xref: /linux/drivers/scsi/hpsa.c (revision 9a379e77033f02c4a071891afdf0f0a01eff8ccb)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85 
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 	"Use 'simple mode' rather than 'performant mode'");
90 
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
147 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{0,}
151 };
152 
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154 
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160 	{0x40700E11, "Smart Array 5300", &SA5A_access},
161 	{0x40800E11, "Smart Array 5i", &SA5B_access},
162 	{0x40820E11, "Smart Array 532", &SA5B_access},
163 	{0x40830E11, "Smart Array 5312", &SA5B_access},
164 	{0x409A0E11, "Smart Array 641", &SA5A_access},
165 	{0x409B0E11, "Smart Array 642", &SA5A_access},
166 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
167 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 	{0x40910E11, "Smart Array 6i", &SA5A_access},
169 	{0x3225103C, "Smart Array P600", &SA5A_access},
170 	{0x3223103C, "Smart Array P800", &SA5A_access},
171 	{0x3234103C, "Smart Array P400", &SA5A_access},
172 	{0x3235103C, "Smart Array P400i", &SA5A_access},
173 	{0x3211103C, "Smart Array E200i", &SA5A_access},
174 	{0x3212103C, "Smart Array E200", &SA5A_access},
175 	{0x3213103C, "Smart Array E200i", &SA5A_access},
176 	{0x3214103C, "Smart Array E200i", &SA5A_access},
177 	{0x3215103C, "Smart Array E200i", &SA5A_access},
178 	{0x3237103C, "Smart Array E500", &SA5A_access},
179 	{0x323D103C, "Smart Array P700m", &SA5A_access},
180 	{0x3241103C, "Smart Array P212", &SA5_access},
181 	{0x3243103C, "Smart Array P410", &SA5_access},
182 	{0x3245103C, "Smart Array P410i", &SA5_access},
183 	{0x3247103C, "Smart Array P411", &SA5_access},
184 	{0x3249103C, "Smart Array P812", &SA5_access},
185 	{0x324A103C, "Smart Array P712m", &SA5_access},
186 	{0x324B103C, "Smart Array P711m", &SA5_access},
187 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 	{0x3350103C, "Smart Array P222", &SA5_access},
189 	{0x3351103C, "Smart Array P420", &SA5_access},
190 	{0x3352103C, "Smart Array P421", &SA5_access},
191 	{0x3353103C, "Smart Array P822", &SA5_access},
192 	{0x3354103C, "Smart Array P420i", &SA5_access},
193 	{0x3355103C, "Smart Array P220i", &SA5_access},
194 	{0x3356103C, "Smart Array P721m", &SA5_access},
195 	{0x1920103C, "Smart Array P430i", &SA5_access},
196 	{0x1921103C, "Smart Array P830i", &SA5_access},
197 	{0x1922103C, "Smart Array P430", &SA5_access},
198 	{0x1923103C, "Smart Array P431", &SA5_access},
199 	{0x1924103C, "Smart Array P830", &SA5_access},
200 	{0x1925103C, "Smart Array P831", &SA5_access},
201 	{0x1926103C, "Smart Array P731m", &SA5_access},
202 	{0x1928103C, "Smart Array P230i", &SA5_access},
203 	{0x1929103C, "Smart Array P530", &SA5_access},
204 	{0x21BD103C, "Smart Array P244br", &SA5_access},
205 	{0x21BE103C, "Smart Array P741m", &SA5_access},
206 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
208 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
209 	{0x21C2103C, "Smart Array P440", &SA5_access},
210 	{0x21C3103C, "Smart Array P441", &SA5_access},
211 	{0x21C4103C, "Smart Array", &SA5_access},
212 	{0x21C5103C, "Smart Array P841", &SA5_access},
213 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
214 	{0x21C7103C, "Smart HBA H240", &SA5_access},
215 	{0x21C8103C, "Smart HBA H241", &SA5_access},
216 	{0x21C9103C, "Smart Array", &SA5_access},
217 	{0x21CA103C, "Smart Array P246br", &SA5_access},
218 	{0x21CB103C, "Smart Array P840", &SA5_access},
219 	{0x21CC103C, "Smart Array", &SA5_access},
220 	{0x21CD103C, "Smart Array", &SA5_access},
221 	{0x21CE103C, "Smart HBA", &SA5_access},
222 	{0x05809005, "SmartHBA-SA", &SA5_access},
223 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235 
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 			struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 		struct sas_rphy *rphy);
245 
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251 
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255 
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258 	void __user *arg);
259 #endif
260 
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265 					    struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268 	int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272 
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276 	unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278 
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283 
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286 	struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288 	struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291 	int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297 			       u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299 				    unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301 				bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303 					   unsigned char lunaddr[],
304 					   int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306 				     int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321 	struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323 	unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326 			       struct hpsa_scsi_dev_t *dev,
327 			       unsigned char *scsi3addr);
328 
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331 	unsigned long *priv = shost_priv(sdev->host);
332 	return (struct ctlr_info *) *priv;
333 }
334 
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337 	unsigned long *priv = shost_priv(sh);
338 	return (struct ctlr_info *) *priv;
339 }
340 
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343 	return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345 
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348 	return c->reset_pending;
349 }
350 
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353 			u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355 	struct scsi_sense_hdr sshdr;
356 	bool rc;
357 
358 	*sense_key = -1;
359 	*asc = -1;
360 	*ascq = -1;
361 
362 	if (sense_data_len < 1)
363 		return;
364 
365 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366 	if (rc) {
367 		*sense_key = sshdr.sense_key;
368 		*asc = sshdr.asc;
369 		*ascq = sshdr.ascq;
370 	}
371 }
372 
373 static int check_for_unit_attention(struct ctlr_info *h,
374 	struct CommandList *c)
375 {
376 	u8 sense_key, asc, ascq;
377 	int sense_len;
378 
379 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380 		sense_len = sizeof(c->err_info->SenseInfo);
381 	else
382 		sense_len = c->err_info->SenseLen;
383 
384 	decode_sense_data(c->err_info->SenseInfo, sense_len,
385 				&sense_key, &asc, &ascq);
386 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
387 		return 0;
388 
389 	switch (asc) {
390 	case STATE_CHANGED:
391 		dev_warn(&h->pdev->dev,
392 			"%s: a state change detected, command retried\n",
393 			h->devname);
394 		break;
395 	case LUN_FAILED:
396 		dev_warn(&h->pdev->dev,
397 			"%s: LUN failure detected\n", h->devname);
398 		break;
399 	case REPORT_LUNS_CHANGED:
400 		dev_warn(&h->pdev->dev,
401 			"%s: report LUN data changed\n", h->devname);
402 	/*
403 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 	 * target (array) devices.
405 	 */
406 		break;
407 	case POWER_OR_RESET:
408 		dev_warn(&h->pdev->dev,
409 			"%s: a power on or device reset detected\n",
410 			h->devname);
411 		break;
412 	case UNIT_ATTENTION_CLEARED:
413 		dev_warn(&h->pdev->dev,
414 			"%s: unit attention cleared by another initiator\n",
415 			h->devname);
416 		break;
417 	default:
418 		dev_warn(&h->pdev->dev,
419 			"%s: unknown unit attention detected\n",
420 			h->devname);
421 		break;
422 	}
423 	return 1;
424 }
425 
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431 		return 0;
432 	dev_warn(&h->pdev->dev, HPSA "device busy");
433 	return 1;
434 }
435 
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438 		struct device_attribute *attr, char *buf)
439 {
440 	int ld;
441 	struct ctlr_info *h;
442 	struct Scsi_Host *shost = class_to_shost(dev);
443 
444 	h = shost_to_hba(shost);
445 	ld = lockup_detected(h);
446 
447 	return sprintf(buf, "ld=%d\n", ld);
448 }
449 
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451 					 struct device_attribute *attr,
452 					 const char *buf, size_t count)
453 {
454 	int status, len;
455 	struct ctlr_info *h;
456 	struct Scsi_Host *shost = class_to_shost(dev);
457 	char tmpbuf[10];
458 
459 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460 		return -EACCES;
461 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462 	strncpy(tmpbuf, buf, len);
463 	tmpbuf[len] = '\0';
464 	if (sscanf(tmpbuf, "%d", &status) != 1)
465 		return -EINVAL;
466 	h = shost_to_hba(shost);
467 	h->acciopath_status = !!status;
468 	dev_warn(&h->pdev->dev,
469 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 		h->acciopath_status ? "enabled" : "disabled");
471 	return count;
472 }
473 
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475 					 struct device_attribute *attr,
476 					 const char *buf, size_t count)
477 {
478 	int debug_level, len;
479 	struct ctlr_info *h;
480 	struct Scsi_Host *shost = class_to_shost(dev);
481 	char tmpbuf[10];
482 
483 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484 		return -EACCES;
485 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486 	strncpy(tmpbuf, buf, len);
487 	tmpbuf[len] = '\0';
488 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489 		return -EINVAL;
490 	if (debug_level < 0)
491 		debug_level = 0;
492 	h = shost_to_hba(shost);
493 	h->raid_offload_debug = debug_level;
494 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495 		h->raid_offload_debug);
496 	return count;
497 }
498 
499 static ssize_t host_store_rescan(struct device *dev,
500 				 struct device_attribute *attr,
501 				 const char *buf, size_t count)
502 {
503 	struct ctlr_info *h;
504 	struct Scsi_Host *shost = class_to_shost(dev);
505 	h = shost_to_hba(shost);
506 	hpsa_scan_start(h->scsi_host);
507 	return count;
508 }
509 
510 static ssize_t host_show_firmware_revision(struct device *dev,
511 	     struct device_attribute *attr, char *buf)
512 {
513 	struct ctlr_info *h;
514 	struct Scsi_Host *shost = class_to_shost(dev);
515 	unsigned char *fwrev;
516 
517 	h = shost_to_hba(shost);
518 	if (!h->hba_inquiry_data)
519 		return 0;
520 	fwrev = &h->hba_inquiry_data[32];
521 	return snprintf(buf, 20, "%c%c%c%c\n",
522 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524 
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526 	     struct device_attribute *attr, char *buf)
527 {
528 	struct Scsi_Host *shost = class_to_shost(dev);
529 	struct ctlr_info *h = shost_to_hba(shost);
530 
531 	return snprintf(buf, 20, "%d\n",
532 			atomic_read(&h->commands_outstanding));
533 }
534 
535 static ssize_t host_show_transport_mode(struct device *dev,
536 	struct device_attribute *attr, char *buf)
537 {
538 	struct ctlr_info *h;
539 	struct Scsi_Host *shost = class_to_shost(dev);
540 
541 	h = shost_to_hba(shost);
542 	return snprintf(buf, 20, "%s\n",
543 		h->transMethod & CFGTBL_Trans_Performant ?
544 			"performant" : "simple");
545 }
546 
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548 	struct device_attribute *attr, char *buf)
549 {
550 	struct ctlr_info *h;
551 	struct Scsi_Host *shost = class_to_shost(dev);
552 
553 	h = shost_to_hba(shost);
554 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557 
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560 	0x324a103C, /* Smart Array P712m */
561 	0x324b103C, /* Smart Array P711m */
562 	0x3223103C, /* Smart Array P800 */
563 	0x3234103C, /* Smart Array P400 */
564 	0x3235103C, /* Smart Array P400i */
565 	0x3211103C, /* Smart Array E200i */
566 	0x3212103C, /* Smart Array E200 */
567 	0x3213103C, /* Smart Array E200i */
568 	0x3214103C, /* Smart Array E200i */
569 	0x3215103C, /* Smart Array E200i */
570 	0x3237103C, /* Smart Array E500 */
571 	0x323D103C, /* Smart Array P700m */
572 	0x40800E11, /* Smart Array 5i */
573 	0x409C0E11, /* Smart Array 6400 */
574 	0x409D0E11, /* Smart Array 6400 EM */
575 	0x40700E11, /* Smart Array 5300 */
576 	0x40820E11, /* Smart Array 532 */
577 	0x40830E11, /* Smart Array 5312 */
578 	0x409A0E11, /* Smart Array 641 */
579 	0x409B0E11, /* Smart Array 642 */
580 	0x40910E11, /* Smart Array 6i */
581 };
582 
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585 	0x40800E11, /* Smart Array 5i */
586 	0x40700E11, /* Smart Array 5300 */
587 	0x40820E11, /* Smart Array 532 */
588 	0x40830E11, /* Smart Array 5312 */
589 	0x409A0E11, /* Smart Array 641 */
590 	0x409B0E11, /* Smart Array 642 */
591 	0x40910E11, /* Smart Array 6i */
592 	/* Exclude 640x boards.  These are two pci devices in one slot
593 	 * which share a battery backed cache module.  One controls the
594 	 * cache, the other accesses the cache through the one that controls
595 	 * it.  If we reset the one controlling the cache, the other will
596 	 * likely not be happy.  Just forbid resetting this conjoined mess.
597 	 * The 640x isn't really supported by hpsa anyway.
598 	 */
599 	0x409C0E11, /* Smart Array 6400 */
600 	0x409D0E11, /* Smart Array 6400 EM */
601 };
602 
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605 	int i;
606 
607 	for (i = 0; i < nelems; i++)
608 		if (a[i] == board_id)
609 			return 1;
610 	return 0;
611 }
612 
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615 	return !board_id_in_array(unresettable_controller,
616 			ARRAY_SIZE(unresettable_controller), board_id);
617 }
618 
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621 	return !board_id_in_array(soft_unresettable_controller,
622 			ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624 
625 static int ctlr_is_resettable(u32 board_id)
626 {
627 	return ctlr_is_hard_resettable(board_id) ||
628 		ctlr_is_soft_resettable(board_id);
629 }
630 
631 static ssize_t host_show_resettable(struct device *dev,
632 	struct device_attribute *attr, char *buf)
633 {
634 	struct ctlr_info *h;
635 	struct Scsi_Host *shost = class_to_shost(dev);
636 
637 	h = shost_to_hba(shost);
638 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640 
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643 	return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645 
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0	0
650 #define HPSA_RAID_4	1
651 #define HPSA_RAID_1	2	/* also used for RAID 10 */
652 #define HPSA_RAID_5	3	/* also used for RAID 50 */
653 #define HPSA_RAID_51	4
654 #define HPSA_RAID_6	5	/* also used for RAID 60 */
655 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658 
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661 	return !device->physical_device;
662 }
663 
664 static ssize_t raid_level_show(struct device *dev,
665 	     struct device_attribute *attr, char *buf)
666 {
667 	ssize_t l = 0;
668 	unsigned char rlevel;
669 	struct ctlr_info *h;
670 	struct scsi_device *sdev;
671 	struct hpsa_scsi_dev_t *hdev;
672 	unsigned long flags;
673 
674 	sdev = to_scsi_device(dev);
675 	h = sdev_to_hba(sdev);
676 	spin_lock_irqsave(&h->lock, flags);
677 	hdev = sdev->hostdata;
678 	if (!hdev) {
679 		spin_unlock_irqrestore(&h->lock, flags);
680 		return -ENODEV;
681 	}
682 
683 	/* Is this even a logical drive? */
684 	if (!is_logical_device(hdev)) {
685 		spin_unlock_irqrestore(&h->lock, flags);
686 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
687 		return l;
688 	}
689 
690 	rlevel = hdev->raid_level;
691 	spin_unlock_irqrestore(&h->lock, flags);
692 	if (rlevel > RAID_UNKNOWN)
693 		rlevel = RAID_UNKNOWN;
694 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695 	return l;
696 }
697 
698 static ssize_t lunid_show(struct device *dev,
699 	     struct device_attribute *attr, char *buf)
700 {
701 	struct ctlr_info *h;
702 	struct scsi_device *sdev;
703 	struct hpsa_scsi_dev_t *hdev;
704 	unsigned long flags;
705 	unsigned char lunid[8];
706 
707 	sdev = to_scsi_device(dev);
708 	h = sdev_to_hba(sdev);
709 	spin_lock_irqsave(&h->lock, flags);
710 	hdev = sdev->hostdata;
711 	if (!hdev) {
712 		spin_unlock_irqrestore(&h->lock, flags);
713 		return -ENODEV;
714 	}
715 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716 	spin_unlock_irqrestore(&h->lock, flags);
717 	return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719 
720 static ssize_t unique_id_show(struct device *dev,
721 	     struct device_attribute *attr, char *buf)
722 {
723 	struct ctlr_info *h;
724 	struct scsi_device *sdev;
725 	struct hpsa_scsi_dev_t *hdev;
726 	unsigned long flags;
727 	unsigned char sn[16];
728 
729 	sdev = to_scsi_device(dev);
730 	h = sdev_to_hba(sdev);
731 	spin_lock_irqsave(&h->lock, flags);
732 	hdev = sdev->hostdata;
733 	if (!hdev) {
734 		spin_unlock_irqrestore(&h->lock, flags);
735 		return -ENODEV;
736 	}
737 	memcpy(sn, hdev->device_id, sizeof(sn));
738 	spin_unlock_irqrestore(&h->lock, flags);
739 	return snprintf(buf, 16 * 2 + 2,
740 			"%02X%02X%02X%02X%02X%02X%02X%02X"
741 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 			sn[0], sn[1], sn[2], sn[3],
743 			sn[4], sn[5], sn[6], sn[7],
744 			sn[8], sn[9], sn[10], sn[11],
745 			sn[12], sn[13], sn[14], sn[15]);
746 }
747 
748 static ssize_t sas_address_show(struct device *dev,
749 	      struct device_attribute *attr, char *buf)
750 {
751 	struct ctlr_info *h;
752 	struct scsi_device *sdev;
753 	struct hpsa_scsi_dev_t *hdev;
754 	unsigned long flags;
755 	u64 sas_address;
756 
757 	sdev = to_scsi_device(dev);
758 	h = sdev_to_hba(sdev);
759 	spin_lock_irqsave(&h->lock, flags);
760 	hdev = sdev->hostdata;
761 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762 		spin_unlock_irqrestore(&h->lock, flags);
763 		return -ENODEV;
764 	}
765 	sas_address = hdev->sas_address;
766 	spin_unlock_irqrestore(&h->lock, flags);
767 
768 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770 
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772 	     struct device_attribute *attr, char *buf)
773 {
774 	struct ctlr_info *h;
775 	struct scsi_device *sdev;
776 	struct hpsa_scsi_dev_t *hdev;
777 	unsigned long flags;
778 	int offload_enabled;
779 
780 	sdev = to_scsi_device(dev);
781 	h = sdev_to_hba(sdev);
782 	spin_lock_irqsave(&h->lock, flags);
783 	hdev = sdev->hostdata;
784 	if (!hdev) {
785 		spin_unlock_irqrestore(&h->lock, flags);
786 		return -ENODEV;
787 	}
788 	offload_enabled = hdev->offload_enabled;
789 	spin_unlock_irqrestore(&h->lock, flags);
790 
791 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792 		return snprintf(buf, 20, "%d\n", offload_enabled);
793 	else
794 		return snprintf(buf, 40, "%s\n",
795 				"Not applicable for a controller");
796 }
797 
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800 	     struct device_attribute *attr, char *buf)
801 {
802 	struct ctlr_info *h;
803 	struct scsi_device *sdev;
804 	struct hpsa_scsi_dev_t *hdev;
805 	unsigned long flags;
806 	int i;
807 	int output_len = 0;
808 	u8 box;
809 	u8 bay;
810 	u8 path_map_index = 0;
811 	char *active;
812 	unsigned char phys_connector[2];
813 
814 	sdev = to_scsi_device(dev);
815 	h = sdev_to_hba(sdev);
816 	spin_lock_irqsave(&h->devlock, flags);
817 	hdev = sdev->hostdata;
818 	if (!hdev) {
819 		spin_unlock_irqrestore(&h->devlock, flags);
820 		return -ENODEV;
821 	}
822 
823 	bay = hdev->bay;
824 	for (i = 0; i < MAX_PATHS; i++) {
825 		path_map_index = 1<<i;
826 		if (i == hdev->active_path_index)
827 			active = "Active";
828 		else if (hdev->path_map & path_map_index)
829 			active = "Inactive";
830 		else
831 			continue;
832 
833 		output_len += scnprintf(buf + output_len,
834 				PAGE_SIZE - output_len,
835 				"[%d:%d:%d:%d] %20.20s ",
836 				h->scsi_host->host_no,
837 				hdev->bus, hdev->target, hdev->lun,
838 				scsi_device_type(hdev->devtype));
839 
840 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841 			output_len += scnprintf(buf + output_len,
842 						PAGE_SIZE - output_len,
843 						"%s\n", active);
844 			continue;
845 		}
846 
847 		box = hdev->box[i];
848 		memcpy(&phys_connector, &hdev->phys_connector[i],
849 			sizeof(phys_connector));
850 		if (phys_connector[0] < '0')
851 			phys_connector[0] = '0';
852 		if (phys_connector[1] < '0')
853 			phys_connector[1] = '0';
854 		output_len += scnprintf(buf + output_len,
855 				PAGE_SIZE - output_len,
856 				"PORT: %.2s ",
857 				phys_connector);
858 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859 			hdev->expose_device) {
860 			if (box == 0 || box == 0xFF) {
861 				output_len += scnprintf(buf + output_len,
862 					PAGE_SIZE - output_len,
863 					"BAY: %hhu %s\n",
864 					bay, active);
865 			} else {
866 				output_len += scnprintf(buf + output_len,
867 					PAGE_SIZE - output_len,
868 					"BOX: %hhu BAY: %hhu %s\n",
869 					box, bay, active);
870 			}
871 		} else if (box != 0 && box != 0xFF) {
872 			output_len += scnprintf(buf + output_len,
873 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874 				box, active);
875 		} else
876 			output_len += scnprintf(buf + output_len,
877 				PAGE_SIZE - output_len, "%s\n", active);
878 	}
879 
880 	spin_unlock_irqrestore(&h->devlock, flags);
881 	return output_len;
882 }
883 
884 static ssize_t host_show_ctlr_num(struct device *dev,
885 	struct device_attribute *attr, char *buf)
886 {
887 	struct ctlr_info *h;
888 	struct Scsi_Host *shost = class_to_shost(dev);
889 
890 	h = shost_to_hba(shost);
891 	return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893 
894 static ssize_t host_show_legacy_board(struct device *dev,
895 	struct device_attribute *attr, char *buf)
896 {
897 	struct ctlr_info *h;
898 	struct Scsi_Host *shost = class_to_shost(dev);
899 
900 	h = shost_to_hba(shost);
901 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903 
904 static DEVICE_ATTR_RO(raid_level);
905 static DEVICE_ATTR_RO(lunid);
906 static DEVICE_ATTR_RO(unique_id);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR_RO(sas_address);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910 			host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR_RO(path_info);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913 		host_show_hp_ssd_smart_path_status,
914 		host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916 			host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918 	host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920 	host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922 	host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924 	host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926 	host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928 	host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930 	host_show_legacy_board, NULL);
931 
932 static struct device_attribute *hpsa_sdev_attrs[] = {
933 	&dev_attr_raid_level,
934 	&dev_attr_lunid,
935 	&dev_attr_unique_id,
936 	&dev_attr_hp_ssd_smart_path_enabled,
937 	&dev_attr_path_info,
938 	&dev_attr_sas_address,
939 	NULL,
940 };
941 
942 static struct device_attribute *hpsa_shost_attrs[] = {
943 	&dev_attr_rescan,
944 	&dev_attr_firmware_revision,
945 	&dev_attr_commands_outstanding,
946 	&dev_attr_transport_mode,
947 	&dev_attr_resettable,
948 	&dev_attr_hp_ssd_smart_path_status,
949 	&dev_attr_raid_offload_debug,
950 	&dev_attr_lockup_detected,
951 	&dev_attr_ctlr_num,
952 	&dev_attr_legacy_board,
953 	NULL,
954 };
955 
956 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
957 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
958 
959 static struct scsi_host_template hpsa_driver_template = {
960 	.module			= THIS_MODULE,
961 	.name			= HPSA,
962 	.proc_name		= HPSA,
963 	.queuecommand		= hpsa_scsi_queue_command,
964 	.scan_start		= hpsa_scan_start,
965 	.scan_finished		= hpsa_scan_finished,
966 	.change_queue_depth	= hpsa_change_queue_depth,
967 	.this_id		= -1,
968 	.use_clustering		= ENABLE_CLUSTERING,
969 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
970 	.ioctl			= hpsa_ioctl,
971 	.slave_alloc		= hpsa_slave_alloc,
972 	.slave_configure	= hpsa_slave_configure,
973 	.slave_destroy		= hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975 	.compat_ioctl		= hpsa_compat_ioctl,
976 #endif
977 	.sdev_attrs = hpsa_sdev_attrs,
978 	.shost_attrs = hpsa_shost_attrs,
979 	.max_sectors = 1024,
980 	.no_write_same = 1,
981 };
982 
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985 	u32 a;
986 	struct reply_queue_buffer *rq = &h->reply_queue[q];
987 
988 	if (h->transMethod & CFGTBL_Trans_io_accel1)
989 		return h->access.command_completed(h, q);
990 
991 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992 		return h->access.command_completed(h, q);
993 
994 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995 		a = rq->head[rq->current_entry];
996 		rq->current_entry++;
997 		atomic_dec(&h->commands_outstanding);
998 	} else {
999 		a = FIFO_EMPTY;
1000 	}
1001 	/* Check for wraparound */
1002 	if (rq->current_entry == h->max_commands) {
1003 		rq->current_entry = 0;
1004 		rq->wraparound ^= 1;
1005 	}
1006 	return a;
1007 }
1008 
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034 
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042 					int reply_queue)
1043 {
1044 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046 		if (unlikely(!h->msix_vectors))
1047 			return;
1048 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1049 			c->Header.ReplyQueue =
1050 				raw_smp_processor_id() % h->nreply_queues;
1051 		else
1052 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1053 	}
1054 }
1055 
1056 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1057 						struct CommandList *c,
1058 						int reply_queue)
1059 {
1060 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1061 
1062 	/*
1063 	 * Tell the controller to post the reply to the queue for this
1064 	 * processor.  This seems to give the best I/O throughput.
1065 	 */
1066 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1067 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1068 	else
1069 		cp->ReplyQueue = reply_queue % h->nreply_queues;
1070 	/*
1071 	 * Set the bits in the address sent down to include:
1072 	 *  - performant mode bit (bit 0)
1073 	 *  - pull count (bits 1-3)
1074 	 *  - command type (bits 4-6)
1075 	 */
1076 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1077 					IOACCEL1_BUSADDR_CMDTYPE;
1078 }
1079 
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1081 						struct CommandList *c,
1082 						int reply_queue)
1083 {
1084 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1085 		&h->ioaccel2_cmd_pool[c->cmdindex];
1086 
1087 	/* Tell the controller to post the reply to the queue for this
1088 	 * processor.  This seems to give the best I/O throughput.
1089 	 */
1090 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1091 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1092 	else
1093 		cp->reply_queue = reply_queue % h->nreply_queues;
1094 	/* Set the bits in the address sent down to include:
1095 	 *  - performant mode bit not used in ioaccel mode 2
1096 	 *  - pull count (bits 0-3)
1097 	 *  - command type isn't needed for ioaccel2
1098 	 */
1099 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1100 }
1101 
1102 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1103 						struct CommandList *c,
1104 						int reply_queue)
1105 {
1106 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1107 
1108 	/*
1109 	 * Tell the controller to post the reply to the queue for this
1110 	 * processor.  This seems to give the best I/O throughput.
1111 	 */
1112 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1113 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1114 	else
1115 		cp->reply_queue = reply_queue % h->nreply_queues;
1116 	/*
1117 	 * Set the bits in the address sent down to include:
1118 	 *  - performant mode bit not used in ioaccel mode 2
1119 	 *  - pull count (bits 0-3)
1120 	 *  - command type isn't needed for ioaccel2
1121 	 */
1122 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1123 }
1124 
1125 static int is_firmware_flash_cmd(u8 *cdb)
1126 {
1127 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1128 }
1129 
1130 /*
1131  * During firmware flash, the heartbeat register may not update as frequently
1132  * as it should.  So we dial down lockup detection during firmware flash. and
1133  * dial it back up when firmware flash completes.
1134  */
1135 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1136 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1137 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1138 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1139 		struct CommandList *c)
1140 {
1141 	if (!is_firmware_flash_cmd(c->Request.CDB))
1142 		return;
1143 	atomic_inc(&h->firmware_flash_in_progress);
1144 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1145 }
1146 
1147 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1148 		struct CommandList *c)
1149 {
1150 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1151 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1152 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1153 }
1154 
1155 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1156 	struct CommandList *c, int reply_queue)
1157 {
1158 	dial_down_lockup_detection_during_fw_flash(h, c);
1159 	atomic_inc(&h->commands_outstanding);
1160 	switch (c->cmd_type) {
1161 	case CMD_IOACCEL1:
1162 		set_ioaccel1_performant_mode(h, c, reply_queue);
1163 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1164 		break;
1165 	case CMD_IOACCEL2:
1166 		set_ioaccel2_performant_mode(h, c, reply_queue);
1167 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1168 		break;
1169 	case IOACCEL2_TMF:
1170 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1171 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172 		break;
1173 	default:
1174 		set_performant_mode(h, c, reply_queue);
1175 		h->access.submit_command(h, c);
1176 	}
1177 }
1178 
1179 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1180 {
1181 	if (unlikely(hpsa_is_pending_event(c)))
1182 		return finish_cmd(c);
1183 
1184 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1185 }
1186 
1187 static inline int is_hba_lunid(unsigned char scsi3addr[])
1188 {
1189 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1190 }
1191 
1192 static inline int is_scsi_rev_5(struct ctlr_info *h)
1193 {
1194 	if (!h->hba_inquiry_data)
1195 		return 0;
1196 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1197 		return 1;
1198 	return 0;
1199 }
1200 
1201 static int hpsa_find_target_lun(struct ctlr_info *h,
1202 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1203 {
1204 	/* finds an unused bus, target, lun for a new physical device
1205 	 * assumes h->devlock is held
1206 	 */
1207 	int i, found = 0;
1208 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1209 
1210 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1211 
1212 	for (i = 0; i < h->ndevices; i++) {
1213 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1214 			__set_bit(h->dev[i]->target, lun_taken);
1215 	}
1216 
1217 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1218 	if (i < HPSA_MAX_DEVICES) {
1219 		/* *bus = 1; */
1220 		*target = i;
1221 		*lun = 0;
1222 		found = 1;
1223 	}
1224 	return !found;
1225 }
1226 
1227 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1228 	struct hpsa_scsi_dev_t *dev, char *description)
1229 {
1230 #define LABEL_SIZE 25
1231 	char label[LABEL_SIZE];
1232 
1233 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1234 		return;
1235 
1236 	switch (dev->devtype) {
1237 	case TYPE_RAID:
1238 		snprintf(label, LABEL_SIZE, "controller");
1239 		break;
1240 	case TYPE_ENCLOSURE:
1241 		snprintf(label, LABEL_SIZE, "enclosure");
1242 		break;
1243 	case TYPE_DISK:
1244 	case TYPE_ZBC:
1245 		if (dev->external)
1246 			snprintf(label, LABEL_SIZE, "external");
1247 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1248 			snprintf(label, LABEL_SIZE, "%s",
1249 				raid_label[PHYSICAL_DRIVE]);
1250 		else
1251 			snprintf(label, LABEL_SIZE, "RAID-%s",
1252 				dev->raid_level > RAID_UNKNOWN ? "?" :
1253 				raid_label[dev->raid_level]);
1254 		break;
1255 	case TYPE_ROM:
1256 		snprintf(label, LABEL_SIZE, "rom");
1257 		break;
1258 	case TYPE_TAPE:
1259 		snprintf(label, LABEL_SIZE, "tape");
1260 		break;
1261 	case TYPE_MEDIUM_CHANGER:
1262 		snprintf(label, LABEL_SIZE, "changer");
1263 		break;
1264 	default:
1265 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1266 		break;
1267 	}
1268 
1269 	dev_printk(level, &h->pdev->dev,
1270 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1271 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1272 			description,
1273 			scsi_device_type(dev->devtype),
1274 			dev->vendor,
1275 			dev->model,
1276 			label,
1277 			dev->offload_config ? '+' : '-',
1278 			dev->offload_to_be_enabled ? '+' : '-',
1279 			dev->expose_device);
1280 }
1281 
1282 /* Add an entry into h->dev[] array. */
1283 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1284 		struct hpsa_scsi_dev_t *device,
1285 		struct hpsa_scsi_dev_t *added[], int *nadded)
1286 {
1287 	/* assumes h->devlock is held */
1288 	int n = h->ndevices;
1289 	int i;
1290 	unsigned char addr1[8], addr2[8];
1291 	struct hpsa_scsi_dev_t *sd;
1292 
1293 	if (n >= HPSA_MAX_DEVICES) {
1294 		dev_err(&h->pdev->dev, "too many devices, some will be "
1295 			"inaccessible.\n");
1296 		return -1;
1297 	}
1298 
1299 	/* physical devices do not have lun or target assigned until now. */
1300 	if (device->lun != -1)
1301 		/* Logical device, lun is already assigned. */
1302 		goto lun_assigned;
1303 
1304 	/* If this device a non-zero lun of a multi-lun device
1305 	 * byte 4 of the 8-byte LUN addr will contain the logical
1306 	 * unit no, zero otherwise.
1307 	 */
1308 	if (device->scsi3addr[4] == 0) {
1309 		/* This is not a non-zero lun of a multi-lun device */
1310 		if (hpsa_find_target_lun(h, device->scsi3addr,
1311 			device->bus, &device->target, &device->lun) != 0)
1312 			return -1;
1313 		goto lun_assigned;
1314 	}
1315 
1316 	/* This is a non-zero lun of a multi-lun device.
1317 	 * Search through our list and find the device which
1318 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1319 	 * Assign the same bus and target for this new LUN.
1320 	 * Use the logical unit number from the firmware.
1321 	 */
1322 	memcpy(addr1, device->scsi3addr, 8);
1323 	addr1[4] = 0;
1324 	addr1[5] = 0;
1325 	for (i = 0; i < n; i++) {
1326 		sd = h->dev[i];
1327 		memcpy(addr2, sd->scsi3addr, 8);
1328 		addr2[4] = 0;
1329 		addr2[5] = 0;
1330 		/* differ only in byte 4 and 5? */
1331 		if (memcmp(addr1, addr2, 8) == 0) {
1332 			device->bus = sd->bus;
1333 			device->target = sd->target;
1334 			device->lun = device->scsi3addr[4];
1335 			break;
1336 		}
1337 	}
1338 	if (device->lun == -1) {
1339 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1340 			" suspect firmware bug or unsupported hardware "
1341 			"configuration.\n");
1342 			return -1;
1343 	}
1344 
1345 lun_assigned:
1346 
1347 	h->dev[n] = device;
1348 	h->ndevices++;
1349 	added[*nadded] = device;
1350 	(*nadded)++;
1351 	hpsa_show_dev_msg(KERN_INFO, h, device,
1352 		device->expose_device ? "added" : "masked");
1353 	return 0;
1354 }
1355 
1356 /*
1357  * Called during a scan operation.
1358  *
1359  * Update an entry in h->dev[] array.
1360  */
1361 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1362 	int entry, struct hpsa_scsi_dev_t *new_entry)
1363 {
1364 	/* assumes h->devlock is held */
1365 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1366 
1367 	/* Raid level changed. */
1368 	h->dev[entry]->raid_level = new_entry->raid_level;
1369 
1370 	/*
1371 	 * ioacccel_handle may have changed for a dual domain disk
1372 	 */
1373 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1374 
1375 	/* Raid offload parameters changed.  Careful about the ordering. */
1376 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1377 		/*
1378 		 * if drive is newly offload_enabled, we want to copy the
1379 		 * raid map data first.  If previously offload_enabled and
1380 		 * offload_config were set, raid map data had better be
1381 		 * the same as it was before. If raid map data has changed
1382 		 * then it had better be the case that
1383 		 * h->dev[entry]->offload_enabled is currently 0.
1384 		 */
1385 		h->dev[entry]->raid_map = new_entry->raid_map;
1386 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1387 	}
1388 	if (new_entry->offload_to_be_enabled) {
1389 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1390 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1391 	}
1392 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1393 	h->dev[entry]->offload_config = new_entry->offload_config;
1394 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1395 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1396 
1397 	/*
1398 	 * We can turn off ioaccel offload now, but need to delay turning
1399 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1400 	 * can't do that until all the devices are updated.
1401 	 */
1402 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1403 
1404 	/*
1405 	 * turn ioaccel off immediately if told to do so.
1406 	 */
1407 	if (!new_entry->offload_to_be_enabled)
1408 		h->dev[entry]->offload_enabled = 0;
1409 
1410 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1411 }
1412 
1413 /* Replace an entry from h->dev[] array. */
1414 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1415 	int entry, struct hpsa_scsi_dev_t *new_entry,
1416 	struct hpsa_scsi_dev_t *added[], int *nadded,
1417 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1418 {
1419 	/* assumes h->devlock is held */
1420 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1421 	removed[*nremoved] = h->dev[entry];
1422 	(*nremoved)++;
1423 
1424 	/*
1425 	 * New physical devices won't have target/lun assigned yet
1426 	 * so we need to preserve the values in the slot we are replacing.
