xref: /linux/drivers/scsi/hpsa.c (revision a68e9da48568a0adf5dc817ef81971c0d1aa0672)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4  *    Copyright 2016 Microsemi Corporation
5  *    Copyright 2014-2015 PMC-Sierra, Inc.
6  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7  *
8  *    This program is free software; you can redistribute it and/or modify
9  *    it under the terms of the GNU General Public License as published by
10  *    the Free Software Foundation; version 2 of the License.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
16  *
17  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78 
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82 	HPSA_DRIVER_VERSION);
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86 
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 	"Use 'simple mode' rather than 'performant mode'");
91 
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
150 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 	{0,}
152 };
153 
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161 	{0x40700E11, "Smart Array 5300", &SA5A_access},
162 	{0x40800E11, "Smart Array 5i", &SA5B_access},
163 	{0x40820E11, "Smart Array 532", &SA5B_access},
164 	{0x40830E11, "Smart Array 5312", &SA5B_access},
165 	{0x409A0E11, "Smart Array 641", &SA5A_access},
166 	{0x409B0E11, "Smart Array 642", &SA5A_access},
167 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
168 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169 	{0x40910E11, "Smart Array 6i", &SA5A_access},
170 	{0x3225103C, "Smart Array P600", &SA5A_access},
171 	{0x3223103C, "Smart Array P800", &SA5A_access},
172 	{0x3234103C, "Smart Array P400", &SA5A_access},
173 	{0x3235103C, "Smart Array P400i", &SA5A_access},
174 	{0x3211103C, "Smart Array E200i", &SA5A_access},
175 	{0x3212103C, "Smart Array E200", &SA5A_access},
176 	{0x3213103C, "Smart Array E200i", &SA5A_access},
177 	{0x3214103C, "Smart Array E200i", &SA5A_access},
178 	{0x3215103C, "Smart Array E200i", &SA5A_access},
179 	{0x3237103C, "Smart Array E500", &SA5A_access},
180 	{0x323D103C, "Smart Array P700m", &SA5A_access},
181 	{0x3241103C, "Smart Array P212", &SA5_access},
182 	{0x3243103C, "Smart Array P410", &SA5_access},
183 	{0x3245103C, "Smart Array P410i", &SA5_access},
184 	{0x3247103C, "Smart Array P411", &SA5_access},
185 	{0x3249103C, "Smart Array P812", &SA5_access},
186 	{0x324A103C, "Smart Array P712m", &SA5_access},
187 	{0x324B103C, "Smart Array P711m", &SA5_access},
188 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189 	{0x3350103C, "Smart Array P222", &SA5_access},
190 	{0x3351103C, "Smart Array P420", &SA5_access},
191 	{0x3352103C, "Smart Array P421", &SA5_access},
192 	{0x3353103C, "Smart Array P822", &SA5_access},
193 	{0x3354103C, "Smart Array P420i", &SA5_access},
194 	{0x3355103C, "Smart Array P220i", &SA5_access},
195 	{0x3356103C, "Smart Array P721m", &SA5_access},
196 	{0x1920103C, "Smart Array P430i", &SA5_access},
197 	{0x1921103C, "Smart Array P830i", &SA5_access},
198 	{0x1922103C, "Smart Array P430", &SA5_access},
199 	{0x1923103C, "Smart Array P431", &SA5_access},
200 	{0x1924103C, "Smart Array P830", &SA5_access},
201 	{0x1925103C, "Smart Array P831", &SA5_access},
202 	{0x1926103C, "Smart Array P731m", &SA5_access},
203 	{0x1928103C, "Smart Array P230i", &SA5_access},
204 	{0x1929103C, "Smart Array P530", &SA5_access},
205 	{0x21BD103C, "Smart Array P244br", &SA5_access},
206 	{0x21BE103C, "Smart Array P741m", &SA5_access},
207 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
208 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
209 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
210 	{0x21C2103C, "Smart Array P440", &SA5_access},
211 	{0x21C3103C, "Smart Array P441", &SA5_access},
212 	{0x21C4103C, "Smart Array", &SA5_access},
213 	{0x21C5103C, "Smart Array P841", &SA5_access},
214 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
215 	{0x21C7103C, "Smart HBA H240", &SA5_access},
216 	{0x21C8103C, "Smart HBA H241", &SA5_access},
217 	{0x21C9103C, "Smart Array", &SA5_access},
218 	{0x21CA103C, "Smart Array P246br", &SA5_access},
219 	{0x21CB103C, "Smart Array P840", &SA5_access},
220 	{0x21CC103C, "Smart Array", &SA5_access},
221 	{0x21CD103C, "Smart Array", &SA5_access},
222 	{0x21CE103C, "Smart HBA", &SA5_access},
223 	{0x05809005, "SmartHBA-SA", &SA5_access},
224 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
225 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
227 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
228 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236 
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241 			struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245 		struct sas_rphy *rphy);
246 
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252 
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256 		      void __user *arg);
257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
258 			       IOCTL_Command_struct *iocommand);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260 				   BIG_IOCTL_Command_struct *ioc);
261 
262 #ifdef CONFIG_COMPAT
263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264 	void __user *arg);
265 #endif
266 
267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271 					    struct scsi_cmnd *scmd);
272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
274 	int cmd_type);
275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
278 
279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280 static void hpsa_scan_start(struct Scsi_Host *);
281 static int hpsa_scan_finished(struct Scsi_Host *sh,
282 	unsigned long elapsed_time);
283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
284 
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286 static int hpsa_slave_alloc(struct scsi_device *sdev);
287 static int hpsa_slave_configure(struct scsi_device *sdev);
288 static void hpsa_slave_destroy(struct scsi_device *sdev);
289 
290 static void hpsa_update_scsi_devices(struct ctlr_info *h);
291 static int check_for_unit_attention(struct ctlr_info *h,
292 	struct CommandList *c);
293 static void check_ioctl_unit_attention(struct ctlr_info *h,
294 	struct CommandList *c);
295 /* performant mode helper functions */
296 static void calc_bucket_map(int *bucket, int num_buckets,
297 	int nsgs, int min_blocks, u32 *bucket_map);
298 static void hpsa_free_performant_mode(struct ctlr_info *h);
299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
300 static inline u32 next_command(struct ctlr_info *h, u8 q);
301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
302 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
303 			       u64 *cfg_offset);
304 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
305 				    unsigned long *memory_bar);
306 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
307 				bool *legacy_board);
308 static int wait_for_device_to_become_ready(struct ctlr_info *h,
309 					   unsigned char lunaddr[],
310 					   int reply_queue);
311 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
312 				     int wait_for_ready);
313 static inline void finish_cmd(struct CommandList *c);
314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
315 #define BOARD_NOT_READY 0
316 #define BOARD_READY 1
317 static void hpsa_drain_accel_commands(struct ctlr_info *h);
318 static void hpsa_flush_cache(struct ctlr_info *h);
319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
320 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
321 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
322 static void hpsa_command_resubmit_worker(struct work_struct *work);
323 static u32 lockup_detected(struct ctlr_info *h);
324 static int detect_controller_lockup(struct ctlr_info *h);
325 static void hpsa_disable_rld_caching(struct ctlr_info *h);
326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
327 	struct ReportExtendedLUNdata *buf, int bufsize);
328 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
329 	unsigned char scsi3addr[], u8 page);
330 static int hpsa_luns_changed(struct ctlr_info *h);
331 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
332 			       struct hpsa_scsi_dev_t *dev,
333 			       unsigned char *scsi3addr);
334 
335 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
336 {
337 	unsigned long *priv = shost_priv(sdev->host);
338 	return (struct ctlr_info *) *priv;
339 }
340 
341 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
342 {
343 	unsigned long *priv = shost_priv(sh);
344 	return (struct ctlr_info *) *priv;
345 }
346 
347 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
348 {
349 	return c->scsi_cmd == SCSI_CMD_IDLE;
350 }
351 
352 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354 			u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356 	struct scsi_sense_hdr sshdr;
357 	bool rc;
358 
359 	*sense_key = -1;
360 	*asc = -1;
361 	*ascq = -1;
362 
363 	if (sense_data_len < 1)
364 		return;
365 
366 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367 	if (rc) {
368 		*sense_key = sshdr.sense_key;
369 		*asc = sshdr.asc;
370 		*ascq = sshdr.ascq;
371 	}
372 }
373 
374 static int check_for_unit_attention(struct ctlr_info *h,
375 	struct CommandList *c)
376 {
377 	u8 sense_key, asc, ascq;
378 	int sense_len;
379 
380 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381 		sense_len = sizeof(c->err_info->SenseInfo);
382 	else
383 		sense_len = c->err_info->SenseLen;
384 
385 	decode_sense_data(c->err_info->SenseInfo, sense_len,
386 				&sense_key, &asc, &ascq);
387 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
388 		return 0;
389 
390 	switch (asc) {
391 	case STATE_CHANGED:
392 		dev_warn(&h->pdev->dev,
393 			"%s: a state change detected, command retried\n",
394 			h->devname);
395 		break;
396 	case LUN_FAILED:
397 		dev_warn(&h->pdev->dev,
398 			"%s: LUN failure detected\n", h->devname);
399 		break;
400 	case REPORT_LUNS_CHANGED:
401 		dev_warn(&h->pdev->dev,
402 			"%s: report LUN data changed\n", h->devname);
403 	/*
404 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405 	 * target (array) devices.
406 	 */
407 		break;
408 	case POWER_OR_RESET:
409 		dev_warn(&h->pdev->dev,
410 			"%s: a power on or device reset detected\n",
411 			h->devname);
412 		break;
413 	case UNIT_ATTENTION_CLEARED:
414 		dev_warn(&h->pdev->dev,
415 			"%s: unit attention cleared by another initiator\n",
416 			h->devname);
417 		break;
418 	default:
419 		dev_warn(&h->pdev->dev,
420 			"%s: unknown unit attention detected\n",
421 			h->devname);
422 		break;
423 	}
424 	return 1;
425 }
426 
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432 		return 0;
433 	dev_warn(&h->pdev->dev, HPSA "device busy");
434 	return 1;
435 }
436 
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439 		struct device_attribute *attr, char *buf)
440 {
441 	int ld;
442 	struct ctlr_info *h;
443 	struct Scsi_Host *shost = class_to_shost(dev);
444 
445 	h = shost_to_hba(shost);
446 	ld = lockup_detected(h);
447 
448 	return sprintf(buf, "ld=%d\n", ld);
449 }
450 
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452 					 struct device_attribute *attr,
453 					 const char *buf, size_t count)
454 {
455 	int status, len;
456 	struct ctlr_info *h;
457 	struct Scsi_Host *shost = class_to_shost(dev);
458 	char tmpbuf[10];
459 
460 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 		return -EACCES;
462 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 	strncpy(tmpbuf, buf, len);
464 	tmpbuf[len] = '\0';
465 	if (sscanf(tmpbuf, "%d", &status) != 1)
466 		return -EINVAL;
467 	h = shost_to_hba(shost);
468 	h->acciopath_status = !!status;
469 	dev_warn(&h->pdev->dev,
470 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
471 		h->acciopath_status ? "enabled" : "disabled");
472 	return count;
473 }
474 
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476 					 struct device_attribute *attr,
477 					 const char *buf, size_t count)
478 {
479 	int debug_level, len;
480 	struct ctlr_info *h;
481 	struct Scsi_Host *shost = class_to_shost(dev);
482 	char tmpbuf[10];
483 
484 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485 		return -EACCES;
486 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487 	strncpy(tmpbuf, buf, len);
488 	tmpbuf[len] = '\0';
489 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490 		return -EINVAL;
491 	if (debug_level < 0)
492 		debug_level = 0;
493 	h = shost_to_hba(shost);
494 	h->raid_offload_debug = debug_level;
495 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496 		h->raid_offload_debug);
497 	return count;
498 }
499 
500 static ssize_t host_store_rescan(struct device *dev,
501 				 struct device_attribute *attr,
502 				 const char *buf, size_t count)
503 {
504 	struct ctlr_info *h;
505 	struct Scsi_Host *shost = class_to_shost(dev);
506 	h = shost_to_hba(shost);
507 	hpsa_scan_start(h->scsi_host);
508 	return count;
509 }
510 
511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
512 {
513 	device->offload_enabled = 0;
514 	device->offload_to_be_enabled = 0;
515 }
516 
517 static ssize_t host_show_firmware_revision(struct device *dev,
518 	     struct device_attribute *attr, char *buf)
519 {
520 	struct ctlr_info *h;
521 	struct Scsi_Host *shost = class_to_shost(dev);
522 	unsigned char *fwrev;
523 
524 	h = shost_to_hba(shost);
525 	if (!h->hba_inquiry_data)
526 		return 0;
527 	fwrev = &h->hba_inquiry_data[32];
528 	return snprintf(buf, 20, "%c%c%c%c\n",
529 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
530 }
531 
532 static ssize_t host_show_commands_outstanding(struct device *dev,
533 	     struct device_attribute *attr, char *buf)
534 {
535 	struct Scsi_Host *shost = class_to_shost(dev);
536 	struct ctlr_info *h = shost_to_hba(shost);
537 
538 	return snprintf(buf, 20, "%d\n",
539 			atomic_read(&h->commands_outstanding));
540 }
541 
542 static ssize_t host_show_transport_mode(struct device *dev,
543 	struct device_attribute *attr, char *buf)
544 {
545 	struct ctlr_info *h;
546 	struct Scsi_Host *shost = class_to_shost(dev);
547 
548 	h = shost_to_hba(shost);
549 	return snprintf(buf, 20, "%s\n",
550 		h->transMethod & CFGTBL_Trans_Performant ?
551 			"performant" : "simple");
552 }
553 
554 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
555 	struct device_attribute *attr, char *buf)
556 {
557 	struct ctlr_info *h;
558 	struct Scsi_Host *shost = class_to_shost(dev);
559 
560 	h = shost_to_hba(shost);
561 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
562 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
563 }
564 
565 /* List of controllers which cannot be hard reset on kexec with reset_devices */
566 static u32 unresettable_controller[] = {
567 	0x324a103C, /* Smart Array P712m */
568 	0x324b103C, /* Smart Array P711m */
569 	0x3223103C, /* Smart Array P800 */
570 	0x3234103C, /* Smart Array P400 */
571 	0x3235103C, /* Smart Array P400i */
572 	0x3211103C, /* Smart Array E200i */
573 	0x3212103C, /* Smart Array E200 */
574 	0x3213103C, /* Smart Array E200i */
575 	0x3214103C, /* Smart Array E200i */
576 	0x3215103C, /* Smart Array E200i */
577 	0x3237103C, /* Smart Array E500 */
578 	0x323D103C, /* Smart Array P700m */
579 	0x40800E11, /* Smart Array 5i */
580 	0x409C0E11, /* Smart Array 6400 */
581 	0x409D0E11, /* Smart Array 6400 EM */
582 	0x40700E11, /* Smart Array 5300 */
583 	0x40820E11, /* Smart Array 532 */
584 	0x40830E11, /* Smart Array 5312 */
585 	0x409A0E11, /* Smart Array 641 */
586 	0x409B0E11, /* Smart Array 642 */
587 	0x40910E11, /* Smart Array 6i */
588 };
589 
590 /* List of controllers which cannot even be soft reset */
591 static u32 soft_unresettable_controller[] = {
592 	0x40800E11, /* Smart Array 5i */
593 	0x40700E11, /* Smart Array 5300 */
594 	0x40820E11, /* Smart Array 532 */
595 	0x40830E11, /* Smart Array 5312 */
596 	0x409A0E11, /* Smart Array 641 */
597 	0x409B0E11, /* Smart Array 642 */
598 	0x40910E11, /* Smart Array 6i */
599 	/* Exclude 640x boards.  These are two pci devices in one slot
600 	 * which share a battery backed cache module.  One controls the
601 	 * cache, the other accesses the cache through the one that controls
602 	 * it.  If we reset the one controlling the cache, the other will
603 	 * likely not be happy.  Just forbid resetting this conjoined mess.
604 	 * The 640x isn't really supported by hpsa anyway.
605 	 */
606 	0x409C0E11, /* Smart Array 6400 */
607 	0x409D0E11, /* Smart Array 6400 EM */
608 };
609 
610 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
611 {
612 	int i;
613 
614 	for (i = 0; i < nelems; i++)
615 		if (a[i] == board_id)
616 			return 1;
617 	return 0;
618 }
619 
620 static int ctlr_is_hard_resettable(u32 board_id)
621 {
622 	return !board_id_in_array(unresettable_controller,
623 			ARRAY_SIZE(unresettable_controller), board_id);
624 }
625 
626 static int ctlr_is_soft_resettable(u32 board_id)
627 {
628 	return !board_id_in_array(soft_unresettable_controller,
629 			ARRAY_SIZE(soft_unresettable_controller), board_id);
630 }
631 
632 static int ctlr_is_resettable(u32 board_id)
633 {
634 	return ctlr_is_hard_resettable(board_id) ||
635 		ctlr_is_soft_resettable(board_id);
636 }
637 
638 static ssize_t host_show_resettable(struct device *dev,
639 	struct device_attribute *attr, char *buf)
640 {
641 	struct ctlr_info *h;
642 	struct Scsi_Host *shost = class_to_shost(dev);
643 
644 	h = shost_to_hba(shost);
645 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
646 }
647 
648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
649 {
650 	return (scsi3addr[3] & 0xC0) == 0x40;
651 }
652 
653 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
654 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
655 };
656 #define HPSA_RAID_0	0
657 #define HPSA_RAID_4	1
658 #define HPSA_RAID_1	2	/* also used for RAID 10 */
659 #define HPSA_RAID_5	3	/* also used for RAID 50 */
660 #define HPSA_RAID_51	4
661 #define HPSA_RAID_6	5	/* also used for RAID 60 */
662 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
665 
666 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
667 {
668 	return !device->physical_device;
669 }
670 
671 static ssize_t raid_level_show(struct device *dev,
672 	     struct device_attribute *attr, char *buf)
673 {
674 	ssize_t l = 0;
675 	unsigned char rlevel;
676 	struct ctlr_info *h;
677 	struct scsi_device *sdev;
678 	struct hpsa_scsi_dev_t *hdev;
679 	unsigned long flags;
680 
681 	sdev = to_scsi_device(dev);
682 	h = sdev_to_hba(sdev);
683 	spin_lock_irqsave(&h->lock, flags);
684 	hdev = sdev->hostdata;
685 	if (!hdev) {
686 		spin_unlock_irqrestore(&h->lock, flags);
687 		return -ENODEV;
688 	}
689 
690 	/* Is this even a logical drive? */
691 	if (!is_logical_device(hdev)) {
692 		spin_unlock_irqrestore(&h->lock, flags);
693 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
694 		return l;
695 	}
696 
697 	rlevel = hdev->raid_level;
698 	spin_unlock_irqrestore(&h->lock, flags);
699 	if (rlevel > RAID_UNKNOWN)
700 		rlevel = RAID_UNKNOWN;
701 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
702 	return l;
703 }
704 
705 static ssize_t lunid_show(struct device *dev,
706 	     struct device_attribute *attr, char *buf)
707 {
708 	struct ctlr_info *h;
709 	struct scsi_device *sdev;
710 	struct hpsa_scsi_dev_t *hdev;
711 	unsigned long flags;
712 	unsigned char lunid[8];
713 
714 	sdev = to_scsi_device(dev);
715 	h = sdev_to_hba(sdev);
716 	spin_lock_irqsave(&h->lock, flags);
717 	hdev = sdev->hostdata;
718 	if (!hdev) {
719 		spin_unlock_irqrestore(&h->lock, flags);
720 		return -ENODEV;
721 	}
722 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
723 	spin_unlock_irqrestore(&h->lock, flags);
724 	return snprintf(buf, 20, "0x%8phN\n", lunid);
725 }
726 
727 static ssize_t unique_id_show(struct device *dev,
728 	     struct device_attribute *attr, char *buf)
729 {
730 	struct ctlr_info *h;
731 	struct scsi_device *sdev;
732 	struct hpsa_scsi_dev_t *hdev;
733 	unsigned long flags;
734 	unsigned char sn[16];
735 
736 	sdev = to_scsi_device(dev);
737 	h = sdev_to_hba(sdev);
738 	spin_lock_irqsave(&h->lock, flags);
739 	hdev = sdev->hostdata;
740 	if (!hdev) {
741 		spin_unlock_irqrestore(&h->lock, flags);
742 		return -ENODEV;
743 	}
744 	memcpy(sn, hdev->device_id, sizeof(sn));
745 	spin_unlock_irqrestore(&h->lock, flags);
746 	return snprintf(buf, 16 * 2 + 2,
747 			"%02X%02X%02X%02X%02X%02X%02X%02X"
748 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
749 			sn[0], sn[1], sn[2], sn[3],
750 			sn[4], sn[5], sn[6], sn[7],
751 			sn[8], sn[9], sn[10], sn[11],
752 			sn[12], sn[13], sn[14], sn[15]);
753 }
754 
755 static ssize_t sas_address_show(struct device *dev,
756 	      struct device_attribute *attr, char *buf)
757 {
758 	struct ctlr_info *h;
759 	struct scsi_device *sdev;
760 	struct hpsa_scsi_dev_t *hdev;
761 	unsigned long flags;
762 	u64 sas_address;
763 
764 	sdev = to_scsi_device(dev);
765 	h = sdev_to_hba(sdev);
766 	spin_lock_irqsave(&h->lock, flags);
767 	hdev = sdev->hostdata;
768 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
769 		spin_unlock_irqrestore(&h->lock, flags);
770 		return -ENODEV;
771 	}
772 	sas_address = hdev->sas_address;
773 	spin_unlock_irqrestore(&h->lock, flags);
774 
775 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
776 }
777 
778 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
779 	     struct device_attribute *attr, char *buf)
780 {
781 	struct ctlr_info *h;
782 	struct scsi_device *sdev;
783 	struct hpsa_scsi_dev_t *hdev;
784 	unsigned long flags;
785 	int offload_enabled;
786 
787 	sdev = to_scsi_device(dev);
788 	h = sdev_to_hba(sdev);
789 	spin_lock_irqsave(&h->lock, flags);
790 	hdev = sdev->hostdata;
791 	if (!hdev) {
792 		spin_unlock_irqrestore(&h->lock, flags);
793 		return -ENODEV;
794 	}
795 	offload_enabled = hdev->offload_enabled;
796 	spin_unlock_irqrestore(&h->lock, flags);
797 
798 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
799 		return snprintf(buf, 20, "%d\n", offload_enabled);
800 	else
801 		return snprintf(buf, 40, "%s\n",
802 				"Not applicable for a controller");
803 }
804 
805 #define MAX_PATHS 8
806 static ssize_t path_info_show(struct device *dev,
807 	     struct device_attribute *attr, char *buf)
808 {
809 	struct ctlr_info *h;
810 	struct scsi_device *sdev;
811 	struct hpsa_scsi_dev_t *hdev;
812 	unsigned long flags;
813 	int i;
814 	int output_len = 0;
815 	u8 box;
816 	u8 bay;
817 	u8 path_map_index = 0;
818 	char *active;
819 	unsigned char phys_connector[2];
820 
821 	sdev = to_scsi_device(dev);
822 	h = sdev_to_hba(sdev);
823 	spin_lock_irqsave(&h->devlock, flags);
824 	hdev = sdev->hostdata;
825 	if (!hdev) {
826 		spin_unlock_irqrestore(&h->devlock, flags);
827 		return -ENODEV;
828 	}
829 
830 	bay = hdev->bay;
831 	for (i = 0; i < MAX_PATHS; i++) {
832 		path_map_index = 1<<i;
833 		if (i == hdev->active_path_index)
834 			active = "Active";
835 		else if (hdev->path_map & path_map_index)
836 			active = "Inactive";
837 		else
838 			continue;
839 
840 		output_len += scnprintf(buf + output_len,
841 				PAGE_SIZE - output_len,
842 				"[%d:%d:%d:%d] %20.20s ",
843 				h->scsi_host->host_no,
844 				hdev->bus, hdev->target, hdev->lun,
845 				scsi_device_type(hdev->devtype));
846 
847 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
848 			output_len += scnprintf(buf + output_len,
849 						PAGE_SIZE - output_len,
850 						"%s\n", active);
851 			continue;
852 		}
853 
854 		box = hdev->box[i];
855 		memcpy(&phys_connector, &hdev->phys_connector[i],
856 			sizeof(phys_connector));
857 		if (phys_connector[0] < '0')
858 			phys_connector[0] = '0';
859 		if (phys_connector[1] < '0')
860 			phys_connector[1] = '0';
861 		output_len += scnprintf(buf + output_len,
862 				PAGE_SIZE - output_len,
863 				"PORT: %.2s ",
864 				phys_connector);
865 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
866 			hdev->expose_device) {
867 			if (box == 0 || box == 0xFF) {
868 				output_len += scnprintf(buf + output_len,
869 					PAGE_SIZE - output_len,
870 					"BAY: %hhu %s\n",
871 					bay, active);
872 			} else {
873 				output_len += scnprintf(buf + output_len,
874 					PAGE_SIZE - output_len,
875 					"BOX: %hhu BAY: %hhu %s\n",
876 					box, bay, active);
877 			}
878 		} else if (box != 0 && box != 0xFF) {
879 			output_len += scnprintf(buf + output_len,
880 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
881 				box, active);
882 		} else
883 			output_len += scnprintf(buf + output_len,
884 				PAGE_SIZE - output_len, "%s\n", active);
885 	}
886 
887 	spin_unlock_irqrestore(&h->devlock, flags);
888 	return output_len;
889 }
890 
891 static ssize_t host_show_ctlr_num(struct device *dev,
892 	struct device_attribute *attr, char *buf)
893 {
894 	struct ctlr_info *h;
895 	struct Scsi_Host *shost = class_to_shost(dev);
896 
897 	h = shost_to_hba(shost);
898 	return snprintf(buf, 20, "%d\n", h->ctlr);
899 }
900 
901 static ssize_t host_show_legacy_board(struct device *dev,
902 	struct device_attribute *attr, char *buf)
903 {
904 	struct ctlr_info *h;
905 	struct Scsi_Host *shost = class_to_shost(dev);
906 
907 	h = shost_to_hba(shost);
908 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
909 }
910 
911 static DEVICE_ATTR_RO(raid_level);
912 static DEVICE_ATTR_RO(lunid);
913 static DEVICE_ATTR_RO(unique_id);
914 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
915 static DEVICE_ATTR_RO(sas_address);
916 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
917 			host_show_hp_ssd_smart_path_enabled, NULL);
918 static DEVICE_ATTR_RO(path_info);
919 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
920 		host_show_hp_ssd_smart_path_status,
921 		host_store_hp_ssd_smart_path_status);
922 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
923 			host_store_raid_offload_debug);
924 static DEVICE_ATTR(firmware_revision, S_IRUGO,
925 	host_show_firmware_revision, NULL);
926 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
927 	host_show_commands_outstanding, NULL);
928 static DEVICE_ATTR(transport_mode, S_IRUGO,
929 	host_show_transport_mode, NULL);
930 static DEVICE_ATTR(resettable, S_IRUGO,
931 	host_show_resettable, NULL);
932 static DEVICE_ATTR(lockup_detected, S_IRUGO,
933 	host_show_lockup_detected, NULL);
934 static DEVICE_ATTR(ctlr_num, S_IRUGO,
935 	host_show_ctlr_num, NULL);
936 static DEVICE_ATTR(legacy_board, S_IRUGO,
937 	host_show_legacy_board, NULL);
938 
939 static struct device_attribute *hpsa_sdev_attrs[] = {
940 	&dev_attr_raid_level,
941 	&dev_attr_lunid,
942 	&dev_attr_unique_id,
943 	&dev_attr_hp_ssd_smart_path_enabled,
944 	&dev_attr_path_info,
945 	&dev_attr_sas_address,
946 	NULL,
947 };
948 
949 static struct device_attribute *hpsa_shost_attrs[] = {
950 	&dev_attr_rescan,
951 	&dev_attr_firmware_revision,
952 	&dev_attr_commands_outstanding,
953 	&dev_attr_transport_mode,
954 	&dev_attr_resettable,
955 	&dev_attr_hp_ssd_smart_path_status,
956 	&dev_attr_raid_offload_debug,
957 	&dev_attr_lockup_detected,
958 	&dev_attr_ctlr_num,
959 	&dev_attr_legacy_board,
960 	NULL,
961 };
962 
963 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
964 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
965 
966 static struct scsi_host_template hpsa_driver_template = {
967 	.module			= THIS_MODULE,
968 	.name			= HPSA,
969 	.proc_name		= HPSA,
970 	.queuecommand		= hpsa_scsi_queue_command,
971 	.scan_start		= hpsa_scan_start,
972 	.scan_finished		= hpsa_scan_finished,
973 	.change_queue_depth	= hpsa_change_queue_depth,
974 	.this_id		= -1,
975 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
976 	.ioctl			= hpsa_ioctl,
977 	.slave_alloc		= hpsa_slave_alloc,
978 	.slave_configure	= hpsa_slave_configure,
979 	.slave_destroy		= hpsa_slave_destroy,
980 #ifdef CONFIG_COMPAT
981 	.compat_ioctl		= hpsa_compat_ioctl,
982 #endif
983 	.sdev_attrs = hpsa_sdev_attrs,
984 	.shost_attrs = hpsa_shost_attrs,
985 	.max_sectors = 2048,
986 	.no_write_same = 1,
987 };
988 
989 static inline u32 next_command(struct ctlr_info *h, u8 q)
990 {
991 	u32 a;
992 	struct reply_queue_buffer *rq = &h->reply_queue[q];
993 
994 	if (h->transMethod & CFGTBL_Trans_io_accel1)
995 		return h->access.command_completed(h, q);
996 
997 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
998 		return h->access.command_completed(h, q);
999 
1000 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1001 		a = rq->head[rq->current_entry];
1002 		rq->current_entry++;
1003 		atomic_dec(&h->commands_outstanding);
1004 	} else {
1005 		a = FIFO_EMPTY;
1006 	}
1007 	/* Check for wraparound */
1008 	if (rq->current_entry == h->max_commands) {
1009 		rq->current_entry = 0;
1010 		rq->wraparound ^= 1;
1011 	}
1012 	return a;
1013 }
1014 
1015 /*
1016  * There are some special bits in the bus address of the
1017  * command that we have to set for the controller to know
1018  * how to process the command:
1019  *
1020  * Normal performant mode:
1021  * bit 0: 1 means performant mode, 0 means simple mode.
1022  * bits 1-3 = block fetch table entry
1023  * bits 4-6 = command type (== 0)
1024  *
1025  * ioaccel1 mode:
1026  * bit 0 = "performant mode" bit.
1027  * bits 1-3 = block fetch table entry
1028  * bits 4-6 = command type (== 110)
1029  * (command type is needed because ioaccel1 mode
1030  * commands are submitted through the same register as normal
1031  * mode commands, so this is how the controller knows whether
1032  * the command is normal mode or ioaccel1 mode.)
1033  *
1034  * ioaccel2 mode:
1035  * bit 0 = "performant mode" bit.
1036  * bits 1-4 = block fetch table entry (note extra bit)
1037  * bits 4-6 = not needed, because ioaccel2 mode has
1038  * a separate special register for submitting commands.
1039  */
1040 
1041 /*
1042  * set_performant_mode: Modify the tag for cciss performant
1043  * set bit 0 for pull model, bits 3-1 for block fetch
1044  * register number
1045  */
1046 #define DEFAULT_REPLY_QUEUE (-1)
1047 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1048 					int reply_queue)
1049 {
1050 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1051 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1052 		if (unlikely(!h->msix_vectors))
1053 			return;
1054 		c->Header.ReplyQueue = reply_queue;
1055 	}
1056 }
1057 
1058 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1059 						struct CommandList *c,
1060 						int reply_queue)
1061 {
1062 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1063 
1064 	/*
1065 	 * Tell the controller to post the reply to the queue for this
1066 	 * processor.  This seems to give the best I/O throughput.
1067 	 */
1068 	cp->ReplyQueue = reply_queue;
1069 	/*
1070 	 * Set the bits in the address sent down to include:
1071 	 *  - performant mode bit (bit 0)
1072 	 *  - pull count (bits 1-3)
1073 	 *  - command type (bits 4-6)
1074 	 */
1075 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1076 					IOACCEL1_BUSADDR_CMDTYPE;
1077 }
1078 
1079 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1080 						struct CommandList *c,
1081 						int reply_queue)
1082 {
1083 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1084 		&h->ioaccel2_cmd_pool[c->cmdindex];
1085 
1086 	/* Tell the controller to post the reply to the queue for this
1087 	 * processor.  This seems to give the best I/O throughput.
1088 	 */
1089 	cp->reply_queue = reply_queue;
1090 	/* Set the bits in the address sent down to include:
1091 	 *  - performant mode bit not used in ioaccel mode 2
1092 	 *  - pull count (bits 0-3)
1093 	 *  - command type isn't needed for ioaccel2
1094 	 */
1095 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1096 }
1097 
1098 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1099 						struct CommandList *c,
1100 						int reply_queue)
1101 {
1102 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1103 
1104 	/*
1105 	 * Tell the controller to post the reply to the queue for this
1106 	 * processor.  This seems to give the best I/O throughput.
1107 	 */
1108 	cp->reply_queue = reply_queue;
1109 	/*
1110 	 * Set the bits in the address sent down to include:
1111 	 *  - performant mode bit not used in ioaccel mode 2
1112 	 *  - pull count (bits 0-3)
1113 	 *  - command type isn't needed for ioaccel2
1114 	 */
1115 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1116 }
1117 
1118 static int is_firmware_flash_cmd(u8 *cdb)
1119 {
1120 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1121 }
1122 
1123 /*
1124  * During firmware flash, the heartbeat register may not update as frequently
1125  * as it should.  So we dial down lockup detection during firmware flash. and
1126  * dial it back up when firmware flash completes.
1127  */
1128 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1129 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1130 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1131 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1132 		struct CommandList *c)
1133 {
1134 	if (!is_firmware_flash_cmd(c->Request.CDB))
1135 		return;
1136 	atomic_inc(&h->firmware_flash_in_progress);
1137 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1138 }
1139 
1140 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1141 		struct CommandList *c)
1142 {
1143 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1144 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1145 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1146 }
1147 
1148 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1149 	struct CommandList *c, int reply_queue)
1150 {
1151 	dial_down_lockup_detection_during_fw_flash(h, c);
1152 	atomic_inc(&h->commands_outstanding);
1153 	/*
1154 	 * Check to see if the command is being retried.
1155 	 */
1156 	if (c->device && !c->retry_pending)
1157 		atomic_inc(&c->device->commands_outstanding);
1158 
1159 	reply_queue = h->reply_map[raw_smp_processor_id()];
1160 	switch (c->cmd_type) {
1161 	case CMD_IOACCEL1:
1162 		set_ioaccel1_performant_mode(h, c, reply_queue);
1163 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1164 		break;
1165 	case CMD_IOACCEL2:
1166 		set_ioaccel2_performant_mode(h, c, reply_queue);
1167 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1168 		break;
1169 	case IOACCEL2_TMF:
1170 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1171 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172 		break;
1173 	default:
1174 		set_performant_mode(h, c, reply_queue);
1175 		h->access.submit_command(h, c);
1176 	}
1177 }
1178 
1179 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1180 {
1181 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1182 }
1183 
1184 static inline int is_hba_lunid(unsigned char scsi3addr[])
1185 {
1186 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1187 }
1188 
1189 static inline int is_scsi_rev_5(struct ctlr_info *h)
1190 {
1191 	if (!h->hba_inquiry_data)
1192 		return 0;
1193 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1194 		return 1;
1195 	return 0;
1196 }
1197 
1198 static int hpsa_find_target_lun(struct ctlr_info *h,
1199 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1200 {
1201 	/* finds an unused bus, target, lun for a new physical device
1202 	 * assumes h->devlock is held
1203 	 */
1204 	int i, found = 0;
1205 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1206 
1207 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1208 
1209 	for (i = 0; i < h->ndevices; i++) {
1210 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1211 			__set_bit(h->dev[i]->target, lun_taken);
1212 	}
1213 
1214 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1215 	if (i < HPSA_MAX_DEVICES) {
1216 		/* *bus = 1; */
1217 		*target = i;
1218 		*lun = 0;
1219 		found = 1;
1220 	}
1221 	return !found;
1222 }
1223 
1224 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1225 	struct hpsa_scsi_dev_t *dev, char *description)
1226 {
1227 #define LABEL_SIZE 25
1228 	char label[LABEL_SIZE];
1229 
1230 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1231 		return;
1232 
1233 	switch (dev->devtype) {
1234 	case TYPE_RAID:
1235 		snprintf(label, LABEL_SIZE, "controller");
1236 		break;
1237 	case TYPE_ENCLOSURE:
1238 		snprintf(label, LABEL_SIZE, "enclosure");
1239 		break;
1240 	case TYPE_DISK:
1241 	case TYPE_ZBC:
1242 		if (dev->external)
1243 			snprintf(label, LABEL_SIZE, "external");
1244 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1245 			snprintf(label, LABEL_SIZE, "%s",
1246 				raid_label[PHYSICAL_DRIVE]);
1247 		else
1248 			snprintf(label, LABEL_SIZE, "RAID-%s",
1249 				dev->raid_level > RAID_UNKNOWN ? "?" :
1250 				raid_label[dev->raid_level]);
1251 		break;
1252 	case TYPE_ROM:
1253 		snprintf(label, LABEL_SIZE, "rom");
1254 		break;
1255 	case TYPE_TAPE:
1256 		snprintf(label, LABEL_SIZE, "tape");
1257 		break;
1258 	case TYPE_MEDIUM_CHANGER:
1259 		snprintf(label, LABEL_SIZE, "changer");
1260 		break;
1261 	default:
1262 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1263 		break;
1264 	}
1265 
1266 	dev_printk(level, &h->pdev->dev,
1267 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1268 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1269 			description,
1270 			scsi_device_type(dev->devtype),
1271 			dev->vendor,
1272 			dev->model,
1273 			label,
1274 			dev->offload_config ? '+' : '-',
1275 			dev->offload_to_be_enabled ? '+' : '-',
1276 			dev->expose_device);
1277 }
1278 
1279 /* Add an entry into h->dev[] array. */
1280 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1281 		struct hpsa_scsi_dev_t *device,
1282 		struct hpsa_scsi_dev_t *added[], int *nadded)
1283 {
1284 	/* assumes h->devlock is held */
1285 	int n = h->ndevices;
1286 	int i;
1287 	unsigned char addr1[8], addr2[8];
1288 	struct hpsa_scsi_dev_t *sd;
1289 
1290 	if (n >= HPSA_MAX_DEVICES) {
1291 		dev_err(&h->pdev->dev, "too many devices, some will be "
1292 			"inaccessible.\n");
1293 		return -1;
1294 	}
1295 
1296 	/* physical devices do not have lun or target assigned until now. */
1297 	if (device->lun != -1)
1298 		/* Logical device, lun is already assigned. */
1299 		goto lun_assigned;
1300 
1301 	/* If this device a non-zero lun of a multi-lun device
1302 	 * byte 4 of the 8-byte LUN addr will contain the logical
1303 	 * unit no, zero otherwise.
1304 	 */
1305 	if (device->scsi3addr[4] == 0) {
1306 		/* This is not a non-zero lun of a multi-lun device */
1307 		if (hpsa_find_target_lun(h, device->scsi3addr,
1308 			device->bus, &device->target, &device->lun) != 0)
1309 			return -1;
1310 		goto lun_assigned;
1311 	}
1312 
1313 	/* This is a non-zero lun of a multi-lun device.
