xref: /linux/drivers/scsi/hpsa.c (revision 8b1935e6a36b0967efc593d67ed3aebbfbc1f5b1)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53 
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.1-3"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57 
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61 
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64 
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 	HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72 
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 		"Allow hpsa driver to access unknown HP Smart Array hardware");
77 
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
81 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
82 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
83 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
84 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
85 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
88 #define PCI_DEVICE_ID_HP_CISSF 0x333f
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F},
90 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
91 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
92 	{0,}
93 };
94 
95 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
96 
97 /*  board_id = Subsystem Device ID & Vendor ID
98  *  product = Marketing Name for the board
99  *  access = Address of the struct of function pointers
100  */
101 static struct board_type products[] = {
102 	{0x3241103C, "Smart Array P212", &SA5_access},
103 	{0x3243103C, "Smart Array P410", &SA5_access},
104 	{0x3245103C, "Smart Array P410i", &SA5_access},
105 	{0x3247103C, "Smart Array P411", &SA5_access},
106 	{0x3249103C, "Smart Array P812", &SA5_access},
107 	{0x324a103C, "Smart Array P712m", &SA5_access},
108 	{0x324b103C, "Smart Array P711m", &SA5_access},
109 	{0x3233103C, "StorageWorks P1210m", &SA5_access},
110 	{0x333F103C, "StorageWorks P1210m", &SA5_access},
111 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
112 };
113 
114 static int number_of_controllers;
115 
116 static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
117 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
118 static void start_io(struct ctlr_info *h);
119 
120 #ifdef CONFIG_COMPAT
121 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
122 #endif
123 
124 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
125 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
126 static struct CommandList *cmd_alloc(struct ctlr_info *h);
127 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
128 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
129 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
130 	int cmd_type);
131 
132 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
133 		void (*done)(struct scsi_cmnd *));
134 static void hpsa_scan_start(struct Scsi_Host *);
135 static int hpsa_scan_finished(struct Scsi_Host *sh,
136 	unsigned long elapsed_time);
137 
138 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
139 static int hpsa_slave_alloc(struct scsi_device *sdev);
140 static void hpsa_slave_destroy(struct scsi_device *sdev);
141 
142 static ssize_t raid_level_show(struct device *dev,
143 	struct device_attribute *attr, char *buf);
144 static ssize_t lunid_show(struct device *dev,
145 	struct device_attribute *attr, char *buf);
146 static ssize_t unique_id_show(struct device *dev,
147 	struct device_attribute *attr, char *buf);
148 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
149 static ssize_t host_store_rescan(struct device *dev,
150 	 struct device_attribute *attr, const char *buf, size_t count);
151 static int check_for_unit_attention(struct ctlr_info *h,
152 	struct CommandList *c);
153 static void check_ioctl_unit_attention(struct ctlr_info *h,
154 	struct CommandList *c);
155 /* performant mode helper functions */
156 static void calc_bucket_map(int *bucket, int num_buckets,
157 	int nsgs, int *bucket_map);
158 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
159 static inline u32 next_command(struct ctlr_info *h);
160 
161 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
162 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
163 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
164 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
165 
166 static struct device_attribute *hpsa_sdev_attrs[] = {
167 	&dev_attr_raid_level,
168 	&dev_attr_lunid,
169 	&dev_attr_unique_id,
170 	NULL,
171 };
172 
173 static struct device_attribute *hpsa_shost_attrs[] = {
174 	&dev_attr_rescan,
175 	NULL,
176 };
177 
178 static struct scsi_host_template hpsa_driver_template = {
179 	.module			= THIS_MODULE,
180 	.name			= "hpsa",
181 	.proc_name		= "hpsa",
182 	.queuecommand		= hpsa_scsi_queue_command,
183 	.scan_start		= hpsa_scan_start,
184 	.scan_finished		= hpsa_scan_finished,
185 	.this_id		= -1,
186 	.sg_tablesize		= MAXSGENTRIES,
187 	.use_clustering		= ENABLE_CLUSTERING,
188 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
189 	.ioctl			= hpsa_ioctl,
190 	.slave_alloc		= hpsa_slave_alloc,
191 	.slave_destroy		= hpsa_slave_destroy,
192 #ifdef CONFIG_COMPAT
193 	.compat_ioctl		= hpsa_compat_ioctl,
194 #endif
195 	.sdev_attrs = hpsa_sdev_attrs,
196 	.shost_attrs = hpsa_shost_attrs,
197 };
198 
199 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
200 {
201 	unsigned long *priv = shost_priv(sdev->host);
202 	return (struct ctlr_info *) *priv;
203 }
204 
205 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
206 {
207 	unsigned long *priv = shost_priv(sh);
208 	return (struct ctlr_info *) *priv;
209 }
210 
211 static struct task_struct *hpsa_scan_thread;
212 static DEFINE_MUTEX(hpsa_scan_mutex);
213 static LIST_HEAD(hpsa_scan_q);
214 static int hpsa_scan_func(void *data);
215 
216 /**
217  * add_to_scan_list() - add controller to rescan queue
218  * @h:		      Pointer to the controller.
219  *
220  * Adds the controller to the rescan queue if not already on the queue.
221  *
222  * returns 1 if added to the queue, 0 if skipped (could be on the
223  * queue already, or the controller could be initializing or shutting
224  * down).
225  **/
226 static int add_to_scan_list(struct ctlr_info *h)
227 {
228 	struct ctlr_info *test_h;
229 	int found = 0;
230 	int ret = 0;
231 
232 	if (h->busy_initializing)
233 		return 0;
234 
235 	/*
236 	 * If we don't get the lock, it means the driver is unloading
237 	 * and there's no point in scheduling a new scan.
238 	 */
239 	if (!mutex_trylock(&h->busy_shutting_down))
240 		return 0;
241 
242 	mutex_lock(&hpsa_scan_mutex);
243 	list_for_each_entry(test_h, &hpsa_scan_q, scan_list) {
244 		if (test_h == h) {
245 			found = 1;
246 			break;
247 		}
248 	}
249 	if (!found && !h->busy_scanning) {
250 		INIT_COMPLETION(h->scan_wait);
251 		list_add_tail(&h->scan_list, &hpsa_scan_q);
252 		ret = 1;
253 	}
254 	mutex_unlock(&hpsa_scan_mutex);
255 	mutex_unlock(&h->busy_shutting_down);
256 
257 	return ret;
258 }
259 
260 /**
261  * remove_from_scan_list() - remove controller from rescan queue
262  * @h:			   Pointer to the controller.
263  *
264  * Removes the controller from the rescan queue if present. Blocks if
265  * the controller is currently conducting a rescan.  The controller
266  * can be in one of three states:
267  * 1. Doesn't need a scan
268  * 2. On the scan list, but not scanning yet (we remove it)
269  * 3. Busy scanning (and not on the list). In this case we want to wait for
270  *    the scan to complete to make sure the scanning thread for this
271  *    controller is completely idle.
272  **/
273 static void remove_from_scan_list(struct ctlr_info *h)
274 {
275 	struct ctlr_info *test_h, *tmp_h;
276 
277 	mutex_lock(&hpsa_scan_mutex);
278 	list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) {
279 		if (test_h == h) { /* state 2. */
280 			list_del(&h->scan_list);
281 			complete_all(&h->scan_wait);
282 			mutex_unlock(&hpsa_scan_mutex);
283 			return;
284 		}
285 	}
286 	if (h->busy_scanning) { /* state 3. */
287 		mutex_unlock(&hpsa_scan_mutex);
288 		wait_for_completion(&h->scan_wait);
289 	} else { /* state 1, nothing to do. */
290 		mutex_unlock(&hpsa_scan_mutex);
291 	}
292 }
293 
294 /* hpsa_scan_func() - kernel thread used to rescan controllers
295  * @data:	 Ignored.
296  *
297  * A kernel thread used scan for drive topology changes on
298  * controllers. The thread processes only one controller at a time
299  * using a queue.  Controllers are added to the queue using
300  * add_to_scan_list() and removed from the queue either after done
301  * processing or using remove_from_scan_list().
302  *
303  * returns 0.
304  **/
305 static int hpsa_scan_func(__attribute__((unused)) void *data)
306 {
307 	struct ctlr_info *h;
308 	int host_no;
309 
310 	while (1) {
311 		set_current_state(TASK_INTERRUPTIBLE);
312 		schedule();
313 		if (kthread_should_stop())
314 			break;
315 
316 		while (1) {
317 			mutex_lock(&hpsa_scan_mutex);
318 			if (list_empty(&hpsa_scan_q)) {
319 				mutex_unlock(&hpsa_scan_mutex);
320 				break;
321 			}
322 			h = list_entry(hpsa_scan_q.next, struct ctlr_info,
323 					scan_list);
324 			list_del(&h->scan_list);
325 			h->busy_scanning = 1;
326 			mutex_unlock(&hpsa_scan_mutex);
327 			host_no = h->scsi_host ?  h->scsi_host->host_no : -1;
328 			hpsa_scan_start(h->scsi_host);
329 			complete_all(&h->scan_wait);
330 			mutex_lock(&hpsa_scan_mutex);
331 			h->busy_scanning = 0;
332 			mutex_unlock(&hpsa_scan_mutex);
333 		}
334 	}
335 	return 0;
336 }
337 
338 static int check_for_unit_attention(struct ctlr_info *h,
339 	struct CommandList *c)
340 {
341 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
342 		return 0;
343 
344 	switch (c->err_info->SenseInfo[12]) {
345 	case STATE_CHANGED:
346 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
347 			"detected, command retried\n", h->ctlr);
348 		break;
349 	case LUN_FAILED:
350 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
351 			"detected, action required\n", h->ctlr);
352 		break;
353 	case REPORT_LUNS_CHANGED:
354 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
355 			"changed\n", h->ctlr);
356 	/*
357 	 * Here, we could call add_to_scan_list and wake up the scan thread,
358 	 * except that it's quite likely that we will get more than one
359 	 * REPORT_LUNS_CHANGED condition in quick succession, which means
360 	 * that those which occur after the first one will likely happen
361 	 * *during* the hpsa_scan_thread's rescan.  And the rescan code is not
362 	 * robust enough to restart in the middle, undoing what it has already
363 	 * done, and it's not clear that it's even possible to do this, since
364 	 * part of what it does is notify the SCSI mid layer, which starts
365 	 * doing it's own i/o to read partition tables and so on, and the
366 	 * driver doesn't have visibility to know what might need undoing.
367 	 * In any event, if possible, it is horribly complicated to get right
368 	 * so we just don't do it for now.
369 	 *
370 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
371 	 */
372 		break;
373 	case POWER_OR_RESET:
374 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
375 			"or device reset detected\n", h->ctlr);
376 		break;
377 	case UNIT_ATTENTION_CLEARED:
378 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
379 		    "cleared by another initiator\n", h->ctlr);
380 		break;
381 	default:
382 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
383 			"unit attention detected\n", h->ctlr);
384 		break;
385 	}
386 	return 1;
387 }
388 
389 static ssize_t host_store_rescan(struct device *dev,
390 				 struct device_attribute *attr,
391 				 const char *buf, size_t count)
392 {
393 	struct ctlr_info *h;
394 	struct Scsi_Host *shost = class_to_shost(dev);
395 	h = shost_to_hba(shost);
396 	if (add_to_scan_list(h)) {
397 		wake_up_process(hpsa_scan_thread);
398 		wait_for_completion_interruptible(&h->scan_wait);
399 	}
400 	return count;
401 }
402 
403 /* Enqueuing and dequeuing functions for cmdlists. */
404 static inline void addQ(struct hlist_head *list, struct CommandList *c)
405 {
406 	hlist_add_head(&c->list, list);
407 }
408 
409 static inline u32 next_command(struct ctlr_info *h)
410 {
411 	u32 a;
412 
413 	if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
414 		return h->access.command_completed(h);
415 
416 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
417 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
418 		(h->reply_pool_head)++;
419 		h->commands_outstanding--;
420 	} else {
421 		a = FIFO_EMPTY;
422 	}
423 	/* Check for wraparound */
424 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
425 		h->reply_pool_head = h->reply_pool;
426 		h->reply_pool_wraparound ^= 1;
427 	}
428 	return a;
429 }
430 
431 /* set_performant_mode: Modify the tag for cciss performant
432  * set bit 0 for pull model, bits 3-1 for block fetch
433  * register number
434  */
435 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
436 {
437 	if (likely(h->transMethod == CFGTBL_Trans_Performant))
438 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
439 }
440 
441 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
442 	struct CommandList *c)
443 {
444 	unsigned long flags;
445 
446 	set_performant_mode(h, c);
447 	spin_lock_irqsave(&h->lock, flags);
448 	addQ(&h->reqQ, c);
449 	h->Qdepth++;
450 	start_io(h);
451 	spin_unlock_irqrestore(&h->lock, flags);
452 }
453 
454 static inline void removeQ(struct CommandList *c)
455 {
456 	if (WARN_ON(hlist_unhashed(&c->list)))
457 		return;
458 	hlist_del_init(&c->list);
459 }
460 
461 static inline int is_hba_lunid(unsigned char scsi3addr[])
462 {
463 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
464 }
465 
466 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
467 {
468 	return (scsi3addr[3] & 0xC0) == 0x40;
469 }
470 
471 static inline int is_scsi_rev_5(struct ctlr_info *h)
472 {
473 	if (!h->hba_inquiry_data)
474 		return 0;
475 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
476 		return 1;
477 	return 0;
478 }
479 
480 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
481 	"UNKNOWN"
482 };
483 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
484 
485 static ssize_t raid_level_show(struct device *dev,
486 	     struct device_attribute *attr, char *buf)
487 {
488 	ssize_t l = 0;
489 	unsigned char rlevel;
490 	struct ctlr_info *h;
491 	struct scsi_device *sdev;
492 	struct hpsa_scsi_dev_t *hdev;
493 	unsigned long flags;
494 
495 	sdev = to_scsi_device(dev);
496 	h = sdev_to_hba(sdev);
497 	spin_lock_irqsave(&h->lock, flags);
498 	hdev = sdev->hostdata;
499 	if (!hdev) {
500 		spin_unlock_irqrestore(&h->lock, flags);
501 		return -ENODEV;
502 	}
503 
504 	/* Is this even a logical drive? */
505 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
506 		spin_unlock_irqrestore(&h->lock, flags);
507 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
508 		return l;
509 	}
510 
511 	rlevel = hdev->raid_level;
512 	spin_unlock_irqrestore(&h->lock, flags);
513 	if (rlevel > RAID_UNKNOWN)
514 		rlevel = RAID_UNKNOWN;
515 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
516 	return l;
517 }
518 
519 static ssize_t lunid_show(struct device *dev,
520 	     struct device_attribute *attr, char *buf)
521 {
522 	struct ctlr_info *h;
523 	struct scsi_device *sdev;
524 	struct hpsa_scsi_dev_t *hdev;
525 	unsigned long flags;
526 	unsigned char lunid[8];
527 
528 	sdev = to_scsi_device(dev);
529 	h = sdev_to_hba(sdev);
530 	spin_lock_irqsave(&h->lock, flags);
531 	hdev = sdev->hostdata;
532 	if (!hdev) {
533 		spin_unlock_irqrestore(&h->lock, flags);
534 		return -ENODEV;
535 	}
536 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
537 	spin_unlock_irqrestore(&h->lock, flags);
538 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
539 		lunid[0], lunid[1], lunid[2], lunid[3],
540 		lunid[4], lunid[5], lunid[6], lunid[7]);
541 }
542 
543 static ssize_t unique_id_show(struct device *dev,
544 	     struct device_attribute *attr, char *buf)
545 {
546 	struct ctlr_info *h;
547 	struct scsi_device *sdev;
548 	struct hpsa_scsi_dev_t *hdev;
549 	unsigned long flags;
550 	unsigned char sn[16];
551 
552 	sdev = to_scsi_device(dev);
553 	h = sdev_to_hba(sdev);
554 	spin_lock_irqsave(&h->lock, flags);
555 	hdev = sdev->hostdata;
556 	if (!hdev) {
557 		spin_unlock_irqrestore(&h->lock, flags);
558 		return -ENODEV;
559 	}
560 	memcpy(sn, hdev->device_id, sizeof(sn));
561 	spin_unlock_irqrestore(&h->lock, flags);
562 	return snprintf(buf, 16 * 2 + 2,
563 			"%02X%02X%02X%02X%02X%02X%02X%02X"
564 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
565 			sn[0], sn[1], sn[2], sn[3],
566 			sn[4], sn[5], sn[6], sn[7],
567 			sn[8], sn[9], sn[10], sn[11],
568 			sn[12], sn[13], sn[14], sn[15]);
569 }
570 
571 static int hpsa_find_target_lun(struct ctlr_info *h,
572 	unsigned char scsi3addr[], int bus, int *target, int *lun)
573 {
574 	/* finds an unused bus, target, lun for a new physical device
575 	 * assumes h->devlock is held
576 	 */
577 	int i, found = 0;
578 	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
579 
580 	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
581 
582 	for (i = 0; i < h->ndevices; i++) {
583 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
584 			set_bit(h->dev[i]->target, lun_taken);
585 	}
586 
587 	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
588 		if (!test_bit(i, lun_taken)) {
589 			/* *bus = 1; */
590 			*target = i;
591 			*lun = 0;
592 			found = 1;
593 			break;
594 		}
595 	}
596 	return !found;
597 }
598 
599 /* Add an entry into h->dev[] array. */
600 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
601 		struct hpsa_scsi_dev_t *device,
602 		struct hpsa_scsi_dev_t *added[], int *nadded)
603 {
604 	/* assumes h->devlock is held */
605 	int n = h->ndevices;
606 	int i;
607 	unsigned char addr1[8], addr2[8];
608 	struct hpsa_scsi_dev_t *sd;
609 
610 	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
611 		dev_err(&h->pdev->dev, "too many devices, some will be "
612 			"inaccessible.\n");
613 		return -1;
614 	}
615 
616 	/* physical devices do not have lun or target assigned until now. */
617 	if (device->lun != -1)
618 		/* Logical device, lun is already assigned. */
619 		goto lun_assigned;
620 
621 	/* If this device a non-zero lun of a multi-lun device
622 	 * byte 4 of the 8-byte LUN addr will contain the logical
623 	 * unit no, zero otherise.
