1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries 4 * Copyright 2016 Microsemi Corporation 5 * Copyright 2014-2015 PMC-Sierra, Inc. 6 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; version 2 of the License. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 15 * NON INFRINGEMENT. See the GNU General Public License for more details. 16 * 17 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com 18 * 19 */ 20 21 #include <linux/module.h> 22 #include <linux/interrupt.h> 23 #include <linux/types.h> 24 #include <linux/pci.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/fs.h> 29 #include <linux/timer.h> 30 #include <linux/init.h> 31 #include <linux/spinlock.h> 32 #include <linux/compat.h> 33 #include <linux/blktrace_api.h> 34 #include <linux/uaccess.h> 35 #include <linux/io.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/completion.h> 38 #include <linux/moduleparam.h> 39 #include <scsi/scsi.h> 40 #include <scsi/scsi_cmnd.h> 41 #include <scsi/scsi_device.h> 42 #include <scsi/scsi_host.h> 43 #include <scsi/scsi_tcq.h> 44 #include <scsi/scsi_eh.h> 45 #include <scsi/scsi_transport_sas.h> 46 #include <scsi/scsi_dbg.h> 47 #include <linux/cciss_ioctl.h> 48 #include <linux/string.h> 49 #include <linux/bitmap.h> 50 #include <linux/atomic.h> 51 #include <linux/jiffies.h> 52 #include <linux/percpu-defs.h> 53 #include <linux/percpu.h> 54 #include <linux/unaligned.h> 55 #include <asm/div64.h> 56 #include "hpsa_cmd.h" 57 #include "hpsa.h" 58 59 /* 60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' 61 * with an optional trailing '-' followed by a byte value (0-255). 62 */ 63 #define HPSA_DRIVER_VERSION "3.4.20-200" 64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 65 #define HPSA "hpsa" 66 67 /* How long to wait for CISS doorbell communication */ 68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */ 69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */ 70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */ 71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */ 72 #define MAX_IOCTL_CONFIG_WAIT 1000 73 74 /*define how many times we will try a command because of bus resets */ 75 #define MAX_CMD_RETRIES 3 76 /* How long to wait before giving up on a command */ 77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ) 78 79 /* Embedded module documentation macros - see modules.h */ 80 MODULE_AUTHOR("Hewlett-Packard Company"); 81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 82 HPSA_DRIVER_VERSION); 83 MODULE_VERSION(HPSA_DRIVER_VERSION); 84 MODULE_LICENSE("GPL"); 85 MODULE_ALIAS("cciss"); 86 87 static int hpsa_simple_mode; 88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); 89 MODULE_PARM_DESC(hpsa_simple_mode, 90 "Use 'simple mode' rather than 'performant mode'"); 91 92 /* define the PCI info for the cards we can control */ 93 static const struct pci_device_id hpsa_pci_device_id[] = { 94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, 100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, 101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, 103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, 104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, 105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, 106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, 107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, 108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, 109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920}, 110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921}, 111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922}, 112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923}, 113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924}, 114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925}, 115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926}, 116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928}, 117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929}, 118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD}, 119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE}, 120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF}, 121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0}, 122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1}, 123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2}, 124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3}, 125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4}, 126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5}, 127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6}, 128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7}, 129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8}, 130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9}, 131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA}, 132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB}, 133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC}, 134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD}, 135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE}, 136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580}, 137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581}, 138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582}, 139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583}, 140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584}, 141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585}, 142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076}, 143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087}, 144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D}, 145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088}, 146 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f}, 147 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 148 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 149 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 150 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 151 {0,} 152 }; 153 154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 155 156 /* board_id = Subsystem Device ID & Vendor ID 157 * product = Marketing Name for the board 158 * access = Address of the struct of function pointers 159 */ 160 static struct board_type products[] = { 161 {0x40700E11, "Smart Array 5300", &SA5A_access}, 162 {0x40800E11, "Smart Array 5i", &SA5B_access}, 163 {0x40820E11, "Smart Array 532", &SA5B_access}, 164 {0x40830E11, "Smart Array 5312", &SA5B_access}, 165 {0x409A0E11, "Smart Array 641", &SA5A_access}, 166 {0x409B0E11, "Smart Array 642", &SA5A_access}, 167 {0x409C0E11, "Smart Array 6400", &SA5A_access}, 168 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access}, 169 {0x40910E11, "Smart Array 6i", &SA5A_access}, 170 {0x3225103C, "Smart Array P600", &SA5A_access}, 171 {0x3223103C, "Smart Array P800", &SA5A_access}, 172 {0x3234103C, "Smart Array P400", &SA5A_access}, 173 {0x3235103C, "Smart Array P400i", &SA5A_access}, 174 {0x3211103C, "Smart Array E200i", &SA5A_access}, 175 {0x3212103C, "Smart Array E200", &SA5A_access}, 176 {0x3213103C, "Smart Array E200i", &SA5A_access}, 177 {0x3214103C, "Smart Array E200i", &SA5A_access}, 178 {0x3215103C, "Smart Array E200i", &SA5A_access}, 179 {0x3237103C, "Smart Array E500", &SA5A_access}, 180 {0x323D103C, "Smart Array P700m", &SA5A_access}, 181 {0x3241103C, "Smart Array P212", &SA5_access}, 182 {0x3243103C, "Smart Array P410", &SA5_access}, 183 {0x3245103C, "Smart Array P410i", &SA5_access}, 184 {0x3247103C, "Smart Array P411", &SA5_access}, 185 {0x3249103C, "Smart Array P812", &SA5_access}, 186 {0x324A103C, "Smart Array P712m", &SA5_access}, 187 {0x324B103C, "Smart Array P711m", &SA5_access}, 188 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */ 189 {0x3350103C, "Smart Array P222", &SA5_access}, 190 {0x3351103C, "Smart Array P420", &SA5_access}, 191 {0x3352103C, "Smart Array P421", &SA5_access}, 192 {0x3353103C, "Smart Array P822", &SA5_access}, 193 {0x3354103C, "Smart Array P420i", &SA5_access}, 194 {0x3355103C, "Smart Array P220i", &SA5_access}, 195 {0x3356103C, "Smart Array P721m", &SA5_access}, 196 {0x1920103C, "Smart Array P430i", &SA5_access}, 197 {0x1921103C, "Smart Array P830i", &SA5_access}, 198 {0x1922103C, "Smart Array P430", &SA5_access}, 199 {0x1923103C, "Smart Array P431", &SA5_access}, 200 {0x1924103C, "Smart Array P830", &SA5_access}, 201 {0x1925103C, "Smart Array P831", &SA5_access}, 202 {0x1926103C, "Smart Array P731m", &SA5_access}, 203 {0x1928103C, "Smart Array P230i", &SA5_access}, 204 {0x1929103C, "Smart Array P530", &SA5_access}, 205 {0x21BD103C, "Smart Array P244br", &SA5_access}, 206 {0x21BE103C, "Smart Array P741m", &SA5_access}, 207 {0x21BF103C, "Smart HBA H240ar", &SA5_access}, 208 {0x21C0103C, "Smart Array P440ar", &SA5_access}, 209 {0x21C1103C, "Smart Array P840ar", &SA5_access}, 210 {0x21C2103C, "Smart Array P440", &SA5_access}, 211 {0x21C3103C, "Smart Array P441", &SA5_access}, 212 {0x21C4103C, "Smart Array", &SA5_access}, 213 {0x21C5103C, "Smart Array P841", &SA5_access}, 214 {0x21C6103C, "Smart HBA H244br", &SA5_access}, 215 {0x21C7103C, "Smart HBA H240", &SA5_access}, 216 {0x21C8103C, "Smart HBA H241", &SA5_access}, 217 {0x21C9103C, "Smart Array", &SA5_access}, 218 {0x21CA103C, "Smart Array P246br", &SA5_access}, 219 {0x21CB103C, "Smart Array P840", &SA5_access}, 220 {0x21CC103C, "Smart Array", &SA5_access}, 221 {0x21CD103C, "Smart Array", &SA5_access}, 222 {0x21CE103C, "Smart HBA", &SA5_access}, 223 {0x05809005, "SmartHBA-SA", &SA5_access}, 224 {0x05819005, "SmartHBA-SA 8i", &SA5_access}, 225 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access}, 226 {0x05839005, "SmartHBA-SA 8e", &SA5_access}, 227 {0x05849005, "SmartHBA-SA 16i", &SA5_access}, 228 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access}, 229 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access}, 230 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access}, 231 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access}, 232 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access}, 233 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access}, 234 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 235 }; 236 237 static struct scsi_transport_template *hpsa_sas_transport_template; 238 static int hpsa_add_sas_host(struct ctlr_info *h); 239 static void hpsa_delete_sas_host(struct ctlr_info *h); 240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, 241 struct hpsa_scsi_dev_t *device); 242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device); 243 static struct hpsa_scsi_dev_t 244 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, 245 struct sas_rphy *rphy); 246 247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy) 248 static const struct scsi_cmnd hpsa_cmd_busy; 249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle) 250 static const struct scsi_cmnd hpsa_cmd_idle; 251 static int number_of_controllers; 252 253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); 254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); 255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd, 256 void __user *arg); 257 static int hpsa_passthru_ioctl(struct ctlr_info *h, 258 IOCTL_Command_struct *iocommand); 259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, 260 BIG_IOCTL_Command_struct *ioc); 261 262 #ifdef CONFIG_COMPAT 263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd, 264 void __user *arg); 265 #endif 266 267 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 268 static struct CommandList *cmd_alloc(struct ctlr_info *h); 269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c); 270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, 271 struct scsi_cmnd *scmd); 272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 273 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, 274 int cmd_type); 275 static void hpsa_free_cmd_pool(struct ctlr_info *h); 276 #define VPD_PAGE (1 << 8) 277 #define HPSA_SIMPLE_ERROR_BITS 0x03 278 279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); 280 static void hpsa_scan_start(struct Scsi_Host *); 281 static int hpsa_scan_finished(struct Scsi_Host *sh, 282 unsigned long elapsed_time); 283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth); 284 285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 286 static int hpsa_sdev_init(struct scsi_device *sdev); 287 static int hpsa_sdev_configure(struct scsi_device *sdev, 288 struct queue_limits *lim); 289 static void hpsa_sdev_destroy(struct scsi_device *sdev); 290 291 static void hpsa_update_scsi_devices(struct ctlr_info *h); 292 static int check_for_unit_attention(struct ctlr_info *h, 293 struct CommandList *c); 294 static void check_ioctl_unit_attention(struct ctlr_info *h, 295 struct CommandList *c); 296 /* performant mode helper functions */ 297 static void calc_bucket_map(int *bucket, int num_buckets, 298 int nsgs, int min_blocks, u32 *bucket_map); 299 static void hpsa_free_performant_mode(struct ctlr_info *h); 300 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 301 static inline u32 next_command(struct ctlr_info *h, u8 q); 302 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, 303 u32 *cfg_base_addr, u64 *cfg_base_addr_index, 304 u64 *cfg_offset); 305 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 306 unsigned long *memory_bar); 307 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id, 308 bool *legacy_board); 309 static int wait_for_device_to_become_ready(struct ctlr_info *h, 310 unsigned char lunaddr[], 311 int reply_queue); 312 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, 313 int wait_for_ready); 314 static inline void finish_cmd(struct CommandList *c); 315 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h); 316 #define BOARD_NOT_READY 0 317 #define BOARD_READY 1 318 static void hpsa_drain_accel_commands(struct ctlr_info *h); 319 static void hpsa_flush_cache(struct ctlr_info *h); 320 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, 321 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 322 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk); 323 static void hpsa_command_resubmit_worker(struct work_struct *work); 324 static u32 lockup_detected(struct ctlr_info *h); 325 static int detect_controller_lockup(struct ctlr_info *h); 326 static void hpsa_disable_rld_caching(struct ctlr_info *h); 327 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 328 struct ReportExtendedLUNdata *buf, int bufsize); 329 static bool hpsa_vpd_page_supported(struct ctlr_info *h, 330 unsigned char scsi3addr[], u8 page); 331 static int hpsa_luns_changed(struct ctlr_info *h); 332 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, 333 struct hpsa_scsi_dev_t *dev, 334 unsigned char *scsi3addr); 335 336 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 337 { 338 unsigned long *priv = shost_priv(sdev->host); 339 return (struct ctlr_info *) *priv; 340 } 341 342 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 343 { 344 unsigned long *priv = shost_priv(sh); 345 return (struct ctlr_info *) *priv; 346 } 347 348 static inline bool hpsa_is_cmd_idle(struct CommandList *c) 349 { 350 return c->scsi_cmd == SCSI_CMD_IDLE; 351 } 352 353 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */ 354 static void decode_sense_data(const u8 *sense_data, int sense_data_len, 355 u8 *sense_key, u8 *asc, u8 *ascq) 356 { 357 struct scsi_sense_hdr sshdr; 358 bool rc; 359 360 *sense_key = -1; 361 *asc = -1; 362 *ascq = -1; 363 364 if (sense_data_len < 1) 365 return; 366 367 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr); 368 if (rc) { 369 *sense_key = sshdr.sense_key; 370 *asc = sshdr.asc; 371 *ascq = sshdr.ascq; 372 } 373 } 374 375 static int check_for_unit_attention(struct ctlr_info *h, 376 struct CommandList *c) 377 { 378 u8 sense_key, asc, ascq; 379 int sense_len; 380 381 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) 382 sense_len = sizeof(c->err_info->SenseInfo); 383 else 384 sense_len = c->err_info->SenseLen; 385 386 decode_sense_data(c->err_info->SenseInfo, sense_len, 387 &sense_key, &asc, &ascq); 388 if (sense_key != UNIT_ATTENTION || asc == 0xff) 389 return 0; 390 391 switch (asc) { 392 case STATE_CHANGED: 393 dev_warn(&h->pdev->dev, 394 "%s: a state change detected, command retried\n", 395 h->devname); 396 break; 397 case LUN_FAILED: 398 dev_warn(&h->pdev->dev, 399 "%s: LUN failure detected\n", h->devname); 400 break; 401 case REPORT_LUNS_CHANGED: 402 dev_warn(&h->pdev->dev, 403 "%s: report LUN data changed\n", h->devname); 404 /* 405 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external 406 * target (array) devices. 407 */ 408 break; 409 case POWER_OR_RESET: 410 dev_warn(&h->pdev->dev, 411 "%s: a power on or device reset detected\n", 412 h->devname); 413 break; 414 case UNIT_ATTENTION_CLEARED: 415 dev_warn(&h->pdev->dev, 416 "%s: unit attention cleared by another initiator\n", 417 h->devname); 418 break; 419 default: 420 dev_warn(&h->pdev->dev, 421 "%s: unknown unit attention detected\n", 422 h->devname); 423 break; 424 } 425 return 1; 426 } 427 428 static int check_for_busy(struct ctlr_info *h, struct CommandList *c) 429 { 430 if (c->err_info->CommandStatus != CMD_TARGET_STATUS || 431 (c->err_info->ScsiStatus != SAM_STAT_BUSY && 432 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) 433 return 0; 434 dev_warn(&h->pdev->dev, HPSA "device busy"); 435 return 1; 436 } 437 438 static u32 lockup_detected(struct ctlr_info *h); 439 static ssize_t host_show_lockup_detected(struct device *dev, 440 struct device_attribute *attr, char *buf) 441 { 442 int ld; 443 struct ctlr_info *h; 444 struct Scsi_Host *shost = class_to_shost(dev); 445 446 h = shost_to_hba(shost); 447 ld = lockup_detected(h); 448 449 return sprintf(buf, "ld=%d\n", ld); 450 } 451 452 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev, 453 struct device_attribute *attr, 454 const char *buf, size_t count) 455 { 456 int status; 457 struct ctlr_info *h; 458 struct Scsi_Host *shost = class_to_shost(dev); 459 460 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 461 return -EACCES; 462 if (kstrtoint(buf, 10, &status)) 463 return -EINVAL; 464 h = shost_to_hba(shost); 465 h->acciopath_status = !!status; 466 dev_warn(&h->pdev->dev, 467 "hpsa: HP SSD Smart Path %s via sysfs update.\n", 468 h->acciopath_status ? "enabled" : "disabled"); 469 return count; 470 } 471 472 static ssize_t host_store_raid_offload_debug(struct device *dev, 473 struct device_attribute *attr, 474 const char *buf, size_t count) 475 { 476 int debug_level; 477 struct ctlr_info *h; 478 struct Scsi_Host *shost = class_to_shost(dev); 479 480 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 481 return -EACCES; 482 if (kstrtoint(buf, 10, &debug_level)) 483 return -EINVAL; 484 if (debug_level < 0) 485 debug_level = 0; 486 h = shost_to_hba(shost); 487 h->raid_offload_debug = debug_level; 488 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n", 489 h->raid_offload_debug); 490 return count; 491 } 492 493 static ssize_t host_store_rescan(struct device *dev, 494 struct device_attribute *attr, 495 const char *buf, size_t count) 496 { 497 struct ctlr_info *h; 498 struct Scsi_Host *shost = class_to_shost(dev); 499 h = shost_to_hba(shost); 500 hpsa_scan_start(h->scsi_host); 501 return count; 502 } 503 504 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device) 505 { 506 device->offload_enabled = 0; 507 device->offload_to_be_enabled = 0; 508 } 509 510 static ssize_t host_show_firmware_revision(struct device *dev, 511 struct device_attribute *attr, char *buf) 512 { 513 struct ctlr_info *h; 514 struct Scsi_Host *shost = class_to_shost(dev); 515 unsigned char *fwrev; 516 517 h = shost_to_hba(shost); 518 if (!h->hba_inquiry_data) 519 return 0; 520 fwrev = &h->hba_inquiry_data[32]; 521 return snprintf(buf, 20, "%c%c%c%c\n", 522 fwrev[0], fwrev[1], fwrev[2], fwrev[3]); 523 } 524 525 static ssize_t host_show_commands_outstanding(struct device *dev, 526 struct device_attribute *attr, char *buf) 527 { 528 struct Scsi_Host *shost = class_to_shost(dev); 529 struct ctlr_info *h = shost_to_hba(shost); 530 531 return snprintf(buf, 20, "%d\n", 532 atomic_read(&h->commands_outstanding)); 533 } 534 535 static ssize_t host_show_transport_mode(struct device *dev, 536 struct device_attribute *attr, char *buf) 537 { 538 struct ctlr_info *h; 539 struct Scsi_Host *shost = class_to_shost(dev); 540 541 h = shost_to_hba(shost); 542 return snprintf(buf, 20, "%s\n", 543 h->transMethod & CFGTBL_Trans_Performant ? 544 "performant" : "simple"); 545 } 546 547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev, 548 struct device_attribute *attr, char *buf) 549 { 550 struct ctlr_info *h; 551 struct Scsi_Host *shost = class_to_shost(dev); 552 553 h = shost_to_hba(shost); 554 return snprintf(buf, 30, "HP SSD Smart Path %s\n", 555 (h->acciopath_status == 1) ? "enabled" : "disabled"); 556 } 557 558 /* List of controllers which cannot be hard reset on kexec with reset_devices */ 559 static u32 unresettable_controller[] = { 560 0x324a103C, /* Smart Array P712m */ 561 0x324b103C, /* Smart Array P711m */ 562 0x3223103C, /* Smart Array P800 */ 563 0x3234103C, /* Smart Array P400 */ 564 0x3235103C, /* Smart Array P400i */ 565 0x3211103C, /* Smart Array E200i */ 566 0x3212103C, /* Smart Array E200 */ 567 0x3213103C, /* Smart Array E200i */ 568 0x3214103C, /* Smart Array E200i */ 569 0x3215103C, /* Smart Array E200i */ 570 0x3237103C, /* Smart Array E500 */ 571 0x323D103C, /* Smart Array P700m */ 572 0x40800E11, /* Smart Array 5i */ 573 0x409C0E11, /* Smart Array 6400 */ 574 0x409D0E11, /* Smart Array 6400 EM */ 575 0x40700E11, /* Smart Array 5300 */ 576 0x40820E11, /* Smart Array 532 */ 577 0x40830E11, /* Smart Array 5312 */ 578 0x409A0E11, /* Smart Array 641 */ 579 0x409B0E11, /* Smart Array 642 */ 580 0x40910E11, /* Smart Array 6i */ 581 }; 582 583 /* List of controllers which cannot even be soft reset */ 584 static u32 soft_unresettable_controller[] = { 585 0x40800E11, /* Smart Array 5i */ 586 0x40700E11, /* Smart Array 5300 */ 587 0x40820E11, /* Smart Array 532 */ 588 0x40830E11, /* Smart Array 5312 */ 589 0x409A0E11, /* Smart Array 641 */ 590 0x409B0E11, /* Smart Array 642 */ 591 0x40910E11, /* Smart Array 6i */ 592 /* Exclude 640x boards. These are two pci devices in one slot 593 * which share a battery backed cache module. One controls the 594 * cache, the other accesses the cache through the one that controls 595 * it. If we reset the one controlling the cache, the other will 596 * likely not be happy. Just forbid resetting this conjoined mess. 597 * The 640x isn't really supported by hpsa anyway. 598 */ 599 0x409C0E11, /* Smart Array 6400 */ 600 0x409D0E11, /* Smart Array 6400 EM */ 601 }; 602 603 static int board_id_in_array(u32 a[], int nelems, u32 board_id) 604 { 605 int i; 606 607 for (i = 0; i < nelems; i++) 608 if (a[i] == board_id) 609 return 1; 610 return 0; 611 } 612 613 static int ctlr_is_hard_resettable(u32 board_id) 614 { 615 return !board_id_in_array(unresettable_controller, 616 ARRAY_SIZE(unresettable_controller), board_id); 617 } 618 619 static int ctlr_is_soft_resettable(u32 board_id) 620 { 621 return !board_id_in_array(soft_unresettable_controller, 622 ARRAY_SIZE(soft_unresettable_controller), board_id); 623 } 624 625 static int ctlr_is_resettable(u32 board_id) 626 { 627 return ctlr_is_hard_resettable(board_id) || 628 ctlr_is_soft_resettable(board_id); 629 } 630 631 static ssize_t host_show_resettable(struct device *dev, 632 struct device_attribute *attr, char *buf) 633 { 634 struct ctlr_info *h; 635 struct Scsi_Host *shost = class_to_shost(dev); 636 637 h = shost_to_hba(shost); 638 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); 639 } 640 641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 642 { 643 return (scsi3addr[3] & 0xC0) == 0x40; 644 } 645 646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6", 647 "1(+0)ADM", "UNKNOWN", "PHYS DRV" 648 }; 649 #define HPSA_RAID_0 0 650 #define HPSA_RAID_4 1 651 #define HPSA_RAID_1 2 /* also used for RAID 10 */ 652 #define HPSA_RAID_5 3 /* also used for RAID 50 */ 653 #define HPSA_RAID_51 4 654 #define HPSA_RAID_6 5 /* also used for RAID 60 */ 655 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */ 656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2) 657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1) 658 659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device) 660 { 661 return !device->physical_device; 662 } 663 664 static ssize_t raid_level_show(struct device *dev, 665 struct device_attribute *attr, char *buf) 666 { 667 ssize_t l = 0; 668 unsigned char rlevel; 669 struct ctlr_info *h; 670 struct scsi_device *sdev; 671 struct hpsa_scsi_dev_t *hdev; 672 unsigned long flags; 673 674 sdev = to_scsi_device(dev); 675 h = sdev_to_hba(sdev); 676 spin_lock_irqsave(&h->lock, flags); 677 hdev = sdev->hostdata; 678 if (!hdev) { 679 spin_unlock_irqrestore(&h->lock, flags); 680 return -ENODEV; 681 } 682 683 /* Is this even a logical drive? */ 684 if (!is_logical_device(hdev)) { 685 spin_unlock_irqrestore(&h->lock, flags); 686 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 687 return l; 688 } 689 690 rlevel = hdev->raid_level; 691 spin_unlock_irqrestore(&h->lock, flags); 692 if (rlevel > RAID_UNKNOWN) 693 rlevel = RAID_UNKNOWN; 694 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 695 return l; 696 } 697 698 static ssize_t lunid_show(struct device *dev, 699 struct device_attribute *attr, char *buf) 700 { 701 struct ctlr_info *h; 702 struct scsi_device *sdev; 703 struct hpsa_scsi_dev_t *hdev; 704 unsigned long flags; 705 unsigned char lunid[8]; 706 707 sdev = to_scsi_device(dev); 708 h = sdev_to_hba(sdev); 709 spin_lock_irqsave(&h->lock, flags); 710 hdev = sdev->hostdata; 711 if (!hdev) { 712 spin_unlock_irqrestore(&h->lock, flags); 713 return -ENODEV; 714 } 715 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 716 spin_unlock_irqrestore(&h->lock, flags); 717 return snprintf(buf, 20, "0x%8phN\n", lunid); 718 } 719 720 static ssize_t unique_id_show(struct device *dev, 721 struct device_attribute *attr, char *buf) 722 { 723 struct ctlr_info *h; 724 struct scsi_device *sdev; 725 struct hpsa_scsi_dev_t *hdev; 726 unsigned long flags; 727 unsigned char sn[16]; 728 729 sdev = to_scsi_device(dev); 730 h = sdev_to_hba(sdev); 731 spin_lock_irqsave(&h->lock, flags); 732 hdev = sdev->hostdata; 733 if (!hdev) { 734 spin_unlock_irqrestore(&h->lock, flags); 735 return -ENODEV; 736 } 737 memcpy(sn, hdev->device_id, sizeof(sn)); 738 spin_unlock_irqrestore(&h->lock, flags); 739 return snprintf(buf, 16 * 2 + 2, 740 "%02X%02X%02X%02X%02X%02X%02X%02X" 741 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 742 sn[0], sn[1], sn[2], sn[3], 743 sn[4], sn[5], sn[6], sn[7], 744 sn[8], sn[9], sn[10], sn[11], 745 sn[12], sn[13], sn[14], sn[15]); 746 } 747 748 static ssize_t sas_address_show(struct device *dev, 749 struct device_attribute *attr, char *buf) 750 { 751 struct ctlr_info *h; 752 struct scsi_device *sdev; 753 struct hpsa_scsi_dev_t *hdev; 754 unsigned long flags; 755 u64 sas_address; 756 757 sdev = to_scsi_device(dev); 758 h = sdev_to_hba(sdev); 759 spin_lock_irqsave(&h->lock, flags); 760 hdev = sdev->hostdata; 761 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) { 762 spin_unlock_irqrestore(&h->lock, flags); 763 return -ENODEV; 764 } 765 sas_address = hdev->sas_address; 766 spin_unlock_irqrestore(&h->lock, flags); 767 768 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address); 769 } 770 771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, 772 struct device_attribute *attr, char *buf) 773 { 774 struct ctlr_info *h; 775 struct scsi_device *sdev; 776 struct hpsa_scsi_dev_t *hdev; 777 unsigned long flags; 778 int offload_enabled; 779 780 sdev = to_scsi_device(dev); 781 h = sdev_to_hba(sdev); 782 spin_lock_irqsave(&h->lock, flags); 783 hdev = sdev->hostdata; 784 if (!hdev) { 785 spin_unlock_irqrestore(&h->lock, flags); 786 return -ENODEV; 787 } 788 offload_enabled = hdev->offload_enabled; 789 spin_unlock_irqrestore(&h->lock, flags); 790 791 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) 792 return snprintf(buf, 20, "%d\n", offload_enabled); 793 else 794 return snprintf(buf, 40, "%s\n", 795 "Not applicable for a controller"); 796 } 797 798 #define MAX_PATHS 8 799 static ssize_t path_info_show(struct device *dev, 800 struct device_attribute *attr, char *buf) 801 { 802 struct ctlr_info *h; 803 struct scsi_device *sdev; 804 struct hpsa_scsi_dev_t *hdev; 805 unsigned long flags; 806 int i; 807 int output_len = 0; 808 u8 box; 809 u8 bay; 810 u8 path_map_index = 0; 811 char *active; 812 unsigned char phys_connector[2]; 813 814 sdev = to_scsi_device(dev); 815 h = sdev_to_hba(sdev); 816 spin_lock_irqsave(&h->devlock, flags); 817 hdev = sdev->hostdata; 818 if (!hdev) { 819 spin_unlock_irqrestore(&h->devlock, flags); 820 return -ENODEV; 821 } 822 823 bay = hdev->bay; 824 for (i = 0; i < MAX_PATHS; i++) { 825 path_map_index = 1<<i; 826 if (i == hdev->active_path_index) 827 active = "Active"; 828 else if (hdev->path_map & path_map_index) 829 active = "Inactive"; 830 else 831 continue; 832 833 output_len += scnprintf(buf + output_len, 834 PAGE_SIZE - output_len, 835 "[%d:%d:%d:%d] %20.20s ", 836 h->scsi_host->host_no, 837 hdev->bus, hdev->target, hdev->lun, 838 scsi_device_type(hdev->devtype)); 839 840 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) { 841 output_len += scnprintf(buf + output_len, 842 PAGE_SIZE - output_len, 843 "%s\n", active); 844 continue; 845 } 846 847 box = hdev->box[i]; 848 memcpy(&phys_connector, &hdev->phys_connector[i], 849 sizeof(phys_connector)); 850 if (phys_connector[0] < '0') 851 phys_connector[0] = '0'; 852 if (phys_connector[1] < '0') 853 phys_connector[1] = '0'; 854 output_len += scnprintf(buf + output_len, 855 PAGE_SIZE - output_len, 856 "PORT: %.2s ", 857 phys_connector); 858 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) && 859 hdev->expose_device) { 860 if (box == 0 || box == 0xFF) { 861 output_len += scnprintf(buf + output_len, 862 PAGE_SIZE - output_len, 863 "BAY: %hhu %s\n", 864 bay, active); 865 } else { 866 output_len += scnprintf(buf + output_len, 867 PAGE_SIZE - output_len, 868 "BOX: %hhu BAY: %hhu %s\n", 869 box, bay, active); 870 } 871 } else if (box != 0 && box != 0xFF) { 872 output_len += scnprintf(buf + output_len, 873 PAGE_SIZE - output_len, "BOX: %hhu %s\n", 874 box, active); 875 } else 876 output_len += scnprintf(buf + output_len, 877 PAGE_SIZE - output_len, "%s\n", active); 878 } 879 880 spin_unlock_irqrestore(&h->devlock, flags); 881 return output_len; 882 } 883 884 static ssize_t host_show_ctlr_num(struct device *dev, 885 struct device_attribute *attr, char *buf) 886 { 887 struct ctlr_info *h; 888 struct Scsi_Host *shost = class_to_shost(dev); 889 890 h = shost_to_hba(shost); 891 return snprintf(buf, 20, "%d\n", h->ctlr); 892 } 893 894 static ssize_t host_show_legacy_board(struct device *dev, 895 struct device_attribute *attr, char *buf) 896 { 897 struct ctlr_info *h; 898 struct Scsi_Host *shost = class_to_shost(dev); 899 900 h = shost_to_hba(shost); 901 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0); 902 } 903 904 static DEVICE_ATTR_RO(raid_level); 905 static DEVICE_ATTR_RO(lunid); 906 static DEVICE_ATTR_RO(unique_id); 907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 908 static DEVICE_ATTR_RO(sas_address); 909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, 910 host_show_hp_ssd_smart_path_enabled, NULL); 911 static DEVICE_ATTR_RO(path_info); 912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH, 913 host_show_hp_ssd_smart_path_status, 914 host_store_hp_ssd_smart_path_status); 915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL, 916 host_store_raid_offload_debug); 917 static DEVICE_ATTR(firmware_revision, S_IRUGO, 918 host_show_firmware_revision, NULL); 919 static DEVICE_ATTR(commands_outstanding, S_IRUGO, 920 host_show_commands_outstanding, NULL); 921 static DEVICE_ATTR(transport_mode, S_IRUGO, 922 host_show_transport_mode, NULL); 923 static DEVICE_ATTR(resettable, S_IRUGO, 924 host_show_resettable, NULL); 925 static DEVICE_ATTR(lockup_detected, S_IRUGO, 926 host_show_lockup_detected, NULL); 927 static DEVICE_ATTR(ctlr_num, S_IRUGO, 928 host_show_ctlr_num, NULL); 929 static DEVICE_ATTR(legacy_board, S_IRUGO, 930 host_show_legacy_board, NULL); 931 932 static struct attribute *hpsa_sdev_attrs[] = { 933 &dev_attr_raid_level.attr, 934 &dev_attr_lunid.attr, 935 &dev_attr_unique_id.attr, 936 &dev_attr_hp_ssd_smart_path_enabled.attr, 937 &dev_attr_path_info.attr, 938 &dev_attr_sas_address.attr, 939 NULL, 940 }; 941 942 ATTRIBUTE_GROUPS(hpsa_sdev); 943 944 static struct attribute *hpsa_shost_attrs[] = { 945 &dev_attr_rescan.attr, 946 &dev_attr_firmware_revision.attr, 947 &dev_attr_commands_outstanding.attr, 948 &dev_attr_transport_mode.attr, 949 &dev_attr_resettable.attr, 950 &dev_attr_hp_ssd_smart_path_status.attr, 951 &dev_attr_raid_offload_debug.attr, 952 &dev_attr_lockup_detected.attr, 953 &dev_attr_ctlr_num.attr, 954 &dev_attr_legacy_board.attr, 955 NULL, 956 }; 957 958 ATTRIBUTE_GROUPS(hpsa_shost); 959 960 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\ 961 HPSA_MAX_CONCURRENT_PASSTHRUS) 962 963 static const struct scsi_host_template hpsa_driver_template = { 964 .module = THIS_MODULE, 965 .name = HPSA, 966 .proc_name = HPSA, 967 .queuecommand = hpsa_scsi_queue_command, 968 .scan_start = hpsa_scan_start, 969 .scan_finished = hpsa_scan_finished, 970 .change_queue_depth = hpsa_change_queue_depth, 971 .this_id = -1, 972 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 973 .ioctl = hpsa_ioctl, 974 .sdev_init = hpsa_sdev_init, 975 .sdev_configure = hpsa_sdev_configure, 976 .sdev_destroy = hpsa_sdev_destroy, 977 #ifdef CONFIG_COMPAT 978 .compat_ioctl = hpsa_compat_ioctl, 979 #endif 980 .sdev_groups = hpsa_sdev_groups, 981 .shost_groups = hpsa_shost_groups, 982 .max_sectors = 2048, 983 .no_write_same = 1, 984 }; 985 986 static inline u32 next_command(struct ctlr_info *h, u8 q) 987 { 988 u32 a; 989 struct reply_queue_buffer *rq = &h->reply_queue[q]; 990 991 if (h->transMethod & CFGTBL_Trans_io_accel1) 992 return h->access.command_completed(h, q); 993 994 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 995 return h->access.command_completed(h, q); 996 997 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { 998 a = rq->head[rq->current_entry]; 999 rq->current_entry++; 1000 atomic_dec(&h->commands_outstanding); 1001 } else { 1002 a = FIFO_EMPTY; 1003 } 1004 /* Check for wraparound */ 1005 if (rq->current_entry == h->max_commands) { 1006 rq->current_entry = 0; 1007 rq->wraparound ^= 1; 1008 } 1009 return a; 1010 } 1011 1012 /* 1013 * There are some special bits in the bus address of the 1014 * command that we have to set for the controller to know 1015 * how to process the command: 1016 * 1017 * Normal performant mode: 1018 * bit 0: 1 means performant mode, 0 means simple mode. 1019 * bits 1-3 = block fetch table entry 1020 * bits 4-6 = command type (== 0) 1021 * 1022 * ioaccel1 mode: 1023 * bit 0 = "performant mode" bit. 1024 * bits 1-3 = block fetch table entry 1025 * bits 4-6 = command type (== 110) 1026 * (command type is needed because ioaccel1 mode 1027 * commands are submitted through the same register as normal 1028 * mode commands, so this is how the controller knows whether 1029 * the command is normal mode or ioaccel1 mode.) 1030 * 1031 * ioaccel2 mode: 1032 * bit 0 = "performant mode" bit. 1033 * bits 1-4 = block fetch table entry (note extra bit) 1034 * bits 4-6 = not needed, because ioaccel2 mode has 1035 * a separate special register for submitting commands. 1036 */ 1037 1038 /* 1039 * set_performant_mode: Modify the tag for cciss performant 1040 * set bit 0 for pull model, bits 3-1 for block fetch 1041 * register number 1042 */ 1043 #define DEFAULT_REPLY_QUEUE (-1) 1044 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c, 1045 int reply_queue) 1046 { 1047 if (likely(h->transMethod & CFGTBL_Trans_Performant)) { 1048 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 1049 if (unlikely(!h->msix_vectors)) 1050 return; 1051 c->Header.ReplyQueue = reply_queue; 1052 } 1053 } 1054 1055 static void set_ioaccel1_performant_mode(struct ctlr_info *h, 1056 struct CommandList *c, 1057 int reply_queue) 1058 { 1059 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; 1060 1061 /* 1062 * Tell the controller to post the reply to the queue for this 1063 * processor. This seems to give the best I/O throughput. 1064 */ 1065 cp->ReplyQueue = reply_queue; 1066 /* 1067 * Set the bits in the address sent down to include: 1068 * - performant mode bit (bit 0) 1069 * - pull count (bits 1-3) 1070 * - command type (bits 4-6) 1071 */ 1072 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) | 1073 IOACCEL1_BUSADDR_CMDTYPE; 1074 } 1075 1076 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h, 1077 struct CommandList *c, 1078 int reply_queue) 1079 { 1080 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *) 1081 &h->ioaccel2_cmd_pool[c->cmdindex]; 1082 1083 /* Tell the controller to post the reply to the queue for this 1084 * processor. This seems to give the best I/O throughput. 1085 */ 1086 cp->reply_queue = reply_queue; 1087 /* Set the bits in the address sent down to include: 1088 * - performant mode bit not used in ioaccel mode 2 1089 * - pull count (bits 0-3) 1090 * - command type isn't needed for ioaccel2 1091 */ 1092 c->busaddr |= h->ioaccel2_blockFetchTable[0]; 1093 } 1094 1095 static void set_ioaccel2_performant_mode(struct ctlr_info *h, 1096 struct CommandList *c, 1097 int reply_queue) 1098 { 1099 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; 1100 1101 /* 1102 * Tell the controller to post the reply to the queue for this 1103 * processor. This seems to give the best I/O throughput. 1104 */ 1105 cp->reply_queue = reply_queue; 1106 /* 1107 * Set the bits in the address sent down to include: 1108 * - performant mode bit not used in ioaccel mode 2 1109 * - pull count (bits 0-3) 1110 * - command type isn't needed for ioaccel2 1111 */ 1112 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]); 1113 } 1114 1115 static int is_firmware_flash_cmd(u8 *cdb) 1116 { 1117 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; 1118 } 1119 1120 /* 1121 * During firmware flash, the heartbeat register may not update as frequently 1122 * as it should. So we dial down lockup detection during firmware flash. and 1123 * dial it back up when firmware flash completes. 