xref: /linux/drivers/scsi/hpsa.c (revision 55a42f78ffd386e01a5404419f8c5ded7db70a21)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4  *    Copyright 2016 Microsemi Corporation
5  *    Copyright 2014-2015 PMC-Sierra, Inc.
6  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7  *
8  *    This program is free software; you can redistribute it and/or modify
9  *    it under the terms of the GNU General Public License as published by
10  *    the Free Software Foundation; version 2 of the License.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
16  *
17  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <linux/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78 
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82 	HPSA_DRIVER_VERSION);
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86 
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 	"Use 'simple mode' rather than 'performant mode'");
91 
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
150 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 	{0,}
152 };
153 
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161 	{0x40700E11, "Smart Array 5300", &SA5A_access},
162 	{0x40800E11, "Smart Array 5i", &SA5B_access},
163 	{0x40820E11, "Smart Array 532", &SA5B_access},
164 	{0x40830E11, "Smart Array 5312", &SA5B_access},
165 	{0x409A0E11, "Smart Array 641", &SA5A_access},
166 	{0x409B0E11, "Smart Array 642", &SA5A_access},
167 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
168 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169 	{0x40910E11, "Smart Array 6i", &SA5A_access},
170 	{0x3225103C, "Smart Array P600", &SA5A_access},
171 	{0x3223103C, "Smart Array P800", &SA5A_access},
172 	{0x3234103C, "Smart Array P400", &SA5A_access},
173 	{0x3235103C, "Smart Array P400i", &SA5A_access},
174 	{0x3211103C, "Smart Array E200i", &SA5A_access},
175 	{0x3212103C, "Smart Array E200", &SA5A_access},
176 	{0x3213103C, "Smart Array E200i", &SA5A_access},
177 	{0x3214103C, "Smart Array E200i", &SA5A_access},
178 	{0x3215103C, "Smart Array E200i", &SA5A_access},
179 	{0x3237103C, "Smart Array E500", &SA5A_access},
180 	{0x323D103C, "Smart Array P700m", &SA5A_access},
181 	{0x3241103C, "Smart Array P212", &SA5_access},
182 	{0x3243103C, "Smart Array P410", &SA5_access},
183 	{0x3245103C, "Smart Array P410i", &SA5_access},
184 	{0x3247103C, "Smart Array P411", &SA5_access},
185 	{0x3249103C, "Smart Array P812", &SA5_access},
186 	{0x324A103C, "Smart Array P712m", &SA5_access},
187 	{0x324B103C, "Smart Array P711m", &SA5_access},
188 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189 	{0x3350103C, "Smart Array P222", &SA5_access},
190 	{0x3351103C, "Smart Array P420", &SA5_access},
191 	{0x3352103C, "Smart Array P421", &SA5_access},
192 	{0x3353103C, "Smart Array P822", &SA5_access},
193 	{0x3354103C, "Smart Array P420i", &SA5_access},
194 	{0x3355103C, "Smart Array P220i", &SA5_access},
195 	{0x3356103C, "Smart Array P721m", &SA5_access},
196 	{0x1920103C, "Smart Array P430i", &SA5_access},
197 	{0x1921103C, "Smart Array P830i", &SA5_access},
198 	{0x1922103C, "Smart Array P430", &SA5_access},
199 	{0x1923103C, "Smart Array P431", &SA5_access},
200 	{0x1924103C, "Smart Array P830", &SA5_access},
201 	{0x1925103C, "Smart Array P831", &SA5_access},
202 	{0x1926103C, "Smart Array P731m", &SA5_access},
203 	{0x1928103C, "Smart Array P230i", &SA5_access},
204 	{0x1929103C, "Smart Array P530", &SA5_access},
205 	{0x21BD103C, "Smart Array P244br", &SA5_access},
206 	{0x21BE103C, "Smart Array P741m", &SA5_access},
207 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
208 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
209 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
210 	{0x21C2103C, "Smart Array P440", &SA5_access},
211 	{0x21C3103C, "Smart Array P441", &SA5_access},
212 	{0x21C4103C, "Smart Array", &SA5_access},
213 	{0x21C5103C, "Smart Array P841", &SA5_access},
214 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
215 	{0x21C7103C, "Smart HBA H240", &SA5_access},
216 	{0x21C8103C, "Smart HBA H241", &SA5_access},
217 	{0x21C9103C, "Smart Array", &SA5_access},
218 	{0x21CA103C, "Smart Array P246br", &SA5_access},
219 	{0x21CB103C, "Smart Array P840", &SA5_access},
220 	{0x21CC103C, "Smart Array", &SA5_access},
221 	{0x21CD103C, "Smart Array", &SA5_access},
222 	{0x21CE103C, "Smart HBA", &SA5_access},
223 	{0x05809005, "SmartHBA-SA", &SA5_access},
224 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
225 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
227 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
228 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236 
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241 			struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245 		struct sas_rphy *rphy);
246 
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252 
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256 		      void __user *arg);
257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
258 			       IOCTL_Command_struct *iocommand);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260 				   BIG_IOCTL_Command_struct *ioc);
