xref: /linux/drivers/scsi/hpsa.c (revision 9429ec96c2718c0d1e3317cf60a87a0405223814)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55 
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60 
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64 
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67 
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 	HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75 
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 		"Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 	"Use 'simple mode' rather than 'performant mode'");
84 
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
103 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
104 	{0,}
105 };
106 
107 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
108 
109 /*  board_id = Subsystem Device ID & Vendor ID
110  *  product = Marketing Name for the board
111  *  access = Address of the struct of function pointers
112  */
113 static struct board_type products[] = {
114 	{0x3241103C, "Smart Array P212", &SA5_access},
115 	{0x3243103C, "Smart Array P410", &SA5_access},
116 	{0x3245103C, "Smart Array P410i", &SA5_access},
117 	{0x3247103C, "Smart Array P411", &SA5_access},
118 	{0x3249103C, "Smart Array P812", &SA5_access},
119 	{0x324a103C, "Smart Array P712m", &SA5_access},
120 	{0x324b103C, "Smart Array P711m", &SA5_access},
121 	{0x3350103C, "Smart Array", &SA5_access},
122 	{0x3351103C, "Smart Array", &SA5_access},
123 	{0x3352103C, "Smart Array", &SA5_access},
124 	{0x3353103C, "Smart Array", &SA5_access},
125 	{0x3354103C, "Smart Array", &SA5_access},
126 	{0x3355103C, "Smart Array", &SA5_access},
127 	{0x3356103C, "Smart Array", &SA5_access},
128 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
129 };
130 
131 static int number_of_controllers;
132 
133 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
134 static spinlock_t lockup_detector_lock;
135 static struct task_struct *hpsa_lockup_detector;
136 
137 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
138 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
139 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
140 static void start_io(struct ctlr_info *h);
141 
142 #ifdef CONFIG_COMPAT
143 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
144 #endif
145 
146 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
147 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
148 static struct CommandList *cmd_alloc(struct ctlr_info *h);
149 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
150 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
151 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
152 	int cmd_type);
153 
154 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
155 static void hpsa_scan_start(struct Scsi_Host *);
156 static int hpsa_scan_finished(struct Scsi_Host *sh,
157 	unsigned long elapsed_time);
158 static int hpsa_change_queue_depth(struct scsi_device *sdev,
159 	int qdepth, int reason);
160 
161 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
162 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
163 static int hpsa_slave_alloc(struct scsi_device *sdev);
164 static void hpsa_slave_destroy(struct scsi_device *sdev);
165 
166 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
167 static int check_for_unit_attention(struct ctlr_info *h,
168 	struct CommandList *c);
169 static void check_ioctl_unit_attention(struct ctlr_info *h,
170 	struct CommandList *c);
171 /* performant mode helper functions */
172 static void calc_bucket_map(int *bucket, int num_buckets,
173 	int nsgs, int *bucket_map);
174 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
175 static inline u32 next_command(struct ctlr_info *h, u8 q);
176 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
177 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
178 	u64 *cfg_offset);
179 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
180 	unsigned long *memory_bar);
181 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
182 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
183 	void __iomem *vaddr, int wait_for_ready);
184 static inline void finish_cmd(struct CommandList *c);
185 #define BOARD_NOT_READY 0
186 #define BOARD_READY 1
187 
188 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
189 {
190 	unsigned long *priv = shost_priv(sdev->host);
191 	return (struct ctlr_info *) *priv;
192 }
193 
194 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
195 {
196 	unsigned long *priv = shost_priv(sh);
197 	return (struct ctlr_info *) *priv;
198 }
199 
200 static int check_for_unit_attention(struct ctlr_info *h,
201 	struct CommandList *c)
202 {
203 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
204 		return 0;
205 
206 	switch (c->err_info->SenseInfo[12]) {
207 	case STATE_CHANGED:
208 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
209 			"detected, command retried\n", h->ctlr);
210 		break;
211 	case LUN_FAILED:
212 		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
213 			"detected, action required\n", h->ctlr);
214 		break;
215 	case REPORT_LUNS_CHANGED:
216 		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
217 			"changed, action required\n", h->ctlr);
218 	/*
219 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
220 	 * target (array) devices.
221 	 */
222 		break;
223 	case POWER_OR_RESET:
224 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
225 			"or device reset detected\n", h->ctlr);
226 		break;
227 	case UNIT_ATTENTION_CLEARED:
228 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
229 		    "cleared by another initiator\n", h->ctlr);
230 		break;
231 	default:
232 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
233 			"unit attention detected\n", h->ctlr);
234 		break;
235 	}
236 	return 1;
237 }
238 
239 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
240 {
241 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
242 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
243 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
244 		return 0;
245 	dev_warn(&h->pdev->dev, HPSA "device busy");
246 	return 1;
247 }
248 
249 static ssize_t host_store_rescan(struct device *dev,
250 				 struct device_attribute *attr,
251 				 const char *buf, size_t count)
252 {
253 	struct ctlr_info *h;
254 	struct Scsi_Host *shost = class_to_shost(dev);
255 	h = shost_to_hba(shost);
256 	hpsa_scan_start(h->scsi_host);
257 	return count;
258 }
259 
260 static ssize_t host_show_firmware_revision(struct device *dev,
261 	     struct device_attribute *attr, char *buf)
262 {
263 	struct ctlr_info *h;
264 	struct Scsi_Host *shost = class_to_shost(dev);
265 	unsigned char *fwrev;
266 
267 	h = shost_to_hba(shost);
268 	if (!h->hba_inquiry_data)
269 		return 0;
270 	fwrev = &h->hba_inquiry_data[32];
271 	return snprintf(buf, 20, "%c%c%c%c\n",
272 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
273 }
274 
275 static ssize_t host_show_commands_outstanding(struct device *dev,
276 	     struct device_attribute *attr, char *buf)
277 {
278 	struct Scsi_Host *shost = class_to_shost(dev);
279 	struct ctlr_info *h = shost_to_hba(shost);
280 
281 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
282 }
283 
284 static ssize_t host_show_transport_mode(struct device *dev,
285 	struct device_attribute *attr, char *buf)
286 {
287 	struct ctlr_info *h;
288 	struct Scsi_Host *shost = class_to_shost(dev);
289 
290 	h = shost_to_hba(shost);
291 	return snprintf(buf, 20, "%s\n",
292 		h->transMethod & CFGTBL_Trans_Performant ?
293 			"performant" : "simple");
294 }
295 
296 /* List of controllers which cannot be hard reset on kexec with reset_devices */
297 static u32 unresettable_controller[] = {
298 	0x324a103C, /* Smart Array P712m */
299 	0x324b103C, /* SmartArray P711m */
300 	0x3223103C, /* Smart Array P800 */
301 	0x3234103C, /* Smart Array P400 */
302 	0x3235103C, /* Smart Array P400i */
303 	0x3211103C, /* Smart Array E200i */
304 	0x3212103C, /* Smart Array E200 */
305 	0x3213103C, /* Smart Array E200i */
306 	0x3214103C, /* Smart Array E200i */
307 	0x3215103C, /* Smart Array E200i */
308 	0x3237103C, /* Smart Array E500 */
309 	0x323D103C, /* Smart Array P700m */
310 	0x40800E11, /* Smart Array 5i */
311 	0x409C0E11, /* Smart Array 6400 */
312 	0x409D0E11, /* Smart Array 6400 EM */
313 	0x40700E11, /* Smart Array 5300 */
314 	0x40820E11, /* Smart Array 532 */
315 	0x40830E11, /* Smart Array 5312 */
316 	0x409A0E11, /* Smart Array 641 */
317 	0x409B0E11, /* Smart Array 642 */
318 	0x40910E11, /* Smart Array 6i */
319 };
320 
321 /* List of controllers which cannot even be soft reset */
322 static u32 soft_unresettable_controller[] = {
323 	0x40800E11, /* Smart Array 5i */
324 	0x40700E11, /* Smart Array 5300 */
325 	0x40820E11, /* Smart Array 532 */
326 	0x40830E11, /* Smart Array 5312 */
327 	0x409A0E11, /* Smart Array 641 */
328 	0x409B0E11, /* Smart Array 642 */
329 	0x40910E11, /* Smart Array 6i */
330 	/* Exclude 640x boards.  These are two pci devices in one slot
331 	 * which share a battery backed cache module.  One controls the
332 	 * cache, the other accesses the cache through the one that controls
333 	 * it.  If we reset the one controlling the cache, the other will
334 	 * likely not be happy.  Just forbid resetting this conjoined mess.
335 	 * The 640x isn't really supported by hpsa anyway.
336 	 */
337 	0x409C0E11, /* Smart Array 6400 */
338 	0x409D0E11, /* Smart Array 6400 EM */
339 };
340 
341 static int ctlr_is_hard_resettable(u32 board_id)
342 {
343 	int i;
344 
345 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
346 		if (unresettable_controller[i] == board_id)
347 			return 0;
348 	return 1;
349 }
350 
351 static int ctlr_is_soft_resettable(u32 board_id)
352 {
353 	int i;
354 
355 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
356 		if (soft_unresettable_controller[i] == board_id)
357 			return 0;
358 	return 1;
359 }
360 
361 static int ctlr_is_resettable(u32 board_id)
362 {
363 	return ctlr_is_hard_resettable(board_id) ||
364 		ctlr_is_soft_resettable(board_id);
365 }
366 
367 static ssize_t host_show_resettable(struct device *dev,
368 	struct device_attribute *attr, char *buf)
369 {
370 	struct ctlr_info *h;
371 	struct Scsi_Host *shost = class_to_shost(dev);
372 
373 	h = shost_to_hba(shost);
374 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
375 }
376 
377 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
378 {
379 	return (scsi3addr[3] & 0xC0) == 0x40;
380 }
381 
382 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
383 	"1(ADM)", "UNKNOWN"
384 };
385 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
386 
387 static ssize_t raid_level_show(struct device *dev,
388 	     struct device_attribute *attr, char *buf)
389 {
390 	ssize_t l = 0;
391 	unsigned char rlevel;
392 	struct ctlr_info *h;
393 	struct scsi_device *sdev;
394 	struct hpsa_scsi_dev_t *hdev;
395 	unsigned long flags;
396 
397 	sdev = to_scsi_device(dev);
398 	h = sdev_to_hba(sdev);
399 	spin_lock_irqsave(&h->lock, flags);
400 	hdev = sdev->hostdata;
401 	if (!hdev) {
402 		spin_unlock_irqrestore(&h->lock, flags);
403 		return -ENODEV;
404 	}
405 
406 	/* Is this even a logical drive? */
407 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
408 		spin_unlock_irqrestore(&h->lock, flags);
409 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
410 		return l;
411 	}
412 
413 	rlevel = hdev->raid_level;
414 	spin_unlock_irqrestore(&h->lock, flags);
415 	if (rlevel > RAID_UNKNOWN)
416 		rlevel = RAID_UNKNOWN;
417 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
418 	return l;
419 }
420 
421 static ssize_t lunid_show(struct device *dev,
422 	     struct device_attribute *attr, char *buf)
423 {
424 	struct ctlr_info *h;
425 	struct scsi_device *sdev;
426 	struct hpsa_scsi_dev_t *hdev;
427 	unsigned long flags;
428 	unsigned char lunid[8];
429 
430 	sdev = to_scsi_device(dev);
431 	h = sdev_to_hba(sdev);
432 	spin_lock_irqsave(&h->lock, flags);
433 	hdev = sdev->hostdata;
434 	if (!hdev) {
435 		spin_unlock_irqrestore(&h->lock, flags);
436 		return -ENODEV;
437 	}
438 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
439 	spin_unlock_irqrestore(&h->lock, flags);
440 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
441 		lunid[0], lunid[1], lunid[2], lunid[3],
442 		lunid[4], lunid[5], lunid[6], lunid[7]);
443 }
444 
445 static ssize_t unique_id_show(struct device *dev,
446 	     struct device_attribute *attr, char *buf)
447 {
448 	struct ctlr_info *h;
449 	struct scsi_device *sdev;
450 	struct hpsa_scsi_dev_t *hdev;
451 	unsigned long flags;
452 	unsigned char sn[16];
453 
454 	sdev = to_scsi_device(dev);
455 	h = sdev_to_hba(sdev);
456 	spin_lock_irqsave(&h->lock, flags);
457 	hdev = sdev->hostdata;
458 	if (!hdev) {
459 		spin_unlock_irqrestore(&h->lock, flags);
460 		return -ENODEV;
461 	}
462 	memcpy(sn, hdev->device_id, sizeof(sn));
463 	spin_unlock_irqrestore(&h->lock, flags);
464 	return snprintf(buf, 16 * 2 + 2,
465 			"%02X%02X%02X%02X%02X%02X%02X%02X"
466 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
467 			sn[0], sn[1], sn[2], sn[3],
468 			sn[4], sn[5], sn[6], sn[7],
469 			sn[8], sn[9], sn[10], sn[11],
470 			sn[12], sn[13], sn[14], sn[15]);
471 }
472 
473 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
474 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
475 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
476 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
477 static DEVICE_ATTR(firmware_revision, S_IRUGO,
478 	host_show_firmware_revision, NULL);
479 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
480 	host_show_commands_outstanding, NULL);
481 static DEVICE_ATTR(transport_mode, S_IRUGO,
482 	host_show_transport_mode, NULL);
483 static DEVICE_ATTR(resettable, S_IRUGO,
484 	host_show_resettable, NULL);
485 
486 static struct device_attribute *hpsa_sdev_attrs[] = {
487 	&dev_attr_raid_level,
488 	&dev_attr_lunid,
489 	&dev_attr_unique_id,
490 	NULL,
491 };
492 
493 static struct device_attribute *hpsa_shost_attrs[] = {
494 	&dev_attr_rescan,
495 	&dev_attr_firmware_revision,
496 	&dev_attr_commands_outstanding,
497 	&dev_attr_transport_mode,
498 	&dev_attr_resettable,
499 	NULL,
500 };
501 
502 static struct scsi_host_template hpsa_driver_template = {
503 	.module			= THIS_MODULE,
504 	.name			= HPSA,
505 	.proc_name		= HPSA,
506 	.queuecommand		= hpsa_scsi_queue_command,
507 	.scan_start		= hpsa_scan_start,
508 	.scan_finished		= hpsa_scan_finished,
509 	.change_queue_depth	= hpsa_change_queue_depth,
510 	.this_id		= -1,
511 	.use_clustering		= ENABLE_CLUSTERING,
512 	.eh_abort_handler	= hpsa_eh_abort_handler,
513 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
514 	.ioctl			= hpsa_ioctl,
515 	.slave_alloc		= hpsa_slave_alloc,
516 	.slave_destroy		= hpsa_slave_destroy,
517 #ifdef CONFIG_COMPAT
518 	.compat_ioctl		= hpsa_compat_ioctl,
519 #endif
520 	.sdev_attrs = hpsa_sdev_attrs,
521 	.shost_attrs = hpsa_shost_attrs,
522 	.max_sectors = 8192,
523 };
524 
525 
526 /* Enqueuing and dequeuing functions for cmdlists. */
527 static inline void addQ(struct list_head *list, struct CommandList *c)
528 {
529 	list_add_tail(&c->list, list);
530 }
531 
532 static inline u32 next_command(struct ctlr_info *h, u8 q)
533 {
534 	u32 a;
535 	struct reply_pool *rq = &h->reply_queue[q];
536 	unsigned long flags;
537 
538 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
539 		return h->access.command_completed(h, q);
540 
541 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
542 		a = rq->head[rq->current_entry];
543 		rq->current_entry++;
544 		spin_lock_irqsave(&h->lock, flags);
545 		h->commands_outstanding--;
546 		spin_unlock_irqrestore(&h->lock, flags);
547 	} else {
548 		a = FIFO_EMPTY;
549 	}
550 	/* Check for wraparound */
551 	if (rq->current_entry == h->max_commands) {
552 		rq->current_entry = 0;
553 		rq->wraparound ^= 1;
554 	}
555 	return a;
556 }
557 
558 /* set_performant_mode: Modify the tag for cciss performant
559  * set bit 0 for pull model, bits 3-1 for block fetch
560  * register number
561  */
562 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
563 {
564 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
565 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
566 		if (likely(h->msix_vector))
567 			c->Header.ReplyQueue =
568 				smp_processor_id() % h->nreply_queues;
569 	}
570 }
571 
572 static int is_firmware_flash_cmd(u8 *cdb)
573 {
574 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
575 }
576 
577 /*
578  * During firmware flash, the heartbeat register may not update as frequently
579  * as it should.  So we dial down lockup detection during firmware flash. and
580  * dial it back up when firmware flash completes.
581  */
582 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
583 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
584 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
585 		struct CommandList *c)
586 {
587 	if (!is_firmware_flash_cmd(c->Request.CDB))
588 		return;
589 	atomic_inc(&h->firmware_flash_in_progress);
590 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
591 }
592 
593 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
594 		struct CommandList *c)
595 {
596 	if (is_firmware_flash_cmd(c->Request.CDB) &&
597 		atomic_dec_and_test(&h->firmware_flash_in_progress))
598 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
599 }
600 
601 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
602 	struct CommandList *c)
603 {
604 	unsigned long flags;
605 
606 	set_performant_mode(h, c);
607 	dial_down_lockup_detection_during_fw_flash(h, c);
608 	spin_lock_irqsave(&h->lock, flags);
609 	addQ(&h->reqQ, c);
610 	h->Qdepth++;
611 	spin_unlock_irqrestore(&h->lock, flags);
612 	start_io(h);
613 }
614 
615 static inline void removeQ(struct CommandList *c)
616 {
617 	if (WARN_ON(list_empty(&c->list)))
618 		return;
619 	list_del_init(&c->list);
620 }
621 
622 static inline int is_hba_lunid(unsigned char scsi3addr[])
623 {
624 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
625 }
626 
627 static inline int is_scsi_rev_5(struct ctlr_info *h)
628 {
629 	if (!h->hba_inquiry_data)
630 		return 0;
631 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
632 		return 1;
633 	return 0;
634 }
635 
636 static int hpsa_find_target_lun(struct ctlr_info *h,
637 	unsigned char scsi3addr[], int bus, int *target, int *lun)
638 {
639 	/* finds an unused bus, target, lun for a new physical device
640 	 * assumes h->devlock is held
641 	 */
642 	int i, found = 0;
643 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
644 
645 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
646 
647 	for (i = 0; i < h->ndevices; i++) {
648 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
649 			__set_bit(h->dev[i]->target, lun_taken);
650 	}
651 
652 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
653 	if (i < HPSA_MAX_DEVICES) {
654 		/* *bus = 1; */
655 		*target = i;
656 		*lun = 0;
657 		found = 1;
658 	}
659 	return !found;
660 }
661 
662 /* Add an entry into h->dev[] array. */
663 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
664 		struct hpsa_scsi_dev_t *device,
665 		struct hpsa_scsi_dev_t *added[], int *nadded)
666 {
667 	/* assumes h->devlock is held */
668 	int n = h->ndevices;
669 	int i;
670 	unsigned char addr1[8], addr2[8];
671 	struct hpsa_scsi_dev_t *sd;
672 
673 	if (n >= HPSA_MAX_DEVICES) {
674 		dev_err(&h->pdev->dev, "too many devices, some will be "
675 			"inaccessible.\n");
676 		return -1;
677 	}
678 
679 	/* physical devices do not have lun or target assigned until now. */
680 	if (device->lun != -1)
681 		/* Logical device, lun is already assigned. */
682 		goto lun_assigned;
683 
684 	/* If this device a non-zero lun of a multi-lun device
685 	 * byte 4 of the 8-byte LUN addr will contain the logical
686 	 * unit no, zero otherise.
687 	 */
688 	if (device->scsi3addr[4] == 0) {
689 		/* This is not a non-zero lun of a multi-lun device */
690 		if (hpsa_find_target_lun(h, device->scsi3addr,
691 			device->bus, &device->target, &device->lun) != 0)
692 			return -1;
693 		goto lun_assigned;
694 	}
695 
696 	/* This is a non-zero lun of a multi-lun device.
697 	 * Search through our list and find the device which
698 	 * has the same 8 byte LUN address, excepting byte 4.
699 	 * Assign the same bus and target for this new LUN.
700 	 * Use the logical unit number from the firmware.