1124 */ 1125 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) 1126 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) 1127 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ) 1128 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, 1129 struct CommandList *c) 1130 { 1131 if (!is_firmware_flash_cmd(c->Request.CDB)) 1132 return; 1133 atomic_inc(&h->firmware_flash_in_progress); 1134 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; 1135 } 1136 1137 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, 1138 struct CommandList *c) 1139 { 1140 if (is_firmware_flash_cmd(c->Request.CDB) && 1141 atomic_dec_and_test(&h->firmware_flash_in_progress)) 1142 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 1143 } 1144 1145 static void __enqueue_cmd_and_start_io(struct ctlr_info *h, 1146 struct CommandList *c, int reply_queue) 1147 { 1148 dial_down_lockup_detection_during_fw_flash(h, c); 1149 atomic_inc(&h->commands_outstanding); 1150 /* 1151 * Check to see if the command is being retried. 1152 */ 1153 if (c->device && !c->retry_pending) 1154 atomic_inc(&c->device->commands_outstanding); 1155 1156 reply_queue = h->reply_map[raw_smp_processor_id()]; 1157 switch (c->cmd_type) { 1158 case CMD_IOACCEL1: 1159 set_ioaccel1_performant_mode(h, c, reply_queue); 1160 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); 1161 break; 1162 case CMD_IOACCEL2: 1163 set_ioaccel2_performant_mode(h, c, reply_queue); 1164 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); 1165 break; 1166 case IOACCEL2_TMF: 1167 set_ioaccel2_tmf_performant_mode(h, c, reply_queue); 1168 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); 1169 break; 1170 default: 1171 set_performant_mode(h, c, reply_queue); 1172 h->access.submit_command(h, c); 1173 } 1174 } 1175 1176 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c) 1177 { 1178 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE); 1179 } 1180 1181 static inline int is_hba_lunid(unsigned char scsi3addr[]) 1182 { 1183 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 1184 } 1185 1186 static inline int is_scsi_rev_5(struct ctlr_info *h) 1187 { 1188 if (!h->hba_inquiry_data) 1189 return 0; 1190 if ((h->hba_inquiry_data[2] & 0x07) == 5) 1191 return 1; 1192 return 0; 1193 } 1194 1195 static int hpsa_find_target_lun(struct ctlr_info *h, 1196 unsigned char scsi3addr[], int bus, int *target, int *lun) 1197 { 1198 /* finds an unused bus, target, lun for a new physical device 1199 * assumes h->devlock is held 1200 */ 1201 int i, found = 0; 1202 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); 1203 1204 bitmap_zero(lun_taken, HPSA_MAX_DEVICES); 1205 1206 for (i = 0; i < h->ndevices; i++) { 1207 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 1208 __set_bit(h->dev[i]->target, lun_taken); 1209 } 1210 1211 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); 1212 if (i < HPSA_MAX_DEVICES) { 1213 /* *bus = 1; */ 1214 *target = i; 1215 *lun = 0; 1216 found = 1; 1217 } 1218 return !found; 1219 } 1220 1221 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h, 1222 struct hpsa_scsi_dev_t *dev, char *description) 1223 { 1224 #define LABEL_SIZE 25 1225 char label[LABEL_SIZE]; 1226 1227 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL) 1228 return; 1229 1230 switch (dev->devtype) { 1231 case TYPE_RAID: 1232 snprintf(label, LABEL_SIZE, "controller"); 1233 break; 1234 case TYPE_ENCLOSURE: 1235 snprintf(label, LABEL_SIZE, "enclosure"); 1236 break; 1237 case TYPE_DISK: 1238 case TYPE_ZBC: 1239 if (dev->external) 1240 snprintf(label, LABEL_SIZE, "external"); 1241 else if (!is_logical_dev_addr_mode(dev->scsi3addr)) 1242 snprintf(label, LABEL_SIZE, "%s", 1243 raid_label[PHYSICAL_DRIVE]); 1244 else 1245 snprintf(label, LABEL_SIZE, "RAID-%s", 1246 dev->raid_level > RAID_UNKNOWN ? "?" : 1247 raid_label[dev->raid_level]); 1248 break; 1249 case TYPE_ROM: 1250 snprintf(label, LABEL_SIZE, "rom"); 1251 break; 1252 case TYPE_TAPE: 1253 snprintf(label, LABEL_SIZE, "tape"); 1254 break; 1255 case TYPE_MEDIUM_CHANGER: 1256 snprintf(label, LABEL_SIZE, "changer"); 1257 break; 1258 default: 1259 snprintf(label, LABEL_SIZE, "UNKNOWN"); 1260 break; 1261 } 1262 1263 dev_printk(level, &h->pdev->dev, 1264 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n", 1265 h->scsi_host->host_no, dev->bus, dev->target, dev->lun, 1266 description, 1267 scsi_device_type(dev->devtype), 1268 dev->vendor, 1269 dev->model, 1270 label, 1271 dev->offload_config ? '+' : '-', 1272 dev->offload_to_be_enabled ? '+' : '-', 1273 dev->expose_device); 1274 } 1275 1276 /* Add an entry into h->dev[] array. */ 1277 static int hpsa_scsi_add_entry(struct ctlr_info *h, 1278 struct hpsa_scsi_dev_t *device, 1279 struct hpsa_scsi_dev_t *added[], int *nadded) 1280 { 1281 /* assumes h->devlock is held */ 1282 int n = h->ndevices; 1283 int i; 1284 unsigned char addr1[8], addr2[8]; 1285 struct hpsa_scsi_dev_t *sd; 1286 1287 if (n >= HPSA_MAX_DEVICES) { 1288 dev_err(&h->pdev->dev, "too many devices, some will be " 1289 "inaccessible.\n"); 1290 return -1; 1291 } 1292 1293 /* physical devices do not have lun or target assigned until now. */ 1294 if (device->lun != -1) 1295 /* Logical device, lun is already assigned. */ 1296 goto lun_assigned; 1297 1298 /* If this device a non-zero lun of a multi-lun device 1299 * byte 4 of the 8-byte LUN addr will contain the logical 1300 * unit no, zero otherwise. 1301 */ 1302 if (device->scsi3addr[4] == 0) { 1303 /* This is not a non-zero lun of a multi-lun device */ 1304 if (hpsa_find_target_lun(h, device->scsi3addr, 1305 device->bus, &device->target, &device->lun) != 0) 1306 return -1; 1307 goto lun_assigned; 1308 } 1309 1310 /* This is a non-zero lun of a multi-lun device. 1311 * Search through our list and find the device which 1312 * has the same 8 byte LUN address, excepting byte 4 and 5. 1313 * Assign the same bus and target for this new LUN. 1314 * Use the logical unit number from the firmware. 1315 */ 1316 memcpy(addr1, device->scsi3addr, 8); 1317 addr1[4] = 0; 1318 addr1[5] = 0; 1319 for (i = 0; i < n; i++) { 1320 sd = h->dev[i]; 1321 memcpy(addr2, sd->scsi3addr, 8); 1322 addr2[4] = 0; 1323 addr2[5] = 0; 1324 /* differ only in byte 4 and 5? */ 1325 if (memcmp(addr1, addr2, 8) == 0) { 1326 device->bus = sd->bus; 1327 device->target = sd->target; 1328 device->lun = device->scsi3addr[4]; 1329 break; 1330 } 1331 } 1332 if (device->lun == -1) { 1333 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 1334 " suspect firmware bug or unsupported hardware " 1335 "configuration.\n"); 1336 return -1; 1337 } 1338 1339 lun_assigned: 1340 1341 h->dev[n] = device; 1342 h->ndevices++; 1343 added[*nadded] = device; 1344 (*nadded)++; 1345 hpsa_show_dev_msg(KERN_INFO, h, device, 1346 device->expose_device ? "added" : "masked"); 1347 return 0; 1348 } 1349 1350 /* 1351 * Called during a scan operation. 1352 * 1353 * Update an entry in h->dev[] array. 1354 */ 1355 static void hpsa_scsi_update_entry(struct ctlr_info *h, 1356 int entry, struct hpsa_scsi_dev_t *new_entry) 1357 { 1358 /* assumes h->devlock is held */ 1359 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1360 1361 /* Raid level changed. */ 1362 h->dev[entry]->raid_level = new_entry->raid_level; 1363 1364 /* 1365 * ioacccel_handle may have changed for a dual domain disk 1366 */ 1367 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1368 1369 /* Raid offload parameters changed. Careful about the ordering. */ 1370 if (new_entry->offload_config && new_entry->offload_to_be_enabled) { 1371 /* 1372 * if drive is newly offload_enabled, we want to copy the 1373 * raid map data first. If previously offload_enabled and 1374 * offload_config were set, raid map data had better be 1375 * the same as it was before. If raid map data has changed 1376 * then it had better be the case that 1377 * h->dev[entry]->offload_enabled is currently 0. 1378 */ 1379 h->dev[entry]->raid_map = new_entry->raid_map; 1380 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1381 } 1382 if (new_entry->offload_to_be_enabled) { 1383 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1384 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */ 1385 } 1386 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled; 1387 h->dev[entry]->offload_config = new_entry->offload_config; 1388 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror; 1389 h->dev[entry]->queue_depth = new_entry->queue_depth; 1390 1391 /* 1392 * We can turn off ioaccel offload now, but need to delay turning 1393 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we 1394 * can't do that until all the devices are updated. 1395 */ 1396 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled; 1397 1398 /* 1399 * turn ioaccel off immediately if told to do so. 1400 */ 1401 if (!new_entry->offload_to_be_enabled) 1402 h->dev[entry]->offload_enabled = 0; 1403 1404 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated"); 1405 } 1406 1407 /* Replace an entry from h->dev[] array. */ 1408 static void hpsa_scsi_replace_entry(struct ctlr_info *h, 1409 int entry, struct hpsa_scsi_dev_t *new_entry, 1410 struct hpsa_scsi_dev_t *added[], int *nadded, 1411 struct hpsa_scsi_dev_t *removed[], int *nremoved) 1412 { 1413 /* assumes h->devlock is held */ 1414 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1415 removed[*nremoved] = h->dev[entry]; 1416 (*nremoved)++; 1417 1418 /* 1419 * New physical devices won't have target/lun assigned yet 1420 * so we need to preserve the values in the slot we are replacing. 1421 */ 1422 if (new_entry->target == -1) { 1423 new_entry->target = h->dev[entry]->target; 1424 new_entry->lun = h->dev[entry]->lun; 1425 } 1426 1427 h->dev[entry] = new_entry; 1428 added[*nadded] = new_entry; 1429 (*nadded)++; 1430 1431 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced"); 1432 } 1433 1434 /* Remove an entry from h->dev[] array. */ 1435 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry, 1436 struct hpsa_scsi_dev_t *removed[], int *nremoved) 1437 { 1438 /* assumes h->devlock is held */ 1439 int i; 1440 struct hpsa_scsi_dev_t *sd; 1441 1442 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1443 1444 sd = h->dev[entry]; 1445 removed[*nremoved] = h->dev[entry]; 1446 (*nremoved)++; 1447 1448 for (i = entry; i < h->ndevices-1; i++) 1449 h->dev[i] = h->dev[i+1]; 1450 h->ndevices--; 1451 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed"); 1452 } 1453 1454 #define SCSI3ADDR_EQ(a, b) ( \ 1455 (a)[7] == (b)[7] && \ 1456 (a)[6] == (b)[6] && \ 1457 (a)[5] == (b)[5] && \ 1458 (a)[4] == (b)[4] && \ 1459 (a)[3] == (b)[3] && \ 1460 (a)[2] == (b)[2] && \ 1461 (a)[1] == (b)[1] && \ 1462 (a)[0] == (b)[0]) 1463 1464 static void fixup_botched_add(struct ctlr_info *h, 1465 struct hpsa_scsi_dev_t *added) 1466 { 1467 /* called when scsi_add_device fails in order to re-adjust 1468 * h->dev[] to match the mid layer's view. 1469 */ 1470 unsigned long flags; 1471 int i, j; 1472 1473 spin_lock_irqsave(&h->lock, flags); 1474 for (i = 0; i < h->ndevices; i++) { 1475 if (h->dev[i] == added) { 1476 for (j = i; j < h->ndevices-1; j++) 1477 h->dev[j] = h->dev[j+1]; 1478 h->ndevices--; 1479 break; 1480 } 1481 } 1482 spin_unlock_irqrestore(&h->lock, flags); 1483 kfree(added); 1484 } 1485 1486 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 1487 struct hpsa_scsi_dev_t *dev2) 1488 { 1489 /* we compare everything except lun and target as these 1490 * are not yet assigned. Compare parts likely 1491 * to differ first 1492 */ 1493 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 1494 sizeof(dev1->scsi3addr)) != 0) 1495 return 0; 1496 if (memcmp(dev1->device_id, dev2->device_id, 1497 sizeof(dev1->device_id)) != 0) 1498 return 0; 1499 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 1500 return 0; 1501 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 1502 return 0; 1503 if (dev1->devtype != dev2->devtype) 1504 return 0; 1505 if (dev1->bus != dev2->bus) 1506 return 0; 1507 return 1; 1508 } 1509 1510 static inline int device_updated(struct hpsa_scsi_dev_t *dev1, 1511 struct hpsa_scsi_dev_t *dev2) 1512 { 1513 /* Device attributes that can change, but don't mean 1514 * that the device is a different device, nor that the OS 1515 * needs to be told anything about the change. 1516 */ 1517 if (dev1->raid_level != dev2->raid_level) 1518 return 1; 1519 if (dev1->offload_config != dev2->offload_config) 1520 return 1; 1521 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled) 1522 return 1; 1523 if (!is_logical_dev_addr_mode(dev1->scsi3addr)) 1524 if (dev1->queue_depth != dev2->queue_depth) 1525 return 1; 1526 /* 1527 * This can happen for dual domain devices. An active 1528 * path change causes the ioaccel handle to change 1529 * 1530 * for example note the handle differences between p0 and p1 1531 * Device WWN ,WWN hash,Handle 1532 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003 1533 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004 1534 */ 1535 if (dev1->ioaccel_handle != dev2->ioaccel_handle) 1536 return 1; 1537 return 0; 1538 } 1539 1540 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 1541 * and return needle location in *index. If scsi3addr matches, but not 1542 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 1543 * location in *index. 1544 * In the case of a minor device attribute change, such as RAID level, just 1545 * return DEVICE_UPDATED, along with the updated device's location in index. 1546 * If needle not found, return DEVICE_NOT_FOUND. 1547 */ 1548 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 1549 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 1550 int *index) 1551 { 1552 int i; 1553 #define DEVICE_NOT_FOUND 0 1554 #define DEVICE_CHANGED 1 1555 #define DEVICE_SAME 2 1556 #define DEVICE_UPDATED 3 1557 if (needle == NULL) 1558 return DEVICE_NOT_FOUND; 1559 1560 for (i = 0; i < haystack_size; i++) { 1561 if (haystack[i] == NULL) /* previously removed. */ 1562 continue; 1563 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 1564 *index = i; 1565 if (device_is_the_same(needle, haystack[i])) { 1566 if (device_updated(needle, haystack[i])) 1567 return DEVICE_UPDATED; 1568 return DEVICE_SAME; 1569 } else { 1570 /* Keep offline devices offline */ 1571 if (needle->volume_offline) 1572 return DEVICE_NOT_FOUND; 1573 return DEVICE_CHANGED; 1574 } 1575 } 1576 } 1577 *index = -1; 1578 return DEVICE_NOT_FOUND; 1579 } 1580 1581 static void hpsa_monitor_offline_device(struct ctlr_info *h, 1582 unsigned char scsi3addr[]) 1583 { 1584 struct offline_device_entry *device; 1585 unsigned long flags; 1586 1587 /* Check to see if device is already on the list */ 1588 spin_lock_irqsave(&h->offline_device_lock, flags); 1589 list_for_each_entry(device, &h->offline_device_list, offline_list) { 1590 if (memcmp(device->scsi3addr, scsi3addr, 1591 sizeof(device->scsi3addr)) == 0) { 1592 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1593 return; 1594 } 1595 } 1596 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1597 1598 /* Device is not on the list, add it. */ 1599 device = kmalloc(sizeof(*device), GFP_KERNEL); 1600 if (!device) 1601 return; 1602 1603 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); 1604 spin_lock_irqsave(&h->offline_device_lock, flags); 1605 list_add_tail(&device->offline_list, &h->offline_device_list); 1606 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1607 } 1608 1609 /* Print a message explaining various offline volume states */ 1610 static void hpsa_show_volume_status(struct ctlr_info *h, 1611 struct hpsa_scsi_dev_t *sd) 1612 { 1613 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED) 1614 dev_info(&h->pdev->dev, 1615 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n", 1616 h->scsi_host->host_no, 1617 sd->bus, sd->target, sd->lun); 1618 switch (sd->volume_offline) { 1619 case HPSA_LV_OK: 1620 break; 1621 case HPSA_LV_UNDERGOING_ERASE: 1622 dev_info(&h->pdev->dev, 1623 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n", 1624 h->scsi_host->host_no, 1625 sd->bus, sd->target, sd->lun); 1626 break; 1627 case HPSA_LV_NOT_AVAILABLE: 1628 dev_info(&h->pdev->dev, 1629 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n", 1630 h->scsi_host->host_no, 1631 sd->bus, sd->target, sd->lun); 1632 break; 1633 case HPSA_LV_UNDERGOING_RPI: 1634 dev_info(&h->pdev->dev, 1635 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n", 1636 h->scsi_host->host_no, 1637 sd->bus, sd->target, sd->lun); 1638 break; 1639 case HPSA_LV_PENDING_RPI: 1640 dev_info(&h->pdev->dev, 1641 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n", 1642 h->scsi_host->host_no, 1643 sd->bus, sd->target, sd->lun); 1644 break; 1645 case HPSA_LV_ENCRYPTED_NO_KEY: 1646 dev_info(&h->pdev->dev, 1647 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n", 1648 h->scsi_host->host_no, 1649 sd->bus, sd->target, sd->lun); 1650 break; 1651 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: 1652 dev_info(&h->pdev->dev, 1653 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n", 1654 h->scsi_host->host_no, 1655 sd->bus, sd->target, sd->lun); 1656 break; 1657 case HPSA_LV_UNDERGOING_ENCRYPTION: 1658 dev_info(&h->pdev->dev, 1659 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n", 1660 h->scsi_host->host_no, 1661 sd->bus, sd->target, sd->lun); 1662 break; 1663 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: 1664 dev_info(&h->pdev->dev, 1665 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n", 1666 h->scsi_host->host_no, 1667 sd->bus, sd->target, sd->lun); 1668 break; 1669 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: 1670 dev_info(&h->pdev->dev, 1671 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n", 1672 h->scsi_host->host_no, 1673 sd->bus, sd->target, sd->lun); 1674 break; 1675 case HPSA_LV_PENDING_ENCRYPTION: 1676 dev_info(&h->pdev->dev, 1677 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n", 1678 h->scsi_host->host_no, 1679 sd->bus, sd->target, sd->lun); 1680 break; 1681 case HPSA_LV_PENDING_ENCRYPTION_REKEYING: 1682 dev_info(&h->pdev->dev, 1683 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n", 1684 h->scsi_host->host_no, 1685 sd->bus, sd->target, sd->lun); 1686 break; 1687 } 1688 } 1689 1690 /* 1691 * Figure the list of physical drive pointers for a logical drive with 1692 * raid offload configured. 1693 */ 1694 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h, 1695 struct hpsa_scsi_dev_t *dev[], int ndevices, 1696 struct hpsa_scsi_dev_t *logical_drive) 1697 { 1698 struct raid_map_data *map = &logical_drive->raid_map; 1699 struct raid_map_disk_data *dd = &map->data[0]; 1700 int i, j; 1701 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + 1702 le16_to_cpu(map->metadata_disks_per_row); 1703 int nraid_map_entries = le16_to_cpu(map->row_cnt) * 1704 le16_to_cpu(map->layout_map_count) * 1705 total_disks_per_row; 1706 int nphys_disk = le16_to_cpu(map->layout_map_count) * 1707 total_disks_per_row; 1708 int qdepth; 1709 1710 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES) 1711 nraid_map_entries = RAID_MAP_MAX_ENTRIES; 1712 1713 logical_drive->nphysical_disks = nraid_map_entries; 1714 1715 qdepth = 0; 1716 for (i = 0; i < nraid_map_entries; i++) { 1717 logical_drive->phys_disk[i] = NULL; 1718 if (!logical_drive->offload_config) 1719 continue; 1720 for (j = 0; j < ndevices; j++) { 1721 if (dev[j] == NULL) 1722 continue; 1723 if (dev[j]->devtype != TYPE_DISK && 1724 dev[j]->devtype != TYPE_ZBC) 1725 continue; 1726 if (is_logical_device(dev[j])) 1727 continue; 1728 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle) 1729 continue; 1730 1731 logical_drive->phys_disk[i] = dev[j]; 1732 if (i < nphys_disk) 1733 qdepth = min(h->nr_cmds, qdepth + 1734 logical_drive->phys_disk[i]->queue_depth); 1735 break; 1736 } 1737 1738 /* 1739 * This can happen if a physical drive is removed and 1740 * the logical drive is degraded. In that case, the RAID 1741 * map data will refer to a physical disk which isn't actually 1742 * present. And in that case offload_enabled should already 1743 * be 0, but we'll turn it off here just in case 1744 */ 1745 if (!logical_drive->phys_disk[i]) { 1746 dev_warn(&h->pdev->dev, 1747 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n", 1748 __func__, 1749 h->scsi_host->host_no, logical_drive->bus, 1750 logical_drive->target, logical_drive->lun); 1751 hpsa_turn_off_ioaccel_for_device(logical_drive); 1752 logical_drive->queue_depth = 8; 1753 } 1754 } 1755 if (nraid_map_entries) 1756 /* 1757 * This is correct for reads, too high for full stripe writes, 1758 * way too high for partial stripe writes 1759 */ 1760 logical_drive->queue_depth = qdepth; 1761 else { 1762 if (logical_drive->external) 1763 logical_drive->queue_depth = EXTERNAL_QD; 1764 else 1765 logical_drive->queue_depth = h->nr_cmds; 1766 } 1767 } 1768 1769 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h, 1770 struct hpsa_scsi_dev_t *dev[], int ndevices) 1771 { 1772 int i; 1773 1774 for (i = 0; i < ndevices; i++) { 1775 if (dev[i] == NULL) 1776 continue; 1777 if (dev[i]->devtype != TYPE_DISK && 1778 dev[i]->devtype != TYPE_ZBC) 1779 continue; 1780 if (!is_logical_device(dev[i])) 1781 continue; 1782 1783 /* 1784 * If offload is currently enabled, the RAID map and 1785 * phys_disk[] assignment *better* not be changing 1786 * because we would be changing ioaccel phsy_disk[] pointers 1787 * on a ioaccel volume processing I/O requests. 1788 * 1789 * If an ioaccel volume status changed, initially because it was 1790 * re-configured and thus underwent a transformation, or 1791 * a drive failed, we would have received a state change 1792 * request and ioaccel should have been turned off. When the 1793 * transformation completes, we get another state change 1794 * request to turn ioaccel back on. In this case, we need 1795 * to update the ioaccel information. 1796 * 1797 * Thus: If it is not currently enabled, but will be after 1798 * the scan completes, make sure the ioaccel pointers 1799 * are up to date. 1800 */ 1801 1802 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled) 1803 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]); 1804 } 1805 } 1806 1807 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 1808 { 1809 int rc = 0; 1810 1811 if (!h->scsi_host) 1812 return 1; 1813 1814 if (is_logical_device(device)) /* RAID */ 1815 rc = scsi_add_device(h->scsi_host, device->bus, 1816 device->target, device->lun); 1817 else /* HBA */ 1818 rc = hpsa_add_sas_device(h->sas_host, device); 1819 1820 return rc; 1821 } 1822 1823 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h, 1824 struct hpsa_scsi_dev_t *dev) 1825 { 1826 int i; 1827 int count = 0; 1828 1829 for (i = 0; i < h->nr_cmds; i++) { 1830 struct CommandList *c = h->cmd_pool + i; 1831 int refcount = atomic_inc_return(&c->refcount); 1832 1833 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, 1834 dev->scsi3addr)) { 1835 unsigned long flags; 1836 1837 spin_lock_irqsave(&h->lock, flags); /* Implied MB */ 1838 if (!hpsa_is_cmd_idle(c)) 1839 ++count; 1840 spin_unlock_irqrestore(&h->lock, flags); 1841 } 1842 1843 cmd_free(h, c); 1844 } 1845 1846 return count; 1847 } 1848 1849 #define NUM_WAIT 20 1850 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h, 1851 struct hpsa_scsi_dev_t *device) 1852 { 1853 int cmds = 0; 1854 int waits = 0; 1855 int num_wait = NUM_WAIT; 1856 1857 if (device->external) 1858 num_wait = HPSA_EH_PTRAID_TIMEOUT; 1859 1860 while (1) { 1861 cmds = hpsa_find_outstanding_commands_for_dev(h, device); 1862 if (cmds == 0) 1863 break; 1864 if (++waits > num_wait) 1865 break; 1866 msleep(1000); 1867 } 1868 1869 if (waits > num_wait) { 1870 dev_warn(&h->pdev->dev, 1871 "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n", 1872 __func__, 1873 h->scsi_host->host_no, 1874 device->bus, device->target, device->lun, cmds); 1875 } 1876 } 1877 1878 static void hpsa_remove_device(struct ctlr_info *h, 1879 struct hpsa_scsi_dev_t *device) 1880 { 1881 struct scsi_device *sdev = NULL; 1882 1883 if (!h->scsi_host) 1884 return; 1885 1886 /* 1887 * Allow for commands to drain 1888 */ 1889 device->removed = 1; 1890 hpsa_wait_for_outstanding_commands_for_dev(h, device); 1891 1892 if (is_logical_device(device)) { /* RAID */ 1893 sdev = scsi_device_lookup(h->scsi_host, device->bus, 1894 device->target, device->lun); 1895 if (sdev) { 1896 scsi_remove_device(sdev); 1897 scsi_device_put(sdev); 1898 } else { 1899 /* 1900 * We don't expect to get here. Future commands 1901 * to this device will get a selection timeout as 1902 * if the device were gone. 1903 */ 1904 hpsa_show_dev_msg(KERN_WARNING, h, device, 1905 "didn't find device for removal."); 1906 } 1907 } else { /* HBA */ 1908 1909 hpsa_remove_sas_device(device); 1910 } 1911 } 1912 1913 static void adjust_hpsa_scsi_table(struct ctlr_info *h, 1914 struct hpsa_scsi_dev_t *sd[], int nsds) 1915 { 1916 /* sd contains scsi3 addresses and devtypes, and inquiry 1917 * data. This function takes what's in sd to be the current 1918 * reality and updates h->dev[] to reflect that reality. 1919 */ 1920 int i, entry, device_change, changes = 0; 1921 struct hpsa_scsi_dev_t *csd; 1922 unsigned long flags; 1923 struct hpsa_scsi_dev_t **added, **removed; 1924 int nadded, nremoved; 1925 1926 /* 1927 * A reset can cause a device status to change 1928 * re-schedule the scan to see what happened. 1929 */ 1930 spin_lock_irqsave(&h->reset_lock, flags); 1931 if (h->reset_in_progress) { 1932 h->drv_req_rescan = 1; 1933 spin_unlock_irqrestore(&h->reset_lock, flags); 1934 return; 1935 } 1936 spin_unlock_irqrestore(&h->reset_lock, flags); 1937 1938 added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL); 1939 removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL); 1940 1941 if (!added || !removed) { 1942 dev_warn(&h->pdev->dev, "out of memory in " 1943 "adjust_hpsa_scsi_table\n"); 1944 goto free_and_out; 1945 } 1946 1947 spin_lock_irqsave(&h->devlock, flags); 1948 1949 /* find any devices in h->dev[] that are not in 1950 * sd[] and remove them from h->dev[], and for any 1951 * devices which have changed, remove the old device 1952 * info and add the new device info. 1953 * If minor device attributes change, just update 1954 * the existing device structure. 1955 */ 1956 i = 0; 1957 nremoved = 0; 1958 nadded = 0; 1959 while (i < h->ndevices) { 1960 csd = h->dev[i]; 1961 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 1962 if (device_change == DEVICE_NOT_FOUND) { 1963 changes++; 1964 hpsa_scsi_remove_entry(h, i, removed, &nremoved); 1965 continue; /* remove ^^^, hence i not incremented */ 1966 } else if (device_change == DEVICE_CHANGED) { 1967 changes++; 1968 hpsa_scsi_replace_entry(h, i, sd[entry], 1969 added, &nadded, removed, &nremoved); 1970 /* Set it to NULL to prevent it from being freed 1971 * at the bottom of hpsa_update_scsi_devices() 1972 */ 1973 sd[entry] = NULL; 1974 } else if (device_change == DEVICE_UPDATED) { 1975 hpsa_scsi_update_entry(h, i, sd[entry]); 1976 } 1977 i++; 1978 } 1979 1980 /* Now, make sure every device listed in sd[] is also 1981 * listed in h->dev[], adding them if they aren't found 1982 */ 1983 1984 for (i = 0; i < nsds; i++) { 1985 if (!sd[i]) /* if already added above. */ 1986 continue; 1987 1988 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS 1989 * as the SCSI mid-layer does not handle such devices well. 1990 * It relentlessly loops sending TUR at 3Hz, then READ(10) 1991 * at 160Hz, and prevents the system from coming up. 1992 */ 1993 if (sd[i]->volume_offline) { 1994 hpsa_show_volume_status(h, sd[i]); 1995 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline"); 1996 continue; 1997 } 1998 1999 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 2000 h->ndevices, &entry); 2001 if (device_change == DEVICE_NOT_FOUND) { 2002 changes++; 2003 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0) 2004 break; 2005 sd[i] = NULL; /* prevent from being freed later. */ 2006 } else if (device_change == DEVICE_CHANGED) { 2007 /* should never happen... */ 2008 changes++; 2009 dev_warn(&h->pdev->dev, 2010 "device unexpectedly changed.\n"); 2011 /* but if it does happen, we just ignore that device */ 2012 } 2013 } 2014 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices); 2015 2016 /* 2017 * Now that h->dev[]->phys_disk[] is coherent, we can enable 2018 * any logical drives that need it enabled. 2019 * 2020 * The raid map should be current by now. 2021 * 2022 * We are updating the device list used for I/O requests. 2023 */ 2024 for (i = 0; i < h->ndevices; i++) { 2025 if (h->dev[i] == NULL) 2026 continue; 2027 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled; 2028 } 2029 2030 spin_unlock_irqrestore(&h->devlock, flags); 2031 2032 /* Monitor devices which are in one of several NOT READY states to be 2033 * brought online later. This must be done without holding h->devlock, 2034 * so don't touch h->dev[] 2035 */ 2036 for (i = 0; i < nsds; i++) { 2037 if (!sd[i]) /* if already added above. */ 2038 continue; 2039 if (sd[i]->volume_offline) 2040 hpsa_monitor_offline_device(h, sd[i]->scsi3addr); 2041 } 2042 2043 /* Don't notify scsi mid layer of any changes the first time through 2044 * (or if there are no changes) scsi_scan_host will do it later the 2045 * first time through. 2046 */ 2047 if (!changes) 2048 goto free_and_out; 2049 2050 /* Notify scsi mid layer of any removed devices */ 2051 for (i = 0; i < nremoved; i++) { 2052 if (removed[i] == NULL) 2053 continue; 2054 if (removed[i]->expose_device) 2055 hpsa_remove_device(h, removed[i]); 2056 kfree(removed[i]); 2057 removed[i] = NULL; 2058 } 2059 2060 /* Notify scsi mid layer of any added devices */ 2061 for (i = 0; i < nadded; i++) { 2062 int rc = 0; 2063 2064 if (added[i] == NULL) 2065 continue; 2066 if (!(added[i]->expose_device)) 2067 continue; 2068 rc = hpsa_add_device(h, added[i]); 2069 if (!rc) 2070 continue; 2071 dev_warn(&h->pdev->dev, 2072 "addition failed %d, device not added.", rc); 2073 /* now we have to remove it from h->dev, 2074 * since it didn't get added to scsi mid layer 2075 */ 2076 fixup_botched_add(h, added[i]); 2077 h->drv_req_rescan = 1; 2078 } 2079 2080 free_and_out: 2081 kfree(added); 2082 kfree(removed); 2083 } 2084 2085 /* 2086 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * 2087 * Assume's h->devlock is held. 2088 */ 2089 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 2090 int bus, int target, int lun) 2091 { 2092 int i; 2093 struct hpsa_scsi_dev_t *sd; 2094 2095 for (i = 0; i < h->ndevices; i++) { 2096 sd = h->dev[i]; 2097 if (sd->bus == bus && sd->target == target && sd->lun == lun) 2098 return sd; 2099 } 2100 return NULL; 2101 } 2102 2103 static int hpsa_sdev_init(struct scsi_device *sdev) 2104 { 2105 struct hpsa_scsi_dev_t *sd = NULL; 2106 unsigned long flags; 2107 struct ctlr_info *h; 2108 2109 h = sdev_to_hba(sdev); 2110 spin_lock_irqsave(&h->devlock, flags); 2111 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) { 2112 struct scsi_target *starget; 2113 struct sas_rphy *rphy; 2114 2115 starget = scsi_target(sdev); 2116 rphy = target_to_rphy(starget); 2117 sd = hpsa_find_device_by_sas_rphy(h, rphy); 2118 if (sd) { 2119 sd->target = sdev_id(sdev); 2120 sd->lun = sdev->lun; 2121 } 2122 } 2123 if (!sd) 2124 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 2125 sdev_id(sdev), sdev->lun); 2126 2127 if (sd && sd->expose_device) { 2128 atomic_set(&sd->ioaccel_cmds_out, 0); 2129 sdev->hostdata = sd; 2130 } else 2131 sdev->hostdata = NULL; 2132 spin_unlock_irqrestore(&h->devlock, flags); 2133 return 0; 2134 } 2135 2136 /* configure scsi device based on internal per-device structure */ 2137 #define CTLR_TIMEOUT (120 * HZ) 2138 static int hpsa_sdev_configure(struct scsi_device *sdev, 2139 struct queue_limits *lim) 2140 { 2141 struct hpsa_scsi_dev_t *sd; 2142 int queue_depth; 2143 2144 sd = sdev->hostdata; 2145 sdev->no_uld_attach = !sd || !sd->expose_device; 2146 2147 if (sd) { 2148 sd->was_removed = 0; 2149 queue_depth = sd->queue_depth != 0 ? 2150 sd->queue_depth : sdev->host->can_queue; 2151 if (sd->external) { 2152 queue_depth = EXTERNAL_QD; 2153 sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT; 2154 blk_queue_rq_timeout(sdev->request_queue, 2155 HPSA_EH_PTRAID_TIMEOUT); 2156 } 2157 if (is_hba_lunid(sd->scsi3addr)) { 2158 sdev->eh_timeout = CTLR_TIMEOUT; 2159 blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT); 2160 } 2161 } else { 2162 queue_depth = sdev->host->can_queue; 2163 } 2164 2165 scsi_change_queue_depth(sdev, queue_depth); 2166 2167 return 0; 2168 } 2169 2170 static void hpsa_sdev_destroy(struct scsi_device *sdev) 2171 { 2172 struct hpsa_scsi_dev_t *hdev = NULL; 2173 2174 hdev = sdev->hostdata; 2175 2176 if (hdev) 2177 hdev->was_removed = 1; 2178 } 2179 2180 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h) 2181 { 2182 int i; 2183 2184 if (!h->ioaccel2_cmd_sg_list) 2185 return; 2186 for (i = 0; i < h->nr_cmds; i++) { 2187 kfree(h->ioaccel2_cmd_sg_list[i]); 2188 h->ioaccel2_cmd_sg_list[i] = NULL; 2189 } 2190 kfree(h->ioaccel2_cmd_sg_list); 2191 h->ioaccel2_cmd_sg_list = NULL; 2192 } 2193 2194 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h) 2195 { 2196 int i; 2197 2198 if (h->chainsize <= 0) 2199 return 0; 2200 2201 h->ioaccel2_cmd_sg_list = 2202 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list), 2203 GFP_KERNEL); 2204 if (!h->ioaccel2_cmd_sg_list) 2205 return -ENOMEM; 2206 for (i = 0; i < h->nr_cmds; i++) { 2207 h->ioaccel2_cmd_sg_list[i] = 2208 kmalloc_array(h->maxsgentries, 2209 sizeof(*h->ioaccel2_cmd_sg_list[i]), 2210 GFP_KERNEL); 2211 if (!h->ioaccel2_cmd_sg_list[i]) 2212 goto clean; 2213 } 2214 return 0; 2215 2216 clean: 2217 hpsa_free_ioaccel2_sg_chain_blocks(h); 2218 return -ENOMEM; 2219 } 2220 2221 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) 2222 { 2223 int i; 2224 2225 if (!h->cmd_sg_list) 2226 return; 2227 for (i = 0; i < h->nr_cmds; i++) { 2228 kfree(h->cmd_sg_list[i]); 2229 h->cmd_sg_list[i] = NULL; 2230 } 2231 kfree(h->cmd_sg_list); 2232 h->cmd_sg_list = NULL; 2233 } 2234 2235 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h) 2236 { 2237 int i; 2238 2239 if (h->chainsize <= 0) 2240 return 0; 2241 2242 h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list), 2243 GFP_KERNEL); 2244 if (!h->cmd_sg_list) 2245 return -ENOMEM; 2246 2247 for (i = 0; i < h->nr_cmds; i++) { 2248 h->cmd_sg_list[i] = kmalloc_array(h->chainsize, 2249 sizeof(*h->cmd_sg_list[i]), 2250 GFP_KERNEL); 2251 if (!h->cmd_sg_list[i]) 2252 goto clean; 2253 2254 } 2255 return 0; 2256 2257 clean: 2258 hpsa_free_sg_chain_blocks(h); 2259 return -ENOMEM; 2260 } 2261 2262 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h, 2263 struct io_accel2_cmd *cp, struct CommandList *c) 2264 { 2265 struct ioaccel2_sg_element *chain_block; 2266 u64 temp64; 2267 u32 chain_size; 2268 2269 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex]; 2270 chain_size = le32_to_cpu(cp->sg[0].length); 2271 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size, 2272 DMA_TO_DEVICE); 2273 if (dma_mapping_error(&h->pdev->dev, temp64)) { 2274 /* prevent subsequent unmapping */ 2275 cp->sg->address = 0; 2276 return -1; 2277 } 2278 cp->sg->address = cpu_to_le64(temp64); 2279 return 0; 2280 } 2281 2282 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h, 2283 struct io_accel2_cmd *cp) 2284 { 2285 struct ioaccel2_sg_element *chain_sg; 2286 u64 temp64; 2287 u32 chain_size; 2288 2289 chain_sg = cp->sg; 2290 temp64 = le64_to_cpu(chain_sg->address); 2291 chain_size = le32_to_cpu(cp->sg[0].length); 2292 dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE); 2293 } 2294 2295 static int hpsa_map_sg_chain_block(struct ctlr_info *h, 2296 struct CommandList *c) 2297 { 2298 struct SGDescriptor *chain_sg, *chain_block; 2299 u64 temp64; 2300 u32 chain_len; 2301 2302 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 2303 chain_block = h->cmd_sg_list[c->cmdindex]; 2304 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN); 2305 chain_len = sizeof(*chain_sg) * 2306 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries); 2307 chain_sg->Len = cpu_to_le32(chain_len); 2308 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len, 2309 DMA_TO_DEVICE); 2310 if (dma_mapping_error(&h->pdev->dev, temp64)) { 2311 /* prevent subsequent unmapping */ 2312 chain_sg->Addr = cpu_to_le64(0); 2313 return -1; 2314 } 2315 chain_sg->Addr = cpu_to_le64(temp64); 2316 return 0; 2317 } 2318 2319 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, 2320 struct CommandList *c) 2321 { 2322 struct SGDescriptor *chain_sg; 2323 2324 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries) 2325 return; 2326 2327 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 2328 dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr), 2329 le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE); 2330 } 2331 2332 2333 /* Decode the various types of errors on ioaccel2 path. 2334 * Return 1 for any error that should generate a RAID path retry. 2335 * Return 0 for errors that don't require a RAID path retry. 2336 */ 2337 static int handle_ioaccel_mode2_error(struct ctlr_info *h, 2338 struct CommandList *c, 2339 struct scsi_cmnd *cmd, 2340 struct io_accel2_cmd *c2, 2341 struct hpsa_scsi_dev_t *dev) 2342 { 2343 int data_len; 2344 int retry = 0; 2345 u32 ioaccel2_resid = 0; 2346 2347 switch (c2->error_data.serv_response) { 2348 case IOACCEL2_SERV_RESPONSE_COMPLETE: 2349 switch (c2->error_data.status) { 2350 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD: 2351 if (cmd) 2352 cmd->result = 0; 2353 break; 2354 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND: 2355 cmd->result |= SAM_STAT_CHECK_CONDITION; 2356 if (c2->error_data.data_present != 2357 IOACCEL2_SENSE_DATA_PRESENT) { 2358 memset(cmd->sense_buffer, 0, 2359 SCSI_SENSE_BUFFERSIZE); 2360 break; 2361 } 2362 /* copy the sense data */ 2363 data_len = c2->error_data.sense_data_len; 2364 if (data_len > SCSI_SENSE_BUFFERSIZE) 2365 data_len = SCSI_SENSE_BUFFERSIZE; 2366 if (data_len > sizeof(c2->error_data.sense_data_buff)) 2367 data_len = 2368 sizeof(c2->error_data.sense_data_buff); 2369 memcpy(cmd->sense_buffer, 2370 c2->error_data.sense_data_buff, data_len); 2371 retry = 1; 2372 break; 2373 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY: 2374 retry = 1; 2375 break; 2376 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON: 2377 retry = 1; 2378 break; 2379 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL: 2380 retry = 1; 2381 break; 2382 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED: 2383 retry = 1; 2384 break; 2385 default: 2386 retry = 1; 2387 break; 2388 } 2389 break; 2390 case IOACCEL2_SERV_RESPONSE_FAILURE: 2391 switch (c2->error_data.status) { 2392 case IOACCEL2_STATUS_SR_IO_ERROR: 2393 case IOACCEL2_STATUS_SR_IO_ABORTED: 2394 case IOACCEL2_STATUS_SR_OVERRUN: 2395 retry = 1; 2396 break; 2397 case IOACCEL2_STATUS_SR_UNDERRUN: 2398 cmd->result = (DID_OK << 16); /* host byte */ 2399 ioaccel2_resid = get_unaligned_le32( 2400 &c2->error_data.resid_cnt[0]); 2401 scsi_set_resid(cmd, ioaccel2_resid); 2402 break; 2403 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE: 2404 case IOACCEL2_STATUS_SR_INVALID_DEVICE: 2405 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED: 2406 /* 2407 * Did an HBA disk disappear? We will eventually 2408 * get a state change event from the controller but 2409 * in the meantime, we need to tell the OS that the 2410 * HBA disk is no longer there and stop I/O 2411 * from going down. This allows the potential re-insert 2412 * of the disk to get the same device node. 2413 */ 2414 if (dev->physical_device && dev->expose_device) { 2415 cmd->result = DID_NO_CONNECT << 16; 2416 dev->removed = 1; 2417 h->drv_req_rescan = 1; 2418 dev_warn(&h->pdev->dev, 2419 "%s: device is gone!