1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 12 * NON INFRINGEMENT. See the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 * 18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com 19 * 20 */ 21 22 #include <linux/module.h> 23 #include <linux/interrupt.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/delay.h> 29 #include <linux/fs.h> 30 #include <linux/timer.h> 31 #include <linux/seq_file.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp_lock.h> 35 #include <linux/compat.h> 36 #include <linux/blktrace_api.h> 37 #include <linux/uaccess.h> 38 #include <linux/io.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/completion.h> 41 #include <linux/moduleparam.h> 42 #include <scsi/scsi.h> 43 #include <scsi/scsi_cmnd.h> 44 #include <scsi/scsi_device.h> 45 #include <scsi/scsi_host.h> 46 #include <linux/cciss_ioctl.h> 47 #include <linux/string.h> 48 #include <linux/bitmap.h> 49 #include <asm/atomic.h> 50 #include <linux/kthread.h> 51 #include "hpsa_cmd.h" 52 #include "hpsa.h" 53 54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ 55 #define HPSA_DRIVER_VERSION "2.0.1-3" 56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 57 58 /* How long to wait (in milliseconds) for board to go into simple mode */ 59 #define MAX_CONFIG_WAIT 30000 60 #define MAX_IOCTL_CONFIG_WAIT 1000 61 62 /*define how many times we will try a command because of bus resets */ 63 #define MAX_CMD_RETRIES 3 64 65 /* Embedded module documentation macros - see modules.h */ 66 MODULE_AUTHOR("Hewlett-Packard Company"); 67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 68 HPSA_DRIVER_VERSION); 69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); 70 MODULE_VERSION(HPSA_DRIVER_VERSION); 71 MODULE_LICENSE("GPL"); 72 73 static int hpsa_allow_any; 74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); 75 MODULE_PARM_DESC(hpsa_allow_any, 76 "Allow hpsa driver to access unknown HP Smart Array hardware"); 77 78 /* define the PCI info for the cards we can control */ 79 static const struct pci_device_id hpsa_pci_device_id[] = { 80 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 81 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 82 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a}, 86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b}, 87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 88 #define PCI_DEVICE_ID_HP_CISSF 0x333f 89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x333F}, 90 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 91 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 92 {0,} 93 }; 94 95 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 96 97 /* board_id = Subsystem Device ID & Vendor ID 98 * product = Marketing Name for the board 99 * access = Address of the struct of function pointers 100 */ 101 static struct board_type products[] = { 102 {0x3241103C, "Smart Array P212", &SA5_access}, 103 {0x3243103C, "Smart Array P410", &SA5_access}, 104 {0x3245103C, "Smart Array P410i", &SA5_access}, 105 {0x3247103C, "Smart Array P411", &SA5_access}, 106 {0x3249103C, "Smart Array P812", &SA5_access}, 107 {0x324a103C, "Smart Array P712m", &SA5_access}, 108 {0x324b103C, "Smart Array P711m", &SA5_access}, 109 {0x3233103C, "StorageWorks P1210m", &SA5_access}, 110 {0x333F103C, "StorageWorks P1210m", &SA5_access}, 111 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 112 }; 113 114 static int number_of_controllers; 115 116 static irqreturn_t do_hpsa_intr(int irq, void *dev_id); 117 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); 118 static void start_io(struct ctlr_info *h); 119 120 #ifdef CONFIG_COMPAT 121 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); 122 #endif 123 124 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 125 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); 126 static struct CommandList *cmd_alloc(struct ctlr_info *h); 127 static struct CommandList *cmd_special_alloc(struct ctlr_info *h); 128 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 129 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 130 int cmd_type); 131 132 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd, 133 void (*done)(struct scsi_cmnd *)); 134 static void hpsa_scan_start(struct Scsi_Host *); 135 static int hpsa_scan_finished(struct Scsi_Host *sh, 136 unsigned long elapsed_time); 137 138 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 139 static int hpsa_slave_alloc(struct scsi_device *sdev); 140 static void hpsa_slave_destroy(struct scsi_device *sdev); 141 142 static ssize_t raid_level_show(struct device *dev, 143 struct device_attribute *attr, char *buf); 144 static ssize_t lunid_show(struct device *dev, 145 struct device_attribute *attr, char *buf); 146 static ssize_t unique_id_show(struct device *dev, 147 struct device_attribute *attr, char *buf); 148 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); 149 static ssize_t host_store_rescan(struct device *dev, 150 struct device_attribute *attr, const char *buf, size_t count); 151 static int check_for_unit_attention(struct ctlr_info *h, 152 struct CommandList *c); 153 static void check_ioctl_unit_attention(struct ctlr_info *h, 154 struct CommandList *c); 155 /* performant mode helper functions */ 156 static void calc_bucket_map(int *bucket, int num_buckets, 157 int nsgs, int *bucket_map); 158 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 159 static inline u32 next_command(struct ctlr_info *h); 160 161 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); 162 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); 163 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); 164 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 165 166 static struct device_attribute *hpsa_sdev_attrs[] = { 167 &dev_attr_raid_level, 168 &dev_attr_lunid, 169 &dev_attr_unique_id, 170 NULL, 171 }; 172 173 static struct device_attribute *hpsa_shost_attrs[] = { 174 &dev_attr_rescan, 175 NULL, 176 }; 177 178 static struct scsi_host_template hpsa_driver_template = { 179 .module = THIS_MODULE, 180 .name = "hpsa", 181 .proc_name = "hpsa", 182 .queuecommand = hpsa_scsi_queue_command, 183 .scan_start = hpsa_scan_start, 184 .scan_finished = hpsa_scan_finished, 185 .this_id = -1, 186 .sg_tablesize = MAXSGENTRIES, 187 .use_clustering = ENABLE_CLUSTERING, 188 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 189 .ioctl = hpsa_ioctl, 190 .slave_alloc = hpsa_slave_alloc, 191 .slave_destroy = hpsa_slave_destroy, 192 #ifdef CONFIG_COMPAT 193 .compat_ioctl = hpsa_compat_ioctl, 194 #endif 195 .sdev_attrs = hpsa_sdev_attrs, 196 .shost_attrs = hpsa_shost_attrs, 197 }; 198 199 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 200 { 201 unsigned long *priv = shost_priv(sdev->host); 202 return (struct ctlr_info *) *priv; 203 } 204 205 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 206 { 207 unsigned long *priv = shost_priv(sh); 208 return (struct ctlr_info *) *priv; 209 } 210 211 static struct task_struct *hpsa_scan_thread; 212 static DEFINE_MUTEX(hpsa_scan_mutex); 213 static LIST_HEAD(hpsa_scan_q); 214 static int hpsa_scan_func(void *data); 215 216 /** 217 * add_to_scan_list() - add controller to rescan queue 218 * @h: Pointer to the controller. 219 * 220 * Adds the controller to the rescan queue if not already on the queue. 221 * 222 * returns 1 if added to the queue, 0 if skipped (could be on the 223 * queue already, or the controller could be initializing or shutting 224 * down). 225 **/ 226 static int add_to_scan_list(struct ctlr_info *h) 227 { 228 struct ctlr_info *test_h; 229 int found = 0; 230 int ret = 0; 231 232 if (h->busy_initializing) 233 return 0; 234 235 /* 236 * If we don't get the lock, it means the driver is unloading 237 * and there's no point in scheduling a new scan. 238 */ 239 if (!mutex_trylock(&h->busy_shutting_down)) 240 return 0; 241 242 mutex_lock(&hpsa_scan_mutex); 243 list_for_each_entry(test_h, &hpsa_scan_q, scan_list) { 244 if (test_h == h) { 245 found = 1; 246 break; 247 } 248 } 249 if (!found && !h->busy_scanning) { 250 INIT_COMPLETION(h->scan_wait); 251 list_add_tail(&h->scan_list, &hpsa_scan_q); 252 ret = 1; 253 } 254 mutex_unlock(&hpsa_scan_mutex); 255 mutex_unlock(&h->busy_shutting_down); 256 257 return ret; 258 } 259 260 /** 261 * remove_from_scan_list() - remove controller from rescan queue 262 * @h: Pointer to the controller. 263 * 264 * Removes the controller from the rescan queue if present. Blocks if 265 * the controller is currently conducting a rescan. The controller 266 * can be in one of three states: 267 * 1. Doesn't need a scan 268 * 2. On the scan list, but not scanning yet (we remove it) 269 * 3. Busy scanning (and not on the list). In this case we want to wait for 270 * the scan to complete to make sure the scanning thread for this 271 * controller is completely idle. 272 **/ 273 static void remove_from_scan_list(struct ctlr_info *h) 274 { 275 struct ctlr_info *test_h, *tmp_h; 276 277 mutex_lock(&hpsa_scan_mutex); 278 list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) { 279 if (test_h == h) { /* state 2. */ 280 list_del(&h->scan_list); 281 complete_all(&h->scan_wait); 282 mutex_unlock(&hpsa_scan_mutex); 283 return; 284 } 285 } 286 if (h->busy_scanning) { /* state 3. */ 287 mutex_unlock(&hpsa_scan_mutex); 288 wait_for_completion(&h->scan_wait); 289 } else { /* state 1, nothing to do. */ 290 mutex_unlock(&hpsa_scan_mutex); 291 } 292 } 293 294 /* hpsa_scan_func() - kernel thread used to rescan controllers 295 * @data: Ignored. 296 * 297 * A kernel thread used scan for drive topology changes on 298 * controllers. The thread processes only one controller at a time 299 * using a queue. Controllers are added to the queue using 300 * add_to_scan_list() and removed from the queue either after done 301 * processing or using remove_from_scan_list(). 302 * 303 * returns 0. 304 **/ 305 static int hpsa_scan_func(__attribute__((unused)) void *data) 306 { 307 struct ctlr_info *h; 308 int host_no; 309 310 while (1) { 311 set_current_state(TASK_INTERRUPTIBLE); 312 schedule(); 313 if (kthread_should_stop()) 314 break; 315 316 while (1) { 317 mutex_lock(&hpsa_scan_mutex); 318 if (list_empty(&hpsa_scan_q)) { 319 mutex_unlock(&hpsa_scan_mutex); 320 break; 321 } 322 h = list_entry(hpsa_scan_q.next, struct ctlr_info, 323 scan_list); 324 list_del(&h->scan_list); 325 h->busy_scanning = 1; 326 mutex_unlock(&hpsa_scan_mutex); 327 host_no = h->scsi_host ? h->scsi_host->host_no : -1; 328 hpsa_scan_start(h->scsi_host); 329 complete_all(&h->scan_wait); 330 mutex_lock(&hpsa_scan_mutex); 331 h->busy_scanning = 0; 332 mutex_unlock(&hpsa_scan_mutex); 333 } 334 } 335 return 0; 336 } 337 338 static int check_for_unit_attention(struct ctlr_info *h, 339 struct CommandList *c) 340 { 341 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) 342 return 0; 343 344 switch (c->err_info->SenseInfo[12]) { 345 case STATE_CHANGED: 346 dev_warn(&h->pdev->dev, "hpsa%d: a state change " 347 "detected, command retried\n", h->ctlr); 348 break; 349 case LUN_FAILED: 350 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure " 351 "detected, action required\n", h->ctlr); 352 break; 353 case REPORT_LUNS_CHANGED: 354 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data " 355 "changed\n", h->ctlr); 356 /* 357 * Here, we could call add_to_scan_list and wake up the scan thread, 358 * except that it's quite likely that we will get more than one 359 * REPORT_LUNS_CHANGED condition in quick succession, which means 360 * that those which occur after the first one will likely happen 361 * *during* the hpsa_scan_thread's rescan. And the rescan code is not 362 * robust enough to restart in the middle, undoing what it has already 363 * done, and it's not clear that it's even possible to do this, since 364 * part of what it does is notify the SCSI mid layer, which starts 365 * doing it's own i/o to read partition tables and so on, and the 366 * driver doesn't have visibility to know what might need undoing. 367 * In any event, if possible, it is horribly complicated to get right 368 * so we just don't do it for now. 369 * 370 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012. 371 */ 372 break; 373 case POWER_OR_RESET: 374 dev_warn(&h->pdev->dev, "hpsa%d: a power on " 375 "or device reset detected\n", h->ctlr); 376 break; 377 case UNIT_ATTENTION_CLEARED: 378 dev_warn(&h->pdev->dev, "hpsa%d: unit attention " 379 "cleared by another initiator\n", h->ctlr); 380 break; 381 default: 382 dev_warn(&h->pdev->dev, "hpsa%d: unknown " 383 "unit attention detected\n", h->ctlr); 384 break; 385 } 386 return 1; 387 } 388 389 static ssize_t host_store_rescan(struct device *dev, 390 struct device_attribute *attr, 391 const char *buf, size_t count) 392 { 393 struct ctlr_info *h; 394 struct Scsi_Host *shost = class_to_shost(dev); 395 h = shost_to_hba(shost); 396 if (add_to_scan_list(h)) { 397 wake_up_process(hpsa_scan_thread); 398 wait_for_completion_interruptible(&h->scan_wait); 399 } 400 return count; 401 } 402 403 /* Enqueuing and dequeuing functions for cmdlists. */ 404 static inline void addQ(struct hlist_head *list, struct CommandList *c) 405 { 406 hlist_add_head(&c->list, list); 407 } 408 409 static inline u32 next_command(struct ctlr_info *h) 410 { 411 u32 a; 412 413 if (unlikely(h->transMethod != CFGTBL_Trans_Performant)) 414 return h->access.command_completed(h); 415 416 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) { 417 a = *(h->reply_pool_head); /* Next cmd in ring buffer */ 418 (h->reply_pool_head)++; 419 h->commands_outstanding--; 420 } else { 421 a = FIFO_EMPTY; 422 } 423 /* Check for wraparound */ 424 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) { 425 h->reply_pool_head = h->reply_pool; 426 h->reply_pool_wraparound ^= 1; 427 } 428 return a; 429 } 430 431 /* set_performant_mode: Modify the tag for cciss performant 432 * set bit 0 for pull model, bits 3-1 for block fetch 433 * register number 434 */ 435 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c) 436 { 437 if (likely(h->transMethod == CFGTBL_Trans_Performant)) 438 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 439 } 440 441 static void enqueue_cmd_and_start_io(struct ctlr_info *h, 442 struct CommandList *c) 443 { 444 unsigned long flags; 445 446 set_performant_mode(h, c); 447 spin_lock_irqsave(&h->lock, flags); 448 addQ(&h->reqQ, c); 449 h->Qdepth++; 450 start_io(h); 451 spin_unlock_irqrestore(&h->lock, flags); 452 } 453 454 static inline void removeQ(struct CommandList *c) 455 { 456 if (WARN_ON(hlist_unhashed(&c->list))) 457 return; 458 hlist_del_init(&c->list); 459 } 460 461 static inline int is_hba_lunid(unsigned char scsi3addr[]) 462 { 463 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 464 } 465 466 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 467 { 468 return (scsi3addr[3] & 0xC0) == 0x40; 469 } 470 471 static inline int is_scsi_rev_5(struct ctlr_info *h) 472 { 473 if (!h->hba_inquiry_data) 474 return 0; 475 if ((h->hba_inquiry_data[2] & 