1427 	 */
1428 	if (new_entry->target == -1) {
1429 		new_entry->target = h->dev[entry]->target;
1430 		new_entry->lun = h->dev[entry]->lun;
1431 	}
1432 
1433 	h->dev[entry] = new_entry;
1434 	added[*nadded] = new_entry;
1435 	(*nadded)++;
1436 
1437 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1438 }
1439 
1440 /* Remove an entry from h->dev[] array. */
1441 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1442 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1443 {
1444 	/* assumes h->devlock is held */
1445 	int i;
1446 	struct hpsa_scsi_dev_t *sd;
1447 
1448 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1449 
1450 	sd = h->dev[entry];
1451 	removed[*nremoved] = h->dev[entry];
1452 	(*nremoved)++;
1453 
1454 	for (i = entry; i < h->ndevices-1; i++)
1455 		h->dev[i] = h->dev[i+1];
1456 	h->ndevices--;
1457 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1458 }
1459 
1460 #define SCSI3ADDR_EQ(a, b) ( \
1461 	(a)[7] == (b)[7] && \
1462 	(a)[6] == (b)[6] && \
1463 	(a)[5] == (b)[5] && \
1464 	(a)[4] == (b)[4] && \
1465 	(a)[3] == (b)[3] && \
1466 	(a)[2] == (b)[2] && \
1467 	(a)[1] == (b)[1] && \
1468 	(a)[0] == (b)[0])
1469 
1470 static void fixup_botched_add(struct ctlr_info *h,
1471 	struct hpsa_scsi_dev_t *added)
1472 {
1473 	/* called when scsi_add_device fails in order to re-adjust
1474 	 * h->dev[] to match the mid layer's view.
1475 	 */
1476 	unsigned long flags;
1477 	int i, j;
1478 
1479 	spin_lock_irqsave(&h->lock, flags);
1480 	for (i = 0; i < h->ndevices; i++) {
1481 		if (h->dev[i] == added) {
1482 			for (j = i; j < h->ndevices-1; j++)
1483 				h->dev[j] = h->dev[j+1];
1484 			h->ndevices--;
1485 			break;
1486 		}
1487 	}
1488 	spin_unlock_irqrestore(&h->lock, flags);
1489 	kfree(added);
1490 }
1491 
1492 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1493 	struct hpsa_scsi_dev_t *dev2)
1494 {
1495 	/* we compare everything except lun and target as these
1496 	 * are not yet assigned.  Compare parts likely
1497 	 * to differ first
1498 	 */
1499 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1500 		sizeof(dev1->scsi3addr)) != 0)
1501 		return 0;
1502 	if (memcmp(dev1->device_id, dev2->device_id,
1503 		sizeof(dev1->device_id)) != 0)
1504 		return 0;
1505 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1506 		return 0;
1507 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1508 		return 0;
1509 	if (dev1->devtype != dev2->devtype)
1510 		return 0;
1511 	if (dev1->bus != dev2->bus)
1512 		return 0;
1513 	return 1;
1514 }
1515 
1516 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1517 	struct hpsa_scsi_dev_t *dev2)
1518 {
1519 	/* Device attributes that can change, but don't mean
1520 	 * that the device is a different device, nor that the OS
1521 	 * needs to be told anything about the change.
1522 	 */
1523 	if (dev1->raid_level != dev2->raid_level)
1524 		return 1;
1525 	if (dev1->offload_config != dev2->offload_config)
1526 		return 1;
1527 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1528 		return 1;
1529 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1530 		if (dev1->queue_depth != dev2->queue_depth)
1531 			return 1;
1532 	/*
1533 	 * This can happen for dual domain devices. An active
1534 	 * path change causes the ioaccel handle to change
1535 	 *
1536 	 * for example note the handle differences between p0 and p1
1537 	 * Device                    WWN               ,WWN hash,Handle
1538 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1539 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1540 	 */
1541 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1542 		return 1;
1543 	return 0;
1544 }
1545 
1546 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1547  * and return needle location in *index.  If scsi3addr matches, but not
1548  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1549  * location in *index.
1550  * In the case of a minor device attribute change, such as RAID level, just
1551  * return DEVICE_UPDATED, along with the updated device's location in index.
1552  * If needle not found, return DEVICE_NOT_FOUND.
1553  */
1554 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1555 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1556 	int *index)
1557 {
1558 	int i;
1559 #define DEVICE_NOT_FOUND 0
1560 #define DEVICE_CHANGED 1
1561 #define DEVICE_SAME 2
1562 #define DEVICE_UPDATED 3
1563 	if (needle == NULL)
1564 		return DEVICE_NOT_FOUND;
1565 
1566 	for (i = 0; i < haystack_size; i++) {
1567 		if (haystack[i] == NULL) /* previously removed. */
1568 			continue;
1569 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1570 			*index = i;
1571 			if (device_is_the_same(needle, haystack[i])) {
1572 				if (device_updated(needle, haystack[i]))
1573 					return DEVICE_UPDATED;
1574 				return DEVICE_SAME;
1575 			} else {
1576 				/* Keep offline devices offline */
1577 				if (needle->volume_offline)
1578 					return DEVICE_NOT_FOUND;
1579 				return DEVICE_CHANGED;
1580 			}
1581 		}
1582 	}
1583 	*index = -1;
1584 	return DEVICE_NOT_FOUND;
1585 }
1586 
1587 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1588 					unsigned char scsi3addr[])
1589 {
1590 	struct offline_device_entry *device;
1591 	unsigned long flags;
1592 
1593 	/* Check to see if device is already on the list */
1594 	spin_lock_irqsave(&h->offline_device_lock, flags);
1595 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1596 		if (memcmp(device->scsi3addr, scsi3addr,
1597 			sizeof(device->scsi3addr)) == 0) {
1598 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1599 			return;
1600 		}
1601 	}
1602 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1603 
1604 	/* Device is not on the list, add it. */
1605 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1606 	if (!device)
1607 		return;
1608 
1609 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1610 	spin_lock_irqsave(&h->offline_device_lock, flags);
1611 	list_add_tail(&device->offline_list, &h->offline_device_list);
1612 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1613 }
1614 
1615 /* Print a message explaining various offline volume states */
1616 static void hpsa_show_volume_status(struct ctlr_info *h,
1617 	struct hpsa_scsi_dev_t *sd)
1618 {
1619 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1620 		dev_info(&h->pdev->dev,
1621 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1622 			h->scsi_host->host_no,
1623 			sd->bus, sd->target, sd->lun);
1624 	switch (sd->volume_offline) {
1625 	case HPSA_LV_OK:
1626 		break;
1627 	case HPSA_LV_UNDERGOING_ERASE:
1628 		dev_info(&h->pdev->dev,
1629 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1630 			h->scsi_host->host_no,
1631 			sd->bus, sd->target, sd->lun);
1632 		break;
1633 	case HPSA_LV_NOT_AVAILABLE:
1634 		dev_info(&h->pdev->dev,
1635 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1636 			h->scsi_host->host_no,
1637 			sd->bus, sd->target, sd->lun);
1638 		break;
1639 	case HPSA_LV_UNDERGOING_RPI:
1640 		dev_info(&h->pdev->dev,
1641 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1642 			h->scsi_host->host_no,
1643 			sd->bus, sd->target, sd->lun);
1644 		break;
1645 	case HPSA_LV_PENDING_RPI:
1646 		dev_info(&h->pdev->dev,
1647 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1648 			h->scsi_host->host_no,
1649 			sd->bus, sd->target, sd->lun);
1650 		break;
1651 	case HPSA_LV_ENCRYPTED_NO_KEY:
1652 		dev_info(&h->pdev->dev,
1653 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1654 			h->scsi_host->host_no,
1655 			sd->bus, sd->target, sd->lun);
1656 		break;
1657 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1658 		dev_info(&h->pdev->dev,
1659 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1660 			h->scsi_host->host_no,
1661 			sd->bus, sd->target, sd->lun);
1662 		break;
1663 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1664 		dev_info(&h->pdev->dev,
1665 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1666 			h->scsi_host->host_no,
1667 			sd->bus, sd->target, sd->lun);
1668 		break;
1669 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1670 		dev_info(&h->pdev->dev,
1671 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1672 			h->scsi_host->host_no,
1673 			sd->bus, sd->target, sd->lun);
1674 		break;
1675 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1676 		dev_info(&h->pdev->dev,
1677 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1678 			h->scsi_host->host_no,
1679 			sd->bus, sd->target, sd->lun);
1680 		break;
1681 	case HPSA_LV_PENDING_ENCRYPTION:
1682 		dev_info(&h->pdev->dev,
1683 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1684 			h->scsi_host->host_no,
1685 			sd->bus, sd->target, sd->lun);
1686 		break;
1687 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1688 		dev_info(&h->pdev->dev,
1689 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1690 			h->scsi_host->host_no,
1691 			sd->bus, sd->target, sd->lun);
1692 		break;
1693 	}
1694 }
1695 
1696 /*
1697  * Figure the list of physical drive pointers for a logical drive with
1698  * raid offload configured.
1699  */
1700 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1701 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1702 				struct hpsa_scsi_dev_t *logical_drive)
1703 {
1704 	struct raid_map_data *map = &logical_drive->raid_map;
1705 	struct raid_map_disk_data *dd = &map->data[0];
1706 	int i, j;
1707 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1708 				le16_to_cpu(map->metadata_disks_per_row);
1709 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1710 				le16_to_cpu(map->layout_map_count) *
1711 				total_disks_per_row;
1712 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1713 				total_disks_per_row;
1714 	int qdepth;
1715 
1716 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1717 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1718 
1719 	logical_drive->nphysical_disks = nraid_map_entries;
1720 
1721 	qdepth = 0;
1722 	for (i = 0; i < nraid_map_entries; i++) {
1723 		logical_drive->phys_disk[i] = NULL;
1724 		if (!logical_drive->offload_config)
1725 			continue;
1726 		for (j = 0; j < ndevices; j++) {
1727 			if (dev[j] == NULL)
1728 				continue;
1729 			if (dev[j]->devtype != TYPE_DISK &&
1730 			    dev[j]->devtype != TYPE_ZBC)
1731 				continue;
1732 			if (is_logical_device(dev[j]))
1733 				continue;
1734 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1735 				continue;
1736 
1737 			logical_drive->phys_disk[i] = dev[j];
1738 			if (i < nphys_disk)
1739 				qdepth = min(h->nr_cmds, qdepth +
1740 				    logical_drive->phys_disk[i]->queue_depth);
1741 			break;
1742 		}
1743 
1744 		/*
1745 		 * This can happen if a physical drive is removed and
1746 		 * the logical drive is degraded.  In that case, the RAID
1747 		 * map data will refer to a physical disk which isn't actually
1748 		 * present.  And in that case offload_enabled should already
1749 		 * be 0, but we'll turn it off here just in case
1750 		 */
1751 		if (!logical_drive->phys_disk[i]) {
1752 			dev_warn(&h->pdev->dev,
1753 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1754 				__func__,
1755 				h->scsi_host->host_no, logical_drive->bus,
1756 				logical_drive->target, logical_drive->lun);
1757 			logical_drive->offload_enabled = 0;
1758 			logical_drive->offload_to_be_enabled = 0;
1759 			logical_drive->queue_depth = 8;
1760 		}
1761 	}
1762 	if (nraid_map_entries)
1763 		/*
1764 		 * This is correct for reads, too high for full stripe writes,
1765 		 * way too high for partial stripe writes
1766 		 */
1767 		logical_drive->queue_depth = qdepth;
1768 	else {
1769 		if (logical_drive->external)
1770 			logical_drive->queue_depth = EXTERNAL_QD;
1771 		else
1772 			logical_drive->queue_depth = h->nr_cmds;
1773 	}
1774 }
1775 
1776 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1777 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1778 {
1779 	int i;
1780 
1781 	for (i = 0; i < ndevices; i++) {
1782 		if (dev[i] == NULL)
1783 			continue;
1784 		if (dev[i]->devtype != TYPE_DISK &&
1785 		    dev[i]->devtype != TYPE_ZBC)
1786 			continue;
1787 		if (!is_logical_device(dev[i]))
1788 			continue;
1789 
1790 		/*
1791 		 * If offload is currently enabled, the RAID map and
1792 		 * phys_disk[] assignment *better* not be changing
1793 		 * because we would be changing ioaccel phsy_disk[] pointers
1794 		 * on a ioaccel volume processing I/O requests.
1795 		 *
1796 		 * If an ioaccel volume status changed, initially because it was
1797 		 * re-configured and thus underwent a transformation, or
1798 		 * a drive failed, we would have received a state change
1799 		 * request and ioaccel should have been turned off. When the
1800 		 * transformation completes, we get another state change
1801 		 * request to turn ioaccel back on. In this case, we need
1802 		 * to update the ioaccel information.
1803 		 *
1804 		 * Thus: If it is not currently enabled, but will be after
1805 		 * the scan completes, make sure the ioaccel pointers
1806 		 * are up to date.
1807 		 */
1808 
1809 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1810 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1811 	}
1812 }
1813 
1814 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1815 {
1816 	int rc = 0;
1817 
1818 	if (!h->scsi_host)
1819 		return 1;
1820 
1821 	if (is_logical_device(device)) /* RAID */
1822 		rc = scsi_add_device(h->scsi_host, device->bus,
1823 					device->target, device->lun);
1824 	else /* HBA */
1825 		rc = hpsa_add_sas_device(h->sas_host, device);
1826 
1827 	return rc;
1828 }
1829 
1830 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1831 						struct hpsa_scsi_dev_t *dev)
1832 {
1833 	int i;
1834 	int count = 0;
1835 
1836 	for (i = 0; i < h->nr_cmds; i++) {
1837 		struct CommandList *c = h->cmd_pool + i;
1838 		int refcount = atomic_inc_return(&c->refcount);
1839 
1840 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1841 				dev->scsi3addr)) {
1842 			unsigned long flags;
1843 
1844 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1845 			if (!hpsa_is_cmd_idle(c))
1846 				++count;
1847 			spin_unlock_irqrestore(&h->lock, flags);
1848 		}
1849 
1850 		cmd_free(h, c);
1851 	}
1852 
1853 	return count;
1854 }
1855 
1856 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1857 						struct hpsa_scsi_dev_t *device)
1858 {
1859 	int cmds = 0;
1860 	int waits = 0;
1861 
1862 	while (1) {
1863 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1864 		if (cmds == 0)
1865 			break;
1866 		if (++waits > 20)
1867 			break;
1868 		msleep(1000);
1869 	}
1870 
1871 	if (waits > 20)
1872 		dev_warn(&h->pdev->dev,
1873 			"%s: removing device with %d outstanding commands!\n",
1874 			__func__, cmds);
1875 }
1876 
1877 static void hpsa_remove_device(struct ctlr_info *h,
1878 			struct hpsa_scsi_dev_t *device)
1879 {
1880 	struct scsi_device *sdev = NULL;
1881 
1882 	if (!h->scsi_host)
1883 		return;
1884 
1885 	/*
1886 	 * Allow for commands to drain
1887 	 */
1888 	device->removed = 1;
1889 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1890 
1891 	if (is_logical_device(device)) { /* RAID */
1892 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1893 						device->target, device->lun);
1894 		if (sdev) {
1895 			scsi_remove_device(sdev);
1896 			scsi_device_put(sdev);
1897 		} else {
1898 			/*
1899 			 * We don't expect to get here.  Future commands
1900 			 * to this device will get a selection timeout as
1901 			 * if the device were gone.
1902 			 */
1903 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1904 					"didn't find device for removal.");
1905 		}
1906 	} else { /* HBA */
1907 
1908 		hpsa_remove_sas_device(device);
1909 	}
1910 }
1911 
1912 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1913 	struct hpsa_scsi_dev_t *sd[], int nsds)
1914 {
1915 	/* sd contains scsi3 addresses and devtypes, and inquiry
1916 	 * data.  This function takes what's in sd to be the current
1917 	 * reality and updates h->dev[] to reflect that reality.
1918 	 */
1919 	int i, entry, device_change, changes = 0;
1920 	struct hpsa_scsi_dev_t *csd;
1921 	unsigned long flags;
1922 	struct hpsa_scsi_dev_t **added, **removed;
1923 	int nadded, nremoved;
1924 
1925 	/*
1926 	 * A reset can cause a device status to change
1927 	 * re-schedule the scan to see what happened.
1928 	 */
1929 	spin_lock_irqsave(&h->reset_lock, flags);
1930 	if (h->reset_in_progress) {
1931 		h->drv_req_rescan = 1;
1932 		spin_unlock_irqrestore(&h->reset_lock, flags);
1933 		return;
1934 	}
1935 	spin_unlock_irqrestore(&h->reset_lock, flags);
1936 
1937 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1938 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1939 
1940 	if (!added || !removed) {
1941 		dev_warn(&h->pdev->dev, "out of memory in "
1942 			"adjust_hpsa_scsi_table\n");
1943 		goto free_and_out;
1944 	}
1945 
1946 	spin_lock_irqsave(&h->devlock, flags);
1947 
1948 	/* find any devices in h->dev[] that are not in
1949 	 * sd[] and remove them from h->dev[], and for any
1950 	 * devices which have changed, remove the old device
1951 	 * info and add the new device info.
1952 	 * If minor device attributes change, just update
1953 	 * the existing device structure.
1954 	 */
1955 	i = 0;
1956 	nremoved = 0;
1957 	nadded = 0;
1958 	while (i < h->ndevices) {
1959 		csd = h->dev[i];
1960 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1961 		if (device_change == DEVICE_NOT_FOUND) {
1962 			changes++;
1963 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1964 			continue; /* remove ^^^, hence i not incremented */
1965 		} else if (device_change == DEVICE_CHANGED) {
1966 			changes++;
1967 			hpsa_scsi_replace_entry(h, i, sd[entry],
1968 				added, &nadded, removed, &nremoved);
1969 			/* Set it to NULL to prevent it from being freed
1970 			 * at the bottom of hpsa_update_scsi_devices()
1971 			 */
1972 			sd[entry] = NULL;
1973 		} else if (device_change == DEVICE_UPDATED) {
1974 			hpsa_scsi_update_entry(h, i, sd[entry]);
1975 		}
1976 		i++;
1977 	}
1978 
1979 	/* Now, make sure every device listed in sd[] is also
1980 	 * listed in h->dev[], adding them if they aren't found
1981 	 */
1982 
1983 	for (i = 0; i < nsds; i++) {
1984 		if (!sd[i]) /* if already added above. */
1985 			continue;
1986 
1987 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1988 		 * as the SCSI mid-layer does not handle such devices well.
1989 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1990 		 * at 160Hz, and prevents the system from coming up.
1991 		 */
1992 		if (sd[i]->volume_offline) {
1993 			hpsa_show_volume_status(h, sd[i]);
1994 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1995 			continue;
1996 		}
1997 
1998 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1999 					h->ndevices, &entry);
2000 		if (device_change == DEVICE_NOT_FOUND) {
2001 			changes++;
2002 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2003 				break;
2004 			sd[i] = NULL; /* prevent from being freed later. */
2005 		} else if (device_change == DEVICE_CHANGED) {
2006 			/* should never happen... */
2007 			changes++;
2008 			dev_warn(&h->pdev->dev,
2009 				"device unexpectedly changed.\n");
2010 			/* but if it does happen, we just ignore that device */
2011 		}
2012 	}
2013 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2014 
2015 	/*
2016 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2017 	 * any logical drives that need it enabled.
2018 	 *
2019 	 * The raid map should be current by now.
2020 	 *
2021 	 * We are updating the device list used for I/O requests.
2022 	 */
2023 	for (i = 0; i < h->ndevices; i++) {
2024 		if (h->dev[i] == NULL)
2025 			continue;
2026 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2027 	}
2028 
2029 	spin_unlock_irqrestore(&h->devlock, flags);
2030 
2031 	/* Monitor devices which are in one of several NOT READY states to be
2032 	 * brought online later. This must be done without holding h->devlock,
2033 	 * so don't touch h->dev[]
2034 	 */
2035 	for (i = 0; i < nsds; i++) {
2036 		if (!sd[i]) /* if already added above. */
2037 			continue;
2038 		if (sd[i]->volume_offline)
2039 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2040 	}
2041 
2042 	/* Don't notify scsi mid layer of any changes the first time through
2043 	 * (or if there are no changes) scsi_scan_host will do it later the
2044 	 * first time through.
2045 	 */
2046 	if (!changes)
2047 		goto free_and_out;
2048 
2049 	/* Notify scsi mid layer of any removed devices */
2050 	for (i = 0; i < nremoved; i++) {
2051 		if (removed[i] == NULL)
2052 			continue;
2053 		if (removed[i]->expose_device)
2054 			hpsa_remove_device(h, removed[i]);
2055 		kfree(removed[i]);
2056 		removed[i] = NULL;
2057 	}
2058 
2059 	/* Notify scsi mid layer of any added devices */
2060 	for (i = 0; i < nadded; i++) {
2061 		int rc = 0;
2062 
2063 		if (added[i] == NULL)
2064 			continue;
2065 		if (!(added[i]->expose_device))
2066 			continue;
2067 		rc = hpsa_add_device(h, added[i]);
2068 		if (!rc)
2069 			continue;
2070 		dev_warn(&h->pdev->dev,
2071 			"addition failed %d, device not added.", rc);
2072 		/* now we have to remove it from h->dev,
2073 		 * since it didn't get added to scsi mid layer
2074 		 */
2075 		fixup_botched_add(h, added[i]);
2076 		h->drv_req_rescan = 1;
2077 	}
2078 
2079 free_and_out:
2080 	kfree(added);
2081 	kfree(removed);
2082 }
2083 
2084 /*
2085  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2086  * Assume's h->devlock is held.
2087  */
2088 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2089 	int bus, int target, int lun)
2090 {
2091 	int i;
2092 	struct hpsa_scsi_dev_t *sd;
2093 
2094 	for (i = 0; i < h->ndevices; i++) {
2095 		sd = h->dev[i];
2096 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2097 			return sd;
2098 	}
2099 	return NULL;
2100 }
2101 
2102 static int hpsa_slave_alloc(struct scsi_device *sdev)
2103 {
2104 	struct hpsa_scsi_dev_t *sd = NULL;
2105 	unsigned long flags;
2106 	struct ctlr_info *h;
2107 
2108 	h = sdev_to_hba(sdev);
2109 	spin_lock_irqsave(&h->devlock, flags);
2110 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2111 		struct scsi_target *starget;
2112 		struct sas_rphy *rphy;
2113 
2114 		starget = scsi_target(sdev);
2115 		rphy = target_to_rphy(starget);
2116 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2117 		if (sd) {
2118 			sd->target = sdev_id(sdev);
2119 			sd->lun = sdev->lun;
2120 		}
2121 	}
2122 	if (!sd)
2123 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2124 					sdev_id(sdev), sdev->lun);
2125 
2126 	if (sd && sd->expose_device) {
2127 		atomic_set(&sd->ioaccel_cmds_out, 0);
2128 		sdev->hostdata = sd;
2129 	} else
2130 		sdev->hostdata = NULL;
2131 	spin_unlock_irqrestore(&h->devlock, flags);
2132 	return 0;
2133 }
2134 
2135 /* configure scsi device based on internal per-device structure */
2136 static int hpsa_slave_configure(struct scsi_device *sdev)
2137 {
2138 	struct hpsa_scsi_dev_t *sd;
2139 	int queue_depth;
2140 
2141 	sd = sdev->hostdata;
2142 	sdev->no_uld_attach = !sd || !sd->expose_device;
2143 
2144 	if (sd) {
2145 		if (sd->external)
2146 			queue_depth = EXTERNAL_QD;
2147 		else
2148 			queue_depth = sd->queue_depth != 0 ?
2149 					sd->queue_depth : sdev->host->can_queue;
2150 	} else
2151 		queue_depth = sdev->host->can_queue;
2152 
2153 	scsi_change_queue_depth(sdev, queue_depth);
2154 
2155 	return 0;
2156 }
2157 
2158 static void hpsa_slave_destroy(struct scsi_device *sdev)
2159 {
2160 	/* nothing to do. */
2161 }
2162 
2163 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2164 {
2165 	int i;
2166 
2167 	if (!h->ioaccel2_cmd_sg_list)
2168 		return;
2169 	for (i = 0; i < h->nr_cmds; i++) {
2170 		kfree(h->ioaccel2_cmd_sg_list[i]);
2171 		h->ioaccel2_cmd_sg_list[i] = NULL;
2172 	}
2173 	kfree(h->ioaccel2_cmd_sg_list);
2174 	h->ioaccel2_cmd_sg_list = NULL;
2175 }
2176 
2177 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2178 {
2179 	int i;
2180 
2181 	if (h->chainsize <= 0)
2182 		return 0;
2183 
2184 	h->ioaccel2_cmd_sg_list =
2185 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2186 					GFP_KERNEL);
2187 	if (!h->ioaccel2_cmd_sg_list)
2188 		return -ENOMEM;
2189 	for (i = 0; i < h->nr_cmds; i++) {
2190 		h->ioaccel2_cmd_sg_list[i] =
2191 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2192 					h->maxsgentries, GFP_KERNEL);
2193 		if (!h->ioaccel2_cmd_sg_list[i])
2194 			goto clean;
2195 	}
2196 	return 0;
2197 
2198 clean:
2199 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2200 	return -ENOMEM;
2201 }
2202 
2203 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2204 {
2205 	int i;
2206 
2207 	if (!h->cmd_sg_list)
2208 		return;
2209 	for (i = 0; i < h->nr_cmds; i++) {
2210 		kfree(h->cmd_sg_list[i]);
2211 		h->cmd_sg_list[i] = NULL;
2212 	}
2213 	kfree(h->cmd_sg_list);
2214 	h->cmd_sg_list = NULL;
2215 }
2216 
2217 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2218 {
2219 	int i;
2220 
2221 	if (h->chainsize <= 0)
2222 		return 0;
2223 
2224 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2225 				GFP_KERNEL);
2226 	if (!h->cmd_sg_list)
2227 		return -ENOMEM;
2228 
2229 	for (i = 0; i < h->nr_cmds; i++) {
2230 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2231 						h->chainsize, GFP_KERNEL);
2232 		if (!h->cmd_sg_list[i])
2233 			goto clean;
2234 
2235 	}
2236 	return 0;
2237 
2238 clean:
2239 	hpsa_free_sg_chain_blocks(h);
2240 	return -ENOMEM;
2241 }
2242 
2243 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2244 	struct io_accel2_cmd *cp, struct CommandList *c)
2245 {
2246 	struct ioaccel2_sg_element *chain_block;
2247 	u64 temp64;
2248 	u32 chain_size;
2249 
2250 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2251 	chain_size = le32_to_cpu(cp->sg[0].length);
2252 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2253 				PCI_DMA_TODEVICE);
2254 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2255 		/* prevent subsequent unmapping */
2256 		cp->sg->address = 0;
2257 		return -1;
2258 	}
2259 	cp->sg->address = cpu_to_le64(temp64);
2260 	return 0;
2261 }
2262 
2263 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2264 	struct io_accel2_cmd *cp)
2265 {
2266 	struct ioaccel2_sg_element *chain_sg;
2267 	u64 temp64;
2268 	u32 chain_size;
2269 
2270 	chain_sg = cp->sg;
2271 	temp64 = le64_to_cpu(chain_sg->address);
2272 	chain_size = le32_to_cpu(cp->sg[0].length);
2273 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2274 }
2275 
2276 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2277 	struct CommandList *c)
2278 {
2279 	struct SGDescriptor *chain_sg, *chain_block;
2280 	u64 temp64;
2281 	u32 chain_len;
2282 
2283 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2284 	chain_block = h->cmd_sg_list[c->cmdindex];
2285 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2286 	chain_len = sizeof(*chain_sg) *
2287 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2288 	chain_sg->Len = cpu_to_le32(chain_len);
2289 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2290 				PCI_DMA_TODEVICE);
2291 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2292 		/* prevent subsequent unmapping */
2293 		chain_sg->Addr = cpu_to_le64(0);
2294 		return -1;
2295 	}
2296 	chain_sg->Addr = cpu_to_le64(temp64);
2297 	return 0;
2298 }
2299 
2300 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2301 	struct CommandList *c)
2302 {
2303 	struct SGDescriptor *chain_sg;
2304 
2305 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2306 		return;
2307 
2308 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2309 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2310 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2311 }
2312 
2313 
2314 /* Decode the various types of errors on ioaccel2 path.
2315  * Return 1 for any error that should generate a RAID path retry.
2316  * Return 0 for errors that don't require a RAID path retry.
2317  */
2318 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2319 					struct CommandList *c,
2320 					struct scsi_cmnd *cmd,
2321 					struct io_accel2_cmd *c2,
2322 					struct hpsa_scsi_dev_t *dev)
2323 {
2324 	int data_len;
2325 	int retry = 0;
2326 	u32 ioaccel2_resid = 0;
2327 
2328 	switch (c2->error_data.serv_response) {
2329 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2330 		switch (c2->error_data.status) {
2331 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2332 			break;
2333 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2334 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2335 			if (c2->error_data.data_present !=
2336 					IOACCEL2_SENSE_DATA_PRESENT) {
2337 				memset(cmd->sense_buffer, 0,
2338 					SCSI_SENSE_BUFFERSIZE);
2339 				break;
2340 			}
2341 			/* copy the sense data */
2342 			data_len = c2->error_data.sense_data_len;
2343 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2344 				data_len = SCSI_SENSE_BUFFERSIZE;
2345 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2346 				data_len =
2347 					sizeof(c2->error_data.sense_data_buff);
2348 			memcpy(cmd->sense_buffer,
2349 				c2->error_data.sense_data_buff, data_len);
2350 			retry = 1;
2351 			break;
2352 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2353 			retry = 1;
2354 			break;
2355 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2356 			retry = 1;
2357 			break;
2358 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2359 			retry = 1;
2360 			break;
2361 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2362 			retry = 1;
2363 			break;
2364 		default:
2365 			retry = 1;
2366 			break;
2367 		}
2368 		break;
2369 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2370 		switch (c2->error_data.status) {
2371 		case IOACCEL2_STATUS_SR_IO_ERROR:
2372 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2373 		case IOACCEL2_STATUS_SR_OVERRUN:
2374 			retry = 1;
2375 			break;
2376 		case IOACCEL2_STATUS_SR_UNDERRUN:
2377 			cmd->result = (DID_OK << 16);		/* host byte */
2378 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2379 			ioaccel2_resid = get_unaligned_le32(
2380 						&c2->error_data.resid_cnt[0]);
2381 			scsi_set_resid(cmd, ioaccel2_resid);
2382 			break;
2383 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2384 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2385 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2386 			/*
2387 			 * Did an HBA disk disappear? We will eventually
2388 			 * get a state change event from the controller but
2389 			 * in the meantime, we need to tell the OS that the
2390 			 * HBA disk is no longer there and stop I/O
2391 			 * from going down. This allows the potential re-insert
2392 			 * of the disk to get the same device node.
2393 			 */
2394 			if (dev->physical_device && dev->expose_device) {
2395 				cmd->result = DID_NO_CONNECT << 16;
2396 				dev->removed = 1;
2397 				h->drv_req_rescan = 1;
2398 				dev_warn(&h->pdev->dev,
2399 					"%s: device is gone!\n", __func__);
2400 			} else
2401 				/*
2402 				 * Retry by sending down the RAID path.
2403 				 * We will get an event from ctlr to
2404 				 * trigger rescan regardless.
2405 				 */
2406 				retry = 1;
2407 			break;
2408 		default:
2409 			retry = 1;
2410 		}
2411 		break;
2412 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2413 		break;
2414 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2415 		break;
2416 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2417 		retry = 1;
2418 		break;
2419 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2420 		break;
2421 	default:
2422 		retry = 1;
2423 		break;
2424 	}
2425 
2426 	return retry;	/* retry on raid path? */
2427 }
2428 
2429 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2430 		struct CommandList *c)
2431 {
2432 	bool do_wake = false;
2433 
2434 	/*
2435 	 * Reset c->scsi_cmd here so that the reset handler will know
2436 	 * this command has completed.  Then, check to see if the handler is
2437 	 * waiting for this command, and, if so, wake it.
2438 	 */
2439 	c->scsi_cmd = SCSI_CMD_IDLE;
2440 	mb();	/* Declare command idle before checking for pending events. */
2441 	if (c->reset_pending) {
2442 		unsigned long flags;
2443 		struct hpsa_scsi_dev_t *dev;
2444 
2445 		/*
2446 		 * There appears to be a reset pending; lock the lock and
2447 		 * reconfirm.  If so, then decrement the count of outstanding
2448 		 * commands and wake the reset command if this is the last one.
2449 		 */
2450 		spin_lock_irqsave(&h->lock, flags);
2451 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2452 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2453 			do_wake = true;
2454 		c->reset_pending = NULL;
2455 		spin_unlock_irqrestore(&h->lock, flags);
2456 	}
2457 
2458 	if (do_wake)
2459 		wake_up_all(&h->event_sync_wait_queue);
2460 }
2461 
2462 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2463 				      struct CommandList *c)
2464 {
2465 	hpsa_cmd_resolve_events(h, c);
2466 	cmd_tagged_free(h, c);
2467 }
2468 
2469 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2470 		struct CommandList *c, struct scsi_cmnd *cmd)
2471 {
2472 	hpsa_cmd_resolve_and_free(h, c);
2473 	if (cmd && cmd->scsi_done)
2474 		cmd->scsi_done(cmd);
2475 }
2476 
2477 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2478 {
2479 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2480 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2481 }
2482 
2483 static void process_ioaccel2_completion(struct ctlr_info *h,
2484 		struct CommandList *c, struct scsi_cmnd *cmd,
2485 		struct hpsa_scsi_dev_t *dev)
2486 {
2487 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2488 
2489 	/* check for good status */
2490 	if (likely(c2->error_data.serv_response == 0 &&
2491 			c2->error_data.status == 0))
2492 		return hpsa_cmd_free_and_done(h, c, cmd);
2493 
2494 	/*
2495 	 * Any RAID offload error results in retry which will use
2496 	 * the normal I/O path so the controller can handle whatever is
2497 	 * wrong.
2498 	 */
2499 	if (is_logical_device(dev) &&
2500 		c2->error_data.serv_response ==
2501 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2502 		if (c2->error_data.status ==
2503 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2504 			dev->offload_enabled = 0;
2505 			dev->offload_to_be_enabled = 0;
2506 		}
2507 
2508 		return hpsa_retry_cmd(h, c);
2509 	}
2510 
2511 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2512 		return hpsa_retry_cmd(h, c);
2513 
2514 	return hpsa_cmd_free_and_done(h, c, cmd);
2515 }
2516 
2517 /* Returns 0 on success, < 0 otherwise. */
2518 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2519 					struct CommandList *cp)
2520 {
2521 	u8 tmf_status = cp->err_info->ScsiStatus;
2522 
2523 	switch (tmf_status) {
2524 	case CISS_TMF_COMPLETE:
2525 		/*
2526 		 * CISS_TMF_COMPLETE never happens, instead,
2527 		 * ei->CommandStatus == 0 for this case.
2528 		 */
2529 	case CISS_TMF_SUCCESS:
2530 		return 0;
2531 	case CISS_TMF_INVALID_FRAME:
2532 	case CISS_TMF_NOT_SUPPORTED:
2533 	case CISS_TMF_FAILED:
2534 	case CISS_TMF_WRONG_LUN:
2535 	case CISS_TMF_OVERLAPPED_TAG:
2536 		break;
2537 	default:
2538 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2539 				tmf_status);
2540 		break;
2541 	}
2542 	return -tmf_status;
2543 }
2544 
2545 static void complete_scsi_command(struct CommandList *cp)
2546 {
2547 	struct scsi_cmnd *cmd;
2548 	struct ctlr_info *h;
2549 	struct ErrorInfo *ei;
2550 	struct hpsa_scsi_dev_t *dev;
2551 	struct io_accel2_cmd *c2;
2552 
2553 	u8 sense_key;
2554 	u8 asc;      /* additional sense code */
2555 	u8 ascq;     /* additional sense code qualifier */
2556 	unsigned long sense_data_size;
2557 
2558 	ei = cp->err_info;
2559 	cmd = cp->scsi_cmd;
2560 	h = cp->h;
2561 
2562 	if (!cmd->device) {
2563 		cmd->result = DID_NO_CONNECT << 16;
2564 		return hpsa_cmd_free_and_done(h, cp, cmd);
2565 	}
2566 
2567 	dev = cmd->device->hostdata;
2568 	if (!dev) {
2569 		cmd->result = DID_NO_CONNECT << 16;
2570 		return hpsa_cmd_free_and_done(h, cp, cmd);
2571 	}
2572 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2573 
2574 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2575 	if ((cp->cmd_type == CMD_SCSI) &&
2576 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2577 		hpsa_unmap_sg_chain_block(h, cp);
2578 
2579 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2580 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2581 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2582 
2583 	cmd->result = (DID_OK << 16); 		/* host byte */
2584 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2585 
2586 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2587 		if (dev->physical_device && dev->expose_device &&
2588 			dev->removed) {
2589 			cmd->result = DID_NO_CONNECT << 16;
2590 			return hpsa_cmd_free_and_done(h, cp, cmd);
2591 		}
2592 		if (likely(cp->phys_disk != NULL))
2593 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2594 	}
2595 
2596 	/*
2597 	 * We check for lockup status here as it may be set for
2598 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2599 	 * fail_all_oustanding_cmds()
2600 	 */
2601 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2602 		/* DID_NO_CONNECT will prevent a retry */
2603 		cmd->result = DID_NO_CONNECT << 16;
2604 		return hpsa_cmd_free_and_done(h, cp, cmd);
2605 	}
2606 
2607 	if ((unlikely(hpsa_is_pending_event(cp))))
2608 		if (cp->reset_pending)
2609 			return hpsa_cmd_free_and_done(h, cp, cmd);
2610 
2611 	if (cp->cmd_type == CMD_IOACCEL2)
2612 		return process_ioaccel2_completion(h, cp, cmd, dev);
2613 
2614 	scsi_set_resid(cmd, ei->ResidualCnt);
2615 	if (ei->CommandStatus == 0)
2616 		return hpsa_cmd_free_and_done(h, cp, cmd);
2617 
2618 	/* For I/O accelerator commands, copy over some fields to the normal
2619 	 * CISS header used below for error handling.