\n", __func__); 2420 } else 2421 /* 2422 * Retry by sending down the RAID path. 2423 * We will get an event from ctlr to 2424 * trigger rescan regardless. 2425 */ 2426 retry = 1; 2427 break; 2428 default: 2429 retry = 1; 2430 } 2431 break; 2432 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: 2433 break; 2434 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: 2435 break; 2436 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: 2437 retry = 1; 2438 break; 2439 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: 2440 break; 2441 default: 2442 retry = 1; 2443 break; 2444 } 2445 2446 if (dev->in_reset) 2447 retry = 0; 2448 2449 return retry; /* retry on raid path? */ 2450 } 2451 2452 static void hpsa_cmd_resolve_events(struct ctlr_info *h, 2453 struct CommandList *c) 2454 { 2455 struct hpsa_scsi_dev_t *dev = c->device; 2456 2457 /* 2458 * Reset c->scsi_cmd here so that the reset handler will know 2459 * this command has completed. Then, check to see if the handler is 2460 * waiting for this command, and, if so, wake it. 2461 */ 2462 c->scsi_cmd = SCSI_CMD_IDLE; 2463 mb(); /* Declare command idle before checking for pending events. */ 2464 if (dev) { 2465 atomic_dec(&dev->commands_outstanding); 2466 if (dev->in_reset && 2467 atomic_read(&dev->commands_outstanding) <= 0) 2468 wake_up_all(&h->event_sync_wait_queue); 2469 } 2470 } 2471 2472 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h, 2473 struct CommandList *c) 2474 { 2475 hpsa_cmd_resolve_events(h, c); 2476 cmd_tagged_free(h, c); 2477 } 2478 2479 static void hpsa_cmd_free_and_done(struct ctlr_info *h, 2480 struct CommandList *c, struct scsi_cmnd *cmd) 2481 { 2482 hpsa_cmd_resolve_and_free(h, c); 2483 if (cmd) 2484 scsi_done(cmd); 2485 } 2486 2487 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c) 2488 { 2489 INIT_WORK(&c->work, hpsa_command_resubmit_worker); 2490 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work); 2491 } 2492 2493 static void process_ioaccel2_completion(struct ctlr_info *h, 2494 struct CommandList *c, struct scsi_cmnd *cmd, 2495 struct hpsa_scsi_dev_t *dev) 2496 { 2497 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 2498 2499 /* check for good status */ 2500 if (likely(c2->error_data.serv_response == 0 && 2501 c2->error_data.status == 0)) { 2502 cmd->result = 0; 2503 return hpsa_cmd_free_and_done(h, c, cmd); 2504 } 2505 2506 /* 2507 * Any RAID offload error results in retry which will use 2508 * the normal I/O path so the controller can handle whatever is 2509 * wrong. 2510 */ 2511 if (is_logical_device(dev) && 2512 c2->error_data.serv_response == 2513 IOACCEL2_SERV_RESPONSE_FAILURE) { 2514 if (c2->error_data.status == 2515 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) { 2516 hpsa_turn_off_ioaccel_for_device(dev); 2517 } 2518 2519 if (dev->in_reset) { 2520 cmd->result = DID_RESET << 16; 2521 return hpsa_cmd_free_and_done(h, c, cmd); 2522 } 2523 2524 return hpsa_retry_cmd(h, c); 2525 } 2526 2527 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev)) 2528 return hpsa_retry_cmd(h, c); 2529 2530 return hpsa_cmd_free_and_done(h, c, cmd); 2531 } 2532 2533 /* Returns 0 on success, < 0 otherwise. */ 2534 static int hpsa_evaluate_tmf_status(struct ctlr_info *h, 2535 struct CommandList *cp) 2536 { 2537 u8 tmf_status = cp->err_info->ScsiStatus; 2538 2539 switch (tmf_status) { 2540 case CISS_TMF_COMPLETE: 2541 /* 2542 * CISS_TMF_COMPLETE never happens, instead, 2543 * ei->CommandStatus == 0 for this case. 2544 */ 2545 case CISS_TMF_SUCCESS: 2546 return 0; 2547 case CISS_TMF_INVALID_FRAME: 2548 case CISS_TMF_NOT_SUPPORTED: 2549 case CISS_TMF_FAILED: 2550 case CISS_TMF_WRONG_LUN: 2551 case CISS_TMF_OVERLAPPED_TAG: 2552 break; 2553 default: 2554 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n", 2555 tmf_status); 2556 break; 2557 } 2558 return -tmf_status; 2559 } 2560 2561 static void complete_scsi_command(struct CommandList *cp) 2562 { 2563 struct scsi_cmnd *cmd; 2564 struct ctlr_info *h; 2565 struct ErrorInfo *ei; 2566 struct hpsa_scsi_dev_t *dev; 2567 struct io_accel2_cmd *c2; 2568 2569 u8 sense_key; 2570 u8 asc; /* additional sense code */ 2571 u8 ascq; /* additional sense code qualifier */ 2572 unsigned long sense_data_size; 2573 2574 ei = cp->err_info; 2575 cmd = cp->scsi_cmd; 2576 h = cp->h; 2577 2578 if (!cmd->device) { 2579 cmd->result = DID_NO_CONNECT << 16; 2580 return hpsa_cmd_free_and_done(h, cp, cmd); 2581 } 2582 2583 dev = cmd->device->hostdata; 2584 if (!dev) { 2585 cmd->result = DID_NO_CONNECT << 16; 2586 return hpsa_cmd_free_and_done(h, cp, cmd); 2587 } 2588 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex]; 2589 2590 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 2591 if ((cp->cmd_type == CMD_SCSI) && 2592 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries)) 2593 hpsa_unmap_sg_chain_block(h, cp); 2594 2595 if ((cp->cmd_type == CMD_IOACCEL2) && 2596 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN)) 2597 hpsa_unmap_ioaccel2_sg_chain_block(h, c2); 2598 2599 cmd->result = (DID_OK << 16); /* host byte */ 2600 2601 /* SCSI command has already been cleaned up in SML */ 2602 if (dev->was_removed) { 2603 hpsa_cmd_resolve_and_free(h, cp); 2604 return; 2605 } 2606 2607 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) { 2608 if (dev->physical_device && dev->expose_device && 2609 dev->removed) { 2610 cmd->result = DID_NO_CONNECT << 16; 2611 return hpsa_cmd_free_and_done(h, cp, cmd); 2612 } 2613 if (likely(cp->phys_disk != NULL)) 2614 atomic_dec(&cp->phys_disk->ioaccel_cmds_out); 2615 } 2616 2617 /* 2618 * We check for lockup status here as it may be set for 2619 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by 2620 * fail_all_oustanding_cmds() 2621 */ 2622 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) { 2623 /* DID_NO_CONNECT will prevent a retry */ 2624 cmd->result = DID_NO_CONNECT << 16; 2625 return hpsa_cmd_free_and_done(h, cp, cmd); 2626 } 2627 2628 if (cp->cmd_type == CMD_IOACCEL2) 2629 return process_ioaccel2_completion(h, cp, cmd, dev); 2630 2631 scsi_set_resid(cmd, ei->ResidualCnt); 2632 if (ei->CommandStatus == 0) 2633 return hpsa_cmd_free_and_done(h, cp, cmd); 2634 2635 /* For I/O accelerator commands, copy over some fields to the normal 2636 * CISS header used below for error handling. 2637 */ 2638 if (cp->cmd_type == CMD_IOACCEL1) { 2639 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; 2640 cp->Header.SGList = scsi_sg_count(cmd); 2641 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList); 2642 cp->Request.CDBLen = le16_to_cpu(c->io_flags) & 2643 IOACCEL1_IOFLAGS_CDBLEN_MASK; 2644 cp->Header.tag = c->tag; 2645 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); 2646 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); 2647 2648 /* Any RAID offload error results in retry which will use 2649 * the normal I/O path so the controller can handle whatever's 2650 * wrong. 2651 */ 2652 if (is_logical_device(dev)) { 2653 if (ei->CommandStatus == CMD_IOACCEL_DISABLED) 2654 dev->offload_enabled = 0; 2655 return hpsa_retry_cmd(h, cp); 2656 } 2657 } 2658 2659 /* an error has occurred */ 2660 switch (ei->CommandStatus) { 2661 2662 case CMD_TARGET_STATUS: 2663 cmd->result |= ei->ScsiStatus; 2664 /* copy the sense data */ 2665 sense_data_size = min_t(unsigned long, SCSI_SENSE_BUFFERSIZE, 2666 sizeof(ei->SenseInfo)); 2667 if (ei->SenseLen < sense_data_size) 2668 sense_data_size = ei->SenseLen; 2669 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); 2670 if (ei->ScsiStatus) 2671 decode_sense_data(ei->SenseInfo, sense_data_size, 2672 &sense_key, &asc, &ascq); 2673 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 2674 switch (sense_key) { 2675 case ABORTED_COMMAND: 2676 cmd->result |= DID_SOFT_ERROR << 16; 2677 break; 2678 case UNIT_ATTENTION: 2679 if (asc == 0x3F && ascq == 0x0E) 2680 h->drv_req_rescan = 1; 2681 break; 2682 case ILLEGAL_REQUEST: 2683 if (asc == 0x25 && ascq == 0x00) { 2684 dev->removed = 1; 2685 cmd->result = DID_NO_CONNECT << 16; 2686 } 2687 break; 2688 } 2689 break; 2690 } 2691 /* Problem was not a check condition 2692 * Pass it up to the upper layers... 2693 */ 2694 if (ei->ScsiStatus) { 2695 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 2696 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 2697 "Returning result: 0x%x\n", 2698 cp, ei->ScsiStatus, 2699 sense_key, asc, ascq, 2700 cmd->result); 2701 } else { /* scsi status is zero??? How??? */ 2702 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 2703 "Returning no connection.\n", cp), 2704 2705 /* Ordinarily, this case should never happen, 2706 * but there is a bug in some released firmware 2707 * revisions that allows it to happen if, for 2708 * example, a 4100 backplane loses power and 2709 * the tape drive is in it. We assume that 2710 * it's a fatal error of some kind because we 2711 * can't show that it wasn't. We will make it 2712 * look like selection timeout since that is 2713 * the most common reason for this to occur, 2714 * and it's severe enough. 2715 */ 2716 2717 cmd->result = DID_NO_CONNECT << 16; 2718 } 2719 break; 2720 2721 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 2722 break; 2723 case CMD_DATA_OVERRUN: 2724 dev_warn(&h->pdev->dev, 2725 "CDB %16phN data overrun\n", cp->Request.CDB); 2726 break; 2727 case CMD_INVALID: { 2728 /* print_bytes(cp, sizeof(*cp), 1, 0); 2729 print_cmd(cp); */ 2730 /* We get CMD_INVALID if you address a non-existent device 2731 * instead of a selection timeout (no response). You will 2732 * see this if you yank out a drive, then try to access it. 2733 * This is kind of a shame because it means that any other 2734 * CMD_INVALID (e.g. driver bug) will get interpreted as a 2735 * missing target. */ 2736 cmd->result = DID_NO_CONNECT << 16; 2737 } 2738 break; 2739 case CMD_PROTOCOL_ERR: 2740 cmd->result = DID_ERROR << 16; 2741 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n", 2742 cp->Request.CDB); 2743 break; 2744 case CMD_HARDWARE_ERR: 2745 cmd->result = DID_ERROR << 16; 2746 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n", 2747 cp->Request.CDB); 2748 break; 2749 case CMD_CONNECTION_LOST: 2750 cmd->result = DID_ERROR << 16; 2751 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n", 2752 cp->Request.CDB); 2753 break; 2754 case CMD_ABORTED: 2755 cmd->result = DID_ABORT << 16; 2756 break; 2757 case CMD_ABORT_FAILED: 2758 cmd->result = DID_ERROR << 16; 2759 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n", 2760 cp->Request.CDB); 2761 break; 2762 case CMD_UNSOLICITED_ABORT: 2763 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ 2764 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n", 2765 cp->Request.CDB); 2766 break; 2767 case CMD_TIMEOUT: 2768 cmd->result = DID_TIME_OUT << 16; 2769 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n", 2770 cp->Request.CDB); 2771 break; 2772 case CMD_UNABORTABLE: 2773 cmd->result = DID_ERROR << 16; 2774 dev_warn(&h->pdev->dev, "Command unabortable\n"); 2775 break; 2776 case CMD_TMF_STATUS: 2777 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */ 2778 cmd->result = DID_ERROR << 16; 2779 break; 2780 case CMD_IOACCEL_DISABLED: 2781 /* This only handles the direct pass-through case since RAID 2782 * offload is handled above. Just attempt a retry. 2783 */ 2784 cmd->result = DID_SOFT_ERROR << 16; 2785 dev_warn(&h->pdev->dev, 2786 "cp %p had HP SSD Smart Path error\n", cp); 2787 break; 2788 default: 2789 cmd->result = DID_ERROR << 16; 2790 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 2791 cp, ei->CommandStatus); 2792 } 2793 2794 return hpsa_cmd_free_and_done(h, cp, cmd); 2795 } 2796 2797 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c, 2798 int sg_used, enum dma_data_direction data_direction) 2799 { 2800 int i; 2801 2802 for (i = 0; i < sg_used; i++) 2803 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr), 2804 le32_to_cpu(c->SG[i].Len), 2805 data_direction); 2806 } 2807 2808 static int hpsa_map_one(struct pci_dev *pdev, 2809 struct CommandList *cp, 2810 unsigned char *buf, 2811 size_t buflen, 2812 enum dma_data_direction data_direction) 2813 { 2814 u64 addr64; 2815 2816 if (buflen == 0 || data_direction == DMA_NONE) { 2817 cp->Header.SGList = 0; 2818 cp->Header.SGTotal = cpu_to_le16(0); 2819 return 0; 2820 } 2821 2822 addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction); 2823 if (dma_mapping_error(&pdev->dev, addr64)) { 2824 /* Prevent subsequent unmap of something never mapped */ 2825 cp->Header.SGList = 0; 2826 cp->Header.SGTotal = cpu_to_le16(0); 2827 return -1; 2828 } 2829 cp->SG[0].Addr = cpu_to_le64(addr64); 2830 cp->SG[0].Len = cpu_to_le32(buflen); 2831 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */ 2832 cp->Header.SGList = 1; /* no. SGs contig in this cmd */ 2833 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */ 2834 return 0; 2835 } 2836 2837 #define NO_TIMEOUT ((unsigned long) -1) 2838 #define DEFAULT_TIMEOUT 30000 /* milliseconds */ 2839 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 2840 struct CommandList *c, int reply_queue, unsigned long timeout_msecs) 2841 { 2842 DECLARE_COMPLETION_ONSTACK(wait); 2843 2844 c->waiting = &wait; 2845 __enqueue_cmd_and_start_io(h, c, reply_queue); 2846 if (timeout_msecs == NO_TIMEOUT) { 2847 /* TODO: get rid of this no-timeout thing */ 2848 wait_for_completion_io(&wait); 2849 return IO_OK; 2850 } 2851 if (!wait_for_completion_io_timeout(&wait, 2852 msecs_to_jiffies(timeout_msecs))) { 2853 dev_warn(&h->pdev->dev, "Command timed out.\n"); 2854 return -ETIMEDOUT; 2855 } 2856 return IO_OK; 2857 } 2858 2859 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c, 2860 int reply_queue, unsigned long timeout_msecs) 2861 { 2862 if (unlikely(lockup_detected(h))) { 2863 c->err_info->CommandStatus = CMD_CTLR_LOCKUP; 2864 return IO_OK; 2865 } 2866 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs); 2867 } 2868 2869 static u32 lockup_detected(struct ctlr_info *h) 2870 { 2871 int cpu; 2872 u32 rc, *lockup_detected; 2873 2874 cpu = get_cpu(); 2875 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); 2876 rc = *lockup_detected; 2877 put_cpu(); 2878 return rc; 2879 } 2880 2881 #define MAX_DRIVER_CMD_RETRIES 25 2882 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 2883 struct CommandList *c, enum dma_data_direction data_direction, 2884 unsigned long timeout_msecs) 2885 { 2886 int backoff_time = 10, retry_count = 0; 2887 int rc; 2888 2889 do { 2890 memset(c->err_info, 0, sizeof(*c->err_info)); 2891 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 2892 timeout_msecs); 2893 if (rc) 2894 break; 2895 retry_count++; 2896 if (retry_count > 3) { 2897 msleep(backoff_time); 2898 if (backoff_time < 1000) 2899 backoff_time *= 2; 2900 } 2901 } while ((check_for_unit_attention(h, c) || 2902 check_for_busy(h, c)) && 2903 retry_count <= MAX_DRIVER_CMD_RETRIES); 2904 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 2905 if (retry_count > MAX_DRIVER_CMD_RETRIES) 2906 rc = -EIO; 2907 return rc; 2908 } 2909 2910 static void hpsa_print_cmd(struct ctlr_info *h, char *txt, 2911 struct CommandList *c) 2912 { 2913 const u8 *cdb = c->Request.CDB; 2914 const u8 *lun = c->Header.LUN.LunAddrBytes; 2915 2916 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n", 2917 txt, lun, cdb); 2918 } 2919 2920 static void hpsa_scsi_interpret_error(struct ctlr_info *h, 2921 struct CommandList *cp) 2922 { 2923 const struct ErrorInfo *ei = cp->err_info; 2924 struct device *d = &cp->h->pdev->dev; 2925 u8 sense_key, asc, ascq; 2926 int sense_len; 2927 2928 switch (ei->CommandStatus) { 2929 case CMD_TARGET_STATUS: 2930 if (ei->SenseLen > sizeof(ei->SenseInfo)) 2931 sense_len = sizeof(ei->SenseInfo); 2932 else 2933 sense_len = ei->SenseLen; 2934 decode_sense_data(ei->SenseInfo, sense_len, 2935 &sense_key, &asc, &ascq); 2936 hpsa_print_cmd(h, "SCSI status", cp); 2937 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) 2938 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n", 2939 sense_key, asc, ascq); 2940 else 2941 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus); 2942 if (ei->ScsiStatus == 0) 2943 dev_warn(d, "SCSI status is abnormally zero. " 2944 "(probably indicates selection timeout " 2945 "reported incorrectly due to a known " 2946 "firmware bug, circa July, 2001.)\n"); 2947 break; 2948 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 2949 break; 2950 case CMD_DATA_OVERRUN: 2951 hpsa_print_cmd(h, "overrun condition", cp); 2952 break; 2953 case CMD_INVALID: { 2954 /* controller unfortunately reports SCSI passthru's 2955 * to non-existent targets as invalid commands. 2956 */ 2957 hpsa_print_cmd(h, "invalid command", cp); 2958 dev_warn(d, "probably means device no longer present\n"); 2959 } 2960 break; 2961 case CMD_PROTOCOL_ERR: 2962 hpsa_print_cmd(h, "protocol error", cp); 2963 break; 2964 case CMD_HARDWARE_ERR: 2965 hpsa_print_cmd(h, "hardware error", cp); 2966 break; 2967 case CMD_CONNECTION_LOST: 2968 hpsa_print_cmd(h, "connection lost", cp); 2969 break; 2970 case CMD_ABORTED: 2971 hpsa_print_cmd(h, "aborted", cp); 2972 break; 2973 case CMD_ABORT_FAILED: 2974 hpsa_print_cmd(h, "abort failed", cp); 2975 break; 2976 case CMD_UNSOLICITED_ABORT: 2977 hpsa_print_cmd(h, "unsolicited abort", cp); 2978 break; 2979 case CMD_TIMEOUT: 2980 hpsa_print_cmd(h, "timed out", cp); 2981 break; 2982 case CMD_UNABORTABLE: 2983 hpsa_print_cmd(h, "unabortable", cp); 2984 break; 2985 case CMD_CTLR_LOCKUP: 2986 hpsa_print_cmd(h, "controller lockup detected", cp); 2987 break; 2988 default: 2989 hpsa_print_cmd(h, "unknown status", cp); 2990 dev_warn(d, "Unknown command status %x\n", 2991 ei->CommandStatus); 2992 } 2993 } 2994 2995 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr, 2996 u8 page, u8 *buf, size_t bufsize) 2997 { 2998 int rc = IO_OK; 2999 struct CommandList *c; 3000 struct ErrorInfo *ei; 3001 3002 c = cmd_alloc(h); 3003 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize, 3004 page, scsi3addr, TYPE_CMD)) { 3005 rc = -1; 3006 goto out; 3007 } 3008 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3009 NO_TIMEOUT); 3010 if (rc) 3011 goto out; 3012 ei = c->err_info; 3013 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3014 hpsa_scsi_interpret_error(h, c); 3015 rc = -1; 3016 } 3017 out: 3018 cmd_free(h, c); 3019 return rc; 3020 } 3021 3022 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h, 3023 u8 *scsi3addr) 3024 { 3025 u8 *buf; 3026 u64 sa = 0; 3027 int rc = 0; 3028 3029 buf = kzalloc(1024, GFP_KERNEL); 3030 if (!buf) 3031 return 0; 3032 3033 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC, 3034 buf, 1024); 3035 3036 if (rc) 3037 goto out; 3038 3039 sa = get_unaligned_be64(buf+12); 3040 3041 out: 3042 kfree(buf); 3043 return sa; 3044 } 3045 3046 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 3047 u16 page, unsigned char *buf, 3048 unsigned char bufsize) 3049 { 3050 int rc = IO_OK; 3051 struct CommandList *c; 3052 struct ErrorInfo *ei; 3053 3054 c = cmd_alloc(h); 3055 3056 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, 3057 page, scsi3addr, TYPE_CMD)) { 3058 rc = -1; 3059 goto out; 3060 } 3061 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3062 NO_TIMEOUT); 3063 if (rc) 3064 goto out; 3065 ei = c->err_info; 3066 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3067 hpsa_scsi_interpret_error(h, c); 3068 rc = -1; 3069 } 3070 out: 3071 cmd_free(h, c); 3072 return rc; 3073 } 3074 3075 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, 3076 u8 reset_type, int reply_queue) 3077 { 3078 int rc = IO_OK; 3079 struct CommandList *c; 3080 struct ErrorInfo *ei; 3081 3082 c = cmd_alloc(h); 3083 c->device = dev; 3084 3085 /* fill_cmd can't fail here, no data buffer to map. */ 3086 (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG); 3087 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); 3088 if (rc) { 3089 dev_warn(&h->pdev->dev, "Failed to send reset command\n"); 3090 goto out; 3091 } 3092 /* no unmap needed here because no data xfer. */ 3093 3094 ei = c->err_info; 3095 if (ei->CommandStatus != 0) { 3096 hpsa_scsi_interpret_error(h, c); 3097 rc = -1; 3098 } 3099 out: 3100 cmd_free(h, c); 3101 return rc; 3102 } 3103 3104 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, 3105 struct hpsa_scsi_dev_t *dev, 3106 unsigned char *scsi3addr) 3107 { 3108 int i; 3109 bool match = false; 3110 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 3111 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; 3112 3113 if (hpsa_is_cmd_idle(c)) 3114 return false; 3115 3116 switch (c->cmd_type) { 3117 case CMD_SCSI: 3118 case CMD_IOCTL_PEND: 3119 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes, 3120 sizeof(c->Header.LUN.LunAddrBytes)); 3121 break; 3122 3123 case CMD_IOACCEL1: 3124 case CMD_IOACCEL2: 3125 if (c->phys_disk == dev) { 3126 /* HBA mode match */ 3127 match = true; 3128 } else { 3129 /* Possible RAID mode -- check each phys dev. */ 3130 /* FIXME: Do we need to take out a lock here? If 3131 * so, we could just call hpsa_get_pdisk_of_ioaccel2() 3132 * instead. */ 3133 for (i = 0; i < dev->nphysical_disks && !match; i++) { 3134 /* FIXME: an alternate test might be 3135 * 3136 * match = dev->phys_disk[i]->ioaccel_handle 3137 * == c2->scsi_nexus; */ 3138 match = dev->phys_disk[i] == c->phys_disk; 3139 } 3140 } 3141 break; 3142 3143 case IOACCEL2_TMF: 3144 for (i = 0; i < dev->nphysical_disks && !match; i++) { 3145 match = dev->phys_disk[i]->ioaccel_handle == 3146 le32_to_cpu(ac->it_nexus); 3147 } 3148 break; 3149 3150 case 0: /* The command is in the middle of being initialized. */ 3151 match = false; 3152 break; 3153 3154 default: 3155 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n", 3156 c->cmd_type); 3157 BUG(); 3158 } 3159 3160 return match; 3161 } 3162 3163 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, 3164 u8 reset_type, int reply_queue) 3165 { 3166 int rc = 0; 3167 3168 /* We can really only handle one reset at a time */ 3169 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) { 3170 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n"); 3171 return -EINTR; 3172 } 3173 3174 rc = hpsa_send_reset(h, dev, reset_type, reply_queue); 3175 if (!rc) { 3176 /* incremented by sending the reset request */ 3177 atomic_dec(&dev->commands_outstanding); 3178 wait_event(h->event_sync_wait_queue, 3179 atomic_read(&dev->commands_outstanding) <= 0 || 3180 lockup_detected(h)); 3181 } 3182 3183 if (unlikely(lockup_detected(h))) { 3184 dev_warn(&h->pdev->dev, 3185 "Controller lockup detected during reset wait\n"); 3186 rc = -ENODEV; 3187 } 3188 3189 if (!rc) 3190 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0); 3191 3192 mutex_unlock(&h->reset_mutex); 3193 return rc; 3194 } 3195 3196 static void hpsa_get_raid_level(struct ctlr_info *h, 3197 unsigned char *scsi3addr, unsigned char *raid_level) 3198 { 3199 int rc; 3200 unsigned char *buf; 3201 3202 *raid_level = RAID_UNKNOWN; 3203 buf = kzalloc(64, GFP_KERNEL); 3204 if (!buf) 3205 return; 3206 3207 if (!hpsa_vpd_page_supported(h, scsi3addr, 3208 HPSA_VPD_LV_DEVICE_GEOMETRY)) 3209 goto exit; 3210 3211 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 3212 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64); 3213 3214 if (rc == 0) 3215 *raid_level = buf[8]; 3216 if (*raid_level > RAID_UNKNOWN) 3217 *raid_level = RAID_UNKNOWN; 3218 exit: 3219 kfree(buf); 3220 return; 3221 } 3222 3223 #define HPSA_MAP_DEBUG 3224 #ifdef HPSA_MAP_DEBUG 3225 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, 3226 struct raid_map_data *map_buff) 3227 { 3228 struct raid_map_disk_data *dd = &map_buff->data[0]; 3229 int map, row, col; 3230 u16 map_cnt, row_cnt, disks_per_row; 3231 3232 if (rc != 0) 3233 return; 3234 3235 /* Show details only if debugging has been activated. */ 3236 if (h->raid_offload_debug < 2) 3237 return; 3238 3239 dev_info(&h->pdev->dev, "structure_size = %u\n", 3240 le32_to_cpu(map_buff->structure_size)); 3241 dev_info(&h->pdev->dev, "volume_blk_size = %u\n", 3242 le32_to_cpu(map_buff->volume_blk_size)); 3243 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", 3244 le64_to_cpu(map_buff->volume_blk_cnt)); 3245 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", 3246 map_buff->phys_blk_shift); 3247 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", 3248 map_buff->parity_rotation_shift); 3249 dev_info(&h->pdev->dev, "strip_size = %u\n", 3250 le16_to_cpu(map_buff->strip_size)); 3251 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", 3252 le64_to_cpu(map_buff->disk_starting_blk)); 3253 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", 3254 le64_to_cpu(map_buff->disk_blk_cnt)); 3255 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", 3256 le16_to_cpu(map_buff->data_disks_per_row)); 3257 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", 3258 le16_to_cpu(map_buff->metadata_disks_per_row)); 3259 dev_info(&h->pdev->dev, "row_cnt = %u\n", 3260 le16_to_cpu(map_buff->row_cnt)); 3261 dev_info(&h->pdev->dev, "layout_map_count = %u\n", 3262 le16_to_cpu(map_buff->layout_map_count)); 3263 dev_info(&h->pdev->dev, "flags = 0x%x\n", 3264 le16_to_cpu(map_buff->flags)); 3265 dev_info(&h->pdev->dev, "encryption = %s\n", 3266 le16_to_cpu(map_buff->flags) & 3267 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF"); 3268 dev_info(&h->pdev->dev, "dekindex = %u\n", 3269 le16_to_cpu(map_buff->dekindex)); 3270 map_cnt = le16_to_cpu(map_buff->layout_map_count); 3271 for (map = 0; map < map_cnt; map++) { 3272 dev_info(&h->pdev->dev, "Map%u:\n", map); 3273 row_cnt = le16_to_cpu(map_buff->row_cnt); 3274 for (row = 0; row < row_cnt; row++) { 3275 dev_info(&h->pdev->dev, " Row%u:\n", row); 3276 disks_per_row = 3277 le16_to_cpu(map_buff->data_disks_per_row); 3278 for (col = 0; col < disks_per_row; col++, dd++) 3279 dev_info(&h->pdev->dev, 3280 " D%02u: h=0x%04x xor=%u,%u\n", 3281 col, dd->ioaccel_handle, 3282 dd->xor_mult[0], dd->xor_mult[1]); 3283 disks_per_row = 3284 le16_to_cpu(map_buff->metadata_disks_per_row); 3285 for (col = 0; col < disks_per_row; col++, dd++) 3286 dev_info(&h->pdev->dev, 3287 " M%02u: h=0x%04x xor=%u,%u\n", 3288 col, dd->ioaccel_handle, 3289 dd->xor_mult[0], dd->xor_mult[1]); 3290 } 3291 } 3292 } 3293 #else 3294 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, 3295 __attribute__((unused)) int rc, 3296 __attribute__((unused)) struct raid_map_data *map_buff) 3297 { 3298 } 3299 #endif 3300 3301 static int hpsa_get_raid_map(struct ctlr_info *h, 3302 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) 3303 { 3304 int rc = 0; 3305 struct CommandList *c; 3306 struct ErrorInfo *ei; 3307 3308 c = cmd_alloc(h); 3309 3310 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, 3311 sizeof(this_device->raid_map), 0, 3312 scsi3addr, TYPE_CMD)) { 3313 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n"); 3314 cmd_free(h, c); 3315 return -1; 3316 } 3317 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3318 NO_TIMEOUT); 3319 if (rc) 3320 goto out; 3321 ei = c->err_info; 3322 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3323 hpsa_scsi_interpret_error(h, c); 3324 rc = -1; 3325 goto out; 3326 } 3327 cmd_free(h, c); 3328 3329 /* @todo in the future, dynamically allocate RAID map memory */ 3330 if (le32_to_cpu(this_device->raid_map.structure_size) > 3331 sizeof(this_device->raid_map)) { 3332 dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); 3333 rc = -1; 3334 } 3335 hpsa_debug_map_buff(h, rc, &this_device->raid_map); 3336 return rc; 3337 out: 3338 cmd_free(h, c); 3339 return rc; 3340 } 3341 3342 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h, 3343 unsigned char scsi3addr[], u16 bmic_device_index, 3344 struct bmic_sense_subsystem_info *buf, size_t bufsize) 3345 { 3346 int rc = IO_OK; 3347 struct CommandList *c; 3348 struct ErrorInfo *ei; 3349 3350 c = cmd_alloc(h); 3351 3352 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize, 3353 0, RAID_CTLR_LUNID, TYPE_CMD); 3354 if (rc) 3355 goto out; 3356 3357 c->Request.CDB[2] = bmic_device_index & 0xff; 3358 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; 3359 3360 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3361 NO_TIMEOUT); 3362 if (rc) 3363 goto out; 3364 ei = c->err_info; 3365 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3366 hpsa_scsi_interpret_error(h, c); 3367 rc = -1; 3368 } 3369 out: 3370 cmd_free(h, c); 3371 return rc; 3372 } 3373 3374 static int hpsa_bmic_id_controller(struct ctlr_info *h, 3375 struct bmic_identify_controller *buf, size_t bufsize) 3376 { 3377 int rc = IO_OK; 3378 struct CommandList *c; 3379 struct ErrorInfo *ei; 3380 3381 c = cmd_alloc(h); 3382 3383 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize, 3384 0, RAID_CTLR_LUNID, TYPE_CMD); 3385 if (rc) 3386 goto out; 3387 3388 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3389 NO_TIMEOUT); 3390 if (rc) 3391 goto out; 3392 ei = c->err_info; 3393 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3394 hpsa_scsi_interpret_error(h, c); 3395 rc = -1; 3396 } 3397 out: 3398 cmd_free(h, c); 3399 return rc; 3400 } 3401 3402 static int hpsa_bmic_id_physical_device(struct ctlr_info *h, 3403 unsigned char scsi3addr[], u16 bmic_device_index, 3404 struct bmic_identify_physical_device *buf, size_t bufsize) 3405 { 3406 int rc = IO_OK; 3407 struct CommandList *c; 3408 struct ErrorInfo *ei; 3409 3410 c = cmd_alloc(h); 3411 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize, 3412 0, RAID_CTLR_LUNID, TYPE_CMD); 3413 if (rc) 3414 goto out; 3415 3416 c->Request.CDB[2] = bmic_device_index & 0xff; 3417 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; 3418 3419 hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3420 NO_TIMEOUT); 3421 ei = c->err_info; 3422 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3423 hpsa_scsi_interpret_error(h, c); 3424 rc = -1; 3425 } 3426 out: 3427 cmd_free(h, c); 3428 3429 return rc; 3430 } 3431 3432 /* 3433 * get enclosure information 3434 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number 3435 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure 3436 * Uses id_physical_device to determine the box_index. 3437 */ 3438 static void hpsa_get_enclosure_info(struct ctlr_info *h, 3439 unsigned char *scsi3addr, 3440 struct ReportExtendedLUNdata *rlep, int rle_index, 3441 struct hpsa_scsi_dev_t *encl_dev) 3442 { 3443 int rc = -1; 3444 struct CommandList *c = NULL; 3445 struct ErrorInfo *ei = NULL; 3446 struct bmic_sense_storage_box_params *bssbp = NULL; 3447 struct bmic_identify_physical_device *id_phys = NULL; 3448 struct ext_report_lun_entry *rle; 3449 u16 bmic_device_index = 0; 3450 3451 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN) 3452 return; 3453 3454 rle = &rlep->LUN[rle_index]; 3455 3456 encl_dev->eli = 3457 hpsa_get_enclosure_logical_identifier(h, scsi3addr); 3458 3459 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]); 3460 3461 if (encl_dev->target == -1 || encl_dev->lun == -1) { 3462 rc = IO_OK; 3463 goto out; 3464 } 3465 3466 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) { 3467 rc = IO_OK; 3468 goto out; 3469 } 3470 3471 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL); 3472 if (!bssbp) 3473 goto out; 3474 3475 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 3476 if (!id_phys) 3477 goto out; 3478 3479 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index, 3480 id_phys, sizeof(*id_phys)); 3481 if (rc) { 3482 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n", 3483 __func__, encl_dev->external, bmic_device_index); 3484 goto out; 3485 } 3486 3487 c = cmd_alloc(h); 3488 3489 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp, 3490 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD); 3491 3492 if (rc) 3493 goto out; 3494 3495 if (id_phys->phys_connector[1] == 'E') 3496 c->Request.CDB[5] = id_phys->box_index; 3497 else 3498 c->Request.CDB[5] = 0; 3499 3500 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3501 NO_TIMEOUT); 3502 if (rc) 3503 goto out; 3504 3505 ei = c->err_info; 3506 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3507 rc = -1; 3508 goto out; 3509 } 3510 3511 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port; 3512 memcpy(&encl_dev->phys_connector[id_phys->active_path_number], 3513 bssbp->phys_connector, sizeof(bssbp->phys_connector)); 3514 3515 rc = IO_OK; 3516 out: 3517 kfree(bssbp); 3518 kfree(id_phys); 3519 3520 if (c) 3521 cmd_free(h, c); 3522 3523 if (rc != IO_OK) 3524 hpsa_show_dev_msg(KERN_INFO, h, encl_dev, 3525 "Error, could not get enclosure information"); 3526 } 3527 3528 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h, 3529 unsigned char *scsi3addr) 3530 { 3531 struct ReportExtendedLUNdata *physdev; 3532 u32 nphysicals; 3533 u64 sa = 0; 3534 int i; 3535 3536 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL); 3537 if (!physdev) 3538 return 0; 3539 3540 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { 3541 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 3542 kfree(physdev); 3543 return 0; 3544 } 3545 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24; 3546 3547 for (i = 0; i < nphysicals; i++) 3548 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) { 3549 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]); 3550 break; 3551 } 3552 3553 kfree(physdev); 3554 3555 return sa; 3556 } 3557 3558 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr, 3559 struct hpsa_scsi_dev_t *dev) 3560 { 3561 int rc; 3562 u64 sa = 0; 3563 3564 if (is_hba_lunid(scsi3addr)) { 3565 struct bmic_sense_subsystem_info *ssi; 3566 3567 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL); 3568 if (!ssi) 3569 return; 3570 3571 rc = hpsa_bmic_sense_subsystem_information(h, 3572 scsi3addr, 0, ssi, sizeof(*ssi)); 3573 if (rc == 0) { 3574 sa = get_unaligned_be64(ssi->primary_world_wide_id); 3575 h->sas_address = sa; 3576 } 3577 3578 kfree(ssi); 3579 } else 3580 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr); 3581 3582 dev->sas_address = sa; 3583 } 3584 3585 static void hpsa_ext_ctrl_present(struct ctlr_info *h, 3586 struct ReportExtendedLUNdata *physdev) 3587 { 3588 u32 nphysicals; 3589 int i; 3590 3591 if (h->discovery_polling) 3592 return; 3593 3594 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1; 3595 3596 for (i = 0; i < nphysicals; i++) { 3597 if (physdev->LUN[i].device_type == 3598 BMIC_DEVICE_TYPE_CONTROLLER 3599 && !is_hba_lunid(physdev->LUN[i].lunid)) { 3600 dev_info(&h->pdev->dev, 3601 "External controller present, activate discovery polling and disable rld caching\n"); 3602 hpsa_disable_rld_caching(h); 3603 h->discovery_polling = 1; 3604 break; 3605 } 3606 } 3607 } 3608 3609 /* Get a device id from inquiry page 0x83 */ 3610 static bool hpsa_vpd_page_supported(struct ctlr_info *h, 3611 unsigned char scsi3addr[], u8 page) 3612 { 3613 int rc; 3614 int i; 3615 int pages; 3616 unsigned char *buf, bufsize; 3617 3618 buf = kzalloc(256, GFP_KERNEL); 3619 if (!buf) 3620 return false; 3621 3622 /* Get the size of the page list first */ 3623 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3624 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, 3625 buf, HPSA_VPD_HEADER_SZ); 3626 if (rc != 0) 3627 goto exit_unsupported; 3628 pages = buf[3]; 3629 bufsize = min(pages + HPSA_VPD_HEADER_SZ, 255); 3630 3631 /* Get the whole VPD page list */ 3632 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3633 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, 3634 buf, bufsize); 3635 if (rc != 0) 3636 goto exit_unsupported; 3637 3638 pages = buf[3]; 3639 for (i = 1; i <= pages; i++) 3640 if (buf[3 + i] == page) 3641 goto exit_supported; 3642 exit_unsupported: 3643 kfree(buf); 3644 return false; 3645 exit_supported: 3646 kfree(buf); 3647 return true; 3648 } 3649 3650 /* 3651 * Called during a scan operation. 3652 * Sets ioaccel status on the new device list, not the existing device list 3653 * 3654 * The device list used during I/O will be updated later in 3655 * adjust_hpsa_scsi_table. 3656 */ 3657 static void hpsa_get_ioaccel_status(struct ctlr_info *h, 3658 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) 3659 { 3660 int rc; 3661 unsigned char *buf; 3662 u8 ioaccel_status; 3663 3664 this_device->offload_config = 0; 3665 this_device->offload_enabled = 0; 3666 this_device->offload_to_be_enabled = 0; 3667 3668 buf = kzalloc(64, GFP_KERNEL); 3669 if (!buf) 3670 return; 3671 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS)) 3672 goto out; 3673 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3674 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); 3675 if (rc != 0) 3676 goto out; 3677 3678 #define IOACCEL_STATUS_BYTE 4 3679 #define OFFLOAD_CONFIGURED_BIT 0x01 3680 #define OFFLOAD_ENABLED_BIT 0x02 3681 ioaccel_status = buf[IOACCEL_STATUS_BYTE]; 3682 this_device->offload_config = 3683 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); 3684 if (this_device->offload_config) { 3685 bool offload_enabled = 3686 !!(ioaccel_status & OFFLOAD_ENABLED_BIT); 3687 /* 3688 * Check to see if offload can be enabled. 