1314 	 * Search through our list and find the device which
1315 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1316 	 * Assign the same bus and target for this new LUN.
1317 	 * Use the logical unit number from the firmware.
1318 	 */
1319 	memcpy(addr1, device->scsi3addr, 8);
1320 	addr1[4] = 0;
1321 	addr1[5] = 0;
1322 	for (i = 0; i < n; i++) {
1323 		sd = h->dev[i];
1324 		memcpy(addr2, sd->scsi3addr, 8);
1325 		addr2[4] = 0;
1326 		addr2[5] = 0;
1327 		/* differ only in byte 4 and 5? */
1328 		if (memcmp(addr1, addr2, 8) == 0) {
1329 			device->bus = sd->bus;
1330 			device->target = sd->target;
1331 			device->lun = device->scsi3addr[4];
1332 			break;
1333 		}
1334 	}
1335 	if (device->lun == -1) {
1336 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1337 			" suspect firmware bug or unsupported hardware "
1338 			"configuration.\n");
1339 		return -1;
1340 	}
1341 
1342 lun_assigned:
1343 
1344 	h->dev[n] = device;
1345 	h->ndevices++;
1346 	added[*nadded] = device;
1347 	(*nadded)++;
1348 	hpsa_show_dev_msg(KERN_INFO, h, device,
1349 		device->expose_device ? "added" : "masked");
1350 	return 0;
1351 }
1352 
1353 /*
1354  * Called during a scan operation.
1355  *
1356  * Update an entry in h->dev[] array.
1357  */
1358 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1359 	int entry, struct hpsa_scsi_dev_t *new_entry)
1360 {
1361 	/* assumes h->devlock is held */
1362 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1363 
1364 	/* Raid level changed. */
1365 	h->dev[entry]->raid_level = new_entry->raid_level;
1366 
1367 	/*
1368 	 * ioacccel_handle may have changed for a dual domain disk
1369 	 */
1370 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1371 
1372 	/* Raid offload parameters changed.  Careful about the ordering. */
1373 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1374 		/*
1375 		 * if drive is newly offload_enabled, we want to copy the
1376 		 * raid map data first.  If previously offload_enabled and
1377 		 * offload_config were set, raid map data had better be
1378 		 * the same as it was before. If raid map data has changed
1379 		 * then it had better be the case that
1380 		 * h->dev[entry]->offload_enabled is currently 0.
1381 		 */
1382 		h->dev[entry]->raid_map = new_entry->raid_map;
1383 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1384 	}
1385 	if (new_entry->offload_to_be_enabled) {
1386 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1387 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1388 	}
1389 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1390 	h->dev[entry]->offload_config = new_entry->offload_config;
1391 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1392 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1393 
1394 	/*
1395 	 * We can turn off ioaccel offload now, but need to delay turning
1396 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1397 	 * can't do that until all the devices are updated.
1398 	 */
1399 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1400 
1401 	/*
1402 	 * turn ioaccel off immediately if told to do so.
1403 	 */
1404 	if (!new_entry->offload_to_be_enabled)
1405 		h->dev[entry]->offload_enabled = 0;
1406 
1407 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1408 }
1409 
1410 /* Replace an entry from h->dev[] array. */
1411 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1412 	int entry, struct hpsa_scsi_dev_t *new_entry,
1413 	struct hpsa_scsi_dev_t *added[], int *nadded,
1414 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1415 {
1416 	/* assumes h->devlock is held */
1417 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1418 	removed[*nremoved] = h->dev[entry];
1419 	(*nremoved)++;
1420 
1421 	/*
1422 	 * New physical devices won't have target/lun assigned yet
1423 	 * so we need to preserve the values in the slot we are replacing.
1424 	 */
1425 	if (new_entry->target == -1) {
1426 		new_entry->target = h->dev[entry]->target;
1427 		new_entry->lun = h->dev[entry]->lun;
1428 	}
1429 
1430 	h->dev[entry] = new_entry;
1431 	added[*nadded] = new_entry;
1432 	(*nadded)++;
1433 
1434 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1435 }
1436 
1437 /* Remove an entry from h->dev[] array. */
1438 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1439 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1440 {
1441 	/* assumes h->devlock is held */
1442 	int i;
1443 	struct hpsa_scsi_dev_t *sd;
1444 
1445 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1446 
1447 	sd = h->dev[entry];
1448 	removed[*nremoved] = h->dev[entry];
1449 	(*nremoved)++;
1450 
1451 	for (i = entry; i < h->ndevices-1; i++)
1452 		h->dev[i] = h->dev[i+1];
1453 	h->ndevices--;
1454 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1455 }
1456 
1457 #define SCSI3ADDR_EQ(a, b) ( \
1458 	(a)[7] == (b)[7] && \
1459 	(a)[6] == (b)[6] && \
1460 	(a)[5] == (b)[5] && \
1461 	(a)[4] == (b)[4] && \
1462 	(a)[3] == (b)[3] && \
1463 	(a)[2] == (b)[2] && \
1464 	(a)[1] == (b)[1] && \
1465 	(a)[0] == (b)[0])
1466 
1467 static void fixup_botched_add(struct ctlr_info *h,
1468 	struct hpsa_scsi_dev_t *added)
1469 {
1470 	/* called when scsi_add_device fails in order to re-adjust
1471 	 * h->dev[] to match the mid layer's view.
1472 	 */
1473 	unsigned long flags;
1474 	int i, j;
1475 
1476 	spin_lock_irqsave(&h->lock, flags);
1477 	for (i = 0; i < h->ndevices; i++) {
1478 		if (h->dev[i] == added) {
1479 			for (j = i; j < h->ndevices-1; j++)
1480 				h->dev[j] = h->dev[j+1];
1481 			h->ndevices--;
1482 			break;
1483 		}
1484 	}
1485 	spin_unlock_irqrestore(&h->lock, flags);
1486 	kfree(added);
1487 }
1488 
1489 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1490 	struct hpsa_scsi_dev_t *dev2)
1491 {
1492 	/* we compare everything except lun and target as these
1493 	 * are not yet assigned.  Compare parts likely
1494 	 * to differ first
1495 	 */
1496 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1497 		sizeof(dev1->scsi3addr)) != 0)
1498 		return 0;
1499 	if (memcmp(dev1->device_id, dev2->device_id,
1500 		sizeof(dev1->device_id)) != 0)
1501 		return 0;
1502 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1503 		return 0;
1504 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1505 		return 0;
1506 	if (dev1->devtype != dev2->devtype)
1507 		return 0;
1508 	if (dev1->bus != dev2->bus)
1509 		return 0;
1510 	return 1;
1511 }
1512 
1513 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1514 	struct hpsa_scsi_dev_t *dev2)
1515 {
1516 	/* Device attributes that can change, but don't mean
1517 	 * that the device is a different device, nor that the OS
1518 	 * needs to be told anything about the change.
1519 	 */
1520 	if (dev1->raid_level != dev2->raid_level)
1521 		return 1;
1522 	if (dev1->offload_config != dev2->offload_config)
1523 		return 1;
1524 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1525 		return 1;
1526 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1527 		if (dev1->queue_depth != dev2->queue_depth)
1528 			return 1;
1529 	/*
1530 	 * This can happen for dual domain devices. An active
1531 	 * path change causes the ioaccel handle to change
1532 	 *
1533 	 * for example note the handle differences between p0 and p1
1534 	 * Device                    WWN               ,WWN hash,Handle
1535 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1536 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1537 	 */
1538 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1539 		return 1;
1540 	return 0;
1541 }
1542 
1543 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1544  * and return needle location in *index.  If scsi3addr matches, but not
1545  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1546  * location in *index.
1547  * In the case of a minor device attribute change, such as RAID level, just
1548  * return DEVICE_UPDATED, along with the updated device's location in index.
1549  * If needle not found, return DEVICE_NOT_FOUND.
1550  */
1551 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1552 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1553 	int *index)
1554 {
1555 	int i;
1556 #define DEVICE_NOT_FOUND 0
1557 #define DEVICE_CHANGED 1
1558 #define DEVICE_SAME 2
1559 #define DEVICE_UPDATED 3
1560 	if (needle == NULL)
1561 		return DEVICE_NOT_FOUND;
1562 
1563 	for (i = 0; i < haystack_size; i++) {
1564 		if (haystack[i] == NULL) /* previously removed. */
1565 			continue;
1566 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1567 			*index = i;
1568 			if (device_is_the_same(needle, haystack[i])) {
1569 				if (device_updated(needle, haystack[i]))
1570 					return DEVICE_UPDATED;
1571 				return DEVICE_SAME;
1572 			} else {
1573 				/* Keep offline devices offline */
1574 				if (needle->volume_offline)
1575 					return DEVICE_NOT_FOUND;
1576 				return DEVICE_CHANGED;
1577 			}
1578 		}
1579 	}
1580 	*index = -1;
1581 	return DEVICE_NOT_FOUND;
1582 }
1583 
1584 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1585 					unsigned char scsi3addr[])
1586 {
1587 	struct offline_device_entry *device;
1588 	unsigned long flags;
1589 
1590 	/* Check to see if device is already on the list */
1591 	spin_lock_irqsave(&h->offline_device_lock, flags);
1592 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1593 		if (memcmp(device->scsi3addr, scsi3addr,
1594 			sizeof(device->scsi3addr)) == 0) {
1595 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1596 			return;
1597 		}
1598 	}
1599 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1600 
1601 	/* Device is not on the list, add it. */
1602 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1603 	if (!device)
1604 		return;
1605 
1606 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1607 	spin_lock_irqsave(&h->offline_device_lock, flags);
1608 	list_add_tail(&device->offline_list, &h->offline_device_list);
1609 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1610 }
1611 
1612 /* Print a message explaining various offline volume states */
1613 static void hpsa_show_volume_status(struct ctlr_info *h,
1614 	struct hpsa_scsi_dev_t *sd)
1615 {
1616 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1617 		dev_info(&h->pdev->dev,
1618 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1619 			h->scsi_host->host_no,
1620 			sd->bus, sd->target, sd->lun);
1621 	switch (sd->volume_offline) {
1622 	case HPSA_LV_OK:
1623 		break;
1624 	case HPSA_LV_UNDERGOING_ERASE:
1625 		dev_info(&h->pdev->dev,
1626 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1627 			h->scsi_host->host_no,
1628 			sd->bus, sd->target, sd->lun);
1629 		break;
1630 	case HPSA_LV_NOT_AVAILABLE:
1631 		dev_info(&h->pdev->dev,
1632 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1633 			h->scsi_host->host_no,
1634 			sd->bus, sd->target, sd->lun);
1635 		break;
1636 	case HPSA_LV_UNDERGOING_RPI:
1637 		dev_info(&h->pdev->dev,
1638 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1639 			h->scsi_host->host_no,
1640 			sd->bus, sd->target, sd->lun);
1641 		break;
1642 	case HPSA_LV_PENDING_RPI:
1643 		dev_info(&h->pdev->dev,
1644 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1645 			h->scsi_host->host_no,
1646 			sd->bus, sd->target, sd->lun);
1647 		break;
1648 	case HPSA_LV_ENCRYPTED_NO_KEY:
1649 		dev_info(&h->pdev->dev,
1650 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1651 			h->scsi_host->host_no,
1652 			sd->bus, sd->target, sd->lun);
1653 		break;
1654 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1655 		dev_info(&h->pdev->dev,
1656 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1657 			h->scsi_host->host_no,
1658 			sd->bus, sd->target, sd->lun);
1659 		break;
1660 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1661 		dev_info(&h->pdev->dev,
1662 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1663 			h->scsi_host->host_no,
1664 			sd->bus, sd->target, sd->lun);
1665 		break;
1666 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1667 		dev_info(&h->pdev->dev,
1668 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1669 			h->scsi_host->host_no,
1670 			sd->bus, sd->target, sd->lun);
1671 		break;
1672 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1673 		dev_info(&h->pdev->dev,
1674 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1675 			h->scsi_host->host_no,
1676 			sd->bus, sd->target, sd->lun);
1677 		break;
1678 	case HPSA_LV_PENDING_ENCRYPTION:
1679 		dev_info(&h->pdev->dev,
1680 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1681 			h->scsi_host->host_no,
1682 			sd->bus, sd->target, sd->lun);
1683 		break;
1684 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1685 		dev_info(&h->pdev->dev,
1686 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1687 			h->scsi_host->host_no,
1688 			sd->bus, sd->target, sd->lun);
1689 		break;
1690 	}
1691 }
1692 
1693 /*
1694  * Figure the list of physical drive pointers for a logical drive with
1695  * raid offload configured.
1696  */
1697 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1698 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1699 				struct hpsa_scsi_dev_t *logical_drive)
1700 {
1701 	struct raid_map_data *map = &logical_drive->raid_map;
1702 	struct raid_map_disk_data *dd = &map->data[0];
1703 	int i, j;
1704 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1705 				le16_to_cpu(map->metadata_disks_per_row);
1706 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1707 				le16_to_cpu(map->layout_map_count) *
1708 				total_disks_per_row;
1709 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1710 				total_disks_per_row;
1711 	int qdepth;
1712 
1713 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1714 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1715 
1716 	logical_drive->nphysical_disks = nraid_map_entries;
1717 
1718 	qdepth = 0;
1719 	for (i = 0; i < nraid_map_entries; i++) {
1720 		logical_drive->phys_disk[i] = NULL;
1721 		if (!logical_drive->offload_config)
1722 			continue;
1723 		for (j = 0; j < ndevices; j++) {
1724 			if (dev[j] == NULL)
1725 				continue;
1726 			if (dev[j]->devtype != TYPE_DISK &&
1727 			    dev[j]->devtype != TYPE_ZBC)
1728 				continue;
1729 			if (is_logical_device(dev[j]))
1730 				continue;
1731 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1732 				continue;
1733 
1734 			logical_drive->phys_disk[i] = dev[j];
1735 			if (i < nphys_disk)
1736 				qdepth = min(h->nr_cmds, qdepth +
1737 				    logical_drive->phys_disk[i]->queue_depth);
1738 			break;
1739 		}
1740 
1741 		/*
1742 		 * This can happen if a physical drive is removed and
1743 		 * the logical drive is degraded.  In that case, the RAID
1744 		 * map data will refer to a physical disk which isn't actually
1745 		 * present.  And in that case offload_enabled should already
1746 		 * be 0, but we'll turn it off here just in case
1747 		 */
1748 		if (!logical_drive->phys_disk[i]) {
1749 			dev_warn(&h->pdev->dev,
1750 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1751 				__func__,
1752 				h->scsi_host->host_no, logical_drive->bus,
1753 				logical_drive->target, logical_drive->lun);
1754 			hpsa_turn_off_ioaccel_for_device(logical_drive);
1755 			logical_drive->queue_depth = 8;
1756 		}
1757 	}
1758 	if (nraid_map_entries)
1759 		/*
1760 		 * This is correct for reads, too high for full stripe writes,
1761 		 * way too high for partial stripe writes
1762 		 */
1763 		logical_drive->queue_depth = qdepth;
1764 	else {
1765 		if (logical_drive->external)
1766 			logical_drive->queue_depth = EXTERNAL_QD;
1767 		else
1768 			logical_drive->queue_depth = h->nr_cmds;
1769 	}
1770 }
1771 
1772 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1773 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1774 {
1775 	int i;
1776 
1777 	for (i = 0; i < ndevices; i++) {
1778 		if (dev[i] == NULL)
1779 			continue;
1780 		if (dev[i]->devtype != TYPE_DISK &&
1781 		    dev[i]->devtype != TYPE_ZBC)
1782 			continue;
1783 		if (!is_logical_device(dev[i]))
1784 			continue;
1785 
1786 		/*
1787 		 * If offload is currently enabled, the RAID map and
1788 		 * phys_disk[] assignment *better* not be changing
1789 		 * because we would be changing ioaccel phsy_disk[] pointers
1790 		 * on a ioaccel volume processing I/O requests.
1791 		 *
1792 		 * If an ioaccel volume status changed, initially because it was
1793 		 * re-configured and thus underwent a transformation, or
1794 		 * a drive failed, we would have received a state change
1795 		 * request and ioaccel should have been turned off. When the
1796 		 * transformation completes, we get another state change
1797 		 * request to turn ioaccel back on. In this case, we need
1798 		 * to update the ioaccel information.
1799 		 *
1800 		 * Thus: If it is not currently enabled, but will be after
1801 		 * the scan completes, make sure the ioaccel pointers
1802 		 * are up to date.
1803 		 */
1804 
1805 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1806 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1807 	}
1808 }
1809 
1810 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1811 {
1812 	int rc = 0;
1813 
1814 	if (!h->scsi_host)
1815 		return 1;
1816 
1817 	if (is_logical_device(device)) /* RAID */
1818 		rc = scsi_add_device(h->scsi_host, device->bus,
1819 					device->target, device->lun);
1820 	else /* HBA */
1821 		rc = hpsa_add_sas_device(h->sas_host, device);
1822 
1823 	return rc;
1824 }
1825 
1826 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1827 						struct hpsa_scsi_dev_t *dev)
1828 {
1829 	int i;
1830 	int count = 0;
1831 
1832 	for (i = 0; i < h->nr_cmds; i++) {
1833 		struct CommandList *c = h->cmd_pool + i;
1834 		int refcount = atomic_inc_return(&c->refcount);
1835 
1836 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1837 				dev->scsi3addr)) {
1838 			unsigned long flags;
1839 
1840 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1841 			if (!hpsa_is_cmd_idle(c))
1842 				++count;
1843 			spin_unlock_irqrestore(&h->lock, flags);
1844 		}
1845 
1846 		cmd_free(h, c);
1847 	}
1848 
1849 	return count;
1850 }
1851 
1852 #define NUM_WAIT 20
1853 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1854 						struct hpsa_scsi_dev_t *device)
1855 {
1856 	int cmds = 0;
1857 	int waits = 0;
1858 	int num_wait = NUM_WAIT;
1859 
1860 	if (device->external)
1861 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1862 
1863 	while (1) {
1864 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1865 		if (cmds == 0)
1866 			break;
1867 		if (++waits > num_wait)
1868 			break;
1869 		msleep(1000);
1870 	}
1871 
1872 	if (waits > num_wait) {
1873 		dev_warn(&h->pdev->dev,
1874 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1875 			__func__,
1876 			h->scsi_host->host_no,
1877 			device->bus, device->target, device->lun, cmds);
1878 	}
1879 }
1880 
1881 static void hpsa_remove_device(struct ctlr_info *h,
1882 			struct hpsa_scsi_dev_t *device)
1883 {
1884 	struct scsi_device *sdev = NULL;
1885 
1886 	if (!h->scsi_host)
1887 		return;
1888 
1889 	/*
1890 	 * Allow for commands to drain
1891 	 */
1892 	device->removed = 1;
1893 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1894 
1895 	if (is_logical_device(device)) { /* RAID */
1896 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1897 						device->target, device->lun);
1898 		if (sdev) {
1899 			scsi_remove_device(sdev);
1900 			scsi_device_put(sdev);
1901 		} else {
1902 			/*
1903 			 * We don't expect to get here.  Future commands
1904 			 * to this device will get a selection timeout as
1905 			 * if the device were gone.
1906 			 */
1907 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1908 					"didn't find device for removal.");
1909 		}
1910 	} else { /* HBA */
1911 
1912 		hpsa_remove_sas_device(device);
1913 	}
1914 }
1915 
1916 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1917 	struct hpsa_scsi_dev_t *sd[], int nsds)
1918 {
1919 	/* sd contains scsi3 addresses and devtypes, and inquiry
1920 	 * data.  This function takes what's in sd to be the current
1921 	 * reality and updates h->dev[] to reflect that reality.
1922 	 */
1923 	int i, entry, device_change, changes = 0;
1924 	struct hpsa_scsi_dev_t *csd;
1925 	unsigned long flags;
1926 	struct hpsa_scsi_dev_t **added, **removed;
1927 	int nadded, nremoved;
1928 
1929 	/*
1930 	 * A reset can cause a device status to change
1931 	 * re-schedule the scan to see what happened.
1932 	 */
1933 	spin_lock_irqsave(&h->reset_lock, flags);
1934 	if (h->reset_in_progress) {
1935 		h->drv_req_rescan = 1;
1936 		spin_unlock_irqrestore(&h->reset_lock, flags);
1937 		return;
1938 	}
1939 	spin_unlock_irqrestore(&h->reset_lock, flags);
1940 
1941 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1942 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1943 
1944 	if (!added || !removed) {
1945 		dev_warn(&h->pdev->dev, "out of memory in "
1946 			"adjust_hpsa_scsi_table\n");
1947 		goto free_and_out;
1948 	}
1949 
1950 	spin_lock_irqsave(&h->devlock, flags);
1951 
1952 	/* find any devices in h->dev[] that are not in
1953 	 * sd[] and remove them from h->dev[], and for any
1954 	 * devices which have changed, remove the old device
1955 	 * info and add the new device info.
1956 	 * If minor device attributes change, just update
1957 	 * the existing device structure.
1958 	 */
1959 	i = 0;
1960 	nremoved = 0;
1961 	nadded = 0;
1962 	while (i < h->ndevices) {
1963 		csd = h->dev[i];
1964 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1965 		if (device_change == DEVICE_NOT_FOUND) {
1966 			changes++;
1967 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1968 			continue; /* remove ^^^, hence i not incremented */
1969 		} else if (device_change == DEVICE_CHANGED) {
1970 			changes++;
1971 			hpsa_scsi_replace_entry(h, i, sd[entry],
1972 				added, &nadded, removed, &nremoved);
1973 			/* Set it to NULL to prevent it from being freed
1974 			 * at the bottom of hpsa_update_scsi_devices()
1975 			 */
1976 			sd[entry] = NULL;
1977 		} else if (device_change == DEVICE_UPDATED) {
1978 			hpsa_scsi_update_entry(h, i, sd[entry]);
1979 		}
1980 		i++;
1981 	}
1982 
1983 	/* Now, make sure every device listed in sd[] is also
1984 	 * listed in h->dev[], adding them if they aren't found
1985 	 */
1986 
1987 	for (i = 0; i < nsds; i++) {
1988 		if (!sd[i]) /* if already added above. */
1989 			continue;
1990 
1991 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1992 		 * as the SCSI mid-layer does not handle such devices well.
1993 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1994 		 * at 160Hz, and prevents the system from coming up.
1995 		 */
1996 		if (sd[i]->volume_offline) {
1997 			hpsa_show_volume_status(h, sd[i]);
1998 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1999 			continue;
2000 		}
2001 
2002 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2003 					h->ndevices, &entry);
2004 		if (device_change == DEVICE_NOT_FOUND) {
2005 			changes++;
2006 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2007 				break;
2008 			sd[i] = NULL; /* prevent from being freed later. */
2009 		} else if (device_change == DEVICE_CHANGED) {
2010 			/* should never happen... */
2011 			changes++;
2012 			dev_warn(&h->pdev->dev,
2013 				"device unexpectedly changed.\n");
2014 			/* but if it does happen, we just ignore that device */
2015 		}
2016 	}
2017 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2018 
2019 	/*
2020 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2021 	 * any logical drives that need it enabled.
2022 	 *
2023 	 * The raid map should be current by now.
2024 	 *
2025 	 * We are updating the device list used for I/O requests.
2026 	 */
2027 	for (i = 0; i < h->ndevices; i++) {
2028 		if (h->dev[i] == NULL)
2029 			continue;
2030 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2031 	}
2032 
2033 	spin_unlock_irqrestore(&h->devlock, flags);
2034 
2035 	/* Monitor devices which are in one of several NOT READY states to be
2036 	 * brought online later. This must be done without holding h->devlock,
2037 	 * so don't touch h->dev[]
2038 	 */
2039 	for (i = 0; i < nsds; i++) {
2040 		if (!sd[i]) /* if already added above. */
2041 			continue;
2042 		if (sd[i]->volume_offline)
2043 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2044 	}
2045 
2046 	/* Don't notify scsi mid layer of any changes the first time through
2047 	 * (or if there are no changes) scsi_scan_host will do it later the
2048 	 * first time through.
2049 	 */
2050 	if (!changes)
2051 		goto free_and_out;
2052 
2053 	/* Notify scsi mid layer of any removed devices */
2054 	for (i = 0; i < nremoved; i++) {
2055 		if (removed[i] == NULL)
2056 			continue;
2057 		if (removed[i]->expose_device)
2058 			hpsa_remove_device(h, removed[i]);
2059 		kfree(removed[i]);
2060 		removed[i] = NULL;
2061 	}
2062 
2063 	/* Notify scsi mid layer of any added devices */
2064 	for (i = 0; i < nadded; i++) {
2065 		int rc = 0;
2066 
2067 		if (added[i] == NULL)
2068 			continue;
2069 		if (!(added[i]->expose_device))
2070 			continue;
2071 		rc = hpsa_add_device(h, added[i]);
2072 		if (!rc)
2073 			continue;
2074 		dev_warn(&h->pdev->dev,
2075 			"addition failed %d, device not added.", rc);
2076 		/* now we have to remove it from h->dev,
2077 		 * since it didn't get added to scsi mid layer
2078 		 */
2079 		fixup_botched_add(h, added[i]);
2080 		h->drv_req_rescan = 1;
2081 	}
2082 
2083 free_and_out:
2084 	kfree(added);
2085 	kfree(removed);
2086 }
2087 
2088 /*
2089  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2090  * Assume's h->devlock is held.
2091  */
2092 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2093 	int bus, int target, int lun)
2094 {
2095 	int i;
2096 	struct hpsa_scsi_dev_t *sd;
2097 
2098 	for (i = 0; i < h->ndevices; i++) {
2099 		sd = h->dev[i];
2100 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2101 			return sd;
2102 	}
2103 	return NULL;
2104 }
2105 
2106 static int hpsa_slave_alloc(struct scsi_device *sdev)
2107 {
2108 	struct hpsa_scsi_dev_t *sd = NULL;
2109 	unsigned long flags;
2110 	struct ctlr_info *h;
2111 
2112 	h = sdev_to_hba(sdev);
2113 	spin_lock_irqsave(&h->devlock, flags);
2114 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2115 		struct scsi_target *starget;
2116 		struct sas_rphy *rphy;
2117 
2118 		starget = scsi_target(sdev);
2119 		rphy = target_to_rphy(starget);
2120 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2121 		if (sd) {
2122 			sd->target = sdev_id(sdev);
2123 			sd->lun = sdev->lun;
2124 		}
2125 	}
2126 	if (!sd)
2127 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2128 					sdev_id(sdev), sdev->lun);
2129 
2130 	if (sd && sd->expose_device) {
2131 		atomic_set(&sd->ioaccel_cmds_out, 0);
2132 		sdev->hostdata = sd;
2133 	} else
2134 		sdev->hostdata = NULL;
2135 	spin_unlock_irqrestore(&h->devlock, flags);
2136 	return 0;
2137 }
2138 
2139 /* configure scsi device based on internal per-device structure */
2140 #define CTLR_TIMEOUT (120 * HZ)
2141 static int hpsa_slave_configure(struct scsi_device *sdev)
2142 {
2143 	struct hpsa_scsi_dev_t *sd;
2144 	int queue_depth;
2145 
2146 	sd = sdev->hostdata;
2147 	sdev->no_uld_attach = !sd || !sd->expose_device;
2148 
2149 	if (sd) {
2150 		sd->was_removed = 0;
2151 		queue_depth = sd->queue_depth != 0 ?
2152 				sd->queue_depth : sdev->host->can_queue;
2153 		if (sd->external) {
2154 			queue_depth = EXTERNAL_QD;
2155 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2156 			blk_queue_rq_timeout(sdev->request_queue,
2157 						HPSA_EH_PTRAID_TIMEOUT);
2158 		}
2159 		if (is_hba_lunid(sd->scsi3addr)) {
2160 			sdev->eh_timeout = CTLR_TIMEOUT;
2161 			blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2162 		}
2163 	} else {
2164 		queue_depth = sdev->host->can_queue;
2165 	}
2166 
2167 	scsi_change_queue_depth(sdev, queue_depth);
2168 
2169 	return 0;
2170 }
2171 
2172 static void hpsa_slave_destroy(struct scsi_device *sdev)
2173 {
2174 	struct hpsa_scsi_dev_t *hdev = NULL;
2175 
2176 	hdev = sdev->hostdata;
2177 
2178 	if (hdev)
2179 		hdev->was_removed = 1;
2180 }
2181 
2182 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2183 {
2184 	int i;
2185 
2186 	if (!h->ioaccel2_cmd_sg_list)
2187 		return;
2188 	for (i = 0; i < h->nr_cmds; i++) {
2189 		kfree(h->ioaccel2_cmd_sg_list[i]);
2190 		h->ioaccel2_cmd_sg_list[i] = NULL;
2191 	}
2192 	kfree(h->ioaccel2_cmd_sg_list);
2193 	h->ioaccel2_cmd_sg_list = NULL;
2194 }
2195 
2196 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2197 {
2198 	int i;
2199 
2200 	if (h->chainsize <= 0)
2201 		return 0;
2202 
2203 	h->ioaccel2_cmd_sg_list =
2204 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2205 					GFP_KERNEL);
2206 	if (!h->ioaccel2_cmd_sg_list)
2207 		return -ENOMEM;
2208 	for (i = 0; i < h->nr_cmds; i++) {
2209 		h->ioaccel2_cmd_sg_list[i] =
2210 			kmalloc_array(h->maxsgentries,
2211 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2212 				      GFP_KERNEL);
2213 		if (!h->ioaccel2_cmd_sg_list[i])
2214 			goto clean;
2215 	}
2216 	return 0;
2217 
2218 clean:
2219 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2220 	return -ENOMEM;
2221 }
2222 
2223 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2224 {
2225 	int i;
2226 
2227 	if (!h->cmd_sg_list)
2228 		return;
2229 	for (i = 0; i < h->nr_cmds; i++) {
2230 		kfree(h->cmd_sg_list[i]);
2231 		h->cmd_sg_list[i] = NULL;
2232 	}
2233 	kfree(h->cmd_sg_list);
2234 	h->cmd_sg_list = NULL;
2235 }
2236 
2237 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2238 {
2239 	int i;
2240 
2241 	if (h->chainsize <= 0)
2242 		return 0;
2243 
2244 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2245 				 GFP_KERNEL);
2246 	if (!h->cmd_sg_list)
2247 		return -ENOMEM;
2248 
2249 	for (i = 0; i < h->nr_cmds; i++) {
2250 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2251 						  sizeof(*h->cmd_sg_list[i]),
2252 						  GFP_KERNEL);
2253 		if (!h->cmd_sg_list[i])
2254 			goto clean;
2255 
2256 	}
2257 	return 0;
2258 
2259 clean:
2260 	hpsa_free_sg_chain_blocks(h);
2261 	return -ENOMEM;
2262 }
2263 
2264 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2265 	struct io_accel2_cmd *cp, struct CommandList *c)
2266 {
2267 	struct ioaccel2_sg_element *chain_block;
2268 	u64 temp64;
2269 	u32 chain_size;
2270 
2271 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2272 	chain_size = le32_to_cpu(cp->sg[0].length);
2273 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2274 				DMA_TO_DEVICE);
2275 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2276 		/* prevent subsequent unmapping */
2277 		cp->sg->address = 0;
2278 		return -1;
2279 	}
2280 	cp->sg->address = cpu_to_le64(temp64);
2281 	return 0;
2282 }
2283 
2284 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2285 	struct io_accel2_cmd *cp)
2286 {
2287 	struct ioaccel2_sg_element *chain_sg;
2288 	u64 temp64;
2289 	u32 chain_size;
2290 
2291 	chain_sg = cp->sg;
2292 	temp64 = le64_to_cpu(chain_sg->address);
2293 	chain_size = le32_to_cpu(cp->sg[0].length);
2294 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2295 }
2296 
2297 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2298 	struct CommandList *c)
2299 {
2300 	struct SGDescriptor *chain_sg, *chain_block;
2301 	u64 temp64;
2302 	u32 chain_len;
2303 
2304 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2305 	chain_block = h->cmd_sg_list[c->cmdindex];
2306 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2307 	chain_len = sizeof(*chain_sg) *
2308 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2309 	chain_sg->Len = cpu_to_le32(chain_len);
2310 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2311 				DMA_TO_DEVICE);
2312 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2313 		/* prevent subsequent unmapping */
2314 		chain_sg->Addr = cpu_to_le64(0);
2315 		return -1;
2316 	}
2317 	chain_sg->Addr = cpu_to_le64(temp64);
2318 	return 0;
2319 }
2320 
2321 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2322 	struct CommandList *c)
2323 {
2324 	struct SGDescriptor *chain_sg;
2325 
2326 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2327 		return;
2328 
2329 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2330 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2331 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2332 }
2333 
2334 
2335 /* Decode the various types of errors on ioaccel2 path.
2336  * Return 1 for any error that should generate a RAID path retry.
2337  * Return 0 for errors that don't require a RAID path retry.
2338  */
2339 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2340 					struct CommandList *c,
2341 					struct scsi_cmnd *cmd,
2342 					struct io_accel2_cmd *c2,
2343 					struct hpsa_scsi_dev_t *dev)
2344 {
2345 	int data_len;
2346 	int retry = 0;
2347 	u32 ioaccel2_resid = 0;
2348 
2349 	switch (c2->error_data.serv_response) {
2350 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2351 		switch (c2->error_data.status) {
2352 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2353 			if (cmd)
2354 				cmd->result = 0;
2355 			break;
2356 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2357 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2358 			if (c2->error_data.data_present !=
2359 					IOACCEL2_SENSE_DATA_PRESENT) {
2360 				memset(cmd->sense_buffer, 0,
2361 					SCSI_SENSE_BUFFERSIZE);
2362 				break;
2363 			}
2364 			/* copy the sense data */
2365 			data_len = c2->error_data.sense_data_len;
2366 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2367 				data_len = SCSI_SENSE_BUFFERSIZE;
2368 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2369 				data_len =
2370 					sizeof(c2->error_data.sense_data_buff);
2371 			memcpy(cmd->sense_buffer,
2372 				c2->error_data.sense_data_buff, data_len);
2373 			retry = 1;
2374 			break;
2375 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2376 			retry = 1;
2377 			break;
2378 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2379 			retry = 1;
2380 			break;
2381 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2382 			retry = 1;
2383 			break;
2384 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2385 			retry = 1;
2386 			break;
2387 		default:
2388 			retry = 1;
2389 			break;
2390 		}
2391 		break;
2392 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2393 		switch (c2->error_data.status) {
2394 		case IOACCEL2_STATUS_SR_IO_ERROR:
2395 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2396 		case IOACCEL2_STATUS_SR_OVERRUN:
2397 			retry = 1;
2398 			break;
2399 		case IOACCEL2_STATUS_SR_UNDERRUN:
2400 			cmd->result = (DID_OK << 16);		/* host byte */
2401 			ioaccel2_resid = get_unaligned_le32(
2402 						&c2->error_data.resid_cnt[0]);
2403 			scsi_set_resid(cmd, ioaccel2_resid);
2404 			break;
2405 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2406 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2407 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2408 			/*
2409 			 * Did an HBA disk disappear? We will eventually
2410 			 * get a state change event from the controller but
2411 			 * in the meantime, we need to tell the OS that the
2412 			 * HBA disk is no longer there and stop I/O
2413 			 * from going down. This allows the potential re-insert
2414 			 * of the disk to get the same device node.
2415 			 */
2416 			if (dev->physical_device && dev->expose_device) {
2417 				cmd->result = DID_NO_CONNECT << 16;
2418 				dev->removed = 1;
2419 				h->drv_req_rescan = 1;
2420 				dev_warn(&h->pdev->dev,
2421 					"%s: device is gone!\n", __func__);
2422 			} else
2423 				/*
2424 				 * Retry by sending down the RAID path.
2425 				 * We will get an event from ctlr to
2426 				 * trigger rescan regardless.
2427 				 */
2428 				retry = 1;
2429 			break;
2430 		default:
2431 			retry = 1;
2432 		}
2433 		break;
2434 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2435 		break;
2436 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2437 		break;
2438 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2439 		retry = 1;
2440 		break;
2441 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2442 		break;
2443 	default:
2444 		retry = 1;
2445 		break;
2446 	}
2447 
2448 	if (dev->in_reset)
2449 		retry = 0;
2450 
2451 	return retry;	/* retry on raid path? */
2452 }
2453 
2454 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2455 		struct CommandList *c)
2456 {
2457 	struct hpsa_scsi_dev_t *dev = c->device;
2458 
2459 	/*
2460 	 * Reset c->scsi_cmd here so that the reset handler will know
2461 	 * this command has completed.  Then, check to see if the handler is
2462 	 * waiting for this command, and, if so, wake it.
2463 	 */
2464 	c->scsi_cmd = SCSI_CMD_IDLE;
2465 	mb();	/* Declare command idle before checking for pending events. */
2466 	if (dev) {
2467 		atomic_dec(&dev->commands_outstanding);
2468 		if (dev->in_reset &&
2469 			atomic_read(&dev->commands_outstanding) <= 0)
2470 			wake_up_all(&h->event_sync_wait_queue);
2471 	}
2472 }
2473 
2474 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2475 				      struct CommandList *c)
2476 {
2477 	hpsa_cmd_resolve_events(h, c);
2478 	cmd_tagged_free(h, c);
2479 }
2480 
2481 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2482 		struct CommandList *c, struct scsi_cmnd *cmd)
2483 {
2484 	hpsa_cmd_resolve_and_free(h, c);
2485 	if (cmd && cmd->scsi_done)
2486 		cmd->scsi_done(cmd);
2487 }
2488 
2489 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2490 {
2491 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2492 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2493 }
2494 
2495 static void process_ioaccel2_completion(struct ctlr_info *h,
2496 		struct CommandList *c, struct scsi_cmnd *cmd,
2497 		struct hpsa_scsi_dev_t *dev)
2498 {
2499 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2500 
2501 	/* check for good status */
2502 	if (likely(c2->error_data.serv_response == 0 &&
2503 			c2->error_data.status == 0)) {
2504 		cmd->result = 0;
2505 		return hpsa_cmd_free_and_done(h, c, cmd);
2506 	}
2507 
2508 	/*
2509 	 * Any RAID offload error results in retry which will use
2510 	 * the normal I/O path so the controller can handle whatever is
2511 	 * wrong.
2512 	 */
2513 	if (is_logical_device(dev) &&
2514 		c2->error_data.serv_response ==
2515 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2516 		if (c2->error_data.status ==
2517 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2518 			hpsa_turn_off_ioaccel_for_device(dev);
2519 		}
2520 
2521 		if (dev->in_reset) {
2522 			cmd->result = DID_RESET << 16;
2523 			return hpsa_cmd_free_and_done(h, c, cmd);
2524 		}
2525 
2526 		return hpsa_retry_cmd(h, c);
2527 	}
2528 
2529 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2530 		return hpsa_retry_cmd(h, c);
2531 
2532 	return hpsa_cmd_free_and_done(h, c, cmd);
2533 }
2534 
2535 /* Returns 0 on success, < 0 otherwise. */
2536 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2537 					struct CommandList *cp)
2538 {
2539 	u8 tmf_status = cp->err_info->ScsiStatus;
2540 
2541 	switch (tmf_status) {
2542 	case CISS_TMF_COMPLETE:
2543 		/*
2544 		 * CISS_TMF_COMPLETE never happens, instead,
2545 		 * ei->CommandStatus == 0 for this case.
