xref: /linux/drivers/scsi/hpsa.c (revision 666ed8bfd1de3b091cf32ca03b651757dd86cfff)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57 
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.20-170"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65 
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72 
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75 /* How long to wait before giving up on a command */
76 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
77 
78 /* Embedded module documentation macros - see modules.h */
79 MODULE_AUTHOR("Hewlett-Packard Company");
80 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 	HPSA_DRIVER_VERSION);
82 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86 
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 	"Use 'simple mode' rather than 'performant mode'");
91 
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
150 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 	{0,}
152 };
153 
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161 	{0x40700E11, "Smart Array 5300", &SA5A_access},
162 	{0x40800E11, "Smart Array 5i", &SA5B_access},
163 	{0x40820E11, "Smart Array 532", &SA5B_access},
164 	{0x40830E11, "Smart Array 5312", &SA5B_access},
165 	{0x409A0E11, "Smart Array 641", &SA5A_access},
166 	{0x409B0E11, "Smart Array 642", &SA5A_access},
167 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
168 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169 	{0x40910E11, "Smart Array 6i", &SA5A_access},
170 	{0x3225103C, "Smart Array P600", &SA5A_access},
171 	{0x3223103C, "Smart Array P800", &SA5A_access},
172 	{0x3234103C, "Smart Array P400", &SA5A_access},
173 	{0x3235103C, "Smart Array P400i", &SA5A_access},
174 	{0x3211103C, "Smart Array E200i", &SA5A_access},
175 	{0x3212103C, "Smart Array E200", &SA5A_access},
176 	{0x3213103C, "Smart Array E200i", &SA5A_access},
177 	{0x3214103C, "Smart Array E200i", &SA5A_access},
178 	{0x3215103C, "Smart Array E200i", &SA5A_access},
179 	{0x3237103C, "Smart Array E500", &SA5A_access},
180 	{0x323D103C, "Smart Array P700m", &SA5A_access},
181 	{0x3241103C, "Smart Array P212", &SA5_access},
182 	{0x3243103C, "Smart Array P410", &SA5_access},
183 	{0x3245103C, "Smart Array P410i", &SA5_access},
184 	{0x3247103C, "Smart Array P411", &SA5_access},
185 	{0x3249103C, "Smart Array P812", &SA5_access},
186 	{0x324A103C, "Smart Array P712m", &SA5_access},
187 	{0x324B103C, "Smart Array P711m", &SA5_access},
188 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189 	{0x3350103C, "Smart Array P222", &SA5_access},
190 	{0x3351103C, "Smart Array P420", &SA5_access},
191 	{0x3352103C, "Smart Array P421", &SA5_access},
192 	{0x3353103C, "Smart Array P822", &SA5_access},
193 	{0x3354103C, "Smart Array P420i", &SA5_access},
194 	{0x3355103C, "Smart Array P220i", &SA5_access},
195 	{0x3356103C, "Smart Array P721m", &SA5_access},
196 	{0x1920103C, "Smart Array P430i", &SA5_access},
197 	{0x1921103C, "Smart Array P830i", &SA5_access},
198 	{0x1922103C, "Smart Array P430", &SA5_access},
199 	{0x1923103C, "Smart Array P431", &SA5_access},
200 	{0x1924103C, "Smart Array P830", &SA5_access},
201 	{0x1925103C, "Smart Array P831", &SA5_access},
202 	{0x1926103C, "Smart Array P731m", &SA5_access},
203 	{0x1928103C, "Smart Array P230i", &SA5_access},
204 	{0x1929103C, "Smart Array P530", &SA5_access},
205 	{0x21BD103C, "Smart Array P244br", &SA5_access},
206 	{0x21BE103C, "Smart Array P741m", &SA5_access},
207 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
208 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
209 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
210 	{0x21C2103C, "Smart Array P440", &SA5_access},
211 	{0x21C3103C, "Smart Array P441", &SA5_access},
212 	{0x21C4103C, "Smart Array", &SA5_access},
213 	{0x21C5103C, "Smart Array P841", &SA5_access},
214 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
215 	{0x21C7103C, "Smart HBA H240", &SA5_access},
216 	{0x21C8103C, "Smart HBA H241", &SA5_access},
217 	{0x21C9103C, "Smart Array", &SA5_access},
218 	{0x21CA103C, "Smart Array P246br", &SA5_access},
219 	{0x21CB103C, "Smart Array P840", &SA5_access},
220 	{0x21CC103C, "Smart Array", &SA5_access},
221 	{0x21CD103C, "Smart Array", &SA5_access},
222 	{0x21CE103C, "Smart HBA", &SA5_access},
223 	{0x05809005, "SmartHBA-SA", &SA5_access},
224 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
225 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
227 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
228 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236 
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241 			struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245 		struct sas_rphy *rphy);
246 
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252 
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256 		      void __user *arg);
257 
258 #ifdef CONFIG_COMPAT
259 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
260 	void __user *arg);
261 #endif
262 
263 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_alloc(struct ctlr_info *h);
265 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
266 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
267 					    struct scsi_cmnd *scmd);
268 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
269 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
270 	int cmd_type);
271 static void hpsa_free_cmd_pool(struct ctlr_info *h);
272 #define VPD_PAGE (1 << 8)
273 #define HPSA_SIMPLE_ERROR_BITS 0x03
274 
275 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
276 static void hpsa_scan_start(struct Scsi_Host *);
277 static int hpsa_scan_finished(struct Scsi_Host *sh,
278 	unsigned long elapsed_time);
279 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
280 
281 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
282 static int hpsa_slave_alloc(struct scsi_device *sdev);
283 static int hpsa_slave_configure(struct scsi_device *sdev);
284 static void hpsa_slave_destroy(struct scsi_device *sdev);
285 
286 static void hpsa_update_scsi_devices(struct ctlr_info *h);
287 static int check_for_unit_attention(struct ctlr_info *h,
288 	struct CommandList *c);
289 static void check_ioctl_unit_attention(struct ctlr_info *h,
290 	struct CommandList *c);
291 /* performant mode helper functions */
292 static void calc_bucket_map(int *bucket, int num_buckets,
293 	int nsgs, int min_blocks, u32 *bucket_map);
294 static void hpsa_free_performant_mode(struct ctlr_info *h);
295 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
296 static inline u32 next_command(struct ctlr_info *h, u8 q);
297 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
298 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
299 			       u64 *cfg_offset);
300 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
301 				    unsigned long *memory_bar);
302 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
303 				bool *legacy_board);
304 static int wait_for_device_to_become_ready(struct ctlr_info *h,
305 					   unsigned char lunaddr[],
306 					   int reply_queue);
307 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
308 				     int wait_for_ready);
309 static inline void finish_cmd(struct CommandList *c);
310 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
311 #define BOARD_NOT_READY 0
312 #define BOARD_READY 1
313 static void hpsa_drain_accel_commands(struct ctlr_info *h);
314 static void hpsa_flush_cache(struct ctlr_info *h);
315 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
316 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
317 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
318 static void hpsa_command_resubmit_worker(struct work_struct *work);
319 static u32 lockup_detected(struct ctlr_info *h);
320 static int detect_controller_lockup(struct ctlr_info *h);
321 static void hpsa_disable_rld_caching(struct ctlr_info *h);
322 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
323 	struct ReportExtendedLUNdata *buf, int bufsize);
324 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
325 	unsigned char scsi3addr[], u8 page);
326 static int hpsa_luns_changed(struct ctlr_info *h);
327 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
328 			       struct hpsa_scsi_dev_t *dev,
329 			       unsigned char *scsi3addr);
330 
331 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
332 {
333 	unsigned long *priv = shost_priv(sdev->host);
334 	return (struct ctlr_info *) *priv;
335 }
336 
337 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
338 {
339 	unsigned long *priv = shost_priv(sh);
340 	return (struct ctlr_info *) *priv;
341 }
342 
343 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
344 {
345 	return c->scsi_cmd == SCSI_CMD_IDLE;
346 }
347 
348 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
349 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
350 			u8 *sense_key, u8 *asc, u8 *ascq)
351 {
352 	struct scsi_sense_hdr sshdr;
353 	bool rc;
354 
355 	*sense_key = -1;
356 	*asc = -1;
357 	*ascq = -1;
358 
359 	if (sense_data_len < 1)
360 		return;
361 
362 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
363 	if (rc) {
364 		*sense_key = sshdr.sense_key;
365 		*asc = sshdr.asc;
366 		*ascq = sshdr.ascq;
367 	}
368 }
369 
370 static int check_for_unit_attention(struct ctlr_info *h,
371 	struct CommandList *c)
372 {
373 	u8 sense_key, asc, ascq;
374 	int sense_len;
375 
376 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
377 		sense_len = sizeof(c->err_info->SenseInfo);
378 	else
379 		sense_len = c->err_info->SenseLen;
380 
381 	decode_sense_data(c->err_info->SenseInfo, sense_len,
382 				&sense_key, &asc, &ascq);
383 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
384 		return 0;
385 
386 	switch (asc) {
387 	case STATE_CHANGED:
388 		dev_warn(&h->pdev->dev,
389 			"%s: a state change detected, command retried\n",
390 			h->devname);
391 		break;
392 	case LUN_FAILED:
393 		dev_warn(&h->pdev->dev,
394 			"%s: LUN failure detected\n", h->devname);
395 		break;
396 	case REPORT_LUNS_CHANGED:
397 		dev_warn(&h->pdev->dev,
398 			"%s: report LUN data changed\n", h->devname);
399 	/*
400 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
401 	 * target (array) devices.
402 	 */
403 		break;
404 	case POWER_OR_RESET:
405 		dev_warn(&h->pdev->dev,
406 			"%s: a power on or device reset detected\n",
407 			h->devname);
408 		break;
409 	case UNIT_ATTENTION_CLEARED:
410 		dev_warn(&h->pdev->dev,
411 			"%s: unit attention cleared by another initiator\n",
412 			h->devname);
413 		break;
414 	default:
415 		dev_warn(&h->pdev->dev,
416 			"%s: unknown unit attention detected\n",
417 			h->devname);
418 		break;
419 	}
420 	return 1;
421 }
422 
423 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
424 {
425 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
426 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
427 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
428 		return 0;
429 	dev_warn(&h->pdev->dev, HPSA "device busy");
430 	return 1;
431 }
432 
433 static u32 lockup_detected(struct ctlr_info *h);
434 static ssize_t host_show_lockup_detected(struct device *dev,
435 		struct device_attribute *attr, char *buf)
436 {
437 	int ld;
438 	struct ctlr_info *h;
439 	struct Scsi_Host *shost = class_to_shost(dev);
440 
441 	h = shost_to_hba(shost);
442 	ld = lockup_detected(h);
443 
444 	return sprintf(buf, "ld=%d\n", ld);
445 }
446 
447 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
448 					 struct device_attribute *attr,
449 					 const char *buf, size_t count)
450 {
451 	int status, len;
452 	struct ctlr_info *h;
453 	struct Scsi_Host *shost = class_to_shost(dev);
454 	char tmpbuf[10];
455 
456 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
457 		return -EACCES;
458 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
459 	strncpy(tmpbuf, buf, len);
460 	tmpbuf[len] = '\0';
461 	if (sscanf(tmpbuf, "%d", &status) != 1)
462 		return -EINVAL;
463 	h = shost_to_hba(shost);
464 	h->acciopath_status = !!status;
465 	dev_warn(&h->pdev->dev,
466 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
467 		h->acciopath_status ? "enabled" : "disabled");
468 	return count;
469 }
470 
471 static ssize_t host_store_raid_offload_debug(struct device *dev,
472 					 struct device_attribute *attr,
473 					 const char *buf, size_t count)
474 {
475 	int debug_level, len;
476 	struct ctlr_info *h;
477 	struct Scsi_Host *shost = class_to_shost(dev);
478 	char tmpbuf[10];
479 
480 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
481 		return -EACCES;
482 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
483 	strncpy(tmpbuf, buf, len);
484 	tmpbuf[len] = '\0';
485 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
486 		return -EINVAL;
487 	if (debug_level < 0)
488 		debug_level = 0;
489 	h = shost_to_hba(shost);
490 	h->raid_offload_debug = debug_level;
491 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
492 		h->raid_offload_debug);
493 	return count;
494 }
495 
496 static ssize_t host_store_rescan(struct device *dev,
497 				 struct device_attribute *attr,
498 				 const char *buf, size_t count)
499 {
500 	struct ctlr_info *h;
501 	struct Scsi_Host *shost = class_to_shost(dev);
502 	h = shost_to_hba(shost);
503 	hpsa_scan_start(h->scsi_host);
504 	return count;
505 }
506 
507 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
508 {
509 	device->offload_enabled = 0;
510 	device->offload_to_be_enabled = 0;
511 }
512 
513 static ssize_t host_show_firmware_revision(struct device *dev,
514 	     struct device_attribute *attr, char *buf)
515 {
516 	struct ctlr_info *h;
517 	struct Scsi_Host *shost = class_to_shost(dev);
518 	unsigned char *fwrev;
519 
520 	h = shost_to_hba(shost);
521 	if (!h->hba_inquiry_data)
522 		return 0;
523 	fwrev = &h->hba_inquiry_data[32];
524 	return snprintf(buf, 20, "%c%c%c%c\n",
525 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
526 }
527 
528 static ssize_t host_show_commands_outstanding(struct device *dev,
529 	     struct device_attribute *attr, char *buf)
530 {
531 	struct Scsi_Host *shost = class_to_shost(dev);
532 	struct ctlr_info *h = shost_to_hba(shost);
533 
534 	return snprintf(buf, 20, "%d\n",
535 			atomic_read(&h->commands_outstanding));
536 }
537 
538 static ssize_t host_show_transport_mode(struct device *dev,
539 	struct device_attribute *attr, char *buf)
540 {
541 	struct ctlr_info *h;
542 	struct Scsi_Host *shost = class_to_shost(dev);
543 
544 	h = shost_to_hba(shost);
545 	return snprintf(buf, 20, "%s\n",
546 		h->transMethod & CFGTBL_Trans_Performant ?
547 			"performant" : "simple");
548 }
549 
550 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
551 	struct device_attribute *attr, char *buf)
552 {
553 	struct ctlr_info *h;
554 	struct Scsi_Host *shost = class_to_shost(dev);
555 
556 	h = shost_to_hba(shost);
557 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
558 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
559 }
560 
561 /* List of controllers which cannot be hard reset on kexec with reset_devices */
562 static u32 unresettable_controller[] = {
563 	0x324a103C, /* Smart Array P712m */
564 	0x324b103C, /* Smart Array P711m */
565 	0x3223103C, /* Smart Array P800 */
566 	0x3234103C, /* Smart Array P400 */
567 	0x3235103C, /* Smart Array P400i */
568 	0x3211103C, /* Smart Array E200i */
569 	0x3212103C, /* Smart Array E200 */
570 	0x3213103C, /* Smart Array E200i */
571 	0x3214103C, /* Smart Array E200i */
572 	0x3215103C, /* Smart Array E200i */
573 	0x3237103C, /* Smart Array E500 */
574 	0x323D103C, /* Smart Array P700m */
575 	0x40800E11, /* Smart Array 5i */
576 	0x409C0E11, /* Smart Array 6400 */
577 	0x409D0E11, /* Smart Array 6400 EM */
578 	0x40700E11, /* Smart Array 5300 */
579 	0x40820E11, /* Smart Array 532 */
580 	0x40830E11, /* Smart Array 5312 */
581 	0x409A0E11, /* Smart Array 641 */
582 	0x409B0E11, /* Smart Array 642 */
583 	0x40910E11, /* Smart Array 6i */
584 };
585 
586 /* List of controllers which cannot even be soft reset */
587 static u32 soft_unresettable_controller[] = {
588 	0x40800E11, /* Smart Array 5i */
589 	0x40700E11, /* Smart Array 5300 */
590 	0x40820E11, /* Smart Array 532 */
591 	0x40830E11, /* Smart Array 5312 */
592 	0x409A0E11, /* Smart Array 641 */
593 	0x409B0E11, /* Smart Array 642 */
594 	0x40910E11, /* Smart Array 6i */
595 	/* Exclude 640x boards.  These are two pci devices in one slot
596 	 * which share a battery backed cache module.  One controls the
597 	 * cache, the other accesses the cache through the one that controls
598 	 * it.  If we reset the one controlling the cache, the other will
599 	 * likely not be happy.  Just forbid resetting this conjoined mess.
600 	 * The 640x isn't really supported by hpsa anyway.
601 	 */
602 	0x409C0E11, /* Smart Array 6400 */
603 	0x409D0E11, /* Smart Array 6400 EM */
604 };
605 
606 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
607 {
608 	int i;
609 
610 	for (i = 0; i < nelems; i++)
611 		if (a[i] == board_id)
612 			return 1;
613 	return 0;
614 }
615 
616 static int ctlr_is_hard_resettable(u32 board_id)
617 {
618 	return !board_id_in_array(unresettable_controller,
619 			ARRAY_SIZE(unresettable_controller), board_id);
620 }
621 
622 static int ctlr_is_soft_resettable(u32 board_id)
623 {
624 	return !board_id_in_array(soft_unresettable_controller,
625 			ARRAY_SIZE(soft_unresettable_controller), board_id);
626 }
627 
628 static int ctlr_is_resettable(u32 board_id)
629 {
630 	return ctlr_is_hard_resettable(board_id) ||
631 		ctlr_is_soft_resettable(board_id);
632 }
633 
634 static ssize_t host_show_resettable(struct device *dev,
635 	struct device_attribute *attr, char *buf)
636 {
637 	struct ctlr_info *h;
638 	struct Scsi_Host *shost = class_to_shost(dev);
639 
640 	h = shost_to_hba(shost);
641 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
642 }
643 
644 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
645 {
646 	return (scsi3addr[3] & 0xC0) == 0x40;
647 }
648 
649 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
650 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
651 };
652 #define HPSA_RAID_0	0
653 #define HPSA_RAID_4	1
654 #define HPSA_RAID_1	2	/* also used for RAID 10 */
655 #define HPSA_RAID_5	3	/* also used for RAID 50 */
656 #define HPSA_RAID_51	4
657 #define HPSA_RAID_6	5	/* also used for RAID 60 */
658 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
659 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
660 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
661 
662 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
663 {
664 	return !device->physical_device;
665 }
666 
667 static ssize_t raid_level_show(struct device *dev,
668 	     struct device_attribute *attr, char *buf)
669 {
670 	ssize_t l = 0;
671 	unsigned char rlevel;
672 	struct ctlr_info *h;
673 	struct scsi_device *sdev;
674 	struct hpsa_scsi_dev_t *hdev;
675 	unsigned long flags;
676 
677 	sdev = to_scsi_device(dev);
678 	h = sdev_to_hba(sdev);
679 	spin_lock_irqsave(&h->lock, flags);
680 	hdev = sdev->hostdata;
681 	if (!hdev) {
682 		spin_unlock_irqrestore(&h->lock, flags);
683 		return -ENODEV;
684 	}
685 
686 	/* Is this even a logical drive? */
687 	if (!is_logical_device(hdev)) {
688 		spin_unlock_irqrestore(&h->lock, flags);
689 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
690 		return l;
691 	}
692 
693 	rlevel = hdev->raid_level;
694 	spin_unlock_irqrestore(&h->lock, flags);
695 	if (rlevel > RAID_UNKNOWN)
696 		rlevel = RAID_UNKNOWN;
697 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
698 	return l;
699 }
700 
701 static ssize_t lunid_show(struct device *dev,
702 	     struct device_attribute *attr, char *buf)
703 {
704 	struct ctlr_info *h;
705 	struct scsi_device *sdev;
706 	struct hpsa_scsi_dev_t *hdev;
707 	unsigned long flags;
708 	unsigned char lunid[8];
709 
710 	sdev = to_scsi_device(dev);
711 	h = sdev_to_hba(sdev);
712 	spin_lock_irqsave(&h->lock, flags);
713 	hdev = sdev->hostdata;
714 	if (!hdev) {
715 		spin_unlock_irqrestore(&h->lock, flags);
716 		return -ENODEV;
717 	}
718 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
719 	spin_unlock_irqrestore(&h->lock, flags);
720 	return snprintf(buf, 20, "0x%8phN\n", lunid);
721 }
722 
723 static ssize_t unique_id_show(struct device *dev,
724 	     struct device_attribute *attr, char *buf)
725 {
726 	struct ctlr_info *h;
727 	struct scsi_device *sdev;
728 	struct hpsa_scsi_dev_t *hdev;
729 	unsigned long flags;
730 	unsigned char sn[16];
731 
732 	sdev = to_scsi_device(dev);
733 	h = sdev_to_hba(sdev);
734 	spin_lock_irqsave(&h->lock, flags);
735 	hdev = sdev->hostdata;
736 	if (!hdev) {
737 		spin_unlock_irqrestore(&h->lock, flags);
738 		return -ENODEV;
739 	}
740 	memcpy(sn, hdev->device_id, sizeof(sn));
741 	spin_unlock_irqrestore(&h->lock, flags);
742 	return snprintf(buf, 16 * 2 + 2,
743 			"%02X%02X%02X%02X%02X%02X%02X%02X"
744 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
745 			sn[0], sn[1], sn[2], sn[3],
746 			sn[4], sn[5], sn[6], sn[7],
747 			sn[8], sn[9], sn[10], sn[11],
748 			sn[12], sn[13], sn[14], sn[15]);
749 }
750 
751 static ssize_t sas_address_show(struct device *dev,
752 	      struct device_attribute *attr, char *buf)
753 {
754 	struct ctlr_info *h;
755 	struct scsi_device *sdev;
756 	struct hpsa_scsi_dev_t *hdev;
757 	unsigned long flags;
758 	u64 sas_address;
759 
760 	sdev = to_scsi_device(dev);
761 	h = sdev_to_hba(sdev);
762 	spin_lock_irqsave(&h->lock, flags);
763 	hdev = sdev->hostdata;
764 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
765 		spin_unlock_irqrestore(&h->lock, flags);
766 		return -ENODEV;
767 	}
768 	sas_address = hdev->sas_address;
769 	spin_unlock_irqrestore(&h->lock, flags);
770 
771 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
772 }
773 
774 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
775 	     struct device_attribute *attr, char *buf)
776 {
777 	struct ctlr_info *h;
778 	struct scsi_device *sdev;
779 	struct hpsa_scsi_dev_t *hdev;
780 	unsigned long flags;
781 	int offload_enabled;
782 
783 	sdev = to_scsi_device(dev);
784 	h = sdev_to_hba(sdev);
785 	spin_lock_irqsave(&h->lock, flags);
786 	hdev = sdev->hostdata;
787 	if (!hdev) {
788 		spin_unlock_irqrestore(&h->lock, flags);
789 		return -ENODEV;
790 	}
791 	offload_enabled = hdev->offload_enabled;
792 	spin_unlock_irqrestore(&h->lock, flags);
793 
794 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
795 		return snprintf(buf, 20, "%d\n", offload_enabled);
796 	else
797 		return snprintf(buf, 40, "%s\n",
798 				"Not applicable for a controller");
799 }
800 
801 #define MAX_PATHS 8
802 static ssize_t path_info_show(struct device *dev,
803 	     struct device_attribute *attr, char *buf)
804 {
805 	struct ctlr_info *h;
806 	struct scsi_device *sdev;
807 	struct hpsa_scsi_dev_t *hdev;
808 	unsigned long flags;
809 	int i;
810 	int output_len = 0;
811 	u8 box;
812 	u8 bay;
813 	u8 path_map_index = 0;
814 	char *active;
815 	unsigned char phys_connector[2];
816 
817 	sdev = to_scsi_device(dev);
818 	h = sdev_to_hba(sdev);
819 	spin_lock_irqsave(&h->devlock, flags);
820 	hdev = sdev->hostdata;
821 	if (!hdev) {
822 		spin_unlock_irqrestore(&h->devlock, flags);
823 		return -ENODEV;
824 	}
825 
826 	bay = hdev->bay;
827 	for (i = 0; i < MAX_PATHS; i++) {
828 		path_map_index = 1<<i;
829 		if (i == hdev->active_path_index)
830 			active = "Active";
831 		else if (hdev->path_map & path_map_index)
832 			active = "Inactive";
833 		else
834 			continue;
835 
836 		output_len += scnprintf(buf + output_len,
837 				PAGE_SIZE - output_len,
838 				"[%d:%d:%d:%d] %20.20s ",
839 				h->scsi_host->host_no,
840 				hdev->bus, hdev->target, hdev->lun,
841 				scsi_device_type(hdev->devtype));
842 
843 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
844 			output_len += scnprintf(buf + output_len,
845 						PAGE_SIZE - output_len,
846 						"%s\n", active);
847 			continue;
848 		}
849 
850 		box = hdev->box[i];
851 		memcpy(&phys_connector, &hdev->phys_connector[i],
852 			sizeof(phys_connector));
853 		if (phys_connector[0] < '0')
854 			phys_connector[0] = '0';
855 		if (phys_connector[1] < '0')
856 			phys_connector[1] = '0';
857 		output_len += scnprintf(buf + output_len,
858 				PAGE_SIZE - output_len,
859 				"PORT: %.2s ",
860 				phys_connector);
861 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
862 			hdev->expose_device) {
863 			if (box == 0 || box == 0xFF) {
864 				output_len += scnprintf(buf + output_len,
865 					PAGE_SIZE - output_len,
866 					"BAY: %hhu %s\n",
867 					bay, active);
868 			} else {
869 				output_len += scnprintf(buf + output_len,
870 					PAGE_SIZE - output_len,
871 					"BOX: %hhu BAY: %hhu %s\n",
872 					box, bay, active);
873 			}
874 		} else if (box != 0 && box != 0xFF) {
875 			output_len += scnprintf(buf + output_len,
876 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
877 				box, active);
878 		} else
879 			output_len += scnprintf(buf + output_len,
880 				PAGE_SIZE - output_len, "%s\n", active);
881 	}
882 
883 	spin_unlock_irqrestore(&h->devlock, flags);
884 	return output_len;
885 }
886 
887 static ssize_t host_show_ctlr_num(struct device *dev,
888 	struct device_attribute *attr, char *buf)
889 {
890 	struct ctlr_info *h;
891 	struct Scsi_Host *shost = class_to_shost(dev);
892 
893 	h = shost_to_hba(shost);
894 	return snprintf(buf, 20, "%d\n", h->ctlr);
895 }
896 
897 static ssize_t host_show_legacy_board(struct device *dev,
898 	struct device_attribute *attr, char *buf)
899 {
900 	struct ctlr_info *h;
901 	struct Scsi_Host *shost = class_to_shost(dev);
902 
903 	h = shost_to_hba(shost);
904 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
905 }
906 
907 static DEVICE_ATTR_RO(raid_level);
908 static DEVICE_ATTR_RO(lunid);
909 static DEVICE_ATTR_RO(unique_id);
910 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
911 static DEVICE_ATTR_RO(sas_address);
912 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
913 			host_show_hp_ssd_smart_path_enabled, NULL);
914 static DEVICE_ATTR_RO(path_info);
915 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
916 		host_show_hp_ssd_smart_path_status,
917 		host_store_hp_ssd_smart_path_status);
918 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
919 			host_store_raid_offload_debug);
920 static DEVICE_ATTR(firmware_revision, S_IRUGO,
921 	host_show_firmware_revision, NULL);
922 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
923 	host_show_commands_outstanding, NULL);
924 static DEVICE_ATTR(transport_mode, S_IRUGO,
925 	host_show_transport_mode, NULL);
926 static DEVICE_ATTR(resettable, S_IRUGO,
927 	host_show_resettable, NULL);
928 static DEVICE_ATTR(lockup_detected, S_IRUGO,
929 	host_show_lockup_detected, NULL);
930 static DEVICE_ATTR(ctlr_num, S_IRUGO,
931 	host_show_ctlr_num, NULL);
932 static DEVICE_ATTR(legacy_board, S_IRUGO,
933 	host_show_legacy_board, NULL);
934 
935 static struct device_attribute *hpsa_sdev_attrs[] = {
936 	&dev_attr_raid_level,
937 	&dev_attr_lunid,
938 	&dev_attr_unique_id,
939 	&dev_attr_hp_ssd_smart_path_enabled,
940 	&dev_attr_path_info,
941 	&dev_attr_sas_address,
942 	NULL,
943 };
944 
945 static struct device_attribute *hpsa_shost_attrs[] = {
946 	&dev_attr_rescan,
947 	&dev_attr_firmware_revision,
948 	&dev_attr_commands_outstanding,
949 	&dev_attr_transport_mode,
950 	&dev_attr_resettable,
951 	&dev_attr_hp_ssd_smart_path_status,
952 	&dev_attr_raid_offload_debug,
953 	&dev_attr_lockup_detected,
954 	&dev_attr_ctlr_num,
955 	&dev_attr_legacy_board,
956 	NULL,
957 };
958 
959 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
960 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
961 
962 static struct scsi_host_template hpsa_driver_template = {
963 	.module			= THIS_MODULE,
964 	.name			= HPSA,
965 	.proc_name		= HPSA,
966 	.queuecommand		= hpsa_scsi_queue_command,
967 	.scan_start		= hpsa_scan_start,
968 	.scan_finished		= hpsa_scan_finished,
969 	.change_queue_depth	= hpsa_change_queue_depth,
970 	.this_id		= -1,
971 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
972 	.ioctl			= hpsa_ioctl,
973 	.slave_alloc		= hpsa_slave_alloc,
974 	.slave_configure	= hpsa_slave_configure,
975 	.slave_destroy		= hpsa_slave_destroy,
976 #ifdef CONFIG_COMPAT
977 	.compat_ioctl		= hpsa_compat_ioctl,
978 #endif
979 	.sdev_attrs = hpsa_sdev_attrs,
980 	.shost_attrs = hpsa_shost_attrs,
981 	.max_sectors = 2048,
982 	.no_write_same = 1,
983 };
984 
985 static inline u32 next_command(struct ctlr_info *h, u8 q)
986 {
987 	u32 a;
988 	struct reply_queue_buffer *rq = &h->reply_queue[q];
989 
990 	if (h->transMethod & CFGTBL_Trans_io_accel1)
991 		return h->access.command_completed(h, q);
992 
993 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
994 		return h->access.command_completed(h, q);
995 
996 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
997 		a = rq->head[rq->current_entry];
998 		rq->current_entry++;
999 		atomic_dec(&h->commands_outstanding);
1000 	} else {
1001 		a = FIFO_EMPTY;
1002 	}
1003 	/* Check for wraparound */
1004 	if (rq->current_entry == h->max_commands) {
1005 		rq->current_entry = 0;
1006 		rq->wraparound ^= 1;
1007 	}
1008 	return a;
1009 }
1010 
1011 /*
1012  * There are some special bits in the bus address of the
1013  * command that we have to set for the controller to know
1014  * how to process the command:
1015  *
1016  * Normal performant mode:
1017  * bit 0: 1 means performant mode, 0 means simple mode.
1018  * bits 1-3 = block fetch table entry
1019  * bits 4-6 = command type (== 0)
1020  *
1021  * ioaccel1 mode:
1022  * bit 0 = "performant mode" bit.
1023  * bits 1-3 = block fetch table entry
1024  * bits 4-6 = command type (== 110)
1025  * (command type is needed because ioaccel1 mode
1026  * commands are submitted through the same register as normal
1027  * mode commands, so this is how the controller knows whether
1028  * the command is normal mode or ioaccel1 mode.)
1029  *
1030  * ioaccel2 mode:
1031  * bit 0 = "performant mode" bit.
1032  * bits 1-4 = block fetch table entry (note extra bit)
1033  * bits 4-6 = not needed, because ioaccel2 mode has
1034  * a separate special register for submitting commands.
1035  */
1036 
1037 /*
1038  * set_performant_mode: Modify the tag for cciss performant
1039  * set bit 0 for pull model, bits 3-1 for block fetch
1040  * register number
1041  */
1042 #define DEFAULT_REPLY_QUEUE (-1)
1043 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1044 					int reply_queue)
1045 {
1046 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1047 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1048 		if (unlikely(!h->msix_vectors))
1049 			return;
1050 		c->Header.ReplyQueue = reply_queue;
1051 	}
1052 }
1053 
1054 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1055 						struct CommandList *c,
1056 						int reply_queue)
1057 {
1058 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1059 
1060 	/*
1061 	 * Tell the controller to post the reply to the queue for this
1062 	 * processor.  This seems to give the best I/O throughput.
1063 	 */
1064 	cp->ReplyQueue = reply_queue;
1065 	/*
1066 	 * Set the bits in the address sent down to include:
1067 	 *  - performant mode bit (bit 0)
1068 	 *  - pull count (bits 1-3)
1069 	 *  - command type (bits 4-6)
1070 	 */
1071 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1072 					IOACCEL1_BUSADDR_CMDTYPE;
1073 }
1074 
1075 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1076 						struct CommandList *c,
1077 						int reply_queue)
1078 {
1079 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1080 		&h->ioaccel2_cmd_pool[c->cmdindex];
1081 
1082 	/* Tell the controller to post the reply to the queue for this
1083 	 * processor.  This seems to give the best I/O throughput.
1084 	 */
1085 	cp->reply_queue = reply_queue;
1086 	/* Set the bits in the address sent down to include:
1087 	 *  - performant mode bit not used in ioaccel mode 2
1088 	 *  - pull count (bits 0-3)
1089 	 *  - command type isn't needed for ioaccel2
1090 	 */
1091 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1092 }
1093 
1094 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1095 						struct CommandList *c,
1096 						int reply_queue)
1097 {
1098 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1099 
1100 	/*
1101 	 * Tell the controller to post the reply to the queue for this
1102 	 * processor.  This seems to give the best I/O throughput.
1103 	 */
1104 	cp->reply_queue = reply_queue;
1105 	/*
1106 	 * Set the bits in the address sent down to include:
1107 	 *  - performant mode bit not used in ioaccel mode 2
1108 	 *  - pull count (bits 0-3)
1109 	 *  - command type isn't needed for ioaccel2
1110 	 */
1111 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1112 }
1113 
1114 static int is_firmware_flash_cmd(u8 *cdb)
1115 {
1116 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1117 }
1118 
1119 /*
1120  * During firmware flash, the heartbeat register may not update as frequently
1121  * as it should.  So we dial down lockup detection during firmware flash. and
1122  * dial it back up when firmware flash completes.
1123  */
1124 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1125 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1126 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1127 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1128 		struct CommandList *c)
1129 {
1130 	if (!is_firmware_flash_cmd(c->Request.CDB))
1131 		return;
1132 	atomic_inc(&h->firmware_flash_in_progress);
1133 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1134 }
1135 
1136 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1137 		struct CommandList *c)
1138 {
1139 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1140 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1141 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1142 }
1143 
1144 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1145 	struct CommandList *c, int reply_queue)
1146 {
1147 	dial_down_lockup_detection_during_fw_flash(h, c);
1148 	atomic_inc(&h->commands_outstanding);
1149 	if (c->device)
1150 		atomic_inc(&c->device->commands_outstanding);
1151 
1152 	reply_queue = h->reply_map[raw_smp_processor_id()];
1153 	switch (c->cmd_type) {
1154 	case CMD_IOACCEL1:
1155 		set_ioaccel1_performant_mode(h, c, reply_queue);
1156 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1157 		break;
1158 	case CMD_IOACCEL2:
1159 		set_ioaccel2_performant_mode(h, c, reply_queue);
1160 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161 		break;
1162 	case IOACCEL2_TMF:
1163 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1164 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1165 		break;
1166 	default:
1167 		set_performant_mode(h, c, reply_queue);
1168 		h->access.submit_command(h, c);
1169 	}
1170 }
1171 
1172 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1173 {
1174 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1175 }
1176 
1177 static inline int is_hba_lunid(unsigned char scsi3addr[])
1178 {
1179 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1180 }
1181 
1182 static inline int is_scsi_rev_5(struct ctlr_info *h)
1183 {
1184 	if (!h->hba_inquiry_data)
1185 		return 0;
1186 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1187 		return 1;
1188 	return 0;
1189 }
1190 
1191 static int hpsa_find_target_lun(struct ctlr_info *h,
1192 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1193 {
1194 	/* finds an unused bus, target, lun for a new physical device
1195 	 * assumes h->devlock is held
1196 	 */
1197 	int i, found = 0;
1198 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1199 
1200 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1201 
1202 	for (i = 0; i < h->ndevices; i++) {
1203 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1204 			__set_bit(h->dev[i]->target, lun_taken);
1205 	}
1206 
1207 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1208 	if (i < HPSA_MAX_DEVICES) {
1209 		/* *bus = 1; */
1210 		*target = i;
1211 		*lun = 0;
1212 		found = 1;
1213 	}
1214 	return !found;
1215 }
1216 
1217 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1218 	struct hpsa_scsi_dev_t *dev, char *description)
1219 {
1220 #define LABEL_SIZE 25
1221 	char label[LABEL_SIZE];
1222 
1223 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1224 		return;
1225 
1226 	switch (dev->devtype) {
1227 	case TYPE_RAID:
1228 		snprintf(label, LABEL_SIZE, "controller");
1229 		break;
1230 	case TYPE_ENCLOSURE:
1231 		snprintf(label, LABEL_SIZE, "enclosure");
1232 		break;
1233 	case TYPE_DISK:
1234 	case TYPE_ZBC:
1235 		if (dev->external)
1236 			snprintf(label, LABEL_SIZE, "external");
1237 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1238 			snprintf(label, LABEL_SIZE, "%s",
1239 				raid_label[PHYSICAL_DRIVE]);
1240 		else
1241 			snprintf(label, LABEL_SIZE, "RAID-%s",
1242 				dev->raid_level > RAID_UNKNOWN ? "?" :
1243 				raid_label[dev->raid_level]);
1244 		break;
1245 	case TYPE_ROM:
1246 		snprintf(label, LABEL_SIZE, "rom");
1247 		break;
1248 	case TYPE_TAPE:
1249 		snprintf(label, LABEL_SIZE, "tape");
1250 		break;
1251 	case TYPE_MEDIUM_CHANGER:
1252 		snprintf(label, LABEL_SIZE, "changer");
1253 		break;
1254 	default:
1255 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1256 		break;
1257 	}
1258 
1259 	dev_printk(level, &h->pdev->dev,
1260 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1261 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1262 			description,
1263 			scsi_device_type(dev->devtype),
1264 			dev->vendor,
1265 			dev->model,
1266 			label,
1267 			dev->offload_config ? '+' : '-',
1268 			dev->offload_to_be_enabled ? '+' : '-',
1269 			dev->expose_device);
1270 }
1271 
1272 /* Add an entry into h->dev[] array. */
1273 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1274 		struct hpsa_scsi_dev_t *device,
1275 		struct hpsa_scsi_dev_t *added[], int *nadded)
1276 {
1277 	/* assumes h->devlock is held */
1278 	int n = h->ndevices;
1279 	int i;
1280 	unsigned char addr1[8], addr2[8];
1281 	struct hpsa_scsi_dev_t *sd;
1282 
1283 	if (n >= HPSA_MAX_DEVICES) {
1284 		dev_err(&h->pdev->dev, "too many devices, some will be "
1285 			"inaccessible.\n");
1286 		return -1;
1287 	}
1288 
1289 	/* physical devices do not have lun or target assigned until now. */
1290 	if (device->lun != -1)
1291 		/* Logical device, lun is already assigned. */
1292 		goto lun_assigned;
1293 
1294 	/* If this device a non-zero lun of a multi-lun device
1295 	 * byte 4 of the 8-byte LUN addr will contain the logical
1296 	 * unit no, zero otherwise.