261 
262 #ifdef CONFIG_COMPAT
263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264 	void __user *arg);
265 #endif
266 
267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271 					    struct scsi_cmnd *scmd);
272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
274 	int cmd_type);
275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
278 
279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280 static void hpsa_scan_start(struct Scsi_Host *);
281 static int hpsa_scan_finished(struct Scsi_Host *sh,
282 	unsigned long elapsed_time);
283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
284 
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286 static int hpsa_sdev_init(struct scsi_device *sdev);
287 static int hpsa_sdev_configure(struct scsi_device *sdev,
288 			       struct queue_limits *lim);
289 static void hpsa_sdev_destroy(struct scsi_device *sdev);
290 
291 static void hpsa_update_scsi_devices(struct ctlr_info *h);
292 static int check_for_unit_attention(struct ctlr_info *h,
293 	struct CommandList *c);
294 static void check_ioctl_unit_attention(struct ctlr_info *h,
295 	struct CommandList *c);
296 /* performant mode helper functions */
297 static void calc_bucket_map(int *bucket, int num_buckets,
298 	int nsgs, int min_blocks, u32 *bucket_map);
299 static void hpsa_free_performant_mode(struct ctlr_info *h);
300 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
301 static inline u32 next_command(struct ctlr_info *h, u8 q);
302 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
303 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
304 			       u64 *cfg_offset);
305 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
306 				    unsigned long *memory_bar);
307 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
308 				bool *legacy_board);
309 static int wait_for_device_to_become_ready(struct ctlr_info *h,
310 					   unsigned char lunaddr[],
311 					   int reply_queue);
312 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
313 				     int wait_for_ready);
314 static inline void finish_cmd(struct CommandList *c);
315 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
316 #define BOARD_NOT_READY 0
317 #define BOARD_READY 1
318 static void hpsa_drain_accel_commands(struct ctlr_info *h);
319 static void hpsa_flush_cache(struct ctlr_info *h);
320 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
321 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
322 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
323 static void hpsa_command_resubmit_worker(struct work_struct *work);
324 static u32 lockup_detected(struct ctlr_info *h);
325 static int detect_controller_lockup(struct ctlr_info *h);
326 static void hpsa_disable_rld_caching(struct ctlr_info *h);
327 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
328 	struct ReportExtendedLUNdata *buf, int bufsize);
329 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
330 	unsigned char scsi3addr[], u8 page);
331 static int hpsa_luns_changed(struct ctlr_info *h);
332 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
333 			       struct hpsa_scsi_dev_t *dev,
334 			       unsigned char *scsi3addr);
335 
336 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
337 {
338 	unsigned long *priv = shost_priv(sdev->host);
339 	return (struct ctlr_info *) *priv;
340 }
341 
342 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
343 {
344 	unsigned long *priv = shost_priv(sh);
345 	return (struct ctlr_info *) *priv;
346 }
347 
348 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
349 {
350 	return c->scsi_cmd == SCSI_CMD_IDLE;
351 }
352 
353 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
354 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
355 			u8 *sense_key, u8 *asc, u8 *ascq)
356 {
357 	struct scsi_sense_hdr sshdr;
358 	bool rc;
359 
360 	*sense_key = -1;
361 	*asc = -1;
362 	*ascq = -1;
363 
364 	if (sense_data_len < 1)
365 		return;
366 
367 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
368 	if (rc) {
369 		*sense_key = sshdr.sense_key;
370 		*asc = sshdr.asc;
371 		*ascq = sshdr.ascq;
372 	}
373 }
374 
375 static int check_for_unit_attention(struct ctlr_info *h,
376 	struct CommandList *c)
377 {
378 	u8 sense_key, asc, ascq;
379 	int sense_len;
380 
381 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
382 		sense_len = sizeof(c->err_info->SenseInfo);
383 	else
384 		sense_len = c->err_info->SenseLen;
385 
386 	decode_sense_data(c->err_info->SenseInfo, sense_len,
387 				&sense_key, &asc, &ascq);
388 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
389 		return 0;
390 
391 	switch (asc) {
392 	case STATE_CHANGED:
393 		dev_warn(&h->pdev->dev,
394 			"%s: a state change detected, command retried\n",
395 			h->devname);
396 		break;
397 	case LUN_FAILED:
398 		dev_warn(&h->pdev->dev,
399 			"%s: LUN failure detected\n", h->devname);
400 		break;
401 	case REPORT_LUNS_CHANGED:
402 		dev_warn(&h->pdev->dev,
403 			"%s: report LUN data changed\n", h->devname);
404 	/*
405 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
406 	 * target (array) devices.