2620 	 */
2621 	if (cp->cmd_type == CMD_IOACCEL1) {
2622 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2623 		cp->Header.SGList = scsi_sg_count(cmd);
2624 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2625 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2626 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2627 		cp->Header.tag = c->tag;
2628 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2629 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2630 
2631 		/* Any RAID offload error results in retry which will use
2632 		 * the normal I/O path so the controller can handle whatever's
2633 		 * wrong.
2634 		 */
2635 		if (is_logical_device(dev)) {
2636 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2637 				dev->offload_enabled = 0;
2638 			return hpsa_retry_cmd(h, cp);
2639 		}
2640 	}
2641 
2642 	/* an error has occurred */
2643 	switch (ei->CommandStatus) {
2644 
2645 	case CMD_TARGET_STATUS:
2646 		cmd->result |= ei->ScsiStatus;
2647 		/* copy the sense data */
2648 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2649 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2650 		else
2651 			sense_data_size = sizeof(ei->SenseInfo);
2652 		if (ei->SenseLen < sense_data_size)
2653 			sense_data_size = ei->SenseLen;
2654 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2655 		if (ei->ScsiStatus)
2656 			decode_sense_data(ei->SenseInfo, sense_data_size,
2657 				&sense_key, &asc, &ascq);
2658 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2659 			if (sense_key == ABORTED_COMMAND) {
2660 				cmd->result |= DID_SOFT_ERROR << 16;
2661 				break;
2662 			}
2663 			break;
2664 		}
2665 		/* Problem was not a check condition
2666 		 * Pass it up to the upper layers...
2667 		 */
2668 		if (ei->ScsiStatus) {
2669 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2670 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2671 				"Returning result: 0x%x\n",
2672 				cp, ei->ScsiStatus,
2673 				sense_key, asc, ascq,
2674 				cmd->result);
2675 		} else {  /* scsi status is zero??? How??? */
2676 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2677 				"Returning no connection.\n", cp),
2678 
2679 			/* Ordinarily, this case should never happen,
2680 			 * but there is a bug in some released firmware
2681 			 * revisions that allows it to happen if, for
2682 			 * example, a 4100 backplane loses power and
2683 			 * the tape drive is in it.  We assume that
2684 			 * it's a fatal error of some kind because we
2685 			 * can't show that it wasn't. We will make it
2686 			 * look like selection timeout since that is
2687 			 * the most common reason for this to occur,
2688 			 * and it's severe enough.
2689 			 */
2690 
2691 			cmd->result = DID_NO_CONNECT << 16;
2692 		}
2693 		break;
2694 
2695 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2696 		break;
2697 	case CMD_DATA_OVERRUN:
2698 		dev_warn(&h->pdev->dev,
2699 			"CDB %16phN data overrun\n", cp->Request.CDB);
2700 		break;
2701 	case CMD_INVALID: {
2702 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2703 		print_cmd(cp); */
2704 		/* We get CMD_INVALID if you address a non-existent device
2705 		 * instead of a selection timeout (no response).  You will
2706 		 * see this if you yank out a drive, then try to access it.
2707 		 * This is kind of a shame because it means that any other
2708 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2709 		 * missing target. */
2710 		cmd->result = DID_NO_CONNECT << 16;
2711 	}
2712 		break;
2713 	case CMD_PROTOCOL_ERR:
2714 		cmd->result = DID_ERROR << 16;
2715 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2716 				cp->Request.CDB);
2717 		break;
2718 	case CMD_HARDWARE_ERR:
2719 		cmd->result = DID_ERROR << 16;
2720 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2721 			cp->Request.CDB);
2722 		break;
2723 	case CMD_CONNECTION_LOST:
2724 		cmd->result = DID_ERROR << 16;
2725 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2726 			cp->Request.CDB);
2727 		break;
2728 	case CMD_ABORTED:
2729 		cmd->result = DID_ABORT << 16;
2730 		break;
2731 	case CMD_ABORT_FAILED:
2732 		cmd->result = DID_ERROR << 16;
2733 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2734 			cp->Request.CDB);
2735 		break;
2736 	case CMD_UNSOLICITED_ABORT:
2737 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2738 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2739 			cp->Request.CDB);
2740 		break;
2741 	case CMD_TIMEOUT:
2742 		cmd->result = DID_TIME_OUT << 16;
2743 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2744 			cp->Request.CDB);
2745 		break;
2746 	case CMD_UNABORTABLE:
2747 		cmd->result = DID_ERROR << 16;
2748 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2749 		break;
2750 	case CMD_TMF_STATUS:
2751 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2752 			cmd->result = DID_ERROR << 16;
2753 		break;
2754 	case CMD_IOACCEL_DISABLED:
2755 		/* This only handles the direct pass-through case since RAID
2756 		 * offload is handled above.  Just attempt a retry.
2757 		 */
2758 		cmd->result = DID_SOFT_ERROR << 16;
2759 		dev_warn(&h->pdev->dev,
2760 				"cp %p had HP SSD Smart Path error\n", cp);
2761 		break;
2762 	default:
2763 		cmd->result = DID_ERROR << 16;
2764 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2765 				cp, ei->CommandStatus);
2766 	}
2767 
2768 	return hpsa_cmd_free_and_done(h, cp, cmd);
2769 }
2770 
2771 static void hpsa_pci_unmap(struct pci_dev *pdev,
2772 	struct CommandList *c, int sg_used, int data_direction)
2773 {
2774 	int i;
2775 
2776 	for (i = 0; i < sg_used; i++)
2777 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2778 				le32_to_cpu(c->SG[i].Len),
2779 				data_direction);
2780 }
2781 
2782 static int hpsa_map_one(struct pci_dev *pdev,
2783 		struct CommandList *cp,
2784 		unsigned char *buf,
2785 		size_t buflen,
2786 		int data_direction)
2787 {
2788 	u64 addr64;
2789 
2790 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2791 		cp->Header.SGList = 0;
2792 		cp->Header.SGTotal = cpu_to_le16(0);
2793 		return 0;
2794 	}
2795 
2796 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2797 	if (dma_mapping_error(&pdev->dev, addr64)) {
2798 		/* Prevent subsequent unmap of something never mapped */
2799 		cp->Header.SGList = 0;
2800 		cp->Header.SGTotal = cpu_to_le16(0);
2801 		return -1;
2802 	}
2803 	cp->SG[0].Addr = cpu_to_le64(addr64);
2804 	cp->SG[0].Len = cpu_to_le32(buflen);
2805 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2806 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2807 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2808 	return 0;
2809 }
2810 
2811 #define NO_TIMEOUT ((unsigned long) -1)
2812 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2813 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2814 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2815 {
2816 	DECLARE_COMPLETION_ONSTACK(wait);
2817 
2818 	c->waiting = &wait;
2819 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2820 	if (timeout_msecs == NO_TIMEOUT) {
2821 		/* TODO: get rid of this no-timeout thing */
2822 		wait_for_completion_io(&wait);
2823 		return IO_OK;
2824 	}
2825 	if (!wait_for_completion_io_timeout(&wait,
2826 					msecs_to_jiffies(timeout_msecs))) {
2827 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2828 		return -ETIMEDOUT;
2829 	}
2830 	return IO_OK;
2831 }
2832 
2833 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2834 				   int reply_queue, unsigned long timeout_msecs)
2835 {
2836 	if (unlikely(lockup_detected(h))) {
2837 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2838 		return IO_OK;
2839 	}
2840 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2841 }
2842 
2843 static u32 lockup_detected(struct ctlr_info *h)
2844 {
2845 	int cpu;
2846 	u32 rc, *lockup_detected;
2847 
2848 	cpu = get_cpu();
2849 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2850 	rc = *lockup_detected;
2851 	put_cpu();
2852 	return rc;
2853 }
2854 
2855 #define MAX_DRIVER_CMD_RETRIES 25
2856 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2857 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2858 {
2859 	int backoff_time = 10, retry_count = 0;
2860 	int rc;
2861 
2862 	do {
2863 		memset(c->err_info, 0, sizeof(*c->err_info));
2864 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2865 						  timeout_msecs);
2866 		if (rc)
2867 			break;
2868 		retry_count++;
2869 		if (retry_count > 3) {
2870 			msleep(backoff_time);
2871 			if (backoff_time < 1000)
2872 				backoff_time *= 2;
2873 		}
2874 	} while ((check_for_unit_attention(h, c) ||
2875 			check_for_busy(h, c)) &&
2876 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2877 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2878 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2879 		rc = -EIO;
2880 	return rc;
2881 }
2882 
2883 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2884 				struct CommandList *c)
2885 {
2886 	const u8 *cdb = c->Request.CDB;
2887 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2888 
2889 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2890 		 txt, lun, cdb);
2891 }
2892 
2893 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2894 			struct CommandList *cp)
2895 {
2896 	const struct ErrorInfo *ei = cp->err_info;
2897 	struct device *d = &cp->h->pdev->dev;
2898 	u8 sense_key, asc, ascq;
2899 	int sense_len;
2900 
2901 	switch (ei->CommandStatus) {
2902 	case CMD_TARGET_STATUS:
2903 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2904 			sense_len = sizeof(ei->SenseInfo);
2905 		else
2906 			sense_len = ei->SenseLen;
2907 		decode_sense_data(ei->SenseInfo, sense_len,
2908 					&sense_key, &asc, &ascq);
2909 		hpsa_print_cmd(h, "SCSI status", cp);
2910 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2911 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2912 				sense_key, asc, ascq);
2913 		else
2914 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2915 		if (ei->ScsiStatus == 0)
2916 			dev_warn(d, "SCSI status is abnormally zero.  "
2917 			"(probably indicates selection timeout "
2918 			"reported incorrectly due to a known "
2919 			"firmware bug, circa July, 2001.)\n");
2920 		break;
2921 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2922 		break;
2923 	case CMD_DATA_OVERRUN:
2924 		hpsa_print_cmd(h, "overrun condition", cp);
2925 		break;
2926 	case CMD_INVALID: {
2927 		/* controller unfortunately reports SCSI passthru's
2928 		 * to non-existent targets as invalid commands.
2929 		 */
2930 		hpsa_print_cmd(h, "invalid command", cp);
2931 		dev_warn(d, "probably means device no longer present\n");
2932 		}
2933 		break;
2934 	case CMD_PROTOCOL_ERR:
2935 		hpsa_print_cmd(h, "protocol error", cp);
2936 		break;
2937 	case CMD_HARDWARE_ERR:
2938 		hpsa_print_cmd(h, "hardware error", cp);
2939 		break;
2940 	case CMD_CONNECTION_LOST:
2941 		hpsa_print_cmd(h, "connection lost", cp);
2942 		break;
2943 	case CMD_ABORTED:
2944 		hpsa_print_cmd(h, "aborted", cp);
2945 		break;
2946 	case CMD_ABORT_FAILED:
2947 		hpsa_print_cmd(h, "abort failed", cp);
2948 		break;
2949 	case CMD_UNSOLICITED_ABORT:
2950 		hpsa_print_cmd(h, "unsolicited abort", cp);
2951 		break;
2952 	case CMD_TIMEOUT:
2953 		hpsa_print_cmd(h, "timed out", cp);
2954 		break;
2955 	case CMD_UNABORTABLE:
2956 		hpsa_print_cmd(h, "unabortable", cp);
2957 		break;
2958 	case CMD_CTLR_LOCKUP:
2959 		hpsa_print_cmd(h, "controller lockup detected", cp);
2960 		break;
2961 	default:
2962 		hpsa_print_cmd(h, "unknown status", cp);
2963 		dev_warn(d, "Unknown command status %x\n",
2964 				ei->CommandStatus);
2965 	}
2966 }
2967 
2968 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2969 					u8 page, u8 *buf, size_t bufsize)
2970 {
2971 	int rc = IO_OK;
2972 	struct CommandList *c;
2973 	struct ErrorInfo *ei;
2974 
2975 	c = cmd_alloc(h);
2976 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2977 			page, scsi3addr, TYPE_CMD)) {
2978 		rc = -1;
2979 		goto out;
2980 	}
2981 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2982 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2983 	if (rc)
2984 		goto out;
2985 	ei = c->err_info;
2986 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2987 		hpsa_scsi_interpret_error(h, c);
2988 		rc = -1;
2989 	}
2990 out:
2991 	cmd_free(h, c);
2992 	return rc;
2993 }
2994 
2995 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2996 						u8 *scsi3addr)
2997 {
2998 	u8 *buf;
2999 	u64 sa = 0;
3000 	int rc = 0;
3001 
3002 	buf = kzalloc(1024, GFP_KERNEL);
3003 	if (!buf)
3004 		return 0;
3005 
3006 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3007 					buf, 1024);
3008 
3009 	if (rc)
3010 		goto out;
3011 
3012 	sa = get_unaligned_be64(buf+12);
3013 
3014 out:
3015 	kfree(buf);
3016 	return sa;
3017 }
3018 
3019 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3020 			u16 page, unsigned char *buf,
3021 			unsigned char bufsize)
3022 {
3023 	int rc = IO_OK;
3024 	struct CommandList *c;
3025 	struct ErrorInfo *ei;
3026 
3027 	c = cmd_alloc(h);
3028 
3029 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3030 			page, scsi3addr, TYPE_CMD)) {
3031 		rc = -1;
3032 		goto out;
3033 	}
3034 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3035 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3036 	if (rc)
3037 		goto out;
3038 	ei = c->err_info;
3039 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3040 		hpsa_scsi_interpret_error(h, c);
3041 		rc = -1;
3042 	}
3043 out:
3044 	cmd_free(h, c);
3045 	return rc;
3046 }
3047 
3048 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3049 	u8 reset_type, int reply_queue)
3050 {
3051 	int rc = IO_OK;
3052 	struct CommandList *c;
3053 	struct ErrorInfo *ei;
3054 
3055 	c = cmd_alloc(h);
3056 
3057 
3058 	/* fill_cmd can't fail here, no data buffer to map. */
3059 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3060 			scsi3addr, TYPE_MSG);
3061 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3062 	if (rc) {
3063 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3064 		goto out;
3065 	}
3066 	/* no unmap needed here because no data xfer. */
3067 
3068 	ei = c->err_info;
3069 	if (ei->CommandStatus != 0) {
3070 		hpsa_scsi_interpret_error(h, c);
3071 		rc = -1;
3072 	}
3073 out:
3074 	cmd_free(h, c);
3075 	return rc;
3076 }
3077 
3078 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3079 			       struct hpsa_scsi_dev_t *dev,
3080 			       unsigned char *scsi3addr)
3081 {
3082 	int i;
3083 	bool match = false;
3084 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3085 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3086 
3087 	if (hpsa_is_cmd_idle(c))
3088 		return false;
3089 
3090 	switch (c->cmd_type) {
3091 	case CMD_SCSI:
3092 	case CMD_IOCTL_PEND:
3093 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3094 				sizeof(c->Header.LUN.LunAddrBytes));
3095 		break;
3096 
3097 	case CMD_IOACCEL1:
3098 	case CMD_IOACCEL2:
3099 		if (c->phys_disk == dev) {
3100 			/* HBA mode match */
3101 			match = true;
3102 		} else {
3103 			/* Possible RAID mode -- check each phys dev. */
3104 			/* FIXME:  Do we need to take out a lock here?  If
3105 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3106 			 * instead. */
3107 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3108 				/* FIXME: an alternate test might be
3109 				 *
3110 				 * match = dev->phys_disk[i]->ioaccel_handle
3111 				 *              == c2->scsi_nexus;      */
3112 				match = dev->phys_disk[i] == c->phys_disk;
3113 			}
3114 		}
3115 		break;
3116 
3117 	case IOACCEL2_TMF:
3118 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3119 			match = dev->phys_disk[i]->ioaccel_handle ==
3120 					le32_to_cpu(ac->it_nexus);
3121 		}
3122 		break;
3123 
3124 	case 0:		/* The command is in the middle of being initialized. */
3125 		match = false;
3126 		break;
3127 
3128 	default:
3129 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3130 			c->cmd_type);
3131 		BUG();
3132 	}
3133 
3134 	return match;
3135 }
3136 
3137 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3138 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3139 {
3140 	int i;
3141 	int rc = 0;
3142 
3143 	/* We can really only handle one reset at a time */
3144 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3145 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3146 		return -EINTR;
3147 	}
3148 
3149 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3150 
3151 	for (i = 0; i < h->nr_cmds; i++) {
3152 		struct CommandList *c = h->cmd_pool + i;
3153 		int refcount = atomic_inc_return(&c->refcount);
3154 
3155 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3156 			unsigned long flags;
3157 
3158 			/*
3159 			 * Mark the target command as having a reset pending,
3160 			 * then lock a lock so that the command cannot complete
3161 			 * while we're considering it.  If the command is not
3162 			 * idle then count it; otherwise revoke the event.
3163 			 */
3164 			c->reset_pending = dev;
3165 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3166 			if (!hpsa_is_cmd_idle(c))
3167 				atomic_inc(&dev->reset_cmds_out);
3168 			else
3169 				c->reset_pending = NULL;
3170 			spin_unlock_irqrestore(&h->lock, flags);
3171 		}
3172 
3173 		cmd_free(h, c);
3174 	}
3175 
3176 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3177 	if (!rc)
3178 		wait_event(h->event_sync_wait_queue,
3179 			atomic_read(&dev->reset_cmds_out) == 0 ||
3180 			lockup_detected(h));
3181 
3182 	if (unlikely(lockup_detected(h))) {
3183 		dev_warn(&h->pdev->dev,
3184 			 "Controller lockup detected during reset wait\n");
3185 		rc = -ENODEV;
3186 	}
3187 
3188 	if (unlikely(rc))
3189 		atomic_set(&dev->reset_cmds_out, 0);
3190 	else
3191 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3192 
3193 	mutex_unlock(&h->reset_mutex);
3194 	return rc;
3195 }
3196 
3197 static void hpsa_get_raid_level(struct ctlr_info *h,
3198 	unsigned char *scsi3addr, unsigned char *raid_level)
3199 {
3200 	int rc;
3201 	unsigned char *buf;
3202 
3203 	*raid_level = RAID_UNKNOWN;
3204 	buf = kzalloc(64, GFP_KERNEL);
3205 	if (!buf)
3206 		return;
3207 
3208 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3209 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3210 		goto exit;
3211 
3212 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3213 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3214 
3215 	if (rc == 0)
3216 		*raid_level = buf[8];
3217 	if (*raid_level > RAID_UNKNOWN)
3218 		*raid_level = RAID_UNKNOWN;
3219 exit:
3220 	kfree(buf);
3221 	return;
3222 }
3223 
3224 #define HPSA_MAP_DEBUG
3225 #ifdef HPSA_MAP_DEBUG
3226 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3227 				struct raid_map_data *map_buff)
3228 {
3229 	struct raid_map_disk_data *dd = &map_buff->data[0];
3230 	int map, row, col;
3231 	u16 map_cnt, row_cnt, disks_per_row;
3232 
3233 	if (rc != 0)
3234 		return;
3235 
3236 	/* Show details only if debugging has been activated. */
3237 	if (h->raid_offload_debug < 2)
3238 		return;
3239 
3240 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3241 				le32_to_cpu(map_buff->structure_size));
3242 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3243 			le32_to_cpu(map_buff->volume_blk_size));
3244 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3245 			le64_to_cpu(map_buff->volume_blk_cnt));
3246 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3247 			map_buff->phys_blk_shift);
3248 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3249 			map_buff->parity_rotation_shift);
3250 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3251 			le16_to_cpu(map_buff->strip_size));
3252 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3253 			le64_to_cpu(map_buff->disk_starting_blk));
3254 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3255 			le64_to_cpu(map_buff->disk_blk_cnt));
3256 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3257 			le16_to_cpu(map_buff->data_disks_per_row));
3258 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3259 			le16_to_cpu(map_buff->metadata_disks_per_row));
3260 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3261 			le16_to_cpu(map_buff->row_cnt));
3262 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3263 			le16_to_cpu(map_buff->layout_map_count));
3264 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3265 			le16_to_cpu(map_buff->flags));
3266 	dev_info(&h->pdev->dev, "encryption = %s\n",
3267 			le16_to_cpu(map_buff->flags) &
3268 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3269 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3270 			le16_to_cpu(map_buff->dekindex));
3271 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3272 	for (map = 0; map < map_cnt; map++) {
3273 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3274 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3275 		for (row = 0; row < row_cnt; row++) {
3276 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3277 			disks_per_row =
3278 				le16_to_cpu(map_buff->data_disks_per_row);
3279 			for (col = 0; col < disks_per_row; col++, dd++)
3280 				dev_info(&h->pdev->dev,
3281 					"    D%02u: h=0x%04x xor=%u,%u\n",
3282 					col, dd->ioaccel_handle,
3283 					dd->xor_mult[0], dd->xor_mult[1]);
3284 			disks_per_row =
3285 				le16_to_cpu(map_buff->metadata_disks_per_row);
3286 			for (col = 0; col < disks_per_row; col++, dd++)
3287 				dev_info(&h->pdev->dev,
3288 					"    M%02u: h=0x%04x xor=%u,%u\n",
3289 					col, dd->ioaccel_handle,
3290 					dd->xor_mult[0], dd->xor_mult[1]);
3291 		}
3292 	}
3293 }
3294 #else
3295 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3296 			__attribute__((unused)) int rc,
3297 			__attribute__((unused)) struct raid_map_data *map_buff)
3298 {
3299 }
3300 #endif
3301 
3302 static int hpsa_get_raid_map(struct ctlr_info *h,
3303 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3304 {
3305 	int rc = 0;
3306 	struct CommandList *c;
3307 	struct ErrorInfo *ei;
3308 
3309 	c = cmd_alloc(h);
3310 
3311 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3312 			sizeof(this_device->raid_map), 0,
3313 			scsi3addr, TYPE_CMD)) {
3314 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3315 		cmd_free(h, c);
3316 		return -1;
3317 	}
3318 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3319 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3320 	if (rc)
3321 		goto out;
3322 	ei = c->err_info;
3323 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3324 		hpsa_scsi_interpret_error(h, c);
3325 		rc = -1;
3326 		goto out;
3327 	}
3328 	cmd_free(h, c);
3329 
3330 	/* @todo in the future, dynamically allocate RAID map memory */
3331 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3332 				sizeof(this_device->raid_map)) {
3333 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3334 		rc = -1;
3335 	}
3336 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3337 	return rc;
3338 out:
3339 	cmd_free(h, c);
3340 	return rc;
3341 }
3342 
3343 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3344 		unsigned char scsi3addr[], u16 bmic_device_index,
3345 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3346 {
3347 	int rc = IO_OK;
3348 	struct CommandList *c;
3349 	struct ErrorInfo *ei;
3350 
3351 	c = cmd_alloc(h);
3352 
3353 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3354 		0, RAID_CTLR_LUNID, TYPE_CMD);
3355 	if (rc)
3356 		goto out;
3357 
3358 	c->Request.CDB[2] = bmic_device_index & 0xff;
3359 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3360 
3361 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3362 				PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3363 	if (rc)
3364 		goto out;
3365 	ei = c->err_info;
3366 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3367 		hpsa_scsi_interpret_error(h, c);
3368 		rc = -1;
3369 	}
3370 out:
3371 	cmd_free(h, c);
3372 	return rc;
3373 }
3374 
3375 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3376 	struct bmic_identify_controller *buf, size_t bufsize)
3377 {
3378 	int rc = IO_OK;
3379 	struct CommandList *c;
3380 	struct ErrorInfo *ei;
3381 
3382 	c = cmd_alloc(h);
3383 
3384 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3385 		0, RAID_CTLR_LUNID, TYPE_CMD);
3386 	if (rc)
3387 		goto out;
3388 
3389 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3390 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3391 	if (rc)
3392 		goto out;
3393 	ei = c->err_info;
3394 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3395 		hpsa_scsi_interpret_error(h, c);
3396 		rc = -1;
3397 	}
3398 out:
3399 	cmd_free(h, c);
3400 	return rc;
3401 }
3402 
3403 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3404 		unsigned char scsi3addr[], u16 bmic_device_index,
3405 		struct bmic_identify_physical_device *buf, size_t bufsize)
3406 {
3407 	int rc = IO_OK;
3408 	struct CommandList *c;
3409 	struct ErrorInfo *ei;
3410 
3411 	c = cmd_alloc(h);
3412 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3413 		0, RAID_CTLR_LUNID, TYPE_CMD);
3414 	if (rc)
3415 		goto out;
3416 
3417 	c->Request.CDB[2] = bmic_device_index & 0xff;
3418 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3419 
3420 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3421 						NO_TIMEOUT);
3422 	ei = c->err_info;
3423 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3424 		hpsa_scsi_interpret_error(h, c);
3425 		rc = -1;
3426 	}
3427 out:
3428 	cmd_free(h, c);
3429 
3430 	return rc;
3431 }
3432 
3433 /*
3434  * get enclosure information
3435  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3436  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3437  * Uses id_physical_device to determine the box_index.
3438  */
3439 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3440 			unsigned char *scsi3addr,
3441 			struct ReportExtendedLUNdata *rlep, int rle_index,
3442 			struct hpsa_scsi_dev_t *encl_dev)
3443 {
3444 	int rc = -1;
3445 	struct CommandList *c = NULL;
3446 	struct ErrorInfo *ei = NULL;
3447 	struct bmic_sense_storage_box_params *bssbp = NULL;
3448 	struct bmic_identify_physical_device *id_phys = NULL;
3449 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3450 	u16 bmic_device_index = 0;
3451 
3452 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3453 
3454 	encl_dev->sas_address =
3455 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3456 
3457 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3458 		rc = IO_OK;
3459 		goto out;
3460 	}
3461 
3462 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3463 		rc = IO_OK;
3464 		goto out;
3465 	}
3466 
3467 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3468 	if (!bssbp)
3469 		goto out;
3470 
3471 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3472 	if (!id_phys)
3473 		goto out;
3474 
3475 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3476 						id_phys, sizeof(*id_phys));
3477 	if (rc) {
3478 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3479 			__func__, encl_dev->external, bmic_device_index);
3480 		goto out;
3481 	}
3482 
3483 	c = cmd_alloc(h);
3484 
3485 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3486 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3487 
3488 	if (rc)
3489 		goto out;
3490 
3491 	if (id_phys->phys_connector[1] == 'E')
3492 		c->Request.CDB[5] = id_phys->box_index;
3493 	else
3494 		c->Request.CDB[5] = 0;
3495 
3496 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3497 						NO_TIMEOUT);
3498 	if (rc)
3499 		goto out;
3500 
3501 	ei = c->err_info;
3502 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3503 		rc = -1;
3504 		goto out;
3505 	}
3506 
3507 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3508 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3509 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3510 
3511 	rc = IO_OK;
3512 out:
3513 	kfree(bssbp);
3514 	kfree(id_phys);
3515 
3516 	if (c)
3517 		cmd_free(h, c);
3518 
3519 	if (rc != IO_OK)
3520 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3521 			"Error, could not get enclosure information");
3522 }
3523 
3524 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3525 						unsigned char *scsi3addr)
3526 {
3527 	struct ReportExtendedLUNdata *physdev;
3528 	u32 nphysicals;
3529 	u64 sa = 0;
3530 	int i;
3531 
3532 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3533 	if (!physdev)
3534 		return 0;
3535 
3536 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3537 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3538 		kfree(physdev);
3539 		return 0;
3540 	}
3541 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3542 
3543 	for (i = 0; i < nphysicals; i++)
3544 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3545 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3546 			break;
3547 		}
3548 
3549 	kfree(physdev);
3550 
3551 	return sa;
3552 }
3553 
3554 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3555 					struct hpsa_scsi_dev_t *dev)
3556 {
3557 	int rc;
3558 	u64 sa = 0;
3559 
3560 	if (is_hba_lunid(scsi3addr)) {
3561 		struct bmic_sense_subsystem_info *ssi;
3562 
3563 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3564 		if (!ssi)
3565 			return;
3566 
3567 		rc = hpsa_bmic_sense_subsystem_information(h,
3568 					scsi3addr, 0, ssi, sizeof(*ssi));
3569 		if (rc == 0) {
3570 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3571 			h->sas_address = sa;
3572 		}
3573 
3574 		kfree(ssi);
3575 	} else
3576 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3577 
3578 	dev->sas_address = sa;
3579 }
3580 
3581 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3582 	struct ReportExtendedLUNdata *physdev)
3583 {
3584 	u32 nphysicals;
3585 	int i;
3586 
3587 	if (h->discovery_polling)
3588 		return;
3589 
3590 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3591 
3592 	for (i = 0; i < nphysicals; i++) {
3593 		if (physdev->LUN[i].device_type ==
3594 			BMIC_DEVICE_TYPE_CONTROLLER
3595 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3596 			dev_info(&h->pdev->dev,
3597 				"External controller present, activate discovery polling and disable rld caching\n");
3598 			hpsa_disable_rld_caching(h);
3599 			h->discovery_polling = 1;
3600 			break;
3601 		}
3602 	}
3603 }
3604 
3605 /* Get a device id from inquiry page 0x83 */
3606 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3607 	unsigned char scsi3addr[], u8 page)
3608 {
3609 	int rc;
3610 	int i;
3611 	int pages;
3612 	unsigned char *buf, bufsize;
3613 
3614 	buf = kzalloc(256, GFP_KERNEL);
3615 	if (!buf)
3616 		return false;
3617 
3618 	/* Get the size of the page list first */
3619 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3620 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3621 				buf, HPSA_VPD_HEADER_SZ);
3622 	if (rc != 0)
3623 		goto exit_unsupported;
3624 	pages = buf[3];
3625 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3626 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3627 	else
3628 		bufsize = 255;
3629 
3630 	/* Get the whole VPD page list */
3631 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3632 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3633 				buf, bufsize);
3634 	if (rc != 0)
3635 		goto exit_unsupported;
3636 
3637 	pages = buf[3];
3638 	for (i = 1; i <= pages; i++)
3639 		if (buf[3 + i] == page)
3640 			goto exit_supported;
3641 exit_unsupported:
3642 	kfree(buf);
3643 	return false;
3644 exit_supported:
3645 	kfree(buf);
3646 	return true;
3647 }
3648 
3649 /*
3650  * Called during a scan operation.
3651  * Sets ioaccel status on the new device list, not the existing device list
3652  *
3653  * The device list used during I/O will be updated later in
3654  * adjust_hpsa_scsi_table.
3655  */
3656 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3657 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3658 {
3659 	int rc;
3660 	unsigned char *buf;
3661 	u8 ioaccel_status;
3662 
3663 	this_device->offload_config = 0;
3664 	this_device->offload_enabled = 0;
3665 	this_device->offload_to_be_enabled = 0;
3666 
3667 	buf = kzalloc(64, GFP_KERNEL);
3668 	if (!buf)
3669 		return;
3670 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3671 		goto out;
3672 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3673 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3674 	if (rc != 0)
3675 		goto out;
3676 
3677 #define IOACCEL_STATUS_BYTE 4
3678 #define OFFLOAD_CONFIGURED_BIT 0x01
3679 #define OFFLOAD_ENABLED_BIT 0x02
3680 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3681 	this_device->offload_config =
3682 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3683 	if (this_device->offload_config) {
3684 		this_device->offload_to_be_enabled =
3685 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3686 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3687 			this_device->offload_to_be_enabled = 0;
3688 	}
3689 
3690 out:
3691 	kfree(buf);
3692 	return;
3693 }
3694 
3695 /* Get the device id from inquiry page 0x83 */
3696 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3697 	unsigned char *device_id, int index, int buflen)
3698 {
3699 	int rc;
3700 	unsigned char *buf;
3701 
3702 	/* Does controller have VPD for device id? */
3703 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3704 		return 1; /* not supported */
3705 
3706 	buf = kzalloc(64, GFP_KERNEL);
3707 	if (!buf)
3708 		return -ENOMEM;
3709 
3710 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3711 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3712 	if (rc == 0) {
3713 		if (buflen > 16)
3714 			buflen = 16;
3715 		memcpy(device_id, &buf[8], buflen);
3716 	}
3717 
3718 	kfree(buf);
3719 
3720 	return rc; /*0 - got id,  otherwise, didn't */
3721 }
3722 
3723 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3724 		void *buf, int bufsize,
3725 		int extended_response)
3726 {
3727 	int rc = IO_OK;
3728 	struct CommandList *c;
3729 	unsigned char scsi3addr[8];
3730 	struct ErrorInfo *ei;
3731 
3732 	c = cmd_alloc(h);
3733 
3734 	/* address the controller */
3735 	memset(scsi3addr, 0, sizeof(scsi3addr));
3736 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3737 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3738 		rc = -EAGAIN;
3739 		goto out;
3740 	}
3741 	if (extended_response)
3742 		c->Request.CDB[1] = extended_response;
3743 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3744 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3745 	if (rc)
3746 		goto out;
3747 	ei = c->err_info;
3748 	if (ei->CommandStatus != 0 &&
3749 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3750 		hpsa_scsi_interpret_error(h, c);
3751 		rc = -EIO;
3752 	} else {
3753 		struct ReportLUNdata *rld = buf;
3754 
3755 		if (rld->extended_response_flag != extended_response) {
3756 			if (!h->legacy_board) {
3757 				dev_err(&h->pdev->dev,
3758 					"report luns requested format %u, got %u\n",
3759 					extended_response,
3760 					rld->extended_response_flag);
3761 				rc = -EINVAL;
3762 			} else
3763 				rc = -EOPNOTSUPP;
3764 		}
3765 	}
3766 out:
3767 	cmd_free(h, c);
3768 	return rc;
3769 }
3770 
3771 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3772 		struct ReportExtendedLUNdata *buf, int bufsize)
3773 {
3774 	int rc;
3775 	struct ReportLUNdata *lbuf;
3776 
3777 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3778 				      HPSA_REPORT_PHYS_EXTENDED);
3779 	if (!rc || rc != -EOPNOTSUPP)
3780 		return rc;
3781 
3782 	/* REPORT PHYS EXTENDED is not supported */
3783 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3784 	if (!lbuf)
3785 		return -ENOMEM;
3786 
3787 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3788 	if (!rc) {
3789 		int i;
3790 		u32 nphys;
3791 
3792 		/* Copy ReportLUNdata header */
3793 		memcpy(buf, lbuf, 8);
3794 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3795 		for (i = 0; i < nphys; i++)
3796 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3797 	}
3798 	kfree(lbuf);
3799 	return rc;
3800 }
3801 
3802 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3803 		struct ReportLUNdata *buf, int bufsize)
3804 {
3805 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3806 }
3807 
3808 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3809 	int bus, int target, int lun)
3810 {
3811 	device->bus = bus;
3812 	device->target = target;
3813 	device->lun = lun;
3814 }
3815 
3816 /* Use VPD inquiry to get details of volume status */
3817 static int hpsa_get_volume_status(struct ctlr_info *h,
3818 					unsigned char scsi3addr[])
3819 {
3820 	int rc;
3821 	int status;
3822 	int size;
3823 	unsigned char *buf;
3824 
3825 	buf = kzalloc(64, GFP_KERNEL);
3826 	if (!buf)
3827 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3828 
3829 	/* Does controller have VPD for logical volume status? */
3830 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3831 		goto exit_failed;
3832 
3833 	/* Get the size of the VPD return buffer */
3834 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3835 					buf, HPSA_VPD_HEADER_SZ);
3836 	if (rc != 0)
3837 		goto exit_failed;
3838 	size = buf[3];
3839 
3840 	/* Now get the whole VPD buffer */
3841 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3842 					buf, size + HPSA_VPD_HEADER_SZ);
3843 	if (rc != 0)
3844 		goto exit_failed;
3845 	status = buf[4]; /* status byte */
3846 
3847 	kfree(buf);
3848 	return status;
3849 exit_failed:
3850 	kfree(buf);
3851 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3852 }
3853 
3854 /* Determine offline status of a volume.
