xref: /linux/drivers/scsi/hpsa.c (revision 7aacf86b75bc5523d20fd9127104384fce51ce9c)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 		"Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 	"Use 'simple mode' rather than 'performant mode'");
93 
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
136 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
137 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
142 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
143 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
146 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
147 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
148 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
149 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
150 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 	{0,}
152 };
153 
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161 	{0x3241103C, "Smart Array P212", &SA5_access},
162 	{0x3243103C, "Smart Array P410", &SA5_access},
163 	{0x3245103C, "Smart Array P410i", &SA5_access},
164 	{0x3247103C, "Smart Array P411", &SA5_access},
165 	{0x3249103C, "Smart Array P812", &SA5_access},
166 	{0x324A103C, "Smart Array P712m", &SA5_access},
167 	{0x324B103C, "Smart Array P711m", &SA5_access},
168 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
169 	{0x3350103C, "Smart Array P222", &SA5_access},
170 	{0x3351103C, "Smart Array P420", &SA5_access},
171 	{0x3352103C, "Smart Array P421", &SA5_access},
172 	{0x3353103C, "Smart Array P822", &SA5_access},
173 	{0x3354103C, "Smart Array P420i", &SA5_access},
174 	{0x3355103C, "Smart Array P220i", &SA5_access},
175 	{0x3356103C, "Smart Array P721m", &SA5_access},
176 	{0x1920103C, "Smart Array P430i", &SA5_access},
177 	{0x1921103C, "Smart Array P830i", &SA5_access},
178 	{0x1922103C, "Smart Array P430", &SA5_access},
179 	{0x1923103C, "Smart Array P431", &SA5_access},
180 	{0x1924103C, "Smart Array P830", &SA5_access},
181 	{0x1925103C, "Smart Array P831", &SA5_access},
182 	{0x1926103C, "Smart Array P731m", &SA5_access},
183 	{0x1928103C, "Smart Array P230i", &SA5_access},
184 	{0x1929103C, "Smart Array P530", &SA5_access},
185 	{0x21BD103C, "Smart Array P244br", &SA5_access},
186 	{0x21BE103C, "Smart Array P741m", &SA5_access},
187 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
188 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
189 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
190 	{0x21C2103C, "Smart Array P440", &SA5_access},
191 	{0x21C3103C, "Smart Array P441", &SA5_access},
192 	{0x21C4103C, "Smart Array", &SA5_access},
193 	{0x21C5103C, "Smart Array P841", &SA5_access},
194 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
195 	{0x21C7103C, "Smart HBA H240", &SA5_access},
196 	{0x21C8103C, "Smart HBA H241", &SA5_access},
197 	{0x21C9103C, "Smart Array", &SA5_access},
198 	{0x21CA103C, "Smart Array P246br", &SA5_access},
199 	{0x21CB103C, "Smart Array P840", &SA5_access},
200 	{0x21CC103C, "Smart Array", &SA5_access},
201 	{0x21CD103C, "Smart Array", &SA5_access},
202 	{0x21CE103C, "Smart HBA", &SA5_access},
203 	{0x05809005, "SmartHBA-SA", &SA5_access},
204 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
205 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
206 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
207 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
208 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
209 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
210 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
211 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
212 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
213 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
214 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
215 };
216 
217 static struct scsi_transport_template *hpsa_sas_transport_template;
218 static int hpsa_add_sas_host(struct ctlr_info *h);
219 static void hpsa_delete_sas_host(struct ctlr_info *h);
220 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
221 			struct hpsa_scsi_dev_t *device);
222 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
223 static struct hpsa_scsi_dev_t
224 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
225 		struct sas_rphy *rphy);
226 
227 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
228 static const struct scsi_cmnd hpsa_cmd_busy;
229 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
230 static const struct scsi_cmnd hpsa_cmd_idle;
231 static int number_of_controllers;
232 
233 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
234 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
235 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
236 
237 #ifdef CONFIG_COMPAT
238 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
239 	void __user *arg);
240 #endif
241 
242 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
243 static struct CommandList *cmd_alloc(struct ctlr_info *h);
244 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
245 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
246 					    struct scsi_cmnd *scmd);
247 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
248 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
249 	int cmd_type);
250 static void hpsa_free_cmd_pool(struct ctlr_info *h);
251 #define VPD_PAGE (1 << 8)
252 #define HPSA_SIMPLE_ERROR_BITS 0x03
253 
254 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
255 static void hpsa_scan_start(struct Scsi_Host *);
256 static int hpsa_scan_finished(struct Scsi_Host *sh,
257 	unsigned long elapsed_time);
258 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
259 
260 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
261 static int hpsa_slave_alloc(struct scsi_device *sdev);
262 static int hpsa_slave_configure(struct scsi_device *sdev);
263 static void hpsa_slave_destroy(struct scsi_device *sdev);
264 
265 static void hpsa_update_scsi_devices(struct ctlr_info *h);
266 static int check_for_unit_attention(struct ctlr_info *h,
267 	struct CommandList *c);
268 static void check_ioctl_unit_attention(struct ctlr_info *h,
269 	struct CommandList *c);
270 /* performant mode helper functions */
271 static void calc_bucket_map(int *bucket, int num_buckets,
272 	int nsgs, int min_blocks, u32 *bucket_map);
273 static void hpsa_free_performant_mode(struct ctlr_info *h);
274 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
275 static inline u32 next_command(struct ctlr_info *h, u8 q);
276 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
277 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
278 			       u64 *cfg_offset);
279 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
280 				    unsigned long *memory_bar);
281 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
282 static int wait_for_device_to_become_ready(struct ctlr_info *h,
283 					   unsigned char lunaddr[],
284 					   int reply_queue);
285 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
286 				     int wait_for_ready);
287 static inline void finish_cmd(struct CommandList *c);
288 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
289 #define BOARD_NOT_READY 0
290 #define BOARD_READY 1
291 static void hpsa_drain_accel_commands(struct ctlr_info *h);
292 static void hpsa_flush_cache(struct ctlr_info *h);
293 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
294 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
295 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
296 static void hpsa_command_resubmit_worker(struct work_struct *work);
297 static u32 lockup_detected(struct ctlr_info *h);
298 static int detect_controller_lockup(struct ctlr_info *h);
299 static void hpsa_disable_rld_caching(struct ctlr_info *h);
300 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
301 	struct ReportExtendedLUNdata *buf, int bufsize);
302 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
303 	unsigned char scsi3addr[], u8 page);
304 static int hpsa_luns_changed(struct ctlr_info *h);
305 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
306 			       struct hpsa_scsi_dev_t *dev,
307 			       unsigned char *scsi3addr);
308 
309 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
310 {
311 	unsigned long *priv = shost_priv(sdev->host);
312 	return (struct ctlr_info *) *priv;
313 }
314 
315 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
316 {
317 	unsigned long *priv = shost_priv(sh);
318 	return (struct ctlr_info *) *priv;
319 }
320 
321 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
322 {
323 	return c->scsi_cmd == SCSI_CMD_IDLE;
324 }
325 
326 static inline bool hpsa_is_pending_event(struct CommandList *c)
327 {
328 	return c->reset_pending;
329 }
330 
331 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
332 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
333 			u8 *sense_key, u8 *asc, u8 *ascq)
334 {
335 	struct scsi_sense_hdr sshdr;
336 	bool rc;
337 
338 	*sense_key = -1;
339 	*asc = -1;
340 	*ascq = -1;
341 
342 	if (sense_data_len < 1)
343 		return;
344 
345 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
346 	if (rc) {
347 		*sense_key = sshdr.sense_key;
348 		*asc = sshdr.asc;
349 		*ascq = sshdr.ascq;
350 	}
351 }
352 
353 static int check_for_unit_attention(struct ctlr_info *h,
354 	struct CommandList *c)
355 {
356 	u8 sense_key, asc, ascq;
357 	int sense_len;
358 
359 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
360 		sense_len = sizeof(c->err_info->SenseInfo);
361 	else
362 		sense_len = c->err_info->SenseLen;
363 
364 	decode_sense_data(c->err_info->SenseInfo, sense_len,
365 				&sense_key, &asc, &ascq);
366 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
367 		return 0;
368 
369 	switch (asc) {
370 	case STATE_CHANGED:
371 		dev_warn(&h->pdev->dev,
372 			"%s: a state change detected, command retried\n",
373 			h->devname);
374 		break;
375 	case LUN_FAILED:
376 		dev_warn(&h->pdev->dev,
377 			"%s: LUN failure detected\n", h->devname);
378 		break;
379 	case REPORT_LUNS_CHANGED:
380 		dev_warn(&h->pdev->dev,
381 			"%s: report LUN data changed\n", h->devname);
382 	/*
383 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
384 	 * target (array) devices.
385 	 */
386 		break;
387 	case POWER_OR_RESET:
388 		dev_warn(&h->pdev->dev,
389 			"%s: a power on or device reset detected\n",
390 			h->devname);
391 		break;
392 	case UNIT_ATTENTION_CLEARED:
393 		dev_warn(&h->pdev->dev,
394 			"%s: unit attention cleared by another initiator\n",
395 			h->devname);
396 		break;
397 	default:
398 		dev_warn(&h->pdev->dev,
399 			"%s: unknown unit attention detected\n",
400 			h->devname);
401 		break;
402 	}
403 	return 1;
404 }
405 
406 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
407 {
408 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
409 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
410 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
411 		return 0;
412 	dev_warn(&h->pdev->dev, HPSA "device busy");
413 	return 1;
414 }
415 
416 static u32 lockup_detected(struct ctlr_info *h);
417 static ssize_t host_show_lockup_detected(struct device *dev,
418 		struct device_attribute *attr, char *buf)
419 {
420 	int ld;
421 	struct ctlr_info *h;
422 	struct Scsi_Host *shost = class_to_shost(dev);
423 
424 	h = shost_to_hba(shost);
425 	ld = lockup_detected(h);
426 
427 	return sprintf(buf, "ld=%d\n", ld);
428 }
429 
430 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
431 					 struct device_attribute *attr,
432 					 const char *buf, size_t count)
433 {
434 	int status, len;
435 	struct ctlr_info *h;
436 	struct Scsi_Host *shost = class_to_shost(dev);
437 	char tmpbuf[10];
438 
439 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
440 		return -EACCES;
441 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
442 	strncpy(tmpbuf, buf, len);
443 	tmpbuf[len] = '\0';
444 	if (sscanf(tmpbuf, "%d", &status) != 1)
445 		return -EINVAL;
446 	h = shost_to_hba(shost);
447 	h->acciopath_status = !!status;
448 	dev_warn(&h->pdev->dev,
449 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
450 		h->acciopath_status ? "enabled" : "disabled");
451 	return count;
452 }
453 
454 static ssize_t host_store_raid_offload_debug(struct device *dev,
455 					 struct device_attribute *attr,
456 					 const char *buf, size_t count)
457 {
458 	int debug_level, len;
459 	struct ctlr_info *h;
460 	struct Scsi_Host *shost = class_to_shost(dev);
461 	char tmpbuf[10];
462 
463 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
464 		return -EACCES;
465 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
466 	strncpy(tmpbuf, buf, len);
467 	tmpbuf[len] = '\0';
468 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
469 		return -EINVAL;
470 	if (debug_level < 0)
471 		debug_level = 0;
472 	h = shost_to_hba(shost);
473 	h->raid_offload_debug = debug_level;
474 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
475 		h->raid_offload_debug);
476 	return count;
477 }
478 
479 static ssize_t host_store_rescan(struct device *dev,
480 				 struct device_attribute *attr,
481 				 const char *buf, size_t count)
482 {
483 	struct ctlr_info *h;
484 	struct Scsi_Host *shost = class_to_shost(dev);
485 	h = shost_to_hba(shost);
486 	hpsa_scan_start(h->scsi_host);
487 	return count;
488 }
489 
490 static ssize_t host_show_firmware_revision(struct device *dev,
491 	     struct device_attribute *attr, char *buf)
492 {
493 	struct ctlr_info *h;
494 	struct Scsi_Host *shost = class_to_shost(dev);
495 	unsigned char *fwrev;
496 
497 	h = shost_to_hba(shost);
498 	if (!h->hba_inquiry_data)
499 		return 0;
500 	fwrev = &h->hba_inquiry_data[32];
501 	return snprintf(buf, 20, "%c%c%c%c\n",
502 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
503 }
504 
505 static ssize_t host_show_commands_outstanding(struct device *dev,
506 	     struct device_attribute *attr, char *buf)
507 {
508 	struct Scsi_Host *shost = class_to_shost(dev);
509 	struct ctlr_info *h = shost_to_hba(shost);
510 
511 	return snprintf(buf, 20, "%d\n",
512 			atomic_read(&h->commands_outstanding));
513 }
514 
515 static ssize_t host_show_transport_mode(struct device *dev,
516 	struct device_attribute *attr, char *buf)
517 {
518 	struct ctlr_info *h;
519 	struct Scsi_Host *shost = class_to_shost(dev);
520 
521 	h = shost_to_hba(shost);
522 	return snprintf(buf, 20, "%s\n",
523 		h->transMethod & CFGTBL_Trans_Performant ?
524 			"performant" : "simple");
525 }
526 
527 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
528 	struct device_attribute *attr, char *buf)
529 {
530 	struct ctlr_info *h;
531 	struct Scsi_Host *shost = class_to_shost(dev);
532 
533 	h = shost_to_hba(shost);
534 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
535 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
536 }
537 
538 /* List of controllers which cannot be hard reset on kexec with reset_devices */
539 static u32 unresettable_controller[] = {
540 	0x324a103C, /* Smart Array P712m */
541 	0x324b103C, /* Smart Array P711m */
542 	0x3223103C, /* Smart Array P800 */
543 	0x3234103C, /* Smart Array P400 */
544 	0x3235103C, /* Smart Array P400i */
545 	0x3211103C, /* Smart Array E200i */
546 	0x3212103C, /* Smart Array E200 */
547 	0x3213103C, /* Smart Array E200i */
548 	0x3214103C, /* Smart Array E200i */
549 	0x3215103C, /* Smart Array E200i */
550 	0x3237103C, /* Smart Array E500 */
551 	0x323D103C, /* Smart Array P700m */
552 	0x40800E11, /* Smart Array 5i */
553 	0x409C0E11, /* Smart Array 6400 */
554 	0x409D0E11, /* Smart Array 6400 EM */
555 	0x40700E11, /* Smart Array 5300 */
556 	0x40820E11, /* Smart Array 532 */
557 	0x40830E11, /* Smart Array 5312 */
558 	0x409A0E11, /* Smart Array 641 */
559 	0x409B0E11, /* Smart Array 642 */
560 	0x40910E11, /* Smart Array 6i */
561 };
562 
563 /* List of controllers which cannot even be soft reset */
564 static u32 soft_unresettable_controller[] = {
565 	0x40800E11, /* Smart Array 5i */
566 	0x40700E11, /* Smart Array 5300 */
567 	0x40820E11, /* Smart Array 532 */
568 	0x40830E11, /* Smart Array 5312 */
569 	0x409A0E11, /* Smart Array 641 */
570 	0x409B0E11, /* Smart Array 642 */
571 	0x40910E11, /* Smart Array 6i */
572 	/* Exclude 640x boards.  These are two pci devices in one slot
573 	 * which share a battery backed cache module.  One controls the
574 	 * cache, the other accesses the cache through the one that controls
575 	 * it.  If we reset the one controlling the cache, the other will
576 	 * likely not be happy.  Just forbid resetting this conjoined mess.
577 	 * The 640x isn't really supported by hpsa anyway.
578 	 */
579 	0x409C0E11, /* Smart Array 6400 */
580 	0x409D0E11, /* Smart Array 6400 EM */
581 };
582 
583 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
584 {
585 	int i;
586 
587 	for (i = 0; i < nelems; i++)
588 		if (a[i] == board_id)
589 			return 1;
590 	return 0;
591 }
592 
593 static int ctlr_is_hard_resettable(u32 board_id)
594 {
595 	return !board_id_in_array(unresettable_controller,
596 			ARRAY_SIZE(unresettable_controller), board_id);
597 }
598 
599 static int ctlr_is_soft_resettable(u32 board_id)
600 {
601 	return !board_id_in_array(soft_unresettable_controller,
602 			ARRAY_SIZE(soft_unresettable_controller), board_id);
603 }
604 
605 static int ctlr_is_resettable(u32 board_id)
606 {
607 	return ctlr_is_hard_resettable(board_id) ||
608 		ctlr_is_soft_resettable(board_id);
609 }
610 
611 static ssize_t host_show_resettable(struct device *dev,
612 	struct device_attribute *attr, char *buf)
613 {
614 	struct ctlr_info *h;
615 	struct Scsi_Host *shost = class_to_shost(dev);
616 
617 	h = shost_to_hba(shost);
618 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
619 }
620 
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
622 {
623 	return (scsi3addr[3] & 0xC0) == 0x40;
624 }
625 
626 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
628 };
629 #define HPSA_RAID_0	0
630 #define HPSA_RAID_4	1
631 #define HPSA_RAID_1	2	/* also used for RAID 10 */
632 #define HPSA_RAID_5	3	/* also used for RAID 50 */
633 #define HPSA_RAID_51	4
634 #define HPSA_RAID_6	5	/* also used for RAID 60 */
635 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
638 
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
640 {
641 	return !device->physical_device;
642 }
643 
644 static ssize_t raid_level_show(struct device *dev,
645 	     struct device_attribute *attr, char *buf)
646 {
647 	ssize_t l = 0;
648 	unsigned char rlevel;
649 	struct ctlr_info *h;
650 	struct scsi_device *sdev;
651 	struct hpsa_scsi_dev_t *hdev;
652 	unsigned long flags;
653 
654 	sdev = to_scsi_device(dev);
655 	h = sdev_to_hba(sdev);
656 	spin_lock_irqsave(&h->lock, flags);
657 	hdev = sdev->hostdata;
658 	if (!hdev) {
659 		spin_unlock_irqrestore(&h->lock, flags);
660 		return -ENODEV;
661 	}
662 
663 	/* Is this even a logical drive? */
664 	if (!is_logical_device(hdev)) {
665 		spin_unlock_irqrestore(&h->lock, flags);
666 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
667 		return l;
668 	}
669 
670 	rlevel = hdev->raid_level;
671 	spin_unlock_irqrestore(&h->lock, flags);
672 	if (rlevel > RAID_UNKNOWN)
673 		rlevel = RAID_UNKNOWN;
674 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
675 	return l;
676 }
677 
678 static ssize_t lunid_show(struct device *dev,
679 	     struct device_attribute *attr, char *buf)
680 {
681 	struct ctlr_info *h;
682 	struct scsi_device *sdev;
683 	struct hpsa_scsi_dev_t *hdev;
684 	unsigned long flags;
685 	unsigned char lunid[8];
686 
687 	sdev = to_scsi_device(dev);
688 	h = sdev_to_hba(sdev);
689 	spin_lock_irqsave(&h->lock, flags);
690 	hdev = sdev->hostdata;
691 	if (!hdev) {
692 		spin_unlock_irqrestore(&h->lock, flags);
693 		return -ENODEV;
694 	}
695 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
696 	spin_unlock_irqrestore(&h->lock, flags);
697 	return snprintf(buf, 20, "0x%8phN\n", lunid);
698 }
699 
700 static ssize_t unique_id_show(struct device *dev,
701 	     struct device_attribute *attr, char *buf)
702 {
703 	struct ctlr_info *h;
704 	struct scsi_device *sdev;
705 	struct hpsa_scsi_dev_t *hdev;
706 	unsigned long flags;
707 	unsigned char sn[16];
708 
709 	sdev = to_scsi_device(dev);
710 	h = sdev_to_hba(sdev);
711 	spin_lock_irqsave(&h->lock, flags);
712 	hdev = sdev->hostdata;
713 	if (!hdev) {
714 		spin_unlock_irqrestore(&h->lock, flags);
715 		return -ENODEV;
716 	}
717 	memcpy(sn, hdev->device_id, sizeof(sn));
718 	spin_unlock_irqrestore(&h->lock, flags);
719 	return snprintf(buf, 16 * 2 + 2,
720 			"%02X%02X%02X%02X%02X%02X%02X%02X"
721 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
722 			sn[0], sn[1], sn[2], sn[3],
723 			sn[4], sn[5], sn[6], sn[7],
724 			sn[8], sn[9], sn[10], sn[11],
725 			sn[12], sn[13], sn[14], sn[15]);
726 }
727 
728 static ssize_t sas_address_show(struct device *dev,
729 	      struct device_attribute *attr, char *buf)
730 {
731 	struct ctlr_info *h;
732 	struct scsi_device *sdev;
733 	struct hpsa_scsi_dev_t *hdev;
734 	unsigned long flags;
735 	u64 sas_address;
736 
737 	sdev = to_scsi_device(dev);
738 	h = sdev_to_hba(sdev);
739 	spin_lock_irqsave(&h->lock, flags);
740 	hdev = sdev->hostdata;
741 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
742 		spin_unlock_irqrestore(&h->lock, flags);
743 		return -ENODEV;
744 	}
745 	sas_address = hdev->sas_address;
746 	spin_unlock_irqrestore(&h->lock, flags);
747 
748 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
749 }
750 
751 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
752 	     struct device_attribute *attr, char *buf)
753 {
754 	struct ctlr_info *h;
755 	struct scsi_device *sdev;
756 	struct hpsa_scsi_dev_t *hdev;
757 	unsigned long flags;
758 	int offload_enabled;
759 
760 	sdev = to_scsi_device(dev);
761 	h = sdev_to_hba(sdev);
762 	spin_lock_irqsave(&h->lock, flags);
763 	hdev = sdev->hostdata;
764 	if (!hdev) {
765 		spin_unlock_irqrestore(&h->lock, flags);
766 		return -ENODEV;
767 	}
768 	offload_enabled = hdev->offload_enabled;
769 	spin_unlock_irqrestore(&h->lock, flags);
770 	return snprintf(buf, 20, "%d\n", offload_enabled);
771 }
772 
773 #define MAX_PATHS 8
774 static ssize_t path_info_show(struct device *dev,
775 	     struct device_attribute *attr, char *buf)
776 {
777 	struct ctlr_info *h;
778 	struct scsi_device *sdev;
779 	struct hpsa_scsi_dev_t *hdev;
780 	unsigned long flags;
781 	int i;
782 	int output_len = 0;
783 	u8 box;
784 	u8 bay;
785 	u8 path_map_index = 0;
786 	char *active;
787 	unsigned char phys_connector[2];
788 
789 	sdev = to_scsi_device(dev);
790 	h = sdev_to_hba(sdev);
791 	spin_lock_irqsave(&h->devlock, flags);
792 	hdev = sdev->hostdata;
793 	if (!hdev) {
794 		spin_unlock_irqrestore(&h->devlock, flags);
795 		return -ENODEV;
796 	}
797 
798 	bay = hdev->bay;
799 	for (i = 0; i < MAX_PATHS; i++) {
800 		path_map_index = 1<<i;
801 		if (i == hdev->active_path_index)
802 			active = "Active";
803 		else if (hdev->path_map & path_map_index)
804 			active = "Inactive";
805 		else
806 			continue;
807 
808 		output_len += scnprintf(buf + output_len,
809 				PAGE_SIZE - output_len,
810 				"[%d:%d:%d:%d] %20.20s ",
811 				h->scsi_host->host_no,
812 				hdev->bus, hdev->target, hdev->lun,
813 				scsi_device_type(hdev->devtype));
814 
815 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
816 			output_len += scnprintf(buf + output_len,
817 						PAGE_SIZE - output_len,
818 						"%s\n", active);
819 			continue;
820 		}
821 
822 		box = hdev->box[i];
823 		memcpy(&phys_connector, &hdev->phys_connector[i],
824 			sizeof(phys_connector));
825 		if (phys_connector[0] < '0')
826 			phys_connector[0] = '0';
827 		if (phys_connector[1] < '0')
828 			phys_connector[1] = '0';
829 		output_len += scnprintf(buf + output_len,
830 				PAGE_SIZE - output_len,
831 				"PORT: %.2s ",
832 				phys_connector);
833 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
834 			hdev->expose_device) {
835 			if (box == 0 || box == 0xFF) {
836 				output_len += scnprintf(buf + output_len,
837 					PAGE_SIZE - output_len,
838 					"BAY: %hhu %s\n",
839 					bay, active);
840 			} else {
841 				output_len += scnprintf(buf + output_len,
842 					PAGE_SIZE - output_len,
843 					"BOX: %hhu BAY: %hhu %s\n",
844 					box, bay, active);
845 			}
846 		} else if (box != 0 && box != 0xFF) {
847 			output_len += scnprintf(buf + output_len,
848 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
849 				box, active);
850 		} else
851 			output_len += scnprintf(buf + output_len,
852 				PAGE_SIZE - output_len, "%s\n", active);
853 	}
854 
855 	spin_unlock_irqrestore(&h->devlock, flags);
856 	return output_len;
857 }
858 
859 static ssize_t host_show_ctlr_num(struct device *dev,
860 	struct device_attribute *attr, char *buf)
861 {
862 	struct ctlr_info *h;
863 	struct Scsi_Host *shost = class_to_shost(dev);
864 
865 	h = shost_to_hba(shost);
866 	return snprintf(buf, 20, "%d\n", h->ctlr);
867 }
868 
869 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
870 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
871 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
872 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
873 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
874 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
875 			host_show_hp_ssd_smart_path_enabled, NULL);
876 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
877 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
878 		host_show_hp_ssd_smart_path_status,
879 		host_store_hp_ssd_smart_path_status);
880 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
881 			host_store_raid_offload_debug);
882 static DEVICE_ATTR(firmware_revision, S_IRUGO,
883 	host_show_firmware_revision, NULL);
884 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
885 	host_show_commands_outstanding, NULL);
886 static DEVICE_ATTR(transport_mode, S_IRUGO,
887 	host_show_transport_mode, NULL);
888 static DEVICE_ATTR(resettable, S_IRUGO,
889 	host_show_resettable, NULL);
890 static DEVICE_ATTR(lockup_detected, S_IRUGO,
891 	host_show_lockup_detected, NULL);
892 static DEVICE_ATTR(ctlr_num, S_IRUGO,
893 	host_show_ctlr_num, NULL);
894 
895 static struct device_attribute *hpsa_sdev_attrs[] = {
896 	&dev_attr_raid_level,
897 	&dev_attr_lunid,
898 	&dev_attr_unique_id,
899 	&dev_attr_hp_ssd_smart_path_enabled,
900 	&dev_attr_path_info,
901 	&dev_attr_sas_address,
902 	NULL,
903 };
904 
905 static struct device_attribute *hpsa_shost_attrs[] = {
906 	&dev_attr_rescan,
907 	&dev_attr_firmware_revision,
908 	&dev_attr_commands_outstanding,
909 	&dev_attr_transport_mode,
910 	&dev_attr_resettable,
911 	&dev_attr_hp_ssd_smart_path_status,
912 	&dev_attr_raid_offload_debug,
913 	&dev_attr_lockup_detected,
914 	&dev_attr_ctlr_num,
915 	NULL,
916 };
917 
918 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
919 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
920 
921 static struct scsi_host_template hpsa_driver_template = {
922 	.module			= THIS_MODULE,
923 	.name			= HPSA,
924 	.proc_name		= HPSA,
925 	.queuecommand		= hpsa_scsi_queue_command,
926 	.scan_start		= hpsa_scan_start,
927 	.scan_finished		= hpsa_scan_finished,
928 	.change_queue_depth	= hpsa_change_queue_depth,
929 	.this_id		= -1,
930 	.use_clustering		= ENABLE_CLUSTERING,
931 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
932 	.ioctl			= hpsa_ioctl,
933 	.slave_alloc		= hpsa_slave_alloc,
934 	.slave_configure	= hpsa_slave_configure,
935 	.slave_destroy		= hpsa_slave_destroy,
936 #ifdef CONFIG_COMPAT
937 	.compat_ioctl		= hpsa_compat_ioctl,
938 #endif
939 	.sdev_attrs = hpsa_sdev_attrs,
940 	.shost_attrs = hpsa_shost_attrs,
941 	.max_sectors = 1024,
942 	.no_write_same = 1,
943 };
944 
945 static inline u32 next_command(struct ctlr_info *h, u8 q)
946 {
947 	u32 a;
948 	struct reply_queue_buffer *rq = &h->reply_queue[q];
949 
950 	if (h->transMethod & CFGTBL_Trans_io_accel1)
951 		return h->access.command_completed(h, q);
952 
953 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
954 		return h->access.command_completed(h, q);
955 
956 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
957 		a = rq->head[rq->current_entry];
958 		rq->current_entry++;
959 		atomic_dec(&h->commands_outstanding);
960 	} else {
961 		a = FIFO_EMPTY;
962 	}
963 	/* Check for wraparound */
964 	if (rq->current_entry == h->max_commands) {
965 		rq->current_entry = 0;
966 		rq->wraparound ^= 1;
967 	}
968 	return a;
969 }
970 
971 /*
972  * There are some special bits in the bus address of the
973  * command that we have to set for the controller to know
974  * how to process the command:
975  *
976  * Normal performant mode:
977  * bit 0: 1 means performant mode, 0 means simple mode.
978  * bits 1-3 = block fetch table entry
979  * bits 4-6 = command type (== 0)
980  *
981  * ioaccel1 mode:
982  * bit 0 = "performant mode" bit.
983  * bits 1-3 = block fetch table entry
984  * bits 4-6 = command type (== 110)
985  * (command type is needed because ioaccel1 mode
986  * commands are submitted through the same register as normal
987  * mode commands, so this is how the controller knows whether
988  * the command is normal mode or ioaccel1 mode.)
989  *
990  * ioaccel2 mode:
991  * bit 0 = "performant mode" bit.
992  * bits 1-4 = block fetch table entry (note extra bit)
993  * bits 4-6 = not needed, because ioaccel2 mode has
994  * a separate special register for submitting commands.
995  */
996 
997 /*
998  * set_performant_mode: Modify the tag for cciss performant
999  * set bit 0 for pull model, bits 3-1 for block fetch
1000  * register number
1001  */
1002 #define DEFAULT_REPLY_QUEUE (-1)
1003 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1004 					int reply_queue)
1005 {
1006 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1007 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1008 		if (unlikely(!h->msix_vectors))
1009 			return;
1010 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1011 			c->Header.ReplyQueue =
1012 				raw_smp_processor_id() % h->nreply_queues;
1013 		else
1014 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1015 	}
1016 }
1017 
1018 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1019 						struct CommandList *c,
1020 						int reply_queue)
1021 {
1022 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1023 
1024 	/*
1025 	 * Tell the controller to post the reply to the queue for this
1026 	 * processor.  This seems to give the best I/O throughput.
1027 	 */
1028 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1029 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1030 	else
1031 		cp->ReplyQueue = reply_queue % h->nreply_queues;
1032 	/*
1033 	 * Set the bits in the address sent down to include:
1034 	 *  - performant mode bit (bit 0)
1035 	 *  - pull count (bits 1-3)
1036 	 *  - command type (bits 4-6)
1037 	 */
1038 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1039 					IOACCEL1_BUSADDR_CMDTYPE;
1040 }
1041 
1042 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1043 						struct CommandList *c,
1044 						int reply_queue)
1045 {
1046 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1047 		&h->ioaccel2_cmd_pool[c->cmdindex];
1048 
1049 	/* Tell the controller to post the reply to the queue for this
1050 	 * processor.  This seems to give the best I/O throughput.
1051 	 */
1052 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1053 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1054 	else
1055 		cp->reply_queue = reply_queue % h->nreply_queues;
1056 	/* Set the bits in the address sent down to include:
1057 	 *  - performant mode bit not used in ioaccel mode 2
1058 	 *  - pull count (bits 0-3)
1059 	 *  - command type isn't needed for ioaccel2
1060 	 */
1061 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1062 }
1063 
1064 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1065 						struct CommandList *c,
1066 						int reply_queue)
1067 {
1068 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1069 
1070 	/*
1071 	 * Tell the controller to post the reply to the queue for this
1072 	 * processor.  This seems to give the best I/O throughput.
1073 	 */
1074 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1075 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1076 	else
1077 		cp->reply_queue = reply_queue % h->nreply_queues;
1078 	/*
1079 	 * Set the bits in the address sent down to include:
1080 	 *  - performant mode bit not used in ioaccel mode 2
1081 	 *  - pull count (bits 0-3)
1082 	 *  - command type isn't needed for ioaccel2
1083 	 */
1084 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1085 }
1086 
1087 static int is_firmware_flash_cmd(u8 *cdb)
1088 {
1089 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1090 }
1091 
1092 /*
1093  * During firmware flash, the heartbeat register may not update as frequently
1094  * as it should.  So we dial down lockup detection during firmware flash. and
1095  * dial it back up when firmware flash completes.
1096  */
1097 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1098 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1099 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1100 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1101 		struct CommandList *c)
1102 {
1103 	if (!is_firmware_flash_cmd(c->Request.CDB))
1104 		return;
1105 	atomic_inc(&h->firmware_flash_in_progress);
1106 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1107 }
1108 
1109 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1110 		struct CommandList *c)
1111 {
1112 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1113 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1114 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1115 }
1116 
1117 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1118 	struct CommandList *c, int reply_queue)
1119 {
1120 	dial_down_lockup_detection_during_fw_flash(h, c);
1121 	atomic_inc(&h->commands_outstanding);
1122 	switch (c->cmd_type) {
1123 	case CMD_IOACCEL1:
1124 		set_ioaccel1_performant_mode(h, c, reply_queue);
1125 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1126 		break;
1127 	case CMD_IOACCEL2:
1128 		set_ioaccel2_performant_mode(h, c, reply_queue);
1129 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1130 		break;
1131 	case IOACCEL2_TMF:
1132 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1133 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1134 		break;
1135 	default:
1136 		set_performant_mode(h, c, reply_queue);
1137 		h->access.submit_command(h, c);
1138 	}
1139 }
1140 
1141 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1142 {
1143 	if (unlikely(hpsa_is_pending_event(c)))
1144 		return finish_cmd(c);
1145 
1146 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1147 }
1148 
1149 static inline int is_hba_lunid(unsigned char scsi3addr[])
1150 {
1151 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1152 }
1153 
1154 static inline int is_scsi_rev_5(struct ctlr_info *h)
1155 {
1156 	if (!h->hba_inquiry_data)
1157 		return 0;
1158 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1159 		return 1;
1160 	return 0;
1161 }
1162 
1163 static int hpsa_find_target_lun(struct ctlr_info *h,
1164 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1165 {
1166 	/* finds an unused bus, target, lun for a new physical device
1167 	 * assumes h->devlock is held
1168 	 */
1169 	int i, found = 0;
1170 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1171 
1172 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1173 
1174 	for (i = 0; i < h->ndevices; i++) {
1175 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1176 			__set_bit(h->dev[i]->target, lun_taken);
1177 	}
1178 
1179 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1180 	if (i < HPSA_MAX_DEVICES) {
1181 		/* *bus = 1; */
1182 		*target = i;
1183 		*lun = 0;
1184 		found = 1;
1185 	}
1186 	return !found;
1187 }
1188 
1189 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1190 	struct hpsa_scsi_dev_t *dev, char *description)
1191 {
1192 #define LABEL_SIZE 25
1193 	char label[LABEL_SIZE];
1194 
1195 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1196 		return;
1197 
1198 	switch (dev->devtype) {
1199 	case TYPE_RAID:
1200 		snprintf(label, LABEL_SIZE, "controller");
1201 		break;
1202 	case TYPE_ENCLOSURE:
1203 		snprintf(label, LABEL_SIZE, "enclosure");
1204 		break;
1205 	case TYPE_DISK:
1206 	case TYPE_ZBC:
1207 		if (dev->external)
1208 			snprintf(label, LABEL_SIZE, "external");
1209 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1210 			snprintf(label, LABEL_SIZE, "%s",
1211 				raid_label[PHYSICAL_DRIVE]);
1212 		else
1213 			snprintf(label, LABEL_SIZE, "RAID-%s",
1214 				dev->raid_level > RAID_UNKNOWN ? "?" :
1215 				raid_label[dev->raid_level]);
1216 		break;
1217 	case TYPE_ROM:
1218 		snprintf(label, LABEL_SIZE, "rom");
1219 		break;
1220 	case TYPE_TAPE:
1221 		snprintf(label, LABEL_SIZE, "tape");
1222 		break;
1223 	case TYPE_MEDIUM_CHANGER:
1224 		snprintf(label, LABEL_SIZE, "changer");
1225 		break;
1226 	default:
1227 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1228 		break;
1229 	}
1230 
1231 	dev_printk(level, &h->pdev->dev,
1232 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1233 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1234 			description,
1235 			scsi_device_type(dev->devtype),
1236 			dev->vendor,
1237 			dev->model,
1238 			label,
1239 			dev->offload_config ? '+' : '-',
1240 			dev->offload_enabled ? '+' : '-',
1241 			dev->expose_device);
1242 }
1243 
1244 /* Add an entry into h->dev[] array. */
1245 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1246 		struct hpsa_scsi_dev_t *device,
1247 		struct hpsa_scsi_dev_t *added[], int *nadded)
1248 {
1249 	/* assumes h->devlock is held */
1250 	int n = h->ndevices;
1251 	int i;
1252 	unsigned char addr1[8], addr2[8];
1253 	struct hpsa_scsi_dev_t *sd;
1254 
1255 	if (n >= HPSA_MAX_DEVICES) {
1256 		dev_err(&h->pdev->dev, "too many devices, some will be "
1257 			"inaccessible.\n");
1258 		return -1;
1259 	}
1260 
1261 	/* physical devices do not have lun or target assigned until now. */
1262 	if (device->lun != -1)
1263 		/* Logical device, lun is already assigned. */
1264 		goto lun_assigned;
1265 
1266 	/* If this device a non-zero lun of a multi-lun device
1267 	 * byte 4 of the 8-byte LUN addr will contain the logical
1268 	 * unit no, zero otherwise.