2546 		 */
2547 	case CISS_TMF_SUCCESS:
2548 		return 0;
2549 	case CISS_TMF_INVALID_FRAME:
2550 	case CISS_TMF_NOT_SUPPORTED:
2551 	case CISS_TMF_FAILED:
2552 	case CISS_TMF_WRONG_LUN:
2553 	case CISS_TMF_OVERLAPPED_TAG:
2554 		break;
2555 	default:
2556 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2557 				tmf_status);
2558 		break;
2559 	}
2560 	return -tmf_status;
2561 }
2562 
2563 static void complete_scsi_command(struct CommandList *cp)
2564 {
2565 	struct scsi_cmnd *cmd;
2566 	struct ctlr_info *h;
2567 	struct ErrorInfo *ei;
2568 	struct hpsa_scsi_dev_t *dev;
2569 	struct io_accel2_cmd *c2;
2570 
2571 	u8 sense_key;
2572 	u8 asc;      /* additional sense code */
2573 	u8 ascq;     /* additional sense code qualifier */
2574 	unsigned long sense_data_size;
2575 
2576 	ei = cp->err_info;
2577 	cmd = cp->scsi_cmd;
2578 	h = cp->h;
2579 
2580 	if (!cmd->device) {
2581 		cmd->result = DID_NO_CONNECT << 16;
2582 		return hpsa_cmd_free_and_done(h, cp, cmd);
2583 	}
2584 
2585 	dev = cmd->device->hostdata;
2586 	if (!dev) {
2587 		cmd->result = DID_NO_CONNECT << 16;
2588 		return hpsa_cmd_free_and_done(h, cp, cmd);
2589 	}
2590 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2591 
2592 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2593 	if ((cp->cmd_type == CMD_SCSI) &&
2594 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2595 		hpsa_unmap_sg_chain_block(h, cp);
2596 
2597 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2598 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2599 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2600 
2601 	cmd->result = (DID_OK << 16);		/* host byte */
2602 
2603 	/* SCSI command has already been cleaned up in SML */
2604 	if (dev->was_removed) {
2605 		hpsa_cmd_resolve_and_free(h, cp);
2606 		return;
2607 	}
2608 
2609 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2610 		if (dev->physical_device && dev->expose_device &&
2611 			dev->removed) {
2612 			cmd->result = DID_NO_CONNECT << 16;
2613 			return hpsa_cmd_free_and_done(h, cp, cmd);
2614 		}
2615 		if (likely(cp->phys_disk != NULL))
2616 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2617 	}
2618 
2619 	/*
2620 	 * We check for lockup status here as it may be set for
2621 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2622 	 * fail_all_oustanding_cmds()
2623 	 */
2624 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2625 		/* DID_NO_CONNECT will prevent a retry */
2626 		cmd->result = DID_NO_CONNECT << 16;
2627 		return hpsa_cmd_free_and_done(h, cp, cmd);
2628 	}
2629 
2630 	if (cp->cmd_type == CMD_IOACCEL2)
2631 		return process_ioaccel2_completion(h, cp, cmd, dev);
2632 
2633 	scsi_set_resid(cmd, ei->ResidualCnt);
2634 	if (ei->CommandStatus == 0)
2635 		return hpsa_cmd_free_and_done(h, cp, cmd);
2636 
2637 	/* For I/O accelerator commands, copy over some fields to the normal
2638 	 * CISS header used below for error handling.
2639 	 */
2640 	if (cp->cmd_type == CMD_IOACCEL1) {
2641 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2642 		cp->Header.SGList = scsi_sg_count(cmd);
2643 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2644 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2645 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2646 		cp->Header.tag = c->tag;
2647 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2648 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2649 
2650 		/* Any RAID offload error results in retry which will use
2651 		 * the normal I/O path so the controller can handle whatever's
2652 		 * wrong.
2653 		 */
2654 		if (is_logical_device(dev)) {
2655 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2656 				dev->offload_enabled = 0;
2657 			return hpsa_retry_cmd(h, cp);
2658 		}
2659 	}
2660 
2661 	/* an error has occurred */
2662 	switch (ei->CommandStatus) {
2663 
2664 	case CMD_TARGET_STATUS:
2665 		cmd->result |= ei->ScsiStatus;
2666 		/* copy the sense data */
2667 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2668 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2669 		else
2670 			sense_data_size = sizeof(ei->SenseInfo);
2671 		if (ei->SenseLen < sense_data_size)
2672 			sense_data_size = ei->SenseLen;
2673 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2674 		if (ei->ScsiStatus)
2675 			decode_sense_data(ei->SenseInfo, sense_data_size,
2676 				&sense_key, &asc, &ascq);
2677 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2678 			switch (sense_key) {
2679 			case ABORTED_COMMAND:
2680 				cmd->result |= DID_SOFT_ERROR << 16;
2681 				break;
2682 			case UNIT_ATTENTION:
2683 				if (asc == 0x3F && ascq == 0x0E)
2684 					h->drv_req_rescan = 1;
2685 				break;
2686 			case ILLEGAL_REQUEST:
2687 				if (asc == 0x25 && ascq == 0x00) {
2688 					dev->removed = 1;
2689 					cmd->result = DID_NO_CONNECT << 16;
2690 				}
2691 				break;
2692 			}
2693 			break;
2694 		}
2695 		/* Problem was not a check condition
2696 		 * Pass it up to the upper layers...
2697 		 */
2698 		if (ei->ScsiStatus) {
2699 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2700 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2701 				"Returning result: 0x%x\n",
2702 				cp, ei->ScsiStatus,
2703 				sense_key, asc, ascq,
2704 				cmd->result);
2705 		} else {  /* scsi status is zero??? How??? */
2706 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2707 				"Returning no connection.\n", cp),
2708 
2709 			/* Ordinarily, this case should never happen,
2710 			 * but there is a bug in some released firmware
2711 			 * revisions that allows it to happen if, for
2712 			 * example, a 4100 backplane loses power and
2713 			 * the tape drive is in it.  We assume that
2714 			 * it's a fatal error of some kind because we
2715 			 * can't show that it wasn't. We will make it
2716 			 * look like selection timeout since that is
2717 			 * the most common reason for this to occur,
2718 			 * and it's severe enough.
2719 			 */
2720 
2721 			cmd->result = DID_NO_CONNECT << 16;
2722 		}
2723 		break;
2724 
2725 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2726 		break;
2727 	case CMD_DATA_OVERRUN:
2728 		dev_warn(&h->pdev->dev,
2729 			"CDB %16phN data overrun\n", cp->Request.CDB);
2730 		break;
2731 	case CMD_INVALID: {
2732 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2733 		print_cmd(cp); */
2734 		/* We get CMD_INVALID if you address a non-existent device
2735 		 * instead of a selection timeout (no response).  You will
2736 		 * see this if you yank out a drive, then try to access it.
2737 		 * This is kind of a shame because it means that any other
2738 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2739 		 * missing target. */
2740 		cmd->result = DID_NO_CONNECT << 16;
2741 	}
2742 		break;
2743 	case CMD_PROTOCOL_ERR:
2744 		cmd->result = DID_ERROR << 16;
2745 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2746 				cp->Request.CDB);
2747 		break;
2748 	case CMD_HARDWARE_ERR:
2749 		cmd->result = DID_ERROR << 16;
2750 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2751 			cp->Request.CDB);
2752 		break;
2753 	case CMD_CONNECTION_LOST:
2754 		cmd->result = DID_ERROR << 16;
2755 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2756 			cp->Request.CDB);
2757 		break;
2758 	case CMD_ABORTED:
2759 		cmd->result = DID_ABORT << 16;
2760 		break;
2761 	case CMD_ABORT_FAILED:
2762 		cmd->result = DID_ERROR << 16;
2763 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2764 			cp->Request.CDB);
2765 		break;
2766 	case CMD_UNSOLICITED_ABORT:
2767 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2768 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2769 			cp->Request.CDB);
2770 		break;
2771 	case CMD_TIMEOUT:
2772 		cmd->result = DID_TIME_OUT << 16;
2773 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2774 			cp->Request.CDB);
2775 		break;
2776 	case CMD_UNABORTABLE:
2777 		cmd->result = DID_ERROR << 16;
2778 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2779 		break;
2780 	case CMD_TMF_STATUS:
2781 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2782 			cmd->result = DID_ERROR << 16;
2783 		break;
2784 	case CMD_IOACCEL_DISABLED:
2785 		/* This only handles the direct pass-through case since RAID
2786 		 * offload is handled above.  Just attempt a retry.
2787 		 */
2788 		cmd->result = DID_SOFT_ERROR << 16;
2789 		dev_warn(&h->pdev->dev,
2790 				"cp %p had HP SSD Smart Path error\n", cp);
2791 		break;
2792 	default:
2793 		cmd->result = DID_ERROR << 16;
2794 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2795 				cp, ei->CommandStatus);
2796 	}
2797 
2798 	return hpsa_cmd_free_and_done(h, cp, cmd);
2799 }
2800 
2801 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2802 		int sg_used, enum dma_data_direction data_direction)
2803 {
2804 	int i;
2805 
2806 	for (i = 0; i < sg_used; i++)
2807 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2808 				le32_to_cpu(c->SG[i].Len),
2809 				data_direction);
2810 }
2811 
2812 static int hpsa_map_one(struct pci_dev *pdev,
2813 		struct CommandList *cp,
2814 		unsigned char *buf,
2815 		size_t buflen,
2816 		enum dma_data_direction data_direction)
2817 {
2818 	u64 addr64;
2819 
2820 	if (buflen == 0 || data_direction == DMA_NONE) {
2821 		cp->Header.SGList = 0;
2822 		cp->Header.SGTotal = cpu_to_le16(0);
2823 		return 0;
2824 	}
2825 
2826 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2827 	if (dma_mapping_error(&pdev->dev, addr64)) {
2828 		/* Prevent subsequent unmap of something never mapped */
2829 		cp->Header.SGList = 0;
2830 		cp->Header.SGTotal = cpu_to_le16(0);
2831 		return -1;
2832 	}
2833 	cp->SG[0].Addr = cpu_to_le64(addr64);
2834 	cp->SG[0].Len = cpu_to_le32(buflen);
2835 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2836 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2837 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2838 	return 0;
2839 }
2840 
2841 #define NO_TIMEOUT ((unsigned long) -1)
2842 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2843 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2844 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2845 {
2846 	DECLARE_COMPLETION_ONSTACK(wait);
2847 
2848 	c->waiting = &wait;
2849 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2850 	if (timeout_msecs == NO_TIMEOUT) {
2851 		/* TODO: get rid of this no-timeout thing */
2852 		wait_for_completion_io(&wait);
2853 		return IO_OK;
2854 	}
2855 	if (!wait_for_completion_io_timeout(&wait,
2856 					msecs_to_jiffies(timeout_msecs))) {
2857 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2858 		return -ETIMEDOUT;
2859 	}
2860 	return IO_OK;
2861 }
2862 
2863 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2864 				   int reply_queue, unsigned long timeout_msecs)
2865 {
2866 	if (unlikely(lockup_detected(h))) {
2867 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2868 		return IO_OK;
2869 	}
2870 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2871 }
2872 
2873 static u32 lockup_detected(struct ctlr_info *h)
2874 {
2875 	int cpu;
2876 	u32 rc, *lockup_detected;
2877 
2878 	cpu = get_cpu();
2879 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2880 	rc = *lockup_detected;
2881 	put_cpu();
2882 	return rc;
2883 }
2884 
2885 #define MAX_DRIVER_CMD_RETRIES 25
2886 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2887 		struct CommandList *c, enum dma_data_direction data_direction,
2888 		unsigned long timeout_msecs)
2889 {
2890 	int backoff_time = 10, retry_count = 0;
2891 	int rc;
2892 
2893 	do {
2894 		memset(c->err_info, 0, sizeof(*c->err_info));
2895 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2896 						  timeout_msecs);
2897 		if (rc)
2898 			break;
2899 		retry_count++;
2900 		if (retry_count > 3) {
2901 			msleep(backoff_time);
2902 			if (backoff_time < 1000)
2903 				backoff_time *= 2;
2904 		}
2905 	} while ((check_for_unit_attention(h, c) ||
2906 			check_for_busy(h, c)) &&
2907 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2908 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2909 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2910 		rc = -EIO;
2911 	return rc;
2912 }
2913 
2914 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2915 				struct CommandList *c)
2916 {
2917 	const u8 *cdb = c->Request.CDB;
2918 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2919 
2920 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2921 		 txt, lun, cdb);
2922 }
2923 
2924 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2925 			struct CommandList *cp)
2926 {
2927 	const struct ErrorInfo *ei = cp->err_info;
2928 	struct device *d = &cp->h->pdev->dev;
2929 	u8 sense_key, asc, ascq;
2930 	int sense_len;
2931 
2932 	switch (ei->CommandStatus) {
2933 	case CMD_TARGET_STATUS:
2934 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2935 			sense_len = sizeof(ei->SenseInfo);
2936 		else
2937 			sense_len = ei->SenseLen;
2938 		decode_sense_data(ei->SenseInfo, sense_len,
2939 					&sense_key, &asc, &ascq);
2940 		hpsa_print_cmd(h, "SCSI status", cp);
2941 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2942 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2943 				sense_key, asc, ascq);
2944 		else
2945 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2946 		if (ei->ScsiStatus == 0)
2947 			dev_warn(d, "SCSI status is abnormally zero.  "
2948 			"(probably indicates selection timeout "
2949 			"reported incorrectly due to a known "
2950 			"firmware bug, circa July, 2001.)\n");
2951 		break;
2952 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2953 		break;
2954 	case CMD_DATA_OVERRUN:
2955 		hpsa_print_cmd(h, "overrun condition", cp);
2956 		break;
2957 	case CMD_INVALID: {
2958 		/* controller unfortunately reports SCSI passthru's
2959 		 * to non-existent targets as invalid commands.
2960 		 */
2961 		hpsa_print_cmd(h, "invalid command", cp);
2962 		dev_warn(d, "probably means device no longer present\n");
2963 		}
2964 		break;
2965 	case CMD_PROTOCOL_ERR:
2966 		hpsa_print_cmd(h, "protocol error", cp);
2967 		break;
2968 	case CMD_HARDWARE_ERR:
2969 		hpsa_print_cmd(h, "hardware error", cp);
2970 		break;
2971 	case CMD_CONNECTION_LOST:
2972 		hpsa_print_cmd(h, "connection lost", cp);
2973 		break;
2974 	case CMD_ABORTED:
2975 		hpsa_print_cmd(h, "aborted", cp);
2976 		break;
2977 	case CMD_ABORT_FAILED:
2978 		hpsa_print_cmd(h, "abort failed", cp);
2979 		break;
2980 	case CMD_UNSOLICITED_ABORT:
2981 		hpsa_print_cmd(h, "unsolicited abort", cp);
2982 		break;
2983 	case CMD_TIMEOUT:
2984 		hpsa_print_cmd(h, "timed out", cp);
2985 		break;
2986 	case CMD_UNABORTABLE:
2987 		hpsa_print_cmd(h, "unabortable", cp);
2988 		break;
2989 	case CMD_CTLR_LOCKUP:
2990 		hpsa_print_cmd(h, "controller lockup detected", cp);
2991 		break;
2992 	default:
2993 		hpsa_print_cmd(h, "unknown status", cp);
2994 		dev_warn(d, "Unknown command status %x\n",
2995 				ei->CommandStatus);
2996 	}
2997 }
2998 
2999 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3000 					u8 page, u8 *buf, size_t bufsize)
3001 {
3002 	int rc = IO_OK;
3003 	struct CommandList *c;
3004 	struct ErrorInfo *ei;
3005 
3006 	c = cmd_alloc(h);
3007 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3008 			page, scsi3addr, TYPE_CMD)) {
3009 		rc = -1;
3010 		goto out;
3011 	}
3012 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3013 			NO_TIMEOUT);
3014 	if (rc)
3015 		goto out;
3016 	ei = c->err_info;
3017 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3018 		hpsa_scsi_interpret_error(h, c);
3019 		rc = -1;
3020 	}
3021 out:
3022 	cmd_free(h, c);
3023 	return rc;
3024 }
3025 
3026 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3027 						u8 *scsi3addr)
3028 {
3029 	u8 *buf;
3030 	u64 sa = 0;
3031 	int rc = 0;
3032 
3033 	buf = kzalloc(1024, GFP_KERNEL);
3034 	if (!buf)
3035 		return 0;
3036 
3037 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3038 					buf, 1024);
3039 
3040 	if (rc)
3041 		goto out;
3042 
3043 	sa = get_unaligned_be64(buf+12);
3044 
3045 out:
3046 	kfree(buf);
3047 	return sa;
3048 }
3049 
3050 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3051 			u16 page, unsigned char *buf,
3052 			unsigned char bufsize)
3053 {
3054 	int rc = IO_OK;
3055 	struct CommandList *c;
3056 	struct ErrorInfo *ei;
3057 
3058 	c = cmd_alloc(h);
3059 
3060 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3061 			page, scsi3addr, TYPE_CMD)) {
3062 		rc = -1;
3063 		goto out;
3064 	}
3065 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3066 			NO_TIMEOUT);
3067 	if (rc)
3068 		goto out;
3069 	ei = c->err_info;
3070 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3071 		hpsa_scsi_interpret_error(h, c);
3072 		rc = -1;
3073 	}
3074 out:
3075 	cmd_free(h, c);
3076 	return rc;
3077 }
3078 
3079 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3080 	u8 reset_type, int reply_queue)
3081 {
3082 	int rc = IO_OK;
3083 	struct CommandList *c;
3084 	struct ErrorInfo *ei;
3085 
3086 	c = cmd_alloc(h);
3087 	c->device = dev;
3088 
3089 	/* fill_cmd can't fail here, no data buffer to map. */
3090 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3091 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3092 	if (rc) {
3093 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3094 		goto out;
3095 	}
3096 	/* no unmap needed here because no data xfer. */
3097 
3098 	ei = c->err_info;
3099 	if (ei->CommandStatus != 0) {
3100 		hpsa_scsi_interpret_error(h, c);
3101 		rc = -1;
3102 	}
3103 out:
3104 	cmd_free(h, c);
3105 	return rc;
3106 }
3107 
3108 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3109 			       struct hpsa_scsi_dev_t *dev,
3110 			       unsigned char *scsi3addr)
3111 {
3112 	int i;
3113 	bool match = false;
3114 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3115 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3116 
3117 	if (hpsa_is_cmd_idle(c))
3118 		return false;
3119 
3120 	switch (c->cmd_type) {
3121 	case CMD_SCSI:
3122 	case CMD_IOCTL_PEND:
3123 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3124 				sizeof(c->Header.LUN.LunAddrBytes));
3125 		break;
3126 
3127 	case CMD_IOACCEL1:
3128 	case CMD_IOACCEL2:
3129 		if (c->phys_disk == dev) {
3130 			/* HBA mode match */
3131 			match = true;
3132 		} else {
3133 			/* Possible RAID mode -- check each phys dev. */
3134 			/* FIXME:  Do we need to take out a lock here?  If
3135 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3136 			 * instead. */
3137 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3138 				/* FIXME: an alternate test might be
3139 				 *
3140 				 * match = dev->phys_disk[i]->ioaccel_handle
3141 				 *              == c2->scsi_nexus;      */
3142 				match = dev->phys_disk[i] == c->phys_disk;
3143 			}
3144 		}
3145 		break;
3146 
3147 	case IOACCEL2_TMF:
3148 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3149 			match = dev->phys_disk[i]->ioaccel_handle ==
3150 					le32_to_cpu(ac->it_nexus);
3151 		}
3152 		break;
3153 
3154 	case 0:		/* The command is in the middle of being initialized. */
3155 		match = false;
3156 		break;
3157 
3158 	default:
3159 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3160 			c->cmd_type);
3161 		BUG();
3162 	}
3163 
3164 	return match;
3165 }
3166 
3167 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3168 	u8 reset_type, int reply_queue)
3169 {
3170 	int rc = 0;
3171 
3172 	/* We can really only handle one reset at a time */
3173 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3174 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3175 		return -EINTR;
3176 	}
3177 
3178 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3179 	if (!rc) {
3180 		/* incremented by sending the reset request */
3181 		atomic_dec(&dev->commands_outstanding);
3182 		wait_event(h->event_sync_wait_queue,
3183 			atomic_read(&dev->commands_outstanding) <= 0 ||
3184 			lockup_detected(h));
3185 	}
3186 
3187 	if (unlikely(lockup_detected(h))) {
3188 		dev_warn(&h->pdev->dev,
3189 			 "Controller lockup detected during reset wait\n");
3190 		rc = -ENODEV;
3191 	}
3192 
3193 	if (!rc)
3194 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3195 
3196 	mutex_unlock(&h->reset_mutex);
3197 	return rc;
3198 }
3199 
3200 static void hpsa_get_raid_level(struct ctlr_info *h,
3201 	unsigned char *scsi3addr, unsigned char *raid_level)
3202 {
3203 	int rc;
3204 	unsigned char *buf;
3205 
3206 	*raid_level = RAID_UNKNOWN;
3207 	buf = kzalloc(64, GFP_KERNEL);
3208 	if (!buf)
3209 		return;
3210 
3211 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3212 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3213 		goto exit;
3214 
3215 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3216 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3217 
3218 	if (rc == 0)
3219 		*raid_level = buf[8];
3220 	if (*raid_level > RAID_UNKNOWN)
3221 		*raid_level = RAID_UNKNOWN;
3222 exit:
3223 	kfree(buf);
3224 	return;
3225 }
3226 
3227 #define HPSA_MAP_DEBUG
3228 #ifdef HPSA_MAP_DEBUG
3229 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3230 				struct raid_map_data *map_buff)
3231 {
3232 	struct raid_map_disk_data *dd = &map_buff->data[0];
3233 	int map, row, col;
3234 	u16 map_cnt, row_cnt, disks_per_row;
3235 
3236 	if (rc != 0)
3237 		return;
3238 
3239 	/* Show details only if debugging has been activated. */
3240 	if (h->raid_offload_debug < 2)
3241 		return;
3242 
3243 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3244 				le32_to_cpu(map_buff->structure_size));
3245 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3246 			le32_to_cpu(map_buff->volume_blk_size));
3247 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3248 			le64_to_cpu(map_buff->volume_blk_cnt));
3249 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3250 			map_buff->phys_blk_shift);
3251 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3252 			map_buff->parity_rotation_shift);
3253 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3254 			le16_to_cpu(map_buff->strip_size));
3255 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3256 			le64_to_cpu(map_buff->disk_starting_blk));
3257 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3258 			le64_to_cpu(map_buff->disk_blk_cnt));
3259 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3260 			le16_to_cpu(map_buff->data_disks_per_row));
3261 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3262 			le16_to_cpu(map_buff->metadata_disks_per_row));
3263 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3264 			le16_to_cpu(map_buff->row_cnt));
3265 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3266 			le16_to_cpu(map_buff->layout_map_count));
3267 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3268 			le16_to_cpu(map_buff->flags));
3269 	dev_info(&h->pdev->dev, "encryption = %s\n",
3270 			le16_to_cpu(map_buff->flags) &
3271 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3272 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3273 			le16_to_cpu(map_buff->dekindex));
3274 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3275 	for (map = 0; map < map_cnt; map++) {
3276 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3277 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3278 		for (row = 0; row < row_cnt; row++) {
3279 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3280 			disks_per_row =
3281 				le16_to_cpu(map_buff->data_disks_per_row);
3282 			for (col = 0; col < disks_per_row; col++, dd++)
3283 				dev_info(&h->pdev->dev,
3284 					"    D%02u: h=0x%04x xor=%u,%u\n",
3285 					col, dd->ioaccel_handle,
3286 					dd->xor_mult[0], dd->xor_mult[1]);
3287 			disks_per_row =
3288 				le16_to_cpu(map_buff->metadata_disks_per_row);
3289 			for (col = 0; col < disks_per_row; col++, dd++)
3290 				dev_info(&h->pdev->dev,
3291 					"    M%02u: h=0x%04x xor=%u,%u\n",
3292 					col, dd->ioaccel_handle,
3293 					dd->xor_mult[0], dd->xor_mult[1]);
3294 		}
3295 	}
3296 }
3297 #else
3298 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3299 			__attribute__((unused)) int rc,
3300 			__attribute__((unused)) struct raid_map_data *map_buff)
3301 {
3302 }
3303 #endif
3304 
3305 static int hpsa_get_raid_map(struct ctlr_info *h,
3306 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3307 {
3308 	int rc = 0;
3309 	struct CommandList *c;
3310 	struct ErrorInfo *ei;
3311 
3312 	c = cmd_alloc(h);
3313 
3314 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3315 			sizeof(this_device->raid_map), 0,
3316 			scsi3addr, TYPE_CMD)) {
3317 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3318 		cmd_free(h, c);
3319 		return -1;
3320 	}
3321 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3322 			NO_TIMEOUT);
3323 	if (rc)
3324 		goto out;
3325 	ei = c->err_info;
3326 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3327 		hpsa_scsi_interpret_error(h, c);
3328 		rc = -1;
3329 		goto out;
3330 	}
3331 	cmd_free(h, c);
3332 
3333 	/* @todo in the future, dynamically allocate RAID map memory */
3334 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3335 				sizeof(this_device->raid_map)) {
3336 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3337 		rc = -1;
3338 	}
3339 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3340 	return rc;
3341 out:
3342 	cmd_free(h, c);
3343 	return rc;
3344 }
3345 
3346 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3347 		unsigned char scsi3addr[], u16 bmic_device_index,
3348 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3349 {
3350 	int rc = IO_OK;
3351 	struct CommandList *c;
3352 	struct ErrorInfo *ei;
3353 
3354 	c = cmd_alloc(h);
3355 
3356 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3357 		0, RAID_CTLR_LUNID, TYPE_CMD);
3358 	if (rc)
3359 		goto out;
3360 
3361 	c->Request.CDB[2] = bmic_device_index & 0xff;
3362 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3363 
3364 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3365 			NO_TIMEOUT);
3366 	if (rc)
3367 		goto out;
3368 	ei = c->err_info;
3369 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3370 		hpsa_scsi_interpret_error(h, c);
3371 		rc = -1;
3372 	}
3373 out:
3374 	cmd_free(h, c);
3375 	return rc;
3376 }
3377 
3378 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3379 	struct bmic_identify_controller *buf, size_t bufsize)
3380 {
3381 	int rc = IO_OK;
3382 	struct CommandList *c;
3383 	struct ErrorInfo *ei;
3384 
3385 	c = cmd_alloc(h);
3386 
3387 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3388 		0, RAID_CTLR_LUNID, TYPE_CMD);
3389 	if (rc)
3390 		goto out;
3391 
3392 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3393 			NO_TIMEOUT);
3394 	if (rc)
3395 		goto out;
3396 	ei = c->err_info;
3397 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3398 		hpsa_scsi_interpret_error(h, c);
3399 		rc = -1;
3400 	}
3401 out:
3402 	cmd_free(h, c);
3403 	return rc;
3404 }
3405 
3406 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3407 		unsigned char scsi3addr[], u16 bmic_device_index,
3408 		struct bmic_identify_physical_device *buf, size_t bufsize)
3409 {
3410 	int rc = IO_OK;
3411 	struct CommandList *c;
3412 	struct ErrorInfo *ei;
3413 
3414 	c = cmd_alloc(h);
3415 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3416 		0, RAID_CTLR_LUNID, TYPE_CMD);
3417 	if (rc)
3418 		goto out;
3419 
3420 	c->Request.CDB[2] = bmic_device_index & 0xff;
3421 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3422 
3423 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3424 						NO_TIMEOUT);
3425 	ei = c->err_info;
3426 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3427 		hpsa_scsi_interpret_error(h, c);
3428 		rc = -1;
3429 	}
3430 out:
3431 	cmd_free(h, c);
3432 
3433 	return rc;
3434 }
3435 
3436 /*
3437  * get enclosure information
3438  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440  * Uses id_physical_device to determine the box_index.
3441  */
3442 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3443 			unsigned char *scsi3addr,
3444 			struct ReportExtendedLUNdata *rlep, int rle_index,
3445 			struct hpsa_scsi_dev_t *encl_dev)
3446 {
3447 	int rc = -1;
3448 	struct CommandList *c = NULL;
3449 	struct ErrorInfo *ei = NULL;
3450 	struct bmic_sense_storage_box_params *bssbp = NULL;
3451 	struct bmic_identify_physical_device *id_phys = NULL;
3452 	struct ext_report_lun_entry *rle;
3453 	u16 bmic_device_index = 0;
3454 
3455 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3456 		return;
3457 
3458 	rle = &rlep->LUN[rle_index];
3459 
3460 	encl_dev->eli =
3461 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3462 
3463 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3464 
3465 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3466 		rc = IO_OK;
3467 		goto out;
3468 	}
3469 
3470 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3471 		rc = IO_OK;
3472 		goto out;
3473 	}
3474 
3475 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3476 	if (!bssbp)
3477 		goto out;
3478 
3479 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3480 	if (!id_phys)
3481 		goto out;
3482 
3483 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3484 						id_phys, sizeof(*id_phys));
3485 	if (rc) {
3486 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3487 			__func__, encl_dev->external, bmic_device_index);
3488 		goto out;
3489 	}
3490 
3491 	c = cmd_alloc(h);
3492 
3493 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3494 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3495 
3496 	if (rc)
3497 		goto out;
3498 
3499 	if (id_phys->phys_connector[1] == 'E')
3500 		c->Request.CDB[5] = id_phys->box_index;
3501 	else
3502 		c->Request.CDB[5] = 0;
3503 
3504 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3505 						NO_TIMEOUT);
3506 	if (rc)
3507 		goto out;
3508 
3509 	ei = c->err_info;
3510 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3511 		rc = -1;
3512 		goto out;
3513 	}
3514 
3515 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3516 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3517 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3518 
3519 	rc = IO_OK;
3520 out:
3521 	kfree(bssbp);
3522 	kfree(id_phys);
3523 
3524 	if (c)
3525 		cmd_free(h, c);
3526 
3527 	if (rc != IO_OK)
3528 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3529 			"Error, could not get enclosure information");
3530 }
3531 
3532 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3533 						unsigned char *scsi3addr)
3534 {
3535 	struct ReportExtendedLUNdata *physdev;
3536 	u32 nphysicals;
3537 	u64 sa = 0;
3538 	int i;
3539 
3540 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3541 	if (!physdev)
3542 		return 0;
3543 
3544 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3545 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3546 		kfree(physdev);
3547 		return 0;
3548 	}
3549 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3550 
3551 	for (i = 0; i < nphysicals; i++)
3552 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3553 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3554 			break;
3555 		}
3556 
3557 	kfree(physdev);
3558 
3559 	return sa;
3560 }
3561 
3562 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3563 					struct hpsa_scsi_dev_t *dev)
3564 {
3565 	int rc;
3566 	u64 sa = 0;
3567 
3568 	if (is_hba_lunid(scsi3addr)) {
3569 		struct bmic_sense_subsystem_info *ssi;
3570 
3571 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3572 		if (!ssi)
3573 			return;
3574 
3575 		rc = hpsa_bmic_sense_subsystem_information(h,
3576 					scsi3addr, 0, ssi, sizeof(*ssi));
3577 		if (rc == 0) {
3578 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3579 			h->sas_address = sa;
3580 		}
3581 
3582 		kfree(ssi);
3583 	} else
3584 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3585 
3586 	dev->sas_address = sa;
3587 }
3588 
3589 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3590 	struct ReportExtendedLUNdata *physdev)
3591 {
3592 	u32 nphysicals;
3593 	int i;
3594 
3595 	if (h->discovery_polling)
3596 		return;
3597 
3598 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3599 
3600 	for (i = 0; i < nphysicals; i++) {
3601 		if (physdev->LUN[i].device_type ==
3602 			BMIC_DEVICE_TYPE_CONTROLLER
3603 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3604 			dev_info(&h->pdev->dev,
3605 				"External controller present, activate discovery polling and disable rld caching\n");
3606 			hpsa_disable_rld_caching(h);
3607 			h->discovery_polling = 1;
3608 			break;
3609 		}
3610 	}
3611 }
3612 
3613 /* Get a device id from inquiry page 0x83 */
3614 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3615 	unsigned char scsi3addr[], u8 page)
3616 {
3617 	int rc;
3618 	int i;
3619 	int pages;
3620 	unsigned char *buf, bufsize;
3621 
3622 	buf = kzalloc(256, GFP_KERNEL);
3623 	if (!buf)
3624 		return false;
3625 
3626 	/* Get the size of the page list first */
3627 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3628 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3629 				buf, HPSA_VPD_HEADER_SZ);
3630 	if (rc != 0)
3631 		goto exit_unsupported;
3632 	pages = buf[3];
3633 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3634 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3635 	else
3636 		bufsize = 255;
3637 
3638 	/* Get the whole VPD page list */
3639 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3640 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3641 				buf, bufsize);
3642 	if (rc != 0)
3643 		goto exit_unsupported;
3644 
3645 	pages = buf[3];
3646 	for (i = 1; i <= pages; i++)
3647 		if (buf[3 + i] == page)
3648 			goto exit_supported;
3649 exit_unsupported:
3650 	kfree(buf);
3651 	return false;
3652 exit_supported:
3653 	kfree(buf);
3654 	return true;
3655 }
3656 
3657 /*
3658  * Called during a scan operation.
3659  * Sets ioaccel status on the new device list, not the existing device list
3660  *
3661  * The device list used during I/O will be updated later in
3662  * adjust_hpsa_scsi_table.
3663  */
3664 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3665 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3666 {
3667 	int rc;
3668 	unsigned char *buf;
3669 	u8 ioaccel_status;
3670 
3671 	this_device->offload_config = 0;
3672 	this_device->offload_enabled = 0;
3673 	this_device->offload_to_be_enabled = 0;
3674 
3675 	buf = kzalloc(64, GFP_KERNEL);
3676 	if (!buf)
3677 		return;
3678 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3679 		goto out;
3680 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3681 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3682 	if (rc != 0)
3683 		goto out;
3684 
3685 #define IOACCEL_STATUS_BYTE 4
3686 #define OFFLOAD_CONFIGURED_BIT 0x01
3687 #define OFFLOAD_ENABLED_BIT 0x02
3688 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3689 	this_device->offload_config =
3690 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3691 	if (this_device->offload_config) {
3692 		bool offload_enabled =
3693 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3694 		/*
3695 		 * Check to see if offload can be enabled.
3696 		 */
3697 		if (offload_enabled) {
3698 			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3699 			if (rc) /* could not load raid_map */
3700 				goto out;
3701 			this_device->offload_to_be_enabled = 1;
3702 		}
3703 	}
3704 
3705 out:
3706 	kfree(buf);
3707 	return;
3708 }
3709 
3710 /* Get the device id from inquiry page 0x83 */
3711 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3712 	unsigned char *device_id, int index, int buflen)
3713 {
3714 	int rc;
3715 	unsigned char *buf;
3716 
3717 	/* Does controller have VPD for device id? */
3718 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3719 		return 1; /* not supported */
3720 
3721 	buf = kzalloc(64, GFP_KERNEL);
3722 	if (!buf)
3723 		return -ENOMEM;
3724 
3725 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3726 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3727 	if (rc == 0) {
3728 		if (buflen > 16)
3729 			buflen = 16;
3730 		memcpy(device_id, &buf[8], buflen);
3731 	}
3732 
3733 	kfree(buf);
3734 
3735 	return rc; /*0 - got id,  otherwise, didn't */
3736 }
3737 
3738 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3739 		void *buf, int bufsize,
3740 		int extended_response)
3741 {
3742 	int rc = IO_OK;
3743 	struct CommandList *c;
3744 	unsigned char scsi3addr[8];
3745 	struct ErrorInfo *ei;
3746 
3747 	c = cmd_alloc(h);
3748 
3749 	/* address the controller */
3750 	memset(scsi3addr, 0, sizeof(scsi3addr));
3751 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3752 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3753 		rc = -EAGAIN;
3754 		goto out;
3755 	}
3756 	if (extended_response)
3757 		c->Request.CDB[1] = extended_response;
3758 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3759 			NO_TIMEOUT);
3760 	if (rc)
3761 		goto out;
3762 	ei = c->err_info;
3763 	if (ei->CommandStatus != 0 &&
3764 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3765 		hpsa_scsi_interpret_error(h, c);
3766 		rc = -EIO;
3767 	} else {
3768 		struct ReportLUNdata *rld = buf;
3769 
3770 		if (rld->extended_response_flag != extended_response) {
3771 			if (!h->legacy_board) {
3772 				dev_err(&h->pdev->dev,
3773 					"report luns requested format %u, got %u\n",
3774 					extended_response,
3775 					rld->extended_response_flag);
3776 				rc = -EINVAL;
3777 			} else
3778 				rc = -EOPNOTSUPP;
3779 		}
3780 	}
3781 out:
3782 	cmd_free(h, c);
3783 	return rc;
3784 }
3785 
3786 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3787 		struct ReportExtendedLUNdata *buf, int bufsize)
3788 {
3789 	int rc;
3790 	struct ReportLUNdata *lbuf;
3791 
3792 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3793 				      HPSA_REPORT_PHYS_EXTENDED);
3794 	if (!rc || rc != -EOPNOTSUPP)
3795 		return rc;
3796 
3797 	/* REPORT PHYS EXTENDED is not supported */
3798 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3799 	if (!lbuf)
3800 		return -ENOMEM;
3801 
3802 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3803 	if (!rc) {
3804 		int i;
3805 		u32 nphys;
3806 
3807 		/* Copy ReportLUNdata header */
3808 		memcpy(buf, lbuf, 8);
3809 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3810 		for (i = 0; i < nphys; i++)
3811 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3812 	}
3813 	kfree(lbuf);
3814 	return rc;
3815 }
3816 
3817 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3818 		struct ReportLUNdata *buf, int bufsize)
3819 {
3820 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3821 }
3822 
3823 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3824 	int bus, int target, int lun)
3825 {
3826 	device->bus = bus;
3827 	device->target = target;
3828 	device->lun = lun;
3829 }
3830 
3831 /* Use VPD inquiry to get details of volume status */
3832 static int hpsa_get_volume_status(struct ctlr_info *h,
3833 					unsigned char scsi3addr[])
3834 {
3835 	int rc;
3836 	int status;
3837 	int size;
3838 	unsigned char *buf;
3839 
3840 	buf = kzalloc(64, GFP_KERNEL);
3841 	if (!buf)
3842 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3843 
3844 	/* Does controller have VPD for logical volume status? */
3845 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3846 		goto exit_failed;
3847 
3848 	/* Get the size of the VPD return buffer */
3849 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3850 					buf, HPSA_VPD_HEADER_SZ);
3851 	if (rc != 0)
3852 		goto exit_failed;
3853 	size = buf[3];
3854 
3855 	/* Now get the whole VPD buffer */
3856 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3857 					buf, size + HPSA_VPD_HEADER_SZ);
3858 	if (rc != 0)
3859 		goto exit_failed;
3860 	status = buf[4]; /* status byte */
3861 
3862 	kfree(buf);
3863 	return status;
3864 exit_failed:
3865 	kfree(buf);
3866 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3867 }
3868 
3869 /* Determine offline status of a volume.