624 	 */
625 	if (device->scsi3addr[4] == 0) {
626 		/* This is not a non-zero lun of a multi-lun device */
627 		if (hpsa_find_target_lun(h, device->scsi3addr,
628 			device->bus, &device->target, &device->lun) != 0)
629 			return -1;
630 		goto lun_assigned;
631 	}
632 
633 	/* This is a non-zero lun of a multi-lun device.
634 	 * Search through our list and find the device which
635 	 * has the same 8 byte LUN address, excepting byte 4.
636 	 * Assign the same bus and target for this new LUN.
637 	 * Use the logical unit number from the firmware.
638 	 */
639 	memcpy(addr1, device->scsi3addr, 8);
640 	addr1[4] = 0;
641 	for (i = 0; i < n; i++) {
642 		sd = h->dev[i];
643 		memcpy(addr2, sd->scsi3addr, 8);
644 		addr2[4] = 0;
645 		/* differ only in byte 4? */
646 		if (memcmp(addr1, addr2, 8) == 0) {
647 			device->bus = sd->bus;
648 			device->target = sd->target;
649 			device->lun = device->scsi3addr[4];
650 			break;
651 		}
652 	}
653 	if (device->lun == -1) {
654 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
655 			" suspect firmware bug or unsupported hardware "
656 			"configuration.\n");
657 			return -1;
658 	}
659 
660 lun_assigned:
661 
662 	h->dev[n] = device;
663 	h->ndevices++;
664 	added[*nadded] = device;
665 	(*nadded)++;
666 
667 	/* initially, (before registering with scsi layer) we don't
668 	 * know our hostno and we don't want to print anything first
669 	 * time anyway (the scsi layer's inquiries will show that info)
670 	 */
671 	/* if (hostno != -1) */
672 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
673 			scsi_device_type(device->devtype), hostno,
674 			device->bus, device->target, device->lun);
675 	return 0;
676 }
677 
678 /* Replace an entry from h->dev[] array. */
679 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
680 	int entry, struct hpsa_scsi_dev_t *new_entry,
681 	struct hpsa_scsi_dev_t *added[], int *nadded,
682 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
683 {
684 	/* assumes h->devlock is held */
685 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
686 	removed[*nremoved] = h->dev[entry];
687 	(*nremoved)++;
688 	h->dev[entry] = new_entry;
689 	added[*nadded] = new_entry;
690 	(*nadded)++;
691 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
692 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
693 			new_entry->target, new_entry->lun);
694 }
695 
696 /* Remove an entry from h->dev[] array. */
697 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
698 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
699 {
700 	/* assumes h->devlock is held */
701 	int i;
702 	struct hpsa_scsi_dev_t *sd;
703 
704 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
705 
706 	sd = h->dev[entry];
707 	removed[*nremoved] = h->dev[entry];
708 	(*nremoved)++;
709 
710 	for (i = entry; i < h->ndevices-1; i++)
711 		h->dev[i] = h->dev[i+1];
712 	h->ndevices--;
713 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
714 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
715 		sd->lun);
716 }
717 
718 #define SCSI3ADDR_EQ(a, b) ( \
719 	(a)[7] == (b)[7] && \
720 	(a)[6] == (b)[6] && \
721 	(a)[5] == (b)[5] && \
722 	(a)[4] == (b)[4] && \
723 	(a)[3] == (b)[3] && \
724 	(a)[2] == (b)[2] && \
725 	(a)[1] == (b)[1] && \
726 	(a)[0] == (b)[0])
727 
728 static void fixup_botched_add(struct ctlr_info *h,
729 	struct hpsa_scsi_dev_t *added)
730 {
731 	/* called when scsi_add_device fails in order to re-adjust
732 	 * h->dev[] to match the mid layer's view.
733 	 */
734 	unsigned long flags;
735 	int i, j;
736 
737 	spin_lock_irqsave(&h->lock, flags);
738 	for (i = 0; i < h->ndevices; i++) {
739 		if (h->dev[i] == added) {
740 			for (j = i; j < h->ndevices-1; j++)
741 				h->dev[j] = h->dev[j+1];
742 			h->ndevices--;
743 			break;
744 		}
745 	}
746 	spin_unlock_irqrestore(&h->lock, flags);
747 	kfree(added);
748 }
749 
750 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
751 	struct hpsa_scsi_dev_t *dev2)
752 {
753 	if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
754 		(dev1->lun != -1 && dev2->lun != -1)) &&
755 		dev1->devtype != 0x0C)
756 		return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
757 
758 	/* we compare everything except lun and target as these
759 	 * are not yet assigned.  Compare parts likely
760 	 * to differ first
761 	 */
762 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
763 		sizeof(dev1->scsi3addr)) != 0)
764 		return 0;
765 	if (memcmp(dev1->device_id, dev2->device_id,
766 		sizeof(dev1->device_id)) != 0)
767 		return 0;
768 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
769 		return 0;
770 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
771 		return 0;
772 	if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
773 		return 0;
774 	if (dev1->devtype != dev2->devtype)
775 		return 0;
776 	if (dev1->raid_level != dev2->raid_level)
777 		return 0;
778 	if (dev1->bus != dev2->bus)
779 		return 0;
780 	return 1;
781 }
782 
783 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
784  * and return needle location in *index.  If scsi3addr matches, but not
785  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
786  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
787  */
788 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
789 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
790 	int *index)
791 {
792 	int i;
793 #define DEVICE_NOT_FOUND 0
794 #define DEVICE_CHANGED 1
795 #define DEVICE_SAME 2
796 	for (i = 0; i < haystack_size; i++) {
797 		if (haystack[i] == NULL) /* previously removed. */
798 			continue;
799 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
800 			*index = i;
801 			if (device_is_the_same(needle, haystack[i]))
802 				return DEVICE_SAME;
803 			else
804 				return DEVICE_CHANGED;
805 		}
806 	}
807 	*index = -1;
808 	return DEVICE_NOT_FOUND;
809 }
810 
811 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
812 	struct hpsa_scsi_dev_t *sd[], int nsds)
813 {
814 	/* sd contains scsi3 addresses and devtypes, and inquiry
815 	 * data.  This function takes what's in sd to be the current
816 	 * reality and updates h->dev[] to reflect that reality.
817 	 */
818 	int i, entry, device_change, changes = 0;
819 	struct hpsa_scsi_dev_t *csd;
820 	unsigned long flags;
821 	struct hpsa_scsi_dev_t **added, **removed;
822 	int nadded, nremoved;
823 	struct Scsi_Host *sh = NULL;
824 
825 	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
826 		GFP_KERNEL);
827 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
828 		GFP_KERNEL);
829 
830 	if (!added || !removed) {
831 		dev_warn(&h->pdev->dev, "out of memory in "
832 			"adjust_hpsa_scsi_table\n");
833 		goto free_and_out;
834 	}
835 
836 	spin_lock_irqsave(&h->devlock, flags);
837 
838 	/* find any devices in h->dev[] that are not in
839 	 * sd[] and remove them from h->dev[], and for any
840 	 * devices which have changed, remove the old device
841 	 * info and add the new device info.
842 	 */
843 	i = 0;
844 	nremoved = 0;
845 	nadded = 0;
846 	while (i < h->ndevices) {
847 		csd = h->dev[i];
848 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
849 		if (device_change == DEVICE_NOT_FOUND) {
850 			changes++;
851 			hpsa_scsi_remove_entry(h, hostno, i,
852 				removed, &nremoved);
853 			continue; /* remove ^^^, hence i not incremented */
854 		} else if (device_change == DEVICE_CHANGED) {
855 			changes++;
856 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
857 				added, &nadded, removed, &nremoved);
858 			/* Set it to NULL to prevent it from being freed
859 			 * at the bottom of hpsa_update_scsi_devices()
860 			 */
861 			sd[entry] = NULL;
862 		}
863 		i++;
864 	}
865 
866 	/* Now, make sure every device listed in sd[] is also
867 	 * listed in h->dev[], adding them if they aren't found
868 	 */
869 
870 	for (i = 0; i < nsds; i++) {
871 		if (!sd[i]) /* if already added above. */
872 			continue;
873 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
874 					h->ndevices, &entry);
875 		if (device_change == DEVICE_NOT_FOUND) {
876 			changes++;
877 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
878 				added, &nadded) != 0)
879 				break;
880 			sd[i] = NULL; /* prevent from being freed later. */
881 		} else if (device_change == DEVICE_CHANGED) {
882 			/* should never happen... */
883 			changes++;
884 			dev_warn(&h->pdev->dev,
885 				"device unexpectedly changed.\n");
886 			/* but if it does happen, we just ignore that device */
887 		}
888 	}
889 	spin_unlock_irqrestore(&h->devlock, flags);
890 
891 	/* Don't notify scsi mid layer of any changes the first time through
892 	 * (or if there are no changes) scsi_scan_host will do it later the
893 	 * first time through.
894 	 */
895 	if (hostno == -1 || !changes)
896 		goto free_and_out;
897 
898 	sh = h->scsi_host;
899 	/* Notify scsi mid layer of any removed devices */
900 	for (i = 0; i < nremoved; i++) {
901 		struct scsi_device *sdev =
902 			scsi_device_lookup(sh, removed[i]->bus,
903 				removed[i]->target, removed[i]->lun);
904 		if (sdev != NULL) {
905 			scsi_remove_device(sdev);
906 			scsi_device_put(sdev);
907 		} else {
908 			/* We don't expect to get here.
909 			 * future cmds to this device will get selection
910 			 * timeout as if the device was gone.
911 			 */
912 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
913 				" for removal.", hostno, removed[i]->bus,
914 				removed[i]->target, removed[i]->lun);
915 		}
916 		kfree(removed[i]);
917 		removed[i] = NULL;
918 	}
919 
920 	/* Notify scsi mid layer of any added devices */
921 	for (i = 0; i < nadded; i++) {
922 		if (scsi_add_device(sh, added[i]->bus,
923 			added[i]->target, added[i]->lun) == 0)
924 			continue;
925 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
926 			"device not added.\n", hostno, added[i]->bus,
927 			added[i]->target, added[i]->lun);
928 		/* now we have to remove it from h->dev,
929 		 * since it didn't get added to scsi mid layer
930 		 */
931 		fixup_botched_add(h, added[i]);
932 	}
933 
934 free_and_out:
935 	kfree(added);
936 	kfree(removed);
937 }
938 
939 /*
940  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
941  * Assume's h->devlock is held.
942  */
943 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
944 	int bus, int target, int lun)
945 {
946 	int i;
947 	struct hpsa_scsi_dev_t *sd;
948 
949 	for (i = 0; i < h->ndevices; i++) {
950 		sd = h->dev[i];
951 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
952 			return sd;
953 	}
954 	return NULL;
955 }
956 
957 /* link sdev->hostdata to our per-device structure. */
958 static int hpsa_slave_alloc(struct scsi_device *sdev)
959 {
960 	struct hpsa_scsi_dev_t *sd;
961 	unsigned long flags;
962 	struct ctlr_info *h;
963 
964 	h = sdev_to_hba(sdev);
965 	spin_lock_irqsave(&h->devlock, flags);
966 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
967 		sdev_id(sdev), sdev->lun);
968 	if (sd != NULL)
969 		sdev->hostdata = sd;
970 	spin_unlock_irqrestore(&h->devlock, flags);
971 	return 0;
972 }
973 
974 static void hpsa_slave_destroy(struct scsi_device *sdev)
975 {
976 	/* nothing to do. */
977 }
978 
979 static void hpsa_scsi_setup(struct ctlr_info *h)
980 {
981 	h->ndevices = 0;
982 	h->scsi_host = NULL;
983 	spin_lock_init(&h->devlock);
984 }
985 
986 static void complete_scsi_command(struct CommandList *cp,
987 	int timeout, u32 tag)
988 {
989 	struct scsi_cmnd *cmd;
990 	struct ctlr_info *h;
991 	struct ErrorInfo *ei;
992 
993 	unsigned char sense_key;
994 	unsigned char asc;      /* additional sense code */
995 	unsigned char ascq;     /* additional sense code qualifier */
996 
997 	ei = cp->err_info;
998 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
999 	h = cp->h;
1000 
1001 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1002 
1003 	cmd->result = (DID_OK << 16); 		/* host byte */
1004 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1005 	cmd->result |= (ei->ScsiStatus << 1);
1006 
1007 	/* copy the sense data whether we need to or not. */
1008 	memcpy(cmd->sense_buffer, ei->SenseInfo,
1009 		ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1010 			SCSI_SENSE_BUFFERSIZE :
1011 			ei->SenseLen);
1012 	scsi_set_resid(cmd, ei->ResidualCnt);
1013 
1014 	if (ei->CommandStatus == 0) {
1015 		cmd->scsi_done(cmd);
1016 		cmd_free(h, cp);
1017 		return;
1018 	}
1019 
1020 	/* an error has occurred */
1021 	switch (ei->CommandStatus) {
1022 
1023 	case CMD_TARGET_STATUS:
1024 		if (ei->ScsiStatus) {
1025 			/* Get sense key */
1026 			sense_key = 0xf & ei->SenseInfo[2];
1027 			/* Get additional sense code */
1028 			asc = ei->SenseInfo[12];
1029 			/* Get addition sense code qualifier */
1030 			ascq = ei->SenseInfo[13];
1031 		}
1032 
1033 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1034 			if (check_for_unit_attention(h, cp)) {
1035 				cmd->result = DID_SOFT_ERROR << 16;
1036 				break;
1037 			}
1038 			if (sense_key == ILLEGAL_REQUEST) {
1039 				/*
1040 				 * SCSI REPORT_LUNS is commonly unsupported on
1041 				 * Smart Array.  Suppress noisy complaint.