1269 	 */
1270 	if (device->scsi3addr[4] == 0) {
1271 		/* This is not a non-zero lun of a multi-lun device */
1272 		if (hpsa_find_target_lun(h, device->scsi3addr,
1273 			device->bus, &device->target, &device->lun) != 0)
1274 			return -1;
1275 		goto lun_assigned;
1276 	}
1277 
1278 	/* This is a non-zero lun of a multi-lun device.
1279 	 * Search through our list and find the device which
1280 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1281 	 * Assign the same bus and target for this new LUN.
1282 	 * Use the logical unit number from the firmware.
1283 	 */
1284 	memcpy(addr1, device->scsi3addr, 8);
1285 	addr1[4] = 0;
1286 	addr1[5] = 0;
1287 	for (i = 0; i < n; i++) {
1288 		sd = h->dev[i];
1289 		memcpy(addr2, sd->scsi3addr, 8);
1290 		addr2[4] = 0;
1291 		addr2[5] = 0;
1292 		/* differ only in byte 4 and 5? */
1293 		if (memcmp(addr1, addr2, 8) == 0) {
1294 			device->bus = sd->bus;
1295 			device->target = sd->target;
1296 			device->lun = device->scsi3addr[4];
1297 			break;
1298 		}
1299 	}
1300 	if (device->lun == -1) {
1301 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1302 			" suspect firmware bug or unsupported hardware "
1303 			"configuration.\n");
1304 			return -1;
1305 	}
1306 
1307 lun_assigned:
1308 
1309 	h->dev[n] = device;
1310 	h->ndevices++;
1311 	added[*nadded] = device;
1312 	(*nadded)++;
1313 	hpsa_show_dev_msg(KERN_INFO, h, device,
1314 		device->expose_device ? "added" : "masked");
1315 	device->offload_to_be_enabled = device->offload_enabled;
1316 	device->offload_enabled = 0;
1317 	return 0;
1318 }
1319 
1320 /* Update an entry in h->dev[] array. */
1321 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1322 	int entry, struct hpsa_scsi_dev_t *new_entry)
1323 {
1324 	int offload_enabled;
1325 	/* assumes h->devlock is held */
1326 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1327 
1328 	/* Raid level changed. */
1329 	h->dev[entry]->raid_level = new_entry->raid_level;
1330 
1331 	/* Raid offload parameters changed.  Careful about the ordering. */
1332 	if (new_entry->offload_config && new_entry->offload_enabled) {
1333 		/*
1334 		 * if drive is newly offload_enabled, we want to copy the
1335 		 * raid map data first.  If previously offload_enabled and
1336 		 * offload_config were set, raid map data had better be
1337 		 * the same as it was before.  if raid map data is changed
1338 		 * then it had better be the case that
1339 		 * h->dev[entry]->offload_enabled is currently 0.
1340 		 */
1341 		h->dev[entry]->raid_map = new_entry->raid_map;
1342 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1343 	}
1344 	if (new_entry->hba_ioaccel_enabled) {
1345 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1346 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1347 	}
1348 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1349 	h->dev[entry]->offload_config = new_entry->offload_config;
1350 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1351 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1352 
1353 	/*
1354 	 * We can turn off ioaccel offload now, but need to delay turning
1355 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1356 	 * can't do that until all the devices are updated.
1357 	 */
1358 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1359 	if (!new_entry->offload_enabled)
1360 		h->dev[entry]->offload_enabled = 0;
1361 
1362 	offload_enabled = h->dev[entry]->offload_enabled;
1363 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1364 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1365 	h->dev[entry]->offload_enabled = offload_enabled;
1366 }
1367 
1368 /* Replace an entry from h->dev[] array. */
1369 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1370 	int entry, struct hpsa_scsi_dev_t *new_entry,
1371 	struct hpsa_scsi_dev_t *added[], int *nadded,
1372 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1373 {
1374 	/* assumes h->devlock is held */
1375 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1376 	removed[*nremoved] = h->dev[entry];
1377 	(*nremoved)++;
1378 
1379 	/*
1380 	 * New physical devices won't have target/lun assigned yet
1381 	 * so we need to preserve the values in the slot we are replacing.
1382 	 */
1383 	if (new_entry->target == -1) {
1384 		new_entry->target = h->dev[entry]->target;
1385 		new_entry->lun = h->dev[entry]->lun;
1386 	}
1387 
1388 	h->dev[entry] = new_entry;
1389 	added[*nadded] = new_entry;
1390 	(*nadded)++;
1391 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1392 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1393 	new_entry->offload_enabled = 0;
1394 }
1395 
1396 /* Remove an entry from h->dev[] array. */
1397 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1398 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1399 {
1400 	/* assumes h->devlock is held */
1401 	int i;
1402 	struct hpsa_scsi_dev_t *sd;
1403 
1404 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1405 
1406 	sd = h->dev[entry];
1407 	removed[*nremoved] = h->dev[entry];
1408 	(*nremoved)++;
1409 
1410 	for (i = entry; i < h->ndevices-1; i++)
1411 		h->dev[i] = h->dev[i+1];
1412 	h->ndevices--;
1413 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1414 }
1415 
1416 #define SCSI3ADDR_EQ(a, b) ( \
1417 	(a)[7] == (b)[7] && \
1418 	(a)[6] == (b)[6] && \
1419 	(a)[5] == (b)[5] && \
1420 	(a)[4] == (b)[4] && \
1421 	(a)[3] == (b)[3] && \
1422 	(a)[2] == (b)[2] && \
1423 	(a)[1] == (b)[1] && \
1424 	(a)[0] == (b)[0])
1425 
1426 static void fixup_botched_add(struct ctlr_info *h,
1427 	struct hpsa_scsi_dev_t *added)
1428 {
1429 	/* called when scsi_add_device fails in order to re-adjust
1430 	 * h->dev[] to match the mid layer's view.
1431 	 */
1432 	unsigned long flags;
1433 	int i, j;
1434 
1435 	spin_lock_irqsave(&h->lock, flags);
1436 	for (i = 0; i < h->ndevices; i++) {
1437 		if (h->dev[i] == added) {
1438 			for (j = i; j < h->ndevices-1; j++)
1439 				h->dev[j] = h->dev[j+1];
1440 			h->ndevices--;
1441 			break;
1442 		}
1443 	}
1444 	spin_unlock_irqrestore(&h->lock, flags);
1445 	kfree(added);
1446 }
1447 
1448 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1449 	struct hpsa_scsi_dev_t *dev2)
1450 {
1451 	/* we compare everything except lun and target as these
1452 	 * are not yet assigned.  Compare parts likely
1453 	 * to differ first
1454 	 */
1455 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1456 		sizeof(dev1->scsi3addr)) != 0)
1457 		return 0;
1458 	if (memcmp(dev1->device_id, dev2->device_id,
1459 		sizeof(dev1->device_id)) != 0)
1460 		return 0;
1461 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1462 		return 0;
1463 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1464 		return 0;
1465 	if (dev1->devtype != dev2->devtype)
1466 		return 0;
1467 	if (dev1->bus != dev2->bus)
1468 		return 0;
1469 	return 1;
1470 }
1471 
1472 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1473 	struct hpsa_scsi_dev_t *dev2)
1474 {
1475 	/* Device attributes that can change, but don't mean
1476 	 * that the device is a different device, nor that the OS
1477 	 * needs to be told anything about the change.
1478 	 */
1479 	if (dev1->raid_level != dev2->raid_level)
1480 		return 1;
1481 	if (dev1->offload_config != dev2->offload_config)
1482 		return 1;
1483 	if (dev1->offload_enabled != dev2->offload_enabled)
1484 		return 1;
1485 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1486 		if (dev1->queue_depth != dev2->queue_depth)
1487 			return 1;
1488 	return 0;
1489 }
1490 
1491 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1492  * and return needle location in *index.  If scsi3addr matches, but not
1493  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1494  * location in *index.
1495  * In the case of a minor device attribute change, such as RAID level, just
1496  * return DEVICE_UPDATED, along with the updated device's location in index.
1497  * If needle not found, return DEVICE_NOT_FOUND.
1498  */
1499 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1500 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1501 	int *index)
1502 {
1503 	int i;
1504 #define DEVICE_NOT_FOUND 0
1505 #define DEVICE_CHANGED 1
1506 #define DEVICE_SAME 2
1507 #define DEVICE_UPDATED 3
1508 	if (needle == NULL)
1509 		return DEVICE_NOT_FOUND;
1510 
1511 	for (i = 0; i < haystack_size; i++) {
1512 		if (haystack[i] == NULL) /* previously removed. */
1513 			continue;
1514 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1515 			*index = i;
1516 			if (device_is_the_same(needle, haystack[i])) {
1517 				if (device_updated(needle, haystack[i]))
1518 					return DEVICE_UPDATED;
1519 				return DEVICE_SAME;
1520 			} else {
1521 				/* Keep offline devices offline */
1522 				if (needle->volume_offline)
1523 					return DEVICE_NOT_FOUND;
1524 				return DEVICE_CHANGED;
1525 			}
1526 		}
1527 	}
1528 	*index = -1;
1529 	return DEVICE_NOT_FOUND;
1530 }
1531 
1532 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1533 					unsigned char scsi3addr[])
1534 {
1535 	struct offline_device_entry *device;
1536 	unsigned long flags;
1537 
1538 	/* Check to see if device is already on the list */
1539 	spin_lock_irqsave(&h->offline_device_lock, flags);
1540 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1541 		if (memcmp(device->scsi3addr, scsi3addr,
1542 			sizeof(device->scsi3addr)) == 0) {
1543 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1544 			return;
1545 		}
1546 	}
1547 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1548 
1549 	/* Device is not on the list, add it. */
1550 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1551 	if (!device)
1552 		return;
1553 
1554 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1555 	spin_lock_irqsave(&h->offline_device_lock, flags);
1556 	list_add_tail(&device->offline_list, &h->offline_device_list);
1557 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1558 }
1559 
1560 /* Print a message explaining various offline volume states */
1561 static void hpsa_show_volume_status(struct ctlr_info *h,
1562 	struct hpsa_scsi_dev_t *sd)
1563 {
1564 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1565 		dev_info(&h->pdev->dev,
1566 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1567 			h->scsi_host->host_no,
1568 			sd->bus, sd->target, sd->lun);
1569 	switch (sd->volume_offline) {
1570 	case HPSA_LV_OK:
1571 		break;
1572 	case HPSA_LV_UNDERGOING_ERASE:
1573 		dev_info(&h->pdev->dev,
1574 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1575 			h->scsi_host->host_no,
1576 			sd->bus, sd->target, sd->lun);
1577 		break;
1578 	case HPSA_LV_NOT_AVAILABLE:
1579 		dev_info(&h->pdev->dev,
1580 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1581 			h->scsi_host->host_no,
1582 			sd->bus, sd->target, sd->lun);
1583 		break;
1584 	case HPSA_LV_UNDERGOING_RPI:
1585 		dev_info(&h->pdev->dev,
1586 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1587 			h->scsi_host->host_no,
1588 			sd->bus, sd->target, sd->lun);
1589 		break;
1590 	case HPSA_LV_PENDING_RPI:
1591 		dev_info(&h->pdev->dev,
1592 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1593 			h->scsi_host->host_no,
1594 			sd->bus, sd->target, sd->lun);
1595 		break;
1596 	case HPSA_LV_ENCRYPTED_NO_KEY:
1597 		dev_info(&h->pdev->dev,
1598 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1599 			h->scsi_host->host_no,
1600 			sd->bus, sd->target, sd->lun);
1601 		break;
1602 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1603 		dev_info(&h->pdev->dev,
1604 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1605 			h->scsi_host->host_no,
1606 			sd->bus, sd->target, sd->lun);
1607 		break;
1608 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1609 		dev_info(&h->pdev->dev,
1610 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1611 			h->scsi_host->host_no,
1612 			sd->bus, sd->target, sd->lun);
1613 		break;
1614 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1615 		dev_info(&h->pdev->dev,
1616 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1617 			h->scsi_host->host_no,
1618 			sd->bus, sd->target, sd->lun);
1619 		break;
1620 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1621 		dev_info(&h->pdev->dev,
1622 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1623 			h->scsi_host->host_no,
1624 			sd->bus, sd->target, sd->lun);
1625 		break;
1626 	case HPSA_LV_PENDING_ENCRYPTION:
1627 		dev_info(&h->pdev->dev,
1628 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1629 			h->scsi_host->host_no,
1630 			sd->bus, sd->target, sd->lun);
1631 		break;
1632 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1633 		dev_info(&h->pdev->dev,
1634 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1635 			h->scsi_host->host_no,
1636 			sd->bus, sd->target, sd->lun);
1637 		break;
1638 	}
1639 }
1640 
1641 /*
1642  * Figure the list of physical drive pointers for a logical drive with
1643  * raid offload configured.
1644  */
1645 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1646 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1647 				struct hpsa_scsi_dev_t *logical_drive)
1648 {
1649 	struct raid_map_data *map = &logical_drive->raid_map;
1650 	struct raid_map_disk_data *dd = &map->data[0];
1651 	int i, j;
1652 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1653 				le16_to_cpu(map->metadata_disks_per_row);
1654 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1655 				le16_to_cpu(map->layout_map_count) *
1656 				total_disks_per_row;
1657 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1658 				total_disks_per_row;
1659 	int qdepth;
1660 
1661 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1662 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1663 
1664 	logical_drive->nphysical_disks = nraid_map_entries;
1665 
1666 	qdepth = 0;
1667 	for (i = 0; i < nraid_map_entries; i++) {
1668 		logical_drive->phys_disk[i] = NULL;
1669 		if (!logical_drive->offload_config)
1670 			continue;
1671 		for (j = 0; j < ndevices; j++) {
1672 			if (dev[j] == NULL)
1673 				continue;
1674 			if (dev[j]->devtype != TYPE_DISK &&
1675 			    dev[j]->devtype != TYPE_ZBC)
1676 				continue;
1677 			if (is_logical_device(dev[j]))
1678 				continue;
1679 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1680 				continue;
1681 
1682 			logical_drive->phys_disk[i] = dev[j];
1683 			if (i < nphys_disk)
1684 				qdepth = min(h->nr_cmds, qdepth +
1685 				    logical_drive->phys_disk[i]->queue_depth);
1686 			break;
1687 		}
1688 
1689 		/*
1690 		 * This can happen if a physical drive is removed and
1691 		 * the logical drive is degraded.  In that case, the RAID
1692 		 * map data will refer to a physical disk which isn't actually
1693 		 * present.  And in that case offload_enabled should already
1694 		 * be 0, but we'll turn it off here just in case
1695 		 */
1696 		if (!logical_drive->phys_disk[i]) {
1697 			logical_drive->offload_enabled = 0;
1698 			logical_drive->offload_to_be_enabled = 0;
1699 			logical_drive->queue_depth = 8;
1700 		}
1701 	}
1702 	if (nraid_map_entries)
1703 		/*
1704 		 * This is correct for reads, too high for full stripe writes,
1705 		 * way too high for partial stripe writes
1706 		 */
1707 		logical_drive->queue_depth = qdepth;
1708 	else
1709 		logical_drive->queue_depth = h->nr_cmds;
1710 }
1711 
1712 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1713 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1714 {
1715 	int i;
1716 
1717 	for (i = 0; i < ndevices; i++) {
1718 		if (dev[i] == NULL)
1719 			continue;
1720 		if (dev[i]->devtype != TYPE_DISK &&
1721 		    dev[i]->devtype != TYPE_ZBC)
1722 			continue;
1723 		if (!is_logical_device(dev[i]))
1724 			continue;
1725 
1726 		/*
1727 		 * If offload is currently enabled, the RAID map and
1728 		 * phys_disk[] assignment *better* not be changing
1729 		 * and since it isn't changing, we do not need to
1730 		 * update it.
1731 		 */
1732 		if (dev[i]->offload_enabled)
1733 			continue;
1734 
1735 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1736 	}
1737 }
1738 
1739 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1740 {
1741 	int rc = 0;
1742 
1743 	if (!h->scsi_host)
1744 		return 1;
1745 
1746 	if (is_logical_device(device)) /* RAID */
1747 		rc = scsi_add_device(h->scsi_host, device->bus,
1748 					device->target, device->lun);
1749 	else /* HBA */
1750 		rc = hpsa_add_sas_device(h->sas_host, device);
1751 
1752 	return rc;
1753 }
1754 
1755 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1756 						struct hpsa_scsi_dev_t *dev)
1757 {
1758 	int i;
1759 	int count = 0;
1760 
1761 	for (i = 0; i < h->nr_cmds; i++) {
1762 		struct CommandList *c = h->cmd_pool + i;
1763 		int refcount = atomic_inc_return(&c->refcount);
1764 
1765 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1766 				dev->scsi3addr)) {
1767 			unsigned long flags;
1768 
1769 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1770 			if (!hpsa_is_cmd_idle(c))
1771 				++count;
1772 			spin_unlock_irqrestore(&h->lock, flags);
1773 		}
1774 
1775 		cmd_free(h, c);
1776 	}
1777 
1778 	return count;
1779 }
1780 
1781 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1782 						struct hpsa_scsi_dev_t *device)
1783 {
1784 	int cmds = 0;
1785 	int waits = 0;
1786 
1787 	while (1) {
1788 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1789 		if (cmds == 0)
1790 			break;
1791 		if (++waits > 20)
1792 			break;
1793 		dev_warn(&h->pdev->dev,
1794 			"%s: removing device with %d outstanding commands!\n",
1795 			__func__, cmds);
1796 		msleep(1000);
1797 	}
1798 }
1799 
1800 static void hpsa_remove_device(struct ctlr_info *h,
1801 			struct hpsa_scsi_dev_t *device)
1802 {
1803 	struct scsi_device *sdev = NULL;
1804 
1805 	if (!h->scsi_host)
1806 		return;
1807 
1808 	if (is_logical_device(device)) { /* RAID */
1809 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1810 						device->target, device->lun);
1811 		if (sdev) {
1812 			scsi_remove_device(sdev);
1813 			scsi_device_put(sdev);
1814 		} else {
1815 			/*
1816 			 * We don't expect to get here.  Future commands
1817 			 * to this device will get a selection timeout as
1818 			 * if the device were gone.
1819 			 */
1820 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1821 					"didn't find device for removal.");
1822 		}
1823 	} else { /* HBA */
1824 
1825 		device->removed = 1;
1826 		hpsa_wait_for_outstanding_commands_for_dev(h, device);
1827 
1828 		hpsa_remove_sas_device(device);
1829 	}
1830 }
1831 
1832 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1833 	struct hpsa_scsi_dev_t *sd[], int nsds)
1834 {
1835 	/* sd contains scsi3 addresses and devtypes, and inquiry
1836 	 * data.  This function takes what's in sd to be the current
1837 	 * reality and updates h->dev[] to reflect that reality.
1838 	 */
1839 	int i, entry, device_change, changes = 0;
1840 	struct hpsa_scsi_dev_t *csd;
1841 	unsigned long flags;
1842 	struct hpsa_scsi_dev_t **added, **removed;
1843 	int nadded, nremoved;
1844 
1845 	/*
1846 	 * A reset can cause a device status to change
1847 	 * re-schedule the scan to see what happened.
1848 	 */
1849 	spin_lock_irqsave(&h->reset_lock, flags);
1850 	if (h->reset_in_progress) {
1851 		h->drv_req_rescan = 1;
1852 		spin_unlock_irqrestore(&h->reset_lock, flags);
1853 		return;
1854 	}
1855 	spin_unlock_irqrestore(&h->reset_lock, flags);
1856 
1857 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1858 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1859 
1860 	if (!added || !removed) {
1861 		dev_warn(&h->pdev->dev, "out of memory in "
1862 			"adjust_hpsa_scsi_table\n");
1863 		goto free_and_out;
1864 	}
1865 
1866 	spin_lock_irqsave(&h->devlock, flags);
1867 
1868 	/* find any devices in h->dev[] that are not in
1869 	 * sd[] and remove them from h->dev[], and for any
1870 	 * devices which have changed, remove the old device
1871 	 * info and add the new device info.
1872 	 * If minor device attributes change, just update
1873 	 * the existing device structure.
1874 	 */
1875 	i = 0;
1876 	nremoved = 0;
1877 	nadded = 0;
1878 	while (i < h->ndevices) {
1879 		csd = h->dev[i];
1880 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1881 		if (device_change == DEVICE_NOT_FOUND) {
1882 			changes++;
1883 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1884 			continue; /* remove ^^^, hence i not incremented */
1885 		} else if (device_change == DEVICE_CHANGED) {
1886 			changes++;
1887 			hpsa_scsi_replace_entry(h, i, sd[entry],
1888 				added, &nadded, removed, &nremoved);
1889 			/* Set it to NULL to prevent it from being freed
1890 			 * at the bottom of hpsa_update_scsi_devices()
1891 			 */
1892 			sd[entry] = NULL;
1893 		} else if (device_change == DEVICE_UPDATED) {
1894 			hpsa_scsi_update_entry(h, i, sd[entry]);
1895 		}
1896 		i++;
1897 	}
1898 
1899 	/* Now, make sure every device listed in sd[] is also
1900 	 * listed in h->dev[], adding them if they aren't found
1901 	 */
1902 
1903 	for (i = 0; i < nsds; i++) {
1904 		if (!sd[i]) /* if already added above. */
1905 			continue;
1906 
1907 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1908 		 * as the SCSI mid-layer does not handle such devices well.
1909 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1910 		 * at 160Hz, and prevents the system from coming up.
1911 		 */
1912 		if (sd[i]->volume_offline) {
1913 			hpsa_show_volume_status(h, sd[i]);
1914 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1915 			continue;
1916 		}
1917 
1918 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1919 					h->ndevices, &entry);
1920 		if (device_change == DEVICE_NOT_FOUND) {
1921 			changes++;
1922 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1923 				break;
1924 			sd[i] = NULL; /* prevent from being freed later. */
1925 		} else if (device_change == DEVICE_CHANGED) {
1926 			/* should never happen... */
1927 			changes++;
1928 			dev_warn(&h->pdev->dev,
1929 				"device unexpectedly changed.\n");
1930 			/* but if it does happen, we just ignore that device */
1931 		}
1932 	}
1933 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1934 
1935 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1936 	 * any logical drives that need it enabled.
1937 	 */
1938 	for (i = 0; i < h->ndevices; i++) {
1939 		if (h->dev[i] == NULL)
1940 			continue;
1941 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1942 	}
1943 
1944 	spin_unlock_irqrestore(&h->devlock, flags);
1945 
1946 	/* Monitor devices which are in one of several NOT READY states to be
1947 	 * brought online later. This must be done without holding h->devlock,
1948 	 * so don't touch h->dev[]
1949 	 */
1950 	for (i = 0; i < nsds; i++) {
1951 		if (!sd[i]) /* if already added above. */
1952 			continue;
1953 		if (sd[i]->volume_offline)
1954 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1955 	}
1956 
1957 	/* Don't notify scsi mid layer of any changes the first time through
1958 	 * (or if there are no changes) scsi_scan_host will do it later the
1959 	 * first time through.
1960 	 */
1961 	if (!changes)
1962 		goto free_and_out;
1963 
1964 	/* Notify scsi mid layer of any removed devices */
1965 	for (i = 0; i < nremoved; i++) {
1966 		if (removed[i] == NULL)
1967 			continue;
1968 		if (removed[i]->expose_device)
1969 			hpsa_remove_device(h, removed[i]);
1970 		kfree(removed[i]);
1971 		removed[i] = NULL;
1972 	}
1973 
1974 	/* Notify scsi mid layer of any added devices */
1975 	for (i = 0; i < nadded; i++) {
1976 		int rc = 0;
1977 
1978 		if (added[i] == NULL)
1979 			continue;
1980 		if (!(added[i]->expose_device))
1981 			continue;
1982 		rc = hpsa_add_device(h, added[i]);
1983 		if (!rc)
1984 			continue;
1985 		dev_warn(&h->pdev->dev,
1986 			"addition failed %d, device not added.", rc);
1987 		/* now we have to remove it from h->dev,
1988 		 * since it didn't get added to scsi mid layer
1989 		 */
1990 		fixup_botched_add(h, added[i]);
1991 		h->drv_req_rescan = 1;
1992 	}
1993 
1994 free_and_out:
1995 	kfree(added);
1996 	kfree(removed);
1997 }
1998 
1999 /*
2000  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2001  * Assume's h->devlock is held.
2002  */
2003 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2004 	int bus, int target, int lun)
2005 {
2006 	int i;
2007 	struct hpsa_scsi_dev_t *sd;
2008 
2009 	for (i = 0; i < h->ndevices; i++) {
2010 		sd = h->dev[i];
2011 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2012 			return sd;
2013 	}
2014 	return NULL;
2015 }
2016 
2017 static int hpsa_slave_alloc(struct scsi_device *sdev)
2018 {
2019 	struct hpsa_scsi_dev_t *sd = NULL;
2020 	unsigned long flags;
2021 	struct ctlr_info *h;
2022 
2023 	h = sdev_to_hba(sdev);
2024 	spin_lock_irqsave(&h->devlock, flags);
2025 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2026 		struct scsi_target *starget;
2027 		struct sas_rphy *rphy;
2028 
2029 		starget = scsi_target(sdev);
2030 		rphy = target_to_rphy(starget);
2031 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2032 		if (sd) {
2033 			sd->target = sdev_id(sdev);
2034 			sd->lun = sdev->lun;
2035 		}
2036 	}
2037 	if (!sd)
2038 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2039 					sdev_id(sdev), sdev->lun);
2040 
2041 	if (sd && sd->expose_device) {
2042 		atomic_set(&sd->ioaccel_cmds_out, 0);
2043 		sdev->hostdata = sd;
2044 	} else
2045 		sdev->hostdata = NULL;
2046 	spin_unlock_irqrestore(&h->devlock, flags);
2047 	return 0;
2048 }
2049 
2050 /* configure scsi device based on internal per-device structure */
2051 static int hpsa_slave_configure(struct scsi_device *sdev)
2052 {
2053 	struct hpsa_scsi_dev_t *sd;
2054 	int queue_depth;
2055 
2056 	sd = sdev->hostdata;
2057 	sdev->no_uld_attach = !sd || !sd->expose_device;
2058 
2059 	if (sd) {
2060 		if (sd->external)
2061 			queue_depth = EXTERNAL_QD;
2062 		else
2063 			queue_depth = sd->queue_depth != 0 ?
2064 					sd->queue_depth : sdev->host->can_queue;
2065 	} else
2066 		queue_depth = sdev->host->can_queue;
2067 
2068 	scsi_change_queue_depth(sdev, queue_depth);
2069 
2070 	return 0;
2071 }
2072 
2073 static void hpsa_slave_destroy(struct scsi_device *sdev)
2074 {
2075 	/* nothing to do. */
2076 }
2077 
2078 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2079 {
2080 	int i;
2081 
2082 	if (!h->ioaccel2_cmd_sg_list)
2083 		return;
2084 	for (i = 0; i < h->nr_cmds; i++) {
2085 		kfree(h->ioaccel2_cmd_sg_list[i]);
2086 		h->ioaccel2_cmd_sg_list[i] = NULL;
2087 	}
2088 	kfree(h->ioaccel2_cmd_sg_list);
2089 	h->ioaccel2_cmd_sg_list = NULL;
2090 }
2091 
2092 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2093 {
2094 	int i;
2095 
2096 	if (h->chainsize <= 0)
2097 		return 0;
2098 
2099 	h->ioaccel2_cmd_sg_list =
2100 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2101 					GFP_KERNEL);
2102 	if (!h->ioaccel2_cmd_sg_list)
2103 		return -ENOMEM;
2104 	for (i = 0; i < h->nr_cmds; i++) {
2105 		h->ioaccel2_cmd_sg_list[i] =
2106 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2107 					h->maxsgentries, GFP_KERNEL);
2108 		if (!h->ioaccel2_cmd_sg_list[i])
2109 			goto clean;
2110 	}
2111 	return 0;
2112 
2113 clean:
2114 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2115 	return -ENOMEM;
2116 }
2117 
2118 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2119 {
2120 	int i;
2121 
2122 	if (!h->cmd_sg_list)
2123 		return;
2124 	for (i = 0; i < h->nr_cmds; i++) {
2125 		kfree(h->cmd_sg_list[i]);
2126 		h->cmd_sg_list[i] = NULL;
2127 	}
2128 	kfree(h->cmd_sg_list);
2129 	h->cmd_sg_list = NULL;
2130 }
2131 
2132 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2133 {
2134 	int i;
2135 
2136 	if (h->chainsize <= 0)
2137 		return 0;
2138 
2139 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2140 				GFP_KERNEL);
2141 	if (!h->cmd_sg_list)
2142 		return -ENOMEM;
2143 
2144 	for (i = 0; i < h->nr_cmds; i++) {
2145 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2146 						h->chainsize, GFP_KERNEL);
2147 		if (!h->cmd_sg_list[i])
2148 			goto clean;
2149 
2150 	}
2151 	return 0;
2152 
2153 clean:
2154 	hpsa_free_sg_chain_blocks(h);
2155 	return -ENOMEM;
2156 }
2157 
2158 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2159 	struct io_accel2_cmd *cp, struct CommandList *c)
2160 {
2161 	struct ioaccel2_sg_element *chain_block;
2162 	u64 temp64;
2163 	u32 chain_size;
2164 
2165 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2166 	chain_size = le32_to_cpu(cp->sg[0].length);
2167 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2168 				PCI_DMA_TODEVICE);
2169 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2170 		/* prevent subsequent unmapping */
2171 		cp->sg->address = 0;
2172 		return -1;
2173 	}
2174 	cp->sg->address = cpu_to_le64(temp64);
2175 	return 0;
2176 }
2177 
2178 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2179 	struct io_accel2_cmd *cp)
2180 {
2181 	struct ioaccel2_sg_element *chain_sg;
2182 	u64 temp64;
2183 	u32 chain_size;
2184 
2185 	chain_sg = cp->sg;
2186 	temp64 = le64_to_cpu(chain_sg->address);
2187 	chain_size = le32_to_cpu(cp->sg[0].length);
2188 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2189 }
2190 
2191 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2192 	struct CommandList *c)
2193 {
2194 	struct SGDescriptor *chain_sg, *chain_block;
2195 	u64 temp64;
2196 	u32 chain_len;
2197 
2198 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2199 	chain_block = h->cmd_sg_list[c->cmdindex];
2200 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2201 	chain_len = sizeof(*chain_sg) *
2202 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2203 	chain_sg->Len = cpu_to_le32(chain_len);
2204 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2205 				PCI_DMA_TODEVICE);
2206 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2207 		/* prevent subsequent unmapping */
2208 		chain_sg->Addr = cpu_to_le64(0);
2209 		return -1;
2210 	}
2211 	chain_sg->Addr = cpu_to_le64(temp64);
2212 	return 0;
2213 }
2214 
2215 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2216 	struct CommandList *c)
2217 {
2218 	struct SGDescriptor *chain_sg;
2219 
2220 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2221 		return;
2222 
2223 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2224 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2225 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2226 }
2227 
2228 
2229 /* Decode the various types of errors on ioaccel2 path.
2230  * Return 1 for any error that should generate a RAID path retry.
2231  * Return 0 for errors that don't require a RAID path retry.
2232  */
2233 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2234 					struct CommandList *c,
2235 					struct scsi_cmnd *cmd,
2236 					struct io_accel2_cmd *c2,
2237 					struct hpsa_scsi_dev_t *dev)
2238 {
2239 	int data_len;
2240 	int retry = 0;
2241 	u32 ioaccel2_resid = 0;
2242 
2243 	switch (c2->error_data.serv_response) {
2244 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2245 		switch (c2->error_data.status) {
2246 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2247 			break;
2248 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2249 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2250 			if (c2->error_data.data_present !=
2251 					IOACCEL2_SENSE_DATA_PRESENT) {
2252 				memset(cmd->sense_buffer, 0,
2253 					SCSI_SENSE_BUFFERSIZE);
2254 				break;
2255 			}
2256 			/* copy the sense data */
2257 			data_len = c2->error_data.sense_data_len;
2258 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2259 				data_len = SCSI_SENSE_BUFFERSIZE;
2260 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2261 				data_len =
2262 					sizeof(c2->error_data.sense_data_buff);
2263 			memcpy(cmd->sense_buffer,
2264 				c2->error_data.sense_data_buff, data_len);
2265 			retry = 1;
2266 			break;
2267 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2268 			retry = 1;
2269 			break;
2270 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2271 			retry = 1;
2272 			break;
2273 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2274 			retry = 1;
2275 			break;
2276 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2277 			retry = 1;
2278 			break;
2279 		default:
2280 			retry = 1;
2281 			break;
2282 		}
2283 		break;
2284 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2285 		switch (c2->error_data.status) {
2286 		case IOACCEL2_STATUS_SR_IO_ERROR:
2287 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2288 		case IOACCEL2_STATUS_SR_OVERRUN:
2289 			retry = 1;
2290 			break;
2291 		case IOACCEL2_STATUS_SR_UNDERRUN:
2292 			cmd->result = (DID_OK << 16);		/* host byte */
2293 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2294 			ioaccel2_resid = get_unaligned_le32(
2295 						&c2->error_data.resid_cnt[0]);
2296 			scsi_set_resid(cmd, ioaccel2_resid);
2297 			break;
2298 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2299 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2300 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2301 			/*
2302 			 * Did an HBA disk disappear? We will eventually
2303 			 * get a state change event from the controller but
2304 			 * in the meantime, we need to tell the OS that the
2305 			 * HBA disk is no longer there and stop I/O
2306 			 * from going down. This allows the potential re-insert
2307 			 * of the disk to get the same device node.
2308 			 */
2309 			if (dev->physical_device && dev->expose_device) {
2310 				cmd->result = DID_NO_CONNECT << 16;
2311 				dev->removed = 1;
2312 				h->drv_req_rescan = 1;
2313 				dev_warn(&h->pdev->dev,
2314 					"%s: device is gone!\n", __func__);
2315 			} else
2316 				/*
2317 				 * Retry by sending down the RAID path.
2318 				 * We will get an event from ctlr to
2319 				 * trigger rescan regardless.
2320 				 */
2321 				retry = 1;
2322 			break;
2323 		default:
2324 			retry = 1;
2325 		}
2326 		break;
2327 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2328 		break;
2329 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2330 		break;
2331 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2332 		retry = 1;
2333 		break;
2334 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2335 		break;
2336 	default:
2337 		retry = 1;
2338 		break;
2339 	}
2340 
2341 	return retry;	/* retry on raid path? */
2342 }
2343 
2344 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2345 		struct CommandList *c)
2346 {
2347 	bool do_wake = false;
2348 
2349 	/*
2350 	 * Reset c->scsi_cmd here so that the reset handler will know
2351 	 * this command has completed.  Then, check to see if the handler is
2352 	 * waiting for this command, and, if so, wake it.
2353 	 */
2354 	c->scsi_cmd = SCSI_CMD_IDLE;
2355 	mb();	/* Declare command idle before checking for pending events. */
2356 	if (c->reset_pending) {
2357 		unsigned long flags;
2358 		struct hpsa_scsi_dev_t *dev;
2359 
2360 		/*
2361 		 * There appears to be a reset pending; lock the lock and
2362 		 * reconfirm.  If so, then decrement the count of outstanding
2363 		 * commands and wake the reset command if this is the last one.
2364 		 */
2365 		spin_lock_irqsave(&h->lock, flags);
2366 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2367 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2368 			do_wake = true;
2369 		c->reset_pending = NULL;
2370 		spin_unlock_irqrestore(&h->lock, flags);
2371 	}
2372 
2373 	if (do_wake)
2374 		wake_up_all(&h->event_sync_wait_queue);
2375 }
2376 
2377 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2378 				      struct CommandList *c)
2379 {
2380 	hpsa_cmd_resolve_events(h, c);
2381 	cmd_tagged_free(h, c);
2382 }
2383 
2384 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2385 		struct CommandList *c, struct scsi_cmnd *cmd)
2386 {
2387 	hpsa_cmd_resolve_and_free(h, c);
2388 	if (cmd && cmd->scsi_done)
2389 		cmd->scsi_done(cmd);
2390 }
2391 
2392 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2393 {
2394 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2395 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2396 }
2397 
2398 static void process_ioaccel2_completion(struct ctlr_info *h,
2399 		struct CommandList *c, struct scsi_cmnd *cmd,
2400 		struct hpsa_scsi_dev_t *dev)
2401 {
2402 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2403 
2404 	/* check for good status */
2405 	if (likely(c2->error_data.serv_response == 0 &&
2406 			c2->error_data.status == 0))
2407 		return hpsa_cmd_free_and_done(h, c, cmd);
2408 
2409 	/*
2410 	 * Any RAID offload error results in retry which will use
2411 	 * the normal I/O path so the controller can handle whatever's
2412 	 * wrong.
2413 	 */
2414 	if (is_logical_device(dev) &&
2415 		c2->error_data.serv_response ==
2416 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2417 		if (c2->error_data.status ==
2418 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2419 			dev->offload_enabled = 0;
2420 			dev->offload_to_be_enabled = 0;
2421 		}
2422 
2423 		return hpsa_retry_cmd(h, c);
2424 	}
2425 
2426 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2427 		return hpsa_retry_cmd(h, c);
2428 
2429 	return hpsa_cmd_free_and_done(h, c, cmd);
2430 }
2431 
2432 /* Returns 0 on success, < 0 otherwise. */
2433 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2434 					struct CommandList *cp)
2435 {
2436 	u8 tmf_status = cp->err_info->ScsiStatus;
2437 
2438 	switch (tmf_status) {
2439 	case CISS_TMF_COMPLETE:
2440 		/*
2441 		 * CISS_TMF_COMPLETE never happens, instead,
2442 		 * ei->CommandStatus == 0 for this case.