407 	 */
408 		break;
409 	case POWER_OR_RESET:
410 		dev_warn(&h->pdev->dev,
411 			"%s: a power on or device reset detected\n",
412 			h->devname);
413 		break;
414 	case UNIT_ATTENTION_CLEARED:
415 		dev_warn(&h->pdev->dev,
416 			"%s: unit attention cleared by another initiator\n",
417 			h->devname);
418 		break;
419 	default:
420 		dev_warn(&h->pdev->dev,
421 			"%s: unknown unit attention detected\n",
422 			h->devname);
423 		break;
424 	}
425 	return 1;
426 }
427 
428 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
429 {
430 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
431 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
432 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
433 		return 0;
434 	dev_warn(&h->pdev->dev, HPSA "device busy");
435 	return 1;
436 }
437 
438 static u32 lockup_detected(struct ctlr_info *h);
439 static ssize_t host_show_lockup_detected(struct device *dev,
440 		struct device_attribute *attr, char *buf)
441 {
442 	int ld;
443 	struct ctlr_info *h;
444 	struct Scsi_Host *shost = class_to_shost(dev);
445 
446 	h = shost_to_hba(shost);
447 	ld = lockup_detected(h);
448 
449 	return sprintf(buf, "ld=%d\n", ld);
450 }
451 
452 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
453 					 struct device_attribute *attr,
454 					 const char *buf, size_t count)
455 {
456 	int status;
457 	struct ctlr_info *h;
458 	struct Scsi_Host *shost = class_to_shost(dev);
459 
460 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 		return -EACCES;
462 	if (kstrtoint(buf, 10, &status))
463 		return -EINVAL;
464 	h = shost_to_hba(shost);
465 	h->acciopath_status = !!status;
466 	dev_warn(&h->pdev->dev,
467 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
468 		h->acciopath_status ? "enabled" : "disabled");
469 	return count;
470 }
471 
472 static ssize_t host_store_raid_offload_debug(struct device *dev,
473 					 struct device_attribute *attr,
474 					 const char *buf, size_t count)
475 {
476 	int debug_level;
477 	struct ctlr_info *h;
478 	struct Scsi_Host *shost = class_to_shost(dev);
479 
480 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
481 		return -EACCES;
482 	if (kstrtoint(buf, 10, &debug_level))
483 		return -EINVAL;
484 	if (debug_level < 0)
485 		debug_level = 0;
486 	h = shost_to_hba(shost);
487 	h->raid_offload_debug = debug_level;
488 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
489 		h->raid_offload_debug);
490 	return count;
491 }
492 
493 static ssize_t host_store_rescan(struct device *dev,
494 				 struct device_attribute *attr,
495 				 const char *buf, size_t count)
496 {
497 	struct ctlr_info *h;
498 	struct Scsi_Host *shost = class_to_shost(dev);
499 	h = shost_to_hba(shost);
500 	hpsa_scan_start(h->scsi_host);
501 	return count;
502 }
503 
504 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
505 {
506 	device->offload_enabled = 0;
507 	device->offload_to_be_enabled = 0;
508 }
509 
510 static ssize_t host_show_firmware_revision(struct device *dev,
511 	     struct device_attribute *attr, char *buf)
512 {
513 	struct ctlr_info *h;
514 	struct Scsi_Host *shost = class_to_shost(dev);
515 	unsigned char *fwrev;
516 
517 	h = shost_to_hba(shost);
518 	if (!h->hba_inquiry_data)
519 		return 0;
520 	fwrev = &h->hba_inquiry_data[32];
521 	return snprintf(buf, 20, "%c%c%c%c\n",
522 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524 
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526 	     struct device_attribute *attr, char *buf)
527 {
528 	struct Scsi_Host *shost = class_to_shost(dev);
529 	struct ctlr_info *h = shost_to_hba(shost);
530 
531 	return snprintf(buf, 20, "%d\n",
532 			atomic_read(&h->commands_outstanding));
533 }
534 
535 static ssize_t host_show_transport_mode(struct device *dev,
536 	struct device_attribute *attr, char *buf)
537 {
538 	struct ctlr_info *h;
539 	struct Scsi_Host *shost = class_to_shost(dev);
540 
541 	h = shost_to_hba(shost);
542 	return snprintf(buf, 20, "%s\n",
543 		h->transMethod & CFGTBL_Trans_Performant ?