3870  * Return either:
3871  *  0 (not offline)
3872  *  0xff (offline for unknown reasons)
3873  *  # (integer code indicating one of several NOT READY states
3874  *     describing why a volume is to be kept offline)
3875  */
3876 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3877 					unsigned char scsi3addr[])
3878 {
3879 	struct CommandList *c;
3880 	unsigned char *sense;
3881 	u8 sense_key, asc, ascq;
3882 	int sense_len;
3883 	int rc, ldstat = 0;
3884 #define ASC_LUN_NOT_READY 0x04
3885 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3886 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3887 
3888 	c = cmd_alloc(h);
3889 
3890 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3891 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3892 					NO_TIMEOUT);
3893 	if (rc) {
3894 		cmd_free(h, c);
3895 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3896 	}
3897 	sense = c->err_info->SenseInfo;
3898 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3899 		sense_len = sizeof(c->err_info->SenseInfo);
3900 	else
3901 		sense_len = c->err_info->SenseLen;
3902 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3903 	cmd_free(h, c);
3904 
3905 	/* Determine the reason for not ready state */
3906 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3907 
3908 	/* Keep volume offline in certain cases: */
3909 	switch (ldstat) {
3910 	case HPSA_LV_FAILED:
3911 	case HPSA_LV_UNDERGOING_ERASE:
3912 	case HPSA_LV_NOT_AVAILABLE:
3913 	case HPSA_LV_UNDERGOING_RPI:
3914 	case HPSA_LV_PENDING_RPI:
3915 	case HPSA_LV_ENCRYPTED_NO_KEY:
3916 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3917 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3918 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3919 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3920 		return ldstat;
3921 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3922 		/* If VPD status page isn't available,
3923 		 * use ASC/ASCQ to determine state
3924 		 */
3925 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3926 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3927 			return ldstat;
3928 		break;
3929 	default:
3930 		break;
3931 	}
3932 	return HPSA_LV_OK;
3933 }
3934 
3935 static int hpsa_update_device_info(struct ctlr_info *h,
3936 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3937 	unsigned char *is_OBDR_device)
3938 {
3939 
3940 #define OBDR_SIG_OFFSET 43
3941 #define OBDR_TAPE_SIG "$DR-10"
3942 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3943 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3944 
3945 	unsigned char *inq_buff;
3946 	unsigned char *obdr_sig;
3947 	int rc = 0;
3948 
3949 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3950 	if (!inq_buff) {
3951 		rc = -ENOMEM;
3952 		goto bail_out;
3953 	}
3954 
3955 	/* Do an inquiry to the device to see what it is. */
3956 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3957 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3958 		dev_err(&h->pdev->dev,
3959 			"%s: inquiry failed, device will be skipped.\n",
3960 			__func__);
3961 		rc = HPSA_INQUIRY_FAILED;
3962 		goto bail_out;
3963 	}
3964 
3965 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3966 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3967 
3968 	this_device->devtype = (inq_buff[0] & 0x1f);
3969 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3970 	memcpy(this_device->vendor, &inq_buff[8],
3971 		sizeof(this_device->vendor));
3972 	memcpy(this_device->model, &inq_buff[16],
3973 		sizeof(this_device->model));
3974 	this_device->rev = inq_buff[2];
3975 	memset(this_device->device_id, 0,
3976 		sizeof(this_device->device_id));
3977 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3978 		sizeof(this_device->device_id)) < 0) {
3979 		dev_err(&h->pdev->dev,
3980 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3981 			h->ctlr, __func__,
3982 			h->scsi_host->host_no,
3983 			this_device->bus, this_device->target,
3984 			this_device->lun,
3985 			scsi_device_type(this_device->devtype),
3986 			this_device->model);
3987 		rc = HPSA_LV_FAILED;
3988 		goto bail_out;
3989 	}
3990 
3991 	if ((this_device->devtype == TYPE_DISK ||
3992 		this_device->devtype == TYPE_ZBC) &&
3993 		is_logical_dev_addr_mode(scsi3addr)) {
3994 		unsigned char volume_offline;
3995 
3996 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3997 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3998 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3999 		volume_offline = hpsa_volume_offline(h, scsi3addr);
4000 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4001 		    h->legacy_board) {
4002 			/*
4003 			 * Legacy boards might not support volume status
4004 			 */
4005 			dev_info(&h->pdev->dev,
4006 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
4007 				 this_device->target, this_device->lun);
4008 			volume_offline = 0;
4009 		}
4010 		this_device->volume_offline = volume_offline;
4011 		if (volume_offline == HPSA_LV_FAILED) {
4012 			rc = HPSA_LV_FAILED;
4013 			dev_err(&h->pdev->dev,
4014 				"%s: LV failed, device will be skipped.\n",
4015 				__func__);
4016 			goto bail_out;
4017 		}
4018 	} else {
4019 		this_device->raid_level = RAID_UNKNOWN;
4020 		this_device->offload_config = 0;
4021 		hpsa_turn_off_ioaccel_for_device(this_device);
4022 		this_device->hba_ioaccel_enabled = 0;
4023 		this_device->volume_offline = 0;
4024 		this_device->queue_depth = h->nr_cmds;
4025 	}
4026 
4027 	if (this_device->external)
4028 		this_device->queue_depth = EXTERNAL_QD;
4029 
4030 	if (is_OBDR_device) {
4031 		/* See if this is a One-Button-Disaster-Recovery device
4032 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4033 		 */
4034 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4035 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4036 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4037 						OBDR_SIG_LEN) == 0);
4038 	}
4039 	kfree(inq_buff);
4040 	return 0;
4041 
4042 bail_out:
4043 	kfree(inq_buff);
4044 	return rc;
4045 }
4046 
4047 /*
4048  * Helper function to assign bus, target, lun mapping of devices.
4049  * Logical drive target and lun are assigned at this time, but
4050  * physical device lun and target assignment are deferred (assigned
4051  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4052 */
4053 static void figure_bus_target_lun(struct ctlr_info *h,
4054 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4055 {
4056 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4057 
4058 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4059 		/* physical device, target and lun filled in later */
4060 		if (is_hba_lunid(lunaddrbytes)) {
4061 			int bus = HPSA_HBA_BUS;
4062 
4063 			if (!device->rev)
4064 				bus = HPSA_LEGACY_HBA_BUS;
4065 			hpsa_set_bus_target_lun(device,
4066 					bus, 0, lunid & 0x3fff);
4067 		} else
4068 			/* defer target, lun assignment for physical devices */
4069 			hpsa_set_bus_target_lun(device,
4070 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4071 		return;
4072 	}
4073 	/* It's a logical device */
4074 	if (device->external) {
4075 		hpsa_set_bus_target_lun(device,
4076 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4077 			lunid & 0x00ff);
4078 		return;
4079 	}
4080 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4081 				0, lunid & 0x3fff);
4082 }
4083 
4084 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4085 	int i, int nphysicals, int nlocal_logicals)
4086 {
4087 	/* In report logicals, local logicals are listed first,
4088 	* then any externals.
4089 	*/
4090 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4091 
4092 	if (i == raid_ctlr_position)
4093 		return 0;
4094 
4095 	if (i < logicals_start)
4096 		return 0;
4097 
4098 	/* i is in logicals range, but still within local logicals */
4099 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4100 		return 0;
4101 
4102 	return 1; /* it's an external lun */
4103 }
4104 
4105 /*
4106  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4107  * logdev.  The number of luns in physdev and logdev are returned in
4108  * *nphysicals and *nlogicals, respectively.
4109  * Returns 0 on success, -1 otherwise.
4110  */
4111 static int hpsa_gather_lun_info(struct ctlr_info *h,
4112 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4113 	struct ReportLUNdata *logdev, u32 *nlogicals)
4114 {
4115 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4116 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4117 		return -1;
4118 	}
4119 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4120 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4121 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4122 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4123 		*nphysicals = HPSA_MAX_PHYS_LUN;
4124 	}
4125 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4126 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4127 		return -1;
4128 	}
4129 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4130 	/* Reject Logicals in excess of our max capability. */
4131 	if (*nlogicals > HPSA_MAX_LUN) {
4132 		dev_warn(&h->pdev->dev,
4133 			"maximum logical LUNs (%d) exceeded.  "
4134 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4135 			*nlogicals - HPSA_MAX_LUN);
4136 		*nlogicals = HPSA_MAX_LUN;
4137 	}
4138 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4139 		dev_warn(&h->pdev->dev,
4140 			"maximum logical + physical LUNs (%d) exceeded. "
4141 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4142 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4143 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4144 	}
4145 	return 0;
4146 }
4147 
4148 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4149 	int i, int nphysicals, int nlogicals,
4150 	struct ReportExtendedLUNdata *physdev_list,
4151 	struct ReportLUNdata *logdev_list)
4152 {
4153 	/* Helper function, figure out where the LUN ID info is coming from
4154 	 * given index i, lists of physical and logical devices, where in
4155 	 * the list the raid controller is supposed to appear (first or last)
4156 	 */
4157 
4158 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4159 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4160 
4161 	if (i == raid_ctlr_position)
4162 		return RAID_CTLR_LUNID;
4163 
4164 	if (i < logicals_start)
4165 		return &physdev_list->LUN[i -
4166 				(raid_ctlr_position == 0)].lunid[0];
4167 
4168 	if (i < last_device)
4169 		return &logdev_list->LUN[i - nphysicals -
4170 			(raid_ctlr_position == 0)][0];
4171 	BUG();
4172 	return NULL;
4173 }
4174 
4175 /* get physical drive ioaccel handle and queue depth */
4176 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4177 		struct hpsa_scsi_dev_t *dev,
4178 		struct ReportExtendedLUNdata *rlep, int rle_index,
4179 		struct bmic_identify_physical_device *id_phys)
4180 {
4181 	int rc;
4182 	struct ext_report_lun_entry *rle;
4183 
4184 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4185 		return;
4186 
4187 	rle = &rlep->LUN[rle_index];
4188 
4189 	dev->ioaccel_handle = rle->ioaccel_handle;
4190 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4191 		dev->hba_ioaccel_enabled = 1;
4192 	memset(id_phys, 0, sizeof(*id_phys));
4193 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4194 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4195 			sizeof(*id_phys));
4196 	if (!rc)
4197 		/* Reserve space for FW operations */
4198 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4199 #define DRIVE_QUEUE_DEPTH 7
4200 		dev->queue_depth =
4201 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4202 				DRIVE_CMDS_RESERVED_FOR_FW;
4203 	else
4204 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4205 }
4206 
4207 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4208 	struct ReportExtendedLUNdata *rlep, int rle_index,
4209 	struct bmic_identify_physical_device *id_phys)
4210 {
4211 	struct ext_report_lun_entry *rle;
4212 
4213 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4214 		return;
4215 
4216 	rle = &rlep->LUN[rle_index];
4217 
4218 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4219 		this_device->hba_ioaccel_enabled = 1;
4220 
4221 	memcpy(&this_device->active_path_index,
4222 		&id_phys->active_path_number,
4223 		sizeof(this_device->active_path_index));
4224 	memcpy(&this_device->path_map,
4225 		&id_phys->redundant_path_present_map,
4226 		sizeof(this_device->path_map));
4227 	memcpy(&this_device->box,
4228 		&id_phys->alternate_paths_phys_box_on_port,
4229 		sizeof(this_device->box));
4230 	memcpy(&this_device->phys_connector,
4231 		&id_phys->alternate_paths_phys_connector,
4232 		sizeof(this_device->phys_connector));
4233 	memcpy(&this_device->bay,
4234 		&id_phys->phys_bay_in_box,
4235 		sizeof(this_device->bay));
4236 }
4237 
4238 /* get number of local logical disks. */
4239 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4240 	struct bmic_identify_controller *id_ctlr,
4241 	u32 *nlocals)
4242 {
4243 	int rc;
4244 
4245 	if (!id_ctlr) {
4246 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4247 			__func__);
4248 		return -ENOMEM;
4249 	}
4250 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4251 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4252 	if (!rc)
4253 		if (id_ctlr->configured_logical_drive_count < 255)
4254 			*nlocals = id_ctlr->configured_logical_drive_count;
4255 		else
4256 			*nlocals = le16_to_cpu(
4257 					id_ctlr->extended_logical_unit_count);
4258 	else
4259 		*nlocals = -1;
4260 	return rc;
4261 }
4262 
4263 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4264 {
4265 	struct bmic_identify_physical_device *id_phys;
4266 	bool is_spare = false;
4267 	int rc;
4268 
4269 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4270 	if (!id_phys)
4271 		return false;
4272 
4273 	rc = hpsa_bmic_id_physical_device(h,
4274 					lunaddrbytes,
4275 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4276 					id_phys, sizeof(*id_phys));
4277 	if (rc == 0)
4278 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4279 
4280 	kfree(id_phys);
4281 	return is_spare;
4282 }
4283 
4284 #define RPL_DEV_FLAG_NON_DISK                           0x1
4285 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4286 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4287 
4288 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4289 
4290 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4291 				struct ext_report_lun_entry *rle)
4292 {
4293 	u8 device_flags;
4294 	u8 device_type;
4295 
4296 	if (!MASKED_DEVICE(lunaddrbytes))
4297 		return false;
4298 
4299 	device_flags = rle->device_flags;
4300 	device_type = rle->device_type;
4301 
4302 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4303 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4304 			return false;
4305 		return true;
4306 	}
4307 
4308 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4309 		return false;
4310 
4311 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4312 		return false;
4313 
4314 	/*
4315 	 * Spares may be spun down, we do not want to
4316 	 * do an Inquiry to a RAID set spare drive as
4317 	 * that would have them spun up, that is a
4318 	 * performance hit because I/O to the RAID device
4319 	 * stops while the spin up occurs which can take
4320 	 * over 50 seconds.
4321 	 */
4322 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4323 		return true;
4324 
4325 	return false;
4326 }
4327 
4328 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4329 {
4330 	/* the idea here is we could get notified
4331 	 * that some devices have changed, so we do a report
4332 	 * physical luns and report logical luns cmd, and adjust
4333 	 * our list of devices accordingly.
4334 	 *
4335 	 * The scsi3addr's of devices won't change so long as the
4336 	 * adapter is not reset.  That means we can rescan and
4337 	 * tell which devices we already know about, vs. new
4338 	 * devices, vs.  disappearing devices.
4339 	 */
4340 	struct ReportExtendedLUNdata *physdev_list = NULL;
4341 	struct ReportLUNdata *logdev_list = NULL;
4342 	struct bmic_identify_physical_device *id_phys = NULL;
4343 	struct bmic_identify_controller *id_ctlr = NULL;
4344 	u32 nphysicals = 0;
4345 	u32 nlogicals = 0;
4346 	u32 nlocal_logicals = 0;
4347 	u32 ndev_allocated = 0;
4348 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4349 	int ncurrent = 0;
4350 	int i, ndevs_to_allocate;
4351 	int raid_ctlr_position;
4352 	bool physical_device;
4353 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4354 
4355 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4356 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4357 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4358 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4359 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4360 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4361 
4362 	if (!currentsd || !physdev_list || !logdev_list ||
4363 		!tmpdevice || !id_phys || !id_ctlr) {
4364 		dev_err(&h->pdev->dev, "out of memory\n");
4365 		goto out;
4366 	}
4367 	memset(lunzerobits, 0, sizeof(lunzerobits));
4368 
4369 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4370 
4371 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4372 			logdev_list, &nlogicals)) {
4373 		h->drv_req_rescan = 1;
4374 		goto out;
4375 	}
4376 
4377 	/* Set number of local logicals (non PTRAID) */
4378 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4379 		dev_warn(&h->pdev->dev,
4380 			"%s: Can't determine number of local logical devices.\n",
4381 			__func__);
4382 	}
4383 
4384 	/* We might see up to the maximum number of logical and physical disks
4385 	 * plus external target devices, and a device for the local RAID
4386 	 * controller.
4387 	 */
4388 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4389 
4390 	hpsa_ext_ctrl_present(h, physdev_list);
4391 
4392 	/* Allocate the per device structures */
4393 	for (i = 0; i < ndevs_to_allocate; i++) {
4394 		if (i >= HPSA_MAX_DEVICES) {
4395 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4396 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4397 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4398 			break;
4399 		}
4400 
4401 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4402 		if (!currentsd[i]) {
4403 			h->drv_req_rescan = 1;
4404 			goto out;
4405 		}
4406 		ndev_allocated++;
4407 	}
4408 
4409 	if (is_scsi_rev_5(h))
4410 		raid_ctlr_position = 0;
4411 	else
4412 		raid_ctlr_position = nphysicals + nlogicals;
4413 
4414 	/* adjust our table of devices */
4415 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4416 		u8 *lunaddrbytes, is_OBDR = 0;
4417 		int rc = 0;
4418 		int phys_dev_index = i - (raid_ctlr_position == 0);
4419 		bool skip_device = false;
4420 
4421 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4422 
4423 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4424 
4425 		/* Figure out where the LUN ID info is coming from */
4426 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4427 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4428 
4429 		/* Determine if this is a lun from an external target array */
4430 		tmpdevice->external =
4431 			figure_external_status(h, raid_ctlr_position, i,
4432 						nphysicals, nlocal_logicals);
4433 
4434 		/*
4435 		 * Skip over some devices such as a spare.
4436 		 */
4437 		if (phys_dev_index >= 0 && !tmpdevice->external &&
4438 			physical_device) {
4439 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4440 					&physdev_list->LUN[phys_dev_index]);
4441 			if (skip_device)
4442 				continue;
4443 		}
4444 
4445 		/* Get device type, vendor, model, device id, raid_map */
4446 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4447 							&is_OBDR);
4448 		if (rc == -ENOMEM) {
4449 			dev_warn(&h->pdev->dev,
4450 				"Out of memory, rescan deferred.\n");
4451 			h->drv_req_rescan = 1;
4452 			goto out;
4453 		}
4454 		if (rc) {
4455 			h->drv_req_rescan = 1;
4456 			continue;
4457 		}
4458 
4459 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4460 		this_device = currentsd[ncurrent];
4461 
4462 		*this_device = *tmpdevice;
4463 		this_device->physical_device = physical_device;
4464 
4465 		/*
4466 		 * Expose all devices except for physical devices that
4467 		 * are masked.
4468 		 */
4469 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4470 			this_device->expose_device = 0;
4471 		else
4472 			this_device->expose_device = 1;
4473 
4474 
4475 		/*
4476 		 * Get the SAS address for physical devices that are exposed.
4477 		 */
4478 		if (this_device->physical_device && this_device->expose_device)
4479 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4480 
4481 		switch (this_device->devtype) {
4482 		case TYPE_ROM:
4483 			/* We don't *really* support actual CD-ROM devices,
4484 			 * just "One Button Disaster Recovery" tape drive
4485 			 * which temporarily pretends to be a CD-ROM drive.
4486 			 * So we check that the device is really an OBDR tape
4487 			 * device by checking for "$DR-10" in bytes 43-48 of
4488 			 * the inquiry data.
4489 			 */
4490 			if (is_OBDR)
4491 				ncurrent++;
4492 			break;
4493 		case TYPE_DISK:
4494 		case TYPE_ZBC:
4495 			if (this_device->physical_device) {
4496 				/* The disk is in HBA mode. */
4497 				/* Never use RAID mapper in HBA mode. */
4498 				this_device->offload_enabled = 0;
4499 				hpsa_get_ioaccel_drive_info(h, this_device,
4500 					physdev_list, phys_dev_index, id_phys);
4501 				hpsa_get_path_info(this_device,
4502 					physdev_list, phys_dev_index, id_phys);
4503 			}
4504 			ncurrent++;
4505 			break;
4506 		case TYPE_TAPE:
4507 		case TYPE_MEDIUM_CHANGER:
4508 			ncurrent++;
4509 			break;
4510 		case TYPE_ENCLOSURE:
4511 			if (!this_device->external)
4512 				hpsa_get_enclosure_info(h, lunaddrbytes,
4513 						physdev_list, phys_dev_index,
4514 						this_device);
4515 			ncurrent++;
4516 			break;
4517 		case TYPE_RAID:
4518 			/* Only present the Smartarray HBA as a RAID controller.
4519 			 * If it's a RAID controller other than the HBA itself
4520 			 * (an external RAID controller, MSA500 or similar)
4521 			 * don't present it.
4522 			 */
4523 			if (!is_hba_lunid(lunaddrbytes))
4524 				break;
4525 			ncurrent++;
4526 			break;
4527 		default:
4528 			break;
4529 		}
4530 		if (ncurrent >= HPSA_MAX_DEVICES)
4531 			break;
4532 	}
4533 
4534 	if (h->sas_host == NULL) {
4535 		int rc = 0;
4536 
4537 		rc = hpsa_add_sas_host(h);
4538 		if (rc) {
4539 			dev_warn(&h->pdev->dev,
4540 				"Could not add sas host %d\n", rc);
4541 			goto out;
4542 		}
4543 	}
4544 
4545 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4546 out:
4547 	kfree(tmpdevice);
4548 	for (i = 0; i < ndev_allocated; i++)
4549 		kfree(currentsd[i]);
4550 	kfree(currentsd);
4551 	kfree(physdev_list);
4552 	kfree(logdev_list);
4553 	kfree(id_ctlr);
4554 	kfree(id_phys);
4555 }
4556 
4557 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4558 				   struct scatterlist *sg)
4559 {
4560 	u64 addr64 = (u64) sg_dma_address(sg);
4561 	unsigned int len = sg_dma_len(sg);
4562 
4563 	desc->Addr = cpu_to_le64(addr64);
4564 	desc->Len = cpu_to_le32(len);
4565 	desc->Ext = 0;
4566 }
4567 
4568 /*
4569  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4570  * dma mapping  and fills in the scatter gather entries of the
4571  * hpsa command, cp.
4572  */
4573 static int hpsa_scatter_gather(struct ctlr_info *h,
4574 		struct CommandList *cp,
4575 		struct scsi_cmnd *cmd)
4576 {
4577 	struct scatterlist *sg;
4578 	int use_sg, i, sg_limit, chained;
4579 	struct SGDescriptor *curr_sg;
4580 
4581 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4582 
4583 	use_sg = scsi_dma_map(cmd);
4584 	if (use_sg < 0)
4585 		return use_sg;
4586 
4587 	if (!use_sg)
4588 		goto sglist_finished;
4589 
4590 	/*
4591 	 * If the number of entries is greater than the max for a single list,
4592 	 * then we have a chained list; we will set up all but one entry in the
4593 	 * first list (the last entry is saved for link information);
4594 	 * otherwise, we don't have a chained list and we'll set up at each of
4595 	 * the entries in the one list.
4596 	 */
4597 	curr_sg = cp->SG;
4598 	chained = use_sg > h->max_cmd_sg_entries;
4599 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4600 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4601 		hpsa_set_sg_descriptor(curr_sg, sg);
4602 		curr_sg++;
4603 	}
4604 
4605 	if (chained) {
4606 		/*
4607 		 * Continue with the chained list.  Set curr_sg to the chained
4608 		 * list.  Modify the limit to the total count less the entries
4609 		 * we've already set up.  Resume the scan at the list entry
4610 		 * where the previous loop left off.
4611 		 */
4612 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4613 		sg_limit = use_sg - sg_limit;
4614 		for_each_sg(sg, sg, sg_limit, i) {
4615 			hpsa_set_sg_descriptor(curr_sg, sg);
4616 			curr_sg++;
4617 		}
4618 	}
4619 
4620 	/* Back the pointer up to the last entry and mark it as "last". */
4621 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4622 
4623 	if (use_sg + chained > h->maxSG)
4624 		h->maxSG = use_sg + chained;
4625 
4626 	if (chained) {
4627 		cp->Header.SGList = h->max_cmd_sg_entries;
4628 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4629 		if (hpsa_map_sg_chain_block(h, cp)) {
4630 			scsi_dma_unmap(cmd);
4631 			return -1;
4632 		}
4633 		return 0;
4634 	}
4635 
4636 sglist_finished:
4637 
4638 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4639 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4640 	return 0;
4641 }
4642 
4643 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4644 						u8 *cdb, int cdb_len,
4645 						const char *func)
4646 {
4647 	dev_warn(&h->pdev->dev,
4648 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4649 		 func, cdb_len, cdb);
4650 }
4651 
4652 #define IO_ACCEL_INELIGIBLE 1
4653 /* zero-length transfers trigger hardware errors. */
4654 static bool is_zero_length_transfer(u8 *cdb)
4655 {
4656 	u32 block_cnt;
4657 
4658 	/* Block zero-length transfer sizes on certain commands. */
4659 	switch (cdb[0]) {
4660 	case READ_10:
4661 	case WRITE_10:
4662 	case VERIFY:		/* 0x2F */
4663 	case WRITE_VERIFY:	/* 0x2E */
4664 		block_cnt = get_unaligned_be16(&cdb[7]);
4665 		break;
4666 	case READ_12:
4667 	case WRITE_12:
4668 	case VERIFY_12: /* 0xAF */
4669 	case WRITE_VERIFY_12:	/* 0xAE */
4670 		block_cnt = get_unaligned_be32(&cdb[6]);
4671 		break;
4672 	case READ_16:
4673 	case WRITE_16:
4674 	case VERIFY_16:		/* 0x8F */
4675 		block_cnt = get_unaligned_be32(&cdb[10]);
4676 		break;
4677 	default:
4678 		return false;
4679 	}
4680 
4681 	return block_cnt == 0;
4682 }
4683 
4684 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4685 {
4686 	int is_write = 0;
4687 	u32 block;
4688 	u32 block_cnt;
4689 
4690 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4691 	switch (cdb[0]) {
4692 	case WRITE_6:
4693 	case WRITE_12:
4694 		is_write = 1;
4695 		fallthrough;
4696 	case READ_6:
4697 	case READ_12:
4698 		if (*cdb_len == 6) {
4699 			block = (((cdb[1] & 0x1F) << 16) |
4700 				(cdb[2] << 8) |
4701 				cdb[3]);
4702 			block_cnt = cdb[4];
4703 			if (block_cnt == 0)
4704 				block_cnt = 256;
4705 		} else {
4706 			BUG_ON(*cdb_len != 12);
4707 			block = get_unaligned_be32(&cdb[2]);
4708 			block_cnt = get_unaligned_be32(&cdb[6]);
4709 		}
4710 		if (block_cnt > 0xffff)
4711 			return IO_ACCEL_INELIGIBLE;
4712 
4713 		cdb[0] = is_write ? WRITE_10 : READ_10;
4714 		cdb[1] = 0;
4715 		cdb[2] = (u8) (block >> 24);
4716 		cdb[3] = (u8) (block >> 16);
4717 		cdb[4] = (u8) (block >> 8);
4718 		cdb[5] = (u8) (block);
4719 		cdb[6] = 0;
4720 		cdb[7] = (u8) (block_cnt >> 8);
4721 		cdb[8] = (u8) (block_cnt);
4722 		cdb[9] = 0;
4723 		*cdb_len = 10;
4724 		break;
4725 	}
4726 	return 0;
4727 }
4728 
4729 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4730 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4731 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4732 {
4733 	struct scsi_cmnd *cmd = c->scsi_cmd;
4734 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4735 	unsigned int len;
4736 	unsigned int total_len = 0;
4737 	struct scatterlist *sg;
4738 	u64 addr64;
4739 	int use_sg, i;
4740 	struct SGDescriptor *curr_sg;
4741 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4742 
4743 	/* TODO: implement chaining support */
4744 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4745 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4746 		return IO_ACCEL_INELIGIBLE;
4747 	}
4748 
4749 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4750 
4751 	if (is_zero_length_transfer(cdb)) {
4752 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4753 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4754 		return IO_ACCEL_INELIGIBLE;
4755 	}
4756 
4757 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4758 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4759 		return IO_ACCEL_INELIGIBLE;
4760 	}
4761 
4762 	c->cmd_type = CMD_IOACCEL1;
4763 
4764 	/* Adjust the DMA address to point to the accelerated command buffer */
4765 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4766 				(c->cmdindex * sizeof(*cp));
4767 	BUG_ON(c->busaddr & 0x0000007F);
4768 
4769 	use_sg = scsi_dma_map(cmd);
4770 	if (use_sg < 0) {
4771 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4772 		return use_sg;
4773 	}
4774 
4775 	if (use_sg) {
4776 		curr_sg = cp->SG;
4777 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4778 			addr64 = (u64) sg_dma_address(sg);
4779 			len  = sg_dma_len(sg);
4780 			total_len += len;
4781 			curr_sg->Addr = cpu_to_le64(addr64);
4782 			curr_sg->Len = cpu_to_le32(len);
4783 			curr_sg->Ext = cpu_to_le32(0);
4784 			curr_sg++;
4785 		}
4786 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4787 
4788 		switch (cmd->sc_data_direction) {
4789 		case DMA_TO_DEVICE:
4790 			control |= IOACCEL1_CONTROL_DATA_OUT;
4791 			break;
4792 		case DMA_FROM_DEVICE:
4793 			control |= IOACCEL1_CONTROL_DATA_IN;
4794 			break;
4795 		case DMA_NONE:
4796 			control |= IOACCEL1_CONTROL_NODATAXFER;
4797 			break;
4798 		default:
4799 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4800 			cmd->sc_data_direction);
4801 			BUG();
4802 			break;
4803 		}
4804 	} else {
4805 		control |= IOACCEL1_CONTROL_NODATAXFER;
4806 	}
4807 
4808 	c->Header.SGList = use_sg;
4809 	/* Fill out the command structure to submit */
4810 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4811 	cp->transfer_len = cpu_to_le32(total_len);
4812 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4813 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4814 	cp->control = cpu_to_le32(control);
4815 	memcpy(cp->CDB, cdb, cdb_len);
4816 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4817 	/* Tag was already set at init time. */
4818 	enqueue_cmd_and_start_io(h, c);
4819 	return 0;
4820 }
4821 
4822 /*
4823  * Queue a command directly to a device behind the controller using the
4824  * I/O accelerator path.
4825  */
4826 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4827 	struct CommandList *c)
4828 {
4829 	struct scsi_cmnd *cmd = c->scsi_cmd;
4830 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4831 
4832 	if (!dev)
4833 		return -1;
4834 
4835 	c->phys_disk = dev;
4836 
4837 	if (dev->in_reset)
4838 		return -1;
4839 
4840 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4841 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4842 }
4843 
4844 /*
4845  * Set encryption parameters for the ioaccel2 request
4846  */
4847 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4848 	struct CommandList *c, struct io_accel2_cmd *cp)
4849 {
4850 	struct scsi_cmnd *cmd = c->scsi_cmd;
4851 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4852 	struct raid_map_data *map = &dev->raid_map;
4853 	u64 first_block;
4854 
4855 	/* Are we doing encryption on this device */
4856 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4857 		return;
4858 	/* Set the data encryption key index. */
4859 	cp->dekindex = map->dekindex;
4860 
4861 	/* Set the encryption enable flag, encoded into direction field. */
4862 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4863 
4864 	/* Set encryption tweak values based on logical block address
4865 	 * If block size is 512, tweak value is LBA.
4866 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4867 	 */
4868 	switch (cmd->cmnd[0]) {
4869 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4870 	case READ_6:
4871 	case WRITE_6:
4872 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4873 				(cmd->cmnd[2] << 8) |
4874 				cmd->cmnd[3]);
4875 		break;
4876 	case WRITE_10:
4877 	case READ_10:
4878 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4879 	case WRITE_12:
4880 	case READ_12:
4881 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4882 		break;
4883 	case WRITE_16:
4884 	case READ_16:
4885 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4886 		break;
4887 	default:
4888 		dev_err(&h->pdev->dev,
4889 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4890 			__func__, cmd->cmnd[0]);
4891 		BUG();
4892 		break;
4893 	}
4894 
4895 	if (le32_to_cpu(map->volume_blk_size) != 512)
4896 		first_block = first_block *
4897 				le32_to_cpu(map->volume_blk_size)/512;
4898 
4899 	cp->tweak_lower = cpu_to_le32(first_block);
4900 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4901 }
4902 
4903 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4904 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4905 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4906 {
4907 	struct scsi_cmnd *cmd = c->scsi_cmd;
4908 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4909 	struct ioaccel2_sg_element *curr_sg;
4910 	int use_sg, i;
4911 	struct scatterlist *sg;
4912 	u64 addr64;
4913 	u32 len;
4914 	u32 total_len = 0;
4915 
4916 	if (!cmd->device)
4917 		return -1;
4918 
4919 	if (!cmd->device->hostdata)
4920 		return -1;
4921 
4922 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4923 
4924 	if (is_zero_length_transfer(cdb)) {
4925 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4926 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4927 		return IO_ACCEL_INELIGIBLE;
4928 	}
4929 
4930 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4931 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4932 		return IO_ACCEL_INELIGIBLE;
4933 	}
4934 
4935 	c->cmd_type = CMD_IOACCEL2;
4936 	/* Adjust the DMA address to point to the accelerated command buffer */
4937 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4938 				(c->cmdindex * sizeof(*cp));
4939 	BUG_ON(c->busaddr & 0x0000007F);
4940 
4941 	memset(cp, 0, sizeof(*cp));
4942 	cp->IU_type = IOACCEL2_IU_TYPE;
4943 
4944 	use_sg = scsi_dma_map(cmd);
4945 	if (use_sg < 0) {
4946 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4947 		return use_sg;
4948 	}
4949 
4950 	if (use_sg) {
4951 		curr_sg = cp->sg;
4952 		if (use_sg > h->ioaccel_maxsg) {
4953 			addr64 = le64_to_cpu(
4954 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4955 			curr_sg->address = cpu_to_le64(addr64);
4956 			curr_sg->length = 0;
4957 			curr_sg->reserved[0] = 0;
4958 			curr_sg->reserved[1] = 0;
4959 			curr_sg->reserved[2] = 0;
4960 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4961 
4962 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4963 		}
4964 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4965 			addr64 = (u64) sg_dma_address(sg);
4966 			len  = sg_dma_len(sg);
4967 			total_len += len;
4968 			curr_sg->address = cpu_to_le64(addr64);
4969 			curr_sg->length = cpu_to_le32(len);
4970 			curr_sg->reserved[0] = 0;
4971 			curr_sg->reserved[1] = 0;
4972 			curr_sg->reserved[2] = 0;
4973 			curr_sg->chain_indicator = 0;
4974 			curr_sg++;
4975 		}
4976 
4977 		/*
4978 		 * Set the last s/g element bit
4979 		 */
4980 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4981 
4982 		switch (cmd->sc_data_direction) {
4983 		case DMA_TO_DEVICE:
4984 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4985 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4986 			break;
4987 		case DMA_FROM_DEVICE:
4988 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4989 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4990 			break;
4991 		case DMA_NONE:
4992 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4993 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4994 			break;
4995 		default:
4996 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4997 				cmd->sc_data_direction);
4998 			BUG();
4999 			break;
5000 		}
5001 	} else {
5002 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5003 		cp->direction |= IOACCEL2_DIR_NO_DATA;
5004 	}
5005 
5006 	/* Set encryption parameters, if necessary */
5007 	set_encrypt_ioaccel2(h, c, cp);
5008 
5009 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5010 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5011 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5012 
5013 	cp->data_len = cpu_to_le32(total_len);
5014 	cp->err_ptr = cpu_to_le64(c->busaddr +
5015 			offsetof(struct io_accel2_cmd, error_data));
5016 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5017 
5018 	/* fill in sg elements */
5019 	if (use_sg > h->ioaccel_maxsg) {
5020 		cp->sg_count = 1;
5021 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5022 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5023 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5024 			scsi_dma_unmap(cmd);
5025 			return -1;
5026 		}
5027 	} else
5028 		cp->sg_count = (u8) use_sg;
5029 
5030 	if (phys_disk->in_reset) {
5031 		cmd->result = DID_RESET << 16;
5032 		return -1;
5033 	}
5034 
5035 	enqueue_cmd_and_start_io(h, c);
5036 	return 0;
5037 }
5038 
5039 /*
5040  * Queue a command to the correct I/O accelerator path.
5041  */
5042 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5043 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5044 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5045 {
5046 	if (!c->scsi_cmd->device)
5047 		return -1;
5048 
5049 	if (!c->scsi_cmd->device->hostdata)
5050 		return -1;
5051 
5052 	if (phys_disk->in_reset)
5053 		return -1;
5054 
5055 	/* Try to honor the device's queue depth */
5056 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5057 					phys_disk->queue_depth) {
5058 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5059 		return IO_ACCEL_INELIGIBLE;
5060 	}
5061 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5062 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5063 						cdb, cdb_len, scsi3addr,
5064 						phys_disk);
5065 	else
5066 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5067 						cdb, cdb_len, scsi3addr,
5068 						phys_disk);
5069 }
5070 
5071 static void raid_map_helper(struct raid_map_data *map,
5072 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5073 {
5074 	if (offload_to_mirror == 0)  {
5075 		/* use physical disk in the first mirrored group. */
5076 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5077 		return;
5078 	}
5079 	do {
5080 		/* determine mirror group that *map_index indicates */
5081 		*current_group = *map_index /
5082 			le16_to_cpu(map->data_disks_per_row);
5083 		if (offload_to_mirror == *current_group)
5084 			continue;
5085 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5086 			/* select map index from next group */
5087 			*map_index += le16_to_cpu(map->data_disks_per_row);
5088 			(*current_group)++;
5089 		} else {
5090 			/* select map index from first group */
5091 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5092 			*current_group = 0;
5093 		}
5094 	} while (offload_to_mirror != *current_group);
5095 }
5096 
5097 /*
5098  * Attempt to perform offload RAID mapping for a logical volume I/O.