701 	 */
702 	memcpy(addr1, device->scsi3addr, 8);
703 	addr1[4] = 0;
704 	for (i = 0; i < n; i++) {
705 		sd = h->dev[i];
706 		memcpy(addr2, sd->scsi3addr, 8);
707 		addr2[4] = 0;
708 		/* differ only in byte 4? */
709 		if (memcmp(addr1, addr2, 8) == 0) {
710 			device->bus = sd->bus;
711 			device->target = sd->target;
712 			device->lun = device->scsi3addr[4];
713 			break;
714 		}
715 	}
716 	if (device->lun == -1) {
717 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
718 			" suspect firmware bug or unsupported hardware "
719 			"configuration.\n");
720 			return -1;
721 	}
722 
723 lun_assigned:
724 
725 	h->dev[n] = device;
726 	h->ndevices++;
727 	added[*nadded] = device;
728 	(*nadded)++;
729 
730 	/* initially, (before registering with scsi layer) we don't
731 	 * know our hostno and we don't want to print anything first
732 	 * time anyway (the scsi layer's inquiries will show that info)
733 	 */
734 	/* if (hostno != -1) */
735 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
736 			scsi_device_type(device->devtype), hostno,
737 			device->bus, device->target, device->lun);
738 	return 0;
739 }
740 
741 /* Update an entry in h->dev[] array. */
742 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
743 	int entry, struct hpsa_scsi_dev_t *new_entry)
744 {
745 	/* assumes h->devlock is held */
746 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
747 
748 	/* Raid level changed. */
749 	h->dev[entry]->raid_level = new_entry->raid_level;
750 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
751 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
752 		new_entry->target, new_entry->lun);
753 }
754 
755 /* Replace an entry from h->dev[] array. */
756 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
757 	int entry, struct hpsa_scsi_dev_t *new_entry,
758 	struct hpsa_scsi_dev_t *added[], int *nadded,
759 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
760 {
761 	/* assumes h->devlock is held */
762 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
763 	removed[*nremoved] = h->dev[entry];
764 	(*nremoved)++;
765 
766 	/*
767 	 * New physical devices won't have target/lun assigned yet
768 	 * so we need to preserve the values in the slot we are replacing.
769 	 */
770 	if (new_entry->target == -1) {
771 		new_entry->target = h->dev[entry]->target;
772 		new_entry->lun = h->dev[entry]->lun;
773 	}
774 
775 	h->dev[entry] = new_entry;
776 	added[*nadded] = new_entry;
777 	(*nadded)++;
778 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
779 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
780 			new_entry->target, new_entry->lun);
781 }
782 
783 /* Remove an entry from h->dev[] array. */
784 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
785 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
786 {
787 	/* assumes h->devlock is held */
788 	int i;
789 	struct hpsa_scsi_dev_t *sd;
790 
791 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
792 
793 	sd = h->dev[entry];
794 	removed[*nremoved] = h->dev[entry];
795 	(*nremoved)++;
796 
797 	for (i = entry; i < h->ndevices-1; i++)
798 		h->dev[i] = h->dev[i+1];
799 	h->ndevices--;
800 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
801 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
802 		sd->lun);
803 }
804 
805 #define SCSI3ADDR_EQ(a, b) ( \
806 	(a)[7] == (b)[7] && \
807 	(a)[6] == (b)[6] && \
808 	(a)[5] == (b)[5] && \
809 	(a)[4] == (b)[4] && \
810 	(a)[3] == (b)[3] && \
811 	(a)[2] == (b)[2] && \
812 	(a)[1] == (b)[1] && \
813 	(a)[0] == (b)[0])
814 
815 static void fixup_botched_add(struct ctlr_info *h,
816 	struct hpsa_scsi_dev_t *added)
817 {
818 	/* called when scsi_add_device fails in order to re-adjust
819 	 * h->dev[] to match the mid layer's view.
820 	 */
821 	unsigned long flags;
822 	int i, j;
823 
824 	spin_lock_irqsave(&h->lock, flags);
825 	for (i = 0; i < h->ndevices; i++) {
826 		if (h->dev[i] == added) {
827 			for (j = i; j < h->ndevices-1; j++)
828 				h->dev[j] = h->dev[j+1];
829 			h->ndevices--;
830 			break;
831 		}
832 	}
833 	spin_unlock_irqrestore(&h->lock, flags);
834 	kfree(added);
835 }
836 
837 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
838 	struct hpsa_scsi_dev_t *dev2)
839 {
840 	/* we compare everything except lun and target as these
841 	 * are not yet assigned.  Compare parts likely
842 	 * to differ first
843 	 */
844 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
845 		sizeof(dev1->scsi3addr)) != 0)
846 		return 0;
847 	if (memcmp(dev1->device_id, dev2->device_id,
848 		sizeof(dev1->device_id)) != 0)
849 		return 0;
850 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
851 		return 0;
852 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
853 		return 0;
854 	if (dev1->devtype != dev2->devtype)
855 		return 0;
856 	if (dev1->bus != dev2->bus)
857 		return 0;
858 	return 1;
859 }
860 
861 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
862 	struct hpsa_scsi_dev_t *dev2)
863 {
864 	/* Device attributes that can change, but don't mean
865 	 * that the device is a different device, nor that the OS
866 	 * needs to be told anything about the change.
867 	 */
868 	if (dev1->raid_level != dev2->raid_level)
869 		return 1;
870 	return 0;
871 }
872 
873 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
874  * and return needle location in *index.  If scsi3addr matches, but not
875  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
876  * location in *index.
877  * In the case of a minor device attribute change, such as RAID level, just
878  * return DEVICE_UPDATED, along with the updated device's location in index.
879  * If needle not found, return DEVICE_NOT_FOUND.
880  */
881 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
882 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
883 	int *index)
884 {
885 	int i;
886 #define DEVICE_NOT_FOUND 0
887 #define DEVICE_CHANGED 1
888 #define DEVICE_SAME 2
889 #define DEVICE_UPDATED 3
890 	for (i = 0; i < haystack_size; i++) {
891 		if (haystack[i] == NULL) /* previously removed. */
892 			continue;
893 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
894 			*index = i;
895 			if (device_is_the_same(needle, haystack[i])) {
896 				if (device_updated(needle, haystack[i]))
897 					return DEVICE_UPDATED;
898 				return DEVICE_SAME;
899 			} else {
900 				return DEVICE_CHANGED;
901 			}
902 		}
903 	}
904 	*index = -1;
905 	return DEVICE_NOT_FOUND;
906 }
907 
908 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
909 	struct hpsa_scsi_dev_t *sd[], int nsds)
910 {
911 	/* sd contains scsi3 addresses and devtypes, and inquiry
912 	 * data.  This function takes what's in sd to be the current
913 	 * reality and updates h->dev[] to reflect that reality.
914 	 */
915 	int i, entry, device_change, changes = 0;
916 	struct hpsa_scsi_dev_t *csd;
917 	unsigned long flags;
918 	struct hpsa_scsi_dev_t **added, **removed;
919 	int nadded, nremoved;
920 	struct Scsi_Host *sh = NULL;
921 
922 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
923 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
924 
925 	if (!added || !removed) {
926 		dev_warn(&h->pdev->dev, "out of memory in "
927 			"adjust_hpsa_scsi_table\n");
928 		goto free_and_out;
929 	}
930 
931 	spin_lock_irqsave(&h->devlock, flags);
932 
933 	/* find any devices in h->dev[] that are not in
934 	 * sd[] and remove them from h->dev[], and for any
935 	 * devices which have changed, remove the old device
936 	 * info and add the new device info.
937 	 * If minor device attributes change, just update
938 	 * the existing device structure.
939 	 */
940 	i = 0;
941 	nremoved = 0;
942 	nadded = 0;
943 	while (i < h->ndevices) {
944 		csd = h->dev[i];
945 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
946 		if (device_change == DEVICE_NOT_FOUND) {
947 			changes++;
948 			hpsa_scsi_remove_entry(h, hostno, i,
949 				removed, &nremoved);
950 			continue; /* remove ^^^, hence i not incremented */
951 		} else if (device_change == DEVICE_CHANGED) {
952 			changes++;
953 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
954 				added, &nadded, removed, &nremoved);
955 			/* Set it to NULL to prevent it from being freed
956 			 * at the bottom of hpsa_update_scsi_devices()
957 			 */
958 			sd[entry] = NULL;
959 		} else if (device_change == DEVICE_UPDATED) {
960 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
961 		}
962 		i++;
963 	}
964 
965 	/* Now, make sure every device listed in sd[] is also
966 	 * listed in h->dev[], adding them if they aren't found
967 	 */
968 
969 	for (i = 0; i < nsds; i++) {
970 		if (!sd[i]) /* if already added above. */
971 			continue;
972 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
973 					h->ndevices, &entry);
974 		if (device_change == DEVICE_NOT_FOUND) {
975 			changes++;
976 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
977 				added, &nadded) != 0)
978 				break;
979 			sd[i] = NULL; /* prevent from being freed later. */
980 		} else if (device_change == DEVICE_CHANGED) {
981 			/* should never happen... */
982 			changes++;
983 			dev_warn(&h->pdev->dev,
984 				"device unexpectedly changed.\n");
985 			/* but if it does happen, we just ignore that device */
986 		}
987 	}
988 	spin_unlock_irqrestore(&h->devlock, flags);
989 
990 	/* Don't notify scsi mid layer of any changes the first time through
991 	 * (or if there are no changes) scsi_scan_host will do it later the
992 	 * first time through.
993 	 */
994 	if (hostno == -1 || !changes)
995 		goto free_and_out;
996 
997 	sh = h->scsi_host;
998 	/* Notify scsi mid layer of any removed devices */
999 	for (i = 0; i < nremoved; i++) {
1000 		struct scsi_device *sdev =
1001 			scsi_device_lookup(sh, removed[i]->bus,
1002 				removed[i]->target, removed[i]->lun);
1003 		if (sdev != NULL) {
1004 			scsi_remove_device(sdev);
1005 			scsi_device_put(sdev);
1006 		} else {
1007 			/* We don't expect to get here.
1008 			 * future cmds to this device will get selection
1009 			 * timeout as if the device was gone.
1010 			 */
1011 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1012 				" for removal.", hostno, removed[i]->bus,
1013 				removed[i]->target, removed[i]->lun);
1014 		}
1015 		kfree(removed[i]);
1016 		removed[i] = NULL;
1017 	}
1018 
1019 	/* Notify scsi mid layer of any added devices */
1020 	for (i = 0; i < nadded; i++) {
1021 		if (scsi_add_device(sh, added[i]->bus,
1022 			added[i]->target, added[i]->lun) == 0)
1023 			continue;
1024 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1025 			"device not added.\n", hostno, added[i]->bus,
1026 			added[i]->target, added[i]->lun);
1027 		/* now we have to remove it from h->dev,
1028 		 * since it didn't get added to scsi mid layer
1029 		 */
1030 		fixup_botched_add(h, added[i]);
1031 	}
1032 
1033 free_and_out:
1034 	kfree(added);
1035 	kfree(removed);
1036 }
1037 
1038 /*
1039  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1040  * Assume's h->devlock is held.
1041  */
1042 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1043 	int bus, int target, int lun)
1044 {
1045 	int i;
1046 	struct hpsa_scsi_dev_t *sd;
1047 
1048 	for (i = 0; i < h->ndevices; i++) {
1049 		sd = h->dev[i];
1050 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1051 			return sd;
1052 	}
1053 	return NULL;
1054 }
1055 
1056 /* link sdev->hostdata to our per-device structure. */
1057 static int hpsa_slave_alloc(struct scsi_device *sdev)
1058 {
1059 	struct hpsa_scsi_dev_t *sd;
1060 	unsigned long flags;
1061 	struct ctlr_info *h;
1062 
1063 	h = sdev_to_hba(sdev);
1064 	spin_lock_irqsave(&h->devlock, flags);
1065 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1066 		sdev_id(sdev), sdev->lun);
1067 	if (sd != NULL)
1068 		sdev->hostdata = sd;
1069 	spin_unlock_irqrestore(&h->devlock, flags);
1070 	return 0;
1071 }
1072 
1073 static void hpsa_slave_destroy(struct scsi_device *sdev)
1074 {
1075 	/* nothing to do. */
1076 }
1077 
1078 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1079 {
1080 	int i;
1081 
1082 	if (!h->cmd_sg_list)
1083 		return;
1084 	for (i = 0; i < h->nr_cmds; i++) {
1085 		kfree(h->cmd_sg_list[i]);
1086 		h->cmd_sg_list[i] = NULL;
1087 	}
1088 	kfree(h->cmd_sg_list);
1089 	h->cmd_sg_list = NULL;
1090 }
1091 
1092 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1093 {
1094 	int i;
1095 
1096 	if (h->chainsize <= 0)
1097 		return 0;
1098 
1099 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1100 				GFP_KERNEL);
1101 	if (!h->cmd_sg_list)
1102 		return -ENOMEM;
1103 	for (i = 0; i < h->nr_cmds; i++) {
1104 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1105 						h->chainsize, GFP_KERNEL);
1106 		if (!h->cmd_sg_list[i])
1107 			goto clean;
1108 	}
1109 	return 0;
1110 
1111 clean:
1112 	hpsa_free_sg_chain_blocks(h);
1113 	return -ENOMEM;
1114 }
1115 
1116 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1117 	struct CommandList *c)
1118 {
1119 	struct SGDescriptor *chain_sg, *chain_block;
1120 	u64 temp64;
1121 
1122 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1123 	chain_block = h->cmd_sg_list[c->cmdindex];
1124 	chain_sg->Ext = HPSA_SG_CHAIN;
1125 	chain_sg->Len = sizeof(*chain_sg) *
1126 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1127 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1128 				PCI_DMA_TODEVICE);
1129 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1130 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1131 }
1132 
1133 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1134 	struct CommandList *c)
1135 {
1136 	struct SGDescriptor *chain_sg;
1137 	union u64bit temp64;
1138 
1139 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1140 		return;
1141 
1142 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1143 	temp64.val32.lower = chain_sg->Addr.lower;
1144 	temp64.val32.upper = chain_sg->Addr.upper;
1145 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1146 }
1147 
1148 static void complete_scsi_command(struct CommandList *cp)
1149 {
1150 	struct scsi_cmnd *cmd;
1151 	struct ctlr_info *h;
1152 	struct ErrorInfo *ei;
1153 
1154 	unsigned char sense_key;
1155 	unsigned char asc;      /* additional sense code */
1156 	unsigned char ascq;     /* additional sense code qualifier */
1157 	unsigned long sense_data_size;
1158 
1159 	ei = cp->err_info;
1160 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1161 	h = cp->h;
1162 
1163 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1164 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1165 		hpsa_unmap_sg_chain_block(h, cp);
1166 
1167 	cmd->result = (DID_OK << 16); 		/* host byte */
1168 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1169 	cmd->result |= ei->ScsiStatus;
1170 
1171 	/* copy the sense data whether we need to or not. */
1172 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1173 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1174 	else
1175 		sense_data_size = sizeof(ei->SenseInfo);
1176 	if (ei->SenseLen < sense_data_size)
1177 		sense_data_size = ei->SenseLen;
1178 
1179 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1180 	scsi_set_resid(cmd, ei->ResidualCnt);
1181 
1182 	if (ei->CommandStatus == 0) {
1183 		cmd->scsi_done(cmd);
1184 		cmd_free(h, cp);
1185 		return;
1186 	}
1187 
1188 	/* an error has occurred */
1189 	switch (ei->CommandStatus) {
1190 
1191 	case CMD_TARGET_STATUS:
1192 		if (ei->ScsiStatus) {
1193 			/* Get sense key */
1194 			sense_key = 0xf & ei->SenseInfo[2];
1195 			/* Get additional sense code */
1196 			asc = ei->SenseInfo[12];
1197 			/* Get addition sense code qualifier */
1198 			ascq = ei->SenseInfo[13];
1199 		}
1200 
1201 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1202 			if (check_for_unit_attention(h, cp)) {
1203 				cmd->result = DID_SOFT_ERROR << 16;
1204 				break;
1205 			}
1206 			if (sense_key == ILLEGAL_REQUEST) {
1207 				/*
1208 				 * SCSI REPORT_LUNS is commonly unsupported on
1209 				 * Smart Array.  Suppress noisy complaint.
1210 				 */
1211 				if (cp->Request.CDB[0] == REPORT_LUNS)
1212 					break;
1213 
1214 				/* If ASC/ASCQ indicate Logical Unit
1215 				 * Not Supported condition,
1216 				 */
1217 				if ((asc == 0x25) && (ascq == 0x0)) {
1218 					dev_warn(&h->pdev->dev, "cp %p "
1219 						"has check condition\n", cp);
1220 					break;
1221 				}
1222 			}
1223 
1224 			if (sense_key == NOT_READY) {
1225 				/* If Sense is Not Ready, Logical Unit
1226 				 * Not ready, Manual Intervention
1227 				 * required
1228 				 */
1229 				if ((asc == 0x04) && (ascq == 0x03)) {
1230 					dev_warn(&h->pdev->dev, "cp %p "
1231 						"has check condition: unit "
1232 						"not ready, manual "
1233 						"intervention required\n", cp);
1234 					break;
1235 				}
1236 			}
1237 			if (sense_key == ABORTED_COMMAND) {
1238 				/* Aborted command is retryable */
1239 				dev_warn(&h->pdev->dev, "cp %p "
1240 					"has check condition: aborted command: "
1241 					"ASC: 0x%x, ASCQ: 0x%x\n",
1242 					cp, asc, ascq);
1243 				cmd->result = DID_SOFT_ERROR << 16;
1244 				break;
1245 			}
1246 			/* Must be some other type of check condition */
1247 			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1248 					"unknown type: "
1249 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1250 					"Returning result: 0x%x, "
1251 					"cmd=[%02x %02x %02x %02x %02x "
1252 					"%02x %02x %02x %02x %02x %02x "
1253 					"%02x %02x %02x %02x %02x]\n",
1254 					cp, sense_key, asc, ascq,
1255 					cmd->result,
1256 					cmd->cmnd[0], cmd->cmnd[1],
1257 					cmd->cmnd[2], cmd->cmnd[3],
1258 					cmd->cmnd[4], cmd->cmnd[5],
1259 					cmd->cmnd[6], cmd->cmnd[7],
1260 					cmd->cmnd[8], cmd->cmnd[9],
1261 					cmd->cmnd[10], cmd->cmnd[11],
1262 					cmd->cmnd[12], cmd->cmnd[13],
1263 					cmd->cmnd[14], cmd->cmnd[15]);
1264 			break;
1265 		}
1266 
1267 
1268 		/* Problem was not a check condition
1269 		 * Pass it up to the upper layers...
1270 		 */
1271 		if (ei->ScsiStatus) {
1272 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1273 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1274 				"Returning result: 0x%x\n",
1275 				cp, ei->ScsiStatus,
1276 				sense_key, asc, ascq,
1277 				cmd->result);
1278 		} else {  /* scsi status is zero??? How??? */
1279 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1280 				"Returning no connection.\n", cp),
1281 
1282 			/* Ordinarily, this case should never happen,
1283 			 * but there is a bug in some released firmware
1284 			 * revisions that allows it to happen if, for
1285 			 * example, a 4100 backplane loses power and
1286 			 * the tape drive is in it.  We assume that
1287 			 * it's a fatal error of some kind because we
1288 			 * can't show that it wasn't. We will make it
1289 			 * look like selection timeout since that is
1290 			 * the most common reason for this to occur,
1291 			 * and it's severe enough.
1292 			 */
1293 
1294 			cmd->result = DID_NO_CONNECT << 16;
1295 		}
1296 		break;
1297 
1298 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1299 		break;
1300 	case CMD_DATA_OVERRUN:
1301 		dev_warn(&h->pdev->dev, "cp %p has"
1302 			" completed with data overrun "
1303 			"reported\n", cp);
1304 		break;
1305 	case CMD_INVALID: {
1306 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1307 		print_cmd(cp); */
1308 		/* We get CMD_INVALID if you address a non-existent device
1309 		 * instead of a selection timeout (no response).  You will
1310 		 * see this if you yank out a drive, then try to access it.
