1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright 2016 Microsemi Corporation 4 * Copyright 2014-2015 PMC-Sierra, Inc. 5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; version 2 of the License. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 14 * NON INFRINGEMENT. See the GNU General Public License for more details. 15 * 16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com 17 * 18 */ 19 20 #include <linux/module.h> 21 #include <linux/interrupt.h> 22 #include <linux/types.h> 23 #include <linux/pci.h> 24 #include <linux/pci-aspm.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/fs.h> 29 #include <linux/timer.h> 30 #include <linux/init.h> 31 #include <linux/spinlock.h> 32 #include <linux/compat.h> 33 #include <linux/blktrace_api.h> 34 #include <linux/uaccess.h> 35 #include <linux/io.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/completion.h> 38 #include <linux/moduleparam.h> 39 #include <scsi/scsi.h> 40 #include <scsi/scsi_cmnd.h> 41 #include <scsi/scsi_device.h> 42 #include <scsi/scsi_host.h> 43 #include <scsi/scsi_tcq.h> 44 #include <scsi/scsi_eh.h> 45 #include <scsi/scsi_transport_sas.h> 46 #include <scsi/scsi_dbg.h> 47 #include <linux/cciss_ioctl.h> 48 #include <linux/string.h> 49 #include <linux/bitmap.h> 50 #include <linux/atomic.h> 51 #include <linux/jiffies.h> 52 #include <linux/percpu-defs.h> 53 #include <linux/percpu.h> 54 #include <asm/unaligned.h> 55 #include <asm/div64.h> 56 #include "hpsa_cmd.h" 57 #include "hpsa.h" 58 59 /* 60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' 61 * with an optional trailing '-' followed by a byte value (0-255). 62 */ 63 #define HPSA_DRIVER_VERSION "3.4.16-0" 64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 65 #define HPSA "hpsa" 66 67 /* How long to wait for CISS doorbell communication */ 68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */ 69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */ 70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */ 71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */ 72 #define MAX_IOCTL_CONFIG_WAIT 1000 73 74 /*define how many times we will try a command because of bus resets */ 75 #define MAX_CMD_RETRIES 3 76 77 /* Embedded module documentation macros - see modules.h */ 78 MODULE_AUTHOR("Hewlett-Packard Company"); 79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 80 HPSA_DRIVER_VERSION); 81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); 82 MODULE_VERSION(HPSA_DRIVER_VERSION); 83 MODULE_LICENSE("GPL"); 84 85 static int hpsa_allow_any; 86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); 87 MODULE_PARM_DESC(hpsa_allow_any, 88 "Allow hpsa driver to access unknown HP Smart Array hardware"); 89 static int hpsa_simple_mode; 90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); 91 MODULE_PARM_DESC(hpsa_simple_mode, 92 "Use 'simple mode' rather than 'performant mode'"); 93 94 /* define the PCI info for the cards we can control */ 95 static const struct pci_device_id hpsa_pci_device_id[] = { 96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, 102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, 103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, 105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, 106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, 107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, 108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, 109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, 110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, 111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921}, 112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922}, 113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923}, 114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924}, 115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926}, 116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928}, 117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929}, 118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD}, 119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE}, 120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF}, 121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0}, 122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1}, 123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2}, 124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3}, 125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4}, 126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5}, 127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6}, 128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7}, 129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8}, 130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9}, 131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA}, 132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB}, 133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC}, 134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD}, 135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE}, 136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580}, 137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581}, 138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582}, 139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583}, 140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584}, 141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585}, 142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076}, 143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087}, 144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D}, 145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088}, 146 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f}, 147 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 148 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 149 {0,} 150 }; 151 152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 153 154 /* board_id = Subsystem Device ID & Vendor ID 155 * product = Marketing Name for the board 156 * access = Address of the struct of function pointers 157 */ 158 static struct board_type products[] = { 159 {0x3241103C, "Smart Array P212", &SA5_access}, 160 {0x3243103C, "Smart Array P410", &SA5_access}, 161 {0x3245103C, "Smart Array P410i", &SA5_access}, 162 {0x3247103C, "Smart Array P411", &SA5_access}, 163 {0x3249103C, "Smart Array P812", &SA5_access}, 164 {0x324A103C, "Smart Array P712m", &SA5_access}, 165 {0x324B103C, "Smart Array P711m", &SA5_access}, 166 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */ 167 {0x3350103C, "Smart Array P222", &SA5_access}, 168 {0x3351103C, "Smart Array P420", &SA5_access}, 169 {0x3352103C, "Smart Array P421", &SA5_access}, 170 {0x3353103C, "Smart Array P822", &SA5_access}, 171 {0x3354103C, "Smart Array P420i", &SA5_access}, 172 {0x3355103C, "Smart Array P220i", &SA5_access}, 173 {0x3356103C, "Smart Array P721m", &SA5_access}, 174 {0x1921103C, "Smart Array P830i", &SA5_access}, 175 {0x1922103C, "Smart Array P430", &SA5_access}, 176 {0x1923103C, "Smart Array P431", &SA5_access}, 177 {0x1924103C, "Smart Array P830", &SA5_access}, 178 {0x1926103C, "Smart Array P731m", &SA5_access}, 179 {0x1928103C, "Smart Array P230i", &SA5_access}, 180 {0x1929103C, "Smart Array P530", &SA5_access}, 181 {0x21BD103C, "Smart Array P244br", &SA5_access}, 182 {0x21BE103C, "Smart Array P741m", &SA5_access}, 183 {0x21BF103C, "Smart HBA H240ar", &SA5_access}, 184 {0x21C0103C, "Smart Array P440ar", &SA5_access}, 185 {0x21C1103C, "Smart Array P840ar", &SA5_access}, 186 {0x21C2103C, "Smart Array P440", &SA5_access}, 187 {0x21C3103C, "Smart Array P441", &SA5_access}, 188 {0x21C4103C, "Smart Array", &SA5_access}, 189 {0x21C5103C, "Smart Array P841", &SA5_access}, 190 {0x21C6103C, "Smart HBA H244br", &SA5_access}, 191 {0x21C7103C, "Smart HBA H240", &SA5_access}, 192 {0x21C8103C, "Smart HBA H241", &SA5_access}, 193 {0x21C9103C, "Smart Array", &SA5_access}, 194 {0x21CA103C, "Smart Array P246br", &SA5_access}, 195 {0x21CB103C, "Smart Array P840", &SA5_access}, 196 {0x21CC103C, "Smart Array", &SA5_access}, 197 {0x21CD103C, "Smart Array", &SA5_access}, 198 {0x21CE103C, "Smart HBA", &SA5_access}, 199 {0x05809005, "SmartHBA-SA", &SA5_access}, 200 {0x05819005, "SmartHBA-SA 8i", &SA5_access}, 201 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access}, 202 {0x05839005, "SmartHBA-SA 8e", &SA5_access}, 203 {0x05849005, "SmartHBA-SA 16i", &SA5_access}, 204 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access}, 205 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access}, 206 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access}, 207 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access}, 208 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access}, 209 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access}, 210 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 211 }; 212 213 static struct scsi_transport_template *hpsa_sas_transport_template; 214 static int hpsa_add_sas_host(struct ctlr_info *h); 215 static void hpsa_delete_sas_host(struct ctlr_info *h); 216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, 217 struct hpsa_scsi_dev_t *device); 218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device); 219 static struct hpsa_scsi_dev_t 220 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, 221 struct sas_rphy *rphy); 222 223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy) 224 static const struct scsi_cmnd hpsa_cmd_busy; 225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle) 226 static const struct scsi_cmnd hpsa_cmd_idle; 227 static int number_of_controllers; 228 229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); 230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); 231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg); 232 233 #ifdef CONFIG_COMPAT 234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, 235 void __user *arg); 236 #endif 237 238 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 239 static struct CommandList *cmd_alloc(struct ctlr_info *h); 240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c); 241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, 242 struct scsi_cmnd *scmd); 243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 244 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, 245 int cmd_type); 246 static void hpsa_free_cmd_pool(struct ctlr_info *h); 247 #define VPD_PAGE (1 << 8) 248 #define HPSA_SIMPLE_ERROR_BITS 0x03 249 250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); 251 static void hpsa_scan_start(struct Scsi_Host *); 252 static int hpsa_scan_finished(struct Scsi_Host *sh, 253 unsigned long elapsed_time); 254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth); 255 256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd); 258 static int hpsa_slave_alloc(struct scsi_device *sdev); 259 static int hpsa_slave_configure(struct scsi_device *sdev); 260 static void hpsa_slave_destroy(struct scsi_device *sdev); 261 262 static void hpsa_update_scsi_devices(struct ctlr_info *h); 263 static int check_for_unit_attention(struct ctlr_info *h, 264 struct CommandList *c); 265 static void check_ioctl_unit_attention(struct ctlr_info *h, 266 struct CommandList *c); 267 /* performant mode helper functions */ 268 static void calc_bucket_map(int *bucket, int num_buckets, 269 int nsgs, int min_blocks, u32 *bucket_map); 270 static void hpsa_free_performant_mode(struct ctlr_info *h); 271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 272 static inline u32 next_command(struct ctlr_info *h, u8 q); 273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, 274 u32 *cfg_base_addr, u64 *cfg_base_addr_index, 275 u64 *cfg_offset); 276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 277 unsigned long *memory_bar); 278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); 279 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, 280 int wait_for_ready); 281 static inline void finish_cmd(struct CommandList *c); 282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h); 283 #define BOARD_NOT_READY 0 284 #define BOARD_READY 1 285 static void hpsa_drain_accel_commands(struct ctlr_info *h); 286 static void hpsa_flush_cache(struct ctlr_info *h); 287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, 288 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 289 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk); 290 static void hpsa_command_resubmit_worker(struct work_struct *work); 291 static u32 lockup_detected(struct ctlr_info *h); 292 static int detect_controller_lockup(struct ctlr_info *h); 293 static void hpsa_disable_rld_caching(struct ctlr_info *h); 294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 295 struct ReportExtendedLUNdata *buf, int bufsize); 296 static bool hpsa_vpd_page_supported(struct ctlr_info *h, 297 unsigned char scsi3addr[], u8 page); 298 static int hpsa_luns_changed(struct ctlr_info *h); 299 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, 300 struct hpsa_scsi_dev_t *dev, 301 unsigned char *scsi3addr); 302 303 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 304 { 305 unsigned long *priv = shost_priv(sdev->host); 306 return (struct ctlr_info *) *priv; 307 } 308 309 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 310 { 311 unsigned long *priv = shost_priv(sh); 312 return (struct ctlr_info *) *priv; 313 } 314 315 static inline bool hpsa_is_cmd_idle(struct CommandList *c) 316 { 317 return c->scsi_cmd == SCSI_CMD_IDLE; 318 } 319 320 static inline bool hpsa_is_pending_event(struct CommandList *c) 321 { 322 return c->abort_pending || c->reset_pending; 323 } 324 325 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */ 326 static void decode_sense_data(const u8 *sense_data, int sense_data_len, 327 u8 *sense_key, u8 *asc, u8 *ascq) 328 { 329 struct scsi_sense_hdr sshdr; 330 bool rc; 331 332 *sense_key = -1; 333 *asc = -1; 334 *ascq = -1; 335 336 if (sense_data_len < 1) 337 return; 338 339 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr); 340 if (rc) { 341 *sense_key = sshdr.sense_key; 342 *asc = sshdr.asc; 343 *ascq = sshdr.ascq; 344 } 345 } 346 347 static int check_for_unit_attention(struct ctlr_info *h, 348 struct CommandList *c) 349 { 350 u8 sense_key, asc, ascq; 351 int sense_len; 352 353 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) 354 sense_len = sizeof(c->err_info->SenseInfo); 355 else 356 sense_len = c->err_info->SenseLen; 357 358 decode_sense_data(c->err_info->SenseInfo, sense_len, 359 &sense_key, &asc, &ascq); 360 if (sense_key != UNIT_ATTENTION || asc == 0xff) 361 return 0; 362 363 switch (asc) { 364 case STATE_CHANGED: 365 dev_warn(&h->pdev->dev, 366 "%s: a state change detected, command retried\n", 367 h->devname); 368 break; 369 case LUN_FAILED: 370 dev_warn(&h->pdev->dev, 371 "%s: LUN failure detected\n", h->devname); 372 break; 373 case REPORT_LUNS_CHANGED: 374 dev_warn(&h->pdev->dev, 375 "%s: report LUN data changed\n", h->devname); 376 /* 377 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external 378 * target (array) devices. 379 */ 380 break; 381 case POWER_OR_RESET: 382 dev_warn(&h->pdev->dev, 383 "%s: a power on or device reset detected\n", 384 h->devname); 385 break; 386 case UNIT_ATTENTION_CLEARED: 387 dev_warn(&h->pdev->dev, 388 "%s: unit attention cleared by another initiator\n", 389 h->devname); 390 break; 391 default: 392 dev_warn(&h->pdev->dev, 393 "%s: unknown unit attention detected\n", 394 h->devname); 395 break; 396 } 397 return 1; 398 } 399 400 static int check_for_busy(struct ctlr_info *h, struct CommandList *c) 401 { 402 if (c->err_info->CommandStatus != CMD_TARGET_STATUS || 403 (c->err_info->ScsiStatus != SAM_STAT_BUSY && 404 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) 405 return 0; 406 dev_warn(&h->pdev->dev, HPSA "device busy"); 407 return 1; 408 } 409 410 static u32 lockup_detected(struct ctlr_info *h); 411 static ssize_t host_show_lockup_detected(struct device *dev, 412 struct device_attribute *attr, char *buf) 413 { 414 int ld; 415 struct ctlr_info *h; 416 struct Scsi_Host *shost = class_to_shost(dev); 417 418 h = shost_to_hba(shost); 419 ld = lockup_detected(h); 420 421 return sprintf(buf, "ld=%d\n", ld); 422 } 423 424 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev, 425 struct device_attribute *attr, 426 const char *buf, size_t count) 427 { 428 int status, len; 429 struct ctlr_info *h; 430 struct Scsi_Host *shost = class_to_shost(dev); 431 char tmpbuf[10]; 432 433 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 434 return -EACCES; 435 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; 436 strncpy(tmpbuf, buf, len); 437 tmpbuf[len] = '\0'; 438 if (sscanf(tmpbuf, "%d", &status) != 1) 439 return -EINVAL; 440 h = shost_to_hba(shost); 441 h->acciopath_status = !!status; 442 dev_warn(&h->pdev->dev, 443 "hpsa: HP SSD Smart Path %s via sysfs update.\n", 444 h->acciopath_status ? "enabled" : "disabled"); 445 return count; 446 } 447 448 static ssize_t host_store_raid_offload_debug(struct device *dev, 449 struct device_attribute *attr, 450 const char *buf, size_t count) 451 { 452 int debug_level, len; 453 struct ctlr_info *h; 454 struct Scsi_Host *shost = class_to_shost(dev); 455 char tmpbuf[10]; 456 457 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 458 return -EACCES; 459 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; 460 strncpy(tmpbuf, buf, len); 461 tmpbuf[len] = '\0'; 462 if (sscanf(tmpbuf, "%d", &debug_level) != 1) 463 return -EINVAL; 464 if (debug_level < 0) 465 debug_level = 0; 466 h = shost_to_hba(shost); 467 h->raid_offload_debug = debug_level; 468 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n", 469 h->raid_offload_debug); 470 return count; 471 } 472 473 static ssize_t host_store_rescan(struct device *dev, 474 struct device_attribute *attr, 475 const char *buf, size_t count) 476 { 477 struct ctlr_info *h; 478 struct Scsi_Host *shost = class_to_shost(dev); 479 h = shost_to_hba(shost); 480 hpsa_scan_start(h->scsi_host); 481 return count; 482 } 483 484 static ssize_t host_show_firmware_revision(struct device *dev, 485 struct device_attribute *attr, char *buf) 486 { 487 struct ctlr_info *h; 488 struct Scsi_Host *shost = class_to_shost(dev); 489 unsigned char *fwrev; 490 491 h = shost_to_hba(shost); 492 if (!h->hba_inquiry_data) 493 return 0; 494 fwrev = &h->hba_inquiry_data[32]; 495 return snprintf(buf, 20, "%c%c%c%c\n", 496 fwrev[0], fwrev[1], fwrev[2], fwrev[3]); 497 } 498 499 static ssize_t host_show_commands_outstanding(struct device *dev, 500 struct device_attribute *attr, char *buf) 501 { 502 struct Scsi_Host *shost = class_to_shost(dev); 503 struct ctlr_info *h = shost_to_hba(shost); 504 505 return snprintf(buf, 20, "%d\n", 506 atomic_read(&h->commands_outstanding)); 507 } 508 509 static ssize_t host_show_transport_mode(struct device *dev, 510 struct device_attribute *attr, char *buf) 511 { 512 struct ctlr_info *h; 513 struct Scsi_Host *shost = class_to_shost(dev); 514 515 h = shost_to_hba(shost); 516 return snprintf(buf, 20, "%s\n", 517 h->transMethod & CFGTBL_Trans_Performant ? 518 "performant" : "simple"); 519 } 520 521 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev, 522 struct device_attribute *attr, char *buf) 523 { 524 struct ctlr_info *h; 525 struct Scsi_Host *shost = class_to_shost(dev); 526 527 h = shost_to_hba(shost); 528 return snprintf(buf, 30, "HP SSD Smart Path %s\n", 529 (h->acciopath_status == 1) ? "enabled" : "disabled"); 530 } 531 532 /* List of controllers which cannot be hard reset on kexec with reset_devices */ 533 static u32 unresettable_controller[] = { 534 0x324a103C, /* Smart Array P712m */ 535 0x324b103C, /* Smart Array P711m */ 536 0x3223103C, /* Smart Array P800 */ 537 0x3234103C, /* Smart Array P400 */ 538 0x3235103C, /* Smart Array P400i */ 539 0x3211103C, /* Smart Array E200i */ 540 0x3212103C, /* Smart Array E200 */ 541 0x3213103C, /* Smart Array E200i */ 542 0x3214103C, /* Smart Array E200i */ 543 0x3215103C, /* Smart Array E200i */ 544 0x3237103C, /* Smart Array E500 */ 545 0x323D103C, /* Smart Array P700m */ 546 0x40800E11, /* Smart Array 5i */ 547 0x409C0E11, /* Smart Array 6400 */ 548 0x409D0E11, /* Smart Array 6400 EM */ 549 0x40700E11, /* Smart Array 5300 */ 550 0x40820E11, /* Smart Array 532 */ 551 0x40830E11, /* Smart Array 5312 */ 552 0x409A0E11, /* Smart Array 641 */ 553 0x409B0E11, /* Smart Array 642 */ 554 0x40910E11, /* Smart Array 6i */ 555 }; 556 557 /* List of controllers which cannot even be soft reset */ 558 static u32 soft_unresettable_controller[] = { 559 0x40800E11, /* Smart Array 5i */ 560 0x40700E11, /* Smart Array 5300 */ 561 0x40820E11, /* Smart Array 532 */ 562 0x40830E11, /* Smart Array 5312 */ 563 0x409A0E11, /* Smart Array 641 */ 564 0x409B0E11, /* Smart Array 642 */ 565 0x40910E11, /* Smart Array 6i */ 566 /* Exclude 640x boards. These are two pci devices in one slot 567 * which share a battery backed cache module. One controls the 568 * cache, the other accesses the cache through the one that controls 569 * it. If we reset the one controlling the cache, the other will 570 * likely not be happy. Just forbid resetting this conjoined mess. 571 * The 640x isn't really supported by hpsa anyway. 572 */ 573 0x409C0E11, /* Smart Array 6400 */ 574 0x409D0E11, /* Smart Array 6400 EM */ 575 }; 576 577 static u32 needs_abort_tags_swizzled[] = { 578 0x323D103C, /* Smart Array P700m */ 579 0x324a103C, /* Smart Array P712m */ 580 0x324b103C, /* SmartArray P711m */ 581 }; 582 583 static int board_id_in_array(u32 a[], int nelems, u32 board_id) 584 { 585 int i; 586 587 for (i = 0; i < nelems; i++) 588 if (a[i] == board_id) 589 return 1; 590 return 0; 591 } 592 593 static int ctlr_is_hard_resettable(u32 board_id) 594 { 595 return !board_id_in_array(unresettable_controller, 596 ARRAY_SIZE(unresettable_controller), board_id); 597 } 598 599 static int ctlr_is_soft_resettable(u32 board_id) 600 { 601 return !board_id_in_array(soft_unresettable_controller, 602 ARRAY_SIZE(soft_unresettable_controller), board_id); 603 } 604 605 static int ctlr_is_resettable(u32 board_id) 606 { 607 return ctlr_is_hard_resettable(board_id) || 608 ctlr_is_soft_resettable(board_id); 609 } 610 611 static int ctlr_needs_abort_tags_swizzled(u32 board_id) 612 { 613 return board_id_in_array(needs_abort_tags_swizzled, 614 ARRAY_SIZE(needs_abort_tags_swizzled), board_id); 615 } 616 617 static ssize_t host_show_resettable(struct device *dev, 618 struct device_attribute *attr, char *buf) 619 { 620 struct ctlr_info *h; 621 struct Scsi_Host *shost = class_to_shost(dev); 622 623 h = shost_to_hba(shost); 624 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); 625 } 626 627 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 628 { 629 return (scsi3addr[3] & 0xC0) == 0x40; 630 } 631 632 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6", 633 "1(+0)ADM", "UNKNOWN", "PHYS DRV" 634 }; 635 #define HPSA_RAID_0 0 636 #define HPSA_RAID_4 1 637 #define HPSA_RAID_1 2 /* also used for RAID 10 */ 638 #define HPSA_RAID_5 3 /* also used for RAID 50 */ 639 #define HPSA_RAID_51 4 640 #define HPSA_RAID_6 5 /* also used for RAID 60 */ 641 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */ 642 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2) 643 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1) 644 645 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device) 646 { 647 return !device->physical_device; 648 } 649 650 static ssize_t raid_level_show(struct device *dev, 651 struct device_attribute *attr, char *buf) 652 { 653 ssize_t l = 0; 654 unsigned char rlevel; 655 struct ctlr_info *h; 656 struct scsi_device *sdev; 657 struct hpsa_scsi_dev_t *hdev; 658 unsigned long flags; 659 660 sdev = to_scsi_device(dev); 661 h = sdev_to_hba(sdev); 662 spin_lock_irqsave(&h->lock, flags); 663 hdev = sdev->hostdata; 664 if (!hdev) { 665 spin_unlock_irqrestore(&h->lock, flags); 666 return -ENODEV; 667 } 668 669 /* Is this even a logical drive? */ 670 if (!is_logical_device(hdev)) { 671 spin_unlock_irqrestore(&h->lock, flags); 672 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 673 return l; 674 } 675 676 rlevel = hdev->raid_level; 677 spin_unlock_irqrestore(&h->lock, flags); 678 if (rlevel > RAID_UNKNOWN) 679 rlevel = RAID_UNKNOWN; 680 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 681 return l; 682 } 683 684 static ssize_t lunid_show(struct device *dev, 685 struct device_attribute *attr, char *buf) 686 { 687 struct ctlr_info *h; 688 struct scsi_device *sdev; 689 struct hpsa_scsi_dev_t *hdev; 690 unsigned long flags; 691 unsigned char lunid[8]; 692 693 sdev = to_scsi_device(dev); 694 h = sdev_to_hba(sdev); 695 spin_lock_irqsave(&h->lock, flags); 696 hdev = sdev->hostdata; 697 if (!hdev) { 698 spin_unlock_irqrestore(&h->lock, flags); 699 return -ENODEV; 700 } 701 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 702 spin_unlock_irqrestore(&h->lock, flags); 703 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 704 lunid[0], lunid[1], lunid[2], lunid[3], 705 lunid[4], lunid[5], lunid[6], lunid[7]); 706 } 707 708 static ssize_t unique_id_show(struct device *dev, 709 struct device_attribute *attr, char *buf) 710 { 711 struct ctlr_info *h; 712 struct scsi_device *sdev; 713 struct hpsa_scsi_dev_t *hdev; 714 unsigned long flags; 715 unsigned char sn[16]; 716 717 sdev = to_scsi_device(dev); 718 h = sdev_to_hba(sdev); 719 spin_lock_irqsave(&h->lock, flags); 720 hdev = sdev->hostdata; 721 if (!hdev) { 722 spin_unlock_irqrestore(&h->lock, flags); 723 return -ENODEV; 724 } 725 memcpy(sn, hdev->device_id, sizeof(sn)); 726 spin_unlock_irqrestore(&h->lock, flags); 727 return snprintf(buf, 16 * 2 + 2, 728 "%02X%02X%02X%02X%02X%02X%02X%02X" 729 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 730 sn[0], sn[1], sn[2], sn[3], 731 sn[4], sn[5], sn[6], sn[7], 732 sn[8], sn[9], sn[10], sn[11], 733 sn[12], sn[13], sn[14], sn[15]); 734 } 735 736 static ssize_t sas_address_show(struct device *dev, 737 struct device_attribute *attr, char *buf) 738 { 739 struct ctlr_info *h; 740 struct scsi_device *sdev; 741 struct hpsa_scsi_dev_t *hdev; 742 unsigned long flags; 743 u64 sas_address; 744 745 sdev = to_scsi_device(dev); 746 h = sdev_to_hba(sdev); 747 spin_lock_irqsave(&h->lock, flags); 748 hdev = sdev->hostdata; 749 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) { 750 spin_unlock_irqrestore(&h->lock, flags); 751 return -ENODEV; 752 } 753 sas_address = hdev->sas_address; 754 spin_unlock_irqrestore(&h->lock, flags); 755 756 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address); 757 } 758 759 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, 760 struct device_attribute *attr, char *buf) 761 { 762 struct ctlr_info *h; 763 struct scsi_device *sdev; 764 struct hpsa_scsi_dev_t *hdev; 765 unsigned long flags; 766 int offload_enabled; 767 768 sdev = to_scsi_device(dev); 769 h = sdev_to_hba(sdev); 770 spin_lock_irqsave(&h->lock, flags); 771 hdev = sdev->hostdata; 772 if (!hdev) { 773 spin_unlock_irqrestore(&h->lock, flags); 774 return -ENODEV; 775 } 776 offload_enabled = hdev->offload_enabled; 777 spin_unlock_irqrestore(&h->lock, flags); 778 return snprintf(buf, 20, "%d\n", offload_enabled); 779 } 780 781 #define MAX_PATHS 8 782 static ssize_t path_info_show(struct device *dev, 783 struct device_attribute *attr, char *buf) 784 { 785 struct ctlr_info *h; 786 struct scsi_device *sdev; 787 struct hpsa_scsi_dev_t *hdev; 788 unsigned long flags; 789 int i; 790 int output_len = 0; 791 u8 box; 792 u8 bay; 793 u8 path_map_index = 0; 794 char *active; 795 unsigned char phys_connector[2]; 796 797 sdev = to_scsi_device(dev); 798 h = sdev_to_hba(sdev); 799 spin_lock_irqsave(&h->devlock, flags); 800 hdev = sdev->hostdata; 801 if (!hdev) { 802 spin_unlock_irqrestore(&h->devlock, flags); 803 return -ENODEV; 804 } 805 806 bay = hdev->bay; 807 for (i = 0; i < MAX_PATHS; i++) { 808 path_map_index = 1<<i; 809 if (i == hdev->active_path_index) 810 active = "Active"; 811 else if (hdev->path_map & path_map_index) 812 active = "Inactive"; 813 else 814 continue; 815 816 output_len += scnprintf(buf + output_len, 817 PAGE_SIZE - output_len, 818 "[%d:%d:%d:%d] %20.20s ", 819 h->scsi_host->host_no, 820 hdev->bus, hdev->target, hdev->lun, 821 scsi_device_type(hdev->devtype)); 822 823 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) { 824 output_len += scnprintf(buf + output_len, 825 PAGE_SIZE - output_len, 826 "%s\n", active); 827 continue; 828 } 829 830 box = hdev->box[i]; 831 memcpy(&phys_connector, &hdev->phys_connector[i], 832 sizeof(phys_connector)); 833 if (phys_connector[0] < '0') 834 phys_connector[0] = '0'; 835 if (phys_connector[1] < '0') 836 phys_connector[1] = '0'; 837 output_len += scnprintf(buf + output_len, 838 PAGE_SIZE - output_len, 839 "PORT: %.2s ", 840 phys_connector); 841 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) && 842 hdev->expose_device) { 843 if (box == 0 || box == 0xFF) { 844 output_len += scnprintf(buf + output_len, 845 PAGE_SIZE - output_len, 846 "BAY: %hhu %s\n", 847 bay, active); 848 } else { 849 output_len += scnprintf(buf + output_len, 850 PAGE_SIZE - output_len, 851 "BOX: %hhu BAY: %hhu %s\n", 852 box, bay, active); 853 } 854 } else if (box != 0 && box != 0xFF) { 855 output_len += scnprintf(buf + output_len, 856 PAGE_SIZE - output_len, "BOX: %hhu %s\n", 857 box, active); 858 } else 859 output_len += scnprintf(buf + output_len, 860 PAGE_SIZE - output_len, "%s\n", active); 861 } 862 863 spin_unlock_irqrestore(&h->devlock, flags); 864 return output_len; 865 } 866 867 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); 868 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); 869 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); 870 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 871 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL); 872 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, 873 host_show_hp_ssd_smart_path_enabled, NULL); 874 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL); 875 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH, 876 host_show_hp_ssd_smart_path_status, 877 host_store_hp_ssd_smart_path_status); 878 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL, 879 host_store_raid_offload_debug); 880 static DEVICE_ATTR(firmware_revision, S_IRUGO, 881 host_show_firmware_revision, NULL); 882 static DEVICE_ATTR(commands_outstanding, S_IRUGO, 883 host_show_commands_outstanding, NULL); 884 static DEVICE_ATTR(transport_mode, S_IRUGO, 885 host_show_transport_mode, NULL); 886 static DEVICE_ATTR(resettable, S_IRUGO, 887 host_show_resettable, NULL); 888 static DEVICE_ATTR(lockup_detected, S_IRUGO, 889 host_show_lockup_detected, NULL); 890 891 static struct device_attribute *hpsa_sdev_attrs[] = { 892 &dev_attr_raid_level, 893 &dev_attr_lunid, 894 &dev_attr_unique_id, 895 &dev_attr_hp_ssd_smart_path_enabled, 896 &dev_attr_path_info, 897 &dev_attr_sas_address, 898 NULL, 899 }; 900 901 static struct device_attribute *hpsa_shost_attrs[] = { 902 &dev_attr_rescan, 903 &dev_attr_firmware_revision, 904 &dev_attr_commands_outstanding, 905 &dev_attr_transport_mode, 906 &dev_attr_resettable, 907 &dev_attr_hp_ssd_smart_path_status, 908 &dev_attr_raid_offload_debug, 909 &dev_attr_lockup_detected, 910 NULL, 911 }; 912 913 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \ 914 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS) 915 916 static struct scsi_host_template hpsa_driver_template = { 917 .module = THIS_MODULE, 918 .name = HPSA, 919 .proc_name = HPSA, 920 .queuecommand = hpsa_scsi_queue_command, 921 .scan_start = hpsa_scan_start, 922 .scan_finished = hpsa_scan_finished, 923 .change_queue_depth = hpsa_change_queue_depth, 924 .this_id = -1, 925 .use_clustering = ENABLE_CLUSTERING, 926 .eh_abort_handler = hpsa_eh_abort_handler, 927 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 928 .ioctl = hpsa_ioctl, 929 .slave_alloc = hpsa_slave_alloc, 930 .slave_configure = hpsa_slave_configure, 931 .slave_destroy = hpsa_slave_destroy, 932 #ifdef CONFIG_COMPAT 933 .compat_ioctl = hpsa_compat_ioctl, 934 #endif 935 .sdev_attrs = hpsa_sdev_attrs, 936 .shost_attrs = hpsa_shost_attrs, 937 .max_sectors = 8192, 938 .no_write_same = 1, 939 }; 940 941 static inline u32 next_command(struct ctlr_info *h, u8 q) 942 { 943 u32 a; 944 struct reply_queue_buffer *rq = &h->reply_queue[q]; 945 946 if (h->transMethod & CFGTBL_Trans_io_accel1) 947 return h->access.command_completed(h, q); 948 949 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 950 return h->access.command_completed(h, q); 951 952 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { 953 a = rq->head[rq->current_entry]; 954 rq->current_entry++; 955 atomic_dec(&h->commands_outstanding); 956 } else { 957 a = FIFO_EMPTY; 958 } 959 /* Check for wraparound */ 960 if (rq->current_entry == h->max_commands) { 961 rq->current_entry = 0; 962 rq->wraparound ^= 1; 963 } 964 return a; 965 } 966 967 /* 968 * There are some special bits in the bus address of the 969 * command that we have to set for the controller to know 970 * how to process the command: 971 * 972 * Normal performant mode: 973 * bit 0: 1 means performant mode, 0 means simple mode. 974 * bits 1-3 = block fetch table entry 975 * bits 4-6 = command type (== 0) 976 * 977 * ioaccel1 mode: 978 * bit 0 = "performant mode" bit. 979 * bits 1-3 = block fetch table entry 980 * bits 4-6 = command type (== 110) 981 * (command type is needed because ioaccel1 mode 982 * commands are submitted through the same register as normal 983 * mode commands, so this is how the controller knows whether 984 * the command is normal mode or ioaccel1 mode.) 985 * 986 * ioaccel2 mode: 987 * bit 0 = "performant mode" bit. 988 * bits 1-4 = block fetch table entry (note extra bit) 989 * bits 4-6 = not needed, because ioaccel2 mode has 990 * a separate special register for submitting commands. 991 */ 992 993 /* 994 * set_performant_mode: Modify the tag for cciss performant 995 * set bit 0 for pull model, bits 3-1 for block fetch 996 * register number 997 */ 998 #define DEFAULT_REPLY_QUEUE (-1) 999 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c, 1000 int reply_queue) 1001 { 1002 if (likely(h->transMethod & CFGTBL_Trans_Performant)) { 1003 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 1004 if (unlikely(!h->msix_vector)) 1005 return; 1006 if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) 1007 c->Header.ReplyQueue = 1008 raw_smp_processor_id() % h->nreply_queues; 1009 else 1010 c->Header.ReplyQueue = reply_queue % h->nreply_queues; 1011 } 1012 } 1013 1014 static void set_ioaccel1_performant_mode(struct ctlr_info *h, 1015 struct CommandList *c, 1016 int reply_queue) 1017 { 1018 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; 1019 1020 /* 1021 * Tell the controller to post the reply to the queue for this 1022 * processor. This seems to give the best I/O throughput. 1023 */ 1024 if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) 1025 cp->ReplyQueue = smp_processor_id() % h->nreply_queues; 1026 else 1027 cp->ReplyQueue = reply_queue % h->nreply_queues; 1028 /* 1029 * Set the bits in the address sent down to include: 1030 * - performant mode bit (bit 0) 1031 * - pull count (bits 1-3) 1032 * - command type (bits 4-6) 1033 */ 1034 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) | 1035 IOACCEL1_BUSADDR_CMDTYPE; 1036 } 1037 1038 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h, 1039 struct CommandList *c, 1040 int reply_queue) 1041 { 1042 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *) 1043 &h->ioaccel2_cmd_pool[c->cmdindex]; 1044 1045 /* Tell the controller to post the reply to the queue for this 1046 * processor. This seems to give the best I/O throughput. 1047 */ 1048 if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) 1049 cp->reply_queue = smp_processor_id() % h->nreply_queues; 1050 else 1051 cp->reply_queue = reply_queue % h->nreply_queues; 1052 /* Set the bits in the address sent down to include: 1053 * - performant mode bit not used in ioaccel mode 2 1054 * - pull count (bits 0-3) 1055 * - command type isn't needed for ioaccel2 1056 */ 1057 c->busaddr |= h->ioaccel2_blockFetchTable[0]; 1058 } 1059 1060 static void set_ioaccel2_performant_mode(struct ctlr_info *h, 1061 struct CommandList *c, 1062 int reply_queue) 1063 { 1064 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; 1065 1066 /* 1067 * Tell the controller to post the reply to the queue for this 1068 * processor. This seems to give the best I/O throughput. 1069 */ 1070 if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) 1071 cp->reply_queue = smp_processor_id() % h->nreply_queues; 1072 else 1073 cp->reply_queue = reply_queue % h->nreply_queues; 1074 /* 1075 * Set the bits in the address sent down to include: 1076 * - performant mode bit not used in ioaccel mode 2 1077 * - pull count (bits 0-3) 1078 * - command type isn't needed for ioaccel2 1079 */ 1080 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]); 1081 } 1082 1083 static int is_firmware_flash_cmd(u8 *cdb) 1084 { 1085 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; 1086 } 1087 1088 /* 1089 * During firmware flash, the heartbeat register may not update as frequently 1090 * as it should. So we dial down lockup detection during firmware flash. and 1091 * dial it back up when firmware flash completes. 