1042 				 */
1043 				if (cp->Request.CDB[0] == REPORT_LUNS)
1044 					break;
1045 
1046 				/* If ASC/ASCQ indicate Logical Unit
1047 				 * Not Supported condition,
1048 				 */
1049 				if ((asc == 0x25) && (ascq == 0x0)) {
1050 					dev_warn(&h->pdev->dev, "cp %p "
1051 						"has check condition\n", cp);
1052 					break;
1053 				}
1054 			}
1055 
1056 			if (sense_key == NOT_READY) {
1057 				/* If Sense is Not Ready, Logical Unit
1058 				 * Not ready, Manual Intervention
1059 				 * required
1060 				 */
1061 				if ((asc == 0x04) && (ascq == 0x03)) {
1062 					dev_warn(&h->pdev->dev, "cp %p "
1063 						"has check condition: unit "
1064 						"not ready, manual "
1065 						"intervention required\n", cp);
1066 					break;
1067 				}
1068 			}
1069 			if (sense_key == ABORTED_COMMAND) {
1070 				/* Aborted command is retryable */
1071 				dev_warn(&h->pdev->dev, "cp %p "
1072 					"has check condition: aborted command: "
1073 					"ASC: 0x%x, ASCQ: 0x%x\n",
1074 					cp, asc, ascq);
1075 				cmd->result = DID_SOFT_ERROR << 16;
1076 				break;
1077 			}
1078 			/* Must be some other type of check condition */
1079 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1080 					"unknown type: "
1081 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1082 					"Returning result: 0x%x, "
1083 					"cmd=[%02x %02x %02x %02x %02x "
1084 					"%02x %02x %02x %02x %02x %02x "
1085 					"%02x %02x %02x %02x %02x]\n",
1086 					cp, sense_key, asc, ascq,
1087 					cmd->result,
1088 					cmd->cmnd[0], cmd->cmnd[1],
1089 					cmd->cmnd[2], cmd->cmnd[3],
1090 					cmd->cmnd[4], cmd->cmnd[5],
1091 					cmd->cmnd[6], cmd->cmnd[7],
1092 					cmd->cmnd[8], cmd->cmnd[9],
1093 					cmd->cmnd[10], cmd->cmnd[11],
1094 					cmd->cmnd[12], cmd->cmnd[13],
1095 					cmd->cmnd[14], cmd->cmnd[15]);
1096 			break;
1097 		}
1098 
1099 
1100 		/* Problem was not a check condition
1101 		 * Pass it up to the upper layers...
1102 		 */
1103 		if (ei->ScsiStatus) {
1104 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1105 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1106 				"Returning result: 0x%x\n",
1107 				cp, ei->ScsiStatus,
1108 				sense_key, asc, ascq,
1109 				cmd->result);
1110 		} else {  /* scsi status is zero??? How??? */
1111 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1112 				"Returning no connection.\n", cp),
1113 
1114 			/* Ordinarily, this case should never happen,
1115 			 * but there is a bug in some released firmware
1116 			 * revisions that allows it to happen if, for
1117 			 * example, a 4100 backplane loses power and
1118 			 * the tape drive is in it.  We assume that
1119 			 * it's a fatal error of some kind because we
1120 			 * can't show that it wasn't. We will make it
1121 			 * look like selection timeout since that is
1122 			 * the most common reason for this to occur,
1123 			 * and it's severe enough.
1124 			 */
1125 
1126 			cmd->result = DID_NO_CONNECT << 16;
1127 		}
1128 		break;
1129 
1130 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1131 		break;
1132 	case CMD_DATA_OVERRUN:
1133 		dev_warn(&h->pdev->dev, "cp %p has"
1134 			" completed with data overrun "
1135 			"reported\n", cp);
1136 		break;
1137 	case CMD_INVALID: {
1138 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1139 		print_cmd(cp); */
1140 		/* We get CMD_INVALID if you address a non-existent device
1141 		 * instead of a selection timeout (no response).  You will
1142 		 * see this if you yank out a drive, then try to access it.
1143 		 * This is kind of a shame because it means that any other
1144 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1145 		 * missing target. */
1146 		cmd->result = DID_NO_CONNECT << 16;
1147 	}
1148 		break;
1149 	case CMD_PROTOCOL_ERR:
1150 		dev_warn(&h->pdev->dev, "cp %p has "
1151 			"protocol error \n", cp);
1152 		break;
1153 	case CMD_HARDWARE_ERR:
1154 		cmd->result = DID_ERROR << 16;
1155 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1156 		break;
1157 	case CMD_CONNECTION_LOST:
1158 		cmd->result = DID_ERROR << 16;
1159 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1160 		break;
1161 	case CMD_ABORTED:
1162 		cmd->result = DID_ABORT << 16;
1163 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1164 				cp, ei->ScsiStatus);
1165 		break;
1166 	case CMD_ABORT_FAILED:
1167 		cmd->result = DID_ERROR << 16;
1168 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1169 		break;
1170 	case CMD_UNSOLICITED_ABORT:
1171 		cmd->result = DID_RESET << 16;
1172 		dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1173 			"abort\n", cp);
1174 		break;
1175 	case CMD_TIMEOUT:
1176 		cmd->result = DID_TIME_OUT << 16;
1177 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1178 		break;
1179 	default:
1180 		cmd->result = DID_ERROR << 16;
1181 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1182 				cp, ei->CommandStatus);
1183 	}
1184 	cmd->scsi_done(cmd);
1185 	cmd_free(h, cp);
1186 }
1187 
1188 static int hpsa_scsi_detect(struct ctlr_info *h)
1189 {
1190 	struct Scsi_Host *sh;
1191 	int error;
1192 
1193 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1194 	if (sh == NULL)
1195 		goto fail;
1196 
1197 	sh->io_port = 0;
1198 	sh->n_io_port = 0;
1199 	sh->this_id = -1;
1200 	sh->max_channel = 3;
1201 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1202 	sh->max_lun = HPSA_MAX_LUN;
1203 	sh->max_id = HPSA_MAX_LUN;
1204 	sh->can_queue = h->nr_cmds;
1205 	sh->cmd_per_lun = h->nr_cmds;
1206 	h->scsi_host = sh;
1207 	sh->hostdata[0] = (unsigned long) h;
1208 	sh->irq = h->intr[PERF_MODE_INT];
1209 	sh->unique_id = sh->irq;
1210 	error = scsi_add_host(sh, &h->pdev->dev);
1211 	if (error)
1212 		goto fail_host_put;
1213 	scsi_scan_host(sh);
1214 	return 0;
1215 
1216  fail_host_put:
1217 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1218 		" failed for controller %d\n", h->ctlr);
1219 	scsi_host_put(sh);
1220 	return error;
1221  fail:
1222 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1223 		" failed for controller %d\n", h->ctlr);
1224 	return -ENOMEM;
1225 }
1226 
1227 static void hpsa_pci_unmap(struct pci_dev *pdev,
1228 	struct CommandList *c, int sg_used, int data_direction)
1229 {
1230 	int i;
1231 	union u64bit addr64;
1232 
1233 	for (i = 0; i < sg_used; i++) {
1234 		addr64.val32.lower = c->SG[i].Addr.lower;
1235 		addr64.val32.upper = c->SG[i].Addr.upper;
1236 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1237 			data_direction);
1238 	}
1239 }
1240 
1241 static void hpsa_map_one(struct pci_dev *pdev,
1242 		struct CommandList *cp,
1243 		unsigned char *buf,
1244 		size_t buflen,
1245 		int data_direction)
1246 {
1247 	u64 addr64;
1248 
1249 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1250 		cp->Header.SGList = 0;
1251 		cp->Header.SGTotal = 0;
1252 		return;
1253 	}
1254 
1255 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1256 	cp->SG[0].Addr.lower =
1257 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1258 	cp->SG[0].Addr.upper =
1259 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1260 	cp->SG[0].Len = buflen;
1261 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1262 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1263 }
1264 
1265 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1266 	struct CommandList *c)
1267 {
1268 	DECLARE_COMPLETION_ONSTACK(wait);
1269 
1270 	c->waiting = &wait;
1271 	enqueue_cmd_and_start_io(h, c);
1272 	wait_for_completion(&wait);
1273 }
1274 
1275 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1276 	struct CommandList *c, int data_direction)
1277 {
1278 	int retry_count = 0;
1279 
1280 	do {
1281 		memset(c->err_info, 0, sizeof(c->err_info));
1282 		hpsa_scsi_do_simple_cmd_core(h, c);
1283 		retry_count++;
1284 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1285 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1286 }
1287 
1288 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1289 {
1290 	struct ErrorInfo *ei;
1291 	struct device *d = &cp->h->pdev->dev;
1292 
1293 	ei = cp->err_info;
1294 	switch (ei->CommandStatus) {
1295 	case CMD_TARGET_STATUS:
1296 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1297 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1298 				ei->ScsiStatus);
1299 		if (ei->ScsiStatus == 0)
1300 			dev_warn(d, "SCSI status is abnormally zero.  "
1301 			"(probably indicates selection timeout "
1302 			"reported incorrectly due to a known "
1303 			"firmware bug, circa July, 2001.)\n");
1304 		break;
1305 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1306 			dev_info(d, "UNDERRUN\n");
1307 		break;
1308 	case CMD_DATA_OVERRUN:
1309 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1310 		break;
1311 	case CMD_INVALID: {
1312 		/* controller unfortunately reports SCSI passthru's
1313 		 * to non-existent targets as invalid commands.
1314 		 */
1315 		dev_warn(d, "cp %p is reported invalid (probably means "
1316 			"target device no longer present)\n", cp);
1317 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1318 		print_cmd(cp);  */
1319 		}
1320 		break;
1321 	case CMD_PROTOCOL_ERR:
1322 		dev_warn(d, "cp %p has protocol error \n", cp);
1323 		break;
1324 	case CMD_HARDWARE_ERR:
1325 		/* cmd->result = DID_ERROR << 16; */
1326 		dev_warn(d, "cp %p had hardware error\n", cp);
1327 		break;
1328 	case CMD_CONNECTION_LOST:
1329 		dev_warn(d, "cp %p had connection lost\n", cp);
1330 		break;
1331 	case CMD_ABORTED:
1332 		dev_warn(d, "cp %p was aborted\n", cp);
1333 		break;
1334 	case CMD_ABORT_FAILED:
1335 		dev_warn(d, "cp %p reports abort failed\n", cp);
1336 		break;
1337 	case CMD_UNSOLICITED_ABORT:
1338 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1339 		break;
1340 	case CMD_TIMEOUT:
1341 		dev_warn(d, "cp %p timed out\n", cp);
1342 		break;
1343 	default:
1344 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1345 				ei->CommandStatus);
1346 	}
1347 }
1348 
1349 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1350 			unsigned char page, unsigned char *buf,
1351 			unsigned char bufsize)
1352 {
1353 	int rc = IO_OK;
1354 	struct CommandList *c;
1355 	struct ErrorInfo *ei;
1356 
1357 	c = cmd_special_alloc(h);
1358 
1359 	if (c == NULL) {			/* trouble... */
1360 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1361 		return -ENOMEM;
1362 	}
1363 
1364 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1365 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1366 	ei = c->err_info;
1367 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1368 		hpsa_scsi_interpret_error(c);
1369 		rc = -1;
1370 	}
1371 	cmd_special_free(h, c);
1372 	return rc;
1373 }
1374 
1375 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1376 {
1377 	int rc = IO_OK;
1378 	struct CommandList *c;
1379 	struct ErrorInfo *ei;
1380 
1381 	c = cmd_special_alloc(h);
1382 
1383 	if (c == NULL) {			/* trouble... */
1384 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1385 		return -1;
1386 	}
1387 
1388 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1389 	hpsa_scsi_do_simple_cmd_core(h, c);
1390 	/* no unmap needed here because no data xfer. */
1391 
1392 	ei = c->err_info;
1393 	if (ei->CommandStatus != 0) {
1394 		hpsa_scsi_interpret_error(c);
1395 		rc = -1;
1396 	}
1397 	cmd_special_free(h, c);
1398 	return rc;
1399 }
1400 
1401 static void hpsa_get_raid_level(struct ctlr_info *h,
1402 	unsigned char *scsi3addr, unsigned char *raid_level)
1403 {
1404 	int rc;
1405 	unsigned char *buf;
1406 
1407 	*raid_level = RAID_UNKNOWN;
1408 	buf = kzalloc(64, GFP_KERNEL);
1409 	if (!buf)
1410 		return;
1411 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1412 	if (rc == 0)
1413 		*raid_level = buf[8];
1414 	if (*raid_level > RAID_UNKNOWN)
1415 		*raid_level = RAID_UNKNOWN;
1416 	kfree(buf);
1417 	return;
1418 }
1419 
1420 /* Get the device id from inquiry page 0x83 */
1421 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1422 	unsigned char *device_id, int buflen)
1423 {
1424 	int rc;
1425 	unsigned char *buf;
1426 
1427 	if (buflen > 16)
1428 		buflen = 16;
1429 	buf = kzalloc(64, GFP_KERNEL);
1430 	if (!buf)
1431 		return -1;
1432 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1433 	if (rc == 0)
1434 		memcpy(device_id, &buf[8], buflen);
1435 	kfree(buf);
1436 	return rc != 0;
1437 }
1438 
1439 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1440 		struct ReportLUNdata *buf, int bufsize,
1441 		int extended_response)
1442 {
1443 	int rc = IO_OK;
1444 	struct CommandList *c;
1445 	unsigned char scsi3addr[8];
1446 	struct ErrorInfo *ei;
1447 
1448 	c = cmd_special_alloc(h);
1449 	if (c == NULL) {			/* trouble... */
1450 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1451 		return -1;
1452 	}
1453 	/* address the controller */
1454 	memset(scsi3addr, 0, sizeof(scsi3addr));
1455 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1456 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1457 	if (extended_response)
1458 		c->Request.CDB[1] = extended_response;
1459 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1460 	ei = c->err_info;
1461 	if (ei->CommandStatus != 0 &&
1462 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1463 		hpsa_scsi_interpret_error(c);
1464 		rc = -1;
1465 	}
1466 	cmd_special_free(h, c);
1467 	return rc;
1468 }
1469 
1470 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1471 		struct ReportLUNdata *buf,
1472 		int bufsize, int extended_response)
1473 {
1474 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1475 }
1476 
1477 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1478 		struct ReportLUNdata *buf, int bufsize)
1479 {
1480 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1481 }
1482 
1483 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1484 	int bus, int target, int lun)
1485 {
1486 	device->bus = bus;
1487 	device->target = target;
1488 	device->lun = lun;
1489 }
1490 
1491 static int hpsa_update_device_info(struct ctlr_info *h,
1492 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1493 {
1494 #define OBDR_TAPE_INQ_SIZE 49
1495 	unsigned char *inq_buff;
1496 
1497 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1498 	if (!inq_buff)
1499 		goto bail_out;
1500 
1501 	/* Do an inquiry to the device to see what it is. */
1502 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1503 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1504 		/* Inquiry failed (msg printed already) */
1505 		dev_err(&h->pdev->dev,
1506 			"hpsa_update_device_info: inquiry failed\n");
1507 		goto bail_out;
1508 	}
1509 
1510 	/* As a side effect, record the firmware version number
1511 	 * if we happen to be talking to the RAID controller.
