xref: /linux/drivers/scsi/hpsa.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55 
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60 
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64 
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67 
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 	HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75 
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 		"Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 	"Use 'simple mode' rather than 'performant mode'");
84 
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
103 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
104 	{0,}
105 };
106 
107 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
108 
109 /*  board_id = Subsystem Device ID & Vendor ID
110  *  product = Marketing Name for the board
111  *  access = Address of the struct of function pointers
112  */
113 static struct board_type products[] = {
114 	{0x3241103C, "Smart Array P212", &SA5_access},
115 	{0x3243103C, "Smart Array P410", &SA5_access},
116 	{0x3245103C, "Smart Array P410i", &SA5_access},
117 	{0x3247103C, "Smart Array P411", &SA5_access},
118 	{0x3249103C, "Smart Array P812", &SA5_access},
119 	{0x324a103C, "Smart Array P712m", &SA5_access},
120 	{0x324b103C, "Smart Array P711m", &SA5_access},
121 	{0x3350103C, "Smart Array", &SA5_access},
122 	{0x3351103C, "Smart Array", &SA5_access},
123 	{0x3352103C, "Smart Array", &SA5_access},
124 	{0x3353103C, "Smart Array", &SA5_access},
125 	{0x3354103C, "Smart Array", &SA5_access},
126 	{0x3355103C, "Smart Array", &SA5_access},
127 	{0x3356103C, "Smart Array", &SA5_access},
128 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
129 };
130 
131 static int number_of_controllers;
132 
133 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
134 static spinlock_t lockup_detector_lock;
135 static struct task_struct *hpsa_lockup_detector;
136 
137 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
138 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
139 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
140 static void start_io(struct ctlr_info *h);
141 
142 #ifdef CONFIG_COMPAT
143 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
144 #endif
145 
146 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
147 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
148 static struct CommandList *cmd_alloc(struct ctlr_info *h);
149 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
150 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
151 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
152 	int cmd_type);
153 
154 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
155 static void hpsa_scan_start(struct Scsi_Host *);
156 static int hpsa_scan_finished(struct Scsi_Host *sh,
157 	unsigned long elapsed_time);
158 static int hpsa_change_queue_depth(struct scsi_device *sdev,
159 	int qdepth, int reason);
160 
161 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
162 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
163 static int hpsa_slave_alloc(struct scsi_device *sdev);
164 static void hpsa_slave_destroy(struct scsi_device *sdev);
165 
166 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
167 static int check_for_unit_attention(struct ctlr_info *h,
168 	struct CommandList *c);
169 static void check_ioctl_unit_attention(struct ctlr_info *h,
170 	struct CommandList *c);
171 /* performant mode helper functions */
172 static void calc_bucket_map(int *bucket, int num_buckets,
173 	int nsgs, int *bucket_map);
174 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
175 static inline u32 next_command(struct ctlr_info *h, u8 q);
176 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
177 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
178 	u64 *cfg_offset);
179 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
180 	unsigned long *memory_bar);
181 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
182 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
183 	void __iomem *vaddr, int wait_for_ready);
184 static inline void finish_cmd(struct CommandList *c);
185 #define BOARD_NOT_READY 0
186 #define BOARD_READY 1
187 
188 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
189 {
190 	unsigned long *priv = shost_priv(sdev->host);
191 	return (struct ctlr_info *) *priv;
192 }
193 
194 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
195 {
196 	unsigned long *priv = shost_priv(sh);
197 	return (struct ctlr_info *) *priv;
198 }
199 
200 static int check_for_unit_attention(struct ctlr_info *h,
201 	struct CommandList *c)
202 {
203 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
204 		return 0;
205 
206 	switch (c->err_info->SenseInfo[12]) {
207 	case STATE_CHANGED:
208 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
209 			"detected, command retried\n", h->ctlr);
210 		break;
211 	case LUN_FAILED:
212 		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
213 			"detected, action required\n", h->ctlr);
214 		break;
215 	case REPORT_LUNS_CHANGED:
216 		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
217 			"changed, action required\n", h->ctlr);
218 	/*
219 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
220 	 * target (array) devices.
221 	 */
222 		break;
223 	case POWER_OR_RESET:
224 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
225 			"or device reset detected\n", h->ctlr);
226 		break;
227 	case UNIT_ATTENTION_CLEARED:
228 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
229 		    "cleared by another initiator\n", h->ctlr);
230 		break;
231 	default:
232 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
233 			"unit attention detected\n", h->ctlr);
234 		break;
235 	}
236 	return 1;
237 }
238 
239 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
240 {
241 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
242 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
243 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
244 		return 0;
245 	dev_warn(&h->pdev->dev, HPSA "device busy");
246 	return 1;
247 }
248 
249 static ssize_t host_store_rescan(struct device *dev,
250 				 struct device_attribute *attr,
251 				 const char *buf, size_t count)
252 {
253 	struct ctlr_info *h;
254 	struct Scsi_Host *shost = class_to_shost(dev);
255 	h = shost_to_hba(shost);
256 	hpsa_scan_start(h->scsi_host);
257 	return count;
258 }
259 
260 static ssize_t host_show_firmware_revision(struct device *dev,
261 	     struct device_attribute *attr, char *buf)
262 {
263 	struct ctlr_info *h;
264 	struct Scsi_Host *shost = class_to_shost(dev);
265 	unsigned char *fwrev;
266 
267 	h = shost_to_hba(shost);
268 	if (!h->hba_inquiry_data)
269 		return 0;
270 	fwrev = &h->hba_inquiry_data[32];
271 	return snprintf(buf, 20, "%c%c%c%c\n",
272 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
273 }
274 
275 static ssize_t host_show_commands_outstanding(struct device *dev,
276 	     struct device_attribute *attr, char *buf)
277 {
278 	struct Scsi_Host *shost = class_to_shost(dev);
279 	struct ctlr_info *h = shost_to_hba(shost);
280 
281 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
282 }
283 
284 static ssize_t host_show_transport_mode(struct device *dev,
285 	struct device_attribute *attr, char *buf)
286 {
287 	struct ctlr_info *h;
288 	struct Scsi_Host *shost = class_to_shost(dev);
289 
290 	h = shost_to_hba(shost);
291 	return snprintf(buf, 20, "%s\n",
292 		h->transMethod & CFGTBL_Trans_Performant ?
293 			"performant" : "simple");
294 }
295 
296 /* List of controllers which cannot be hard reset on kexec with reset_devices */
297 static u32 unresettable_controller[] = {
298 	0x324a103C, /* Smart Array P712m */
299 	0x324b103C, /* SmartArray P711m */
300 	0x3223103C, /* Smart Array P800 */
301 	0x3234103C, /* Smart Array P400 */
302 	0x3235103C, /* Smart Array P400i */
303 	0x3211103C, /* Smart Array E200i */
304 	0x3212103C, /* Smart Array E200 */
305 	0x3213103C, /* Smart Array E200i */
306 	0x3214103C, /* Smart Array E200i */
307 	0x3215103C, /* Smart Array E200i */
308 	0x3237103C, /* Smart Array E500 */
309 	0x323D103C, /* Smart Array P700m */
310 	0x40800E11, /* Smart Array 5i */
311 	0x409C0E11, /* Smart Array 6400 */
312 	0x409D0E11, /* Smart Array 6400 EM */
313 	0x40700E11, /* Smart Array 5300 */
314 	0x40820E11, /* Smart Array 532 */
315 	0x40830E11, /* Smart Array 5312 */
316 	0x409A0E11, /* Smart Array 641 */
317 	0x409B0E11, /* Smart Array 642 */
318 	0x40910E11, /* Smart Array 6i */
319 };
320 
321 /* List of controllers which cannot even be soft reset */
322 static u32 soft_unresettable_controller[] = {
323 	0x40800E11, /* Smart Array 5i */
324 	0x40700E11, /* Smart Array 5300 */
325 	0x40820E11, /* Smart Array 532 */
326 	0x40830E11, /* Smart Array 5312 */
327 	0x409A0E11, /* Smart Array 641 */
328 	0x409B0E11, /* Smart Array 642 */
329 	0x40910E11, /* Smart Array 6i */
330 	/* Exclude 640x boards.  These are two pci devices in one slot
331 	 * which share a battery backed cache module.  One controls the
332 	 * cache, the other accesses the cache through the one that controls
333 	 * it.  If we reset the one controlling the cache, the other will
334 	 * likely not be happy.  Just forbid resetting this conjoined mess.
335 	 * The 640x isn't really supported by hpsa anyway.
336 	 */
337 	0x409C0E11, /* Smart Array 6400 */
338 	0x409D0E11, /* Smart Array 6400 EM */
339 };
340 
341 static int ctlr_is_hard_resettable(u32 board_id)
342 {
343 	int i;
344 
345 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
346 		if (unresettable_controller[i] == board_id)
347 			return 0;
348 	return 1;
349 }
350 
351 static int ctlr_is_soft_resettable(u32 board_id)
352 {
353 	int i;
354 
355 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
356 		if (soft_unresettable_controller[i] == board_id)
357 			return 0;
358 	return 1;
359 }
360 
361 static int ctlr_is_resettable(u32 board_id)
362 {
363 	return ctlr_is_hard_resettable(board_id) ||
364 		ctlr_is_soft_resettable(board_id);
365 }
366 
367 static ssize_t host_show_resettable(struct device *dev,
368 	struct device_attribute *attr, char *buf)
369 {
370 	struct ctlr_info *h;
371 	struct Scsi_Host *shost = class_to_shost(dev);
372 
373 	h = shost_to_hba(shost);
374 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
375 }
376 
377 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
378 {
379 	return (scsi3addr[3] & 0xC0) == 0x40;
380 }
381 
382 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
383 	"1(ADM)", "UNKNOWN"
384 };
385 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
386 
387 static ssize_t raid_level_show(struct device *dev,
388 	     struct device_attribute *attr, char *buf)
389 {
390 	ssize_t l = 0;
391 	unsigned char rlevel;
392 	struct ctlr_info *h;
393 	struct scsi_device *sdev;
394 	struct hpsa_scsi_dev_t *hdev;
395 	unsigned long flags;
396 
397 	sdev = to_scsi_device(dev);
398 	h = sdev_to_hba(sdev);
399 	spin_lock_irqsave(&h->lock, flags);
400 	hdev = sdev->hostdata;
401 	if (!hdev) {
402 		spin_unlock_irqrestore(&h->lock, flags);
403 		return -ENODEV;
404 	}
405 
406 	/* Is this even a logical drive? */
407 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
408 		spin_unlock_irqrestore(&h->lock, flags);
409 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
410 		return l;
411 	}
412 
413 	rlevel = hdev->raid_level;
414 	spin_unlock_irqrestore(&h->lock, flags);
415 	if (rlevel > RAID_UNKNOWN)
416 		rlevel = RAID_UNKNOWN;
417 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
418 	return l;
419 }
420 
421 static ssize_t lunid_show(struct device *dev,
422 	     struct device_attribute *attr, char *buf)
423 {
424 	struct ctlr_info *h;
425 	struct scsi_device *sdev;
426 	struct hpsa_scsi_dev_t *hdev;
427 	unsigned long flags;
428 	unsigned char lunid[8];
429 
430 	sdev = to_scsi_device(dev);
431 	h = sdev_to_hba(sdev);
432 	spin_lock_irqsave(&h->lock, flags);
433 	hdev = sdev->hostdata;
434 	if (!hdev) {
435 		spin_unlock_irqrestore(&h->lock, flags);
436 		return -ENODEV;
437 	}
438 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
439 	spin_unlock_irqrestore(&h->lock, flags);
440 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
441 		lunid[0], lunid[1], lunid[2], lunid[3],
442 		lunid[4], lunid[5], lunid[6], lunid[7]);
443 }
444 
445 static ssize_t unique_id_show(struct device *dev,
446 	     struct device_attribute *attr, char *buf)
447 {
448 	struct ctlr_info *h;
449 	struct scsi_device *sdev;
450 	struct hpsa_scsi_dev_t *hdev;
451 	unsigned long flags;
452 	unsigned char sn[16];
453 
454 	sdev = to_scsi_device(dev);
455 	h = sdev_to_hba(sdev);
456 	spin_lock_irqsave(&h->lock, flags);
457 	hdev = sdev->hostdata;
458 	if (!hdev) {
459 		spin_unlock_irqrestore(&h->lock, flags);
460 		return -ENODEV;
461 	}
462 	memcpy(sn, hdev->device_id, sizeof(sn));
463 	spin_unlock_irqrestore(&h->lock, flags);
464 	return snprintf(buf, 16 * 2 + 2,
465 			"%02X%02X%02X%02X%02X%02X%02X%02X"
466 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
467 			sn[0], sn[1], sn[2], sn[3],
468 			sn[4], sn[5], sn[6], sn[7],
469 			sn[8], sn[9], sn[10], sn[11],
470 			sn[12], sn[13], sn[14], sn[15]);
471 }
472 
473 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
474 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
475 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
476 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
477 static DEVICE_ATTR(firmware_revision, S_IRUGO,
478 	host_show_firmware_revision, NULL);
479 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
480 	host_show_commands_outstanding, NULL);
481 static DEVICE_ATTR(transport_mode, S_IRUGO,
482 	host_show_transport_mode, NULL);
483 static DEVICE_ATTR(resettable, S_IRUGO,
484 	host_show_resettable, NULL);
485 
486 static struct device_attribute *hpsa_sdev_attrs[] = {
487 	&dev_attr_raid_level,
488 	&dev_attr_lunid,
489 	&dev_attr_unique_id,
490 	NULL,
491 };
492 
493 static struct device_attribute *hpsa_shost_attrs[] = {
494 	&dev_attr_rescan,
495 	&dev_attr_firmware_revision,
496 	&dev_attr_commands_outstanding,
497 	&dev_attr_transport_mode,
498 	&dev_attr_resettable,
499 	NULL,
500 };
501 
502 static struct scsi_host_template hpsa_driver_template = {
503 	.module			= THIS_MODULE,
504 	.name			= HPSA,
505 	.proc_name		= HPSA,
506 	.queuecommand		= hpsa_scsi_queue_command,
507 	.scan_start		= hpsa_scan_start,
508 	.scan_finished		= hpsa_scan_finished,
509 	.change_queue_depth	= hpsa_change_queue_depth,
510 	.this_id		= -1,
511 	.use_clustering		= ENABLE_CLUSTERING,
512 	.eh_abort_handler	= hpsa_eh_abort_handler,
513 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
514 	.ioctl			= hpsa_ioctl,
515 	.slave_alloc		= hpsa_slave_alloc,
516 	.slave_destroy		= hpsa_slave_destroy,
517 #ifdef CONFIG_COMPAT
518 	.compat_ioctl		= hpsa_compat_ioctl,
519 #endif
520 	.sdev_attrs = hpsa_sdev_attrs,
521 	.shost_attrs = hpsa_shost_attrs,
522 	.max_sectors = 8192,
523 };
524 
525 
526 /* Enqueuing and dequeuing functions for cmdlists. */
527 static inline void addQ(struct list_head *list, struct CommandList *c)
528 {
529 	list_add_tail(&c->list, list);
530 }
531 
532 static inline u32 next_command(struct ctlr_info *h, u8 q)
533 {
534 	u32 a;
535 	struct reply_pool *rq = &h->reply_queue[q];
536 	unsigned long flags;
537 
538 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
539 		return h->access.command_completed(h, q);
540 
541 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
542 		a = rq->head[rq->current_entry];
543 		rq->current_entry++;
544 		spin_lock_irqsave(&h->lock, flags);
545 		h->commands_outstanding--;
546 		spin_unlock_irqrestore(&h->lock, flags);
547 	} else {
548 		a = FIFO_EMPTY;
549 	}
550 	/* Check for wraparound */
551 	if (rq->current_entry == h->max_commands) {
552 		rq->current_entry = 0;
553 		rq->wraparound ^= 1;
554 	}
555 	return a;
556 }
557 
558 /* set_performant_mode: Modify the tag for cciss performant
559  * set bit 0 for pull model, bits 3-1 for block fetch
560  * register number
561  */
562 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
563 {
564 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
565 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
566 		if (likely(h->msix_vector))
567 			c->Header.ReplyQueue =
568 				smp_processor_id() % h->nreply_queues;
569 	}
570 }
571 
572 static int is_firmware_flash_cmd(u8 *cdb)
573 {
574 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
575 }
576 
577 /*
578  * During firmware flash, the heartbeat register may not update as frequently
579  * as it should.  So we dial down lockup detection during firmware flash. and
580  * dial it back up when firmware flash completes.
581  */
582 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
583 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
584 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
585 		struct CommandList *c)
586 {
587 	if (!is_firmware_flash_cmd(c->Request.CDB))
588 		return;
589 	atomic_inc(&h->firmware_flash_in_progress);
590 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
591 }
592 
593 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
594 		struct CommandList *c)
595 {
596 	if (is_firmware_flash_cmd(c->Request.CDB) &&
597 		atomic_dec_and_test(&h->firmware_flash_in_progress))
598 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
599 }
600 
601 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
602 	struct CommandList *c)
603 {
604 	unsigned long flags;
605 
606 	set_performant_mode(h, c);
607 	dial_down_lockup_detection_during_fw_flash(h, c);
608 	spin_lock_irqsave(&h->lock, flags);
609 	addQ(&h->reqQ, c);
610 	h->Qdepth++;
611 	spin_unlock_irqrestore(&h->lock, flags);
612 	start_io(h);
613 }
614 
615 static inline void removeQ(struct CommandList *c)
616 {
617 	if (WARN_ON(list_empty(&c->list)))
618 		return;
619 	list_del_init(&c->list);
620 }
621 
622 static inline int is_hba_lunid(unsigned char scsi3addr[])
623 {
624 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
625 }
626 
627 static inline int is_scsi_rev_5(struct ctlr_info *h)
628 {
629 	if (!h->hba_inquiry_data)
630 		return 0;
631 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
632 		return 1;
633 	return 0;
634 }
635 
636 static int hpsa_find_target_lun(struct ctlr_info *h,
637 	unsigned char scsi3addr[], int bus, int *target, int *lun)
638 {
639 	/* finds an unused bus, target, lun for a new physical device
640 	 * assumes h->devlock is held
641 	 */
642 	int i, found = 0;
643 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
644 
645 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
646 
647 	for (i = 0; i < h->ndevices; i++) {
648 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
649 			__set_bit(h->dev[i]->target, lun_taken);
650 	}
651 
652 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
653 	if (i < HPSA_MAX_DEVICES) {
654 		/* *bus = 1; */
655 		*target = i;
656 		*lun = 0;
657 		found = 1;
658 	}
659 	return !found;
660 }
661 
662 /* Add an entry into h->dev[] array. */
663 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
664 		struct hpsa_scsi_dev_t *device,
665 		struct hpsa_scsi_dev_t *added[], int *nadded)
666 {
667 	/* assumes h->devlock is held */
668 	int n = h->ndevices;
669 	int i;
670 	unsigned char addr1[8], addr2[8];
671 	struct hpsa_scsi_dev_t *sd;
672 
673 	if (n >= HPSA_MAX_DEVICES) {
674 		dev_err(&h->pdev->dev, "too many devices, some will be "
675 			"inaccessible.\n");
676 		return -1;
677 	}
678 
679 	/* physical devices do not have lun or target assigned until now. */
680 	if (device->lun != -1)
681 		/* Logical device, lun is already assigned. */
682 		goto lun_assigned;
683 
684 	/* If this device a non-zero lun of a multi-lun device
685 	 * byte 4 of the 8-byte LUN addr will contain the logical
686 	 * unit no, zero otherise.
687 	 */
688 	if (device->scsi3addr[4] == 0) {
689 		/* This is not a non-zero lun of a multi-lun device */
690 		if (hpsa_find_target_lun(h, device->scsi3addr,
691 			device->bus, &device->target, &device->lun) != 0)
692 			return -1;
693 		goto lun_assigned;
694 	}
695 
696 	/* This is a non-zero lun of a multi-lun device.
697 	 * Search through our list and find the device which
698 	 * has the same 8 byte LUN address, excepting byte 4.
699 	 * Assign the same bus and target for this new LUN.
700 	 * Use the logical unit number from the firmware.