1092 */ 1093 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) 1094 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) 1095 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, 1096 struct CommandList *c) 1097 { 1098 if (!is_firmware_flash_cmd(c->Request.CDB)) 1099 return; 1100 atomic_inc(&h->firmware_flash_in_progress); 1101 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; 1102 } 1103 1104 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, 1105 struct CommandList *c) 1106 { 1107 if (is_firmware_flash_cmd(c->Request.CDB) && 1108 atomic_dec_and_test(&h->firmware_flash_in_progress)) 1109 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 1110 } 1111 1112 static void __enqueue_cmd_and_start_io(struct ctlr_info *h, 1113 struct CommandList *c, int reply_queue) 1114 { 1115 dial_down_lockup_detection_during_fw_flash(h, c); 1116 atomic_inc(&h->commands_outstanding); 1117 switch (c->cmd_type) { 1118 case CMD_IOACCEL1: 1119 set_ioaccel1_performant_mode(h, c, reply_queue); 1120 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); 1121 break; 1122 case CMD_IOACCEL2: 1123 set_ioaccel2_performant_mode(h, c, reply_queue); 1124 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); 1125 break; 1126 case IOACCEL2_TMF: 1127 set_ioaccel2_tmf_performant_mode(h, c, reply_queue); 1128 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); 1129 break; 1130 default: 1131 set_performant_mode(h, c, reply_queue); 1132 h->access.submit_command(h, c); 1133 } 1134 } 1135 1136 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c) 1137 { 1138 if (unlikely(hpsa_is_pending_event(c))) 1139 return finish_cmd(c); 1140 1141 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE); 1142 } 1143 1144 static inline int is_hba_lunid(unsigned char scsi3addr[]) 1145 { 1146 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 1147 } 1148 1149 static inline int is_scsi_rev_5(struct ctlr_info *h) 1150 { 1151 if (!h->hba_inquiry_data) 1152 return 0; 1153 if ((h->hba_inquiry_data[2] & 0x07) == 5) 1154 return 1; 1155 return 0; 1156 } 1157 1158 static int hpsa_find_target_lun(struct ctlr_info *h, 1159 unsigned char scsi3addr[], int bus, int *target, int *lun) 1160 { 1161 /* finds an unused bus, target, lun for a new physical device 1162 * assumes h->devlock is held 1163 */ 1164 int i, found = 0; 1165 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); 1166 1167 bitmap_zero(lun_taken, HPSA_MAX_DEVICES); 1168 1169 for (i = 0; i < h->ndevices; i++) { 1170 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 1171 __set_bit(h->dev[i]->target, lun_taken); 1172 } 1173 1174 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); 1175 if (i < HPSA_MAX_DEVICES) { 1176 /* *bus = 1; */ 1177 *target = i; 1178 *lun = 0; 1179 found = 1; 1180 } 1181 return !found; 1182 } 1183 1184 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h, 1185 struct hpsa_scsi_dev_t *dev, char *description) 1186 { 1187 #define LABEL_SIZE 25 1188 char label[LABEL_SIZE]; 1189 1190 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL) 1191 return; 1192 1193 switch (dev->devtype) { 1194 case TYPE_RAID: 1195 snprintf(label, LABEL_SIZE, "controller"); 1196 break; 1197 case TYPE_ENCLOSURE: 1198 snprintf(label, LABEL_SIZE, "enclosure"); 1199 break; 1200 case TYPE_DISK: 1201 case TYPE_ZBC: 1202 if (dev->external) 1203 snprintf(label, LABEL_SIZE, "external"); 1204 else if (!is_logical_dev_addr_mode(dev->scsi3addr)) 1205 snprintf(label, LABEL_SIZE, "%s", 1206 raid_label[PHYSICAL_DRIVE]); 1207 else 1208 snprintf(label, LABEL_SIZE, "RAID-%s", 1209 dev->raid_level > RAID_UNKNOWN ? "?" : 1210 raid_label[dev->raid_level]); 1211 break; 1212 case TYPE_ROM: 1213 snprintf(label, LABEL_SIZE, "rom"); 1214 break; 1215 case TYPE_TAPE: 1216 snprintf(label, LABEL_SIZE, "tape"); 1217 break; 1218 case TYPE_MEDIUM_CHANGER: 1219 snprintf(label, LABEL_SIZE, "changer"); 1220 break; 1221 default: 1222 snprintf(label, LABEL_SIZE, "UNKNOWN"); 1223 break; 1224 } 1225 1226 dev_printk(level, &h->pdev->dev, 1227 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n", 1228 h->scsi_host->host_no, dev->bus, dev->target, dev->lun, 1229 description, 1230 scsi_device_type(dev->devtype), 1231 dev->vendor, 1232 dev->model, 1233 label, 1234 dev->offload_config ? '+' : '-', 1235 dev->offload_enabled ? '+' : '-', 1236 dev->expose_device); 1237 } 1238 1239 /* Add an entry into h->dev[] array. */ 1240 static int hpsa_scsi_add_entry(struct ctlr_info *h, 1241 struct hpsa_scsi_dev_t *device, 1242 struct hpsa_scsi_dev_t *added[], int *nadded) 1243 { 1244 /* assumes h->devlock is held */ 1245 int n = h->ndevices; 1246 int i; 1247 unsigned char addr1[8], addr2[8]; 1248 struct hpsa_scsi_dev_t *sd; 1249 1250 if (n >= HPSA_MAX_DEVICES) { 1251 dev_err(&h->pdev->dev, "too many devices, some will be " 1252 "inaccessible.\n"); 1253 return -1; 1254 } 1255 1256 /* physical devices do not have lun or target assigned until now. */ 1257 if (device->lun != -1) 1258 /* Logical device, lun is already assigned. */ 1259 goto lun_assigned; 1260 1261 /* If this device a non-zero lun of a multi-lun device 1262 * byte 4 of the 8-byte LUN addr will contain the logical 1263 * unit no, zero otherwise. 1264 */ 1265 if (device->scsi3addr[4] == 0) { 1266 /* This is not a non-zero lun of a multi-lun device */ 1267 if (hpsa_find_target_lun(h, device->scsi3addr, 1268 device->bus, &device->target, &device->lun) != 0) 1269 return -1; 1270 goto lun_assigned; 1271 } 1272 1273 /* This is a non-zero lun of a multi-lun device. 1274 * Search through our list and find the device which 1275 * has the same 8 byte LUN address, excepting byte 4 and 5. 1276 * Assign the same bus and target for this new LUN. 1277 * Use the logical unit number from the firmware. 1278 */ 1279 memcpy(addr1, device->scsi3addr, 8); 1280 addr1[4] = 0; 1281 addr1[5] = 0; 1282 for (i = 0; i < n; i++) { 1283 sd = h->dev[i]; 1284 memcpy(addr2, sd->scsi3addr, 8); 1285 addr2[4] = 0; 1286 addr2[5] = 0; 1287 /* differ only in byte 4 and 5? */ 1288 if (memcmp(addr1, addr2, 8) == 0) { 1289 device->bus = sd->bus; 1290 device->target = sd->target; 1291 device->lun = device->scsi3addr[4]; 1292 break; 1293 } 1294 } 1295 if (device->lun == -1) { 1296 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 1297 " suspect firmware bug or unsupported hardware " 1298 "configuration.\n"); 1299 return -1; 1300 } 1301 1302 lun_assigned: 1303 1304 h->dev[n] = device; 1305 h->ndevices++; 1306 added[*nadded] = device; 1307 (*nadded)++; 1308 hpsa_show_dev_msg(KERN_INFO, h, device, 1309 device->expose_device ? "added" : "masked"); 1310 device->offload_to_be_enabled = device->offload_enabled; 1311 device->offload_enabled = 0; 1312 return 0; 1313 } 1314 1315 /* Update an entry in h->dev[] array. */ 1316 static void hpsa_scsi_update_entry(struct ctlr_info *h, 1317 int entry, struct hpsa_scsi_dev_t *new_entry) 1318 { 1319 int offload_enabled; 1320 /* assumes h->devlock is held */ 1321 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1322 1323 /* Raid level changed. */ 1324 h->dev[entry]->raid_level = new_entry->raid_level; 1325 1326 /* Raid offload parameters changed. Careful about the ordering. */ 1327 if (new_entry->offload_config && new_entry->offload_enabled) { 1328 /* 1329 * if drive is newly offload_enabled, we want to copy the 1330 * raid map data first. If previously offload_enabled and 1331 * offload_config were set, raid map data had better be 1332 * the same as it was before. if raid map data is changed 1333 * then it had better be the case that 1334 * h->dev[entry]->offload_enabled is currently 0. 1335 */ 1336 h->dev[entry]->raid_map = new_entry->raid_map; 1337 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1338 } 1339 if (new_entry->hba_ioaccel_enabled) { 1340 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1341 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */ 1342 } 1343 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled; 1344 h->dev[entry]->offload_config = new_entry->offload_config; 1345 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror; 1346 h->dev[entry]->queue_depth = new_entry->queue_depth; 1347 1348 /* 1349 * We can turn off ioaccel offload now, but need to delay turning 1350 * it on until we can update h->dev[entry]->phys_disk[], but we 1351 * can't do that until all the devices are updated. 1352 */ 1353 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled; 1354 if (!new_entry->offload_enabled) 1355 h->dev[entry]->offload_enabled = 0; 1356 1357 offload_enabled = h->dev[entry]->offload_enabled; 1358 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled; 1359 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated"); 1360 h->dev[entry]->offload_enabled = offload_enabled; 1361 } 1362 1363 /* Replace an entry from h->dev[] array. */ 1364 static void hpsa_scsi_replace_entry(struct ctlr_info *h, 1365 int entry, struct hpsa_scsi_dev_t *new_entry, 1366 struct hpsa_scsi_dev_t *added[], int *nadded, 1367 struct hpsa_scsi_dev_t *removed[], int *nremoved) 1368 { 1369 /* assumes h->devlock is held */ 1370 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1371 removed[*nremoved] = h->dev[entry]; 1372 (*nremoved)++; 1373 1374 /* 1375 * New physical devices won't have target/lun assigned yet 1376 * so we need to preserve the values in the slot we are replacing. 1377 */ 1378 if (new_entry->target == -1) { 1379 new_entry->target = h->dev[entry]->target; 1380 new_entry->lun = h->dev[entry]->lun; 1381 } 1382 1383 h->dev[entry] = new_entry; 1384 added[*nadded] = new_entry; 1385 (*nadded)++; 1386 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced"); 1387 new_entry->offload_to_be_enabled = new_entry->offload_enabled; 1388 new_entry->offload_enabled = 0; 1389 } 1390 1391 /* Remove an entry from h->dev[] array. */ 1392 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry, 1393 struct hpsa_scsi_dev_t *removed[], int *nremoved) 1394 { 1395 /* assumes h->devlock is held */ 1396 int i; 1397 struct hpsa_scsi_dev_t *sd; 1398 1399 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1400 1401 sd = h->dev[entry]; 1402 removed[*nremoved] = h->dev[entry]; 1403 (*nremoved)++; 1404 1405 for (i = entry; i < h->ndevices-1; i++) 1406 h->dev[i] = h->dev[i+1]; 1407 h->ndevices--; 1408 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed"); 1409 } 1410 1411 #define SCSI3ADDR_EQ(a, b) ( \ 1412 (a)[7] == (b)[7] && \ 1413 (a)[6] == (b)[6] && \ 1414 (a)[5] == (b)[5] && \ 1415 (a)[4] == (b)[4] && \ 1416 (a)[3] == (b)[3] && \ 1417 (a)[2] == (b)[2] && \ 1418 (a)[1] == (b)[1] && \ 1419 (a)[0] == (b)[0]) 1420 1421 static void fixup_botched_add(struct ctlr_info *h, 1422 struct hpsa_scsi_dev_t *added) 1423 { 1424 /* called when scsi_add_device fails in order to re-adjust 1425 * h->dev[] to match the mid layer's view. 1426 */ 1427 unsigned long flags; 1428 int i, j; 1429 1430 spin_lock_irqsave(&h->lock, flags); 1431 for (i = 0; i < h->ndevices; i++) { 1432 if (h->dev[i] == added) { 1433 for (j = i; j < h->ndevices-1; j++) 1434 h->dev[j] = h->dev[j+1]; 1435 h->ndevices--; 1436 break; 1437 } 1438 } 1439 spin_unlock_irqrestore(&h->lock, flags); 1440 kfree(added); 1441 } 1442 1443 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 1444 struct hpsa_scsi_dev_t *dev2) 1445 { 1446 /* we compare everything except lun and target as these 1447 * are not yet assigned. Compare parts likely 1448 * to differ first 1449 */ 1450 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 1451 sizeof(dev1->scsi3addr)) != 0) 1452 return 0; 1453 if (memcmp(dev1->device_id, dev2->device_id, 1454 sizeof(dev1->device_id)) != 0) 1455 return 0; 1456 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 1457 return 0; 1458 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 1459 return 0; 1460 if (dev1->devtype != dev2->devtype) 1461 return 0; 1462 if (dev1->bus != dev2->bus) 1463 return 0; 1464 return 1; 1465 } 1466 1467 static inline int device_updated(struct hpsa_scsi_dev_t *dev1, 1468 struct hpsa_scsi_dev_t *dev2) 1469 { 1470 /* Device attributes that can change, but don't mean 1471 * that the device is a different device, nor that the OS 1472 * needs to be told anything about the change. 1473 */ 1474 if (dev1->raid_level != dev2->raid_level) 1475 return 1; 1476 if (dev1->offload_config != dev2->offload_config) 1477 return 1; 1478 if (dev1->offload_enabled != dev2->offload_enabled) 1479 return 1; 1480 if (!is_logical_dev_addr_mode(dev1->scsi3addr)) 1481 if (dev1->queue_depth != dev2->queue_depth) 1482 return 1; 1483 return 0; 1484 } 1485 1486 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 1487 * and return needle location in *index. If scsi3addr matches, but not 1488 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 1489 * location in *index. 1490 * In the case of a minor device attribute change, such as RAID level, just 1491 * return DEVICE_UPDATED, along with the updated device's location in index. 1492 * If needle not found, return DEVICE_NOT_FOUND. 1493 */ 1494 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 1495 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 1496 int *index) 1497 { 1498 int i; 1499 #define DEVICE_NOT_FOUND 0 1500 #define DEVICE_CHANGED 1 1501 #define DEVICE_SAME 2 1502 #define DEVICE_UPDATED 3 1503 if (needle == NULL) 1504 return DEVICE_NOT_FOUND; 1505 1506 for (i = 0; i < haystack_size; i++) { 1507 if (haystack[i] == NULL) /* previously removed. */ 1508 continue; 1509 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 1510 *index = i; 1511 if (device_is_the_same(needle, haystack[i])) { 1512 if (device_updated(needle, haystack[i])) 1513 return DEVICE_UPDATED; 1514 return DEVICE_SAME; 1515 } else { 1516 /* Keep offline devices offline */ 1517 if (needle->volume_offline) 1518 return DEVICE_NOT_FOUND; 1519 return DEVICE_CHANGED; 1520 } 1521 } 1522 } 1523 *index = -1; 1524 return DEVICE_NOT_FOUND; 1525 } 1526 1527 static void hpsa_monitor_offline_device(struct ctlr_info *h, 1528 unsigned char scsi3addr[]) 1529 { 1530 struct offline_device_entry *device; 1531 unsigned long flags; 1532 1533 /* Check to see if device is already on the list */ 1534 spin_lock_irqsave(&h->offline_device_lock, flags); 1535 list_for_each_entry(device, &h->offline_device_list, offline_list) { 1536 if (memcmp(device->scsi3addr, scsi3addr, 1537 sizeof(device->scsi3addr)) == 0) { 1538 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1539 return; 1540 } 1541 } 1542 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1543 1544 /* Device is not on the list, add it. */ 1545 device = kmalloc(sizeof(*device), GFP_KERNEL); 1546 if (!device) { 1547 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__); 1548 return; 1549 } 1550 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); 1551 spin_lock_irqsave(&h->offline_device_lock, flags); 1552 list_add_tail(&device->offline_list, &h->offline_device_list); 1553 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1554 } 1555 1556 /* Print a message explaining various offline volume states */ 1557 static void hpsa_show_volume_status(struct ctlr_info *h, 1558 struct hpsa_scsi_dev_t *sd) 1559 { 1560 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED) 1561 dev_info(&h->pdev->dev, 1562 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n", 1563 h->scsi_host->host_no, 1564 sd->bus, sd->target, sd->lun); 1565 switch (sd->volume_offline) { 1566 case HPSA_LV_OK: 1567 break; 1568 case HPSA_LV_UNDERGOING_ERASE: 1569 dev_info(&h->pdev->dev, 1570 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n", 1571 h->scsi_host->host_no, 1572 sd->bus, sd->target, sd->lun); 1573 break; 1574 case HPSA_LV_NOT_AVAILABLE: 1575 dev_info(&h->pdev->dev, 1576 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n", 1577 h->scsi_host->host_no, 1578 sd->bus, sd->target, sd->lun); 1579 break; 1580 case HPSA_LV_UNDERGOING_RPI: 1581 dev_info(&h->pdev->dev, 1582 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n", 1583 h->scsi_host->host_no, 1584 sd->bus, sd->target, sd->lun); 1585 break; 1586 case HPSA_LV_PENDING_RPI: 1587 dev_info(&h->pdev->dev, 1588 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n", 1589 h->scsi_host->host_no, 1590 sd->bus, sd->target, sd->lun); 1591 break; 1592 case HPSA_LV_ENCRYPTED_NO_KEY: 1593 dev_info(&h->pdev->dev, 1594 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n", 1595 h->scsi_host->host_no, 1596 sd->bus, sd->target, sd->lun); 1597 break; 1598 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: 1599 dev_info(&h->pdev->dev, 1600 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n", 1601 h->scsi_host->host_no, 1602 sd->bus, sd->target, sd->lun); 1603 break; 1604 case HPSA_LV_UNDERGOING_ENCRYPTION: 1605 dev_info(&h->pdev->dev, 1606 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n", 1607 h->scsi_host->host_no, 1608 sd->bus, sd->target, sd->lun); 1609 break; 1610 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: 1611 dev_info(&h->pdev->dev, 1612 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n", 1613 h->scsi_host->host_no, 1614 sd->bus, sd->target, sd->lun); 1615 break; 1616 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: 1617 dev_info(&h->pdev->dev, 1618 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n", 1619 h->scsi_host->host_no, 1620 sd->bus, sd->target, sd->lun); 1621 break; 1622 case HPSA_LV_PENDING_ENCRYPTION: 1623 dev_info(&h->pdev->dev, 1624 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n", 1625 h->scsi_host->host_no, 1626 sd->bus, sd->target, sd->lun); 1627 break; 1628 case HPSA_LV_PENDING_ENCRYPTION_REKEYING: 1629 dev_info(&h->pdev->dev, 1630 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n", 1631 h->scsi_host->host_no, 1632 sd->bus, sd->target, sd->lun); 1633 break; 1634 } 1635 } 1636 1637 /* 1638 * Figure the list of physical drive pointers for a logical drive with 1639 * raid offload configured. 1640 */ 1641 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h, 1642 struct hpsa_scsi_dev_t *dev[], int ndevices, 1643 struct hpsa_scsi_dev_t *logical_drive) 1644 { 1645 struct raid_map_data *map = &logical_drive->raid_map; 1646 struct raid_map_disk_data *dd = &map->data[0]; 1647 int i, j; 1648 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + 1649 le16_to_cpu(map->metadata_disks_per_row); 1650 int nraid_map_entries = le16_to_cpu(map->row_cnt) * 1651 le16_to_cpu(map->layout_map_count) * 1652 total_disks_per_row; 1653 int nphys_disk = le16_to_cpu(map->layout_map_count) * 1654 total_disks_per_row; 1655 int qdepth; 1656 1657 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES) 1658 nraid_map_entries = RAID_MAP_MAX_ENTRIES; 1659 1660 logical_drive->nphysical_disks = nraid_map_entries; 1661 1662 qdepth = 0; 1663 for (i = 0; i < nraid_map_entries; i++) { 1664 logical_drive->phys_disk[i] = NULL; 1665 if (!logical_drive->offload_config) 1666 continue; 1667 for (j = 0; j < ndevices; j++) { 1668 if (dev[j] == NULL) 1669 continue; 1670 if (dev[j]->devtype != TYPE_DISK && 1671 dev[j]->devtype != TYPE_ZBC) 1672 continue; 1673 if (is_logical_device(dev[j])) 1674 continue; 1675 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle) 1676 continue; 1677 1678 logical_drive->phys_disk[i] = dev[j]; 1679 if (i < nphys_disk) 1680 qdepth = min(h->nr_cmds, qdepth + 1681 logical_drive->phys_disk[i]->queue_depth); 1682 break; 1683 } 1684 1685 /* 1686 * This can happen if a physical drive is removed and 1687 * the logical drive is degraded. In that case, the RAID 1688 * map data will refer to a physical disk which isn't actually 1689 * present. And in that case offload_enabled should already 1690 * be 0, but we'll turn it off here just in case 1691 */ 1692 if (!logical_drive->phys_disk[i]) { 1693 logical_drive->offload_enabled = 0; 1694 logical_drive->offload_to_be_enabled = 0; 1695 logical_drive->queue_depth = 8; 1696 } 1697 } 1698 if (nraid_map_entries) 1699 /* 1700 * This is correct for reads, too high for full stripe writes, 1701 * way too high for partial stripe writes 1702 */ 1703 logical_drive->queue_depth = qdepth; 1704 else 1705 logical_drive->queue_depth = h->nr_cmds; 1706 } 1707 1708 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h, 1709 struct hpsa_scsi_dev_t *dev[], int ndevices) 1710 { 1711 int i; 1712 1713 for (i = 0; i < ndevices; i++) { 1714 if (dev[i] == NULL) 1715 continue; 1716 if (dev[i]->devtype != TYPE_DISK && 1717 dev[i]->devtype != TYPE_ZBC) 1718 continue; 1719 if (!is_logical_device(dev[i])) 1720 continue; 1721 1722 /* 1723 * If offload is currently enabled, the RAID map and 1724 * phys_disk[] assignment *better* not be changing 1725 * and since it isn't changing, we do not need to 1726 * update it. 1727 */ 1728 if (dev[i]->offload_enabled) 1729 continue; 1730 1731 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]); 1732 } 1733 } 1734 1735 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 1736 { 1737 int rc = 0; 1738 1739 if (!h->scsi_host) 1740 return 1; 1741 1742 if (is_logical_device(device)) /* RAID */ 1743 rc = scsi_add_device(h->scsi_host, device->bus, 1744 device->target, device->lun); 1745 else /* HBA */ 1746 rc = hpsa_add_sas_device(h->sas_host, device); 1747 1748 return rc; 1749 } 1750 1751 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h, 1752 struct hpsa_scsi_dev_t *dev) 1753 { 1754 int i; 1755 int count = 0; 1756 1757 for (i = 0; i < h->nr_cmds; i++) { 1758 struct CommandList *c = h->cmd_pool + i; 1759 int refcount = atomic_inc_return(&c->refcount); 1760 1761 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, 1762 dev->scsi3addr)) { 1763 unsigned long flags; 1764 1765 spin_lock_irqsave(&h->lock, flags); /* Implied MB */ 1766 if (!hpsa_is_cmd_idle(c)) 1767 ++count; 1768 spin_unlock_irqrestore(&h->lock, flags); 1769 } 1770 1771 cmd_free(h, c); 1772 } 1773 1774 return count; 1775 } 1776 1777 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h, 1778 struct hpsa_scsi_dev_t *device) 1779 { 1780 int cmds = 0; 1781 int waits = 0; 1782 1783 while (1) { 1784 cmds = hpsa_find_outstanding_commands_for_dev(h, device); 1785 if (cmds == 0) 1786 break; 1787 if (++waits > 20) 1788 break; 1789 dev_warn(&h->pdev->dev, 1790 "%s: removing device with %d outstanding commands!\n", 1791 __func__, cmds); 1792 msleep(1000); 1793 } 1794 } 1795 1796 static void hpsa_remove_device(struct ctlr_info *h, 1797 struct hpsa_scsi_dev_t *device) 1798 { 1799 struct scsi_device *sdev = NULL; 1800 1801 if (!h->scsi_host) 1802 return; 1803 1804 if (is_logical_device(device)) { /* RAID */ 1805 sdev = scsi_device_lookup(h->scsi_host, device->bus, 1806 device->target, device->lun); 1807 if (sdev) { 1808 scsi_remove_device(sdev); 1809 scsi_device_put(sdev); 1810 } else { 1811 /* 1812 * We don't expect to get here. Future commands 1813 * to this device will get a selection timeout as 1814 * if the device were gone. 1815 */ 1816 hpsa_show_dev_msg(KERN_WARNING, h, device, 1817 "didn't find device for removal."); 1818 } 1819 } else { /* HBA */ 1820 1821 device->removed = 1; 1822 hpsa_wait_for_outstanding_commands_for_dev(h, device); 1823 1824 hpsa_remove_sas_device(device); 1825 } 1826 } 1827 1828 static void adjust_hpsa_scsi_table(struct ctlr_info *h, 1829 struct hpsa_scsi_dev_t *sd[], int nsds) 1830 { 1831 /* sd contains scsi3 addresses and devtypes, and inquiry 1832 * data. This function takes what's in sd to be the current 1833 * reality and updates h->dev[] to reflect that reality. 1834 */ 1835 int i, entry, device_change, changes = 0; 1836 struct hpsa_scsi_dev_t *csd; 1837 unsigned long flags; 1838 struct hpsa_scsi_dev_t **added, **removed; 1839 int nadded, nremoved; 1840 1841 /* 1842 * A reset can cause a device status to change 1843 * re-schedule the scan to see what happened. 1844 */ 1845 if (h->reset_in_progress) { 1846 h->drv_req_rescan = 1; 1847 return; 1848 } 1849 1850 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL); 1851 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL); 1852 1853 if (!added || !removed) { 1854 dev_warn(&h->pdev->dev, "out of memory in " 1855 "adjust_hpsa_scsi_table\n"); 1856 goto free_and_out; 1857 } 1858 1859 spin_lock_irqsave(&h->devlock, flags); 1860 1861 /* find any devices in h->dev[] that are not in 1862 * sd[] and remove them from h->dev[], and for any 1863 * devices which have changed, remove the old device 1864 * info and add the new device info. 1865 * If minor device attributes change, just update 1866 * the existing device structure. 1867 */ 1868 i = 0; 1869 nremoved = 0; 1870 nadded = 0; 1871 while (i < h->ndevices) { 1872 csd = h->dev[i]; 1873 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 1874 if (device_change == DEVICE_NOT_FOUND) { 1875 changes++; 1876 hpsa_scsi_remove_entry(h, i, removed, &nremoved); 1877 continue; /* remove ^^^, hence i not incremented */ 1878 } else if (device_change == DEVICE_CHANGED) { 1879 changes++; 1880 hpsa_scsi_replace_entry(h, i, sd[entry], 1881 added, &nadded, removed, &nremoved); 1882 /* Set it to NULL to prevent it from being freed 1883 * at the bottom of hpsa_update_scsi_devices() 1884 */ 1885 sd[entry] = NULL; 1886 } else if (device_change == DEVICE_UPDATED) { 1887 hpsa_scsi_update_entry(h, i, sd[entry]); 1888 } 1889 i++; 1890 } 1891 1892 /* Now, make sure every device listed in sd[] is also 1893 * listed in h->dev[], adding them if they aren't found 1894 */ 1895 1896 for (i = 0; i < nsds; i++) { 1897 if (!sd[i]) /* if already added above. */ 1898 continue; 1899 1900 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS 1901 * as the SCSI mid-layer does not handle such devices well. 1902 * It relentlessly loops sending TUR at 3Hz, then READ(10) 1903 * at 160Hz, and prevents the system from coming up. 1904 */ 1905 if (sd[i]->volume_offline) { 1906 hpsa_show_volume_status(h, sd[i]); 1907 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline"); 1908 continue; 1909 } 1910 1911 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 1912 h->ndevices, &entry); 1913 if (device_change == DEVICE_NOT_FOUND) { 1914 changes++; 1915 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0) 1916 break; 1917 sd[i] = NULL; /* prevent from being freed later. */ 1918 } else if (device_change == DEVICE_CHANGED) { 1919 /* should never happen... */ 1920 changes++; 1921 dev_warn(&h->pdev->dev, 1922 "device unexpectedly changed.\n"); 1923 /* but if it does happen, we just ignore that device */ 1924 } 1925 } 1926 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices); 1927 1928 /* Now that h->dev[]->phys_disk[] is coherent, we can enable 1929 * any logical drives that need it enabled. 1930 */ 1931 for (i = 0; i < h->ndevices; i++) { 1932 if (h->dev[i] == NULL) 1933 continue; 1934 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled; 1935 } 1936 1937 spin_unlock_irqrestore(&h->devlock, flags); 1938 1939 /* Monitor devices which are in one of several NOT READY states to be 1940 * brought online later. This must be done without holding h->devlock, 1941 * so don't touch h->dev[] 1942 */ 1943 for (i = 0; i < nsds; i++) { 1944 if (!sd[i]) /* if already added above. */ 1945 continue; 1946 if (sd[i]->volume_offline) 1947 hpsa_monitor_offline_device(h, sd[i]->scsi3addr); 1948 } 1949 1950 /* Don't notify scsi mid layer of any changes the first time through 1951 * (or if there are no changes) scsi_scan_host will do it later the 1952 * first time through. 1953 */ 1954 if (!changes) 1955 goto free_and_out; 1956 1957 /* Notify scsi mid layer of any removed devices */ 1958 for (i = 0; i < nremoved; i++) { 1959 if (removed[i] == NULL) 1960 continue; 1961 if (removed[i]->expose_device) 1962 hpsa_remove_device(h, removed[i]); 1963 kfree(removed[i]); 1964 removed[i] = NULL; 1965 } 1966 1967 /* Notify scsi mid layer of any added devices */ 1968 for (i = 0; i < nadded; i++) { 1969 int rc = 0; 1970 1971 if (added[i] == NULL) 1972 continue; 1973 if (!(added[i]->expose_device)) 1974 continue; 1975 rc = hpsa_add_device(h, added[i]); 1976 if (!rc) 1977 continue; 1978 dev_warn(&h->pdev->dev, 1979 "addition failed %d, device not added.", rc); 1980 /* now we have to remove it from h->dev, 1981 * since it didn't get added to scsi mid layer 1982 */ 1983 fixup_botched_add(h, added[i]); 1984 h->drv_req_rescan = 1; 1985 } 1986 1987 free_and_out: 1988 kfree(added); 1989 kfree(removed); 1990 } 1991 1992 /* 1993 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * 1994 * Assume's h->devlock is held. 1995 */ 1996 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 1997 int bus, int target, int lun) 1998 { 1999 int i; 2000 struct hpsa_scsi_dev_t *sd; 2001 2002 for (i = 0; i < h->ndevices; i++) { 2003 sd = h->dev[i]; 2004 if (sd->bus == bus && sd->target == target && sd->lun == lun) 2005 return sd; 2006 } 2007 return NULL; 2008 } 2009 2010 static int hpsa_slave_alloc(struct scsi_device *sdev) 2011 { 2012 struct hpsa_scsi_dev_t *sd = NULL; 2013 unsigned long flags; 2014 struct ctlr_info *h; 2015 2016 h = sdev_to_hba(sdev); 2017 spin_lock_irqsave(&h->devlock, flags); 2018 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) { 2019 struct scsi_target *starget; 2020 struct sas_rphy *rphy; 2021 2022 starget = scsi_target(sdev); 2023 rphy = target_to_rphy(starget); 2024 sd = hpsa_find_device_by_sas_rphy(h, rphy); 2025 if (sd) { 2026 sd->target = sdev_id(sdev); 2027 sd->lun = sdev->lun; 2028 } 2029 } 2030 if (!sd) 2031 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 2032 sdev_id(sdev), sdev->lun); 2033 2034 if (sd && sd->expose_device) { 2035 atomic_set(&sd->ioaccel_cmds_out, 0); 2036 sdev->hostdata = sd; 2037 } else 2038 sdev->hostdata = NULL; 2039 spin_unlock_irqrestore(&h->devlock, flags); 2040 return 0; 2041 } 2042 2043 /* configure scsi device based on internal per-device structure */ 2044 static int hpsa_slave_configure(struct scsi_device *sdev) 2045 { 2046 struct hpsa_scsi_dev_t *sd; 2047 int queue_depth; 2048 2049 sd = sdev->hostdata; 2050 sdev->no_uld_attach = !sd || !sd->expose_device; 2051 2052 if (sd) 2053 queue_depth = sd->queue_depth != 0 ? 2054 sd->queue_depth : sdev->host->can_queue; 2055 else 2056 queue_depth = sdev->host->can_queue; 2057 2058 scsi_change_queue_depth(sdev, queue_depth); 2059 2060 return 0; 2061 } 2062 2063 static void hpsa_slave_destroy(struct scsi_device *sdev) 2064 { 2065 /* nothing to do. */ 2066 } 2067 2068 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h) 2069 { 2070 int i; 2071 2072 if (!h->ioaccel2_cmd_sg_list) 2073 return; 2074 for (i = 0; i < h->nr_cmds; i++) { 2075 kfree(h->ioaccel2_cmd_sg_list[i]); 2076 h->ioaccel2_cmd_sg_list[i] = NULL; 2077 } 2078 kfree(h->ioaccel2_cmd_sg_list); 2079 h->ioaccel2_cmd_sg_list = NULL; 2080 } 2081 2082 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h) 2083 { 2084 int i; 2085 2086 if (h->chainsize <= 0) 2087 return 0; 2088 2089 h->ioaccel2_cmd_sg_list = 2090 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds, 2091 GFP_KERNEL); 2092 if (!h->ioaccel2_cmd_sg_list) 2093 return -ENOMEM; 2094 for (i = 0; i < h->nr_cmds; i++) { 2095 h->ioaccel2_cmd_sg_list[i] = 2096 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) * 2097 h->maxsgentries, GFP_KERNEL); 2098 if (!h->ioaccel2_cmd_sg_list[i]) 2099 goto clean; 2100 } 2101 return 0; 2102 2103 clean: 2104 hpsa_free_ioaccel2_sg_chain_blocks(h); 2105 return -ENOMEM; 2106 } 2107 2108 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) 2109 { 2110 int i; 2111 2112 if (!h->cmd_sg_list) 2113 return; 2114 for (i = 0; i < h->nr_cmds; i++) { 2115 kfree(h->cmd_sg_list[i]); 2116 h->cmd_sg_list[i] = NULL; 2117 } 2118 kfree(h->cmd_sg_list); 2119 h->cmd_sg_list = NULL; 2120 } 2121 2122 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h) 2123 { 2124 int i; 2125 2126 if (h->chainsize <= 0) 2127 return 0; 2128 2129 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, 2130 GFP_KERNEL); 2131 if (!h->cmd_sg_list) { 2132 dev_err(&h->pdev->dev, "Failed to allocate SG list\n"); 2133 return -ENOMEM; 2134 } 2135 for (i = 0; i < h->nr_cmds; i++) { 2136 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * 2137 h->chainsize, GFP_KERNEL); 2138 if (!h->cmd_sg_list[i]) { 2139 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n"); 2140 goto clean; 2141 } 2142 } 2143 return 0; 2144 2145 clean: 2146 hpsa_free_sg_chain_blocks(h); 2147 return -ENOMEM; 2148 } 2149 2150 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h, 2151 struct io_accel2_cmd *cp, struct CommandList *c) 2152 { 2153 struct ioaccel2_sg_element *chain_block; 2154 u64 temp64; 2155 u32 chain_size; 2156 2157 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex]; 2158 chain_size = le32_to_cpu(cp->sg[0].length); 2159 temp64 = pci_map_single(h->pdev, chain_block, chain_size, 2160 PCI_DMA_TODEVICE); 2161 if (dma_mapping_error(&h->pdev->dev, temp64)) { 2162 /* prevent subsequent unmapping */ 2163 cp->sg->address = 0; 2164 return -1; 2165 } 2166 cp->sg->address = cpu_to_le64(temp64); 2167 return 0; 2168 } 2169 2170 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h, 2171 struct io_accel2_cmd *cp) 2172 { 2173 struct ioaccel2_sg_element *chain_sg; 2174 u64 temp64; 2175 u32 chain_size; 2176 2177 chain_sg = cp->sg; 2178 temp64 = le64_to_cpu(chain_sg->address); 2179 chain_size = le32_to_cpu(cp->sg[0].length); 2180 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE); 2181 } 2182 2183 static int hpsa_map_sg_chain_block(struct ctlr_info *h, 2184 struct CommandList *c) 2185 { 2186 struct SGDescriptor *chain_sg, *chain_block; 2187 u64 temp64; 2188 u32 chain_len; 2189 2190 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 2191 chain_block = h->cmd_sg_list[c->cmdindex]; 2192 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN); 2193 chain_len = sizeof(*chain_sg) * 2194 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries); 2195 chain_sg->Len = cpu_to_le32(chain_len); 2196 temp64 = pci_map_single(h->pdev, chain_block, chain_len, 2197 PCI_DMA_TODEVICE); 2198 if (dma_mapping_error(&h->pdev->dev, temp64)) { 2199 /* prevent subsequent unmapping */ 2200 chain_sg->Addr = cpu_to_le64(0); 2201 return -1; 2202 } 2203 chain_sg->Addr = cpu_to_le64(temp64); 2204 return 0; 2205 } 2206 2207 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, 2208 struct CommandList *c) 2209 { 2210 struct SGDescriptor *chain_sg; 2211 2212 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries) 2213 return; 2214 2215 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 2216 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr), 2217 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE); 2218 } 2219 2220 2221 /* Decode the various types of errors on ioaccel2 path. 2222 * Return 1 for any error that should generate a RAID path retry. 2223 * Return 0 for errors that don't require a RAID path retry. 2224 */ 2225 static int handle_ioaccel_mode2_error(struct ctlr_info *h, 2226 struct CommandList *c, 2227 struct scsi_cmnd *cmd, 2228 struct io_accel2_cmd *c2, 2229 struct hpsa_scsi_dev_t *dev) 2230 { 2231 int data_len; 2232 int retry = 0; 2233 u32 ioaccel2_resid = 0; 2234 2235 switch (c2->error_data.serv_response) { 2236 case IOACCEL2_SERV_RESPONSE_COMPLETE: 2237 switch (c2->error_data.status) { 2238 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD: 2239 break; 2240 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND: 2241 cmd->result |= SAM_STAT_CHECK_CONDITION; 2242 if (c2->error_data.data_present != 2243 IOACCEL2_SENSE_DATA_PRESENT) { 2244 memset(cmd->sense_buffer, 0, 2245 SCSI_SENSE_BUFFERSIZE); 2246 break; 2247 } 2248 /* copy the sense data */ 2249 data_len = c2->error_data.sense_data_len; 2250 if (data_len > SCSI_SENSE_BUFFERSIZE) 2251 data_len = SCSI_SENSE_BUFFERSIZE; 2252 if (data_len > sizeof(c2->error_data.sense_data_buff)) 2253 data_len = 2254 sizeof(c2->error_data.sense_data_buff); 2255 memcpy(cmd->sense_buffer, 2256 c2->error_data.sense_data_buff, data_len); 2257 retry = 1; 2258 break; 2259 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY: 2260 retry = 1; 2261 break; 2262 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON: 2263 retry = 1; 2264 break; 2265 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL: 2266 retry = 1; 2267 break; 2268 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED: 2269 retry = 1; 2270 break; 2271 default: 2272 retry = 1; 2273 break; 2274 } 2275 break; 2276 case IOACCEL2_SERV_RESPONSE_FAILURE: 2277 switch (c2->error_data.status) { 2278 case IOACCEL2_STATUS_SR_IO_ERROR: 2279 case IOACCEL2_STATUS_SR_IO_ABORTED: 2280 case IOACCEL2_STATUS_SR_OVERRUN: 2281 retry = 1; 2282 break; 2283 case IOACCEL2_STATUS_SR_UNDERRUN: 2284 cmd->result = (DID_OK << 16); /* host byte */ 2285 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 2286 ioaccel2_resid = get_unaligned_le32( 2287 &c2->error_data.resid_cnt[0]); 2288 scsi_set_resid(cmd, ioaccel2_resid); 2289 break; 2290 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE: 2291 case IOACCEL2_STATUS_SR_INVALID_DEVICE: 2292 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED: 2293 /* 2294 * Did an HBA disk disappear? We will eventually 2295 * get a state change event from the controller but 2296 * in the meantime, we need to tell the OS that the 2297 * HBA disk is no longer there and stop I/O 2298 * from going down. This allows the potential re-insert 2299 * of the disk to get the same device node. 2300 */ 2301 if (dev->physical_device && dev->expose_device) { 2302 cmd->result = DID_NO_CONNECT << 16; 2303 dev->removed = 1; 2304 h->drv_req_rescan = 1; 2305 dev_warn(&h->pdev->dev, 2306 "%s: device is gone!\n", __func__); 2307 } else 2308 /* 2309 * Retry by sending down the RAID path. 2310 * We will get an event from ctlr to 2311 * trigger rescan regardless. 2312 */ 2313 retry = 1; 2314 break; 2315 default: 2316 retry = 1; 2317 } 2318 break; 2319 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: 2320 break; 2321 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: 2322 break; 2323 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: 2324 retry = 1; 2325 break; 2326 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: 2327 break; 2328 default: 2329 retry = 1; 2330 break; 2331 } 2332 2333 return retry; /* retry on raid path? */ 2334 } 2335 2336 static void hpsa_cmd_resolve_events(struct ctlr_info *h, 2337 struct CommandList *c) 2338 { 2339 bool do_wake = false; 2340 2341 /* 2342 * Prevent the following race in the abort handler: 2343 * 2344 * 1. LLD is requested to abort a SCSI command 2345 * 2. The SCSI command completes 2346 * 3. The struct CommandList associated with step 2 is made available 2347 * 4. New I/O request to LLD to another LUN re-uses struct CommandList 2348 * 5. Abort handler follows scsi_cmnd->host_scribble and 2349 * finds struct CommandList and tries to aborts it 2350 * Now we have aborted the wrong command. 2351 * 2352 * Reset c->scsi_cmd here so that the abort or reset handler will know 2353 * this command has completed. Then, check to see if the handler is 2354 * waiting for this command, and, if so, wake it. 2355 */ 2356 c->scsi_cmd = SCSI_CMD_IDLE; 2357 mb(); /* Declare command idle before checking for pending events. */ 2358 if (c->abort_pending) { 2359 do_wake = true; 2360 c->abort_pending = false; 2361 } 2362 if (c->reset_pending) { 2363 unsigned long flags; 2364 struct hpsa_scsi_dev_t *dev; 2365 2366 /* 2367 * There appears to be a reset pending; lock the lock and 2368 * reconfirm. If so, then decrement the count of outstanding 2369 * commands and wake the reset command if this is the last one. 2370 */ 2371 spin_lock_irqsave(&h->lock, flags); 2372 dev = c->reset_pending; /* Re-fetch under the lock. */ 2373 if (dev && atomic_dec_and_test(&dev->reset_cmds_out)) 2374 do_wake = true; 2375 c->reset_pending = NULL; 2376 spin_unlock_irqrestore(&h->lock, flags); 2377 } 2378 2379 if (do_wake) 2380 wake_up_all(&h->event_sync_wait_queue); 2381 } 2382 2383 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h, 2384 struct CommandList *c) 2385 { 2386 hpsa_cmd_resolve_events(h, c); 2387 cmd_tagged_free(h, c); 2388 } 2389 2390 static void hpsa_cmd_free_and_done(struct ctlr_info *h, 2391 struct CommandList *c, struct scsi_cmnd *cmd) 2392 { 2393 hpsa_cmd_resolve_and_free(h, c); 2394 if (cmd && cmd->scsi_done) 2395 cmd->scsi_done(cmd); 2396 } 2397 2398 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c) 2399 { 2400 INIT_WORK(&c->work, hpsa_command_resubmit_worker); 2401 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work); 2402 } 2403 2404 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd) 2405 { 2406 cmd->result = DID_ABORT << 16; 2407 } 2408 2409 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c, 2410 struct scsi_cmnd *cmd) 2411 { 2412 hpsa_set_scsi_cmd_aborted(cmd); 2413 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n", 2414 c->Request.CDB, c->err_info->ScsiStatus); 2415 hpsa_cmd_resolve_and_free(h, c); 2416 } 2417 2418 static void process_ioaccel2_completion(struct ctlr_info *h, 2419 struct CommandList *c, struct scsi_cmnd *cmd, 2420 struct hpsa_scsi_dev_t *dev) 2421 { 2422 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 2423 2424 /* check for good status */ 2425 if (likely(c2->error_data.serv_response == 0 && 2426 c2->error_data.status == 0)) 2427 return hpsa_cmd_free_and_done(h, c, cmd); 2428 2429 /* 2430 * Any RAID offload error results in retry which will use 2431 * the normal I/O path so the controller can handle whatever's 2432 * wrong. 