1311 		 * This is kind of a shame because it means that any other
1312 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1313 		 * missing target. */
1314 		cmd->result = DID_NO_CONNECT << 16;
1315 	}
1316 		break;
1317 	case CMD_PROTOCOL_ERR:
1318 		cmd->result = DID_ERROR << 16;
1319 		dev_warn(&h->pdev->dev, "cp %p has "
1320 			"protocol error\n", cp);
1321 		break;
1322 	case CMD_HARDWARE_ERR:
1323 		cmd->result = DID_ERROR << 16;
1324 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1325 		break;
1326 	case CMD_CONNECTION_LOST:
1327 		cmd->result = DID_ERROR << 16;
1328 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1329 		break;
1330 	case CMD_ABORTED:
1331 		cmd->result = DID_ABORT << 16;
1332 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1333 				cp, ei->ScsiStatus);
1334 		break;
1335 	case CMD_ABORT_FAILED:
1336 		cmd->result = DID_ERROR << 16;
1337 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1338 		break;
1339 	case CMD_UNSOLICITED_ABORT:
1340 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1341 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1342 			"abort\n", cp);
1343 		break;
1344 	case CMD_TIMEOUT:
1345 		cmd->result = DID_TIME_OUT << 16;
1346 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1347 		break;
1348 	case CMD_UNABORTABLE:
1349 		cmd->result = DID_ERROR << 16;
1350 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1351 		break;
1352 	default:
1353 		cmd->result = DID_ERROR << 16;
1354 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1355 				cp, ei->CommandStatus);
1356 	}
1357 	cmd->scsi_done(cmd);
1358 	cmd_free(h, cp);
1359 }
1360 
1361 static void hpsa_pci_unmap(struct pci_dev *pdev,
1362 	struct CommandList *c, int sg_used, int data_direction)
1363 {
1364 	int i;
1365 	union u64bit addr64;
1366 
1367 	for (i = 0; i < sg_used; i++) {
1368 		addr64.val32.lower = c->SG[i].Addr.lower;
1369 		addr64.val32.upper = c->SG[i].Addr.upper;
1370 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1371 			data_direction);
1372 	}
1373 }
1374 
1375 static void hpsa_map_one(struct pci_dev *pdev,
1376 		struct CommandList *cp,
1377 		unsigned char *buf,
1378 		size_t buflen,
1379 		int data_direction)
1380 {
1381 	u64 addr64;
1382 
1383 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1384 		cp->Header.SGList = 0;
1385 		cp->Header.SGTotal = 0;
1386 		return;
1387 	}
1388 
1389 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1390 	cp->SG[0].Addr.lower =
1391 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1392 	cp->SG[0].Addr.upper =
1393 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1394 	cp->SG[0].Len = buflen;
1395 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1396 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1397 }
1398 
1399 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1400 	struct CommandList *c)
1401 {
1402 	DECLARE_COMPLETION_ONSTACK(wait);
1403 
1404 	c->waiting = &wait;
1405 	enqueue_cmd_and_start_io(h, c);
1406 	wait_for_completion(&wait);
1407 }
1408 
1409 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1410 	struct CommandList *c)
1411 {
1412 	unsigned long flags;
1413 
1414 	/* If controller lockup detected, fake a hardware error. */
1415 	spin_lock_irqsave(&h->lock, flags);
1416 	if (unlikely(h->lockup_detected)) {
1417 		spin_unlock_irqrestore(&h->lock, flags);
1418 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1419 	} else {
1420 		spin_unlock_irqrestore(&h->lock, flags);
1421 		hpsa_scsi_do_simple_cmd_core(h, c);
1422 	}
1423 }
1424 
1425 #define MAX_DRIVER_CMD_RETRIES 25
1426 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1427 	struct CommandList *c, int data_direction)
1428 {
1429 	int backoff_time = 10, retry_count = 0;
1430 
1431 	do {
1432 		memset(c->err_info, 0, sizeof(*c->err_info));
1433 		hpsa_scsi_do_simple_cmd_core(h, c);
1434 		retry_count++;
1435 		if (retry_count > 3) {
1436 			msleep(backoff_time);
1437 			if (backoff_time < 1000)
1438 				backoff_time *= 2;
1439 		}
1440 	} while ((check_for_unit_attention(h, c) ||
1441 			check_for_busy(h, c)) &&
1442 			retry_count <= MAX_DRIVER_CMD_RETRIES);
1443 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1444 }
1445 
1446 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1447 {
1448 	struct ErrorInfo *ei;
1449 	struct device *d = &cp->h->pdev->dev;
1450 
1451 	ei = cp->err_info;
1452 	switch (ei->CommandStatus) {
1453 	case CMD_TARGET_STATUS:
1454 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1455 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1456 				ei->ScsiStatus);
1457 		if (ei->ScsiStatus == 0)
1458 			dev_warn(d, "SCSI status is abnormally zero.  "
1459 			"(probably indicates selection timeout "
1460 			"reported incorrectly due to a known "
1461 			"firmware bug, circa July, 2001.)\n");
1462 		break;
1463 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1464 			dev_info(d, "UNDERRUN\n");
1465 		break;
1466 	case CMD_DATA_OVERRUN:
1467 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1468 		break;
1469 	case CMD_INVALID: {
1470 		/* controller unfortunately reports SCSI passthru's
1471 		 * to non-existent targets as invalid commands.
1472 		 */
1473 		dev_warn(d, "cp %p is reported invalid (probably means "
1474 			"target device no longer present)\n", cp);
1475 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1476 		print_cmd(cp);  */
1477 		}
1478 		break;
1479 	case CMD_PROTOCOL_ERR:
1480 		dev_warn(d, "cp %p has protocol error \n", cp);
1481 		break;
1482 	case CMD_HARDWARE_ERR:
1483 		/* cmd->result = DID_ERROR << 16; */
1484 		dev_warn(d, "cp %p had hardware error\n", cp);
1485 		break;
1486 	case CMD_CONNECTION_LOST:
1487 		dev_warn(d, "cp %p had connection lost\n", cp);
1488 		break;
1489 	case CMD_ABORTED:
1490 		dev_warn(d, "cp %p was aborted\n", cp);
1491 		break;
1492 	case CMD_ABORT_FAILED:
1493 		dev_warn(d, "cp %p reports abort failed\n", cp);
1494 		break;
1495 	case CMD_UNSOLICITED_ABORT:
1496 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1497 		break;
1498 	case CMD_TIMEOUT:
1499 		dev_warn(d, "cp %p timed out\n", cp);
1500 		break;
1501 	case CMD_UNABORTABLE:
1502 		dev_warn(d, "Command unabortable\n");
1503 		break;
1504 	default:
1505 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1506 				ei->CommandStatus);
1507 	}
1508 }
1509 
1510 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1511 			unsigned char page, unsigned char *buf,
1512 			unsigned char bufsize)
1513 {
1514 	int rc = IO_OK;
1515 	struct CommandList *c;
1516 	struct ErrorInfo *ei;
1517 
1518 	c = cmd_special_alloc(h);
1519 
1520 	if (c == NULL) {			/* trouble... */
1521 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1522 		return -ENOMEM;
1523 	}
1524 
1525 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1526 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1527 	ei = c->err_info;
1528 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1529 		hpsa_scsi_interpret_error(c);
1530 		rc = -1;
1531 	}
1532 	cmd_special_free(h, c);
1533 	return rc;
1534 }
1535 
1536 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1537 {
1538 	int rc = IO_OK;
1539 	struct CommandList *c;
1540 	struct ErrorInfo *ei;
1541 
1542 	c = cmd_special_alloc(h);
1543 
1544 	if (c == NULL) {			/* trouble... */
1545 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1546 		return -ENOMEM;
1547 	}
1548 
1549 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1550 	hpsa_scsi_do_simple_cmd_core(h, c);
1551 	/* no unmap needed here because no data xfer. */
1552 
1553 	ei = c->err_info;
1554 	if (ei->CommandStatus != 0) {
1555 		hpsa_scsi_interpret_error(c);
1556 		rc = -1;
1557 	}
1558 	cmd_special_free(h, c);
1559 	return rc;
1560 }
1561 
1562 static void hpsa_get_raid_level(struct ctlr_info *h,
1563 	unsigned char *scsi3addr, unsigned char *raid_level)
1564 {
1565 	int rc;
1566 	unsigned char *buf;
1567 
1568 	*raid_level = RAID_UNKNOWN;
1569 	buf = kzalloc(64, GFP_KERNEL);
1570 	if (!buf)
1571 		return;
1572 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1573 	if (rc == 0)
1574 		*raid_level = buf[8];
1575 	if (*raid_level > RAID_UNKNOWN)
1576 		*raid_level = RAID_UNKNOWN;
1577 	kfree(buf);
1578 	return;
1579 }
1580 
1581 /* Get the device id from inquiry page 0x83 */
1582 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1583 	unsigned char *device_id, int buflen)
1584 {
1585 	int rc;
1586 	unsigned char *buf;
1587 
1588 	if (buflen > 16)
1589 		buflen = 16;
1590 	buf = kzalloc(64, GFP_KERNEL);
1591 	if (!buf)
1592 		return -1;
1593 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1594 	if (rc == 0)
1595 		memcpy(device_id, &buf[8], buflen);
1596 	kfree(buf);
1597 	return rc != 0;
1598 }
1599 
1600 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1601 		struct ReportLUNdata *buf, int bufsize,
1602 		int extended_response)
1603 {
1604 	int rc = IO_OK;
1605 	struct CommandList *c;
1606 	unsigned char scsi3addr[8];
1607 	struct ErrorInfo *ei;
1608 
1609 	c = cmd_special_alloc(h);
1610 	if (c == NULL) {			/* trouble... */
1611 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1612 		return -1;
1613 	}
1614 	/* address the controller */
1615 	memset(scsi3addr, 0, sizeof(scsi3addr));
1616 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1617 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1618 	if (extended_response)
1619 		c->Request.CDB[1] = extended_response;
1620 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1621 	ei = c->err_info;
1622 	if (ei->CommandStatus != 0 &&
1623 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1624 		hpsa_scsi_interpret_error(c);
1625 		rc = -1;
1626 	}
1627 	cmd_special_free(h, c);
1628 	return rc;
1629 }
1630 
1631 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1632 		struct ReportLUNdata *buf,
1633 		int bufsize, int extended_response)
1634 {
1635 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1636 }
1637 
1638 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1639 		struct ReportLUNdata *buf, int bufsize)
1640 {
1641 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1642 }
1643 
1644 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1645 	int bus, int target, int lun)
1646 {
1647 	device->bus = bus;
1648 	device->target = target;
1649 	device->lun = lun;
1650 }
1651 
1652 static int hpsa_update_device_info(struct ctlr_info *h,
1653 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1654 	unsigned char *is_OBDR_device)
1655 {
1656 
1657 #define OBDR_SIG_OFFSET 43
1658 #define OBDR_TAPE_SIG "$DR-10"
1659 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1660 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1661 
1662 	unsigned char *inq_buff;
1663 	unsigned char *obdr_sig;
1664 
1665 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1666 	if (!inq_buff)
1667 		goto bail_out;
1668 
1669 	/* Do an inquiry to the device to see what it is. */
1670 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1671 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1672 		/* Inquiry failed (msg printed already) */
1673 		dev_err(&h->pdev->dev,
1674 			"hpsa_update_device_info: inquiry failed\n");
1675 		goto bail_out;
1676 	}
1677 
1678 	this_device->devtype = (inq_buff[0] & 0x1f);
1679 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1680 	memcpy(this_device->vendor, &inq_buff[8],
1681 		sizeof(this_device->vendor));
1682 	memcpy(this_device->model, &inq_buff[16],
1683 		sizeof(this_device->model));
1684 	memset(this_device->device_id, 0,
1685 		sizeof(this_device->device_id));
1686 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1687 		sizeof(this_device->device_id));
1688 
1689 	if (this_device->devtype == TYPE_DISK &&
1690 		is_logical_dev_addr_mode(scsi3addr))
1691 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1692 	else
1693 		this_device->raid_level = RAID_UNKNOWN;
1694 
1695 	if (is_OBDR_device) {
1696 		/* See if this is a One-Button-Disaster-Recovery device
1697 		 * by looking for "$DR-10" at offset 43 in inquiry data.
1698 		 */
1699 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1700 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1701 					strncmp(obdr_sig, OBDR_TAPE_SIG,
1702 						OBDR_SIG_LEN) == 0);
1703 	}
1704 
1705 	kfree(inq_buff);
1706 	return 0;
1707 
1708 bail_out:
1709 	kfree(inq_buff);
1710 	return 1;
1711 }
1712 
1713 static unsigned char *ext_target_model[] = {
1714 	"MSA2012",
1715 	"MSA2024",
1716 	"MSA2312",
1717 	"MSA2324",
1718 	"P2000 G3 SAS",
1719 	NULL,
1720 };
1721 
1722 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1723 {
1724 	int i;
1725 
1726 	for (i = 0; ext_target_model[i]; i++)
1727 		if (strncmp(device->model, ext_target_model[i],
1728 			strlen(ext_target_model[i])) == 0)
1729 			return 1;
1730 	return 0;
1731 }
1732 
1733 /* Helper function to assign bus, target, lun mapping of devices.
1734  * Puts non-external target logical volumes on bus 0, external target logical
1735  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1736  * Logical drive target and lun are assigned at this time, but
1737  * physical device lun and target assignment are deferred (assigned
1738  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1739  */
1740 static void figure_bus_target_lun(struct ctlr_info *h,
1741 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1742 {
1743 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1744 
1745 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1746 		/* physical device, target and lun filled in later */
1747 		if (is_hba_lunid(lunaddrbytes))
1748 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1749 		else
1750 			/* defer target, lun assignment for physical devices */
1751 			hpsa_set_bus_target_lun(device, 2, -1, -1);
1752 		return;
1753 	}
1754 	/* It's a logical device */
1755 	if (is_ext_target(h, device)) {
1756 		/* external target way, put logicals on bus 1
1757 		 * and match target/lun numbers box
1758 		 * reports, other smart array, bus 0, target 0, match lunid
1759 		 */
1760 		hpsa_set_bus_target_lun(device,
1761 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1762 		return;
1763 	}
1764 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1765 }
1766 
1767 /*
1768  * If there is no lun 0 on a target, linux won't find any devices.
1769  * For the external targets (arrays), we have to manually detect the enclosure
1770  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1771  * it for some reason.  *tmpdevice is the target we're adding,
1772  * this_device is a pointer into the current element of currentsd[]
1773  * that we're building up in update_scsi_devices(), below.
1774  * lunzerobits is a bitmap that tracks which targets already have a
1775  * lun 0 assigned.
1776  * Returns 1 if an enclosure was added, 0 if not.
1777  */
1778 static int add_ext_target_dev(struct ctlr_info *h,
1779 	struct hpsa_scsi_dev_t *tmpdevice,
1780 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1781 	unsigned long lunzerobits[], int *n_ext_target_devs)
1782 {
1783 	unsigned char scsi3addr[8];
1784 
1785 	if (test_bit(tmpdevice->target, lunzerobits))
1786 		return 0; /* There is already a lun 0 on this target. */
1787 
1788 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1789 		return 0; /* It's the logical targets that may lack lun 0. */
1790 
1791 	if (!is_ext_target(h, tmpdevice))
1792 		return 0; /* Only external target devices have this problem. */
1793 
1794 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1795 		return 0;
1796 
1797 	memset(scsi3addr, 0, 8);
1798 	scsi3addr[3] = tmpdevice->target;
1799 	if (is_hba_lunid(scsi3addr))
1800 		return 0; /* Don't add the RAID controller here. */
1801 
1802 	if (is_scsi_rev_5(h))
1803 		return 0; /* p1210m doesn't need to do this. */
1804 
1805 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1806 		dev_warn(&h->pdev->dev, "Maximum number of external "
1807 			"target devices exceeded.  Check your hardware "
1808 			"configuration.");
1809 		return 0;
1810 	}
1811 
1812 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1813 		return 0;
1814 	(*n_ext_target_devs)++;
1815 	hpsa_set_bus_target_lun(this_device,
1816 				tmpdevice->bus, tmpdevice->target, 0);
1817 	set_bit(tmpdevice->target, lunzerobits);
1818 	return 1;
1819 }
1820 
1821 /*
1822  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1823  * logdev.  The number of luns in physdev and logdev are returned in
1824  * *nphysicals and *nlogicals, respectively.
1825  * Returns 0 on success, -1 otherwise.
1826  */
1827 static int hpsa_gather_lun_info(struct ctlr_info *h,
1828 	int reportlunsize,
1829 	struct ReportLUNdata *physdev, u32 *nphysicals,
1830 	struct ReportLUNdata *logdev, u32 *nlogicals)
1831 {
1832 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1833 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1834 		return -1;
1835 	}
1836 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1837 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1838 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1839 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1840 			*nphysicals - HPSA_MAX_PHYS_LUN);
1841 		*nphysicals = HPSA_MAX_PHYS_LUN;
1842 	}
1843 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1844 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1845 		return -1;
1846 	}
1847 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1848 	/* Reject Logicals in excess of our max capability. */
1849 	if (*nlogicals > HPSA_MAX_LUN) {
1850 		dev_warn(&h->pdev->dev,
1851 			"maximum logical LUNs (%d) exceeded.  "
1852 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1853 			*nlogicals - HPSA_MAX_LUN);
1854 			*nlogicals = HPSA_MAX_LUN;
1855 	}
1856 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1857 		dev_warn(&h->pdev->dev,
1858 			"maximum logical + physical LUNs (%d) exceeded. "
1859 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1860 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1861 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1862 	}
1863 	return 0;
1864 }
1865 
1866 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1867 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1868 	struct ReportLUNdata *logdev_list)
1869 {
1870 	/* Helper function, figure out where the LUN ID info is coming from
1871 	 * given index i, lists of physical and logical devices, where in
1872 	 * the list the raid controller is supposed to appear (first or last)
1873 	 */
1874 
1875 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1876 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1877 
1878 	if (i == raid_ctlr_position)
1879 		return RAID_CTLR_LUNID;
1880 
1881 	if (i < logicals_start)
1882 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1883 
1884 	if (i < last_device)
1885 		return &logdev_list->LUN[i - nphysicals -
1886 			(raid_ctlr_position == 0)][0];
1887 	BUG();
1888 	return NULL;
1889 }
1890 
1891 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1892 {
1893 	/* the idea here is we could get notified
1894 	 * that some devices have changed, so we do a report
1895 	 * physical luns and report logical luns cmd, and adjust
1896 	 * our list of devices accordingly.
1897 	 *
1898 	 * The scsi3addr's of devices won't change so long as the
1899 	 * adapter is not reset.  That means we can rescan and
1900 	 * tell which devices we already know about, vs. new
1901 	 * devices, vs.  disappearing devices.
1902 	 */
1903 	struct ReportLUNdata *physdev_list = NULL;
1904 	struct ReportLUNdata *logdev_list = NULL;
1905 	u32 nphysicals = 0;
1906 	u32 nlogicals = 0;
1907 	u32 ndev_allocated = 0;
1908 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1909 	int ncurrent = 0;
1910 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1911 	int i, n_ext_target_devs, ndevs_to_allocate;
1912 	int raid_ctlr_position;
1913 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1914 
1915 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1916 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1917 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1918 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1919 
1920 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1921 		dev_err(&h->pdev->dev, "out of memory\n");
1922 		goto out;
1923 	}
1924 	memset(lunzerobits, 0, sizeof(lunzerobits));
1925 
1926 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1927 			logdev_list, &nlogicals))
1928 		goto out;
1929 
1930 	/* We might see up to the maximum number of logical and physical disks
1931 	 * plus external target devices, and a device for the local RAID
1932 	 * controller.
1933 	 */
1934 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1935 
1936 	/* Allocate the per device structures */
1937 	for (i = 0; i < ndevs_to_allocate; i++) {
1938 		if (i >= HPSA_MAX_DEVICES) {
1939 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1940 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
1941 				ndevs_to_allocate - HPSA_MAX_DEVICES);
1942 			break;
1943 		}
1944 
1945 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1946 		if (!currentsd[i]) {
1947 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1948 				__FILE__, __LINE__);
1949 			goto out;
1950 		}
1951 		ndev_allocated++;
1952 	}
1953 
1954 	if (unlikely(is_scsi_rev_5(h)))
1955 		raid_ctlr_position = 0;
1956 	else
1957 		raid_ctlr_position = nphysicals + nlogicals;
1958 
1959 	/* adjust our table of devices */
1960 	n_ext_target_devs = 0;
1961 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1962 		u8 *lunaddrbytes, is_OBDR = 0;
1963 
1964 		/* Figure out where the LUN ID info is coming from */
1965 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1966 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1967 		/* skip masked physical devices. */
1968 		if (lunaddrbytes[3] & 0xC0 &&
1969 			i < nphysicals + (raid_ctlr_position == 0))
1970 			continue;
1971 
1972 		/* Get device type, vendor, model, device id */
1973 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1974 							&is_OBDR))
1975 			continue; /* skip it if we can't talk to it. */
1976 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
1977 		this_device = currentsd[ncurrent];
1978 
1979 		/*
1980 		 * For external target devices, we have to insert a LUN 0 which
1981 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1982 		 * is nonetheless an enclosure device there.  We have to
1983 		 * present that otherwise linux won't find anything if
1984 		 * there is no lun 0.
1985 		 */
1986 		if (add_ext_target_dev(h, tmpdevice, this_device,
1987 				lunaddrbytes, lunzerobits,
1988 				&n_ext_target_devs)) {
1989 			ncurrent++;
1990 			this_device = currentsd[ncurrent];
1991 		}
1992 
1993 		*this_device = *tmpdevice;
1994 
1995 		switch (this_device->devtype) {
1996 		case TYPE_ROM:
1997 			/* We don't *really* support actual CD-ROM devices,
1998 			 * just "One Button Disaster Recovery" tape drive
1999 			 * which temporarily pretends to be a CD-ROM drive.
