static void check_ioctl_unit_attention(struct ctlr_info *h,
6524 	struct CommandList *c)
6525 {
6526 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6527 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6528 		(void) check_for_unit_attention(h, c);
6529 }
6530 
6531 /*
6532  * ioctl
6533  */
6534 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6535 {
6536 	struct ctlr_info *h;
6537 	void __user *argp = (void __user *)arg;
6538 	int rc;
6539 
6540 	h = sdev_to_hba(dev);
6541 
6542 	switch (cmd) {
6543 	case CCISS_DEREGDISK:
6544 	case CCISS_REGNEWDISK:
6545 	case CCISS_REGNEWD:
6546 		hpsa_scan_start(h->scsi_host);
6547 		return 0;
6548 	case CCISS_GETPCIINFO:
6549 		return hpsa_getpciinfo_ioctl(h, argp);
6550 	case CCISS_GETDRIVVER:
6551 		return hpsa_getdrivver_ioctl(h, argp);
6552 	case CCISS_PASSTHRU:
6553 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6554 			return -EAGAIN;
6555 		rc = hpsa_passthru_ioctl(h, argp);
6556 		atomic_inc(&h->passthru_cmds_avail);
6557 		return rc;
6558 	case CCISS_BIG_PASSTHRU:
6559 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6560 			return -EAGAIN;
6561 		rc = hpsa_big_passthru_ioctl(h, argp);
6562 		atomic_inc(&h->passthru_cmds_avail);
6563 		return rc;
6564 	default:
6565 		return -ENOTTY;
6566 	}
6567 }
6568 
6569 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6570 				u8 reset_type)
6571 {
6572 	struct CommandList *c;
6573 
6574 	c = cmd_alloc(h);
6575 
6576 	/* fill_cmd can't fail here, no data buffer to map */
6577 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6578 		RAID_CTLR_LUNID, TYPE_MSG);
6579 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6580 	c->waiting = NULL;
6581 	enqueue_cmd_and_start_io(h, c);
6582 	/* Don't wait for completion, the reset won't complete.  Don't free
6583 	 * the command either.  This is the last command we will send before
6584 	 * re-initializing everything, so it doesn't matter and won't leak.
6585 	 */
6586 	return;
6587 }
6588 
6589 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6590 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6591 	int cmd_type)
6592 {
6593 	int pci_dir = XFER_NONE;
6594 	u64 tag; /* for commands to be aborted */
6595 
6596 	c->cmd_type = CMD_IOCTL_PEND;
6597 	c->scsi_cmd = SCSI_CMD_BUSY;
6598 	c->Header.ReplyQueue = 0;
6599 	if (buff != NULL && size > 0) {
6600 		c->Header.SGList = 1;
6601 		c->Header.SGTotal = cpu_to_le16(1);
6602 	} else {
6603 		c->Header.SGList = 0;
6604 		c->Header.SGTotal = cpu_to_le16(0);
6605 	}
6606 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6607 
6608 	if (cmd_type == TYPE_CMD) {
6609 		switch (cmd) {
6610 		case HPSA_INQUIRY:
6611 			/* are we trying to read a vital product page */
6612 			if (page_code & VPD_PAGE) {
6613 				c->Request.CDB[1] = 0x01;
6614 				c->Request.CDB[2] = (page_code & 0xff);
6615 			}
6616 			c->Request.CDBLen = 6;
6617 			c->Request.type_attr_dir =
6618 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6619 			c->Request.Timeout = 0;
6620 			c->Request.CDB[0] = HPSA_INQUIRY;
6621 			c->Request.CDB[4] = size & 0xFF;
6622 			break;
6623 		case HPSA_REPORT_LOG:
6624 		case HPSA_REPORT_PHYS:
6625 			/* Talking to controller so It's a physical command
6626 			   mode = 00 target = 0.  Nothing to write.
6627 			 */
6628 			c->Request.CDBLen = 12;
6629 			c->Request.type_attr_dir =
6630 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6631 			c->Request.Timeout = 0;
6632 			c->Request.CDB[0] = cmd;
6633 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6634 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6635 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6636 			c->Request.CDB[9] = size & 0xFF;
6637 			break;
6638 		case BMIC_SENSE_DIAG_OPTIONS:
6639 			c->Request.CDBLen = 16;
6640 			c->Request.type_attr_dir =
6641 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6642 			c->Request.Timeout = 0;
6643 			/* Spec says this should be BMIC_WRITE */
6644 			c->Request.CDB[0] = BMIC_READ;
6645 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6646 			break;
6647 		case BMIC_SET_DIAG_OPTIONS:
6648 			c->Request.CDBLen = 16;
6649 			c->Request.type_attr_dir =
6650 					TYPE_ATTR_DIR(cmd_type,
6651 						ATTR_SIMPLE, XFER_WRITE);
6652 			c->Request.Timeout = 0;
6653 			c->Request.CDB[0] = BMIC_WRITE;
6654 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6655 			break;
6656 		case HPSA_CACHE_FLUSH:
6657 			c->Request.CDBLen = 12;
6658 			c->Request.type_attr_dir =
6659 					TYPE_ATTR_DIR(cmd_type,
6660 						ATTR_SIMPLE, XFER_WRITE);
6661 			c->Request.Timeout = 0;
6662 			c->Request.CDB[0] = BMIC_WRITE;
6663 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6664 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6665 			c->Request.CDB[8] = size & 0xFF;
6666 			break;
6667 		case TEST_UNIT_READY:
6668 			c->Request.CDBLen = 6;
6669 			c->Request.type_attr_dir =
6670 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6671 			c->Request.Timeout = 0;
6672 			break;
6673 		case HPSA_GET_RAID_MAP:
6674 			c->Request.CDBLen = 12;
6675 			c->Request.type_attr_dir =
6676 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6677 			c->Request.Timeout = 0;
6678 			c->Request.CDB[0] = HPSA_CISS_READ;
6679 			c->Request.CDB[1] = cmd;
6680 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6681 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6682 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6683 			c->Request.CDB[9] = size & 0xFF;
6684 			break;
6685 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6686 			c->Request.CDBLen = 10;
6687 			c->Request.type_attr_dir =
6688 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6689 			c->Request.Timeout = 0;
6690 			c->Request.CDB[0] = BMIC_READ;
6691 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6692 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6693 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6694 			break;
6695 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6696 			c->Request.CDBLen = 10;
6697 			c->Request.type_attr_dir =
6698 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6699 			c->Request.Timeout = 0;
6700 			c->Request.CDB[0] = BMIC_READ;
6701 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6702 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6703 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6704 			break;
6705 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6706 			c->Request.CDBLen = 10;
6707 			c->Request.type_attr_dir =
6708 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6709 			c->Request.Timeout = 0;
6710 			c->Request.CDB[0] = BMIC_READ;
6711 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6712 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6713 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6714 			break;
6715 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6716 			c->Request.CDBLen = 10;
6717 			c->Request.type_attr_dir =
6718 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6719 			c->Request.Timeout = 0;
6720 			c->Request.CDB[0] = BMIC_READ;
6721 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6722 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6723 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6724 			break;
6725 		case BMIC_IDENTIFY_CONTROLLER:
6726 			c->Request.CDBLen = 10;
6727 			c->Request.type_attr_dir =
6728 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6729 			c->Request.Timeout = 0;
6730 			c->Request.CDB[0] = BMIC_READ;
6731 			c->Request.CDB[1] = 0;
6732 			c->Request.CDB[2] = 0;
6733 			c->Request.CDB[3] = 0;
6734 			c->Request.CDB[4] = 0;
6735 			c->Request.CDB[5] = 0;
6736 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6737 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6738 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6739 			c->Request.CDB[9] = 0;
6740 			break;
6741 		default:
6742 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6743 			BUG();
6744 			return -1;
6745 		}
6746 	} else if (cmd_type == TYPE_MSG) {
6747 		switch (cmd) {
6748 
6749 		case  HPSA_PHYS_TARGET_RESET:
6750 			c->Request.CDBLen = 16;
6751 			c->Request.type_attr_dir =
6752 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6753 			c->Request.Timeout = 0; /* Don't time out */
6754 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6755 			c->Request.CDB[0] = HPSA_RESET;
6756 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6757 			/* Physical target reset needs no control bytes 4-7*/
6758 			c->Request.CDB[4] = 0x00;
6759 			c->Request.CDB[5] = 0x00;
6760 			c->Request.CDB[6] = 0x00;
6761 			c->Request.CDB[7] = 0x00;
6762 			break;
6763 		case  HPSA_DEVICE_RESET_MSG:
6764 			c->Request.CDBLen = 16;
6765 			c->Request.type_attr_dir =
6766 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6767 			c->Request.Timeout = 0; /* Don't time out */
6768 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6769 			c->Request.CDB[0] =  cmd;
6770 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6771 			/* If bytes 4-7 are zero, it means reset the */
6772 			/* LunID device */
6773 			c->Request.CDB[4] = 0x00;
6774 			c->Request.CDB[5] = 0x00;
6775 			c->Request.CDB[6] = 0x00;
6776 			c->Request.CDB[7] = 0x00;
6777 			break;
6778 		case  HPSA_ABORT_MSG:
6779 			memcpy(&tag, buff, sizeof(tag));
6780 			dev_dbg(&h->pdev->dev,
6781 				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6782 				tag, c->Header.tag);
6783 			c->Request.CDBLen = 16;
6784 			c->Request.type_attr_dir =
6785 					TYPE_ATTR_DIR(cmd_type,
6786 						ATTR_SIMPLE, XFER_WRITE);
6787 			c->Request.Timeout = 0; /* Don't time out */
6788 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6789 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6790 			c->Request.CDB[2] = 0x00; /* reserved */
6791 			c->Request.CDB[3] = 0x00; /* reserved */
6792 			/* Tag to abort goes in CDB[4]-CDB[11] */
6793 			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6794 			c->Request.CDB[12] = 0x00; /* reserved */
6795 			c->Request.CDB[13] = 0x00; /* reserved */
6796 			c->Request.CDB[14] = 0x00; /* reserved */
6797 			c->Request.CDB[15] = 0x00; /* reserved */
6798 		break;
6799 		default:
6800 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6801 				cmd);
6802 			BUG();
6803 		}
6804 	} else {
6805 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6806 		BUG();
6807 	}
6808 
6809 	switch (GET_DIR(c->Request.type_attr_dir)) {
6810 	case XFER_READ:
6811 		pci_dir = PCI_DMA_FROMDEVICE;
6812 		break;
6813 	case XFER_WRITE:
6814 		pci_dir = PCI_DMA_TODEVICE;
6815 		break;
6816 	case XFER_NONE:
6817 		pci_dir = PCI_DMA_NONE;
6818 		break;
6819 	default:
6820 		pci_dir = PCI_DMA_BIDIRECTIONAL;
6821 	}
6822 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6823 		return -1;
6824 	return 0;
6825 }
6826 
6827 /*
6828  * Map (physical) PCI mem into (virtual) kernel space
6829  */
6830 static void __iomem *remap_pci_mem(ulong base, ulong size)
6831 {
6832 	ulong page_base = ((ulong) base) & PAGE_MASK;
6833 	ulong page_offs = ((ulong) base) - page_base;
6834 	void __iomem *page_remapped = ioremap_nocache(page_base,
6835 		page_offs + size);
6836 
6837 	return page_remapped ? (page_remapped + page_offs) : NULL;
6838 }
6839 
6840 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6841 {
6842 	return h->access.command_completed(h, q);
6843 }
6844 
6845 static inline bool interrupt_pending(struct ctlr_info *h)
6846 {
6847 	return h->access.intr_pending(h);
6848 }
6849 
6850 static inline long interrupt_not_for_us(struct ctlr_info *h)
6851 {
6852 	return (h->access.intr_pending(h) == 0) ||
6853 		(h->interrupts_enabled == 0);
6854 }
6855 
6856 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6857 	u32 raw_tag)
6858 {
6859 	if (unlikely(tag_index >= h->nr_cmds)) {
6860 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6861 		return 1;
6862 	}
6863 	return 0;
6864 }
6865 
6866 static inline void finish_cmd(struct CommandList *c)
6867 {
6868 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6869 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6870 			|| c->cmd_type == CMD_IOACCEL2))
6871 		complete_scsi_command(c);
6872 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6873 		complete(c->waiting);
6874 }
6875 
6876 /* process completion of an indexed ("direct lookup") command */
6877 static inline void process_indexed_cmd(struct ctlr_info *h,
6878 	u32 raw_tag)
6879 {
6880 	u32 tag_index;
6881 	struct CommandList *c;
6882 
6883 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6884 	if (!bad_tag(h, tag_index, raw_tag)) {
6885 		c = h->cmd_pool + tag_index;
6886 		finish_cmd(c);
6887 	}
6888 }
6889 
6890 /* Some controllers, like p400, will give us one interrupt
6891  * after a soft reset, even if we turned interrupts off.
6892  * Only need to check for this in the hpsa_xxx_discard_completions
6893  * functions.
6894  */
6895 static int ignore_bogus_interrupt(struct ctlr_info *h)
6896 {
6897 	if (likely(!reset_devices))
6898 		return 0;
6899 
6900 	if (likely(h->interrupts_enabled))
6901 		return 0;
6902 
6903 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6904 		"(known firmware bug.)  Ignoring.\n");
6905 
6906 	return 1;
6907 }
6908 
6909 /*
6910  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6911  * Relies on (h-q[x] == x) being true for x such that
6912  * 0 <= x < MAX_REPLY_QUEUES.