2443 		 */
2444 	case CISS_TMF_SUCCESS:
2445 		return 0;
2446 	case CISS_TMF_INVALID_FRAME:
2447 	case CISS_TMF_NOT_SUPPORTED:
2448 	case CISS_TMF_FAILED:
2449 	case CISS_TMF_WRONG_LUN:
2450 	case CISS_TMF_OVERLAPPED_TAG:
2451 		break;
2452 	default:
2453 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2454 				tmf_status);
2455 		break;
2456 	}
2457 	return -tmf_status;
2458 }
2459 
2460 static void complete_scsi_command(struct CommandList *cp)
2461 {
2462 	struct scsi_cmnd *cmd;
2463 	struct ctlr_info *h;
2464 	struct ErrorInfo *ei;
2465 	struct hpsa_scsi_dev_t *dev;
2466 	struct io_accel2_cmd *c2;
2467 
2468 	u8 sense_key;
2469 	u8 asc;      /* additional sense code */
2470 	u8 ascq;     /* additional sense code qualifier */
2471 	unsigned long sense_data_size;
2472 
2473 	ei = cp->err_info;
2474 	cmd = cp->scsi_cmd;
2475 	h = cp->h;
2476 
2477 	if (!cmd->device) {
2478 		cmd->result = DID_NO_CONNECT << 16;
2479 		return hpsa_cmd_free_and_done(h, cp, cmd);
2480 	}
2481 
2482 	dev = cmd->device->hostdata;
2483 	if (!dev) {
2484 		cmd->result = DID_NO_CONNECT << 16;
2485 		return hpsa_cmd_free_and_done(h, cp, cmd);
2486 	}
2487 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2488 
2489 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2490 	if ((cp->cmd_type == CMD_SCSI) &&
2491 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2492 		hpsa_unmap_sg_chain_block(h, cp);
2493 
2494 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2495 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2496 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2497 
2498 	cmd->result = (DID_OK << 16); 		/* host byte */
2499 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2500 
2501 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2502 		if (dev->physical_device && dev->expose_device &&
2503 			dev->removed) {
2504 			cmd->result = DID_NO_CONNECT << 16;
2505 			return hpsa_cmd_free_and_done(h, cp, cmd);
2506 		}
2507 		if (likely(cp->phys_disk != NULL))
2508 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2509 	}
2510 
2511 	/*
2512 	 * We check for lockup status here as it may be set for
2513 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2514 	 * fail_all_oustanding_cmds()
2515 	 */
2516 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2517 		/* DID_NO_CONNECT will prevent a retry */
2518 		cmd->result = DID_NO_CONNECT << 16;
2519 		return hpsa_cmd_free_and_done(h, cp, cmd);
2520 	}
2521 
2522 	if ((unlikely(hpsa_is_pending_event(cp))))
2523 		if (cp->reset_pending)
2524 			return hpsa_cmd_free_and_done(h, cp, cmd);
2525 
2526 	if (cp->cmd_type == CMD_IOACCEL2)
2527 		return process_ioaccel2_completion(h, cp, cmd, dev);
2528 
2529 	scsi_set_resid(cmd, ei->ResidualCnt);
2530 	if (ei->CommandStatus == 0)
2531 		return hpsa_cmd_free_and_done(h, cp, cmd);
2532 
2533 	/* For I/O accelerator commands, copy over some fields to the normal
2534 	 * CISS header used below for error handling.
2535 	 */
2536 	if (cp->cmd_type == CMD_IOACCEL1) {
2537 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2538 		cp->Header.SGList = scsi_sg_count(cmd);
2539 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2540 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2541 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2542 		cp->Header.tag = c->tag;
2543 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2544 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2545 
2546 		/* Any RAID offload error results in retry which will use
2547 		 * the normal I/O path so the controller can handle whatever's
2548 		 * wrong.
2549 		 */
2550 		if (is_logical_device(dev)) {
2551 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2552 				dev->offload_enabled = 0;
2553 			return hpsa_retry_cmd(h, cp);
2554 		}
2555 	}
2556 
2557 	/* an error has occurred */
2558 	switch (ei->CommandStatus) {
2559 
2560 	case CMD_TARGET_STATUS:
2561 		cmd->result |= ei->ScsiStatus;
2562 		/* copy the sense data */
2563 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2564 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2565 		else
2566 			sense_data_size = sizeof(ei->SenseInfo);
2567 		if (ei->SenseLen < sense_data_size)
2568 			sense_data_size = ei->SenseLen;
2569 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2570 		if (ei->ScsiStatus)
2571 			decode_sense_data(ei->SenseInfo, sense_data_size,
2572 				&sense_key, &asc, &ascq);
2573 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2574 			if (sense_key == ABORTED_COMMAND) {
2575 				cmd->result |= DID_SOFT_ERROR << 16;
2576 				break;
2577 			}
2578 			break;
2579 		}
2580 		/* Problem was not a check condition
2581 		 * Pass it up to the upper layers...
2582 		 */
2583 		if (ei->ScsiStatus) {
2584 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2585 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2586 				"Returning result: 0x%x\n",
2587 				cp, ei->ScsiStatus,
2588 				sense_key, asc, ascq,
2589 				cmd->result);
2590 		} else {  /* scsi status is zero??? How??? */
2591 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2592 				"Returning no connection.\n", cp),
2593 
2594 			/* Ordinarily, this case should never happen,
2595 			 * but there is a bug in some released firmware
2596 			 * revisions that allows it to happen if, for
2597 			 * example, a 4100 backplane loses power and
2598 			 * the tape drive is in it.  We assume that
2599 			 * it's a fatal error of some kind because we
2600 			 * can't show that it wasn't. We will make it
2601 			 * look like selection timeout since that is
2602 			 * the most common reason for this to occur,
2603 			 * and it's severe enough.
2604 			 */
2605 
2606 			cmd->result = DID_NO_CONNECT << 16;
2607 		}
2608 		break;
2609 
2610 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2611 		break;
2612 	case CMD_DATA_OVERRUN:
2613 		dev_warn(&h->pdev->dev,
2614 			"CDB %16phN data overrun\n", cp->Request.CDB);
2615 		break;
2616 	case CMD_INVALID: {
2617 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2618 		print_cmd(cp); */
2619 		/* We get CMD_INVALID if you address a non-existent device
2620 		 * instead of a selection timeout (no response).  You will
2621 		 * see this if you yank out a drive, then try to access it.
2622 		 * This is kind of a shame because it means that any other
2623 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2624 		 * missing target. */
2625 		cmd->result = DID_NO_CONNECT << 16;
2626 	}
2627 		break;
2628 	case CMD_PROTOCOL_ERR:
2629 		cmd->result = DID_ERROR << 16;
2630 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2631 				cp->Request.CDB);
2632 		break;
2633 	case CMD_HARDWARE_ERR:
2634 		cmd->result = DID_ERROR << 16;
2635 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2636 			cp->Request.CDB);
2637 		break;
2638 	case CMD_CONNECTION_LOST:
2639 		cmd->result = DID_ERROR << 16;
2640 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2641 			cp->Request.CDB);
2642 		break;
2643 	case CMD_ABORTED:
2644 		cmd->result = DID_ABORT << 16;
2645 		break;
2646 	case CMD_ABORT_FAILED:
2647 		cmd->result = DID_ERROR << 16;
2648 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2649 			cp->Request.CDB);
2650 		break;
2651 	case CMD_UNSOLICITED_ABORT:
2652 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2653 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2654 			cp->Request.CDB);
2655 		break;
2656 	case CMD_TIMEOUT:
2657 		cmd->result = DID_TIME_OUT << 16;
2658 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2659 			cp->Request.CDB);
2660 		break;
2661 	case CMD_UNABORTABLE:
2662 		cmd->result = DID_ERROR << 16;
2663 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2664 		break;
2665 	case CMD_TMF_STATUS:
2666 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2667 			cmd->result = DID_ERROR << 16;
2668 		break;
2669 	case CMD_IOACCEL_DISABLED:
2670 		/* This only handles the direct pass-through case since RAID
2671 		 * offload is handled above.  Just attempt a retry.
2672 		 */
2673 		cmd->result = DID_SOFT_ERROR << 16;
2674 		dev_warn(&h->pdev->dev,
2675 				"cp %p had HP SSD Smart Path error\n", cp);
2676 		break;
2677 	default:
2678 		cmd->result = DID_ERROR << 16;
2679 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2680 				cp, ei->CommandStatus);
2681 	}
2682 
2683 	return hpsa_cmd_free_and_done(h, cp, cmd);
2684 }
2685 
2686 static void hpsa_pci_unmap(struct pci_dev *pdev,
2687 	struct CommandList *c, int sg_used, int data_direction)
2688 {
2689 	int i;
2690 
2691 	for (i = 0; i < sg_used; i++)
2692 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2693 				le32_to_cpu(c->SG[i].Len),
2694 				data_direction);
2695 }
2696 
2697 static int hpsa_map_one(struct pci_dev *pdev,
2698 		struct CommandList *cp,
2699 		unsigned char *buf,
2700 		size_t buflen,
2701 		int data_direction)
2702 {
2703 	u64 addr64;
2704 
2705 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2706 		cp->Header.SGList = 0;
2707 		cp->Header.SGTotal = cpu_to_le16(0);
2708 		return 0;
2709 	}
2710 
2711 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2712 	if (dma_mapping_error(&pdev->dev, addr64)) {
2713 		/* Prevent subsequent unmap of something never mapped */
2714 		cp->Header.SGList = 0;
2715 		cp->Header.SGTotal = cpu_to_le16(0);
2716 		return -1;
2717 	}
2718 	cp->SG[0].Addr = cpu_to_le64(addr64);
2719 	cp->SG[0].Len = cpu_to_le32(buflen);
2720 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2721 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2722 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2723 	return 0;
2724 }
2725 
2726 #define NO_TIMEOUT ((unsigned long) -1)
2727 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2728 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2729 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2730 {
2731 	DECLARE_COMPLETION_ONSTACK(wait);
2732 
2733 	c->waiting = &wait;
2734 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2735 	if (timeout_msecs == NO_TIMEOUT) {
2736 		/* TODO: get rid of this no-timeout thing */
2737 		wait_for_completion_io(&wait);
2738 		return IO_OK;
2739 	}
2740 	if (!wait_for_completion_io_timeout(&wait,
2741 					msecs_to_jiffies(timeout_msecs))) {
2742 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2743 		return -ETIMEDOUT;
2744 	}
2745 	return IO_OK;
2746 }
2747 
2748 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2749 				   int reply_queue, unsigned long timeout_msecs)
2750 {
2751 	if (unlikely(lockup_detected(h))) {
2752 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2753 		return IO_OK;
2754 	}
2755 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2756 }
2757 
2758 static u32 lockup_detected(struct ctlr_info *h)
2759 {
2760 	int cpu;
2761 	u32 rc, *lockup_detected;
2762 
2763 	cpu = get_cpu();
2764 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2765 	rc = *lockup_detected;
2766 	put_cpu();
2767 	return rc;
2768 }
2769 
2770 #define MAX_DRIVER_CMD_RETRIES 25
2771 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2772 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2773 {
2774 	int backoff_time = 10, retry_count = 0;
2775 	int rc;
2776 
2777 	do {
2778 		memset(c->err_info, 0, sizeof(*c->err_info));
2779 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2780 						  timeout_msecs);
2781 		if (rc)
2782 			break;
2783 		retry_count++;
2784 		if (retry_count > 3) {
2785 			msleep(backoff_time);
2786 			if (backoff_time < 1000)
2787 				backoff_time *= 2;
2788 		}
2789 	} while ((check_for_unit_attention(h, c) ||
2790 			check_for_busy(h, c)) &&
2791 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2792 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2793 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2794 		rc = -EIO;
2795 	return rc;
2796 }
2797 
2798 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2799 				struct CommandList *c)
2800 {
2801 	const u8 *cdb = c->Request.CDB;
2802 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2803 
2804 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2805 		 txt, lun, cdb);
2806 }
2807 
2808 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2809 			struct CommandList *cp)
2810 {
2811 	const struct ErrorInfo *ei = cp->err_info;
2812 	struct device *d = &cp->h->pdev->dev;
2813 	u8 sense_key, asc, ascq;
2814 	int sense_len;
2815 
2816 	switch (ei->CommandStatus) {
2817 	case CMD_TARGET_STATUS:
2818 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2819 			sense_len = sizeof(ei->SenseInfo);
2820 		else
2821 			sense_len = ei->SenseLen;
2822 		decode_sense_data(ei->SenseInfo, sense_len,
2823 					&sense_key, &asc, &ascq);
2824 		hpsa_print_cmd(h, "SCSI status", cp);
2825 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2826 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2827 				sense_key, asc, ascq);
2828 		else
2829 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2830 		if (ei->ScsiStatus == 0)
2831 			dev_warn(d, "SCSI status is abnormally zero.  "
2832 			"(probably indicates selection timeout "
2833 			"reported incorrectly due to a known "
2834 			"firmware bug, circa July, 2001.)\n");
2835 		break;
2836 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2837 		break;
2838 	case CMD_DATA_OVERRUN:
2839 		hpsa_print_cmd(h, "overrun condition", cp);
2840 		break;
2841 	case CMD_INVALID: {
2842 		/* controller unfortunately reports SCSI passthru's
2843 		 * to non-existent targets as invalid commands.
2844 		 */
2845 		hpsa_print_cmd(h, "invalid command", cp);
2846 		dev_warn(d, "probably means device no longer present\n");
2847 		}
2848 		break;
2849 	case CMD_PROTOCOL_ERR:
2850 		hpsa_print_cmd(h, "protocol error", cp);
2851 		break;
2852 	case CMD_HARDWARE_ERR:
2853 		hpsa_print_cmd(h, "hardware error", cp);
2854 		break;
2855 	case CMD_CONNECTION_LOST:
2856 		hpsa_print_cmd(h, "connection lost", cp);
2857 		break;
2858 	case CMD_ABORTED:
2859 		hpsa_print_cmd(h, "aborted", cp);
2860 		break;
2861 	case CMD_ABORT_FAILED:
2862 		hpsa_print_cmd(h, "abort failed", cp);
2863 		break;
2864 	case CMD_UNSOLICITED_ABORT:
2865 		hpsa_print_cmd(h, "unsolicited abort", cp);
2866 		break;
2867 	case CMD_TIMEOUT:
2868 		hpsa_print_cmd(h, "timed out", cp);
2869 		break;
2870 	case CMD_UNABORTABLE:
2871 		hpsa_print_cmd(h, "unabortable", cp);
2872 		break;
2873 	case CMD_CTLR_LOCKUP:
2874 		hpsa_print_cmd(h, "controller lockup detected", cp);
2875 		break;
2876 	default:
2877 		hpsa_print_cmd(h, "unknown status", cp);
2878 		dev_warn(d, "Unknown command status %x\n",
2879 				ei->CommandStatus);
2880 	}
2881 }
2882 
2883 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2884 			u16 page, unsigned char *buf,
2885 			unsigned char bufsize)
2886 {
2887 	int rc = IO_OK;
2888 	struct CommandList *c;
2889 	struct ErrorInfo *ei;
2890 
2891 	c = cmd_alloc(h);
2892 
2893 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2894 			page, scsi3addr, TYPE_CMD)) {
2895 		rc = -1;
2896 		goto out;
2897 	}
2898 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2899 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2900 	if (rc)
2901 		goto out;
2902 	ei = c->err_info;
2903 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2904 		hpsa_scsi_interpret_error(h, c);
2905 		rc = -1;
2906 	}
2907 out:
2908 	cmd_free(h, c);
2909 	return rc;
2910 }
2911 
2912 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2913 	u8 reset_type, int reply_queue)
2914 {
2915 	int rc = IO_OK;
2916 	struct CommandList *c;
2917 	struct ErrorInfo *ei;
2918 
2919 	c = cmd_alloc(h);
2920 
2921 
2922 	/* fill_cmd can't fail here, no data buffer to map. */
2923 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2924 			scsi3addr, TYPE_MSG);
2925 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2926 	if (rc) {
2927 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2928 		goto out;
2929 	}
2930 	/* no unmap needed here because no data xfer. */
2931 
2932 	ei = c->err_info;
2933 	if (ei->CommandStatus != 0) {
2934 		hpsa_scsi_interpret_error(h, c);
2935 		rc = -1;
2936 	}
2937 out:
2938 	cmd_free(h, c);
2939 	return rc;
2940 }
2941 
2942 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2943 			       struct hpsa_scsi_dev_t *dev,
2944 			       unsigned char *scsi3addr)
2945 {
2946 	int i;
2947 	bool match = false;
2948 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2949 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2950 
2951 	if (hpsa_is_cmd_idle(c))
2952 		return false;
2953 
2954 	switch (c->cmd_type) {
2955 	case CMD_SCSI:
2956 	case CMD_IOCTL_PEND:
2957 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2958 				sizeof(c->Header.LUN.LunAddrBytes));
2959 		break;
2960 
2961 	case CMD_IOACCEL1:
2962 	case CMD_IOACCEL2:
2963 		if (c->phys_disk == dev) {
2964 			/* HBA mode match */
2965 			match = true;
2966 		} else {
2967 			/* Possible RAID mode -- check each phys dev. */
2968 			/* FIXME:  Do we need to take out a lock here?  If
2969 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2970 			 * instead. */
2971 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
2972 				/* FIXME: an alternate test might be
2973 				 *
2974 				 * match = dev->phys_disk[i]->ioaccel_handle
2975 				 *              == c2->scsi_nexus;      */
2976 				match = dev->phys_disk[i] == c->phys_disk;
2977 			}
2978 		}
2979 		break;
2980 
2981 	case IOACCEL2_TMF:
2982 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
2983 			match = dev->phys_disk[i]->ioaccel_handle ==
2984 					le32_to_cpu(ac->it_nexus);
2985 		}
2986 		break;
2987 
2988 	case 0:		/* The command is in the middle of being initialized. */
2989 		match = false;
2990 		break;
2991 
2992 	default:
2993 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2994 			c->cmd_type);
2995 		BUG();
2996 	}
2997 
2998 	return match;
2999 }
3000 
3001 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3002 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3003 {
3004 	int i;
3005 	int rc = 0;
3006 
3007 	/* We can really only handle one reset at a time */
3008 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3009 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3010 		return -EINTR;
3011 	}
3012 
3013 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3014 
3015 	for (i = 0; i < h->nr_cmds; i++) {
3016 		struct CommandList *c = h->cmd_pool + i;
3017 		int refcount = atomic_inc_return(&c->refcount);
3018 
3019 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3020 			unsigned long flags;
3021 
3022 			/*
3023 			 * Mark the target command as having a reset pending,
3024 			 * then lock a lock so that the command cannot complete
3025 			 * while we're considering it.  If the command is not
3026 			 * idle then count it; otherwise revoke the event.
3027 			 */
3028 			c->reset_pending = dev;
3029 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3030 			if (!hpsa_is_cmd_idle(c))
3031 				atomic_inc(&dev->reset_cmds_out);
3032 			else
3033 				c->reset_pending = NULL;
3034 			spin_unlock_irqrestore(&h->lock, flags);
3035 		}
3036 
3037 		cmd_free(h, c);
3038 	}
3039 
3040 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3041 	if (!rc)
3042 		wait_event(h->event_sync_wait_queue,
3043 			atomic_read(&dev->reset_cmds_out) == 0 ||
3044 			lockup_detected(h));
3045 
3046 	if (unlikely(lockup_detected(h))) {
3047 		dev_warn(&h->pdev->dev,
3048 			 "Controller lockup detected during reset wait\n");
3049 		rc = -ENODEV;
3050 	}
3051 
3052 	if (unlikely(rc))
3053 		atomic_set(&dev->reset_cmds_out, 0);
3054 	else
3055 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3056 
3057 	mutex_unlock(&h->reset_mutex);
3058 	return rc;
3059 }
3060 
3061 static void hpsa_get_raid_level(struct ctlr_info *h,
3062 	unsigned char *scsi3addr, unsigned char *raid_level)
3063 {
3064 	int rc;
3065 	unsigned char *buf;
3066 
3067 	*raid_level = RAID_UNKNOWN;
3068 	buf = kzalloc(64, GFP_KERNEL);
3069 	if (!buf)
3070 		return;
3071 
3072 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3073 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3074 		goto exit;
3075 
3076 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3077 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3078 
3079 	if (rc == 0)
3080 		*raid_level = buf[8];
3081 	if (*raid_level > RAID_UNKNOWN)
3082 		*raid_level = RAID_UNKNOWN;
3083 exit:
3084 	kfree(buf);
3085 	return;
3086 }
3087 
3088 #define HPSA_MAP_DEBUG
3089 #ifdef HPSA_MAP_DEBUG
3090 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3091 				struct raid_map_data *map_buff)
3092 {
3093 	struct raid_map_disk_data *dd = &map_buff->data[0];
3094 	int map, row, col;
3095 	u16 map_cnt, row_cnt, disks_per_row;
3096 
3097 	if (rc != 0)
3098 		return;
3099 
3100 	/* Show details only if debugging has been activated. */
3101 	if (h->raid_offload_debug < 2)
3102 		return;
3103 
3104 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3105 				le32_to_cpu(map_buff->structure_size));
3106 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3107 			le32_to_cpu(map_buff->volume_blk_size));
3108 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3109 			le64_to_cpu(map_buff->volume_blk_cnt));
3110 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3111 			map_buff->phys_blk_shift);
3112 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3113 			map_buff->parity_rotation_shift);
3114 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3115 			le16_to_cpu(map_buff->strip_size));
3116 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3117 			le64_to_cpu(map_buff->disk_starting_blk));
3118 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3119 			le64_to_cpu(map_buff->disk_blk_cnt));
3120 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3121 			le16_to_cpu(map_buff->data_disks_per_row));
3122 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3123 			le16_to_cpu(map_buff->metadata_disks_per_row));
3124 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3125 			le16_to_cpu(map_buff->row_cnt));
3126 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3127 			le16_to_cpu(map_buff->layout_map_count));
3128 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3129 			le16_to_cpu(map_buff->flags));
3130 	dev_info(&h->pdev->dev, "encryption = %s\n",
3131 			le16_to_cpu(map_buff->flags) &
3132 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3133 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3134 			le16_to_cpu(map_buff->dekindex));
3135 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3136 	for (map = 0; map < map_cnt; map++) {
3137 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3138 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3139 		for (row = 0; row < row_cnt; row++) {
3140 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3141 			disks_per_row =
3142 				le16_to_cpu(map_buff->data_disks_per_row);
3143 			for (col = 0; col < disks_per_row; col++, dd++)
3144 				dev_info(&h->pdev->dev,
3145 					"    D%02u: h=0x%04x xor=%u,%u\n",
3146 					col, dd->ioaccel_handle,
3147 					dd->xor_mult[0], dd->xor_mult[1]);
3148 			disks_per_row =
3149 				le16_to_cpu(map_buff->metadata_disks_per_row);
3150 			for (col = 0; col < disks_per_row; col++, dd++)
3151 				dev_info(&h->pdev->dev,
3152 					"    M%02u: h=0x%04x xor=%u,%u\n",
3153 					col, dd->ioaccel_handle,
3154 					dd->xor_mult[0], dd->xor_mult[1]);
3155 		}
3156 	}
3157 }
3158 #else
3159 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3160 			__attribute__((unused)) int rc,
3161 			__attribute__((unused)) struct raid_map_data *map_buff)
3162 {
3163 }
3164 #endif
3165 
3166 static int hpsa_get_raid_map(struct ctlr_info *h,
3167 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3168 {
3169 	int rc = 0;
3170 	struct CommandList *c;
3171 	struct ErrorInfo *ei;
3172 
3173 	c = cmd_alloc(h);
3174 
3175 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3176 			sizeof(this_device->raid_map), 0,
3177 			scsi3addr, TYPE_CMD)) {
3178 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3179 		cmd_free(h, c);
3180 		return -1;
3181 	}
3182 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3183 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3184 	if (rc)
3185 		goto out;
3186 	ei = c->err_info;
3187 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3188 		hpsa_scsi_interpret_error(h, c);
3189 		rc = -1;
3190 		goto out;
3191 	}
3192 	cmd_free(h, c);
3193 
3194 	/* @todo in the future, dynamically allocate RAID map memory */
3195 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3196 				sizeof(this_device->raid_map)) {
3197 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3198 		rc = -1;
3199 	}
3200 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3201 	return rc;
3202 out:
3203 	cmd_free(h, c);
3204 	return rc;
3205 }
3206 
3207 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3208 		unsigned char scsi3addr[], u16 bmic_device_index,
3209 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3210 {
3211 	int rc = IO_OK;
3212 	struct CommandList *c;
3213 	struct ErrorInfo *ei;
3214 
3215 	c = cmd_alloc(h);
3216 
3217 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3218 		0, RAID_CTLR_LUNID, TYPE_CMD);
3219 	if (rc)
3220 		goto out;
3221 
3222 	c->Request.CDB[2] = bmic_device_index & 0xff;
3223 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3224 
3225 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3226 				PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3227 	if (rc)
3228 		goto out;
3229 	ei = c->err_info;
3230 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3231 		hpsa_scsi_interpret_error(h, c);
3232 		rc = -1;
3233 	}
3234 out:
3235 	cmd_free(h, c);
3236 	return rc;
3237 }
3238 
3239 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3240 	struct bmic_identify_controller *buf, size_t bufsize)
3241 {
3242 	int rc = IO_OK;
3243 	struct CommandList *c;
3244 	struct ErrorInfo *ei;
3245 
3246 	c = cmd_alloc(h);
3247 
3248 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3249 		0, RAID_CTLR_LUNID, TYPE_CMD);
3250 	if (rc)
3251 		goto out;
3252 
3253 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3254 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3255 	if (rc)
3256 		goto out;
3257 	ei = c->err_info;
3258 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3259 		hpsa_scsi_interpret_error(h, c);
3260 		rc = -1;
3261 	}
3262 out:
3263 	cmd_free(h, c);
3264 	return rc;
3265 }
3266 
3267 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3268 		unsigned char scsi3addr[], u16 bmic_device_index,
3269 		struct bmic_identify_physical_device *buf, size_t bufsize)
3270 {
3271 	int rc = IO_OK;
3272 	struct CommandList *c;
3273 	struct ErrorInfo *ei;
3274 
3275 	c = cmd_alloc(h);
3276 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3277 		0, RAID_CTLR_LUNID, TYPE_CMD);
3278 	if (rc)
3279 		goto out;
3280 
3281 	c->Request.CDB[2] = bmic_device_index & 0xff;
3282 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3283 
3284 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3285 						DEFAULT_TIMEOUT);
3286 	ei = c->err_info;
3287 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3288 		hpsa_scsi_interpret_error(h, c);
3289 		rc = -1;
3290 	}
3291 out:
3292 	cmd_free(h, c);
3293 
3294 	return rc;
3295 }
3296 
3297 /*
3298  * get enclosure information
3299  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3300  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3301  * Uses id_physical_device to determine the box_index.
3302  */
3303 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3304 			unsigned char *scsi3addr,
3305 			struct ReportExtendedLUNdata *rlep, int rle_index,
3306 			struct hpsa_scsi_dev_t *encl_dev)
3307 {
3308 	int rc = -1;
3309 	struct CommandList *c = NULL;
3310 	struct ErrorInfo *ei = NULL;
3311 	struct bmic_sense_storage_box_params *bssbp = NULL;
3312 	struct bmic_identify_physical_device *id_phys = NULL;
3313 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3314 	u16 bmic_device_index = 0;
3315 
3316 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3317 
3318 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3319 		rc = IO_OK;
3320 		goto out;
3321 	}
3322 
3323 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3324 		rc = IO_OK;
3325 		goto out;
3326 	}
3327 
3328 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3329 	if (!bssbp)
3330 		goto out;
3331 
3332 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3333 	if (!id_phys)
3334 		goto out;
3335 
3336 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3337 						id_phys, sizeof(*id_phys));
3338 	if (rc) {
3339 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3340 			__func__, encl_dev->external, bmic_device_index);
3341 		goto out;
3342 	}
3343 
3344 	c = cmd_alloc(h);
3345 
3346 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3347 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3348 
3349 	if (rc)
3350 		goto out;
3351 
3352 	if (id_phys->phys_connector[1] == 'E')
3353 		c->Request.CDB[5] = id_phys->box_index;
3354 	else
3355 		c->Request.CDB[5] = 0;
3356 
3357 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3358 						DEFAULT_TIMEOUT);
3359 	if (rc)
3360 		goto out;
3361 
3362 	ei = c->err_info;
3363 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3364 		rc = -1;
3365 		goto out;
3366 	}
3367 
3368 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3369 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3370 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3371 
3372 	rc = IO_OK;
3373 out:
3374 	kfree(bssbp);
3375 	kfree(id_phys);
3376 
3377 	if (c)
3378 		cmd_free(h, c);
3379 
3380 	if (rc != IO_OK)
3381 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3382 			"Error, could not get enclosure information\n");
3383 }
3384 
3385 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3386 						unsigned char *scsi3addr)
3387 {
3388 	struct ReportExtendedLUNdata *physdev;
3389 	u32 nphysicals;
3390 	u64 sa = 0;
3391 	int i;
3392 
3393 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3394 	if (!physdev)
3395 		return 0;
3396 
3397 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3398 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3399 		kfree(physdev);
3400 		return 0;
3401 	}
3402 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3403 
3404 	for (i = 0; i < nphysicals; i++)
3405 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3406 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3407 			break;
3408 		}
3409 
3410 	kfree(physdev);
3411 
3412 	return sa;
3413 }
3414 
3415 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3416 					struct hpsa_scsi_dev_t *dev)
3417 {
3418 	int rc;
3419 	u64 sa = 0;
3420 
3421 	if (is_hba_lunid(scsi3addr)) {
3422 		struct bmic_sense_subsystem_info *ssi;
3423 
3424 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3425 		if (!ssi)
3426 			return;
3427 
3428 		rc = hpsa_bmic_sense_subsystem_information(h,
3429 					scsi3addr, 0, ssi, sizeof(*ssi));
3430 		if (rc == 0) {
3431 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3432 			h->sas_address = sa;
3433 		}
3434 
3435 		kfree(ssi);
3436 	} else
3437 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3438 
3439 	dev->sas_address = sa;
3440 }
3441 
3442 /* Get a device id from inquiry page 0x83 */
3443 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3444 	unsigned char scsi3addr[], u8 page)
3445 {
3446 	int rc;
3447 	int i;
3448 	int pages;
3449 	unsigned char *buf, bufsize;
3450 
3451 	buf = kzalloc(256, GFP_KERNEL);
3452 	if (!buf)
3453 		return false;
3454 
3455 	/* Get the size of the page list first */
3456 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3457 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3458 				buf, HPSA_VPD_HEADER_SZ);
3459 	if (rc != 0)
3460 		goto exit_unsupported;
3461 	pages = buf[3];
3462 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3463 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3464 	else
3465 		bufsize = 255;
3466 
3467 	/* Get the whole VPD page list */
3468 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3469 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3470 				buf, bufsize);
3471 	if (rc != 0)
3472 		goto exit_unsupported;
3473 
3474 	pages = buf[3];
3475 	for (i = 1; i <= pages; i++)
3476 		if (buf[3 + i] == page)
3477 			goto exit_supported;
3478 exit_unsupported:
3479 	kfree(buf);
3480 	return false;
3481 exit_supported:
3482 	kfree(buf);
3483 	return true;
3484 }
3485 
3486 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3487 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3488 {
3489 	int rc;
3490 	unsigned char *buf;
3491 	u8 ioaccel_status;
3492 
3493 	this_device->offload_config = 0;
3494 	this_device->offload_enabled = 0;
3495 	this_device->offload_to_be_enabled = 0;
3496 
3497 	buf = kzalloc(64, GFP_KERNEL);
3498 	if (!buf)
3499 		return;
3500 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3501 		goto out;
3502 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3503 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3504 	if (rc != 0)
3505 		goto out;
3506 
3507 #define IOACCEL_STATUS_BYTE 4
3508 #define OFFLOAD_CONFIGURED_BIT 0x01
3509 #define OFFLOAD_ENABLED_BIT 0x02
3510 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3511 	this_device->offload_config =
3512 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3513 	if (this_device->offload_config) {
3514 		this_device->offload_enabled =
3515 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3516 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3517 			this_device->offload_enabled = 0;
3518 	}
3519 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3520 out:
3521 	kfree(buf);
3522 	return;
3523 }
3524 
3525 /* Get the device id from inquiry page 0x83 */
3526 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3527 	unsigned char *device_id, int index, int buflen)
3528 {
3529 	int rc;
3530 	unsigned char *buf;
3531 
3532 	/* Does controller have VPD for device id? */
3533 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3534 		return 1; /* not supported */
3535 
3536 	buf = kzalloc(64, GFP_KERNEL);
3537 	if (!buf)
3538 		return -ENOMEM;
3539 
3540 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3541 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3542 	if (rc == 0) {
3543 		if (buflen > 16)
3544 			buflen = 16;
3545 		memcpy(device_id, &buf[8], buflen);
3546 	}
3547 
3548 	kfree(buf);
3549 
3550 	return rc; /*0 - got id,  otherwise, didn't */
3551 }
3552 
3553 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3554 		void *buf, int bufsize,
3555 		int extended_response)
3556 {
3557 	int rc = IO_OK;
3558 	struct CommandList *c;
3559 	unsigned char scsi3addr[8];
3560 	struct ErrorInfo *ei;
3561 
3562 	c = cmd_alloc(h);
3563 
3564 	/* address the controller */
3565 	memset(scsi3addr, 0, sizeof(scsi3addr));
3566 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3567 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3568 		rc = -1;
3569 		goto out;
3570 	}
3571 	if (extended_response)
3572 		c->Request.CDB[1] = extended_response;
3573 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3574 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3575 	if (rc)
3576 		goto out;
3577 	ei = c->err_info;
3578 	if (ei->CommandStatus != 0 &&
3579 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3580 		hpsa_scsi_interpret_error(h, c);
3581 		rc = -1;
3582 	} else {
3583 		struct ReportLUNdata *rld = buf;
3584 
3585 		if (rld->extended_response_flag != extended_response) {
3586 			dev_err(&h->pdev->dev,
3587 				"report luns requested format %u, got %u\n",
3588 				extended_response,
3589 				rld->extended_response_flag);
3590 			rc = -1;
3591 		}
3592 	}
3593 out:
3594 	cmd_free(h, c);
3595 	return rc;
3596 }
3597 
3598 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3599 		struct ReportExtendedLUNdata *buf, int bufsize)
3600 {
3601 	int rc;
3602 	struct ReportLUNdata *lbuf;
3603 
3604 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3605 				      HPSA_REPORT_PHYS_EXTENDED);
3606 	if (!rc || !hpsa_allow_any)
3607 		return rc;
3608 
3609 	/* REPORT PHYS EXTENDED is not supported */
3610 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3611 	if (!lbuf)
3612 		return -ENOMEM;
3613 
3614 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3615 	if (!rc) {
3616 		int i;
3617 		u32 nphys;
3618 
3619 		/* Copy ReportLUNdata header */
3620 		memcpy(buf, lbuf, 8);
3621 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3622 		for (i = 0; i < nphys; i++)
3623 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3624 	}
3625 	kfree(lbuf);
3626 	return rc;
3627 }
3628 
3629 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3630 		struct ReportLUNdata *buf, int bufsize)
3631 {
3632 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3633 }
3634 
3635 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3636 	int bus, int target, int lun)
3637 {
3638 	device->bus = bus;
3639 	device->target = target;
3640 	device->lun = lun;
3641 }
3642 
3643 /* Use VPD inquiry to get details of volume status */
3644 static int hpsa_get_volume_status(struct ctlr_info *h,
3645 					unsigned char scsi3addr[])
3646 {
3647 	int rc;
3648 	int status;
3649 	int size;
3650 	unsigned char *buf;
3651 
3652 	buf = kzalloc(64, GFP_KERNEL);
3653 	if (!buf)
3654 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3655 
3656 	/* Does controller have VPD for logical volume status? */
3657 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3658 		goto exit_failed;
3659 
3660 	/* Get the size of the VPD return buffer */
3661 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3662 					buf, HPSA_VPD_HEADER_SZ);
3663 	if (rc != 0)
3664 		goto exit_failed;
3665 	size = buf[3];
3666 
3667 	/* Now get the whole VPD buffer */
3668 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3669 					buf, size + HPSA_VPD_HEADER_SZ);
3670 	if (rc != 0)
3671 		goto exit_failed;
3672 	status = buf[4]; /* status byte */
3673 
3674 	kfree(buf);
3675 	return status;
3676 exit_failed:
3677 	kfree(buf);
3678 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3679 }
3680 
3681 /* Determine offline status of a volume.