544 			"performant" : "simple");
545 }
546 
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548 	struct device_attribute *attr, char *buf)
549 {
550 	struct ctlr_info *h;
551 	struct Scsi_Host *shost = class_to_shost(dev);
552 
553 	h = shost_to_hba(shost);
554 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557 
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560 	0x324a103C, /* Smart Array P712m */
561 	0x324b103C, /* Smart Array P711m */
562 	0x3223103C, /* Smart Array P800 */
563 	0x3234103C, /* Smart Array P400 */
564 	0x3235103C, /* Smart Array P400i */
565 	0x3211103C, /* Smart Array E200i */
566 	0x3212103C, /* Smart Array E200 */
567 	0x3213103C, /* Smart Array E200i */
568 	0x3214103C, /* Smart Array E200i */
569 	0x3215103C, /* Smart Array E200i */
570 	0x3237103C, /* Smart Array E500 */
571 	0x323D103C, /* Smart Array P700m */
572 	0x40800E11, /* Smart Array 5i */
573 	0x409C0E11, /* Smart Array 6400 */
574 	0x409D0E11, /* Smart Array 6400 EM */
575 	0x40700E11, /* Smart Array 5300 */
576 	0x40820E11, /* Smart Array 532 */
577 	0x40830E11, /* Smart Array 5312 */
578 	0x409A0E11, /* Smart Array 641 */
579 	0x409B0E11, /* Smart Array 642 */
580 	0x40910E11, /* Smart Array 6i */
581 };
582 
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585 	0x40800E11, /* Smart Array 5i */
586 	0x40700E11, /* Smart Array 5300 */
587 	0x40820E11, /* Smart Array 532 */
588 	0x40830E11, /* Smart Array 5312 */
589 	0x409A0E11, /* Smart Array 641 */
590 	0x409B0E11, /* Smart Array 642 */
591 	0x40910E11, /* Smart Array 6i */
592 	/* Exclude 640x boards.  These are two pci devices in one slot
593 	 * which share a battery backed cache module.  One controls the
594 	 * cache, the other accesses the cache through the one that controls
595 	 * it.  If we reset the one controlling the cache, the other will
596 	 * likely not be happy.  Just forbid resetting this conjoined mess.
597 	 * The 640x isn't really supported by hpsa anyway.
598 	 */
599 	0x409C0E11, /* Smart Array 6400 */
600 	0x409D0E11, /* Smart Array 6400 EM */
601 };
602 
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605 	int i;
606 
607 	for (i = 0; i < nelems; i++)
608 		if (a[i] == board_id)
609 			return 1;
610 	return 0;
611 }
612 
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615 	return !board_id_in_array(unresettable_controller,
616 			ARRAY_SIZE(unresettable_controller), board_id);
617 }
618 
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621 	return !board_id_in_array(soft_unresettable_controller,
622 			ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624 
625 static int ctlr_is_resettable(u32 board_id)
626 {
627 	return ctlr_is_hard_resettable(board_id) ||
628 		ctlr_is_soft_resettable(board_id);
629 }
630 
631 static ssize_t host_show_resettable(struct device *dev,
632 	struct device_attribute *attr, char *buf)
633 {
634 	struct ctlr_info *h;
635 	struct Scsi_Host *shost = class_to_shost(dev);
636 
637 	h = shost_to_hba(shost);
638 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640 
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643 	return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645 
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0	0
650 #define HPSA_RAID_4	1
651 #define HPSA_RAID_1	2	/* also used for RAID 10 */
652 #define HPSA_RAID_5	3	/* also used for RAID 50 */
653 #define HPSA_RAID_51	4
654 #define HPSA_RAID_6	5	/* also used for RAID 60 */
655 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658 
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661 	return !device->physical_device;
662 }
663 
664 static ssize_t raid_level_show(struct device *dev,
665 	     struct device_attribute *attr, char *buf)
666 {
667 	ssize_t l = 0;
668 	unsigned char rlevel;