6913  */
6914 static struct ctlr_info *queue_to_hba(u8 *queue)
6915 {
6916 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6917 }
6918 
6919 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6920 {
6921 	struct ctlr_info *h = queue_to_hba(queue);
6922 	u8 q = *(u8 *) queue;
6923 	u32 raw_tag;
6924 
6925 	if (ignore_bogus_interrupt(h))
6926 		return IRQ_NONE;
6927 
6928 	if (interrupt_not_for_us(h))
6929 		return IRQ_NONE;
6930 	h->last_intr_timestamp = get_jiffies_64();
6931 	while (interrupt_pending(h)) {
6932 		raw_tag = get_next_completion(h, q);
6933 		while (raw_tag != FIFO_EMPTY)
6934 			raw_tag = next_command(h, q);
6935 	}
6936 	return IRQ_HANDLED;
6937 }
6938 
6939 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6940 {
6941 	struct ctlr_info *h = queue_to_hba(queue);
6942 	u32 raw_tag;
6943 	u8 q = *(u8 *) queue;
6944 
6945 	if (ignore_bogus_interrupt(h))
6946 		return IRQ_NONE;
6947 
6948 	h->last_intr_timestamp = get_jiffies_64();
6949 	raw_tag = get_next_completion(h, q);
6950 	while (raw_tag != FIFO_EMPTY)
6951 		raw_tag = next_command(h, q);
6952 	return IRQ_HANDLED;
6953 }
6954 
6955 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6956 {
6957 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6958 	u32 raw_tag;
6959 	u8 q = *(u8 *) queue;
6960 
6961 	if (interrupt_not_for_us(h))
6962 		return IRQ_NONE;
6963 	h->last_intr_timestamp = get_jiffies_64();
6964 	while (interrupt_pending(h)) {
6965 		raw_tag = get_next_completion(h, q);
6966 		while (raw_tag != FIFO_EMPTY) {
6967 			process_indexed_cmd(h, raw_tag);
6968 			raw_tag = next_command(h, q);
6969 		}
6970 	}
6971 	return IRQ_HANDLED;
6972 }
6973 
6974 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6975 {
6976 	struct ctlr_info *h = queue_to_hba(queue);
6977 	u32 raw_tag;
6978 	u8 q = *(u8 *) queue;
6979 
6980 	h->last_intr_timestamp = get_jiffies_64();
6981 	raw_tag = get_next_completion(h, q);
6982 	while (raw_tag != FIFO_EMPTY) {
6983 		process_indexed_cmd(h, raw_tag);
6984 		raw_tag = next_command(h, q);
6985 	}
6986 	return IRQ_HANDLED;
6987 }
6988 
6989 /* Send a message CDB to the firmware. Careful, this only works
6990  * in simple mode, not performant mode due to the tag lookup.
6991  * We only ever use this immediately after a controller reset.
6992  */
6993 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6994 			unsigned char type)
6995 {
6996 	struct Command {
6997 		struct CommandListHeader CommandHeader;
6998 		struct RequestBlock Request;
6999 		struct ErrDescriptor ErrorDescriptor;
7000 	};
7001 	struct Command *cmd;
7002 	static const size_t cmd_sz = sizeof(*cmd) +
7003 					sizeof(cmd->ErrorDescriptor);
7004 	dma_addr_t paddr64;
7005 	__le32 paddr32;
7006 	u32 tag;
7007 	void __iomem *vaddr;
7008 	int i, err;
7009 
7010 	vaddr = pci_ioremap_bar(pdev, 0);
7011 	if (vaddr == NULL)
7012 		return -ENOMEM;
7013 
7014 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7015 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7016 	 * memory.
7017 	 */
7018 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7019 	if (err) {
7020 		iounmap(vaddr);
7021 		return err;
7022 	}
7023 
7024 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7025 	if (cmd == NULL) {
7026 		iounmap(vaddr);
7027 		return -ENOMEM;
7028 	}
7029 
7030 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7031 	 * although there's no guarantee, we assume that the address is at
7032 	 * least 4-byte aligned (most likely, it's page-aligned).
7033 	 */
7034 	paddr32 = cpu_to_le32(paddr64);
7035 
7036 	cmd->CommandHeader.ReplyQueue = 0;
7037 	cmd->CommandHeader.SGList = 0;
7038 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7039 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7040 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7041 
7042 	cmd->Request.CDBLen = 16;
7043 	cmd->Request.type_attr_dir =
7044 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7045 	cmd->Request.Timeout = 0; /* Don't time out */
7046 	cmd->Request.CDB[0] = opcode;
7047 	cmd->Request.CDB[1] = type;
7048 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7049 	cmd->ErrorDescriptor.Addr =
7050 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7051 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7052 
7053 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7054 
7055 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7056 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7057 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7058 			break;
7059 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7060 	}
7061 
7062 	iounmap(vaddr);
7063 
7064 	/* we leak the DMA buffer here ... no choice since the controller could
7065 	 *  still complete the command.
7066 	 */
7067 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7068 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7069 			opcode, type);
7070 		return -ETIMEDOUT;
7071 	}
7072 
7073 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7074 
7075 	if (tag & HPSA_ERROR_BIT) {
7076 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7077 			opcode, type);
7078 		return -EIO;
7079 	}
7080 
7081 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7082 		opcode, type);
7083 	return 0;
7084 }
7085 
7086 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7087 
7088 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7089 	void __iomem *vaddr, u32 use_doorbell)
7090 {
7091 
7092 	if (use_doorbell) {
7093 		/* For everything after the P600, the PCI power state method
7094 		 * of resetting the controller doesn't work, so we have this
7095 		 * other way using the doorbell register.
7096 		 */
7097 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7098 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7099 
7100 		/* PMC hardware guys tell us we need a 10 second delay after
7101 		 * doorbell reset and before any attempt to talk to the board
7102 		 * at all to ensure that this actually works and doesn't fall
7103 		 * over in some weird corner cases.
7104 		 */
7105 		msleep(10000);
7106 	} else { /* Try to do it the PCI power state way */
7107 
7108 		/* Quoting from the Open CISS Specification: "The Power
7109 		 * Management Control/Status Register (CSR) controls the power
7110 		 * state of the device.  The normal operating state is D0,
7111 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7112 		 * the controller, place the interface device in D3 then to D0,
7113 		 * this causes a secondary PCI reset which will reset the
7114 		 * controller." */
7115 
7116 		int rc = 0;
7117 
7118 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7119 
7120 		/* enter the D3hot power management state */
7121 		rc = pci_set_power_state(pdev, PCI_D3hot);
7122 		if (rc)
7123 			return rc;
7124 
7125 		msleep(500);
7126 
7127 		/* enter the D0 power management state */
7128 		rc = pci_set_power_state(pdev, PCI_D0);
7129 		if (rc)
7130 			return rc;
7131 
7132 		/*
7133 		 * The P600 requires a small delay when changing states.
7134 		 * Otherwise we may think the board did not reset and we bail.
7135 		 * This for kdump only and is particular to the P600.
7136 		 */
7137 		msleep(500);
7138 	}
7139 	return 0;
7140 }
7141 
7142 static void init_driver_version(char *driver_version, int len)
7143 {
7144 	memset(driver_version, 0, len);
7145 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7146 }
7147 
7148 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7149 {
7150 	char *driver_version;
7151 	int i, size = sizeof(cfgtable->driver_version);
7152 
7153 	driver_version = kmalloc(size, GFP_KERNEL);
7154 	if (!driver_version)
7155 		return -ENOMEM;
7156 
7157 	init_driver_version(driver_version, size);
7158 	for (i = 0; i < size; i++)
7159 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7160 	kfree(driver_version);
7161 	return 0;
7162 }
7163 
7164 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7165 					  unsigned char *driver_ver)
7166 {
7167 	int i;
7168 
7169 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7170 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7171 }
7172 
7173 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7174 {
7175 
7176 	char *driver_ver, *old_driver_ver;
7177 	int rc, size = sizeof(cfgtable->driver_version);
7178 
7179 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7180 	if (!old_driver_ver)
7181 		return -ENOMEM;
7182 	driver_ver = old_driver_ver + size;
7183 
7184 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7185 	 * should have been changed, otherwise we know the reset failed.
7186 	 */
7187 	init_driver_version(old_driver_ver, size);
7188 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7189 	rc = !memcmp(driver_ver, old_driver_ver, size);
7190 	kfree(old_driver_ver);
7191 	return rc;
7192 }
7193 /* This does a hard reset of the controller using PCI power management
7194  * states or the using the doorbell register.
7195  */
7196 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7197 {
7198 	u64 cfg_offset;
7199 	u32 cfg_base_addr;
7200 	u64 cfg_base_addr_index;
7201 	void __iomem *vaddr;
7202 	unsigned long paddr;
7203 	u32 misc_fw_support;
7204 	int rc;
7205 	struct CfgTable __iomem *cfgtable;
7206 	u32 use_doorbell;
7207 	u16 command_register;
7208 
7209 	/* For controllers as old as the P600, this is very nearly
7210 	 * the same thing as
7211 	 *
7212 	 * pci_save_state(pci_dev);
7213 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7214 	 * pci_set_power_state(pci_dev, PCI_D0);
7215 	 * pci_restore_state(pci_dev);
7216 	 *
7217 	 * For controllers newer than the P600, the pci power state
7218 	 * method of resetting doesn't work so we have another way
7219 	 * using the doorbell register.
7220 	 */
7221 
7222 	if (!ctlr_is_resettable(board_id)) {
7223 		dev_warn(&pdev->dev, "Controller not resettable\n");
7224 		return -ENODEV;
7225 	}
7226 
7227 	/* if controller is soft- but not hard resettable... */
7228 	if (!ctlr_is_hard_resettable(board_id))
7229 		return -ENOTSUPP; /* try soft reset later. */
7230 
7231 	/* Save the PCI command register */
7232 	pci_read_config_word(pdev, 4, &command_register);
7233 	pci_save_state(pdev);
7234 
7235 	/* find the first memory BAR, so we can find the cfg table */
7236 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7237 	if (rc)
7238 		return rc;
7239 	vaddr = remap_pci_mem(paddr, 0x250);
7240 	if (!vaddr)
7241 		return -ENOMEM;
7242 
7243 	/* find cfgtable in order to check if reset via doorbell is supported */
7244 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7245 					&cfg_base_addr_index, &cfg_offset);
7246 	if (rc)
7247 		goto unmap_vaddr;
7248 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7249 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7250 	if (!cfgtable) {
7251 		rc = -ENOMEM;
7252 		goto unmap_vaddr;
7253 	}
7254 	rc = write_driver_ver_to_cfgtable(cfgtable);
7255 	if (rc)
7256 		goto unmap_cfgtable;
7257 
7258 	/* If reset via doorbell register is supported, use that.
7259 	 * There are two such methods.  Favor the newest method.
7260 	 */
7261 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7262 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7263 	if (use_doorbell) {
7264 		use_doorbell = DOORBELL_CTLR_RESET2;
7265 	} else {
7266 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7267 		if (use_doorbell) {
7268 			dev_warn(&pdev->dev,
7269 				"Soft reset not supported. Firmware update is required.\n");
7270 			rc = -ENOTSUPP; /* try soft reset */
7271 			goto unmap_cfgtable;
7272 		}
7273 	}
7274 
7275 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7276 	if (rc)
7277 		goto unmap_cfgtable;
7278 
7279 	pci_restore_state(pdev);
7280 	pci_write_config_word(pdev, 4, command_register);
7281 
7282 	/* Some devices (notably the HP Smart Array 5i Controller)
7283 	   need a little pause here */
7284 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7285 
7286 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7287 	if (rc) {
7288 		dev_warn(&pdev->dev,
7289 			"Failed waiting for board to become ready after hard reset\n");
7290 		goto unmap_cfgtable;
7291 	}
7292 
7293 	rc = controller_reset_failed(vaddr);
7294 	if (rc < 0)
7295 		goto unmap_cfgtable;
7296 	if (rc) {
7297 		dev_warn(&pdev->dev, "Unable to successfully reset "
7298 			"controller. Will try soft reset.\n");
7299 		rc = -ENOTSUPP;
7300 	} else {
7301 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7302 	}
7303 
7304 unmap_cfgtable:
7305 	iounmap(cfgtable);
7306 
7307 unmap_vaddr:
7308 	iounmap(vaddr);
7309 	return rc;
7310 }
7311 
7312 /*
7313  *  We cannot read the structure directly, for portability we must use
7314  *   the io functions.
7315  *   This is for debug only.