2000 			 * So we check that the device is really an OBDR tape
2001 			 * device by checking for "$DR-10" in bytes 43-48 of
2002 			 * the inquiry data.
2003 			 */
2004 			if (is_OBDR)
2005 				ncurrent++;
2006 			break;
2007 		case TYPE_DISK:
2008 			if (i < nphysicals)
2009 				break;
2010 			ncurrent++;
2011 			break;
2012 		case TYPE_TAPE:
2013 		case TYPE_MEDIUM_CHANGER:
2014 			ncurrent++;
2015 			break;
2016 		case TYPE_RAID:
2017 			/* Only present the Smartarray HBA as a RAID controller.
2018 			 * If it's a RAID controller other than the HBA itself
2019 			 * (an external RAID controller, MSA500 or similar)
2020 			 * don't present it.
2021 			 */
2022 			if (!is_hba_lunid(lunaddrbytes))
2023 				break;
2024 			ncurrent++;
2025 			break;
2026 		default:
2027 			break;
2028 		}
2029 		if (ncurrent >= HPSA_MAX_DEVICES)
2030 			break;
2031 	}
2032 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2033 out:
2034 	kfree(tmpdevice);
2035 	for (i = 0; i < ndev_allocated; i++)
2036 		kfree(currentsd[i]);
2037 	kfree(currentsd);
2038 	kfree(physdev_list);
2039 	kfree(logdev_list);
2040 }
2041 
2042 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2043  * dma mapping  and fills in the scatter gather entries of the
2044  * hpsa command, cp.
2045  */
2046 static int hpsa_scatter_gather(struct ctlr_info *h,
2047 		struct CommandList *cp,
2048 		struct scsi_cmnd *cmd)
2049 {
2050 	unsigned int len;
2051 	struct scatterlist *sg;
2052 	u64 addr64;
2053 	int use_sg, i, sg_index, chained;
2054 	struct SGDescriptor *curr_sg;
2055 
2056 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2057 
2058 	use_sg = scsi_dma_map(cmd);
2059 	if (use_sg < 0)
2060 		return use_sg;
2061 
2062 	if (!use_sg)
2063 		goto sglist_finished;
2064 
2065 	curr_sg = cp->SG;
2066 	chained = 0;
2067 	sg_index = 0;
2068 	scsi_for_each_sg(cmd, sg, use_sg, i) {
2069 		if (i == h->max_cmd_sg_entries - 1 &&
2070 			use_sg > h->max_cmd_sg_entries) {
2071 			chained = 1;
2072 			curr_sg = h->cmd_sg_list[cp->cmdindex];
2073 			sg_index = 0;
2074 		}
2075 		addr64 = (u64) sg_dma_address(sg);
2076 		len  = sg_dma_len(sg);
2077 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2078 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2079 		curr_sg->Len = len;
2080 		curr_sg->Ext = 0;  /* we are not chaining */
2081 		curr_sg++;
2082 	}
2083 
2084 	if (use_sg + chained > h->maxSG)
2085 		h->maxSG = use_sg + chained;
2086 
2087 	if (chained) {
2088 		cp->Header.SGList = h->max_cmd_sg_entries;
2089 		cp->Header.SGTotal = (u16) (use_sg + 1);
2090 		hpsa_map_sg_chain_block(h, cp);
2091 		return 0;
2092 	}
2093 
2094 sglist_finished:
2095 
2096 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2097 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2098 	return 0;
2099 }
2100 
2101 
2102 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2103 	void (*done)(struct scsi_cmnd *))
2104 {
2105 	struct ctlr_info *h;
2106 	struct hpsa_scsi_dev_t *dev;
2107 	unsigned char scsi3addr[8];
2108 	struct CommandList *c;
2109 	unsigned long flags;
2110 
2111 	/* Get the ptr to our adapter structure out of cmd->host. */
2112 	h = sdev_to_hba(cmd->device);
2113 	dev = cmd->device->hostdata;
2114 	if (!dev) {
2115 		cmd->result = DID_NO_CONNECT << 16;
2116 		done(cmd);
2117 		return 0;
2118 	}
2119 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2120 
2121 	spin_lock_irqsave(&h->lock, flags);
2122 	if (unlikely(h->lockup_detected)) {
2123 		spin_unlock_irqrestore(&h->lock, flags);
2124 		cmd->result = DID_ERROR << 16;
2125 		done(cmd);
2126 		return 0;
2127 	}
2128 	spin_unlock_irqrestore(&h->lock, flags);
2129 	c = cmd_alloc(h);
2130 	if (c == NULL) {			/* trouble... */
2131 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2132 		return SCSI_MLQUEUE_HOST_BUSY;
2133 	}
2134 
2135 	/* Fill in the command list header */
2136 
2137 	cmd->scsi_done = done;    /* save this for use by completion code */
2138 
2139 	/* save c in case we have to abort it  */
2140 	cmd->host_scribble = (unsigned char *) c;
2141 
2142 	c->cmd_type = CMD_SCSI;
2143 	c->scsi_cmd = cmd;
2144 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2145 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2146 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2147 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2148 
2149 	/* Fill in the request block... */
2150 
2151 	c->Request.Timeout = 0;
2152 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2153 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2154 	c->Request.CDBLen = cmd->cmd_len;
2155 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2156 	c->Request.Type.Type = TYPE_CMD;
2157 	c->Request.Type.Attribute = ATTR_SIMPLE;
2158 	switch (cmd->sc_data_direction) {
2159 	case DMA_TO_DEVICE:
2160 		c->Request.Type.Direction = XFER_WRITE;
2161 		break;
2162 	case DMA_FROM_DEVICE:
2163 		c->Request.Type.Direction = XFER_READ;
2164 		break;
2165 	case DMA_NONE:
2166 		c->Request.Type.Direction = XFER_NONE;
2167 		break;
2168 	case DMA_BIDIRECTIONAL:
2169 		/* This can happen if a buggy application does a scsi passthru
2170 		 * and sets both inlen and outlen to non-zero. ( see
2171 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2172 		 */
2173 
2174 		c->Request.Type.Direction = XFER_RSVD;
2175 		/* This is technically wrong, and hpsa controllers should
2176 		 * reject it with CMD_INVALID, which is the most correct
2177 		 * response, but non-fibre backends appear to let it
2178 		 * slide by, and give the same results as if this field
2179 		 * were set correctly.  Either way is acceptable for
2180 		 * our purposes here.
2181 		 */
2182 
2183 		break;
2184 
2185 	default:
2186 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2187 			cmd->sc_data_direction);
2188 		BUG();
2189 		break;
2190 	}
2191 
2192 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2193 		cmd_free(h, c);
2194 		return SCSI_MLQUEUE_HOST_BUSY;
2195 	}
2196 	enqueue_cmd_and_start_io(h, c);
2197 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2198 	return 0;
2199 }
2200 
2201 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2202 
2203 static void hpsa_scan_start(struct Scsi_Host *sh)
2204 {
2205 	struct ctlr_info *h = shost_to_hba(sh);
2206 	unsigned long flags;
2207 
2208 	/* wait until any scan already in progress is finished. */
2209 	while (1) {
2210 		spin_lock_irqsave(&h->scan_lock, flags);
2211 		if (h->scan_finished)
2212 			break;
2213 		spin_unlock_irqrestore(&h->scan_lock, flags);
2214 		wait_event(h->scan_wait_queue, h->scan_finished);
2215 		/* Note: We don't need to worry about a race between this
2216 		 * thread and driver unload because the midlayer will
2217 		 * have incremented the reference count, so unload won't
2218 		 * happen if we're in here.
2219 		 */
2220 	}
2221 	h->scan_finished = 0; /* mark scan as in progress */
2222 	spin_unlock_irqrestore(&h->scan_lock, flags);
2223 
2224 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2225 
2226 	spin_lock_irqsave(&h->scan_lock, flags);
2227 	h->scan_finished = 1; /* mark scan as finished. */
2228 	wake_up_all(&h->scan_wait_queue);
2229 	spin_unlock_irqrestore(&h->scan_lock, flags);
2230 }
2231 
2232 static int hpsa_scan_finished(struct Scsi_Host *sh,
2233 	unsigned long elapsed_time)
2234 {
2235 	struct ctlr_info *h = shost_to_hba(sh);
2236 	unsigned long flags;
2237 	int finished;
2238 
2239 	spin_lock_irqsave(&h->scan_lock, flags);
2240 	finished = h->scan_finished;
2241 	spin_unlock_irqrestore(&h->scan_lock, flags);
2242 	return finished;
2243 }
2244 
2245 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2246 	int qdepth, int reason)
2247 {
2248 	struct ctlr_info *h = sdev_to_hba(sdev);
2249 
2250 	if (reason != SCSI_QDEPTH_DEFAULT)
2251 		return -ENOTSUPP;
2252 
2253 	if (qdepth < 1)
2254 		qdepth = 1;
2255 	else
2256 		if (qdepth > h->nr_cmds)
2257 			qdepth = h->nr_cmds;
2258 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2259 	return sdev->queue_depth;
2260 }
2261 
2262 static void hpsa_unregister_scsi(struct ctlr_info *h)
2263 {
2264 	/* we are being forcibly unloaded, and may not refuse. */
2265 	scsi_remove_host(h->scsi_host);
2266 	scsi_host_put(h->scsi_host);
2267 	h->scsi_host = NULL;
2268 }
2269 
2270 static int hpsa_register_scsi(struct ctlr_info *h)
2271 {
2272 	struct Scsi_Host *sh;
2273 	int error;
2274 
2275 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2276 	if (sh == NULL)
2277 		goto fail;
2278 
2279 	sh->io_port = 0;
2280 	sh->n_io_port = 0;
2281 	sh->this_id = -1;
2282 	sh->max_channel = 3;
2283 	sh->max_cmd_len = MAX_COMMAND_SIZE;
2284 	sh->max_lun = HPSA_MAX_LUN;
2285 	sh->max_id = HPSA_MAX_LUN;
2286 	sh->can_queue = h->nr_cmds;
2287 	sh->cmd_per_lun = h->nr_cmds;
2288 	sh->sg_tablesize = h->maxsgentries;
2289 	h->scsi_host = sh;
2290 	sh->hostdata[0] = (unsigned long) h;
2291 	sh->irq = h->intr[h->intr_mode];
2292 	sh->unique_id = sh->irq;
2293 	error = scsi_add_host(sh, &h->pdev->dev);
2294 	if (error)
2295 		goto fail_host_put;
2296 	scsi_scan_host(sh);
2297 	return 0;
2298 
2299  fail_host_put:
2300 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
2301 		" failed for controller %d\n", __func__, h->ctlr);
2302 	scsi_host_put(sh);
2303 	return error;
2304  fail:
2305 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2306 		" failed for controller %d\n", __func__, h->ctlr);
2307 	return -ENOMEM;
2308 }
2309 
2310 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2311 	unsigned char lunaddr[])
2312 {
2313 	int rc = 0;
2314 	int count = 0;
2315 	int waittime = 1; /* seconds */
2316 	struct CommandList *c;
2317 
2318 	c = cmd_special_alloc(h);
2319 	if (!c) {
2320 		dev_warn(&h->pdev->dev, "out of memory in "
2321 			"wait_for_device_to_become_ready.\n");
2322 		return IO_ERROR;
2323 	}
2324 
2325 	/* Send test unit ready until device ready, or give up. */
2326 	while (count < HPSA_TUR_RETRY_LIMIT) {
2327 
2328 		/* Wait for a bit.  do this first, because if we send
2329 		 * the TUR right away, the reset will just abort it.
2330 		 */
2331 		msleep(1000 * waittime);
2332 		count++;
2333 
2334 		/* Increase wait time with each try, up to a point. */
2335 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2336 			waittime = waittime * 2;
2337 
2338 		/* Send the Test Unit Ready */
2339 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2340 		hpsa_scsi_do_simple_cmd_core(h, c);
2341 		/* no unmap needed here because no data xfer. */
2342 
2343 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2344 			break;
2345 
2346 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2347 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2348 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2349 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2350 			break;
2351 
2352 		dev_warn(&h->pdev->dev, "waiting %d secs "
2353 			"for device to become ready.\n", waittime);
2354 		rc = 1; /* device not ready. */
2355 	}
2356 
2357 	if (rc)
2358 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2359 	else
2360 		dev_warn(&h->pdev->dev, "device is ready.\n");
2361 
2362 	cmd_special_free(h, c);
2363 	return rc;
2364 }
2365 
2366 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2367  * complaining.  Doing a host- or bus-reset can't do anything good here.
2368  */
2369 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2370 {
2371 	int rc;
2372 	struct ctlr_info *h;
2373 	struct hpsa_scsi_dev_t *dev;
2374 
2375 	/* find the controller to which the command to be aborted was sent */
2376 	h = sdev_to_hba(scsicmd->device);
2377 	if (h == NULL) /* paranoia */
2378 		return FAILED;
2379 	dev = scsicmd->device->hostdata;
2380 	if (!dev) {
2381 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2382 			"device lookup failed.\n");
2383 		return FAILED;
2384 	}
2385 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2386 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2387 	/* send a reset to the SCSI LUN which the command was sent to */
2388 	rc = hpsa_send_reset(h, dev->scsi3addr);
2389 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2390 		return SUCCESS;
2391 
2392 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2393 	return FAILED;
2394 }
2395 
2396 static void swizzle_abort_tag(u8 *tag)
2397 {
2398 	u8 original_tag[8];
2399 
2400 	memcpy(original_tag, tag, 8);
2401 	tag[0] = original_tag[3];
2402 	tag[1] = original_tag[2];
2403 	tag[2] = original_tag[1];
2404 	tag[3] = original_tag[0];
2405 	tag[4] = original_tag[7];
2406 	tag[5] = original_tag[6];
2407 	tag[6] = original_tag[5];
2408 	tag[7] = original_tag[4];
2409 }
2410 
2411 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2412 	struct CommandList *abort, int swizzle)
2413 {
2414 	int rc = IO_OK;
2415 	struct CommandList *c;
2416 	struct ErrorInfo *ei;
2417 
2418 	c = cmd_special_alloc(h);
2419 	if (c == NULL) {	/* trouble... */
2420 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2421 		return -ENOMEM;
2422 	}
2423 
2424 	fill_cmd(c, HPSA_ABORT_MSG, h, abort, 0, 0, scsi3addr, TYPE_MSG);
2425 	if (swizzle)
2426 		swizzle_abort_tag(&c->Request.CDB[4]);
2427 	hpsa_scsi_do_simple_cmd_core(h, c);
2428 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2429 		__func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2430 	/* no unmap needed here because no data xfer. */
2431 
2432 	ei = c->err_info;
2433 	switch (ei->CommandStatus) {
2434 	case CMD_SUCCESS:
2435 		break;
2436 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
2437 		rc = -1;
2438 		break;
2439 	default:
2440 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2441 			__func__, abort->Header.Tag.upper,
2442 			abort->Header.Tag.lower);
2443 		hpsa_scsi_interpret_error(c);
2444 		rc = -1;
2445 		break;
2446 	}
2447 	cmd_special_free(h, c);
2448 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2449 		abort->Header.Tag.upper, abort->Header.Tag.lower);
2450 	return rc;
2451 }
2452 
2453 /*
2454  * hpsa_find_cmd_in_queue
2455  *
2456  * Used to determine whether a command (find) is still present
2457  * in queue_head.   Optionally excludes the last element of queue_head.
2458  *
2459  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2460  * not yet been submitted, and so can be aborted by the driver without
2461  * sending an abort to the hardware.
2462  *
2463  * Returns pointer to command if found in queue, NULL otherwise.
2464  */
2465 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2466 			struct scsi_cmnd *find, struct list_head *queue_head)
2467 {
2468 	unsigned long flags;
2469 	struct CommandList *c = NULL;	/* ptr into cmpQ */
2470 
2471 	if (!find)
2472 		return 0;
2473 	spin_lock_irqsave(&h->lock, flags);
2474 	list_for_each_entry(c, queue_head, list) {
2475 		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2476 			continue;
2477 		if (c->scsi_cmd == find) {
2478 			spin_unlock_irqrestore(&h->lock, flags);
2479 			return c;
2480 		}
2481 	}
2482 	spin_unlock_irqrestore(&h->lock, flags);
2483 	return NULL;
2484 }
2485 
2486 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2487 					u8 *tag, struct list_head *queue_head)
2488 {
2489 	unsigned long flags;
2490 	struct CommandList *c;
2491 
2492 	spin_lock_irqsave(&h->lock, flags);
2493 	list_for_each_entry(c, queue_head, list) {
2494 		if (memcmp(&c->Header.Tag, tag, 8) != 0)
2495 			continue;
2496 		spin_unlock_irqrestore(&h->lock, flags);
2497 		return c;
2498 	}
2499 	spin_unlock_irqrestore(&h->lock, flags);
2500 	return NULL;
2501 }
2502 
2503 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2504  * tell which kind we're dealing with, so we send the abort both ways.  There
2505  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2506  * way we construct our tags but we check anyway in case the assumptions which
2507  * make this true someday become false.
2508  */
2509 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2510 	unsigned char *scsi3addr, struct CommandList *abort)
2511 {
2512 	u8 swizzled_tag[8];
2513 	struct CommandList *c;
2514 	int rc = 0, rc2 = 0;
2515 
2516 	/* we do not expect to find the swizzled tag in our queue, but
2517 	 * check anyway just to be sure the assumptions which make this
2518 	 * the case haven't become wrong.
2519 	 */
2520 	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2521 	swizzle_abort_tag(swizzled_tag);
2522 	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2523 	if (c != NULL) {
2524 		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2525 		return hpsa_send_abort(h, scsi3addr, abort, 0);
2526 	}
2527 	rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2528 
2529 	/* if the command is still in our queue, we can't conclude that it was
2530 	 * aborted (it might have just completed normally) but in any case
2531 	 * we don't need to try to abort it another way.
2532 	 */
2533 	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2534 	if (c)
2535 		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2536 	return rc && rc2;
2537 }
2538 
2539 /* Send an abort for the specified command.
2540  *	If the device and controller support it,
2541  *		send a task abort request.
2542  */
2543 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2544 {
2545 
2546 	int i, rc;
2547 	struct ctlr_info *h;
2548 	struct hpsa_scsi_dev_t *dev;
2549 	struct CommandList *abort; /* pointer to command to be aborted */
2550 	struct CommandList *found;
2551 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
2552 	char msg[256];		/* For debug messaging. */
2553 	int ml = 0;
2554 
2555 	/* Find the controller of the command to be aborted */
2556 	h = sdev_to_hba(sc->device);
2557 	if (WARN(h == NULL,
2558 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
2559 		return FAILED;
2560 
2561 	/* Check that controller supports some kind of task abort */
2562 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2563 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2564 		return FAILED;
2565 
2566 	memset(msg, 0, sizeof(msg));
2567 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2568 		h->scsi_host->host_no, sc->device->channel,
2569 		sc->device->id, sc->device->lun);
2570 
2571 	/* Find the device of the command to be aborted */
2572 	dev = sc->device->hostdata;
2573 	if (!dev) {
2574 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2575 				msg);
2576 		return FAILED;
2577 	}
2578 
2579 	/* Get SCSI command to be aborted */
2580 	abort = (struct CommandList *) sc->host_scribble;
2581 	if (abort == NULL) {
2582 		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2583 				msg);
2584 		return FAILED;
2585 	}
2586 
2587 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2588 		abort->Header.Tag.upper, abort->Header.Tag.lower);
2589 	as  = (struct scsi_cmnd *) abort->scsi_cmd;
2590 	if (as != NULL)
2591 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2592 			as->cmnd[0], as->serial_number);
2593 	dev_dbg(&h->pdev->dev, "%s\n", msg);
2594 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2595 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2596 
2597 	/* Search reqQ to See if command is queued but not submitted,
2598 	 * if so, complete the command with aborted status and remove
2599 	 * it from the reqQ.
2600 	 */
2601 	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2602 	if (found) {
2603 		found->err_info->CommandStatus = CMD_ABORTED;
2604 		finish_cmd(found);
2605 		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2606 				msg);
2607 		return SUCCESS;
2608 	}
2609 
2610 	/* not in reqQ, if also not in cmpQ, must have already completed */
2611 	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2612 	if (!found)  {
2613 		dev_dbg(&h->pdev->dev, "%s Request FAILED (not known to driver).\n",
2614 				msg);
2615 		return SUCCESS;
2616 	}
2617 
2618 	/*
2619 	 * Command is in flight, or possibly already completed
2620 	 * by the firmware (but not to the scsi mid layer) but we can't
2621 	 * distinguish which.  Send the abort down.