3682  * Return either:
3683  *  0 (not offline)
3684  *  0xff (offline for unknown reasons)
3685  *  # (integer code indicating one of several NOT READY states
3686  *     describing why a volume is to be kept offline)
3687  */
3688 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3689 					unsigned char scsi3addr[])
3690 {
3691 	struct CommandList *c;
3692 	unsigned char *sense;
3693 	u8 sense_key, asc, ascq;
3694 	int sense_len;
3695 	int rc, ldstat = 0;
3696 	u16 cmd_status;
3697 	u8 scsi_status;
3698 #define ASC_LUN_NOT_READY 0x04
3699 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3700 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3701 
3702 	c = cmd_alloc(h);
3703 
3704 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3705 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3706 					DEFAULT_TIMEOUT);
3707 	if (rc) {
3708 		cmd_free(h, c);
3709 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3710 	}
3711 	sense = c->err_info->SenseInfo;
3712 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3713 		sense_len = sizeof(c->err_info->SenseInfo);
3714 	else
3715 		sense_len = c->err_info->SenseLen;
3716 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3717 	cmd_status = c->err_info->CommandStatus;
3718 	scsi_status = c->err_info->ScsiStatus;
3719 	cmd_free(h, c);
3720 
3721 	/* Determine the reason for not ready state */
3722 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3723 
3724 	/* Keep volume offline in certain cases: */
3725 	switch (ldstat) {
3726 	case HPSA_LV_FAILED:
3727 	case HPSA_LV_UNDERGOING_ERASE:
3728 	case HPSA_LV_NOT_AVAILABLE:
3729 	case HPSA_LV_UNDERGOING_RPI:
3730 	case HPSA_LV_PENDING_RPI:
3731 	case HPSA_LV_ENCRYPTED_NO_KEY:
3732 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3733 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3734 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3735 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3736 		return ldstat;
3737 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3738 		/* If VPD status page isn't available,
3739 		 * use ASC/ASCQ to determine state
3740 		 */
3741 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3742 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3743 			return ldstat;
3744 		break;
3745 	default:
3746 		break;
3747 	}
3748 	return HPSA_LV_OK;
3749 }
3750 
3751 static int hpsa_update_device_info(struct ctlr_info *h,
3752 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3753 	unsigned char *is_OBDR_device)
3754 {
3755 
3756 #define OBDR_SIG_OFFSET 43
3757 #define OBDR_TAPE_SIG "$DR-10"
3758 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3759 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3760 
3761 	unsigned char *inq_buff;
3762 	unsigned char *obdr_sig;
3763 	int rc = 0;
3764 
3765 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3766 	if (!inq_buff) {
3767 		rc = -ENOMEM;
3768 		goto bail_out;
3769 	}
3770 
3771 	/* Do an inquiry to the device to see what it is. */
3772 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3773 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3774 		dev_err(&h->pdev->dev,
3775 			"%s: inquiry failed, device will be skipped.\n",
3776 			__func__);
3777 		rc = HPSA_INQUIRY_FAILED;
3778 		goto bail_out;
3779 	}
3780 
3781 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3782 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3783 
3784 	this_device->devtype = (inq_buff[0] & 0x1f);
3785 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3786 	memcpy(this_device->vendor, &inq_buff[8],
3787 		sizeof(this_device->vendor));
3788 	memcpy(this_device->model, &inq_buff[16],
3789 		sizeof(this_device->model));
3790 	this_device->rev = inq_buff[2];
3791 	memset(this_device->device_id, 0,
3792 		sizeof(this_device->device_id));
3793 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3794 		sizeof(this_device->device_id)))
3795 		dev_err(&h->pdev->dev,
3796 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3797 			h->ctlr, __func__,
3798 			h->scsi_host->host_no,
3799 			this_device->target, this_device->lun,
3800 			scsi_device_type(this_device->devtype),
3801 			this_device->model);
3802 
3803 	if ((this_device->devtype == TYPE_DISK ||
3804 		this_device->devtype == TYPE_ZBC) &&
3805 		is_logical_dev_addr_mode(scsi3addr)) {
3806 		unsigned char volume_offline;
3807 
3808 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3809 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3810 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3811 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3812 		this_device->volume_offline = volume_offline;
3813 		if (volume_offline == HPSA_LV_FAILED) {
3814 			rc = HPSA_LV_FAILED;
3815 			dev_err(&h->pdev->dev,
3816 				"%s: LV failed, device will be skipped.\n",
3817 				__func__);
3818 			goto bail_out;
3819 		}
3820 	} else {
3821 		this_device->raid_level = RAID_UNKNOWN;
3822 		this_device->offload_config = 0;
3823 		this_device->offload_enabled = 0;
3824 		this_device->offload_to_be_enabled = 0;
3825 		this_device->hba_ioaccel_enabled = 0;
3826 		this_device->volume_offline = 0;
3827 		this_device->queue_depth = h->nr_cmds;
3828 	}
3829 
3830 	if (this_device->external)
3831 		this_device->queue_depth = EXTERNAL_QD;
3832 
3833 	if (is_OBDR_device) {
3834 		/* See if this is a One-Button-Disaster-Recovery device
3835 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3836 		 */
3837 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3838 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3839 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3840 						OBDR_SIG_LEN) == 0);
3841 	}
3842 	kfree(inq_buff);
3843 	return 0;
3844 
3845 bail_out:
3846 	kfree(inq_buff);
3847 	return rc;
3848 }
3849 
3850 /*
3851  * Helper function to assign bus, target, lun mapping of devices.
3852  * Logical drive target and lun are assigned at this time, but
3853  * physical device lun and target assignment are deferred (assigned
3854  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3855 */
3856 static void figure_bus_target_lun(struct ctlr_info *h,
3857 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3858 {
3859 	u32 lunid = get_unaligned_le32(lunaddrbytes);
3860 
3861 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3862 		/* physical device, target and lun filled in later */
3863 		if (is_hba_lunid(lunaddrbytes)) {
3864 			int bus = HPSA_HBA_BUS;
3865 
3866 			if (!device->rev)
3867 				bus = HPSA_LEGACY_HBA_BUS;
3868 			hpsa_set_bus_target_lun(device,
3869 					bus, 0, lunid & 0x3fff);
3870 		} else
3871 			/* defer target, lun assignment for physical devices */
3872 			hpsa_set_bus_target_lun(device,
3873 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3874 		return;
3875 	}
3876 	/* It's a logical device */
3877 	if (device->external) {
3878 		hpsa_set_bus_target_lun(device,
3879 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3880 			lunid & 0x00ff);
3881 		return;
3882 	}
3883 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3884 				0, lunid & 0x3fff);
3885 }
3886 
3887 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3888 	int i, int nphysicals, int nlocal_logicals)
3889 {
3890 	/* In report logicals, local logicals are listed first,
3891 	* then any externals.
3892 	*/
3893 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3894 
3895 	if (i == raid_ctlr_position)
3896 		return 0;
3897 
3898 	if (i < logicals_start)
3899 		return 0;
3900 
3901 	/* i is in logicals range, but still within local logicals */
3902 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3903 		return 0;
3904 
3905 	return 1; /* it's an external lun */
3906 }
3907 
3908 /*
3909  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3910  * logdev.  The number of luns in physdev and logdev are returned in
3911  * *nphysicals and *nlogicals, respectively.
3912  * Returns 0 on success, -1 otherwise.
3913  */
3914 static int hpsa_gather_lun_info(struct ctlr_info *h,
3915 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3916 	struct ReportLUNdata *logdev, u32 *nlogicals)
3917 {
3918 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3919 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3920 		return -1;
3921 	}
3922 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3923 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3924 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3925 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3926 		*nphysicals = HPSA_MAX_PHYS_LUN;
3927 	}
3928 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3929 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3930 		return -1;
3931 	}
3932 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3933 	/* Reject Logicals in excess of our max capability. */
3934 	if (*nlogicals > HPSA_MAX_LUN) {
3935 		dev_warn(&h->pdev->dev,
3936 			"maximum logical LUNs (%d) exceeded.  "
3937 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
3938 			*nlogicals - HPSA_MAX_LUN);
3939 			*nlogicals = HPSA_MAX_LUN;
3940 	}
3941 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3942 		dev_warn(&h->pdev->dev,
3943 			"maximum logical + physical LUNs (%d) exceeded. "
3944 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3945 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3946 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3947 	}
3948 	return 0;
3949 }
3950 
3951 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3952 	int i, int nphysicals, int nlogicals,
3953 	struct ReportExtendedLUNdata *physdev_list,
3954 	struct ReportLUNdata *logdev_list)
3955 {
3956 	/* Helper function, figure out where the LUN ID info is coming from
3957 	 * given index i, lists of physical and logical devices, where in
3958 	 * the list the raid controller is supposed to appear (first or last)
3959 	 */
3960 
3961 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3962 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3963 
3964 	if (i == raid_ctlr_position)
3965 		return RAID_CTLR_LUNID;
3966 
3967 	if (i < logicals_start)
3968 		return &physdev_list->LUN[i -
3969 				(raid_ctlr_position == 0)].lunid[0];
3970 
3971 	if (i < last_device)
3972 		return &logdev_list->LUN[i - nphysicals -
3973 			(raid_ctlr_position == 0)][0];
3974 	BUG();
3975 	return NULL;
3976 }
3977 
3978 /* get physical drive ioaccel handle and queue depth */
3979 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3980 		struct hpsa_scsi_dev_t *dev,
3981 		struct ReportExtendedLUNdata *rlep, int rle_index,
3982 		struct bmic_identify_physical_device *id_phys)
3983 {
3984 	int rc;
3985 	struct ext_report_lun_entry *rle;
3986 
3987 	rle = &rlep->LUN[rle_index];
3988 
3989 	dev->ioaccel_handle = rle->ioaccel_handle;
3990 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3991 		dev->hba_ioaccel_enabled = 1;
3992 	memset(id_phys, 0, sizeof(*id_phys));
3993 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3994 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3995 			sizeof(*id_phys));
3996 	if (!rc)
3997 		/* Reserve space for FW operations */
3998 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3999 #define DRIVE_QUEUE_DEPTH 7
4000 		dev->queue_depth =
4001 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4002 				DRIVE_CMDS_RESERVED_FOR_FW;
4003 	else
4004 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4005 }
4006 
4007 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4008 	struct ReportExtendedLUNdata *rlep, int rle_index,
4009 	struct bmic_identify_physical_device *id_phys)
4010 {
4011 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4012 
4013 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4014 		this_device->hba_ioaccel_enabled = 1;
4015 
4016 	memcpy(&this_device->active_path_index,
4017 		&id_phys->active_path_number,
4018 		sizeof(this_device->active_path_index));
4019 	memcpy(&this_device->path_map,
4020 		&id_phys->redundant_path_present_map,
4021 		sizeof(this_device->path_map));
4022 	memcpy(&this_device->box,
4023 		&id_phys->alternate_paths_phys_box_on_port,
4024 		sizeof(this_device->box));
4025 	memcpy(&this_device->phys_connector,
4026 		&id_phys->alternate_paths_phys_connector,
4027 		sizeof(this_device->phys_connector));
4028 	memcpy(&this_device->bay,
4029 		&id_phys->phys_bay_in_box,
4030 		sizeof(this_device->bay));
4031 }
4032 
4033 /* get number of local logical disks. */
4034 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4035 	struct bmic_identify_controller *id_ctlr,
4036 	u32 *nlocals)
4037 {
4038 	int rc;
4039 
4040 	if (!id_ctlr) {
4041 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4042 			__func__);
4043 		return -ENOMEM;
4044 	}
4045 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4046 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4047 	if (!rc)
4048 		if (id_ctlr->configured_logical_drive_count < 256)
4049 			*nlocals = id_ctlr->configured_logical_drive_count;
4050 		else
4051 			*nlocals = le16_to_cpu(
4052 					id_ctlr->extended_logical_unit_count);
4053 	else
4054 		*nlocals = -1;
4055 	return rc;
4056 }
4057 
4058 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4059 {
4060 	struct bmic_identify_physical_device *id_phys;
4061 	bool is_spare = false;
4062 	int rc;
4063 
4064 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4065 	if (!id_phys)
4066 		return false;
4067 
4068 	rc = hpsa_bmic_id_physical_device(h,
4069 					lunaddrbytes,
4070 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4071 					id_phys, sizeof(*id_phys));
4072 	if (rc == 0)
4073 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4074 
4075 	kfree(id_phys);
4076 	return is_spare;
4077 }
4078 
4079 #define RPL_DEV_FLAG_NON_DISK                           0x1
4080 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4081 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4082 
4083 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4084 
4085 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4086 				struct ext_report_lun_entry *rle)
4087 {
4088 	u8 device_flags;
4089 	u8 device_type;
4090 
4091 	if (!MASKED_DEVICE(lunaddrbytes))
4092 		return false;
4093 
4094 	device_flags = rle->device_flags;
4095 	device_type = rle->device_type;
4096 
4097 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4098 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4099 			return false;
4100 		return true;
4101 	}
4102 
4103 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4104 		return false;
4105 
4106 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4107 		return false;
4108 
4109 	/*
4110 	 * Spares may be spun down, we do not want to
4111 	 * do an Inquiry to a RAID set spare drive as
4112 	 * that would have them spun up, that is a
4113 	 * performance hit because I/O to the RAID device
4114 	 * stops while the spin up occurs which can take
4115 	 * over 50 seconds.
4116 	 */
4117 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4118 		return true;
4119 
4120 	return false;
4121 }
4122 
4123 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4124 {
4125 	/* the idea here is we could get notified
4126 	 * that some devices have changed, so we do a report
4127 	 * physical luns and report logical luns cmd, and adjust
4128 	 * our list of devices accordingly.
4129 	 *
4130 	 * The scsi3addr's of devices won't change so long as the
4131 	 * adapter is not reset.  That means we can rescan and
4132 	 * tell which devices we already know about, vs. new
4133 	 * devices, vs.  disappearing devices.
4134 	 */
4135 	struct ReportExtendedLUNdata *physdev_list = NULL;
4136 	struct ReportLUNdata *logdev_list = NULL;
4137 	struct bmic_identify_physical_device *id_phys = NULL;
4138 	struct bmic_identify_controller *id_ctlr = NULL;
4139 	u32 nphysicals = 0;
4140 	u32 nlogicals = 0;
4141 	u32 nlocal_logicals = 0;
4142 	u32 ndev_allocated = 0;
4143 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4144 	int ncurrent = 0;
4145 	int i, n_ext_target_devs, ndevs_to_allocate;
4146 	int raid_ctlr_position;
4147 	bool physical_device;
4148 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4149 
4150 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4151 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4152 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4153 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4154 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4155 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4156 
4157 	if (!currentsd || !physdev_list || !logdev_list ||
4158 		!tmpdevice || !id_phys || !id_ctlr) {
4159 		dev_err(&h->pdev->dev, "out of memory\n");
4160 		goto out;
4161 	}
4162 	memset(lunzerobits, 0, sizeof(lunzerobits));
4163 
4164 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4165 
4166 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4167 			logdev_list, &nlogicals)) {
4168 		h->drv_req_rescan = 1;
4169 		goto out;
4170 	}
4171 
4172 	/* Set number of local logicals (non PTRAID) */
4173 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4174 		dev_warn(&h->pdev->dev,
4175 			"%s: Can't determine number of local logical devices.\n",
4176 			__func__);
4177 	}
4178 
4179 	/* We might see up to the maximum number of logical and physical disks
4180 	 * plus external target devices, and a device for the local RAID
4181 	 * controller.
4182 	 */
4183 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4184 
4185 	/* Allocate the per device structures */
4186 	for (i = 0; i < ndevs_to_allocate; i++) {
4187 		if (i >= HPSA_MAX_DEVICES) {
4188 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4189 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4190 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4191 			break;
4192 		}
4193 
4194 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4195 		if (!currentsd[i]) {
4196 			h->drv_req_rescan = 1;
4197 			goto out;
4198 		}
4199 		ndev_allocated++;
4200 	}
4201 
4202 	if (is_scsi_rev_5(h))
4203 		raid_ctlr_position = 0;
4204 	else
4205 		raid_ctlr_position = nphysicals + nlogicals;
4206 
4207 	/* adjust our table of devices */
4208 	n_ext_target_devs = 0;
4209 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4210 		u8 *lunaddrbytes, is_OBDR = 0;
4211 		int rc = 0;
4212 		int phys_dev_index = i - (raid_ctlr_position == 0);
4213 		bool skip_device = false;
4214 
4215 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4216 
4217 		/* Figure out where the LUN ID info is coming from */
4218 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4219 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4220 
4221 		/* Determine if this is a lun from an external target array */
4222 		tmpdevice->external =
4223 			figure_external_status(h, raid_ctlr_position, i,
4224 						nphysicals, nlocal_logicals);
4225 
4226 		/*
4227 		 * Skip over some devices such as a spare.
4228 		 */
4229 		if (!tmpdevice->external && physical_device) {
4230 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4231 					&physdev_list->LUN[phys_dev_index]);
4232 			if (skip_device)
4233 				continue;
4234 		}
4235 
4236 		/* Get device type, vendor, model, device id */
4237 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4238 							&is_OBDR);
4239 		if (rc == -ENOMEM) {
4240 			dev_warn(&h->pdev->dev,
4241 				"Out of memory, rescan deferred.\n");
4242 			h->drv_req_rescan = 1;
4243 			goto out;
4244 		}
4245 		if (rc) {
4246 			h->drv_req_rescan = 1;
4247 			continue;
4248 		}
4249 
4250 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4251 		this_device = currentsd[ncurrent];
4252 
4253 		/* Turn on discovery_polling if there are ext target devices.
4254 		 * Event-based change notification is unreliable for those.
4255 		 */
4256 		if (!h->discovery_polling) {
4257 			if (tmpdevice->external) {
4258 				h->discovery_polling = 1;
4259 				dev_info(&h->pdev->dev,
4260 					"External target, activate discovery polling.\n");
4261 			}
4262 		}
4263 
4264 
4265 		*this_device = *tmpdevice;
4266 		this_device->physical_device = physical_device;
4267 
4268 		/*
4269 		 * Expose all devices except for physical devices that
4270 		 * are masked.
4271 		 */
4272 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4273 			this_device->expose_device = 0;
4274 		else
4275 			this_device->expose_device = 1;
4276 
4277 
4278 		/*
4279 		 * Get the SAS address for physical devices that are exposed.
4280 		 */
4281 		if (this_device->physical_device && this_device->expose_device)
4282 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4283 
4284 		switch (this_device->devtype) {
4285 		case TYPE_ROM:
4286 			/* We don't *really* support actual CD-ROM devices,
4287 			 * just "One Button Disaster Recovery" tape drive
4288 			 * which temporarily pretends to be a CD-ROM drive.
4289 			 * So we check that the device is really an OBDR tape
4290 			 * device by checking for "$DR-10" in bytes 43-48 of
4291 			 * the inquiry data.
4292 			 */
4293 			if (is_OBDR)
4294 				ncurrent++;
4295 			break;
4296 		case TYPE_DISK:
4297 		case TYPE_ZBC:
4298 			if (this_device->physical_device) {
4299 				/* The disk is in HBA mode. */
4300 				/* Never use RAID mapper in HBA mode. */
4301 				this_device->offload_enabled = 0;
4302 				hpsa_get_ioaccel_drive_info(h, this_device,
4303 					physdev_list, phys_dev_index, id_phys);
4304 				hpsa_get_path_info(this_device,
4305 					physdev_list, phys_dev_index, id_phys);
4306 			}
4307 			ncurrent++;
4308 			break;
4309 		case TYPE_TAPE:
4310 		case TYPE_MEDIUM_CHANGER:
4311 			ncurrent++;
4312 			break;
4313 		case TYPE_ENCLOSURE:
4314 			if (!this_device->external)
4315 				hpsa_get_enclosure_info(h, lunaddrbytes,
4316 						physdev_list, phys_dev_index,
4317 						this_device);
4318 			ncurrent++;
4319 			break;
4320 		case TYPE_RAID:
4321 			/* Only present the Smartarray HBA as a RAID controller.
4322 			 * If it's a RAID controller other than the HBA itself
4323 			 * (an external RAID controller, MSA500 or similar)
4324 			 * don't present it.
4325 			 */
4326 			if (!is_hba_lunid(lunaddrbytes))
4327 				break;
4328 			ncurrent++;
4329 			break;
4330 		default:
4331 			break;
4332 		}
4333 		if (ncurrent >= HPSA_MAX_DEVICES)
4334 			break;
4335 	}
4336 
4337 	if (h->sas_host == NULL) {
4338 		int rc = 0;
4339 
4340 		rc = hpsa_add_sas_host(h);
4341 		if (rc) {
4342 			dev_warn(&h->pdev->dev,
4343 				"Could not add sas host %d\n", rc);
4344 			goto out;
4345 		}
4346 	}
4347 
4348 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4349 out:
4350 	kfree(tmpdevice);
4351 	for (i = 0; i < ndev_allocated; i++)
4352 		kfree(currentsd[i]);
4353 	kfree(currentsd);
4354 	kfree(physdev_list);
4355 	kfree(logdev_list);
4356 	kfree(id_ctlr);
4357 	kfree(id_phys);
4358 }
4359 
4360 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4361 				   struct scatterlist *sg)
4362 {
4363 	u64 addr64 = (u64) sg_dma_address(sg);
4364 	unsigned int len = sg_dma_len(sg);
4365 
4366 	desc->Addr = cpu_to_le64(addr64);
4367 	desc->Len = cpu_to_le32(len);
4368 	desc->Ext = 0;
4369 }
4370 
4371 /*
4372  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4373  * dma mapping  and fills in the scatter gather entries of the
4374  * hpsa command, cp.
4375  */
4376 static int hpsa_scatter_gather(struct ctlr_info *h,
4377 		struct CommandList *cp,
4378 		struct scsi_cmnd *cmd)
4379 {
4380 	struct scatterlist *sg;
4381 	int use_sg, i, sg_limit, chained, last_sg;
4382 	struct SGDescriptor *curr_sg;
4383 
4384 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4385 
4386 	use_sg = scsi_dma_map(cmd);
4387 	if (use_sg < 0)
4388 		return use_sg;
4389 
4390 	if (!use_sg)
4391 		goto sglist_finished;
4392 
4393 	/*
4394 	 * If the number of entries is greater than the max for a single list,
4395 	 * then we have a chained list; we will set up all but one entry in the
4396 	 * first list (the last entry is saved for link information);
4397 	 * otherwise, we don't have a chained list and we'll set up at each of
4398 	 * the entries in the one list.
4399 	 */
4400 	curr_sg = cp->SG;
4401 	chained = use_sg > h->max_cmd_sg_entries;
4402 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4403 	last_sg = scsi_sg_count(cmd) - 1;
4404 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4405 		hpsa_set_sg_descriptor(curr_sg, sg);
4406 		curr_sg++;
4407 	}
4408 
4409 	if (chained) {
4410 		/*
4411 		 * Continue with the chained list.  Set curr_sg to the chained
4412 		 * list.  Modify the limit to the total count less the entries
4413 		 * we've already set up.  Resume the scan at the list entry
4414 		 * where the previous loop left off.
4415 		 */
4416 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4417 		sg_limit = use_sg - sg_limit;
4418 		for_each_sg(sg, sg, sg_limit, i) {
4419 			hpsa_set_sg_descriptor(curr_sg, sg);
4420 			curr_sg++;
4421 		}
4422 	}
4423 
4424 	/* Back the pointer up to the last entry and mark it as "last". */
4425 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4426 
4427 	if (use_sg + chained > h->maxSG)
4428 		h->maxSG = use_sg + chained;
4429 
4430 	if (chained) {
4431 		cp->Header.SGList = h->max_cmd_sg_entries;
4432 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4433 		if (hpsa_map_sg_chain_block(h, cp)) {
4434 			scsi_dma_unmap(cmd);
4435 			return -1;
4436 		}
4437 		return 0;
4438 	}
4439 
4440 sglist_finished:
4441 
4442 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4443 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4444 	return 0;
4445 }
4446 
4447 #define BUFLEN 128
4448 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4449 						u8 *cdb, int cdb_len,
4450 						const char *func)
4451 {
4452 	char buf[BUFLEN];
4453 	int outlen;
4454 	int i;
4455 
4456 	outlen = scnprintf(buf, BUFLEN,
4457 				"%s: Blocking zero-length request: CDB:", func);
4458 	for (i = 0; i < cdb_len; i++)
4459 		outlen += scnprintf(buf+outlen, BUFLEN - outlen,
4460 					"%02hhx", cdb[i]);
4461 	dev_warn(&h->pdev->dev, "%s\n", buf);
4462 }
4463 
4464 #define IO_ACCEL_INELIGIBLE 1
4465 /* zero-length transfers trigger hardware errors. */
4466 static bool is_zero_length_transfer(u8 *cdb)
4467 {
4468 	u32 block_cnt;
4469 
4470 	/* Block zero-length transfer sizes on certain commands. */
4471 	switch (cdb[0]) {
4472 	case READ_10:
4473 	case WRITE_10:
4474 	case VERIFY:		/* 0x2F */
4475 	case WRITE_VERIFY:	/* 0x2E */
4476 		block_cnt = get_unaligned_be16(&cdb[7]);
4477 		break;
4478 	case READ_12:
4479 	case WRITE_12:
4480 	case VERIFY_12: /* 0xAF */
4481 	case WRITE_VERIFY_12:	/* 0xAE */
4482 		block_cnt = get_unaligned_be32(&cdb[6]);
4483 		break;
4484 	case READ_16:
4485 	case WRITE_16:
4486 	case VERIFY_16:		/* 0x8F */
4487 		block_cnt = get_unaligned_be32(&cdb[10]);
4488 		break;
4489 	default:
4490 		return false;
4491 	}
4492 
4493 	return block_cnt == 0;
4494 }
4495 
4496 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4497 {
4498 	int is_write = 0;
4499 	u32 block;
4500 	u32 block_cnt;
4501 
4502 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4503 	switch (cdb[0]) {
4504 	case WRITE_6:
4505 	case WRITE_12:
4506 		is_write = 1;
4507 	case READ_6:
4508 	case READ_12:
4509 		if (*cdb_len == 6) {
4510 			block = (((cdb[1] & 0x1F) << 16) |
4511 				(cdb[2] << 8) |
4512 				cdb[3]);
4513 			block_cnt = cdb[4];
4514 			if (block_cnt == 0)
4515 				block_cnt = 256;
4516 		} else {
4517 			BUG_ON(*cdb_len != 12);
4518 			block = get_unaligned_be32(&cdb[2]);
4519 			block_cnt = get_unaligned_be32(&cdb[6]);
4520 		}
4521 		if (block_cnt > 0xffff)
4522 			return IO_ACCEL_INELIGIBLE;
4523 
4524 		cdb[0] = is_write ? WRITE_10 : READ_10;
4525 		cdb[1] = 0;
4526 		cdb[2] = (u8) (block >> 24);
4527 		cdb[3] = (u8) (block >> 16);
4528 		cdb[4] = (u8) (block >> 8);
4529 		cdb[5] = (u8) (block);
4530 		cdb[6] = 0;
4531 		cdb[7] = (u8) (block_cnt >> 8);
4532 		cdb[8] = (u8) (block_cnt);
4533 		cdb[9] = 0;
4534 		*cdb_len = 10;
4535 		break;
4536 	}
4537 	return 0;
4538 }
4539 
4540 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4541 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4542 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4543 {
4544 	struct scsi_cmnd *cmd = c->scsi_cmd;
4545 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4546 	unsigned int len;
4547 	unsigned int total_len = 0;
4548 	struct scatterlist *sg;
4549 	u64 addr64;
4550 	int use_sg, i;
4551 	struct SGDescriptor *curr_sg;
4552 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4553 
4554 	/* TODO: implement chaining support */
4555 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4556 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4557 		return IO_ACCEL_INELIGIBLE;
4558 	}
4559 
4560 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4561 
4562 	if (is_zero_length_transfer(cdb)) {
4563 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4564 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4565 		return IO_ACCEL_INELIGIBLE;
4566 	}
4567 
4568 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4569 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4570 		return IO_ACCEL_INELIGIBLE;
4571 	}
4572 
4573 	c->cmd_type = CMD_IOACCEL1;
4574 
4575 	/* Adjust the DMA address to point to the accelerated command buffer */
4576 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4577 				(c->cmdindex * sizeof(*cp));
4578 	BUG_ON(c->busaddr & 0x0000007F);
4579 
4580 	use_sg = scsi_dma_map(cmd);
4581 	if (use_sg < 0) {
4582 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4583 		return use_sg;
4584 	}
4585 
4586 	if (use_sg) {
4587 		curr_sg = cp->SG;
4588 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4589 			addr64 = (u64) sg_dma_address(sg);
4590 			len  = sg_dma_len(sg);
4591 			total_len += len;
4592 			curr_sg->Addr = cpu_to_le64(addr64);
4593 			curr_sg->Len = cpu_to_le32(len);
4594 			curr_sg->Ext = cpu_to_le32(0);
4595 			curr_sg++;
4596 		}
4597 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4598 
4599 		switch (cmd->sc_data_direction) {
4600 		case DMA_TO_DEVICE:
4601 			control |= IOACCEL1_CONTROL_DATA_OUT;
4602 			break;
4603 		case DMA_FROM_DEVICE:
4604 			control |= IOACCEL1_CONTROL_DATA_IN;
4605 			break;
4606 		case DMA_NONE:
4607 			control |= IOACCEL1_CONTROL_NODATAXFER;
4608 			break;
4609 		default:
4610 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4611 			cmd->sc_data_direction);
4612 			BUG();
4613 			break;
4614 		}
4615 	} else {
4616 		control |= IOACCEL1_CONTROL_NODATAXFER;
4617 	}
4618 
4619 	c->Header.SGList = use_sg;
4620 	/* Fill out the command structure to submit */
4621 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4622 	cp->transfer_len = cpu_to_le32(total_len);
4623 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4624 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4625 	cp->control = cpu_to_le32(control);
4626 	memcpy(cp->CDB, cdb, cdb_len);
4627 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4628 	/* Tag was already set at init time. */
4629 	enqueue_cmd_and_start_io(h, c);
4630 	return 0;
4631 }
4632 
4633 /*
4634  * Queue a command directly to a device behind the controller using the
4635  * I/O accelerator path.
4636  */
4637 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4638 	struct CommandList *c)
4639 {
4640 	struct scsi_cmnd *cmd = c->scsi_cmd;
4641 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4642 
4643 	if (!dev)
4644 		return -1;
4645 
4646 	c->phys_disk = dev;
4647 
4648 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4649 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4650 }
4651 
4652 /*
4653  * Set encryption parameters for the ioaccel2 request
4654  */
4655 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4656 	struct CommandList *c, struct io_accel2_cmd *cp)
4657 {
4658 	struct scsi_cmnd *cmd = c->scsi_cmd;
4659 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4660 	struct raid_map_data *map = &dev->raid_map;
4661 	u64 first_block;
4662 
4663 	/* Are we doing encryption on this device */
4664 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4665 		return;
4666 	/* Set the data encryption key index. */
4667 	cp->dekindex = map->dekindex;
4668 
4669 	/* Set the encryption enable flag, encoded into direction field. */
4670 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4671 
4672 	/* Set encryption tweak values based on logical block address
4673 	 * If block size is 512, tweak value is LBA.
4674 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4675 	 */
4676 	switch (cmd->cmnd[0]) {
4677 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4678 	case READ_6:
4679 	case WRITE_6:
4680 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4681 				(cmd->cmnd[2] << 8) |
4682 				cmd->cmnd[3]);
4683 		break;
4684 	case WRITE_10:
4685 	case READ_10:
4686 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4687 	case WRITE_12:
4688 	case READ_12:
4689 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4690 		break;
4691 	case WRITE_16:
4692 	case READ_16:
4693 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4694 		break;
4695 	default:
4696 		dev_err(&h->pdev->dev,
4697 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4698 			__func__, cmd->cmnd[0]);
4699 		BUG();
4700 		break;
4701 	}
4702 
4703 	if (le32_to_cpu(map->volume_blk_size) != 512)
4704 		first_block = first_block *
4705 				le32_to_cpu(map->volume_blk_size)/512;
4706 
4707 	cp->tweak_lower = cpu_to_le32(first_block);
4708 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4709 }
4710 
4711 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4712 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4713 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4714 {
4715 	struct scsi_cmnd *cmd = c->scsi_cmd;
4716 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4717 	struct ioaccel2_sg_element *curr_sg;
4718 	int use_sg, i;
4719 	struct scatterlist *sg;
4720 	u64 addr64;
4721 	u32 len;
4722 	u32 total_len = 0;
4723 
4724 	if (!cmd->device)
4725 		return -1;
4726 
4727 	if (!cmd->device->hostdata)
4728 		return -1;
4729 
4730 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4731 
4732 	if (is_zero_length_transfer(cdb)) {
4733 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4734 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4735 		return IO_ACCEL_INELIGIBLE;
4736 	}
4737 
4738 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4739 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4740 		return IO_ACCEL_INELIGIBLE;
4741 	}
4742 
4743 	c->cmd_type = CMD_IOACCEL2;
4744 	/* Adjust the DMA address to point to the accelerated command buffer */
4745 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4746 				(c->cmdindex * sizeof(*cp));
4747 	BUG_ON(c->busaddr & 0x0000007F);
4748 
4749 	memset(cp, 0, sizeof(*cp));
4750 	cp->IU_type = IOACCEL2_IU_TYPE;
4751 
4752 	use_sg = scsi_dma_map(cmd);
4753 	if (use_sg < 0) {
4754 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4755 		return use_sg;
4756 	}
4757 
4758 	if (use_sg) {
4759 		curr_sg = cp->sg;
4760 		if (use_sg > h->ioaccel_maxsg) {
4761 			addr64 = le64_to_cpu(
4762 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4763 			curr_sg->address = cpu_to_le64(addr64);
4764 			curr_sg->length = 0;
4765 			curr_sg->reserved[0] = 0;
4766 			curr_sg->reserved[1] = 0;
4767 			curr_sg->reserved[2] = 0;
4768 			curr_sg->chain_indicator = 0x80;
4769 
4770 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4771 		}
4772 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4773 			addr64 = (u64) sg_dma_address(sg);
4774 			len  = sg_dma_len(sg);
4775 			total_len += len;
4776 			curr_sg->address = cpu_to_le64(addr64);
4777 			curr_sg->length = cpu_to_le32(len);
4778 			curr_sg->reserved[0] = 0;
4779 			curr_sg->reserved[1] = 0;
4780 			curr_sg->reserved[2] = 0;
4781 			curr_sg->chain_indicator = 0;
4782 			curr_sg++;
4783 		}
4784 
4785 		switch (cmd->sc_data_direction) {
4786 		case DMA_TO_DEVICE:
4787 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4788 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4789 			break;
4790 		case DMA_FROM_DEVICE:
4791 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4792 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4793 			break;
4794 		case DMA_NONE:
4795 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4796 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4797 			break;
4798 		default:
4799 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4800 				cmd->sc_data_direction);
4801 			BUG();
4802 			break;
4803 		}
4804 	} else {
4805 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4806 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4807 	}
4808 
4809 	/* Set encryption parameters, if necessary */
4810 	set_encrypt_ioaccel2(h, c, cp);
4811 
4812 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4813 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4814 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4815 
4816 	cp->data_len = cpu_to_le32(total_len);
4817 	cp->err_ptr = cpu_to_le64(c->busaddr +
4818 			offsetof(struct io_accel2_cmd, error_data));
4819 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4820 
4821 	/* fill in sg elements */
4822 	if (use_sg > h->ioaccel_maxsg) {
4823 		cp->sg_count = 1;
4824 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4825 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4826 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4827 			scsi_dma_unmap(cmd);
4828 			return -1;
4829 		}
4830 	} else
4831 		cp->sg_count = (u8) use_sg;
4832 
4833 	enqueue_cmd_and_start_io(h, c);
4834 	return 0;
4835 }
4836 
4837 /*
4838  * Queue a command to the correct I/O accelerator path.
4839  */
4840 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4841 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4842 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4843 {
4844 	if (!c->scsi_cmd->device)
4845 		return -1;
4846 
4847 	if (!c->scsi_cmd->device->hostdata)
4848 		return -1;
4849 
4850 	/* Try to honor the device's queue depth */
4851 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4852 					phys_disk->queue_depth) {
4853 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4854 		return IO_ACCEL_INELIGIBLE;
4855 	}
4856 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4857 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4858 						cdb, cdb_len, scsi3addr,
4859 						phys_disk);
4860 	else
4861 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4862 						cdb, cdb_len, scsi3addr,
4863 						phys_disk);
4864 }
4865 
4866 static void raid_map_helper(struct raid_map_data *map,
4867 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4868 {
4869 	if (offload_to_mirror == 0)  {
4870 		/* use physical disk in the first mirrored group. */
4871 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4872 		return;
4873 	}
4874 	do {
4875 		/* determine mirror group that *map_index indicates */
4876 		*current_group = *map_index /
4877 			le16_to_cpu(map->data_disks_per_row);
4878 		if (offload_to_mirror == *current_group)
4879 			continue;
4880 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4881 			/* select map index from next group */
4882 			*map_index += le16_to_cpu(map->data_disks_per_row);
4883 			(*current_group)++;
4884 		} else {
4885 			/* select map index from first group */
4886 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4887 			*current_group = 0;
4888 		}
4889 	} while (offload_to_mirror != *current_group);
4890 }
4891 
4892 /*
4893  * Attempt to perform offload RAID mapping for a logical volume I/O.