7316  */
7317 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7318 {
7319 #ifdef HPSA_DEBUG
7320 	int i;
7321 	char temp_name[17];
7322 
7323 	dev_info(dev, "Controller Configuration information\n");
7324 	dev_info(dev, "------------------------------------\n");
7325 	for (i = 0; i < 4; i++)
7326 		temp_name[i] = readb(&(tb->Signature[i]));
7327 	temp_name[4] = '\0';
7328 	dev_info(dev, "   Signature = %s\n", temp_name);
7329 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7330 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7331 	       readl(&(tb->TransportSupport)));
7332 	dev_info(dev, "   Transport methods active = 0x%x\n",
7333 	       readl(&(tb->TransportActive)));
7334 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7335 	       readl(&(tb->HostWrite.TransportRequest)));
7336 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7337 	       readl(&(tb->HostWrite.CoalIntDelay)));
7338 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7339 	       readl(&(tb->HostWrite.CoalIntCount)));
7340 	dev_info(dev, "   Max outstanding commands = %d\n",
7341 	       readl(&(tb->CmdsOutMax)));
7342 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7343 	for (i = 0; i < 16; i++)
7344 		temp_name[i] = readb(&(tb->ServerName[i]));
7345 	temp_name[16] = '\0';
7346 	dev_info(dev, "   Server Name = %s\n", temp_name);
7347 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7348 		readl(&(tb->HeartBeat)));
7349 #endif				/* HPSA_DEBUG */
7350 }
7351 
7352 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7353 {
7354 	int i, offset, mem_type, bar_type;
7355 
7356 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7357 		return 0;
7358 	offset = 0;
7359 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7360 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7361 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7362 			offset += 4;
7363 		else {
7364 			mem_type = pci_resource_flags(pdev, i) &
7365 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7366 			switch (mem_type) {
7367 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7368 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7369 				offset += 4;	/* 32 bit */
7370 				break;
7371 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7372 				offset += 8;
7373 				break;
7374 			default:	/* reserved in PCI 2.2 */
7375 				dev_warn(&pdev->dev,
7376 				       "base address is invalid\n");
7377 				return -1;
7378 				break;
7379 			}
7380 		}
7381 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7382 			return i + 1;
7383 	}
7384 	return -1;
7385 }
7386 
7387 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7388 {
7389 	if (h->msix_vector) {
7390 		if (h->pdev->msix_enabled)
7391 			pci_disable_msix(h->pdev);
7392 		h->msix_vector = 0;
7393 	} else if (h->msi_vector) {
7394 		if (h->pdev->msi_enabled)
7395 			pci_disable_msi(h->pdev);
7396 		h->msi_vector = 0;
7397 	}
7398 }
7399 
7400 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7401  * controllers that are capable. If not, we use legacy INTx mode.
7402  */
7403 static void hpsa_interrupt_mode(struct ctlr_info *h)
7404 {
7405 #ifdef CONFIG_PCI_MSI
7406 	int err, i;
7407 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7408 
7409 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7410 		hpsa_msix_entries[i].vector = 0;
7411 		hpsa_msix_entries[i].entry = i;
7412 	}
7413 
7414 	/* Some boards advertise MSI but don't really support it */
7415 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7416 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7417 		goto default_int_mode;
7418 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7419 		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7420 		h->msix_vector = MAX_REPLY_QUEUES;
7421 		if (h->msix_vector > num_online_cpus())
7422 			h->msix_vector = num_online_cpus();
7423 		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7424 					    1, h->msix_vector);
7425 		if (err < 0) {
7426 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7427 			h->msix_vector = 0;
7428 			goto single_msi_mode;
7429 		} else if (err < h->msix_vector) {
7430 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7431 			       "available\n", err);
7432 		}
7433 		h->msix_vector = err;
7434 		for (i = 0; i < h->msix_vector; i++)
7435 			h->intr[i] = hpsa_msix_entries[i].vector;
7436 		return;
7437 	}
7438 single_msi_mode:
7439 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7440 		dev_info(&h->pdev->dev, "MSI capable controller\n");
7441 		if (!pci_enable_msi(h->pdev))
7442 			h->msi_vector = 1;
7443 		else
7444 			dev_warn(&h->pdev->dev, "MSI init failed\n");
7445 	}
7446 default_int_mode:
7447 #endif				/* CONFIG_PCI_MSI */
7448 	/* if we get here we're going to use the default interrupt mode */
7449 	h->intr[h->intr_mode] = h->pdev->irq;
7450 }
7451 
7452 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7453 {
7454 	int i;
7455 	u32 subsystem_vendor_id, subsystem_device_id;
7456 
7457 	subsystem_vendor_id = pdev->subsystem_vendor;
7458 	subsystem_device_id = pdev->subsystem_device;
7459 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7460 		    subsystem_vendor_id;
7461 
7462 	for (i = 0; i < ARRAY_SIZE(products); i++)
7463 		if (*board_id == products[i].board_id)
7464 			return i;
7465 
7466 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7467 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7468 		!hpsa_allow_any) {
7469 		dev_warn(&pdev->dev, "unrecognized board ID: "
7470 			"0x%08x, ignoring.\n", *board_id);
7471 			return -ENODEV;
7472 	}
7473 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7474 }
7475 
7476 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7477 				    unsigned long *memory_bar)
7478 {
7479 	int i;
7480 
7481 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7482 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7483 			/* addressing mode bits already removed */
7484 			*memory_bar = pci_resource_start(pdev, i);
7485 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7486 				*memory_bar);
7487 			return 0;
7488 		}
7489 	dev_warn(&pdev->dev, "no memory BAR found\n");
7490 	return -ENODEV;
7491 }
7492 
7493 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7494 				     int wait_for_ready)
7495 {
7496 	int i, iterations;
7497 	u32 scratchpad;
7498 	if (wait_for_ready)
7499 		iterations = HPSA_BOARD_READY_ITERATIONS;
7500 	else
7501 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7502 
7503 	for (i = 0; i < iterations; i++) {
7504 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7505 		if (wait_for_ready) {
7506 			if (scratchpad == HPSA_FIRMWARE_READY)
7507 				return 0;
7508 		} else {
7509 			if (scratchpad != HPSA_FIRMWARE_READY)
7510 				return 0;
7511 		}
7512 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7513 	}
7514 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7515 	return -ENODEV;
7516 }
7517 
7518 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7519 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7520 			       u64 *cfg_offset)
7521 {
7522 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7523 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7524 	*cfg_base_addr &= (u32) 0x0000ffff;
7525 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7526 	if (*cfg_base_addr_index == -1) {
7527 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7528 		return -ENODEV;
7529 	}
7530 	return 0;
7531 }
7532 
7533 static void hpsa_free_cfgtables(struct ctlr_info *h)
7534 {
7535 	if (h->transtable) {
7536 		iounmap(h->transtable);
7537 		h->transtable = NULL;
7538 	}
7539 	if (h->cfgtable) {
7540 		iounmap(h->cfgtable);
7541 		h->cfgtable = NULL;
7542 	}
7543 }
7544 
7545 /* Find and map CISS config table and transfer table
7546 + * several items must be unmapped (freed) later
7547 + * */
7548 static int hpsa_find_cfgtables(struct ctlr_info *h)
7549 {
7550 	u64 cfg_offset;
7551 	u32 cfg_base_addr;
7552 	u64 cfg_base_addr_index;
7553 	u32 trans_offset;
7554 	int rc;
7555 
7556 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7557 		&cfg_base_addr_index, &cfg_offset);
7558 	if (rc)
7559 		return rc;
7560 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7561 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7562 	if (!h->cfgtable) {
7563 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7564 		return -ENOMEM;
7565 	}
7566 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7567 	if (rc)
7568 		return rc;
7569 	/* Find performant mode table. */
7570 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7571 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7572 				cfg_base_addr_index)+cfg_offset+trans_offset,
7573 				sizeof(*h->transtable));
7574 	if (!h->transtable) {
7575 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7576 		hpsa_free_cfgtables(h);
7577 		return -ENOMEM;
7578 	}
7579 	return 0;
7580 }
7581 
7582 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7583 {
7584 #define MIN_MAX_COMMANDS 16
7585 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7586 
7587 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7588 
7589 	/* Limit commands in memory limited kdump scenario. */
7590 	if (reset_devices && h->max_commands > 32)
7591 		h->max_commands = 32;
7592 
7593 	if (h->max_commands < MIN_MAX_COMMANDS) {
7594 		dev_warn(&h->pdev->dev,
7595 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7596 			h->max_commands,
7597 			MIN_MAX_COMMANDS);
7598 		h->max_commands = MIN_MAX_COMMANDS;
7599 	}
7600 }
7601 
7602 /* If the controller reports that the total max sg entries is greater than 512,
7603  * then we know that chained SG blocks work.  (Original smart arrays did not
7604  * support chained SG blocks and would return zero for max sg entries.)
7605  */
7606 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7607 {
7608 	return h->maxsgentries > 512;
7609 }
7610 
7611 /* Interrogate the hardware for some limits:
7612  * max commands, max SG elements without chaining, and with chaining,
7613  * SG chain block size, etc.
7614  */
7615 static void hpsa_find_board_params(struct ctlr_info *h)
7616 {
7617 	hpsa_get_max_perf_mode_cmds(h);
7618 	h->nr_cmds = h->max_commands;
7619 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7620 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7621 	if (hpsa_supports_chained_sg_blocks(h)) {
7622 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7623 		h->max_cmd_sg_entries = 32;
7624 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7625 		h->maxsgentries--; /* save one for chain pointer */
7626 	} else {
7627 		/*
7628 		 * Original smart arrays supported at most 31 s/g entries
7629 		 * embedded inline in the command (trying to use more
7630 		 * would lock up the controller)
7631 		 */
7632 		h->max_cmd_sg_entries = 31;
7633 		h->maxsgentries = 31; /* default to traditional values */
7634 		h->chainsize = 0;
7635 	}
7636 
7637 	/* Find out what task management functions are supported and cache */
7638 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7639 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7640 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7641 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7642 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7643 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7644 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7645 }
7646 
7647 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7648 {
7649 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7650 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7651 		return false;
7652 	}
7653 	return true;
7654 }
7655 
7656 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7657 {
7658 	u32 driver_support;
7659 
7660 	driver_support = readl(&(h->cfgtable->driver_support));
7661 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7662 #ifdef CONFIG_X86
7663 	driver_support |= ENABLE_SCSI_PREFETCH;
7664 #endif
7665 	driver_support |= ENABLE_UNIT_ATTN;
7666 	writel(driver_support, &(h->cfgtable->driver_support));
7667 }
7668 
7669 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7670  * in a prefetch beyond physical memory.
7671  */
7672 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7673 {
7674 	u32 dma_prefetch;
7675 
7676 	if (h->board_id != 0x3225103C)
7677 		return;
7678 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7679 	dma_prefetch |= 0x8000;
7680 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7681 }
7682 
7683 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7684 {
7685 	int i;
7686 	u32 doorbell_value;
7687 	unsigned long flags;
7688 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7689 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7690 		spin_lock_irqsave(&h->lock, flags);
7691 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7692 		spin_unlock_irqrestore(&h->lock, flags);
7693 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7694 			goto done;
7695 		/* delay and try again */
7696 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7697 	}
7698 	return -ENODEV;
7699 done:
7700 	return 0;
7701 }
7702 
7703 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7704 {
7705 	int i;
7706 	u32 doorbell_value;
7707 	unsigned long flags;
7708 
7709 	/* under certain very rare conditions, this can take awhile.
7710 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7711 	 * as we enter this code.)