2622 	 */
2623 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2624 	if (rc != 0) {
2625 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2626 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2627 			h->scsi_host->host_no,
2628 			dev->bus, dev->target, dev->lun);
2629 		return FAILED;
2630 	}
2631 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2632 
2633 	/* If the abort(s) above completed and actually aborted the
2634 	 * command, then the command to be aborted should already be
2635 	 * completed.  If not, wait around a bit more to see if they
2636 	 * manage to complete normally.
2637 	 */
2638 #define ABORT_COMPLETE_WAIT_SECS 30
2639 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2640 		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2641 		if (!found)
2642 			return SUCCESS;
2643 		msleep(100);
2644 	}
2645 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2646 		msg, ABORT_COMPLETE_WAIT_SECS);
2647 	return FAILED;
2648 }
2649 
2650 
2651 /*
2652  * For operations that cannot sleep, a command block is allocated at init,
2653  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2654  * which ones are free or in use.  Lock must be held when calling this.
2655  * cmd_free() is the complement.
2656  */
2657 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2658 {
2659 	struct CommandList *c;
2660 	int i;
2661 	union u64bit temp64;
2662 	dma_addr_t cmd_dma_handle, err_dma_handle;
2663 	unsigned long flags;
2664 
2665 	spin_lock_irqsave(&h->lock, flags);
2666 	do {
2667 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2668 		if (i == h->nr_cmds) {
2669 			spin_unlock_irqrestore(&h->lock, flags);
2670 			return NULL;
2671 		}
2672 	} while (test_and_set_bit
2673 		 (i & (BITS_PER_LONG - 1),
2674 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2675 	h->nr_allocs++;
2676 	spin_unlock_irqrestore(&h->lock, flags);
2677 
2678 	c = h->cmd_pool + i;
2679 	memset(c, 0, sizeof(*c));
2680 	cmd_dma_handle = h->cmd_pool_dhandle
2681 	    + i * sizeof(*c);
2682 	c->err_info = h->errinfo_pool + i;
2683 	memset(c->err_info, 0, sizeof(*c->err_info));
2684 	err_dma_handle = h->errinfo_pool_dhandle
2685 	    + i * sizeof(*c->err_info);
2686 
2687 	c->cmdindex = i;
2688 
2689 	INIT_LIST_HEAD(&c->list);
2690 	c->busaddr = (u32) cmd_dma_handle;
2691 	temp64.val = (u64) err_dma_handle;
2692 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2693 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2694 	c->ErrDesc.Len = sizeof(*c->err_info);
2695 
2696 	c->h = h;
2697 	return c;
2698 }
2699 
2700 /* For operations that can wait for kmalloc to possibly sleep,
2701  * this routine can be called. Lock need not be held to call
2702  * cmd_special_alloc. cmd_special_free() is the complement.
2703  */
2704 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2705 {
2706 	struct CommandList *c;
2707 	union u64bit temp64;
2708 	dma_addr_t cmd_dma_handle, err_dma_handle;
2709 
2710 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2711 	if (c == NULL)
2712 		return NULL;
2713 	memset(c, 0, sizeof(*c));
2714 
2715 	c->cmdindex = -1;
2716 
2717 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2718 		    &err_dma_handle);
2719 
2720 	if (c->err_info == NULL) {
2721 		pci_free_consistent(h->pdev,
2722 			sizeof(*c), c, cmd_dma_handle);
2723 		return NULL;
2724 	}
2725 	memset(c->err_info, 0, sizeof(*c->err_info));
2726 
2727 	INIT_LIST_HEAD(&c->list);
2728 	c->busaddr = (u32) cmd_dma_handle;
2729 	temp64.val = (u64) err_dma_handle;
2730 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2731 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2732 	c->ErrDesc.Len = sizeof(*c->err_info);
2733 
2734 	c->h = h;
2735 	return c;
2736 }
2737 
2738 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2739 {
2740 	int i;
2741 	unsigned long flags;
2742 
2743 	i = c - h->cmd_pool;
2744 	spin_lock_irqsave(&h->lock, flags);
2745 	clear_bit(i & (BITS_PER_LONG - 1),
2746 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2747 	h->nr_frees++;
2748 	spin_unlock_irqrestore(&h->lock, flags);
2749 }
2750 
2751 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2752 {
2753 	union u64bit temp64;
2754 
2755 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2756 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2757 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2758 			    c->err_info, (dma_addr_t) temp64.val);
2759 	pci_free_consistent(h->pdev, sizeof(*c),
2760 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2761 }
2762 
2763 #ifdef CONFIG_COMPAT
2764 
2765 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2766 {
2767 	IOCTL32_Command_struct __user *arg32 =
2768 	    (IOCTL32_Command_struct __user *) arg;
2769 	IOCTL_Command_struct arg64;
2770 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2771 	int err;
2772 	u32 cp;
2773 
2774 	memset(&arg64, 0, sizeof(arg64));
2775 	err = 0;
2776 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2777 			   sizeof(arg64.LUN_info));
2778 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2779 			   sizeof(arg64.Request));
2780 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2781 			   sizeof(arg64.error_info));
2782 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2783 	err |= get_user(cp, &arg32->buf);
2784 	arg64.buf = compat_ptr(cp);
2785 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2786 
2787 	if (err)
2788 		return -EFAULT;
2789 
2790 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2791 	if (err)
2792 		return err;
2793 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2794 			 sizeof(arg32->error_info));
2795 	if (err)
2796 		return -EFAULT;
2797 	return err;
2798 }
2799 
2800 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2801 	int cmd, void *arg)
2802 {
2803 	BIG_IOCTL32_Command_struct __user *arg32 =
2804 	    (BIG_IOCTL32_Command_struct __user *) arg;
2805 	BIG_IOCTL_Command_struct arg64;
2806 	BIG_IOCTL_Command_struct __user *p =
2807 	    compat_alloc_user_space(sizeof(arg64));
2808 	int err;
2809 	u32 cp;
2810 
2811 	memset(&arg64, 0, sizeof(arg64));
2812 	err = 0;
2813 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2814 			   sizeof(arg64.LUN_info));
2815 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2816 			   sizeof(arg64.Request));
2817 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2818 			   sizeof(arg64.error_info));
2819 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2820 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2821 	err |= get_user(cp, &arg32->buf);
2822 	arg64.buf = compat_ptr(cp);
2823 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2824 
2825 	if (err)
2826 		return -EFAULT;
2827 
2828 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2829 	if (err)
2830 		return err;
2831 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2832 			 sizeof(arg32->error_info));
2833 	if (err)
2834 		return -EFAULT;
2835 	return err;
2836 }
2837 
2838 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2839 {
2840 	switch (cmd) {
2841 	case CCISS_GETPCIINFO:
2842 	case CCISS_GETINTINFO:
2843 	case CCISS_SETINTINFO:
2844 	case CCISS_GETNODENAME:
2845 	case CCISS_SETNODENAME:
2846 	case CCISS_GETHEARTBEAT:
2847 	case CCISS_GETBUSTYPES:
2848 	case CCISS_GETFIRMVER:
2849 	case CCISS_GETDRIVVER:
2850 	case CCISS_REVALIDVOLS:
2851 	case CCISS_DEREGDISK:
2852 	case CCISS_REGNEWDISK:
2853 	case CCISS_REGNEWD:
2854 	case CCISS_RESCANDISK:
2855 	case CCISS_GETLUNINFO:
2856 		return hpsa_ioctl(dev, cmd, arg);
2857 
2858 	case CCISS_PASSTHRU32:
2859 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2860 	case CCISS_BIG_PASSTHRU32:
2861 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2862 
2863 	default:
2864 		return -ENOIOCTLCMD;
2865 	}
2866 }
2867 #endif
2868 
2869 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2870 {
2871 	struct hpsa_pci_info pciinfo;
2872 
2873 	if (!argp)
2874 		return -EINVAL;
2875 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2876 	pciinfo.bus = h->pdev->bus->number;
2877 	pciinfo.dev_fn = h->pdev->devfn;
2878 	pciinfo.board_id = h->board_id;
2879 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2880 		return -EFAULT;
2881 	return 0;
2882 }
2883 
2884 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2885 {
2886 	DriverVer_type DriverVer;
2887 	unsigned char vmaj, vmin, vsubmin;
2888 	int rc;
2889 
2890 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2891 		&vmaj, &vmin, &vsubmin);
2892 	if (rc != 3) {
2893 		dev_info(&h->pdev->dev, "driver version string '%s' "
2894 			"unrecognized.", HPSA_DRIVER_VERSION);
2895 		vmaj = 0;
2896 		vmin = 0;
2897 		vsubmin = 0;
2898 	}
2899 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2900 	if (!argp)
2901 		return -EINVAL;
2902 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2903 		return -EFAULT;
2904 	return 0;
2905 }
2906 
2907 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2908 {
2909 	IOCTL_Command_struct iocommand;
2910 	struct CommandList *c;
2911 	char *buff = NULL;
2912 	union u64bit temp64;
2913 
2914 	if (!argp)
2915 		return -EINVAL;
2916 	if (!capable(CAP_SYS_RAWIO))
2917 		return -EPERM;
2918 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2919 		return -EFAULT;
2920 	if ((iocommand.buf_size < 1) &&
2921 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2922 		return -EINVAL;
2923 	}
2924 	if (iocommand.buf_size > 0) {
2925 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2926 		if (buff == NULL)
2927 			return -EFAULT;
2928 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2929 			/* Copy the data into the buffer we created */
2930 			if (copy_from_user(buff, iocommand.buf,
2931 				iocommand.buf_size)) {
2932 				kfree(buff);
2933 				return -EFAULT;
2934 			}
2935 		} else {
2936 			memset(buff, 0, iocommand.buf_size);
2937 		}
2938 	}
2939 	c = cmd_special_alloc(h);
2940 	if (c == NULL) {
2941 		kfree(buff);
2942 		return -ENOMEM;
2943 	}
2944 	/* Fill in the command type */
2945 	c->cmd_type = CMD_IOCTL_PEND;
2946 	/* Fill in Command Header */
2947 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2948 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2949 		c->Header.SGList = 1;
2950 		c->Header.SGTotal = 1;
2951 	} else	{ /* no buffers to fill */
2952 		c->Header.SGList = 0;
2953 		c->Header.SGTotal = 0;
2954 	}
2955 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2956 	/* use the kernel address the cmd block for tag */
2957 	c->Header.Tag.lower = c->busaddr;
2958 
2959 	/* Fill in Request block */
2960 	memcpy(&c->Request, &iocommand.Request,
2961 		sizeof(c->Request));
2962 
2963 	/* Fill in the scatter gather information */
2964 	if (iocommand.buf_size > 0) {
2965 		temp64.val = pci_map_single(h->pdev, buff,
2966 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2967 		c->SG[0].Addr.lower = temp64.val32.lower;
2968 		c->SG[0].Addr.upper = temp64.val32.upper;
2969 		c->SG[0].Len = iocommand.buf_size;
2970 		c->SG[0].Ext = 0; /* we are not chaining*/
2971 	}
2972 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2973 	if (iocommand.buf_size > 0)
2974 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2975 	check_ioctl_unit_attention(h, c);
2976 
2977 	/* Copy the error information out */
2978 	memcpy(&iocommand.error_info, c->err_info,
2979 		sizeof(iocommand.error_info));
2980 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2981 		kfree(buff);
2982 		cmd_special_free(h, c);
2983 		return -EFAULT;
2984 	}
2985 	if (iocommand.Request.Type.Direction == XFER_READ &&
2986 		iocommand.buf_size > 0) {
2987 		/* Copy the data out of the buffer we created */
2988 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2989 			kfree(buff);
2990 			cmd_special_free(h, c);
2991 			return -EFAULT;
2992 		}
2993 	}
2994 	kfree(buff);
2995 	cmd_special_free(h, c);
2996 	return 0;
2997 }
2998 
2999 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3000 {
3001 	BIG_IOCTL_Command_struct *ioc;
3002 	struct CommandList *c;
3003 	unsigned char **buff = NULL;
3004 	int *buff_size = NULL;
3005 	union u64bit temp64;
3006 	BYTE sg_used = 0;
3007 	int status = 0;
3008 	int i;
3009 	u32 left;
3010 	u32 sz;
3011 	BYTE __user *data_ptr;
3012 
3013 	if (!argp)
3014 		return -EINVAL;
3015 	if (!capable(CAP_SYS_RAWIO))
3016 		return -EPERM;
3017 	ioc = (BIG_IOCTL_Command_struct *)
3018 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
3019 	if (!ioc) {
3020 		status = -ENOMEM;
3021 		goto cleanup1;
3022 	}
3023 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3024 		status = -EFAULT;
3025 		goto cleanup1;
3026 	}
3027 	if ((ioc->buf_size < 1) &&
3028 	    (ioc->Request.Type.Direction != XFER_NONE)) {
3029 		status = -EINVAL;
3030 		goto cleanup1;
3031 	}
3032 	/* Check kmalloc limits  using all SGs */
3033 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3034 		status = -EINVAL;
3035 		goto cleanup1;
3036 	}
3037 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3038 		status = -EINVAL;
3039 		goto cleanup1;
3040 	}
3041 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3042 	if (!buff) {
3043 		status = -ENOMEM;
3044 		goto cleanup1;
3045 	}
3046 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3047 	if (!buff_size) {
3048 		status = -ENOMEM;
3049 		goto cleanup1;
3050 	}
3051 	left = ioc->buf_size;
3052 	data_ptr = ioc->buf;
3053 	while (left) {
3054 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3055 		buff_size[sg_used] = sz;
3056 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3057 		if (buff[sg_used] == NULL) {
3058 			status = -ENOMEM;
3059 			goto cleanup1;
3060 		}
3061 		if (ioc->Request.Type.Direction == XFER_WRITE) {
3062 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3063 				status = -ENOMEM;
3064 				goto cleanup1;
3065 			}
3066 		} else
3067 			memset(buff[sg_used], 0, sz);
3068 		left -= sz;
3069 		data_ptr += sz;
3070 		sg_used++;
3071 	}
3072 	c = cmd_special_alloc(h);
3073 	if (c == NULL) {
3074 		status = -ENOMEM;
3075 		goto cleanup1;
3076 	}
3077 	c->cmd_type = CMD_IOCTL_PEND;
3078 	c->Header.ReplyQueue = 0;
3079 	c->Header.SGList = c->Header.SGTotal = sg_used;
3080 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3081 	c->Header.Tag.lower = c->busaddr;
3082 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3083 	if (ioc->buf_size > 0) {
3084 		int i;
3085 		for (i = 0; i < sg_used; i++) {
3086 			temp64.val = pci_map_single(h->pdev, buff[i],
3087 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
3088 			c->SG[i].Addr.lower = temp64.val32.lower;
3089 			c->SG[i].Addr.upper = temp64.val32.upper;
3090 			c->SG[i].Len = buff_size[i];
3091 			/* we are not chaining */
3092 			c->SG[i].Ext = 0;
3093 		}
3094 	}
3095 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3096 	if (sg_used)
3097 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3098 	check_ioctl_unit_attention(h, c);
3099 	/* Copy the error information out */
3100 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3101 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3102 		cmd_special_free(h, c);
3103 		status = -EFAULT;
3104 		goto cleanup1;
3105 	}
3106 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3107 		/* Copy the data out of the buffer we created */
3108 		BYTE __user *ptr = ioc->buf;
3109 		for (i = 0; i < sg_used; i++) {
3110 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
3111 				cmd_special_free(h, c);
3112 				status = -EFAULT;
3113 				goto cleanup1;
3114 			}
3115 			ptr += buff_size[i];
3116 		}
3117 	}
3118 	cmd_special_free(h, c);
3119 	status = 0;
3120 cleanup1:
3121 	if (buff) {
3122 		for (i = 0; i < sg_used; i++)
3123 			kfree(buff[i]);
3124 		kfree(buff);
3125 	}
3126 	kfree(buff_size);
3127 	kfree(ioc);
3128 	return status;
3129 }
3130 
3131 static void check_ioctl_unit_attention(struct ctlr_info *h,
3132 	struct CommandList *c)
3133 {
3134 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3135 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3136 		(void) check_for_unit_attention(h, c);
3137 }
3138 /*
3139  * ioctl
3140  */
3141 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3142 {
3143 	struct ctlr_info *h;
3144 	void __user *argp = (void __user *)arg;
3145 
3146 	h = sdev_to_hba(dev);
3147 
3148 	switch (cmd) {
3149 	case CCISS_DEREGDISK:
3150 	case CCISS_REGNEWDISK:
3151 	case CCISS_REGNEWD:
3152 		hpsa_scan_start(h->scsi_host);
3153 		return 0;
3154 	case CCISS_GETPCIINFO:
3155 		return hpsa_getpciinfo_ioctl(h, argp);
3156 	case CCISS_GETDRIVVER:
3157 		return hpsa_getdrivver_ioctl(h, argp);
3158 	case CCISS_PASSTHRU:
3159 		return hpsa_passthru_ioctl(h, argp);
3160 	case CCISS_BIG_PASSTHRU:
3161 		return hpsa_big_passthru_ioctl(h, argp);
3162 	default:
3163 		return -ENOTTY;
3164 	}
3165 }
3166 
3167 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
3168 	unsigned char *scsi3addr, u8 reset_type)
3169 {
3170 	struct CommandList *c;
3171 
3172 	c = cmd_alloc(h);
3173 	if (!c)
3174 		return -ENOMEM;
3175 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3176 		RAID_CTLR_LUNID, TYPE_MSG);
3177 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3178 	c->waiting = NULL;
3179 	enqueue_cmd_and_start_io(h, c);
3180 	/* Don't wait for completion, the reset won't complete.  Don't free
3181 	 * the command either.  This is the last command we will send before
3182 	 * re-initializing everything, so it doesn't matter and won't leak.
3183 	 */
3184 	return 0;
3185 }
3186 
3187 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3188 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3189 	int cmd_type)
3190 {
3191 	int pci_dir = XFER_NONE;
3192 	struct CommandList *a; /* for commands to be aborted */
3193 
3194 	c->cmd_type = CMD_IOCTL_PEND;
3195 	c->Header.ReplyQueue = 0;
3196 	if (buff != NULL && size > 0) {
3197 		c->Header.SGList = 1;
3198 		c->Header.SGTotal = 1;
3199 	} else {
3200 		c->Header.SGList = 0;
3201 		c->Header.SGTotal = 0;
3202 	}
3203 	c->Header.Tag.lower = c->busaddr;
3204 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3205 
3206 	c->Request.Type.Type = cmd_type;
3207 	if (cmd_type == TYPE_CMD) {
3208 		switch (cmd) {
3209 		case HPSA_INQUIRY:
3210 			/* are we trying to read a vital product page */
3211 			if (page_code != 0) {
3212 				c->Request.CDB[1] = 0x01;
3213 				c->Request.CDB[2] = page_code;
3214 			}
3215 			c->Request.CDBLen = 6;
3216 			c->Request.Type.Attribute = ATTR_SIMPLE;
3217 			c->Request.Type.Direction = XFER_READ;
3218 			c->Request.Timeout = 0;
3219 			c->Request.CDB[0] = HPSA_INQUIRY;
3220 			c->Request.CDB[4] = size & 0xFF;
3221 			break;
3222 		case HPSA_REPORT_LOG:
3223 		case HPSA_REPORT_PHYS:
3224 			/* Talking to controller so It's a physical command
3225 			   mode = 00 target = 0.  Nothing to write.