1512 	 */
1513 	if (is_hba_lunid(scsi3addr))
1514 		memcpy(h->firm_ver, &inq_buff[32], 4);
1515 
1516 	this_device->devtype = (inq_buff[0] & 0x1f);
1517 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1518 	memcpy(this_device->vendor, &inq_buff[8],
1519 		sizeof(this_device->vendor));
1520 	memcpy(this_device->model, &inq_buff[16],
1521 		sizeof(this_device->model));
1522 	memcpy(this_device->revision, &inq_buff[32],
1523 		sizeof(this_device->revision));
1524 	memset(this_device->device_id, 0,
1525 		sizeof(this_device->device_id));
1526 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1527 		sizeof(this_device->device_id));
1528 
1529 	if (this_device->devtype == TYPE_DISK &&
1530 		is_logical_dev_addr_mode(scsi3addr))
1531 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1532 	else
1533 		this_device->raid_level = RAID_UNKNOWN;
1534 
1535 	kfree(inq_buff);
1536 	return 0;
1537 
1538 bail_out:
1539 	kfree(inq_buff);
1540 	return 1;
1541 }
1542 
1543 static unsigned char *msa2xxx_model[] = {
1544 	"MSA2012",
1545 	"MSA2024",
1546 	"MSA2312",
1547 	"MSA2324",
1548 	NULL,
1549 };
1550 
1551 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1552 {
1553 	int i;
1554 
1555 	for (i = 0; msa2xxx_model[i]; i++)
1556 		if (strncmp(device->model, msa2xxx_model[i],
1557 			strlen(msa2xxx_model[i])) == 0)
1558 			return 1;
1559 	return 0;
1560 }
1561 
1562 /* Helper function to assign bus, target, lun mapping of devices.
1563  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1564  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1565  * Logical drive target and lun are assigned at this time, but
1566  * physical device lun and target assignment are deferred (assigned
1567  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1568  */
1569 static void figure_bus_target_lun(struct ctlr_info *h,
1570 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1571 	struct hpsa_scsi_dev_t *device)
1572 {
1573 	u32 lunid;
1574 
1575 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1576 		/* logical device */
1577 		if (unlikely(is_scsi_rev_5(h))) {
1578 			/* p1210m, logical drives lun assignments
1579 			 * match SCSI REPORT LUNS data.
1580 			 */
1581 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1582 			*bus = 0;
1583 			*target = 0;
1584 			*lun = (lunid & 0x3fff) + 1;
1585 		} else {
1586 			/* not p1210m... */
1587 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1588 			if (is_msa2xxx(h, device)) {
1589 				/* msa2xxx way, put logicals on bus 1
1590 				 * and match target/lun numbers box
1591 				 * reports.
1592 				 */
1593 				*bus = 1;
1594 				*target = (lunid >> 16) & 0x3fff;
1595 				*lun = lunid & 0x00ff;
1596 			} else {
1597 				/* Traditional smart array way. */
1598 				*bus = 0;
1599 				*lun = 0;
1600 				*target = lunid & 0x3fff;
1601 			}
1602 		}
1603 	} else {
1604 		/* physical device */
1605 		if (is_hba_lunid(lunaddrbytes))
1606 			if (unlikely(is_scsi_rev_5(h))) {
1607 				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1608 				*target = 0;
1609 				*lun = 0;
1610 				return;
1611 			} else
1612 				*bus = 3; /* traditional smartarray */
1613 		else
1614 			*bus = 2; /* physical disk */
1615 		*target = -1;
1616 		*lun = -1; /* we will fill these in later. */
1617 	}
1618 }
1619 
1620 /*
1621  * If there is no lun 0 on a target, linux won't find any devices.
1622  * For the MSA2xxx boxes, we have to manually detect the enclosure
1623  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1624  * it for some reason.  *tmpdevice is the target we're adding,
1625  * this_device is a pointer into the current element of currentsd[]
1626  * that we're building up in update_scsi_devices(), below.
1627  * lunzerobits is a bitmap that tracks which targets already have a
1628  * lun 0 assigned.
1629  * Returns 1 if an enclosure was added, 0 if not.
1630  */
1631 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1632 	struct hpsa_scsi_dev_t *tmpdevice,
1633 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1634 	int bus, int target, int lun, unsigned long lunzerobits[],
1635 	int *nmsa2xxx_enclosures)
1636 {
1637 	unsigned char scsi3addr[8];
1638 
1639 	if (test_bit(target, lunzerobits))
1640 		return 0; /* There is already a lun 0 on this target. */
1641 
1642 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1643 		return 0; /* It's the logical targets that may lack lun 0. */
1644 
1645 	if (!is_msa2xxx(h, tmpdevice))
1646 		return 0; /* It's only the MSA2xxx that have this problem. */
1647 
1648 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1649 		return 0;
1650 
1651 	if (is_hba_lunid(scsi3addr))
1652 		return 0; /* Don't add the RAID controller here. */
1653 
1654 	if (is_scsi_rev_5(h))
1655 		return 0; /* p1210m doesn't need to do this. */
1656 
1657 #define MAX_MSA2XXX_ENCLOSURES 32
1658 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1659 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1660 			"enclosures exceeded.  Check your hardware "
1661 			"configuration.");
1662 		return 0;
1663 	}
1664 
1665 	memset(scsi3addr, 0, 8);
1666 	scsi3addr[3] = target;
1667 	if (hpsa_update_device_info(h, scsi3addr, this_device))
1668 		return 0;
1669 	(*nmsa2xxx_enclosures)++;
1670 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1671 	set_bit(target, lunzerobits);
1672 	return 1;
1673 }
1674 
1675 /*
1676  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1677  * logdev.  The number of luns in physdev and logdev are returned in
1678  * *nphysicals and *nlogicals, respectively.
1679  * Returns 0 on success, -1 otherwise.
1680  */
1681 static int hpsa_gather_lun_info(struct ctlr_info *h,
1682 	int reportlunsize,
1683 	struct ReportLUNdata *physdev, u32 *nphysicals,
1684 	struct ReportLUNdata *logdev, u32 *nlogicals)
1685 {
1686 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1687 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1688 		return -1;
1689 	}
1690 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1691 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1692 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1693 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1694 			*nphysicals - HPSA_MAX_PHYS_LUN);
1695 		*nphysicals = HPSA_MAX_PHYS_LUN;
1696 	}
1697 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1698 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1699 		return -1;
1700 	}
1701 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1702 	/* Reject Logicals in excess of our max capability. */
1703 	if (*nlogicals > HPSA_MAX_LUN) {
1704 		dev_warn(&h->pdev->dev,
1705 			"maximum logical LUNs (%d) exceeded.  "
1706 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1707 			*nlogicals - HPSA_MAX_LUN);
1708 			*nlogicals = HPSA_MAX_LUN;
1709 	}
1710 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1711 		dev_warn(&h->pdev->dev,
1712 			"maximum logical + physical LUNs (%d) exceeded. "
1713 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1714 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1715 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1716 	}
1717 	return 0;
1718 }
1719 
1720 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1721 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1722 	struct ReportLUNdata *logdev_list)
1723 {
1724 	/* Helper function, figure out where the LUN ID info is coming from
1725 	 * given index i, lists of physical and logical devices, where in
1726 	 * the list the raid controller is supposed to appear (first or last)
1727 	 */
1728 
1729 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1730 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1731 
1732 	if (i == raid_ctlr_position)
1733 		return RAID_CTLR_LUNID;
1734 
1735 	if (i < logicals_start)
1736 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1737 
1738 	if (i < last_device)
1739 		return &logdev_list->LUN[i - nphysicals -
1740 			(raid_ctlr_position == 0)][0];
1741 	BUG();
1742 	return NULL;
1743 }
1744 
1745 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1746 {
1747 	/* the idea here is we could get notified
1748 	 * that some devices have changed, so we do a report
1749 	 * physical luns and report logical luns cmd, and adjust
1750 	 * our list of devices accordingly.
1751 	 *
1752 	 * The scsi3addr's of devices won't change so long as the
1753 	 * adapter is not reset.  That means we can rescan and
1754 	 * tell which devices we already know about, vs. new
1755 	 * devices, vs.  disappearing devices.
1756 	 */
1757 	struct ReportLUNdata *physdev_list = NULL;
1758 	struct ReportLUNdata *logdev_list = NULL;
1759 	unsigned char *inq_buff = NULL;
1760 	u32 nphysicals = 0;
1761 	u32 nlogicals = 0;
1762 	u32 ndev_allocated = 0;
1763 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1764 	int ncurrent = 0;
1765 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1766 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1767 	int bus, target, lun;
1768 	int raid_ctlr_position;
1769 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1770 
1771 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1772 		GFP_KERNEL);
1773 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1774 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1775 	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1776 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1777 
1778 	if (!currentsd || !physdev_list || !logdev_list ||
1779 		!inq_buff || !tmpdevice) {
1780 		dev_err(&h->pdev->dev, "out of memory\n");
1781 		goto out;
1782 	}
1783 	memset(lunzerobits, 0, sizeof(lunzerobits));
1784 
1785 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1786 			logdev_list, &nlogicals))
1787 		goto out;
1788 
1789 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1790 	 * but each of them 4 times through different paths.  The plus 1
1791 	 * is for the RAID controller.
1792 	 */
1793 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1794 
1795 	/* Allocate the per device structures */
1796 	for (i = 0; i < ndevs_to_allocate; i++) {
1797 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1798 		if (!currentsd[i]) {
1799 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1800 				__FILE__, __LINE__);
1801 			goto out;
1802 		}
1803 		ndev_allocated++;
1804 	}
1805 
1806 	if (unlikely(is_scsi_rev_5(h)))
1807 		raid_ctlr_position = 0;
1808 	else
1809 		raid_ctlr_position = nphysicals + nlogicals;
1810 
1811 	/* adjust our table of devices */
1812 	nmsa2xxx_enclosures = 0;
1813 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1814 		u8 *lunaddrbytes;
1815 
1816 		/* Figure out where the LUN ID info is coming from */
1817 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1818 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1819 		/* skip masked physical devices. */
1820 		if (lunaddrbytes[3] & 0xC0 &&
1821 			i < nphysicals + (raid_ctlr_position == 0))
1822 			continue;
1823 
1824 		/* Get device type, vendor, model, device id */
1825 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1826 			continue; /* skip it if we can't talk to it. */
1827 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1828 			tmpdevice);
1829 		this_device = currentsd[ncurrent];
1830 
1831 		/*
1832 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1833 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1834 		 * is nonetheless an enclosure device there.  We have to
1835 		 * present that otherwise linux won't find anything if
1836 		 * there is no lun 0.
1837 		 */
1838 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1839 				lunaddrbytes, bus, target, lun, lunzerobits,
1840 				&nmsa2xxx_enclosures)) {
1841 			ncurrent++;
1842 			this_device = currentsd[ncurrent];
1843 		}
1844 
1845 		*this_device = *tmpdevice;
1846 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1847 
1848 		switch (this_device->devtype) {
1849 		case TYPE_ROM: {
1850 			/* We don't *really* support actual CD-ROM devices,
1851 			 * just "One Button Disaster Recovery" tape drive
1852 			 * which temporarily pretends to be a CD-ROM drive.
1853 			 * So we check that the device is really an OBDR tape
1854 			 * device by checking for "$DR-10" in bytes 43-48 of
1855 			 * the inquiry data.
1856 			 */
1857 				char obdr_sig[7];
1858 #define OBDR_TAPE_SIG "$DR-10"
1859 				strncpy(obdr_sig, &inq_buff[43], 6);
1860 				obdr_sig[6] = '\0';
1861 				if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1862 					/* Not OBDR device, ignore it. */
1863 					break;
1864 			}
1865 			ncurrent++;
1866 			break;
1867 		case TYPE_DISK:
1868 			if (i < nphysicals)
1869 				break;
1870 			ncurrent++;
1871 			break;
1872 		case TYPE_TAPE:
1873 		case TYPE_MEDIUM_CHANGER:
1874 			ncurrent++;
1875 			break;
1876 		case TYPE_RAID:
1877 			/* Only present the Smartarray HBA as a RAID controller.
1878 			 * If it's a RAID controller other than the HBA itself
1879 			 * (an external RAID controller, MSA500 or similar)
1880 			 * don't present it.
1881 			 */
1882 			if (!is_hba_lunid(lunaddrbytes))
1883 				break;
1884 			ncurrent++;
1885 			break;
1886 		default:
1887 			break;
1888 		}
1889 		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1890 			break;
1891 	}
1892 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1893 out:
1894 	kfree(tmpdevice);
1895 	for (i = 0; i < ndev_allocated; i++)
1896 		kfree(currentsd[i]);
1897 	kfree(currentsd);
1898 	kfree(inq_buff);
1899 	kfree(physdev_list);
1900 	kfree(logdev_list);
1901 }
1902 
1903 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1904  * dma mapping  and fills in the scatter gather entries of the
1905  * hpsa command, cp.
1906  */
1907 static int hpsa_scatter_gather(struct pci_dev *pdev,
1908 		struct CommandList *cp,
1909 		struct scsi_cmnd *cmd)
1910 {
1911 	unsigned int len;
1912 	struct scatterlist *sg;
1913 	u64 addr64;
1914 	int use_sg, i;
1915 
1916 	BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES);
1917 
1918 	use_sg = scsi_dma_map(cmd);
1919 	if (use_sg < 0)
1920 		return use_sg;
1921 
1922 	if (!use_sg)
1923 		goto sglist_finished;
1924 
1925 	scsi_for_each_sg(cmd, sg, use_sg, i) {
1926 		addr64 = (u64) sg_dma_address(sg);
1927 		len  = sg_dma_len(sg);
1928 		cp->SG[i].Addr.lower =
1929 			(u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1930 		cp->SG[i].Addr.upper =
1931 			(u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1932 		cp->SG[i].Len = len;
1933 		cp->SG[i].Ext = 0;  /* we are not chaining */
1934 	}
1935 
1936 sglist_finished:
1937 
1938 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1939 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1940 	return 0;
1941 }
1942 
1943 
1944 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1945 	void (*done)(struct scsi_cmnd *))
1946 {
1947 	struct ctlr_info *h;
1948 	struct hpsa_scsi_dev_t *dev;
1949 	unsigned char scsi3addr[8];
1950 	struct CommandList *c;
1951 	unsigned long flags;
1952 
1953 	/* Get the ptr to our adapter structure out of cmd->host. */
1954 	h = sdev_to_hba(cmd->device);
1955 	dev = cmd->device->hostdata;
1956 	if (!dev) {
1957 		cmd->result = DID_NO_CONNECT << 16;
1958 		done(cmd);
1959 		return 0;
1960 	}
1961 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1962 
1963 	/* Need a lock as this is being allocated from the pool */
1964 	spin_lock_irqsave(&h->lock, flags);
1965 	c = cmd_alloc(h);
1966 	spin_unlock_irqrestore(&h->lock, flags);
1967 	if (c == NULL) {			/* trouble... */
1968 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1969 		return SCSI_MLQUEUE_HOST_BUSY;
1970 	}
1971 
1972 	/* Fill in the command list header */
1973 
1974 	cmd->scsi_done = done;    /* save this for use by completion code */
1975 
1976 	/* save c in case we have to abort it  */
1977 	cmd->host_scribble = (unsigned char *) c;
1978 
1979 	c->cmd_type = CMD_SCSI;
1980 	c->scsi_cmd = cmd;
1981 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
1982 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1983 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1984 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1985 
1986 	/* Fill in the request block... */
1987 
1988 	c->Request.Timeout = 0;
1989 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1990 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1991 	c->Request.CDBLen = cmd->cmd_len;
1992 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1993 	c->Request.Type.Type = TYPE_CMD;
1994 	c->Request.Type.Attribute = ATTR_SIMPLE;
1995 	switch (cmd->sc_data_direction) {
1996 	case DMA_TO_DEVICE:
1997 		c->Request.Type.Direction = XFER_WRITE;
1998 		break;
1999 	case DMA_FROM_DEVICE:
2000 		c->Request.Type.Direction = XFER_READ;
2001 		break;
2002 	case DMA_NONE:
2003 		c->Request.Type.Direction = XFER_NONE;
2004 		break;
2005 	case DMA_BIDIRECTIONAL:
2006 		/* This can happen if a buggy application does a scsi passthru
2007 		 * and sets both inlen and outlen to non-zero. ( see
2008 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2009 		 */
2010 
2011 		c->Request.Type.Direction = XFER_RSVD;
2012 		/* This is technically wrong, and hpsa controllers should
2013 		 * reject it with CMD_INVALID, which is the most correct
2014 		 * response, but non-fibre backends appear to let it
2015 		 * slide by, and give the same results as if this field
2016 		 * were set correctly.  Either way is acceptable for
2017 		 * our purposes here.