701 	 */
702 	memcpy(addr1, device->scsi3addr, 8);
703 	addr1[4] = 0;
704 	for (i = 0; i < n; i++) {
705 		sd = h->dev[i];
706 		memcpy(addr2, sd->scsi3addr, 8);
707 		addr2[4] = 0;
708 		/* differ only in byte 4? */
709 		if (memcmp(addr1, addr2, 8) == 0) {
710 			device->bus = sd->bus;
711 			device->target = sd->target;
712 			device->lun = device->scsi3addr[4];
713 			break;
714 		}
715 	}
716 	if (device->lun == -1) {
717 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
718 			" suspect firmware bug or unsupported hardware "
719 			"configuration.\n");
720 			return -1;
721 	}
722 
723 lun_assigned:
724 
725 	h->dev[n] = device;
726 	h->ndevices++;
727 	added[*nadded] = device;
728 	(*nadded)++;
729 
730 	/* initially, (before registering with scsi layer) we don't
731 	 * know our hostno and we don't want to print anything first
732 	 * time anyway (the scsi layer's inquiries will show that info)
733 	 */
734 	/* if (hostno != -1) */
735 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
736 			scsi_device_type(device->devtype), hostno,
737 			device->bus, device->target, device->lun);
738 	return 0;
739 }
740 
741 /* Update an entry in h->dev[] array. */
742 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
743 	int entry, struct hpsa_scsi_dev_t *new_entry)
744 {
745 	/* assumes h->devlock is held */
746 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
747 
748 	/* Raid level changed. */
749 	h->dev[entry]->raid_level = new_entry->raid_level;
750 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
751 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
752 		new_entry->target, new_entry->lun);
753 }
754 
755 /* Replace an entry from h->dev[] array. */
756 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
757 	int entry, struct hpsa_scsi_dev_t *new_entry,
758 	struct hpsa_scsi_dev_t *added[], int *nadded,
759 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
760 {
761 	/* assumes h->devlock is held */
762 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
763 	removed[*nremoved] = h->dev[entry];
764 	(*nremoved)++;
765 
766 	/*
767 	 * New physical devices won't have target/lun assigned yet
768 	 * so we need to preserve the values in the slot we are replacing.
769 	 */
770 	if (new_entry->target == -1) {
771 		new_entry->target = h->dev[entry]->target;
772 		new_entry->lun = h->dev[entry]->lun;
773 	}
774 
775 	h->dev[entry] = new_entry;
776 	added[*nadded] = new_entry;
777 	(*nadded)++;
778 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
779 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
780 			new_entry->target, new_entry->lun);
781 }
782 
783 /* Remove an entry from h->dev[] array. */
784 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
785 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
786 {
787 	/* assumes h->devlock is held */
788 	int i;
789 	struct hpsa_scsi_dev_t *sd;
790 
791 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
792 
793 	sd = h->dev[entry];
794 	removed[*nremoved] = h->dev[entry];
795 	(*nremoved)++;
796 
797 	for (i = entry; i < h->ndevices-1; i++)
798 		h->dev[i] = h->dev[i+1];
799 	h->ndevices--;
800 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
801 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
802 		sd->lun);
803 }
804 
805 #define SCSI3ADDR_EQ(a, b) ( \
806 	(a)[7] == (b)[7] && \
807 	(a)[6] == (b)[6] && \
808 	(a)[5] == (b)[5] && \
809 	(a)[4] == (b)[4] && \
810 	(a)[3] == (b)[3] && \
811 	(a)[2] == (b)[2] && \
812 	(a)[1] == (b)[1] && \
813 	(a)[0] == (b)[0])
814 
815 static void fixup_botched_add(struct ctlr_info *h,
816 	struct hpsa_scsi_dev_t *added)
817 {
818 	/* called when scsi_add_device fails in order to re-adjust
819 	 * h->dev[] to match the mid layer's view.
820 	 */
821 	unsigned long flags;
822 	int i, j;
823 
824 	spin_lock_irqsave(&h->lock, flags);
825 	for (i = 0; i < h->ndevices; i++) {
826 		if (h->dev[i] == added) {
827 			for (j = i; j < h->ndevices-1; j++)
828 				h->dev[j] = h->dev[j+1];
829 			h->ndevices--;
830 			break;
831 		}
832 	}
833 	spin_unlock_irqrestore(&h->lock, flags);
834 	kfree(added);
835 }
836 
837 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
838 	struct hpsa_scsi_dev_t *dev2)
839 {
840 	/* we compare everything except lun and target as these
841 	 * are not yet assigned.  Compare parts likely
842 	 * to differ first
843 	 */
844 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
845 		sizeof(dev1->scsi3addr)) != 0)
846 		return 0;
847 	if (memcmp(dev1->device_id, dev2->device_id,
848 		sizeof(dev1->device_id)) != 0)
849 		return 0;
850 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
851 		return 0;
852 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
853 		return 0;
854 	if (dev1->devtype != dev2->devtype)
855 		return 0;
856 	if (dev1->bus != dev2->bus)
857 		return 0;
858 	return 1;
859 }
860 
861 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
862 	struct hpsa_scsi_dev_t *dev2)
863 {
864 	/* Device attributes that can change, but don't mean
865 	 * that the device is a different device, nor that the OS
866 	 * needs to be told anything about the change.
867 	 */
868 	if (dev1->raid_level != dev2->raid_level)
869 		return 1;
870 	return 0;
871 }
872 
873 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
874  * and return needle location in *index.  If scsi3addr matches, but not
875  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
876  * location in *index.
877  * In the case of a minor device attribute change, such as RAID level, just
878  * return DEVICE_UPDATED, along with the updated device's location in index.
879  * If needle not found, return DEVICE_NOT_FOUND.
880  */
881 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
882 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
883 	int *index)
884 {
885 	int i;
886 #define DEVICE_NOT_FOUND 0
887 #define DEVICE_CHANGED 1
888 #define DEVICE_SAME 2
889 #define DEVICE_UPDATED 3
890 	for (i = 0; i < haystack_size; i++) {
891 		if (haystack[i] == NULL) /* previously removed. */
892 			continue;
893 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
894 			*index = i;
895 			if (device_is_the_same(needle, haystack[i])) {
896 				if (device_updated(needle, haystack[i]))
897 					return DEVICE_UPDATED;
898 				return DEVICE_SAME;
899 			} else {
900 				return DEVICE_CHANGED;
901 			}
902 		}
903 	}
904 	*index = -1;
905 	return DEVICE_NOT_FOUND;
906 }
907 
908 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
909 	struct hpsa_scsi_dev_t *sd[], int nsds)
910 {
911 	/* sd contains scsi3 addresses and devtypes, and inquiry
912 	 * data.  This function takes what's in sd to be the current
913 	 * reality and updates h->dev[] to reflect that reality.
914 	 */
915 	int i, entry, device_change, changes = 0;
916 	struct hpsa_scsi_dev_t *csd;
917 	unsigned long flags;
918 	struct hpsa_scsi_dev_t **added, **removed;
919 	int nadded, nremoved;
920 	struct Scsi_Host *sh = NULL;
921 
922 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
923 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
924 
925 	if (!added || !removed) {
926 		dev_warn(&h->pdev->dev, "out of memory in "
927 			"adjust_hpsa_scsi_table\n");
928 		goto free_and_out;
929 	}
930 
931 	spin_lock_irqsave(&h->devlock, flags);
932 
933 	/* find any devices in h->dev[] that are not in
934 	 * sd[] and remove them from h->dev[], and for any
935 	 * devices which have changed, remove the old device
936 	 * info and add the new device info.
937 	 * If minor device attributes change, just update
938 	 * the existing device structure.
939 	 */
940 	i = 0;
941 	nremoved = 0;
942 	nadded = 0;
943 	while (i < h->ndevices) {
944 		csd = h->dev[i];
945 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
946 		if (device_change == DEVICE_NOT_FOUND) {
947 			changes++;
948 			hpsa_scsi_remove_entry(h, hostno, i,
949 				removed, &nremoved);
950 			continue; /* remove ^^^, hence i not incremented */
951 		} else if (device_change == DEVICE_CHANGED) {
952 			changes++;
953 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
954 				added, &nadded, removed, &nremoved);
955 			/* Set it to NULL to prevent it from being freed
956 			 * at the bottom of hpsa_update_scsi_devices()
957 			 */
958 			sd[entry] = NULL;
959 		} else if (device_change == DEVICE_UPDATED) {
960 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
961 		}
962 		i++;
963 	}
964 
965 	/* Now, make sure every device listed in sd[] is also
966 	 * listed in h->dev[], adding them if they aren't found
967 	 */
968 
969 	for (i = 0; i < nsds; i++) {
970 		if (!sd[i]) /* if already added above. */
971 			continue;
972 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
973 					h->ndevices, &entry);
974 		if (device_change == DEVICE_NOT_FOUND) {
975 			changes++;
976 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
977 				added, &nadded) != 0)
978 				break;
979 			sd[i] = NULL; /* prevent from being freed later. */
980 		} else if (device_change == DEVICE_CHANGED) {
981 			/* should never happen... */
982 			changes++;
983 			dev_warn(&h->pdev->dev,
984 				"device unexpectedly changed.\n");
985 			/* but if it does happen, we just ignore that device */
986 		}
987 	}
988 	spin_unlock_irqrestore(&h->devlock, flags);
989 
990 	/* Don't notify scsi mid layer of any changes the first time through
991 	 * (or if there are no changes) scsi_scan_host will do it later the
992 	 * first time through.
993 	 */
994 	if (hostno == -1 || !changes)
995 		goto free_and_out;
996 
997 	sh = h->scsi_host;
998 	/* Notify scsi mid layer of any removed devices */
999 	for (i = 0; i < nremoved; i++) {
1000 		struct scsi_device *sdev =
1001 			scsi_device_lookup(sh, removed[i]->bus,
1002 				removed[i]->target, removed[i]->lun);
1003 		if (sdev != NULL) {
1004 			scsi_remove_device(sdev);
1005 			scsi_device_put(sdev);
1006 		} else {
1007 			/* We don't expect to get here.
1008 			 * future cmds to this device will get selection
1009 			 * timeout as if the device was gone.
1010 			 */
1011 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1012 				" for removal.", hostno, removed[i]->bus,
1013 				removed[i]->target, removed[i]->lun);
1014 		}
1015 		kfree(removed[i]);
1016 		removed[i] = NULL;
1017 	}
1018 
1019 	/* Notify scsi mid layer of any added devices */
1020 	for (i = 0; i < nadded; i++) {
1021 		if (scsi_add_device(sh, added[i]->bus,
1022 			added[i]->target, added[i]->lun) == 0)
1023 			continue;
1024 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1025 			"device not added.\n", hostno, added[i]->bus,
1026 			added[i]->target, added[i]->lun);
1027 		/* now we have to remove it from h->dev,
1028 		 * since it didn't get added to scsi mid layer
1029 		 */
1030 		fixup_botched_add(h, added[i]);
1031 	}
1032 
1033 free_and_out:
1034 	kfree(added);
1035 	kfree(removed);
1036 }
1037 
1038 /*
1039  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1040  * Assume's h->devlock is held.
1041  */
1042 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1043 	int bus, int target, int lun)
1044 {
1045 	int i;
1046 	struct hpsa_scsi_dev_t *sd;
1047 
1048 	for (i = 0; i < h->ndevices; i++) {
1049 		sd = h->dev[i];
1050 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1051 			return sd;
1052 	}
1053 	return NULL;
1054 }
1055 
1056 /* link sdev->hostdata to our per-device structure. */
1057 static int hpsa_slave_alloc(struct scsi_device *sdev)
1058 {
1059 	struct hpsa_scsi_dev_t *sd;
1060 	unsigned long flags;
1061 	struct ctlr_info *h;
1062 
1063 	h = sdev_to_hba(sdev);
1064 	spin_lock_irqsave(&h->devlock, flags);
1065 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1066 		sdev_id(sdev), sdev->lun);
1067 	if (sd != NULL)
1068 		sdev->hostdata = sd;
1069 	spin_unlock_irqrestore(&h->devlock, flags);
1070 	return 0;
1071 }
1072 
1073 static void hpsa_slave_destroy(struct scsi_device *sdev)
1074 {
1075 	/* nothing to do. */
1076 }
1077 
1078 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1079 {
1080 	int i;
1081 
1082 	if (!h->cmd_sg_list)
1083 		return;
1084 	for (i = 0; i < h->nr_cmds; i++) {
1085 		kfree(h->cmd_sg_list[i]);
1086 		h->cmd_sg_list[i] = NULL;
1087 	}
1088 	kfree(h->cmd_sg_list);
1089 	h->cmd_sg_list = NULL;
1090 }
1091 
1092 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1093 {
1094 	int i;
1095 
1096 	if (h->chainsize <= 0)
1097 		return 0;
1098 
1099 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1100 				GFP_KERNEL);
1101 	if (!h->cmd_sg_list)
1102 		return -ENOMEM;
1103 	for (i = 0; i < h->nr_cmds; i++) {
1104 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1105 						h->chainsize, GFP_KERNEL);
1106 		if (!h->cmd_sg_list[i])
1107 			goto clean;
1108 	}
1109 	return 0;
1110 
1111 clean:
1112 	hpsa_free_sg_chain_blocks(h);
1113 	return -ENOMEM;
1114 }
1115 
1116 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1117 	struct CommandList *c)
1118 {
1119 	struct SGDescriptor *chain_sg, *chain_block;
1120 	u64 temp64;
1121 
1122 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1123 	chain_block = h->cmd_sg_list[c->cmdindex];
1124 	chain_sg->Ext = HPSA_SG_CHAIN;
1125 	chain_sg->Len = sizeof(*chain_sg) *
1126 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1127 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1128 				PCI_DMA_TODEVICE);
1129 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1130 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1131 }
1132 
1133 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1134 	struct CommandList *c)
1135 {
1136 	struct SGDescriptor *chain_sg;
1137 	union u64bit temp64;
1138 
1139 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1140 		return;
1141 
1142 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1143 	temp64.val32.lower = chain_sg->Addr.lower;
1144 	temp64.val32.upper = chain_sg->Addr.upper;
1145 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1146 }
1147 
1148 static void complete_scsi_command(struct CommandList *cp)
1149 {
1150 	struct scsi_cmnd *cmd;
1151 	struct ctlr_info *h;
1152 	struct ErrorInfo *ei;
1153 
1154 	unsigned char sense_key;
1155 	unsigned char asc;      /* additional sense code */
1156 	unsigned char ascq;     /* additional sense code qualifier */
1157 	unsigned long sense_data_size;
1158 
1159 	ei = cp->err_info;
1160 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1161 	h = cp->h;
1162 
1163 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1164 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1165 		hpsa_unmap_sg_chain_block(h, cp);
1166 
1167 	cmd->result = (DID_OK << 16); 		/* host byte */
1168 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1169 	cmd->result |= ei->ScsiStatus;
1170 
1171 	/* copy the sense data whether we need to or not. */
1172 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1173 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1174 	else
1175 		sense_data_size = sizeof(ei->SenseInfo);
1176 	if (ei->SenseLen < sense_data_size)
1177 		sense_data_size = ei->SenseLen;
1178 
1179 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1180 	scsi_set_resid(cmd, ei->ResidualCnt);
1181 
1182 	if (ei->CommandStatus == 0) {
1183 		cmd->scsi_done(cmd);
1184 		cmd_free(h, cp);
1185 		return;
1186 	}
1187 
1188 	/* an error has occurred */
1189 	switch (ei->CommandStatus) {
1190 
1191 	case CMD_TARGET_STATUS:
1192 		if (ei->ScsiStatus) {
1193 			/* Get sense key */
1194 			sense_key = 0xf & ei->SenseInfo[2];
1195 			/* Get additional sense code */
1196 			asc = ei->SenseInfo[12];
1197 			/* Get addition sense code qualifier */
1198 			ascq = ei->SenseInfo[13];
1199 		}
1200 
1201 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1202 			if (check_for_unit_attention(h, cp)) {
1203 				cmd->result = DID_SOFT_ERROR << 16;
1204 				break;
1205 			}
1206 			if (sense_key == ILLEGAL_REQUEST) {
1207 				/*
1208 				 * SCSI REPORT_LUNS is commonly unsupported on
1209 				 * Smart Array.  Suppress noisy complaint.
1210 				 */
1211 				if (cp->Request.CDB[0] == REPORT_LUNS)
1212 					break;
1213 
1214 				/* If ASC/ASCQ indicate Logical Unit
1215 				 * Not Supported condition,
1216 				 */
1217 				if ((asc == 0x25) && (ascq == 0x0)) {
1218 					dev_warn(&h->pdev->dev, "cp %p "
1219 						"has check condition\n", cp);
1220 					break;
1221 				}
1222 			}
1223 
1224 			if (sense_key == NOT_READY) {
1225 				/* If Sense is Not Ready, Logical Unit
1226 				 * Not ready, Manual Intervention
1227 				 * required
1228 				 */
1229 				if ((asc == 0x04) && (ascq == 0x03)) {
1230 					dev_warn(&h->pdev->dev, "cp %p "
1231 						"has check condition: unit "
1232 						"not ready, manual "
1233 						"intervention required\n", cp);
1234 					break;
1235 				}
1236 			}
1237 			if (sense_key == ABORTED_COMMAND) {
1238 				/* Aborted command is retryable */
1239 				dev_warn(&h->pdev->dev, "cp %p "
1240 					"has check condition: aborted command: "
1241 					"ASC: 0x%x, ASCQ: 0x%x\n",
1242 					cp, asc, ascq);
1243 				cmd->result = DID_SOFT_ERROR << 16;
1244 				break;
1245 			}
1246 			/* Must be some other type of check condition */
1247 			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1248 					"unknown type: "
1249 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1250 					"Returning result: 0x%x, "
1251 					"cmd=[%02x %02x %02x %02x %02x "
1252 					"%02x %02x %02x %02x %02x %02x "
1253 					"%02x %02x %02x %02x %02x]\n",
1254 					cp, sense_key, asc, ascq,
1255 					cmd->result,
1256 					cmd->cmnd[0], cmd->cmnd[1],
1257 					cmd->cmnd[2], cmd->cmnd[3],
1258 					cmd->cmnd[4], cmd->cmnd[5],
1259 					cmd->cmnd[6], cmd->cmnd[7],
1260 					cmd->cmnd[8], cmd->cmnd[9],
1261 					cmd->cmnd[10], cmd->cmnd[11],
1262 					cmd->cmnd[12], cmd->cmnd[13],
1263 					cmd->cmnd[14], cmd->cmnd[15]);
1264 			break;
1265 		}
1266 
1267 
1268 		/* Problem was not a check condition
1269 		 * Pass it up to the upper layers...
1270 		 */
1271 		if (ei->ScsiStatus) {
1272 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1273 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1274 				"Returning result: 0x%x\n",
1275 				cp, ei->ScsiStatus,
1276 				sense_key, asc, ascq,
1277 				cmd->result);
1278 		} else {  /* scsi status is zero??? How??? */
1279 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1280 				"Returning no connection.\n", cp),
1281 
1282 			/* Ordinarily, this case should never happen,
1283 			 * but there is a bug in some released firmware
1284 			 * revisions that allows it to happen if, for
1285 			 * example, a 4100 backplane loses power and
1286 			 * the tape drive is in it.  We assume that
1287 			 * it's a fatal error of some kind because we
1288 			 * can't show that it wasn't. We will make it
1289 			 * look like selection timeout since that is
1290 			 * the most common reason for this to occur,
1291 			 * and it's severe enough.
1292 			 */
1293 
1294 			cmd->result = DID_NO_CONNECT << 16;
1295 		}
1296 		break;
1297 
1298 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1299 		break;
1300 	case CMD_DATA_OVERRUN:
1301 		dev_warn(&h->pdev->dev, "cp %p has"
1302 			" completed with data overrun "
1303 			"reported\n", cp);
1304 		break;
1305 	case CMD_INVALID: {
1306 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1307 		print_cmd(cp); */
1308 		/* We get CMD_INVALID if you address a non-existent device
1309 		 * instead of a selection timeout (no response).  You will
1310 		 * see this if you yank out a drive, then try to access it.
