1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries 4 * Copyright 2016 Microsemi Corporation 5 * Copyright 2014-2015 PMC-Sierra, Inc. 6 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; version 2 of the License. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 15 * NON INFRINGEMENT. See the GNU General Public License for more details. 16 * 17 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com 18 * 19 */ 20 21 #include <linux/module.h> 22 #include <linux/interrupt.h> 23 #include <linux/types.h> 24 #include <linux/pci.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/fs.h> 29 #include <linux/timer.h> 30 #include <linux/init.h> 31 #include <linux/spinlock.h> 32 #include <linux/compat.h> 33 #include <linux/blktrace_api.h> 34 #include <linux/uaccess.h> 35 #include <linux/io.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/completion.h> 38 #include <linux/moduleparam.h> 39 #include <scsi/scsi.h> 40 #include <scsi/scsi_cmnd.h> 41 #include <scsi/scsi_device.h> 42 #include <scsi/scsi_host.h> 43 #include <scsi/scsi_tcq.h> 44 #include <scsi/scsi_eh.h> 45 #include <scsi/scsi_transport_sas.h> 46 #include <scsi/scsi_dbg.h> 47 #include <linux/cciss_ioctl.h> 48 #include <linux/string.h> 49 #include <linux/bitmap.h> 50 #include <linux/atomic.h> 51 #include <linux/jiffies.h> 52 #include <linux/percpu-defs.h> 53 #include <linux/percpu.h> 54 #include <linux/unaligned.h> 55 #include <asm/div64.h> 56 #include "hpsa_cmd.h" 57 #include "hpsa.h" 58 59 /* 60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' 61 * with an optional trailing '-' followed by a byte value (0-255). 62 */ 63 #define HPSA_DRIVER_VERSION "3.4.20-200" 64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 65 #define HPSA "hpsa" 66 67 /* How long to wait for CISS doorbell communication */ 68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */ 69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */ 70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */ 71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */ 72 #define MAX_IOCTL_CONFIG_WAIT 1000 73 74 /*define how many times we will try a command because of bus resets */ 75 #define MAX_CMD_RETRIES 3 76 /* How long to wait before giving up on a command */ 77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ) 78 79 /* Embedded module documentation macros - see modules.h */ 80 MODULE_AUTHOR("Hewlett-Packard Company"); 81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 82 HPSA_DRIVER_VERSION); 83 MODULE_VERSION(HPSA_DRIVER_VERSION); 84 MODULE_LICENSE("GPL"); 85 MODULE_ALIAS("cciss"); 86 87 static int hpsa_simple_mode; 88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); 89 MODULE_PARM_DESC(hpsa_simple_mode, 90 "Use 'simple mode' rather than 'performant mode'"); 91 92 /* define the PCI info for the cards we can control */ 93 static const struct pci_device_id hpsa_pci_device_id[] = { 94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, 100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, 101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, 103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, 104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, 105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, 106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, 107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, 108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, 109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920}, 110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921}, 111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922}, 112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923}, 113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924}, 114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925}, 115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926}, 116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928}, 117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929}, 118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD}, 119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE}, 120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF}, 121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0}, 122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1}, 123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2}, 124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3}, 125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4}, 126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5}, 127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6}, 128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7}, 129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8}, 130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9}, 131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA}, 132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB}, 133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC}, 134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD}, 135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE}, 136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580}, 137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581}, 138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582}, 139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583}, 140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584}, 141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585}, 142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076}, 143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087}, 144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D}, 145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088}, 146 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f}, 147 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 148 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 149 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 150 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 151 {0,} 152 }; 153 154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 155 156 /* board_id = Subsystem Device ID & Vendor ID 157 * product = Marketing Name for the board 158 * access = Address of the struct of function pointers 159 */ 160 static struct board_type products[] = { 161 {0x40700E11, "Smart Array 5300", &SA5A_access}, 162 {0x40800E11, "Smart Array 5i", &SA5B_access}, 163 {0x40820E11, "Smart Array 532", &SA5B_access}, 164 {0x40830E11, "Smart Array 5312", &SA5B_access}, 165 {0x409A0E11, "Smart Array 641", &SA5A_access}, 166 {0x409B0E11, "Smart Array 642", &SA5A_access}, 167 {0x409C0E11, "Smart Array 6400", &SA5A_access}, 168 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access}, 169 {0x40910E11, "Smart Array 6i", &SA5A_access}, 170 {0x3225103C, "Smart Array P600", &SA5A_access}, 171 {0x3223103C, "Smart Array P800", &SA5A_access}, 172 {0x3234103C, "Smart Array P400", &SA5A_access}, 173 {0x3235103C, "Smart Array P400i", &SA5A_access}, 174 {0x3211103C, "Smart Array E200i", &SA5A_access}, 175 {0x3212103C, "Smart Array E200", &SA5A_access}, 176 {0x3213103C, "Smart Array E200i", &SA5A_access}, 177 {0x3214103C, "Smart Array E200i", &SA5A_access}, 178 {0x3215103C, "Smart Array E200i", &SA5A_access}, 179 {0x3237103C, "Smart Array E500", &SA5A_access}, 180 {0x323D103C, "Smart Array P700m", &SA5A_access}, 181 {0x3241103C, "Smart Array P212", &SA5_access}, 182 {0x3243103C, "Smart Array P410", &SA5_access}, 183 {0x3245103C, "Smart Array P410i", &SA5_access}, 184 {0x3247103C, "Smart Array P411", &SA5_access}, 185 {0x3249103C, "Smart Array P812", &SA5_access}, 186 {0x324A103C, "Smart Array P712m", &SA5_access}, 187 {0x324B103C, "Smart Array P711m", &SA5_access}, 188 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */ 189 {0x3350103C, "Smart Array P222", &SA5_access}, 190 {0x3351103C, "Smart Array P420", &SA5_access}, 191 {0x3352103C, "Smart Array P421", &SA5_access}, 192 {0x3353103C, "Smart Array P822", &SA5_access}, 193 {0x3354103C, "Smart Array P420i", &SA5_access}, 194 {0x3355103C, "Smart Array P220i", &SA5_access}, 195 {0x3356103C, "Smart Array P721m", &SA5_access}, 196 {0x1920103C, "Smart Array P430i", &SA5_access}, 197 {0x1921103C, "Smart Array P830i", &SA5_access}, 198 {0x1922103C, "Smart Array P430", &SA5_access}, 199 {0x1923103C, "Smart Array P431", &SA5_access}, 200 {0x1924103C, "Smart Array P830", &SA5_access}, 201 {0x1925103C, "Smart Array P831", &SA5_access}, 202 {0x1926103C, "Smart Array P731m", &SA5_access}, 203 {0x1928103C, "Smart Array P230i", &SA5_access}, 204 {0x1929103C, "Smart Array P530", &SA5_access}, 205 {0x21BD103C, "Smart Array P244br", &SA5_access}, 206 {0x21BE103C, "Smart Array P741m", &SA5_access}, 207 {0x21BF103C, "Smart HBA H240ar", &SA5_access}, 208 {0x21C0103C, "Smart Array P440ar", &SA5_access}, 209 {0x21C1103C, "Smart Array P840ar", &SA5_access}, 210 {0x21C2103C, "Smart Array P440", &SA5_access}, 211 {0x21C3103C, "Smart Array P441", &SA5_access}, 212 {0x21C4103C, "Smart Array", &SA5_access}, 213 {0x21C5103C, "Smart Array P841", &SA5_access}, 214 {0x21C6103C, "Smart HBA H244br", &SA5_access}, 215 {0x21C7103C, "Smart HBA H240", &SA5_access}, 216 {0x21C8103C, "Smart HBA H241", &SA5_access}, 217 {0x21C9103C, "Smart Array", &SA5_access}, 218 {0x21CA103C, "Smart Array P246br", &SA5_access}, 219 {0x21CB103C, "Smart Array P840", &SA5_access}, 220 {0x21CC103C, "Smart Array", &SA5_access}, 221 {0x21CD103C, "Smart Array", &SA5_access}, 222 {0x21CE103C, "Smart HBA", &SA5_access}, 223 {0x05809005, "SmartHBA-SA", &SA5_access}, 224 {0x05819005, "SmartHBA-SA 8i", &SA5_access}, 225 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access}, 226 {0x05839005, "SmartHBA-SA 8e", &SA5_access}, 227 {0x05849005, "SmartHBA-SA 16i", &SA5_access}, 228 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access}, 229 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access}, 230 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access}, 231 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access}, 232 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access}, 233 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access}, 234 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 235 }; 236 237 static struct scsi_transport_template *hpsa_sas_transport_template; 238 static int hpsa_add_sas_host(struct ctlr_info *h); 239 static void hpsa_delete_sas_host(struct ctlr_info *h); 240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, 241 struct hpsa_scsi_dev_t *device); 242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device); 243 static struct hpsa_scsi_dev_t 244 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, 245 struct sas_rphy *rphy); 246 247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy) 248 static const struct scsi_cmnd hpsa_cmd_busy; 249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle) 250 static const struct scsi_cmnd hpsa_cmd_idle; 251 static int number_of_controllers; 252 253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); 254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); 255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd, 256 void __user *arg); 257 static int hpsa_passthru_ioctl(struct ctlr_info *h, 258 IOCTL_Command_struct *iocommand); 259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, 260 BIG_IOCTL_Command_struct *ioc); 261 262 #ifdef CONFIG_COMPAT 263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd, 264 void __user *arg); 265 #endif 266 267 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 268 static struct CommandList *cmd_alloc(struct ctlr_info *h); 269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c); 270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, 271 struct scsi_cmnd *scmd); 272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 273 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, 274 int cmd_type); 275 static void hpsa_free_cmd_pool(struct ctlr_info *h); 276 #define VPD_PAGE (1 << 8) 277 #define HPSA_SIMPLE_ERROR_BITS 0x03 278 279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); 280 static void hpsa_scan_start(struct Scsi_Host *); 281 static int hpsa_scan_finished(struct Scsi_Host *sh, 282 unsigned long elapsed_time); 283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth); 284 285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 286 static int hpsa_slave_alloc(struct scsi_device *sdev); 287 static int hpsa_slave_configure(struct scsi_device *sdev); 288 static void hpsa_slave_destroy(struct scsi_device *sdev); 289 290 static void hpsa_update_scsi_devices(struct ctlr_info *h); 291 static int check_for_unit_attention(struct ctlr_info *h, 292 struct CommandList *c); 293 static void check_ioctl_unit_attention(struct ctlr_info *h, 294 struct CommandList *c); 295 /* performant mode helper functions */ 296 static void calc_bucket_map(int *bucket, int num_buckets, 297 int nsgs, int min_blocks, u32 *bucket_map); 298 static void hpsa_free_performant_mode(struct ctlr_info *h); 299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 300 static inline u32 next_command(struct ctlr_info *h, u8 q); 301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, 302 u32 *cfg_base_addr, u64 *cfg_base_addr_index, 303 u64 *cfg_offset); 304 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 305 unsigned long *memory_bar); 306 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id, 307 bool *legacy_board); 308 static int wait_for_device_to_become_ready(struct ctlr_info *h, 309 unsigned char lunaddr[], 310 int reply_queue); 311 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, 312 int wait_for_ready); 313 static inline void finish_cmd(struct CommandList *c); 314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h); 315 #define BOARD_NOT_READY 0 316 #define BOARD_READY 1 317 static void hpsa_drain_accel_commands(struct ctlr_info *h); 318 static void hpsa_flush_cache(struct ctlr_info *h); 319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, 320 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 321 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk); 322 static void hpsa_command_resubmit_worker(struct work_struct *work); 323 static u32 lockup_detected(struct ctlr_info *h); 324 static int detect_controller_lockup(struct ctlr_info *h); 325 static void hpsa_disable_rld_caching(struct ctlr_info *h); 326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 327 struct ReportExtendedLUNdata *buf, int bufsize); 328 static bool hpsa_vpd_page_supported(struct ctlr_info *h, 329 unsigned char scsi3addr[], u8 page); 330 static int hpsa_luns_changed(struct ctlr_info *h); 331 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, 332 struct hpsa_scsi_dev_t *dev, 333 unsigned char *scsi3addr); 334 335 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 336 { 337 unsigned long *priv = shost_priv(sdev->host); 338 return (struct ctlr_info *) *priv; 339 } 340 341 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 342 { 343 unsigned long *priv = shost_priv(sh); 344 return (struct ctlr_info *) *priv; 345 } 346 347 static inline bool hpsa_is_cmd_idle(struct CommandList *c) 348 { 349 return c->scsi_cmd == SCSI_CMD_IDLE; 350 } 351 352 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */ 353 static void decode_sense_data(const u8 *sense_data, int sense_data_len, 354 u8 *sense_key, u8 *asc, u8 *ascq) 355 { 356 struct scsi_sense_hdr sshdr; 357 bool rc; 358 359 *sense_key = -1; 360 *asc = -1; 361 *ascq = -1; 362 363 if (sense_data_len < 1) 364 return; 365 366 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr); 367 if (rc) { 368 *sense_key = sshdr.sense_key; 369 *asc = sshdr.asc; 370 *ascq = sshdr.ascq; 371 } 372 } 373 374 static int check_for_unit_attention(struct ctlr_info *h, 375 struct CommandList *c) 376 { 377 u8 sense_key, asc, ascq; 378 int sense_len; 379 380 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) 381 sense_len = sizeof(c->err_info->SenseInfo); 382 else 383 sense_len = c->err_info->SenseLen; 384 385 decode_sense_data(c->err_info->SenseInfo, sense_len, 386 &sense_key, &asc, &ascq); 387 if (sense_key != UNIT_ATTENTION || asc == 0xff) 388 return 0; 389 390 switch (asc) { 391 case STATE_CHANGED: 392 dev_warn(&h->pdev->dev, 393 "%s: a state change detected, command retried\n", 394 h->devname); 395 break; 396 case LUN_FAILED: 397 dev_warn(&h->pdev->dev, 398 "%s: LUN failure detected\n", h->devname); 399 break; 400 case REPORT_LUNS_CHANGED: 401 dev_warn(&h->pdev->dev, 402 "%s: report LUN data changed\n", h->devname); 403 /* 404 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external 405 * target (array) devices. 406 */ 407 break; 408 case POWER_OR_RESET: 409 dev_warn(&h->pdev->dev, 410 "%s: a power on or device reset detected\n", 411 h->devname); 412 break; 413 case UNIT_ATTENTION_CLEARED: 414 dev_warn(&h->pdev->dev, 415 "%s: unit attention cleared by another initiator\n", 416 h->devname); 417 break; 418 default: 419 dev_warn(&h->pdev->dev, 420 "%s: unknown unit attention detected\n", 421 h->devname); 422 break; 423 } 424 return 1; 425 } 426 427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c) 428 { 429 if (c->err_info->CommandStatus != CMD_TARGET_STATUS || 430 (c->err_info->ScsiStatus != SAM_STAT_BUSY && 431 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) 432 return 0; 433 dev_warn(&h->pdev->dev, HPSA "device busy"); 434 return 1; 435 } 436 437 static u32 lockup_detected(struct ctlr_info *h); 438 static ssize_t host_show_lockup_detected(struct device *dev, 439 struct device_attribute *attr, char *buf) 440 { 441 int ld; 442 struct ctlr_info *h; 443 struct Scsi_Host *shost = class_to_shost(dev); 444 445 h = shost_to_hba(shost); 446 ld = lockup_detected(h); 447 448 return sprintf(buf, "ld=%d\n", ld); 449 } 450 451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev, 452 struct device_attribute *attr, 453 const char *buf, size_t count) 454 { 455 int status, len; 456 struct ctlr_info *h; 457 struct Scsi_Host *shost = class_to_shost(dev); 458 char tmpbuf[10]; 459 460 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 461 return -EACCES; 462 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; 463 strncpy(tmpbuf, buf, len); 464 tmpbuf[len] = '\0'; 465 if (sscanf(tmpbuf, "%d", &status) != 1) 466 return -EINVAL; 467 h = shost_to_hba(shost); 468 h->acciopath_status = !!status; 469 dev_warn(&h->pdev->dev, 470 "hpsa: HP SSD Smart Path %s via sysfs update.\n", 471 h->acciopath_status ? "enabled" : "disabled"); 472 return count; 473 } 474 475 static ssize_t host_store_raid_offload_debug(struct device *dev, 476 struct device_attribute *attr, 477 const char *buf, size_t count) 478 { 479 int debug_level, len; 480 struct ctlr_info *h; 481 struct Scsi_Host *shost = class_to_shost(dev); 482 char tmpbuf[10]; 483 484 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 485 return -EACCES; 486 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; 487 strncpy(tmpbuf, buf, len); 488 tmpbuf[len] = '\0'; 489 if (sscanf(tmpbuf, "%d", &debug_level) != 1) 490 return -EINVAL; 491 if (debug_level < 0) 492 debug_level = 0; 493 h = shost_to_hba(shost); 494 h->raid_offload_debug = debug_level; 495 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n", 496 h->raid_offload_debug); 497 return count; 498 } 499 500 static ssize_t host_store_rescan(struct device *dev, 501 struct device_attribute *attr, 502 const char *buf, size_t count) 503 { 504 struct ctlr_info *h; 505 struct Scsi_Host *shost = class_to_shost(dev); 506 h = shost_to_hba(shost); 507 hpsa_scan_start(h->scsi_host); 508 return count; 509 } 510 511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device) 512 { 513 device->offload_enabled = 0; 514 device->offload_to_be_enabled = 0; 515 } 516 517 static ssize_t host_show_firmware_revision(struct device *dev, 518 struct device_attribute *attr, char *buf) 519 { 520 struct ctlr_info *h; 521 struct Scsi_Host *shost = class_to_shost(dev); 522 unsigned char *fwrev; 523 524 h = shost_to_hba(shost); 525 if (!h->hba_inquiry_data) 526 return 0; 527 fwrev = &h->hba_inquiry_data[32]; 528 return snprintf(buf, 20, "%c%c%c%c\n", 529 fwrev[0], fwrev[1], fwrev[2], fwrev[3]); 530 } 531 532 static ssize_t host_show_commands_outstanding(struct device *dev, 533 struct device_attribute *attr, char *buf) 534 { 535 struct Scsi_Host *shost = class_to_shost(dev); 536 struct ctlr_info *h = shost_to_hba(shost); 537 538 return snprintf(buf, 20, "%d\n", 539 atomic_read(&h->commands_outstanding)); 540 } 541 542 static ssize_t host_show_transport_mode(struct device *dev, 543 struct device_attribute *attr, char *buf) 544 { 545 struct ctlr_info *h; 546 struct Scsi_Host *shost = class_to_shost(dev); 547 548 h = shost_to_hba(shost); 549 return snprintf(buf, 20, "%s\n", 550 h->transMethod & CFGTBL_Trans_Performant ? 551 "performant" : "simple"); 552 } 553 554 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev, 555 struct device_attribute *attr, char *buf) 556 { 557 struct ctlr_info *h; 558 struct Scsi_Host *shost = class_to_shost(dev); 559 560 h = shost_to_hba(shost); 561 return snprintf(buf, 30, "HP SSD Smart Path %s\n", 562 (h->acciopath_status == 1) ? "enabled" : "disabled"); 563 } 564 565 /* List of controllers which cannot be hard reset on kexec with reset_devices */ 566 static u32 unresettable_controller[] = { 567 0x324a103C, /* Smart Array P712m */ 568 0x324b103C, /* Smart Array P711m */ 569 0x3223103C, /* Smart Array P800 */ 570 0x3234103C, /* Smart Array P400 */ 571 0x3235103C, /* Smart Array P400i */ 572 0x3211103C, /* Smart Array E200i */ 573 0x3212103C, /* Smart Array E200 */ 574 0x3213103C, /* Smart Array E200i */ 575 0x3214103C, /* Smart Array E200i */ 576 0x3215103C, /* Smart Array E200i */ 577 0x3237103C, /* Smart Array E500 */ 578 0x323D103C, /* Smart Array P700m */ 579 0x40800E11, /* Smart Array 5i */ 580 0x409C0E11, /* Smart Array 6400 */ 581 0x409D0E11, /* Smart Array 6400 EM */ 582 0x40700E11, /* Smart Array 5300 */ 583 0x40820E11, /* Smart Array 532 */ 584 0x40830E11, /* Smart Array 5312 */ 585 0x409A0E11, /* Smart Array 641 */ 586 0x409B0E11, /* Smart Array 642 */ 587 0x40910E11, /* Smart Array 6i */ 588 }; 589 590 /* List of controllers which cannot even be soft reset */ 591 static u32 soft_unresettable_controller[] = { 592 0x40800E11, /* Smart Array 5i */ 593 0x40700E11, /* Smart Array 5300 */ 594 0x40820E11, /* Smart Array 532 */ 595 0x40830E11, /* Smart Array 5312 */ 596 0x409A0E11, /* Smart Array 641 */ 597 0x409B0E11, /* Smart Array 642 */ 598 0x40910E11, /* Smart Array 6i */ 599 /* Exclude 640x boards. These are two pci devices in one slot 600 * which share a battery backed cache module. One controls the 601 * cache, the other accesses the cache through the one that controls 602 * it. If we reset the one controlling the cache, the other will 603 * likely not be happy. Just forbid resetting this conjoined mess. 604 * The 640x isn't really supported by hpsa anyway. 605 */ 606 0x409C0E11, /* Smart Array 6400 */ 607 0x409D0E11, /* Smart Array 6400 EM */ 608 }; 609 610 static int board_id_in_array(u32 a[], int nelems, u32 board_id) 611 { 612 int i; 613 614 for (i = 0; i < nelems; i++) 615 if (a[i] == board_id) 616 return 1; 617 return 0; 618 } 619 620 static int ctlr_is_hard_resettable(u32 board_id) 621 { 622 return !board_id_in_array(unresettable_controller, 623 ARRAY_SIZE(unresettable_controller), board_id); 624 } 625 626 static int ctlr_is_soft_resettable(u32 board_id) 627 { 628 return !board_id_in_array(soft_unresettable_controller, 629 ARRAY_SIZE(soft_unresettable_controller), board_id); 630 } 631 632 static int ctlr_is_resettable(u32 board_id) 633 { 634 return ctlr_is_hard_resettable(board_id) || 635 ctlr_is_soft_resettable(board_id); 636 } 637 638 static ssize_t host_show_resettable(struct device *dev, 639 struct device_attribute *attr, char *buf) 640 { 641 struct ctlr_info *h; 642 struct Scsi_Host *shost = class_to_shost(dev); 643 644 h = shost_to_hba(shost); 645 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); 646 } 647 648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 649 { 650 return (scsi3addr[3] & 0xC0) == 0x40; 651 } 652 653 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6", 654 "1(+0)ADM", "UNKNOWN", "PHYS DRV" 655 }; 656 #define HPSA_RAID_0 0 657 #define HPSA_RAID_4 1 658 #define HPSA_RAID_1 2 /* also used for RAID 10 */ 659 #define HPSA_RAID_5 3 /* also used for RAID 50 */ 660 #define HPSA_RAID_51 4 661 #define HPSA_RAID_6 5 /* also used for RAID 60 */ 662 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */ 663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2) 664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1) 665 666 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device) 667 { 668 return !device->physical_device; 669 } 670 671 static ssize_t raid_level_show(struct device *dev, 672 struct device_attribute *attr, char *buf) 673 { 674 ssize_t l = 0; 675 unsigned char rlevel; 676 struct ctlr_info *h; 677 struct scsi_device *sdev; 678 struct hpsa_scsi_dev_t *hdev; 679 unsigned long flags; 680 681 sdev = to_scsi_device(dev); 682 h = sdev_to_hba(sdev); 683 spin_lock_irqsave(&h->lock, flags); 684 hdev = sdev->hostdata; 685 if (!hdev) { 686 spin_unlock_irqrestore(&h->lock, flags); 687 return -ENODEV; 688 } 689 690 /* Is this even a logical drive? */ 691 if (!is_logical_device(hdev)) { 692 spin_unlock_irqrestore(&h->lock, flags); 693 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 694 return l; 695 } 696 697 rlevel = hdev->raid_level; 698 spin_unlock_irqrestore(&h->lock, flags); 699 if (rlevel > RAID_UNKNOWN) 700 rlevel = RAID_UNKNOWN; 701 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 702 return l; 703 } 704 705 static ssize_t lunid_show(struct device *dev, 706 struct device_attribute *attr, char *buf) 707 { 708 struct ctlr_info *h; 709 struct scsi_device *sdev; 710 struct hpsa_scsi_dev_t *hdev; 711 unsigned long flags; 712 unsigned char lunid[8]; 713 714 sdev = to_scsi_device(dev); 715 h = sdev_to_hba(sdev); 716 spin_lock_irqsave(&h->lock, flags); 717 hdev = sdev->hostdata; 718 if (!hdev) { 719 spin_unlock_irqrestore(&h->lock, flags); 720 return -ENODEV; 721 } 722 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 723 spin_unlock_irqrestore(&h->lock, flags); 724 return snprintf(buf, 20, "0x%8phN\n", lunid); 725 } 726 727 static ssize_t unique_id_show(struct device *dev, 728 struct device_attribute *attr, char *buf) 729 { 730 struct ctlr_info *h; 731 struct scsi_device *sdev; 732 struct hpsa_scsi_dev_t *hdev; 733 unsigned long flags; 734 unsigned char sn[16]; 735 736 sdev = to_scsi_device(dev); 737 h = sdev_to_hba(sdev); 738 spin_lock_irqsave(&h->lock, flags); 739 hdev = sdev->hostdata; 740 if (!hdev) { 741 spin_unlock_irqrestore(&h->lock, flags); 742 return -ENODEV; 743 } 744 memcpy(sn, hdev->device_id, sizeof(sn)); 745 spin_unlock_irqrestore(&h->lock, flags); 746 return snprintf(buf, 16 * 2 + 2, 747 "%02X%02X%02X%02X%02X%02X%02X%02X" 748 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 749 sn[0], sn[1], sn[2], sn[3], 750 sn[4], sn[5], sn[6], sn[7], 751 sn[8], sn[9], sn[10], sn[11], 752 sn[12], sn[13], sn[14], sn[15]); 753 } 754 755 static ssize_t sas_address_show(struct device *dev, 756 struct device_attribute *attr, char *buf) 757 { 758 struct ctlr_info *h; 759 struct scsi_device *sdev; 760 struct hpsa_scsi_dev_t *hdev; 761 unsigned long flags; 762 u64 sas_address; 763 764 sdev = to_scsi_device(dev); 765 h = sdev_to_hba(sdev); 766 spin_lock_irqsave(&h->lock, flags); 767 hdev = sdev->hostdata; 768 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) { 769 spin_unlock_irqrestore(&h->lock, flags); 770 return -ENODEV; 771 } 772 sas_address = hdev->sas_address; 773 spin_unlock_irqrestore(&h->lock, flags); 774 775 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address); 776 } 777 778 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, 779 struct device_attribute *attr, char *buf) 780 { 781 struct ctlr_info *h; 782 struct scsi_device *sdev; 783 struct hpsa_scsi_dev_t *hdev; 784 unsigned long flags; 785 int offload_enabled; 786 787 sdev = to_scsi_device(dev); 788 h = sdev_to_hba(sdev); 789 spin_lock_irqsave(&h->lock, flags); 790 hdev = sdev->hostdata; 791 if (!hdev) { 792 spin_unlock_irqrestore(&h->lock, flags); 793 return -ENODEV; 794 } 795 offload_enabled = hdev->offload_enabled; 796 spin_unlock_irqrestore(&h->lock, flags); 797 798 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) 799 return snprintf(buf, 20, "%d\n", offload_enabled); 800 else 801 return snprintf(buf, 40, "%s\n", 802 "Not applicable for a controller"); 803 } 804 805 #define MAX_PATHS 8 806 static ssize_t path_info_show(struct device *dev, 807 struct device_attribute *attr, char *buf) 808 { 809 struct ctlr_info *h; 810 struct scsi_device *sdev; 811 struct hpsa_scsi_dev_t *hdev; 812 unsigned long flags; 813 int i; 814 int output_len = 0; 815 u8 box; 816 u8 bay; 817 u8 path_map_index = 0; 818 char *active; 819 unsigned char phys_connector[2]; 820 821 sdev = to_scsi_device(dev); 822 h = sdev_to_hba(sdev); 823 spin_lock_irqsave(&h->devlock, flags); 824 hdev = sdev->hostdata; 825 if (!hdev) { 826 spin_unlock_irqrestore(&h->devlock, flags); 827 return -ENODEV; 828 } 829 830 bay = hdev->bay; 831 for (i = 0; i < MAX_PATHS; i++) { 832 path_map_index = 1<<i; 833 if (i == hdev->active_path_index) 834 active = "Active"; 835 else if (hdev->path_map & path_map_index) 836 active = "Inactive"; 837 else 838 continue; 839 840 output_len += scnprintf(buf + output_len, 841 PAGE_SIZE - output_len, 842 "[%d:%d:%d:%d] %20.20s ", 843 h->scsi_host->host_no, 844 hdev->bus, hdev->target, hdev->lun, 845 scsi_device_type(hdev->devtype)); 846 847 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) { 848 output_len += scnprintf(buf + output_len, 849 PAGE_SIZE - output_len, 850 "%s\n", active); 851 continue; 852 } 853 854 box = hdev->box[i]; 855 memcpy(&phys_connector, &hdev->phys_connector[i], 856 sizeof(phys_connector)); 857 if (phys_connector[0] < '0') 858 phys_connector[0] = '0'; 859 if (phys_connector[1] < '0') 860 phys_connector[1] = '0'; 861 output_len += scnprintf(buf + output_len, 862 PAGE_SIZE - output_len, 863 "PORT: %.2s ", 864 phys_connector); 865 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) && 866 hdev->expose_device) { 867 if (box == 0 || box == 0xFF) { 868 output_len += scnprintf(buf + output_len, 869 PAGE_SIZE - output_len, 870 "BAY: %hhu %s\n", 871 bay, active); 872 } else { 873 output_len += scnprintf(buf + output_len, 874 PAGE_SIZE - output_len, 875 "BOX: %hhu BAY: %hhu %s\n", 876 box, bay, active); 877 } 878 } else if (box != 0 && box != 0xFF) { 879 output_len += scnprintf(buf + output_len, 880 PAGE_SIZE - output_len, "BOX: %hhu %s\n", 881 box, active); 882 } else 883 output_len += scnprintf(buf + output_len, 884 PAGE_SIZE - output_len, "%s\n", active); 885 } 886 887 spin_unlock_irqrestore(&h->devlock, flags); 888 return output_len; 889 } 890 891 static ssize_t host_show_ctlr_num(struct device *dev, 892 struct device_attribute *attr, char *buf) 893 { 894 struct ctlr_info *h; 895 struct Scsi_Host *shost = class_to_shost(dev); 896 897 h = shost_to_hba(shost); 898 return snprintf(buf, 20, "%d\n", h->ctlr); 899 } 900 901 static ssize_t host_show_legacy_board(struct device *dev, 902 struct device_attribute *attr, char *buf) 903 { 904 struct ctlr_info *h; 905 struct Scsi_Host *shost = class_to_shost(dev); 906 907 h = shost_to_hba(shost); 908 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0); 909 } 910 911 static DEVICE_ATTR_RO(raid_level); 912 static DEVICE_ATTR_RO(lunid); 913 static DEVICE_ATTR_RO(unique_id); 914 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 915 static DEVICE_ATTR_RO(sas_address); 916 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, 917 host_show_hp_ssd_smart_path_enabled, NULL); 918 static DEVICE_ATTR_RO(path_info); 919 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH, 920 host_show_hp_ssd_smart_path_status, 921 host_store_hp_ssd_smart_path_status); 922 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL, 923 host_store_raid_offload_debug); 924 static DEVICE_ATTR(firmware_revision, S_IRUGO, 925 host_show_firmware_revision, NULL); 926 static DEVICE_ATTR(commands_outstanding, S_IRUGO, 927 host_show_commands_outstanding, NULL); 928 static DEVICE_ATTR(transport_mode, S_IRUGO, 929 host_show_transport_mode, NULL); 930 static DEVICE_ATTR(resettable, S_IRUGO, 931 host_show_resettable, NULL); 932 static DEVICE_ATTR(lockup_detected, S_IRUGO, 933 host_show_lockup_detected, NULL); 934 static DEVICE_ATTR(ctlr_num, S_IRUGO, 935 host_show_ctlr_num, NULL); 936 static DEVICE_ATTR(legacy_board, S_IRUGO, 937 host_show_legacy_board, NULL); 938 939 static struct attribute *hpsa_sdev_attrs[] = { 940 &dev_attr_raid_level.attr, 941 &dev_attr_lunid.attr, 942 &dev_attr_unique_id.attr, 943 &dev_attr_hp_ssd_smart_path_enabled.attr, 944 &dev_attr_path_info.attr, 945 &dev_attr_sas_address.attr, 946 NULL, 947 }; 948 949 ATTRIBUTE_GROUPS(hpsa_sdev); 950 951 static struct attribute *hpsa_shost_attrs[] = { 952 &dev_attr_rescan.attr, 953 &dev_attr_firmware_revision.attr, 954 &dev_attr_commands_outstanding.attr, 955 &dev_attr_transport_mode.attr, 956 &dev_attr_resettable.attr, 957 &dev_attr_hp_ssd_smart_path_status.attr, 958 &dev_attr_raid_offload_debug.attr, 959 &dev_attr_lockup_detected.attr, 960 &dev_attr_ctlr_num.attr, 961 &dev_attr_legacy_board.attr, 962 NULL, 963 }; 964 965 ATTRIBUTE_GROUPS(hpsa_shost); 966 967 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\ 968 HPSA_MAX_CONCURRENT_PASSTHRUS) 969 970 static const struct scsi_host_template hpsa_driver_template = { 971 .module = THIS_MODULE, 972 .name = HPSA, 973 .proc_name = HPSA, 974 .queuecommand = hpsa_scsi_queue_command, 975 .scan_start = hpsa_scan_start, 976 .scan_finished = hpsa_scan_finished, 977 .change_queue_depth = hpsa_change_queue_depth, 978 .this_id = -1, 979 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 980 .ioctl = hpsa_ioctl, 981 .slave_alloc = hpsa_slave_alloc, 982 .slave_configure = hpsa_slave_configure, 983 .slave_destroy = hpsa_slave_destroy, 984 #ifdef CONFIG_COMPAT 985 .compat_ioctl = hpsa_compat_ioctl, 986 #endif 987 .sdev_groups = hpsa_sdev_groups, 988 .shost_groups = hpsa_shost_groups, 989 .max_sectors = 2048, 990 .no_write_same = 1, 991 }; 992 993 static inline u32 next_command(struct ctlr_info *h, u8 q) 994 { 995 u32 a; 996 struct reply_queue_buffer *rq = &h->reply_queue[q]; 997 998 if (h->transMethod & CFGTBL_Trans_io_accel1) 999 return h->access.command_completed(h, q); 1000 1001 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 1002 return h->access.command_completed(h, q); 1003 1004 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { 1005 a = rq->head[rq->current_entry]; 1006 rq->current_entry++; 1007 atomic_dec(&h->commands_outstanding); 1008 } else { 1009 a = FIFO_EMPTY; 1010 } 1011 /* Check for wraparound */ 1012 if (rq->current_entry == h->max_commands) { 1013 rq->current_entry = 0; 1014 rq->wraparound ^= 1; 1015 } 1016 return a; 1017 } 1018 1019 /* 1020 * There are some special bits in the bus address of the 1021 * command that we have to set for the controller to know 1022 * how to process the command: 1023 * 1024 * Normal performant mode: 1025 * bit 0: 1 means performant mode, 0 means simple mode. 1026 * bits 1-3 = block fetch table entry 1027 * bits 4-6 = command type (== 0) 1028 * 1029 * ioaccel1 mode: 1030 * bit 0 = "performant mode" bit. 1031 * bits 1-3 = block fetch table entry 1032 * bits 4-6 = command type (== 110) 1033 * (command type is needed because ioaccel1 mode 1034 * commands are submitted through the same register as normal 1035 * mode commands, so this is how the controller knows whether 1036 * the command is normal mode or ioaccel1 mode.) 1037 * 1038 * ioaccel2 mode: 1039 * bit 0 = "performant mode" bit. 1040 * bits 1-4 = block fetch table entry (note extra bit) 1041 * bits 4-6 = not needed, because ioaccel2 mode has 1042 * a separate special register for submitting commands. 1043 */ 1044 1045 /* 1046 * set_performant_mode: Modify the tag for cciss performant 1047 * set bit 0 for pull model, bits 3-1 for block fetch 1048 * register number 1049 */ 1050 #define DEFAULT_REPLY_QUEUE (-1) 1051 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c, 1052 int reply_queue) 1053 { 1054 if (likely(h->transMethod & CFGTBL_Trans_Performant)) { 1055 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 1056 if (unlikely(!h->msix_vectors)) 1057 return; 1058 c->Header.ReplyQueue = reply_queue; 1059 } 1060 } 1061 1062 static void set_ioaccel1_performant_mode(struct ctlr_info *h, 1063 struct CommandList *c, 1064 int reply_queue) 1065 { 1066 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; 1067 1068 /* 1069 * Tell the controller to post the reply to the queue for this 1070 * processor. This seems to give the best I/O throughput. 1071 */ 1072 cp->ReplyQueue = reply_queue; 1073 /* 1074 * Set the bits in the address sent down to include: 1075 * - performant mode bit (bit 0) 1076 * - pull count (bits 1-3) 1077 * - command type (bits 4-6) 1078 */ 1079 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) | 1080 IOACCEL1_BUSADDR_CMDTYPE; 1081 } 1082 1083 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h, 1084 struct CommandList *c, 1085 int reply_queue) 1086 { 1087 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *) 1088 &h->ioaccel2_cmd_pool[c->cmdindex]; 1089 1090 /* Tell the controller to post the reply to the queue for this 1091 * processor. This seems to give the best I/O throughput. 1092 */ 1093 cp->reply_queue = reply_queue; 1094 /* Set the bits in the address sent down to include: 1095 * - performant mode bit not used in ioaccel mode 2 1096 * - pull count (bits 0-3) 1097 * - command type isn't needed for ioaccel2 1098 */ 1099 c->busaddr |= h->ioaccel2_blockFetchTable[0]; 1100 } 1101 1102 static void set_ioaccel2_performant_mode(struct ctlr_info *h, 1103 struct CommandList *c, 1104 int reply_queue) 1105 { 1106 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; 1107 1108 /* 1109 * Tell the controller to post the reply to the queue for this 1110 * processor. This seems to give the best I/O throughput. 1111 */ 1112 cp->reply_queue = reply_queue; 1113 /* 1114 * Set the bits in the address sent down to include: 1115 * - performant mode bit not used in ioaccel mode 2 1116 * - pull count (bits 0-3) 1117 * - command type isn't needed for ioaccel2 1118 */ 1119 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]); 1120 } 1121 1122 static int is_firmware_flash_cmd(u8 *cdb) 1123 { 1124 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; 1125 } 1126 1127 /* 1128 * During firmware flash, the heartbeat register may not update as frequently 1129 * as it should. So we dial down lockup detection during firmware flash. and 1130 * dial it back up when firmware flash completes. 