2018 		 */
2019 
2020 		break;
2021 
2022 	default:
2023 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2024 			cmd->sc_data_direction);
2025 		BUG();
2026 		break;
2027 	}
2028 
2029 	if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */
2030 		cmd_free(h, c);
2031 		return SCSI_MLQUEUE_HOST_BUSY;
2032 	}
2033 	enqueue_cmd_and_start_io(h, c);
2034 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2035 	return 0;
2036 }
2037 
2038 static void hpsa_scan_start(struct Scsi_Host *sh)
2039 {
2040 	struct ctlr_info *h = shost_to_hba(sh);
2041 	unsigned long flags;
2042 
2043 	/* wait until any scan already in progress is finished. */
2044 	while (1) {
2045 		spin_lock_irqsave(&h->scan_lock, flags);
2046 		if (h->scan_finished)
2047 			break;
2048 		spin_unlock_irqrestore(&h->scan_lock, flags);
2049 		wait_event(h->scan_wait_queue, h->scan_finished);
2050 		/* Note: We don't need to worry about a race between this
2051 		 * thread and driver unload because the midlayer will
2052 		 * have incremented the reference count, so unload won't
2053 		 * happen if we're in here.
2054 		 */
2055 	}
2056 	h->scan_finished = 0; /* mark scan as in progress */
2057 	spin_unlock_irqrestore(&h->scan_lock, flags);
2058 
2059 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2060 
2061 	spin_lock_irqsave(&h->scan_lock, flags);
2062 	h->scan_finished = 1; /* mark scan as finished. */
2063 	wake_up_all(&h->scan_wait_queue);
2064 	spin_unlock_irqrestore(&h->scan_lock, flags);
2065 }
2066 
2067 static int hpsa_scan_finished(struct Scsi_Host *sh,
2068 	unsigned long elapsed_time)
2069 {
2070 	struct ctlr_info *h = shost_to_hba(sh);
2071 	unsigned long flags;
2072 	int finished;
2073 
2074 	spin_lock_irqsave(&h->scan_lock, flags);
2075 	finished = h->scan_finished;
2076 	spin_unlock_irqrestore(&h->scan_lock, flags);
2077 	return finished;
2078 }
2079 
2080 static void hpsa_unregister_scsi(struct ctlr_info *h)
2081 {
2082 	/* we are being forcibly unloaded, and may not refuse. */
2083 	scsi_remove_host(h->scsi_host);
2084 	scsi_host_put(h->scsi_host);
2085 	h->scsi_host = NULL;
2086 }
2087 
2088 static int hpsa_register_scsi(struct ctlr_info *h)
2089 {
2090 	int rc;
2091 
2092 	rc = hpsa_scsi_detect(h);
2093 	if (rc != 0)
2094 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2095 			" hpsa_scsi_detect(), rc is %d\n", rc);
2096 	return rc;
2097 }
2098 
2099 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2100 	unsigned char lunaddr[])
2101 {
2102 	int rc = 0;
2103 	int count = 0;
2104 	int waittime = 1; /* seconds */
2105 	struct CommandList *c;
2106 
2107 	c = cmd_special_alloc(h);
2108 	if (!c) {
2109 		dev_warn(&h->pdev->dev, "out of memory in "
2110 			"wait_for_device_to_become_ready.\n");
2111 		return IO_ERROR;
2112 	}
2113 
2114 	/* Send test unit ready until device ready, or give up. */
2115 	while (count < HPSA_TUR_RETRY_LIMIT) {
2116 
2117 		/* Wait for a bit.  do this first, because if we send
2118 		 * the TUR right away, the reset will just abort it.
2119 		 */
2120 		msleep(1000 * waittime);
2121 		count++;
2122 
2123 		/* Increase wait time with each try, up to a point. */
2124 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2125 			waittime = waittime * 2;
2126 
2127 		/* Send the Test Unit Ready */
2128 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2129 		hpsa_scsi_do_simple_cmd_core(h, c);
2130 		/* no unmap needed here because no data xfer. */
2131 
2132 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2133 			break;
2134 
2135 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2136 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2137 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2138 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2139 			break;
2140 
2141 		dev_warn(&h->pdev->dev, "waiting %d secs "
2142 			"for device to become ready.\n", waittime);
2143 		rc = 1; /* device not ready. */
2144 	}
2145 
2146 	if (rc)
2147 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2148 	else
2149 		dev_warn(&h->pdev->dev, "device is ready.\n");
2150 
2151 	cmd_special_free(h, c);
2152 	return rc;
2153 }
2154 
2155 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2156  * complaining.  Doing a host- or bus-reset can't do anything good here.
2157  */
2158 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2159 {
2160 	int rc;
2161 	struct ctlr_info *h;
2162 	struct hpsa_scsi_dev_t *dev;
2163 
2164 	/* find the controller to which the command to be aborted was sent */
2165 	h = sdev_to_hba(scsicmd->device);
2166 	if (h == NULL) /* paranoia */
2167 		return FAILED;
2168 	dev = scsicmd->device->hostdata;
2169 	if (!dev) {
2170 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2171 			"device lookup failed.\n");
2172 		return FAILED;
2173 	}
2174 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2175 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2176 	/* send a reset to the SCSI LUN which the command was sent to */
2177 	rc = hpsa_send_reset(h, dev->scsi3addr);
2178 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2179 		return SUCCESS;
2180 
2181 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2182 	return FAILED;
2183 }
2184 
2185 /*
2186  * For operations that cannot sleep, a command block is allocated at init,
2187  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2188  * which ones are free or in use.  Lock must be held when calling this.
2189  * cmd_free() is the complement.
2190  */
2191 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2192 {
2193 	struct CommandList *c;
2194 	int i;
2195 	union u64bit temp64;
2196 	dma_addr_t cmd_dma_handle, err_dma_handle;
2197 
2198 	do {
2199 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2200 		if (i == h->nr_cmds)
2201 			return NULL;
2202 	} while (test_and_set_bit
2203 		 (i & (BITS_PER_LONG - 1),
2204 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2205 	c = h->cmd_pool + i;
2206 	memset(c, 0, sizeof(*c));
2207 	cmd_dma_handle = h->cmd_pool_dhandle
2208 	    + i * sizeof(*c);
2209 	c->err_info = h->errinfo_pool + i;
2210 	memset(c->err_info, 0, sizeof(*c->err_info));
2211 	err_dma_handle = h->errinfo_pool_dhandle
2212 	    + i * sizeof(*c->err_info);
2213 	h->nr_allocs++;
2214 
2215 	c->cmdindex = i;
2216 
2217 	INIT_HLIST_NODE(&c->list);
2218 	c->busaddr = (u32) cmd_dma_handle;
2219 	temp64.val = (u64) err_dma_handle;
2220 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2221 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2222 	c->ErrDesc.Len = sizeof(*c->err_info);
2223 
2224 	c->h = h;
2225 	return c;
2226 }
2227 
2228 /* For operations that can wait for kmalloc to possibly sleep,
2229  * this routine can be called. Lock need not be held to call
2230  * cmd_special_alloc. cmd_special_free() is the complement.
2231  */
2232 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2233 {
2234 	struct CommandList *c;
2235 	union u64bit temp64;
2236 	dma_addr_t cmd_dma_handle, err_dma_handle;
2237 
2238 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2239 	if (c == NULL)
2240 		return NULL;
2241 	memset(c, 0, sizeof(*c));
2242 
2243 	c->cmdindex = -1;
2244 
2245 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2246 		    &err_dma_handle);
2247 
2248 	if (c->err_info == NULL) {
2249 		pci_free_consistent(h->pdev,
2250 			sizeof(*c), c, cmd_dma_handle);
2251 		return NULL;
2252 	}
2253 	memset(c->err_info, 0, sizeof(*c->err_info));
2254 
2255 	INIT_HLIST_NODE(&c->list);
2256 	c->busaddr = (u32) cmd_dma_handle;
2257 	temp64.val = (u64) err_dma_handle;
2258 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2259 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2260 	c->ErrDesc.Len = sizeof(*c->err_info);
2261 
2262 	c->h = h;
2263 	return c;
2264 }
2265 
2266 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2267 {
2268 	int i;
2269 
2270 	i = c - h->cmd_pool;
2271 	clear_bit(i & (BITS_PER_LONG - 1),
2272 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2273 	h->nr_frees++;
2274 }
2275 
2276 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2277 {
2278 	union u64bit temp64;
2279 
2280 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2281 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2282 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2283 			    c->err_info, (dma_addr_t) temp64.val);
2284 	pci_free_consistent(h->pdev, sizeof(*c),
2285 			    c, (dma_addr_t) c->busaddr);
2286 }
2287 
2288 #ifdef CONFIG_COMPAT
2289 
2290 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2291 {
2292 	IOCTL32_Command_struct __user *arg32 =
2293 	    (IOCTL32_Command_struct __user *) arg;
2294 	IOCTL_Command_struct arg64;
2295 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2296 	int err;
2297 	u32 cp;
2298 
2299 	err = 0;
2300 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2301 			   sizeof(arg64.LUN_info));
2302 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2303 			   sizeof(arg64.Request));
2304 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2305 			   sizeof(arg64.error_info));
2306 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2307 	err |= get_user(cp, &arg32->buf);
2308 	arg64.buf = compat_ptr(cp);
2309 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2310 
2311 	if (err)
2312 		return -EFAULT;
2313 
2314 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2315 	if (err)
2316 		return err;
2317 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2318 			 sizeof(arg32->error_info));
2319 	if (err)
2320 		return -EFAULT;
2321 	return err;
2322 }
2323 
2324 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2325 	int cmd, void *arg)
2326 {
2327 	BIG_IOCTL32_Command_struct __user *arg32 =
2328 	    (BIG_IOCTL32_Command_struct __user *) arg;
2329 	BIG_IOCTL_Command_struct arg64;
2330 	BIG_IOCTL_Command_struct __user *p =
2331 	    compat_alloc_user_space(sizeof(arg64));
2332 	int err;
2333 	u32 cp;
2334 
2335 	err = 0;
2336 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2337 			   sizeof(arg64.LUN_info));
2338 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2339 			   sizeof(arg64.Request));
2340 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2341 			   sizeof(arg64.error_info));
2342 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2343 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2344 	err |= get_user(cp, &arg32->buf);
2345 	arg64.buf = compat_ptr(cp);
2346 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2347 
2348 	if (err)
2349 		return -EFAULT;
2350 
2351 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2352 	if (err)
2353 		return err;
2354 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2355 			 sizeof(arg32->error_info));
2356 	if (err)
2357 		return -EFAULT;
2358 	return err;
2359 }
2360 
2361 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2362 {
2363 	switch (cmd) {
2364 	case CCISS_GETPCIINFO:
2365 	case CCISS_GETINTINFO:
2366 	case CCISS_SETINTINFO:
2367 	case CCISS_GETNODENAME:
2368 	case CCISS_SETNODENAME:
2369 	case CCISS_GETHEARTBEAT:
2370 	case CCISS_GETBUSTYPES:
2371 	case CCISS_GETFIRMVER:
2372 	case CCISS_GETDRIVVER:
2373 	case CCISS_REVALIDVOLS:
2374 	case CCISS_DEREGDISK:
2375 	case CCISS_REGNEWDISK:
2376 	case CCISS_REGNEWD:
2377 	case CCISS_RESCANDISK:
2378 	case CCISS_GETLUNINFO:
2379 		return hpsa_ioctl(dev, cmd, arg);
2380 
2381 	case CCISS_PASSTHRU32:
2382 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2383 	case CCISS_BIG_PASSTHRU32:
2384 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2385 
2386 	default:
2387 		return -ENOIOCTLCMD;
2388 	}
2389 }
2390 #endif
2391 
2392 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2393 {
2394 	struct hpsa_pci_info pciinfo;
2395 
2396 	if (!argp)
2397 		return -EINVAL;
2398 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2399 	pciinfo.bus = h->pdev->bus->number;
2400 	pciinfo.dev_fn = h->pdev->devfn;
2401 	pciinfo.board_id = h->board_id;
2402 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2403 		return -EFAULT;
2404 	return 0;
2405 }
2406 
2407 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2408 {
2409 	DriverVer_type DriverVer;
2410 	unsigned char vmaj, vmin, vsubmin;
2411 	int rc;
2412 
2413 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2414 		&vmaj, &vmin, &vsubmin);
2415 	if (rc != 3) {
2416 		dev_info(&h->pdev->dev, "driver version string '%s' "
2417 			"unrecognized.", HPSA_DRIVER_VERSION);
2418 		vmaj = 0;
2419 		vmin = 0;
2420 		vsubmin = 0;
2421 	}
2422 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2423 	if (!argp)
2424 		return -EINVAL;
2425 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2426 		return -EFAULT;
2427 	return 0;
2428 }
2429 
2430 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2431 {
2432 	IOCTL_Command_struct iocommand;
2433 	struct CommandList *c;
2434 	char *buff = NULL;
2435 	union u64bit temp64;
2436 
2437 	if (!argp)
2438 		return -EINVAL;
2439 	if (!capable(CAP_SYS_RAWIO))
2440 		return -EPERM;
2441 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2442 		return -EFAULT;
2443 	if ((iocommand.buf_size < 1) &&
2444 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2445 		return -EINVAL;
2446 	}
2447 	if (iocommand.buf_size > 0) {
2448 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2449 		if (buff == NULL)
2450 			return -EFAULT;
2451 	}
2452 	if (iocommand.Request.Type.Direction == XFER_WRITE) {
2453 		/* Copy the data into the buffer we created */
2454 		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2455 			kfree(buff);
2456 			return -EFAULT;
2457 		}
2458 	} else
2459 		memset(buff, 0, iocommand.buf_size);
2460 	c = cmd_special_alloc(h);
2461 	if (c == NULL) {
2462 		kfree(buff);
2463 		return -ENOMEM;
2464 	}
2465 	/* Fill in the command type */
2466 	c->cmd_type = CMD_IOCTL_PEND;
2467 	/* Fill in Command Header */
2468 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2469 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2470 		c->Header.SGList = 1;
2471 		c->Header.SGTotal = 1;
2472 	} else	{ /* no buffers to fill */
2473 		c->Header.SGList = 0;
2474 		c->Header.SGTotal = 0;
2475 	}
2476 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2477 	/* use the kernel address the cmd block for tag */
2478 	c->Header.Tag.lower = c->busaddr;
2479 
2480 	/* Fill in Request block */
2481 	memcpy(&c->Request, &iocommand.Request,
2482 		sizeof(c->Request));
2483 
2484 	/* Fill in the scatter gather information */
2485 	if (iocommand.buf_size > 0) {
2486 		temp64.val = pci_map_single(h->pdev, buff,
2487 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2488 		c->SG[0].Addr.lower = temp64.val32.lower;
2489 		c->SG[0].Addr.upper = temp64.val32.upper;
2490 		c->SG[0].Len = iocommand.buf_size;