1311 		 * This is kind of a shame because it means that any other
1312 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1313 		 * missing target. */
1314 		cmd->result = DID_NO_CONNECT << 16;
1315 	}
1316 		break;
1317 	case CMD_PROTOCOL_ERR:
1318 		dev_warn(&h->pdev->dev, "cp %p has "
1319 			"protocol error \n", cp);
1320 		break;
1321 	case CMD_HARDWARE_ERR:
1322 		cmd->result = DID_ERROR << 16;
1323 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1324 		break;
1325 	case CMD_CONNECTION_LOST:
1326 		cmd->result = DID_ERROR << 16;
1327 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1328 		break;
1329 	case CMD_ABORTED:
1330 		cmd->result = DID_ABORT << 16;
1331 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1332 				cp, ei->ScsiStatus);
1333 		break;
1334 	case CMD_ABORT_FAILED:
1335 		cmd->result = DID_ERROR << 16;
1336 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1337 		break;
1338 	case CMD_UNSOLICITED_ABORT:
1339 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1340 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1341 			"abort\n", cp);
1342 		break;
1343 	case CMD_TIMEOUT:
1344 		cmd->result = DID_TIME_OUT << 16;
1345 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1346 		break;
1347 	case CMD_UNABORTABLE:
1348 		cmd->result = DID_ERROR << 16;
1349 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1350 		break;
1351 	default:
1352 		cmd->result = DID_ERROR << 16;
1353 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1354 				cp, ei->CommandStatus);
1355 	}
1356 	cmd->scsi_done(cmd);
1357 	cmd_free(h, cp);
1358 }
1359 
1360 static void hpsa_pci_unmap(struct pci_dev *pdev,
1361 	struct CommandList *c, int sg_used, int data_direction)
1362 {
1363 	int i;
1364 	union u64bit addr64;
1365 
1366 	for (i = 0; i < sg_used; i++) {
1367 		addr64.val32.lower = c->SG[i].Addr.lower;
1368 		addr64.val32.upper = c->SG[i].Addr.upper;
1369 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1370 			data_direction);
1371 	}
1372 }
1373 
1374 static void hpsa_map_one(struct pci_dev *pdev,
1375 		struct CommandList *cp,
1376 		unsigned char *buf,
1377 		size_t buflen,
1378 		int data_direction)
1379 {
1380 	u64 addr64;
1381 
1382 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1383 		cp->Header.SGList = 0;
1384 		cp->Header.SGTotal = 0;
1385 		return;
1386 	}
1387 
1388 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1389 	cp->SG[0].Addr.lower =
1390 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1391 	cp->SG[0].Addr.upper =
1392 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1393 	cp->SG[0].Len = buflen;
1394 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1395 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1396 }
1397 
1398 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1399 	struct CommandList *c)
1400 {
1401 	DECLARE_COMPLETION_ONSTACK(wait);
1402 
1403 	c->waiting = &wait;
1404 	enqueue_cmd_and_start_io(h, c);
1405 	wait_for_completion(&wait);
1406 }
1407 
1408 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1409 	struct CommandList *c)
1410 {
1411 	unsigned long flags;
1412 
1413 	/* If controller lockup detected, fake a hardware error. */
1414 	spin_lock_irqsave(&h->lock, flags);
1415 	if (unlikely(h->lockup_detected)) {
1416 		spin_unlock_irqrestore(&h->lock, flags);
1417 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1418 	} else {
1419 		spin_unlock_irqrestore(&h->lock, flags);
1420 		hpsa_scsi_do_simple_cmd_core(h, c);
1421 	}
1422 }
1423 
1424 #define MAX_DRIVER_CMD_RETRIES 25
1425 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1426 	struct CommandList *c, int data_direction)
1427 {
1428 	int backoff_time = 10, retry_count = 0;
1429 
1430 	do {
1431 		memset(c->err_info, 0, sizeof(*c->err_info));
1432 		hpsa_scsi_do_simple_cmd_core(h, c);
1433 		retry_count++;
1434 		if (retry_count > 3) {
1435 			msleep(backoff_time);
1436 			if (backoff_time < 1000)
1437 				backoff_time *= 2;
1438 		}
1439 	} while ((check_for_unit_attention(h, c) ||
1440 			check_for_busy(h, c)) &&
1441 			retry_count <= MAX_DRIVER_CMD_RETRIES);
1442 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1443 }
1444 
1445 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1446 {
1447 	struct ErrorInfo *ei;
1448 	struct device *d = &cp->h->pdev->dev;
1449 
1450 	ei = cp->err_info;
1451 	switch (ei->CommandStatus) {
1452 	case CMD_TARGET_STATUS:
1453 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1454 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1455 				ei->ScsiStatus);
1456 		if (ei->ScsiStatus == 0)
1457 			dev_warn(d, "SCSI status is abnormally zero.  "
1458 			"(probably indicates selection timeout "
1459 			"reported incorrectly due to a known "
1460 			"firmware bug, circa July, 2001.)\n");
1461 		break;
1462 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1463 			dev_info(d, "UNDERRUN\n");
1464 		break;
1465 	case CMD_DATA_OVERRUN:
1466 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1467 		break;
1468 	case CMD_INVALID: {
1469 		/* controller unfortunately reports SCSI passthru's
1470 		 * to non-existent targets as invalid commands.
1471 		 */
1472 		dev_warn(d, "cp %p is reported invalid (probably means "
1473 			"target device no longer present)\n", cp);
1474 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1475 		print_cmd(cp);  */
1476 		}
1477 		break;
1478 	case CMD_PROTOCOL_ERR:
1479 		dev_warn(d, "cp %p has protocol error \n", cp);
1480 		break;
1481 	case CMD_HARDWARE_ERR:
1482 		/* cmd->result = DID_ERROR << 16; */
1483 		dev_warn(d, "cp %p had hardware error\n", cp);
1484 		break;
1485 	case CMD_CONNECTION_LOST:
1486 		dev_warn(d, "cp %p had connection lost\n", cp);
1487 		break;
1488 	case CMD_ABORTED:
1489 		dev_warn(d, "cp %p was aborted\n", cp);
1490 		break;
1491 	case CMD_ABORT_FAILED:
1492 		dev_warn(d, "cp %p reports abort failed\n", cp);
1493 		break;
1494 	case CMD_UNSOLICITED_ABORT:
1495 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1496 		break;
1497 	case CMD_TIMEOUT:
1498 		dev_warn(d, "cp %p timed out\n", cp);
1499 		break;
1500 	case CMD_UNABORTABLE:
1501 		dev_warn(d, "Command unabortable\n");
1502 		break;
1503 	default:
1504 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1505 				ei->CommandStatus);
1506 	}
1507 }
1508 
1509 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1510 			unsigned char page, unsigned char *buf,
1511 			unsigned char bufsize)
1512 {
1513 	int rc = IO_OK;
1514 	struct CommandList *c;
1515 	struct ErrorInfo *ei;
1516 
1517 	c = cmd_special_alloc(h);
1518 
1519 	if (c == NULL) {			/* trouble... */
1520 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1521 		return -ENOMEM;
1522 	}
1523 
1524 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1525 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1526 	ei = c->err_info;
1527 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1528 		hpsa_scsi_interpret_error(c);
1529 		rc = -1;
1530 	}
1531 	cmd_special_free(h, c);
1532 	return rc;
1533 }
1534 
1535 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1536 {
1537 	int rc = IO_OK;
1538 	struct CommandList *c;
1539 	struct ErrorInfo *ei;
1540 
1541 	c = cmd_special_alloc(h);
1542 
1543 	if (c == NULL) {			/* trouble... */
1544 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1545 		return -ENOMEM;
1546 	}
1547 
1548 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1549 	hpsa_scsi_do_simple_cmd_core(h, c);
1550 	/* no unmap needed here because no data xfer. */
1551 
1552 	ei = c->err_info;
1553 	if (ei->CommandStatus != 0) {
1554 		hpsa_scsi_interpret_error(c);
1555 		rc = -1;
1556 	}
1557 	cmd_special_free(h, c);
1558 	return rc;
1559 }
1560 
1561 static void hpsa_get_raid_level(struct ctlr_info *h,
1562 	unsigned char *scsi3addr, unsigned char *raid_level)
1563 {
1564 	int rc;
1565 	unsigned char *buf;
1566 
1567 	*raid_level = RAID_UNKNOWN;
1568 	buf = kzalloc(64, GFP_KERNEL);
1569 	if (!buf)
1570 		return;
1571 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1572 	if (rc == 0)
1573 		*raid_level = buf[8];
1574 	if (*raid_level > RAID_UNKNOWN)
1575 		*raid_level = RAID_UNKNOWN;
1576 	kfree(buf);
1577 	return;
1578 }
1579 
1580 /* Get the device id from inquiry page 0x83 */
1581 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1582 	unsigned char *device_id, int buflen)
1583 {
1584 	int rc;
1585 	unsigned char *buf;
1586 
1587 	if (buflen > 16)
1588 		buflen = 16;
1589 	buf = kzalloc(64, GFP_KERNEL);
1590 	if (!buf)
1591 		return -1;
1592 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1593 	if (rc == 0)
1594 		memcpy(device_id, &buf[8], buflen);
1595 	kfree(buf);
1596 	return rc != 0;
1597 }
1598 
1599 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1600 		struct ReportLUNdata *buf, int bufsize,
1601 		int extended_response)
1602 {
1603 	int rc = IO_OK;
1604 	struct CommandList *c;
1605 	unsigned char scsi3addr[8];
1606 	struct ErrorInfo *ei;
1607 
1608 	c = cmd_special_alloc(h);
1609 	if (c == NULL) {			/* trouble... */
1610 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1611 		return -1;
1612 	}
1613 	/* address the controller */
1614 	memset(scsi3addr, 0, sizeof(scsi3addr));
1615 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1616 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1617 	if (extended_response)
1618 		c->Request.CDB[1] = extended_response;
1619 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1620 	ei = c->err_info;
1621 	if (ei->CommandStatus != 0 &&
1622 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1623 		hpsa_scsi_interpret_error(c);
1624 		rc = -1;
1625 	}
1626 	cmd_special_free(h, c);
1627 	return rc;
1628 }
1629 
1630 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1631 		struct ReportLUNdata *buf,
1632 		int bufsize, int extended_response)
1633 {
1634 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1635 }
1636 
1637 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1638 		struct ReportLUNdata *buf, int bufsize)
1639 {
1640 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1641 }
1642 
1643 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1644 	int bus, int target, int lun)
1645 {
1646 	device->bus = bus;
1647 	device->target = target;
1648 	device->lun = lun;
1649 }
1650 
1651 static int hpsa_update_device_info(struct ctlr_info *h,
1652 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1653 	unsigned char *is_OBDR_device)
1654 {
1655 
1656 #define OBDR_SIG_OFFSET 43
1657 #define OBDR_TAPE_SIG "$DR-10"
1658 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1659 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1660 
1661 	unsigned char *inq_buff;
1662 	unsigned char *obdr_sig;
1663 
1664 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1665 	if (!inq_buff)
1666 		goto bail_out;
1667 
1668 	/* Do an inquiry to the device to see what it is. */
1669 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1670 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1671 		/* Inquiry failed (msg printed already) */
1672 		dev_err(&h->pdev->dev,
1673 			"hpsa_update_device_info: inquiry failed\n");
1674 		goto bail_out;
1675 	}
1676 
1677 	this_device->devtype = (inq_buff[0] & 0x1f);
1678 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1679 	memcpy(this_device->vendor, &inq_buff[8],
1680 		sizeof(this_device->vendor));
1681 	memcpy(this_device->model, &inq_buff[16],
1682 		sizeof(this_device->model));
1683 	memset(this_device->device_id, 0,
1684 		sizeof(this_device->device_id));
1685 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1686 		sizeof(this_device->device_id));
1687 
1688 	if (this_device->devtype == TYPE_DISK &&
1689 		is_logical_dev_addr_mode(scsi3addr))
1690 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1691 	else
1692 		this_device->raid_level = RAID_UNKNOWN;
1693 
1694 	if (is_OBDR_device) {
1695 		/* See if this is a One-Button-Disaster-Recovery device
1696 		 * by looking for "$DR-10" at offset 43 in inquiry data.
1697 		 */
1698 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1699 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1700 					strncmp(obdr_sig, OBDR_TAPE_SIG,
1701 						OBDR_SIG_LEN) == 0);
1702 	}
1703 
1704 	kfree(inq_buff);
1705 	return 0;
1706 
1707 bail_out:
1708 	kfree(inq_buff);
1709 	return 1;
1710 }
1711 
1712 static unsigned char *ext_target_model[] = {
1713 	"MSA2012",
1714 	"MSA2024",
1715 	"MSA2312",
1716 	"MSA2324",
1717 	"P2000 G3 SAS",
1718 	NULL,
1719 };
1720 
1721 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1722 {
1723 	int i;
1724 
1725 	for (i = 0; ext_target_model[i]; i++)
1726 		if (strncmp(device->model, ext_target_model[i],
1727 			strlen(ext_target_model[i])) == 0)
1728 			return 1;
1729 	return 0;
1730 }
1731 
1732 /* Helper function to assign bus, target, lun mapping of devices.
1733  * Puts non-external target logical volumes on bus 0, external target logical
1734  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1735  * Logical drive target and lun are assigned at this time, but
1736  * physical device lun and target assignment are deferred (assigned
1737  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1738  */
1739 static void figure_bus_target_lun(struct ctlr_info *h,
1740 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1741 {
1742 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1743 
1744 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1745 		/* physical device, target and lun filled in later */
1746 		if (is_hba_lunid(lunaddrbytes))
1747 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1748 		else
1749 			/* defer target, lun assignment for physical devices */
1750 			hpsa_set_bus_target_lun(device, 2, -1, -1);
1751 		return;
1752 	}
1753 	/* It's a logical device */
1754 	if (is_ext_target(h, device)) {
1755 		/* external target way, put logicals on bus 1
1756 		 * and match target/lun numbers box
1757 		 * reports, other smart array, bus 0, target 0, match lunid
1758 		 */
1759 		hpsa_set_bus_target_lun(device,
1760 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1761 		return;
1762 	}
1763 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1764 }
1765 
1766 /*
1767  * If there is no lun 0 on a target, linux won't find any devices.
1768  * For the external targets (arrays), we have to manually detect the enclosure
1769  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1770  * it for some reason.  *tmpdevice is the target we're adding,
1771  * this_device is a pointer into the current element of currentsd[]
1772  * that we're building up in update_scsi_devices(), below.
1773  * lunzerobits is a bitmap that tracks which targets already have a
1774  * lun 0 assigned.
1775  * Returns 1 if an enclosure was added, 0 if not.
1776  */
1777 static int add_ext_target_dev(struct ctlr_info *h,
1778 	struct hpsa_scsi_dev_t *tmpdevice,
1779 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1780 	unsigned long lunzerobits[], int *n_ext_target_devs)
1781 {
1782 	unsigned char scsi3addr[8];
1783 
1784 	if (test_bit(tmpdevice->target, lunzerobits))
1785 		return 0; /* There is already a lun 0 on this target. */
1786 
1787 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1788 		return 0; /* It's the logical targets that may lack lun 0. */
1789 
1790 	if (!is_ext_target(h, tmpdevice))
1791 		return 0; /* Only external target devices have this problem. */
1792 
1793 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1794 		return 0;
1795 
1796 	memset(scsi3addr, 0, 8);
1797 	scsi3addr[3] = tmpdevice->target;
1798 	if (is_hba_lunid(scsi3addr))
1799 		return 0; /* Don't add the RAID controller here. */
1800 
1801 	if (is_scsi_rev_5(h))
1802 		return 0; /* p1210m doesn't need to do this. */
1803 
1804 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1805 		dev_warn(&h->pdev->dev, "Maximum number of external "
1806 			"target devices exceeded.  Check your hardware "
1807 			"configuration.");
1808 		return 0;
1809 	}
1810 
1811 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1812 		return 0;
1813 	(*n_ext_target_devs)++;
1814 	hpsa_set_bus_target_lun(this_device,
1815 				tmpdevice->bus, tmpdevice->target, 0);
1816 	set_bit(tmpdevice->target, lunzerobits);
1817 	return 1;
1818 }
1819 
1820 /*
1821  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1822  * logdev.  The number of luns in physdev and logdev are returned in
1823  * *nphysicals and *nlogicals, respectively.
1824  * Returns 0 on success, -1 otherwise.
1825  */
1826 static int hpsa_gather_lun_info(struct ctlr_info *h,
1827 	int reportlunsize,
1828 	struct ReportLUNdata *physdev, u32 *nphysicals,
1829 	struct ReportLUNdata *logdev, u32 *nlogicals)
1830 {
1831 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1832 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1833 		return -1;
1834 	}
1835 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1836 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1837 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1838 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1839 			*nphysicals - HPSA_MAX_PHYS_LUN);
1840 		*nphysicals = HPSA_MAX_PHYS_LUN;
1841 	}
1842 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1843 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1844 		return -1;
1845 	}
1846 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1847 	/* Reject Logicals in excess of our max capability. */
1848 	if (*nlogicals > HPSA_MAX_LUN) {
1849 		dev_warn(&h->pdev->dev,
1850 			"maximum logical LUNs (%d) exceeded.  "
1851 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1852 			*nlogicals - HPSA_MAX_LUN);
1853 			*nlogicals = HPSA_MAX_LUN;
1854 	}
1855 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1856 		dev_warn(&h->pdev->dev,
1857 			"maximum logical + physical LUNs (%d) exceeded. "
1858 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1859 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1860 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1861 	}
1862 	return 0;
1863 }
1864 
1865 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1866 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1867 	struct ReportLUNdata *logdev_list)
1868 {
1869 	/* Helper function, figure out where the LUN ID info is coming from
1870 	 * given index i, lists of physical and logical devices, where in
1871 	 * the list the raid controller is supposed to appear (first or last)
1872 	 */
1873 
1874 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1875 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1876 
1877 	if (i == raid_ctlr_position)
1878 		return RAID_CTLR_LUNID;
1879 
1880 	if (i < logicals_start)
1881 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1882 
1883 	if (i < last_device)
1884 		return &logdev_list->LUN[i - nphysicals -
1885 			(raid_ctlr_position == 0)][0];
1886 	BUG();
1887 	return NULL;
1888 }
1889 
1890 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1891 {
1892 	/* the idea here is we could get notified
1893 	 * that some devices have changed, so we do a report
1894 	 * physical luns and report logical luns cmd, and adjust
1895 	 * our list of devices accordingly.
1896 	 *
1897 	 * The scsi3addr's of devices won't change so long as the
1898 	 * adapter is not reset.  That means we can rescan and
1899 	 * tell which devices we already know about, vs. new
1900 	 * devices, vs.  disappearing devices.
1901 	 */
1902 	struct ReportLUNdata *physdev_list = NULL;
1903 	struct ReportLUNdata *logdev_list = NULL;
1904 	u32 nphysicals = 0;
1905 	u32 nlogicals = 0;
1906 	u32 ndev_allocated = 0;
1907 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1908 	int ncurrent = 0;
1909 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1910 	int i, n_ext_target_devs, ndevs_to_allocate;
1911 	int raid_ctlr_position;
1912 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1913 
1914 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1915 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1916 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1917 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1918 
1919 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1920 		dev_err(&h->pdev->dev, "out of memory\n");
1921 		goto out;
1922 	}
1923 	memset(lunzerobits, 0, sizeof(lunzerobits));
1924 
1925 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1926 			logdev_list, &nlogicals))
1927 		goto out;
1928 
1929 	/* We might see up to the maximum number of logical and physical disks
1930 	 * plus external target devices, and a device for the local RAID
1931 	 * controller.
1932 	 */
1933 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1934 
1935 	/* Allocate the per device structures */
1936 	for (i = 0; i < ndevs_to_allocate; i++) {
1937 		if (i >= HPSA_MAX_DEVICES) {
1938 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1939 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
1940 				ndevs_to_allocate - HPSA_MAX_DEVICES);
1941 			break;
1942 		}
1943 
1944 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1945 		if (!currentsd[i]) {
1946 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1947 				__FILE__, __LINE__);
1948 			goto out;
1949 		}
1950 		ndev_allocated++;
1951 	}
1952 
1953 	if (unlikely(is_scsi_rev_5(h)))
1954 		raid_ctlr_position = 0;
1955 	else
1956 		raid_ctlr_position = nphysicals + nlogicals;
1957 
1958 	/* adjust our table of devices */
1959 	n_ext_target_devs = 0;
1960 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1961 		u8 *lunaddrbytes, is_OBDR = 0;
1962 
1963 		/* Figure out where the LUN ID info is coming from */
1964 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1965 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1966 		/* skip masked physical devices. */
1967 		if (lunaddrbytes[3] & 0xC0 &&
1968 			i < nphysicals + (raid_ctlr_position == 0))
1969 			continue;
1970 
1971 		/* Get device type, vendor, model, device id */
1972 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1973 							&is_OBDR))
1974 			continue; /* skip it if we can't talk to it. */
1975 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
1976 		this_device = currentsd[ncurrent];
1977 
1978 		/*
1979 		 * For external target devices, we have to insert a LUN 0 which
1980 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1981 		 * is nonetheless an enclosure device there.  We have to
1982 		 * present that otherwise linux won't find anything if
1983 		 * there is no lun 0.
1984 		 */
1985 		if (add_ext_target_dev(h, tmpdevice, this_device,
1986 				lunaddrbytes, lunzerobits,
1987 				&n_ext_target_devs)) {
1988 			ncurrent++;
1989 			this_device = currentsd[ncurrent];
1990 		}
1991 
1992 		*this_device = *tmpdevice;
1993 
1994 		switch (this_device->devtype) {
1995 		case TYPE_ROM:
1996 			/* We don't *really* support actual CD-ROM devices,
1997 			 * just "One Button Disaster Recovery" tape drive
1998 			 * which temporarily pretends to be a CD-ROM drive.