1131 */ 1132 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) 1133 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) 1134 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ) 1135 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, 1136 struct CommandList *c) 1137 { 1138 if (!is_firmware_flash_cmd(c->Request.CDB)) 1139 return; 1140 atomic_inc(&h->firmware_flash_in_progress); 1141 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; 1142 } 1143 1144 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, 1145 struct CommandList *c) 1146 { 1147 if (is_firmware_flash_cmd(c->Request.CDB) && 1148 atomic_dec_and_test(&h->firmware_flash_in_progress)) 1149 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 1150 } 1151 1152 static void __enqueue_cmd_and_start_io(struct ctlr_info *h, 1153 struct CommandList *c, int reply_queue) 1154 { 1155 dial_down_lockup_detection_during_fw_flash(h, c); 1156 atomic_inc(&h->commands_outstanding); 1157 /* 1158 * Check to see if the command is being retried. 1159 */ 1160 if (c->device && !c->retry_pending) 1161 atomic_inc(&c->device->commands_outstanding); 1162 1163 reply_queue = h->reply_map[raw_smp_processor_id()]; 1164 switch (c->cmd_type) { 1165 case CMD_IOACCEL1: 1166 set_ioaccel1_performant_mode(h, c, reply_queue); 1167 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); 1168 break; 1169 case CMD_IOACCEL2: 1170 set_ioaccel2_performant_mode(h, c, reply_queue); 1171 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); 1172 break; 1173 case IOACCEL2_TMF: 1174 set_ioaccel2_tmf_performant_mode(h, c, reply_queue); 1175 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); 1176 break; 1177 default: 1178 set_performant_mode(h, c, reply_queue); 1179 h->access.submit_command(h, c); 1180 } 1181 } 1182 1183 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c) 1184 { 1185 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE); 1186 } 1187 1188 static inline int is_hba_lunid(unsigned char scsi3addr[]) 1189 { 1190 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 1191 } 1192 1193 static inline int is_scsi_rev_5(struct ctlr_info *h) 1194 { 1195 if (!h->hba_inquiry_data) 1196 return 0; 1197 if ((h->hba_inquiry_data[2] & 0x07) == 5) 1198 return 1; 1199 return 0; 1200 } 1201 1202 static int hpsa_find_target_lun(struct ctlr_info *h, 1203 unsigned char scsi3addr[], int bus, int *target, int *lun) 1204 { 1205 /* finds an unused bus, target, lun for a new physical device 1206 * assumes h->devlock is held 1207 */ 1208 int i, found = 0; 1209 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); 1210 1211 bitmap_zero(lun_taken, HPSA_MAX_DEVICES); 1212 1213 for (i = 0; i < h->ndevices; i++) { 1214 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 1215 __set_bit(h->dev[i]->target, lun_taken); 1216 } 1217 1218 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); 1219 if (i < HPSA_MAX_DEVICES) { 1220 /* *bus = 1; */ 1221 *target = i; 1222 *lun = 0; 1223 found = 1; 1224 } 1225 return !found; 1226 } 1227 1228 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h, 1229 struct hpsa_scsi_dev_t *dev, char *description) 1230 { 1231 #define LABEL_SIZE 25 1232 char label[LABEL_SIZE]; 1233 1234 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL) 1235 return; 1236 1237 switch (dev->devtype) { 1238 case TYPE_RAID: 1239 snprintf(label, LABEL_SIZE, "controller"); 1240 break; 1241 case TYPE_ENCLOSURE: 1242 snprintf(label, LABEL_SIZE, "enclosure"); 1243 break; 1244 case TYPE_DISK: 1245 case TYPE_ZBC: 1246 if (dev->external) 1247 snprintf(label, LABEL_SIZE, "external"); 1248 else if (!is_logical_dev_addr_mode(dev->scsi3addr)) 1249 snprintf(label, LABEL_SIZE, "%s", 1250 raid_label[PHYSICAL_DRIVE]); 1251 else 1252 snprintf(label, LABEL_SIZE, "RAID-%s", 1253 dev->raid_level > RAID_UNKNOWN ? "?" : 1254 raid_label[dev->raid_level]); 1255 break; 1256 case TYPE_ROM: 1257 snprintf(label, LABEL_SIZE, "rom"); 1258 break; 1259 case TYPE_TAPE: 1260 snprintf(label, LABEL_SIZE, "tape"); 1261 break; 1262 case TYPE_MEDIUM_CHANGER: 1263 snprintf(label, LABEL_SIZE, "changer"); 1264 break; 1265 default: 1266 snprintf(label, LABEL_SIZE, "UNKNOWN"); 1267 break; 1268 } 1269 1270 dev_printk(level, &h->pdev->dev, 1271 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n", 1272 h->scsi_host->host_no, dev->bus, dev->target, dev->lun, 1273 description, 1274 scsi_device_type(dev->devtype), 1275 dev->vendor, 1276 dev->model, 1277 label, 1278 dev->offload_config ? '+' : '-', 1279 dev->offload_to_be_enabled ? '+' : '-', 1280 dev->expose_device); 1281 } 1282 1283 /* Add an entry into h->dev[] array. */ 1284 static int hpsa_scsi_add_entry(struct ctlr_info *h, 1285 struct hpsa_scsi_dev_t *device, 1286 struct hpsa_scsi_dev_t *added[], int *nadded) 1287 { 1288 /* assumes h->devlock is held */ 1289 int n = h->ndevices; 1290 int i; 1291 unsigned char addr1[8], addr2[8]; 1292 struct hpsa_scsi_dev_t *sd; 1293 1294 if (n >= HPSA_MAX_DEVICES) { 1295 dev_err(&h->pdev->dev, "too many devices, some will be " 1296 "inaccessible.\n"); 1297 return -1; 1298 } 1299 1300 /* physical devices do not have lun or target assigned until now. */ 1301 if (device->lun != -1) 1302 /* Logical device, lun is already assigned. */ 1303 goto lun_assigned; 1304 1305 /* If this device a non-zero lun of a multi-lun device 1306 * byte 4 of the 8-byte LUN addr will contain the logical 1307 * unit no, zero otherwise. 1308 */ 1309 if (device->scsi3addr[4] == 0) { 1310 /* This is not a non-zero lun of a multi-lun device */ 1311 if (hpsa_find_target_lun(h, device->scsi3addr, 1312 device->bus, &device->target, &device->lun) != 0) 1313 return -1; 1314 goto lun_assigned; 1315 } 1316 1317 /* This is a non-zero lun of a multi-lun device. 1318 * Search through our list and find the device which 1319 * has the same 8 byte LUN address, excepting byte 4 and 5. 1320 * Assign the same bus and target for this new LUN. 1321 * Use the logical unit number from the firmware. 1322 */ 1323 memcpy(addr1, device->scsi3addr, 8); 1324 addr1[4] = 0; 1325 addr1[5] = 0; 1326 for (i = 0; i < n; i++) { 1327 sd = h->dev[i]; 1328 memcpy(addr2, sd->scsi3addr, 8); 1329 addr2[4] = 0; 1330 addr2[5] = 0; 1331 /* differ only in byte 4 and 5? */ 1332 if (memcmp(addr1, addr2, 8) == 0) { 1333 device->bus = sd->bus; 1334 device->target = sd->target; 1335 device->lun = device->scsi3addr[4]; 1336 break; 1337 } 1338 } 1339 if (device->lun == -1) { 1340 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 1341 " suspect firmware bug or unsupported hardware " 1342 "configuration.\n"); 1343 return -1; 1344 } 1345 1346 lun_assigned: 1347 1348 h->dev[n] = device; 1349 h->ndevices++; 1350 added[*nadded] = device; 1351 (*nadded)++; 1352 hpsa_show_dev_msg(KERN_INFO, h, device, 1353 device->expose_device ? "added" : "masked"); 1354 return 0; 1355 } 1356 1357 /* 1358 * Called during a scan operation. 1359 * 1360 * Update an entry in h->dev[] array. 1361 */ 1362 static void hpsa_scsi_update_entry(struct ctlr_info *h, 1363 int entry, struct hpsa_scsi_dev_t *new_entry) 1364 { 1365 /* assumes h->devlock is held */ 1366 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1367 1368 /* Raid level changed. */ 1369 h->dev[entry]->raid_level = new_entry->raid_level; 1370 1371 /* 1372 * ioacccel_handle may have changed for a dual domain disk 1373 */ 1374 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1375 1376 /* Raid offload parameters changed. Careful about the ordering. */ 1377 if (new_entry->offload_config && new_entry->offload_to_be_enabled) { 1378 /* 1379 * if drive is newly offload_enabled, we want to copy the 1380 * raid map data first. If previously offload_enabled and 1381 * offload_config were set, raid map data had better be 1382 * the same as it was before. If raid map data has changed 1383 * then it had better be the case that 1384 * h->dev[entry]->offload_enabled is currently 0. 1385 */ 1386 h->dev[entry]->raid_map = new_entry->raid_map; 1387 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1388 } 1389 if (new_entry->offload_to_be_enabled) { 1390 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1391 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */ 1392 } 1393 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled; 1394 h->dev[entry]->offload_config = new_entry->offload_config; 1395 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror; 1396 h->dev[entry]->queue_depth = new_entry->queue_depth; 1397 1398 /* 1399 * We can turn off ioaccel offload now, but need to delay turning 1400 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we 1401 * can't do that until all the devices are updated. 1402 */ 1403 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled; 1404 1405 /* 1406 * turn ioaccel off immediately if told to do so. 1407 */ 1408 if (!new_entry->offload_to_be_enabled) 1409 h->dev[entry]->offload_enabled = 0; 1410 1411 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated"); 1412 } 1413 1414 /* Replace an entry from h->dev[] array. */ 1415 static void hpsa_scsi_replace_entry(struct ctlr_info *h, 1416 int entry, struct hpsa_scsi_dev_t *new_entry, 1417 struct hpsa_scsi_dev_t *added[], int *nadded, 1418 struct hpsa_scsi_dev_t *removed[], int *nremoved) 1419 { 1420 /* assumes h->devlock is held */ 1421 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1422 removed[*nremoved] = h->dev[entry]; 1423 (*nremoved)++; 1424 1425 /* 1426 * New physical devices won't have target/lun assigned yet 1427 * so we need to preserve the values in the slot we are replacing. 1428 */ 1429 if (new_entry->target == -1) { 1430 new_entry->target = h->dev[entry]->target; 1431 new_entry->lun = h->dev[entry]->lun; 1432 } 1433 1434 h->dev[entry] = new_entry; 1435 added[*nadded] = new_entry; 1436 (*nadded)++; 1437 1438 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced"); 1439 } 1440 1441 /* Remove an entry from h->dev[] array. */ 1442 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry, 1443 struct hpsa_scsi_dev_t *removed[], int *nremoved) 1444 { 1445 /* assumes h->devlock is held */ 1446 int i; 1447 struct hpsa_scsi_dev_t *sd; 1448 1449 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1450 1451 sd = h->dev[entry]; 1452 removed[*nremoved] = h->dev[entry]; 1453 (*nremoved)++; 1454 1455 for (i = entry; i < h->ndevices-1; i++) 1456 h->dev[i] = h->dev[i+1]; 1457 h->ndevices--; 1458 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed"); 1459 } 1460 1461 #define SCSI3ADDR_EQ(a, b) ( \ 1462 (a)[7] == (b)[7] && \ 1463 (a)[6] == (b)[6] && \ 1464 (a)[5] == (b)[5] && \ 1465 (a)[4] == (b)[4] && \ 1466 (a)[3] == (b)[3] && \ 1467 (a)[2] == (b)[2] && \ 1468 (a)[1] == (b)[1] && \ 1469 (a)[0] == (b)[0]) 1470 1471 static void fixup_botched_add(struct ctlr_info *h, 1472 struct hpsa_scsi_dev_t *added) 1473 { 1474 /* called when scsi_add_device fails in order to re-adjust 1475 * h->dev[] to match the mid layer's view. 1476 */ 1477 unsigned long flags; 1478 int i, j; 1479 1480 spin_lock_irqsave(&h->lock, flags); 1481 for (i = 0; i < h->ndevices; i++) { 1482 if (h->dev[i] == added) { 1483 for (j = i; j < h->ndevices-1; j++) 1484 h->dev[j] = h->dev[j+1]; 1485 h->ndevices--; 1486 break; 1487 } 1488 } 1489 spin_unlock_irqrestore(&h->lock, flags); 1490 kfree(added); 1491 } 1492 1493 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 1494 struct hpsa_scsi_dev_t *dev2) 1495 { 1496 /* we compare everything except lun and target as these 1497 * are not yet assigned. Compare parts likely 1498 * to differ first 1499 */ 1500 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 1501 sizeof(dev1->scsi3addr)) != 0) 1502 return 0; 1503 if (memcmp(dev1->device_id, dev2->device_id, 1504 sizeof(dev1->device_id)) != 0) 1505 return 0; 1506 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 1507 return 0; 1508 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 1509 return 0; 1510 if (dev1->devtype != dev2->devtype) 1511 return 0; 1512 if (dev1->bus != dev2->bus) 1513 return 0; 1514 return 1; 1515 } 1516 1517 static inline int device_updated(struct hpsa_scsi_dev_t *dev1, 1518 struct hpsa_scsi_dev_t *dev2) 1519 { 1520 /* Device attributes that can change, but don't mean 1521 * that the device is a different device, nor that the OS 1522 * needs to be told anything about the change. 1523 */ 1524 if (dev1->raid_level != dev2->raid_level) 1525 return 1; 1526 if (dev1->offload_config != dev2->offload_config) 1527 return 1; 1528 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled) 1529 return 1; 1530 if (!is_logical_dev_addr_mode(dev1->scsi3addr)) 1531 if (dev1->queue_depth != dev2->queue_depth) 1532 return 1; 1533 /* 1534 * This can happen for dual domain devices. An active 1535 * path change causes the ioaccel handle to change 1536 * 1537 * for example note the handle differences between p0 and p1 1538 * Device WWN ,WWN hash,Handle 1539 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003 1540 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004 1541 */ 1542 if (dev1->ioaccel_handle != dev2->ioaccel_handle) 1543 return 1; 1544 return 0; 1545 } 1546 1547 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 1548 * and return needle location in *index. If scsi3addr matches, but not 1549 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 1550 * location in *index. 1551 * In the case of a minor device attribute change, such as RAID level, just 1552 * return DEVICE_UPDATED, along with the updated device's location in index. 1553 * If needle not found, return DEVICE_NOT_FOUND. 1554 */ 1555 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 1556 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 1557 int *index) 1558 { 1559 int i; 1560 #define DEVICE_NOT_FOUND 0 1561 #define DEVICE_CHANGED 1 1562 #define DEVICE_SAME 2 1563 #define DEVICE_UPDATED 3 1564 if (needle == NULL) 1565 return DEVICE_NOT_FOUND; 1566 1567 for (i = 0; i < haystack_size; i++) { 1568 if (haystack[i] == NULL) /* previously removed. */ 1569 continue; 1570 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 1571 *index = i; 1572 if (device_is_the_same(needle, haystack[i])) { 1573 if (device_updated(needle, haystack[i])) 1574 return DEVICE_UPDATED; 1575 return DEVICE_SAME; 1576 } else { 1577 /* Keep offline devices offline */ 1578 if (needle->volume_offline) 1579 return DEVICE_NOT_FOUND; 1580 return DEVICE_CHANGED; 1581 } 1582 } 1583 } 1584 *index = -1; 1585 return DEVICE_NOT_FOUND; 1586 } 1587 1588 static void hpsa_monitor_offline_device(struct ctlr_info *h, 1589 unsigned char scsi3addr[]) 1590 { 1591 struct offline_device_entry *device; 1592 unsigned long flags; 1593 1594 /* Check to see if device is already on the list */ 1595 spin_lock_irqsave(&h->offline_device_lock, flags); 1596 list_for_each_entry(device, &h->offline_device_list, offline_list) { 1597 if (memcmp(device->scsi3addr, scsi3addr, 1598 sizeof(device->scsi3addr)) == 0) { 1599 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1600 return; 1601 } 1602 } 1603 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1604 1605 /* Device is not on the list, add it. */ 1606 device = kmalloc(sizeof(*device), GFP_KERNEL); 1607 if (!device) 1608 return; 1609 1610 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); 1611 spin_lock_irqsave(&h->offline_device_lock, flags); 1612 list_add_tail(&device->offline_list, &h->offline_device_list); 1613 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1614 } 1615 1616 /* Print a message explaining various offline volume states */ 1617 static void hpsa_show_volume_status(struct ctlr_info *h, 1618 struct hpsa_scsi_dev_t *sd) 1619 { 1620 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED) 1621 dev_info(&h->pdev->dev, 1622 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n", 1623 h->scsi_host->host_no, 1624 sd->bus, sd->target, sd->lun); 1625 switch (sd->volume_offline) { 1626 case HPSA_LV_OK: 1627 break; 1628 case HPSA_LV_UNDERGOING_ERASE: 1629 dev_info(&h->pdev->dev, 1630 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n", 1631 h->scsi_host->host_no, 1632 sd->bus, sd->target, sd->lun); 1633 break; 1634 case HPSA_LV_NOT_AVAILABLE: 1635 dev_info(&h->pdev->dev, 1636 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n", 1637 h->scsi_host->host_no, 1638 sd->bus, sd->target, sd->lun); 1639 break; 1640 case HPSA_LV_UNDERGOING_RPI: 1641 dev_info(&h->pdev->dev, 1642 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n", 1643 h->scsi_host->host_no, 1644 sd->bus, sd->target, sd->lun); 1645 break; 1646 case HPSA_LV_PENDING_RPI: 1647 dev_info(&h->pdev->dev, 1648 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n", 1649 h->scsi_host->host_no, 1650 sd->bus, sd->target, sd->lun); 1651 break; 1652 case HPSA_LV_ENCRYPTED_NO_KEY: 1653 dev_info(&h->pdev->dev, 1654 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n", 1655 h->scsi_host->host_no, 1656 sd->bus, sd->target, sd->lun); 1657 break; 1658 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: 1659 dev_info(&h->pdev->dev, 1660 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n", 1661 h->scsi_host->host_no, 1662 sd->bus, sd->target, sd->lun); 1663 break; 1664 case HPSA_LV_UNDERGOING_ENCRYPTION: 1665 dev_info(&h->pdev->dev, 1666 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n", 1667 h->scsi_host->host_no, 1668 sd->bus, sd->target, sd->lun); 1669 break; 1670 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: 1671 dev_info(&h->pdev->dev, 1672 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n", 1673 h->scsi_host->host_no, 1674 sd->bus, sd->target, sd->lun); 1675 break; 1676 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: 1677 dev_info(&h->pdev->dev, 1678 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n", 1679 h->scsi_host->host_no, 1680 sd->bus, sd->target, sd->lun); 1681 break; 1682 case HPSA_LV_PENDING_ENCRYPTION: 1683 dev_info(&h->pdev->dev, 1684 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n", 1685 h->scsi_host->host_no, 1686 sd->bus, sd->target, sd->lun); 1687 break; 1688 case HPSA_LV_PENDING_ENCRYPTION_REKEYING: 1689 dev_info(&h->pdev->dev, 1690 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n", 1691 h->scsi_host->host_no, 1692 sd->bus, sd->target, sd->lun); 1693 break; 1694 } 1695 } 1696 1697 /* 1698 * Figure the list of physical drive pointers for a logical drive with 1699 * raid offload configured. 1700 */ 1701 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h, 1702 struct hpsa_scsi_dev_t *dev[], int ndevices, 1703 struct hpsa_scsi_dev_t *logical_drive) 1704 { 1705 struct raid_map_data *map = &logical_drive->raid_map; 1706 struct raid_map_disk_data *dd = &map->data[0]; 1707 int i, j; 1708 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + 1709 le16_to_cpu(map->metadata_disks_per_row); 1710 int nraid_map_entries = le16_to_cpu(map->row_cnt) * 1711 le16_to_cpu(map->layout_map_count) * 1712 total_disks_per_row; 1713 int nphys_disk = le16_to_cpu(map->layout_map_count) * 1714 total_disks_per_row; 1715 int qdepth; 1716 1717 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES) 1718 nraid_map_entries = RAID_MAP_MAX_ENTRIES; 1719 1720 logical_drive->nphysical_disks = nraid_map_entries; 1721 1722 qdepth = 0; 1723 for (i = 0; i < nraid_map_entries; i++) { 1724 logical_drive->phys_disk[i] = NULL; 1725 if (!logical_drive->offload_config) 1726 continue; 1727 for (j = 0; j < ndevices; j++) { 1728 if (dev[j] == NULL) 1729 continue; 1730 if (dev[j]->devtype != TYPE_DISK && 1731 dev[j]->devtype != TYPE_ZBC) 1732 continue; 1733 if (is_logical_device(dev[j])) 1734 continue; 1735 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle) 1736 continue; 1737 1738 logical_drive->phys_disk[i] = dev[j]; 1739 if (i < nphys_disk) 1740 qdepth = min(h->nr_cmds, qdepth + 1741 logical_drive->phys_disk[i]->queue_depth); 1742 break; 1743 } 1744 1745 /* 1746 * This can happen if a physical drive is removed and 1747 * the logical drive is degraded. In that case, the RAID 1748 * map data will refer to a physical disk which isn't actually 1749 * present. And in that case offload_enabled should already 1750 * be 0, but we'll turn it off here just in case 1751 */ 1752 if (!logical_drive->phys_disk[i]) { 1753 dev_warn(&h->pdev->dev, 1754 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n", 1755 __func__, 1756 h->scsi_host->host_no, logical_drive->bus, 1757 logical_drive->target, logical_drive->lun); 1758 hpsa_turn_off_ioaccel_for_device(logical_drive); 1759 logical_drive->queue_depth = 8; 1760 } 1761 } 1762 if (nraid_map_entries) 1763 /* 1764 * This is correct for reads, too high for full stripe writes, 1765 * way too high for partial stripe writes 1766 */ 1767 logical_drive->queue_depth = qdepth; 1768 else { 1769 if (logical_drive->external) 1770 logical_drive->queue_depth = EXTERNAL_QD; 1771 else 1772 logical_drive->queue_depth = h->nr_cmds; 1773 } 1774 } 1775 1776 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h, 1777 struct hpsa_scsi_dev_t *dev[], int ndevices) 1778 { 1779 int i; 1780 1781 for (i = 0; i < ndevices; i++) { 1782 if (dev[i] == NULL) 1783 continue; 1784 if (dev[i]->devtype != TYPE_DISK && 1785 dev[i]->devtype != TYPE_ZBC) 1786 continue; 1787 if (!is_logical_device(dev[i])) 1788 continue; 1789 1790 /* 1791 * If offload is currently enabled, the RAID map and 1792 * phys_disk[] assignment *better* not be changing 1793 * because we would be changing ioaccel phsy_disk[] pointers 1794 * on a ioaccel volume processing I/O requests. 1795 * 1796 * If an ioaccel volume status changed, initially because it was 1797 * re-configured and thus underwent a transformation, or 1798 * a drive failed, we would have received a state change 1799 * request and ioaccel should have been turned off. When the 1800 * transformation completes, we get another state change 1801 * request to turn ioaccel back on. In this case, we need 1802 * to update the ioaccel information. 1803 * 1804 * Thus: If it is not currently enabled, but will be after 1805 * the scan completes, make sure the ioaccel pointers 1806 * are up to date. 1807 */ 1808 1809 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled) 1810 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]); 1811 } 1812 } 1813 1814 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 1815 { 1816 int rc = 0; 1817 1818 if (!h->scsi_host) 1819 return 1; 1820 1821 if (is_logical_device(device)) /* RAID */ 1822 rc = scsi_add_device(h->scsi_host, device->bus, 1823 device->target, device->lun); 1824 else /* HBA */ 1825 rc = hpsa_add_sas_device(h->sas_host, device); 1826 1827 return rc; 1828 } 1829 1830 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h, 1831 struct hpsa_scsi_dev_t *dev) 1832 { 1833 int i; 1834 int count = 0; 1835 1836 for (i = 0; i < h->nr_cmds; i++) { 1837 struct CommandList *c = h->cmd_pool + i; 1838 int refcount = atomic_inc_return(&c->refcount); 1839 1840 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, 1841 dev->scsi3addr)) { 1842 unsigned long flags; 1843 1844 spin_lock_irqsave(&h->lock, flags); /* Implied MB */ 1845 if (!hpsa_is_cmd_idle(c)) 1846 ++count; 1847 spin_unlock_irqrestore(&h->lock, flags); 1848 } 1849 1850 cmd_free(h, c); 1851 } 1852 1853 return count; 1854 } 1855 1856 #define NUM_WAIT 20 1857 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h, 1858 struct hpsa_scsi_dev_t *device) 1859 { 1860 int cmds = 0; 1861 int waits = 0; 1862 int num_wait = NUM_WAIT; 1863 1864 if (device->external) 1865 num_wait = HPSA_EH_PTRAID_TIMEOUT; 1866 1867 while (1) { 1868 cmds = hpsa_find_outstanding_commands_for_dev(h, device); 1869 if (cmds == 0) 1870 break; 1871 if (++waits > num_wait) 1872 break; 1873 msleep(1000); 1874 } 1875 1876 if (waits > num_wait) { 1877 dev_warn(&h->pdev->dev, 1878 "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n", 1879 __func__, 1880 h->scsi_host->host_no, 1881 device->bus, device->target, device->lun, cmds); 1882 } 1883 } 1884 1885 static void hpsa_remove_device(struct ctlr_info *h, 1886 struct hpsa_scsi_dev_t *device) 1887 { 1888 struct scsi_device *sdev = NULL; 1889 1890 if (!h->scsi_host) 1891 return; 1892 1893 /* 1894 * Allow for commands to drain 1895 */ 1896 device->removed = 1; 1897 hpsa_wait_for_outstanding_commands_for_dev(h, device); 1898 1899 if (is_logical_device(device)) { /* RAID */ 1900 sdev = scsi_device_lookup(h->scsi_host, device->bus, 1901 device->target, device->lun); 1902 if (sdev) { 1903 scsi_remove_device(sdev); 1904 scsi_device_put(sdev); 1905 } else { 1906 /* 1907 * We don't expect to get here. Future commands 1908 * to this device will get a selection timeout as 1909 * if the device were gone. 1910 */ 1911 hpsa_show_dev_msg(KERN_WARNING, h, device, 1912 "didn't find device for removal."); 1913 } 1914 } else { /* HBA */ 1915 1916 hpsa_remove_sas_device(device); 1917 } 1918 } 1919 1920 static void adjust_hpsa_scsi_table(struct ctlr_info *h, 1921 struct hpsa_scsi_dev_t *sd[], int nsds) 1922 { 1923 /* sd contains scsi3 addresses and devtypes, and inquiry 1924 * data. This function takes what's in sd to be the current 1925 * reality and updates h->dev[] to reflect that reality. 1926 */ 1927 int i, entry, device_change, changes = 0; 1928 struct hpsa_scsi_dev_t *csd; 1929 unsigned long flags; 1930 struct hpsa_scsi_dev_t **added, **removed; 1931 int nadded, nremoved; 1932 1933 /* 1934 * A reset can cause a device status to change 1935 * re-schedule the scan to see what happened. 1936 */ 1937 spin_lock_irqsave(&h->reset_lock, flags); 1938 if (h->reset_in_progress) { 1939 h->drv_req_rescan = 1; 1940 spin_unlock_irqrestore(&h->reset_lock, flags); 1941 return; 1942 } 1943 spin_unlock_irqrestore(&h->reset_lock, flags); 1944 1945 added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL); 1946 removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL); 1947 1948 if (!added || !removed) { 1949 dev_warn(&h->pdev->dev, "out of memory in " 1950 "adjust_hpsa_scsi_table\n"); 1951 goto free_and_out; 1952 } 1953 1954 spin_lock_irqsave(&h->devlock, flags); 1955 1956 /* find any devices in h->dev[] that are not in 1957 * sd[] and remove them from h->dev[], and for any 1958 * devices which have changed, remove the old device 1959 * info and add the new device info. 1960 * If minor device attributes change, just update 1961 * the existing device structure. 1962 */ 1963 i = 0; 1964 nremoved = 0; 1965 nadded = 0; 1966 while (i < h->ndevices) { 1967 csd = h->dev[i]; 1968 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 1969 if (device_change == DEVICE_NOT_FOUND) { 1970 changes++; 1971 hpsa_scsi_remove_entry(h, i, removed, &nremoved); 1972 continue; /* remove ^^^, hence i not incremented */ 1973 } else if (device_change == DEVICE_CHANGED) { 1974 changes++; 1975 hpsa_scsi_replace_entry(h, i, sd[entry], 1976 added, &nadded, removed, &nremoved); 1977 /* Set it to NULL to prevent it from being freed 1978 * at the bottom of hpsa_update_scsi_devices() 1979 */ 1980 sd[entry] = NULL; 1981 } else if (device_change == DEVICE_UPDATED) { 1982 hpsa_scsi_update_entry(h, i, sd[entry]); 1983 } 1984 i++; 1985 } 1986 1987 /* Now, make sure every device listed in sd[] is also 1988 * listed in h->dev[], adding them if they aren't found 1989 */ 1990 1991 for (i = 0; i < nsds; i++) { 1992 if (!sd[i]) /* if already added above. */ 1993 continue; 1994 1995 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS 1996 * as the SCSI mid-layer does not handle such devices well. 1997 * It relentlessly loops sending TUR at 3Hz, then READ(10) 1998 * at 160Hz, and prevents the system from coming up. 1999 */ 2000 if (sd[i]->volume_offline) { 2001 hpsa_show_volume_status(h, sd[i]); 2002 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline"); 2003 continue; 2004 } 2005 2006 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 2007 h->ndevices, &entry); 2008 if (device_change == DEVICE_NOT_FOUND) { 2009 changes++; 2010 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0) 2011 break; 2012 sd[i] = NULL; /* prevent from being freed later. */ 2013 } else if (device_change == DEVICE_CHANGED) { 2014 /* should never happen... */ 2015 changes++; 2016 dev_warn(&h->pdev->dev, 2017 "device unexpectedly changed.\n"); 2018 /* but if it does happen, we just ignore that device */ 2019 } 2020 } 2021 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices); 2022 2023 /* 2024 * Now that h->dev[]->phys_disk[] is coherent, we can enable 2025 * any logical drives that need it enabled. 2026 * 2027 * The raid map should be current by now. 2028 * 2029 * We are updating the device list used for I/O requests. 2030 */ 2031 for (i = 0; i < h->ndevices; i++) { 2032 if (h->dev[i] == NULL) 2033 continue; 2034 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled; 2035 } 2036 2037 spin_unlock_irqrestore(&h->devlock, flags); 2038 2039 /* Monitor devices which are in one of several NOT READY states to be 2040 * brought online later. This must be done without holding h->devlock, 2041 * so don't touch h->dev[] 2042 */ 2043 for (i = 0; i < nsds; i++) { 2044 if (!sd[i]) /* if already added above. */ 2045 continue; 2046 if (sd[i]->volume_offline) 2047 hpsa_monitor_offline_device(h, sd[i]->scsi3addr); 2048 } 2049 2050 /* Don't notify scsi mid layer of any changes the first time through 2051 * (or if there are no changes) scsi_scan_host will do it later the 2052 * first time through. 2053 */ 2054 if (!changes) 2055 goto free_and_out; 2056 2057 /* Notify scsi mid layer of any removed devices */ 2058 for (i = 0; i < nremoved; i++) { 2059 if (removed[i] == NULL) 2060 continue; 2061 if (removed[i]->expose_device) 2062 hpsa_remove_device(h, removed[i]); 2063 kfree(removed[i]); 2064 removed[i] = NULL; 2065 } 2066 2067 /* Notify scsi mid layer of any added devices */ 2068 for (i = 0; i < nadded; i++) { 2069 int rc = 0; 2070 2071 if (added[i] == NULL) 2072 continue; 2073 if (!(added[i]->expose_device)) 2074 continue; 2075 rc = hpsa_add_device(h, added[i]); 2076 if (!rc) 2077 continue; 2078 dev_warn(&h->pdev->dev, 2079 "addition failed %d, device not added.", rc); 2080 /* now we have to remove it from h->dev, 2081 * since it didn't get added to scsi mid layer 2082 */ 2083 fixup_botched_add(h, added[i]); 2084 h->drv_req_rescan = 1; 2085 } 2086 2087 free_and_out: 2088 kfree(added); 2089 kfree(removed); 2090 } 2091 2092 /* 2093 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * 2094 * Assume's h->devlock is held. 2095 */ 2096 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 2097 int bus, int target, int lun) 2098 { 2099 int i; 2100 struct hpsa_scsi_dev_t *sd; 2101 2102 for (i = 0; i < h->ndevices; i++) { 2103 sd = h->dev[i]; 2104 if (sd->bus == bus && sd->target == target && sd->lun == lun) 2105 return sd; 2106 } 2107 return NULL; 2108 } 2109 2110 static int hpsa_slave_alloc(struct scsi_device *sdev) 2111 { 2112 struct hpsa_scsi_dev_t *sd = NULL; 2113 unsigned long flags; 2114 struct ctlr_info *h; 2115 2116 h = sdev_to_hba(sdev); 2117 spin_lock_irqsave(&h->devlock, flags); 2118 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) { 2119 struct scsi_target *starget; 2120 struct sas_rphy *rphy; 2121 2122 starget = scsi_target(sdev); 2123 rphy = target_to_rphy(starget); 2124 sd = hpsa_find_device_by_sas_rphy(h, rphy); 2125 if (sd) { 2126 sd->target = sdev_id(sdev); 2127 sd->lun = sdev->lun; 2128 } 2129 } 2130 if (!sd) 2131 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 2132 sdev_id(sdev), sdev->lun); 2133 2134 if (sd && sd->expose_device) { 2135 atomic_set(&sd->ioaccel_cmds_out, 0); 2136 sdev->hostdata = sd; 2137 } else 2138 sdev->hostdata = NULL; 2139 spin_unlock_irqrestore(&h->devlock, flags); 2140 return 0; 2141 } 2142 2143 /* configure scsi device based on internal per-device structure */ 2144 #define CTLR_TIMEOUT (120 * HZ) 2145 static int hpsa_slave_configure(struct scsi_device *sdev) 2146 { 2147 struct hpsa_scsi_dev_t *sd; 2148 int queue_depth; 2149 2150 sd = sdev->hostdata; 2151 sdev->no_uld_attach = !sd || !sd->expose_device; 2152 2153 if (sd) { 2154 sd->was_removed = 0; 2155 queue_depth = sd->queue_depth != 0 ? 2156 sd->queue_depth : sdev->host->can_queue; 2157 if (sd->external) { 2158 queue_depth = EXTERNAL_QD; 2159 sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT; 2160 blk_queue_rq_timeout(sdev->request_queue, 2161 HPSA_EH_PTRAID_TIMEOUT); 2162 } 2163 if (is_hba_lunid(sd->scsi3addr)) { 2164 sdev->eh_timeout = CTLR_TIMEOUT; 2165 blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT); 2166 } 2167 } else { 2168 queue_depth = sdev->host->can_queue; 2169 } 2170 2171 scsi_change_queue_depth(sdev, queue_depth); 2172 2173 return 0; 2174 } 2175 2176 static void hpsa_slave_destroy(struct scsi_device *sdev) 2177 { 2178 struct hpsa_scsi_dev_t *hdev = NULL; 2179 2180 hdev = sdev->hostdata; 2181 2182 if (hdev) 2183 hdev->was_removed = 1; 2184 } 2185 2186 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h) 2187 { 2188 int i; 2189 2190 if (!h->ioaccel2_cmd_sg_list) 2191 return; 2192 for (i = 0; i < h->nr_cmds; i++) { 2193 kfree(h->ioaccel2_cmd_sg_list[i]); 2194 h->ioaccel2_cmd_sg_list[i] = NULL; 2195 } 2196 kfree(h->ioaccel2_cmd_sg_list); 2197 h->ioaccel2_cmd_sg_list = NULL; 2198 } 2199 2200 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h) 2201 { 2202 int i; 2203 2204 if (h->chainsize <= 0) 2205 return 0; 2206 2207 h->ioaccel2_cmd_sg_list = 2208 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list), 2209 GFP_KERNEL); 2210 if (!h->ioaccel2_cmd_sg_list) 2211 return -ENOMEM; 2212 for (i = 0; i < h->nr_cmds; i++) { 2213 h->ioaccel2_cmd_sg_list[i] = 2214 kmalloc_array(h->maxsgentries, 2215 sizeof(*h->ioaccel2_cmd_sg_list[i]), 2216 GFP_KERNEL); 2217 if (!h->ioaccel2_cmd_sg_list[i]) 2218 goto clean; 2219 } 2220 return 0; 2221 2222 clean: 2223 hpsa_free_ioaccel2_sg_chain_blocks(h); 2224 return -ENOMEM; 2225 } 2226 2227 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) 2228 { 2229 int i; 2230 2231 if (!h->cmd_sg_list) 2232 return; 2233 for (i = 0; i < h->nr_cmds; i++) { 2234 kfree(h->cmd_sg_list[i]); 2235 h->cmd_sg_list[i] = NULL; 2236 } 2237 kfree(h->cmd_sg_list); 2238 h->cmd_sg_list = NULL; 2239 } 2240 2241 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h) 2242 { 2243 int i; 2244 2245 if (h->chainsize <= 0) 2246 return 0; 2247 2248 h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list), 2249 GFP_KERNEL); 2250 if (!h->cmd_sg_list) 2251 return -ENOMEM; 2252 2253 for (i = 0; i < h->nr_cmds; i++) { 2254 h->cmd_sg_list[i] = kmalloc_array(h->chainsize, 2255 sizeof(*h->cmd_sg_list[i]), 2256 GFP_KERNEL); 2257 if (!h->cmd_sg_list[i]) 2258 goto clean; 2259 2260 } 2261 return 0; 2262 2263 clean: 2264 hpsa_free_sg_chain_blocks(h); 2265 return -ENOMEM; 2266 } 2267 2268 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h, 2269 struct io_accel2_cmd *cp, struct CommandList *c) 2270 { 2271 struct ioaccel2_sg_element *chain_block; 2272 u64 temp64; 2273 u32 chain_size; 2274 2275 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex]; 2276 chain_size = le32_to_cpu(cp->sg[0].length); 2277 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size, 2278 DMA_TO_DEVICE); 2279 if (dma_mapping_error(&h->pdev->dev, temp64)) { 2280 /* prevent subsequent unmapping */ 2281 cp->sg->address = 0; 2282 return -1; 2283 } 2284 cp->sg->address = cpu_to_le64(temp64); 2285 return 0; 2286 } 2287 2288 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h, 2289 struct io_accel2_cmd *cp) 2290 { 2291 struct ioaccel2_sg_element *chain_sg; 2292 u64 temp64; 2293 u32 chain_size; 2294 2295 chain_sg = cp->sg; 2296 temp64 = le64_to_cpu(chain_sg->address); 2297 chain_size = le32_to_cpu(cp->sg[0].length); 2298 dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE); 2299 } 2300 2301 static int hpsa_map_sg_chain_block(struct ctlr_info *h, 2302 struct CommandList *c) 2303 { 2304 struct SGDescriptor *chain_sg, *chain_block; 2305 u64 temp64; 2306 u32 chain_len; 2307 2308 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 2309 chain_block = h->cmd_sg_list[c->cmdindex]; 2310 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN); 2311 chain_len = sizeof(*chain_sg) * 2312 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries); 2313 chain_sg->Len = cpu_to_le32(chain_len); 2314 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len, 2315 DMA_TO_DEVICE); 2316 if (dma_mapping_error(&h->pdev->dev, temp64)) { 2317 /* prevent subsequent unmapping */ 2318 chain_sg->Addr = cpu_to_le64(0); 2319 return -1; 2320 } 2321 chain_sg->Addr = cpu_to_le64(temp64); 2322 return 0; 2323 } 2324 2325 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, 2326 struct CommandList *c) 2327 { 2328 struct SGDescriptor *chain_sg; 2329 2330 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries) 2331 return; 2332 2333 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 2334 dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr), 2335 le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE); 2336 } 2337 2338 2339 /* Decode the various types of errors on ioaccel2 path. 2340 * Return 1 for any error that should generate a RAID path retry. 2341 * Return 0 for errors that don't require a RAID path retry. 2342 */ 2343 static int handle_ioaccel_mode2_error(struct ctlr_info *h, 2344 struct CommandList *c, 2345 struct scsi_cmnd *cmd, 2346 struct io_accel2_cmd *c2, 2347 struct hpsa_scsi_dev_t *dev) 2348 { 2349 int data_len; 2350 int retry = 0; 2351 u32 ioaccel2_resid = 0; 2352 2353 switch (c2->error_data.serv_response) { 2354 case IOACCEL2_SERV_RESPONSE_COMPLETE: 2355 switch (c2->error_data.status) { 2356 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD: 2357 if (cmd) 2358 cmd->result = 0; 2359 break; 2360 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND: 2361 cmd->result |= SAM_STAT_CHECK_CONDITION; 2362 if (c2->error_data.data_present != 2363 IOACCEL2_SENSE_DATA_PRESENT) { 2364 memset(cmd->sense_buffer, 0, 2365 SCSI_SENSE_BUFFERSIZE); 2366 break; 2367 } 2368 /* copy the sense data */ 2369 data_len = c2->error_data.sense_data_len; 2370 if (data_len > SCSI_SENSE_BUFFERSIZE) 2371 data_len = SCSI_SENSE_BUFFERSIZE; 2372 if (data_len > sizeof(c2->error_data.sense_data_buff)) 2373 data_len = 2374 sizeof(c2->error_data.sense_data_buff); 2375 memcpy(cmd->sense_buffer, 2376 c2->error_data.sense_data_buff, data_len); 2377 retry = 1; 2378 break; 2379 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY: 2380 retry = 1; 2381 break; 2382 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON: 2383 retry = 1; 2384 break; 2385 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL: 2386 retry = 1; 2387 break; 2388 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED: 2389 retry = 1; 2390 break; 2391 default: 2392 retry = 1; 2393 break; 2394 } 2395 break; 2396 case IOACCEL2_SERV_RESPONSE_FAILURE: 2397 switch (c2->error_data.status) { 2398 case IOACCEL2_STATUS_SR_IO_ERROR: 2399 case IOACCEL2_STATUS_SR_IO_ABORTED: 2400 case IOACCEL2_STATUS_SR_OVERRUN: 2401 retry = 1; 2402 break; 2403 case IOACCEL2_STATUS_SR_UNDERRUN: 2404 cmd->result = (DID_OK << 16); /* host byte */ 2405 ioaccel2_resid = get_unaligned_le32( 2406 &c2->error_data.resid_cnt[0]); 2407 scsi_set_resid(cmd, ioaccel2_resid); 2408 break; 2409 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE: 2410 case IOACCEL2_STATUS_SR_INVALID_DEVICE: 2411 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED: 2412 /* 2413 * Did an HBA disk disappear? We will eventually 2414 * get a state change event from the controller but 2415 * in the meantime, we need to tell the OS that the 2416 * HBA disk is no longer there and stop I/O 2417 * from going down. This allows the potential re-insert 2418 * of the disk to get the same device node. 2419 */ 2420 if (dev->physical_device && dev->expose_device) { 2421 cmd->result = DID_NO_CONNECT << 16; 2422 dev->removed = 1; 2423 h->drv_req_rescan = 1; 2424 dev_warn(&h->pdev->dev, 2425 "%s: device is gone!