4894  */
4895 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4896 	struct CommandList *c)
4897 {
4898 	struct scsi_cmnd *cmd = c->scsi_cmd;
4899 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4900 	struct raid_map_data *map = &dev->raid_map;
4901 	struct raid_map_disk_data *dd = &map->data[0];
4902 	int is_write = 0;
4903 	u32 map_index;
4904 	u64 first_block, last_block;
4905 	u32 block_cnt;
4906 	u32 blocks_per_row;
4907 	u64 first_row, last_row;
4908 	u32 first_row_offset, last_row_offset;
4909 	u32 first_column, last_column;
4910 	u64 r0_first_row, r0_last_row;
4911 	u32 r5or6_blocks_per_row;
4912 	u64 r5or6_first_row, r5or6_last_row;
4913 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4914 	u32 r5or6_first_column, r5or6_last_column;
4915 	u32 total_disks_per_row;
4916 	u32 stripesize;
4917 	u32 first_group, last_group, current_group;
4918 	u32 map_row;
4919 	u32 disk_handle;
4920 	u64 disk_block;
4921 	u32 disk_block_cnt;
4922 	u8 cdb[16];
4923 	u8 cdb_len;
4924 	u16 strip_size;
4925 #if BITS_PER_LONG == 32
4926 	u64 tmpdiv;
4927 #endif
4928 	int offload_to_mirror;
4929 
4930 	if (!dev)
4931 		return -1;
4932 
4933 	/* check for valid opcode, get LBA and block count */
4934 	switch (cmd->cmnd[0]) {
4935 	case WRITE_6:
4936 		is_write = 1;
4937 	case READ_6:
4938 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4939 				(cmd->cmnd[2] << 8) |
4940 				cmd->cmnd[3]);
4941 		block_cnt = cmd->cmnd[4];
4942 		if (block_cnt == 0)
4943 			block_cnt = 256;
4944 		break;
4945 	case WRITE_10:
4946 		is_write = 1;
4947 	case READ_10:
4948 		first_block =
4949 			(((u64) cmd->cmnd[2]) << 24) |
4950 			(((u64) cmd->cmnd[3]) << 16) |
4951 			(((u64) cmd->cmnd[4]) << 8) |
4952 			cmd->cmnd[5];
4953 		block_cnt =
4954 			(((u32) cmd->cmnd[7]) << 8) |
4955 			cmd->cmnd[8];
4956 		break;
4957 	case WRITE_12:
4958 		is_write = 1;
4959 	case READ_12:
4960 		first_block =
4961 			(((u64) cmd->cmnd[2]) << 24) |
4962 			(((u64) cmd->cmnd[3]) << 16) |
4963 			(((u64) cmd->cmnd[4]) << 8) |
4964 			cmd->cmnd[5];
4965 		block_cnt =
4966 			(((u32) cmd->cmnd[6]) << 24) |
4967 			(((u32) cmd->cmnd[7]) << 16) |
4968 			(((u32) cmd->cmnd[8]) << 8) |
4969 		cmd->cmnd[9];
4970 		break;
4971 	case WRITE_16:
4972 		is_write = 1;
4973 	case READ_16:
4974 		first_block =
4975 			(((u64) cmd->cmnd[2]) << 56) |
4976 			(((u64) cmd->cmnd[3]) << 48) |
4977 			(((u64) cmd->cmnd[4]) << 40) |
4978 			(((u64) cmd->cmnd[5]) << 32) |
4979 			(((u64) cmd->cmnd[6]) << 24) |
4980 			(((u64) cmd->cmnd[7]) << 16) |
4981 			(((u64) cmd->cmnd[8]) << 8) |
4982 			cmd->cmnd[9];
4983 		block_cnt =
4984 			(((u32) cmd->cmnd[10]) << 24) |
4985 			(((u32) cmd->cmnd[11]) << 16) |
4986 			(((u32) cmd->cmnd[12]) << 8) |
4987 			cmd->cmnd[13];
4988 		break;
4989 	default:
4990 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4991 	}
4992 	last_block = first_block + block_cnt - 1;
4993 
4994 	/* check for write to non-RAID-0 */
4995 	if (is_write && dev->raid_level != 0)
4996 		return IO_ACCEL_INELIGIBLE;
4997 
4998 	/* check for invalid block or wraparound */
4999 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5000 		last_block < first_block)
5001 		return IO_ACCEL_INELIGIBLE;
5002 
5003 	/* calculate stripe information for the request */
5004 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5005 				le16_to_cpu(map->strip_size);
5006 	strip_size = le16_to_cpu(map->strip_size);
5007 #if BITS_PER_LONG == 32
5008 	tmpdiv = first_block;
5009 	(void) do_div(tmpdiv, blocks_per_row);
5010 	first_row = tmpdiv;
5011 	tmpdiv = last_block;
5012 	(void) do_div(tmpdiv, blocks_per_row);
5013 	last_row = tmpdiv;
5014 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5015 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5016 	tmpdiv = first_row_offset;
5017 	(void) do_div(tmpdiv, strip_size);
5018 	first_column = tmpdiv;
5019 	tmpdiv = last_row_offset;
5020 	(void) do_div(tmpdiv, strip_size);
5021 	last_column = tmpdiv;
5022 #else
5023 	first_row = first_block / blocks_per_row;
5024 	last_row = last_block / blocks_per_row;
5025 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5026 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5027 	first_column = first_row_offset / strip_size;
5028 	last_column = last_row_offset / strip_size;
5029 #endif
5030 
5031 	/* if this isn't a single row/column then give to the controller */
5032 	if ((first_row != last_row) || (first_column != last_column))
5033 		return IO_ACCEL_INELIGIBLE;
5034 
5035 	/* proceeding with driver mapping */
5036 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5037 				le16_to_cpu(map->metadata_disks_per_row);
5038 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5039 				le16_to_cpu(map->row_cnt);
5040 	map_index = (map_row * total_disks_per_row) + first_column;
5041 
5042 	switch (dev->raid_level) {
5043 	case HPSA_RAID_0:
5044 		break; /* nothing special to do */
5045 	case HPSA_RAID_1:
5046 		/* Handles load balance across RAID 1 members.
5047 		 * (2-drive R1 and R10 with even # of drives.)
5048 		 * Appropriate for SSDs, not optimal for HDDs
5049 		 */
5050 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5051 		if (dev->offload_to_mirror)
5052 			map_index += le16_to_cpu(map->data_disks_per_row);
5053 		dev->offload_to_mirror = !dev->offload_to_mirror;
5054 		break;
5055 	case HPSA_RAID_ADM:
5056 		/* Handles N-way mirrors  (R1-ADM)
5057 		 * and R10 with # of drives divisible by 3.)
5058 		 */
5059 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5060 
5061 		offload_to_mirror = dev->offload_to_mirror;
5062 		raid_map_helper(map, offload_to_mirror,
5063 				&map_index, &current_group);
5064 		/* set mirror group to use next time */
5065 		offload_to_mirror =
5066 			(offload_to_mirror >=
5067 			le16_to_cpu(map->layout_map_count) - 1)
5068 			? 0 : offload_to_mirror + 1;
5069 		dev->offload_to_mirror = offload_to_mirror;
5070 		/* Avoid direct use of dev->offload_to_mirror within this
5071 		 * function since multiple threads might simultaneously
5072 		 * increment it beyond the range of dev->layout_map_count -1.
5073 		 */
5074 		break;
5075 	case HPSA_RAID_5:
5076 	case HPSA_RAID_6:
5077 		if (le16_to_cpu(map->layout_map_count) <= 1)
5078 			break;
5079 
5080 		/* Verify first and last block are in same RAID group */
5081 		r5or6_blocks_per_row =
5082 			le16_to_cpu(map->strip_size) *
5083 			le16_to_cpu(map->data_disks_per_row);
5084 		BUG_ON(r5or6_blocks_per_row == 0);
5085 		stripesize = r5or6_blocks_per_row *
5086 			le16_to_cpu(map->layout_map_count);
5087 #if BITS_PER_LONG == 32
5088 		tmpdiv = first_block;
5089 		first_group = do_div(tmpdiv, stripesize);
5090 		tmpdiv = first_group;
5091 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5092 		first_group = tmpdiv;
5093 		tmpdiv = last_block;
5094 		last_group = do_div(tmpdiv, stripesize);
5095 		tmpdiv = last_group;
5096 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5097 		last_group = tmpdiv;
5098 #else
5099 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5100 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5101 #endif
5102 		if (first_group != last_group)
5103 			return IO_ACCEL_INELIGIBLE;
5104 
5105 		/* Verify request is in a single row of RAID 5/6 */
5106 #if BITS_PER_LONG == 32
5107 		tmpdiv = first_block;
5108 		(void) do_div(tmpdiv, stripesize);
5109 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5110 		tmpdiv = last_block;
5111 		(void) do_div(tmpdiv, stripesize);
5112 		r5or6_last_row = r0_last_row = tmpdiv;
5113 #else
5114 		first_row = r5or6_first_row = r0_first_row =
5115 						first_block / stripesize;
5116 		r5or6_last_row = r0_last_row = last_block / stripesize;
5117 #endif
5118 		if (r5or6_first_row != r5or6_last_row)
5119 			return IO_ACCEL_INELIGIBLE;
5120 
5121 
5122 		/* Verify request is in a single column */
5123 #if BITS_PER_LONG == 32
5124 		tmpdiv = first_block;
5125 		first_row_offset = do_div(tmpdiv, stripesize);
5126 		tmpdiv = first_row_offset;
5127 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5128 		r5or6_first_row_offset = first_row_offset;
5129 		tmpdiv = last_block;
5130 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5131 		tmpdiv = r5or6_last_row_offset;
5132 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5133 		tmpdiv = r5or6_first_row_offset;
5134 		(void) do_div(tmpdiv, map->strip_size);
5135 		first_column = r5or6_first_column = tmpdiv;
5136 		tmpdiv = r5or6_last_row_offset;
5137 		(void) do_div(tmpdiv, map->strip_size);
5138 		r5or6_last_column = tmpdiv;
5139 #else
5140 		first_row_offset = r5or6_first_row_offset =
5141 			(u32)((first_block % stripesize) %
5142 						r5or6_blocks_per_row);
5143 
5144 		r5or6_last_row_offset =
5145 			(u32)((last_block % stripesize) %
5146 						r5or6_blocks_per_row);
5147 
5148 		first_column = r5or6_first_column =
5149 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5150 		r5or6_last_column =
5151 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5152 #endif
5153 		if (r5or6_first_column != r5or6_last_column)
5154 			return IO_ACCEL_INELIGIBLE;
5155 
5156 		/* Request is eligible */
5157 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5158 			le16_to_cpu(map->row_cnt);
5159 
5160 		map_index = (first_group *
5161 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5162 			(map_row * total_disks_per_row) + first_column;
5163 		break;
5164 	default:
5165 		return IO_ACCEL_INELIGIBLE;
5166 	}
5167 
5168 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5169 		return IO_ACCEL_INELIGIBLE;
5170 
5171 	c->phys_disk = dev->phys_disk[map_index];
5172 	if (!c->phys_disk)
5173 		return IO_ACCEL_INELIGIBLE;
5174 
5175 	disk_handle = dd[map_index].ioaccel_handle;
5176 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5177 			first_row * le16_to_cpu(map->strip_size) +
5178 			(first_row_offset - first_column *
5179 			le16_to_cpu(map->strip_size));
5180 	disk_block_cnt = block_cnt;
5181 
5182 	/* handle differing logical/physical block sizes */
5183 	if (map->phys_blk_shift) {
5184 		disk_block <<= map->phys_blk_shift;
5185 		disk_block_cnt <<= map->phys_blk_shift;
5186 	}
5187 	BUG_ON(disk_block_cnt > 0xffff);
5188 
5189 	/* build the new CDB for the physical disk I/O */
5190 	if (disk_block > 0xffffffff) {
5191 		cdb[0] = is_write ? WRITE_16 : READ_16;
5192 		cdb[1] = 0;
5193 		cdb[2] = (u8) (disk_block >> 56);
5194 		cdb[3] = (u8) (disk_block >> 48);
5195 		cdb[4] = (u8) (disk_block >> 40);
5196 		cdb[5] = (u8) (disk_block >> 32);
5197 		cdb[6] = (u8) (disk_block >> 24);
5198 		cdb[7] = (u8) (disk_block >> 16);
5199 		cdb[8] = (u8) (disk_block >> 8);
5200 		cdb[9] = (u8) (disk_block);
5201 		cdb[10] = (u8) (disk_block_cnt >> 24);
5202 		cdb[11] = (u8) (disk_block_cnt >> 16);
5203 		cdb[12] = (u8) (disk_block_cnt >> 8);
5204 		cdb[13] = (u8) (disk_block_cnt);
5205 		cdb[14] = 0;
5206 		cdb[15] = 0;
5207 		cdb_len = 16;
5208 	} else {
5209 		cdb[0] = is_write ? WRITE_10 : READ_10;
5210 		cdb[1] = 0;
5211 		cdb[2] = (u8) (disk_block >> 24);
5212 		cdb[3] = (u8) (disk_block >> 16);
5213 		cdb[4] = (u8) (disk_block >> 8);
5214 		cdb[5] = (u8) (disk_block);
5215 		cdb[6] = 0;
5216 		cdb[7] = (u8) (disk_block_cnt >> 8);
5217 		cdb[8] = (u8) (disk_block_cnt);
5218 		cdb[9] = 0;
5219 		cdb_len = 10;
5220 	}
5221 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5222 						dev->scsi3addr,
5223 						dev->phys_disk[map_index]);
5224 }
5225 
5226 /*
5227  * Submit commands down the "normal" RAID stack path
5228  * All callers to hpsa_ciss_submit must check lockup_detected
5229  * beforehand, before (opt.) and after calling cmd_alloc
5230  */
5231 static int hpsa_ciss_submit(struct ctlr_info *h,
5232 	struct CommandList *c, struct scsi_cmnd *cmd,
5233 	unsigned char scsi3addr[])
5234 {
5235 	cmd->host_scribble = (unsigned char *) c;
5236 	c->cmd_type = CMD_SCSI;
5237 	c->scsi_cmd = cmd;
5238 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5239 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5240 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5241 
5242 	/* Fill in the request block... */
5243 
5244 	c->Request.Timeout = 0;
5245 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5246 	c->Request.CDBLen = cmd->cmd_len;
5247 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5248 	switch (cmd->sc_data_direction) {
5249 	case DMA_TO_DEVICE:
5250 		c->Request.type_attr_dir =
5251 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5252 		break;
5253 	case DMA_FROM_DEVICE:
5254 		c->Request.type_attr_dir =
5255 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5256 		break;
5257 	case DMA_NONE:
5258 		c->Request.type_attr_dir =
5259 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5260 		break;
5261 	case DMA_BIDIRECTIONAL:
5262 		/* This can happen if a buggy application does a scsi passthru
5263 		 * and sets both inlen and outlen to non-zero. ( see
5264 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5265 		 */
5266 
5267 		c->Request.type_attr_dir =
5268 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5269 		/* This is technically wrong, and hpsa controllers should
5270 		 * reject it with CMD_INVALID, which is the most correct
5271 		 * response, but non-fibre backends appear to let it
5272 		 * slide by, and give the same results as if this field
5273 		 * were set correctly.  Either way is acceptable for
5274 		 * our purposes here.
5275 		 */
5276 
5277 		break;
5278 
5279 	default:
5280 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5281 			cmd->sc_data_direction);
5282 		BUG();
5283 		break;
5284 	}
5285 
5286 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5287 		hpsa_cmd_resolve_and_free(h, c);
5288 		return SCSI_MLQUEUE_HOST_BUSY;
5289 	}
5290 	enqueue_cmd_and_start_io(h, c);
5291 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5292 	return 0;
5293 }
5294 
5295 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5296 				struct CommandList *c)
5297 {
5298 	dma_addr_t cmd_dma_handle, err_dma_handle;
5299 
5300 	/* Zero out all of commandlist except the last field, refcount */
5301 	memset(c, 0, offsetof(struct CommandList, refcount));
5302 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5303 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5304 	c->err_info = h->errinfo_pool + index;
5305 	memset(c->err_info, 0, sizeof(*c->err_info));
5306 	err_dma_handle = h->errinfo_pool_dhandle
5307 	    + index * sizeof(*c->err_info);
5308 	c->cmdindex = index;
5309 	c->busaddr = (u32) cmd_dma_handle;
5310 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5311 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5312 	c->h = h;
5313 	c->scsi_cmd = SCSI_CMD_IDLE;
5314 }
5315 
5316 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5317 {
5318 	int i;
5319 
5320 	for (i = 0; i < h->nr_cmds; i++) {
5321 		struct CommandList *c = h->cmd_pool + i;
5322 
5323 		hpsa_cmd_init(h, i, c);
5324 		atomic_set(&c->refcount, 0);
5325 	}
5326 }
5327 
5328 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5329 				struct CommandList *c)
5330 {
5331 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5332 
5333 	BUG_ON(c->cmdindex != index);
5334 
5335 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5336 	memset(c->err_info, 0, sizeof(*c->err_info));
5337 	c->busaddr = (u32) cmd_dma_handle;
5338 }
5339 
5340 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5341 		struct CommandList *c, struct scsi_cmnd *cmd,
5342 		unsigned char *scsi3addr)
5343 {
5344 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5345 	int rc = IO_ACCEL_INELIGIBLE;
5346 
5347 	if (!dev)
5348 		return SCSI_MLQUEUE_HOST_BUSY;
5349 
5350 	cmd->host_scribble = (unsigned char *) c;
5351 
5352 	if (dev->offload_enabled) {
5353 		hpsa_cmd_init(h, c->cmdindex, c);
5354 		c->cmd_type = CMD_SCSI;
5355 		c->scsi_cmd = cmd;
5356 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5357 		if (rc < 0)     /* scsi_dma_map failed. */
5358 			rc = SCSI_MLQUEUE_HOST_BUSY;
5359 	} else if (dev->hba_ioaccel_enabled) {
5360 		hpsa_cmd_init(h, c->cmdindex, c);
5361 		c->cmd_type = CMD_SCSI;
5362 		c->scsi_cmd = cmd;
5363 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5364 		if (rc < 0)     /* scsi_dma_map failed. */
5365 			rc = SCSI_MLQUEUE_HOST_BUSY;
5366 	}
5367 	return rc;
5368 }
5369 
5370 static void hpsa_command_resubmit_worker(struct work_struct *work)
5371 {
5372 	struct scsi_cmnd *cmd;
5373 	struct hpsa_scsi_dev_t *dev;
5374 	struct CommandList *c = container_of(work, struct CommandList, work);
5375 
5376 	cmd = c->scsi_cmd;
5377 	dev = cmd->device->hostdata;
5378 	if (!dev) {
5379 		cmd->result = DID_NO_CONNECT << 16;
5380 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5381 	}
5382 	if (c->reset_pending)
5383 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5384 	if (c->cmd_type == CMD_IOACCEL2) {
5385 		struct ctlr_info *h = c->h;
5386 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5387 		int rc;
5388 
5389 		if (c2->error_data.serv_response ==
5390 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5391 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5392 			if (rc == 0)
5393 				return;
5394 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5395 				/*
5396 				 * If we get here, it means dma mapping failed.
5397 				 * Try again via scsi mid layer, which will
5398 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5399 				 */
5400 				cmd->result = DID_IMM_RETRY << 16;
5401 				return hpsa_cmd_free_and_done(h, c, cmd);
5402 			}
5403 			/* else, fall thru and resubmit down CISS path */
5404 		}
5405 	}
5406 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5407 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5408 		/*
5409 		 * If we get here, it means dma mapping failed. Try
5410 		 * again via scsi mid layer, which will then get
5411 		 * SCSI_MLQUEUE_HOST_BUSY.
5412 		 *
5413 		 * hpsa_ciss_submit will have already freed c
5414 		 * if it encountered a dma mapping failure.
5415 		 */
5416 		cmd->result = DID_IMM_RETRY << 16;
5417 		cmd->scsi_done(cmd);
5418 	}
5419 }
5420 
5421 /* Running in struct Scsi_Host->host_lock less mode */
5422 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5423 {
5424 	struct ctlr_info *h;
5425 	struct hpsa_scsi_dev_t *dev;
5426 	unsigned char scsi3addr[8];
5427 	struct CommandList *c;
5428 	int rc = 0;
5429 
5430 	/* Get the ptr to our adapter structure out of cmd->host. */
5431 	h = sdev_to_hba(cmd->device);
5432 
5433 	BUG_ON(cmd->request->tag < 0);
5434 
5435 	dev = cmd->device->hostdata;
5436 	if (!dev) {
5437 		cmd->result = DID_NO_CONNECT << 16;
5438 		cmd->scsi_done(cmd);
5439 		return 0;
5440 	}
5441 
5442 	if (dev->removed) {
5443 		cmd->result = DID_NO_CONNECT << 16;
5444 		cmd->scsi_done(cmd);
5445 		return 0;
5446 	}
5447 
5448 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5449 
5450 	if (unlikely(lockup_detected(h))) {
5451 		cmd->result = DID_NO_CONNECT << 16;
5452 		cmd->scsi_done(cmd);
5453 		return 0;
5454 	}
5455 	c = cmd_tagged_alloc(h, cmd);
5456 
5457 	/*
5458 	 * Call alternate submit routine for I/O accelerated commands.
5459 	 * Retries always go down the normal I/O path.
5460 	 */
5461 	if (likely(cmd->retries == 0 &&
5462 			!blk_rq_is_passthrough(cmd->request) &&
5463 			h->acciopath_status)) {
5464 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5465 		if (rc == 0)
5466 			return 0;
5467 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5468 			hpsa_cmd_resolve_and_free(h, c);
5469 			return SCSI_MLQUEUE_HOST_BUSY;
5470 		}
5471 	}
5472 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5473 }
5474 
5475 static void hpsa_scan_complete(struct ctlr_info *h)
5476 {
5477 	unsigned long flags;
5478 
5479 	spin_lock_irqsave(&h->scan_lock, flags);
5480 	h->scan_finished = 1;
5481 	wake_up(&h->scan_wait_queue);
5482 	spin_unlock_irqrestore(&h->scan_lock, flags);
5483 }
5484 
5485 static void hpsa_scan_start(struct Scsi_Host *sh)
5486 {
5487 	struct ctlr_info *h = shost_to_hba(sh);
5488 	unsigned long flags;
5489 
5490 	/*
5491 	 * Don't let rescans be initiated on a controller known to be locked
5492 	 * up.  If the controller locks up *during* a rescan, that thread is
5493 	 * probably hosed, but at least we can prevent new rescan threads from
5494 	 * piling up on a locked up controller.
5495 	 */
5496 	if (unlikely(lockup_detected(h)))
5497 		return hpsa_scan_complete(h);
5498 
5499 	/*
5500 	 * If a scan is already waiting to run, no need to add another
5501 	 */
5502 	spin_lock_irqsave(&h->scan_lock, flags);
5503 	if (h->scan_waiting) {
5504 		spin_unlock_irqrestore(&h->scan_lock, flags);
5505 		return;
5506 	}
5507 
5508 	spin_unlock_irqrestore(&h->scan_lock, flags);
5509 
5510 	/* wait until any scan already in progress is finished. */
5511 	while (1) {
5512 		spin_lock_irqsave(&h->scan_lock, flags);
5513 		if (h->scan_finished)
5514 			break;
5515 		h->scan_waiting = 1;
5516 		spin_unlock_irqrestore(&h->scan_lock, flags);
5517 		wait_event(h->scan_wait_queue, h->scan_finished);
5518 		/* Note: We don't need to worry about a race between this
5519 		 * thread and driver unload because the midlayer will
5520 		 * have incremented the reference count, so unload won't
5521 		 * happen if we're in here.
5522 		 */
5523 	}
5524 	h->scan_finished = 0; /* mark scan as in progress */
5525 	h->scan_waiting = 0;
5526 	spin_unlock_irqrestore(&h->scan_lock, flags);
5527 
5528 	if (unlikely(lockup_detected(h)))
5529 		return hpsa_scan_complete(h);
5530 
5531 	/*
5532 	 * Do the scan after a reset completion
5533 	 */
5534 	spin_lock_irqsave(&h->reset_lock, flags);
5535 	if (h->reset_in_progress) {
5536 		h->drv_req_rescan = 1;
5537 		spin_unlock_irqrestore(&h->reset_lock, flags);
5538 		hpsa_scan_complete(h);
5539 		return;
5540 	}
5541 	spin_unlock_irqrestore(&h->reset_lock, flags);
5542 
5543 	hpsa_update_scsi_devices(h);
5544 
5545 	hpsa_scan_complete(h);
5546 }
5547 
5548 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5549 {
5550 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5551 
5552 	if (!logical_drive)
5553 		return -ENODEV;
5554 
5555 	if (qdepth < 1)
5556 		qdepth = 1;
5557 	else if (qdepth > logical_drive->queue_depth)
5558 		qdepth = logical_drive->queue_depth;
5559 
5560 	return scsi_change_queue_depth(sdev, qdepth);
5561 }
5562 
5563 static int hpsa_scan_finished(struct Scsi_Host *sh,
5564 	unsigned long elapsed_time)
5565 {
5566 	struct ctlr_info *h = shost_to_hba(sh);
5567 	unsigned long flags;
5568 	int finished;
5569 
5570 	spin_lock_irqsave(&h->scan_lock, flags);
5571 	finished = h->scan_finished;
5572 	spin_unlock_irqrestore(&h->scan_lock, flags);
5573 	return finished;
5574 }
5575 
5576 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5577 {
5578 	struct Scsi_Host *sh;
5579 
5580 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5581 	if (sh == NULL) {
5582 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5583 		return -ENOMEM;
5584 	}
5585 
5586 	sh->io_port = 0;
5587 	sh->n_io_port = 0;
5588 	sh->this_id = -1;
5589 	sh->max_channel = 3;
5590 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5591 	sh->max_lun = HPSA_MAX_LUN;
5592 	sh->max_id = HPSA_MAX_LUN;
5593 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5594 	sh->cmd_per_lun = sh->can_queue;
5595 	sh->sg_tablesize = h->maxsgentries;
5596 	sh->transportt = hpsa_sas_transport_template;
5597 	sh->hostdata[0] = (unsigned long) h;
5598 	sh->irq = pci_irq_vector(h->pdev, 0);
5599 	sh->unique_id = sh->irq;
5600 
5601 	h->scsi_host = sh;
5602 	return 0;
5603 }
5604 
5605 static int hpsa_scsi_add_host(struct ctlr_info *h)
5606 {
5607 	int rv;
5608 
5609 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5610 	if (rv) {
5611 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5612 		return rv;
5613 	}
5614 	scsi_scan_host(h->scsi_host);
5615 	return 0;
5616 }
5617 
5618 /*
5619  * The block layer has already gone to the trouble of picking out a unique,
5620  * small-integer tag for this request.  We use an offset from that value as
5621  * an index to select our command block.  (The offset allows us to reserve the
5622  * low-numbered entries for our own uses.)
5623  */
5624 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5625 {
5626 	int idx = scmd->request->tag;
5627 
5628 	if (idx < 0)
5629 		return idx;
5630 
5631 	/* Offset to leave space for internal cmds. */
5632 	return idx += HPSA_NRESERVED_CMDS;
5633 }
5634 
5635 /*
5636  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5637  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5638  */
5639 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5640 				struct CommandList *c, unsigned char lunaddr[],
5641 				int reply_queue)
5642 {
5643 	int rc;
5644 
5645 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5646 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5647 			NULL, 0, 0, lunaddr, TYPE_CMD);
5648 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5649 	if (rc)
5650 		return rc;
5651 	/* no unmap needed here because no data xfer. */
5652 
5653 	/* Check if the unit is already ready. */
5654 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5655 		return 0;
5656 
5657 	/*
5658 	 * The first command sent after reset will receive "unit attention" to
5659 	 * indicate that the LUN has been reset...this is actually what we're
5660 	 * looking for (but, success is good too).
5661 	 */
5662 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5663 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5664 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5665 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5666 		return 0;
5667 
5668 	return 1;
5669 }
5670 
5671 /*
5672  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5673  * returns zero when the unit is ready, and non-zero when giving up.
5674  */
5675 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5676 				struct CommandList *c,
5677 				unsigned char lunaddr[], int reply_queue)
5678 {
5679 	int rc;
5680 	int count = 0;
5681 	int waittime = 1; /* seconds */
5682 
5683 	/* Send test unit ready until device ready, or give up. */
5684 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5685 
5686 		/*
5687 		 * Wait for a bit.  do this first, because if we send
5688 		 * the TUR right away, the reset will just abort it.
5689 		 */
5690 		msleep(1000 * waittime);
5691 
5692 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5693 		if (!rc)
5694 			break;
5695 
5696 		/* Increase wait time with each try, up to a point. */
5697 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5698 			waittime *= 2;
5699 
5700 		dev_warn(&h->pdev->dev,
5701 			 "waiting %d secs for device to become ready.\n",
5702 			 waittime);
5703 	}
5704 
5705 	return rc;
5706 }
5707 
5708 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5709 					   unsigned char lunaddr[],
5710 					   int reply_queue)
5711 {
5712 	int first_queue;
5713 	int last_queue;
5714 	int rq;
5715 	int rc = 0;
5716 	struct CommandList *c;
5717 
5718 	c = cmd_alloc(h);
5719 
5720 	/*
5721 	 * If no specific reply queue was requested, then send the TUR
5722 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5723 	 * the loop exactly once using only the specified queue.
5724 	 */
5725 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5726 		first_queue = 0;
5727 		last_queue = h->nreply_queues - 1;
5728 	} else {
5729 		first_queue = reply_queue;
5730 		last_queue = reply_queue;
5731 	}
5732 
5733 	for (rq = first_queue; rq <= last_queue; rq++) {
5734 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5735 		if (rc)
5736 			break;
5737 	}
5738 
5739 	if (rc)
5740 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5741 	else
5742 		dev_warn(&h->pdev->dev, "device is ready.\n");
5743 
5744 	cmd_free(h, c);
5745 	return rc;
5746 }
5747 
5748 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5749  * complaining.  Doing a host- or bus-reset can't do anything good here.
5750  */
5751 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5752 {
5753 	int rc = SUCCESS;
5754 	struct ctlr_info *h;
5755 	struct hpsa_scsi_dev_t *dev;
5756 	u8 reset_type;
5757 	char msg[48];
5758 	unsigned long flags;
5759 
5760 	/* find the controller to which the command to be aborted was sent */
5761 	h = sdev_to_hba(scsicmd->device);
5762 	if (h == NULL) /* paranoia */
5763 		return FAILED;
5764 
5765 	spin_lock_irqsave(&h->reset_lock, flags);
5766 	h->reset_in_progress = 1;
5767 	spin_unlock_irqrestore(&h->reset_lock, flags);
5768 
5769 	if (lockup_detected(h)) {
5770 		rc = FAILED;
5771 		goto return_reset_status;
5772 	}
5773 
5774 	dev = scsicmd->device->hostdata;
5775 	if (!dev) {
5776 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5777 		rc = FAILED;
5778 		goto return_reset_status;
5779 	}
5780 
5781 	if (dev->devtype == TYPE_ENCLOSURE) {
5782 		rc = SUCCESS;
5783 		goto return_reset_status;
5784 	}
5785 
5786 	/* if controller locked up, we can guarantee command won't complete */
5787 	if (lockup_detected(h)) {
5788 		snprintf(msg, sizeof(msg),
5789 			 "cmd %d RESET FAILED, lockup detected",
5790 			 hpsa_get_cmd_index(scsicmd));
5791 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5792 		rc = FAILED;
5793 		goto return_reset_status;
5794 	}
5795 
5796 	/* this reset request might be the result of a lockup; check */
5797 	if (detect_controller_lockup(h)) {
5798 		snprintf(msg, sizeof(msg),
5799 			 "cmd %d RESET FAILED, new lockup detected",
5800 			 hpsa_get_cmd_index(scsicmd));
5801 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5802 		rc = FAILED;
5803 		goto return_reset_status;
5804 	}
5805 
5806 	/* Do not attempt on controller */
5807 	if (is_hba_lunid(dev->scsi3addr)) {
5808 		rc = SUCCESS;
5809 		goto return_reset_status;
5810 	}
5811 
5812 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5813 		reset_type = HPSA_DEVICE_RESET_MSG;
5814 	else
5815 		reset_type = HPSA_PHYS_TARGET_RESET;
5816 
5817 	sprintf(msg, "resetting %s",
5818 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5819 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5820 
5821 	/* send a reset to the SCSI LUN which the command was sent to */
5822 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5823 			   DEFAULT_REPLY_QUEUE);
5824 	if (rc == 0)
5825 		rc = SUCCESS;
5826 	else
5827 		rc = FAILED;
5828 
5829 	sprintf(msg, "reset %s %s",
5830 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5831 		rc == SUCCESS ? "completed successfully" : "failed");
5832 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5833 
5834 return_reset_status:
5835 	spin_lock_irqsave(&h->reset_lock, flags);
5836 	h->reset_in_progress = 0;
5837 	spin_unlock_irqrestore(&h->reset_lock, flags);
5838 	return rc;
5839 }
5840 
5841 /*
5842  * For operations with an associated SCSI command, a command block is allocated
5843  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5844  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5845  * the complement, although cmd_free() may be called instead.
5846  */
5847 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5848 					    struct scsi_cmnd *scmd)
5849 {
5850 	int idx = hpsa_get_cmd_index(scmd);
5851 	struct CommandList *c = h->cmd_pool + idx;
5852 
5853 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5854 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5855 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5856 		/* The index value comes from the block layer, so if it's out of
5857 		 * bounds, it's probably not our bug.
5858 		 */
5859 		BUG();
5860 	}
5861 
5862 	atomic_inc(&c->refcount);
5863 	if (unlikely(!hpsa_is_cmd_idle(c))) {
5864 		/*
5865 		 * We expect that the SCSI layer will hand us a unique tag
5866 		 * value.  Thus, there should never be a collision here between
5867 		 * two requests...because if the selected command isn't idle
5868 		 * then someone is going to be very disappointed.
5869 		 */
5870 		dev_err(&h->pdev->dev,
5871 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
5872 			idx);
5873 		if (c->scsi_cmd != NULL)
5874 			scsi_print_command(c->scsi_cmd);
5875 		scsi_print_command(scmd);
5876 	}
5877 
5878 	hpsa_cmd_partial_init(h, idx, c);
5879 	return c;
5880 }
5881 
5882 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5883 {
5884 	/*
5885 	 * Release our reference to the block.  We don't need to do anything
5886 	 * else to free it, because it is accessed by index.
5887 	 */
5888 	(void)atomic_dec(&c->refcount);
5889 }
5890 
5891 /*
5892  * For operations that cannot sleep, a command block is allocated at init,
5893  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5894  * which ones are free or in use.  Lock must be held when calling this.
5895  * cmd_free() is the complement.
5896  * This function never gives up and returns NULL.  If it hangs,
5897  * another thread must call cmd_free() to free some tags.
5898  */
5899 
5900 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5901 {
5902 	struct CommandList *c;
5903 	int refcount, i;
5904 	int offset = 0;
5905 
5906 	/*
5907 	 * There is some *extremely* small but non-zero chance that that
5908 	 * multiple threads could get in here, and one thread could
5909 	 * be scanning through the list of bits looking for a free
5910 	 * one, but the free ones are always behind him, and other
5911 	 * threads sneak in behind him and eat them before he can
5912 	 * get to them, so that while there is always a free one, a
5913 	 * very unlucky thread might be starved anyway, never able to
5914 	 * beat the other threads.  In reality, this happens so
5915 	 * infrequently as to be indistinguishable from never.
5916 	 *
5917 	 * Note that we start allocating commands before the SCSI host structure
5918 	 * is initialized.  Since the search starts at bit zero, this
5919 	 * all works, since we have at least one command structure available;
5920 	 * however, it means that the structures with the low indexes have to be
5921 	 * reserved for driver-initiated requests, while requests from the block
5922 	 * layer will use the higher indexes.
5923 	 */
5924 
5925 	for (;;) {
5926 		i = find_next_zero_bit(h->cmd_pool_bits,
5927 					HPSA_NRESERVED_CMDS,
5928 					offset);
5929 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5930 			offset = 0;
5931 			continue;
5932 		}
5933 		c = h->cmd_pool + i;
5934 		refcount = atomic_inc_return(&c->refcount);
5935 		if (unlikely(refcount > 1)) {
5936 			cmd_free(h, c); /* already in use */
5937 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
5938 			continue;
5939 		}
5940 		set_bit(i & (BITS_PER_LONG - 1),
5941 			h->cmd_pool_bits + (i / BITS_PER_LONG));
5942 		break; /* it's ours now. */
5943 	}
5944 	hpsa_cmd_partial_init(h, i, c);
5945 	return c;
5946 }
5947 
5948 /*
5949  * This is the complementary operation to cmd_alloc().  Note, however, in some
5950  * corner cases it may also be used to free blocks allocated by
5951  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5952  * the clear-bit is harmless.