0x07) == 5) 476 return 1; 477 return 0; 478 } 479 480 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", 481 "UNKNOWN" 482 }; 483 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) 484 485 static ssize_t raid_level_show(struct device *dev, 486 struct device_attribute *attr, char *buf) 487 { 488 ssize_t l = 0; 489 unsigned char rlevel; 490 struct ctlr_info *h; 491 struct scsi_device *sdev; 492 struct hpsa_scsi_dev_t *hdev; 493 unsigned long flags; 494 495 sdev = to_scsi_device(dev); 496 h = sdev_to_hba(sdev); 497 spin_lock_irqsave(&h->lock, flags); 498 hdev = sdev->hostdata; 499 if (!hdev) { 500 spin_unlock_irqrestore(&h->lock, flags); 501 return -ENODEV; 502 } 503 504 /* Is this even a logical drive? */ 505 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { 506 spin_unlock_irqrestore(&h->lock, flags); 507 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 508 return l; 509 } 510 511 rlevel = hdev->raid_level; 512 spin_unlock_irqrestore(&h->lock, flags); 513 if (rlevel > RAID_UNKNOWN) 514 rlevel = RAID_UNKNOWN; 515 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 516 return l; 517 } 518 519 static ssize_t lunid_show(struct device *dev, 520 struct device_attribute *attr, char *buf) 521 { 522 struct ctlr_info *h; 523 struct scsi_device *sdev; 524 struct hpsa_scsi_dev_t *hdev; 525 unsigned long flags; 526 unsigned char lunid[8]; 527 528 sdev = to_scsi_device(dev); 529 h = sdev_to_hba(sdev); 530 spin_lock_irqsave(&h->lock, flags); 531 hdev = sdev->hostdata; 532 if (!hdev) { 533 spin_unlock_irqrestore(&h->lock, flags); 534 return -ENODEV; 535 } 536 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 537 spin_unlock_irqrestore(&h->lock, flags); 538 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 539 lunid[0], lunid[1], lunid[2], lunid[3], 540 lunid[4], lunid[5], lunid[6], lunid[7]); 541 } 542 543 static ssize_t unique_id_show(struct device *dev, 544 struct device_attribute *attr, char *buf) 545 { 546 struct ctlr_info *h; 547 struct scsi_device *sdev; 548 struct hpsa_scsi_dev_t *hdev; 549 unsigned long flags; 550 unsigned char sn[16]; 551 552 sdev = to_scsi_device(dev); 553 h = sdev_to_hba(sdev); 554 spin_lock_irqsave(&h->lock, flags); 555 hdev = sdev->hostdata; 556 if (!hdev) { 557 spin_unlock_irqrestore(&h->lock, flags); 558 return -ENODEV; 559 } 560 memcpy(sn, hdev->device_id, sizeof(sn)); 561 spin_unlock_irqrestore(&h->lock, flags); 562 return snprintf(buf, 16 * 2 + 2, 563 "%02X%02X%02X%02X%02X%02X%02X%02X" 564 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 565 sn[0], sn[1], sn[2], sn[3], 566 sn[4], sn[5], sn[6], sn[7], 567 sn[8], sn[9], sn[10], sn[11], 568 sn[12], sn[13], sn[14], sn[15]); 569 } 570 571 static int hpsa_find_target_lun(struct ctlr_info *h, 572 unsigned char scsi3addr[], int bus, int *target, int *lun) 573 { 574 /* finds an unused bus, target, lun for a new physical device 575 * assumes h->devlock is held 576 */ 577 int i, found = 0; 578 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA); 579 580 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3); 581 582 for (i = 0; i < h->ndevices; i++) { 583 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 584 set_bit(h->dev[i]->target, lun_taken); 585 } 586 587 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) { 588 if (!test_bit(i, lun_taken)) { 589 /* *bus = 1; */ 590 *target = i; 591 *lun = 0; 592 found = 1; 593 break; 594 } 595 } 596 return !found; 597 } 598 599 /* Add an entry into h->dev[] array. */ 600 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, 601 struct hpsa_scsi_dev_t *device, 602 struct hpsa_scsi_dev_t *added[], int *nadded) 603 { 604 /* assumes h->devlock is held */ 605 int n = h->ndevices; 606 int i; 607 unsigned char addr1[8], addr2[8]; 608 struct hpsa_scsi_dev_t *sd; 609 610 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) { 611 dev_err(&h->pdev->dev, "too many devices, some will be " 612 "inaccessible.\n"); 613 return -1; 614 } 615 616 /* physical devices do not have lun or target assigned until now. */ 617 if (device->lun != -1) 618 /* Logical device, lun is already assigned. */ 619 goto lun_assigned; 620 621 /* If this device a non-zero lun of a multi-lun device 622 * byte 4 of the 8-byte LUN addr will contain the logical 623 * unit no, zero otherise. 624 */ 625 if (device->scsi3addr[4] == 0) { 626 /* This is not a non-zero lun of a multi-lun device */ 627 if (hpsa_find_target_lun(h, device->scsi3addr, 628 device->bus, &device->target, &device->lun) != 0) 629 return -1; 630 goto lun_assigned; 631 } 632 633 /* This is a non-zero lun of a multi-lun device. 634 * Search through our list and find the device which 635 * has the same 8 byte LUN address, excepting byte 4. 636 * Assign the same bus and target for this new LUN. 637 * Use the logical unit number from the firmware. 638 */ 639 memcpy(addr1, device->scsi3addr, 8); 640 addr1[4] = 0; 641 for (i = 0; i < n; i++) { 642 sd = h->dev[i]; 643 memcpy(addr2, sd->scsi3addr, 8); 644 addr2[4] = 0; 645 /* differ only in byte 4? */ 646 if (memcmp(addr1, addr2, 8) == 0) { 647 device->bus = sd->bus; 648 device->target = sd->target; 649 device->lun = device->scsi3addr[4]; 650 break; 651 } 652 } 653 if (device->lun == -1) { 654 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 655 " suspect firmware bug or unsupported hardware " 656 "configuration.\n"); 657 return -1; 658 } 659 660 lun_assigned: 661 662 h->dev[n] = device; 663 h->ndevices++; 664 added[*nadded] = device; 665 (*nadded)++; 666 667 /* initially, (before registering with scsi layer) we don't 668 * know our hostno and we don't want to print anything first 669 * time anyway (the scsi layer's inquiries will show that info) 670 */ 671 /* if (hostno != -1) */ 672 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", 673 scsi_device_type(device->devtype), hostno, 674 device->bus, device->target, device->lun); 675 return 0; 676 } 677 678 /* Replace an entry from h->dev[] array. */ 679 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, 680 int entry, struct hpsa_scsi_dev_t *new_entry, 681 struct hpsa_scsi_dev_t *added[], int *nadded, 682 struct hpsa_scsi_dev_t *removed[], int *nremoved) 683 { 684 /* assumes h->devlock is held */ 685 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA); 686 removed[*nremoved] = h->dev[entry]; 687 (*nremoved)++; 688 h->dev[entry] = new_entry; 689 added[*nadded] = new_entry; 690 (*nadded)++; 691 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n", 692 scsi_device_type(new_entry->devtype), hostno, new_entry->bus, 693 new_entry->target, new_entry->lun); 694 } 695 696 /* Remove an entry from h->dev[] array. */ 697 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, 698 struct hpsa_scsi_dev_t *removed[], int *nremoved) 699 { 700 /* assumes h->devlock is held */ 701 int i; 702 struct hpsa_scsi_dev_t *sd; 703 704 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA); 705 706 sd = h->dev[entry]; 707 removed[*nremoved] = h->dev[entry]; 708 (*nremoved)++; 709 710 for (i = entry; i < h->ndevices-1; i++) 711 h->dev[i] = h->dev[i+1]; 712 h->ndevices--; 713 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", 714 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, 715 sd->lun); 716 } 717 718 #define SCSI3ADDR_EQ(a, b) ( \ 719 (a)[7] == (b)[7] && \ 720 (a)[6] == (b)[6] && \ 721 (a)[5] == (b)[5] && \ 722 (a)[4] == (b)[4] && \ 723 (a)[3] == (b)[3] && \ 724 (a)[2] == (b)[2] && \ 725 (a)[1] == (b)[1] && \ 726 (a)[0] == (b)[0]) 727 728 static void fixup_botched_add(struct ctlr_info *h, 729 struct hpsa_scsi_dev_t *added) 730 { 731 /* called when scsi_add_device fails in order to re-adjust 732 * h->dev[] to match the mid layer's view. 733 */ 734 unsigned long flags; 735 int i, j; 736 737 spin_lock_irqsave(&h->lock, flags); 738 for (i = 0; i < h->ndevices; i++) { 739 if (h->dev[i] == added) { 740 for (j = i; j < h->ndevices-1; j++) 741 h->dev[j] = h->dev[j+1]; 742 h->ndevices--; 743 break; 744 } 745 } 746 spin_unlock_irqrestore(&h->lock, flags); 747 kfree(added); 748 } 749 750 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 751 struct hpsa_scsi_dev_t *dev2) 752 { 753 if ((is_logical_dev_addr_mode(dev1->scsi3addr) || 754 (dev1->lun != -1 && dev2->lun != -1)) && 755 dev1->devtype != 0x0C) 756 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0); 757 758 /* we compare everything except lun and target as these 759 * are not yet assigned. Compare parts likely 760 * to differ first 761 */ 762 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 763 sizeof(dev1->scsi3addr)) != 0) 764 return 0; 765 if (memcmp(dev1->device_id, dev2->device_id, 766 sizeof(dev1->device_id)) != 0) 767 return 0; 768 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 769 return 0; 770 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 771 return 0; 772 if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0) 773 return 0; 774 if (dev1->devtype != dev2->devtype) 775 return 0; 776 if (dev1->raid_level != dev2->raid_level) 777 return 0; 778 if (dev1->bus != dev2->bus) 779 return 0; 780 return 1; 781 } 782 783 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 784 * and return needle location in *index. If scsi3addr matches, but not 785 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 786 * location in *index. If needle not found, return DEVICE_NOT_FOUND. 787 */ 788 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 789 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 790 int *index) 791 { 792 int i; 793 #define DEVICE_NOT_FOUND 0 794 #define DEVICE_CHANGED 1 795 #define DEVICE_SAME 2 796 for (i = 0; i < haystack_size; i++) { 797 if (haystack[i] == NULL) /* previously removed. */ 798 continue; 799 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 800 *index = i; 801 if (device_is_the_same(needle, haystack[i])) 802 return DEVICE_SAME; 803 else 804 return DEVICE_CHANGED; 805 } 806 } 807 *index = -1; 808 return DEVICE_NOT_FOUND; 809 } 810 811 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, 812 struct hpsa_scsi_dev_t *sd[], int nsds) 813 { 814 /* sd contains scsi3 addresses and devtypes, and inquiry 815 * data. This function takes what's in sd to be the current 816 * reality and updates h->dev[] to reflect that reality. 817 */ 818 int i, entry, device_change, changes = 0; 819 struct hpsa_scsi_dev_t *csd; 820 unsigned long flags; 821 struct hpsa_scsi_dev_t **added, **removed; 822 int nadded, nremoved; 823 struct Scsi_Host *sh = NULL; 824 825 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA, 826 GFP_KERNEL); 827 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA, 828 GFP_KERNEL); 829 830 if (!added || !removed) { 831 dev_warn(&h->pdev->dev, "out of memory in " 832 "adjust_hpsa_scsi_table\n"); 833 goto free_and_out; 834 } 835 836 spin_lock_irqsave(&h->devlock, flags); 837 838 /* find any devices in h->dev[] that are not in 839 * sd[] and remove them from h->dev[], and for any 840 * devices which have changed, remove the old device 841 * info and add the new device info. 842 */ 843 i = 0; 844 nremoved = 0; 845 nadded = 0; 846 while (i < h->ndevices) { 847 csd = h->dev[i]; 848 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 849 if (device_change == DEVICE_NOT_FOUND) { 850 changes++; 851 hpsa_scsi_remove_entry(h, hostno, i, 852 removed, &nremoved); 853 continue; /* remove ^^^, hence i not incremented */ 854 } else if (device_change == DEVICE_CHANGED) { 855 changes++; 856 hpsa_scsi_replace_entry(h, hostno, i, sd[entry], 857 added, &nadded, removed, &nremoved); 858 /* Set it to NULL to prevent it from being freed 859 * at the bottom of hpsa_update_scsi_devices() 860 */ 861 sd[entry] = NULL; 862 } 863 i++; 864 } 865 866 /* Now, make sure every device listed in sd[] is also 867 * listed in h->dev[], adding them if they aren't found 868 */ 869 870 for (i = 0; i < nsds; i++) { 871 if (!sd[i]) /* if already added above. */ 872 continue; 873 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 874 h->ndevices, &entry); 875 if (device_change == DEVICE_NOT_FOUND) { 876 changes++; 877 if (hpsa_scsi_add_entry(h, hostno, sd[i], 878 added, &nadded) != 0) 879 break; 880 sd[i] = NULL; /* prevent from being freed later. */ 881 } else if (device_change == DEVICE_CHANGED) { 882 /* should never happen... */ 883 changes++; 884 dev_warn(&h->pdev->dev, 885 "device unexpectedly changed.\n"); 886 /* but if it does happen, we just ignore that device */ 887 } 888 } 889 spin_unlock_irqrestore(&h->devlock, flags); 890 891 /* Don't notify scsi mid layer of any changes the first time through 892 * (or if there are no changes) scsi_scan_host will do it later the 893 * first time through. 894 */ 895 if (hostno == -1 || !changes) 896 goto free_and_out; 897 898 sh = h->scsi_host; 899 /* Notify scsi mid layer of any removed devices */ 900 for (i = 0; i < nremoved; i++) { 901 struct scsi_device *sdev = 902 scsi_device_lookup(sh, removed[i]->bus, 903 removed[i]->target, removed[i]->lun); 904 if (sdev != NULL) { 905 scsi_remove_device(sdev); 906 scsi_device_put(sdev); 907 } else { 908 /* We don't expect to get here. 909 * future cmds to this device will get selection 910 * timeout as if the device was gone. 911 */ 912 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " 913 " for removal.", hostno, removed[i]->bus, 914 removed[i]->target, removed[i]->lun); 915 } 916 kfree(removed[i]); 917 removed[i] = NULL; 918 } 919 920 /* Notify scsi mid layer of any added devices */ 921 for (i = 0; i < nadded; i++) { 922 if (scsi_add_device(sh, added[i]->bus, 923 added[i]->target, added[i]->lun) == 0) 924 continue; 925 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " 926 "device not added.\n", hostno, added[i]->bus, 927 added[i]->target, added[i]->lun); 928 /* now we have to remove it from h->dev, 929 * since it didn't get added to scsi mid layer 930 */ 931 fixup_botched_add(h, added[i]); 932 } 933 934 free_and_out: 935 kfree(added); 936 kfree(removed); 937 } 938 939 /* 940 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t * 941 * Assume's h->devlock is held. 942 */ 943 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 944 int bus, int target, int lun) 945 { 946 int i; 947 struct hpsa_scsi_dev_t *sd; 948 949 for (i = 0; i < h->ndevices; i++) { 950 sd = h->dev[i]; 951 if (sd->bus == bus && sd->target == target && sd->lun == lun) 952 return sd; 953 } 954 return NULL; 955 } 956 957 /* link sdev->hostdata to our per-device structure. */ 958 static int hpsa_slave_alloc(struct scsi_device *sdev) 959 { 960 struct hpsa_scsi_dev_t *sd; 961 unsigned long flags; 962 struct ctlr_info *h; 963 964 h = sdev_to_hba(sdev); 965 spin_lock_irqsave(&h->devlock, flags); 966 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 967 sdev_id(sdev), sdev->lun); 968 if (sd != NULL) 969 sdev->hostdata = sd; 970 spin_unlock_irqrestore(&h->devlock, flags); 971 return 0; 972 } 973 974 static void hpsa_slave_destroy(struct scsi_device *sdev) 975 { 976 /* nothing to do. */ 977 } 978 979 static void hpsa_scsi_setup(struct ctlr_info *h) 980 { 981 h->ndevices = 0; 982 h->scsi_host = NULL; 983 spin_lock_init(&h->devlock); 984 } 985 986 static void complete_scsi_command(struct CommandList *cp, 987 int timeout, u32 tag) 988 { 989 struct scsi_cmnd *cmd; 990 struct ctlr_info *h; 991 struct ErrorInfo *ei; 992 993 unsigned char sense_key; 994 unsigned char asc; /* additional sense code */ 995 unsigned char ascq; /* additional sense code qualifier */ 996 997 ei = cp->err_info; 998 cmd = (struct scsi_cmnd *) cp->scsi_cmd; 999 h = cp->h; 1000 1001 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 1002 1003 cmd->result = (DID_OK << 16); /* host byte */ 1004 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 1005 cmd->result |= (ei->ScsiStatus << 1); 1006 1007 /* copy the sense data whether we need to or not. */ 1008 memcpy(cmd->sense_buffer, ei->SenseInfo, 1009 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ? 