\n", __func__); 2426 } else 2427 /* 2428 * Retry by sending down the RAID path. 2429 * We will get an event from ctlr to 2430 * trigger rescan regardless. 2431 */ 2432 retry = 1; 2433 break; 2434 default: 2435 retry = 1; 2436 } 2437 break; 2438 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: 2439 break; 2440 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: 2441 break; 2442 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: 2443 retry = 1; 2444 break; 2445 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: 2446 break; 2447 default: 2448 retry = 1; 2449 break; 2450 } 2451 2452 if (dev->in_reset) 2453 retry = 0; 2454 2455 return retry; /* retry on raid path? */ 2456 } 2457 2458 static void hpsa_cmd_resolve_events(struct ctlr_info *h, 2459 struct CommandList *c) 2460 { 2461 struct hpsa_scsi_dev_t *dev = c->device; 2462 2463 /* 2464 * Reset c->scsi_cmd here so that the reset handler will know 2465 * this command has completed. Then, check to see if the handler is 2466 * waiting for this command, and, if so, wake it. 2467 */ 2468 c->scsi_cmd = SCSI_CMD_IDLE; 2469 mb(); /* Declare command idle before checking for pending events. */ 2470 if (dev) { 2471 atomic_dec(&dev->commands_outstanding); 2472 if (dev->in_reset && 2473 atomic_read(&dev->commands_outstanding) <= 0) 2474 wake_up_all(&h->event_sync_wait_queue); 2475 } 2476 } 2477 2478 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h, 2479 struct CommandList *c) 2480 { 2481 hpsa_cmd_resolve_events(h, c); 2482 cmd_tagged_free(h, c); 2483 } 2484 2485 static void hpsa_cmd_free_and_done(struct ctlr_info *h, 2486 struct CommandList *c, struct scsi_cmnd *cmd) 2487 { 2488 hpsa_cmd_resolve_and_free(h, c); 2489 if (cmd) 2490 scsi_done(cmd); 2491 } 2492 2493 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c) 2494 { 2495 INIT_WORK(&c->work, hpsa_command_resubmit_worker); 2496 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work); 2497 } 2498 2499 static void process_ioaccel2_completion(struct ctlr_info *h, 2500 struct CommandList *c, struct scsi_cmnd *cmd, 2501 struct hpsa_scsi_dev_t *dev) 2502 { 2503 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 2504 2505 /* check for good status */ 2506 if (likely(c2->error_data.serv_response == 0 && 2507 c2->error_data.status == 0)) { 2508 cmd->result = 0; 2509 return hpsa_cmd_free_and_done(h, c, cmd); 2510 } 2511 2512 /* 2513 * Any RAID offload error results in retry which will use 2514 * the normal I/O path so the controller can handle whatever is 2515 * wrong. 2516 */ 2517 if (is_logical_device(dev) && 2518 c2->error_data.serv_response == 2519 IOACCEL2_SERV_RESPONSE_FAILURE) { 2520 if (c2->error_data.status == 2521 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) { 2522 hpsa_turn_off_ioaccel_for_device(dev); 2523 } 2524 2525 if (dev->in_reset) { 2526 cmd->result = DID_RESET << 16; 2527 return hpsa_cmd_free_and_done(h, c, cmd); 2528 } 2529 2530 return hpsa_retry_cmd(h, c); 2531 } 2532 2533 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev)) 2534 return hpsa_retry_cmd(h, c); 2535 2536 return hpsa_cmd_free_and_done(h, c, cmd); 2537 } 2538 2539 /* Returns 0 on success, < 0 otherwise. */ 2540 static int hpsa_evaluate_tmf_status(struct ctlr_info *h, 2541 struct CommandList *cp) 2542 { 2543 u8 tmf_status = cp->err_info->ScsiStatus; 2544 2545 switch (tmf_status) { 2546 case CISS_TMF_COMPLETE: 2547 /* 2548 * CISS_TMF_COMPLETE never happens, instead, 2549 * ei->CommandStatus == 0 for this case. 2550 */ 2551 case CISS_TMF_SUCCESS: 2552 return 0; 2553 case CISS_TMF_INVALID_FRAME: 2554 case CISS_TMF_NOT_SUPPORTED: 2555 case CISS_TMF_FAILED: 2556 case CISS_TMF_WRONG_LUN: 2557 case CISS_TMF_OVERLAPPED_TAG: 2558 break; 2559 default: 2560 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n", 2561 tmf_status); 2562 break; 2563 } 2564 return -tmf_status; 2565 } 2566 2567 static void complete_scsi_command(struct CommandList *cp) 2568 { 2569 struct scsi_cmnd *cmd; 2570 struct ctlr_info *h; 2571 struct ErrorInfo *ei; 2572 struct hpsa_scsi_dev_t *dev; 2573 struct io_accel2_cmd *c2; 2574 2575 u8 sense_key; 2576 u8 asc; /* additional sense code */ 2577 u8 ascq; /* additional sense code qualifier */ 2578 unsigned long sense_data_size; 2579 2580 ei = cp->err_info; 2581 cmd = cp->scsi_cmd; 2582 h = cp->h; 2583 2584 if (!cmd->device) { 2585 cmd->result = DID_NO_CONNECT << 16; 2586 return hpsa_cmd_free_and_done(h, cp, cmd); 2587 } 2588 2589 dev = cmd->device->hostdata; 2590 if (!dev) { 2591 cmd->result = DID_NO_CONNECT << 16; 2592 return hpsa_cmd_free_and_done(h, cp, cmd); 2593 } 2594 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex]; 2595 2596 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 2597 if ((cp->cmd_type == CMD_SCSI) && 2598 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries)) 2599 hpsa_unmap_sg_chain_block(h, cp); 2600 2601 if ((cp->cmd_type == CMD_IOACCEL2) && 2602 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN)) 2603 hpsa_unmap_ioaccel2_sg_chain_block(h, c2); 2604 2605 cmd->result = (DID_OK << 16); /* host byte */ 2606 2607 /* SCSI command has already been cleaned up in SML */ 2608 if (dev->was_removed) { 2609 hpsa_cmd_resolve_and_free(h, cp); 2610 return; 2611 } 2612 2613 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) { 2614 if (dev->physical_device && dev->expose_device && 2615 dev->removed) { 2616 cmd->result = DID_NO_CONNECT << 16; 2617 return hpsa_cmd_free_and_done(h, cp, cmd); 2618 } 2619 if (likely(cp->phys_disk != NULL)) 2620 atomic_dec(&cp->phys_disk->ioaccel_cmds_out); 2621 } 2622 2623 /* 2624 * We check for lockup status here as it may be set for 2625 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by 2626 * fail_all_oustanding_cmds() 2627 */ 2628 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) { 2629 /* DID_NO_CONNECT will prevent a retry */ 2630 cmd->result = DID_NO_CONNECT << 16; 2631 return hpsa_cmd_free_and_done(h, cp, cmd); 2632 } 2633 2634 if (cp->cmd_type == CMD_IOACCEL2) 2635 return process_ioaccel2_completion(h, cp, cmd, dev); 2636 2637 scsi_set_resid(cmd, ei->ResidualCnt); 2638 if (ei->CommandStatus == 0) 2639 return hpsa_cmd_free_and_done(h, cp, cmd); 2640 2641 /* For I/O accelerator commands, copy over some fields to the normal 2642 * CISS header used below for error handling. 2643 */ 2644 if (cp->cmd_type == CMD_IOACCEL1) { 2645 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; 2646 cp->Header.SGList = scsi_sg_count(cmd); 2647 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList); 2648 cp->Request.CDBLen = le16_to_cpu(c->io_flags) & 2649 IOACCEL1_IOFLAGS_CDBLEN_MASK; 2650 cp->Header.tag = c->tag; 2651 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); 2652 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); 2653 2654 /* Any RAID offload error results in retry which will use 2655 * the normal I/O path so the controller can handle whatever's 2656 * wrong. 2657 */ 2658 if (is_logical_device(dev)) { 2659 if (ei->CommandStatus == CMD_IOACCEL_DISABLED) 2660 dev->offload_enabled = 0; 2661 return hpsa_retry_cmd(h, cp); 2662 } 2663 } 2664 2665 /* an error has occurred */ 2666 switch (ei->CommandStatus) { 2667 2668 case CMD_TARGET_STATUS: 2669 cmd->result |= ei->ScsiStatus; 2670 /* copy the sense data */ 2671 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) 2672 sense_data_size = SCSI_SENSE_BUFFERSIZE; 2673 else 2674 sense_data_size = sizeof(ei->SenseInfo); 2675 if (ei->SenseLen < sense_data_size) 2676 sense_data_size = ei->SenseLen; 2677 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); 2678 if (ei->ScsiStatus) 2679 decode_sense_data(ei->SenseInfo, sense_data_size, 2680 &sense_key, &asc, &ascq); 2681 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 2682 switch (sense_key) { 2683 case ABORTED_COMMAND: 2684 cmd->result |= DID_SOFT_ERROR << 16; 2685 break; 2686 case UNIT_ATTENTION: 2687 if (asc == 0x3F && ascq == 0x0E) 2688 h->drv_req_rescan = 1; 2689 break; 2690 case ILLEGAL_REQUEST: 2691 if (asc == 0x25 && ascq == 0x00) { 2692 dev->removed = 1; 2693 cmd->result = DID_NO_CONNECT << 16; 2694 } 2695 break; 2696 } 2697 break; 2698 } 2699 /* Problem was not a check condition 2700 * Pass it up to the upper layers... 2701 */ 2702 if (ei->ScsiStatus) { 2703 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 2704 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 2705 "Returning result: 0x%x\n", 2706 cp, ei->ScsiStatus, 2707 sense_key, asc, ascq, 2708 cmd->result); 2709 } else { /* scsi status is zero??? How??? */ 2710 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 2711 "Returning no connection.\n", cp), 2712 2713 /* Ordinarily, this case should never happen, 2714 * but there is a bug in some released firmware 2715 * revisions that allows it to happen if, for 2716 * example, a 4100 backplane loses power and 2717 * the tape drive is in it. We assume that 2718 * it's a fatal error of some kind because we 2719 * can't show that it wasn't. We will make it 2720 * look like selection timeout since that is 2721 * the most common reason for this to occur, 2722 * and it's severe enough. 2723 */ 2724 2725 cmd->result = DID_NO_CONNECT << 16; 2726 } 2727 break; 2728 2729 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 2730 break; 2731 case CMD_DATA_OVERRUN: 2732 dev_warn(&h->pdev->dev, 2733 "CDB %16phN data overrun\n", cp->Request.CDB); 2734 break; 2735 case CMD_INVALID: { 2736 /* print_bytes(cp, sizeof(*cp), 1, 0); 2737 print_cmd(cp); */ 2738 /* We get CMD_INVALID if you address a non-existent device 2739 * instead of a selection timeout (no response). You will 2740 * see this if you yank out a drive, then try to access it. 2741 * This is kind of a shame because it means that any other 2742 * CMD_INVALID (e.g. driver bug) will get interpreted as a 2743 * missing target. */ 2744 cmd->result = DID_NO_CONNECT << 16; 2745 } 2746 break; 2747 case CMD_PROTOCOL_ERR: 2748 cmd->result = DID_ERROR << 16; 2749 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n", 2750 cp->Request.CDB); 2751 break; 2752 case CMD_HARDWARE_ERR: 2753 cmd->result = DID_ERROR << 16; 2754 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n", 2755 cp->Request.CDB); 2756 break; 2757 case CMD_CONNECTION_LOST: 2758 cmd->result = DID_ERROR << 16; 2759 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n", 2760 cp->Request.CDB); 2761 break; 2762 case CMD_ABORTED: 2763 cmd->result = DID_ABORT << 16; 2764 break; 2765 case CMD_ABORT_FAILED: 2766 cmd->result = DID_ERROR << 16; 2767 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n", 2768 cp->Request.CDB); 2769 break; 2770 case CMD_UNSOLICITED_ABORT: 2771 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ 2772 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n", 2773 cp->Request.CDB); 2774 break; 2775 case CMD_TIMEOUT: 2776 cmd->result = DID_TIME_OUT << 16; 2777 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n", 2778 cp->Request.CDB); 2779 break; 2780 case CMD_UNABORTABLE: 2781 cmd->result = DID_ERROR << 16; 2782 dev_warn(&h->pdev->dev, "Command unabortable\n"); 2783 break; 2784 case CMD_TMF_STATUS: 2785 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */ 2786 cmd->result = DID_ERROR << 16; 2787 break; 2788 case CMD_IOACCEL_DISABLED: 2789 /* This only handles the direct pass-through case since RAID 2790 * offload is handled above. Just attempt a retry. 2791 */ 2792 cmd->result = DID_SOFT_ERROR << 16; 2793 dev_warn(&h->pdev->dev, 2794 "cp %p had HP SSD Smart Path error\n", cp); 2795 break; 2796 default: 2797 cmd->result = DID_ERROR << 16; 2798 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 2799 cp, ei->CommandStatus); 2800 } 2801 2802 return hpsa_cmd_free_and_done(h, cp, cmd); 2803 } 2804 2805 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c, 2806 int sg_used, enum dma_data_direction data_direction) 2807 { 2808 int i; 2809 2810 for (i = 0; i < sg_used; i++) 2811 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr), 2812 le32_to_cpu(c->SG[i].Len), 2813 data_direction); 2814 } 2815 2816 static int hpsa_map_one(struct pci_dev *pdev, 2817 struct CommandList *cp, 2818 unsigned char *buf, 2819 size_t buflen, 2820 enum dma_data_direction data_direction) 2821 { 2822 u64 addr64; 2823 2824 if (buflen == 0 || data_direction == DMA_NONE) { 2825 cp->Header.SGList = 0; 2826 cp->Header.SGTotal = cpu_to_le16(0); 2827 return 0; 2828 } 2829 2830 addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction); 2831 if (dma_mapping_error(&pdev->dev, addr64)) { 2832 /* Prevent subsequent unmap of something never mapped */ 2833 cp->Header.SGList = 0; 2834 cp->Header.SGTotal = cpu_to_le16(0); 2835 return -1; 2836 } 2837 cp->SG[0].Addr = cpu_to_le64(addr64); 2838 cp->SG[0].Len = cpu_to_le32(buflen); 2839 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */ 2840 cp->Header.SGList = 1; /* no. SGs contig in this cmd */ 2841 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */ 2842 return 0; 2843 } 2844 2845 #define NO_TIMEOUT ((unsigned long) -1) 2846 #define DEFAULT_TIMEOUT 30000 /* milliseconds */ 2847 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 2848 struct CommandList *c, int reply_queue, unsigned long timeout_msecs) 2849 { 2850 DECLARE_COMPLETION_ONSTACK(wait); 2851 2852 c->waiting = &wait; 2853 __enqueue_cmd_and_start_io(h, c, reply_queue); 2854 if (timeout_msecs == NO_TIMEOUT) { 2855 /* TODO: get rid of this no-timeout thing */ 2856 wait_for_completion_io(&wait); 2857 return IO_OK; 2858 } 2859 if (!wait_for_completion_io_timeout(&wait, 2860 msecs_to_jiffies(timeout_msecs))) { 2861 dev_warn(&h->pdev->dev, "Command timed out.\n"); 2862 return -ETIMEDOUT; 2863 } 2864 return IO_OK; 2865 } 2866 2867 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c, 2868 int reply_queue, unsigned long timeout_msecs) 2869 { 2870 if (unlikely(lockup_detected(h))) { 2871 c->err_info->CommandStatus = CMD_CTLR_LOCKUP; 2872 return IO_OK; 2873 } 2874 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs); 2875 } 2876 2877 static u32 lockup_detected(struct ctlr_info *h) 2878 { 2879 int cpu; 2880 u32 rc, *lockup_detected; 2881 2882 cpu = get_cpu(); 2883 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); 2884 rc = *lockup_detected; 2885 put_cpu(); 2886 return rc; 2887 } 2888 2889 #define MAX_DRIVER_CMD_RETRIES 25 2890 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 2891 struct CommandList *c, enum dma_data_direction data_direction, 2892 unsigned long timeout_msecs) 2893 { 2894 int backoff_time = 10, retry_count = 0; 2895 int rc; 2896 2897 do { 2898 memset(c->err_info, 0, sizeof(*c->err_info)); 2899 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 2900 timeout_msecs); 2901 if (rc) 2902 break; 2903 retry_count++; 2904 if (retry_count > 3) { 2905 msleep(backoff_time); 2906 if (backoff_time < 1000) 2907 backoff_time *= 2; 2908 } 2909 } while ((check_for_unit_attention(h, c) || 2910 check_for_busy(h, c)) && 2911 retry_count <= MAX_DRIVER_CMD_RETRIES); 2912 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 2913 if (retry_count > MAX_DRIVER_CMD_RETRIES) 2914 rc = -EIO; 2915 return rc; 2916 } 2917 2918 static void hpsa_print_cmd(struct ctlr_info *h, char *txt, 2919 struct CommandList *c) 2920 { 2921 const u8 *cdb = c->Request.CDB; 2922 const u8 *lun = c->Header.LUN.LunAddrBytes; 2923 2924 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n", 2925 txt, lun, cdb); 2926 } 2927 2928 static void hpsa_scsi_interpret_error(struct ctlr_info *h, 2929 struct CommandList *cp) 2930 { 2931 const struct ErrorInfo *ei = cp->err_info; 2932 struct device *d = &cp->h->pdev->dev; 2933 u8 sense_key, asc, ascq; 2934 int sense_len; 2935 2936 switch (ei->CommandStatus) { 2937 case CMD_TARGET_STATUS: 2938 if (ei->SenseLen > sizeof(ei->SenseInfo)) 2939 sense_len = sizeof(ei->SenseInfo); 2940 else 2941 sense_len = ei->SenseLen; 2942 decode_sense_data(ei->SenseInfo, sense_len, 2943 &sense_key, &asc, &ascq); 2944 hpsa_print_cmd(h, "SCSI status", cp); 2945 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) 2946 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n", 2947 sense_key, asc, ascq); 2948 else 2949 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus); 2950 if (ei->ScsiStatus == 0) 2951 dev_warn(d, "SCSI status is abnormally zero. " 2952 "(probably indicates selection timeout " 2953 "reported incorrectly due to a known " 2954 "firmware bug, circa July, 2001.)\n"); 2955 break; 2956 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 2957 break; 2958 case CMD_DATA_OVERRUN: 2959 hpsa_print_cmd(h, "overrun condition", cp); 2960 break; 2961 case CMD_INVALID: { 2962 /* controller unfortunately reports SCSI passthru's 2963 * to non-existent targets as invalid commands. 2964 */ 2965 hpsa_print_cmd(h, "invalid command", cp); 2966 dev_warn(d, "probably means device no longer present\n"); 2967 } 2968 break; 2969 case CMD_PROTOCOL_ERR: 2970 hpsa_print_cmd(h, "protocol error", cp); 2971 break; 2972 case CMD_HARDWARE_ERR: 2973 hpsa_print_cmd(h, "hardware error", cp); 2974 break; 2975 case CMD_CONNECTION_LOST: 2976 hpsa_print_cmd(h, "connection lost", cp); 2977 break; 2978 case CMD_ABORTED: 2979 hpsa_print_cmd(h, "aborted", cp); 2980 break; 2981 case CMD_ABORT_FAILED: 2982 hpsa_print_cmd(h, "abort failed", cp); 2983 break; 2984 case CMD_UNSOLICITED_ABORT: 2985 hpsa_print_cmd(h, "unsolicited abort", cp); 2986 break; 2987 case CMD_TIMEOUT: 2988 hpsa_print_cmd(h, "timed out", cp); 2989 break; 2990 case CMD_UNABORTABLE: 2991 hpsa_print_cmd(h, "unabortable", cp); 2992 break; 2993 case CMD_CTLR_LOCKUP: 2994 hpsa_print_cmd(h, "controller lockup detected", cp); 2995 break; 2996 default: 2997 hpsa_print_cmd(h, "unknown status", cp); 2998 dev_warn(d, "Unknown command status %x\n", 2999 ei->CommandStatus); 3000 } 3001 } 3002 3003 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr, 3004 u8 page, u8 *buf, size_t bufsize) 3005 { 3006 int rc = IO_OK; 3007 struct CommandList *c; 3008 struct ErrorInfo *ei; 3009 3010 c = cmd_alloc(h); 3011 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize, 3012 page, scsi3addr, TYPE_CMD)) { 3013 rc = -1; 3014 goto out; 3015 } 3016 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3017 NO_TIMEOUT); 3018 if (rc) 3019 goto out; 3020 ei = c->err_info; 3021 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3022 hpsa_scsi_interpret_error(h, c); 3023 rc = -1; 3024 } 3025 out: 3026 cmd_free(h, c); 3027 return rc; 3028 } 3029 3030 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h, 3031 u8 *scsi3addr) 3032 { 3033 u8 *buf; 3034 u64 sa = 0; 3035 int rc = 0; 3036 3037 buf = kzalloc(1024, GFP_KERNEL); 3038 if (!buf) 3039 return 0; 3040 3041 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC, 3042 buf, 1024); 3043 3044 if (rc) 3045 goto out; 3046 3047 sa = get_unaligned_be64(buf+12); 3048 3049 out: 3050 kfree(buf); 3051 return sa; 3052 } 3053 3054 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 3055 u16 page, unsigned char *buf, 3056 unsigned char bufsize) 3057 { 3058 int rc = IO_OK; 3059 struct CommandList *c; 3060 struct ErrorInfo *ei; 3061 3062 c = cmd_alloc(h); 3063 3064 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, 3065 page, scsi3addr, TYPE_CMD)) { 3066 rc = -1; 3067 goto out; 3068 } 3069 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3070 NO_TIMEOUT); 3071 if (rc) 3072 goto out; 3073 ei = c->err_info; 3074 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3075 hpsa_scsi_interpret_error(h, c); 3076 rc = -1; 3077 } 3078 out: 3079 cmd_free(h, c); 3080 return rc; 3081 } 3082 3083 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, 3084 u8 reset_type, int reply_queue) 3085 { 3086 int rc = IO_OK; 3087 struct CommandList *c; 3088 struct ErrorInfo *ei; 3089 3090 c = cmd_alloc(h); 3091 c->device = dev; 3092 3093 /* fill_cmd can't fail here, no data buffer to map. */ 3094 (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG); 3095 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); 3096 if (rc) { 3097 dev_warn(&h->pdev->dev, "Failed to send reset command\n"); 3098 goto out; 3099 } 3100 /* no unmap needed here because no data xfer. */ 3101 3102 ei = c->err_info; 3103 if (ei->CommandStatus != 0) { 3104 hpsa_scsi_interpret_error(h, c); 3105 rc = -1; 3106 } 3107 out: 3108 cmd_free(h, c); 3109 return rc; 3110 } 3111 3112 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, 3113 struct hpsa_scsi_dev_t *dev, 3114 unsigned char *scsi3addr) 3115 { 3116 int i; 3117 bool match = false; 3118 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 3119 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; 3120 3121 if (hpsa_is_cmd_idle(c)) 3122 return false; 3123 3124 switch (c->cmd_type) { 3125 case CMD_SCSI: 3126 case CMD_IOCTL_PEND: 3127 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes, 3128 sizeof(c->Header.LUN.LunAddrBytes)); 3129 break; 3130 3131 case CMD_IOACCEL1: 3132 case CMD_IOACCEL2: 3133 if (c->phys_disk == dev) { 3134 /* HBA mode match */ 3135 match = true; 3136 } else { 3137 /* Possible RAID mode -- check each phys dev. */ 3138 /* FIXME: Do we need to take out a lock here? If 3139 * so, we could just call hpsa_get_pdisk_of_ioaccel2() 3140 * instead. */ 3141 for (i = 0; i < dev->nphysical_disks && !match; i++) { 3142 /* FIXME: an alternate test might be 3143 * 3144 * match = dev->phys_disk[i]->ioaccel_handle 3145 * == c2->scsi_nexus; */ 3146 match = dev->phys_disk[i] == c->phys_disk; 3147 } 3148 } 3149 break; 3150 3151 case IOACCEL2_TMF: 3152 for (i = 0; i < dev->nphysical_disks && !match; i++) { 3153 match = dev->phys_disk[i]->ioaccel_handle == 3154 le32_to_cpu(ac->it_nexus); 3155 } 3156 break; 3157 3158 case 0: /* The command is in the middle of being initialized. */ 3159 match = false; 3160 break; 3161 3162 default: 3163 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n", 3164 c->cmd_type); 3165 BUG(); 3166 } 3167 3168 return match; 3169 } 3170 3171 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, 3172 u8 reset_type, int reply_queue) 3173 { 3174 int rc = 0; 3175 3176 /* We can really only handle one reset at a time */ 3177 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) { 3178 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n"); 3179 return -EINTR; 3180 } 3181 3182 rc = hpsa_send_reset(h, dev, reset_type, reply_queue); 3183 if (!rc) { 3184 /* incremented by sending the reset request */ 3185 atomic_dec(&dev->commands_outstanding); 3186 wait_event(h->event_sync_wait_queue, 3187 atomic_read(&dev->commands_outstanding) <= 0 || 3188 lockup_detected(h)); 3189 } 3190 3191 if (unlikely(lockup_detected(h))) { 3192 dev_warn(&h->pdev->dev, 3193 "Controller lockup detected during reset wait\n"); 3194 rc = -ENODEV; 3195 } 3196 3197 if (!rc) 3198 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0); 3199 3200 mutex_unlock(&h->reset_mutex); 3201 return rc; 3202 } 3203 3204 static void hpsa_get_raid_level(struct ctlr_info *h, 3205 unsigned char *scsi3addr, unsigned char *raid_level) 3206 { 3207 int rc; 3208 unsigned char *buf; 3209 3210 *raid_level = RAID_UNKNOWN; 3211 buf = kzalloc(64, GFP_KERNEL); 3212 if (!buf) 3213 return; 3214 3215 if (!hpsa_vpd_page_supported(h, scsi3addr, 3216 HPSA_VPD_LV_DEVICE_GEOMETRY)) 3217 goto exit; 3218 3219 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 3220 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64); 3221 3222 if (rc == 0) 3223 *raid_level = buf[8]; 3224 if (*raid_level > RAID_UNKNOWN) 3225 *raid_level = RAID_UNKNOWN; 3226 exit: 3227 kfree(buf); 3228 return; 3229 } 3230 3231 #define HPSA_MAP_DEBUG 3232 #ifdef HPSA_MAP_DEBUG 3233 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, 3234 struct raid_map_data *map_buff) 3235 { 3236 struct raid_map_disk_data *dd = &map_buff->data[0]; 3237 int map, row, col; 3238 u16 map_cnt, row_cnt, disks_per_row; 3239 3240 if (rc != 0) 3241 return; 3242 3243 /* Show details only if debugging has been activated. */ 3244 if (h->raid_offload_debug < 2) 3245 return; 3246 3247 dev_info(&h->pdev->dev, "structure_size = %u\n", 3248 le32_to_cpu(map_buff->structure_size)); 3249 dev_info(&h->pdev->dev, "volume_blk_size = %u\n", 3250 le32_to_cpu(map_buff->volume_blk_size)); 3251 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", 3252 le64_to_cpu(map_buff->volume_blk_cnt)); 3253 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", 3254 map_buff->phys_blk_shift); 3255 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", 3256 map_buff->parity_rotation_shift); 3257 dev_info(&h->pdev->dev, "strip_size = %u\n", 3258 le16_to_cpu(map_buff->strip_size)); 3259 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", 3260 le64_to_cpu(map_buff->disk_starting_blk)); 3261 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", 3262 le64_to_cpu(map_buff->disk_blk_cnt)); 3263 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", 3264 le16_to_cpu(map_buff->data_disks_per_row)); 3265 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", 3266 le16_to_cpu(map_buff->metadata_disks_per_row)); 3267 dev_info(&h->pdev->dev, "row_cnt = %u\n", 3268 le16_to_cpu(map_buff->row_cnt)); 3269 dev_info(&h->pdev->dev, "layout_map_count = %u\n", 3270 le16_to_cpu(map_buff->layout_map_count)); 3271 dev_info(&h->pdev->dev, "flags = 0x%x\n", 3272 le16_to_cpu(map_buff->flags)); 3273 dev_info(&h->pdev->dev, "encryption = %s\n", 3274 le16_to_cpu(map_buff->flags) & 3275 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF"); 3276 dev_info(&h->pdev->dev, "dekindex = %u\n", 3277 le16_to_cpu(map_buff->dekindex)); 3278 map_cnt = le16_to_cpu(map_buff->layout_map_count); 3279 for (map = 0; map < map_cnt; map++) { 3280 dev_info(&h->pdev->dev, "Map%u:\n", map); 3281 row_cnt = le16_to_cpu(map_buff->row_cnt); 3282 for (row = 0; row < row_cnt; row++) { 3283 dev_info(&h->pdev->dev, " Row%u:\n", row); 3284 disks_per_row = 3285 le16_to_cpu(map_buff->data_disks_per_row); 3286 for (col = 0; col < disks_per_row; col++, dd++) 3287 dev_info(&h->pdev->dev, 3288 " D%02u: h=0x%04x xor=%u,%u\n", 3289 col, dd->ioaccel_handle, 3290 dd->xor_mult[0], dd->xor_mult[1]); 3291 disks_per_row = 3292 le16_to_cpu(map_buff->metadata_disks_per_row); 3293 for (col = 0; col < disks_per_row; col++, dd++) 3294 dev_info(&h->pdev->dev, 3295 " M%02u: h=0x%04x xor=%u,%u\n", 3296 col, dd->ioaccel_handle, 3297 dd->xor_mult[0], dd->xor_mult[1]); 3298 } 3299 } 3300 } 3301 #else 3302 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, 3303 __attribute__((unused)) int rc, 3304 __attribute__((unused)) struct raid_map_data *map_buff) 3305 { 3306 } 3307 #endif 3308 3309 static int hpsa_get_raid_map(struct ctlr_info *h, 3310 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) 3311 { 3312 int rc = 0; 3313 struct CommandList *c; 3314 struct ErrorInfo *ei; 3315 3316 c = cmd_alloc(h); 3317 3318 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, 3319 sizeof(this_device->raid_map), 0, 3320 scsi3addr, TYPE_CMD)) { 3321 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n"); 3322 cmd_free(h, c); 3323 return -1; 3324 } 3325 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3326 NO_TIMEOUT); 3327 if (rc) 3328 goto out; 3329 ei = c->err_info; 3330 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3331 hpsa_scsi_interpret_error(h, c); 3332 rc = -1; 3333 goto out; 3334 } 3335 cmd_free(h, c); 3336 3337 /* @todo in the future, dynamically allocate RAID map memory */ 3338 if (le32_to_cpu(this_device->raid_map.structure_size) > 3339 sizeof(this_device->raid_map)) { 3340 dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); 3341 rc = -1; 3342 } 3343 hpsa_debug_map_buff(h, rc, &this_device->raid_map); 3344 return rc; 3345 out: 3346 cmd_free(h, c); 3347 return rc; 3348 } 3349 3350 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h, 3351 unsigned char scsi3addr[], u16 bmic_device_index, 3352 struct bmic_sense_subsystem_info *buf, size_t bufsize) 3353 { 3354 int rc = IO_OK; 3355 struct CommandList *c; 3356 struct ErrorInfo *ei; 3357 3358 c = cmd_alloc(h); 3359 3360 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize, 3361 0, RAID_CTLR_LUNID, TYPE_CMD); 3362 if (rc) 3363 goto out; 3364 3365 c->Request.CDB[2] = bmic_device_index & 0xff; 3366 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; 3367 3368 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3369 NO_TIMEOUT); 3370 if (rc) 3371 goto out; 3372 ei = c->err_info; 3373 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3374 hpsa_scsi_interpret_error(h, c); 3375 rc = -1; 3376 } 3377 out: 3378 cmd_free(h, c); 3379 return rc; 3380 } 3381 3382 static int hpsa_bmic_id_controller(struct ctlr_info *h, 3383 struct bmic_identify_controller *buf, size_t bufsize) 3384 { 3385 int rc = IO_OK; 3386 struct CommandList *c; 3387 struct ErrorInfo *ei; 3388 3389 c = cmd_alloc(h); 3390 3391 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize, 3392 0, RAID_CTLR_LUNID, TYPE_CMD); 3393 if (rc) 3394 goto out; 3395 3396 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3397 NO_TIMEOUT); 3398 if (rc) 3399 goto out; 3400 ei = c->err_info; 3401 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3402 hpsa_scsi_interpret_error(h, c); 3403 rc = -1; 3404 } 3405 out: 3406 cmd_free(h, c); 3407 return rc; 3408 } 3409 3410 static int hpsa_bmic_id_physical_device(struct ctlr_info *h, 3411 unsigned char scsi3addr[], u16 bmic_device_index, 3412 struct bmic_identify_physical_device *buf, size_t bufsize) 3413 { 3414 int rc = IO_OK; 3415 struct CommandList *c; 3416 struct ErrorInfo *ei; 3417 3418 c = cmd_alloc(h); 3419 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize, 3420 0, RAID_CTLR_LUNID, TYPE_CMD); 3421 if (rc) 3422 goto out; 3423 3424 c->Request.CDB[2] = bmic_device_index & 0xff; 3425 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; 3426 3427 hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3428 NO_TIMEOUT); 3429 ei = c->err_info; 3430 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3431 hpsa_scsi_interpret_error(h, c); 3432 rc = -1; 3433 } 3434 out: 3435 cmd_free(h, c); 3436 3437 return rc; 3438 } 3439 3440 /* 3441 * get enclosure information 3442 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number 3443 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure 3444 * Uses id_physical_device to determine the box_index. 3445 */ 3446 static void hpsa_get_enclosure_info(struct ctlr_info *h, 3447 unsigned char *scsi3addr, 3448 struct ReportExtendedLUNdata *rlep, int rle_index, 3449 struct hpsa_scsi_dev_t *encl_dev) 3450 { 3451 int rc = -1; 3452 struct CommandList *c = NULL; 3453 struct ErrorInfo *ei = NULL; 3454 struct bmic_sense_storage_box_params *bssbp = NULL; 3455 struct bmic_identify_physical_device *id_phys = NULL; 3456 struct ext_report_lun_entry *rle; 3457 u16 bmic_device_index = 0; 3458 3459 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN) 3460 return; 3461 3462 rle = &rlep->LUN[rle_index]; 3463 3464 encl_dev->eli = 3465 hpsa_get_enclosure_logical_identifier(h, scsi3addr); 3466 3467 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]); 3468 3469 if (encl_dev->target == -1 || encl_dev->lun == -1) { 3470 rc = IO_OK; 3471 goto out; 3472 } 3473 3474 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) { 3475 rc = IO_OK; 3476 goto out; 3477 } 3478 3479 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL); 3480 if (!bssbp) 3481 goto out; 3482 3483 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 3484 if (!id_phys) 3485 goto out; 3486 3487 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index, 3488 id_phys, sizeof(*id_phys)); 3489 if (rc) { 3490 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n", 3491 __func__, encl_dev->external, bmic_device_index); 3492 goto out; 3493 } 3494 3495 c = cmd_alloc(h); 3496 3497 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp, 3498 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD); 3499 3500 if (rc) 3501 goto out; 3502 3503 if (id_phys->phys_connector[1] == 'E') 3504 c->Request.CDB[5] = id_phys->box_index; 3505 else 3506 c->Request.CDB[5] = 0; 3507 3508 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3509 NO_TIMEOUT); 3510 if (rc) 3511 goto out; 3512 3513 ei = c->err_info; 3514 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3515 rc = -1; 3516 goto out; 3517 } 3518 3519 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port; 3520 memcpy(&encl_dev->phys_connector[id_phys->active_path_number], 3521 bssbp->phys_connector, sizeof(bssbp->phys_connector)); 3522 3523 rc = IO_OK; 3524 out: 3525 kfree(bssbp); 3526 kfree(id_phys); 3527 3528 if (c) 3529 cmd_free(h, c); 3530 3531 if (rc != IO_OK) 3532 hpsa_show_dev_msg(KERN_INFO, h, encl_dev, 3533 "Error, could not get enclosure information"); 3534 } 3535 3536 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h, 3537 unsigned char *scsi3addr) 3538 { 3539 struct ReportExtendedLUNdata *physdev; 3540 u32 nphysicals; 3541 u64 sa = 0; 3542 int i; 3543 3544 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL); 3545 if (!physdev) 3546 return 0; 3547 3548 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { 3549 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 3550 kfree(physdev); 3551 return 0; 3552 } 3553 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24; 3554 3555 for (i = 0; i < nphysicals; i++) 3556 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) { 3557 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]); 3558 break; 3559 } 3560 3561 kfree(physdev); 3562 3563 return sa; 3564 } 3565 3566 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr, 3567 struct hpsa_scsi_dev_t *dev) 3568 { 3569 int rc; 3570 u64 sa = 0; 3571 3572 if (is_hba_lunid(scsi3addr)) { 3573 struct bmic_sense_subsystem_info *ssi; 3574 3575 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL); 3576 if (!ssi) 3577 return; 3578 3579 rc = hpsa_bmic_sense_subsystem_information(h, 3580 scsi3addr, 0, ssi, sizeof(*ssi)); 3581 if (rc == 0) { 3582 sa = get_unaligned_be64(ssi->primary_world_wide_id); 3583 h->sas_address = sa; 3584 } 3585 3586 kfree(ssi); 3587 } else 3588 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr); 3589 3590 dev->sas_address = sa; 3591 } 3592 3593 static void hpsa_ext_ctrl_present(struct ctlr_info *h, 3594 struct ReportExtendedLUNdata *physdev) 3595 { 3596 u32 nphysicals; 3597 int i; 3598 3599 if (h->discovery_polling) 3600 return; 3601 3602 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1; 3603 3604 for (i = 0; i < nphysicals; i++) { 3605 if (physdev->LUN[i].device_type == 3606 BMIC_DEVICE_TYPE_CONTROLLER 3607 && !is_hba_lunid(physdev->LUN[i].lunid)) { 3608 dev_info(&h->pdev->dev, 3609 "External controller present, activate discovery polling and disable rld caching\n"); 3610 hpsa_disable_rld_caching(h); 3611 h->discovery_polling = 1; 3612 break; 3613 } 3614 } 3615 } 3616 3617 /* Get a device id from inquiry page 0x83 */ 3618 static bool hpsa_vpd_page_supported(struct ctlr_info *h, 3619 unsigned char scsi3addr[], u8 page) 3620 { 3621 int rc; 3622 int i; 3623 int pages; 3624 unsigned char *buf, bufsize; 3625 3626 buf = kzalloc(256, GFP_KERNEL); 3627 if (!buf) 3628 return false; 3629 3630 /* Get the size of the page list first */ 3631 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3632 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, 3633 buf, HPSA_VPD_HEADER_SZ); 3634 if (rc != 0) 3635 goto exit_unsupported; 3636 pages = buf[3]; 3637 if ((pages + HPSA_VPD_HEADER_SZ) <= 255) 3638 bufsize = pages + HPSA_VPD_HEADER_SZ; 3639 else 3640 bufsize = 255; 3641 3642 /* Get the whole VPD page list */ 3643 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3644 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, 3645 buf, bufsize); 3646 if (rc != 0) 3647 goto exit_unsupported; 3648 3649 pages = buf[3]; 3650 for (i = 1; i <= pages; i++) 3651 if (buf[3 + i] == page) 3652 goto exit_supported; 3653 exit_unsupported: 3654 kfree(buf); 3655 return false; 3656 exit_supported: 3657 kfree(buf); 3658 return true; 3659 } 3660 3661 /* 3662 * Called during a scan operation. 3663 * Sets ioaccel status on the new device list, not the existing device list 3664 * 3665 * The device list used during I/O will be updated later in 3666 * adjust_hpsa_scsi_table. 3667 */ 3668 static void hpsa_get_ioaccel_status(struct ctlr_info *h, 3669 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) 3670 { 3671 int rc; 3672 unsigned char *buf; 3673 u8 ioaccel_status; 3674 3675 this_device->offload_config = 0; 3676 this_device->offload_enabled = 0; 3677 this_device->offload_to_be_enabled = 0; 3678 3679 buf = kzalloc(64, GFP_KERNEL); 3680 if (!buf) 3681 return; 3682 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS)) 3683 goto out; 3684 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3685 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); 3686 if (rc != 0) 3687 goto out; 3688 3689 #define IOACCEL_STATUS_BYTE 4 3690 #define OFFLOAD_CONFIGURED_BIT 0x01 3691 #define OFFLOAD_ENABLED_BIT 0x02 3692 ioaccel_status = buf[IOACCEL_STATUS_BYTE]; 3693 this_device->offload_config = 3694 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); 3695 if (this_device->offload_config) { 3696 bool offload_enabled = 3697 !!(ioaccel_status & OFFLOAD_ENABLED_BIT); 3698 /* 3699 * Check to see if offload can be enabled. 