7712 	 */
7713 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7714 		if (h->remove_in_progress)
7715 			goto done;
7716 		spin_lock_irqsave(&h->lock, flags);
7717 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7718 		spin_unlock_irqrestore(&h->lock, flags);
7719 		if (!(doorbell_value & CFGTBL_ChangeReq))
7720 			goto done;
7721 		/* delay and try again */
7722 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7723 	}
7724 	return -ENODEV;
7725 done:
7726 	return 0;
7727 }
7728 
7729 /* return -ENODEV or other reason on error, 0 on success */
7730 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7731 {
7732 	u32 trans_support;
7733 
7734 	trans_support = readl(&(h->cfgtable->TransportSupport));
7735 	if (!(trans_support & SIMPLE_MODE))
7736 		return -ENOTSUPP;
7737 
7738 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7739 
7740 	/* Update the field, and then ring the doorbell */
7741 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7742 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7743 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7744 	if (hpsa_wait_for_mode_change_ack(h))
7745 		goto error;
7746 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7747 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7748 		goto error;
7749 	h->transMethod = CFGTBL_Trans_Simple;
7750 	return 0;
7751 error:
7752 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7753 	return -ENODEV;
7754 }
7755 
7756 /* free items allocated or mapped by hpsa_pci_init */
7757 static void hpsa_free_pci_init(struct ctlr_info *h)
7758 {
7759 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7760 	iounmap(h->vaddr);			/* pci_init 3 */
7761 	h->vaddr = NULL;
7762 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7763 	/*
7764 	 * call pci_disable_device before pci_release_regions per
7765 	 * Documentation/PCI/pci.txt
7766 	 */
7767 	pci_disable_device(h->pdev);		/* pci_init 1 */
7768 	pci_release_regions(h->pdev);		/* pci_init 2 */
7769 }
7770 
7771 /* several items must be freed later */
7772 static int hpsa_pci_init(struct ctlr_info *h)
7773 {
7774 	int prod_index, err;
7775 
7776 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7777 	if (prod_index < 0)
7778 		return prod_index;
7779 	h->product_name = products[prod_index].product_name;
7780 	h->access = *(products[prod_index].access);
7781 
7782 	h->needs_abort_tags_swizzled =
7783 		ctlr_needs_abort_tags_swizzled(h->board_id);
7784 
7785 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7786 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7787 
7788 	err = pci_enable_device(h->pdev);
7789 	if (err) {
7790 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7791 		pci_disable_device(h->pdev);
7792 		return err;
7793 	}
7794 
7795 	err = pci_request_regions(h->pdev, HPSA);
7796 	if (err) {
7797 		dev_err(&h->pdev->dev,
7798 			"failed to obtain PCI resources\n");
7799 		pci_disable_device(h->pdev);
7800 		return err;
7801 	}
7802 
7803 	pci_set_master(h->pdev);
7804 
7805 	hpsa_interrupt_mode(h);
7806 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7807 	if (err)
7808 		goto clean2;	/* intmode+region, pci */
7809 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7810 	if (!h->vaddr) {
7811 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7812 		err = -ENOMEM;
7813 		goto clean2;	/* intmode+region, pci */
7814 	}
7815 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7816 	if (err)
7817 		goto clean3;	/* vaddr, intmode+region, pci */
7818 	err = hpsa_find_cfgtables(h);
7819 	if (err)
7820 		goto clean3;	/* vaddr, intmode+region, pci */
7821 	hpsa_find_board_params(h);
7822 
7823 	if (!hpsa_CISS_signature_present(h)) {
7824 		err = -ENODEV;
7825 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7826 	}
7827 	hpsa_set_driver_support_bits(h);
7828 	hpsa_p600_dma_prefetch_quirk(h);
7829 	err = hpsa_enter_simple_mode(h);
7830 	if (err)
7831 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7832 	return 0;
7833 
7834 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7835 	hpsa_free_cfgtables(h);
7836 clean3:	/* vaddr, intmode+region, pci */
7837 	iounmap(h->vaddr);
7838 	h->vaddr = NULL;
7839 clean2:	/* intmode+region, pci */
7840 	hpsa_disable_interrupt_mode(h);
7841 	/*
7842 	 * call pci_disable_device before pci_release_regions per
7843 	 * Documentation/PCI/pci.txt
7844 	 */
7845 	pci_disable_device(h->pdev);
7846 	pci_release_regions(h->pdev);
7847 	return err;
7848 }
7849 
7850 static void hpsa_hba_inquiry(struct ctlr_info *h)
7851 {
7852 	int rc;
7853 
7854 #define HBA_INQUIRY_BYTE_COUNT 64
7855 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7856 	if (!h->hba_inquiry_data)
7857 		return;
7858 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7859 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7860 	if (rc != 0) {
7861 		kfree(h->hba_inquiry_data);
7862 		h->hba_inquiry_data = NULL;
7863 	}
7864 }
7865 
7866 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7867 {
7868 	int rc, i;
7869 	void __iomem *vaddr;
7870 
7871 	if (!reset_devices)
7872 		return 0;
7873 
7874 	/* kdump kernel is loading, we don't know in which state is
7875 	 * the pci interface. The dev->enable_cnt is equal zero
7876 	 * so we call enable+disable, wait a while and switch it on.
7877 	 */
7878 	rc = pci_enable_device(pdev);
7879 	if (rc) {
7880 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7881 		return -ENODEV;
7882 	}
7883 	pci_disable_device(pdev);
7884 	msleep(260);			/* a randomly chosen number */
7885 	rc = pci_enable_device(pdev);
7886 	if (rc) {
7887 		dev_warn(&pdev->dev, "failed to enable device.\n");
7888 		return -ENODEV;
7889 	}
7890 
7891 	pci_set_master(pdev);
7892 
7893 	vaddr = pci_ioremap_bar(pdev, 0);
7894 	if (vaddr == NULL) {
7895 		rc = -ENOMEM;
7896 		goto out_disable;
7897 	}
7898 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7899 	iounmap(vaddr);
7900 
7901 	/* Reset the controller with a PCI power-cycle or via doorbell */
7902 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7903 
7904 	/* -ENOTSUPP here means we cannot reset the controller
7905 	 * but it's already (and still) up and running in
7906 	 * "performant mode".  Or, it might be 640x, which can't reset
7907 	 * due to concerns about shared bbwc between 6402/6404 pair.
7908 	 */
7909 	if (rc)
7910 		goto out_disable;
7911 
7912 	/* Now try to get the controller to respond to a no-op */
7913 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7914 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7915 		if (hpsa_noop(pdev) == 0)
7916 			break;
7917 		else
7918 			dev_warn(&pdev->dev, "no-op failed%s\n",
7919 					(i < 11 ? "; re-trying" : ""));
7920 	}
7921 
7922 out_disable:
7923 
7924 	pci_disable_device(pdev);
7925 	return rc;
7926 }
7927 
7928 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7929 {
7930 	kfree(h->cmd_pool_bits);
7931 	h->cmd_pool_bits = NULL;
7932 	if (h->cmd_pool) {
7933 		pci_free_consistent(h->pdev,
7934 				h->nr_cmds * sizeof(struct CommandList),
7935 				h->cmd_pool,
7936 				h->cmd_pool_dhandle);
7937 		h->cmd_pool = NULL;
7938 		h->cmd_pool_dhandle = 0;
7939 	}
7940 	if (h->errinfo_pool) {
7941 		pci_free_consistent(h->pdev,
7942 				h->nr_cmds * sizeof(struct ErrorInfo),
7943 				h->errinfo_pool,
7944 				h->errinfo_pool_dhandle);
7945 		h->errinfo_pool = NULL;
7946 		h->errinfo_pool_dhandle = 0;
7947 	}
7948 }
7949 
7950 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7951 {
7952 	h->cmd_pool_bits = kzalloc(
7953 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7954 		sizeof(unsigned long), GFP_KERNEL);
7955 	h->cmd_pool = pci_alloc_consistent(h->pdev,
7956 		    h->nr_cmds * sizeof(*h->cmd_pool),
7957 		    &(h->cmd_pool_dhandle));
7958 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7959 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7960 		    &(h->errinfo_pool_dhandle));
7961 	if ((h->cmd_pool_bits == NULL)
7962 	    || (h->cmd_pool == NULL)
7963 	    || (h->errinfo_pool == NULL)) {
7964 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7965 		goto clean_up;
7966 	}
7967 	hpsa_preinitialize_commands(h);
7968 	return 0;
7969 clean_up:
7970 	hpsa_free_cmd_pool(h);
7971 	return -ENOMEM;
7972 }
7973 
7974 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7975 {
7976 	int i, cpu;
7977 
7978 	cpu = cpumask_first(cpu_online_mask);
7979 	for (i = 0; i < h->msix_vector; i++) {
7980 		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7981 		cpu = cpumask_next(cpu, cpu_online_mask);
7982 	}
7983 }
7984 
7985 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7986 static void hpsa_free_irqs(struct ctlr_info *h)
7987 {
7988 	int i;
7989 
7990 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7991 		/* Single reply queue, only one irq to free */
7992 		i = h->intr_mode;
7993 		irq_set_affinity_hint(h->intr[i], NULL);
7994 		free_irq(h->intr[i], &h->q[i]);
7995 		h->q[i] = 0;
7996 		return;
7997 	}
7998 
7999 	for (i = 0; i < h->msix_vector; i++) {
8000 		irq_set_affinity_hint(h->intr[i], NULL);
8001 		free_irq(h->intr[i], &h->q[i]);
8002 		h->q[i] = 0;
8003 	}
8004 	for (; i < MAX_REPLY_QUEUES; i++)
8005 		h->q[i] = 0;
8006 }
8007 
8008 /* returns 0 on success; cleans up and returns -Enn on error */
8009 static int hpsa_request_irqs(struct ctlr_info *h,
8010 	irqreturn_t (*msixhandler)(int, void *),
8011 	irqreturn_t (*intxhandler)(int, void *))
8012 {
8013 	int rc, i;
8014 
8015 	/*
8016 	 * initialize h->q[x] = x so that interrupt handlers know which
8017 	 * queue to process.
8018 	 */
8019 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8020 		h->q[i] = (u8) i;
8021 
8022 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8023 		/* If performant mode and MSI-X, use multiple reply queues */
8024 		for (i = 0; i < h->msix_vector; i++) {
8025 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8026 			rc = request_irq(h->intr[i], msixhandler,
8027 					0, h->intrname[i],
8028 					&h->q[i]);
8029 			if (rc) {
8030 				int j;
8031 
8032 				dev_err(&h->pdev->dev,
8033 					"failed to get irq %d for %s\n",
8034 				       h->intr[i], h->devname);
8035 				for (j = 0; j < i; j++) {
8036 					free_irq(h->intr[j], &h->q[j]);
8037 					h->q[j] = 0;
8038 				}
8039 				for (; j < MAX_REPLY_QUEUES; j++)
8040 					h->q[j] = 0;
8041 				return rc;
8042 			}
8043 		}
8044 		hpsa_irq_affinity_hints(h);
8045 	} else {
8046 		/* Use single reply pool */
8047 		if (h->msix_vector > 0 || h->msi_vector) {
8048 			if (h->msix_vector)
8049 				sprintf(h->intrname[h->intr_mode],
8050 					"%s-msix", h->devname);
8051 			else
8052 				sprintf(h->intrname[h->intr_mode],
8053 					"%s-msi", h->devname);
8054 			rc = request_irq(h->intr[h->intr_mode],
8055 				msixhandler, 0,
8056 				h->intrname[h->intr_mode],
8057 				&h->q[h->intr_mode]);
8058 		} else {
8059 			sprintf(h->intrname[h->intr_mode],
8060 				"%s-intx", h->devname);
8061 			rc = request_irq(h->intr[h->intr_mode],
8062 				intxhandler, IRQF_SHARED,
8063 				h->intrname[h->intr_mode],
8064 				&h->q[h->intr_mode]);
8065 		}
8066 		irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8067 	}
8068 	if (rc) {
8069 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8070 		       h->intr[h->intr_mode], h->devname);
8071 		hpsa_free_irqs(h);
8072 		return -ENODEV;
8073 	}
8074 	return 0;
8075 }
8076 
8077 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8078 {
8079 	int rc;
8080 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8081 
8082 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8083 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8084 	if (rc) {
8085 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8086 		return rc;
8087 	}
8088 
8089 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8090 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8091 	if (rc) {
8092 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8093 			"after soft reset.\n");
8094 		return rc;
8095 	}
8096 
8097 	return 0;
8098 }
8099 
8100 static void hpsa_free_reply_queues(struct ctlr_info *h)
8101 {
8102 	int i;
8103 
8104 	for (i = 0; i < h->nreply_queues; i++) {
8105 		if (!h->reply_queue[i].head)
8106 			continue;
8107 		pci_free_consistent(h->pdev,
8108 					h->reply_queue_size,
8109 					h->reply_queue[i].head,
8110 					h->reply_queue[i].busaddr);
8111 		h->reply_queue[i].head = NULL;
8112 		h->reply_queue[i].busaddr = 0;
8113 	}
8114 	h->reply_queue_size = 0;
8115 }
8116 
8117 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8118 {
8119 	hpsa_free_performant_mode(h);		/* init_one 7 */
8120 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8121 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8122 	hpsa_free_irqs(h);			/* init_one 4 */
8123 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8124 	h->scsi_host = NULL;			/* init_one 3 */
8125 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8126 	free_percpu(h->lockup_detected);	/* init_one 2 */
8127 	h->lockup_detected = NULL;		/* init_one 2 */
8128 	if (h->resubmit_wq) {
8129 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8130 		h->resubmit_wq = NULL;
8131 	}
8132 	if (h->rescan_ctlr_wq) {
8133 		destroy_workqueue(h->rescan_ctlr_wq);
8134 		h->rescan_ctlr_wq = NULL;
8135 	}
8136 	kfree(h);				/* init_one 1 */
8137 }
8138 
8139 /* Called when controller lockup detected. */
8140 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8141 {
8142 	int i, refcount;
8143 	struct CommandList *c;
8144 	int failcount = 0;
8145 
8146 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8147 	for (i = 0; i < h->nr_cmds; i++) {
8148 		c = h->cmd_pool + i;
8149 		refcount = atomic_inc_return(&c->refcount);
8150 		if (refcount > 1) {
8151 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8152 			finish_cmd(c);
8153 			atomic_dec(&h->commands_outstanding);
8154 			failcount++;
8155 		}
8156 		cmd_free(h, c);
8157 	}
8158 	dev_warn(&h->pdev->dev,
8159 		"failed %d commands in fail_all\n", failcount);
8160 }
8161 
8162 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8163 {
8164 	int cpu;
8165 
8166 	for_each_online_cpu(cpu) {
8167 		u32 *lockup_detected;
8168 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8169 		*lockup_detected = value;
8170 	}
8171 	wmb(); /* be sure the per-cpu variables are out to memory */
8172 }
8173 
8174 static void controller_lockup_detected(struct ctlr_info *h)
8175 {
8176 	unsigned long flags;
8177 	u32 lockup_detected;
8178 
8179 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8180 	spin_lock_irqsave(&h->lock, flags);
8181 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8182 	if (!lockup_detected) {
8183 		/* no heartbeat, but controller gave us a zero. */
8184 		dev_warn(&h->pdev->dev,
8185 			"lockup detected after %d but scratchpad register is zero\n",
8186 			h->heartbeat_sample_interval / HZ);
8187 		lockup_detected = 0xffffffff;
8188 	}
8189 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8190 	spin_unlock_irqrestore(&h->lock, flags);
8191 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8192 			lockup_detected, h->heartbeat_sample_interval / HZ);
8193 	pci_disable_device(h->pdev);
8194 	fail_all_outstanding_cmds(h);
8195 }
8196 
8197 static int detect_controller_lockup(struct ctlr_info *h)
8198 {
8199 	u64 now;
8200 	u32 heartbeat;
8201 	unsigned long flags;
8202 
8203 	now = get_jiffies_64();
8204 	/* If we've received an interrupt recently, we're ok. */
8205 	if (time_after64(h->last_intr_timestamp +
8206 				(h->heartbeat_sample_interval), now))
8207 		return false;
8208 
8209 	/*
8210 	 * If we've already checked the heartbeat recently, we're ok.