3855  * Return either:
3856  *  0 (not offline)
3857  *  0xff (offline for unknown reasons)
3858  *  # (integer code indicating one of several NOT READY states
3859  *     describing why a volume is to be kept offline)
3860  */
3861 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3862 					unsigned char scsi3addr[])
3863 {
3864 	struct CommandList *c;
3865 	unsigned char *sense;
3866 	u8 sense_key, asc, ascq;
3867 	int sense_len;
3868 	int rc, ldstat = 0;
3869 	u16 cmd_status;
3870 	u8 scsi_status;
3871 #define ASC_LUN_NOT_READY 0x04
3872 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3873 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3874 
3875 	c = cmd_alloc(h);
3876 
3877 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3878 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3879 					NO_TIMEOUT);
3880 	if (rc) {
3881 		cmd_free(h, c);
3882 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3883 	}
3884 	sense = c->err_info->SenseInfo;
3885 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3886 		sense_len = sizeof(c->err_info->SenseInfo);
3887 	else
3888 		sense_len = c->err_info->SenseLen;
3889 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3890 	cmd_status = c->err_info->CommandStatus;
3891 	scsi_status = c->err_info->ScsiStatus;
3892 	cmd_free(h, c);
3893 
3894 	/* Determine the reason for not ready state */
3895 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3896 
3897 	/* Keep volume offline in certain cases: */
3898 	switch (ldstat) {
3899 	case HPSA_LV_FAILED:
3900 	case HPSA_LV_UNDERGOING_ERASE:
3901 	case HPSA_LV_NOT_AVAILABLE:
3902 	case HPSA_LV_UNDERGOING_RPI:
3903 	case HPSA_LV_PENDING_RPI:
3904 	case HPSA_LV_ENCRYPTED_NO_KEY:
3905 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3906 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3907 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3908 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3909 		return ldstat;
3910 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3911 		/* If VPD status page isn't available,
3912 		 * use ASC/ASCQ to determine state
3913 		 */
3914 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3915 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3916 			return ldstat;
3917 		break;
3918 	default:
3919 		break;
3920 	}
3921 	return HPSA_LV_OK;
3922 }
3923 
3924 static int hpsa_update_device_info(struct ctlr_info *h,
3925 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3926 	unsigned char *is_OBDR_device)
3927 {
3928 
3929 #define OBDR_SIG_OFFSET 43
3930 #define OBDR_TAPE_SIG "$DR-10"
3931 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3932 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3933 
3934 	unsigned char *inq_buff;
3935 	unsigned char *obdr_sig;
3936 	int rc = 0;
3937 
3938 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3939 	if (!inq_buff) {
3940 		rc = -ENOMEM;
3941 		goto bail_out;
3942 	}
3943 
3944 	/* Do an inquiry to the device to see what it is. */
3945 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3946 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3947 		dev_err(&h->pdev->dev,
3948 			"%s: inquiry failed, device will be skipped.\n",
3949 			__func__);
3950 		rc = HPSA_INQUIRY_FAILED;
3951 		goto bail_out;
3952 	}
3953 
3954 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3955 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3956 
3957 	this_device->devtype = (inq_buff[0] & 0x1f);
3958 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3959 	memcpy(this_device->vendor, &inq_buff[8],
3960 		sizeof(this_device->vendor));
3961 	memcpy(this_device->model, &inq_buff[16],
3962 		sizeof(this_device->model));
3963 	this_device->rev = inq_buff[2];
3964 	memset(this_device->device_id, 0,
3965 		sizeof(this_device->device_id));
3966 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3967 		sizeof(this_device->device_id)) < 0)
3968 		dev_err(&h->pdev->dev,
3969 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3970 			h->ctlr, __func__,
3971 			h->scsi_host->host_no,
3972 			this_device->target, this_device->lun,
3973 			scsi_device_type(this_device->devtype),
3974 			this_device->model);
3975 
3976 	if ((this_device->devtype == TYPE_DISK ||
3977 		this_device->devtype == TYPE_ZBC) &&
3978 		is_logical_dev_addr_mode(scsi3addr)) {
3979 		unsigned char volume_offline;
3980 
3981 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3982 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3983 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3984 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3985 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3986 		    h->legacy_board) {
3987 			/*
3988 			 * Legacy boards might not support volume status
3989 			 */
3990 			dev_info(&h->pdev->dev,
3991 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3992 				 this_device->target, this_device->lun);
3993 			volume_offline = 0;
3994 		}
3995 		this_device->volume_offline = volume_offline;
3996 		if (volume_offline == HPSA_LV_FAILED) {
3997 			rc = HPSA_LV_FAILED;
3998 			dev_err(&h->pdev->dev,
3999 				"%s: LV failed, device will be skipped.\n",
4000 				__func__);
4001 			goto bail_out;
4002 		}
4003 	} else {
4004 		this_device->raid_level = RAID_UNKNOWN;
4005 		this_device->offload_config = 0;
4006 		this_device->offload_enabled = 0;
4007 		this_device->offload_to_be_enabled = 0;
4008 		this_device->hba_ioaccel_enabled = 0;
4009 		this_device->volume_offline = 0;
4010 		this_device->queue_depth = h->nr_cmds;
4011 	}
4012 
4013 	if (this_device->external)
4014 		this_device->queue_depth = EXTERNAL_QD;
4015 
4016 	if (is_OBDR_device) {
4017 		/* See if this is a One-Button-Disaster-Recovery device
4018 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4019 		 */
4020 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4021 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4022 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4023 						OBDR_SIG_LEN) == 0);
4024 	}
4025 	kfree(inq_buff);
4026 	return 0;
4027 
4028 bail_out:
4029 	kfree(inq_buff);
4030 	return rc;
4031 }
4032 
4033 /*
4034  * Helper function to assign bus, target, lun mapping of devices.
4035  * Logical drive target and lun are assigned at this time, but
4036  * physical device lun and target assignment are deferred (assigned
4037  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4038 */
4039 static void figure_bus_target_lun(struct ctlr_info *h,
4040 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4041 {
4042 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4043 
4044 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4045 		/* physical device, target and lun filled in later */
4046 		if (is_hba_lunid(lunaddrbytes)) {
4047 			int bus = HPSA_HBA_BUS;
4048 
4049 			if (!device->rev)
4050 				bus = HPSA_LEGACY_HBA_BUS;
4051 			hpsa_set_bus_target_lun(device,
4052 					bus, 0, lunid & 0x3fff);
4053 		} else
4054 			/* defer target, lun assignment for physical devices */
4055 			hpsa_set_bus_target_lun(device,
4056 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4057 		return;
4058 	}
4059 	/* It's a logical device */
4060 	if (device->external) {
4061 		hpsa_set_bus_target_lun(device,
4062 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4063 			lunid & 0x00ff);
4064 		return;
4065 	}
4066 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4067 				0, lunid & 0x3fff);
4068 }
4069 
4070 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4071 	int i, int nphysicals, int nlocal_logicals)
4072 {
4073 	/* In report logicals, local logicals are listed first,
4074 	* then any externals.
4075 	*/
4076 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4077 
4078 	if (i == raid_ctlr_position)
4079 		return 0;
4080 
4081 	if (i < logicals_start)
4082 		return 0;
4083 
4084 	/* i is in logicals range, but still within local logicals */
4085 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4086 		return 0;
4087 
4088 	return 1; /* it's an external lun */
4089 }
4090 
4091 /*
4092  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4093  * logdev.  The number of luns in physdev and logdev are returned in
4094  * *nphysicals and *nlogicals, respectively.
4095  * Returns 0 on success, -1 otherwise.
4096  */
4097 static int hpsa_gather_lun_info(struct ctlr_info *h,
4098 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4099 	struct ReportLUNdata *logdev, u32 *nlogicals)
4100 {
4101 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4102 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4103 		return -1;
4104 	}
4105 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4106 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4107 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4108 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4109 		*nphysicals = HPSA_MAX_PHYS_LUN;
4110 	}
4111 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4112 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4113 		return -1;
4114 	}
4115 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4116 	/* Reject Logicals in excess of our max capability. */
4117 	if (*nlogicals > HPSA_MAX_LUN) {
4118 		dev_warn(&h->pdev->dev,
4119 			"maximum logical LUNs (%d) exceeded.  "
4120 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4121 			*nlogicals - HPSA_MAX_LUN);
4122 			*nlogicals = HPSA_MAX_LUN;
4123 	}
4124 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4125 		dev_warn(&h->pdev->dev,
4126 			"maximum logical + physical LUNs (%d) exceeded. "
4127 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4128 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4129 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4130 	}
4131 	return 0;
4132 }
4133 
4134 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4135 	int i, int nphysicals, int nlogicals,
4136 	struct ReportExtendedLUNdata *physdev_list,
4137 	struct ReportLUNdata *logdev_list)
4138 {
4139 	/* Helper function, figure out where the LUN ID info is coming from
4140 	 * given index i, lists of physical and logical devices, where in
4141 	 * the list the raid controller is supposed to appear (first or last)
4142 	 */
4143 
4144 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4145 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4146 
4147 	if (i == raid_ctlr_position)
4148 		return RAID_CTLR_LUNID;
4149 
4150 	if (i < logicals_start)
4151 		return &physdev_list->LUN[i -
4152 				(raid_ctlr_position == 0)].lunid[0];
4153 
4154 	if (i < last_device)
4155 		return &logdev_list->LUN[i - nphysicals -
4156 			(raid_ctlr_position == 0)][0];
4157 	BUG();
4158 	return NULL;
4159 }
4160 
4161 /* get physical drive ioaccel handle and queue depth */
4162 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4163 		struct hpsa_scsi_dev_t *dev,
4164 		struct ReportExtendedLUNdata *rlep, int rle_index,
4165 		struct bmic_identify_physical_device *id_phys)
4166 {
4167 	int rc;
4168 	struct ext_report_lun_entry *rle;
4169 
4170 	rle = &rlep->LUN[rle_index];
4171 
4172 	dev->ioaccel_handle = rle->ioaccel_handle;
4173 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4174 		dev->hba_ioaccel_enabled = 1;
4175 	memset(id_phys, 0, sizeof(*id_phys));
4176 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4177 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4178 			sizeof(*id_phys));
4179 	if (!rc)
4180 		/* Reserve space for FW operations */
4181 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4182 #define DRIVE_QUEUE_DEPTH 7
4183 		dev->queue_depth =
4184 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4185 				DRIVE_CMDS_RESERVED_FOR_FW;
4186 	else
4187 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4188 }
4189 
4190 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4191 	struct ReportExtendedLUNdata *rlep, int rle_index,
4192 	struct bmic_identify_physical_device *id_phys)
4193 {
4194 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4195 
4196 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4197 		this_device->hba_ioaccel_enabled = 1;
4198 
4199 	memcpy(&this_device->active_path_index,
4200 		&id_phys->active_path_number,
4201 		sizeof(this_device->active_path_index));
4202 	memcpy(&this_device->path_map,
4203 		&id_phys->redundant_path_present_map,
4204 		sizeof(this_device->path_map));
4205 	memcpy(&this_device->box,
4206 		&id_phys->alternate_paths_phys_box_on_port,
4207 		sizeof(this_device->box));
4208 	memcpy(&this_device->phys_connector,
4209 		&id_phys->alternate_paths_phys_connector,
4210 		sizeof(this_device->phys_connector));
4211 	memcpy(&this_device->bay,
4212 		&id_phys->phys_bay_in_box,
4213 		sizeof(this_device->bay));
4214 }
4215 
4216 /* get number of local logical disks. */
4217 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4218 	struct bmic_identify_controller *id_ctlr,
4219 	u32 *nlocals)
4220 {
4221 	int rc;
4222 
4223 	if (!id_ctlr) {
4224 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4225 			__func__);
4226 		return -ENOMEM;
4227 	}
4228 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4229 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4230 	if (!rc)
4231 		if (id_ctlr->configured_logical_drive_count < 255)
4232 			*nlocals = id_ctlr->configured_logical_drive_count;
4233 		else
4234 			*nlocals = le16_to_cpu(
4235 					id_ctlr->extended_logical_unit_count);
4236 	else
4237 		*nlocals = -1;
4238 	return rc;
4239 }
4240 
4241 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4242 {
4243 	struct bmic_identify_physical_device *id_phys;
4244 	bool is_spare = false;
4245 	int rc;
4246 
4247 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4248 	if (!id_phys)
4249 		return false;
4250 
4251 	rc = hpsa_bmic_id_physical_device(h,
4252 					lunaddrbytes,
4253 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4254 					id_phys, sizeof(*id_phys));
4255 	if (rc == 0)
4256 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4257 
4258 	kfree(id_phys);
4259 	return is_spare;
4260 }
4261 
4262 #define RPL_DEV_FLAG_NON_DISK                           0x1
4263 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4264 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4265 
4266 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4267 
4268 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4269 				struct ext_report_lun_entry *rle)
4270 {
4271 	u8 device_flags;
4272 	u8 device_type;
4273 
4274 	if (!MASKED_DEVICE(lunaddrbytes))
4275 		return false;
4276 
4277 	device_flags = rle->device_flags;
4278 	device_type = rle->device_type;
4279 
4280 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4281 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4282 			return false;
4283 		return true;
4284 	}
4285 
4286 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4287 		return false;
4288 
4289 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4290 		return false;
4291 
4292 	/*
4293 	 * Spares may be spun down, we do not want to
4294 	 * do an Inquiry to a RAID set spare drive as
4295 	 * that would have them spun up, that is a
4296 	 * performance hit because I/O to the RAID device
4297 	 * stops while the spin up occurs which can take
4298 	 * over 50 seconds.
4299 	 */
4300 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4301 		return true;
4302 
4303 	return false;
4304 }
4305 
4306 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4307 {
4308 	/* the idea here is we could get notified
4309 	 * that some devices have changed, so we do a report
4310 	 * physical luns and report logical luns cmd, and adjust
4311 	 * our list of devices accordingly.
4312 	 *
4313 	 * The scsi3addr's of devices won't change so long as the
4314 	 * adapter is not reset.  That means we can rescan and
4315 	 * tell which devices we already know about, vs. new
4316 	 * devices, vs.  disappearing devices.
4317 	 */
4318 	struct ReportExtendedLUNdata *physdev_list = NULL;
4319 	struct ReportLUNdata *logdev_list = NULL;
4320 	struct bmic_identify_physical_device *id_phys = NULL;
4321 	struct bmic_identify_controller *id_ctlr = NULL;
4322 	u32 nphysicals = 0;
4323 	u32 nlogicals = 0;
4324 	u32 nlocal_logicals = 0;
4325 	u32 ndev_allocated = 0;
4326 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4327 	int ncurrent = 0;
4328 	int i, n_ext_target_devs, ndevs_to_allocate;
4329 	int raid_ctlr_position;
4330 	bool physical_device;
4331 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4332 
4333 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4334 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4335 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4336 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4337 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4338 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4339 
4340 	if (!currentsd || !physdev_list || !logdev_list ||
4341 		!tmpdevice || !id_phys || !id_ctlr) {
4342 		dev_err(&h->pdev->dev, "out of memory\n");
4343 		goto out;
4344 	}
4345 	memset(lunzerobits, 0, sizeof(lunzerobits));
4346 
4347 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4348 
4349 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4350 			logdev_list, &nlogicals)) {
4351 		h->drv_req_rescan = 1;
4352 		goto out;
4353 	}
4354 
4355 	/* Set number of local logicals (non PTRAID) */
4356 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4357 		dev_warn(&h->pdev->dev,
4358 			"%s: Can't determine number of local logical devices.\n",
4359 			__func__);
4360 	}
4361 
4362 	/* We might see up to the maximum number of logical and physical disks
4363 	 * plus external target devices, and a device for the local RAID
4364 	 * controller.
4365 	 */
4366 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4367 
4368 	hpsa_ext_ctrl_present(h, physdev_list);
4369 
4370 	/* Allocate the per device structures */
4371 	for (i = 0; i < ndevs_to_allocate; i++) {
4372 		if (i >= HPSA_MAX_DEVICES) {
4373 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4374 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4375 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4376 			break;
4377 		}
4378 
4379 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4380 		if (!currentsd[i]) {
4381 			h->drv_req_rescan = 1;
4382 			goto out;
4383 		}
4384 		ndev_allocated++;
4385 	}
4386 
4387 	if (is_scsi_rev_5(h))
4388 		raid_ctlr_position = 0;
4389 	else
4390 		raid_ctlr_position = nphysicals + nlogicals;
4391 
4392 	/* adjust our table of devices */
4393 	n_ext_target_devs = 0;
4394 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4395 		u8 *lunaddrbytes, is_OBDR = 0;
4396 		int rc = 0;
4397 		int phys_dev_index = i - (raid_ctlr_position == 0);
4398 		bool skip_device = false;
4399 
4400 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4401 
4402 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4403 
4404 		/* Figure out where the LUN ID info is coming from */
4405 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4406 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4407 
4408 		/* Determine if this is a lun from an external target array */
4409 		tmpdevice->external =
4410 			figure_external_status(h, raid_ctlr_position, i,
4411 						nphysicals, nlocal_logicals);
4412 
4413 		/*
4414 		 * Skip over some devices such as a spare.
4415 		 */
4416 		if (!tmpdevice->external && physical_device) {
4417 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4418 					&physdev_list->LUN[phys_dev_index]);
4419 			if (skip_device)
4420 				continue;
4421 		}
4422 
4423 		/* Get device type, vendor, model, device id, raid_map */
4424 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4425 							&is_OBDR);
4426 		if (rc == -ENOMEM) {
4427 			dev_warn(&h->pdev->dev,
4428 				"Out of memory, rescan deferred.\n");
4429 			h->drv_req_rescan = 1;
4430 			goto out;
4431 		}
4432 		if (rc) {
4433 			h->drv_req_rescan = 1;
4434 			continue;
4435 		}
4436 
4437 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4438 		this_device = currentsd[ncurrent];
4439 
4440 		*this_device = *tmpdevice;
4441 		this_device->physical_device = physical_device;
4442 
4443 		/*
4444 		 * Expose all devices except for physical devices that
4445 		 * are masked.
4446 		 */
4447 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4448 			this_device->expose_device = 0;
4449 		else
4450 			this_device->expose_device = 1;
4451 
4452 
4453 		/*
4454 		 * Get the SAS address for physical devices that are exposed.
4455 		 */
4456 		if (this_device->physical_device && this_device->expose_device)
4457 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4458 
4459 		switch (this_device->devtype) {
4460 		case TYPE_ROM:
4461 			/* We don't *really* support actual CD-ROM devices,
4462 			 * just "One Button Disaster Recovery" tape drive
4463 			 * which temporarily pretends to be a CD-ROM drive.
4464 			 * So we check that the device is really an OBDR tape
4465 			 * device by checking for "$DR-10" in bytes 43-48 of
4466 			 * the inquiry data.
4467 			 */
4468 			if (is_OBDR)
4469 				ncurrent++;
4470 			break;
4471 		case TYPE_DISK:
4472 		case TYPE_ZBC:
4473 			if (this_device->physical_device) {
4474 				/* The disk is in HBA mode. */
4475 				/* Never use RAID mapper in HBA mode. */
4476 				this_device->offload_enabled = 0;
4477 				hpsa_get_ioaccel_drive_info(h, this_device,
4478 					physdev_list, phys_dev_index, id_phys);
4479 				hpsa_get_path_info(this_device,
4480 					physdev_list, phys_dev_index, id_phys);
4481 			}
4482 			ncurrent++;
4483 			break;
4484 		case TYPE_TAPE:
4485 		case TYPE_MEDIUM_CHANGER:
4486 			ncurrent++;
4487 			break;
4488 		case TYPE_ENCLOSURE:
4489 			if (!this_device->external)
4490 				hpsa_get_enclosure_info(h, lunaddrbytes,
4491 						physdev_list, phys_dev_index,
4492 						this_device);
4493 			ncurrent++;
4494 			break;
4495 		case TYPE_RAID:
4496 			/* Only present the Smartarray HBA as a RAID controller.
4497 			 * If it's a RAID controller other than the HBA itself
4498 			 * (an external RAID controller, MSA500 or similar)
4499 			 * don't present it.
4500 			 */
4501 			if (!is_hba_lunid(lunaddrbytes))
4502 				break;
4503 			ncurrent++;
4504 			break;
4505 		default:
4506 			break;
4507 		}
4508 		if (ncurrent >= HPSA_MAX_DEVICES)
4509 			break;
4510 	}
4511 
4512 	if (h->sas_host == NULL) {
4513 		int rc = 0;
4514 
4515 		rc = hpsa_add_sas_host(h);
4516 		if (rc) {
4517 			dev_warn(&h->pdev->dev,
4518 				"Could not add sas host %d\n", rc);
4519 			goto out;
4520 		}
4521 	}
4522 
4523 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4524 out:
4525 	kfree(tmpdevice);
4526 	for (i = 0; i < ndev_allocated; i++)
4527 		kfree(currentsd[i]);
4528 	kfree(currentsd);
4529 	kfree(physdev_list);
4530 	kfree(logdev_list);
4531 	kfree(id_ctlr);
4532 	kfree(id_phys);
4533 }
4534 
4535 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4536 				   struct scatterlist *sg)
4537 {
4538 	u64 addr64 = (u64) sg_dma_address(sg);
4539 	unsigned int len = sg_dma_len(sg);
4540 
4541 	desc->Addr = cpu_to_le64(addr64);
4542 	desc->Len = cpu_to_le32(len);
4543 	desc->Ext = 0;
4544 }
4545 
4546 /*
4547  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4548  * dma mapping  and fills in the scatter gather entries of the
4549  * hpsa command, cp.
4550  */
4551 static int hpsa_scatter_gather(struct ctlr_info *h,
4552 		struct CommandList *cp,
4553 		struct scsi_cmnd *cmd)
4554 {
4555 	struct scatterlist *sg;
4556 	int use_sg, i, sg_limit, chained, last_sg;
4557 	struct SGDescriptor *curr_sg;
4558 
4559 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4560 
4561 	use_sg = scsi_dma_map(cmd);
4562 	if (use_sg < 0)
4563 		return use_sg;
4564 
4565 	if (!use_sg)
4566 		goto sglist_finished;
4567 
4568 	/*
4569 	 * If the number of entries is greater than the max for a single list,
4570 	 * then we have a chained list; we will set up all but one entry in the
4571 	 * first list (the last entry is saved for link information);
4572 	 * otherwise, we don't have a chained list and we'll set up at each of
4573 	 * the entries in the one list.
4574 	 */
4575 	curr_sg = cp->SG;
4576 	chained = use_sg > h->max_cmd_sg_entries;
4577 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4578 	last_sg = scsi_sg_count(cmd) - 1;
4579 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4580 		hpsa_set_sg_descriptor(curr_sg, sg);
4581 		curr_sg++;
4582 	}
4583 
4584 	if (chained) {
4585 		/*
4586 		 * Continue with the chained list.  Set curr_sg to the chained
4587 		 * list.  Modify the limit to the total count less the entries
4588 		 * we've already set up.  Resume the scan at the list entry
4589 		 * where the previous loop left off.
4590 		 */
4591 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4592 		sg_limit = use_sg - sg_limit;
4593 		for_each_sg(sg, sg, sg_limit, i) {
4594 			hpsa_set_sg_descriptor(curr_sg, sg);
4595 			curr_sg++;
4596 		}
4597 	}
4598 
4599 	/* Back the pointer up to the last entry and mark it as "last". */
4600 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4601 
4602 	if (use_sg + chained > h->maxSG)
4603 		h->maxSG = use_sg + chained;
4604 
4605 	if (chained) {
4606 		cp->Header.SGList = h->max_cmd_sg_entries;
4607 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4608 		if (hpsa_map_sg_chain_block(h, cp)) {
4609 			scsi_dma_unmap(cmd);
4610 			return -1;
4611 		}
4612 		return 0;
4613 	}
4614 
4615 sglist_finished:
4616 
4617 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4618 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4619 	return 0;
4620 }
4621 
4622 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4623 						u8 *cdb, int cdb_len,
4624 						const char *func)
4625 {
4626 	dev_warn(&h->pdev->dev,
4627 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4628 		 func, cdb_len, cdb);
4629 }
4630 
4631 #define IO_ACCEL_INELIGIBLE 1
4632 /* zero-length transfers trigger hardware errors. */
4633 static bool is_zero_length_transfer(u8 *cdb)
4634 {
4635 	u32 block_cnt;
4636 
4637 	/* Block zero-length transfer sizes on certain commands. */
4638 	switch (cdb[0]) {
4639 	case READ_10:
4640 	case WRITE_10:
4641 	case VERIFY:		/* 0x2F */
4642 	case WRITE_VERIFY:	/* 0x2E */
4643 		block_cnt = get_unaligned_be16(&cdb[7]);
4644 		break;
4645 	case READ_12:
4646 	case WRITE_12:
4647 	case VERIFY_12: /* 0xAF */
4648 	case WRITE_VERIFY_12:	/* 0xAE */
4649 		block_cnt = get_unaligned_be32(&cdb[6]);
4650 		break;
4651 	case READ_16:
4652 	case WRITE_16:
4653 	case VERIFY_16:		/* 0x8F */
4654 		block_cnt = get_unaligned_be32(&cdb[10]);
4655 		break;
4656 	default:
4657 		return false;
4658 	}
4659 
4660 	return block_cnt == 0;
4661 }
4662 
4663 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4664 {
4665 	int is_write = 0;
4666 	u32 block;
4667 	u32 block_cnt;
4668 
4669 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4670 	switch (cdb[0]) {
4671 	case WRITE_6:
4672 	case WRITE_12:
4673 		is_write = 1;
4674 	case READ_6:
4675 	case READ_12:
4676 		if (*cdb_len == 6) {
4677 			block = (((cdb[1] & 0x1F) << 16) |
4678 				(cdb[2] << 8) |
4679 				cdb[3]);
4680 			block_cnt = cdb[4];
4681 			if (block_cnt == 0)
4682 				block_cnt = 256;
4683 		} else {
4684 			BUG_ON(*cdb_len != 12);
4685 			block = get_unaligned_be32(&cdb[2]);
4686 			block_cnt = get_unaligned_be32(&cdb[6]);
4687 		}
4688 		if (block_cnt > 0xffff)
4689 			return IO_ACCEL_INELIGIBLE;
4690 
4691 		cdb[0] = is_write ? WRITE_10 : READ_10;
4692 		cdb[1] = 0;
4693 		cdb[2] = (u8) (block >> 24);
4694 		cdb[3] = (u8) (block >> 16);
4695 		cdb[4] = (u8) (block >> 8);
4696 		cdb[5] = (u8) (block);
4697 		cdb[6] = 0;
4698 		cdb[7] = (u8) (block_cnt >> 8);
4699 		cdb[8] = (u8) (block_cnt);
4700 		cdb[9] = 0;
4701 		*cdb_len = 10;
4702 		break;
4703 	}
4704 	return 0;
4705 }
4706 
4707 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4708 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4709 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4710 {
4711 	struct scsi_cmnd *cmd = c->scsi_cmd;
4712 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4713 	unsigned int len;
4714 	unsigned int total_len = 0;
4715 	struct scatterlist *sg;
4716 	u64 addr64;
4717 	int use_sg, i;
4718 	struct SGDescriptor *curr_sg;
4719 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4720 
4721 	/* TODO: implement chaining support */
4722 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4723 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4724 		return IO_ACCEL_INELIGIBLE;
4725 	}
4726 
4727 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4728 
4729 	if (is_zero_length_transfer(cdb)) {
4730 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4731 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4732 		return IO_ACCEL_INELIGIBLE;
4733 	}
4734 
4735 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4736 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4737 		return IO_ACCEL_INELIGIBLE;
4738 	}
4739 
4740 	c->cmd_type = CMD_IOACCEL1;
4741 
4742 	/* Adjust the DMA address to point to the accelerated command buffer */
4743 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4744 				(c->cmdindex * sizeof(*cp));
4745 	BUG_ON(c->busaddr & 0x0000007F);
4746 
4747 	use_sg = scsi_dma_map(cmd);
4748 	if (use_sg < 0) {
4749 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4750 		return use_sg;
4751 	}
4752 
4753 	if (use_sg) {
4754 		curr_sg = cp->SG;
4755 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4756 			addr64 = (u64) sg_dma_address(sg);
4757 			len  = sg_dma_len(sg);
4758 			total_len += len;
4759 			curr_sg->Addr = cpu_to_le64(addr64);
4760 			curr_sg->Len = cpu_to_le32(len);
4761 			curr_sg->Ext = cpu_to_le32(0);
4762 			curr_sg++;
4763 		}
4764 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4765 
4766 		switch (cmd->sc_data_direction) {
4767 		case DMA_TO_DEVICE:
4768 			control |= IOACCEL1_CONTROL_DATA_OUT;
4769 			break;
4770 		case DMA_FROM_DEVICE:
4771 			control |= IOACCEL1_CONTROL_DATA_IN;
4772 			break;
4773 		case DMA_NONE:
4774 			control |= IOACCEL1_CONTROL_NODATAXFER;
4775 			break;
4776 		default:
4777 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4778 			cmd->sc_data_direction);
4779 			BUG();
4780 			break;
4781 		}
4782 	} else {
4783 		control |= IOACCEL1_CONTROL_NODATAXFER;
4784 	}
4785 
4786 	c->Header.SGList = use_sg;
4787 	/* Fill out the command structure to submit */
4788 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4789 	cp->transfer_len = cpu_to_le32(total_len);
4790 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4791 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4792 	cp->control = cpu_to_le32(control);
4793 	memcpy(cp->CDB, cdb, cdb_len);
4794 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4795 	/* Tag was already set at init time. */
4796 	enqueue_cmd_and_start_io(h, c);
4797 	return 0;
4798 }
4799 
4800 /*
4801  * Queue a command directly to a device behind the controller using the
4802  * I/O accelerator path.
4803  */
4804 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4805 	struct CommandList *c)
4806 {
4807 	struct scsi_cmnd *cmd = c->scsi_cmd;
4808 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4809 
4810 	if (!dev)
4811 		return -1;
4812 
4813 	c->phys_disk = dev;
4814 
4815 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4816 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4817 }
4818 
4819 /*
4820  * Set encryption parameters for the ioaccel2 request
4821  */
4822 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4823 	struct CommandList *c, struct io_accel2_cmd *cp)
4824 {
4825 	struct scsi_cmnd *cmd = c->scsi_cmd;
4826 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4827 	struct raid_map_data *map = &dev->raid_map;
4828 	u64 first_block;
4829 
4830 	/* Are we doing encryption on this device */
4831 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4832 		return;
4833 	/* Set the data encryption key index. */
4834 	cp->dekindex = map->dekindex;
4835 
4836 	/* Set the encryption enable flag, encoded into direction field. */
4837 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4838 
4839 	/* Set encryption tweak values based on logical block address
4840 	 * If block size is 512, tweak value is LBA.
4841 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4842 	 */
4843 	switch (cmd->cmnd[0]) {
4844 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4845 	case READ_6:
4846 	case WRITE_6:
4847 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4848 				(cmd->cmnd[2] << 8) |
4849 				cmd->cmnd[3]);
4850 		break;
4851 	case WRITE_10:
4852 	case READ_10:
4853 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4854 	case WRITE_12:
4855 	case READ_12:
4856 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4857 		break;
4858 	case WRITE_16:
4859 	case READ_16:
4860 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4861 		break;
4862 	default:
4863 		dev_err(&h->pdev->dev,
4864 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4865 			__func__, cmd->cmnd[0]);
4866 		BUG();
4867 		break;
4868 	}
4869 
4870 	if (le32_to_cpu(map->volume_blk_size) != 512)
4871 		first_block = first_block *
4872 				le32_to_cpu(map->volume_blk_size)/512;
4873 
4874 	cp->tweak_lower = cpu_to_le32(first_block);
4875 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4876 }
4877 
4878 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4879 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4880 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4881 {
4882 	struct scsi_cmnd *cmd = c->scsi_cmd;
4883 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4884 	struct ioaccel2_sg_element *curr_sg;
4885 	int use_sg, i;
4886 	struct scatterlist *sg;
4887 	u64 addr64;
4888 	u32 len;
4889 	u32 total_len = 0;
4890 
4891 	if (!cmd->device)
4892 		return -1;
4893 
4894 	if (!cmd->device->hostdata)
4895 		return -1;
4896 
4897 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4898 
4899 	if (is_zero_length_transfer(cdb)) {
4900 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4901 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4902 		return IO_ACCEL_INELIGIBLE;
4903 	}
4904 
4905 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4906 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4907 		return IO_ACCEL_INELIGIBLE;
4908 	}
4909 
4910 	c->cmd_type = CMD_IOACCEL2;
4911 	/* Adjust the DMA address to point to the accelerated command buffer */
4912 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4913 				(c->cmdindex * sizeof(*cp));
4914 	BUG_ON(c->busaddr & 0x0000007F);
4915 
4916 	memset(cp, 0, sizeof(*cp));
4917 	cp->IU_type = IOACCEL2_IU_TYPE;
4918 
4919 	use_sg = scsi_dma_map(cmd);
4920 	if (use_sg < 0) {
4921 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4922 		return use_sg;
4923 	}
4924 
4925 	if (use_sg) {
4926 		curr_sg = cp->sg;
4927 		if (use_sg > h->ioaccel_maxsg) {
4928 			addr64 = le64_to_cpu(
4929 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4930 			curr_sg->address = cpu_to_le64(addr64);
4931 			curr_sg->length = 0;
4932 			curr_sg->reserved[0] = 0;
4933 			curr_sg->reserved[1] = 0;
4934 			curr_sg->reserved[2] = 0;
4935 			curr_sg->chain_indicator = 0x80;
4936 
4937 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4938 		}
4939 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4940 			addr64 = (u64) sg_dma_address(sg);
4941 			len  = sg_dma_len(sg);
4942 			total_len += len;
4943 			curr_sg->address = cpu_to_le64(addr64);
4944 			curr_sg->length = cpu_to_le32(len);
4945 			curr_sg->reserved[0] = 0;
4946 			curr_sg->reserved[1] = 0;
4947 			curr_sg->reserved[2] = 0;
4948 			curr_sg->chain_indicator = 0;
4949 			curr_sg++;
4950 		}
4951 
4952 		switch (cmd->sc_data_direction) {
4953 		case DMA_TO_DEVICE:
4954 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4955 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4956 			break;
4957 		case DMA_FROM_DEVICE:
4958 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4959 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4960 			break;
4961 		case DMA_NONE:
4962 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4963 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4964 			break;
4965 		default:
4966 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4967 				cmd->sc_data_direction);
4968 			BUG();
4969 			break;
4970 		}
4971 	} else {
4972 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4973 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4974 	}
4975 
4976 	/* Set encryption parameters, if necessary */
4977 	set_encrypt_ioaccel2(h, c, cp);
4978 
4979 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4980 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4981 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4982 
4983 	cp->data_len = cpu_to_le32(total_len);
4984 	cp->err_ptr = cpu_to_le64(c->busaddr +
4985 			offsetof(struct io_accel2_cmd, error_data));
4986 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4987 
4988 	/* fill in sg elements */
4989 	if (use_sg > h->ioaccel_maxsg) {
4990 		cp->sg_count = 1;
4991 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4992 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4993 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4994 			scsi_dma_unmap(cmd);
4995 			return -1;
4996 		}
4997 	} else
4998 		cp->sg_count = (u8) use_sg;
4999 
5000 	enqueue_cmd_and_start_io(h, c);
5001 	return 0;
5002 }
5003 
5004 /*
5005  * Queue a command to the correct I/O accelerator path.
5006  */
5007 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5008 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5009 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5010 {
5011 	if (!c->scsi_cmd->device)
5012 		return -1;
5013 
5014 	if (!c->scsi_cmd->device->hostdata)
5015 		return -1;
5016 
5017 	/* Try to honor the device's queue depth */
5018 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5019 					phys_disk->queue_depth) {
5020 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5021 		return IO_ACCEL_INELIGIBLE;
5022 	}
5023 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5024 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5025 						cdb, cdb_len, scsi3addr,
5026 						phys_disk);
5027 	else
5028 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5029 						cdb, cdb_len, scsi3addr,
5030 						phys_disk);
5031 }
5032 
5033 static void raid_map_helper(struct raid_map_data *map,
5034 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5035 {
5036 	if (offload_to_mirror == 0)  {
5037 		/* use physical disk in the first mirrored group. */
5038 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5039 		return;
5040 	}
5041 	do {
5042 		/* determine mirror group that *map_index indicates */
5043 		*current_group = *map_index /
5044 			le16_to_cpu(map->data_disks_per_row);
5045 		if (offload_to_mirror == *current_group)
5046 			continue;
5047 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5048 			/* select map index from next group */
5049 			*map_index += le16_to_cpu(map->data_disks_per_row);
5050 			(*current_group)++;
5051 		} else {
5052 			/* select map index from first group */
5053 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5054 			*current_group = 0;
5055 		}
5056 	} while (offload_to_mirror != *current_group);
5057 }
5058 
5059 /*
5060  * Attempt to perform offload RAID mapping for a logical volume I/O.