5953  */
5954 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5955 {
5956 	if (atomic_dec_and_test(&c->refcount)) {
5957 		int i;
5958 
5959 		i = c - h->cmd_pool;
5960 		clear_bit(i & (BITS_PER_LONG - 1),
5961 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
5962 	}
5963 }
5964 
5965 #ifdef CONFIG_COMPAT
5966 
5967 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5968 	void __user *arg)
5969 {
5970 	IOCTL32_Command_struct __user *arg32 =
5971 	    (IOCTL32_Command_struct __user *) arg;
5972 	IOCTL_Command_struct arg64;
5973 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5974 	int err;
5975 	u32 cp;
5976 
5977 	memset(&arg64, 0, sizeof(arg64));
5978 	err = 0;
5979 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5980 			   sizeof(arg64.LUN_info));
5981 	err |= copy_from_user(&arg64.Request, &arg32->Request,
5982 			   sizeof(arg64.Request));
5983 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5984 			   sizeof(arg64.error_info));
5985 	err |= get_user(arg64.buf_size, &arg32->buf_size);
5986 	err |= get_user(cp, &arg32->buf);
5987 	arg64.buf = compat_ptr(cp);
5988 	err |= copy_to_user(p, &arg64, sizeof(arg64));
5989 
5990 	if (err)
5991 		return -EFAULT;
5992 
5993 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5994 	if (err)
5995 		return err;
5996 	err |= copy_in_user(&arg32->error_info, &p->error_info,
5997 			 sizeof(arg32->error_info));
5998 	if (err)
5999 		return -EFAULT;
6000 	return err;
6001 }
6002 
6003 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6004 	int cmd, void __user *arg)
6005 {
6006 	BIG_IOCTL32_Command_struct __user *arg32 =
6007 	    (BIG_IOCTL32_Command_struct __user *) arg;
6008 	BIG_IOCTL_Command_struct arg64;
6009 	BIG_IOCTL_Command_struct __user *p =
6010 	    compat_alloc_user_space(sizeof(arg64));
6011 	int err;
6012 	u32 cp;
6013 
6014 	memset(&arg64, 0, sizeof(arg64));
6015 	err = 0;
6016 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6017 			   sizeof(arg64.LUN_info));
6018 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6019 			   sizeof(arg64.Request));
6020 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6021 			   sizeof(arg64.error_info));
6022 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6023 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6024 	err |= get_user(cp, &arg32->buf);
6025 	arg64.buf = compat_ptr(cp);
6026 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6027 
6028 	if (err)
6029 		return -EFAULT;
6030 
6031 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6032 	if (err)
6033 		return err;
6034 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6035 			 sizeof(arg32->error_info));
6036 	if (err)
6037 		return -EFAULT;
6038 	return err;
6039 }
6040 
6041 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6042 {
6043 	switch (cmd) {
6044 	case CCISS_GETPCIINFO:
6045 	case CCISS_GETINTINFO:
6046 	case CCISS_SETINTINFO:
6047 	case CCISS_GETNODENAME:
6048 	case CCISS_SETNODENAME:
6049 	case CCISS_GETHEARTBEAT:
6050 	case CCISS_GETBUSTYPES:
6051 	case CCISS_GETFIRMVER:
6052 	case CCISS_GETDRIVVER:
6053 	case CCISS_REVALIDVOLS:
6054 	case CCISS_DEREGDISK:
6055 	case CCISS_REGNEWDISK:
6056 	case CCISS_REGNEWD:
6057 	case CCISS_RESCANDISK:
6058 	case CCISS_GETLUNINFO:
6059 		return hpsa_ioctl(dev, cmd, arg);
6060 
6061 	case CCISS_PASSTHRU32:
6062 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6063 	case CCISS_BIG_PASSTHRU32:
6064 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6065 
6066 	default:
6067 		return -ENOIOCTLCMD;
6068 	}
6069 }
6070 #endif
6071 
6072 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6073 {
6074 	struct hpsa_pci_info pciinfo;
6075 
6076 	if (!argp)
6077 		return -EINVAL;
6078 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6079 	pciinfo.bus = h->pdev->bus->number;
6080 	pciinfo.dev_fn = h->pdev->devfn;
6081 	pciinfo.board_id = h->board_id;
6082 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6083 		return -EFAULT;
6084 	return 0;
6085 }
6086 
6087 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6088 {
6089 	DriverVer_type DriverVer;
6090 	unsigned char vmaj, vmin, vsubmin;
6091 	int rc;
6092 
6093 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6094 		&vmaj, &vmin, &vsubmin);
6095 	if (rc != 3) {
6096 		dev_info(&h->pdev->dev, "driver version string '%s' "
6097 			"unrecognized.", HPSA_DRIVER_VERSION);
6098 		vmaj = 0;
6099 		vmin = 0;
6100 		vsubmin = 0;
6101 	}
6102 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6103 	if (!argp)
6104 		return -EINVAL;
6105 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6106 		return -EFAULT;
6107 	return 0;
6108 }
6109 
6110 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6111 {
6112 	IOCTL_Command_struct iocommand;
6113 	struct CommandList *c;
6114 	char *buff = NULL;
6115 	u64 temp64;
6116 	int rc = 0;
6117 
6118 	if (!argp)
6119 		return -EINVAL;
6120 	if (!capable(CAP_SYS_RAWIO))
6121 		return -EPERM;
6122 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6123 		return -EFAULT;
6124 	if ((iocommand.buf_size < 1) &&
6125 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6126 		return -EINVAL;
6127 	}
6128 	if (iocommand.buf_size > 0) {
6129 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6130 		if (buff == NULL)
6131 			return -ENOMEM;
6132 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6133 			/* Copy the data into the buffer we created */
6134 			if (copy_from_user(buff, iocommand.buf,
6135 				iocommand.buf_size)) {
6136 				rc = -EFAULT;
6137 				goto out_kfree;
6138 			}
6139 		} else {
6140 			memset(buff, 0, iocommand.buf_size);
6141 		}
6142 	}
6143 	c = cmd_alloc(h);
6144 
6145 	/* Fill in the command type */
6146 	c->cmd_type = CMD_IOCTL_PEND;
6147 	c->scsi_cmd = SCSI_CMD_BUSY;
6148 	/* Fill in Command Header */
6149 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6150 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6151 		c->Header.SGList = 1;
6152 		c->Header.SGTotal = cpu_to_le16(1);
6153 	} else	{ /* no buffers to fill */
6154 		c->Header.SGList = 0;
6155 		c->Header.SGTotal = cpu_to_le16(0);
6156 	}
6157 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6158 
6159 	/* Fill in Request block */
6160 	memcpy(&c->Request, &iocommand.Request,
6161 		sizeof(c->Request));
6162 
6163 	/* Fill in the scatter gather information */
6164 	if (iocommand.buf_size > 0) {
6165 		temp64 = pci_map_single(h->pdev, buff,
6166 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6167 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6168 			c->SG[0].Addr = cpu_to_le64(0);
6169 			c->SG[0].Len = cpu_to_le32(0);
6170 			rc = -ENOMEM;
6171 			goto out;
6172 		}
6173 		c->SG[0].Addr = cpu_to_le64(temp64);
6174 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6175 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6176 	}
6177 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6178 					NO_TIMEOUT);
6179 	if (iocommand.buf_size > 0)
6180 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6181 	check_ioctl_unit_attention(h, c);
6182 	if (rc) {
6183 		rc = -EIO;
6184 		goto out;
6185 	}
6186 
6187 	/* Copy the error information out */
6188 	memcpy(&iocommand.error_info, c->err_info,
6189 		sizeof(iocommand.error_info));
6190 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6191 		rc = -EFAULT;
6192 		goto out;
6193 	}
6194 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6195 		iocommand.buf_size > 0) {
6196 		/* Copy the data out of the buffer we created */
6197 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6198 			rc = -EFAULT;
6199 			goto out;
6200 		}
6201 	}
6202 out:
6203 	cmd_free(h, c);
6204 out_kfree:
6205 	kfree(buff);
6206 	return rc;
6207 }
6208 
6209 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6210 {
6211 	BIG_IOCTL_Command_struct *ioc;
6212 	struct CommandList *c;
6213 	unsigned char **buff = NULL;
6214 	int *buff_size = NULL;
6215 	u64 temp64;
6216 	BYTE sg_used = 0;
6217 	int status = 0;
6218 	u32 left;
6219 	u32 sz;
6220 	BYTE __user *data_ptr;
6221 
6222 	if (!argp)
6223 		return -EINVAL;
6224 	if (!capable(CAP_SYS_RAWIO))
6225 		return -EPERM;
6226 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6227 	if (!ioc) {
6228 		status = -ENOMEM;
6229 		goto cleanup1;
6230 	}
6231 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6232 		status = -EFAULT;
6233 		goto cleanup1;
6234 	}
6235 	if ((ioc->buf_size < 1) &&
6236 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6237 		status = -EINVAL;
6238 		goto cleanup1;
6239 	}
6240 	/* Check kmalloc limits  using all SGs */
6241 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6242 		status = -EINVAL;
6243 		goto cleanup1;
6244 	}
6245 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6246 		status = -EINVAL;
6247 		goto cleanup1;
6248 	}
6249 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6250 	if (!buff) {
6251 		status = -ENOMEM;
6252 		goto cleanup1;
6253 	}
6254 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6255 	if (!buff_size) {
6256 		status = -ENOMEM;
6257 		goto cleanup1;
6258 	}
6259 	left = ioc->buf_size;
6260 	data_ptr = ioc->buf;
6261 	while (left) {
6262 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6263 		buff_size[sg_used] = sz;
6264 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6265 		if (buff[sg_used] == NULL) {
6266 			status = -ENOMEM;
6267 			goto cleanup1;
6268 		}
6269 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6270 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6271 				status = -EFAULT;
6272 				goto cleanup1;
6273 			}
6274 		} else
6275 			memset(buff[sg_used], 0, sz);
6276 		left -= sz;
6277 		data_ptr += sz;
6278 		sg_used++;
6279 	}
6280 	c = cmd_alloc(h);
6281 
6282 	c->cmd_type = CMD_IOCTL_PEND;
6283 	c->scsi_cmd = SCSI_CMD_BUSY;
6284 	c->Header.ReplyQueue = 0;
6285 	c->Header.SGList = (u8) sg_used;
6286 	c->Header.SGTotal = cpu_to_le16(sg_used);
6287 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6288 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6289 	if (ioc->buf_size > 0) {
6290 		int i;
6291 		for (i = 0; i < sg_used; i++) {
6292 			temp64 = pci_map_single(h->pdev, buff[i],
6293 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6294 			if (dma_mapping_error(&h->pdev->dev,
6295 							(dma_addr_t) temp64)) {
6296 				c->SG[i].Addr = cpu_to_le64(0);
6297 				c->SG[i].Len = cpu_to_le32(0);
6298 				hpsa_pci_unmap(h->pdev, c, i,
6299 					PCI_DMA_BIDIRECTIONAL);
6300 				status = -ENOMEM;
6301 				goto cleanup0;
6302 			}
6303 			c->SG[i].Addr = cpu_to_le64(temp64);
6304 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6305 			c->SG[i].Ext = cpu_to_le32(0);
6306 		}
6307 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6308 	}
6309 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6310 						NO_TIMEOUT);
6311 	if (sg_used)
6312 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6313 	check_ioctl_unit_attention(h, c);
6314 	if (status) {
6315 		status = -EIO;
6316 		goto cleanup0;
6317 	}
6318 
6319 	/* Copy the error information out */
6320 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6321 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6322 		status = -EFAULT;
6323 		goto cleanup0;
6324 	}
6325 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6326 		int i;
6327 
6328 		/* Copy the data out of the buffer we created */
6329 		BYTE __user *ptr = ioc->buf;
6330 		for (i = 0; i < sg_used; i++) {
6331 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6332 				status = -EFAULT;
6333 				goto cleanup0;
6334 			}
6335 			ptr += buff_size[i];
6336 		}
6337 	}
6338 	status = 0;
6339 cleanup0:
6340 	cmd_free(h, c);
6341 cleanup1:
6342 	if (buff) {
6343 		int i;
6344 
6345 		for (i = 0; i < sg_used; i++)
6346 			kfree(buff[i]);
6347 		kfree(buff);
6348 	}
6349 	kfree(buff_size);
6350 	kfree(ioc);
6351 	return status;
6352 }
6353 
6354 static void check_ioctl_unit_attention(struct ctlr_info *h,
6355 	struct CommandList *c)
6356 {
6357 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6358 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6359 		(void) check_for_unit_attention(h, c);
6360 }
6361 
6362 /*
6363  * ioctl
6364  */
6365 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6366 {
6367 	struct ctlr_info *h;
6368 	void __user *argp = (void __user *)arg;
6369 	int rc;
6370 
6371 	h = sdev_to_hba(dev);
6372 
6373 	switch (cmd) {
6374 	case CCISS_DEREGDISK:
6375 	case CCISS_REGNEWDISK:
6376 	case CCISS_REGNEWD:
6377 		hpsa_scan_start(h->scsi_host);
6378 		return 0;
6379 	case CCISS_GETPCIINFO:
6380 		return hpsa_getpciinfo_ioctl(h, argp);
6381 	case CCISS_GETDRIVVER:
6382 		return hpsa_getdrivver_ioctl(h, argp);
6383 	case CCISS_PASSTHRU:
6384 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6385 			return -EAGAIN;
6386 		rc = hpsa_passthru_ioctl(h, argp);
6387 		atomic_inc(&h->passthru_cmds_avail);
6388 		return rc;
6389 	case CCISS_BIG_PASSTHRU:
6390 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6391 			return -EAGAIN;
6392 		rc = hpsa_big_passthru_ioctl(h, argp);
6393 		atomic_inc(&h->passthru_cmds_avail);
6394 		return rc;
6395 	default:
6396 		return -ENOTTY;
6397 	}
6398 }
6399 
6400 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6401 				u8 reset_type)
6402 {
6403 	struct CommandList *c;
6404 
6405 	c = cmd_alloc(h);
6406 
6407 	/* fill_cmd can't fail here, no data buffer to map */
6408 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6409 		RAID_CTLR_LUNID, TYPE_MSG);
6410 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6411 	c->waiting = NULL;
6412 	enqueue_cmd_and_start_io(h, c);
6413 	/* Don't wait for completion, the reset won't complete.  Don't free
6414 	 * the command either.  This is the last command we will send before
6415 	 * re-initializing everything, so it doesn't matter and won't leak.
6416 	 */
6417 	return;
6418 }
6419 
6420 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6421 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6422 	int cmd_type)
6423 {
6424 	int pci_dir = XFER_NONE;
6425 
6426 	c->cmd_type = CMD_IOCTL_PEND;
6427 	c->scsi_cmd = SCSI_CMD_BUSY;
6428 	c->Header.ReplyQueue = 0;
6429 	if (buff != NULL && size > 0) {
6430 		c->Header.SGList = 1;
6431 		c->Header.SGTotal = cpu_to_le16(1);
6432 	} else {
6433 		c->Header.SGList = 0;
6434 		c->Header.SGTotal = cpu_to_le16(0);
6435 	}
6436 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6437 
6438 	if (cmd_type == TYPE_CMD) {
6439 		switch (cmd) {
6440 		case HPSA_INQUIRY:
6441 			/* are we trying to read a vital product page */
6442 			if (page_code & VPD_PAGE) {
6443 				c->Request.CDB[1] = 0x01;
6444 				c->Request.CDB[2] = (page_code & 0xff);
6445 			}
6446 			c->Request.CDBLen = 6;
6447 			c->Request.type_attr_dir =
6448 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6449 			c->Request.Timeout = 0;
6450 			c->Request.CDB[0] = HPSA_INQUIRY;
6451 			c->Request.CDB[4] = size & 0xFF;
6452 			break;
6453 		case HPSA_REPORT_LOG:
6454 		case HPSA_REPORT_PHYS:
6455 			/* Talking to controller so It's a physical command
6456 			   mode = 00 target = 0.  Nothing to write.
6457 			 */
6458 			c->Request.CDBLen = 12;
6459 			c->Request.type_attr_dir =
6460 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6461 			c->Request.Timeout = 0;
6462 			c->Request.CDB[0] = cmd;
6463 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6464 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6465 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6466 			c->Request.CDB[9] = size & 0xFF;
6467 			break;
6468 		case BMIC_SENSE_DIAG_OPTIONS:
6469 			c->Request.CDBLen = 16;
6470 			c->Request.type_attr_dir =
6471 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6472 			c->Request.Timeout = 0;
6473 			/* Spec says this should be BMIC_WRITE */
6474 			c->Request.CDB[0] = BMIC_READ;
6475 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6476 			break;
6477 		case BMIC_SET_DIAG_OPTIONS:
6478 			c->Request.CDBLen = 16;
6479 			c->Request.type_attr_dir =
6480 					TYPE_ATTR_DIR(cmd_type,
6481 						ATTR_SIMPLE, XFER_WRITE);
6482 			c->Request.Timeout = 0;
6483 			c->Request.CDB[0] = BMIC_WRITE;
6484 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6485 			break;
6486 		case HPSA_CACHE_FLUSH:
6487 			c->Request.CDBLen = 12;
6488 			c->Request.type_attr_dir =
6489 					TYPE_ATTR_DIR(cmd_type,
6490 						ATTR_SIMPLE, XFER_WRITE);
6491 			c->Request.Timeout = 0;
6492 			c->Request.CDB[0] = BMIC_WRITE;
6493 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6494 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6495 			c->Request.CDB[8] = size & 0xFF;
6496 			break;
6497 		case TEST_UNIT_READY:
6498 			c->Request.CDBLen = 6;
6499 			c->Request.type_attr_dir =
6500 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6501 			c->Request.Timeout = 0;
6502 			break;
6503 		case HPSA_GET_RAID_MAP:
6504 			c->Request.CDBLen = 12;
6505 			c->Request.type_attr_dir =
6506 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6507 			c->Request.Timeout = 0;
6508 			c->Request.CDB[0] = HPSA_CISS_READ;
6509 			c->Request.CDB[1] = cmd;
6510 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6511 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6512 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6513 			c->Request.CDB[9] = size & 0xFF;
6514 			break;
6515 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6516 			c->Request.CDBLen = 10;
6517 			c->Request.type_attr_dir =
6518 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6519 			c->Request.Timeout = 0;
6520 			c->Request.CDB[0] = BMIC_READ;
6521 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6522 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6523 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6524 			break;
6525 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6526 			c->Request.CDBLen = 10;
6527 			c->Request.type_attr_dir =
6528 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6529 			c->Request.Timeout = 0;
6530 			c->Request.CDB[0] = BMIC_READ;
6531 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6532 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6533 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6534 			break;
6535 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6536 			c->Request.CDBLen = 10;
6537 			c->Request.type_attr_dir =
6538 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6539 			c->Request.Timeout = 0;
6540 			c->Request.CDB[0] = BMIC_READ;
6541 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6542 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6543 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6544 			break;
6545 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6546 			c->Request.CDBLen = 10;
6547 			c->Request.type_attr_dir =
6548 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6549 			c->Request.Timeout = 0;
6550 			c->Request.CDB[0] = BMIC_READ;
6551 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6552 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6553 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6554 			break;
6555 		case BMIC_IDENTIFY_CONTROLLER:
6556 			c->Request.CDBLen = 10;
6557 			c->Request.type_attr_dir =
6558 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6559 			c->Request.Timeout = 0;
6560 			c->Request.CDB[0] = BMIC_READ;
6561 			c->Request.CDB[1] = 0;
6562 			c->Request.CDB[2] = 0;
6563 			c->Request.CDB[3] = 0;
6564 			c->Request.CDB[4] = 0;
6565 			c->Request.CDB[5] = 0;
6566 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6567 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6568 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6569 			c->Request.CDB[9] = 0;
6570 			break;
6571 		default:
6572 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6573 			BUG();
6574 			return -1;
6575 		}
6576 	} else if (cmd_type == TYPE_MSG) {
6577 		switch (cmd) {
6578 
6579 		case  HPSA_PHYS_TARGET_RESET:
6580 			c->Request.CDBLen = 16;
6581 			c->Request.type_attr_dir =
6582 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6583 			c->Request.Timeout = 0; /* Don't time out */
6584 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6585 			c->Request.CDB[0] = HPSA_RESET;
6586 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6587 			/* Physical target reset needs no control bytes 4-7*/
6588 			c->Request.CDB[4] = 0x00;
6589 			c->Request.CDB[5] = 0x00;
6590 			c->Request.CDB[6] = 0x00;
6591 			c->Request.CDB[7] = 0x00;
6592 			break;
6593 		case  HPSA_DEVICE_RESET_MSG:
6594 			c->Request.CDBLen = 16;
6595 			c->Request.type_attr_dir =
6596 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6597 			c->Request.Timeout = 0; /* Don't time out */
6598 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6599 			c->Request.CDB[0] =  cmd;
6600 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6601 			/* If bytes 4-7 are zero, it means reset the */
6602 			/* LunID device */
6603 			c->Request.CDB[4] = 0x00;
6604 			c->Request.CDB[5] = 0x00;
6605 			c->Request.CDB[6] = 0x00;
6606 			c->Request.CDB[7] = 0x00;
6607 			break;
6608 		default:
6609 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6610 				cmd);
6611 			BUG();
6612 		}
6613 	} else {
6614 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6615 		BUG();
6616 	}
6617 
6618 	switch (GET_DIR(c->Request.type_attr_dir)) {
6619 	case XFER_READ:
6620 		pci_dir = PCI_DMA_FROMDEVICE;
6621 		break;
6622 	case XFER_WRITE:
6623 		pci_dir = PCI_DMA_TODEVICE;
6624 		break;
6625 	case XFER_NONE:
6626 		pci_dir = PCI_DMA_NONE;
6627 		break;
6628 	default:
6629 		pci_dir = PCI_DMA_BIDIRECTIONAL;
6630 	}
6631 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6632 		return -1;
6633 	return 0;
6634 }
6635 
6636 /*
6637  * Map (physical) PCI mem into (virtual) kernel space
6638  */
6639 static void __iomem *remap_pci_mem(ulong base, ulong size)
6640 {
6641 	ulong page_base = ((ulong) base) & PAGE_MASK;
6642 	ulong page_offs = ((ulong) base) - page_base;
6643 	void __iomem *page_remapped = ioremap_nocache(page_base,
6644 		page_offs + size);
6645 
6646 	return page_remapped ? (page_remapped + page_offs) : NULL;
6647 }
6648 
6649 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6650 {
6651 	return h->access.command_completed(h, q);
6652 }
6653 
6654 static inline bool interrupt_pending(struct ctlr_info *h)
6655 {
6656 	return h->access.intr_pending(h);
6657 }
6658 
6659 static inline long interrupt_not_for_us(struct ctlr_info *h)
6660 {
6661 	return (h->access.intr_pending(h) == 0) ||
6662 		(h->interrupts_enabled == 0);
6663 }
6664 
6665 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6666 	u32 raw_tag)
6667 {
6668 	if (unlikely(tag_index >= h->nr_cmds)) {
6669 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6670 		return 1;
6671 	}
6672 	return 0;
6673 }
6674 
6675 static inline void finish_cmd(struct CommandList *c)
6676 {
6677 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6678 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6679 			|| c->cmd_type == CMD_IOACCEL2))
6680 		complete_scsi_command(c);
6681 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6682 		complete(c->waiting);
6683 }
6684 
6685 /* process completion of an indexed ("direct lookup") command */
6686 static inline void process_indexed_cmd(struct ctlr_info *h,
6687 	u32 raw_tag)
6688 {
6689 	u32 tag_index;
6690 	struct CommandList *c;
6691 
6692 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6693 	if (!bad_tag(h, tag_index, raw_tag)) {
6694 		c = h->cmd_pool + tag_index;
6695 		finish_cmd(c);
6696 	}
6697 }
6698 
6699 /* Some controllers, like p400, will give us one interrupt
6700  * after a soft reset, even if we turned interrupts off.
6701  * Only need to check for this in the hpsa_xxx_discard_completions
6702  * functions.
6703  */
6704 static int ignore_bogus_interrupt(struct ctlr_info *h)
6705 {
6706 	if (likely(!reset_devices))
6707 		return 0;
6708 
6709 	if (likely(h->interrupts_enabled))
6710 		return 0;
6711 
6712 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6713 		"(known firmware bug.)  Ignoring.\n");
6714 
6715 	return 1;
6716 }
6717 
6718 /*
6719  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6720  * Relies on (h-q[x] == x) being true for x such that
6721  * 0 <= x < MAX_REPLY_QUEUES.
6722  */
6723 static struct ctlr_info *queue_to_hba(u8 *queue)
6724 {
6725 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6726 }
6727 
6728 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6729 {
6730 	struct ctlr_info *h = queue_to_hba(queue);
6731 	u8 q = *(u8 *) queue;
6732 	u32 raw_tag;
6733 
6734 	if (ignore_bogus_interrupt(h))
6735 		return IRQ_NONE;
6736 
6737 	if (interrupt_not_for_us(h))
6738 		return IRQ_NONE;
6739 	h->last_intr_timestamp = get_jiffies_64();
6740 	while (interrupt_pending(h)) {
6741 		raw_tag = get_next_completion(h, q);
6742 		while (raw_tag != FIFO_EMPTY)
6743 			raw_tag = next_command(h, q);
6744 	}
6745 	return IRQ_HANDLED;
6746 }
6747 
6748 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6749 {
6750 	struct ctlr_info *h = queue_to_hba(queue);
6751 	u32 raw_tag;
6752 	u8 q = *(u8 *) queue;
6753 
6754 	if (ignore_bogus_interrupt(h))
6755 		return IRQ_NONE;
6756 
6757 	h->last_intr_timestamp = get_jiffies_64();
6758 	raw_tag = get_next_completion(h, q);
6759 	while (raw_tag != FIFO_EMPTY)
6760 		raw_tag = next_command(h, q);
6761 	return IRQ_HANDLED;
6762 }
6763 
6764 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6765 {
6766 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6767 	u32 raw_tag;
6768 	u8 q = *(u8 *) queue;
6769 
6770 	if (interrupt_not_for_us(h))
6771 		return IRQ_NONE;
6772 	h->last_intr_timestamp = get_jiffies_64();
6773 	while (interrupt_pending(h)) {
6774 		raw_tag = get_next_completion(h, q);
6775 		while (raw_tag != FIFO_EMPTY) {
6776 			process_indexed_cmd(h, raw_tag);
6777 			raw_tag = next_command(h, q);
6778 		}
6779 	}
6780 	return IRQ_HANDLED;
6781 }
6782 
6783 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6784 {
6785 	struct ctlr_info *h = queue_to_hba(queue);
6786 	u32 raw_tag;
6787 	u8 q = *(u8 *) queue;
6788 
6789 	h->last_intr_timestamp = get_jiffies_64();
6790 	raw_tag = get_next_completion(h, q);
6791 	while (raw_tag != FIFO_EMPTY) {
6792 		process_indexed_cmd(h, raw_tag);
6793 		raw_tag = next_command(h, q);
6794 	}
6795 	return IRQ_HANDLED;
6796 }
6797 
6798 /* Send a message CDB to the firmware. Careful, this only works
6799  * in simple mode, not performant mode due to the tag lookup.
6800  * We only ever use this immediately after a controller reset.
6801  */
6802 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6803 			unsigned char type)
6804 {
6805 	struct Command {
6806 		struct CommandListHeader CommandHeader;
6807 		struct RequestBlock Request;
6808 		struct ErrDescriptor ErrorDescriptor;
6809 	};
6810 	struct Command *cmd;
6811 	static const size_t cmd_sz = sizeof(*cmd) +
6812 					sizeof(cmd->ErrorDescriptor);
6813 	dma_addr_t paddr64;
6814 	__le32 paddr32;
6815 	u32 tag;
6816 	void __iomem *vaddr;
6817 	int i, err;
6818 
6819 	vaddr = pci_ioremap_bar(pdev, 0);
6820 	if (vaddr == NULL)
6821 		return -ENOMEM;
6822 
6823 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
6824 	 * CCISS commands, so they must be allocated from the lower 4GiB of
6825 	 * memory.
6826 	 */
6827 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6828 	if (err) {
6829 		iounmap(vaddr);
6830 		return err;
6831 	}
6832 
6833 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6834 	if (cmd == NULL) {
6835 		iounmap(vaddr);
6836 		return -ENOMEM;
6837 	}
6838 
6839 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
6840 	 * although there's no guarantee, we assume that the address is at
6841 	 * least 4-byte aligned (most likely, it's page-aligned).
6842 	 */
6843 	paddr32 = cpu_to_le32(paddr64);
6844 
6845 	cmd->CommandHeader.ReplyQueue = 0;
6846 	cmd->CommandHeader.SGList = 0;
6847 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6848 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6849 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6850 
6851 	cmd->Request.CDBLen = 16;
6852 	cmd->Request.type_attr_dir =
6853 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6854 	cmd->Request.Timeout = 0; /* Don't time out */
6855 	cmd->Request.CDB[0] = opcode;
6856 	cmd->Request.CDB[1] = type;
6857 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6858 	cmd->ErrorDescriptor.Addr =
6859 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6860 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6861 
6862 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6863 
6864 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6865 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6866 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6867 			break;
6868 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6869 	}
6870 
6871 	iounmap(vaddr);
6872 
6873 	/* we leak the DMA buffer here ... no choice since the controller could
6874 	 *  still complete the command.
6875 	 */
6876 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6877 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6878 			opcode, type);
6879 		return -ETIMEDOUT;
6880 	}
6881 
6882 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6883 
6884 	if (tag & HPSA_ERROR_BIT) {
6885 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6886 			opcode, type);
6887 		return -EIO;
6888 	}
6889 
6890 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6891 		opcode, type);
6892 	return 0;
6893 }
6894 
6895 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6896 
6897 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6898 	void __iomem *vaddr, u32 use_doorbell)
6899 {
6900 
6901 	if (use_doorbell) {
6902 		/* For everything after the P600, the PCI power state method
6903 		 * of resetting the controller doesn't work, so we have this
6904 		 * other way using the doorbell register.
6905 		 */
6906 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
6907 		writel(use_doorbell, vaddr + SA5_DOORBELL);
6908 
6909 		/* PMC hardware guys tell us we need a 10 second delay after
6910 		 * doorbell reset and before any attempt to talk to the board
6911 		 * at all to ensure that this actually works and doesn't fall
6912 		 * over in some weird corner cases.
6913 		 */
6914 		msleep(10000);
6915 	} else { /* Try to do it the PCI power state way */
6916 
6917 		/* Quoting from the Open CISS Specification: "The Power
6918 		 * Management Control/Status Register (CSR) controls the power
6919 		 * state of the device.  The normal operating state is D0,
6920 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6921 		 * the controller, place the interface device in D3 then to D0,
6922 		 * this causes a secondary PCI reset which will reset the
6923 		 * controller." */
6924 
6925 		int rc = 0;
6926 
6927 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6928 
6929 		/* enter the D3hot power management state */
6930 		rc = pci_set_power_state(pdev, PCI_D3hot);
6931 		if (rc)
6932 			return rc;
6933 
6934 		msleep(500);
6935 
6936 		/* enter the D0 power management state */
6937 		rc = pci_set_power_state(pdev, PCI_D0);
6938 		if (rc)
6939 			return rc;
6940 
6941 		/*
6942 		 * The P600 requires a small delay when changing states.
6943 		 * Otherwise we may think the board did not reset and we bail.
6944 		 * This for kdump only and is particular to the P600.
6945 		 */
6946 		msleep(500);
6947 	}
6948 	return 0;
6949 }
6950 
6951 static void init_driver_version(char *driver_version, int len)
6952 {
6953 	memset(driver_version, 0, len);
6954 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6955 }
6956 
6957 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6958 {
6959 	char *driver_version;
6960 	int i, size = sizeof(cfgtable->driver_version);
6961 
6962 	driver_version = kmalloc(size, GFP_KERNEL);
6963 	if (!driver_version)
6964 		return -ENOMEM;
6965 
6966 	init_driver_version(driver_version, size);
6967 	for (i = 0; i < size; i++)
6968 		writeb(driver_version[i], &cfgtable->driver_version[i]);
6969 	kfree(driver_version);
6970 	return 0;
6971 }
6972 
6973 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6974 					  unsigned char *driver_ver)
6975 {
6976 	int i;
6977 
6978 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6979 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
6980 }
6981 
6982 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6983 {
6984 
6985 	char *driver_ver, *old_driver_ver;
6986 	int rc, size = sizeof(cfgtable->driver_version);
6987 
6988 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6989 	if (!old_driver_ver)
6990 		return -ENOMEM;
6991 	driver_ver = old_driver_ver + size;
6992 
6993 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
6994 	 * should have been changed, otherwise we know the reset failed.
6995 	 */
6996 	init_driver_version(old_driver_ver, size);
6997 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6998 	rc = !memcmp(driver_ver, old_driver_ver, size);
6999 	kfree(old_driver_ver);
7000 	return rc;
7001 }
7002 /* This does a hard reset of the controller using PCI power management
7003  * states or the using the doorbell register.
7004  */
7005 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7006 {
7007 	u64 cfg_offset;
7008 	u32 cfg_base_addr;
7009 	u64 cfg_base_addr_index;
7010 	void __iomem *vaddr;
7011 	unsigned long paddr;
7012 	u32 misc_fw_support;
7013 	int rc;
7014 	struct CfgTable __iomem *cfgtable;
7015 	u32 use_doorbell;
7016 	u16 command_register;
7017 
7018 	/* For controllers as old as the P600, this is very nearly
7019 	 * the same thing as
7020 	 *
7021 	 * pci_save_state(pci_dev);
7022 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7023 	 * pci_set_power_state(pci_dev, PCI_D0);
7024 	 * pci_restore_state(pci_dev);
7025 	 *
7026 	 * For controllers newer than the P600, the pci power state
7027 	 * method of resetting doesn't work so we have another way
7028 	 * using the doorbell register.
7029 	 */
7030 
7031 	if (!ctlr_is_resettable(board_id)) {
7032 		dev_warn(&pdev->dev, "Controller not resettable\n");
7033 		return -ENODEV;
7034 	}
7035 
7036 	/* if controller is soft- but not hard resettable... */
7037 	if (!ctlr_is_hard_resettable(board_id))
7038 		return -ENOTSUPP; /* try soft reset later. */
7039 
7040 	/* Save the PCI command register */
7041 	pci_read_config_word(pdev, 4, &command_register);
7042 	pci_save_state(pdev);
7043 
7044 	/* find the first memory BAR, so we can find the cfg table */
7045 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7046 	if (rc)
7047 		return rc;
7048 	vaddr = remap_pci_mem(paddr, 0x250);
7049 	if (!vaddr)
7050 		return -ENOMEM;
7051 
7052 	/* find cfgtable in order to check if reset via doorbell is supported */
7053 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7054 					&cfg_base_addr_index, &cfg_offset);
7055 	if (rc)
7056 		goto unmap_vaddr;
7057 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7058 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7059 	if (!cfgtable) {
7060 		rc = -ENOMEM;
7061 		goto unmap_vaddr;
7062 	}
7063 	rc = write_driver_ver_to_cfgtable(cfgtable);
7064 	if (rc)
7065 		goto unmap_cfgtable;
7066 
7067 	/* If reset via doorbell register is supported, use that.
7068 	 * There are two such methods.  Favor the newest method.
7069 	 */
7070 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7071 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7072 	if (use_doorbell) {
7073 		use_doorbell = DOORBELL_CTLR_RESET2;
7074 	} else {
7075 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7076 		if (use_doorbell) {
7077 			dev_warn(&pdev->dev,
7078 				"Soft reset not supported. Firmware update is required.\n");
7079 			rc = -ENOTSUPP; /* try soft reset */
7080 			goto unmap_cfgtable;
7081 		}
7082 	}
7083 
7084 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7085 	if (rc)
7086 		goto unmap_cfgtable;
7087 
7088 	pci_restore_state(pdev);
7089 	pci_write_config_word(pdev, 4, command_register);
7090 
7091 	/* Some devices (notably the HP Smart Array 5i Controller)
7092 	   need a little pause here */
7093 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7094 
7095 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7096 	if (rc) {
7097 		dev_warn(&pdev->dev,
7098 			"Failed waiting for board to become ready after hard reset\n");
7099 		goto unmap_cfgtable;
7100 	}
7101 
7102 	rc = controller_reset_failed(vaddr);
7103 	if (rc < 0)
7104 		goto unmap_cfgtable;
7105 	if (rc) {
7106 		dev_warn(&pdev->dev, "Unable to successfully reset "
7107 			"controller. Will try soft reset.\n");
7108 		rc = -ENOTSUPP;
7109 	} else {
7110 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7111 	}
7112 
7113 unmap_cfgtable:
7114 	iounmap(cfgtable);
7115 
7116 unmap_vaddr:
7117 	iounmap(vaddr);
7118 	return rc;
7119 }
7120 
7121 /*
7122  *  We cannot read the structure directly, for portability we must use
7123  *   the io functions.
7124  *   This is for debug only.
7125  */
7126 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7127 {
7128 #ifdef HPSA_DEBUG
7129 	int i;
7130 	char temp_name[17];
7131 
7132 	dev_info(dev, "Controller Configuration information\n");
7133 	dev_info(dev, "------------------------------------\n");
7134 	for (i = 0; i < 4; i++)
7135 		temp_name[i] = readb(&(tb->Signature[i]));
7136 	temp_name[4] = '\0';
7137 	dev_info(dev, "   Signature = %s\n", temp_name);
7138 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7139 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7140 	       readl(&(tb->TransportSupport)));
7141 	dev_info(dev, "   Transport methods active = 0x%x\n",
7142 	       readl(&(tb->TransportActive)));
7143 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7144 	       readl(&(tb->HostWrite.TransportRequest)));
7145 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7146 	       readl(&(tb->HostWrite.CoalIntDelay)));
7147 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7148 	       readl(&(tb->HostWrite.CoalIntCount)));
7149 	dev_info(dev, "   Max outstanding commands = %d\n",
7150 	       readl(&(tb->CmdsOutMax)));
7151 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7152 	for (i = 0; i < 16; i++)
7153 		temp_name[i] = readb(&(tb->ServerName[i]));
7154 	temp_name[16] = '\0';
7155 	dev_info(dev, "   Server Name = %s\n", temp_name);
7156 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7157 		readl(&(tb->HeartBeat)));
7158 #endif				/* HPSA_DEBUG */
7159 }
7160 
7161 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7162 {
7163 	int i, offset, mem_type, bar_type;
7164 
7165 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7166 		return 0;
7167 	offset = 0;
7168 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7169 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7170 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7171 			offset += 4;
7172 		else {
7173 			mem_type = pci_resource_flags(pdev, i) &
7174 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7175 			switch (mem_type) {
7176 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7177 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7178 				offset += 4;	/* 32 bit */
7179 				break;
7180 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7181 				offset += 8;
7182 				break;
7183 			default:	/* reserved in PCI 2.2 */
7184 				dev_warn(&pdev->dev,
7185 				       "base address is invalid\n");
7186 				return -1;
7187 				break;
7188 			}
7189 		}
7190 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7191 			return i + 1;
7192 	}
7193 	return -1;
7194 }
7195 
7196 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7197 {
7198 	pci_free_irq_vectors(h->pdev);
7199 	h->msix_vectors = 0;
7200 }
7201 
7202 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7203  * controllers that are capable. If not, we use legacy INTx mode.