1297 	 */
1298 	if (device->scsi3addr[4] == 0) {
1299 		/* This is not a non-zero lun of a multi-lun device */
1300 		if (hpsa_find_target_lun(h, device->scsi3addr,
1301 			device->bus, &device->target, &device->lun) != 0)
1302 			return -1;
1303 		goto lun_assigned;
1304 	}
1305 
1306 	/* This is a non-zero lun of a multi-lun device.
1307 	 * Search through our list and find the device which
1308 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1309 	 * Assign the same bus and target for this new LUN.
1310 	 * Use the logical unit number from the firmware.
1311 	 */
1312 	memcpy(addr1, device->scsi3addr, 8);
1313 	addr1[4] = 0;
1314 	addr1[5] = 0;
1315 	for (i = 0; i < n; i++) {
1316 		sd = h->dev[i];
1317 		memcpy(addr2, sd->scsi3addr, 8);
1318 		addr2[4] = 0;
1319 		addr2[5] = 0;
1320 		/* differ only in byte 4 and 5? */
1321 		if (memcmp(addr1, addr2, 8) == 0) {
1322 			device->bus = sd->bus;
1323 			device->target = sd->target;
1324 			device->lun = device->scsi3addr[4];
1325 			break;
1326 		}
1327 	}
1328 	if (device->lun == -1) {
1329 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1330 			" suspect firmware bug or unsupported hardware "
1331 			"configuration.\n");
1332 		return -1;
1333 	}
1334 
1335 lun_assigned:
1336 
1337 	h->dev[n] = device;
1338 	h->ndevices++;
1339 	added[*nadded] = device;
1340 	(*nadded)++;
1341 	hpsa_show_dev_msg(KERN_INFO, h, device,
1342 		device->expose_device ? "added" : "masked");
1343 	return 0;
1344 }
1345 
1346 /*
1347  * Called during a scan operation.
1348  *
1349  * Update an entry in h->dev[] array.
1350  */
1351 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1352 	int entry, struct hpsa_scsi_dev_t *new_entry)
1353 {
1354 	/* assumes h->devlock is held */
1355 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1356 
1357 	/* Raid level changed. */
1358 	h->dev[entry]->raid_level = new_entry->raid_level;
1359 
1360 	/*
1361 	 * ioacccel_handle may have changed for a dual domain disk
1362 	 */
1363 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1364 
1365 	/* Raid offload parameters changed.  Careful about the ordering. */
1366 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1367 		/*
1368 		 * if drive is newly offload_enabled, we want to copy the
1369 		 * raid map data first.  If previously offload_enabled and
1370 		 * offload_config were set, raid map data had better be
1371 		 * the same as it was before. If raid map data has changed
1372 		 * then it had better be the case that
1373 		 * h->dev[entry]->offload_enabled is currently 0.
1374 		 */
1375 		h->dev[entry]->raid_map = new_entry->raid_map;
1376 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1377 	}
1378 	if (new_entry->offload_to_be_enabled) {
1379 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1380 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1381 	}
1382 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1383 	h->dev[entry]->offload_config = new_entry->offload_config;
1384 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1385 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1386 
1387 	/*
1388 	 * We can turn off ioaccel offload now, but need to delay turning
1389 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1390 	 * can't do that until all the devices are updated.
1391 	 */
1392 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1393 
1394 	/*
1395 	 * turn ioaccel off immediately if told to do so.
1396 	 */
1397 	if (!new_entry->offload_to_be_enabled)
1398 		h->dev[entry]->offload_enabled = 0;
1399 
1400 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1401 }
1402 
1403 /* Replace an entry from h->dev[] array. */
1404 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1405 	int entry, struct hpsa_scsi_dev_t *new_entry,
1406 	struct hpsa_scsi_dev_t *added[], int *nadded,
1407 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1408 {
1409 	/* assumes h->devlock is held */
1410 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1411 	removed[*nremoved] = h->dev[entry];
1412 	(*nremoved)++;
1413 
1414 	/*
1415 	 * New physical devices won't have target/lun assigned yet
1416 	 * so we need to preserve the values in the slot we are replacing.
1417 	 */
1418 	if (new_entry->target == -1) {
1419 		new_entry->target = h->dev[entry]->target;
1420 		new_entry->lun = h->dev[entry]->lun;
1421 	}
1422 
1423 	h->dev[entry] = new_entry;
1424 	added[*nadded] = new_entry;
1425 	(*nadded)++;
1426 
1427 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1428 }
1429 
1430 /* Remove an entry from h->dev[] array. */
1431 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1432 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1433 {
1434 	/* assumes h->devlock is held */
1435 	int i;
1436 	struct hpsa_scsi_dev_t *sd;
1437 
1438 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1439 
1440 	sd = h->dev[entry];
1441 	removed[*nremoved] = h->dev[entry];
1442 	(*nremoved)++;
1443 
1444 	for (i = entry; i < h->ndevices-1; i++)
1445 		h->dev[i] = h->dev[i+1];
1446 	h->ndevices--;
1447 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1448 }
1449 
1450 #define SCSI3ADDR_EQ(a, b) ( \
1451 	(a)[7] == (b)[7] && \
1452 	(a)[6] == (b)[6] && \
1453 	(a)[5] == (b)[5] && \
1454 	(a)[4] == (b)[4] && \
1455 	(a)[3] == (b)[3] && \
1456 	(a)[2] == (b)[2] && \
1457 	(a)[1] == (b)[1] && \
1458 	(a)[0] == (b)[0])
1459 
1460 static void fixup_botched_add(struct ctlr_info *h,
1461 	struct hpsa_scsi_dev_t *added)
1462 {
1463 	/* called when scsi_add_device fails in order to re-adjust
1464 	 * h->dev[] to match the mid layer's view.
1465 	 */
1466 	unsigned long flags;
1467 	int i, j;
1468 
1469 	spin_lock_irqsave(&h->lock, flags);
1470 	for (i = 0; i < h->ndevices; i++) {
1471 		if (h->dev[i] == added) {
1472 			for (j = i; j < h->ndevices-1; j++)
1473 				h->dev[j] = h->dev[j+1];
1474 			h->ndevices--;
1475 			break;
1476 		}
1477 	}
1478 	spin_unlock_irqrestore(&h->lock, flags);
1479 	kfree(added);
1480 }
1481 
1482 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1483 	struct hpsa_scsi_dev_t *dev2)
1484 {
1485 	/* we compare everything except lun and target as these
1486 	 * are not yet assigned.  Compare parts likely
1487 	 * to differ first
1488 	 */
1489 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1490 		sizeof(dev1->scsi3addr)) != 0)
1491 		return 0;
1492 	if (memcmp(dev1->device_id, dev2->device_id,
1493 		sizeof(dev1->device_id)) != 0)
1494 		return 0;
1495 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1496 		return 0;
1497 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1498 		return 0;
1499 	if (dev1->devtype != dev2->devtype)
1500 		return 0;
1501 	if (dev1->bus != dev2->bus)
1502 		return 0;
1503 	return 1;
1504 }
1505 
1506 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1507 	struct hpsa_scsi_dev_t *dev2)
1508 {
1509 	/* Device attributes that can change, but don't mean
1510 	 * that the device is a different device, nor that the OS
1511 	 * needs to be told anything about the change.
1512 	 */
1513 	if (dev1->raid_level != dev2->raid_level)
1514 		return 1;
1515 	if (dev1->offload_config != dev2->offload_config)
1516 		return 1;
1517 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1518 		return 1;
1519 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1520 		if (dev1->queue_depth != dev2->queue_depth)
1521 			return 1;
1522 	/*
1523 	 * This can happen for dual domain devices. An active
1524 	 * path change causes the ioaccel handle to change
1525 	 *
1526 	 * for example note the handle differences between p0 and p1
1527 	 * Device                    WWN               ,WWN hash,Handle
1528 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1529 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1530 	 */
1531 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1532 		return 1;
1533 	return 0;
1534 }
1535 
1536 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1537  * and return needle location in *index.  If scsi3addr matches, but not
1538  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1539  * location in *index.
1540  * In the case of a minor device attribute change, such as RAID level, just
1541  * return DEVICE_UPDATED, along with the updated device's location in index.
1542  * If needle not found, return DEVICE_NOT_FOUND.
1543  */
1544 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1545 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1546 	int *index)
1547 {
1548 	int i;
1549 #define DEVICE_NOT_FOUND 0
1550 #define DEVICE_CHANGED 1
1551 #define DEVICE_SAME 2
1552 #define DEVICE_UPDATED 3
1553 	if (needle == NULL)
1554 		return DEVICE_NOT_FOUND;
1555 
1556 	for (i = 0; i < haystack_size; i++) {
1557 		if (haystack[i] == NULL) /* previously removed. */
1558 			continue;
1559 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1560 			*index = i;
1561 			if (device_is_the_same(needle, haystack[i])) {
1562 				if (device_updated(needle, haystack[i]))
1563 					return DEVICE_UPDATED;
1564 				return DEVICE_SAME;
1565 			} else {
1566 				/* Keep offline devices offline */
1567 				if (needle->volume_offline)
1568 					return DEVICE_NOT_FOUND;
1569 				return DEVICE_CHANGED;
1570 			}
1571 		}
1572 	}
1573 	*index = -1;
1574 	return DEVICE_NOT_FOUND;
1575 }
1576 
1577 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1578 					unsigned char scsi3addr[])
1579 {
1580 	struct offline_device_entry *device;
1581 	unsigned long flags;
1582 
1583 	/* Check to see if device is already on the list */
1584 	spin_lock_irqsave(&h->offline_device_lock, flags);
1585 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1586 		if (memcmp(device->scsi3addr, scsi3addr,
1587 			sizeof(device->scsi3addr)) == 0) {
1588 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1589 			return;
1590 		}
1591 	}
1592 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1593 
1594 	/* Device is not on the list, add it. */
1595 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1596 	if (!device)
1597 		return;
1598 
1599 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1600 	spin_lock_irqsave(&h->offline_device_lock, flags);
1601 	list_add_tail(&device->offline_list, &h->offline_device_list);
1602 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1603 }
1604 
1605 /* Print a message explaining various offline volume states */
1606 static void hpsa_show_volume_status(struct ctlr_info *h,
1607 	struct hpsa_scsi_dev_t *sd)
1608 {
1609 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1610 		dev_info(&h->pdev->dev,
1611 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1612 			h->scsi_host->host_no,
1613 			sd->bus, sd->target, sd->lun);
1614 	switch (sd->volume_offline) {
1615 	case HPSA_LV_OK:
1616 		break;
1617 	case HPSA_LV_UNDERGOING_ERASE:
1618 		dev_info(&h->pdev->dev,
1619 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1620 			h->scsi_host->host_no,
1621 			sd->bus, sd->target, sd->lun);
1622 		break;
1623 	case HPSA_LV_NOT_AVAILABLE:
1624 		dev_info(&h->pdev->dev,
1625 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1626 			h->scsi_host->host_no,
1627 			sd->bus, sd->target, sd->lun);
1628 		break;
1629 	case HPSA_LV_UNDERGOING_RPI:
1630 		dev_info(&h->pdev->dev,
1631 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1632 			h->scsi_host->host_no,
1633 			sd->bus, sd->target, sd->lun);
1634 		break;
1635 	case HPSA_LV_PENDING_RPI:
1636 		dev_info(&h->pdev->dev,
1637 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1638 			h->scsi_host->host_no,
1639 			sd->bus, sd->target, sd->lun);
1640 		break;
1641 	case HPSA_LV_ENCRYPTED_NO_KEY:
1642 		dev_info(&h->pdev->dev,
1643 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1644 			h->scsi_host->host_no,
1645 			sd->bus, sd->target, sd->lun);
1646 		break;
1647 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1648 		dev_info(&h->pdev->dev,
1649 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1650 			h->scsi_host->host_no,
1651 			sd->bus, sd->target, sd->lun);
1652 		break;
1653 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1654 		dev_info(&h->pdev->dev,
1655 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1656 			h->scsi_host->host_no,
1657 			sd->bus, sd->target, sd->lun);
1658 		break;
1659 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1660 		dev_info(&h->pdev->dev,
1661 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1662 			h->scsi_host->host_no,
1663 			sd->bus, sd->target, sd->lun);
1664 		break;
1665 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1666 		dev_info(&h->pdev->dev,
1667 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1668 			h->scsi_host->host_no,
1669 			sd->bus, sd->target, sd->lun);
1670 		break;
1671 	case HPSA_LV_PENDING_ENCRYPTION:
1672 		dev_info(&h->pdev->dev,
1673 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1674 			h->scsi_host->host_no,
1675 			sd->bus, sd->target, sd->lun);
1676 		break;
1677 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1678 		dev_info(&h->pdev->dev,
1679 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1680 			h->scsi_host->host_no,
1681 			sd->bus, sd->target, sd->lun);
1682 		break;
1683 	}
1684 }
1685 
1686 /*
1687  * Figure the list of physical drive pointers for a logical drive with
1688  * raid offload configured.
1689  */
1690 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1691 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1692 				struct hpsa_scsi_dev_t *logical_drive)
1693 {
1694 	struct raid_map_data *map = &logical_drive->raid_map;
1695 	struct raid_map_disk_data *dd = &map->data[0];
1696 	int i, j;
1697 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1698 				le16_to_cpu(map->metadata_disks_per_row);
1699 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1700 				le16_to_cpu(map->layout_map_count) *
1701 				total_disks_per_row;
1702 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1703 				total_disks_per_row;
1704 	int qdepth;
1705 
1706 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1707 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1708 
1709 	logical_drive->nphysical_disks = nraid_map_entries;
1710 
1711 	qdepth = 0;
1712 	for (i = 0; i < nraid_map_entries; i++) {
1713 		logical_drive->phys_disk[i] = NULL;
1714 		if (!logical_drive->offload_config)
1715 			continue;
1716 		for (j = 0; j < ndevices; j++) {
1717 			if (dev[j] == NULL)
1718 				continue;
1719 			if (dev[j]->devtype != TYPE_DISK &&
1720 			    dev[j]->devtype != TYPE_ZBC)
1721 				continue;
1722 			if (is_logical_device(dev[j]))
1723 				continue;
1724 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1725 				continue;
1726 
1727 			logical_drive->phys_disk[i] = dev[j];
1728 			if (i < nphys_disk)
1729 				qdepth = min(h->nr_cmds, qdepth +
1730 				    logical_drive->phys_disk[i]->queue_depth);
1731 			break;
1732 		}
1733 
1734 		/*
1735 		 * This can happen if a physical drive is removed and
1736 		 * the logical drive is degraded.  In that case, the RAID
1737 		 * map data will refer to a physical disk which isn't actually
1738 		 * present.  And in that case offload_enabled should already
1739 		 * be 0, but we'll turn it off here just in case
1740 		 */
1741 		if (!logical_drive->phys_disk[i]) {
1742 			dev_warn(&h->pdev->dev,
1743 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1744 				__func__,
1745 				h->scsi_host->host_no, logical_drive->bus,
1746 				logical_drive->target, logical_drive->lun);
1747 			hpsa_turn_off_ioaccel_for_device(logical_drive);
1748 			logical_drive->queue_depth = 8;
1749 		}
1750 	}
1751 	if (nraid_map_entries)
1752 		/*
1753 		 * This is correct for reads, too high for full stripe writes,
1754 		 * way too high for partial stripe writes
1755 		 */
1756 		logical_drive->queue_depth = qdepth;
1757 	else {
1758 		if (logical_drive->external)
1759 			logical_drive->queue_depth = EXTERNAL_QD;
1760 		else
1761 			logical_drive->queue_depth = h->nr_cmds;
1762 	}
1763 }
1764 
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1767 {
1768 	int i;
1769 
1770 	for (i = 0; i < ndevices; i++) {
1771 		if (dev[i] == NULL)
1772 			continue;
1773 		if (dev[i]->devtype != TYPE_DISK &&
1774 		    dev[i]->devtype != TYPE_ZBC)
1775 			continue;
1776 		if (!is_logical_device(dev[i]))
1777 			continue;
1778 
1779 		/*
1780 		 * If offload is currently enabled, the RAID map and
1781 		 * phys_disk[] assignment *better* not be changing
1782 		 * because we would be changing ioaccel phsy_disk[] pointers
1783 		 * on a ioaccel volume processing I/O requests.
1784 		 *
1785 		 * If an ioaccel volume status changed, initially because it was
1786 		 * re-configured and thus underwent a transformation, or
1787 		 * a drive failed, we would have received a state change
1788 		 * request and ioaccel should have been turned off. When the
1789 		 * transformation completes, we get another state change
1790 		 * request to turn ioaccel back on. In this case, we need
1791 		 * to update the ioaccel information.
1792 		 *
1793 		 * Thus: If it is not currently enabled, but will be after
1794 		 * the scan completes, make sure the ioaccel pointers
1795 		 * are up to date.
1796 		 */
1797 
1798 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800 	}
1801 }
1802 
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804 {
1805 	int rc = 0;
1806 
1807 	if (!h->scsi_host)
1808 		return 1;
1809 
1810 	if (is_logical_device(device)) /* RAID */
1811 		rc = scsi_add_device(h->scsi_host, device->bus,
1812 					device->target, device->lun);
1813 	else /* HBA */
1814 		rc = hpsa_add_sas_device(h->sas_host, device);
1815 
1816 	return rc;
1817 }
1818 
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820 						struct hpsa_scsi_dev_t *dev)
1821 {
1822 	int i;
1823 	int count = 0;
1824 
1825 	for (i = 0; i < h->nr_cmds; i++) {
1826 		struct CommandList *c = h->cmd_pool + i;
1827 		int refcount = atomic_inc_return(&c->refcount);
1828 
1829 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830 				dev->scsi3addr)) {
1831 			unsigned long flags;
1832 
1833 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1834 			if (!hpsa_is_cmd_idle(c))
1835 				++count;
1836 			spin_unlock_irqrestore(&h->lock, flags);
1837 		}
1838 
1839 		cmd_free(h, c);
1840 	}
1841 
1842 	return count;
1843 }
1844 
1845 #define NUM_WAIT 20
1846 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1847 						struct hpsa_scsi_dev_t *device)
1848 {
1849 	int cmds = 0;
1850 	int waits = 0;
1851 	int num_wait = NUM_WAIT;
1852 
1853 	if (device->external)
1854 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1855 
1856 	while (1) {
1857 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1858 		if (cmds == 0)
1859 			break;
1860 		if (++waits > num_wait)
1861 			break;
1862 		msleep(1000);
1863 	}
1864 
1865 	if (waits > num_wait) {
1866 		dev_warn(&h->pdev->dev,
1867 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1868 			__func__,
1869 			h->scsi_host->host_no,
1870 			device->bus, device->target, device->lun, cmds);
1871 	}
1872 }
1873 
1874 static void hpsa_remove_device(struct ctlr_info *h,
1875 			struct hpsa_scsi_dev_t *device)
1876 {
1877 	struct scsi_device *sdev = NULL;
1878 
1879 	if (!h->scsi_host)
1880 		return;
1881 
1882 	/*
1883 	 * Allow for commands to drain
1884 	 */
1885 	device->removed = 1;
1886 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1887 
1888 	if (is_logical_device(device)) { /* RAID */
1889 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1890 						device->target, device->lun);
1891 		if (sdev) {
1892 			scsi_remove_device(sdev);
1893 			scsi_device_put(sdev);
1894 		} else {
1895 			/*
1896 			 * We don't expect to get here.  Future commands
1897 			 * to this device will get a selection timeout as
1898 			 * if the device were gone.
1899 			 */
1900 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1901 					"didn't find device for removal.");
1902 		}
1903 	} else { /* HBA */
1904 
1905 		hpsa_remove_sas_device(device);
1906 	}
1907 }
1908 
1909 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1910 	struct hpsa_scsi_dev_t *sd[], int nsds)
1911 {
1912 	/* sd contains scsi3 addresses and devtypes, and inquiry
1913 	 * data.  This function takes what's in sd to be the current
1914 	 * reality and updates h->dev[] to reflect that reality.
1915 	 */
1916 	int i, entry, device_change, changes = 0;
1917 	struct hpsa_scsi_dev_t *csd;
1918 	unsigned long flags;
1919 	struct hpsa_scsi_dev_t **added, **removed;
1920 	int nadded, nremoved;
1921 
1922 	/*
1923 	 * A reset can cause a device status to change
1924 	 * re-schedule the scan to see what happened.
1925 	 */
1926 	spin_lock_irqsave(&h->reset_lock, flags);
1927 	if (h->reset_in_progress) {
1928 		h->drv_req_rescan = 1;
1929 		spin_unlock_irqrestore(&h->reset_lock, flags);
1930 		return;
1931 	}
1932 	spin_unlock_irqrestore(&h->reset_lock, flags);
1933 
1934 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1935 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1936 
1937 	if (!added || !removed) {
1938 		dev_warn(&h->pdev->dev, "out of memory in "
1939 			"adjust_hpsa_scsi_table\n");
1940 		goto free_and_out;
1941 	}
1942 
1943 	spin_lock_irqsave(&h->devlock, flags);
1944 
1945 	/* find any devices in h->dev[] that are not in
1946 	 * sd[] and remove them from h->dev[], and for any
1947 	 * devices which have changed, remove the old device
1948 	 * info and add the new device info.
1949 	 * If minor device attributes change, just update
1950 	 * the existing device structure.
1951 	 */
1952 	i = 0;
1953 	nremoved = 0;
1954 	nadded = 0;
1955 	while (i < h->ndevices) {
1956 		csd = h->dev[i];
1957 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1958 		if (device_change == DEVICE_NOT_FOUND) {
1959 			changes++;
1960 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1961 			continue; /* remove ^^^, hence i not incremented */
1962 		} else if (device_change == DEVICE_CHANGED) {
1963 			changes++;
1964 			hpsa_scsi_replace_entry(h, i, sd[entry],
1965 				added, &nadded, removed, &nremoved);
1966 			/* Set it to NULL to prevent it from being freed
1967 			 * at the bottom of hpsa_update_scsi_devices()
1968 			 */
1969 			sd[entry] = NULL;
1970 		} else if (device_change == DEVICE_UPDATED) {
1971 			hpsa_scsi_update_entry(h, i, sd[entry]);
1972 		}
1973 		i++;
1974 	}
1975 
1976 	/* Now, make sure every device listed in sd[] is also
1977 	 * listed in h->dev[], adding them if they aren't found
1978 	 */
1979 
1980 	for (i = 0; i < nsds; i++) {
1981 		if (!sd[i]) /* if already added above. */
1982 			continue;
1983 
1984 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1985 		 * as the SCSI mid-layer does not handle such devices well.
1986 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1987 		 * at 160Hz, and prevents the system from coming up.
1988 		 */
1989 		if (sd[i]->volume_offline) {
1990 			hpsa_show_volume_status(h, sd[i]);
1991 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1992 			continue;
1993 		}
1994 
1995 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1996 					h->ndevices, &entry);
1997 		if (device_change == DEVICE_NOT_FOUND) {
1998 			changes++;
1999 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2000 				break;
2001 			sd[i] = NULL; /* prevent from being freed later. */
2002 		} else if (device_change == DEVICE_CHANGED) {
2003 			/* should never happen... */
2004 			changes++;
2005 			dev_warn(&h->pdev->dev,
2006 				"device unexpectedly changed.\n");
2007 			/* but if it does happen, we just ignore that device */
2008 		}
2009 	}
2010 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2011 
2012 	/*
2013 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2014 	 * any logical drives that need it enabled.
2015 	 *
2016 	 * The raid map should be current by now.
2017 	 *
2018 	 * We are updating the device list used for I/O requests.
2019 	 */
2020 	for (i = 0; i < h->ndevices; i++) {
2021 		if (h->dev[i] == NULL)
2022 			continue;
2023 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2024 	}
2025 
2026 	spin_unlock_irqrestore(&h->devlock, flags);
2027 
2028 	/* Monitor devices which are in one of several NOT READY states to be
2029 	 * brought online later. This must be done without holding h->devlock,
2030 	 * so don't touch h->dev[]
2031 	 */
2032 	for (i = 0; i < nsds; i++) {
2033 		if (!sd[i]) /* if already added above. */
2034 			continue;
2035 		if (sd[i]->volume_offline)
2036 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2037 	}
2038 
2039 	/* Don't notify scsi mid layer of any changes the first time through
2040 	 * (or if there are no changes) scsi_scan_host will do it later the
2041 	 * first time through.
2042 	 */
2043 	if (!changes)
2044 		goto free_and_out;
2045 
2046 	/* Notify scsi mid layer of any removed devices */
2047 	for (i = 0; i < nremoved; i++) {
2048 		if (removed[i] == NULL)
2049 			continue;
2050 		if (removed[i]->expose_device)
2051 			hpsa_remove_device(h, removed[i]);
2052 		kfree(removed[i]);
2053 		removed[i] = NULL;
2054 	}
2055 
2056 	/* Notify scsi mid layer of any added devices */
2057 	for (i = 0; i < nadded; i++) {
2058 		int rc = 0;
2059 
2060 		if (added[i] == NULL)
2061 			continue;
2062 		if (!(added[i]->expose_device))
2063 			continue;
2064 		rc = hpsa_add_device(h, added[i]);
2065 		if (!rc)
2066 			continue;
2067 		dev_warn(&h->pdev->dev,
2068 			"addition failed %d, device not added.", rc);
2069 		/* now we have to remove it from h->dev,
2070 		 * since it didn't get added to scsi mid layer
2071 		 */
2072 		fixup_botched_add(h, added[i]);
2073 		h->drv_req_rescan = 1;
2074 	}
2075 
2076 free_and_out:
2077 	kfree(added);
2078 	kfree(removed);
2079 }
2080 
2081 /*
2082  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2083  * Assume's h->devlock is held.
2084  */
2085 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2086 	int bus, int target, int lun)
2087 {
2088 	int i;
2089 	struct hpsa_scsi_dev_t *sd;
2090 
2091 	for (i = 0; i < h->ndevices; i++) {
2092 		sd = h->dev[i];
2093 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2094 			return sd;
2095 	}
2096 	return NULL;
2097 }
2098 
2099 static int hpsa_slave_alloc(struct scsi_device *sdev)
2100 {
2101 	struct hpsa_scsi_dev_t *sd = NULL;
2102 	unsigned long flags;
2103 	struct ctlr_info *h;
2104 
2105 	h = sdev_to_hba(sdev);
2106 	spin_lock_irqsave(&h->devlock, flags);
2107 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2108 		struct scsi_target *starget;
2109 		struct sas_rphy *rphy;
2110 
2111 		starget = scsi_target(sdev);
2112 		rphy = target_to_rphy(starget);
2113 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2114 		if (sd) {
2115 			sd->target = sdev_id(sdev);
2116 			sd->lun = sdev->lun;
2117 		}
2118 	}
2119 	if (!sd)
2120 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2121 					sdev_id(sdev), sdev->lun);
2122 
2123 	if (sd && sd->expose_device) {
2124 		atomic_set(&sd->ioaccel_cmds_out, 0);
2125 		sdev->hostdata = sd;
2126 	} else
2127 		sdev->hostdata = NULL;
2128 	spin_unlock_irqrestore(&h->devlock, flags);
2129 	return 0;
2130 }
2131 
2132 /* configure scsi device based on internal per-device structure */
2133 static int hpsa_slave_configure(struct scsi_device *sdev)
2134 {
2135 	struct hpsa_scsi_dev_t *sd;
2136 	int queue_depth;
2137 
2138 	sd = sdev->hostdata;
2139 	sdev->no_uld_attach = !sd || !sd->expose_device;
2140 
2141 	if (sd) {
2142 		sd->was_removed = 0;
2143 		if (sd->external) {
2144 			queue_depth = EXTERNAL_QD;
2145 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2146 			blk_queue_rq_timeout(sdev->request_queue,
2147 						HPSA_EH_PTRAID_TIMEOUT);
2148 		} else {
2149 			queue_depth = sd->queue_depth != 0 ?
2150 					sd->queue_depth : sdev->host->can_queue;
2151 		}
2152 	} else
2153 		queue_depth = sdev->host->can_queue;
2154 
2155 	scsi_change_queue_depth(sdev, queue_depth);
2156 
2157 	return 0;
2158 }
2159 
2160 static void hpsa_slave_destroy(struct scsi_device *sdev)
2161 {
2162 	struct hpsa_scsi_dev_t *hdev = NULL;
2163 
2164 	hdev = sdev->hostdata;
2165 
2166 	if (hdev)
2167 		hdev->was_removed = 1;
2168 }
2169 
2170 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2171 {
2172 	int i;
2173 
2174 	if (!h->ioaccel2_cmd_sg_list)
2175 		return;
2176 	for (i = 0; i < h->nr_cmds; i++) {
2177 		kfree(h->ioaccel2_cmd_sg_list[i]);
2178 		h->ioaccel2_cmd_sg_list[i] = NULL;
2179 	}
2180 	kfree(h->ioaccel2_cmd_sg_list);
2181 	h->ioaccel2_cmd_sg_list = NULL;
2182 }
2183 
2184 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2185 {
2186 	int i;
2187 
2188 	if (h->chainsize <= 0)
2189 		return 0;
2190 
2191 	h->ioaccel2_cmd_sg_list =
2192 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2193 					GFP_KERNEL);
2194 	if (!h->ioaccel2_cmd_sg_list)
2195 		return -ENOMEM;
2196 	for (i = 0; i < h->nr_cmds; i++) {
2197 		h->ioaccel2_cmd_sg_list[i] =
2198 			kmalloc_array(h->maxsgentries,
2199 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2200 				      GFP_KERNEL);
2201 		if (!h->ioaccel2_cmd_sg_list[i])
2202 			goto clean;
2203 	}
2204 	return 0;
2205 
2206 clean:
2207 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2208 	return -ENOMEM;
2209 }
2210 
2211 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2212 {
2213 	int i;
2214 
2215 	if (!h->cmd_sg_list)
2216 		return;
2217 	for (i = 0; i < h->nr_cmds; i++) {
2218 		kfree(h->cmd_sg_list[i]);
2219 		h->cmd_sg_list[i] = NULL;
2220 	}
2221 	kfree(h->cmd_sg_list);
2222 	h->cmd_sg_list = NULL;
2223 }
2224 
2225 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2226 {
2227 	int i;
2228 
2229 	if (h->chainsize <= 0)
2230 		return 0;
2231 
2232 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2233 				 GFP_KERNEL);
2234 	if (!h->cmd_sg_list)
2235 		return -ENOMEM;
2236 
2237 	for (i = 0; i < h->nr_cmds; i++) {
2238 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2239 						  sizeof(*h->cmd_sg_list[i]),
2240 						  GFP_KERNEL);
2241 		if (!h->cmd_sg_list[i])
2242 			goto clean;
2243 
2244 	}
2245 	return 0;
2246 
2247 clean:
2248 	hpsa_free_sg_chain_blocks(h);
2249 	return -ENOMEM;
2250 }
2251 
2252 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2253 	struct io_accel2_cmd *cp, struct CommandList *c)
2254 {
2255 	struct ioaccel2_sg_element *chain_block;
2256 	u64 temp64;
2257 	u32 chain_size;
2258 
2259 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2260 	chain_size = le32_to_cpu(cp->sg[0].length);
2261 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2262 				DMA_TO_DEVICE);
2263 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2264 		/* prevent subsequent unmapping */
2265 		cp->sg->address = 0;
2266 		return -1;
2267 	}
2268 	cp->sg->address = cpu_to_le64(temp64);
2269 	return 0;
2270 }
2271 
2272 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2273 	struct io_accel2_cmd *cp)
2274 {
2275 	struct ioaccel2_sg_element *chain_sg;
2276 	u64 temp64;
2277 	u32 chain_size;
2278 
2279 	chain_sg = cp->sg;
2280 	temp64 = le64_to_cpu(chain_sg->address);
2281 	chain_size = le32_to_cpu(cp->sg[0].length);
2282 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2283 }
2284 
2285 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2286 	struct CommandList *c)
2287 {
2288 	struct SGDescriptor *chain_sg, *chain_block;
2289 	u64 temp64;
2290 	u32 chain_len;
2291 
2292 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2293 	chain_block = h->cmd_sg_list[c->cmdindex];
2294 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2295 	chain_len = sizeof(*chain_sg) *
2296 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2297 	chain_sg->Len = cpu_to_le32(chain_len);
2298 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2299 				DMA_TO_DEVICE);
2300 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2301 		/* prevent subsequent unmapping */
2302 		chain_sg->Addr = cpu_to_le64(0);
2303 		return -1;
2304 	}
2305 	chain_sg->Addr = cpu_to_le64(temp64);
2306 	return 0;
2307 }
2308 
2309 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2310 	struct CommandList *c)
2311 {
2312 	struct SGDescriptor *chain_sg;
2313 
2314 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2315 		return;
2316 
2317 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2318 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2319 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2320 }
2321 
2322 
2323 /* Decode the various types of errors on ioaccel2 path.
2324  * Return 1 for any error that should generate a RAID path retry.
2325  * Return 0 for errors that don't require a RAID path retry.
2326  */
2327 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2328 					struct CommandList *c,
2329 					struct scsi_cmnd *cmd,
2330 					struct io_accel2_cmd *c2,
2331 					struct hpsa_scsi_dev_t *dev)
2332 {
2333 	int data_len;
2334 	int retry = 0;
2335 	u32 ioaccel2_resid = 0;
2336 
2337 	switch (c2->error_data.serv_response) {
2338 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2339 		switch (c2->error_data.status) {
2340 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2341 			if (cmd)
2342 				cmd->result = 0;
2343 			break;
2344 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2345 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2346 			if (c2->error_data.data_present !=
2347 					IOACCEL2_SENSE_DATA_PRESENT) {
2348 				memset(cmd->sense_buffer, 0,
2349 					SCSI_SENSE_BUFFERSIZE);
2350 				break;
2351 			}
2352 			/* copy the sense data */
2353 			data_len = c2->error_data.sense_data_len;
2354 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2355 				data_len = SCSI_SENSE_BUFFERSIZE;
2356 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2357 				data_len =
2358 					sizeof(c2->error_data.sense_data_buff);
2359 			memcpy(cmd->sense_buffer,
2360 				c2->error_data.sense_data_buff, data_len);
2361 			retry = 1;
2362 			break;
2363 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2364 			retry = 1;
2365 			break;
2366 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2367 			retry = 1;
2368 			break;
2369 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2370 			retry = 1;
2371 			break;
2372 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2373 			retry = 1;
2374 			break;
2375 		default:
2376 			retry = 1;
2377 			break;
2378 		}
2379 		break;
2380 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2381 		switch (c2->error_data.status) {
2382 		case IOACCEL2_STATUS_SR_IO_ERROR:
2383 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2384 		case IOACCEL2_STATUS_SR_OVERRUN:
2385 			retry = 1;
2386 			break;
2387 		case IOACCEL2_STATUS_SR_UNDERRUN:
2388 			cmd->result = (DID_OK << 16);		/* host byte */
2389 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2390 			ioaccel2_resid = get_unaligned_le32(
2391 						&c2->error_data.resid_cnt[0]);
2392 			scsi_set_resid(cmd, ioaccel2_resid);
2393 			break;
2394 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2395 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2396 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2397 			/*
2398 			 * Did an HBA disk disappear? We will eventually
2399 			 * get a state change event from the controller but
2400 			 * in the meantime, we need to tell the OS that the
2401 			 * HBA disk is no longer there and stop I/O
2402 			 * from going down. This allows the potential re-insert
2403 			 * of the disk to get the same device node.
2404 			 */
2405 			if (dev->physical_device && dev->expose_device) {
2406 				cmd->result = DID_NO_CONNECT << 16;
2407 				dev->removed = 1;
2408 				h->drv_req_rescan = 1;
2409 				dev_warn(&h->pdev->dev,
2410 					"%s: device is gone!\n", __func__);
2411 			} else
2412 				/*
2413 				 * Retry by sending down the RAID path.
2414 				 * We will get an event from ctlr to
2415 				 * trigger rescan regardless.
2416 				 */
2417 				retry = 1;
2418 			break;
2419 		default:
2420 			retry = 1;
2421 		}
2422 		break;
2423 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2424 		break;
2425 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2426 		break;
2427 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2428 		retry = 1;
2429 		break;
2430 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2431 		break;
2432 	default:
2433 		retry = 1;
2434 		break;
2435 	}
2436 
2437 	if (dev->in_reset)
2438 		retry = 0;
2439 
2440 	return retry;	/* retry on raid path? */
2441 }
2442 
2443 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2444 		struct CommandList *c)
2445 {
2446 	struct hpsa_scsi_dev_t *dev = c->device;
2447 
2448 	/*
2449 	 * Reset c->scsi_cmd here so that the reset handler will know
2450 	 * this command has completed.  Then, check to see if the handler is
2451 	 * waiting for this command, and, if so, wake it.
2452 	 */
2453 	c->scsi_cmd = SCSI_CMD_IDLE;
2454 	mb();	/* Declare command idle before checking for pending events. */
2455 	if (dev) {
2456 		atomic_dec(&dev->commands_outstanding);
2457 		if (dev->in_reset &&
2458 			atomic_read(&dev->commands_outstanding) <= 0)
2459 			wake_up_all(&h->event_sync_wait_queue);
2460 	}
2461 }
2462 
2463 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2464 				      struct CommandList *c)
2465 {
2466 	hpsa_cmd_resolve_events(h, c);
2467 	cmd_tagged_free(h, c);
2468 }
2469 
2470 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2471 		struct CommandList *c, struct scsi_cmnd *cmd)
2472 {
2473 	hpsa_cmd_resolve_and_free(h, c);
2474 	if (cmd && cmd->scsi_done)
2475 		cmd->scsi_done(cmd);
2476 }
2477 
2478 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2479 {
2480 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2481 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2482 }
2483 
2484 static void process_ioaccel2_completion(struct ctlr_info *h,
2485 		struct CommandList *c, struct scsi_cmnd *cmd,
2486 		struct hpsa_scsi_dev_t *dev)
2487 {
2488 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2489 
2490 	/* check for good status */
2491 	if (likely(c2->error_data.serv_response == 0 &&
2492 			c2->error_data.status == 0)) {
2493 		cmd->result = 0;
2494 		return hpsa_cmd_free_and_done(h, c, cmd);
2495 	}
2496 
2497 	/*
2498 	 * Any RAID offload error results in retry which will use
2499 	 * the normal I/O path so the controller can handle whatever is
2500 	 * wrong.
2501 	 */
2502 	if (is_logical_device(dev) &&
2503 		c2->error_data.serv_response ==
2504 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2505 		if (c2->error_data.status ==
2506 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2507 			hpsa_turn_off_ioaccel_for_device(dev);
2508 		}
2509 
2510 		if (dev->in_reset) {
2511 			cmd->result = DID_RESET << 16;
2512 			return hpsa_cmd_free_and_done(h, c, cmd);
2513 		}
2514 
2515 		return hpsa_retry_cmd(h, c);
2516 	}
2517 
2518 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2519 		return hpsa_retry_cmd(h, c);
2520 
2521 	return hpsa_cmd_free_and_done(h, c, cmd);
2522 }
2523 
2524 /* Returns 0 on success, < 0 otherwise. */
2525 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2526 					struct CommandList *cp)
2527 {
2528 	u8 tmf_status = cp->err_info->ScsiStatus;
2529 
2530 	switch (tmf_status) {
2531 	case CISS_TMF_COMPLETE:
2532 		/*
2533 		 * CISS_TMF_COMPLETE never happens, instead,
2534 		 * ei->CommandStatus == 0 for this case.