8211 	 * This could happen if someone sends us a signal. We
8212 	 * otherwise don't care about signals in this thread.
8213 	 */
8214 	if (time_after64(h->last_heartbeat_timestamp +
8215 				(h->heartbeat_sample_interval), now))
8216 		return false;
8217 
8218 	/* If heartbeat has not changed since we last looked, we're not ok. */
8219 	spin_lock_irqsave(&h->lock, flags);
8220 	heartbeat = readl(&h->cfgtable->HeartBeat);
8221 	spin_unlock_irqrestore(&h->lock, flags);
8222 	if (h->last_heartbeat == heartbeat) {
8223 		controller_lockup_detected(h);
8224 		return true;
8225 	}
8226 
8227 	/* We're ok. */
8228 	h->last_heartbeat = heartbeat;
8229 	h->last_heartbeat_timestamp = now;
8230 	return false;
8231 }
8232 
8233 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8234 {
8235 	int i;
8236 	char *event_type;
8237 
8238 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8239 		return;
8240 
8241 	/* Ask the controller to clear the events we're handling. */
8242 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8243 			| CFGTBL_Trans_io_accel2)) &&
8244 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8245 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8246 
8247 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8248 			event_type = "state change";
8249 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8250 			event_type = "configuration change";
8251 		/* Stop sending new RAID offload reqs via the IO accelerator */
8252 		scsi_block_requests(h->scsi_host);
8253 		for (i = 0; i < h->ndevices; i++)
8254 			h->dev[i]->offload_enabled = 0;
8255 		hpsa_drain_accel_commands(h);
8256 		/* Set 'accelerator path config change' bit */
8257 		dev_warn(&h->pdev->dev,
8258 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8259 			h->events, event_type);
8260 		writel(h->events, &(h->cfgtable->clear_event_notify));
8261 		/* Set the "clear event notify field update" bit 6 */
8262 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8263 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8264 		hpsa_wait_for_clear_event_notify_ack(h);
8265 		scsi_unblock_requests(h->scsi_host);
8266 	} else {
8267 		/* Acknowledge controller notification events. */
8268 		writel(h->events, &(h->cfgtable->clear_event_notify));
8269 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8270 		hpsa_wait_for_clear_event_notify_ack(h);
8271 #if 0
8272 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8273 		hpsa_wait_for_mode_change_ack(h);
8274 #endif
8275 	}
8276 	return;
8277 }
8278 
8279 /* Check a register on the controller to see if there are configuration
8280  * changes (added/changed/removed logical drives, etc.) which mean that
8281  * we should rescan the controller for devices.
8282  * Also check flag for driver-initiated rescan.
8283  */
8284 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8285 {
8286 	if (h->drv_req_rescan) {
8287 		h->drv_req_rescan = 0;
8288 		return 1;
8289 	}
8290 
8291 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8292 		return 0;
8293 
8294 	h->events = readl(&(h->cfgtable->event_notify));
8295 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8296 }
8297 
8298 /*
8299  * Check if any of the offline devices have become ready
8300  */
8301 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8302 {
8303 	unsigned long flags;
8304 	struct offline_device_entry *d;
8305 	struct list_head *this, *tmp;
8306 
8307 	spin_lock_irqsave(&h->offline_device_lock, flags);
8308 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8309 		d = list_entry(this, struct offline_device_entry,
8310 				offline_list);
8311 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8312 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8313 			spin_lock_irqsave(&h->offline_device_lock, flags);
8314 			list_del(&d->offline_list);
8315 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8316 			return 1;
8317 		}
8318 		spin_lock_irqsave(&h->offline_device_lock, flags);
8319 	}
8320 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8321 	return 0;
8322 }
8323 
8324 static int hpsa_luns_changed(struct ctlr_info *h)
8325 {
8326 	int rc = 1; /* assume there are changes */
8327 	struct ReportLUNdata *logdev = NULL;
8328 
8329 	/* if we can't find out if lun data has changed,
8330 	 * assume that it has.
8331 	 */
8332 
8333 	if (!h->lastlogicals)
8334 		goto out;
8335 
8336 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8337 	if (!logdev) {
8338 		dev_warn(&h->pdev->dev,
8339 			"Out of memory, can't track lun changes.\n");
8340 		goto out;
8341 	}
8342 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8343 		dev_warn(&h->pdev->dev,
8344 			"report luns failed, can't track lun changes.\n");
8345 		goto out;
8346 	}
8347 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8348 		dev_info(&h->pdev->dev,
8349 			"Lun changes detected.\n");
8350 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8351 		goto out;
8352 	} else
8353 		rc = 0; /* no changes detected. */
8354 out:
8355 	kfree(logdev);
8356 	return rc;
8357 }
8358 
8359 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8360 {
8361 	unsigned long flags;
8362 	struct ctlr_info *h = container_of(to_delayed_work(work),
8363 					struct ctlr_info, rescan_ctlr_work);
8364 
8365 
8366 	if (h->remove_in_progress)
8367 		return;
8368 
8369 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8370 		scsi_host_get(h->scsi_host);
8371 		hpsa_ack_ctlr_events(h);
8372 		hpsa_scan_start(h->scsi_host);
8373 		scsi_host_put(h->scsi_host);
8374 	} else if (h->discovery_polling) {
8375 		hpsa_disable_rld_caching(h);
8376 		if (hpsa_luns_changed(h)) {
8377 			struct Scsi_Host *sh = NULL;
8378 
8379 			dev_info(&h->pdev->dev,
8380 				"driver discovery polling rescan.\n");
8381 			sh = scsi_host_get(h->scsi_host);
8382 			if (sh != NULL) {
8383 				hpsa_scan_start(sh);
8384 				scsi_host_put(sh);
8385 			}
8386 		}
8387 	}
8388 	spin_lock_irqsave(&h->lock, flags);
8389 	if (!h->remove_in_progress)
8390 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8391 				h->heartbeat_sample_interval);
8392 	spin_unlock_irqrestore(&h->lock, flags);
8393 }
8394 
8395 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8396 {
8397 	unsigned long flags;
8398 	struct ctlr_info *h = container_of(to_delayed_work(work),
8399 					struct ctlr_info, monitor_ctlr_work);
8400 
8401 	detect_controller_lockup(h);
8402 	if (lockup_detected(h))
8403 		return;
8404 
8405 	spin_lock_irqsave(&h->lock, flags);
8406 	if (!h->remove_in_progress)
8407 		schedule_delayed_work(&h->monitor_ctlr_work,
8408 				h->heartbeat_sample_interval);
8409 	spin_unlock_irqrestore(&h->lock, flags);
8410 }
8411 
8412 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8413 						char *name)
8414 {
8415 	struct workqueue_struct *wq = NULL;
8416 
8417 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8418 	if (!wq)
8419 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8420 
8421 	return wq;
8422 }
8423 
8424 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8425 {
8426 	int dac, rc;
8427 	struct ctlr_info *h;
8428 	int try_soft_reset = 0;
8429 	unsigned long flags;
8430 	u32 board_id;
8431 
8432 	if (number_of_controllers == 0)
8433 		printk(KERN_INFO DRIVER_NAME "\n");
8434 
8435 	rc = hpsa_lookup_board_id(pdev, &board_id);
8436 	if (rc < 0) {
8437 		dev_warn(&pdev->dev, "Board ID not found\n");
8438 		return rc;
8439 	}
8440 
8441 	rc = hpsa_init_reset_devices(pdev, board_id);
8442 	if (rc) {
8443 		if (rc != -ENOTSUPP)
8444 			return rc;
8445 		/* If the reset fails in a particular way (it has no way to do
8446 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8447 		 * a soft reset once we get the controller configured up to the
8448 		 * point that it can accept a command.
8449 		 */
8450 		try_soft_reset = 1;
8451 		rc = 0;
8452 	}
8453 
8454 reinit_after_soft_reset:
8455 
8456 	/* Command structures must be aligned on a 32-byte boundary because
8457 	 * the 5 lower bits of the address are used by the hardware. and by
8458 	 * the driver.  See comments in hpsa.h for more info.
8459 	 */
8460 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8461 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8462 	if (!h) {
8463 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8464 		return -ENOMEM;
8465 	}
8466 
8467 	h->pdev = pdev;
8468 
8469 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8470 	INIT_LIST_HEAD(&h->offline_device_list);
8471 	spin_lock_init(&h->lock);
8472 	spin_lock_init(&h->offline_device_lock);
8473 	spin_lock_init(&h->scan_lock);
8474 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8475 	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8476 
8477 	/* Allocate and clear per-cpu variable lockup_detected */
8478 	h->lockup_detected = alloc_percpu(u32);
8479 	if (!h->lockup_detected) {
8480 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8481 		rc = -ENOMEM;
8482 		goto clean1;	/* aer/h */
8483 	}
8484 	set_lockup_detected_for_all_cpus(h, 0);
8485 
8486 	rc = hpsa_pci_init(h);
8487 	if (rc)
8488 		goto clean2;	/* lu, aer/h */
8489 
8490 	/* relies on h-> settings made by hpsa_pci_init, including
8491 	 * interrupt_mode h->intr */
8492 	rc = hpsa_scsi_host_alloc(h);
8493 	if (rc)
8494 		goto clean2_5;	/* pci, lu, aer/h */
8495 
8496 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8497 	h->ctlr = number_of_controllers;
8498 	number_of_controllers++;
8499 
8500 	/* configure PCI DMA stuff */
8501 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8502 	if (rc == 0) {
8503 		dac = 1;
8504 	} else {
8505 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8506 		if (rc == 0) {
8507 			dac = 0;
8508 		} else {
8509 			dev_err(&pdev->dev, "no suitable DMA available\n");
8510 			goto clean3;	/* shost, pci, lu, aer/h */
8511 		}
8512 	}
8513 
8514 	/* make sure the board interrupts are off */
8515 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8516 
8517 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8518 	if (rc)
8519 		goto clean3;	/* shost, pci, lu, aer/h */
8520 	rc = hpsa_alloc_cmd_pool(h);
8521 	if (rc)
8522 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8523 	rc = hpsa_alloc_sg_chain_blocks(h);
8524 	if (rc)
8525 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8526 	init_waitqueue_head(&h->scan_wait_queue);
8527 	init_waitqueue_head(&h->abort_cmd_wait_queue);
8528 	init_waitqueue_head(&h->event_sync_wait_queue);
8529 	mutex_init(&h->reset_mutex);
8530 	h->scan_finished = 1; /* no scan currently in progress */
8531 
8532 	pci_set_drvdata(pdev, h);
8533 	h->ndevices = 0;
8534 
8535 	spin_lock_init(&h->devlock);
8536 	rc = hpsa_put_ctlr_into_performant_mode(h);
8537 	if (rc)
8538 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8539 
8540 	/* hook into SCSI subsystem */
8541 	rc = hpsa_scsi_add_host(h);
8542 	if (rc)
8543 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8544 
8545 	/* create the resubmit workqueue */
8546 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8547 	if (!h->rescan_ctlr_wq) {
8548 		rc = -ENOMEM;
8549 		goto clean7;
8550 	}
8551 
8552 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8553 	if (!h->resubmit_wq) {
8554 		rc = -ENOMEM;
8555 		goto clean7;	/* aer/h */
8556 	}
8557 
8558 	/*
8559 	 * At this point, the controller is ready to take commands.
8560 	 * Now, if reset_devices and the hard reset didn't work, try
8561 	 * the soft reset and see if that works.
8562 	 */
8563 	if (try_soft_reset) {
8564 
8565 		/* This is kind of gross.  We may or may not get a completion
8566 		 * from the soft reset command, and if we do, then the value
8567 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8568 		 * after the reset throwing away any completions we get during
8569 		 * that time.  Unregister the interrupt handler and register
8570 		 * fake ones to scoop up any residual completions.