669 	struct ctlr_info *h;
670 	struct scsi_device *sdev;
671 	struct hpsa_scsi_dev_t *hdev;
672 	unsigned long flags;
673 
674 	sdev = to_scsi_device(dev);
675 	h = sdev_to_hba(sdev);
676 	spin_lock_irqsave(&h->lock, flags);
677 	hdev = sdev->hostdata;
678 	if (!hdev) {
679 		spin_unlock_irqrestore(&h->lock, flags);
680 		return -ENODEV;
681 	}
682 
683 	/* Is this even a logical drive? */
684 	if (!is_logical_device(hdev)) {
685 		spin_unlock_irqrestore(&h->lock, flags);
686 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
687 		return l;
688 	}
689 
690 	rlevel = hdev->raid_level;
691 	spin_unlock_irqrestore(&h->lock, flags);
692 	if (rlevel > RAID_UNKNOWN)
693 		rlevel = RAID_UNKNOWN;
694 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695 	return l;
696 }
697 
698 static ssize_t lunid_show(struct device *dev,
699 	     struct device_attribute *attr, char *buf)
700 {
701 	struct ctlr_info *h;
702 	struct scsi_device *sdev;
703 	struct hpsa_scsi_dev_t *hdev;
704 	unsigned long flags;
705 	unsigned char lunid[8];
706 
707 	sdev = to_scsi_device(dev);
708 	h = sdev_to_hba(sdev);
709 	spin_lock_irqsave(&h->lock, flags);
710 	hdev = sdev->hostdata;
711 	if (!hdev) {
712 		spin_unlock_irqrestore(&h->lock, flags);
713 		return -ENODEV;
714 	}
715 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716 	spin_unlock_irqrestore(&h->lock, flags);
717 	return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719 
720 static ssize_t unique_id_show(struct device *dev,
721 	     struct device_attribute *attr, char *buf)
722 {
723 	struct ctlr_info *h;
724 	struct scsi_device *sdev;
725 	struct hpsa_scsi_dev_t *hdev;
726 	unsigned long flags;
727 	unsigned char sn[16];
728 
729 	sdev = to_scsi_device(dev);
730 	h = sdev_to_hba(sdev);
731 	spin_lock_irqsave(&h->lock, flags);
732 	hdev = sdev->hostdata;
733 	if (!hdev) {
734 		spin_unlock_irqrestore(&h->lock, flags);
735 		return -ENODEV;
736 	}
737 	memcpy(sn, hdev->device_id, sizeof(sn));
738 	spin_unlock_irqrestore(&h->lock, flags);
739 	return snprintf(buf, 16 * 2 + 2,
740 			"%02X%02X%02X%02X%02X%02X%02X%02X"
741 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 			sn[0], sn[1], sn[2], sn[3],
743 			sn[4], sn[5], sn[6], sn[7],
744 			sn[8], sn[9], sn[10], sn[11],
745 			sn[12], sn[13], sn[14], sn[15]);
746 }
747 
748 static ssize_t sas_address_show(struct device *dev,
749 	      struct device_attribute *attr, char *buf)
750 {
751 	struct ctlr_info *h;
752 	struct scsi_device *sdev;
753 	struct hpsa_scsi_dev_t *hdev;
754 	unsigned long flags;
755 	u64 sas_address;
756 
757 	sdev = to_scsi_device(dev);
758 	h = sdev_to_hba(sdev);
759 	spin_lock_irqsave(&h->lock, flags);
760 	hdev = sdev->hostdata;
761 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762 		spin_unlock_irqrestore(&h->lock, flags);
763 		return -ENODEV;
764 	}
765 	sas_address = hdev->sas_address;
766 	spin_unlock_irqrestore(&h->lock, flags);
767 
768 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770 
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772 	     struct device_attribute *attr, char *buf)
773 {
774 	struct ctlr_info *h;
775 	struct scsi_device *sdev;
776 	struct hpsa_scsi_dev_t *hdev;
777 	unsigned long flags;
778 	int offload_enabled;
779 
780 	sdev = to_scsi_device(dev);
781 	h = sdev_to_hba(sdev);
782 	spin_lock_irqsave(&h->lock, flags);
783 	hdev = sdev->hostdata;
784 	if (!hdev) {
785 		spin_unlock_irqrestore(&h->lock, flags);
786 		return -ENODEV;
787 	}
788 	offload_enabled = hdev->offload_enabled;
789 	spin_unlock_irqrestore(&h->lock, flags);
790 
791 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792 		return snprintf(buf, 20, "%d\n", offload_enabled);
793 	else
794 		return snprintf(buf, 40, "%s\n",