7204  */
7205 static int hpsa_interrupt_mode(struct ctlr_info *h)
7206 {
7207 	unsigned int flags = PCI_IRQ_LEGACY;
7208 	int ret;
7209 
7210 	/* Some boards advertise MSI but don't really support it */
7211 	switch (h->board_id) {
7212 	case 0x40700E11:
7213 	case 0x40800E11:
7214 	case 0x40820E11:
7215 	case 0x40830E11:
7216 		break;
7217 	default:
7218 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7219 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7220 		if (ret > 0) {
7221 			h->msix_vectors = ret;
7222 			return 0;
7223 		}
7224 
7225 		flags |= PCI_IRQ_MSI;
7226 		break;
7227 	}
7228 
7229 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7230 	if (ret < 0)
7231 		return ret;
7232 	return 0;
7233 }
7234 
7235 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7236 {
7237 	int i;
7238 	u32 subsystem_vendor_id, subsystem_device_id;
7239 
7240 	subsystem_vendor_id = pdev->subsystem_vendor;
7241 	subsystem_device_id = pdev->subsystem_device;
7242 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7243 		    subsystem_vendor_id;
7244 
7245 	for (i = 0; i < ARRAY_SIZE(products); i++)
7246 		if (*board_id == products[i].board_id)
7247 			return i;
7248 
7249 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7250 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7251 		!hpsa_allow_any) {
7252 		dev_warn(&pdev->dev, "unrecognized board ID: "
7253 			"0x%08x, ignoring.\n", *board_id);
7254 			return -ENODEV;
7255 	}
7256 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7257 }
7258 
7259 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7260 				    unsigned long *memory_bar)
7261 {
7262 	int i;
7263 
7264 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7265 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7266 			/* addressing mode bits already removed */
7267 			*memory_bar = pci_resource_start(pdev, i);
7268 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7269 				*memory_bar);
7270 			return 0;
7271 		}
7272 	dev_warn(&pdev->dev, "no memory BAR found\n");
7273 	return -ENODEV;
7274 }
7275 
7276 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7277 				     int wait_for_ready)
7278 {
7279 	int i, iterations;
7280 	u32 scratchpad;
7281 	if (wait_for_ready)
7282 		iterations = HPSA_BOARD_READY_ITERATIONS;
7283 	else
7284 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7285 
7286 	for (i = 0; i < iterations; i++) {
7287 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7288 		if (wait_for_ready) {
7289 			if (scratchpad == HPSA_FIRMWARE_READY)
7290 				return 0;
7291 		} else {
7292 			if (scratchpad != HPSA_FIRMWARE_READY)
7293 				return 0;
7294 		}
7295 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7296 	}
7297 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7298 	return -ENODEV;
7299 }
7300 
7301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7302 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7303 			       u64 *cfg_offset)
7304 {
7305 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7306 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7307 	*cfg_base_addr &= (u32) 0x0000ffff;
7308 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7309 	if (*cfg_base_addr_index == -1) {
7310 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7311 		return -ENODEV;
7312 	}
7313 	return 0;
7314 }
7315 
7316 static void hpsa_free_cfgtables(struct ctlr_info *h)
7317 {
7318 	if (h->transtable) {
7319 		iounmap(h->transtable);
7320 		h->transtable = NULL;
7321 	}
7322 	if (h->cfgtable) {
7323 		iounmap(h->cfgtable);
7324 		h->cfgtable = NULL;
7325 	}
7326 }
7327 
7328 /* Find and map CISS config table and transfer table
7329 + * several items must be unmapped (freed) later
7330 + * */
7331 static int hpsa_find_cfgtables(struct ctlr_info *h)
7332 {
7333 	u64 cfg_offset;
7334 	u32 cfg_base_addr;
7335 	u64 cfg_base_addr_index;
7336 	u32 trans_offset;
7337 	int rc;
7338 
7339 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7340 		&cfg_base_addr_index, &cfg_offset);
7341 	if (rc)
7342 		return rc;
7343 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7344 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7345 	if (!h->cfgtable) {
7346 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7347 		return -ENOMEM;
7348 	}
7349 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7350 	if (rc)
7351 		return rc;
7352 	/* Find performant mode table. */
7353 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7354 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7355 				cfg_base_addr_index)+cfg_offset+trans_offset,
7356 				sizeof(*h->transtable));
7357 	if (!h->transtable) {
7358 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7359 		hpsa_free_cfgtables(h);
7360 		return -ENOMEM;
7361 	}
7362 	return 0;
7363 }
7364 
7365 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7366 {
7367 #define MIN_MAX_COMMANDS 16
7368 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7369 
7370 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7371 
7372 	/* Limit commands in memory limited kdump scenario. */
7373 	if (reset_devices && h->max_commands > 32)
7374 		h->max_commands = 32;
7375 
7376 	if (h->max_commands < MIN_MAX_COMMANDS) {
7377 		dev_warn(&h->pdev->dev,
7378 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7379 			h->max_commands,
7380 			MIN_MAX_COMMANDS);
7381 		h->max_commands = MIN_MAX_COMMANDS;
7382 	}
7383 }
7384 
7385 /* If the controller reports that the total max sg entries is greater than 512,
7386  * then we know that chained SG blocks work.  (Original smart arrays did not
7387  * support chained SG blocks and would return zero for max sg entries.)
7388  */
7389 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7390 {
7391 	return h->maxsgentries > 512;
7392 }
7393 
7394 /* Interrogate the hardware for some limits:
7395  * max commands, max SG elements without chaining, and with chaining,
7396  * SG chain block size, etc.
7397  */
7398 static void hpsa_find_board_params(struct ctlr_info *h)
7399 {
7400 	hpsa_get_max_perf_mode_cmds(h);
7401 	h->nr_cmds = h->max_commands;
7402 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7403 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7404 	if (hpsa_supports_chained_sg_blocks(h)) {
7405 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7406 		h->max_cmd_sg_entries = 32;
7407 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7408 		h->maxsgentries--; /* save one for chain pointer */
7409 	} else {
7410 		/*
7411 		 * Original smart arrays supported at most 31 s/g entries
7412 		 * embedded inline in the command (trying to use more
7413 		 * would lock up the controller)
7414 		 */
7415 		h->max_cmd_sg_entries = 31;
7416 		h->maxsgentries = 31; /* default to traditional values */
7417 		h->chainsize = 0;
7418 	}
7419 
7420 	/* Find out what task management functions are supported and cache */
7421 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7422 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7423 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7424 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7425 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7426 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7427 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7428 }
7429 
7430 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7431 {
7432 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7433 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7434 		return false;
7435 	}
7436 	return true;
7437 }
7438 
7439 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7440 {
7441 	u32 driver_support;
7442 
7443 	driver_support = readl(&(h->cfgtable->driver_support));
7444 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7445 #ifdef CONFIG_X86
7446 	driver_support |= ENABLE_SCSI_PREFETCH;
7447 #endif
7448 	driver_support |= ENABLE_UNIT_ATTN;
7449 	writel(driver_support, &(h->cfgtable->driver_support));
7450 }
7451 
7452 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7453  * in a prefetch beyond physical memory.
7454  */
7455 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7456 {
7457 	u32 dma_prefetch;
7458 
7459 	if (h->board_id != 0x3225103C)
7460 		return;
7461 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7462 	dma_prefetch |= 0x8000;
7463 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7464 }
7465 
7466 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7467 {
7468 	int i;
7469 	u32 doorbell_value;
7470 	unsigned long flags;
7471 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7472 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7473 		spin_lock_irqsave(&h->lock, flags);
7474 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7475 		spin_unlock_irqrestore(&h->lock, flags);
7476 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7477 			goto done;
7478 		/* delay and try again */
7479 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7480 	}
7481 	return -ENODEV;
7482 done:
7483 	return 0;
7484 }
7485 
7486 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7487 {
7488 	int i;
7489 	u32 doorbell_value;
7490 	unsigned long flags;
7491 
7492 	/* under certain very rare conditions, this can take awhile.
7493 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7494 	 * as we enter this code.)
7495 	 */
7496 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7497 		if (h->remove_in_progress)
7498 			goto done;
7499 		spin_lock_irqsave(&h->lock, flags);
7500 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7501 		spin_unlock_irqrestore(&h->lock, flags);
7502 		if (!(doorbell_value & CFGTBL_ChangeReq))
7503 			goto done;
7504 		/* delay and try again */
7505 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7506 	}
7507 	return -ENODEV;
7508 done:
7509 	return 0;
7510 }
7511 
7512 /* return -ENODEV or other reason on error, 0 on success */
7513 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7514 {
7515 	u32 trans_support;
7516 
7517 	trans_support = readl(&(h->cfgtable->TransportSupport));
7518 	if (!(trans_support & SIMPLE_MODE))
7519 		return -ENOTSUPP;
7520 
7521 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7522 
7523 	/* Update the field, and then ring the doorbell */
7524 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7525 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7526 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7527 	if (hpsa_wait_for_mode_change_ack(h))
7528 		goto error;
7529 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7530 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7531 		goto error;
7532 	h->transMethod = CFGTBL_Trans_Simple;
7533 	return 0;
7534 error:
7535 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7536 	return -ENODEV;
7537 }
7538 
7539 /* free items allocated or mapped by hpsa_pci_init */
7540 static void hpsa_free_pci_init(struct ctlr_info *h)
7541 {
7542 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7543 	iounmap(h->vaddr);			/* pci_init 3 */
7544 	h->vaddr = NULL;
7545 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7546 	/*
7547 	 * call pci_disable_device before pci_release_regions per
7548 	 * Documentation/PCI/pci.txt
7549 	 */
7550 	pci_disable_device(h->pdev);		/* pci_init 1 */
7551 	pci_release_regions(h->pdev);		/* pci_init 2 */
7552 }
7553 
7554 /* several items must be freed later */
7555 static int hpsa_pci_init(struct ctlr_info *h)
7556 {
7557 	int prod_index, err;
7558 
7559 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7560 	if (prod_index < 0)
7561 		return prod_index;
7562 	h->product_name = products[prod_index].product_name;
7563 	h->access = *(products[prod_index].access);
7564 
7565 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7566 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7567 
7568 	err = pci_enable_device(h->pdev);
7569 	if (err) {
7570 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7571 		pci_disable_device(h->pdev);
7572 		return err;
7573 	}
7574 
7575 	err = pci_request_regions(h->pdev, HPSA);
7576 	if (err) {
7577 		dev_err(&h->pdev->dev,
7578 			"failed to obtain PCI resources\n");
7579 		pci_disable_device(h->pdev);
7580 		return err;
7581 	}
7582 
7583 	pci_set_master(h->pdev);
7584 
7585 	err = hpsa_interrupt_mode(h);
7586 	if (err)
7587 		goto clean1;
7588 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7589 	if (err)
7590 		goto clean2;	/* intmode+region, pci */
7591 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7592 	if (!h->vaddr) {
7593 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7594 		err = -ENOMEM;
7595 		goto clean2;	/* intmode+region, pci */
7596 	}
7597 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7598 	if (err)
7599 		goto clean3;	/* vaddr, intmode+region, pci */
7600 	err = hpsa_find_cfgtables(h);
7601 	if (err)
7602 		goto clean3;	/* vaddr, intmode+region, pci */
7603 	hpsa_find_board_params(h);
7604 
7605 	if (!hpsa_CISS_signature_present(h)) {
7606 		err = -ENODEV;
7607 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7608 	}
7609 	hpsa_set_driver_support_bits(h);
7610 	hpsa_p600_dma_prefetch_quirk(h);
7611 	err = hpsa_enter_simple_mode(h);
7612 	if (err)
7613 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7614 	return 0;
7615 
7616 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7617 	hpsa_free_cfgtables(h);
7618 clean3:	/* vaddr, intmode+region, pci */
7619 	iounmap(h->vaddr);
7620 	h->vaddr = NULL;
7621 clean2:	/* intmode+region, pci */
7622 	hpsa_disable_interrupt_mode(h);
7623 clean1:
7624 	/*
7625 	 * call pci_disable_device before pci_release_regions per
7626 	 * Documentation/PCI/pci.txt
7627 	 */
7628 	pci_disable_device(h->pdev);
7629 	pci_release_regions(h->pdev);
7630 	return err;
7631 }
7632 
7633 static void hpsa_hba_inquiry(struct ctlr_info *h)
7634 {
7635 	int rc;
7636 
7637 #define HBA_INQUIRY_BYTE_COUNT 64
7638 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7639 	if (!h->hba_inquiry_data)
7640 		return;
7641 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7642 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7643 	if (rc != 0) {
7644 		kfree(h->hba_inquiry_data);
7645 		h->hba_inquiry_data = NULL;
7646 	}
7647 }
7648 
7649 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7650 {
7651 	int rc, i;
7652 	void __iomem *vaddr;
7653 
7654 	if (!reset_devices)
7655 		return 0;
7656 
7657 	/* kdump kernel is loading, we don't know in which state is
7658 	 * the pci interface. The dev->enable_cnt is equal zero
7659 	 * so we call enable+disable, wait a while and switch it on.
7660 	 */
7661 	rc = pci_enable_device(pdev);
7662 	if (rc) {
7663 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7664 		return -ENODEV;
7665 	}
7666 	pci_disable_device(pdev);
7667 	msleep(260);			/* a randomly chosen number */
7668 	rc = pci_enable_device(pdev);
7669 	if (rc) {
7670 		dev_warn(&pdev->dev, "failed to enable device.\n");
7671 		return -ENODEV;
7672 	}
7673 
7674 	pci_set_master(pdev);
7675 
7676 	vaddr = pci_ioremap_bar(pdev, 0);
7677 	if (vaddr == NULL) {
7678 		rc = -ENOMEM;
7679 		goto out_disable;
7680 	}
7681 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7682 	iounmap(vaddr);
7683 
7684 	/* Reset the controller with a PCI power-cycle or via doorbell */
7685 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7686 
7687 	/* -ENOTSUPP here means we cannot reset the controller
7688 	 * but it's already (and still) up and running in
7689 	 * "performant mode".  Or, it might be 640x, which can't reset
7690 	 * due to concerns about shared bbwc between 6402/6404 pair.
7691 	 */
7692 	if (rc)
7693 		goto out_disable;
7694 
7695 	/* Now try to get the controller to respond to a no-op */
7696 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7697 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7698 		if (hpsa_noop(pdev) == 0)
7699 			break;
7700 		else
7701 			dev_warn(&pdev->dev, "no-op failed%s\n",
7702 					(i < 11 ? "; re-trying" : ""));
7703 	}
7704 
7705 out_disable:
7706 
7707 	pci_disable_device(pdev);
7708 	return rc;
7709 }
7710 
7711 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7712 {
7713 	kfree(h->cmd_pool_bits);
7714 	h->cmd_pool_bits = NULL;
7715 	if (h->cmd_pool) {
7716 		pci_free_consistent(h->pdev,
7717 				h->nr_cmds * sizeof(struct CommandList),
7718 				h->cmd_pool,
7719 				h->cmd_pool_dhandle);
7720 		h->cmd_pool = NULL;
7721 		h->cmd_pool_dhandle = 0;
7722 	}
7723 	if (h->errinfo_pool) {
7724 		pci_free_consistent(h->pdev,
7725 				h->nr_cmds * sizeof(struct ErrorInfo),
7726 				h->errinfo_pool,
7727 				h->errinfo_pool_dhandle);
7728 		h->errinfo_pool = NULL;
7729 		h->errinfo_pool_dhandle = 0;
7730 	}
7731 }
7732 
7733 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7734 {
7735 	h->cmd_pool_bits = kzalloc(
7736 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7737 		sizeof(unsigned long), GFP_KERNEL);
7738 	h->cmd_pool = pci_alloc_consistent(h->pdev,
7739 		    h->nr_cmds * sizeof(*h->cmd_pool),
7740 		    &(h->cmd_pool_dhandle));
7741 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7742 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7743 		    &(h->errinfo_pool_dhandle));
7744 	if ((h->cmd_pool_bits == NULL)
7745 	    || (h->cmd_pool == NULL)
7746 	    || (h->errinfo_pool == NULL)) {
7747 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7748 		goto clean_up;
7749 	}
7750 	hpsa_preinitialize_commands(h);
7751 	return 0;
7752 clean_up:
7753 	hpsa_free_cmd_pool(h);
7754 	return -ENOMEM;
7755 }
7756 
7757 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7758 static void hpsa_free_irqs(struct ctlr_info *h)
7759 {
7760 	int i;
7761 
7762 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7763 		/* Single reply queue, only one irq to free */
7764 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7765 		h->q[h->intr_mode] = 0;
7766 		return;
7767 	}
7768 
7769 	for (i = 0; i < h->msix_vectors; i++) {
7770 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7771 		h->q[i] = 0;
7772 	}
7773 	for (; i < MAX_REPLY_QUEUES; i++)
7774 		h->q[i] = 0;
7775 }
7776 
7777 /* returns 0 on success; cleans up and returns -Enn on error */
7778 static int hpsa_request_irqs(struct ctlr_info *h,
7779 	irqreturn_t (*msixhandler)(int, void *),
7780 	irqreturn_t (*intxhandler)(int, void *))
7781 {
7782 	int rc, i;
7783 
7784 	/*
7785 	 * initialize h->q[x] = x so that interrupt handlers know which
7786 	 * queue to process.
7787 	 */
7788 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7789 		h->q[i] = (u8) i;
7790 
7791 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7792 		/* If performant mode and MSI-X, use multiple reply queues */
7793 		for (i = 0; i < h->msix_vectors; i++) {
7794 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7795 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7796 					0, h->intrname[i],
7797 					&h->q[i]);
7798 			if (rc) {
7799 				int j;
7800 
7801 				dev_err(&h->pdev->dev,
7802 					"failed to get irq %d for %s\n",
7803 				       pci_irq_vector(h->pdev, i), h->devname);
7804 				for (j = 0; j < i; j++) {
7805 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
7806 					h->q[j] = 0;
7807 				}
7808 				for (; j < MAX_REPLY_QUEUES; j++)
7809 					h->q[j] = 0;
7810 				return rc;
7811 			}
7812 		}
7813 	} else {
7814 		/* Use single reply pool */
7815 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
7816 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
7817 				h->msix_vectors ? "x" : "");
7818 			rc = request_irq(pci_irq_vector(h->pdev, 0),
7819 				msixhandler, 0,
7820 				h->intrname[0],
7821 				&h->q[h->intr_mode]);
7822 		} else {
7823 			sprintf(h->intrname[h->intr_mode],
7824 				"%s-intx", h->devname);
7825 			rc = request_irq(pci_irq_vector(h->pdev, 0),
7826 				intxhandler, IRQF_SHARED,
7827 				h->intrname[0],
7828 				&h->q[h->intr_mode]);
7829 		}
7830 	}
7831 	if (rc) {
7832 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7833 		       pci_irq_vector(h->pdev, 0), h->devname);
7834 		hpsa_free_irqs(h);
7835 		return -ENODEV;
7836 	}
7837 	return 0;
7838 }
7839 
7840 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7841 {
7842 	int rc;
7843 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7844 
7845 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7846 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7847 	if (rc) {
7848 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7849 		return rc;
7850 	}
7851 
7852 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7853 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7854 	if (rc) {
7855 		dev_warn(&h->pdev->dev, "Board failed to become ready "
7856 			"after soft reset.\n");
7857 		return rc;
7858 	}
7859 
7860 	return 0;
7861 }
7862 
7863 static void hpsa_free_reply_queues(struct ctlr_info *h)
7864 {
7865 	int i;
7866 
7867 	for (i = 0; i < h->nreply_queues; i++) {
7868 		if (!h->reply_queue[i].head)
7869 			continue;
7870 		pci_free_consistent(h->pdev,
7871 					h->reply_queue_size,
7872 					h->reply_queue[i].head,
7873 					h->reply_queue[i].busaddr);
7874 		h->reply_queue[i].head = NULL;
7875 		h->reply_queue[i].busaddr = 0;
7876 	}
7877 	h->reply_queue_size = 0;
7878 }
7879 
7880 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7881 {
7882 	hpsa_free_performant_mode(h);		/* init_one 7 */
7883 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
7884 	hpsa_free_cmd_pool(h);			/* init_one 5 */
7885 	hpsa_free_irqs(h);			/* init_one 4 */
7886 	scsi_host_put(h->scsi_host);		/* init_one 3 */
7887 	h->scsi_host = NULL;			/* init_one 3 */
7888 	hpsa_free_pci_init(h);			/* init_one 2_5 */
7889 	free_percpu(h->lockup_detected);	/* init_one 2 */
7890 	h->lockup_detected = NULL;		/* init_one 2 */
7891 	if (h->resubmit_wq) {
7892 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
7893 		h->resubmit_wq = NULL;
7894 	}
7895 	if (h->rescan_ctlr_wq) {
7896 		destroy_workqueue(h->rescan_ctlr_wq);
7897 		h->rescan_ctlr_wq = NULL;
7898 	}
7899 	kfree(h);				/* init_one 1 */
7900 }
7901 
7902 /* Called when controller lockup detected. */
7903 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7904 {
7905 	int i, refcount;
7906 	struct CommandList *c;
7907 	int failcount = 0;
7908 
7909 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7910 	for (i = 0; i < h->nr_cmds; i++) {
7911 		c = h->cmd_pool + i;
7912 		refcount = atomic_inc_return(&c->refcount);
7913 		if (refcount > 1) {
7914 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7915 			finish_cmd(c);
7916 			atomic_dec(&h->commands_outstanding);
7917 			failcount++;
7918 		}
7919 		cmd_free(h, c);
7920 	}
7921 	dev_warn(&h->pdev->dev,
7922 		"failed %d commands in fail_all\n", failcount);
7923 }
7924 
7925 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7926 {
7927 	int cpu;
7928 
7929 	for_each_online_cpu(cpu) {
7930 		u32 *lockup_detected;
7931 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7932 		*lockup_detected = value;
7933 	}
7934 	wmb(); /* be sure the per-cpu variables are out to memory */
7935 }
7936 
7937 static void controller_lockup_detected(struct ctlr_info *h)
7938 {
7939 	unsigned long flags;
7940 	u32 lockup_detected;
7941 
7942 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7943 	spin_lock_irqsave(&h->lock, flags);
7944 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7945 	if (!lockup_detected) {
7946 		/* no heartbeat, but controller gave us a zero. */
7947 		dev_warn(&h->pdev->dev,
7948 			"lockup detected after %d but scratchpad register is zero\n",
7949 			h->heartbeat_sample_interval / HZ);
7950 		lockup_detected = 0xffffffff;
7951 	}
7952 	set_lockup_detected_for_all_cpus(h, lockup_detected);
7953 	spin_unlock_irqrestore(&h->lock, flags);
7954 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7955 			lockup_detected, h->heartbeat_sample_interval / HZ);
7956 	pci_disable_device(h->pdev);
7957 	fail_all_outstanding_cmds(h);
7958 }
7959 
7960 static int detect_controller_lockup(struct ctlr_info *h)
7961 {
7962 	u64 now;
7963 	u32 heartbeat;
7964 	unsigned long flags;
7965 
7966 	now = get_jiffies_64();
7967 	/* If we've received an interrupt recently, we're ok. */
7968 	if (time_after64(h->last_intr_timestamp +
7969 				(h->heartbeat_sample_interval), now))
7970 		return false;
7971 
7972 	/*
7973 	 * If we've already checked the heartbeat recently, we're ok.
7974 	 * This could happen if someone sends us a signal. We
7975 	 * otherwise don't care about signals in this thread.
7976 	 */
7977 	if (time_after64(h->last_heartbeat_timestamp +
7978 				(h->heartbeat_sample_interval), now))
7979 		return false;
7980 
7981 	/* If heartbeat has not changed since we last looked, we're not ok. */
7982 	spin_lock_irqsave(&h->lock, flags);
7983 	heartbeat = readl(&h->cfgtable->HeartBeat);
7984 	spin_unlock_irqrestore(&h->lock, flags);
7985 	if (h->last_heartbeat == heartbeat) {
7986 		controller_lockup_detected(h);
7987 		return true;
7988 	}
7989 
7990 	/* We're ok. */
7991 	h->last_heartbeat = heartbeat;
7992 	h->last_heartbeat_timestamp = now;
7993 	return false;
7994 }
7995 
7996 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7997 {
7998 	int i;
7999 	char *event_type;
8000 
8001 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8002 		return;
8003 
8004 	/* Ask the controller to clear the events we're handling. */
8005 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8006 			| CFGTBL_Trans_io_accel2)) &&
8007 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8008 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8009 
8010 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8011 			event_type = "state change";
8012 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8013 			event_type = "configuration change";
8014 		/* Stop sending new RAID offload reqs via the IO accelerator */
8015 		scsi_block_requests(h->scsi_host);
8016 		for (i = 0; i < h->ndevices; i++) {
8017 			h->dev[i]->offload_enabled = 0;
8018 			h->dev[i]->offload_to_be_enabled = 0;
8019 		}
8020 		hpsa_drain_accel_commands(h);
8021 		/* Set 'accelerator path config change' bit */
8022 		dev_warn(&h->pdev->dev,
8023 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8024 			h->events, event_type);
8025 		writel(h->events, &(h->cfgtable->clear_event_notify));
8026 		/* Set the "clear event notify field update" bit 6 */
8027 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8028 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8029 		hpsa_wait_for_clear_event_notify_ack(h);
8030 		scsi_unblock_requests(h->scsi_host);
8031 	} else {
8032 		/* Acknowledge controller notification events. */
8033 		writel(h->events, &(h->cfgtable->clear_event_notify));
8034 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8035 		hpsa_wait_for_clear_event_notify_ack(h);
8036 #if 0
8037 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8038 		hpsa_wait_for_mode_change_ack(h);
8039 #endif
8040 	}
8041 	return;
8042 }
8043 
8044 /* Check a register on the controller to see if there are configuration
8045  * changes (added/changed/removed logical drives, etc.) which mean that
8046  * we should rescan the controller for devices.
8047  * Also check flag for driver-initiated rescan.
8048  */
8049 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8050 {
8051 	if (h->drv_req_rescan) {
8052 		h->drv_req_rescan = 0;
8053 		return 1;
8054 	}
8055 
8056 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8057 		return 0;
8058 
8059 	h->events = readl(&(h->cfgtable->event_notify));
8060 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8061 }
8062 
8063 /*
8064  * Check if any of the offline devices have become ready
8065  */
8066 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8067 {
8068 	unsigned long flags;
8069 	struct offline_device_entry *d;
8070 	struct list_head *this, *tmp;
8071 
8072 	spin_lock_irqsave(&h->offline_device_lock, flags);
8073 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8074 		d = list_entry(this, struct offline_device_entry,
8075 				offline_list);
8076 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8077 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8078 			spin_lock_irqsave(&h->offline_device_lock, flags);
8079 			list_del(&d->offline_list);
8080 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8081 			return 1;
8082 		}
8083 		spin_lock_irqsave(&h->offline_device_lock, flags);
8084 	}
8085 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8086 	return 0;
8087 }
8088 
8089 static int hpsa_luns_changed(struct ctlr_info *h)
8090 {
8091 	int rc = 1; /* assume there are changes */
8092 	struct ReportLUNdata *logdev = NULL;
8093 
8094 	/* if we can't find out if lun data has changed,
8095 	 * assume that it has.
8096 	 */
8097 
8098 	if (!h->lastlogicals)
8099 		return rc;
8100 
8101 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8102 	if (!logdev)
8103 		return rc;
8104 
8105 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8106 		dev_warn(&h->pdev->dev,
8107 			"report luns failed, can't track lun changes.\n");
8108 		goto out;
8109 	}
8110 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8111 		dev_info(&h->pdev->dev,
8112 			"Lun changes detected.\n");
8113 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8114 		goto out;
8115 	} else
8116 		rc = 0; /* no changes detected. */
8117 out:
8118 	kfree(logdev);
8119 	return rc;
8120 }
8121 
8122 static void hpsa_perform_rescan(struct ctlr_info *h)
8123 {
8124 	struct Scsi_Host *sh = NULL;
8125 	unsigned long flags;
8126 
8127 	/*
8128 	 * Do the scan after the reset
8129 	 */
8130 	spin_lock_irqsave(&h->reset_lock, flags);
8131 	if (h->reset_in_progress) {
8132 		h->drv_req_rescan = 1;
8133 		spin_unlock_irqrestore(&h->reset_lock, flags);
8134 		return;
8135 	}
8136 	spin_unlock_irqrestore(&h->reset_lock, flags);
8137 
8138 	sh = scsi_host_get(h->scsi_host);
8139 	if (sh != NULL) {
8140 		hpsa_scan_start(sh);
8141 		scsi_host_put(sh);
8142 		h->drv_req_rescan = 0;
8143 	}
8144 }
8145 
8146 /*
8147  * watch for controller events
8148  */
8149 static void hpsa_event_monitor_worker(struct work_struct *work)
8150 {
8151 	struct ctlr_info *h = container_of(to_delayed_work(work),
8152 					struct ctlr_info, event_monitor_work);
8153 	unsigned long flags;
8154 
8155 	spin_lock_irqsave(&h->lock, flags);
8156 	if (h->remove_in_progress) {
8157 		spin_unlock_irqrestore(&h->lock, flags);
8158 		return;
8159 	}
8160 	spin_unlock_irqrestore(&h->lock, flags);
8161 
8162 	if (hpsa_ctlr_needs_rescan(h)) {
8163 		hpsa_ack_ctlr_events(h);
8164 		hpsa_perform_rescan(h);
8165 	}
8166 
8167 	spin_lock_irqsave(&h->lock, flags);
8168 	if (!h->remove_in_progress)
8169 		schedule_delayed_work(&h->event_monitor_work,
8170 					HPSA_EVENT_MONITOR_INTERVAL);
8171 	spin_unlock_irqrestore(&h->lock, flags);
8172 }
8173 
8174 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8175 {
8176 	unsigned long flags;
8177 	struct ctlr_info *h = container_of(to_delayed_work(work),
8178 					struct ctlr_info, rescan_ctlr_work);
8179 
8180 	spin_lock_irqsave(&h->lock, flags);
8181 	if (h->remove_in_progress) {
8182 		spin_unlock_irqrestore(&h->lock, flags);
8183 		return;
8184 	}
8185 	spin_unlock_irqrestore(&h->lock, flags);
8186 
8187 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8188 		hpsa_perform_rescan(h);
8189 	} else if (h->discovery_polling) {
8190 		hpsa_disable_rld_caching(h);
8191 		if (hpsa_luns_changed(h)) {
8192 			dev_info(&h->pdev->dev,
8193 				"driver discovery polling rescan.\n");
8194 			hpsa_perform_rescan(h);
8195 		}
8196 	}
8197 	spin_lock_irqsave(&h->lock, flags);
8198 	if (!h->remove_in_progress)
8199 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8200 				h->heartbeat_sample_interval);
8201 	spin_unlock_irqrestore(&h->lock, flags);
8202 }
8203 
8204 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8205 {
8206 	unsigned long flags;
8207 	struct ctlr_info *h = container_of(to_delayed_work(work),
8208 					struct ctlr_info, monitor_ctlr_work);
8209 
8210 	detect_controller_lockup(h);
8211 	if (lockup_detected(h))
8212 		return;
8213 
8214 	spin_lock_irqsave(&h->lock, flags);
8215 	if (!h->remove_in_progress)
8216 		schedule_delayed_work(&h->monitor_ctlr_work,
8217 				h->heartbeat_sample_interval);
8218 	spin_unlock_irqrestore(&h->lock, flags);
8219 }
8220 
8221 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8222 						char *name)
8223 {
8224 	struct workqueue_struct *wq = NULL;
8225 
8226 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8227 	if (!wq)
8228 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8229 
8230 	return wq;
8231 }
8232 
8233 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8234 {
8235 	int dac, rc;
8236 	struct ctlr_info *h;
8237 	int try_soft_reset = 0;
8238 	unsigned long flags;
8239 	u32 board_id;
8240 
8241 	if (number_of_controllers == 0)
8242 		printk(KERN_INFO DRIVER_NAME "\n");
8243 
8244 	rc = hpsa_lookup_board_id(pdev, &board_id);
8245 	if (rc < 0) {
8246 		dev_warn(&pdev->dev, "Board ID not found\n");
8247 		return rc;
8248 	}
8249 
8250 	rc = hpsa_init_reset_devices(pdev, board_id);
8251 	if (rc) {
8252 		if (rc != -ENOTSUPP)
8253 			return rc;
8254 		/* If the reset fails in a particular way (it has no way to do
8255 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8256 		 * a soft reset once we get the controller configured up to the
8257 		 * point that it can accept a command.
8258 		 */
8259 		try_soft_reset = 1;
8260 		rc = 0;
8261 	}
8262 
8263 reinit_after_soft_reset:
8264 
8265 	/* Command structures must be aligned on a 32-byte boundary because
8266 	 * the 5 lower bits of the address are used by the hardware. and by
8267 	 * the driver.  See comments in hpsa.h for more info.
8268 	 */
8269 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8270 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8271 	if (!h) {
8272 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8273 		return -ENOMEM;
8274 	}
8275 
8276 	h->pdev = pdev;
8277 
8278 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8279 	INIT_LIST_HEAD(&h->offline_device_list);
8280 	spin_lock_init(&h->lock);
8281 	spin_lock_init(&h->offline_device_lock);
8282 	spin_lock_init(&h->scan_lock);
8283 	spin_lock_init(&h->reset_lock);
8284 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8285 
8286 	/* Allocate and clear per-cpu variable lockup_detected */
8287 	h->lockup_detected = alloc_percpu(u32);
8288 	if (!h->lockup_detected) {
8289 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8290 		rc = -ENOMEM;
8291 		goto clean1;	/* aer/h */
8292 	}
8293 	set_lockup_detected_for_all_cpus(h, 0);
8294 
8295 	rc = hpsa_pci_init(h);
8296 	if (rc)
8297 		goto clean2;	/* lu, aer/h */
8298 
8299 	/* relies on h-> settings made by hpsa_pci_init, including
8300 	 * interrupt_mode h->intr */
8301 	rc = hpsa_scsi_host_alloc(h);
8302 	if (rc)
8303 		goto clean2_5;	/* pci, lu, aer/h */
8304 
8305 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8306 	h->ctlr = number_of_controllers;
8307 	number_of_controllers++;
8308 
8309 	/* configure PCI DMA stuff */
8310 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8311 	if (rc == 0) {
8312 		dac = 1;
8313 	} else {
8314 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8315 		if (rc == 0) {
8316 			dac = 0;
8317 		} else {
8318 			dev_err(&pdev->dev, "no suitable DMA available\n");
8319 			goto clean3;	/* shost, pci, lu, aer/h */
8320 		}
8321 	}
8322 
8323 	/* make sure the board interrupts are off */
8324 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8325 
8326 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8327 	if (rc)
8328 		goto clean3;	/* shost, pci, lu, aer/h */
8329 	rc = hpsa_alloc_cmd_pool(h);
8330 	if (rc)
8331 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8332 	rc = hpsa_alloc_sg_chain_blocks(h);
8333 	if (rc)
8334 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8335 	init_waitqueue_head(&h->scan_wait_queue);
8336 	init_waitqueue_head(&h->event_sync_wait_queue);
8337 	mutex_init(&h->reset_mutex);
8338 	h->scan_finished = 1; /* no scan currently in progress */
8339 	h->scan_waiting = 0;
8340 
8341 	pci_set_drvdata(pdev, h);
8342 	h->ndevices = 0;
8343 
8344 	spin_lock_init(&h->devlock);
8345 	rc = hpsa_put_ctlr_into_performant_mode(h);
8346 	if (rc)
8347 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8348 
8349 	/* create the resubmit workqueue */
8350 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8351 	if (!h->rescan_ctlr_wq) {
8352 		rc = -ENOMEM;
8353 		goto clean7;
8354 	}
8355 
8356 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8357 	if (!h->resubmit_wq) {
8358 		rc = -ENOMEM;
8359 		goto clean7;	/* aer/h */
8360 	}
8361 
8362 	/*
8363 	 * At this point, the controller is ready to take commands.
8364 	 * Now, if reset_devices and the hard reset didn't work, try
8365 	 * the soft reset and see if that works.
8366 	 */
8367 	if (try_soft_reset) {
8368 
8369 		/* This is kind of gross.  We may or may not get a completion
8370 		 * from the soft reset command, and if we do, then the value
8371 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8372 		 * after the reset throwing away any completions we get during
8373 		 * that time.  Unregister the interrupt handler and register
8374 		 * fake ones to scoop up any residual completions.
8375 		 */
8376 		spin_lock_irqsave(&h->lock, flags);
8377 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8378 		spin_unlock_irqrestore(&h->lock, flags);
8379 		hpsa_free_irqs(h);
8380 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8381 					hpsa_intx_discard_completions);
8382 		if (rc) {
8383 			dev_warn(&h->pdev->dev,
8384 				"Failed to request_irq after soft reset.\n");
8385 			/*
8386 			 * cannot goto clean7 or free_irqs will be called
8387 			 * again. Instead, do its work
8388 			 */
8389 			hpsa_free_performant_mode(h);	/* clean7 */
8390 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8391 			hpsa_free_cmd_pool(h);		/* clean5 */
8392 			/*
8393 			 * skip hpsa_free_irqs(h) clean4 since that
8394 			 * was just called before request_irqs failed
8395 			 */
8396 			goto clean3;
8397 		}
8398 
8399 		rc = hpsa_kdump_soft_reset(h);
8400 		if (rc)
8401 			/* Neither hard nor soft reset worked, we're hosed. */
8402 			goto clean7;
8403 
8404 		dev_info(&h->pdev->dev, "Board READY.\n");
8405 		dev_info(&h->pdev->dev,
8406 			"Waiting for stale completions to drain.\n");
8407 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8408 		msleep(10000);
8409 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8410 
8411 		rc = controller_reset_failed(h->cfgtable);
8412 		if (rc)
8413 			dev_info(&h->pdev->dev,
8414 				"Soft reset appears to have failed.\n");
8415 
8416 		/* since the controller's reset, we have to go back and re-init
8417 		 * everything.  Easiest to just forget what we've done and do it
8418 		 * all over again.