1999 			 * So we check that the device is really an OBDR tape
2000 			 * device by checking for "$DR-10" in bytes 43-48 of
2001 			 * the inquiry data.
2002 			 */
2003 			if (is_OBDR)
2004 				ncurrent++;
2005 			break;
2006 		case TYPE_DISK:
2007 			if (i < nphysicals)
2008 				break;
2009 			ncurrent++;
2010 			break;
2011 		case TYPE_TAPE:
2012 		case TYPE_MEDIUM_CHANGER:
2013 			ncurrent++;
2014 			break;
2015 		case TYPE_RAID:
2016 			/* Only present the Smartarray HBA as a RAID controller.
2017 			 * If it's a RAID controller other than the HBA itself
2018 			 * (an external RAID controller, MSA500 or similar)
2019 			 * don't present it.
2020 			 */
2021 			if (!is_hba_lunid(lunaddrbytes))
2022 				break;
2023 			ncurrent++;
2024 			break;
2025 		default:
2026 			break;
2027 		}
2028 		if (ncurrent >= HPSA_MAX_DEVICES)
2029 			break;
2030 	}
2031 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2032 out:
2033 	kfree(tmpdevice);
2034 	for (i = 0; i < ndev_allocated; i++)
2035 		kfree(currentsd[i]);
2036 	kfree(currentsd);
2037 	kfree(physdev_list);
2038 	kfree(logdev_list);
2039 }
2040 
2041 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2042  * dma mapping  and fills in the scatter gather entries of the
2043  * hpsa command, cp.
2044  */
2045 static int hpsa_scatter_gather(struct ctlr_info *h,
2046 		struct CommandList *cp,
2047 		struct scsi_cmnd *cmd)
2048 {
2049 	unsigned int len;
2050 	struct scatterlist *sg;
2051 	u64 addr64;
2052 	int use_sg, i, sg_index, chained;
2053 	struct SGDescriptor *curr_sg;
2054 
2055 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2056 
2057 	use_sg = scsi_dma_map(cmd);
2058 	if (use_sg < 0)
2059 		return use_sg;
2060 
2061 	if (!use_sg)
2062 		goto sglist_finished;
2063 
2064 	curr_sg = cp->SG;
2065 	chained = 0;
2066 	sg_index = 0;
2067 	scsi_for_each_sg(cmd, sg, use_sg, i) {
2068 		if (i == h->max_cmd_sg_entries - 1 &&
2069 			use_sg > h->max_cmd_sg_entries) {
2070 			chained = 1;
2071 			curr_sg = h->cmd_sg_list[cp->cmdindex];
2072 			sg_index = 0;
2073 		}
2074 		addr64 = (u64) sg_dma_address(sg);
2075 		len  = sg_dma_len(sg);
2076 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2077 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2078 		curr_sg->Len = len;
2079 		curr_sg->Ext = 0;  /* we are not chaining */
2080 		curr_sg++;
2081 	}
2082 
2083 	if (use_sg + chained > h->maxSG)
2084 		h->maxSG = use_sg + chained;
2085 
2086 	if (chained) {
2087 		cp->Header.SGList = h->max_cmd_sg_entries;
2088 		cp->Header.SGTotal = (u16) (use_sg + 1);
2089 		hpsa_map_sg_chain_block(h, cp);
2090 		return 0;
2091 	}
2092 
2093 sglist_finished:
2094 
2095 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2096 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2097 	return 0;
2098 }
2099 
2100 
2101 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2102 	void (*done)(struct scsi_cmnd *))
2103 {
2104 	struct ctlr_info *h;
2105 	struct hpsa_scsi_dev_t *dev;
2106 	unsigned char scsi3addr[8];
2107 	struct CommandList *c;
2108 	unsigned long flags;
2109 
2110 	/* Get the ptr to our adapter structure out of cmd->host. */
2111 	h = sdev_to_hba(cmd->device);
2112 	dev = cmd->device->hostdata;
2113 	if (!dev) {
2114 		cmd->result = DID_NO_CONNECT << 16;
2115 		done(cmd);
2116 		return 0;
2117 	}
2118 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2119 
2120 	spin_lock_irqsave(&h->lock, flags);
2121 	if (unlikely(h->lockup_detected)) {
2122 		spin_unlock_irqrestore(&h->lock, flags);
2123 		cmd->result = DID_ERROR << 16;
2124 		done(cmd);
2125 		return 0;
2126 	}
2127 	spin_unlock_irqrestore(&h->lock, flags);
2128 	c = cmd_alloc(h);
2129 	if (c == NULL) {			/* trouble... */
2130 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2131 		return SCSI_MLQUEUE_HOST_BUSY;
2132 	}
2133 
2134 	/* Fill in the command list header */
2135 
2136 	cmd->scsi_done = done;    /* save this for use by completion code */
2137 
2138 	/* save c in case we have to abort it  */
2139 	cmd->host_scribble = (unsigned char *) c;
2140 
2141 	c->cmd_type = CMD_SCSI;
2142 	c->scsi_cmd = cmd;
2143 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2144 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2145 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2146 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2147 
2148 	/* Fill in the request block... */
2149 
2150 	c->Request.Timeout = 0;
2151 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2152 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2153 	c->Request.CDBLen = cmd->cmd_len;
2154 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2155 	c->Request.Type.Type = TYPE_CMD;
2156 	c->Request.Type.Attribute = ATTR_SIMPLE;
2157 	switch (cmd->sc_data_direction) {
2158 	case DMA_TO_DEVICE:
2159 		c->Request.Type.Direction = XFER_WRITE;
2160 		break;
2161 	case DMA_FROM_DEVICE:
2162 		c->Request.Type.Direction = XFER_READ;
2163 		break;
2164 	case DMA_NONE:
2165 		c->Request.Type.Direction = XFER_NONE;
2166 		break;
2167 	case DMA_BIDIRECTIONAL:
2168 		/* This can happen if a buggy application does a scsi passthru
2169 		 * and sets both inlen and outlen to non-zero. ( see
2170 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2171 		 */
2172 
2173 		c->Request.Type.Direction = XFER_RSVD;
2174 		/* This is technically wrong, and hpsa controllers should
2175 		 * reject it with CMD_INVALID, which is the most correct
2176 		 * response, but non-fibre backends appear to let it
2177 		 * slide by, and give the same results as if this field
2178 		 * were set correctly.  Either way is acceptable for
2179 		 * our purposes here.
2180 		 */
2181 
2182 		break;
2183 
2184 	default:
2185 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2186 			cmd->sc_data_direction);
2187 		BUG();
2188 		break;
2189 	}
2190 
2191 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2192 		cmd_free(h, c);
2193 		return SCSI_MLQUEUE_HOST_BUSY;
2194 	}
2195 	enqueue_cmd_and_start_io(h, c);
2196 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2197 	return 0;
2198 }
2199 
2200 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2201 
2202 static void hpsa_scan_start(struct Scsi_Host *sh)
2203 {
2204 	struct ctlr_info *h = shost_to_hba(sh);
2205 	unsigned long flags;
2206 
2207 	/* wait until any scan already in progress is finished. */
2208 	while (1) {
2209 		spin_lock_irqsave(&h->scan_lock, flags);
2210 		if (h->scan_finished)
2211 			break;
2212 		spin_unlock_irqrestore(&h->scan_lock, flags);
2213 		wait_event(h->scan_wait_queue, h->scan_finished);
2214 		/* Note: We don't need to worry about a race between this
2215 		 * thread and driver unload because the midlayer will
2216 		 * have incremented the reference count, so unload won't
2217 		 * happen if we're in here.
2218 		 */
2219 	}
2220 	h->scan_finished = 0; /* mark scan as in progress */
2221 	spin_unlock_irqrestore(&h->scan_lock, flags);
2222 
2223 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2224 
2225 	spin_lock_irqsave(&h->scan_lock, flags);
2226 	h->scan_finished = 1; /* mark scan as finished. */
2227 	wake_up_all(&h->scan_wait_queue);
2228 	spin_unlock_irqrestore(&h->scan_lock, flags);
2229 }
2230 
2231 static int hpsa_scan_finished(struct Scsi_Host *sh,
2232 	unsigned long elapsed_time)
2233 {
2234 	struct ctlr_info *h = shost_to_hba(sh);
2235 	unsigned long flags;
2236 	int finished;
2237 
2238 	spin_lock_irqsave(&h->scan_lock, flags);
2239 	finished = h->scan_finished;
2240 	spin_unlock_irqrestore(&h->scan_lock, flags);
2241 	return finished;
2242 }
2243 
2244 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2245 	int qdepth, int reason)
2246 {
2247 	struct ctlr_info *h = sdev_to_hba(sdev);
2248 
2249 	if (reason != SCSI_QDEPTH_DEFAULT)
2250 		return -ENOTSUPP;
2251 
2252 	if (qdepth < 1)
2253 		qdepth = 1;
2254 	else
2255 		if (qdepth > h->nr_cmds)
2256 			qdepth = h->nr_cmds;
2257 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2258 	return sdev->queue_depth;
2259 }
2260 
2261 static void hpsa_unregister_scsi(struct ctlr_info *h)
2262 {
2263 	/* we are being forcibly unloaded, and may not refuse. */
2264 	scsi_remove_host(h->scsi_host);
2265 	scsi_host_put(h->scsi_host);
2266 	h->scsi_host = NULL;
2267 }
2268 
2269 static int hpsa_register_scsi(struct ctlr_info *h)
2270 {
2271 	struct Scsi_Host *sh;
2272 	int error;
2273 
2274 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2275 	if (sh == NULL)
2276 		goto fail;
2277 
2278 	sh->io_port = 0;
2279 	sh->n_io_port = 0;
2280 	sh->this_id = -1;
2281 	sh->max_channel = 3;
2282 	sh->max_cmd_len = MAX_COMMAND_SIZE;
2283 	sh->max_lun = HPSA_MAX_LUN;
2284 	sh->max_id = HPSA_MAX_LUN;
2285 	sh->can_queue = h->nr_cmds;
2286 	sh->cmd_per_lun = h->nr_cmds;
2287 	sh->sg_tablesize = h->maxsgentries;
2288 	h->scsi_host = sh;
2289 	sh->hostdata[0] = (unsigned long) h;
2290 	sh->irq = h->intr[h->intr_mode];
2291 	sh->unique_id = sh->irq;
2292 	error = scsi_add_host(sh, &h->pdev->dev);
2293 	if (error)
2294 		goto fail_host_put;
2295 	scsi_scan_host(sh);
2296 	return 0;
2297 
2298  fail_host_put:
2299 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
2300 		" failed for controller %d\n", __func__, h->ctlr);
2301 	scsi_host_put(sh);
2302 	return error;
2303  fail:
2304 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2305 		" failed for controller %d\n", __func__, h->ctlr);
2306 	return -ENOMEM;
2307 }
2308 
2309 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2310 	unsigned char lunaddr[])
2311 {
2312 	int rc = 0;
2313 	int count = 0;
2314 	int waittime = 1; /* seconds */
2315 	struct CommandList *c;
2316 
2317 	c = cmd_special_alloc(h);
2318 	if (!c) {
2319 		dev_warn(&h->pdev->dev, "out of memory in "
2320 			"wait_for_device_to_become_ready.\n");
2321 		return IO_ERROR;
2322 	}
2323 
2324 	/* Send test unit ready until device ready, or give up. */
2325 	while (count < HPSA_TUR_RETRY_LIMIT) {
2326 
2327 		/* Wait for a bit.  do this first, because if we send
2328 		 * the TUR right away, the reset will just abort it.
2329 		 */
2330 		msleep(1000 * waittime);
2331 		count++;
2332 
2333 		/* Increase wait time with each try, up to a point. */
2334 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2335 			waittime = waittime * 2;
2336 
2337 		/* Send the Test Unit Ready */
2338 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2339 		hpsa_scsi_do_simple_cmd_core(h, c);
2340 		/* no unmap needed here because no data xfer. */
2341 
2342 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2343 			break;
2344 
2345 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2346 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2347 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2348 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2349 			break;
2350 
2351 		dev_warn(&h->pdev->dev, "waiting %d secs "
2352 			"for device to become ready.\n", waittime);
2353 		rc = 1; /* device not ready. */
2354 	}
2355 
2356 	if (rc)
2357 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2358 	else
2359 		dev_warn(&h->pdev->dev, "device is ready.\n");
2360 
2361 	cmd_special_free(h, c);
2362 	return rc;
2363 }
2364 
2365 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2366  * complaining.  Doing a host- or bus-reset can't do anything good here.
2367  */
2368 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2369 {
2370 	int rc;
2371 	struct ctlr_info *h;
2372 	struct hpsa_scsi_dev_t *dev;
2373 
2374 	/* find the controller to which the command to be aborted was sent */
2375 	h = sdev_to_hba(scsicmd->device);
2376 	if (h == NULL) /* paranoia */
2377 		return FAILED;
2378 	dev = scsicmd->device->hostdata;
2379 	if (!dev) {
2380 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2381 			"device lookup failed.\n");
2382 		return FAILED;
2383 	}
2384 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2385 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2386 	/* send a reset to the SCSI LUN which the command was sent to */
2387 	rc = hpsa_send_reset(h, dev->scsi3addr);
2388 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2389 		return SUCCESS;
2390 
2391 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2392 	return FAILED;
2393 }
2394 
2395 static void swizzle_abort_tag(u8 *tag)
2396 {
2397 	u8 original_tag[8];
2398 
2399 	memcpy(original_tag, tag, 8);
2400 	tag[0] = original_tag[3];
2401 	tag[1] = original_tag[2];
2402 	tag[2] = original_tag[1];
2403 	tag[3] = original_tag[0];
2404 	tag[4] = original_tag[7];
2405 	tag[5] = original_tag[6];
2406 	tag[6] = original_tag[5];
2407 	tag[7] = original_tag[4];
2408 }
2409 
2410 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2411 	struct CommandList *abort, int swizzle)
2412 {
2413 	int rc = IO_OK;
2414 	struct CommandList *c;
2415 	struct ErrorInfo *ei;
2416 
2417 	c = cmd_special_alloc(h);
2418 	if (c == NULL) {	/* trouble... */
2419 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2420 		return -ENOMEM;
2421 	}
2422 
2423 	fill_cmd(c, HPSA_ABORT_MSG, h, abort, 0, 0, scsi3addr, TYPE_MSG);
2424 	if (swizzle)
2425 		swizzle_abort_tag(&c->Request.CDB[4]);
2426 	hpsa_scsi_do_simple_cmd_core(h, c);
2427 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2428 		__func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2429 	/* no unmap needed here because no data xfer. */
2430 
2431 	ei = c->err_info;
2432 	switch (ei->CommandStatus) {
2433 	case CMD_SUCCESS:
2434 		break;
2435 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
2436 		rc = -1;
2437 		break;
2438 	default:
2439 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2440 			__func__, abort->Header.Tag.upper,
2441 			abort->Header.Tag.lower);
2442 		hpsa_scsi_interpret_error(c);
2443 		rc = -1;
2444 		break;
2445 	}
2446 	cmd_special_free(h, c);
2447 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2448 		abort->Header.Tag.upper, abort->Header.Tag.lower);
2449 	return rc;
2450 }
2451 
2452 /*
2453  * hpsa_find_cmd_in_queue
2454  *
2455  * Used to determine whether a command (find) is still present
2456  * in queue_head.   Optionally excludes the last element of queue_head.
2457  *
2458  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2459  * not yet been submitted, and so can be aborted by the driver without
2460  * sending an abort to the hardware.
2461  *
2462  * Returns pointer to command if found in queue, NULL otherwise.
2463  */
2464 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2465 			struct scsi_cmnd *find, struct list_head *queue_head)
2466 {
2467 	unsigned long flags;
2468 	struct CommandList *c = NULL;	/* ptr into cmpQ */
2469 
2470 	if (!find)
2471 		return 0;
2472 	spin_lock_irqsave(&h->lock, flags);
2473 	list_for_each_entry(c, queue_head, list) {
2474 		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2475 			continue;
2476 		if (c->scsi_cmd == find) {
2477 			spin_unlock_irqrestore(&h->lock, flags);
2478 			return c;
2479 		}
2480 	}
2481 	spin_unlock_irqrestore(&h->lock, flags);
2482 	return NULL;
2483 }
2484 
2485 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2486 					u8 *tag, struct list_head *queue_head)
2487 {
2488 	unsigned long flags;
2489 	struct CommandList *c;
2490 
2491 	spin_lock_irqsave(&h->lock, flags);
2492 	list_for_each_entry(c, queue_head, list) {
2493 		if (memcmp(&c->Header.Tag, tag, 8) != 0)
2494 			continue;
2495 		spin_unlock_irqrestore(&h->lock, flags);
2496 		return c;
2497 	}
2498 	spin_unlock_irqrestore(&h->lock, flags);
2499 	return NULL;
2500 }
2501 
2502 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2503  * tell which kind we're dealing with, so we send the abort both ways.  There
2504  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2505  * way we construct our tags but we check anyway in case the assumptions which
2506  * make this true someday become false.
2507  */
2508 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2509 	unsigned char *scsi3addr, struct CommandList *abort)
2510 {
2511 	u8 swizzled_tag[8];
2512 	struct CommandList *c;
2513 	int rc = 0, rc2 = 0;
2514 
2515 	/* we do not expect to find the swizzled tag in our queue, but
2516 	 * check anyway just to be sure the assumptions which make this
2517 	 * the case haven't become wrong.
2518 	 */
2519 	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2520 	swizzle_abort_tag(swizzled_tag);
2521 	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2522 	if (c != NULL) {
2523 		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2524 		return hpsa_send_abort(h, scsi3addr, abort, 0);
2525 	}
2526 	rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2527 
2528 	/* if the command is still in our queue, we can't conclude that it was
2529 	 * aborted (it might have just completed normally) but in any case
2530 	 * we don't need to try to abort it another way.
2531 	 */
2532 	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2533 	if (c)
2534 		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2535 	return rc && rc2;
2536 }
2537 
2538 /* Send an abort for the specified command.
2539  *	If the device and controller support it,
2540  *		send a task abort request.
2541  */
2542 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2543 {
2544 
2545 	int i, rc;
2546 	struct ctlr_info *h;
2547 	struct hpsa_scsi_dev_t *dev;
2548 	struct CommandList *abort; /* pointer to command to be aborted */
2549 	struct CommandList *found;
2550 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
2551 	char msg[256];		/* For debug messaging. */
2552 	int ml = 0;
2553 
2554 	/* Find the controller of the command to be aborted */
2555 	h = sdev_to_hba(sc->device);
2556 	if (WARN(h == NULL,
2557 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
2558 		return FAILED;
2559 
2560 	/* Check that controller supports some kind of task abort */
2561 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2562 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2563 		return FAILED;
2564 
2565 	memset(msg, 0, sizeof(msg));
2566 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2567 		h->scsi_host->host_no, sc->device->channel,
2568 		sc->device->id, sc->device->lun);
2569 
2570 	/* Find the device of the command to be aborted */
2571 	dev = sc->device->hostdata;
2572 	if (!dev) {
2573 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2574 				msg);
2575 		return FAILED;
2576 	}
2577 
2578 	/* Get SCSI command to be aborted */
2579 	abort = (struct CommandList *) sc->host_scribble;
2580 	if (abort == NULL) {
2581 		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2582 				msg);
2583 		return FAILED;
2584 	}
2585 
2586 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2587 		abort->Header.Tag.upper, abort->Header.Tag.lower);
2588 	as  = (struct scsi_cmnd *) abort->scsi_cmd;
2589 	if (as != NULL)
2590 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2591 			as->cmnd[0], as->serial_number);
2592 	dev_dbg(&h->pdev->dev, "%s\n", msg);
2593 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2594 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2595 
2596 	/* Search reqQ to See if command is queued but not submitted,
2597 	 * if so, complete the command with aborted status and remove
2598 	 * it from the reqQ.
2599 	 */
2600 	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2601 	if (found) {
2602 		found->err_info->CommandStatus = CMD_ABORTED;
2603 		finish_cmd(found);
2604 		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2605 				msg);
2606 		return SUCCESS;
2607 	}
2608 
2609 	/* not in reqQ, if also not in cmpQ, must have already completed */
2610 	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2611 	if (!found)  {
2612 		dev_dbg(&h->pdev->dev, "%s Request FAILED (not known to driver).\n",
2613 				msg);
2614 		return SUCCESS;
2615 	}
2616 
2617 	/*
2618 	 * Command is in flight, or possibly already completed
2619 	 * by the firmware (but not to the scsi mid layer) but we can't
2620 	 * distinguish which.  Send the abort down.