2535 		 */
2536 	case CISS_TMF_SUCCESS:
2537 		return 0;
2538 	case CISS_TMF_INVALID_FRAME:
2539 	case CISS_TMF_NOT_SUPPORTED:
2540 	case CISS_TMF_FAILED:
2541 	case CISS_TMF_WRONG_LUN:
2542 	case CISS_TMF_OVERLAPPED_TAG:
2543 		break;
2544 	default:
2545 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2546 				tmf_status);
2547 		break;
2548 	}
2549 	return -tmf_status;
2550 }
2551 
2552 static void complete_scsi_command(struct CommandList *cp)
2553 {
2554 	struct scsi_cmnd *cmd;
2555 	struct ctlr_info *h;
2556 	struct ErrorInfo *ei;
2557 	struct hpsa_scsi_dev_t *dev;
2558 	struct io_accel2_cmd *c2;
2559 
2560 	u8 sense_key;
2561 	u8 asc;      /* additional sense code */
2562 	u8 ascq;     /* additional sense code qualifier */
2563 	unsigned long sense_data_size;
2564 
2565 	ei = cp->err_info;
2566 	cmd = cp->scsi_cmd;
2567 	h = cp->h;
2568 
2569 	if (!cmd->device) {
2570 		cmd->result = DID_NO_CONNECT << 16;
2571 		return hpsa_cmd_free_and_done(h, cp, cmd);
2572 	}
2573 
2574 	dev = cmd->device->hostdata;
2575 	if (!dev) {
2576 		cmd->result = DID_NO_CONNECT << 16;
2577 		return hpsa_cmd_free_and_done(h, cp, cmd);
2578 	}
2579 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2580 
2581 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2582 	if ((cp->cmd_type == CMD_SCSI) &&
2583 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2584 		hpsa_unmap_sg_chain_block(h, cp);
2585 
2586 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2587 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2588 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2589 
2590 	cmd->result = (DID_OK << 16); 		/* host byte */
2591 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2592 
2593 	/* SCSI command has already been cleaned up in SML */
2594 	if (dev->was_removed) {
2595 		hpsa_cmd_resolve_and_free(h, cp);
2596 		return;
2597 	}
2598 
2599 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2600 		if (dev->physical_device && dev->expose_device &&
2601 			dev->removed) {
2602 			cmd->result = DID_NO_CONNECT << 16;
2603 			return hpsa_cmd_free_and_done(h, cp, cmd);
2604 		}
2605 		if (likely(cp->phys_disk != NULL))
2606 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2607 	}
2608 
2609 	/*
2610 	 * We check for lockup status here as it may be set for
2611 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2612 	 * fail_all_oustanding_cmds()
2613 	 */
2614 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2615 		/* DID_NO_CONNECT will prevent a retry */
2616 		cmd->result = DID_NO_CONNECT << 16;
2617 		return hpsa_cmd_free_and_done(h, cp, cmd);
2618 	}
2619 
2620 	if (cp->cmd_type == CMD_IOACCEL2)
2621 		return process_ioaccel2_completion(h, cp, cmd, dev);
2622 
2623 	scsi_set_resid(cmd, ei->ResidualCnt);
2624 	if (ei->CommandStatus == 0)
2625 		return hpsa_cmd_free_and_done(h, cp, cmd);
2626 
2627 	/* For I/O accelerator commands, copy over some fields to the normal
2628 	 * CISS header used below for error handling.
2629 	 */
2630 	if (cp->cmd_type == CMD_IOACCEL1) {
2631 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2632 		cp->Header.SGList = scsi_sg_count(cmd);
2633 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2634 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2635 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2636 		cp->Header.tag = c->tag;
2637 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2638 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2639 
2640 		/* Any RAID offload error results in retry which will use
2641 		 * the normal I/O path so the controller can handle whatever's
2642 		 * wrong.
2643 		 */
2644 		if (is_logical_device(dev)) {
2645 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2646 				dev->offload_enabled = 0;
2647 			return hpsa_retry_cmd(h, cp);
2648 		}
2649 	}
2650 
2651 	/* an error has occurred */
2652 	switch (ei->CommandStatus) {
2653 
2654 	case CMD_TARGET_STATUS:
2655 		cmd->result |= ei->ScsiStatus;
2656 		/* copy the sense data */
2657 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2658 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2659 		else
2660 			sense_data_size = sizeof(ei->SenseInfo);
2661 		if (ei->SenseLen < sense_data_size)
2662 			sense_data_size = ei->SenseLen;
2663 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2664 		if (ei->ScsiStatus)
2665 			decode_sense_data(ei->SenseInfo, sense_data_size,
2666 				&sense_key, &asc, &ascq);
2667 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2668 			switch (sense_key) {
2669 			case ABORTED_COMMAND:
2670 				cmd->result |= DID_SOFT_ERROR << 16;
2671 				break;
2672 			case UNIT_ATTENTION:
2673 				if (asc == 0x3F && ascq == 0x0E)
2674 					h->drv_req_rescan = 1;
2675 				break;
2676 			case ILLEGAL_REQUEST:
2677 				if (asc == 0x25 && ascq == 0x00) {
2678 					dev->removed = 1;
2679 					cmd->result = DID_NO_CONNECT << 16;
2680 				}
2681 				break;
2682 			}
2683 			break;
2684 		}
2685 		/* Problem was not a check condition
2686 		 * Pass it up to the upper layers...
2687 		 */
2688 		if (ei->ScsiStatus) {
2689 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2690 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2691 				"Returning result: 0x%x\n",
2692 				cp, ei->ScsiStatus,
2693 				sense_key, asc, ascq,
2694 				cmd->result);
2695 		} else {  /* scsi status is zero??? How??? */
2696 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2697 				"Returning no connection.\n", cp),
2698 
2699 			/* Ordinarily, this case should never happen,
2700 			 * but there is a bug in some released firmware
2701 			 * revisions that allows it to happen if, for
2702 			 * example, a 4100 backplane loses power and
2703 			 * the tape drive is in it.  We assume that
2704 			 * it's a fatal error of some kind because we
2705 			 * can't show that it wasn't. We will make it
2706 			 * look like selection timeout since that is
2707 			 * the most common reason for this to occur,
2708 			 * and it's severe enough.
2709 			 */
2710 
2711 			cmd->result = DID_NO_CONNECT << 16;
2712 		}
2713 		break;
2714 
2715 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2716 		break;
2717 	case CMD_DATA_OVERRUN:
2718 		dev_warn(&h->pdev->dev,
2719 			"CDB %16phN data overrun\n", cp->Request.CDB);
2720 		break;
2721 	case CMD_INVALID: {
2722 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2723 		print_cmd(cp); */
2724 		/* We get CMD_INVALID if you address a non-existent device
2725 		 * instead of a selection timeout (no response).  You will
2726 		 * see this if you yank out a drive, then try to access it.
2727 		 * This is kind of a shame because it means that any other
2728 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2729 		 * missing target. */
2730 		cmd->result = DID_NO_CONNECT << 16;
2731 	}
2732 		break;
2733 	case CMD_PROTOCOL_ERR:
2734 		cmd->result = DID_ERROR << 16;
2735 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2736 				cp->Request.CDB);
2737 		break;
2738 	case CMD_HARDWARE_ERR:
2739 		cmd->result = DID_ERROR << 16;
2740 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2741 			cp->Request.CDB);
2742 		break;
2743 	case CMD_CONNECTION_LOST:
2744 		cmd->result = DID_ERROR << 16;
2745 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2746 			cp->Request.CDB);
2747 		break;
2748 	case CMD_ABORTED:
2749 		cmd->result = DID_ABORT << 16;
2750 		break;
2751 	case CMD_ABORT_FAILED:
2752 		cmd->result = DID_ERROR << 16;
2753 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2754 			cp->Request.CDB);
2755 		break;
2756 	case CMD_UNSOLICITED_ABORT:
2757 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2758 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2759 			cp->Request.CDB);
2760 		break;
2761 	case CMD_TIMEOUT:
2762 		cmd->result = DID_TIME_OUT << 16;
2763 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2764 			cp->Request.CDB);
2765 		break;
2766 	case CMD_UNABORTABLE:
2767 		cmd->result = DID_ERROR << 16;
2768 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2769 		break;
2770 	case CMD_TMF_STATUS:
2771 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2772 			cmd->result = DID_ERROR << 16;
2773 		break;
2774 	case CMD_IOACCEL_DISABLED:
2775 		/* This only handles the direct pass-through case since RAID
2776 		 * offload is handled above.  Just attempt a retry.
2777 		 */
2778 		cmd->result = DID_SOFT_ERROR << 16;
2779 		dev_warn(&h->pdev->dev,
2780 				"cp %p had HP SSD Smart Path error\n", cp);
2781 		break;
2782 	default:
2783 		cmd->result = DID_ERROR << 16;
2784 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2785 				cp, ei->CommandStatus);
2786 	}
2787 
2788 	return hpsa_cmd_free_and_done(h, cp, cmd);
2789 }
2790 
2791 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2792 		int sg_used, enum dma_data_direction data_direction)
2793 {
2794 	int i;
2795 
2796 	for (i = 0; i < sg_used; i++)
2797 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2798 				le32_to_cpu(c->SG[i].Len),
2799 				data_direction);
2800 }
2801 
2802 static int hpsa_map_one(struct pci_dev *pdev,
2803 		struct CommandList *cp,
2804 		unsigned char *buf,
2805 		size_t buflen,
2806 		enum dma_data_direction data_direction)
2807 {
2808 	u64 addr64;
2809 
2810 	if (buflen == 0 || data_direction == DMA_NONE) {
2811 		cp->Header.SGList = 0;
2812 		cp->Header.SGTotal = cpu_to_le16(0);
2813 		return 0;
2814 	}
2815 
2816 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2817 	if (dma_mapping_error(&pdev->dev, addr64)) {
2818 		/* Prevent subsequent unmap of something never mapped */
2819 		cp->Header.SGList = 0;
2820 		cp->Header.SGTotal = cpu_to_le16(0);
2821 		return -1;
2822 	}
2823 	cp->SG[0].Addr = cpu_to_le64(addr64);
2824 	cp->SG[0].Len = cpu_to_le32(buflen);
2825 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2826 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2827 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2828 	return 0;
2829 }
2830 
2831 #define NO_TIMEOUT ((unsigned long) -1)
2832 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2833 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2834 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2835 {
2836 	DECLARE_COMPLETION_ONSTACK(wait);
2837 
2838 	c->waiting = &wait;
2839 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2840 	if (timeout_msecs == NO_TIMEOUT) {
2841 		/* TODO: get rid of this no-timeout thing */
2842 		wait_for_completion_io(&wait);
2843 		return IO_OK;
2844 	}
2845 	if (!wait_for_completion_io_timeout(&wait,
2846 					msecs_to_jiffies(timeout_msecs))) {
2847 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2848 		return -ETIMEDOUT;
2849 	}
2850 	return IO_OK;
2851 }
2852 
2853 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2854 				   int reply_queue, unsigned long timeout_msecs)
2855 {
2856 	if (unlikely(lockup_detected(h))) {
2857 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2858 		return IO_OK;
2859 	}
2860 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2861 }
2862 
2863 static u32 lockup_detected(struct ctlr_info *h)
2864 {
2865 	int cpu;
2866 	u32 rc, *lockup_detected;
2867 
2868 	cpu = get_cpu();
2869 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2870 	rc = *lockup_detected;
2871 	put_cpu();
2872 	return rc;
2873 }
2874 
2875 #define MAX_DRIVER_CMD_RETRIES 25
2876 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2877 		struct CommandList *c, enum dma_data_direction data_direction,
2878 		unsigned long timeout_msecs)
2879 {
2880 	int backoff_time = 10, retry_count = 0;
2881 	int rc;
2882 
2883 	do {
2884 		memset(c->err_info, 0, sizeof(*c->err_info));
2885 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2886 						  timeout_msecs);
2887 		if (rc)
2888 			break;
2889 		retry_count++;
2890 		if (retry_count > 3) {
2891 			msleep(backoff_time);
2892 			if (backoff_time < 1000)
2893 				backoff_time *= 2;
2894 		}
2895 	} while ((check_for_unit_attention(h, c) ||
2896 			check_for_busy(h, c)) &&
2897 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2898 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2899 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2900 		rc = -EIO;
2901 	return rc;
2902 }
2903 
2904 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2905 				struct CommandList *c)
2906 {
2907 	const u8 *cdb = c->Request.CDB;
2908 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2909 
2910 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2911 		 txt, lun, cdb);
2912 }
2913 
2914 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2915 			struct CommandList *cp)
2916 {
2917 	const struct ErrorInfo *ei = cp->err_info;
2918 	struct device *d = &cp->h->pdev->dev;
2919 	u8 sense_key, asc, ascq;
2920 	int sense_len;
2921 
2922 	switch (ei->CommandStatus) {
2923 	case CMD_TARGET_STATUS:
2924 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2925 			sense_len = sizeof(ei->SenseInfo);
2926 		else
2927 			sense_len = ei->SenseLen;
2928 		decode_sense_data(ei->SenseInfo, sense_len,
2929 					&sense_key, &asc, &ascq);
2930 		hpsa_print_cmd(h, "SCSI status", cp);
2931 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2932 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2933 				sense_key, asc, ascq);
2934 		else
2935 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2936 		if (ei->ScsiStatus == 0)
2937 			dev_warn(d, "SCSI status is abnormally zero.  "
2938 			"(probably indicates selection timeout "
2939 			"reported incorrectly due to a known "
2940 			"firmware bug, circa July, 2001.)\n");
2941 		break;
2942 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2943 		break;
2944 	case CMD_DATA_OVERRUN:
2945 		hpsa_print_cmd(h, "overrun condition", cp);
2946 		break;
2947 	case CMD_INVALID: {
2948 		/* controller unfortunately reports SCSI passthru's
2949 		 * to non-existent targets as invalid commands.
2950 		 */
2951 		hpsa_print_cmd(h, "invalid command", cp);
2952 		dev_warn(d, "probably means device no longer present\n");
2953 		}
2954 		break;
2955 	case CMD_PROTOCOL_ERR:
2956 		hpsa_print_cmd(h, "protocol error", cp);
2957 		break;
2958 	case CMD_HARDWARE_ERR:
2959 		hpsa_print_cmd(h, "hardware error", cp);
2960 		break;
2961 	case CMD_CONNECTION_LOST:
2962 		hpsa_print_cmd(h, "connection lost", cp);
2963 		break;
2964 	case CMD_ABORTED:
2965 		hpsa_print_cmd(h, "aborted", cp);
2966 		break;
2967 	case CMD_ABORT_FAILED:
2968 		hpsa_print_cmd(h, "abort failed", cp);
2969 		break;
2970 	case CMD_UNSOLICITED_ABORT:
2971 		hpsa_print_cmd(h, "unsolicited abort", cp);
2972 		break;
2973 	case CMD_TIMEOUT:
2974 		hpsa_print_cmd(h, "timed out", cp);
2975 		break;
2976 	case CMD_UNABORTABLE:
2977 		hpsa_print_cmd(h, "unabortable", cp);
2978 		break;
2979 	case CMD_CTLR_LOCKUP:
2980 		hpsa_print_cmd(h, "controller lockup detected", cp);
2981 		break;
2982 	default:
2983 		hpsa_print_cmd(h, "unknown status", cp);
2984 		dev_warn(d, "Unknown command status %x\n",
2985 				ei->CommandStatus);
2986 	}
2987 }
2988 
2989 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2990 					u8 page, u8 *buf, size_t bufsize)
2991 {
2992 	int rc = IO_OK;
2993 	struct CommandList *c;
2994 	struct ErrorInfo *ei;
2995 
2996 	c = cmd_alloc(h);
2997 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2998 			page, scsi3addr, TYPE_CMD)) {
2999 		rc = -1;
3000 		goto out;
3001 	}
3002 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3003 			NO_TIMEOUT);
3004 	if (rc)
3005 		goto out;
3006 	ei = c->err_info;
3007 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3008 		hpsa_scsi_interpret_error(h, c);
3009 		rc = -1;
3010 	}
3011 out:
3012 	cmd_free(h, c);
3013 	return rc;
3014 }
3015 
3016 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3017 						u8 *scsi3addr)
3018 {
3019 	u8 *buf;
3020 	u64 sa = 0;
3021 	int rc = 0;
3022 
3023 	buf = kzalloc(1024, GFP_KERNEL);
3024 	if (!buf)
3025 		return 0;
3026 
3027 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3028 					buf, 1024);
3029 
3030 	if (rc)
3031 		goto out;
3032 
3033 	sa = get_unaligned_be64(buf+12);
3034 
3035 out:
3036 	kfree(buf);
3037 	return sa;
3038 }
3039 
3040 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3041 			u16 page, unsigned char *buf,
3042 			unsigned char bufsize)
3043 {
3044 	int rc = IO_OK;
3045 	struct CommandList *c;
3046 	struct ErrorInfo *ei;
3047 
3048 	c = cmd_alloc(h);
3049 
3050 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3051 			page, scsi3addr, TYPE_CMD)) {
3052 		rc = -1;
3053 		goto out;
3054 	}
3055 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3056 			NO_TIMEOUT);
3057 	if (rc)
3058 		goto out;
3059 	ei = c->err_info;
3060 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3061 		hpsa_scsi_interpret_error(h, c);
3062 		rc = -1;
3063 	}
3064 out:
3065 	cmd_free(h, c);
3066 	return rc;
3067 }
3068 
3069 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3070 	u8 reset_type, int reply_queue)
3071 {
3072 	int rc = IO_OK;
3073 	struct CommandList *c;
3074 	struct ErrorInfo *ei;
3075 
3076 	c = cmd_alloc(h);
3077 	c->device = dev;
3078 
3079 	/* fill_cmd can't fail here, no data buffer to map. */
3080 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3081 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3082 	if (rc) {
3083 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3084 		goto out;
3085 	}
3086 	/* no unmap needed here because no data xfer. */
3087 
3088 	ei = c->err_info;
3089 	if (ei->CommandStatus != 0) {
3090 		hpsa_scsi_interpret_error(h, c);
3091 		rc = -1;
3092 	}
3093 out:
3094 	cmd_free(h, c);
3095 	return rc;
3096 }
3097 
3098 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3099 			       struct hpsa_scsi_dev_t *dev,
3100 			       unsigned char *scsi3addr)
3101 {
3102 	int i;
3103 	bool match = false;
3104 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3105 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3106 
3107 	if (hpsa_is_cmd_idle(c))
3108 		return false;
3109 
3110 	switch (c->cmd_type) {
3111 	case CMD_SCSI:
3112 	case CMD_IOCTL_PEND:
3113 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3114 				sizeof(c->Header.LUN.LunAddrBytes));
3115 		break;
3116 
3117 	case CMD_IOACCEL1:
3118 	case CMD_IOACCEL2:
3119 		if (c->phys_disk == dev) {
3120 			/* HBA mode match */
3121 			match = true;
3122 		} else {
3123 			/* Possible RAID mode -- check each phys dev. */
3124 			/* FIXME:  Do we need to take out a lock here?  If
3125 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3126 			 * instead. */
3127 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3128 				/* FIXME: an alternate test might be
3129 				 *
3130 				 * match = dev->phys_disk[i]->ioaccel_handle
3131 				 *              == c2->scsi_nexus;      */
3132 				match = dev->phys_disk[i] == c->phys_disk;
3133 			}
3134 		}
3135 		break;
3136 
3137 	case IOACCEL2_TMF:
3138 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3139 			match = dev->phys_disk[i]->ioaccel_handle ==
3140 					le32_to_cpu(ac->it_nexus);
3141 		}
3142 		break;
3143 
3144 	case 0:		/* The command is in the middle of being initialized. */
3145 		match = false;
3146 		break;
3147 
3148 	default:
3149 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3150 			c->cmd_type);
3151 		BUG();
3152 	}
3153 
3154 	return match;
3155 }
3156 
3157 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3158 	u8 reset_type, int reply_queue)
3159 {
3160 	int rc = 0;
3161 
3162 	/* We can really only handle one reset at a time */
3163 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3164 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3165 		return -EINTR;
3166 	}
3167 
3168 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3169 	if (!rc) {
3170 		/* incremented by sending the reset request */
3171 		atomic_dec(&dev->commands_outstanding);
3172 		wait_event(h->event_sync_wait_queue,
3173 			atomic_read(&dev->commands_outstanding) <= 0 ||
3174 			lockup_detected(h));
3175 	}
3176 
3177 	if (unlikely(lockup_detected(h))) {
3178 		dev_warn(&h->pdev->dev,
3179 			 "Controller lockup detected during reset wait\n");
3180 		rc = -ENODEV;
3181 	}
3182 
3183 	if (!rc)
3184 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3185 
3186 	mutex_unlock(&h->reset_mutex);
3187 	return rc;
3188 }
3189 
3190 static void hpsa_get_raid_level(struct ctlr_info *h,
3191 	unsigned char *scsi3addr, unsigned char *raid_level)
3192 {
3193 	int rc;
3194 	unsigned char *buf;
3195 
3196 	*raid_level = RAID_UNKNOWN;
3197 	buf = kzalloc(64, GFP_KERNEL);
3198 	if (!buf)
3199 		return;
3200 
3201 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3202 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3203 		goto exit;
3204 
3205 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3206 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3207 
3208 	if (rc == 0)
3209 		*raid_level = buf[8];
3210 	if (*raid_level > RAID_UNKNOWN)
3211 		*raid_level = RAID_UNKNOWN;
3212 exit:
3213 	kfree(buf);
3214 	return;
3215 }
3216 
3217 #define HPSA_MAP_DEBUG
3218 #ifdef HPSA_MAP_DEBUG
3219 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3220 				struct raid_map_data *map_buff)
3221 {
3222 	struct raid_map_disk_data *dd = &map_buff->data[0];
3223 	int map, row, col;
3224 	u16 map_cnt, row_cnt, disks_per_row;
3225 
3226 	if (rc != 0)
3227 		return;
3228 
3229 	/* Show details only if debugging has been activated. */
3230 	if (h->raid_offload_debug < 2)
3231 		return;
3232 
3233 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3234 				le32_to_cpu(map_buff->structure_size));
3235 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3236 			le32_to_cpu(map_buff->volume_blk_size));
3237 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3238 			le64_to_cpu(map_buff->volume_blk_cnt));
3239 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3240 			map_buff->phys_blk_shift);
3241 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3242 			map_buff->parity_rotation_shift);
3243 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3244 			le16_to_cpu(map_buff->strip_size));
3245 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3246 			le64_to_cpu(map_buff->disk_starting_blk));
3247 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3248 			le64_to_cpu(map_buff->disk_blk_cnt));
3249 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3250 			le16_to_cpu(map_buff->data_disks_per_row));
3251 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3252 			le16_to_cpu(map_buff->metadata_disks_per_row));
3253 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3254 			le16_to_cpu(map_buff->row_cnt));
3255 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3256 			le16_to_cpu(map_buff->layout_map_count));
3257 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3258 			le16_to_cpu(map_buff->flags));
3259 	dev_info(&h->pdev->dev, "encryption = %s\n",
3260 			le16_to_cpu(map_buff->flags) &
3261 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3262 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3263 			le16_to_cpu(map_buff->dekindex));
3264 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3265 	for (map = 0; map < map_cnt; map++) {
3266 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3267 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3268 		for (row = 0; row < row_cnt; row++) {
3269 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3270 			disks_per_row =
3271 				le16_to_cpu(map_buff->data_disks_per_row);
3272 			for (col = 0; col < disks_per_row; col++, dd++)
3273 				dev_info(&h->pdev->dev,
3274 					"    D%02u: h=0x%04x xor=%u,%u\n",
3275 					col, dd->ioaccel_handle,
3276 					dd->xor_mult[0], dd->xor_mult[1]);
3277 			disks_per_row =
3278 				le16_to_cpu(map_buff->metadata_disks_per_row);
3279 			for (col = 0; col < disks_per_row; col++, dd++)
3280 				dev_info(&h->pdev->dev,
3281 					"    M%02u: h=0x%04x xor=%u,%u\n",
3282 					col, dd->ioaccel_handle,
3283 					dd->xor_mult[0], dd->xor_mult[1]);
3284 		}
3285 	}
3286 }
3287 #else
3288 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3289 			__attribute__((unused)) int rc,
3290 			__attribute__((unused)) struct raid_map_data *map_buff)
3291 {
3292 }
3293 #endif
3294 
3295 static int hpsa_get_raid_map(struct ctlr_info *h,
3296 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3297 {
3298 	int rc = 0;
3299 	struct CommandList *c;
3300 	struct ErrorInfo *ei;
3301 
3302 	c = cmd_alloc(h);
3303 
3304 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3305 			sizeof(this_device->raid_map), 0,
3306 			scsi3addr, TYPE_CMD)) {
3307 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3308 		cmd_free(h, c);
3309 		return -1;
3310 	}
3311 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3312 			NO_TIMEOUT);
3313 	if (rc)
3314 		goto out;
3315 	ei = c->err_info;
3316 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3317 		hpsa_scsi_interpret_error(h, c);
3318 		rc = -1;
3319 		goto out;
3320 	}
3321 	cmd_free(h, c);
3322 
3323 	/* @todo in the future, dynamically allocate RAID map memory */
3324 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3325 				sizeof(this_device->raid_map)) {
3326 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3327 		rc = -1;
3328 	}
3329 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3330 	return rc;
3331 out:
3332 	cmd_free(h, c);
3333 	return rc;
3334 }
3335 
3336 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3337 		unsigned char scsi3addr[], u16 bmic_device_index,
3338 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3339 {
3340 	int rc = IO_OK;
3341 	struct CommandList *c;
3342 	struct ErrorInfo *ei;
3343 
3344 	c = cmd_alloc(h);
3345 
3346 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3347 		0, RAID_CTLR_LUNID, TYPE_CMD);
3348 	if (rc)
3349 		goto out;
3350 
3351 	c->Request.CDB[2] = bmic_device_index & 0xff;
3352 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3353 
3354 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3355 			NO_TIMEOUT);
3356 	if (rc)
3357 		goto out;
3358 	ei = c->err_info;
3359 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3360 		hpsa_scsi_interpret_error(h, c);
3361 		rc = -1;
3362 	}
3363 out:
3364 	cmd_free(h, c);
3365 	return rc;
3366 }
3367 
3368 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3369 	struct bmic_identify_controller *buf, size_t bufsize)
3370 {
3371 	int rc = IO_OK;
3372 	struct CommandList *c;
3373 	struct ErrorInfo *ei;
3374 
3375 	c = cmd_alloc(h);
3376 
3377 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3378 		0, RAID_CTLR_LUNID, TYPE_CMD);
3379 	if (rc)
3380 		goto out;
3381 
3382 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3383 			NO_TIMEOUT);
3384 	if (rc)
3385 		goto out;
3386 	ei = c->err_info;
3387 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3388 		hpsa_scsi_interpret_error(h, c);
3389 		rc = -1;
3390 	}
3391 out:
3392 	cmd_free(h, c);
3393 	return rc;
3394 }
3395 
3396 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3397 		unsigned char scsi3addr[], u16 bmic_device_index,
3398 		struct bmic_identify_physical_device *buf, size_t bufsize)
3399 {
3400 	int rc = IO_OK;
3401 	struct CommandList *c;
3402 	struct ErrorInfo *ei;
3403 
3404 	c = cmd_alloc(h);
3405 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3406 		0, RAID_CTLR_LUNID, TYPE_CMD);
3407 	if (rc)
3408 		goto out;
3409 
3410 	c->Request.CDB[2] = bmic_device_index & 0xff;
3411 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3412 
3413 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3414 						NO_TIMEOUT);
3415 	ei = c->err_info;
3416 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3417 		hpsa_scsi_interpret_error(h, c);
3418 		rc = -1;
3419 	}
3420 out:
3421 	cmd_free(h, c);
3422 
3423 	return rc;
3424 }
3425 
3426 /*
3427  * get enclosure information
3428  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3429  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3430  * Uses id_physical_device to determine the box_index.
3431  */
3432 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3433 			unsigned char *scsi3addr,
3434 			struct ReportExtendedLUNdata *rlep, int rle_index,
3435 			struct hpsa_scsi_dev_t *encl_dev)
3436 {
3437 	int rc = -1;
3438 	struct CommandList *c = NULL;
3439 	struct ErrorInfo *ei = NULL;
3440 	struct bmic_sense_storage_box_params *bssbp = NULL;
3441 	struct bmic_identify_physical_device *id_phys = NULL;
3442 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3443 	u16 bmic_device_index = 0;
3444 
3445 	encl_dev->eli =
3446 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3447 
3448 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3449 
3450 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3451 		rc = IO_OK;
3452 		goto out;
3453 	}
3454 
3455 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3456 		rc = IO_OK;
3457 		goto out;
3458 	}
3459 
3460 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3461 	if (!bssbp)
3462 		goto out;
3463 
3464 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3465 	if (!id_phys)
3466 		goto out;
3467 
3468 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3469 						id_phys, sizeof(*id_phys));
3470 	if (rc) {
3471 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3472 			__func__, encl_dev->external, bmic_device_index);
3473 		goto out;
3474 	}
3475 
3476 	c = cmd_alloc(h);
3477 
3478 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3479 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3480 
3481 	if (rc)
3482 		goto out;
3483 
3484 	if (id_phys->phys_connector[1] == 'E')
3485 		c->Request.CDB[5] = id_phys->box_index;
3486 	else
3487 		c->Request.CDB[5] = 0;
3488 
3489 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3490 						NO_TIMEOUT);
3491 	if (rc)
3492 		goto out;
3493 
3494 	ei = c->err_info;
3495 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3496 		rc = -1;
3497 		goto out;
3498 	}
3499 
3500 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3501 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3502 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3503 
3504 	rc = IO_OK;
3505 out:
3506 	kfree(bssbp);
3507 	kfree(id_phys);
3508 
3509 	if (c)
3510 		cmd_free(h, c);
3511 
3512 	if (rc != IO_OK)
3513 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3514 			"Error, could not get enclosure information");
3515 }
3516 
3517 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3518 						unsigned char *scsi3addr)
3519 {
3520 	struct ReportExtendedLUNdata *physdev;
3521 	u32 nphysicals;
3522 	u64 sa = 0;
3523 	int i;
3524 
3525 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3526 	if (!physdev)
3527 		return 0;
3528 
3529 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3530 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3531 		kfree(physdev);
3532 		return 0;
3533 	}
3534 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3535 
3536 	for (i = 0; i < nphysicals; i++)
3537 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3538 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3539 			break;
3540 		}
3541 
3542 	kfree(physdev);
3543 
3544 	return sa;
3545 }
3546 
3547 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3548 					struct hpsa_scsi_dev_t *dev)
3549 {
3550 	int rc;
3551 	u64 sa = 0;
3552 
3553 	if (is_hba_lunid(scsi3addr)) {
3554 		struct bmic_sense_subsystem_info *ssi;
3555 
3556 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3557 		if (!ssi)
3558 			return;
3559 
3560 		rc = hpsa_bmic_sense_subsystem_information(h,
3561 					scsi3addr, 0, ssi, sizeof(*ssi));
3562 		if (rc == 0) {
3563 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3564 			h->sas_address = sa;
3565 		}
3566 
3567 		kfree(ssi);
3568 	} else
3569 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3570 
3571 	dev->sas_address = sa;
3572 }
3573 
3574 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3575 	struct ReportExtendedLUNdata *physdev)
3576 {
3577 	u32 nphysicals;
3578 	int i;
3579 
3580 	if (h->discovery_polling)
3581 		return;
3582 
3583 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3584 
3585 	for (i = 0; i < nphysicals; i++) {
3586 		if (physdev->LUN[i].device_type ==
3587 			BMIC_DEVICE_TYPE_CONTROLLER
3588 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3589 			dev_info(&h->pdev->dev,
3590 				"External controller present, activate discovery polling and disable rld caching\n");
3591 			hpsa_disable_rld_caching(h);
3592 			h->discovery_polling = 1;
3593 			break;
3594 		}
3595 	}
3596 }
3597 
3598 /* Get a device id from inquiry page 0x83 */
3599 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3600 	unsigned char scsi3addr[], u8 page)
3601 {
3602 	int rc;
3603 	int i;
3604 	int pages;
3605 	unsigned char *buf, bufsize;
3606 
3607 	buf = kzalloc(256, GFP_KERNEL);
3608 	if (!buf)
3609 		return false;
3610 
3611 	/* Get the size of the page list first */
3612 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3613 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3614 				buf, HPSA_VPD_HEADER_SZ);
3615 	if (rc != 0)
3616 		goto exit_unsupported;
3617 	pages = buf[3];
3618 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3619 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3620 	else
3621 		bufsize = 255;
3622 
3623 	/* Get the whole VPD page list */
3624 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3625 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3626 				buf, bufsize);
3627 	if (rc != 0)
3628 		goto exit_unsupported;
3629 
3630 	pages = buf[3];
3631 	for (i = 1; i <= pages; i++)
3632 		if (buf[3 + i] == page)
3633 			goto exit_supported;
3634 exit_unsupported:
3635 	kfree(buf);
3636 	return false;
3637 exit_supported:
3638 	kfree(buf);
3639 	return true;
3640 }
3641 
3642 /*
3643  * Called during a scan operation.
3644  * Sets ioaccel status on the new device list, not the existing device list
3645  *
3646  * The device list used during I/O will be updated later in
3647  * adjust_hpsa_scsi_table.
3648  */
3649 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3650 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3651 {
3652 	int rc;
3653 	unsigned char *buf;
3654 	u8 ioaccel_status;
3655 
3656 	this_device->offload_config = 0;
3657 	this_device->offload_enabled = 0;
3658 	this_device->offload_to_be_enabled = 0;
3659 
3660 	buf = kzalloc(64, GFP_KERNEL);
3661 	if (!buf)
3662 		return;
3663 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3664 		goto out;
3665 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3666 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3667 	if (rc != 0)
3668 		goto out;
3669 
3670 #define IOACCEL_STATUS_BYTE 4
3671 #define OFFLOAD_CONFIGURED_BIT 0x01
3672 #define OFFLOAD_ENABLED_BIT 0x02
3673 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3674 	this_device->offload_config =
3675 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3676 	if (this_device->offload_config) {
3677 		bool offload_enabled =
3678 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3679 		/*
3680 		 * Check to see if offload can be enabled.
3681 		 */
3682 		if (offload_enabled) {
3683 			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3684 			if (rc) /* could not load raid_map */
3685 				goto out;
3686 			this_device->offload_to_be_enabled = 1;
3687 		}
3688 	}
3689 
3690 out:
3691 	kfree(buf);
3692 	return;
3693 }
3694 
3695 /* Get the device id from inquiry page 0x83 */
3696 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3697 	unsigned char *device_id, int index, int buflen)
3698 {
3699 	int rc;
3700 	unsigned char *buf;
3701 
3702 	/* Does controller have VPD for device id? */
3703 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3704 		return 1; /* not supported */
3705 
3706 	buf = kzalloc(64, GFP_KERNEL);
3707 	if (!buf)
3708 		return -ENOMEM;
3709 
3710 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3711 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3712 	if (rc == 0) {
3713 		if (buflen > 16)
3714 			buflen = 16;
3715 		memcpy(device_id, &buf[8], buflen);
3716 	}
3717 
3718 	kfree(buf);
3719 
3720 	return rc; /*0 - got id,  otherwise, didn't */
3721 }
3722 
3723 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3724 		void *buf, int bufsize,
3725 		int extended_response)
3726 {
3727 	int rc = IO_OK;
3728 	struct CommandList *c;
3729 	unsigned char scsi3addr[8];
3730 	struct ErrorInfo *ei;
3731 
3732 	c = cmd_alloc(h);
3733 
3734 	/* address the controller */
3735 	memset(scsi3addr, 0, sizeof(scsi3addr));
3736 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3737 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3738 		rc = -EAGAIN;
3739 		goto out;
3740 	}
3741 	if (extended_response)
3742 		c->Request.CDB[1] = extended_response;
3743 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3744 			NO_TIMEOUT);
3745 	if (rc)
3746 		goto out;
3747 	ei = c->err_info;
3748 	if (ei->CommandStatus != 0 &&
3749 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3750 		hpsa_scsi_interpret_error(h, c);
3751 		rc = -EIO;
3752 	} else {
3753 		struct ReportLUNdata *rld = buf;
3754 
3755 		if (rld->extended_response_flag != extended_response) {
3756 			if (!h->legacy_board) {
3757 				dev_err(&h->pdev->dev,
3758 					"report luns requested format %u, got %u\n",
3759 					extended_response,
3760 					rld->extended_response_flag);
3761 				rc = -EINVAL;
3762 			} else
3763 				rc = -EOPNOTSUPP;
3764 		}
3765 	}
3766 out:
3767 	cmd_free(h, c);
3768 	return rc;
3769 }
3770 
3771 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3772 		struct ReportExtendedLUNdata *buf, int bufsize)
3773 {
3774 	int rc;
3775 	struct ReportLUNdata *lbuf;
3776 
3777 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3778 				      HPSA_REPORT_PHYS_EXTENDED);
3779 	if (!rc || rc != -EOPNOTSUPP)
3780 		return rc;
3781 
3782 	/* REPORT PHYS EXTENDED is not supported */
3783 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3784 	if (!lbuf)
3785 		return -ENOMEM;
3786 
3787 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3788 	if (!rc) {
3789 		int i;
3790 		u32 nphys;
3791 
3792 		/* Copy ReportLUNdata header */
3793 		memcpy(buf, lbuf, 8);
3794 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3795 		for (i = 0; i < nphys; i++)
3796 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3797 	}
3798 	kfree(lbuf);
3799 	return rc;
3800 }
3801 
3802 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3803 		struct ReportLUNdata *buf, int bufsize)
3804 {
3805 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3806 }
3807 
3808 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3809 	int bus, int target, int lun)
3810 {
3811 	device->bus = bus;
3812 	device->target = target;
3813 	device->lun = lun;
3814 }
3815 
3816 /* Use VPD inquiry to get details of volume status */
3817 static int hpsa_get_volume_status(struct ctlr_info *h,
3818 					unsigned char scsi3addr[])
3819 {
3820 	int rc;
3821 	int status;
3822 	int size;
3823 	unsigned char *buf;
3824 
3825 	buf = kzalloc(64, GFP_KERNEL);
3826 	if (!buf)
3827 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3828 
3829 	/* Does controller have VPD for logical volume status? */
3830 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3831 		goto exit_failed;
3832 
3833 	/* Get the size of the VPD return buffer */
3834 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3835 					buf, HPSA_VPD_HEADER_SZ);
3836 	if (rc != 0)
3837 		goto exit_failed;
3838 	size = buf[3];
3839 
3840 	/* Now get the whole VPD buffer */
3841 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3842 					buf, size + HPSA_VPD_HEADER_SZ);
3843 	if (rc != 0)
3844 		goto exit_failed;
3845 	status = buf[4]; /* status byte */
3846 
3847 	kfree(buf);
3848 	return status;
3849 exit_failed:
3850 	kfree(buf);
3851 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3852 }
3853 
3854 /* Determine offline status of a volume.