8571 		 */
8572 		spin_lock_irqsave(&h->lock, flags);
8573 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8574 		spin_unlock_irqrestore(&h->lock, flags);
8575 		hpsa_free_irqs(h);
8576 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8577 					hpsa_intx_discard_completions);
8578 		if (rc) {
8579 			dev_warn(&h->pdev->dev,
8580 				"Failed to request_irq after soft reset.\n");
8581 			/*
8582 			 * cannot goto clean7 or free_irqs will be called
8583 			 * again. Instead, do its work
8584 			 */
8585 			hpsa_free_performant_mode(h);	/* clean7 */
8586 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8587 			hpsa_free_cmd_pool(h);		/* clean5 */
8588 			/*
8589 			 * skip hpsa_free_irqs(h) clean4 since that
8590 			 * was just called before request_irqs failed
8591 			 */
8592 			goto clean3;
8593 		}
8594 
8595 		rc = hpsa_kdump_soft_reset(h);
8596 		if (rc)
8597 			/* Neither hard nor soft reset worked, we're hosed. */
8598 			goto clean7;
8599 
8600 		dev_info(&h->pdev->dev, "Board READY.\n");
8601 		dev_info(&h->pdev->dev,
8602 			"Waiting for stale completions to drain.\n");
8603 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8604 		msleep(10000);
8605 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8606 
8607 		rc = controller_reset_failed(h->cfgtable);
8608 		if (rc)
8609 			dev_info(&h->pdev->dev,
8610 				"Soft reset appears to have failed.\n");
8611 
8612 		/* since the controller's reset, we have to go back and re-init
8613 		 * everything.  Easiest to just forget what we've done and do it
8614 		 * all over again.
8615 		 */
8616 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8617 		try_soft_reset = 0;
8618 		if (rc)
8619 			/* don't goto clean, we already unallocated */
8620 			return -ENODEV;
8621 
8622 		goto reinit_after_soft_reset;
8623 	}
8624 
8625 	/* Enable Accelerated IO path at driver layer */
8626 	h->acciopath_status = 1;
8627 	/* Disable discovery polling.*/
8628 	h->discovery_polling = 0;
8629 
8630 
8631 	/* Turn the interrupts on so we can service requests */
8632 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8633 
8634 	hpsa_hba_inquiry(h);
8635 
8636 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8637 	if (!h->lastlogicals)
8638 		dev_info(&h->pdev->dev,
8639 			"Can't track change to report lun data\n");
8640 
8641 	/* Monitor the controller for firmware lockups */
8642 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8643 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8644 	schedule_delayed_work(&h->monitor_ctlr_work,
8645 				h->heartbeat_sample_interval);
8646 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8647 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8648 				h->heartbeat_sample_interval);
8649 	return 0;
8650 
8651 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8652 	hpsa_free_performant_mode(h);
8653 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8654 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8655 	hpsa_free_sg_chain_blocks(h);
8656 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8657 	hpsa_free_cmd_pool(h);
8658 clean4: /* irq, shost, pci, lu, aer/h */
8659 	hpsa_free_irqs(h);
8660 clean3: /* shost, pci, lu, aer/h */
8661 	scsi_host_put(h->scsi_host);
8662 	h->scsi_host = NULL;
8663 clean2_5: /* pci, lu, aer/h */
8664 	hpsa_free_pci_init(h);
8665 clean2: /* lu, aer/h */
8666 	if (h->lockup_detected) {
8667 		free_percpu(h->lockup_detected);
8668 		h->lockup_detected = NULL;
8669 	}
8670 clean1:	/* wq/aer/h */
8671 	if (h->resubmit_wq) {
8672 		destroy_workqueue(h->resubmit_wq);
8673 		h->resubmit_wq = NULL;
8674 	}
8675 	if (h->rescan_ctlr_wq) {
8676 		destroy_workqueue(h->rescan_ctlr_wq);
8677 		h->rescan_ctlr_wq = NULL;
8678 	}
8679 	kfree(h);
8680 	return rc;
8681 }
8682 
8683 static void hpsa_flush_cache(struct ctlr_info *h)
8684 {
8685 	char *flush_buf;
8686 	struct CommandList *c;
8687 	int rc;
8688 
8689 	if (unlikely(lockup_detected(h)))
8690 		return;
8691 	flush_buf = kzalloc(4, GFP_KERNEL);
8692 	if (!flush_buf)
8693 		return;
8694 
8695 	c = cmd_alloc(h);
8696 
8697 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8698 		RAID_CTLR_LUNID, TYPE_CMD)) {
8699 		goto out;
8700 	}
8701 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8702 					PCI_DMA_TODEVICE, NO_TIMEOUT);
8703 	if (rc)
8704 		goto out;
8705 	if (c->err_info->CommandStatus != 0)
8706 out:
8707 		dev_warn(&h->pdev->dev,
8708 			"error flushing cache on controller\n");
8709 	cmd_free(h, c);
8710 	kfree(flush_buf);
8711 }
8712 
8713 /* Make controller gather fresh report lun data each time we
8714  * send down a report luns request
8715  */
8716 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8717 {
8718 	u32 *options;
8719 	struct CommandList *c;
8720 	int rc;
8721 
8722 	/* Don't bother trying to set diag options if locked up */
8723 	if (unlikely(h->lockup_detected))
8724 		return;
8725 
8726 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8727 	if (!options) {
8728 		dev_err(&h->pdev->dev,
8729 			"Error: failed to disable rld caching, during alloc.\n");
8730 		return;
8731 	}
8732 
8733 	c = cmd_alloc(h);
8734 
8735 	/* first, get the current diag options settings */
8736 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8737 		RAID_CTLR_LUNID, TYPE_CMD))
8738 		goto errout;
8739 
8740 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8741 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8742 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8743 		goto errout;
8744 
8745 	/* Now, set the bit for disabling the RLD caching */
8746 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8747 
8748 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8749 		RAID_CTLR_LUNID, TYPE_CMD))
8750 		goto errout;
8751 
8752 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8753 		PCI_DMA_TODEVICE, NO_TIMEOUT);
8754 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8755 		goto errout;
8756 
8757 	/* Now verify that it got set: */
8758 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8759 		RAID_CTLR_LUNID, TYPE_CMD))
8760 		goto errout;
8761 
8762 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8763 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8764 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8765 		goto errout;
8766 
8767 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8768 		goto out;
8769 
8770 errout:
8771 	dev_err(&h->pdev->dev,
8772 			"Error: failed to disable report lun data caching.\n");
8773 out:
8774 	cmd_free(h, c);
8775 	kfree(options);
8776 }
8777 
8778 static void hpsa_shutdown(struct pci_dev *pdev)
8779 {
8780 	struct ctlr_info *h;
8781 
8782 	h = pci_get_drvdata(pdev);
8783 	/* Turn board interrupts off  and send the flush cache command
8784 	 * sendcmd will turn off interrupt, and send the flush...
8785 	 * To write all data in the battery backed cache to disks
8786 	 */
8787 	hpsa_flush_cache(h);
8788 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8789 	hpsa_free_irqs(h);			/* init_one 4 */
8790 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8791 }
8792 
8793 static void hpsa_free_device_info(struct ctlr_info *h)
8794 {
8795 	int i;
8796 
8797 	for (i = 0; i < h->ndevices; i++) {
8798 		kfree(h->dev[i]);
8799 		h->dev[i] = NULL;
8800 	}
8801 }
8802 
8803 static void hpsa_remove_one(struct pci_dev *pdev)
8804 {
8805 	struct ctlr_info *h;
8806 	unsigned long flags;
8807 
8808 	if (pci_get_drvdata(pdev) == NULL) {
8809 		dev_err(&pdev->dev, "unable to remove device\n");
8810 		return;
8811 	}
8812 	h = pci_get_drvdata(pdev);
8813 
8814 	/* Get rid of any controller monitoring work items */
8815 	spin_lock_irqsave(&h->lock, flags);
8816 	h->remove_in_progress = 1;
8817 	spin_unlock_irqrestore(&h->lock, flags);
8818 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8819 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8820 	destroy_workqueue(h->rescan_ctlr_wq);
8821 	destroy_workqueue(h->resubmit_wq);
8822 
8823 	/*
8824 	 * Call before disabling interrupts.
8825 	 * scsi_remove_host can trigger I/O operations especially
8826 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8827 	 * operations which cannot complete and will hang the system.
8828 	 */
8829 	if (h->scsi_host)
8830 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8831 	/* includes hpsa_free_irqs - init_one 4 */
8832 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8833 	hpsa_shutdown(pdev);
8834 
8835 	hpsa_free_device_info(h);		/* scan */
8836 
8837 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8838 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8839 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8840 	hpsa_free_performant_mode(h);			/* init_one 7 */
8841 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8842 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8843 	kfree(h->lastlogicals);
8844 
8845 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8846 
8847 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8848 	h->scsi_host = NULL;				/* init_one 3 */
8849 
8850 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8851 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8852 
8853 	free_percpu(h->lockup_detected);		/* init_one 2 */
8854 	h->lockup_detected = NULL;			/* init_one 2 */
8855 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8856 
8857 	hpsa_delete_sas_host(h);
8858 
8859 	kfree(h);					/* init_one 1 */
8860 }
8861 
8862 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8863 	__attribute__((unused)) pm_message_t state)
8864 {
8865 	return -ENOSYS;
8866 }
8867 
8868 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8869 {
8870 	return -ENOSYS;
8871 }
8872 
8873 static struct pci_driver hpsa_pci_driver = {
8874 	.name = HPSA,
8875 	.probe = hpsa_init_one,
8876 	.remove = hpsa_remove_one,
8877 	.id_table = hpsa_pci_device_id,	/* id_table */
8878 	.shutdown = hpsa_shutdown,
8879 	.suspend = hpsa_suspend,
8880 	.resume = hpsa_resume,
8881 };
8882 
8883 /* Fill in bucket_map[], given nsgs (the max number of
8884  * scatter gather elements supported) and bucket[],
8885  * which is an array of 8 integers.  The bucket[] array
8886  * contains 8 different DMA transfer sizes (in 16
8887  * byte increments) which the controller uses to fetch
8888  * commands.  This function fills in bucket_map[], which
8889  * maps a given number of scatter gather elements to one of
8890  * the 8 DMA transfer sizes.  The point of it is to allow the
8891  * controller to only do as much DMA as needed to fetch the
8892  * command, with the DMA transfer size encoded in the lower
8893  * bits of the command address.
8894  */
8895 static void  calc_bucket_map(int bucket[], int num_buckets,
8896 	int nsgs, int min_blocks, u32 *bucket_map)
8897 {
8898 	int i, j, b, size;
8899 
8900 	/* Note, bucket_map must have nsgs+1 entries. */
8901 	for (i = 0; i <= nsgs; i++) {
8902 		/* Compute size of a command with i SG entries */
8903 		size = i + min_blocks;
8904 		b = num_buckets; /* Assume the biggest bucket */
8905 		/* Find the bucket that is just big enough */
8906 		for (j = 0; j < num_buckets; j++) {
8907 			if (bucket[j] >= size) {
8908 				b = j;
8909 				break;
8910 			}
8911 		}
8912 		/* for a command with i SG entries, use bucket b. */
8913 		bucket_map[i] = b;
8914 	}
8915 }
8916 
8917 /*
8918  * return -ENODEV on err, 0 on success (or no action)
8919  * allocates numerous items that must be freed later
8920  */
8921 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8922 {
8923 	int i;
8924 	unsigned long register_value;
8925 	unsigned long transMethod = CFGTBL_Trans_Performant |
8926 			(trans_support & CFGTBL_Trans_use_short_tags) |
8927 				CFGTBL_Trans_enable_directed_msix |
8928 			(trans_support & (CFGTBL_Trans_io_accel1 |
8929 				CFGTBL_Trans_io_accel2));
8930 	struct access_method access = SA5_performant_access;
8931 
8932 	/* This is a bit complicated.  There are 8 registers on
8933 	 * the controller which we write to to tell it 8 different
8934 	 * sizes of commands which there may be.  It's a way of
8935 	 * reducing the DMA done to fetch each command.  Encoded into
8936 	 * each command's tag are 3 bits which communicate to the controller
8937 	 * which of the eight sizes that command fits within.  The size of
8938 	 * each command depends on how many scatter gather entries there are.
8939 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
8940 	 * with the number of 16-byte blocks a command of that size requires.
8941 	 * The smallest command possible requires 5 such 16 byte blocks.
8942 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8943 	 * blocks.  Note, this only extends to the SG entries contained
8944 	 * within the command block, and does not extend to chained blocks
8945 	 * of SG elements.   bft[] contains the eight values we write to
8946 	 * the registers.  They are not evenly distributed, but have more
8947 	 * sizes for small commands, and fewer sizes for larger commands.
8948 	 */
8949 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8950 #define MIN_IOACCEL2_BFT_ENTRY 5
8951 #define HPSA_IOACCEL2_HEADER_SZ 4
8952 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8953 			13, 14, 15, 16, 17, 18, 19,
8954 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8955 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8956 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8957 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8958 				 16 * MIN_IOACCEL2_BFT_ENTRY);
8959 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8960 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8961 	/*  5 = 1 s/g entry or 4k
8962 	 *  6 = 2 s/g entry or 8k
8963 	 *  8 = 4 s/g entry or 16k
8964 	 * 10 = 6 s/g entry or 24k
8965 	 */
8966 
8967 	/* If the controller supports either ioaccel method then
8968 	 * we can also use the RAID stack submit path that does not
8969 	 * perform the superfluous readl() after each command submission.