1010 SCSI_SENSE_BUFFERSIZE : 1011 ei->SenseLen); 1012 scsi_set_resid(cmd, ei->ResidualCnt); 1013 1014 if (ei->CommandStatus == 0) { 1015 cmd->scsi_done(cmd); 1016 cmd_free(h, cp); 1017 return; 1018 } 1019 1020 /* an error has occurred */ 1021 switch (ei->CommandStatus) { 1022 1023 case CMD_TARGET_STATUS: 1024 if (ei->ScsiStatus) { 1025 /* Get sense key */ 1026 sense_key = 0xf & ei->SenseInfo[2]; 1027 /* Get additional sense code */ 1028 asc = ei->SenseInfo[12]; 1029 /* Get addition sense code qualifier */ 1030 ascq = ei->SenseInfo[13]; 1031 } 1032 1033 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 1034 if (check_for_unit_attention(h, cp)) { 1035 cmd->result = DID_SOFT_ERROR << 16; 1036 break; 1037 } 1038 if (sense_key == ILLEGAL_REQUEST) { 1039 /* 1040 * SCSI REPORT_LUNS is commonly unsupported on 1041 * Smart Array. Suppress noisy complaint. 1042 */ 1043 if (cp->Request.CDB[0] == REPORT_LUNS) 1044 break; 1045 1046 /* If ASC/ASCQ indicate Logical Unit 1047 * Not Supported condition, 1048 */ 1049 if ((asc == 0x25) && (ascq == 0x0)) { 1050 dev_warn(&h->pdev->dev, "cp %p " 1051 "has check condition\n", cp); 1052 break; 1053 } 1054 } 1055 1056 if (sense_key == NOT_READY) { 1057 /* If Sense is Not Ready, Logical Unit 1058 * Not ready, Manual Intervention 1059 * required 1060 */ 1061 if ((asc == 0x04) && (ascq == 0x03)) { 1062 dev_warn(&h->pdev->dev, "cp %p " 1063 "has check condition: unit " 1064 "not ready, manual " 1065 "intervention required\n", cp); 1066 break; 1067 } 1068 } 1069 if (sense_key == ABORTED_COMMAND) { 1070 /* Aborted command is retryable */ 1071 dev_warn(&h->pdev->dev, "cp %p " 1072 "has check condition: aborted command: " 1073 "ASC: 0x%x, ASCQ: 0x%x\n", 1074 cp, asc, ascq); 1075 cmd->result = DID_SOFT_ERROR << 16; 1076 break; 1077 } 1078 /* Must be some other type of check condition */ 1079 dev_warn(&h->pdev->dev, "cp %p has check condition: " 1080 "unknown type: " 1081 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1082 "Returning result: 0x%x, " 1083 "cmd=[%02x %02x %02x %02x %02x " 1084 "%02x %02x %02x %02x %02x %02x " 1085 "%02x %02x %02x %02x %02x]\n", 1086 cp, sense_key, asc, ascq, 1087 cmd->result, 1088 cmd->cmnd[0], cmd->cmnd[1], 1089 cmd->cmnd[2], cmd->cmnd[3], 1090 cmd->cmnd[4], cmd->cmnd[5], 1091 cmd->cmnd[6], cmd->cmnd[7], 1092 cmd->cmnd[8], cmd->cmnd[9], 1093 cmd->cmnd[10], cmd->cmnd[11], 1094 cmd->cmnd[12], cmd->cmnd[13], 1095 cmd->cmnd[14], cmd->cmnd[15]); 1096 break; 1097 } 1098 1099 1100 /* Problem was not a check condition 1101 * Pass it up to the upper layers... 1102 */ 1103 if (ei->ScsiStatus) { 1104 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 1105 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1106 "Returning result: 0x%x\n", 1107 cp, ei->ScsiStatus, 1108 sense_key, asc, ascq, 1109 cmd->result); 1110 } else { /* scsi status is zero??? How??? */ 1111 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 1112 "Returning no connection.\n", cp), 1113 1114 /* Ordinarily, this case should never happen, 1115 * but there is a bug in some released firmware 1116 * revisions that allows it to happen if, for 1117 * example, a 4100 backplane loses power and 1118 * the tape drive is in it. We assume that 1119 * it's a fatal error of some kind because we 1120 * can't show that it wasn't. We will make it 1121 * look like selection timeout since that is 1122 * the most common reason for this to occur, 1123 * and it's severe enough. 1124 */ 1125 1126 cmd->result = DID_NO_CONNECT << 16; 1127 } 1128 break; 1129 1130 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1131 break; 1132 case CMD_DATA_OVERRUN: 1133 dev_warn(&h->pdev->dev, "cp %p has" 1134 " completed with data overrun " 1135 "reported\n", cp); 1136 break; 1137 case CMD_INVALID: { 1138 /* print_bytes(cp, sizeof(*cp), 1, 0); 1139 print_cmd(cp); */ 1140 /* We get CMD_INVALID if you address a non-existent device 1141 * instead of a selection timeout (no response). You will 1142 * see this if you yank out a drive, then try to access it. 1143 * This is kind of a shame because it means that any other 1144 * CMD_INVALID (e.g. driver bug) will get interpreted as a 1145 * missing target. */ 1146 cmd->result = DID_NO_CONNECT << 16; 1147 } 1148 break; 1149 case CMD_PROTOCOL_ERR: 1150 dev_warn(&h->pdev->dev, "cp %p has " 1151 "protocol error \n", cp); 1152 break; 1153 case CMD_HARDWARE_ERR: 1154 cmd->result = DID_ERROR << 16; 1155 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp); 1156 break; 1157 case CMD_CONNECTION_LOST: 1158 cmd->result = DID_ERROR << 16; 1159 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); 1160 break; 1161 case CMD_ABORTED: 1162 cmd->result = DID_ABORT << 16; 1163 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", 1164 cp, ei->ScsiStatus); 1165 break; 1166 case CMD_ABORT_FAILED: 1167 cmd->result = DID_ERROR << 16; 1168 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); 1169 break; 1170 case CMD_UNSOLICITED_ABORT: 1171 cmd->result = DID_RESET << 16; 1172 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited " 1173 "abort\n", cp); 1174 break; 1175 case CMD_TIMEOUT: 1176 cmd->result = DID_TIME_OUT << 16; 1177 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); 1178 break; 1179 default: 1180 cmd->result = DID_ERROR << 16; 1181 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 1182 cp, ei->CommandStatus); 1183 } 1184 cmd->scsi_done(cmd); 1185 cmd_free(h, cp); 1186 } 1187 1188 static int hpsa_scsi_detect(struct ctlr_info *h) 1189 { 1190 struct Scsi_Host *sh; 1191 int error; 1192 1193 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); 1194 if (sh == NULL) 1195 goto fail; 1196 1197 sh->io_port = 0; 1198 sh->n_io_port = 0; 1199 sh->this_id = -1; 1200 sh->max_channel = 3; 1201 sh->max_cmd_len = MAX_COMMAND_SIZE; 1202 sh->max_lun = HPSA_MAX_LUN; 1203 sh->max_id = HPSA_MAX_LUN; 1204 sh->can_queue = h->nr_cmds; 1205 sh->cmd_per_lun = h->nr_cmds; 1206 h->scsi_host = sh; 1207 sh->hostdata[0] = (unsigned long) h; 1208 sh->irq = h->intr[PERF_MODE_INT]; 1209 sh->unique_id = sh->irq; 1210 error = scsi_add_host(sh, &h->pdev->dev); 1211 if (error) 1212 goto fail_host_put; 1213 scsi_scan_host(sh); 1214 return 0; 1215 1216 fail_host_put: 1217 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host" 1218 " failed for controller %d\n", h->ctlr); 1219 scsi_host_put(sh); 1220 return error; 1221 fail: 1222 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc" 1223 " failed for controller %d\n", h->ctlr); 1224 return -ENOMEM; 1225 } 1226 1227 static void hpsa_pci_unmap(struct pci_dev *pdev, 1228 struct CommandList *c, int sg_used, int data_direction) 1229 { 1230 int i; 1231 union u64bit addr64; 1232 1233 for (i = 0; i < sg_used; i++) { 1234 addr64.val32.lower = c->SG[i].Addr.lower; 1235 addr64.val32.upper = c->SG[i].Addr.upper; 1236 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, 1237 data_direction); 1238 } 1239 } 1240 1241 static void hpsa_map_one(struct pci_dev *pdev, 1242 struct CommandList *cp, 1243 unsigned char *buf, 1244 size_t buflen, 1245 int data_direction) 1246 { 1247 u64 addr64; 1248 1249 if (buflen == 0 || data_direction == PCI_DMA_NONE) { 1250 cp->Header.SGList = 0; 1251 cp->Header.SGTotal = 0; 1252 return; 1253 } 1254 1255 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction); 1256 cp->SG[0].Addr.lower = 1257 (u32) (addr64 & (u64) 0x00000000FFFFFFFF); 1258 cp->SG[0].Addr.upper = 1259 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF); 1260 cp->SG[0].Len = buflen; 1261 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */ 1262 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */ 1263 } 1264 1265 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 1266 struct CommandList *c) 1267 { 1268 DECLARE_COMPLETION_ONSTACK(wait); 1269 1270 c->waiting = &wait; 1271 enqueue_cmd_and_start_io(h, c); 1272 wait_for_completion(&wait); 1273 } 1274 1275 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 1276 struct CommandList *c, int data_direction) 1277 { 1278 int retry_count = 0; 1279 1280 do { 1281 memset(c->err_info, 0, sizeof(c->err_info)); 1282 hpsa_scsi_do_simple_cmd_core(h, c); 1283 retry_count++; 1284 } while (check_for_unit_attention(h, c) && retry_count <= 3); 1285 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 1286 } 1287 1288 static void hpsa_scsi_interpret_error(struct CommandList *cp) 1289 { 1290 struct ErrorInfo *ei; 1291 struct device *d = &cp->h->pdev->dev; 1292 1293 ei = cp->err_info; 1294 switch (ei->CommandStatus) { 1295 case CMD_TARGET_STATUS: 1296 dev_warn(d, "cmd %p has completed with errors\n", cp); 1297 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, 1298 ei->ScsiStatus); 1299 if (ei->ScsiStatus == 0) 1300 dev_warn(d, "SCSI status is abnormally zero. " 1301 "(probably indicates selection timeout " 1302 "reported incorrectly due to a known " 1303 "firmware bug, circa July, 2001.)\n"); 1304 break; 1305 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1306 dev_info(d, "UNDERRUN\n"); 1307 break; 1308 case CMD_DATA_OVERRUN: 1309 dev_warn(d, "cp %p has completed with data overrun\n", cp); 1310 break; 1311 case CMD_INVALID: { 1312 /* controller unfortunately reports SCSI passthru's 1313 * to non-existent targets as invalid commands. 1314 */ 1315 dev_warn(d, "cp %p is reported invalid (probably means " 1316 "target device no longer present)\n", cp); 1317 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); 1318 print_cmd(cp); */ 1319 } 1320 break; 1321 case CMD_PROTOCOL_ERR: 1322 dev_warn(d, "cp %p has protocol error \n", cp); 1323 break; 1324 case CMD_HARDWARE_ERR: 1325 /* cmd->result = DID_ERROR << 16; */ 1326 dev_warn(d, "cp %p had hardware error\n", cp); 1327 break; 1328 case CMD_CONNECTION_LOST: 1329 dev_warn(d, "cp %p had connection lost\n", cp); 1330 break; 1331 case CMD_ABORTED: 1332 dev_warn(d, "cp %p was aborted\n", cp); 1333 break; 1334 case CMD_ABORT_FAILED: 1335 dev_warn(d, "cp %p reports abort failed\n", cp); 1336 break; 1337 case CMD_UNSOLICITED_ABORT: 1338 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); 1339 break; 1340 case CMD_TIMEOUT: 1341 dev_warn(d, "cp %p timed out\n", cp); 1342 break; 1343 default: 1344 dev_warn(d, "cp %p returned unknown status %x\n", cp, 1345 ei->CommandStatus); 1346 } 1347 } 1348 1349 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 1350 unsigned char page, unsigned char *buf, 1351 unsigned char bufsize) 1352 { 1353 int rc = IO_OK; 1354 struct CommandList *c; 1355 struct ErrorInfo *ei; 1356 1357 c = cmd_special_alloc(h); 1358 1359 if (c == NULL) { /* trouble... */ 1360 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1361 return -ENOMEM; 1362 } 1363 1364 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD); 1365 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1366 ei = c->err_info; 1367 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 1368 hpsa_scsi_interpret_error(c); 1369 rc = -1; 1370 } 1371 cmd_special_free(h, c); 1372 return rc; 1373 } 1374 1375 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr) 1376 { 1377 int rc = IO_OK; 1378 struct CommandList *c; 1379 struct ErrorInfo *ei; 1380 1381 c = cmd_special_alloc(h); 1382 1383 if (c == NULL) { /* trouble... */ 1384 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1385 return -1; 1386 } 1387 1388 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG); 1389 hpsa_scsi_do_simple_cmd_core(h, c); 1390 /* no unmap needed here because no data xfer. */ 1391 1392 ei = c->err_info; 1393 if (ei->CommandStatus != 0) { 1394 hpsa_scsi_interpret_error(c); 1395 rc = -1; 1396 } 1397 cmd_special_free(h, c); 1398 return rc; 1399 } 1400 1401 static void hpsa_get_raid_level(struct ctlr_info *h, 1402 unsigned char *scsi3addr, unsigned char *raid_level) 1403 { 1404 int rc; 1405 unsigned char *buf; 1406 1407 *raid_level = RAID_UNKNOWN; 1408 buf = kzalloc(64, GFP_KERNEL); 1409 if (!buf) 1410 return; 1411 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); 1412 if (rc == 0) 1413 *raid_level = buf[8]; 1414 if (*raid_level > RAID_UNKNOWN) 1415 *raid_level = RAID_UNKNOWN; 1416 kfree(buf); 1417 return; 1418 } 1419 1420 /* Get the device id from inquiry page 0x83 */ 1421 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 1422 unsigned char *device_id, int buflen) 1423 { 1424 int rc; 1425 unsigned char *buf; 1426 1427 if (buflen > 16) 1428 buflen = 16; 1429 buf = kzalloc(64, GFP_KERNEL); 1430 if (!buf) 1431 return -1; 1432 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); 1433 if (rc == 0) 1434 memcpy(device_id, &buf[8], buflen); 1435 kfree(buf); 1436 return rc != 0; 1437 } 1438 1439 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 1440 struct ReportLUNdata *buf, int bufsize, 1441 int extended_response) 1442 { 1443 int rc = IO_OK; 1444 struct CommandList *c; 1445 unsigned char scsi3addr[8]; 1446 struct ErrorInfo *ei; 1447 1448 c = cmd_special_alloc(h); 1449 if (c == NULL) { /* trouble... */ 1450 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1451 return -1; 1452 } 1453 /* address the controller */ 1454 memset(scsi3addr, 0, sizeof(scsi3addr)); 1455 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 1456 buf, bufsize, 0, scsi3addr, TYPE_CMD); 1457 if (extended_response) 1458 c->Request.CDB[1] = extended_response; 1459 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1460 ei = c->err_info; 1461 if (ei->CommandStatus != 0 && 1462 ei->CommandStatus != CMD_DATA_UNDERRUN) { 1463 hpsa_scsi_interpret_error(c); 1464 rc = -1; 1465 } 1466 cmd_special_free(h, c); 1467 return rc; 1468 } 1469 1470 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 1471 struct ReportLUNdata *buf, 1472 int bufsize, int extended_response) 1473 { 1474 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); 1475 } 1476 1477 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 1478 struct ReportLUNdata *buf, int bufsize) 1479 { 1480 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 1481 } 1482 1483 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 1484 int bus, int target, int lun) 1485 { 1486 device->bus = bus; 1487 device->target = target; 1488 device->lun = lun; 1489 } 1490 1491 static int hpsa_update_device_info(struct ctlr_info *h, 1492 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device) 1493 { 1494 #define OBDR_TAPE_INQ_SIZE 49 1495 unsigned char *inq_buff; 1496 1497 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1498 if (!inq_buff) 1499 goto bail_out; 1500 1501 /* Do an inquiry to the device to see what it is. */ 1502 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 1503 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 1504 /* Inquiry failed (msg printed already) */ 1505 dev_err(&h->pdev->dev, 1506 "hpsa_update_device_info: inquiry failed\n"); 1507 goto bail_out; 1508 } 1509 1510 /* As a side effect, record the firmware version number 1511 * if we happen to be talking to the RAID controller. 