5061  */
5062 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5063 	struct CommandList *c)
5064 {
5065 	struct scsi_cmnd *cmd = c->scsi_cmd;
5066 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5067 	struct raid_map_data *map = &dev->raid_map;
5068 	struct raid_map_disk_data *dd = &map->data[0];
5069 	int is_write = 0;
5070 	u32 map_index;
5071 	u64 first_block, last_block;
5072 	u32 block_cnt;
5073 	u32 blocks_per_row;
5074 	u64 first_row, last_row;
5075 	u32 first_row_offset, last_row_offset;
5076 	u32 first_column, last_column;
5077 	u64 r0_first_row, r0_last_row;
5078 	u32 r5or6_blocks_per_row;
5079 	u64 r5or6_first_row, r5or6_last_row;
5080 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5081 	u32 r5or6_first_column, r5or6_last_column;
5082 	u32 total_disks_per_row;
5083 	u32 stripesize;
5084 	u32 first_group, last_group, current_group;
5085 	u32 map_row;
5086 	u32 disk_handle;
5087 	u64 disk_block;
5088 	u32 disk_block_cnt;
5089 	u8 cdb[16];
5090 	u8 cdb_len;
5091 	u16 strip_size;
5092 #if BITS_PER_LONG == 32
5093 	u64 tmpdiv;
5094 #endif
5095 	int offload_to_mirror;
5096 
5097 	if (!dev)
5098 		return -1;
5099 
5100 	/* check for valid opcode, get LBA and block count */
5101 	switch (cmd->cmnd[0]) {
5102 	case WRITE_6:
5103 		is_write = 1;
5104 	case READ_6:
5105 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5106 				(cmd->cmnd[2] << 8) |
5107 				cmd->cmnd[3]);
5108 		block_cnt = cmd->cmnd[4];
5109 		if (block_cnt == 0)
5110 			block_cnt = 256;
5111 		break;
5112 	case WRITE_10:
5113 		is_write = 1;
5114 	case READ_10:
5115 		first_block =
5116 			(((u64) cmd->cmnd[2]) << 24) |
5117 			(((u64) cmd->cmnd[3]) << 16) |
5118 			(((u64) cmd->cmnd[4]) << 8) |
5119 			cmd->cmnd[5];
5120 		block_cnt =
5121 			(((u32) cmd->cmnd[7]) << 8) |
5122 			cmd->cmnd[8];
5123 		break;
5124 	case WRITE_12:
5125 		is_write = 1;
5126 	case READ_12:
5127 		first_block =
5128 			(((u64) cmd->cmnd[2]) << 24) |
5129 			(((u64) cmd->cmnd[3]) << 16) |
5130 			(((u64) cmd->cmnd[4]) << 8) |
5131 			cmd->cmnd[5];
5132 		block_cnt =
5133 			(((u32) cmd->cmnd[6]) << 24) |
5134 			(((u32) cmd->cmnd[7]) << 16) |
5135 			(((u32) cmd->cmnd[8]) << 8) |
5136 		cmd->cmnd[9];
5137 		break;
5138 	case WRITE_16:
5139 		is_write = 1;
5140 	case READ_16:
5141 		first_block =
5142 			(((u64) cmd->cmnd[2]) << 56) |
5143 			(((u64) cmd->cmnd[3]) << 48) |
5144 			(((u64) cmd->cmnd[4]) << 40) |
5145 			(((u64) cmd->cmnd[5]) << 32) |
5146 			(((u64) cmd->cmnd[6]) << 24) |
5147 			(((u64) cmd->cmnd[7]) << 16) |
5148 			(((u64) cmd->cmnd[8]) << 8) |
5149 			cmd->cmnd[9];
5150 		block_cnt =
5151 			(((u32) cmd->cmnd[10]) << 24) |
5152 			(((u32) cmd->cmnd[11]) << 16) |
5153 			(((u32) cmd->cmnd[12]) << 8) |
5154 			cmd->cmnd[13];
5155 		break;
5156 	default:
5157 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5158 	}
5159 	last_block = first_block + block_cnt - 1;
5160 
5161 	/* check for write to non-RAID-0 */
5162 	if (is_write && dev->raid_level != 0)
5163 		return IO_ACCEL_INELIGIBLE;
5164 
5165 	/* check for invalid block or wraparound */
5166 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5167 		last_block < first_block)
5168 		return IO_ACCEL_INELIGIBLE;
5169 
5170 	/* calculate stripe information for the request */
5171 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5172 				le16_to_cpu(map->strip_size);
5173 	strip_size = le16_to_cpu(map->strip_size);
5174 #if BITS_PER_LONG == 32
5175 	tmpdiv = first_block;
5176 	(void) do_div(tmpdiv, blocks_per_row);
5177 	first_row = tmpdiv;
5178 	tmpdiv = last_block;
5179 	(void) do_div(tmpdiv, blocks_per_row);
5180 	last_row = tmpdiv;
5181 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5182 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5183 	tmpdiv = first_row_offset;
5184 	(void) do_div(tmpdiv, strip_size);
5185 	first_column = tmpdiv;
5186 	tmpdiv = last_row_offset;
5187 	(void) do_div(tmpdiv, strip_size);
5188 	last_column = tmpdiv;
5189 #else
5190 	first_row = first_block / blocks_per_row;
5191 	last_row = last_block / blocks_per_row;
5192 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5193 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5194 	first_column = first_row_offset / strip_size;
5195 	last_column = last_row_offset / strip_size;
5196 #endif
5197 
5198 	/* if this isn't a single row/column then give to the controller */
5199 	if ((first_row != last_row) || (first_column != last_column))
5200 		return IO_ACCEL_INELIGIBLE;
5201 
5202 	/* proceeding with driver mapping */
5203 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5204 				le16_to_cpu(map->metadata_disks_per_row);
5205 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5206 				le16_to_cpu(map->row_cnt);
5207 	map_index = (map_row * total_disks_per_row) + first_column;
5208 
5209 	switch (dev->raid_level) {
5210 	case HPSA_RAID_0:
5211 		break; /* nothing special to do */
5212 	case HPSA_RAID_1:
5213 		/* Handles load balance across RAID 1 members.
5214 		 * (2-drive R1 and R10 with even # of drives.)
5215 		 * Appropriate for SSDs, not optimal for HDDs
5216 		 */
5217 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5218 		if (dev->offload_to_mirror)
5219 			map_index += le16_to_cpu(map->data_disks_per_row);
5220 		dev->offload_to_mirror = !dev->offload_to_mirror;
5221 		break;
5222 	case HPSA_RAID_ADM:
5223 		/* Handles N-way mirrors  (R1-ADM)
5224 		 * and R10 with # of drives divisible by 3.)
5225 		 */
5226 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5227 
5228 		offload_to_mirror = dev->offload_to_mirror;
5229 		raid_map_helper(map, offload_to_mirror,
5230 				&map_index, &current_group);
5231 		/* set mirror group to use next time */
5232 		offload_to_mirror =
5233 			(offload_to_mirror >=
5234 			le16_to_cpu(map->layout_map_count) - 1)
5235 			? 0 : offload_to_mirror + 1;
5236 		dev->offload_to_mirror = offload_to_mirror;
5237 		/* Avoid direct use of dev->offload_to_mirror within this
5238 		 * function since multiple threads might simultaneously
5239 		 * increment it beyond the range of dev->layout_map_count -1.
5240 		 */
5241 		break;
5242 	case HPSA_RAID_5:
5243 	case HPSA_RAID_6:
5244 		if (le16_to_cpu(map->layout_map_count) <= 1)
5245 			break;
5246 
5247 		/* Verify first and last block are in same RAID group */
5248 		r5or6_blocks_per_row =
5249 			le16_to_cpu(map->strip_size) *
5250 			le16_to_cpu(map->data_disks_per_row);
5251 		BUG_ON(r5or6_blocks_per_row == 0);
5252 		stripesize = r5or6_blocks_per_row *
5253 			le16_to_cpu(map->layout_map_count);
5254 #if BITS_PER_LONG == 32
5255 		tmpdiv = first_block;
5256 		first_group = do_div(tmpdiv, stripesize);
5257 		tmpdiv = first_group;
5258 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5259 		first_group = tmpdiv;
5260 		tmpdiv = last_block;
5261 		last_group = do_div(tmpdiv, stripesize);
5262 		tmpdiv = last_group;
5263 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5264 		last_group = tmpdiv;
5265 #else
5266 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5267 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5268 #endif
5269 		if (first_group != last_group)
5270 			return IO_ACCEL_INELIGIBLE;
5271 
5272 		/* Verify request is in a single row of RAID 5/6 */
5273 #if BITS_PER_LONG == 32
5274 		tmpdiv = first_block;
5275 		(void) do_div(tmpdiv, stripesize);
5276 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5277 		tmpdiv = last_block;
5278 		(void) do_div(tmpdiv, stripesize);
5279 		r5or6_last_row = r0_last_row = tmpdiv;
5280 #else
5281 		first_row = r5or6_first_row = r0_first_row =
5282 						first_block / stripesize;
5283 		r5or6_last_row = r0_last_row = last_block / stripesize;
5284 #endif
5285 		if (r5or6_first_row != r5or6_last_row)
5286 			return IO_ACCEL_INELIGIBLE;
5287 
5288 
5289 		/* Verify request is in a single column */
5290 #if BITS_PER_LONG == 32
5291 		tmpdiv = first_block;
5292 		first_row_offset = do_div(tmpdiv, stripesize);
5293 		tmpdiv = first_row_offset;
5294 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5295 		r5or6_first_row_offset = first_row_offset;
5296 		tmpdiv = last_block;
5297 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5298 		tmpdiv = r5or6_last_row_offset;
5299 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5300 		tmpdiv = r5or6_first_row_offset;
5301 		(void) do_div(tmpdiv, map->strip_size);
5302 		first_column = r5or6_first_column = tmpdiv;
5303 		tmpdiv = r5or6_last_row_offset;
5304 		(void) do_div(tmpdiv, map->strip_size);
5305 		r5or6_last_column = tmpdiv;
5306 #else
5307 		first_row_offset = r5or6_first_row_offset =
5308 			(u32)((first_block % stripesize) %
5309 						r5or6_blocks_per_row);
5310 
5311 		r5or6_last_row_offset =
5312 			(u32)((last_block % stripesize) %
5313 						r5or6_blocks_per_row);
5314 
5315 		first_column = r5or6_first_column =
5316 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5317 		r5or6_last_column =
5318 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5319 #endif
5320 		if (r5or6_first_column != r5or6_last_column)
5321 			return IO_ACCEL_INELIGIBLE;
5322 
5323 		/* Request is eligible */
5324 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5325 			le16_to_cpu(map->row_cnt);
5326 
5327 		map_index = (first_group *
5328 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5329 			(map_row * total_disks_per_row) + first_column;
5330 		break;
5331 	default:
5332 		return IO_ACCEL_INELIGIBLE;
5333 	}
5334 
5335 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5336 		return IO_ACCEL_INELIGIBLE;
5337 
5338 	c->phys_disk = dev->phys_disk[map_index];
5339 	if (!c->phys_disk)
5340 		return IO_ACCEL_INELIGIBLE;
5341 
5342 	disk_handle = dd[map_index].ioaccel_handle;
5343 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5344 			first_row * le16_to_cpu(map->strip_size) +
5345 			(first_row_offset - first_column *
5346 			le16_to_cpu(map->strip_size));
5347 	disk_block_cnt = block_cnt;
5348 
5349 	/* handle differing logical/physical block sizes */
5350 	if (map->phys_blk_shift) {
5351 		disk_block <<= map->phys_blk_shift;
5352 		disk_block_cnt <<= map->phys_blk_shift;
5353 	}
5354 	BUG_ON(disk_block_cnt > 0xffff);
5355 
5356 	/* build the new CDB for the physical disk I/O */
5357 	if (disk_block > 0xffffffff) {
5358 		cdb[0] = is_write ? WRITE_16 : READ_16;
5359 		cdb[1] = 0;
5360 		cdb[2] = (u8) (disk_block >> 56);
5361 		cdb[3] = (u8) (disk_block >> 48);
5362 		cdb[4] = (u8) (disk_block >> 40);
5363 		cdb[5] = (u8) (disk_block >> 32);
5364 		cdb[6] = (u8) (disk_block >> 24);
5365 		cdb[7] = (u8) (disk_block >> 16);
5366 		cdb[8] = (u8) (disk_block >> 8);
5367 		cdb[9] = (u8) (disk_block);
5368 		cdb[10] = (u8) (disk_block_cnt >> 24);
5369 		cdb[11] = (u8) (disk_block_cnt >> 16);
5370 		cdb[12] = (u8) (disk_block_cnt >> 8);
5371 		cdb[13] = (u8) (disk_block_cnt);
5372 		cdb[14] = 0;
5373 		cdb[15] = 0;
5374 		cdb_len = 16;
5375 	} else {
5376 		cdb[0] = is_write ? WRITE_10 : READ_10;
5377 		cdb[1] = 0;
5378 		cdb[2] = (u8) (disk_block >> 24);
5379 		cdb[3] = (u8) (disk_block >> 16);
5380 		cdb[4] = (u8) (disk_block >> 8);
5381 		cdb[5] = (u8) (disk_block);
5382 		cdb[6] = 0;
5383 		cdb[7] = (u8) (disk_block_cnt >> 8);
5384 		cdb[8] = (u8) (disk_block_cnt);
5385 		cdb[9] = 0;
5386 		cdb_len = 10;
5387 	}
5388 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5389 						dev->scsi3addr,
5390 						dev->phys_disk[map_index]);
5391 }
5392 
5393 /*
5394  * Submit commands down the "normal" RAID stack path
5395  * All callers to hpsa_ciss_submit must check lockup_detected
5396  * beforehand, before (opt.) and after calling cmd_alloc
5397  */
5398 static int hpsa_ciss_submit(struct ctlr_info *h,
5399 	struct CommandList *c, struct scsi_cmnd *cmd,
5400 	unsigned char scsi3addr[])
5401 {
5402 	cmd->host_scribble = (unsigned char *) c;
5403 	c->cmd_type = CMD_SCSI;
5404 	c->scsi_cmd = cmd;
5405 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5406 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5407 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5408 
5409 	/* Fill in the request block... */
5410 
5411 	c->Request.Timeout = 0;
5412 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5413 	c->Request.CDBLen = cmd->cmd_len;
5414 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5415 	switch (cmd->sc_data_direction) {
5416 	case DMA_TO_DEVICE:
5417 		c->Request.type_attr_dir =
5418 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5419 		break;
5420 	case DMA_FROM_DEVICE:
5421 		c->Request.type_attr_dir =
5422 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5423 		break;
5424 	case DMA_NONE:
5425 		c->Request.type_attr_dir =
5426 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5427 		break;
5428 	case DMA_BIDIRECTIONAL:
5429 		/* This can happen if a buggy application does a scsi passthru
5430 		 * and sets both inlen and outlen to non-zero. ( see
5431 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5432 		 */
5433 
5434 		c->Request.type_attr_dir =
5435 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5436 		/* This is technically wrong, and hpsa controllers should
5437 		 * reject it with CMD_INVALID, which is the most correct
5438 		 * response, but non-fibre backends appear to let it
5439 		 * slide by, and give the same results as if this field
5440 		 * were set correctly.  Either way is acceptable for
5441 		 * our purposes here.
5442 		 */
5443 
5444 		break;
5445 
5446 	default:
5447 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5448 			cmd->sc_data_direction);
5449 		BUG();
5450 		break;
5451 	}
5452 
5453 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5454 		hpsa_cmd_resolve_and_free(h, c);
5455 		return SCSI_MLQUEUE_HOST_BUSY;
5456 	}
5457 	enqueue_cmd_and_start_io(h, c);
5458 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5459 	return 0;
5460 }
5461 
5462 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5463 				struct CommandList *c)
5464 {
5465 	dma_addr_t cmd_dma_handle, err_dma_handle;
5466 
5467 	/* Zero out all of commandlist except the last field, refcount */
5468 	memset(c, 0, offsetof(struct CommandList, refcount));
5469 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5470 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5471 	c->err_info = h->errinfo_pool + index;
5472 	memset(c->err_info, 0, sizeof(*c->err_info));
5473 	err_dma_handle = h->errinfo_pool_dhandle
5474 	    + index * sizeof(*c->err_info);
5475 	c->cmdindex = index;
5476 	c->busaddr = (u32) cmd_dma_handle;
5477 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5478 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5479 	c->h = h;
5480 	c->scsi_cmd = SCSI_CMD_IDLE;
5481 }
5482 
5483 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5484 {
5485 	int i;
5486 
5487 	for (i = 0; i < h->nr_cmds; i++) {
5488 		struct CommandList *c = h->cmd_pool + i;
5489 
5490 		hpsa_cmd_init(h, i, c);
5491 		atomic_set(&c->refcount, 0);
5492 	}
5493 }
5494 
5495 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5496 				struct CommandList *c)
5497 {
5498 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5499 
5500 	BUG_ON(c->cmdindex != index);
5501 
5502 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5503 	memset(c->err_info, 0, sizeof(*c->err_info));
5504 	c->busaddr = (u32) cmd_dma_handle;
5505 }
5506 
5507 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5508 		struct CommandList *c, struct scsi_cmnd *cmd,
5509 		unsigned char *scsi3addr)
5510 {
5511 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5512 	int rc = IO_ACCEL_INELIGIBLE;
5513 
5514 	if (!dev)
5515 		return SCSI_MLQUEUE_HOST_BUSY;
5516 
5517 	cmd->host_scribble = (unsigned char *) c;
5518 
5519 	if (dev->offload_enabled) {
5520 		hpsa_cmd_init(h, c->cmdindex, c);
5521 		c->cmd_type = CMD_SCSI;
5522 		c->scsi_cmd = cmd;
5523 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5524 		if (rc < 0)     /* scsi_dma_map failed. */
5525 			rc = SCSI_MLQUEUE_HOST_BUSY;
5526 	} else if (dev->hba_ioaccel_enabled) {
5527 		hpsa_cmd_init(h, c->cmdindex, c);
5528 		c->cmd_type = CMD_SCSI;
5529 		c->scsi_cmd = cmd;
5530 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5531 		if (rc < 0)     /* scsi_dma_map failed. */
5532 			rc = SCSI_MLQUEUE_HOST_BUSY;
5533 	}
5534 	return rc;
5535 }
5536 
5537 static void hpsa_command_resubmit_worker(struct work_struct *work)
5538 {
5539 	struct scsi_cmnd *cmd;
5540 	struct hpsa_scsi_dev_t *dev;
5541 	struct CommandList *c = container_of(work, struct CommandList, work);
5542 
5543 	cmd = c->scsi_cmd;
5544 	dev = cmd->device->hostdata;
5545 	if (!dev) {
5546 		cmd->result = DID_NO_CONNECT << 16;
5547 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5548 	}
5549 	if (c->reset_pending)
5550 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5551 	if (c->cmd_type == CMD_IOACCEL2) {
5552 		struct ctlr_info *h = c->h;
5553 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5554 		int rc;
5555 
5556 		if (c2->error_data.serv_response ==
5557 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5558 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5559 			if (rc == 0)
5560 				return;
5561 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5562 				/*
5563 				 * If we get here, it means dma mapping failed.
5564 				 * Try again via scsi mid layer, which will
5565 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5566 				 */
5567 				cmd->result = DID_IMM_RETRY << 16;
5568 				return hpsa_cmd_free_and_done(h, c, cmd);
5569 			}
5570 			/* else, fall thru and resubmit down CISS path */
5571 		}
5572 	}
5573 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5574 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5575 		/*
5576 		 * If we get here, it means dma mapping failed. Try
5577 		 * again via scsi mid layer, which will then get
5578 		 * SCSI_MLQUEUE_HOST_BUSY.
5579 		 *
5580 		 * hpsa_ciss_submit will have already freed c
5581 		 * if it encountered a dma mapping failure.
5582 		 */
5583 		cmd->result = DID_IMM_RETRY << 16;
5584 		cmd->scsi_done(cmd);
5585 	}
5586 }
5587 
5588 /* Running in struct Scsi_Host->host_lock less mode */
5589 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5590 {
5591 	struct ctlr_info *h;
5592 	struct hpsa_scsi_dev_t *dev;
5593 	unsigned char scsi3addr[8];
5594 	struct CommandList *c;
5595 	int rc = 0;
5596 
5597 	/* Get the ptr to our adapter structure out of cmd->host. */
5598 	h = sdev_to_hba(cmd->device);
5599 
5600 	BUG_ON(cmd->request->tag < 0);
5601 
5602 	dev = cmd->device->hostdata;
5603 	if (!dev) {
5604 		cmd->result = DID_NO_CONNECT << 16;
5605 		cmd->scsi_done(cmd);
5606 		return 0;
5607 	}
5608 
5609 	if (dev->removed) {
5610 		cmd->result = DID_NO_CONNECT << 16;
5611 		cmd->scsi_done(cmd);
5612 		return 0;
5613 	}
5614 
5615 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5616 
5617 	if (unlikely(lockup_detected(h))) {
5618 		cmd->result = DID_NO_CONNECT << 16;
5619 		cmd->scsi_done(cmd);
5620 		return 0;
5621 	}
5622 	c = cmd_tagged_alloc(h, cmd);
5623 
5624 	/*
5625 	 * Call alternate submit routine for I/O accelerated commands.
5626 	 * Retries always go down the normal I/O path.
5627 	 */
5628 	if (likely(cmd->retries == 0 &&
5629 			!blk_rq_is_passthrough(cmd->request) &&
5630 			h->acciopath_status)) {
5631 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5632 		if (rc == 0)
5633 			return 0;
5634 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5635 			hpsa_cmd_resolve_and_free(h, c);
5636 			return SCSI_MLQUEUE_HOST_BUSY;
5637 		}
5638 	}
5639 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5640 }
5641 
5642 static void hpsa_scan_complete(struct ctlr_info *h)
5643 {
5644 	unsigned long flags;
5645 
5646 	spin_lock_irqsave(&h->scan_lock, flags);
5647 	h->scan_finished = 1;
5648 	wake_up(&h->scan_wait_queue);
5649 	spin_unlock_irqrestore(&h->scan_lock, flags);
5650 }
5651 
5652 static void hpsa_scan_start(struct Scsi_Host *sh)
5653 {
5654 	struct ctlr_info *h = shost_to_hba(sh);
5655 	unsigned long flags;
5656 
5657 	/*
5658 	 * Don't let rescans be initiated on a controller known to be locked
5659 	 * up.  If the controller locks up *during* a rescan, that thread is
5660 	 * probably hosed, but at least we can prevent new rescan threads from
5661 	 * piling up on a locked up controller.
5662 	 */
5663 	if (unlikely(lockup_detected(h)))
5664 		return hpsa_scan_complete(h);
5665 
5666 	/*
5667 	 * If a scan is already waiting to run, no need to add another
5668 	 */
5669 	spin_lock_irqsave(&h->scan_lock, flags);
5670 	if (h->scan_waiting) {
5671 		spin_unlock_irqrestore(&h->scan_lock, flags);
5672 		return;
5673 	}
5674 
5675 	spin_unlock_irqrestore(&h->scan_lock, flags);
5676 
5677 	/* wait until any scan already in progress is finished. */
5678 	while (1) {
5679 		spin_lock_irqsave(&h->scan_lock, flags);
5680 		if (h->scan_finished)
5681 			break;
5682 		h->scan_waiting = 1;
5683 		spin_unlock_irqrestore(&h->scan_lock, flags);
5684 		wait_event(h->scan_wait_queue, h->scan_finished);
5685 		/* Note: We don't need to worry about a race between this
5686 		 * thread and driver unload because the midlayer will
5687 		 * have incremented the reference count, so unload won't
5688 		 * happen if we're in here.
5689 		 */
5690 	}
5691 	h->scan_finished = 0; /* mark scan as in progress */
5692 	h->scan_waiting = 0;
5693 	spin_unlock_irqrestore(&h->scan_lock, flags);
5694 
5695 	if (unlikely(lockup_detected(h)))
5696 		return hpsa_scan_complete(h);
5697 
5698 	/*
5699 	 * Do the scan after a reset completion
5700 	 */
5701 	spin_lock_irqsave(&h->reset_lock, flags);
5702 	if (h->reset_in_progress) {
5703 		h->drv_req_rescan = 1;
5704 		spin_unlock_irqrestore(&h->reset_lock, flags);
5705 		hpsa_scan_complete(h);
5706 		return;
5707 	}
5708 	spin_unlock_irqrestore(&h->reset_lock, flags);
5709 
5710 	hpsa_update_scsi_devices(h);
5711 
5712 	hpsa_scan_complete(h);
5713 }
5714 
5715 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5716 {
5717 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5718 
5719 	if (!logical_drive)
5720 		return -ENODEV;
5721 
5722 	if (qdepth < 1)
5723 		qdepth = 1;
5724 	else if (qdepth > logical_drive->queue_depth)
5725 		qdepth = logical_drive->queue_depth;
5726 
5727 	return scsi_change_queue_depth(sdev, qdepth);
5728 }
5729 
5730 static int hpsa_scan_finished(struct Scsi_Host *sh,
5731 	unsigned long elapsed_time)
5732 {
5733 	struct ctlr_info *h = shost_to_hba(sh);
5734 	unsigned long flags;
5735 	int finished;
5736 
5737 	spin_lock_irqsave(&h->scan_lock, flags);
5738 	finished = h->scan_finished;
5739 	spin_unlock_irqrestore(&h->scan_lock, flags);
5740 	return finished;
5741 }
5742 
5743 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5744 {
5745 	struct Scsi_Host *sh;
5746 
5747 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5748 	if (sh == NULL) {
5749 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5750 		return -ENOMEM;
5751 	}
5752 
5753 	sh->io_port = 0;
5754 	sh->n_io_port = 0;
5755 	sh->this_id = -1;
5756 	sh->max_channel = 3;
5757 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5758 	sh->max_lun = HPSA_MAX_LUN;
5759 	sh->max_id = HPSA_MAX_LUN;
5760 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5761 	sh->cmd_per_lun = sh->can_queue;
5762 	sh->sg_tablesize = h->maxsgentries;
5763 	sh->transportt = hpsa_sas_transport_template;
5764 	sh->hostdata[0] = (unsigned long) h;
5765 	sh->irq = pci_irq_vector(h->pdev, 0);
5766 	sh->unique_id = sh->irq;
5767 
5768 	h->scsi_host = sh;
5769 	return 0;
5770 }
5771 
5772 static int hpsa_scsi_add_host(struct ctlr_info *h)
5773 {
5774 	int rv;
5775 
5776 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5777 	if (rv) {
5778 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5779 		return rv;
5780 	}
5781 	scsi_scan_host(h->scsi_host);
5782 	return 0;
5783 }
5784 
5785 /*
5786  * The block layer has already gone to the trouble of picking out a unique,
5787  * small-integer tag for this request.  We use an offset from that value as
5788  * an index to select our command block.  (The offset allows us to reserve the
5789  * low-numbered entries for our own uses.)
5790  */
5791 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5792 {
5793 	int idx = scmd->request->tag;
5794 
5795 	if (idx < 0)
5796 		return idx;
5797 
5798 	/* Offset to leave space for internal cmds. */
5799 	return idx += HPSA_NRESERVED_CMDS;
5800 }
5801 
5802 /*
5803  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5804  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5805  */
5806 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5807 				struct CommandList *c, unsigned char lunaddr[],
5808 				int reply_queue)
5809 {
5810 	int rc;
5811 
5812 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5813 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5814 			NULL, 0, 0, lunaddr, TYPE_CMD);
5815 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5816 	if (rc)
5817 		return rc;
5818 	/* no unmap needed here because no data xfer. */
5819 
5820 	/* Check if the unit is already ready. */
5821 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5822 		return 0;
5823 
5824 	/*
5825 	 * The first command sent after reset will receive "unit attention" to
5826 	 * indicate that the LUN has been reset...this is actually what we're
5827 	 * looking for (but, success is good too).
5828 	 */
5829 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5830 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5831 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5832 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5833 		return 0;
5834 
5835 	return 1;
5836 }
5837 
5838 /*
5839  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5840  * returns zero when the unit is ready, and non-zero when giving up.
5841  */
5842 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5843 				struct CommandList *c,
5844 				unsigned char lunaddr[], int reply_queue)
5845 {
5846 	int rc;
5847 	int count = 0;
5848 	int waittime = 1; /* seconds */
5849 
5850 	/* Send test unit ready until device ready, or give up. */
5851 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5852 
5853 		/*
5854 		 * Wait for a bit.  do this first, because if we send
5855 		 * the TUR right away, the reset will just abort it.
5856 		 */
5857 		msleep(1000 * waittime);
5858 
5859 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5860 		if (!rc)
5861 			break;
5862 
5863 		/* Increase wait time with each try, up to a point. */
5864 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5865 			waittime *= 2;
5866 
5867 		dev_warn(&h->pdev->dev,
5868 			 "waiting %d secs for device to become ready.\n",
5869 			 waittime);
5870 	}
5871 
5872 	return rc;
5873 }
5874 
5875 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5876 					   unsigned char lunaddr[],
5877 					   int reply_queue)
5878 {
5879 	int first_queue;
5880 	int last_queue;
5881 	int rq;
5882 	int rc = 0;
5883 	struct CommandList *c;
5884 
5885 	c = cmd_alloc(h);
5886 
5887 	/*
5888 	 * If no specific reply queue was requested, then send the TUR
5889 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5890 	 * the loop exactly once using only the specified queue.
5891 	 */
5892 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5893 		first_queue = 0;
5894 		last_queue = h->nreply_queues - 1;
5895 	} else {
5896 		first_queue = reply_queue;
5897 		last_queue = reply_queue;
5898 	}
5899 
5900 	for (rq = first_queue; rq <= last_queue; rq++) {
5901 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5902 		if (rc)
5903 			break;
5904 	}
5905 
5906 	if (rc)
5907 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5908 	else
5909 		dev_warn(&h->pdev->dev, "device is ready.\n");
5910 
5911 	cmd_free(h, c);
5912 	return rc;
5913 }
5914 
5915 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5916  * complaining.  Doing a host- or bus-reset can't do anything good here.
5917  */
5918 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5919 {
5920 	int rc = SUCCESS;
5921 	struct ctlr_info *h;
5922 	struct hpsa_scsi_dev_t *dev;
5923 	u8 reset_type;
5924 	char msg[48];
5925 	unsigned long flags;
5926 
5927 	/* find the controller to which the command to be aborted was sent */
5928 	h = sdev_to_hba(scsicmd->device);
5929 	if (h == NULL) /* paranoia */
5930 		return FAILED;
5931 
5932 	spin_lock_irqsave(&h->reset_lock, flags);
5933 	h->reset_in_progress = 1;
5934 	spin_unlock_irqrestore(&h->reset_lock, flags);
5935 
5936 	if (lockup_detected(h)) {
5937 		rc = FAILED;
5938 		goto return_reset_status;
5939 	}
5940 
5941 	dev = scsicmd->device->hostdata;
5942 	if (!dev) {
5943 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5944 		rc = FAILED;
5945 		goto return_reset_status;
5946 	}
5947 
5948 	if (dev->devtype == TYPE_ENCLOSURE) {
5949 		rc = SUCCESS;
5950 		goto return_reset_status;
5951 	}
5952 
5953 	/* if controller locked up, we can guarantee command won't complete */
5954 	if (lockup_detected(h)) {
5955 		snprintf(msg, sizeof(msg),
5956 			 "cmd %d RESET FAILED, lockup detected",
5957 			 hpsa_get_cmd_index(scsicmd));
5958 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5959 		rc = FAILED;
5960 		goto return_reset_status;
5961 	}
5962 
5963 	/* this reset request might be the result of a lockup; check */
5964 	if (detect_controller_lockup(h)) {
5965 		snprintf(msg, sizeof(msg),
5966 			 "cmd %d RESET FAILED, new lockup detected",
5967 			 hpsa_get_cmd_index(scsicmd));
5968 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5969 		rc = FAILED;
5970 		goto return_reset_status;
5971 	}
5972 
5973 	/* Do not attempt on controller */
5974 	if (is_hba_lunid(dev->scsi3addr)) {
5975 		rc = SUCCESS;
5976 		goto return_reset_status;
5977 	}
5978 
5979 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5980 		reset_type = HPSA_DEVICE_RESET_MSG;
5981 	else
5982 		reset_type = HPSA_PHYS_TARGET_RESET;
5983 
5984 	sprintf(msg, "resetting %s",
5985 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5986 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5987 
5988 	/* send a reset to the SCSI LUN which the command was sent to */
5989 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5990 			   DEFAULT_REPLY_QUEUE);
5991 	if (rc == 0)
5992 		rc = SUCCESS;
5993 	else
5994 		rc = FAILED;
5995 
5996 	sprintf(msg, "reset %s %s",
5997 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5998 		rc == SUCCESS ? "completed successfully" : "failed");
5999 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6000 
6001 return_reset_status:
6002 	spin_lock_irqsave(&h->reset_lock, flags);
6003 	h->reset_in_progress = 0;
6004 	spin_unlock_irqrestore(&h->reset_lock, flags);
6005 	return rc;
6006 }
6007 
6008 /*
6009  * For operations with an associated SCSI command, a command block is allocated
6010  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6011  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6012  * the complement, although cmd_free() may be called instead.
6013  */
6014 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6015 					    struct scsi_cmnd *scmd)
6016 {
6017 	int idx = hpsa_get_cmd_index(scmd);
6018 	struct CommandList *c = h->cmd_pool + idx;
6019 
6020 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6021 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6022 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6023 		/* The index value comes from the block layer, so if it's out of
6024 		 * bounds, it's probably not our bug.
6025 		 */
6026 		BUG();
6027 	}
6028 
6029 	atomic_inc(&c->refcount);
6030 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6031 		/*
6032 		 * We expect that the SCSI layer will hand us a unique tag
6033 		 * value.  Thus, there should never be a collision here between
6034 		 * two requests...because if the selected command isn't idle
6035 		 * then someone is going to be very disappointed.
6036 		 */
6037 		dev_err(&h->pdev->dev,
6038 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6039 			idx);
6040 		if (c->scsi_cmd != NULL)
6041 			scsi_print_command(c->scsi_cmd);
6042 		scsi_print_command(scmd);
6043 	}
6044 
6045 	hpsa_cmd_partial_init(h, idx, c);
6046 	return c;
6047 }
6048 
6049 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6050 {
6051 	/*
6052 	 * Release our reference to the block.  We don't need to do anything
6053 	 * else to free it, because it is accessed by index.
6054 	 */
6055 	(void)atomic_dec(&c->refcount);
6056 }
6057 
6058 /*
6059  * For operations that cannot sleep, a command block is allocated at init,
6060  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6061  * which ones are free or in use.  Lock must be held when calling this.
6062  * cmd_free() is the complement.
6063  * This function never gives up and returns NULL.  If it hangs,
6064  * another thread must call cmd_free() to free some tags.
6065  */
6066 
6067 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6068 {
6069 	struct CommandList *c;
6070 	int refcount, i;
6071 	int offset = 0;
6072 
6073 	/*
6074 	 * There is some *extremely* small but non-zero chance that that
6075 	 * multiple threads could get in here, and one thread could
6076 	 * be scanning through the list of bits looking for a free
6077 	 * one, but the free ones are always behind him, and other
6078 	 * threads sneak in behind him and eat them before he can
6079 	 * get to them, so that while there is always a free one, a
6080 	 * very unlucky thread might be starved anyway, never able to
6081 	 * beat the other threads.  In reality, this happens so
6082 	 * infrequently as to be indistinguishable from never.
6083 	 *
6084 	 * Note that we start allocating commands before the SCSI host structure
6085 	 * is initialized.  Since the search starts at bit zero, this
6086 	 * all works, since we have at least one command structure available;
6087 	 * however, it means that the structures with the low indexes have to be
6088 	 * reserved for driver-initiated requests, while requests from the block
6089 	 * layer will use the higher indexes.
6090 	 */
6091 
6092 	for (;;) {
6093 		i = find_next_zero_bit(h->cmd_pool_bits,
6094 					HPSA_NRESERVED_CMDS,
6095 					offset);
6096 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6097 			offset = 0;
6098 			continue;
6099 		}
6100 		c = h->cmd_pool + i;
6101 		refcount = atomic_inc_return(&c->refcount);
6102 		if (unlikely(refcount > 1)) {
6103 			cmd_free(h, c); /* already in use */
6104 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6105 			continue;
6106 		}
6107 		set_bit(i & (BITS_PER_LONG - 1),
6108 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6109 		break; /* it's ours now. */
6110 	}
6111 	hpsa_cmd_partial_init(h, i, c);
6112 	return c;
6113 }
6114 
6115 /*
6116  * This is the complementary operation to cmd_alloc().  Note, however, in some
6117  * corner cases it may also be used to free blocks allocated by
6118  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6119  * the clear-bit is harmless.