3855  * Return either:
3856  *  0 (not offline)
3857  *  0xff (offline for unknown reasons)
3858  *  # (integer code indicating one of several NOT READY states
3859  *     describing why a volume is to be kept offline)
3860  */
3861 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3862 					unsigned char scsi3addr[])
3863 {
3864 	struct CommandList *c;
3865 	unsigned char *sense;
3866 	u8 sense_key, asc, ascq;
3867 	int sense_len;
3868 	int rc, ldstat = 0;
3869 	u16 cmd_status;
3870 	u8 scsi_status;
3871 #define ASC_LUN_NOT_READY 0x04
3872 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3873 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3874 
3875 	c = cmd_alloc(h);
3876 
3877 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3878 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3879 					NO_TIMEOUT);
3880 	if (rc) {
3881 		cmd_free(h, c);
3882 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3883 	}
3884 	sense = c->err_info->SenseInfo;
3885 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3886 		sense_len = sizeof(c->err_info->SenseInfo);
3887 	else
3888 		sense_len = c->err_info->SenseLen;
3889 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3890 	cmd_status = c->err_info->CommandStatus;
3891 	scsi_status = c->err_info->ScsiStatus;
3892 	cmd_free(h, c);
3893 
3894 	/* Determine the reason for not ready state */
3895 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3896 
3897 	/* Keep volume offline in certain cases: */
3898 	switch (ldstat) {
3899 	case HPSA_LV_FAILED:
3900 	case HPSA_LV_UNDERGOING_ERASE:
3901 	case HPSA_LV_NOT_AVAILABLE:
3902 	case HPSA_LV_UNDERGOING_RPI:
3903 	case HPSA_LV_PENDING_RPI:
3904 	case HPSA_LV_ENCRYPTED_NO_KEY:
3905 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3906 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3907 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3908 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3909 		return ldstat;
3910 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3911 		/* If VPD status page isn't available,
3912 		 * use ASC/ASCQ to determine state
3913 		 */
3914 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3915 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3916 			return ldstat;
3917 		break;
3918 	default:
3919 		break;
3920 	}
3921 	return HPSA_LV_OK;
3922 }
3923 
3924 static int hpsa_update_device_info(struct ctlr_info *h,
3925 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3926 	unsigned char *is_OBDR_device)
3927 {
3928 
3929 #define OBDR_SIG_OFFSET 43
3930 #define OBDR_TAPE_SIG "$DR-10"
3931 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3932 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3933 
3934 	unsigned char *inq_buff;
3935 	unsigned char *obdr_sig;
3936 	int rc = 0;
3937 
3938 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3939 	if (!inq_buff) {
3940 		rc = -ENOMEM;
3941 		goto bail_out;
3942 	}
3943 
3944 	/* Do an inquiry to the device to see what it is. */
3945 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3946 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3947 		dev_err(&h->pdev->dev,
3948 			"%s: inquiry failed, device will be skipped.\n",
3949 			__func__);
3950 		rc = HPSA_INQUIRY_FAILED;
3951 		goto bail_out;
3952 	}
3953 
3954 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3955 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3956 
3957 	this_device->devtype = (inq_buff[0] & 0x1f);
3958 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3959 	memcpy(this_device->vendor, &inq_buff[8],
3960 		sizeof(this_device->vendor));
3961 	memcpy(this_device->model, &inq_buff[16],
3962 		sizeof(this_device->model));
3963 	this_device->rev = inq_buff[2];
3964 	memset(this_device->device_id, 0,
3965 		sizeof(this_device->device_id));
3966 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3967 		sizeof(this_device->device_id)) < 0) {
3968 		dev_err(&h->pdev->dev,
3969 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3970 			h->ctlr, __func__,
3971 			h->scsi_host->host_no,
3972 			this_device->bus, this_device->target,
3973 			this_device->lun,
3974 			scsi_device_type(this_device->devtype),
3975 			this_device->model);
3976 		rc = HPSA_LV_FAILED;
3977 		goto bail_out;
3978 	}
3979 
3980 	if ((this_device->devtype == TYPE_DISK ||
3981 		this_device->devtype == TYPE_ZBC) &&
3982 		is_logical_dev_addr_mode(scsi3addr)) {
3983 		unsigned char volume_offline;
3984 
3985 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3986 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3987 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3988 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3989 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3990 		    h->legacy_board) {
3991 			/*
3992 			 * Legacy boards might not support volume status
3993 			 */
3994 			dev_info(&h->pdev->dev,
3995 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3996 				 this_device->target, this_device->lun);
3997 			volume_offline = 0;
3998 		}
3999 		this_device->volume_offline = volume_offline;
4000 		if (volume_offline == HPSA_LV_FAILED) {
4001 			rc = HPSA_LV_FAILED;
4002 			dev_err(&h->pdev->dev,
4003 				"%s: LV failed, device will be skipped.\n",
4004 				__func__);
4005 			goto bail_out;
4006 		}
4007 	} else {
4008 		this_device->raid_level = RAID_UNKNOWN;
4009 		this_device->offload_config = 0;
4010 		hpsa_turn_off_ioaccel_for_device(this_device);
4011 		this_device->hba_ioaccel_enabled = 0;
4012 		this_device->volume_offline = 0;
4013 		this_device->queue_depth = h->nr_cmds;
4014 	}
4015 
4016 	if (this_device->external)
4017 		this_device->queue_depth = EXTERNAL_QD;
4018 
4019 	if (is_OBDR_device) {
4020 		/* See if this is a One-Button-Disaster-Recovery device
4021 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4022 		 */
4023 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4024 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4025 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4026 						OBDR_SIG_LEN) == 0);
4027 	}
4028 	kfree(inq_buff);
4029 	return 0;
4030 
4031 bail_out:
4032 	kfree(inq_buff);
4033 	return rc;
4034 }
4035 
4036 /*
4037  * Helper function to assign bus, target, lun mapping of devices.
4038  * Logical drive target and lun are assigned at this time, but
4039  * physical device lun and target assignment are deferred (assigned
4040  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4041 */
4042 static void figure_bus_target_lun(struct ctlr_info *h,
4043 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4044 {
4045 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4046 
4047 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4048 		/* physical device, target and lun filled in later */
4049 		if (is_hba_lunid(lunaddrbytes)) {
4050 			int bus = HPSA_HBA_BUS;
4051 
4052 			if (!device->rev)
4053 				bus = HPSA_LEGACY_HBA_BUS;
4054 			hpsa_set_bus_target_lun(device,
4055 					bus, 0, lunid & 0x3fff);
4056 		} else
4057 			/* defer target, lun assignment for physical devices */
4058 			hpsa_set_bus_target_lun(device,
4059 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4060 		return;
4061 	}
4062 	/* It's a logical device */
4063 	if (device->external) {
4064 		hpsa_set_bus_target_lun(device,
4065 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4066 			lunid & 0x00ff);
4067 		return;
4068 	}
4069 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4070 				0, lunid & 0x3fff);
4071 }
4072 
4073 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4074 	int i, int nphysicals, int nlocal_logicals)
4075 {
4076 	/* In report logicals, local logicals are listed first,
4077 	* then any externals.
4078 	*/
4079 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4080 
4081 	if (i == raid_ctlr_position)
4082 		return 0;
4083 
4084 	if (i < logicals_start)
4085 		return 0;
4086 
4087 	/* i is in logicals range, but still within local logicals */
4088 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4089 		return 0;
4090 
4091 	return 1; /* it's an external lun */
4092 }
4093 
4094 /*
4095  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4096  * logdev.  The number of luns in physdev and logdev are returned in
4097  * *nphysicals and *nlogicals, respectively.
4098  * Returns 0 on success, -1 otherwise.
4099  */
4100 static int hpsa_gather_lun_info(struct ctlr_info *h,
4101 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4102 	struct ReportLUNdata *logdev, u32 *nlogicals)
4103 {
4104 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4105 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4106 		return -1;
4107 	}
4108 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4109 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4110 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4111 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4112 		*nphysicals = HPSA_MAX_PHYS_LUN;
4113 	}
4114 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4115 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4116 		return -1;
4117 	}
4118 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4119 	/* Reject Logicals in excess of our max capability. */
4120 	if (*nlogicals > HPSA_MAX_LUN) {
4121 		dev_warn(&h->pdev->dev,
4122 			"maximum logical LUNs (%d) exceeded.  "
4123 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4124 			*nlogicals - HPSA_MAX_LUN);
4125 		*nlogicals = HPSA_MAX_LUN;
4126 	}
4127 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4128 		dev_warn(&h->pdev->dev,
4129 			"maximum logical + physical LUNs (%d) exceeded. "
4130 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4131 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4132 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4133 	}
4134 	return 0;
4135 }
4136 
4137 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4138 	int i, int nphysicals, int nlogicals,
4139 	struct ReportExtendedLUNdata *physdev_list,
4140 	struct ReportLUNdata *logdev_list)
4141 {
4142 	/* Helper function, figure out where the LUN ID info is coming from
4143 	 * given index i, lists of physical and logical devices, where in
4144 	 * the list the raid controller is supposed to appear (first or last)
4145 	 */
4146 
4147 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4148 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4149 
4150 	if (i == raid_ctlr_position)
4151 		return RAID_CTLR_LUNID;
4152 
4153 	if (i < logicals_start)
4154 		return &physdev_list->LUN[i -
4155 				(raid_ctlr_position == 0)].lunid[0];
4156 
4157 	if (i < last_device)
4158 		return &logdev_list->LUN[i - nphysicals -
4159 			(raid_ctlr_position == 0)][0];
4160 	BUG();
4161 	return NULL;
4162 }
4163 
4164 /* get physical drive ioaccel handle and queue depth */
4165 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4166 		struct hpsa_scsi_dev_t *dev,
4167 		struct ReportExtendedLUNdata *rlep, int rle_index,
4168 		struct bmic_identify_physical_device *id_phys)
4169 {
4170 	int rc;
4171 	struct ext_report_lun_entry *rle;
4172 
4173 	rle = &rlep->LUN[rle_index];
4174 
4175 	dev->ioaccel_handle = rle->ioaccel_handle;
4176 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4177 		dev->hba_ioaccel_enabled = 1;
4178 	memset(id_phys, 0, sizeof(*id_phys));
4179 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4180 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4181 			sizeof(*id_phys));
4182 	if (!rc)
4183 		/* Reserve space for FW operations */
4184 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4185 #define DRIVE_QUEUE_DEPTH 7
4186 		dev->queue_depth =
4187 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4188 				DRIVE_CMDS_RESERVED_FOR_FW;
4189 	else
4190 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4191 }
4192 
4193 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4194 	struct ReportExtendedLUNdata *rlep, int rle_index,
4195 	struct bmic_identify_physical_device *id_phys)
4196 {
4197 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4198 
4199 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4200 		this_device->hba_ioaccel_enabled = 1;
4201 
4202 	memcpy(&this_device->active_path_index,
4203 		&id_phys->active_path_number,
4204 		sizeof(this_device->active_path_index));
4205 	memcpy(&this_device->path_map,
4206 		&id_phys->redundant_path_present_map,
4207 		sizeof(this_device->path_map));
4208 	memcpy(&this_device->box,
4209 		&id_phys->alternate_paths_phys_box_on_port,
4210 		sizeof(this_device->box));
4211 	memcpy(&this_device->phys_connector,
4212 		&id_phys->alternate_paths_phys_connector,
4213 		sizeof(this_device->phys_connector));
4214 	memcpy(&this_device->bay,
4215 		&id_phys->phys_bay_in_box,
4216 		sizeof(this_device->bay));
4217 }
4218 
4219 /* get number of local logical disks. */
4220 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4221 	struct bmic_identify_controller *id_ctlr,
4222 	u32 *nlocals)
4223 {
4224 	int rc;
4225 
4226 	if (!id_ctlr) {
4227 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4228 			__func__);
4229 		return -ENOMEM;
4230 	}
4231 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4232 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4233 	if (!rc)
4234 		if (id_ctlr->configured_logical_drive_count < 255)
4235 			*nlocals = id_ctlr->configured_logical_drive_count;
4236 		else
4237 			*nlocals = le16_to_cpu(
4238 					id_ctlr->extended_logical_unit_count);
4239 	else
4240 		*nlocals = -1;
4241 	return rc;
4242 }
4243 
4244 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4245 {
4246 	struct bmic_identify_physical_device *id_phys;
4247 	bool is_spare = false;
4248 	int rc;
4249 
4250 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4251 	if (!id_phys)
4252 		return false;
4253 
4254 	rc = hpsa_bmic_id_physical_device(h,
4255 					lunaddrbytes,
4256 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4257 					id_phys, sizeof(*id_phys));
4258 	if (rc == 0)
4259 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4260 
4261 	kfree(id_phys);
4262 	return is_spare;
4263 }
4264 
4265 #define RPL_DEV_FLAG_NON_DISK                           0x1
4266 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4267 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4268 
4269 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4270 
4271 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4272 				struct ext_report_lun_entry *rle)
4273 {
4274 	u8 device_flags;
4275 	u8 device_type;
4276 
4277 	if (!MASKED_DEVICE(lunaddrbytes))
4278 		return false;
4279 
4280 	device_flags = rle->device_flags;
4281 	device_type = rle->device_type;
4282 
4283 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4284 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4285 			return false;
4286 		return true;
4287 	}
4288 
4289 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4290 		return false;
4291 
4292 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4293 		return false;
4294 
4295 	/*
4296 	 * Spares may be spun down, we do not want to
4297 	 * do an Inquiry to a RAID set spare drive as
4298 	 * that would have them spun up, that is a
4299 	 * performance hit because I/O to the RAID device
4300 	 * stops while the spin up occurs which can take
4301 	 * over 50 seconds.
4302 	 */
4303 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4304 		return true;
4305 
4306 	return false;
4307 }
4308 
4309 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4310 {
4311 	/* the idea here is we could get notified
4312 	 * that some devices have changed, so we do a report
4313 	 * physical luns and report logical luns cmd, and adjust
4314 	 * our list of devices accordingly.
4315 	 *
4316 	 * The scsi3addr's of devices won't change so long as the
4317 	 * adapter is not reset.  That means we can rescan and
4318 	 * tell which devices we already know about, vs. new
4319 	 * devices, vs.  disappearing devices.
4320 	 */
4321 	struct ReportExtendedLUNdata *physdev_list = NULL;
4322 	struct ReportLUNdata *logdev_list = NULL;
4323 	struct bmic_identify_physical_device *id_phys = NULL;
4324 	struct bmic_identify_controller *id_ctlr = NULL;
4325 	u32 nphysicals = 0;
4326 	u32 nlogicals = 0;
4327 	u32 nlocal_logicals = 0;
4328 	u32 ndev_allocated = 0;
4329 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4330 	int ncurrent = 0;
4331 	int i, n_ext_target_devs, ndevs_to_allocate;
4332 	int raid_ctlr_position;
4333 	bool physical_device;
4334 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4335 
4336 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4337 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4338 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4339 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4340 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4341 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4342 
4343 	if (!currentsd || !physdev_list || !logdev_list ||
4344 		!tmpdevice || !id_phys || !id_ctlr) {
4345 		dev_err(&h->pdev->dev, "out of memory\n");
4346 		goto out;
4347 	}
4348 	memset(lunzerobits, 0, sizeof(lunzerobits));
4349 
4350 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4351 
4352 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4353 			logdev_list, &nlogicals)) {
4354 		h->drv_req_rescan = 1;
4355 		goto out;
4356 	}
4357 
4358 	/* Set number of local logicals (non PTRAID) */
4359 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4360 		dev_warn(&h->pdev->dev,
4361 			"%s: Can't determine number of local logical devices.\n",
4362 			__func__);
4363 	}
4364 
4365 	/* We might see up to the maximum number of logical and physical disks
4366 	 * plus external target devices, and a device for the local RAID
4367 	 * controller.
4368 	 */
4369 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4370 
4371 	hpsa_ext_ctrl_present(h, physdev_list);
4372 
4373 	/* Allocate the per device structures */
4374 	for (i = 0; i < ndevs_to_allocate; i++) {
4375 		if (i >= HPSA_MAX_DEVICES) {
4376 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4377 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4378 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4379 			break;
4380 		}
4381 
4382 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4383 		if (!currentsd[i]) {
4384 			h->drv_req_rescan = 1;
4385 			goto out;
4386 		}
4387 		ndev_allocated++;
4388 	}
4389 
4390 	if (is_scsi_rev_5(h))
4391 		raid_ctlr_position = 0;
4392 	else
4393 		raid_ctlr_position = nphysicals + nlogicals;
4394 
4395 	/* adjust our table of devices */
4396 	n_ext_target_devs = 0;
4397 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4398 		u8 *lunaddrbytes, is_OBDR = 0;
4399 		int rc = 0;
4400 		int phys_dev_index = i - (raid_ctlr_position == 0);
4401 		bool skip_device = false;
4402 
4403 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4404 
4405 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4406 
4407 		/* Figure out where the LUN ID info is coming from */
4408 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4409 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4410 
4411 		/* Determine if this is a lun from an external target array */
4412 		tmpdevice->external =
4413 			figure_external_status(h, raid_ctlr_position, i,
4414 						nphysicals, nlocal_logicals);
4415 
4416 		/*
4417 		 * Skip over some devices such as a spare.
4418 		 */
4419 		if (!tmpdevice->external && physical_device) {
4420 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4421 					&physdev_list->LUN[phys_dev_index]);
4422 			if (skip_device)
4423 				continue;
4424 		}
4425 
4426 		/* Get device type, vendor, model, device id, raid_map */
4427 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4428 							&is_OBDR);
4429 		if (rc == -ENOMEM) {
4430 			dev_warn(&h->pdev->dev,
4431 				"Out of memory, rescan deferred.\n");
4432 			h->drv_req_rescan = 1;
4433 			goto out;
4434 		}
4435 		if (rc) {
4436 			h->drv_req_rescan = 1;
4437 			continue;
4438 		}
4439 
4440 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4441 		this_device = currentsd[ncurrent];
4442 
4443 		*this_device = *tmpdevice;
4444 		this_device->physical_device = physical_device;
4445 
4446 		/*
4447 		 * Expose all devices except for physical devices that
4448 		 * are masked.
4449 		 */
4450 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4451 			this_device->expose_device = 0;
4452 		else
4453 			this_device->expose_device = 1;
4454 
4455 
4456 		/*
4457 		 * Get the SAS address for physical devices that are exposed.
4458 		 */
4459 		if (this_device->physical_device && this_device->expose_device)
4460 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4461 
4462 		switch (this_device->devtype) {
4463 		case TYPE_ROM:
4464 			/* We don't *really* support actual CD-ROM devices,
4465 			 * just "One Button Disaster Recovery" tape drive
4466 			 * which temporarily pretends to be a CD-ROM drive.
4467 			 * So we check that the device is really an OBDR tape
4468 			 * device by checking for "$DR-10" in bytes 43-48 of
4469 			 * the inquiry data.
4470 			 */
4471 			if (is_OBDR)
4472 				ncurrent++;
4473 			break;
4474 		case TYPE_DISK:
4475 		case TYPE_ZBC:
4476 			if (this_device->physical_device) {
4477 				/* The disk is in HBA mode. */
4478 				/* Never use RAID mapper in HBA mode. */
4479 				this_device->offload_enabled = 0;
4480 				hpsa_get_ioaccel_drive_info(h, this_device,
4481 					physdev_list, phys_dev_index, id_phys);
4482 				hpsa_get_path_info(this_device,
4483 					physdev_list, phys_dev_index, id_phys);
4484 			}
4485 			ncurrent++;
4486 			break;
4487 		case TYPE_TAPE:
4488 		case TYPE_MEDIUM_CHANGER:
4489 			ncurrent++;
4490 			break;
4491 		case TYPE_ENCLOSURE:
4492 			if (!this_device->external)
4493 				hpsa_get_enclosure_info(h, lunaddrbytes,
4494 						physdev_list, phys_dev_index,
4495 						this_device);
4496 			ncurrent++;
4497 			break;
4498 		case TYPE_RAID:
4499 			/* Only present the Smartarray HBA as a RAID controller.
4500 			 * If it's a RAID controller other than the HBA itself
4501 			 * (an external RAID controller, MSA500 or similar)
4502 			 * don't present it.
4503 			 */
4504 			if (!is_hba_lunid(lunaddrbytes))
4505 				break;
4506 			ncurrent++;
4507 			break;
4508 		default:
4509 			break;
4510 		}
4511 		if (ncurrent >= HPSA_MAX_DEVICES)
4512 			break;
4513 	}
4514 
4515 	if (h->sas_host == NULL) {
4516 		int rc = 0;
4517 
4518 		rc = hpsa_add_sas_host(h);
4519 		if (rc) {
4520 			dev_warn(&h->pdev->dev,
4521 				"Could not add sas host %d\n", rc);
4522 			goto out;
4523 		}
4524 	}
4525 
4526 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4527 out:
4528 	kfree(tmpdevice);
4529 	for (i = 0; i < ndev_allocated; i++)
4530 		kfree(currentsd[i]);
4531 	kfree(currentsd);
4532 	kfree(physdev_list);
4533 	kfree(logdev_list);
4534 	kfree(id_ctlr);
4535 	kfree(id_phys);
4536 }
4537 
4538 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4539 				   struct scatterlist *sg)
4540 {
4541 	u64 addr64 = (u64) sg_dma_address(sg);
4542 	unsigned int len = sg_dma_len(sg);
4543 
4544 	desc->Addr = cpu_to_le64(addr64);
4545 	desc->Len = cpu_to_le32(len);
4546 	desc->Ext = 0;
4547 }
4548 
4549 /*
4550  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4551  * dma mapping  and fills in the scatter gather entries of the
4552  * hpsa command, cp.
4553  */
4554 static int hpsa_scatter_gather(struct ctlr_info *h,
4555 		struct CommandList *cp,
4556 		struct scsi_cmnd *cmd)
4557 {
4558 	struct scatterlist *sg;
4559 	int use_sg, i, sg_limit, chained, last_sg;
4560 	struct SGDescriptor *curr_sg;
4561 
4562 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4563 
4564 	use_sg = scsi_dma_map(cmd);
4565 	if (use_sg < 0)
4566 		return use_sg;
4567 
4568 	if (!use_sg)
4569 		goto sglist_finished;
4570 
4571 	/*
4572 	 * If the number of entries is greater than the max for a single list,
4573 	 * then we have a chained list; we will set up all but one entry in the
4574 	 * first list (the last entry is saved for link information);
4575 	 * otherwise, we don't have a chained list and we'll set up at each of
4576 	 * the entries in the one list.
4577 	 */
4578 	curr_sg = cp->SG;
4579 	chained = use_sg > h->max_cmd_sg_entries;
4580 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4581 	last_sg = scsi_sg_count(cmd) - 1;
4582 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4583 		hpsa_set_sg_descriptor(curr_sg, sg);
4584 		curr_sg++;
4585 	}
4586 
4587 	if (chained) {
4588 		/*
4589 		 * Continue with the chained list.  Set curr_sg to the chained
4590 		 * list.  Modify the limit to the total count less the entries
4591 		 * we've already set up.  Resume the scan at the list entry
4592 		 * where the previous loop left off.
4593 		 */
4594 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4595 		sg_limit = use_sg - sg_limit;
4596 		for_each_sg(sg, sg, sg_limit, i) {
4597 			hpsa_set_sg_descriptor(curr_sg, sg);
4598 			curr_sg++;
4599 		}
4600 	}
4601 
4602 	/* Back the pointer up to the last entry and mark it as "last". */
4603 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4604 
4605 	if (use_sg + chained > h->maxSG)
4606 		h->maxSG = use_sg + chained;
4607 
4608 	if (chained) {
4609 		cp->Header.SGList = h->max_cmd_sg_entries;
4610 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4611 		if (hpsa_map_sg_chain_block(h, cp)) {
4612 			scsi_dma_unmap(cmd);
4613 			return -1;
4614 		}
4615 		return 0;
4616 	}
4617 
4618 sglist_finished:
4619 
4620 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4621 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4622 	return 0;
4623 }
4624 
4625 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4626 						u8 *cdb, int cdb_len,
4627 						const char *func)
4628 {
4629 	dev_warn(&h->pdev->dev,
4630 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4631 		 func, cdb_len, cdb);
4632 }
4633 
4634 #define IO_ACCEL_INELIGIBLE 1
4635 /* zero-length transfers trigger hardware errors. */
4636 static bool is_zero_length_transfer(u8 *cdb)
4637 {
4638 	u32 block_cnt;
4639 
4640 	/* Block zero-length transfer sizes on certain commands. */
4641 	switch (cdb[0]) {
4642 	case READ_10:
4643 	case WRITE_10:
4644 	case VERIFY:		/* 0x2F */
4645 	case WRITE_VERIFY:	/* 0x2E */
4646 		block_cnt = get_unaligned_be16(&cdb[7]);
4647 		break;
4648 	case READ_12:
4649 	case WRITE_12:
4650 	case VERIFY_12: /* 0xAF */
4651 	case WRITE_VERIFY_12:	/* 0xAE */
4652 		block_cnt = get_unaligned_be32(&cdb[6]);
4653 		break;
4654 	case READ_16:
4655 	case WRITE_16:
4656 	case VERIFY_16:		/* 0x8F */
4657 		block_cnt = get_unaligned_be32(&cdb[10]);
4658 		break;
4659 	default:
4660 		return false;
4661 	}
4662 
4663 	return block_cnt == 0;
4664 }
4665 
4666 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4667 {
4668 	int is_write = 0;
4669 	u32 block;
4670 	u32 block_cnt;
4671 
4672 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4673 	switch (cdb[0]) {
4674 	case WRITE_6:
4675 	case WRITE_12:
4676 		is_write = 1;
4677 		/* fall through */
4678 	case READ_6:
4679 	case READ_12:
4680 		if (*cdb_len == 6) {
4681 			block = (((cdb[1] & 0x1F) << 16) |
4682 				(cdb[2] << 8) |
4683 				cdb[3]);
4684 			block_cnt = cdb[4];
4685 			if (block_cnt == 0)
4686 				block_cnt = 256;
4687 		} else {
4688 			BUG_ON(*cdb_len != 12);
4689 			block = get_unaligned_be32(&cdb[2]);
4690 			block_cnt = get_unaligned_be32(&cdb[6]);
4691 		}
4692 		if (block_cnt > 0xffff)
4693 			return IO_ACCEL_INELIGIBLE;
4694 
4695 		cdb[0] = is_write ? WRITE_10 : READ_10;
4696 		cdb[1] = 0;
4697 		cdb[2] = (u8) (block >> 24);
4698 		cdb[3] = (u8) (block >> 16);
4699 		cdb[4] = (u8) (block >> 8);
4700 		cdb[5] = (u8) (block);
4701 		cdb[6] = 0;
4702 		cdb[7] = (u8) (block_cnt >> 8);
4703 		cdb[8] = (u8) (block_cnt);
4704 		cdb[9] = 0;
4705 		*cdb_len = 10;
4706 		break;
4707 	}
4708 	return 0;
4709 }
4710 
4711 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4712 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4713 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4714 {
4715 	struct scsi_cmnd *cmd = c->scsi_cmd;
4716 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4717 	unsigned int len;
4718 	unsigned int total_len = 0;
4719 	struct scatterlist *sg;
4720 	u64 addr64;
4721 	int use_sg, i;
4722 	struct SGDescriptor *curr_sg;
4723 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4724 
4725 	/* TODO: implement chaining support */
4726 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4727 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4728 		return IO_ACCEL_INELIGIBLE;
4729 	}
4730 
4731 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4732 
4733 	if (is_zero_length_transfer(cdb)) {
4734 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4735 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4736 		return IO_ACCEL_INELIGIBLE;
4737 	}
4738 
4739 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4740 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4741 		return IO_ACCEL_INELIGIBLE;
4742 	}
4743 
4744 	c->cmd_type = CMD_IOACCEL1;
4745 
4746 	/* Adjust the DMA address to point to the accelerated command buffer */
4747 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4748 				(c->cmdindex * sizeof(*cp));
4749 	BUG_ON(c->busaddr & 0x0000007F);
4750 
4751 	use_sg = scsi_dma_map(cmd);
4752 	if (use_sg < 0) {
4753 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4754 		return use_sg;
4755 	}
4756 
4757 	if (use_sg) {
4758 		curr_sg = cp->SG;
4759 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4760 			addr64 = (u64) sg_dma_address(sg);
4761 			len  = sg_dma_len(sg);
4762 			total_len += len;
4763 			curr_sg->Addr = cpu_to_le64(addr64);
4764 			curr_sg->Len = cpu_to_le32(len);
4765 			curr_sg->Ext = cpu_to_le32(0);
4766 			curr_sg++;
4767 		}
4768 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4769 
4770 		switch (cmd->sc_data_direction) {
4771 		case DMA_TO_DEVICE:
4772 			control |= IOACCEL1_CONTROL_DATA_OUT;
4773 			break;
4774 		case DMA_FROM_DEVICE:
4775 			control |= IOACCEL1_CONTROL_DATA_IN;
4776 			break;
4777 		case DMA_NONE:
4778 			control |= IOACCEL1_CONTROL_NODATAXFER;
4779 			break;
4780 		default:
4781 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4782 			cmd->sc_data_direction);
4783 			BUG();
4784 			break;
4785 		}
4786 	} else {
4787 		control |= IOACCEL1_CONTROL_NODATAXFER;
4788 	}
4789 
4790 	c->Header.SGList = use_sg;
4791 	/* Fill out the command structure to submit */
4792 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4793 	cp->transfer_len = cpu_to_le32(total_len);
4794 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4795 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4796 	cp->control = cpu_to_le32(control);
4797 	memcpy(cp->CDB, cdb, cdb_len);
4798 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4799 	/* Tag was already set at init time. */
4800 	enqueue_cmd_and_start_io(h, c);
4801 	return 0;
4802 }
4803 
4804 /*
4805  * Queue a command directly to a device behind the controller using the
4806  * I/O accelerator path.
4807  */
4808 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4809 	struct CommandList *c)
4810 {
4811 	struct scsi_cmnd *cmd = c->scsi_cmd;
4812 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4813 
4814 	if (!dev)
4815 		return -1;
4816 
4817 	c->phys_disk = dev;
4818 
4819 	if (dev->in_reset)
4820 		return -1;
4821 
4822 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4823 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4824 }
4825 
4826 /*
4827  * Set encryption parameters for the ioaccel2 request
4828  */
4829 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4830 	struct CommandList *c, struct io_accel2_cmd *cp)
4831 {
4832 	struct scsi_cmnd *cmd = c->scsi_cmd;
4833 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4834 	struct raid_map_data *map = &dev->raid_map;
4835 	u64 first_block;
4836 
4837 	/* Are we doing encryption on this device */
4838 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4839 		return;
4840 	/* Set the data encryption key index. */
4841 	cp->dekindex = map->dekindex;
4842 
4843 	/* Set the encryption enable flag, encoded into direction field. */
4844 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4845 
4846 	/* Set encryption tweak values based on logical block address
4847 	 * If block size is 512, tweak value is LBA.
4848 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4849 	 */
4850 	switch (cmd->cmnd[0]) {
4851 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4852 	case READ_6:
4853 	case WRITE_6:
4854 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4855 				(cmd->cmnd[2] << 8) |
4856 				cmd->cmnd[3]);
4857 		break;
4858 	case WRITE_10:
4859 	case READ_10:
4860 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4861 	case WRITE_12:
4862 	case READ_12:
4863 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4864 		break;
4865 	case WRITE_16:
4866 	case READ_16:
4867 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4868 		break;
4869 	default:
4870 		dev_err(&h->pdev->dev,
4871 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4872 			__func__, cmd->cmnd[0]);
4873 		BUG();
4874 		break;
4875 	}
4876 
4877 	if (le32_to_cpu(map->volume_blk_size) != 512)
4878 		first_block = first_block *
4879 				le32_to_cpu(map->volume_blk_size)/512;
4880 
4881 	cp->tweak_lower = cpu_to_le32(first_block);
4882 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4883 }
4884 
4885 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4886 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4887 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4888 {
4889 	struct scsi_cmnd *cmd = c->scsi_cmd;
4890 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4891 	struct ioaccel2_sg_element *curr_sg;
4892 	int use_sg, i;
4893 	struct scatterlist *sg;
4894 	u64 addr64;
4895 	u32 len;
4896 	u32 total_len = 0;
4897 
4898 	if (!cmd->device)
4899 		return -1;
4900 
4901 	if (!cmd->device->hostdata)
4902 		return -1;
4903 
4904 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4905 
4906 	if (is_zero_length_transfer(cdb)) {
4907 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4908 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4909 		return IO_ACCEL_INELIGIBLE;
4910 	}
4911 
4912 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4913 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4914 		return IO_ACCEL_INELIGIBLE;
4915 	}
4916 
4917 	c->cmd_type = CMD_IOACCEL2;
4918 	/* Adjust the DMA address to point to the accelerated command buffer */
4919 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4920 				(c->cmdindex * sizeof(*cp));
4921 	BUG_ON(c->busaddr & 0x0000007F);
4922 
4923 	memset(cp, 0, sizeof(*cp));
4924 	cp->IU_type = IOACCEL2_IU_TYPE;
4925 
4926 	use_sg = scsi_dma_map(cmd);
4927 	if (use_sg < 0) {
4928 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4929 		return use_sg;
4930 	}
4931 
4932 	if (use_sg) {
4933 		curr_sg = cp->sg;
4934 		if (use_sg > h->ioaccel_maxsg) {
4935 			addr64 = le64_to_cpu(
4936 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4937 			curr_sg->address = cpu_to_le64(addr64);
4938 			curr_sg->length = 0;
4939 			curr_sg->reserved[0] = 0;
4940 			curr_sg->reserved[1] = 0;
4941 			curr_sg->reserved[2] = 0;
4942 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4943 
4944 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4945 		}
4946 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4947 			addr64 = (u64) sg_dma_address(sg);
4948 			len  = sg_dma_len(sg);
4949 			total_len += len;
4950 			curr_sg->address = cpu_to_le64(addr64);
4951 			curr_sg->length = cpu_to_le32(len);
4952 			curr_sg->reserved[0] = 0;
4953 			curr_sg->reserved[1] = 0;
4954 			curr_sg->reserved[2] = 0;
4955 			curr_sg->chain_indicator = 0;
4956 			curr_sg++;
4957 		}
4958 
4959 		/*
4960 		 * Set the last s/g element bit
4961 		 */
4962 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4963 
4964 		switch (cmd->sc_data_direction) {
4965 		case DMA_TO_DEVICE:
4966 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4967 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4968 			break;
4969 		case DMA_FROM_DEVICE:
4970 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4971 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4972 			break;
4973 		case DMA_NONE:
4974 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4975 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4976 			break;
4977 		default:
4978 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4979 				cmd->sc_data_direction);
4980 			BUG();
4981 			break;
4982 		}
4983 	} else {
4984 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4985 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4986 	}
4987 
4988 	/* Set encryption parameters, if necessary */
4989 	set_encrypt_ioaccel2(h, c, cp);
4990 
4991 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4992 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4993 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4994 
4995 	cp->data_len = cpu_to_le32(total_len);
4996 	cp->err_ptr = cpu_to_le64(c->busaddr +
4997 			offsetof(struct io_accel2_cmd, error_data));
4998 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4999 
5000 	/* fill in sg elements */
5001 	if (use_sg > h->ioaccel_maxsg) {
5002 		cp->sg_count = 1;
5003 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5004 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5005 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5006 			scsi_dma_unmap(cmd);
5007 			return -1;
5008 		}
5009 	} else
5010 		cp->sg_count = (u8) use_sg;
5011 
5012 	if (phys_disk->in_reset) {
5013 		cmd->result = DID_RESET << 16;
5014 		return -1;
5015 	}
5016 
5017 	enqueue_cmd_and_start_io(h, c);
5018 	return 0;
5019 }
5020 
5021 /*
5022  * Queue a command to the correct I/O accelerator path.
5023  */
5024 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5025 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5026 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5027 {
5028 	if (!c->scsi_cmd->device)
5029 		return -1;
5030 
5031 	if (!c->scsi_cmd->device->hostdata)
5032 		return -1;
5033 
5034 	if (phys_disk->in_reset)
5035 		return -1;
5036 
5037 	/* Try to honor the device's queue depth */
5038 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5039 					phys_disk->queue_depth) {
5040 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5041 		return IO_ACCEL_INELIGIBLE;
5042 	}
5043 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5044 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5045 						cdb, cdb_len, scsi3addr,
5046 						phys_disk);
5047 	else
5048 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5049 						cdb, cdb_len, scsi3addr,
5050 						phys_disk);
5051 }
5052 
5053 static void raid_map_helper(struct raid_map_data *map,
5054 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5055 {
5056 	if (offload_to_mirror == 0)  {
5057 		/* use physical disk in the first mirrored group. */
5058 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5059 		return;
5060 	}
5061 	do {
5062 		/* determine mirror group that *map_index indicates */
5063 		*current_group = *map_index /
5064 			le16_to_cpu(map->data_disks_per_row);
5065 		if (offload_to_mirror == *current_group)
5066 			continue;
5067 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5068 			/* select map index from next group */
5069 			*map_index += le16_to_cpu(map->data_disks_per_row);
5070 			(*current_group)++;
5071 		} else {
5072 			/* select map index from first group */
5073 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5074 			*current_group = 0;
5075 		}
5076 	} while (offload_to_mirror != *current_group);
5077 }
5078 
5079 /*
5080  * Attempt to perform offload RAID mapping for a logical volume I/O.