2433 */ 2434 if (is_logical_device(dev) && 2435 c2->error_data.serv_response == 2436 IOACCEL2_SERV_RESPONSE_FAILURE) { 2437 if (c2->error_data.status == 2438 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) { 2439 dev->offload_enabled = 0; 2440 dev->offload_to_be_enabled = 0; 2441 } 2442 2443 return hpsa_retry_cmd(h, c); 2444 } 2445 2446 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev)) 2447 return hpsa_retry_cmd(h, c); 2448 2449 return hpsa_cmd_free_and_done(h, c, cmd); 2450 } 2451 2452 /* Returns 0 on success, < 0 otherwise. */ 2453 static int hpsa_evaluate_tmf_status(struct ctlr_info *h, 2454 struct CommandList *cp) 2455 { 2456 u8 tmf_status = cp->err_info->ScsiStatus; 2457 2458 switch (tmf_status) { 2459 case CISS_TMF_COMPLETE: 2460 /* 2461 * CISS_TMF_COMPLETE never happens, instead, 2462 * ei->CommandStatus == 0 for this case. 2463 */ 2464 case CISS_TMF_SUCCESS: 2465 return 0; 2466 case CISS_TMF_INVALID_FRAME: 2467 case CISS_TMF_NOT_SUPPORTED: 2468 case CISS_TMF_FAILED: 2469 case CISS_TMF_WRONG_LUN: 2470 case CISS_TMF_OVERLAPPED_TAG: 2471 break; 2472 default: 2473 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n", 2474 tmf_status); 2475 break; 2476 } 2477 return -tmf_status; 2478 } 2479 2480 static void complete_scsi_command(struct CommandList *cp) 2481 { 2482 struct scsi_cmnd *cmd; 2483 struct ctlr_info *h; 2484 struct ErrorInfo *ei; 2485 struct hpsa_scsi_dev_t *dev; 2486 struct io_accel2_cmd *c2; 2487 2488 u8 sense_key; 2489 u8 asc; /* additional sense code */ 2490 u8 ascq; /* additional sense code qualifier */ 2491 unsigned long sense_data_size; 2492 2493 ei = cp->err_info; 2494 cmd = cp->scsi_cmd; 2495 h = cp->h; 2496 2497 if (!cmd->device) { 2498 cmd->result = DID_NO_CONNECT << 16; 2499 return hpsa_cmd_free_and_done(h, cp, cmd); 2500 } 2501 2502 dev = cmd->device->hostdata; 2503 if (!dev) { 2504 cmd->result = DID_NO_CONNECT << 16; 2505 return hpsa_cmd_free_and_done(h, cp, cmd); 2506 } 2507 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex]; 2508 2509 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 2510 if ((cp->cmd_type == CMD_SCSI) && 2511 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries)) 2512 hpsa_unmap_sg_chain_block(h, cp); 2513 2514 if ((cp->cmd_type == CMD_IOACCEL2) && 2515 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN)) 2516 hpsa_unmap_ioaccel2_sg_chain_block(h, c2); 2517 2518 cmd->result = (DID_OK << 16); /* host byte */ 2519 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 2520 2521 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) { 2522 if (dev->physical_device && dev->expose_device && 2523 dev->removed) { 2524 cmd->result = DID_NO_CONNECT << 16; 2525 return hpsa_cmd_free_and_done(h, cp, cmd); 2526 } 2527 if (likely(cp->phys_disk != NULL)) 2528 atomic_dec(&cp->phys_disk->ioaccel_cmds_out); 2529 } 2530 2531 /* 2532 * We check for lockup status here as it may be set for 2533 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by 2534 * fail_all_oustanding_cmds() 2535 */ 2536 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) { 2537 /* DID_NO_CONNECT will prevent a retry */ 2538 cmd->result = DID_NO_CONNECT << 16; 2539 return hpsa_cmd_free_and_done(h, cp, cmd); 2540 } 2541 2542 if ((unlikely(hpsa_is_pending_event(cp)))) { 2543 if (cp->reset_pending) 2544 return hpsa_cmd_resolve_and_free(h, cp); 2545 if (cp->abort_pending) 2546 return hpsa_cmd_abort_and_free(h, cp, cmd); 2547 } 2548 2549 if (cp->cmd_type == CMD_IOACCEL2) 2550 return process_ioaccel2_completion(h, cp, cmd, dev); 2551 2552 scsi_set_resid(cmd, ei->ResidualCnt); 2553 if (ei->CommandStatus == 0) 2554 return hpsa_cmd_free_and_done(h, cp, cmd); 2555 2556 /* For I/O accelerator commands, copy over some fields to the normal 2557 * CISS header used below for error handling. 2558 */ 2559 if (cp->cmd_type == CMD_IOACCEL1) { 2560 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; 2561 cp->Header.SGList = scsi_sg_count(cmd); 2562 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList); 2563 cp->Request.CDBLen = le16_to_cpu(c->io_flags) & 2564 IOACCEL1_IOFLAGS_CDBLEN_MASK; 2565 cp->Header.tag = c->tag; 2566 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); 2567 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); 2568 2569 /* Any RAID offload error results in retry which will use 2570 * the normal I/O path so the controller can handle whatever's 2571 * wrong. 2572 */ 2573 if (is_logical_device(dev)) { 2574 if (ei->CommandStatus == CMD_IOACCEL_DISABLED) 2575 dev->offload_enabled = 0; 2576 return hpsa_retry_cmd(h, cp); 2577 } 2578 } 2579 2580 /* an error has occurred */ 2581 switch (ei->CommandStatus) { 2582 2583 case CMD_TARGET_STATUS: 2584 cmd->result |= ei->ScsiStatus; 2585 /* copy the sense data */ 2586 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) 2587 sense_data_size = SCSI_SENSE_BUFFERSIZE; 2588 else 2589 sense_data_size = sizeof(ei->SenseInfo); 2590 if (ei->SenseLen < sense_data_size) 2591 sense_data_size = ei->SenseLen; 2592 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); 2593 if (ei->ScsiStatus) 2594 decode_sense_data(ei->SenseInfo, sense_data_size, 2595 &sense_key, &asc, &ascq); 2596 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 2597 if (sense_key == ABORTED_COMMAND) { 2598 cmd->result |= DID_SOFT_ERROR << 16; 2599 break; 2600 } 2601 break; 2602 } 2603 /* Problem was not a check condition 2604 * Pass it up to the upper layers... 2605 */ 2606 if (ei->ScsiStatus) { 2607 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 2608 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 2609 "Returning result: 0x%x\n", 2610 cp, ei->ScsiStatus, 2611 sense_key, asc, ascq, 2612 cmd->result); 2613 } else { /* scsi status is zero??? How??? */ 2614 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 2615 "Returning no connection.\n", cp), 2616 2617 /* Ordinarily, this case should never happen, 2618 * but there is a bug in some released firmware 2619 * revisions that allows it to happen if, for 2620 * example, a 4100 backplane loses power and 2621 * the tape drive is in it. We assume that 2622 * it's a fatal error of some kind because we 2623 * can't show that it wasn't. We will make it 2624 * look like selection timeout since that is 2625 * the most common reason for this to occur, 2626 * and it's severe enough. 2627 */ 2628 2629 cmd->result = DID_NO_CONNECT << 16; 2630 } 2631 break; 2632 2633 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 2634 break; 2635 case CMD_DATA_OVERRUN: 2636 dev_warn(&h->pdev->dev, 2637 "CDB %16phN data overrun\n", cp->Request.CDB); 2638 break; 2639 case CMD_INVALID: { 2640 /* print_bytes(cp, sizeof(*cp), 1, 0); 2641 print_cmd(cp); */ 2642 /* We get CMD_INVALID if you address a non-existent device 2643 * instead of a selection timeout (no response). You will 2644 * see this if you yank out a drive, then try to access it. 2645 * This is kind of a shame because it means that any other 2646 * CMD_INVALID (e.g. driver bug) will get interpreted as a 2647 * missing target. */ 2648 cmd->result = DID_NO_CONNECT << 16; 2649 } 2650 break; 2651 case CMD_PROTOCOL_ERR: 2652 cmd->result = DID_ERROR << 16; 2653 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n", 2654 cp->Request.CDB); 2655 break; 2656 case CMD_HARDWARE_ERR: 2657 cmd->result = DID_ERROR << 16; 2658 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n", 2659 cp->Request.CDB); 2660 break; 2661 case CMD_CONNECTION_LOST: 2662 cmd->result = DID_ERROR << 16; 2663 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n", 2664 cp->Request.CDB); 2665 break; 2666 case CMD_ABORTED: 2667 /* Return now to avoid calling scsi_done(). */ 2668 return hpsa_cmd_abort_and_free(h, cp, cmd); 2669 case CMD_ABORT_FAILED: 2670 cmd->result = DID_ERROR << 16; 2671 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n", 2672 cp->Request.CDB); 2673 break; 2674 case CMD_UNSOLICITED_ABORT: 2675 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ 2676 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n", 2677 cp->Request.CDB); 2678 break; 2679 case CMD_TIMEOUT: 2680 cmd->result = DID_TIME_OUT << 16; 2681 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n", 2682 cp->Request.CDB); 2683 break; 2684 case CMD_UNABORTABLE: 2685 cmd->result = DID_ERROR << 16; 2686 dev_warn(&h->pdev->dev, "Command unabortable\n"); 2687 break; 2688 case CMD_TMF_STATUS: 2689 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */ 2690 cmd->result = DID_ERROR << 16; 2691 break; 2692 case CMD_IOACCEL_DISABLED: 2693 /* This only handles the direct pass-through case since RAID 2694 * offload is handled above. Just attempt a retry. 2695 */ 2696 cmd->result = DID_SOFT_ERROR << 16; 2697 dev_warn(&h->pdev->dev, 2698 "cp %p had HP SSD Smart Path error\n", cp); 2699 break; 2700 default: 2701 cmd->result = DID_ERROR << 16; 2702 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 2703 cp, ei->CommandStatus); 2704 } 2705 2706 return hpsa_cmd_free_and_done(h, cp, cmd); 2707 } 2708 2709 static void hpsa_pci_unmap(struct pci_dev *pdev, 2710 struct CommandList *c, int sg_used, int data_direction) 2711 { 2712 int i; 2713 2714 for (i = 0; i < sg_used; i++) 2715 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr), 2716 le32_to_cpu(c->SG[i].Len), 2717 data_direction); 2718 } 2719 2720 static int hpsa_map_one(struct pci_dev *pdev, 2721 struct CommandList *cp, 2722 unsigned char *buf, 2723 size_t buflen, 2724 int data_direction) 2725 { 2726 u64 addr64; 2727 2728 if (buflen == 0 || data_direction == PCI_DMA_NONE) { 2729 cp->Header.SGList = 0; 2730 cp->Header.SGTotal = cpu_to_le16(0); 2731 return 0; 2732 } 2733 2734 addr64 = pci_map_single(pdev, buf, buflen, data_direction); 2735 if (dma_mapping_error(&pdev->dev, addr64)) { 2736 /* Prevent subsequent unmap of something never mapped */ 2737 cp->Header.SGList = 0; 2738 cp->Header.SGTotal = cpu_to_le16(0); 2739 return -1; 2740 } 2741 cp->SG[0].Addr = cpu_to_le64(addr64); 2742 cp->SG[0].Len = cpu_to_le32(buflen); 2743 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */ 2744 cp->Header.SGList = 1; /* no. SGs contig in this cmd */ 2745 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */ 2746 return 0; 2747 } 2748 2749 #define NO_TIMEOUT ((unsigned long) -1) 2750 #define DEFAULT_TIMEOUT 30000 /* milliseconds */ 2751 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 2752 struct CommandList *c, int reply_queue, unsigned long timeout_msecs) 2753 { 2754 DECLARE_COMPLETION_ONSTACK(wait); 2755 2756 c->waiting = &wait; 2757 __enqueue_cmd_and_start_io(h, c, reply_queue); 2758 if (timeout_msecs == NO_TIMEOUT) { 2759 /* TODO: get rid of this no-timeout thing */ 2760 wait_for_completion_io(&wait); 2761 return IO_OK; 2762 } 2763 if (!wait_for_completion_io_timeout(&wait, 2764 msecs_to_jiffies(timeout_msecs))) { 2765 dev_warn(&h->pdev->dev, "Command timed out.\n"); 2766 return -ETIMEDOUT; 2767 } 2768 return IO_OK; 2769 } 2770 2771 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c, 2772 int reply_queue, unsigned long timeout_msecs) 2773 { 2774 if (unlikely(lockup_detected(h))) { 2775 c->err_info->CommandStatus = CMD_CTLR_LOCKUP; 2776 return IO_OK; 2777 } 2778 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs); 2779 } 2780 2781 static u32 lockup_detected(struct ctlr_info *h) 2782 { 2783 int cpu; 2784 u32 rc, *lockup_detected; 2785 2786 cpu = get_cpu(); 2787 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); 2788 rc = *lockup_detected; 2789 put_cpu(); 2790 return rc; 2791 } 2792 2793 #define MAX_DRIVER_CMD_RETRIES 25 2794 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 2795 struct CommandList *c, int data_direction, unsigned long timeout_msecs) 2796 { 2797 int backoff_time = 10, retry_count = 0; 2798 int rc; 2799 2800 do { 2801 memset(c->err_info, 0, sizeof(*c->err_info)); 2802 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 2803 timeout_msecs); 2804 if (rc) 2805 break; 2806 retry_count++; 2807 if (retry_count > 3) { 2808 msleep(backoff_time); 2809 if (backoff_time < 1000) 2810 backoff_time *= 2; 2811 } 2812 } while ((check_for_unit_attention(h, c) || 2813 check_for_busy(h, c)) && 2814 retry_count <= MAX_DRIVER_CMD_RETRIES); 2815 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 2816 if (retry_count > MAX_DRIVER_CMD_RETRIES) 2817 rc = -EIO; 2818 return rc; 2819 } 2820 2821 static void hpsa_print_cmd(struct ctlr_info *h, char *txt, 2822 struct CommandList *c) 2823 { 2824 const u8 *cdb = c->Request.CDB; 2825 const u8 *lun = c->Header.LUN.LunAddrBytes; 2826 2827 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x" 2828 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", 2829 txt, lun[0], lun[1], lun[2], lun[3], 2830 lun[4], lun[5], lun[6], lun[7], 2831 cdb[0], cdb[1], cdb[2], cdb[3], 2832 cdb[4], cdb[5], cdb[6], cdb[7], 2833 cdb[8], cdb[9], cdb[10], cdb[11], 2834 cdb[12], cdb[13], cdb[14], cdb[15]); 2835 } 2836 2837 static void hpsa_scsi_interpret_error(struct ctlr_info *h, 2838 struct CommandList *cp) 2839 { 2840 const struct ErrorInfo *ei = cp->err_info; 2841 struct device *d = &cp->h->pdev->dev; 2842 u8 sense_key, asc, ascq; 2843 int sense_len; 2844 2845 switch (ei->CommandStatus) { 2846 case CMD_TARGET_STATUS: 2847 if (ei->SenseLen > sizeof(ei->SenseInfo)) 2848 sense_len = sizeof(ei->SenseInfo); 2849 else 2850 sense_len = ei->SenseLen; 2851 decode_sense_data(ei->SenseInfo, sense_len, 2852 &sense_key, &asc, &ascq); 2853 hpsa_print_cmd(h, "SCSI status", cp); 2854 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) 2855 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n", 2856 sense_key, asc, ascq); 2857 else 2858 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus); 2859 if (ei->ScsiStatus == 0) 2860 dev_warn(d, "SCSI status is abnormally zero. " 2861 "(probably indicates selection timeout " 2862 "reported incorrectly due to a known " 2863 "firmware bug, circa July, 2001.)\n"); 2864 break; 2865 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 2866 break; 2867 case CMD_DATA_OVERRUN: 2868 hpsa_print_cmd(h, "overrun condition", cp); 2869 break; 2870 case CMD_INVALID: { 2871 /* controller unfortunately reports SCSI passthru's 2872 * to non-existent targets as invalid commands. 2873 */ 2874 hpsa_print_cmd(h, "invalid command", cp); 2875 dev_warn(d, "probably means device no longer present\n"); 2876 } 2877 break; 2878 case CMD_PROTOCOL_ERR: 2879 hpsa_print_cmd(h, "protocol error", cp); 2880 break; 2881 case CMD_HARDWARE_ERR: 2882 hpsa_print_cmd(h, "hardware error", cp); 2883 break; 2884 case CMD_CONNECTION_LOST: 2885 hpsa_print_cmd(h, "connection lost", cp); 2886 break; 2887 case CMD_ABORTED: 2888 hpsa_print_cmd(h, "aborted", cp); 2889 break; 2890 case CMD_ABORT_FAILED: 2891 hpsa_print_cmd(h, "abort failed", cp); 2892 break; 2893 case CMD_UNSOLICITED_ABORT: 2894 hpsa_print_cmd(h, "unsolicited abort", cp); 2895 break; 2896 case CMD_TIMEOUT: 2897 hpsa_print_cmd(h, "timed out", cp); 2898 break; 2899 case CMD_UNABORTABLE: 2900 hpsa_print_cmd(h, "unabortable", cp); 2901 break; 2902 case CMD_CTLR_LOCKUP: 2903 hpsa_print_cmd(h, "controller lockup detected", cp); 2904 break; 2905 default: 2906 hpsa_print_cmd(h, "unknown status", cp); 2907 dev_warn(d, "Unknown command status %x\n", 2908 ei->CommandStatus); 2909 } 2910 } 2911 2912 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 2913 u16 page, unsigned char *buf, 2914 unsigned char bufsize) 2915 { 2916 int rc = IO_OK; 2917 struct CommandList *c; 2918 struct ErrorInfo *ei; 2919 2920 c = cmd_alloc(h); 2921 2922 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, 2923 page, scsi3addr, TYPE_CMD)) { 2924 rc = -1; 2925 goto out; 2926 } 2927 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 2928 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); 2929 if (rc) 2930 goto out; 2931 ei = c->err_info; 2932 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 2933 hpsa_scsi_interpret_error(h, c); 2934 rc = -1; 2935 } 2936 out: 2937 cmd_free(h, c); 2938 return rc; 2939 } 2940 2941 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr, 2942 u8 reset_type, int reply_queue) 2943 { 2944 int rc = IO_OK; 2945 struct CommandList *c; 2946 struct ErrorInfo *ei; 2947 2948 c = cmd_alloc(h); 2949 2950 2951 /* fill_cmd can't fail here, no data buffer to map. */ 2952 (void) fill_cmd(c, reset_type, h, NULL, 0, 0, 2953 scsi3addr, TYPE_MSG); 2954 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT); 2955 if (rc) { 2956 dev_warn(&h->pdev->dev, "Failed to send reset command\n"); 2957 goto out; 2958 } 2959 /* no unmap needed here because no data xfer. */ 2960 2961 ei = c->err_info; 2962 if (ei->CommandStatus != 0) { 2963 hpsa_scsi_interpret_error(h, c); 2964 rc = -1; 2965 } 2966 out: 2967 cmd_free(h, c); 2968 return rc; 2969 } 2970 2971 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, 2972 struct hpsa_scsi_dev_t *dev, 2973 unsigned char *scsi3addr) 2974 { 2975 int i; 2976 bool match = false; 2977 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 2978 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; 2979 2980 if (hpsa_is_cmd_idle(c)) 2981 return false; 2982 2983 switch (c->cmd_type) { 2984 case CMD_SCSI: 2985 case CMD_IOCTL_PEND: 2986 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes, 2987 sizeof(c->Header.LUN.LunAddrBytes)); 2988 break; 2989 2990 case CMD_IOACCEL1: 2991 case CMD_IOACCEL2: 2992 if (c->phys_disk == dev) { 2993 /* HBA mode match */ 2994 match = true; 2995 } else { 2996 /* Possible RAID mode -- check each phys dev. */ 2997 /* FIXME: Do we need to take out a lock here? If 2998 * so, we could just call hpsa_get_pdisk_of_ioaccel2() 2999 * instead. */ 3000 for (i = 0; i < dev->nphysical_disks && !match; i++) { 3001 /* FIXME: an alternate test might be 3002 * 3003 * match = dev->phys_disk[i]->ioaccel_handle 3004 * == c2->scsi_nexus; */ 3005 match = dev->phys_disk[i] == c->phys_disk; 3006 } 3007 } 3008 break; 3009 3010 case IOACCEL2_TMF: 3011 for (i = 0; i < dev->nphysical_disks && !match; i++) { 3012 match = dev->phys_disk[i]->ioaccel_handle == 3013 le32_to_cpu(ac->it_nexus); 3014 } 3015 break; 3016 3017 case 0: /* The command is in the middle of being initialized. */ 3018 match = false; 3019 break; 3020 3021 default: 3022 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n", 3023 c->cmd_type); 3024 BUG(); 3025 } 3026 3027 return match; 3028 } 3029 3030 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, 3031 unsigned char *scsi3addr, u8 reset_type, int reply_queue) 3032 { 3033 int i; 3034 int rc = 0; 3035 3036 /* We can really only handle one reset at a time */ 3037 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) { 3038 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n"); 3039 return -EINTR; 3040 } 3041 3042 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0); 3043 3044 for (i = 0; i < h->nr_cmds; i++) { 3045 struct CommandList *c = h->cmd_pool + i; 3046 int refcount = atomic_inc_return(&c->refcount); 3047 3048 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) { 3049 unsigned long flags; 3050 3051 /* 3052 * Mark the target command as having a reset pending, 3053 * then lock a lock so that the command cannot complete 3054 * while we're considering it. If the command is not 3055 * idle then count it; otherwise revoke the event. 3056 */ 3057 c->reset_pending = dev; 3058 spin_lock_irqsave(&h->lock, flags); /* Implied MB */ 3059 if (!hpsa_is_cmd_idle(c)) 3060 atomic_inc(&dev->reset_cmds_out); 3061 else 3062 c->reset_pending = NULL; 3063 spin_unlock_irqrestore(&h->lock, flags); 3064 } 3065 3066 cmd_free(h, c); 3067 } 3068 3069 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue); 3070 if (!rc) 3071 wait_event(h->event_sync_wait_queue, 3072 atomic_read(&dev->reset_cmds_out) == 0 || 3073 lockup_detected(h)); 3074 3075 if (unlikely(lockup_detected(h))) { 3076 dev_warn(&h->pdev->dev, 3077 "Controller lockup detected during reset wait\n"); 3078 rc = -ENODEV; 3079 } 3080 3081 if (unlikely(rc)) 3082 atomic_set(&dev->reset_cmds_out, 0); 3083 3084 mutex_unlock(&h->reset_mutex); 3085 return rc; 3086 } 3087 3088 static void hpsa_get_raid_level(struct ctlr_info *h, 3089 unsigned char *scsi3addr, unsigned char *raid_level) 3090 { 3091 int rc; 3092 unsigned char *buf; 3093 3094 *raid_level = RAID_UNKNOWN; 3095 buf = kzalloc(64, GFP_KERNEL); 3096 if (!buf) 3097 return; 3098 3099 if (!hpsa_vpd_page_supported(h, scsi3addr, 3100 HPSA_VPD_LV_DEVICE_GEOMETRY)) 3101 goto exit; 3102 3103 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 3104 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64); 3105 3106 if (rc == 0) 3107 *raid_level = buf[8]; 3108 if (*raid_level > RAID_UNKNOWN) 3109 *raid_level = RAID_UNKNOWN; 3110 exit: 3111 kfree(buf); 3112 return; 3113 } 3114 3115 #define HPSA_MAP_DEBUG 3116 #ifdef HPSA_MAP_DEBUG 3117 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, 3118 struct raid_map_data *map_buff) 3119 { 3120 struct raid_map_disk_data *dd = &map_buff->data[0]; 3121 int map, row, col; 3122 u16 map_cnt, row_cnt, disks_per_row; 3123 3124 if (rc != 0) 3125 return; 3126 3127 /* Show details only if debugging has been activated. */ 3128 if (h->raid_offload_debug < 2) 3129 return; 3130 3131 dev_info(&h->pdev->dev, "structure_size = %u\n", 3132 le32_to_cpu(map_buff->structure_size)); 3133 dev_info(&h->pdev->dev, "volume_blk_size = %u\n", 3134 le32_to_cpu(map_buff->volume_blk_size)); 3135 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", 3136 le64_to_cpu(map_buff->volume_blk_cnt)); 3137 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", 3138 map_buff->phys_blk_shift); 3139 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", 3140 map_buff->parity_rotation_shift); 3141 dev_info(&h->pdev->dev, "strip_size = %u\n", 3142 le16_to_cpu(map_buff->strip_size)); 3143 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", 3144 le64_to_cpu(map_buff->disk_starting_blk)); 3145 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", 3146 le64_to_cpu(map_buff->disk_blk_cnt)); 3147 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", 3148 le16_to_cpu(map_buff->data_disks_per_row)); 3149 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", 3150 le16_to_cpu(map_buff->metadata_disks_per_row)); 3151 dev_info(&h->pdev->dev, "row_cnt = %u\n", 3152 le16_to_cpu(map_buff->row_cnt)); 3153 dev_info(&h->pdev->dev, "layout_map_count = %u\n", 3154 le16_to_cpu(map_buff->layout_map_count)); 3155 dev_info(&h->pdev->dev, "flags = 0x%x\n", 3156 le16_to_cpu(map_buff->flags)); 3157 dev_info(&h->pdev->dev, "encrypytion = %s\n", 3158 le16_to_cpu(map_buff->flags) & 3159 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF"); 3160 dev_info(&h->pdev->dev, "dekindex = %u\n", 3161 le16_to_cpu(map_buff->dekindex)); 3162 map_cnt = le16_to_cpu(map_buff->layout_map_count); 3163 for (map = 0; map < map_cnt; map++) { 3164 dev_info(&h->pdev->dev, "Map%u:\n", map); 3165 row_cnt = le16_to_cpu(map_buff->row_cnt); 3166 for (row = 0; row < row_cnt; row++) { 3167 dev_info(&h->pdev->dev, " Row%u:\n", row); 3168 disks_per_row = 3169 le16_to_cpu(map_buff->data_disks_per_row); 3170 for (col = 0; col < disks_per_row; col++, dd++) 3171 dev_info(&h->pdev->dev, 3172 " D%02u: h=0x%04x xor=%u,%u\n", 3173 col, dd->ioaccel_handle, 3174 dd->xor_mult[0], dd->xor_mult[1]); 3175 disks_per_row = 3176 le16_to_cpu(map_buff->metadata_disks_per_row); 3177 for (col = 0; col < disks_per_row; col++, dd++) 3178 dev_info(&h->pdev->dev, 3179 " M%02u: h=0x%04x xor=%u,%u\n", 3180 col, dd->ioaccel_handle, 3181 dd->xor_mult[0], dd->xor_mult[1]); 3182 } 3183 } 3184 } 3185 #else 3186 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, 3187 __attribute__((unused)) int rc, 3188 __attribute__((unused)) struct raid_map_data *map_buff) 3189 { 3190 } 3191 #endif 3192 3193 static int hpsa_get_raid_map(struct ctlr_info *h, 3194 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) 3195 { 3196 int rc = 0; 3197 struct CommandList *c; 3198 struct ErrorInfo *ei; 3199 3200 c = cmd_alloc(h); 3201 3202 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, 3203 sizeof(this_device->raid_map), 0, 3204 scsi3addr, TYPE_CMD)) { 3205 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n"); 3206 cmd_free(h, c); 3207 return -1; 3208 } 3209 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 3210 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); 3211 if (rc) 3212 goto out; 3213 ei = c->err_info; 3214 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3215 hpsa_scsi_interpret_error(h, c); 3216 rc = -1; 3217 goto out; 3218 } 3219 cmd_free(h, c); 3220 3221 /* @todo in the future, dynamically allocate RAID map memory */ 3222 if (le32_to_cpu(this_device->raid_map.structure_size) > 3223 sizeof(this_device->raid_map)) { 3224 dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); 3225 rc = -1; 3226 } 3227 hpsa_debug_map_buff(h, rc, &this_device->raid_map); 3228 return rc; 3229 out: 3230 cmd_free(h, c); 3231 return rc; 3232 } 3233 3234 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h, 3235 unsigned char scsi3addr[], u16 bmic_device_index, 3236 struct bmic_sense_subsystem_info *buf, size_t bufsize) 3237 { 3238 int rc = IO_OK; 3239 struct CommandList *c; 3240 struct ErrorInfo *ei; 3241 3242 c = cmd_alloc(h); 3243 3244 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize, 3245 0, RAID_CTLR_LUNID, TYPE_CMD); 3246 if (rc) 3247 goto out; 3248 3249 c->Request.CDB[2] = bmic_device_index & 0xff; 3250 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; 3251 3252 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 3253 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); 3254 if (rc) 3255 goto out; 3256 ei = c->err_info; 3257 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3258 hpsa_scsi_interpret_error(h, c); 3259 rc = -1; 3260 } 3261 out: 3262 cmd_free(h, c); 3263 return rc; 3264 } 3265 3266 static int hpsa_bmic_id_controller(struct ctlr_info *h, 3267 struct bmic_identify_controller *buf, size_t bufsize) 3268 { 3269 int rc = IO_OK; 3270 struct CommandList *c; 3271 struct ErrorInfo *ei; 3272 3273 c = cmd_alloc(h); 3274 3275 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize, 3276 0, RAID_CTLR_LUNID, TYPE_CMD); 3277 if (rc) 3278 goto out; 3279 3280 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 3281 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); 3282 if (rc) 3283 goto out; 3284 ei = c->err_info; 3285 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3286 hpsa_scsi_interpret_error(h, c); 3287 rc = -1; 3288 } 3289 out: 3290 cmd_free(h, c); 3291 return rc; 3292 } 3293 3294 static int hpsa_bmic_id_physical_device(struct ctlr_info *h, 3295 unsigned char scsi3addr[], u16 bmic_device_index, 3296 struct bmic_identify_physical_device *buf, size_t bufsize) 3297 { 3298 int rc = IO_OK; 3299 struct CommandList *c; 3300 struct ErrorInfo *ei; 3301 3302 c = cmd_alloc(h); 3303 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize, 3304 0, RAID_CTLR_LUNID, TYPE_CMD); 3305 if (rc) 3306 goto out; 3307 3308 c->Request.CDB[2] = bmic_device_index & 0xff; 3309 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; 3310 3311 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, 3312 DEFAULT_TIMEOUT); 3313 ei = c->err_info; 3314 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3315 hpsa_scsi_interpret_error(h, c); 3316 rc = -1; 3317 } 3318 out: 3319 cmd_free(h, c); 3320 3321 return rc; 3322 } 3323 3324 /* 3325 * get enclosure information 3326 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number 3327 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure 3328 * Uses id_physical_device to determine the box_index. 3329 */ 3330 static void hpsa_get_enclosure_info(struct ctlr_info *h, 3331 unsigned char *scsi3addr, 3332 struct ReportExtendedLUNdata *rlep, int rle_index, 3333 struct hpsa_scsi_dev_t *encl_dev) 3334 { 3335 int rc = -1; 3336 struct CommandList *c = NULL; 3337 struct ErrorInfo *ei = NULL; 3338 struct bmic_sense_storage_box_params *bssbp = NULL; 3339 struct bmic_identify_physical_device *id_phys = NULL; 3340 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index]; 3341 u16 bmic_device_index = 0; 3342 3343 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]); 3344 3345 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) { 3346 rc = IO_OK; 3347 goto out; 3348 } 3349 3350 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL); 3351 if (!bssbp) 3352 goto out; 3353 3354 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 3355 if (!id_phys) 3356 goto out; 3357 3358 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index, 3359 id_phys, sizeof(*id_phys)); 3360 if (rc) { 3361 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n", 3362 __func__, encl_dev->external, bmic_device_index); 3363 goto out; 3364 } 3365 3366 c = cmd_alloc(h); 3367 3368 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp, 3369 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD); 3370 3371 if (rc) 3372 goto out; 3373 3374 if (id_phys->phys_connector[1] == 'E') 3375 c->Request.CDB[5] = id_phys->box_index; 3376 else 3377 c->Request.CDB[5] = 0; 3378 3379 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, 3380 DEFAULT_TIMEOUT); 3381 if (rc) 3382 goto out; 3383 3384 ei = c->err_info; 3385 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3386 rc = -1; 3387 goto out; 3388 } 3389 3390 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port; 3391 memcpy(&encl_dev->phys_connector[id_phys->active_path_number], 3392 bssbp->phys_connector, sizeof(bssbp->phys_connector)); 3393 3394 rc = IO_OK; 3395 out: 3396 kfree(bssbp); 3397 kfree(id_phys); 3398 3399 if (c) 3400 cmd_free(h, c); 3401 3402 if (rc != IO_OK) 3403 hpsa_show_dev_msg(KERN_INFO, h, encl_dev, 3404 "Error, could not get enclosure information\n"); 3405 } 3406 3407 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h, 3408 unsigned char *scsi3addr) 3409 { 3410 struct ReportExtendedLUNdata *physdev; 3411 u32 nphysicals; 3412 u64 sa = 0; 3413 int i; 3414 3415 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL); 3416 if (!physdev) 3417 return 0; 3418 3419 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { 3420 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 3421 kfree(physdev); 3422 return 0; 3423 } 3424 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24; 3425 3426 for (i = 0; i < nphysicals; i++) 3427 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) { 3428 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]); 3429 break; 3430 } 3431 3432 kfree(physdev); 3433 3434 return sa; 3435 } 3436 3437 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr, 3438 struct hpsa_scsi_dev_t *dev) 3439 { 3440 int rc; 3441 u64 sa = 0; 3442 3443 if (is_hba_lunid(scsi3addr)) { 3444 struct bmic_sense_subsystem_info *ssi; 3445 3446 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL); 3447 if (ssi == NULL) { 3448 dev_warn(&h->pdev->dev, 3449 "%s: out of memory\n", __func__); 3450 return; 3451 } 3452 3453 rc = hpsa_bmic_sense_subsystem_information(h, 3454 scsi3addr, 0, ssi, sizeof(*ssi)); 3455 if (rc == 0) { 3456 sa = get_unaligned_be64(ssi->primary_world_wide_id); 3457 h->sas_address = sa; 3458 } 3459 3460 kfree(ssi); 3461 } else 3462 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr); 3463 3464 dev->sas_address = sa; 3465 } 3466 3467 /* Get a device id from inquiry page 0x83 */ 3468 static bool hpsa_vpd_page_supported(struct ctlr_info *h, 3469 unsigned char scsi3addr[], u8 page) 3470 { 3471 int rc; 3472 int i; 3473 int pages; 3474 unsigned char *buf, bufsize; 3475 3476 buf = kzalloc(256, GFP_KERNEL); 3477 if (!buf) 3478 return false; 3479 3480 /* Get the size of the page list first */ 3481 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3482 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, 3483 buf, HPSA_VPD_HEADER_SZ); 3484 if (rc != 0) 3485 goto exit_unsupported; 3486 pages = buf[3]; 3487 if ((pages + HPSA_VPD_HEADER_SZ) <= 255) 3488 bufsize = pages + HPSA_VPD_HEADER_SZ; 3489 else 3490 bufsize = 255; 3491 3492 /* Get the whole VPD page list */ 3493 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3494 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, 3495 buf, bufsize); 3496 if (rc != 0) 3497 goto exit_unsupported; 3498 3499 pages = buf[3]; 3500 for (i = 1; i <= pages; i++) 3501 if (buf[3 + i] == page) 3502 goto exit_supported; 3503 exit_unsupported: 3504 kfree(buf); 3505 return false; 3506 exit_supported: 3507 kfree(buf); 3508 return true; 3509 } 3510 3511 static void hpsa_get_ioaccel_status(struct ctlr_info *h, 3512 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) 3513 { 3514 int rc; 3515 unsigned char *buf; 3516 u8 ioaccel_status; 3517 3518 this_device->offload_config = 0; 3519 this_device->offload_enabled = 0; 3520 this_device->offload_to_be_enabled = 0; 3521 3522 buf = kzalloc(64, GFP_KERNEL); 3523 if (!buf) 3524 return; 3525 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS)) 3526 goto out; 3527 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3528 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); 3529 if (rc != 0) 3530 goto out; 3531 3532 #define IOACCEL_STATUS_BYTE 4 3533 #define OFFLOAD_CONFIGURED_BIT 0x01 3534 #define OFFLOAD_ENABLED_BIT 0x02 3535 ioaccel_status = buf[IOACCEL_STATUS_BYTE]; 3536 this_device->offload_config = 3537 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); 3538 if (this_device->offload_config) { 3539 this_device->offload_enabled = 3540 !!(ioaccel_status & OFFLOAD_ENABLED_BIT); 3541 if (hpsa_get_raid_map(h, scsi3addr, this_device)) 3542 this_device->offload_enabled = 0; 3543 } 3544 this_device->offload_to_be_enabled = this_device->offload_enabled; 3545 out: 3546 kfree(buf); 3547 return; 3548 } 3549 3550 /* Get the device id from inquiry page 0x83 */ 3551 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 3552 unsigned char *device_id, int index, int buflen) 3553 { 3554 int rc; 3555 unsigned char *buf; 3556 3557 /* Does controller have VPD for device id? */ 3558 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID)) 3559 return 1; /* not supported */ 3560 3561 buf = kzalloc(64, GFP_KERNEL); 3562 if (!buf) 3563 return -ENOMEM; 3564 3565 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 3566 HPSA_VPD_LV_DEVICE_ID, buf, 64); 3567 if (rc == 0) { 3568 if (buflen > 16) 3569 buflen = 16; 3570 memcpy(device_id, &buf[8], buflen); 3571 } 3572 3573 kfree(buf); 3574 3575 return rc; /*0 - got id, otherwise, didn't */ 3576 } 3577 3578 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 3579 void *buf, int bufsize, 3580 int extended_response) 3581 { 3582 int rc = IO_OK; 3583 struct CommandList *c; 3584 unsigned char scsi3addr[8]; 3585 struct ErrorInfo *ei; 3586 3587 c = cmd_alloc(h); 3588 3589 /* address the controller */ 3590 memset(scsi3addr, 0, sizeof(scsi3addr)); 3591 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 3592 buf, bufsize, 0, scsi3addr, TYPE_CMD)) { 3593 rc = -1; 3594 goto out; 3595 } 3596 if (extended_response) 3597 c->Request.CDB[1] = extended_response; 3598 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 3599 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); 3600 if (rc) 3601 goto out; 3602 ei = c->err_info; 3603 if (ei->CommandStatus != 0 && 3604 ei->CommandStatus != CMD_DATA_UNDERRUN) { 3605 hpsa_scsi_interpret_error(h, c); 3606 rc = -1; 3607 } else { 3608 struct ReportLUNdata *rld = buf; 3609 3610 if (rld->extended_response_flag != extended_response) { 3611 dev_err(&h->pdev->dev, 3612 "report luns requested format %u, got %u\n", 3613 extended_response, 3614 rld->extended_response_flag); 3615 rc = -1; 3616 } 3617 } 3618 out: 3619 cmd_free(h, c); 3620 return rc; 3621 } 3622 3623 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 3624 struct ReportExtendedLUNdata *buf, int bufsize) 3625 { 3626 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, 3627 HPSA_REPORT_PHYS_EXTENDED); 3628 } 3629 3630 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 3631 struct ReportLUNdata *buf, int bufsize) 3632 { 3633 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 3634 } 3635 3636 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 3637 int bus, int target, int lun) 3638 { 3639 device->bus = bus; 3640 device->target = target; 3641 device->lun = lun; 3642 } 3643 3644 /* Use VPD inquiry to get details of volume status */ 3645 static int hpsa_get_volume_status(struct ctlr_info *h, 3646 unsigned char scsi3addr[]) 3647 { 3648 int rc; 3649 int status; 3650 int size; 3651 unsigned char *buf; 3652 3653 buf = kzalloc(64, GFP_KERNEL); 3654 if (!buf) 3655 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3656 3657 /* Does controller have VPD for logical volume status? */ 3658 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) 3659 goto exit_failed; 3660 3661 /* Get the size of the VPD return buffer */ 3662 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, 3663 buf, HPSA_VPD_HEADER_SZ); 3664 if (rc != 0) 3665 goto exit_failed; 3666 size = buf[3]; 3667 3668 /* Now get the whole VPD buffer */ 3669 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, 3670 buf, size + HPSA_VPD_HEADER_SZ); 3671 if (rc != 0) 3672 goto exit_failed; 3673 status = buf[4]; /* status byte */ 3674 3675 kfree(buf); 3676 return status; 3677 exit_failed: 3678 kfree(buf); 3679 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3680 } 3681 3682 /* Determine offline status of a volume. 3683 * Return either: 3684 * 0 (not offline) 3685 * 0xff (offline for unknown reasons) 3686 * # (integer code indicating one of several NOT READY states 3687 * describing why a volume is to be kept offline) 3688 */ 3689 static int hpsa_volume_offline(struct ctlr_info *h, 3690 unsigned char scsi3addr[]) 3691 { 3692 struct CommandList *c; 3693 unsigned char *sense; 3694 u8 sense_key, asc, ascq; 3695 int sense_len; 3696 int rc, ldstat = 0; 3697 u16 cmd_status; 3698 u8 scsi_status; 3699 #define ASC_LUN_NOT_READY 0x04 3700 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04 3701 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02 3702 3703 c = cmd_alloc(h); 3704 3705 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD); 3706 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 3707 DEFAULT_TIMEOUT); 3708 if (rc) { 3709 cmd_free(h, c); 3710 return 0; 3711 } 3712 sense = c->err_info->SenseInfo; 3713 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) 3714 sense_len = sizeof(c->err_info->SenseInfo); 3715 else 3716 sense_len = c->err_info->SenseLen; 3717 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq); 3718 cmd_status = c->err_info->CommandStatus; 3719 scsi_status = c->err_info->ScsiStatus; 3720 cmd_free(h, c); 3721 /* Is the volume 'not ready'? */ 3722 if (cmd_status != CMD_TARGET_STATUS || 3723 scsi_status != SAM_STAT_CHECK_CONDITION || 3724 sense_key != NOT_READY || 3725 asc != ASC_LUN_NOT_READY) { 3726 return 0; 3727 } 3728 3729 /* Determine the reason for not ready state */ 3730 ldstat = hpsa_get_volume_status(h, scsi3addr); 3731 3732 /* Keep volume offline in certain cases: */ 3733 switch (ldstat) { 3734 case HPSA_LV_UNDERGOING_ERASE: 3735 case HPSA_LV_NOT_AVAILABLE: 3736 case HPSA_LV_UNDERGOING_RPI: 3737 case HPSA_LV_PENDING_RPI: 3738 case HPSA_LV_ENCRYPTED_NO_KEY: 3739 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: 3740 case HPSA_LV_UNDERGOING_ENCRYPTION: 3741 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: 3742 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: 3743 return ldstat; 3744 case HPSA_VPD_LV_STATUS_UNSUPPORTED: 3745 /* If VPD status page isn't available, 3746 * use ASC/ASCQ to determine state 3747 */ 3748 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) || 3749 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ)) 3750 return ldstat; 3751 break; 3752 default: 3753 break; 3754 } 3755 return 0; 3756 } 3757 3758 /* 3759 * Find out if a logical device supports aborts by simply trying one. 3760 * Smart Array may claim not to support aborts on logical drives, but 3761 * if a MSA2000 * is connected, the drives on that will be presented 3762 * by the Smart Array as logical drives, and aborts may be sent to 3763 * those devices successfully. So the simplest way to find out is 3764 * to simply try an abort and see how the device responds. 