2621 	 */
2622 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2623 	if (rc != 0) {
2624 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2625 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2626 			h->scsi_host->host_no,
2627 			dev->bus, dev->target, dev->lun);
2628 		return FAILED;
2629 	}
2630 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2631 
2632 	/* If the abort(s) above completed and actually aborted the
2633 	 * command, then the command to be aborted should already be
2634 	 * completed.  If not, wait around a bit more to see if they
2635 	 * manage to complete normally.
2636 	 */
2637 #define ABORT_COMPLETE_WAIT_SECS 30
2638 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2639 		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2640 		if (!found)
2641 			return SUCCESS;
2642 		msleep(100);
2643 	}
2644 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2645 		msg, ABORT_COMPLETE_WAIT_SECS);
2646 	return FAILED;
2647 }
2648 
2649 
2650 /*
2651  * For operations that cannot sleep, a command block is allocated at init,
2652  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2653  * which ones are free or in use.  Lock must be held when calling this.
2654  * cmd_free() is the complement.
2655  */
2656 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2657 {
2658 	struct CommandList *c;
2659 	int i;
2660 	union u64bit temp64;
2661 	dma_addr_t cmd_dma_handle, err_dma_handle;
2662 	unsigned long flags;
2663 
2664 	spin_lock_irqsave(&h->lock, flags);
2665 	do {
2666 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2667 		if (i == h->nr_cmds) {
2668 			spin_unlock_irqrestore(&h->lock, flags);
2669 			return NULL;
2670 		}
2671 	} while (test_and_set_bit
2672 		 (i & (BITS_PER_LONG - 1),
2673 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2674 	h->nr_allocs++;
2675 	spin_unlock_irqrestore(&h->lock, flags);
2676 
2677 	c = h->cmd_pool + i;
2678 	memset(c, 0, sizeof(*c));
2679 	cmd_dma_handle = h->cmd_pool_dhandle
2680 	    + i * sizeof(*c);
2681 	c->err_info = h->errinfo_pool + i;
2682 	memset(c->err_info, 0, sizeof(*c->err_info));
2683 	err_dma_handle = h->errinfo_pool_dhandle
2684 	    + i * sizeof(*c->err_info);
2685 
2686 	c->cmdindex = i;
2687 
2688 	INIT_LIST_HEAD(&c->list);
2689 	c->busaddr = (u32) cmd_dma_handle;
2690 	temp64.val = (u64) err_dma_handle;
2691 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2692 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2693 	c->ErrDesc.Len = sizeof(*c->err_info);
2694 
2695 	c->h = h;
2696 	return c;
2697 }
2698 
2699 /* For operations that can wait for kmalloc to possibly sleep,
2700  * this routine can be called. Lock need not be held to call
2701  * cmd_special_alloc. cmd_special_free() is the complement.
2702  */
2703 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2704 {
2705 	struct CommandList *c;
2706 	union u64bit temp64;
2707 	dma_addr_t cmd_dma_handle, err_dma_handle;
2708 
2709 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2710 	if (c == NULL)
2711 		return NULL;
2712 	memset(c, 0, sizeof(*c));
2713 
2714 	c->cmdindex = -1;
2715 
2716 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2717 		    &err_dma_handle);
2718 
2719 	if (c->err_info == NULL) {
2720 		pci_free_consistent(h->pdev,
2721 			sizeof(*c), c, cmd_dma_handle);
2722 		return NULL;
2723 	}
2724 	memset(c->err_info, 0, sizeof(*c->err_info));
2725 
2726 	INIT_LIST_HEAD(&c->list);
2727 	c->busaddr = (u32) cmd_dma_handle;
2728 	temp64.val = (u64) err_dma_handle;
2729 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2730 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2731 	c->ErrDesc.Len = sizeof(*c->err_info);
2732 
2733 	c->h = h;
2734 	return c;
2735 }
2736 
2737 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2738 {
2739 	int i;
2740 	unsigned long flags;
2741 
2742 	i = c - h->cmd_pool;
2743 	spin_lock_irqsave(&h->lock, flags);
2744 	clear_bit(i & (BITS_PER_LONG - 1),
2745 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2746 	h->nr_frees++;
2747 	spin_unlock_irqrestore(&h->lock, flags);
2748 }
2749 
2750 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2751 {
2752 	union u64bit temp64;
2753 
2754 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2755 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2756 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2757 			    c->err_info, (dma_addr_t) temp64.val);
2758 	pci_free_consistent(h->pdev, sizeof(*c),
2759 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2760 }
2761 
2762 #ifdef CONFIG_COMPAT
2763 
2764 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2765 {
2766 	IOCTL32_Command_struct __user *arg32 =
2767 	    (IOCTL32_Command_struct __user *) arg;
2768 	IOCTL_Command_struct arg64;
2769 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2770 	int err;
2771 	u32 cp;
2772 
2773 	memset(&arg64, 0, sizeof(arg64));
2774 	err = 0;
2775 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2776 			   sizeof(arg64.LUN_info));
2777 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2778 			   sizeof(arg64.Request));
2779 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2780 			   sizeof(arg64.error_info));
2781 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2782 	err |= get_user(cp, &arg32->buf);
2783 	arg64.buf = compat_ptr(cp);
2784 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2785 
2786 	if (err)
2787 		return -EFAULT;
2788 
2789 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2790 	if (err)
2791 		return err;
2792 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2793 			 sizeof(arg32->error_info));
2794 	if (err)
2795 		return -EFAULT;
2796 	return err;
2797 }
2798 
2799 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2800 	int cmd, void *arg)
2801 {
2802 	BIG_IOCTL32_Command_struct __user *arg32 =
2803 	    (BIG_IOCTL32_Command_struct __user *) arg;
2804 	BIG_IOCTL_Command_struct arg64;
2805 	BIG_IOCTL_Command_struct __user *p =
2806 	    compat_alloc_user_space(sizeof(arg64));
2807 	int err;
2808 	u32 cp;
2809 
2810 	memset(&arg64, 0, sizeof(arg64));
2811 	err = 0;
2812 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2813 			   sizeof(arg64.LUN_info));
2814 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2815 			   sizeof(arg64.Request));
2816 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2817 			   sizeof(arg64.error_info));
2818 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2819 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2820 	err |= get_user(cp, &arg32->buf);
2821 	arg64.buf = compat_ptr(cp);
2822 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2823 
2824 	if (err)
2825 		return -EFAULT;
2826 
2827 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2828 	if (err)
2829 		return err;
2830 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2831 			 sizeof(arg32->error_info));
2832 	if (err)
2833 		return -EFAULT;
2834 	return err;
2835 }
2836 
2837 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2838 {
2839 	switch (cmd) {
2840 	case CCISS_GETPCIINFO:
2841 	case CCISS_GETINTINFO:
2842 	case CCISS_SETINTINFO:
2843 	case CCISS_GETNODENAME:
2844 	case CCISS_SETNODENAME:
2845 	case CCISS_GETHEARTBEAT:
2846 	case CCISS_GETBUSTYPES:
2847 	case CCISS_GETFIRMVER:
2848 	case CCISS_GETDRIVVER:
2849 	case CCISS_REVALIDVOLS:
2850 	case CCISS_DEREGDISK:
2851 	case CCISS_REGNEWDISK:
2852 	case CCISS_REGNEWD:
2853 	case CCISS_RESCANDISK:
2854 	case CCISS_GETLUNINFO:
2855 		return hpsa_ioctl(dev, cmd, arg);
2856 
2857 	case CCISS_PASSTHRU32:
2858 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2859 	case CCISS_BIG_PASSTHRU32:
2860 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2861 
2862 	default:
2863 		return -ENOIOCTLCMD;
2864 	}
2865 }
2866 #endif
2867 
2868 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2869 {
2870 	struct hpsa_pci_info pciinfo;
2871 
2872 	if (!argp)
2873 		return -EINVAL;
2874 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2875 	pciinfo.bus = h->pdev->bus->number;
2876 	pciinfo.dev_fn = h->pdev->devfn;
2877 	pciinfo.board_id = h->board_id;
2878 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2879 		return -EFAULT;
2880 	return 0;
2881 }
2882 
2883 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2884 {
2885 	DriverVer_type DriverVer;
2886 	unsigned char vmaj, vmin, vsubmin;
2887 	int rc;
2888 
2889 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2890 		&vmaj, &vmin, &vsubmin);
2891 	if (rc != 3) {
2892 		dev_info(&h->pdev->dev, "driver version string '%s' "
2893 			"unrecognized.", HPSA_DRIVER_VERSION);
2894 		vmaj = 0;
2895 		vmin = 0;
2896 		vsubmin = 0;
2897 	}
2898 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2899 	if (!argp)
2900 		return -EINVAL;
2901 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2902 		return -EFAULT;
2903 	return 0;
2904 }
2905 
2906 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2907 {
2908 	IOCTL_Command_struct iocommand;
2909 	struct CommandList *c;
2910 	char *buff = NULL;
2911 	union u64bit temp64;
2912 
2913 	if (!argp)
2914 		return -EINVAL;
2915 	if (!capable(CAP_SYS_RAWIO))
2916 		return -EPERM;
2917 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2918 		return -EFAULT;
2919 	if ((iocommand.buf_size < 1) &&
2920 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2921 		return -EINVAL;
2922 	}
2923 	if (iocommand.buf_size > 0) {
2924 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2925 		if (buff == NULL)
2926 			return -EFAULT;
2927 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2928 			/* Copy the data into the buffer we created */
2929 			if (copy_from_user(buff, iocommand.buf,
2930 				iocommand.buf_size)) {
2931 				kfree(buff);
2932 				return -EFAULT;
2933 			}
2934 		} else {
2935 			memset(buff, 0, iocommand.buf_size);
2936 		}
2937 	}
2938 	c = cmd_special_alloc(h);
2939 	if (c == NULL) {
2940 		kfree(buff);
2941 		return -ENOMEM;
2942 	}
2943 	/* Fill in the command type */
2944 	c->cmd_type = CMD_IOCTL_PEND;
2945 	/* Fill in Command Header */
2946 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2947 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2948 		c->Header.SGList = 1;
2949 		c->Header.SGTotal = 1;
2950 	} else	{ /* no buffers to fill */
2951 		c->Header.SGList = 0;
2952 		c->Header.SGTotal = 0;
2953 	}
2954 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2955 	/* use the kernel address the cmd block for tag */
2956 	c->Header.Tag.lower = c->busaddr;
2957 
2958 	/* Fill in Request block */
2959 	memcpy(&c->Request, &iocommand.Request,
2960 		sizeof(c->Request));
2961 
2962 	/* Fill in the scatter gather information */
2963 	if (iocommand.buf_size > 0) {
2964 		temp64.val = pci_map_single(h->pdev, buff,
2965 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2966 		c->SG[0].Addr.lower = temp64.val32.lower;
2967 		c->SG[0].Addr.upper = temp64.val32.upper;
2968 		c->SG[0].Len = iocommand.buf_size;
2969 		c->SG[0].Ext = 0; /* we are not chaining*/
2970 	}
2971 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2972 	if (iocommand.buf_size > 0)
2973 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2974 	check_ioctl_unit_attention(h, c);
2975 
2976 	/* Copy the error information out */
2977 	memcpy(&iocommand.error_info, c->err_info,
2978 		sizeof(iocommand.error_info));
2979 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2980 		kfree(buff);
2981 		cmd_special_free(h, c);
2982 		return -EFAULT;
2983 	}
2984 	if (iocommand.Request.Type.Direction == XFER_READ &&
2985 		iocommand.buf_size > 0) {
2986 		/* Copy the data out of the buffer we created */
2987 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2988 			kfree(buff);
2989 			cmd_special_free(h, c);
2990 			return -EFAULT;
2991 		}
2992 	}
2993 	kfree(buff);
2994 	cmd_special_free(h, c);
2995 	return 0;
2996 }
2997 
2998 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2999 {
3000 	BIG_IOCTL_Command_struct *ioc;
3001 	struct CommandList *c;
3002 	unsigned char **buff = NULL;
3003 	int *buff_size = NULL;
3004 	union u64bit temp64;
3005 	BYTE sg_used = 0;
3006 	int status = 0;
3007 	int i;
3008 	u32 left;
3009 	u32 sz;
3010 	BYTE __user *data_ptr;
3011 
3012 	if (!argp)
3013 		return -EINVAL;
3014 	if (!capable(CAP_SYS_RAWIO))
3015 		return -EPERM;
3016 	ioc = (BIG_IOCTL_Command_struct *)
3017 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
3018 	if (!ioc) {
3019 		status = -ENOMEM;
3020 		goto cleanup1;
3021 	}
3022 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3023 		status = -EFAULT;
3024 		goto cleanup1;
3025 	}
3026 	if ((ioc->buf_size < 1) &&
3027 	    (ioc->Request.Type.Direction != XFER_NONE)) {
3028 		status = -EINVAL;
3029 		goto cleanup1;
3030 	}
3031 	/* Check kmalloc limits  using all SGs */
3032 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3033 		status = -EINVAL;
3034 		goto cleanup1;
3035 	}
3036 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3037 		status = -EINVAL;
3038 		goto cleanup1;
3039 	}
3040 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3041 	if (!buff) {
3042 		status = -ENOMEM;
3043 		goto cleanup1;
3044 	}
3045 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3046 	if (!buff_size) {
3047 		status = -ENOMEM;
3048 		goto cleanup1;
3049 	}
3050 	left = ioc->buf_size;
3051 	data_ptr = ioc->buf;
3052 	while (left) {
3053 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3054 		buff_size[sg_used] = sz;
3055 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3056 		if (buff[sg_used] == NULL) {
3057 			status = -ENOMEM;
3058 			goto cleanup1;
3059 		}
3060 		if (ioc->Request.Type.Direction == XFER_WRITE) {
3061 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3062 				status = -ENOMEM;
3063 				goto cleanup1;
3064 			}
3065 		} else
3066 			memset(buff[sg_used], 0, sz);
3067 		left -= sz;
3068 		data_ptr += sz;
3069 		sg_used++;
3070 	}
3071 	c = cmd_special_alloc(h);
3072 	if (c == NULL) {
3073 		status = -ENOMEM;
3074 		goto cleanup1;
3075 	}
3076 	c->cmd_type = CMD_IOCTL_PEND;
3077 	c->Header.ReplyQueue = 0;
3078 	c->Header.SGList = c->Header.SGTotal = sg_used;
3079 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3080 	c->Header.Tag.lower = c->busaddr;
3081 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3082 	if (ioc->buf_size > 0) {
3083 		int i;
3084 		for (i = 0; i < sg_used; i++) {
3085 			temp64.val = pci_map_single(h->pdev, buff[i],
3086 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
3087 			c->SG[i].Addr.lower = temp64.val32.lower;
3088 			c->SG[i].Addr.upper = temp64.val32.upper;
3089 			c->SG[i].Len = buff_size[i];
3090 			/* we are not chaining */
3091 			c->SG[i].Ext = 0;
3092 		}
3093 	}
3094 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3095 	if (sg_used)
3096 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3097 	check_ioctl_unit_attention(h, c);
3098 	/* Copy the error information out */
3099 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3100 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3101 		cmd_special_free(h, c);
3102 		status = -EFAULT;
3103 		goto cleanup1;
3104 	}
3105 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3106 		/* Copy the data out of the buffer we created */
3107 		BYTE __user *ptr = ioc->buf;
3108 		for (i = 0; i < sg_used; i++) {
3109 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
3110 				cmd_special_free(h, c);
3111 				status = -EFAULT;
3112 				goto cleanup1;
3113 			}
3114 			ptr += buff_size[i];
3115 		}
3116 	}
3117 	cmd_special_free(h, c);
3118 	status = 0;
3119 cleanup1:
3120 	if (buff) {
3121 		for (i = 0; i < sg_used; i++)
3122 			kfree(buff[i]);
3123 		kfree(buff);
3124 	}
3125 	kfree(buff_size);
3126 	kfree(ioc);
3127 	return status;
3128 }
3129 
3130 static void check_ioctl_unit_attention(struct ctlr_info *h,
3131 	struct CommandList *c)
3132 {
3133 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3134 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3135 		(void) check_for_unit_attention(h, c);
3136 }
3137 /*
3138  * ioctl
3139  */
3140 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3141 {
3142 	struct ctlr_info *h;
3143 	void __user *argp = (void __user *)arg;
3144 
3145 	h = sdev_to_hba(dev);
3146 
3147 	switch (cmd) {
3148 	case CCISS_DEREGDISK:
3149 	case CCISS_REGNEWDISK:
3150 	case CCISS_REGNEWD:
3151 		hpsa_scan_start(h->scsi_host);
3152 		return 0;
3153 	case CCISS_GETPCIINFO:
3154 		return hpsa_getpciinfo_ioctl(h, argp);
3155 	case CCISS_GETDRIVVER:
3156 		return hpsa_getdrivver_ioctl(h, argp);
3157 	case CCISS_PASSTHRU:
3158 		return hpsa_passthru_ioctl(h, argp);
3159 	case CCISS_BIG_PASSTHRU:
3160 		return hpsa_big_passthru_ioctl(h, argp);
3161 	default:
3162 		return -ENOTTY;
3163 	}
3164 }
3165 
3166 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
3167 	unsigned char *scsi3addr, u8 reset_type)
3168 {
3169 	struct CommandList *c;
3170 
3171 	c = cmd_alloc(h);
3172 	if (!c)
3173 		return -ENOMEM;
3174 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3175 		RAID_CTLR_LUNID, TYPE_MSG);
3176 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3177 	c->waiting = NULL;
3178 	enqueue_cmd_and_start_io(h, c);
3179 	/* Don't wait for completion, the reset won't complete.  Don't free
3180 	 * the command either.  This is the last command we will send before
3181 	 * re-initializing everything, so it doesn't matter and won't leak.
3182 	 */
3183 	return 0;
3184 }
3185 
3186 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3187 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3188 	int cmd_type)
3189 {
3190 	int pci_dir = XFER_NONE;
3191 	struct CommandList *a; /* for commands to be aborted */
3192 
3193 	c->cmd_type = CMD_IOCTL_PEND;
3194 	c->Header.ReplyQueue = 0;
3195 	if (buff != NULL && size > 0) {
3196 		c->Header.SGList = 1;
3197 		c->Header.SGTotal = 1;
3198 	} else {
3199 		c->Header.SGList = 0;
3200 		c->Header.SGTotal = 0;
3201 	}
3202 	c->Header.Tag.lower = c->busaddr;
3203 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3204 
3205 	c->Request.Type.Type = cmd_type;
3206 	if (cmd_type == TYPE_CMD) {
3207 		switch (cmd) {
3208 		case HPSA_INQUIRY:
3209 			/* are we trying to read a vital product page */
3210 			if (page_code != 0) {
3211 				c->Request.CDB[1] = 0x01;
3212 				c->Request.CDB[2] = page_code;
3213 			}
3214 			c->Request.CDBLen = 6;
3215 			c->Request.Type.Attribute = ATTR_SIMPLE;
3216 			c->Request.Type.Direction = XFER_READ;
3217 			c->Request.Timeout = 0;
3218 			c->Request.CDB[0] = HPSA_INQUIRY;
3219 			c->Request.CDB[4] = size & 0xFF;
3220 			break;
3221 		case HPSA_REPORT_LOG:
3222 		case HPSA_REPORT_PHYS:
3223 			/* Talking to controller so It's a physical command
3224 			   mode = 00 target = 0.  Nothing to write.