1512 */ 1513 if (is_hba_lunid(scsi3addr)) 1514 memcpy(h->firm_ver, &inq_buff[32], 4); 1515 1516 this_device->devtype = (inq_buff[0] & 0x1f); 1517 memcpy(this_device->scsi3addr, scsi3addr, 8); 1518 memcpy(this_device->vendor, &inq_buff[8], 1519 sizeof(this_device->vendor)); 1520 memcpy(this_device->model, &inq_buff[16], 1521 sizeof(this_device->model)); 1522 memcpy(this_device->revision, &inq_buff[32], 1523 sizeof(this_device->revision)); 1524 memset(this_device->device_id, 0, 1525 sizeof(this_device->device_id)); 1526 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 1527 sizeof(this_device->device_id)); 1528 1529 if (this_device->devtype == TYPE_DISK && 1530 is_logical_dev_addr_mode(scsi3addr)) 1531 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 1532 else 1533 this_device->raid_level = RAID_UNKNOWN; 1534 1535 kfree(inq_buff); 1536 return 0; 1537 1538 bail_out: 1539 kfree(inq_buff); 1540 return 1; 1541 } 1542 1543 static unsigned char *msa2xxx_model[] = { 1544 "MSA2012", 1545 "MSA2024", 1546 "MSA2312", 1547 "MSA2324", 1548 NULL, 1549 }; 1550 1551 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 1552 { 1553 int i; 1554 1555 for (i = 0; msa2xxx_model[i]; i++) 1556 if (strncmp(device->model, msa2xxx_model[i], 1557 strlen(msa2xxx_model[i])) == 0) 1558 return 1; 1559 return 0; 1560 } 1561 1562 /* Helper function to assign bus, target, lun mapping of devices. 1563 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical 1564 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. 1565 * Logical drive target and lun are assigned at this time, but 1566 * physical device lun and target assignment are deferred (assigned 1567 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 1568 */ 1569 static void figure_bus_target_lun(struct ctlr_info *h, 1570 u8 *lunaddrbytes, int *bus, int *target, int *lun, 1571 struct hpsa_scsi_dev_t *device) 1572 { 1573 u32 lunid; 1574 1575 if (is_logical_dev_addr_mode(lunaddrbytes)) { 1576 /* logical device */ 1577 if (unlikely(is_scsi_rev_5(h))) { 1578 /* p1210m, logical drives lun assignments 1579 * match SCSI REPORT LUNS data. 1580 */ 1581 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 1582 *bus = 0; 1583 *target = 0; 1584 *lun = (lunid & 0x3fff) + 1; 1585 } else { 1586 /* not p1210m... */ 1587 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 1588 if (is_msa2xxx(h, device)) { 1589 /* msa2xxx way, put logicals on bus 1 1590 * and match target/lun numbers box 1591 * reports. 1592 */ 1593 *bus = 1; 1594 *target = (lunid >> 16) & 0x3fff; 1595 *lun = lunid & 0x00ff; 1596 } else { 1597 /* Traditional smart array way. */ 1598 *bus = 0; 1599 *lun = 0; 1600 *target = lunid & 0x3fff; 1601 } 1602 } 1603 } else { 1604 /* physical device */ 1605 if (is_hba_lunid(lunaddrbytes)) 1606 if (unlikely(is_scsi_rev_5(h))) { 1607 *bus = 0; /* put p1210m ctlr at 0,0,0 */ 1608 *target = 0; 1609 *lun = 0; 1610 return; 1611 } else 1612 *bus = 3; /* traditional smartarray */ 1613 else 1614 *bus = 2; /* physical disk */ 1615 *target = -1; 1616 *lun = -1; /* we will fill these in later. */ 1617 } 1618 } 1619 1620 /* 1621 * If there is no lun 0 on a target, linux won't find any devices. 1622 * For the MSA2xxx boxes, we have to manually detect the enclosure 1623 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report 1624 * it for some reason. *tmpdevice is the target we're adding, 1625 * this_device is a pointer into the current element of currentsd[] 1626 * that we're building up in update_scsi_devices(), below. 1627 * lunzerobits is a bitmap that tracks which targets already have a 1628 * lun 0 assigned. 1629 * Returns 1 if an enclosure was added, 0 if not. 1630 */ 1631 static int add_msa2xxx_enclosure_device(struct ctlr_info *h, 1632 struct hpsa_scsi_dev_t *tmpdevice, 1633 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, 1634 int bus, int target, int lun, unsigned long lunzerobits[], 1635 int *nmsa2xxx_enclosures) 1636 { 1637 unsigned char scsi3addr[8]; 1638 1639 if (test_bit(target, lunzerobits)) 1640 return 0; /* There is already a lun 0 on this target. */ 1641 1642 if (!is_logical_dev_addr_mode(lunaddrbytes)) 1643 return 0; /* It's the logical targets that may lack lun 0. */ 1644 1645 if (!is_msa2xxx(h, tmpdevice)) 1646 return 0; /* It's only the MSA2xxx that have this problem. */ 1647 1648 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */ 1649 return 0; 1650 1651 if (is_hba_lunid(scsi3addr)) 1652 return 0; /* Don't add the RAID controller here. */ 1653 1654 if (is_scsi_rev_5(h)) 1655 return 0; /* p1210m doesn't need to do this. */ 1656 1657 #define MAX_MSA2XXX_ENCLOSURES 32 1658 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) { 1659 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX " 1660 "enclosures exceeded. Check your hardware " 1661 "configuration."); 1662 return 0; 1663 } 1664 1665 memset(scsi3addr, 0, 8); 1666 scsi3addr[3] = target; 1667 if (hpsa_update_device_info(h, scsi3addr, this_device)) 1668 return 0; 1669 (*nmsa2xxx_enclosures)++; 1670 hpsa_set_bus_target_lun(this_device, bus, target, 0); 1671 set_bit(target, lunzerobits); 1672 return 1; 1673 } 1674 1675 /* 1676 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 1677 * logdev. The number of luns in physdev and logdev are returned in 1678 * *nphysicals and *nlogicals, respectively. 1679 * Returns 0 on success, -1 otherwise. 1680 */ 1681 static int hpsa_gather_lun_info(struct ctlr_info *h, 1682 int reportlunsize, 1683 struct ReportLUNdata *physdev, u32 *nphysicals, 1684 struct ReportLUNdata *logdev, u32 *nlogicals) 1685 { 1686 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) { 1687 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 1688 return -1; 1689 } 1690 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8; 1691 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 1692 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." 1693 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1694 *nphysicals - HPSA_MAX_PHYS_LUN); 1695 *nphysicals = HPSA_MAX_PHYS_LUN; 1696 } 1697 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { 1698 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 1699 return -1; 1700 } 1701 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 1702 /* Reject Logicals in excess of our max capability. */ 1703 if (*nlogicals > HPSA_MAX_LUN) { 1704 dev_warn(&h->pdev->dev, 1705 "maximum logical LUNs (%d) exceeded. " 1706 "%d LUNs ignored.\n", HPSA_MAX_LUN, 1707 *nlogicals - HPSA_MAX_LUN); 1708 *nlogicals = HPSA_MAX_LUN; 1709 } 1710 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 1711 dev_warn(&h->pdev->dev, 1712 "maximum logical + physical LUNs (%d) exceeded. " 1713 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1714 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 1715 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 1716 } 1717 return 0; 1718 } 1719 1720 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i, 1721 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list, 1722 struct ReportLUNdata *logdev_list) 1723 { 1724 /* Helper function, figure out where the LUN ID info is coming from 1725 * given index i, lists of physical and logical devices, where in 1726 * the list the raid controller is supposed to appear (first or last) 1727 */ 1728 1729 int logicals_start = nphysicals + (raid_ctlr_position == 0); 1730 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 1731 1732 if (i == raid_ctlr_position) 1733 return RAID_CTLR_LUNID; 1734 1735 if (i < logicals_start) 1736 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0]; 1737 1738 if (i < last_device) 1739 return &logdev_list->LUN[i - nphysicals - 1740 (raid_ctlr_position == 0)][0]; 1741 BUG(); 1742 return NULL; 1743 } 1744 1745 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) 1746 { 1747 /* the idea here is we could get notified 1748 * that some devices have changed, so we do a report 1749 * physical luns and report logical luns cmd, and adjust 1750 * our list of devices accordingly. 1751 * 1752 * The scsi3addr's of devices won't change so long as the 1753 * adapter is not reset. That means we can rescan and 1754 * tell which devices we already know about, vs. new 1755 * devices, vs. disappearing devices. 1756 */ 1757 struct ReportLUNdata *physdev_list = NULL; 1758 struct ReportLUNdata *logdev_list = NULL; 1759 unsigned char *inq_buff = NULL; 1760 u32 nphysicals = 0; 1761 u32 nlogicals = 0; 1762 u32 ndev_allocated = 0; 1763 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 1764 int ncurrent = 0; 1765 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8; 1766 int i, nmsa2xxx_enclosures, ndevs_to_allocate; 1767 int bus, target, lun; 1768 int raid_ctlr_position; 1769 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR); 1770 1771 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA, 1772 GFP_KERNEL); 1773 physdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1774 logdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1775 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1776 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 1777 1778 if (!currentsd || !physdev_list || !logdev_list || 1779 !inq_buff || !tmpdevice) { 1780 dev_err(&h->pdev->dev, "out of memory\n"); 1781 goto out; 1782 } 1783 memset(lunzerobits, 0, sizeof(lunzerobits)); 1784 1785 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals, 1786 logdev_list, &nlogicals)) 1787 goto out; 1788 1789 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them 1790 * but each of them 4 times through different paths. The plus 1 1791 * is for the RAID controller. 1792 */ 1793 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1; 1794 1795 /* Allocate the per device structures */ 1796 for (i = 0; i < ndevs_to_allocate; i++) { 1797 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 1798 if (!currentsd[i]) { 1799 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", 1800 __FILE__, __LINE__); 1801 goto out; 1802 } 1803 ndev_allocated++; 1804 } 1805 1806 if (unlikely(is_scsi_rev_5(h))) 1807 raid_ctlr_position = 0; 1808 else 1809 raid_ctlr_position = nphysicals + nlogicals; 1810 1811 /* adjust our table of devices */ 1812 nmsa2xxx_enclosures = 0; 1813 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 1814 u8 *lunaddrbytes; 1815 1816 /* Figure out where the LUN ID info is coming from */ 1817 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 1818 i, nphysicals, nlogicals, physdev_list, logdev_list); 1819 /* skip masked physical devices. */ 1820 if (lunaddrbytes[3] & 0xC0 && 1821 i < nphysicals + (raid_ctlr_position == 0)) 1822 continue; 1823 1824 /* Get device type, vendor, model, device id */ 1825 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice)) 1826 continue; /* skip it if we can't talk to it. */ 1827 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun, 1828 tmpdevice); 1829 this_device = currentsd[ncurrent]; 1830 1831 /* 1832 * For the msa2xxx boxes, we have to insert a LUN 0 which 1833 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there 1834 * is nonetheless an enclosure device there. We have to 1835 * present that otherwise linux won't find anything if 1836 * there is no lun 0. 1837 */ 1838 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device, 1839 lunaddrbytes, bus, target, lun, lunzerobits, 1840 &nmsa2xxx_enclosures)) { 1841 ncurrent++; 1842 this_device = currentsd[ncurrent]; 1843 } 1844 1845 *this_device = *tmpdevice; 1846 hpsa_set_bus_target_lun(this_device, bus, target, lun); 1847 1848 switch (this_device->devtype) { 1849 case TYPE_ROM: { 1850 /* We don't *really* support actual CD-ROM devices, 1851 * just "One Button Disaster Recovery" tape drive 1852 * which temporarily pretends to be a CD-ROM drive. 1853 * So we check that the device is really an OBDR tape 1854 * device by checking for "$DR-10" in bytes 43-48 of 1855 * the inquiry data. 1856 */ 1857 char obdr_sig[7]; 1858 #define OBDR_TAPE_SIG "$DR-10" 1859 strncpy(obdr_sig, &inq_buff[43], 6); 1860 obdr_sig[6] = '\0'; 1861 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0) 1862 /* Not OBDR device, ignore it. */ 1863 break; 1864 } 1865 ncurrent++; 1866 break; 1867 case TYPE_DISK: 1868 if (i < nphysicals) 1869 break; 1870 ncurrent++; 1871 break; 1872 case TYPE_TAPE: 1873 case TYPE_MEDIUM_CHANGER: 1874 ncurrent++; 1875 break; 1876 case TYPE_RAID: 1877 /* Only present the Smartarray HBA as a RAID controller. 