3226 			 */
3227 			c->Request.CDBLen = 12;
3228 			c->Request.Type.Attribute = ATTR_SIMPLE;
3229 			c->Request.Type.Direction = XFER_READ;
3230 			c->Request.Timeout = 0;
3231 			c->Request.CDB[0] = cmd;
3232 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3233 			c->Request.CDB[7] = (size >> 16) & 0xFF;
3234 			c->Request.CDB[8] = (size >> 8) & 0xFF;
3235 			c->Request.CDB[9] = size & 0xFF;
3236 			break;
3237 		case HPSA_CACHE_FLUSH:
3238 			c->Request.CDBLen = 12;
3239 			c->Request.Type.Attribute = ATTR_SIMPLE;
3240 			c->Request.Type.Direction = XFER_WRITE;
3241 			c->Request.Timeout = 0;
3242 			c->Request.CDB[0] = BMIC_WRITE;
3243 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3244 			c->Request.CDB[7] = (size >> 8) & 0xFF;
3245 			c->Request.CDB[8] = size & 0xFF;
3246 			break;
3247 		case TEST_UNIT_READY:
3248 			c->Request.CDBLen = 6;
3249 			c->Request.Type.Attribute = ATTR_SIMPLE;
3250 			c->Request.Type.Direction = XFER_NONE;
3251 			c->Request.Timeout = 0;
3252 			break;
3253 		default:
3254 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3255 			BUG();
3256 			return;
3257 		}
3258 	} else if (cmd_type == TYPE_MSG) {
3259 		switch (cmd) {
3260 
3261 		case  HPSA_DEVICE_RESET_MSG:
3262 			c->Request.CDBLen = 16;
3263 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3264 			c->Request.Type.Attribute = ATTR_SIMPLE;
3265 			c->Request.Type.Direction = XFER_NONE;
3266 			c->Request.Timeout = 0; /* Don't time out */
3267 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3268 			c->Request.CDB[0] =  cmd;
3269 			c->Request.CDB[1] = 0x03;  /* Reset target above */
3270 			/* If bytes 4-7 are zero, it means reset the */
3271 			/* LunID device */
3272 			c->Request.CDB[4] = 0x00;
3273 			c->Request.CDB[5] = 0x00;
3274 			c->Request.CDB[6] = 0x00;
3275 			c->Request.CDB[7] = 0x00;
3276 			break;
3277 		case  HPSA_ABORT_MSG:
3278 			a = buff;       /* point to command to be aborted */
3279 			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3280 				a->Header.Tag.upper, a->Header.Tag.lower,
3281 				c->Header.Tag.upper, c->Header.Tag.lower);
3282 			c->Request.CDBLen = 16;
3283 			c->Request.Type.Type = TYPE_MSG;
3284 			c->Request.Type.Attribute = ATTR_SIMPLE;
3285 			c->Request.Type.Direction = XFER_WRITE;
3286 			c->Request.Timeout = 0; /* Don't time out */
3287 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3288 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3289 			c->Request.CDB[2] = 0x00; /* reserved */
3290 			c->Request.CDB[3] = 0x00; /* reserved */
3291 			/* Tag to abort goes in CDB[4]-CDB[11] */
3292 			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3293 			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3294 			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3295 			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3296 			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3297 			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3298 			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3299 			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3300 			c->Request.CDB[12] = 0x00; /* reserved */
3301 			c->Request.CDB[13] = 0x00; /* reserved */
3302 			c->Request.CDB[14] = 0x00; /* reserved */
3303 			c->Request.CDB[15] = 0x00; /* reserved */
3304 		break;
3305 		default:
3306 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
3307 				cmd);
3308 			BUG();
3309 		}
3310 	} else {
3311 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3312 		BUG();
3313 	}
3314 
3315 	switch (c->Request.Type.Direction) {
3316 	case XFER_READ:
3317 		pci_dir = PCI_DMA_FROMDEVICE;
3318 		break;
3319 	case XFER_WRITE:
3320 		pci_dir = PCI_DMA_TODEVICE;
3321 		break;
3322 	case XFER_NONE:
3323 		pci_dir = PCI_DMA_NONE;
3324 		break;
3325 	default:
3326 		pci_dir = PCI_DMA_BIDIRECTIONAL;
3327 	}
3328 
3329 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
3330 
3331 	return;
3332 }
3333 
3334 /*
3335  * Map (physical) PCI mem into (virtual) kernel space
3336  */
3337 static void __iomem *remap_pci_mem(ulong base, ulong size)
3338 {
3339 	ulong page_base = ((ulong) base) & PAGE_MASK;
3340 	ulong page_offs = ((ulong) base) - page_base;
3341 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3342 
3343 	return page_remapped ? (page_remapped + page_offs) : NULL;
3344 }
3345 
3346 /* Takes cmds off the submission queue and sends them to the hardware,
3347  * then puts them on the queue of cmds waiting for completion.
3348  */
3349 static void start_io(struct ctlr_info *h)
3350 {
3351 	struct CommandList *c;
3352 	unsigned long flags;
3353 
3354 	spin_lock_irqsave(&h->lock, flags);
3355 	while (!list_empty(&h->reqQ)) {
3356 		c = list_entry(h->reqQ.next, struct CommandList, list);
3357 		/* can't do anything if fifo is full */
3358 		if ((h->access.fifo_full(h))) {
3359 			dev_warn(&h->pdev->dev, "fifo full\n");
3360 			break;
3361 		}
3362 
3363 		/* Get the first entry from the Request Q */
3364 		removeQ(c);
3365 		h->Qdepth--;
3366 
3367 		/* Put job onto the completed Q */
3368 		addQ(&h->cmpQ, c);
3369 
3370 		/* Must increment commands_outstanding before unlocking
3371 		 * and submitting to avoid race checking for fifo full
3372 		 * condition.
3373 		 */
3374 		h->commands_outstanding++;
3375 		if (h->commands_outstanding > h->max_outstanding)
3376 			h->max_outstanding = h->commands_outstanding;
3377 
3378 		/* Tell the controller execute command */
3379 		spin_unlock_irqrestore(&h->lock, flags);
3380 		h->access.submit_command(h, c);
3381 		spin_lock_irqsave(&h->lock, flags);
3382 	}
3383 	spin_unlock_irqrestore(&h->lock, flags);
3384 }
3385 
3386 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3387 {
3388 	return h->access.command_completed(h, q);
3389 }
3390 
3391 static inline bool interrupt_pending(struct ctlr_info *h)
3392 {
3393 	return h->access.intr_pending(h);
3394 }
3395 
3396 static inline long interrupt_not_for_us(struct ctlr_info *h)
3397 {
3398 	return (h->access.intr_pending(h) == 0) ||
3399 		(h->interrupts_enabled == 0);
3400 }
3401 
3402 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3403 	u32 raw_tag)
3404 {
3405 	if (unlikely(tag_index >= h->nr_cmds)) {
3406 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3407 		return 1;
3408 	}
3409 	return 0;
3410 }
3411 
3412 static inline void finish_cmd(struct CommandList *c)
3413 {
3414 	unsigned long flags;
3415 
3416 	spin_lock_irqsave(&c->h->lock, flags);
3417 	removeQ(c);
3418 	spin_unlock_irqrestore(&c->h->lock, flags);
3419 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3420 	if (likely(c->cmd_type == CMD_SCSI))
3421 		complete_scsi_command(c);
3422 	else if (c->cmd_type == CMD_IOCTL_PEND)
3423 		complete(c->waiting);
3424 }
3425 
3426 static inline u32 hpsa_tag_contains_index(u32 tag)
3427 {
3428 	return tag & DIRECT_LOOKUP_BIT;
3429 }
3430 
3431 static inline u32 hpsa_tag_to_index(u32 tag)
3432 {
3433 	return tag >> DIRECT_LOOKUP_SHIFT;
3434 }
3435 
3436 
3437 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3438 {
3439 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3440 #define HPSA_SIMPLE_ERROR_BITS 0x03
3441 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3442 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3443 	return tag & ~HPSA_PERF_ERROR_BITS;
3444 }
3445 
3446 /* process completion of an indexed ("direct lookup") command */
3447 static inline void process_indexed_cmd(struct ctlr_info *h,
3448 	u32 raw_tag)
3449 {
3450 	u32 tag_index;
3451 	struct CommandList *c;
3452 
3453 	tag_index = hpsa_tag_to_index(raw_tag);
3454 	if (!bad_tag(h, tag_index, raw_tag)) {
3455 		c = h->cmd_pool + tag_index;
3456 		finish_cmd(c);
3457 	}
3458 }
3459 
3460 /* process completion of a non-indexed command */
3461 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3462 	u32 raw_tag)
3463 {
3464 	u32 tag;
3465 	struct CommandList *c = NULL;
3466 	unsigned long flags;
3467 
3468 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3469 	spin_lock_irqsave(&h->lock, flags);
3470 	list_for_each_entry(c, &h->cmpQ, list) {
3471 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3472 			spin_unlock_irqrestore(&h->lock, flags);
3473 			finish_cmd(c);
3474 			return;
3475 		}
3476 	}
3477 	spin_unlock_irqrestore(&h->lock, flags);
3478 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3479 }
3480 
3481 /* Some controllers, like p400, will give us one interrupt
3482  * after a soft reset, even if we turned interrupts off.
3483  * Only need to check for this in the hpsa_xxx_discard_completions
3484  * functions.
3485  */
3486 static int ignore_bogus_interrupt(struct ctlr_info *h)
3487 {
3488 	if (likely(!reset_devices))
3489 		return 0;
3490 
3491 	if (likely(h->interrupts_enabled))
3492 		return 0;
3493 
3494 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3495 		"(known firmware bug.)  Ignoring.\n");
3496 
3497 	return 1;
3498 }
3499 
3500 /*
3501  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3502  * Relies on (h-q[x] == x) being true for x such that
3503  * 0 <= x < MAX_REPLY_QUEUES.
3504  */
3505 static struct ctlr_info *queue_to_hba(u8 *queue)
3506 {
3507 	return container_of((queue - *queue), struct ctlr_info, q[0]);
3508 }
3509 
3510 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3511 {
3512 	struct ctlr_info *h = queue_to_hba(queue);
3513 	u8 q = *(u8 *) queue;
3514 	u32 raw_tag;
3515 
3516 	if (ignore_bogus_interrupt(h))
3517 		return IRQ_NONE;
3518 
3519 	if (interrupt_not_for_us(h))
3520 		return IRQ_NONE;
3521 	h->last_intr_timestamp = get_jiffies_64();
3522 	while (interrupt_pending(h)) {
3523 		raw_tag = get_next_completion(h, q);
3524 		while (raw_tag != FIFO_EMPTY)
3525 			raw_tag = next_command(h, q);
3526 	}
3527 	return IRQ_HANDLED;
3528 }
3529 
3530 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3531 {
3532 	struct ctlr_info *h = queue_to_hba(queue);
3533 	u32 raw_tag;
3534 	u8 q = *(u8 *) queue;
3535 
3536 	if (ignore_bogus_interrupt(h))
3537 		return IRQ_NONE;
3538 
3539 	h->last_intr_timestamp = get_jiffies_64();
3540 	raw_tag = get_next_completion(h, q);
3541 	while (raw_tag != FIFO_EMPTY)
3542 		raw_tag = next_command(h, q);
3543 	return IRQ_HANDLED;
3544 }
3545 
3546 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3547 {
3548 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
3549 	u32 raw_tag;
3550 	u8 q = *(u8 *) queue;
3551 
3552 	if (interrupt_not_for_us(h))
3553 		return IRQ_NONE;
3554 	h->last_intr_timestamp = get_jiffies_64();
3555 	while (interrupt_pending(h)) {
3556 		raw_tag = get_next_completion(h, q);
3557 		while (raw_tag != FIFO_EMPTY) {
3558 			if (likely(hpsa_tag_contains_index(raw_tag)))
3559 				process_indexed_cmd(h, raw_tag);
3560 			else
3561 				process_nonindexed_cmd(h, raw_tag);
3562 			raw_tag = next_command(h, q);
3563 		}
3564 	}
3565 	return IRQ_HANDLED;
3566 }
3567 
3568 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3569 {
3570 	struct ctlr_info *h = queue_to_hba(queue);
3571 	u32 raw_tag;
3572 	u8 q = *(u8 *) queue;
3573 
3574 	h->last_intr_timestamp = get_jiffies_64();
3575 	raw_tag = get_next_completion(h, q);
3576 	while (raw_tag != FIFO_EMPTY) {
3577 		if (likely(hpsa_tag_contains_index(raw_tag)))
3578 			process_indexed_cmd(h, raw_tag);
3579 		else
3580 			process_nonindexed_cmd(h, raw_tag);
3581 		raw_tag = next_command(h, q);
3582 	}
3583 	return IRQ_HANDLED;
3584 }
3585 
3586 /* Send a message CDB to the firmware. Careful, this only works
3587  * in simple mode, not performant mode due to the tag lookup.
3588  * We only ever use this immediately after a controller reset.
3589  */
3590 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3591 						unsigned char type)
3592 {
3593 	struct Command {
3594 		struct CommandListHeader CommandHeader;
3595 		struct RequestBlock Request;
3596 		struct ErrDescriptor ErrorDescriptor;
3597 	};
3598 	struct Command *cmd;
3599 	static const size_t cmd_sz = sizeof(*cmd) +
3600 					sizeof(cmd->ErrorDescriptor);
3601 	dma_addr_t paddr64;
3602 	uint32_t paddr32, tag;
3603 	void __iomem *vaddr;
3604 	int i, err;
3605 
3606 	vaddr = pci_ioremap_bar(pdev, 0);
3607 	if (vaddr == NULL)
3608 		return -ENOMEM;
3609 
3610 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3611 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3612 	 * memory.
3613 	 */
3614 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3615 	if (err) {
3616 		iounmap(vaddr);
3617 		return -ENOMEM;
3618 	}
3619 
3620 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3621 	if (cmd == NULL) {
3622 		iounmap(vaddr);
3623 		return -ENOMEM;
3624 	}
3625 
3626 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3627 	 * although there's no guarantee, we assume that the address is at
3628 	 * least 4-byte aligned (most likely, it's page-aligned).
3629 	 */
3630 	paddr32 = paddr64;
3631 
3632 	cmd->CommandHeader.ReplyQueue = 0;
3633 	cmd->CommandHeader.SGList = 0;
3634 	cmd->CommandHeader.SGTotal = 0;
3635 	cmd->CommandHeader.Tag.lower = paddr32;
3636 	cmd->CommandHeader.Tag.upper = 0;
3637 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3638 
3639 	cmd->Request.CDBLen = 16;
3640 	cmd->Request.Type.Type = TYPE_MSG;
3641 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3642 	cmd->Request.Type.Direction = XFER_NONE;
3643 	cmd->Request.Timeout = 0; /* Don't time out */
3644 	cmd->Request.CDB[0] = opcode;
3645 	cmd->Request.CDB[1] = type;
3646 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3647 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3648 	cmd->ErrorDescriptor.Addr.upper = 0;
3649 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3650 
3651 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3652 
3653 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3654 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3655 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3656 			break;
3657 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3658 	}
3659 
3660 	iounmap(vaddr);
3661 
3662 	/* we leak the DMA buffer here ... no choice since the controller could
3663 	 *  still complete the command.
3664 	 */
3665 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3666 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3667 			opcode, type);
3668 		return -ETIMEDOUT;
3669 	}
3670 
3671 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3672 
3673 	if (tag & HPSA_ERROR_BIT) {
3674 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3675 			opcode, type);
3676 		return -EIO;
3677 	}
3678 
3679 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3680 		opcode, type);
3681 	return 0;
3682 }
3683 
3684 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3685 
3686 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3687 	void * __iomem vaddr, u32 use_doorbell)
3688 {
3689 	u16 pmcsr;
3690 	int pos;
3691 
3692 	if (use_doorbell) {
3693 		/* For everything after the P600, the PCI power state method
3694 		 * of resetting the controller doesn't work, so we have this
3695 		 * other way using the doorbell register.
3696 		 */
3697 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3698 		writel(use_doorbell, vaddr + SA5_DOORBELL);
3699 	} else { /* Try to do it the PCI power state way */
3700 
3701 		/* Quoting from the Open CISS Specification: "The Power
3702 		 * Management Control/Status Register (CSR) controls the power
3703 		 * state of the device.  The normal operating state is D0,
3704 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3705 		 * the controller, place the interface device in D3 then to D0,
3706 		 * this causes a secondary PCI reset which will reset the
3707 		 * controller." */
3708 
3709 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3710 		if (pos == 0) {
3711 			dev_err(&pdev->dev,
3712 				"hpsa_reset_controller: "
3713 				"PCI PM not supported\n");
3714 			return -ENODEV;
3715 		}
3716 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3717 		/* enter the D3hot power management state */
3718 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3719 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3720 		pmcsr |= PCI_D3hot;
3721 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3722 
3723 		msleep(500);
3724 
3725 		/* enter the D0 power management state */
3726 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3727 		pmcsr |= PCI_D0;
3728 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3729 
3730 		/*
3731 		 * The P600 requires a small delay when changing states.
3732 		 * Otherwise we may think the board did not reset and we bail.
3733 		 * This for kdump only and is particular to the P600.
3734 		 */
3735 		msleep(500);
3736 	}
3737 	return 0;
3738 }
3739 
3740 static __devinit void init_driver_version(char *driver_version, int len)
3741 {
3742 	memset(driver_version, 0, len);
3743 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3744 }
3745 
3746 static __devinit int write_driver_ver_to_cfgtable(
3747 	struct CfgTable __iomem *cfgtable)
3748 {
3749 	char *driver_version;
3750 	int i, size = sizeof(cfgtable->driver_version);
3751 
3752 	driver_version = kmalloc(size, GFP_KERNEL);
3753 	if (!driver_version)
3754 		return -ENOMEM;
3755 
3756 	init_driver_version(driver_version, size);
3757 	for (i = 0; i < size; i++)
3758 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3759 	kfree(driver_version);
3760 	return 0;
3761 }
3762 
3763 static __devinit void read_driver_ver_from_cfgtable(
3764 	struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3765 {
3766 	int i;
3767 
3768 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3769 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3770 }
3771 
3772 static __devinit int controller_reset_failed(
3773 	struct CfgTable __iomem *cfgtable)
3774 {
3775 
3776 	char *driver_ver, *old_driver_ver;
3777 	int rc, size = sizeof(cfgtable->driver_version);
3778 
3779 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3780 	if (!old_driver_ver)
3781 		return -ENOMEM;
3782 	driver_ver = old_driver_ver + size;
3783 
3784 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3785 	 * should have been changed, otherwise we know the reset failed.
3786 	 */
3787 	init_driver_version(old_driver_ver, size);
3788 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3789 	rc = !memcmp(driver_ver, old_driver_ver, size);
3790 	kfree(old_driver_ver);
3791 	return rc;
3792 }
3793 /* This does a hard reset of the controller using PCI power management
3794  * states or the using the doorbell register.
3795  */
3796 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3797 {
3798 	u64 cfg_offset;
3799 	u32 cfg_base_addr;
3800 	u64 cfg_base_addr_index;
3801 	void __iomem *vaddr;
3802 	unsigned long paddr;
3803 	u32 misc_fw_support;
3804 	int rc;
3805 	struct CfgTable __iomem *cfgtable;
3806 	u32 use_doorbell;
3807 	u32 board_id;
3808 	u16 command_register;
3809 
3810 	/* For controllers as old as the P600, this is very nearly
3811 	 * the same thing as
3812 	 *
3813 	 * pci_save_state(pci_dev);
3814 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3815 	 * pci_set_power_state(pci_dev, PCI_D0);
3816 	 * pci_restore_state(pci_dev);
3817 	 *
3818 	 * For controllers newer than the P600, the pci power state
3819 	 * method of resetting doesn't work so we have another way
3820 	 * using the doorbell register.
3821 	 */
3822 
3823 	rc = hpsa_lookup_board_id(pdev, &board_id);
3824 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3825 		dev_warn(&pdev->dev, "Not resetting device.\n");
3826 		return -ENODEV;
3827 	}
3828 
3829 	/* if controller is soft- but not hard resettable... */
3830 	if (!ctlr_is_hard_resettable(board_id))
3831 		return -ENOTSUPP; /* try soft reset later. */
3832 
3833 	/* Save the PCI command register */
3834 	pci_read_config_word(pdev, 4, &command_register);
3835 	/* Turn the board off.  This is so that later pci_restore_state()
3836 	 * won't turn the board on before the rest of config space is ready.
3837 	 */
3838 	pci_disable_device(pdev);
3839 	pci_save_state(pdev);
3840 
3841 	/* find the first memory BAR, so we can find the cfg table */
3842 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3843 	if (rc)
3844 		return rc;
3845 	vaddr = remap_pci_mem(paddr, 0x250);
3846 	if (!vaddr)
3847 		return -ENOMEM;
3848 
3849 	/* find cfgtable in order to check if reset via doorbell is supported */
3850 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3851 					&cfg_base_addr_index, &cfg_offset);
3852 	if (rc)
3853 		goto unmap_vaddr;
3854 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3855 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3856 	if (!cfgtable) {
3857 		rc = -ENOMEM;
3858 		goto unmap_vaddr;
3859 	}
3860 	rc = write_driver_ver_to_cfgtable(cfgtable);
3861 	if (rc)
3862 		goto unmap_vaddr;
3863 
3864 	/* If reset via doorbell register is supported, use that.
3865 	 * There are two such methods.  Favor the newest method.