3700 */ 3701 if (offload_enabled) { 3702 rc = hpsa_get_raid_map(h, scsi3addr, this_device); 3703 if (rc) /* could not load raid_map */ 3704 goto out; 3705 this_device->offload_to_be_enabled = 1; 3706 } 3707 } 3708 3709 out: 3710 kfree(buf); 3711 return; 3712 } 3713 3714 /* Get the device id from inquiry page 0x83 */ 3715 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 3716 unsigned char *device_id, int index, int buflen) 3717 { 3718 int rc; 3719 unsigned char *buf; 3720 3721 /* Does controller have VPD for device id? */ 3722 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID)) 3723 return 1; /* not supported */ 3724 3725 buf = kzalloc(64, GFP_KERNEL); 3726 if (!buf) 3727 return -ENOMEM; 3728 3729 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 3730 HPSA_VPD_LV_DEVICE_ID, buf, 64); 3731 if (rc == 0) { 3732 if (buflen > 16) 3733 buflen = 16; 3734 memcpy(device_id, &buf[8], buflen); 3735 } 3736 3737 kfree(buf); 3738 3739 return rc; /*0 - got id, otherwise, didn't */ 3740 } 3741 3742 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 3743 void *buf, int bufsize, 3744 int extended_response) 3745 { 3746 int rc = IO_OK; 3747 struct CommandList *c; 3748 unsigned char scsi3addr[8]; 3749 struct ErrorInfo *ei; 3750 3751 c = cmd_alloc(h); 3752 3753 /* address the controller */ 3754 memset(scsi3addr, 0, sizeof(scsi3addr)); 3755 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 3756 buf, bufsize, 0, scsi3addr, TYPE_CMD)) { 3757 rc = -EAGAIN; 3758 goto out; 3759 } 3760 if (extended_response) 3761 c->Request.CDB[1] = extended_response; 3762 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3763 NO_TIMEOUT); 3764 if (rc) 3765 goto out; 3766 ei = c->err_info; 3767 if (ei->CommandStatus != 0 && 3768 ei->CommandStatus != CMD_DATA_UNDERRUN) { 3769 hpsa_scsi_interpret_error(h, c); 3770 rc = -EIO; 3771 } else { 3772 struct ReportLUNdata *rld = buf; 3773 3774 if (rld->extended_response_flag != extended_response) { 3775 if (!h->legacy_board) { 3776 dev_err(&h->pdev->dev, 3777 "report luns requested format %u, got %u\n", 3778 extended_response, 3779 rld->extended_response_flag); 3780 rc = -EINVAL; 3781 } else 3782 rc = -EOPNOTSUPP; 3783 } 3784 } 3785 out: 3786 cmd_free(h, c); 3787 return rc; 3788 } 3789 3790 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 3791 struct ReportExtendedLUNdata *buf, int bufsize) 3792 { 3793 int rc; 3794 struct ReportLUNdata *lbuf; 3795 3796 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize, 3797 HPSA_REPORT_PHYS_EXTENDED); 3798 if (!rc || rc != -EOPNOTSUPP) 3799 return rc; 3800 3801 /* REPORT PHYS EXTENDED is not supported */ 3802 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL); 3803 if (!lbuf) 3804 return -ENOMEM; 3805 3806 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0); 3807 if (!rc) { 3808 int i; 3809 u32 nphys; 3810 3811 /* Copy ReportLUNdata header */ 3812 memcpy(buf, lbuf, 8); 3813 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8; 3814 for (i = 0; i < nphys; i++) 3815 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8); 3816 } 3817 kfree(lbuf); 3818 return rc; 3819 } 3820 3821 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 3822 struct ReportLUNdata *buf, int bufsize) 3823 { 3824 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 3825 } 3826 3827 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 3828 int bus, int target, int lun) 3829 { 3830 device->bus = bus; 3831 device->target = target; 3832 device->lun = lun; 3833 } 3834 3835 /* Use VPD inquiry to get details of volume status */ 3836 static int hpsa_get_volume_status(struct ctlr_info *h, 3837 unsigned char scsi3addr[]) 3838 { 3839 int rc; 3840 int status; 3841 int size; 3842 unsigned char *buf; 3843 3844 buf = kzalloc(64, GFP_KERNEL); 3845 if (!buf) 3846 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3847 3848 /* Does controller have VPD for logical volume status? */ 3849 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) 3850 goto exit_failed; 3851 3852 /* Get the size of the VPD return buffer */ 3853 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, 3854 buf, HPSA_VPD_HEADER_SZ); 3855 if (rc != 0) 3856 goto exit_failed; 3857 size = buf[3]; 3858 3859 /* Now get the whole VPD buffer */ 3860 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, 3861 buf, size + HPSA_VPD_HEADER_SZ); 3862 if (rc != 0) 3863 goto exit_failed; 3864 status = buf[4]; /* status byte */ 3865 3866 kfree(buf); 3867 return status; 3868 exit_failed: 3869 kfree(buf); 3870 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3871 } 3872 3873 /* Determine offline status of a volume. 3874 * Return either: 3875 * 0 (not offline) 3876 * 0xff (offline for unknown reasons) 3877 * # (integer code indicating one of several NOT READY states 3878 * describing why a volume is to be kept offline) 3879 */ 3880 static unsigned char hpsa_volume_offline(struct ctlr_info *h, 3881 unsigned char scsi3addr[]) 3882 { 3883 struct CommandList *c; 3884 unsigned char *sense; 3885 u8 sense_key, asc, ascq; 3886 int sense_len; 3887 int rc, ldstat = 0; 3888 #define ASC_LUN_NOT_READY 0x04 3889 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04 3890 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02 3891 3892 c = cmd_alloc(h); 3893 3894 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD); 3895 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 3896 NO_TIMEOUT); 3897 if (rc) { 3898 cmd_free(h, c); 3899 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3900 } 3901 sense = c->err_info->SenseInfo; 3902 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) 3903 sense_len = sizeof(c->err_info->SenseInfo); 3904 else 3905 sense_len = c->err_info->SenseLen; 3906 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq); 3907 cmd_free(h, c); 3908 3909 /* Determine the reason for not ready state */ 3910 ldstat = hpsa_get_volume_status(h, scsi3addr); 3911 3912 /* Keep volume offline in certain cases: */ 3913 switch (ldstat) { 3914 case HPSA_LV_FAILED: 3915 case HPSA_LV_UNDERGOING_ERASE: 3916 case HPSA_LV_NOT_AVAILABLE: 3917 case HPSA_LV_UNDERGOING_RPI: 3918 case HPSA_LV_PENDING_RPI: 3919 case HPSA_LV_ENCRYPTED_NO_KEY: 3920 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: 3921 case HPSA_LV_UNDERGOING_ENCRYPTION: 3922 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: 3923 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: 3924 return ldstat; 3925 case HPSA_VPD_LV_STATUS_UNSUPPORTED: 3926 /* If VPD status page isn't available, 3927 * use ASC/ASCQ to determine state 3928 */ 3929 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) || 3930 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ)) 3931 return ldstat; 3932 break; 3933 default: 3934 break; 3935 } 3936 return HPSA_LV_OK; 3937 } 3938 3939 static int hpsa_update_device_info(struct ctlr_info *h, 3940 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, 3941 unsigned char *is_OBDR_device) 3942 { 3943 3944 #define OBDR_SIG_OFFSET 43 3945 #define OBDR_TAPE_SIG "$DR-10" 3946 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) 3947 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) 3948 3949 unsigned char *inq_buff; 3950 unsigned char *obdr_sig; 3951 int rc = 0; 3952 3953 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 3954 if (!inq_buff) { 3955 rc = -ENOMEM; 3956 goto bail_out; 3957 } 3958 3959 /* Do an inquiry to the device to see what it is. */ 3960 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 3961 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 3962 dev_err(&h->pdev->dev, 3963 "%s: inquiry failed, device will be skipped.\n", 3964 __func__); 3965 rc = HPSA_INQUIRY_FAILED; 3966 goto bail_out; 3967 } 3968 3969 scsi_sanitize_inquiry_string(&inq_buff[8], 8); 3970 scsi_sanitize_inquiry_string(&inq_buff[16], 16); 3971 3972 this_device->devtype = (inq_buff[0] & 0x1f); 3973 memcpy(this_device->scsi3addr, scsi3addr, 8); 3974 memcpy(this_device->vendor, &inq_buff[8], 3975 sizeof(this_device->vendor)); 3976 memcpy(this_device->model, &inq_buff[16], 3977 sizeof(this_device->model)); 3978 this_device->rev = inq_buff[2]; 3979 memset(this_device->device_id, 0, 3980 sizeof(this_device->device_id)); 3981 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8, 3982 sizeof(this_device->device_id)) < 0) { 3983 dev_err(&h->pdev->dev, 3984 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n", 3985 h->ctlr, __func__, 3986 h->scsi_host->host_no, 3987 this_device->bus, this_device->target, 3988 this_device->lun, 3989 scsi_device_type(this_device->devtype), 3990 this_device->model); 3991 rc = HPSA_LV_FAILED; 3992 goto bail_out; 3993 } 3994 3995 if ((this_device->devtype == TYPE_DISK || 3996 this_device->devtype == TYPE_ZBC) && 3997 is_logical_dev_addr_mode(scsi3addr)) { 3998 unsigned char volume_offline; 3999 4000 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 4001 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) 4002 hpsa_get_ioaccel_status(h, scsi3addr, this_device); 4003 volume_offline = hpsa_volume_offline(h, scsi3addr); 4004 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED && 4005 h->legacy_board) { 4006 /* 4007 * Legacy boards might not support volume status 4008 */ 4009 dev_info(&h->pdev->dev, 4010 "C0:T%d:L%d Volume status not available, assuming online.\n", 4011 this_device->target, this_device->lun); 4012 volume_offline = 0; 4013 } 4014 this_device->volume_offline = volume_offline; 4015 if (volume_offline == HPSA_LV_FAILED) { 4016 rc = HPSA_LV_FAILED; 4017 dev_err(&h->pdev->dev, 4018 "%s: LV failed, device will be skipped.\n", 4019 __func__); 4020 goto bail_out; 4021 } 4022 } else { 4023 this_device->raid_level = RAID_UNKNOWN; 4024 this_device->offload_config = 0; 4025 hpsa_turn_off_ioaccel_for_device(this_device); 4026 this_device->hba_ioaccel_enabled = 0; 4027 this_device->volume_offline = 0; 4028 this_device->queue_depth = h->nr_cmds; 4029 } 4030 4031 if (this_device->external) 4032 this_device->queue_depth = EXTERNAL_QD; 4033 4034 if (is_OBDR_device) { 4035 /* See if this is a One-Button-Disaster-Recovery device 4036 * by looking for "$DR-10" at offset 43 in inquiry data. 4037 */ 4038 obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; 4039 *is_OBDR_device = (this_device->devtype == TYPE_ROM && 4040 strncmp(obdr_sig, OBDR_TAPE_SIG, 4041 OBDR_SIG_LEN) == 0); 4042 } 4043 kfree(inq_buff); 4044 return 0; 4045 4046 bail_out: 4047 kfree(inq_buff); 4048 return rc; 4049 } 4050 4051 /* 4052 * Helper function to assign bus, target, lun mapping of devices. 4053 * Logical drive target and lun are assigned at this time, but 4054 * physical device lun and target assignment are deferred (assigned 4055 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 4056 */ 4057 static void figure_bus_target_lun(struct ctlr_info *h, 4058 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) 4059 { 4060 u32 lunid = get_unaligned_le32(lunaddrbytes); 4061 4062 if (!is_logical_dev_addr_mode(lunaddrbytes)) { 4063 /* physical device, target and lun filled in later */ 4064 if (is_hba_lunid(lunaddrbytes)) { 4065 int bus = HPSA_HBA_BUS; 4066 4067 if (!device->rev) 4068 bus = HPSA_LEGACY_HBA_BUS; 4069 hpsa_set_bus_target_lun(device, 4070 bus, 0, lunid & 0x3fff); 4071 } else 4072 /* defer target, lun assignment for physical devices */ 4073 hpsa_set_bus_target_lun(device, 4074 HPSA_PHYSICAL_DEVICE_BUS, -1, -1); 4075 return; 4076 } 4077 /* It's a logical device */ 4078 if (device->external) { 4079 hpsa_set_bus_target_lun(device, 4080 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff, 4081 lunid & 0x00ff); 4082 return; 4083 } 4084 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS, 4085 0, lunid & 0x3fff); 4086 } 4087 4088 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position, 4089 int i, int nphysicals, int nlocal_logicals) 4090 { 4091 /* In report logicals, local logicals are listed first, 4092 * then any externals. 4093 */ 4094 int logicals_start = nphysicals + (raid_ctlr_position == 0); 4095 4096 if (i == raid_ctlr_position) 4097 return 0; 4098 4099 if (i < logicals_start) 4100 return 0; 4101 4102 /* i is in logicals range, but still within local logicals */ 4103 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals) 4104 return 0; 4105 4106 return 1; /* it's an external lun */ 4107 } 4108 4109 /* 4110 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 4111 * logdev. The number of luns in physdev and logdev are returned in 4112 * *nphysicals and *nlogicals, respectively. 4113 * Returns 0 on success, -1 otherwise. 4114 */ 4115 static int hpsa_gather_lun_info(struct ctlr_info *h, 4116 struct ReportExtendedLUNdata *physdev, u32 *nphysicals, 4117 struct ReportLUNdata *logdev, u32 *nlogicals) 4118 { 4119 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { 4120 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 4121 return -1; 4122 } 4123 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24; 4124 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 4125 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n", 4126 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN); 4127 *nphysicals = HPSA_MAX_PHYS_LUN; 4128 } 4129 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) { 4130 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 4131 return -1; 4132 } 4133 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 4134 /* Reject Logicals in excess of our max capability. */ 4135 if (*nlogicals > HPSA_MAX_LUN) { 4136 dev_warn(&h->pdev->dev, 4137 "maximum logical LUNs (%d) exceeded. " 4138 "%d LUNs ignored.\n", HPSA_MAX_LUN, 4139 *nlogicals - HPSA_MAX_LUN); 4140 *nlogicals = HPSA_MAX_LUN; 4141 } 4142 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 4143 dev_warn(&h->pdev->dev, 4144 "maximum logical + physical LUNs (%d) exceeded. " 4145 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 4146 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 4147 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 4148 } 4149 return 0; 4150 } 4151 4152 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, 4153 int i, int nphysicals, int nlogicals, 4154 struct ReportExtendedLUNdata *physdev_list, 4155 struct ReportLUNdata *logdev_list) 4156 { 4157 /* Helper function, figure out where the LUN ID info is coming from 4158 * given index i, lists of physical and logical devices, where in 4159 * the list the raid controller is supposed to appear (first or last) 4160 */ 4161 4162 int logicals_start = nphysicals + (raid_ctlr_position == 0); 4163 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 4164 4165 if (i == raid_ctlr_position) 4166 return RAID_CTLR_LUNID; 4167 4168 if (i < logicals_start) 4169 return &physdev_list->LUN[i - 4170 (raid_ctlr_position == 0)].lunid[0]; 4171 4172 if (i < last_device) 4173 return &logdev_list->LUN[i - nphysicals - 4174 (raid_ctlr_position == 0)][0]; 4175 BUG(); 4176 return NULL; 4177 } 4178 4179 /* get physical drive ioaccel handle and queue depth */ 4180 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h, 4181 struct hpsa_scsi_dev_t *dev, 4182 struct ReportExtendedLUNdata *rlep, int rle_index, 4183 struct bmic_identify_physical_device *id_phys) 4184 { 4185 int rc; 4186 struct ext_report_lun_entry *rle; 4187 4188 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN) 4189 return; 4190 4191 rle = &rlep->LUN[rle_index]; 4192 4193 dev->ioaccel_handle = rle->ioaccel_handle; 4194 if ((rle->device_flags & 0x08) && dev->ioaccel_handle) 4195 dev->hba_ioaccel_enabled = 1; 4196 memset(id_phys, 0, sizeof(*id_phys)); 4197 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0], 4198 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys, 4199 sizeof(*id_phys)); 4200 if (!rc) 4201 /* Reserve space for FW operations */ 4202 #define DRIVE_CMDS_RESERVED_FOR_FW 2 4203 #define DRIVE_QUEUE_DEPTH 7 4204 dev->queue_depth = 4205 le16_to_cpu(id_phys->current_queue_depth_limit) - 4206 DRIVE_CMDS_RESERVED_FOR_FW; 4207 else 4208 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */ 4209 } 4210 4211 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device, 4212 struct ReportExtendedLUNdata *rlep, int rle_index, 4213 struct bmic_identify_physical_device *id_phys) 4214 { 4215 struct ext_report_lun_entry *rle; 4216 4217 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN) 4218 return; 4219 4220 rle = &rlep->LUN[rle_index]; 4221 4222 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle) 4223 this_device->hba_ioaccel_enabled = 1; 4224 4225 memcpy(&this_device->active_path_index, 4226 &id_phys->active_path_number, 4227 sizeof(this_device->active_path_index)); 4228 memcpy(&this_device->path_map, 4229 &id_phys->redundant_path_present_map, 4230 sizeof(this_device->path_map)); 4231 memcpy(&this_device->box, 4232 &id_phys->alternate_paths_phys_box_on_port, 4233 sizeof(this_device->box)); 4234 memcpy(&this_device->phys_connector, 4235 &id_phys->alternate_paths_phys_connector, 4236 sizeof(this_device->phys_connector)); 4237 memcpy(&this_device->bay, 4238 &id_phys->phys_bay_in_box, 4239 sizeof(this_device->bay)); 4240 } 4241 4242 /* get number of local logical disks. */ 4243 static int hpsa_set_local_logical_count(struct ctlr_info *h, 4244 struct bmic_identify_controller *id_ctlr, 4245 u32 *nlocals) 4246 { 4247 int rc; 4248 4249 if (!id_ctlr) { 4250 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n", 4251 __func__); 4252 return -ENOMEM; 4253 } 4254 memset(id_ctlr, 0, sizeof(*id_ctlr)); 4255 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr)); 4256 if (!rc) 4257 if (id_ctlr->configured_logical_drive_count < 255) 4258 *nlocals = id_ctlr->configured_logical_drive_count; 4259 else 4260 *nlocals = le16_to_cpu( 4261 id_ctlr->extended_logical_unit_count); 4262 else 4263 *nlocals = -1; 4264 return rc; 4265 } 4266 4267 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes) 4268 { 4269 struct bmic_identify_physical_device *id_phys; 4270 bool is_spare = false; 4271 int rc; 4272 4273 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 4274 if (!id_phys) 4275 return false; 4276 4277 rc = hpsa_bmic_id_physical_device(h, 4278 lunaddrbytes, 4279 GET_BMIC_DRIVE_NUMBER(lunaddrbytes), 4280 id_phys, sizeof(*id_phys)); 4281 if (rc == 0) 4282 is_spare = (id_phys->more_flags >> 6) & 0x01; 4283 4284 kfree(id_phys); 4285 return is_spare; 4286 } 4287 4288 #define RPL_DEV_FLAG_NON_DISK 0x1 4289 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2 4290 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4 4291 4292 #define BMIC_DEVICE_TYPE_ENCLOSURE 6 4293 4294 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes, 4295 struct ext_report_lun_entry *rle) 4296 { 4297 u8 device_flags; 4298 u8 device_type; 4299 4300 if (!MASKED_DEVICE(lunaddrbytes)) 4301 return false; 4302 4303 device_flags = rle->device_flags; 4304 device_type = rle->device_type; 4305 4306 if (device_flags & RPL_DEV_FLAG_NON_DISK) { 4307 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE) 4308 return false; 4309 return true; 4310 } 4311 4312 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED)) 4313 return false; 4314 4315 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK) 4316 return false; 4317 4318 /* 4319 * Spares may be spun down, we do not want to 4320 * do an Inquiry to a RAID set spare drive as 4321 * that would have them spun up, that is a 4322 * performance hit because I/O to the RAID device 4323 * stops while the spin up occurs which can take 4324 * over 50 seconds. 4325 */ 4326 if (hpsa_is_disk_spare(h, lunaddrbytes)) 4327 return true; 4328 4329 return false; 4330 } 4331 4332 static void hpsa_update_scsi_devices(struct ctlr_info *h) 4333 { 4334 /* the idea here is we could get notified 4335 * that some devices have changed, so we do a report 4336 * physical luns and report logical luns cmd, and adjust 4337 * our list of devices accordingly. 4338 * 4339 * The scsi3addr's of devices won't change so long as the 4340 * adapter is not reset. That means we can rescan and 4341 * tell which devices we already know about, vs. new 4342 * devices, vs. disappearing devices. 4343 */ 4344 struct ReportExtendedLUNdata *physdev_list = NULL; 4345 struct ReportLUNdata *logdev_list = NULL; 4346 struct bmic_identify_physical_device *id_phys = NULL; 4347 struct bmic_identify_controller *id_ctlr = NULL; 4348 u32 nphysicals = 0; 4349 u32 nlogicals = 0; 4350 u32 nlocal_logicals = 0; 4351 u32 ndev_allocated = 0; 4352 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 4353 int ncurrent = 0; 4354 int i, ndevs_to_allocate; 4355 int raid_ctlr_position; 4356 bool physical_device; 4357 4358 currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL); 4359 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL); 4360 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL); 4361 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 4362 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 4363 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL); 4364 4365 if (!currentsd || !physdev_list || !logdev_list || 4366 !tmpdevice || !id_phys || !id_ctlr) { 4367 dev_err(&h->pdev->dev, "out of memory\n"); 4368 goto out; 4369 } 4370 4371 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */ 4372 4373 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals, 4374 logdev_list, &nlogicals)) { 4375 h->drv_req_rescan = 1; 4376 goto out; 4377 } 4378 4379 /* Set number of local logicals (non PTRAID) */ 4380 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) { 4381 dev_warn(&h->pdev->dev, 4382 "%s: Can't determine number of local logical devices.\n", 4383 __func__); 4384 } 4385 4386 /* We might see up to the maximum number of logical and physical disks 4387 * plus external target devices, and a device for the local RAID 4388 * controller. 4389 */ 4390 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; 4391 4392 hpsa_ext_ctrl_present(h, physdev_list); 4393 4394 /* Allocate the per device structures */ 4395 for (i = 0; i < ndevs_to_allocate; i++) { 4396 if (i >= HPSA_MAX_DEVICES) { 4397 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." 4398 " %d devices ignored.\n", HPSA_MAX_DEVICES, 4399 ndevs_to_allocate - HPSA_MAX_DEVICES); 4400 break; 4401 } 4402 4403 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 4404 if (!currentsd[i]) { 4405 h->drv_req_rescan = 1; 4406 goto out; 4407 } 4408 ndev_allocated++; 4409 } 4410 4411 if (is_scsi_rev_5(h)) 4412 raid_ctlr_position = 0; 4413 else 4414 raid_ctlr_position = nphysicals + nlogicals; 4415 4416 /* adjust our table of devices */ 4417 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 4418 u8 *lunaddrbytes, is_OBDR = 0; 4419 int rc = 0; 4420 int phys_dev_index = i - (raid_ctlr_position == 0); 4421 bool skip_device = false; 4422 4423 memset(tmpdevice, 0, sizeof(*tmpdevice)); 4424 4425 physical_device = i < nphysicals + (raid_ctlr_position == 0); 4426 4427 /* Figure out where the LUN ID info is coming from */ 4428 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 4429 i, nphysicals, nlogicals, physdev_list, logdev_list); 4430 4431 /* Determine if this is a lun from an external target array */ 4432 tmpdevice->external = 4433 figure_external_status(h, raid_ctlr_position, i, 4434 nphysicals, nlocal_logicals); 4435 4436 /* 4437 * Skip over some devices such as a spare. 4438 */ 4439 if (phys_dev_index >= 0 && !tmpdevice->external && 4440 physical_device) { 4441 skip_device = hpsa_skip_device(h, lunaddrbytes, 4442 &physdev_list->LUN[phys_dev_index]); 4443 if (skip_device) 4444 continue; 4445 } 4446 4447 /* Get device type, vendor, model, device id, raid_map */ 4448 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice, 4449 &is_OBDR); 4450 if (rc == -ENOMEM) { 4451 dev_warn(&h->pdev->dev, 4452 "Out of memory, rescan deferred.\n"); 4453 h->drv_req_rescan = 1; 4454 goto out; 4455 } 4456 if (rc) { 4457 h->drv_req_rescan = 1; 4458 continue; 4459 } 4460 4461 figure_bus_target_lun(h, lunaddrbytes, tmpdevice); 4462 this_device = currentsd[ncurrent]; 4463 4464 *this_device = *tmpdevice; 4465 this_device->physical_device = physical_device; 4466 4467 /* 4468 * Expose all devices except for physical devices that 4469 * are masked. 4470 */ 4471 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device) 4472 this_device->expose_device = 0; 4473 else 4474 this_device->expose_device = 1; 4475 4476 4477 /* 4478 * Get the SAS address for physical devices that are exposed. 4479 */ 4480 if (this_device->physical_device && this_device->expose_device) 4481 hpsa_get_sas_address(h, lunaddrbytes, this_device); 4482 4483 switch (this_device->devtype) { 4484 case TYPE_ROM: 4485 /* We don't *really* support actual CD-ROM devices, 4486 * just "One Button Disaster Recovery" tape drive 4487 * which temporarily pretends to be a CD-ROM drive. 4488 * So we check that the device is really an OBDR tape 4489 * device by checking for "$DR-10" in bytes 43-48 of 4490 * the inquiry data. 4491 */ 4492 if (is_OBDR) 4493 ncurrent++; 4494 break; 4495 case TYPE_DISK: 4496 case TYPE_ZBC: 4497 if (this_device->physical_device) { 4498 /* The disk is in HBA mode. */ 4499 /* Never use RAID mapper in HBA mode. */ 4500 this_device->offload_enabled = 0; 4501 hpsa_get_ioaccel_drive_info(h, this_device, 4502 physdev_list, phys_dev_index, id_phys); 4503 hpsa_get_path_info(this_device, 4504 physdev_list, phys_dev_index, id_phys); 4505 } 4506 ncurrent++; 4507 break; 4508 case TYPE_TAPE: 4509 case TYPE_MEDIUM_CHANGER: 4510 ncurrent++; 4511 break; 4512 case TYPE_ENCLOSURE: 4513 if (!this_device->external) 4514 hpsa_get_enclosure_info(h, lunaddrbytes, 4515 physdev_list, phys_dev_index, 4516 this_device); 4517 ncurrent++; 4518 break; 4519 case TYPE_RAID: 4520 /* Only present the Smartarray HBA as a RAID controller. 4521 * If it's a RAID controller other than the HBA itself 4522 * (an external RAID controller, MSA500 or similar) 4523 * don't present it. 4524 */ 4525 if (!is_hba_lunid(lunaddrbytes)) 4526 break; 4527 ncurrent++; 4528 break; 4529 default: 4530 break; 4531 } 4532 if (ncurrent >= HPSA_MAX_DEVICES) 4533 break; 4534 } 4535 4536 if (h->sas_host == NULL) { 4537 int rc = 0; 4538 4539 rc = hpsa_add_sas_host(h); 4540 if (rc) { 4541 dev_warn(&h->pdev->dev, 4542 "Could not add sas host %d\n", rc); 4543 goto out; 4544 } 4545 } 4546 4547 adjust_hpsa_scsi_table(h, currentsd, ncurrent); 4548 out: 4549 kfree(tmpdevice); 4550 for (i = 0; i < ndev_allocated; i++) 4551 kfree(currentsd[i]); 4552 kfree(currentsd); 4553 kfree(physdev_list); 4554 kfree(logdev_list); 4555 kfree(id_ctlr); 4556 kfree(id_phys); 4557 } 4558 4559 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc, 4560 struct scatterlist *sg) 4561 { 4562 u64 addr64 = (u64) sg_dma_address(sg); 4563 unsigned int len = sg_dma_len(sg); 4564 4565 desc->Addr = cpu_to_le64(addr64); 4566 desc->Len = cpu_to_le32(len); 4567 desc->Ext = 0; 4568 } 4569 4570 /* 4571 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 4572 * dma mapping and fills in the scatter gather entries of the 4573 * hpsa command, cp. 4574 */ 4575 static int hpsa_scatter_gather(struct ctlr_info *h, 4576 struct CommandList *cp, 4577 struct scsi_cmnd *cmd) 4578 { 4579 struct scatterlist *sg; 4580 int use_sg, i, sg_limit, chained; 4581 struct SGDescriptor *curr_sg; 4582 4583 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 4584 4585 use_sg = scsi_dma_map(cmd); 4586 if (use_sg < 0) 4587 return use_sg; 4588 4589 if (!use_sg) 4590 goto sglist_finished; 4591 4592 /* 4593 * If the number of entries is greater than the max for a single list, 4594 * then we have a chained list; we will set up all but one entry in the 4595 * first list (the last entry is saved for link information); 4596 * otherwise, we don't have a chained list and we'll set up at each of 4597 * the entries in the one list. 4598 */ 4599 curr_sg = cp->SG; 4600 chained = use_sg > h->max_cmd_sg_entries; 4601 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg; 4602 scsi_for_each_sg(cmd, sg, sg_limit, i) { 4603 hpsa_set_sg_descriptor(curr_sg, sg); 4604 curr_sg++; 4605 } 4606 4607 if (chained) { 4608 /* 4609 * Continue with the chained list. Set curr_sg to the chained 4610 * list. Modify the limit to the total count less the entries 4611 * we've already set up. Resume the scan at the list entry 4612 * where the previous loop left off. 4613 */ 4614 curr_sg = h->cmd_sg_list[cp->cmdindex]; 4615 sg_limit = use_sg - sg_limit; 4616 for_each_sg(sg, sg, sg_limit, i) { 4617 hpsa_set_sg_descriptor(curr_sg, sg); 4618 curr_sg++; 4619 } 4620 } 4621 4622 /* Back the pointer up to the last entry and mark it as "last". */ 4623 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST); 4624 4625 if (use_sg + chained > h->maxSG) 4626 h->maxSG = use_sg + chained; 4627 4628 if (chained) { 4629 cp->Header.SGList = h->max_cmd_sg_entries; 4630 cp->Header.SGTotal = cpu_to_le16(use_sg + 1); 4631 if (hpsa_map_sg_chain_block(h, cp)) { 4632 scsi_dma_unmap(cmd); 4633 return -1; 4634 } 4635 return 0; 4636 } 4637 4638 sglist_finished: 4639 4640 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 4641 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */ 4642 return 0; 4643 } 4644 4645 static inline void warn_zero_length_transfer(struct ctlr_info *h, 4646 u8 *cdb, int cdb_len, 4647 const char *func) 4648 { 4649 dev_warn(&h->pdev->dev, 4650 "%s: Blocking zero-length request: CDB:%*phN\n", 4651 func, cdb_len, cdb); 4652 } 4653 4654 #define IO_ACCEL_INELIGIBLE 1 4655 /* zero-length transfers trigger hardware errors. */ 4656 static bool is_zero_length_transfer(u8 *cdb) 4657 { 4658 u32 block_cnt; 4659 4660 /* Block zero-length transfer sizes on certain commands. */ 4661 switch (cdb[0]) { 4662 case READ_10: 4663 case WRITE_10: 4664 case VERIFY: /* 0x2F */ 4665 case WRITE_VERIFY: /* 0x2E */ 4666 block_cnt = get_unaligned_be16(&cdb[7]); 4667 break; 4668 case READ_12: 4669 case WRITE_12: 4670 case VERIFY_12: /* 0xAF */ 4671 case WRITE_VERIFY_12: /* 0xAE */ 4672 block_cnt = get_unaligned_be32(&cdb[6]); 4673 break; 4674 case READ_16: 4675 case WRITE_16: 4676 case VERIFY_16: /* 0x8F */ 4677 block_cnt = get_unaligned_be32(&cdb[10]); 4678 break; 4679 default: 4680 return false; 4681 } 4682 4683 return block_cnt == 0; 4684 } 4685 4686 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) 4687 { 4688 int is_write = 0; 4689 u32 block; 4690 u32 block_cnt; 4691 4692 /* Perform some CDB fixups if needed using 10 byte reads/writes only */ 4693 switch (cdb[0]) { 4694 case WRITE_6: 4695 case WRITE_12: 4696 is_write = 1; 4697 fallthrough; 4698 case READ_6: 4699 case READ_12: 4700 if (*cdb_len == 6) { 4701 block = (((cdb[1] & 0x1F) << 16) | 4702 (cdb[2] << 8) | 4703 cdb[3]); 4704 block_cnt = cdb[4]; 4705 if (block_cnt == 0) 4706 block_cnt = 256; 4707 } else { 4708 BUG_ON(*cdb_len != 12); 4709 block = get_unaligned_be32(&cdb[2]); 4710 block_cnt = get_unaligned_be32(&cdb[6]); 4711 } 4712 if (block_cnt > 0xffff) 4713 return IO_ACCEL_INELIGIBLE; 4714 4715 cdb[0] = is_write ? WRITE_10 : READ_10; 4716 cdb[1] = 0; 4717 cdb[2] = (u8) (block >> 24); 4718 cdb[3] = (u8) (block >> 16); 4719 cdb[4] = (u8) (block >> 8); 4720 cdb[5] = (u8) (block); 4721 cdb[6] = 0; 4722 cdb[7] = (u8) (block_cnt >> 8); 4723 cdb[8] = (u8) (block_cnt); 4724 cdb[9] = 0; 4725 *cdb_len = 10; 4726 break; 4727 } 4728 return 0; 4729 } 4730 4731 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h, 4732 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 4733 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 4734 { 4735 struct scsi_cmnd *cmd = c->scsi_cmd; 4736 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; 4737 unsigned int len; 4738 unsigned int total_len = 0; 4739 struct scatterlist *sg; 4740 u64 addr64; 4741 int use_sg, i; 4742 struct SGDescriptor *curr_sg; 4743 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; 4744 4745 /* TODO: implement chaining support */ 4746 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) { 4747 atomic_dec(&phys_disk->ioaccel_cmds_out); 4748 return IO_ACCEL_INELIGIBLE; 4749 } 4750 4751 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); 4752 4753 if (is_zero_length_transfer(cdb)) { 4754 warn_zero_length_transfer(h, cdb, cdb_len, __func__); 4755 atomic_dec(&phys_disk->ioaccel_cmds_out); 4756 return IO_ACCEL_INELIGIBLE; 4757 } 4758 4759 if (fixup_ioaccel_cdb(cdb, &cdb_len)) { 4760 atomic_dec(&phys_disk->ioaccel_cmds_out); 4761 return IO_ACCEL_INELIGIBLE; 4762 } 4763 4764 c->cmd_type = CMD_IOACCEL1; 4765 4766 /* Adjust the DMA address to point to the accelerated command buffer */ 4767 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + 4768 (c->cmdindex * sizeof(*cp)); 4769 BUG_ON(c->busaddr & 0x0000007F); 4770 4771 use_sg = scsi_dma_map(cmd); 4772 if (use_sg < 0) { 4773 atomic_dec(&phys_disk->ioaccel_cmds_out); 4774 return use_sg; 4775 } 4776 4777 if (use_sg) { 4778 curr_sg = cp->SG; 4779 scsi_for_each_sg(cmd, sg, use_sg, i) { 4780 addr64 = (u64) sg_dma_address(sg); 4781 len = sg_dma_len(sg); 4782 total_len += len; 4783 curr_sg->Addr = cpu_to_le64(addr64); 4784 curr_sg->Len = cpu_to_le32(len); 4785 curr_sg->Ext = cpu_to_le32(0); 4786 curr_sg++; 4787 } 4788 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); 4789 4790 switch (cmd->sc_data_direction) { 4791 case DMA_TO_DEVICE: 4792 control |= IOACCEL1_CONTROL_DATA_OUT; 4793 break; 4794 case DMA_FROM_DEVICE: 4795 control |= IOACCEL1_CONTROL_DATA_IN; 4796 break; 4797 case DMA_NONE: 4798 control |= IOACCEL1_CONTROL_NODATAXFER; 4799 break; 4800 default: 4801 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 4802 cmd->sc_data_direction); 4803 BUG(); 4804 break; 4805 } 4806 } else { 4807 control |= IOACCEL1_CONTROL_NODATAXFER; 4808 } 4809 4810 c->Header.SGList = use_sg; 4811 /* Fill out the command structure to submit */ 4812 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF); 4813 cp->transfer_len = cpu_to_le32(total_len); 4814 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ | 4815 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK)); 4816 cp->control = cpu_to_le32(control); 4817 memcpy(cp->CDB, cdb, cdb_len); 4818 memcpy(cp->CISS_LUN, scsi3addr, 8); 4819 /* Tag was already set at init time. */ 4820 enqueue_cmd_and_start_io(h, c); 4821 return 0; 4822 } 4823 4824 /* 4825 * Queue a command directly to a device behind the controller using the 4826 * I/O accelerator path. 4827 */ 4828 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, 4829 struct CommandList *c) 4830 { 4831 struct scsi_cmnd *cmd = c->scsi_cmd; 4832 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4833 4834 if (!dev) 4835 return -1; 4836 4837 c->phys_disk = dev; 4838 4839 if (dev->in_reset) 4840 return -1; 4841 4842 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, 4843 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev); 4844 } 4845 4846 /* 4847 * Set encryption parameters for the ioaccel2 request 4848 */ 4849 static void set_encrypt_ioaccel2(struct ctlr_info *h, 4850 struct CommandList *c, struct io_accel2_cmd *cp) 4851 { 4852 struct scsi_cmnd *cmd = c->scsi_cmd; 4853 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4854 struct raid_map_data *map = &dev->raid_map; 4855 u64 first_block; 4856 4857 /* Are we doing encryption on this device */ 4858 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON)) 4859 return; 4860 /* Set the data encryption key index. */ 4861 cp->dekindex = map->dekindex; 4862 4863 /* Set the encryption enable flag, encoded into direction field. */ 4864 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK; 4865 4866 /* Set encryption tweak values based on logical block address 4867 * If block size is 512, tweak value is LBA. 4868 * For other block sizes, tweak is (LBA * block size)/ 512) 4869 */ 4870 switch (cmd->cmnd[0]) { 4871 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */ 4872 case READ_6: 4873 case WRITE_6: 4874 first_block = (((cmd->cmnd[1] & 0x1F) << 16) | 4875 (cmd->cmnd[2] << 8) | 4876 cmd->cmnd[3]); 4877 break; 4878 case WRITE_10: 4879 case READ_10: 4880 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */ 4881 case WRITE_12: 4882 case READ_12: 4883 first_block = get_unaligned_be32(&cmd->cmnd[2]); 4884 break; 4885 case WRITE_16: 4886 case READ_16: 4887 first_block = get_unaligned_be64(&cmd->cmnd[2]); 4888 break; 4889 default: 4890 dev_err(&h->pdev->dev, 4891 "ERROR: %s: size (0x%x) not supported for encryption\n", 4892 __func__, cmd->cmnd[0]); 4893 BUG(); 4894 break; 4895 } 4896 4897 if (le32_to_cpu(map->volume_blk_size) != 512) 4898 first_block = first_block * 4899 le32_to_cpu(map->volume_blk_size)/512; 4900 4901 cp->tweak_lower = cpu_to_le32(first_block); 4902 cp->tweak_upper = cpu_to_le32(first_block >> 32); 4903 } 4904 4905 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h, 4906 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 4907 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 4908 { 4909 struct scsi_cmnd *cmd = c->scsi_cmd; 4910 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; 4911 struct ioaccel2_sg_element *curr_sg; 4912 int use_sg, i; 4913 struct scatterlist *sg; 4914 u64 addr64; 4915 u32 len; 4916 u32 total_len = 0; 4917 4918 if (!cmd->device) 4919 return -1; 4920 4921 if (!cmd->device->hostdata) 4922 return -1; 4923 4924 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 4925 4926 if (is_zero_length_transfer(cdb)) { 4927 warn_zero_length_transfer(h, cdb, cdb_len, __func__); 4928 atomic_dec(&phys_disk->ioaccel_cmds_out); 4929 return IO_ACCEL_INELIGIBLE; 4930 } 4931 4932 if (fixup_ioaccel_cdb(cdb, &cdb_len)) { 4933 atomic_dec(&phys_disk->ioaccel_cmds_out); 4934 return IO_ACCEL_INELIGIBLE; 4935 } 4936 4937 c->cmd_type = CMD_IOACCEL2; 4938 /* Adjust the DMA address to point to the accelerated command buffer */ 4939 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + 4940 (c->cmdindex * sizeof(*cp)); 4941 BUG_ON(c->busaddr & 0x0000007F); 4942 4943 memset(cp, 0, sizeof(*cp)); 4944 cp->IU_type = IOACCEL2_IU_TYPE; 4945 4946 use_sg = scsi_dma_map(cmd); 4947 if (use_sg < 0) { 4948 atomic_dec(&phys_disk->ioaccel_cmds_out); 4949 return use_sg; 4950 } 4951 4952 if (use_sg) { 4953 curr_sg = cp->sg; 4954 if (use_sg > h->ioaccel_maxsg) { 4955 addr64 = le64_to_cpu( 4956 h->ioaccel2_cmd_sg_list[c->cmdindex]->address); 4957 curr_sg->address = cpu_to_le64(addr64); 4958 curr_sg->length = 0; 4959 curr_sg->reserved[0] = 0; 4960 curr_sg->reserved[1] = 0; 4961 curr_sg->reserved[2] = 0; 4962 curr_sg->chain_indicator = IOACCEL2_CHAIN; 4963 4964 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex]; 4965 } 4966 scsi_for_each_sg(cmd, sg, use_sg, i) { 4967 addr64 = (u64) sg_dma_address(sg); 4968 len = sg_dma_len(sg); 4969 total_len += len; 4970 curr_sg->address = cpu_to_le64(addr64); 4971 curr_sg->length = cpu_to_le32(len); 4972 curr_sg->reserved[0] = 0; 4973 curr_sg->reserved[1] = 0; 4974 curr_sg->reserved[2] = 0; 4975 curr_sg->chain_indicator = 0; 4976 curr_sg++; 4977 } 4978 4979 /* 4980 * Set the last s/g element bit 4981 */ 4982 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG; 4983 4984 switch (cmd->sc_data_direction) { 4985 case DMA_TO_DEVICE: 4986 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4987 cp->direction |= IOACCEL2_DIR_DATA_OUT; 4988 break; 4989 case DMA_FROM_DEVICE: 4990 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4991 cp->direction |= IOACCEL2_DIR_DATA_IN; 4992 break; 4993 case DMA_NONE: 4994 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4995 cp->direction |= IOACCEL2_DIR_NO_DATA; 4996 break; 4997 default: 4998 