8970 	 */
8971 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8972 		access = SA5_performant_access_no_read;
8973 
8974 	/* Controller spec: zero out this buffer. */
8975 	for (i = 0; i < h->nreply_queues; i++)
8976 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8977 
8978 	bft[7] = SG_ENTRIES_IN_CMD + 4;
8979 	calc_bucket_map(bft, ARRAY_SIZE(bft),
8980 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8981 	for (i = 0; i < 8; i++)
8982 		writel(bft[i], &h->transtable->BlockFetch[i]);
8983 
8984 	/* size of controller ring buffer */
8985 	writel(h->max_commands, &h->transtable->RepQSize);
8986 	writel(h->nreply_queues, &h->transtable->RepQCount);
8987 	writel(0, &h->transtable->RepQCtrAddrLow32);
8988 	writel(0, &h->transtable->RepQCtrAddrHigh32);
8989 
8990 	for (i = 0; i < h->nreply_queues; i++) {
8991 		writel(0, &h->transtable->RepQAddr[i].upper);
8992 		writel(h->reply_queue[i].busaddr,
8993 			&h->transtable->RepQAddr[i].lower);
8994 	}
8995 
8996 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8997 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8998 	/*
8999 	 * enable outbound interrupt coalescing in accelerator mode;
9000 	 */
9001 	if (trans_support & CFGTBL_Trans_io_accel1) {
9002 		access = SA5_ioaccel_mode1_access;
9003 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9004 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9005 	} else {
9006 		if (trans_support & CFGTBL_Trans_io_accel2) {
9007 			access = SA5_ioaccel_mode2_access;
9008 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9009 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9010 		}
9011 	}
9012 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9013 	if (hpsa_wait_for_mode_change_ack(h)) {
9014 		dev_err(&h->pdev->dev,
9015 			"performant mode problem - doorbell timeout\n");
9016 		return -ENODEV;
9017 	}
9018 	register_value = readl(&(h->cfgtable->TransportActive));
9019 	if (!(register_value & CFGTBL_Trans_Performant)) {
9020 		dev_err(&h->pdev->dev,
9021 			"performant mode problem - transport not active\n");
9022 		return -ENODEV;
9023 	}
9024 	/* Change the access methods to the performant access methods */
9025 	h->access = access;
9026 	h->transMethod = transMethod;
9027 
9028 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9029 		(trans_support & CFGTBL_Trans_io_accel2)))
9030 		return 0;
9031 
9032 	if (trans_support & CFGTBL_Trans_io_accel1) {
9033 		/* Set up I/O accelerator mode */
9034 		for (i = 0; i < h->nreply_queues; i++) {
9035 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9036 			h->reply_queue[i].current_entry =
9037 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9038 		}
9039 		bft[7] = h->ioaccel_maxsg + 8;
9040 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9041 				h->ioaccel1_blockFetchTable);
9042 
9043 		/* initialize all reply queue entries to unused */
9044 		for (i = 0; i < h->nreply_queues; i++)
9045 			memset(h->reply_queue[i].head,
9046 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9047 				h->reply_queue_size);
9048 
9049 		/* set all the constant fields in the accelerator command
9050 		 * frames once at init time to save CPU cycles later.
9051 		 */
9052 		for (i = 0; i < h->nr_cmds; i++) {
9053 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9054 
9055 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9056 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9057 					(i * sizeof(struct ErrorInfo)));
9058 			cp->err_info_len = sizeof(struct ErrorInfo);
9059 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9060 			cp->host_context_flags =
9061 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9062 			cp->timeout_sec = 0;
9063 			cp->ReplyQueue = 0;
9064 			cp->tag =
9065 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9066 			cp->host_addr =
9067 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9068 					(i * sizeof(struct io_accel1_cmd)));
9069 		}
9070 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9071 		u64 cfg_offset, cfg_base_addr_index;
9072 		u32 bft2_offset, cfg_base_addr;
9073 		int rc;
9074 
9075 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9076 			&cfg_base_addr_index, &cfg_offset);
9077 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9078 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9079 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9080 				4, h->ioaccel2_blockFetchTable);
9081 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9082 		BUILD_BUG_ON(offsetof(struct CfgTable,
9083 				io_accel_request_size_offset) != 0xb8);
9084 		h->ioaccel2_bft2_regs =
9085 			remap_pci_mem(pci_resource_start(h->pdev,
9086 					cfg_base_addr_index) +
9087 					cfg_offset + bft2_offset,
9088 					ARRAY_SIZE(bft2) *
9089 					sizeof(*h->ioaccel2_bft2_regs));
9090 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9091 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9092 	}
9093 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9094 	if (hpsa_wait_for_mode_change_ack(h)) {
9095 		dev_err(&h->pdev->dev,
9096 			"performant mode problem - enabling ioaccel mode\n");
9097 		return -ENODEV;
9098 	}
9099 	return 0;
9100 }
9101 
9102 /* Free ioaccel1 mode command blocks and block fetch table */
9103 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9104 {
9105 	if (h->ioaccel_cmd_pool) {
9106 		pci_free_consistent(h->pdev,
9107 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9108 			h->ioaccel_cmd_pool,
9109 			h->ioaccel_cmd_pool_dhandle);
9110 		h->ioaccel_cmd_pool = NULL;
9111 		h->ioaccel_cmd_pool_dhandle = 0;
9112 	}
9113 	kfree(h->ioaccel1_blockFetchTable);
9114 	h->ioaccel1_blockFetchTable = NULL;
9115 }
9116 
9117 /* Allocate ioaccel1 mode command blocks and block fetch table */
9118 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9119 {
9120 	h->ioaccel_maxsg =
9121 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9122 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9123 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9124 
9125 	/* Command structures must be aligned on a 128-byte boundary
9126 	 * because the 7 lower bits of the address are used by the
9127 	 * hardware.
9128 	 */
9129 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9130 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9131 	h->ioaccel_cmd_pool =
9132 		pci_alloc_consistent(h->pdev,
9133 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9134 			&(h->ioaccel_cmd_pool_dhandle));
9135 
9136 	h->ioaccel1_blockFetchTable =
9137 		kmalloc(((h->ioaccel_maxsg + 1) *
9138 				sizeof(u32)), GFP_KERNEL);
9139 
9140 	if ((h->ioaccel_cmd_pool == NULL) ||
9141 		(h->ioaccel1_blockFetchTable == NULL))
9142 		goto clean_up;
9143 
9144 	memset(h->ioaccel_cmd_pool, 0,
9145 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9146 	return 0;
9147 
9148 clean_up:
9149 	hpsa_free_ioaccel1_cmd_and_bft(h);
9150 	return -ENOMEM;
9151 }
9152 
9153 /* Free ioaccel2 mode command blocks and block fetch table */
9154 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9155 {
9156 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9157 
9158 	if (h->ioaccel2_cmd_pool) {
9159 		pci_free_consistent(h->pdev,
9160 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9161 			h->ioaccel2_cmd_pool,
9162 			h->ioaccel2_cmd_pool_dhandle);
9163 		h->ioaccel2_cmd_pool = NULL;
9164 		h->ioaccel2_cmd_pool_dhandle = 0;
9165 	}
9166 	kfree(h->ioaccel2_blockFetchTable);
9167 	h->ioaccel2_blockFetchTable = NULL;
9168 }
9169 
9170 /* Allocate ioaccel2 mode command blocks and block fetch table */
9171 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9172 {
9173 	int rc;
9174 
9175 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9176 
9177 	h->ioaccel_maxsg =
9178 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9179 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9180 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9181 
9182 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9183 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9184 	h->ioaccel2_cmd_pool =
9185 		pci_alloc_consistent(h->pdev,
9186 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9187 			&(h->ioaccel2_cmd_pool_dhandle));
9188 
9189 	h->ioaccel2_blockFetchTable =
9190 		kmalloc(((h->ioaccel_maxsg + 1) *
9191 				sizeof(u32)), GFP_KERNEL);
9192 
9193 	if ((h->ioaccel2_cmd_pool == NULL) ||
9194 		(h->ioaccel2_blockFetchTable == NULL)) {
9195 		rc = -ENOMEM;
9196 		goto clean_up;
9197 	}
9198 
9199 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9200 	if (rc)
9201 		goto clean_up;
9202 
9203 	memset(h->ioaccel2_cmd_pool, 0,
9204 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9205 	return 0;
9206 
9207 clean_up:
9208 	hpsa_free_ioaccel2_cmd_and_bft(h);
9209 	return rc;
9210 }
9211 
9212 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9213 static void hpsa_free_performant_mode(struct ctlr_info *h)
9214 {
9215 	kfree(h->blockFetchTable);
9216 	h->blockFetchTable = NULL;
9217 	hpsa_free_reply_queues(h);
9218 	hpsa_free_ioaccel1_cmd_and_bft(h);
9219 	hpsa_free_ioaccel2_cmd_and_bft(h);
9220 }
9221 
9222 /* return -ENODEV on error, 0 on success (or no action)
9223  * allocates numerous items that must be freed later
9224  */
9225 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9226 {
9227 	u32 trans_support;
9228 	unsigned long transMethod = CFGTBL_Trans_Performant |
9229 					CFGTBL_Trans_use_short_tags;
9230 	int i, rc;
9231 
9232 	if (hpsa_simple_mode)
9233 		return 0;
9234 
9235 	trans_support = readl(&(h->cfgtable->TransportSupport));
9236 	if (!(trans_support & PERFORMANT_MODE))
9237 		return 0;
9238 
9239 	/* Check for I/O accelerator mode support */
9240 	if (trans_support & CFGTBL_Trans_io_accel1) {
9241 		transMethod |= CFGTBL_Trans_io_accel1 |
9242 				CFGTBL_Trans_enable_directed_msix;
9243 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9244 		if (rc)
9245 			return rc;
9246 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9247 		transMethod |= CFGTBL_Trans_io_accel2 |
9248 				CFGTBL_Trans_enable_directed_msix;
9249 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9250 		if (rc)
9251 			return rc;
9252 	}
9253 
9254 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9255 	hpsa_get_max_perf_mode_cmds(h);
9256 	/* Performant mode ring buffer and supporting data structures */
9257 	h->reply_queue_size = h->max_commands * sizeof(u64);
9258 
9259 	for (i = 0; i < h->nreply_queues; i++) {
9260 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9261 						h->reply_queue_size,
9262 						&(h->reply_queue[i].busaddr));
9263 		if (!h->reply_queue[i].head) {
9264 			rc = -ENOMEM;
9265 			goto clean1;	/* rq, ioaccel */
9266 		}
9267 		h->reply_queue[i].size = h->max_commands;
9268 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9269 		h->reply_queue[i].current_entry = 0;
9270 	}
9271 
9272 	/* Need a block fetch table for performant mode */
9273 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9274 				sizeof(u32)), GFP_KERNEL);
9275 	if (!h->blockFetchTable) {
9276 		rc = -ENOMEM;
9277 		goto clean1;	/* rq, ioaccel */
9278 	}
9279 
9280 	rc = hpsa_enter_performant_mode(h, trans_support);
9281 	if (rc)
9282 		goto clean2;	/* bft, rq, ioaccel */
9283 	return 0;
9284 
9285 clean2:	/* bft, rq, ioaccel */
9286 	kfree(h->blockFetchTable);
9287 	h->blockFetchTable = NULL;
9288 clean1:	/* rq, ioaccel */
9289 	hpsa_free_reply_queues(h);
9290 	hpsa_free_ioaccel1_cmd_and_bft(h);
9291 	hpsa_free_ioaccel2_cmd_and_bft(h);
9292 	return rc;
9293 }
9294 
9295 static int is_accelerated_cmd(struct CommandList *c)
9296 {
9297 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9298 }
9299 
9300 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9301 {
9302 	struct CommandList *c = NULL;
9303 	int i, accel_cmds_out;
9304 	int refcount;
9305 
9306 	do { /* wait for all outstanding ioaccel commands to drain out */
9307 		accel_cmds_out = 0;
9308 		for (i = 0; i < h->nr_cmds; i++) {
9309 			c = h->cmd_pool + i;
9310 			refcount = atomic_inc_return(&c->refcount);
9311 			if (refcount > 1) /* Command is allocated */
9312 				accel_cmds_out += is_accelerated_cmd(c);
9313 			cmd_free(h, c);
9314 		}
9315 		if (accel_cmds_out <= 0)
9316 			break;
9317 		msleep(100);
9318 	} while (1);
9319 }
9320 
9321 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9322 				struct hpsa_sas_port *hpsa_sas_port)