3866 	 */
3867 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3868 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3869 	if (use_doorbell) {
3870 		use_doorbell = DOORBELL_CTLR_RESET2;
3871 	} else {
3872 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3873 		if (use_doorbell) {
3874 			dev_warn(&pdev->dev, "Soft reset not supported. "
3875 				"Firmware update is required.\n");
3876 			rc = -ENOTSUPP; /* try soft reset */
3877 			goto unmap_cfgtable;
3878 		}
3879 	}
3880 
3881 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3882 	if (rc)
3883 		goto unmap_cfgtable;
3884 
3885 	pci_restore_state(pdev);
3886 	rc = pci_enable_device(pdev);
3887 	if (rc) {
3888 		dev_warn(&pdev->dev, "failed to enable device.\n");
3889 		goto unmap_cfgtable;
3890 	}
3891 	pci_write_config_word(pdev, 4, command_register);
3892 
3893 	/* Some devices (notably the HP Smart Array 5i Controller)
3894 	   need a little pause here */
3895 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3896 
3897 	/* Wait for board to become not ready, then ready. */
3898 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3899 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3900 	if (rc) {
3901 		dev_warn(&pdev->dev,
3902 			"failed waiting for board to reset."
3903 			" Will try soft reset.\n");
3904 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3905 		goto unmap_cfgtable;
3906 	}
3907 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3908 	if (rc) {
3909 		dev_warn(&pdev->dev,
3910 			"failed waiting for board to become ready "
3911 			"after hard reset\n");
3912 		goto unmap_cfgtable;
3913 	}
3914 
3915 	rc = controller_reset_failed(vaddr);
3916 	if (rc < 0)
3917 		goto unmap_cfgtable;
3918 	if (rc) {
3919 		dev_warn(&pdev->dev, "Unable to successfully reset "
3920 			"controller. Will try soft reset.\n");
3921 		rc = -ENOTSUPP;
3922 	} else {
3923 		dev_info(&pdev->dev, "board ready after hard reset.\n");
3924 	}
3925 
3926 unmap_cfgtable:
3927 	iounmap(cfgtable);
3928 
3929 unmap_vaddr:
3930 	iounmap(vaddr);
3931 	return rc;
3932 }
3933 
3934 /*
3935  *  We cannot read the structure directly, for portability we must use
3936  *   the io functions.
3937  *   This is for debug only.
3938  */
3939 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3940 {
3941 #ifdef HPSA_DEBUG
3942 	int i;
3943 	char temp_name[17];
3944 
3945 	dev_info(dev, "Controller Configuration information\n");
3946 	dev_info(dev, "------------------------------------\n");
3947 	for (i = 0; i < 4; i++)
3948 		temp_name[i] = readb(&(tb->Signature[i]));
3949 	temp_name[4] = '\0';
3950 	dev_info(dev, "   Signature = %s\n", temp_name);
3951 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3952 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3953 	       readl(&(tb->TransportSupport)));
3954 	dev_info(dev, "   Transport methods active = 0x%x\n",
3955 	       readl(&(tb->TransportActive)));
3956 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3957 	       readl(&(tb->HostWrite.TransportRequest)));
3958 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3959 	       readl(&(tb->HostWrite.CoalIntDelay)));
3960 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3961 	       readl(&(tb->HostWrite.CoalIntCount)));
3962 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3963 	       readl(&(tb->CmdsOutMax)));
3964 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3965 	for (i = 0; i < 16; i++)
3966 		temp_name[i] = readb(&(tb->ServerName[i]));
3967 	temp_name[16] = '\0';
3968 	dev_info(dev, "   Server Name = %s\n", temp_name);
3969 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3970 		readl(&(tb->HeartBeat)));
3971 #endif				/* HPSA_DEBUG */
3972 }
3973 
3974 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3975 {
3976 	int i, offset, mem_type, bar_type;
3977 
3978 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3979 		return 0;
3980 	offset = 0;
3981 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3982 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3983 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3984 			offset += 4;
3985 		else {
3986 			mem_type = pci_resource_flags(pdev, i) &
3987 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3988 			switch (mem_type) {
3989 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3990 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3991 				offset += 4;	/* 32 bit */
3992 				break;
3993 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3994 				offset += 8;
3995 				break;
3996 			default:	/* reserved in PCI 2.2 */
3997 				dev_warn(&pdev->dev,
3998 				       "base address is invalid\n");
3999 				return -1;
4000 				break;
4001 			}
4002 		}
4003 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4004 			return i + 1;
4005 	}
4006 	return -1;
4007 }
4008 
4009 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4010  * controllers that are capable. If not, we use IO-APIC mode.
4011  */
4012 
4013 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
4014 {
4015 #ifdef CONFIG_PCI_MSI
4016 	int err, i;
4017 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4018 
4019 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4020 		hpsa_msix_entries[i].vector = 0;
4021 		hpsa_msix_entries[i].entry = i;
4022 	}
4023 
4024 	/* Some boards advertise MSI but don't really support it */
4025 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4026 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4027 		goto default_int_mode;
4028 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4029 		dev_info(&h->pdev->dev, "MSIX\n");
4030 		err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4031 						MAX_REPLY_QUEUES);
4032 		if (!err) {
4033 			for (i = 0; i < MAX_REPLY_QUEUES; i++)
4034 				h->intr[i] = hpsa_msix_entries[i].vector;
4035 			h->msix_vector = 1;
4036 			return;
4037 		}
4038 		if (err > 0) {
4039 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4040 			       "available\n", err);
4041 			goto default_int_mode;
4042 		} else {
4043 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4044 			       err);
4045 			goto default_int_mode;
4046 		}
4047 	}
4048 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4049 		dev_info(&h->pdev->dev, "MSI\n");
4050 		if (!pci_enable_msi(h->pdev))
4051 			h->msi_vector = 1;
4052 		else
4053 			dev_warn(&h->pdev->dev, "MSI init failed\n");
4054 	}
4055 default_int_mode:
4056 #endif				/* CONFIG_PCI_MSI */
4057 	/* if we get here we're going to use the default interrupt mode */
4058 	h->intr[h->intr_mode] = h->pdev->irq;
4059 }
4060 
4061 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4062 {
4063 	int i;
4064 	u32 subsystem_vendor_id, subsystem_device_id;
4065 
4066 	subsystem_vendor_id = pdev->subsystem_vendor;
4067 	subsystem_device_id = pdev->subsystem_device;
4068 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4069 		    subsystem_vendor_id;
4070 
4071 	for (i = 0; i < ARRAY_SIZE(products); i++)
4072 		if (*board_id == products[i].board_id)
4073 			return i;
4074 
4075 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4076 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4077 		!hpsa_allow_any) {
4078 		dev_warn(&pdev->dev, "unrecognized board ID: "
4079 			"0x%08x, ignoring.\n", *board_id);
4080 			return -ENODEV;
4081 	}
4082 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4083 }
4084 
4085 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4086 	unsigned long *memory_bar)
4087 {
4088 	int i;
4089 
4090 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4091 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4092 			/* addressing mode bits already removed */
4093 			*memory_bar = pci_resource_start(pdev, i);
4094 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4095 				*memory_bar);
4096 			return 0;
4097 		}
4098 	dev_warn(&pdev->dev, "no memory BAR found\n");
4099 	return -ENODEV;
4100 }
4101 
4102 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
4103 	void __iomem *vaddr, int wait_for_ready)
4104 {
4105 	int i, iterations;
4106 	u32 scratchpad;
4107 	if (wait_for_ready)
4108 		iterations = HPSA_BOARD_READY_ITERATIONS;
4109 	else
4110 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4111 
4112 	for (i = 0; i < iterations; i++) {
4113 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4114 		if (wait_for_ready) {
4115 			if (scratchpad == HPSA_FIRMWARE_READY)
4116 				return 0;
4117 		} else {
4118 			if (scratchpad != HPSA_FIRMWARE_READY)
4119 				return 0;
4120 		}
4121 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4122 	}
4123 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4124 	return -ENODEV;
4125 }
4126 
4127 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
4128 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4129 	u64 *cfg_offset)
4130 {
4131 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4132 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4133 	*cfg_base_addr &= (u32) 0x0000ffff;
4134 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4135 	if (*cfg_base_addr_index == -1) {
4136 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4137 		return -ENODEV;
4138 	}
4139 	return 0;
4140 }
4141 
4142 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
4143 {
4144 	u64 cfg_offset;
4145 	u32 cfg_base_addr;
4146 	u64 cfg_base_addr_index;
4147 	u32 trans_offset;
4148 	int rc;
4149 
4150 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4151 		&cfg_base_addr_index, &cfg_offset);
4152 	if (rc)
4153 		return rc;
4154 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4155 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4156 	if (!h->cfgtable)
4157 		return -ENOMEM;
4158 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4159 	if (rc)
4160 		return rc;
4161 	/* Find performant mode table. */
4162 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4163 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4164 				cfg_base_addr_index)+cfg_offset+trans_offset,
4165 				sizeof(*h->transtable));
4166 	if (!h->transtable)
4167 		return -ENOMEM;
4168 	return 0;
4169 }
4170 
4171 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4172 {
4173 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4174 
4175 	/* Limit commands in memory limited kdump scenario. */
4176 	if (reset_devices && h->max_commands > 32)
4177 		h->max_commands = 32;
4178 
4179 	if (h->max_commands < 16) {
4180 		dev_warn(&h->pdev->dev, "Controller reports "
4181 			"max supported commands of %d, an obvious lie. "
4182 			"Using 16.  Ensure that firmware is up to date.\n",
4183 			h->max_commands);
4184 		h->max_commands = 16;
4185 	}
4186 }
4187 
4188 /* Interrogate the hardware for some limits:
4189  * max commands, max SG elements without chaining, and with chaining,
4190  * SG chain block size, etc.
4191  */
4192 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
4193 {
4194 	hpsa_get_max_perf_mode_cmds(h);
4195 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4196 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4197 	/*
4198 	 * Limit in-command s/g elements to 32 save dma'able memory.
4199 	 * Howvever spec says if 0, use 31
4200 	 */
4201 	h->max_cmd_sg_entries = 31;
4202 	if (h->maxsgentries > 512) {
4203 		h->max_cmd_sg_entries = 32;
4204 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4205 		h->maxsgentries--; /* save one for chain pointer */
4206 	} else {
4207 		h->maxsgentries = 31; /* default to traditional values */
4208 		h->chainsize = 0;
4209 	}
4210 
4211 	/* Find out what task management functions are supported and cache */
4212 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4213 }
4214 
4215 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4216 {
4217 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4218 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4219 		return false;
4220 	}
4221 	return true;
4222 }
4223 
4224 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4225 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4226 {
4227 #ifdef CONFIG_X86
4228 	u32 prefetch;
4229 
4230 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4231 	prefetch |= 0x100;
4232 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4233 #endif
4234 }
4235 
4236 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4237  * in a prefetch beyond physical memory.
4238  */
4239 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4240 {
4241 	u32 dma_prefetch;
4242 
4243 	if (h->board_id != 0x3225103C)
4244 		return;
4245 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4246 	dma_prefetch |= 0x8000;
4247 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4248 }
4249 
4250 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4251 {
4252 	int i;
4253 	u32 doorbell_value;
4254 	unsigned long flags;
4255 
4256 	/* under certain very rare conditions, this can take awhile.
4257 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4258 	 * as we enter this code.)
4259 	 */
4260 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4261 		spin_lock_irqsave(&h->lock, flags);
4262 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4263 		spin_unlock_irqrestore(&h->lock, flags);
4264 		if (!(doorbell_value & CFGTBL_ChangeReq))
4265 			break;
4266 		/* delay and try again */
4267 		usleep_range(10000, 20000);
4268 	}
4269 }
4270 
4271 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
4272 {
4273 	u32 trans_support;
4274 
4275 	trans_support = readl(&(h->cfgtable->TransportSupport));
4276 	if (!(trans_support & SIMPLE_MODE))
4277 		return -ENOTSUPP;
4278 
4279 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4280 	/* Update the field, and then ring the doorbell */
4281 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4282 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4283 	hpsa_wait_for_mode_change_ack(h);
4284 	print_cfg_table(&h->pdev->dev, h->cfgtable);
4285 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4286 		dev_warn(&h->pdev->dev,
4287 			"unable to get board into simple mode\n");
4288 		return -ENODEV;
4289 	}
4290 	h->transMethod = CFGTBL_Trans_Simple;
4291 	return 0;
4292 }
4293 
4294 static int __devinit hpsa_pci_init(struct ctlr_info *h)
4295 {
4296 	int prod_index, err;
4297 
4298 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4299 	if (prod_index < 0)
4300 		return -ENODEV;
4301 	h->product_name = products[prod_index].product_name;
4302 	h->access = *(products[prod_index].access);
4303 
4304 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4305 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4306 
4307 	err = pci_enable_device(h->pdev);
4308 	if (err) {
4309 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4310 		return err;
4311 	}
4312 
4313 	/* Enable bus mastering (pci_disable_device may disable this) */
4314 	pci_set_master(h->pdev);
4315 
4316 	err = pci_request_regions(h->pdev, HPSA);
4317 	if (err) {
4318 		dev_err(&h->pdev->dev,
4319 			"cannot obtain PCI resources, aborting\n");
4320 		return err;
4321 	}
4322 	hpsa_interrupt_mode(h);
4323 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4324 	if (err)
4325 		goto err_out_free_res;
4326 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4327 	if (!h->vaddr) {
4328 		err = -ENOMEM;
4329 		goto err_out_free_res;
4330 	}
4331 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4332 	if (err)
4333 		goto err_out_free_res;
4334 	err = hpsa_find_cfgtables(h);
4335 	if (err)
4336 		goto err_out_free_res;
4337 	hpsa_find_board_params(h);
4338 
4339 	if (!hpsa_CISS_signature_present(h)) {
4340 		err = -ENODEV;
4341 		goto err_out_free_res;
4342 	}
4343 	hpsa_enable_scsi_prefetch(h);
4344 	hpsa_p600_dma_prefetch_quirk(h);
4345 	err = hpsa_enter_simple_mode(h);
4346 	if (err)
4347 		goto err_out_free_res;
4348 	return 0;
4349 
4350 err_out_free_res:
4351 	if (h->transtable)
4352 		iounmap(h->transtable);
4353 	if (h->cfgtable)
4354 		iounmap(h->cfgtable);
4355 	if (h->vaddr)
4356 		iounmap(h->vaddr);
4357 	pci_disable_device(h->pdev);
4358 	pci_release_regions(h->pdev);
4359 	return err;
4360 }
4361 
4362 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
4363 {
4364 	int rc;
4365 
4366 #define HBA_INQUIRY_BYTE_COUNT 64
4367 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4368 	if (!h->hba_inquiry_data)
4369 		return;
4370 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4371 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4372 	if (rc != 0) {
4373 		kfree(h->hba_inquiry_data);
4374 		h->hba_inquiry_data = NULL;
4375 	}
4376 }
4377 
4378 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4379 {
4380 	int rc, i;
4381 
4382 	if (!reset_devices)
4383 		return 0;
4384 
4385 	/* Reset the controller with a PCI power-cycle or via doorbell */
4386 	rc = hpsa_kdump_hard_reset_controller(pdev);
4387 
4388 	/* -ENOTSUPP here means we cannot reset the controller
4389 	 * but it's already (and still) up and running in
4390 	 * "performant mode".  Or, it might be 640x, which can't reset
4391 	 * due to concerns about shared bbwc between 6402/6404 pair.
4392 	 */
4393 	if (rc == -ENOTSUPP)
4394 		return rc; /* just try to do the kdump anyhow. */
4395 	if (rc)
4396 		return -ENODEV;
4397 
4398 	/* Now try to get the controller to respond to a no-op */
4399 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4400 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4401 		if (hpsa_noop(pdev) == 0)
4402 			break;
4403 		else
4404 			dev_warn(&pdev->dev, "no-op failed%s\n",
4405 					(i < 11 ? "; re-trying" : ""));
4406 	}
4407 	return 0;
4408 }
4409 
4410 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4411 {
4412 	h->cmd_pool_bits = kzalloc(
4413 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4414 		sizeof(unsigned long), GFP_KERNEL);
4415 	h->cmd_pool = pci_alloc_consistent(h->pdev,
4416 		    h->nr_cmds * sizeof(*h->cmd_pool),
4417 		    &(h->cmd_pool_dhandle));
4418 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4419 		    h->nr_cmds * sizeof(*h->errinfo_pool),
4420 		    &(h->errinfo_pool_dhandle));
4421 	if ((h->cmd_pool_bits == NULL)
4422 	    || (h->cmd_pool == NULL)
4423 	    || (h->errinfo_pool == NULL)) {
4424 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4425 		return -ENOMEM;
4426 	}
4427 	return 0;
4428 }
4429 
4430 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4431 {
4432 	kfree(h->cmd_pool_bits);
4433 	if (h->cmd_pool)
4434 		pci_free_consistent(h->pdev,
4435 			    h->nr_cmds * sizeof(struct CommandList),
4436 			    h->cmd_pool, h->cmd_pool_dhandle);
4437 	if (h->errinfo_pool)
4438 		pci_free_consistent(h->pdev,
4439 			    h->nr_cmds * sizeof(struct ErrorInfo),
4440 			    h->errinfo_pool,
4441 			    h->errinfo_pool_dhandle);
4442 }
4443 
4444 static int hpsa_request_irq(struct ctlr_info *h,
4445 	irqreturn_t (*msixhandler)(int, void *),
4446 	irqreturn_t (*intxhandler)(int, void *))
4447 {
4448 	int rc, i;
4449 
4450 	/*
4451 	 * initialize h->q[x] = x so that interrupt handlers know which
4452 	 * queue to process.
4453 	 */
4454 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
4455 		h->q[i] = (u8) i;
4456 
4457 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4458 		/* If performant mode and MSI-X, use multiple reply queues */
4459 		for (i = 0; i < MAX_REPLY_QUEUES; i++)
4460 			rc = request_irq(h->intr[i], msixhandler,
4461 					0, h->devname,
4462 					&h->q[i]);
4463 	} else {
4464 		/* Use single reply pool */
4465 		if (h->msix_vector || h->msi_vector) {
4466 			rc = request_irq(h->intr[h->intr_mode],
4467 				msixhandler, 0, h->devname,
4468 				&h->q[h->intr_mode]);
4469 		} else {
4470 			rc = request_irq(h->intr[h->intr_mode],
4471 				intxhandler, IRQF_SHARED, h->devname,
4472 				&h->q[h->intr_mode]);
4473 		}
4474 	}
4475 	if (rc) {
4476 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4477 		       h->intr[h->intr_mode], h->devname);
4478 		return -ENODEV;
4479 	}
4480 	return 0;
4481 }
4482 
4483 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4484 {
4485 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4486 		HPSA_RESET_TYPE_CONTROLLER)) {
4487 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4488 		return -EIO;
4489 	}
4490 
4491 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4492 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4493 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4494 		return -1;
4495 	}
4496 
4497 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4498 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4499 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4500 			"after soft reset.\n");
4501 		return -1;
4502 	}
4503 
4504 	return 0;
4505 }
4506 
4507 static void free_irqs(struct ctlr_info *h)
4508 {
4509 	int i;
4510 
4511 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4512 		/* Single reply queue, only one irq to free */
4513 		i = h->intr_mode;
4514 		free_irq(h->intr[i], &h->q[i]);
4515 		return;
4516 	}
4517 
4518 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
4519 		free_irq(h->intr[i], &h->q[i]);
4520 }
4521 
4522 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4523 {
4524 	free_irqs(h);
4525 #ifdef CONFIG_PCI_MSI
4526 	if (h->msix_vector) {
4527 		if (h->pdev->msix_enabled)
4528 			pci_disable_msix(h->pdev);
4529 	} else if (h->msi_vector) {
4530 		if (h->pdev->msi_enabled)
4531 			pci_disable_msi(h->pdev);
4532 	}
4533 #endif /* CONFIG_PCI_MSI */
4534 }
4535 
4536 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4537 {
4538 	hpsa_free_irqs_and_disable_msix(h);
4539 	hpsa_free_sg_chain_blocks(h);
4540 	hpsa_free_cmd_pool(h);
4541 	kfree(h->blockFetchTable);
4542 	pci_free_consistent(h->pdev, h->reply_pool_size,
4543 		h->reply_pool, h->reply_pool_dhandle);
4544 	if (h->vaddr)
4545 		iounmap(h->vaddr);
4546 	if (h->transtable)
4547 		iounmap(h->transtable);
4548 	if (h->cfgtable)
4549 		iounmap(h->cfgtable);
4550 	pci_release_regions(h->pdev);
4551 	kfree(h);
4552 }
4553 
4554 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4555 {
4556 	assert_spin_locked(&lockup_detector_lock);
4557 	if (!hpsa_lockup_detector)
4558 		return;
4559 	if (h->lockup_detected)
4560 		return; /* already stopped the lockup detector */
4561 	list_del(&h->lockup_list);
4562 }
4563 
4564 /* Called when controller lockup detected. */
4565 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4566 {
4567 	struct CommandList *c = NULL;
4568 
4569 	assert_spin_locked(&h->lock);
4570 	/* Mark all outstanding commands as failed and complete them. */
4571 	while (!list_empty(list)) {
4572 		c = list_entry(list->next, struct CommandList, list);
4573 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4574 		finish_cmd(c);
4575 	}
4576 }
4577 
4578 static void controller_lockup_detected(struct ctlr_info *h)
4579 {
4580 	unsigned long flags;
4581 
4582 	assert_spin_locked(&lockup_detector_lock);
4583 	remove_ctlr_from_lockup_detector_list(h);
4584 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4585 	spin_lock_irqsave(&h->lock, flags);
4586 	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4587 	spin_unlock_irqrestore(&h->lock, flags);
4588 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4589 			h->lockup_detected);
4590 	pci_disable_device(h->pdev);
4591 	spin_lock_irqsave(&h->lock, flags);
4592 	fail_all_cmds_on_list(h, &h->cmpQ);
4593 	fail_all_cmds_on_list(h, &h->reqQ);
4594 	spin_unlock_irqrestore(&h->lock, flags);
4595 }
4596 
4597 static void detect_controller_lockup(struct ctlr_info *h)
4598 {
4599 	u64 now;
4600 	u32 heartbeat;
4601 	unsigned long flags;
4602 
4603 	assert_spin_locked(&lockup_detector_lock);
4604 	now = get_jiffies_64();
4605 	/* If we've received an interrupt recently, we're ok. */
4606 	if (time_after64(h->last_intr_timestamp +
4607 				(h->heartbeat_sample_interval), now))
4608 		return;
4609 
4610 	/*
4611 	 * If we've already checked the heartbeat recently, we're ok.