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 4999 cmd->sc_data_direction); 5000 BUG(); 5001 break; 5002 } 5003 } else { 5004 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 5005 cp->direction |= IOACCEL2_DIR_NO_DATA; 5006 } 5007 5008 /* Set encryption parameters, if necessary */ 5009 set_encrypt_ioaccel2(h, c, cp); 5010 5011 cp->scsi_nexus = cpu_to_le32(ioaccel_handle); 5012 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT); 5013 memcpy(cp->cdb, cdb, sizeof(cp->cdb)); 5014 5015 cp->data_len = cpu_to_le32(total_len); 5016 cp->err_ptr = cpu_to_le64(c->busaddr + 5017 offsetof(struct io_accel2_cmd, error_data)); 5018 cp->err_len = cpu_to_le32(sizeof(cp->error_data)); 5019 5020 /* fill in sg elements */ 5021 if (use_sg > h->ioaccel_maxsg) { 5022 cp->sg_count = 1; 5023 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0])); 5024 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) { 5025 atomic_dec(&phys_disk->ioaccel_cmds_out); 5026 scsi_dma_unmap(cmd); 5027 return -1; 5028 } 5029 } else 5030 cp->sg_count = (u8) use_sg; 5031 5032 if (phys_disk->in_reset) { 5033 cmd->result = DID_RESET << 16; 5034 return -1; 5035 } 5036 5037 enqueue_cmd_and_start_io(h, c); 5038 return 0; 5039 } 5040 5041 /* 5042 * Queue a command to the correct I/O accelerator path. 5043 */ 5044 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, 5045 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 5046 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 5047 { 5048 if (!c->scsi_cmd->device) 5049 return -1; 5050 5051 if (!c->scsi_cmd->device->hostdata) 5052 return -1; 5053 5054 if (phys_disk->in_reset) 5055 return -1; 5056 5057 /* Try to honor the device's queue depth */ 5058 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) > 5059 phys_disk->queue_depth) { 5060 atomic_dec(&phys_disk->ioaccel_cmds_out); 5061 return IO_ACCEL_INELIGIBLE; 5062 } 5063 if (h->transMethod & CFGTBL_Trans_io_accel1) 5064 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, 5065 cdb, cdb_len, scsi3addr, 5066 phys_disk); 5067 else 5068 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, 5069 cdb, cdb_len, scsi3addr, 5070 phys_disk); 5071 } 5072 5073 static void raid_map_helper(struct raid_map_data *map, 5074 int offload_to_mirror, u32 *map_index, u32 *current_group) 5075 { 5076 if (offload_to_mirror == 0) { 5077 /* use physical disk in the first mirrored group. */ 5078 *map_index %= le16_to_cpu(map->data_disks_per_row); 5079 return; 5080 } 5081 do { 5082 /* determine mirror group that *map_index indicates */ 5083 *current_group = *map_index / 5084 le16_to_cpu(map->data_disks_per_row); 5085 if (offload_to_mirror == *current_group) 5086 continue; 5087 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) { 5088 /* select map index from next group */ 5089 *map_index += le16_to_cpu(map->data_disks_per_row); 5090 (*current_group)++; 5091 } else { 5092 /* select map index from first group */ 5093 *map_index %= le16_to_cpu(map->data_disks_per_row); 5094 *current_group = 0; 5095 } 5096 } while (offload_to_mirror != *current_group); 5097 } 5098 5099 /* 5100 * Attempt to perform offload RAID mapping for a logical volume I/O. 5101 */ 5102 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, 5103 struct CommandList *c) 5104 { 5105 struct scsi_cmnd *cmd = c->scsi_cmd; 5106 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 5107 struct raid_map_data *map = &dev->raid_map; 5108 struct raid_map_disk_data *dd = &map->data[0]; 5109 int is_write = 0; 5110 u32 map_index; 5111 u64 first_block, last_block; 5112 u32 block_cnt; 5113 u32 blocks_per_row; 5114 u64 first_row, last_row; 5115 u32 first_row_offset, last_row_offset; 5116 u32 first_column, last_column; 5117 u64 r0_first_row, r0_last_row; 5118 u32 r5or6_blocks_per_row; 5119 u64 r5or6_first_row, r5or6_last_row; 5120 u32 r5or6_first_row_offset, r5or6_last_row_offset; 5121 u32 r5or6_first_column, r5or6_last_column; 5122 u32 total_disks_per_row; 5123 u32 stripesize; 5124 u32 first_group, last_group, current_group; 5125 u32 map_row; 5126 u32 disk_handle; 5127 u64 disk_block; 5128 u32 disk_block_cnt; 5129 u8 cdb[16]; 5130 u8 cdb_len; 5131 u16 strip_size; 5132 #if BITS_PER_LONG == 32 5133 u64 tmpdiv; 5134 #endif 5135 int offload_to_mirror; 5136 5137 if (!dev) 5138 return -1; 5139 5140 if (dev->in_reset) 5141 return -1; 5142 5143 /* check for valid opcode, get LBA and block count */ 5144 switch (cmd->cmnd[0]) { 5145 case WRITE_6: 5146 is_write = 1; 5147 fallthrough; 5148 case READ_6: 5149 first_block = (((cmd->cmnd[1] & 0x1F) << 16) | 5150 (cmd->cmnd[2] << 8) | 5151 cmd->cmnd[3]); 5152 block_cnt = cmd->cmnd[4]; 5153 if (block_cnt == 0) 5154 block_cnt = 256; 5155 break; 5156 case WRITE_10: 5157 is_write = 1; 5158 fallthrough; 5159 case READ_10: 5160 first_block = 5161 (((u64) cmd->cmnd[2]) << 24) | 5162 (((u64) cmd->cmnd[3]) << 16) | 5163 (((u64) cmd->cmnd[4]) << 8) | 5164 cmd->cmnd[5]; 5165 block_cnt = 5166 (((u32) cmd->cmnd[7]) << 8) | 5167 cmd->cmnd[8]; 5168 break; 5169 case WRITE_12: 5170 is_write = 1; 5171 fallthrough; 5172 case READ_12: 5173 first_block = 5174 (((u64) cmd->cmnd[2]) << 24) | 5175 (((u64) cmd->cmnd[3]) << 16) | 5176 (((u64) cmd->cmnd[4]) << 8) | 5177 cmd->cmnd[5]; 5178 block_cnt = 5179 (((u32) cmd->cmnd[6]) << 24) | 5180 (((u32) cmd->cmnd[7]) << 16) | 5181 (((u32) cmd->cmnd[8]) << 8) | 5182 cmd->cmnd[9]; 5183 break; 5184 case WRITE_16: 5185 is_write = 1; 5186 fallthrough; 5187 case READ_16: 5188 first_block = 5189 (((u64) cmd->cmnd[2]) << 56) | 5190 (((u64) cmd->cmnd[3]) << 48) | 5191 (((u64) cmd->cmnd[4]) << 40) | 5192 (((u64) cmd->cmnd[5]) << 32) | 5193 (((u64) cmd->cmnd[6]) << 24) | 5194 (((u64) cmd->cmnd[7]) << 16) | 5195 (((u64) cmd->cmnd[8]) << 8) | 5196 cmd->cmnd[9]; 5197 block_cnt = 5198 (((u32) cmd->cmnd[10]) << 24) | 5199 (((u32) cmd->cmnd[11]) << 16) | 5200 (((u32) cmd->cmnd[12]) << 8) | 5201 cmd->cmnd[13]; 5202 break; 5203 default: 5204 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ 5205 } 5206 last_block = first_block + block_cnt - 1; 5207 5208 /* check for write to non-RAID-0 */ 5209 if (is_write && dev->raid_level != 0) 5210 return IO_ACCEL_INELIGIBLE; 5211 5212 /* check for invalid block or wraparound */ 5213 if (last_block >= le64_to_cpu(map->volume_blk_cnt) || 5214 last_block < first_block) 5215 return IO_ACCEL_INELIGIBLE; 5216 5217 /* calculate stripe information for the request */ 5218 blocks_per_row = le16_to_cpu(map->data_disks_per_row) * 5219 le16_to_cpu(map->strip_size); 5220 strip_size = le16_to_cpu(map->strip_size); 5221 #if BITS_PER_LONG == 32 5222 tmpdiv = first_block; 5223 (void) do_div(tmpdiv, blocks_per_row); 5224 first_row = tmpdiv; 5225 tmpdiv = last_block; 5226 (void) do_div(tmpdiv, blocks_per_row); 5227 last_row = tmpdiv; 5228 first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); 5229 last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); 5230 tmpdiv = first_row_offset; 5231 (void) do_div(tmpdiv, strip_size); 5232 first_column = tmpdiv; 5233 tmpdiv = last_row_offset; 5234 (void) do_div(tmpdiv, strip_size); 5235 last_column = tmpdiv; 5236 #else 5237 first_row = first_block / blocks_per_row; 5238 last_row = last_block / blocks_per_row; 5239 first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); 5240 last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); 5241 first_column = first_row_offset / strip_size; 5242 last_column = last_row_offset / strip_size; 5243 #endif 5244 5245 /* if this isn't a single row/column then give to the controller */ 5246 if ((first_row != last_row) || (first_column != last_column)) 5247 return IO_ACCEL_INELIGIBLE; 5248 5249 /* proceeding with driver mapping */ 5250 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + 5251 le16_to_cpu(map->metadata_disks_per_row); 5252 map_row = ((u32)(first_row >> map->parity_rotation_shift)) % 5253 le16_to_cpu(map->row_cnt); 5254 map_index = (map_row * total_disks_per_row) + first_column; 5255 5256 switch (dev->raid_level) { 5257 case HPSA_RAID_0: 5258 break; /* nothing special to do */ 5259 case HPSA_RAID_1: 5260 /* Handles load balance across RAID 1 members. 5261 * (2-drive R1 and R10 with even # of drives.) 5262 * Appropriate for SSDs, not optimal for HDDs 5263 * Ensure we have the correct raid_map. 5264 */ 5265 if (le16_to_cpu(map->layout_map_count) != 2) { 5266 hpsa_turn_off_ioaccel_for_device(dev); 5267 return IO_ACCEL_INELIGIBLE; 5268 } 5269 if (dev->offload_to_mirror) 5270 map_index += le16_to_cpu(map->data_disks_per_row); 5271 dev->offload_to_mirror = !dev->offload_to_mirror; 5272 break; 5273 case HPSA_RAID_ADM: 5274 /* Handles N-way mirrors (R1-ADM) 5275 * and R10 with # of drives divisible by 3.) 5276 * Ensure we have the correct raid_map. 5277 */ 5278 if (le16_to_cpu(map->layout_map_count) != 3) { 5279 hpsa_turn_off_ioaccel_for_device(dev); 5280 return IO_ACCEL_INELIGIBLE; 5281 } 5282 5283 offload_to_mirror = dev->offload_to_mirror; 5284 raid_map_helper(map, offload_to_mirror, 5285 &map_index, ¤t_group); 5286 /* set mirror group to use next time */ 5287 offload_to_mirror = 5288 (offload_to_mirror >= 5289 le16_to_cpu(map->layout_map_count) - 1) 5290 ? 0 : offload_to_mirror + 1; 5291 dev->offload_to_mirror = offload_to_mirror; 5292 /* Avoid direct use of dev->offload_to_mirror within this 5293 * function since multiple threads might simultaneously 5294 * increment it beyond the range of dev->layout_map_count -1. 5295 */ 5296 break; 5297 case HPSA_RAID_5: 5298 case HPSA_RAID_6: 5299 if (le16_to_cpu(map->layout_map_count) <= 1) 5300 break; 5301 5302 /* Verify first and last block are in same RAID group */ 5303 r5or6_blocks_per_row = 5304 le16_to_cpu(map->strip_size) * 5305 le16_to_cpu(map->data_disks_per_row); 5306 if (r5or6_blocks_per_row == 0) { 5307 hpsa_turn_off_ioaccel_for_device(dev); 5308 return IO_ACCEL_INELIGIBLE; 5309 } 5310 stripesize = r5or6_blocks_per_row * 5311 le16_to_cpu(map->layout_map_count); 5312 #if BITS_PER_LONG == 32 5313 tmpdiv = first_block; 5314 first_group = do_div(tmpdiv, stripesize); 5315 tmpdiv = first_group; 5316 (void) do_div(tmpdiv, r5or6_blocks_per_row); 5317 first_group = tmpdiv; 5318 tmpdiv = last_block; 5319 last_group = do_div(tmpdiv, stripesize); 5320 tmpdiv = last_group; 5321 (void) do_div(tmpdiv, r5or6_blocks_per_row); 5322 last_group = tmpdiv; 5323 #else 5324 first_group = (first_block % stripesize) / r5or6_blocks_per_row; 5325 last_group = (last_block % stripesize) / r5or6_blocks_per_row; 5326 #endif 5327 if (first_group != last_group) 5328 return IO_ACCEL_INELIGIBLE; 5329 5330 /* Verify request is in a single row of RAID 5/6 */ 5331 #if BITS_PER_LONG == 32 5332 tmpdiv = first_block; 5333 (void) do_div(tmpdiv, stripesize); 5334 first_row = r5or6_first_row = r0_first_row = tmpdiv; 5335 tmpdiv = last_block; 5336 (void) do_div(tmpdiv, stripesize); 5337 r5or6_last_row = r0_last_row = tmpdiv; 5338 #else 5339 first_row = r5or6_first_row = r0_first_row = 5340 first_block / stripesize; 5341 r5or6_last_row = r0_last_row = last_block / stripesize; 5342 #endif 5343 if (r5or6_first_row != r5or6_last_row) 5344 return IO_ACCEL_INELIGIBLE; 5345 5346 5347 /* Verify request is in a single column */ 5348 #if BITS_PER_LONG == 32 5349 tmpdiv = first_block; 5350 first_row_offset = do_div(tmpdiv, stripesize); 5351 tmpdiv = first_row_offset; 5352 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row); 5353 r5or6_first_row_offset = first_row_offset; 5354 tmpdiv = last_block; 5355 r5or6_last_row_offset = do_div(tmpdiv, stripesize); 5356 tmpdiv = r5or6_last_row_offset; 5357 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); 5358 tmpdiv = r5or6_first_row_offset; 5359 (void) do_div(tmpdiv, map->strip_size); 5360 first_column = r5or6_first_column = tmpdiv; 5361 tmpdiv = r5or6_last_row_offset; 5362 (void) do_div(tmpdiv, map->strip_size); 5363 r5or6_last_column = tmpdiv; 5364 #else 5365 first_row_offset = r5or6_first_row_offset = 5366 (u32)((first_block % stripesize) % 5367 r5or6_blocks_per_row); 5368 5369 r5or6_last_row_offset = 5370 (u32)((last_block % stripesize) % 5371 r5or6_blocks_per_row); 5372 5373 first_column = r5or6_first_column = 5374 r5or6_first_row_offset / le16_to_cpu(map->strip_size); 5375 r5or6_last_column = 5376 r5or6_last_row_offset / le16_to_cpu(map->strip_size); 5377 #endif 5378 if (r5or6_first_column != r5or6_last_column) 5379 return IO_ACCEL_INELIGIBLE; 5380 5381 /* Request is eligible */ 5382 map_row = ((u32)(first_row >> map->parity_rotation_shift)) % 5383 le16_to_cpu(map->row_cnt); 5384 5385 map_index = (first_group * 5386 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) + 5387 (map_row * total_disks_per_row) + first_column; 5388 break; 5389 default: 5390 return IO_ACCEL_INELIGIBLE; 5391 } 5392 5393 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES)) 5394 return IO_ACCEL_INELIGIBLE; 5395 5396 c->phys_disk = dev->phys_disk[map_index]; 5397 if (!c->phys_disk) 5398 return IO_ACCEL_INELIGIBLE; 5399 5400 disk_handle = dd[map_index].ioaccel_handle; 5401 disk_block = le64_to_cpu(map->disk_starting_blk) + 5402 first_row * le16_to_cpu(map->strip_size) + 5403 (first_row_offset - first_column * 5404 le16_to_cpu(map->strip_size)); 5405 disk_block_cnt = block_cnt; 5406 5407 /* handle differing logical/physical block sizes */ 5408 if (map->phys_blk_shift) { 5409 disk_block <<= map->phys_blk_shift; 5410 disk_block_cnt <<= map->phys_blk_shift; 5411 } 5412 BUG_ON(disk_block_cnt > 0xffff); 5413 5414 /* build the new CDB for the physical disk I/O */ 5415 if (disk_block > 0xffffffff) { 5416 cdb[0] = is_write ? WRITE_16 : READ_16; 5417 cdb[1] = 0; 5418 cdb[2] = (u8) (disk_block >> 56); 5419 cdb[3] = (u8) (disk_block >> 48); 5420 cdb[4] = (u8) (disk_block >> 40); 5421 cdb[5] = (u8) (disk_block >> 32); 5422 cdb[6] = (u8) (disk_block >> 24); 5423 cdb[7] = (u8) (disk_block >> 16); 5424 cdb[8] = (u8) (disk_block >> 8); 5425 cdb[9] = (u8) (disk_block); 5426 cdb[10] = (u8) (disk_block_cnt >> 24); 5427 cdb[11] = (u8) (disk_block_cnt >> 16); 5428 cdb[12] = (u8) (disk_block_cnt >> 8); 5429 cdb[13] = (u8) (disk_block_cnt); 5430 cdb[14] = 0; 5431 cdb[15] = 0; 5432 cdb_len = 16; 5433 } else { 5434 cdb[0] = is_write ? WRITE_10 : READ_10; 5435 cdb[1] = 0; 5436 cdb[2] = (u8) (disk_block >> 24); 5437 cdb[3] = (u8) (disk_block >> 16); 5438 cdb[4] = (u8) (disk_block >> 8); 5439 cdb[5] = (u8) (disk_block); 5440 cdb[6] = 0; 5441 cdb[7] = (u8) (disk_block_cnt >> 8); 5442 cdb[8] = (u8) (disk_block_cnt); 5443 cdb[9] = 0; 5444 cdb_len = 10; 5445 } 5446 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, 5447 dev->scsi3addr, 5448 dev->phys_disk[map_index]); 5449 } 5450 5451 /* 5452 * Submit commands down the "normal" RAID stack path 5453 * All callers to hpsa_ciss_submit must check lockup_detected 5454 * beforehand, before (opt.) and after calling cmd_alloc 5455 */ 5456 static int hpsa_ciss_submit(struct ctlr_info *h, 5457 struct CommandList *c, struct scsi_cmnd *cmd, 5458 struct hpsa_scsi_dev_t *dev) 5459 { 5460 cmd->host_scribble = (unsigned char *) c; 5461 c->cmd_type = CMD_SCSI; 5462 c->scsi_cmd = cmd; 5463 c->Header.ReplyQueue = 0; /* unused in simple mode */ 5464 memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8); 5465 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT)); 5466 5467 /* Fill in the request block... */ 5468 5469 c->Request.Timeout = 0; 5470 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 5471 c->Request.CDBLen = cmd->cmd_len; 5472 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 5473 switch (cmd->sc_data_direction) { 5474 case DMA_TO_DEVICE: 5475 c->Request.type_attr_dir = 5476 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE); 5477 break; 5478 case DMA_FROM_DEVICE: 5479 c->Request.type_attr_dir = 5480 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ); 5481 break; 5482 case DMA_NONE: 5483 c->Request.type_attr_dir = 5484 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE); 5485 break; 5486 case DMA_BIDIRECTIONAL: 5487 /* This can happen if a buggy application does a scsi passthru 5488 * and sets both inlen and outlen to non-zero. ( see 5489 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 5490 */ 5491 5492 c->Request.type_attr_dir = 5493 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD); 5494 /* This is technically wrong, and hpsa controllers should 5495 * reject it with CMD_INVALID, which is the most correct 5496 * response, but non-fibre backends appear to let it 5497 * slide by, and give the same results as if this field 5498 * were set correctly. Either way is acceptable for 5499 * our purposes here. 5500 */ 5501 5502 break; 5503 5504 default: 5505 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 5506 cmd->sc_data_direction); 5507 BUG(); 5508 break; 5509 } 5510 5511 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ 5512 hpsa_cmd_resolve_and_free(h, c); 5513 return SCSI_MLQUEUE_HOST_BUSY; 5514 } 5515 5516 if (dev->in_reset) { 5517 hpsa_cmd_resolve_and_free(h, c); 5518 return SCSI_MLQUEUE_HOST_BUSY; 5519 } 5520 5521 c->device = dev; 5522 5523 enqueue_cmd_and_start_io(h, c); 5524 /* the cmd'll come back via intr handler in complete_scsi_command() */ 5525 return 0; 5526 } 5527 5528 static void hpsa_cmd_init(struct ctlr_info *h, int index, 5529 struct CommandList *c) 5530 { 5531 dma_addr_t cmd_dma_handle, err_dma_handle; 5532 5533 /* Zero out all of commandlist except the last field, refcount */ 5534 memset(c, 0, offsetof(struct CommandList, refcount)); 5535 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT)); 5536 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); 5537 c->err_info = h->errinfo_pool + index; 5538 memset(c->err_info, 0, sizeof(*c->err_info)); 5539 err_dma_handle = h->errinfo_pool_dhandle 5540 + index * sizeof(*c->err_info); 5541 c->cmdindex = index; 5542 c->busaddr = (u32) cmd_dma_handle; 5543 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle); 5544 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info)); 5545 c->h = h; 5546 c->scsi_cmd = SCSI_CMD_IDLE; 5547 } 5548 5549 static void hpsa_preinitialize_commands(struct ctlr_info *h) 5550 { 5551 int i; 5552 5553 for (i = 0; i < h->nr_cmds; i++) { 5554 struct CommandList *c = h->cmd_pool + i; 5555 5556 hpsa_cmd_init(h, i, c); 5557 atomic_set(&c->refcount, 0); 5558 } 5559 } 5560 5561 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index, 5562 struct CommandList *c) 5563 { 5564 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); 5565 5566 BUG_ON(c->cmdindex != index); 5567 5568 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 5569 memset(c->err_info, 0, sizeof(*c->err_info)); 5570 c->busaddr = (u32) cmd_dma_handle; 5571 } 5572 5573 static int hpsa_ioaccel_submit(struct ctlr_info *h, 5574 struct CommandList *c, struct scsi_cmnd *cmd, 5575 bool retry) 5576 { 5577 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 5578 int rc = IO_ACCEL_INELIGIBLE; 5579 5580 if (!dev) 5581 return SCSI_MLQUEUE_HOST_BUSY; 5582 5583 if (dev->in_reset) 5584 return SCSI_MLQUEUE_HOST_BUSY; 5585 5586 if (hpsa_simple_mode) 5587 return IO_ACCEL_INELIGIBLE; 5588 5589 cmd->host_scribble = (unsigned char *) c; 5590 5591 if (dev->offload_enabled) { 5592 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */ 5593 c->cmd_type = CMD_SCSI; 5594 c->scsi_cmd = cmd; 5595 c->device = dev; 5596 if (retry) /* Resubmit but do not increment device->commands_outstanding. */ 5597 c->retry_pending = true; 5598 rc = hpsa_scsi_ioaccel_raid_map(h, c); 5599 if (rc < 0) /* scsi_dma_map failed. */ 5600 rc = SCSI_MLQUEUE_HOST_BUSY; 5601 } else if (dev->hba_ioaccel_enabled) { 5602 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */ 5603 c->cmd_type = CMD_SCSI; 5604 c->scsi_cmd = cmd; 5605 c->device = dev; 5606 if (retry) /* Resubmit but do not increment device->commands_outstanding. */ 5607 c->retry_pending = true; 5608 rc = hpsa_scsi_ioaccel_direct_map(h, c); 5609 if (rc < 0) /* scsi_dma_map failed. */ 5610 rc = SCSI_MLQUEUE_HOST_BUSY; 5611 } 5612 return rc; 5613 } 5614 5615 static void hpsa_command_resubmit_worker(struct work_struct *work) 5616 { 5617 struct scsi_cmnd *cmd; 5618 struct hpsa_scsi_dev_t *dev; 5619 struct CommandList *c = container_of(work, struct CommandList, work); 5620 5621 cmd = c->scsi_cmd; 5622 dev = cmd->device->hostdata; 5623 if (!dev) { 5624 cmd->result = DID_NO_CONNECT << 16; 5625 return hpsa_cmd_free_and_done(c->h, c, cmd); 5626 } 5627 5628 if (dev->in_reset) { 5629 cmd->result = DID_RESET << 16; 5630 return hpsa_cmd_free_and_done(c->h, c, cmd); 5631 } 5632 5633 if (c->cmd_type == CMD_IOACCEL2) { 5634 struct ctlr_info *h = c->h; 5635 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 5636 int rc; 5637 5638 if (c2->error_data.serv_response == 5639 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) { 5640 /* Resubmit with the retry_pending flag set. */ 5641 rc = hpsa_ioaccel_submit(h, c, cmd, true); 5642 if (rc == 0) 5643 return; 5644 if (rc == SCSI_MLQUEUE_HOST_BUSY) { 5645 /* 5646 * If we get here, it means dma mapping failed. 5647 * Try again via scsi mid layer, which will 5648 * then get SCSI_MLQUEUE_HOST_BUSY. 5649 */ 5650 cmd->result = DID_IMM_RETRY << 16; 5651 return hpsa_cmd_free_and_done(h, c, cmd); 5652 } 5653 /* else, fall thru and resubmit down CISS path */ 5654 } 5655 } 5656 hpsa_cmd_partial_init(c->h, c->cmdindex, c); 5657 /* 5658 * Here we have not come in though queue_command, so we 5659 * can set the retry_pending flag to true for a driver initiated 5660 * retry attempt (I.E. not a SML retry). 5661 * I.E. We are submitting a driver initiated retry. 5662 * Note: hpsa_ciss_submit does not zero out the command fields like 5663 * ioaccel submit does. 5664 */ 5665 c->retry_pending = true; 5666 if (hpsa_ciss_submit(c->h, c, cmd, dev)) { 5667 /* 5668 * If we get here, it means dma mapping failed. Try 5669 * again via scsi mid layer, which will then get 5670 * SCSI_MLQUEUE_HOST_BUSY. 5671 * 5672 * hpsa_ciss_submit will have already freed c 5673 * if it encountered a dma mapping failure. 5674 */ 5675 cmd->result = DID_IMM_RETRY << 16; 5676 scsi_done(cmd); 5677 } 5678 } 5679 5680 /* Running in struct Scsi_Host->host_lock less mode */ 5681 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd) 5682 { 5683 struct ctlr_info *h; 5684 struct hpsa_scsi_dev_t *dev; 5685 struct CommandList *c; 5686 int rc = 0; 5687 5688 /* Get the ptr to our adapter structure out of cmd->host. */ 5689 h = sdev_to_hba(cmd->device); 5690 5691 BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0); 5692 5693 dev = cmd->device->hostdata; 5694 if (!dev) { 5695 cmd->result = DID_NO_CONNECT << 16; 5696 scsi_done(cmd); 5697 return 0; 5698 } 5699 5700 if (dev->removed) { 5701 cmd->result = DID_NO_CONNECT << 16; 5702 scsi_done(cmd); 5703 return 0; 5704 } 5705 5706 if (unlikely(lockup_detected(h))) { 5707 cmd->result = DID_NO_CONNECT << 16; 5708 scsi_done(cmd); 5709 return 0; 5710 } 5711 5712 if (dev->in_reset) 5713 return SCSI_MLQUEUE_DEVICE_BUSY; 5714 5715 c = cmd_tagged_alloc(h, cmd); 5716 if (c == NULL) 5717 return SCSI_MLQUEUE_DEVICE_BUSY; 5718 5719 /* 5720 * This is necessary because the SML doesn't zero out this field during 5721 * error recovery. 5722 */ 5723 cmd->result = 0; 5724 5725 /* 5726 * Call alternate submit routine for I/O accelerated commands. 5727 * Retries always go down the normal I/O path. 5728 * Note: If cmd->retries is non-zero, then this is a SML 5729 * initiated retry and not a driver initiated retry. 5730 * This command has been obtained from cmd_tagged_alloc 5731 * and is therefore a brand-new command. 5732 */ 5733 if (likely(cmd->retries == 0 && 5734 !blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) && 5735 h->acciopath_status)) { 5736 /* Submit with the retry_pending flag unset. */ 5737 rc = hpsa_ioaccel_submit(h, c, cmd, false); 5738 if (rc == 0) 5739 return 0; 5740 if (rc == SCSI_MLQUEUE_HOST_BUSY) { 5741 hpsa_cmd_resolve_and_free(h, c); 5742 return SCSI_MLQUEUE_HOST_BUSY; 5743 } 5744 } 5745 return hpsa_ciss_submit(h, c, cmd, dev); 5746 } 5747 5748 static void hpsa_scan_complete(struct ctlr_info *h) 5749 { 5750 unsigned long flags; 5751 5752 spin_lock_irqsave(&h->scan_lock, flags); 5753 h->scan_finished = 1; 5754 wake_up(&h->scan_wait_queue); 5755 spin_unlock_irqrestore(&h->scan_lock, flags); 5756 } 5757 5758 static void hpsa_scan_start(struct Scsi_Host *sh) 5759 { 5760 struct ctlr_info *h = shost_to_hba(sh); 5761 unsigned long flags; 5762 5763 /* 5764 * Don't let rescans be initiated on a controller known to be locked 5765 * up. If the controller locks up *during* a rescan, that thread is 5766 * probably hosed, but at least we can prevent new rescan threads from 5767 * piling up on a locked up controller. 5768 */ 5769 if (unlikely(lockup_detected(h))) 5770 return hpsa_scan_complete(h); 5771 5772 /* 5773 * If a scan is already waiting to run, no need to add another 5774 */ 5775 spin_lock_irqsave(&h->scan_lock, flags); 5776 if (h->scan_waiting) { 5777 spin_unlock_irqrestore(&h->scan_lock, flags); 5778 return; 5779 } 5780 5781 spin_unlock_irqrestore(&h->scan_lock, flags); 5782 5783 /* wait until any scan already in progress is finished. */ 5784 while (1) { 5785 spin_lock_irqsave(&h->scan_lock, flags); 5786 if (h->scan_finished) 5787 break; 5788 h->scan_waiting = 1; 5789 spin_unlock_irqrestore(&h->scan_lock, flags); 5790 wait_event(h->scan_wait_queue, h->scan_finished); 5791 /* Note: We don't need to worry about a race between this 5792 * thread and driver unload because the midlayer will 5793 * have incremented the reference count, so unload won't 5794 * happen if we're in here. 5795 */ 5796 } 5797 h->scan_finished = 0; /* mark scan as in progress */ 5798 h->scan_waiting = 0; 5799 spin_unlock_irqrestore(&h->scan_lock, flags); 5800 5801 if (unlikely(lockup_detected(h))) 5802 return hpsa_scan_complete(h); 5803 5804 /* 5805 * Do the scan after a reset completion 5806 */ 5807 spin_lock_irqsave(&h->reset_lock, flags); 5808 if (h->reset_in_progress) { 5809 h->drv_req_rescan = 1; 5810 spin_unlock_irqrestore(&h->reset_lock, flags); 5811 hpsa_scan_complete(h); 5812 return; 5813 } 5814 spin_unlock_irqrestore(&h->reset_lock, flags); 5815 5816 hpsa_update_scsi_devices(h); 5817 5818 hpsa_scan_complete(h); 5819 } 5820 5821 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth) 5822 { 5823 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata; 5824 5825 if (!logical_drive) 5826 return -ENODEV; 5827 5828 if (qdepth < 1) 5829 qdepth = 1; 5830 else if (qdepth > logical_drive->queue_depth) 5831 qdepth = logical_drive->queue_depth; 5832 5833 return scsi_change_queue_depth(sdev, qdepth); 5834 } 5835 5836 static int hpsa_scan_finished(struct Scsi_Host *sh, 5837 unsigned long elapsed_time) 5838 { 5839 struct ctlr_info *h = shost_to_hba(sh); 5840 unsigned long flags; 5841 int finished; 5842 5843 spin_lock_irqsave(&h->scan_lock, flags); 5844 finished = h->scan_finished; 5845 spin_unlock_irqrestore(&h->scan_lock, flags); 5846 return finished; 5847 } 5848 5849 static int hpsa_scsi_host_alloc(struct ctlr_info *h) 5850 { 5851 struct Scsi_Host *sh; 5852 5853 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(struct ctlr_info *)); 5854 if (sh == NULL) { 5855 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n"); 5856 return -ENOMEM; 5857 } 5858 5859 sh->io_port = 0; 5860 sh->n_io_port = 0; 5861 sh->this_id = -1; 5862 sh->max_channel = 3; 5863 sh->max_cmd_len = MAX_COMMAND_SIZE; 5864 sh->max_lun = HPSA_MAX_LUN; 5865 sh->max_id = HPSA_MAX_LUN; 5866 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS; 5867 sh->cmd_per_lun = sh->can_queue; 5868 sh->sg_tablesize = h->maxsgentries; 5869 sh->transportt = hpsa_sas_transport_template; 5870 sh->hostdata[0] = (unsigned long) h; 5871 sh->irq = pci_irq_vector(h->pdev, 0); 5872 sh->unique_id = sh->irq; 5873 5874 h->scsi_host = sh; 5875 return 0; 5876 } 5877 5878 static int hpsa_scsi_add_host(struct ctlr_info *h) 5879 { 5880 int rv; 5881 5882 rv = scsi_add_host(h->scsi_host, &h->pdev->dev); 5883 if (rv) { 5884 dev_err(&h->pdev->dev, "scsi_add_host failed\n"); 5885 return rv; 5886 } 5887 scsi_scan_host(h->scsi_host); 5888 return 0; 5889 } 5890 5891 /* 5892 * The block layer has already gone to the trouble of picking out a unique, 5893 * small-integer tag for this request. We use an offset from that value as 5894 * an index to select our command block. (The offset allows us to reserve the 5895 * low-numbered entries for our own uses.) 5896 */ 5897 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd) 5898 { 5899 int idx = scsi_cmd_to_rq(scmd)->tag; 5900 5901 if (idx < 0) 5902 return idx; 5903 5904 /* Offset to leave space for internal cmds. */ 5905 return idx += HPSA_NRESERVED_CMDS; 5906 } 5907 5908 /* 5909 * Send a TEST_UNIT_READY command to the specified LUN using the specified 5910 * reply queue; returns zero if the unit is ready, and non-zero otherwise. 5911 */ 5912 static int hpsa_send_test_unit_ready(struct ctlr_info *h, 5913 struct CommandList *c, unsigned char lunaddr[], 5914 int reply_queue) 5915 { 5916 int rc; 5917 5918 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ 5919 (void) fill_cmd(c, TEST_UNIT_READY, h, 5920 NULL, 0, 0, lunaddr, TYPE_CMD); 5921 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); 5922 if (rc) 5923 return rc; 5924 /* no unmap needed here because no data xfer. */ 5925 5926 /* Check if the unit is already ready. */ 5927 if (c->err_info->CommandStatus == CMD_SUCCESS) 5928 return 0; 5929 5930 /* 5931 * The first command sent after reset will receive "unit attention" to 5932 * indicate that the LUN has been reset...this is actually what we're 5933 * looking for (but, success is good too). 5934 */ 5935 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 5936 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 5937 (c->err_info->SenseInfo[2] == NO_SENSE || 5938 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 5939 return 0; 5940 5941 return 1; 5942 } 5943 5944 /* 5945 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary; 5946 * returns zero when the unit is ready, and non-zero when giving up. 5947 */ 5948 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h, 5949 struct CommandList *c, 5950 unsigned char lunaddr[], int reply_queue) 5951 { 5952 int rc; 5953 int count = 0; 5954 int waittime = 1; /* seconds */ 5955 5956 /* Send test unit ready until device ready, or give up. */ 5957 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) { 5958 5959 /* 5960 * Wait for a bit. do this first, because if we send 5961 * the TUR right away, the reset will just abort it. 5962 */ 5963 msleep(1000 * waittime); 5964 5965 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue); 5966 if (!rc) 5967 break; 5968 5969 /* Increase wait time with each try, up to a point. */ 5970 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 5971 waittime *= 2; 5972 5973 dev_warn(&h->pdev->dev, 5974 "waiting %d secs for device to become ready.\n", 5975 waittime); 5976 } 5977 5978 return rc; 5979 } 5980 5981 static int wait_for_device_to_become_ready(struct ctlr_info *h, 5982 unsigned char lunaddr[], 5983 int reply_queue) 5984 { 5985 int first_queue; 5986 int last_queue; 5987 int rq; 5988 int rc = 0; 5989 struct CommandList *c; 5990 5991 c = cmd_alloc(h); 5992 5993 /* 5994 * If no specific reply queue was requested, then send the TUR 5995 * repeatedly, requesting a reply on each reply queue; otherwise execute 5996 * the loop exactly once using only the specified queue. 5997 */ 5998 if (reply_queue == DEFAULT_REPLY_QUEUE) { 5999 first_queue = 0; 6000 last_queue = h->nreply_queues - 1; 6001 } else { 6002 first_queue = reply_queue; 6003 last_queue = reply_queue; 6004 } 6005 6006 for (rq = first_queue; rq <= last_queue; rq++) { 6007 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq); 6008 if (rc) 6009 break; 6010 } 6011 6012 if (rc) 6013 dev_warn(&h->pdev->dev, "giving up on device.\n"); 6014 else 6015 dev_warn(&h->pdev->dev, "device is ready.\n"); 6016 6017 cmd_free(h, c); 6018 return rc; 6019 } 6020 6021 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 6022 * complaining. Doing a host- or bus-reset can't do anything good here. 6023 */ 6024 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 6025 { 6026 int rc = SUCCESS; 6027 int i; 6028 struct ctlr_info *h; 6029 struct hpsa_scsi_dev_t *dev = NULL; 6030 u8 reset_type; 6031 char msg[48]; 6032 unsigned long flags; 6033 6034 /* find the controller to which the command to be aborted was sent */ 6035 h = sdev_to_hba(scsicmd->device); 6036 if (h == NULL) /* paranoia */ 6037 return FAILED; 6038 6039 spin_lock_irqsave(&h->reset_lock, flags); 6040 h->reset_in_progress = 1; 6041 spin_unlock_irqrestore(&h->reset_lock, flags); 6042 6043 if (lockup_detected(h)) { 6044 rc = FAILED; 6045 goto return_reset_status; 6046 } 6047 6048 dev = scsicmd->device->hostdata; 6049 if (!dev) { 6050 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__); 6051 rc = FAILED; 6052 goto return_reset_status; 6053 } 6054 6055 if (dev->devtype == TYPE_ENCLOSURE) { 6056 rc = SUCCESS; 6057 goto return_reset_status; 6058 } 6059 6060 /* if controller locked up, we can guarantee command won't complete */ 6061 if (lockup_detected(h)) { 6062 snprintf(msg, sizeof(msg), 6063 "cmd %d RESET FAILED, lockup detected", 6064 hpsa_get_cmd_index(scsicmd)); 6065 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 6066 rc = FAILED; 6067 goto return_reset_status; 6068 } 6069 6070 /* this reset request might be the result of a lockup; check */ 6071 if (detect_controller_lockup(h)) { 6072 snprintf(msg, sizeof(msg), 6073 "cmd %d RESET FAILED, new lockup detected", 6074 hpsa_get_cmd_index(scsicmd)); 6075 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 6076 rc = FAILED; 6077 goto return_reset_status; 6078 } 6079 6080 /* Do not attempt on controller */ 6081 if (is_hba_lunid(dev->scsi3addr)) { 6082 rc = SUCCESS; 6083 goto return_reset_status; 6084 } 6085 6086 if (is_logical_dev_addr_mode(dev->scsi3addr)) 6087 reset_type = HPSA_DEVICE_RESET_MSG; 6088 else 6089 reset_type = HPSA_PHYS_TARGET_RESET; 6090 6091 sprintf(msg, "resetting %s", 6092 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical "); 6093 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 6094 6095 /* 6096 * wait to see if any commands will complete before sending reset 6097 */ 6098 dev->in_reset = true; /* block any new cmds from OS for this device */ 6099 for (i = 0; i < 10; i++) { 6100 if (atomic_read(&dev->commands_outstanding) > 0) 6101 msleep(1000); 6102 else 6103 break; 6104 } 6105 6106 /* send a reset to the SCSI LUN which the command was sent to */ 6107 rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE); 6108 if (rc == 0) 6109 rc = SUCCESS; 6110 else 6111 rc = FAILED; 6112 6113 sprintf(msg, "reset %s %s", 6114 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ", 6115 rc == SUCCESS ? "completed successfully" : "failed"); 6116 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 6117 6118 return_reset_status: 6119 spin_lock_irqsave(&h->reset_lock, flags); 6120 h->reset_in_progress = 0; 6121 if (dev) 6122 dev->in_reset = false; 6123 spin_unlock_irqrestore(&h->reset_lock, flags); 6124 return rc; 6125 } 6126 6127 /* 6128 * For operations with an associated SCSI command, a command block is allocated 6129 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the 6130 * block request tag as an index into a table of entries. cmd_tagged_free() is 6131 * the complement, although cmd_free() may be called instead. 6132 * This function is only called for new requests from queue_command. 6133 */ 6134 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, 6135 struct scsi_cmnd *scmd) 6136 { 6137 int idx = hpsa_get_cmd_index(scmd); 6138 struct CommandList *c = h->cmd_pool + idx; 6139 6140 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) { 6141 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n", 6142 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1); 6143 /* The index value comes from the block layer, so if it's out of 6144 * bounds, it's probably not our bug. 6145 */ 6146 BUG(); 6147 } 6148 6149 if (unlikely(!hpsa_is_cmd_idle(c))) { 6150 /* 6151 * We expect that the SCSI layer will hand us a unique tag 6152 * value. Thus, there should never be a collision here between 6153 * two requests...because if the selected command isn't idle 6154 * then someone is going to be very disappointed. 6155 */ 6156 if (idx != h->last_collision_tag) { /* Print once per tag */ 6157 dev_warn(&h->pdev->dev, 6158 "%s: tag collision (tag=%d)\n", __func__, idx); 6159 if (scmd) 6160 scsi_print_command(scmd); 6161 h->last_collision_tag = idx; 6162 } 6163 return NULL; 6164 } 6165 6166 atomic_inc(&c->refcount); 6167 hpsa_cmd_partial_init(h, idx, c); 6168 6169 /* 6170 * This is a new command obtained from queue_command so 6171 * there have not been any driver initiated retry attempts. 6172 */ 6173 c->retry_pending = false; 6174 6175 return c; 6176 } 6177 6178 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c) 6179 { 6180 /* 6181 * Release our reference to the block. We don't need to do anything 6182 * else to free it, because it is accessed by index. 6183 */ 6184 (void)atomic_dec(&c->refcount); 6185 } 6186 6187 /* 6188 * For operations that cannot sleep, a command block is allocated at init, 6189 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 6190 * which ones are free or in use. Lock must be held when calling this. 6191 * cmd_free() is the complement. 6192 * This function never gives up and returns NULL. If it hangs, 6193 * another thread must call cmd_free() to free some tags. 6194 */ 6195 6196 static struct CommandList *cmd_alloc(struct ctlr_info *h) 6197 { 6198 struct CommandList *c; 6199 int refcount, i; 6200 int offset = 0; 6201 6202 /* 6203 * There is some *extremely* small but non-zero chance that that 6204 * multiple threads could get in here, and one thread could 6205 * be scanning through the list of bits looking for a free 6206 * one, but the free ones are always behind him, and other 6207 * threads sneak in behind him and eat them before he can 6208 * get to them, so that while there is always a free one, a 6209 * very unlucky thread might be starved anyway, never able to 6210 * beat the other threads. In reality, this happens so 6211 * infrequently as to be indistinguishable from never. 6212 * 6213 * Note that we start allocating commands before the SCSI host structure 6214 * is initialized. Since the search starts at bit zero, this 6215 * all works, since we have at least one command structure available; 6216 * however, it means that the structures with the low indexes have to be 6217 * reserved for driver-initiated requests, while requests from the block 6218 * layer will use the higher indexes. 