3689 */ 3690 if (offload_enabled) { 3691 rc = hpsa_get_raid_map(h, scsi3addr, this_device); 3692 if (rc) /* could not load raid_map */ 3693 goto out; 3694 this_device->offload_to_be_enabled = 1; 3695 } 3696 } 3697 3698 out: 3699 kfree(buf); 3700 return; 3701 } 3702 3703 /* Get the device id from inquiry page 0x83 */ 3704 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 3705 unsigned char *device_id, int index, int buflen) 3706 { 3707 int rc; 3708 unsigned char *buf; 3709 3710 /* Does controller have VPD for device id? */ 3711 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID)) 3712 return 1; /* not supported */ 3713 3714 buf = kzalloc(64, GFP_KERNEL); 3715 if (!buf) 3716 return -ENOMEM; 3717 3718 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 3719 HPSA_VPD_LV_DEVICE_ID, buf, 64); 3720 if (rc == 0) { 3721 if (buflen > 16) 3722 buflen = 16; 3723 memcpy(device_id, &buf[8], buflen); 3724 } 3725 3726 kfree(buf); 3727 3728 return rc; /*0 - got id, otherwise, didn't */ 3729 } 3730 3731 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 3732 void *buf, int bufsize, 3733 int extended_response) 3734 { 3735 int rc = IO_OK; 3736 struct CommandList *c; 3737 unsigned char scsi3addr[8]; 3738 struct ErrorInfo *ei; 3739 3740 c = cmd_alloc(h); 3741 3742 /* address the controller */ 3743 memset(scsi3addr, 0, sizeof(scsi3addr)); 3744 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 3745 buf, bufsize, 0, scsi3addr, TYPE_CMD)) { 3746 rc = -EAGAIN; 3747 goto out; 3748 } 3749 if (extended_response) 3750 c->Request.CDB[1] = extended_response; 3751 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 3752 NO_TIMEOUT); 3753 if (rc) 3754 goto out; 3755 ei = c->err_info; 3756 if (ei->CommandStatus != 0 && 3757 ei->CommandStatus != CMD_DATA_UNDERRUN) { 3758 hpsa_scsi_interpret_error(h, c); 3759 rc = -EIO; 3760 } else { 3761 struct ReportLUNdata *rld = buf; 3762 3763 if (rld->extended_response_flag != extended_response) { 3764 if (!h->legacy_board) { 3765 dev_err(&h->pdev->dev, 3766 "report luns requested format %u, got %u\n", 3767 extended_response, 3768 rld->extended_response_flag); 3769 rc = -EINVAL; 3770 } else 3771 rc = -EOPNOTSUPP; 3772 } 3773 } 3774 out: 3775 cmd_free(h, c); 3776 return rc; 3777 } 3778 3779 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 3780 struct ReportExtendedLUNdata *buf, int bufsize) 3781 { 3782 int rc; 3783 struct ReportLUNdata *lbuf; 3784 3785 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize, 3786 HPSA_REPORT_PHYS_EXTENDED); 3787 if (!rc || rc != -EOPNOTSUPP) 3788 return rc; 3789 3790 /* REPORT PHYS EXTENDED is not supported */ 3791 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL); 3792 if (!lbuf) 3793 return -ENOMEM; 3794 3795 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0); 3796 if (!rc) { 3797 int i; 3798 u32 nphys; 3799 3800 /* Copy ReportLUNdata header */ 3801 memcpy(buf, lbuf, 8); 3802 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8; 3803 for (i = 0; i < nphys; i++) 3804 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8); 3805 } 3806 kfree(lbuf); 3807 return rc; 3808 } 3809 3810 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 3811 struct ReportLUNdata *buf, int bufsize) 3812 { 3813 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 3814 } 3815 3816 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 3817 int bus, int target, int lun) 3818 { 3819 device->bus = bus; 3820 device->target = target; 3821 device->lun = lun; 3822 } 3823 3824 /* Use VPD inquiry to get details of volume status */ 3825 static int hpsa_get_volume_status(struct ctlr_info *h, 3826 unsigned char scsi3addr[]) 3827 { 3828 int rc; 3829 int status; 3830 int size; 3831 unsigned char *buf; 3832 3833 buf = kzalloc(64, GFP_KERNEL); 3834 if (!buf) 3835 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3836 3837 /* Does controller have VPD for logical volume status? */ 3838 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) 3839 goto exit_failed; 3840 3841 /* Get the size of the VPD return buffer */ 3842 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, 3843 buf, HPSA_VPD_HEADER_SZ); 3844 if (rc != 0) 3845 goto exit_failed; 3846 size = buf[3]; 3847 3848 /* Now get the whole VPD buffer */ 3849 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, 3850 buf, size + HPSA_VPD_HEADER_SZ); 3851 if (rc != 0) 3852 goto exit_failed; 3853 status = buf[4]; /* status byte */ 3854 3855 kfree(buf); 3856 return status; 3857 exit_failed: 3858 kfree(buf); 3859 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3860 } 3861 3862 /* Determine offline status of a volume. 3863 * Return either: 3864 * 0 (not offline) 3865 * 0xff (offline for unknown reasons) 3866 * # (integer code indicating one of several NOT READY states 3867 * describing why a volume is to be kept offline) 3868 */ 3869 static unsigned char hpsa_volume_offline(struct ctlr_info *h, 3870 unsigned char scsi3addr[]) 3871 { 3872 struct CommandList *c; 3873 unsigned char *sense; 3874 u8 sense_key, asc, ascq; 3875 int sense_len; 3876 int rc, ldstat = 0; 3877 #define ASC_LUN_NOT_READY 0x04 3878 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04 3879 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02 3880 3881 c = cmd_alloc(h); 3882 3883 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD); 3884 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 3885 NO_TIMEOUT); 3886 if (rc) { 3887 cmd_free(h, c); 3888 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3889 } 3890 sense = c->err_info->SenseInfo; 3891 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) 3892 sense_len = sizeof(c->err_info->SenseInfo); 3893 else 3894 sense_len = c->err_info->SenseLen; 3895 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq); 3896 cmd_free(h, c); 3897 3898 /* Determine the reason for not ready state */ 3899 ldstat = hpsa_get_volume_status(h, scsi3addr); 3900 3901 /* Keep volume offline in certain cases: */ 3902 switch (ldstat) { 3903 case HPSA_LV_FAILED: 3904 case HPSA_LV_UNDERGOING_ERASE: 3905 case HPSA_LV_NOT_AVAILABLE: 3906 case HPSA_LV_UNDERGOING_RPI: 3907 case HPSA_LV_PENDING_RPI: 3908 case HPSA_LV_ENCRYPTED_NO_KEY: 3909 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: 3910 case HPSA_LV_UNDERGOING_ENCRYPTION: 3911 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: 3912 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: 3913 return ldstat; 3914 case HPSA_VPD_LV_STATUS_UNSUPPORTED: 3915 /* If VPD status page isn't available, 3916 * use ASC/ASCQ to determine state 3917 */ 3918 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) || 3919 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ)) 3920 return ldstat; 3921 break; 3922 default: 3923 break; 3924 } 3925 return HPSA_LV_OK; 3926 } 3927 3928 static int hpsa_update_device_info(struct ctlr_info *h, 3929 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, 3930 unsigned char *is_OBDR_device) 3931 { 3932 3933 #define OBDR_SIG_OFFSET 43 3934 #define OBDR_TAPE_SIG "$DR-10" 3935 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) 3936 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) 3937 3938 unsigned char *inq_buff; 3939 unsigned char *obdr_sig; 3940 int rc = 0; 3941 3942 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 3943 if (!inq_buff) { 3944 rc = -ENOMEM; 3945 goto bail_out; 3946 } 3947 3948 /* Do an inquiry to the device to see what it is. */ 3949 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 3950 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 3951 dev_err(&h->pdev->dev, 3952 "%s: inquiry failed, device will be skipped.\n", 3953 __func__); 3954 rc = HPSA_INQUIRY_FAILED; 3955 goto bail_out; 3956 } 3957 3958 scsi_sanitize_inquiry_string(&inq_buff[8], 8); 3959 scsi_sanitize_inquiry_string(&inq_buff[16], 16); 3960 3961 this_device->devtype = (inq_buff[0] & 0x1f); 3962 memcpy(this_device->scsi3addr, scsi3addr, 8); 3963 memcpy(this_device->vendor, &inq_buff[8], 3964 sizeof(this_device->vendor)); 3965 memcpy(this_device->model, &inq_buff[16], 3966 sizeof(this_device->model)); 3967 this_device->rev = inq_buff[2]; 3968 memset(this_device->device_id, 0, 3969 sizeof(this_device->device_id)); 3970 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8, 3971 sizeof(this_device->device_id)) < 0) { 3972 dev_err(&h->pdev->dev, 3973 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n", 3974 h->ctlr, __func__, 3975 h->scsi_host->host_no, 3976 this_device->bus, this_device->target, 3977 this_device->lun, 3978 scsi_device_type(this_device->devtype), 3979 this_device->model); 3980 rc = HPSA_LV_FAILED; 3981 goto bail_out; 3982 } 3983 3984 if ((this_device->devtype == TYPE_DISK || 3985 this_device->devtype == TYPE_ZBC) && 3986 is_logical_dev_addr_mode(scsi3addr)) { 3987 unsigned char volume_offline; 3988 3989 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 3990 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) 3991 hpsa_get_ioaccel_status(h, scsi3addr, this_device); 3992 volume_offline = hpsa_volume_offline(h, scsi3addr); 3993 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED && 3994 h->legacy_board) { 3995 /* 3996 * Legacy boards might not support volume status 3997 */ 3998 dev_info(&h->pdev->dev, 3999 "C0:T%d:L%d Volume status not available, assuming online.\n", 4000 this_device->target, this_device->lun); 4001 volume_offline = 0; 4002 } 4003 this_device->volume_offline = volume_offline; 4004 if (volume_offline == HPSA_LV_FAILED) { 4005 rc = HPSA_LV_FAILED; 4006 dev_err(&h->pdev->dev, 4007 "%s: LV failed, device will be skipped.\n", 4008 __func__); 4009 goto bail_out; 4010 } 4011 } else { 4012 this_device->raid_level = RAID_UNKNOWN; 4013 this_device->offload_config = 0; 4014 hpsa_turn_off_ioaccel_for_device(this_device); 4015 this_device->hba_ioaccel_enabled = 0; 4016 this_device->volume_offline = 0; 4017 this_device->queue_depth = h->nr_cmds; 4018 } 4019 4020 if (this_device->external) 4021 this_device->queue_depth = EXTERNAL_QD; 4022 4023 if (is_OBDR_device) { 4024 /* See if this is a One-Button-Disaster-Recovery device 4025 * by looking for "$DR-10" at offset 43 in inquiry data. 4026 */ 4027 obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; 4028 *is_OBDR_device = (this_device->devtype == TYPE_ROM && 4029 strncmp(obdr_sig, OBDR_TAPE_SIG, 4030 OBDR_SIG_LEN) == 0); 4031 } 4032 kfree(inq_buff); 4033 return 0; 4034 4035 bail_out: 4036 kfree(inq_buff); 4037 return rc; 4038 } 4039 4040 /* 4041 * Helper function to assign bus, target, lun mapping of devices. 4042 * Logical drive target and lun are assigned at this time, but 4043 * physical device lun and target assignment are deferred (assigned 4044 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 4045 */ 4046 static void figure_bus_target_lun(struct ctlr_info *h, 4047 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) 4048 { 4049 u32 lunid = get_unaligned_le32(lunaddrbytes); 4050 4051 if (!is_logical_dev_addr_mode(lunaddrbytes)) { 4052 /* physical device, target and lun filled in later */ 4053 if (is_hba_lunid(lunaddrbytes)) { 4054 int bus = HPSA_HBA_BUS; 4055 4056 if (!device->rev) 4057 bus = HPSA_LEGACY_HBA_BUS; 4058 hpsa_set_bus_target_lun(device, 4059 bus, 0, lunid & 0x3fff); 4060 } else 4061 /* defer target, lun assignment for physical devices */ 4062 hpsa_set_bus_target_lun(device, 4063 HPSA_PHYSICAL_DEVICE_BUS, -1, -1); 4064 return; 4065 } 4066 /* It's a logical device */ 4067 if (device->external) { 4068 hpsa_set_bus_target_lun(device, 4069 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff, 4070 lunid & 0x00ff); 4071 return; 4072 } 4073 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS, 4074 0, lunid & 0x3fff); 4075 } 4076 4077 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position, 4078 int i, int nphysicals, int nlocal_logicals) 4079 { 4080 /* In report logicals, local logicals are listed first, 4081 * then any externals. 4082 */ 4083 int logicals_start = nphysicals + (raid_ctlr_position == 0); 4084 4085 if (i == raid_ctlr_position) 4086 return 0; 4087 4088 if (i < logicals_start) 4089 return 0; 4090 4091 /* i is in logicals range, but still within local logicals */ 4092 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals) 4093 return 0; 4094 4095 return 1; /* it's an external lun */ 4096 } 4097 4098 /* 4099 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 4100 * logdev. The number of luns in physdev and logdev are returned in 4101 * *nphysicals and *nlogicals, respectively. 4102 * Returns 0 on success, -1 otherwise. 4103 */ 4104 static int hpsa_gather_lun_info(struct ctlr_info *h, 4105 struct ReportExtendedLUNdata *physdev, u32 *nphysicals, 4106 struct ReportLUNdata *logdev, u32 *nlogicals) 4107 { 4108 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { 4109 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 4110 return -1; 4111 } 4112 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24; 4113 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 4114 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n", 4115 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN); 4116 *nphysicals = HPSA_MAX_PHYS_LUN; 4117 } 4118 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) { 4119 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 4120 return -1; 4121 } 4122 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 4123 /* Reject Logicals in excess of our max capability. */ 4124 if (*nlogicals > HPSA_MAX_LUN) { 4125 dev_warn(&h->pdev->dev, 4126 "maximum logical LUNs (%d) exceeded. " 4127 "%d LUNs ignored.\n", HPSA_MAX_LUN, 4128 *nlogicals - HPSA_MAX_LUN); 4129 *nlogicals = HPSA_MAX_LUN; 4130 } 4131 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 4132 dev_warn(&h->pdev->dev, 4133 "maximum logical + physical LUNs (%d) exceeded. " 4134 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 4135 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 4136 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 4137 } 4138 return 0; 4139 } 4140 4141 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, 4142 int i, int nphysicals, int nlogicals, 4143 struct ReportExtendedLUNdata *physdev_list, 4144 struct ReportLUNdata *logdev_list) 4145 { 4146 /* Helper function, figure out where the LUN ID info is coming from 4147 * given index i, lists of physical and logical devices, where in 4148 * the list the raid controller is supposed to appear (first or last) 4149 */ 4150 4151 int logicals_start = nphysicals + (raid_ctlr_position == 0); 4152 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 4153 4154 if (i == raid_ctlr_position) 4155 return RAID_CTLR_LUNID; 4156 4157 if (i < logicals_start) 4158 return &physdev_list->LUN[i - 4159 (raid_ctlr_position == 0)].lunid[0]; 4160 4161 if (i < last_device) 4162 return &logdev_list->LUN[i - nphysicals - 4163 (raid_ctlr_position == 0)][0]; 4164 BUG(); 4165 return NULL; 4166 } 4167 4168 /* get physical drive ioaccel handle and queue depth */ 4169 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h, 4170 struct hpsa_scsi_dev_t *dev, 4171 struct ReportExtendedLUNdata *rlep, int rle_index, 4172 struct bmic_identify_physical_device *id_phys) 4173 { 4174 int rc; 4175 struct ext_report_lun_entry *rle; 4176 4177 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN) 4178 return; 4179 4180 rle = &rlep->LUN[rle_index]; 4181 4182 dev->ioaccel_handle = rle->ioaccel_handle; 4183 if ((rle->device_flags & 0x08) && dev->ioaccel_handle) 4184 dev->hba_ioaccel_enabled = 1; 4185 memset(id_phys, 0, sizeof(*id_phys)); 4186 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0], 4187 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys, 4188 sizeof(*id_phys)); 4189 if (!rc) 4190 /* Reserve space for FW operations */ 4191 #define DRIVE_CMDS_RESERVED_FOR_FW 2 4192 #define DRIVE_QUEUE_DEPTH 7 4193 dev->queue_depth = 4194 le16_to_cpu(id_phys->current_queue_depth_limit) - 4195 DRIVE_CMDS_RESERVED_FOR_FW; 4196 else 4197 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */ 4198 } 4199 4200 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device, 4201 struct ReportExtendedLUNdata *rlep, int rle_index, 4202 struct bmic_identify_physical_device *id_phys) 4203 { 4204 struct ext_report_lun_entry *rle; 4205 4206 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN) 4207 return; 4208 4209 rle = &rlep->LUN[rle_index]; 4210 4211 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle) 4212 this_device->hba_ioaccel_enabled = 1; 4213 4214 memcpy(&this_device->active_path_index, 4215 &id_phys->active_path_number, 4216 sizeof(this_device->active_path_index)); 4217 memcpy(&this_device->path_map, 4218 &id_phys->redundant_path_present_map, 4219 sizeof(this_device->path_map)); 4220 memcpy(&this_device->box, 4221 &id_phys->alternate_paths_phys_box_on_port, 4222 sizeof(this_device->box)); 4223 memcpy(&this_device->phys_connector, 4224 &id_phys->alternate_paths_phys_connector, 4225 sizeof(this_device->phys_connector)); 4226 memcpy(&this_device->bay, 4227 &id_phys->phys_bay_in_box, 4228 sizeof(this_device->bay)); 4229 } 4230 4231 /* get number of local logical disks. */ 4232 static int hpsa_set_local_logical_count(struct ctlr_info *h, 4233 struct bmic_identify_controller *id_ctlr, 4234 u32 *nlocals) 4235 { 4236 int rc; 4237 4238 if (!id_ctlr) { 4239 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n", 4240 __func__); 4241 return -ENOMEM; 4242 } 4243 memset(id_ctlr, 0, sizeof(*id_ctlr)); 4244 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr)); 4245 if (!rc) 4246 if (id_ctlr->configured_logical_drive_count < 255) 4247 *nlocals = id_ctlr->configured_logical_drive_count; 4248 else 4249 *nlocals = le16_to_cpu( 4250 id_ctlr->extended_logical_unit_count); 4251 else 4252 *nlocals = -1; 4253 return rc; 4254 } 4255 4256 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes) 4257 { 4258 struct bmic_identify_physical_device *id_phys; 4259 bool is_spare = false; 4260 int rc; 4261 4262 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 4263 if (!id_phys) 4264 return false; 4265 4266 rc = hpsa_bmic_id_physical_device(h, 4267 lunaddrbytes, 4268 GET_BMIC_DRIVE_NUMBER(lunaddrbytes), 4269 id_phys, sizeof(*id_phys)); 4270 if (rc == 0) 4271 is_spare = (id_phys->more_flags >> 6) & 0x01; 4272 4273 kfree(id_phys); 4274 return is_spare; 4275 } 4276 4277 #define RPL_DEV_FLAG_NON_DISK 0x1 4278 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2 4279 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4 4280 4281 #define BMIC_DEVICE_TYPE_ENCLOSURE 6 4282 4283 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes, 4284 struct ext_report_lun_entry *rle) 4285 { 4286 u8 device_flags; 4287 u8 device_type; 4288 4289 if (!MASKED_DEVICE(lunaddrbytes)) 4290 return false; 4291 4292 device_flags = rle->device_flags; 4293 device_type = rle->device_type; 4294 4295 if (device_flags & RPL_DEV_FLAG_NON_DISK) { 4296 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE) 4297 return false; 4298 return true; 4299 } 4300 4301 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED)) 4302 return false; 4303 4304 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK) 4305 return false; 4306 4307 /* 4308 * Spares may be spun down, we do not want to 4309 * do an Inquiry to a RAID set spare drive as 4310 * that would have them spun up, that is a 4311 * performance hit because I/O to the RAID device 4312 * stops while the spin up occurs which can take 4313 * over 50 seconds. 4314 */ 4315 if (hpsa_is_disk_spare(h, lunaddrbytes)) 4316 return true; 4317 4318 return false; 4319 } 4320 4321 static void hpsa_update_scsi_devices(struct ctlr_info *h) 4322 { 4323 /* the idea here is we could get notified 4324 * that some devices have changed, so we do a report 4325 * physical luns and report logical luns cmd, and adjust 4326 * our list of devices accordingly. 4327 * 4328 * The scsi3addr's of devices won't change so long as the 4329 * adapter is not reset. That means we can rescan and 4330 * tell which devices we already know about, vs. new 4331 * devices, vs. disappearing devices. 4332 */ 4333 struct ReportExtendedLUNdata *physdev_list = NULL; 4334 struct ReportLUNdata *logdev_list = NULL; 4335 struct bmic_identify_physical_device *id_phys = NULL; 4336 struct bmic_identify_controller *id_ctlr = NULL; 4337 u32 nphysicals = 0; 4338 u32 nlogicals = 0; 4339 u32 nlocal_logicals = 0; 4340 u32 ndev_allocated = 0; 4341 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 4342 int ncurrent = 0; 4343 int i, ndevs_to_allocate; 4344 int raid_ctlr_position; 4345 bool physical_device; 4346 4347 currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL); 4348 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL); 4349 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL); 4350 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 4351 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 4352 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL); 4353 4354 if (!currentsd || !physdev_list || !logdev_list || 4355 !tmpdevice || !id_phys || !id_ctlr) { 4356 dev_err(&h->pdev->dev, "out of memory\n"); 4357 goto out; 4358 } 4359 4360 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */ 4361 4362 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals, 4363 logdev_list, &nlogicals)) { 4364 h->drv_req_rescan = 1; 4365 goto out; 4366 } 4367 4368 /* Set number of local logicals (non PTRAID) */ 4369 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) { 4370 dev_warn(&h->pdev->dev, 4371 "%s: Can't determine number of local logical devices.\n", 4372 __func__); 4373 } 4374 4375 /* We might see up to the maximum number of logical and physical disks 4376 * plus external target devices, and a device for the local RAID 4377 * controller. 4378 */ 4379 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; 4380 4381 hpsa_ext_ctrl_present(h, physdev_list); 4382 4383 /* Allocate the per device structures */ 4384 for (i = 0; i < ndevs_to_allocate; i++) { 4385 if (i >= HPSA_MAX_DEVICES) { 4386 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." 4387 " %d devices ignored.\n", HPSA_MAX_DEVICES, 4388 ndevs_to_allocate - HPSA_MAX_DEVICES); 4389 break; 4390 } 4391 4392 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 4393 if (!currentsd[i]) { 4394 h->drv_req_rescan = 1; 4395 goto out; 4396 } 4397 ndev_allocated++; 4398 } 4399 4400 if (is_scsi_rev_5(h)) 4401 raid_ctlr_position = 0; 4402 else 4403 raid_ctlr_position = nphysicals + nlogicals; 4404 4405 /* adjust our table of devices */ 4406 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 4407 u8 *lunaddrbytes, is_OBDR = 0; 4408 int rc = 0; 4409 int phys_dev_index = i - (raid_ctlr_position == 0); 4410 bool skip_device = false; 4411 4412 memset(tmpdevice, 0, sizeof(*tmpdevice)); 4413 4414 physical_device = i < nphysicals + (raid_ctlr_position == 0); 4415 4416 /* Figure out where the LUN ID info is coming from */ 4417 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 4418 i, nphysicals, nlogicals, physdev_list, logdev_list); 4419 4420 /* Determine if this is a lun from an external target array */ 4421 tmpdevice->external = 4422 figure_external_status(h, raid_ctlr_position, i, 4423 nphysicals, nlocal_logicals); 4424 4425 /* 4426 * Skip over some devices such as a spare. 4427 */ 4428 if (phys_dev_index >= 0 && !tmpdevice->external && 4429 physical_device) { 4430 skip_device = hpsa_skip_device(h, lunaddrbytes, 4431 &physdev_list->LUN[phys_dev_index]); 4432 if (skip_device) 4433 continue; 4434 } 4435 4436 /* Get device type, vendor, model, device id, raid_map */ 4437 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice, 4438 &is_OBDR); 4439 if (rc == -ENOMEM) { 4440 dev_warn(&h->pdev->dev, 4441 "Out of memory, rescan deferred.\n"); 4442 h->drv_req_rescan = 1; 4443 goto out; 4444 } 4445 if (rc) { 4446 h->drv_req_rescan = 1; 4447 continue; 4448 } 4449 4450 figure_bus_target_lun(h, lunaddrbytes, tmpdevice); 4451 this_device = currentsd[ncurrent]; 4452 4453 *this_device = *tmpdevice; 4454 this_device->physical_device = physical_device; 4455 4456 /* 4457 * Expose all devices except for physical devices that 4458 * are masked. 4459 */ 4460 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device) 4461 this_device->expose_device = 0; 4462 else 4463 this_device->expose_device = 1; 4464 4465 4466 /* 4467 * Get the SAS address for physical devices that are exposed. 4468 */ 4469 if (this_device->physical_device && this_device->expose_device) 4470 hpsa_get_sas_address(h, lunaddrbytes, this_device); 4471 4472 switch (this_device->devtype) { 4473 case TYPE_ROM: 4474 /* We don't *really* support actual CD-ROM devices, 4475 * just "One Button Disaster Recovery" tape drive 4476 * which temporarily pretends to be a CD-ROM drive. 4477 * So we check that the device is really an OBDR tape 4478 * device by checking for "$DR-10" in bytes 43-48 of 4479 * the inquiry data. 4480 */ 4481 if (is_OBDR) 4482 ncurrent++; 4483 break; 4484 case TYPE_DISK: 4485 case TYPE_ZBC: 4486 if (this_device->physical_device) { 4487 /* The disk is in HBA mode. */ 4488 /* Never use RAID mapper in HBA mode. */ 4489 this_device->offload_enabled = 0; 4490 hpsa_get_ioaccel_drive_info(h, this_device, 4491 physdev_list, phys_dev_index, id_phys); 4492 hpsa_get_path_info(this_device, 4493 physdev_list, phys_dev_index, id_phys); 4494 } 4495 ncurrent++; 4496 break; 4497 case TYPE_TAPE: 4498 case TYPE_MEDIUM_CHANGER: 4499 ncurrent++; 4500 break; 4501 case TYPE_ENCLOSURE: 4502 if (!this_device->external) 4503 hpsa_get_enclosure_info(h, lunaddrbytes, 4504 physdev_list, phys_dev_index, 4505 this_device); 4506 ncurrent++; 4507 break; 4508 case TYPE_RAID: 4509 /* Only present the Smartarray HBA as a RAID controller. 4510 * If it's a RAID controller other than the HBA itself 4511 * (an external RAID controller, MSA500 or similar) 4512 * don't present it. 4513 */ 4514 if (!is_hba_lunid(lunaddrbytes)) 4515 break; 4516 ncurrent++; 4517 break; 4518 default: 4519 break; 4520 } 4521 if (ncurrent >= HPSA_MAX_DEVICES) 4522 break; 4523 } 4524 4525 if (h->sas_host == NULL) { 4526 int rc = 0; 4527 4528 rc = hpsa_add_sas_host(h); 4529 if (rc) { 4530 dev_warn(&h->pdev->dev, 4531 "Could not add sas host %d\n", rc); 4532 goto out; 4533 } 4534 } 4535 4536 adjust_hpsa_scsi_table(h, currentsd, ncurrent); 4537 out: 4538 kfree(tmpdevice); 4539 for (i = 0; i < ndev_allocated; i++) 4540 kfree(currentsd[i]); 4541 kfree(currentsd); 4542 kfree(physdev_list); 4543 kfree(logdev_list); 4544 kfree(id_ctlr); 4545 kfree(id_phys); 4546 } 4547 4548 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc, 4549 struct scatterlist *sg) 4550 { 4551 u64 addr64 = (u64) sg_dma_address(sg); 4552 unsigned int len = sg_dma_len(sg); 4553 4554 desc->Addr = cpu_to_le64(addr64); 4555 desc->Len = cpu_to_le32(len); 4556 desc->Ext = 0; 4557 } 4558 4559 /* 4560 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 4561 * dma mapping and fills in the scatter gather entries of the 4562 * hpsa command, cp. 4563 */ 4564 static int hpsa_scatter_gather(struct ctlr_info *h, 4565 struct CommandList *cp, 4566 struct scsi_cmnd *cmd) 4567 { 4568 struct scatterlist *sg; 4569 int use_sg, i, sg_limit, chained; 4570 struct SGDescriptor *curr_sg; 4571 4572 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 4573 4574 use_sg = scsi_dma_map(cmd); 4575 if (use_sg < 0) 4576 return use_sg; 4577 4578 if (!use_sg) 4579 goto sglist_finished; 4580 4581 /* 4582 * If the number of entries is greater than the max for a single list, 4583 * then we have a chained list; we will set up all but one entry in the 4584 * first list (the last entry is saved for link information); 4585 * otherwise, we don't have a chained list and we'll set up at each of 4586 * the entries in the one list. 4587 */ 4588 curr_sg = cp->SG; 4589 chained = use_sg > h->max_cmd_sg_entries; 4590 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg; 4591 scsi_for_each_sg(cmd, sg, sg_limit, i) { 4592 hpsa_set_sg_descriptor(curr_sg, sg); 4593 curr_sg++; 4594 } 4595 4596 if (chained) { 4597 /* 4598 * Continue with the chained list. Set curr_sg to the chained 4599 * list. Modify the limit to the total count less the entries 4600 * we've already set up. Resume the scan at the list entry 4601 * where the previous loop left off. 4602 */ 4603 curr_sg = h->cmd_sg_list[cp->cmdindex]; 4604 sg_limit = use_sg - sg_limit; 4605 for_each_sg(sg, sg, sg_limit, i) { 4606 hpsa_set_sg_descriptor(curr_sg, sg); 4607 curr_sg++; 4608 } 4609 } 4610 4611 /* Back the pointer up to the last entry and mark it as "last". */ 4612 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST); 4613 4614 if (use_sg + chained > h->maxSG) 4615 h->maxSG = use_sg + chained; 4616 4617 if (chained) { 4618 cp->Header.SGList = h->max_cmd_sg_entries; 4619 cp->Header.SGTotal = cpu_to_le16(use_sg + 1); 4620 if (hpsa_map_sg_chain_block(h, cp)) { 4621 scsi_dma_unmap(cmd); 4622 return -1; 4623 } 4624 return 0; 4625 } 4626 4627 sglist_finished: 4628 4629 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 4630 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */ 4631 return 0; 4632 } 4633 4634 static inline void warn_zero_length_transfer(struct ctlr_info *h, 4635 u8 *cdb, int cdb_len, 4636 const char *func) 4637 { 4638 dev_warn(&h->pdev->dev, 4639 "%s: Blocking zero-length request: CDB:%*phN\n", 4640 func, cdb_len, cdb); 4641 } 4642 4643 #define IO_ACCEL_INELIGIBLE 1 4644 /* zero-length transfers trigger hardware errors. */ 4645 static bool is_zero_length_transfer(u8 *cdb) 4646 { 4647 u32 block_cnt; 4648 4649 /* Block zero-length transfer sizes on certain commands. */ 4650 switch (cdb[0]) { 4651 case READ_10: 4652 case WRITE_10: 4653 case VERIFY: /* 0x2F */ 4654 case WRITE_VERIFY: /* 0x2E */ 4655 block_cnt = get_unaligned_be16(&cdb[7]); 4656 break; 4657 case READ_12: 4658 case WRITE_12: 4659 case VERIFY_12: /* 0xAF */ 4660 case WRITE_VERIFY_12: /* 0xAE */ 4661 block_cnt = get_unaligned_be32(&cdb[6]); 4662 break; 4663 case READ_16: 4664 case WRITE_16: 4665 case VERIFY_16: /* 0x8F */ 4666 block_cnt = get_unaligned_be32(&cdb[10]); 4667 break; 4668 default: 4669 return false; 4670 } 4671 4672 return block_cnt == 0; 4673 } 4674 4675 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) 4676 { 4677 int is_write = 0; 4678 u32 block; 4679 u32 block_cnt; 4680 4681 /* Perform some CDB fixups if needed using 10 byte reads/writes only */ 4682 switch (cdb[0]) { 4683 case WRITE_6: 4684 case WRITE_12: 4685 is_write = 1; 4686 fallthrough; 4687 case READ_6: 4688 case READ_12: 4689 if (*cdb_len == 6) { 4690 block = (((cdb[1] & 0x1F) << 16) | 4691 (cdb[2] << 8) | 4692 cdb[3]); 4693 block_cnt = cdb[4]; 4694 if (block_cnt == 0) 4695 block_cnt = 256; 4696 } else { 4697 BUG_ON(*cdb_len != 12); 4698 block = get_unaligned_be32(&cdb[2]); 4699 block_cnt = get_unaligned_be32(&cdb[6]); 4700 } 4701 if (block_cnt > 0xffff) 4702 return IO_ACCEL_INELIGIBLE; 4703 4704 cdb[0] = is_write ? WRITE_10 : READ_10; 4705 cdb[1] = 0; 4706 cdb[2] = (u8) (block >> 24); 4707 cdb[3] = (u8) (block >> 16); 4708 cdb[4] = (u8) (block >> 8); 4709 cdb[5] = (u8) (block); 4710 cdb[6] = 0; 4711 cdb[7] = (u8) (block_cnt >> 8); 4712 cdb[8] = (u8) (block_cnt); 4713 cdb[9] = 0; 4714 *cdb_len = 10; 4715 break; 4716 } 4717 return 0; 4718 } 4719 4720 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h, 4721 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 4722 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 4723 { 4724 struct scsi_cmnd *cmd = c->scsi_cmd; 4725 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; 4726 unsigned int len; 4727 unsigned int total_len = 0; 4728 struct scatterlist *sg; 4729 u64 addr64; 4730 int use_sg, i; 4731 struct SGDescriptor *curr_sg; 4732 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; 4733 4734 /* TODO: implement chaining support */ 4735 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) { 4736 atomic_dec(&phys_disk->ioaccel_cmds_out); 4737 return IO_ACCEL_INELIGIBLE; 4738 } 4739 4740 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); 4741 4742 if (is_zero_length_transfer(cdb)) { 4743 warn_zero_length_transfer(h, cdb, cdb_len, __func__); 4744 atomic_dec(&phys_disk->ioaccel_cmds_out); 4745 return IO_ACCEL_INELIGIBLE; 4746 } 4747 4748 if (fixup_ioaccel_cdb(cdb, &cdb_len)) { 4749 atomic_dec(&phys_disk->ioaccel_cmds_out); 4750 return IO_ACCEL_INELIGIBLE; 4751 } 4752 4753 c->cmd_type = CMD_IOACCEL1; 4754 4755 /* Adjust the DMA address to point to the accelerated command buffer */ 4756 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + 4757 (c->cmdindex * sizeof(*cp)); 4758 BUG_ON(c->busaddr & 0x0000007F); 4759 4760 use_sg = scsi_dma_map(cmd); 4761 if (use_sg < 0) { 4762 atomic_dec(&phys_disk->ioaccel_cmds_out); 4763 return use_sg; 4764 } 4765 4766 if (use_sg) { 4767 curr_sg = cp->SG; 4768 scsi_for_each_sg(cmd, sg, use_sg, i) { 4769 addr64 = (u64) sg_dma_address(sg); 4770 len = sg_dma_len(sg); 4771 total_len += len; 4772 curr_sg->Addr = cpu_to_le64(addr64); 4773 curr_sg->Len = cpu_to_le32(len); 4774 curr_sg->Ext = cpu_to_le32(0); 4775 curr_sg++; 4776 } 4777 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); 4778 4779 switch (cmd->sc_data_direction) { 4780 case DMA_TO_DEVICE: 4781 control |= IOACCEL1_CONTROL_DATA_OUT; 4782 break; 4783 case DMA_FROM_DEVICE: 4784 control |= IOACCEL1_CONTROL_DATA_IN; 4785 break; 4786 case DMA_NONE: 4787 control |= IOACCEL1_CONTROL_NODATAXFER; 4788 break; 4789 default: 4790 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 4791 cmd->sc_data_direction); 4792 BUG(); 4793 break; 4794 } 4795 } else { 4796 control |= IOACCEL1_CONTROL_NODATAXFER; 4797 } 4798 4799 c->Header.SGList = use_sg; 4800 /* Fill out the command structure to submit */ 4801 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF); 4802 cp->transfer_len = cpu_to_le32(total_len); 4803 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ | 4804 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK)); 4805 cp->control = cpu_to_le32(control); 4806 memcpy(cp->CDB, cdb, cdb_len); 4807 memcpy(cp->CISS_LUN, scsi3addr, 8); 4808 /* Tag was already set at init time. */ 4809 enqueue_cmd_and_start_io(h, c); 4810 return 0; 4811 } 4812 4813 /* 4814 * Queue a command directly to a device behind the controller using the 4815 * I/O accelerator path. 4816 */ 4817 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, 4818 struct CommandList *c) 4819 { 4820 struct scsi_cmnd *cmd = c->scsi_cmd; 4821 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4822 4823 if (!dev) 4824 return -1; 4825 4826 c->phys_disk = dev; 4827 4828 if (dev->in_reset) 4829 return -1; 4830 4831 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, 4832 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev); 4833 } 4834 4835 /* 4836 * Set encryption parameters for the ioaccel2 request 4837 */ 4838 static void set_encrypt_ioaccel2(struct ctlr_info *h, 4839 struct CommandList *c, struct io_accel2_cmd *cp) 4840 { 4841 struct scsi_cmnd *cmd = c->scsi_cmd; 4842 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4843 struct raid_map_data *map = &dev->raid_map; 4844 u64 first_block; 4845 4846 /* Are we doing encryption on this device */ 4847 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON)) 4848 return; 4849 /* Set the data encryption key index. */ 4850 cp->dekindex = map->dekindex; 4851 4852 /* Set the encryption enable flag, encoded into direction field. */ 4853 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK; 4854 4855 /* Set encryption tweak values based on logical block address 4856 * If block size is 512, tweak value is LBA. 4857 * For other block sizes, tweak is (LBA * block size)/ 512) 4858 */ 4859 switch (cmd->cmnd[0]) { 4860 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */ 4861 case READ_6: 4862 case WRITE_6: 4863 first_block = (((cmd->cmnd[1] & 0x1F) << 16) | 4864 (cmd->cmnd[2] << 8) | 4865 cmd->cmnd[3]); 4866 break; 4867 case WRITE_10: 4868 case READ_10: 4869 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */ 4870 case WRITE_12: 4871 case READ_12: 4872 first_block = get_unaligned_be32(&cmd->cmnd[2]); 4873 break; 4874 case WRITE_16: 4875 case READ_16: 4876 first_block = get_unaligned_be64(&cmd->cmnd[2]); 4877 break; 4878 default: 4879 dev_err(&h->pdev->dev, 4880 "ERROR: %s: size (0x%x) not supported for encryption\n", 4881 __func__, cmd->cmnd[0]); 4882 BUG(); 4883 break; 4884 } 4885 4886 if (le32_to_cpu(map->volume_blk_size) != 512) 4887 first_block = first_block * 4888 le32_to_cpu(map->volume_blk_size)/512; 4889 4890 cp->tweak_lower = cpu_to_le32(first_block); 4891 cp->tweak_upper = cpu_to_le32(first_block >> 32); 4892 } 4893 4894 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h, 4895 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 4896 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 4897 { 4898 struct scsi_cmnd *cmd = c->scsi_cmd; 4899 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; 4900 struct ioaccel2_sg_element *curr_sg; 4901 int use_sg, i; 4902 struct scatterlist *sg; 4903 u64 addr64; 4904 u32 len; 4905 u32 total_len = 0; 4906 4907 if (!cmd->device) 4908 return -1; 4909 4910 if (!cmd->device->hostdata) 4911 return -1; 4912 4913 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 4914 4915 if (is_zero_length_transfer(cdb)) { 4916 warn_zero_length_transfer(h, cdb, cdb_len, __func__); 4917 atomic_dec(&phys_disk->ioaccel_cmds_out); 4918 return IO_ACCEL_INELIGIBLE; 4919 } 4920 4921 if (fixup_ioaccel_cdb(cdb, &cdb_len)) { 4922 atomic_dec(&phys_disk->ioaccel_cmds_out); 4923 return IO_ACCEL_INELIGIBLE; 4924 } 4925 4926 c->cmd_type = CMD_IOACCEL2; 4927 /* Adjust the DMA address to point to the accelerated command buffer */ 4928 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + 4929 (c->cmdindex * sizeof(*cp)); 4930 BUG_ON(c->busaddr & 0x0000007F); 4931 4932 memset(cp, 0, sizeof(*cp)); 4933 cp->IU_type = IOACCEL2_IU_TYPE; 4934 4935 use_sg = scsi_dma_map(cmd); 4936 if (use_sg < 0) { 4937 atomic_dec(&phys_disk->ioaccel_cmds_out); 4938 return use_sg; 4939 } 4940 4941 if (use_sg) { 4942 curr_sg = cp->sg; 4943 if (use_sg > h->ioaccel_maxsg) { 4944 addr64 = le64_to_cpu( 4945 h->ioaccel2_cmd_sg_list[c->cmdindex]->address); 4946 curr_sg->address = cpu_to_le64(addr64); 4947 curr_sg->length = 0; 4948 curr_sg->reserved[0] = 0; 4949 curr_sg->reserved[1] = 0; 4950 curr_sg->reserved[2] = 0; 4951 curr_sg->chain_indicator = IOACCEL2_CHAIN; 4952 4953 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex]; 4954 } 4955 scsi_for_each_sg(cmd, sg, use_sg, i) { 4956 addr64 = (u64) sg_dma_address(sg); 4957 len = sg_dma_len(sg); 4958 total_len += len; 4959 curr_sg->address = cpu_to_le64(addr64); 4960 curr_sg->length = cpu_to_le32(len); 4961 curr_sg->reserved[0] = 0; 4962 curr_sg->reserved[1] = 0; 4963 curr_sg->reserved[2] = 0; 4964 curr_sg->chain_indicator = 0; 4965 curr_sg++; 4966 } 4967 4968 /* 4969 * Set the last s/g element bit 4970 */ 4971 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG; 4972 4973 switch (cmd->sc_data_direction) { 4974 case DMA_TO_DEVICE: 4975 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4976 cp->direction |= IOACCEL2_DIR_DATA_OUT; 4977 break; 4978 case DMA_FROM_DEVICE: 4979 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4980 cp->direction |= IOACCEL2_DIR_DATA_IN; 4981 break; 4982 case DMA_NONE: 4983 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4984 cp->direction |= IOACCEL2_DIR_NO_DATA; 4985 break; 4986 default: 4987 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 4988 cmd->sc_data_direction); 4989 BUG(); 4990 break; 4991 } 4992 } else { 4993 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4994 cp->direction |= IOACCEL2_DIR_NO_DATA; 4995 } 4996 4997 /* Set encryption parameters, if necessary */ 4998 set_encrypt_ioaccel2(h, c, cp); 4999 5000 cp->scsi_nexus = cpu_to_le32(ioaccel_handle); 5001 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT); 5002 memcpy(cp->cdb, cdb, sizeof(cp->cdb)); 5003 5004 cp->data_len = cpu_to_le32(total_len); 5005 cp->err_ptr = cpu_to_le64(c->busaddr + 5006 offsetof(struct io_accel2_cmd, error_data)); 5007 cp->err_len = cpu_to_le32(sizeof(cp->error_data)); 5008 5009 /* fill in sg elements */ 5010 if (use_sg > h->ioaccel_maxsg) { 5011 cp->sg_count = 1; 5012 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0])); 5013 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) { 5014 atomic_dec(&phys_disk->ioaccel_cmds_out); 5015 scsi_dma_unmap(cmd); 5016 return -1; 5017 } 5018 } else 5019 cp->sg_count = (u8) use_sg; 5020 5021 if (phys_disk->in_reset) { 5022 cmd->result = DID_RESET << 16; 5023 return -1; 5024 } 5025 5026 enqueue_cmd_and_start_io(h, c); 5027 return 0; 5028 } 5029 5030 /* 5031 * Queue a command to the correct I/O accelerator path. 5032 */ 5033 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, 5034 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 5035 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 5036 { 5037 if (!c->scsi_cmd->device) 5038 return -1; 5039 5040 if (!c->scsi_cmd->device->hostdata) 5041 return -1; 5042 5043 if (phys_disk->in_reset) 5044 return -1; 5045 5046 /* Try to honor the device's queue depth */ 5047 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) > 5048 phys_disk->queue_depth) { 5049 atomic_dec(&phys_disk->ioaccel_cmds_out); 5050 return IO_ACCEL_INELIGIBLE; 5051 } 5052 if (h->transMethod & CFGTBL_Trans_io_accel1) 5053 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, 5054 cdb, cdb_len, scsi3addr, 5055 phys_disk); 5056 else 5057 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, 5058 cdb, cdb_len, scsi3addr, 5059 phys_disk); 5060 } 5061 5062 static void raid_map_helper(struct raid_map_data *map, 5063 int offload_to_mirror, u32 *map_index, u32 *current_group) 5064 { 5065 if (offload_to_mirror == 0) { 5066 /* use physical disk in the first mirrored group. */ 5067 *map_index %= le16_to_cpu(map->data_disks_per_row); 5068 return; 5069 } 5070 do { 5071 /* determine mirror group that *map_index indicates */ 5072 *current_group = *map_index / 5073 le16_to_cpu(map->data_disks_per_row); 5074 if (offload_to_mirror == *current_group) 5075 continue; 5076 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) { 5077 /* select map index from next group */ 5078 *map_index += le16_to_cpu(map->data_disks_per_row); 5079 (*current_group)++; 5080 } else { 5081 /* select map index from first group */ 5082 *map_index %= le16_to_cpu(map->data_disks_per_row); 5083 *current_group = 0; 5084 } 5085 } while (offload_to_mirror != *current_group); 5086 } 5087 5088 /* 5089 * Attempt to perform offload RAID mapping for a logical volume I/O. 5090 */ 5091 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, 5092 struct CommandList *c) 5093 { 5094 struct scsi_cmnd *cmd = c->scsi_cmd; 5095 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 5096 struct raid_map_data *map = &dev->raid_map; 5097 struct raid_map_disk_data *dd = &map->data[0]; 5098 int is_write = 0; 5099 u32 map_index; 5100 u64 first_block, last_block; 5101 u32 block_cnt; 5102 u32 blocks_per_row; 5103 u64 first_row, last_row; 5104 u32 first_row_offset, last_row_offset; 5105 u32 first_column, last_column; 5106 u64 r0_first_row, r0_last_row; 5107 u32 r5or6_blocks_per_row; 5108 u64 r5or6_first_row, r5or6_last_row; 5109 u32 r5or6_first_row_offset, r5or6_last_row_offset; 5110 u32 r5or6_first_column, r5or6_last_column; 5111 u32 total_disks_per_row; 5112 u32 stripesize; 5113 u32 first_group, last_group, current_group; 5114 u32 map_row; 5115 u32 disk_handle; 5116 u64 disk_block; 5117 u32 disk_block_cnt; 5118 u8 cdb[16]; 5119 u8 cdb_len; 5120 u16 strip_size; 5121 #if BITS_PER_LONG == 32 5122 u64 tmpdiv; 5123 #endif 5124 int offload_to_mirror; 5125 5126 if (!dev) 5127 return -1; 5128 5129 if (dev->in_reset) 5130 return -1; 5131 5132 /* check for valid opcode, get LBA and block count */ 5133 switch (cmd->cmnd[0]) { 5134 case WRITE_6: 5135 is_write = 1; 5136 fallthrough; 5137 case READ_6: 5138 first_block = (((cmd->cmnd[1] & 0x1F) << 16) | 5139 (cmd->cmnd[2] << 8) | 5140 cmd->cmnd[3]); 5141 block_cnt = cmd->cmnd[4]; 5142 if (block_cnt == 0) 5143 block_cnt = 256; 5144 break; 5145 case WRITE_10: 5146 is_write = 1; 5147 fallthrough; 5148 case READ_10: 5149 first_block = 5150 (((u64) cmd->cmnd[2]) << 24) | 5151 (((u64) cmd->cmnd[3]) << 16) | 5152 (((u64) cmd->cmnd[4]) << 8) | 5153 cmd->cmnd[5]; 5154 block_cnt = 5155 (((u32) cmd->cmnd[7]) << 8) | 5156 cmd->cmnd[8]; 5157 break; 5158 case WRITE_12: 5159 is_write = 1; 5160 fallthrough; 5161 case READ_12: 5162 first_block = 5163 (((u64) cmd->cmnd[2]) << 24) | 5164 (((u64) cmd->cmnd[3]) << 16) | 5165 (((u64) cmd->cmnd[4]) << 8) | 5166 cmd->cmnd[5]; 5167 block_cnt = 5168 (((u32) cmd->cmnd[6]) << 24) | 5169 (((u32) cmd->cmnd[7]) << 16) | 5170 (((u32) cmd->cmnd[8]) << 8) | 5171 cmd->cmnd[9]; 5172 break; 5173 case WRITE_16: 5174 is_write = 1; 5175 fallthrough; 5176 case READ_16: 5177 first_block = 5178 (((u64) cmd->cmnd[2]) << 56) | 5179 (((u64) cmd->cmnd[3]) << 48) | 5180 (((u64) cmd->cmnd[4]) << 40) | 5181 (((u64) cmd->cmnd[5]) << 32) | 5182 (((u64) cmd->cmnd[6]) << 24) | 5183 (((u64) cmd->cmnd[7]) << 16) | 5184 (((u64) cmd->cmnd[8]) << 8) | 5185 cmd->cmnd[9]; 5186 block_cnt = 5187 (((u32) cmd->cmnd[10]) << 24) | 5188 (((u32) cmd->cmnd[11]) << 16) | 5189 (((u32) cmd->cmnd[12]) << 8) | 5190 cmd->cmnd[13]; 5191 break; 5192 default: 5193 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ 5194 } 5195 last_block = first_block + block_cnt - 1; 5196 5197 /* check for write to non-RAID-0 */ 5198 if (is_write && dev->raid_level != 0) 5199 return IO_ACCEL_INELIGIBLE; 5200 5201 /* check for invalid block or wraparound */ 5202 if (last_block >= le64_to_cpu(map->volume_blk_cnt) || 5203 last_block < first_block) 5204 return IO_ACCEL_INELIGIBLE; 5205 5206 /* calculate stripe information for the request */ 5207 blocks_per_row = le16_to_cpu(map->data_disks_per_row) * 5208 le16_to_cpu(map->strip_size); 5209 strip_size = le16_to_cpu(map->strip_size); 5210 #if BITS_PER_LONG == 32 5211 tmpdiv = first_block; 5212 (void) do_div(tmpdiv, blocks_per_row); 5213 first_row = tmpdiv; 5214 tmpdiv = last_block; 5215 (void) do_div(tmpdiv, blocks_per_row); 5216 last_row = tmpdiv; 5217 first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); 5218 last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); 5219 tmpdiv = first_row_offset; 5220 (void) do_div(tmpdiv, strip_size); 5221 first_column = tmpdiv; 5222 tmpdiv = last_row_offset; 5223 (void) do_div(tmpdiv, strip_size); 5224 last_column = tmpdiv; 5225 #else 5226 first_row = first_block / blocks_per_row; 5227 last_row = last_block / blocks_per_row; 5228 first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); 5229 last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); 5230 first_column = first_row_offset / strip_size; 5231 last_column = last_row_offset / strip_size; 5232 #endif 5233 5234 /* if this isn't a single row/column then give to the controller */ 5235 if ((first_row != last_row) || (first_column != last_column)) 5236 return IO_ACCEL_INELIGIBLE; 5237 5238 /* proceeding with driver mapping */ 5239 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + 5240 le16_to_cpu(map->metadata_disks_per_row); 5241 map_row = ((u32)(first_row >> map->parity_rotation_shift)) % 5242 le16_to_cpu(map->row_cnt); 5243 map_index = (map_row * total_disks_per_row) + first_column; 5244 5245 switch (dev->raid_level) { 5246 case HPSA_RAID_0: 5247 break; /* nothing special to do */ 5248 case HPSA_RAID_1: 5249 /* Handles load balance across RAID 1 members. 5250 * (2-drive R1 and R10 with even # of drives.) 5251 * Appropriate for SSDs, not optimal for HDDs 5252 * Ensure we have the correct raid_map. 5253 */ 5254 if (le16_to_cpu(map->layout_map_count) != 2) { 5255 hpsa_turn_off_ioaccel_for_device(dev); 5256 return IO_ACCEL_INELIGIBLE; 5257 } 5258 if (dev->offload_to_mirror) 5259 map_index += le16_to_cpu(map->data_disks_per_row); 5260 dev->offload_to_mirror = !dev->offload_to_mirror; 5261 break; 5262 case HPSA_RAID_ADM: 5263 /* Handles N-way mirrors (R1-ADM) 5264 * and R10 with # of drives divisible by 3.) 5265 * Ensure we have the correct raid_map. 5266 */ 5267 if (le16_to_cpu(map->layout_map_count) != 3) { 5268 hpsa_turn_off_ioaccel_for_device(dev); 5269 return IO_ACCEL_INELIGIBLE; 5270 } 5271 5272 offload_to_mirror = dev->offload_to_mirror; 5273 raid_map_helper(map, offload_to_mirror, 5274 &map_index, ¤t_group); 5275 /* set mirror group to use next time */ 5276 offload_to_mirror = 5277 (offload_to_mirror >= 5278 le16_to_cpu(map->layout_map_count) - 1) 5279 ? 0 : offload_to_mirror + 1; 5280 dev->offload_to_mirror = offload_to_mirror; 5281 /* Avoid direct use of dev->offload_to_mirror within this 5282 * function since multiple threads might simultaneously 5283 * increment it beyond the range of dev->layout_map_count -1. 5284 */ 5285 break; 5286 case HPSA_RAID_5: 5287 case HPSA_RAID_6: 5288 if (le16_to_cpu(map->layout_map_count) <= 1) 5289 break; 5290 5291 /* Verify first and last block are in same RAID group */ 5292 r5or6_blocks_per_row = 5293 le16_to_cpu(map->strip_size) * 5294 le16_to_cpu(map->data_disks_per_row); 5295 if (r5or6_blocks_per_row == 0) { 5296 hpsa_turn_off_ioaccel_for_device(dev); 5297 return IO_ACCEL_INELIGIBLE; 5298 } 5299 stripesize = r5or6_blocks_per_row * 5300 le16_to_cpu(map->layout_map_count); 5301 #if BITS_PER_LONG == 32 5302 tmpdiv = first_block; 5303 first_group = do_div(tmpdiv, stripesize); 5304 tmpdiv = first_group; 5305 (void) do_div(tmpdiv, r5or6_blocks_per_row); 5306 first_group = tmpdiv; 5307 tmpdiv = last_block; 5308 last_group = do_div(tmpdiv, stripesize); 5309 tmpdiv = last_group; 5310 (void) do_div(tmpdiv, r5or6_blocks_per_row); 5311 last_group = tmpdiv; 5312 #else 5313 first_group = (first_block % stripesize) / r5or6_blocks_per_row; 5314 last_group = (last_block % stripesize) / r5or6_blocks_per_row; 5315 #endif 5316 if (first_group != last_group) 5317 return IO_ACCEL_INELIGIBLE; 5318 5319 /* Verify request is in a single row of RAID 5/6 */ 5320 #if BITS_PER_LONG == 32 5321 tmpdiv = first_block; 5322 (void) do_div(tmpdiv, stripesize); 5323 first_row = r5or6_first_row = r0_first_row = tmpdiv; 5324 tmpdiv = last_block; 5325 (void) do_div(tmpdiv, stripesize); 5326 r5or6_last_row = r0_last_row = tmpdiv; 5327 #else 5328 first_row = r5or6_first_row = r0_first_row = 5329 first_block / stripesize; 5330 r5or6_last_row = r0_last_row = last_block / stripesize; 5331 #endif 5332 if (r5or6_first_row != r5or6_last_row) 5333 return IO_ACCEL_INELIGIBLE; 5334 5335 5336 /* Verify request is in a single column */ 5337 #if BITS_PER_LONG == 32 5338 tmpdiv = first_block; 5339 first_row_offset = do_div(tmpdiv, stripesize); 5340 tmpdiv = first_row_offset; 5341 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row); 5342 r5or6_first_row_offset = first_row_offset; 5343 tmpdiv = last_block; 5344 r5or6_last_row_offset = do_div(tmpdiv, stripesize); 5345 tmpdiv = r5or6_last_row_offset; 5346 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); 5347 tmpdiv = r5or6_first_row_offset; 5348 (void) do_div(tmpdiv, map->strip_size); 5349 first_column = r5or6_first_column = tmpdiv; 5350 tmpdiv = r5or6_last_row_offset; 5351 (void) do_div(tmpdiv, map->strip_size); 5352 r5or6_last_column = tmpdiv; 5353 #else 5354 first_row_offset = r5or6_first_row_offset = 5355 (u32)((first_block % stripesize) % 5356 r5or6_blocks_per_row); 5357 5358 r5or6_last_row_offset = 5359 (u32)((last_block % stripesize) % 5360 r5or6_blocks_per_row); 5361 5362 first_column = r5or6_first_column = 5363 r5or6_first_row_offset / le16_to_cpu(map->strip_size); 5364 r5or6_last_column = 5365 r5or6_last_row_offset / le16_to_cpu(map->strip_size); 5366 #endif 5367 if (r5or6_first_column != r5or6_last_column) 5368 return IO_ACCEL_INELIGIBLE; 5369 5370 /* Request is eligible */ 5371 map_row = ((u32)(first_row >> map->parity_rotation_shift)) % 5372 le16_to_cpu(map->row_cnt); 5373 5374 map_index = (first_group * 5375 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) + 5376 (map_row * total_disks_per_row) + first_column; 5377 break; 5378 default: 5379 return IO_ACCEL_INELIGIBLE; 5380 } 5381 5382 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES)) 5383 return IO_ACCEL_INELIGIBLE; 5384 5385 c->phys_disk = dev->phys_disk[map_index]; 5386 if (!c->phys_disk) 5387 return IO_ACCEL_INELIGIBLE; 5388 5389 disk_handle = dd[map_index].ioaccel_handle; 5390 disk_block = le64_to_cpu(map->disk_starting_blk) + 5391 first_row * le16_to_cpu(map->strip_size) + 5392 (first_row_offset - first_column * 5393 le16_to_cpu(map->strip_size)); 5394 disk_block_cnt = block_cnt; 5395 5396 /* handle differing logical/physical block sizes */ 5397 if (map->phys_blk_shift) { 5398 disk_block <<= map->phys_blk_shift; 5399 disk_block_cnt <<= map->phys_blk_shift; 5400 } 5401 BUG_ON(disk_block_cnt > 0xffff); 5402 5403 /* build the new CDB for the physical disk I/O */ 5404 if (disk_block > 0xffffffff) { 5405 cdb[0] = is_write ? WRITE_16 : READ_16; 5406 cdb[1] = 0; 5407 cdb[2] = (u8) (disk_block >> 56); 5408 cdb[3] = (u8) (disk_block >> 48); 5409 cdb[4] = (u8) (disk_block >> 40); 5410 cdb[5] = (u8) (disk_block >> 32); 5411 cdb[6] = (u8) (disk_block >> 24); 5412 cdb[7] = (u8) (disk_block >> 16); 5413 cdb[8] = (u8) (disk_block >> 8); 5414 cdb[9] = (u8) (disk_block); 5415 cdb[10] = (u8) (disk_block_cnt >> 24); 5416 cdb[11] = (u8) (disk_block_cnt >> 16); 5417 cdb[12] = (u8) (disk_block_cnt >> 8); 5418 cdb[13] = (u8) (disk_block_cnt); 5419 cdb[14] = 0; 5420 cdb[15] = 0; 5421 cdb_len = 16; 5422 } else { 5423 cdb[0] = is_write ? WRITE_10 : READ_10; 5424 cdb[1] = 0; 5425 cdb[2] = (u8) (disk_block >> 24); 5426 cdb[3] = (u8) (disk_block >> 16); 5427 cdb[4] = (u8) (disk_block >> 8); 5428 cdb[5] = (u8) (disk_block); 5429 cdb[6] = 0; 5430 cdb[7] = (u8) (disk_block_cnt >> 8); 5431 cdb[8] = (u8) (disk_block_cnt); 5432 cdb[9] = 0; 5433 cdb_len = 10; 5434 } 5435 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, 5436 dev->scsi3addr, 5437 dev->phys_disk[map_index]); 5438 } 5439 5440 /* 5441 * Submit commands down the "normal" RAID stack path 5442 * All callers to hpsa_ciss_submit must check lockup_detected 5443 * beforehand, before (opt.) and after calling cmd_alloc 5444 */ 5445 static int hpsa_ciss_submit(struct ctlr_info *h, 5446 struct CommandList *c, struct scsi_cmnd *cmd, 5447 struct hpsa_scsi_dev_t *dev) 5448 { 5449 cmd->host_scribble = (unsigned char *) c; 5450 c->cmd_type = CMD_SCSI; 5451 c->scsi_cmd = cmd; 5452 c->Header.ReplyQueue = 0; /* unused in simple mode */ 5453 memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8); 5454 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT)); 5455 5456 /* Fill in the request block... */ 5457 5458 c->Request.Timeout = 0; 5459 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 5460 c->Request.CDBLen = cmd->cmd_len; 5461 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 5462 switch (cmd->sc_data_direction) { 5463 case DMA_TO_DEVICE: 5464 c->Request.type_attr_dir = 5465 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE); 5466 break; 5467 case DMA_FROM_DEVICE: 5468 c->Request.type_attr_dir = 5469 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ); 5470 break; 5471 case DMA_NONE: 5472 c->Request.type_attr_dir = 5473 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE); 5474 break; 5475 case DMA_BIDIRECTIONAL: 5476 /* This can happen if a buggy application does a scsi passthru 5477 * and sets both inlen and outlen to non-zero. ( see 5478 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 5479 */ 5480 5481 c->Request.type_attr_dir = 5482 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD); 5483 /* This is technically wrong, and hpsa controllers should 5484 * reject it with CMD_INVALID, which is the most correct 5485 * response, but non-fibre backends appear to let it 5486 * slide by, and give the same results as if this field 5487 * were set correctly. Either way is acceptable for 5488 * our purposes here. 5489 */ 5490 5491 break; 5492 5493 default: 5494 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 5495 cmd->sc_data_direction); 5496 BUG(); 5497 break; 5498 } 5499 5500 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ 5501 hpsa_cmd_resolve_and_free(h, c); 5502 return SCSI_MLQUEUE_HOST_BUSY; 5503 } 5504 5505 if (dev->in_reset) { 5506 hpsa_cmd_resolve_and_free(h, c); 5507 return SCSI_MLQUEUE_HOST_BUSY; 5508 } 5509 5510 c->device = dev; 5511 5512 enqueue_cmd_and_start_io(h, c); 5513 /* the cmd'll come back via intr handler in complete_scsi_command() */ 5514 return 0; 5515 } 5516 5517 static void hpsa_cmd_init(struct ctlr_info *h, int index, 5518 struct CommandList *c) 5519 { 5520 dma_addr_t cmd_dma_handle, err_dma_handle; 5521 5522 /* Zero out all of commandlist except the last field, refcount */ 5523 memset(c, 0, offsetof(struct CommandList, refcount)); 5524 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT)); 5525 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); 5526 c->err_info = h->errinfo_pool + index; 5527 memset(c->err_info, 0, sizeof(*c->err_info)); 5528 err_dma_handle = h->errinfo_pool_dhandle 5529 + index * sizeof(*c->err_info); 5530 c->cmdindex = index; 5531 c->busaddr = (u32) cmd_dma_handle; 5532 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle); 5533 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info)); 5534 c->h = h; 5535 c->scsi_cmd = SCSI_CMD_IDLE; 5536 } 5537 5538 static void hpsa_preinitialize_commands(struct ctlr_info *h) 5539 { 5540 int i; 5541 5542 for (i = 0; i < h->nr_cmds; i++) { 5543 struct CommandList *c = h->cmd_pool + i; 5544 5545 hpsa_cmd_init(h, i, c); 5546 atomic_set(&c->refcount, 0); 5547 } 5548 } 5549 5550 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index, 5551 struct CommandList *c) 5552 { 5553 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); 5554 5555 BUG_ON(c->cmdindex != index); 5556 5557 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 5558 memset(c->err_info, 0, sizeof(*c->err_info)); 5559 c->busaddr = (u32) cmd_dma_handle; 5560 } 5561 5562 static int hpsa_ioaccel_submit(struct ctlr_info *h, 5563 struct CommandList *c, struct scsi_cmnd *cmd, 5564 bool retry) 5565 { 5566 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 5567 int rc = IO_ACCEL_INELIGIBLE; 5568 5569 if (!dev) 5570 return SCSI_MLQUEUE_HOST_BUSY; 5571 5572 if (dev->in_reset) 5573 return SCSI_MLQUEUE_HOST_BUSY; 5574 5575 if (hpsa_simple_mode) 5576 return IO_ACCEL_INELIGIBLE; 5577 5578 cmd->host_scribble = (unsigned char *) c; 5579 5580 if (dev->offload_enabled) { 5581 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */ 5582 c->cmd_type = CMD_SCSI; 5583 c->scsi_cmd = cmd; 5584 c->device = dev; 5585 if (retry) /* Resubmit but do not increment device->commands_outstanding. */ 5586 c->retry_pending = true; 5587 rc = hpsa_scsi_ioaccel_raid_map(h, c); 5588 if (rc < 0) /* scsi_dma_map failed. */ 5589 rc = SCSI_MLQUEUE_HOST_BUSY; 5590 } else if (dev->hba_ioaccel_enabled) { 5591 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */ 5592 c->cmd_type = CMD_SCSI; 5593 c->scsi_cmd = cmd; 5594 c->device = dev; 5595 if (retry) /* Resubmit but do not increment device->commands_outstanding. */ 5596 c->retry_pending = true; 5597 rc = hpsa_scsi_ioaccel_direct_map(h, c); 5598 if (rc < 0) /* scsi_dma_map failed. */ 5599 rc = SCSI_MLQUEUE_HOST_BUSY; 5600 } 5601 return rc; 5602 } 5603 5604 static void hpsa_command_resubmit_worker(struct work_struct *work) 5605 { 5606 struct scsi_cmnd *cmd; 5607 struct hpsa_scsi_dev_t *dev; 5608 struct CommandList *c = container_of(work, struct CommandList, work); 5609 5610 cmd = c->scsi_cmd; 5611 dev = cmd->device->hostdata; 5612 if (!dev) { 5613 cmd->result = DID_NO_CONNECT << 16; 5614 return hpsa_cmd_free_and_done(c->h, c, cmd); 5615 } 5616 5617 if (dev->in_reset) { 5618 cmd->result = DID_RESET << 16; 5619 return hpsa_cmd_free_and_done(c->h, c, cmd); 5620 } 5621 5622 if (c->cmd_type == CMD_IOACCEL2) { 5623 struct ctlr_info *h = c->h; 5624 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 5625 int rc; 5626 5627 if (c2->error_data.serv_response == 5628 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) { 5629 /* Resubmit with the retry_pending flag set. */ 5630 rc = hpsa_ioaccel_submit(h, c, cmd, true); 5631 if (rc == 0) 5632 return; 5633 if (rc == SCSI_MLQUEUE_HOST_BUSY) { 5634 /* 5635 * If we get here, it means dma mapping failed. 5636 * Try again via scsi mid layer, which will 5637 * then get SCSI_MLQUEUE_HOST_BUSY. 5638 */ 5639 cmd->result = DID_IMM_RETRY << 16; 5640 return hpsa_cmd_free_and_done(h, c, cmd); 5641 } 5642 /* else, fall thru and resubmit down CISS path */ 5643 } 5644 } 5645 hpsa_cmd_partial_init(c->h, c->cmdindex, c); 5646 /* 5647 * Here we have not come in though queue_command, so we 5648 * can set the retry_pending flag to true for a driver initiated 5649 * retry attempt (I.E. not a SML retry). 5650 * I.E. We are submitting a driver initiated retry. 5651 * Note: hpsa_ciss_submit does not zero out the command fields like 5652 * ioaccel submit does. 5653 */ 5654 c->retry_pending = true; 5655 if (hpsa_ciss_submit(c->h, c, cmd, dev)) { 5656 /* 5657 * If we get here, it means dma mapping failed. Try 5658 * again via scsi mid layer, which will then get 5659 * SCSI_MLQUEUE_HOST_BUSY. 5660 * 5661 * hpsa_ciss_submit will have already freed c 5662 * if it encountered a dma mapping failure. 5663 */ 5664 cmd->result = DID_IMM_RETRY << 16; 5665 scsi_done(cmd); 5666 } 5667 } 5668 5669 /* Running in struct Scsi_Host->host_lock less mode */ 5670 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd) 5671 { 5672 struct ctlr_info *h; 5673 struct hpsa_scsi_dev_t *dev; 5674 struct CommandList *c; 5675 int rc = 0; 5676 5677 /* Get the ptr to our adapter structure out of cmd->host. */ 5678 h = sdev_to_hba(cmd->device); 5679 5680 BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0); 5681 5682 dev = cmd->device->hostdata; 5683 if (!dev) { 5684 cmd->result = DID_NO_CONNECT << 16; 5685 scsi_done(cmd); 5686 return 0; 5687 } 5688 5689 if (dev->removed) { 5690 cmd->result = DID_NO_CONNECT << 16; 5691 scsi_done(cmd); 5692 return 0; 5693 } 5694 5695 if (unlikely(lockup_detected(h))) { 5696 cmd->result = DID_NO_CONNECT << 16; 5697 scsi_done(cmd); 5698 return 0; 5699 } 5700 5701 if (dev->in_reset) 5702 return SCSI_MLQUEUE_DEVICE_BUSY; 5703 5704 c = cmd_tagged_alloc(h, cmd); 5705 if (c == NULL) 5706 return SCSI_MLQUEUE_DEVICE_BUSY; 5707 5708 /* 5709 * This is necessary because the SML doesn't zero out this field during 5710 * error recovery. 5711 */ 5712 cmd->result = 0; 5713 5714 /* 5715 * Call alternate submit routine for I/O accelerated commands. 5716 * Retries always go down the normal I/O path. 5717 * Note: If cmd->retries is non-zero, then this is a SML 5718 * initiated retry and not a driver initiated retry. 5719 * This command has been obtained from cmd_tagged_alloc 5720 * and is therefore a brand-new command. 5721 */ 5722 if (likely(cmd->retries == 0 && 5723 !blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) && 5724 h->acciopath_status)) { 5725 /* Submit with the retry_pending flag unset. */ 5726 rc = hpsa_ioaccel_submit(h, c, cmd, false); 5727 if (rc == 0) 5728 return 0; 5729 if (rc == SCSI_MLQUEUE_HOST_BUSY) { 5730 hpsa_cmd_resolve_and_free(h, c); 5731 return SCSI_MLQUEUE_HOST_BUSY; 5732 } 5733 } 5734 return hpsa_ciss_submit(h, c, cmd, dev); 5735 } 5736 5737 static void hpsa_scan_complete(struct ctlr_info *h) 5738 { 5739 unsigned long flags; 5740 5741 spin_lock_irqsave(&h->scan_lock, flags); 5742 h->scan_finished = 1; 5743 wake_up(&h->scan_wait_queue); 5744 spin_unlock_irqrestore(&h->scan_lock, flags); 5745 } 5746 5747 static void hpsa_scan_start(struct Scsi_Host *sh) 5748 { 5749 struct ctlr_info *h = shost_to_hba(sh); 5750 unsigned long flags; 5751 5752 /* 5753 * Don't let rescans be initiated on a controller known to be locked 5754 * up. If the controller locks up *during* a rescan, that thread is 5755 * probably hosed, but at least we can prevent new rescan threads from 5756 * piling up on a locked up controller. 5757 */ 5758 if (unlikely(lockup_detected(h))) 5759 return hpsa_scan_complete(h); 5760 5761 /* 5762 * If a scan is already waiting to run, no need to add another 5763 */ 5764 spin_lock_irqsave(&h->scan_lock, flags); 5765 if (h->scan_waiting) { 5766 spin_unlock_irqrestore(&h->scan_lock, flags); 5767 return; 5768 } 5769 5770 spin_unlock_irqrestore(&h->scan_lock, flags); 5771 5772 /* wait until any scan already in progress is finished. */ 5773 while (1) { 5774 spin_lock_irqsave(&h->scan_lock, flags); 5775 if (h->scan_finished) 5776 break; 5777 h->scan_waiting = 1; 5778 spin_unlock_irqrestore(&h->scan_lock, flags); 5779 wait_event(h->scan_wait_queue, h->scan_finished); 5780 /* Note: We don't need to worry about a race between this 5781 * thread and driver unload because the midlayer will 5782 * have incremented the reference count, so unload won't 5783 * happen if we're in here. 5784 */ 5785 } 5786 h->scan_finished = 0; /* mark scan as in progress */ 5787 h->scan_waiting = 0; 5788 spin_unlock_irqrestore(&h->scan_lock, flags); 5789 5790 if (unlikely(lockup_detected(h))) 5791 return hpsa_scan_complete(h); 5792 5793 /* 5794 * Do the scan after a reset completion 5795 */ 5796 spin_lock_irqsave(&h->reset_lock, flags); 5797 if (h->reset_in_progress) { 5798 h->drv_req_rescan = 1; 5799 spin_unlock_irqrestore(&h->reset_lock, flags); 5800 hpsa_scan_complete(h); 5801 return; 5802 } 5803 spin_unlock_irqrestore(&h->reset_lock, flags); 5804 5805 hpsa_update_scsi_devices(h); 5806 5807 hpsa_scan_complete(h); 5808 } 5809 5810 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth) 5811 { 5812 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata; 5813 5814 if (!logical_drive) 5815 return -ENODEV; 5816 5817 if (qdepth < 1) 5818 qdepth = 1; 5819 else if (qdepth > logical_drive->queue_depth) 5820 qdepth = logical_drive->queue_depth; 5821 5822 return scsi_change_queue_depth(sdev, qdepth); 5823 } 5824 5825 static int hpsa_scan_finished(struct Scsi_Host *sh, 5826 unsigned long elapsed_time) 5827 { 5828 struct ctlr_info *h = shost_to_hba(sh); 5829 unsigned long flags; 5830 int finished; 5831 5832 spin_lock_irqsave(&h->scan_lock, flags); 5833 finished = h->scan_finished; 5834 spin_unlock_irqrestore(&h->scan_lock, flags); 5835 return finished; 5836 } 5837 5838 static int hpsa_scsi_host_alloc(struct ctlr_info *h) 5839 { 5840 struct Scsi_Host *sh; 5841 5842 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(struct ctlr_info *)); 5843 if (sh == NULL) { 5844 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n"); 5845 return -ENOMEM; 5846 } 5847 5848 sh->io_port = 0; 5849 sh->n_io_port = 0; 5850 sh->this_id = -1; 5851 sh->max_channel = 3; 5852 sh->max_cmd_len = MAX_COMMAND_SIZE; 5853 sh->max_lun = HPSA_MAX_LUN; 5854 sh->max_id = HPSA_MAX_LUN; 5855 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS; 5856 sh->cmd_per_lun = sh->can_queue; 5857 sh->sg_tablesize = h->maxsgentries; 5858 sh->transportt = hpsa_sas_transport_template; 5859 sh->hostdata[0] = (unsigned long) h; 5860 sh->irq = pci_irq_vector(h->pdev, 0); 5861 sh->unique_id = sh->irq; 5862 5863 h->scsi_host = sh; 5864 return 0; 5865 } 5866 5867 static int hpsa_scsi_add_host(struct ctlr_info *h) 5868 { 5869 int rv; 5870 5871 rv = scsi_add_host(h->scsi_host, &h->pdev->dev); 5872 if (rv) { 5873 dev_err(&h->pdev->dev, "scsi_add_host failed\n"); 5874 return rv; 5875 } 5876 scsi_scan_host(h->scsi_host); 5877 return 0; 5878 } 5879 5880 /* 5881 * The block layer has already gone to the trouble of picking out a unique, 5882 * small-integer tag for this request. We use an offset from that value as 5883 * an index to select our command block. (The offset allows us to reserve the 5884 * low-numbered entries for our own uses.) 5885 */ 5886 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd) 5887 { 5888 int idx = scsi_cmd_to_rq(scmd)->tag; 5889 5890 if (idx < 0) 5891 return idx; 5892 5893 /* Offset to leave space for internal cmds. */ 5894 return idx += HPSA_NRESERVED_CMDS; 5895 } 5896 5897 /* 5898 * Send a TEST_UNIT_READY command to the specified LUN using the specified 5899 * reply queue; returns zero if the unit is ready, and non-zero otherwise. 5900 */ 5901 static int hpsa_send_test_unit_ready(struct ctlr_info *h, 5902 struct CommandList *c, unsigned char lunaddr[], 5903 int reply_queue) 5904 { 5905 int rc; 5906 5907 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ 5908 (void) fill_cmd(c, TEST_UNIT_READY, h, 5909 NULL, 0, 0, lunaddr, TYPE_CMD); 5910 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); 5911 if (rc) 5912 return rc; 5913 /* no unmap needed here because no data xfer. */ 5914 5915 /* Check if the unit is already ready. */ 5916 if (c->err_info->CommandStatus == CMD_SUCCESS) 5917 return 0; 5918 5919 /* 5920 * The first command sent after reset will receive "unit attention" to 5921 * indicate that the LUN has been reset...this is actually what we're 5922 * looking for (but, success is good too). 5923 */ 5924 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 5925 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 5926 (c->err_info->SenseInfo[2] == NO_SENSE || 5927 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 5928 return 0; 5929 5930 return 1; 5931 } 5932 5933 /* 5934 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary; 5935 * returns zero when the unit is ready, and non-zero when giving up. 5936 */ 5937 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h, 5938 struct CommandList *c, 5939 unsigned char lunaddr[], int reply_queue) 5940 { 5941 int rc; 5942 int count = 0; 5943 int waittime = 1; /* seconds */ 5944 5945 /* Send test unit ready until device ready, or give up. */ 5946 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) { 5947 5948 /* 5949 * Wait for a bit. do this first, because if we send 5950 * the TUR right away, the reset will just abort it. 5951 */ 5952 msleep(1000 * waittime); 5953 5954 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue); 5955 if (!rc) 5956 break; 5957 5958 /* Increase wait time with each try, up to a point. */ 5959 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 5960 waittime *= 2; 5961 5962 dev_warn(&h->pdev->dev, 5963 "waiting %d secs for device to become ready.\n", 5964 waittime); 5965 } 5966 5967 return rc; 5968 } 5969 5970 static int wait_for_device_to_become_ready(struct ctlr_info *h, 5971 unsigned char lunaddr[], 5972 int reply_queue) 5973 { 5974 int first_queue; 5975 int last_queue; 5976 int rq; 5977 int rc = 0; 5978 struct CommandList *c; 5979 5980 c = cmd_alloc(h); 5981 5982 /* 5983 * If no specific reply queue was requested, then send the TUR 5984 * repeatedly, requesting a reply on each reply queue; otherwise execute 5985 * the loop exactly once using only the specified queue. 5986 */ 5987 if (reply_queue == DEFAULT_REPLY_QUEUE) { 5988 first_queue = 0; 5989 last_queue = h->nreply_queues - 1; 5990 } else { 5991 first_queue = reply_queue; 5992 last_queue = reply_queue; 5993 } 5994 5995 for (rq = first_queue; rq <= last_queue; rq++) { 5996 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq); 5997 if (rc) 5998 break; 5999 } 6000 6001 if (rc) 6002 dev_warn(&h->pdev->dev, "giving up on device.\n"); 6003 else 6004 dev_warn(&h->pdev->dev, "device is ready.\n"); 6005 6006 cmd_free(h, c); 6007 return rc; 6008 } 6009 6010 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 6011 * complaining. Doing a host- or bus-reset can't do anything good here. 6012 */ 6013 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 6014 { 6015 int rc = SUCCESS; 6016 int i; 6017 struct ctlr_info *h; 6018 struct hpsa_scsi_dev_t *dev = NULL; 6019 u8 reset_type; 6020 char msg[48]; 6021 unsigned long flags; 6022 6023 /* find the controller to which the command to be aborted was sent */ 6024 h = sdev_to_hba(scsicmd->device); 6025 if (h == NULL) /* paranoia */ 6026 return FAILED; 6027 6028 spin_lock_irqsave(&h->reset_lock, flags); 6029 h->reset_in_progress = 1; 6030 spin_unlock_irqrestore(&h->reset_lock, flags); 6031 6032 if (lockup_detected(h)) { 6033 rc = FAILED; 6034 goto return_reset_status; 6035 } 6036 6037 dev = scsicmd->device->hostdata; 6038 if (!dev) { 6039 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__); 6040 rc = FAILED; 6041 goto return_reset_status; 6042 } 6043 6044 if (dev->devtype == TYPE_ENCLOSURE) { 6045 rc = SUCCESS; 6046 goto return_reset_status; 6047 } 6048 6049 /* if controller locked up, we can guarantee command won't complete */ 6050 if (lockup_detected(h)) { 6051 snprintf(msg, sizeof(msg), 6052 "cmd %d RESET FAILED, lockup detected", 6053 hpsa_get_cmd_index(scsicmd)); 6054 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 6055 rc = FAILED; 6056 goto return_reset_status; 6057 } 6058 6059 /* this reset request might be the result of a lockup; check */ 6060 if (detect_controller_lockup(h)) { 6061 snprintf(msg, sizeof(msg), 6062 "cmd %d RESET FAILED, new lockup detected", 6063 hpsa_get_cmd_index(scsicmd)); 6064 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 6065 rc = FAILED; 6066 goto return_reset_status; 6067 } 6068 6069 /* Do not attempt on controller */ 6070 if (is_hba_lunid(dev->scsi3addr)) { 6071 rc = SUCCESS; 6072 goto return_reset_status; 6073 } 6074 6075 if (is_logical_dev_addr_mode(dev->scsi3addr)) 6076 reset_type = HPSA_DEVICE_RESET_MSG; 6077 else 6078 reset_type = HPSA_PHYS_TARGET_RESET; 6079 6080 sprintf(msg, "resetting %s", 6081 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical "); 6082 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 6083 6084 /* 6085 * wait to see if any commands will complete before sending reset 6086 */ 6087 dev->in_reset = true; /* block any new cmds from OS for this device */ 6088 for (i = 0; i < 10; i++) { 6089 if (atomic_read(&dev->commands_outstanding) > 0) 6090 msleep(1000); 6091 else 6092 break; 6093 } 6094 6095 /* send a reset to the SCSI LUN which the command was sent to */ 6096 rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE); 6097 if (rc == 0) 6098 rc = SUCCESS; 6099 else 6100 rc = FAILED; 6101 6102 sprintf(msg, "reset %s %s", 6103 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ", 6104 rc == SUCCESS ? "completed successfully" : "failed"); 6105 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 6106 6107 return_reset_status: 6108 spin_lock_irqsave(&h->reset_lock, flags); 6109 h->reset_in_progress = 0; 6110 if (dev) 6111 dev->in_reset = false; 6112 spin_unlock_irqrestore(&h->reset_lock, flags); 6113 return rc; 6114 } 6115 6116 /* 6117 * For operations with an associated SCSI command, a command block is allocated 6118 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the 6119 * block request tag as an index into a table of entries. cmd_tagged_free() is 6120 * the complement, although cmd_free() may be called instead. 6121 * This function is only called for new requests from queue_command. 6122 */ 6123 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, 6124 struct scsi_cmnd *scmd) 6125 { 6126 int idx = hpsa_get_cmd_index(scmd); 6127 struct CommandList *c = h->cmd_pool + idx; 6128 6129 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) { 6130 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n", 6131 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1); 6132 /* The index value comes from the block layer, so if it's out of 6133 * bounds, it's probably not our bug. 6134 */ 6135 BUG(); 6136 } 6137 6138 if (unlikely(!hpsa_is_cmd_idle(c))) { 6139 /* 6140 * We expect that the SCSI layer will hand us a unique tag 6141 * value. Thus, there should never be a collision here between 6142 * two requests...because if the selected command isn't idle 6143 * then someone is going to be very disappointed. 6144 */ 6145 if (idx != h->last_collision_tag) { /* Print once per tag */ 6146 dev_warn(&h->pdev->dev, 6147 "%s: tag collision (tag=%d)\n", __func__, idx); 6148 if (scmd) 6149 scsi_print_command(scmd); 6150 h->last_collision_tag = idx; 6151 } 6152 return NULL; 6153 } 6154 6155 atomic_inc(&c->refcount); 6156 hpsa_cmd_partial_init(h, idx, c); 6157 6158 /* 6159 * This is a new command obtained from queue_command so 6160 * there have not been any driver initiated retry attempts. 6161 */ 6162 c->retry_pending = false; 6163 6164 return c; 6165 } 6166 6167 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c) 6168 { 6169 /* 6170 * Release our reference to the block. We don't need to do anything 6171 * else to free it, because it is accessed by index. 6172 */ 6173 (void)atomic_dec(&c->refcount); 6174 } 6175 6176 /* 6177 * For operations that cannot sleep, a command block is allocated at init, 6178 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 6179 * which ones are free or in use. Lock must be held when calling this. 6180 * cmd_free() is the complement. 6181 * This function never gives up and returns NULL. If it hangs, 6182 * another thread must call cmd_free() to free some tags. 6183 */ 6184 6185 static struct CommandList *cmd_alloc(struct ctlr_info *h) 6186 { 6187 struct CommandList *c; 6188 int refcount, i; 6189 int offset = 0; 6190 6191 /* 6192 * There is some *extremely* small but non-zero chance that that 6193 * multiple threads could get in here, and one thread could 6194 * be scanning through the list of bits looking for a free 6195 * one, but the free ones are always behind him, and other 6196 * threads sneak in behind him and eat them before he can 6197 * get to them, so that while there is always a free one, a 6198 * very unlucky thread might be starved anyway, never able to 6199 * beat the other threads. In reality, this happens so 6200 * infrequently as to be indistinguishable from never. 6201 * 6202 * Note that we start allocating commands before the SCSI host structure 6203 * is initialized. Since the search starts at bit zero, this 6204 * all works, since we have at least one command structure available; 6205 * however, it means that the structures with the low indexes have to be 6206 * reserved for driver-initiated requests, while requests from the block 6207 * layer will use the higher indexes. 