5099  */
5100 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5101 	struct CommandList *c)
5102 {
5103 	struct scsi_cmnd *cmd = c->scsi_cmd;
5104 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5105 	struct raid_map_data *map = &dev->raid_map;
5106 	struct raid_map_disk_data *dd = &map->data[0];
5107 	int is_write = 0;
5108 	u32 map_index;
5109 	u64 first_block, last_block;
5110 	u32 block_cnt;
5111 	u32 blocks_per_row;
5112 	u64 first_row, last_row;
5113 	u32 first_row_offset, last_row_offset;
5114 	u32 first_column, last_column;
5115 	u64 r0_first_row, r0_last_row;
5116 	u32 r5or6_blocks_per_row;
5117 	u64 r5or6_first_row, r5or6_last_row;
5118 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5119 	u32 r5or6_first_column, r5or6_last_column;
5120 	u32 total_disks_per_row;
5121 	u32 stripesize;
5122 	u32 first_group, last_group, current_group;
5123 	u32 map_row;
5124 	u32 disk_handle;
5125 	u64 disk_block;
5126 	u32 disk_block_cnt;
5127 	u8 cdb[16];
5128 	u8 cdb_len;
5129 	u16 strip_size;
5130 #if BITS_PER_LONG == 32
5131 	u64 tmpdiv;
5132 #endif
5133 	int offload_to_mirror;
5134 
5135 	if (!dev)
5136 		return -1;
5137 
5138 	if (dev->in_reset)
5139 		return -1;
5140 
5141 	/* check for valid opcode, get LBA and block count */
5142 	switch (cmd->cmnd[0]) {
5143 	case WRITE_6:
5144 		is_write = 1;
5145 		fallthrough;
5146 	case READ_6:
5147 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5148 				(cmd->cmnd[2] << 8) |
5149 				cmd->cmnd[3]);
5150 		block_cnt = cmd->cmnd[4];
5151 		if (block_cnt == 0)
5152 			block_cnt = 256;
5153 		break;
5154 	case WRITE_10:
5155 		is_write = 1;
5156 		fallthrough;
5157 	case READ_10:
5158 		first_block =
5159 			(((u64) cmd->cmnd[2]) << 24) |
5160 			(((u64) cmd->cmnd[3]) << 16) |
5161 			(((u64) cmd->cmnd[4]) << 8) |
5162 			cmd->cmnd[5];
5163 		block_cnt =
5164 			(((u32) cmd->cmnd[7]) << 8) |
5165 			cmd->cmnd[8];
5166 		break;
5167 	case WRITE_12:
5168 		is_write = 1;
5169 		fallthrough;
5170 	case READ_12:
5171 		first_block =
5172 			(((u64) cmd->cmnd[2]) << 24) |
5173 			(((u64) cmd->cmnd[3]) << 16) |
5174 			(((u64) cmd->cmnd[4]) << 8) |
5175 			cmd->cmnd[5];
5176 		block_cnt =
5177 			(((u32) cmd->cmnd[6]) << 24) |
5178 			(((u32) cmd->cmnd[7]) << 16) |
5179 			(((u32) cmd->cmnd[8]) << 8) |
5180 		cmd->cmnd[9];
5181 		break;
5182 	case WRITE_16:
5183 		is_write = 1;
5184 		fallthrough;
5185 	case READ_16:
5186 		first_block =
5187 			(((u64) cmd->cmnd[2]) << 56) |
5188 			(((u64) cmd->cmnd[3]) << 48) |
5189 			(((u64) cmd->cmnd[4]) << 40) |
5190 			(((u64) cmd->cmnd[5]) << 32) |
5191 			(((u64) cmd->cmnd[6]) << 24) |
5192 			(((u64) cmd->cmnd[7]) << 16) |
5193 			(((u64) cmd->cmnd[8]) << 8) |
5194 			cmd->cmnd[9];
5195 		block_cnt =
5196 			(((u32) cmd->cmnd[10]) << 24) |
5197 			(((u32) cmd->cmnd[11]) << 16) |
5198 			(((u32) cmd->cmnd[12]) << 8) |
5199 			cmd->cmnd[13];
5200 		break;
5201 	default:
5202 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5203 	}
5204 	last_block = first_block + block_cnt - 1;
5205 
5206 	/* check for write to non-RAID-0 */
5207 	if (is_write && dev->raid_level != 0)
5208 		return IO_ACCEL_INELIGIBLE;
5209 
5210 	/* check for invalid block or wraparound */
5211 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5212 		last_block < first_block)
5213 		return IO_ACCEL_INELIGIBLE;
5214 
5215 	/* calculate stripe information for the request */
5216 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5217 				le16_to_cpu(map->strip_size);
5218 	strip_size = le16_to_cpu(map->strip_size);
5219 #if BITS_PER_LONG == 32
5220 	tmpdiv = first_block;
5221 	(void) do_div(tmpdiv, blocks_per_row);
5222 	first_row = tmpdiv;
5223 	tmpdiv = last_block;
5224 	(void) do_div(tmpdiv, blocks_per_row);
5225 	last_row = tmpdiv;
5226 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5227 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5228 	tmpdiv = first_row_offset;
5229 	(void) do_div(tmpdiv, strip_size);
5230 	first_column = tmpdiv;
5231 	tmpdiv = last_row_offset;
5232 	(void) do_div(tmpdiv, strip_size);
5233 	last_column = tmpdiv;
5234 #else
5235 	first_row = first_block / blocks_per_row;
5236 	last_row = last_block / blocks_per_row;
5237 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5238 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5239 	first_column = first_row_offset / strip_size;
5240 	last_column = last_row_offset / strip_size;
5241 #endif
5242 
5243 	/* if this isn't a single row/column then give to the controller */
5244 	if ((first_row != last_row) || (first_column != last_column))
5245 		return IO_ACCEL_INELIGIBLE;
5246 
5247 	/* proceeding with driver mapping */
5248 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5249 				le16_to_cpu(map->metadata_disks_per_row);
5250 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5251 				le16_to_cpu(map->row_cnt);
5252 	map_index = (map_row * total_disks_per_row) + first_column;
5253 
5254 	switch (dev->raid_level) {
5255 	case HPSA_RAID_0:
5256 		break; /* nothing special to do */
5257 	case HPSA_RAID_1:
5258 		/* Handles load balance across RAID 1 members.
5259 		 * (2-drive R1 and R10 with even # of drives.)
5260 		 * Appropriate for SSDs, not optimal for HDDs
5261 		 * Ensure we have the correct raid_map.
5262 		 */
5263 		if (le16_to_cpu(map->layout_map_count) != 2) {
5264 			hpsa_turn_off_ioaccel_for_device(dev);
5265 			return IO_ACCEL_INELIGIBLE;
5266 		}
5267 		if (dev->offload_to_mirror)
5268 			map_index += le16_to_cpu(map->data_disks_per_row);
5269 		dev->offload_to_mirror = !dev->offload_to_mirror;
5270 		break;
5271 	case HPSA_RAID_ADM:
5272 		/* Handles N-way mirrors  (R1-ADM)
5273 		 * and R10 with # of drives divisible by 3.)
5274 		 * Ensure we have the correct raid_map.
5275 		 */
5276 		if (le16_to_cpu(map->layout_map_count) != 3) {
5277 			hpsa_turn_off_ioaccel_for_device(dev);
5278 			return IO_ACCEL_INELIGIBLE;
5279 		}
5280 
5281 		offload_to_mirror = dev->offload_to_mirror;
5282 		raid_map_helper(map, offload_to_mirror,
5283 				&map_index, &current_group);
5284 		/* set mirror group to use next time */
5285 		offload_to_mirror =
5286 			(offload_to_mirror >=
5287 			le16_to_cpu(map->layout_map_count) - 1)
5288 			? 0 : offload_to_mirror + 1;
5289 		dev->offload_to_mirror = offload_to_mirror;
5290 		/* Avoid direct use of dev->offload_to_mirror within this
5291 		 * function since multiple threads might simultaneously
5292 		 * increment it beyond the range of dev->layout_map_count -1.
5293 		 */
5294 		break;
5295 	case HPSA_RAID_5:
5296 	case HPSA_RAID_6:
5297 		if (le16_to_cpu(map->layout_map_count) <= 1)
5298 			break;
5299 
5300 		/* Verify first and last block are in same RAID group */
5301 		r5or6_blocks_per_row =
5302 			le16_to_cpu(map->strip_size) *
5303 			le16_to_cpu(map->data_disks_per_row);
5304 		if (r5or6_blocks_per_row == 0) {
5305 			hpsa_turn_off_ioaccel_for_device(dev);
5306 			return IO_ACCEL_INELIGIBLE;
5307 		}
5308 		stripesize = r5or6_blocks_per_row *
5309 			le16_to_cpu(map->layout_map_count);
5310 #if BITS_PER_LONG == 32
5311 		tmpdiv = first_block;
5312 		first_group = do_div(tmpdiv, stripesize);
5313 		tmpdiv = first_group;
5314 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5315 		first_group = tmpdiv;
5316 		tmpdiv = last_block;
5317 		last_group = do_div(tmpdiv, stripesize);
5318 		tmpdiv = last_group;
5319 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5320 		last_group = tmpdiv;
5321 #else
5322 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5323 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5324 #endif
5325 		if (first_group != last_group)
5326 			return IO_ACCEL_INELIGIBLE;
5327 
5328 		/* Verify request is in a single row of RAID 5/6 */
5329 #if BITS_PER_LONG == 32
5330 		tmpdiv = first_block;
5331 		(void) do_div(tmpdiv, stripesize);
5332 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5333 		tmpdiv = last_block;
5334 		(void) do_div(tmpdiv, stripesize);
5335 		r5or6_last_row = r0_last_row = tmpdiv;
5336 #else
5337 		first_row = r5or6_first_row = r0_first_row =
5338 						first_block / stripesize;
5339 		r5or6_last_row = r0_last_row = last_block / stripesize;
5340 #endif
5341 		if (r5or6_first_row != r5or6_last_row)
5342 			return IO_ACCEL_INELIGIBLE;
5343 
5344 
5345 		/* Verify request is in a single column */
5346 #if BITS_PER_LONG == 32
5347 		tmpdiv = first_block;
5348 		first_row_offset = do_div(tmpdiv, stripesize);
5349 		tmpdiv = first_row_offset;
5350 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5351 		r5or6_first_row_offset = first_row_offset;
5352 		tmpdiv = last_block;
5353 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5354 		tmpdiv = r5or6_last_row_offset;
5355 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5356 		tmpdiv = r5or6_first_row_offset;
5357 		(void) do_div(tmpdiv, map->strip_size);
5358 		first_column = r5or6_first_column = tmpdiv;
5359 		tmpdiv = r5or6_last_row_offset;
5360 		(void) do_div(tmpdiv, map->strip_size);
5361 		r5or6_last_column = tmpdiv;
5362 #else
5363 		first_row_offset = r5or6_first_row_offset =
5364 			(u32)((first_block % stripesize) %
5365 						r5or6_blocks_per_row);
5366 
5367 		r5or6_last_row_offset =
5368 			(u32)((last_block % stripesize) %
5369 						r5or6_blocks_per_row);
5370 
5371 		first_column = r5or6_first_column =
5372 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5373 		r5or6_last_column =
5374 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5375 #endif
5376 		if (r5or6_first_column != r5or6_last_column)
5377 			return IO_ACCEL_INELIGIBLE;
5378 
5379 		/* Request is eligible */
5380 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5381 			le16_to_cpu(map->row_cnt);
5382 
5383 		map_index = (first_group *
5384 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5385 			(map_row * total_disks_per_row) + first_column;
5386 		break;
5387 	default:
5388 		return IO_ACCEL_INELIGIBLE;
5389 	}
5390 
5391 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5392 		return IO_ACCEL_INELIGIBLE;
5393 
5394 	c->phys_disk = dev->phys_disk[map_index];
5395 	if (!c->phys_disk)
5396 		return IO_ACCEL_INELIGIBLE;
5397 
5398 	disk_handle = dd[map_index].ioaccel_handle;
5399 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5400 			first_row * le16_to_cpu(map->strip_size) +
5401 			(first_row_offset - first_column *
5402 			le16_to_cpu(map->strip_size));
5403 	disk_block_cnt = block_cnt;
5404 
5405 	/* handle differing logical/physical block sizes */
5406 	if (map->phys_blk_shift) {
5407 		disk_block <<= map->phys_blk_shift;
5408 		disk_block_cnt <<= map->phys_blk_shift;
5409 	}
5410 	BUG_ON(disk_block_cnt > 0xffff);
5411 
5412 	/* build the new CDB for the physical disk I/O */
5413 	if (disk_block > 0xffffffff) {
5414 		cdb[0] = is_write ? WRITE_16 : READ_16;
5415 		cdb[1] = 0;
5416 		cdb[2] = (u8) (disk_block >> 56);
5417 		cdb[3] = (u8) (disk_block >> 48);
5418 		cdb[4] = (u8) (disk_block >> 40);
5419 		cdb[5] = (u8) (disk_block >> 32);
5420 		cdb[6] = (u8) (disk_block >> 24);
5421 		cdb[7] = (u8) (disk_block >> 16);
5422 		cdb[8] = (u8) (disk_block >> 8);
5423 		cdb[9] = (u8) (disk_block);
5424 		cdb[10] = (u8) (disk_block_cnt >> 24);
5425 		cdb[11] = (u8) (disk_block_cnt >> 16);
5426 		cdb[12] = (u8) (disk_block_cnt >> 8);
5427 		cdb[13] = (u8) (disk_block_cnt);
5428 		cdb[14] = 0;
5429 		cdb[15] = 0;
5430 		cdb_len = 16;
5431 	} else {
5432 		cdb[0] = is_write ? WRITE_10 : READ_10;
5433 		cdb[1] = 0;
5434 		cdb[2] = (u8) (disk_block >> 24);
5435 		cdb[3] = (u8) (disk_block >> 16);
5436 		cdb[4] = (u8) (disk_block >> 8);
5437 		cdb[5] = (u8) (disk_block);
5438 		cdb[6] = 0;
5439 		cdb[7] = (u8) (disk_block_cnt >> 8);
5440 		cdb[8] = (u8) (disk_block_cnt);
5441 		cdb[9] = 0;
5442 		cdb_len = 10;
5443 	}
5444 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5445 						dev->scsi3addr,
5446 						dev->phys_disk[map_index]);
5447 }
5448 
5449 /*
5450  * Submit commands down the "normal" RAID stack path
5451  * All callers to hpsa_ciss_submit must check lockup_detected
5452  * beforehand, before (opt.) and after calling cmd_alloc
5453  */
5454 static int hpsa_ciss_submit(struct ctlr_info *h,
5455 	struct CommandList *c, struct scsi_cmnd *cmd,
5456 	struct hpsa_scsi_dev_t *dev)
5457 {
5458 	cmd->host_scribble = (unsigned char *) c;
5459 	c->cmd_type = CMD_SCSI;
5460 	c->scsi_cmd = cmd;
5461 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5462 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5463 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5464 
5465 	/* Fill in the request block... */
5466 
5467 	c->Request.Timeout = 0;
5468 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5469 	c->Request.CDBLen = cmd->cmd_len;
5470 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5471 	switch (cmd->sc_data_direction) {
5472 	case DMA_TO_DEVICE:
5473 		c->Request.type_attr_dir =
5474 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5475 		break;
5476 	case DMA_FROM_DEVICE:
5477 		c->Request.type_attr_dir =
5478 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5479 		break;
5480 	case DMA_NONE:
5481 		c->Request.type_attr_dir =
5482 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5483 		break;
5484 	case DMA_BIDIRECTIONAL:
5485 		/* This can happen if a buggy application does a scsi passthru
5486 		 * and sets both inlen and outlen to non-zero. ( see
5487 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5488 		 */
5489 
5490 		c->Request.type_attr_dir =
5491 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5492 		/* This is technically wrong, and hpsa controllers should
5493 		 * reject it with CMD_INVALID, which is the most correct
5494 		 * response, but non-fibre backends appear to let it
5495 		 * slide by, and give the same results as if this field
5496 		 * were set correctly.  Either way is acceptable for
5497 		 * our purposes here.
5498 		 */
5499 
5500 		break;
5501 
5502 	default:
5503 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5504 			cmd->sc_data_direction);
5505 		BUG();
5506 		break;
5507 	}
5508 
5509 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5510 		hpsa_cmd_resolve_and_free(h, c);
5511 		return SCSI_MLQUEUE_HOST_BUSY;
5512 	}
5513 
5514 	if (dev->in_reset) {
5515 		hpsa_cmd_resolve_and_free(h, c);
5516 		return SCSI_MLQUEUE_HOST_BUSY;
5517 	}
5518 
5519 	c->device = dev;
5520 
5521 	enqueue_cmd_and_start_io(h, c);
5522 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5523 	return 0;
5524 }
5525 
5526 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5527 				struct CommandList *c)
5528 {
5529 	dma_addr_t cmd_dma_handle, err_dma_handle;
5530 
5531 	/* Zero out all of commandlist except the last field, refcount */
5532 	memset(c, 0, offsetof(struct CommandList, refcount));
5533 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5534 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5535 	c->err_info = h->errinfo_pool + index;
5536 	memset(c->err_info, 0, sizeof(*c->err_info));
5537 	err_dma_handle = h->errinfo_pool_dhandle
5538 	    + index * sizeof(*c->err_info);
5539 	c->cmdindex = index;
5540 	c->busaddr = (u32) cmd_dma_handle;
5541 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5542 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5543 	c->h = h;
5544 	c->scsi_cmd = SCSI_CMD_IDLE;
5545 }
5546 
5547 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5548 {
5549 	int i;
5550 
5551 	for (i = 0; i < h->nr_cmds; i++) {
5552 		struct CommandList *c = h->cmd_pool + i;
5553 
5554 		hpsa_cmd_init(h, i, c);
5555 		atomic_set(&c->refcount, 0);
5556 	}
5557 }
5558 
5559 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5560 				struct CommandList *c)
5561 {
5562 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5563 
5564 	BUG_ON(c->cmdindex != index);
5565 
5566 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5567 	memset(c->err_info, 0, sizeof(*c->err_info));
5568 	c->busaddr = (u32) cmd_dma_handle;
5569 }
5570 
5571 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5572 		struct CommandList *c, struct scsi_cmnd *cmd,
5573 		bool retry)
5574 {
5575 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5576 	int rc = IO_ACCEL_INELIGIBLE;
5577 
5578 	if (!dev)
5579 		return SCSI_MLQUEUE_HOST_BUSY;
5580 
5581 	if (dev->in_reset)
5582 		return SCSI_MLQUEUE_HOST_BUSY;
5583 
5584 	if (hpsa_simple_mode)
5585 		return IO_ACCEL_INELIGIBLE;
5586 
5587 	cmd->host_scribble = (unsigned char *) c;
5588 
5589 	if (dev->offload_enabled) {
5590 		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5591 		c->cmd_type = CMD_SCSI;
5592 		c->scsi_cmd = cmd;
5593 		c->device = dev;
5594 		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5595 			c->retry_pending = true;
5596 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5597 		if (rc < 0)     /* scsi_dma_map failed. */
5598 			rc = SCSI_MLQUEUE_HOST_BUSY;
5599 	} else if (dev->hba_ioaccel_enabled) {
5600 		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5601 		c->cmd_type = CMD_SCSI;
5602 		c->scsi_cmd = cmd;
5603 		c->device = dev;
5604 		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5605 			c->retry_pending = true;
5606 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5607 		if (rc < 0)     /* scsi_dma_map failed. */
5608 			rc = SCSI_MLQUEUE_HOST_BUSY;
5609 	}
5610 	return rc;
5611 }
5612 
5613 static void hpsa_command_resubmit_worker(struct work_struct *work)
5614 {
5615 	struct scsi_cmnd *cmd;
5616 	struct hpsa_scsi_dev_t *dev;
5617 	struct CommandList *c = container_of(work, struct CommandList, work);
5618 
5619 	cmd = c->scsi_cmd;
5620 	dev = cmd->device->hostdata;
5621 	if (!dev) {
5622 		cmd->result = DID_NO_CONNECT << 16;
5623 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5624 	}
5625 
5626 	if (dev->in_reset) {
5627 		cmd->result = DID_RESET << 16;
5628 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5629 	}
5630 
5631 	if (c->cmd_type == CMD_IOACCEL2) {
5632 		struct ctlr_info *h = c->h;
5633 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5634 		int rc;
5635 
5636 		if (c2->error_data.serv_response ==
5637 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5638 			/* Resubmit with the retry_pending flag set. */
5639 			rc = hpsa_ioaccel_submit(h, c, cmd, true);
5640 			if (rc == 0)
5641 				return;
5642 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5643 				/*
5644 				 * If we get here, it means dma mapping failed.
5645 				 * Try again via scsi mid layer, which will
5646 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5647 				 */
5648 				cmd->result = DID_IMM_RETRY << 16;
5649 				return hpsa_cmd_free_and_done(h, c, cmd);
5650 			}
5651 			/* else, fall thru and resubmit down CISS path */
5652 		}
5653 	}
5654 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5655 	/*
5656 	 * Here we have not come in though queue_command, so we
5657 	 * can set the retry_pending flag to true for a driver initiated
5658 	 * retry attempt (I.E. not a SML retry).
5659 	 * I.E. We are submitting a driver initiated retry.
5660 	 * Note: hpsa_ciss_submit does not zero out the command fields like
5661 	 *       ioaccel submit does.
5662 	 */
5663 	c->retry_pending = true;
5664 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5665 		/*
5666 		 * If we get here, it means dma mapping failed. Try
5667 		 * again via scsi mid layer, which will then get
5668 		 * SCSI_MLQUEUE_HOST_BUSY.
5669 		 *
5670 		 * hpsa_ciss_submit will have already freed c
5671 		 * if it encountered a dma mapping failure.
5672 		 */
5673 		cmd->result = DID_IMM_RETRY << 16;
5674 		cmd->scsi_done(cmd);
5675 	}
5676 }
5677 
5678 /* Running in struct Scsi_Host->host_lock less mode */
5679 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5680 {
5681 	struct ctlr_info *h;
5682 	struct hpsa_scsi_dev_t *dev;
5683 	struct CommandList *c;
5684 	int rc = 0;
5685 
5686 	/* Get the ptr to our adapter structure out of cmd->host. */
5687 	h = sdev_to_hba(cmd->device);
5688 
5689 	BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0);
5690 
5691 	dev = cmd->device->hostdata;
5692 	if (!dev) {
5693 		cmd->result = DID_NO_CONNECT << 16;
5694 		cmd->scsi_done(cmd);
5695 		return 0;
5696 	}
5697 
5698 	if (dev->removed) {
5699 		cmd->result = DID_NO_CONNECT << 16;
5700 		cmd->scsi_done(cmd);
5701 		return 0;
5702 	}
5703 
5704 	if (unlikely(lockup_detected(h))) {
5705 		cmd->result = DID_NO_CONNECT << 16;
5706 		cmd->scsi_done(cmd);
5707 		return 0;
5708 	}
5709 
5710 	if (dev->in_reset)
5711 		return SCSI_MLQUEUE_DEVICE_BUSY;
5712 
5713 	c = cmd_tagged_alloc(h, cmd);
5714 	if (c == NULL)
5715 		return SCSI_MLQUEUE_DEVICE_BUSY;
5716 
5717 	/*
5718 	 * This is necessary because the SML doesn't zero out this field during
5719 	 * error recovery.
5720 	 */
5721 	cmd->result = 0;
5722 
5723 	/*
5724 	 * Call alternate submit routine for I/O accelerated commands.
5725 	 * Retries always go down the normal I/O path.
5726 	 * Note: If cmd->retries is non-zero, then this is a SML
5727 	 *       initiated retry and not a driver initiated retry.
5728 	 *       This command has been obtained from cmd_tagged_alloc
5729 	 *       and is therefore a brand-new command.
5730 	 */
5731 	if (likely(cmd->retries == 0 &&
5732 			!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) &&
5733 			h->acciopath_status)) {
5734 		/* Submit with the retry_pending flag unset. */
5735 		rc = hpsa_ioaccel_submit(h, c, cmd, false);
5736 		if (rc == 0)
5737 			return 0;
5738 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5739 			hpsa_cmd_resolve_and_free(h, c);
5740 			return SCSI_MLQUEUE_HOST_BUSY;
5741 		}
5742 	}
5743 	return hpsa_ciss_submit(h, c, cmd, dev);
5744 }
5745 
5746 static void hpsa_scan_complete(struct ctlr_info *h)
5747 {
5748 	unsigned long flags;
5749 
5750 	spin_lock_irqsave(&h->scan_lock, flags);
5751 	h->scan_finished = 1;
5752 	wake_up(&h->scan_wait_queue);
5753 	spin_unlock_irqrestore(&h->scan_lock, flags);
5754 }
5755 
5756 static void hpsa_scan_start(struct Scsi_Host *sh)
5757 {
5758 	struct ctlr_info *h = shost_to_hba(sh);
5759 	unsigned long flags;
5760 
5761 	/*
5762 	 * Don't let rescans be initiated on a controller known to be locked
5763 	 * up.  If the controller locks up *during* a rescan, that thread is
5764 	 * probably hosed, but at least we can prevent new rescan threads from
5765 	 * piling up on a locked up controller.
5766 	 */
5767 	if (unlikely(lockup_detected(h)))
5768 		return hpsa_scan_complete(h);
5769 
5770 	/*
5771 	 * If a scan is already waiting to run, no need to add another
5772 	 */
5773 	spin_lock_irqsave(&h->scan_lock, flags);
5774 	if (h->scan_waiting) {
5775 		spin_unlock_irqrestore(&h->scan_lock, flags);
5776 		return;
5777 	}
5778 
5779 	spin_unlock_irqrestore(&h->scan_lock, flags);
5780 
5781 	/* wait until any scan already in progress is finished. */
5782 	while (1) {
5783 		spin_lock_irqsave(&h->scan_lock, flags);
5784 		if (h->scan_finished)
5785 			break;
5786 		h->scan_waiting = 1;
5787 		spin_unlock_irqrestore(&h->scan_lock, flags);
5788 		wait_event(h->scan_wait_queue, h->scan_finished);
5789 		/* Note: We don't need to worry about a race between this
5790 		 * thread and driver unload because the midlayer will
5791 		 * have incremented the reference count, so unload won't
5792 		 * happen if we're in here.
5793 		 */
5794 	}
5795 	h->scan_finished = 0; /* mark scan as in progress */
5796 	h->scan_waiting = 0;
5797 	spin_unlock_irqrestore(&h->scan_lock, flags);
5798 
5799 	if (unlikely(lockup_detected(h)))
5800 		return hpsa_scan_complete(h);
5801 
5802 	/*
5803 	 * Do the scan after a reset completion
5804 	 */
5805 	spin_lock_irqsave(&h->reset_lock, flags);
5806 	if (h->reset_in_progress) {
5807 		h->drv_req_rescan = 1;
5808 		spin_unlock_irqrestore(&h->reset_lock, flags);
5809 		hpsa_scan_complete(h);
5810 		return;
5811 	}
5812 	spin_unlock_irqrestore(&h->reset_lock, flags);
5813 
5814 	hpsa_update_scsi_devices(h);
5815 
5816 	hpsa_scan_complete(h);
5817 }
5818 
5819 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5820 {
5821 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5822 
5823 	if (!logical_drive)
5824 		return -ENODEV;
5825 
5826 	if (qdepth < 1)
5827 		qdepth = 1;
5828 	else if (qdepth > logical_drive->queue_depth)
5829 		qdepth = logical_drive->queue_depth;
5830 
5831 	return scsi_change_queue_depth(sdev, qdepth);
5832 }
5833 
5834 static int hpsa_scan_finished(struct Scsi_Host *sh,
5835 	unsigned long elapsed_time)
5836 {
5837 	struct ctlr_info *h = shost_to_hba(sh);
5838 	unsigned long flags;
5839 	int finished;
5840 
5841 	spin_lock_irqsave(&h->scan_lock, flags);
5842 	finished = h->scan_finished;
5843 	spin_unlock_irqrestore(&h->scan_lock, flags);
5844 	return finished;
5845 }
5846 
5847 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5848 {
5849 	struct Scsi_Host *sh;
5850 
5851 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5852 	if (sh == NULL) {
5853 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5854 		return -ENOMEM;
5855 	}
5856 
5857 	sh->io_port = 0;
5858 	sh->n_io_port = 0;
5859 	sh->this_id = -1;
5860 	sh->max_channel = 3;
5861 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5862 	sh->max_lun = HPSA_MAX_LUN;
5863 	sh->max_id = HPSA_MAX_LUN;
5864 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5865 	sh->cmd_per_lun = sh->can_queue;
5866 	sh->sg_tablesize = h->maxsgentries;
5867 	sh->transportt = hpsa_sas_transport_template;
5868 	sh->hostdata[0] = (unsigned long) h;
5869 	sh->irq = pci_irq_vector(h->pdev, 0);
5870 	sh->unique_id = sh->irq;
5871 
5872 	h->scsi_host = sh;
5873 	return 0;
5874 }
5875 
5876 static int hpsa_scsi_add_host(struct ctlr_info *h)
5877 {
5878 	int rv;
5879 
5880 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5881 	if (rv) {
5882 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5883 		return rv;
5884 	}
5885 	scsi_scan_host(h->scsi_host);
5886 	return 0;
5887 }
5888 
5889 /*
5890  * The block layer has already gone to the trouble of picking out a unique,
5891  * small-integer tag for this request.  We use an offset from that value as
5892  * an index to select our command block.  (The offset allows us to reserve the
5893  * low-numbered entries for our own uses.)
5894  */
5895 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5896 {
5897 	int idx = scsi_cmd_to_rq(scmd)->tag;
5898 
5899 	if (idx < 0)
5900 		return idx;
5901 
5902 	/* Offset to leave space for internal cmds. */
5903 	return idx += HPSA_NRESERVED_CMDS;
5904 }
5905 
5906 /*
5907  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5908  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5909  */
5910 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5911 				struct CommandList *c, unsigned char lunaddr[],
5912 				int reply_queue)
5913 {
5914 	int rc;
5915 
5916 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5917 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5918 			NULL, 0, 0, lunaddr, TYPE_CMD);
5919 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5920 	if (rc)
5921 		return rc;
5922 	/* no unmap needed here because no data xfer. */
5923 
5924 	/* Check if the unit is already ready. */
5925 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5926 		return 0;
5927 
5928 	/*
5929 	 * The first command sent after reset will receive "unit attention" to
5930 	 * indicate that the LUN has been reset...this is actually what we're
5931 	 * looking for (but, success is good too).
5932 	 */
5933 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5934 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5935 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5936 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5937 		return 0;
5938 
5939 	return 1;
5940 }
5941 
5942 /*
5943  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5944  * returns zero when the unit is ready, and non-zero when giving up.
5945  */
5946 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5947 				struct CommandList *c,
5948 				unsigned char lunaddr[], int reply_queue)
5949 {
5950 	int rc;
5951 	int count = 0;
5952 	int waittime = 1; /* seconds */
5953 
5954 	/* Send test unit ready until device ready, or give up. */
5955 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5956 
5957 		/*
5958 		 * Wait for a bit.  do this first, because if we send
5959 		 * the TUR right away, the reset will just abort it.
5960 		 */
5961 		msleep(1000 * waittime);
5962 
5963 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5964 		if (!rc)
5965 			break;
5966 
5967 		/* Increase wait time with each try, up to a point. */
5968 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5969 			waittime *= 2;
5970 
5971 		dev_warn(&h->pdev->dev,
5972 			 "waiting %d secs for device to become ready.\n",
5973 			 waittime);
5974 	}
5975 
5976 	return rc;
5977 }
5978 
5979 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5980 					   unsigned char lunaddr[],
5981 					   int reply_queue)
5982 {
5983 	int first_queue;
5984 	int last_queue;
5985 	int rq;
5986 	int rc = 0;
5987 	struct CommandList *c;
5988 
5989 	c = cmd_alloc(h);
5990 
5991 	/*
5992 	 * If no specific reply queue was requested, then send the TUR
5993 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5994 	 * the loop exactly once using only the specified queue.
5995 	 */
5996 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5997 		first_queue = 0;
5998 		last_queue = h->nreply_queues - 1;
5999 	} else {
6000 		first_queue = reply_queue;
6001 		last_queue = reply_queue;
6002 	}
6003 
6004 	for (rq = first_queue; rq <= last_queue; rq++) {
6005 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
6006 		if (rc)
6007 			break;
6008 	}
6009 
6010 	if (rc)
6011 		dev_warn(&h->pdev->dev, "giving up on device.\n");
6012 	else
6013 		dev_warn(&h->pdev->dev, "device is ready.\n");
6014 
6015 	cmd_free(h, c);
6016 	return rc;
6017 }
6018 
6019 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6020  * complaining.  Doing a host- or bus-reset can't do anything good here.
6021  */
6022 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6023 {
6024 	int rc = SUCCESS;
6025 	int i;
6026 	struct ctlr_info *h;
6027 	struct hpsa_scsi_dev_t *dev = NULL;
6028 	u8 reset_type;
6029 	char msg[48];
6030 	unsigned long flags;
6031 
6032 	/* find the controller to which the command to be aborted was sent */
6033 	h = sdev_to_hba(scsicmd->device);
6034 	if (h == NULL) /* paranoia */
6035 		return FAILED;
6036 
6037 	spin_lock_irqsave(&h->reset_lock, flags);
6038 	h->reset_in_progress = 1;
6039 	spin_unlock_irqrestore(&h->reset_lock, flags);
6040 
6041 	if (lockup_detected(h)) {
6042 		rc = FAILED;
6043 		goto return_reset_status;
6044 	}
6045 
6046 	dev = scsicmd->device->hostdata;
6047 	if (!dev) {
6048 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6049 		rc = FAILED;
6050 		goto return_reset_status;
6051 	}
6052 
6053 	if (dev->devtype == TYPE_ENCLOSURE) {
6054 		rc = SUCCESS;
6055 		goto return_reset_status;
6056 	}
6057 
6058 	/* if controller locked up, we can guarantee command won't complete */
6059 	if (lockup_detected(h)) {
6060 		snprintf(msg, sizeof(msg),
6061 			 "cmd %d RESET FAILED, lockup detected",
6062 			 hpsa_get_cmd_index(scsicmd));
6063 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6064 		rc = FAILED;
6065 		goto return_reset_status;
6066 	}
6067 
6068 	/* this reset request might be the result of a lockup; check */
6069 	if (detect_controller_lockup(h)) {
6070 		snprintf(msg, sizeof(msg),
6071 			 "cmd %d RESET FAILED, new lockup detected",
6072 			 hpsa_get_cmd_index(scsicmd));
6073 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6074 		rc = FAILED;
6075 		goto return_reset_status;
6076 	}
6077 
6078 	/* Do not attempt on controller */
6079 	if (is_hba_lunid(dev->scsi3addr)) {
6080 		rc = SUCCESS;
6081 		goto return_reset_status;
6082 	}
6083 
6084 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6085 		reset_type = HPSA_DEVICE_RESET_MSG;
6086 	else
6087 		reset_type = HPSA_PHYS_TARGET_RESET;
6088 
6089 	sprintf(msg, "resetting %s",
6090 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6091 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6092 
6093 	/*
6094 	 * wait to see if any commands will complete before sending reset
6095 	 */
6096 	dev->in_reset = true; /* block any new cmds from OS for this device */
6097 	for (i = 0; i < 10; i++) {
6098 		if (atomic_read(&dev->commands_outstanding) > 0)
6099 			msleep(1000);
6100 		else
6101 			break;
6102 	}
6103 
6104 	/* send a reset to the SCSI LUN which the command was sent to */
6105 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6106 	if (rc == 0)
6107 		rc = SUCCESS;
6108 	else
6109 		rc = FAILED;
6110 
6111 	sprintf(msg, "reset %s %s",
6112 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6113 		rc == SUCCESS ? "completed successfully" : "failed");
6114 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6115 
6116 return_reset_status:
6117 	spin_lock_irqsave(&h->reset_lock, flags);
6118 	h->reset_in_progress = 0;
6119 	if (dev)
6120 		dev->in_reset = false;
6121 	spin_unlock_irqrestore(&h->reset_lock, flags);
6122 	return rc;
6123 }
6124 
6125 /*
6126  * For operations with an associated SCSI command, a command block is allocated
6127  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6128  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6129  * the complement, although cmd_free() may be called instead.
6130  * This function is only called for new requests from queue_command.
6131  */
6132 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6133 					    struct scsi_cmnd *scmd)
6134 {
6135 	int idx = hpsa_get_cmd_index(scmd);
6136 	struct CommandList *c = h->cmd_pool + idx;
6137 
6138 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6139 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6140 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6141 		/* The index value comes from the block layer, so if it's out of
6142 		 * bounds, it's probably not our bug.
6143 		 */
6144 		BUG();
6145 	}
6146 
6147 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6148 		/*
6149 		 * We expect that the SCSI layer will hand us a unique tag
6150 		 * value.  Thus, there should never be a collision here between
6151 		 * two requests...because if the selected command isn't idle
6152 		 * then someone is going to be very disappointed.
6153 		 */
6154 		if (idx != h->last_collision_tag) { /* Print once per tag */
6155 			dev_warn(&h->pdev->dev,
6156 				"%s: tag collision (tag=%d)\n", __func__, idx);
6157 			if (scmd)
6158 				scsi_print_command(scmd);
6159 			h->last_collision_tag = idx;
6160 		}
6161 		return NULL;
6162 	}
6163 
6164 	atomic_inc(&c->refcount);
6165 	hpsa_cmd_partial_init(h, idx, c);
6166 
6167 	/*
6168 	 * This is a new command obtained from queue_command so
6169 	 * there have not been any driver initiated retry attempts.
6170 	 */
6171 	c->retry_pending = false;
6172 
6173 	return c;
6174 }
6175 
6176 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6177 {
6178 	/*
6179 	 * Release our reference to the block.  We don't need to do anything
6180 	 * else to free it, because it is accessed by index.
6181 	 */
6182 	(void)atomic_dec(&c->refcount);
6183 }
6184 
6185 /*
6186  * For operations that cannot sleep, a command block is allocated at init,
6187  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6188  * which ones are free or in use.  Lock must be held when calling this.
6189  * cmd_free() is the complement.
6190  * This function never gives up and returns NULL.  If it hangs,
6191  * another thread must call cmd_free() to free some tags.
6192  */
6193 
6194 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6195 {
6196 	struct CommandList *c;
6197 	int refcount, i;
6198 	int offset = 0;
6199 
6200 	/*
6201 	 * There is some *extremely* small but non-zero chance that that
6202 	 * multiple threads could get in here, and one thread could
6203 	 * be scanning through the list of bits looking for a free
6204 	 * one, but the free ones are always behind him, and other
6205 	 * threads sneak in behind him and eat them before he can
6206 	 * get to them, so that while there is always a free one, a
6207 	 * very unlucky thread might be starved anyway, never able to
6208 	 * beat the other threads.  In reality, this happens so
6209 	 * infrequently as to be indistinguishable from never.
6210 	 *
6211 	 * Note that we start allocating commands before the SCSI host structure
6212 	 * is initialized.  Since the search starts at bit zero, this
6213 	 * all works, since we have at least one command structure available;
6214 	 * however, it means that the structures with the low indexes have to be
6215 	 * reserved for driver-initiated requests, while requests from the block
6216 	 * layer will use the higher indexes.
6217 	 */
6218 
6219 	for (;;) {
6220 		i = find_next_zero_bit(h->cmd_pool_bits,
6221 					HPSA_NRESERVED_CMDS,
6222 					offset);
6223 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6224 			offset = 0;
6225 			continue;
6226 		}
6227 		c = h->cmd_pool + i;
6228 		refcount = atomic_inc_return(&c->refcount);
6229 		if (unlikely(refcount > 1)) {
6230 			cmd_free(h, c); /* already in use */
6231 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6232 			continue;
6233 		}
6234 		set_bit(i & (BITS_PER_LONG - 1),
6235 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6236 		break; /* it's ours now. */
6237 	}
6238 	hpsa_cmd_partial_init(h, i, c);
6239 	c->device = NULL;
6240 
6241 	/*
6242 	 * cmd_alloc is for "internal" commands and they are never
6243 	 * retried.
6244 	 */
6245 	c->retry_pending = false;
6246 
6247 	return c;
6248 }
6249 
6250 /*
6251  * This is the complementary operation to cmd_alloc().  Note, however, in some
6252  * corner cases it may also be used to free blocks allocated by
6253  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6254  * the clear-bit is harmless.