6219 */ 6220 6221 for (;;) { 6222 i = find_next_zero_bit(h->cmd_pool_bits, 6223 HPSA_NRESERVED_CMDS, 6224 offset); 6225 if (unlikely(i >= HPSA_NRESERVED_CMDS)) { 6226 offset = 0; 6227 continue; 6228 } 6229 c = h->cmd_pool + i; 6230 refcount = atomic_inc_return(&c->refcount); 6231 if (unlikely(refcount > 1)) { 6232 cmd_free(h, c); /* already in use */ 6233 offset = (i + 1) % HPSA_NRESERVED_CMDS; 6234 continue; 6235 } 6236 set_bit(i, h->cmd_pool_bits); 6237 break; /* it's ours now. */ 6238 } 6239 hpsa_cmd_partial_init(h, i, c); 6240 c->device = NULL; 6241 6242 /* 6243 * cmd_alloc is for "internal" commands and they are never 6244 * retried. 6245 */ 6246 c->retry_pending = false; 6247 6248 return c; 6249 } 6250 6251 /* 6252 * This is the complementary operation to cmd_alloc(). Note, however, in some 6253 * corner cases it may also be used to free blocks allocated by 6254 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and 6255 * the clear-bit is harmless. 6256 */ 6257 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 6258 { 6259 if (atomic_dec_and_test(&c->refcount)) { 6260 int i; 6261 6262 i = c - h->cmd_pool; 6263 clear_bit(i, h->cmd_pool_bits); 6264 } 6265 } 6266 6267 #ifdef CONFIG_COMPAT 6268 6269 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd, 6270 void __user *arg) 6271 { 6272 struct ctlr_info *h = sdev_to_hba(dev); 6273 IOCTL32_Command_struct __user *arg32 = arg; 6274 IOCTL_Command_struct arg64; 6275 int err; 6276 u32 cp; 6277 6278 if (!arg) 6279 return -EINVAL; 6280 6281 memset(&arg64, 0, sizeof(arg64)); 6282 if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf))) 6283 return -EFAULT; 6284 if (get_user(cp, &arg32->buf)) 6285 return -EFAULT; 6286 arg64.buf = compat_ptr(cp); 6287 6288 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6289 return -EAGAIN; 6290 err = hpsa_passthru_ioctl(h, &arg64); 6291 atomic_inc(&h->passthru_cmds_avail); 6292 if (err) 6293 return err; 6294 if (copy_to_user(&arg32->error_info, &arg64.error_info, 6295 sizeof(arg32->error_info))) 6296 return -EFAULT; 6297 return 0; 6298 } 6299 6300 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 6301 unsigned int cmd, void __user *arg) 6302 { 6303 struct ctlr_info *h = sdev_to_hba(dev); 6304 BIG_IOCTL32_Command_struct __user *arg32 = arg; 6305 BIG_IOCTL_Command_struct arg64; 6306 int err; 6307 u32 cp; 6308 6309 if (!arg) 6310 return -EINVAL; 6311 memset(&arg64, 0, sizeof(arg64)); 6312 if (copy_from_user(&arg64, arg32, 6313 offsetof(BIG_IOCTL32_Command_struct, buf))) 6314 return -EFAULT; 6315 if (get_user(cp, &arg32->buf)) 6316 return -EFAULT; 6317 arg64.buf = compat_ptr(cp); 6318 6319 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6320 return -EAGAIN; 6321 err = hpsa_big_passthru_ioctl(h, &arg64); 6322 atomic_inc(&h->passthru_cmds_avail); 6323 if (err) 6324 return err; 6325 if (copy_to_user(&arg32->error_info, &arg64.error_info, 6326 sizeof(arg32->error_info))) 6327 return -EFAULT; 6328 return 0; 6329 } 6330 6331 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd, 6332 void __user *arg) 6333 { 6334 switch (cmd) { 6335 case CCISS_GETPCIINFO: 6336 case CCISS_GETINTINFO: 6337 case CCISS_SETINTINFO: 6338 case CCISS_GETNODENAME: 6339 case CCISS_SETNODENAME: 6340 case CCISS_GETHEARTBEAT: 6341 case CCISS_GETBUSTYPES: 6342 case CCISS_GETFIRMVER: 6343 case CCISS_GETDRIVVER: 6344 case CCISS_REVALIDVOLS: 6345 case CCISS_DEREGDISK: 6346 case CCISS_REGNEWDISK: 6347 case CCISS_REGNEWD: 6348 case CCISS_RESCANDISK: 6349 case CCISS_GETLUNINFO: 6350 return hpsa_ioctl(dev, cmd, arg); 6351 6352 case CCISS_PASSTHRU32: 6353 return hpsa_ioctl32_passthru(dev, cmd, arg); 6354 case CCISS_BIG_PASSTHRU32: 6355 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 6356 6357 default: 6358 return -ENOIOCTLCMD; 6359 } 6360 } 6361 #endif 6362 6363 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 6364 { 6365 struct hpsa_pci_info pciinfo; 6366 6367 if (!argp) 6368 return -EINVAL; 6369 pciinfo.domain = pci_domain_nr(h->pdev->bus); 6370 pciinfo.bus = h->pdev->bus->number; 6371 pciinfo.dev_fn = h->pdev->devfn; 6372 pciinfo.board_id = h->board_id; 6373 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 6374 return -EFAULT; 6375 return 0; 6376 } 6377 6378 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 6379 { 6380 DriverVer_type DriverVer; 6381 unsigned char vmaj, vmin, vsubmin; 6382 int rc; 6383 6384 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 6385 &vmaj, &vmin, &vsubmin); 6386 if (rc != 3) { 6387 dev_info(&h->pdev->dev, "driver version string '%s' " 6388 "unrecognized.", HPSA_DRIVER_VERSION); 6389 vmaj = 0; 6390 vmin = 0; 6391 vsubmin = 0; 6392 } 6393 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 6394 if (!argp) 6395 return -EINVAL; 6396 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 6397 return -EFAULT; 6398 return 0; 6399 } 6400 6401 static int hpsa_passthru_ioctl(struct ctlr_info *h, 6402 IOCTL_Command_struct *iocommand) 6403 { 6404 struct CommandList *c; 6405 char *buff = NULL; 6406 u64 temp64; 6407 int rc = 0; 6408 6409 if (!capable(CAP_SYS_RAWIO)) 6410 return -EPERM; 6411 if ((iocommand->buf_size < 1) && 6412 (iocommand->Request.Type.Direction != XFER_NONE)) { 6413 return -EINVAL; 6414 } 6415 if (iocommand->buf_size > 0) { 6416 buff = kmalloc(iocommand->buf_size, GFP_KERNEL); 6417 if (buff == NULL) 6418 return -ENOMEM; 6419 if (iocommand->Request.Type.Direction & XFER_WRITE) { 6420 /* Copy the data into the buffer we created */ 6421 if (copy_from_user(buff, iocommand->buf, 6422 iocommand->buf_size)) { 6423 rc = -EFAULT; 6424 goto out_kfree; 6425 } 6426 } else { 6427 memset(buff, 0, iocommand->buf_size); 6428 } 6429 } 6430 c = cmd_alloc(h); 6431 6432 /* Fill in the command type */ 6433 c->cmd_type = CMD_IOCTL_PEND; 6434 c->scsi_cmd = SCSI_CMD_BUSY; 6435 /* Fill in Command Header */ 6436 c->Header.ReplyQueue = 0; /* unused in simple mode */ 6437 if (iocommand->buf_size > 0) { /* buffer to fill */ 6438 c->Header.SGList = 1; 6439 c->Header.SGTotal = cpu_to_le16(1); 6440 } else { /* no buffers to fill */ 6441 c->Header.SGList = 0; 6442 c->Header.SGTotal = cpu_to_le16(0); 6443 } 6444 memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN)); 6445 6446 /* Fill in Request block */ 6447 memcpy(&c->Request, &iocommand->Request, 6448 sizeof(c->Request)); 6449 6450 /* Fill in the scatter gather information */ 6451 if (iocommand->buf_size > 0) { 6452 temp64 = dma_map_single(&h->pdev->dev, buff, 6453 iocommand->buf_size, DMA_BIDIRECTIONAL); 6454 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) { 6455 c->SG[0].Addr = cpu_to_le64(0); 6456 c->SG[0].Len = cpu_to_le32(0); 6457 rc = -ENOMEM; 6458 goto out; 6459 } 6460 c->SG[0].Addr = cpu_to_le64(temp64); 6461 c->SG[0].Len = cpu_to_le32(iocommand->buf_size); 6462 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */ 6463 } 6464 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 6465 NO_TIMEOUT); 6466 if (iocommand->buf_size > 0) 6467 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL); 6468 check_ioctl_unit_attention(h, c); 6469 if (rc) { 6470 rc = -EIO; 6471 goto out; 6472 } 6473 6474 /* Copy the error information out */ 6475 memcpy(&iocommand->error_info, c->err_info, 6476 sizeof(iocommand->error_info)); 6477 if ((iocommand->Request.Type.Direction & XFER_READ) && 6478 iocommand->buf_size > 0) { 6479 /* Copy the data out of the buffer we created */ 6480 if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) { 6481 rc = -EFAULT; 6482 goto out; 6483 } 6484 } 6485 out: 6486 cmd_free(h, c); 6487 out_kfree: 6488 kfree(buff); 6489 return rc; 6490 } 6491 6492 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, 6493 BIG_IOCTL_Command_struct *ioc) 6494 { 6495 struct CommandList *c; 6496 unsigned char **buff = NULL; 6497 int *buff_size = NULL; 6498 u64 temp64; 6499 BYTE sg_used = 0; 6500 int status = 0; 6501 u32 left; 6502 u32 sz; 6503 BYTE __user *data_ptr; 6504 6505 if (!capable(CAP_SYS_RAWIO)) 6506 return -EPERM; 6507 6508 if ((ioc->buf_size < 1) && 6509 (ioc->Request.Type.Direction != XFER_NONE)) 6510 return -EINVAL; 6511 /* Check kmalloc limits using all SGs */ 6512 if (ioc->malloc_size > MAX_KMALLOC_SIZE) 6513 return -EINVAL; 6514 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) 6515 return -EINVAL; 6516 buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL); 6517 if (!buff) { 6518 status = -ENOMEM; 6519 goto cleanup1; 6520 } 6521 buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL); 6522 if (!buff_size) { 6523 status = -ENOMEM; 6524 goto cleanup1; 6525 } 6526 left = ioc->buf_size; 6527 data_ptr = ioc->buf; 6528 while (left) { 6529 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 6530 buff_size[sg_used] = sz; 6531 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 6532 if (buff[sg_used] == NULL) { 6533 status = -ENOMEM; 6534 goto cleanup1; 6535 } 6536 if (ioc->Request.Type.Direction & XFER_WRITE) { 6537 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 6538 status = -EFAULT; 6539 goto cleanup1; 6540 } 6541 } else 6542 memset(buff[sg_used], 0, sz); 6543 left -= sz; 6544 data_ptr += sz; 6545 sg_used++; 6546 } 6547 c = cmd_alloc(h); 6548 6549 c->cmd_type = CMD_IOCTL_PEND; 6550 c->scsi_cmd = SCSI_CMD_BUSY; 6551 c->Header.ReplyQueue = 0; 6552 c->Header.SGList = (u8) sg_used; 6553 c->Header.SGTotal = cpu_to_le16(sg_used); 6554 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 6555 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 6556 if (ioc->buf_size > 0) { 6557 int i; 6558 for (i = 0; i < sg_used; i++) { 6559 temp64 = dma_map_single(&h->pdev->dev, buff[i], 6560 buff_size[i], DMA_BIDIRECTIONAL); 6561 if (dma_mapping_error(&h->pdev->dev, 6562 (dma_addr_t) temp64)) { 6563 c->SG[i].Addr = cpu_to_le64(0); 6564 c->SG[i].Len = cpu_to_le32(0); 6565 hpsa_pci_unmap(h->pdev, c, i, 6566 DMA_BIDIRECTIONAL); 6567 status = -ENOMEM; 6568 goto cleanup0; 6569 } 6570 c->SG[i].Addr = cpu_to_le64(temp64); 6571 c->SG[i].Len = cpu_to_le32(buff_size[i]); 6572 c->SG[i].Ext = cpu_to_le32(0); 6573 } 6574 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST); 6575 } 6576 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 6577 NO_TIMEOUT); 6578 if (sg_used) 6579 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL); 6580 check_ioctl_unit_attention(h, c); 6581 if (status) { 6582 status = -EIO; 6583 goto cleanup0; 6584 } 6585 6586 /* Copy the error information out */ 6587 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 6588 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) { 6589 int i; 6590 6591 /* Copy the data out of the buffer we created */ 6592 BYTE __user *ptr = ioc->buf; 6593 for (i = 0; i < sg_used; i++) { 6594 if (copy_to_user(ptr, buff[i], buff_size[i])) { 6595 status = -EFAULT; 6596 goto cleanup0; 6597 } 6598 ptr += buff_size[i]; 6599 } 6600 } 6601 status = 0; 6602 cleanup0: 6603 cmd_free(h, c); 6604 cleanup1: 6605 if (buff) { 6606 int i; 6607 6608 for (i = 0; i < sg_used; i++) 6609 kfree(buff[i]); 6610 kfree(buff); 6611 } 6612 kfree(buff_size); 6613 return status; 6614 } 6615 6616 static void check_ioctl_unit_attention(struct ctlr_info *h, 6617 struct CommandList *c) 6618 { 6619 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 6620 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 6621 (void) check_for_unit_attention(h, c); 6622 } 6623 6624 /* 6625 * ioctl 6626 */ 6627 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd, 6628 void __user *argp) 6629 { 6630 struct ctlr_info *h = sdev_to_hba(dev); 6631 int rc; 6632 6633 switch (cmd) { 6634 case CCISS_DEREGDISK: 6635 case CCISS_REGNEWDISK: 6636 case CCISS_REGNEWD: 6637 hpsa_scan_start(h->scsi_host); 6638 return 0; 6639 case CCISS_GETPCIINFO: 6640 return hpsa_getpciinfo_ioctl(h, argp); 6641 case CCISS_GETDRIVVER: 6642 return hpsa_getdrivver_ioctl(h, argp); 6643 case CCISS_PASSTHRU: { 6644 IOCTL_Command_struct iocommand; 6645 6646 if (!argp) 6647 return -EINVAL; 6648 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 6649 return -EFAULT; 6650 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6651 return -EAGAIN; 6652 rc = hpsa_passthru_ioctl(h, &iocommand); 6653 atomic_inc(&h->passthru_cmds_avail); 6654 if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand))) 6655 rc = -EFAULT; 6656 return rc; 6657 } 6658 case CCISS_BIG_PASSTHRU: { 6659 BIG_IOCTL_Command_struct ioc; 6660 if (!argp) 6661 return -EINVAL; 6662 if (copy_from_user(&ioc, argp, sizeof(ioc))) 6663 return -EFAULT; 6664 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6665 return -EAGAIN; 6666 rc = hpsa_big_passthru_ioctl(h, &ioc); 6667 atomic_inc(&h->passthru_cmds_avail); 6668 if (!rc && copy_to_user(argp, &ioc, sizeof(ioc))) 6669 rc = -EFAULT; 6670 return rc; 6671 } 6672 default: 6673 return -ENOTTY; 6674 } 6675 } 6676 6677 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type) 6678 { 6679 struct CommandList *c; 6680 6681 c = cmd_alloc(h); 6682 6683 /* fill_cmd can't fail here, no data buffer to map */ 6684 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, 6685 RAID_CTLR_LUNID, TYPE_MSG); 6686 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ 6687 c->waiting = NULL; 6688 enqueue_cmd_and_start_io(h, c); 6689 /* Don't wait for completion, the reset won't complete. Don't free 6690 * the command either. This is the last command we will send before 6691 * re-initializing everything, so it doesn't matter and won't leak. 6692 */ 6693 return; 6694 } 6695 6696 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 6697 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, 6698 int cmd_type) 6699 { 6700 enum dma_data_direction dir = DMA_NONE; 6701 6702 c->cmd_type = CMD_IOCTL_PEND; 6703 c->scsi_cmd = SCSI_CMD_BUSY; 6704 c->Header.ReplyQueue = 0; 6705 if (buff != NULL && size > 0) { 6706 c->Header.SGList = 1; 6707 c->Header.SGTotal = cpu_to_le16(1); 6708 } else { 6709 c->Header.SGList = 0; 6710 c->Header.SGTotal = cpu_to_le16(0); 6711 } 6712 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 6713 6714 if (cmd_type == TYPE_CMD) { 6715 switch (cmd) { 6716 case HPSA_INQUIRY: 6717 /* are we trying to read a vital product page */ 6718 if (page_code & VPD_PAGE) { 6719 c->Request.CDB[1] = 0x01; 6720 c->Request.CDB[2] = (page_code & 0xff); 6721 } 6722 c->Request.CDBLen = 6; 6723 c->Request.type_attr_dir = 6724 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6725 c->Request.Timeout = 0; 6726 c->Request.CDB[0] = HPSA_INQUIRY; 6727 c->Request.CDB[4] = size & 0xFF; 6728 break; 6729 case RECEIVE_DIAGNOSTIC: 6730 c->Request.CDBLen = 6; 6731 c->Request.type_attr_dir = 6732 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6733 c->Request.Timeout = 0; 6734 c->Request.CDB[0] = cmd; 6735 c->Request.CDB[1] = 1; 6736 c->Request.CDB[2] = 1; 6737 c->Request.CDB[3] = (size >> 8) & 0xFF; 6738 c->Request.CDB[4] = size & 0xFF; 6739 break; 6740 case HPSA_REPORT_LOG: 6741 case HPSA_REPORT_PHYS: 6742 /* Talking to controller so It's a physical command 6743 mode = 00 target = 0. Nothing to write. 6744 */ 6745 c->Request.CDBLen = 12; 6746 c->Request.type_attr_dir = 6747 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6748 c->Request.Timeout = 0; 6749 c->Request.CDB[0] = cmd; 6750 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 6751 c->Request.CDB[7] = (size >> 16) & 0xFF; 6752 c->Request.CDB[8] = (size >> 8) & 0xFF; 6753 c->Request.CDB[9] = size & 0xFF; 6754 break; 6755 case BMIC_SENSE_DIAG_OPTIONS: 6756 c->Request.CDBLen = 16; 6757 c->Request.type_attr_dir = 6758 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6759 c->Request.Timeout = 0; 6760 /* Spec says this should be BMIC_WRITE */ 6761 c->Request.CDB[0] = BMIC_READ; 6762 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS; 6763 break; 6764 case BMIC_SET_DIAG_OPTIONS: 6765 c->Request.CDBLen = 16; 6766 c->Request.type_attr_dir = 6767 TYPE_ATTR_DIR(cmd_type, 6768 ATTR_SIMPLE, XFER_WRITE); 6769 c->Request.Timeout = 0; 6770 c->Request.CDB[0] = BMIC_WRITE; 6771 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS; 6772 break; 6773 case HPSA_CACHE_FLUSH: 6774 c->Request.CDBLen = 12; 6775 c->Request.type_attr_dir = 6776 TYPE_ATTR_DIR(cmd_type, 6777 ATTR_SIMPLE, XFER_WRITE); 6778 c->Request.Timeout = 0; 6779 c->Request.CDB[0] = BMIC_WRITE; 6780 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 6781 c->Request.CDB[7] = (size >> 8) & 0xFF; 6782 c->Request.CDB[8] = size & 0xFF; 6783 break; 6784 case TEST_UNIT_READY: 6785 c->Request.CDBLen = 6; 6786 c->Request.type_attr_dir = 6787 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6788 c->Request.Timeout = 0; 6789 break; 6790 case HPSA_GET_RAID_MAP: 6791 c->Request.CDBLen = 12; 6792 c->Request.type_attr_dir = 6793 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6794 c->Request.Timeout = 0; 6795 c->Request.CDB[0] = HPSA_CISS_READ; 6796 c->Request.CDB[1] = cmd; 6797 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 6798 c->Request.CDB[7] = (size >> 16) & 0xFF; 6799 c->Request.CDB[8] = (size >> 8) & 0xFF; 6800 c->Request.CDB[9] = size & 0xFF; 6801 break; 6802 case BMIC_SENSE_CONTROLLER_PARAMETERS: 6803 c->Request.CDBLen = 10; 6804 c->Request.type_attr_dir = 6805 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6806 c->Request.Timeout = 0; 6807 c->Request.CDB[0] = BMIC_READ; 6808 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS; 6809 c->Request.CDB[7] = (size >> 16) & 0xFF; 6810 c->Request.CDB[8] = (size >> 8) & 0xFF; 6811 break; 6812 case BMIC_IDENTIFY_PHYSICAL_DEVICE: 6813 c->Request.CDBLen = 10; 6814 c->Request.type_attr_dir = 6815 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6816 c->Request.Timeout = 0; 6817 c->Request.CDB[0] = BMIC_READ; 6818 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE; 6819 c->Request.CDB[7] = (size >> 16) & 0xFF; 6820 c->Request.CDB[8] = (size >> 8) & 0XFF; 6821 break; 6822 case BMIC_SENSE_SUBSYSTEM_INFORMATION: 6823 c->Request.CDBLen = 10; 6824 c->Request.type_attr_dir = 6825 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6826 c->Request.Timeout = 0; 6827 c->Request.CDB[0] = BMIC_READ; 6828 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION; 6829 c->Request.CDB[7] = (size >> 16) & 0xFF; 6830 c->Request.CDB[8] = (size >> 8) & 0XFF; 6831 break; 6832 case BMIC_SENSE_STORAGE_BOX_PARAMS: 6833 c->Request.CDBLen = 10; 6834 c->Request.type_attr_dir = 6835 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6836 c->Request.Timeout = 0; 6837 c->Request.CDB[0] = BMIC_READ; 6838 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS; 6839 c->Request.CDB[7] = (size >> 16) & 0xFF; 6840 c->Request.CDB[8] = (size >> 8) & 0XFF; 6841 break; 6842 case BMIC_IDENTIFY_CONTROLLER: 6843 c->Request.CDBLen = 10; 6844 c->Request.type_attr_dir = 6845 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6846 c->Request.Timeout = 0; 6847 c->Request.CDB[0] = BMIC_READ; 6848 c->Request.CDB[1] = 0; 6849 c->Request.CDB[2] = 0; 6850 c->Request.CDB[3] = 0; 6851 c->Request.CDB[4] = 0; 6852 c->Request.CDB[5] = 0; 6853 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER; 6854 c->Request.CDB[7] = (size >> 16) & 0xFF; 6855 c->Request.CDB[8] = (size >> 8) & 0XFF; 6856 c->Request.CDB[9] = 0; 6857 break; 6858 default: 6859 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 6860 BUG(); 6861 } 6862 } else if (cmd_type == TYPE_MSG) { 6863 switch (cmd) { 6864 6865 case HPSA_PHYS_TARGET_RESET: 6866 c->Request.CDBLen = 16; 6867 c->Request.type_attr_dir = 6868 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6869 c->Request.Timeout = 0; /* Don't time out */ 6870 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 6871 c->Request.CDB[0] = HPSA_RESET; 6872 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE; 6873 /* Physical target reset needs no control bytes 4-7*/ 6874 c->Request.CDB[4] = 0x00; 6875 c->Request.CDB[5] = 0x00; 6876 c->Request.CDB[6] = 0x00; 6877 c->Request.CDB[7] = 0x00; 6878 break; 6879 case HPSA_DEVICE_RESET_MSG: 6880 c->Request.CDBLen = 16; 6881 c->Request.type_attr_dir = 6882 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6883 c->Request.Timeout = 0; /* Don't time out */ 6884 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 6885 c->Request.CDB[0] = cmd; 6886 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; 6887 /* If bytes 4-7 are zero, it means reset the */ 6888 /* LunID device */ 6889 c->Request.CDB[4] = 0x00; 6890 c->Request.CDB[5] = 0x00; 6891 c->Request.CDB[6] = 0x00; 6892 c->Request.CDB[7] = 0x00; 6893 break; 6894 default: 6895 dev_warn(&h->pdev->dev, "unknown message type %d\n", 6896 cmd); 6897 BUG(); 6898 } 6899 } else { 6900 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 6901 BUG(); 6902 } 6903 6904 switch (GET_DIR(c->Request.type_attr_dir)) { 6905 case XFER_READ: 6906 dir = DMA_FROM_DEVICE; 6907 break; 6908 case XFER_WRITE: 6909 dir = DMA_TO_DEVICE; 6910 break; 6911 case XFER_NONE: 6912 dir = DMA_NONE; 6913 break; 6914 default: 6915 dir = DMA_BIDIRECTIONAL; 6916 } 6917 if (hpsa_map_one(h->pdev, c, buff, size, dir)) 6918 return -1; 6919 return 0; 6920 } 6921 6922 /* 6923 * Map (physical) PCI mem into (virtual) kernel space 6924 */ 6925 static void __iomem *remap_pci_mem(ulong base, ulong size) 6926 { 6927 ulong page_base = ((ulong) base) & PAGE_MASK; 6928 ulong page_offs = ((ulong) base) - page_base; 6929 void __iomem *page_remapped = ioremap(page_base, 6930 page_offs + size); 6931 6932 return page_remapped ? (page_remapped + page_offs) : NULL; 6933 } 6934 6935 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) 6936 { 6937 return h->access.command_completed(h, q); 6938 } 6939 6940 static inline bool interrupt_pending(struct ctlr_info *h) 6941 { 6942 return h->access.intr_pending(h); 6943 } 6944 6945 static inline long interrupt_not_for_us(struct ctlr_info *h) 6946 { 6947 return (h->access.intr_pending(h) == 0) || 6948 (h->interrupts_enabled == 0); 6949 } 6950 6951 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 6952 u32 raw_tag) 6953 { 6954 if (unlikely(tag_index >= h->nr_cmds)) { 6955 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 6956 return 1; 6957 } 6958 return 0; 6959 } 6960 6961 static inline void finish_cmd(struct CommandList *c) 6962 { 6963 dial_up_lockup_detection_on_fw_flash_complete(c->h, c); 6964 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI 6965 || c->cmd_type == CMD_IOACCEL2)) 6966 complete_scsi_command(c); 6967 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF) 6968 complete(c->waiting); 6969 } 6970 6971 /* process completion of an indexed ("direct lookup") command */ 6972 static inline void process_indexed_cmd(struct ctlr_info *h, 6973 u32 raw_tag) 6974 { 6975 u32 tag_index; 6976 struct CommandList *c; 6977 6978 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT; 6979 if (!bad_tag(h, tag_index, raw_tag)) { 6980 c = h->cmd_pool + tag_index; 6981 finish_cmd(c); 6982 } 6983 } 6984 6985 /* Some controllers, like p400, will give us one interrupt 6986 * after a soft reset, even if we turned interrupts off. 6987 * Only need to check for this in the hpsa_xxx_discard_completions 6988 * functions. 6989 */ 6990 static int ignore_bogus_interrupt(struct ctlr_info *h) 6991 { 6992 if (likely(!reset_devices)) 6993 return 0; 6994 6995 if (likely(h->interrupts_enabled)) 6996 return 0; 6997 6998 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " 6999 "(known firmware bug.) Ignoring.\n"); 7000 7001 return 1; 7002 } 7003 7004 /* 7005 * Convert &h->q[x] (passed to interrupt handlers) back to h. 7006 * Relies on (h-q[x] == x) being true for x such that 7007 * 0 <= x < MAX_REPLY_QUEUES. 7008 */ 7009 static struct ctlr_info *queue_to_hba(u8 *queue) 7010 { 7011 return container_of((queue - *queue), struct ctlr_info, q[0]); 7012 } 7013 7014 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) 7015 { 7016 struct ctlr_info *h = queue_to_hba(queue); 7017 u8 q = *(u8 *) queue; 7018 u32 raw_tag; 7019 7020 if (ignore_bogus_interrupt(h)) 7021 return IRQ_NONE; 7022 7023 if (interrupt_not_for_us(h)) 7024 return IRQ_NONE; 7025 h->last_intr_timestamp = get_jiffies_64(); 7026 while (interrupt_pending(h)) { 7027 raw_tag = get_next_completion(h, q); 7028 while (raw_tag != FIFO_EMPTY) 7029 raw_tag = next_command(h, q); 7030 } 7031 return IRQ_HANDLED; 7032 } 7033 7034 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) 7035 { 7036 struct ctlr_info *h = queue_to_hba(queue); 7037 u32 raw_tag; 7038 u8 q = *(u8 *) queue; 7039 7040 if (ignore_bogus_interrupt(h)) 7041 return IRQ_NONE; 7042 7043 h->last_intr_timestamp = get_jiffies_64(); 7044 raw_tag = get_next_completion(h, q); 7045 while (raw_tag != FIFO_EMPTY) 7046 raw_tag = next_command(h, q); 7047 return IRQ_HANDLED; 7048 } 7049 7050 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) 7051 { 7052 struct ctlr_info *h = queue_to_hba((u8 *) queue); 7053 u32 raw_tag; 7054 u8 q = *(u8 *) queue; 7055 7056 if (interrupt_not_for_us(h)) 7057 return IRQ_NONE; 7058 h->last_intr_timestamp = get_jiffies_64(); 7059 while (interrupt_pending(h)) { 7060 raw_tag = get_next_completion(h, q); 7061 while (raw_tag != FIFO_EMPTY) { 7062 process_indexed_cmd(h, raw_tag); 7063 raw_tag = next_command(h, q); 7064 } 7065 } 7066 return IRQ_HANDLED; 7067 } 7068 7069 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) 7070 { 7071 struct ctlr_info *h = queue_to_hba(queue); 7072 u32 raw_tag; 7073 u8 q = *(u8 *) queue; 7074 7075 h->last_intr_timestamp = get_jiffies_64(); 7076 raw_tag = get_next_completion(h, q); 7077 while (raw_tag != FIFO_EMPTY) { 7078 process_indexed_cmd(h, raw_tag); 7079 raw_tag = next_command(h, q); 7080 } 7081 return IRQ_HANDLED; 7082 } 7083 7084 /* Send a message CDB to the firmware. Careful, this only works 7085 * in simple mode, not performant mode due to the tag lookup. 7086 * We only ever use this immediately after a controller reset. 7087 */ 7088 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 7089 unsigned char type) 7090 { 7091 struct Command { 7092 struct CommandListHeader CommandHeader; 7093 struct RequestBlock Request; 7094 struct ErrDescriptor ErrorDescriptor; 7095 }; 7096 struct Command *cmd; 7097 static const size_t cmd_sz = sizeof(*cmd) + 7098 sizeof(cmd->ErrorDescriptor); 7099 dma_addr_t paddr64; 7100 __le32 paddr32; 7101 u32 tag; 7102 void __iomem *vaddr; 7103 int i, err; 7104 7105 vaddr = pci_ioremap_bar(pdev, 0); 7106 if (vaddr == NULL) 7107 return -ENOMEM; 7108 7109 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 7110 * CCISS commands, so they must be allocated from the lower 4GiB of 7111 * memory. 7112 */ 7113 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 7114 if (err) { 7115 iounmap(vaddr); 7116 return err; 7117 } 7118 7119 cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL); 7120 if (cmd == NULL) { 7121 iounmap(vaddr); 7122 return -ENOMEM; 7123 } 7124 7125 /* This must fit, because of the 32-bit consistent DMA mask. Also, 7126 * although there's no guarantee, we assume that the address is at 7127 * least 4-byte aligned (most likely, it's page-aligned). 7128 */ 7129 paddr32 = cpu_to_le32(paddr64); 7130 7131 cmd->CommandHeader.ReplyQueue = 0; 7132 cmd->CommandHeader.SGList = 0; 7133 cmd->CommandHeader.SGTotal = cpu_to_le16(0); 7134 cmd->CommandHeader.tag = cpu_to_le64(paddr64); 7135 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 7136 7137 cmd->Request.CDBLen = 16; 7138 cmd->Request.type_attr_dir = 7139 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE); 7140 cmd->Request.Timeout = 0; /* Don't time out */ 7141 cmd->Request.CDB[0] = opcode; 7142 cmd->Request.CDB[1] = type; 7143 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 7144 cmd->ErrorDescriptor.Addr = 7145 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd))); 7146 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo)); 7147 7148 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET); 7149 7150 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 7151 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 7152 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64) 7153 break; 7154 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 7155 } 7156 7157 iounmap(vaddr); 7158 7159 /* we leak the DMA buffer here ... no choice since the controller could 7160 * still complete the command. 7161 */ 7162 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 7163 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 7164 opcode, type); 7165 return -ETIMEDOUT; 7166 } 7167 7168 dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64); 7169 7170 if (tag & HPSA_ERROR_BIT) { 7171 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 7172 opcode, type); 7173 return -EIO; 7174 } 7175 7176 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 7177 opcode, type); 7178 return 0; 7179 } 7180 7181 #define hpsa_noop(p) hpsa_message(p, 3, 0) 7182 7183 static int hpsa_controller_hard_reset(struct pci_dev *pdev, 7184 void __iomem *vaddr, u32 use_doorbell) 7185 { 7186 7187 if (use_doorbell) { 7188 /* For everything after the P600, the PCI power state method 7189 * of resetting the controller doesn't work, so we have this 7190 * other way using the doorbell register. 7191 */ 7192 dev_info(&pdev->dev, "using doorbell to reset controller\n"); 7193 writel(use_doorbell, vaddr + SA5_DOORBELL); 7194 7195 /* PMC hardware guys tell us we need a 10 second delay after 7196 * doorbell reset and before any attempt to talk to the board 7197 * at all to ensure that this actually works and doesn't fall 7198 * over in some weird corner cases. 7199 */ 7200 msleep(10000); 7201 } else { /* Try to do it the PCI power state way */ 7202 7203 /* Quoting from the Open CISS Specification: "The Power 7204 * Management Control/Status Register (CSR) controls the power 7205 * state of the device. The normal operating state is D0, 7206 * CSR=00h. The software off state is D3, CSR=03h. To reset 7207 * the controller, place the interface device in D3 then to D0, 7208 * this causes a secondary PCI reset which will reset the 7209 * controller." */ 7210 7211 int rc = 0; 7212 7213 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 7214 7215 /* enter the D3hot power management state */ 7216 rc = pci_set_power_state(pdev, PCI_D3hot); 7217 if (rc) 7218 return rc; 7219 7220 msleep(500); 7221 7222 /* enter the D0 power management state */ 7223 rc = pci_set_power_state(pdev, PCI_D0); 7224 if (rc) 7225 return rc; 7226 7227 /* 7228 * The P600 requires a small delay when changing states. 7229 * Otherwise we may think the board did not reset and we bail. 7230 * This for kdump only and is particular to the P600. 7231 */ 7232 msleep(500); 7233 } 7234 return 0; 7235 } 7236 7237 static void init_driver_version(char *driver_version, int len) 7238 { 7239 memset(driver_version, 0, len); 7240 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); 7241 } 7242 7243 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) 7244 { 7245 char *driver_version; 7246 int i, size = sizeof(cfgtable->driver_version); 7247 7248 driver_version = kmalloc(size, GFP_KERNEL); 7249 if (!driver_version) 7250 return -ENOMEM; 7251 7252 init_driver_version(driver_version, size); 7253 for (i = 0; i < size; i++) 7254 writeb(driver_version[i], &cfgtable->driver_version[i]); 7255 kfree(driver_version); 7256 return 0; 7257 } 7258 7259 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, 7260 unsigned char *driver_ver) 7261 { 7262 int i; 7263 7264 for (i = 0; i < sizeof(cfgtable->driver_version); i++) 7265 driver_ver[i] = readb(&cfgtable->driver_version[i]); 7266 } 7267 7268 static int controller_reset_failed(struct CfgTable __iomem *cfgtable) 7269 { 7270 7271 char *driver_ver, *old_driver_ver; 7272 int rc, size = sizeof(cfgtable->driver_version); 7273 7274 old_driver_ver = kmalloc_array(2, size, GFP_KERNEL); 7275 if (!old_driver_ver) 7276 return -ENOMEM; 7277 driver_ver = old_driver_ver + size; 7278 7279 /* After a reset, the 32 bytes of "driver version" in the cfgtable 7280 * should have been changed, otherwise we know the reset failed. 7281 */ 7282 init_driver_version(old_driver_ver, size); 7283 read_driver_ver_from_cfgtable(cfgtable, driver_ver); 7284 rc = !memcmp(driver_ver, old_driver_ver, size); 7285 kfree(old_driver_ver); 7286 return rc; 7287 } 7288 /* This does a hard reset of the controller using PCI power management 7289 * states or the using the doorbell register. 7290 */ 7291 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id) 7292 { 7293 u64 cfg_offset; 7294 u32 cfg_base_addr; 7295 u64 cfg_base_addr_index; 7296 void __iomem *vaddr; 7297 unsigned long paddr; 7298 u32 misc_fw_support; 7299 int rc; 7300 struct CfgTable __iomem *cfgtable; 7301 u32 use_doorbell; 7302 u16 command_register; 7303 7304 /* For controllers as old as the P600, this is very nearly 7305 * the same thing as 7306 * 7307 * pci_save_state(pci_dev); 7308 * pci_set_power_state(pci_dev, PCI_D3hot); 7309 * pci_set_power_state(pci_dev, PCI_D0); 7310 * pci_restore_state(pci_dev); 7311 * 7312 * For controllers newer than the P600, the pci power state 7313 * method of resetting doesn't work so we have another way 7314 * using the doorbell register. 7315 */ 7316 7317 if (!ctlr_is_resettable(board_id)) { 7318 dev_warn(&pdev->dev, "Controller not resettable\n"); 7319 return -ENODEV; 7320 } 7321 7322 /* if controller is soft- but not hard resettable... */ 7323 if (!ctlr_is_hard_resettable(board_id)) 7324 return -ENOTSUPP; /* try soft reset later. */ 7325 7326 /* Save the PCI command register */ 7327 pci_read_config_word(pdev, 4, &command_register); 7328 pci_save_state(pdev); 7329 7330 /* find the first memory BAR, so we can find the cfg table */ 7331 rc = hpsa_pci_find_memory_BAR(pdev, &paddr); 7332 if (rc) 7333 return rc; 7334 vaddr = remap_pci_mem(paddr, 0x250); 7335 if (!vaddr) 7336 return -ENOMEM; 7337 7338 /* find cfgtable in order to check if reset via doorbell is supported */ 7339 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, 7340 &cfg_base_addr_index, &cfg_offset); 7341 if (rc) 7342 goto unmap_vaddr; 7343 cfgtable = remap_pci_mem(pci_resource_start(pdev, 7344 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); 7345 if (!cfgtable) { 7346 rc = -ENOMEM; 7347 goto unmap_vaddr; 7348 } 7349 rc = write_driver_ver_to_cfgtable(cfgtable); 7350 if (rc) 7351 goto unmap_cfgtable; 7352 7353 /* If reset via doorbell register is supported, use that. 7354 * There are two such methods. Favor the newest method. 7355 */ 7356 misc_fw_support = readl(&cfgtable->misc_fw_support); 7357 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; 7358 if (use_doorbell) { 7359 use_doorbell = DOORBELL_CTLR_RESET2; 7360 } else { 7361 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; 7362 if (use_doorbell) { 7363 dev_warn(&pdev->dev, 7364 "Soft reset not supported. Firmware update is required.\n"); 7365 rc = -ENOTSUPP; /* try soft reset */ 7366 goto unmap_cfgtable; 7367 } 7368 } 7369 7370 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); 7371 if (rc) 7372 goto unmap_cfgtable; 7373 7374 pci_restore_state(pdev); 7375 pci_write_config_word(pdev, 4, command_register); 7376 7377 /* Some devices (notably the HP Smart Array 5i Controller) 7378 need a little pause here */ 7379 msleep(HPSA_POST_RESET_PAUSE_MSECS); 7380 7381 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); 7382 if (rc) { 7383 dev_warn(&pdev->dev, 7384 "Failed waiting for board to become ready after hard reset\n"); 7385 goto unmap_cfgtable; 7386 } 7387 7388 rc = controller_reset_failed(vaddr); 7389 if (rc < 0) 7390 goto unmap_cfgtable; 7391 if (rc) { 7392 dev_warn(&pdev->dev, "Unable to successfully reset " 7393 "controller. Will try soft reset.\n"); 7394 rc = -ENOTSUPP; 7395 } else { 7396 dev_info(&pdev->dev, "board ready after hard reset.\n"); 7397 } 7398 7399 unmap_cfgtable: 7400 iounmap(cfgtable); 7401 7402 unmap_vaddr: 7403 iounmap(vaddr); 7404 return rc; 7405 } 7406 7407 /* 7408 * We cannot read the structure directly, for portability we must use 7409 * the io functions. 7410 * This is for debug only. 7411 */ 7412 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb) 7413 { 7414 #ifdef HPSA_DEBUG 7415 int i; 7416 char temp_name[17]; 7417 7418 dev_info(dev, "Controller Configuration information\n"); 7419 dev_info(dev, "------------------------------------\n"); 7420 for (i = 0; i < 4; i++) 7421 temp_name[i] = readb(&(tb->Signature[i])); 7422 temp_name[4] = '\0'; 7423 dev_info(dev, " Signature = %s\n", temp_name); 7424 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 7425 dev_info(dev, " Transport methods supported = 0x%x\n", 7426 readl(&(tb->TransportSupport))); 7427 dev_info(dev, " Transport methods active = 0x%x\n", 7428 readl(&(tb->TransportActive))); 7429 dev_info(dev, " Requested transport Method = 0x%x\n", 7430 readl(&(tb->HostWrite.TransportRequest))); 7431 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 7432 readl(&(tb->HostWrite.CoalIntDelay))); 7433 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 7434 readl(&(tb->HostWrite.CoalIntCount))); 7435 dev_info(dev, " Max outstanding commands = %d\n", 7436 readl(&(tb->CmdsOutMax))); 7437 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 7438 for (i = 0; i < 16; i++) 7439 temp_name[i] = readb(&(tb->ServerName[i])); 7440 temp_name[16] = '\0'; 7441 dev_info(dev, " Server Name = %s\n", temp_name); 7442 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 7443 readl(&(tb->HeartBeat))); 7444 #endif /* HPSA_DEBUG */ 7445 } 7446 7447 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 7448 { 7449 int i, offset, mem_type, bar_type; 7450 7451 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 7452 return 0; 7453 offset = 0; 7454 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 7455 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 7456 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 7457 offset += 4; 7458 else { 7459 mem_type = pci_resource_flags(pdev, i) & 7460 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 7461 switch (mem_type) { 7462 case PCI_BASE_ADDRESS_MEM_TYPE_32: 7463 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 7464 offset += 4; /* 32 bit */ 7465 break; 7466 case PCI_BASE_ADDRESS_MEM_TYPE_64: 7467 offset += 8; 7468 break; 7469 default: /* reserved in PCI 2.2 */ 7470 dev_warn(&pdev->dev, 7471 "base address is invalid\n"); 7472 return -1; 7473 } 7474 } 7475 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 7476 return i + 1; 7477 } 7478 return -1; 7479 } 7480 7481 static void hpsa_disable_interrupt_mode(struct ctlr_info *h) 7482 { 7483 pci_free_irq_vectors(h->pdev); 7484 h->msix_vectors = 0; 7485 } 7486 7487 static void hpsa_setup_reply_map(struct ctlr_info *h) 7488 { 7489 const struct cpumask *mask; 7490 unsigned int queue, cpu; 7491 7492 for (queue = 0; queue < h->msix_vectors; queue++) { 7493 mask = pci_irq_get_affinity(h->pdev, queue); 7494 if (!mask) 7495 goto fallback; 7496 7497 for_each_cpu(cpu, mask) 7498 h->reply_map[cpu] = queue; 7499 } 7500 return; 7501 7502 fallback: 7503 for_each_possible_cpu(cpu) 7504 h->reply_map[cpu] = 0; 7505 } 7506 7507 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 7508 * controllers that are capable. If not, we use legacy INTx mode. 7509 */ 7510 static int hpsa_interrupt_mode(struct ctlr_info *h) 7511 { 7512 unsigned int flags = PCI_IRQ_INTX; 7513 int ret; 7514 7515 /* Some boards advertise MSI but don't really support it */ 7516 switch (h->board_id) { 7517 case 0x40700E11: 7518 case 0x40800E11: 7519 case 0x40820E11: 7520 case 0x40830E11: 7521 break; 7522 default: 7523 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES, 7524 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY); 7525 if (ret > 0) { 7526 h->msix_vectors = ret; 7527 return 0; 7528 } 7529 7530 flags |= PCI_IRQ_MSI; 7531 break; 7532 } 7533 7534 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags); 7535 if (ret < 0) 7536 return ret; 7537 return 0; 7538 } 7539 7540 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id, 7541 bool *legacy_board) 7542 { 7543 int i; 7544 u32 subsystem_vendor_id, subsystem_device_id; 7545 7546 subsystem_vendor_id = pdev->subsystem_vendor; 7547 subsystem_device_id = pdev->subsystem_device; 7548 *board_id = ((subsystem_device_id << 16) & 0xffff0000) | 7549 subsystem_vendor_id; 7550 7551 if (legacy_board) 7552 *legacy_board = false; 7553 for (i = 0; i < ARRAY_SIZE(products); i++) 7554 if (*board_id == products[i].board_id) { 7555 if (products[i].access != &SA5A_access && 7556 products[i].access != &SA5B_access) 7557 return i; 7558 dev_warn(&pdev->dev, 7559 "legacy board ID: 0x%08x\n", 7560 *board_id); 7561 if (legacy_board) 7562 *legacy_board = true; 7563 return i; 7564 } 7565 7566 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id); 7567 if (legacy_board) 7568 *legacy_board = true; 7569 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ 7570 } 7571 7572 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 7573 unsigned long *memory_bar) 7574 { 7575 int i; 7576 7577 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 7578 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 7579 /* addressing mode bits already removed */ 7580 *memory_bar = pci_resource_start(pdev, i); 7581 dev_dbg(&pdev->dev, "memory BAR = %lx\n", 7582 *memory_bar); 7583 return 0; 7584 } 7585 dev_warn(&pdev->dev, "no memory BAR found\n"); 7586 return -ENODEV; 7587 } 7588 7589 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, 7590 int wait_for_ready) 7591 { 7592 int i, iterations; 7593 u32 scratchpad; 7594 if (wait_for_ready) 7595 iterations = HPSA_BOARD_READY_ITERATIONS; 7596 else 7597 iterations = HPSA_BOARD_NOT_READY_ITERATIONS; 7598 7599 for (i = 0; i < iterations; i++) { 7600 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); 7601 if (wait_for_ready) { 7602 if (scratchpad == HPSA_FIRMWARE_READY) 7603 return 0; 7604 } else { 7605 if (scratchpad != HPSA_FIRMWARE_READY) 7606 return 0; 7607 } 7608 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 7609 } 7610 dev_warn(&pdev->dev, "board not ready, timed out.