3225 			 */
3226 			c->Request.CDBLen = 12;
3227 			c->Request.Type.Attribute = ATTR_SIMPLE;
3228 			c->Request.Type.Direction = XFER_READ;
3229 			c->Request.Timeout = 0;
3230 			c->Request.CDB[0] = cmd;
3231 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3232 			c->Request.CDB[7] = (size >> 16) & 0xFF;
3233 			c->Request.CDB[8] = (size >> 8) & 0xFF;
3234 			c->Request.CDB[9] = size & 0xFF;
3235 			break;
3236 		case HPSA_CACHE_FLUSH:
3237 			c->Request.CDBLen = 12;
3238 			c->Request.Type.Attribute = ATTR_SIMPLE;
3239 			c->Request.Type.Direction = XFER_WRITE;
3240 			c->Request.Timeout = 0;
3241 			c->Request.CDB[0] = BMIC_WRITE;
3242 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3243 			c->Request.CDB[7] = (size >> 8) & 0xFF;
3244 			c->Request.CDB[8] = size & 0xFF;
3245 			break;
3246 		case TEST_UNIT_READY:
3247 			c->Request.CDBLen = 6;
3248 			c->Request.Type.Attribute = ATTR_SIMPLE;
3249 			c->Request.Type.Direction = XFER_NONE;
3250 			c->Request.Timeout = 0;
3251 			break;
3252 		default:
3253 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3254 			BUG();
3255 			return;
3256 		}
3257 	} else if (cmd_type == TYPE_MSG) {
3258 		switch (cmd) {
3259 
3260 		case  HPSA_DEVICE_RESET_MSG:
3261 			c->Request.CDBLen = 16;
3262 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3263 			c->Request.Type.Attribute = ATTR_SIMPLE;
3264 			c->Request.Type.Direction = XFER_NONE;
3265 			c->Request.Timeout = 0; /* Don't time out */
3266 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3267 			c->Request.CDB[0] =  cmd;
3268 			c->Request.CDB[1] = 0x03;  /* Reset target above */
3269 			/* If bytes 4-7 are zero, it means reset the */
3270 			/* LunID device */
3271 			c->Request.CDB[4] = 0x00;
3272 			c->Request.CDB[5] = 0x00;
3273 			c->Request.CDB[6] = 0x00;
3274 			c->Request.CDB[7] = 0x00;
3275 			break;
3276 		case  HPSA_ABORT_MSG:
3277 			a = buff;       /* point to command to be aborted */
3278 			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3279 				a->Header.Tag.upper, a->Header.Tag.lower,
3280 				c->Header.Tag.upper, c->Header.Tag.lower);
3281 			c->Request.CDBLen = 16;
3282 			c->Request.Type.Type = TYPE_MSG;
3283 			c->Request.Type.Attribute = ATTR_SIMPLE;
3284 			c->Request.Type.Direction = XFER_WRITE;
3285 			c->Request.Timeout = 0; /* Don't time out */
3286 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3287 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3288 			c->Request.CDB[2] = 0x00; /* reserved */
3289 			c->Request.CDB[3] = 0x00; /* reserved */
3290 			/* Tag to abort goes in CDB[4]-CDB[11] */
3291 			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3292 			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3293 			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3294 			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3295 			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3296 			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3297 			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3298 			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3299 			c->Request.CDB[12] = 0x00; /* reserved */
3300 			c->Request.CDB[13] = 0x00; /* reserved */
3301 			c->Request.CDB[14] = 0x00; /* reserved */
3302 			c->Request.CDB[15] = 0x00; /* reserved */
3303 		break;
3304 		default:
3305 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
3306 				cmd);
3307 			BUG();
3308 		}
3309 	} else {
3310 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3311 		BUG();
3312 	}
3313 
3314 	switch (c->Request.Type.Direction) {
3315 	case XFER_READ:
3316 		pci_dir = PCI_DMA_FROMDEVICE;
3317 		break;
3318 	case XFER_WRITE:
3319 		pci_dir = PCI_DMA_TODEVICE;
3320 		break;
3321 	case XFER_NONE:
3322 		pci_dir = PCI_DMA_NONE;
3323 		break;
3324 	default:
3325 		pci_dir = PCI_DMA_BIDIRECTIONAL;
3326 	}
3327 
3328 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
3329 
3330 	return;
3331 }
3332 
3333 /*
3334  * Map (physical) PCI mem into (virtual) kernel space
3335  */
3336 static void __iomem *remap_pci_mem(ulong base, ulong size)
3337 {
3338 	ulong page_base = ((ulong) base) & PAGE_MASK;
3339 	ulong page_offs = ((ulong) base) - page_base;
3340 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3341 
3342 	return page_remapped ? (page_remapped + page_offs) : NULL;
3343 }
3344 
3345 /* Takes cmds off the submission queue and sends them to the hardware,
3346  * then puts them on the queue of cmds waiting for completion.
3347  */
3348 static void start_io(struct ctlr_info *h)
3349 {
3350 	struct CommandList *c;
3351 	unsigned long flags;
3352 
3353 	spin_lock_irqsave(&h->lock, flags);
3354 	while (!list_empty(&h->reqQ)) {
3355 		c = list_entry(h->reqQ.next, struct CommandList, list);
3356 		/* can't do anything if fifo is full */
3357 		if ((h->access.fifo_full(h))) {
3358 			dev_warn(&h->pdev->dev, "fifo full\n");
3359 			break;
3360 		}
3361 
3362 		/* Get the first entry from the Request Q */
3363 		removeQ(c);
3364 		h->Qdepth--;
3365 
3366 		/* Put job onto the completed Q */
3367 		addQ(&h->cmpQ, c);
3368 
3369 		/* Must increment commands_outstanding before unlocking
3370 		 * and submitting to avoid race checking for fifo full
3371 		 * condition.
3372 		 */
3373 		h->commands_outstanding++;
3374 		if (h->commands_outstanding > h->max_outstanding)
3375 			h->max_outstanding = h->commands_outstanding;
3376 
3377 		/* Tell the controller execute command */
3378 		spin_unlock_irqrestore(&h->lock, flags);
3379 		h->access.submit_command(h, c);
3380 		spin_lock_irqsave(&h->lock, flags);
3381 	}
3382 	spin_unlock_irqrestore(&h->lock, flags);
3383 }
3384 
3385 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3386 {
3387 	return h->access.command_completed(h, q);
3388 }
3389 
3390 static inline bool interrupt_pending(struct ctlr_info *h)
3391 {
3392 	return h->access.intr_pending(h);
3393 }
3394 
3395 static inline long interrupt_not_for_us(struct ctlr_info *h)
3396 {
3397 	return (h->access.intr_pending(h) == 0) ||
3398 		(h->interrupts_enabled == 0);
3399 }
3400 
3401 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3402 	u32 raw_tag)
3403 {
3404 	if (unlikely(tag_index >= h->nr_cmds)) {
3405 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3406 		return 1;
3407 	}
3408 	return 0;
3409 }
3410 
3411 static inline void finish_cmd(struct CommandList *c)
3412 {
3413 	unsigned long flags;
3414 
3415 	spin_lock_irqsave(&c->h->lock, flags);
3416 	removeQ(c);
3417 	spin_unlock_irqrestore(&c->h->lock, flags);
3418 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3419 	if (likely(c->cmd_type == CMD_SCSI))
3420 		complete_scsi_command(c);
3421 	else if (c->cmd_type == CMD_IOCTL_PEND)
3422 		complete(c->waiting);
3423 }
3424 
3425 static inline u32 hpsa_tag_contains_index(u32 tag)
3426 {
3427 	return tag & DIRECT_LOOKUP_BIT;
3428 }
3429 
3430 static inline u32 hpsa_tag_to_index(u32 tag)
3431 {
3432 	return tag >> DIRECT_LOOKUP_SHIFT;
3433 }
3434 
3435 
3436 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3437 {
3438 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3439 #define HPSA_SIMPLE_ERROR_BITS 0x03
3440 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3441 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3442 	return tag & ~HPSA_PERF_ERROR_BITS;
3443 }
3444 
3445 /* process completion of an indexed ("direct lookup") command */
3446 static inline void process_indexed_cmd(struct ctlr_info *h,
3447 	u32 raw_tag)
3448 {
3449 	u32 tag_index;
3450 	struct CommandList *c;
3451 
3452 	tag_index = hpsa_tag_to_index(raw_tag);
3453 	if (!bad_tag(h, tag_index, raw_tag)) {
3454 		c = h->cmd_pool + tag_index;
3455 		finish_cmd(c);
3456 	}
3457 }
3458 
3459 /* process completion of a non-indexed command */
3460 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3461 	u32 raw_tag)
3462 {
3463 	u32 tag;
3464 	struct CommandList *c = NULL;
3465 	unsigned long flags;
3466 
3467 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3468 	spin_lock_irqsave(&h->lock, flags);
3469 	list_for_each_entry(c, &h->cmpQ, list) {
3470 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3471 			spin_unlock_irqrestore(&h->lock, flags);
3472 			finish_cmd(c);
3473 			return;
3474 		}
3475 	}
3476 	spin_unlock_irqrestore(&h->lock, flags);
3477 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3478 }
3479 
3480 /* Some controllers, like p400, will give us one interrupt
3481  * after a soft reset, even if we turned interrupts off.
3482  * Only need to check for this in the hpsa_xxx_discard_completions
3483  * functions.
3484  */
3485 static int ignore_bogus_interrupt(struct ctlr_info *h)
3486 {
3487 	if (likely(!reset_devices))
3488 		return 0;
3489 
3490 	if (likely(h->interrupts_enabled))
3491 		return 0;
3492 
3493 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3494 		"(known firmware bug.)  Ignoring.\n");
3495 
3496 	return 1;
3497 }
3498 
3499 /*
3500  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3501  * Relies on (h-q[x] == x) being true for x such that
3502  * 0 <= x < MAX_REPLY_QUEUES.
3503  */
3504 static struct ctlr_info *queue_to_hba(u8 *queue)
3505 {
3506 	return container_of((queue - *queue), struct ctlr_info, q[0]);
3507 }
3508 
3509 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3510 {
3511 	struct ctlr_info *h = queue_to_hba(queue);
3512 	u8 q = *(u8 *) queue;
3513 	u32 raw_tag;
3514 
3515 	if (ignore_bogus_interrupt(h))
3516 		return IRQ_NONE;
3517 
3518 	if (interrupt_not_for_us(h))
3519 		return IRQ_NONE;
3520 	h->last_intr_timestamp = get_jiffies_64();
3521 	while (interrupt_pending(h)) {
3522 		raw_tag = get_next_completion(h, q);
3523 		while (raw_tag != FIFO_EMPTY)
3524 			raw_tag = next_command(h, q);
3525 	}
3526 	return IRQ_HANDLED;
3527 }
3528 
3529 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3530 {
3531 	struct ctlr_info *h = queue_to_hba(queue);
3532 	u32 raw_tag;
3533 	u8 q = *(u8 *) queue;
3534 
3535 	if (ignore_bogus_interrupt(h))
3536 		return IRQ_NONE;
3537 
3538 	h->last_intr_timestamp = get_jiffies_64();
3539 	raw_tag = get_next_completion(h, q);
3540 	while (raw_tag != FIFO_EMPTY)
3541 		raw_tag = next_command(h, q);
3542 	return IRQ_HANDLED;
3543 }
3544 
3545 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3546 {
3547 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
3548 	u32 raw_tag;
3549 	u8 q = *(u8 *) queue;
3550 
3551 	if (interrupt_not_for_us(h))
3552 		return IRQ_NONE;
3553 	h->last_intr_timestamp = get_jiffies_64();
3554 	while (interrupt_pending(h)) {
3555 		raw_tag = get_next_completion(h, q);
3556 		while (raw_tag != FIFO_EMPTY) {
3557 			if (likely(hpsa_tag_contains_index(raw_tag)))
3558 				process_indexed_cmd(h, raw_tag);
3559 			else
3560 				process_nonindexed_cmd(h, raw_tag);
3561 			raw_tag = next_command(h, q);
3562 		}
3563 	}
3564 	return IRQ_HANDLED;
3565 }
3566 
3567 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3568 {
3569 	struct ctlr_info *h = queue_to_hba(queue);
3570 	u32 raw_tag;
3571 	u8 q = *(u8 *) queue;
3572 
3573 	h->last_intr_timestamp = get_jiffies_64();
3574 	raw_tag = get_next_completion(h, q);
3575 	while (raw_tag != FIFO_EMPTY) {
3576 		if (likely(hpsa_tag_contains_index(raw_tag)))
3577 			process_indexed_cmd(h, raw_tag);
3578 		else
3579 			process_nonindexed_cmd(h, raw_tag);
3580 		raw_tag = next_command(h, q);
3581 	}
3582 	return IRQ_HANDLED;
3583 }
3584 
3585 /* Send a message CDB to the firmware. Careful, this only works
3586  * in simple mode, not performant mode due to the tag lookup.
3587  * We only ever use this immediately after a controller reset.
3588  */
3589 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3590 						unsigned char type)
3591 {
3592 	struct Command {
3593 		struct CommandListHeader CommandHeader;
3594 		struct RequestBlock Request;
3595 		struct ErrDescriptor ErrorDescriptor;
3596 	};
3597 	struct Command *cmd;
3598 	static const size_t cmd_sz = sizeof(*cmd) +
3599 					sizeof(cmd->ErrorDescriptor);
3600 	dma_addr_t paddr64;
3601 	uint32_t paddr32, tag;
3602 	void __iomem *vaddr;
3603 	int i, err;
3604 
3605 	vaddr = pci_ioremap_bar(pdev, 0);
3606 	if (vaddr == NULL)
3607 		return -ENOMEM;
3608 
3609 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3610 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3611 	 * memory.
3612 	 */
3613 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3614 	if (err) {
3615 		iounmap(vaddr);
3616 		return -ENOMEM;
3617 	}
3618 
3619 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3620 	if (cmd == NULL) {
3621 		iounmap(vaddr);
3622 		return -ENOMEM;
3623 	}
3624 
3625 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3626 	 * although there's no guarantee, we assume that the address is at
3627 	 * least 4-byte aligned (most likely, it's page-aligned).
3628 	 */
3629 	paddr32 = paddr64;
3630 
3631 	cmd->CommandHeader.ReplyQueue = 0;
3632 	cmd->CommandHeader.SGList = 0;
3633 	cmd->CommandHeader.SGTotal = 0;
3634 	cmd->CommandHeader.Tag.lower = paddr32;
3635 	cmd->CommandHeader.Tag.upper = 0;
3636 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3637 
3638 	cmd->Request.CDBLen = 16;
3639 	cmd->Request.Type.Type = TYPE_MSG;
3640 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3641 	cmd->Request.Type.Direction = XFER_NONE;
3642 	cmd->Request.Timeout = 0; /* Don't time out */
3643 	cmd->Request.CDB[0] = opcode;
3644 	cmd->Request.CDB[1] = type;
3645 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3646 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3647 	cmd->ErrorDescriptor.Addr.upper = 0;
3648 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3649 
3650 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3651 
3652 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3653 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3654 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3655 			break;
3656 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3657 	}
3658 
3659 	iounmap(vaddr);
3660 
3661 	/* we leak the DMA buffer here ... no choice since the controller could
3662 	 *  still complete the command.
3663 	 */
3664 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3665 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3666 			opcode, type);
3667 		return -ETIMEDOUT;
3668 	}
3669 
3670 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3671 
3672 	if (tag & HPSA_ERROR_BIT) {
3673 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3674 			opcode, type);
3675 		return -EIO;
3676 	}
3677 
3678 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3679 		opcode, type);
3680 	return 0;
3681 }
3682 
3683 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3684 
3685 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3686 	void * __iomem vaddr, u32 use_doorbell)
3687 {
3688 	u16 pmcsr;
3689 	int pos;
3690 
3691 	if (use_doorbell) {
3692 		/* For everything after the P600, the PCI power state method
3693 		 * of resetting the controller doesn't work, so we have this
3694 		 * other way using the doorbell register.
3695 		 */
3696 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3697 		writel(use_doorbell, vaddr + SA5_DOORBELL);
3698 	} else { /* Try to do it the PCI power state way */
3699 
3700 		/* Quoting from the Open CISS Specification: "The Power
3701 		 * Management Control/Status Register (CSR) controls the power
3702 		 * state of the device.  The normal operating state is D0,
3703 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3704 		 * the controller, place the interface device in D3 then to D0,
3705 		 * this causes a secondary PCI reset which will reset the
3706 		 * controller." */
3707 
3708 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3709 		if (pos == 0) {
3710 			dev_err(&pdev->dev,
3711 				"hpsa_reset_controller: "
3712 				"PCI PM not supported\n");
3713 			return -ENODEV;
3714 		}
3715 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3716 		/* enter the D3hot power management state */
3717 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3718 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3719 		pmcsr |= PCI_D3hot;
3720 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3721 
3722 		msleep(500);
3723 
3724 		/* enter the D0 power management state */
3725 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3726 		pmcsr |= PCI_D0;
3727 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3728 
3729 		/*
3730 		 * The P600 requires a small delay when changing states.
3731 		 * Otherwise we may think the board did not reset and we bail.
3732 		 * This for kdump only and is particular to the P600.
3733 		 */
3734 		msleep(500);
3735 	}
3736 	return 0;
3737 }
3738 
3739 static __devinit void init_driver_version(char *driver_version, int len)
3740 {
3741 	memset(driver_version, 0, len);
3742 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3743 }
3744 
3745 static __devinit int write_driver_ver_to_cfgtable(
3746 	struct CfgTable __iomem *cfgtable)
3747 {
3748 	char *driver_version;
3749 	int i, size = sizeof(cfgtable->driver_version);
3750 
3751 	driver_version = kmalloc(size, GFP_KERNEL);
3752 	if (!driver_version)
3753 		return -ENOMEM;
3754 
3755 	init_driver_version(driver_version, size);
3756 	for (i = 0; i < size; i++)
3757 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3758 	kfree(driver_version);
3759 	return 0;
3760 }
3761 
3762 static __devinit void read_driver_ver_from_cfgtable(
3763 	struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3764 {
3765 	int i;
3766 
3767 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3768 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3769 }
3770 
3771 static __devinit int controller_reset_failed(
3772 	struct CfgTable __iomem *cfgtable)
3773 {
3774 
3775 	char *driver_ver, *old_driver_ver;
3776 	int rc, size = sizeof(cfgtable->driver_version);
3777 
3778 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3779 	if (!old_driver_ver)
3780 		return -ENOMEM;
3781 	driver_ver = old_driver_ver + size;
3782 
3783 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3784 	 * should have been changed, otherwise we know the reset failed.
3785 	 */
3786 	init_driver_version(old_driver_ver, size);
3787 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3788 	rc = !memcmp(driver_ver, old_driver_ver, size);
3789 	kfree(old_driver_ver);
3790 	return rc;
3791 }
3792 /* This does a hard reset of the controller using PCI power management
3793  * states or the using the doorbell register.
3794  */
3795 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3796 {
3797 	u64 cfg_offset;
3798 	u32 cfg_base_addr;
3799 	u64 cfg_base_addr_index;
3800 	void __iomem *vaddr;
3801 	unsigned long paddr;
3802 	u32 misc_fw_support;
3803 	int rc;
3804 	struct CfgTable __iomem *cfgtable;
3805 	u32 use_doorbell;
3806 	u32 board_id;
3807 	u16 command_register;
3808 
3809 	/* For controllers as old as the P600, this is very nearly
3810 	 * the same thing as
3811 	 *
3812 	 * pci_save_state(pci_dev);
3813 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3814 	 * pci_set_power_state(pci_dev, PCI_D0);
3815 	 * pci_restore_state(pci_dev);
3816 	 *
3817 	 * For controllers newer than the P600, the pci power state
3818 	 * method of resetting doesn't work so we have another way
3819 	 * using the doorbell register.
3820 	 */
3821 
3822 	rc = hpsa_lookup_board_id(pdev, &board_id);
3823 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3824 		dev_warn(&pdev->dev, "Not resetting device.\n");
3825 		return -ENODEV;
3826 	}
3827 
3828 	/* if controller is soft- but not hard resettable... */
3829 	if (!ctlr_is_hard_resettable(board_id))
3830 		return -ENOTSUPP; /* try soft reset later. */
3831 
3832 	/* Save the PCI command register */
3833 	pci_read_config_word(pdev, 4, &command_register);
3834 	/* Turn the board off.  This is so that later pci_restore_state()
3835 	 * won't turn the board on before the rest of config space is ready.
3836 	 */
3837 	pci_disable_device(pdev);
3838 	pci_save_state(pdev);
3839 
3840 	/* find the first memory BAR, so we can find the cfg table */
3841 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3842 	if (rc)
3843 		return rc;
3844 	vaddr = remap_pci_mem(paddr, 0x250);
3845 	if (!vaddr)
3846 		return -ENOMEM;
3847 
3848 	/* find cfgtable in order to check if reset via doorbell is supported */
3849 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3850 					&cfg_base_addr_index, &cfg_offset);
3851 	if (rc)
3852 		goto unmap_vaddr;
3853 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3854 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3855 	if (!cfgtable) {
3856 		rc = -ENOMEM;
3857 		goto unmap_vaddr;
3858 	}
3859 	rc = write_driver_ver_to_cfgtable(cfgtable);
3860 	if (rc)
3861 		goto unmap_vaddr;
3862 
3863 	/* If reset via doorbell register is supported, use that.
3864 	 * There are two such methods.  Favor the newest method.