6255  */
6256 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6257 {
6258 	if (atomic_dec_and_test(&c->refcount)) {
6259 		int i;
6260 
6261 		i = c - h->cmd_pool;
6262 		clear_bit(i & (BITS_PER_LONG - 1),
6263 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6264 	}
6265 }
6266 
6267 #ifdef CONFIG_COMPAT
6268 
6269 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6270 	void __user *arg)
6271 {
6272 	struct ctlr_info *h = sdev_to_hba(dev);
6273 	IOCTL32_Command_struct __user *arg32 = arg;
6274 	IOCTL_Command_struct arg64;
6275 	int err;
6276 	u32 cp;
6277 
6278 	if (!arg)
6279 		return -EINVAL;
6280 
6281 	memset(&arg64, 0, sizeof(arg64));
6282 	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6283 		return -EFAULT;
6284 	if (get_user(cp, &arg32->buf))
6285 		return -EFAULT;
6286 	arg64.buf = compat_ptr(cp);
6287 
6288 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6289 		return -EAGAIN;
6290 	err = hpsa_passthru_ioctl(h, &arg64);
6291 	atomic_inc(&h->passthru_cmds_avail);
6292 	if (err)
6293 		return err;
6294 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6295 			 sizeof(arg32->error_info)))
6296 		return -EFAULT;
6297 	return 0;
6298 }
6299 
6300 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6301 	unsigned int cmd, void __user *arg)
6302 {
6303 	struct ctlr_info *h = sdev_to_hba(dev);
6304 	BIG_IOCTL32_Command_struct __user *arg32 = arg;
6305 	BIG_IOCTL_Command_struct arg64;
6306 	int err;
6307 	u32 cp;
6308 
6309 	if (!arg)
6310 		return -EINVAL;
6311 	memset(&arg64, 0, sizeof(arg64));
6312 	if (copy_from_user(&arg64, arg32,
6313 			   offsetof(BIG_IOCTL32_Command_struct, buf)))
6314 		return -EFAULT;
6315 	if (get_user(cp, &arg32->buf))
6316 		return -EFAULT;
6317 	arg64.buf = compat_ptr(cp);
6318 
6319 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6320 		return -EAGAIN;
6321 	err = hpsa_big_passthru_ioctl(h, &arg64);
6322 	atomic_inc(&h->passthru_cmds_avail);
6323 	if (err)
6324 		return err;
6325 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6326 			 sizeof(arg32->error_info)))
6327 		return -EFAULT;
6328 	return 0;
6329 }
6330 
6331 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6332 			     void __user *arg)
6333 {
6334 	switch (cmd) {
6335 	case CCISS_GETPCIINFO:
6336 	case CCISS_GETINTINFO:
6337 	case CCISS_SETINTINFO:
6338 	case CCISS_GETNODENAME:
6339 	case CCISS_SETNODENAME:
6340 	case CCISS_GETHEARTBEAT:
6341 	case CCISS_GETBUSTYPES:
6342 	case CCISS_GETFIRMVER:
6343 	case CCISS_GETDRIVVER:
6344 	case CCISS_REVALIDVOLS:
6345 	case CCISS_DEREGDISK:
6346 	case CCISS_REGNEWDISK:
6347 	case CCISS_REGNEWD:
6348 	case CCISS_RESCANDISK:
6349 	case CCISS_GETLUNINFO:
6350 		return hpsa_ioctl(dev, cmd, arg);
6351 
6352 	case CCISS_PASSTHRU32:
6353 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6354 	case CCISS_BIG_PASSTHRU32:
6355 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6356 
6357 	default:
6358 		return -ENOIOCTLCMD;
6359 	}
6360 }
6361 #endif
6362 
6363 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6364 {
6365 	struct hpsa_pci_info pciinfo;
6366 
6367 	if (!argp)
6368 		return -EINVAL;
6369 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6370 	pciinfo.bus = h->pdev->bus->number;
6371 	pciinfo.dev_fn = h->pdev->devfn;
6372 	pciinfo.board_id = h->board_id;
6373 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6374 		return -EFAULT;
6375 	return 0;
6376 }
6377 
6378 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6379 {
6380 	DriverVer_type DriverVer;
6381 	unsigned char vmaj, vmin, vsubmin;
6382 	int rc;
6383 
6384 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6385 		&vmaj, &vmin, &vsubmin);
6386 	if (rc != 3) {
6387 		dev_info(&h->pdev->dev, "driver version string '%s' "
6388 			"unrecognized.", HPSA_DRIVER_VERSION);
6389 		vmaj = 0;
6390 		vmin = 0;
6391 		vsubmin = 0;
6392 	}
6393 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6394 	if (!argp)
6395 		return -EINVAL;
6396 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6397 		return -EFAULT;
6398 	return 0;
6399 }
6400 
6401 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6402 			       IOCTL_Command_struct *iocommand)
6403 {
6404 	struct CommandList *c;
6405 	char *buff = NULL;
6406 	u64 temp64;
6407 	int rc = 0;
6408 
6409 	if (!capable(CAP_SYS_RAWIO))
6410 		return -EPERM;
6411 	if ((iocommand->buf_size < 1) &&
6412 	    (iocommand->Request.Type.Direction != XFER_NONE)) {
6413 		return -EINVAL;
6414 	}
6415 	if (iocommand->buf_size > 0) {
6416 		buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6417 		if (buff == NULL)
6418 			return -ENOMEM;
6419 		if (iocommand->Request.Type.Direction & XFER_WRITE) {
6420 			/* Copy the data into the buffer we created */
6421 			if (copy_from_user(buff, iocommand->buf,
6422 				iocommand->buf_size)) {
6423 				rc = -EFAULT;
6424 				goto out_kfree;
6425 			}
6426 		} else {
6427 			memset(buff, 0, iocommand->buf_size);
6428 		}
6429 	}
6430 	c = cmd_alloc(h);
6431 
6432 	/* Fill in the command type */
6433 	c->cmd_type = CMD_IOCTL_PEND;
6434 	c->scsi_cmd = SCSI_CMD_BUSY;
6435 	/* Fill in Command Header */
6436 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6437 	if (iocommand->buf_size > 0) {	/* buffer to fill */
6438 		c->Header.SGList = 1;
6439 		c->Header.SGTotal = cpu_to_le16(1);
6440 	} else	{ /* no buffers to fill */
6441 		c->Header.SGList = 0;
6442 		c->Header.SGTotal = cpu_to_le16(0);
6443 	}
6444 	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6445 
6446 	/* Fill in Request block */
6447 	memcpy(&c->Request, &iocommand->Request,
6448 		sizeof(c->Request));
6449 
6450 	/* Fill in the scatter gather information */
6451 	if (iocommand->buf_size > 0) {
6452 		temp64 = dma_map_single(&h->pdev->dev, buff,
6453 			iocommand->buf_size, DMA_BIDIRECTIONAL);
6454 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6455 			c->SG[0].Addr = cpu_to_le64(0);
6456 			c->SG[0].Len = cpu_to_le32(0);
6457 			rc = -ENOMEM;
6458 			goto out;
6459 		}
6460 		c->SG[0].Addr = cpu_to_le64(temp64);
6461 		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6462 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6463 	}
6464 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6465 					NO_TIMEOUT);
6466 	if (iocommand->buf_size > 0)
6467 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6468 	check_ioctl_unit_attention(h, c);
6469 	if (rc) {
6470 		rc = -EIO;
6471 		goto out;
6472 	}
6473 
6474 	/* Copy the error information out */
6475 	memcpy(&iocommand->error_info, c->err_info,
6476 		sizeof(iocommand->error_info));
6477 	if ((iocommand->Request.Type.Direction & XFER_READ) &&
6478 		iocommand->buf_size > 0) {
6479 		/* Copy the data out of the buffer we created */
6480 		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6481 			rc = -EFAULT;
6482 			goto out;
6483 		}
6484 	}
6485 out:
6486 	cmd_free(h, c);
6487 out_kfree:
6488 	kfree(buff);
6489 	return rc;
6490 }
6491 
6492 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6493 				   BIG_IOCTL_Command_struct *ioc)
6494 {
6495 	struct CommandList *c;
6496 	unsigned char **buff = NULL;
6497 	int *buff_size = NULL;
6498 	u64 temp64;
6499 	BYTE sg_used = 0;
6500 	int status = 0;
6501 	u32 left;
6502 	u32 sz;
6503 	BYTE __user *data_ptr;
6504 
6505 	if (!capable(CAP_SYS_RAWIO))
6506 		return -EPERM;
6507 
6508 	if ((ioc->buf_size < 1) &&
6509 	    (ioc->Request.Type.Direction != XFER_NONE))
6510 		return -EINVAL;
6511 	/* Check kmalloc limits  using all SGs */
6512 	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6513 		return -EINVAL;
6514 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6515 		return -EINVAL;
6516 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6517 	if (!buff) {
6518 		status = -ENOMEM;
6519 		goto cleanup1;
6520 	}
6521 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6522 	if (!buff_size) {
6523 		status = -ENOMEM;
6524 		goto cleanup1;
6525 	}
6526 	left = ioc->buf_size;
6527 	data_ptr = ioc->buf;
6528 	while (left) {
6529 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6530 		buff_size[sg_used] = sz;
6531 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6532 		if (buff[sg_used] == NULL) {
6533 			status = -ENOMEM;
6534 			goto cleanup1;
6535 		}
6536 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6537 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6538 				status = -EFAULT;
6539 				goto cleanup1;
6540 			}
6541 		} else
6542 			memset(buff[sg_used], 0, sz);
6543 		left -= sz;
6544 		data_ptr += sz;
6545 		sg_used++;
6546 	}
6547 	c = cmd_alloc(h);
6548 
6549 	c->cmd_type = CMD_IOCTL_PEND;
6550 	c->scsi_cmd = SCSI_CMD_BUSY;
6551 	c->Header.ReplyQueue = 0;
6552 	c->Header.SGList = (u8) sg_used;
6553 	c->Header.SGTotal = cpu_to_le16(sg_used);
6554 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6555 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6556 	if (ioc->buf_size > 0) {
6557 		int i;
6558 		for (i = 0; i < sg_used; i++) {
6559 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6560 				    buff_size[i], DMA_BIDIRECTIONAL);
6561 			if (dma_mapping_error(&h->pdev->dev,
6562 							(dma_addr_t) temp64)) {
6563 				c->SG[i].Addr = cpu_to_le64(0);
6564 				c->SG[i].Len = cpu_to_le32(0);
6565 				hpsa_pci_unmap(h->pdev, c, i,
6566 					DMA_BIDIRECTIONAL);
6567 				status = -ENOMEM;
6568 				goto cleanup0;
6569 			}
6570 			c->SG[i].Addr = cpu_to_le64(temp64);
6571 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6572 			c->SG[i].Ext = cpu_to_le32(0);
6573 		}
6574 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6575 	}
6576 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6577 						NO_TIMEOUT);
6578 	if (sg_used)
6579 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6580 	check_ioctl_unit_attention(h, c);
6581 	if (status) {
6582 		status = -EIO;
6583 		goto cleanup0;
6584 	}
6585 
6586 	/* Copy the error information out */
6587 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6588 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6589 		int i;
6590 
6591 		/* Copy the data out of the buffer we created */
6592 		BYTE __user *ptr = ioc->buf;
6593 		for (i = 0; i < sg_used; i++) {
6594 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6595 				status = -EFAULT;
6596 				goto cleanup0;
6597 			}
6598 			ptr += buff_size[i];
6599 		}
6600 	}
6601 	status = 0;
6602 cleanup0:
6603 	cmd_free(h, c);
6604 cleanup1:
6605 	if (buff) {
6606 		int i;
6607 
6608 		for (i = 0; i < sg_used; i++)
6609 			kfree(buff[i]);
6610 		kfree(buff);
6611 	}
6612 	kfree(buff_size);
6613 	return status;
6614 }
6615 
6616 static void check_ioctl_unit_attention(struct ctlr_info *h,
6617 	struct CommandList *c)
6618 {
6619 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6620 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6621 		(void) check_for_unit_attention(h, c);
6622 }
6623 
6624 /*
6625  * ioctl
6626  */
6627 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6628 		      void __user *argp)
6629 {
6630 	struct ctlr_info *h = sdev_to_hba(dev);
6631 	int rc;
6632 
6633 	switch (cmd) {
6634 	case CCISS_DEREGDISK:
6635 	case CCISS_REGNEWDISK:
6636 	case CCISS_REGNEWD:
6637 		hpsa_scan_start(h->scsi_host);
6638 		return 0;
6639 	case CCISS_GETPCIINFO:
6640 		return hpsa_getpciinfo_ioctl(h, argp);
6641 	case CCISS_GETDRIVVER:
6642 		return hpsa_getdrivver_ioctl(h, argp);
6643 	case CCISS_PASSTHRU: {
6644 		IOCTL_Command_struct iocommand;
6645 
6646 		if (!argp)
6647 			return -EINVAL;
6648 		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6649 			return -EFAULT;
6650 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6651 			return -EAGAIN;
6652 		rc = hpsa_passthru_ioctl(h, &iocommand);
6653 		atomic_inc(&h->passthru_cmds_avail);
6654 		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6655 			rc = -EFAULT;
6656 		return rc;
6657 	}
6658 	case CCISS_BIG_PASSTHRU: {
6659 		BIG_IOCTL_Command_struct ioc;
6660 		if (!argp)
6661 			return -EINVAL;
6662 		if (copy_from_user(&ioc, argp, sizeof(ioc)))
6663 			return -EFAULT;
6664 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6665 			return -EAGAIN;
6666 		rc = hpsa_big_passthru_ioctl(h, &ioc);
6667 		atomic_inc(&h->passthru_cmds_avail);
6668 		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6669 			rc = -EFAULT;
6670 		return rc;
6671 	}
6672 	default:
6673 		return -ENOTTY;
6674 	}
6675 }
6676 
6677 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6678 {
6679 	struct CommandList *c;
6680 
6681 	c = cmd_alloc(h);
6682 
6683 	/* fill_cmd can't fail here, no data buffer to map */
6684 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6685 		RAID_CTLR_LUNID, TYPE_MSG);
6686 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6687 	c->waiting = NULL;
6688 	enqueue_cmd_and_start_io(h, c);
6689 	/* Don't wait for completion, the reset won't complete.  Don't free
6690 	 * the command either.  This is the last command we will send before
6691 	 * re-initializing everything, so it doesn't matter and won't leak.
6692 	 */
6693 	return;
6694 }
6695 
6696 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6697 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6698 	int cmd_type)
6699 {
6700 	enum dma_data_direction dir = DMA_NONE;
6701 
6702 	c->cmd_type = CMD_IOCTL_PEND;
6703 	c->scsi_cmd = SCSI_CMD_BUSY;
6704 	c->Header.ReplyQueue = 0;
6705 	if (buff != NULL && size > 0) {
6706 		c->Header.SGList = 1;
6707 		c->Header.SGTotal = cpu_to_le16(1);
6708 	} else {
6709 		c->Header.SGList = 0;
6710 		c->Header.SGTotal = cpu_to_le16(0);
6711 	}
6712 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6713 
6714 	if (cmd_type == TYPE_CMD) {
6715 		switch (cmd) {
6716 		case HPSA_INQUIRY:
6717 			/* are we trying to read a vital product page */
6718 			if (page_code & VPD_PAGE) {
6719 				c->Request.CDB[1] = 0x01;
6720 				c->Request.CDB[2] = (page_code & 0xff);
6721 			}
6722 			c->Request.CDBLen = 6;
6723 			c->Request.type_attr_dir =
6724 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6725 			c->Request.Timeout = 0;
6726 			c->Request.CDB[0] = HPSA_INQUIRY;
6727 			c->Request.CDB[4] = size & 0xFF;
6728 			break;
6729 		case RECEIVE_DIAGNOSTIC:
6730 			c->Request.CDBLen = 6;
6731 			c->Request.type_attr_dir =
6732 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6733 			c->Request.Timeout = 0;
6734 			c->Request.CDB[0] = cmd;
6735 			c->Request.CDB[1] = 1;
6736 			c->Request.CDB[2] = 1;
6737 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6738 			c->Request.CDB[4] = size & 0xFF;
6739 			break;
6740 		case HPSA_REPORT_LOG:
6741 		case HPSA_REPORT_PHYS:
6742 			/* Talking to controller so It's a physical command
6743 			   mode = 00 target = 0.  Nothing to write.
6744 			 */
6745 			c->Request.CDBLen = 12;
6746 			c->Request.type_attr_dir =
6747 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6748 			c->Request.Timeout = 0;
6749 			c->Request.CDB[0] = cmd;
6750 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6751 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6752 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6753 			c->Request.CDB[9] = size & 0xFF;
6754 			break;
6755 		case BMIC_SENSE_DIAG_OPTIONS:
6756 			c->Request.CDBLen = 16;
6757 			c->Request.type_attr_dir =
6758 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6759 			c->Request.Timeout = 0;
6760 			/* Spec says this should be BMIC_WRITE */
6761 			c->Request.CDB[0] = BMIC_READ;
6762 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6763 			break;
6764 		case BMIC_SET_DIAG_OPTIONS:
6765 			c->Request.CDBLen = 16;
6766 			c->Request.type_attr_dir =
6767 					TYPE_ATTR_DIR(cmd_type,
6768 						ATTR_SIMPLE, XFER_WRITE);
6769 			c->Request.Timeout = 0;
6770 			c->Request.CDB[0] = BMIC_WRITE;
6771 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6772 			break;
6773 		case HPSA_CACHE_FLUSH:
6774 			c->Request.CDBLen = 12;
6775 			c->Request.type_attr_dir =
6776 					TYPE_ATTR_DIR(cmd_type,
6777 						ATTR_SIMPLE, XFER_WRITE);
6778 			c->Request.Timeout = 0;
6779 			c->Request.CDB[0] = BMIC_WRITE;
6780 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6781 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6782 			c->Request.CDB[8] = size & 0xFF;
6783 			break;
6784 		case TEST_UNIT_READY:
6785 			c->Request.CDBLen = 6;
6786 			c->Request.type_attr_dir =
6787 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6788 			c->Request.Timeout = 0;
6789 			break;
6790 		case HPSA_GET_RAID_MAP:
6791 			c->Request.CDBLen = 12;
6792 			c->Request.type_attr_dir =
6793 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6794 			c->Request.Timeout = 0;
6795 			c->Request.CDB[0] = HPSA_CISS_READ;
6796 			c->Request.CDB[1] = cmd;
6797 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6798 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6799 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6800 			c->Request.CDB[9] = size & 0xFF;
6801 			break;
6802 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6803 			c->Request.CDBLen = 10;
6804 			c->Request.type_attr_dir =
6805 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6806 			c->Request.Timeout = 0;
6807 			c->Request.CDB[0] = BMIC_READ;
6808 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6809 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6810 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6811 			break;
6812 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6813 			c->Request.CDBLen = 10;
6814 			c->Request.type_attr_dir =
6815 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6816 			c->Request.Timeout = 0;
6817 			c->Request.CDB[0] = BMIC_READ;
6818 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6819 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6820 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6821 			break;
6822 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6823 			c->Request.CDBLen = 10;
6824 			c->Request.type_attr_dir =
6825 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6826 			c->Request.Timeout = 0;
6827 			c->Request.CDB[0] = BMIC_READ;
6828 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6829 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6830 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6831 			break;
6832 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6833 			c->Request.CDBLen = 10;
6834 			c->Request.type_attr_dir =
6835 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6836 			c->Request.Timeout = 0;
6837 			c->Request.CDB[0] = BMIC_READ;
6838 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6839 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6840 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6841 			break;
6842 		case BMIC_IDENTIFY_CONTROLLER:
6843 			c->Request.CDBLen = 10;
6844 			c->Request.type_attr_dir =
6845 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6846 			c->Request.Timeout = 0;
6847 			c->Request.CDB[0] = BMIC_READ;
6848 			c->Request.CDB[1] = 0;
6849 			c->Request.CDB[2] = 0;
6850 			c->Request.CDB[3] = 0;
6851 			c->Request.CDB[4] = 0;
6852 			c->Request.CDB[5] = 0;
6853 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6854 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6855 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6856 			c->Request.CDB[9] = 0;
6857 			break;
6858 		default:
6859 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6860 			BUG();
6861 		}
6862 	} else if (cmd_type == TYPE_MSG) {
6863 		switch (cmd) {
6864 
6865 		case  HPSA_PHYS_TARGET_RESET:
6866 			c->Request.CDBLen = 16;
6867 			c->Request.type_attr_dir =
6868 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6869 			c->Request.Timeout = 0; /* Don't time out */
6870 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6871 			c->Request.CDB[0] = HPSA_RESET;
6872 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6873 			/* Physical target reset needs no control bytes 4-7*/
6874 			c->Request.CDB[4] = 0x00;
6875 			c->Request.CDB[5] = 0x00;
6876 			c->Request.CDB[6] = 0x00;
6877 			c->Request.CDB[7] = 0x00;
6878 			break;
6879 		case  HPSA_DEVICE_RESET_MSG:
6880 			c->Request.CDBLen = 16;
6881 			c->Request.type_attr_dir =
6882 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6883 			c->Request.Timeout = 0; /* Don't time out */
6884 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6885 			c->Request.CDB[0] =  cmd;
6886 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6887 			/* If bytes 4-7 are zero, it means reset the */
6888 			/* LunID device */
6889 			c->Request.CDB[4] = 0x00;
6890 			c->Request.CDB[5] = 0x00;
6891 			c->Request.CDB[6] = 0x00;
6892 			c->Request.CDB[7] = 0x00;
6893 			break;
6894 		default:
6895 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6896 				cmd);
6897 			BUG();
6898 		}
6899 	} else {
6900 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6901 		BUG();
6902 	}
6903 
6904 	switch (GET_DIR(c->Request.type_attr_dir)) {
6905 	case XFER_READ:
6906 		dir = DMA_FROM_DEVICE;
6907 		break;
6908 	case XFER_WRITE:
6909 		dir = DMA_TO_DEVICE;
6910 		break;
6911 	case XFER_NONE:
6912 		dir = DMA_NONE;
6913 		break;
6914 	default:
6915 		dir = DMA_BIDIRECTIONAL;
6916 	}
6917 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6918 		return -1;
6919 	return 0;
6920 }
6921 
6922 /*
6923  * Map (physical) PCI mem into (virtual) kernel space
6924  */
6925 static void __iomem *remap_pci_mem(ulong base, ulong size)
6926 {
6927 	ulong page_base = ((ulong) base) & PAGE_MASK;
6928 	ulong page_offs = ((ulong) base) - page_base;
6929 	void __iomem *page_remapped = ioremap(page_base,
6930 		page_offs + size);
6931 
6932 	return page_remapped ? (page_remapped + page_offs) : NULL;
6933 }
6934 
6935 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6936 {
6937 	return h->access.command_completed(h, q);
6938 }
6939 
6940 static inline bool interrupt_pending(struct ctlr_info *h)
6941 {
6942 	return h->access.intr_pending(h);
6943 }
6944 
6945 static inline long interrupt_not_for_us(struct ctlr_info *h)
6946 {
6947 	return (h->access.intr_pending(h) == 0) ||
6948 		(h->interrupts_enabled == 0);
6949 }
6950 
6951 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6952 	u32 raw_tag)
6953 {
6954 	if (unlikely(tag_index >= h->nr_cmds)) {
6955 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6956 		return 1;
6957 	}
6958 	return 0;
6959 }
6960 
6961 static inline void finish_cmd(struct CommandList *c)
6962 {
6963 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6964 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6965 			|| c->cmd_type == CMD_IOACCEL2))
6966 		complete_scsi_command(c);
6967 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6968 		complete(c->waiting);
6969 }
6970 
6971 /* process completion of an indexed ("direct lookup") command */
6972 static inline void process_indexed_cmd(struct ctlr_info *h,
6973 	u32 raw_tag)
6974 {
6975 	u32 tag_index;
6976 	struct CommandList *c;
6977 
6978 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6979 	if (!bad_tag(h, tag_index, raw_tag)) {
6980 		c = h->cmd_pool + tag_index;
6981 		finish_cmd(c);
6982 	}
6983 }
6984 
6985 /* Some controllers, like p400, will give us one interrupt
6986  * after a soft reset, even if we turned interrupts off.
6987  * Only need to check for this in the hpsa_xxx_discard_completions
6988  * functions.
6989  */
6990 static int ignore_bogus_interrupt(struct ctlr_info *h)
6991 {
6992 	if (likely(!reset_devices))
6993 		return 0;
6994 
6995 	if (likely(h->interrupts_enabled))
6996 		return 0;
6997 
6998 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6999 		"(known firmware bug.)  Ignoring.\n");
7000 
7001 	return 1;
7002 }
7003 
7004 /*
7005  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7006  * Relies on (h-q[x] == x) being true for x such that
7007  * 0 <= x < MAX_REPLY_QUEUES.
7008  */
7009 static struct ctlr_info *queue_to_hba(u8 *queue)
7010 {
7011 	return container_of((queue - *queue), struct ctlr_info, q[0]);
7012 }
7013 
7014 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7015 {
7016 	struct ctlr_info *h = queue_to_hba(queue);
7017 	u8 q = *(u8 *) queue;
7018 	u32 raw_tag;
7019 
7020 	if (ignore_bogus_interrupt(h))
7021 		return IRQ_NONE;
7022 
7023 	if (interrupt_not_for_us(h))
7024 		return IRQ_NONE;
7025 	h->last_intr_timestamp = get_jiffies_64();
7026 	while (interrupt_pending(h)) {
7027 		raw_tag = get_next_completion(h, q);
7028 		while (raw_tag != FIFO_EMPTY)
7029 			raw_tag = next_command(h, q);
7030 	}
7031 	return IRQ_HANDLED;
7032 }
7033 
7034 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7035 {
7036 	struct ctlr_info *h = queue_to_hba(queue);
7037 	u32 raw_tag;
7038 	u8 q = *(u8 *) queue;
7039 
7040 	if (ignore_bogus_interrupt(h))
7041 		return IRQ_NONE;
7042 
7043 	h->last_intr_timestamp = get_jiffies_64();
7044 	raw_tag = get_next_completion(h, q);
7045 	while (raw_tag != FIFO_EMPTY)
7046 		raw_tag = next_command(h, q);
7047 	return IRQ_HANDLED;
7048 }
7049 
7050 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7051 {
7052 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7053 	u32 raw_tag;
7054 	u8 q = *(u8 *) queue;
7055 
7056 	if (interrupt_not_for_us(h))
7057 		return IRQ_NONE;
7058 	h->last_intr_timestamp = get_jiffies_64();
7059 	while (interrupt_pending(h)) {
7060 		raw_tag = get_next_completion(h, q);
7061 		while (raw_tag != FIFO_EMPTY) {
7062 			process_indexed_cmd(h, raw_tag);
7063 			raw_tag = next_command(h, q);
7064 		}
7065 	}
7066 	return IRQ_HANDLED;
7067 }
7068 
7069 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7070 {
7071 	struct ctlr_info *h = queue_to_hba(queue);
7072 	u32 raw_tag;
7073 	u8 q = *(u8 *) queue;
7074 
7075 	h->last_intr_timestamp = get_jiffies_64();
7076 	raw_tag = get_next_completion(h, q);
7077 	while (raw_tag != FIFO_EMPTY) {
7078 		process_indexed_cmd(h, raw_tag);
7079 		raw_tag = next_command(h, q);
7080 	}
7081 	return IRQ_HANDLED;
7082 }
7083 
7084 /* Send a message CDB to the firmware. Careful, this only works
7085  * in simple mode, not performant mode due to the tag lookup.
7086  * We only ever use this immediately after a controller reset.
7087  */
7088 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7089 			unsigned char type)
7090 {
7091 	struct Command {
7092 		struct CommandListHeader CommandHeader;
7093 		struct RequestBlock Request;
7094 		struct ErrDescriptor ErrorDescriptor;
7095 	};
7096 	struct Command *cmd;
7097 	static const size_t cmd_sz = sizeof(*cmd) +
7098 					sizeof(cmd->ErrorDescriptor);
7099 	dma_addr_t paddr64;
7100 	__le32 paddr32;
7101 	u32 tag;
7102 	void __iomem *vaddr;
7103 	int i, err;
7104 
7105 	vaddr = pci_ioremap_bar(pdev, 0);
7106 	if (vaddr == NULL)
7107 		return -ENOMEM;
7108 
7109 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7110 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7111 	 * memory.
7112 	 */
7113 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7114 	if (err) {
7115 		iounmap(vaddr);
7116 		return err;
7117 	}
7118 
7119 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7120 	if (cmd == NULL) {
7121 		iounmap(vaddr);
7122 		return -ENOMEM;
7123 	}
7124 
7125 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7126 	 * although there's no guarantee, we assume that the address is at
7127 	 * least 4-byte aligned (most likely, it's page-aligned).
7128 	 */
7129 	paddr32 = cpu_to_le32(paddr64);
7130 
7131 	cmd->CommandHeader.ReplyQueue = 0;
7132 	cmd->CommandHeader.SGList = 0;
7133 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7134 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7135 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7136 
7137 	cmd->Request.CDBLen = 16;
7138 	cmd->Request.type_attr_dir =
7139 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7140 	cmd->Request.Timeout = 0; /* Don't time out */
7141 	cmd->Request.CDB[0] = opcode;
7142 	cmd->Request.CDB[1] = type;
7143 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7144 	cmd->ErrorDescriptor.Addr =
7145 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7146 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7147 
7148 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7149 
7150 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7151 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7152 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7153 			break;
7154 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7155 	}
7156 
7157 	iounmap(vaddr);
7158 
7159 	/* we leak the DMA buffer here ... no choice since the controller could
7160 	 *  still complete the command.
7161 	 */
7162 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7163 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7164 			opcode, type);
7165 		return -ETIMEDOUT;
7166 	}
7167 
7168 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7169 
7170 	if (tag & HPSA_ERROR_BIT) {
7171 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7172 			opcode, type);
7173 		return -EIO;
7174 	}
7175 
7176 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7177 		opcode, type);
7178 	return 0;
7179 }
7180 
7181 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7182 
7183 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7184 	void __iomem *vaddr, u32 use_doorbell)
7185 {
7186 
7187 	if (use_doorbell) {
7188 		/* For everything after the P600, the PCI power state method
7189 		 * of resetting the controller doesn't work, so we have this
7190 		 * other way using the doorbell register.
7191 		 */
7192 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7193 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7194 
7195 		/* PMC hardware guys tell us we need a 10 second delay after
7196 		 * doorbell reset and before any attempt to talk to the board
7197 		 * at all to ensure that this actually works and doesn't fall
7198 		 * over in some weird corner cases.
7199 		 */
7200 		msleep(10000);
7201 	} else { /* Try to do it the PCI power state way */
7202 
7203 		/* Quoting from the Open CISS Specification: "The Power
7204 		 * Management Control/Status Register (CSR) controls the power
7205 		 * state of the device.  The normal operating state is D0,
7206 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7207 		 * the controller, place the interface device in D3 then to D0,
7208 		 * this causes a secondary PCI reset which will reset the
7209 		 * controller." */
7210 
7211 		int rc = 0;
7212 
7213 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7214 
7215 		/* enter the D3hot power management state */
7216 		rc = pci_set_power_state(pdev, PCI_D3hot);
7217 		if (rc)
7218 			return rc;
7219 
7220 		msleep(500);
7221 
7222 		/* enter the D0 power management state */
7223 		rc = pci_set_power_state(pdev, PCI_D0);
7224 		if (rc)
7225 			return rc;
7226 
7227 		/*
7228 		 * The P600 requires a small delay when changing states.
7229 		 * Otherwise we may think the board did not reset and we bail.
7230 		 * This for kdump only and is particular to the P600.
7231 		 */
7232 		msleep(500);
7233 	}
7234 	return 0;
7235 }
7236 
7237 static void init_driver_version(char *driver_version, int len)
7238 {
7239 	memset(driver_version, 0, len);
7240 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7241 }
7242 
7243 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7244 {
7245 	char *driver_version;
7246 	int i, size = sizeof(cfgtable->driver_version);
7247 
7248 	driver_version = kmalloc(size, GFP_KERNEL);
7249 	if (!driver_version)
7250 		return -ENOMEM;
7251 
7252 	init_driver_version(driver_version, size);
7253 	for (i = 0; i < size; i++)
7254 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7255 	kfree(driver_version);
7256 	return 0;
7257 }
7258 
7259 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7260 					  unsigned char *driver_ver)
7261 {
7262 	int i;
7263 
7264 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7265 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7266 }
7267 
7268 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7269 {
7270 
7271 	char *driver_ver, *old_driver_ver;
7272 	int rc, size = sizeof(cfgtable->driver_version);
7273 
7274 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7275 	if (!old_driver_ver)
7276 		return -ENOMEM;
7277 	driver_ver = old_driver_ver + size;
7278 
7279 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7280 	 * should have been changed, otherwise we know the reset failed.
7281 	 */
7282 	init_driver_version(old_driver_ver, size);
7283 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7284 	rc = !memcmp(driver_ver, old_driver_ver, size);
7285 	kfree(old_driver_ver);
7286 	return rc;
7287 }
7288 /* This does a hard reset of the controller using PCI power management
7289  * states or the using the doorbell register.
7290  */
7291 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7292 {
7293 	u64 cfg_offset;
7294 	u32 cfg_base_addr;
7295 	u64 cfg_base_addr_index;
7296 	void __iomem *vaddr;
7297 	unsigned long paddr;
7298 	u32 misc_fw_support;
7299 	int rc;
7300 	struct CfgTable __iomem *cfgtable;
7301 	u32 use_doorbell;
7302 	u16 command_register;
7303 
7304 	/* For controllers as old as the P600, this is very nearly
7305 	 * the same thing as
7306 	 *
7307 	 * pci_save_state(pci_dev);
7308 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7309 	 * pci_set_power_state(pci_dev, PCI_D0);
7310 	 * pci_restore_state(pci_dev);
7311 	 *
7312 	 * For controllers newer than the P600, the pci power state
7313 	 * method of resetting doesn't work so we have another way
7314 	 * using the doorbell register.
7315 	 */
7316 
7317 	if (!ctlr_is_resettable(board_id)) {
7318 		dev_warn(&pdev->dev, "Controller not resettable\n");
7319 		return -ENODEV;
7320 	}
7321 
7322 	/* if controller is soft- but not hard resettable... */
7323 	if (!ctlr_is_hard_resettable(board_id))
7324 		return -ENOTSUPP; /* try soft reset later. */
7325 
7326 	/* Save the PCI command register */
7327 	pci_read_config_word(pdev, 4, &command_register);
7328 	pci_save_state(pdev);
7329 
7330 	/* find the first memory BAR, so we can find the cfg table */
7331 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7332 	if (rc)
7333 		return rc;
7334 	vaddr = remap_pci_mem(paddr, 0x250);
7335 	if (!vaddr)
7336 		return -ENOMEM;
7337 
7338 	/* find cfgtable in order to check if reset via doorbell is supported */
7339 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7340 					&cfg_base_addr_index, &cfg_offset);
7341 	if (rc)
7342 		goto unmap_vaddr;
7343 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7344 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7345 	if (!cfgtable) {
7346 		rc = -ENOMEM;
7347 		goto unmap_vaddr;
7348 	}
7349 	rc = write_driver_ver_to_cfgtable(cfgtable);
7350 	if (rc)
7351 		goto unmap_cfgtable;
7352 
7353 	/* If reset via doorbell register is supported, use that.
7354 	 * There are two such methods.  Favor the newest method.
7355 	 */
7356 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7357 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7358 	if (use_doorbell) {
7359 		use_doorbell = DOORBELL_CTLR_RESET2;
7360 	} else {
7361 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7362 		if (use_doorbell) {
7363 			dev_warn(&pdev->dev,
7364 				"Soft reset not supported. Firmware update is required.\n");
7365 			rc = -ENOTSUPP; /* try soft reset */
7366 			goto unmap_cfgtable;
7367 		}
7368 	}
7369 
7370 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7371 	if (rc)
7372 		goto unmap_cfgtable;
7373 
7374 	pci_restore_state(pdev);
7375 	pci_write_config_word(pdev, 4, command_register);
7376 
7377 	/* Some devices (notably the HP Smart Array 5i Controller)
7378 	   need a little pause here */
7379 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7380 
7381 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7382 	if (rc) {
7383 		dev_warn(&pdev->dev,
7384 			"Failed waiting for board to become ready after hard reset\n");
7385 		goto unmap_cfgtable;
7386 	}
7387 
7388 	rc = controller_reset_failed(vaddr);
7389 	if (rc < 0)
7390 		goto unmap_cfgtable;
7391 	if (rc) {
7392 		dev_warn(&pdev->dev, "Unable to successfully reset "
7393 			"controller. Will try soft reset.\n");
7394 		rc = -ENOTSUPP;
7395 	} else {
7396 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7397 	}
7398 
7399 unmap_cfgtable:
7400 	iounmap(cfgtable);
7401 
7402 unmap_vaddr:
7403 	iounmap(vaddr);
7404 	return rc;
7405 }
7406 
7407 /*
7408  *  We cannot read the structure directly, for portability we must use
7409  *   the io functions.
7410  *   This is for debug only.
7411  */
7412 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7413 {
7414 #ifdef HPSA_DEBUG
7415 	int i;
7416 	char temp_name[17];
7417 
7418 	dev_info(dev, "Controller Configuration information\n");
7419 	dev_info(dev, "------------------------------------\n");
7420 	for (i = 0; i < 4; i++)
7421 		temp_name[i] = readb(&(tb->Signature[i]));
7422 	temp_name[4] = '\0';
7423 	dev_info(dev, "   Signature = %s\n", temp_name);
7424 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7425 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7426 	       readl(&(tb->TransportSupport)));
7427 	dev_info(dev, "   Transport methods active = 0x%x\n",
7428 	       readl(&(tb->TransportActive)));
7429 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7430 	       readl(&(tb->HostWrite.TransportRequest)));
7431 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7432 	       readl(&(tb->HostWrite.CoalIntDelay)));
7433 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7434 	       readl(&(tb->HostWrite.CoalIntCount)));
7435 	dev_info(dev, "   Max outstanding commands = %d\n",
7436 	       readl(&(tb->CmdsOutMax)));
7437 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7438 	for (i = 0; i < 16; i++)
7439 		temp_name[i] = readb(&(tb->ServerName[i]));
7440 	temp_name[16] = '\0';
7441 	dev_info(dev, "   Server Name = %s\n", temp_name);
7442 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7443 		readl(&(tb->HeartBeat)));
7444 #endif				/* HPSA_DEBUG */
7445 }
7446 
7447 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7448 {
7449 	int i, offset, mem_type, bar_type;
7450 
7451 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7452 		return 0;
7453 	offset = 0;
7454 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7455 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7456 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7457 			offset += 4;
7458 		else {
7459 			mem_type = pci_resource_flags(pdev, i) &
7460 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7461 			switch (mem_type) {
7462 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7463 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7464 				offset += 4;	/* 32 bit */
7465 				break;
7466 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7467 				offset += 8;
7468 				break;
7469 			default:	/* reserved in PCI 2.2 */
7470 				dev_warn(&pdev->dev,
7471 				       "base address is invalid\n");
7472 				return -1;
7473 			}
7474 		}
7475 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7476 			return i + 1;
7477 	}
7478 	return -1;
7479 }
7480 
7481 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7482 {
7483 	pci_free_irq_vectors(h->pdev);
7484 	h->msix_vectors = 0;
7485 }
7486 
7487 static void hpsa_setup_reply_map(struct ctlr_info *h)
7488 {
7489 	const struct cpumask *mask;
7490 	unsigned int queue, cpu;
7491 
7492 	for (queue = 0; queue < h->msix_vectors; queue++) {
7493 		mask = pci_irq_get_affinity(h->pdev, queue);
7494 		if (!mask)
7495 			goto fallback;
7496 
7497 		for_each_cpu(cpu, mask)
7498 			h->reply_map[cpu] = queue;
7499 	}
7500 	return;
7501 
7502 fallback:
7503 	for_each_possible_cpu(cpu)
7504 		h->reply_map[cpu] = 0;
7505 }
7506 
7507 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7508  * controllers that are capable. If not, we use legacy INTx mode.