1878 * If it's a RAID controller other than the HBA itself 1879 * (an external RAID controller, MSA500 or similar) 1880 * don't present it. 1881 */ 1882 if (!is_hba_lunid(lunaddrbytes)) 1883 break; 1884 ncurrent++; 1885 break; 1886 default: 1887 break; 1888 } 1889 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA) 1890 break; 1891 } 1892 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); 1893 out: 1894 kfree(tmpdevice); 1895 for (i = 0; i < ndev_allocated; i++) 1896 kfree(currentsd[i]); 1897 kfree(currentsd); 1898 kfree(inq_buff); 1899 kfree(physdev_list); 1900 kfree(logdev_list); 1901 } 1902 1903 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 1904 * dma mapping and fills in the scatter gather entries of the 1905 * hpsa command, cp. 1906 */ 1907 static int hpsa_scatter_gather(struct pci_dev *pdev, 1908 struct CommandList *cp, 1909 struct scsi_cmnd *cmd) 1910 { 1911 unsigned int len; 1912 struct scatterlist *sg; 1913 u64 addr64; 1914 int use_sg, i; 1915 1916 BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES); 1917 1918 use_sg = scsi_dma_map(cmd); 1919 if (use_sg < 0) 1920 return use_sg; 1921 1922 if (!use_sg) 1923 goto sglist_finished; 1924 1925 scsi_for_each_sg(cmd, sg, use_sg, i) { 1926 addr64 = (u64) sg_dma_address(sg); 1927 len = sg_dma_len(sg); 1928 cp->SG[i].Addr.lower = 1929 (u32) (addr64 & (u64) 0x00000000FFFFFFFF); 1930 cp->SG[i].Addr.upper = 1931 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF); 1932 cp->SG[i].Len = len; 1933 cp->SG[i].Ext = 0; /* we are not chaining */ 1934 } 1935 1936 sglist_finished: 1937 1938 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 1939 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */ 1940 return 0; 1941 } 1942 1943 1944 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd, 1945 void (*done)(struct scsi_cmnd *)) 1946 { 1947 struct ctlr_info *h; 1948 struct hpsa_scsi_dev_t *dev; 1949 unsigned char scsi3addr[8]; 1950 struct CommandList *c; 1951 unsigned long flags; 1952 1953 /* Get the ptr to our adapter structure out of cmd->host. */ 1954 h = sdev_to_hba(cmd->device); 1955 dev = cmd->device->hostdata; 1956 if (!dev) { 1957 cmd->result = DID_NO_CONNECT << 16; 1958 done(cmd); 1959 return 0; 1960 } 1961 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); 1962 1963 /* Need a lock as this is being allocated from the pool */ 1964 spin_lock_irqsave(&h->lock, flags); 1965 c = cmd_alloc(h); 1966 spin_unlock_irqrestore(&h->lock, flags); 1967 if (c == NULL) { /* trouble... */ 1968 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 1969 return SCSI_MLQUEUE_HOST_BUSY; 1970 } 1971 1972 /* Fill in the command list header */ 1973 1974 cmd->scsi_done = done; /* save this for use by completion code */ 1975 1976 /* save c in case we have to abort it */ 1977 cmd->host_scribble = (unsigned char *) c; 1978 1979 c->cmd_type = CMD_SCSI; 1980 c->scsi_cmd = cmd; 1981 c->Header.ReplyQueue = 0; /* unused in simple mode */ 1982 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); 1983 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT); 1984 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT; 1985 1986 /* Fill in the request block... */ 1987 1988 c->Request.Timeout = 0; 1989 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 1990 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 1991 c->Request.CDBLen = cmd->cmd_len; 1992 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 1993 c->Request.Type.Type = TYPE_CMD; 1994 c->Request.Type.Attribute = ATTR_SIMPLE; 1995 switch (cmd->sc_data_direction) { 1996 case DMA_TO_DEVICE: 1997 c->Request.Type.Direction = XFER_WRITE; 1998 break; 1999 case DMA_FROM_DEVICE: 2000 c->Request.Type.Direction = XFER_READ; 2001 break; 2002 case DMA_NONE: 2003 c->Request.Type.Direction = XFER_NONE; 2004 break; 2005 case DMA_BIDIRECTIONAL: 2006 /* This can happen if a buggy application does a scsi passthru 2007 * and sets both inlen and outlen to non-zero. ( see 2008 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 2009 */ 2010 2011 c->Request.Type.Direction = XFER_RSVD; 2012 /* This is technically wrong, and hpsa controllers should 2013 * reject it with CMD_INVALID, which is the most correct 2014 * response, but non-fibre backends appear to let it 2015 * slide by, and give the same results as if this field 2016 * were set correctly. Either way is acceptable for 2017 * our purposes here. 2018 */ 2019 2020 break; 2021 2022 default: 2023 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 2024 cmd->sc_data_direction); 2025 BUG(); 2026 break; 2027 } 2028 2029 if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */ 2030 cmd_free(h, c); 2031 return SCSI_MLQUEUE_HOST_BUSY; 2032 } 2033 enqueue_cmd_and_start_io(h, c); 2034 /* the cmd'll come back via intr handler in complete_scsi_command() */ 2035 return 0; 2036 } 2037 2038 static void hpsa_scan_start(struct Scsi_Host *sh) 2039 { 2040 struct ctlr_info *h = shost_to_hba(sh); 2041 unsigned long flags; 2042 2043 /* wait until any scan already in progress is finished. */ 2044 while (1) { 2045 spin_lock_irqsave(&h->scan_lock, flags); 2046 if (h->scan_finished) 2047 break; 2048 spin_unlock_irqrestore(&h->scan_lock, flags); 2049 wait_event(h->scan_wait_queue, h->scan_finished); 2050 /* Note: We don't need to worry about a race between this 2051 * thread and driver unload because the midlayer will 2052 * have incremented the reference count, so unload won't 2053 * happen if we're in here. 2054 */ 2055 } 2056 h->scan_finished = 0; /* mark scan as in progress */ 2057 spin_unlock_irqrestore(&h->scan_lock, flags); 2058 2059 hpsa_update_scsi_devices(h, h->scsi_host->host_no); 2060 2061 spin_lock_irqsave(&h->scan_lock, flags); 2062 h->scan_finished = 1; /* mark scan as finished. */ 2063 wake_up_all(&h->scan_wait_queue); 2064 spin_unlock_irqrestore(&h->scan_lock, flags); 2065 } 2066 2067 static int hpsa_scan_finished(struct Scsi_Host *sh, 2068 unsigned long elapsed_time) 2069 { 2070 struct ctlr_info *h = shost_to_hba(sh); 2071 unsigned long flags; 2072 int finished; 2073 2074 spin_lock_irqsave(&h->scan_lock, flags); 2075 finished = h->scan_finished; 2076 spin_unlock_irqrestore(&h->scan_lock, flags); 2077 return finished; 2078 } 2079 2080 static void hpsa_unregister_scsi(struct ctlr_info *h) 2081 { 2082 /* we are being forcibly unloaded, and may not refuse. */ 2083 scsi_remove_host(h->scsi_host); 2084 scsi_host_put(h->scsi_host); 2085 h->scsi_host = NULL; 2086 } 2087 2088 static int hpsa_register_scsi(struct ctlr_info *h) 2089 { 2090 int rc; 2091 2092 rc = hpsa_scsi_detect(h); 2093 if (rc != 0) 2094 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed" 2095 " hpsa_scsi_detect(), rc is %d\n", rc); 2096 return rc; 2097 } 2098 2099 static int wait_for_device_to_become_ready(struct ctlr_info *h, 2100 unsigned char lunaddr[]) 2101 { 2102 int rc = 0; 2103 int count = 0; 2104 int waittime = 1; /* seconds */ 2105 struct CommandList *c; 2106 2107 c = cmd_special_alloc(h); 2108 if (!c) { 2109 dev_warn(&h->pdev->dev, "out of memory in " 2110 "wait_for_device_to_become_ready.\n"); 2111 return IO_ERROR; 2112 } 2113 2114 /* Send test unit ready until device ready, or give up. */ 2115 while (count < HPSA_TUR_RETRY_LIMIT) { 2116 2117 /* Wait for a bit. do this first, because if we send 2118 * the TUR right away, the reset will just abort it. 2119 */ 2120 msleep(1000 * waittime); 2121 count++; 2122 2123 /* Increase wait time with each try, up to a point. */ 2124 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 2125 waittime = waittime * 2; 2126 2127 /* Send the Test Unit Ready */ 2128 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); 2129 hpsa_scsi_do_simple_cmd_core(h, c); 2130 /* no unmap needed here because no data xfer. */ 2131 2132 if (c->err_info->CommandStatus == CMD_SUCCESS) 2133 break; 2134 2135 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2136 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 2137 (c->err_info->SenseInfo[2] == NO_SENSE || 2138 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 2139 break; 2140 2141 dev_warn(&h->pdev->dev, "waiting %d secs " 2142 "for device to become ready.\n", waittime); 2143 rc = 1; /* device not ready. */ 2144 } 2145 2146 if (rc) 2147 dev_warn(&h->pdev->dev, "giving up on device.\n"); 2148 else 2149 dev_warn(&h->pdev->dev, "device is ready.\n"); 2150 2151 cmd_special_free(h, c); 2152 return rc; 2153 } 2154 2155 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 2156 * complaining. Doing a host- or bus-reset can't do anything good here. 2157 */ 2158 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 2159 { 2160 int rc; 2161 struct ctlr_info *h; 2162 struct hpsa_scsi_dev_t *dev; 2163 2164 /* find the controller to which the command to be aborted was sent */ 2165 h = sdev_to_hba(scsicmd->device); 2166 if (h == NULL) /* paranoia */ 2167 return FAILED; 2168 dev = scsicmd->device->hostdata; 2169 if (!dev) { 2170 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " 2171 "device lookup failed.\n"); 2172 return FAILED; 2173 } 2174 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n", 2175 h->scsi_host->host_no, dev->bus, dev->target, dev->lun); 2176 /* send a reset to the SCSI LUN which the command was sent to */ 2177 rc = hpsa_send_reset(h, dev->scsi3addr); 2178 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) 2179 return SUCCESS; 2180 2181 dev_warn(&h->pdev->dev, "resetting device failed.\n"); 2182 return FAILED; 2183 } 2184 2185 /* 2186 * For operations that cannot sleep, a command block is allocated at init, 2187 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 2188 * which ones are free or in use. Lock must be held when calling this. 2189 * cmd_free() is the complement. 2190 */ 2191 static struct CommandList *cmd_alloc(struct ctlr_info *h) 2192 { 2193 struct CommandList *c; 2194 int i; 2195 union u64bit temp64; 2196 dma_addr_t cmd_dma_handle, err_dma_handle; 2197 2198 do { 2199 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); 2200 if (i == h->nr_cmds) 2201 return NULL; 2202 } while (test_and_set_bit 2203 (i & (BITS_PER_LONG - 1), 2204 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); 2205 c = h->cmd_pool + i; 2206 memset(c, 0, sizeof(*c)); 2207 cmd_dma_handle = h->cmd_pool_dhandle 2208 + i * sizeof(*c); 2209 c->err_info = h->errinfo_pool + i; 2210 memset(c->err_info, 0, sizeof(*c->err_info)); 2211 err_dma_handle = h->errinfo_pool_dhandle 2212 + i * sizeof(*c->err_info); 2213 h->nr_allocs++; 2214 2215 c->cmdindex = i; 2216 2217 INIT_HLIST_NODE(&c->list); 2218 c->busaddr = (u32) cmd_dma_handle; 2219 temp64.val = (u64) err_dma_handle; 2220 c->ErrDesc.Addr.lower = temp64.val32.lower; 2221 c->ErrDesc.Addr.upper = temp64.val32.upper; 2222 c->ErrDesc.Len = sizeof(*c->err_info); 2223 2224 c->h = h; 2225 return c; 2226 } 2227 2228 /* For operations that can wait for kmalloc to possibly sleep, 2229 * this routine can be called. Lock need not be held to call 2230 * cmd_special_alloc. cmd_special_free() is the complement. 2231 */ 2232 static struct CommandList *cmd_special_alloc(struct ctlr_info *h) 2233 { 2234 struct CommandList *c; 2235 union u64bit temp64; 2236 dma_addr_t cmd_dma_handle, err_dma_handle; 2237 2238 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); 2239 if (c == NULL) 2240 return NULL; 2241 memset(c, 0, sizeof(*c)); 2242 2243 c->cmdindex = -1; 2244 2245 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), 2246 &err_dma_handle); 2247 2248 if (c->err_info == NULL) { 2249 pci_free_consistent(h->pdev, 2250 sizeof(*c), c, cmd_dma_handle); 2251 return NULL; 2252 } 2253 memset(c->err_info, 0, sizeof(*c->err_info)); 2254 2255 INIT_HLIST_NODE(&c->list); 2256 c->busaddr = (u32) cmd_dma_handle; 2257 temp64.val = (u64) err_dma_handle; 2258 c->ErrDesc.Addr.lower = temp64.val32.lower; 2259 c->ErrDesc.Addr.upper = temp64.val32.upper; 2260 c->ErrDesc.Len = sizeof(*c->err_info); 2261 2262 c->h = h; 2263 return c; 2264 } 2265 2266 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 2267 { 2268 int i; 2269 2270 i = c - h->cmd_pool; 2271 clear_bit(i & (BITS_PER_LONG - 1), 2272 h->cmd_pool_bits + (i / BITS_PER_LONG)); 2273 h->nr_frees++; 2274 } 2275 2276 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) 2277 { 2278 union u64bit temp64; 2279 2280 temp64.val32.lower = c->ErrDesc.Addr.lower; 2281 temp64.val32.upper = c->ErrDesc.Addr.upper; 2282 pci_free_consistent(h->pdev, sizeof(*c->err_info), 2283 c->err_info, (dma_addr_t) temp64.val); 2284 pci_free_consistent(h->pdev, sizeof(*c), 2285 c, (dma_addr_t) c->busaddr); 2286 } 2287 2288 #ifdef CONFIG_COMPAT 2289 2290 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) 2291 { 2292 IOCTL32_Command_struct __user *arg32 = 2293 (IOCTL32_Command_struct __user *) arg; 2294 IOCTL_Command_struct arg64; 2295 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); 2296 int err; 2297 u32 cp; 2298 2299 err = 0; 2300 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2301 sizeof(arg64.LUN_info)); 2302 err |= copy_from_user(&arg64.Request, &arg32->Request, 2303 sizeof(arg64.Request)); 2304 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2305 sizeof(arg64.error_info)); 2306 err |= get_user(arg64.buf_size, &arg32->buf_size); 2307 err |= get_user(cp, &arg32->buf); 2308 arg64.buf = compat_ptr(cp); 2309 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2310 2311 if (err) 2312 return -EFAULT; 2313 2314 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p); 2315 if (err) 2316 return err; 2317 err |= copy_in_user(&arg32->error_info, &p->error_info, 2318 sizeof(arg32->error_info)); 2319 if (err) 2320 return -EFAULT; 2321 return err; 2322 } 2323 2324 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 2325 int cmd, void *arg) 2326 { 2327 BIG_IOCTL32_Command_struct __user *arg32 = 2328 (BIG_IOCTL32_Command_struct __user *) arg; 2329 BIG_IOCTL_Command_struct arg64; 2330 BIG_IOCTL_Command_struct __user *p = 2331 compat_alloc_user_space(sizeof(arg64)); 2332 int err; 2333 u32 cp; 2334 2335 err = 0; 2336 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2337 sizeof(arg64.LUN_info)); 2338 err |= copy_from_user(&arg64.Request, &arg32->Request, 2339 sizeof(arg64.Request)); 2340 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2341 sizeof(arg64.error_info)); 2342 err |= get_user(arg64.buf_size, &arg32->buf_size); 2343 err |= get_user(arg64.malloc_size, &arg32->malloc_size); 2344 err |= get_user(cp, &arg32->buf); 2345 arg64.buf = compat_ptr(cp); 2346 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2347 2348 if (err) 2349 return -EFAULT; 2350 2351 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); 2352 if (err) 2353 return err; 2354 err |= copy_in_user(&arg32->error_info, &p->error_info, 2355 sizeof(arg32->error_info)); 2356 if (err) 2357 return -EFAULT; 2358 return err; 2359 } 2360 2361 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) 2362 { 2363 switch (cmd) { 2364 case CCISS_GETPCIINFO: 2365 case CCISS_GETINTINFO: 2366 case CCISS_SETINTINFO: 2367 case CCISS_GETNODENAME: 2368 case CCISS_SETNODENAME: 2369 case CCISS_GETHEARTBEAT: 2370 case CCISS_GETBUSTYPES: 2371 case CCISS_GETFIRMVER: 2372 case CCISS_GETDRIVVER: 2373 case CCISS_REVALIDVOLS: 2374 case CCISS_DEREGDISK: 2375 case CCISS_REGNEWDISK: 2376 case CCISS_REGNEWD: 2377 case CCISS_RESCANDISK: 2378 case CCISS_GETLUNINFO: 2379 return hpsa_ioctl(dev, cmd, arg); 2380 2381 case CCISS_PASSTHRU32: 2382 return hpsa_ioctl32_passthru(dev, cmd, arg); 2383 case CCISS_BIG_PASSTHRU32: 2384 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 2385 2386 default: 2387 return -ENOIOCTLCMD; 2388 } 2389 } 2390 #endif 2391 2392 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 2393 { 2394 struct hpsa_pci_info pciinfo; 2395 2396 if (!argp) 2397 return -EINVAL; 2398 pciinfo.domain = pci_domain_nr(h->pdev->bus); 2399 pciinfo.bus = h->pdev->bus->number; 2400 pciinfo.dev_fn = h->pdev->devfn; 2401 pciinfo.board_id = h->board_id; 2402 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 2403 return -EFAULT; 2404 return 0; 2405 } 2406 2407 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 2408 { 2409 DriverVer_type DriverVer; 2410 unsigned char vmaj, vmin, vsubmin; 2411 int rc; 2412 2413 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 2414 &vmaj, &vmin, &vsubmin); 2415 if (rc != 3) { 2416 dev_info(&h->pdev->dev, "driver version string '%s' " 2417 "unrecognized.", HPSA_DRIVER_VERSION); 2418 vmaj = 0; 2419 vmin = 0; 2420 vsubmin = 0; 2421 } 2422 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 2423 if (!argp) 2424 return -EINVAL; 2425 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 2426 return -EFAULT; 2427 return 0; 2428 } 2429 2430 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2431 { 2432 IOCTL_Command_struct iocommand; 2433 struct CommandList *c; 2434 char *buff = NULL; 2435 