3865 	 */
3866 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3867 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3868 	if (use_doorbell) {
3869 		use_doorbell = DOORBELL_CTLR_RESET2;
3870 	} else {
3871 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3872 		if (use_doorbell) {
3873 			dev_warn(&pdev->dev, "Soft reset not supported. "
3874 				"Firmware update is required.\n");
3875 			rc = -ENOTSUPP; /* try soft reset */
3876 			goto unmap_cfgtable;
3877 		}
3878 	}
3879 
3880 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3881 	if (rc)
3882 		goto unmap_cfgtable;
3883 
3884 	pci_restore_state(pdev);
3885 	rc = pci_enable_device(pdev);
3886 	if (rc) {
3887 		dev_warn(&pdev->dev, "failed to enable device.\n");
3888 		goto unmap_cfgtable;
3889 	}
3890 	pci_write_config_word(pdev, 4, command_register);
3891 
3892 	/* Some devices (notably the HP Smart Array 5i Controller)
3893 	   need a little pause here */
3894 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3895 
3896 	/* Wait for board to become not ready, then ready. */
3897 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3898 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3899 	if (rc) {
3900 		dev_warn(&pdev->dev,
3901 			"failed waiting for board to reset."
3902 			" Will try soft reset.\n");
3903 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3904 		goto unmap_cfgtable;
3905 	}
3906 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3907 	if (rc) {
3908 		dev_warn(&pdev->dev,
3909 			"failed waiting for board to become ready "
3910 			"after hard reset\n");
3911 		goto unmap_cfgtable;
3912 	}
3913 
3914 	rc = controller_reset_failed(vaddr);
3915 	if (rc < 0)
3916 		goto unmap_cfgtable;
3917 	if (rc) {
3918 		dev_warn(&pdev->dev, "Unable to successfully reset "
3919 			"controller. Will try soft reset.\n");
3920 		rc = -ENOTSUPP;
3921 	} else {
3922 		dev_info(&pdev->dev, "board ready after hard reset.\n");
3923 	}
3924 
3925 unmap_cfgtable:
3926 	iounmap(cfgtable);
3927 
3928 unmap_vaddr:
3929 	iounmap(vaddr);
3930 	return rc;
3931 }
3932 
3933 /*
3934  *  We cannot read the structure directly, for portability we must use
3935  *   the io functions.
3936  *   This is for debug only.
3937  */
3938 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3939 {
3940 #ifdef HPSA_DEBUG
3941 	int i;
3942 	char temp_name[17];
3943 
3944 	dev_info(dev, "Controller Configuration information\n");
3945 	dev_info(dev, "------------------------------------\n");
3946 	for (i = 0; i < 4; i++)
3947 		temp_name[i] = readb(&(tb->Signature[i]));
3948 	temp_name[4] = '\0';
3949 	dev_info(dev, "   Signature = %s\n", temp_name);
3950 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3951 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3952 	       readl(&(tb->TransportSupport)));
3953 	dev_info(dev, "   Transport methods active = 0x%x\n",
3954 	       readl(&(tb->TransportActive)));
3955 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3956 	       readl(&(tb->HostWrite.TransportRequest)));
3957 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3958 	       readl(&(tb->HostWrite.CoalIntDelay)));
3959 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3960 	       readl(&(tb->HostWrite.CoalIntCount)));
3961 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3962 	       readl(&(tb->CmdsOutMax)));
3963 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3964 	for (i = 0; i < 16; i++)
3965 		temp_name[i] = readb(&(tb->ServerName[i]));
3966 	temp_name[16] = '\0';
3967 	dev_info(dev, "   Server Name = %s\n", temp_name);
3968 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3969 		readl(&(tb->HeartBeat)));
3970 #endif				/* HPSA_DEBUG */
3971 }
3972 
3973 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3974 {
3975 	int i, offset, mem_type, bar_type;
3976 
3977 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3978 		return 0;
3979 	offset = 0;
3980 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3981 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3982 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3983 			offset += 4;
3984 		else {
3985 			mem_type = pci_resource_flags(pdev, i) &
3986 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3987 			switch (mem_type) {
3988 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3989 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3990 				offset += 4;	/* 32 bit */
3991 				break;
3992 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3993 				offset += 8;
3994 				break;
3995 			default:	/* reserved in PCI 2.2 */
3996 				dev_warn(&pdev->dev,
3997 				       "base address is invalid\n");
3998 				return -1;
3999 				break;
4000 			}
4001 		}
4002 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4003 			return i + 1;
4004 	}
4005 	return -1;
4006 }
4007 
4008 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4009  * controllers that are capable. If not, we use IO-APIC mode.
4010  */
4011 
4012 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
4013 {
4014 #ifdef CONFIG_PCI_MSI
4015 	int err, i;
4016 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4017 
4018 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4019 		hpsa_msix_entries[i].vector = 0;
4020 		hpsa_msix_entries[i].entry = i;
4021 	}
4022 
4023 	/* Some boards advertise MSI but don't really support it */
4024 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4025 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4026 		goto default_int_mode;
4027 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4028 		dev_info(&h->pdev->dev, "MSIX\n");
4029 		err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4030 						MAX_REPLY_QUEUES);
4031 		if (!err) {
4032 			for (i = 0; i < MAX_REPLY_QUEUES; i++)
4033 				h->intr[i] = hpsa_msix_entries[i].vector;
4034 			h->msix_vector = 1;
4035 			return;
4036 		}
4037 		if (err > 0) {
4038 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4039 			       "available\n", err);
4040 			goto default_int_mode;
4041 		} else {
4042 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4043 			       err);
4044 			goto default_int_mode;
4045 		}
4046 	}
4047 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4048 		dev_info(&h->pdev->dev, "MSI\n");
4049 		if (!pci_enable_msi(h->pdev))
4050 			h->msi_vector = 1;
4051 		else
4052 			dev_warn(&h->pdev->dev, "MSI init failed\n");
4053 	}
4054 default_int_mode:
4055 #endif				/* CONFIG_PCI_MSI */
4056 	/* if we get here we're going to use the default interrupt mode */
4057 	h->intr[h->intr_mode] = h->pdev->irq;
4058 }
4059 
4060 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4061 {
4062 	int i;
4063 	u32 subsystem_vendor_id, subsystem_device_id;
4064 
4065 	subsystem_vendor_id = pdev->subsystem_vendor;
4066 	subsystem_device_id = pdev->subsystem_device;
4067 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4068 		    subsystem_vendor_id;
4069 
4070 	for (i = 0; i < ARRAY_SIZE(products); i++)
4071 		if (*board_id == products[i].board_id)
4072 			return i;
4073 
4074 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4075 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4076 		!hpsa_allow_any) {
4077 		dev_warn(&pdev->dev, "unrecognized board ID: "
4078 			"0x%08x, ignoring.\n", *board_id);
4079 			return -ENODEV;
4080 	}
4081 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4082 }
4083 
4084 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4085 	unsigned long *memory_bar)
4086 {
4087 	int i;
4088 
4089 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4090 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4091 			/* addressing mode bits already removed */
4092 			*memory_bar = pci_resource_start(pdev, i);
4093 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4094 				*memory_bar);
4095 			return 0;
4096 		}
4097 	dev_warn(&pdev->dev, "no memory BAR found\n");
4098 	return -ENODEV;
4099 }
4100 
4101 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
4102 	void __iomem *vaddr, int wait_for_ready)
4103 {
4104 	int i, iterations;
4105 	u32 scratchpad;
4106 	if (wait_for_ready)
4107 		iterations = HPSA_BOARD_READY_ITERATIONS;
4108 	else
4109 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4110 
4111 	for (i = 0; i < iterations; i++) {
4112 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4113 		if (wait_for_ready) {
4114 			if (scratchpad == HPSA_FIRMWARE_READY)
4115 				return 0;
4116 		} else {
4117 			if (scratchpad != HPSA_FIRMWARE_READY)
4118 				return 0;
4119 		}
4120 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4121 	}
4122 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4123 	return -ENODEV;
4124 }
4125 
4126 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
4127 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4128 	u64 *cfg_offset)
4129 {
4130 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4131 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4132 	*cfg_base_addr &= (u32) 0x0000ffff;
4133 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4134 	if (*cfg_base_addr_index == -1) {
4135 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4136 		return -ENODEV;
4137 	}
4138 	return 0;
4139 }
4140 
4141 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
4142 {
4143 	u64 cfg_offset;
4144 	u32 cfg_base_addr;
4145 	u64 cfg_base_addr_index;
4146 	u32 trans_offset;
4147 	int rc;
4148 
4149 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4150 		&cfg_base_addr_index, &cfg_offset);
4151 	if (rc)
4152 		return rc;
4153 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4154 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4155 	if (!h->cfgtable)
4156 		return -ENOMEM;
4157 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4158 	if (rc)
4159 		return rc;
4160 	/* Find performant mode table. */
4161 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4162 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4163 				cfg_base_addr_index)+cfg_offset+trans_offset,
4164 				sizeof(*h->transtable));
4165 	if (!h->transtable)
4166 		return -ENOMEM;
4167 	return 0;
4168 }
4169 
4170 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4171 {
4172 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4173 
4174 	/* Limit commands in memory limited kdump scenario. */
4175 	if (reset_devices && h->max_commands > 32)
4176 		h->max_commands = 32;
4177 
4178 	if (h->max_commands < 16) {
4179 		dev_warn(&h->pdev->dev, "Controller reports "
4180 			"max supported commands of %d, an obvious lie. "
4181 			"Using 16.  Ensure that firmware is up to date.\n",
4182 			h->max_commands);
4183 		h->max_commands = 16;
4184 	}
4185 }
4186 
4187 /* Interrogate the hardware for some limits:
4188  * max commands, max SG elements without chaining, and with chaining,
4189  * SG chain block size, etc.
4190  */
4191 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
4192 {
4193 	hpsa_get_max_perf_mode_cmds(h);
4194 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4195 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4196 	/*
4197 	 * Limit in-command s/g elements to 32 save dma'able memory.
4198 	 * Howvever spec says if 0, use 31
4199 	 */
4200 	h->max_cmd_sg_entries = 31;
4201 	if (h->maxsgentries > 512) {
4202 		h->max_cmd_sg_entries = 32;
4203 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4204 		h->maxsgentries--; /* save one for chain pointer */
4205 	} else {
4206 		h->maxsgentries = 31; /* default to traditional values */
4207 		h->chainsize = 0;
4208 	}
4209 
4210 	/* Find out what task management functions are supported and cache */
4211 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4212 }
4213 
4214 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4215 {
4216 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4217 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4218 		return false;
4219 	}
4220 	return true;
4221 }
4222 
4223 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4224 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4225 {
4226 #ifdef CONFIG_X86
4227 	u32 prefetch;
4228 
4229 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4230 	prefetch |= 0x100;
4231 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4232 #endif
4233 }
4234 
4235 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4236  * in a prefetch beyond physical memory.
4237  */
4238 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4239 {
4240 	u32 dma_prefetch;
4241 
4242 	if (h->board_id != 0x3225103C)
4243 		return;
4244 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4245 	dma_prefetch |= 0x8000;
4246 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4247 }
4248 
4249 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4250 {
4251 	int i;
4252 	u32 doorbell_value;
4253 	unsigned long flags;
4254 
4255 	/* under certain very rare conditions, this can take awhile.
4256 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4257 	 * as we enter this code.)
4258 	 */
4259 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4260 		spin_lock_irqsave(&h->lock, flags);
4261 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4262 		spin_unlock_irqrestore(&h->lock, flags);
4263 		if (!(doorbell_value & CFGTBL_ChangeReq))
4264 			break;
4265 		/* delay and try again */
4266 		usleep_range(10000, 20000);
4267 	}
4268 }
4269 
4270 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
4271 {
4272 	u32 trans_support;
4273 
4274 	trans_support = readl(&(h->cfgtable->TransportSupport));
4275 	if (!(trans_support & SIMPLE_MODE))
4276 		return -ENOTSUPP;
4277 
4278 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4279 	/* Update the field, and then ring the doorbell */
4280 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4281 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4282 	hpsa_wait_for_mode_change_ack(h);
4283 	print_cfg_table(&h->pdev->dev, h->cfgtable);
4284 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4285 		dev_warn(&h->pdev->dev,
4286 			"unable to get board into simple mode\n");
4287 		return -ENODEV;
4288 	}
4289 	h->transMethod = CFGTBL_Trans_Simple;
4290 	return 0;
4291 }
4292 
4293 static int __devinit hpsa_pci_init(struct ctlr_info *h)
4294 {
4295 	int prod_index, err;
4296 
4297 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4298 	if (prod_index < 0)
4299 		return -ENODEV;
4300 	h->product_name = products[prod_index].product_name;
4301 	h->access = *(products[prod_index].access);
4302 
4303 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4304 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4305 
4306 	err = pci_enable_device(h->pdev);
4307 	if (err) {
4308 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4309 		return err;
4310 	}
4311 
4312 	/* Enable bus mastering (pci_disable_device may disable this) */
4313 	pci_set_master(h->pdev);
4314 
4315 	err = pci_request_regions(h->pdev, HPSA);
4316 	if (err) {
4317 		dev_err(&h->pdev->dev,
4318 			"cannot obtain PCI resources, aborting\n");
4319 		return err;
4320 	}
4321 	hpsa_interrupt_mode(h);
4322 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4323 	if (err)
4324 		goto err_out_free_res;
4325 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4326 	if (!h->vaddr) {
4327 		err = -ENOMEM;
4328 		goto err_out_free_res;
4329 	}
4330 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4331 	if (err)
4332 		goto err_out_free_res;
4333 	err = hpsa_find_cfgtables(h);
4334 	if (err)
4335 		goto err_out_free_res;
4336 	hpsa_find_board_params(h);
4337 
4338 	if (!hpsa_CISS_signature_present(h)) {
4339 		err = -ENODEV;
4340 		goto err_out_free_res;
4341 	}
4342 	hpsa_enable_scsi_prefetch(h);
4343 	hpsa_p600_dma_prefetch_quirk(h);
4344 	err = hpsa_enter_simple_mode(h);
4345 	if (err)
4346 		goto err_out_free_res;
4347 	return 0;
4348 
4349 err_out_free_res:
4350 	if (h->transtable)
4351 		iounmap(h->transtable);
4352 	if (h->cfgtable)
4353 		iounmap(h->cfgtable);
4354 	if (h->vaddr)
4355 		iounmap(h->vaddr);
4356 	pci_disable_device(h->pdev);
4357 	pci_release_regions(h->pdev);
4358 	return err;
4359 }
4360 
4361 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
4362 {
4363 	int rc;
4364 
4365 #define HBA_INQUIRY_BYTE_COUNT 64
4366 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4367 	if (!h->hba_inquiry_data)
4368 		return;
4369 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4370 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4371 	if (rc != 0) {
4372 		kfree(h->hba_inquiry_data);
4373 		h->hba_inquiry_data = NULL;
4374 	}
4375 }
4376 
4377 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4378 {
4379 	int rc, i;
4380 
4381 	if (!reset_devices)
4382 		return 0;
4383 
4384 	/* Reset the controller with a PCI power-cycle or via doorbell */
4385 	rc = hpsa_kdump_hard_reset_controller(pdev);
4386 
4387 	/* -ENOTSUPP here means we cannot reset the controller
4388 	 * but it's already (and still) up and running in
4389 	 * "performant mode".  Or, it might be 640x, which can't reset
4390 	 * due to concerns about shared bbwc between 6402/6404 pair.
4391 	 */
4392 	if (rc == -ENOTSUPP)
4393 		return rc; /* just try to do the kdump anyhow. */
4394 	if (rc)
4395 		return -ENODEV;
4396 
4397 	/* Now try to get the controller to respond to a no-op */
4398 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4399 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4400 		if (hpsa_noop(pdev) == 0)
4401 			break;
4402 		else
4403 			dev_warn(&pdev->dev, "no-op failed%s\n",
4404 					(i < 11 ? "; re-trying" : ""));
4405 	}
4406 	return 0;
4407 }
4408 
4409 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4410 {
4411 	h->cmd_pool_bits = kzalloc(
4412 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4413 		sizeof(unsigned long), GFP_KERNEL);
4414 	h->cmd_pool = pci_alloc_consistent(h->pdev,
4415 		    h->nr_cmds * sizeof(*h->cmd_pool),
4416 		    &(h->cmd_pool_dhandle));
4417 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4418 		    h->nr_cmds * sizeof(*h->errinfo_pool),
4419 		    &(h->errinfo_pool_dhandle));
4420 	if ((h->cmd_pool_bits == NULL)
4421 	    || (h->cmd_pool == NULL)
4422 	    || (h->errinfo_pool == NULL)) {
4423 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4424 		return -ENOMEM;
4425 	}
4426 	return 0;
4427 }
4428 
4429 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4430 {
4431 	kfree(h->cmd_pool_bits);
4432 	if (h->cmd_pool)
4433 		pci_free_consistent(h->pdev,
4434 			    h->nr_cmds * sizeof(struct CommandList),
4435 			    h->cmd_pool, h->cmd_pool_dhandle);
4436 	if (h->errinfo_pool)
4437 		pci_free_consistent(h->pdev,
4438 			    h->nr_cmds * sizeof(struct ErrorInfo),
4439 			    h->errinfo_pool,
4440 			    h->errinfo_pool_dhandle);
4441 }
4442 
4443 static int hpsa_request_irq(struct ctlr_info *h,
4444 	irqreturn_t (*msixhandler)(int, void *),
4445 	irqreturn_t (*intxhandler)(int, void *))
4446 {
4447 	int rc, i;
4448 
4449 	/*
4450 	 * initialize h->q[x] = x so that interrupt handlers know which
4451 	 * queue to process.
4452 	 */
4453 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
4454 		h->q[i] = (u8) i;
4455 
4456 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4457 		/* If performant mode and MSI-X, use multiple reply queues */
4458 		for (i = 0; i < MAX_REPLY_QUEUES; i++)
4459 			rc = request_irq(h->intr[i], msixhandler,
4460 					0, h->devname,
4461 					&h->q[i]);
4462 	} else {
4463 		/* Use single reply pool */
4464 		if (h->msix_vector || h->msi_vector) {
4465 			rc = request_irq(h->intr[h->intr_mode],
4466 				msixhandler, 0, h->devname,
4467 				&h->q[h->intr_mode]);
4468 		} else {
4469 			rc = request_irq(h->intr[h->intr_mode],
4470 				intxhandler, IRQF_SHARED, h->devname,
4471 				&h->q[h->intr_mode]);
4472 		}
4473 	}
4474 	if (rc) {
4475 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4476 		       h->intr[h->intr_mode], h->devname);
4477 		return -ENODEV;
4478 	}
4479 	return 0;
4480 }
4481 
4482 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4483 {
4484 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4485 		HPSA_RESET_TYPE_CONTROLLER)) {
4486 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4487 		return -EIO;
4488 	}
4489 
4490 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4491 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4492 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4493 		return -1;
4494 	}
4495 
4496 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4497 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4498 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4499 			"after soft reset.\n");
4500 		return -1;
4501 	}
4502 
4503 	return 0;
4504 }
4505 
4506 static void free_irqs(struct ctlr_info *h)
4507 {
4508 	int i;
4509 
4510 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4511 		/* Single reply queue, only one irq to free */
4512 		i = h->intr_mode;
4513 		free_irq(h->intr[i], &h->q[i]);
4514 		return;
4515 	}
4516 
4517 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
4518 		free_irq(h->intr[i], &h->q[i]);
4519 }
4520 
4521 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4522 {
4523 	free_irqs(h);
4524 #ifdef CONFIG_PCI_MSI
4525 	if (h->msix_vector) {
4526 		if (h->pdev->msix_enabled)
4527 			pci_disable_msix(h->pdev);
4528 	} else if (h->msi_vector) {
4529 		if (h->pdev->msi_enabled)
4530 			pci_disable_msi(h->pdev);
4531 	}
4532 #endif /* CONFIG_PCI_MSI */
4533 }
4534 
4535 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4536 {
4537 	hpsa_free_irqs_and_disable_msix(h);
4538 	hpsa_free_sg_chain_blocks(h);
4539 	hpsa_free_cmd_pool(h);
4540 	kfree(h->blockFetchTable);
4541 	pci_free_consistent(h->pdev, h->reply_pool_size,
4542 		h->reply_pool, h->reply_pool_dhandle);
4543 	if (h->vaddr)
4544 		iounmap(h->vaddr);
4545 	if (h->transtable)
4546 		iounmap(h->transtable);
4547 	if (h->cfgtable)
4548 		iounmap(h->cfgtable);
4549 	pci_release_regions(h->pdev);
4550 	kfree(h);
4551 }
4552 
4553 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4554 {
4555 	assert_spin_locked(&lockup_detector_lock);
4556 	if (!hpsa_lockup_detector)
4557 		return;
4558 	if (h->lockup_detected)
4559 		return; /* already stopped the lockup detector */
4560 	list_del(&h->lockup_list);
4561 }
4562 
4563 /* Called when controller lockup detected. */
4564 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4565 {
4566 	struct CommandList *c = NULL;
4567 
4568 	assert_spin_locked(&h->lock);
4569 	/* Mark all outstanding commands as failed and complete them. */
4570 	while (!list_empty(list)) {
4571 		c = list_entry(list->next, struct CommandList, list);
4572 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4573 		finish_cmd(c);
4574 	}
4575 }
4576 
4577 static void controller_lockup_detected(struct ctlr_info *h)
4578 {
4579 	unsigned long flags;
4580 
4581 	assert_spin_locked(&lockup_detector_lock);
4582 	remove_ctlr_from_lockup_detector_list(h);
4583 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4584 	spin_lock_irqsave(&h->lock, flags);
4585 	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4586 	spin_unlock_irqrestore(&h->lock, flags);
4587 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4588 			h->lockup_detected);
4589 	pci_disable_device(h->pdev);
4590 	spin_lock_irqsave(&h->lock, flags);
4591 	fail_all_cmds_on_list(h, &h->cmpQ);
4592 	fail_all_cmds_on_list(h, &h->reqQ);
4593 	spin_unlock_irqrestore(&h->lock, flags);
4594 }
4595 
4596 static void detect_controller_lockup(struct ctlr_info *h)
4597 {
4598 	u64 now;
4599 	u32 heartbeat;
4600 	unsigned long flags;
4601 
4602 	assert_spin_locked(&lockup_detector_lock);
4603 	now = get_jiffies_64();
4604 	/* If we've received an interrupt recently, we're ok. */
4605 	if (time_after64(h->last_intr_timestamp +
4606 				(h->heartbeat_sample_interval), now))
4607 		return;
4608 
4609 	/*
4610 	 * If we've already checked the heartbeat recently, we're ok.