7509  */
7510 static int hpsa_interrupt_mode(struct ctlr_info *h)
7511 {
7512 	unsigned int flags = PCI_IRQ_LEGACY;
7513 	int ret;
7514 
7515 	/* Some boards advertise MSI but don't really support it */
7516 	switch (h->board_id) {
7517 	case 0x40700E11:
7518 	case 0x40800E11:
7519 	case 0x40820E11:
7520 	case 0x40830E11:
7521 		break;
7522 	default:
7523 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7524 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7525 		if (ret > 0) {
7526 			h->msix_vectors = ret;
7527 			return 0;
7528 		}
7529 
7530 		flags |= PCI_IRQ_MSI;
7531 		break;
7532 	}
7533 
7534 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7535 	if (ret < 0)
7536 		return ret;
7537 	return 0;
7538 }
7539 
7540 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7541 				bool *legacy_board)
7542 {
7543 	int i;
7544 	u32 subsystem_vendor_id, subsystem_device_id;
7545 
7546 	subsystem_vendor_id = pdev->subsystem_vendor;
7547 	subsystem_device_id = pdev->subsystem_device;
7548 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7549 		    subsystem_vendor_id;
7550 
7551 	if (legacy_board)
7552 		*legacy_board = false;
7553 	for (i = 0; i < ARRAY_SIZE(products); i++)
7554 		if (*board_id == products[i].board_id) {
7555 			if (products[i].access != &SA5A_access &&
7556 			    products[i].access != &SA5B_access)
7557 				return i;
7558 			dev_warn(&pdev->dev,
7559 				 "legacy board ID: 0x%08x\n",
7560 				 *board_id);
7561 			if (legacy_board)
7562 			    *legacy_board = true;
7563 			return i;
7564 		}
7565 
7566 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7567 	if (legacy_board)
7568 		*legacy_board = true;
7569 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7570 }
7571 
7572 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7573 				    unsigned long *memory_bar)
7574 {
7575 	int i;
7576 
7577 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7578 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7579 			/* addressing mode bits already removed */
7580 			*memory_bar = pci_resource_start(pdev, i);
7581 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7582 				*memory_bar);
7583 			return 0;
7584 		}
7585 	dev_warn(&pdev->dev, "no memory BAR found\n");
7586 	return -ENODEV;
7587 }
7588 
7589 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7590 				     int wait_for_ready)
7591 {
7592 	int i, iterations;
7593 	u32 scratchpad;
7594 	if (wait_for_ready)
7595 		iterations = HPSA_BOARD_READY_ITERATIONS;
7596 	else
7597 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7598 
7599 	for (i = 0; i < iterations; i++) {
7600 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7601 		if (wait_for_ready) {
7602 			if (scratchpad == HPSA_FIRMWARE_READY)
7603 				return 0;
7604 		} else {
7605 			if (scratchpad != HPSA_FIRMWARE_READY)
7606 				return 0;
7607 		}
7608 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7609 	}
7610 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7611 	return -ENODEV;
7612 }
7613 
7614 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7615 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7616 			       u64 *cfg_offset)
7617 {
7618 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7619 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7620 	*cfg_base_addr &= (u32) 0x0000ffff;
7621 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7622 	if (*cfg_base_addr_index == -1) {
7623 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7624 		return -ENODEV;
7625 	}
7626 	return 0;
7627 }
7628 
7629 static void hpsa_free_cfgtables(struct ctlr_info *h)
7630 {
7631 	if (h->transtable) {
7632 		iounmap(h->transtable);
7633 		h->transtable = NULL;
7634 	}
7635 	if (h->cfgtable) {
7636 		iounmap(h->cfgtable);
7637 		h->cfgtable = NULL;
7638 	}
7639 }
7640 
7641 /* Find and map CISS config table and transfer table
7642 + * several items must be unmapped (freed) later
7643 + * */
7644 static int hpsa_find_cfgtables(struct ctlr_info *h)
7645 {
7646 	u64 cfg_offset;
7647 	u32 cfg_base_addr;
7648 	u64 cfg_base_addr_index;
7649 	u32 trans_offset;
7650 	int rc;
7651 
7652 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7653 		&cfg_base_addr_index, &cfg_offset);
7654 	if (rc)
7655 		return rc;
7656 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7657 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7658 	if (!h->cfgtable) {
7659 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7660 		return -ENOMEM;
7661 	}
7662 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7663 	if (rc)
7664 		return rc;
7665 	/* Find performant mode table. */
7666 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7667 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7668 				cfg_base_addr_index)+cfg_offset+trans_offset,
7669 				sizeof(*h->transtable));
7670 	if (!h->transtable) {
7671 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7672 		hpsa_free_cfgtables(h);
7673 		return -ENOMEM;
7674 	}
7675 	return 0;
7676 }
7677 
7678 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7679 {
7680 #define MIN_MAX_COMMANDS 16
7681 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7682 
7683 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7684 
7685 	/* Limit commands in memory limited kdump scenario. */
7686 	if (reset_devices && h->max_commands > 32)
7687 		h->max_commands = 32;
7688 
7689 	if (h->max_commands < MIN_MAX_COMMANDS) {
7690 		dev_warn(&h->pdev->dev,
7691 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7692 			h->max_commands,
7693 			MIN_MAX_COMMANDS);
7694 		h->max_commands = MIN_MAX_COMMANDS;
7695 	}
7696 }
7697 
7698 /* If the controller reports that the total max sg entries is greater than 512,
7699  * then we know that chained SG blocks work.  (Original smart arrays did not
7700  * support chained SG blocks and would return zero for max sg entries.)
7701  */
7702 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7703 {
7704 	return h->maxsgentries > 512;
7705 }
7706 
7707 /* Interrogate the hardware for some limits:
7708  * max commands, max SG elements without chaining, and with chaining,
7709  * SG chain block size, etc.
7710  */
7711 static void hpsa_find_board_params(struct ctlr_info *h)
7712 {
7713 	hpsa_get_max_perf_mode_cmds(h);
7714 	h->nr_cmds = h->max_commands;
7715 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7716 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7717 	if (hpsa_supports_chained_sg_blocks(h)) {
7718 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7719 		h->max_cmd_sg_entries = 32;
7720 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7721 		h->maxsgentries--; /* save one for chain pointer */
7722 	} else {
7723 		/*
7724 		 * Original smart arrays supported at most 31 s/g entries
7725 		 * embedded inline in the command (trying to use more
7726 		 * would lock up the controller)
7727 		 */
7728 		h->max_cmd_sg_entries = 31;
7729 		h->maxsgentries = 31; /* default to traditional values */
7730 		h->chainsize = 0;
7731 	}
7732 
7733 	/* Find out what task management functions are supported and cache */
7734 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7735 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7736 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7737 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7738 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7739 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7740 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7741 }
7742 
7743 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7744 {
7745 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7746 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7747 		return false;
7748 	}
7749 	return true;
7750 }
7751 
7752 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7753 {
7754 	u32 driver_support;
7755 
7756 	driver_support = readl(&(h->cfgtable->driver_support));
7757 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7758 #ifdef CONFIG_X86
7759 	driver_support |= ENABLE_SCSI_PREFETCH;
7760 #endif
7761 	driver_support |= ENABLE_UNIT_ATTN;
7762 	writel(driver_support, &(h->cfgtable->driver_support));
7763 }
7764 
7765 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7766  * in a prefetch beyond physical memory.
7767  */
7768 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7769 {
7770 	u32 dma_prefetch;
7771 
7772 	if (h->board_id != 0x3225103C)
7773 		return;
7774 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7775 	dma_prefetch |= 0x8000;
7776 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7777 }
7778 
7779 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7780 {
7781 	int i;
7782 	u32 doorbell_value;
7783 	unsigned long flags;
7784 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7785 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7786 		spin_lock_irqsave(&h->lock, flags);
7787 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7788 		spin_unlock_irqrestore(&h->lock, flags);
7789 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7790 			goto done;
7791 		/* delay and try again */
7792 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7793 	}
7794 	return -ENODEV;
7795 done:
7796 	return 0;
7797 }
7798 
7799 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7800 {
7801 	int i;
7802 	u32 doorbell_value;
7803 	unsigned long flags;
7804 
7805 	/* under certain very rare conditions, this can take awhile.
7806 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7807 	 * as we enter this code.)
7808 	 */
7809 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7810 		if (h->remove_in_progress)
7811 			goto done;
7812 		spin_lock_irqsave(&h->lock, flags);
7813 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7814 		spin_unlock_irqrestore(&h->lock, flags);
7815 		if (!(doorbell_value & CFGTBL_ChangeReq))
7816 			goto done;
7817 		/* delay and try again */
7818 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7819 	}
7820 	return -ENODEV;
7821 done:
7822 	return 0;
7823 }
7824 
7825 /* return -ENODEV or other reason on error, 0 on success */
7826 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7827 {
7828 	u32 trans_support;
7829 
7830 	trans_support = readl(&(h->cfgtable->TransportSupport));
7831 	if (!(trans_support & SIMPLE_MODE))
7832 		return -ENOTSUPP;
7833 
7834 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7835 
7836 	/* Update the field, and then ring the doorbell */
7837 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7838 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7839 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7840 	if (hpsa_wait_for_mode_change_ack(h))
7841 		goto error;
7842 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7843 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7844 		goto error;
7845 	h->transMethod = CFGTBL_Trans_Simple;
7846 	return 0;
7847 error:
7848 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7849 	return -ENODEV;
7850 }
7851 
7852 /* free items allocated or mapped by hpsa_pci_init */
7853 static void hpsa_free_pci_init(struct ctlr_info *h)
7854 {
7855 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7856 	iounmap(h->vaddr);			/* pci_init 3 */
7857 	h->vaddr = NULL;
7858 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7859 	/*
7860 	 * call pci_disable_device before pci_release_regions per
7861 	 * Documentation/driver-api/pci/pci.rst
7862 	 */
7863 	pci_disable_device(h->pdev);		/* pci_init 1 */
7864 	pci_release_regions(h->pdev);		/* pci_init 2 */
7865 }
7866 
7867 /* several items must be freed later */
7868 static int hpsa_pci_init(struct ctlr_info *h)
7869 {
7870 	int prod_index, err;
7871 	bool legacy_board;
7872 
7873 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7874 	if (prod_index < 0)
7875 		return prod_index;
7876 	h->product_name = products[prod_index].product_name;
7877 	h->access = *(products[prod_index].access);
7878 	h->legacy_board = legacy_board;
7879 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7880 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7881 
7882 	err = pci_enable_device(h->pdev);
7883 	if (err) {
7884 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7885 		pci_disable_device(h->pdev);
7886 		return err;
7887 	}
7888 
7889 	err = pci_request_regions(h->pdev, HPSA);
7890 	if (err) {
7891 		dev_err(&h->pdev->dev,
7892 			"failed to obtain PCI resources\n");
7893 		pci_disable_device(h->pdev);
7894 		return err;
7895 	}
7896 
7897 	pci_set_master(h->pdev);
7898 
7899 	err = hpsa_interrupt_mode(h);
7900 	if (err)
7901 		goto clean1;
7902 
7903 	/* setup mapping between CPU and reply queue */
7904 	hpsa_setup_reply_map(h);
7905 
7906 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7907 	if (err)
7908 		goto clean2;	/* intmode+region, pci */
7909 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7910 	if (!h->vaddr) {
7911 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7912 		err = -ENOMEM;
7913 		goto clean2;	/* intmode+region, pci */
7914 	}
7915 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7916 	if (err)
7917 		goto clean3;	/* vaddr, intmode+region, pci */
7918 	err = hpsa_find_cfgtables(h);
7919 	if (err)
7920 		goto clean3;	/* vaddr, intmode+region, pci */
7921 	hpsa_find_board_params(h);
7922 
7923 	if (!hpsa_CISS_signature_present(h)) {
7924 		err = -ENODEV;
7925 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7926 	}
7927 	hpsa_set_driver_support_bits(h);
7928 	hpsa_p600_dma_prefetch_quirk(h);
7929 	err = hpsa_enter_simple_mode(h);
7930 	if (err)
7931 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7932 	return 0;
7933 
7934 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7935 	hpsa_free_cfgtables(h);
7936 clean3:	/* vaddr, intmode+region, pci */
7937 	iounmap(h->vaddr);
7938 	h->vaddr = NULL;
7939 clean2:	/* intmode+region, pci */
7940 	hpsa_disable_interrupt_mode(h);
7941 clean1:
7942 	/*
7943 	 * call pci_disable_device before pci_release_regions per
7944 	 * Documentation/driver-api/pci/pci.rst
7945 	 */
7946 	pci_disable_device(h->pdev);
7947 	pci_release_regions(h->pdev);
7948 	return err;
7949 }
7950 
7951 static void hpsa_hba_inquiry(struct ctlr_info *h)
7952 {
7953 	int rc;
7954 
7955 #define HBA_INQUIRY_BYTE_COUNT 64
7956 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7957 	if (!h->hba_inquiry_data)
7958 		return;
7959 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7960 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7961 	if (rc != 0) {
7962 		kfree(h->hba_inquiry_data);
7963 		h->hba_inquiry_data = NULL;
7964 	}
7965 }
7966 
7967 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7968 {
7969 	int rc, i;
7970 	void __iomem *vaddr;
7971 
7972 	if (!reset_devices)
7973 		return 0;
7974 
7975 	/* kdump kernel is loading, we don't know in which state is
7976 	 * the pci interface. The dev->enable_cnt is equal zero
7977 	 * so we call enable+disable, wait a while and switch it on.
7978 	 */
7979 	rc = pci_enable_device(pdev);
7980 	if (rc) {
7981 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7982 		return -ENODEV;
7983 	}
7984 	pci_disable_device(pdev);
7985 	msleep(260);			/* a randomly chosen number */
7986 	rc = pci_enable_device(pdev);
7987 	if (rc) {
7988 		dev_warn(&pdev->dev, "failed to enable device.\n");
7989 		return -ENODEV;
7990 	}
7991 
7992 	pci_set_master(pdev);
7993 
7994 	vaddr = pci_ioremap_bar(pdev, 0);
7995 	if (vaddr == NULL) {
7996 		rc = -ENOMEM;
7997 		goto out_disable;
7998 	}
7999 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8000 	iounmap(vaddr);
8001 
8002 	/* Reset the controller with a PCI power-cycle or via doorbell */
8003 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8004 
8005 	/* -ENOTSUPP here means we cannot reset the controller
8006 	 * but it's already (and still) up and running in
8007 	 * "performant mode".  Or, it might be 640x, which can't reset
8008 	 * due to concerns about shared bbwc between 6402/6404 pair.
8009 	 */
8010 	if (rc)
8011 		goto out_disable;
8012 
8013 	/* Now try to get the controller to respond to a no-op */
8014 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8015 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8016 		if (hpsa_noop(pdev) == 0)
8017 			break;
8018 		else
8019 			dev_warn(&pdev->dev, "no-op failed%s\n",
8020 					(i < 11 ? "; re-trying" : ""));
8021 	}
8022 
8023 out_disable:
8024 
8025 	pci_disable_device(pdev);
8026 	return rc;
8027 }
8028 
8029 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8030 {
8031 	kfree(h->cmd_pool_bits);
8032 	h->cmd_pool_bits = NULL;
8033 	if (h->cmd_pool) {
8034 		dma_free_coherent(&h->pdev->dev,
8035 				h->nr_cmds * sizeof(struct CommandList),
8036 				h->cmd_pool,
8037 				h->cmd_pool_dhandle);
8038 		h->cmd_pool = NULL;
8039 		h->cmd_pool_dhandle = 0;
8040 	}
8041 	if (h->errinfo_pool) {
8042 		dma_free_coherent(&h->pdev->dev,
8043 				h->nr_cmds * sizeof(struct ErrorInfo),
8044 				h->errinfo_pool,
8045 				h->errinfo_pool_dhandle);
8046 		h->errinfo_pool = NULL;
8047 		h->errinfo_pool_dhandle = 0;
8048 	}
8049 }
8050 
8051 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8052 {
8053 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8054 				   sizeof(unsigned long),
8055 				   GFP_KERNEL);
8056 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8057 		    h->nr_cmds * sizeof(*h->cmd_pool),
8058 		    &h->cmd_pool_dhandle, GFP_KERNEL);
8059 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8060 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8061 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8062 	if ((h->cmd_pool_bits == NULL)
8063 	    || (h->cmd_pool == NULL)
8064 	    || (h->errinfo_pool == NULL)) {
8065 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8066 		goto clean_up;
8067 	}
8068 	hpsa_preinitialize_commands(h);
8069 	return 0;
8070 clean_up:
8071 	hpsa_free_cmd_pool(h);
8072 	return -ENOMEM;
8073 }
8074 
8075 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8076 static void hpsa_free_irqs(struct ctlr_info *h)
8077 {
8078 	int i;
8079 	int irq_vector = 0;
8080 
8081 	if (hpsa_simple_mode)
8082 		irq_vector = h->intr_mode;
8083 
8084 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8085 		/* Single reply queue, only one irq to free */
8086 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8087 				&h->q[h->intr_mode]);
8088 		h->q[h->intr_mode] = 0;
8089 		return;
8090 	}
8091 
8092 	for (i = 0; i < h->msix_vectors; i++) {
8093 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8094 		h->q[i] = 0;
8095 	}
8096 	for (; i < MAX_REPLY_QUEUES; i++)
8097 		h->q[i] = 0;
8098 }
8099 
8100 /* returns 0 on success; cleans up and returns -Enn on error */
8101 static int hpsa_request_irqs(struct ctlr_info *h,
8102 	irqreturn_t (*msixhandler)(int, void *),
8103 	irqreturn_t (*intxhandler)(int, void *))
8104 {
8105 	int rc, i;
8106 	int irq_vector = 0;
8107 
8108 	if (hpsa_simple_mode)
8109 		irq_vector = h->intr_mode;
8110 
8111 	/*
8112 	 * initialize h->q[x] = x so that interrupt handlers know which
8113 	 * queue to process.
8114 	 */
8115 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8116 		h->q[i] = (u8) i;
8117 
8118 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8119 		/* If performant mode and MSI-X, use multiple reply queues */
8120 		for (i = 0; i < h->msix_vectors; i++) {
8121 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8122 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8123 					0, h->intrname[i],
8124 					&h->q[i]);
8125 			if (rc) {
8126 				int j;
8127 
8128 				dev_err(&h->pdev->dev,
8129 					"failed to get irq %d for %s\n",
8130 				       pci_irq_vector(h->pdev, i), h->devname);
8131 				for (j = 0; j < i; j++) {
8132 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8133 					h->q[j] = 0;
8134 				}
8135 				for (; j < MAX_REPLY_QUEUES; j++)
8136 					h->q[j] = 0;
8137 				return rc;
8138 			}
8139 		}
8140 	} else {
8141 		/* Use single reply pool */
8142 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8143 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8144 				h->msix_vectors ? "x" : "");
8145 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8146 				msixhandler, 0,
8147 				h->intrname[0],
8148 				&h->q[h->intr_mode]);
8149 		} else {
8150 			sprintf(h->intrname[h->intr_mode],
8151 				"%s-intx", h->devname);
8152 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8153 				intxhandler, IRQF_SHARED,
8154 				h->intrname[0],
8155 				&h->q[h->intr_mode]);
8156 		}
8157 	}
8158 	if (rc) {
8159 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8160 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8161 		hpsa_free_irqs(h);
8162 		return -ENODEV;
8163 	}
8164 	return 0;
8165 }
8166 
8167 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8168 {
8169 	int rc;
8170 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8171 
8172 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8173 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8174 	if (rc) {
8175 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8176 		return rc;
8177 	}
8178 
8179 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8180 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8181 	if (rc) {
8182 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8183 			"after soft reset.\n");
8184 		return rc;
8185 	}
8186 
8187 	return 0;
8188 }
8189 
8190 static void hpsa_free_reply_queues(struct ctlr_info *h)
8191 {
8192 	int i;
8193 
8194 	for (i = 0; i < h->nreply_queues; i++) {
8195 		if (!h->reply_queue[i].head)
8196 			continue;
8197 		dma_free_coherent(&h->pdev->dev,
8198 					h->reply_queue_size,
8199 					h->reply_queue[i].head,
8200 					h->reply_queue[i].busaddr);
8201 		h->reply_queue[i].head = NULL;
8202 		h->reply_queue[i].busaddr = 0;
8203 	}
8204 	h->reply_queue_size = 0;
8205 }
8206 
8207 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8208 {
8209 	hpsa_free_performant_mode(h);		/* init_one 7 */
8210 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8211 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8212 	hpsa_free_irqs(h);			/* init_one 4 */
8213 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8214 	h->scsi_host = NULL;			/* init_one 3 */
8215 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8216 	free_percpu(h->lockup_detected);	/* init_one 2 */
8217 	h->lockup_detected = NULL;		/* init_one 2 */
8218 	if (h->resubmit_wq) {
8219 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8220 		h->resubmit_wq = NULL;
8221 	}
8222 	if (h->rescan_ctlr_wq) {
8223 		destroy_workqueue(h->rescan_ctlr_wq);
8224 		h->rescan_ctlr_wq = NULL;
8225 	}
8226 	if (h->monitor_ctlr_wq) {
8227 		destroy_workqueue(h->monitor_ctlr_wq);
8228 		h->monitor_ctlr_wq = NULL;
8229 	}
8230 
8231 	kfree(h);				/* init_one 1 */
8232 }
8233 
8234 /* Called when controller lockup detected. */
8235 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8236 {
8237 	int i, refcount;
8238 	struct CommandList *c;
8239 	int failcount = 0;
8240 
8241 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8242 	for (i = 0; i < h->nr_cmds; i++) {
8243 		c = h->cmd_pool + i;
8244 		refcount = atomic_inc_return(&c->refcount);
8245 		if (refcount > 1) {
8246 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8247 			finish_cmd(c);
8248 			atomic_dec(&h->commands_outstanding);
8249 			failcount++;
8250 		}
8251 		cmd_free(h, c);
8252 	}
8253 	dev_warn(&h->pdev->dev,
8254 		"failed %d commands in fail_all\n", failcount);
8255 }
8256 
8257 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8258 {
8259 	int cpu;
8260 
8261 	for_each_online_cpu(cpu) {
8262 		u32 *lockup_detected;
8263 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8264 		*lockup_detected = value;
8265 	}
8266 	wmb(); /* be sure the per-cpu variables are out to memory */
8267 }
8268 
8269 static void controller_lockup_detected(struct ctlr_info *h)
8270 {
8271 	unsigned long flags;
8272 	u32 lockup_detected;
8273 
8274 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8275 	spin_lock_irqsave(&h->lock, flags);
8276 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8277 	if (!lockup_detected) {
8278 		/* no heartbeat, but controller gave us a zero. */
8279 		dev_warn(&h->pdev->dev,
8280 			"lockup detected after %d but scratchpad register is zero\n",
8281 			h->heartbeat_sample_interval / HZ);
8282 		lockup_detected = 0xffffffff;
8283 	}
8284 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8285 	spin_unlock_irqrestore(&h->lock, flags);
8286 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8287 			lockup_detected, h->heartbeat_sample_interval / HZ);
8288 	if (lockup_detected == 0xffff0000) {
8289 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8290 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8291 	}
8292 	pci_disable_device(h->pdev);
8293 	fail_all_outstanding_cmds(h);
8294 }
8295 
8296 static int detect_controller_lockup(struct ctlr_info *h)
8297 {
8298 	u64 now;
8299 	u32 heartbeat;
8300 	unsigned long flags;
8301 
8302 	now = get_jiffies_64();
8303 	/* If we've received an interrupt recently, we're ok. */
8304 	if (time_after64(h->last_intr_timestamp +
8305 				(h->heartbeat_sample_interval), now))
8306 		return false;
8307 
8308 	/*
8309 	 * If we've already checked the heartbeat recently, we're ok.
8310 	 * This could happen if someone sends us a signal. We
8311 	 * otherwise don't care about signals in this thread.
8312 	 */
8313 	if (time_after64(h->last_heartbeat_timestamp +
8314 				(h->heartbeat_sample_interval), now))
8315 		return false;
8316 
8317 	/* If heartbeat has not changed since we last looked, we're not ok. */
8318 	spin_lock_irqsave(&h->lock, flags);
8319 	heartbeat = readl(&h->cfgtable->HeartBeat);
8320 	spin_unlock_irqrestore(&h->lock, flags);
8321 	if (h->last_heartbeat == heartbeat) {
8322 		controller_lockup_detected(h);
8323 		return true;
8324 	}
8325 
8326 	/* We're ok. */
8327 	h->last_heartbeat = heartbeat;
8328 	h->last_heartbeat_timestamp = now;
8329 	return false;
8330 }
8331 
8332 /*
8333  * Set ioaccel status for all ioaccel volumes.
8334  *
8335  * Called from monitor controller worker (hpsa_event_monitor_worker)
8336  *
8337  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8338  * transformation, so we will be turning off ioaccel for all volumes that
8339  * make up the Array.
8340  */
8341 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8342 {
8343 	int rc;
8344 	int i;
8345 	u8 ioaccel_status;
8346 	unsigned char *buf;
8347 	struct hpsa_scsi_dev_t *device;
8348 
8349 	if (!h)
8350 		return;
8351 
8352 	buf = kmalloc(64, GFP_KERNEL);
8353 	if (!buf)
8354 		return;
8355 
8356 	/*
8357 	 * Run through current device list used during I/O requests.
8358 	 */
8359 	for (i = 0; i < h->ndevices; i++) {
8360 		int offload_to_be_enabled = 0;
8361 		int offload_config = 0;
8362 
8363 		device = h->dev[i];
8364 
8365 		if (!device)
8366 			continue;
8367 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8368 						HPSA_VPD_LV_IOACCEL_STATUS))
8369 			continue;
8370 
8371 		memset(buf, 0, 64);
8372 
8373 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8374 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8375 					buf, 64);
8376 		if (rc != 0)
8377 			continue;
8378 
8379 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8380 
8381 		/*
8382 		 * Check if offload is still configured on
8383 		 */
8384 		offload_config =
8385 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8386 		/*
8387 		 * If offload is configured on, check to see if ioaccel
8388 		 * needs to be enabled.
8389 		 */
8390 		if (offload_config)
8391 			offload_to_be_enabled =
8392 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8393 
8394 		/*
8395 		 * If ioaccel is to be re-enabled, re-enable later during the
8396 		 * scan operation so the driver can get a fresh raidmap
8397 		 * before turning ioaccel back on.
8398 		 */
8399 		if (offload_to_be_enabled)
8400 			continue;
8401 
8402 		/*
8403 		 * Immediately turn off ioaccel for any volume the
8404 		 * controller tells us to. Some of the reasons could be:
8405 		 *    transformation - change to the LVs of an Array.
8406 		 *    degraded volume - component failure
8407 		 */
8408 		hpsa_turn_off_ioaccel_for_device(device);
8409 	}
8410 
8411 	kfree(buf);
8412 }
8413 
8414 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8415 {
8416 	char *event_type;
8417 
8418 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8419 		return;
8420 
8421 	/* Ask the controller to clear the events we're handling. */
8422 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8423 			| CFGTBL_Trans_io_accel2)) &&
8424 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8425 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8426 
8427 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8428 			event_type = "state change";
8429 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8430 			event_type = "configuration change";
8431 		/* Stop sending new RAID offload reqs via the IO accelerator */
8432 		scsi_block_requests(h->scsi_host);
8433 		hpsa_set_ioaccel_status(h);
8434 		hpsa_drain_accel_commands(h);
8435 		/* Set 'accelerator path config change' bit */
8436 		dev_warn(&h->pdev->dev,
8437 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8438 			h->events, event_type);
8439 		writel(h->events, &(h->cfgtable->clear_event_notify));
8440 		/* Set the "clear event notify field update" bit 6 */
8441 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8442 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8443 		hpsa_wait_for_clear_event_notify_ack(h);
8444 		scsi_unblock_requests(h->scsi_host);
8445 	} else {
8446 		/* Acknowledge controller notification events. */
8447 		writel(h->events, &(h->cfgtable->clear_event_notify));
8448 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8449 		hpsa_wait_for_clear_event_notify_ack(h);
8450 	}
8451 	return;
8452 }
8453 
8454 /* Check a register on the controller to see if there are configuration
8455  * changes (added/changed/removed logical drives, etc.) which mean that
8456  * we should rescan the controller for devices.
8457  * Also check flag for driver-initiated rescan.
8458  */
8459 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8460 {
8461 	if (h->drv_req_rescan) {
8462 		h->drv_req_rescan = 0;
8463 		return 1;
8464 	}
8465 
8466 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8467 		return 0;
8468 
8469 	h->events = readl(&(h->cfgtable->event_notify));
8470 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8471 }
8472 
8473 /*
8474  * Check if any of the offline devices have become ready
8475  */
8476 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8477 {
8478 	unsigned long flags;
8479 	struct offline_device_entry *d;
8480 	struct list_head *this, *tmp;
8481 
8482 	spin_lock_irqsave(&h->offline_device_lock, flags);
8483 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8484 		d = list_entry(this, struct offline_device_entry,
8485 				offline_list);
8486 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8487 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8488 			spin_lock_irqsave(&h->offline_device_lock, flags);
8489 			list_del(&d->offline_list);
8490 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8491 			return 1;
8492 		}
8493 		spin_lock_irqsave(&h->offline_device_lock, flags);
8494 	}
8495 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8496 	return 0;
8497 }
8498 
8499 static int hpsa_luns_changed(struct ctlr_info *h)
8500 {
8501 	int rc = 1; /* assume there are changes */
8502 	struct ReportLUNdata *logdev = NULL;
8503 
8504 	/* if we can't find out if lun data has changed,
8505 	 * assume that it has.
8506 	 */
8507 
8508 	if (!h->lastlogicals)
8509 		return rc;
8510 
8511 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8512 	if (!logdev)
8513 		return rc;
8514 
8515 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8516 		dev_warn(&h->pdev->dev,
8517 			"report luns failed, can't track lun changes.\n");
8518 		goto out;
8519 	}
8520 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8521 		dev_info(&h->pdev->dev,
8522 			"Lun changes detected.\n");
8523 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8524 		goto out;
8525 	} else
8526 		rc = 0; /* no changes detected. */
8527 out:
8528 	kfree(logdev);
8529 	return rc;
8530 }
8531 
8532 static void hpsa_perform_rescan(struct ctlr_info *h)
8533 {
8534 	struct Scsi_Host *sh = NULL;
8535 	unsigned long flags;
8536 
8537 	/*
8538 	 * Do the scan after the reset
8539 	 */
8540 	spin_lock_irqsave(&h->reset_lock, flags);
8541 	if (h->reset_in_progress) {
8542 		h->drv_req_rescan = 1;
8543 		spin_unlock_irqrestore(&h->reset_lock, flags);
8544 		return;
8545 	}
8546 	spin_unlock_irqrestore(&h->reset_lock, flags);
8547 
8548 	sh = scsi_host_get(h->scsi_host);
8549 	if (sh != NULL) {
8550 		hpsa_scan_start(sh);
8551 		scsi_host_put(sh);
8552 		h->drv_req_rescan = 0;
8553 	}
8554 }
8555 
8556 /*
8557  * watch for controller events
8558  */
8559 static void hpsa_event_monitor_worker(struct work_struct *work)
8560 {
8561 	struct ctlr_info *h = container_of(to_delayed_work(work),
8562 					struct ctlr_info, event_monitor_work);
8563 	unsigned long flags;
8564 
8565 	spin_lock_irqsave(&h->lock, flags);
8566 	if (h->remove_in_progress) {
8567 		spin_unlock_irqrestore(&h->lock, flags);
8568 		return;
8569 	}
8570 	spin_unlock_irqrestore(&h->lock, flags);
8571 
8572 	if (hpsa_ctlr_needs_rescan(h)) {
8573 		hpsa_ack_ctlr_events(h);
8574 		hpsa_perform_rescan(h);
8575 	}
8576 
8577 	spin_lock_irqsave(&h->lock, flags);
8578 	if (!h->remove_in_progress)
8579 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8580 				HPSA_EVENT_MONITOR_INTERVAL);
8581 	spin_unlock_irqrestore(&h->lock, flags);
8582 }
8583 
8584 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8585 {
8586 	unsigned long flags;
8587 	struct ctlr_info *h = container_of(to_delayed_work(work),
8588 					struct ctlr_info, rescan_ctlr_work);
8589 
8590 	spin_lock_irqsave(&h->lock, flags);
8591 	if (h->remove_in_progress) {
8592 		spin_unlock_irqrestore(&h->lock, flags);
8593 		return;
8594 	}
8595 	spin_unlock_irqrestore(&h->lock, flags);
8596 
8597 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8598 		hpsa_perform_rescan(h);
8599 	} else if (h->discovery_polling) {
8600 		if (hpsa_luns_changed(h)) {
8601 			dev_info(&h->pdev->dev,
8602 				"driver discovery polling rescan.\n");
8603 			hpsa_perform_rescan(h);
8604 		}
8605 	}
8606 	spin_lock_irqsave(&h->lock, flags);
8607 	if (!h->remove_in_progress)
8608 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8609 				h->heartbeat_sample_interval);
8610 	spin_unlock_irqrestore(&h->lock, flags);
8611 }
8612 
8613 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8614 {
8615 	unsigned long flags;
8616 	struct ctlr_info *h = container_of(to_delayed_work(work),
8617 					struct ctlr_info, monitor_ctlr_work);
8618 
8619 	detect_controller_lockup(h);
8620 	if (lockup_detected(h))
8621 		return;
8622 
8623 	spin_lock_irqsave(&h->lock, flags);
8624 	if (!h->remove_in_progress)
8625 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8626 				h->heartbeat_sample_interval);
8627 	spin_unlock_irqrestore(&h->lock, flags);
8628 }
8629 
8630 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8631 						char *name)
8632 {
8633 	struct workqueue_struct *wq = NULL;
8634 
8635 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8636 	if (!wq)
8637 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8638 
8639 	return wq;
8640 }
8641 
8642 static void hpda_free_ctlr_info(struct ctlr_info *h)
8643 {
8644 	kfree(h->reply_map);
8645 	kfree(h);
8646 }
8647 
8648 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8649 {
8650 	struct ctlr_info *h;
8651 
8652 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8653 	if (!h)
8654 		return NULL;
8655 
8656 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8657 	if (!h->reply_map) {
8658 		kfree(h);
8659 		return NULL;
8660 	}
8661 	return h;
8662 }
8663 
8664 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8665 {
8666 	int rc;
8667 	struct ctlr_info *h;
8668 	int try_soft_reset = 0;
8669 	unsigned long flags;
8670 	u32 board_id;
8671 
8672 	if (number_of_controllers == 0)
8673 		printk(KERN_INFO DRIVER_NAME "\n");
8674 
8675 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8676 	if (rc < 0) {
8677 		dev_warn(&pdev->dev, "Board ID not found\n");
8678 		return rc;
8679 	}
8680 
8681 	rc = hpsa_init_reset_devices(pdev, board_id);
8682 	if (rc) {
8683 		if (rc != -ENOTSUPP)
8684 			return rc;
8685 		/* If the reset fails in a particular way (it has no way to do
8686 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8687 		 * a soft reset once we get the controller configured up to the
8688 		 * point that it can accept a command.
8689 		 */
8690 		try_soft_reset = 1;
8691 		rc = 0;
8692 	}
8693 
8694 reinit_after_soft_reset:
8695 
8696 	/* Command structures must be aligned on a 32-byte boundary because
8697 	 * the 5 lower bits of the address are used by the hardware. and by
8698 	 * the driver.  See comments in hpsa.h for more info.
8699 	 */
8700 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8701 	h = hpda_alloc_ctlr_info();
8702 	if (!h) {
8703 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8704 		return -ENOMEM;
8705 	}
8706 
8707 	h->pdev = pdev;
8708 
8709 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8710 	INIT_LIST_HEAD(&h->offline_device_list);
8711 	spin_lock_init(&h->lock);
8712 	spin_lock_init(&h->offline_device_lock);
8713 	spin_lock_init(&h->scan_lock);
8714 	spin_lock_init(&h->reset_lock);
8715 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8716 
8717 	/* Allocate and clear per-cpu variable lockup_detected */
8718 	h->lockup_detected = alloc_percpu(u32);
8719 	if (!h->lockup_detected) {
8720 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8721 		rc = -ENOMEM;
8722 		goto clean1;	/* aer/h */
8723 	}
8724 	set_lockup_detected_for_all_cpus(h, 0);
8725 
8726 	rc = hpsa_pci_init(h);
8727 	if (rc)
8728 		goto clean2;	/* lu, aer/h */
8729 
8730 	/* relies on h-> settings made by hpsa_pci_init, including
8731 	 * interrupt_mode h->intr */
8732 	rc = hpsa_scsi_host_alloc(h);
8733 	if (rc)
8734 		goto clean2_5;	/* pci, lu, aer/h */
8735 
8736 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8737 	h->ctlr = number_of_controllers;
8738 	number_of_controllers++;
8739 
8740 	/* configure PCI DMA stuff */
8741 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8742 	if (rc != 0) {
8743 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8744 		if (rc != 0) {
8745 			dev_err(&pdev->dev, "no suitable DMA available\n");
8746 			goto clean3;	/* shost, pci, lu, aer/h */
8747 		}
8748 	}
8749 
8750 	/* make sure the board interrupts are off */
8751 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8752 
8753 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8754 	if (rc)
8755 		goto clean3;	/* shost, pci, lu, aer/h */
8756 	rc = hpsa_alloc_cmd_pool(h);
8757 	if (rc)
8758 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8759 	rc = hpsa_alloc_sg_chain_blocks(h);
8760 	if (rc)
8761 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8762 	init_waitqueue_head(&h->scan_wait_queue);
8763 	init_waitqueue_head(&h->event_sync_wait_queue);
8764 	mutex_init(&h->reset_mutex);
8765 	h->scan_finished = 1; /* no scan currently in progress */
8766 	h->scan_waiting = 0;
8767 
8768 	pci_set_drvdata(pdev, h);
8769 	h->ndevices = 0;
8770 
8771 	spin_lock_init(&h->devlock);
8772 	rc = hpsa_put_ctlr_into_performant_mode(h);
8773 	if (rc)
8774 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8775 
8776 	/* create the resubmit workqueue */
8777 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8778 	if (!h->rescan_ctlr_wq) {
8779 		rc = -ENOMEM;
8780 		goto clean7;
8781 	}
8782 
8783 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8784 	if (!h->resubmit_wq) {
8785 		rc = -ENOMEM;
8786 		goto clean7;	/* aer/h */
8787 	}
8788 
8789 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8790 	if (!h->monitor_ctlr_wq) {
8791 		rc = -ENOMEM;
8792 		goto clean7;
8793 	}
8794 
8795 	/*
8796 	 * At this point, the controller is ready to take commands.
8797 	 * Now, if reset_devices and the hard reset didn't work, try
8798 	 * the soft reset and see if that works.
8799 	 */
8800 	if (try_soft_reset) {
8801 
8802 		/* This is kind of gross.  We may or may not get a completion
8803 		 * from the soft reset command, and if we do, then the value
8804 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8805 		 * after the reset throwing away any completions we get during
8806 		 * that time.  Unregister the interrupt handler and register
8807 		 * fake ones to scoop up any residual completions.
8808 		 */
8809 		spin_lock_irqsave(&h->lock, flags);
8810 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8811 		spin_unlock_irqrestore(&h->lock, flags);
8812 		hpsa_free_irqs(h);
8813 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8814 					hpsa_intx_discard_completions);
8815 		if (rc) {
8816 			dev_warn(&h->pdev->dev,
8817 				"Failed to request_irq after soft reset.\n");
8818 			/*
8819 			 * cannot goto clean7 or free_irqs will be called
8820 			 * again. Instead, do its work
8821 			 */
8822 			hpsa_free_performant_mode(h);	/* clean7 */
8823 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8824 			hpsa_free_cmd_pool(h);		/* clean5 */
8825 			/*
8826 			 * skip hpsa_free_irqs(h) clean4 since that
8827 			 * was just called before request_irqs failed
8828 			 */
8829 			goto clean3;
8830 		}
8831 
8832 		rc = hpsa_kdump_soft_reset(h);
8833 		if (rc)
8834 			/* Neither hard nor soft reset worked, we're hosed. */
8835 			goto clean7;
8836 
8837 		dev_info(&h->pdev->dev, "Board READY.\n");
8838 		dev_info(&h->pdev->dev,
8839 			"Waiting for stale completions to drain.\n");
8840 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8841 		msleep(10000);
8842 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8843 
8844 		rc = controller_reset_failed(h->cfgtable);
8845 		if (rc)
8846 			dev_info(&h->pdev->dev,
8847 				"Soft reset appears to have failed.\n");
8848 
8849 		/* since the controller's reset, we have to go back and re-init
8850 		 * everything.  Easiest to just forget what we've done and do it
8851 		 * all over again.