union u64bit temp64; 2436 2437 if (!argp) 2438 return -EINVAL; 2439 if (!capable(CAP_SYS_RAWIO)) 2440 return -EPERM; 2441 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 2442 return -EFAULT; 2443 if ((iocommand.buf_size < 1) && 2444 (iocommand.Request.Type.Direction != XFER_NONE)) { 2445 return -EINVAL; 2446 } 2447 if (iocommand.buf_size > 0) { 2448 buff = kmalloc(iocommand.buf_size, GFP_KERNEL); 2449 if (buff == NULL) 2450 return -EFAULT; 2451 } 2452 if (iocommand.Request.Type.Direction == XFER_WRITE) { 2453 /* Copy the data into the buffer we created */ 2454 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) { 2455 kfree(buff); 2456 return -EFAULT; 2457 } 2458 } else 2459 memset(buff, 0, iocommand.buf_size); 2460 c = cmd_special_alloc(h); 2461 if (c == NULL) { 2462 kfree(buff); 2463 return -ENOMEM; 2464 } 2465 /* Fill in the command type */ 2466 c->cmd_type = CMD_IOCTL_PEND; 2467 /* Fill in Command Header */ 2468 c->Header.ReplyQueue = 0; /* unused in simple mode */ 2469 if (iocommand.buf_size > 0) { /* buffer to fill */ 2470 c->Header.SGList = 1; 2471 c->Header.SGTotal = 1; 2472 } else { /* no buffers to fill */ 2473 c->Header.SGList = 0; 2474 c->Header.SGTotal = 0; 2475 } 2476 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); 2477 /* use the kernel address the cmd block for tag */ 2478 c->Header.Tag.lower = c->busaddr; 2479 2480 /* Fill in Request block */ 2481 memcpy(&c->Request, &iocommand.Request, 2482 sizeof(c->Request)); 2483 2484 /* Fill in the scatter gather information */ 2485 if (iocommand.buf_size > 0) { 2486 temp64.val = pci_map_single(h->pdev, buff, 2487 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); 2488 c->SG[0].Addr.lower = temp64.val32.lower; 2489 c->SG[0].Addr.upper = temp64.val32.upper; 2490 c->SG[0].Len = iocommand.buf_size; 2491 c->SG[0].Ext = 0; /* we are not chaining*/ 2492 } 2493 hpsa_scsi_do_simple_cmd_core(h, c); 2494 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); 2495 check_ioctl_unit_attention(h, c); 2496 2497 /* Copy the error information out */ 2498 memcpy(&iocommand.error_info, c->err_info, 2499 sizeof(iocommand.error_info)); 2500 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { 2501 kfree(buff); 2502 cmd_special_free(h, c); 2503 return -EFAULT; 2504 } 2505 2506 if (iocommand.Request.Type.Direction == XFER_READ) { 2507 /* Copy the data out of the buffer we created */ 2508 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { 2509 kfree(buff); 2510 cmd_special_free(h, c); 2511 return -EFAULT; 2512 } 2513 } 2514 kfree(buff); 2515 cmd_special_free(h, c); 2516 return 0; 2517 } 2518 2519 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2520 { 2521 BIG_IOCTL_Command_struct *ioc; 2522 struct CommandList *c; 2523 unsigned char **buff = NULL; 2524 int *buff_size = NULL; 2525 union u64bit temp64; 2526 BYTE sg_used = 0; 2527 int status = 0; 2528 int i; 2529 u32 left; 2530 u32 sz; 2531 BYTE __user *data_ptr; 2532 2533 if (!argp) 2534 return -EINVAL; 2535 if (!capable(CAP_SYS_RAWIO)) 2536 return -EPERM; 2537 ioc = (BIG_IOCTL_Command_struct *) 2538 kmalloc(sizeof(*ioc), GFP_KERNEL); 2539 if (!ioc) { 2540 status = -ENOMEM; 2541 goto cleanup1; 2542 } 2543 if (copy_from_user(ioc, argp, sizeof(*ioc))) { 2544 status = -EFAULT; 2545 goto cleanup1; 2546 } 2547 if ((ioc->buf_size < 1) && 2548 (ioc->Request.Type.Direction != XFER_NONE)) { 2549 status = -EINVAL; 2550 goto cleanup1; 2551 } 2552 /* Check kmalloc limits using all SGs */ 2553 if (ioc->malloc_size > MAX_KMALLOC_SIZE) { 2554 status = -EINVAL; 2555 goto cleanup1; 2556 } 2557 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { 2558 status = -EINVAL; 2559 goto cleanup1; 2560 } 2561 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); 2562 if (!buff) { 2563 status = -ENOMEM; 2564 goto cleanup1; 2565 } 2566 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); 2567 if (!buff_size) { 2568 status = -ENOMEM; 2569 goto cleanup1; 2570 } 2571 left = ioc->buf_size; 2572 data_ptr = ioc->buf; 2573 while (left) { 2574 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 2575 buff_size[sg_used] = sz; 2576 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 2577 if (buff[sg_used] == NULL) { 2578 status = -ENOMEM; 2579 goto cleanup1; 2580 } 2581 if (ioc->Request.Type.Direction == XFER_WRITE) { 2582 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 2583 status = -ENOMEM; 2584 goto cleanup1; 2585 } 2586 } else 2587 memset(buff[sg_used], 0, sz); 2588 left -= sz; 2589 data_ptr += sz; 2590 sg_used++; 2591 } 2592 c = cmd_special_alloc(h); 2593 if (c == NULL) { 2594 status = -ENOMEM; 2595 goto cleanup1; 2596 } 2597 c->cmd_type = CMD_IOCTL_PEND; 2598 c->Header.ReplyQueue = 0; 2599 2600 if (ioc->buf_size > 0) { 2601 c->Header.SGList = sg_used; 2602 c->Header.SGTotal = sg_used; 2603 } else { 2604 c->Header.SGList = 0; 2605 c->Header.SGTotal = 0; 2606 } 2607 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 2608 c->Header.Tag.lower = c->busaddr; 2609 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 2610 if (ioc->buf_size > 0) { 2611 int i; 2612 for (i = 0; i < sg_used; i++) { 2613 temp64.val = pci_map_single(h->pdev, buff[i], 2614 buff_size[i], PCI_DMA_BIDIRECTIONAL); 2615 c->SG[i].Addr.lower = temp64.val32.lower; 2616 c->SG[i].Addr.upper = temp64.val32.upper; 2617 c->SG[i].Len = buff_size[i]; 2618 /* we are not chaining */ 2619 c->SG[i].Ext = 0; 2620 } 2621 } 2622 hpsa_scsi_do_simple_cmd_core(h, c); 2623 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); 2624 check_ioctl_unit_attention(h, c); 2625 /* Copy the error information out */ 2626 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 2627 if (copy_to_user(argp, ioc, sizeof(*ioc))) { 2628 cmd_special_free(h, c); 2629 status = -EFAULT; 2630 goto cleanup1; 2631 } 2632 if (ioc->Request.Type.Direction == XFER_READ) { 2633 /* Copy the data out of the buffer we created */ 2634 BYTE __user *ptr = ioc->buf; 2635 for (i = 0; i < sg_used; i++) { 2636 if (copy_to_user(ptr, buff[i], buff_size[i])) { 2637 cmd_special_free(h, c); 2638 status = -EFAULT; 2639 goto cleanup1; 2640 } 2641 ptr += buff_size[i]; 2642 } 2643 } 2644 cmd_special_free(h, c); 2645 status = 0; 2646 cleanup1: 2647 if (buff) { 2648 for (i = 0; i < sg_used; i++) 2649 kfree(buff[i]); 2650 kfree(buff); 2651 } 2652 kfree(buff_size); 2653 kfree(ioc); 2654 return status; 2655 } 2656 2657 static void check_ioctl_unit_attention(struct ctlr_info *h, 2658 struct CommandList *c) 2659 { 2660 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2661 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 2662 (void) check_for_unit_attention(h, c); 2663 } 2664 /* 2665 * ioctl 2666 */ 2667 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) 2668 { 2669 struct ctlr_info *h; 2670 void __user *argp = (void __user *)arg; 2671 2672 h = sdev_to_hba(dev); 2673 2674 switch (cmd) { 2675 case CCISS_DEREGDISK: 2676 case CCISS_REGNEWDISK: 2677 case CCISS_REGNEWD: 2678 hpsa_scan_start(h->scsi_host); 2679 return 0; 2680 case CCISS_GETPCIINFO: 2681 return hpsa_getpciinfo_ioctl(h, argp); 2682 case CCISS_GETDRIVVER: 2683 return hpsa_getdrivver_ioctl(h, argp); 2684 case CCISS_PASSTHRU: 2685 return hpsa_passthru_ioctl(h, argp); 2686 case CCISS_BIG_PASSTHRU: 2687 return hpsa_big_passthru_ioctl(h, argp); 2688 default: 2689 return -ENOTTY; 2690 } 2691 } 2692 2693 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 2694 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 2695 int cmd_type) 2696 { 2697 int pci_dir = XFER_NONE; 2698 2699 c->cmd_type = CMD_IOCTL_PEND; 2700 c->Header.ReplyQueue = 0; 2701 if (buff != NULL && size > 0) { 2702 c->Header.SGList = 1; 2703 c->Header.SGTotal = 1; 2704 } else { 2705 c->Header.SGList = 0; 2706 c->Header.SGTotal = 0; 2707 } 2708 c->Header.Tag.lower = c->busaddr; 2709 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 2710 2711 c->Request.Type.Type = cmd_type; 2712 if (cmd_type == TYPE_CMD) { 2713 switch (cmd) { 2714 case HPSA_INQUIRY: 2715 /* are we trying to read a vital product page */ 2716 if (page_code != 0) { 2717 c->Request.CDB[1] = 0x01; 2718 c->Request.CDB[2] = page_code; 2719 } 2720 c->Request.CDBLen = 6; 2721 c->Request.Type.Attribute = ATTR_SIMPLE; 2722 c->Request.Type.Direction = XFER_READ; 2723 c->Request.Timeout = 0; 2724 c->Request.CDB[0] = HPSA_INQUIRY; 2725 c->Request.CDB[4] = size & 0xFF; 2726 break; 2727 case HPSA_REPORT_LOG: 2728 case HPSA_REPORT_PHYS: 2729 /* Talking to controller so It's a physical command 2730 mode = 00 target = 0. Nothing to write. 2731 */ 2732 c->Request.CDBLen = 12; 2733 c->Request.Type.Attribute = ATTR_SIMPLE; 2734 c->Request.Type.Direction = XFER_READ; 2735 c->Request.Timeout = 0; 2736 c->Request.CDB[0] = cmd; 2737 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 2738 c->Request.CDB[7] = (size >> 16) & 0xFF; 2739 c->Request.CDB[8] = (size >> 8) & 0xFF; 2740 c->Request.CDB[9] = size & 0xFF; 2741 break; 2742 2743 case HPSA_READ_CAPACITY: 2744 c->Request.CDBLen = 10; 2745 c->Request.Type.Attribute = ATTR_SIMPLE; 2746 c->Request.Type.Direction = XFER_READ; 2747 c->Request.Timeout = 0; 2748 c->Request.CDB[0] = cmd; 2749 break; 2750 case HPSA_CACHE_FLUSH: 2751 c->Request.CDBLen = 12; 2752 c->Request.Type.Attribute = ATTR_SIMPLE; 2753 c->Request.Type.Direction = XFER_WRITE; 2754 c->Request.Timeout = 0; 2755 c->Request.CDB[0] = BMIC_WRITE; 2756 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 2757 break; 2758 case TEST_UNIT_READY: 2759 c->Request.CDBLen = 6; 2760 c->Request.Type.Attribute = ATTR_SIMPLE; 2761 c->Request.Type.Direction = XFER_NONE; 2762 c->Request.Timeout = 0; 2763 break; 2764 default: 2765 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 2766 BUG(); 2767 return; 2768 } 2769 } else if (cmd_type == TYPE_MSG) { 2770 switch (cmd) { 2771 2772 case HPSA_DEVICE_RESET_MSG: 2773 c->Request.CDBLen = 16; 2774 c->Request.Type.Type = 1; /* It is a MSG not a CMD */ 2775 c->Request.Type.Attribute = ATTR_SIMPLE; 2776 c->Request.Type.Direction = XFER_NONE; 2777 c->Request.Timeout = 0; /* Don't time out */ 2778 c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */ 2779 c->Request.CDB[1] = 0x03; /* Reset target above */ 2780 /* If bytes 4-7 are zero, it means reset the */ 2781 /* LunID device */ 2782 c->Request.CDB[4] = 0x00; 2783 c->Request.CDB[5] = 0x00; 2784 c->Request.CDB[6] = 0x00; 2785 c->Request.CDB[7] = 0x00; 2786 break; 2787 2788 default: 2789 dev_warn(&h->pdev->dev, "unknown message type %d\n", 2790 cmd); 2791 BUG(); 2792 } 2793 } else { 2794 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 2795 BUG(); 2796 } 2797 2798 switch (c->Request.Type.Direction) { 2799 case XFER_READ: 2800 pci_dir = PCI_DMA_FROMDEVICE; 2801 break; 2802 case XFER_WRITE: 2803 pci_dir = PCI_DMA_TODEVICE; 2804 break; 2805 case XFER_NONE: 2806 pci_dir = PCI_DMA_NONE; 2807 break; 2808 default: 2809 pci_dir = PCI_DMA_BIDIRECTIONAL; 2810 } 2811 2812 hpsa_map_one(h->pdev, c, buff, size, pci_dir); 2813 2814 return; 2815 } 2816 2817 /* 2818 * Map (physical) PCI mem into (virtual) kernel space 2819 */ 2820 static void __iomem *remap_pci_mem(ulong base, ulong size) 2821 { 2822 ulong page_base = ((ulong) base) & PAGE_MASK; 2823 ulong page_offs = ((ulong) base) - page_base; 2824 void __iomem *page_remapped = ioremap(page_base, page_offs + size); 2825 2826 return page_remapped ? (page_remapped + page_offs) : NULL; 2827 } 2828 2829 /* Takes cmds off the submission queue and sends them to the hardware, 2830 * then puts them on the queue of cmds waiting for completion. 2831 */ 2832 static void start_io(struct ctlr_info *h) 2833 { 2834 struct CommandList *c; 2835 2836 while (!hlist_empty(&h->reqQ)) { 2837 c = hlist_entry(h->reqQ.first, struct CommandList, list); 2838 /* can't do anything if fifo is full */ 2839 if ((h->access.fifo_full(h))) { 2840 dev_warn(&h->pdev->dev, "fifo full\n"); 2841 break; 2842 } 2843 2844 /* Get the first entry from the Request Q */ 2845 removeQ(c); 2846 h->Qdepth--; 2847 2848 /* Tell the controller execute command */ 2849 h->access.submit_command(h, c); 2850 2851 /* Put job onto the completed Q */ 2852 addQ(&h->cmpQ, c); 2853 } 2854 } 2855 2856 static inline unsigned long get_next_completion(struct ctlr_info *h) 2857 { 2858 return h->access.command_completed(h); 2859 } 2860 2861 static inline bool interrupt_pending(struct ctlr_info *h) 2862 { 2863 return h->access.intr_pending(h); 2864 } 2865 2866 static inline long interrupt_not_for_us(struct ctlr_info *h) 2867 { 2868 return !(h->msi_vector || h->msix_vector) && 2869 ((h->access.intr_pending(h) == 0) || 2870 (h->interrupts_enabled == 0)); 2871 } 2872 2873 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 2874 u32 raw_tag) 2875 { 2876 if (unlikely(tag_index >= h->nr_cmds)) { 2877 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 2878 return 1; 2879 } 2880 return 0; 2881 } 2882 2883 static inline void finish_cmd(struct CommandList *c, u32 raw_tag) 2884 { 2885 removeQ(c); 2886 if (likely(c->cmd_type == CMD_SCSI)) 2887 complete_scsi_command(c, 0, raw_tag); 2888 else if (c->cmd_type == CMD_IOCTL_PEND) 2889 complete(c->waiting); 2890 } 2891 2892 static inline u32 hpsa_tag_contains_index(u32 tag) 2893 { 2894 #define DIRECT_LOOKUP_BIT 0x10 2895 return tag & DIRECT_LOOKUP_BIT; 2896 } 2897 2898 static inline u32 hpsa_tag_to_index(u32 tag) 2899 { 2900 #define DIRECT_LOOKUP_SHIFT 5 2901 return tag >> DIRECT_LOOKUP_SHIFT; 2902 } 2903 2904 static inline u32 hpsa_tag_discard_error_bits(u32 tag) 2905 { 2906 #define HPSA_ERROR_BITS 0x03 2907 return tag & ~HPSA_ERROR_BITS; 2908 } 2909 2910 /* process completion of an indexed ("direct lookup") command */ 2911 static inline u32 process_indexed_cmd(struct ctlr_info *h, 2912 u32 raw_tag) 2913 { 2914 u32 tag_index; 2915 struct CommandList *c; 2916 2917 tag_index = hpsa_tag_to_index(raw_tag); 2918 if (bad_tag(h, tag_index, raw_tag)) 2919 return next_command(h); 2920 c = h->cmd_pool + tag_index; 2921 finish_cmd(c, raw_tag); 2922 return next_command(h); 2923 } 2924 2925 /* process completion of a non-indexed command */ 2926 static inline u32 process_nonindexed_cmd(struct ctlr_info *h, 2927 u32 raw_tag) 2928 { 2929 u32 tag; 2930 struct CommandList *c = NULL; 2931 struct hlist_node *tmp; 2932 2933 tag = hpsa_tag_discard_error_bits(raw_tag); 2934 hlist_for_each_entry(c, tmp, &h->cmpQ, list) { 2935 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) { 2936 finish_cmd(c, raw_tag); 2937 return next_command(h); 2938 } 2939 } 2940 bad_tag(h, h->nr_cmds + 1, raw_tag); 2941 return next_command(h); 2942 } 2943 2944 static irqreturn_t do_hpsa_intr(int irq, void *dev_id) 2945 { 2946 struct ctlr_info *h = dev_id; 2947 unsigned long flags; 2948 u32 raw_tag; 2949 2950 if (interrupt_not_for_us(h)) 2951 return IRQ_NONE; 2952 spin_lock_irqsave(&h->lock, flags); 2953 raw_tag = get_next_completion(h); 2954 while (raw_tag != FIFO_EMPTY) { 2955 if (hpsa_tag_contains_index(raw_tag)) 2956 raw_tag = process_indexed_cmd(h, raw_tag); 2957 else 2958 raw_tag = process_nonindexed_cmd(h, raw_tag); 2959 } 2960 spin_unlock_irqrestore(&h->lock, flags); 2961 return IRQ_HANDLED; 2962 } 2963 2964 /* Send a message CDB to the firmwart. */ 2965 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 2966 unsigned char type) 2967 { 2968 struct Command { 2969 struct CommandListHeader CommandHeader; 2970 struct RequestBlock Request; 2971 struct ErrDescriptor ErrorDescriptor; 2972 }; 2973 struct Command *cmd; 2974 static const size_t cmd_sz = sizeof(*cmd) + 2975 sizeof(cmd->ErrorDescriptor); 2976 dma_addr_t paddr64; 2977 uint32_t paddr32, tag; 2978 void __iomem *vaddr; 2979 int i, err; 2980 2981 vaddr = pci_ioremap_bar(pdev, 0); 2982 if (vaddr == NULL) 2983 return -ENOMEM; 2984 2985 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 2986 * CCISS commands, so they must be allocated from the lower 4GiB of 2987 * memory. 