\n"); 7611 return -ENODEV; 7612 } 7613 7614 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, 7615 u32 *cfg_base_addr, u64 *cfg_base_addr_index, 7616 u64 *cfg_offset) 7617 { 7618 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); 7619 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); 7620 *cfg_base_addr &= (u32) 0x0000ffff; 7621 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); 7622 if (*cfg_base_addr_index == -1) { 7623 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 7624 return -ENODEV; 7625 } 7626 return 0; 7627 } 7628 7629 static void hpsa_free_cfgtables(struct ctlr_info *h) 7630 { 7631 if (h->transtable) { 7632 iounmap(h->transtable); 7633 h->transtable = NULL; 7634 } 7635 if (h->cfgtable) { 7636 iounmap(h->cfgtable); 7637 h->cfgtable = NULL; 7638 } 7639 } 7640 7641 /* Find and map CISS config table and transfer table 7642 + * several items must be unmapped (freed) later 7643 + * */ 7644 static int hpsa_find_cfgtables(struct ctlr_info *h) 7645 { 7646 u64 cfg_offset; 7647 u32 cfg_base_addr; 7648 u64 cfg_base_addr_index; 7649 u32 trans_offset; 7650 int rc; 7651 7652 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 7653 &cfg_base_addr_index, &cfg_offset); 7654 if (rc) 7655 return rc; 7656 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, 7657 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); 7658 if (!h->cfgtable) { 7659 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n"); 7660 return -ENOMEM; 7661 } 7662 rc = write_driver_ver_to_cfgtable(h->cfgtable); 7663 if (rc) 7664 return rc; 7665 /* Find performant mode table. */ 7666 trans_offset = readl(&h->cfgtable->TransMethodOffset); 7667 h->transtable = remap_pci_mem(pci_resource_start(h->pdev, 7668 cfg_base_addr_index)+cfg_offset+trans_offset, 7669 sizeof(*h->transtable)); 7670 if (!h->transtable) { 7671 dev_err(&h->pdev->dev, "Failed mapping transfer table\n"); 7672 hpsa_free_cfgtables(h); 7673 return -ENOMEM; 7674 } 7675 return 0; 7676 } 7677 7678 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) 7679 { 7680 #define MIN_MAX_COMMANDS 16 7681 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS); 7682 7683 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands); 7684 7685 /* Limit commands in memory limited kdump scenario. */ 7686 if (reset_devices && h->max_commands > 32) 7687 h->max_commands = 32; 7688 7689 if (h->max_commands < MIN_MAX_COMMANDS) { 7690 dev_warn(&h->pdev->dev, 7691 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n", 7692 h->max_commands, 7693 MIN_MAX_COMMANDS); 7694 h->max_commands = MIN_MAX_COMMANDS; 7695 } 7696 } 7697 7698 /* If the controller reports that the total max sg entries is greater than 512, 7699 * then we know that chained SG blocks work. (Original smart arrays did not 7700 * support chained SG blocks and would return zero for max sg entries.) 7701 */ 7702 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h) 7703 { 7704 return h->maxsgentries > 512; 7705 } 7706 7707 /* Interrogate the hardware for some limits: 7708 * max commands, max SG elements without chaining, and with chaining, 7709 * SG chain block size, etc. 7710 */ 7711 static void hpsa_find_board_params(struct ctlr_info *h) 7712 { 7713 hpsa_get_max_perf_mode_cmds(h); 7714 h->nr_cmds = h->max_commands; 7715 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); 7716 h->fw_support = readl(&(h->cfgtable->misc_fw_support)); 7717 if (hpsa_supports_chained_sg_blocks(h)) { 7718 /* Limit in-command s/g elements to 32 save dma'able memory. */ 7719 h->max_cmd_sg_entries = 32; 7720 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries; 7721 h->maxsgentries--; /* save one for chain pointer */ 7722 } else { 7723 /* 7724 * Original smart arrays supported at most 31 s/g entries 7725 * embedded inline in the command (trying to use more 7726 * would lock up the controller) 7727 */ 7728 h->max_cmd_sg_entries = 31; 7729 h->maxsgentries = 31; /* default to traditional values */ 7730 h->chainsize = 0; 7731 } 7732 7733 /* Find out what task management functions are supported and cache */ 7734 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); 7735 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags)) 7736 dev_warn(&h->pdev->dev, "Physical aborts not supported\n"); 7737 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) 7738 dev_warn(&h->pdev->dev, "Logical aborts not supported\n"); 7739 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)) 7740 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n"); 7741 } 7742 7743 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) 7744 { 7745 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { 7746 dev_err(&h->pdev->dev, "not a valid CISS config table\n"); 7747 return false; 7748 } 7749 return true; 7750 } 7751 7752 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) 7753 { 7754 u32 driver_support; 7755 7756 driver_support = readl(&(h->cfgtable->driver_support)); 7757 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 7758 #ifdef CONFIG_X86 7759 driver_support |= ENABLE_SCSI_PREFETCH; 7760 #endif 7761 driver_support |= ENABLE_UNIT_ATTN; 7762 writel(driver_support, &(h->cfgtable->driver_support)); 7763 } 7764 7765 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result 7766 * in a prefetch beyond physical memory. 7767 */ 7768 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) 7769 { 7770 u32 dma_prefetch; 7771 7772 if (h->board_id != 0x3225103C) 7773 return; 7774 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 7775 dma_prefetch |= 0x8000; 7776 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 7777 } 7778 7779 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) 7780 { 7781 int i; 7782 u32 doorbell_value; 7783 unsigned long flags; 7784 /* wait until the clear_event_notify bit 6 is cleared by controller. */ 7785 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) { 7786 spin_lock_irqsave(&h->lock, flags); 7787 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 7788 spin_unlock_irqrestore(&h->lock, flags); 7789 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) 7790 goto done; 7791 /* delay and try again */ 7792 msleep(CLEAR_EVENT_WAIT_INTERVAL); 7793 } 7794 return -ENODEV; 7795 done: 7796 return 0; 7797 } 7798 7799 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h) 7800 { 7801 int i; 7802 u32 doorbell_value; 7803 unsigned long flags; 7804 7805 /* under certain very rare conditions, this can take awhile. 7806 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 7807 * as we enter this code.) 7808 */ 7809 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) { 7810 if (h->remove_in_progress) 7811 goto done; 7812 spin_lock_irqsave(&h->lock, flags); 7813 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 7814 spin_unlock_irqrestore(&h->lock, flags); 7815 if (!(doorbell_value & CFGTBL_ChangeReq)) 7816 goto done; 7817 /* delay and try again */ 7818 msleep(MODE_CHANGE_WAIT_INTERVAL); 7819 } 7820 return -ENODEV; 7821 done: 7822 return 0; 7823 } 7824 7825 /* return -ENODEV or other reason on error, 0 on success */ 7826 static int hpsa_enter_simple_mode(struct ctlr_info *h) 7827 { 7828 u32 trans_support; 7829 7830 trans_support = readl(&(h->cfgtable->TransportSupport)); 7831 if (!(trans_support & SIMPLE_MODE)) 7832 return -ENOTSUPP; 7833 7834 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 7835 7836 /* Update the field, and then ring the doorbell */ 7837 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 7838 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); 7839 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 7840 if (hpsa_wait_for_mode_change_ack(h)) 7841 goto error; 7842 print_cfg_table(&h->pdev->dev, h->cfgtable); 7843 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) 7844 goto error; 7845 h->transMethod = CFGTBL_Trans_Simple; 7846 return 0; 7847 error: 7848 dev_err(&h->pdev->dev, "failed to enter simple mode\n"); 7849 return -ENODEV; 7850 } 7851 7852 /* free items allocated or mapped by hpsa_pci_init */ 7853 static void hpsa_free_pci_init(struct ctlr_info *h) 7854 { 7855 hpsa_free_cfgtables(h); /* pci_init 4 */ 7856 iounmap(h->vaddr); /* pci_init 3 */ 7857 h->vaddr = NULL; 7858 hpsa_disable_interrupt_mode(h); /* pci_init 2 */ 7859 /* 7860 * call pci_disable_device before pci_release_regions per 7861 * Documentation/driver-api/pci/pci.rst 7862 */ 7863 pci_disable_device(h->pdev); /* pci_init 1 */ 7864 pci_release_regions(h->pdev); /* pci_init 2 */ 7865 } 7866 7867 /* several items must be freed later */ 7868 static int hpsa_pci_init(struct ctlr_info *h) 7869 { 7870 int prod_index, err; 7871 bool legacy_board; 7872 7873 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board); 7874 if (prod_index < 0) 7875 return prod_index; 7876 h->product_name = products[prod_index].product_name; 7877 h->access = *(products[prod_index].access); 7878 h->legacy_board = legacy_board; 7879 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | 7880 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); 7881 7882 err = pci_enable_device(h->pdev); 7883 if (err) { 7884 dev_err(&h->pdev->dev, "failed to enable PCI device\n"); 7885 pci_disable_device(h->pdev); 7886 return err; 7887 } 7888 7889 err = pci_request_regions(h->pdev, HPSA); 7890 if (err) { 7891 dev_err(&h->pdev->dev, 7892 "failed to obtain PCI resources\n"); 7893 pci_disable_device(h->pdev); 7894 return err; 7895 } 7896 7897 pci_set_master(h->pdev); 7898 7899 err = hpsa_interrupt_mode(h); 7900 if (err) 7901 goto clean1; 7902 7903 /* setup mapping between CPU and reply queue */ 7904 hpsa_setup_reply_map(h); 7905 7906 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); 7907 if (err) 7908 goto clean2; /* intmode+region, pci */ 7909 h->vaddr = remap_pci_mem(h->paddr, 0x250); 7910 if (!h->vaddr) { 7911 dev_err(&h->pdev->dev, "failed to remap PCI mem\n"); 7912 err = -ENOMEM; 7913 goto clean2; /* intmode+region, pci */ 7914 } 7915 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 7916 if (err) 7917 goto clean3; /* vaddr, intmode+region, pci */ 7918 err = hpsa_find_cfgtables(h); 7919 if (err) 7920 goto clean3; /* vaddr, intmode+region, pci */ 7921 hpsa_find_board_params(h); 7922 7923 if (!hpsa_CISS_signature_present(h)) { 7924 err = -ENODEV; 7925 goto clean4; /* cfgtables, vaddr, intmode+region, pci */ 7926 } 7927 hpsa_set_driver_support_bits(h); 7928 hpsa_p600_dma_prefetch_quirk(h); 7929 err = hpsa_enter_simple_mode(h); 7930 if (err) 7931 goto clean4; /* cfgtables, vaddr, intmode+region, pci */ 7932 return 0; 7933 7934 clean4: /* cfgtables, vaddr, intmode+region, pci */ 7935 hpsa_free_cfgtables(h); 7936 clean3: /* vaddr, intmode+region, pci */ 7937 iounmap(h->vaddr); 7938 h->vaddr = NULL; 7939 clean2: /* intmode+region, pci */ 7940 hpsa_disable_interrupt_mode(h); 7941 clean1: 7942 /* 7943 * call pci_disable_device before pci_release_regions per 7944 * Documentation/driver-api/pci/pci.rst 7945 */ 7946 pci_disable_device(h->pdev); 7947 pci_release_regions(h->pdev); 7948 return err; 7949 } 7950 7951 static void hpsa_hba_inquiry(struct ctlr_info *h) 7952 { 7953 int rc; 7954 7955 #define HBA_INQUIRY_BYTE_COUNT 64 7956 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 7957 if (!h->hba_inquiry_data) 7958 return; 7959 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 7960 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 7961 if (rc != 0) { 7962 kfree(h->hba_inquiry_data); 7963 h->hba_inquiry_data = NULL; 7964 } 7965 } 7966 7967 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id) 7968 { 7969 int rc, i; 7970 void __iomem *vaddr; 7971 7972 if (!reset_devices) 7973 return 0; 7974 7975 /* kdump kernel is loading, we don't know in which state is 7976 * the pci interface. The dev->enable_cnt is equal zero 7977 * so we call enable+disable, wait a while and switch it on. 7978 */ 7979 rc = pci_enable_device(pdev); 7980 if (rc) { 7981 dev_warn(&pdev->dev, "Failed to enable PCI device\n"); 7982 return -ENODEV; 7983 } 7984 pci_disable_device(pdev); 7985 msleep(260); /* a randomly chosen number */ 7986 rc = pci_enable_device(pdev); 7987 if (rc) { 7988 dev_warn(&pdev->dev, "failed to enable device.\n"); 7989 return -ENODEV; 7990 } 7991 7992 pci_set_master(pdev); 7993 7994 vaddr = pci_ioremap_bar(pdev, 0); 7995 if (vaddr == NULL) { 7996 rc = -ENOMEM; 7997 goto out_disable; 7998 } 7999 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET); 8000 iounmap(vaddr); 8001 8002 /* Reset the controller with a PCI power-cycle or via doorbell */ 8003 rc = hpsa_kdump_hard_reset_controller(pdev, board_id); 8004 8005 /* -ENOTSUPP here means we cannot reset the controller 8006 * but it's already (and still) up and running in 8007 * "performant mode". Or, it might be 640x, which can't reset 8008 * due to concerns about shared bbwc between 6402/6404 pair. 8009 */ 8010 if (rc) 8011 goto out_disable; 8012 8013 /* Now try to get the controller to respond to a no-op */ 8014 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n"); 8015 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 8016 if (hpsa_noop(pdev) == 0) 8017 break; 8018 else 8019 dev_warn(&pdev->dev, "no-op failed%s\n", 8020 (i < 11 ? "; re-trying" : "")); 8021 } 8022 8023 out_disable: 8024 8025 pci_disable_device(pdev); 8026 return rc; 8027 } 8028 8029 static void hpsa_free_cmd_pool(struct ctlr_info *h) 8030 { 8031 bitmap_free(h->cmd_pool_bits); 8032 h->cmd_pool_bits = NULL; 8033 if (h->cmd_pool) { 8034 dma_free_coherent(&h->pdev->dev, 8035 h->nr_cmds * sizeof(struct CommandList), 8036 h->cmd_pool, 8037 h->cmd_pool_dhandle); 8038 h->cmd_pool = NULL; 8039 h->cmd_pool_dhandle = 0; 8040 } 8041 if (h->errinfo_pool) { 8042 dma_free_coherent(&h->pdev->dev, 8043 h->nr_cmds * sizeof(struct ErrorInfo), 8044 h->errinfo_pool, 8045 h->errinfo_pool_dhandle); 8046 h->errinfo_pool = NULL; 8047 h->errinfo_pool_dhandle = 0; 8048 } 8049 } 8050 8051 static int hpsa_alloc_cmd_pool(struct ctlr_info *h) 8052 { 8053 h->cmd_pool_bits = bitmap_zalloc(h->nr_cmds, GFP_KERNEL); 8054 h->cmd_pool = dma_alloc_coherent(&h->pdev->dev, 8055 h->nr_cmds * sizeof(*h->cmd_pool), 8056 &h->cmd_pool_dhandle, GFP_KERNEL); 8057 h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev, 8058 h->nr_cmds * sizeof(*h->errinfo_pool), 8059 &h->errinfo_pool_dhandle, GFP_KERNEL); 8060 if ((h->cmd_pool_bits == NULL) 8061 || (h->cmd_pool == NULL) 8062 || (h->errinfo_pool == NULL)) { 8063 dev_err(&h->pdev->dev, "out of memory in %s", __func__); 8064 goto clean_up; 8065 } 8066 hpsa_preinitialize_commands(h); 8067 return 0; 8068 clean_up: 8069 hpsa_free_cmd_pool(h); 8070 return -ENOMEM; 8071 } 8072 8073 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */ 8074 static void hpsa_free_irqs(struct ctlr_info *h) 8075 { 8076 int i; 8077 int irq_vector = 0; 8078 8079 if (hpsa_simple_mode) 8080 irq_vector = h->intr_mode; 8081 8082 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) { 8083 /* Single reply queue, only one irq to free */ 8084 free_irq(pci_irq_vector(h->pdev, irq_vector), 8085 &h->q[h->intr_mode]); 8086 h->q[h->intr_mode] = 0; 8087 return; 8088 } 8089 8090 for (i = 0; i < h->msix_vectors; i++) { 8091 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]); 8092 h->q[i] = 0; 8093 } 8094 for (; i < MAX_REPLY_QUEUES; i++) 8095 h->q[i] = 0; 8096 } 8097 8098 /* returns 0 on success; cleans up and returns -Enn on error */ 8099 static int hpsa_request_irqs(struct ctlr_info *h, 8100 irqreturn_t (*msixhandler)(int, void *), 8101 irqreturn_t (*intxhandler)(int, void *)) 8102 { 8103 int rc, i; 8104 int irq_vector = 0; 8105 8106 if (hpsa_simple_mode) 8107 irq_vector = h->intr_mode; 8108 8109 /* 8110 * initialize h->q[x] = x so that interrupt handlers know which 8111 * queue to process. 8112 */ 8113 for (i = 0; i < MAX_REPLY_QUEUES; i++) 8114 h->q[i] = (u8) i; 8115 8116 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) { 8117 /* If performant mode and MSI-X, use multiple reply queues */ 8118 for (i = 0; i < h->msix_vectors; i++) { 8119 sprintf(h->intrname[i], "%s-msix%d", h->devname, i); 8120 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler, 8121 0, h->intrname[i], 8122 &h->q[i]); 8123 if (rc) { 8124 int j; 8125 8126 dev_err(&h->pdev->dev, 8127 "failed to get irq %d for %s\n", 8128 pci_irq_vector(h->pdev, i), h->devname); 8129 for (j = 0; j < i; j++) { 8130 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]); 8131 h->q[j] = 0; 8132 } 8133 for (; j < MAX_REPLY_QUEUES; j++) 8134 h->q[j] = 0; 8135 return rc; 8136 } 8137 } 8138 } else { 8139 /* Use single reply pool */ 8140 if (h->msix_vectors > 0 || h->pdev->msi_enabled) { 8141 sprintf(h->intrname[0], "%s-msi%s", h->devname, 8142 h->msix_vectors ? "x" : ""); 8143 rc = request_irq(pci_irq_vector(h->pdev, irq_vector), 8144 msixhandler, 0, 8145 h->intrname[0], 8146 &h->q[h->intr_mode]); 8147 } else { 8148 sprintf(h->intrname[h->intr_mode], 8149 "%s-intx", h->devname); 8150 rc = request_irq(pci_irq_vector(h->pdev, irq_vector), 8151 intxhandler, IRQF_SHARED, 8152 h->intrname[0], 8153 &h->q[h->intr_mode]); 8154 } 8155 } 8156 if (rc) { 8157 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n", 8158 pci_irq_vector(h->pdev, irq_vector), h->devname); 8159 hpsa_free_irqs(h); 8160 return -ENODEV; 8161 } 8162 return 0; 8163 } 8164 8165 static int hpsa_kdump_soft_reset(struct ctlr_info *h) 8166 { 8167 int rc; 8168 hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER); 8169 8170 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); 8171 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY); 8172 if (rc) { 8173 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); 8174 return rc; 8175 } 8176 8177 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); 8178 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 8179 if (rc) { 8180 dev_warn(&h->pdev->dev, "Board failed to become ready " 8181 "after soft reset.\n"); 8182 return rc; 8183 } 8184 8185 return 0; 8186 } 8187 8188 static void hpsa_free_reply_queues(struct ctlr_info *h) 8189 { 8190 int i; 8191 8192 for (i = 0; i < h->nreply_queues; i++) { 8193 if (!h->reply_queue[i].head) 8194 continue; 8195 dma_free_coherent(&h->pdev->dev, 8196 h->reply_queue_size, 8197 h->reply_queue[i].head, 8198 h->reply_queue[i].busaddr); 8199 h->reply_queue[i].head = NULL; 8200 h->reply_queue[i].busaddr = 0; 8201 } 8202 h->reply_queue_size = 0; 8203 } 8204 8205 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) 8206 { 8207 hpsa_free_performant_mode(h); /* init_one 7 */ 8208 hpsa_free_sg_chain_blocks(h); /* init_one 6 */ 8209 hpsa_free_cmd_pool(h); /* init_one 5 */ 8210 hpsa_free_irqs(h); /* init_one 4 */ 8211 scsi_host_put(h->scsi_host); /* init_one 3 */ 8212 h->scsi_host = NULL; /* init_one 3 */ 8213 hpsa_free_pci_init(h); /* init_one 2_5 */ 8214 free_percpu(h->lockup_detected); /* init_one 2 */ 8215 h->lockup_detected = NULL; /* init_one 2 */ 8216 if (h->resubmit_wq) { 8217 destroy_workqueue(h->resubmit_wq); /* init_one 1 */ 8218 h->resubmit_wq = NULL; 8219 } 8220 if (h->rescan_ctlr_wq) { 8221 destroy_workqueue(h->rescan_ctlr_wq); 8222 h->rescan_ctlr_wq = NULL; 8223 } 8224 if (h->monitor_ctlr_wq) { 8225 destroy_workqueue(h->monitor_ctlr_wq); 8226 h->monitor_ctlr_wq = NULL; 8227 } 8228 8229 kfree(h); /* init_one 1 */ 8230 } 8231 8232 /* Called when controller lockup detected. */ 8233 static void fail_all_outstanding_cmds(struct ctlr_info *h) 8234 { 8235 int i, refcount; 8236 struct CommandList *c; 8237 int failcount = 0; 8238 8239 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */ 8240 for (i = 0; i < h->nr_cmds; i++) { 8241 c = h->cmd_pool + i; 8242 refcount = atomic_inc_return(&c->refcount); 8243 if (refcount > 1) { 8244 c->err_info->CommandStatus = CMD_CTLR_LOCKUP; 8245 finish_cmd(c); 8246 atomic_dec(&h->commands_outstanding); 8247 failcount++; 8248 } 8249 cmd_free(h, c); 8250 } 8251 dev_warn(&h->pdev->dev, 8252 "failed %d commands in fail_all\n", failcount); 8253 } 8254 8255 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value) 8256 { 8257 int cpu; 8258 8259 for_each_online_cpu(cpu) { 8260 u32 *lockup_detected; 8261 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); 8262 *lockup_detected = value; 8263 } 8264 wmb(); /* be sure the per-cpu variables are out to memory */ 8265 } 8266 8267 static void controller_lockup_detected(struct ctlr_info *h) 8268 { 8269 unsigned long flags; 8270 u32 lockup_detected; 8271 8272 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8273 spin_lock_irqsave(&h->lock, flags); 8274 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); 8275 if (!lockup_detected) { 8276 /* no heartbeat, but controller gave us a zero. */ 8277 dev_warn(&h->pdev->dev, 8278 "lockup detected after %d but scratchpad register is zero\n", 8279 h->heartbeat_sample_interval / HZ); 8280 lockup_detected = 0xffffffff; 8281 } 8282 set_lockup_detected_for_all_cpus(h, lockup_detected); 8283 spin_unlock_irqrestore(&h->lock, flags); 8284 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n", 8285 lockup_detected, h->heartbeat_sample_interval / HZ); 8286 if (lockup_detected == 0xffff0000) { 8287 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n"); 8288 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL); 8289 } 8290 pci_disable_device(h->pdev); 8291 fail_all_outstanding_cmds(h); 8292 } 8293 8294 static int detect_controller_lockup(struct ctlr_info *h) 8295 { 8296 u64 now; 8297 u32 heartbeat; 8298 unsigned long flags; 8299 8300 now = get_jiffies_64(); 8301 /* If we've received an interrupt recently, we're ok. */ 8302 if (time_after64(h->last_intr_timestamp + 8303 (h->heartbeat_sample_interval), now)) 8304 return false; 8305 8306 /* 8307 * If we've already checked the heartbeat recently, we're ok. 8308 * This could happen if someone sends us a signal. We 8309 * otherwise don't care about signals in this thread. 8310 */ 8311 if (time_after64(h->last_heartbeat_timestamp + 8312 (h->heartbeat_sample_interval), now)) 8313 return false; 8314 8315 /* If heartbeat has not changed since we last looked, we're not ok. */ 8316 spin_lock_irqsave(&h->lock, flags); 8317 heartbeat = readl(&h->cfgtable->HeartBeat); 8318 spin_unlock_irqrestore(&h->lock, flags); 8319 if (h->last_heartbeat == heartbeat) { 8320 controller_lockup_detected(h); 8321 return true; 8322 } 8323 8324 /* We're ok. */ 8325 h->last_heartbeat = heartbeat; 8326 h->last_heartbeat_timestamp = now; 8327 return false; 8328 } 8329 8330 /* 8331 * Set ioaccel status for all ioaccel volumes. 8332 * 8333 * Called from monitor controller worker (hpsa_event_monitor_worker) 8334 * 8335 * A Volume (or Volumes that comprise an Array set) may be undergoing a 8336 * transformation, so we will be turning off ioaccel for all volumes that 8337 * make up the Array. 8338 */ 8339 static void hpsa_set_ioaccel_status(struct ctlr_info *h) 8340 { 8341 int rc; 8342 int i; 8343 u8 ioaccel_status; 8344 unsigned char *buf; 8345 struct hpsa_scsi_dev_t *device; 8346 8347 if (!h) 8348 return; 8349 8350 buf = kmalloc(64, GFP_KERNEL); 8351 if (!buf) 8352 return; 8353 8354 /* 8355 * Run through current device list used during I/O requests. 8356 */ 8357 for (i = 0; i < h->ndevices; i++) { 8358 int offload_to_be_enabled = 0; 8359 int offload_config = 0; 8360 8361 device = h->dev[i]; 8362 8363 if (!device) 8364 continue; 8365 if (!hpsa_vpd_page_supported(h, device->scsi3addr, 8366 HPSA_VPD_LV_IOACCEL_STATUS)) 8367 continue; 8368 8369 memset(buf, 0, 64); 8370 8371 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr, 8372 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, 8373 buf, 64); 8374 if (rc != 0) 8375 continue; 8376 8377 ioaccel_status = buf[IOACCEL_STATUS_BYTE]; 8378 8379 /* 8380 * Check if offload is still configured on 8381 */ 8382 offload_config = 8383 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); 8384 /* 8385 * If offload is configured on, check to see if ioaccel 8386 * needs to be enabled. 8387 */ 8388 if (offload_config) 8389 offload_to_be_enabled = 8390 !!(ioaccel_status & OFFLOAD_ENABLED_BIT); 8391 8392 /* 8393 * If ioaccel is to be re-enabled, re-enable later during the 8394 * scan operation so the driver can get a fresh raidmap 8395 * before turning ioaccel back on. 8396 */ 8397 if (offload_to_be_enabled) 8398 continue; 8399 8400 /* 8401 * Immediately turn off ioaccel for any volume the 8402 * controller tells us to. Some of the reasons could be: 8403 * transformation - change to the LVs of an Array. 8404 * degraded volume - component failure 8405 */ 8406 hpsa_turn_off_ioaccel_for_device(device); 8407 } 8408 8409 kfree(buf); 8410 } 8411 8412 static void hpsa_ack_ctlr_events(struct ctlr_info *h) 8413 { 8414 char *event_type; 8415 8416 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) 8417 return; 8418 8419 /* Ask the controller to clear the events we're handling. */ 8420 if ((h->transMethod & (CFGTBL_Trans_io_accel1 8421 | CFGTBL_Trans_io_accel2)) && 8422 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || 8423 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { 8424 8425 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) 8426 event_type = "state change"; 8427 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) 8428 event_type = "configuration change"; 8429 /* Stop sending new RAID offload reqs via the IO accelerator */ 8430 scsi_block_requests(h->scsi_host); 8431 hpsa_set_ioaccel_status(h); 8432 hpsa_drain_accel_commands(h); 8433 /* Set 'accelerator path config change' bit */ 8434 dev_warn(&h->pdev->dev, 8435 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", 8436 h->events, event_type); 8437 writel(h->events, &(h->cfgtable->clear_event_notify)); 8438 /* Set the "clear event notify field update" bit 6 */ 8439 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); 8440 /* Wait until ctlr clears 'clear event notify field', bit 6 */ 8441 hpsa_wait_for_clear_event_notify_ack(h); 8442 scsi_unblock_requests(h->scsi_host); 8443 } else { 8444 /* Acknowledge controller notification events. */ 8445 writel(h->events, &(h->cfgtable->clear_event_notify)); 8446 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); 8447 hpsa_wait_for_clear_event_notify_ack(h); 8448 } 8449 return; 8450 } 8451 8452 /* Check a register on the controller to see if there are configuration 8453 * changes (added/changed/removed logical drives, etc.) which mean that 8454 * we should rescan the controller for devices. 8455 * Also check flag for driver-initiated rescan. 8456 */ 8457 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h) 8458 { 8459 if (h->drv_req_rescan) { 8460 h->drv_req_rescan = 0; 8461 return 1; 8462 } 8463 8464 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) 8465 return 0; 8466 8467 h->events = readl(&(h->cfgtable->event_notify)); 8468 return h->events & RESCAN_REQUIRED_EVENT_BITS; 8469 } 8470 8471 /* 8472 * Check if any of the offline devices have become ready 8473 */ 8474 static int hpsa_offline_devices_ready(struct ctlr_info *h) 8475 { 8476 unsigned long flags; 8477 struct offline_device_entry *d; 8478 struct list_head *this, *tmp; 8479 8480 spin_lock_irqsave(&h->offline_device_lock, flags); 8481 list_for_each_safe(this, tmp, &h->offline_device_list) { 8482 d = list_entry(this, struct offline_device_entry, 8483 offline_list); 8484 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8485 if (!hpsa_volume_offline(h, d->scsi3addr)) { 8486 spin_lock_irqsave(&h->offline_device_lock, flags); 8487 list_del(&d->offline_list); 8488 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8489 return 1; 8490 } 8491 spin_lock_irqsave(&h->offline_device_lock, flags); 8492 } 8493 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8494 return 0; 8495 } 8496 8497 static int hpsa_luns_changed(struct ctlr_info *h) 8498 { 8499 int rc = 1; /* assume there are changes */ 8500 struct ReportLUNdata *logdev = NULL; 8501 8502 /* if we can't find out if lun data has changed, 8503 * assume that it has. 8504 */ 8505 8506 if (!h->lastlogicals) 8507 return rc; 8508 8509 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL); 8510 if (!logdev) 8511 return rc; 8512 8513 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) { 8514 dev_warn(&h->pdev->dev, 8515 "report luns failed, can't track lun changes.\n"); 8516 goto out; 8517 } 8518 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) { 8519 dev_info(&h->pdev->dev, 8520 "Lun changes detected.\n"); 8521 memcpy(h->lastlogicals, logdev, sizeof(*logdev)); 8522 goto out; 8523 } else 8524 rc = 0; /* no changes detected. */ 8525 out: 8526 kfree(logdev); 8527 return rc; 8528 } 8529 8530 static void hpsa_perform_rescan(struct ctlr_info *h) 8531 { 8532 struct Scsi_Host *sh = NULL; 8533 unsigned long flags; 8534 8535 /* 8536 * Do the scan after the reset 8537 */ 8538 spin_lock_irqsave(&h->reset_lock, flags); 8539 if (h->reset_in_progress) { 8540 h->drv_req_rescan = 1; 8541 spin_unlock_irqrestore(&h->reset_lock, flags); 8542 return; 8543 } 8544 spin_unlock_irqrestore(&h->reset_lock, flags); 8545 8546 sh = scsi_host_get(h->scsi_host); 8547 if (sh != NULL) { 8548 hpsa_scan_start(sh); 8549 scsi_host_put(sh); 8550 h->drv_req_rescan = 0; 8551 } 8552 } 8553 8554 /* 8555 * watch for controller events 8556 */ 8557 static void hpsa_event_monitor_worker(struct work_struct *work) 8558 { 8559 struct ctlr_info *h = container_of(to_delayed_work(work), 8560 struct ctlr_info, event_monitor_work); 8561 unsigned long flags; 8562 8563 spin_lock_irqsave(&h->lock, flags); 8564 if (h->remove_in_progress) { 8565 spin_unlock_irqrestore(&h->lock, flags); 8566 return; 8567 } 8568 spin_unlock_irqrestore(&h->lock, flags); 8569 8570 if (hpsa_ctlr_needs_rescan(h)) { 8571 hpsa_ack_ctlr_events(h); 8572 hpsa_perform_rescan(h); 8573 } 8574 8575 spin_lock_irqsave(&h->lock, flags); 8576 if (!h->remove_in_progress) 8577 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work, 8578 HPSA_EVENT_MONITOR_INTERVAL); 8579 spin_unlock_irqrestore(&h->lock, flags); 8580 } 8581 8582 static void hpsa_rescan_ctlr_worker(struct work_struct *work) 8583 { 8584 unsigned long flags; 8585 struct ctlr_info *h = container_of(to_delayed_work(work), 8586 struct ctlr_info, rescan_ctlr_work); 8587 8588 spin_lock_irqsave(&h->lock, flags); 8589 if (h->remove_in_progress) { 8590 spin_unlock_irqrestore(&h->lock, flags); 8591 return; 8592 } 8593 spin_unlock_irqrestore(&h->lock, flags); 8594 8595 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) { 8596 hpsa_perform_rescan(h); 8597 } else if (h->discovery_polling) { 8598 if (hpsa_luns_changed(h)) { 8599 dev_info(&h->pdev->dev, 8600 "driver discovery polling rescan.\n"); 8601 hpsa_perform_rescan(h); 8602 } 8603 } 8604 spin_lock_irqsave(&h->lock, flags); 8605 if (!h->remove_in_progress) 8606 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, 8607 h->heartbeat_sample_interval); 8608 spin_unlock_irqrestore(&h->lock, flags); 8609 } 8610 8611 static void hpsa_monitor_ctlr_worker(struct work_struct *work) 8612 { 8613 unsigned long flags; 8614 struct ctlr_info *h = container_of(to_delayed_work(work), 8615 struct ctlr_info, monitor_ctlr_work); 8616 8617 detect_controller_lockup(h); 8618 if (lockup_detected(h)) 8619 return; 8620 8621 spin_lock_irqsave(&h->lock, flags); 8622 if (!h->remove_in_progress) 8623 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work, 8624 h->heartbeat_sample_interval); 8625 spin_unlock_irqrestore(&h->lock, flags); 8626 } 8627 8628 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h, 8629 char *name) 8630 { 8631 struct workqueue_struct *wq = NULL; 8632 8633 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr); 8634 if (!wq) 8635 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name); 8636 8637 return wq; 8638 } 8639 8640 static void hpda_free_ctlr_info(struct ctlr_info *h) 8641 { 8642 kfree(h->reply_map); 8643 kfree(h); 8644 } 8645 8646 static struct ctlr_info *hpda_alloc_ctlr_info(void) 8647 { 8648 struct ctlr_info *h; 8649 8650 h = kzalloc(sizeof(*h), GFP_KERNEL); 8651 if (!h) 8652 return NULL; 8653 8654 h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL); 8655 if (!h->reply_map) { 8656 kfree(h); 8657 return NULL; 8658 } 8659 return h; 8660 } 8661 8662 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 8663 { 8664 int rc; 8665 struct ctlr_info *h; 8666 int try_soft_reset = 0; 8667 unsigned long flags; 8668 u32 board_id; 8669 8670 if (number_of_controllers == 0) 8671 printk(KERN_INFO DRIVER_NAME "\n"); 8672 8673 rc = hpsa_lookup_board_id(pdev, &board_id, NULL); 8674 if (rc < 0) { 8675 dev_warn(&pdev->dev, "Board ID not found\n"); 8676 return rc; 8677 } 8678 8679 rc = hpsa_init_reset_devices(pdev, board_id); 8680 if (rc) { 8681 if (rc != -ENOTSUPP) 8682 return rc; 8683 /* If the reset fails in a particular way (it has no way to do 8684 * a proper hard reset, so returns -ENOTSUPP) we can try to do 8685 * a soft reset once we get the controller configured up to the 8686 * point that it can accept a command. 8687 */ 8688 try_soft_reset = 1; 8689 rc = 0; 8690 } 8691 8692 reinit_after_soft_reset: 8693 8694 /* Command structures must be aligned on a 32-byte boundary because 8695 * the 5 lower bits of the address are used by the hardware. and by 8696 * the driver. See comments in hpsa.h for more info. 8697 */ 8698 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 8699 h = hpda_alloc_ctlr_info(); 8700 if (!h) { 8701 dev_err(&pdev->dev, "Failed to allocate controller head\n"); 8702 return -ENOMEM; 8703 } 8704 8705 h->pdev = pdev; 8706 8707 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; 8708 INIT_LIST_HEAD(&h->offline_device_list); 8709 spin_lock_init(&h->lock); 8710 spin_lock_init(&h->offline_device_lock); 8711 spin_lock_init(&h->scan_lock); 8712 spin_lock_init(&h->reset_lock); 8713 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS); 8714 8715 /* Allocate and clear per-cpu variable lockup_detected */ 8716 h->lockup_detected = alloc_percpu(u32); 8717 if (!h->lockup_detected) { 8718 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n"); 8719 rc = -ENOMEM; 8720 goto clean1; /* aer/h */ 8721 } 8722 set_lockup_detected_for_all_cpus(h, 0); 8723 8724 rc = hpsa_pci_init(h); 8725 if (rc) 8726 goto clean2; /* lu, aer/h */ 8727 8728 /* relies on h-> settings made by hpsa_pci_init, including 8729 * interrupt_mode h->intr */ 8730 rc = hpsa_scsi_host_alloc(h); 8731 if (rc) 8732 goto clean2_5; /* pci, lu, aer/h */ 8733 8734 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no); 8735 h->ctlr = number_of_controllers; 8736 number_of_controllers++; 8737 8738 /* configure PCI DMA stuff */ 8739 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 8740 if (rc != 0) { 8741 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 8742 if (rc != 0) { 8743 dev_err(&pdev->dev, "no suitable DMA available\n"); 8744 goto clean3; /* shost, pci, lu, aer/h */ 8745 } 8746 } 8747 8748 /* make sure the board interrupts are off */ 8749 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8750 8751 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx); 8752 if (rc) 8753 goto clean3; /* shost, pci, lu, aer/h */ 8754 rc = hpsa_alloc_cmd_pool(h); 8755 if (rc) 8756 goto clean4; /* irq, shost, pci, lu, aer/h */ 8757 rc = hpsa_alloc_sg_chain_blocks(h); 8758 if (rc) 8759 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */ 8760 init_waitqueue_head(&h->scan_wait_queue); 8761 init_waitqueue_head(&h->event_sync_wait_queue); 8762 mutex_init(&h->reset_mutex); 8763 h->scan_finished = 1; /* no scan currently in progress */ 8764 h->scan_waiting = 0; 8765 8766 pci_set_drvdata(pdev, h); 8767 h->ndevices = 0; 8768 8769 spin_lock_init(&h->devlock); 8770 rc = hpsa_put_ctlr_into_performant_mode(h); 8771 if (rc) 8772 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */ 8773 8774 /* create the resubmit workqueue */ 8775 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan"); 8776 if (!h->rescan_ctlr_wq) { 8777 rc = -ENOMEM; 8778 goto clean7; 8779 } 8780 8781 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit"); 8782 if (!h->resubmit_wq) { 8783 rc = -ENOMEM; 8784 goto clean7; /* aer/h */ 8785 } 8786 8787 h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor"); 8788 if (!h->monitor_ctlr_wq) { 8789 rc = -ENOMEM; 8790 goto clean7; 8791 } 8792 8793 /* 8794 * At this point, the controller is ready to take commands. 