8852 		 */
8853 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8854 		try_soft_reset = 0;
8855 		if (rc)
8856 			/* don't goto clean, we already unallocated */
8857 			return -ENODEV;
8858 
8859 		goto reinit_after_soft_reset;
8860 	}
8861 
8862 	/* Enable Accelerated IO path at driver layer */
8863 	h->acciopath_status = 1;
8864 	/* Disable discovery polling.*/
8865 	h->discovery_polling = 0;
8866 
8867 
8868 	/* Turn the interrupts on so we can service requests */
8869 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8870 
8871 	hpsa_hba_inquiry(h);
8872 
8873 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8874 	if (!h->lastlogicals)
8875 		dev_info(&h->pdev->dev,
8876 			"Can't track change to report lun data\n");
8877 
8878 	/* hook into SCSI subsystem */
8879 	rc = hpsa_scsi_add_host(h);
8880 	if (rc)
8881 		goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8882 
8883 	/* Monitor the controller for firmware lockups */
8884 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8885 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8886 	schedule_delayed_work(&h->monitor_ctlr_work,
8887 				h->heartbeat_sample_interval);
8888 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8889 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8890 				h->heartbeat_sample_interval);
8891 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8892 	schedule_delayed_work(&h->event_monitor_work,
8893 				HPSA_EVENT_MONITOR_INTERVAL);
8894 	return 0;
8895 
8896 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8897 	kfree(h->lastlogicals);
8898 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8899 	hpsa_free_performant_mode(h);
8900 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8901 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8902 	hpsa_free_sg_chain_blocks(h);
8903 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8904 	hpsa_free_cmd_pool(h);
8905 clean4: /* irq, shost, pci, lu, aer/h */
8906 	hpsa_free_irqs(h);
8907 clean3: /* shost, pci, lu, aer/h */
8908 	scsi_host_put(h->scsi_host);
8909 	h->scsi_host = NULL;
8910 clean2_5: /* pci, lu, aer/h */
8911 	hpsa_free_pci_init(h);
8912 clean2: /* lu, aer/h */
8913 	if (h->lockup_detected) {
8914 		free_percpu(h->lockup_detected);
8915 		h->lockup_detected = NULL;
8916 	}
8917 clean1:	/* wq/aer/h */
8918 	if (h->resubmit_wq) {
8919 		destroy_workqueue(h->resubmit_wq);
8920 		h->resubmit_wq = NULL;
8921 	}
8922 	if (h->rescan_ctlr_wq) {
8923 		destroy_workqueue(h->rescan_ctlr_wq);
8924 		h->rescan_ctlr_wq = NULL;
8925 	}
8926 	if (h->monitor_ctlr_wq) {
8927 		destroy_workqueue(h->monitor_ctlr_wq);
8928 		h->monitor_ctlr_wq = NULL;
8929 	}
8930 	kfree(h);
8931 	return rc;
8932 }
8933 
8934 static void hpsa_flush_cache(struct ctlr_info *h)
8935 {
8936 	char *flush_buf;
8937 	struct CommandList *c;
8938 	int rc;
8939 
8940 	if (unlikely(lockup_detected(h)))
8941 		return;
8942 	flush_buf = kzalloc(4, GFP_KERNEL);
8943 	if (!flush_buf)
8944 		return;
8945 
8946 	c = cmd_alloc(h);
8947 
8948 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8949 		RAID_CTLR_LUNID, TYPE_CMD)) {
8950 		goto out;
8951 	}
8952 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8953 			DEFAULT_TIMEOUT);
8954 	if (rc)
8955 		goto out;
8956 	if (c->err_info->CommandStatus != 0)
8957 out:
8958 		dev_warn(&h->pdev->dev,
8959 			"error flushing cache on controller\n");
8960 	cmd_free(h, c);
8961 	kfree(flush_buf);
8962 }
8963 
8964 /* Make controller gather fresh report lun data each time we
8965  * send down a report luns request
8966  */
8967 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8968 {
8969 	u32 *options;
8970 	struct CommandList *c;
8971 	int rc;
8972 
8973 	/* Don't bother trying to set diag options if locked up */
8974 	if (unlikely(h->lockup_detected))
8975 		return;
8976 
8977 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8978 	if (!options)
8979 		return;
8980 
8981 	c = cmd_alloc(h);
8982 
8983 	/* first, get the current diag options settings */
8984 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8985 		RAID_CTLR_LUNID, TYPE_CMD))
8986 		goto errout;
8987 
8988 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8989 			NO_TIMEOUT);
8990 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8991 		goto errout;
8992 
8993 	/* Now, set the bit for disabling the RLD caching */
8994 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8995 
8996 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8997 		RAID_CTLR_LUNID, TYPE_CMD))
8998 		goto errout;
8999 
9000 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
9001 			NO_TIMEOUT);
9002 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9003 		goto errout;
9004 
9005 	/* Now verify that it got set: */
9006 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9007 		RAID_CTLR_LUNID, TYPE_CMD))
9008 		goto errout;
9009 
9010 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
9011 			NO_TIMEOUT);
9012 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9013 		goto errout;
9014 
9015 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9016 		goto out;
9017 
9018 errout:
9019 	dev_err(&h->pdev->dev,
9020 			"Error: failed to disable report lun data caching.\n");
9021 out:
9022 	cmd_free(h, c);
9023 	kfree(options);
9024 }
9025 
9026 static void __hpsa_shutdown(struct pci_dev *pdev)
9027 {
9028 	struct ctlr_info *h;
9029 
9030 	h = pci_get_drvdata(pdev);
9031 	/* Turn board interrupts off  and send the flush cache command
9032 	 * sendcmd will turn off interrupt, and send the flush...
9033 	 * To write all data in the battery backed cache to disks
9034 	 */
9035 	hpsa_flush_cache(h);
9036 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9037 	hpsa_free_irqs(h);			/* init_one 4 */
9038 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9039 }
9040 
9041 static void hpsa_shutdown(struct pci_dev *pdev)
9042 {
9043 	__hpsa_shutdown(pdev);
9044 	pci_disable_device(pdev);
9045 }
9046 
9047 static void hpsa_free_device_info(struct ctlr_info *h)
9048 {
9049 	int i;
9050 
9051 	for (i = 0; i < h->ndevices; i++) {
9052 		kfree(h->dev[i]);
9053 		h->dev[i] = NULL;
9054 	}
9055 }
9056 
9057 static void hpsa_remove_one(struct pci_dev *pdev)
9058 {
9059 	struct ctlr_info *h;
9060 	unsigned long flags;
9061 
9062 	if (pci_get_drvdata(pdev) == NULL) {
9063 		dev_err(&pdev->dev, "unable to remove device\n");
9064 		return;
9065 	}
9066 	h = pci_get_drvdata(pdev);
9067 
9068 	/* Get rid of any controller monitoring work items */
9069 	spin_lock_irqsave(&h->lock, flags);
9070 	h->remove_in_progress = 1;
9071 	spin_unlock_irqrestore(&h->lock, flags);
9072 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9073 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9074 	cancel_delayed_work_sync(&h->event_monitor_work);
9075 	destroy_workqueue(h->rescan_ctlr_wq);
9076 	destroy_workqueue(h->resubmit_wq);
9077 	destroy_workqueue(h->monitor_ctlr_wq);
9078 
9079 	hpsa_delete_sas_host(h);
9080 
9081 	/*
9082 	 * Call before disabling interrupts.
9083 	 * scsi_remove_host can trigger I/O operations especially
9084 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9085 	 * operations which cannot complete and will hang the system.
9086 	 */
9087 	if (h->scsi_host)
9088 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9089 	/* includes hpsa_free_irqs - init_one 4 */
9090 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9091 	__hpsa_shutdown(pdev);
9092 
9093 	hpsa_free_device_info(h);		/* scan */
9094 
9095 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9096 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9097 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9098 	hpsa_free_performant_mode(h);			/* init_one 7 */
9099 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9100 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9101 	kfree(h->lastlogicals);
9102 
9103 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9104 
9105 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9106 	h->scsi_host = NULL;				/* init_one 3 */
9107 
9108 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9109 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9110 
9111 	free_percpu(h->lockup_detected);		/* init_one 2 */
9112 	h->lockup_detected = NULL;			/* init_one 2 */
9113 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9114 
9115 	hpda_free_ctlr_info(h);				/* init_one 1 */
9116 }
9117 
9118 static int __maybe_unused hpsa_suspend(
9119 	__attribute__((unused)) struct device *dev)
9120 {
9121 	return -ENOSYS;
9122 }
9123 
9124 static int __maybe_unused hpsa_resume
9125 	(__attribute__((unused)) struct device *dev)
9126 {
9127 	return -ENOSYS;
9128 }
9129 
9130 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9131 
9132 static struct pci_driver hpsa_pci_driver = {
9133 	.name = HPSA,
9134 	.probe = hpsa_init_one,
9135 	.remove = hpsa_remove_one,
9136 	.id_table = hpsa_pci_device_id,	/* id_table */
9137 	.shutdown = hpsa_shutdown,
9138 	.driver.pm = &hpsa_pm_ops,
9139 };
9140 
9141 /* Fill in bucket_map[], given nsgs (the max number of
9142  * scatter gather elements supported) and bucket[],
9143  * which is an array of 8 integers.  The bucket[] array
9144  * contains 8 different DMA transfer sizes (in 16
9145  * byte increments) which the controller uses to fetch
9146  * commands.  This function fills in bucket_map[], which
9147  * maps a given number of scatter gather elements to one of
9148  * the 8 DMA transfer sizes.  The point of it is to allow the
9149  * controller to only do as much DMA as needed to fetch the
9150  * command, with the DMA transfer size encoded in the lower
9151  * bits of the command address.
9152  */
9153 static void  calc_bucket_map(int bucket[], int num_buckets,
9154 	int nsgs, int min_blocks, u32 *bucket_map)
9155 {
9156 	int i, j, b, size;
9157 
9158 	/* Note, bucket_map must have nsgs+1 entries. */
9159 	for (i = 0; i <= nsgs; i++) {
9160 		/* Compute size of a command with i SG entries */
9161 		size = i + min_blocks;
9162 		b = num_buckets; /* Assume the biggest bucket */
9163 		/* Find the bucket that is just big enough */
9164 		for (j = 0; j < num_buckets; j++) {
9165 			if (bucket[j] >= size) {
9166 				b = j;
9167 				break;
9168 			}
9169 		}
9170 		/* for a command with i SG entries, use bucket b. */
9171 		bucket_map[i] = b;
9172 	}
9173 }
9174 
9175 /*
9176  * return -ENODEV on err, 0 on success (or no action)
9177  * allocates numerous items that must be freed later
9178  */
9179 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9180 {
9181 	int i;
9182 	unsigned long register_value;
9183 	unsigned long transMethod = CFGTBL_Trans_Performant |
9184 			(trans_support & CFGTBL_Trans_use_short_tags) |
9185 				CFGTBL_Trans_enable_directed_msix |
9186 			(trans_support & (CFGTBL_Trans_io_accel1 |
9187 				CFGTBL_Trans_io_accel2));
9188 	struct access_method access = SA5_performant_access;
9189 
9190 	/* This is a bit complicated.  There are 8 registers on
9191 	 * the controller which we write to to tell it 8 different
9192 	 * sizes of commands which there may be.  It's a way of
9193 	 * reducing the DMA done to fetch each command.  Encoded into
9194 	 * each command's tag are 3 bits which communicate to the controller
9195 	 * which of the eight sizes that command fits within.  The size of
9196 	 * each command depends on how many scatter gather entries there are.
9197 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9198 	 * with the number of 16-byte blocks a command of that size requires.
9199 	 * The smallest command possible requires 5 such 16 byte blocks.
9200 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9201 	 * blocks.  Note, this only extends to the SG entries contained
9202 	 * within the command block, and does not extend to chained blocks
9203 	 * of SG elements.   bft[] contains the eight values we write to
9204 	 * the registers.  They are not evenly distributed, but have more
9205 	 * sizes for small commands, and fewer sizes for larger commands.
9206 	 */
9207 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9208 #define MIN_IOACCEL2_BFT_ENTRY 5
9209 #define HPSA_IOACCEL2_HEADER_SZ 4
9210 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9211 			13, 14, 15, 16, 17, 18, 19,
9212 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9213 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9214 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9215 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9216 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9217 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9218 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9219 	/*  5 = 1 s/g entry or 4k
9220 	 *  6 = 2 s/g entry or 8k
9221 	 *  8 = 4 s/g entry or 16k
9222 	 * 10 = 6 s/g entry or 24k
9223 	 */
9224 
9225 	/* If the controller supports either ioaccel method then
9226 	 * we can also use the RAID stack submit path that does not
9227 	 * perform the superfluous readl() after each command submission.
9228 	 */
9229 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9230 		access = SA5_performant_access_no_read;
9231 
9232 	/* Controller spec: zero out this buffer. */
9233 	for (i = 0; i < h->nreply_queues; i++)
9234 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9235 
9236 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9237 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9238 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9239 	for (i = 0; i < 8; i++)
9240 		writel(bft[i], &h->transtable->BlockFetch[i]);
9241 
9242 	/* size of controller ring buffer */
9243 	writel(h->max_commands, &h->transtable->RepQSize);
9244 	writel(h->nreply_queues, &h->transtable->RepQCount);
9245 	writel(0, &h->transtable->RepQCtrAddrLow32);
9246 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9247 
9248 	for (i = 0; i < h->nreply_queues; i++) {
9249 		writel(0, &h->transtable->RepQAddr[i].upper);
9250 		writel(h->reply_queue[i].busaddr,
9251 			&h->transtable->RepQAddr[i].lower);
9252 	}
9253 
9254 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9255 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9256 	/*
9257 	 * enable outbound interrupt coalescing in accelerator mode;
9258 	 */
9259 	if (trans_support & CFGTBL_Trans_io_accel1) {
9260 		access = SA5_ioaccel_mode1_access;
9261 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9262 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9263 	} else
9264 		if (trans_support & CFGTBL_Trans_io_accel2)
9265 			access = SA5_ioaccel_mode2_access;
9266 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9267 	if (hpsa_wait_for_mode_change_ack(h)) {
9268 		dev_err(&h->pdev->dev,
9269 			"performant mode problem - doorbell timeout\n");
9270 		return -ENODEV;
9271 	}
9272 	register_value = readl(&(h->cfgtable->TransportActive));
9273 	if (!(register_value & CFGTBL_Trans_Performant)) {
9274 		dev_err(&h->pdev->dev,
9275 			"performant mode problem - transport not active\n");
9276 		return -ENODEV;
9277 	}
9278 	/* Change the access methods to the performant access methods */
9279 	h->access = access;
9280 	h->transMethod = transMethod;
9281 
9282 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9283 		(trans_support & CFGTBL_Trans_io_accel2)))
9284 		return 0;
9285 
9286 	if (trans_support & CFGTBL_Trans_io_accel1) {
9287 		/* Set up I/O accelerator mode */
9288 		for (i = 0; i < h->nreply_queues; i++) {
9289 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9290 			h->reply_queue[i].current_entry =
9291 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9292 		}
9293 		bft[7] = h->ioaccel_maxsg + 8;
9294 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9295 				h->ioaccel1_blockFetchTable);
9296 
9297 		/* initialize all reply queue entries to unused */
9298 		for (i = 0; i < h->nreply_queues; i++)
9299 			memset(h->reply_queue[i].head,
9300 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9301 				h->reply_queue_size);
9302 
9303 		/* set all the constant fields in the accelerator command
9304 		 * frames once at init time to save CPU cycles later.
9305 		 */
9306 		for (i = 0; i < h->nr_cmds; i++) {
9307 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9308 
9309 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9310 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9311 					(i * sizeof(struct ErrorInfo)));
9312 			cp->err_info_len = sizeof(struct ErrorInfo);
9313 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9314 			cp->host_context_flags =
9315 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9316 			cp->timeout_sec = 0;
9317 			cp->ReplyQueue = 0;
9318 			cp->tag =
9319 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9320 			cp->host_addr =
9321 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9322 					(i * sizeof(struct io_accel1_cmd)));
9323 		}
9324 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9325 		u64 cfg_offset, cfg_base_addr_index;
9326 		u32 bft2_offset, cfg_base_addr;
9327 
9328 		hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9329 				    &cfg_base_addr_index, &cfg_offset);
9330 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9331 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9332 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9333 				4, h->ioaccel2_blockFetchTable);
9334 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9335 		BUILD_BUG_ON(offsetof(struct CfgTable,
9336 				io_accel_request_size_offset) != 0xb8);
9337 		h->ioaccel2_bft2_regs =
9338 			remap_pci_mem(pci_resource_start(h->pdev,
9339 					cfg_base_addr_index) +
9340 					cfg_offset + bft2_offset,
9341 					ARRAY_SIZE(bft2) *
9342 					sizeof(*h->ioaccel2_bft2_regs));
9343 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9344 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9345 	}
9346 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9347 	if (hpsa_wait_for_mode_change_ack(h)) {
9348 		dev_err(&h->pdev->dev,
9349 			"performant mode problem - enabling ioaccel mode\n");
9350 		return -ENODEV;
9351 	}
9352 	return 0;
9353 }
9354 
9355 /* Free ioaccel1 mode command blocks and block fetch table */
9356 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9357 {
9358 	if (h->ioaccel_cmd_pool) {
9359 		dma_free_coherent(&h->pdev->dev,
9360 				  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9361 				  h->ioaccel_cmd_pool,
9362 				  h->ioaccel_cmd_pool_dhandle);
9363 		h->ioaccel_cmd_pool = NULL;
9364 		h->ioaccel_cmd_pool_dhandle = 0;
9365 	}
9366 	kfree(h->ioaccel1_blockFetchTable);
9367 	h->ioaccel1_blockFetchTable = NULL;
9368 }
9369 
9370 /* Allocate ioaccel1 mode command blocks and block fetch table */
9371 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9372 {
9373 	h->ioaccel_maxsg =
9374 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9375 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9376 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9377 
9378 	/* Command structures must be aligned on a 128-byte boundary
9379 	 * because the 7 lower bits of the address are used by the
9380 	 * hardware.
9381 	 */
9382 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9383 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9384 	h->ioaccel_cmd_pool =
9385 		dma_alloc_coherent(&h->pdev->dev,
9386 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9387 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9388 
9389 	h->ioaccel1_blockFetchTable =
9390 		kmalloc(((h->ioaccel_maxsg + 1) *
9391 				sizeof(u32)), GFP_KERNEL);
9392 
9393 	if ((h->ioaccel_cmd_pool == NULL) ||
9394 		(h->ioaccel1_blockFetchTable == NULL))
9395 		goto clean_up;
9396 
9397 	memset(h->ioaccel_cmd_pool, 0,
9398 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9399 	return 0;
9400 
9401 clean_up:
9402 	hpsa_free_ioaccel1_cmd_and_bft(h);
9403 	return -ENOMEM;
9404 }
9405 
9406 /* Free ioaccel2 mode command blocks and block fetch table */
9407 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9408 {
9409 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9410 
9411 	if (h->ioaccel2_cmd_pool) {
9412 		dma_free_coherent(&h->pdev->dev,
9413 				  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9414 				  h->ioaccel2_cmd_pool,
9415 				  h->ioaccel2_cmd_pool_dhandle);
9416 		h->ioaccel2_cmd_pool = NULL;
9417 		h->ioaccel2_cmd_pool_dhandle = 0;
9418 	}
9419 	kfree(h->ioaccel2_blockFetchTable);
9420 	h->ioaccel2_blockFetchTable = NULL;
9421 }
9422 
9423 /* Allocate ioaccel2 mode command blocks and block fetch table */
9424 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9425 {
9426 	int rc;
9427 
9428 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9429 
9430 	h->ioaccel_maxsg =
9431 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9432 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9433 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9434 
9435 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9436 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9437 	h->ioaccel2_cmd_pool =
9438 		dma_alloc_coherent(&h->pdev->dev,
9439 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9440 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9441 
9442 	h->ioaccel2_blockFetchTable =
9443 		kmalloc(((h->ioaccel_maxsg + 1) *
9444 				sizeof(u32)), GFP_KERNEL);
9445 
9446 	if ((h->ioaccel2_cmd_pool == NULL) ||
9447 		(h->ioaccel2_blockFetchTable == NULL)) {
9448 		rc = -ENOMEM;
9449 		goto clean_up;
9450 	}
9451 
9452 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9453 	if (rc)
9454 		goto clean_up;
9455 
9456 	memset(h->ioaccel2_cmd_pool, 0,
9457 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9458 	return 0;
9459 
9460 clean_up:
9461 	hpsa_free_ioaccel2_cmd_and_bft(h);
9462 	return rc;
9463 }
9464 
9465 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9466 static void hpsa_free_performant_mode(struct ctlr_info *h)
9467 {
9468 	kfree(h->blockFetchTable);
9469 	h->blockFetchTable = NULL;
9470 	hpsa_free_reply_queues(h);
9471 	hpsa_free_ioaccel1_cmd_and_bft(h);
9472 	hpsa_free_ioaccel2_cmd_and_bft(h);
9473 }
9474 
9475 /* return -ENODEV on error, 0 on success (or no action)
9476  * allocates numerous items that must be freed later
9477  */
9478 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9479 {
9480 	u32 trans_support;
9481 	unsigned long transMethod = CFGTBL_Trans_Performant |
9482 					CFGTBL_Trans_use_short_tags;
9483 	int i, rc;
9484 
9485 	if (hpsa_simple_mode)
9486 		return 0;
9487 
9488 	trans_support = readl(&(h->cfgtable->TransportSupport));
9489 	if (!(trans_support & PERFORMANT_MODE))
9490 		return 0;
9491 
9492 	/* Check for I/O accelerator mode support */
9493 	if (trans_support & CFGTBL_Trans_io_accel1) {
9494 		transMethod |= CFGTBL_Trans_io_accel1 |
9495 				CFGTBL_Trans_enable_directed_msix;
9496 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9497 		if (rc)
9498 			return rc;
9499 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9500 		transMethod |= CFGTBL_Trans_io_accel2 |
9501 				CFGTBL_Trans_enable_directed_msix;
9502 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9503 		if (rc)
9504 			return rc;
9505 	}
9506 
9507 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9508 	hpsa_get_max_perf_mode_cmds(h);
9509 	/* Performant mode ring buffer and supporting data structures */
9510 	h->reply_queue_size = h->max_commands * sizeof(u64);
9511 
9512 	for (i = 0; i < h->nreply_queues; i++) {
9513 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9514 						h->reply_queue_size,
9515 						&h->reply_queue[i].busaddr,
9516 						GFP_KERNEL);
9517 		if (!h->reply_queue[i].head) {
9518 			rc = -ENOMEM;
9519 			goto clean1;	/* rq, ioaccel */
9520 		}
9521 		h->reply_queue[i].size = h->max_commands;
9522 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9523 		h->reply_queue[i].current_entry = 0;
9524 	}
9525 
9526 	/* Need a block fetch table for performant mode */
9527 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9528 				sizeof(u32)), GFP_KERNEL);
9529 	if (!h->blockFetchTable) {
9530 		rc = -ENOMEM;
9531 		goto clean1;	/* rq, ioaccel */
9532 	}
9533 
9534 	rc = hpsa_enter_performant_mode(h, trans_support);
9535 	if (rc)
9536 		goto clean2;	/* bft, rq, ioaccel */
9537 	return 0;
9538 
9539 clean2:	/* bft, rq, ioaccel */
9540 	kfree(h->blockFetchTable);
9541 	h->blockFetchTable = NULL;
9542 clean1:	/* rq, ioaccel */
9543 	hpsa_free_reply_queues(h);
9544 	hpsa_free_ioaccel1_cmd_and_bft(h);
9545 	hpsa_free_ioaccel2_cmd_and_bft(h);
9546 	return rc;
9547 }
9548 
9549 static int is_accelerated_cmd(struct CommandList *c)
9550 {
9551 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9552 }
9553 
9554 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9555 {
9556 	struct CommandList *c = NULL;
9557 	int i, accel_cmds_out;
9558 	int refcount;
9559 
9560 	do { /* wait for all outstanding ioaccel commands to drain out */
9561 		accel_cmds_out = 0;
9562 		for (i = 0; i < h->nr_cmds; i++) {
9563 			c = h->cmd_pool + i;
9564 			refcount = atomic_inc_return(&c->refcount);
9565 			if (refcount > 1) /* Command is allocated */
9566 				accel_cmds_out += is_accelerated_cmd(c);
9567 			cmd_free(h, c);
9568 		}
9569 		if (accel_cmds_out <= 0)
9570 			break;
9571 		msleep(100);
9572 	} while (1);
9573 }
9574 
9575 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9576 				struct hpsa_sas_port *hpsa_sas_port)
9577 {
9578 	struct hpsa_sas_phy *hpsa_sas_phy;
9579 	struct sas_phy *phy;
9580 
9581 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9582 	if (!hpsa_sas_phy)
9583 		return NULL;
9584 
9585 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9586 		hpsa_sas_port->next_phy_index);
9587 	if (!phy) {
9588 		kfree(hpsa_sas_phy);
9589 		return NULL;
9590 	}
9591 
9592 	hpsa_sas_port->next_phy_index++;
9593 	hpsa_sas_phy->phy = phy;
9594 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9595 
9596 	return hpsa_sas_phy;
9597 }
9598 
9599 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9600 {
9601 	struct sas_phy *phy = hpsa_sas_phy->phy;
9602 
9603 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9604 	if (hpsa_sas_phy->added_to_port)
9605 		list_del(&hpsa_sas_phy->phy_list_entry);
9606 	sas_phy_delete(phy);
9607 	kfree(hpsa_sas_phy);
9608 }
9609 
9610 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9611 {
9612 	int rc;
9613 	struct hpsa_sas_port *hpsa_sas_port;
9614 	struct sas_phy *phy;
9615 	struct sas_identify *identify;
9616 
9617 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9618 	phy = hpsa_sas_phy->phy;
9619 
9620 	identify = &phy->identify;
9621 	memset(identify, 0, sizeof(*identify));
9622 	identify->sas_address = hpsa_sas_port->sas_address;
9623 	identify->device_type = SAS_END_DEVICE;
9624 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9625 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9626 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9627 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9628 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9629 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9630 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9631 
9632 	rc = sas_phy_add(hpsa_sas_phy->phy);
9633 	if (rc)
9634 		return rc;
9635 
9636 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9637 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9638 			&hpsa_sas_port->phy_list_head);
9639 	hpsa_sas_phy->added_to_port = true;
9640 
9641 	return 0;
9642 }
9643 
9644 static int
9645 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9646 				struct sas_rphy *rphy)
9647 {
9648 	struct sas_identify *identify;
9649 
9650 	identify = &rphy->identify;
9651 	identify->sas_address = hpsa_sas_port->sas_address;
9652 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9653 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9654 
9655 	return sas_rphy_add(rphy);
9656 }
9657 
9658 static struct hpsa_sas_port
9659 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9660 				u64 sas_address)
9661 {
9662 	int rc;
9663 	struct hpsa_sas_port *hpsa_sas_port;
9664 	struct sas_port *port;
9665 
9666 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9667 	if (!hpsa_sas_port)
9668 		return NULL;
9669 
9670 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9671 	hpsa_sas_port->parent_node = hpsa_sas_node;
9672 
9673 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9674 	if (!port)
9675 		goto free_hpsa_port;
9676 
9677 	rc = sas_port_add(port);
9678 	if (rc)
9679 		goto free_sas_port;
9680 
9681 	hpsa_sas_port->port = port;
9682 	hpsa_sas_port->sas_address = sas_address;
9683 	list_add_tail(&hpsa_sas_port->port_list_entry,
9684 			&hpsa_sas_node->port_list_head);
9685 
9686 	return hpsa_sas_port;
9687 
9688 free_sas_port:
9689 	sas_port_free(port);
9690 free_hpsa_port:
9691 	kfree(hpsa_sas_port);
9692 
9693 	return NULL;
9694 }
9695 
9696 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9697 {
9698 	struct hpsa_sas_phy *hpsa_sas_phy;
9699 	struct hpsa_sas_phy *next;
9700 
9701 	list_for_each_entry_safe(hpsa_sas_phy, next,
9702 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9703 		hpsa_free_sas_phy(hpsa_sas_phy);
9704 
9705 	sas_port_delete(hpsa_sas_port->port);
9706 	list_del(&hpsa_sas_port->port_list_entry);
9707 	kfree(hpsa_sas_port);
9708 }
9709 
9710 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9711 {
9712 	struct hpsa_sas_node *hpsa_sas_node;
9713 
9714 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9715 	if (hpsa_sas_node) {
9716 		hpsa_sas_node->parent_dev = parent_dev;
9717 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9718 	}
9719 
9720 	return hpsa_sas_node;
9721 }
9722 
9723 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9724 {
9725 	struct hpsa_sas_port *hpsa_sas_port;
9726 	struct hpsa_sas_port *next;
9727 
9728 	if (!hpsa_sas_node)
9729 		return;
9730 
9731 	list_for_each_entry_safe(hpsa_sas_port, next,
9732 			&hpsa_sas_node->port_list_head, port_list_entry)
9733 		hpsa_free_sas_port(hpsa_sas_port);
9734 
9735 	kfree(hpsa_sas_node);
9736 }
9737 
9738 static struct hpsa_scsi_dev_t
9739 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9740 					struct sas_rphy *rphy)
9741 {
9742 	int i;
9743 	struct hpsa_scsi_dev_t *device;
9744 
9745 	for (i = 0; i < h->ndevices; i++) {
9746 		device = h->dev[i];
9747 		if (!device->sas_port)
9748 			continue;
9749 		if (device->sas_port->rphy == rphy)
9750 			return device;
9751 	}
9752 
9753 	return NULL;
9754 }
9755 
9756 static int hpsa_add_sas_host(struct ctlr_info *h)
9757 {
9758 	int rc;
9759 	struct device *parent_dev;
9760 	struct hpsa_sas_node *hpsa_sas_node;
9761 	struct hpsa_sas_port *hpsa_sas_port;
9762 	struct hpsa_sas_phy *hpsa_sas_phy;
9763 
9764 	parent_dev = &h->scsi_host->shost_dev;
9765 
9766 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9767 	if (!hpsa_sas_node)
9768 		return -ENOMEM;
9769 
9770 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9771 	if (!hpsa_sas_port) {
9772 		rc = -ENODEV;
9773 		goto free_sas_node;
9774 	}
9775 
9776 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9777 	if (!hpsa_sas_phy) {
9778 		rc = -ENODEV;
9779 		goto free_sas_port;
9780 	}
9781 
9782 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9783 	if (rc)
9784 		goto free_sas_phy;
9785 
9786 	h->sas_host = hpsa_sas_node;
9787 
9788 	return 0;
9789 
9790 free_sas_phy:
9791 	hpsa_free_sas_phy(hpsa_sas_phy);
9792 free_sas_port:
9793 	hpsa_free_sas_port(hpsa_sas_port);
9794 free_sas_node:
9795 	hpsa_free_sas_node(hpsa_sas_node);
9796 
9797 	return rc;
9798 }
9799 
9800 static void hpsa_delete_sas_host(struct ctlr_info *h)
9801 {
9802 	hpsa_free_sas_node(h->sas_host);
9803 }
9804 
9805 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9806 				struct hpsa_scsi_dev_t *device)
9807 {
9808 	int rc;
9809 	struct hpsa_sas_port *hpsa_sas_port;
9810 	struct sas_rphy *rphy;
9811 
9812 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9813 	if (!hpsa_sas_port)
9814 		return -ENOMEM;
9815 
9816 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9817 	if (!rphy) {
9818 		rc = -ENODEV;
9819 		goto free_sas_port;
9820 	}
9821 
9822 	hpsa_sas_port->rphy = rphy;
9823 	device->sas_port = hpsa_sas_port;
9824 
9825 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9826 	if (rc)
9827 		goto free_sas_port;
9828 
9829 	return 0;
9830 
9831 free_sas_port:
9832 	hpsa_free_sas_port(hpsa_sas_port);
9833 	device->sas_port = NULL;
9834 
9835 	return rc;
9836 }
9837 
9838 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9839 {
9840 	if (device->sas_port) {
9841 		hpsa_free_sas_port(device->sas_port);
9842 		device->sas_port = NULL;
9843 	}
9844 }
9845 
9846 static int
9847 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9848 {
9849 	return 0;
9850 }
9851 
9852 static int
9853 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9854 {
9855 	struct Scsi_Host *shost = phy_to_shost(rphy);
9856 	struct ctlr_info *h;
9857 	struct hpsa_scsi_dev_t *sd;
9858 
9859 	if (!shost)
9860 		return -ENXIO;
9861 
9862 	h = shost_to_hba(shost);
9863 
9864 	if (!h)
9865 		return -ENXIO;
9866 
9867 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9868 	if (!sd)
9869 		return -ENXIO;
9870 
9871 	*identifier = sd->eli;
9872 
9873 	return 0;
9874 }
9875 
9876 static int
9877 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9878 {
9879 	return -ENXIO;
9880 }
9881 
9882 static int
9883 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9884 {
9885 	return 0;
9886 }
9887 
9888 static int
9889 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9890 {
9891 	return 0;
9892 }
9893 
9894 static int
9895 hpsa_sas_phy_setup(struct sas_phy *phy)
9896 {
9897 	return 0;
9898 }
9899 
9900 static void
9901 hpsa_sas_phy_release(struct sas_phy *phy)
9902 {
9903 }
9904 
9905 static int
9906 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9907 {
9908 	return -EINVAL;
9909 }
9910 
9911 static struct sas_function_template hpsa_sas_transport_functions = {
9912 	.get_linkerrors = hpsa_sas_get_linkerrors,
9913 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9914 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9915 	.phy_reset = hpsa_sas_phy_reset,
9916 	.phy_enable = hpsa_sas_phy_enable,
9917 	.phy_setup = hpsa_sas_phy_setup,
9918 	.phy_release = hpsa_sas_phy_release,
9919 	.set_phy_speed = hpsa_sas_phy_speed,
9920 };
9921 
9922 /*
9923  *  This is it.  Register the PCI driver information for the cards we control
9924  *  the OS will call our registered routines when it finds one of our cards.
9925  */
9926 static int __init hpsa_init(void)
9927 {
9928 	int rc;
9929 
9930 	hpsa_sas_transport_template =
9931 		sas_attach_transport(&hpsa_sas_transport_functions);
9932 	if (!hpsa_sas_transport_template)
9933 		return -ENODEV;
9934 
9935 	rc = pci_register_driver(&hpsa_pci_driver);
9936 
9937 	if (rc)
9938 		sas_release_transport(hpsa_sas_transport_template);
9939 
9940 	return rc;
9941 }
9942 
9943 static void __exit hpsa_cleanup(void)
9944 {
9945 	pci_unregister_driver(&hpsa_pci_driver);
9946 	sas_release_transport(hpsa_sas_transport_template);
9947 }
9948 
9949 static void __attribute__((unused)) verify_offsets(void)
9950 {
9951 #define VERIFY_OFFSET(member, offset) \
9952 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9953 
9954 	VERIFY_OFFSET(structure_size, 0);
9955 	VERIFY_OFFSET(volume_blk_size, 4);
9956 	VERIFY_OFFSET(volume_blk_cnt, 8);
9957 	VERIFY_OFFSET(phys_blk_shift, 16);
9958 	VERIFY_OFFSET(parity_rotation_shift, 17);
9959 	VERIFY_OFFSET(strip_size, 18);
9960 	VERIFY_OFFSET(disk_starting_blk, 20);
9961 	VERIFY_OFFSET(disk_blk_cnt, 28);
9962 	VERIFY_OFFSET(data_disks_per_row, 36);
9963 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9964 	VERIFY_OFFSET(row_cnt, 40);
9965 	VERIFY_OFFSET(layout_map_count, 42);
9966 	VERIFY_OFFSET(flags, 44);
9967 	VERIFY_OFFSET(dekindex, 46);
9968 	/* VERIFY_OFFSET(reserved, 48 */
9969 	VERIFY_OFFSET(data, 64);
9970 
9971 #undef VERIFY_OFFSET
9972 
9973 #define VERIFY_OFFSET(member, offset) \
9974 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9975 
9976 	VERIFY_OFFSET(IU_type, 0);
9977 	VERIFY_OFFSET(direction, 1);
9978 	VERIFY_OFFSET(reply_queue, 2);
9979 	/* VERIFY_OFFSET(reserved1, 3);  */
9980 	VERIFY_OFFSET(scsi_nexus, 4);
9981 	VERIFY_OFFSET(Tag, 8);
9982 	VERIFY_OFFSET(cdb, 16);
9983 	VERIFY_OFFSET(cciss_lun, 32);
9984 	VERIFY_OFFSET(data_len, 40);
9985 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9986 	VERIFY_OFFSET(sg_count, 45);
9987 	/* VERIFY_OFFSET(reserved3 */
9988 	VERIFY_OFFSET(err_ptr, 48);
9989 	VERIFY_OFFSET(err_len, 56);
9990 	/* VERIFY_OFFSET(reserved4  */
9991 	VERIFY_OFFSET(sg, 64);
9992 
9993 #undef VERIFY_OFFSET
9994 
9995 #define VERIFY_OFFSET(member, offset) \
9996 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9997 
9998 	VERIFY_OFFSET(dev_handle, 0x00);
9999 	VERIFY_OFFSET(reserved1, 0x02);
10000 	VERIFY_OFFSET(function, 0x03);
10001 	VERIFY_OFFSET(reserved2, 0x04);
10002 	VERIFY_OFFSET(err_info, 0x0C);
10003 	VERIFY_OFFSET(reserved3, 0x10);
10004 	VERIFY_OFFSET(err_info_len, 0x12);
10005 	VERIFY_OFFSET(reserved4, 0x13);
10006 	VERIFY_OFFSET(sgl_offset, 0x14);
10007 	VERIFY_OFFSET(reserved5, 0x15);
10008 	VERIFY_OFFSET(transfer_len, 0x1C);
10009 	VERIFY_OFFSET(reserved6, 0x20);
10010 	VERIFY_OFFSET(io_flags, 0x24);
10011 	VERIFY_OFFSET(reserved7, 0x26);
10012 	VERIFY_OFFSET(LUN, 0x34);
10013 	VERIFY_OFFSET(control, 0x3C);
10014 	VERIFY_OFFSET(CDB, 0x40);
10015 	VERIFY_OFFSET(reserved8, 0x50);
10016 	VERIFY_OFFSET(host_context_flags, 0x60);
10017 	VERIFY_OFFSET(timeout_sec, 0x62);
10018 	VERIFY_OFFSET(ReplyQueue, 0x64);
10019 	VERIFY_OFFSET(reserved9, 0x65);
10020 	VERIFY_OFFSET(tag, 0x68);
10021 	VERIFY_OFFSET(host_addr, 0x70);
10022 	VERIFY_OFFSET(CISS_LUN, 0x78);
10023 	VERIFY_OFFSET(SG, 0x78 + 8);
10024 #undef VERIFY_OFFSET
10025 }
10026 
10027 module_init(hpsa_init);
10028 module_exit(hpsa_cleanup);
10029