2988 */ 2989 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 2990 if (err) { 2991 iounmap(vaddr); 2992 return -ENOMEM; 2993 } 2994 2995 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); 2996 if (cmd == NULL) { 2997 iounmap(vaddr); 2998 return -ENOMEM; 2999 } 3000 3001 /* This must fit, because of the 32-bit consistent DMA mask. Also, 3002 * although there's no guarantee, we assume that the address is at 3003 * least 4-byte aligned (most likely, it's page-aligned). 3004 */ 3005 paddr32 = paddr64; 3006 3007 cmd->CommandHeader.ReplyQueue = 0; 3008 cmd->CommandHeader.SGList = 0; 3009 cmd->CommandHeader.SGTotal = 0; 3010 cmd->CommandHeader.Tag.lower = paddr32; 3011 cmd->CommandHeader.Tag.upper = 0; 3012 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 3013 3014 cmd->Request.CDBLen = 16; 3015 cmd->Request.Type.Type = TYPE_MSG; 3016 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; 3017 cmd->Request.Type.Direction = XFER_NONE; 3018 cmd->Request.Timeout = 0; /* Don't time out */ 3019 cmd->Request.CDB[0] = opcode; 3020 cmd->Request.CDB[1] = type; 3021 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 3022 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); 3023 cmd->ErrorDescriptor.Addr.upper = 0; 3024 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); 3025 3026 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); 3027 3028 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 3029 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 3030 if (hpsa_tag_discard_error_bits(tag) == paddr32) 3031 break; 3032 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 3033 } 3034 3035 iounmap(vaddr); 3036 3037 /* we leak the DMA buffer here ... no choice since the controller could 3038 * still complete the command. 3039 */ 3040 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 3041 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 3042 opcode, type); 3043 return -ETIMEDOUT; 3044 } 3045 3046 pci_free_consistent(pdev, cmd_sz, cmd, paddr64); 3047 3048 if (tag & HPSA_ERROR_BIT) { 3049 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 3050 opcode, type); 3051 return -EIO; 3052 } 3053 3054 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 3055 opcode, type); 3056 return 0; 3057 } 3058 3059 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0) 3060 #define hpsa_noop(p) hpsa_message(p, 3, 0) 3061 3062 static __devinit int hpsa_reset_msi(struct pci_dev *pdev) 3063 { 3064 /* the #defines are stolen from drivers/pci/msi.h. */ 3065 #define msi_control_reg(base) (base + PCI_MSI_FLAGS) 3066 #define PCI_MSIX_FLAGS_ENABLE (1 << 15) 3067 3068 int pos; 3069 u16 control = 0; 3070 3071 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI); 3072 if (pos) { 3073 pci_read_config_word(pdev, msi_control_reg(pos), &control); 3074 if (control & PCI_MSI_FLAGS_ENABLE) { 3075 dev_info(&pdev->dev, "resetting MSI\n"); 3076 pci_write_config_word(pdev, msi_control_reg(pos), 3077 control & ~PCI_MSI_FLAGS_ENABLE); 3078 } 3079 } 3080 3081 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 3082 if (pos) { 3083 pci_read_config_word(pdev, msi_control_reg(pos), &control); 3084 if (control & PCI_MSIX_FLAGS_ENABLE) { 3085 dev_info(&pdev->dev, "resetting MSI-X\n"); 3086 pci_write_config_word(pdev, msi_control_reg(pos), 3087 control & ~PCI_MSIX_FLAGS_ENABLE); 3088 } 3089 } 3090 3091 return 0; 3092 } 3093 3094 /* This does a hard reset of the controller using PCI power management 3095 * states. 3096 */ 3097 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev) 3098 { 3099 u16 pmcsr, saved_config_space[32]; 3100 int i, pos; 3101 3102 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 3103 3104 /* This is very nearly the same thing as 3105 * 3106 * pci_save_state(pci_dev); 3107 * pci_set_power_state(pci_dev, PCI_D3hot); 3108 * pci_set_power_state(pci_dev, PCI_D0); 3109 * pci_restore_state(pci_dev); 3110 * 3111 * but we can't use these nice canned kernel routines on 3112 * kexec, because they also check the MSI/MSI-X state in PCI 3113 * configuration space and do the wrong thing when it is 3114 * set/cleared. Also, the pci_save/restore_state functions 3115 * violate the ordering requirements for restoring the 3116 * configuration space from the CCISS document (see the 3117 * comment below). So we roll our own .... 3118 */ 3119 3120 for (i = 0; i < 32; i++) 3121 pci_read_config_word(pdev, 2*i, &saved_config_space[i]); 3122 3123 pos = pci_find_capability(pdev, PCI_CAP_ID_PM); 3124 if (pos == 0) { 3125 dev_err(&pdev->dev, 3126 "hpsa_reset_controller: PCI PM not supported\n"); 3127 return -ENODEV; 3128 } 3129 3130 /* Quoting from the Open CISS Specification: "The Power 3131 * Management Control/Status Register (CSR) controls the power 3132 * state of the device. The normal operating state is D0, 3133 * CSR=00h. The software off state is D3, CSR=03h. To reset 3134 * the controller, place the interface device in D3 then to 3135 * D0, this causes a secondary PCI reset which will reset the 3136 * controller." 3137 */ 3138 3139 /* enter the D3hot power management state */ 3140 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); 3141 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3142 pmcsr |= PCI_D3hot; 3143 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3144 3145 msleep(500); 3146 3147 /* enter the D0 power management state */ 3148 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3149 pmcsr |= PCI_D0; 3150 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3151 3152 msleep(500); 3153 3154 /* Restore the PCI configuration space. The Open CISS 3155 * Specification says, "Restore the PCI Configuration 3156 * Registers, offsets 00h through 60h. It is important to 3157 * restore the command register, 16-bits at offset 04h, 3158 * last. Do not restore the configuration status register, 3159 * 16-bits at offset 06h." Note that the offset is 2*i. 3160 */ 3161 for (i = 0; i < 32; i++) { 3162 if (i == 2 || i == 3) 3163 continue; 3164 pci_write_config_word(pdev, 2*i, saved_config_space[i]); 3165 } 3166 wmb(); 3167 pci_write_config_word(pdev, 4, saved_config_space[2]); 3168 3169 return 0; 3170 } 3171 3172 /* 3173 * We cannot read the structure directly, for portability we must use 3174 * the io functions. 3175 * This is for debug only. 3176 */ 3177 #ifdef HPSA_DEBUG 3178 static void print_cfg_table(struct device *dev, struct CfgTable *tb) 3179 { 3180 int i; 3181 char temp_name[17]; 3182 3183 dev_info(dev, "Controller Configuration information\n"); 3184 dev_info(dev, "------------------------------------\n"); 3185 for (i = 0; i < 4; i++) 3186 temp_name[i] = readb(&(tb->Signature[i])); 3187 temp_name[4] = '\0'; 3188 dev_info(dev, " Signature = %s\n", temp_name); 3189 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 3190 dev_info(dev, " Transport methods supported = 0x%x\n", 3191 readl(&(tb->TransportSupport))); 3192 dev_info(dev, " Transport methods active = 0x%x\n", 3193 readl(&(tb->TransportActive))); 3194 dev_info(dev, " Requested transport Method = 0x%x\n", 3195 readl(&(tb->HostWrite.TransportRequest))); 3196 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 3197 readl(&(tb->HostWrite.CoalIntDelay))); 3198 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 3199 readl(&(tb->HostWrite.CoalIntCount))); 3200 dev_info(dev, " Max outstanding commands = 0x%d\n", 3201 readl(&(tb->CmdsOutMax))); 3202 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 3203 for (i = 0; i < 16; i++) 3204 temp_name[i] = readb(&(tb->ServerName[i])); 3205 temp_name[16] = '\0'; 3206 dev_info(dev, " Server Name = %s\n", temp_name); 3207 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 3208 readl(&(tb->HeartBeat))); 3209 } 3210 #endif /* HPSA_DEBUG */ 3211 3212 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 3213 { 3214 int i, offset, mem_type, bar_type; 3215 3216 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 3217 return 0; 3218 offset = 0; 3219 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 3220 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 3221 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 3222 offset += 4; 3223 else { 3224 mem_type = pci_resource_flags(pdev, i) & 3225 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 3226 switch (mem_type) { 3227 case PCI_BASE_ADDRESS_MEM_TYPE_32: 3228 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 3229 offset += 4; /* 32 bit */ 3230 break; 3231 case PCI_BASE_ADDRESS_MEM_TYPE_64: 3232 offset += 8; 3233 break; 3234 default: /* reserved in PCI 2.2 */ 3235 dev_warn(&pdev->dev, 3236 "base address is invalid\n"); 3237 return -1; 3238 break; 3239 } 3240 } 3241 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 3242 return i + 1; 3243 } 3244 return -1; 3245 } 3246 3247 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 3248 * controllers that are capable. If not, we use IO-APIC mode. 3249 */ 3250 3251 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h, 3252 struct pci_dev *pdev, u32 board_id) 3253 { 3254 #ifdef CONFIG_PCI_MSI 3255 int err; 3256 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1}, 3257 {0, 2}, {0, 3} 3258 }; 3259 3260 /* Some boards advertise MSI but don't really support it */ 3261 if ((board_id == 0x40700E11) || 3262 (board_id == 0x40800E11) || 3263 (board_id == 0x40820E11) || (board_id == 0x40830E11)) 3264 goto default_int_mode; 3265 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) { 3266 dev_info(&pdev->dev, "MSIX\n"); 3267 err = pci_enable_msix(pdev, hpsa_msix_entries, 4); 3268 if (!err) { 3269 h->intr[0] = hpsa_msix_entries[0].vector; 3270 h->intr[1] = hpsa_msix_entries[1].vector; 3271 h->intr[2] = hpsa_msix_entries[2].vector; 3272 h->intr[3] = hpsa_msix_entries[3].vector; 3273 h->msix_vector = 1; 3274 return; 3275 } 3276 if (err > 0) { 3277 dev_warn(&pdev->dev, "only %d MSI-X vectors " 3278 "available\n", err); 3279 goto default_int_mode; 3280 } else { 3281 dev_warn(&pdev->dev, "MSI-X init failed %d\n", 3282 err); 3283 goto default_int_mode; 3284 } 3285 } 3286 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) { 3287 dev_info(&pdev->dev, "MSI\n"); 3288 if (!pci_enable_msi(pdev)) 3289 h->msi_vector = 1; 3290 else 3291 dev_warn(&pdev->dev, "MSI init failed\n"); 3292 } 3293 default_int_mode: 3294 #endif /* CONFIG_PCI_MSI */ 3295 /* if we get here we're going to use the default interrupt mode */ 3296 h->intr[PERF_MODE_INT] = pdev->irq; 3297 } 3298 3299 static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev) 3300 { 3301 ushort subsystem_vendor_id, subsystem_device_id, command; 3302 u32 board_id, scratchpad = 0; 3303 u64 cfg_offset; 3304 u32 cfg_base_addr; 3305 u64 cfg_base_addr_index; 3306 u32 trans_offset; 3307 int i, prod_index, err; 3308 3309 subsystem_vendor_id = pdev->subsystem_vendor; 3310 subsystem_device_id = pdev->subsystem_device; 3311 board_id = (((u32) (subsystem_device_id << 16) & 0xffff0000) | 3312 subsystem_vendor_id); 3313 3314 for (i = 0; i < ARRAY_SIZE(products); i++) 3315 if (board_id == products[i].board_id) 3316 break; 3317 3318 prod_index = i; 3319 3320 if (prod_index == ARRAY_SIZE(products)) { 3321 prod_index--; 3322 if (subsystem_vendor_id != PCI_VENDOR_ID_HP || 3323 !hpsa_allow_any) { 3324 dev_warn(&pdev->dev, "unrecognized board ID:" 3325 " 0x%08lx, ignoring.\n", 3326 (unsigned long) board_id); 3327 return -ENODEV; 3328 } 3329 } 3330 /* check to see if controller has been disabled 3331 * BEFORE trying to enable it 3332 */ 3333 (void)pci_read_config_word(pdev, PCI_COMMAND, &command); 3334 if (!(command & 0x02)) { 3335 dev_warn(&pdev->dev, "controller appears to be disabled\n"); 3336 return -ENODEV; 3337 } 3338 3339 err = pci_enable_device(pdev); 3340 if (err) { 3341 dev_warn(&pdev->dev, "unable to enable PCI device\n"); 3342 return err; 3343 } 3344 3345 err = pci_request_regions(pdev, "hpsa"); 3346 if (err) { 3347 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n"); 3348 return err; 3349 } 3350 3351 /* If the kernel supports MSI/MSI-X we will try to enable that, 3352 * else we use the IO-APIC interrupt assigned to us by system ROM. 3353 */ 3354 hpsa_interrupt_mode(h, pdev, board_id); 3355 3356 /* find the memory BAR */ 3357 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 3358 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) 3359 break; 3360 } 3361 if (i == DEVICE_COUNT_RESOURCE) { 3362 dev_warn(&pdev->dev, "no memory BAR found\n"); 3363 err = -ENODEV; 3364 goto err_out_free_res; 3365 } 3366 3367 h->paddr = pci_resource_start(pdev, i); /* addressing mode bits 3368 * already removed 3369 */ 3370 3371 h->vaddr = remap_pci_mem(h->paddr, 0x250); 3372 3373 /* Wait for the board to become ready. */ 3374 for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) { 3375 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); 3376 if (scratchpad == HPSA_FIRMWARE_READY) 3377 break; 3378 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 3379 } 3380 if (scratchpad != HPSA_FIRMWARE_READY) { 3381 dev_warn(&pdev->dev, "board not ready, timed out.\n"); 3382 err = -ENODEV; 3383 goto err_out_free_res; 3384 } 3385 3386 /* get the address index number */ 3387 cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET); 3388 cfg_base_addr &= (u32) 0x0000ffff; 3389 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr); 3390 if (cfg_base_addr_index == -1) { 3391 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 3392 err = -ENODEV; 3393 goto err_out_free_res; 3394 } 3395 3396 cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET); 3397 h->cfgtable = remap_pci_mem(pci_resource_start(pdev, 3398 cfg_base_addr_index) + cfg_offset, 3399 sizeof(h->cfgtable)); 3400 /* Find performant mode table. */ 3401 trans_offset = readl(&(h->cfgtable->TransMethodOffset)); 3402 h->transtable = remap_pci_mem(pci_resource_start(pdev, 3403 cfg_base_addr_index)+cfg_offset+trans_offset, 3404 sizeof(*h->transtable)); 3405 3406 h->board_id = board_id; 3407 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); 3408 h->product_name = products[prod_index].product_name; 3409 h->access = *(products[prod_index].access); 3410 /* Allow room for some ioctls */ 3411 h->nr_cmds = h->max_commands - 4; 3412 3413 if ((readb(&h->cfgtable->Signature[0]) != 'C') || 3414 (readb(&h->cfgtable->Signature[1]) != 'I') || 3415 (readb(&h->cfgtable->Signature[2]) != 'S') || 3416 (readb(&h->cfgtable->Signature[3]) != 'S')) { 3417 dev_warn(&pdev->dev, "not a valid CISS config table\n"); 3418 err = -ENODEV; 3419 goto err_out_free_res; 3420 } 3421 #ifdef CONFIG_X86 3422 { 3423 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 3424 u32 prefetch; 3425 prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); 3426 prefetch |= 0x100; 3427 writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); 3428 } 3429 #endif 3430 3431 /* Disabling DMA prefetch for the P600 3432 * An ASIC bug may result in a prefetch beyond 3433 * physical memory. 