795 				"Not applicable for a controller");
796 }
797 
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800 	     struct device_attribute *attr, char *buf)
801 {
802 	struct ctlr_info *h;
803 	struct scsi_device *sdev;
804 	struct hpsa_scsi_dev_t *hdev;
805 	unsigned long flags;
806 	int i;
807 	int output_len = 0;
808 	u8 box;
809 	u8 bay;
810 	u8 path_map_index = 0;
811 	char *active;
812 	unsigned char phys_connector[2];
813 
814 	sdev = to_scsi_device(dev);
815 	h = sdev_to_hba(sdev);
816 	spin_lock_irqsave(&h->devlock, flags);
817 	hdev = sdev->hostdata;
818 	if (!hdev) {
819 		spin_unlock_irqrestore(&h->devlock, flags);
820 		return -ENODEV;
821 	}
822 
823 	bay = hdev->bay;
824 	for (i = 0; i < MAX_PATHS; i++) {
825 		path_map_index = 1<<i;
826 		if (i == hdev->active_path_index)
827 			active = "Active";
828 		else if (hdev->path_map & path_map_index)
829 			active = "Inactive";
830 		else
831 			continue;
832 
833 		output_len += scnprintf(buf + output_len,
834 				PAGE_SIZE - output_len,
835 				"[%d:%d:%d:%d] %20.20s ",
836 				h->scsi_host->host_no,
837 				hdev->bus, hdev->target, hdev->lun,
838 				scsi_device_type(hdev->devtype));
839 
840 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841 			output_len += scnprintf(buf + output_len,
842 						PAGE_SIZE - output_len,
843 						"%s\n", active);
844 			continue;
845 		}
846 
847 		box = hdev->box[i];
848 		memcpy(&phys_connector, &hdev->phys_connector[i],
849 			sizeof(phys_connector));
850 		if (phys_connector[0] < '0')
851 			phys_connector[0] = '0';
852 		if (phys_connector[1] < '0')
853 			phys_connector[1] = '0';
854 		output_len += scnprintf(buf + output_len,
855 				PAGE_SIZE - output_len,
856 				"PORT: %.2s ",
857 				phys_connector);
858 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859 			hdev->expose_device) {
860 			if (box == 0 || box == 0xFF) {
861 				output_len += scnprintf(buf + output_len,
862 					PAGE_SIZE - output_len,
863 					"BAY: %hhu %s\n",
864 					bay, active);
865 			} else {
866 				output_len += scnprintf(buf + output_len,
867 					PAGE_SIZE - output_len,
868 					"BOX: %hhu BAY: %hhu %s\n",
869 					box, bay, active);
870 			}
871 		} else if (box != 0 && box != 0xFF) {
872 			output_len += scnprintf(buf + output_len,
873 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874 				box, active);
875 		} else
876 			output_len += scnprintf(buf + output_len,
877 				PAGE_SIZE - output_len, "%s\n", active);
878 	}
879 
880 	spin_unlock_irqrestore(&h->devlock, flags);
881 	return output_len;
882 }
883 
884 static ssize_t host_show_ctlr_num(struct device *dev,
885 	struct device_attribute *attr, char *buf)
886 {
887 	struct ctlr_info *h;
888 	struct Scsi_Host *shost = class_to_shost(dev);
889 
890 	h = shost_to_hba(shost);
891 	return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893 
894 static ssize_t host_show_legacy_board(struct device *dev,
895 	struct device_attribute *attr, char *buf)
896 {
897 	struct ctlr_info *h;
898 	struct Scsi_Host *shost = class_to_shost(dev);
899 
900 	h = shost_to_hba(shost);
901 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903 
904 static DEVICE_ATTR_RO(raid_level);
905 static DEVICE_ATTR_RO(lunid);
906 static DEVICE_ATTR_RO(unique_id);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR_RO(sas_address);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910 			host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR_RO(path_info);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913 		host_show_hp_ssd_smart_path_status,