3765 */ 3766 static int hpsa_device_supports_aborts(struct ctlr_info *h, 3767 unsigned char *scsi3addr) 3768 { 3769 struct CommandList *c; 3770 struct ErrorInfo *ei; 3771 int rc = 0; 3772 3773 u64 tag = (u64) -1; /* bogus tag */ 3774 3775 /* Assume that physical devices support aborts */ 3776 if (!is_logical_dev_addr_mode(scsi3addr)) 3777 return 1; 3778 3779 c = cmd_alloc(h); 3780 3781 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG); 3782 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 3783 DEFAULT_TIMEOUT); 3784 /* no unmap needed here because no data xfer. */ 3785 ei = c->err_info; 3786 switch (ei->CommandStatus) { 3787 case CMD_INVALID: 3788 rc = 0; 3789 break; 3790 case CMD_UNABORTABLE: 3791 case CMD_ABORT_FAILED: 3792 rc = 1; 3793 break; 3794 case CMD_TMF_STATUS: 3795 rc = hpsa_evaluate_tmf_status(h, c); 3796 break; 3797 default: 3798 rc = 0; 3799 break; 3800 } 3801 cmd_free(h, c); 3802 return rc; 3803 } 3804 3805 static int hpsa_update_device_info(struct ctlr_info *h, 3806 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, 3807 unsigned char *is_OBDR_device) 3808 { 3809 3810 #define OBDR_SIG_OFFSET 43 3811 #define OBDR_TAPE_SIG "$DR-10" 3812 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) 3813 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) 3814 3815 unsigned char *inq_buff; 3816 unsigned char *obdr_sig; 3817 int rc = 0; 3818 3819 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 3820 if (!inq_buff) { 3821 rc = -ENOMEM; 3822 goto bail_out; 3823 } 3824 3825 /* Do an inquiry to the device to see what it is. */ 3826 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 3827 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 3828 /* Inquiry failed (msg printed already) */ 3829 dev_err(&h->pdev->dev, 3830 "hpsa_update_device_info: inquiry failed\n"); 3831 rc = -EIO; 3832 goto bail_out; 3833 } 3834 3835 scsi_sanitize_inquiry_string(&inq_buff[8], 8); 3836 scsi_sanitize_inquiry_string(&inq_buff[16], 16); 3837 3838 this_device->devtype = (inq_buff[0] & 0x1f); 3839 memcpy(this_device->scsi3addr, scsi3addr, 8); 3840 memcpy(this_device->vendor, &inq_buff[8], 3841 sizeof(this_device->vendor)); 3842 memcpy(this_device->model, &inq_buff[16], 3843 sizeof(this_device->model)); 3844 this_device->rev = inq_buff[2]; 3845 memset(this_device->device_id, 0, 3846 sizeof(this_device->device_id)); 3847 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8, 3848 sizeof(this_device->device_id))) 3849 dev_err(&h->pdev->dev, 3850 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n", 3851 h->ctlr, __func__, 3852 h->scsi_host->host_no, 3853 this_device->target, this_device->lun, 3854 scsi_device_type(this_device->devtype), 3855 this_device->model); 3856 3857 if ((this_device->devtype == TYPE_DISK || 3858 this_device->devtype == TYPE_ZBC) && 3859 is_logical_dev_addr_mode(scsi3addr)) { 3860 int volume_offline; 3861 3862 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 3863 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) 3864 hpsa_get_ioaccel_status(h, scsi3addr, this_device); 3865 volume_offline = hpsa_volume_offline(h, scsi3addr); 3866 if (volume_offline < 0 || volume_offline > 0xff) 3867 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED; 3868 this_device->volume_offline = volume_offline & 0xff; 3869 } else { 3870 this_device->raid_level = RAID_UNKNOWN; 3871 this_device->offload_config = 0; 3872 this_device->offload_enabled = 0; 3873 this_device->offload_to_be_enabled = 0; 3874 this_device->hba_ioaccel_enabled = 0; 3875 this_device->volume_offline = 0; 3876 this_device->queue_depth = h->nr_cmds; 3877 } 3878 3879 if (is_OBDR_device) { 3880 /* See if this is a One-Button-Disaster-Recovery device 3881 * by looking for "$DR-10" at offset 43 in inquiry data. 3882 */ 3883 obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; 3884 *is_OBDR_device = (this_device->devtype == TYPE_ROM && 3885 strncmp(obdr_sig, OBDR_TAPE_SIG, 3886 OBDR_SIG_LEN) == 0); 3887 } 3888 kfree(inq_buff); 3889 return 0; 3890 3891 bail_out: 3892 kfree(inq_buff); 3893 return rc; 3894 } 3895 3896 static void hpsa_update_device_supports_aborts(struct ctlr_info *h, 3897 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr) 3898 { 3899 unsigned long flags; 3900 int rc, entry; 3901 /* 3902 * See if this device supports aborts. If we already know 3903 * the device, we already know if it supports aborts, otherwise 3904 * we have to find out if it supports aborts by trying one. 3905 */ 3906 spin_lock_irqsave(&h->devlock, flags); 3907 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry); 3908 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) && 3909 entry >= 0 && entry < h->ndevices) { 3910 dev->supports_aborts = h->dev[entry]->supports_aborts; 3911 spin_unlock_irqrestore(&h->devlock, flags); 3912 } else { 3913 spin_unlock_irqrestore(&h->devlock, flags); 3914 dev->supports_aborts = 3915 hpsa_device_supports_aborts(h, scsi3addr); 3916 if (dev->supports_aborts < 0) 3917 dev->supports_aborts = 0; 3918 } 3919 } 3920 3921 /* 3922 * Helper function to assign bus, target, lun mapping of devices. 3923 * Logical drive target and lun are assigned at this time, but 3924 * physical device lun and target assignment are deferred (assigned 3925 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 3926 */ 3927 static void figure_bus_target_lun(struct ctlr_info *h, 3928 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) 3929 { 3930 u32 lunid = get_unaligned_le32(lunaddrbytes); 3931 3932 if (!is_logical_dev_addr_mode(lunaddrbytes)) { 3933 /* physical device, target and lun filled in later */ 3934 if (is_hba_lunid(lunaddrbytes)) { 3935 int bus = HPSA_HBA_BUS; 3936 3937 if (!device->rev) 3938 bus = HPSA_LEGACY_HBA_BUS; 3939 hpsa_set_bus_target_lun(device, 3940 bus, 0, lunid & 0x3fff); 3941 } else 3942 /* defer target, lun assignment for physical devices */ 3943 hpsa_set_bus_target_lun(device, 3944 HPSA_PHYSICAL_DEVICE_BUS, -1, -1); 3945 return; 3946 } 3947 /* It's a logical device */ 3948 if (device->external) { 3949 hpsa_set_bus_target_lun(device, 3950 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff, 3951 lunid & 0x00ff); 3952 return; 3953 } 3954 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS, 3955 0, lunid & 0x3fff); 3956 } 3957 3958 3959 /* 3960 * Get address of physical disk used for an ioaccel2 mode command: 3961 * 1. Extract ioaccel2 handle from the command. 3962 * 2. Find a matching ioaccel2 handle from list of physical disks. 3963 * 3. Return: 3964 * 1 and set scsi3addr to address of matching physical 3965 * 0 if no matching physical disk was found. 3966 */ 3967 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h, 3968 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr) 3969 { 3970 struct io_accel2_cmd *c2 = 3971 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex]; 3972 unsigned long flags; 3973 int i; 3974 3975 spin_lock_irqsave(&h->devlock, flags); 3976 for (i = 0; i < h->ndevices; i++) 3977 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) { 3978 memcpy(scsi3addr, h->dev[i]->scsi3addr, 3979 sizeof(h->dev[i]->scsi3addr)); 3980 spin_unlock_irqrestore(&h->devlock, flags); 3981 return 1; 3982 } 3983 spin_unlock_irqrestore(&h->devlock, flags); 3984 return 0; 3985 } 3986 3987 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position, 3988 int i, int nphysicals, int nlocal_logicals) 3989 { 3990 /* In report logicals, local logicals are listed first, 3991 * then any externals. 3992 */ 3993 int logicals_start = nphysicals + (raid_ctlr_position == 0); 3994 3995 if (i == raid_ctlr_position) 3996 return 0; 3997 3998 if (i < logicals_start) 3999 return 0; 4000 4001 /* i is in logicals range, but still within local logicals */ 4002 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals) 4003 return 0; 4004 4005 return 1; /* it's an external lun */ 4006 } 4007 4008 /* 4009 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 4010 * logdev. The number of luns in physdev and logdev are returned in 4011 * *nphysicals and *nlogicals, respectively. 4012 * Returns 0 on success, -1 otherwise. 4013 */ 4014 static int hpsa_gather_lun_info(struct ctlr_info *h, 4015 struct ReportExtendedLUNdata *physdev, u32 *nphysicals, 4016 struct ReportLUNdata *logdev, u32 *nlogicals) 4017 { 4018 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { 4019 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 4020 return -1; 4021 } 4022 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24; 4023 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 4024 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n", 4025 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN); 4026 *nphysicals = HPSA_MAX_PHYS_LUN; 4027 } 4028 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) { 4029 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 4030 return -1; 4031 } 4032 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 4033 /* Reject Logicals in excess of our max capability. */ 4034 if (*nlogicals > HPSA_MAX_LUN) { 4035 dev_warn(&h->pdev->dev, 4036 "maximum logical LUNs (%d) exceeded. " 4037 "%d LUNs ignored.\n", HPSA_MAX_LUN, 4038 *nlogicals - HPSA_MAX_LUN); 4039 *nlogicals = HPSA_MAX_LUN; 4040 } 4041 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 4042 dev_warn(&h->pdev->dev, 4043 "maximum logical + physical LUNs (%d) exceeded. " 4044 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 4045 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 4046 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 4047 } 4048 return 0; 4049 } 4050 4051 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, 4052 int i, int nphysicals, int nlogicals, 4053 struct ReportExtendedLUNdata *physdev_list, 4054 struct ReportLUNdata *logdev_list) 4055 { 4056 /* Helper function, figure out where the LUN ID info is coming from 4057 * given index i, lists of physical and logical devices, where in 4058 * the list the raid controller is supposed to appear (first or last) 4059 */ 4060 4061 int logicals_start = nphysicals + (raid_ctlr_position == 0); 4062 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 4063 4064 if (i == raid_ctlr_position) 4065 return RAID_CTLR_LUNID; 4066 4067 if (i < logicals_start) 4068 return &physdev_list->LUN[i - 4069 (raid_ctlr_position == 0)].lunid[0]; 4070 4071 if (i < last_device) 4072 return &logdev_list->LUN[i - nphysicals - 4073 (raid_ctlr_position == 0)][0]; 4074 BUG(); 4075 return NULL; 4076 } 4077 4078 /* get physical drive ioaccel handle and queue depth */ 4079 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h, 4080 struct hpsa_scsi_dev_t *dev, 4081 struct ReportExtendedLUNdata *rlep, int rle_index, 4082 struct bmic_identify_physical_device *id_phys) 4083 { 4084 int rc; 4085 struct ext_report_lun_entry *rle; 4086 4087 /* 4088 * external targets don't support BMIC 4089 */ 4090 if (dev->external) { 4091 dev->queue_depth = 7; 4092 return; 4093 } 4094 4095 rle = &rlep->LUN[rle_index]; 4096 4097 dev->ioaccel_handle = rle->ioaccel_handle; 4098 if ((rle->device_flags & 0x08) && dev->ioaccel_handle) 4099 dev->hba_ioaccel_enabled = 1; 4100 memset(id_phys, 0, sizeof(*id_phys)); 4101 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0], 4102 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys, 4103 sizeof(*id_phys)); 4104 if (!rc) 4105 /* Reserve space for FW operations */ 4106 #define DRIVE_CMDS_RESERVED_FOR_FW 2 4107 #define DRIVE_QUEUE_DEPTH 7 4108 dev->queue_depth = 4109 le16_to_cpu(id_phys->current_queue_depth_limit) - 4110 DRIVE_CMDS_RESERVED_FOR_FW; 4111 else 4112 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */ 4113 } 4114 4115 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device, 4116 struct ReportExtendedLUNdata *rlep, int rle_index, 4117 struct bmic_identify_physical_device *id_phys) 4118 { 4119 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index]; 4120 4121 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle) 4122 this_device->hba_ioaccel_enabled = 1; 4123 4124 memcpy(&this_device->active_path_index, 4125 &id_phys->active_path_number, 4126 sizeof(this_device->active_path_index)); 4127 memcpy(&this_device->path_map, 4128 &id_phys->redundant_path_present_map, 4129 sizeof(this_device->path_map)); 4130 memcpy(&this_device->box, 4131 &id_phys->alternate_paths_phys_box_on_port, 4132 sizeof(this_device->box)); 4133 memcpy(&this_device->phys_connector, 4134 &id_phys->alternate_paths_phys_connector, 4135 sizeof(this_device->phys_connector)); 4136 memcpy(&this_device->bay, 4137 &id_phys->phys_bay_in_box, 4138 sizeof(this_device->bay)); 4139 } 4140 4141 /* get number of local logical disks. */ 4142 static int hpsa_set_local_logical_count(struct ctlr_info *h, 4143 struct bmic_identify_controller *id_ctlr, 4144 u32 *nlocals) 4145 { 4146 int rc; 4147 4148 if (!id_ctlr) { 4149 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n", 4150 __func__); 4151 return -ENOMEM; 4152 } 4153 memset(id_ctlr, 0, sizeof(*id_ctlr)); 4154 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr)); 4155 if (!rc) 4156 if (id_ctlr->configured_logical_drive_count < 256) 4157 *nlocals = id_ctlr->configured_logical_drive_count; 4158 else 4159 *nlocals = le16_to_cpu( 4160 id_ctlr->extended_logical_unit_count); 4161 else 4162 *nlocals = -1; 4163 return rc; 4164 } 4165 4166 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes) 4167 { 4168 struct bmic_identify_physical_device *id_phys; 4169 bool is_spare = false; 4170 int rc; 4171 4172 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 4173 if (!id_phys) 4174 return false; 4175 4176 rc = hpsa_bmic_id_physical_device(h, 4177 lunaddrbytes, 4178 GET_BMIC_DRIVE_NUMBER(lunaddrbytes), 4179 id_phys, sizeof(*id_phys)); 4180 if (rc == 0) 4181 is_spare = (id_phys->more_flags >> 6) & 0x01; 4182 4183 kfree(id_phys); 4184 return is_spare; 4185 } 4186 4187 #define RPL_DEV_FLAG_NON_DISK 0x1 4188 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2 4189 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4 4190 4191 #define BMIC_DEVICE_TYPE_ENCLOSURE 6 4192 4193 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes, 4194 struct ext_report_lun_entry *rle) 4195 { 4196 u8 device_flags; 4197 u8 device_type; 4198 4199 if (!MASKED_DEVICE(lunaddrbytes)) 4200 return false; 4201 4202 device_flags = rle->device_flags; 4203 device_type = rle->device_type; 4204 4205 if (device_flags & RPL_DEV_FLAG_NON_DISK) { 4206 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE) 4207 return false; 4208 return true; 4209 } 4210 4211 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED)) 4212 return false; 4213 4214 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK) 4215 return false; 4216 4217 /* 4218 * Spares may be spun down, we do not want to 4219 * do an Inquiry to a RAID set spare drive as 4220 * that would have them spun up, that is a 4221 * performance hit because I/O to the RAID device 4222 * stops while the spin up occurs which can take 4223 * over 50 seconds. 4224 */ 4225 if (hpsa_is_disk_spare(h, lunaddrbytes)) 4226 return true; 4227 4228 return false; 4229 } 4230 4231 static void hpsa_update_scsi_devices(struct ctlr_info *h) 4232 { 4233 /* the idea here is we could get notified 4234 * that some devices have changed, so we do a report 4235 * physical luns and report logical luns cmd, and adjust 4236 * our list of devices accordingly. 4237 * 4238 * The scsi3addr's of devices won't change so long as the 4239 * adapter is not reset. That means we can rescan and 4240 * tell which devices we already know about, vs. new 4241 * devices, vs. disappearing devices. 4242 */ 4243 struct ReportExtendedLUNdata *physdev_list = NULL; 4244 struct ReportLUNdata *logdev_list = NULL; 4245 struct bmic_identify_physical_device *id_phys = NULL; 4246 struct bmic_identify_controller *id_ctlr = NULL; 4247 u32 nphysicals = 0; 4248 u32 nlogicals = 0; 4249 u32 nlocal_logicals = 0; 4250 u32 ndev_allocated = 0; 4251 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 4252 int ncurrent = 0; 4253 int i, n_ext_target_devs, ndevs_to_allocate; 4254 int raid_ctlr_position; 4255 bool physical_device; 4256 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); 4257 4258 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL); 4259 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL); 4260 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL); 4261 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 4262 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 4263 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL); 4264 4265 if (!currentsd || !physdev_list || !logdev_list || 4266 !tmpdevice || !id_phys || !id_ctlr) { 4267 dev_err(&h->pdev->dev, "out of memory\n"); 4268 goto out; 4269 } 4270 memset(lunzerobits, 0, sizeof(lunzerobits)); 4271 4272 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */ 4273 4274 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals, 4275 logdev_list, &nlogicals)) { 4276 h->drv_req_rescan = 1; 4277 goto out; 4278 } 4279 4280 /* Set number of local logicals (non PTRAID) */ 4281 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) { 4282 dev_warn(&h->pdev->dev, 4283 "%s: Can't determine number of local logical devices.\n", 4284 __func__); 4285 } 4286 4287 /* We might see up to the maximum number of logical and physical disks 4288 * plus external target devices, and a device for the local RAID 4289 * controller. 4290 */ 4291 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; 4292 4293 /* Allocate the per device structures */ 4294 for (i = 0; i < ndevs_to_allocate; i++) { 4295 if (i >= HPSA_MAX_DEVICES) { 4296 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." 4297 " %d devices ignored.\n", HPSA_MAX_DEVICES, 4298 ndevs_to_allocate - HPSA_MAX_DEVICES); 4299 break; 4300 } 4301 4302 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 4303 if (!currentsd[i]) { 4304 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", 4305 __FILE__, __LINE__); 4306 h->drv_req_rescan = 1; 4307 goto out; 4308 } 4309 ndev_allocated++; 4310 } 4311 4312 if (is_scsi_rev_5(h)) 4313 raid_ctlr_position = 0; 4314 else 4315 raid_ctlr_position = nphysicals + nlogicals; 4316 4317 /* adjust our table of devices */ 4318 n_ext_target_devs = 0; 4319 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 4320 u8 *lunaddrbytes, is_OBDR = 0; 4321 int rc = 0; 4322 int phys_dev_index = i - (raid_ctlr_position == 0); 4323 bool skip_device = false; 4324 4325 physical_device = i < nphysicals + (raid_ctlr_position == 0); 4326 4327 /* Figure out where the LUN ID info is coming from */ 4328 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 4329 i, nphysicals, nlogicals, physdev_list, logdev_list); 4330 4331 /* Determine if this is a lun from an external target array */ 4332 tmpdevice->external = 4333 figure_external_status(h, raid_ctlr_position, i, 4334 nphysicals, nlocal_logicals); 4335 4336 /* 4337 * Skip over some devices such as a spare. 4338 */ 4339 if (!tmpdevice->external && physical_device) { 4340 skip_device = hpsa_skip_device(h, lunaddrbytes, 4341 &physdev_list->LUN[phys_dev_index]); 4342 if (skip_device) 4343 continue; 4344 } 4345 4346 /* Get device type, vendor, model, device id */ 4347 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice, 4348 &is_OBDR); 4349 if (rc == -ENOMEM) { 4350 dev_warn(&h->pdev->dev, 4351 "Out of memory, rescan deferred.\n"); 4352 h->drv_req_rescan = 1; 4353 goto out; 4354 } 4355 if (rc) { 4356 dev_warn(&h->pdev->dev, 4357 "Inquiry failed, skipping device.\n"); 4358 continue; 4359 } 4360 4361 figure_bus_target_lun(h, lunaddrbytes, tmpdevice); 4362 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes); 4363 this_device = currentsd[ncurrent]; 4364 4365 /* Turn on discovery_polling if there are ext target devices. 4366 * Event-based change notification is unreliable for those. 4367 */ 4368 if (!h->discovery_polling) { 4369 if (tmpdevice->external) { 4370 h->discovery_polling = 1; 4371 dev_info(&h->pdev->dev, 4372 "External target, activate discovery polling.\n"); 4373 } 4374 } 4375 4376 4377 *this_device = *tmpdevice; 4378 this_device->physical_device = physical_device; 4379 4380 /* 4381 * Expose all devices except for physical devices that 4382 * are masked. 4383 */ 4384 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device) 4385 this_device->expose_device = 0; 4386 else 4387 this_device->expose_device = 1; 4388 4389 4390 /* 4391 * Get the SAS address for physical devices that are exposed. 4392 */ 4393 if (this_device->physical_device && this_device->expose_device) 4394 hpsa_get_sas_address(h, lunaddrbytes, this_device); 4395 4396 switch (this_device->devtype) { 4397 case TYPE_ROM: 4398 /* We don't *really* support actual CD-ROM devices, 4399 * just "One Button Disaster Recovery" tape drive 4400 * which temporarily pretends to be a CD-ROM drive. 4401 * So we check that the device is really an OBDR tape 4402 * device by checking for "$DR-10" in bytes 43-48 of 4403 * the inquiry data. 4404 */ 4405 if (is_OBDR) 4406 ncurrent++; 4407 break; 4408 case TYPE_DISK: 4409 case TYPE_ZBC: 4410 if (this_device->physical_device) { 4411 /* The disk is in HBA mode. */ 4412 /* Never use RAID mapper in HBA mode. */ 4413 this_device->offload_enabled = 0; 4414 hpsa_get_ioaccel_drive_info(h, this_device, 4415 physdev_list, phys_dev_index, id_phys); 4416 hpsa_get_path_info(this_device, 4417 physdev_list, phys_dev_index, id_phys); 4418 } 4419 ncurrent++; 4420 break; 4421 case TYPE_TAPE: 4422 case TYPE_MEDIUM_CHANGER: 4423 ncurrent++; 4424 break; 4425 case TYPE_ENCLOSURE: 4426 if (!this_device->external) 4427 hpsa_get_enclosure_info(h, lunaddrbytes, 4428 physdev_list, phys_dev_index, 4429 this_device); 4430 ncurrent++; 4431 break; 4432 case TYPE_RAID: 4433 /* Only present the Smartarray HBA as a RAID controller. 4434 * If it's a RAID controller other than the HBA itself 4435 * (an external RAID controller, MSA500 or similar) 4436 * don't present it. 4437 */ 4438 if (!is_hba_lunid(lunaddrbytes)) 4439 break; 4440 ncurrent++; 4441 break; 4442 default: 4443 break; 4444 } 4445 if (ncurrent >= HPSA_MAX_DEVICES) 4446 break; 4447 } 4448 4449 if (h->sas_host == NULL) { 4450 int rc = 0; 4451 4452 rc = hpsa_add_sas_host(h); 4453 if (rc) { 4454 dev_warn(&h->pdev->dev, 4455 "Could not add sas host %d\n", rc); 4456 goto out; 4457 } 4458 } 4459 4460 adjust_hpsa_scsi_table(h, currentsd, ncurrent); 4461 out: 4462 kfree(tmpdevice); 4463 for (i = 0; i < ndev_allocated; i++) 4464 kfree(currentsd[i]); 4465 kfree(currentsd); 4466 kfree(physdev_list); 4467 kfree(logdev_list); 4468 kfree(id_ctlr); 4469 kfree(id_phys); 4470 } 4471 4472 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc, 4473 struct scatterlist *sg) 4474 { 4475 u64 addr64 = (u64) sg_dma_address(sg); 4476 unsigned int len = sg_dma_len(sg); 4477 4478 desc->Addr = cpu_to_le64(addr64); 4479 desc->Len = cpu_to_le32(len); 4480 desc->Ext = 0; 4481 } 4482 4483 /* 4484 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 4485 * dma mapping and fills in the scatter gather entries of the 4486 * hpsa command, cp. 4487 */ 4488 static int hpsa_scatter_gather(struct ctlr_info *h, 4489 struct CommandList *cp, 4490 struct scsi_cmnd *cmd) 4491 { 4492 struct scatterlist *sg; 4493 int use_sg, i, sg_limit, chained, last_sg; 4494 struct SGDescriptor *curr_sg; 4495 4496 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 4497 4498 use_sg = scsi_dma_map(cmd); 4499 if (use_sg < 0) 4500 return use_sg; 4501 4502 if (!use_sg) 4503 goto sglist_finished; 4504 4505 /* 4506 * If the number of entries is greater than the max for a single list, 4507 * then we have a chained list; we will set up all but one entry in the 4508 * first list (the last entry is saved for link information); 4509 * otherwise, we don't have a chained list and we'll set up at each of 4510 * the entries in the one list. 4511 */ 4512 curr_sg = cp->SG; 4513 chained = use_sg > h->max_cmd_sg_entries; 4514 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg; 4515 last_sg = scsi_sg_count(cmd) - 1; 4516 scsi_for_each_sg(cmd, sg, sg_limit, i) { 4517 hpsa_set_sg_descriptor(curr_sg, sg); 4518 curr_sg++; 4519 } 4520 4521 if (chained) { 4522 /* 4523 * Continue with the chained list. Set curr_sg to the chained 4524 * list. Modify the limit to the total count less the entries 4525 * we've already set up. Resume the scan at the list entry 4526 * where the previous loop left off. 4527 */ 4528 curr_sg = h->cmd_sg_list[cp->cmdindex]; 4529 sg_limit = use_sg - sg_limit; 4530 for_each_sg(sg, sg, sg_limit, i) { 4531 hpsa_set_sg_descriptor(curr_sg, sg); 4532 curr_sg++; 4533 } 4534 } 4535 4536 /* Back the pointer up to the last entry and mark it as "last". */ 4537 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST); 4538 4539 if (use_sg + chained > h->maxSG) 4540 h->maxSG = use_sg + chained; 4541 4542 if (chained) { 4543 cp->Header.SGList = h->max_cmd_sg_entries; 4544 cp->Header.SGTotal = cpu_to_le16(use_sg + 1); 4545 if (hpsa_map_sg_chain_block(h, cp)) { 4546 scsi_dma_unmap(cmd); 4547 return -1; 4548 } 4549 return 0; 4550 } 4551 4552 sglist_finished: 4553 4554 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 4555 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */ 4556 return 0; 4557 } 4558 4559 #define IO_ACCEL_INELIGIBLE (1) 4560 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) 4561 { 4562 int is_write = 0; 4563 u32 block; 4564 u32 block_cnt; 4565 4566 /* Perform some CDB fixups if needed using 10 byte reads/writes only */ 4567 switch (cdb[0]) { 4568 case WRITE_6: 4569 case WRITE_12: 4570 is_write = 1; 4571 case READ_6: 4572 case READ_12: 4573 if (*cdb_len == 6) { 4574 block = (((cdb[1] & 0x1F) << 16) | 4575 (cdb[2] << 8) | 4576 cdb[3]); 4577 block_cnt = cdb[4]; 4578 if (block_cnt == 0) 4579 block_cnt = 256; 4580 } else { 4581 BUG_ON(*cdb_len != 12); 4582 block = get_unaligned_be32(&cdb[2]); 4583 block_cnt = get_unaligned_be32(&cdb[6]); 4584 } 4585 if (block_cnt > 0xffff) 4586 return IO_ACCEL_INELIGIBLE; 4587 4588 cdb[0] = is_write ? WRITE_10 : READ_10; 4589 cdb[1] = 0; 4590 cdb[2] = (u8) (block >> 24); 4591 cdb[3] = (u8) (block >> 16); 4592 cdb[4] = (u8) (block >> 8); 4593 cdb[5] = (u8) (block); 4594 cdb[6] = 0; 4595 cdb[7] = (u8) (block_cnt >> 8); 4596 cdb[8] = (u8) (block_cnt); 4597 cdb[9] = 0; 4598 *cdb_len = 10; 4599 break; 4600 } 4601 return 0; 4602 } 4603 4604 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h, 4605 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 4606 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 4607 { 4608 struct scsi_cmnd *cmd = c->scsi_cmd; 4609 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; 4610 unsigned int len; 4611 unsigned int total_len = 0; 4612 struct scatterlist *sg; 4613 u64 addr64; 4614 int use_sg, i; 4615 struct SGDescriptor *curr_sg; 4616 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; 4617 4618 /* TODO: implement chaining support */ 4619 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) { 4620 atomic_dec(&phys_disk->ioaccel_cmds_out); 4621 return IO_ACCEL_INELIGIBLE; 4622 } 4623 4624 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); 4625 4626 if (fixup_ioaccel_cdb(cdb, &cdb_len)) { 4627 atomic_dec(&phys_disk->ioaccel_cmds_out); 4628 return IO_ACCEL_INELIGIBLE; 4629 } 4630 4631 c->cmd_type = CMD_IOACCEL1; 4632 4633 /* Adjust the DMA address to point to the accelerated command buffer */ 4634 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + 4635 (c->cmdindex * sizeof(*cp)); 4636 BUG_ON(c->busaddr & 0x0000007F); 4637 4638 use_sg = scsi_dma_map(cmd); 4639 if (use_sg < 0) { 4640 atomic_dec(&phys_disk->ioaccel_cmds_out); 4641 return use_sg; 4642 } 4643 4644 if (use_sg) { 4645 curr_sg = cp->SG; 4646 scsi_for_each_sg(cmd, sg, use_sg, i) { 4647 addr64 = (u64) sg_dma_address(sg); 4648 len = sg_dma_len(sg); 4649 total_len += len; 4650 curr_sg->Addr = cpu_to_le64(addr64); 4651 curr_sg->Len = cpu_to_le32(len); 4652 curr_sg->Ext = cpu_to_le32(0); 4653 curr_sg++; 4654 } 4655 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); 4656 4657 switch (cmd->sc_data_direction) { 4658 case DMA_TO_DEVICE: 4659 control |= IOACCEL1_CONTROL_DATA_OUT; 4660 break; 4661 case DMA_FROM_DEVICE: 4662 control |= IOACCEL1_CONTROL_DATA_IN; 4663 break; 4664 case DMA_NONE: 4665 control |= IOACCEL1_CONTROL_NODATAXFER; 4666 break; 4667 default: 4668 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 4669 cmd->sc_data_direction); 4670 BUG(); 4671 break; 4672 } 4673 } else { 4674 control |= IOACCEL1_CONTROL_NODATAXFER; 4675 } 4676 4677 c->Header.SGList = use_sg; 4678 /* Fill out the command structure to submit */ 4679 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF); 4680 cp->transfer_len = cpu_to_le32(total_len); 4681 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ | 4682 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK)); 4683 cp->control = cpu_to_le32(control); 4684 memcpy(cp->CDB, cdb, cdb_len); 4685 memcpy(cp->CISS_LUN, scsi3addr, 8); 4686 /* Tag was already set at init time. */ 4687 enqueue_cmd_and_start_io(h, c); 4688 return 0; 4689 } 4690 4691 /* 4692 * Queue a command directly to a device behind the controller using the 4693 * I/O accelerator path. 4694 */ 4695 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, 4696 struct CommandList *c) 4697 { 4698 struct scsi_cmnd *cmd = c->scsi_cmd; 4699 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4700 4701 if (!dev) 4702 return -1; 4703 4704 c->phys_disk = dev; 4705 4706 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, 4707 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev); 4708 } 4709 4710 /* 4711 * Set encryption parameters for the ioaccel2 request 4712 */ 4713 static void set_encrypt_ioaccel2(struct ctlr_info *h, 4714 struct CommandList *c, struct io_accel2_cmd *cp) 4715 { 4716 struct scsi_cmnd *cmd = c->scsi_cmd; 4717 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4718 struct raid_map_data *map = &dev->raid_map; 4719 u64 first_block; 4720 4721 /* Are we doing encryption on this device */ 4722 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON)) 4723 return; 4724 /* Set the data encryption key index. */ 4725 cp->dekindex = map->dekindex; 4726 4727 /* Set the encryption enable flag, encoded into direction field. */ 4728 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK; 4729 4730 /* Set encryption tweak values based on logical block address 4731 * If block size is 512, tweak value is LBA. 4732 * For other block sizes, tweak is (LBA * block size)/ 512) 4733 */ 4734 switch (cmd->cmnd[0]) { 4735 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */ 4736 case READ_6: 4737 case WRITE_6: 4738 first_block = (((cmd->cmnd[1] & 0x1F) << 16) | 4739 (cmd->cmnd[2] << 8) | 4740 cmd->cmnd[3]); 4741 break; 4742 case WRITE_10: 4743 case READ_10: 4744 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */ 4745 case WRITE_12: 4746 case READ_12: 4747 first_block = get_unaligned_be32(&cmd->cmnd[2]); 4748 break; 4749 case WRITE_16: 4750 case READ_16: 4751 first_block = get_unaligned_be64(&cmd->cmnd[2]); 4752 break; 4753 default: 4754 dev_err(&h->pdev->dev, 4755 "ERROR: %s: size (0x%x) not supported for encryption\n", 4756 __func__, cmd->cmnd[0]); 4757 BUG(); 4758 break; 4759 } 4760 4761 if (le32_to_cpu(map->volume_blk_size) != 512) 4762 first_block = first_block * 4763 le32_to_cpu(map->volume_blk_size)/512; 4764 4765 cp->tweak_lower = cpu_to_le32(first_block); 4766 cp->tweak_upper = cpu_to_le32(first_block >> 32); 4767 } 4768 4769 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h, 4770 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 4771 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 4772 { 4773 struct scsi_cmnd *cmd = c->scsi_cmd; 4774 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; 4775 struct ioaccel2_sg_element *curr_sg; 4776 int use_sg, i; 4777 struct scatterlist *sg; 4778 u64 addr64; 4779 u32 len; 4780 u32 total_len = 0; 4781 4782 if (!cmd->device) 4783 return -1; 4784 4785 if (!cmd->device->hostdata) 4786 return -1; 4787 4788 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 4789 4790 if (fixup_ioaccel_cdb(cdb, &cdb_len)) { 4791 atomic_dec(&phys_disk->ioaccel_cmds_out); 4792 return IO_ACCEL_INELIGIBLE; 4793 } 4794 4795 c->cmd_type = CMD_IOACCEL2; 4796 /* Adjust the DMA address to point to the accelerated command buffer */ 4797 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + 4798 (c->cmdindex * sizeof(*cp)); 4799 BUG_ON(c->busaddr & 0x0000007F); 4800 4801 memset(cp, 0, sizeof(*cp)); 4802 cp->IU_type = IOACCEL2_IU_TYPE; 4803 4804 use_sg = scsi_dma_map(cmd); 4805 if (use_sg < 0) { 4806 atomic_dec(&phys_disk->ioaccel_cmds_out); 4807 return use_sg; 4808 } 4809 4810 if (use_sg) { 4811 curr_sg = cp->sg; 4812 if (use_sg > h->ioaccel_maxsg) { 4813 addr64 = le64_to_cpu( 4814 h->ioaccel2_cmd_sg_list[c->cmdindex]->address); 4815 curr_sg->address = cpu_to_le64(addr64); 4816 curr_sg->length = 0; 4817 curr_sg->reserved[0] = 0; 4818 curr_sg->reserved[1] = 0; 4819 curr_sg->reserved[2] = 0; 4820 curr_sg->chain_indicator = 0x80; 4821 4822 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex]; 4823 } 4824 scsi_for_each_sg(cmd, sg, use_sg, i) { 4825 addr64 = (u64) sg_dma_address(sg); 4826 len = sg_dma_len(sg); 4827 total_len += len; 4828 curr_sg->address = cpu_to_le64(addr64); 4829 curr_sg->length = cpu_to_le32(len); 4830 curr_sg->reserved[0] = 0; 4831 curr_sg->reserved[1] = 0; 4832 curr_sg->reserved[2] = 0; 4833 curr_sg->chain_indicator = 0; 4834 curr_sg++; 4835 } 4836 4837 switch (cmd->sc_data_direction) { 4838 case DMA_TO_DEVICE: 4839 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4840 cp->direction |= IOACCEL2_DIR_DATA_OUT; 4841 break; 4842 case DMA_FROM_DEVICE: 4843 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4844 cp->direction |= IOACCEL2_DIR_DATA_IN; 4845 break; 4846 case DMA_NONE: 4847 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4848 cp->direction |= IOACCEL2_DIR_NO_DATA; 4849 break; 4850 default: 4851 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 4852 cmd->sc_data_direction); 4853 BUG(); 4854 break; 4855 } 4856 } else { 4857 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4858 cp->direction |= IOACCEL2_DIR_NO_DATA; 4859 } 4860 4861 /* Set encryption parameters, if necessary */ 4862 set_encrypt_ioaccel2(h, c, cp); 4863 4864 cp->scsi_nexus = cpu_to_le32(ioaccel_handle); 4865 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT); 4866 memcpy(cp->cdb, cdb, sizeof(cp->cdb)); 4867 4868 cp->data_len = cpu_to_le32(total_len); 4869 cp->err_ptr = cpu_to_le64(c->busaddr + 4870 offsetof(struct io_accel2_cmd, error_data)); 4871 cp->err_len = cpu_to_le32(sizeof(cp->error_data)); 4872 4873 /* fill in sg elements */ 4874 if (use_sg > h->ioaccel_maxsg) { 4875 cp->sg_count = 1; 4876 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0])); 4877 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) { 4878 atomic_dec(&phys_disk->ioaccel_cmds_out); 4879 scsi_dma_unmap(cmd); 4880 return -1; 4881 } 4882 } else 4883 cp->sg_count = (u8) use_sg; 4884 4885 enqueue_cmd_and_start_io(h, c); 4886 return 0; 4887 } 4888 4889 /* 4890 * Queue a command to the correct I/O accelerator path. 4891 */ 4892 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, 4893 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 4894 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 4895 { 4896 if (!c->scsi_cmd->device) 4897 return -1; 4898 4899 if (!c->scsi_cmd->device->hostdata) 4900 return -1; 4901 4902 /* Try to honor the device's queue depth */ 4903 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) > 4904 phys_disk->queue_depth) { 4905 atomic_dec(&phys_disk->ioaccel_cmds_out); 4906 return IO_ACCEL_INELIGIBLE; 4907 } 4908 if (h->transMethod & CFGTBL_Trans_io_accel1) 4909 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, 4910 cdb, cdb_len, scsi3addr, 4911 phys_disk); 4912 else 4913 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, 4914 cdb, cdb_len, scsi3addr, 4915 phys_disk); 4916 } 4917 4918 static void raid_map_helper(struct raid_map_data *map, 4919 int offload_to_mirror, u32 *map_index, u32 *current_group) 4920 { 4921 if (offload_to_mirror == 0) { 4922 /* use physical disk in the first mirrored group. */ 4923 *map_index %= le16_to_cpu(map->data_disks_per_row); 4924 return; 4925 } 4926 do { 4927 /* determine mirror group that *map_index indicates */ 4928 *current_group = *map_index / 4929 le16_to_cpu(map->data_disks_per_row); 4930 if (offload_to_mirror == *current_group) 4931 continue; 4932 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) { 4933 /* select map index from next group */ 4934 *map_index += le16_to_cpu(map->data_disks_per_row); 4935 (*current_group)++; 4936 } else { 4937 /* select map index from first group */ 4938 *map_index %= le16_to_cpu(map->data_disks_per_row); 4939 *current_group = 0; 4940 } 4941 } while (offload_to_mirror != *current_group); 4942 } 4943 4944 /* 4945 * Attempt to perform offload RAID mapping for a logical volume I/O. 4946 */ 4947 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, 4948 struct CommandList *c) 4949 { 4950 struct scsi_cmnd *cmd = c->scsi_cmd; 4951 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4952 struct raid_map_data *map = &dev->raid_map; 4953 struct raid_map_disk_data *dd = &map->data[0]; 4954 int is_write = 0; 4955 u32 map_index; 4956 u64 first_block, last_block; 4957 u32 block_cnt; 4958 u32 blocks_per_row; 4959 u64 first_row, last_row; 4960 u32 first_row_offset, last_row_offset; 4961 u32 first_column, last_column; 4962 u64 r0_first_row, r0_last_row; 4963 u32 r5or6_blocks_per_row; 4964 u64 r5or6_first_row, r5or6_last_row; 4965 u32 r5or6_first_row_offset, r5or6_last_row_offset; 4966 u32 r5or6_first_column, r5or6_last_column; 4967 u32 total_disks_per_row; 4968 u32 stripesize; 4969 u32 first_group, last_group, current_group; 4970 u32 map_row; 4971 u32 disk_handle; 4972 u64 disk_block; 4973 u32 disk_block_cnt; 4974 u8 cdb[16]; 4975 u8 cdb_len; 4976 u16 strip_size; 4977 #if BITS_PER_LONG == 32 4978 u64 tmpdiv; 4979 #endif 4980 int offload_to_mirror; 4981 4982 if (!dev) 4983 return -1; 4984 4985 /* check for valid opcode, get LBA and block count */ 4986 switch (cmd->cmnd[0]) { 4987 case WRITE_6: 4988 is_write = 1; 4989 case READ_6: 4990 first_block = (((cmd->cmnd[1] & 0x1F) << 16) | 4991 (cmd->cmnd[2] << 8) | 4992 cmd->cmnd[3]); 4993 block_cnt = cmd->cmnd[4]; 4994 if (block_cnt == 0) 4995 block_cnt = 256; 4996 break; 4997 case WRITE_10: 4998 is_write = 1; 4999 case READ_10: 5000 first_block = 5001 (((u64) cmd->cmnd[2]) << 24) | 5002 (((u64) cmd->cmnd[3]) << 16) | 5003 (((u64) cmd->cmnd[4]) << 8) | 5004 cmd->cmnd[5]; 5005 block_cnt = 5006 (((u32) cmd->cmnd[7]) << 8) | 5007 cmd->cmnd[8]; 5008 break; 5009 case WRITE_12: 5010 is_write = 1; 5011 case READ_12: 5012 first_block = 5013 (((u64) cmd->cmnd[2]) << 24) | 5014 (((u64) cmd->cmnd[3]) << 16) | 5015 (((u64) cmd->cmnd[4]) << 8) | 5016 cmd->cmnd[5]; 5017 block_cnt = 5018 (((u32) cmd->cmnd[6]) << 24) | 5019 (((u32) cmd->cmnd[7]) << 16) | 5020 (((u32) cmd->cmnd[8]) << 8) | 5021 cmd->cmnd[9]; 5022 break; 5023 case WRITE_16: 5024 is_write = 1; 5025 case READ_16: 5026 first_block = 5027 (((u64) cmd->cmnd[2]) << 56) | 5028 (((u64) cmd->cmnd[3]) << 48) | 5029 (((u64) cmd->cmnd[4]) << 40) | 5030 (((u64) cmd->cmnd[5]) << 32) | 5031 (((u64) cmd->cmnd[6]) << 24) | 5032 (((u64) cmd->cmnd[7]) << 16) | 5033 (((u64) cmd->cmnd[8]) << 8) | 5034 cmd->cmnd[9]; 5035 block_cnt = 5036 (((u32) cmd->cmnd[10]) << 24) | 5037 (((u32) cmd->cmnd[11]) << 16) | 5038 (((u32) cmd->cmnd[12]) << 8) | 5039 cmd->cmnd[13]; 5040 break; 5041 default: 5042 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ 5043 } 5044 last_block = first_block + block_cnt - 1; 5045 5046 /* check for write to non-RAID-0 */ 5047 if (is_write && dev->raid_level != 0) 5048 return IO_ACCEL_INELIGIBLE; 5049 5050 /* check for invalid block or wraparound */ 5051 if (last_block >= le64_to_cpu(map->volume_blk_cnt) || 5052 last_block < first_block) 5053 return IO_ACCEL_INELIGIBLE; 5054 5055 /* calculate stripe information for the request */ 5056 blocks_per_row = le16_to_cpu(map->data_disks_per_row) * 5057 le16_to_cpu(map->strip_size); 5058 strip_size = le16_to_cpu(map->strip_size); 5059 #if BITS_PER_LONG == 32 5060 tmpdiv = first_block; 5061 (void) do_div(tmpdiv, blocks_per_row); 5062 first_row = tmpdiv; 5063 tmpdiv = last_block; 5064 (void) do_div(tmpdiv, blocks_per_row); 5065 last_row = tmpdiv; 5066 first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); 5067 last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); 5068 tmpdiv = first_row_offset; 5069 (void) do_div(tmpdiv, strip_size); 5070 first_column = tmpdiv; 5071 tmpdiv = last_row_offset; 5072 (void) do_div(tmpdiv, strip_size); 5073 last_column = tmpdiv; 5074 #else 5075 first_row = first_block / blocks_per_row; 5076 last_row = last_block / blocks_per_row; 5077 first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); 5078 last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); 5079 first_column = first_row_offset / strip_size; 5080 last_column = last_row_offset / strip_size; 5081 #endif 5082 5083 /* if this isn't a single row/column then give to the controller */ 5084 if ((first_row != last_row) || (first_column != last_column)) 5085 return IO_ACCEL_INELIGIBLE; 5086 5087 /* proceeding with driver mapping */ 5088 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + 5089 le16_to_cpu(map->metadata_disks_per_row); 5090 map_row = ((u32)(first_row >> map->parity_rotation_shift)) % 5091 le16_to_cpu(map->row_cnt); 5092 map_index = (map_row * total_disks_per_row) + first_column; 5093 5094 switch (dev->raid_level) { 5095 case HPSA_RAID_0: 5096 break; /* nothing special to do */ 5097 case HPSA_RAID_1: 5098 /* Handles load balance across RAID 1 members. 