6120  */
6121 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6122 {
6123 	if (atomic_dec_and_test(&c->refcount)) {
6124 		int i;
6125 
6126 		i = c - h->cmd_pool;
6127 		clear_bit(i & (BITS_PER_LONG - 1),
6128 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6129 	}
6130 }
6131 
6132 #ifdef CONFIG_COMPAT
6133 
6134 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6135 	void __user *arg)
6136 {
6137 	IOCTL32_Command_struct __user *arg32 =
6138 	    (IOCTL32_Command_struct __user *) arg;
6139 	IOCTL_Command_struct arg64;
6140 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6141 	int err;
6142 	u32 cp;
6143 
6144 	memset(&arg64, 0, sizeof(arg64));
6145 	err = 0;
6146 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6147 			   sizeof(arg64.LUN_info));
6148 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6149 			   sizeof(arg64.Request));
6150 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6151 			   sizeof(arg64.error_info));
6152 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6153 	err |= get_user(cp, &arg32->buf);
6154 	arg64.buf = compat_ptr(cp);
6155 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6156 
6157 	if (err)
6158 		return -EFAULT;
6159 
6160 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6161 	if (err)
6162 		return err;
6163 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6164 			 sizeof(arg32->error_info));
6165 	if (err)
6166 		return -EFAULT;
6167 	return err;
6168 }
6169 
6170 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6171 	int cmd, void __user *arg)
6172 {
6173 	BIG_IOCTL32_Command_struct __user *arg32 =
6174 	    (BIG_IOCTL32_Command_struct __user *) arg;
6175 	BIG_IOCTL_Command_struct arg64;
6176 	BIG_IOCTL_Command_struct __user *p =
6177 	    compat_alloc_user_space(sizeof(arg64));
6178 	int err;
6179 	u32 cp;
6180 
6181 	memset(&arg64, 0, sizeof(arg64));
6182 	err = 0;
6183 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6184 			   sizeof(arg64.LUN_info));
6185 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6186 			   sizeof(arg64.Request));
6187 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6188 			   sizeof(arg64.error_info));
6189 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6190 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6191 	err |= get_user(cp, &arg32->buf);
6192 	arg64.buf = compat_ptr(cp);
6193 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6194 
6195 	if (err)
6196 		return -EFAULT;
6197 
6198 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6199 	if (err)
6200 		return err;
6201 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6202 			 sizeof(arg32->error_info));
6203 	if (err)
6204 		return -EFAULT;
6205 	return err;
6206 }
6207 
6208 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6209 {
6210 	switch (cmd) {
6211 	case CCISS_GETPCIINFO:
6212 	case CCISS_GETINTINFO:
6213 	case CCISS_SETINTINFO:
6214 	case CCISS_GETNODENAME:
6215 	case CCISS_SETNODENAME:
6216 	case CCISS_GETHEARTBEAT:
6217 	case CCISS_GETBUSTYPES:
6218 	case CCISS_GETFIRMVER:
6219 	case CCISS_GETDRIVVER:
6220 	case CCISS_REVALIDVOLS:
6221 	case CCISS_DEREGDISK:
6222 	case CCISS_REGNEWDISK:
6223 	case CCISS_REGNEWD:
6224 	case CCISS_RESCANDISK:
6225 	case CCISS_GETLUNINFO:
6226 		return hpsa_ioctl(dev, cmd, arg);
6227 
6228 	case CCISS_PASSTHRU32:
6229 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6230 	case CCISS_BIG_PASSTHRU32:
6231 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6232 
6233 	default:
6234 		return -ENOIOCTLCMD;
6235 	}
6236 }
6237 #endif
6238 
6239 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6240 {
6241 	struct hpsa_pci_info pciinfo;
6242 
6243 	if (!argp)
6244 		return -EINVAL;
6245 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6246 	pciinfo.bus = h->pdev->bus->number;
6247 	pciinfo.dev_fn = h->pdev->devfn;
6248 	pciinfo.board_id = h->board_id;
6249 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6250 		return -EFAULT;
6251 	return 0;
6252 }
6253 
6254 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6255 {
6256 	DriverVer_type DriverVer;
6257 	unsigned char vmaj, vmin, vsubmin;
6258 	int rc;
6259 
6260 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6261 		&vmaj, &vmin, &vsubmin);
6262 	if (rc != 3) {
6263 		dev_info(&h->pdev->dev, "driver version string '%s' "
6264 			"unrecognized.", HPSA_DRIVER_VERSION);
6265 		vmaj = 0;
6266 		vmin = 0;
6267 		vsubmin = 0;
6268 	}
6269 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6270 	if (!argp)
6271 		return -EINVAL;
6272 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6273 		return -EFAULT;
6274 	return 0;
6275 }
6276 
6277 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6278 {
6279 	IOCTL_Command_struct iocommand;
6280 	struct CommandList *c;
6281 	char *buff = NULL;
6282 	u64 temp64;
6283 	int rc = 0;
6284 
6285 	if (!argp)
6286 		return -EINVAL;
6287 	if (!capable(CAP_SYS_RAWIO))
6288 		return -EPERM;
6289 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6290 		return -EFAULT;
6291 	if ((iocommand.buf_size < 1) &&
6292 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6293 		return -EINVAL;
6294 	}
6295 	if (iocommand.buf_size > 0) {
6296 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6297 		if (buff == NULL)
6298 			return -ENOMEM;
6299 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6300 			/* Copy the data into the buffer we created */
6301 			if (copy_from_user(buff, iocommand.buf,
6302 				iocommand.buf_size)) {
6303 				rc = -EFAULT;
6304 				goto out_kfree;
6305 			}
6306 		} else {
6307 			memset(buff, 0, iocommand.buf_size);
6308 		}
6309 	}
6310 	c = cmd_alloc(h);
6311 
6312 	/* Fill in the command type */
6313 	c->cmd_type = CMD_IOCTL_PEND;
6314 	c->scsi_cmd = SCSI_CMD_BUSY;
6315 	/* Fill in Command Header */
6316 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6317 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6318 		c->Header.SGList = 1;
6319 		c->Header.SGTotal = cpu_to_le16(1);
6320 	} else	{ /* no buffers to fill */
6321 		c->Header.SGList = 0;
6322 		c->Header.SGTotal = cpu_to_le16(0);
6323 	}
6324 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6325 
6326 	/* Fill in Request block */
6327 	memcpy(&c->Request, &iocommand.Request,
6328 		sizeof(c->Request));
6329 
6330 	/* Fill in the scatter gather information */
6331 	if (iocommand.buf_size > 0) {
6332 		temp64 = pci_map_single(h->pdev, buff,
6333 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6334 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6335 			c->SG[0].Addr = cpu_to_le64(0);
6336 			c->SG[0].Len = cpu_to_le32(0);
6337 			rc = -ENOMEM;
6338 			goto out;
6339 		}
6340 		c->SG[0].Addr = cpu_to_le64(temp64);
6341 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6342 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6343 	}
6344 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6345 					NO_TIMEOUT);
6346 	if (iocommand.buf_size > 0)
6347 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6348 	check_ioctl_unit_attention(h, c);
6349 	if (rc) {
6350 		rc = -EIO;
6351 		goto out;
6352 	}
6353 
6354 	/* Copy the error information out */
6355 	memcpy(&iocommand.error_info, c->err_info,
6356 		sizeof(iocommand.error_info));
6357 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6358 		rc = -EFAULT;
6359 		goto out;
6360 	}
6361 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6362 		iocommand.buf_size > 0) {
6363 		/* Copy the data out of the buffer we created */
6364 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6365 			rc = -EFAULT;
6366 			goto out;
6367 		}
6368 	}
6369 out:
6370 	cmd_free(h, c);
6371 out_kfree:
6372 	kfree(buff);
6373 	return rc;
6374 }
6375 
6376 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6377 {
6378 	BIG_IOCTL_Command_struct *ioc;
6379 	struct CommandList *c;
6380 	unsigned char **buff = NULL;
6381 	int *buff_size = NULL;
6382 	u64 temp64;
6383 	BYTE sg_used = 0;
6384 	int status = 0;
6385 	u32 left;
6386 	u32 sz;
6387 	BYTE __user *data_ptr;
6388 
6389 	if (!argp)
6390 		return -EINVAL;
6391 	if (!capable(CAP_SYS_RAWIO))
6392 		return -EPERM;
6393 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6394 	if (!ioc) {
6395 		status = -ENOMEM;
6396 		goto cleanup1;
6397 	}
6398 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6399 		status = -EFAULT;
6400 		goto cleanup1;
6401 	}
6402 	if ((ioc->buf_size < 1) &&
6403 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6404 		status = -EINVAL;
6405 		goto cleanup1;
6406 	}
6407 	/* Check kmalloc limits  using all SGs */
6408 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6409 		status = -EINVAL;
6410 		goto cleanup1;
6411 	}
6412 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6413 		status = -EINVAL;
6414 		goto cleanup1;
6415 	}
6416 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6417 	if (!buff) {
6418 		status = -ENOMEM;
6419 		goto cleanup1;
6420 	}
6421 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6422 	if (!buff_size) {
6423 		status = -ENOMEM;
6424 		goto cleanup1;
6425 	}
6426 	left = ioc->buf_size;
6427 	data_ptr = ioc->buf;
6428 	while (left) {
6429 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6430 		buff_size[sg_used] = sz;
6431 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6432 		if (buff[sg_used] == NULL) {
6433 			status = -ENOMEM;
6434 			goto cleanup1;
6435 		}
6436 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6437 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6438 				status = -EFAULT;
6439 				goto cleanup1;
6440 			}
6441 		} else
6442 			memset(buff[sg_used], 0, sz);
6443 		left -= sz;
6444 		data_ptr += sz;
6445 		sg_used++;
6446 	}
6447 	c = cmd_alloc(h);
6448 
6449 	c->cmd_type = CMD_IOCTL_PEND;
6450 	c->scsi_cmd = SCSI_CMD_BUSY;
6451 	c->Header.ReplyQueue = 0;
6452 	c->Header.SGList = (u8) sg_used;
6453 	c->Header.SGTotal = cpu_to_le16(sg_used);
6454 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6455 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6456 	if (ioc->buf_size > 0) {
6457 		int i;
6458 		for (i = 0; i < sg_used; i++) {
6459 			temp64 = pci_map_single(h->pdev, buff[i],
6460 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6461 			if (dma_mapping_error(&h->pdev->dev,
6462 							(dma_addr_t) temp64)) {
6463 				c->SG[i].Addr = cpu_to_le64(0);
6464 				c->SG[i].Len = cpu_to_le32(0);
6465 				hpsa_pci_unmap(h->pdev, c, i,
6466 					PCI_DMA_BIDIRECTIONAL);
6467 				status = -ENOMEM;
6468 				goto cleanup0;
6469 			}
6470 			c->SG[i].Addr = cpu_to_le64(temp64);
6471 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6472 			c->SG[i].Ext = cpu_to_le32(0);
6473 		}
6474 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6475 	}
6476 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6477 						NO_TIMEOUT);
6478 	if (sg_used)
6479 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6480 	check_ioctl_unit_attention(h, c);
6481 	if (status) {
6482 		status = -EIO;
6483 		goto cleanup0;
6484 	}
6485 
6486 	/* Copy the error information out */
6487 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6488 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6489 		status = -EFAULT;
6490 		goto cleanup0;
6491 	}
6492 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6493 		int i;
6494 
6495 		/* Copy the data out of the buffer we created */
6496 		BYTE __user *ptr = ioc->buf;
6497 		for (i = 0; i < sg_used; i++) {
6498 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6499 				status = -EFAULT;
6500 				goto cleanup0;
6501 			}
6502 			ptr += buff_size[i];
6503 		}
6504 	}
6505 	status = 0;
6506 cleanup0:
6507 	cmd_free(h, c);
6508 cleanup1:
6509 	if (buff) {
6510 		int i;
6511 
6512 		for (i = 0; i < sg_used; i++)
6513 			kfree(buff[i]);
6514 		kfree(buff);
6515 	}
6516 	kfree(buff_size);
6517 	kfree(ioc);
6518 	return status;
6519 }
6520 
6521 static void check_ioctl_unit_attention(struct ctlr_info *h,
6522 	struct CommandList *c)
6523 {
6524 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6525 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6526 		(void) check_for_unit_attention(h, c);
6527 }
6528 
6529 /*
6530  * ioctl
6531  */
6532 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6533 {
6534 	struct ctlr_info *h;
6535 	void __user *argp = (void __user *)arg;
6536 	int rc;
6537 
6538 	h = sdev_to_hba(dev);
6539 
6540 	switch (cmd) {
6541 	case CCISS_DEREGDISK:
6542 	case CCISS_REGNEWDISK:
6543 	case CCISS_REGNEWD:
6544 		hpsa_scan_start(h->scsi_host);
6545 		return 0;
6546 	case CCISS_GETPCIINFO:
6547 		return hpsa_getpciinfo_ioctl(h, argp);
6548 	case CCISS_GETDRIVVER:
6549 		return hpsa_getdrivver_ioctl(h, argp);
6550 	case CCISS_PASSTHRU:
6551 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6552 			return -EAGAIN;
6553 		rc = hpsa_passthru_ioctl(h, argp);
6554 		atomic_inc(&h->passthru_cmds_avail);
6555 		return rc;
6556 	case CCISS_BIG_PASSTHRU:
6557 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6558 			return -EAGAIN;
6559 		rc = hpsa_big_passthru_ioctl(h, argp);
6560 		atomic_inc(&h->passthru_cmds_avail);
6561 		return rc;
6562 	default:
6563 		return -ENOTTY;
6564 	}
6565 }
6566 
6567 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6568 				u8 reset_type)
6569 {
6570 	struct CommandList *c;
6571 
6572 	c = cmd_alloc(h);
6573 
6574 	/* fill_cmd can't fail here, no data buffer to map */
6575 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6576 		RAID_CTLR_LUNID, TYPE_MSG);
6577 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6578 	c->waiting = NULL;
6579 	enqueue_cmd_and_start_io(h, c);
6580 	/* Don't wait for completion, the reset won't complete.  Don't free
6581 	 * the command either.  This is the last command we will send before
6582 	 * re-initializing everything, so it doesn't matter and won't leak.
6583 	 */
6584 	return;
6585 }
6586 
6587 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6588 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6589 	int cmd_type)
6590 {
6591 	int pci_dir = XFER_NONE;
6592 
6593 	c->cmd_type = CMD_IOCTL_PEND;
6594 	c->scsi_cmd = SCSI_CMD_BUSY;
6595 	c->Header.ReplyQueue = 0;
6596 	if (buff != NULL && size > 0) {
6597 		c->Header.SGList = 1;
6598 		c->Header.SGTotal = cpu_to_le16(1);
6599 	} else {
6600 		c->Header.SGList = 0;
6601 		c->Header.SGTotal = cpu_to_le16(0);
6602 	}
6603 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6604 
6605 	if (cmd_type == TYPE_CMD) {
6606 		switch (cmd) {
6607 		case HPSA_INQUIRY:
6608 			/* are we trying to read a vital product page */
6609 			if (page_code & VPD_PAGE) {
6610 				c->Request.CDB[1] = 0x01;
6611 				c->Request.CDB[2] = (page_code & 0xff);
6612 			}
6613 			c->Request.CDBLen = 6;
6614 			c->Request.type_attr_dir =
6615 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6616 			c->Request.Timeout = 0;
6617 			c->Request.CDB[0] = HPSA_INQUIRY;
6618 			c->Request.CDB[4] = size & 0xFF;
6619 			break;
6620 		case RECEIVE_DIAGNOSTIC:
6621 			c->Request.CDBLen = 6;
6622 			c->Request.type_attr_dir =
6623 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6624 			c->Request.Timeout = 0;
6625 			c->Request.CDB[0] = cmd;
6626 			c->Request.CDB[1] = 1;
6627 			c->Request.CDB[2] = 1;
6628 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6629 			c->Request.CDB[4] = size & 0xFF;
6630 			break;
6631 		case HPSA_REPORT_LOG:
6632 		case HPSA_REPORT_PHYS:
6633 			/* Talking to controller so It's a physical command
6634 			   mode = 00 target = 0.  Nothing to write.
6635 			 */
6636 			c->Request.CDBLen = 12;
6637 			c->Request.type_attr_dir =
6638 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6639 			c->Request.Timeout = 0;
6640 			c->Request.CDB[0] = cmd;
6641 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6642 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6643 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6644 			c->Request.CDB[9] = size & 0xFF;
6645 			break;
6646 		case BMIC_SENSE_DIAG_OPTIONS:
6647 			c->Request.CDBLen = 16;
6648 			c->Request.type_attr_dir =
6649 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6650 			c->Request.Timeout = 0;
6651 			/* Spec says this should be BMIC_WRITE */
6652 			c->Request.CDB[0] = BMIC_READ;
6653 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6654 			break;
6655 		case BMIC_SET_DIAG_OPTIONS:
6656 			c->Request.CDBLen = 16;
6657 			c->Request.type_attr_dir =
6658 					TYPE_ATTR_DIR(cmd_type,
6659 						ATTR_SIMPLE, XFER_WRITE);
6660 			c->Request.Timeout = 0;
6661 			c->Request.CDB[0] = BMIC_WRITE;
6662 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6663 			break;
6664 		case HPSA_CACHE_FLUSH:
6665 			c->Request.CDBLen = 12;
6666 			c->Request.type_attr_dir =
6667 					TYPE_ATTR_DIR(cmd_type,
6668 						ATTR_SIMPLE, XFER_WRITE);
6669 			c->Request.Timeout = 0;
6670 			c->Request.CDB[0] = BMIC_WRITE;
6671 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6672 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6673 			c->Request.CDB[8] = size & 0xFF;
6674 			break;
6675 		case TEST_UNIT_READY:
6676 			c->Request.CDBLen = 6;
6677 			c->Request.type_attr_dir =
6678 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6679 			c->Request.Timeout = 0;
6680 			break;
6681 		case HPSA_GET_RAID_MAP:
6682 			c->Request.CDBLen = 12;
6683 			c->Request.type_attr_dir =
6684 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6685 			c->Request.Timeout = 0;
6686 			c->Request.CDB[0] = HPSA_CISS_READ;
6687 			c->Request.CDB[1] = cmd;
6688 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6689 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6690 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6691 			c->Request.CDB[9] = size & 0xFF;
6692 			break;
6693 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6694 			c->Request.CDBLen = 10;
6695 			c->Request.type_attr_dir =
6696 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6697 			c->Request.Timeout = 0;
6698 			c->Request.CDB[0] = BMIC_READ;
6699 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6700 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6701 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6702 			break;
6703 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6704 			c->Request.CDBLen = 10;
6705 			c->Request.type_attr_dir =
6706 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6707 			c->Request.Timeout = 0;
6708 			c->Request.CDB[0] = BMIC_READ;
6709 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6710 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6711 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6712 			break;
6713 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6714 			c->Request.CDBLen = 10;
6715 			c->Request.type_attr_dir =
6716 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6717 			c->Request.Timeout = 0;
6718 			c->Request.CDB[0] = BMIC_READ;
6719 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6720 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6721 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6722 			break;
6723 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6724 			c->Request.CDBLen = 10;
6725 			c->Request.type_attr_dir =
6726 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6727 			c->Request.Timeout = 0;
6728 			c->Request.CDB[0] = BMIC_READ;
6729 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6730 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6731 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6732 			break;
6733 		case BMIC_IDENTIFY_CONTROLLER:
6734 			c->Request.CDBLen = 10;
6735 			c->Request.type_attr_dir =
6736 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6737 			c->Request.Timeout = 0;
6738 			c->Request.CDB[0] = BMIC_READ;
6739 			c->Request.CDB[1] = 0;
6740 			c->Request.CDB[2] = 0;
6741 			c->Request.CDB[3] = 0;
6742 			c->Request.CDB[4] = 0;
6743 			c->Request.CDB[5] = 0;
6744 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6745 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6746 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6747 			c->Request.CDB[9] = 0;
6748 			break;
6749 		default:
6750 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6751 			BUG();
6752 		}
6753 	} else if (cmd_type == TYPE_MSG) {
6754 		switch (cmd) {
6755 
6756 		case  HPSA_PHYS_TARGET_RESET:
6757 			c->Request.CDBLen = 16;
6758 			c->Request.type_attr_dir =
6759 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6760 			c->Request.Timeout = 0; /* Don't time out */
6761 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6762 			c->Request.CDB[0] = HPSA_RESET;
6763 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6764 			/* Physical target reset needs no control bytes 4-7*/
6765 			c->Request.CDB[4] = 0x00;
6766 			c->Request.CDB[5] = 0x00;
6767 			c->Request.CDB[6] = 0x00;
6768 			c->Request.CDB[7] = 0x00;
6769 			break;
6770 		case  HPSA_DEVICE_RESET_MSG:
6771 			c->Request.CDBLen = 16;
6772 			c->Request.type_attr_dir =
6773 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6774 			c->Request.Timeout = 0; /* Don't time out */
6775 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6776 			c->Request.CDB[0] =  cmd;
6777 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6778 			/* If bytes 4-7 are zero, it means reset the */
6779 			/* LunID device */
6780 			c->Request.CDB[4] = 0x00;
6781 			c->Request.CDB[5] = 0x00;
6782 			c->Request.CDB[6] = 0x00;
6783 			c->Request.CDB[7] = 0x00;
6784 			break;
6785 		default:
6786 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6787 				cmd);
6788 			BUG();
6789 		}
6790 	} else {
6791 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6792 		BUG();
6793 	}
6794 
6795 	switch (GET_DIR(c->Request.type_attr_dir)) {
6796 	case XFER_READ:
6797 		pci_dir = PCI_DMA_FROMDEVICE;
6798 		break;
6799 	case XFER_WRITE:
6800 		pci_dir = PCI_DMA_TODEVICE;
6801 		break;
6802 	case XFER_NONE:
6803 		pci_dir = PCI_DMA_NONE;
6804 		break;
6805 	default:
6806 		pci_dir = PCI_DMA_BIDIRECTIONAL;
6807 	}
6808 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6809 		return -1;
6810 	return 0;
6811 }
6812 
6813 /*
6814  * Map (physical) PCI mem into (virtual) kernel space
6815  */
6816 static void __iomem *remap_pci_mem(ulong base, ulong size)
6817 {
6818 	ulong page_base = ((ulong) base) & PAGE_MASK;
6819 	ulong page_offs = ((ulong) base) - page_base;
6820 	void __iomem *page_remapped = ioremap_nocache(page_base,
6821 		page_offs + size);
6822 
6823 	return page_remapped ? (page_remapped + page_offs) : NULL;
6824 }
6825 
6826 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6827 {
6828 	return h->access.command_completed(h, q);
6829 }
6830 
6831 static inline bool interrupt_pending(struct ctlr_info *h)
6832 {
6833 	return h->access.intr_pending(h);
6834 }
6835 
6836 static inline long interrupt_not_for_us(struct ctlr_info *h)
6837 {
6838 	return (h->access.intr_pending(h) == 0) ||
6839 		(h->interrupts_enabled == 0);
6840 }
6841 
6842 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6843 	u32 raw_tag)
6844 {
6845 	if (unlikely(tag_index >= h->nr_cmds)) {
6846 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6847 		return 1;
6848 	}
6849 	return 0;
6850 }
6851 
6852 static inline void finish_cmd(struct CommandList *c)
6853 {
6854 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6855 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6856 			|| c->cmd_type == CMD_IOACCEL2))
6857 		complete_scsi_command(c);
6858 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6859 		complete(c->waiting);
6860 }
6861 
6862 /* process completion of an indexed ("direct lookup") command */
6863 static inline void process_indexed_cmd(struct ctlr_info *h,
6864 	u32 raw_tag)
6865 {
6866 	u32 tag_index;
6867 	struct CommandList *c;
6868 
6869 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6870 	if (!bad_tag(h, tag_index, raw_tag)) {
6871 		c = h->cmd_pool + tag_index;
6872 		finish_cmd(c);
6873 	}
6874 }
6875 
6876 /* Some controllers, like p400, will give us one interrupt
6877  * after a soft reset, even if we turned interrupts off.
6878  * Only need to check for this in the hpsa_xxx_discard_completions
6879  * functions.
6880  */
6881 static int ignore_bogus_interrupt(struct ctlr_info *h)
6882 {
6883 	if (likely(!reset_devices))
6884 		return 0;
6885 
6886 	if (likely(h->interrupts_enabled))
6887 		return 0;
6888 
6889 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6890 		"(known firmware bug.)  Ignoring.\n");
6891 
6892 	return 1;
6893 }
6894 
6895 /*
6896  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6897  * Relies on (h-q[x] == x) being true for x such that
6898  * 0 <= x < MAX_REPLY_QUEUES.
6899  */
6900 static struct ctlr_info *queue_to_hba(u8 *queue)
6901 {
6902 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6903 }
6904 
6905 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6906 {
6907 	struct ctlr_info *h = queue_to_hba(queue);
6908 	u8 q = *(u8 *) queue;
6909 	u32 raw_tag;
6910 
6911 	if (ignore_bogus_interrupt(h))
6912 		return IRQ_NONE;
6913 
6914 	if (interrupt_not_for_us(h))
6915 		return IRQ_NONE;
6916 	h->last_intr_timestamp = get_jiffies_64();
6917 	while (interrupt_pending(h)) {
6918 		raw_tag = get_next_completion(h, q);
6919 		while (raw_tag != FIFO_EMPTY)
6920 			raw_tag = next_command(h, q);
6921 	}
6922 	return IRQ_HANDLED;
6923 }
6924 
6925 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6926 {
6927 	struct ctlr_info *h = queue_to_hba(queue);
6928 	u32 raw_tag;
6929 	u8 q = *(u8 *) queue;
6930 
6931 	if (ignore_bogus_interrupt(h))
6932 		return IRQ_NONE;
6933 
6934 	h->last_intr_timestamp = get_jiffies_64();
6935 	raw_tag = get_next_completion(h, q);
6936 	while (raw_tag != FIFO_EMPTY)
6937 		raw_tag = next_command(h, q);
6938 	return IRQ_HANDLED;
6939 }
6940 
6941 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6942 {
6943 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6944 	u32 raw_tag;
6945 	u8 q = *(u8 *) queue;
6946 
6947 	if (interrupt_not_for_us(h))
6948 		return IRQ_NONE;
6949 	h->last_intr_timestamp = get_jiffies_64();
6950 	while (interrupt_pending(h)) {
6951 		raw_tag = get_next_completion(h, q);
6952 		while (raw_tag != FIFO_EMPTY) {
6953 			process_indexed_cmd(h, raw_tag);
6954 			raw_tag = next_command(h, q);
6955 		}
6956 	}
6957 	return IRQ_HANDLED;
6958 }
6959 
6960 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6961 {
6962 	struct ctlr_info *h = queue_to_hba(queue);
6963 	u32 raw_tag;
6964 	u8 q = *(u8 *) queue;
6965 
6966 	h->last_intr_timestamp = get_jiffies_64();
6967 	raw_tag = get_next_completion(h, q);
6968 	while (raw_tag != FIFO_EMPTY) {
6969 		process_indexed_cmd(h, raw_tag);
6970 		raw_tag = next_command(h, q);
6971 	}
6972 	return IRQ_HANDLED;
6973 }
6974 
6975 /* Send a message CDB to the firmware. Careful, this only works
6976  * in simple mode, not performant mode due to the tag lookup.
6977  * We only ever use this immediately after a controller reset.
6978  */
6979 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6980 			unsigned char type)
6981 {
6982 	struct Command {
6983 		struct CommandListHeader CommandHeader;
6984 		struct RequestBlock Request;
6985 		struct ErrDescriptor ErrorDescriptor;
6986 	};
6987 	struct Command *cmd;
6988 	static const size_t cmd_sz = sizeof(*cmd) +
6989 					sizeof(cmd->ErrorDescriptor);
6990 	dma_addr_t paddr64;
6991 	__le32 paddr32;
6992 	u32 tag;
6993 	void __iomem *vaddr;
6994 	int i, err;
6995 
6996 	vaddr = pci_ioremap_bar(pdev, 0);
6997 	if (vaddr == NULL)
6998 		return -ENOMEM;
6999 
7000 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7001 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7002 	 * memory.
7003 	 */
7004 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7005 	if (err) {
7006 		iounmap(vaddr);
7007 		return err;
7008 	}
7009 
7010 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7011 	if (cmd == NULL) {
7012 		iounmap(vaddr);
7013 		return -ENOMEM;
7014 	}
7015 
7016 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7017 	 * although there's no guarantee, we assume that the address is at
7018 	 * least 4-byte aligned (most likely, it's page-aligned).
7019 	 */
7020 	paddr32 = cpu_to_le32(paddr64);
7021 
7022 	cmd->CommandHeader.ReplyQueue = 0;
7023 	cmd->CommandHeader.SGList = 0;
7024 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7025 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7026 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7027 
7028 	cmd->Request.CDBLen = 16;
7029 	cmd->Request.type_attr_dir =
7030 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7031 	cmd->Request.Timeout = 0; /* Don't time out */
7032 	cmd->Request.CDB[0] = opcode;
7033 	cmd->Request.CDB[1] = type;
7034 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7035 	cmd->ErrorDescriptor.Addr =
7036 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7037 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7038 
7039 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7040 
7041 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7042 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7043 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7044 			break;
7045 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7046 	}
7047 
7048 	iounmap(vaddr);
7049 
7050 	/* we leak the DMA buffer here ... no choice since the controller could
7051 	 *  still complete the command.
7052 	 */
7053 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7054 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7055 			opcode, type);
7056 		return -ETIMEDOUT;
7057 	}
7058 
7059 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7060 
7061 	if (tag & HPSA_ERROR_BIT) {
7062 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7063 			opcode, type);
7064 		return -EIO;
7065 	}
7066 
7067 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7068 		opcode, type);
7069 	return 0;
7070 }
7071 
7072 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7073 
7074 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7075 	void __iomem *vaddr, u32 use_doorbell)
7076 {
7077 
7078 	if (use_doorbell) {
7079 		/* For everything after the P600, the PCI power state method
7080 		 * of resetting the controller doesn't work, so we have this
7081 		 * other way using the doorbell register.
7082 		 */
7083 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7084 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7085 
7086 		/* PMC hardware guys tell us we need a 10 second delay after
7087 		 * doorbell reset and before any attempt to talk to the board
7088 		 * at all to ensure that this actually works and doesn't fall
7089 		 * over in some weird corner cases.
7090 		 */
7091 		msleep(10000);
7092 	} else { /* Try to do it the PCI power state way */
7093 
7094 		/* Quoting from the Open CISS Specification: "The Power
7095 		 * Management Control/Status Register (CSR) controls the power
7096 		 * state of the device.  The normal operating state is D0,
7097 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7098 		 * the controller, place the interface device in D3 then to D0,
7099 		 * this causes a secondary PCI reset which will reset the
7100 		 * controller." */
7101 
7102 		int rc = 0;
7103 
7104 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7105 
7106 		/* enter the D3hot power management state */
7107 		rc = pci_set_power_state(pdev, PCI_D3hot);
7108 		if (rc)
7109 			return rc;
7110 
7111 		msleep(500);
7112 
7113 		/* enter the D0 power management state */
7114 		rc = pci_set_power_state(pdev, PCI_D0);
7115 		if (rc)
7116 			return rc;
7117 
7118 		/*
7119 		 * The P600 requires a small delay when changing states.
7120 		 * Otherwise we may think the board did not reset and we bail.
7121 		 * This for kdump only and is particular to the P600.
7122 		 */
7123 		msleep(500);
7124 	}
7125 	return 0;
7126 }
7127 
7128 static void init_driver_version(char *driver_version, int len)
7129 {
7130 	memset(driver_version, 0, len);
7131 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7132 }
7133 
7134 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7135 {
7136 	char *driver_version;
7137 	int i, size = sizeof(cfgtable->driver_version);
7138 
7139 	driver_version = kmalloc(size, GFP_KERNEL);
7140 	if (!driver_version)
7141 		return -ENOMEM;
7142 
7143 	init_driver_version(driver_version, size);
7144 	for (i = 0; i < size; i++)
7145 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7146 	kfree(driver_version);
7147 	return 0;
7148 }
7149 
7150 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7151 					  unsigned char *driver_ver)
7152 {
7153 	int i;
7154 
7155 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7156 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7157 }
7158 
7159 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7160 {
7161 
7162 	char *driver_ver, *old_driver_ver;
7163 	int rc, size = sizeof(cfgtable->driver_version);
7164 
7165 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7166 	if (!old_driver_ver)
7167 		return -ENOMEM;
7168 	driver_ver = old_driver_ver + size;
7169 
7170 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7171 	 * should have been changed, otherwise we know the reset failed.
7172 	 */
7173 	init_driver_version(old_driver_ver, size);
7174 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7175 	rc = !memcmp(driver_ver, old_driver_ver, size);
7176 	kfree(old_driver_ver);
7177 	return rc;
7178 }
7179 /* This does a hard reset of the controller using PCI power management
7180  * states or the using the doorbell register.
7181  */
7182 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7183 {
7184 	u64 cfg_offset;
7185 	u32 cfg_base_addr;
7186 	u64 cfg_base_addr_index;
7187 	void __iomem *vaddr;
7188 	unsigned long paddr;
7189 	u32 misc_fw_support;
7190 	int rc;
7191 	struct CfgTable __iomem *cfgtable;
7192 	u32 use_doorbell;
7193 	u16 command_register;
7194 
7195 	/* For controllers as old as the P600, this is very nearly
7196 	 * the same thing as
7197 	 *
7198 	 * pci_save_state(pci_dev);
7199 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7200 	 * pci_set_power_state(pci_dev, PCI_D0);
7201 	 * pci_restore_state(pci_dev);
7202 	 *
7203 	 * For controllers newer than the P600, the pci power state
7204 	 * method of resetting doesn't work so we have another way
7205 	 * using the doorbell register.
7206 	 */
7207 
7208 	if (!ctlr_is_resettable(board_id)) {
7209 		dev_warn(&pdev->dev, "Controller not resettable\n");
7210 		return -ENODEV;
7211 	}
7212 
7213 	/* if controller is soft- but not hard resettable... */
7214 	if (!ctlr_is_hard_resettable(board_id))
7215 		return -ENOTSUPP; /* try soft reset later. */
7216 
7217 	/* Save the PCI command register */
7218 	pci_read_config_word(pdev, 4, &command_register);
7219 	pci_save_state(pdev);
7220 
7221 	/* find the first memory BAR, so we can find the cfg table */
7222 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7223 	if (rc)
7224 		return rc;
7225 	vaddr = remap_pci_mem(paddr, 0x250);
7226 	if (!vaddr)
7227 		return -ENOMEM;
7228 
7229 	/* find cfgtable in order to check if reset via doorbell is supported */
7230 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7231 					&cfg_base_addr_index, &cfg_offset);
7232 	if (rc)
7233 		goto unmap_vaddr;
7234 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7235 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7236 	if (!cfgtable) {
7237 		rc = -ENOMEM;
7238 		goto unmap_vaddr;
7239 	}
7240 	rc = write_driver_ver_to_cfgtable(cfgtable);
7241 	if (rc)
7242 		goto unmap_cfgtable;
7243 
7244 	/* If reset via doorbell register is supported, use that.
7245 	 * There are two such methods.  Favor the newest method.
7246 	 */
7247 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7248 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7249 	if (use_doorbell) {
7250 		use_doorbell = DOORBELL_CTLR_RESET2;
7251 	} else {
7252 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7253 		if (use_doorbell) {
7254 			dev_warn(&pdev->dev,
7255 				"Soft reset not supported. Firmware update is required.\n");
7256 			rc = -ENOTSUPP; /* try soft reset */
7257 			goto unmap_cfgtable;
7258 		}
7259 	}
7260 
7261 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7262 	if (rc)
7263 		goto unmap_cfgtable;
7264 
7265 	pci_restore_state(pdev);
7266 	pci_write_config_word(pdev, 4, command_register);
7267 
7268 	/* Some devices (notably the HP Smart Array 5i Controller)
7269 	   need a little pause here */
7270 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7271 
7272 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7273 	if (rc) {
7274 		dev_warn(&pdev->dev,
7275 			"Failed waiting for board to become ready after hard reset\n");
7276 		goto unmap_cfgtable;
7277 	}
7278 
7279 	rc = controller_reset_failed(vaddr);
7280 	if (rc < 0)
7281 		goto unmap_cfgtable;
7282 	if (rc) {
7283 		dev_warn(&pdev->dev, "Unable to successfully reset "
7284 			"controller. Will try soft reset.\n");
7285 		rc = -ENOTSUPP;
7286 	} else {
7287 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7288 	}
7289 
7290 unmap_cfgtable:
7291 	iounmap(cfgtable);
7292 
7293 unmap_vaddr:
7294 	iounmap(vaddr);
7295 	return rc;
7296 }
7297 
7298 /*
7299  *  We cannot read the structure directly, for portability we must use
7300  *   the io functions.
7301  *   This is for debug only.
7302  */
7303 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7304 {
7305 #ifdef HPSA_DEBUG
7306 	int i;
7307 	char temp_name[17];
7308 
7309 	dev_info(dev, "Controller Configuration information\n");
7310 	dev_info(dev, "------------------------------------\n");
7311 	for (i = 0; i < 4; i++)
7312 		temp_name[i] = readb(&(tb->Signature[i]));
7313 	temp_name[4] = '\0';
7314 	dev_info(dev, "   Signature = %s\n", temp_name);
7315 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7316 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7317 	       readl(&(tb->TransportSupport)));
7318 	dev_info(dev, "   Transport methods active = 0x%x\n",
7319 	       readl(&(tb->TransportActive)));
7320 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7321 	       readl(&(tb->HostWrite.TransportRequest)));
7322 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7323 	       readl(&(tb->HostWrite.CoalIntDelay)));
7324 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7325 	       readl(&(tb->HostWrite.CoalIntCount)));
7326 	dev_info(dev, "   Max outstanding commands = %d\n",
7327 	       readl(&(tb->CmdsOutMax)));
7328 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7329 	for (i = 0; i < 16; i++)
7330 		temp_name[i] = readb(&(tb->ServerName[i]));
7331 	temp_name[16] = '\0';
7332 	dev_info(dev, "   Server Name = %s\n", temp_name);
7333 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7334 		readl(&(tb->HeartBeat)));
7335 #endif				/* HPSA_DEBUG */
7336 }
7337 
7338 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7339 {
7340 	int i, offset, mem_type, bar_type;
7341 
7342 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7343 		return 0;
7344 	offset = 0;
7345 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7346 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7347 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7348 			offset += 4;
7349 		else {
7350 			mem_type = pci_resource_flags(pdev, i) &
7351 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7352 			switch (mem_type) {
7353 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7354 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7355 				offset += 4;	/* 32 bit */
7356 				break;
7357 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7358 				offset += 8;
7359 				break;
7360 			default:	/* reserved in PCI 2.2 */
7361 				dev_warn(&pdev->dev,
7362 				       "base address is invalid\n");
7363 				return -1;
7364 				break;
7365 			}
7366 		}
7367 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7368 			return i + 1;
7369 	}
7370 	return -1;
7371 }
7372 
7373 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7374 {
7375 	pci_free_irq_vectors(h->pdev);
7376 	h->msix_vectors = 0;
7377 }
7378 
7379 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7380  * controllers that are capable. If not, we use legacy INTx mode.