3434 */ 3435 if (board_id == 0x3225103C) { 3436 u32 dma_prefetch; 3437 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 3438 dma_prefetch |= 0x8000; 3439 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 3440 } 3441 3442 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 3443 /* Update the field, and then ring the doorbell */ 3444 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 3445 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 3446 3447 /* under certain very rare conditions, this can take awhile. 3448 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 3449 * as we enter this code.) 3450 */ 3451 for (i = 0; i < MAX_CONFIG_WAIT; i++) { 3452 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) 3453 break; 3454 /* delay and try again */ 3455 msleep(10); 3456 } 3457 3458 #ifdef HPSA_DEBUG 3459 print_cfg_table(&pdev->dev, h->cfgtable); 3460 #endif /* HPSA_DEBUG */ 3461 3462 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { 3463 dev_warn(&pdev->dev, "unable to get board into simple mode\n"); 3464 err = -ENODEV; 3465 goto err_out_free_res; 3466 } 3467 return 0; 3468 3469 err_out_free_res: 3470 /* 3471 * Deliberately omit pci_disable_device(): it does something nasty to 3472 * Smart Array controllers that pci_enable_device does not undo 3473 */ 3474 pci_release_regions(pdev); 3475 return err; 3476 } 3477 3478 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h) 3479 { 3480 int rc; 3481 3482 #define HBA_INQUIRY_BYTE_COUNT 64 3483 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 3484 if (!h->hba_inquiry_data) 3485 return; 3486 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 3487 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 3488 if (rc != 0) { 3489 kfree(h->hba_inquiry_data); 3490 h->hba_inquiry_data = NULL; 3491 } 3492 } 3493 3494 static int __devinit hpsa_init_one(struct pci_dev *pdev, 3495 const struct pci_device_id *ent) 3496 { 3497 int i, rc; 3498 int dac; 3499 struct ctlr_info *h; 3500 3501 if (number_of_controllers == 0) 3502 printk(KERN_INFO DRIVER_NAME "\n"); 3503 if (reset_devices) { 3504 /* Reset the controller with a PCI power-cycle */ 3505 if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev)) 3506 return -ENODEV; 3507 3508 /* Some devices (notably the HP Smart Array 5i Controller) 3509 need a little pause here */ 3510 msleep(HPSA_POST_RESET_PAUSE_MSECS); 3511 3512 /* Now try to get the controller to respond to a no-op */ 3513 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 3514 if (hpsa_noop(pdev) == 0) 3515 break; 3516 else 3517 dev_warn(&pdev->dev, "no-op failed%s\n", 3518 (i < 11 ? "; re-trying" : "")); 3519 } 3520 } 3521 3522 /* Command structures must be aligned on a 32-byte boundary because 3523 * the 5 lower bits of the address are used by the hardware. and by 3524 * the driver. See comments in hpsa.h for more info. 3525 */ 3526 #define COMMANDLIST_ALIGNMENT 32 3527 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 3528 h = kzalloc(sizeof(*h), GFP_KERNEL); 3529 if (!h) 3530 return -ENOMEM; 3531 3532 h->busy_initializing = 1; 3533 INIT_HLIST_HEAD(&h->cmpQ); 3534 INIT_HLIST_HEAD(&h->reqQ); 3535 mutex_init(&h->busy_shutting_down); 3536 init_completion(&h->scan_wait); 3537 rc = hpsa_pci_init(h, pdev); 3538 if (rc != 0) 3539 goto clean1; 3540 3541 sprintf(h->devname, "hpsa%d", number_of_controllers); 3542 h->ctlr = number_of_controllers; 3543 number_of_controllers++; 3544 h->pdev = pdev; 3545 3546 /* configure PCI DMA stuff */ 3547 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 3548 if (rc == 0) { 3549 dac = 1; 3550 } else { 3551 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 3552 if (rc == 0) { 3553 dac = 0; 3554 } else { 3555 dev_err(&pdev->dev, "no suitable DMA available\n"); 3556 goto clean1; 3557 } 3558 } 3559 3560 /* make sure the board interrupts are off */ 3561 h->access.set_intr_mask(h, HPSA_INTR_OFF); 3562 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr, 3563 IRQF_DISABLED, h->devname, h); 3564 if (rc) { 3565 dev_err(&pdev->dev, "unable to get irq %d for %s\n", 3566 h->intr[PERF_MODE_INT], h->devname); 3567 goto clean2; 3568 } 3569 3570 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n", 3571 h->devname, pdev->device, 3572 h->intr[PERF_MODE_INT], dac ? "" : " not"); 3573 3574 h->cmd_pool_bits = 3575 kmalloc(((h->nr_cmds + BITS_PER_LONG - 3576 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL); 3577 h->cmd_pool = pci_alloc_consistent(h->pdev, 3578 h->nr_cmds * sizeof(*h->cmd_pool), 3579 &(h->cmd_pool_dhandle)); 3580 h->errinfo_pool = pci_alloc_consistent(h->pdev, 3581 h->nr_cmds * sizeof(*h->errinfo_pool), 3582 &(h->errinfo_pool_dhandle)); 3583 if ((h->cmd_pool_bits == NULL) 3584 || (h->cmd_pool == NULL) 3585 || (h->errinfo_pool == NULL)) { 3586 dev_err(&pdev->dev, "out of memory"); 3587 rc = -ENOMEM; 3588 goto clean4; 3589 } 3590 spin_lock_init(&h->lock); 3591 spin_lock_init(&h->scan_lock); 3592 init_waitqueue_head(&h->scan_wait_queue); 3593 h->scan_finished = 1; /* no scan currently in progress */ 3594 3595 pci_set_drvdata(pdev, h); 3596 memset(h->cmd_pool_bits, 0, 3597 ((h->nr_cmds + BITS_PER_LONG - 3598 1) / BITS_PER_LONG) * sizeof(unsigned long)); 3599 3600 hpsa_scsi_setup(h); 3601 3602 /* Turn the interrupts on so we can service requests */ 3603 h->access.set_intr_mask(h, HPSA_INTR_ON); 3604 3605 hpsa_put_ctlr_into_performant_mode(h); 3606 hpsa_hba_inquiry(h); 3607 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ 3608 h->busy_initializing = 0; 3609 return 1; 3610 3611 clean4: 3612 kfree(h->cmd_pool_bits); 3613 if (h->cmd_pool) 3614 pci_free_consistent(h->pdev, 3615 h->nr_cmds * sizeof(struct CommandList), 3616 h->cmd_pool, h->cmd_pool_dhandle); 3617 if (h->errinfo_pool) 3618 pci_free_consistent(h->pdev, 3619 h->nr_cmds * sizeof(struct ErrorInfo), 3620 h->errinfo_pool, 3621 h->errinfo_pool_dhandle); 3622 free_irq(h->intr[PERF_MODE_INT], h); 3623 clean2: 3624 clean1: 3625 h->busy_initializing = 0; 3626 kfree(h); 3627 return rc; 3628 } 3629 3630 static void hpsa_flush_cache(struct ctlr_info *h) 3631 { 3632 char *flush_buf; 3633 struct CommandList *c; 3634 3635 flush_buf = kzalloc(4, GFP_KERNEL); 3636 if (!flush_buf) 3637 return; 3638 3639 c = cmd_special_alloc(h); 3640 if (!c) { 3641 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 3642 goto out_of_memory; 3643 } 3644 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 3645 RAID_CTLR_LUNID, TYPE_CMD); 3646 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); 3647 if (c->err_info->CommandStatus != 0) 3648 dev_warn(&h->pdev->dev, 3649 "error flushing cache on controller\n"); 3650 cmd_special_free(h, c); 3651 out_of_memory: 3652 kfree(flush_buf); 3653 } 3654 3655 static void hpsa_shutdown(struct pci_dev *pdev) 3656 { 3657 struct ctlr_info *h; 3658 3659 h = pci_get_drvdata(pdev); 3660 /* Turn board interrupts off and send the flush cache command 3661 * sendcmd will turn off interrupt, and send the flush... 3662 * To write all data in the battery backed cache to disks 3663 */ 3664 hpsa_flush_cache(h); 3665 h->access.set_intr_mask(h, HPSA_INTR_OFF); 3666 free_irq(h->intr[PERF_MODE_INT], h); 3667 #ifdef CONFIG_PCI_MSI 3668 if (h->msix_vector) 3669 pci_disable_msix(h->pdev); 3670 else if (h->msi_vector) 3671 pci_disable_msi(h->pdev); 3672 #endif /* CONFIG_PCI_MSI */ 3673 } 3674 3675 static void __devexit hpsa_remove_one(struct pci_dev *pdev) 3676 { 3677 struct ctlr_info *h; 3678 3679 if (pci_get_drvdata(pdev) == NULL) { 3680 dev_err(&pdev->dev, "unable to remove device \n"); 3681 return; 3682 } 3683 h = pci_get_drvdata(pdev); 3684 mutex_lock(&h->busy_shutting_down); 3685 remove_from_scan_list(h); 3686 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ 3687 hpsa_shutdown(pdev); 3688 iounmap(h->vaddr); 3689 pci_free_consistent(h->pdev, 3690 h->nr_cmds * sizeof(struct CommandList), 3691 h->cmd_pool, h->cmd_pool_dhandle); 3692 pci_free_consistent(h->pdev, 3693 h->nr_cmds * sizeof(struct ErrorInfo), 3694 h->errinfo_pool, h->errinfo_pool_dhandle); 3695 pci_free_consistent(h->pdev, h->reply_pool_size, 3696 h->reply_pool, h->reply_pool_dhandle); 3697 kfree(h->cmd_pool_bits); 3698 kfree(h->blockFetchTable); 3699 kfree(h->hba_inquiry_data); 3700 /* 3701 * Deliberately omit pci_disable_device(): it does something nasty to 3702 * Smart Array controllers that pci_enable_device does not undo 3703 */ 3704 pci_release_regions(pdev); 3705 pci_set_drvdata(pdev, NULL); 3706 mutex_unlock(&h->busy_shutting_down); 3707 kfree(h); 3708 } 3709 3710 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, 3711 __attribute__((unused)) pm_message_t state) 3712 { 3713 return -ENOSYS; 3714 } 3715 3716 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) 3717 { 3718 return -ENOSYS; 3719 } 3720 3721 static struct pci_driver hpsa_pci_driver = { 3722 .name = "hpsa", 3723 .probe = hpsa_init_one, 3724 .remove = __devexit_p(hpsa_remove_one), 3725 .id_table = hpsa_pci_device_id, /* id_table */ 3726 .shutdown = hpsa_shutdown, 3727 .suspend = hpsa_suspend, 3728 .resume = hpsa_resume, 3729 }; 3730 3731 /* Fill in bucket_map[], given nsgs (the max number of 3732 * scatter gather elements supported) and bucket[], 3733 * which is an array of 8 integers. The bucket[] array 3734 * contains 8 different DMA transfer sizes (in 16 3735 * byte increments) which the controller uses to fetch 3736 * commands. This function fills in bucket_map[], which 3737 * maps a given number of scatter gather elements to one of 3738 * the 8 DMA transfer sizes. The point of it is to allow the 3739 * controller to only do as much DMA as needed to fetch the 3740 * command, with the DMA transfer size encoded in the lower 3741 * bits of the command address. 3742 */ 3743 static void calc_bucket_map(int bucket[], int num_buckets, 3744 int nsgs, int *bucket_map) 3745 { 3746 int i, j, b, size; 3747 3748 /* even a command with 0 SGs requires 4 blocks */ 3749 #define MINIMUM_TRANSFER_BLOCKS 4 3750 #define NUM_BUCKETS 8 3751 /* Note, bucket_map must have nsgs+1 entries. */ 3752 for (i = 0; i <= nsgs; i++) { 3753 /* Compute size of a command with i SG entries */ 3754 size = i + MINIMUM_TRANSFER_BLOCKS; 3755 b = num_buckets; /* Assume the biggest bucket */ 3756 /* Find the bucket that is just big enough */ 3757 for (j = 0; j < 8; j++) { 3758 if (bucket[j] >= size) { 3759 b = j; 3760 break; 3761 } 3762 } 3763 /* for a command with i SG entries, use bucket b. */ 3764 bucket_map[i] = b; 3765 } 3766 } 3767 3768 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 3769 { 3770 u32 trans_support; 3771 u64 trans_offset; 3772 /* 5 = 1 s/g entry or 4k 3773 * 6 = 2 s/g entry or 8k 3774 * 8 = 4 s/g entry or 16k 3775 * 10 = 6 s/g entry or 24k 3776 */ 3777 int bft[8] = {5, 6, 8, 10, 12, 20, 28, 35}; /* for scatter/gathers */ 3778 int i = 0; 3779 int l = 0; 3780 unsigned long register_value; 3781 3782 trans_support = readl(&(h->cfgtable->TransportSupport)); 3783 if (!(trans_support & PERFORMANT_MODE)) 3784 return; 3785 3786 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); 3787 h->max_sg_entries = 32; 3788 /* Performant mode ring buffer and supporting data structures */ 3789 h->reply_pool_size = h->max_commands * sizeof(u64); 3790 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size, 3791 &(h->reply_pool_dhandle)); 3792 3793 /* Need a block fetch table for performant mode */ 3794 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) * 3795 sizeof(u32)), GFP_KERNEL); 3796 3797 if ((h->reply_pool == NULL) 3798 || (h->blockFetchTable == NULL)) 3799 goto clean_up; 3800 3801 h->reply_pool_wraparound = 1; /* spec: init to 1 */ 3802 3803 /* Controller spec: zero out this buffer. */ 3804 memset(h->reply_pool, 0, h->reply_pool_size); 3805 h->reply_pool_head = h->reply_pool; 3806 3807 trans_offset = readl(&(h->cfgtable->TransMethodOffset)); 3808 bft[7] = h->max_sg_entries + 4; 3809 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable); 3810 for (i = 0; i < 8; i++) 3811 writel(bft[i], &h->transtable->BlockFetch[i]); 3812 3813 /* size of controller ring buffer */ 3814 writel(h->max_commands, &h->transtable->RepQSize); 3815 writel(1, &h->transtable->RepQCount); 3816 writel(0, &h->transtable->RepQCtrAddrLow32); 3817 writel(0, &h->transtable->RepQCtrAddrHigh32); 3818 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32); 3819 writel(0, &h->transtable->RepQAddr0High32); 3820 writel(CFGTBL_Trans_Performant, 3821 &(h->cfgtable->HostWrite.TransportRequest)); 3822 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 3823 /* under certain very rare conditions, this can take awhile. 3824 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 3825 * as we enter this code.) */ 3826 for (l = 0; l < MAX_CONFIG_WAIT; l++) { 3827 register_value = readl(h->vaddr + SA5_DOORBELL); 3828 if (!(register_value & CFGTBL_ChangeReq)) 3829 break; 3830 /* delay and try again */ 3831 set_current_state(TASK_INTERRUPTIBLE); 3832 schedule_timeout(10); 3833 } 3834 register_value = readl(&(h->cfgtable->TransportActive)); 3835 if (!(register_value & CFGTBL_Trans_Performant)) { 3836 dev_warn(&h->pdev->dev, "unable to get board into" 3837 " performant mode\n"); 3838 return; 3839 } 3840 3841 /* Change the access methods to the performant access methods */ 3842 h->access = SA5_performant_access; 3843 h->transMethod = CFGTBL_Trans_Performant; 3844 3845 return; 3846 3847 clean_up: 3848 if (h->reply_pool) 3849 pci_free_consistent(h->pdev, h->reply_pool_size, 3850 h->reply_pool, h->reply_pool_dhandle); 3851 kfree(h->blockFetchTable); 3852 } 3853 3854 /* 3855 * This is it. Register the PCI driver information for the cards we control 3856 * the OS will call our registered routines when it finds one of our cards. 3857 */ 3858 static int __init hpsa_init(void) 3859 { 3860 int err; 3861 /* Start the scan thread */ 3862 hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan"); 3863 if (IS_ERR(hpsa_scan_thread)) { 3864 err = PTR_ERR(hpsa_scan_thread); 3865 return -ENODEV; 3866 } 3867 err = pci_register_driver(&hpsa_pci_driver); 3868 if (err) 3869 kthread_stop(hpsa_scan_thread); 3870 return err; 3871 } 3872 3873 static void __exit hpsa_cleanup(void) 3874 { 3875 pci_unregister_driver(&hpsa_pci_driver); 3876 kthread_stop(hpsa_scan_thread); 3877 } 3878 3879 module_init(hpsa_init); 3880 module_exit(hpsa_cleanup); 3881