5081  */
5082 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5083 	struct CommandList *c)
5084 {
5085 	struct scsi_cmnd *cmd = c->scsi_cmd;
5086 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5087 	struct raid_map_data *map = &dev->raid_map;
5088 	struct raid_map_disk_data *dd = &map->data[0];
5089 	int is_write = 0;
5090 	u32 map_index;
5091 	u64 first_block, last_block;
5092 	u32 block_cnt;
5093 	u32 blocks_per_row;
5094 	u64 first_row, last_row;
5095 	u32 first_row_offset, last_row_offset;
5096 	u32 first_column, last_column;
5097 	u64 r0_first_row, r0_last_row;
5098 	u32 r5or6_blocks_per_row;
5099 	u64 r5or6_first_row, r5or6_last_row;
5100 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5101 	u32 r5or6_first_column, r5or6_last_column;
5102 	u32 total_disks_per_row;
5103 	u32 stripesize;
5104 	u32 first_group, last_group, current_group;
5105 	u32 map_row;
5106 	u32 disk_handle;
5107 	u64 disk_block;
5108 	u32 disk_block_cnt;
5109 	u8 cdb[16];
5110 	u8 cdb_len;
5111 	u16 strip_size;
5112 #if BITS_PER_LONG == 32
5113 	u64 tmpdiv;
5114 #endif
5115 	int offload_to_mirror;
5116 
5117 	if (!dev)
5118 		return -1;
5119 
5120 	if (dev->in_reset)
5121 		return -1;
5122 
5123 	/* check for valid opcode, get LBA and block count */
5124 	switch (cmd->cmnd[0]) {
5125 	case WRITE_6:
5126 		is_write = 1;
5127 		/* fall through */
5128 	case READ_6:
5129 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5130 				(cmd->cmnd[2] << 8) |
5131 				cmd->cmnd[3]);
5132 		block_cnt = cmd->cmnd[4];
5133 		if (block_cnt == 0)
5134 			block_cnt = 256;
5135 		break;
5136 	case WRITE_10:
5137 		is_write = 1;
5138 		/* fall through */
5139 	case READ_10:
5140 		first_block =
5141 			(((u64) cmd->cmnd[2]) << 24) |
5142 			(((u64) cmd->cmnd[3]) << 16) |
5143 			(((u64) cmd->cmnd[4]) << 8) |
5144 			cmd->cmnd[5];
5145 		block_cnt =
5146 			(((u32) cmd->cmnd[7]) << 8) |
5147 			cmd->cmnd[8];
5148 		break;
5149 	case WRITE_12:
5150 		is_write = 1;
5151 		/* fall through */
5152 	case READ_12:
5153 		first_block =
5154 			(((u64) cmd->cmnd[2]) << 24) |
5155 			(((u64) cmd->cmnd[3]) << 16) |
5156 			(((u64) cmd->cmnd[4]) << 8) |
5157 			cmd->cmnd[5];
5158 		block_cnt =
5159 			(((u32) cmd->cmnd[6]) << 24) |
5160 			(((u32) cmd->cmnd[7]) << 16) |
5161 			(((u32) cmd->cmnd[8]) << 8) |
5162 		cmd->cmnd[9];
5163 		break;
5164 	case WRITE_16:
5165 		is_write = 1;
5166 		/* fall through */
5167 	case READ_16:
5168 		first_block =
5169 			(((u64) cmd->cmnd[2]) << 56) |
5170 			(((u64) cmd->cmnd[3]) << 48) |
5171 			(((u64) cmd->cmnd[4]) << 40) |
5172 			(((u64) cmd->cmnd[5]) << 32) |
5173 			(((u64) cmd->cmnd[6]) << 24) |
5174 			(((u64) cmd->cmnd[7]) << 16) |
5175 			(((u64) cmd->cmnd[8]) << 8) |
5176 			cmd->cmnd[9];
5177 		block_cnt =
5178 			(((u32) cmd->cmnd[10]) << 24) |
5179 			(((u32) cmd->cmnd[11]) << 16) |
5180 			(((u32) cmd->cmnd[12]) << 8) |
5181 			cmd->cmnd[13];
5182 		break;
5183 	default:
5184 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5185 	}
5186 	last_block = first_block + block_cnt - 1;
5187 
5188 	/* check for write to non-RAID-0 */
5189 	if (is_write && dev->raid_level != 0)
5190 		return IO_ACCEL_INELIGIBLE;
5191 
5192 	/* check for invalid block or wraparound */
5193 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5194 		last_block < first_block)
5195 		return IO_ACCEL_INELIGIBLE;
5196 
5197 	/* calculate stripe information for the request */
5198 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5199 				le16_to_cpu(map->strip_size);
5200 	strip_size = le16_to_cpu(map->strip_size);
5201 #if BITS_PER_LONG == 32
5202 	tmpdiv = first_block;
5203 	(void) do_div(tmpdiv, blocks_per_row);
5204 	first_row = tmpdiv;
5205 	tmpdiv = last_block;
5206 	(void) do_div(tmpdiv, blocks_per_row);
5207 	last_row = tmpdiv;
5208 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5209 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5210 	tmpdiv = first_row_offset;
5211 	(void) do_div(tmpdiv, strip_size);
5212 	first_column = tmpdiv;
5213 	tmpdiv = last_row_offset;
5214 	(void) do_div(tmpdiv, strip_size);
5215 	last_column = tmpdiv;
5216 #else
5217 	first_row = first_block / blocks_per_row;
5218 	last_row = last_block / blocks_per_row;
5219 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5220 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5221 	first_column = first_row_offset / strip_size;
5222 	last_column = last_row_offset / strip_size;
5223 #endif
5224 
5225 	/* if this isn't a single row/column then give to the controller */
5226 	if ((first_row != last_row) || (first_column != last_column))
5227 		return IO_ACCEL_INELIGIBLE;
5228 
5229 	/* proceeding with driver mapping */
5230 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5231 				le16_to_cpu(map->metadata_disks_per_row);
5232 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5233 				le16_to_cpu(map->row_cnt);
5234 	map_index = (map_row * total_disks_per_row) + first_column;
5235 
5236 	switch (dev->raid_level) {
5237 	case HPSA_RAID_0:
5238 		break; /* nothing special to do */
5239 	case HPSA_RAID_1:
5240 		/* Handles load balance across RAID 1 members.
5241 		 * (2-drive R1 and R10 with even # of drives.)
5242 		 * Appropriate for SSDs, not optimal for HDDs
5243 		 * Ensure we have the correct raid_map.
5244 		 */
5245 		if (le16_to_cpu(map->layout_map_count) != 2) {
5246 			hpsa_turn_off_ioaccel_for_device(dev);
5247 			return IO_ACCEL_INELIGIBLE;
5248 		}
5249 		if (dev->offload_to_mirror)
5250 			map_index += le16_to_cpu(map->data_disks_per_row);
5251 		dev->offload_to_mirror = !dev->offload_to_mirror;
5252 		break;
5253 	case HPSA_RAID_ADM:
5254 		/* Handles N-way mirrors  (R1-ADM)
5255 		 * and R10 with # of drives divisible by 3.)
5256 		 * Ensure we have the correct raid_map.
5257 		 */
5258 		if (le16_to_cpu(map->layout_map_count) != 3) {
5259 			hpsa_turn_off_ioaccel_for_device(dev);
5260 			return IO_ACCEL_INELIGIBLE;
5261 		}
5262 
5263 		offload_to_mirror = dev->offload_to_mirror;
5264 		raid_map_helper(map, offload_to_mirror,
5265 				&map_index, &current_group);
5266 		/* set mirror group to use next time */
5267 		offload_to_mirror =
5268 			(offload_to_mirror >=
5269 			le16_to_cpu(map->layout_map_count) - 1)
5270 			? 0 : offload_to_mirror + 1;
5271 		dev->offload_to_mirror = offload_to_mirror;
5272 		/* Avoid direct use of dev->offload_to_mirror within this
5273 		 * function since multiple threads might simultaneously
5274 		 * increment it beyond the range of dev->layout_map_count -1.
5275 		 */
5276 		break;
5277 	case HPSA_RAID_5:
5278 	case HPSA_RAID_6:
5279 		if (le16_to_cpu(map->layout_map_count) <= 1)
5280 			break;
5281 
5282 		/* Verify first and last block are in same RAID group */
5283 		r5or6_blocks_per_row =
5284 			le16_to_cpu(map->strip_size) *
5285 			le16_to_cpu(map->data_disks_per_row);
5286 		if (r5or6_blocks_per_row == 0) {
5287 			hpsa_turn_off_ioaccel_for_device(dev);
5288 			return IO_ACCEL_INELIGIBLE;
5289 		}
5290 		stripesize = r5or6_blocks_per_row *
5291 			le16_to_cpu(map->layout_map_count);
5292 #if BITS_PER_LONG == 32
5293 		tmpdiv = first_block;
5294 		first_group = do_div(tmpdiv, stripesize);
5295 		tmpdiv = first_group;
5296 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5297 		first_group = tmpdiv;
5298 		tmpdiv = last_block;
5299 		last_group = do_div(tmpdiv, stripesize);
5300 		tmpdiv = last_group;
5301 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5302 		last_group = tmpdiv;
5303 #else
5304 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5305 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5306 #endif
5307 		if (first_group != last_group)
5308 			return IO_ACCEL_INELIGIBLE;
5309 
5310 		/* Verify request is in a single row of RAID 5/6 */
5311 #if BITS_PER_LONG == 32
5312 		tmpdiv = first_block;
5313 		(void) do_div(tmpdiv, stripesize);
5314 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5315 		tmpdiv = last_block;
5316 		(void) do_div(tmpdiv, stripesize);
5317 		r5or6_last_row = r0_last_row = tmpdiv;
5318 #else
5319 		first_row = r5or6_first_row = r0_first_row =
5320 						first_block / stripesize;
5321 		r5or6_last_row = r0_last_row = last_block / stripesize;
5322 #endif
5323 		if (r5or6_first_row != r5or6_last_row)
5324 			return IO_ACCEL_INELIGIBLE;
5325 
5326 
5327 		/* Verify request is in a single column */
5328 #if BITS_PER_LONG == 32
5329 		tmpdiv = first_block;
5330 		first_row_offset = do_div(tmpdiv, stripesize);
5331 		tmpdiv = first_row_offset;
5332 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5333 		r5or6_first_row_offset = first_row_offset;
5334 		tmpdiv = last_block;
5335 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5336 		tmpdiv = r5or6_last_row_offset;
5337 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5338 		tmpdiv = r5or6_first_row_offset;
5339 		(void) do_div(tmpdiv, map->strip_size);
5340 		first_column = r5or6_first_column = tmpdiv;
5341 		tmpdiv = r5or6_last_row_offset;
5342 		(void) do_div(tmpdiv, map->strip_size);
5343 		r5or6_last_column = tmpdiv;
5344 #else
5345 		first_row_offset = r5or6_first_row_offset =
5346 			(u32)((first_block % stripesize) %
5347 						r5or6_blocks_per_row);
5348 
5349 		r5or6_last_row_offset =
5350 			(u32)((last_block % stripesize) %
5351 						r5or6_blocks_per_row);
5352 
5353 		first_column = r5or6_first_column =
5354 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5355 		r5or6_last_column =
5356 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5357 #endif
5358 		if (r5or6_first_column != r5or6_last_column)
5359 			return IO_ACCEL_INELIGIBLE;
5360 
5361 		/* Request is eligible */
5362 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5363 			le16_to_cpu(map->row_cnt);
5364 
5365 		map_index = (first_group *
5366 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5367 			(map_row * total_disks_per_row) + first_column;
5368 		break;
5369 	default:
5370 		return IO_ACCEL_INELIGIBLE;
5371 	}
5372 
5373 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5374 		return IO_ACCEL_INELIGIBLE;
5375 
5376 	c->phys_disk = dev->phys_disk[map_index];
5377 	if (!c->phys_disk)
5378 		return IO_ACCEL_INELIGIBLE;
5379 
5380 	disk_handle = dd[map_index].ioaccel_handle;
5381 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5382 			first_row * le16_to_cpu(map->strip_size) +
5383 			(first_row_offset - first_column *
5384 			le16_to_cpu(map->strip_size));
5385 	disk_block_cnt = block_cnt;
5386 
5387 	/* handle differing logical/physical block sizes */
5388 	if (map->phys_blk_shift) {
5389 		disk_block <<= map->phys_blk_shift;
5390 		disk_block_cnt <<= map->phys_blk_shift;
5391 	}
5392 	BUG_ON(disk_block_cnt > 0xffff);
5393 
5394 	/* build the new CDB for the physical disk I/O */
5395 	if (disk_block > 0xffffffff) {
5396 		cdb[0] = is_write ? WRITE_16 : READ_16;
5397 		cdb[1] = 0;
5398 		cdb[2] = (u8) (disk_block >> 56);
5399 		cdb[3] = (u8) (disk_block >> 48);
5400 		cdb[4] = (u8) (disk_block >> 40);
5401 		cdb[5] = (u8) (disk_block >> 32);
5402 		cdb[6] = (u8) (disk_block >> 24);
5403 		cdb[7] = (u8) (disk_block >> 16);
5404 		cdb[8] = (u8) (disk_block >> 8);
5405 		cdb[9] = (u8) (disk_block);
5406 		cdb[10] = (u8) (disk_block_cnt >> 24);
5407 		cdb[11] = (u8) (disk_block_cnt >> 16);
5408 		cdb[12] = (u8) (disk_block_cnt >> 8);
5409 		cdb[13] = (u8) (disk_block_cnt);
5410 		cdb[14] = 0;
5411 		cdb[15] = 0;
5412 		cdb_len = 16;
5413 	} else {
5414 		cdb[0] = is_write ? WRITE_10 : READ_10;
5415 		cdb[1] = 0;
5416 		cdb[2] = (u8) (disk_block >> 24);
5417 		cdb[3] = (u8) (disk_block >> 16);
5418 		cdb[4] = (u8) (disk_block >> 8);
5419 		cdb[5] = (u8) (disk_block);
5420 		cdb[6] = 0;
5421 		cdb[7] = (u8) (disk_block_cnt >> 8);
5422 		cdb[8] = (u8) (disk_block_cnt);
5423 		cdb[9] = 0;
5424 		cdb_len = 10;
5425 	}
5426 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5427 						dev->scsi3addr,
5428 						dev->phys_disk[map_index]);
5429 }
5430 
5431 /*
5432  * Submit commands down the "normal" RAID stack path
5433  * All callers to hpsa_ciss_submit must check lockup_detected
5434  * beforehand, before (opt.) and after calling cmd_alloc
5435  */
5436 static int hpsa_ciss_submit(struct ctlr_info *h,
5437 	struct CommandList *c, struct scsi_cmnd *cmd,
5438 	struct hpsa_scsi_dev_t *dev)
5439 {
5440 	cmd->host_scribble = (unsigned char *) c;
5441 	c->cmd_type = CMD_SCSI;
5442 	c->scsi_cmd = cmd;
5443 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5444 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5445 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5446 
5447 	/* Fill in the request block... */
5448 
5449 	c->Request.Timeout = 0;
5450 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5451 	c->Request.CDBLen = cmd->cmd_len;
5452 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5453 	switch (cmd->sc_data_direction) {
5454 	case DMA_TO_DEVICE:
5455 		c->Request.type_attr_dir =
5456 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5457 		break;
5458 	case DMA_FROM_DEVICE:
5459 		c->Request.type_attr_dir =
5460 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5461 		break;
5462 	case DMA_NONE:
5463 		c->Request.type_attr_dir =
5464 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5465 		break;
5466 	case DMA_BIDIRECTIONAL:
5467 		/* This can happen if a buggy application does a scsi passthru
5468 		 * and sets both inlen and outlen to non-zero. ( see
5469 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5470 		 */
5471 
5472 		c->Request.type_attr_dir =
5473 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5474 		/* This is technically wrong, and hpsa controllers should
5475 		 * reject it with CMD_INVALID, which is the most correct
5476 		 * response, but non-fibre backends appear to let it
5477 		 * slide by, and give the same results as if this field
5478 		 * were set correctly.  Either way is acceptable for
5479 		 * our purposes here.
5480 		 */
5481 
5482 		break;
5483 
5484 	default:
5485 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5486 			cmd->sc_data_direction);
5487 		BUG();
5488 		break;
5489 	}
5490 
5491 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5492 		hpsa_cmd_resolve_and_free(h, c);
5493 		return SCSI_MLQUEUE_HOST_BUSY;
5494 	}
5495 
5496 	if (dev->in_reset) {
5497 		hpsa_cmd_resolve_and_free(h, c);
5498 		return SCSI_MLQUEUE_HOST_BUSY;
5499 	}
5500 
5501 	c->device = dev;
5502 
5503 	enqueue_cmd_and_start_io(h, c);
5504 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5505 	return 0;
5506 }
5507 
5508 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5509 				struct CommandList *c)
5510 {
5511 	dma_addr_t cmd_dma_handle, err_dma_handle;
5512 
5513 	/* Zero out all of commandlist except the last field, refcount */
5514 	memset(c, 0, offsetof(struct CommandList, refcount));
5515 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5516 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5517 	c->err_info = h->errinfo_pool + index;
5518 	memset(c->err_info, 0, sizeof(*c->err_info));
5519 	err_dma_handle = h->errinfo_pool_dhandle
5520 	    + index * sizeof(*c->err_info);
5521 	c->cmdindex = index;
5522 	c->busaddr = (u32) cmd_dma_handle;
5523 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5524 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5525 	c->h = h;
5526 	c->scsi_cmd = SCSI_CMD_IDLE;
5527 }
5528 
5529 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5530 {
5531 	int i;
5532 
5533 	for (i = 0; i < h->nr_cmds; i++) {
5534 		struct CommandList *c = h->cmd_pool + i;
5535 
5536 		hpsa_cmd_init(h, i, c);
5537 		atomic_set(&c->refcount, 0);
5538 	}
5539 }
5540 
5541 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5542 				struct CommandList *c)
5543 {
5544 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5545 
5546 	BUG_ON(c->cmdindex != index);
5547 
5548 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5549 	memset(c->err_info, 0, sizeof(*c->err_info));
5550 	c->busaddr = (u32) cmd_dma_handle;
5551 }
5552 
5553 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5554 		struct CommandList *c, struct scsi_cmnd *cmd)
5555 {
5556 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5557 	int rc = IO_ACCEL_INELIGIBLE;
5558 
5559 	if (!dev)
5560 		return SCSI_MLQUEUE_HOST_BUSY;
5561 
5562 	if (dev->in_reset)
5563 		return SCSI_MLQUEUE_HOST_BUSY;
5564 
5565 	if (hpsa_simple_mode)
5566 		return IO_ACCEL_INELIGIBLE;
5567 
5568 	cmd->host_scribble = (unsigned char *) c;
5569 
5570 	if (dev->offload_enabled) {
5571 		hpsa_cmd_init(h, c->cmdindex, c);
5572 		c->cmd_type = CMD_SCSI;
5573 		c->scsi_cmd = cmd;
5574 		c->device = dev;
5575 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5576 		if (rc < 0)     /* scsi_dma_map failed. */
5577 			rc = SCSI_MLQUEUE_HOST_BUSY;
5578 	} else if (dev->hba_ioaccel_enabled) {
5579 		hpsa_cmd_init(h, c->cmdindex, c);
5580 		c->cmd_type = CMD_SCSI;
5581 		c->scsi_cmd = cmd;
5582 		c->device = dev;
5583 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5584 		if (rc < 0)     /* scsi_dma_map failed. */
5585 			rc = SCSI_MLQUEUE_HOST_BUSY;
5586 	}
5587 	return rc;
5588 }
5589 
5590 static void hpsa_command_resubmit_worker(struct work_struct *work)
5591 {
5592 	struct scsi_cmnd *cmd;
5593 	struct hpsa_scsi_dev_t *dev;
5594 	struct CommandList *c = container_of(work, struct CommandList, work);
5595 
5596 	cmd = c->scsi_cmd;
5597 	dev = cmd->device->hostdata;
5598 	if (!dev) {
5599 		cmd->result = DID_NO_CONNECT << 16;
5600 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5601 	}
5602 
5603 	if (dev->in_reset) {
5604 		cmd->result = DID_RESET << 16;
5605 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5606 	}
5607 
5608 	if (c->cmd_type == CMD_IOACCEL2) {
5609 		struct ctlr_info *h = c->h;
5610 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5611 		int rc;
5612 
5613 		if (c2->error_data.serv_response ==
5614 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5615 			rc = hpsa_ioaccel_submit(h, c, cmd);
5616 			if (rc == 0)
5617 				return;
5618 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5619 				/*
5620 				 * If we get here, it means dma mapping failed.
5621 				 * Try again via scsi mid layer, which will
5622 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5623 				 */
5624 				cmd->result = DID_IMM_RETRY << 16;
5625 				return hpsa_cmd_free_and_done(h, c, cmd);
5626 			}
5627 			/* else, fall thru and resubmit down CISS path */
5628 		}
5629 	}
5630 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5631 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5632 		/*
5633 		 * If we get here, it means dma mapping failed. Try
5634 		 * again via scsi mid layer, which will then get
5635 		 * SCSI_MLQUEUE_HOST_BUSY.
5636 		 *
5637 		 * hpsa_ciss_submit will have already freed c
5638 		 * if it encountered a dma mapping failure.
5639 		 */
5640 		cmd->result = DID_IMM_RETRY << 16;
5641 		cmd->scsi_done(cmd);
5642 	}
5643 }
5644 
5645 /* Running in struct Scsi_Host->host_lock less mode */
5646 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5647 {
5648 	struct ctlr_info *h;
5649 	struct hpsa_scsi_dev_t *dev;
5650 	struct CommandList *c;
5651 	int rc = 0;
5652 
5653 	/* Get the ptr to our adapter structure out of cmd->host. */
5654 	h = sdev_to_hba(cmd->device);
5655 
5656 	BUG_ON(cmd->request->tag < 0);
5657 
5658 	dev = cmd->device->hostdata;
5659 	if (!dev) {
5660 		cmd->result = DID_NO_CONNECT << 16;
5661 		cmd->scsi_done(cmd);
5662 		return 0;
5663 	}
5664 
5665 	if (dev->removed) {
5666 		cmd->result = DID_NO_CONNECT << 16;
5667 		cmd->scsi_done(cmd);
5668 		return 0;
5669 	}
5670 
5671 	if (unlikely(lockup_detected(h))) {
5672 		cmd->result = DID_NO_CONNECT << 16;
5673 		cmd->scsi_done(cmd);
5674 		return 0;
5675 	}
5676 
5677 	if (dev->in_reset)
5678 		return SCSI_MLQUEUE_DEVICE_BUSY;
5679 
5680 	c = cmd_tagged_alloc(h, cmd);
5681 	if (c == NULL)
5682 		return SCSI_MLQUEUE_DEVICE_BUSY;
5683 
5684 	/*
5685 	 * This is necessary because the SML doesn't zero out this field during
5686 	 * error recovery.
5687 	 */
5688 	cmd->result = 0;
5689 
5690 	/*
5691 	 * Call alternate submit routine for I/O accelerated commands.
5692 	 * Retries always go down the normal I/O path.
5693 	 */
5694 	if (likely(cmd->retries == 0 &&
5695 			!blk_rq_is_passthrough(cmd->request) &&
5696 			h->acciopath_status)) {
5697 		rc = hpsa_ioaccel_submit(h, c, cmd);
5698 		if (rc == 0)
5699 			return 0;
5700 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5701 			hpsa_cmd_resolve_and_free(h, c);
5702 			return SCSI_MLQUEUE_HOST_BUSY;
5703 		}
5704 	}
5705 	return hpsa_ciss_submit(h, c, cmd, dev);
5706 }
5707 
5708 static void hpsa_scan_complete(struct ctlr_info *h)
5709 {
5710 	unsigned long flags;
5711 
5712 	spin_lock_irqsave(&h->scan_lock, flags);
5713 	h->scan_finished = 1;
5714 	wake_up(&h->scan_wait_queue);
5715 	spin_unlock_irqrestore(&h->scan_lock, flags);
5716 }
5717 
5718 static void hpsa_scan_start(struct Scsi_Host *sh)
5719 {
5720 	struct ctlr_info *h = shost_to_hba(sh);
5721 	unsigned long flags;
5722 
5723 	/*
5724 	 * Don't let rescans be initiated on a controller known to be locked
5725 	 * up.  If the controller locks up *during* a rescan, that thread is
5726 	 * probably hosed, but at least we can prevent new rescan threads from
5727 	 * piling up on a locked up controller.
5728 	 */
5729 	if (unlikely(lockup_detected(h)))
5730 		return hpsa_scan_complete(h);
5731 
5732 	/*
5733 	 * If a scan is already waiting to run, no need to add another
5734 	 */
5735 	spin_lock_irqsave(&h->scan_lock, flags);
5736 	if (h->scan_waiting) {
5737 		spin_unlock_irqrestore(&h->scan_lock, flags);
5738 		return;
5739 	}
5740 
5741 	spin_unlock_irqrestore(&h->scan_lock, flags);
5742 
5743 	/* wait until any scan already in progress is finished. */
5744 	while (1) {
5745 		spin_lock_irqsave(&h->scan_lock, flags);
5746 		if (h->scan_finished)
5747 			break;
5748 		h->scan_waiting = 1;
5749 		spin_unlock_irqrestore(&h->scan_lock, flags);
5750 		wait_event(h->scan_wait_queue, h->scan_finished);
5751 		/* Note: We don't need to worry about a race between this
5752 		 * thread and driver unload because the midlayer will
5753 		 * have incremented the reference count, so unload won't
5754 		 * happen if we're in here.
5755 		 */
5756 	}
5757 	h->scan_finished = 0; /* mark scan as in progress */
5758 	h->scan_waiting = 0;
5759 	spin_unlock_irqrestore(&h->scan_lock, flags);
5760 
5761 	if (unlikely(lockup_detected(h)))
5762 		return hpsa_scan_complete(h);
5763 
5764 	/*
5765 	 * Do the scan after a reset completion
5766 	 */
5767 	spin_lock_irqsave(&h->reset_lock, flags);
5768 	if (h->reset_in_progress) {
5769 		h->drv_req_rescan = 1;
5770 		spin_unlock_irqrestore(&h->reset_lock, flags);
5771 		hpsa_scan_complete(h);
5772 		return;
5773 	}
5774 	spin_unlock_irqrestore(&h->reset_lock, flags);
5775 
5776 	hpsa_update_scsi_devices(h);
5777 
5778 	hpsa_scan_complete(h);
5779 }
5780 
5781 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5782 {
5783 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5784 
5785 	if (!logical_drive)
5786 		return -ENODEV;
5787 
5788 	if (qdepth < 1)
5789 		qdepth = 1;
5790 	else if (qdepth > logical_drive->queue_depth)
5791 		qdepth = logical_drive->queue_depth;
5792 
5793 	return scsi_change_queue_depth(sdev, qdepth);
5794 }
5795 
5796 static int hpsa_scan_finished(struct Scsi_Host *sh,
5797 	unsigned long elapsed_time)
5798 {
5799 	struct ctlr_info *h = shost_to_hba(sh);
5800 	unsigned long flags;
5801 	int finished;
5802 
5803 	spin_lock_irqsave(&h->scan_lock, flags);
5804 	finished = h->scan_finished;
5805 	spin_unlock_irqrestore(&h->scan_lock, flags);
5806 	return finished;
5807 }
5808 
5809 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5810 {
5811 	struct Scsi_Host *sh;
5812 
5813 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5814 	if (sh == NULL) {
5815 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5816 		return -ENOMEM;
5817 	}
5818 
5819 	sh->io_port = 0;
5820 	sh->n_io_port = 0;
5821 	sh->this_id = -1;
5822 	sh->max_channel = 3;
5823 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5824 	sh->max_lun = HPSA_MAX_LUN;
5825 	sh->max_id = HPSA_MAX_LUN;
5826 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5827 	sh->cmd_per_lun = sh->can_queue;
5828 	sh->sg_tablesize = h->maxsgentries;
5829 	sh->transportt = hpsa_sas_transport_template;
5830 	sh->hostdata[0] = (unsigned long) h;
5831 	sh->irq = pci_irq_vector(h->pdev, 0);
5832 	sh->unique_id = sh->irq;
5833 
5834 	h->scsi_host = sh;
5835 	return 0;
5836 }
5837 
5838 static int hpsa_scsi_add_host(struct ctlr_info *h)
5839 {
5840 	int rv;
5841 
5842 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5843 	if (rv) {
5844 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5845 		return rv;
5846 	}
5847 	scsi_scan_host(h->scsi_host);
5848 	return 0;
5849 }
5850 
5851 /*
5852  * The block layer has already gone to the trouble of picking out a unique,
5853  * small-integer tag for this request.  We use an offset from that value as
5854  * an index to select our command block.  (The offset allows us to reserve the
5855  * low-numbered entries for our own uses.)
5856  */
5857 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5858 {
5859 	int idx = scmd->request->tag;
5860 
5861 	if (idx < 0)
5862 		return idx;
5863 
5864 	/* Offset to leave space for internal cmds. */
5865 	return idx += HPSA_NRESERVED_CMDS;
5866 }
5867 
5868 /*
5869  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5870  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5871  */
5872 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5873 				struct CommandList *c, unsigned char lunaddr[],
5874 				int reply_queue)
5875 {
5876 	int rc;
5877 
5878 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5879 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5880 			NULL, 0, 0, lunaddr, TYPE_CMD);
5881 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5882 	if (rc)
5883 		return rc;
5884 	/* no unmap needed here because no data xfer. */
5885 
5886 	/* Check if the unit is already ready. */
5887 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5888 		return 0;
5889 
5890 	/*
5891 	 * The first command sent after reset will receive "unit attention" to
5892 	 * indicate that the LUN has been reset...this is actually what we're
5893 	 * looking for (but, success is good too).
5894 	 */
5895 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5896 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5897 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5898 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5899 		return 0;
5900 
5901 	return 1;
5902 }
5903 
5904 /*
5905  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5906  * returns zero when the unit is ready, and non-zero when giving up.
5907  */
5908 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5909 				struct CommandList *c,
5910 				unsigned char lunaddr[], int reply_queue)
5911 {
5912 	int rc;
5913 	int count = 0;
5914 	int waittime = 1; /* seconds */
5915 
5916 	/* Send test unit ready until device ready, or give up. */
5917 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5918 
5919 		/*
5920 		 * Wait for a bit.  do this first, because if we send
5921 		 * the TUR right away, the reset will just abort it.
5922 		 */
5923 		msleep(1000 * waittime);
5924 
5925 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5926 		if (!rc)
5927 			break;
5928 
5929 		/* Increase wait time with each try, up to a point. */
5930 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5931 			waittime *= 2;
5932 
5933 		dev_warn(&h->pdev->dev,
5934 			 "waiting %d secs for device to become ready.\n",
5935 			 waittime);
5936 	}
5937 
5938 	return rc;
5939 }
5940 
5941 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5942 					   unsigned char lunaddr[],
5943 					   int reply_queue)
5944 {
5945 	int first_queue;
5946 	int last_queue;
5947 	int rq;
5948 	int rc = 0;
5949 	struct CommandList *c;
5950 
5951 	c = cmd_alloc(h);
5952 
5953 	/*
5954 	 * If no specific reply queue was requested, then send the TUR
5955 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5956 	 * the loop exactly once using only the specified queue.
5957 	 */
5958 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5959 		first_queue = 0;
5960 		last_queue = h->nreply_queues - 1;
5961 	} else {
5962 		first_queue = reply_queue;
5963 		last_queue = reply_queue;
5964 	}
5965 
5966 	for (rq = first_queue; rq <= last_queue; rq++) {
5967 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5968 		if (rc)
5969 			break;
5970 	}
5971 
5972 	if (rc)
5973 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5974 	else
5975 		dev_warn(&h->pdev->dev, "device is ready.\n");
5976 
5977 	cmd_free(h, c);
5978 	return rc;
5979 }
5980 
5981 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5982  * complaining.  Doing a host- or bus-reset can't do anything good here.
5983  */
5984 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5985 {
5986 	int rc = SUCCESS;
5987 	int i;
5988 	struct ctlr_info *h;
5989 	struct hpsa_scsi_dev_t *dev = NULL;
5990 	u8 reset_type;
5991 	char msg[48];
5992 	unsigned long flags;
5993 
5994 	/* find the controller to which the command to be aborted was sent */
5995 	h = sdev_to_hba(scsicmd->device);
5996 	if (h == NULL) /* paranoia */
5997 		return FAILED;
5998 
5999 	spin_lock_irqsave(&h->reset_lock, flags);
6000 	h->reset_in_progress = 1;
6001 	spin_unlock_irqrestore(&h->reset_lock, flags);
6002 
6003 	if (lockup_detected(h)) {
6004 		rc = FAILED;
6005 		goto return_reset_status;
6006 	}
6007 
6008 	dev = scsicmd->device->hostdata;
6009 	if (!dev) {
6010 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6011 		rc = FAILED;
6012 		goto return_reset_status;
6013 	}
6014 
6015 	if (dev->devtype == TYPE_ENCLOSURE) {
6016 		rc = SUCCESS;
6017 		goto return_reset_status;
6018 	}
6019 
6020 	/* if controller locked up, we can guarantee command won't complete */
6021 	if (lockup_detected(h)) {
6022 		snprintf(msg, sizeof(msg),
6023 			 "cmd %d RESET FAILED, lockup detected",
6024 			 hpsa_get_cmd_index(scsicmd));
6025 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6026 		rc = FAILED;
6027 		goto return_reset_status;
6028 	}
6029 
6030 	/* this reset request might be the result of a lockup; check */
6031 	if (detect_controller_lockup(h)) {
6032 		snprintf(msg, sizeof(msg),
6033 			 "cmd %d RESET FAILED, new lockup detected",
6034 			 hpsa_get_cmd_index(scsicmd));
6035 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6036 		rc = FAILED;
6037 		goto return_reset_status;
6038 	}
6039 
6040 	/* Do not attempt on controller */
6041 	if (is_hba_lunid(dev->scsi3addr)) {
6042 		rc = SUCCESS;
6043 		goto return_reset_status;
6044 	}
6045 
6046 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6047 		reset_type = HPSA_DEVICE_RESET_MSG;
6048 	else
6049 		reset_type = HPSA_PHYS_TARGET_RESET;
6050 
6051 	sprintf(msg, "resetting %s",
6052 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6053 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6054 
6055 	/*
6056 	 * wait to see if any commands will complete before sending reset
6057 	 */
6058 	dev->in_reset = true; /* block any new cmds from OS for this device */
6059 	for (i = 0; i < 10; i++) {
6060 		if (atomic_read(&dev->commands_outstanding) > 0)
6061 			msleep(1000);
6062 		else
6063 			break;
6064 	}
6065 
6066 	/* send a reset to the SCSI LUN which the command was sent to */
6067 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6068 	if (rc == 0)
6069 		rc = SUCCESS;
6070 	else
6071 		rc = FAILED;
6072 
6073 	sprintf(msg, "reset %s %s",
6074 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6075 		rc == SUCCESS ? "completed successfully" : "failed");
6076 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6077 
6078 return_reset_status:
6079 	spin_lock_irqsave(&h->reset_lock, flags);
6080 	h->reset_in_progress = 0;
6081 	if (dev)
6082 		dev->in_reset = false;
6083 	spin_unlock_irqrestore(&h->reset_lock, flags);
6084 	return rc;
6085 }
6086 
6087 /*
6088  * For operations with an associated SCSI command, a command block is allocated
6089  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6090  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6091  * the complement, although cmd_free() may be called instead.
6092  */
6093 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6094 					    struct scsi_cmnd *scmd)
6095 {
6096 	int idx = hpsa_get_cmd_index(scmd);
6097 	struct CommandList *c = h->cmd_pool + idx;
6098 
6099 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6100 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6101 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6102 		/* The index value comes from the block layer, so if it's out of
6103 		 * bounds, it's probably not our bug.
6104 		 */
6105 		BUG();
6106 	}
6107 
6108 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6109 		/*
6110 		 * We expect that the SCSI layer will hand us a unique tag
6111 		 * value.  Thus, there should never be a collision here between
6112 		 * two requests...because if the selected command isn't idle
6113 		 * then someone is going to be very disappointed.
6114 		 */
6115 		if (idx != h->last_collision_tag) { /* Print once per tag */
6116 			dev_warn(&h->pdev->dev,
6117 				"%s: tag collision (tag=%d)\n", __func__, idx);
6118 			if (scmd)
6119 				scsi_print_command(scmd);
6120 			h->last_collision_tag = idx;
6121 		}
6122 		return NULL;
6123 	}
6124 
6125 	atomic_inc(&c->refcount);
6126 
6127 	hpsa_cmd_partial_init(h, idx, c);
6128 	return c;
6129 }
6130 
6131 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6132 {
6133 	/*
6134 	 * Release our reference to the block.  We don't need to do anything
6135 	 * else to free it, because it is accessed by index.
6136 	 */
6137 	(void)atomic_dec(&c->refcount);
6138 }
6139 
6140 /*
6141  * For operations that cannot sleep, a command block is allocated at init,
6142  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6143  * which ones are free or in use.  Lock must be held when calling this.
6144  * cmd_free() is the complement.
6145  * This function never gives up and returns NULL.  If it hangs,
6146  * another thread must call cmd_free() to free some tags.
6147  */
6148 
6149 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6150 {
6151 	struct CommandList *c;
6152 	int refcount, i;
6153 	int offset = 0;
6154 
6155 	/*
6156 	 * There is some *extremely* small but non-zero chance that that
6157 	 * multiple threads could get in here, and one thread could
6158 	 * be scanning through the list of bits looking for a free
6159 	 * one, but the free ones are always behind him, and other
6160 	 * threads sneak in behind him and eat them before he can
6161 	 * get to them, so that while there is always a free one, a
6162 	 * very unlucky thread might be starved anyway, never able to
6163 	 * beat the other threads.  In reality, this happens so
6164 	 * infrequently as to be indistinguishable from never.
6165 	 *
6166 	 * Note that we start allocating commands before the SCSI host structure
6167 	 * is initialized.  Since the search starts at bit zero, this
6168 	 * all works, since we have at least one command structure available;
6169 	 * however, it means that the structures with the low indexes have to be
6170 	 * reserved for driver-initiated requests, while requests from the block
6171 	 * layer will use the higher indexes.
6172 	 */
6173 
6174 	for (;;) {
6175 		i = find_next_zero_bit(h->cmd_pool_bits,
6176 					HPSA_NRESERVED_CMDS,
6177 					offset);
6178 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6179 			offset = 0;
6180 			continue;
6181 		}
6182 		c = h->cmd_pool + i;
6183 		refcount = atomic_inc_return(&c->refcount);
6184 		if (unlikely(refcount > 1)) {
6185 			cmd_free(h, c); /* already in use */
6186 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6187 			continue;
6188 		}
6189 		set_bit(i & (BITS_PER_LONG - 1),
6190 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6191 		break; /* it's ours now. */
6192 	}
6193 	hpsa_cmd_partial_init(h, i, c);
6194 	c->device = NULL;
6195 	return c;
6196 }
6197 
6198 /*
6199  * This is the complementary operation to cmd_alloc().  Note, however, in some
6200  * corner cases it may also be used to free blocks allocated by
6201  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6202  * the clear-bit is harmless.