914 		host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916 			host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918 	host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920 	host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922 	host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924 	host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926 	host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928 	host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930 	host_show_legacy_board, NULL);
931 
932 static struct attribute *hpsa_sdev_attrs[] = {
933 	&dev_attr_raid_level.attr,
934 	&dev_attr_lunid.attr,
935 	&dev_attr_unique_id.attr,
936 	&dev_attr_hp_ssd_smart_path_enabled.attr,
937 	&dev_attr_path_info.attr,
938 	&dev_attr_sas_address.attr,
939 	NULL,
940 };
941 
942 ATTRIBUTE_GROUPS(hpsa_sdev);
943 
944 static struct attribute *hpsa_shost_attrs[] = {
945 	&dev_attr_rescan.attr,
946 	&dev_attr_firmware_revision.attr,
947 	&dev_attr_commands_outstanding.attr,
948 	&dev_attr_transport_mode.attr,
949 	&dev_attr_resettable.attr,
950 	&dev_attr_hp_ssd_smart_path_status.attr,
951 	&dev_attr_raid_offload_debug.attr,
952 	&dev_attr_lockup_detected.attr,
953 	&dev_attr_ctlr_num.attr,
954 	&dev_attr_legacy_board.attr,
955 	NULL,
956 };
957 
958 ATTRIBUTE_GROUPS(hpsa_shost);
959 
960 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
961 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
962 
963 static const struct scsi_host_template hpsa_driver_template = {
964 	.module			= THIS_MODULE,
965 	.name			= HPSA,
966 	.proc_name		= HPSA,
967 	.queuecommand		= hpsa_scsi_queue_command,
968 	.scan_start		= hpsa_scan_start,
969 	.scan_finished		= hpsa_scan_finished,
970 	.change_queue_depth	= hpsa_change_queue_depth,
971 	.this_id		= -1,
972 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
973 	.ioctl			= hpsa_ioctl,
974 	.sdev_init		= hpsa_sdev_init,
975 	.sdev_configure		= hpsa_sdev_configure,
976 	.sdev_destroy		= hpsa_sdev_destroy,
977 #ifdef CONFIG_COMPAT
978 	.compat_ioctl		= hpsa_compat_ioctl,
979 #endif
980 	.sdev_groups = hpsa_sdev_groups,
981 	.shost_groups = hpsa_shost_groups,
982 	.max_sectors = 2048,
983 	.no_write_same = 1,
984 };
985 
986 static inline u32 next_command(struct ctlr_info *h, u8 q)
987 {
988 	u32 a;
989 	struct reply_queue_buffer *rq = &h->reply_queue[q];
990 
991 	if (h->transMethod & CFGTBL_Trans_io_accel1)
992 		return h->access.command_completed(h, q);
993 
994 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
995 		return h->access.command_completed(h, q);
996 
997 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
998 		a = rq->head[rq->current_entry];
999 		rq->current_entry++;
1000 		atomic_dec(&h->commands_outstanding);
1001 	} else {
1002 		a = FIFO_EMPTY;
1003 	}
1004 	/* Check for wraparound */
1005 	if (rq->current_entry == h->max_commands) {
1006 		rq->current_entry = 0;
1007 		rq->wraparound ^= 1;
1008 	}
1009 	return a;
1010 }
1011 
1012 /*
1013  * There are some special bits in the bus address of the
1014  * command that we have to set for the controller to know
1015  * how to process the command:
1016  *
1017  * Normal performant mode:
1018  * bit 0: 1 means performant mode, 0 means simple mode.
1019  * bits 1-3 = block fetch table entry
1020  * bits 4-6 = command type (== 0)
1021  *
1022  * ioaccel1 mode:
1023  * bit 0 = "performant mode" bit.
1024  * bits 1-3 = block fetch table entry
1025  * bits 4-6 = command type (== 110)
1026  * (command type is needed because ioaccel1 mode
1027  * commands are submitted through the same register as normal
1028  * mode commands, so this is how the controller knows whether
1029  * the command is normal mode or ioaccel1 mode.)
1030  *
1031  * ioaccel2 mode:
1032  * bit 0 = "performant mode" bit.
1033  * bits 1-4 = block fetch table entry (note extra bit)
1034  * bits 4-6 = not needed, because ioaccel2 mode has
1035  * a separate special register for submitting commands.