8795 * Now, if reset_devices and the hard reset didn't work, try 8796 * the soft reset and see if that works. 8797 */ 8798 if (try_soft_reset) { 8799 8800 /* This is kind of gross. We may or may not get a completion 8801 * from the soft reset command, and if we do, then the value 8802 * from the fifo may or may not be valid. So, we wait 10 secs 8803 * after the reset throwing away any completions we get during 8804 * that time. Unregister the interrupt handler and register 8805 * fake ones to scoop up any residual completions. 8806 */ 8807 spin_lock_irqsave(&h->lock, flags); 8808 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8809 spin_unlock_irqrestore(&h->lock, flags); 8810 hpsa_free_irqs(h); 8811 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions, 8812 hpsa_intx_discard_completions); 8813 if (rc) { 8814 dev_warn(&h->pdev->dev, 8815 "Failed to request_irq after soft reset.\n"); 8816 /* 8817 * cannot goto clean7 or free_irqs will be called 8818 * again. Instead, do its work 8819 */ 8820 hpsa_free_performant_mode(h); /* clean7 */ 8821 hpsa_free_sg_chain_blocks(h); /* clean6 */ 8822 hpsa_free_cmd_pool(h); /* clean5 */ 8823 /* 8824 * skip hpsa_free_irqs(h) clean4 since that 8825 * was just called before request_irqs failed 8826 */ 8827 goto clean3; 8828 } 8829 8830 rc = hpsa_kdump_soft_reset(h); 8831 if (rc) 8832 /* Neither hard nor soft reset worked, we're hosed. */ 8833 goto clean7; 8834 8835 dev_info(&h->pdev->dev, "Board READY.\n"); 8836 dev_info(&h->pdev->dev, 8837 "Waiting for stale completions to drain.\n"); 8838 h->access.set_intr_mask(h, HPSA_INTR_ON); 8839 msleep(10000); 8840 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8841 8842 rc = controller_reset_failed(h->cfgtable); 8843 if (rc) 8844 dev_info(&h->pdev->dev, 8845 "Soft reset appears to have failed.\n"); 8846 8847 /* since the controller's reset, we have to go back and re-init 8848 * everything. Easiest to just forget what we've done and do it 8849 * all over again. 8850 */ 8851 hpsa_undo_allocations_after_kdump_soft_reset(h); 8852 try_soft_reset = 0; 8853 if (rc) 8854 /* don't goto clean, we already unallocated */ 8855 return -ENODEV; 8856 8857 goto reinit_after_soft_reset; 8858 } 8859 8860 /* Enable Accelerated IO path at driver layer */ 8861 h->acciopath_status = 1; 8862 /* Disable discovery polling.*/ 8863 h->discovery_polling = 0; 8864 8865 8866 /* Turn the interrupts on so we can service requests */ 8867 h->access.set_intr_mask(h, HPSA_INTR_ON); 8868 8869 hpsa_hba_inquiry(h); 8870 8871 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL); 8872 if (!h->lastlogicals) 8873 dev_info(&h->pdev->dev, 8874 "Can't track change to report lun data\n"); 8875 8876 /* hook into SCSI subsystem */ 8877 rc = hpsa_scsi_add_host(h); 8878 if (rc) 8879 goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8880 8881 /* Monitor the controller for firmware lockups */ 8882 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 8883 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); 8884 schedule_delayed_work(&h->monitor_ctlr_work, 8885 h->heartbeat_sample_interval); 8886 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker); 8887 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, 8888 h->heartbeat_sample_interval); 8889 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker); 8890 schedule_delayed_work(&h->event_monitor_work, 8891 HPSA_EVENT_MONITOR_INTERVAL); 8892 return 0; 8893 8894 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8895 kfree(h->lastlogicals); 8896 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8897 hpsa_free_performant_mode(h); 8898 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8899 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */ 8900 hpsa_free_sg_chain_blocks(h); 8901 clean5: /* cmd, irq, shost, pci, lu, aer/h */ 8902 hpsa_free_cmd_pool(h); 8903 clean4: /* irq, shost, pci, lu, aer/h */ 8904 hpsa_free_irqs(h); 8905 clean3: /* shost, pci, lu, aer/h */ 8906 scsi_host_put(h->scsi_host); 8907 h->scsi_host = NULL; 8908 clean2_5: /* pci, lu, aer/h */ 8909 hpsa_free_pci_init(h); 8910 clean2: /* lu, aer/h */ 8911 if (h->lockup_detected) { 8912 free_percpu(h->lockup_detected); 8913 h->lockup_detected = NULL; 8914 } 8915 clean1: /* wq/aer/h */ 8916 if (h->resubmit_wq) { 8917 destroy_workqueue(h->resubmit_wq); 8918 h->resubmit_wq = NULL; 8919 } 8920 if (h->rescan_ctlr_wq) { 8921 destroy_workqueue(h->rescan_ctlr_wq); 8922 h->rescan_ctlr_wq = NULL; 8923 } 8924 if (h->monitor_ctlr_wq) { 8925 destroy_workqueue(h->monitor_ctlr_wq); 8926 h->monitor_ctlr_wq = NULL; 8927 } 8928 hpda_free_ctlr_info(h); 8929 return rc; 8930 } 8931 8932 static void hpsa_flush_cache(struct ctlr_info *h) 8933 { 8934 char *flush_buf; 8935 struct CommandList *c; 8936 int rc; 8937 8938 if (unlikely(lockup_detected(h))) 8939 return; 8940 flush_buf = kzalloc(4, GFP_KERNEL); 8941 if (!flush_buf) 8942 return; 8943 8944 c = cmd_alloc(h); 8945 8946 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 8947 RAID_CTLR_LUNID, TYPE_CMD)) { 8948 goto out; 8949 } 8950 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE, 8951 DEFAULT_TIMEOUT); 8952 if (rc) 8953 goto out; 8954 if (c->err_info->CommandStatus != 0) 8955 out: 8956 dev_warn(&h->pdev->dev, 8957 "error flushing cache on controller\n"); 8958 cmd_free(h, c); 8959 kfree(flush_buf); 8960 } 8961 8962 /* Make controller gather fresh report lun data each time we 8963 * send down a report luns request 8964 */ 8965 static void hpsa_disable_rld_caching(struct ctlr_info *h) 8966 { 8967 u32 *options; 8968 struct CommandList *c; 8969 int rc; 8970 8971 /* Don't bother trying to set diag options if locked up */ 8972 if (unlikely(h->lockup_detected)) 8973 return; 8974 8975 options = kzalloc(sizeof(*options), GFP_KERNEL); 8976 if (!options) 8977 return; 8978 8979 c = cmd_alloc(h); 8980 8981 /* first, get the current diag options settings */ 8982 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, 8983 RAID_CTLR_LUNID, TYPE_CMD)) 8984 goto errout; 8985 8986 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 8987 NO_TIMEOUT); 8988 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 8989 goto errout; 8990 8991 /* Now, set the bit for disabling the RLD caching */ 8992 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING; 8993 8994 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0, 8995 RAID_CTLR_LUNID, TYPE_CMD)) 8996 goto errout; 8997 8998 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE, 8999 NO_TIMEOUT); 9000 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 9001 goto errout; 9002 9003 /* Now verify that it got set: */ 9004 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, 9005 RAID_CTLR_LUNID, TYPE_CMD)) 9006 goto errout; 9007 9008 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 9009 NO_TIMEOUT); 9010 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 9011 goto errout; 9012 9013 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING) 9014 goto out; 9015 9016 errout: 9017 dev_err(&h->pdev->dev, 9018 "Error: failed to disable report lun data caching.\n"); 9019 out: 9020 cmd_free(h, c); 9021 kfree(options); 9022 } 9023 9024 static void __hpsa_shutdown(struct pci_dev *pdev) 9025 { 9026 struct ctlr_info *h; 9027 9028 h = pci_get_drvdata(pdev); 9029 /* Turn board interrupts off and send the flush cache command 9030 * sendcmd will turn off interrupt, and send the flush... 9031 * To write all data in the battery backed cache to disks 9032 */ 9033 hpsa_flush_cache(h); 9034 h->access.set_intr_mask(h, HPSA_INTR_OFF); 9035 hpsa_free_irqs(h); /* init_one 4 */ 9036 hpsa_disable_interrupt_mode(h); /* pci_init 2 */ 9037 } 9038 9039 static void hpsa_shutdown(struct pci_dev *pdev) 9040 { 9041 __hpsa_shutdown(pdev); 9042 pci_disable_device(pdev); 9043 } 9044 9045 static void hpsa_free_device_info(struct ctlr_info *h) 9046 { 9047 int i; 9048 9049 for (i = 0; i < h->ndevices; i++) { 9050 kfree(h->dev[i]); 9051 h->dev[i] = NULL; 9052 } 9053 } 9054 9055 static void hpsa_remove_one(struct pci_dev *pdev) 9056 { 9057 struct ctlr_info *h; 9058 unsigned long flags; 9059 9060 if (pci_get_drvdata(pdev) == NULL) { 9061 dev_err(&pdev->dev, "unable to remove device\n"); 9062 return; 9063 } 9064 h = pci_get_drvdata(pdev); 9065 9066 /* Get rid of any controller monitoring work items */ 9067 spin_lock_irqsave(&h->lock, flags); 9068 h->remove_in_progress = 1; 9069 spin_unlock_irqrestore(&h->lock, flags); 9070 cancel_delayed_work_sync(&h->monitor_ctlr_work); 9071 cancel_delayed_work_sync(&h->rescan_ctlr_work); 9072 cancel_delayed_work_sync(&h->event_monitor_work); 9073 destroy_workqueue(h->rescan_ctlr_wq); 9074 destroy_workqueue(h->resubmit_wq); 9075 destroy_workqueue(h->monitor_ctlr_wq); 9076 9077 hpsa_delete_sas_host(h); 9078 9079 /* 9080 * Call before disabling interrupts. 9081 * scsi_remove_host can trigger I/O operations especially 9082 * when multipath is enabled. There can be SYNCHRONIZE CACHE 9083 * operations which cannot complete and will hang the system. 9084 */ 9085 if (h->scsi_host) 9086 scsi_remove_host(h->scsi_host); /* init_one 8 */ 9087 /* includes hpsa_free_irqs - init_one 4 */ 9088 /* includes hpsa_disable_interrupt_mode - pci_init 2 */ 9089 __hpsa_shutdown(pdev); 9090 9091 hpsa_free_device_info(h); /* scan */ 9092 9093 kfree(h->hba_inquiry_data); /* init_one 10 */ 9094 h->hba_inquiry_data = NULL; /* init_one 10 */ 9095 hpsa_free_ioaccel2_sg_chain_blocks(h); 9096 hpsa_free_performant_mode(h); /* init_one 7 */ 9097 hpsa_free_sg_chain_blocks(h); /* init_one 6 */ 9098 hpsa_free_cmd_pool(h); /* init_one 5 */ 9099 kfree(h->lastlogicals); 9100 9101 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */ 9102 9103 scsi_host_put(h->scsi_host); /* init_one 3 */ 9104 h->scsi_host = NULL; /* init_one 3 */ 9105 9106 /* includes hpsa_disable_interrupt_mode - pci_init 2 */ 9107 hpsa_free_pci_init(h); /* init_one 2.5 */ 9108 9109 free_percpu(h->lockup_detected); /* init_one 2 */ 9110 h->lockup_detected = NULL; /* init_one 2 */ 9111 9112 hpda_free_ctlr_info(h); /* init_one 1 */ 9113 } 9114 9115 static int __maybe_unused hpsa_suspend( 9116 __attribute__((unused)) struct device *dev) 9117 { 9118 return -ENOSYS; 9119 } 9120 9121 static int __maybe_unused hpsa_resume 9122 (__attribute__((unused)) struct device *dev) 9123 { 9124 return -ENOSYS; 9125 } 9126 9127 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume); 9128 9129 static struct pci_driver hpsa_pci_driver = { 9130 .name = HPSA, 9131 .probe = hpsa_init_one, 9132 .remove = hpsa_remove_one, 9133 .id_table = hpsa_pci_device_id, /* id_table */ 9134 .shutdown = hpsa_shutdown, 9135 .driver.pm = &hpsa_pm_ops, 9136 }; 9137 9138 /* Fill in bucket_map[], given nsgs (the max number of 9139 * scatter gather elements supported) and bucket[], 9140 * which is an array of 8 integers. The bucket[] array 9141 * contains 8 different DMA transfer sizes (in 16 9142 * byte increments) which the controller uses to fetch 9143 * commands. This function fills in bucket_map[], which 9144 * maps a given number of scatter gather elements to one of 9145 * the 8 DMA transfer sizes. The point of it is to allow the 9146 * controller to only do as much DMA as needed to fetch the 9147 * command, with the DMA transfer size encoded in the lower 9148 * bits of the command address. 9149 */ 9150 static void calc_bucket_map(int bucket[], int num_buckets, 9151 int nsgs, int min_blocks, u32 *bucket_map) 9152 { 9153 int i, j, b, size; 9154 9155 /* Note, bucket_map must have nsgs+1 entries. */ 9156 for (i = 0; i <= nsgs; i++) { 9157 /* Compute size of a command with i SG entries */ 9158 size = i + min_blocks; 9159 b = num_buckets; /* Assume the biggest bucket */ 9160 /* Find the bucket that is just big enough */ 9161 for (j = 0; j < num_buckets; j++) { 9162 if (bucket[j] >= size) { 9163 b = j; 9164 break; 9165 } 9166 } 9167 /* for a command with i SG entries, use bucket b. */ 9168 bucket_map[i] = b; 9169 } 9170 } 9171 9172 /* 9173 * return -ENODEV on err, 0 on success (or no action) 9174 * allocates numerous items that must be freed later 9175 */ 9176 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) 9177 { 9178 int i; 9179 unsigned long register_value; 9180 unsigned long transMethod = CFGTBL_Trans_Performant | 9181 (trans_support & CFGTBL_Trans_use_short_tags) | 9182 CFGTBL_Trans_enable_directed_msix | 9183 (trans_support & (CFGTBL_Trans_io_accel1 | 9184 CFGTBL_Trans_io_accel2)); 9185 struct access_method access = SA5_performant_access; 9186 9187 /* This is a bit complicated. There are 8 registers on 9188 * the controller which we write to to tell it 8 different 9189 * sizes of commands which there may be. It's a way of 9190 * reducing the DMA done to fetch each command. Encoded into 9191 * each command's tag are 3 bits which communicate to the controller 9192 * which of the eight sizes that command fits within. The size of 9193 * each command depends on how many scatter gather entries there are. 9194 * Each SG entry requires 16 bytes. The eight registers are programmed 9195 * with the number of 16-byte blocks a command of that size requires. 9196 * The smallest command possible requires 5 such 16 byte blocks. 9197 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte 9198 * blocks. Note, this only extends to the SG entries contained 9199 * within the command block, and does not extend to chained blocks 9200 * of SG elements. bft[] contains the eight values we write to 9201 * the registers. They are not evenly distributed, but have more 9202 * sizes for small commands, and fewer sizes for larger commands. 9203 */ 9204 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; 9205 #define MIN_IOACCEL2_BFT_ENTRY 5 9206 #define HPSA_IOACCEL2_HEADER_SZ 4 9207 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12, 9208 13, 14, 15, 16, 17, 18, 19, 9209 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES}; 9210 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16); 9211 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8); 9212 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) > 9213 16 * MIN_IOACCEL2_BFT_ENTRY); 9214 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16); 9215 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); 9216 /* 5 = 1 s/g entry or 4k 9217 * 6 = 2 s/g entry or 8k 9218 * 8 = 4 s/g entry or 16k 9219 * 10 = 6 s/g entry or 24k 9220 */ 9221 9222 /* If the controller supports either ioaccel method then 9223 * we can also use the RAID stack submit path that does not 9224 * perform the superfluous readl() after each command submission. 9225 */ 9226 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) 9227 access = SA5_performant_access_no_read; 9228 9229 /* Controller spec: zero out this buffer. */ 9230 for (i = 0; i < h->nreply_queues; i++) 9231 memset(h->reply_queue[i].head, 0, h->reply_queue_size); 9232 9233 bft[7] = SG_ENTRIES_IN_CMD + 4; 9234 calc_bucket_map(bft, ARRAY_SIZE(bft), 9235 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); 9236 for (i = 0; i < 8; i++) 9237 writel(bft[i], &h->transtable->BlockFetch[i]); 9238 9239 /* size of controller ring buffer */ 9240 writel(h->max_commands, &h->transtable->RepQSize); 9241 writel(h->nreply_queues, &h->transtable->RepQCount); 9242 writel(0, &h->transtable->RepQCtrAddrLow32); 9243 writel(0, &h->transtable->RepQCtrAddrHigh32); 9244 9245 for (i = 0; i < h->nreply_queues; i++) { 9246 writel(0, &h->transtable->RepQAddr[i].upper); 9247 writel(h->reply_queue[i].busaddr, 9248 &h->transtable->RepQAddr[i].lower); 9249 } 9250 9251 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); 9252 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); 9253 /* 9254 * enable outbound interrupt coalescing in accelerator mode; 9255 */ 9256 if (trans_support & CFGTBL_Trans_io_accel1) { 9257 access = SA5_ioaccel_mode1_access; 9258 writel(10, &h->cfgtable->HostWrite.CoalIntDelay); 9259 writel(4, &h->cfgtable->HostWrite.CoalIntCount); 9260 } else 9261 if (trans_support & CFGTBL_Trans_io_accel2) 9262 access = SA5_ioaccel_mode2_access; 9263 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 9264 if (hpsa_wait_for_mode_change_ack(h)) { 9265 dev_err(&h->pdev->dev, 9266 "performant mode problem - doorbell timeout\n"); 9267 return -ENODEV; 9268 } 9269 register_value = readl(&(h->cfgtable->TransportActive)); 9270 if (!(register_value & CFGTBL_Trans_Performant)) { 9271 dev_err(&h->pdev->dev, 9272 "performant mode problem - transport not active\n"); 9273 return -ENODEV; 9274 } 9275 /* Change the access methods to the performant access methods */ 9276 h->access = access; 9277 h->transMethod = transMethod; 9278 9279 if (!((trans_support & CFGTBL_Trans_io_accel1) || 9280 (trans_support & CFGTBL_Trans_io_accel2))) 9281 return 0; 9282 9283 if (trans_support & CFGTBL_Trans_io_accel1) { 9284 /* Set up I/O accelerator mode */ 9285 for (i = 0; i < h->nreply_queues; i++) { 9286 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); 9287 h->reply_queue[i].current_entry = 9288 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); 9289 } 9290 bft[7] = h->ioaccel_maxsg + 8; 9291 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, 9292 h->ioaccel1_blockFetchTable); 9293 9294 /* initialize all reply queue entries to unused */ 9295 for (i = 0; i < h->nreply_queues; i++) 9296 memset(h->reply_queue[i].head, 9297 (u8) IOACCEL_MODE1_REPLY_UNUSED, 9298 h->reply_queue_size); 9299 9300 /* set all the constant fields in the accelerator command 9301 * frames once at init time to save CPU cycles later. 9302 */ 9303 for (i = 0; i < h->nr_cmds; i++) { 9304 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; 9305 9306 cp->function = IOACCEL1_FUNCTION_SCSIIO; 9307 cp->err_info = (u32) (h->errinfo_pool_dhandle + 9308 (i * sizeof(struct ErrorInfo))); 9309 cp->err_info_len = sizeof(struct ErrorInfo); 9310 cp->sgl_offset = IOACCEL1_SGLOFFSET; 9311 cp->host_context_flags = 9312 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT); 9313 cp->timeout_sec = 0; 9314 cp->ReplyQueue = 0; 9315 cp->tag = 9316 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT)); 9317 cp->host_addr = 9318 cpu_to_le64(h->ioaccel_cmd_pool_dhandle + 9319 (i * sizeof(struct io_accel1_cmd))); 9320 } 9321 } else if (trans_support & CFGTBL_Trans_io_accel2) { 9322 u64 cfg_offset, cfg_base_addr_index; 9323 u32 bft2_offset, cfg_base_addr; 9324 9325 hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 9326 &cfg_base_addr_index, &cfg_offset); 9327 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64); 9328 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ; 9329 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg, 9330 4, h->ioaccel2_blockFetchTable); 9331 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset); 9332 BUILD_BUG_ON(offsetof(struct CfgTable, 9333 io_accel_request_size_offset) != 0xb8); 9334 h->ioaccel2_bft2_regs = 9335 remap_pci_mem(pci_resource_start(h->pdev, 9336 cfg_base_addr_index) + 9337 cfg_offset + bft2_offset, 9338 ARRAY_SIZE(bft2) * 9339 sizeof(*h->ioaccel2_bft2_regs)); 9340 for (i = 0; i < ARRAY_SIZE(bft2); i++) 9341 writel(bft2[i], &h->ioaccel2_bft2_regs[i]); 9342 } 9343 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 9344 if (hpsa_wait_for_mode_change_ack(h)) { 9345 dev_err(&h->pdev->dev, 9346 "performant mode problem - enabling ioaccel mode\n"); 9347 return -ENODEV; 9348 } 9349 return 0; 9350 } 9351 9352 /* Free ioaccel1 mode command blocks and block fetch table */ 9353 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h) 9354 { 9355 if (h->ioaccel_cmd_pool) { 9356 dma_free_coherent(&h->pdev->dev, 9357 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), 9358 h->ioaccel_cmd_pool, 9359 h->ioaccel_cmd_pool_dhandle); 9360 h->ioaccel_cmd_pool = NULL; 9361 h->ioaccel_cmd_pool_dhandle = 0; 9362 } 9363 kfree(h->ioaccel1_blockFetchTable); 9364 h->ioaccel1_blockFetchTable = NULL; 9365 } 9366 9367 /* Allocate ioaccel1 mode command blocks and block fetch table */ 9368 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h) 9369 { 9370 h->ioaccel_maxsg = 9371 readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); 9372 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) 9373 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; 9374 9375 /* Command structures must be aligned on a 128-byte boundary 9376 * because the 7 lower bits of the address are used by the 9377 * hardware. 9378 */ 9379 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % 9380 IOACCEL1_COMMANDLIST_ALIGNMENT); 9381 h->ioaccel_cmd_pool = 9382 dma_alloc_coherent(&h->pdev->dev, 9383 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), 9384 &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL); 9385 9386 h->ioaccel1_blockFetchTable = 9387 kmalloc(((h->ioaccel_maxsg + 1) * 9388 sizeof(u32)), GFP_KERNEL); 9389 9390 if ((h->ioaccel_cmd_pool == NULL) || 9391 (h->ioaccel1_blockFetchTable == NULL)) 9392 goto clean_up; 9393 9394 memset(h->ioaccel_cmd_pool, 0, 9395 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); 9396 return 0; 9397 9398 clean_up: 9399 hpsa_free_ioaccel1_cmd_and_bft(h); 9400 return -ENOMEM; 9401 } 9402 9403 /* Free ioaccel2 mode command blocks and block fetch table */ 9404 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h) 9405 { 9406 hpsa_free_ioaccel2_sg_chain_blocks(h); 9407 9408 if (h->ioaccel2_cmd_pool) { 9409 dma_free_coherent(&h->pdev->dev, 9410 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 9411 h->ioaccel2_cmd_pool, 9412 h->ioaccel2_cmd_pool_dhandle); 9413 h->ioaccel2_cmd_pool = NULL; 9414 h->ioaccel2_cmd_pool_dhandle = 0; 9415 } 9416 kfree(h->ioaccel2_blockFetchTable); 9417 h->ioaccel2_blockFetchTable = NULL; 9418 } 9419 9420 /* Allocate ioaccel2 mode command blocks and block fetch table */ 9421 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h) 9422 { 9423 int rc; 9424 9425 /* Allocate ioaccel2 mode command blocks and block fetch table */ 9426 9427 h->ioaccel_maxsg = 9428 readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); 9429 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES) 9430 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES; 9431 9432 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) % 9433 IOACCEL2_COMMANDLIST_ALIGNMENT); 9434 h->ioaccel2_cmd_pool = 9435 dma_alloc_coherent(&h->pdev->dev, 9436 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 9437 &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL); 9438 9439 h->ioaccel2_blockFetchTable = 9440 kmalloc(((h->ioaccel_maxsg + 1) * 9441 sizeof(u32)), GFP_KERNEL); 9442 9443 if ((h->ioaccel2_cmd_pool == NULL) || 9444 (h->ioaccel2_blockFetchTable == NULL)) { 9445 rc = -ENOMEM; 9446 goto clean_up; 9447 } 9448 9449 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h); 9450 if (rc) 9451 goto clean_up; 9452 9453 memset(h->ioaccel2_cmd_pool, 0, 9454 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool)); 9455 return 0; 9456 9457 clean_up: 9458 hpsa_free_ioaccel2_cmd_and_bft(h); 9459 return rc; 9460 } 9461 9462 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */ 9463 static void hpsa_free_performant_mode(struct ctlr_info *h) 9464 { 9465 kfree(h->blockFetchTable); 9466 h->blockFetchTable = NULL; 9467 hpsa_free_reply_queues(h); 9468 hpsa_free_ioaccel1_cmd_and_bft(h); 9469 hpsa_free_ioaccel2_cmd_and_bft(h); 9470 } 9471 9472 /* return -ENODEV on error, 0 on success (or no action) 9473 * allocates numerous items that must be freed later 9474 */ 9475 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 9476 { 9477 u32 trans_support; 9478 int i, rc; 9479 9480 if (hpsa_simple_mode) 9481 return 0; 9482 9483 trans_support = readl(&(h->cfgtable->TransportSupport)); 9484 if (!(trans_support & PERFORMANT_MODE)) 9485 return 0; 9486 9487 /* Check for I/O accelerator mode support */ 9488 if (trans_support & CFGTBL_Trans_io_accel1) { 9489 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h); 9490 if (rc) 9491 return rc; 9492 } else if (trans_support & CFGTBL_Trans_io_accel2) { 9493 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h); 9494 if (rc) 9495 return rc; 9496 } 9497 9498 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1; 9499 hpsa_get_max_perf_mode_cmds(h); 9500 /* Performant mode ring buffer and supporting data structures */ 9501 h->reply_queue_size = h->max_commands * sizeof(u64); 9502 9503 for (i = 0; i < h->nreply_queues; i++) { 9504 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev, 9505 h->reply_queue_size, 9506 &h->reply_queue[i].busaddr, 9507 GFP_KERNEL); 9508 if (!h->reply_queue[i].head) { 9509 rc = -ENOMEM; 9510 goto clean1; /* rq, ioaccel */ 9511 } 9512 h->reply_queue[i].size = h->max_commands; 9513 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ 9514 h->reply_queue[i].current_entry = 0; 9515 } 9516 9517 /* Need a block fetch table for performant mode */ 9518 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * 9519 sizeof(u32)), GFP_KERNEL); 9520 if (!h->blockFetchTable) { 9521 rc = -ENOMEM; 9522 goto clean1; /* rq, ioaccel */ 9523 } 9524 9525 rc = hpsa_enter_performant_mode(h, trans_support); 9526 if (rc) 9527 goto clean2; /* bft, rq, ioaccel */ 9528 return 0; 9529 9530 clean2: /* bft, rq, ioaccel */ 9531 kfree(h->blockFetchTable); 9532 h->blockFetchTable = NULL; 9533 clean1: /* rq, ioaccel */ 9534 hpsa_free_reply_queues(h); 9535 hpsa_free_ioaccel1_cmd_and_bft(h); 9536 hpsa_free_ioaccel2_cmd_and_bft(h); 9537 return rc; 9538 } 9539 9540 static int is_accelerated_cmd(struct CommandList *c) 9541 { 9542 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2; 9543 } 9544 9545 static void hpsa_drain_accel_commands(struct ctlr_info *h) 9546 { 9547 struct CommandList *c = NULL; 9548 int i, accel_cmds_out; 9549 int refcount; 9550 9551 do { /* wait for all outstanding ioaccel commands to drain out */ 9552 accel_cmds_out = 0; 9553 for (i = 0; i < h->nr_cmds; i++) { 9554 c = h->cmd_pool + i; 9555 refcount = atomic_inc_return(&c->refcount); 9556 if (refcount > 1) /* Command is allocated */ 9557 accel_cmds_out += is_accelerated_cmd(c); 9558 cmd_free(h, c); 9559 } 9560 if (accel_cmds_out <= 0) 9561 break; 9562 msleep(100); 9563 } while (1); 9564 } 9565 9566 static struct hpsa_sas_phy *hpsa_alloc_sas_phy( 9567 struct hpsa_sas_port *hpsa_sas_port) 9568 { 9569 struct hpsa_sas_phy *hpsa_sas_phy; 9570 struct sas_phy *phy; 9571 9572 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL); 9573 if (!hpsa_sas_phy) 9574 return NULL; 9575 9576 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev, 9577 hpsa_sas_port->next_phy_index); 9578 if (!phy) { 9579 kfree(hpsa_sas_phy); 9580 return NULL; 9581 } 9582 9583 hpsa_sas_port->next_phy_index++; 9584 hpsa_sas_phy->phy = phy; 9585 hpsa_sas_phy->parent_port = hpsa_sas_port; 9586 9587 return hpsa_sas_phy; 9588 } 9589 9590 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy) 9591 { 9592 struct sas_phy *phy = hpsa_sas_phy->phy; 9593 9594 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy); 9595 if (hpsa_sas_phy->added_to_port) 9596 list_del(&hpsa_sas_phy->phy_list_entry); 9597 sas_phy_delete(phy); 9598 kfree(hpsa_sas_phy); 9599 } 9600 9601 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy) 9602 { 9603 int rc; 9604 struct hpsa_sas_port *hpsa_sas_port; 9605 struct sas_phy *phy; 9606 struct sas_identify *identify; 9607 9608 hpsa_sas_port = hpsa_sas_phy->parent_port; 9609 phy = hpsa_sas_phy->phy; 9610 9611 identify = &phy->identify; 9612 memset(identify, 0, sizeof(*identify)); 9613 identify->sas_address = hpsa_sas_port->sas_address; 9614 identify->device_type = SAS_END_DEVICE; 9615 identify->initiator_port_protocols = SAS_PROTOCOL_STP; 9616 identify->target_port_protocols = SAS_PROTOCOL_STP; 9617 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; 9618 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; 9619 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN; 9620 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN; 9621 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN; 9622 9623 rc = sas_phy_add(hpsa_sas_phy->phy); 9624 if (rc) 9625 return rc; 9626 9627 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy); 9628 list_add_tail(&hpsa_sas_phy->phy_list_entry, 9629 &hpsa_sas_port->phy_list_head); 9630 hpsa_sas_phy->added_to_port = true; 9631 9632 return 0; 9633 } 9634 9635 static int 9636 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port, 9637 struct sas_rphy *rphy) 9638 { 9639 struct sas_identify *identify; 9640 9641 identify = &rphy->identify; 9642 identify->sas_address = hpsa_sas_port->sas_address; 9643 identify->initiator_port_protocols = SAS_PROTOCOL_STP; 9644 identify->target_port_protocols = SAS_PROTOCOL_STP; 9645 9646 return sas_rphy_add(rphy); 9647 } 9648 9649 static struct hpsa_sas_port 9650 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node, 9651 u64 sas_address) 9652 { 9653 int rc; 9654 struct hpsa_sas_port *hpsa_sas_port; 9655 struct sas_port *port; 9656 9657 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL); 9658 if (!hpsa_sas_port) 9659 return NULL; 9660 9661 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head); 9662 hpsa_sas_port->parent_node = hpsa_sas_node; 9663 9664 port = sas_port_alloc_num(hpsa_sas_node->parent_dev); 9665 if (!port) 9666 goto free_hpsa_port; 9667 9668 rc = sas_port_add(port); 9669 if (rc) 9670 goto free_sas_port; 9671 9672 hpsa_sas_port->port = port; 9673 hpsa_sas_port->sas_address = sas_address; 9674 list_add_tail(&hpsa_sas_port->port_list_entry, 9675 &hpsa_sas_node->port_list_head); 9676 9677 return hpsa_sas_port; 9678 9679 free_sas_port: 9680 sas_port_free(port); 9681 free_hpsa_port: 9682 kfree(hpsa_sas_port); 9683 9684 return NULL; 9685 } 9686 9687 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port) 9688 { 9689 struct hpsa_sas_phy *hpsa_sas_phy; 9690 struct hpsa_sas_phy *next; 9691 9692 list_for_each_entry_safe(hpsa_sas_phy, next, 9693 &hpsa_sas_port->phy_list_head, phy_list_entry) 9694 hpsa_free_sas_phy(hpsa_sas_phy); 9695 9696 sas_port_delete(hpsa_sas_port->port); 9697 list_del(&hpsa_sas_port->port_list_entry); 9698 kfree(hpsa_sas_port); 9699 } 9700 9701 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev) 9702 { 9703 struct hpsa_sas_node *hpsa_sas_node; 9704 9705 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL); 9706 if (hpsa_sas_node) { 9707 hpsa_sas_node->parent_dev = parent_dev; 9708 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head); 9709 } 9710 9711 return hpsa_sas_node; 9712 } 9713 9714 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node) 9715 { 9716 struct hpsa_sas_port *hpsa_sas_port; 9717 struct hpsa_sas_port *next; 9718 9719 if (!hpsa_sas_node) 9720 return; 9721 9722 list_for_each_entry_safe(hpsa_sas_port, next, 9723 &hpsa_sas_node->port_list_head, port_list_entry) 9724 hpsa_free_sas_port(hpsa_sas_port); 9725 9726 kfree(hpsa_sas_node); 9727 } 9728 9729 static struct hpsa_scsi_dev_t 9730 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, 9731 struct sas_rphy *rphy) 9732 { 9733 int i; 9734 struct hpsa_scsi_dev_t *device; 9735 9736 for (i = 0; i < h->ndevices; i++) { 9737 device = h->dev[i]; 9738 if (!device->sas_port) 9739 continue; 9740 if (device->sas_port->rphy == rphy) 9741 return device; 9742 } 9743 9744 return NULL; 9745 } 9746 9747 static int hpsa_add_sas_host(struct ctlr_info *h) 9748 { 9749 int rc; 9750 struct device *parent_dev; 9751 struct hpsa_sas_node *hpsa_sas_node; 9752 struct hpsa_sas_port *hpsa_sas_port; 9753 struct hpsa_sas_phy *hpsa_sas_phy; 9754 9755 parent_dev = &h->scsi_host->shost_dev; 9756 9757 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev); 9758 if (!hpsa_sas_node) 9759 return -ENOMEM; 9760 9761 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address); 9762 if (!hpsa_sas_port) { 9763 rc = -ENODEV; 9764 goto free_sas_node; 9765 } 9766 9767 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port); 9768 if (!hpsa_sas_phy) { 9769 rc = -ENODEV; 9770 goto free_sas_port; 9771 } 9772 9773 rc = hpsa_sas_port_add_phy(hpsa_sas_phy); 9774 if (rc) 9775 goto free_sas_phy; 9776 9777 h->sas_host = hpsa_sas_node; 9778 9779 return 0; 9780 9781 free_sas_phy: 9782 sas_phy_free(hpsa_sas_phy->phy); 9783 kfree(hpsa_sas_phy); 9784 free_sas_port: 9785 hpsa_free_sas_port(hpsa_sas_port); 9786 free_sas_node: 9787 hpsa_free_sas_node(hpsa_sas_node); 9788 9789 return rc; 9790 } 9791 9792 static void hpsa_delete_sas_host(struct ctlr_info *h) 9793 { 9794 hpsa_free_sas_node(h->sas_host); 9795 } 9796 9797 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, 9798 struct hpsa_scsi_dev_t *device) 9799 { 9800 int rc; 9801 struct hpsa_sas_port *hpsa_sas_port; 9802 struct sas_rphy *rphy; 9803 9804 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address); 9805 if (!hpsa_sas_port) 9806 return -ENOMEM; 9807 9808 rphy = sas_end_device_alloc(hpsa_sas_port->port); 9809 if (!rphy) { 9810 rc = -ENODEV; 9811 goto free_sas_port; 9812 } 9813 9814 hpsa_sas_port->rphy = rphy; 9815 device->sas_port = hpsa_sas_port; 9816 9817 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy); 9818 if (rc) 9819 goto free_sas_rphy; 9820 9821 return 0; 9822 9823 free_sas_rphy: 9824 sas_rphy_free(rphy); 9825 free_sas_port: 9826 hpsa_free_sas_port(hpsa_sas_port); 9827 device->sas_port = NULL; 9828 9829 return rc; 9830 } 9831 9832 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device) 9833 { 9834 if (device->sas_port) { 9835 hpsa_free_sas_port(device->sas_port); 9836 device->sas_port = NULL; 9837 } 9838 } 9839 9840 static int 9841 hpsa_sas_get_linkerrors(struct sas_phy *phy) 9842 { 9843 return 0; 9844 } 9845 9846 static int 9847 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier) 9848 { 9849 struct Scsi_Host *shost = phy_to_shost(rphy); 9850 struct ctlr_info *h; 9851 struct hpsa_scsi_dev_t *sd; 9852 9853 if (!shost) 9854 return -ENXIO; 9855 9856 h = shost_to_hba(shost); 9857 9858 if (!h) 9859 return -ENXIO; 9860 9861 sd = hpsa_find_device_by_sas_rphy(h, rphy); 9862 if (!sd) 9863 return -ENXIO; 9864 9865 *identifier = sd->eli; 9866 9867 return 0; 9868 } 9869 9870 static int 9871 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy) 9872 { 9873 return -ENXIO; 9874 } 9875 9876 static int 9877 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset) 9878 { 9879 return 0; 9880 } 9881 9882 static int 9883 hpsa_sas_phy_enable(struct sas_phy *phy, int enable) 9884 { 9885 return 0; 9886 } 9887 9888 static int 9889 hpsa_sas_phy_setup(struct sas_phy *phy) 9890 { 9891 return 0; 9892 } 9893 9894 static void 9895 hpsa_sas_phy_release(struct sas_phy *phy) 9896 { 9897 } 9898 9899 static int 9900 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates) 9901 { 9902 return -EINVAL; 9903 } 9904 9905 static struct sas_function_template hpsa_sas_transport_functions = { 9906 .get_linkerrors = hpsa_sas_get_linkerrors, 9907 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier, 9908 .get_bay_identifier = hpsa_sas_get_bay_identifier, 9909 .phy_reset = hpsa_sas_phy_reset, 9910 .phy_enable = hpsa_sas_phy_enable, 9911 .phy_setup = hpsa_sas_phy_setup, 9912 .phy_release = hpsa_sas_phy_release, 9913 .set_phy_speed = hpsa_sas_phy_speed, 9914 }; 9915 9916 /* 9917 * This is it. Register the PCI driver information for the cards we control 9918 * the OS will call our registered routines when it finds one of our cards. 9919 */ 9920 static int __init hpsa_init(void) 9921 { 9922 int rc; 9923 9924 hpsa_sas_transport_template = 9925 sas_attach_transport(&hpsa_sas_transport_functions); 9926 if (!hpsa_sas_transport_template) 9927 return -ENODEV; 9928 9929 rc = pci_register_driver(&hpsa_pci_driver); 9930 9931 if (rc) 9932 sas_release_transport(hpsa_sas_transport_template); 9933 9934 return rc; 9935 } 9936 9937 static void __exit hpsa_cleanup(void) 9938 { 9939 pci_unregister_driver(&hpsa_pci_driver); 9940 sas_release_transport(hpsa_sas_transport_template); 9941 } 9942 9943 static void __attribute__((unused)) verify_offsets(void) 9944 { 9945 #define VERIFY_OFFSET(member, offset) \ 9946 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset) 9947 9948 VERIFY_OFFSET(structure_size, 0); 9949 VERIFY_OFFSET(volume_blk_size, 4); 9950 VERIFY_OFFSET(volume_blk_cnt, 8); 9951 VERIFY_OFFSET(phys_blk_shift, 16); 9952 VERIFY_OFFSET(parity_rotation_shift, 17); 9953 VERIFY_OFFSET(strip_size, 18); 9954 VERIFY_OFFSET(disk_starting_blk, 20); 9955 VERIFY_OFFSET(disk_blk_cnt, 28); 9956 VERIFY_OFFSET(data_disks_per_row, 36); 9957 VERIFY_OFFSET(metadata_disks_per_row, 38); 9958 VERIFY_OFFSET(row_cnt, 40); 9959 VERIFY_OFFSET(layout_map_count, 42); 9960 VERIFY_OFFSET(flags, 44); 9961 VERIFY_OFFSET(dekindex, 46); 9962 /* VERIFY_OFFSET(reserved, 48 */ 9963 VERIFY_OFFSET(data, 64); 9964 9965 #undef VERIFY_OFFSET 9966 9967 #define VERIFY_OFFSET(member, offset) \ 9968 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset) 9969 9970 VERIFY_OFFSET(IU_type, 0); 9971 VERIFY_OFFSET(direction, 1); 9972 VERIFY_OFFSET(reply_queue, 2); 9973 /* VERIFY_OFFSET(reserved1, 3); */ 9974 VERIFY_OFFSET(scsi_nexus, 4); 9975 VERIFY_OFFSET(Tag, 8); 9976 VERIFY_OFFSET(cdb, 16); 9977 VERIFY_OFFSET(cciss_lun, 32); 9978 VERIFY_OFFSET(data_len, 40); 9979 VERIFY_OFFSET(cmd_priority_task_attr, 44); 9980 VERIFY_OFFSET(sg_count, 45); 9981 /* VERIFY_OFFSET(reserved3 */ 9982 VERIFY_OFFSET(err_ptr, 48); 9983 VERIFY_OFFSET(err_len, 56); 9984 /* VERIFY_OFFSET(reserved4 */ 9985 VERIFY_OFFSET(sg, 64); 9986 9987 #undef VERIFY_OFFSET 9988 9989 #define VERIFY_OFFSET(member, offset) \ 9990 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) 9991 9992 VERIFY_OFFSET(dev_handle, 0x00); 9993 VERIFY_OFFSET(reserved1, 0x02); 9994 VERIFY_OFFSET(function, 0x03); 9995 VERIFY_OFFSET(reserved2, 0x04); 9996 VERIFY_OFFSET(err_info, 0x0C); 9997 VERIFY_OFFSET(reserved3, 0x10); 9998 VERIFY_OFFSET(err_info_len, 0x12); 9999 VERIFY_OFFSET(reserved4, 0x13); 10000 VERIFY_OFFSET(sgl_offset, 0x14); 10001 VERIFY_OFFSET(reserved5, 0x15); 10002 VERIFY_OFFSET(transfer_len, 0x1C); 10003 VERIFY_OFFSET(reserved6, 0x20); 10004 VERIFY_OFFSET(io_flags, 0x24); 10005 VERIFY_OFFSET(reserved7, 0x26); 10006 VERIFY_OFFSET(LUN, 0x34); 10007 VERIFY_OFFSET(control, 0x3C); 10008 VERIFY_OFFSET(CDB, 0x40); 10009 VERIFY_OFFSET(reserved8, 0x50); 10010 VERIFY_OFFSET(host_context_flags, 0x60); 10011 VERIFY_OFFSET(timeout_sec, 0x62); 10012 VERIFY_OFFSET(ReplyQueue, 0x64); 10013 VERIFY_OFFSET(reserved9, 0x65); 10014 VERIFY_OFFSET(tag, 0x68); 10015 VERIFY_OFFSET(host_addr, 0x70); 10016 VERIFY_OFFSET(CISS_LUN, 0x78); 10017 VERIFY_OFFSET(SG, 0x78 + 8); 10018 #undef VERIFY_OFFSET 10019 } 10020 10021 module_init(hpsa_init); 10022 module_exit(hpsa_cleanup); 10023