2491 		c->SG[0].Ext = 0; /* we are not chaining*/
2492 	}
2493 	hpsa_scsi_do_simple_cmd_core(h, c);
2494 	hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2495 	check_ioctl_unit_attention(h, c);
2496 
2497 	/* Copy the error information out */
2498 	memcpy(&iocommand.error_info, c->err_info,
2499 		sizeof(iocommand.error_info));
2500 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2501 		kfree(buff);
2502 		cmd_special_free(h, c);
2503 		return -EFAULT;
2504 	}
2505 
2506 	if (iocommand.Request.Type.Direction == XFER_READ) {
2507 		/* Copy the data out of the buffer we created */
2508 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2509 			kfree(buff);
2510 			cmd_special_free(h, c);
2511 			return -EFAULT;
2512 		}
2513 	}
2514 	kfree(buff);
2515 	cmd_special_free(h, c);
2516 	return 0;
2517 }
2518 
2519 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2520 {
2521 	BIG_IOCTL_Command_struct *ioc;
2522 	struct CommandList *c;
2523 	unsigned char **buff = NULL;
2524 	int *buff_size = NULL;
2525 	union u64bit temp64;
2526 	BYTE sg_used = 0;
2527 	int status = 0;
2528 	int i;
2529 	u32 left;
2530 	u32 sz;
2531 	BYTE __user *data_ptr;
2532 
2533 	if (!argp)
2534 		return -EINVAL;
2535 	if (!capable(CAP_SYS_RAWIO))
2536 		return -EPERM;
2537 	ioc = (BIG_IOCTL_Command_struct *)
2538 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2539 	if (!ioc) {
2540 		status = -ENOMEM;
2541 		goto cleanup1;
2542 	}
2543 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2544 		status = -EFAULT;
2545 		goto cleanup1;
2546 	}
2547 	if ((ioc->buf_size < 1) &&
2548 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2549 		status = -EINVAL;
2550 		goto cleanup1;
2551 	}
2552 	/* Check kmalloc limits  using all SGs */
2553 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2554 		status = -EINVAL;
2555 		goto cleanup1;
2556 	}
2557 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2558 		status = -EINVAL;
2559 		goto cleanup1;
2560 	}
2561 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2562 	if (!buff) {
2563 		status = -ENOMEM;
2564 		goto cleanup1;
2565 	}
2566 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2567 	if (!buff_size) {
2568 		status = -ENOMEM;
2569 		goto cleanup1;
2570 	}
2571 	left = ioc->buf_size;
2572 	data_ptr = ioc->buf;
2573 	while (left) {
2574 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2575 		buff_size[sg_used] = sz;
2576 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2577 		if (buff[sg_used] == NULL) {
2578 			status = -ENOMEM;
2579 			goto cleanup1;
2580 		}
2581 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2582 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2583 				status = -ENOMEM;
2584 				goto cleanup1;
2585 			}
2586 		} else
2587 			memset(buff[sg_used], 0, sz);
2588 		left -= sz;
2589 		data_ptr += sz;
2590 		sg_used++;
2591 	}
2592 	c = cmd_special_alloc(h);
2593 	if (c == NULL) {
2594 		status = -ENOMEM;
2595 		goto cleanup1;
2596 	}
2597 	c->cmd_type = CMD_IOCTL_PEND;
2598 	c->Header.ReplyQueue = 0;
2599 
2600 	if (ioc->buf_size > 0) {
2601 		c->Header.SGList = sg_used;
2602 		c->Header.SGTotal = sg_used;
2603 	} else {
2604 		c->Header.SGList = 0;
2605 		c->Header.SGTotal = 0;
2606 	}
2607 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2608 	c->Header.Tag.lower = c->busaddr;
2609 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2610 	if (ioc->buf_size > 0) {
2611 		int i;
2612 		for (i = 0; i < sg_used; i++) {
2613 			temp64.val = pci_map_single(h->pdev, buff[i],
2614 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2615 			c->SG[i].Addr.lower = temp64.val32.lower;
2616 			c->SG[i].Addr.upper = temp64.val32.upper;
2617 			c->SG[i].Len = buff_size[i];
2618 			/* we are not chaining */
2619 			c->SG[i].Ext = 0;
2620 		}
2621 	}
2622 	hpsa_scsi_do_simple_cmd_core(h, c);
2623 	hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2624 	check_ioctl_unit_attention(h, c);
2625 	/* Copy the error information out */
2626 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2627 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2628 		cmd_special_free(h, c);
2629 		status = -EFAULT;
2630 		goto cleanup1;
2631 	}
2632 	if (ioc->Request.Type.Direction == XFER_READ) {
2633 		/* Copy the data out of the buffer we created */
2634 		BYTE __user *ptr = ioc->buf;
2635 		for (i = 0; i < sg_used; i++) {
2636 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2637 				cmd_special_free(h, c);
2638 				status = -EFAULT;
2639 				goto cleanup1;
2640 			}
2641 			ptr += buff_size[i];
2642 		}
2643 	}
2644 	cmd_special_free(h, c);
2645 	status = 0;
2646 cleanup1:
2647 	if (buff) {
2648 		for (i = 0; i < sg_used; i++)
2649 			kfree(buff[i]);
2650 		kfree(buff);
2651 	}
2652 	kfree(buff_size);
2653 	kfree(ioc);
2654 	return status;
2655 }
2656 
2657 static void check_ioctl_unit_attention(struct ctlr_info *h,
2658 	struct CommandList *c)
2659 {
2660 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2661 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2662 		(void) check_for_unit_attention(h, c);
2663 }
2664 /*
2665  * ioctl
2666  */
2667 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2668 {
2669 	struct ctlr_info *h;
2670 	void __user *argp = (void __user *)arg;
2671 
2672 	h = sdev_to_hba(dev);
2673 
2674 	switch (cmd) {
2675 	case CCISS_DEREGDISK:
2676 	case CCISS_REGNEWDISK:
2677 	case CCISS_REGNEWD:
2678 		hpsa_scan_start(h->scsi_host);
2679 		return 0;
2680 	case CCISS_GETPCIINFO:
2681 		return hpsa_getpciinfo_ioctl(h, argp);
2682 	case CCISS_GETDRIVVER:
2683 		return hpsa_getdrivver_ioctl(h, argp);
2684 	case CCISS_PASSTHRU:
2685 		return hpsa_passthru_ioctl(h, argp);
2686 	case CCISS_BIG_PASSTHRU:
2687 		return hpsa_big_passthru_ioctl(h, argp);
2688 	default:
2689 		return -ENOTTY;
2690 	}
2691 }
2692 
2693 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2694 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2695 	int cmd_type)
2696 {
2697 	int pci_dir = XFER_NONE;
2698 
2699 	c->cmd_type = CMD_IOCTL_PEND;
2700 	c->Header.ReplyQueue = 0;
2701 	if (buff != NULL && size > 0) {
2702 		c->Header.SGList = 1;
2703 		c->Header.SGTotal = 1;
2704 	} else {
2705 		c->Header.SGList = 0;
2706 		c->Header.SGTotal = 0;
2707 	}
2708 	c->Header.Tag.lower = c->busaddr;
2709 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2710 
2711 	c->Request.Type.Type = cmd_type;
2712 	if (cmd_type == TYPE_CMD) {
2713 		switch (cmd) {
2714 		case HPSA_INQUIRY:
2715 			/* are we trying to read a vital product page */
2716 			if (page_code != 0) {
2717 				c->Request.CDB[1] = 0x01;
2718 				c->Request.CDB[2] = page_code;
2719 			}
2720 			c->Request.CDBLen = 6;
2721 			c->Request.Type.Attribute = ATTR_SIMPLE;
2722 			c->Request.Type.Direction = XFER_READ;
2723 			c->Request.Timeout = 0;
2724 			c->Request.CDB[0] = HPSA_INQUIRY;
2725 			c->Request.CDB[4] = size & 0xFF;
2726 			break;
2727 		case HPSA_REPORT_LOG:
2728 		case HPSA_REPORT_PHYS:
2729 			/* Talking to controller so It's a physical command
2730 			   mode = 00 target = 0.  Nothing to write.
2731 			 */
2732 			c->Request.CDBLen = 12;
2733 			c->Request.Type.Attribute = ATTR_SIMPLE;
2734 			c->Request.Type.Direction = XFER_READ;
2735 			c->Request.Timeout = 0;
2736 			c->Request.CDB[0] = cmd;
2737 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2738 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2739 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2740 			c->Request.CDB[9] = size & 0xFF;
2741 			break;
2742 
2743 		case HPSA_READ_CAPACITY:
2744 			c->Request.CDBLen = 10;
2745 			c->Request.Type.Attribute = ATTR_SIMPLE;
2746 			c->Request.Type.Direction = XFER_READ;
2747 			c->Request.Timeout = 0;
2748 			c->Request.CDB[0] = cmd;
2749 			break;
2750 		case HPSA_CACHE_FLUSH:
2751 			c->Request.CDBLen = 12;
2752 			c->Request.Type.Attribute = ATTR_SIMPLE;
2753 			c->Request.Type.Direction = XFER_WRITE;
2754 			c->Request.Timeout = 0;
2755 			c->Request.CDB[0] = BMIC_WRITE;
2756 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2757 			break;
2758 		case TEST_UNIT_READY:
2759 			c->Request.CDBLen = 6;
2760 			c->Request.Type.Attribute = ATTR_SIMPLE;
2761 			c->Request.Type.Direction = XFER_NONE;
2762 			c->Request.Timeout = 0;
2763 			break;
2764 		default:
2765 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2766 			BUG();
2767 			return;
2768 		}
2769 	} else if (cmd_type == TYPE_MSG) {
2770 		switch (cmd) {
2771 
2772 		case  HPSA_DEVICE_RESET_MSG:
2773 			c->Request.CDBLen = 16;
2774 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2775 			c->Request.Type.Attribute = ATTR_SIMPLE;
2776 			c->Request.Type.Direction = XFER_NONE;
2777 			c->Request.Timeout = 0; /* Don't time out */
2778 			c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2779 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2780 			/* If bytes 4-7 are zero, it means reset the */
2781 			/* LunID device */
2782 			c->Request.CDB[4] = 0x00;
2783 			c->Request.CDB[5] = 0x00;
2784 			c->Request.CDB[6] = 0x00;
2785 			c->Request.CDB[7] = 0x00;
2786 		break;
2787 
2788 		default:
2789 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2790 				cmd);
2791 			BUG();
2792 		}
2793 	} else {
2794 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2795 		BUG();
2796 	}
2797 
2798 	switch (c->Request.Type.Direction) {
2799 	case XFER_READ:
2800 		pci_dir = PCI_DMA_FROMDEVICE;
2801 		break;
2802 	case XFER_WRITE:
2803 		pci_dir = PCI_DMA_TODEVICE;
2804 		break;
2805 	case XFER_NONE:
2806 		pci_dir = PCI_DMA_NONE;
2807 		break;
2808 	default:
2809 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2810 	}
2811 
2812 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2813 
2814 	return;
2815 }
2816 
2817 /*
2818  * Map (physical) PCI mem into (virtual) kernel space
2819  */
2820 static void __iomem *remap_pci_mem(ulong base, ulong size)
2821 {
2822 	ulong page_base = ((ulong) base) & PAGE_MASK;
2823 	ulong page_offs = ((ulong) base) - page_base;
2824 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2825 
2826 	return page_remapped ? (page_remapped + page_offs) : NULL;
2827 }
2828 
2829 /* Takes cmds off the submission queue and sends them to the hardware,
2830  * then puts them on the queue of cmds waiting for completion.
2831  */
2832 static void start_io(struct ctlr_info *h)
2833 {
2834 	struct CommandList *c;
2835 
2836 	while (!hlist_empty(&h->reqQ)) {
2837 		c = hlist_entry(h->reqQ.first, struct CommandList, list);
2838 		/* can't do anything if fifo is full */
2839 		if ((h->access.fifo_full(h))) {
2840 			dev_warn(&h->pdev->dev, "fifo full\n");
2841 			break;
2842 		}
2843 
2844 		/* Get the first entry from the Request Q */
2845 		removeQ(c);
2846 		h->Qdepth--;
2847 
2848 		/* Tell the controller execute command */
2849 		h->access.submit_command(h, c);
2850 
2851 		/* Put job onto the completed Q */
2852 		addQ(&h->cmpQ, c);
2853 	}
2854 }
2855 
2856 static inline unsigned long get_next_completion(struct ctlr_info *h)
2857 {
2858 	return h->access.command_completed(h);
2859 }
2860 
2861 static inline bool interrupt_pending(struct ctlr_info *h)
2862 {
2863 	return h->access.intr_pending(h);
2864 }
2865 
2866 static inline long interrupt_not_for_us(struct ctlr_info *h)
2867 {
2868 	return !(h->msi_vector || h->msix_vector) &&
2869 		((h->access.intr_pending(h) == 0) ||
2870 		(h->interrupts_enabled == 0));
2871 }
2872 
2873 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2874 	u32 raw_tag)
2875 {
2876 	if (unlikely(tag_index >= h->nr_cmds)) {
2877 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2878 		return 1;
2879 	}
2880 	return 0;
2881 }
2882 
2883 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2884 {
2885 	removeQ(c);
2886 	if (likely(c->cmd_type == CMD_SCSI))
2887 		complete_scsi_command(c, 0, raw_tag);
2888 	else if (c->cmd_type == CMD_IOCTL_PEND)
2889 		complete(c->waiting);
2890 }
2891 
2892 static inline u32 hpsa_tag_contains_index(u32 tag)
2893 {
2894 #define DIRECT_LOOKUP_BIT 0x10
2895 	return tag & DIRECT_LOOKUP_BIT;
2896 }
2897 
2898 static inline u32 hpsa_tag_to_index(u32 tag)
2899 {
2900 #define DIRECT_LOOKUP_SHIFT 5
2901 	return tag >> DIRECT_LOOKUP_SHIFT;
2902 }
2903 
2904 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2905 {
2906 #define HPSA_ERROR_BITS 0x03
2907 	return tag & ~HPSA_ERROR_BITS;
2908 }
2909 
2910 /* process completion of an indexed ("direct lookup") command */
2911 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2912 	u32 raw_tag)
2913 {
2914 	u32 tag_index;
2915 	struct CommandList *c;
2916 
2917 	tag_index = hpsa_tag_to_index(raw_tag);
2918 	if (bad_tag(h, tag_index, raw_tag))
2919 		return next_command(h);
2920 	c = h->cmd_pool + tag_index;
2921 	finish_cmd(c, raw_tag);
2922 	return next_command(h);
2923 }
2924 
2925 /* process completion of a non-indexed command */
2926 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2927 	u32 raw_tag)
2928 {
2929 	u32 tag;
2930 	struct CommandList *c = NULL;
2931 	struct hlist_node *tmp;
2932 
2933 	tag = hpsa_tag_discard_error_bits(raw_tag);
2934 	hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2935 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2936 			finish_cmd(c, raw_tag);
2937 			return next_command(h);
2938 		}
2939 	}
2940 	bad_tag(h, h->nr_cmds + 1, raw_tag);
2941 	return next_command(h);
2942 }
2943 
2944 static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2945 {
2946 	struct ctlr_info *h = dev_id;
2947 	unsigned long flags;
2948 	u32 raw_tag;
2949 
2950 	if (interrupt_not_for_us(h))
2951 		return IRQ_NONE;
2952 	spin_lock_irqsave(&h->lock, flags);
2953 	raw_tag = get_next_completion(h);
2954 	while (raw_tag != FIFO_EMPTY) {
2955 		if (hpsa_tag_contains_index(raw_tag))
2956 			raw_tag = process_indexed_cmd(h, raw_tag);
2957 		else
2958 			raw_tag = process_nonindexed_cmd(h, raw_tag);
2959 	}
2960 	spin_unlock_irqrestore(&h->lock, flags);
2961 	return IRQ_HANDLED;
2962 }
2963 
2964 /* Send a message CDB to the firmwart. */
2965 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2966 						unsigned char type)
2967 {
2968 	struct Command {
2969 		struct CommandListHeader CommandHeader;
2970 		struct RequestBlock Request;
2971 		struct ErrDescriptor ErrorDescriptor;
2972 	};
2973 	struct Command *cmd;
2974 	static const size_t cmd_sz = sizeof(*cmd) +
2975 					sizeof(cmd->ErrorDescriptor);
2976 	dma_addr_t paddr64;
2977 	uint32_t paddr32, tag;
2978 	void __iomem *vaddr;
2979 	int i, err;
2980 
2981 	vaddr = pci_ioremap_bar(pdev, 0);
2982 	if (vaddr == NULL)
2983 		return -ENOMEM;
2984 
2985 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
2986 	 * CCISS commands, so they must be allocated from the lower 4GiB of
2987 	 * memory.