6203  */
6204 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6205 {
6206 	if (atomic_dec_and_test(&c->refcount)) {
6207 		int i;
6208 
6209 		i = c - h->cmd_pool;
6210 		clear_bit(i & (BITS_PER_LONG - 1),
6211 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6212 	}
6213 }
6214 
6215 #ifdef CONFIG_COMPAT
6216 
6217 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6218 	void __user *arg)
6219 {
6220 	IOCTL32_Command_struct __user *arg32 =
6221 	    (IOCTL32_Command_struct __user *) arg;
6222 	IOCTL_Command_struct arg64;
6223 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6224 	int err;
6225 	u32 cp;
6226 
6227 	memset(&arg64, 0, sizeof(arg64));
6228 	err = 0;
6229 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6230 			   sizeof(arg64.LUN_info));
6231 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6232 			   sizeof(arg64.Request));
6233 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6234 			   sizeof(arg64.error_info));
6235 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6236 	err |= get_user(cp, &arg32->buf);
6237 	arg64.buf = compat_ptr(cp);
6238 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6239 
6240 	if (err)
6241 		return -EFAULT;
6242 
6243 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6244 	if (err)
6245 		return err;
6246 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6247 			 sizeof(arg32->error_info));
6248 	if (err)
6249 		return -EFAULT;
6250 	return err;
6251 }
6252 
6253 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6254 	unsigned int cmd, void __user *arg)
6255 {
6256 	BIG_IOCTL32_Command_struct __user *arg32 =
6257 	    (BIG_IOCTL32_Command_struct __user *) arg;
6258 	BIG_IOCTL_Command_struct arg64;
6259 	BIG_IOCTL_Command_struct __user *p =
6260 	    compat_alloc_user_space(sizeof(arg64));
6261 	int err;
6262 	u32 cp;
6263 
6264 	memset(&arg64, 0, sizeof(arg64));
6265 	err = 0;
6266 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6267 			   sizeof(arg64.LUN_info));
6268 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6269 			   sizeof(arg64.Request));
6270 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6271 			   sizeof(arg64.error_info));
6272 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6273 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6274 	err |= get_user(cp, &arg32->buf);
6275 	arg64.buf = compat_ptr(cp);
6276 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6277 
6278 	if (err)
6279 		return -EFAULT;
6280 
6281 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6282 	if (err)
6283 		return err;
6284 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6285 			 sizeof(arg32->error_info));
6286 	if (err)
6287 		return -EFAULT;
6288 	return err;
6289 }
6290 
6291 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6292 			     void __user *arg)
6293 {
6294 	switch (cmd) {
6295 	case CCISS_GETPCIINFO:
6296 	case CCISS_GETINTINFO:
6297 	case CCISS_SETINTINFO:
6298 	case CCISS_GETNODENAME:
6299 	case CCISS_SETNODENAME:
6300 	case CCISS_GETHEARTBEAT:
6301 	case CCISS_GETBUSTYPES:
6302 	case CCISS_GETFIRMVER:
6303 	case CCISS_GETDRIVVER:
6304 	case CCISS_REVALIDVOLS:
6305 	case CCISS_DEREGDISK:
6306 	case CCISS_REGNEWDISK:
6307 	case CCISS_REGNEWD:
6308 	case CCISS_RESCANDISK:
6309 	case CCISS_GETLUNINFO:
6310 		return hpsa_ioctl(dev, cmd, arg);
6311 
6312 	case CCISS_PASSTHRU32:
6313 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6314 	case CCISS_BIG_PASSTHRU32:
6315 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6316 
6317 	default:
6318 		return -ENOIOCTLCMD;
6319 	}
6320 }
6321 #endif
6322 
6323 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6324 {
6325 	struct hpsa_pci_info pciinfo;
6326 
6327 	if (!argp)
6328 		return -EINVAL;
6329 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6330 	pciinfo.bus = h->pdev->bus->number;
6331 	pciinfo.dev_fn = h->pdev->devfn;
6332 	pciinfo.board_id = h->board_id;
6333 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6334 		return -EFAULT;
6335 	return 0;
6336 }
6337 
6338 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6339 {
6340 	DriverVer_type DriverVer;
6341 	unsigned char vmaj, vmin, vsubmin;
6342 	int rc;
6343 
6344 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6345 		&vmaj, &vmin, &vsubmin);
6346 	if (rc != 3) {
6347 		dev_info(&h->pdev->dev, "driver version string '%s' "
6348 			"unrecognized.", HPSA_DRIVER_VERSION);
6349 		vmaj = 0;
6350 		vmin = 0;
6351 		vsubmin = 0;
6352 	}
6353 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6354 	if (!argp)
6355 		return -EINVAL;
6356 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6357 		return -EFAULT;
6358 	return 0;
6359 }
6360 
6361 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6362 {
6363 	IOCTL_Command_struct iocommand;
6364 	struct CommandList *c;
6365 	char *buff = NULL;
6366 	u64 temp64;
6367 	int rc = 0;
6368 
6369 	if (!argp)
6370 		return -EINVAL;
6371 	if (!capable(CAP_SYS_RAWIO))
6372 		return -EPERM;
6373 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6374 		return -EFAULT;
6375 	if ((iocommand.buf_size < 1) &&
6376 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6377 		return -EINVAL;
6378 	}
6379 	if (iocommand.buf_size > 0) {
6380 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6381 		if (buff == NULL)
6382 			return -ENOMEM;
6383 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6384 			/* Copy the data into the buffer we created */
6385 			if (copy_from_user(buff, iocommand.buf,
6386 				iocommand.buf_size)) {
6387 				rc = -EFAULT;
6388 				goto out_kfree;
6389 			}
6390 		} else {
6391 			memset(buff, 0, iocommand.buf_size);
6392 		}
6393 	}
6394 	c = cmd_alloc(h);
6395 
6396 	/* Fill in the command type */
6397 	c->cmd_type = CMD_IOCTL_PEND;
6398 	c->scsi_cmd = SCSI_CMD_BUSY;
6399 	/* Fill in Command Header */
6400 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6401 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6402 		c->Header.SGList = 1;
6403 		c->Header.SGTotal = cpu_to_le16(1);
6404 	} else	{ /* no buffers to fill */
6405 		c->Header.SGList = 0;
6406 		c->Header.SGTotal = cpu_to_le16(0);
6407 	}
6408 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6409 
6410 	/* Fill in Request block */
6411 	memcpy(&c->Request, &iocommand.Request,
6412 		sizeof(c->Request));
6413 
6414 	/* Fill in the scatter gather information */
6415 	if (iocommand.buf_size > 0) {
6416 		temp64 = dma_map_single(&h->pdev->dev, buff,
6417 			iocommand.buf_size, DMA_BIDIRECTIONAL);
6418 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6419 			c->SG[0].Addr = cpu_to_le64(0);
6420 			c->SG[0].Len = cpu_to_le32(0);
6421 			rc = -ENOMEM;
6422 			goto out;
6423 		}
6424 		c->SG[0].Addr = cpu_to_le64(temp64);
6425 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6426 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6427 	}
6428 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6429 					NO_TIMEOUT);
6430 	if (iocommand.buf_size > 0)
6431 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6432 	check_ioctl_unit_attention(h, c);
6433 	if (rc) {
6434 		rc = -EIO;
6435 		goto out;
6436 	}
6437 
6438 	/* Copy the error information out */
6439 	memcpy(&iocommand.error_info, c->err_info,
6440 		sizeof(iocommand.error_info));
6441 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6442 		rc = -EFAULT;
6443 		goto out;
6444 	}
6445 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6446 		iocommand.buf_size > 0) {
6447 		/* Copy the data out of the buffer we created */
6448 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6449 			rc = -EFAULT;
6450 			goto out;
6451 		}
6452 	}
6453 out:
6454 	cmd_free(h, c);
6455 out_kfree:
6456 	kfree(buff);
6457 	return rc;
6458 }
6459 
6460 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6461 {
6462 	BIG_IOCTL_Command_struct *ioc;
6463 	struct CommandList *c;
6464 	unsigned char **buff = NULL;
6465 	int *buff_size = NULL;
6466 	u64 temp64;
6467 	BYTE sg_used = 0;
6468 	int status = 0;
6469 	u32 left;
6470 	u32 sz;
6471 	BYTE __user *data_ptr;
6472 
6473 	if (!argp)
6474 		return -EINVAL;
6475 	if (!capable(CAP_SYS_RAWIO))
6476 		return -EPERM;
6477 	ioc = vmemdup_user(argp, sizeof(*ioc));
6478 	if (IS_ERR(ioc)) {
6479 		status = PTR_ERR(ioc);
6480 		goto cleanup1;
6481 	}
6482 	if ((ioc->buf_size < 1) &&
6483 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6484 		status = -EINVAL;
6485 		goto cleanup1;
6486 	}
6487 	/* Check kmalloc limits  using all SGs */
6488 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6489 		status = -EINVAL;
6490 		goto cleanup1;
6491 	}
6492 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6493 		status = -EINVAL;
6494 		goto cleanup1;
6495 	}
6496 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6497 	if (!buff) {
6498 		status = -ENOMEM;
6499 		goto cleanup1;
6500 	}
6501 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6502 	if (!buff_size) {
6503 		status = -ENOMEM;
6504 		goto cleanup1;
6505 	}
6506 	left = ioc->buf_size;
6507 	data_ptr = ioc->buf;
6508 	while (left) {
6509 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6510 		buff_size[sg_used] = sz;
6511 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6512 		if (buff[sg_used] == NULL) {
6513 			status = -ENOMEM;
6514 			goto cleanup1;
6515 		}
6516 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6517 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6518 				status = -EFAULT;
6519 				goto cleanup1;
6520 			}
6521 		} else
6522 			memset(buff[sg_used], 0, sz);
6523 		left -= sz;
6524 		data_ptr += sz;
6525 		sg_used++;
6526 	}
6527 	c = cmd_alloc(h);
6528 
6529 	c->cmd_type = CMD_IOCTL_PEND;
6530 	c->scsi_cmd = SCSI_CMD_BUSY;
6531 	c->Header.ReplyQueue = 0;
6532 	c->Header.SGList = (u8) sg_used;
6533 	c->Header.SGTotal = cpu_to_le16(sg_used);
6534 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6535 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6536 	if (ioc->buf_size > 0) {
6537 		int i;
6538 		for (i = 0; i < sg_used; i++) {
6539 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6540 				    buff_size[i], DMA_BIDIRECTIONAL);
6541 			if (dma_mapping_error(&h->pdev->dev,
6542 							(dma_addr_t) temp64)) {
6543 				c->SG[i].Addr = cpu_to_le64(0);
6544 				c->SG[i].Len = cpu_to_le32(0);
6545 				hpsa_pci_unmap(h->pdev, c, i,
6546 					DMA_BIDIRECTIONAL);
6547 				status = -ENOMEM;
6548 				goto cleanup0;
6549 			}
6550 			c->SG[i].Addr = cpu_to_le64(temp64);
6551 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6552 			c->SG[i].Ext = cpu_to_le32(0);
6553 		}
6554 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6555 	}
6556 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6557 						NO_TIMEOUT);
6558 	if (sg_used)
6559 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6560 	check_ioctl_unit_attention(h, c);
6561 	if (status) {
6562 		status = -EIO;
6563 		goto cleanup0;
6564 	}
6565 
6566 	/* Copy the error information out */
6567 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6568 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6569 		status = -EFAULT;
6570 		goto cleanup0;
6571 	}
6572 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6573 		int i;
6574 
6575 		/* Copy the data out of the buffer we created */
6576 		BYTE __user *ptr = ioc->buf;
6577 		for (i = 0; i < sg_used; i++) {
6578 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6579 				status = -EFAULT;
6580 				goto cleanup0;
6581 			}
6582 			ptr += buff_size[i];
6583 		}
6584 	}
6585 	status = 0;
6586 cleanup0:
6587 	cmd_free(h, c);
6588 cleanup1:
6589 	if (buff) {
6590 		int i;
6591 
6592 		for (i = 0; i < sg_used; i++)
6593 			kfree(buff[i]);
6594 		kfree(buff);
6595 	}
6596 	kfree(buff_size);
6597 	kvfree(ioc);
6598 	return status;
6599 }
6600 
6601 static void check_ioctl_unit_attention(struct ctlr_info *h,
6602 	struct CommandList *c)
6603 {
6604 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6605 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6606 		(void) check_for_unit_attention(h, c);
6607 }
6608 
6609 /*
6610  * ioctl
6611  */
6612 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6613 		      void __user *arg)
6614 {
6615 	struct ctlr_info *h;
6616 	void __user *argp = (void __user *)arg;
6617 	int rc;
6618 
6619 	h = sdev_to_hba(dev);
6620 
6621 	switch (cmd) {
6622 	case CCISS_DEREGDISK:
6623 	case CCISS_REGNEWDISK:
6624 	case CCISS_REGNEWD:
6625 		hpsa_scan_start(h->scsi_host);
6626 		return 0;
6627 	case CCISS_GETPCIINFO:
6628 		return hpsa_getpciinfo_ioctl(h, argp);
6629 	case CCISS_GETDRIVVER:
6630 		return hpsa_getdrivver_ioctl(h, argp);
6631 	case CCISS_PASSTHRU:
6632 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6633 			return -EAGAIN;
6634 		rc = hpsa_passthru_ioctl(h, argp);
6635 		atomic_inc(&h->passthru_cmds_avail);
6636 		return rc;
6637 	case CCISS_BIG_PASSTHRU:
6638 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6639 			return -EAGAIN;
6640 		rc = hpsa_big_passthru_ioctl(h, argp);
6641 		atomic_inc(&h->passthru_cmds_avail);
6642 		return rc;
6643 	default:
6644 		return -ENOTTY;
6645 	}
6646 }
6647 
6648 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6649 {
6650 	struct CommandList *c;
6651 
6652 	c = cmd_alloc(h);
6653 
6654 	/* fill_cmd can't fail here, no data buffer to map */
6655 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6656 		RAID_CTLR_LUNID, TYPE_MSG);
6657 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6658 	c->waiting = NULL;
6659 	enqueue_cmd_and_start_io(h, c);
6660 	/* Don't wait for completion, the reset won't complete.  Don't free
6661 	 * the command either.  This is the last command we will send before
6662 	 * re-initializing everything, so it doesn't matter and won't leak.
6663 	 */
6664 	return;
6665 }
6666 
6667 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6668 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6669 	int cmd_type)
6670 {
6671 	enum dma_data_direction dir = DMA_NONE;
6672 
6673 	c->cmd_type = CMD_IOCTL_PEND;
6674 	c->scsi_cmd = SCSI_CMD_BUSY;
6675 	c->Header.ReplyQueue = 0;
6676 	if (buff != NULL && size > 0) {
6677 		c->Header.SGList = 1;
6678 		c->Header.SGTotal = cpu_to_le16(1);
6679 	} else {
6680 		c->Header.SGList = 0;
6681 		c->Header.SGTotal = cpu_to_le16(0);
6682 	}
6683 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6684 
6685 	if (cmd_type == TYPE_CMD) {
6686 		switch (cmd) {
6687 		case HPSA_INQUIRY:
6688 			/* are we trying to read a vital product page */
6689 			if (page_code & VPD_PAGE) {
6690 				c->Request.CDB[1] = 0x01;
6691 				c->Request.CDB[2] = (page_code & 0xff);
6692 			}
6693 			c->Request.CDBLen = 6;
6694 			c->Request.type_attr_dir =
6695 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6696 			c->Request.Timeout = 0;
6697 			c->Request.CDB[0] = HPSA_INQUIRY;
6698 			c->Request.CDB[4] = size & 0xFF;
6699 			break;
6700 		case RECEIVE_DIAGNOSTIC:
6701 			c->Request.CDBLen = 6;
6702 			c->Request.type_attr_dir =
6703 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6704 			c->Request.Timeout = 0;
6705 			c->Request.CDB[0] = cmd;
6706 			c->Request.CDB[1] = 1;
6707 			c->Request.CDB[2] = 1;
6708 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6709 			c->Request.CDB[4] = size & 0xFF;
6710 			break;
6711 		case HPSA_REPORT_LOG:
6712 		case HPSA_REPORT_PHYS:
6713 			/* Talking to controller so It's a physical command
6714 			   mode = 00 target = 0.  Nothing to write.
6715 			 */
6716 			c->Request.CDBLen = 12;
6717 			c->Request.type_attr_dir =
6718 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6719 			c->Request.Timeout = 0;
6720 			c->Request.CDB[0] = cmd;
6721 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6722 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6723 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6724 			c->Request.CDB[9] = size & 0xFF;
6725 			break;
6726 		case BMIC_SENSE_DIAG_OPTIONS:
6727 			c->Request.CDBLen = 16;
6728 			c->Request.type_attr_dir =
6729 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6730 			c->Request.Timeout = 0;
6731 			/* Spec says this should be BMIC_WRITE */
6732 			c->Request.CDB[0] = BMIC_READ;
6733 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6734 			break;
6735 		case BMIC_SET_DIAG_OPTIONS:
6736 			c->Request.CDBLen = 16;
6737 			c->Request.type_attr_dir =
6738 					TYPE_ATTR_DIR(cmd_type,
6739 						ATTR_SIMPLE, XFER_WRITE);
6740 			c->Request.Timeout = 0;
6741 			c->Request.CDB[0] = BMIC_WRITE;
6742 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6743 			break;
6744 		case HPSA_CACHE_FLUSH:
6745 			c->Request.CDBLen = 12;
6746 			c->Request.type_attr_dir =
6747 					TYPE_ATTR_DIR(cmd_type,
6748 						ATTR_SIMPLE, XFER_WRITE);
6749 			c->Request.Timeout = 0;
6750 			c->Request.CDB[0] = BMIC_WRITE;
6751 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6752 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6753 			c->Request.CDB[8] = size & 0xFF;
6754 			break;
6755 		case TEST_UNIT_READY:
6756 			c->Request.CDBLen = 6;
6757 			c->Request.type_attr_dir =
6758 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6759 			c->Request.Timeout = 0;
6760 			break;
6761 		case HPSA_GET_RAID_MAP:
6762 			c->Request.CDBLen = 12;
6763 			c->Request.type_attr_dir =
6764 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6765 			c->Request.Timeout = 0;
6766 			c->Request.CDB[0] = HPSA_CISS_READ;
6767 			c->Request.CDB[1] = cmd;
6768 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6769 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6770 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6771 			c->Request.CDB[9] = size & 0xFF;
6772 			break;
6773 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6774 			c->Request.CDBLen = 10;
6775 			c->Request.type_attr_dir =
6776 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6777 			c->Request.Timeout = 0;
6778 			c->Request.CDB[0] = BMIC_READ;
6779 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6780 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6781 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6782 			break;
6783 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6784 			c->Request.CDBLen = 10;
6785 			c->Request.type_attr_dir =
6786 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6787 			c->Request.Timeout = 0;
6788 			c->Request.CDB[0] = BMIC_READ;
6789 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6790 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6791 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6792 			break;
6793 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6794 			c->Request.CDBLen = 10;
6795 			c->Request.type_attr_dir =
6796 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6797 			c->Request.Timeout = 0;
6798 			c->Request.CDB[0] = BMIC_READ;
6799 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6800 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6801 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6802 			break;
6803 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6804 			c->Request.CDBLen = 10;
6805 			c->Request.type_attr_dir =
6806 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6807 			c->Request.Timeout = 0;
6808 			c->Request.CDB[0] = BMIC_READ;
6809 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6810 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6811 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6812 			break;
6813 		case BMIC_IDENTIFY_CONTROLLER:
6814 			c->Request.CDBLen = 10;
6815 			c->Request.type_attr_dir =
6816 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6817 			c->Request.Timeout = 0;
6818 			c->Request.CDB[0] = BMIC_READ;
6819 			c->Request.CDB[1] = 0;
6820 			c->Request.CDB[2] = 0;
6821 			c->Request.CDB[3] = 0;
6822 			c->Request.CDB[4] = 0;
6823 			c->Request.CDB[5] = 0;
6824 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6825 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6826 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6827 			c->Request.CDB[9] = 0;
6828 			break;
6829 		default:
6830 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6831 			BUG();
6832 		}
6833 	} else if (cmd_type == TYPE_MSG) {
6834 		switch (cmd) {
6835 
6836 		case  HPSA_PHYS_TARGET_RESET:
6837 			c->Request.CDBLen = 16;
6838 			c->Request.type_attr_dir =
6839 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6840 			c->Request.Timeout = 0; /* Don't time out */
6841 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6842 			c->Request.CDB[0] = HPSA_RESET;
6843 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6844 			/* Physical target reset needs no control bytes 4-7*/
6845 			c->Request.CDB[4] = 0x00;
6846 			c->Request.CDB[5] = 0x00;
6847 			c->Request.CDB[6] = 0x00;
6848 			c->Request.CDB[7] = 0x00;
6849 			break;
6850 		case  HPSA_DEVICE_RESET_MSG:
6851 			c->Request.CDBLen = 16;
6852 			c->Request.type_attr_dir =
6853 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6854 			c->Request.Timeout = 0; /* Don't time out */
6855 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6856 			c->Request.CDB[0] =  cmd;
6857 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6858 			/* If bytes 4-7 are zero, it means reset the */
6859 			/* LunID device */
6860 			c->Request.CDB[4] = 0x00;
6861 			c->Request.CDB[5] = 0x00;
6862 			c->Request.CDB[6] = 0x00;
6863 			c->Request.CDB[7] = 0x00;
6864 			break;
6865 		default:
6866 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6867 				cmd);
6868 			BUG();
6869 		}
6870 	} else {
6871 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6872 		BUG();
6873 	}
6874 
6875 	switch (GET_DIR(c->Request.type_attr_dir)) {
6876 	case XFER_READ:
6877 		dir = DMA_FROM_DEVICE;
6878 		break;
6879 	case XFER_WRITE:
6880 		dir = DMA_TO_DEVICE;
6881 		break;
6882 	case XFER_NONE:
6883 		dir = DMA_NONE;
6884 		break;
6885 	default:
6886 		dir = DMA_BIDIRECTIONAL;
6887 	}
6888 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6889 		return -1;
6890 	return 0;
6891 }
6892 
6893 /*
6894  * Map (physical) PCI mem into (virtual) kernel space
6895  */
6896 static void __iomem *remap_pci_mem(ulong base, ulong size)
6897 {
6898 	ulong page_base = ((ulong) base) & PAGE_MASK;
6899 	ulong page_offs = ((ulong) base) - page_base;
6900 	void __iomem *page_remapped = ioremap(page_base,
6901 		page_offs + size);
6902 
6903 	return page_remapped ? (page_remapped + page_offs) : NULL;
6904 }
6905 
6906 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6907 {
6908 	return h->access.command_completed(h, q);
6909 }
6910 
6911 static inline bool interrupt_pending(struct ctlr_info *h)
6912 {
6913 	return h->access.intr_pending(h);
6914 }
6915 
6916 static inline long interrupt_not_for_us(struct ctlr_info *h)
6917 {
6918 	return (h->access.intr_pending(h) == 0) ||
6919 		(h->interrupts_enabled == 0);
6920 }
6921 
6922 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6923 	u32 raw_tag)
6924 {
6925 	if (unlikely(tag_index >= h->nr_cmds)) {
6926 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6927 		return 1;
6928 	}
6929 	return 0;
6930 }
6931 
6932 static inline void finish_cmd(struct CommandList *c)
6933 {
6934 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6935 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6936 			|| c->cmd_type == CMD_IOACCEL2))
6937 		complete_scsi_command(c);
6938 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6939 		complete(c->waiting);
6940 }
6941 
6942 /* process completion of an indexed ("direct lookup") command */
6943 static inline void process_indexed_cmd(struct ctlr_info *h,
6944 	u32 raw_tag)
6945 {
6946 	u32 tag_index;
6947 	struct CommandList *c;
6948 
6949 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6950 	if (!bad_tag(h, tag_index, raw_tag)) {
6951 		c = h->cmd_pool + tag_index;
6952 		finish_cmd(c);
6953 	}
6954 }
6955 
6956 /* Some controllers, like p400, will give us one interrupt
6957  * after a soft reset, even if we turned interrupts off.
6958  * Only need to check for this in the hpsa_xxx_discard_completions
6959  * functions.
6960  */
6961 static int ignore_bogus_interrupt(struct ctlr_info *h)
6962 {
6963 	if (likely(!reset_devices))
6964 		return 0;
6965 
6966 	if (likely(h->interrupts_enabled))
6967 		return 0;
6968 
6969 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6970 		"(known firmware bug.)  Ignoring.\n");
6971 
6972 	return 1;
6973 }
6974 
6975 /*
6976  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6977  * Relies on (h-q[x] == x) being true for x such that
6978  * 0 <= x < MAX_REPLY_QUEUES.
6979  */
6980 static struct ctlr_info *queue_to_hba(u8 *queue)
6981 {
6982 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6983 }
6984 
6985 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6986 {
6987 	struct ctlr_info *h = queue_to_hba(queue);
6988 	u8 q = *(u8 *) queue;
6989 	u32 raw_tag;
6990 
6991 	if (ignore_bogus_interrupt(h))
6992 		return IRQ_NONE;
6993 
6994 	if (interrupt_not_for_us(h))
6995 		return IRQ_NONE;
6996 	h->last_intr_timestamp = get_jiffies_64();
6997 	while (interrupt_pending(h)) {
6998 		raw_tag = get_next_completion(h, q);
6999 		while (raw_tag != FIFO_EMPTY)
7000 			raw_tag = next_command(h, q);
7001 	}
7002 	return IRQ_HANDLED;
7003 }
7004 
7005 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7006 {
7007 	struct ctlr_info *h = queue_to_hba(queue);
7008 	u32 raw_tag;
7009 	u8 q = *(u8 *) queue;
7010 
7011 	if (ignore_bogus_interrupt(h))
7012 		return IRQ_NONE;
7013 
7014 	h->last_intr_timestamp = get_jiffies_64();
7015 	raw_tag = get_next_completion(h, q);
7016 	while (raw_tag != FIFO_EMPTY)
7017 		raw_tag = next_command(h, q);
7018 	return IRQ_HANDLED;
7019 }
7020 
7021 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7022 {
7023 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7024 	u32 raw_tag;
7025 	u8 q = *(u8 *) queue;
7026 
7027 	if (interrupt_not_for_us(h))
7028 		return IRQ_NONE;
7029 	h->last_intr_timestamp = get_jiffies_64();
7030 	while (interrupt_pending(h)) {
7031 		raw_tag = get_next_completion(h, q);
7032 		while (raw_tag != FIFO_EMPTY) {
7033 			process_indexed_cmd(h, raw_tag);
7034 			raw_tag = next_command(h, q);
7035 		}
7036 	}
7037 	return IRQ_HANDLED;
7038 }
7039 
7040 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7041 {
7042 	struct ctlr_info *h = queue_to_hba(queue);
7043 	u32 raw_tag;
7044 	u8 q = *(u8 *) queue;
7045 
7046 	h->last_intr_timestamp = get_jiffies_64();
7047 	raw_tag = get_next_completion(h, q);
7048 	while (raw_tag != FIFO_EMPTY) {
7049 		process_indexed_cmd(h, raw_tag);
7050 		raw_tag = next_command(h, q);
7051 	}
7052 	return IRQ_HANDLED;
7053 }
7054 
7055 /* Send a message CDB to the firmware. Careful, this only works
7056  * in simple mode, not performant mode due to the tag lookup.
7057  * We only ever use this immediately after a controller reset.
7058  */
7059 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7060 			unsigned char type)
7061 {
7062 	struct Command {
7063 		struct CommandListHeader CommandHeader;
7064 		struct RequestBlock Request;
7065 		struct ErrDescriptor ErrorDescriptor;
7066 	};
7067 	struct Command *cmd;
7068 	static const size_t cmd_sz = sizeof(*cmd) +
7069 					sizeof(cmd->ErrorDescriptor);
7070 	dma_addr_t paddr64;
7071 	__le32 paddr32;
7072 	u32 tag;
7073 	void __iomem *vaddr;
7074 	int i, err;
7075 
7076 	vaddr = pci_ioremap_bar(pdev, 0);
7077 	if (vaddr == NULL)
7078 		return -ENOMEM;
7079 
7080 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7081 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7082 	 * memory.
7083 	 */
7084 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7085 	if (err) {
7086 		iounmap(vaddr);
7087 		return err;
7088 	}
7089 
7090 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7091 	if (cmd == NULL) {
7092 		iounmap(vaddr);
7093 		return -ENOMEM;
7094 	}
7095 
7096 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7097 	 * although there's no guarantee, we assume that the address is at
7098 	 * least 4-byte aligned (most likely, it's page-aligned).
7099 	 */
7100 	paddr32 = cpu_to_le32(paddr64);
7101 
7102 	cmd->CommandHeader.ReplyQueue = 0;
7103 	cmd->CommandHeader.SGList = 0;
7104 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7105 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7106 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7107 
7108 	cmd->Request.CDBLen = 16;
7109 	cmd->Request.type_attr_dir =
7110 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7111 	cmd->Request.Timeout = 0; /* Don't time out */
7112 	cmd->Request.CDB[0] = opcode;
7113 	cmd->Request.CDB[1] = type;
7114 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7115 	cmd->ErrorDescriptor.Addr =
7116 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7117 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7118 
7119 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7120 
7121 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7122 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7123 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7124 			break;
7125 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7126 	}
7127 
7128 	iounmap(vaddr);
7129 
7130 	/* we leak the DMA buffer here ... no choice since the controller could
7131 	 *  still complete the command.
7132 	 */
7133 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7134 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7135 			opcode, type);
7136 		return -ETIMEDOUT;
7137 	}
7138 
7139 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7140 
7141 	if (tag & HPSA_ERROR_BIT) {
7142 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7143 			opcode, type);
7144 		return -EIO;
7145 	}
7146 
7147 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7148 		opcode, type);
7149 	return 0;
7150 }
7151 
7152 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7153 
7154 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7155 	void __iomem *vaddr, u32 use_doorbell)
7156 {
7157 
7158 	if (use_doorbell) {
7159 		/* For everything after the P600, the PCI power state method
7160 		 * of resetting the controller doesn't work, so we have this
7161 		 * other way using the doorbell register.
7162 		 */
7163 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7164 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7165 
7166 		/* PMC hardware guys tell us we need a 10 second delay after
7167 		 * doorbell reset and before any attempt to talk to the board
7168 		 * at all to ensure that this actually works and doesn't fall
7169 		 * over in some weird corner cases.
7170 		 */
7171 		msleep(10000);
7172 	} else { /* Try to do it the PCI power state way */
7173 
7174 		/* Quoting from the Open CISS Specification: "The Power
7175 		 * Management Control/Status Register (CSR) controls the power
7176 		 * state of the device.  The normal operating state is D0,
7177 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7178 		 * the controller, place the interface device in D3 then to D0,
7179 		 * this causes a secondary PCI reset which will reset the
7180 		 * controller." */
7181 
7182 		int rc = 0;
7183 
7184 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7185 
7186 		/* enter the D3hot power management state */
7187 		rc = pci_set_power_state(pdev, PCI_D3hot);
7188 		if (rc)
7189 			return rc;
7190 
7191 		msleep(500);
7192 
7193 		/* enter the D0 power management state */
7194 		rc = pci_set_power_state(pdev, PCI_D0);
7195 		if (rc)
7196 			return rc;
7197 
7198 		/*
7199 		 * The P600 requires a small delay when changing states.
7200 		 * Otherwise we may think the board did not reset and we bail.
7201 		 * This for kdump only and is particular to the P600.
7202 		 */
7203 		msleep(500);
7204 	}
7205 	return 0;
7206 }
7207 
7208 static void init_driver_version(char *driver_version, int len)
7209 {
7210 	memset(driver_version, 0, len);
7211 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7212 }
7213 
7214 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7215 {
7216 	char *driver_version;
7217 	int i, size = sizeof(cfgtable->driver_version);
7218 
7219 	driver_version = kmalloc(size, GFP_KERNEL);
7220 	if (!driver_version)
7221 		return -ENOMEM;
7222 
7223 	init_driver_version(driver_version, size);
7224 	for (i = 0; i < size; i++)
7225 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7226 	kfree(driver_version);
7227 	return 0;
7228 }
7229 
7230 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7231 					  unsigned char *driver_ver)
7232 {
7233 	int i;
7234 
7235 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7236 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7237 }
7238 
7239 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7240 {
7241 
7242 	char *driver_ver, *old_driver_ver;
7243 	int rc, size = sizeof(cfgtable->driver_version);
7244 
7245 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7246 	if (!old_driver_ver)
7247 		return -ENOMEM;
7248 	driver_ver = old_driver_ver + size;
7249 
7250 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7251 	 * should have been changed, otherwise we know the reset failed.
7252 	 */
7253 	init_driver_version(old_driver_ver, size);
7254 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7255 	rc = !memcmp(driver_ver, old_driver_ver, size);
7256 	kfree(old_driver_ver);
7257 	return rc;
7258 }
7259 /* This does a hard reset of the controller using PCI power management
7260  * states or the using the doorbell register.
7261  */
7262 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7263 {
7264 	u64 cfg_offset;
7265 	u32 cfg_base_addr;
7266 	u64 cfg_base_addr_index;
7267 	void __iomem *vaddr;
7268 	unsigned long paddr;
7269 	u32 misc_fw_support;
7270 	int rc;
7271 	struct CfgTable __iomem *cfgtable;
7272 	u32 use_doorbell;
7273 	u16 command_register;
7274 
7275 	/* For controllers as old as the P600, this is very nearly
7276 	 * the same thing as
7277 	 *
7278 	 * pci_save_state(pci_dev);
7279 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7280 	 * pci_set_power_state(pci_dev, PCI_D0);
7281 	 * pci_restore_state(pci_dev);
7282 	 *
7283 	 * For controllers newer than the P600, the pci power state
7284 	 * method of resetting doesn't work so we have another way
7285 	 * using the doorbell register.
7286 	 */
7287 
7288 	if (!ctlr_is_resettable(board_id)) {
7289 		dev_warn(&pdev->dev, "Controller not resettable\n");
7290 		return -ENODEV;
7291 	}
7292 
7293 	/* if controller is soft- but not hard resettable... */
7294 	if (!ctlr_is_hard_resettable(board_id))
7295 		return -ENOTSUPP; /* try soft reset later. */
7296 
7297 	/* Save the PCI command register */
7298 	pci_read_config_word(pdev, 4, &command_register);
7299 	pci_save_state(pdev);
7300 
7301 	/* find the first memory BAR, so we can find the cfg table */
7302 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7303 	if (rc)
7304 		return rc;
7305 	vaddr = remap_pci_mem(paddr, 0x250);
7306 	if (!vaddr)
7307 		return -ENOMEM;
7308 
7309 	/* find cfgtable in order to check if reset via doorbell is supported */
7310 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7311 					&cfg_base_addr_index, &cfg_offset);
7312 	if (rc)
7313 		goto unmap_vaddr;
7314 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7315 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7316 	if (!cfgtable) {
7317 		rc = -ENOMEM;
7318 		goto unmap_vaddr;
7319 	}
7320 	rc = write_driver_ver_to_cfgtable(cfgtable);
7321 	if (rc)
7322 		goto unmap_cfgtable;
7323 
7324 	/* If reset via doorbell register is supported, use that.
7325 	 * There are two such methods.  Favor the newest method.
7326 	 */
7327 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7328 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7329 	if (use_doorbell) {
7330 		use_doorbell = DOORBELL_CTLR_RESET2;
7331 	} else {
7332 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7333 		if (use_doorbell) {
7334 			dev_warn(&pdev->dev,
7335 				"Soft reset not supported. Firmware update is required.\n");
7336 			rc = -ENOTSUPP; /* try soft reset */
7337 			goto unmap_cfgtable;
7338 		}
7339 	}
7340 
7341 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7342 	if (rc)
7343 		goto unmap_cfgtable;
7344 
7345 	pci_restore_state(pdev);
7346 	pci_write_config_word(pdev, 4, command_register);
7347 
7348 	/* Some devices (notably the HP Smart Array 5i Controller)
7349 	   need a little pause here */
7350 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7351 
7352 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7353 	if (rc) {
7354 		dev_warn(&pdev->dev,
7355 			"Failed waiting for board to become ready after hard reset\n");
7356 		goto unmap_cfgtable;
7357 	}
7358 
7359 	rc = controller_reset_failed(vaddr);
7360 	if (rc < 0)
7361 		goto unmap_cfgtable;
7362 	if (rc) {
7363 		dev_warn(&pdev->dev, "Unable to successfully reset "
7364 			"controller. Will try soft reset.\n");
7365 		rc = -ENOTSUPP;
7366 	} else {
7367 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7368 	}
7369 
7370 unmap_cfgtable:
7371 	iounmap(cfgtable);
7372 
7373 unmap_vaddr:
7374 	iounmap(vaddr);
7375 	return rc;
7376 }
7377 
7378 /*
7379  *  We cannot read the structure directly, for portability we must use
7380  *   the io functions.
7381  *   This is for debug only.
7382  */
7383 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7384 {
7385 #ifdef HPSA_DEBUG
7386 	int i;
7387 	char temp_name[17];
7388 
7389 	dev_info(dev, "Controller Configuration information\n");
7390 	dev_info(dev, "------------------------------------\n");
7391 	for (i = 0; i < 4; i++)
7392 		temp_name[i] = readb(&(tb->Signature[i]));
7393 	temp_name[4] = '\0';
7394 	dev_info(dev, "   Signature = %s\n", temp_name);
7395 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7396 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7397 	       readl(&(tb->TransportSupport)));
7398 	dev_info(dev, "   Transport methods active = 0x%x\n",
7399 	       readl(&(tb->TransportActive)));
7400 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7401 	       readl(&(tb->HostWrite.TransportRequest)));
7402 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7403 	       readl(&(tb->HostWrite.CoalIntDelay)));
7404 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7405 	       readl(&(tb->HostWrite.CoalIntCount)));
7406 	dev_info(dev, "   Max outstanding commands = %d\n",
7407 	       readl(&(tb->CmdsOutMax)));
7408 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7409 	for (i = 0; i < 16; i++)
7410 		temp_name[i] = readb(&(tb->ServerName[i]));
7411 	temp_name[16] = '\0';
7412 	dev_info(dev, "   Server Name = %s\n", temp_name);
7413 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7414 		readl(&(tb->HeartBeat)));
7415 #endif				/* HPSA_DEBUG */
7416 }
7417 
7418 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7419 {
7420 	int i, offset, mem_type, bar_type;
7421 
7422 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7423 		return 0;
7424 	offset = 0;
7425 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7426 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7427 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7428 			offset += 4;
7429 		else {
7430 			mem_type = pci_resource_flags(pdev, i) &
7431 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7432 			switch (mem_type) {
7433 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7434 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7435 				offset += 4;	/* 32 bit */
7436 				break;
7437 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7438 				offset += 8;
7439 				break;
7440 			default:	/* reserved in PCI 2.2 */
7441 				dev_warn(&pdev->dev,
7442 				       "base address is invalid\n");
7443 				return -1;
7444 				break;
7445 			}
7446 		}
7447 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7448 			return i + 1;
7449 	}
7450 	return -1;
7451 }
7452 
7453 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7454 {
7455 	pci_free_irq_vectors(h->pdev);
7456 	h->msix_vectors = 0;
7457 }
7458 
7459 static void hpsa_setup_reply_map(struct ctlr_info *h)
7460 {
7461 	const struct cpumask *mask;
7462 	unsigned int queue, cpu;
7463 
7464 	for (queue = 0; queue < h->msix_vectors; queue++) {
7465 		mask = pci_irq_get_affinity(h->pdev, queue);
7466 		if (!mask)
7467 			goto fallback;
7468 
7469 		for_each_cpu(cpu, mask)
7470 			h->reply_map[cpu] = queue;
7471 	}
7472 	return;
7473 
7474 fallback:
7475 	for_each_possible_cpu(cpu)
7476 		h->reply_map[cpu] = 0;
7477 }
7478 
7479 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7480  * controllers that are capable. If not, we use legacy INTx mode.