9323 {
9324 	struct hpsa_sas_phy *hpsa_sas_phy;
9325 	struct sas_phy *phy;
9326 
9327 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9328 	if (!hpsa_sas_phy)
9329 		return NULL;
9330 
9331 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9332 		hpsa_sas_port->next_phy_index);
9333 	if (!phy) {
9334 		kfree(hpsa_sas_phy);
9335 		return NULL;
9336 	}
9337 
9338 	hpsa_sas_port->next_phy_index++;
9339 	hpsa_sas_phy->phy = phy;
9340 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9341 
9342 	return hpsa_sas_phy;
9343 }
9344 
9345 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9346 {
9347 	struct sas_phy *phy = hpsa_sas_phy->phy;
9348 
9349 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9350 	sas_phy_free(phy);
9351 	if (hpsa_sas_phy->added_to_port)
9352 		list_del(&hpsa_sas_phy->phy_list_entry);
9353 	kfree(hpsa_sas_phy);
9354 }
9355 
9356 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9357 {
9358 	int rc;
9359 	struct hpsa_sas_port *hpsa_sas_port;
9360 	struct sas_phy *phy;
9361 	struct sas_identify *identify;
9362 
9363 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9364 	phy = hpsa_sas_phy->phy;
9365 
9366 	identify = &phy->identify;
9367 	memset(identify, 0, sizeof(*identify));
9368 	identify->sas_address = hpsa_sas_port->sas_address;
9369 	identify->device_type = SAS_END_DEVICE;
9370 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9371 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9372 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9373 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9374 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9375 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9376 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9377 
9378 	rc = sas_phy_add(hpsa_sas_phy->phy);
9379 	if (rc)
9380 		return rc;
9381 
9382 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9383 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9384 			&hpsa_sas_port->phy_list_head);
9385 	hpsa_sas_phy->added_to_port = true;
9386 
9387 	return 0;
9388 }
9389 
9390 static int
9391 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9392 				struct sas_rphy *rphy)
9393 {
9394 	struct sas_identify *identify;
9395 
9396 	identify = &rphy->identify;
9397 	identify->sas_address = hpsa_sas_port->sas_address;
9398 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9399 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9400 
9401 	return sas_rphy_add(rphy);
9402 }
9403 
9404 static struct hpsa_sas_port
9405 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9406 				u64 sas_address)
9407 {
9408 	int rc;
9409 	struct hpsa_sas_port *hpsa_sas_port;
9410 	struct sas_port *port;
9411 
9412 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9413 	if (!hpsa_sas_port)
9414 		return NULL;
9415 
9416 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9417 	hpsa_sas_port->parent_node = hpsa_sas_node;
9418 
9419 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9420 	if (!port)
9421 		goto free_hpsa_port;
9422 
9423 	rc = sas_port_add(port);
9424 	if (rc)
9425 		goto free_sas_port;
9426 
9427 	hpsa_sas_port->port = port;
9428 	hpsa_sas_port->sas_address = sas_address;
9429 	list_add_tail(&hpsa_sas_port->port_list_entry,
9430 			&hpsa_sas_node->port_list_head);
9431 
9432 	return hpsa_sas_port;
9433 
9434 free_sas_port:
9435 	sas_port_free(port);
9436 free_hpsa_port:
9437 	kfree(hpsa_sas_port);
9438 
9439 	return NULL;
9440 }
9441 
9442 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9443 {
9444 	struct hpsa_sas_phy *hpsa_sas_phy;
9445 	struct hpsa_sas_phy *next;
9446 
9447 	list_for_each_entry_safe(hpsa_sas_phy, next,
9448 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9449 		hpsa_free_sas_phy(hpsa_sas_phy);
9450 
9451 	sas_port_delete(hpsa_sas_port->port);
9452 	list_del(&hpsa_sas_port->port_list_entry);
9453 	kfree(hpsa_sas_port);
9454 }
9455 
9456 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9457 {
9458 	struct hpsa_sas_node *hpsa_sas_node;
9459 
9460 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9461 	if (hpsa_sas_node) {
9462 		hpsa_sas_node->parent_dev = parent_dev;
9463 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9464 	}
9465 
9466 	return hpsa_sas_node;
9467 }
9468 
9469 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9470 {
9471 	struct hpsa_sas_port *hpsa_sas_port;
9472 	struct hpsa_sas_port *next;
9473 
9474 	if (!hpsa_sas_node)
9475 		return;
9476 
9477 	list_for_each_entry_safe(hpsa_sas_port, next,
9478 			&hpsa_sas_node->port_list_head, port_list_entry)
9479 		hpsa_free_sas_port(hpsa_sas_port);
9480 
9481 	kfree(hpsa_sas_node);
9482 }
9483 
9484 static struct hpsa_scsi_dev_t
9485 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9486 					struct sas_rphy *rphy)
9487 {
9488 	int i;
9489 	struct hpsa_scsi_dev_t *device;
9490 
9491 	for (i = 0; i < h->ndevices; i++) {
9492 		device = h->dev[i];
9493 		if (!device->sas_port)
9494 			continue;
9495 		if (device->sas_port->rphy == rphy)
9496 			return device;
9497 	}
9498 
9499 	return NULL;
9500 }
9501 
9502 static int hpsa_add_sas_host(struct ctlr_info *h)
9503 {
9504 	int rc;
9505 	struct device *parent_dev;
9506 	struct hpsa_sas_node *hpsa_sas_node;
9507 	struct hpsa_sas_port *hpsa_sas_port;
9508 	struct hpsa_sas_phy *hpsa_sas_phy;
9509 
9510 	parent_dev = &h->scsi_host->shost_gendev;
9511 
9512 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9513 	if (!hpsa_sas_node)
9514 		return -ENOMEM;
9515 
9516 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9517 	if (!hpsa_sas_port) {
9518 		rc = -ENODEV;
9519 		goto free_sas_node;
9520 	}
9521 
9522 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9523 	if (!hpsa_sas_phy) {
9524 		rc = -ENODEV;
9525 		goto free_sas_port;
9526 	}
9527 
9528 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9529 	if (rc)
9530 		goto free_sas_phy;
9531 
9532 	h->sas_host = hpsa_sas_node;
9533 
9534 	return 0;
9535 
9536 free_sas_phy:
9537 	hpsa_free_sas_phy(hpsa_sas_phy);
9538 free_sas_port:
9539 	hpsa_free_sas_port(hpsa_sas_port);
9540 free_sas_node:
9541 	hpsa_free_sas_node(hpsa_sas_node);
9542 
9543 	return rc;
9544 }
9545 
9546 static void hpsa_delete_sas_host(struct ctlr_info *h)
9547 {
9548 	hpsa_free_sas_node(h->sas_host);
9549 }
9550 
9551 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9552 				struct hpsa_scsi_dev_t *device)
9553 {
9554 	int rc;
9555 	struct hpsa_sas_port *hpsa_sas_port;
9556 	struct sas_rphy *rphy;
9557 
9558 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9559 	if (!hpsa_sas_port)
9560 		return -ENOMEM;
9561 
9562 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9563 	if (!rphy) {
9564 		rc = -ENODEV;
9565 		goto free_sas_port;
9566 	}
9567 
9568 	hpsa_sas_port->rphy = rphy;
9569 	device->sas_port = hpsa_sas_port;
9570 
9571 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9572 	if (rc)
9573 		goto free_sas_port;
9574 
9575 	return 0;
9576 
9577 free_sas_port:
9578 	hpsa_free_sas_port(hpsa_sas_port);
9579 	device->sas_port = NULL;
9580 
9581 	return rc;
9582 }
9583 
9584 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9585 {
9586 	if (device->sas_port) {
9587 		hpsa_free_sas_port(device->sas_port);
9588 		device->sas_port = NULL;
9589 	}
9590 }
9591 
9592 static int
9593 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9594 {
9595 	return 0;
9596 }
9597 
9598 static int
9599 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9600 {
9601 	return 0;
9602 }
9603 
9604 static int
9605 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9606 {
9607 	return -ENXIO;
9608 }
9609 
9610 static int
9611 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9612 {
9613 	return 0;
9614 }
9615 
9616 static int
9617 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9618 {
9619 	return 0;
9620 }
9621 
9622 static int
9623 hpsa_sas_phy_setup(struct sas_phy *phy)
9624 {
9625 	return 0;
9626 }
9627 
9628 static void
9629 hpsa_sas_phy_release(struct sas_phy *phy)
9630 {
9631 }
9632 
9633 static int
9634 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9635 {
9636 	return -EINVAL;
9637 }
9638 
9639 /* SMP = Serial Management Protocol */
9640 static int
9641 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9642 struct request *req)
9643 {
9644 	return -EINVAL;
9645 }
9646 
9647 static struct sas_function_template hpsa_sas_transport_functions = {
9648 	.get_linkerrors = hpsa_sas_get_linkerrors,
9649 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9650 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9651 	.phy_reset = hpsa_sas_phy_reset,
9652 	.phy_enable = hpsa_sas_phy_enable,
9653 	.phy_setup = hpsa_sas_phy_setup,
9654 	.phy_release = hpsa_sas_phy_release,
9655 	.set_phy_speed = hpsa_sas_phy_speed,
9656 	.smp_handler = hpsa_sas_smp_handler,
9657 };
9658 
9659 /*
9660  *  This is it.  Register the PCI driver information for the cards we control
9661  *  the OS will call our registered routines when it finds one of our cards.
9662  */
9663 static int __init hpsa_init(void)
9664 {
9665 	int rc;
9666 
9667 	hpsa_sas_transport_template =
9668 		sas_attach_transport(&hpsa_sas_transport_functions);
9669 	if (!hpsa_sas_transport_template)
9670 		return -ENODEV;
9671 
9672 	rc = pci_register_driver(&hpsa_pci_driver);
9673 
9674 	if (rc)
9675 		sas_release_transport(hpsa_sas_transport_template);
9676 
9677 	return rc;
9678 }
9679 
9680 static void __exit hpsa_cleanup(void)
9681 {
9682 	pci_unregister_driver(&hpsa_pci_driver);
9683 	sas_release_transport(hpsa_sas_transport_template);
9684 }
9685 
9686 static void __attribute__((unused)) verify_offsets(void)
9687 {
9688 #define VERIFY_OFFSET(member, offset) \
9689 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9690 
9691 	VERIFY_OFFSET(structure_size, 0);
9692 	VERIFY_OFFSET(volume_blk_size, 4);
9693 	VERIFY_OFFSET(volume_blk_cnt, 8);
9694 	VERIFY_OFFSET(phys_blk_shift, 16);
9695 	VERIFY_OFFSET(parity_rotation_shift, 17);
9696 	VERIFY_OFFSET(strip_size, 18);
9697 	VERIFY_OFFSET(disk_starting_blk, 20);
9698 	VERIFY_OFFSET(disk_blk_cnt, 28);
9699 	VERIFY_OFFSET(data_disks_per_row, 36);
9700 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9701 	VERIFY_OFFSET(row_cnt, 40);
9702 	VERIFY_OFFSET(layout_map_count, 42);
9703 	VERIFY_OFFSET(flags, 44);
9704 	VERIFY_OFFSET(dekindex, 46);
9705 	/* VERIFY_OFFSET(reserved, 48 */
9706 	VERIFY_OFFSET(data, 64);
9707 
9708 #undef VERIFY_OFFSET
9709 
9710 #define VERIFY_OFFSET(member, offset) \
9711 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9712 
9713 	VERIFY_OFFSET(IU_type, 0);
9714 	VERIFY_OFFSET(direction, 1);
9715 	VERIFY_OFFSET(reply_queue, 2);
9716 	/* VERIFY_OFFSET(reserved1, 3);  */
9717 	VERIFY_OFFSET(scsi_nexus, 4);
9718 	VERIFY_OFFSET(Tag, 8);
9719 	VERIFY_OFFSET(cdb, 16);
9720 	VERIFY_OFFSET(cciss_lun, 32);
9721 	VERIFY_OFFSET(data_len, 40);
9722 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9723 	VERIFY_OFFSET(sg_count, 45);
9724 	/* VERIFY_OFFSET(reserved3 */
9725 	VERIFY_OFFSET(err_ptr, 48);
9726 	VERIFY_OFFSET(err_len, 56);
9727 	/* VERIFY_OFFSET(reserved4  */
9728 	VERIFY_OFFSET(sg, 64);
9729 
9730 #undef VERIFY_OFFSET
9731 
9732 #define VERIFY_OFFSET(member, offset) \
9733 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9734 
9735 	VERIFY_OFFSET(dev_handle, 0x00);
9736 	VERIFY_OFFSET(reserved1, 0x02);
9737 	VERIFY_OFFSET(function, 0x03);
9738 	VERIFY_OFFSET(reserved2, 0x04);
9739 	VERIFY_OFFSET(err_info, 0x0C);
9740 	VERIFY_OFFSET(reserved3, 0x10);
9741 	VERIFY_OFFSET(err_info_len, 0x12);
9742 	VERIFY_OFFSET(reserved4, 0x13);
9743 	VERIFY_OFFSET(sgl_offset, 0x14);
9744 	VERIFY_OFFSET(reserved5, 0x15);
9745 	VERIFY_OFFSET(transfer_len, 0x1C);
9746 	VERIFY_OFFSET(reserved6, 0x20);
9747 	VERIFY_OFFSET(io_flags, 0x24);
9748 	VERIFY_OFFSET(reserved7, 0x26);
9749 	VERIFY_OFFSET(LUN, 0x34);
9750 	VERIFY_OFFSET(control, 0x3C);
9751 	VERIFY_OFFSET(CDB, 0x40);
9752 	VERIFY_OFFSET(reserved8, 0x50);
9753 	VERIFY_OFFSET(host_context_flags, 0x60);
9754 	VERIFY_OFFSET(timeout_sec, 0x62);
9755 	VERIFY_OFFSET(ReplyQueue, 0x64);
9756 	VERIFY_OFFSET(reserved9, 0x65);
9757 	VERIFY_OFFSET(tag, 0x68);
9758 	VERIFY_OFFSET(host_addr, 0x70);
9759 	VERIFY_OFFSET(CISS_LUN, 0x78);
9760 	VERIFY_OFFSET(SG, 0x78 + 8);
9761 #undef VERIFY_OFFSET
9762 }
9763 
9764 module_init(hpsa_init);
9765 module_exit(hpsa_cleanup);
9766