5099 * (2-drive R1 and R10 with even # of drives.) 5100 * Appropriate for SSDs, not optimal for HDDs 5101 */ 5102 BUG_ON(le16_to_cpu(map->layout_map_count) != 2); 5103 if (dev->offload_to_mirror) 5104 map_index += le16_to_cpu(map->data_disks_per_row); 5105 dev->offload_to_mirror = !dev->offload_to_mirror; 5106 break; 5107 case HPSA_RAID_ADM: 5108 /* Handles N-way mirrors (R1-ADM) 5109 * and R10 with # of drives divisible by 3.) 5110 */ 5111 BUG_ON(le16_to_cpu(map->layout_map_count) != 3); 5112 5113 offload_to_mirror = dev->offload_to_mirror; 5114 raid_map_helper(map, offload_to_mirror, 5115 &map_index, ¤t_group); 5116 /* set mirror group to use next time */ 5117 offload_to_mirror = 5118 (offload_to_mirror >= 5119 le16_to_cpu(map->layout_map_count) - 1) 5120 ? 0 : offload_to_mirror + 1; 5121 dev->offload_to_mirror = offload_to_mirror; 5122 /* Avoid direct use of dev->offload_to_mirror within this 5123 * function since multiple threads might simultaneously 5124 * increment it beyond the range of dev->layout_map_count -1. 5125 */ 5126 break; 5127 case HPSA_RAID_5: 5128 case HPSA_RAID_6: 5129 if (le16_to_cpu(map->layout_map_count) <= 1) 5130 break; 5131 5132 /* Verify first and last block are in same RAID group */ 5133 r5or6_blocks_per_row = 5134 le16_to_cpu(map->strip_size) * 5135 le16_to_cpu(map->data_disks_per_row); 5136 BUG_ON(r5or6_blocks_per_row == 0); 5137 stripesize = r5or6_blocks_per_row * 5138 le16_to_cpu(map->layout_map_count); 5139 #if BITS_PER_LONG == 32 5140 tmpdiv = first_block; 5141 first_group = do_div(tmpdiv, stripesize); 5142 tmpdiv = first_group; 5143 (void) do_div(tmpdiv, r5or6_blocks_per_row); 5144 first_group = tmpdiv; 5145 tmpdiv = last_block; 5146 last_group = do_div(tmpdiv, stripesize); 5147 tmpdiv = last_group; 5148 (void) do_div(tmpdiv, r5or6_blocks_per_row); 5149 last_group = tmpdiv; 5150 #else 5151 first_group = (first_block % stripesize) / r5or6_blocks_per_row; 5152 last_group = (last_block % stripesize) / r5or6_blocks_per_row; 5153 #endif 5154 if (first_group != last_group) 5155 return IO_ACCEL_INELIGIBLE; 5156 5157 /* Verify request is in a single row of RAID 5/6 */ 5158 #if BITS_PER_LONG == 32 5159 tmpdiv = first_block; 5160 (void) do_div(tmpdiv, stripesize); 5161 first_row = r5or6_first_row = r0_first_row = tmpdiv; 5162 tmpdiv = last_block; 5163 (void) do_div(tmpdiv, stripesize); 5164 r5or6_last_row = r0_last_row = tmpdiv; 5165 #else 5166 first_row = r5or6_first_row = r0_first_row = 5167 first_block / stripesize; 5168 r5or6_last_row = r0_last_row = last_block / stripesize; 5169 #endif 5170 if (r5or6_first_row != r5or6_last_row) 5171 return IO_ACCEL_INELIGIBLE; 5172 5173 5174 /* Verify request is in a single column */ 5175 #if BITS_PER_LONG == 32 5176 tmpdiv = first_block; 5177 first_row_offset = do_div(tmpdiv, stripesize); 5178 tmpdiv = first_row_offset; 5179 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row); 5180 r5or6_first_row_offset = first_row_offset; 5181 tmpdiv = last_block; 5182 r5or6_last_row_offset = do_div(tmpdiv, stripesize); 5183 tmpdiv = r5or6_last_row_offset; 5184 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); 5185 tmpdiv = r5or6_first_row_offset; 5186 (void) do_div(tmpdiv, map->strip_size); 5187 first_column = r5or6_first_column = tmpdiv; 5188 tmpdiv = r5or6_last_row_offset; 5189 (void) do_div(tmpdiv, map->strip_size); 5190 r5or6_last_column = tmpdiv; 5191 #else 5192 first_row_offset = r5or6_first_row_offset = 5193 (u32)((first_block % stripesize) % 5194 r5or6_blocks_per_row); 5195 5196 r5or6_last_row_offset = 5197 (u32)((last_block % stripesize) % 5198 r5or6_blocks_per_row); 5199 5200 first_column = r5or6_first_column = 5201 r5or6_first_row_offset / le16_to_cpu(map->strip_size); 5202 r5or6_last_column = 5203 r5or6_last_row_offset / le16_to_cpu(map->strip_size); 5204 #endif 5205 if (r5or6_first_column != r5or6_last_column) 5206 return IO_ACCEL_INELIGIBLE; 5207 5208 /* Request is eligible */ 5209 map_row = ((u32)(first_row >> map->parity_rotation_shift)) % 5210 le16_to_cpu(map->row_cnt); 5211 5212 map_index = (first_group * 5213 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) + 5214 (map_row * total_disks_per_row) + first_column; 5215 break; 5216 default: 5217 return IO_ACCEL_INELIGIBLE; 5218 } 5219 5220 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES)) 5221 return IO_ACCEL_INELIGIBLE; 5222 5223 c->phys_disk = dev->phys_disk[map_index]; 5224 if (!c->phys_disk) 5225 return IO_ACCEL_INELIGIBLE; 5226 5227 disk_handle = dd[map_index].ioaccel_handle; 5228 disk_block = le64_to_cpu(map->disk_starting_blk) + 5229 first_row * le16_to_cpu(map->strip_size) + 5230 (first_row_offset - first_column * 5231 le16_to_cpu(map->strip_size)); 5232 disk_block_cnt = block_cnt; 5233 5234 /* handle differing logical/physical block sizes */ 5235 if (map->phys_blk_shift) { 5236 disk_block <<= map->phys_blk_shift; 5237 disk_block_cnt <<= map->phys_blk_shift; 5238 } 5239 BUG_ON(disk_block_cnt > 0xffff); 5240 5241 /* build the new CDB for the physical disk I/O */ 5242 if (disk_block > 0xffffffff) { 5243 cdb[0] = is_write ? WRITE_16 : READ_16; 5244 cdb[1] = 0; 5245 cdb[2] = (u8) (disk_block >> 56); 5246 cdb[3] = (u8) (disk_block >> 48); 5247 cdb[4] = (u8) (disk_block >> 40); 5248 cdb[5] = (u8) (disk_block >> 32); 5249 cdb[6] = (u8) (disk_block >> 24); 5250 cdb[7] = (u8) (disk_block >> 16); 5251 cdb[8] = (u8) (disk_block >> 8); 5252 cdb[9] = (u8) (disk_block); 5253 cdb[10] = (u8) (disk_block_cnt >> 24); 5254 cdb[11] = (u8) (disk_block_cnt >> 16); 5255 cdb[12] = (u8) (disk_block_cnt >> 8); 5256 cdb[13] = (u8) (disk_block_cnt); 5257 cdb[14] = 0; 5258 cdb[15] = 0; 5259 cdb_len = 16; 5260 } else { 5261 cdb[0] = is_write ? WRITE_10 : READ_10; 5262 cdb[1] = 0; 5263 cdb[2] = (u8) (disk_block >> 24); 5264 cdb[3] = (u8) (disk_block >> 16); 5265 cdb[4] = (u8) (disk_block >> 8); 5266 cdb[5] = (u8) (disk_block); 5267 cdb[6] = 0; 5268 cdb[7] = (u8) (disk_block_cnt >> 8); 5269 cdb[8] = (u8) (disk_block_cnt); 5270 cdb[9] = 0; 5271 cdb_len = 10; 5272 } 5273 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, 5274 dev->scsi3addr, 5275 dev->phys_disk[map_index]); 5276 } 5277 5278 /* 5279 * Submit commands down the "normal" RAID stack path 5280 * All callers to hpsa_ciss_submit must check lockup_detected 5281 * beforehand, before (opt.) and after calling cmd_alloc 5282 */ 5283 static int hpsa_ciss_submit(struct ctlr_info *h, 5284 struct CommandList *c, struct scsi_cmnd *cmd, 5285 unsigned char scsi3addr[]) 5286 { 5287 cmd->host_scribble = (unsigned char *) c; 5288 c->cmd_type = CMD_SCSI; 5289 c->scsi_cmd = cmd; 5290 c->Header.ReplyQueue = 0; /* unused in simple mode */ 5291 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); 5292 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT)); 5293 5294 /* Fill in the request block... */ 5295 5296 c->Request.Timeout = 0; 5297 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 5298 c->Request.CDBLen = cmd->cmd_len; 5299 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 5300 switch (cmd->sc_data_direction) { 5301 case DMA_TO_DEVICE: 5302 c->Request.type_attr_dir = 5303 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE); 5304 break; 5305 case DMA_FROM_DEVICE: 5306 c->Request.type_attr_dir = 5307 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ); 5308 break; 5309 case DMA_NONE: 5310 c->Request.type_attr_dir = 5311 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE); 5312 break; 5313 case DMA_BIDIRECTIONAL: 5314 /* This can happen if a buggy application does a scsi passthru 5315 * and sets both inlen and outlen to non-zero. ( see 5316 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 5317 */ 5318 5319 c->Request.type_attr_dir = 5320 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD); 5321 /* This is technically wrong, and hpsa controllers should 5322 * reject it with CMD_INVALID, which is the most correct 5323 * response, but non-fibre backends appear to let it 5324 * slide by, and give the same results as if this field 5325 * were set correctly. Either way is acceptable for 5326 * our purposes here. 5327 */ 5328 5329 break; 5330 5331 default: 5332 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 5333 cmd->sc_data_direction); 5334 BUG(); 5335 break; 5336 } 5337 5338 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ 5339 hpsa_cmd_resolve_and_free(h, c); 5340 return SCSI_MLQUEUE_HOST_BUSY; 5341 } 5342 enqueue_cmd_and_start_io(h, c); 5343 /* the cmd'll come back via intr handler in complete_scsi_command() */ 5344 return 0; 5345 } 5346 5347 static void hpsa_cmd_init(struct ctlr_info *h, int index, 5348 struct CommandList *c) 5349 { 5350 dma_addr_t cmd_dma_handle, err_dma_handle; 5351 5352 /* Zero out all of commandlist except the last field, refcount */ 5353 memset(c, 0, offsetof(struct CommandList, refcount)); 5354 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT)); 5355 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); 5356 c->err_info = h->errinfo_pool + index; 5357 memset(c->err_info, 0, sizeof(*c->err_info)); 5358 err_dma_handle = h->errinfo_pool_dhandle 5359 + index * sizeof(*c->err_info); 5360 c->cmdindex = index; 5361 c->busaddr = (u32) cmd_dma_handle; 5362 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle); 5363 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info)); 5364 c->h = h; 5365 c->scsi_cmd = SCSI_CMD_IDLE; 5366 } 5367 5368 static void hpsa_preinitialize_commands(struct ctlr_info *h) 5369 { 5370 int i; 5371 5372 for (i = 0; i < h->nr_cmds; i++) { 5373 struct CommandList *c = h->cmd_pool + i; 5374 5375 hpsa_cmd_init(h, i, c); 5376 atomic_set(&c->refcount, 0); 5377 } 5378 } 5379 5380 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index, 5381 struct CommandList *c) 5382 { 5383 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); 5384 5385 BUG_ON(c->cmdindex != index); 5386 5387 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 5388 memset(c->err_info, 0, sizeof(*c->err_info)); 5389 c->busaddr = (u32) cmd_dma_handle; 5390 } 5391 5392 static int hpsa_ioaccel_submit(struct ctlr_info *h, 5393 struct CommandList *c, struct scsi_cmnd *cmd, 5394 unsigned char *scsi3addr) 5395 { 5396 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 5397 int rc = IO_ACCEL_INELIGIBLE; 5398 5399 if (!dev) 5400 return SCSI_MLQUEUE_HOST_BUSY; 5401 5402 cmd->host_scribble = (unsigned char *) c; 5403 5404 if (dev->offload_enabled) { 5405 hpsa_cmd_init(h, c->cmdindex, c); 5406 c->cmd_type = CMD_SCSI; 5407 c->scsi_cmd = cmd; 5408 rc = hpsa_scsi_ioaccel_raid_map(h, c); 5409 if (rc < 0) /* scsi_dma_map failed. */ 5410 rc = SCSI_MLQUEUE_HOST_BUSY; 5411 } else if (dev->hba_ioaccel_enabled) { 5412 hpsa_cmd_init(h, c->cmdindex, c); 5413 c->cmd_type = CMD_SCSI; 5414 c->scsi_cmd = cmd; 5415 rc = hpsa_scsi_ioaccel_direct_map(h, c); 5416 if (rc < 0) /* scsi_dma_map failed. */ 5417 rc = SCSI_MLQUEUE_HOST_BUSY; 5418 } 5419 return rc; 5420 } 5421 5422 static void hpsa_command_resubmit_worker(struct work_struct *work) 5423 { 5424 struct scsi_cmnd *cmd; 5425 struct hpsa_scsi_dev_t *dev; 5426 struct CommandList *c = container_of(work, struct CommandList, work); 5427 5428 cmd = c->scsi_cmd; 5429 dev = cmd->device->hostdata; 5430 if (!dev) { 5431 cmd->result = DID_NO_CONNECT << 16; 5432 return hpsa_cmd_free_and_done(c->h, c, cmd); 5433 } 5434 if (c->reset_pending) 5435 return hpsa_cmd_resolve_and_free(c->h, c); 5436 if (c->abort_pending) 5437 return hpsa_cmd_abort_and_free(c->h, c, cmd); 5438 if (c->cmd_type == CMD_IOACCEL2) { 5439 struct ctlr_info *h = c->h; 5440 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 5441 int rc; 5442 5443 if (c2->error_data.serv_response == 5444 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) { 5445 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr); 5446 if (rc == 0) 5447 return; 5448 if (rc == SCSI_MLQUEUE_HOST_BUSY) { 5449 /* 5450 * If we get here, it means dma mapping failed. 5451 * Try again via scsi mid layer, which will 5452 * then get SCSI_MLQUEUE_HOST_BUSY. 5453 */ 5454 cmd->result = DID_IMM_RETRY << 16; 5455 return hpsa_cmd_free_and_done(h, c, cmd); 5456 } 5457 /* else, fall thru and resubmit down CISS path */ 5458 } 5459 } 5460 hpsa_cmd_partial_init(c->h, c->cmdindex, c); 5461 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) { 5462 /* 5463 * If we get here, it means dma mapping failed. Try 5464 * again via scsi mid layer, which will then get 5465 * SCSI_MLQUEUE_HOST_BUSY. 5466 * 5467 * hpsa_ciss_submit will have already freed c 5468 * if it encountered a dma mapping failure. 5469 */ 5470 cmd->result = DID_IMM_RETRY << 16; 5471 cmd->scsi_done(cmd); 5472 } 5473 } 5474 5475 /* Running in struct Scsi_Host->host_lock less mode */ 5476 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd) 5477 { 5478 struct ctlr_info *h; 5479 struct hpsa_scsi_dev_t *dev; 5480 unsigned char scsi3addr[8]; 5481 struct CommandList *c; 5482 int rc = 0; 5483 5484 /* Get the ptr to our adapter structure out of cmd->host. */ 5485 h = sdev_to_hba(cmd->device); 5486 5487 BUG_ON(cmd->request->tag < 0); 5488 5489 dev = cmd->device->hostdata; 5490 if (!dev) { 5491 cmd->result = NOT_READY << 16; /* host byte */ 5492 cmd->scsi_done(cmd); 5493 return 0; 5494 } 5495 5496 if (dev->removed) { 5497 cmd->result = DID_NO_CONNECT << 16; 5498 cmd->scsi_done(cmd); 5499 return 0; 5500 } 5501 5502 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); 5503 5504 if (unlikely(lockup_detected(h))) { 5505 cmd->result = DID_NO_CONNECT << 16; 5506 cmd->scsi_done(cmd); 5507 return 0; 5508 } 5509 c = cmd_tagged_alloc(h, cmd); 5510 5511 /* 5512 * Call alternate submit routine for I/O accelerated commands. 5513 * Retries always go down the normal I/O path. 5514 */ 5515 if (likely(cmd->retries == 0 && 5516 cmd->request->cmd_type == REQ_TYPE_FS && 5517 h->acciopath_status)) { 5518 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr); 5519 if (rc == 0) 5520 return 0; 5521 if (rc == SCSI_MLQUEUE_HOST_BUSY) { 5522 hpsa_cmd_resolve_and_free(h, c); 5523 return SCSI_MLQUEUE_HOST_BUSY; 5524 } 5525 } 5526 return hpsa_ciss_submit(h, c, cmd, scsi3addr); 5527 } 5528 5529 static void hpsa_scan_complete(struct ctlr_info *h) 5530 { 5531 unsigned long flags; 5532 5533 spin_lock_irqsave(&h->scan_lock, flags); 5534 h->scan_finished = 1; 5535 wake_up_all(&h->scan_wait_queue); 5536 spin_unlock_irqrestore(&h->scan_lock, flags); 5537 } 5538 5539 static void hpsa_scan_start(struct Scsi_Host *sh) 5540 { 5541 struct ctlr_info *h = shost_to_hba(sh); 5542 unsigned long flags; 5543 5544 /* 5545 * Don't let rescans be initiated on a controller known to be locked 5546 * up. If the controller locks up *during* a rescan, that thread is 5547 * probably hosed, but at least we can prevent new rescan threads from 5548 * piling up on a locked up controller. 5549 */ 5550 if (unlikely(lockup_detected(h))) 5551 return hpsa_scan_complete(h); 5552 5553 /* wait until any scan already in progress is finished. */ 5554 while (1) { 5555 spin_lock_irqsave(&h->scan_lock, flags); 5556 if (h->scan_finished) 5557 break; 5558 spin_unlock_irqrestore(&h->scan_lock, flags); 5559 wait_event(h->scan_wait_queue, h->scan_finished); 5560 /* Note: We don't need to worry about a race between this 5561 * thread and driver unload because the midlayer will 5562 * have incremented the reference count, so unload won't 5563 * happen if we're in here. 5564 */ 5565 } 5566 h->scan_finished = 0; /* mark scan as in progress */ 5567 spin_unlock_irqrestore(&h->scan_lock, flags); 5568 5569 if (unlikely(lockup_detected(h))) 5570 return hpsa_scan_complete(h); 5571 5572 hpsa_update_scsi_devices(h); 5573 5574 hpsa_scan_complete(h); 5575 } 5576 5577 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth) 5578 { 5579 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata; 5580 5581 if (!logical_drive) 5582 return -ENODEV; 5583 5584 if (qdepth < 1) 5585 qdepth = 1; 5586 else if (qdepth > logical_drive->queue_depth) 5587 qdepth = logical_drive->queue_depth; 5588 5589 return scsi_change_queue_depth(sdev, qdepth); 5590 } 5591 5592 static int hpsa_scan_finished(struct Scsi_Host *sh, 5593 unsigned long elapsed_time) 5594 { 5595 struct ctlr_info *h = shost_to_hba(sh); 5596 unsigned long flags; 5597 int finished; 5598 5599 spin_lock_irqsave(&h->scan_lock, flags); 5600 finished = h->scan_finished; 5601 spin_unlock_irqrestore(&h->scan_lock, flags); 5602 return finished; 5603 } 5604 5605 static int hpsa_scsi_host_alloc(struct ctlr_info *h) 5606 { 5607 struct Scsi_Host *sh; 5608 5609 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); 5610 if (sh == NULL) { 5611 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n"); 5612 return -ENOMEM; 5613 } 5614 5615 sh->io_port = 0; 5616 sh->n_io_port = 0; 5617 sh->this_id = -1; 5618 sh->max_channel = 3; 5619 sh->max_cmd_len = MAX_COMMAND_SIZE; 5620 sh->max_lun = HPSA_MAX_LUN; 5621 sh->max_id = HPSA_MAX_LUN; 5622 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS; 5623 sh->cmd_per_lun = sh->can_queue; 5624 sh->sg_tablesize = h->maxsgentries; 5625 sh->transportt = hpsa_sas_transport_template; 5626 sh->hostdata[0] = (unsigned long) h; 5627 sh->irq = h->intr[h->intr_mode]; 5628 sh->unique_id = sh->irq; 5629 5630 h->scsi_host = sh; 5631 return 0; 5632 } 5633 5634 static int hpsa_scsi_add_host(struct ctlr_info *h) 5635 { 5636 int rv; 5637 5638 rv = scsi_add_host(h->scsi_host, &h->pdev->dev); 5639 if (rv) { 5640 dev_err(&h->pdev->dev, "scsi_add_host failed\n"); 5641 return rv; 5642 } 5643 scsi_scan_host(h->scsi_host); 5644 return 0; 5645 } 5646 5647 /* 5648 * The block layer has already gone to the trouble of picking out a unique, 5649 * small-integer tag for this request. We use an offset from that value as 5650 * an index to select our command block. (The offset allows us to reserve the 5651 * low-numbered entries for our own uses.) 5652 */ 5653 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd) 5654 { 5655 int idx = scmd->request->tag; 5656 5657 if (idx < 0) 5658 return idx; 5659 5660 /* Offset to leave space for internal cmds. */ 5661 return idx += HPSA_NRESERVED_CMDS; 5662 } 5663 5664 /* 5665 * Send a TEST_UNIT_READY command to the specified LUN using the specified 5666 * reply queue; returns zero if the unit is ready, and non-zero otherwise. 5667 */ 5668 static int hpsa_send_test_unit_ready(struct ctlr_info *h, 5669 struct CommandList *c, unsigned char lunaddr[], 5670 int reply_queue) 5671 { 5672 int rc; 5673 5674 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ 5675 (void) fill_cmd(c, TEST_UNIT_READY, h, 5676 NULL, 0, 0, lunaddr, TYPE_CMD); 5677 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT); 5678 if (rc) 5679 return rc; 5680 /* no unmap needed here because no data xfer. */ 5681 5682 /* Check if the unit is already ready. */ 5683 if (c->err_info->CommandStatus == CMD_SUCCESS) 5684 return 0; 5685 5686 /* 5687 * The first command sent after reset will receive "unit attention" to 5688 * indicate that the LUN has been reset...this is actually what we're 5689 * looking for (but, success is good too). 5690 */ 5691 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 5692 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 5693 (c->err_info->SenseInfo[2] == NO_SENSE || 5694 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 5695 return 0; 5696 5697 return 1; 5698 } 5699 5700 /* 5701 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary; 5702 * returns zero when the unit is ready, and non-zero when giving up. 5703 */ 5704 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h, 5705 struct CommandList *c, 5706 unsigned char lunaddr[], int reply_queue) 5707 { 5708 int rc; 5709 int count = 0; 5710 int waittime = 1; /* seconds */ 5711 5712 /* Send test unit ready until device ready, or give up. */ 5713 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) { 5714 5715 /* 5716 * Wait for a bit. do this first, because if we send 5717 * the TUR right away, the reset will just abort it. 5718 */ 5719 msleep(1000 * waittime); 5720 5721 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue); 5722 if (!rc) 5723 break; 5724 5725 /* Increase wait time with each try, up to a point. */ 5726 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 5727 waittime *= 2; 5728 5729 dev_warn(&h->pdev->dev, 5730 "waiting %d secs for device to become ready.\n", 5731 waittime); 5732 } 5733 5734 return rc; 5735 } 5736 5737 static int wait_for_device_to_become_ready(struct ctlr_info *h, 5738 unsigned char lunaddr[], 5739 int reply_queue) 5740 { 5741 int first_queue; 5742 int last_queue; 5743 int rq; 5744 int rc = 0; 5745 struct CommandList *c; 5746 5747 c = cmd_alloc(h); 5748 5749 /* 5750 * If no specific reply queue was requested, then send the TUR 5751 * repeatedly, requesting a reply on each reply queue; otherwise execute 5752 * the loop exactly once using only the specified queue. 5753 */ 5754 if (reply_queue == DEFAULT_REPLY_QUEUE) { 5755 first_queue = 0; 5756 last_queue = h->nreply_queues - 1; 5757 } else { 5758 first_queue = reply_queue; 5759 last_queue = reply_queue; 5760 } 5761 5762 for (rq = first_queue; rq <= last_queue; rq++) { 5763 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq); 5764 if (rc) 5765 break; 5766 } 5767 5768 if (rc) 5769 dev_warn(&h->pdev->dev, "giving up on device.\n"); 5770 else 5771 dev_warn(&h->pdev->dev, "device is ready.\n"); 5772 5773 cmd_free(h, c); 5774 return rc; 5775 } 5776 5777 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 5778 * complaining. Doing a host- or bus-reset can't do anything good here. 5779 */ 5780 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 5781 { 5782 int rc; 5783 struct ctlr_info *h; 5784 struct hpsa_scsi_dev_t *dev; 5785 u8 reset_type; 5786 char msg[48]; 5787 5788 /* find the controller to which the command to be aborted was sent */ 5789 h = sdev_to_hba(scsicmd->device); 5790 if (h == NULL) /* paranoia */ 5791 return FAILED; 5792 5793 if (lockup_detected(h)) 5794 return FAILED; 5795 5796 dev = scsicmd->device->hostdata; 5797 if (!dev) { 5798 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__); 5799 return FAILED; 5800 } 5801 5802 /* if controller locked up, we can guarantee command won't complete */ 5803 if (lockup_detected(h)) { 5804 snprintf(msg, sizeof(msg), 5805 "cmd %d RESET FAILED, lockup detected", 5806 hpsa_get_cmd_index(scsicmd)); 5807 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 5808 return FAILED; 5809 } 5810 5811 /* this reset request might be the result of a lockup; check */ 5812 if (detect_controller_lockup(h)) { 5813 snprintf(msg, sizeof(msg), 5814 "cmd %d RESET FAILED, new lockup detected", 5815 hpsa_get_cmd_index(scsicmd)); 5816 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 5817 return FAILED; 5818 } 5819 5820 /* Do not attempt on controller */ 5821 if (is_hba_lunid(dev->scsi3addr)) 5822 return SUCCESS; 5823 5824 if (is_logical_dev_addr_mode(dev->scsi3addr)) 5825 reset_type = HPSA_DEVICE_RESET_MSG; 5826 else 5827 reset_type = HPSA_PHYS_TARGET_RESET; 5828 5829 sprintf(msg, "resetting %s", 5830 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical "); 5831 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 5832 5833 h->reset_in_progress = 1; 5834 5835 /* send a reset to the SCSI LUN which the command was sent to */ 5836 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type, 5837 DEFAULT_REPLY_QUEUE); 5838 sprintf(msg, "reset %s %s", 5839 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ", 5840 rc == 0 ? "completed successfully" : "failed"); 5841 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 5842 h->reset_in_progress = 0; 5843 return rc == 0 ? SUCCESS : FAILED; 5844 } 5845 5846 static void swizzle_abort_tag(u8 *tag) 5847 { 5848 u8 original_tag[8]; 5849 5850 memcpy(original_tag, tag, 8); 5851 tag[0] = original_tag[3]; 5852 tag[1] = original_tag[2]; 5853 tag[2] = original_tag[1]; 5854 tag[3] = original_tag[0]; 5855 tag[4] = original_tag[7]; 5856 tag[5] = original_tag[6]; 5857 tag[6] = original_tag[5]; 5858 tag[7] = original_tag[4]; 5859 } 5860 5861 static void hpsa_get_tag(struct ctlr_info *h, 5862 struct CommandList *c, __le32 *taglower, __le32 *tagupper) 5863 { 5864 u64 tag; 5865 if (c->cmd_type == CMD_IOACCEL1) { 5866 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *) 5867 &h->ioaccel_cmd_pool[c->cmdindex]; 5868 tag = le64_to_cpu(cm1->tag); 5869 *tagupper = cpu_to_le32(tag >> 32); 5870 *taglower = cpu_to_le32(tag); 5871 return; 5872 } 5873 if (c->cmd_type == CMD_IOACCEL2) { 5874 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *) 5875 &h->ioaccel2_cmd_pool[c->cmdindex]; 5876 /* upper tag not used in ioaccel2 mode */ 5877 memset(tagupper, 0, sizeof(*tagupper)); 5878 *taglower = cm2->Tag; 5879 return; 5880 } 5881 tag = le64_to_cpu(c->Header.tag); 5882 *tagupper = cpu_to_le32(tag >> 32); 5883 *taglower = cpu_to_le32(tag); 5884 } 5885 5886 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr, 5887 struct CommandList *abort, int reply_queue) 5888 { 5889 int rc = IO_OK; 5890 struct CommandList *c; 5891 struct ErrorInfo *ei; 5892 __le32 tagupper, taglower; 5893 5894 c = cmd_alloc(h); 5895 5896 /* fill_cmd can't fail here, no buffer to map */ 5897 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag, 5898 0, 0, scsi3addr, TYPE_MSG); 5899 if (h->needs_abort_tags_swizzled) 5900 swizzle_abort_tag(&c->Request.CDB[4]); 5901 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT); 5902 hpsa_get_tag(h, abort, &taglower, &tagupper); 5903 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n", 5904 __func__, tagupper, taglower); 5905 /* no unmap needed here because no data xfer. */ 5906 5907 ei = c->err_info; 5908 switch (ei->CommandStatus) { 5909 case CMD_SUCCESS: 5910 break; 5911 case CMD_TMF_STATUS: 5912 rc = hpsa_evaluate_tmf_status(h, c); 5913 break; 5914 case CMD_UNABORTABLE: /* Very common, don't make noise. */ 5915 rc = -1; 5916 break; 5917 default: 5918 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n", 5919 __func__, tagupper, taglower); 5920 hpsa_scsi_interpret_error(h, c); 5921 rc = -1; 5922 break; 5923 } 5924 cmd_free(h, c); 5925 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", 5926 __func__, tagupper, taglower); 5927 return rc; 5928 } 5929 5930 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h, 5931 struct CommandList *command_to_abort, int reply_queue) 5932 { 5933 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 5934 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; 5935 struct io_accel2_cmd *c2a = 5936 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex]; 5937 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd; 5938 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata; 5939 5940 if (!dev) 5941 return; 5942 5943 /* 5944 * We're overlaying struct hpsa_tmf_struct on top of something which 5945 * was allocated as a struct io_accel2_cmd, so we better be sure it 5946 * actually fits, and doesn't overrun the error info space. 5947 */ 5948 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) > 5949 sizeof(struct io_accel2_cmd)); 5950 BUG_ON(offsetof(struct io_accel2_cmd, error_data) < 5951 offsetof(struct hpsa_tmf_struct, error_len) + 5952 sizeof(ac->error_len)); 5953 5954 c->cmd_type = IOACCEL2_TMF; 5955 c->scsi_cmd = SCSI_CMD_BUSY; 5956 5957 /* Adjust the DMA address to point to the accelerated command buffer */ 5958 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + 5959 (c->cmdindex * sizeof(struct io_accel2_cmd)); 5960 BUG_ON(c->busaddr & 0x0000007F); 5961 5962 memset(ac, 0, sizeof(*c2)); /* yes this is correct */ 5963 ac->iu_type = IOACCEL2_IU_TMF_TYPE; 5964 ac->reply_queue = reply_queue; 5965 ac->tmf = IOACCEL2_TMF_ABORT; 5966 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle); 5967 memset(ac->lun_id, 0, sizeof(ac->lun_id)); 5968 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT); 5969 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag)); 5970 ac->error_ptr = cpu_to_le64(c->busaddr + 5971 offsetof(struct io_accel2_cmd, error_data)); 5972 ac->error_len = cpu_to_le32(sizeof(c2->error_data)); 5973 } 5974 5975 /* ioaccel2 path firmware cannot handle abort task requests. 5976 * Change abort requests to physical target reset, and send to the 5977 * address of the physical disk used for the ioaccel 2 command. 5978 * Return 0 on success (IO_OK) 5979 * -1 on failure 5980 */ 5981 5982 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h, 5983 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue) 5984 { 5985 int rc = IO_OK; 5986 struct scsi_cmnd *scmd; /* scsi command within request being aborted */ 5987 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */ 5988 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */ 5989 unsigned char *psa = &phys_scsi3addr[0]; 5990 5991 /* Get a pointer to the hpsa logical device. */ 5992 scmd = abort->scsi_cmd; 5993 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata); 5994 if (dev == NULL) { 5995 dev_warn(&h->pdev->dev, 5996 "Cannot abort: no device pointer for command.\n"); 5997 return -1; /* not abortable */ 5998 } 5999 6000 if (h->raid_offload_debug > 0) 6001 dev_info(&h->pdev->dev, 6002 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 6003 h->scsi_host->host_no, dev->bus, dev->target, dev->lun, 6004 "Reset as abort", 6005 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3], 6006 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]); 6007 6008 if (!dev->offload_enabled) { 6009 dev_warn(&h->pdev->dev, 6010 "Can't abort: device is not operating in HP SSD Smart Path mode.\n"); 6011 return -1; /* not abortable */ 6012 } 6013 6014 /* Incoming scsi3addr is logical addr. We need physical disk addr. */ 6015 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) { 6016 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n"); 6017 return -1; /* not abortable */ 6018 } 6019 6020 /* send the reset */ 6021 if (h->raid_offload_debug > 0) 6022 dev_info(&h->pdev->dev, 6023 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 6024 psa[0], psa[1], psa[2], psa[3], 6025 psa[4], psa[5], psa[6], psa[7]); 6026 rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue); 6027 if (rc != 0) { 6028 dev_warn(&h->pdev->dev, 6029 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 6030 psa[0], psa[1], psa[2], psa[3], 6031 psa[4], psa[5], psa[6], psa[7]); 6032 return rc; /* failed to reset */ 6033 } 6034 6035 /* wait for device to recover */ 6036 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) { 6037 dev_warn(&h->pdev->dev, 6038 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 6039 psa[0], psa[1], psa[2], psa[3], 6040 psa[4], psa[5], psa[6], psa[7]); 6041 return -1; /* failed to recover */ 6042 } 6043 6044 /* device recovered */ 6045 dev_info(&h->pdev->dev, 6046 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 6047 psa[0], psa[1], psa[2], psa[3], 6048 psa[4], psa[5], psa[6], psa[7]); 6049 6050 return rc; /* success */ 6051 } 6052 6053 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h, 6054 struct CommandList *abort, int reply_queue) 6055 { 6056 int rc = IO_OK; 6057 struct CommandList *c; 6058 __le32 taglower, tagupper; 6059 struct hpsa_scsi_dev_t *dev; 6060 struct io_accel2_cmd *c2; 6061 6062 dev = abort->scsi_cmd->device->hostdata; 6063 if (!dev) 6064 return -1; 6065 6066 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled) 6067 return -1; 6068 6069 c = cmd_alloc(h); 6070 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue); 6071 c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 6072 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT); 6073 hpsa_get_tag(h, abort, &taglower, &tagupper); 6074 dev_dbg(&h->pdev->dev, 6075 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n", 6076 __func__, tagupper, taglower); 6077 /* no unmap needed here because no data xfer. */ 6078 6079 dev_dbg(&h->pdev->dev, 6080 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n", 6081 __func__, tagupper, taglower, c2->error_data.serv_response); 6082 switch (c2->error_data.serv_response) { 6083 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: 6084 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: 6085 rc = 0; 6086 break; 6087 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: 6088 case IOACCEL2_SERV_RESPONSE_FAILURE: 6089 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: 6090 rc = -1; 6091 break; 6092 default: 6093 dev_warn(&h->pdev->dev, 6094 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n", 6095 __func__, tagupper, taglower, 6096 c2->error_data.serv_response); 6097 rc = -1; 6098 } 6099 cmd_free(h, c); 6100 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__, 6101 tagupper, taglower); 6102 return rc; 6103 } 6104 6105 static int hpsa_send_abort_both_ways(struct ctlr_info *h, 6106 struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue) 6107 { 6108 /* 6109 * ioccelerator mode 2 commands should be aborted via the 6110 * accelerated path, since RAID path is unaware of these commands, 6111 * but not all underlying firmware can handle abort TMF. 6112 * Change abort to physical device reset when abort TMF is unsupported. 6113 */ 6114 if (abort->cmd_type == CMD_IOACCEL2) { 6115 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) || 6116 dev->physical_device) 6117 return hpsa_send_abort_ioaccel2(h, abort, 6118 reply_queue); 6119 else 6120 return hpsa_send_reset_as_abort_ioaccel2(h, 6121 dev->scsi3addr, 6122 abort, reply_queue); 6123 } 6124 return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue); 6125 } 6126 6127 /* Find out which reply queue a command was meant to return on */ 6128 static int hpsa_extract_reply_queue(struct ctlr_info *h, 6129 struct CommandList *c) 6130 { 6131 if (c->cmd_type == CMD_IOACCEL2) 6132 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue; 6133 return c->Header.ReplyQueue; 6134 } 6135 6136 /* 6137 * Limit concurrency of abort commands to prevent 6138 * over-subscription of commands 6139 */ 6140 static inline int wait_for_available_abort_cmd(struct ctlr_info *h) 6141 { 6142 #define ABORT_CMD_WAIT_MSECS 5000 6143 return !wait_event_timeout(h->abort_cmd_wait_queue, 6144 atomic_dec_if_positive(&h->abort_cmds_available) >= 0, 6145 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS)); 6146 } 6147 6148 /* Send an abort for the specified command. 6149 * If the device and controller support it, 6150 * send a task abort request. 6151 */ 6152 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc) 6153 { 6154 6155 int rc; 6156 struct ctlr_info *h; 6157 struct hpsa_scsi_dev_t *dev; 6158 struct CommandList *abort; /* pointer to command to be aborted */ 6159 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */ 6160 char msg[256]; /* For debug messaging. */ 6161 int ml = 0; 6162 __le32 tagupper, taglower; 6163 int refcount, reply_queue; 6164 6165 if (sc == NULL) 6166 return FAILED; 6167 6168 if (sc->device == NULL) 6169 return FAILED; 6170 6171 /* Find the controller of the command to be aborted */ 6172 h = sdev_to_hba(sc->device); 6173 if (h == NULL) 6174 return FAILED; 6175 6176 /* Find the device of the command to be aborted */ 6177 dev = sc->device->hostdata; 6178 if (!dev) { 6179 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n", 6180 msg); 6181 return FAILED; 6182 } 6183 6184 /* If controller locked up, we can guarantee command won't complete */ 6185 if (lockup_detected(h)) { 6186 hpsa_show_dev_msg(KERN_WARNING, h, dev, 6187 "ABORT FAILED, lockup detected"); 6188 return FAILED; 6189 } 6190 6191 /* This is a good time to check if controller lockup has occurred */ 6192 if (detect_controller_lockup(h)) { 6193 hpsa_show_dev_msg(KERN_WARNING, h, dev, 6194 "ABORT FAILED, new lockup detected"); 6195 return FAILED; 6196 } 6197 6198 /* Check that controller supports some kind of task abort */ 6199 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) && 6200 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) 6201 return FAILED; 6202 6203 memset(msg, 0, sizeof(msg)); 6204 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p", 6205 h->scsi_host->host_no, sc->device->channel, 6206 sc->device->id, sc->device->lun, 6207 "Aborting command", sc); 6208 6209 /* Get SCSI command to be aborted */ 6210 abort = (struct CommandList *) sc->host_scribble; 6211 if (abort == NULL) { 6212 /* This can happen if the command already completed. */ 6213 return SUCCESS; 6214 } 6215 refcount = atomic_inc_return(&abort->refcount); 6216 if (refcount == 1) { /* Command is done already. */ 6217 cmd_free(h, abort); 6218 return SUCCESS; 6219 } 6220 6221 /* Don't bother trying the abort if we know it won't work. */ 6222 if (abort->cmd_type != CMD_IOACCEL2 && 6223 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) { 6224 cmd_free(h, abort); 6225 return FAILED; 6226 } 6227 6228 /* 6229 * Check that we're aborting the right command. 6230 * It's possible the CommandList already completed and got re-used. 6231 */ 6232 if (abort->scsi_cmd != sc) { 6233 cmd_free(h, abort); 6234 return SUCCESS; 6235 } 6236 6237 abort->abort_pending = true; 6238 hpsa_get_tag(h, abort, &taglower, &tagupper); 6239 reply_queue = hpsa_extract_reply_queue(h, abort); 6240 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower); 6241 as = abort->scsi_cmd; 6242 if (as != NULL) 6243 ml += sprintf(msg+ml, 6244 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ", 6245 as->cmd_len, as->cmnd[0], as->cmnd[1], 6246 as->serial_number); 6247 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg); 6248 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command"); 6249 6250 /* 6251 * Command is in flight, or possibly already completed 6252 * by the firmware (but not to the scsi mid layer) but we can't 6253 * distinguish which. Send the abort down. 6254 */ 6255 if (wait_for_available_abort_cmd(h)) { 6256 dev_warn(&h->pdev->dev, 6257 "%s FAILED, timeout waiting for an abort command to become available.