6208 */ 6209 6210 for (;;) { 6211 i = find_next_zero_bit(h->cmd_pool_bits, 6212 HPSA_NRESERVED_CMDS, 6213 offset); 6214 if (unlikely(i >= HPSA_NRESERVED_CMDS)) { 6215 offset = 0; 6216 continue; 6217 } 6218 c = h->cmd_pool + i; 6219 refcount = atomic_inc_return(&c->refcount); 6220 if (unlikely(refcount > 1)) { 6221 cmd_free(h, c); /* already in use */ 6222 offset = (i + 1) % HPSA_NRESERVED_CMDS; 6223 continue; 6224 } 6225 set_bit(i, h->cmd_pool_bits); 6226 break; /* it's ours now. */ 6227 } 6228 hpsa_cmd_partial_init(h, i, c); 6229 c->device = NULL; 6230 6231 /* 6232 * cmd_alloc is for "internal" commands and they are never 6233 * retried. 6234 */ 6235 c->retry_pending = false; 6236 6237 return c; 6238 } 6239 6240 /* 6241 * This is the complementary operation to cmd_alloc(). Note, however, in some 6242 * corner cases it may also be used to free blocks allocated by 6243 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and 6244 * the clear-bit is harmless. 6245 */ 6246 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 6247 { 6248 if (atomic_dec_and_test(&c->refcount)) { 6249 int i; 6250 6251 i = c - h->cmd_pool; 6252 clear_bit(i, h->cmd_pool_bits); 6253 } 6254 } 6255 6256 #ifdef CONFIG_COMPAT 6257 6258 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd, 6259 void __user *arg) 6260 { 6261 struct ctlr_info *h = sdev_to_hba(dev); 6262 IOCTL32_Command_struct __user *arg32 = arg; 6263 IOCTL_Command_struct arg64; 6264 int err; 6265 u32 cp; 6266 6267 if (!arg) 6268 return -EINVAL; 6269 6270 memset(&arg64, 0, sizeof(arg64)); 6271 if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf))) 6272 return -EFAULT; 6273 if (get_user(cp, &arg32->buf)) 6274 return -EFAULT; 6275 arg64.buf = compat_ptr(cp); 6276 6277 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6278 return -EAGAIN; 6279 err = hpsa_passthru_ioctl(h, &arg64); 6280 atomic_inc(&h->passthru_cmds_avail); 6281 if (err) 6282 return err; 6283 if (copy_to_user(&arg32->error_info, &arg64.error_info, 6284 sizeof(arg32->error_info))) 6285 return -EFAULT; 6286 return 0; 6287 } 6288 6289 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 6290 unsigned int cmd, void __user *arg) 6291 { 6292 struct ctlr_info *h = sdev_to_hba(dev); 6293 BIG_IOCTL32_Command_struct __user *arg32 = arg; 6294 BIG_IOCTL_Command_struct arg64; 6295 int err; 6296 u32 cp; 6297 6298 if (!arg) 6299 return -EINVAL; 6300 memset(&arg64, 0, sizeof(arg64)); 6301 if (copy_from_user(&arg64, arg32, 6302 offsetof(BIG_IOCTL32_Command_struct, buf))) 6303 return -EFAULT; 6304 if (get_user(cp, &arg32->buf)) 6305 return -EFAULT; 6306 arg64.buf = compat_ptr(cp); 6307 6308 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6309 return -EAGAIN; 6310 err = hpsa_big_passthru_ioctl(h, &arg64); 6311 atomic_inc(&h->passthru_cmds_avail); 6312 if (err) 6313 return err; 6314 if (copy_to_user(&arg32->error_info, &arg64.error_info, 6315 sizeof(arg32->error_info))) 6316 return -EFAULT; 6317 return 0; 6318 } 6319 6320 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd, 6321 void __user *arg) 6322 { 6323 switch (cmd) { 6324 case CCISS_GETPCIINFO: 6325 case CCISS_GETINTINFO: 6326 case CCISS_SETINTINFO: 6327 case CCISS_GETNODENAME: 6328 case CCISS_SETNODENAME: 6329 case CCISS_GETHEARTBEAT: 6330 case CCISS_GETBUSTYPES: 6331 case CCISS_GETFIRMVER: 6332 case CCISS_GETDRIVVER: 6333 case CCISS_REVALIDVOLS: 6334 case CCISS_DEREGDISK: 6335 case CCISS_REGNEWDISK: 6336 case CCISS_REGNEWD: 6337 case CCISS_RESCANDISK: 6338 case CCISS_GETLUNINFO: 6339 return hpsa_ioctl(dev, cmd, arg); 6340 6341 case CCISS_PASSTHRU32: 6342 return hpsa_ioctl32_passthru(dev, cmd, arg); 6343 case CCISS_BIG_PASSTHRU32: 6344 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 6345 6346 default: 6347 return -ENOIOCTLCMD; 6348 } 6349 } 6350 #endif 6351 6352 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 6353 { 6354 struct hpsa_pci_info pciinfo; 6355 6356 if (!argp) 6357 return -EINVAL; 6358 pciinfo.domain = pci_domain_nr(h->pdev->bus); 6359 pciinfo.bus = h->pdev->bus->number; 6360 pciinfo.dev_fn = h->pdev->devfn; 6361 pciinfo.board_id = h->board_id; 6362 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 6363 return -EFAULT; 6364 return 0; 6365 } 6366 6367 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 6368 { 6369 DriverVer_type DriverVer; 6370 unsigned char vmaj, vmin, vsubmin; 6371 int rc; 6372 6373 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 6374 &vmaj, &vmin, &vsubmin); 6375 if (rc != 3) { 6376 dev_info(&h->pdev->dev, "driver version string '%s' " 6377 "unrecognized.", HPSA_DRIVER_VERSION); 6378 vmaj = 0; 6379 vmin = 0; 6380 vsubmin = 0; 6381 } 6382 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 6383 if (!argp) 6384 return -EINVAL; 6385 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 6386 return -EFAULT; 6387 return 0; 6388 } 6389 6390 static int hpsa_passthru_ioctl(struct ctlr_info *h, 6391 IOCTL_Command_struct *iocommand) 6392 { 6393 struct CommandList *c; 6394 char *buff = NULL; 6395 u64 temp64; 6396 int rc = 0; 6397 6398 if (!capable(CAP_SYS_RAWIO)) 6399 return -EPERM; 6400 if ((iocommand->buf_size < 1) && 6401 (iocommand->Request.Type.Direction != XFER_NONE)) { 6402 return -EINVAL; 6403 } 6404 if (iocommand->buf_size > 0) { 6405 if (iocommand->Request.Type.Direction & XFER_WRITE) { 6406 buff = memdup_user(iocommand->buf, iocommand->buf_size); 6407 if (IS_ERR(buff)) 6408 return PTR_ERR(buff); 6409 } else { 6410 buff = kzalloc(iocommand->buf_size, GFP_KERNEL); 6411 if (!buff) 6412 return -ENOMEM; 6413 } 6414 } 6415 c = cmd_alloc(h); 6416 6417 /* Fill in the command type */ 6418 c->cmd_type = CMD_IOCTL_PEND; 6419 c->scsi_cmd = SCSI_CMD_BUSY; 6420 /* Fill in Command Header */ 6421 c->Header.ReplyQueue = 0; /* unused in simple mode */ 6422 if (iocommand->buf_size > 0) { /* buffer to fill */ 6423 c->Header.SGList = 1; 6424 c->Header.SGTotal = cpu_to_le16(1); 6425 } else { /* no buffers to fill */ 6426 c->Header.SGList = 0; 6427 c->Header.SGTotal = cpu_to_le16(0); 6428 } 6429 memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN)); 6430 6431 /* Fill in Request block */ 6432 memcpy(&c->Request, &iocommand->Request, 6433 sizeof(c->Request)); 6434 6435 /* Fill in the scatter gather information */ 6436 if (iocommand->buf_size > 0) { 6437 temp64 = dma_map_single(&h->pdev->dev, buff, 6438 iocommand->buf_size, DMA_BIDIRECTIONAL); 6439 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) { 6440 c->SG[0].Addr = cpu_to_le64(0); 6441 c->SG[0].Len = cpu_to_le32(0); 6442 rc = -ENOMEM; 6443 goto out; 6444 } 6445 c->SG[0].Addr = cpu_to_le64(temp64); 6446 c->SG[0].Len = cpu_to_le32(iocommand->buf_size); 6447 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */ 6448 } 6449 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 6450 NO_TIMEOUT); 6451 if (iocommand->buf_size > 0) 6452 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL); 6453 check_ioctl_unit_attention(h, c); 6454 if (rc) { 6455 rc = -EIO; 6456 goto out; 6457 } 6458 6459 /* Copy the error information out */ 6460 memcpy(&iocommand->error_info, c->err_info, 6461 sizeof(iocommand->error_info)); 6462 if ((iocommand->Request.Type.Direction & XFER_READ) && 6463 iocommand->buf_size > 0) { 6464 /* Copy the data out of the buffer we created */ 6465 if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) { 6466 rc = -EFAULT; 6467 goto out; 6468 } 6469 } 6470 out: 6471 cmd_free(h, c); 6472 kfree(buff); 6473 return rc; 6474 } 6475 6476 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, 6477 BIG_IOCTL_Command_struct *ioc) 6478 { 6479 struct CommandList *c; 6480 unsigned char **buff = NULL; 6481 int *buff_size = NULL; 6482 u64 temp64; 6483 BYTE sg_used = 0; 6484 int status = 0; 6485 u32 left; 6486 u32 sz; 6487 BYTE __user *data_ptr; 6488 6489 if (!capable(CAP_SYS_RAWIO)) 6490 return -EPERM; 6491 6492 if ((ioc->buf_size < 1) && 6493 (ioc->Request.Type.Direction != XFER_NONE)) 6494 return -EINVAL; 6495 /* Check kmalloc limits using all SGs */ 6496 if (ioc->malloc_size > MAX_KMALLOC_SIZE) 6497 return -EINVAL; 6498 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) 6499 return -EINVAL; 6500 buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL); 6501 if (!buff) { 6502 status = -ENOMEM; 6503 goto cleanup1; 6504 } 6505 buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL); 6506 if (!buff_size) { 6507 status = -ENOMEM; 6508 goto cleanup1; 6509 } 6510 left = ioc->buf_size; 6511 data_ptr = ioc->buf; 6512 while (left) { 6513 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 6514 buff_size[sg_used] = sz; 6515 6516 if (ioc->Request.Type.Direction & XFER_WRITE) { 6517 buff[sg_used] = memdup_user(data_ptr, sz); 6518 if (IS_ERR(buff[sg_used])) { 6519 status = PTR_ERR(buff[sg_used]); 6520 goto cleanup1; 6521 } 6522 } else { 6523 buff[sg_used] = kzalloc(sz, GFP_KERNEL); 6524 if (!buff[sg_used]) { 6525 status = -ENOMEM; 6526 goto cleanup1; 6527 } 6528 } 6529 6530 left -= sz; 6531 data_ptr += sz; 6532 sg_used++; 6533 } 6534 c = cmd_alloc(h); 6535 6536 c->cmd_type = CMD_IOCTL_PEND; 6537 c->scsi_cmd = SCSI_CMD_BUSY; 6538 c->Header.ReplyQueue = 0; 6539 c->Header.SGList = (u8) sg_used; 6540 c->Header.SGTotal = cpu_to_le16(sg_used); 6541 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 6542 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 6543 if (ioc->buf_size > 0) { 6544 int i; 6545 for (i = 0; i < sg_used; i++) { 6546 temp64 = dma_map_single(&h->pdev->dev, buff[i], 6547 buff_size[i], DMA_BIDIRECTIONAL); 6548 if (dma_mapping_error(&h->pdev->dev, 6549 (dma_addr_t) temp64)) { 6550 c->SG[i].Addr = cpu_to_le64(0); 6551 c->SG[i].Len = cpu_to_le32(0); 6552 hpsa_pci_unmap(h->pdev, c, i, 6553 DMA_BIDIRECTIONAL); 6554 status = -ENOMEM; 6555 goto cleanup0; 6556 } 6557 c->SG[i].Addr = cpu_to_le64(temp64); 6558 c->SG[i].Len = cpu_to_le32(buff_size[i]); 6559 c->SG[i].Ext = cpu_to_le32(0); 6560 } 6561 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST); 6562 } 6563 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 6564 NO_TIMEOUT); 6565 if (sg_used) 6566 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL); 6567 check_ioctl_unit_attention(h, c); 6568 if (status) { 6569 status = -EIO; 6570 goto cleanup0; 6571 } 6572 6573 /* Copy the error information out */ 6574 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 6575 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) { 6576 int i; 6577 6578 /* Copy the data out of the buffer we created */ 6579 BYTE __user *ptr = ioc->buf; 6580 for (i = 0; i < sg_used; i++) { 6581 if (copy_to_user(ptr, buff[i], buff_size[i])) { 6582 status = -EFAULT; 6583 goto cleanup0; 6584 } 6585 ptr += buff_size[i]; 6586 } 6587 } 6588 status = 0; 6589 cleanup0: 6590 cmd_free(h, c); 6591 cleanup1: 6592 if (buff) { 6593 int i; 6594 6595 for (i = 0; i < sg_used; i++) 6596 kfree(buff[i]); 6597 kfree(buff); 6598 } 6599 kfree(buff_size); 6600 return status; 6601 } 6602 6603 static void check_ioctl_unit_attention(struct ctlr_info *h, 6604 struct CommandList *c) 6605 { 6606 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 6607 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 6608 (void) check_for_unit_attention(h, c); 6609 } 6610 6611 /* 6612 * ioctl 6613 */ 6614 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd, 6615 void __user *argp) 6616 { 6617 struct ctlr_info *h = sdev_to_hba(dev); 6618 int rc; 6619 6620 switch (cmd) { 6621 case CCISS_DEREGDISK: 6622 case CCISS_REGNEWDISK: 6623 case CCISS_REGNEWD: 6624 hpsa_scan_start(h->scsi_host); 6625 return 0; 6626 case CCISS_GETPCIINFO: 6627 return hpsa_getpciinfo_ioctl(h, argp); 6628 case CCISS_GETDRIVVER: 6629 return hpsa_getdrivver_ioctl(h, argp); 6630 case CCISS_PASSTHRU: { 6631 IOCTL_Command_struct iocommand; 6632 6633 if (!argp) 6634 return -EINVAL; 6635 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 6636 return -EFAULT; 6637 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6638 return -EAGAIN; 6639 rc = hpsa_passthru_ioctl(h, &iocommand); 6640 atomic_inc(&h->passthru_cmds_avail); 6641 if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand))) 6642 rc = -EFAULT; 6643 return rc; 6644 } 6645 case CCISS_BIG_PASSTHRU: { 6646 BIG_IOCTL_Command_struct ioc; 6647 if (!argp) 6648 return -EINVAL; 6649 if (copy_from_user(&ioc, argp, sizeof(ioc))) 6650 return -EFAULT; 6651 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6652 return -EAGAIN; 6653 rc = hpsa_big_passthru_ioctl(h, &ioc); 6654 atomic_inc(&h->passthru_cmds_avail); 6655 if (!rc && copy_to_user(argp, &ioc, sizeof(ioc))) 6656 rc = -EFAULT; 6657 return rc; 6658 } 6659 default: 6660 return -ENOTTY; 6661 } 6662 } 6663 6664 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type) 6665 { 6666 struct CommandList *c; 6667 6668 c = cmd_alloc(h); 6669 6670 /* fill_cmd can't fail here, no data buffer to map */ 6671 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, 6672 RAID_CTLR_LUNID, TYPE_MSG); 6673 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ 6674 c->waiting = NULL; 6675 enqueue_cmd_and_start_io(h, c); 6676 /* Don't wait for completion, the reset won't complete. Don't free 6677 * the command either. This is the last command we will send before 6678 * re-initializing everything, so it doesn't matter and won't leak. 6679 */ 6680 return; 6681 } 6682 6683 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 6684 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, 6685 int cmd_type) 6686 { 6687 enum dma_data_direction dir = DMA_NONE; 6688 6689 c->cmd_type = CMD_IOCTL_PEND; 6690 c->scsi_cmd = SCSI_CMD_BUSY; 6691 c->Header.ReplyQueue = 0; 6692 if (buff != NULL && size > 0) { 6693 c->Header.SGList = 1; 6694 c->Header.SGTotal = cpu_to_le16(1); 6695 } else { 6696 c->Header.SGList = 0; 6697 c->Header.SGTotal = cpu_to_le16(0); 6698 } 6699 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 6700 6701 if (cmd_type == TYPE_CMD) { 6702 switch (cmd) { 6703 case HPSA_INQUIRY: 6704 /* are we trying to read a vital product page */ 6705 if (page_code & VPD_PAGE) { 6706 c->Request.CDB[1] = 0x01; 6707 c->Request.CDB[2] = (page_code & 0xff); 6708 } 6709 c->Request.CDBLen = 6; 6710 c->Request.type_attr_dir = 6711 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6712 c->Request.Timeout = 0; 6713 c->Request.CDB[0] = HPSA_INQUIRY; 6714 c->Request.CDB[4] = size & 0xFF; 6715 break; 6716 case RECEIVE_DIAGNOSTIC: 6717 c->Request.CDBLen = 6; 6718 c->Request.type_attr_dir = 6719 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6720 c->Request.Timeout = 0; 6721 c->Request.CDB[0] = cmd; 6722 c->Request.CDB[1] = 1; 6723 c->Request.CDB[2] = 1; 6724 c->Request.CDB[3] = (size >> 8) & 0xFF; 6725 c->Request.CDB[4] = size & 0xFF; 6726 break; 6727 case HPSA_REPORT_LOG: 6728 case HPSA_REPORT_PHYS: 6729 /* Talking to controller so It's a physical command 6730 mode = 00 target = 0. Nothing to write. 6731 */ 6732 c->Request.CDBLen = 12; 6733 c->Request.type_attr_dir = 6734 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6735 c->Request.Timeout = 0; 6736 c->Request.CDB[0] = cmd; 6737 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 6738 c->Request.CDB[7] = (size >> 16) & 0xFF; 6739 c->Request.CDB[8] = (size >> 8) & 0xFF; 6740 c->Request.CDB[9] = size & 0xFF; 6741 break; 6742 case BMIC_SENSE_DIAG_OPTIONS: 6743 c->Request.CDBLen = 16; 6744 c->Request.type_attr_dir = 6745 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6746 c->Request.Timeout = 0; 6747 /* Spec says this should be BMIC_WRITE */ 6748 c->Request.CDB[0] = BMIC_READ; 6749 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS; 6750 break; 6751 case BMIC_SET_DIAG_OPTIONS: 6752 c->Request.CDBLen = 16; 6753 c->Request.type_attr_dir = 6754 TYPE_ATTR_DIR(cmd_type, 6755 ATTR_SIMPLE, XFER_WRITE); 6756 c->Request.Timeout = 0; 6757 c->Request.CDB[0] = BMIC_WRITE; 6758 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS; 6759 break; 6760 case HPSA_CACHE_FLUSH: 6761 c->Request.CDBLen = 12; 6762 c->Request.type_attr_dir = 6763 TYPE_ATTR_DIR(cmd_type, 6764 ATTR_SIMPLE, XFER_WRITE); 6765 c->Request.Timeout = 0; 6766 c->Request.CDB[0] = BMIC_WRITE; 6767 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 6768 c->Request.CDB[7] = (size >> 8) & 0xFF; 6769 c->Request.CDB[8] = size & 0xFF; 6770 break; 6771 case TEST_UNIT_READY: 6772 c->Request.CDBLen = 6; 6773 c->Request.type_attr_dir = 6774 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6775 c->Request.Timeout = 0; 6776 break; 6777 case HPSA_GET_RAID_MAP: 6778 c->Request.CDBLen = 12; 6779 c->Request.type_attr_dir = 6780 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6781 c->Request.Timeout = 0; 6782 c->Request.CDB[0] = HPSA_CISS_READ; 6783 c->Request.CDB[1] = cmd; 6784 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 6785 c->Request.CDB[7] = (size >> 16) & 0xFF; 6786 c->Request.CDB[8] = (size >> 8) & 0xFF; 6787 c->Request.CDB[9] = size & 0xFF; 6788 break; 6789 case BMIC_SENSE_CONTROLLER_PARAMETERS: 6790 c->Request.CDBLen = 10; 6791 c->Request.type_attr_dir = 6792 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6793 c->Request.Timeout = 0; 6794 c->Request.CDB[0] = BMIC_READ; 6795 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS; 6796 c->Request.CDB[7] = (size >> 16) & 0xFF; 6797 c->Request.CDB[8] = (size >> 8) & 0xFF; 6798 break; 6799 case BMIC_IDENTIFY_PHYSICAL_DEVICE: 6800 c->Request.CDBLen = 10; 6801 c->Request.type_attr_dir = 6802 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6803 c->Request.Timeout = 0; 6804 c->Request.CDB[0] = BMIC_READ; 6805 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE; 6806 c->Request.CDB[7] = (size >> 16) & 0xFF; 6807 c->Request.CDB[8] = (size >> 8) & 0XFF; 6808 break; 6809 case BMIC_SENSE_SUBSYSTEM_INFORMATION: 6810 c->Request.CDBLen = 10; 6811 c->Request.type_attr_dir = 6812 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6813 c->Request.Timeout = 0; 6814 c->Request.CDB[0] = BMIC_READ; 6815 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION; 6816 c->Request.CDB[7] = (size >> 16) & 0xFF; 6817 c->Request.CDB[8] = (size >> 8) & 0XFF; 6818 break; 6819 case BMIC_SENSE_STORAGE_BOX_PARAMS: 6820 c->Request.CDBLen = 10; 6821 c->Request.type_attr_dir = 6822 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6823 c->Request.Timeout = 0; 6824 c->Request.CDB[0] = BMIC_READ; 6825 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS; 6826 c->Request.CDB[7] = (size >> 16) & 0xFF; 6827 c->Request.CDB[8] = (size >> 8) & 0XFF; 6828 break; 6829 case BMIC_IDENTIFY_CONTROLLER: 6830 c->Request.CDBLen = 10; 6831 c->Request.type_attr_dir = 6832 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6833 c->Request.Timeout = 0; 6834 c->Request.CDB[0] = BMIC_READ; 6835 c->Request.CDB[1] = 0; 6836 c->Request.CDB[2] = 0; 6837 c->Request.CDB[3] = 0; 6838 c->Request.CDB[4] = 0; 6839 c->Request.CDB[5] = 0; 6840 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER; 6841 c->Request.CDB[7] = (size >> 16) & 0xFF; 6842 c->Request.CDB[8] = (size >> 8) & 0XFF; 6843 c->Request.CDB[9] = 0; 6844 break; 6845 default: 6846 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 6847 BUG(); 6848 } 6849 } else if (cmd_type == TYPE_MSG) { 6850 switch (cmd) { 6851 6852 case HPSA_PHYS_TARGET_RESET: 6853 c->Request.CDBLen = 16; 6854 c->Request.type_attr_dir = 6855 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6856 c->Request.Timeout = 0; /* Don't time out */ 6857 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 6858 c->Request.CDB[0] = HPSA_RESET; 6859 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE; 6860 /* Physical target reset needs no control bytes 4-7*/ 6861 c->Request.CDB[4] = 0x00; 6862 c->Request.CDB[5] = 0x00; 6863 c->Request.CDB[6] = 0x00; 6864 c->Request.CDB[7] = 0x00; 6865 break; 6866 case HPSA_DEVICE_RESET_MSG: 6867 c->Request.CDBLen = 16; 6868 c->Request.type_attr_dir = 6869 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6870 c->Request.Timeout = 0; /* Don't time out */ 6871 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 6872 c->Request.CDB[0] = cmd; 6873 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; 6874 /* If bytes 4-7 are zero, it means reset the */ 6875 /* LunID device */ 6876 c->Request.CDB[4] = 0x00; 6877 c->Request.CDB[5] = 0x00; 6878 c->Request.CDB[6] = 0x00; 6879 c->Request.CDB[7] = 0x00; 6880 break; 6881 default: 6882 dev_warn(&h->pdev->dev, "unknown message type %d\n", 6883 cmd); 6884 BUG(); 6885 } 6886 } else { 6887 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 6888 BUG(); 6889 } 6890 6891 switch (GET_DIR(c->Request.type_attr_dir)) { 6892 case XFER_READ: 6893 dir = DMA_FROM_DEVICE; 6894 break; 6895 case XFER_WRITE: 6896 dir = DMA_TO_DEVICE; 6897 break; 6898 case XFER_NONE: 6899 dir = DMA_NONE; 6900 break; 6901 default: 6902 dir = DMA_BIDIRECTIONAL; 6903 } 6904 if (hpsa_map_one(h->pdev, c, buff, size, dir)) 6905 return -1; 6906 return 0; 6907 } 6908 6909 /* 6910 * Map (physical) PCI mem into (virtual) kernel space 6911 */ 6912 static void __iomem *remap_pci_mem(ulong base, ulong size) 6913 { 6914 ulong page_base = ((ulong) base) & PAGE_MASK; 6915 ulong page_offs = ((ulong) base) - page_base; 6916 void __iomem *page_remapped = ioremap(page_base, 6917 page_offs + size); 6918 6919 return page_remapped ? (page_remapped + page_offs) : NULL; 6920 } 6921 6922 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) 6923 { 6924 return h->access.command_completed(h, q); 6925 } 6926 6927 static inline bool interrupt_pending(struct ctlr_info *h) 6928 { 6929 return h->access.intr_pending(h); 6930 } 6931 6932 static inline long interrupt_not_for_us(struct ctlr_info *h) 6933 { 6934 return (h->access.intr_pending(h) == 0) || 6935 (h->interrupts_enabled == 0); 6936 } 6937 6938 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 6939 u32 raw_tag) 6940 { 6941 if (unlikely(tag_index >= h->nr_cmds)) { 6942 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 6943 return 1; 6944 } 6945 return 0; 6946 } 6947 6948 static inline void finish_cmd(struct CommandList *c) 6949 { 6950 dial_up_lockup_detection_on_fw_flash_complete(c->h, c); 6951 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI 6952 || c->cmd_type == CMD_IOACCEL2)) 6953 complete_scsi_command(c); 6954 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF) 6955 complete(c->waiting); 6956 } 6957 6958 /* process completion of an indexed ("direct lookup") command */ 6959 static inline void process_indexed_cmd(struct ctlr_info *h, 6960 u32 raw_tag) 6961 { 6962 u32 tag_index; 6963 struct CommandList *c; 6964 6965 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT; 6966 if (!bad_tag(h, tag_index, raw_tag)) { 6967 c = h->cmd_pool + tag_index; 6968 finish_cmd(c); 6969 } 6970 } 6971 6972 /* Some controllers, like p400, will give us one interrupt 6973 * after a soft reset, even if we turned interrupts off. 6974 * Only need to check for this in the hpsa_xxx_discard_completions 6975 * functions. 6976 */ 6977 static int ignore_bogus_interrupt(struct ctlr_info *h) 6978 { 6979 if (likely(!reset_devices)) 6980 return 0; 6981 6982 if (likely(h->interrupts_enabled)) 6983 return 0; 6984 6985 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " 6986 "(known firmware bug.) Ignoring.\n"); 6987 6988 return 1; 6989 } 6990 6991 /* 6992 * Convert &h->q[x] (passed to interrupt handlers) back to h. 6993 * Relies on (h-q[x] == x) being true for x such that 6994 * 0 <= x < MAX_REPLY_QUEUES. 6995 */ 6996 static struct ctlr_info *queue_to_hba(u8 *queue) 6997 { 6998 return container_of((queue - *queue), struct ctlr_info, q[0]); 6999 } 7000 7001 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) 7002 { 7003 struct ctlr_info *h = queue_to_hba(queue); 7004 u8 q = *(u8 *) queue; 7005 u32 raw_tag; 7006 7007 if (ignore_bogus_interrupt(h)) 7008 return IRQ_NONE; 7009 7010 if (interrupt_not_for_us(h)) 7011 return IRQ_NONE; 7012 h->last_intr_timestamp = get_jiffies_64(); 7013 while (interrupt_pending(h)) { 7014 raw_tag = get_next_completion(h, q); 7015 while (raw_tag != FIFO_EMPTY) 7016 raw_tag = next_command(h, q); 7017 } 7018 return IRQ_HANDLED; 7019 } 7020 7021 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) 7022 { 7023 struct ctlr_info *h = queue_to_hba(queue); 7024 u32 raw_tag; 7025 u8 q = *(u8 *) queue; 7026 7027 if (ignore_bogus_interrupt(h)) 7028 return IRQ_NONE; 7029 7030 h->last_intr_timestamp = get_jiffies_64(); 7031 raw_tag = get_next_completion(h, q); 7032 while (raw_tag != FIFO_EMPTY) 7033 raw_tag = next_command(h, q); 7034 return IRQ_HANDLED; 7035 } 7036 7037 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) 7038 { 7039 struct ctlr_info *h = queue_to_hba((u8 *) queue); 7040 u32 raw_tag; 7041 u8 q = *(u8 *) queue; 7042 7043 if (interrupt_not_for_us(h)) 7044 return IRQ_NONE; 7045 h->last_intr_timestamp = get_jiffies_64(); 7046 while (interrupt_pending(h)) { 7047 raw_tag = get_next_completion(h, q); 7048 while (raw_tag != FIFO_EMPTY) { 7049 process_indexed_cmd(h, raw_tag); 7050 raw_tag = next_command(h, q); 7051 } 7052 } 7053 return IRQ_HANDLED; 7054 } 7055 7056 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) 7057 { 7058 struct ctlr_info *h = queue_to_hba(queue); 7059 u32 raw_tag; 7060 u8 q = *(u8 *) queue; 7061 7062 h->last_intr_timestamp = get_jiffies_64(); 7063 raw_tag = get_next_completion(h, q); 7064 while (raw_tag != FIFO_EMPTY) { 7065 process_indexed_cmd(h, raw_tag); 7066 raw_tag = next_command(h, q); 7067 } 7068 return IRQ_HANDLED; 7069 } 7070 7071 /* Send a message CDB to the firmware. Careful, this only works 7072 * in simple mode, not performant mode due to the tag lookup. 7073 * We only ever use this immediately after a controller reset. 7074 */ 7075 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 7076 unsigned char type) 7077 { 7078 struct Command { 7079 struct CommandListHeader CommandHeader; 7080 struct RequestBlock Request; 7081 struct ErrDescriptor ErrorDescriptor; 7082 }; 7083 struct Command *cmd; 7084 static const size_t cmd_sz = sizeof(*cmd) + 7085 sizeof(cmd->ErrorDescriptor); 7086 dma_addr_t paddr64; 7087 __le32 paddr32; 7088 u32 tag; 7089 void __iomem *vaddr; 7090 int i, err; 7091 7092 vaddr = pci_ioremap_bar(pdev, 0); 7093 if (vaddr == NULL) 7094 return -ENOMEM; 7095 7096 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 7097 * CCISS commands, so they must be allocated from the lower 4GiB of 7098 * memory. 7099 */ 7100 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 7101 if (err) { 7102 iounmap(vaddr); 7103 return err; 7104 } 7105 7106 cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL); 7107 if (cmd == NULL) { 7108 iounmap(vaddr); 7109 return -ENOMEM; 7110 } 7111 7112 /* This must fit, because of the 32-bit consistent DMA mask. Also, 7113 * although there's no guarantee, we assume that the address is at 7114 * least 4-byte aligned (most likely, it's page-aligned). 7115 */ 7116 paddr32 = cpu_to_le32(paddr64); 7117 7118 cmd->CommandHeader.ReplyQueue = 0; 7119 cmd->CommandHeader.SGList = 0; 7120 cmd->CommandHeader.SGTotal = cpu_to_le16(0); 7121 cmd->CommandHeader.tag = cpu_to_le64(paddr64); 7122 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 7123 7124 cmd->Request.CDBLen = 16; 7125 cmd->Request.type_attr_dir = 7126 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE); 7127 cmd->Request.Timeout = 0; /* Don't time out */ 7128 cmd->Request.CDB[0] = opcode; 7129 cmd->Request.CDB[1] = type; 7130 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 7131 cmd->ErrorDescriptor.Addr = 7132 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd))); 7133 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo)); 7134 7135 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET); 7136 7137 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 7138 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 7139 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64) 7140 break; 7141 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 7142 } 7143 7144 iounmap(vaddr); 7145 7146 /* we leak the DMA buffer here ... no choice since the controller could 7147 * still complete the command. 7148 */ 7149 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 7150 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 7151 opcode, type); 7152 return -ETIMEDOUT; 7153 } 7154 7155 dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64); 7156 7157 if (tag & HPSA_ERROR_BIT) { 7158 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 7159 opcode, type); 7160 return -EIO; 7161 } 7162 7163 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 7164 opcode, type); 7165 return 0; 7166 } 7167 7168 #define hpsa_noop(p) hpsa_message(p, 3, 0) 7169 7170 static int hpsa_controller_hard_reset(struct pci_dev *pdev, 7171 void __iomem *vaddr, u32 use_doorbell) 7172 { 7173 7174 if (use_doorbell) { 7175 /* For everything after the P600, the PCI power state method 7176 * of resetting the controller doesn't work, so we have this 7177 * other way using the doorbell register. 7178 */ 7179 dev_info(&pdev->dev, "using doorbell to reset controller\n"); 7180 writel(use_doorbell, vaddr + SA5_DOORBELL); 7181 7182 /* PMC hardware guys tell us we need a 10 second delay after 7183 * doorbell reset and before any attempt to talk to the board 7184 * at all to ensure that this actually works and doesn't fall 7185 * over in some weird corner cases. 7186 */ 7187 msleep(10000); 7188 } else { /* Try to do it the PCI power state way */ 7189 7190 /* Quoting from the Open CISS Specification: "The Power 7191 * Management Control/Status Register (CSR) controls the power 7192 * state of the device. The normal operating state is D0, 7193 * CSR=00h. The software off state is D3, CSR=03h. To reset 7194 * the controller, place the interface device in D3 then to D0, 7195 * this causes a secondary PCI reset which will reset the 7196 * controller." */ 7197 7198 int rc = 0; 7199 7200 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 7201 7202 /* enter the D3hot power management state */ 7203 rc = pci_set_power_state(pdev, PCI_D3hot); 7204 if (rc) 7205 return rc; 7206 7207 msleep(500); 7208 7209 /* enter the D0 power management state */ 7210 rc = pci_set_power_state(pdev, PCI_D0); 7211 if (rc) 7212 return rc; 7213 7214 /* 7215 * The P600 requires a small delay when changing states. 7216 * Otherwise we may think the board did not reset and we bail. 7217 * This for kdump only and is particular to the P600. 7218 */ 7219 msleep(500); 7220 } 7221 return 0; 7222 } 7223 7224 static void init_driver_version(char *driver_version, int len) 7225 { 7226 strscpy_pad(driver_version, HPSA " " HPSA_DRIVER_VERSION, len); 7227 } 7228 7229 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) 7230 { 7231 char *driver_version; 7232 int i, size = sizeof(cfgtable->driver_version); 7233 7234 driver_version = kmalloc(size, GFP_KERNEL); 7235 if (!driver_version) 7236 return -ENOMEM; 7237 7238 init_driver_version(driver_version, size); 7239 for (i = 0; i < size; i++) 7240 writeb(driver_version[i], &cfgtable->driver_version[i]); 7241 kfree(driver_version); 7242 return 0; 7243 } 7244 7245 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, 7246 unsigned char *driver_ver) 7247 { 7248 int i; 7249 7250 for (i = 0; i < sizeof(cfgtable->driver_version); i++) 7251 driver_ver[i] = readb(&cfgtable->driver_version[i]); 7252 } 7253 7254 static int controller_reset_failed(struct CfgTable __iomem *cfgtable) 7255 { 7256 7257 char *driver_ver, *old_driver_ver; 7258 int rc, size = sizeof(cfgtable->driver_version); 7259 7260 old_driver_ver = kmalloc_array(2, size, GFP_KERNEL); 7261 if (!old_driver_ver) 7262 return -ENOMEM; 7263 driver_ver = old_driver_ver + size; 7264 7265 /* After a reset, the 32 bytes of "driver version" in the cfgtable 7266 * should have been changed, otherwise we know the reset failed. 7267 */ 7268 init_driver_version(old_driver_ver, size); 7269 read_driver_ver_from_cfgtable(cfgtable, driver_ver); 7270 rc = !memcmp(driver_ver, old_driver_ver, size); 7271 kfree(old_driver_ver); 7272 return rc; 7273 } 7274 /* This does a hard reset of the controller using PCI power management 7275 * states or the using the doorbell register. 7276 */ 7277 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id) 7278 { 7279 u64 cfg_offset; 7280 u32 cfg_base_addr; 7281 u64 cfg_base_addr_index; 7282 void __iomem *vaddr; 7283 unsigned long paddr; 7284 u32 misc_fw_support; 7285 int rc; 7286 struct CfgTable __iomem *cfgtable; 7287 u32 use_doorbell; 7288 u16 command_register; 7289 7290 /* For controllers as old as the P600, this is very nearly 7291 * the same thing as 7292 * 7293 * pci_save_state(pci_dev); 7294 * pci_set_power_state(pci_dev, PCI_D3hot); 7295 * pci_set_power_state(pci_dev, PCI_D0); 7296 * pci_restore_state(pci_dev); 7297 * 7298 * For controllers newer than the P600, the pci power state 7299 * method of resetting doesn't work so we have another way 7300 * using the doorbell register. 7301 */ 7302 7303 if (!ctlr_is_resettable(board_id)) { 7304 dev_warn(&pdev->dev, "Controller not resettable\n"); 7305 return -ENODEV; 7306 } 7307 7308 /* if controller is soft- but not hard resettable... */ 7309 if (!ctlr_is_hard_resettable(board_id)) 7310 return -ENOTSUPP; /* try soft reset later. */ 7311 7312 /* Save the PCI command register */ 7313 pci_read_config_word(pdev, 4, &command_register); 7314 pci_save_state(pdev); 7315 7316 /* find the first memory BAR, so we can find the cfg table */ 7317 rc = hpsa_pci_find_memory_BAR(pdev, &paddr); 7318 if (rc) 7319 return rc; 7320 vaddr = remap_pci_mem(paddr, 0x250); 7321 if (!vaddr) 7322 return -ENOMEM; 7323 7324 /* find cfgtable in order to check if reset via doorbell is supported */ 7325 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, 7326 &cfg_base_addr_index, &cfg_offset); 7327 if (rc) 7328 goto unmap_vaddr; 7329 cfgtable = remap_pci_mem(pci_resource_start(pdev, 7330 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); 7331 if (!cfgtable) { 7332 rc = -ENOMEM; 7333 goto unmap_vaddr; 7334 } 7335 rc = write_driver_ver_to_cfgtable(cfgtable); 7336 if (rc) 7337 goto unmap_cfgtable; 7338 7339 /* If reset via doorbell register is supported, use that. 7340 * There are two such methods. Favor the newest method. 7341 */ 7342 misc_fw_support = readl(&cfgtable->misc_fw_support); 7343 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; 7344 if (use_doorbell) { 7345 use_doorbell = DOORBELL_CTLR_RESET2; 7346 } else { 7347 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; 7348 if (use_doorbell) { 7349 dev_warn(&pdev->dev, 7350 "Soft reset not supported. Firmware update is required.\n"); 7351 rc = -ENOTSUPP; /* try soft reset */ 7352 goto unmap_cfgtable; 7353 } 7354 } 7355 7356 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); 7357 if (rc) 7358 goto unmap_cfgtable; 7359 7360 pci_restore_state(pdev); 7361 pci_write_config_word(pdev, 4, command_register); 7362 7363 /* Some devices (notably the HP Smart Array 5i Controller) 7364 need a little pause here */ 7365 msleep(HPSA_POST_RESET_PAUSE_MSECS); 7366 7367 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); 7368 if (rc) { 7369 dev_warn(&pdev->dev, 7370 "Failed waiting for board to become ready after hard reset\n"); 7371 goto unmap_cfgtable; 7372 } 7373 7374 rc = controller_reset_failed(vaddr); 7375 if (rc < 0) 7376 goto unmap_cfgtable; 7377 if (rc) { 7378 dev_warn(&pdev->dev, "Unable to successfully reset " 7379 "controller. Will try soft reset.\n"); 7380 rc = -ENOTSUPP; 7381 } else { 7382 dev_info(&pdev->dev, "board ready after hard reset.\n"); 7383 } 7384 7385 unmap_cfgtable: 7386 iounmap(cfgtable); 7387 7388 unmap_vaddr: 7389 iounmap(vaddr); 7390 return rc; 7391 } 7392 7393 /* 7394 * We cannot read the structure directly, for portability we must use 7395 * the io functions. 7396 * This is for debug only. 7397 */ 7398 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb) 7399 { 7400 #ifdef HPSA_DEBUG 7401 int i; 7402 char temp_name[17]; 7403 7404 dev_info(dev, "Controller Configuration information\n"); 7405 dev_info(dev, "------------------------------------\n"); 7406 for (i = 0; i < 4; i++) 7407 temp_name[i] = readb(&(tb->Signature[i])); 7408 temp_name[4] = '\0'; 7409 dev_info(dev, " Signature = %s\n", temp_name); 7410 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 7411 dev_info(dev, " Transport methods supported = 0x%x\n", 7412 readl(&(tb->TransportSupport))); 7413 dev_info(dev, " Transport methods active = 0x%x\n", 7414 readl(&(tb->TransportActive))); 7415 dev_info(dev, " Requested transport Method = 0x%x\n", 7416 readl(&(tb->HostWrite.TransportRequest))); 7417 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 7418 readl(&(tb->HostWrite.CoalIntDelay))); 7419 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 7420 readl(&(tb->HostWrite.CoalIntCount))); 7421 dev_info(dev, " Max outstanding commands = %d\n", 7422 readl(&(tb->CmdsOutMax))); 7423 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 7424 for (i = 0; i < 16; i++) 7425 temp_name[i] = readb(&(tb->ServerName[i])); 7426 temp_name[16] = '\0'; 7427 dev_info(dev, " Server Name = %s\n", temp_name); 7428 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 7429 readl(&(tb->HeartBeat))); 7430 #endif /* HPSA_DEBUG */ 7431 } 7432 7433 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 7434 { 7435 int i, offset, mem_type, bar_type; 7436 7437 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 7438 return 0; 7439 offset = 0; 7440 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 7441 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 7442 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 7443 offset += 4; 7444 else { 7445 mem_type = pci_resource_flags(pdev, i) & 7446 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 7447 switch (mem_type) { 7448 case PCI_BASE_ADDRESS_MEM_TYPE_32: 7449 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 7450 offset += 4; /* 32 bit */ 7451 break; 7452 case PCI_BASE_ADDRESS_MEM_TYPE_64: 7453 offset += 8; 7454 break; 7455 default: /* reserved in PCI 2.2 */ 7456 dev_warn(&pdev->dev, 7457 "base address is invalid\n"); 7458 return -1; 7459 } 7460 } 7461 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 7462 return i + 1; 7463 } 7464 return -1; 7465 } 7466 7467 static void hpsa_disable_interrupt_mode(struct ctlr_info *h) 7468 { 7469 pci_free_irq_vectors(h->pdev); 7470 h->msix_vectors = 0; 7471 } 7472 7473 static void hpsa_setup_reply_map(struct ctlr_info *h) 7474 { 7475 const struct cpumask *mask; 7476 unsigned int queue, cpu; 7477 7478 for (queue = 0; queue < h->msix_vectors; queue++) { 7479 mask = pci_irq_get_affinity(h->pdev, queue); 7480 if (!mask) 7481 goto fallback; 7482 7483 for_each_cpu(cpu, mask) 7484 h->reply_map[cpu] = queue; 7485 } 7486 return; 7487 7488 fallback: 7489 for_each_possible_cpu(cpu) 7490 h->reply_map[cpu] = 0; 7491 } 7492 7493 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 7494 * controllers that are capable. If not, we use legacy INTx mode. 7495 */ 7496 static int hpsa_interrupt_mode(struct ctlr_info *h) 7497 { 7498 unsigned int flags = PCI_IRQ_INTX; 7499 int ret; 7500 7501 /* Some boards advertise MSI but don't really support it */ 7502 switch (h->board_id) { 7503 case 0x40700E11: 7504 case 0x40800E11: 7505 case 0x40820E11: 7506 case 0x40830E11: 7507 break; 7508 default: 7509 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES, 7510 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY); 7511 if (ret > 0) { 7512 h->msix_vectors = ret; 7513 return 0; 7514 } 7515 7516 flags |= PCI_IRQ_MSI; 7517 break; 7518 } 7519 7520 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags); 7521 if (ret < 0) 7522 return ret; 7523 return 0; 7524 } 7525 7526 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id, 7527 bool *legacy_board) 7528 { 7529 int i; 7530 u32 subsystem_vendor_id, subsystem_device_id; 7531 7532 subsystem_vendor_id = pdev->subsystem_vendor; 7533 subsystem_device_id = pdev->subsystem_device; 7534 *board_id = ((subsystem_device_id << 16) & 0xffff0000) | 7535 subsystem_vendor_id; 7536 7537 if (legacy_board) 7538 *legacy_board = false; 7539 for (i = 0; i < ARRAY_SIZE(products); i++) 7540 if (*board_id == products[i].board_id) { 7541 if (products[i].access != &SA5A_access && 7542 products[i].access != &SA5B_access) 7543 return i; 7544 dev_warn(&pdev->dev, 7545 "legacy board ID: 0x%08x\n", 7546 *board_id); 7547 if (legacy_board) 7548 *legacy_board = true; 7549 return i; 7550 } 7551 7552 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id); 7553 if (legacy_board) 7554 *legacy_board = true; 7555 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ 7556 } 7557 7558 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 7559 unsigned long *memory_bar) 7560 { 7561 int i; 7562 7563 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 7564 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 7565 /* addressing mode bits already removed */ 7566 *memory_bar = pci_resource_start(pdev, i); 7567 dev_dbg(&pdev->dev, "memory BAR = %lx\n", 7568 *memory_bar); 7569 return 0; 7570 } 7571 dev_warn(&pdev->dev, "no memory BAR found\n"); 7572 return -ENODEV; 7573 } 7574 7575 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, 7576 int wait_for_ready) 7577 { 7578 int i, iterations; 7579 u32 scratchpad; 7580 if (wait_for_ready) 7581 iterations = HPSA_BOARD_READY_ITERATIONS; 7582 else 7583 iterations = HPSA_BOARD_NOT_READY_ITERATIONS; 7584 7585 for (i = 0; i < iterations; i++) { 7586 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); 7587 if (wait_for_ready) { 7588 if (scratchpad == HPSA_FIRMWARE_READY) 7589 return 0; 7590 } else { 7591 if (scratchpad != HPSA_FIRMWARE_READY) 7592 return 0; 7593 } 7594 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 7595 } 7596 dev_warn(&pdev->dev, "board not ready, timed out.