8419 		 */
8420 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8421 		try_soft_reset = 0;
8422 		if (rc)
8423 			/* don't goto clean, we already unallocated */
8424 			return -ENODEV;
8425 
8426 		goto reinit_after_soft_reset;
8427 	}
8428 
8429 	/* Enable Accelerated IO path at driver layer */
8430 	h->acciopath_status = 1;
8431 	/* Disable discovery polling.*/
8432 	h->discovery_polling = 0;
8433 
8434 
8435 	/* Turn the interrupts on so we can service requests */
8436 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8437 
8438 	hpsa_hba_inquiry(h);
8439 
8440 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8441 	if (!h->lastlogicals)
8442 		dev_info(&h->pdev->dev,
8443 			"Can't track change to report lun data\n");
8444 
8445 	/* hook into SCSI subsystem */
8446 	rc = hpsa_scsi_add_host(h);
8447 	if (rc)
8448 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8449 
8450 	/* Monitor the controller for firmware lockups */
8451 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8452 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8453 	schedule_delayed_work(&h->monitor_ctlr_work,
8454 				h->heartbeat_sample_interval);
8455 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8456 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8457 				h->heartbeat_sample_interval);
8458 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8459 	schedule_delayed_work(&h->event_monitor_work,
8460 				HPSA_EVENT_MONITOR_INTERVAL);
8461 	return 0;
8462 
8463 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8464 	hpsa_free_performant_mode(h);
8465 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8466 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8467 	hpsa_free_sg_chain_blocks(h);
8468 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8469 	hpsa_free_cmd_pool(h);
8470 clean4: /* irq, shost, pci, lu, aer/h */
8471 	hpsa_free_irqs(h);
8472 clean3: /* shost, pci, lu, aer/h */
8473 	scsi_host_put(h->scsi_host);
8474 	h->scsi_host = NULL;
8475 clean2_5: /* pci, lu, aer/h */
8476 	hpsa_free_pci_init(h);
8477 clean2: /* lu, aer/h */
8478 	if (h->lockup_detected) {
8479 		free_percpu(h->lockup_detected);
8480 		h->lockup_detected = NULL;
8481 	}
8482 clean1:	/* wq/aer/h */
8483 	if (h->resubmit_wq) {
8484 		destroy_workqueue(h->resubmit_wq);
8485 		h->resubmit_wq = NULL;
8486 	}
8487 	if (h->rescan_ctlr_wq) {
8488 		destroy_workqueue(h->rescan_ctlr_wq);
8489 		h->rescan_ctlr_wq = NULL;
8490 	}
8491 	kfree(h);
8492 	return rc;
8493 }
8494 
8495 static void hpsa_flush_cache(struct ctlr_info *h)
8496 {
8497 	char *flush_buf;
8498 	struct CommandList *c;
8499 	int rc;
8500 
8501 	if (unlikely(lockup_detected(h)))
8502 		return;
8503 	flush_buf = kzalloc(4, GFP_KERNEL);
8504 	if (!flush_buf)
8505 		return;
8506 
8507 	c = cmd_alloc(h);
8508 
8509 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8510 		RAID_CTLR_LUNID, TYPE_CMD)) {
8511 		goto out;
8512 	}
8513 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8514 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8515 	if (rc)
8516 		goto out;
8517 	if (c->err_info->CommandStatus != 0)
8518 out:
8519 		dev_warn(&h->pdev->dev,
8520 			"error flushing cache on controller\n");
8521 	cmd_free(h, c);
8522 	kfree(flush_buf);
8523 }
8524 
8525 /* Make controller gather fresh report lun data each time we
8526  * send down a report luns request
8527  */
8528 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8529 {
8530 	u32 *options;
8531 	struct CommandList *c;
8532 	int rc;
8533 
8534 	/* Don't bother trying to set diag options if locked up */
8535 	if (unlikely(h->lockup_detected))
8536 		return;
8537 
8538 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8539 	if (!options)
8540 		return;
8541 
8542 	c = cmd_alloc(h);
8543 
8544 	/* first, get the current diag options settings */
8545 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8546 		RAID_CTLR_LUNID, TYPE_CMD))
8547 		goto errout;
8548 
8549 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8550 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8551 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8552 		goto errout;
8553 
8554 	/* Now, set the bit for disabling the RLD caching */
8555 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8556 
8557 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8558 		RAID_CTLR_LUNID, TYPE_CMD))
8559 		goto errout;
8560 
8561 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8562 		PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8563 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8564 		goto errout;
8565 
8566 	/* Now verify that it got set: */
8567 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8568 		RAID_CTLR_LUNID, TYPE_CMD))
8569 		goto errout;
8570 
8571 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8572 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8573 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8574 		goto errout;
8575 
8576 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8577 		goto out;
8578 
8579 errout:
8580 	dev_err(&h->pdev->dev,
8581 			"Error: failed to disable report lun data caching.\n");
8582 out:
8583 	cmd_free(h, c);
8584 	kfree(options);
8585 }
8586 
8587 static void hpsa_shutdown(struct pci_dev *pdev)
8588 {
8589 	struct ctlr_info *h;
8590 
8591 	h = pci_get_drvdata(pdev);
8592 	/* Turn board interrupts off  and send the flush cache command
8593 	 * sendcmd will turn off interrupt, and send the flush...
8594 	 * To write all data in the battery backed cache to disks
8595 	 */
8596 	hpsa_flush_cache(h);
8597 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8598 	hpsa_free_irqs(h);			/* init_one 4 */
8599 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8600 }
8601 
8602 static void hpsa_free_device_info(struct ctlr_info *h)
8603 {
8604 	int i;
8605 
8606 	for (i = 0; i < h->ndevices; i++) {
8607 		kfree(h->dev[i]);
8608 		h->dev[i] = NULL;
8609 	}
8610 }
8611 
8612 static void hpsa_remove_one(struct pci_dev *pdev)
8613 {
8614 	struct ctlr_info *h;
8615 	unsigned long flags;
8616 
8617 	if (pci_get_drvdata(pdev) == NULL) {
8618 		dev_err(&pdev->dev, "unable to remove device\n");
8619 		return;
8620 	}
8621 	h = pci_get_drvdata(pdev);
8622 
8623 	/* Get rid of any controller monitoring work items */
8624 	spin_lock_irqsave(&h->lock, flags);
8625 	h->remove_in_progress = 1;
8626 	spin_unlock_irqrestore(&h->lock, flags);
8627 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8628 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8629 	cancel_delayed_work_sync(&h->event_monitor_work);
8630 	destroy_workqueue(h->rescan_ctlr_wq);
8631 	destroy_workqueue(h->resubmit_wq);
8632 
8633 	/*
8634 	 * Call before disabling interrupts.
8635 	 * scsi_remove_host can trigger I/O operations especially
8636 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8637 	 * operations which cannot complete and will hang the system.
8638 	 */
8639 	if (h->scsi_host)
8640 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8641 	/* includes hpsa_free_irqs - init_one 4 */
8642 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8643 	hpsa_shutdown(pdev);
8644 
8645 	hpsa_free_device_info(h);		/* scan */
8646 
8647 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8648 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8649 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8650 	hpsa_free_performant_mode(h);			/* init_one 7 */
8651 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8652 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8653 	kfree(h->lastlogicals);
8654 
8655 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8656 
8657 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8658 	h->scsi_host = NULL;				/* init_one 3 */
8659 
8660 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8661 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8662 
8663 	free_percpu(h->lockup_detected);		/* init_one 2 */
8664 	h->lockup_detected = NULL;			/* init_one 2 */
8665 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8666 
8667 	hpsa_delete_sas_host(h);
8668 
8669 	kfree(h);					/* init_one 1 */
8670 }
8671 
8672 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8673 	__attribute__((unused)) pm_message_t state)
8674 {
8675 	return -ENOSYS;
8676 }
8677 
8678 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8679 {
8680 	return -ENOSYS;
8681 }
8682 
8683 static struct pci_driver hpsa_pci_driver = {
8684 	.name = HPSA,
8685 	.probe = hpsa_init_one,
8686 	.remove = hpsa_remove_one,
8687 	.id_table = hpsa_pci_device_id,	/* id_table */
8688 	.shutdown = hpsa_shutdown,
8689 	.suspend = hpsa_suspend,
8690 	.resume = hpsa_resume,
8691 };
8692 
8693 /* Fill in bucket_map[], given nsgs (the max number of
8694  * scatter gather elements supported) and bucket[],
8695  * which is an array of 8 integers.  The bucket[] array
8696  * contains 8 different DMA transfer sizes (in 16
8697  * byte increments) which the controller uses to fetch
8698  * commands.  This function fills in bucket_map[], which
8699  * maps a given number of scatter gather elements to one of
8700  * the 8 DMA transfer sizes.  The point of it is to allow the
8701  * controller to only do as much DMA as needed to fetch the
8702  * command, with the DMA transfer size encoded in the lower
8703  * bits of the command address.
8704  */
8705 static void  calc_bucket_map(int bucket[], int num_buckets,
8706 	int nsgs, int min_blocks, u32 *bucket_map)
8707 {
8708 	int i, j, b, size;
8709 
8710 	/* Note, bucket_map must have nsgs+1 entries. */
8711 	for (i = 0; i <= nsgs; i++) {
8712 		/* Compute size of a command with i SG entries */
8713 		size = i + min_blocks;
8714 		b = num_buckets; /* Assume the biggest bucket */
8715 		/* Find the bucket that is just big enough */
8716 		for (j = 0; j < num_buckets; j++) {
8717 			if (bucket[j] >= size) {
8718 				b = j;
8719 				break;
8720 			}
8721 		}
8722 		/* for a command with i SG entries, use bucket b. */
8723 		bucket_map[i] = b;
8724 	}
8725 }
8726 
8727 /*
8728  * return -ENODEV on err, 0 on success (or no action)
8729  * allocates numerous items that must be freed later
8730  */
8731 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8732 {
8733 	int i;
8734 	unsigned long register_value;
8735 	unsigned long transMethod = CFGTBL_Trans_Performant |
8736 			(trans_support & CFGTBL_Trans_use_short_tags) |
8737 				CFGTBL_Trans_enable_directed_msix |
8738 			(trans_support & (CFGTBL_Trans_io_accel1 |
8739 				CFGTBL_Trans_io_accel2));
8740 	struct access_method access = SA5_performant_access;
8741 
8742 	/* This is a bit complicated.  There are 8 registers on
8743 	 * the controller which we write to to tell it 8 different
8744 	 * sizes of commands which there may be.  It's a way of
8745 	 * reducing the DMA done to fetch each command.  Encoded into
8746 	 * each command's tag are 3 bits which communicate to the controller
8747 	 * which of the eight sizes that command fits within.  The size of
8748 	 * each command depends on how many scatter gather entries there are.
8749 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
8750 	 * with the number of 16-byte blocks a command of that size requires.
8751 	 * The smallest command possible requires 5 such 16 byte blocks.
8752 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8753 	 * blocks.  Note, this only extends to the SG entries contained
8754 	 * within the command block, and does not extend to chained blocks
8755 	 * of SG elements.   bft[] contains the eight values we write to
8756 	 * the registers.  They are not evenly distributed, but have more
8757 	 * sizes for small commands, and fewer sizes for larger commands.
8758 	 */
8759 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8760 #define MIN_IOACCEL2_BFT_ENTRY 5
8761 #define HPSA_IOACCEL2_HEADER_SZ 4
8762 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8763 			13, 14, 15, 16, 17, 18, 19,
8764 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8765 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8766 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8767 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8768 				 16 * MIN_IOACCEL2_BFT_ENTRY);
8769 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8770 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8771 	/*  5 = 1 s/g entry or 4k
8772 	 *  6 = 2 s/g entry or 8k
8773 	 *  8 = 4 s/g entry or 16k
8774 	 * 10 = 6 s/g entry or 24k
8775 	 */
8776 
8777 	/* If the controller supports either ioaccel method then
8778 	 * we can also use the RAID stack submit path that does not
8779 	 * perform the superfluous readl() after each command submission.
8780 	 */
8781 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8782 		access = SA5_performant_access_no_read;
8783 
8784 	/* Controller spec: zero out this buffer. */
8785 	for (i = 0; i < h->nreply_queues; i++)
8786 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8787 
8788 	bft[7] = SG_ENTRIES_IN_CMD + 4;
8789 	calc_bucket_map(bft, ARRAY_SIZE(bft),
8790 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8791 	for (i = 0; i < 8; i++)
8792 		writel(bft[i], &h->transtable->BlockFetch[i]);
8793 
8794 	/* size of controller ring buffer */
8795 	writel(h->max_commands, &h->transtable->RepQSize);
8796 	writel(h->nreply_queues, &h->transtable->RepQCount);
8797 	writel(0, &h->transtable->RepQCtrAddrLow32);
8798 	writel(0, &h->transtable->RepQCtrAddrHigh32);
8799 
8800 	for (i = 0; i < h->nreply_queues; i++) {
8801 		writel(0, &h->transtable->RepQAddr[i].upper);
8802 		writel(h->reply_queue[i].busaddr,
8803 			&h->transtable->RepQAddr[i].lower);
8804 	}
8805 
8806 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8807 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8808 	/*
8809 	 * enable outbound interrupt coalescing in accelerator mode;
8810 	 */
8811 	if (trans_support & CFGTBL_Trans_io_accel1) {
8812 		access = SA5_ioaccel_mode1_access;
8813 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8814 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8815 	} else
8816 		if (trans_support & CFGTBL_Trans_io_accel2)
8817 			access = SA5_ioaccel_mode2_access;
8818 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8819 	if (hpsa_wait_for_mode_change_ack(h)) {
8820 		dev_err(&h->pdev->dev,
8821 			"performant mode problem - doorbell timeout\n");
8822 		return -ENODEV;
8823 	}
8824 	register_value = readl(&(h->cfgtable->TransportActive));
8825 	if (!(register_value & CFGTBL_Trans_Performant)) {
8826 		dev_err(&h->pdev->dev,
8827 			"performant mode problem - transport not active\n");
8828 		return -ENODEV;
8829 	}
8830 	/* Change the access methods to the performant access methods */
8831 	h->access = access;
8832 	h->transMethod = transMethod;
8833 
8834 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8835 		(trans_support & CFGTBL_Trans_io_accel2)))
8836 		return 0;
8837 
8838 	if (trans_support & CFGTBL_Trans_io_accel1) {
8839 		/* Set up I/O accelerator mode */
8840 		for (i = 0; i < h->nreply_queues; i++) {
8841 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8842 			h->reply_queue[i].current_entry =
8843 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8844 		}
8845 		bft[7] = h->ioaccel_maxsg + 8;
8846 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8847 				h->ioaccel1_blockFetchTable);
8848 
8849 		/* initialize all reply queue entries to unused */
8850 		for (i = 0; i < h->nreply_queues; i++)
8851 			memset(h->reply_queue[i].head,
8852 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
8853 				h->reply_queue_size);
8854 
8855 		/* set all the constant fields in the accelerator command
8856 		 * frames once at init time to save CPU cycles later.
8857 		 */
8858 		for (i = 0; i < h->nr_cmds; i++) {
8859 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8860 
8861 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
8862 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
8863 					(i * sizeof(struct ErrorInfo)));
8864 			cp->err_info_len = sizeof(struct ErrorInfo);
8865 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
8866 			cp->host_context_flags =
8867 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8868 			cp->timeout_sec = 0;
8869 			cp->ReplyQueue = 0;
8870 			cp->tag =
8871 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8872 			cp->host_addr =
8873 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8874 					(i * sizeof(struct io_accel1_cmd)));
8875 		}
8876 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
8877 		u64 cfg_offset, cfg_base_addr_index;
8878 		u32 bft2_offset, cfg_base_addr;
8879 		int rc;
8880 
8881 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8882 			&cfg_base_addr_index, &cfg_offset);
8883 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8884 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8885 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8886 				4, h->ioaccel2_blockFetchTable);
8887 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8888 		BUILD_BUG_ON(offsetof(struct CfgTable,
8889 				io_accel_request_size_offset) != 0xb8);
8890 		h->ioaccel2_bft2_regs =
8891 			remap_pci_mem(pci_resource_start(h->pdev,
8892 					cfg_base_addr_index) +
8893 					cfg_offset + bft2_offset,
8894 					ARRAY_SIZE(bft2) *
8895 					sizeof(*h->ioaccel2_bft2_regs));
8896 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
8897 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8898 	}
8899 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8900 	if (hpsa_wait_for_mode_change_ack(h)) {
8901 		dev_err(&h->pdev->dev,
8902 			"performant mode problem - enabling ioaccel mode\n");
8903 		return -ENODEV;
8904 	}
8905 	return 0;
8906 }
8907 
8908 /* Free ioaccel1 mode command blocks and block fetch table */
8909 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8910 {
8911 	if (h->ioaccel_cmd_pool) {
8912 		pci_free_consistent(h->pdev,
8913 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8914 			h->ioaccel_cmd_pool,
8915 			h->ioaccel_cmd_pool_dhandle);
8916 		h->ioaccel_cmd_pool = NULL;
8917 		h->ioaccel_cmd_pool_dhandle = 0;
8918 	}
8919 	kfree(h->ioaccel1_blockFetchTable);
8920 	h->ioaccel1_blockFetchTable = NULL;
8921 }
8922 
8923 /* Allocate ioaccel1 mode command blocks and block fetch table */
8924 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8925 {
8926 	h->ioaccel_maxsg =
8927 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8928 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8929 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8930 
8931 	/* Command structures must be aligned on a 128-byte boundary
8932 	 * because the 7 lower bits of the address are used by the
8933 	 * hardware.
8934 	 */
8935 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8936 			IOACCEL1_COMMANDLIST_ALIGNMENT);
8937 	h->ioaccel_cmd_pool =
8938 		pci_alloc_consistent(h->pdev,
8939 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8940 			&(h->ioaccel_cmd_pool_dhandle));
8941 
8942 	h->ioaccel1_blockFetchTable =
8943 		kmalloc(((h->ioaccel_maxsg + 1) *
8944 				sizeof(u32)), GFP_KERNEL);
8945 
8946 	if ((h->ioaccel_cmd_pool == NULL) ||
8947 		(h->ioaccel1_blockFetchTable == NULL))
8948 		goto clean_up;
8949 
8950 	memset(h->ioaccel_cmd_pool, 0,
8951 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8952 	return 0;
8953 
8954 clean_up:
8955 	hpsa_free_ioaccel1_cmd_and_bft(h);
8956 	return -ENOMEM;
8957 }
8958 
8959 /* Free ioaccel2 mode command blocks and block fetch table */
8960 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8961 {
8962 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8963 
8964 	if (h->ioaccel2_cmd_pool) {
8965 		pci_free_consistent(h->pdev,
8966 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8967 			h->ioaccel2_cmd_pool,
8968 			h->ioaccel2_cmd_pool_dhandle);
8969 		h->ioaccel2_cmd_pool = NULL;
8970 		h->ioaccel2_cmd_pool_dhandle = 0;
8971 	}
8972 	kfree(h->ioaccel2_blockFetchTable);
8973 	h->ioaccel2_blockFetchTable = NULL;
8974 }
8975 
8976 /* Allocate ioaccel2 mode command blocks and block fetch table */
8977 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8978 {
8979 	int rc;
8980 
8981 	/* Allocate ioaccel2 mode command blocks and block fetch table */
8982 
8983 	h->ioaccel_maxsg =
8984 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8985 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8986 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8987 
8988 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8989 			IOACCEL2_COMMANDLIST_ALIGNMENT);
8990 	h->ioaccel2_cmd_pool =
8991 		pci_alloc_consistent(h->pdev,
8992 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8993 			&(h->ioaccel2_cmd_pool_dhandle));
8994 
8995 	h->ioaccel2_blockFetchTable =
8996 		kmalloc(((h->ioaccel_maxsg + 1) *
8997 				sizeof(u32)), GFP_KERNEL);
8998 
8999 	if ((h->ioaccel2_cmd_pool == NULL) ||
9000 		(h->ioaccel2_blockFetchTable == NULL)) {
9001 		rc = -ENOMEM;
9002 		goto clean_up;
9003 	}
9004 
9005 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9006 	if (rc)
9007 		goto clean_up;
9008 
9009 	memset(h->ioaccel2_cmd_pool, 0,
9010 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9011 	return 0;
9012 
9013 clean_up:
9014 	hpsa_free_ioaccel2_cmd_and_bft(h);
9015 	return rc;
9016 }
9017 
9018 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9019 static void hpsa_free_performant_mode(struct ctlr_info *h)
9020 {
9021 	kfree(h->blockFetchTable);
9022 	h->blockFetchTable = NULL;
9023 	hpsa_free_reply_queues(h);
9024 	hpsa_free_ioaccel1_cmd_and_bft(h);
9025 	hpsa_free_ioaccel2_cmd_and_bft(h);
9026 }
9027 
9028 /* return -ENODEV on error, 0 on success (or no action)
9029  * allocates numerous items that must be freed later
9030  */
9031 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9032 {
9033 	u32 trans_support;
9034 	unsigned long transMethod = CFGTBL_Trans_Performant |
9035 					CFGTBL_Trans_use_short_tags;
9036 	int i, rc;
9037 
9038 	if (hpsa_simple_mode)
9039 		return 0;
9040 
9041 	trans_support = readl(&(h->cfgtable->TransportSupport));
9042 	if (!(trans_support & PERFORMANT_MODE))
9043 		return 0;
9044 
9045 	/* Check for I/O accelerator mode support */
9046 	if (trans_support & CFGTBL_Trans_io_accel1) {
9047 		transMethod |= CFGTBL_Trans_io_accel1 |
9048 				CFGTBL_Trans_enable_directed_msix;
9049 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9050 		if (rc)
9051 			return rc;
9052 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9053 		transMethod |= CFGTBL_Trans_io_accel2 |
9054 				CFGTBL_Trans_enable_directed_msix;
9055 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9056 		if (rc)
9057 			return rc;
9058 	}
9059 
9060 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9061 	hpsa_get_max_perf_mode_cmds(h);
9062 	/* Performant mode ring buffer and supporting data structures */
9063 	h->reply_queue_size = h->max_commands * sizeof(u64);
9064 
9065 	for (i = 0; i < h->nreply_queues; i++) {
9066 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9067 						h->reply_queue_size,
9068 						&(h->reply_queue[i].busaddr));
9069 		if (!h->reply_queue[i].head) {
9070 			rc = -ENOMEM;
9071 			goto clean1;	/* rq, ioaccel */
9072 		}
9073 		h->reply_queue[i].size = h->max_commands;
9074 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9075 		h->reply_queue[i].current_entry = 0;
9076 	}
9077 
9078 	/* Need a block fetch table for performant mode */
9079 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9080 				sizeof(u32)), GFP_KERNEL);
9081 	if (!h->blockFetchTable) {
9082 		rc = -ENOMEM;
9083 		goto clean1;	/* rq, ioaccel */
9084 	}
9085 
9086 	rc = hpsa_enter_performant_mode(h, trans_support);
9087 	if (rc)
9088 		goto clean2;	/* bft, rq, ioaccel */
9089 	return 0;
9090 
9091 clean2:	/* bft, rq, ioaccel */
9092 	kfree(h->blockFetchTable);
9093 	h->blockFetchTable = NULL;
9094 clean1:	/* rq, ioaccel */
9095 	hpsa_free_reply_queues(h);
9096 	hpsa_free_ioaccel1_cmd_and_bft(h);
9097 	hpsa_free_ioaccel2_cmd_and_bft(h);
9098 	return rc;
9099 }
9100 
9101 static int is_accelerated_cmd(struct CommandList *c)
9102 {
9103 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9104 }
9105 
9106 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9107 {
9108 	struct CommandList *c = NULL;
9109 	int i, accel_cmds_out;
9110 	int refcount;
9111 
9112 	do { /* wait for all outstanding ioaccel commands to drain out */
9113 		accel_cmds_out = 0;
9114 		for (i = 0; i < h->nr_cmds; i++) {
9115 			c = h->cmd_pool + i;
9116 			refcount = atomic_inc_return(&c->refcount);
9117 			if (refcount > 1) /* Command is allocated */
9118 				accel_cmds_out += is_accelerated_cmd(c);
9119 			cmd_free(h, c);
9120 		}
9121 		if (accel_cmds_out <= 0)
9122 			break;
9123 		msleep(100);
9124 	} while (1);
9125 }
9126 
9127 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9128 				struct hpsa_sas_port *hpsa_sas_port)
9129 {
9130 	struct hpsa_sas_phy *hpsa_sas_phy;
9131 	struct sas_phy *phy;
9132 
9133 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9134 	if (!hpsa_sas_phy)
9135 		return NULL;
9136 
9137 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9138 		hpsa_sas_port->next_phy_index);
9139 	if (!phy) {
9140 		kfree(hpsa_sas_phy);
9141 		return NULL;
9142 	}
9143 
9144 	hpsa_sas_port->next_phy_index++;
9145 	hpsa_sas_phy->phy = phy;
9146 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9147 
9148 	return hpsa_sas_phy;
9149 }
9150 
9151 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9152 {
9153 	struct sas_phy *phy = hpsa_sas_phy->phy;
9154 
9155 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9156 	sas_phy_free(phy);
9157 	if (hpsa_sas_phy->added_to_port)
9158 		list_del(&hpsa_sas_phy->phy_list_entry);
9159 	kfree(hpsa_sas_phy);
9160 }
9161 
9162 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9163 {
9164 	int rc;
9165 	struct hpsa_sas_port *hpsa_sas_port;
9166 	struct sas_phy *phy;
9167 	struct sas_identify *identify;
9168 
9169 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9170 	phy = hpsa_sas_phy->phy;
9171 
9172 	identify = &phy->identify;
9173 	memset(identify, 0, sizeof(*identify));
9174 	identify->sas_address = hpsa_sas_port->sas_address;
9175 	identify->device_type = SAS_END_DEVICE;
9176 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9177 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9178 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9179 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9180 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9181 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9182 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9183 
9184 	rc = sas_phy_add(hpsa_sas_phy->phy);
9185 	if (rc)
9186 		return rc;
9187 
9188 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9189 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9190 			&hpsa_sas_port->phy_list_head);
9191 	hpsa_sas_phy->added_to_port = true;
9192 
9193 	return 0;
9194 }
9195 
9196 static int
9197 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9198 				struct sas_rphy *rphy)
9199 {
9200 	struct sas_identify *identify;
9201 
9202 	identify = &rphy->identify;
9203 	identify->sas_address = hpsa_sas_port->sas_address;
9204 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9205 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9206 
9207 	return sas_rphy_add(rphy);
9208 }
9209 
9210 static struct hpsa_sas_port
9211 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9212 				u64 sas_address)
9213 {
9214 	int rc;
9215 	struct hpsa_sas_port *hpsa_sas_port;
9216 	struct sas_port *port;
9217 
9218 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9219 	if (!hpsa_sas_port)
9220 		return NULL;
9221 
9222 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9223 	hpsa_sas_port->parent_node = hpsa_sas_node;
9224 
9225 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9226 	if (!port)
9227 		goto free_hpsa_port;
9228 
9229 	rc = sas_port_add(port);
9230 	if (rc)
9231 		goto free_sas_port;
9232 
9233 	hpsa_sas_port->port = port;
9234 	hpsa_sas_port->sas_address = sas_address;
9235 	list_add_tail(&hpsa_sas_port->port_list_entry,
9236 			&hpsa_sas_node->port_list_head);
9237 
9238 	return hpsa_sas_port;
9239 
9240 free_sas_port:
9241 	sas_port_free(port);
9242 free_hpsa_port:
9243 	kfree(hpsa_sas_port);
9244 
9245 	return NULL;
9246 }
9247 
9248 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9249 {
9250 	struct hpsa_sas_phy *hpsa_sas_phy;
9251 	struct hpsa_sas_phy *next;
9252 
9253 	list_for_each_entry_safe(hpsa_sas_phy, next,
9254 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9255 		hpsa_free_sas_phy(hpsa_sas_phy);
9256 
9257 	sas_port_delete(hpsa_sas_port->port);
9258 	list_del(&hpsa_sas_port->port_list_entry);
9259 	kfree(hpsa_sas_port);
9260 }
9261 
9262 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9263 {
9264 	struct hpsa_sas_node *hpsa_sas_node;
9265 
9266 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9267 	if (hpsa_sas_node) {
9268 		hpsa_sas_node->parent_dev = parent_dev;
9269 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9270 	}
9271 
9272 	return hpsa_sas_node;
9273 }
9274 
9275 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9276 {
9277 	struct hpsa_sas_port *hpsa_sas_port;
9278 	struct hpsa_sas_port *next;
9279 
9280 	if (!hpsa_sas_node)
9281 		return;
9282 
9283 	list_for_each_entry_safe(hpsa_sas_port, next,
9284 			&hpsa_sas_node->port_list_head, port_list_entry)
9285 		hpsa_free_sas_port(hpsa_sas_port);
9286 
9287 	kfree(hpsa_sas_node);
9288 }
9289 
9290 static struct hpsa_scsi_dev_t
9291 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9292 					struct sas_rphy *rphy)
9293 {
9294 	int i;
9295 	struct hpsa_scsi_dev_t *device;
9296 
9297 	for (i = 0; i < h->ndevices; i++) {
9298 		device = h->dev[i];
9299 		if (!device->sas_port)
9300 			continue;
9301 		if (device->sas_port->rphy == rphy)
9302 			return device;
9303 	}
9304 
9305 	return NULL;
9306 }
9307 
9308 static int hpsa_add_sas_host(struct ctlr_info *h)
9309 {
9310 	int rc;
9311 	struct device *parent_dev;
9312 	struct hpsa_sas_node *hpsa_sas_node;
9313 	struct hpsa_sas_port *hpsa_sas_port;
9314 	struct hpsa_sas_phy *hpsa_sas_phy;
9315 
9316 	parent_dev = &h->scsi_host->shost_gendev;
9317 
9318 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9319 	if (!hpsa_sas_node)
9320 		return -ENOMEM;
9321 
9322 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9323 	if (!hpsa_sas_port) {
9324 		rc = -ENODEV;
9325 		goto free_sas_node;
9326 	}
9327 
9328 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9329 	if (!hpsa_sas_phy) {
9330 		rc = -ENODEV;
9331 		goto free_sas_port;
9332 	}
9333 
9334 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9335 	if (rc)
9336 		goto free_sas_phy;
9337 
9338 	h->sas_host = hpsa_sas_node;
9339 
9340 	return 0;
9341 
9342 free_sas_phy:
9343 	hpsa_free_sas_phy(hpsa_sas_phy);
9344 free_sas_port:
9345 	hpsa_free_sas_port(hpsa_sas_port);
9346 free_sas_node:
9347 	hpsa_free_sas_node(hpsa_sas_node);
9348 
9349 	return rc;
9350 }
9351 
9352 static void hpsa_delete_sas_host(struct ctlr_info *h)
9353 {
9354 	hpsa_free_sas_node(h->sas_host);
9355 }
9356 
9357 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9358 				struct hpsa_scsi_dev_t *device)
9359 {
9360 	int rc;
9361 	struct hpsa_sas_port *hpsa_sas_port;
9362 	struct sas_rphy *rphy;
9363 
9364 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9365 	if (!hpsa_sas_port)
9366 		return -ENOMEM;
9367 
9368 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9369 	if (!rphy) {
9370 		rc = -ENODEV;
9371 		goto free_sas_port;
9372 	}
9373 
9374 	hpsa_sas_port->rphy = rphy;
9375 	device->sas_port = hpsa_sas_port;
9376 
9377 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9378 	if (rc)
9379 		goto free_sas_port;
9380 
9381 	return 0;
9382 
9383 free_sas_port:
9384 	hpsa_free_sas_port(hpsa_sas_port);
9385 	device->sas_port = NULL;
9386 
9387 	return rc;
9388 }
9389 
9390 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9391 {
9392 	if (device->sas_port) {
9393 		hpsa_free_sas_port(device->sas_port);
9394 		device->sas_port = NULL;
9395 	}
9396 }
9397 
9398 static int
9399 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9400 {
9401 	return 0;
9402 }
9403 
9404 static int
9405 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9406 {
9407 	*identifier = 0;
9408 	return 0;
9409 }
9410 
9411 static int
9412 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9413 {
9414 	return -ENXIO;
9415 }
9416 
9417 static int
9418 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9419 {
9420 	return 0;
9421 }
9422 
9423 static int
9424 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9425 {
9426 	return 0;
9427 }
9428 
9429 static int
9430 hpsa_sas_phy_setup(struct sas_phy *phy)
9431 {
9432 	return 0;
9433 }
9434 
9435 static void
9436 hpsa_sas_phy_release(struct sas_phy *phy)
9437 {
9438 }
9439 
9440 static int
9441 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9442 {
9443 	return -EINVAL;
9444 }
9445 
9446 /* SMP = Serial Management Protocol */
9447 static int
9448 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9449 struct request *req)
9450 {
9451 	return -EINVAL;
9452 }
9453 
9454 static struct sas_function_template hpsa_sas_transport_functions = {
9455 	.get_linkerrors = hpsa_sas_get_linkerrors,
9456 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9457 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9458 	.phy_reset = hpsa_sas_phy_reset,
9459 	.phy_enable = hpsa_sas_phy_enable,
9460 	.phy_setup = hpsa_sas_phy_setup,
9461 	.phy_release = hpsa_sas_phy_release,
9462 	.set_phy_speed = hpsa_sas_phy_speed,
9463 	.smp_handler = hpsa_sas_smp_handler,
9464 };
9465 
9466 /*
9467  *  This is it.  Register the PCI driver information for the cards we control
9468  *  the OS will call our registered routines when it finds one of our cards.
9469  */
9470 static int __init hpsa_init(void)
9471 {
9472 	int rc;
9473 
9474 	hpsa_sas_transport_template =
9475 		sas_attach_transport(&hpsa_sas_transport_functions);
9476 	if (!hpsa_sas_transport_template)
9477 		return -ENODEV;
9478 
9479 	rc = pci_register_driver(&hpsa_pci_driver);
9480 
9481 	if (rc)
9482 		sas_release_transport(hpsa_sas_transport_template);
9483 
9484 	return rc;
9485 }
9486 
9487 static void __exit hpsa_cleanup(void)
9488 {
9489 	pci_unregister_driver(&hpsa_pci_driver);
9490 	sas_release_transport(hpsa_sas_transport_template);
9491 }
9492 
9493 static void __attribute__((unused)) verify_offsets(void)
9494 {
9495 #define VERIFY_OFFSET(member, offset) \
9496 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9497 
9498 	VERIFY_OFFSET(structure_size, 0);
9499 	VERIFY_OFFSET(volume_blk_size, 4);
9500 	VERIFY_OFFSET(volume_blk_cnt, 8);
9501 	VERIFY_OFFSET(phys_blk_shift, 16);
9502 	VERIFY_OFFSET(parity_rotation_shift, 17);
9503 	VERIFY_OFFSET(strip_size, 18);
9504 	VERIFY_OFFSET(disk_starting_blk, 20);
9505 	VERIFY_OFFSET(disk_blk_cnt, 28);
9506 	VERIFY_OFFSET(data_disks_per_row, 36);
9507 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9508 	VERIFY_OFFSET(row_cnt, 40);
9509 	VERIFY_OFFSET(layout_map_count, 42);
9510 	VERIFY_OFFSET(flags, 44);
9511 	VERIFY_OFFSET(dekindex, 46);
9512 	/* VERIFY_OFFSET(reserved, 48 */
9513 	VERIFY_OFFSET(data, 64);
9514 
9515 #undef VERIFY_OFFSET
9516 
9517 #define VERIFY_OFFSET(member, offset) \
9518 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9519 
9520 	VERIFY_OFFSET(IU_type, 0);
9521 	VERIFY_OFFSET(direction, 1);
9522 	VERIFY_OFFSET(reply_queue, 2);
9523 	/* VERIFY_OFFSET(reserved1, 3);  */
9524 	VERIFY_OFFSET(scsi_nexus, 4);
9525 	VERIFY_OFFSET(Tag, 8);
9526 	VERIFY_OFFSET(cdb, 16);
9527 	VERIFY_OFFSET(cciss_lun, 32);
9528 	VERIFY_OFFSET(data_len, 40);
9529 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9530 	VERIFY_OFFSET(sg_count, 45);
9531 	/* VERIFY_OFFSET(reserved3 */
9532 	VERIFY_OFFSET(err_ptr, 48);
9533 	VERIFY_OFFSET(err_len, 56);
9534 	/* VERIFY_OFFSET(reserved4  */
9535 	VERIFY_OFFSET(sg, 64);
9536 
9537 #undef VERIFY_OFFSET
9538 
9539 #define VERIFY_OFFSET(member, offset) \
9540 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9541 
9542 	VERIFY_OFFSET(dev_handle, 0x00);
9543 	VERIFY_OFFSET(reserved1, 0x02);
9544 	VERIFY_OFFSET(function, 0x03);
9545 	VERIFY_OFFSET(reserved2, 0x04);
9546 	VERIFY_OFFSET(err_info, 0x0C);
9547 	VERIFY_OFFSET(reserved3, 0x10);
9548 	VERIFY_OFFSET(err_info_len, 0x12);
9549 	VERIFY_OFFSET(reserved4, 0x13);
9550 	VERIFY_OFFSET(sgl_offset, 0x14);
9551 	VERIFY_OFFSET(reserved5, 0x15);
9552 	VERIFY_OFFSET(transfer_len, 0x1C);
9553 	VERIFY_OFFSET(reserved6, 0x20);
9554 	VERIFY_OFFSET(io_flags, 0x24);
9555 	VERIFY_OFFSET(reserved7, 0x26);
9556 	VERIFY_OFFSET(LUN, 0x34);
9557 	VERIFY_OFFSET(control, 0x3C);
9558 	VERIFY_OFFSET(CDB, 0x40);
9559 	VERIFY_OFFSET(reserved8, 0x50);
9560 	VERIFY_OFFSET(host_context_flags, 0x60);
9561 	VERIFY_OFFSET(timeout_sec, 0x62);
9562 	VERIFY_OFFSET(ReplyQueue, 0x64);
9563 	VERIFY_OFFSET(reserved9, 0x65);
9564 	VERIFY_OFFSET(tag, 0x68);
9565 	VERIFY_OFFSET(host_addr, 0x70);
9566 	VERIFY_OFFSET(CISS_LUN, 0x78);
9567 	VERIFY_OFFSET(SG, 0x78 + 8);
9568 #undef VERIFY_OFFSET
9569 }
9570 
9571 module_init(hpsa_init);
9572 module_exit(hpsa_cleanup);
9573