\n", 6258 msg); 6259 cmd_free(h, abort); 6260 return FAILED; 6261 } 6262 rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue); 6263 atomic_inc(&h->abort_cmds_available); 6264 wake_up_all(&h->abort_cmd_wait_queue); 6265 if (rc != 0) { 6266 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg); 6267 hpsa_show_dev_msg(KERN_WARNING, h, dev, 6268 "FAILED to abort command"); 6269 cmd_free(h, abort); 6270 return FAILED; 6271 } 6272 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg); 6273 wait_event(h->event_sync_wait_queue, 6274 abort->scsi_cmd != sc || lockup_detected(h)); 6275 cmd_free(h, abort); 6276 return !lockup_detected(h) ? SUCCESS : FAILED; 6277 } 6278 6279 /* 6280 * For operations with an associated SCSI command, a command block is allocated 6281 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the 6282 * block request tag as an index into a table of entries. cmd_tagged_free() is 6283 * the complement, although cmd_free() may be called instead. 6284 */ 6285 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, 6286 struct scsi_cmnd *scmd) 6287 { 6288 int idx = hpsa_get_cmd_index(scmd); 6289 struct CommandList *c = h->cmd_pool + idx; 6290 6291 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) { 6292 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n", 6293 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1); 6294 /* The index value comes from the block layer, so if it's out of 6295 * bounds, it's probably not our bug. 6296 */ 6297 BUG(); 6298 } 6299 6300 atomic_inc(&c->refcount); 6301 if (unlikely(!hpsa_is_cmd_idle(c))) { 6302 /* 6303 * We expect that the SCSI layer will hand us a unique tag 6304 * value. Thus, there should never be a collision here between 6305 * two requests...because if the selected command isn't idle 6306 * then someone is going to be very disappointed. 6307 */ 6308 dev_err(&h->pdev->dev, 6309 "tag collision (tag=%d) in cmd_tagged_alloc().\n", 6310 idx); 6311 if (c->scsi_cmd != NULL) 6312 scsi_print_command(c->scsi_cmd); 6313 scsi_print_command(scmd); 6314 } 6315 6316 hpsa_cmd_partial_init(h, idx, c); 6317 return c; 6318 } 6319 6320 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c) 6321 { 6322 /* 6323 * Release our reference to the block. We don't need to do anything 6324 * else to free it, because it is accessed by index. (There's no point 6325 * in checking the result of the decrement, since we cannot guarantee 6326 * that there isn't a concurrent abort which is also accessing it.) 6327 */ 6328 (void)atomic_dec(&c->refcount); 6329 } 6330 6331 /* 6332 * For operations that cannot sleep, a command block is allocated at init, 6333 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 6334 * which ones are free or in use. Lock must be held when calling this. 6335 * cmd_free() is the complement. 6336 * This function never gives up and returns NULL. If it hangs, 6337 * another thread must call cmd_free() to free some tags. 6338 */ 6339 6340 static struct CommandList *cmd_alloc(struct ctlr_info *h) 6341 { 6342 struct CommandList *c; 6343 int refcount, i; 6344 int offset = 0; 6345 6346 /* 6347 * There is some *extremely* small but non-zero chance that that 6348 * multiple threads could get in here, and one thread could 6349 * be scanning through the list of bits looking for a free 6350 * one, but the free ones are always behind him, and other 6351 * threads sneak in behind him and eat them before he can 6352 * get to them, so that while there is always a free one, a 6353 * very unlucky thread might be starved anyway, never able to 6354 * beat the other threads. In reality, this happens so 6355 * infrequently as to be indistinguishable from never. 6356 * 6357 * Note that we start allocating commands before the SCSI host structure 6358 * is initialized. Since the search starts at bit zero, this 6359 * all works, since we have at least one command structure available; 6360 * however, it means that the structures with the low indexes have to be 6361 * reserved for driver-initiated requests, while requests from the block 6362 * layer will use the higher indexes. 6363 */ 6364 6365 for (;;) { 6366 i = find_next_zero_bit(h->cmd_pool_bits, 6367 HPSA_NRESERVED_CMDS, 6368 offset); 6369 if (unlikely(i >= HPSA_NRESERVED_CMDS)) { 6370 offset = 0; 6371 continue; 6372 } 6373 c = h->cmd_pool + i; 6374 refcount = atomic_inc_return(&c->refcount); 6375 if (unlikely(refcount > 1)) { 6376 cmd_free(h, c); /* already in use */ 6377 offset = (i + 1) % HPSA_NRESERVED_CMDS; 6378 continue; 6379 } 6380 set_bit(i & (BITS_PER_LONG - 1), 6381 h->cmd_pool_bits + (i / BITS_PER_LONG)); 6382 break; /* it's ours now. */ 6383 } 6384 hpsa_cmd_partial_init(h, i, c); 6385 return c; 6386 } 6387 6388 /* 6389 * This is the complementary operation to cmd_alloc(). Note, however, in some 6390 * corner cases it may also be used to free blocks allocated by 6391 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and 6392 * the clear-bit is harmless. 6393 */ 6394 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 6395 { 6396 if (atomic_dec_and_test(&c->refcount)) { 6397 int i; 6398 6399 i = c - h->cmd_pool; 6400 clear_bit(i & (BITS_PER_LONG - 1), 6401 h->cmd_pool_bits + (i / BITS_PER_LONG)); 6402 } 6403 } 6404 6405 #ifdef CONFIG_COMPAT 6406 6407 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, 6408 void __user *arg) 6409 { 6410 IOCTL32_Command_struct __user *arg32 = 6411 (IOCTL32_Command_struct __user *) arg; 6412 IOCTL_Command_struct arg64; 6413 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); 6414 int err; 6415 u32 cp; 6416 6417 memset(&arg64, 0, sizeof(arg64)); 6418 err = 0; 6419 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 6420 sizeof(arg64.LUN_info)); 6421 err |= copy_from_user(&arg64.Request, &arg32->Request, 6422 sizeof(arg64.Request)); 6423 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 6424 sizeof(arg64.error_info)); 6425 err |= get_user(arg64.buf_size, &arg32->buf_size); 6426 err |= get_user(cp, &arg32->buf); 6427 arg64.buf = compat_ptr(cp); 6428 err |= copy_to_user(p, &arg64, sizeof(arg64)); 6429 6430 if (err) 6431 return -EFAULT; 6432 6433 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p); 6434 if (err) 6435 return err; 6436 err |= copy_in_user(&arg32->error_info, &p->error_info, 6437 sizeof(arg32->error_info)); 6438 if (err) 6439 return -EFAULT; 6440 return err; 6441 } 6442 6443 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 6444 int cmd, void __user *arg) 6445 { 6446 BIG_IOCTL32_Command_struct __user *arg32 = 6447 (BIG_IOCTL32_Command_struct __user *) arg; 6448 BIG_IOCTL_Command_struct arg64; 6449 BIG_IOCTL_Command_struct __user *p = 6450 compat_alloc_user_space(sizeof(arg64)); 6451 int err; 6452 u32 cp; 6453 6454 memset(&arg64, 0, sizeof(arg64)); 6455 err = 0; 6456 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 6457 sizeof(arg64.LUN_info)); 6458 err |= copy_from_user(&arg64.Request, &arg32->Request, 6459 sizeof(arg64.Request)); 6460 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 6461 sizeof(arg64.error_info)); 6462 err |= get_user(arg64.buf_size, &arg32->buf_size); 6463 err |= get_user(arg64.malloc_size, &arg32->malloc_size); 6464 err |= get_user(cp, &arg32->buf); 6465 arg64.buf = compat_ptr(cp); 6466 err |= copy_to_user(p, &arg64, sizeof(arg64)); 6467 6468 if (err) 6469 return -EFAULT; 6470 6471 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p); 6472 if (err) 6473 return err; 6474 err |= copy_in_user(&arg32->error_info, &p->error_info, 6475 sizeof(arg32->error_info)); 6476 if (err) 6477 return -EFAULT; 6478 return err; 6479 } 6480 6481 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg) 6482 { 6483 switch (cmd) { 6484 case CCISS_GETPCIINFO: 6485 case CCISS_GETINTINFO: 6486 case CCISS_SETINTINFO: 6487 case CCISS_GETNODENAME: 6488 case CCISS_SETNODENAME: 6489 case CCISS_GETHEARTBEAT: 6490 case CCISS_GETBUSTYPES: 6491 case CCISS_GETFIRMVER: 6492 case CCISS_GETDRIVVER: 6493 case CCISS_REVALIDVOLS: 6494 case CCISS_DEREGDISK: 6495 case CCISS_REGNEWDISK: 6496 case CCISS_REGNEWD: 6497 case CCISS_RESCANDISK: 6498 case CCISS_GETLUNINFO: 6499 return hpsa_ioctl(dev, cmd, arg); 6500 6501 case CCISS_PASSTHRU32: 6502 return hpsa_ioctl32_passthru(dev, cmd, arg); 6503 case CCISS_BIG_PASSTHRU32: 6504 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 6505 6506 default: 6507 return -ENOIOCTLCMD; 6508 } 6509 } 6510 #endif 6511 6512 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 6513 { 6514 struct hpsa_pci_info pciinfo; 6515 6516 if (!argp) 6517 return -EINVAL; 6518 pciinfo.domain = pci_domain_nr(h->pdev->bus); 6519 pciinfo.bus = h->pdev->bus->number; 6520 pciinfo.dev_fn = h->pdev->devfn; 6521 pciinfo.board_id = h->board_id; 6522 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 6523 return -EFAULT; 6524 return 0; 6525 } 6526 6527 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 6528 { 6529 DriverVer_type DriverVer; 6530 unsigned char vmaj, vmin, vsubmin; 6531 int rc; 6532 6533 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 6534 &vmaj, &vmin, &vsubmin); 6535 if (rc != 3) { 6536 dev_info(&h->pdev->dev, "driver version string '%s' " 6537 "unrecognized.", HPSA_DRIVER_VERSION); 6538 vmaj = 0; 6539 vmin = 0; 6540 vsubmin = 0; 6541 } 6542 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 6543 if (!argp) 6544 return -EINVAL; 6545 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 6546 return -EFAULT; 6547 return 0; 6548 } 6549 6550 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) 6551 { 6552 IOCTL_Command_struct iocommand; 6553 struct CommandList *c; 6554 char *buff = NULL; 6555 u64 temp64; 6556 int rc = 0; 6557 6558 if (!argp) 6559 return -EINVAL; 6560 if (!capable(CAP_SYS_RAWIO)) 6561 return -EPERM; 6562 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 6563 return -EFAULT; 6564 if ((iocommand.buf_size < 1) && 6565 (iocommand.Request.Type.Direction != XFER_NONE)) { 6566 return -EINVAL; 6567 } 6568 if (iocommand.buf_size > 0) { 6569 buff = kmalloc(iocommand.buf_size, GFP_KERNEL); 6570 if (buff == NULL) 6571 return -ENOMEM; 6572 if (iocommand.Request.Type.Direction & XFER_WRITE) { 6573 /* Copy the data into the buffer we created */ 6574 if (copy_from_user(buff, iocommand.buf, 6575 iocommand.buf_size)) { 6576 rc = -EFAULT; 6577 goto out_kfree; 6578 } 6579 } else { 6580 memset(buff, 0, iocommand.buf_size); 6581 } 6582 } 6583 c = cmd_alloc(h); 6584 6585 /* Fill in the command type */ 6586 c->cmd_type = CMD_IOCTL_PEND; 6587 c->scsi_cmd = SCSI_CMD_BUSY; 6588 /* Fill in Command Header */ 6589 c->Header.ReplyQueue = 0; /* unused in simple mode */ 6590 if (iocommand.buf_size > 0) { /* buffer to fill */ 6591 c->Header.SGList = 1; 6592 c->Header.SGTotal = cpu_to_le16(1); 6593 } else { /* no buffers to fill */ 6594 c->Header.SGList = 0; 6595 c->Header.SGTotal = cpu_to_le16(0); 6596 } 6597 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); 6598 6599 /* Fill in Request block */ 6600 memcpy(&c->Request, &iocommand.Request, 6601 sizeof(c->Request)); 6602 6603 /* Fill in the scatter gather information */ 6604 if (iocommand.buf_size > 0) { 6605 temp64 = pci_map_single(h->pdev, buff, 6606 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); 6607 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) { 6608 c->SG[0].Addr = cpu_to_le64(0); 6609 c->SG[0].Len = cpu_to_le32(0); 6610 rc = -ENOMEM; 6611 goto out; 6612 } 6613 c->SG[0].Addr = cpu_to_le64(temp64); 6614 c->SG[0].Len = cpu_to_le32(iocommand.buf_size); 6615 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */ 6616 } 6617 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 6618 NO_TIMEOUT); 6619 if (iocommand.buf_size > 0) 6620 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); 6621 check_ioctl_unit_attention(h, c); 6622 if (rc) { 6623 rc = -EIO; 6624 goto out; 6625 } 6626 6627 /* Copy the error information out */ 6628 memcpy(&iocommand.error_info, c->err_info, 6629 sizeof(iocommand.error_info)); 6630 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { 6631 rc = -EFAULT; 6632 goto out; 6633 } 6634 if ((iocommand.Request.Type.Direction & XFER_READ) && 6635 iocommand.buf_size > 0) { 6636 /* Copy the data out of the buffer we created */ 6637 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { 6638 rc = -EFAULT; 6639 goto out; 6640 } 6641 } 6642 out: 6643 cmd_free(h, c); 6644 out_kfree: 6645 kfree(buff); 6646 return rc; 6647 } 6648 6649 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) 6650 { 6651 BIG_IOCTL_Command_struct *ioc; 6652 struct CommandList *c; 6653 unsigned char **buff = NULL; 6654 int *buff_size = NULL; 6655 u64 temp64; 6656 BYTE sg_used = 0; 6657 int status = 0; 6658 u32 left; 6659 u32 sz; 6660 BYTE __user *data_ptr; 6661 6662 if (!argp) 6663 return -EINVAL; 6664 if (!capable(CAP_SYS_RAWIO)) 6665 return -EPERM; 6666 ioc = (BIG_IOCTL_Command_struct *) 6667 kmalloc(sizeof(*ioc), GFP_KERNEL); 6668 if (!ioc) { 6669 status = -ENOMEM; 6670 goto cleanup1; 6671 } 6672 if (copy_from_user(ioc, argp, sizeof(*ioc))) { 6673 status = -EFAULT; 6674 goto cleanup1; 6675 } 6676 if ((ioc->buf_size < 1) && 6677 (ioc->Request.Type.Direction != XFER_NONE)) { 6678 status = -EINVAL; 6679 goto cleanup1; 6680 } 6681 /* Check kmalloc limits using all SGs */ 6682 if (ioc->malloc_size > MAX_KMALLOC_SIZE) { 6683 status = -EINVAL; 6684 goto cleanup1; 6685 } 6686 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { 6687 status = -EINVAL; 6688 goto cleanup1; 6689 } 6690 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL); 6691 if (!buff) { 6692 status = -ENOMEM; 6693 goto cleanup1; 6694 } 6695 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL); 6696 if (!buff_size) { 6697 status = -ENOMEM; 6698 goto cleanup1; 6699 } 6700 left = ioc->buf_size; 6701 data_ptr = ioc->buf; 6702 while (left) { 6703 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 6704 buff_size[sg_used] = sz; 6705 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 6706 if (buff[sg_used] == NULL) { 6707 status = -ENOMEM; 6708 goto cleanup1; 6709 } 6710 if (ioc->Request.Type.Direction & XFER_WRITE) { 6711 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 6712 status = -EFAULT; 6713 goto cleanup1; 6714 } 6715 } else 6716 memset(buff[sg_used], 0, sz); 6717 left -= sz; 6718 data_ptr += sz; 6719 sg_used++; 6720 } 6721 c = cmd_alloc(h); 6722 6723 c->cmd_type = CMD_IOCTL_PEND; 6724 c->scsi_cmd = SCSI_CMD_BUSY; 6725 c->Header.ReplyQueue = 0; 6726 c->Header.SGList = (u8) sg_used; 6727 c->Header.SGTotal = cpu_to_le16(sg_used); 6728 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 6729 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 6730 if (ioc->buf_size > 0) { 6731 int i; 6732 for (i = 0; i < sg_used; i++) { 6733 temp64 = pci_map_single(h->pdev, buff[i], 6734 buff_size[i], PCI_DMA_BIDIRECTIONAL); 6735 if (dma_mapping_error(&h->pdev->dev, 6736 (dma_addr_t) temp64)) { 6737 c->SG[i].Addr = cpu_to_le64(0); 6738 c->SG[i].Len = cpu_to_le32(0); 6739 hpsa_pci_unmap(h->pdev, c, i, 6740 PCI_DMA_BIDIRECTIONAL); 6741 status = -ENOMEM; 6742 goto cleanup0; 6743 } 6744 c->SG[i].Addr = cpu_to_le64(temp64); 6745 c->SG[i].Len = cpu_to_le32(buff_size[i]); 6746 c->SG[i].Ext = cpu_to_le32(0); 6747 } 6748 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST); 6749 } 6750 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 6751 NO_TIMEOUT); 6752 if (sg_used) 6753 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); 6754 check_ioctl_unit_attention(h, c); 6755 if (status) { 6756 status = -EIO; 6757 goto cleanup0; 6758 } 6759 6760 /* Copy the error information out */ 6761 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 6762 if (copy_to_user(argp, ioc, sizeof(*ioc))) { 6763 status = -EFAULT; 6764 goto cleanup0; 6765 } 6766 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) { 6767 int i; 6768 6769 /* Copy the data out of the buffer we created */ 6770 BYTE __user *ptr = ioc->buf; 6771 for (i = 0; i < sg_used; i++) { 6772 if (copy_to_user(ptr, buff[i], buff_size[i])) { 6773 status = -EFAULT; 6774 goto cleanup0; 6775 } 6776 ptr += buff_size[i]; 6777 } 6778 } 6779 status = 0; 6780 cleanup0: 6781 cmd_free(h, c); 6782 cleanup1: 6783 if (buff) { 6784 int i; 6785 6786 for (i = 0; i < sg_used; i++) 6787 kfree(buff[i]); 6788 kfree(buff); 6789 } 6790 kfree(buff_size); 6791 kfree(ioc); 6792 return status; 6793 } 6794 6795 static void check_ioctl_unit_attention(struct ctlr_info *h, 6796 struct CommandList *c) 6797 { 6798 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 6799 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 6800 (void) check_for_unit_attention(h, c); 6801 } 6802 6803 /* 6804 * ioctl 6805 */ 6806 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg) 6807 { 6808 struct ctlr_info *h; 6809 void __user *argp = (void __user *)arg; 6810 int rc; 6811 6812 h = sdev_to_hba(dev); 6813 6814 switch (cmd) { 6815 case CCISS_DEREGDISK: 6816 case CCISS_REGNEWDISK: 6817 case CCISS_REGNEWD: 6818 hpsa_scan_start(h->scsi_host); 6819 return 0; 6820 case CCISS_GETPCIINFO: 6821 return hpsa_getpciinfo_ioctl(h, argp); 6822 case CCISS_GETDRIVVER: 6823 return hpsa_getdrivver_ioctl(h, argp); 6824 case CCISS_PASSTHRU: 6825 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6826 return -EAGAIN; 6827 rc = hpsa_passthru_ioctl(h, argp); 6828 atomic_inc(&h->passthru_cmds_avail); 6829 return rc; 6830 case CCISS_BIG_PASSTHRU: 6831 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6832 return -EAGAIN; 6833 rc = hpsa_big_passthru_ioctl(h, argp); 6834 atomic_inc(&h->passthru_cmds_avail); 6835 return rc; 6836 default: 6837 return -ENOTTY; 6838 } 6839 } 6840 6841 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr, 6842 u8 reset_type) 6843 { 6844 struct CommandList *c; 6845 6846 c = cmd_alloc(h); 6847 6848 /* fill_cmd can't fail here, no data buffer to map */ 6849 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, 6850 RAID_CTLR_LUNID, TYPE_MSG); 6851 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ 6852 c->waiting = NULL; 6853 enqueue_cmd_and_start_io(h, c); 6854 /* Don't wait for completion, the reset won't complete. Don't free 6855 * the command either. This is the last command we will send before 6856 * re-initializing everything, so it doesn't matter and won't leak. 6857 */ 6858 return; 6859 } 6860 6861 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 6862 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, 6863 int cmd_type) 6864 { 6865 int pci_dir = XFER_NONE; 6866 u64 tag; /* for commands to be aborted */ 6867 6868 c->cmd_type = CMD_IOCTL_PEND; 6869 c->scsi_cmd = SCSI_CMD_BUSY; 6870 c->Header.ReplyQueue = 0; 6871 if (buff != NULL && size > 0) { 6872 c->Header.SGList = 1; 6873 c->Header.SGTotal = cpu_to_le16(1); 6874 } else { 6875 c->Header.SGList = 0; 6876 c->Header.SGTotal = cpu_to_le16(0); 6877 } 6878 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 6879 6880 if (cmd_type == TYPE_CMD) { 6881 switch (cmd) { 6882 case HPSA_INQUIRY: 6883 /* are we trying to read a vital product page */ 6884 if (page_code & VPD_PAGE) { 6885 c->Request.CDB[1] = 0x01; 6886 c->Request.CDB[2] = (page_code & 0xff); 6887 } 6888 c->Request.CDBLen = 6; 6889 c->Request.type_attr_dir = 6890 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6891 c->Request.Timeout = 0; 6892 c->Request.CDB[0] = HPSA_INQUIRY; 6893 c->Request.CDB[4] = size & 0xFF; 6894 break; 6895 case HPSA_REPORT_LOG: 6896 case HPSA_REPORT_PHYS: 6897 /* Talking to controller so It's a physical command 6898 mode = 00 target = 0. Nothing to write. 6899 */ 6900 c->Request.CDBLen = 12; 6901 c->Request.type_attr_dir = 6902 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6903 c->Request.Timeout = 0; 6904 c->Request.CDB[0] = cmd; 6905 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 6906 c->Request.CDB[7] = (size >> 16) & 0xFF; 6907 c->Request.CDB[8] = (size >> 8) & 0xFF; 6908 c->Request.CDB[9] = size & 0xFF; 6909 break; 6910 case BMIC_SENSE_DIAG_OPTIONS: 6911 c->Request.CDBLen = 16; 6912 c->Request.type_attr_dir = 6913 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6914 c->Request.Timeout = 0; 6915 /* Spec says this should be BMIC_WRITE */ 6916 c->Request.CDB[0] = BMIC_READ; 6917 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS; 6918 break; 6919 case BMIC_SET_DIAG_OPTIONS: 6920 c->Request.CDBLen = 16; 6921 c->Request.type_attr_dir = 6922 TYPE_ATTR_DIR(cmd_type, 6923 ATTR_SIMPLE, XFER_WRITE); 6924 c->Request.Timeout = 0; 6925 c->Request.CDB[0] = BMIC_WRITE; 6926 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS; 6927 break; 6928 case HPSA_CACHE_FLUSH: 6929 c->Request.CDBLen = 12; 6930 c->Request.type_attr_dir = 6931 TYPE_ATTR_DIR(cmd_type, 6932 ATTR_SIMPLE, XFER_WRITE); 6933 c->Request.Timeout = 0; 6934 c->Request.CDB[0] = BMIC_WRITE; 6935 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 6936 c->Request.CDB[7] = (size >> 8) & 0xFF; 6937 c->Request.CDB[8] = size & 0xFF; 6938 break; 6939 case TEST_UNIT_READY: 6940 c->Request.CDBLen = 6; 6941 c->Request.type_attr_dir = 6942 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6943 c->Request.Timeout = 0; 6944 break; 6945 case HPSA_GET_RAID_MAP: 6946 c->Request.CDBLen = 12; 6947 c->Request.type_attr_dir = 6948 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6949 c->Request.Timeout = 0; 6950 c->Request.CDB[0] = HPSA_CISS_READ; 6951 c->Request.CDB[1] = cmd; 6952 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 6953 c->Request.CDB[7] = (size >> 16) & 0xFF; 6954 c->Request.CDB[8] = (size >> 8) & 0xFF; 6955 c->Request.CDB[9] = size & 0xFF; 6956 break; 6957 case BMIC_SENSE_CONTROLLER_PARAMETERS: 6958 c->Request.CDBLen = 10; 6959 c->Request.type_attr_dir = 6960 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6961 c->Request.Timeout = 0; 6962 c->Request.CDB[0] = BMIC_READ; 6963 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS; 6964 c->Request.CDB[7] = (size >> 16) & 0xFF; 6965 c->Request.CDB[8] = (size >> 8) & 0xFF; 6966 break; 6967 case BMIC_IDENTIFY_PHYSICAL_DEVICE: 6968 c->Request.CDBLen = 10; 6969 c->Request.type_attr_dir = 6970 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6971 c->Request.Timeout = 0; 6972 c->Request.CDB[0] = BMIC_READ; 6973 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE; 6974 c->Request.CDB[7] = (size >> 16) & 0xFF; 6975 c->Request.CDB[8] = (size >> 8) & 0XFF; 6976 break; 6977 case BMIC_SENSE_SUBSYSTEM_INFORMATION: 6978 c->Request.CDBLen = 10; 6979 c->Request.type_attr_dir = 6980 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6981 c->Request.Timeout = 0; 6982 c->Request.CDB[0] = BMIC_READ; 6983 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION; 6984 c->Request.CDB[7] = (size >> 16) & 0xFF; 6985 c->Request.CDB[8] = (size >> 8) & 0XFF; 6986 break; 6987 case BMIC_SENSE_STORAGE_BOX_PARAMS: 6988 c->Request.CDBLen = 10; 6989 c->Request.type_attr_dir = 6990 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6991 c->Request.Timeout = 0; 6992 c->Request.CDB[0] = BMIC_READ; 6993 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS; 6994 c->Request.CDB[7] = (size >> 16) & 0xFF; 6995 c->Request.CDB[8] = (size >> 8) & 0XFF; 6996 break; 6997 case BMIC_IDENTIFY_CONTROLLER: 6998 c->Request.CDBLen = 10; 6999 c->Request.type_attr_dir = 7000 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 7001 c->Request.Timeout = 0; 7002 c->Request.CDB[0] = BMIC_READ; 7003 c->Request.CDB[1] = 0; 7004 c->Request.CDB[2] = 0; 7005 c->Request.CDB[3] = 0; 7006 c->Request.CDB[4] = 0; 7007 c->Request.CDB[5] = 0; 7008 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER; 7009 c->Request.CDB[7] = (size >> 16) & 0xFF; 7010 c->Request.CDB[8] = (size >> 8) & 0XFF; 7011 c->Request.CDB[9] = 0; 7012 break; 7013 default: 7014 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 7015 BUG(); 7016 return -1; 7017 } 7018 } else if (cmd_type == TYPE_MSG) { 7019 switch (cmd) { 7020 7021 case HPSA_PHYS_TARGET_RESET: 7022 c->Request.CDBLen = 16; 7023 c->Request.type_attr_dir = 7024 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 7025 c->Request.Timeout = 0; /* Don't time out */ 7026 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 7027 c->Request.CDB[0] = HPSA_RESET; 7028 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE; 7029 /* Physical target reset needs no control bytes 4-7*/ 7030 c->Request.CDB[4] = 0x00; 7031 c->Request.CDB[5] = 0x00; 7032 c->Request.CDB[6] = 0x00; 7033 c->Request.CDB[7] = 0x00; 7034 break; 7035 case HPSA_DEVICE_RESET_MSG: 7036 c->Request.CDBLen = 16; 7037 c->Request.type_attr_dir = 7038 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 7039 c->Request.Timeout = 0; /* Don't time out */ 7040 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 7041 c->Request.CDB[0] = cmd; 7042 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; 7043 /* If bytes 4-7 are zero, it means reset the */ 7044 /* LunID device */ 7045 c->Request.CDB[4] = 0x00; 7046 c->Request.CDB[5] = 0x00; 7047 c->Request.CDB[6] = 0x00; 7048 c->Request.CDB[7] = 0x00; 7049 break; 7050 case HPSA_ABORT_MSG: 7051 memcpy(&tag, buff, sizeof(tag)); 7052 dev_dbg(&h->pdev->dev, 7053 "Abort Tag:0x%016llx using rqst Tag:0x%016llx", 7054 tag, c->Header.tag); 7055 c->Request.CDBLen = 16; 7056 c->Request.type_attr_dir = 7057 TYPE_ATTR_DIR(cmd_type, 7058 ATTR_SIMPLE, XFER_WRITE); 7059 c->Request.Timeout = 0; /* Don't time out */ 7060 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT; 7061 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK; 7062 c->Request.CDB[2] = 0x00; /* reserved */ 7063 c->Request.CDB[3] = 0x00; /* reserved */ 7064 /* Tag to abort goes in CDB[4]-CDB[11] */ 7065 memcpy(&c->Request.CDB[4], &tag, sizeof(tag)); 7066 c->Request.CDB[12] = 0x00; /* reserved */ 7067 c->Request.CDB[13] = 0x00; /* reserved */ 7068 c->Request.CDB[14] = 0x00; /* reserved */ 7069 c->Request.CDB[15] = 0x00; /* reserved */ 7070 break; 7071 default: 7072 dev_warn(&h->pdev->dev, "unknown message type %d\n", 7073 cmd); 7074 BUG(); 7075 } 7076 } else { 7077 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 7078 BUG(); 7079 } 7080 7081 switch (GET_DIR(c->Request.type_attr_dir)) { 7082 case XFER_READ: 7083 pci_dir = PCI_DMA_FROMDEVICE; 7084 break; 7085 case XFER_WRITE: 7086 pci_dir = PCI_DMA_TODEVICE; 7087 break; 7088 case XFER_NONE: 7089 pci_dir = PCI_DMA_NONE; 7090 break; 7091 default: 7092 pci_dir = PCI_DMA_BIDIRECTIONAL; 7093 } 7094 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir)) 7095 return -1; 7096 return 0; 7097 } 7098 7099 /* 7100 * Map (physical) PCI mem into (virtual) kernel space 7101 */ 7102 static void __iomem *remap_pci_mem(ulong base, ulong size) 7103 { 7104 ulong page_base = ((ulong) base) & PAGE_MASK; 7105 ulong page_offs = ((ulong) base) - page_base; 7106 void __iomem *page_remapped = ioremap_nocache(page_base, 7107 page_offs + size); 7108 7109 return page_remapped ? (page_remapped + page_offs) : NULL; 7110 } 7111 7112 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) 7113 { 7114 return h->access.command_completed(h, q); 7115 } 7116 7117 static inline bool interrupt_pending(struct ctlr_info *h) 7118 { 7119 return h->access.intr_pending(h); 7120 } 7121 7122 static inline long interrupt_not_for_us(struct ctlr_info *h) 7123 { 7124 return (h->access.intr_pending(h) == 0) || 7125 (h->interrupts_enabled == 0); 7126 } 7127 7128 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 7129 u32 raw_tag) 7130 { 7131 if (unlikely(tag_index >= h->nr_cmds)) { 7132 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 7133 return 1; 7134 } 7135 return 0; 7136 } 7137 7138 static inline void finish_cmd(struct CommandList *c) 7139 { 7140 dial_up_lockup_detection_on_fw_flash_complete(c->h, c); 7141 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI 7142 || c->cmd_type == CMD_IOACCEL2)) 7143 complete_scsi_command(c); 7144 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF) 7145 complete(c->waiting); 7146 } 7147 7148 /* process completion of an indexed ("direct lookup") command */ 7149 static inline void process_indexed_cmd(struct ctlr_info *h, 7150 u32 raw_tag) 7151 { 7152 u32 tag_index; 7153 struct CommandList *c; 7154 7155 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT; 7156 if (!bad_tag(h, tag_index, raw_tag)) { 7157 c = h->cmd_pool + tag_index; 7158 finish_cmd(c); 7159 } 7160 } 7161 7162 /* Some controllers, like p400, will give us one interrupt 7163 * after a soft reset, even if we turned interrupts off. 7164 * Only need to check for this in the hpsa_xxx_discard_completions 7165 * functions. 7166 */ 7167 static int ignore_bogus_interrupt(struct ctlr_info *h) 7168 { 7169 if (likely(!reset_devices)) 7170 return 0; 7171 7172 if (likely(h->interrupts_enabled)) 7173 return 0; 7174 7175 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " 7176 "(known firmware bug.) Ignoring.\n"); 7177 7178 return 1; 7179 } 7180 7181 /* 7182 * Convert &h->q[x] (passed to interrupt handlers) back to h. 7183 * Relies on (h-q[x] == x) being true for x such that 7184 * 0 <= x < MAX_REPLY_QUEUES. 7185 */ 7186 static struct ctlr_info *queue_to_hba(u8 *queue) 7187 { 7188 return container_of((queue - *queue), struct ctlr_info, q[0]); 7189 } 7190 7191 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) 7192 { 7193 struct ctlr_info *h = queue_to_hba(queue); 7194 u8 q = *(u8 *) queue; 7195 u32 raw_tag; 7196 7197 if (ignore_bogus_interrupt(h)) 7198 return IRQ_NONE; 7199 7200 if (interrupt_not_for_us(h)) 7201 return IRQ_NONE; 7202 h->last_intr_timestamp = get_jiffies_64(); 7203 while (interrupt_pending(h)) { 7204 raw_tag = get_next_completion(h, q); 7205 while (raw_tag != FIFO_EMPTY) 7206 raw_tag = next_command(h, q); 7207 } 7208 return IRQ_HANDLED; 7209 } 7210 7211 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) 7212 { 7213 struct ctlr_info *h = queue_to_hba(queue); 7214 u32 raw_tag; 7215 u8 q = *(u8 *) queue; 7216 7217 if (ignore_bogus_interrupt(h)) 7218 return IRQ_NONE; 7219 7220 h->last_intr_timestamp = get_jiffies_64(); 7221 raw_tag = get_next_completion(h, q); 7222 while (raw_tag != FIFO_EMPTY) 7223 raw_tag = next_command(h, q); 7224 return IRQ_HANDLED; 7225 } 7226 7227 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) 7228 { 7229 struct ctlr_info *h = queue_to_hba((u8 *) queue); 7230 u32 raw_tag; 7231 u8 q = *(u8 *) queue; 7232 7233 if (interrupt_not_for_us(h)) 7234 return IRQ_NONE; 7235 h->last_intr_timestamp = get_jiffies_64(); 7236 while (interrupt_pending(h)) { 7237 raw_tag = get_next_completion(h, q); 7238 while (raw_tag != FIFO_EMPTY) { 7239 process_indexed_cmd(h, raw_tag); 7240 raw_tag = next_command(h, q); 7241 } 7242 } 7243 return IRQ_HANDLED; 7244 } 7245 7246 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) 7247 { 7248 struct ctlr_info *h = queue_to_hba(queue); 7249 u32 raw_tag; 7250 u8 q = *(u8 *) queue; 7251 7252 h->last_intr_timestamp = get_jiffies_64(); 7253 raw_tag = get_next_completion(h, q); 7254 while (raw_tag != FIFO_EMPTY) { 7255 process_indexed_cmd(h, raw_tag); 7256 raw_tag = next_command(h, q); 7257 } 7258 return IRQ_HANDLED; 7259 } 7260 7261 /* Send a message CDB to the firmware. Careful, this only works 7262 * in simple mode, not performant mode due to the tag lookup. 7263 * We only ever use this immediately after a controller reset. 7264 */ 7265 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 7266 unsigned char type) 7267 { 7268 struct Command { 7269 struct CommandListHeader CommandHeader; 7270 struct RequestBlock Request; 7271 struct ErrDescriptor ErrorDescriptor; 7272 }; 7273 struct Command *cmd; 7274 static const size_t cmd_sz = sizeof(*cmd) + 7275 sizeof(cmd->ErrorDescriptor); 7276 dma_addr_t paddr64; 7277 __le32 paddr32; 7278 u32 tag; 7279 void __iomem *vaddr; 7280 int i, err; 7281 7282 vaddr = pci_ioremap_bar(pdev, 0); 7283 if (vaddr == NULL) 7284 return -ENOMEM; 7285 7286 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 7287 * CCISS commands, so they must be allocated from the lower 4GiB of 7288 * memory. 7289 */ 7290 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 7291 if (err) { 7292 iounmap(vaddr); 7293 return err; 7294 } 7295 7296 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); 7297 if (cmd == NULL) { 7298 iounmap(vaddr); 7299 return -ENOMEM; 7300 } 7301 7302 /* This must fit, because of the 32-bit consistent DMA mask. Also, 7303 * although there's no guarantee, we assume that the address is at 7304 * least 4-byte aligned (most likely, it's page-aligned). 7305 */ 7306 paddr32 = cpu_to_le32(paddr64); 7307 7308 cmd->CommandHeader.ReplyQueue = 0; 7309 cmd->CommandHeader.SGList = 0; 7310 cmd->CommandHeader.SGTotal = cpu_to_le16(0); 7311 cmd->CommandHeader.tag = cpu_to_le64(paddr64); 7312 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 7313 7314 cmd->Request.CDBLen = 16; 7315 cmd->Request.type_attr_dir = 7316 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE); 7317 cmd->Request.Timeout = 0; /* Don't time out */ 7318 cmd->Request.CDB[0] = opcode; 7319 cmd->Request.CDB[1] = type; 7320 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 7321 cmd->ErrorDescriptor.Addr = 7322 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd))); 7323 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo)); 7324 7325 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET); 7326 7327 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 7328 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 7329 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64) 7330 break; 7331 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 7332 } 7333 7334 iounmap(vaddr); 7335 7336 /* we leak the DMA buffer here ... no choice since the controller could 7337 * still complete the command. 7338 */ 7339 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 7340 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 7341 opcode, type); 7342 return -ETIMEDOUT; 7343 } 7344 7345 pci_free_consistent(pdev, cmd_sz, cmd, paddr64); 7346 7347 if (tag & HPSA_ERROR_BIT) { 7348 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 7349 opcode, type); 7350 return -EIO; 7351 } 7352 7353 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 7354 opcode, type); 7355 return 0; 7356 } 7357 7358 #define hpsa_noop(p) hpsa_message(p, 3, 0) 7359 7360 static int hpsa_controller_hard_reset(struct pci_dev *pdev, 7361 void __iomem *vaddr, u32 use_doorbell) 7362 { 7363 7364 if (use_doorbell) { 7365 /* For everything after the P600, the PCI power state method 7366 * of resetting the controller doesn't work, so we have this 7367 * other way using the doorbell register. 7368 */ 7369 dev_info(&pdev->dev, "using doorbell to reset controller\n"); 7370 writel(use_doorbell, vaddr + SA5_DOORBELL); 7371 7372 /* PMC hardware guys tell us we need a 10 second delay after 7373 * doorbell reset and before any attempt to talk to the board 7374 * at all to ensure that this actually works and doesn't fall 7375 * over in some weird corner cases. 7376 */ 7377 msleep(10000); 7378 } else { /* Try to do it the PCI power state way */ 7379 7380 /* Quoting from the Open CISS Specification: "The Power 7381 * Management Control/Status Register (CSR) controls the power 7382 * state of the device. The normal operating state is D0, 7383 * CSR=00h. The software off state is D3, CSR=03h. To reset 7384 * the controller, place the interface device in D3 then to D0, 7385 * this causes a secondary PCI reset which will reset the 7386 * controller." */ 7387 7388 int rc = 0; 7389 7390 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 7391 7392 /* enter the D3hot power management state */ 7393 rc = pci_set_power_state(pdev, PCI_D3hot); 7394 if (rc) 7395 return rc; 7396 7397 msleep(500); 7398 7399 /* enter the D0 power management state */ 7400 rc = pci_set_power_state(pdev, PCI_D0); 7401 if (rc) 7402 return rc; 7403 7404 /* 7405 * The P600 requires a small delay when changing states. 7406 * Otherwise we may think the board did not reset and we bail. 7407 * This for kdump only and is particular to the P600. 7408 */ 7409 msleep(500); 7410 } 7411 return 0; 7412 } 7413 7414 static void init_driver_version(char *driver_version, int len) 7415 { 7416 memset(driver_version, 0, len); 7417 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); 7418 } 7419 7420 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) 7421 { 7422 char *driver_version; 7423 int i, size = sizeof(cfgtable->driver_version); 7424 7425 driver_version = kmalloc(size, GFP_KERNEL); 7426 if (!driver_version) 7427 return -ENOMEM; 7428 7429 init_driver_version(driver_version, size); 7430 for (i = 0; i < size; i++) 7431 writeb(driver_version[i], &cfgtable->driver_version[i]); 7432 kfree(driver_version); 7433 return 0; 7434 } 7435 7436 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, 7437 unsigned char *driver_ver) 7438 { 7439 int i; 7440 7441 for (i = 0; i < sizeof(cfgtable->driver_version); i++) 7442 driver_ver[i] = readb(&cfgtable->driver_version[i]); 7443 } 7444 7445 static int controller_reset_failed(struct CfgTable __iomem *cfgtable) 7446 { 7447 7448 char *driver_ver, *old_driver_ver; 7449 int rc, size = sizeof(cfgtable->driver_version); 7450 7451 old_driver_ver = kmalloc(2 * size, GFP_KERNEL); 7452 if (!old_driver_ver) 7453 return -ENOMEM; 7454 driver_ver = old_driver_ver + size; 7455 7456 /* After a reset, the 32 bytes of "driver version" in the cfgtable 7457 * should have been changed, otherwise we know the reset failed. 7458 */ 7459 init_driver_version(old_driver_ver, size); 7460 read_driver_ver_from_cfgtable(cfgtable, driver_ver); 7461 rc = !memcmp(driver_ver, old_driver_ver, size); 7462 kfree(old_driver_ver); 7463 return rc; 7464 } 7465 /* This does a hard reset of the controller using PCI power management 7466 * states or the using the doorbell register. 7467 */ 7468 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id) 7469 { 7470 u64 cfg_offset; 7471 u32 cfg_base_addr; 7472 u64 cfg_base_addr_index; 7473 void __iomem *vaddr; 7474 unsigned long paddr; 7475 u32 misc_fw_support; 7476 int rc; 7477 struct CfgTable __iomem *cfgtable; 7478 u32 use_doorbell; 7479 u16 command_register; 7480 7481 /* For controllers as old as the P600, this is very nearly 7482 * the same thing as 7483 * 7484 * pci_save_state(pci_dev); 7485 * pci_set_power_state(pci_dev, PCI_D3hot); 7486 * pci_set_power_state(pci_dev, PCI_D0); 7487 * pci_restore_state(pci_dev); 7488 * 7489 * For controllers newer than the P600, the pci power state 7490 * method of resetting doesn't work so we have another way 7491 * using the doorbell register. 7492 */ 7493 7494 if (!ctlr_is_resettable(board_id)) { 7495 dev_warn(&pdev->dev, "Controller not resettable\n"); 7496 return -ENODEV; 7497 } 7498 7499 /* if controller is soft- but not hard resettable... */ 7500 if (!ctlr_is_hard_resettable(board_id)) 7501 return -ENOTSUPP; /* try soft reset later. */ 7502 7503 /* Save the PCI command register */ 7504 pci_read_config_word(pdev, 4, &command_register); 7505 pci_save_state(pdev); 7506 7507 /* find the first memory BAR, so we can find the cfg table */ 7508 rc = hpsa_pci_find_memory_BAR(pdev, &paddr); 7509 if (rc) 7510 return rc; 7511 vaddr = remap_pci_mem(paddr, 0x250); 7512 if (!vaddr) 7513 return -ENOMEM; 7514 7515 /* find cfgtable in order to check if reset via doorbell is supported */ 7516 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, 7517 &cfg_base_addr_index, &cfg_offset); 7518 if (rc) 7519 goto unmap_vaddr; 7520 cfgtable = remap_pci_mem(pci_resource_start(pdev, 7521 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); 7522 if (!cfgtable) { 7523 rc = -ENOMEM; 7524 goto unmap_vaddr; 7525 } 7526 rc = write_driver_ver_to_cfgtable(cfgtable); 7527 if (rc) 7528 goto unmap_cfgtable; 7529 7530 /* If reset via doorbell register is supported, use that. 7531 * There are two such methods. Favor the newest method. 