7381  */
7382 static int hpsa_interrupt_mode(struct ctlr_info *h)
7383 {
7384 	unsigned int flags = PCI_IRQ_LEGACY;
7385 	int ret;
7386 
7387 	/* Some boards advertise MSI but don't really support it */
7388 	switch (h->board_id) {
7389 	case 0x40700E11:
7390 	case 0x40800E11:
7391 	case 0x40820E11:
7392 	case 0x40830E11:
7393 		break;
7394 	default:
7395 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7396 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7397 		if (ret > 0) {
7398 			h->msix_vectors = ret;
7399 			return 0;
7400 		}
7401 
7402 		flags |= PCI_IRQ_MSI;
7403 		break;
7404 	}
7405 
7406 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7407 	if (ret < 0)
7408 		return ret;
7409 	return 0;
7410 }
7411 
7412 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7413 				bool *legacy_board)
7414 {
7415 	int i;
7416 	u32 subsystem_vendor_id, subsystem_device_id;
7417 
7418 	subsystem_vendor_id = pdev->subsystem_vendor;
7419 	subsystem_device_id = pdev->subsystem_device;
7420 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7421 		    subsystem_vendor_id;
7422 
7423 	if (legacy_board)
7424 		*legacy_board = false;
7425 	for (i = 0; i < ARRAY_SIZE(products); i++)
7426 		if (*board_id == products[i].board_id) {
7427 			if (products[i].access != &SA5A_access &&
7428 			    products[i].access != &SA5B_access)
7429 				return i;
7430 			dev_warn(&pdev->dev,
7431 				 "legacy board ID: 0x%08x\n",
7432 				 *board_id);
7433 			if (legacy_board)
7434 			    *legacy_board = true;
7435 			return i;
7436 		}
7437 
7438 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7439 	if (legacy_board)
7440 		*legacy_board = true;
7441 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7442 }
7443 
7444 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7445 				    unsigned long *memory_bar)
7446 {
7447 	int i;
7448 
7449 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7450 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7451 			/* addressing mode bits already removed */
7452 			*memory_bar = pci_resource_start(pdev, i);
7453 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7454 				*memory_bar);
7455 			return 0;
7456 		}
7457 	dev_warn(&pdev->dev, "no memory BAR found\n");
7458 	return -ENODEV;
7459 }
7460 
7461 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7462 				     int wait_for_ready)
7463 {
7464 	int i, iterations;
7465 	u32 scratchpad;
7466 	if (wait_for_ready)
7467 		iterations = HPSA_BOARD_READY_ITERATIONS;
7468 	else
7469 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7470 
7471 	for (i = 0; i < iterations; i++) {
7472 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7473 		if (wait_for_ready) {
7474 			if (scratchpad == HPSA_FIRMWARE_READY)
7475 				return 0;
7476 		} else {
7477 			if (scratchpad != HPSA_FIRMWARE_READY)
7478 				return 0;
7479 		}
7480 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7481 	}
7482 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7483 	return -ENODEV;
7484 }
7485 
7486 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7487 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7488 			       u64 *cfg_offset)
7489 {
7490 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7491 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7492 	*cfg_base_addr &= (u32) 0x0000ffff;
7493 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7494 	if (*cfg_base_addr_index == -1) {
7495 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7496 		return -ENODEV;
7497 	}
7498 	return 0;
7499 }
7500 
7501 static void hpsa_free_cfgtables(struct ctlr_info *h)
7502 {
7503 	if (h->transtable) {
7504 		iounmap(h->transtable);
7505 		h->transtable = NULL;
7506 	}
7507 	if (h->cfgtable) {
7508 		iounmap(h->cfgtable);
7509 		h->cfgtable = NULL;
7510 	}
7511 }
7512 
7513 /* Find and map CISS config table and transfer table
7514 + * several items must be unmapped (freed) later
7515 + * */
7516 static int hpsa_find_cfgtables(struct ctlr_info *h)
7517 {
7518 	u64 cfg_offset;
7519 	u32 cfg_base_addr;
7520 	u64 cfg_base_addr_index;
7521 	u32 trans_offset;
7522 	int rc;
7523 
7524 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7525 		&cfg_base_addr_index, &cfg_offset);
7526 	if (rc)
7527 		return rc;
7528 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7529 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7530 	if (!h->cfgtable) {
7531 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7532 		return -ENOMEM;
7533 	}
7534 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7535 	if (rc)
7536 		return rc;
7537 	/* Find performant mode table. */
7538 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7539 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7540 				cfg_base_addr_index)+cfg_offset+trans_offset,
7541 				sizeof(*h->transtable));
7542 	if (!h->transtable) {
7543 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7544 		hpsa_free_cfgtables(h);
7545 		return -ENOMEM;
7546 	}
7547 	return 0;
7548 }
7549 
7550 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7551 {
7552 #define MIN_MAX_COMMANDS 16
7553 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7554 
7555 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7556 
7557 	/* Limit commands in memory limited kdump scenario. */
7558 	if (reset_devices && h->max_commands > 32)
7559 		h->max_commands = 32;
7560 
7561 	if (h->max_commands < MIN_MAX_COMMANDS) {
7562 		dev_warn(&h->pdev->dev,
7563 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7564 			h->max_commands,
7565 			MIN_MAX_COMMANDS);
7566 		h->max_commands = MIN_MAX_COMMANDS;
7567 	}
7568 }
7569 
7570 /* If the controller reports that the total max sg entries is greater than 512,
7571  * then we know that chained SG blocks work.  (Original smart arrays did not
7572  * support chained SG blocks and would return zero for max sg entries.)
7573  */
7574 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7575 {
7576 	return h->maxsgentries > 512;
7577 }
7578 
7579 /* Interrogate the hardware for some limits:
7580  * max commands, max SG elements without chaining, and with chaining,
7581  * SG chain block size, etc.
7582  */
7583 static void hpsa_find_board_params(struct ctlr_info *h)
7584 {
7585 	hpsa_get_max_perf_mode_cmds(h);
7586 	h->nr_cmds = h->max_commands;
7587 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7588 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7589 	if (hpsa_supports_chained_sg_blocks(h)) {
7590 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7591 		h->max_cmd_sg_entries = 32;
7592 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7593 		h->maxsgentries--; /* save one for chain pointer */
7594 	} else {
7595 		/*
7596 		 * Original smart arrays supported at most 31 s/g entries
7597 		 * embedded inline in the command (trying to use more
7598 		 * would lock up the controller)
7599 		 */
7600 		h->max_cmd_sg_entries = 31;
7601 		h->maxsgentries = 31; /* default to traditional values */
7602 		h->chainsize = 0;
7603 	}
7604 
7605 	/* Find out what task management functions are supported and cache */
7606 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7607 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7608 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7609 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7610 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7611 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7612 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7613 }
7614 
7615 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7616 {
7617 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7618 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7619 		return false;
7620 	}
7621 	return true;
7622 }
7623 
7624 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7625 {
7626 	u32 driver_support;
7627 
7628 	driver_support = readl(&(h->cfgtable->driver_support));
7629 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7630 #ifdef CONFIG_X86
7631 	driver_support |= ENABLE_SCSI_PREFETCH;
7632 #endif
7633 	driver_support |= ENABLE_UNIT_ATTN;
7634 	writel(driver_support, &(h->cfgtable->driver_support));
7635 }
7636 
7637 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7638  * in a prefetch beyond physical memory.
7639  */
7640 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7641 {
7642 	u32 dma_prefetch;
7643 
7644 	if (h->board_id != 0x3225103C)
7645 		return;
7646 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7647 	dma_prefetch |= 0x8000;
7648 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7649 }
7650 
7651 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7652 {
7653 	int i;
7654 	u32 doorbell_value;
7655 	unsigned long flags;
7656 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7657 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7658 		spin_lock_irqsave(&h->lock, flags);
7659 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7660 		spin_unlock_irqrestore(&h->lock, flags);
7661 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7662 			goto done;
7663 		/* delay and try again */
7664 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7665 	}
7666 	return -ENODEV;
7667 done:
7668 	return 0;
7669 }
7670 
7671 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7672 {
7673 	int i;
7674 	u32 doorbell_value;
7675 	unsigned long flags;
7676 
7677 	/* under certain very rare conditions, this can take awhile.
7678 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7679 	 * as we enter this code.)
7680 	 */
7681 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7682 		if (h->remove_in_progress)
7683 			goto done;
7684 		spin_lock_irqsave(&h->lock, flags);
7685 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7686 		spin_unlock_irqrestore(&h->lock, flags);
7687 		if (!(doorbell_value & CFGTBL_ChangeReq))
7688 			goto done;
7689 		/* delay and try again */
7690 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7691 	}
7692 	return -ENODEV;
7693 done:
7694 	return 0;
7695 }
7696 
7697 /* return -ENODEV or other reason on error, 0 on success */
7698 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7699 {
7700 	u32 trans_support;
7701 
7702 	trans_support = readl(&(h->cfgtable->TransportSupport));
7703 	if (!(trans_support & SIMPLE_MODE))
7704 		return -ENOTSUPP;
7705 
7706 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7707 
7708 	/* Update the field, and then ring the doorbell */
7709 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7710 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7711 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7712 	if (hpsa_wait_for_mode_change_ack(h))
7713 		goto error;
7714 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7715 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7716 		goto error;
7717 	h->transMethod = CFGTBL_Trans_Simple;
7718 	return 0;
7719 error:
7720 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7721 	return -ENODEV;
7722 }
7723 
7724 /* free items allocated or mapped by hpsa_pci_init */
7725 static void hpsa_free_pci_init(struct ctlr_info *h)
7726 {
7727 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7728 	iounmap(h->vaddr);			/* pci_init 3 */
7729 	h->vaddr = NULL;
7730 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7731 	/*
7732 	 * call pci_disable_device before pci_release_regions per
7733 	 * Documentation/PCI/pci.txt
7734 	 */
7735 	pci_disable_device(h->pdev);		/* pci_init 1 */
7736 	pci_release_regions(h->pdev);		/* pci_init 2 */
7737 }
7738 
7739 /* several items must be freed later */
7740 static int hpsa_pci_init(struct ctlr_info *h)
7741 {
7742 	int prod_index, err;
7743 	bool legacy_board;
7744 
7745 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7746 	if (prod_index < 0)
7747 		return prod_index;
7748 	h->product_name = products[prod_index].product_name;
7749 	h->access = *(products[prod_index].access);
7750 	h->legacy_board = legacy_board;
7751 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7752 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7753 
7754 	err = pci_enable_device(h->pdev);
7755 	if (err) {
7756 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7757 		pci_disable_device(h->pdev);
7758 		return err;
7759 	}
7760 
7761 	err = pci_request_regions(h->pdev, HPSA);
7762 	if (err) {
7763 		dev_err(&h->pdev->dev,
7764 			"failed to obtain PCI resources\n");
7765 		pci_disable_device(h->pdev);
7766 		return err;
7767 	}
7768 
7769 	pci_set_master(h->pdev);
7770 
7771 	err = hpsa_interrupt_mode(h);
7772 	if (err)
7773 		goto clean1;
7774 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7775 	if (err)
7776 		goto clean2;	/* intmode+region, pci */
7777 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7778 	if (!h->vaddr) {
7779 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7780 		err = -ENOMEM;
7781 		goto clean2;	/* intmode+region, pci */
7782 	}
7783 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7784 	if (err)
7785 		goto clean3;	/* vaddr, intmode+region, pci */
7786 	err = hpsa_find_cfgtables(h);
7787 	if (err)
7788 		goto clean3;	/* vaddr, intmode+region, pci */
7789 	hpsa_find_board_params(h);
7790 
7791 	if (!hpsa_CISS_signature_present(h)) {
7792 		err = -ENODEV;
7793 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7794 	}
7795 	hpsa_set_driver_support_bits(h);
7796 	hpsa_p600_dma_prefetch_quirk(h);
7797 	err = hpsa_enter_simple_mode(h);
7798 	if (err)
7799 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7800 	return 0;
7801 
7802 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7803 	hpsa_free_cfgtables(h);
7804 clean3:	/* vaddr, intmode+region, pci */
7805 	iounmap(h->vaddr);
7806 	h->vaddr = NULL;
7807 clean2:	/* intmode+region, pci */
7808 	hpsa_disable_interrupt_mode(h);
7809 clean1:
7810 	/*
7811 	 * call pci_disable_device before pci_release_regions per
7812 	 * Documentation/PCI/pci.txt
7813 	 */
7814 	pci_disable_device(h->pdev);
7815 	pci_release_regions(h->pdev);
7816 	return err;
7817 }
7818 
7819 static void hpsa_hba_inquiry(struct ctlr_info *h)
7820 {
7821 	int rc;
7822 
7823 #define HBA_INQUIRY_BYTE_COUNT 64
7824 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7825 	if (!h->hba_inquiry_data)
7826 		return;
7827 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7828 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7829 	if (rc != 0) {
7830 		kfree(h->hba_inquiry_data);
7831 		h->hba_inquiry_data = NULL;
7832 	}
7833 }
7834 
7835 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7836 {
7837 	int rc, i;
7838 	void __iomem *vaddr;
7839 
7840 	if (!reset_devices)
7841 		return 0;
7842 
7843 	/* kdump kernel is loading, we don't know in which state is
7844 	 * the pci interface. The dev->enable_cnt is equal zero
7845 	 * so we call enable+disable, wait a while and switch it on.
7846 	 */
7847 	rc = pci_enable_device(pdev);
7848 	if (rc) {
7849 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7850 		return -ENODEV;
7851 	}
7852 	pci_disable_device(pdev);
7853 	msleep(260);			/* a randomly chosen number */
7854 	rc = pci_enable_device(pdev);
7855 	if (rc) {
7856 		dev_warn(&pdev->dev, "failed to enable device.\n");
7857 		return -ENODEV;
7858 	}
7859 
7860 	pci_set_master(pdev);
7861 
7862 	vaddr = pci_ioremap_bar(pdev, 0);
7863 	if (vaddr == NULL) {
7864 		rc = -ENOMEM;
7865 		goto out_disable;
7866 	}
7867 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7868 	iounmap(vaddr);
7869 
7870 	/* Reset the controller with a PCI power-cycle or via doorbell */
7871 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7872 
7873 	/* -ENOTSUPP here means we cannot reset the controller
7874 	 * but it's already (and still) up and running in
7875 	 * "performant mode".  Or, it might be 640x, which can't reset
7876 	 * due to concerns about shared bbwc between 6402/6404 pair.
7877 	 */
7878 	if (rc)
7879 		goto out_disable;
7880 
7881 	/* Now try to get the controller to respond to a no-op */
7882 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7883 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7884 		if (hpsa_noop(pdev) == 0)
7885 			break;
7886 		else
7887 			dev_warn(&pdev->dev, "no-op failed%s\n",
7888 					(i < 11 ? "; re-trying" : ""));
7889 	}
7890 
7891 out_disable:
7892 
7893 	pci_disable_device(pdev);
7894 	return rc;
7895 }
7896 
7897 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7898 {
7899 	kfree(h->cmd_pool_bits);
7900 	h->cmd_pool_bits = NULL;
7901 	if (h->cmd_pool) {
7902 		pci_free_consistent(h->pdev,
7903 				h->nr_cmds * sizeof(struct CommandList),
7904 				h->cmd_pool,
7905 				h->cmd_pool_dhandle);
7906 		h->cmd_pool = NULL;
7907 		h->cmd_pool_dhandle = 0;
7908 	}
7909 	if (h->errinfo_pool) {
7910 		pci_free_consistent(h->pdev,
7911 				h->nr_cmds * sizeof(struct ErrorInfo),
7912 				h->errinfo_pool,
7913 				h->errinfo_pool_dhandle);
7914 		h->errinfo_pool = NULL;
7915 		h->errinfo_pool_dhandle = 0;
7916 	}
7917 }
7918 
7919 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7920 {
7921 	h->cmd_pool_bits = kzalloc(
7922 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7923 		sizeof(unsigned long), GFP_KERNEL);
7924 	h->cmd_pool = pci_alloc_consistent(h->pdev,
7925 		    h->nr_cmds * sizeof(*h->cmd_pool),
7926 		    &(h->cmd_pool_dhandle));
7927 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7928 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7929 		    &(h->errinfo_pool_dhandle));
7930 	if ((h->cmd_pool_bits == NULL)
7931 	    || (h->cmd_pool == NULL)
7932 	    || (h->errinfo_pool == NULL)) {
7933 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7934 		goto clean_up;
7935 	}
7936 	hpsa_preinitialize_commands(h);
7937 	return 0;
7938 clean_up:
7939 	hpsa_free_cmd_pool(h);
7940 	return -ENOMEM;
7941 }
7942 
7943 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7944 static void hpsa_free_irqs(struct ctlr_info *h)
7945 {
7946 	int i;
7947 
7948 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7949 		/* Single reply queue, only one irq to free */
7950 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7951 		h->q[h->intr_mode] = 0;
7952 		return;
7953 	}
7954 
7955 	for (i = 0; i < h->msix_vectors; i++) {
7956 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7957 		h->q[i] = 0;
7958 	}
7959 	for (; i < MAX_REPLY_QUEUES; i++)
7960 		h->q[i] = 0;
7961 }
7962 
7963 /* returns 0 on success; cleans up and returns -Enn on error */
7964 static int hpsa_request_irqs(struct ctlr_info *h,
7965 	irqreturn_t (*msixhandler)(int, void *),
7966 	irqreturn_t (*intxhandler)(int, void *))
7967 {
7968 	int rc, i;
7969 
7970 	/*
7971 	 * initialize h->q[x] = x so that interrupt handlers know which
7972 	 * queue to process.
7973 	 */
7974 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7975 		h->q[i] = (u8) i;
7976 
7977 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7978 		/* If performant mode and MSI-X, use multiple reply queues */
7979 		for (i = 0; i < h->msix_vectors; i++) {
7980 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7981 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7982 					0, h->intrname[i],
7983 					&h->q[i]);
7984 			if (rc) {
7985 				int j;
7986 
7987 				dev_err(&h->pdev->dev,
7988 					"failed to get irq %d for %s\n",
7989 				       pci_irq_vector(h->pdev, i), h->devname);
7990 				for (j = 0; j < i; j++) {
7991 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
7992 					h->q[j] = 0;
7993 				}
7994 				for (; j < MAX_REPLY_QUEUES; j++)
7995 					h->q[j] = 0;
7996 				return rc;
7997 			}
7998 		}
7999 	} else {
8000 		/* Use single reply pool */
8001 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8002 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8003 				h->msix_vectors ? "x" : "");
8004 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8005 				msixhandler, 0,
8006 				h->intrname[0],
8007 				&h->q[h->intr_mode]);
8008 		} else {
8009 			sprintf(h->intrname[h->intr_mode],
8010 				"%s-intx", h->devname);
8011 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8012 				intxhandler, IRQF_SHARED,
8013 				h->intrname[0],
8014 				&h->q[h->intr_mode]);
8015 		}
8016 	}
8017 	if (rc) {
8018 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8019 		       pci_irq_vector(h->pdev, 0), h->devname);
8020 		hpsa_free_irqs(h);
8021 		return -ENODEV;
8022 	}
8023 	return 0;
8024 }
8025 
8026 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8027 {
8028 	int rc;
8029 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8030 
8031 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8032 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8033 	if (rc) {
8034 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8035 		return rc;
8036 	}
8037 
8038 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8039 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8040 	if (rc) {
8041 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8042 			"after soft reset.\n");
8043 		return rc;
8044 	}
8045 
8046 	return 0;
8047 }
8048 
8049 static void hpsa_free_reply_queues(struct ctlr_info *h)
8050 {
8051 	int i;
8052 
8053 	for (i = 0; i < h->nreply_queues; i++) {
8054 		if (!h->reply_queue[i].head)
8055 			continue;
8056 		pci_free_consistent(h->pdev,
8057 					h->reply_queue_size,
8058 					h->reply_queue[i].head,
8059 					h->reply_queue[i].busaddr);
8060 		h->reply_queue[i].head = NULL;
8061 		h->reply_queue[i].busaddr = 0;
8062 	}
8063 	h->reply_queue_size = 0;
8064 }
8065 
8066 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8067 {
8068 	hpsa_free_performant_mode(h);		/* init_one 7 */
8069 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8070 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8071 	hpsa_free_irqs(h);			/* init_one 4 */
8072 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8073 	h->scsi_host = NULL;			/* init_one 3 */
8074 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8075 	free_percpu(h->lockup_detected);	/* init_one 2 */
8076 	h->lockup_detected = NULL;		/* init_one 2 */
8077 	if (h->resubmit_wq) {
8078 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8079 		h->resubmit_wq = NULL;
8080 	}
8081 	if (h->rescan_ctlr_wq) {
8082 		destroy_workqueue(h->rescan_ctlr_wq);
8083 		h->rescan_ctlr_wq = NULL;
8084 	}
8085 	kfree(h);				/* init_one 1 */
8086 }
8087 
8088 /* Called when controller lockup detected. */
8089 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8090 {
8091 	int i, refcount;
8092 	struct CommandList *c;
8093 	int failcount = 0;
8094 
8095 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8096 	for (i = 0; i < h->nr_cmds; i++) {
8097 		c = h->cmd_pool + i;
8098 		refcount = atomic_inc_return(&c->refcount);
8099 		if (refcount > 1) {
8100 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8101 			finish_cmd(c);
8102 			atomic_dec(&h->commands_outstanding);
8103 			failcount++;
8104 		}
8105 		cmd_free(h, c);
8106 	}
8107 	dev_warn(&h->pdev->dev,
8108 		"failed %d commands in fail_all\n", failcount);
8109 }
8110 
8111 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8112 {
8113 	int cpu;
8114 
8115 	for_each_online_cpu(cpu) {
8116 		u32 *lockup_detected;
8117 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8118 		*lockup_detected = value;
8119 	}
8120 	wmb(); /* be sure the per-cpu variables are out to memory */
8121 }
8122 
8123 static void controller_lockup_detected(struct ctlr_info *h)
8124 {
8125 	unsigned long flags;
8126 	u32 lockup_detected;
8127 
8128 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8129 	spin_lock_irqsave(&h->lock, flags);
8130 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8131 	if (!lockup_detected) {
8132 		/* no heartbeat, but controller gave us a zero. */
8133 		dev_warn(&h->pdev->dev,
8134 			"lockup detected after %d but scratchpad register is zero\n",
8135 			h->heartbeat_sample_interval / HZ);
8136 		lockup_detected = 0xffffffff;
8137 	}
8138 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8139 	spin_unlock_irqrestore(&h->lock, flags);
8140 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8141 			lockup_detected, h->heartbeat_sample_interval / HZ);
8142 	if (lockup_detected == 0xffff0000) {
8143 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8144 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8145 	}
8146 	pci_disable_device(h->pdev);
8147 	fail_all_outstanding_cmds(h);
8148 }
8149 
8150 static int detect_controller_lockup(struct ctlr_info *h)
8151 {
8152 	u64 now;
8153 	u32 heartbeat;
8154 	unsigned long flags;
8155 
8156 	now = get_jiffies_64();
8157 	/* If we've received an interrupt recently, we're ok. */
8158 	if (time_after64(h->last_intr_timestamp +
8159 				(h->heartbeat_sample_interval), now))
8160 		return false;
8161 
8162 	/*
8163 	 * If we've already checked the heartbeat recently, we're ok.
8164 	 * This could happen if someone sends us a signal. We
8165 	 * otherwise don't care about signals in this thread.
8166 	 */
8167 	if (time_after64(h->last_heartbeat_timestamp +
8168 				(h->heartbeat_sample_interval), now))
8169 		return false;
8170 
8171 	/* If heartbeat has not changed since we last looked, we're not ok. */
8172 	spin_lock_irqsave(&h->lock, flags);
8173 	heartbeat = readl(&h->cfgtable->HeartBeat);
8174 	spin_unlock_irqrestore(&h->lock, flags);
8175 	if (h->last_heartbeat == heartbeat) {
8176 		controller_lockup_detected(h);
8177 		return true;
8178 	}
8179 
8180 	/* We're ok. */
8181 	h->last_heartbeat = heartbeat;
8182 	h->last_heartbeat_timestamp = now;
8183 	return false;
8184 }
8185 
8186 /*
8187  * Set ioaccel status for all ioaccel volumes.
8188  *
8189  * Called from monitor controller worker (hpsa_event_monitor_worker)
8190  *
8191  * A Volume (or Volumes that comprise an Array set may be undergoing a
8192  * transformation, so we will be turning off ioaccel for all volumes that
8193  * make up the Array.
8194  */
8195 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8196 {
8197 	int rc;
8198 	int i;
8199 	u8 ioaccel_status;
8200 	unsigned char *buf;
8201 	struct hpsa_scsi_dev_t *device;
8202 
8203 	if (!h)
8204 		return;
8205 
8206 	buf = kmalloc(64, GFP_KERNEL);
8207 	if (!buf)
8208 		return;
8209 
8210 	/*
8211 	 * Run through current device list used during I/O requests.
8212 	 */
8213 	for (i = 0; i < h->ndevices; i++) {
8214 		device = h->dev[i];
8215 
8216 		if (!device)
8217 			continue;
8218 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8219 						HPSA_VPD_LV_IOACCEL_STATUS))
8220 			continue;
8221 
8222 		memset(buf, 0, 64);
8223 
8224 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8225 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8226 					buf, 64);
8227 		if (rc != 0)
8228 			continue;
8229 
8230 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8231 		device->offload_config =
8232 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8233 		if (device->offload_config)
8234 			device->offload_to_be_enabled =
8235 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8236 
8237 		/*
8238 		 * Immediately turn off ioaccel for any volume the
8239 		 * controller tells us to. Some of the reasons could be:
8240 		 *    transformation - change to the LVs of an Array.
8241 		 *    degraded volume - component failure
8242 		 *
8243 		 * If ioaccel is to be re-enabled, re-enable later during the
8244 		 * scan operation so the driver can get a fresh raidmap
8245 		 * before turning ioaccel back on.
8246 		 *
8247 		 */
8248 		if (!device->offload_to_be_enabled)
8249 			device->offload_enabled = 0;
8250 	}
8251 
8252 	kfree(buf);
8253 }
8254 
8255 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8256 {
8257 	char *event_type;
8258 
8259 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8260 		return;
8261 
8262 	/* Ask the controller to clear the events we're handling. */
8263 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8264 			| CFGTBL_Trans_io_accel2)) &&
8265 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8266 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8267 
8268 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8269 			event_type = "state change";
8270 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8271 			event_type = "configuration change";
8272 		/* Stop sending new RAID offload reqs via the IO accelerator */
8273 		scsi_block_requests(h->scsi_host);
8274 		hpsa_set_ioaccel_status(h);
8275 		hpsa_drain_accel_commands(h);
8276 		/* Set 'accelerator path config change' bit */
8277 		dev_warn(&h->pdev->dev,
8278 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8279 			h->events, event_type);
8280 		writel(h->events, &(h->cfgtable->clear_event_notify));
8281 		/* Set the "clear event notify field update" bit 6 */
8282 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8283 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8284 		hpsa_wait_for_clear_event_notify_ack(h);
8285 		scsi_unblock_requests(h->scsi_host);
8286 	} else {
8287 		/* Acknowledge controller notification events. */
8288 		writel(h->events, &(h->cfgtable->clear_event_notify));
8289 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8290 		hpsa_wait_for_clear_event_notify_ack(h);
8291 	}
8292 	return;
8293 }
8294 
8295 /* Check a register on the controller to see if there are configuration
8296  * changes (added/changed/removed logical drives, etc.) which mean that
8297  * we should rescan the controller for devices.
8298  * Also check flag for driver-initiated rescan.
8299  */
8300 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8301 {
8302 	if (h->drv_req_rescan) {
8303 		h->drv_req_rescan = 0;
8304 		return 1;
8305 	}
8306 
8307 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8308 		return 0;
8309 
8310 	h->events = readl(&(h->cfgtable->event_notify));
8311 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8312 }
8313 
8314 /*
8315  * Check if any of the offline devices have become ready
8316  */
8317 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8318 {
8319 	unsigned long flags;
8320 	struct offline_device_entry *d;
8321 	struct list_head *this, *tmp;
8322 
8323 	spin_lock_irqsave(&h->offline_device_lock, flags);
8324 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8325 		d = list_entry(this, struct offline_device_entry,
8326 				offline_list);
8327 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8328 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8329 			spin_lock_irqsave(&h->offline_device_lock, flags);
8330 			list_del(&d->offline_list);
8331 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8332 			return 1;
8333 		}
8334 		spin_lock_irqsave(&h->offline_device_lock, flags);
8335 	}
8336 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8337 	return 0;
8338 }
8339 
8340 static int hpsa_luns_changed(struct ctlr_info *h)
8341 {
8342 	int rc = 1; /* assume there are changes */
8343 	struct ReportLUNdata *logdev = NULL;
8344 
8345 	/* if we can't find out if lun data has changed,
8346 	 * assume that it has.
8347 	 */
8348 
8349 	if (!h->lastlogicals)
8350 		return rc;
8351 
8352 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8353 	if (!logdev)
8354 		return rc;
8355 
8356 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8357 		dev_warn(&h->pdev->dev,
8358 			"report luns failed, can't track lun changes.\n");
8359 		goto out;
8360 	}
8361 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8362 		dev_info(&h->pdev->dev,
8363 			"Lun changes detected.\n");
8364 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8365 		goto out;
8366 	} else
8367 		rc = 0; /* no changes detected. */
8368 out:
8369 	kfree(logdev);
8370 	return rc;
8371 }
8372 
8373 static void hpsa_perform_rescan(struct ctlr_info *h)
8374 {
8375 	struct Scsi_Host *sh = NULL;
8376 	unsigned long flags;
8377 
8378 	/*
8379 	 * Do the scan after the reset
8380 	 */
8381 	spin_lock_irqsave(&h->reset_lock, flags);
8382 	if (h->reset_in_progress) {
8383 		h->drv_req_rescan = 1;
8384 		spin_unlock_irqrestore(&h->reset_lock, flags);
8385 		return;
8386 	}
8387 	spin_unlock_irqrestore(&h->reset_lock, flags);
8388 
8389 	sh = scsi_host_get(h->scsi_host);
8390 	if (sh != NULL) {
8391 		hpsa_scan_start(sh);
8392 		scsi_host_put(sh);
8393 		h->drv_req_rescan = 0;
8394 	}
8395 }
8396 
8397 /*
8398  * watch for controller events
8399  */
8400 static void hpsa_event_monitor_worker(struct work_struct *work)
8401 {
8402 	struct ctlr_info *h = container_of(to_delayed_work(work),
8403 					struct ctlr_info, event_monitor_work);
8404 	unsigned long flags;
8405 
8406 	spin_lock_irqsave(&h->lock, flags);
8407 	if (h->remove_in_progress) {
8408 		spin_unlock_irqrestore(&h->lock, flags);
8409 		return;
8410 	}
8411 	spin_unlock_irqrestore(&h->lock, flags);
8412 
8413 	if (hpsa_ctlr_needs_rescan(h)) {
8414 		hpsa_ack_ctlr_events(h);
8415 		hpsa_perform_rescan(h);
8416 	}
8417 
8418 	spin_lock_irqsave(&h->lock, flags);
8419 	if (!h->remove_in_progress)
8420 		schedule_delayed_work(&h->event_monitor_work,
8421 					HPSA_EVENT_MONITOR_INTERVAL);
8422 	spin_unlock_irqrestore(&h->lock, flags);
8423 }
8424 
8425 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8426 {
8427 	unsigned long flags;
8428 	struct ctlr_info *h = container_of(to_delayed_work(work),
8429 					struct ctlr_info, rescan_ctlr_work);
8430 
8431 	spin_lock_irqsave(&h->lock, flags);
8432 	if (h->remove_in_progress) {
8433 		spin_unlock_irqrestore(&h->lock, flags);
8434 		return;
8435 	}
8436 	spin_unlock_irqrestore(&h->lock, flags);
8437 
8438 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8439 		hpsa_perform_rescan(h);
8440 	} else if (h->discovery_polling) {
8441 		if (hpsa_luns_changed(h)) {
8442 			dev_info(&h->pdev->dev,
8443 				"driver discovery polling rescan.\n");
8444 			hpsa_perform_rescan(h);
8445 		}
8446 	}
8447 	spin_lock_irqsave(&h->lock, flags);
8448 	if (!h->remove_in_progress)
8449 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8450 				h->heartbeat_sample_interval);
8451 	spin_unlock_irqrestore(&h->lock, flags);
8452 }
8453 
8454 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8455 {
8456 	unsigned long flags;
8457 	struct ctlr_info *h = container_of(to_delayed_work(work),
8458 					struct ctlr_info, monitor_ctlr_work);
8459 
8460 	detect_controller_lockup(h);
8461 	if (lockup_detected(h))
8462 		return;
8463 
8464 	spin_lock_irqsave(&h->lock, flags);
8465 	if (!h->remove_in_progress)
8466 		schedule_delayed_work(&h->monitor_ctlr_work,
8467 				h->heartbeat_sample_interval);
8468 	spin_unlock_irqrestore(&h->lock, flags);
8469 }
8470 
8471 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8472 						char *name)
8473 {
8474 	struct workqueue_struct *wq = NULL;
8475 
8476 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8477 	if (!wq)
8478 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8479 
8480 	return wq;
8481 }
8482 
8483 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8484 {
8485 	int dac, rc;
8486 	struct ctlr_info *h;
8487 	int try_soft_reset = 0;
8488 	unsigned long flags;
8489 	u32 board_id;
8490 
8491 	if (number_of_controllers == 0)
8492 		printk(KERN_INFO DRIVER_NAME "\n");
8493 
8494 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8495 	if (rc < 0) {
8496 		dev_warn(&pdev->dev, "Board ID not found\n");
8497 		return rc;
8498 	}
8499 
8500 	rc = hpsa_init_reset_devices(pdev, board_id);
8501 	if (rc) {
8502 		if (rc != -ENOTSUPP)
8503 			return rc;
8504 		/* If the reset fails in a particular way (it has no way to do
8505 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8506 		 * a soft reset once we get the controller configured up to the
8507 		 * point that it can accept a command.
8508 		 */
8509 		try_soft_reset = 1;
8510 		rc = 0;
8511 	}
8512 
8513 reinit_after_soft_reset:
8514 
8515 	/* Command structures must be aligned on a 32-byte boundary because
8516 	 * the 5 lower bits of the address are used by the hardware. and by
8517 	 * the driver.  See comments in hpsa.h for more info.
8518 	 */
8519 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8520 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8521 	if (!h) {
8522 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8523 		return -ENOMEM;
8524 	}
8525 
8526 	h->pdev = pdev;
8527 
8528 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8529 	INIT_LIST_HEAD(&h->offline_device_list);
8530 	spin_lock_init(&h->lock);
8531 	spin_lock_init(&h->offline_device_lock);
8532 	spin_lock_init(&h->scan_lock);
8533 	spin_lock_init(&h->reset_lock);
8534 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8535 
8536 	/* Allocate and clear per-cpu variable lockup_detected */
8537 	h->lockup_detected = alloc_percpu(u32);
8538 	if (!h->lockup_detected) {
8539 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8540 		rc = -ENOMEM;
8541 		goto clean1;	/* aer/h */
8542 	}
8543 	set_lockup_detected_for_all_cpus(h, 0);
8544 
8545 	rc = hpsa_pci_init(h);
8546 	if (rc)
8547 		goto clean2;	/* lu, aer/h */
8548 
8549 	/* relies on h-> settings made by hpsa_pci_init, including
8550 	 * interrupt_mode h->intr */
8551 	rc = hpsa_scsi_host_alloc(h);
8552 	if (rc)
8553 		goto clean2_5;	/* pci, lu, aer/h */
8554 
8555 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8556 	h->ctlr = number_of_controllers;
8557 	number_of_controllers++;
8558 
8559 	/* configure PCI DMA stuff */
8560 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8561 	if (rc == 0) {
8562 		dac = 1;
8563 	} else {
8564 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8565 		if (rc == 0) {
8566 			dac = 0;
8567 		} else {
8568 			dev_err(&pdev->dev, "no suitable DMA available\n");
8569 			goto clean3;	/* shost, pci, lu, aer/h */
8570 		}
8571 	}
8572 
8573 	/* make sure the board interrupts are off */
8574 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8575 
8576 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8577 	if (rc)
8578 		goto clean3;	/* shost, pci, lu, aer/h */
8579 	rc = hpsa_alloc_cmd_pool(h);
8580 	if (rc)
8581 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8582 	rc = hpsa_alloc_sg_chain_blocks(h);
8583 	if (rc)
8584 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8585 	init_waitqueue_head(&h->scan_wait_queue);
8586 	init_waitqueue_head(&h->event_sync_wait_queue);
8587 	mutex_init(&h->reset_mutex);
8588 	h->scan_finished = 1; /* no scan currently in progress */
8589 	h->scan_waiting = 0;
8590 
8591 	pci_set_drvdata(pdev, h);
8592 	h->ndevices = 0;
8593 
8594 	spin_lock_init(&h->devlock);
8595 	rc = hpsa_put_ctlr_into_performant_mode(h);
8596 	if (rc)
8597 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8598 
8599 	/* create the resubmit workqueue */
8600 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8601 	if (!h->rescan_ctlr_wq) {
8602 		rc = -ENOMEM;
8603 		goto clean7;
8604 	}
8605 
8606 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8607 	if (!h->resubmit_wq) {
8608 		rc = -ENOMEM;
8609 		goto clean7;	/* aer/h */
8610 	}
8611 
8612 	/*
8613 	 * At this point, the controller is ready to take commands.
8614 	 * Now, if reset_devices and the hard reset didn't work, try
8615 	 * the soft reset and see if that works.
8616 	 */
8617 	if (try_soft_reset) {
8618 
8619 		/* This is kind of gross.  We may or may not get a completion
8620 		 * from the soft reset command, and if we do, then the value
8621 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8622 		 * after the reset throwing away any completions we get during
8623 		 * that time.  Unregister the interrupt handler and register
8624 		 * fake ones to scoop up any residual completions.
8625 		 */
8626 		spin_lock_irqsave(&h->lock, flags);
8627 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8628 		spin_unlock_irqrestore(&h->lock, flags);
8629 		hpsa_free_irqs(h);
8630 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8631 					hpsa_intx_discard_completions);
8632 		if (rc) {
8633 			dev_warn(&h->pdev->dev,
8634 				"Failed to request_irq after soft reset.\n");
8635 			/*
8636 			 * cannot goto clean7 or free_irqs will be called
8637 			 * again. Instead, do its work
8638 			 */
8639 			hpsa_free_performant_mode(h);	/* clean7 */
8640 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8641 			hpsa_free_cmd_pool(h);		/* clean5 */
8642 			/*
8643 			 * skip hpsa_free_irqs(h) clean4 since that
8644 			 * was just called before request_irqs failed
8645 			 */
8646 			goto clean3;
8647 		}
8648 
8649 		rc = hpsa_kdump_soft_reset(h);
8650 		if (rc)
8651 			/* Neither hard nor soft reset worked, we're hosed. */
8652 			goto clean7;
8653 
8654 		dev_info(&h->pdev->dev, "Board READY.\n");
8655 		dev_info(&h->pdev->dev,
8656 			"Waiting for stale completions to drain.\n");
8657 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8658 		msleep(10000);
8659 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8660 
8661 		rc = controller_reset_failed(h->cfgtable);
8662 		if (rc)
8663 			dev_info(&h->pdev->dev,
8664 				"Soft reset appears to have failed.\n");
8665 
8666 		/* since the controller's reset, we have to go back and re-init
8667 		 * everything.  Easiest to just forget what we've done and do it
8668 		 * all over again.