\n"); 7597 return -ENODEV; 7598 } 7599 7600 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, 7601 u32 *cfg_base_addr, u64 *cfg_base_addr_index, 7602 u64 *cfg_offset) 7603 { 7604 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); 7605 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); 7606 *cfg_base_addr &= (u32) 0x0000ffff; 7607 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); 7608 if (*cfg_base_addr_index == -1) { 7609 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 7610 return -ENODEV; 7611 } 7612 return 0; 7613 } 7614 7615 static void hpsa_free_cfgtables(struct ctlr_info *h) 7616 { 7617 if (h->transtable) { 7618 iounmap(h->transtable); 7619 h->transtable = NULL; 7620 } 7621 if (h->cfgtable) { 7622 iounmap(h->cfgtable); 7623 h->cfgtable = NULL; 7624 } 7625 } 7626 7627 /* Find and map CISS config table and transfer table 7628 * several items must be unmapped (freed) later 7629 */ 7630 static int hpsa_find_cfgtables(struct ctlr_info *h) 7631 { 7632 u64 cfg_offset; 7633 u32 cfg_base_addr; 7634 u64 cfg_base_addr_index; 7635 u32 trans_offset; 7636 int rc; 7637 7638 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 7639 &cfg_base_addr_index, &cfg_offset); 7640 if (rc) 7641 return rc; 7642 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, 7643 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); 7644 if (!h->cfgtable) { 7645 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n"); 7646 return -ENOMEM; 7647 } 7648 rc = write_driver_ver_to_cfgtable(h->cfgtable); 7649 if (rc) 7650 return rc; 7651 /* Find performant mode table. */ 7652 trans_offset = readl(&h->cfgtable->TransMethodOffset); 7653 h->transtable = remap_pci_mem(pci_resource_start(h->pdev, 7654 cfg_base_addr_index)+cfg_offset+trans_offset, 7655 sizeof(*h->transtable)); 7656 if (!h->transtable) { 7657 dev_err(&h->pdev->dev, "Failed mapping transfer table\n"); 7658 hpsa_free_cfgtables(h); 7659 return -ENOMEM; 7660 } 7661 return 0; 7662 } 7663 7664 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) 7665 { 7666 #define MIN_MAX_COMMANDS 16 7667 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS); 7668 7669 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands); 7670 7671 /* Limit commands in memory limited kdump scenario. */ 7672 if (reset_devices && h->max_commands > 32) 7673 h->max_commands = 32; 7674 7675 if (h->max_commands < MIN_MAX_COMMANDS) { 7676 dev_warn(&h->pdev->dev, 7677 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n", 7678 h->max_commands, 7679 MIN_MAX_COMMANDS); 7680 h->max_commands = MIN_MAX_COMMANDS; 7681 } 7682 } 7683 7684 /* If the controller reports that the total max sg entries is greater than 512, 7685 * then we know that chained SG blocks work. (Original smart arrays did not 7686 * support chained SG blocks and would return zero for max sg entries.) 7687 */ 7688 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h) 7689 { 7690 return h->maxsgentries > 512; 7691 } 7692 7693 /* Interrogate the hardware for some limits: 7694 * max commands, max SG elements without chaining, and with chaining, 7695 * SG chain block size, etc. 7696 */ 7697 static void hpsa_find_board_params(struct ctlr_info *h) 7698 { 7699 hpsa_get_max_perf_mode_cmds(h); 7700 h->nr_cmds = h->max_commands; 7701 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); 7702 h->fw_support = readl(&(h->cfgtable->misc_fw_support)); 7703 if (hpsa_supports_chained_sg_blocks(h)) { 7704 /* Limit in-command s/g elements to 32 save dma'able memory. */ 7705 h->max_cmd_sg_entries = 32; 7706 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries; 7707 h->maxsgentries--; /* save one for chain pointer */ 7708 } else { 7709 /* 7710 * Original smart arrays supported at most 31 s/g entries 7711 * embedded inline in the command (trying to use more 7712 * would lock up the controller) 7713 */ 7714 h->max_cmd_sg_entries = 31; 7715 h->maxsgentries = 31; /* default to traditional values */ 7716 h->chainsize = 0; 7717 } 7718 7719 /* Find out what task management functions are supported and cache */ 7720 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); 7721 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags)) 7722 dev_warn(&h->pdev->dev, "Physical aborts not supported\n"); 7723 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) 7724 dev_warn(&h->pdev->dev, "Logical aborts not supported\n"); 7725 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)) 7726 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n"); 7727 } 7728 7729 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) 7730 { 7731 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { 7732 dev_err(&h->pdev->dev, "not a valid CISS config table\n"); 7733 return false; 7734 } 7735 return true; 7736 } 7737 7738 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) 7739 { 7740 u32 driver_support; 7741 7742 driver_support = readl(&(h->cfgtable->driver_support)); 7743 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 7744 #ifdef CONFIG_X86 7745 driver_support |= ENABLE_SCSI_PREFETCH; 7746 #endif 7747 driver_support |= ENABLE_UNIT_ATTN; 7748 writel(driver_support, &(h->cfgtable->driver_support)); 7749 } 7750 7751 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result 7752 * in a prefetch beyond physical memory. 7753 */ 7754 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) 7755 { 7756 u32 dma_prefetch; 7757 7758 if (h->board_id != 0x3225103C) 7759 return; 7760 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 7761 dma_prefetch |= 0x8000; 7762 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 7763 } 7764 7765 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) 7766 { 7767 int i; 7768 u32 doorbell_value; 7769 unsigned long flags; 7770 /* wait until the clear_event_notify bit 6 is cleared by controller. */ 7771 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) { 7772 spin_lock_irqsave(&h->lock, flags); 7773 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 7774 spin_unlock_irqrestore(&h->lock, flags); 7775 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) 7776 goto done; 7777 /* delay and try again */ 7778 msleep(CLEAR_EVENT_WAIT_INTERVAL); 7779 } 7780 return -ENODEV; 7781 done: 7782 return 0; 7783 } 7784 7785 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h) 7786 { 7787 int i; 7788 u32 doorbell_value; 7789 unsigned long flags; 7790 7791 /* under certain very rare conditions, this can take awhile. 7792 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 7793 * as we enter this code.) 7794 */ 7795 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) { 7796 if (h->remove_in_progress) 7797 goto done; 7798 spin_lock_irqsave(&h->lock, flags); 7799 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 7800 spin_unlock_irqrestore(&h->lock, flags); 7801 if (!(doorbell_value & CFGTBL_ChangeReq)) 7802 goto done; 7803 /* delay and try again */ 7804 msleep(MODE_CHANGE_WAIT_INTERVAL); 7805 } 7806 return -ENODEV; 7807 done: 7808 return 0; 7809 } 7810 7811 /* return -ENODEV or other reason on error, 0 on success */ 7812 static int hpsa_enter_simple_mode(struct ctlr_info *h) 7813 { 7814 u32 trans_support; 7815 7816 trans_support = readl(&(h->cfgtable->TransportSupport)); 7817 if (!(trans_support & SIMPLE_MODE)) 7818 return -ENOTSUPP; 7819 7820 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 7821 7822 /* Update the field, and then ring the doorbell */ 7823 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 7824 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); 7825 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 7826 if (hpsa_wait_for_mode_change_ack(h)) 7827 goto error; 7828 print_cfg_table(&h->pdev->dev, h->cfgtable); 7829 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) 7830 goto error; 7831 h->transMethod = CFGTBL_Trans_Simple; 7832 return 0; 7833 error: 7834 dev_err(&h->pdev->dev, "failed to enter simple mode\n"); 7835 return -ENODEV; 7836 } 7837 7838 /* free items allocated or mapped by hpsa_pci_init */ 7839 static void hpsa_free_pci_init(struct ctlr_info *h) 7840 { 7841 hpsa_free_cfgtables(h); /* pci_init 4 */ 7842 iounmap(h->vaddr); /* pci_init 3 */ 7843 h->vaddr = NULL; 7844 hpsa_disable_interrupt_mode(h); /* pci_init 2 */ 7845 /* 7846 * call pci_disable_device before pci_release_regions per 7847 * Documentation/driver-api/pci/pci.rst 7848 */ 7849 pci_disable_device(h->pdev); /* pci_init 1 */ 7850 pci_release_regions(h->pdev); /* pci_init 2 */ 7851 } 7852 7853 /* several items must be freed later */ 7854 static int hpsa_pci_init(struct ctlr_info *h) 7855 { 7856 int prod_index, err; 7857 bool legacy_board; 7858 7859 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board); 7860 if (prod_index < 0) 7861 return prod_index; 7862 h->product_name = products[prod_index].product_name; 7863 h->access = *(products[prod_index].access); 7864 h->legacy_board = legacy_board; 7865 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | 7866 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); 7867 7868 err = pci_enable_device(h->pdev); 7869 if (err) { 7870 dev_err(&h->pdev->dev, "failed to enable PCI device\n"); 7871 pci_disable_device(h->pdev); 7872 return err; 7873 } 7874 7875 err = pci_request_regions(h->pdev, HPSA); 7876 if (err) { 7877 dev_err(&h->pdev->dev, 7878 "failed to obtain PCI resources\n"); 7879 pci_disable_device(h->pdev); 7880 return err; 7881 } 7882 7883 pci_set_master(h->pdev); 7884 7885 err = hpsa_interrupt_mode(h); 7886 if (err) 7887 goto clean1; 7888 7889 /* setup mapping between CPU and reply queue */ 7890 hpsa_setup_reply_map(h); 7891 7892 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); 7893 if (err) 7894 goto clean2; /* intmode+region, pci */ 7895 h->vaddr = remap_pci_mem(h->paddr, 0x250); 7896 if (!h->vaddr) { 7897 dev_err(&h->pdev->dev, "failed to remap PCI mem\n"); 7898 err = -ENOMEM; 7899 goto clean2; /* intmode+region, pci */ 7900 } 7901 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 7902 if (err) 7903 goto clean3; /* vaddr, intmode+region, pci */ 7904 err = hpsa_find_cfgtables(h); 7905 if (err) 7906 goto clean3; /* vaddr, intmode+region, pci */ 7907 hpsa_find_board_params(h); 7908 7909 if (!hpsa_CISS_signature_present(h)) { 7910 err = -ENODEV; 7911 goto clean4; /* cfgtables, vaddr, intmode+region, pci */ 7912 } 7913 hpsa_set_driver_support_bits(h); 7914 hpsa_p600_dma_prefetch_quirk(h); 7915 err = hpsa_enter_simple_mode(h); 7916 if (err) 7917 goto clean4; /* cfgtables, vaddr, intmode+region, pci */ 7918 return 0; 7919 7920 clean4: /* cfgtables, vaddr, intmode+region, pci */ 7921 hpsa_free_cfgtables(h); 7922 clean3: /* vaddr, intmode+region, pci */ 7923 iounmap(h->vaddr); 7924 h->vaddr = NULL; 7925 clean2: /* intmode+region, pci */ 7926 hpsa_disable_interrupt_mode(h); 7927 clean1: 7928 /* 7929 * call pci_disable_device before pci_release_regions per 7930 * Documentation/driver-api/pci/pci.rst 7931 */ 7932 pci_disable_device(h->pdev); 7933 pci_release_regions(h->pdev); 7934 return err; 7935 } 7936 7937 static void hpsa_hba_inquiry(struct ctlr_info *h) 7938 { 7939 int rc; 7940 7941 #define HBA_INQUIRY_BYTE_COUNT 64 7942 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 7943 if (!h->hba_inquiry_data) 7944 return; 7945 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 7946 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 7947 if (rc != 0) { 7948 kfree(h->hba_inquiry_data); 7949 h->hba_inquiry_data = NULL; 7950 } 7951 } 7952 7953 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id) 7954 { 7955 int rc, i; 7956 void __iomem *vaddr; 7957 7958 if (!reset_devices) 7959 return 0; 7960 7961 /* kdump kernel is loading, we don't know in which state is 7962 * the pci interface. The dev->enable_cnt is equal zero 7963 * so we call enable+disable, wait a while and switch it on. 7964 */ 7965 rc = pci_enable_device(pdev); 7966 if (rc) { 7967 dev_warn(&pdev->dev, "Failed to enable PCI device\n"); 7968 return -ENODEV; 7969 } 7970 pci_disable_device(pdev); 7971 msleep(260); /* a randomly chosen number */ 7972 rc = pci_enable_device(pdev); 7973 if (rc) { 7974 dev_warn(&pdev->dev, "failed to enable device.\n"); 7975 return -ENODEV; 7976 } 7977 7978 pci_set_master(pdev); 7979 7980 vaddr = pci_ioremap_bar(pdev, 0); 7981 if (vaddr == NULL) { 7982 rc = -ENOMEM; 7983 goto out_disable; 7984 } 7985 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET); 7986 iounmap(vaddr); 7987 7988 /* Reset the controller with a PCI power-cycle or via doorbell */ 7989 rc = hpsa_kdump_hard_reset_controller(pdev, board_id); 7990 7991 /* -ENOTSUPP here means we cannot reset the controller 7992 * but it's already (and still) up and running in 7993 * "performant mode". Or, it might be 640x, which can't reset 7994 * due to concerns about shared bbwc between 6402/6404 pair. 7995 */ 7996 if (rc) 7997 goto out_disable; 7998 7999 /* Now try to get the controller to respond to a no-op */ 8000 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n"); 8001 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 8002 if (hpsa_noop(pdev) == 0) 8003 break; 8004 else 8005 dev_warn(&pdev->dev, "no-op failed%s\n", 8006 (i < 11 ? "; re-trying" : "")); 8007 } 8008 8009 out_disable: 8010 8011 pci_disable_device(pdev); 8012 return rc; 8013 } 8014 8015 static void hpsa_free_cmd_pool(struct ctlr_info *h) 8016 { 8017 bitmap_free(h->cmd_pool_bits); 8018 h->cmd_pool_bits = NULL; 8019 if (h->cmd_pool) { 8020 dma_free_coherent(&h->pdev->dev, 8021 h->nr_cmds * sizeof(struct CommandList), 8022 h->cmd_pool, 8023 h->cmd_pool_dhandle); 8024 h->cmd_pool = NULL; 8025 h->cmd_pool_dhandle = 0; 8026 } 8027 if (h->errinfo_pool) { 8028 dma_free_coherent(&h->pdev->dev, 8029 h->nr_cmds * sizeof(struct ErrorInfo), 8030 h->errinfo_pool, 8031 h->errinfo_pool_dhandle); 8032 h->errinfo_pool = NULL; 8033 h->errinfo_pool_dhandle = 0; 8034 } 8035 } 8036 8037 static int hpsa_alloc_cmd_pool(struct ctlr_info *h) 8038 { 8039 h->cmd_pool_bits = bitmap_zalloc(h->nr_cmds, GFP_KERNEL); 8040 h->cmd_pool = dma_alloc_coherent(&h->pdev->dev, 8041 h->nr_cmds * sizeof(*h->cmd_pool), 8042 &h->cmd_pool_dhandle, GFP_KERNEL); 8043 h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev, 8044 h->nr_cmds * sizeof(*h->errinfo_pool), 8045 &h->errinfo_pool_dhandle, GFP_KERNEL); 8046 if ((h->cmd_pool_bits == NULL) 8047 || (h->cmd_pool == NULL) 8048 || (h->errinfo_pool == NULL)) { 8049 dev_err(&h->pdev->dev, "out of memory in %s", __func__); 8050 goto clean_up; 8051 } 8052 hpsa_preinitialize_commands(h); 8053 return 0; 8054 clean_up: 8055 hpsa_free_cmd_pool(h); 8056 return -ENOMEM; 8057 } 8058 8059 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */ 8060 static void hpsa_free_irqs(struct ctlr_info *h) 8061 { 8062 int i; 8063 int irq_vector = 0; 8064 8065 if (hpsa_simple_mode) 8066 irq_vector = h->intr_mode; 8067 8068 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) { 8069 /* Single reply queue, only one irq to free */ 8070 free_irq(pci_irq_vector(h->pdev, irq_vector), 8071 &h->q[h->intr_mode]); 8072 h->q[h->intr_mode] = 0; 8073 return; 8074 } 8075 8076 for (i = 0; i < h->msix_vectors; i++) { 8077 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]); 8078 h->q[i] = 0; 8079 } 8080 for (; i < MAX_REPLY_QUEUES; i++) 8081 h->q[i] = 0; 8082 } 8083 8084 /* returns 0 on success; cleans up and returns -Enn on error */ 8085 static int hpsa_request_irqs(struct ctlr_info *h, 8086 irqreturn_t (*msixhandler)(int, void *), 8087 irqreturn_t (*intxhandler)(int, void *)) 8088 { 8089 int rc, i; 8090 int irq_vector = 0; 8091 8092 if (hpsa_simple_mode) 8093 irq_vector = h->intr_mode; 8094 8095 /* 8096 * initialize h->q[x] = x so that interrupt handlers know which 8097 * queue to process. 8098 */ 8099 for (i = 0; i < MAX_REPLY_QUEUES; i++) 8100 h->q[i] = (u8) i; 8101 8102 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) { 8103 /* If performant mode and MSI-X, use multiple reply queues */ 8104 for (i = 0; i < h->msix_vectors; i++) { 8105 sprintf(h->intrname[i], "%s-msix%d", h->devname, i); 8106 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler, 8107 0, h->intrname[i], 8108 &h->q[i]); 8109 if (rc) { 8110 int j; 8111 8112 dev_err(&h->pdev->dev, 8113 "failed to get irq %d for %s\n", 8114 pci_irq_vector(h->pdev, i), h->devname); 8115 for (j = 0; j < i; j++) { 8116 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]); 8117 h->q[j] = 0; 8118 } 8119 for (; j < MAX_REPLY_QUEUES; j++) 8120 h->q[j] = 0; 8121 return rc; 8122 } 8123 } 8124 } else { 8125 /* Use single reply pool */ 8126 if (h->msix_vectors > 0 || h->pdev->msi_enabled) { 8127 sprintf(h->intrname[0], "%s-msi%s", h->devname, 8128 h->msix_vectors ? "x" : ""); 8129 rc = request_irq(pci_irq_vector(h->pdev, irq_vector), 8130 msixhandler, 0, 8131 h->intrname[0], 8132 &h->q[h->intr_mode]); 8133 } else { 8134 sprintf(h->intrname[h->intr_mode], 8135 "%s-intx", h->devname); 8136 rc = request_irq(pci_irq_vector(h->pdev, irq_vector), 8137 intxhandler, IRQF_SHARED, 8138 h->intrname[0], 8139 &h->q[h->intr_mode]); 8140 } 8141 } 8142 if (rc) { 8143 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n", 8144 pci_irq_vector(h->pdev, irq_vector), h->devname); 8145 hpsa_free_irqs(h); 8146 return -ENODEV; 8147 } 8148 return 0; 8149 } 8150 8151 static int hpsa_kdump_soft_reset(struct ctlr_info *h) 8152 { 8153 int rc; 8154 hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER); 8155 8156 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); 8157 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY); 8158 if (rc) { 8159 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); 8160 return rc; 8161 } 8162 8163 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); 8164 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 8165 if (rc) { 8166 dev_warn(&h->pdev->dev, "Board failed to become ready " 8167 "after soft reset.\n"); 8168 return rc; 8169 } 8170 8171 return 0; 8172 } 8173 8174 static void hpsa_free_reply_queues(struct ctlr_info *h) 8175 { 8176 int i; 8177 8178 for (i = 0; i < h->nreply_queues; i++) { 8179 if (!h->reply_queue[i].head) 8180 continue; 8181 dma_free_coherent(&h->pdev->dev, 8182 h->reply_queue_size, 8183 h->reply_queue[i].head, 8184 h->reply_queue[i].busaddr); 8185 h->reply_queue[i].head = NULL; 8186 h->reply_queue[i].busaddr = 0; 8187 } 8188 h->reply_queue_size = 0; 8189 } 8190 8191 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) 8192 { 8193 hpsa_free_performant_mode(h); /* init_one 7 */ 8194 hpsa_free_sg_chain_blocks(h); /* init_one 6 */ 8195 hpsa_free_cmd_pool(h); /* init_one 5 */ 8196 hpsa_free_irqs(h); /* init_one 4 */ 8197 scsi_host_put(h->scsi_host); /* init_one 3 */ 8198 h->scsi_host = NULL; /* init_one 3 */ 8199 hpsa_free_pci_init(h); /* init_one 2_5 */ 8200 free_percpu(h->lockup_detected); /* init_one 2 */ 8201 h->lockup_detected = NULL; /* init_one 2 */ 8202 if (h->resubmit_wq) { 8203 destroy_workqueue(h->resubmit_wq); /* init_one 1 */ 8204 h->resubmit_wq = NULL; 8205 } 8206 if (h->rescan_ctlr_wq) { 8207 destroy_workqueue(h->rescan_ctlr_wq); 8208 h->rescan_ctlr_wq = NULL; 8209 } 8210 if (h->monitor_ctlr_wq) { 8211 destroy_workqueue(h->monitor_ctlr_wq); 8212 h->monitor_ctlr_wq = NULL; 8213 } 8214 8215 kfree(h); /* init_one 1 */ 8216 } 8217 8218 /* Called when controller lockup detected. */ 8219 static void fail_all_outstanding_cmds(struct ctlr_info *h) 8220 { 8221 int i, refcount; 8222 struct CommandList *c; 8223 int failcount = 0; 8224 8225 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */ 8226 for (i = 0; i < h->nr_cmds; i++) { 8227 c = h->cmd_pool + i; 8228 refcount = atomic_inc_return(&c->refcount); 8229 if (refcount > 1) { 8230 c->err_info->CommandStatus = CMD_CTLR_LOCKUP; 8231 finish_cmd(c); 8232 atomic_dec(&h->commands_outstanding); 8233 failcount++; 8234 } 8235 cmd_free(h, c); 8236 } 8237 dev_warn(&h->pdev->dev, 8238 "failed %d commands in fail_all\n", failcount); 8239 } 8240 8241 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value) 8242 { 8243 int cpu; 8244 8245 for_each_online_cpu(cpu) { 8246 u32 *lockup_detected; 8247 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); 8248 *lockup_detected = value; 8249 } 8250 wmb(); /* be sure the per-cpu variables are out to memory */ 8251 } 8252 8253 static void controller_lockup_detected(struct ctlr_info *h) 8254 { 8255 unsigned long flags; 8256 u32 lockup_detected; 8257 8258 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8259 spin_lock_irqsave(&h->lock, flags); 8260 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); 8261 if (!lockup_detected) { 8262 /* no heartbeat, but controller gave us a zero. */ 8263 dev_warn(&h->pdev->dev, 8264 "lockup detected after %d but scratchpad register is zero\n", 8265 h->heartbeat_sample_interval / HZ); 8266 lockup_detected = 0xffffffff; 8267 } 8268 set_lockup_detected_for_all_cpus(h, lockup_detected); 8269 spin_unlock_irqrestore(&h->lock, flags); 8270 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n", 8271 lockup_detected, h->heartbeat_sample_interval / HZ); 8272 if (lockup_detected == 0xffff0000) { 8273 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n"); 8274 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL); 8275 } 8276 pci_disable_device(h->pdev); 8277 fail_all_outstanding_cmds(h); 8278 } 8279 8280 static int detect_controller_lockup(struct ctlr_info *h) 8281 { 8282 u64 now; 8283 u32 heartbeat; 8284 unsigned long flags; 8285 8286 now = get_jiffies_64(); 8287 /* If we've received an interrupt recently, we're ok. */ 8288 if (time_after64(h->last_intr_timestamp + 8289 (h->heartbeat_sample_interval), now)) 8290 return false; 8291 8292 /* 8293 * If we've already checked the heartbeat recently, we're ok. 8294 * This could happen if someone sends us a signal. We 8295 * otherwise don't care about signals in this thread. 8296 */ 8297 if (time_after64(h->last_heartbeat_timestamp + 8298 (h->heartbeat_sample_interval), now)) 8299 return false; 8300 8301 /* If heartbeat has not changed since we last looked, we're not ok. */ 8302 spin_lock_irqsave(&h->lock, flags); 8303 heartbeat = readl(&h->cfgtable->HeartBeat); 8304 spin_unlock_irqrestore(&h->lock, flags); 8305 if (h->last_heartbeat == heartbeat) { 8306 controller_lockup_detected(h); 8307 return true; 8308 } 8309 8310 /* We're ok. */ 8311 h->last_heartbeat = heartbeat; 8312 h->last_heartbeat_timestamp = now; 8313 return false; 8314 } 8315 8316 /* 8317 * Set ioaccel status for all ioaccel volumes. 8318 * 8319 * Called from monitor controller worker (hpsa_event_monitor_worker) 8320 * 8321 * A Volume (or Volumes that comprise an Array set) may be undergoing a 8322 * transformation, so we will be turning off ioaccel for all volumes that 8323 * make up the Array. 8324 */ 8325 static void hpsa_set_ioaccel_status(struct ctlr_info *h) 8326 { 8327 int rc; 8328 int i; 8329 u8 ioaccel_status; 8330 unsigned char *buf; 8331 struct hpsa_scsi_dev_t *device; 8332 8333 if (!h) 8334 return; 8335 8336 buf = kmalloc(64, GFP_KERNEL); 8337 if (!buf) 8338 return; 8339 8340 /* 8341 * Run through current device list used during I/O requests. 8342 */ 8343 for (i = 0; i < h->ndevices; i++) { 8344 int offload_to_be_enabled = 0; 8345 int offload_config = 0; 8346 8347 device = h->dev[i]; 8348 8349 if (!device) 8350 continue; 8351 if (!hpsa_vpd_page_supported(h, device->scsi3addr, 8352 HPSA_VPD_LV_IOACCEL_STATUS)) 8353 continue; 8354 8355 memset(buf, 0, 64); 8356 8357 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr, 8358 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, 8359 buf, 64); 8360 if (rc != 0) 8361 continue; 8362 8363 ioaccel_status = buf[IOACCEL_STATUS_BYTE]; 8364 8365 /* 8366 * Check if offload is still configured on 8367 */ 8368 offload_config = 8369 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); 8370 /* 8371 * If offload is configured on, check to see if ioaccel 8372 * needs to be enabled. 8373 */ 8374 if (offload_config) 8375 offload_to_be_enabled = 8376 !!(ioaccel_status & OFFLOAD_ENABLED_BIT); 8377 8378 /* 8379 * If ioaccel is to be re-enabled, re-enable later during the 8380 * scan operation so the driver can get a fresh raidmap 8381 * before turning ioaccel back on. 8382 */ 8383 if (offload_to_be_enabled) 8384 continue; 8385 8386 /* 8387 * Immediately turn off ioaccel for any volume the 8388 * controller tells us to. Some of the reasons could be: 8389 * transformation - change to the LVs of an Array. 8390 * degraded volume - component failure 8391 */ 8392 hpsa_turn_off_ioaccel_for_device(device); 8393 } 8394 8395 kfree(buf); 8396 } 8397 8398 static void hpsa_ack_ctlr_events(struct ctlr_info *h) 8399 { 8400 char *event_type; 8401 8402 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) 8403 return; 8404 8405 /* Ask the controller to clear the events we're handling. */ 8406 if ((h->transMethod & (CFGTBL_Trans_io_accel1 8407 | CFGTBL_Trans_io_accel2)) && 8408 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || 8409 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { 8410 8411 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) 8412 event_type = "state change"; 8413 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) 8414 event_type = "configuration change"; 8415 /* Stop sending new RAID offload reqs via the IO accelerator */ 8416 scsi_block_requests(h->scsi_host); 8417 hpsa_set_ioaccel_status(h); 8418 hpsa_drain_accel_commands(h); 8419 /* Set 'accelerator path config change' bit */ 8420 dev_warn(&h->pdev->dev, 8421 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", 8422 h->events, event_type); 8423 writel(h->events, &(h->cfgtable->clear_event_notify)); 8424 /* Set the "clear event notify field update" bit 6 */ 8425 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); 8426 /* Wait until ctlr clears 'clear event notify field', bit 6 */ 8427 hpsa_wait_for_clear_event_notify_ack(h); 8428 scsi_unblock_requests(h->scsi_host); 8429 } else { 8430 /* Acknowledge controller notification events. */ 8431 writel(h->events, &(h->cfgtable->clear_event_notify)); 8432 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); 8433 hpsa_wait_for_clear_event_notify_ack(h); 8434 } 8435 return; 8436 } 8437 8438 /* Check a register on the controller to see if there are configuration 8439 * changes (added/changed/removed logical drives, etc.) which mean that 8440 * we should rescan the controller for devices. 8441 * Also check flag for driver-initiated rescan. 8442 */ 8443 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h) 8444 { 8445 if (h->drv_req_rescan) { 8446 h->drv_req_rescan = 0; 8447 return 1; 8448 } 8449 8450 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) 8451 return 0; 8452 8453 h->events = readl(&(h->cfgtable->event_notify)); 8454 return h->events & RESCAN_REQUIRED_EVENT_BITS; 8455 } 8456 8457 /* 8458 * Check if any of the offline devices have become ready 8459 */ 8460 static int hpsa_offline_devices_ready(struct ctlr_info *h) 8461 { 8462 unsigned long flags; 8463 struct offline_device_entry *d; 8464 struct list_head *this, *tmp; 8465 8466 spin_lock_irqsave(&h->offline_device_lock, flags); 8467 list_for_each_safe(this, tmp, &h->offline_device_list) { 8468 d = list_entry(this, struct offline_device_entry, 8469 offline_list); 8470 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8471 if (!hpsa_volume_offline(h, d->scsi3addr)) { 8472 spin_lock_irqsave(&h->offline_device_lock, flags); 8473 list_del(&d->offline_list); 8474 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8475 return 1; 8476 } 8477 spin_lock_irqsave(&h->offline_device_lock, flags); 8478 } 8479 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8480 return 0; 8481 } 8482 8483 static int hpsa_luns_changed(struct ctlr_info *h) 8484 { 8485 int rc = 1; /* assume there are changes */ 8486 struct ReportLUNdata *logdev = NULL; 8487 8488 /* if we can't find out if lun data has changed, 8489 * assume that it has. 8490 */ 8491 8492 if (!h->lastlogicals) 8493 return rc; 8494 8495 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL); 8496 if (!logdev) 8497 return rc; 8498 8499 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) { 8500 dev_warn(&h->pdev->dev, 8501 "report luns failed, can't track lun changes.\n"); 8502 goto out; 8503 } 8504 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) { 8505 dev_info(&h->pdev->dev, 8506 "Lun changes detected.\n"); 8507 memcpy(h->lastlogicals, logdev, sizeof(*logdev)); 8508 goto out; 8509 } else 8510 rc = 0; /* no changes detected. */ 8511 out: 8512 kfree(logdev); 8513 return rc; 8514 } 8515 8516 static void hpsa_perform_rescan(struct ctlr_info *h) 8517 { 8518 struct Scsi_Host *sh = NULL; 8519 unsigned long flags; 8520 8521 /* 8522 * Do the scan after the reset 8523 */ 8524 spin_lock_irqsave(&h->reset_lock, flags); 8525 if (h->reset_in_progress) { 8526 h->drv_req_rescan = 1; 8527 spin_unlock_irqrestore(&h->reset_lock, flags); 8528 return; 8529 } 8530 spin_unlock_irqrestore(&h->reset_lock, flags); 8531 8532 sh = scsi_host_get(h->scsi_host); 8533 if (sh != NULL) { 8534 hpsa_scan_start(sh); 8535 scsi_host_put(sh); 8536 h->drv_req_rescan = 0; 8537 } 8538 } 8539 8540 /* 8541 * watch for controller events 8542 */ 8543 static void hpsa_event_monitor_worker(struct work_struct *work) 8544 { 8545 struct ctlr_info *h = container_of(to_delayed_work(work), 8546 struct ctlr_info, event_monitor_work); 8547 unsigned long flags; 8548 8549 spin_lock_irqsave(&h->lock, flags); 8550 if (h->remove_in_progress) { 8551 spin_unlock_irqrestore(&h->lock, flags); 8552 return; 8553 } 8554 spin_unlock_irqrestore(&h->lock, flags); 8555 8556 if (hpsa_ctlr_needs_rescan(h)) { 8557 hpsa_ack_ctlr_events(h); 8558 hpsa_perform_rescan(h); 8559 } 8560 8561 spin_lock_irqsave(&h->lock, flags); 8562 if (!h->remove_in_progress) 8563 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work, 8564 HPSA_EVENT_MONITOR_INTERVAL); 8565 spin_unlock_irqrestore(&h->lock, flags); 8566 } 8567 8568 static void hpsa_rescan_ctlr_worker(struct work_struct *work) 8569 { 8570 unsigned long flags; 8571 struct ctlr_info *h = container_of(to_delayed_work(work), 8572 struct ctlr_info, rescan_ctlr_work); 8573 8574 spin_lock_irqsave(&h->lock, flags); 8575 if (h->remove_in_progress) { 8576 spin_unlock_irqrestore(&h->lock, flags); 8577 return; 8578 } 8579 spin_unlock_irqrestore(&h->lock, flags); 8580 8581 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) { 8582 hpsa_perform_rescan(h); 8583 } else if (h->discovery_polling) { 8584 if (hpsa_luns_changed(h)) { 8585 dev_info(&h->pdev->dev, 8586 "driver discovery polling rescan.\n"); 8587 hpsa_perform_rescan(h); 8588 } 8589 } 8590 spin_lock_irqsave(&h->lock, flags); 8591 if (!h->remove_in_progress) 8592 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, 8593 h->heartbeat_sample_interval); 8594 spin_unlock_irqrestore(&h->lock, flags); 8595 } 8596 8597 static void hpsa_monitor_ctlr_worker(struct work_struct *work) 8598 { 8599 unsigned long flags; 8600 struct ctlr_info *h = container_of(to_delayed_work(work), 8601 struct ctlr_info, monitor_ctlr_work); 8602 8603 detect_controller_lockup(h); 8604 if (lockup_detected(h)) 8605 return; 8606 8607 spin_lock_irqsave(&h->lock, flags); 8608 if (!h->remove_in_progress) 8609 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work, 8610 h->heartbeat_sample_interval); 8611 spin_unlock_irqrestore(&h->lock, flags); 8612 } 8613 8614 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h, 8615 char *name) 8616 { 8617 struct workqueue_struct *wq = NULL; 8618 8619 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr); 8620 if (!wq) 8621 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name); 8622 8623 return wq; 8624 } 8625 8626 static void hpda_free_ctlr_info(struct ctlr_info *h) 8627 { 8628 kfree(h->reply_map); 8629 kfree(h); 8630 } 8631 8632 static struct ctlr_info *hpda_alloc_ctlr_info(void) 8633 { 8634 struct ctlr_info *h; 8635 8636 h = kzalloc(sizeof(*h), GFP_KERNEL); 8637 if (!h) 8638 return NULL; 8639 8640 h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL); 8641 if (!h->reply_map) { 8642 kfree(h); 8643 return NULL; 8644 } 8645 return h; 8646 } 8647 8648 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 8649 { 8650 int rc; 8651 struct ctlr_info *h; 8652 int try_soft_reset = 0; 8653 unsigned long flags; 8654 u32 board_id; 8655 8656 if (number_of_controllers == 0) 8657 printk(KERN_INFO DRIVER_NAME "\n"); 8658 8659 rc = hpsa_lookup_board_id(pdev, &board_id, NULL); 8660 if (rc < 0) { 8661 dev_warn(&pdev->dev, "Board ID not found\n"); 8662 return rc; 8663 } 8664 8665 rc = hpsa_init_reset_devices(pdev, board_id); 8666 if (rc) { 8667 if (rc != -ENOTSUPP) 8668 return rc; 8669 /* If the reset fails in a particular way (it has no way to do 8670 * a proper hard reset, so returns -ENOTSUPP) we can try to do 8671 * a soft reset once we get the controller configured up to the 8672 * point that it can accept a command. 8673 */ 8674 try_soft_reset = 1; 8675 rc = 0; 8676 } 8677 8678 reinit_after_soft_reset: 8679 8680 /* Command structures must be aligned on a 32-byte boundary because 8681 * the 5 lower bits of the address are used by the hardware. and by 8682 * the driver. See comments in hpsa.h for more info. 8683 */ 8684 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 8685 h = hpda_alloc_ctlr_info(); 8686 if (!h) { 8687 dev_err(&pdev->dev, "Failed to allocate controller head\n"); 8688 return -ENOMEM; 8689 } 8690 8691 h->pdev = pdev; 8692 8693 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; 8694 INIT_LIST_HEAD(&h->offline_device_list); 8695 spin_lock_init(&h->lock); 8696 spin_lock_init(&h->offline_device_lock); 8697 spin_lock_init(&h->scan_lock); 8698 spin_lock_init(&h->reset_lock); 8699 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS); 8700 8701 /* Allocate and clear per-cpu variable lockup_detected */ 8702 h->lockup_detected = alloc_percpu(u32); 8703 if (!h->lockup_detected) { 8704 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n"); 8705 rc = -ENOMEM; 8706 goto clean1; /* aer/h */ 8707 } 8708 set_lockup_detected_for_all_cpus(h, 0); 8709 8710 rc = hpsa_pci_init(h); 8711 if (rc) 8712 goto clean2; /* lu, aer/h */ 8713 8714 /* relies on h-> settings made by hpsa_pci_init, including 8715 * interrupt_mode h->intr */ 8716 rc = hpsa_scsi_host_alloc(h); 8717 if (rc) 8718 goto clean2_5; /* pci, lu, aer/h */ 8719 8720 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no); 8721 h->ctlr = number_of_controllers; 8722 number_of_controllers++; 8723 8724 /* configure PCI DMA stuff */ 8725 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 8726 if (rc != 0) { 8727 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 8728 if (rc != 0) { 8729 dev_err(&pdev->dev, "no suitable DMA available\n"); 8730 goto clean3; /* shost, pci, lu, aer/h */ 8731 } 8732 } 8733 8734 /* make sure the board interrupts are off */ 8735 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8736 8737 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx); 8738 if (rc) 8739 goto clean3; /* shost, pci, lu, aer/h */ 8740 rc = hpsa_alloc_cmd_pool(h); 8741 if (rc) 8742 goto clean4; /* irq, shost, pci, lu, aer/h */ 8743 rc = hpsa_alloc_sg_chain_blocks(h); 8744 if (rc) 8745 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */ 8746 init_waitqueue_head(&h->scan_wait_queue); 8747 init_waitqueue_head(&h->event_sync_wait_queue); 8748 mutex_init(&h->reset_mutex); 8749 h->scan_finished = 1; /* no scan currently in progress */ 8750 h->scan_waiting = 0; 8751 8752 pci_set_drvdata(pdev, h); 8753 h->ndevices = 0; 8754 8755 spin_lock_init(&h->devlock); 8756 rc = hpsa_put_ctlr_into_performant_mode(h); 8757 if (rc) 8758 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */ 8759 8760 /* create the resubmit workqueue */ 8761 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan"); 8762 if (!h->rescan_ctlr_wq) { 8763 rc = -ENOMEM; 8764 goto clean7; 8765 } 8766 8767 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit"); 8768 if (!h->resubmit_wq) { 8769 rc = -ENOMEM; 8770 goto clean7; /* aer/h */ 8771 } 8772 8773 h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor"); 8774 if (!h->monitor_ctlr_wq) { 8775 rc = -ENOMEM; 8776 goto clean7; 8777 } 8778 8779 /* 8780 * At this point, the controller is ready to take commands. 