2988 	 */
2989 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2990 	if (err) {
2991 		iounmap(vaddr);
2992 		return -ENOMEM;
2993 	}
2994 
2995 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2996 	if (cmd == NULL) {
2997 		iounmap(vaddr);
2998 		return -ENOMEM;
2999 	}
3000 
3001 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3002 	 * although there's no guarantee, we assume that the address is at
3003 	 * least 4-byte aligned (most likely, it's page-aligned).
3004 	 */
3005 	paddr32 = paddr64;
3006 
3007 	cmd->CommandHeader.ReplyQueue = 0;
3008 	cmd->CommandHeader.SGList = 0;
3009 	cmd->CommandHeader.SGTotal = 0;
3010 	cmd->CommandHeader.Tag.lower = paddr32;
3011 	cmd->CommandHeader.Tag.upper = 0;
3012 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3013 
3014 	cmd->Request.CDBLen = 16;
3015 	cmd->Request.Type.Type = TYPE_MSG;
3016 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3017 	cmd->Request.Type.Direction = XFER_NONE;
3018 	cmd->Request.Timeout = 0; /* Don't time out */
3019 	cmd->Request.CDB[0] = opcode;
3020 	cmd->Request.CDB[1] = type;
3021 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3022 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3023 	cmd->ErrorDescriptor.Addr.upper = 0;
3024 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3025 
3026 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3027 
3028 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3029 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3030 		if (hpsa_tag_discard_error_bits(tag) == paddr32)
3031 			break;
3032 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3033 	}
3034 
3035 	iounmap(vaddr);
3036 
3037 	/* we leak the DMA buffer here ... no choice since the controller could
3038 	 *  still complete the command.
3039 	 */
3040 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3041 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3042 			opcode, type);
3043 		return -ETIMEDOUT;
3044 	}
3045 
3046 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3047 
3048 	if (tag & HPSA_ERROR_BIT) {
3049 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3050 			opcode, type);
3051 		return -EIO;
3052 	}
3053 
3054 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3055 		opcode, type);
3056 	return 0;
3057 }
3058 
3059 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3060 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3061 
3062 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3063 {
3064 /* the #defines are stolen from drivers/pci/msi.h. */
3065 #define msi_control_reg(base)		(base + PCI_MSI_FLAGS)
3066 #define PCI_MSIX_FLAGS_ENABLE		(1 << 15)
3067 
3068 	int pos;
3069 	u16 control = 0;
3070 
3071 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3072 	if (pos) {
3073 		pci_read_config_word(pdev, msi_control_reg(pos), &control);
3074 		if (control & PCI_MSI_FLAGS_ENABLE) {
3075 			dev_info(&pdev->dev, "resetting MSI\n");
3076 			pci_write_config_word(pdev, msi_control_reg(pos),
3077 					control & ~PCI_MSI_FLAGS_ENABLE);
3078 		}
3079 	}
3080 
3081 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3082 	if (pos) {
3083 		pci_read_config_word(pdev, msi_control_reg(pos), &control);
3084 		if (control & PCI_MSIX_FLAGS_ENABLE) {
3085 			dev_info(&pdev->dev, "resetting MSI-X\n");
3086 			pci_write_config_word(pdev, msi_control_reg(pos),
3087 					control & ~PCI_MSIX_FLAGS_ENABLE);
3088 		}
3089 	}
3090 
3091 	return 0;
3092 }
3093 
3094 /* This does a hard reset of the controller using PCI power management
3095  * states.
3096  */
3097 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
3098 {
3099 	u16 pmcsr, saved_config_space[32];
3100 	int i, pos;
3101 
3102 	dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3103 
3104 	/* This is very nearly the same thing as
3105 	 *
3106 	 * pci_save_state(pci_dev);
3107 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3108 	 * pci_set_power_state(pci_dev, PCI_D0);
3109 	 * pci_restore_state(pci_dev);
3110 	 *
3111 	 * but we can't use these nice canned kernel routines on
3112 	 * kexec, because they also check the MSI/MSI-X state in PCI
3113 	 * configuration space and do the wrong thing when it is
3114 	 * set/cleared.  Also, the pci_save/restore_state functions
3115 	 * violate the ordering requirements for restoring the
3116 	 * configuration space from the CCISS document (see the
3117 	 * comment below).  So we roll our own ....
3118 	 */
3119 
3120 	for (i = 0; i < 32; i++)
3121 		pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3122 
3123 	pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3124 	if (pos == 0) {
3125 		dev_err(&pdev->dev,
3126 			"hpsa_reset_controller: PCI PM not supported\n");
3127 		return -ENODEV;
3128 	}
3129 
3130 	/* Quoting from the Open CISS Specification: "The Power
3131 	 * Management Control/Status Register (CSR) controls the power
3132 	 * state of the device.  The normal operating state is D0,
3133 	 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3134 	 * the controller, place the interface device in D3 then to
3135 	 * D0, this causes a secondary PCI reset which will reset the
3136 	 * controller."
3137 	 */
3138 
3139 	/* enter the D3hot power management state */
3140 	pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3141 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3142 	pmcsr |= PCI_D3hot;
3143 	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3144 
3145 	msleep(500);
3146 
3147 	/* enter the D0 power management state */
3148 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3149 	pmcsr |= PCI_D0;
3150 	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3151 
3152 	msleep(500);
3153 
3154 	/* Restore the PCI configuration space.  The Open CISS
3155 	 * Specification says, "Restore the PCI Configuration
3156 	 * Registers, offsets 00h through 60h. It is important to
3157 	 * restore the command register, 16-bits at offset 04h,
3158 	 * last. Do not restore the configuration status register,
3159 	 * 16-bits at offset 06h."  Note that the offset is 2*i.
3160 	 */
3161 	for (i = 0; i < 32; i++) {
3162 		if (i == 2 || i == 3)
3163 			continue;
3164 		pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3165 	}
3166 	wmb();
3167 	pci_write_config_word(pdev, 4, saved_config_space[2]);
3168 
3169 	return 0;
3170 }
3171 
3172 /*
3173  *  We cannot read the structure directly, for portability we must use
3174  *   the io functions.
3175  *   This is for debug only.
3176  */
3177 #ifdef HPSA_DEBUG
3178 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3179 {
3180 	int i;
3181 	char temp_name[17];
3182 
3183 	dev_info(dev, "Controller Configuration information\n");
3184 	dev_info(dev, "------------------------------------\n");
3185 	for (i = 0; i < 4; i++)
3186 		temp_name[i] = readb(&(tb->Signature[i]));
3187 	temp_name[4] = '\0';
3188 	dev_info(dev, "   Signature = %s\n", temp_name);
3189 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3190 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3191 	       readl(&(tb->TransportSupport)));
3192 	dev_info(dev, "   Transport methods active = 0x%x\n",
3193 	       readl(&(tb->TransportActive)));
3194 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3195 	       readl(&(tb->HostWrite.TransportRequest)));
3196 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3197 	       readl(&(tb->HostWrite.CoalIntDelay)));
3198 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3199 	       readl(&(tb->HostWrite.CoalIntCount)));
3200 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3201 	       readl(&(tb->CmdsOutMax)));
3202 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3203 	for (i = 0; i < 16; i++)
3204 		temp_name[i] = readb(&(tb->ServerName[i]));
3205 	temp_name[16] = '\0';
3206 	dev_info(dev, "   Server Name = %s\n", temp_name);
3207 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3208 		readl(&(tb->HeartBeat)));
3209 }
3210 #endif				/* HPSA_DEBUG */
3211 
3212 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3213 {
3214 	int i, offset, mem_type, bar_type;
3215 
3216 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3217 		return 0;
3218 	offset = 0;
3219 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3220 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3221 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3222 			offset += 4;
3223 		else {
3224 			mem_type = pci_resource_flags(pdev, i) &
3225 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3226 			switch (mem_type) {
3227 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3228 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3229 				offset += 4;	/* 32 bit */
3230 				break;
3231 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3232 				offset += 8;
3233 				break;
3234 			default:	/* reserved in PCI 2.2 */
3235 				dev_warn(&pdev->dev,
3236 				       "base address is invalid\n");
3237 				return -1;
3238 				break;
3239 			}
3240 		}
3241 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3242 			return i + 1;
3243 	}
3244 	return -1;
3245 }
3246 
3247 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3248  * controllers that are capable. If not, we use IO-APIC mode.
3249  */
3250 
3251 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h,
3252 					   struct pci_dev *pdev, u32 board_id)
3253 {
3254 #ifdef CONFIG_PCI_MSI
3255 	int err;
3256 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3257 	{0, 2}, {0, 3}
3258 	};
3259 
3260 	/* Some boards advertise MSI but don't really support it */
3261 	if ((board_id == 0x40700E11) ||
3262 	    (board_id == 0x40800E11) ||
3263 	    (board_id == 0x40820E11) || (board_id == 0x40830E11))
3264 		goto default_int_mode;
3265 	if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3266 		dev_info(&pdev->dev, "MSIX\n");
3267 		err = pci_enable_msix(pdev, hpsa_msix_entries, 4);
3268 		if (!err) {
3269 			h->intr[0] = hpsa_msix_entries[0].vector;
3270 			h->intr[1] = hpsa_msix_entries[1].vector;
3271 			h->intr[2] = hpsa_msix_entries[2].vector;
3272 			h->intr[3] = hpsa_msix_entries[3].vector;
3273 			h->msix_vector = 1;
3274 			return;
3275 		}
3276 		if (err > 0) {
3277 			dev_warn(&pdev->dev, "only %d MSI-X vectors "
3278 			       "available\n", err);
3279 			goto default_int_mode;
3280 		} else {
3281 			dev_warn(&pdev->dev, "MSI-X init failed %d\n",
3282 			       err);
3283 			goto default_int_mode;
3284 		}
3285 	}
3286 	if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3287 		dev_info(&pdev->dev, "MSI\n");
3288 		if (!pci_enable_msi(pdev))
3289 			h->msi_vector = 1;
3290 		else
3291 			dev_warn(&pdev->dev, "MSI init failed\n");
3292 	}
3293 default_int_mode:
3294 #endif				/* CONFIG_PCI_MSI */
3295 	/* if we get here we're going to use the default interrupt mode */
3296 	h->intr[PERF_MODE_INT] = pdev->irq;
3297 }
3298 
3299 static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev)
3300 {
3301 	ushort subsystem_vendor_id, subsystem_device_id, command;
3302 	u32 board_id, scratchpad = 0;
3303 	u64 cfg_offset;
3304 	u32 cfg_base_addr;
3305 	u64 cfg_base_addr_index;
3306 	u32 trans_offset;
3307 	int i, prod_index, err;
3308 
3309 	subsystem_vendor_id = pdev->subsystem_vendor;
3310 	subsystem_device_id = pdev->subsystem_device;
3311 	board_id = (((u32) (subsystem_device_id << 16) & 0xffff0000) |
3312 		    subsystem_vendor_id);
3313 
3314 	for (i = 0; i < ARRAY_SIZE(products); i++)
3315 		if (board_id == products[i].board_id)
3316 			break;
3317 
3318 	prod_index = i;
3319 
3320 	if (prod_index == ARRAY_SIZE(products)) {
3321 		prod_index--;
3322 		if (subsystem_vendor_id != PCI_VENDOR_ID_HP ||
3323 				!hpsa_allow_any) {
3324 			dev_warn(&pdev->dev, "unrecognized board ID:"
3325 				" 0x%08lx, ignoring.\n",
3326 				(unsigned long) board_id);
3327 			return -ENODEV;
3328 		}
3329 	}
3330 	/* check to see if controller has been disabled
3331 	 * BEFORE trying to enable it
3332 	 */
3333 	(void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3334 	if (!(command & 0x02)) {
3335 		dev_warn(&pdev->dev, "controller appears to be disabled\n");
3336 		return -ENODEV;
3337 	}
3338 
3339 	err = pci_enable_device(pdev);
3340 	if (err) {
3341 		dev_warn(&pdev->dev, "unable to enable PCI device\n");
3342 		return err;
3343 	}
3344 
3345 	err = pci_request_regions(pdev, "hpsa");
3346 	if (err) {
3347 		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
3348 		return err;
3349 	}
3350 
3351 	/* If the kernel supports MSI/MSI-X we will try to enable that,
3352 	 * else we use the IO-APIC interrupt assigned to us by system ROM.
3353 	 */
3354 	hpsa_interrupt_mode(h, pdev, board_id);
3355 
3356 	/* find the memory BAR */
3357 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3358 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3359 			break;
3360 	}
3361 	if (i == DEVICE_COUNT_RESOURCE) {
3362 		dev_warn(&pdev->dev, "no memory BAR found\n");
3363 		err = -ENODEV;
3364 		goto err_out_free_res;
3365 	}
3366 
3367 	h->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3368 						 * already removed
3369 						 */
3370 
3371 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3372 
3373 	/* Wait for the board to become ready.  */
3374 	for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3375 		scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3376 		if (scratchpad == HPSA_FIRMWARE_READY)
3377 			break;
3378 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3379 	}
3380 	if (scratchpad != HPSA_FIRMWARE_READY) {
3381 		dev_warn(&pdev->dev, "board not ready, timed out.\n");
3382 		err = -ENODEV;
3383 		goto err_out_free_res;
3384 	}
3385 
3386 	/* get the address index number */
3387 	cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
3388 	cfg_base_addr &= (u32) 0x0000ffff;
3389 	cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3390 	if (cfg_base_addr_index == -1) {
3391 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3392 		err = -ENODEV;
3393 		goto err_out_free_res;
3394 	}
3395 
3396 	cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3397 	h->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3398 			       cfg_base_addr_index) + cfg_offset,
3399 				sizeof(h->cfgtable));
3400 	/* Find performant mode table. */
3401 	trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3402 	h->transtable = remap_pci_mem(pci_resource_start(pdev,
3403 				cfg_base_addr_index)+cfg_offset+trans_offset,
3404 				sizeof(*h->transtable));
3405 
3406 	h->board_id = board_id;
3407 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3408 	h->product_name = products[prod_index].product_name;
3409 	h->access = *(products[prod_index].access);
3410 	/* Allow room for some ioctls */
3411 	h->nr_cmds = h->max_commands - 4;
3412 
3413 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3414 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3415 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3416 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3417 		dev_warn(&pdev->dev, "not a valid CISS config table\n");
3418 		err = -ENODEV;
3419 		goto err_out_free_res;
3420 	}
3421 #ifdef CONFIG_X86
3422 	{
3423 		/* Need to enable prefetch in the SCSI core for 6400 in x86 */
3424 		u32 prefetch;
3425 		prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3426 		prefetch |= 0x100;
3427 		writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3428 	}
3429 #endif
3430 
3431 	/* Disabling DMA prefetch for the P600
3432 	 * An ASIC bug may result in a prefetch beyond
3433 	 * physical memory.
3434 	 */
3435 	if (board_id == 0x3225103C) {
3436 		u32 dma_prefetch;
3437 		dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3438 		dma_prefetch |= 0x8000;
3439 		writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3440 	}
3441 
3442 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3443 	/* Update the field, and then ring the doorbell */
3444 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3445 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3446 
3447 	/* under certain very rare conditions, this can take awhile.
3448 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3449 	 * as we enter this code.)