7532 */ 7533 misc_fw_support = readl(&cfgtable->misc_fw_support); 7534 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; 7535 if (use_doorbell) { 7536 use_doorbell = DOORBELL_CTLR_RESET2; 7537 } else { 7538 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; 7539 if (use_doorbell) { 7540 dev_warn(&pdev->dev, 7541 "Soft reset not supported. Firmware update is required.\n"); 7542 rc = -ENOTSUPP; /* try soft reset */ 7543 goto unmap_cfgtable; 7544 } 7545 } 7546 7547 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); 7548 if (rc) 7549 goto unmap_cfgtable; 7550 7551 pci_restore_state(pdev); 7552 pci_write_config_word(pdev, 4, command_register); 7553 7554 /* Some devices (notably the HP Smart Array 5i Controller) 7555 need a little pause here */ 7556 msleep(HPSA_POST_RESET_PAUSE_MSECS); 7557 7558 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); 7559 if (rc) { 7560 dev_warn(&pdev->dev, 7561 "Failed waiting for board to become ready after hard reset\n"); 7562 goto unmap_cfgtable; 7563 } 7564 7565 rc = controller_reset_failed(vaddr); 7566 if (rc < 0) 7567 goto unmap_cfgtable; 7568 if (rc) { 7569 dev_warn(&pdev->dev, "Unable to successfully reset " 7570 "controller. Will try soft reset.\n"); 7571 rc = -ENOTSUPP; 7572 } else { 7573 dev_info(&pdev->dev, "board ready after hard reset.\n"); 7574 } 7575 7576 unmap_cfgtable: 7577 iounmap(cfgtable); 7578 7579 unmap_vaddr: 7580 iounmap(vaddr); 7581 return rc; 7582 } 7583 7584 /* 7585 * We cannot read the structure directly, for portability we must use 7586 * the io functions. 7587 * This is for debug only. 7588 */ 7589 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb) 7590 { 7591 #ifdef HPSA_DEBUG 7592 int i; 7593 char temp_name[17]; 7594 7595 dev_info(dev, "Controller Configuration information\n"); 7596 dev_info(dev, "------------------------------------\n"); 7597 for (i = 0; i < 4; i++) 7598 temp_name[i] = readb(&(tb->Signature[i])); 7599 temp_name[4] = '\0'; 7600 dev_info(dev, " Signature = %s\n", temp_name); 7601 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 7602 dev_info(dev, " Transport methods supported = 0x%x\n", 7603 readl(&(tb->TransportSupport))); 7604 dev_info(dev, " Transport methods active = 0x%x\n", 7605 readl(&(tb->TransportActive))); 7606 dev_info(dev, " Requested transport Method = 0x%x\n", 7607 readl(&(tb->HostWrite.TransportRequest))); 7608 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 7609 readl(&(tb->HostWrite.CoalIntDelay))); 7610 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 7611 readl(&(tb->HostWrite.CoalIntCount))); 7612 dev_info(dev, " Max outstanding commands = %d\n", 7613 readl(&(tb->CmdsOutMax))); 7614 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 7615 for (i = 0; i < 16; i++) 7616 temp_name[i] = readb(&(tb->ServerName[i])); 7617 temp_name[16] = '\0'; 7618 dev_info(dev, " Server Name = %s\n", temp_name); 7619 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 7620 readl(&(tb->HeartBeat))); 7621 #endif /* HPSA_DEBUG */ 7622 } 7623 7624 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 7625 { 7626 int i, offset, mem_type, bar_type; 7627 7628 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 7629 return 0; 7630 offset = 0; 7631 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 7632 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 7633 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 7634 offset += 4; 7635 else { 7636 mem_type = pci_resource_flags(pdev, i) & 7637 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 7638 switch (mem_type) { 7639 case PCI_BASE_ADDRESS_MEM_TYPE_32: 7640 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 7641 offset += 4; /* 32 bit */ 7642 break; 7643 case PCI_BASE_ADDRESS_MEM_TYPE_64: 7644 offset += 8; 7645 break; 7646 default: /* reserved in PCI 2.2 */ 7647 dev_warn(&pdev->dev, 7648 "base address is invalid\n"); 7649 return -1; 7650 break; 7651 } 7652 } 7653 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 7654 return i + 1; 7655 } 7656 return -1; 7657 } 7658 7659 static void hpsa_disable_interrupt_mode(struct ctlr_info *h) 7660 { 7661 if (h->msix_vector) { 7662 if (h->pdev->msix_enabled) 7663 pci_disable_msix(h->pdev); 7664 h->msix_vector = 0; 7665 } else if (h->msi_vector) { 7666 if (h->pdev->msi_enabled) 7667 pci_disable_msi(h->pdev); 7668 h->msi_vector = 0; 7669 } 7670 } 7671 7672 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 7673 * controllers that are capable. If not, we use legacy INTx mode. 7674 */ 7675 static void hpsa_interrupt_mode(struct ctlr_info *h) 7676 { 7677 #ifdef CONFIG_PCI_MSI 7678 int err, i; 7679 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES]; 7680 7681 for (i = 0; i < MAX_REPLY_QUEUES; i++) { 7682 hpsa_msix_entries[i].vector = 0; 7683 hpsa_msix_entries[i].entry = i; 7684 } 7685 7686 /* Some boards advertise MSI but don't really support it */ 7687 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || 7688 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) 7689 goto default_int_mode; 7690 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { 7691 dev_info(&h->pdev->dev, "MSI-X capable controller\n"); 7692 h->msix_vector = MAX_REPLY_QUEUES; 7693 if (h->msix_vector > num_online_cpus()) 7694 h->msix_vector = num_online_cpus(); 7695 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries, 7696 1, h->msix_vector); 7697 if (err < 0) { 7698 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err); 7699 h->msix_vector = 0; 7700 goto single_msi_mode; 7701 } else if (err < h->msix_vector) { 7702 dev_warn(&h->pdev->dev, "only %d MSI-X vectors " 7703 "available\n", err); 7704 } 7705 h->msix_vector = err; 7706 for (i = 0; i < h->msix_vector; i++) 7707 h->intr[i] = hpsa_msix_entries[i].vector; 7708 return; 7709 } 7710 single_msi_mode: 7711 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { 7712 dev_info(&h->pdev->dev, "MSI capable controller\n"); 7713 if (!pci_enable_msi(h->pdev)) 7714 h->msi_vector = 1; 7715 else 7716 dev_warn(&h->pdev->dev, "MSI init failed\n"); 7717 } 7718 default_int_mode: 7719 #endif /* CONFIG_PCI_MSI */ 7720 /* if we get here we're going to use the default interrupt mode */ 7721 h->intr[h->intr_mode] = h->pdev->irq; 7722 } 7723 7724 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) 7725 { 7726 int i; 7727 u32 subsystem_vendor_id, subsystem_device_id; 7728 7729 subsystem_vendor_id = pdev->subsystem_vendor; 7730 subsystem_device_id = pdev->subsystem_device; 7731 *board_id = ((subsystem_device_id << 16) & 0xffff0000) | 7732 subsystem_vendor_id; 7733 7734 for (i = 0; i < ARRAY_SIZE(products); i++) 7735 if (*board_id == products[i].board_id) 7736 return i; 7737 7738 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && 7739 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || 7740 !hpsa_allow_any) { 7741 dev_warn(&pdev->dev, "unrecognized board ID: " 7742 "0x%08x, ignoring.\n", *board_id); 7743 return -ENODEV; 7744 } 7745 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ 7746 } 7747 7748 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 7749 unsigned long *memory_bar) 7750 { 7751 int i; 7752 7753 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 7754 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 7755 /* addressing mode bits already removed */ 7756 *memory_bar = pci_resource_start(pdev, i); 7757 dev_dbg(&pdev->dev, "memory BAR = %lx\n", 7758 *memory_bar); 7759 return 0; 7760 } 7761 dev_warn(&pdev->dev, "no memory BAR found\n"); 7762 return -ENODEV; 7763 } 7764 7765 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, 7766 int wait_for_ready) 7767 { 7768 int i, iterations; 7769 u32 scratchpad; 7770 if (wait_for_ready) 7771 iterations = HPSA_BOARD_READY_ITERATIONS; 7772 else 7773 iterations = HPSA_BOARD_NOT_READY_ITERATIONS; 7774 7775 for (i = 0; i < iterations; i++) { 7776 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); 7777 if (wait_for_ready) { 7778 if (scratchpad == HPSA_FIRMWARE_READY) 7779 return 0; 7780 } else { 7781 if (scratchpad != HPSA_FIRMWARE_READY) 7782 return 0; 7783 } 7784 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 7785 } 7786 dev_warn(&pdev->dev, "board not ready, timed out.\n"); 7787 return -ENODEV; 7788 } 7789 7790 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, 7791 u32 *cfg_base_addr, u64 *cfg_base_addr_index, 7792 u64 *cfg_offset) 7793 { 7794 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); 7795 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); 7796 *cfg_base_addr &= (u32) 0x0000ffff; 7797 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); 7798 if (*cfg_base_addr_index == -1) { 7799 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 7800 return -ENODEV; 7801 } 7802 return 0; 7803 } 7804 7805 static void hpsa_free_cfgtables(struct ctlr_info *h) 7806 { 7807 if (h->transtable) { 7808 iounmap(h->transtable); 7809 h->transtable = NULL; 7810 } 7811 if (h->cfgtable) { 7812 iounmap(h->cfgtable); 7813 h->cfgtable = NULL; 7814 } 7815 } 7816 7817 /* Find and map CISS config table and transfer table 7818 + * several items must be unmapped (freed) later 7819 + * */ 7820 static int hpsa_find_cfgtables(struct ctlr_info *h) 7821 { 7822 u64 cfg_offset; 7823 u32 cfg_base_addr; 7824 u64 cfg_base_addr_index; 7825 u32 trans_offset; 7826 int rc; 7827 7828 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 7829 &cfg_base_addr_index, &cfg_offset); 7830 if (rc) 7831 return rc; 7832 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, 7833 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); 7834 if (!h->cfgtable) { 7835 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n"); 7836 return -ENOMEM; 7837 } 7838 rc = write_driver_ver_to_cfgtable(h->cfgtable); 7839 if (rc) 7840 return rc; 7841 /* Find performant mode table. */ 7842 trans_offset = readl(&h->cfgtable->TransMethodOffset); 7843 h->transtable = remap_pci_mem(pci_resource_start(h->pdev, 7844 cfg_base_addr_index)+cfg_offset+trans_offset, 7845 sizeof(*h->transtable)); 7846 if (!h->transtable) { 7847 dev_err(&h->pdev->dev, "Failed mapping transfer table\n"); 7848 hpsa_free_cfgtables(h); 7849 return -ENOMEM; 7850 } 7851 return 0; 7852 } 7853 7854 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) 7855 { 7856 #define MIN_MAX_COMMANDS 16 7857 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS); 7858 7859 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands); 7860 7861 /* Limit commands in memory limited kdump scenario. */ 7862 if (reset_devices && h->max_commands > 32) 7863 h->max_commands = 32; 7864 7865 if (h->max_commands < MIN_MAX_COMMANDS) { 7866 dev_warn(&h->pdev->dev, 7867 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n", 7868 h->max_commands, 7869 MIN_MAX_COMMANDS); 7870 h->max_commands = MIN_MAX_COMMANDS; 7871 } 7872 } 7873 7874 /* If the controller reports that the total max sg entries is greater than 512, 7875 * then we know that chained SG blocks work. (Original smart arrays did not 7876 * support chained SG blocks and would return zero for max sg entries.) 7877 */ 7878 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h) 7879 { 7880 return h->maxsgentries > 512; 7881 } 7882 7883 /* Interrogate the hardware for some limits: 7884 * max commands, max SG elements without chaining, and with chaining, 7885 * SG chain block size, etc. 7886 */ 7887 static void hpsa_find_board_params(struct ctlr_info *h) 7888 { 7889 hpsa_get_max_perf_mode_cmds(h); 7890 h->nr_cmds = h->max_commands; 7891 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); 7892 h->fw_support = readl(&(h->cfgtable->misc_fw_support)); 7893 if (hpsa_supports_chained_sg_blocks(h)) { 7894 /* Limit in-command s/g elements to 32 save dma'able memory. */ 7895 h->max_cmd_sg_entries = 32; 7896 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries; 7897 h->maxsgentries--; /* save one for chain pointer */ 7898 } else { 7899 /* 7900 * Original smart arrays supported at most 31 s/g entries 7901 * embedded inline in the command (trying to use more 7902 * would lock up the controller) 7903 */ 7904 h->max_cmd_sg_entries = 31; 7905 h->maxsgentries = 31; /* default to traditional values */ 7906 h->chainsize = 0; 7907 } 7908 7909 /* Find out what task management functions are supported and cache */ 7910 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); 7911 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags)) 7912 dev_warn(&h->pdev->dev, "Physical aborts not supported\n"); 7913 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) 7914 dev_warn(&h->pdev->dev, "Logical aborts not supported\n"); 7915 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)) 7916 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n"); 7917 } 7918 7919 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) 7920 { 7921 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { 7922 dev_err(&h->pdev->dev, "not a valid CISS config table\n"); 7923 return false; 7924 } 7925 return true; 7926 } 7927 7928 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) 7929 { 7930 u32 driver_support; 7931 7932 driver_support = readl(&(h->cfgtable->driver_support)); 7933 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 7934 #ifdef CONFIG_X86 7935 driver_support |= ENABLE_SCSI_PREFETCH; 7936 #endif 7937 driver_support |= ENABLE_UNIT_ATTN; 7938 writel(driver_support, &(h->cfgtable->driver_support)); 7939 } 7940 7941 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result 7942 * in a prefetch beyond physical memory. 7943 */ 7944 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) 7945 { 7946 u32 dma_prefetch; 7947 7948 if (h->board_id != 0x3225103C) 7949 return; 7950 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 7951 dma_prefetch |= 0x8000; 7952 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 7953 } 7954 7955 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) 7956 { 7957 int i; 7958 u32 doorbell_value; 7959 unsigned long flags; 7960 /* wait until the clear_event_notify bit 6 is cleared by controller. */ 7961 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) { 7962 spin_lock_irqsave(&h->lock, flags); 7963 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 7964 spin_unlock_irqrestore(&h->lock, flags); 7965 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) 7966 goto done; 7967 /* delay and try again */ 7968 msleep(CLEAR_EVENT_WAIT_INTERVAL); 7969 } 7970 return -ENODEV; 7971 done: 7972 return 0; 7973 } 7974 7975 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h) 7976 { 7977 int i; 7978 u32 doorbell_value; 7979 unsigned long flags; 7980 7981 /* under certain very rare conditions, this can take awhile. 7982 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 7983 * as we enter this code.) 7984 */ 7985 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) { 7986 if (h->remove_in_progress) 7987 goto done; 7988 spin_lock_irqsave(&h->lock, flags); 7989 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 7990 spin_unlock_irqrestore(&h->lock, flags); 7991 if (!(doorbell_value & CFGTBL_ChangeReq)) 7992 goto done; 7993 /* delay and try again */ 7994 msleep(MODE_CHANGE_WAIT_INTERVAL); 7995 } 7996 return -ENODEV; 7997 done: 7998 return 0; 7999 } 8000 8001 /* return -ENODEV or other reason on error, 0 on success */ 8002 static int hpsa_enter_simple_mode(struct ctlr_info *h) 8003 { 8004 u32 trans_support; 8005 8006 trans_support = readl(&(h->cfgtable->TransportSupport)); 8007 if (!(trans_support & SIMPLE_MODE)) 8008 return -ENOTSUPP; 8009 8010 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 8011 8012 /* Update the field, and then ring the doorbell */ 8013 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 8014 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); 8015 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 8016 if (hpsa_wait_for_mode_change_ack(h)) 8017 goto error; 8018 print_cfg_table(&h->pdev->dev, h->cfgtable); 8019 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) 8020 goto error; 8021 h->transMethod = CFGTBL_Trans_Simple; 8022 return 0; 8023 error: 8024 dev_err(&h->pdev->dev, "failed to enter simple mode\n"); 8025 return -ENODEV; 8026 } 8027 8028 /* free items allocated or mapped by hpsa_pci_init */ 8029 static void hpsa_free_pci_init(struct ctlr_info *h) 8030 { 8031 hpsa_free_cfgtables(h); /* pci_init 4 */ 8032 iounmap(h->vaddr); /* pci_init 3 */ 8033 h->vaddr = NULL; 8034 hpsa_disable_interrupt_mode(h); /* pci_init 2 */ 8035 /* 8036 * call pci_disable_device before pci_release_regions per 8037 * Documentation/PCI/pci.txt 8038 */ 8039 pci_disable_device(h->pdev); /* pci_init 1 */ 8040 pci_release_regions(h->pdev); /* pci_init 2 */ 8041 } 8042 8043 /* several items must be freed later */ 8044 static int hpsa_pci_init(struct ctlr_info *h) 8045 { 8046 int prod_index, err; 8047 8048 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); 8049 if (prod_index < 0) 8050 return prod_index; 8051 h->product_name = products[prod_index].product_name; 8052 h->access = *(products[prod_index].access); 8053 8054 h->needs_abort_tags_swizzled = 8055 ctlr_needs_abort_tags_swizzled(h->board_id); 8056 8057 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | 8058 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); 8059 8060 err = pci_enable_device(h->pdev); 8061 if (err) { 8062 dev_err(&h->pdev->dev, "failed to enable PCI device\n"); 8063 pci_disable_device(h->pdev); 8064 return err; 8065 } 8066 8067 err = pci_request_regions(h->pdev, HPSA); 8068 if (err) { 8069 dev_err(&h->pdev->dev, 8070 "failed to obtain PCI resources\n"); 8071 pci_disable_device(h->pdev); 8072 return err; 8073 } 8074 8075 pci_set_master(h->pdev); 8076 8077 hpsa_interrupt_mode(h); 8078 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); 8079 if (err) 8080 goto clean2; /* intmode+region, pci */ 8081 h->vaddr = remap_pci_mem(h->paddr, 0x250); 8082 if (!h->vaddr) { 8083 dev_err(&h->pdev->dev, "failed to remap PCI mem\n"); 8084 err = -ENOMEM; 8085 goto clean2; /* intmode+region, pci */ 8086 } 8087 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 8088 if (err) 8089 goto clean3; /* vaddr, intmode+region, pci */ 8090 err = hpsa_find_cfgtables(h); 8091 if (err) 8092 goto clean3; /* vaddr, intmode+region, pci */ 8093 hpsa_find_board_params(h); 8094 8095 if (!hpsa_CISS_signature_present(h)) { 8096 err = -ENODEV; 8097 goto clean4; /* cfgtables, vaddr, intmode+region, pci */ 8098 } 8099 hpsa_set_driver_support_bits(h); 8100 hpsa_p600_dma_prefetch_quirk(h); 8101 err = hpsa_enter_simple_mode(h); 8102 if (err) 8103 goto clean4; /* cfgtables, vaddr, intmode+region, pci */ 8104 return 0; 8105 8106 clean4: /* cfgtables, vaddr, intmode+region, pci */ 8107 hpsa_free_cfgtables(h); 8108 clean3: /* vaddr, intmode+region, pci */ 8109 iounmap(h->vaddr); 8110 h->vaddr = NULL; 8111 clean2: /* intmode+region, pci */ 8112 hpsa_disable_interrupt_mode(h); 8113 /* 8114 * call pci_disable_device before pci_release_regions per 8115 * Documentation/PCI/pci.txt 8116 */ 8117 pci_disable_device(h->pdev); 8118 pci_release_regions(h->pdev); 8119 return err; 8120 } 8121 8122 static void hpsa_hba_inquiry(struct ctlr_info *h) 8123 { 8124 int rc; 8125 8126 #define HBA_INQUIRY_BYTE_COUNT 64 8127 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 8128 if (!h->hba_inquiry_data) 8129 return; 8130 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 8131 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 8132 if (rc != 0) { 8133 kfree(h->hba_inquiry_data); 8134 h->hba_inquiry_data = NULL; 8135 } 8136 } 8137 8138 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id) 8139 { 8140 int rc, i; 8141 void __iomem *vaddr; 8142 8143 if (!reset_devices) 8144 return 0; 8145 8146 /* kdump kernel is loading, we don't know in which state is 8147 * the pci interface. The dev->enable_cnt is equal zero 8148 * so we call enable+disable, wait a while and switch it on. 8149 */ 8150 rc = pci_enable_device(pdev); 8151 if (rc) { 8152 dev_warn(&pdev->dev, "Failed to enable PCI device\n"); 8153 return -ENODEV; 8154 } 8155 pci_disable_device(pdev); 8156 msleep(260); /* a randomly chosen number */ 8157 rc = pci_enable_device(pdev); 8158 if (rc) { 8159 dev_warn(&pdev->dev, "failed to enable device.\n"); 8160 return -ENODEV; 8161 } 8162 8163 pci_set_master(pdev); 8164 8165 vaddr = pci_ioremap_bar(pdev, 0); 8166 if (vaddr == NULL) { 8167 rc = -ENOMEM; 8168 goto out_disable; 8169 } 8170 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET); 8171 iounmap(vaddr); 8172 8173 /* Reset the controller with a PCI power-cycle or via doorbell */ 8174 rc = hpsa_kdump_hard_reset_controller(pdev, board_id); 8175 8176 /* -ENOTSUPP here means we cannot reset the controller 8177 * but it's already (and still) up and running in 8178 * "performant mode". Or, it might be 640x, which can't reset 8179 * due to concerns about shared bbwc between 6402/6404 pair. 8180 */ 8181 if (rc) 8182 goto out_disable; 8183 8184 /* Now try to get the controller to respond to a no-op */ 8185 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n"); 8186 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 8187 if (hpsa_noop(pdev) == 0) 8188 break; 8189 else 8190 dev_warn(&pdev->dev, "no-op failed%s\n", 8191 (i < 11 ? "; re-trying" : "")); 8192 } 8193 8194 out_disable: 8195 8196 pci_disable_device(pdev); 8197 return rc; 8198 } 8199 8200 static void hpsa_free_cmd_pool(struct ctlr_info *h) 8201 { 8202 kfree(h->cmd_pool_bits); 8203 h->cmd_pool_bits = NULL; 8204 if (h->cmd_pool) { 8205 pci_free_consistent(h->pdev, 8206 h->nr_cmds * sizeof(struct CommandList), 8207 h->cmd_pool, 8208 h->cmd_pool_dhandle); 8209 h->cmd_pool = NULL; 8210 h->cmd_pool_dhandle = 0; 8211 } 8212 if (h->errinfo_pool) { 8213 pci_free_consistent(h->pdev, 8214 h->nr_cmds * sizeof(struct ErrorInfo), 8215 h->errinfo_pool, 8216 h->errinfo_pool_dhandle); 8217 h->errinfo_pool = NULL; 8218 h->errinfo_pool_dhandle = 0; 8219 } 8220 } 8221 8222 static int hpsa_alloc_cmd_pool(struct ctlr_info *h) 8223 { 8224 h->cmd_pool_bits = kzalloc( 8225 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * 8226 sizeof(unsigned long), GFP_KERNEL); 8227 h->cmd_pool = pci_alloc_consistent(h->pdev, 8228 h->nr_cmds * sizeof(*h->cmd_pool), 8229 &(h->cmd_pool_dhandle)); 8230 h->errinfo_pool = pci_alloc_consistent(h->pdev, 8231 h->nr_cmds * sizeof(*h->errinfo_pool), 8232 &(h->errinfo_pool_dhandle)); 8233 if ((h->cmd_pool_bits == NULL) 8234 || (h->cmd_pool == NULL) 8235 || (h->errinfo_pool == NULL)) { 8236 dev_err(&h->pdev->dev, "out of memory in %s", __func__); 8237 goto clean_up; 8238 } 8239 hpsa_preinitialize_commands(h); 8240 return 0; 8241 clean_up: 8242 hpsa_free_cmd_pool(h); 8243 return -ENOMEM; 8244 } 8245 8246 static void hpsa_irq_affinity_hints(struct ctlr_info *h) 8247 { 8248 int i, cpu; 8249 8250 cpu = cpumask_first(cpu_online_mask); 8251 for (i = 0; i < h->msix_vector; i++) { 8252 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu)); 8253 cpu = cpumask_next(cpu, cpu_online_mask); 8254 } 8255 } 8256 8257 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */ 8258 static void hpsa_free_irqs(struct ctlr_info *h) 8259 { 8260 int i; 8261 8262 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) { 8263 /* Single reply queue, only one irq to free */ 8264 i = h->intr_mode; 8265 irq_set_affinity_hint(h->intr[i], NULL); 8266 free_irq(h->intr[i], &h->q[i]); 8267 h->q[i] = 0; 8268 return; 8269 } 8270 8271 for (i = 0; i < h->msix_vector; i++) { 8272 irq_set_affinity_hint(h->intr[i], NULL); 8273 free_irq(h->intr[i], &h->q[i]); 8274 h->q[i] = 0; 8275 } 8276 for (; i < MAX_REPLY_QUEUES; i++) 8277 h->q[i] = 0; 8278 } 8279 8280 /* returns 0 on success; cleans up and returns -Enn on error */ 8281 static int hpsa_request_irqs(struct ctlr_info *h, 8282 irqreturn_t (*msixhandler)(int, void *), 8283 irqreturn_t (*intxhandler)(int, void *)) 8284 { 8285 int rc, i; 8286 8287 /* 8288 * initialize h->q[x] = x so that interrupt handlers know which 8289 * queue to process. 8290 */ 8291 for (i = 0; i < MAX_REPLY_QUEUES; i++) 8292 h->q[i] = (u8) i; 8293 8294 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) { 8295 /* If performant mode and MSI-X, use multiple reply queues */ 8296 for (i = 0; i < h->msix_vector; i++) { 8297 sprintf(h->intrname[i], "%s-msix%d", h->devname, i); 8298 rc = request_irq(h->intr[i], msixhandler, 8299 0, h->intrname[i], 8300 &h->q[i]); 8301 if (rc) { 8302 int j; 8303 8304 dev_err(&h->pdev->dev, 8305 "failed to get irq %d for %s\n", 8306 h->intr[i], h->devname); 8307 for (j = 0; j < i; j++) { 8308 free_irq(h->intr[j], &h->q[j]); 8309 h->q[j] = 0; 8310 } 8311 for (; j < MAX_REPLY_QUEUES; j++) 8312 h->q[j] = 0; 8313 return rc; 8314 } 8315 } 8316 hpsa_irq_affinity_hints(h); 8317 } else { 8318 /* Use single reply pool */ 8319 if (h->msix_vector > 0 || h->msi_vector) { 8320 if (h->msix_vector) 8321 sprintf(h->intrname[h->intr_mode], 8322 "%s-msix", h->devname); 8323 else 8324 sprintf(h->intrname[h->intr_mode], 8325 "%s-msi", h->devname); 8326 rc = request_irq(h->intr[h->intr_mode], 8327 msixhandler, 0, 8328 h->intrname[h->intr_mode], 8329 &h->q[h->intr_mode]); 8330 } else { 8331 sprintf(h->intrname[h->intr_mode], 8332 "%s-intx", h->devname); 8333 rc = request_irq(h->intr[h->intr_mode], 8334 intxhandler, IRQF_SHARED, 8335 h->intrname[h->intr_mode], 8336 &h->q[h->intr_mode]); 8337 } 8338 irq_set_affinity_hint(h->intr[h->intr_mode], NULL); 8339 } 8340 if (rc) { 8341 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n", 8342 h->intr[h->intr_mode], h->devname); 8343 hpsa_free_irqs(h); 8344 return -ENODEV; 8345 } 8346 return 0; 8347 } 8348 8349 static int hpsa_kdump_soft_reset(struct ctlr_info *h) 8350 { 8351 int rc; 8352 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER); 8353 8354 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); 8355 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY); 8356 if (rc) { 8357 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); 8358 return rc; 8359 } 8360 8361 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); 8362 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 8363 if (rc) { 8364 dev_warn(&h->pdev->dev, "Board failed to become ready " 8365 "after soft reset.\n"); 8366 return rc; 8367 } 8368 8369 return 0; 8370 } 8371 8372 static void hpsa_free_reply_queues(struct ctlr_info *h) 8373 { 8374 int i; 8375 8376 for (i = 0; i < h->nreply_queues; i++) { 8377 if (!h->reply_queue[i].head) 8378 continue; 8379 pci_free_consistent(h->pdev, 8380 h->reply_queue_size, 8381 h->reply_queue[i].head, 8382 h->reply_queue[i].busaddr); 8383 h->reply_queue[i].head = NULL; 8384 h->reply_queue[i].busaddr = 0; 8385 } 8386 h->reply_queue_size = 0; 8387 } 8388 8389 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) 8390 { 8391 hpsa_free_performant_mode(h); /* init_one 7 */ 8392 hpsa_free_sg_chain_blocks(h); /* init_one 6 */ 8393 hpsa_free_cmd_pool(h); /* init_one 5 */ 8394 hpsa_free_irqs(h); /* init_one 4 */ 8395 scsi_host_put(h->scsi_host); /* init_one 3 */ 8396 h->scsi_host = NULL; /* init_one 3 */ 8397 hpsa_free_pci_init(h); /* init_one 2_5 */ 8398 free_percpu(h->lockup_detected); /* init_one 2 */ 8399 h->lockup_detected = NULL; /* init_one 2 */ 8400 if (h->resubmit_wq) { 8401 destroy_workqueue(h->resubmit_wq); /* init_one 1 */ 8402 h->resubmit_wq = NULL; 8403 } 8404 if (h->rescan_ctlr_wq) { 8405 destroy_workqueue(h->rescan_ctlr_wq); 8406 h->rescan_ctlr_wq = NULL; 8407 } 8408 kfree(h); /* init_one 1 */ 8409 } 8410 8411 /* Called when controller lockup detected. */ 8412 static void fail_all_outstanding_cmds(struct ctlr_info *h) 8413 { 8414 int i, refcount; 8415 struct CommandList *c; 8416 int failcount = 0; 8417 8418 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */ 8419 for (i = 0; i < h->nr_cmds; i++) { 8420 c = h->cmd_pool + i; 8421 refcount = atomic_inc_return(&c->refcount); 8422 if (refcount > 1) { 8423 c->err_info->CommandStatus = CMD_CTLR_LOCKUP; 8424 finish_cmd(c); 8425 atomic_dec(&h->commands_outstanding); 8426 failcount++; 8427 } 8428 cmd_free(h, c); 8429 } 8430 dev_warn(&h->pdev->dev, 8431 "failed %d commands in fail_all\n", failcount); 8432 } 8433 8434 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value) 8435 { 8436 int cpu; 8437 8438 for_each_online_cpu(cpu) { 8439 u32 *lockup_detected; 8440 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); 8441 *lockup_detected = value; 8442 } 8443 wmb(); /* be sure the per-cpu variables are out to memory */ 8444 } 8445 8446 static void controller_lockup_detected(struct ctlr_info *h) 8447 { 8448 unsigned long flags; 8449 u32 lockup_detected; 8450 8451 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8452 spin_lock_irqsave(&h->lock, flags); 8453 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); 8454 if (!lockup_detected) { 8455 /* no heartbeat, but controller gave us a zero. */ 8456 dev_warn(&h->pdev->dev, 8457 "lockup detected after %d but scratchpad register is zero\n", 8458 h->heartbeat_sample_interval / HZ); 8459 lockup_detected = 0xffffffff; 8460 } 8461 set_lockup_detected_for_all_cpus(h, lockup_detected); 8462 spin_unlock_irqrestore(&h->lock, flags); 8463 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n", 8464 lockup_detected, h->heartbeat_sample_interval / HZ); 8465 pci_disable_device(h->pdev); 8466 fail_all_outstanding_cmds(h); 8467 } 8468 8469 static int detect_controller_lockup(struct ctlr_info *h) 8470 { 8471 u64 now; 8472 u32 heartbeat; 8473 unsigned long flags; 8474 8475 now = get_jiffies_64(); 8476 /* If we've received an interrupt recently, we're ok. */ 8477 if (time_after64(h->last_intr_timestamp + 8478 (h->heartbeat_sample_interval), now)) 8479 return false; 8480 8481 /* 8482 * If we've already checked the heartbeat recently, we're ok. 8483 * This could happen if someone sends us a signal. We 8484 * otherwise don't care about signals in this thread. 8485 */ 8486 if (time_after64(h->last_heartbeat_timestamp + 8487 (h->heartbeat_sample_interval), now)) 8488 return false; 8489 8490 /* If heartbeat has not changed since we last looked, we're not ok. */ 8491 spin_lock_irqsave(&h->lock, flags); 8492 heartbeat = readl(&h->cfgtable->HeartBeat); 8493 spin_unlock_irqrestore(&h->lock, flags); 8494 if (h->last_heartbeat == heartbeat) { 8495 controller_lockup_detected(h); 8496 return true; 8497 } 8498 8499 /* We're ok. */ 8500 h->last_heartbeat = heartbeat; 8501 h->last_heartbeat_timestamp = now; 8502 return false; 8503 } 8504 8505 static void hpsa_ack_ctlr_events(struct ctlr_info *h) 8506 { 8507 int i; 8508 char *event_type; 8509 8510 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) 8511 return; 8512 8513 /* Ask the controller to clear the events we're handling. */ 8514 if ((h->transMethod & (CFGTBL_Trans_io_accel1 8515 | CFGTBL_Trans_io_accel2)) && 8516 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || 8517 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { 8518 8519 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) 8520 event_type = "state change"; 8521 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) 8522 event_type = "configuration change"; 8523 /* Stop sending new RAID offload reqs via the IO accelerator */ 8524 scsi_block_requests(h->scsi_host); 8525 for (i = 0; i < h->ndevices; i++) { 8526 h->dev[i]->offload_enabled = 0; 8527 h->dev[i]->offload_to_be_enabled = 0; 8528 } 8529 hpsa_drain_accel_commands(h); 8530 /* Set 'accelerator path config change' bit */ 8531 dev_warn(&h->pdev->dev, 8532 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", 8533 h->events, event_type); 8534 writel(h->events, &(h->cfgtable->clear_event_notify)); 8535 /* Set the "clear event notify field update" bit 6 */ 8536 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); 8537 /* Wait until ctlr clears 'clear event notify field', bit 6 */ 8538 hpsa_wait_for_clear_event_notify_ack(h); 8539 scsi_unblock_requests(h->scsi_host); 8540 } else { 8541 /* Acknowledge controller notification events. */ 8542 writel(h->events, &(h->cfgtable->clear_event_notify)); 8543 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); 8544 hpsa_wait_for_clear_event_notify_ack(h); 8545 #if 0 8546 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 8547 hpsa_wait_for_mode_change_ack(h); 8548 #endif 8549 } 8550 return; 8551 } 8552 8553 /* Check a register on the controller to see if there are configuration 8554 * changes (added/changed/removed logical drives, etc.) which mean that 8555 * we should rescan the controller for devices. 8556 * Also check flag for driver-initiated rescan. 8557 */ 8558 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h) 8559 { 8560 if (h->drv_req_rescan) { 8561 h->drv_req_rescan = 0; 8562 return 1; 8563 } 8564 8565 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) 8566 return 0; 8567 8568 h->events = readl(&(h->cfgtable->event_notify)); 8569 return h->events & RESCAN_REQUIRED_EVENT_BITS; 8570 } 8571 8572 /* 8573 * Check if any of the offline devices have become ready 8574 */ 8575 static int hpsa_offline_devices_ready(struct ctlr_info *h) 8576 { 8577 unsigned long flags; 8578 struct offline_device_entry *d; 8579 struct list_head *this, *tmp; 8580 8581 spin_lock_irqsave(&h->offline_device_lock, flags); 8582 list_for_each_safe(this, tmp, &h->offline_device_list) { 8583 d = list_entry(this, struct offline_device_entry, 8584 offline_list); 8585 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8586 if (!hpsa_volume_offline(h, d->scsi3addr)) { 8587 spin_lock_irqsave(&h->offline_device_lock, flags); 8588 list_del(&d->offline_list); 8589 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8590 return 1; 8591 } 8592 spin_lock_irqsave(&h->offline_device_lock, flags); 8593 } 8594 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8595 return 0; 8596 } 8597 8598 static int hpsa_luns_changed(struct ctlr_info *h) 8599 { 8600 int rc = 1; /* assume there are changes */ 8601 struct ReportLUNdata *logdev = NULL; 8602 8603 /* if we can't find out if lun data has changed, 8604 * assume that it has. 8605 */ 8606 8607 if (!h->lastlogicals) 8608 goto out; 8609 8610 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL); 8611 if (!logdev) { 8612 dev_warn(&h->pdev->dev, 8613 "Out of memory, can't track lun changes.\n"); 8614 goto out; 8615 } 8616 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) { 8617 dev_warn(&h->pdev->dev, 8618 "report luns failed, can't track lun changes.\n"); 8619 goto out; 8620 } 8621 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) { 8622 dev_info(&h->pdev->dev, 8623 "Lun changes detected.\n"); 8624 memcpy(h->lastlogicals, logdev, sizeof(*logdev)); 8625 goto out; 8626 } else 8627 rc = 0; /* no changes detected. */ 8628 out: 8629 kfree(logdev); 8630 return rc; 8631 } 8632 8633 static void hpsa_rescan_ctlr_worker(struct work_struct *work) 8634 { 8635 unsigned long flags; 8636 struct ctlr_info *h = container_of(to_delayed_work(work), 8637 struct ctlr_info, rescan_ctlr_work); 8638 8639 8640 if (h->remove_in_progress) 8641 return; 8642 8643 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) { 8644 scsi_host_get(h->scsi_host); 8645 hpsa_ack_ctlr_events(h); 8646 hpsa_scan_start(h->scsi_host); 8647 scsi_host_put(h->scsi_host); 8648 } else if (h->discovery_polling) { 8649 hpsa_disable_rld_caching(h); 8650 if (hpsa_luns_changed(h)) { 8651 struct Scsi_Host *sh = NULL; 8652 8653 dev_info(&h->pdev->dev, 8654 "driver discovery polling rescan.\n"); 8655 sh = scsi_host_get(h->scsi_host); 8656 if (sh != NULL) { 8657 hpsa_scan_start(sh); 8658 scsi_host_put(sh); 8659 } 8660 } 8661 } 8662 spin_lock_irqsave(&h->lock, flags); 8663 if (!h->remove_in_progress) 8664 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, 8665 h->heartbeat_sample_interval); 8666 spin_unlock_irqrestore(&h->lock, flags); 8667 } 8668 8669 static void hpsa_monitor_ctlr_worker(struct work_struct *work) 8670 { 8671 unsigned long flags; 8672 struct ctlr_info *h = container_of(to_delayed_work(work), 8673 struct ctlr_info, monitor_ctlr_work); 8674 8675 detect_controller_lockup(h); 8676 if (lockup_detected(h)) 8677 return; 8678 8679 spin_lock_irqsave(&h->lock, flags); 8680 if (!h->remove_in_progress) 8681 schedule_delayed_work(&h->monitor_ctlr_work, 8682 h->heartbeat_sample_interval); 8683 spin_unlock_irqrestore(&h->lock, flags); 8684 } 8685 8686 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h, 8687 char *name) 8688 { 8689 struct workqueue_struct *wq = NULL; 8690 8691 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr); 8692 if (!wq) 8693 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name); 8694 8695 return wq; 8696 } 8697 8698 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 8699 { 8700 int dac, rc; 8701 struct ctlr_info *h; 8702 int try_soft_reset = 0; 8703 unsigned long flags; 8704 u32 board_id; 8705 8706 if (number_of_controllers == 0) 8707 printk(KERN_INFO DRIVER_NAME "\n"); 8708 8709 rc = hpsa_lookup_board_id(pdev, &board_id); 8710 if (rc < 0) { 8711 dev_warn(&pdev->dev, "Board ID not found\n"); 8712 return rc; 8713 } 8714 8715 rc = hpsa_init_reset_devices(pdev, board_id); 8716 if (rc) { 8717 if (rc != -ENOTSUPP) 8718 return rc; 8719 /* If the reset fails in a particular way (it has no way to do 8720 * a proper hard reset, so returns -ENOTSUPP) we can try to do 8721 * a soft reset once we get the controller configured up to the 8722 * point that it can accept a command. 8723 */ 8724 try_soft_reset = 1; 8725 rc = 0; 8726 } 8727 8728 reinit_after_soft_reset: 8729 8730 /* Command structures must be aligned on a 32-byte boundary because 8731 * the 5 lower bits of the address are used by the hardware. and by 8732 * the driver. See comments in hpsa.h for more info. 8733 */ 8734 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 8735 h = kzalloc(sizeof(*h), GFP_KERNEL); 8736 if (!h) { 8737 dev_err(&pdev->dev, "Failed to allocate controller head\n"); 8738 return -ENOMEM; 8739 } 8740 8741 h->pdev = pdev; 8742 8743 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; 8744 INIT_LIST_HEAD(&h->offline_device_list); 8745 spin_lock_init(&h->lock); 8746 spin_lock_init(&h->offline_device_lock); 8747 spin_lock_init(&h->scan_lock); 8748 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS); 8749 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS); 8750 8751 /* Allocate and clear per-cpu variable lockup_detected */ 8752 h->lockup_detected = alloc_percpu(u32); 8753 if (!h->lockup_detected) { 8754 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n"); 8755 rc = -ENOMEM; 8756 goto clean1; /* aer/h */ 8757 } 8758 set_lockup_detected_for_all_cpus(h, 0); 8759 8760 rc = hpsa_pci_init(h); 8761 if (rc) 8762 goto clean2; /* lu, aer/h */ 8763 8764 /* relies on h-> settings made by hpsa_pci_init, including 8765 * interrupt_mode h->intr */ 8766 rc = hpsa_scsi_host_alloc(h); 8767 if (rc) 8768 goto clean2_5; /* pci, lu, aer/h */ 8769 8770 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no); 8771 h->ctlr = number_of_controllers; 8772 number_of_controllers++; 8773 8774 /* configure PCI DMA stuff */ 8775 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 8776 if (rc == 0) { 8777 dac = 1; 8778 } else { 8779 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 8780 if (rc == 0) { 8781 dac = 0; 8782 } else { 8783 dev_err(&pdev->dev, "no suitable DMA available\n"); 8784 goto clean3; /* shost, pci, lu, aer/h */ 8785 } 8786 } 8787 8788 /* make sure the board interrupts are off */ 8789 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8790 8791 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx); 8792 if (rc) 8793 goto clean3; /* shost, pci, lu, aer/h */ 8794 rc = hpsa_alloc_cmd_pool(h); 8795 if (rc) 8796 goto clean4; /* irq, shost, pci, lu, aer/h */ 8797 rc = hpsa_alloc_sg_chain_blocks(h); 8798 if (rc) 8799 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */ 8800 init_waitqueue_head(&h->scan_wait_queue); 8801 init_waitqueue_head(&h->abort_cmd_wait_queue); 8802 init_waitqueue_head(&h->event_sync_wait_queue); 8803 mutex_init(&h->reset_mutex); 8804 h->scan_finished = 1; /* no scan currently in progress */ 8805 8806 pci_set_drvdata(pdev, h); 8807 h->ndevices = 0; 8808 8809 spin_lock_init(&h->devlock); 8810 rc = hpsa_put_ctlr_into_performant_mode(h); 8811 if (rc) 8812 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */ 8813 8814 /* create the resubmit workqueue */ 8815 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan"); 8816 if (!h->rescan_ctlr_wq) { 8817 rc = -ENOMEM; 8818 goto clean7; 8819 } 8820 8821 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit"); 8822 if (!h->resubmit_wq) { 8823 rc = -ENOMEM; 8824 goto clean7; /* aer/h */ 8825 } 8826 8827 /* 8828 * At this point, the controller is ready to take commands. 