4611 	 * This could happen if someone sends us a signal. We
4612 	 * otherwise don't care about signals in this thread.
4613 	 */
4614 	if (time_after64(h->last_heartbeat_timestamp +
4615 				(h->heartbeat_sample_interval), now))
4616 		return;
4617 
4618 	/* If heartbeat has not changed since we last looked, we're not ok. */
4619 	spin_lock_irqsave(&h->lock, flags);
4620 	heartbeat = readl(&h->cfgtable->HeartBeat);
4621 	spin_unlock_irqrestore(&h->lock, flags);
4622 	if (h->last_heartbeat == heartbeat) {
4623 		controller_lockup_detected(h);
4624 		return;
4625 	}
4626 
4627 	/* We're ok. */
4628 	h->last_heartbeat = heartbeat;
4629 	h->last_heartbeat_timestamp = now;
4630 }
4631 
4632 static int detect_controller_lockup_thread(void *notused)
4633 {
4634 	struct ctlr_info *h;
4635 	unsigned long flags;
4636 
4637 	while (1) {
4638 		struct list_head *this, *tmp;
4639 
4640 		schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4641 		if (kthread_should_stop())
4642 			break;
4643 		spin_lock_irqsave(&lockup_detector_lock, flags);
4644 		list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4645 			h = list_entry(this, struct ctlr_info, lockup_list);
4646 			detect_controller_lockup(h);
4647 		}
4648 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4649 	}
4650 	return 0;
4651 }
4652 
4653 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4654 {
4655 	unsigned long flags;
4656 
4657 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4658 	spin_lock_irqsave(&lockup_detector_lock, flags);
4659 	list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4660 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4661 }
4662 
4663 static void start_controller_lockup_detector(struct ctlr_info *h)
4664 {
4665 	/* Start the lockup detector thread if not already started */
4666 	if (!hpsa_lockup_detector) {
4667 		spin_lock_init(&lockup_detector_lock);
4668 		hpsa_lockup_detector =
4669 			kthread_run(detect_controller_lockup_thread,
4670 						NULL, HPSA);
4671 	}
4672 	if (!hpsa_lockup_detector) {
4673 		dev_warn(&h->pdev->dev,
4674 			"Could not start lockup detector thread\n");
4675 		return;
4676 	}
4677 	add_ctlr_to_lockup_detector_list(h);
4678 }
4679 
4680 static void stop_controller_lockup_detector(struct ctlr_info *h)
4681 {
4682 	unsigned long flags;
4683 
4684 	spin_lock_irqsave(&lockup_detector_lock, flags);
4685 	remove_ctlr_from_lockup_detector_list(h);
4686 	/* If the list of ctlr's to monitor is empty, stop the thread */
4687 	if (list_empty(&hpsa_ctlr_list)) {
4688 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4689 		kthread_stop(hpsa_lockup_detector);
4690 		spin_lock_irqsave(&lockup_detector_lock, flags);
4691 		hpsa_lockup_detector = NULL;
4692 	}
4693 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4694 }
4695 
4696 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4697 				    const struct pci_device_id *ent)
4698 {
4699 	int dac, rc;
4700 	struct ctlr_info *h;
4701 	int try_soft_reset = 0;
4702 	unsigned long flags;
4703 
4704 	if (number_of_controllers == 0)
4705 		printk(KERN_INFO DRIVER_NAME "\n");
4706 
4707 	rc = hpsa_init_reset_devices(pdev);
4708 	if (rc) {
4709 		if (rc != -ENOTSUPP)
4710 			return rc;
4711 		/* If the reset fails in a particular way (it has no way to do
4712 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4713 		 * a soft reset once we get the controller configured up to the
4714 		 * point that it can accept a command.
4715 		 */
4716 		try_soft_reset = 1;
4717 		rc = 0;
4718 	}
4719 
4720 reinit_after_soft_reset:
4721 
4722 	/* Command structures must be aligned on a 32-byte boundary because
4723 	 * the 5 lower bits of the address are used by the hardware. and by
4724 	 * the driver.  See comments in hpsa.h for more info.
4725 	 */
4726 #define COMMANDLIST_ALIGNMENT 32
4727 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4728 	h = kzalloc(sizeof(*h), GFP_KERNEL);
4729 	if (!h)
4730 		return -ENOMEM;
4731 
4732 	h->pdev = pdev;
4733 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4734 	INIT_LIST_HEAD(&h->cmpQ);
4735 	INIT_LIST_HEAD(&h->reqQ);
4736 	spin_lock_init(&h->lock);
4737 	spin_lock_init(&h->scan_lock);
4738 	rc = hpsa_pci_init(h);
4739 	if (rc != 0)
4740 		goto clean1;
4741 
4742 	sprintf(h->devname, HPSA "%d", number_of_controllers);
4743 	h->ctlr = number_of_controllers;
4744 	number_of_controllers++;
4745 
4746 	/* configure PCI DMA stuff */
4747 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4748 	if (rc == 0) {
4749 		dac = 1;
4750 	} else {
4751 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4752 		if (rc == 0) {
4753 			dac = 0;
4754 		} else {
4755 			dev_err(&pdev->dev, "no suitable DMA available\n");
4756 			goto clean1;
4757 		}
4758 	}
4759 
4760 	/* make sure the board interrupts are off */
4761 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4762 
4763 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4764 		goto clean2;
4765 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4766 	       h->devname, pdev->device,
4767 	       h->intr[h->intr_mode], dac ? "" : " not");
4768 	if (hpsa_allocate_cmd_pool(h))
4769 		goto clean4;
4770 	if (hpsa_allocate_sg_chain_blocks(h))
4771 		goto clean4;
4772 	init_waitqueue_head(&h->scan_wait_queue);
4773 	h->scan_finished = 1; /* no scan currently in progress */
4774 
4775 	pci_set_drvdata(pdev, h);
4776 	h->ndevices = 0;
4777 	h->scsi_host = NULL;
4778 	spin_lock_init(&h->devlock);
4779 	hpsa_put_ctlr_into_performant_mode(h);
4780 
4781 	/* At this point, the controller is ready to take commands.
4782 	 * Now, if reset_devices and the hard reset didn't work, try
4783 	 * the soft reset and see if that works.
4784 	 */
4785 	if (try_soft_reset) {
4786 
4787 		/* This is kind of gross.  We may or may not get a completion
4788 		 * from the soft reset command, and if we do, then the value
4789 		 * from the fifo may or may not be valid.  So, we wait 10 secs
4790 		 * after the reset throwing away any completions we get during
4791 		 * that time.  Unregister the interrupt handler and register
4792 		 * fake ones to scoop up any residual completions.
4793 		 */
4794 		spin_lock_irqsave(&h->lock, flags);
4795 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4796 		spin_unlock_irqrestore(&h->lock, flags);
4797 		free_irqs(h);
4798 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4799 					hpsa_intx_discard_completions);
4800 		if (rc) {
4801 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4802 				"soft reset.\n");
4803 			goto clean4;
4804 		}
4805 
4806 		rc = hpsa_kdump_soft_reset(h);
4807 		if (rc)
4808 			/* Neither hard nor soft reset worked, we're hosed. */
4809 			goto clean4;
4810 
4811 		dev_info(&h->pdev->dev, "Board READY.\n");
4812 		dev_info(&h->pdev->dev,
4813 			"Waiting for stale completions to drain.\n");
4814 		h->access.set_intr_mask(h, HPSA_INTR_ON);
4815 		msleep(10000);
4816 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4817 
4818 		rc = controller_reset_failed(h->cfgtable);
4819 		if (rc)
4820 			dev_info(&h->pdev->dev,
4821 				"Soft reset appears to have failed.\n");
4822 
4823 		/* since the controller's reset, we have to go back and re-init
4824 		 * everything.  Easiest to just forget what we've done and do it
4825 		 * all over again.
4826 		 */
4827 		hpsa_undo_allocations_after_kdump_soft_reset(h);
4828 		try_soft_reset = 0;
4829 		if (rc)
4830 			/* don't go to clean4, we already unallocated */
4831 			return -ENODEV;
4832 
4833 		goto reinit_after_soft_reset;
4834 	}
4835 
4836 	/* Turn the interrupts on so we can service requests */
4837 	h->access.set_intr_mask(h, HPSA_INTR_ON);
4838 
4839 	hpsa_hba_inquiry(h);
4840 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4841 	start_controller_lockup_detector(h);
4842 	return 1;
4843 
4844 clean4:
4845 	hpsa_free_sg_chain_blocks(h);
4846 	hpsa_free_cmd_pool(h);
4847 	free_irqs(h);
4848 clean2:
4849 clean1:
4850 	kfree(h);
4851 	return rc;
4852 }
4853 
4854 static void hpsa_flush_cache(struct ctlr_info *h)
4855 {
4856 	char *flush_buf;
4857 	struct CommandList *c;
4858 
4859 	flush_buf = kzalloc(4, GFP_KERNEL);
4860 	if (!flush_buf)
4861 		return;
4862 
4863 	c = cmd_special_alloc(h);
4864 	if (!c) {
4865 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4866 		goto out_of_memory;
4867 	}
4868 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4869 		RAID_CTLR_LUNID, TYPE_CMD);
4870 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4871 	if (c->err_info->CommandStatus != 0)
4872 		dev_warn(&h->pdev->dev,
4873 			"error flushing cache on controller\n");
4874 	cmd_special_free(h, c);
4875 out_of_memory:
4876 	kfree(flush_buf);
4877 }
4878 
4879 static void hpsa_shutdown(struct pci_dev *pdev)
4880 {
4881 	struct ctlr_info *h;
4882 
4883 	h = pci_get_drvdata(pdev);
4884 	/* Turn board interrupts off  and send the flush cache command
4885 	 * sendcmd will turn off interrupt, and send the flush...
4886 	 * To write all data in the battery backed cache to disks
4887 	 */
4888 	hpsa_flush_cache(h);
4889 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4890 	hpsa_free_irqs_and_disable_msix(h);
4891 }
4892 
4893 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4894 {
4895 	int i;
4896 
4897 	for (i = 0; i < h->ndevices; i++)
4898 		kfree(h->dev[i]);
4899 }
4900 
4901 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4902 {
4903 	struct ctlr_info *h;
4904 
4905 	if (pci_get_drvdata(pdev) == NULL) {
4906 		dev_err(&pdev->dev, "unable to remove device\n");
4907 		return;
4908 	}
4909 	h = pci_get_drvdata(pdev);
4910 	stop_controller_lockup_detector(h);
4911 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
4912 	hpsa_shutdown(pdev);
4913 	iounmap(h->vaddr);
4914 	iounmap(h->transtable);
4915 	iounmap(h->cfgtable);
4916 	hpsa_free_device_info(h);
4917 	hpsa_free_sg_chain_blocks(h);
4918 	pci_free_consistent(h->pdev,
4919 		h->nr_cmds * sizeof(struct CommandList),
4920 		h->cmd_pool, h->cmd_pool_dhandle);
4921 	pci_free_consistent(h->pdev,
4922 		h->nr_cmds * sizeof(struct ErrorInfo),
4923 		h->errinfo_pool, h->errinfo_pool_dhandle);
4924 	pci_free_consistent(h->pdev, h->reply_pool_size,
4925 		h->reply_pool, h->reply_pool_dhandle);
4926 	kfree(h->cmd_pool_bits);
4927 	kfree(h->blockFetchTable);
4928 	kfree(h->hba_inquiry_data);
4929 	pci_disable_device(pdev);
4930 	pci_release_regions(pdev);
4931 	pci_set_drvdata(pdev, NULL);
4932 	kfree(h);
4933 }
4934 
4935 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4936 	__attribute__((unused)) pm_message_t state)
4937 {
4938 	return -ENOSYS;
4939 }
4940 
4941 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4942 {
4943 	return -ENOSYS;
4944 }
4945 
4946 static struct pci_driver hpsa_pci_driver = {
4947 	.name = HPSA,
4948 	.probe = hpsa_init_one,
4949 	.remove = __devexit_p(hpsa_remove_one),
4950 	.id_table = hpsa_pci_device_id,	/* id_table */
4951 	.shutdown = hpsa_shutdown,
4952 	.suspend = hpsa_suspend,
4953 	.resume = hpsa_resume,
4954 };
4955 
4956 /* Fill in bucket_map[], given nsgs (the max number of
4957  * scatter gather elements supported) and bucket[],
4958  * which is an array of 8 integers.  The bucket[] array
4959  * contains 8 different DMA transfer sizes (in 16
4960  * byte increments) which the controller uses to fetch
4961  * commands.  This function fills in bucket_map[], which
4962  * maps a given number of scatter gather elements to one of
4963  * the 8 DMA transfer sizes.  The point of it is to allow the
4964  * controller to only do as much DMA as needed to fetch the
4965  * command, with the DMA transfer size encoded in the lower
4966  * bits of the command address.
4967  */
4968 static void  calc_bucket_map(int bucket[], int num_buckets,
4969 	int nsgs, int *bucket_map)
4970 {
4971 	int i, j, b, size;
4972 
4973 	/* even a command with 0 SGs requires 4 blocks */
4974 #define MINIMUM_TRANSFER_BLOCKS 4
4975 #define NUM_BUCKETS 8
4976 	/* Note, bucket_map must have nsgs+1 entries. */
4977 	for (i = 0; i <= nsgs; i++) {
4978 		/* Compute size of a command with i SG entries */
4979 		size = i + MINIMUM_TRANSFER_BLOCKS;
4980 		b = num_buckets; /* Assume the biggest bucket */
4981 		/* Find the bucket that is just big enough */
4982 		for (j = 0; j < 8; j++) {
4983 			if (bucket[j] >= size) {
4984 				b = j;
4985 				break;
4986 			}
4987 		}
4988 		/* for a command with i SG entries, use bucket b. */
4989 		bucket_map[i] = b;
4990 	}
4991 }
4992 
4993 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4994 	u32 use_short_tags)
4995 {
4996 	int i;
4997 	unsigned long register_value;
4998 
4999 	/* This is a bit complicated.  There are 8 registers on
5000 	 * the controller which we write to to tell it 8 different
5001 	 * sizes of commands which there may be.  It's a way of
5002 	 * reducing the DMA done to fetch each command.  Encoded into
5003 	 * each command's tag are 3 bits which communicate to the controller
5004 	 * which of the eight sizes that command fits within.  The size of
5005 	 * each command depends on how many scatter gather entries there are.
5006 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
5007 	 * with the number of 16-byte blocks a command of that size requires.
5008 	 * The smallest command possible requires 5 such 16 byte blocks.
5009 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5010 	 * blocks.  Note, this only extends to the SG entries contained
5011 	 * within the command block, and does not extend to chained blocks
5012 	 * of SG elements.   bft[] contains the eight values we write to
5013 	 * the registers.  They are not evenly distributed, but have more
5014 	 * sizes for small commands, and fewer sizes for larger commands.
5015 	 */
5016 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5017 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5018 	/*  5 = 1 s/g entry or 4k
5019 	 *  6 = 2 s/g entry or 8k
5020 	 *  8 = 4 s/g entry or 16k
5021 	 * 10 = 6 s/g entry or 24k
5022 	 */
5023 
5024 	/* Controller spec: zero out this buffer. */
5025 	memset(h->reply_pool, 0, h->reply_pool_size);
5026 
5027 	bft[7] = SG_ENTRIES_IN_CMD + 4;
5028 	calc_bucket_map(bft, ARRAY_SIZE(bft),
5029 				SG_ENTRIES_IN_CMD, h->blockFetchTable);
5030 	for (i = 0; i < 8; i++)
5031 		writel(bft[i], &h->transtable->BlockFetch[i]);
5032 
5033 	/* size of controller ring buffer */
5034 	writel(h->max_commands, &h->transtable->RepQSize);
5035 	writel(h->nreply_queues, &h->transtable->RepQCount);
5036 	writel(0, &h->transtable->RepQCtrAddrLow32);
5037 	writel(0, &h->transtable->RepQCtrAddrHigh32);
5038 
5039 	for (i = 0; i < h->nreply_queues; i++) {
5040 		writel(0, &h->transtable->RepQAddr[i].upper);
5041 		writel(h->reply_pool_dhandle +
5042 			(h->max_commands * sizeof(u64) * i),
5043 			&h->transtable->RepQAddr[i].lower);
5044 	}
5045 
5046 	writel(CFGTBL_Trans_Performant | use_short_tags |
5047 		CFGTBL_Trans_enable_directed_msix,
5048 		&(h->cfgtable->HostWrite.TransportRequest));
5049 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5050 	hpsa_wait_for_mode_change_ack(h);
5051 	register_value = readl(&(h->cfgtable->TransportActive));
5052 	if (!(register_value & CFGTBL_Trans_Performant)) {
5053 		dev_warn(&h->pdev->dev, "unable to get board into"
5054 					" performant mode\n");
5055 		return;
5056 	}
5057 	/* Change the access methods to the performant access methods */
5058 	h->access = SA5_performant_access;
5059 	h->transMethod = CFGTBL_Trans_Performant;
5060 }
5061 
5062 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5063 {
5064 	u32 trans_support;
5065 	int i;
5066 
5067 	if (hpsa_simple_mode)
5068 		return;
5069 
5070 	trans_support = readl(&(h->cfgtable->TransportSupport));
5071 	if (!(trans_support & PERFORMANT_MODE))
5072 		return;
5073 
5074 	h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5075 	hpsa_get_max_perf_mode_cmds(h);
5076 	/* Performant mode ring buffer and supporting data structures */
5077 	h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5078 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5079 				&(h->reply_pool_dhandle));
5080 
5081 	for (i = 0; i < h->nreply_queues; i++) {
5082 		h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5083 		h->reply_queue[i].size = h->max_commands;
5084 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5085 		h->reply_queue[i].current_entry = 0;
5086 	}
5087 
5088 	/* Need a block fetch table for performant mode */
5089 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5090 				sizeof(u32)), GFP_KERNEL);
5091 
5092 	if ((h->reply_pool == NULL)
5093 		|| (h->blockFetchTable == NULL))
5094 		goto clean_up;
5095 
5096 	hpsa_enter_performant_mode(h,
5097 		trans_support & CFGTBL_Trans_use_short_tags);
5098 
5099 	return;
5100 
5101 clean_up:
5102 	if (h->reply_pool)
5103 		pci_free_consistent(h->pdev, h->reply_pool_size,
5104 			h->reply_pool, h->reply_pool_dhandle);
5105 	kfree(h->blockFetchTable);
5106 }
5107 
5108 /*
5109  *  This is it.  Register the PCI driver information for the cards we control
5110  *  the OS will call our registered routines when it finds one of our cards.
5111  */
5112 static int __init hpsa_init(void)
5113 {
5114 	return pci_register_driver(&hpsa_pci_driver);
5115 }
5116 
5117 static void __exit hpsa_cleanup(void)
5118 {
5119 	pci_unregister_driver(&hpsa_pci_driver);
5120 }
5121 
5122 module_init(hpsa_init);
5123 module_exit(hpsa_cleanup);
5124