7481  */
7482 static int hpsa_interrupt_mode(struct ctlr_info *h)
7483 {
7484 	unsigned int flags = PCI_IRQ_LEGACY;
7485 	int ret;
7486 
7487 	/* Some boards advertise MSI but don't really support it */
7488 	switch (h->board_id) {
7489 	case 0x40700E11:
7490 	case 0x40800E11:
7491 	case 0x40820E11:
7492 	case 0x40830E11:
7493 		break;
7494 	default:
7495 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7496 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7497 		if (ret > 0) {
7498 			h->msix_vectors = ret;
7499 			return 0;
7500 		}
7501 
7502 		flags |= PCI_IRQ_MSI;
7503 		break;
7504 	}
7505 
7506 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7507 	if (ret < 0)
7508 		return ret;
7509 	return 0;
7510 }
7511 
7512 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7513 				bool *legacy_board)
7514 {
7515 	int i;
7516 	u32 subsystem_vendor_id, subsystem_device_id;
7517 
7518 	subsystem_vendor_id = pdev->subsystem_vendor;
7519 	subsystem_device_id = pdev->subsystem_device;
7520 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7521 		    subsystem_vendor_id;
7522 
7523 	if (legacy_board)
7524 		*legacy_board = false;
7525 	for (i = 0; i < ARRAY_SIZE(products); i++)
7526 		if (*board_id == products[i].board_id) {
7527 			if (products[i].access != &SA5A_access &&
7528 			    products[i].access != &SA5B_access)
7529 				return i;
7530 			dev_warn(&pdev->dev,
7531 				 "legacy board ID: 0x%08x\n",
7532 				 *board_id);
7533 			if (legacy_board)
7534 			    *legacy_board = true;
7535 			return i;
7536 		}
7537 
7538 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7539 	if (legacy_board)
7540 		*legacy_board = true;
7541 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7542 }
7543 
7544 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7545 				    unsigned long *memory_bar)
7546 {
7547 	int i;
7548 
7549 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7550 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7551 			/* addressing mode bits already removed */
7552 			*memory_bar = pci_resource_start(pdev, i);
7553 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7554 				*memory_bar);
7555 			return 0;
7556 		}
7557 	dev_warn(&pdev->dev, "no memory BAR found\n");
7558 	return -ENODEV;
7559 }
7560 
7561 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7562 				     int wait_for_ready)
7563 {
7564 	int i, iterations;
7565 	u32 scratchpad;
7566 	if (wait_for_ready)
7567 		iterations = HPSA_BOARD_READY_ITERATIONS;
7568 	else
7569 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7570 
7571 	for (i = 0; i < iterations; i++) {
7572 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7573 		if (wait_for_ready) {
7574 			if (scratchpad == HPSA_FIRMWARE_READY)
7575 				return 0;
7576 		} else {
7577 			if (scratchpad != HPSA_FIRMWARE_READY)
7578 				return 0;
7579 		}
7580 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7581 	}
7582 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7583 	return -ENODEV;
7584 }
7585 
7586 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7587 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7588 			       u64 *cfg_offset)
7589 {
7590 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7591 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7592 	*cfg_base_addr &= (u32) 0x0000ffff;
7593 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7594 	if (*cfg_base_addr_index == -1) {
7595 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7596 		return -ENODEV;
7597 	}
7598 	return 0;
7599 }
7600 
7601 static void hpsa_free_cfgtables(struct ctlr_info *h)
7602 {
7603 	if (h->transtable) {
7604 		iounmap(h->transtable);
7605 		h->transtable = NULL;
7606 	}
7607 	if (h->cfgtable) {
7608 		iounmap(h->cfgtable);
7609 		h->cfgtable = NULL;
7610 	}
7611 }
7612 
7613 /* Find and map CISS config table and transfer table
7614 + * several items must be unmapped (freed) later
7615 + * */
7616 static int hpsa_find_cfgtables(struct ctlr_info *h)
7617 {
7618 	u64 cfg_offset;
7619 	u32 cfg_base_addr;
7620 	u64 cfg_base_addr_index;
7621 	u32 trans_offset;
7622 	int rc;
7623 
7624 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7625 		&cfg_base_addr_index, &cfg_offset);
7626 	if (rc)
7627 		return rc;
7628 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7629 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7630 	if (!h->cfgtable) {
7631 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7632 		return -ENOMEM;
7633 	}
7634 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7635 	if (rc)
7636 		return rc;
7637 	/* Find performant mode table. */
7638 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7639 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7640 				cfg_base_addr_index)+cfg_offset+trans_offset,
7641 				sizeof(*h->transtable));
7642 	if (!h->transtable) {
7643 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7644 		hpsa_free_cfgtables(h);
7645 		return -ENOMEM;
7646 	}
7647 	return 0;
7648 }
7649 
7650 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7651 {
7652 #define MIN_MAX_COMMANDS 16
7653 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7654 
7655 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7656 
7657 	/* Limit commands in memory limited kdump scenario. */
7658 	if (reset_devices && h->max_commands > 32)
7659 		h->max_commands = 32;
7660 
7661 	if (h->max_commands < MIN_MAX_COMMANDS) {
7662 		dev_warn(&h->pdev->dev,
7663 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7664 			h->max_commands,
7665 			MIN_MAX_COMMANDS);
7666 		h->max_commands = MIN_MAX_COMMANDS;
7667 	}
7668 }
7669 
7670 /* If the controller reports that the total max sg entries is greater than 512,
7671  * then we know that chained SG blocks work.  (Original smart arrays did not
7672  * support chained SG blocks and would return zero for max sg entries.)
7673  */
7674 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7675 {
7676 	return h->maxsgentries > 512;
7677 }
7678 
7679 /* Interrogate the hardware for some limits:
7680  * max commands, max SG elements without chaining, and with chaining,
7681  * SG chain block size, etc.
7682  */
7683 static void hpsa_find_board_params(struct ctlr_info *h)
7684 {
7685 	hpsa_get_max_perf_mode_cmds(h);
7686 	h->nr_cmds = h->max_commands;
7687 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7688 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7689 	if (hpsa_supports_chained_sg_blocks(h)) {
7690 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7691 		h->max_cmd_sg_entries = 32;
7692 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7693 		h->maxsgentries--; /* save one for chain pointer */
7694 	} else {
7695 		/*
7696 		 * Original smart arrays supported at most 31 s/g entries
7697 		 * embedded inline in the command (trying to use more
7698 		 * would lock up the controller)
7699 		 */
7700 		h->max_cmd_sg_entries = 31;
7701 		h->maxsgentries = 31; /* default to traditional values */
7702 		h->chainsize = 0;
7703 	}
7704 
7705 	/* Find out what task management functions are supported and cache */
7706 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7707 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7708 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7709 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7710 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7711 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7712 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7713 }
7714 
7715 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7716 {
7717 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7718 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7719 		return false;
7720 	}
7721 	return true;
7722 }
7723 
7724 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7725 {
7726 	u32 driver_support;
7727 
7728 	driver_support = readl(&(h->cfgtable->driver_support));
7729 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7730 #ifdef CONFIG_X86
7731 	driver_support |= ENABLE_SCSI_PREFETCH;
7732 #endif
7733 	driver_support |= ENABLE_UNIT_ATTN;
7734 	writel(driver_support, &(h->cfgtable->driver_support));
7735 }
7736 
7737 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7738  * in a prefetch beyond physical memory.
7739  */
7740 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7741 {
7742 	u32 dma_prefetch;
7743 
7744 	if (h->board_id != 0x3225103C)
7745 		return;
7746 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7747 	dma_prefetch |= 0x8000;
7748 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7749 }
7750 
7751 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7752 {
7753 	int i;
7754 	u32 doorbell_value;
7755 	unsigned long flags;
7756 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7757 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7758 		spin_lock_irqsave(&h->lock, flags);
7759 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7760 		spin_unlock_irqrestore(&h->lock, flags);
7761 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7762 			goto done;
7763 		/* delay and try again */
7764 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7765 	}
7766 	return -ENODEV;
7767 done:
7768 	return 0;
7769 }
7770 
7771 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7772 {
7773 	int i;
7774 	u32 doorbell_value;
7775 	unsigned long flags;
7776 
7777 	/* under certain very rare conditions, this can take awhile.
7778 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7779 	 * as we enter this code.)
7780 	 */
7781 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7782 		if (h->remove_in_progress)
7783 			goto done;
7784 		spin_lock_irqsave(&h->lock, flags);
7785 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7786 		spin_unlock_irqrestore(&h->lock, flags);
7787 		if (!(doorbell_value & CFGTBL_ChangeReq))
7788 			goto done;
7789 		/* delay and try again */
7790 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7791 	}
7792 	return -ENODEV;
7793 done:
7794 	return 0;
7795 }
7796 
7797 /* return -ENODEV or other reason on error, 0 on success */
7798 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7799 {
7800 	u32 trans_support;
7801 
7802 	trans_support = readl(&(h->cfgtable->TransportSupport));
7803 	if (!(trans_support & SIMPLE_MODE))
7804 		return -ENOTSUPP;
7805 
7806 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7807 
7808 	/* Update the field, and then ring the doorbell */
7809 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7810 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7811 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7812 	if (hpsa_wait_for_mode_change_ack(h))
7813 		goto error;
7814 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7815 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7816 		goto error;
7817 	h->transMethod = CFGTBL_Trans_Simple;
7818 	return 0;
7819 error:
7820 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7821 	return -ENODEV;
7822 }
7823 
7824 /* free items allocated or mapped by hpsa_pci_init */
7825 static void hpsa_free_pci_init(struct ctlr_info *h)
7826 {
7827 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7828 	iounmap(h->vaddr);			/* pci_init 3 */
7829 	h->vaddr = NULL;
7830 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7831 	/*
7832 	 * call pci_disable_device before pci_release_regions per
7833 	 * Documentation/driver-api/pci/pci.rst
7834 	 */
7835 	pci_disable_device(h->pdev);		/* pci_init 1 */
7836 	pci_release_regions(h->pdev);		/* pci_init 2 */
7837 }
7838 
7839 /* several items must be freed later */
7840 static int hpsa_pci_init(struct ctlr_info *h)
7841 {
7842 	int prod_index, err;
7843 	bool legacy_board;
7844 
7845 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7846 	if (prod_index < 0)
7847 		return prod_index;
7848 	h->product_name = products[prod_index].product_name;
7849 	h->access = *(products[prod_index].access);
7850 	h->legacy_board = legacy_board;
7851 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7852 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7853 
7854 	err = pci_enable_device(h->pdev);
7855 	if (err) {
7856 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7857 		pci_disable_device(h->pdev);
7858 		return err;
7859 	}
7860 
7861 	err = pci_request_regions(h->pdev, HPSA);
7862 	if (err) {
7863 		dev_err(&h->pdev->dev,
7864 			"failed to obtain PCI resources\n");
7865 		pci_disable_device(h->pdev);
7866 		return err;
7867 	}
7868 
7869 	pci_set_master(h->pdev);
7870 
7871 	err = hpsa_interrupt_mode(h);
7872 	if (err)
7873 		goto clean1;
7874 
7875 	/* setup mapping between CPU and reply queue */
7876 	hpsa_setup_reply_map(h);
7877 
7878 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7879 	if (err)
7880 		goto clean2;	/* intmode+region, pci */
7881 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7882 	if (!h->vaddr) {
7883 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7884 		err = -ENOMEM;
7885 		goto clean2;	/* intmode+region, pci */
7886 	}
7887 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7888 	if (err)
7889 		goto clean3;	/* vaddr, intmode+region, pci */
7890 	err = hpsa_find_cfgtables(h);
7891 	if (err)
7892 		goto clean3;	/* vaddr, intmode+region, pci */
7893 	hpsa_find_board_params(h);
7894 
7895 	if (!hpsa_CISS_signature_present(h)) {
7896 		err = -ENODEV;
7897 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7898 	}
7899 	hpsa_set_driver_support_bits(h);
7900 	hpsa_p600_dma_prefetch_quirk(h);
7901 	err = hpsa_enter_simple_mode(h);
7902 	if (err)
7903 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7904 	return 0;
7905 
7906 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7907 	hpsa_free_cfgtables(h);
7908 clean3:	/* vaddr, intmode+region, pci */
7909 	iounmap(h->vaddr);
7910 	h->vaddr = NULL;
7911 clean2:	/* intmode+region, pci */
7912 	hpsa_disable_interrupt_mode(h);
7913 clean1:
7914 	/*
7915 	 * call pci_disable_device before pci_release_regions per
7916 	 * Documentation/driver-api/pci/pci.rst
7917 	 */
7918 	pci_disable_device(h->pdev);
7919 	pci_release_regions(h->pdev);
7920 	return err;
7921 }
7922 
7923 static void hpsa_hba_inquiry(struct ctlr_info *h)
7924 {
7925 	int rc;
7926 
7927 #define HBA_INQUIRY_BYTE_COUNT 64
7928 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7929 	if (!h->hba_inquiry_data)
7930 		return;
7931 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7932 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7933 	if (rc != 0) {
7934 		kfree(h->hba_inquiry_data);
7935 		h->hba_inquiry_data = NULL;
7936 	}
7937 }
7938 
7939 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7940 {
7941 	int rc, i;
7942 	void __iomem *vaddr;
7943 
7944 	if (!reset_devices)
7945 		return 0;
7946 
7947 	/* kdump kernel is loading, we don't know in which state is
7948 	 * the pci interface. The dev->enable_cnt is equal zero
7949 	 * so we call enable+disable, wait a while and switch it on.
7950 	 */
7951 	rc = pci_enable_device(pdev);
7952 	if (rc) {
7953 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7954 		return -ENODEV;
7955 	}
7956 	pci_disable_device(pdev);
7957 	msleep(260);			/* a randomly chosen number */
7958 	rc = pci_enable_device(pdev);
7959 	if (rc) {
7960 		dev_warn(&pdev->dev, "failed to enable device.\n");
7961 		return -ENODEV;
7962 	}
7963 
7964 	pci_set_master(pdev);
7965 
7966 	vaddr = pci_ioremap_bar(pdev, 0);
7967 	if (vaddr == NULL) {
7968 		rc = -ENOMEM;
7969 		goto out_disable;
7970 	}
7971 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7972 	iounmap(vaddr);
7973 
7974 	/* Reset the controller with a PCI power-cycle or via doorbell */
7975 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7976 
7977 	/* -ENOTSUPP here means we cannot reset the controller
7978 	 * but it's already (and still) up and running in
7979 	 * "performant mode".  Or, it might be 640x, which can't reset
7980 	 * due to concerns about shared bbwc between 6402/6404 pair.
7981 	 */
7982 	if (rc)
7983 		goto out_disable;
7984 
7985 	/* Now try to get the controller to respond to a no-op */
7986 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7987 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7988 		if (hpsa_noop(pdev) == 0)
7989 			break;
7990 		else
7991 			dev_warn(&pdev->dev, "no-op failed%s\n",
7992 					(i < 11 ? "; re-trying" : ""));
7993 	}
7994 
7995 out_disable:
7996 
7997 	pci_disable_device(pdev);
7998 	return rc;
7999 }
8000 
8001 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8002 {
8003 	kfree(h->cmd_pool_bits);
8004 	h->cmd_pool_bits = NULL;
8005 	if (h->cmd_pool) {
8006 		dma_free_coherent(&h->pdev->dev,
8007 				h->nr_cmds * sizeof(struct CommandList),
8008 				h->cmd_pool,
8009 				h->cmd_pool_dhandle);
8010 		h->cmd_pool = NULL;
8011 		h->cmd_pool_dhandle = 0;
8012 	}
8013 	if (h->errinfo_pool) {
8014 		dma_free_coherent(&h->pdev->dev,
8015 				h->nr_cmds * sizeof(struct ErrorInfo),
8016 				h->errinfo_pool,
8017 				h->errinfo_pool_dhandle);
8018 		h->errinfo_pool = NULL;
8019 		h->errinfo_pool_dhandle = 0;
8020 	}
8021 }
8022 
8023 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8024 {
8025 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8026 				   sizeof(unsigned long),
8027 				   GFP_KERNEL);
8028 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8029 		    h->nr_cmds * sizeof(*h->cmd_pool),
8030 		    &h->cmd_pool_dhandle, GFP_KERNEL);
8031 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8032 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8033 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8034 	if ((h->cmd_pool_bits == NULL)
8035 	    || (h->cmd_pool == NULL)
8036 	    || (h->errinfo_pool == NULL)) {
8037 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8038 		goto clean_up;
8039 	}
8040 	hpsa_preinitialize_commands(h);
8041 	return 0;
8042 clean_up:
8043 	hpsa_free_cmd_pool(h);
8044 	return -ENOMEM;
8045 }
8046 
8047 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8048 static void hpsa_free_irqs(struct ctlr_info *h)
8049 {
8050 	int i;
8051 	int irq_vector = 0;
8052 
8053 	if (hpsa_simple_mode)
8054 		irq_vector = h->intr_mode;
8055 
8056 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8057 		/* Single reply queue, only one irq to free */
8058 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8059 				&h->q[h->intr_mode]);
8060 		h->q[h->intr_mode] = 0;
8061 		return;
8062 	}
8063 
8064 	for (i = 0; i < h->msix_vectors; i++) {
8065 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8066 		h->q[i] = 0;
8067 	}
8068 	for (; i < MAX_REPLY_QUEUES; i++)
8069 		h->q[i] = 0;
8070 }
8071 
8072 /* returns 0 on success; cleans up and returns -Enn on error */
8073 static int hpsa_request_irqs(struct ctlr_info *h,
8074 	irqreturn_t (*msixhandler)(int, void *),
8075 	irqreturn_t (*intxhandler)(int, void *))
8076 {
8077 	int rc, i;
8078 	int irq_vector = 0;
8079 
8080 	if (hpsa_simple_mode)
8081 		irq_vector = h->intr_mode;
8082 
8083 	/*
8084 	 * initialize h->q[x] = x so that interrupt handlers know which
8085 	 * queue to process.
8086 	 */
8087 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8088 		h->q[i] = (u8) i;
8089 
8090 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8091 		/* If performant mode and MSI-X, use multiple reply queues */
8092 		for (i = 0; i < h->msix_vectors; i++) {
8093 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8094 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8095 					0, h->intrname[i],
8096 					&h->q[i]);
8097 			if (rc) {
8098 				int j;
8099 
8100 				dev_err(&h->pdev->dev,
8101 					"failed to get irq %d for %s\n",
8102 				       pci_irq_vector(h->pdev, i), h->devname);
8103 				for (j = 0; j < i; j++) {
8104 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8105 					h->q[j] = 0;
8106 				}
8107 				for (; j < MAX_REPLY_QUEUES; j++)
8108 					h->q[j] = 0;
8109 				return rc;
8110 			}
8111 		}
8112 	} else {
8113 		/* Use single reply pool */
8114 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8115 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8116 				h->msix_vectors ? "x" : "");
8117 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8118 				msixhandler, 0,
8119 				h->intrname[0],
8120 				&h->q[h->intr_mode]);
8121 		} else {
8122 			sprintf(h->intrname[h->intr_mode],
8123 				"%s-intx", h->devname);
8124 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8125 				intxhandler, IRQF_SHARED,
8126 				h->intrname[0],
8127 				&h->q[h->intr_mode]);
8128 		}
8129 	}
8130 	if (rc) {
8131 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8132 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8133 		hpsa_free_irqs(h);
8134 		return -ENODEV;
8135 	}
8136 	return 0;
8137 }
8138 
8139 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8140 {
8141 	int rc;
8142 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8143 
8144 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8145 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8146 	if (rc) {
8147 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8148 		return rc;
8149 	}
8150 
8151 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8152 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8153 	if (rc) {
8154 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8155 			"after soft reset.\n");
8156 		return rc;
8157 	}
8158 
8159 	return 0;
8160 }
8161 
8162 static void hpsa_free_reply_queues(struct ctlr_info *h)
8163 {
8164 	int i;
8165 
8166 	for (i = 0; i < h->nreply_queues; i++) {
8167 		if (!h->reply_queue[i].head)
8168 			continue;
8169 		dma_free_coherent(&h->pdev->dev,
8170 					h->reply_queue_size,
8171 					h->reply_queue[i].head,
8172 					h->reply_queue[i].busaddr);
8173 		h->reply_queue[i].head = NULL;
8174 		h->reply_queue[i].busaddr = 0;
8175 	}
8176 	h->reply_queue_size = 0;
8177 }
8178 
8179 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8180 {
8181 	hpsa_free_performant_mode(h);		/* init_one 7 */
8182 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8183 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8184 	hpsa_free_irqs(h);			/* init_one 4 */
8185 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8186 	h->scsi_host = NULL;			/* init_one 3 */
8187 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8188 	free_percpu(h->lockup_detected);	/* init_one 2 */
8189 	h->lockup_detected = NULL;		/* init_one 2 */
8190 	if (h->resubmit_wq) {
8191 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8192 		h->resubmit_wq = NULL;
8193 	}
8194 	if (h->rescan_ctlr_wq) {
8195 		destroy_workqueue(h->rescan_ctlr_wq);
8196 		h->rescan_ctlr_wq = NULL;
8197 	}
8198 	if (h->monitor_ctlr_wq) {
8199 		destroy_workqueue(h->monitor_ctlr_wq);
8200 		h->monitor_ctlr_wq = NULL;
8201 	}
8202 
8203 	kfree(h);				/* init_one 1 */
8204 }
8205 
8206 /* Called when controller lockup detected. */
8207 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8208 {
8209 	int i, refcount;
8210 	struct CommandList *c;
8211 	int failcount = 0;
8212 
8213 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8214 	for (i = 0; i < h->nr_cmds; i++) {
8215 		c = h->cmd_pool + i;
8216 		refcount = atomic_inc_return(&c->refcount);
8217 		if (refcount > 1) {
8218 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8219 			finish_cmd(c);
8220 			atomic_dec(&h->commands_outstanding);
8221 			failcount++;
8222 		}
8223 		cmd_free(h, c);
8224 	}
8225 	dev_warn(&h->pdev->dev,
8226 		"failed %d commands in fail_all\n", failcount);
8227 }
8228 
8229 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8230 {
8231 	int cpu;
8232 
8233 	for_each_online_cpu(cpu) {
8234 		u32 *lockup_detected;
8235 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8236 		*lockup_detected = value;
8237 	}
8238 	wmb(); /* be sure the per-cpu variables are out to memory */
8239 }
8240 
8241 static void controller_lockup_detected(struct ctlr_info *h)
8242 {
8243 	unsigned long flags;
8244 	u32 lockup_detected;
8245 
8246 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8247 	spin_lock_irqsave(&h->lock, flags);
8248 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8249 	if (!lockup_detected) {
8250 		/* no heartbeat, but controller gave us a zero. */
8251 		dev_warn(&h->pdev->dev,
8252 			"lockup detected after %d but scratchpad register is zero\n",
8253 			h->heartbeat_sample_interval / HZ);
8254 		lockup_detected = 0xffffffff;
8255 	}
8256 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8257 	spin_unlock_irqrestore(&h->lock, flags);
8258 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8259 			lockup_detected, h->heartbeat_sample_interval / HZ);
8260 	if (lockup_detected == 0xffff0000) {
8261 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8262 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8263 	}
8264 	pci_disable_device(h->pdev);
8265 	fail_all_outstanding_cmds(h);
8266 }
8267 
8268 static int detect_controller_lockup(struct ctlr_info *h)
8269 {
8270 	u64 now;
8271 	u32 heartbeat;
8272 	unsigned long flags;
8273 
8274 	now = get_jiffies_64();
8275 	/* If we've received an interrupt recently, we're ok. */
8276 	if (time_after64(h->last_intr_timestamp +
8277 				(h->heartbeat_sample_interval), now))
8278 		return false;
8279 
8280 	/*
8281 	 * If we've already checked the heartbeat recently, we're ok.
8282 	 * This could happen if someone sends us a signal. We
8283 	 * otherwise don't care about signals in this thread.
8284 	 */
8285 	if (time_after64(h->last_heartbeat_timestamp +
8286 				(h->heartbeat_sample_interval), now))
8287 		return false;
8288 
8289 	/* If heartbeat has not changed since we last looked, we're not ok. */
8290 	spin_lock_irqsave(&h->lock, flags);
8291 	heartbeat = readl(&h->cfgtable->HeartBeat);
8292 	spin_unlock_irqrestore(&h->lock, flags);
8293 	if (h->last_heartbeat == heartbeat) {
8294 		controller_lockup_detected(h);
8295 		return true;
8296 	}
8297 
8298 	/* We're ok. */
8299 	h->last_heartbeat = heartbeat;
8300 	h->last_heartbeat_timestamp = now;
8301 	return false;
8302 }
8303 
8304 /*
8305  * Set ioaccel status for all ioaccel volumes.
8306  *
8307  * Called from monitor controller worker (hpsa_event_monitor_worker)
8308  *
8309  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8310  * transformation, so we will be turning off ioaccel for all volumes that
8311  * make up the Array.
8312  */
8313 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8314 {
8315 	int rc;
8316 	int i;
8317 	u8 ioaccel_status;
8318 	unsigned char *buf;
8319 	struct hpsa_scsi_dev_t *device;
8320 
8321 	if (!h)
8322 		return;
8323 
8324 	buf = kmalloc(64, GFP_KERNEL);
8325 	if (!buf)
8326 		return;
8327 
8328 	/*
8329 	 * Run through current device list used during I/O requests.
8330 	 */
8331 	for (i = 0; i < h->ndevices; i++) {
8332 		int offload_to_be_enabled = 0;
8333 		int offload_config = 0;
8334 
8335 		device = h->dev[i];
8336 
8337 		if (!device)
8338 			continue;
8339 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8340 						HPSA_VPD_LV_IOACCEL_STATUS))
8341 			continue;
8342 
8343 		memset(buf, 0, 64);
8344 
8345 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8346 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8347 					buf, 64);
8348 		if (rc != 0)
8349 			continue;
8350 
8351 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8352 
8353 		/*
8354 		 * Check if offload is still configured on
8355 		 */
8356 		offload_config =
8357 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8358 		/*
8359 		 * If offload is configured on, check to see if ioaccel
8360 		 * needs to be enabled.
8361 		 */
8362 		if (offload_config)
8363 			offload_to_be_enabled =
8364 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8365 
8366 		/*
8367 		 * If ioaccel is to be re-enabled, re-enable later during the
8368 		 * scan operation so the driver can get a fresh raidmap
8369 		 * before turning ioaccel back on.
8370 		 */
8371 		if (offload_to_be_enabled)
8372 			continue;
8373 
8374 		/*
8375 		 * Immediately turn off ioaccel for any volume the
8376 		 * controller tells us to. Some of the reasons could be:
8377 		 *    transformation - change to the LVs of an Array.
8378 		 *    degraded volume - component failure
8379 		 */
8380 		hpsa_turn_off_ioaccel_for_device(device);
8381 	}
8382 
8383 	kfree(buf);
8384 }
8385 
8386 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8387 {
8388 	char *event_type;
8389 
8390 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8391 		return;
8392 
8393 	/* Ask the controller to clear the events we're handling. */
8394 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8395 			| CFGTBL_Trans_io_accel2)) &&
8396 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8397 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8398 
8399 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8400 			event_type = "state change";
8401 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8402 			event_type = "configuration change";
8403 		/* Stop sending new RAID offload reqs via the IO accelerator */
8404 		scsi_block_requests(h->scsi_host);
8405 		hpsa_set_ioaccel_status(h);
8406 		hpsa_drain_accel_commands(h);
8407 		/* Set 'accelerator path config change' bit */
8408 		dev_warn(&h->pdev->dev,
8409 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8410 			h->events, event_type);
8411 		writel(h->events, &(h->cfgtable->clear_event_notify));
8412 		/* Set the "clear event notify field update" bit 6 */
8413 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8414 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8415 		hpsa_wait_for_clear_event_notify_ack(h);
8416 		scsi_unblock_requests(h->scsi_host);
8417 	} else {
8418 		/* Acknowledge controller notification events. */
8419 		writel(h->events, &(h->cfgtable->clear_event_notify));
8420 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8421 		hpsa_wait_for_clear_event_notify_ack(h);
8422 	}
8423 	return;
8424 }
8425 
8426 /* Check a register on the controller to see if there are configuration
8427  * changes (added/changed/removed logical drives, etc.) which mean that
8428  * we should rescan the controller for devices.
8429  * Also check flag for driver-initiated rescan.
8430  */
8431 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8432 {
8433 	if (h->drv_req_rescan) {
8434 		h->drv_req_rescan = 0;
8435 		return 1;
8436 	}
8437 
8438 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8439 		return 0;
8440 
8441 	h->events = readl(&(h->cfgtable->event_notify));
8442 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8443 }
8444 
8445 /*
8446  * Check if any of the offline devices have become ready
8447  */
8448 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8449 {
8450 	unsigned long flags;
8451 	struct offline_device_entry *d;
8452 	struct list_head *this, *tmp;
8453 
8454 	spin_lock_irqsave(&h->offline_device_lock, flags);
8455 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8456 		d = list_entry(this, struct offline_device_entry,
8457 				offline_list);
8458 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8459 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8460 			spin_lock_irqsave(&h->offline_device_lock, flags);
8461 			list_del(&d->offline_list);
8462 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8463 			return 1;
8464 		}
8465 		spin_lock_irqsave(&h->offline_device_lock, flags);
8466 	}
8467 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8468 	return 0;
8469 }
8470 
8471 static int hpsa_luns_changed(struct ctlr_info *h)
8472 {
8473 	int rc = 1; /* assume there are changes */
8474 	struct ReportLUNdata *logdev = NULL;
8475 
8476 	/* if we can't find out if lun data has changed,
8477 	 * assume that it has.
8478 	 */
8479 
8480 	if (!h->lastlogicals)
8481 		return rc;
8482 
8483 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8484 	if (!logdev)
8485 		return rc;
8486 
8487 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8488 		dev_warn(&h->pdev->dev,
8489 			"report luns failed, can't track lun changes.\n");
8490 		goto out;
8491 	}
8492 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8493 		dev_info(&h->pdev->dev,
8494 			"Lun changes detected.\n");
8495 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8496 		goto out;
8497 	} else
8498 		rc = 0; /* no changes detected. */
8499 out:
8500 	kfree(logdev);
8501 	return rc;
8502 }
8503 
8504 static void hpsa_perform_rescan(struct ctlr_info *h)
8505 {
8506 	struct Scsi_Host *sh = NULL;
8507 	unsigned long flags;
8508 
8509 	/*
8510 	 * Do the scan after the reset
8511 	 */
8512 	spin_lock_irqsave(&h->reset_lock, flags);
8513 	if (h->reset_in_progress) {
8514 		h->drv_req_rescan = 1;
8515 		spin_unlock_irqrestore(&h->reset_lock, flags);
8516 		return;
8517 	}
8518 	spin_unlock_irqrestore(&h->reset_lock, flags);
8519 
8520 	sh = scsi_host_get(h->scsi_host);
8521 	if (sh != NULL) {
8522 		hpsa_scan_start(sh);
8523 		scsi_host_put(sh);
8524 		h->drv_req_rescan = 0;
8525 	}
8526 }
8527 
8528 /*
8529  * watch for controller events
8530  */
8531 static void hpsa_event_monitor_worker(struct work_struct *work)
8532 {
8533 	struct ctlr_info *h = container_of(to_delayed_work(work),
8534 					struct ctlr_info, event_monitor_work);
8535 	unsigned long flags;
8536 
8537 	spin_lock_irqsave(&h->lock, flags);
8538 	if (h->remove_in_progress) {
8539 		spin_unlock_irqrestore(&h->lock, flags);
8540 		return;
8541 	}
8542 	spin_unlock_irqrestore(&h->lock, flags);
8543 
8544 	if (hpsa_ctlr_needs_rescan(h)) {
8545 		hpsa_ack_ctlr_events(h);
8546 		hpsa_perform_rescan(h);
8547 	}
8548 
8549 	spin_lock_irqsave(&h->lock, flags);
8550 	if (!h->remove_in_progress)
8551 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8552 				HPSA_EVENT_MONITOR_INTERVAL);
8553 	spin_unlock_irqrestore(&h->lock, flags);
8554 }
8555 
8556 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8557 {
8558 	unsigned long flags;
8559 	struct ctlr_info *h = container_of(to_delayed_work(work),
8560 					struct ctlr_info, rescan_ctlr_work);
8561 
8562 	spin_lock_irqsave(&h->lock, flags);
8563 	if (h->remove_in_progress) {
8564 		spin_unlock_irqrestore(&h->lock, flags);
8565 		return;
8566 	}
8567 	spin_unlock_irqrestore(&h->lock, flags);
8568 
8569 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8570 		hpsa_perform_rescan(h);
8571 	} else if (h->discovery_polling) {
8572 		if (hpsa_luns_changed(h)) {
8573 			dev_info(&h->pdev->dev,
8574 				"driver discovery polling rescan.\n");
8575 			hpsa_perform_rescan(h);
8576 		}
8577 	}
8578 	spin_lock_irqsave(&h->lock, flags);
8579 	if (!h->remove_in_progress)
8580 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8581 				h->heartbeat_sample_interval);
8582 	spin_unlock_irqrestore(&h->lock, flags);
8583 }
8584 
8585 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8586 {
8587 	unsigned long flags;
8588 	struct ctlr_info *h = container_of(to_delayed_work(work),
8589 					struct ctlr_info, monitor_ctlr_work);
8590 
8591 	detect_controller_lockup(h);
8592 	if (lockup_detected(h))
8593 		return;
8594 
8595 	spin_lock_irqsave(&h->lock, flags);
8596 	if (!h->remove_in_progress)
8597 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8598 				h->heartbeat_sample_interval);
8599 	spin_unlock_irqrestore(&h->lock, flags);
8600 }
8601 
8602 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8603 						char *name)
8604 {
8605 	struct workqueue_struct *wq = NULL;
8606 
8607 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8608 	if (!wq)
8609 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8610 
8611 	return wq;
8612 }
8613 
8614 static void hpda_free_ctlr_info(struct ctlr_info *h)
8615 {
8616 	kfree(h->reply_map);
8617 	kfree(h);
8618 }
8619 
8620 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8621 {
8622 	struct ctlr_info *h;
8623 
8624 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8625 	if (!h)
8626 		return NULL;
8627 
8628 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8629 	if (!h->reply_map) {
8630 		kfree(h);
8631 		return NULL;
8632 	}
8633 	return h;
8634 }
8635 
8636 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8637 {
8638 	int dac, rc;
8639 	struct ctlr_info *h;
8640 	int try_soft_reset = 0;
8641 	unsigned long flags;
8642 	u32 board_id;
8643 
8644 	if (number_of_controllers == 0)
8645 		printk(KERN_INFO DRIVER_NAME "\n");
8646 
8647 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8648 	if (rc < 0) {
8649 		dev_warn(&pdev->dev, "Board ID not found\n");
8650 		return rc;
8651 	}
8652 
8653 	rc = hpsa_init_reset_devices(pdev, board_id);
8654 	if (rc) {
8655 		if (rc != -ENOTSUPP)
8656 			return rc;
8657 		/* If the reset fails in a particular way (it has no way to do
8658 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8659 		 * a soft reset once we get the controller configured up to the
8660 		 * point that it can accept a command.
8661 		 */
8662 		try_soft_reset = 1;
8663 		rc = 0;
8664 	}
8665 
8666 reinit_after_soft_reset:
8667 
8668 	/* Command structures must be aligned on a 32-byte boundary because
8669 	 * the 5 lower bits of the address are used by the hardware. and by
8670 	 * the driver.  See comments in hpsa.h for more info.
8671 	 */
8672 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8673 	h = hpda_alloc_ctlr_info();
8674 	if (!h) {
8675 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8676 		return -ENOMEM;
8677 	}
8678 
8679 	h->pdev = pdev;
8680 
8681 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8682 	INIT_LIST_HEAD(&h->offline_device_list);
8683 	spin_lock_init(&h->lock);
8684 	spin_lock_init(&h->offline_device_lock);
8685 	spin_lock_init(&h->scan_lock);
8686 	spin_lock_init(&h->reset_lock);
8687 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8688 
8689 	/* Allocate and clear per-cpu variable lockup_detected */
8690 	h->lockup_detected = alloc_percpu(u32);
8691 	if (!h->lockup_detected) {
8692 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8693 		rc = -ENOMEM;
8694 		goto clean1;	/* aer/h */
8695 	}
8696 	set_lockup_detected_for_all_cpus(h, 0);
8697 
8698 	rc = hpsa_pci_init(h);
8699 	if (rc)
8700 		goto clean2;	/* lu, aer/h */
8701 
8702 	/* relies on h-> settings made by hpsa_pci_init, including
8703 	 * interrupt_mode h->intr */
8704 	rc = hpsa_scsi_host_alloc(h);
8705 	if (rc)
8706 		goto clean2_5;	/* pci, lu, aer/h */
8707 
8708 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8709 	h->ctlr = number_of_controllers;
8710 	number_of_controllers++;
8711 
8712 	/* configure PCI DMA stuff */
8713 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8714 	if (rc == 0) {
8715 		dac = 1;
8716 	} else {
8717 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8718 		if (rc == 0) {
8719 			dac = 0;
8720 		} else {
8721 			dev_err(&pdev->dev, "no suitable DMA available\n");
8722 			goto clean3;	/* shost, pci, lu, aer/h */
8723 		}
8724 	}
8725 
8726 	/* make sure the board interrupts are off */
8727 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8728 
8729 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8730 	if (rc)
8731 		goto clean3;	/* shost, pci, lu, aer/h */
8732 	rc = hpsa_alloc_cmd_pool(h);
8733 	if (rc)
8734 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8735 	rc = hpsa_alloc_sg_chain_blocks(h);
8736 	if (rc)
8737 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8738 	init_waitqueue_head(&h->scan_wait_queue);
8739 	init_waitqueue_head(&h->event_sync_wait_queue);
8740 	mutex_init(&h->reset_mutex);
8741 	h->scan_finished = 1; /* no scan currently in progress */
8742 	h->scan_waiting = 0;
8743 
8744 	pci_set_drvdata(pdev, h);
8745 	h->ndevices = 0;
8746 
8747 	spin_lock_init(&h->devlock);
8748 	rc = hpsa_put_ctlr_into_performant_mode(h);
8749 	if (rc)
8750 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8751 
8752 	/* create the resubmit workqueue */
8753 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8754 	if (!h->rescan_ctlr_wq) {
8755 		rc = -ENOMEM;
8756 		goto clean7;
8757 	}
8758 
8759 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8760 	if (!h->resubmit_wq) {
8761 		rc = -ENOMEM;
8762 		goto clean7;	/* aer/h */
8763 	}
8764 
8765 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8766 	if (!h->monitor_ctlr_wq) {
8767 		rc = -ENOMEM;
8768 		goto clean7;
8769 	}
8770 
8771 	/*
8772 	 * At this point, the controller is ready to take commands.
8773 	 * Now, if reset_devices and the hard reset didn't work, try
8774 	 * the soft reset and see if that works.
8775 	 */
8776 	if (try_soft_reset) {
8777 
8778 		/* This is kind of gross.  We may or may not get a completion
8779 		 * from the soft reset command, and if we do, then the value
8780 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8781 		 * after the reset throwing away any completions we get during
8782 		 * that time.  Unregister the interrupt handler and register
8783 		 * fake ones to scoop up any residual completions.
8784 		 */
8785 		spin_lock_irqsave(&h->lock, flags);
8786 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8787 		spin_unlock_irqrestore(&h->lock, flags);
8788 		hpsa_free_irqs(h);
8789 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8790 					hpsa_intx_discard_completions);
8791 		if (rc) {
8792 			dev_warn(&h->pdev->dev,
8793 				"Failed to request_irq after soft reset.\n");
8794 			/*
8795 			 * cannot goto clean7 or free_irqs will be called
8796 			 * again. Instead, do its work
8797 			 */
8798 			hpsa_free_performant_mode(h);	/* clean7 */
8799 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8800 			hpsa_free_cmd_pool(h);		/* clean5 */
8801 			/*
8802 			 * skip hpsa_free_irqs(h) clean4 since that
8803 			 * was just called before request_irqs failed
8804 			 */
8805 			goto clean3;
8806 		}
8807 
8808 		rc = hpsa_kdump_soft_reset(h);
8809 		if (rc)
8810 			/* Neither hard nor soft reset worked, we're hosed. */
8811 			goto clean7;
8812 
8813 		dev_info(&h->pdev->dev, "Board READY.\n");
8814 		dev_info(&h->pdev->dev,
8815 			"Waiting for stale completions to drain.\n");
8816 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8817 		msleep(10000);
8818 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8819 
8820 		rc = controller_reset_failed(h->cfgtable);
8821 		if (rc)
8822 			dev_info(&h->pdev->dev,
8823 				"Soft reset appears to have failed.\n");
8824 
8825 		/* since the controller's reset, we have to go back and re-init
8826 		 * everything.  Easiest to just forget what we've done and do it
8827 		 * all over again.