8781 * Now, if reset_devices and the hard reset didn't work, try 8782 * the soft reset and see if that works. 8783 */ 8784 if (try_soft_reset) { 8785 8786 /* This is kind of gross. We may or may not get a completion 8787 * from the soft reset command, and if we do, then the value 8788 * from the fifo may or may not be valid. So, we wait 10 secs 8789 * after the reset throwing away any completions we get during 8790 * that time. Unregister the interrupt handler and register 8791 * fake ones to scoop up any residual completions. 8792 */ 8793 spin_lock_irqsave(&h->lock, flags); 8794 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8795 spin_unlock_irqrestore(&h->lock, flags); 8796 hpsa_free_irqs(h); 8797 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions, 8798 hpsa_intx_discard_completions); 8799 if (rc) { 8800 dev_warn(&h->pdev->dev, 8801 "Failed to request_irq after soft reset.\n"); 8802 /* 8803 * cannot goto clean7 or free_irqs will be called 8804 * again. Instead, do its work 8805 */ 8806 hpsa_free_performant_mode(h); /* clean7 */ 8807 hpsa_free_sg_chain_blocks(h); /* clean6 */ 8808 hpsa_free_cmd_pool(h); /* clean5 */ 8809 /* 8810 * skip hpsa_free_irqs(h) clean4 since that 8811 * was just called before request_irqs failed 8812 */ 8813 goto clean3; 8814 } 8815 8816 rc = hpsa_kdump_soft_reset(h); 8817 if (rc) 8818 /* Neither hard nor soft reset worked, we're hosed. */ 8819 goto clean7; 8820 8821 dev_info(&h->pdev->dev, "Board READY.\n"); 8822 dev_info(&h->pdev->dev, 8823 "Waiting for stale completions to drain.\n"); 8824 h->access.set_intr_mask(h, HPSA_INTR_ON); 8825 msleep(10000); 8826 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8827 8828 rc = controller_reset_failed(h->cfgtable); 8829 if (rc) 8830 dev_info(&h->pdev->dev, 8831 "Soft reset appears to have failed.\n"); 8832 8833 /* since the controller's reset, we have to go back and re-init 8834 * everything. Easiest to just forget what we've done and do it 8835 * all over again. 8836 */ 8837 hpsa_undo_allocations_after_kdump_soft_reset(h); 8838 try_soft_reset = 0; 8839 if (rc) 8840 /* don't goto clean, we already unallocated */ 8841 return -ENODEV; 8842 8843 goto reinit_after_soft_reset; 8844 } 8845 8846 /* Enable Accelerated IO path at driver layer */ 8847 h->acciopath_status = 1; 8848 /* Disable discovery polling.*/ 8849 h->discovery_polling = 0; 8850 8851 8852 /* Turn the interrupts on so we can service requests */ 8853 h->access.set_intr_mask(h, HPSA_INTR_ON); 8854 8855 hpsa_hba_inquiry(h); 8856 8857 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL); 8858 if (!h->lastlogicals) 8859 dev_info(&h->pdev->dev, 8860 "Can't track change to report lun data\n"); 8861 8862 /* hook into SCSI subsystem */ 8863 rc = hpsa_scsi_add_host(h); 8864 if (rc) 8865 goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8866 8867 /* Monitor the controller for firmware lockups */ 8868 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 8869 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); 8870 schedule_delayed_work(&h->monitor_ctlr_work, 8871 h->heartbeat_sample_interval); 8872 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker); 8873 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, 8874 h->heartbeat_sample_interval); 8875 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker); 8876 schedule_delayed_work(&h->event_monitor_work, 8877 HPSA_EVENT_MONITOR_INTERVAL); 8878 return 0; 8879 8880 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8881 kfree(h->lastlogicals); 8882 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8883 hpsa_free_performant_mode(h); 8884 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8885 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */ 8886 hpsa_free_sg_chain_blocks(h); 8887 clean5: /* cmd, irq, shost, pci, lu, aer/h */ 8888 hpsa_free_cmd_pool(h); 8889 clean4: /* irq, shost, pci, lu, aer/h */ 8890 hpsa_free_irqs(h); 8891 clean3: /* shost, pci, lu, aer/h */ 8892 scsi_host_put(h->scsi_host); 8893 h->scsi_host = NULL; 8894 clean2_5: /* pci, lu, aer/h */ 8895 hpsa_free_pci_init(h); 8896 clean2: /* lu, aer/h */ 8897 if (h->lockup_detected) { 8898 free_percpu(h->lockup_detected); 8899 h->lockup_detected = NULL; 8900 } 8901 clean1: /* wq/aer/h */ 8902 if (h->resubmit_wq) { 8903 destroy_workqueue(h->resubmit_wq); 8904 h->resubmit_wq = NULL; 8905 } 8906 if (h->rescan_ctlr_wq) { 8907 destroy_workqueue(h->rescan_ctlr_wq); 8908 h->rescan_ctlr_wq = NULL; 8909 } 8910 if (h->monitor_ctlr_wq) { 8911 destroy_workqueue(h->monitor_ctlr_wq); 8912 h->monitor_ctlr_wq = NULL; 8913 } 8914 hpda_free_ctlr_info(h); 8915 return rc; 8916 } 8917 8918 static void hpsa_flush_cache(struct ctlr_info *h) 8919 { 8920 char *flush_buf; 8921 struct CommandList *c; 8922 int rc; 8923 8924 if (unlikely(lockup_detected(h))) 8925 return; 8926 flush_buf = kzalloc(4, GFP_KERNEL); 8927 if (!flush_buf) 8928 return; 8929 8930 c = cmd_alloc(h); 8931 8932 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 8933 RAID_CTLR_LUNID, TYPE_CMD)) { 8934 goto out; 8935 } 8936 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE, 8937 DEFAULT_TIMEOUT); 8938 if (rc) 8939 goto out; 8940 if (c->err_info->CommandStatus != 0) 8941 out: 8942 dev_warn(&h->pdev->dev, 8943 "error flushing cache on controller\n"); 8944 cmd_free(h, c); 8945 kfree(flush_buf); 8946 } 8947 8948 /* Make controller gather fresh report lun data each time we 8949 * send down a report luns request 8950 */ 8951 static void hpsa_disable_rld_caching(struct ctlr_info *h) 8952 { 8953 u32 *options; 8954 struct CommandList *c; 8955 int rc; 8956 8957 /* Don't bother trying to set diag options if locked up */ 8958 if (unlikely(h->lockup_detected)) 8959 return; 8960 8961 options = kzalloc(sizeof(*options), GFP_KERNEL); 8962 if (!options) 8963 return; 8964 8965 c = cmd_alloc(h); 8966 8967 /* first, get the current diag options settings */ 8968 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, 8969 RAID_CTLR_LUNID, TYPE_CMD)) 8970 goto errout; 8971 8972 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 8973 NO_TIMEOUT); 8974 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 8975 goto errout; 8976 8977 /* Now, set the bit for disabling the RLD caching */ 8978 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING; 8979 8980 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0, 8981 RAID_CTLR_LUNID, TYPE_CMD)) 8982 goto errout; 8983 8984 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE, 8985 NO_TIMEOUT); 8986 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 8987 goto errout; 8988 8989 /* Now verify that it got set: */ 8990 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, 8991 RAID_CTLR_LUNID, TYPE_CMD)) 8992 goto errout; 8993 8994 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE, 8995 NO_TIMEOUT); 8996 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 8997 goto errout; 8998 8999 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING) 9000 goto out; 9001 9002 errout: 9003 dev_err(&h->pdev->dev, 9004 "Error: failed to disable report lun data caching.\n"); 9005 out: 9006 cmd_free(h, c); 9007 kfree(options); 9008 } 9009 9010 static void __hpsa_shutdown(struct pci_dev *pdev) 9011 { 9012 struct ctlr_info *h; 9013 9014 h = pci_get_drvdata(pdev); 9015 /* Turn board interrupts off and send the flush cache command 9016 * sendcmd will turn off interrupt, and send the flush... 9017 * To write all data in the battery backed cache to disks 9018 */ 9019 hpsa_flush_cache(h); 9020 h->access.set_intr_mask(h, HPSA_INTR_OFF); 9021 hpsa_free_irqs(h); /* init_one 4 */ 9022 hpsa_disable_interrupt_mode(h); /* pci_init 2 */ 9023 } 9024 9025 static void hpsa_shutdown(struct pci_dev *pdev) 9026 { 9027 __hpsa_shutdown(pdev); 9028 pci_disable_device(pdev); 9029 } 9030 9031 static void hpsa_free_device_info(struct ctlr_info *h) 9032 { 9033 int i; 9034 9035 for (i = 0; i < h->ndevices; i++) { 9036 kfree(h->dev[i]); 9037 h->dev[i] = NULL; 9038 } 9039 } 9040 9041 static void hpsa_remove_one(struct pci_dev *pdev) 9042 { 9043 struct ctlr_info *h; 9044 unsigned long flags; 9045 9046 if (pci_get_drvdata(pdev) == NULL) { 9047 dev_err(&pdev->dev, "unable to remove device\n"); 9048 return; 9049 } 9050 h = pci_get_drvdata(pdev); 9051 9052 /* Get rid of any controller monitoring work items */ 9053 spin_lock_irqsave(&h->lock, flags); 9054 h->remove_in_progress = 1; 9055 spin_unlock_irqrestore(&h->lock, flags); 9056 cancel_delayed_work_sync(&h->monitor_ctlr_work); 9057 cancel_delayed_work_sync(&h->rescan_ctlr_work); 9058 cancel_delayed_work_sync(&h->event_monitor_work); 9059 destroy_workqueue(h->rescan_ctlr_wq); 9060 destroy_workqueue(h->resubmit_wq); 9061 destroy_workqueue(h->monitor_ctlr_wq); 9062 9063 hpsa_delete_sas_host(h); 9064 9065 /* 9066 * Call before disabling interrupts. 9067 * scsi_remove_host can trigger I/O operations especially 9068 * when multipath is enabled. There can be SYNCHRONIZE CACHE 9069 * operations which cannot complete and will hang the system. 9070 */ 9071 if (h->scsi_host) 9072 scsi_remove_host(h->scsi_host); /* init_one 8 */ 9073 /* includes hpsa_free_irqs - init_one 4 */ 9074 /* includes hpsa_disable_interrupt_mode - pci_init 2 */ 9075 __hpsa_shutdown(pdev); 9076 9077 hpsa_free_device_info(h); /* scan */ 9078 9079 kfree(h->hba_inquiry_data); /* init_one 10 */ 9080 h->hba_inquiry_data = NULL; /* init_one 10 */ 9081 hpsa_free_ioaccel2_sg_chain_blocks(h); 9082 hpsa_free_performant_mode(h); /* init_one 7 */ 9083 hpsa_free_sg_chain_blocks(h); /* init_one 6 */ 9084 hpsa_free_cmd_pool(h); /* init_one 5 */ 9085 kfree(h->lastlogicals); 9086 9087 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */ 9088 9089 scsi_host_put(h->scsi_host); /* init_one 3 */ 9090 h->scsi_host = NULL; /* init_one 3 */ 9091 9092 /* includes hpsa_disable_interrupt_mode - pci_init 2 */ 9093 hpsa_free_pci_init(h); /* init_one 2.5 */ 9094 9095 free_percpu(h->lockup_detected); /* init_one 2 */ 9096 h->lockup_detected = NULL; /* init_one 2 */ 9097 9098 hpda_free_ctlr_info(h); /* init_one 1 */ 9099 } 9100 9101 static int __maybe_unused hpsa_suspend( 9102 __attribute__((unused)) struct device *dev) 9103 { 9104 return -ENOSYS; 9105 } 9106 9107 static int __maybe_unused hpsa_resume 9108 (__attribute__((unused)) struct device *dev) 9109 { 9110 return -ENOSYS; 9111 } 9112 9113 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume); 9114 9115 static struct pci_driver hpsa_pci_driver = { 9116 .name = HPSA, 9117 .probe = hpsa_init_one, 9118 .remove = hpsa_remove_one, 9119 .id_table = hpsa_pci_device_id, /* id_table */ 9120 .shutdown = hpsa_shutdown, 9121 .driver.pm = &hpsa_pm_ops, 9122 }; 9123 9124 /* Fill in bucket_map[], given nsgs (the max number of 9125 * scatter gather elements supported) and bucket[], 9126 * which is an array of 8 integers. The bucket[] array 9127 * contains 8 different DMA transfer sizes (in 16 9128 * byte increments) which the controller uses to fetch 9129 * commands. This function fills in bucket_map[], which 9130 * maps a given number of scatter gather elements to one of 9131 * the 8 DMA transfer sizes. The point of it is to allow the 9132 * controller to only do as much DMA as needed to fetch the 9133 * command, with the DMA transfer size encoded in the lower 9134 * bits of the command address. 9135 */ 9136 static void calc_bucket_map(int bucket[], int num_buckets, 9137 int nsgs, int min_blocks, u32 *bucket_map) 9138 { 9139 int i, j, b, size; 9140 9141 /* Note, bucket_map must have nsgs+1 entries. */ 9142 for (i = 0; i <= nsgs; i++) { 9143 /* Compute size of a command with i SG entries */ 9144 size = i + min_blocks; 9145 b = num_buckets; /* Assume the biggest bucket */ 9146 /* Find the bucket that is just big enough */ 9147 for (j = 0; j < num_buckets; j++) { 9148 if (bucket[j] >= size) { 9149 b = j; 9150 break; 9151 } 9152 } 9153 /* for a command with i SG entries, use bucket b. */ 9154 bucket_map[i] = b; 9155 } 9156 } 9157 9158 /* 9159 * return -ENODEV on err, 0 on success (or no action) 9160 * allocates numerous items that must be freed later 9161 */ 9162 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) 9163 { 9164 int i; 9165 unsigned long register_value; 9166 unsigned long transMethod = CFGTBL_Trans_Performant | 9167 (trans_support & CFGTBL_Trans_use_short_tags) | 9168 CFGTBL_Trans_enable_directed_msix | 9169 (trans_support & (CFGTBL_Trans_io_accel1 | 9170 CFGTBL_Trans_io_accel2)); 9171 struct access_method access = SA5_performant_access; 9172 9173 /* This is a bit complicated. There are 8 registers on 9174 * the controller which we write to to tell it 8 different 9175 * sizes of commands which there may be. It's a way of 9176 * reducing the DMA done to fetch each command. Encoded into 9177 * each command's tag are 3 bits which communicate to the controller 9178 * which of the eight sizes that command fits within. The size of 9179 * each command depends on how many scatter gather entries there are. 9180 * Each SG entry requires 16 bytes. The eight registers are programmed 9181 * with the number of 16-byte blocks a command of that size requires. 9182 * The smallest command possible requires 5 such 16 byte blocks. 9183 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte 9184 * blocks. Note, this only extends to the SG entries contained 9185 * within the command block, and does not extend to chained blocks 9186 * of SG elements. bft[] contains the eight values we write to 9187 * the registers. They are not evenly distributed, but have more 9188 * sizes for small commands, and fewer sizes for larger commands. 9189 */ 9190 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; 9191 #define MIN_IOACCEL2_BFT_ENTRY 5 9192 #define HPSA_IOACCEL2_HEADER_SZ 4 9193 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12, 9194 13, 14, 15, 16, 17, 18, 19, 9195 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES}; 9196 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16); 9197 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8); 9198 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) > 9199 16 * MIN_IOACCEL2_BFT_ENTRY); 9200 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16); 9201 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); 9202 /* 5 = 1 s/g entry or 4k 9203 * 6 = 2 s/g entry or 8k 9204 * 8 = 4 s/g entry or 16k 9205 * 10 = 6 s/g entry or 24k 9206 */ 9207 9208 /* If the controller supports either ioaccel method then 9209 * we can also use the RAID stack submit path that does not 9210 * perform the superfluous readl() after each command submission. 9211 */ 9212 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) 9213 access = SA5_performant_access_no_read; 9214 9215 /* Controller spec: zero out this buffer. */ 9216 for (i = 0; i < h->nreply_queues; i++) 9217 memset(h->reply_queue[i].head, 0, h->reply_queue_size); 9218 9219 bft[7] = SG_ENTRIES_IN_CMD + 4; 9220 calc_bucket_map(bft, ARRAY_SIZE(bft), 9221 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); 9222 for (i = 0; i < 8; i++) 9223 writel(bft[i], &h->transtable->BlockFetch[i]); 9224 9225 /* size of controller ring buffer */ 9226 writel(h->max_commands, &h->transtable->RepQSize); 9227 writel(h->nreply_queues, &h->transtable->RepQCount); 9228 writel(0, &h->transtable->RepQCtrAddrLow32); 9229 writel(0, &h->transtable->RepQCtrAddrHigh32); 9230 9231 for (i = 0; i < h->nreply_queues; i++) { 9232 writel(0, &h->transtable->RepQAddr[i].upper); 9233 writel(h->reply_queue[i].busaddr, 9234 &h->transtable->RepQAddr[i].lower); 9235 } 9236 9237 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); 9238 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); 9239 /* 9240 * enable outbound interrupt coalescing in accelerator mode; 9241 */ 9242 if (trans_support & CFGTBL_Trans_io_accel1) { 9243 access = SA5_ioaccel_mode1_access; 9244 writel(10, &h->cfgtable->HostWrite.CoalIntDelay); 9245 writel(4, &h->cfgtable->HostWrite.CoalIntCount); 9246 } else 9247 if (trans_support & CFGTBL_Trans_io_accel2) 9248 access = SA5_ioaccel_mode2_access; 9249 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 9250 if (hpsa_wait_for_mode_change_ack(h)) { 9251 dev_err(&h->pdev->dev, 9252 "performant mode problem - doorbell timeout\n"); 9253 return -ENODEV; 9254 } 9255 register_value = readl(&(h->cfgtable->TransportActive)); 9256 if (!(register_value & CFGTBL_Trans_Performant)) { 9257 dev_err(&h->pdev->dev, 9258 "performant mode problem - transport not active\n"); 9259 return -ENODEV; 9260 } 9261 /* Change the access methods to the performant access methods */ 9262 h->access = access; 9263 h->transMethod = transMethod; 9264 9265 if (!((trans_support & CFGTBL_Trans_io_accel1) || 9266 (trans_support & CFGTBL_Trans_io_accel2))) 9267 return 0; 9268 9269 if (trans_support & CFGTBL_Trans_io_accel1) { 9270 /* Set up I/O accelerator mode */ 9271 for (i = 0; i < h->nreply_queues; i++) { 9272 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); 9273 h->reply_queue[i].current_entry = 9274 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); 9275 } 9276 bft[7] = h->ioaccel_maxsg + 8; 9277 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, 9278 h->ioaccel1_blockFetchTable); 9279 9280 /* initialize all reply queue entries to unused */ 9281 for (i = 0; i < h->nreply_queues; i++) 9282 memset(h->reply_queue[i].head, 9283 (u8) IOACCEL_MODE1_REPLY_UNUSED, 9284 h->reply_queue_size); 9285 9286 /* set all the constant fields in the accelerator command 9287 * frames once at init time to save CPU cycles later. 9288 */ 9289 for (i = 0; i < h->nr_cmds; i++) { 9290 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; 9291 9292 cp->function = IOACCEL1_FUNCTION_SCSIIO; 9293 cp->err_info = (u32) (h->errinfo_pool_dhandle + 9294 (i * sizeof(struct ErrorInfo))); 9295 cp->err_info_len = sizeof(struct ErrorInfo); 9296 cp->sgl_offset = IOACCEL1_SGLOFFSET; 9297 cp->host_context_flags = 9298 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT); 9299 cp->timeout_sec = 0; 9300 cp->ReplyQueue = 0; 9301 cp->tag = 9302 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT)); 9303 cp->host_addr = 9304 cpu_to_le64(h->ioaccel_cmd_pool_dhandle + 9305 (i * sizeof(struct io_accel1_cmd))); 9306 } 9307 } else if (trans_support & CFGTBL_Trans_io_accel2) { 9308 u64 cfg_offset, cfg_base_addr_index; 9309 u32 bft2_offset, cfg_base_addr; 9310 9311 hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 9312 &cfg_base_addr_index, &cfg_offset); 9313 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64); 9314 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ; 9315 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg, 9316 4, h->ioaccel2_blockFetchTable); 9317 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset); 9318 BUILD_BUG_ON(offsetof(struct CfgTable, 9319 io_accel_request_size_offset) != 0xb8); 9320 h->ioaccel2_bft2_regs = 9321 remap_pci_mem(pci_resource_start(h->pdev, 9322 cfg_base_addr_index) + 9323 cfg_offset + bft2_offset, 9324 ARRAY_SIZE(bft2) * 9325 sizeof(*h->ioaccel2_bft2_regs)); 9326 for (i = 0; i < ARRAY_SIZE(bft2); i++) 9327 writel(bft2[i], &h->ioaccel2_bft2_regs[i]); 9328 } 9329 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 9330 if (hpsa_wait_for_mode_change_ack(h)) { 9331 dev_err(&h->pdev->dev, 9332 "performant mode problem - enabling ioaccel mode\n"); 9333 return -ENODEV; 9334 } 9335 return 0; 9336 } 9337 9338 /* Free ioaccel1 mode command blocks and block fetch table */ 9339 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h) 9340 { 9341 if (h->ioaccel_cmd_pool) { 9342 dma_free_coherent(&h->pdev->dev, 9343 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), 9344 h->ioaccel_cmd_pool, 9345 h->ioaccel_cmd_pool_dhandle); 9346 h->ioaccel_cmd_pool = NULL; 9347 h->ioaccel_cmd_pool_dhandle = 0; 9348 } 9349 kfree(h->ioaccel1_blockFetchTable); 9350 h->ioaccel1_blockFetchTable = NULL; 9351 } 9352 9353 /* Allocate ioaccel1 mode command blocks and block fetch table */ 9354 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h) 9355 { 9356 h->ioaccel_maxsg = 9357 readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); 9358 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) 9359 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; 9360 9361 /* Command structures must be aligned on a 128-byte boundary 9362 * because the 7 lower bits of the address are used by the 9363 * hardware. 9364 */ 9365 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % 9366 IOACCEL1_COMMANDLIST_ALIGNMENT); 9367 h->ioaccel_cmd_pool = 9368 dma_alloc_coherent(&h->pdev->dev, 9369 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), 9370 &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL); 9371 9372 h->ioaccel1_blockFetchTable = 9373 kmalloc(((h->ioaccel_maxsg + 1) * 9374 sizeof(u32)), GFP_KERNEL); 9375 9376 if ((h->ioaccel_cmd_pool == NULL) || 9377 (h->ioaccel1_blockFetchTable == NULL)) 9378 goto clean_up; 9379 9380 memset(h->ioaccel_cmd_pool, 0, 9381 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); 9382 return 0; 9383 9384 clean_up: 9385 hpsa_free_ioaccel1_cmd_and_bft(h); 9386 return -ENOMEM; 9387 } 9388 9389 /* Free ioaccel2 mode command blocks and block fetch table */ 9390 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h) 9391 { 9392 hpsa_free_ioaccel2_sg_chain_blocks(h); 9393 9394 if (h->ioaccel2_cmd_pool) { 9395 dma_free_coherent(&h->pdev->dev, 9396 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 9397 h->ioaccel2_cmd_pool, 9398 h->ioaccel2_cmd_pool_dhandle); 9399 h->ioaccel2_cmd_pool = NULL; 9400 h->ioaccel2_cmd_pool_dhandle = 0; 9401 } 9402 kfree(h->ioaccel2_blockFetchTable); 9403 h->ioaccel2_blockFetchTable = NULL; 9404 } 9405 9406 /* Allocate ioaccel2 mode command blocks and block fetch table */ 9407 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h) 9408 { 9409 int rc; 9410 9411 /* Allocate ioaccel2 mode command blocks and block fetch table */ 9412 9413 h->ioaccel_maxsg = 9414 readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); 9415 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES) 9416 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES; 9417 9418 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) % 9419 IOACCEL2_COMMANDLIST_ALIGNMENT); 9420 h->ioaccel2_cmd_pool = 9421 dma_alloc_coherent(&h->pdev->dev, 9422 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 9423 &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL); 9424 9425 h->ioaccel2_blockFetchTable = 9426 kmalloc(((h->ioaccel_maxsg + 1) * 9427 sizeof(u32)), GFP_KERNEL); 9428 9429 if ((h->ioaccel2_cmd_pool == NULL) || 9430 (h->ioaccel2_blockFetchTable == NULL)) { 9431 rc = -ENOMEM; 9432 goto clean_up; 9433 } 9434 9435 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h); 9436 if (rc) 9437 goto clean_up; 9438 9439 memset(h->ioaccel2_cmd_pool, 0, 9440 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool)); 9441 return 0; 9442 9443 clean_up: 9444 hpsa_free_ioaccel2_cmd_and_bft(h); 9445 return rc; 9446 } 9447 9448 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */ 9449 static void hpsa_free_performant_mode(struct ctlr_info *h) 9450 { 9451 kfree(h->blockFetchTable); 9452 h->blockFetchTable = NULL; 9453 hpsa_free_reply_queues(h); 9454 hpsa_free_ioaccel1_cmd_and_bft(h); 9455 hpsa_free_ioaccel2_cmd_and_bft(h); 9456 } 9457 9458 /* return -ENODEV on error, 0 on success (or no action) 9459 * allocates numerous items that must be freed later 9460 */ 9461 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 9462 { 9463 u32 trans_support; 9464 int i, rc; 9465 9466 if (hpsa_simple_mode) 9467 return 0; 9468 9469 trans_support = readl(&(h->cfgtable->TransportSupport)); 9470 if (!(trans_support & PERFORMANT_MODE)) 9471 return 0; 9472 9473 /* Check for I/O accelerator mode support */ 9474 if (trans_support & CFGTBL_Trans_io_accel1) { 9475 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h); 9476 if (rc) 9477 return rc; 9478 } else if (trans_support & CFGTBL_Trans_io_accel2) { 9479 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h); 9480 if (rc) 9481 return rc; 9482 } 9483 9484 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1; 9485 hpsa_get_max_perf_mode_cmds(h); 9486 /* Performant mode ring buffer and supporting data structures */ 9487 h->reply_queue_size = h->max_commands * sizeof(u64); 9488 9489 for (i = 0; i < h->nreply_queues; i++) { 9490 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev, 9491 h->reply_queue_size, 9492 &h->reply_queue[i].busaddr, 9493 GFP_KERNEL); 9494 if (!h->reply_queue[i].head) { 9495 rc = -ENOMEM; 9496 goto clean1; /* rq, ioaccel */ 9497 } 9498 h->reply_queue[i].size = h->max_commands; 9499 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ 9500 h->reply_queue[i].current_entry = 0; 9501 } 9502 9503 /* Need a block fetch table for performant mode */ 9504 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * 9505 sizeof(u32)), GFP_KERNEL); 9506 if (!h->blockFetchTable) { 9507 rc = -ENOMEM; 9508 goto clean1; /* rq, ioaccel */ 9509 } 9510 9511 rc = hpsa_enter_performant_mode(h, trans_support); 9512 if (rc) 9513 goto clean2; /* bft, rq, ioaccel */ 9514 return 0; 9515 9516 clean2: /* bft, rq, ioaccel */ 9517 kfree(h->blockFetchTable); 9518 h->blockFetchTable = NULL; 9519 clean1: /* rq, ioaccel */ 9520 hpsa_free_reply_queues(h); 9521 hpsa_free_ioaccel1_cmd_and_bft(h); 9522 hpsa_free_ioaccel2_cmd_and_bft(h); 9523 return rc; 9524 } 9525 9526 static int is_accelerated_cmd(struct CommandList *c) 9527 { 9528 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2; 9529 } 9530 9531 static void hpsa_drain_accel_commands(struct ctlr_info *h) 9532 { 9533 struct CommandList *c = NULL; 9534 int i, accel_cmds_out; 9535 int refcount; 9536 9537 do { /* wait for all outstanding ioaccel commands to drain out */ 9538 accel_cmds_out = 0; 9539 for (i = 0; i < h->nr_cmds; i++) { 9540 c = h->cmd_pool + i; 9541 refcount = atomic_inc_return(&c->refcount); 9542 if (refcount > 1) /* Command is allocated */ 9543 accel_cmds_out += is_accelerated_cmd(c); 9544 cmd_free(h, c); 9545 } 9546 if (accel_cmds_out <= 0) 9547 break; 9548 msleep(100); 9549 } while (1); 9550 } 9551 9552 static struct hpsa_sas_phy *hpsa_alloc_sas_phy( 9553 struct hpsa_sas_port *hpsa_sas_port) 9554 { 9555 struct hpsa_sas_phy *hpsa_sas_phy; 9556 struct sas_phy *phy; 9557 9558 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL); 9559 if (!hpsa_sas_phy) 9560 return NULL; 9561 9562 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev, 9563 hpsa_sas_port->next_phy_index); 9564 if (!phy) { 9565 kfree(hpsa_sas_phy); 9566 return NULL; 9567 } 9568 9569 hpsa_sas_port->next_phy_index++; 9570 hpsa_sas_phy->phy = phy; 9571 hpsa_sas_phy->parent_port = hpsa_sas_port; 9572 9573 return hpsa_sas_phy; 9574 } 9575 9576 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy) 9577 { 9578 struct sas_phy *phy = hpsa_sas_phy->phy; 9579 9580 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy); 9581 if (hpsa_sas_phy->added_to_port) 9582 list_del(&hpsa_sas_phy->phy_list_entry); 9583 sas_phy_delete(phy); 9584 kfree(hpsa_sas_phy); 9585 } 9586 9587 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy) 9588 { 9589 int rc; 9590 struct hpsa_sas_port *hpsa_sas_port; 9591 struct sas_phy *phy; 9592 struct sas_identify *identify; 9593 9594 hpsa_sas_port = hpsa_sas_phy->parent_port; 9595 phy = hpsa_sas_phy->phy; 9596 9597 identify = &phy->identify; 9598 memset(identify, 0, sizeof(*identify)); 9599 identify->sas_address = hpsa_sas_port->sas_address; 9600 identify->device_type = SAS_END_DEVICE; 9601 identify->initiator_port_protocols = SAS_PROTOCOL_STP; 9602 identify->target_port_protocols = SAS_PROTOCOL_STP; 9603 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; 9604 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; 9605 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN; 9606 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN; 9607 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN; 9608 9609 rc = sas_phy_add(hpsa_sas_phy->phy); 9610 if (rc) 9611 return rc; 9612 9613 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy); 9614 list_add_tail(&hpsa_sas_phy->phy_list_entry, 9615 &hpsa_sas_port->phy_list_head); 9616 hpsa_sas_phy->added_to_port = true; 9617 9618 return 0; 9619 } 9620 9621 static int 9622 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port, 9623 struct sas_rphy *rphy) 9624 { 9625 struct sas_identify *identify; 9626 9627 identify = &rphy->identify; 9628 identify->sas_address = hpsa_sas_port->sas_address; 9629 identify->initiator_port_protocols = SAS_PROTOCOL_STP; 9630 identify->target_port_protocols = SAS_PROTOCOL_STP; 9631 9632 return sas_rphy_add(rphy); 9633 } 9634 9635 static struct hpsa_sas_port 9636 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node, 9637 u64 sas_address) 9638 { 9639 int rc; 9640 struct hpsa_sas_port *hpsa_sas_port; 9641 struct sas_port *port; 9642 9643 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL); 9644 if (!hpsa_sas_port) 9645 return NULL; 9646 9647 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head); 9648 hpsa_sas_port->parent_node = hpsa_sas_node; 9649 9650 port = sas_port_alloc_num(hpsa_sas_node->parent_dev); 9651 if (!port) 9652 goto free_hpsa_port; 9653 9654 rc = sas_port_add(port); 9655 if (rc) 9656 goto free_sas_port; 9657 9658 hpsa_sas_port->port = port; 9659 hpsa_sas_port->sas_address = sas_address; 9660 list_add_tail(&hpsa_sas_port->port_list_entry, 9661 &hpsa_sas_node->port_list_head); 9662 9663 return hpsa_sas_port; 9664 9665 free_sas_port: 9666 sas_port_free(port); 9667 free_hpsa_port: 9668 kfree(hpsa_sas_port); 9669 9670 return NULL; 9671 } 9672 9673 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port) 9674 { 9675 struct hpsa_sas_phy *hpsa_sas_phy; 9676 struct hpsa_sas_phy *next; 9677 9678 list_for_each_entry_safe(hpsa_sas_phy, next, 9679 &hpsa_sas_port->phy_list_head, phy_list_entry) 9680 hpsa_free_sas_phy(hpsa_sas_phy); 9681 9682 sas_port_delete(hpsa_sas_port->port); 9683 list_del(&hpsa_sas_port->port_list_entry); 9684 kfree(hpsa_sas_port); 9685 } 9686 9687 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev) 9688 { 9689 struct hpsa_sas_node *hpsa_sas_node; 9690 9691 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL); 9692 if (hpsa_sas_node) { 9693 hpsa_sas_node->parent_dev = parent_dev; 9694 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head); 9695 } 9696 9697 return hpsa_sas_node; 9698 } 9699 9700 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node) 9701 { 9702 struct hpsa_sas_port *hpsa_sas_port; 9703 struct hpsa_sas_port *next; 9704 9705 if (!hpsa_sas_node) 9706 return; 9707 9708 list_for_each_entry_safe(hpsa_sas_port, next, 9709 &hpsa_sas_node->port_list_head, port_list_entry) 9710 hpsa_free_sas_port(hpsa_sas_port); 9711 9712 kfree(hpsa_sas_node); 9713 } 9714 9715 static struct hpsa_scsi_dev_t 9716 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, 9717 struct sas_rphy *rphy) 9718 { 9719 int i; 9720 struct hpsa_scsi_dev_t *device; 9721 9722 for (i = 0; i < h->ndevices; i++) { 9723 device = h->dev[i]; 9724 if (!device->sas_port) 9725 continue; 9726 if (device->sas_port->rphy == rphy) 9727 return device; 9728 } 9729 9730 return NULL; 9731 } 9732 9733 static int hpsa_add_sas_host(struct ctlr_info *h) 9734 { 9735 int rc; 9736 struct device *parent_dev; 9737 struct hpsa_sas_node *hpsa_sas_node; 9738 struct hpsa_sas_port *hpsa_sas_port; 9739 struct hpsa_sas_phy *hpsa_sas_phy; 9740 9741 parent_dev = &h->scsi_host->shost_dev; 9742 9743 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev); 9744 if (!hpsa_sas_node) 9745 return -ENOMEM; 9746 9747 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address); 9748 if (!hpsa_sas_port) { 9749 rc = -ENODEV; 9750 goto free_sas_node; 9751 } 9752 9753 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port); 9754 if (!hpsa_sas_phy) { 9755 rc = -ENODEV; 9756 goto free_sas_port; 9757 } 9758 9759 rc = hpsa_sas_port_add_phy(hpsa_sas_phy); 9760 if (rc) 9761 goto free_sas_phy; 9762 9763 h->sas_host = hpsa_sas_node; 9764 9765 return 0; 9766 9767 free_sas_phy: 9768 sas_phy_free(hpsa_sas_phy->phy); 9769 kfree(hpsa_sas_phy); 9770 free_sas_port: 9771 hpsa_free_sas_port(hpsa_sas_port); 9772 free_sas_node: 9773 hpsa_free_sas_node(hpsa_sas_node); 9774 9775 return rc; 9776 } 9777 9778 static void hpsa_delete_sas_host(struct ctlr_info *h) 9779 { 9780 hpsa_free_sas_node(h->sas_host); 9781 } 9782 9783 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, 9784 struct hpsa_scsi_dev_t *device) 9785 { 9786 int rc; 9787 struct hpsa_sas_port *hpsa_sas_port; 9788 struct sas_rphy *rphy; 9789 9790 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address); 9791 if (!hpsa_sas_port) 9792 return -ENOMEM; 9793 9794 rphy = sas_end_device_alloc(hpsa_sas_port->port); 9795 if (!rphy) { 9796 rc = -ENODEV; 9797 goto free_sas_port; 9798 } 9799 9800 hpsa_sas_port->rphy = rphy; 9801 device->sas_port = hpsa_sas_port; 9802 9803 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy); 9804 if (rc) 9805 goto free_sas_rphy; 9806 9807 return 0; 9808 9809 free_sas_rphy: 9810 sas_rphy_free(rphy); 9811 free_sas_port: 9812 hpsa_free_sas_port(hpsa_sas_port); 9813 device->sas_port = NULL; 9814 9815 return rc; 9816 } 9817 9818 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device) 9819 { 9820 if (device->sas_port) { 9821 hpsa_free_sas_port(device->sas_port); 9822 device->sas_port = NULL; 9823 } 9824 } 9825 9826 static int 9827 hpsa_sas_get_linkerrors(struct sas_phy *phy) 9828 { 9829 return 0; 9830 } 9831 9832 static int 9833 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier) 9834 { 9835 struct Scsi_Host *shost = phy_to_shost(rphy); 9836 struct ctlr_info *h; 9837 struct hpsa_scsi_dev_t *sd; 9838 9839 if (!shost) 9840 return -ENXIO; 9841 9842 h = shost_to_hba(shost); 9843 9844 if (!h) 9845 return -ENXIO; 9846 9847 sd = hpsa_find_device_by_sas_rphy(h, rphy); 9848 if (!sd) 9849 return -ENXIO; 9850 9851 *identifier = sd->eli; 9852 9853 return 0; 9854 } 9855 9856 static int 9857 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy) 9858 { 9859 return -ENXIO; 9860 } 9861 9862 static int 9863 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset) 9864 { 9865 return 0; 9866 } 9867 9868 static int 9869 hpsa_sas_phy_enable(struct sas_phy *phy, int enable) 9870 { 9871 return 0; 9872 } 9873 9874 static int 9875 hpsa_sas_phy_setup(struct sas_phy *phy) 9876 { 9877 return 0; 9878 } 9879 9880 static void 9881 hpsa_sas_phy_release(struct sas_phy *phy) 9882 { 9883 } 9884 9885 static int 9886 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates) 9887 { 9888 return -EINVAL; 9889 } 9890 9891 static struct sas_function_template hpsa_sas_transport_functions = { 9892 .get_linkerrors = hpsa_sas_get_linkerrors, 9893 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier, 9894 .get_bay_identifier = hpsa_sas_get_bay_identifier, 9895 .phy_reset = hpsa_sas_phy_reset, 9896 .phy_enable = hpsa_sas_phy_enable, 9897 .phy_setup = hpsa_sas_phy_setup, 9898 .phy_release = hpsa_sas_phy_release, 9899 .set_phy_speed = hpsa_sas_phy_speed, 9900 }; 9901 9902 /* 9903 * This is it. Register the PCI driver information for the cards we control 9904 * the OS will call our registered routines when it finds one of our cards. 9905 */ 9906 static int __init hpsa_init(void) 9907 { 9908 int rc; 9909 9910 hpsa_sas_transport_template = 9911 sas_attach_transport(&hpsa_sas_transport_functions); 9912 if (!hpsa_sas_transport_template) 9913 return -ENODEV; 9914 9915 rc = pci_register_driver(&hpsa_pci_driver); 9916 9917 if (rc) 9918 sas_release_transport(hpsa_sas_transport_template); 9919 9920 return rc; 9921 } 9922 9923 static void __exit hpsa_cleanup(void) 9924 { 9925 pci_unregister_driver(&hpsa_pci_driver); 9926 sas_release_transport(hpsa_sas_transport_template); 9927 } 9928 9929 static void __attribute__((unused)) verify_offsets(void) 9930 { 9931 #define VERIFY_OFFSET(member, offset) \ 9932 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset) 9933 9934 VERIFY_OFFSET(structure_size, 0); 9935 VERIFY_OFFSET(volume_blk_size, 4); 9936 VERIFY_OFFSET(volume_blk_cnt, 8); 9937 VERIFY_OFFSET(phys_blk_shift, 16); 9938 VERIFY_OFFSET(parity_rotation_shift, 17); 9939 VERIFY_OFFSET(strip_size, 18); 9940 VERIFY_OFFSET(disk_starting_blk, 20); 9941 VERIFY_OFFSET(disk_blk_cnt, 28); 9942 VERIFY_OFFSET(data_disks_per_row, 36); 9943 VERIFY_OFFSET(metadata_disks_per_row, 38); 9944 VERIFY_OFFSET(row_cnt, 40); 9945 VERIFY_OFFSET(layout_map_count, 42); 9946 VERIFY_OFFSET(flags, 44); 9947 VERIFY_OFFSET(dekindex, 46); 9948 /* VERIFY_OFFSET(reserved, 48 */ 9949 VERIFY_OFFSET(data, 64); 9950 9951 #undef VERIFY_OFFSET 9952 9953 #define VERIFY_OFFSET(member, offset) \ 9954 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset) 9955 9956 VERIFY_OFFSET(IU_type, 0); 9957 VERIFY_OFFSET(direction, 1); 9958 VERIFY_OFFSET(reply_queue, 2); 9959 /* VERIFY_OFFSET(reserved1, 3); */ 9960 VERIFY_OFFSET(scsi_nexus, 4); 9961 VERIFY_OFFSET(Tag, 8); 9962 VERIFY_OFFSET(cdb, 16); 9963 VERIFY_OFFSET(cciss_lun, 32); 9964 VERIFY_OFFSET(data_len, 40); 9965 VERIFY_OFFSET(cmd_priority_task_attr, 44); 9966 VERIFY_OFFSET(sg_count, 45); 9967 /* VERIFY_OFFSET(reserved3 */ 9968 VERIFY_OFFSET(err_ptr, 48); 9969 VERIFY_OFFSET(err_len, 56); 9970 /* VERIFY_OFFSET(reserved4 */ 9971 VERIFY_OFFSET(sg, 64); 9972 9973 #undef VERIFY_OFFSET 9974 9975 #define VERIFY_OFFSET(member, offset) \ 9976 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) 9977 9978 VERIFY_OFFSET(dev_handle, 0x00); 9979 VERIFY_OFFSET(reserved1, 0x02); 9980 VERIFY_OFFSET(function, 0x03); 9981 VERIFY_OFFSET(reserved2, 0x04); 9982 VERIFY_OFFSET(err_info, 0x0C); 9983 VERIFY_OFFSET(reserved3, 0x10); 9984 VERIFY_OFFSET(err_info_len, 0x12); 9985 VERIFY_OFFSET(reserved4, 0x13); 9986 VERIFY_OFFSET(sgl_offset, 0x14); 9987 VERIFY_OFFSET(reserved5, 0x15); 9988 VERIFY_OFFSET(transfer_len, 0x1C); 9989 VERIFY_OFFSET(reserved6, 0x20); 9990 VERIFY_OFFSET(io_flags, 0x24); 9991 VERIFY_OFFSET(reserved7, 0x26); 9992 VERIFY_OFFSET(LUN, 0x34); 9993 VERIFY_OFFSET(control, 0x3C); 9994 VERIFY_OFFSET(CDB, 0x40); 9995 VERIFY_OFFSET(reserved8, 0x50); 9996 VERIFY_OFFSET(host_context_flags, 0x60); 9997 VERIFY_OFFSET(timeout_sec, 0x62); 9998 VERIFY_OFFSET(ReplyQueue, 0x64); 9999 VERIFY_OFFSET(reserved9, 0x65); 10000 VERIFY_OFFSET(tag, 0x68); 10001 VERIFY_OFFSET(host_addr, 0x70); 10002 VERIFY_OFFSET(CISS_LUN, 0x78); 10003 VERIFY_OFFSET(SG, 0x78 + 8); 10004 #undef VERIFY_OFFSET 10005 } 10006 10007 module_init(hpsa_init); 10008 module_exit(hpsa_cleanup); 10009