4612 	 * This could happen if someone sends us a signal. We
4613 	 * otherwise don't care about signals in this thread.
4614 	 */
4615 	if (time_after64(h->last_heartbeat_timestamp +
4616 				(h->heartbeat_sample_interval), now))
4617 		return;
4618 
4619 	/* If heartbeat has not changed since we last looked, we're not ok. */
4620 	spin_lock_irqsave(&h->lock, flags);
4621 	heartbeat = readl(&h->cfgtable->HeartBeat);
4622 	spin_unlock_irqrestore(&h->lock, flags);
4623 	if (h->last_heartbeat == heartbeat) {
4624 		controller_lockup_detected(h);
4625 		return;
4626 	}
4627 
4628 	/* We're ok. */
4629 	h->last_heartbeat = heartbeat;
4630 	h->last_heartbeat_timestamp = now;
4631 }
4632 
4633 static int detect_controller_lockup_thread(void *notused)
4634 {
4635 	struct ctlr_info *h;
4636 	unsigned long flags;
4637 
4638 	while (1) {
4639 		struct list_head *this, *tmp;
4640 
4641 		schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4642 		if (kthread_should_stop())
4643 			break;
4644 		spin_lock_irqsave(&lockup_detector_lock, flags);
4645 		list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4646 			h = list_entry(this, struct ctlr_info, lockup_list);
4647 			detect_controller_lockup(h);
4648 		}
4649 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4650 	}
4651 	return 0;
4652 }
4653 
4654 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4655 {
4656 	unsigned long flags;
4657 
4658 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4659 	spin_lock_irqsave(&lockup_detector_lock, flags);
4660 	list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4661 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4662 }
4663 
4664 static void start_controller_lockup_detector(struct ctlr_info *h)
4665 {
4666 	/* Start the lockup detector thread if not already started */
4667 	if (!hpsa_lockup_detector) {
4668 		spin_lock_init(&lockup_detector_lock);
4669 		hpsa_lockup_detector =
4670 			kthread_run(detect_controller_lockup_thread,
4671 						NULL, HPSA);
4672 	}
4673 	if (!hpsa_lockup_detector) {
4674 		dev_warn(&h->pdev->dev,
4675 			"Could not start lockup detector thread\n");
4676 		return;
4677 	}
4678 	add_ctlr_to_lockup_detector_list(h);
4679 }
4680 
4681 static void stop_controller_lockup_detector(struct ctlr_info *h)
4682 {
4683 	unsigned long flags;
4684 
4685 	spin_lock_irqsave(&lockup_detector_lock, flags);
4686 	remove_ctlr_from_lockup_detector_list(h);
4687 	/* If the list of ctlr's to monitor is empty, stop the thread */
4688 	if (list_empty(&hpsa_ctlr_list)) {
4689 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4690 		kthread_stop(hpsa_lockup_detector);
4691 		spin_lock_irqsave(&lockup_detector_lock, flags);
4692 		hpsa_lockup_detector = NULL;
4693 	}
4694 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4695 }
4696 
4697 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4698 				    const struct pci_device_id *ent)
4699 {
4700 	int dac, rc;
4701 	struct ctlr_info *h;
4702 	int try_soft_reset = 0;
4703 	unsigned long flags;
4704 
4705 	if (number_of_controllers == 0)
4706 		printk(KERN_INFO DRIVER_NAME "\n");
4707 
4708 	rc = hpsa_init_reset_devices(pdev);
4709 	if (rc) {
4710 		if (rc != -ENOTSUPP)
4711 			return rc;
4712 		/* If the reset fails in a particular way (it has no way to do
4713 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4714 		 * a soft reset once we get the controller configured up to the
4715 		 * point that it can accept a command.
4716 		 */
4717 		try_soft_reset = 1;
4718 		rc = 0;
4719 	}
4720 
4721 reinit_after_soft_reset:
4722 
4723 	/* Command structures must be aligned on a 32-byte boundary because
4724 	 * the 5 lower bits of the address are used by the hardware. and by
4725 	 * the driver.  See comments in hpsa.h for more info.
4726 	 */
4727 #define COMMANDLIST_ALIGNMENT 32
4728 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4729 	h = kzalloc(sizeof(*h), GFP_KERNEL);
4730 	if (!h)
4731 		return -ENOMEM;
4732 
4733 	h->pdev = pdev;
4734 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4735 	INIT_LIST_HEAD(&h->cmpQ);
4736 	INIT_LIST_HEAD(&h->reqQ);
4737 	spin_lock_init(&h->lock);
4738 	spin_lock_init(&h->scan_lock);
4739 	rc = hpsa_pci_init(h);
4740 	if (rc != 0)
4741 		goto clean1;
4742 
4743 	sprintf(h->devname, HPSA "%d", number_of_controllers);
4744 	h->ctlr = number_of_controllers;
4745 	number_of_controllers++;
4746 
4747 	/* configure PCI DMA stuff */
4748 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4749 	if (rc == 0) {
4750 		dac = 1;
4751 	} else {
4752 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4753 		if (rc == 0) {
4754 			dac = 0;
4755 		} else {
4756 			dev_err(&pdev->dev, "no suitable DMA available\n");
4757 			goto clean1;
4758 		}
4759 	}
4760 
4761 	/* make sure the board interrupts are off */
4762 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4763 
4764 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4765 		goto clean2;
4766 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4767 	       h->devname, pdev->device,
4768 	       h->intr[h->intr_mode], dac ? "" : " not");
4769 	if (hpsa_allocate_cmd_pool(h))
4770 		goto clean4;
4771 	if (hpsa_allocate_sg_chain_blocks(h))
4772 		goto clean4;
4773 	init_waitqueue_head(&h->scan_wait_queue);
4774 	h->scan_finished = 1; /* no scan currently in progress */
4775 
4776 	pci_set_drvdata(pdev, h);
4777 	h->ndevices = 0;
4778 	h->scsi_host = NULL;
4779 	spin_lock_init(&h->devlock);
4780 	hpsa_put_ctlr_into_performant_mode(h);
4781 
4782 	/* At this point, the controller is ready to take commands.
4783 	 * Now, if reset_devices and the hard reset didn't work, try
4784 	 * the soft reset and see if that works.
4785 	 */
4786 	if (try_soft_reset) {
4787 
4788 		/* This is kind of gross.  We may or may not get a completion
4789 		 * from the soft reset command, and if we do, then the value
4790 		 * from the fifo may or may not be valid.  So, we wait 10 secs
4791 		 * after the reset throwing away any completions we get during
4792 		 * that time.  Unregister the interrupt handler and register
4793 		 * fake ones to scoop up any residual completions.
4794 		 */
4795 		spin_lock_irqsave(&h->lock, flags);
4796 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4797 		spin_unlock_irqrestore(&h->lock, flags);
4798 		free_irqs(h);
4799 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4800 					hpsa_intx_discard_completions);
4801 		if (rc) {
4802 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4803 				"soft reset.\n");
4804 			goto clean4;
4805 		}
4806 
4807 		rc = hpsa_kdump_soft_reset(h);
4808 		if (rc)
4809 			/* Neither hard nor soft reset worked, we're hosed. */
4810 			goto clean4;
4811 
4812 		dev_info(&h->pdev->dev, "Board READY.\n");
4813 		dev_info(&h->pdev->dev,
4814 			"Waiting for stale completions to drain.\n");
4815 		h->access.set_intr_mask(h, HPSA_INTR_ON);
4816 		msleep(10000);
4817 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4818 
4819 		rc = controller_reset_failed(h->cfgtable);
4820 		if (rc)
4821 			dev_info(&h->pdev->dev,
4822 				"Soft reset appears to have failed.\n");
4823 
4824 		/* since the controller's reset, we have to go back and re-init
4825 		 * everything.  Easiest to just forget what we've done and do it
4826 		 * all over again.
4827 		 */
4828 		hpsa_undo_allocations_after_kdump_soft_reset(h);
4829 		try_soft_reset = 0;
4830 		if (rc)
4831 			/* don't go to clean4, we already unallocated */
4832 			return -ENODEV;
4833 
4834 		goto reinit_after_soft_reset;
4835 	}
4836 
4837 	/* Turn the interrupts on so we can service requests */
4838 	h->access.set_intr_mask(h, HPSA_INTR_ON);
4839 
4840 	hpsa_hba_inquiry(h);
4841 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4842 	start_controller_lockup_detector(h);
4843 	return 1;
4844 
4845 clean4:
4846 	hpsa_free_sg_chain_blocks(h);
4847 	hpsa_free_cmd_pool(h);
4848 	free_irqs(h);
4849 clean2:
4850 clean1:
4851 	kfree(h);
4852 	return rc;
4853 }
4854 
4855 static void hpsa_flush_cache(struct ctlr_info *h)
4856 {
4857 	char *flush_buf;
4858 	struct CommandList *c;
4859 
4860 	flush_buf = kzalloc(4, GFP_KERNEL);
4861 	if (!flush_buf)
4862 		return;
4863 
4864 	c = cmd_special_alloc(h);
4865 	if (!c) {
4866 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4867 		goto out_of_memory;
4868 	}
4869 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4870 		RAID_CTLR_LUNID, TYPE_CMD);
4871 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4872 	if (c->err_info->CommandStatus != 0)
4873 		dev_warn(&h->pdev->dev,
4874 			"error flushing cache on controller\n");
4875 	cmd_special_free(h, c);
4876 out_of_memory:
4877 	kfree(flush_buf);
4878 }
4879 
4880 static void hpsa_shutdown(struct pci_dev *pdev)
4881 {
4882 	struct ctlr_info *h;
4883 
4884 	h = pci_get_drvdata(pdev);
4885 	/* Turn board interrupts off  and send the flush cache command
4886 	 * sendcmd will turn off interrupt, and send the flush...
4887 	 * To write all data in the battery backed cache to disks
4888 	 */
4889 	hpsa_flush_cache(h);
4890 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4891 	hpsa_free_irqs_and_disable_msix(h);
4892 }
4893 
4894 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4895 {
4896 	int i;
4897 
4898 	for (i = 0; i < h->ndevices; i++)
4899 		kfree(h->dev[i]);
4900 }
4901 
4902 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4903 {
4904 	struct ctlr_info *h;
4905 
4906 	if (pci_get_drvdata(pdev) == NULL) {
4907 		dev_err(&pdev->dev, "unable to remove device\n");
4908 		return;
4909 	}
4910 	h = pci_get_drvdata(pdev);
4911 	stop_controller_lockup_detector(h);
4912 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
4913 	hpsa_shutdown(pdev);
4914 	iounmap(h->vaddr);
4915 	iounmap(h->transtable);
4916 	iounmap(h->cfgtable);
4917 	hpsa_free_device_info(h);
4918 	hpsa_free_sg_chain_blocks(h);
4919 	pci_free_consistent(h->pdev,
4920 		h->nr_cmds * sizeof(struct CommandList),
4921 		h->cmd_pool, h->cmd_pool_dhandle);
4922 	pci_free_consistent(h->pdev,
4923 		h->nr_cmds * sizeof(struct ErrorInfo),
4924 		h->errinfo_pool, h->errinfo_pool_dhandle);
4925 	pci_free_consistent(h->pdev, h->reply_pool_size,
4926 		h->reply_pool, h->reply_pool_dhandle);
4927 	kfree(h->cmd_pool_bits);
4928 	kfree(h->blockFetchTable);
4929 	kfree(h->hba_inquiry_data);
4930 	pci_disable_device(pdev);
4931 	pci_release_regions(pdev);
4932 	pci_set_drvdata(pdev, NULL);
4933 	kfree(h);
4934 }
4935 
4936 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4937 	__attribute__((unused)) pm_message_t state)
4938 {
4939 	return -ENOSYS;
4940 }
4941 
4942 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4943 {
4944 	return -ENOSYS;
4945 }
4946 
4947 static struct pci_driver hpsa_pci_driver = {
4948 	.name = HPSA,
4949 	.probe = hpsa_init_one,
4950 	.remove = __devexit_p(hpsa_remove_one),
4951 	.id_table = hpsa_pci_device_id,	/* id_table */
4952 	.shutdown = hpsa_shutdown,
4953 	.suspend = hpsa_suspend,
4954 	.resume = hpsa_resume,
4955 };
4956 
4957 /* Fill in bucket_map[], given nsgs (the max number of
4958  * scatter gather elements supported) and bucket[],
4959  * which is an array of 8 integers.  The bucket[] array
4960  * contains 8 different DMA transfer sizes (in 16
4961  * byte increments) which the controller uses to fetch
4962  * commands.  This function fills in bucket_map[], which
4963  * maps a given number of scatter gather elements to one of
4964  * the 8 DMA transfer sizes.  The point of it is to allow the
4965  * controller to only do as much DMA as needed to fetch the
4966  * command, with the DMA transfer size encoded in the lower
4967  * bits of the command address.
4968  */
4969 static void  calc_bucket_map(int bucket[], int num_buckets,
4970 	int nsgs, int *bucket_map)
4971 {
4972 	int i, j, b, size;
4973 
4974 	/* even a command with 0 SGs requires 4 blocks */
4975 #define MINIMUM_TRANSFER_BLOCKS 4
4976 #define NUM_BUCKETS 8
4977 	/* Note, bucket_map must have nsgs+1 entries. */
4978 	for (i = 0; i <= nsgs; i++) {
4979 		/* Compute size of a command with i SG entries */
4980 		size = i + MINIMUM_TRANSFER_BLOCKS;
4981 		b = num_buckets; /* Assume the biggest bucket */
4982 		/* Find the bucket that is just big enough */
4983 		for (j = 0; j < 8; j++) {
4984 			if (bucket[j] >= size) {
4985 				b = j;
4986 				break;
4987 			}
4988 		}
4989 		/* for a command with i SG entries, use bucket b. */
4990 		bucket_map[i] = b;
4991 	}
4992 }
4993 
4994 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4995 	u32 use_short_tags)
4996 {
4997 	int i;
4998 	unsigned long register_value;
4999 
5000 	/* This is a bit complicated.  There are 8 registers on
5001 	 * the controller which we write to to tell it 8 different
5002 	 * sizes of commands which there may be.  It's a way of
5003 	 * reducing the DMA done to fetch each command.  Encoded into
5004 	 * each command's tag are 3 bits which communicate to the controller
5005 	 * which of the eight sizes that command fits within.  The size of
5006 	 * each command depends on how many scatter gather entries there are.
5007 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
5008 	 * with the number of 16-byte blocks a command of that size requires.
5009 	 * The smallest command possible requires 5 such 16 byte blocks.
5010 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5011 	 * blocks.  Note, this only extends to the SG entries contained
5012 	 * within the command block, and does not extend to chained blocks
5013 	 * of SG elements.   bft[] contains the eight values we write to
5014 	 * the registers.  They are not evenly distributed, but have more
5015 	 * sizes for small commands, and fewer sizes for larger commands.
5016 	 */
5017 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5018 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5019 	/*  5 = 1 s/g entry or 4k
5020 	 *  6 = 2 s/g entry or 8k
5021 	 *  8 = 4 s/g entry or 16k
5022 	 * 10 = 6 s/g entry or 24k
5023 	 */
5024 
5025 	/* Controller spec: zero out this buffer. */
5026 	memset(h->reply_pool, 0, h->reply_pool_size);
5027 
5028 	bft[7] = SG_ENTRIES_IN_CMD + 4;
5029 	calc_bucket_map(bft, ARRAY_SIZE(bft),
5030 				SG_ENTRIES_IN_CMD, h->blockFetchTable);
5031 	for (i = 0; i < 8; i++)
5032 		writel(bft[i], &h->transtable->BlockFetch[i]);
5033 
5034 	/* size of controller ring buffer */
5035 	writel(h->max_commands, &h->transtable->RepQSize);
5036 	writel(h->nreply_queues, &h->transtable->RepQCount);
5037 	writel(0, &h->transtable->RepQCtrAddrLow32);
5038 	writel(0, &h->transtable->RepQCtrAddrHigh32);
5039 
5040 	for (i = 0; i < h->nreply_queues; i++) {
5041 		writel(0, &h->transtable->RepQAddr[i].upper);
5042 		writel(h->reply_pool_dhandle +
5043 			(h->max_commands * sizeof(u64) * i),
5044 			&h->transtable->RepQAddr[i].lower);
5045 	}
5046 
5047 	writel(CFGTBL_Trans_Performant | use_short_tags |
5048 		CFGTBL_Trans_enable_directed_msix,
5049 		&(h->cfgtable->HostWrite.TransportRequest));
5050 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5051 	hpsa_wait_for_mode_change_ack(h);
5052 	register_value = readl(&(h->cfgtable->TransportActive));
5053 	if (!(register_value & CFGTBL_Trans_Performant)) {
5054 		dev_warn(&h->pdev->dev, "unable to get board into"
5055 					" performant mode\n");
5056 		return;
5057 	}
5058 	/* Change the access methods to the performant access methods */
5059 	h->access = SA5_performant_access;
5060 	h->transMethod = CFGTBL_Trans_Performant;
5061 }
5062 
5063 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5064 {
5065 	u32 trans_support;
5066 	int i;
5067 
5068 	if (hpsa_simple_mode)
5069 		return;
5070 
5071 	trans_support = readl(&(h->cfgtable->TransportSupport));
5072 	if (!(trans_support & PERFORMANT_MODE))
5073 		return;
5074 
5075 	h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5076 	hpsa_get_max_perf_mode_cmds(h);
5077 	/* Performant mode ring buffer and supporting data structures */
5078 	h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5079 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5080 				&(h->reply_pool_dhandle));
5081 
5082 	for (i = 0; i < h->nreply_queues; i++) {
5083 		h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5084 		h->reply_queue[i].size = h->max_commands;
5085 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5086 		h->reply_queue[i].current_entry = 0;
5087 	}
5088 
5089 	/* Need a block fetch table for performant mode */
5090 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5091 				sizeof(u32)), GFP_KERNEL);
5092 
5093 	if ((h->reply_pool == NULL)
5094 		|| (h->blockFetchTable == NULL))
5095 		goto clean_up;
5096 
5097 	hpsa_enter_performant_mode(h,
5098 		trans_support & CFGTBL_Trans_use_short_tags);
5099 
5100 	return;
5101 
5102 clean_up:
5103 	if (h->reply_pool)
5104 		pci_free_consistent(h->pdev, h->reply_pool_size,
5105 			h->reply_pool, h->reply_pool_dhandle);
5106 	kfree(h->blockFetchTable);
5107 }
5108 
5109 /*
5110  *  This is it.  Register the PCI driver information for the cards we control
5111  *  the OS will call our registered routines when it finds one of our cards.
5112  */
5113 static int __init hpsa_init(void)
5114 {
5115 	return pci_register_driver(&hpsa_pci_driver);
5116 }
5117 
5118 static void __exit hpsa_cleanup(void)
5119 {
5120 	pci_unregister_driver(&hpsa_pci_driver);
5121 }
5122 
5123 module_init(hpsa_init);
5124 module_exit(hpsa_cleanup);
5125