8828 		 */
8829 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8830 		try_soft_reset = 0;
8831 		if (rc)
8832 			/* don't goto clean, we already unallocated */
8833 			return -ENODEV;
8834 
8835 		goto reinit_after_soft_reset;
8836 	}
8837 
8838 	/* Enable Accelerated IO path at driver layer */
8839 	h->acciopath_status = 1;
8840 	/* Disable discovery polling.*/
8841 	h->discovery_polling = 0;
8842 
8843 
8844 	/* Turn the interrupts on so we can service requests */
8845 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8846 
8847 	hpsa_hba_inquiry(h);
8848 
8849 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8850 	if (!h->lastlogicals)
8851 		dev_info(&h->pdev->dev,
8852 			"Can't track change to report lun data\n");
8853 
8854 	/* hook into SCSI subsystem */
8855 	rc = hpsa_scsi_add_host(h);
8856 	if (rc)
8857 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8858 
8859 	/* Monitor the controller for firmware lockups */
8860 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8861 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8862 	schedule_delayed_work(&h->monitor_ctlr_work,
8863 				h->heartbeat_sample_interval);
8864 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8865 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8866 				h->heartbeat_sample_interval);
8867 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8868 	schedule_delayed_work(&h->event_monitor_work,
8869 				HPSA_EVENT_MONITOR_INTERVAL);
8870 	return 0;
8871 
8872 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8873 	hpsa_free_performant_mode(h);
8874 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8875 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8876 	hpsa_free_sg_chain_blocks(h);
8877 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8878 	hpsa_free_cmd_pool(h);
8879 clean4: /* irq, shost, pci, lu, aer/h */
8880 	hpsa_free_irqs(h);
8881 clean3: /* shost, pci, lu, aer/h */
8882 	scsi_host_put(h->scsi_host);
8883 	h->scsi_host = NULL;
8884 clean2_5: /* pci, lu, aer/h */
8885 	hpsa_free_pci_init(h);
8886 clean2: /* lu, aer/h */
8887 	if (h->lockup_detected) {
8888 		free_percpu(h->lockup_detected);
8889 		h->lockup_detected = NULL;
8890 	}
8891 clean1:	/* wq/aer/h */
8892 	if (h->resubmit_wq) {
8893 		destroy_workqueue(h->resubmit_wq);
8894 		h->resubmit_wq = NULL;
8895 	}
8896 	if (h->rescan_ctlr_wq) {
8897 		destroy_workqueue(h->rescan_ctlr_wq);
8898 		h->rescan_ctlr_wq = NULL;
8899 	}
8900 	if (h->monitor_ctlr_wq) {
8901 		destroy_workqueue(h->monitor_ctlr_wq);
8902 		h->monitor_ctlr_wq = NULL;
8903 	}
8904 	kfree(h);
8905 	return rc;
8906 }
8907 
8908 static void hpsa_flush_cache(struct ctlr_info *h)
8909 {
8910 	char *flush_buf;
8911 	struct CommandList *c;
8912 	int rc;
8913 
8914 	if (unlikely(lockup_detected(h)))
8915 		return;
8916 	flush_buf = kzalloc(4, GFP_KERNEL);
8917 	if (!flush_buf)
8918 		return;
8919 
8920 	c = cmd_alloc(h);
8921 
8922 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8923 		RAID_CTLR_LUNID, TYPE_CMD)) {
8924 		goto out;
8925 	}
8926 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8927 			DEFAULT_TIMEOUT);
8928 	if (rc)
8929 		goto out;
8930 	if (c->err_info->CommandStatus != 0)
8931 out:
8932 		dev_warn(&h->pdev->dev,
8933 			"error flushing cache on controller\n");
8934 	cmd_free(h, c);
8935 	kfree(flush_buf);
8936 }
8937 
8938 /* Make controller gather fresh report lun data each time we
8939  * send down a report luns request
8940  */
8941 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8942 {
8943 	u32 *options;
8944 	struct CommandList *c;
8945 	int rc;
8946 
8947 	/* Don't bother trying to set diag options if locked up */
8948 	if (unlikely(h->lockup_detected))
8949 		return;
8950 
8951 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8952 	if (!options)
8953 		return;
8954 
8955 	c = cmd_alloc(h);
8956 
8957 	/* first, get the current diag options settings */
8958 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8959 		RAID_CTLR_LUNID, TYPE_CMD))
8960 		goto errout;
8961 
8962 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8963 			NO_TIMEOUT);
8964 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8965 		goto errout;
8966 
8967 	/* Now, set the bit for disabling the RLD caching */
8968 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8969 
8970 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8971 		RAID_CTLR_LUNID, TYPE_CMD))
8972 		goto errout;
8973 
8974 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8975 			NO_TIMEOUT);
8976 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8977 		goto errout;
8978 
8979 	/* Now verify that it got set: */
8980 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8981 		RAID_CTLR_LUNID, TYPE_CMD))
8982 		goto errout;
8983 
8984 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8985 			NO_TIMEOUT);
8986 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8987 		goto errout;
8988 
8989 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8990 		goto out;
8991 
8992 errout:
8993 	dev_err(&h->pdev->dev,
8994 			"Error: failed to disable report lun data caching.\n");
8995 out:
8996 	cmd_free(h, c);
8997 	kfree(options);
8998 }
8999 
9000 static void __hpsa_shutdown(struct pci_dev *pdev)
9001 {
9002 	struct ctlr_info *h;
9003 
9004 	h = pci_get_drvdata(pdev);
9005 	/* Turn board interrupts off  and send the flush cache command
9006 	 * sendcmd will turn off interrupt, and send the flush...
9007 	 * To write all data in the battery backed cache to disks
9008 	 */
9009 	hpsa_flush_cache(h);
9010 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9011 	hpsa_free_irqs(h);			/* init_one 4 */
9012 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9013 }
9014 
9015 static void hpsa_shutdown(struct pci_dev *pdev)
9016 {
9017 	__hpsa_shutdown(pdev);
9018 	pci_disable_device(pdev);
9019 }
9020 
9021 static void hpsa_free_device_info(struct ctlr_info *h)
9022 {
9023 	int i;
9024 
9025 	for (i = 0; i < h->ndevices; i++) {
9026 		kfree(h->dev[i]);
9027 		h->dev[i] = NULL;
9028 	}
9029 }
9030 
9031 static void hpsa_remove_one(struct pci_dev *pdev)
9032 {
9033 	struct ctlr_info *h;
9034 	unsigned long flags;
9035 
9036 	if (pci_get_drvdata(pdev) == NULL) {
9037 		dev_err(&pdev->dev, "unable to remove device\n");
9038 		return;
9039 	}
9040 	h = pci_get_drvdata(pdev);
9041 
9042 	/* Get rid of any controller monitoring work items */
9043 	spin_lock_irqsave(&h->lock, flags);
9044 	h->remove_in_progress = 1;
9045 	spin_unlock_irqrestore(&h->lock, flags);
9046 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9047 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9048 	cancel_delayed_work_sync(&h->event_monitor_work);
9049 	destroy_workqueue(h->rescan_ctlr_wq);
9050 	destroy_workqueue(h->resubmit_wq);
9051 	destroy_workqueue(h->monitor_ctlr_wq);
9052 
9053 	hpsa_delete_sas_host(h);
9054 
9055 	/*
9056 	 * Call before disabling interrupts.
9057 	 * scsi_remove_host can trigger I/O operations especially
9058 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9059 	 * operations which cannot complete and will hang the system.
9060 	 */
9061 	if (h->scsi_host)
9062 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9063 	/* includes hpsa_free_irqs - init_one 4 */
9064 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9065 	__hpsa_shutdown(pdev);
9066 
9067 	hpsa_free_device_info(h);		/* scan */
9068 
9069 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9070 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9071 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9072 	hpsa_free_performant_mode(h);			/* init_one 7 */
9073 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9074 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9075 	kfree(h->lastlogicals);
9076 
9077 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9078 
9079 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9080 	h->scsi_host = NULL;				/* init_one 3 */
9081 
9082 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9083 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9084 
9085 	free_percpu(h->lockup_detected);		/* init_one 2 */
9086 	h->lockup_detected = NULL;			/* init_one 2 */
9087 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9088 
9089 	hpda_free_ctlr_info(h);				/* init_one 1 */
9090 }
9091 
9092 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9093 	__attribute__((unused)) pm_message_t state)
9094 {
9095 	return -ENOSYS;
9096 }
9097 
9098 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9099 {
9100 	return -ENOSYS;
9101 }
9102 
9103 static struct pci_driver hpsa_pci_driver = {
9104 	.name = HPSA,
9105 	.probe = hpsa_init_one,
9106 	.remove = hpsa_remove_one,
9107 	.id_table = hpsa_pci_device_id,	/* id_table */
9108 	.shutdown = hpsa_shutdown,
9109 	.suspend = hpsa_suspend,
9110 	.resume = hpsa_resume,
9111 };
9112 
9113 /* Fill in bucket_map[], given nsgs (the max number of
9114  * scatter gather elements supported) and bucket[],
9115  * which is an array of 8 integers.  The bucket[] array
9116  * contains 8 different DMA transfer sizes (in 16
9117  * byte increments) which the controller uses to fetch
9118  * commands.  This function fills in bucket_map[], which
9119  * maps a given number of scatter gather elements to one of
9120  * the 8 DMA transfer sizes.  The point of it is to allow the
9121  * controller to only do as much DMA as needed to fetch the
9122  * command, with the DMA transfer size encoded in the lower
9123  * bits of the command address.
9124  */
9125 static void  calc_bucket_map(int bucket[], int num_buckets,
9126 	int nsgs, int min_blocks, u32 *bucket_map)
9127 {
9128 	int i, j, b, size;
9129 
9130 	/* Note, bucket_map must have nsgs+1 entries. */
9131 	for (i = 0; i <= nsgs; i++) {
9132 		/* Compute size of a command with i SG entries */
9133 		size = i + min_blocks;
9134 		b = num_buckets; /* Assume the biggest bucket */
9135 		/* Find the bucket that is just big enough */
9136 		for (j = 0; j < num_buckets; j++) {
9137 			if (bucket[j] >= size) {
9138 				b = j;
9139 				break;
9140 			}
9141 		}
9142 		/* for a command with i SG entries, use bucket b. */
9143 		bucket_map[i] = b;
9144 	}
9145 }
9146 
9147 /*
9148  * return -ENODEV on err, 0 on success (or no action)
9149  * allocates numerous items that must be freed later
9150  */
9151 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9152 {
9153 	int i;
9154 	unsigned long register_value;
9155 	unsigned long transMethod = CFGTBL_Trans_Performant |
9156 			(trans_support & CFGTBL_Trans_use_short_tags) |
9157 				CFGTBL_Trans_enable_directed_msix |
9158 			(trans_support & (CFGTBL_Trans_io_accel1 |
9159 				CFGTBL_Trans_io_accel2));
9160 	struct access_method access = SA5_performant_access;
9161 
9162 	/* This is a bit complicated.  There are 8 registers on
9163 	 * the controller which we write to to tell it 8 different
9164 	 * sizes of commands which there may be.  It's a way of
9165 	 * reducing the DMA done to fetch each command.  Encoded into
9166 	 * each command's tag are 3 bits which communicate to the controller
9167 	 * which of the eight sizes that command fits within.  The size of
9168 	 * each command depends on how many scatter gather entries there are.
9169 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9170 	 * with the number of 16-byte blocks a command of that size requires.
9171 	 * The smallest command possible requires 5 such 16 byte blocks.
9172 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9173 	 * blocks.  Note, this only extends to the SG entries contained
9174 	 * within the command block, and does not extend to chained blocks
9175 	 * of SG elements.   bft[] contains the eight values we write to
9176 	 * the registers.  They are not evenly distributed, but have more
9177 	 * sizes for small commands, and fewer sizes for larger commands.
9178 	 */
9179 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9180 #define MIN_IOACCEL2_BFT_ENTRY 5
9181 #define HPSA_IOACCEL2_HEADER_SZ 4
9182 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9183 			13, 14, 15, 16, 17, 18, 19,
9184 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9185 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9186 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9187 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9188 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9189 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9190 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9191 	/*  5 = 1 s/g entry or 4k
9192 	 *  6 = 2 s/g entry or 8k
9193 	 *  8 = 4 s/g entry or 16k
9194 	 * 10 = 6 s/g entry or 24k
9195 	 */
9196 
9197 	/* If the controller supports either ioaccel method then
9198 	 * we can also use the RAID stack submit path that does not
9199 	 * perform the superfluous readl() after each command submission.
9200 	 */
9201 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9202 		access = SA5_performant_access_no_read;
9203 
9204 	/* Controller spec: zero out this buffer. */
9205 	for (i = 0; i < h->nreply_queues; i++)
9206 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9207 
9208 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9209 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9210 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9211 	for (i = 0; i < 8; i++)
9212 		writel(bft[i], &h->transtable->BlockFetch[i]);
9213 
9214 	/* size of controller ring buffer */
9215 	writel(h->max_commands, &h->transtable->RepQSize);
9216 	writel(h->nreply_queues, &h->transtable->RepQCount);
9217 	writel(0, &h->transtable->RepQCtrAddrLow32);
9218 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9219 
9220 	for (i = 0; i < h->nreply_queues; i++) {
9221 		writel(0, &h->transtable->RepQAddr[i].upper);
9222 		writel(h->reply_queue[i].busaddr,
9223 			&h->transtable->RepQAddr[i].lower);
9224 	}
9225 
9226 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9227 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9228 	/*
9229 	 * enable outbound interrupt coalescing in accelerator mode;
9230 	 */
9231 	if (trans_support & CFGTBL_Trans_io_accel1) {
9232 		access = SA5_ioaccel_mode1_access;
9233 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9234 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9235 	} else
9236 		if (trans_support & CFGTBL_Trans_io_accel2)
9237 			access = SA5_ioaccel_mode2_access;
9238 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9239 	if (hpsa_wait_for_mode_change_ack(h)) {
9240 		dev_err(&h->pdev->dev,
9241 			"performant mode problem - doorbell timeout\n");
9242 		return -ENODEV;
9243 	}
9244 	register_value = readl(&(h->cfgtable->TransportActive));
9245 	if (!(register_value & CFGTBL_Trans_Performant)) {
9246 		dev_err(&h->pdev->dev,
9247 			"performant mode problem - transport not active\n");
9248 		return -ENODEV;
9249 	}
9250 	/* Change the access methods to the performant access methods */
9251 	h->access = access;
9252 	h->transMethod = transMethod;
9253 
9254 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9255 		(trans_support & CFGTBL_Trans_io_accel2)))
9256 		return 0;
9257 
9258 	if (trans_support & CFGTBL_Trans_io_accel1) {
9259 		/* Set up I/O accelerator mode */
9260 		for (i = 0; i < h->nreply_queues; i++) {
9261 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9262 			h->reply_queue[i].current_entry =
9263 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9264 		}
9265 		bft[7] = h->ioaccel_maxsg + 8;
9266 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9267 				h->ioaccel1_blockFetchTable);
9268 
9269 		/* initialize all reply queue entries to unused */
9270 		for (i = 0; i < h->nreply_queues; i++)
9271 			memset(h->reply_queue[i].head,
9272 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9273 				h->reply_queue_size);
9274 
9275 		/* set all the constant fields in the accelerator command
9276 		 * frames once at init time to save CPU cycles later.
9277 		 */
9278 		for (i = 0; i < h->nr_cmds; i++) {
9279 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9280 
9281 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9282 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9283 					(i * sizeof(struct ErrorInfo)));
9284 			cp->err_info_len = sizeof(struct ErrorInfo);
9285 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9286 			cp->host_context_flags =
9287 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9288 			cp->timeout_sec = 0;
9289 			cp->ReplyQueue = 0;
9290 			cp->tag =
9291 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9292 			cp->host_addr =
9293 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9294 					(i * sizeof(struct io_accel1_cmd)));
9295 		}
9296 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9297 		u64 cfg_offset, cfg_base_addr_index;
9298 		u32 bft2_offset, cfg_base_addr;
9299 		int rc;
9300 
9301 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9302 			&cfg_base_addr_index, &cfg_offset);
9303 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9304 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9305 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9306 				4, h->ioaccel2_blockFetchTable);
9307 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9308 		BUILD_BUG_ON(offsetof(struct CfgTable,
9309 				io_accel_request_size_offset) != 0xb8);
9310 		h->ioaccel2_bft2_regs =
9311 			remap_pci_mem(pci_resource_start(h->pdev,
9312 					cfg_base_addr_index) +
9313 					cfg_offset + bft2_offset,
9314 					ARRAY_SIZE(bft2) *
9315 					sizeof(*h->ioaccel2_bft2_regs));
9316 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9317 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9318 	}
9319 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9320 	if (hpsa_wait_for_mode_change_ack(h)) {
9321 		dev_err(&h->pdev->dev,
9322 			"performant mode problem - enabling ioaccel mode\n");
9323 		return -ENODEV;
9324 	}
9325 	return 0;
9326 }
9327 
9328 /* Free ioaccel1 mode command blocks and block fetch table */
9329 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9330 {
9331 	if (h->ioaccel_cmd_pool) {
9332 		pci_free_consistent(h->pdev,
9333 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9334 			h->ioaccel_cmd_pool,
9335 			h->ioaccel_cmd_pool_dhandle);
9336 		h->ioaccel_cmd_pool = NULL;
9337 		h->ioaccel_cmd_pool_dhandle = 0;
9338 	}
9339 	kfree(h->ioaccel1_blockFetchTable);
9340 	h->ioaccel1_blockFetchTable = NULL;
9341 }
9342 
9343 /* Allocate ioaccel1 mode command blocks and block fetch table */
9344 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9345 {
9346 	h->ioaccel_maxsg =
9347 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9348 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9349 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9350 
9351 	/* Command structures must be aligned on a 128-byte boundary
9352 	 * because the 7 lower bits of the address are used by the
9353 	 * hardware.
9354 	 */
9355 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9356 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9357 	h->ioaccel_cmd_pool =
9358 		dma_alloc_coherent(&h->pdev->dev,
9359 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9360 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9361 
9362 	h->ioaccel1_blockFetchTable =
9363 		kmalloc(((h->ioaccel_maxsg + 1) *
9364 				sizeof(u32)), GFP_KERNEL);
9365 
9366 	if ((h->ioaccel_cmd_pool == NULL) ||
9367 		(h->ioaccel1_blockFetchTable == NULL))
9368 		goto clean_up;
9369 
9370 	memset(h->ioaccel_cmd_pool, 0,
9371 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9372 	return 0;
9373 
9374 clean_up:
9375 	hpsa_free_ioaccel1_cmd_and_bft(h);
9376 	return -ENOMEM;
9377 }
9378 
9379 /* Free ioaccel2 mode command blocks and block fetch table */
9380 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9381 {
9382 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9383 
9384 	if (h->ioaccel2_cmd_pool) {
9385 		pci_free_consistent(h->pdev,
9386 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9387 			h->ioaccel2_cmd_pool,
9388 			h->ioaccel2_cmd_pool_dhandle);
9389 		h->ioaccel2_cmd_pool = NULL;
9390 		h->ioaccel2_cmd_pool_dhandle = 0;
9391 	}
9392 	kfree(h->ioaccel2_blockFetchTable);
9393 	h->ioaccel2_blockFetchTable = NULL;
9394 }
9395 
9396 /* Allocate ioaccel2 mode command blocks and block fetch table */
9397 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9398 {
9399 	int rc;
9400 
9401 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9402 
9403 	h->ioaccel_maxsg =
9404 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9405 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9406 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9407 
9408 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9409 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9410 	h->ioaccel2_cmd_pool =
9411 		dma_alloc_coherent(&h->pdev->dev,
9412 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9413 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9414 
9415 	h->ioaccel2_blockFetchTable =
9416 		kmalloc(((h->ioaccel_maxsg + 1) *
9417 				sizeof(u32)), GFP_KERNEL);
9418 
9419 	if ((h->ioaccel2_cmd_pool == NULL) ||
9420 		(h->ioaccel2_blockFetchTable == NULL)) {
9421 		rc = -ENOMEM;
9422 		goto clean_up;
9423 	}
9424 
9425 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9426 	if (rc)
9427 		goto clean_up;
9428 
9429 	memset(h->ioaccel2_cmd_pool, 0,
9430 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9431 	return 0;
9432 
9433 clean_up:
9434 	hpsa_free_ioaccel2_cmd_and_bft(h);
9435 	return rc;
9436 }
9437 
9438 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9439 static void hpsa_free_performant_mode(struct ctlr_info *h)
9440 {
9441 	kfree(h->blockFetchTable);
9442 	h->blockFetchTable = NULL;
9443 	hpsa_free_reply_queues(h);
9444 	hpsa_free_ioaccel1_cmd_and_bft(h);
9445 	hpsa_free_ioaccel2_cmd_and_bft(h);
9446 }
9447 
9448 /* return -ENODEV on error, 0 on success (or no action)
9449  * allocates numerous items that must be freed later
9450  */
9451 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9452 {
9453 	u32 trans_support;
9454 	unsigned long transMethod = CFGTBL_Trans_Performant |
9455 					CFGTBL_Trans_use_short_tags;
9456 	int i, rc;
9457 
9458 	if (hpsa_simple_mode)
9459 		return 0;
9460 
9461 	trans_support = readl(&(h->cfgtable->TransportSupport));
9462 	if (!(trans_support & PERFORMANT_MODE))
9463 		return 0;
9464 
9465 	/* Check for I/O accelerator mode support */
9466 	if (trans_support & CFGTBL_Trans_io_accel1) {
9467 		transMethod |= CFGTBL_Trans_io_accel1 |
9468 				CFGTBL_Trans_enable_directed_msix;
9469 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9470 		if (rc)
9471 			return rc;
9472 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9473 		transMethod |= CFGTBL_Trans_io_accel2 |
9474 				CFGTBL_Trans_enable_directed_msix;
9475 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9476 		if (rc)
9477 			return rc;
9478 	}
9479 
9480 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9481 	hpsa_get_max_perf_mode_cmds(h);
9482 	/* Performant mode ring buffer and supporting data structures */
9483 	h->reply_queue_size = h->max_commands * sizeof(u64);
9484 
9485 	for (i = 0; i < h->nreply_queues; i++) {
9486 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9487 						h->reply_queue_size,
9488 						&h->reply_queue[i].busaddr,
9489 						GFP_KERNEL);
9490 		if (!h->reply_queue[i].head) {
9491 			rc = -ENOMEM;
9492 			goto clean1;	/* rq, ioaccel */
9493 		}
9494 		h->reply_queue[i].size = h->max_commands;
9495 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9496 		h->reply_queue[i].current_entry = 0;
9497 	}
9498 
9499 	/* Need a block fetch table for performant mode */
9500 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9501 				sizeof(u32)), GFP_KERNEL);
9502 	if (!h->blockFetchTable) {
9503 		rc = -ENOMEM;
9504 		goto clean1;	/* rq, ioaccel */
9505 	}
9506 
9507 	rc = hpsa_enter_performant_mode(h, trans_support);
9508 	if (rc)
9509 		goto clean2;	/* bft, rq, ioaccel */
9510 	return 0;
9511 
9512 clean2:	/* bft, rq, ioaccel */
9513 	kfree(h->blockFetchTable);
9514 	h->blockFetchTable = NULL;
9515 clean1:	/* rq, ioaccel */
9516 	hpsa_free_reply_queues(h);
9517 	hpsa_free_ioaccel1_cmd_and_bft(h);
9518 	hpsa_free_ioaccel2_cmd_and_bft(h);
9519 	return rc;
9520 }
9521 
9522 static int is_accelerated_cmd(struct CommandList *c)
9523 {
9524 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9525 }
9526 
9527 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9528 {
9529 	struct CommandList *c = NULL;
9530 	int i, accel_cmds_out;
9531 	int refcount;
9532 
9533 	do { /* wait for all outstanding ioaccel commands to drain out */
9534 		accel_cmds_out = 0;
9535 		for (i = 0; i < h->nr_cmds; i++) {
9536 			c = h->cmd_pool + i;
9537 			refcount = atomic_inc_return(&c->refcount);
9538 			if (refcount > 1) /* Command is allocated */
9539 				accel_cmds_out += is_accelerated_cmd(c);
9540 			cmd_free(h, c);
9541 		}
9542 		if (accel_cmds_out <= 0)
9543 			break;
9544 		msleep(100);
9545 	} while (1);
9546 }
9547 
9548 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9549 				struct hpsa_sas_port *hpsa_sas_port)
9550 {
9551 	struct hpsa_sas_phy *hpsa_sas_phy;
9552 	struct sas_phy *phy;
9553 
9554 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9555 	if (!hpsa_sas_phy)
9556 		return NULL;
9557 
9558 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9559 		hpsa_sas_port->next_phy_index);
9560 	if (!phy) {
9561 		kfree(hpsa_sas_phy);
9562 		return NULL;
9563 	}
9564 
9565 	hpsa_sas_port->next_phy_index++;
9566 	hpsa_sas_phy->phy = phy;
9567 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9568 
9569 	return hpsa_sas_phy;
9570 }
9571 
9572 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9573 {
9574 	struct sas_phy *phy = hpsa_sas_phy->phy;
9575 
9576 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9577 	if (hpsa_sas_phy->added_to_port)
9578 		list_del(&hpsa_sas_phy->phy_list_entry);
9579 	sas_phy_delete(phy);
9580 	kfree(hpsa_sas_phy);
9581 }
9582 
9583 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9584 {
9585 	int rc;
9586 	struct hpsa_sas_port *hpsa_sas_port;
9587 	struct sas_phy *phy;
9588 	struct sas_identify *identify;
9589 
9590 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9591 	phy = hpsa_sas_phy->phy;
9592 
9593 	identify = &phy->identify;
9594 	memset(identify, 0, sizeof(*identify));
9595 	identify->sas_address = hpsa_sas_port->sas_address;
9596 	identify->device_type = SAS_END_DEVICE;
9597 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9598 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9599 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9600 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9601 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9602 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9603 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9604 
9605 	rc = sas_phy_add(hpsa_sas_phy->phy);
9606 	if (rc)
9607 		return rc;
9608 
9609 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9610 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9611 			&hpsa_sas_port->phy_list_head);
9612 	hpsa_sas_phy->added_to_port = true;
9613 
9614 	return 0;
9615 }
9616 
9617 static int
9618 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9619 				struct sas_rphy *rphy)
9620 {
9621 	struct sas_identify *identify;
9622 
9623 	identify = &rphy->identify;
9624 	identify->sas_address = hpsa_sas_port->sas_address;
9625 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9626 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9627 
9628 	return sas_rphy_add(rphy);
9629 }
9630 
9631 static struct hpsa_sas_port
9632 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9633 				u64 sas_address)
9634 {
9635 	int rc;
9636 	struct hpsa_sas_port *hpsa_sas_port;
9637 	struct sas_port *port;
9638 
9639 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9640 	if (!hpsa_sas_port)
9641 		return NULL;
9642 
9643 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9644 	hpsa_sas_port->parent_node = hpsa_sas_node;
9645 
9646 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9647 	if (!port)
9648 		goto free_hpsa_port;
9649 
9650 	rc = sas_port_add(port);
9651 	if (rc)
9652 		goto free_sas_port;
9653 
9654 	hpsa_sas_port->port = port;
9655 	hpsa_sas_port->sas_address = sas_address;
9656 	list_add_tail(&hpsa_sas_port->port_list_entry,
9657 			&hpsa_sas_node->port_list_head);
9658 
9659 	return hpsa_sas_port;
9660 
9661 free_sas_port:
9662 	sas_port_free(port);
9663 free_hpsa_port:
9664 	kfree(hpsa_sas_port);
9665 
9666 	return NULL;
9667 }
9668 
9669 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9670 {
9671 	struct hpsa_sas_phy *hpsa_sas_phy;
9672 	struct hpsa_sas_phy *next;
9673 
9674 	list_for_each_entry_safe(hpsa_sas_phy, next,
9675 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9676 		hpsa_free_sas_phy(hpsa_sas_phy);
9677 
9678 	sas_port_delete(hpsa_sas_port->port);
9679 	list_del(&hpsa_sas_port->port_list_entry);
9680 	kfree(hpsa_sas_port);
9681 }
9682 
9683 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9684 {
9685 	struct hpsa_sas_node *hpsa_sas_node;
9686 
9687 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9688 	if (hpsa_sas_node) {
9689 		hpsa_sas_node->parent_dev = parent_dev;
9690 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9691 	}
9692 
9693 	return hpsa_sas_node;
9694 }
9695 
9696 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9697 {
9698 	struct hpsa_sas_port *hpsa_sas_port;
9699 	struct hpsa_sas_port *next;
9700 
9701 	if (!hpsa_sas_node)
9702 		return;
9703 
9704 	list_for_each_entry_safe(hpsa_sas_port, next,
9705 			&hpsa_sas_node->port_list_head, port_list_entry)
9706 		hpsa_free_sas_port(hpsa_sas_port);
9707 
9708 	kfree(hpsa_sas_node);
9709 }
9710 
9711 static struct hpsa_scsi_dev_t
9712 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9713 					struct sas_rphy *rphy)
9714 {
9715 	int i;
9716 	struct hpsa_scsi_dev_t *device;
9717 
9718 	for (i = 0; i < h->ndevices; i++) {
9719 		device = h->dev[i];
9720 		if (!device->sas_port)
9721 			continue;
9722 		if (device->sas_port->rphy == rphy)
9723 			return device;
9724 	}
9725 
9726 	return NULL;
9727 }
9728 
9729 static int hpsa_add_sas_host(struct ctlr_info *h)
9730 {
9731 	int rc;
9732 	struct device *parent_dev;
9733 	struct hpsa_sas_node *hpsa_sas_node;
9734 	struct hpsa_sas_port *hpsa_sas_port;
9735 	struct hpsa_sas_phy *hpsa_sas_phy;
9736 
9737 	parent_dev = &h->scsi_host->shost_dev;
9738 
9739 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9740 	if (!hpsa_sas_node)
9741 		return -ENOMEM;
9742 
9743 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9744 	if (!hpsa_sas_port) {
9745 		rc = -ENODEV;
9746 		goto free_sas_node;
9747 	}
9748 
9749 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9750 	if (!hpsa_sas_phy) {
9751 		rc = -ENODEV;
9752 		goto free_sas_port;
9753 	}
9754 
9755 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9756 	if (rc)
9757 		goto free_sas_phy;
9758 
9759 	h->sas_host = hpsa_sas_node;
9760 
9761 	return 0;
9762 
9763 free_sas_phy:
9764 	hpsa_free_sas_phy(hpsa_sas_phy);
9765 free_sas_port:
9766 	hpsa_free_sas_port(hpsa_sas_port);
9767 free_sas_node:
9768 	hpsa_free_sas_node(hpsa_sas_node);
9769 
9770 	return rc;
9771 }
9772 
9773 static void hpsa_delete_sas_host(struct ctlr_info *h)
9774 {
9775 	hpsa_free_sas_node(h->sas_host);
9776 }
9777 
9778 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9779 				struct hpsa_scsi_dev_t *device)
9780 {
9781 	int rc;
9782 	struct hpsa_sas_port *hpsa_sas_port;
9783 	struct sas_rphy *rphy;
9784 
9785 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9786 	if (!hpsa_sas_port)
9787 		return -ENOMEM;
9788 
9789 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9790 	if (!rphy) {
9791 		rc = -ENODEV;
9792 		goto free_sas_port;
9793 	}
9794 
9795 	hpsa_sas_port->rphy = rphy;
9796 	device->sas_port = hpsa_sas_port;
9797 
9798 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9799 	if (rc)
9800 		goto free_sas_port;
9801 
9802 	return 0;
9803 
9804 free_sas_port:
9805 	hpsa_free_sas_port(hpsa_sas_port);
9806 	device->sas_port = NULL;
9807 
9808 	return rc;
9809 }
9810 
9811 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9812 {
9813 	if (device->sas_port) {
9814 		hpsa_free_sas_port(device->sas_port);
9815 		device->sas_port = NULL;
9816 	}
9817 }
9818 
9819 static int
9820 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9821 {
9822 	return 0;
9823 }
9824 
9825 static int
9826 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9827 {
9828 	struct Scsi_Host *shost = phy_to_shost(rphy);
9829 	struct ctlr_info *h;
9830 	struct hpsa_scsi_dev_t *sd;
9831 
9832 	if (!shost)
9833 		return -ENXIO;
9834 
9835 	h = shost_to_hba(shost);
9836 
9837 	if (!h)
9838 		return -ENXIO;
9839 
9840 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9841 	if (!sd)
9842 		return -ENXIO;
9843 
9844 	*identifier = sd->eli;
9845 
9846 	return 0;
9847 }
9848 
9849 static int
9850 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9851 {
9852 	return -ENXIO;
9853 }
9854 
9855 static int
9856 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9857 {
9858 	return 0;
9859 }
9860 
9861 static int
9862 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9863 {
9864 	return 0;
9865 }
9866 
9867 static int
9868 hpsa_sas_phy_setup(struct sas_phy *phy)
9869 {
9870 	return 0;
9871 }
9872 
9873 static void
9874 hpsa_sas_phy_release(struct sas_phy *phy)
9875 {
9876 }
9877 
9878 static int
9879 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9880 {
9881 	return -EINVAL;
9882 }
9883 
9884 static struct sas_function_template hpsa_sas_transport_functions = {
9885 	.get_linkerrors = hpsa_sas_get_linkerrors,
9886 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9887 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9888 	.phy_reset = hpsa_sas_phy_reset,
9889 	.phy_enable = hpsa_sas_phy_enable,
9890 	.phy_setup = hpsa_sas_phy_setup,
9891 	.phy_release = hpsa_sas_phy_release,
9892 	.set_phy_speed = hpsa_sas_phy_speed,
9893 };
9894 
9895 /*
9896  *  This is it.  Register the PCI driver information for the cards we control
9897  *  the OS will call our registered routines when it finds one of our cards.
9898  */
9899 static int __init hpsa_init(void)
9900 {
9901 	int rc;
9902 
9903 	hpsa_sas_transport_template =
9904 		sas_attach_transport(&hpsa_sas_transport_functions);
9905 	if (!hpsa_sas_transport_template)
9906 		return -ENODEV;
9907 
9908 	rc = pci_register_driver(&hpsa_pci_driver);
9909 
9910 	if (rc)
9911 		sas_release_transport(hpsa_sas_transport_template);
9912 
9913 	return rc;
9914 }
9915 
9916 static void __exit hpsa_cleanup(void)
9917 {
9918 	pci_unregister_driver(&hpsa_pci_driver);
9919 	sas_release_transport(hpsa_sas_transport_template);
9920 }
9921 
9922 static void __attribute__((unused)) verify_offsets(void)
9923 {
9924 #define VERIFY_OFFSET(member, offset) \
9925 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9926 
9927 	VERIFY_OFFSET(structure_size, 0);
9928 	VERIFY_OFFSET(volume_blk_size, 4);
9929 	VERIFY_OFFSET(volume_blk_cnt, 8);
9930 	VERIFY_OFFSET(phys_blk_shift, 16);
9931 	VERIFY_OFFSET(parity_rotation_shift, 17);
9932 	VERIFY_OFFSET(strip_size, 18);
9933 	VERIFY_OFFSET(disk_starting_blk, 20);
9934 	VERIFY_OFFSET(disk_blk_cnt, 28);
9935 	VERIFY_OFFSET(data_disks_per_row, 36);
9936 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9937 	VERIFY_OFFSET(row_cnt, 40);
9938 	VERIFY_OFFSET(layout_map_count, 42);
9939 	VERIFY_OFFSET(flags, 44);
9940 	VERIFY_OFFSET(dekindex, 46);
9941 	/* VERIFY_OFFSET(reserved, 48 */
9942 	VERIFY_OFFSET(data, 64);
9943 
9944 #undef VERIFY_OFFSET
9945 
9946 #define VERIFY_OFFSET(member, offset) \
9947 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9948 
9949 	VERIFY_OFFSET(IU_type, 0);
9950 	VERIFY_OFFSET(direction, 1);
9951 	VERIFY_OFFSET(reply_queue, 2);
9952 	/* VERIFY_OFFSET(reserved1, 3);  */
9953 	VERIFY_OFFSET(scsi_nexus, 4);
9954 	VERIFY_OFFSET(Tag, 8);
9955 	VERIFY_OFFSET(cdb, 16);
9956 	VERIFY_OFFSET(cciss_lun, 32);
9957 	VERIFY_OFFSET(data_len, 40);
9958 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9959 	VERIFY_OFFSET(sg_count, 45);
9960 	/* VERIFY_OFFSET(reserved3 */
9961 	VERIFY_OFFSET(err_ptr, 48);
9962 	VERIFY_OFFSET(err_len, 56);
9963 	/* VERIFY_OFFSET(reserved4  */
9964 	VERIFY_OFFSET(sg, 64);
9965 
9966 #undef VERIFY_OFFSET
9967 
9968 #define VERIFY_OFFSET(member, offset) \
9969 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9970 
9971 	VERIFY_OFFSET(dev_handle, 0x00);
9972 	VERIFY_OFFSET(reserved1, 0x02);
9973 	VERIFY_OFFSET(function, 0x03);
9974 	VERIFY_OFFSET(reserved2, 0x04);
9975 	VERIFY_OFFSET(err_info, 0x0C);
9976 	VERIFY_OFFSET(reserved3, 0x10);
9977 	VERIFY_OFFSET(err_info_len, 0x12);
9978 	VERIFY_OFFSET(reserved4, 0x13);
9979 	VERIFY_OFFSET(sgl_offset, 0x14);
9980 	VERIFY_OFFSET(reserved5, 0x15);
9981 	VERIFY_OFFSET(transfer_len, 0x1C);
9982 	VERIFY_OFFSET(reserved6, 0x20);
9983 	VERIFY_OFFSET(io_flags, 0x24);
9984 	VERIFY_OFFSET(reserved7, 0x26);
9985 	VERIFY_OFFSET(LUN, 0x34);
9986 	VERIFY_OFFSET(control, 0x3C);
9987 	VERIFY_OFFSET(CDB, 0x40);
9988 	VERIFY_OFFSET(reserved8, 0x50);
9989 	VERIFY_OFFSET(host_context_flags, 0x60);
9990 	VERIFY_OFFSET(timeout_sec, 0x62);
9991 	VERIFY_OFFSET(ReplyQueue, 0x64);
9992 	VERIFY_OFFSET(reserved9, 0x65);
9993 	VERIFY_OFFSET(tag, 0x68);
9994 	VERIFY_OFFSET(host_addr, 0x70);
9995 	VERIFY_OFFSET(CISS_LUN, 0x78);
9996 	VERIFY_OFFSET(SG, 0x78 + 8);
9997 #undef VERIFY_OFFSET
9998 }
9999 
10000 module_init(hpsa_init);
10001 module_exit(hpsa_cleanup);
10002