8829 * Now, if reset_devices and the hard reset didn't work, try 8830 * the soft reset and see if that works. 8831 */ 8832 if (try_soft_reset) { 8833 8834 /* This is kind of gross. We may or may not get a completion 8835 * from the soft reset command, and if we do, then the value 8836 * from the fifo may or may not be valid. So, we wait 10 secs 8837 * after the reset throwing away any completions we get during 8838 * that time. Unregister the interrupt handler and register 8839 * fake ones to scoop up any residual completions. 8840 */ 8841 spin_lock_irqsave(&h->lock, flags); 8842 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8843 spin_unlock_irqrestore(&h->lock, flags); 8844 hpsa_free_irqs(h); 8845 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions, 8846 hpsa_intx_discard_completions); 8847 if (rc) { 8848 dev_warn(&h->pdev->dev, 8849 "Failed to request_irq after soft reset.\n"); 8850 /* 8851 * cannot goto clean7 or free_irqs will be called 8852 * again. Instead, do its work 8853 */ 8854 hpsa_free_performant_mode(h); /* clean7 */ 8855 hpsa_free_sg_chain_blocks(h); /* clean6 */ 8856 hpsa_free_cmd_pool(h); /* clean5 */ 8857 /* 8858 * skip hpsa_free_irqs(h) clean4 since that 8859 * was just called before request_irqs failed 8860 */ 8861 goto clean3; 8862 } 8863 8864 rc = hpsa_kdump_soft_reset(h); 8865 if (rc) 8866 /* Neither hard nor soft reset worked, we're hosed. */ 8867 goto clean7; 8868 8869 dev_info(&h->pdev->dev, "Board READY.\n"); 8870 dev_info(&h->pdev->dev, 8871 "Waiting for stale completions to drain.\n"); 8872 h->access.set_intr_mask(h, HPSA_INTR_ON); 8873 msleep(10000); 8874 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8875 8876 rc = controller_reset_failed(h->cfgtable); 8877 if (rc) 8878 dev_info(&h->pdev->dev, 8879 "Soft reset appears to have failed.\n"); 8880 8881 /* since the controller's reset, we have to go back and re-init 8882 * everything. Easiest to just forget what we've done and do it 8883 * all over again. 8884 */ 8885 hpsa_undo_allocations_after_kdump_soft_reset(h); 8886 try_soft_reset = 0; 8887 if (rc) 8888 /* don't goto clean, we already unallocated */ 8889 return -ENODEV; 8890 8891 goto reinit_after_soft_reset; 8892 } 8893 8894 /* Enable Accelerated IO path at driver layer */ 8895 h->acciopath_status = 1; 8896 /* Disable discovery polling.*/ 8897 h->discovery_polling = 0; 8898 8899 8900 /* Turn the interrupts on so we can service requests */ 8901 h->access.set_intr_mask(h, HPSA_INTR_ON); 8902 8903 hpsa_hba_inquiry(h); 8904 8905 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL); 8906 if (!h->lastlogicals) 8907 dev_info(&h->pdev->dev, 8908 "Can't track change to report lun data\n"); 8909 8910 /* hook into SCSI subsystem */ 8911 rc = hpsa_scsi_add_host(h); 8912 if (rc) 8913 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8914 8915 /* Monitor the controller for firmware lockups */ 8916 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 8917 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); 8918 schedule_delayed_work(&h->monitor_ctlr_work, 8919 h->heartbeat_sample_interval); 8920 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker); 8921 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, 8922 h->heartbeat_sample_interval); 8923 return 0; 8924 8925 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8926 hpsa_free_performant_mode(h); 8927 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8928 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */ 8929 hpsa_free_sg_chain_blocks(h); 8930 clean5: /* cmd, irq, shost, pci, lu, aer/h */ 8931 hpsa_free_cmd_pool(h); 8932 clean4: /* irq, shost, pci, lu, aer/h */ 8933 hpsa_free_irqs(h); 8934 clean3: /* shost, pci, lu, aer/h */ 8935 scsi_host_put(h->scsi_host); 8936 h->scsi_host = NULL; 8937 clean2_5: /* pci, lu, aer/h */ 8938 hpsa_free_pci_init(h); 8939 clean2: /* lu, aer/h */ 8940 if (h->lockup_detected) { 8941 free_percpu(h->lockup_detected); 8942 h->lockup_detected = NULL; 8943 } 8944 clean1: /* wq/aer/h */ 8945 if (h->resubmit_wq) { 8946 destroy_workqueue(h->resubmit_wq); 8947 h->resubmit_wq = NULL; 8948 } 8949 if (h->rescan_ctlr_wq) { 8950 destroy_workqueue(h->rescan_ctlr_wq); 8951 h->rescan_ctlr_wq = NULL; 8952 } 8953 kfree(h); 8954 return rc; 8955 } 8956 8957 static void hpsa_flush_cache(struct ctlr_info *h) 8958 { 8959 char *flush_buf; 8960 struct CommandList *c; 8961 int rc; 8962 8963 if (unlikely(lockup_detected(h))) 8964 return; 8965 flush_buf = kzalloc(4, GFP_KERNEL); 8966 if (!flush_buf) 8967 return; 8968 8969 c = cmd_alloc(h); 8970 8971 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 8972 RAID_CTLR_LUNID, TYPE_CMD)) { 8973 goto out; 8974 } 8975 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 8976 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT); 8977 if (rc) 8978 goto out; 8979 if (c->err_info->CommandStatus != 0) 8980 out: 8981 dev_warn(&h->pdev->dev, 8982 "error flushing cache on controller\n"); 8983 cmd_free(h, c); 8984 kfree(flush_buf); 8985 } 8986 8987 /* Make controller gather fresh report lun data each time we 8988 * send down a report luns request 8989 */ 8990 static void hpsa_disable_rld_caching(struct ctlr_info *h) 8991 { 8992 u32 *options; 8993 struct CommandList *c; 8994 int rc; 8995 8996 /* Don't bother trying to set diag options if locked up */ 8997 if (unlikely(h->lockup_detected)) 8998 return; 8999 9000 options = kzalloc(sizeof(*options), GFP_KERNEL); 9001 if (!options) { 9002 dev_err(&h->pdev->dev, 9003 "Error: failed to disable rld caching, during alloc.\n"); 9004 return; 9005 } 9006 9007 c = cmd_alloc(h); 9008 9009 /* first, get the current diag options settings */ 9010 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, 9011 RAID_CTLR_LUNID, TYPE_CMD)) 9012 goto errout; 9013 9014 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 9015 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); 9016 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 9017 goto errout; 9018 9019 /* Now, set the bit for disabling the RLD caching */ 9020 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING; 9021 9022 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0, 9023 RAID_CTLR_LUNID, TYPE_CMD)) 9024 goto errout; 9025 9026 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 9027 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT); 9028 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 9029 goto errout; 9030 9031 /* Now verify that it got set: */ 9032 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, 9033 RAID_CTLR_LUNID, TYPE_CMD)) 9034 goto errout; 9035 9036 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 9037 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT); 9038 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 9039 goto errout; 9040 9041 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING) 9042 goto out; 9043 9044 errout: 9045 dev_err(&h->pdev->dev, 9046 "Error: failed to disable report lun data caching.\n"); 9047 out: 9048 cmd_free(h, c); 9049 kfree(options); 9050 } 9051 9052 static void hpsa_shutdown(struct pci_dev *pdev) 9053 { 9054 struct ctlr_info *h; 9055 9056 h = pci_get_drvdata(pdev); 9057 /* Turn board interrupts off and send the flush cache command 9058 * sendcmd will turn off interrupt, and send the flush... 9059 * To write all data in the battery backed cache to disks 9060 */ 9061 hpsa_flush_cache(h); 9062 h->access.set_intr_mask(h, HPSA_INTR_OFF); 9063 hpsa_free_irqs(h); /* init_one 4 */ 9064 hpsa_disable_interrupt_mode(h); /* pci_init 2 */ 9065 } 9066 9067 static void hpsa_free_device_info(struct ctlr_info *h) 9068 { 9069 int i; 9070 9071 for (i = 0; i < h->ndevices; i++) { 9072 kfree(h->dev[i]); 9073 h->dev[i] = NULL; 9074 } 9075 } 9076 9077 static void hpsa_remove_one(struct pci_dev *pdev) 9078 { 9079 struct ctlr_info *h; 9080 unsigned long flags; 9081 9082 if (pci_get_drvdata(pdev) == NULL) { 9083 dev_err(&pdev->dev, "unable to remove device\n"); 9084 return; 9085 } 9086 h = pci_get_drvdata(pdev); 9087 9088 /* Get rid of any controller monitoring work items */ 9089 spin_lock_irqsave(&h->lock, flags); 9090 h->remove_in_progress = 1; 9091 spin_unlock_irqrestore(&h->lock, flags); 9092 cancel_delayed_work_sync(&h->monitor_ctlr_work); 9093 cancel_delayed_work_sync(&h->rescan_ctlr_work); 9094 destroy_workqueue(h->rescan_ctlr_wq); 9095 destroy_workqueue(h->resubmit_wq); 9096 9097 /* 9098 * Call before disabling interrupts. 9099 * scsi_remove_host can trigger I/O operations especially 9100 * when multipath is enabled. There can be SYNCHRONIZE CACHE 9101 * operations which cannot complete and will hang the system. 9102 */ 9103 if (h->scsi_host) 9104 scsi_remove_host(h->scsi_host); /* init_one 8 */ 9105 /* includes hpsa_free_irqs - init_one 4 */ 9106 /* includes hpsa_disable_interrupt_mode - pci_init 2 */ 9107 hpsa_shutdown(pdev); 9108 9109 hpsa_free_device_info(h); /* scan */ 9110 9111 kfree(h->hba_inquiry_data); /* init_one 10 */ 9112 h->hba_inquiry_data = NULL; /* init_one 10 */ 9113 hpsa_free_ioaccel2_sg_chain_blocks(h); 9114 hpsa_free_performant_mode(h); /* init_one 7 */ 9115 hpsa_free_sg_chain_blocks(h); /* init_one 6 */ 9116 hpsa_free_cmd_pool(h); /* init_one 5 */ 9117 kfree(h->lastlogicals); 9118 9119 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */ 9120 9121 scsi_host_put(h->scsi_host); /* init_one 3 */ 9122 h->scsi_host = NULL; /* init_one 3 */ 9123 9124 /* includes hpsa_disable_interrupt_mode - pci_init 2 */ 9125 hpsa_free_pci_init(h); /* init_one 2.5 */ 9126 9127 free_percpu(h->lockup_detected); /* init_one 2 */ 9128 h->lockup_detected = NULL; /* init_one 2 */ 9129 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */ 9130 9131 hpsa_delete_sas_host(h); 9132 9133 kfree(h); /* init_one 1 */ 9134 } 9135 9136 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, 9137 __attribute__((unused)) pm_message_t state) 9138 { 9139 return -ENOSYS; 9140 } 9141 9142 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) 9143 { 9144 return -ENOSYS; 9145 } 9146 9147 static struct pci_driver hpsa_pci_driver = { 9148 .name = HPSA, 9149 .probe = hpsa_init_one, 9150 .remove = hpsa_remove_one, 9151 .id_table = hpsa_pci_device_id, /* id_table */ 9152 .shutdown = hpsa_shutdown, 9153 .suspend = hpsa_suspend, 9154 .resume = hpsa_resume, 9155 }; 9156 9157 /* Fill in bucket_map[], given nsgs (the max number of 9158 * scatter gather elements supported) and bucket[], 9159 * which is an array of 8 integers. The bucket[] array 9160 * contains 8 different DMA transfer sizes (in 16 9161 * byte increments) which the controller uses to fetch 9162 * commands. This function fills in bucket_map[], which 9163 * maps a given number of scatter gather elements to one of 9164 * the 8 DMA transfer sizes. The point of it is to allow the 9165 * controller to only do as much DMA as needed to fetch the 9166 * command, with the DMA transfer size encoded in the lower 9167 * bits of the command address. 9168 */ 9169 static void calc_bucket_map(int bucket[], int num_buckets, 9170 int nsgs, int min_blocks, u32 *bucket_map) 9171 { 9172 int i, j, b, size; 9173 9174 /* Note, bucket_map must have nsgs+1 entries. */ 9175 for (i = 0; i <= nsgs; i++) { 9176 /* Compute size of a command with i SG entries */ 9177 size = i + min_blocks; 9178 b = num_buckets; /* Assume the biggest bucket */ 9179 /* Find the bucket that is just big enough */ 9180 for (j = 0; j < num_buckets; j++) { 9181 if (bucket[j] >= size) { 9182 b = j; 9183 break; 9184 } 9185 } 9186 /* for a command with i SG entries, use bucket b. */ 9187 bucket_map[i] = b; 9188 } 9189 } 9190 9191 /* 9192 * return -ENODEV on err, 0 on success (or no action) 9193 * allocates numerous items that must be freed later 9194 */ 9195 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) 9196 { 9197 int i; 9198 unsigned long register_value; 9199 unsigned long transMethod = CFGTBL_Trans_Performant | 9200 (trans_support & CFGTBL_Trans_use_short_tags) | 9201 CFGTBL_Trans_enable_directed_msix | 9202 (trans_support & (CFGTBL_Trans_io_accel1 | 9203 CFGTBL_Trans_io_accel2)); 9204 struct access_method access = SA5_performant_access; 9205 9206 /* This is a bit complicated. There are 8 registers on 9207 * the controller which we write to to tell it 8 different 9208 * sizes of commands which there may be. It's a way of 9209 * reducing the DMA done to fetch each command. Encoded into 9210 * each command's tag are 3 bits which communicate to the controller 9211 * which of the eight sizes that command fits within. The size of 9212 * each command depends on how many scatter gather entries there are. 9213 * Each SG entry requires 16 bytes. The eight registers are programmed 9214 * with the number of 16-byte blocks a command of that size requires. 9215 * The smallest command possible requires 5 such 16 byte blocks. 9216 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte 9217 * blocks. Note, this only extends to the SG entries contained 9218 * within the command block, and does not extend to chained blocks 9219 * of SG elements. bft[] contains the eight values we write to 9220 * the registers. They are not evenly distributed, but have more 9221 * sizes for small commands, and fewer sizes for larger commands. 9222 */ 9223 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; 9224 #define MIN_IOACCEL2_BFT_ENTRY 5 9225 #define HPSA_IOACCEL2_HEADER_SZ 4 9226 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12, 9227 13, 14, 15, 16, 17, 18, 19, 9228 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES}; 9229 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16); 9230 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8); 9231 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) > 9232 16 * MIN_IOACCEL2_BFT_ENTRY); 9233 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16); 9234 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); 9235 /* 5 = 1 s/g entry or 4k 9236 * 6 = 2 s/g entry or 8k 9237 * 8 = 4 s/g entry or 16k 9238 * 10 = 6 s/g entry or 24k 9239 */ 9240 9241 /* If the controller supports either ioaccel method then 9242 * we can also use the RAID stack submit path that does not 9243 * perform the superfluous readl() after each command submission. 9244 */ 9245 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) 9246 access = SA5_performant_access_no_read; 9247 9248 /* Controller spec: zero out this buffer. */ 9249 for (i = 0; i < h->nreply_queues; i++) 9250 memset(h->reply_queue[i].head, 0, h->reply_queue_size); 9251 9252 bft[7] = SG_ENTRIES_IN_CMD + 4; 9253 calc_bucket_map(bft, ARRAY_SIZE(bft), 9254 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); 9255 for (i = 0; i < 8; i++) 9256 writel(bft[i], &h->transtable->BlockFetch[i]); 9257 9258 /* size of controller ring buffer */ 9259 writel(h->max_commands, &h->transtable->RepQSize); 9260 writel(h->nreply_queues, &h->transtable->RepQCount); 9261 writel(0, &h->transtable->RepQCtrAddrLow32); 9262 writel(0, &h->transtable->RepQCtrAddrHigh32); 9263 9264 for (i = 0; i < h->nreply_queues; i++) { 9265 writel(0, &h->transtable->RepQAddr[i].upper); 9266 writel(h->reply_queue[i].busaddr, 9267 &h->transtable->RepQAddr[i].lower); 9268 } 9269 9270 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); 9271 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); 9272 /* 9273 * enable outbound interrupt coalescing in accelerator mode; 9274 */ 9275 if (trans_support & CFGTBL_Trans_io_accel1) { 9276 access = SA5_ioaccel_mode1_access; 9277 writel(10, &h->cfgtable->HostWrite.CoalIntDelay); 9278 writel(4, &h->cfgtable->HostWrite.CoalIntCount); 9279 } else { 9280 if (trans_support & CFGTBL_Trans_io_accel2) { 9281 access = SA5_ioaccel_mode2_access; 9282 writel(10, &h->cfgtable->HostWrite.CoalIntDelay); 9283 writel(4, &h->cfgtable->HostWrite.CoalIntCount); 9284 } 9285 } 9286 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 9287 if (hpsa_wait_for_mode_change_ack(h)) { 9288 dev_err(&h->pdev->dev, 9289 "performant mode problem - doorbell timeout\n"); 9290 return -ENODEV; 9291 } 9292 register_value = readl(&(h->cfgtable->TransportActive)); 9293 if (!(register_value & CFGTBL_Trans_Performant)) { 9294 dev_err(&h->pdev->dev, 9295 "performant mode problem - transport not active\n"); 9296 return -ENODEV; 9297 } 9298 /* Change the access methods to the performant access methods */ 9299 h->access = access; 9300 h->transMethod = transMethod; 9301 9302 if (!((trans_support & CFGTBL_Trans_io_accel1) || 9303 (trans_support & CFGTBL_Trans_io_accel2))) 9304 return 0; 9305 9306 if (trans_support & CFGTBL_Trans_io_accel1) { 9307 /* Set up I/O accelerator mode */ 9308 for (i = 0; i < h->nreply_queues; i++) { 9309 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); 9310 h->reply_queue[i].current_entry = 9311 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); 9312 } 9313 bft[7] = h->ioaccel_maxsg + 8; 9314 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, 9315 h->ioaccel1_blockFetchTable); 9316 9317 /* initialize all reply queue entries to unused */ 9318 for (i = 0; i < h->nreply_queues; i++) 9319 memset(h->reply_queue[i].head, 9320 (u8) IOACCEL_MODE1_REPLY_UNUSED, 9321 h->reply_queue_size); 9322 9323 /* set all the constant fields in the accelerator command 9324 * frames once at init time to save CPU cycles later. 9325 */ 9326 for (i = 0; i < h->nr_cmds; i++) { 9327 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; 9328 9329 cp->function = IOACCEL1_FUNCTION_SCSIIO; 9330 cp->err_info = (u32) (h->errinfo_pool_dhandle + 9331 (i * sizeof(struct ErrorInfo))); 9332 cp->err_info_len = sizeof(struct ErrorInfo); 9333 cp->sgl_offset = IOACCEL1_SGLOFFSET; 9334 cp->host_context_flags = 9335 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT); 9336 cp->timeout_sec = 0; 9337 cp->ReplyQueue = 0; 9338 cp->tag = 9339 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT)); 9340 cp->host_addr = 9341 cpu_to_le64(h->ioaccel_cmd_pool_dhandle + 9342 (i * sizeof(struct io_accel1_cmd))); 9343 } 9344 } else if (trans_support & CFGTBL_Trans_io_accel2) { 9345 u64 cfg_offset, cfg_base_addr_index; 9346 u32 bft2_offset, cfg_base_addr; 9347 int rc; 9348 9349 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 9350 &cfg_base_addr_index, &cfg_offset); 9351 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64); 9352 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ; 9353 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg, 9354 4, h->ioaccel2_blockFetchTable); 9355 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset); 9356 BUILD_BUG_ON(offsetof(struct CfgTable, 9357 io_accel_request_size_offset) != 0xb8); 9358 h->ioaccel2_bft2_regs = 9359 remap_pci_mem(pci_resource_start(h->pdev, 9360 cfg_base_addr_index) + 9361 cfg_offset + bft2_offset, 9362 ARRAY_SIZE(bft2) * 9363 sizeof(*h->ioaccel2_bft2_regs)); 9364 for (i = 0; i < ARRAY_SIZE(bft2); i++) 9365 writel(bft2[i], &h->ioaccel2_bft2_regs[i]); 9366 } 9367 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 9368 if (hpsa_wait_for_mode_change_ack(h)) { 9369 dev_err(&h->pdev->dev, 9370 "performant mode problem - enabling ioaccel mode\n"); 9371 return -ENODEV; 9372 } 9373 return 0; 9374 } 9375 9376 /* Free ioaccel1 mode command blocks and block fetch table */ 9377 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h) 9378 { 9379 if (h->ioaccel_cmd_pool) { 9380 pci_free_consistent(h->pdev, 9381 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), 9382 h->ioaccel_cmd_pool, 9383 h->ioaccel_cmd_pool_dhandle); 9384 h->ioaccel_cmd_pool = NULL; 9385 h->ioaccel_cmd_pool_dhandle = 0; 9386 } 9387 kfree(h->ioaccel1_blockFetchTable); 9388 h->ioaccel1_blockFetchTable = NULL; 9389 } 9390 9391 /* Allocate ioaccel1 mode command blocks and block fetch table */ 9392 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h) 9393 { 9394 h->ioaccel_maxsg = 9395 readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); 9396 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) 9397 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; 9398 9399 /* Command structures must be aligned on a 128-byte boundary 9400 * because the 7 lower bits of the address are used by the 9401 * hardware. 9402 */ 9403 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % 9404 IOACCEL1_COMMANDLIST_ALIGNMENT); 9405 h->ioaccel_cmd_pool = 9406 pci_alloc_consistent(h->pdev, 9407 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), 9408 &(h->ioaccel_cmd_pool_dhandle)); 9409 9410 h->ioaccel1_blockFetchTable = 9411 kmalloc(((h->ioaccel_maxsg + 1) * 9412 sizeof(u32)), GFP_KERNEL); 9413 9414 if ((h->ioaccel_cmd_pool == NULL) || 9415 (h->ioaccel1_blockFetchTable == NULL)) 9416 goto clean_up; 9417 9418 memset(h->ioaccel_cmd_pool, 0, 9419 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); 9420 return 0; 9421 9422 clean_up: 9423 hpsa_free_ioaccel1_cmd_and_bft(h); 9424 return -ENOMEM; 9425 } 9426 9427 /* Free ioaccel2 mode command blocks and block fetch table */ 9428 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h) 9429 { 9430 hpsa_free_ioaccel2_sg_chain_blocks(h); 9431 9432 if (h->ioaccel2_cmd_pool) { 9433 pci_free_consistent(h->pdev, 9434 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 9435 h->ioaccel2_cmd_pool, 9436 h->ioaccel2_cmd_pool_dhandle); 9437 h->ioaccel2_cmd_pool = NULL; 9438 h->ioaccel2_cmd_pool_dhandle = 0; 9439 } 9440 kfree(h->ioaccel2_blockFetchTable); 9441 h->ioaccel2_blockFetchTable = NULL; 9442 } 9443 9444 /* Allocate ioaccel2 mode command blocks and block fetch table */ 9445 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h) 9446 { 9447 int rc; 9448 9449 /* Allocate ioaccel2 mode command blocks and block fetch table */ 9450 9451 h->ioaccel_maxsg = 9452 readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); 9453 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES) 9454 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES; 9455 9456 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) % 9457 IOACCEL2_COMMANDLIST_ALIGNMENT); 9458 h->ioaccel2_cmd_pool = 9459 pci_alloc_consistent(h->pdev, 9460 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 9461 &(h->ioaccel2_cmd_pool_dhandle)); 9462 9463 h->ioaccel2_blockFetchTable = 9464 kmalloc(((h->ioaccel_maxsg + 1) * 9465 sizeof(u32)), GFP_KERNEL); 9466 9467 if ((h->ioaccel2_cmd_pool == NULL) || 9468 (h->ioaccel2_blockFetchTable == NULL)) { 9469 rc = -ENOMEM; 9470 goto clean_up; 9471 } 9472 9473 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h); 9474 if (rc) 9475 goto clean_up; 9476 9477 memset(h->ioaccel2_cmd_pool, 0, 9478 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool)); 9479 return 0; 9480 9481 clean_up: 9482 hpsa_free_ioaccel2_cmd_and_bft(h); 9483 return rc; 9484 } 9485 9486 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */ 9487 static void hpsa_free_performant_mode(struct ctlr_info *h) 9488 { 9489 kfree(h->blockFetchTable); 9490 h->blockFetchTable = NULL; 9491 hpsa_free_reply_queues(h); 9492 hpsa_free_ioaccel1_cmd_and_bft(h); 9493 hpsa_free_ioaccel2_cmd_and_bft(h); 9494 } 9495 9496 /* return -ENODEV on error, 0 on success (or no action) 9497 * allocates numerous items that must be freed later 9498 */ 9499 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 9500 { 9501 u32 trans_support; 9502 unsigned long transMethod = CFGTBL_Trans_Performant | 9503 CFGTBL_Trans_use_short_tags; 9504 int i, rc; 9505 9506 if (hpsa_simple_mode) 9507 return 0; 9508 9509 trans_support = readl(&(h->cfgtable->TransportSupport)); 9510 if (!(trans_support & PERFORMANT_MODE)) 9511 return 0; 9512 9513 /* Check for I/O accelerator mode support */ 9514 if (trans_support & CFGTBL_Trans_io_accel1) { 9515 transMethod |= CFGTBL_Trans_io_accel1 | 9516 CFGTBL_Trans_enable_directed_msix; 9517 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h); 9518 if (rc) 9519 return rc; 9520 } else if (trans_support & CFGTBL_Trans_io_accel2) { 9521 transMethod |= CFGTBL_Trans_io_accel2 | 9522 CFGTBL_Trans_enable_directed_msix; 9523 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h); 9524 if (rc) 9525 return rc; 9526 } 9527 9528 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1; 9529 hpsa_get_max_perf_mode_cmds(h); 9530 /* Performant mode ring buffer and supporting data structures */ 9531 h->reply_queue_size = h->max_commands * sizeof(u64); 9532 9533 for (i = 0; i < h->nreply_queues; i++) { 9534 h->reply_queue[i].head = pci_alloc_consistent(h->pdev, 9535 h->reply_queue_size, 9536 &(h->reply_queue[i].busaddr)); 9537 if (!h->reply_queue[i].head) { 9538 rc = -ENOMEM; 9539 goto clean1; /* rq, ioaccel */ 9540 } 9541 h->reply_queue[i].size = h->max_commands; 9542 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ 9543 h->reply_queue[i].current_entry = 0; 9544 } 9545 9546 /* Need a block fetch table for performant mode */ 9547 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * 9548 sizeof(u32)), GFP_KERNEL); 9549 if (!h->blockFetchTable) { 9550 rc = -ENOMEM; 9551 goto clean1; /* rq, ioaccel */ 9552 } 9553 9554 rc = hpsa_enter_performant_mode(h, trans_support); 9555 if (rc) 9556 goto clean2; /* bft, rq, ioaccel */ 9557 return 0; 9558 9559 clean2: /* bft, rq, ioaccel */ 9560 kfree(h->blockFetchTable); 9561 h->blockFetchTable = NULL; 9562 clean1: /* rq, ioaccel */ 9563 hpsa_free_reply_queues(h); 9564 hpsa_free_ioaccel1_cmd_and_bft(h); 9565 hpsa_free_ioaccel2_cmd_and_bft(h); 9566 return rc; 9567 } 9568 9569 static int is_accelerated_cmd(struct CommandList *c) 9570 { 9571 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2; 9572 } 9573 9574 static void hpsa_drain_accel_commands(struct ctlr_info *h) 9575 { 9576 struct CommandList *c = NULL; 9577 int i, accel_cmds_out; 9578 int refcount; 9579 9580 do { /* wait for all outstanding ioaccel commands to drain out */ 9581 accel_cmds_out = 0; 9582 for (i = 0; i < h->nr_cmds; i++) { 9583 c = h->cmd_pool + i; 9584 refcount = atomic_inc_return(&c->refcount); 9585 if (refcount > 1) /* Command is allocated */ 9586 accel_cmds_out += is_accelerated_cmd(c); 9587 cmd_free(h, c); 9588 } 9589 if (accel_cmds_out <= 0) 9590 break; 9591 msleep(100); 9592 } while (1); 9593 } 9594 9595 static struct hpsa_sas_phy *hpsa_alloc_sas_phy( 9596 struct hpsa_sas_port *hpsa_sas_port) 9597 { 9598 struct hpsa_sas_phy *hpsa_sas_phy; 9599 struct sas_phy *phy; 9600 9601 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL); 9602 if (!hpsa_sas_phy) 9603 return NULL; 9604 9605 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev, 9606 hpsa_sas_port->next_phy_index); 9607 if (!phy) { 9608 kfree(hpsa_sas_phy); 9609 return NULL; 9610 } 9611 9612 hpsa_sas_port->next_phy_index++; 9613 hpsa_sas_phy->phy = phy; 9614 hpsa_sas_phy->parent_port = hpsa_sas_port; 9615 9616 return hpsa_sas_phy; 9617 } 9618 9619 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy) 9620 { 9621 struct sas_phy *phy = hpsa_sas_phy->phy; 9622 9623 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy); 9624 sas_phy_free(phy); 9625 if (hpsa_sas_phy->added_to_port) 9626 list_del(&hpsa_sas_phy->phy_list_entry); 9627 kfree(hpsa_sas_phy); 9628 } 9629 9630 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy) 9631 { 9632 int rc; 9633 struct hpsa_sas_port *hpsa_sas_port; 9634 struct sas_phy *phy; 9635 struct sas_identify *identify; 9636 9637 hpsa_sas_port = hpsa_sas_phy->parent_port; 9638 phy = hpsa_sas_phy->phy; 9639 9640 identify = &phy->identify; 9641 memset(identify, 0, sizeof(*identify)); 9642 identify->sas_address = hpsa_sas_port->sas_address; 9643 identify->device_type = SAS_END_DEVICE; 9644 identify->initiator_port_protocols = SAS_PROTOCOL_STP; 9645 identify->target_port_protocols = SAS_PROTOCOL_STP; 9646 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; 9647 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; 9648 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN; 9649 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN; 9650 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN; 9651 9652 rc = sas_phy_add(hpsa_sas_phy->phy); 9653 if (rc) 9654 return rc; 9655 9656 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy); 9657 list_add_tail(&hpsa_sas_phy->phy_list_entry, 9658 &hpsa_sas_port->phy_list_head); 9659 hpsa_sas_phy->added_to_port = true; 9660 9661 return 0; 9662 } 9663 9664 static int 9665 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port, 9666 struct sas_rphy *rphy) 9667 { 9668 struct sas_identify *identify; 9669 9670 identify = &rphy->identify; 9671 identify->sas_address = hpsa_sas_port->sas_address; 9672 identify->initiator_port_protocols = SAS_PROTOCOL_STP; 9673 identify->target_port_protocols = SAS_PROTOCOL_STP; 9674 9675 return sas_rphy_add(rphy); 9676 } 9677 9678 static struct hpsa_sas_port 9679 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node, 9680 u64 sas_address) 9681 { 9682 int rc; 9683 struct hpsa_sas_port *hpsa_sas_port; 9684 struct sas_port *port; 9685 9686 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL); 9687 if (!hpsa_sas_port) 9688 return NULL; 9689 9690 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head); 9691 hpsa_sas_port->parent_node = hpsa_sas_node; 9692 9693 port = sas_port_alloc_num(hpsa_sas_node->parent_dev); 9694 if (!port) 9695 goto free_hpsa_port; 9696 9697 rc = sas_port_add(port); 9698 if (rc) 9699 goto free_sas_port; 9700 9701 hpsa_sas_port->port = port; 9702 hpsa_sas_port->sas_address = sas_address; 9703 list_add_tail(&hpsa_sas_port->port_list_entry, 9704 &hpsa_sas_node->port_list_head); 9705 9706 return hpsa_sas_port; 9707 9708 free_sas_port: 9709 sas_port_free(port); 9710 free_hpsa_port: 9711 kfree(hpsa_sas_port); 9712 9713 return NULL; 9714 } 9715 9716 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port) 9717 { 9718 struct hpsa_sas_phy *hpsa_sas_phy; 9719 struct hpsa_sas_phy *next; 9720 9721 list_for_each_entry_safe(hpsa_sas_phy, next, 9722 &hpsa_sas_port->phy_list_head, phy_list_entry) 9723 hpsa_free_sas_phy(hpsa_sas_phy); 9724 9725 sas_port_delete(hpsa_sas_port->port); 9726 list_del(&hpsa_sas_port->port_list_entry); 9727 kfree(hpsa_sas_port); 9728 } 9729 9730 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev) 9731 { 9732 struct hpsa_sas_node *hpsa_sas_node; 9733 9734 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL); 9735 if (hpsa_sas_node) { 9736 hpsa_sas_node->parent_dev = parent_dev; 9737 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head); 9738 } 9739 9740 return hpsa_sas_node; 9741 } 9742 9743 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node) 9744 { 9745 struct hpsa_sas_port *hpsa_sas_port; 9746 struct hpsa_sas_port *next; 9747 9748 if (!hpsa_sas_node) 9749 return; 9750 9751 list_for_each_entry_safe(hpsa_sas_port, next, 9752 &hpsa_sas_node->port_list_head, port_list_entry) 9753 hpsa_free_sas_port(hpsa_sas_port); 9754 9755 kfree(hpsa_sas_node); 9756 } 9757 9758 static struct hpsa_scsi_dev_t 9759 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, 9760 struct sas_rphy *rphy) 9761 { 9762 int i; 9763 struct hpsa_scsi_dev_t *device; 9764 9765 for (i = 0; i < h->ndevices; i++) { 9766 device = h->dev[i]; 9767 if (!device->sas_port) 9768 continue; 9769 if (device->sas_port->rphy == rphy) 9770 return device; 9771 } 9772 9773 return NULL; 9774 } 9775 9776 static int hpsa_add_sas_host(struct ctlr_info *h) 9777 { 9778 int rc; 9779 struct device *parent_dev; 9780 struct hpsa_sas_node *hpsa_sas_node; 9781 struct hpsa_sas_port *hpsa_sas_port; 9782 struct hpsa_sas_phy *hpsa_sas_phy; 9783 9784 parent_dev = &h->scsi_host->shost_gendev; 9785 9786 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev); 9787 if (!hpsa_sas_node) 9788 return -ENOMEM; 9789 9790 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address); 9791 if (!hpsa_sas_port) { 9792 rc = -ENODEV; 9793 goto free_sas_node; 9794 } 9795 9796 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port); 9797 if (!hpsa_sas_phy) { 9798 rc = -ENODEV; 9799 goto free_sas_port; 9800 } 9801 9802 rc = hpsa_sas_port_add_phy(hpsa_sas_phy); 9803 if (rc) 9804 goto free_sas_phy; 9805 9806 h->sas_host = hpsa_sas_node; 9807 9808 return 0; 9809 9810 free_sas_phy: 9811 hpsa_free_sas_phy(hpsa_sas_phy); 9812 free_sas_port: 9813 hpsa_free_sas_port(hpsa_sas_port); 9814 free_sas_node: 9815 hpsa_free_sas_node(hpsa_sas_node); 9816 9817 return rc; 9818 } 9819 9820 static void hpsa_delete_sas_host(struct ctlr_info *h) 9821 { 9822 hpsa_free_sas_node(h->sas_host); 9823 } 9824 9825 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, 9826 struct hpsa_scsi_dev_t *device) 9827 { 9828 int rc; 9829 struct hpsa_sas_port *hpsa_sas_port; 9830 struct sas_rphy *rphy; 9831 9832 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address); 9833 if (!hpsa_sas_port) 9834 return -ENOMEM; 9835 9836 rphy = sas_end_device_alloc(hpsa_sas_port->port); 9837 if (!rphy) { 9838 rc = -ENODEV; 9839 goto free_sas_port; 9840 } 9841 9842 hpsa_sas_port->rphy = rphy; 9843 device->sas_port = hpsa_sas_port; 9844 9845 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy); 9846 if (rc) 9847 goto free_sas_port; 9848 9849 return 0; 9850 9851 free_sas_port: 9852 hpsa_free_sas_port(hpsa_sas_port); 9853 device->sas_port = NULL; 9854 9855 return rc; 9856 } 9857 9858 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device) 9859 { 9860 if (device->sas_port) { 9861 hpsa_free_sas_port(device->sas_port); 9862 device->sas_port = NULL; 9863 } 9864 } 9865 9866 static int 9867 hpsa_sas_get_linkerrors(struct sas_phy *phy) 9868 { 9869 return 0; 9870 } 9871 9872 static int 9873 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier) 9874 { 9875 *identifier = 0; 9876 return 0; 9877 } 9878 9879 static int 9880 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy) 9881 { 9882 return -ENXIO; 9883 } 9884 9885 static int 9886 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset) 9887 { 9888 return 0; 9889 } 9890 9891 static int 9892 hpsa_sas_phy_enable(struct sas_phy *phy, int enable) 9893 { 9894 return 0; 9895 } 9896 9897 static int 9898 hpsa_sas_phy_setup(struct sas_phy *phy) 9899 { 9900 return 0; 9901 } 9902 9903 static void 9904 hpsa_sas_phy_release(struct sas_phy *phy) 9905 { 9906 } 9907 9908 static int 9909 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates) 9910 { 9911 return -EINVAL; 9912 } 9913 9914 /* SMP = Serial Management Protocol */ 9915 static int 9916 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy, 9917 struct request *req) 9918 { 9919 return -EINVAL; 9920 } 9921 9922 static struct sas_function_template hpsa_sas_transport_functions = { 9923 .get_linkerrors = hpsa_sas_get_linkerrors, 9924 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier, 9925 .get_bay_identifier = hpsa_sas_get_bay_identifier, 9926 .phy_reset = hpsa_sas_phy_reset, 9927 .phy_enable = hpsa_sas_phy_enable, 9928 .phy_setup = hpsa_sas_phy_setup, 9929 .phy_release = hpsa_sas_phy_release, 9930 .set_phy_speed = hpsa_sas_phy_speed, 9931 .smp_handler = hpsa_sas_smp_handler, 9932 }; 9933 9934 /* 9935 * This is it. Register the PCI driver information for the cards we control 9936 * the OS will call our registered routines when it finds one of our cards. 9937 */ 9938 static int __init hpsa_init(void) 9939 { 9940 int rc; 9941 9942 hpsa_sas_transport_template = 9943 sas_attach_transport(&hpsa_sas_transport_functions); 9944 if (!hpsa_sas_transport_template) 9945 return -ENODEV; 9946 9947 rc = pci_register_driver(&hpsa_pci_driver); 9948 9949 if (rc) 9950 sas_release_transport(hpsa_sas_transport_template); 9951 9952 return rc; 9953 } 9954 9955 static void __exit hpsa_cleanup(void) 9956 { 9957 pci_unregister_driver(&hpsa_pci_driver); 9958 sas_release_transport(hpsa_sas_transport_template); 9959 } 9960 9961 static void __attribute__((unused)) verify_offsets(void) 9962 { 9963 #define VERIFY_OFFSET(member, offset) \ 9964 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset) 9965 9966 VERIFY_OFFSET(structure_size, 0); 9967 VERIFY_OFFSET(volume_blk_size, 4); 9968 VERIFY_OFFSET(volume_blk_cnt, 8); 9969 VERIFY_OFFSET(phys_blk_shift, 16); 9970 VERIFY_OFFSET(parity_rotation_shift, 17); 9971 VERIFY_OFFSET(strip_size, 18); 9972 VERIFY_OFFSET(disk_starting_blk, 20); 9973 VERIFY_OFFSET(disk_blk_cnt, 28); 9974 VERIFY_OFFSET(data_disks_per_row, 36); 9975 VERIFY_OFFSET(metadata_disks_per_row, 38); 9976 VERIFY_OFFSET(row_cnt, 40); 9977 VERIFY_OFFSET(layout_map_count, 42); 9978 VERIFY_OFFSET(flags, 44); 9979 VERIFY_OFFSET(dekindex, 46); 9980 /* VERIFY_OFFSET(reserved, 48 */ 9981 VERIFY_OFFSET(data, 64); 9982 9983 #undef VERIFY_OFFSET 9984 9985 #define VERIFY_OFFSET(member, offset) \ 9986 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset) 9987 9988 VERIFY_OFFSET(IU_type, 0); 9989 VERIFY_OFFSET(direction, 1); 9990 VERIFY_OFFSET(reply_queue, 2); 9991 /* VERIFY_OFFSET(reserved1, 3); */ 9992 VERIFY_OFFSET(scsi_nexus, 4); 9993 VERIFY_OFFSET(Tag, 8); 9994 VERIFY_OFFSET(cdb, 16); 9995 VERIFY_OFFSET(cciss_lun, 32); 9996 VERIFY_OFFSET(data_len, 40); 9997 VERIFY_OFFSET(cmd_priority_task_attr, 44); 9998 VERIFY_OFFSET(sg_count, 45); 9999 /* VERIFY_OFFSET(reserved3 */ 10000 VERIFY_OFFSET(err_ptr, 48); 10001 VERIFY_OFFSET(err_len, 56); 10002 /* VERIFY_OFFSET(reserved4 */ 10003 VERIFY_OFFSET(sg, 64); 10004 10005 #undef VERIFY_OFFSET 10006 10007 #define VERIFY_OFFSET(member, offset) \ 10008 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) 10009 10010 VERIFY_OFFSET(dev_handle, 0x00); 10011 VERIFY_OFFSET(reserved1, 0x02); 10012 VERIFY_OFFSET(function, 0x03); 10013 VERIFY_OFFSET(reserved2, 0x04); 10014 VERIFY_OFFSET(err_info, 0x0C); 10015 VERIFY_OFFSET(reserved3, 0x10); 10016 VERIFY_OFFSET(err_info_len, 0x12); 10017 VERIFY_OFFSET(reserved4, 0x13); 10018 VERIFY_OFFSET(sgl_offset, 0x14); 10019 VERIFY_OFFSET(reserved5, 0x15); 10020 VERIFY_OFFSET(transfer_len, 0x1C); 10021 VERIFY_OFFSET(reserved6, 0x20); 10022 VERIFY_OFFSET(io_flags, 0x24); 10023 VERIFY_OFFSET(reserved7, 0x26); 10024 VERIFY_OFFSET(LUN, 0x34); 10025 VERIFY_OFFSET(control, 0x3C); 10026 VERIFY_OFFSET(CDB, 0x40); 10027 VERIFY_OFFSET(reserved8, 0x50); 10028 VERIFY_OFFSET(host_context_flags, 0x60); 10029 VERIFY_OFFSET(timeout_sec, 0x62); 10030 VERIFY_OFFSET(ReplyQueue, 0x64); 10031 VERIFY_OFFSET(reserved9, 0x65); 10032 VERIFY_OFFSET(tag, 0x68); 10033 VERIFY_OFFSET(host_addr, 0x70); 10034 VERIFY_OFFSET(CISS_LUN, 0x78); 10035 VERIFY_OFFSET(SG, 0x78 + 8); 10036 #undef VERIFY_OFFSET 10037 } 10038 10039 module_init(hpsa_init); 10040 module_exit(hpsa_cleanup); 10041