3450 	 */
3451 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3452 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3453 			break;
3454 		/* delay and try again */
3455 		msleep(10);
3456 	}
3457 
3458 #ifdef HPSA_DEBUG
3459 	print_cfg_table(&pdev->dev, h->cfgtable);
3460 #endif				/* HPSA_DEBUG */
3461 
3462 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3463 		dev_warn(&pdev->dev, "unable to get board into simple mode\n");
3464 		err = -ENODEV;
3465 		goto err_out_free_res;
3466 	}
3467 	return 0;
3468 
3469 err_out_free_res:
3470 	/*
3471 	 * Deliberately omit pci_disable_device(): it does something nasty to
3472 	 * Smart Array controllers that pci_enable_device does not undo
3473 	 */
3474 	pci_release_regions(pdev);
3475 	return err;
3476 }
3477 
3478 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3479 {
3480 	int rc;
3481 
3482 #define HBA_INQUIRY_BYTE_COUNT 64
3483 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3484 	if (!h->hba_inquiry_data)
3485 		return;
3486 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3487 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3488 	if (rc != 0) {
3489 		kfree(h->hba_inquiry_data);
3490 		h->hba_inquiry_data = NULL;
3491 	}
3492 }
3493 
3494 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3495 				    const struct pci_device_id *ent)
3496 {
3497 	int i, rc;
3498 	int dac;
3499 	struct ctlr_info *h;
3500 
3501 	if (number_of_controllers == 0)
3502 		printk(KERN_INFO DRIVER_NAME "\n");
3503 	if (reset_devices) {
3504 		/* Reset the controller with a PCI power-cycle */
3505 		if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3506 			return -ENODEV;
3507 
3508 		/* Some devices (notably the HP Smart Array 5i Controller)
3509 		   need a little pause here */
3510 		msleep(HPSA_POST_RESET_PAUSE_MSECS);
3511 
3512 		/* Now try to get the controller to respond to a no-op */
3513 		for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3514 			if (hpsa_noop(pdev) == 0)
3515 				break;
3516 			else
3517 				dev_warn(&pdev->dev, "no-op failed%s\n",
3518 						(i < 11 ? "; re-trying" : ""));
3519 		}
3520 	}
3521 
3522 	/* Command structures must be aligned on a 32-byte boundary because
3523 	 * the 5 lower bits of the address are used by the hardware. and by
3524 	 * the driver.  See comments in hpsa.h for more info.
3525 	 */
3526 #define COMMANDLIST_ALIGNMENT 32
3527 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3528 	h = kzalloc(sizeof(*h), GFP_KERNEL);
3529 	if (!h)
3530 		return -ENOMEM;
3531 
3532 	h->busy_initializing = 1;
3533 	INIT_HLIST_HEAD(&h->cmpQ);
3534 	INIT_HLIST_HEAD(&h->reqQ);
3535 	mutex_init(&h->busy_shutting_down);
3536 	init_completion(&h->scan_wait);
3537 	rc = hpsa_pci_init(h, pdev);
3538 	if (rc != 0)
3539 		goto clean1;
3540 
3541 	sprintf(h->devname, "hpsa%d", number_of_controllers);
3542 	h->ctlr = number_of_controllers;
3543 	number_of_controllers++;
3544 	h->pdev = pdev;
3545 
3546 	/* configure PCI DMA stuff */
3547 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3548 	if (rc == 0) {
3549 		dac = 1;
3550 	} else {
3551 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3552 		if (rc == 0) {
3553 			dac = 0;
3554 		} else {
3555 			dev_err(&pdev->dev, "no suitable DMA available\n");
3556 			goto clean1;
3557 		}
3558 	}
3559 
3560 	/* make sure the board interrupts are off */
3561 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3562 	rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr,
3563 			IRQF_DISABLED, h->devname, h);
3564 	if (rc) {
3565 		dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3566 		       h->intr[PERF_MODE_INT], h->devname);
3567 		goto clean2;
3568 	}
3569 
3570 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3571 	       h->devname, pdev->device,
3572 	       h->intr[PERF_MODE_INT], dac ? "" : " not");
3573 
3574 	h->cmd_pool_bits =
3575 	    kmalloc(((h->nr_cmds + BITS_PER_LONG -
3576 		      1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3577 	h->cmd_pool = pci_alloc_consistent(h->pdev,
3578 		    h->nr_cmds * sizeof(*h->cmd_pool),
3579 		    &(h->cmd_pool_dhandle));
3580 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3581 		    h->nr_cmds * sizeof(*h->errinfo_pool),
3582 		    &(h->errinfo_pool_dhandle));
3583 	if ((h->cmd_pool_bits == NULL)
3584 	    || (h->cmd_pool == NULL)
3585 	    || (h->errinfo_pool == NULL)) {
3586 		dev_err(&pdev->dev, "out of memory");
3587 		rc = -ENOMEM;
3588 		goto clean4;
3589 	}
3590 	spin_lock_init(&h->lock);
3591 	spin_lock_init(&h->scan_lock);
3592 	init_waitqueue_head(&h->scan_wait_queue);
3593 	h->scan_finished = 1; /* no scan currently in progress */
3594 
3595 	pci_set_drvdata(pdev, h);
3596 	memset(h->cmd_pool_bits, 0,
3597 	       ((h->nr_cmds + BITS_PER_LONG -
3598 		 1) / BITS_PER_LONG) * sizeof(unsigned long));
3599 
3600 	hpsa_scsi_setup(h);
3601 
3602 	/* Turn the interrupts on so we can service requests */
3603 	h->access.set_intr_mask(h, HPSA_INTR_ON);
3604 
3605 	hpsa_put_ctlr_into_performant_mode(h);
3606 	hpsa_hba_inquiry(h);
3607 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
3608 	h->busy_initializing = 0;
3609 	return 1;
3610 
3611 clean4:
3612 	kfree(h->cmd_pool_bits);
3613 	if (h->cmd_pool)
3614 		pci_free_consistent(h->pdev,
3615 			    h->nr_cmds * sizeof(struct CommandList),
3616 			    h->cmd_pool, h->cmd_pool_dhandle);
3617 	if (h->errinfo_pool)
3618 		pci_free_consistent(h->pdev,
3619 			    h->nr_cmds * sizeof(struct ErrorInfo),
3620 			    h->errinfo_pool,
3621 			    h->errinfo_pool_dhandle);
3622 	free_irq(h->intr[PERF_MODE_INT], h);
3623 clean2:
3624 clean1:
3625 	h->busy_initializing = 0;
3626 	kfree(h);
3627 	return rc;
3628 }
3629 
3630 static void hpsa_flush_cache(struct ctlr_info *h)
3631 {
3632 	char *flush_buf;
3633 	struct CommandList *c;
3634 
3635 	flush_buf = kzalloc(4, GFP_KERNEL);
3636 	if (!flush_buf)
3637 		return;
3638 
3639 	c = cmd_special_alloc(h);
3640 	if (!c) {
3641 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3642 		goto out_of_memory;
3643 	}
3644 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3645 		RAID_CTLR_LUNID, TYPE_CMD);
3646 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3647 	if (c->err_info->CommandStatus != 0)
3648 		dev_warn(&h->pdev->dev,
3649 			"error flushing cache on controller\n");
3650 	cmd_special_free(h, c);
3651 out_of_memory:
3652 	kfree(flush_buf);
3653 }
3654 
3655 static void hpsa_shutdown(struct pci_dev *pdev)
3656 {
3657 	struct ctlr_info *h;
3658 
3659 	h = pci_get_drvdata(pdev);
3660 	/* Turn board interrupts off  and send the flush cache command
3661 	 * sendcmd will turn off interrupt, and send the flush...
3662 	 * To write all data in the battery backed cache to disks
3663 	 */
3664 	hpsa_flush_cache(h);
3665 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3666 	free_irq(h->intr[PERF_MODE_INT], h);
3667 #ifdef CONFIG_PCI_MSI
3668 	if (h->msix_vector)
3669 		pci_disable_msix(h->pdev);
3670 	else if (h->msi_vector)
3671 		pci_disable_msi(h->pdev);
3672 #endif				/* CONFIG_PCI_MSI */
3673 }
3674 
3675 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3676 {
3677 	struct ctlr_info *h;
3678 
3679 	if (pci_get_drvdata(pdev) == NULL) {
3680 		dev_err(&pdev->dev, "unable to remove device \n");
3681 		return;
3682 	}
3683 	h = pci_get_drvdata(pdev);
3684 	mutex_lock(&h->busy_shutting_down);
3685 	remove_from_scan_list(h);
3686 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
3687 	hpsa_shutdown(pdev);
3688 	iounmap(h->vaddr);
3689 	pci_free_consistent(h->pdev,
3690 		h->nr_cmds * sizeof(struct CommandList),
3691 		h->cmd_pool, h->cmd_pool_dhandle);
3692 	pci_free_consistent(h->pdev,
3693 		h->nr_cmds * sizeof(struct ErrorInfo),
3694 		h->errinfo_pool, h->errinfo_pool_dhandle);
3695 	pci_free_consistent(h->pdev, h->reply_pool_size,
3696 		h->reply_pool, h->reply_pool_dhandle);
3697 	kfree(h->cmd_pool_bits);
3698 	kfree(h->blockFetchTable);
3699 	kfree(h->hba_inquiry_data);
3700 	/*
3701 	 * Deliberately omit pci_disable_device(): it does something nasty to
3702 	 * Smart Array controllers that pci_enable_device does not undo
3703 	 */
3704 	pci_release_regions(pdev);
3705 	pci_set_drvdata(pdev, NULL);
3706 	mutex_unlock(&h->busy_shutting_down);
3707 	kfree(h);
3708 }
3709 
3710 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3711 	__attribute__((unused)) pm_message_t state)
3712 {
3713 	return -ENOSYS;
3714 }
3715 
3716 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3717 {
3718 	return -ENOSYS;
3719 }
3720 
3721 static struct pci_driver hpsa_pci_driver = {
3722 	.name = "hpsa",
3723 	.probe = hpsa_init_one,
3724 	.remove = __devexit_p(hpsa_remove_one),
3725 	.id_table = hpsa_pci_device_id,	/* id_table */
3726 	.shutdown = hpsa_shutdown,
3727 	.suspend = hpsa_suspend,
3728 	.resume = hpsa_resume,
3729 };
3730 
3731 /* Fill in bucket_map[], given nsgs (the max number of
3732  * scatter gather elements supported) and bucket[],
3733  * which is an array of 8 integers.  The bucket[] array
3734  * contains 8 different DMA transfer sizes (in 16
3735  * byte increments) which the controller uses to fetch
3736  * commands.  This function fills in bucket_map[], which
3737  * maps a given number of scatter gather elements to one of
3738  * the 8 DMA transfer sizes.  The point of it is to allow the
3739  * controller to only do as much DMA as needed to fetch the
3740  * command, with the DMA transfer size encoded in the lower
3741  * bits of the command address.
3742  */
3743 static void  calc_bucket_map(int bucket[], int num_buckets,
3744 	int nsgs, int *bucket_map)
3745 {
3746 	int i, j, b, size;
3747 
3748 	/* even a command with 0 SGs requires 4 blocks */
3749 #define MINIMUM_TRANSFER_BLOCKS 4
3750 #define NUM_BUCKETS 8
3751 	/* Note, bucket_map must have nsgs+1 entries. */
3752 	for (i = 0; i <= nsgs; i++) {
3753 		/* Compute size of a command with i SG entries */
3754 		size = i + MINIMUM_TRANSFER_BLOCKS;
3755 		b = num_buckets; /* Assume the biggest bucket */
3756 		/* Find the bucket that is just big enough */
3757 		for (j = 0; j < 8; j++) {
3758 			if (bucket[j] >= size) {
3759 				b = j;
3760 				break;
3761 			}
3762 		}
3763 		/* for a command with i SG entries, use bucket b. */
3764 		bucket_map[i] = b;
3765 	}
3766 }
3767 
3768 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
3769 {
3770 	u32 trans_support;
3771 	u64 trans_offset;
3772 	/*  5 = 1 s/g entry or 4k
3773 	 *  6 = 2 s/g entry or 8k
3774 	 *  8 = 4 s/g entry or 16k
3775 	 * 10 = 6 s/g entry or 24k
3776 	 */
3777 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, 35}; /* for scatter/gathers */
3778 	int i = 0;
3779 	int l = 0;
3780 	unsigned long register_value;
3781 
3782 	trans_support = readl(&(h->cfgtable->TransportSupport));
3783 	if (!(trans_support & PERFORMANT_MODE))
3784 		return;
3785 
3786 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3787 	h->max_sg_entries = 32;
3788 	/* Performant mode ring buffer and supporting data structures */
3789 	h->reply_pool_size = h->max_commands * sizeof(u64);
3790 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
3791 				&(h->reply_pool_dhandle));
3792 
3793 	/* Need a block fetch table for performant mode */
3794 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
3795 				sizeof(u32)), GFP_KERNEL);
3796 
3797 	if ((h->reply_pool == NULL)
3798 		|| (h->blockFetchTable == NULL))
3799 		goto clean_up;
3800 
3801 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
3802 
3803 	/* Controller spec: zero out this buffer. */
3804 	memset(h->reply_pool, 0, h->reply_pool_size);
3805 	h->reply_pool_head = h->reply_pool;
3806 
3807 	trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3808 	bft[7] = h->max_sg_entries + 4;
3809 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
3810 	for (i = 0; i < 8; i++)
3811 		writel(bft[i], &h->transtable->BlockFetch[i]);
3812 
3813 	/* size of controller ring buffer */
3814 	writel(h->max_commands, &h->transtable->RepQSize);
3815 	writel(1, &h->transtable->RepQCount);
3816 	writel(0, &h->transtable->RepQCtrAddrLow32);
3817 	writel(0, &h->transtable->RepQCtrAddrHigh32);
3818 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3819 	writel(0, &h->transtable->RepQAddr0High32);
3820 	writel(CFGTBL_Trans_Performant,
3821 		&(h->cfgtable->HostWrite.TransportRequest));
3822 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3823 	/* under certain very rare conditions, this can take awhile.
3824 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3825 	 * as we enter this code.) */
3826 	for (l = 0; l < MAX_CONFIG_WAIT; l++) {
3827 		register_value = readl(h->vaddr + SA5_DOORBELL);
3828 		if (!(register_value & CFGTBL_ChangeReq))
3829 			break;
3830 		/* delay and try again */
3831 		set_current_state(TASK_INTERRUPTIBLE);
3832 		schedule_timeout(10);
3833 	}
3834 	register_value = readl(&(h->cfgtable->TransportActive));
3835 	if (!(register_value & CFGTBL_Trans_Performant)) {
3836 		dev_warn(&h->pdev->dev, "unable to get board into"
3837 					" performant mode\n");
3838 		return;
3839 	}
3840 
3841 	/* Change the access methods to the performant access methods */
3842 	h->access = SA5_performant_access;
3843 	h->transMethod = CFGTBL_Trans_Performant;
3844 
3845 	return;
3846 
3847 clean_up:
3848 	if (h->reply_pool)
3849 		pci_free_consistent(h->pdev, h->reply_pool_size,
3850 			h->reply_pool, h->reply_pool_dhandle);
3851 	kfree(h->blockFetchTable);
3852 }
3853 
3854 /*
3855  *  This is it.  Register the PCI driver information for the cards we control
3856  *  the OS will call our registered routines when it finds one of our cards.
3857  */
3858 static int __init hpsa_init(void)
3859 {
3860 	int err;
3861 	/* Start the scan thread */
3862 	hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan");
3863 	if (IS_ERR(hpsa_scan_thread)) {
3864 		err = PTR_ERR(hpsa_scan_thread);
3865 		return -ENODEV;
3866 	}
3867 	err = pci_register_driver(&hpsa_pci_driver);
3868 	if (err)
3869 		kthread_stop(hpsa_scan_thread);
3870 	return err;
3871 }
3872 
3873 static void __exit hpsa_cleanup(void)
3874 {
3875 	pci_unregister_driver(&hpsa_pci_driver);
3876 	kthread_stop(hpsa_scan_thread);
3877 }
3878 
3879 module_init(hpsa_init);
3880 module_exit(hpsa_cleanup);
3881