8669 		 */
8670 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8671 		try_soft_reset = 0;
8672 		if (rc)
8673 			/* don't goto clean, we already unallocated */
8674 			return -ENODEV;
8675 
8676 		goto reinit_after_soft_reset;
8677 	}
8678 
8679 	/* Enable Accelerated IO path at driver layer */
8680 	h->acciopath_status = 1;
8681 	/* Disable discovery polling.*/
8682 	h->discovery_polling = 0;
8683 
8684 
8685 	/* Turn the interrupts on so we can service requests */
8686 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8687 
8688 	hpsa_hba_inquiry(h);
8689 
8690 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8691 	if (!h->lastlogicals)
8692 		dev_info(&h->pdev->dev,
8693 			"Can't track change to report lun data\n");
8694 
8695 	/* hook into SCSI subsystem */
8696 	rc = hpsa_scsi_add_host(h);
8697 	if (rc)
8698 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8699 
8700 	/* Monitor the controller for firmware lockups */
8701 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8702 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8703 	schedule_delayed_work(&h->monitor_ctlr_work,
8704 				h->heartbeat_sample_interval);
8705 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8706 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8707 				h->heartbeat_sample_interval);
8708 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8709 	schedule_delayed_work(&h->event_monitor_work,
8710 				HPSA_EVENT_MONITOR_INTERVAL);
8711 	return 0;
8712 
8713 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8714 	hpsa_free_performant_mode(h);
8715 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8716 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8717 	hpsa_free_sg_chain_blocks(h);
8718 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8719 	hpsa_free_cmd_pool(h);
8720 clean4: /* irq, shost, pci, lu, aer/h */
8721 	hpsa_free_irqs(h);
8722 clean3: /* shost, pci, lu, aer/h */
8723 	scsi_host_put(h->scsi_host);
8724 	h->scsi_host = NULL;
8725 clean2_5: /* pci, lu, aer/h */
8726 	hpsa_free_pci_init(h);
8727 clean2: /* lu, aer/h */
8728 	if (h->lockup_detected) {
8729 		free_percpu(h->lockup_detected);
8730 		h->lockup_detected = NULL;
8731 	}
8732 clean1:	/* wq/aer/h */
8733 	if (h->resubmit_wq) {
8734 		destroy_workqueue(h->resubmit_wq);
8735 		h->resubmit_wq = NULL;
8736 	}
8737 	if (h->rescan_ctlr_wq) {
8738 		destroy_workqueue(h->rescan_ctlr_wq);
8739 		h->rescan_ctlr_wq = NULL;
8740 	}
8741 	kfree(h);
8742 	return rc;
8743 }
8744 
8745 static void hpsa_flush_cache(struct ctlr_info *h)
8746 {
8747 	char *flush_buf;
8748 	struct CommandList *c;
8749 	int rc;
8750 
8751 	if (unlikely(lockup_detected(h)))
8752 		return;
8753 	flush_buf = kzalloc(4, GFP_KERNEL);
8754 	if (!flush_buf)
8755 		return;
8756 
8757 	c = cmd_alloc(h);
8758 
8759 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8760 		RAID_CTLR_LUNID, TYPE_CMD)) {
8761 		goto out;
8762 	}
8763 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8764 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8765 	if (rc)
8766 		goto out;
8767 	if (c->err_info->CommandStatus != 0)
8768 out:
8769 		dev_warn(&h->pdev->dev,
8770 			"error flushing cache on controller\n");
8771 	cmd_free(h, c);
8772 	kfree(flush_buf);
8773 }
8774 
8775 /* Make controller gather fresh report lun data each time we
8776  * send down a report luns request
8777  */
8778 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8779 {
8780 	u32 *options;
8781 	struct CommandList *c;
8782 	int rc;
8783 
8784 	/* Don't bother trying to set diag options if locked up */
8785 	if (unlikely(h->lockup_detected))
8786 		return;
8787 
8788 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8789 	if (!options)
8790 		return;
8791 
8792 	c = cmd_alloc(h);
8793 
8794 	/* first, get the current diag options settings */
8795 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8796 		RAID_CTLR_LUNID, TYPE_CMD))
8797 		goto errout;
8798 
8799 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8800 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8801 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8802 		goto errout;
8803 
8804 	/* Now, set the bit for disabling the RLD caching */
8805 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8806 
8807 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8808 		RAID_CTLR_LUNID, TYPE_CMD))
8809 		goto errout;
8810 
8811 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8812 		PCI_DMA_TODEVICE, NO_TIMEOUT);
8813 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8814 		goto errout;
8815 
8816 	/* Now verify that it got set: */
8817 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8818 		RAID_CTLR_LUNID, TYPE_CMD))
8819 		goto errout;
8820 
8821 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8822 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8823 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8824 		goto errout;
8825 
8826 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8827 		goto out;
8828 
8829 errout:
8830 	dev_err(&h->pdev->dev,
8831 			"Error: failed to disable report lun data caching.\n");
8832 out:
8833 	cmd_free(h, c);
8834 	kfree(options);
8835 }
8836 
8837 static void hpsa_shutdown(struct pci_dev *pdev)
8838 {
8839 	struct ctlr_info *h;
8840 
8841 	h = pci_get_drvdata(pdev);
8842 	/* Turn board interrupts off  and send the flush cache command
8843 	 * sendcmd will turn off interrupt, and send the flush...
8844 	 * To write all data in the battery backed cache to disks
8845 	 */
8846 	hpsa_flush_cache(h);
8847 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8848 	hpsa_free_irqs(h);			/* init_one 4 */
8849 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8850 }
8851 
8852 static void hpsa_free_device_info(struct ctlr_info *h)
8853 {
8854 	int i;
8855 
8856 	for (i = 0; i < h->ndevices; i++) {
8857 		kfree(h->dev[i]);
8858 		h->dev[i] = NULL;
8859 	}
8860 }
8861 
8862 static void hpsa_remove_one(struct pci_dev *pdev)
8863 {
8864 	struct ctlr_info *h;
8865 	unsigned long flags;
8866 
8867 	if (pci_get_drvdata(pdev) == NULL) {
8868 		dev_err(&pdev->dev, "unable to remove device\n");
8869 		return;
8870 	}
8871 	h = pci_get_drvdata(pdev);
8872 
8873 	/* Get rid of any controller monitoring work items */
8874 	spin_lock_irqsave(&h->lock, flags);
8875 	h->remove_in_progress = 1;
8876 	spin_unlock_irqrestore(&h->lock, flags);
8877 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8878 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8879 	cancel_delayed_work_sync(&h->event_monitor_work);
8880 	destroy_workqueue(h->rescan_ctlr_wq);
8881 	destroy_workqueue(h->resubmit_wq);
8882 
8883 	hpsa_delete_sas_host(h);
8884 
8885 	/*
8886 	 * Call before disabling interrupts.
8887 	 * scsi_remove_host can trigger I/O operations especially
8888 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8889 	 * operations which cannot complete and will hang the system.
8890 	 */
8891 	if (h->scsi_host)
8892 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8893 	/* includes hpsa_free_irqs - init_one 4 */
8894 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8895 	hpsa_shutdown(pdev);
8896 
8897 	hpsa_free_device_info(h);		/* scan */
8898 
8899 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8900 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8901 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8902 	hpsa_free_performant_mode(h);			/* init_one 7 */
8903 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8904 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8905 	kfree(h->lastlogicals);
8906 
8907 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8908 
8909 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8910 	h->scsi_host = NULL;				/* init_one 3 */
8911 
8912 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8913 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8914 
8915 	free_percpu(h->lockup_detected);		/* init_one 2 */
8916 	h->lockup_detected = NULL;			/* init_one 2 */
8917 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8918 
8919 	kfree(h);					/* init_one 1 */
8920 }
8921 
8922 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8923 	__attribute__((unused)) pm_message_t state)
8924 {
8925 	return -ENOSYS;
8926 }
8927 
8928 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8929 {
8930 	return -ENOSYS;
8931 }
8932 
8933 static struct pci_driver hpsa_pci_driver = {
8934 	.name = HPSA,
8935 	.probe = hpsa_init_one,
8936 	.remove = hpsa_remove_one,
8937 	.id_table = hpsa_pci_device_id,	/* id_table */
8938 	.shutdown = hpsa_shutdown,
8939 	.suspend = hpsa_suspend,
8940 	.resume = hpsa_resume,
8941 };
8942 
8943 /* Fill in bucket_map[], given nsgs (the max number of
8944  * scatter gather elements supported) and bucket[],
8945  * which is an array of 8 integers.  The bucket[] array
8946  * contains 8 different DMA transfer sizes (in 16
8947  * byte increments) which the controller uses to fetch
8948  * commands.  This function fills in bucket_map[], which
8949  * maps a given number of scatter gather elements to one of
8950  * the 8 DMA transfer sizes.  The point of it is to allow the
8951  * controller to only do as much DMA as needed to fetch the
8952  * command, with the DMA transfer size encoded in the lower
8953  * bits of the command address.
8954  */
8955 static void  calc_bucket_map(int bucket[], int num_buckets,
8956 	int nsgs, int min_blocks, u32 *bucket_map)
8957 {
8958 	int i, j, b, size;
8959 
8960 	/* Note, bucket_map must have nsgs+1 entries. */
8961 	for (i = 0; i <= nsgs; i++) {
8962 		/* Compute size of a command with i SG entries */
8963 		size = i + min_blocks;
8964 		b = num_buckets; /* Assume the biggest bucket */
8965 		/* Find the bucket that is just big enough */
8966 		for (j = 0; j < num_buckets; j++) {
8967 			if (bucket[j] >= size) {
8968 				b = j;
8969 				break;
8970 			}
8971 		}
8972 		/* for a command with i SG entries, use bucket b. */
8973 		bucket_map[i] = b;
8974 	}
8975 }
8976 
8977 /*
8978  * return -ENODEV on err, 0 on success (or no action)
8979  * allocates numerous items that must be freed later
8980  */
8981 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8982 {
8983 	int i;
8984 	unsigned long register_value;
8985 	unsigned long transMethod = CFGTBL_Trans_Performant |
8986 			(trans_support & CFGTBL_Trans_use_short_tags) |
8987 				CFGTBL_Trans_enable_directed_msix |
8988 			(trans_support & (CFGTBL_Trans_io_accel1 |
8989 				CFGTBL_Trans_io_accel2));
8990 	struct access_method access = SA5_performant_access;
8991 
8992 	/* This is a bit complicated.  There are 8 registers on
8993 	 * the controller which we write to to tell it 8 different
8994 	 * sizes of commands which there may be.  It's a way of
8995 	 * reducing the DMA done to fetch each command.  Encoded into
8996 	 * each command's tag are 3 bits which communicate to the controller
8997 	 * which of the eight sizes that command fits within.  The size of
8998 	 * each command depends on how many scatter gather entries there are.
8999 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9000 	 * with the number of 16-byte blocks a command of that size requires.
9001 	 * The smallest command possible requires 5 such 16 byte blocks.
9002 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9003 	 * blocks.  Note, this only extends to the SG entries contained
9004 	 * within the command block, and does not extend to chained blocks
9005 	 * of SG elements.   bft[] contains the eight values we write to
9006 	 * the registers.  They are not evenly distributed, but have more
9007 	 * sizes for small commands, and fewer sizes for larger commands.
9008 	 */
9009 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9010 #define MIN_IOACCEL2_BFT_ENTRY 5
9011 #define HPSA_IOACCEL2_HEADER_SZ 4
9012 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9013 			13, 14, 15, 16, 17, 18, 19,
9014 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9015 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9016 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9017 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9018 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9019 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9020 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9021 	/*  5 = 1 s/g entry or 4k
9022 	 *  6 = 2 s/g entry or 8k
9023 	 *  8 = 4 s/g entry or 16k
9024 	 * 10 = 6 s/g entry or 24k
9025 	 */
9026 
9027 	/* If the controller supports either ioaccel method then
9028 	 * we can also use the RAID stack submit path that does not
9029 	 * perform the superfluous readl() after each command submission.
9030 	 */
9031 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9032 		access = SA5_performant_access_no_read;
9033 
9034 	/* Controller spec: zero out this buffer. */
9035 	for (i = 0; i < h->nreply_queues; i++)
9036 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9037 
9038 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9039 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9040 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9041 	for (i = 0; i < 8; i++)
9042 		writel(bft[i], &h->transtable->BlockFetch[i]);
9043 
9044 	/* size of controller ring buffer */
9045 	writel(h->max_commands, &h->transtable->RepQSize);
9046 	writel(h->nreply_queues, &h->transtable->RepQCount);
9047 	writel(0, &h->transtable->RepQCtrAddrLow32);
9048 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9049 
9050 	for (i = 0; i < h->nreply_queues; i++) {
9051 		writel(0, &h->transtable->RepQAddr[i].upper);
9052 		writel(h->reply_queue[i].busaddr,
9053 			&h->transtable->RepQAddr[i].lower);
9054 	}
9055 
9056 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9057 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9058 	/*
9059 	 * enable outbound interrupt coalescing in accelerator mode;
9060 	 */
9061 	if (trans_support & CFGTBL_Trans_io_accel1) {
9062 		access = SA5_ioaccel_mode1_access;
9063 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9064 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9065 	} else
9066 		if (trans_support & CFGTBL_Trans_io_accel2)
9067 			access = SA5_ioaccel_mode2_access;
9068 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9069 	if (hpsa_wait_for_mode_change_ack(h)) {
9070 		dev_err(&h->pdev->dev,
9071 			"performant mode problem - doorbell timeout\n");
9072 		return -ENODEV;
9073 	}
9074 	register_value = readl(&(h->cfgtable->TransportActive));
9075 	if (!(register_value & CFGTBL_Trans_Performant)) {
9076 		dev_err(&h->pdev->dev,
9077 			"performant mode problem - transport not active\n");
9078 		return -ENODEV;
9079 	}
9080 	/* Change the access methods to the performant access methods */
9081 	h->access = access;
9082 	h->transMethod = transMethod;
9083 
9084 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9085 		(trans_support & CFGTBL_Trans_io_accel2)))
9086 		return 0;
9087 
9088 	if (trans_support & CFGTBL_Trans_io_accel1) {
9089 		/* Set up I/O accelerator mode */
9090 		for (i = 0; i < h->nreply_queues; i++) {
9091 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9092 			h->reply_queue[i].current_entry =
9093 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9094 		}
9095 		bft[7] = h->ioaccel_maxsg + 8;
9096 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9097 				h->ioaccel1_blockFetchTable);
9098 
9099 		/* initialize all reply queue entries to unused */
9100 		for (i = 0; i < h->nreply_queues; i++)
9101 			memset(h->reply_queue[i].head,
9102 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9103 				h->reply_queue_size);
9104 
9105 		/* set all the constant fields in the accelerator command
9106 		 * frames once at init time to save CPU cycles later.
9107 		 */
9108 		for (i = 0; i < h->nr_cmds; i++) {
9109 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9110 
9111 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9112 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9113 					(i * sizeof(struct ErrorInfo)));
9114 			cp->err_info_len = sizeof(struct ErrorInfo);
9115 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9116 			cp->host_context_flags =
9117 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9118 			cp->timeout_sec = 0;
9119 			cp->ReplyQueue = 0;
9120 			cp->tag =
9121 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9122 			cp->host_addr =
9123 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9124 					(i * sizeof(struct io_accel1_cmd)));
9125 		}
9126 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9127 		u64 cfg_offset, cfg_base_addr_index;
9128 		u32 bft2_offset, cfg_base_addr;
9129 		int rc;
9130 
9131 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9132 			&cfg_base_addr_index, &cfg_offset);
9133 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9134 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9135 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9136 				4, h->ioaccel2_blockFetchTable);
9137 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9138 		BUILD_BUG_ON(offsetof(struct CfgTable,
9139 				io_accel_request_size_offset) != 0xb8);
9140 		h->ioaccel2_bft2_regs =
9141 			remap_pci_mem(pci_resource_start(h->pdev,
9142 					cfg_base_addr_index) +
9143 					cfg_offset + bft2_offset,
9144 					ARRAY_SIZE(bft2) *
9145 					sizeof(*h->ioaccel2_bft2_regs));
9146 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9147 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9148 	}
9149 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9150 	if (hpsa_wait_for_mode_change_ack(h)) {
9151 		dev_err(&h->pdev->dev,
9152 			"performant mode problem - enabling ioaccel mode\n");
9153 		return -ENODEV;
9154 	}
9155 	return 0;
9156 }
9157 
9158 /* Free ioaccel1 mode command blocks and block fetch table */
9159 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9160 {
9161 	if (h->ioaccel_cmd_pool) {
9162 		pci_free_consistent(h->pdev,
9163 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9164 			h->ioaccel_cmd_pool,
9165 			h->ioaccel_cmd_pool_dhandle);
9166 		h->ioaccel_cmd_pool = NULL;
9167 		h->ioaccel_cmd_pool_dhandle = 0;
9168 	}
9169 	kfree(h->ioaccel1_blockFetchTable);
9170 	h->ioaccel1_blockFetchTable = NULL;
9171 }
9172 
9173 /* Allocate ioaccel1 mode command blocks and block fetch table */
9174 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9175 {
9176 	h->ioaccel_maxsg =
9177 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9178 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9179 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9180 
9181 	/* Command structures must be aligned on a 128-byte boundary
9182 	 * because the 7 lower bits of the address are used by the
9183 	 * hardware.
9184 	 */
9185 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9186 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9187 	h->ioaccel_cmd_pool =
9188 		pci_alloc_consistent(h->pdev,
9189 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9190 			&(h->ioaccel_cmd_pool_dhandle));
9191 
9192 	h->ioaccel1_blockFetchTable =
9193 		kmalloc(((h->ioaccel_maxsg + 1) *
9194 				sizeof(u32)), GFP_KERNEL);
9195 
9196 	if ((h->ioaccel_cmd_pool == NULL) ||
9197 		(h->ioaccel1_blockFetchTable == NULL))
9198 		goto clean_up;
9199 
9200 	memset(h->ioaccel_cmd_pool, 0,
9201 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9202 	return 0;
9203 
9204 clean_up:
9205 	hpsa_free_ioaccel1_cmd_and_bft(h);
9206 	return -ENOMEM;
9207 }
9208 
9209 /* Free ioaccel2 mode command blocks and block fetch table */
9210 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9211 {
9212 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9213 
9214 	if (h->ioaccel2_cmd_pool) {
9215 		pci_free_consistent(h->pdev,
9216 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9217 			h->ioaccel2_cmd_pool,
9218 			h->ioaccel2_cmd_pool_dhandle);
9219 		h->ioaccel2_cmd_pool = NULL;
9220 		h->ioaccel2_cmd_pool_dhandle = 0;
9221 	}
9222 	kfree(h->ioaccel2_blockFetchTable);
9223 	h->ioaccel2_blockFetchTable = NULL;
9224 }
9225 
9226 /* Allocate ioaccel2 mode command blocks and block fetch table */
9227 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9228 {
9229 	int rc;
9230 
9231 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9232 
9233 	h->ioaccel_maxsg =
9234 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9235 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9236 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9237 
9238 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9239 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9240 	h->ioaccel2_cmd_pool =
9241 		pci_alloc_consistent(h->pdev,
9242 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9243 			&(h->ioaccel2_cmd_pool_dhandle));
9244 
9245 	h->ioaccel2_blockFetchTable =
9246 		kmalloc(((h->ioaccel_maxsg + 1) *
9247 				sizeof(u32)), GFP_KERNEL);
9248 
9249 	if ((h->ioaccel2_cmd_pool == NULL) ||
9250 		(h->ioaccel2_blockFetchTable == NULL)) {
9251 		rc = -ENOMEM;
9252 		goto clean_up;
9253 	}
9254 
9255 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9256 	if (rc)
9257 		goto clean_up;
9258 
9259 	memset(h->ioaccel2_cmd_pool, 0,
9260 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9261 	return 0;
9262 
9263 clean_up:
9264 	hpsa_free_ioaccel2_cmd_and_bft(h);
9265 	return rc;
9266 }
9267 
9268 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9269 static void hpsa_free_performant_mode(struct ctlr_info *h)
9270 {
9271 	kfree(h->blockFetchTable);
9272 	h->blockFetchTable = NULL;
9273 	hpsa_free_reply_queues(h);
9274 	hpsa_free_ioaccel1_cmd_and_bft(h);
9275 	hpsa_free_ioaccel2_cmd_and_bft(h);
9276 }
9277 
9278 /* return -ENODEV on error, 0 on success (or no action)
9279  * allocates numerous items that must be freed later
9280  */
9281 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9282 {
9283 	u32 trans_support;
9284 	unsigned long transMethod = CFGTBL_Trans_Performant |
9285 					CFGTBL_Trans_use_short_tags;
9286 	int i, rc;
9287 
9288 	if (hpsa_simple_mode)
9289 		return 0;
9290 
9291 	trans_support = readl(&(h->cfgtable->TransportSupport));
9292 	if (!(trans_support & PERFORMANT_MODE))
9293 		return 0;
9294 
9295 	/* Check for I/O accelerator mode support */
9296 	if (trans_support & CFGTBL_Trans_io_accel1) {
9297 		transMethod |= CFGTBL_Trans_io_accel1 |
9298 				CFGTBL_Trans_enable_directed_msix;
9299 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9300 		if (rc)
9301 			return rc;
9302 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9303 		transMethod |= CFGTBL_Trans_io_accel2 |
9304 				CFGTBL_Trans_enable_directed_msix;
9305 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9306 		if (rc)
9307 			return rc;
9308 	}
9309 
9310 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9311 	hpsa_get_max_perf_mode_cmds(h);
9312 	/* Performant mode ring buffer and supporting data structures */
9313 	h->reply_queue_size = h->max_commands * sizeof(u64);
9314 
9315 	for (i = 0; i < h->nreply_queues; i++) {
9316 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9317 						h->reply_queue_size,
9318 						&(h->reply_queue[i].busaddr));
9319 		if (!h->reply_queue[i].head) {
9320 			rc = -ENOMEM;
9321 			goto clean1;	/* rq, ioaccel */
9322 		}
9323 		h->reply_queue[i].size = h->max_commands;
9324 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9325 		h->reply_queue[i].current_entry = 0;
9326 	}
9327 
9328 	/* Need a block fetch table for performant mode */
9329 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9330 				sizeof(u32)), GFP_KERNEL);
9331 	if (!h->blockFetchTable) {
9332 		rc = -ENOMEM;
9333 		goto clean1;	/* rq, ioaccel */
9334 	}
9335 
9336 	rc = hpsa_enter_performant_mode(h, trans_support);
9337 	if (rc)
9338 		goto clean2;	/* bft, rq, ioaccel */
9339 	return 0;
9340 
9341 clean2:	/* bft, rq, ioaccel */
9342 	kfree(h->blockFetchTable);
9343 	h->blockFetchTable = NULL;
9344 clean1:	/* rq, ioaccel */
9345 	hpsa_free_reply_queues(h);
9346 	hpsa_free_ioaccel1_cmd_and_bft(h);
9347 	hpsa_free_ioaccel2_cmd_and_bft(h);
9348 	return rc;
9349 }
9350 
9351 static int is_accelerated_cmd(struct CommandList *c)
9352 {
9353 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9354 }
9355 
9356 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9357 {
9358 	struct CommandList *c = NULL;
9359 	int i, accel_cmds_out;
9360 	int refcount;
9361 
9362 	do { /* wait for all outstanding ioaccel commands to drain out */
9363 		accel_cmds_out = 0;
9364 		for (i = 0; i < h->nr_cmds; i++) {
9365 			c = h->cmd_pool + i;
9366 			refcount = atomic_inc_return(&c->refcount);
9367 			if (refcount > 1) /* Command is allocated */
9368 				accel_cmds_out += is_accelerated_cmd(c);
9369 			cmd_free(h, c);
9370 		}
9371 		if (accel_cmds_out <= 0)
9372 			break;
9373 		msleep(100);
9374 	} while (1);
9375 }
9376 
9377 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9378 				struct hpsa_sas_port *hpsa_sas_port)
9379 {
9380 	struct hpsa_sas_phy *hpsa_sas_phy;
9381 	struct sas_phy *phy;
9382 
9383 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9384 	if (!hpsa_sas_phy)
9385 		return NULL;
9386 
9387 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9388 		hpsa_sas_port->next_phy_index);
9389 	if (!phy) {
9390 		kfree(hpsa_sas_phy);
9391 		return NULL;
9392 	}
9393 
9394 	hpsa_sas_port->next_phy_index++;
9395 	hpsa_sas_phy->phy = phy;
9396 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9397 
9398 	return hpsa_sas_phy;
9399 }
9400 
9401 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9402 {
9403 	struct sas_phy *phy = hpsa_sas_phy->phy;
9404 
9405 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9406 	if (hpsa_sas_phy->added_to_port)
9407 		list_del(&hpsa_sas_phy->phy_list_entry);
9408 	sas_phy_delete(phy);
9409 	kfree(hpsa_sas_phy);
9410 }
9411 
9412 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9413 {
9414 	int rc;
9415 	struct hpsa_sas_port *hpsa_sas_port;
9416 	struct sas_phy *phy;
9417 	struct sas_identify *identify;
9418 
9419 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9420 	phy = hpsa_sas_phy->phy;
9421 
9422 	identify = &phy->identify;
9423 	memset(identify, 0, sizeof(*identify));
9424 	identify->sas_address = hpsa_sas_port->sas_address;
9425 	identify->device_type = SAS_END_DEVICE;
9426 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9427 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9428 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9429 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9430 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9431 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9432 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9433 
9434 	rc = sas_phy_add(hpsa_sas_phy->phy);
9435 	if (rc)
9436 		return rc;
9437 
9438 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9439 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9440 			&hpsa_sas_port->phy_list_head);
9441 	hpsa_sas_phy->added_to_port = true;
9442 
9443 	return 0;
9444 }
9445 
9446 static int
9447 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9448 				struct sas_rphy *rphy)
9449 {
9450 	struct sas_identify *identify;
9451 
9452 	identify = &rphy->identify;
9453 	identify->sas_address = hpsa_sas_port->sas_address;
9454 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9455 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9456 
9457 	return sas_rphy_add(rphy);
9458 }
9459 
9460 static struct hpsa_sas_port
9461 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9462 				u64 sas_address)
9463 {
9464 	int rc;
9465 	struct hpsa_sas_port *hpsa_sas_port;
9466 	struct sas_port *port;
9467 
9468 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9469 	if (!hpsa_sas_port)
9470 		return NULL;
9471 
9472 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9473 	hpsa_sas_port->parent_node = hpsa_sas_node;
9474 
9475 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9476 	if (!port)
9477 		goto free_hpsa_port;
9478 
9479 	rc = sas_port_add(port);
9480 	if (rc)
9481 		goto free_sas_port;
9482 
9483 	hpsa_sas_port->port = port;
9484 	hpsa_sas_port->sas_address = sas_address;
9485 	list_add_tail(&hpsa_sas_port->port_list_entry,
9486 			&hpsa_sas_node->port_list_head);
9487 
9488 	return hpsa_sas_port;
9489 
9490 free_sas_port:
9491 	sas_port_free(port);
9492 free_hpsa_port:
9493 	kfree(hpsa_sas_port);
9494 
9495 	return NULL;
9496 }
9497 
9498 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9499 {
9500 	struct hpsa_sas_phy *hpsa_sas_phy;
9501 	struct hpsa_sas_phy *next;
9502 
9503 	list_for_each_entry_safe(hpsa_sas_phy, next,
9504 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9505 		hpsa_free_sas_phy(hpsa_sas_phy);
9506 
9507 	sas_port_delete(hpsa_sas_port->port);
9508 	list_del(&hpsa_sas_port->port_list_entry);
9509 	kfree(hpsa_sas_port);
9510 }
9511 
9512 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9513 {
9514 	struct hpsa_sas_node *hpsa_sas_node;
9515 
9516 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9517 	if (hpsa_sas_node) {
9518 		hpsa_sas_node->parent_dev = parent_dev;
9519 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9520 	}
9521 
9522 	return hpsa_sas_node;
9523 }
9524 
9525 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9526 {
9527 	struct hpsa_sas_port *hpsa_sas_port;
9528 	struct hpsa_sas_port *next;
9529 
9530 	if (!hpsa_sas_node)
9531 		return;
9532 
9533 	list_for_each_entry_safe(hpsa_sas_port, next,
9534 			&hpsa_sas_node->port_list_head, port_list_entry)
9535 		hpsa_free_sas_port(hpsa_sas_port);
9536 
9537 	kfree(hpsa_sas_node);
9538 }
9539 
9540 static struct hpsa_scsi_dev_t
9541 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9542 					struct sas_rphy *rphy)
9543 {
9544 	int i;
9545 	struct hpsa_scsi_dev_t *device;
9546 
9547 	for (i = 0; i < h->ndevices; i++) {
9548 		device = h->dev[i];
9549 		if (!device->sas_port)
9550 			continue;
9551 		if (device->sas_port->rphy == rphy)
9552 			return device;
9553 	}
9554 
9555 	return NULL;
9556 }
9557 
9558 static int hpsa_add_sas_host(struct ctlr_info *h)
9559 {
9560 	int rc;
9561 	struct device *parent_dev;
9562 	struct hpsa_sas_node *hpsa_sas_node;
9563 	struct hpsa_sas_port *hpsa_sas_port;
9564 	struct hpsa_sas_phy *hpsa_sas_phy;
9565 
9566 	parent_dev = &h->scsi_host->shost_dev;
9567 
9568 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9569 	if (!hpsa_sas_node)
9570 		return -ENOMEM;
9571 
9572 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9573 	if (!hpsa_sas_port) {
9574 		rc = -ENODEV;
9575 		goto free_sas_node;
9576 	}
9577 
9578 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9579 	if (!hpsa_sas_phy) {
9580 		rc = -ENODEV;
9581 		goto free_sas_port;
9582 	}
9583 
9584 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9585 	if (rc)
9586 		goto free_sas_phy;
9587 
9588 	h->sas_host = hpsa_sas_node;
9589 
9590 	return 0;
9591 
9592 free_sas_phy:
9593 	hpsa_free_sas_phy(hpsa_sas_phy);
9594 free_sas_port:
9595 	hpsa_free_sas_port(hpsa_sas_port);
9596 free_sas_node:
9597 	hpsa_free_sas_node(hpsa_sas_node);
9598 
9599 	return rc;
9600 }
9601 
9602 static void hpsa_delete_sas_host(struct ctlr_info *h)
9603 {
9604 	hpsa_free_sas_node(h->sas_host);
9605 }
9606 
9607 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9608 				struct hpsa_scsi_dev_t *device)
9609 {
9610 	int rc;
9611 	struct hpsa_sas_port *hpsa_sas_port;
9612 	struct sas_rphy *rphy;
9613 
9614 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9615 	if (!hpsa_sas_port)
9616 		return -ENOMEM;
9617 
9618 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9619 	if (!rphy) {
9620 		rc = -ENODEV;
9621 		goto free_sas_port;
9622 	}
9623 
9624 	hpsa_sas_port->rphy = rphy;
9625 	device->sas_port = hpsa_sas_port;
9626 
9627 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9628 	if (rc)
9629 		goto free_sas_port;
9630 
9631 	return 0;
9632 
9633 free_sas_port:
9634 	hpsa_free_sas_port(hpsa_sas_port);
9635 	device->sas_port = NULL;
9636 
9637 	return rc;
9638 }
9639 
9640 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9641 {
9642 	if (device->sas_port) {
9643 		hpsa_free_sas_port(device->sas_port);
9644 		device->sas_port = NULL;
9645 	}
9646 }
9647 
9648 static int
9649 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9650 {
9651 	return 0;
9652 }
9653 
9654 static int
9655 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9656 {
9657 	*identifier = rphy->identify.sas_address;
9658 	return 0;
9659 }
9660 
9661 static int
9662 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9663 {
9664 	return -ENXIO;
9665 }
9666 
9667 static int
9668 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9669 {
9670 	return 0;
9671 }
9672 
9673 static int
9674 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9675 {
9676 	return 0;
9677 }
9678 
9679 static int
9680 hpsa_sas_phy_setup(struct sas_phy *phy)
9681 {
9682 	return 0;
9683 }
9684 
9685 static void
9686 hpsa_sas_phy_release(struct sas_phy *phy)
9687 {
9688 }
9689 
9690 static int
9691 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9692 {
9693 	return -EINVAL;
9694 }
9695 
9696 static struct sas_function_template hpsa_sas_transport_functions = {
9697 	.get_linkerrors = hpsa_sas_get_linkerrors,
9698 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9699 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9700 	.phy_reset = hpsa_sas_phy_reset,
9701 	.phy_enable = hpsa_sas_phy_enable,
9702 	.phy_setup = hpsa_sas_phy_setup,
9703 	.phy_release = hpsa_sas_phy_release,
9704 	.set_phy_speed = hpsa_sas_phy_speed,
9705 };
9706 
9707 /*
9708  *  This is it.  Register the PCI driver information for the cards we control
9709  *  the OS will call our registered routines when it finds one of our cards.
9710  */
9711 static int __init hpsa_init(void)
9712 {
9713 	int rc;
9714 
9715 	hpsa_sas_transport_template =
9716 		sas_attach_transport(&hpsa_sas_transport_functions);
9717 	if (!hpsa_sas_transport_template)
9718 		return -ENODEV;
9719 
9720 	rc = pci_register_driver(&hpsa_pci_driver);
9721 
9722 	if (rc)
9723 		sas_release_transport(hpsa_sas_transport_template);
9724 
9725 	return rc;
9726 }
9727 
9728 static void __exit hpsa_cleanup(void)
9729 {
9730 	pci_unregister_driver(&hpsa_pci_driver);
9731 	sas_release_transport(hpsa_sas_transport_template);
9732 }
9733 
9734 static void __attribute__((unused)) verify_offsets(void)
9735 {
9736 #define VERIFY_OFFSET(member, offset) \
9737 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9738 
9739 	VERIFY_OFFSET(structure_size, 0);
9740 	VERIFY_OFFSET(volume_blk_size, 4);
9741 	VERIFY_OFFSET(volume_blk_cnt, 8);
9742 	VERIFY_OFFSET(phys_blk_shift, 16);
9743 	VERIFY_OFFSET(parity_rotation_shift, 17);
9744 	VERIFY_OFFSET(strip_size, 18);
9745 	VERIFY_OFFSET(disk_starting_blk, 20);
9746 	VERIFY_OFFSET(disk_blk_cnt, 28);
9747 	VERIFY_OFFSET(data_disks_per_row, 36);
9748 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9749 	VERIFY_OFFSET(row_cnt, 40);
9750 	VERIFY_OFFSET(layout_map_count, 42);
9751 	VERIFY_OFFSET(flags, 44);
9752 	VERIFY_OFFSET(dekindex, 46);
9753 	/* VERIFY_OFFSET(reserved, 48 */
9754 	VERIFY_OFFSET(data, 64);
9755 
9756 #undef VERIFY_OFFSET
9757 
9758 #define VERIFY_OFFSET(member, offset) \
9759 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9760 
9761 	VERIFY_OFFSET(IU_type, 0);
9762 	VERIFY_OFFSET(direction, 1);
9763 	VERIFY_OFFSET(reply_queue, 2);
9764 	/* VERIFY_OFFSET(reserved1, 3);  */
9765 	VERIFY_OFFSET(scsi_nexus, 4);
9766 	VERIFY_OFFSET(Tag, 8);
9767 	VERIFY_OFFSET(cdb, 16);
9768 	VERIFY_OFFSET(cciss_lun, 32);
9769 	VERIFY_OFFSET(data_len, 40);
9770 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9771 	VERIFY_OFFSET(sg_count, 45);
9772 	/* VERIFY_OFFSET(reserved3 */
9773 	VERIFY_OFFSET(err_ptr, 48);
9774 	VERIFY_OFFSET(err_len, 56);
9775 	/* VERIFY_OFFSET(reserved4  */
9776 	VERIFY_OFFSET(sg, 64);
9777 
9778 #undef VERIFY_OFFSET
9779 
9780 #define VERIFY_OFFSET(member, offset) \
9781 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9782 
9783 	VERIFY_OFFSET(dev_handle, 0x00);
9784 	VERIFY_OFFSET(reserved1, 0x02);
9785 	VERIFY_OFFSET(function, 0x03);
9786 	VERIFY_OFFSET(reserved2, 0x04);
9787 	VERIFY_OFFSET(err_info, 0x0C);
9788 	VERIFY_OFFSET(reserved3, 0x10);
9789 	VERIFY_OFFSET(err_info_len, 0x12);
9790 	VERIFY_OFFSET(reserved4, 0x13);
9791 	VERIFY_OFFSET(sgl_offset, 0x14);
9792 	VERIFY_OFFSET(reserved5, 0x15);
9793 	VERIFY_OFFSET(transfer_len, 0x1C);
9794 	VERIFY_OFFSET(reserved6, 0x20);
9795 	VERIFY_OFFSET(io_flags, 0x24);
9796 	VERIFY_OFFSET(reserved7, 0x26);
9797 	VERIFY_OFFSET(LUN, 0x34);
9798 	VERIFY_OFFSET(control, 0x3C);
9799 	VERIFY_OFFSET(CDB, 0x40);
9800 	VERIFY_OFFSET(reserved8, 0x50);
9801 	VERIFY_OFFSET(host_context_flags, 0x60);
9802 	VERIFY_OFFSET(timeout_sec, 0x62);
9803 	VERIFY_OFFSET(ReplyQueue, 0x64);
9804 	VERIFY_OFFSET(reserved9, 0x65);
9805 	VERIFY_OFFSET(tag, 0x68);
9806 	VERIFY_OFFSET(host_addr, 0x70);
9807 	VERIFY_OFFSET(CISS_LUN, 0x78);
9808 	VERIFY_OFFSET(SG, 0x78 + 8);
9809 #undef VERIFY_OFFSET
9810 }
9811 
9812 module_init(hpsa_init);
9813 module_exit(hpsa_cleanup);
9814