1036  */
1037 
1038 /*
1039  * set_performant_mode: Modify the tag for cciss performant
1040  * set bit 0 for pull model, bits 3-1 for block fetch
1041  * register number
1042  */
1043 #define DEFAULT_REPLY_QUEUE (-1)
1044 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1045 					int reply_queue)
1046 {
1047 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1048 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1049 		if (unlikely(!h->msix_vectors))
1050 			return;
1051 		c->Header.ReplyQueue = reply_queue;
1052 	}
1053 }
1054 
1055 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1056 						struct CommandList *c,
1057 						int reply_queue)
1058 {
1059 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1060 
1061 	/*
1062 	 * Tell the controller to post the reply to the queue for this
1063 	 * processor.  This seems to give the best I/O throughput.
1064 	 */
1065 	cp->ReplyQueue = reply_queue;
1066 	/*
1067 	 * Set the bits in the address sent down to include:
1068 	 *  - performant mode bit (bit 0)
1069 	 *  - pull count (bits 1-3)
1070 	 *  - command type (bits 4-6)
1071 	 */
1072 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1073 					IOACCEL1_BUSADDR_CMDTYPE;
1074 }
1075 
1076 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1077 						struct CommandList *c,
1078 						int reply_queue)
1079 {
1080 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1081 		&h->ioaccel2_cmd_pool[c->cmdindex];
1082 
1083 	/* Tell the controller to post the reply to the queue for this
1084 	 * processor.  This seems to give the best I/O throughput.
1085 	 */
1086 	cp->reply_queue = reply_queue;
1087 	/* Set the bits in the address sent down to include:
1088 	 *  - performant mode bit not used in ioaccel mode 2
1089 	 *  - pull count (bits 0-3)
1090 	 *  - command type isn't needed for ioaccel2
1091 	 */
1092 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1093 }
1094 
1095 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1096 						struct CommandList *c,
1097 						int reply_queue)
1098 {
1099 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1100 
1101 	/*
1102 	 * Tell the controller to post the reply to the queue for this
1103 	 * processor.  This seems to give the best I/O throughput.
1104 	 */
1105 	cp->reply_queue = reply_queue;
1106 	/*
1107 	 * Set the bits in the address sent down to include:
1108 	 *  - performant mode bit not used in ioaccel mode 2
1109 	 *  - pull count (bits 0-3)
1110 	 *  - command type isn't needed for ioaccel2
1111 	 */
1112 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1113 }
1114 
1115 static int is_firmware_flash_cmd(u8 *cdb)
1116 {
1117 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1118 }
1119 
1120 /*
1121  * During firmware flash, the heartbeat register may not update as frequently
1122  * as it should.  So we dial down lockup detection during firmware flash. and
1123  * dial it back up when firmware flash completes.
1124  */
1125 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1126 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1127 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1128 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1129 		struct CommandList *c)
1130 {
1131 	if (!is_firmware_flash_cmd(c->Request.CDB))
1132 		return;
1133 	atomic_inc(&h->firmware_flash_in_progress);
1134 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1135 }
1136 
1137 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1138 		struct CommandList *c)
1139 {
1140 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1141 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1142 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1143 }
1144 
1145 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1146 	struct CommandList *c, int reply_queue)
1147 {
1148 	dial_down_lockup_detection_during_fw_flash(h, c);
1149 	atomic_inc(&h->commands_outstanding);
1150 	/*
1151 	 * Check to see if the command is being retried.
1152 	 */
1153 	if (c->device && !c->retry_pending)
1154 		atomic_inc(&c->device->commands_outstanding);
1155 
1156 	reply_queue = h->reply_map[raw_smp_processor_id()];
1157 	switch (c->cmd_type) {
1158 	case CMD_IOACCEL1:
1159 		set_ioaccel1_performant_mode(h, c, reply_queue);
1160 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1161 		break;
1162 	case CMD_IOACCEL2:
1163 		set_ioaccel2_performant_mode(h, c, reply_queue);
1164 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1165 		break;
1166 	case IOACCEL2_TMF:
1167 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1168 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1169 		break;
1170 	default:
1171 		set_performant_mode(h, c, reply_queue);
1172 		h->access.submit_command(h, c);
1173 	}
1174 }
1175 
1176 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1177 {
1178 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1179 }
1180 
1181 static inline int is_hba_lunid(unsigned char scsi3addr[])
1182 {
1183 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1184 }
1185 
1186 static inline int is_scsi_rev_5(struct ctlr_info *h)
1187 {
1188 	if (!h->hba_inquiry_data)
1189 		return 0;
1190 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1191 		return 1;
1192 	return 0;
1193 }
1194 
1195 static int hpsa_find_target_lun(struct ctlr_info *h,
1196 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1197 {
1198 	/* finds an unused bus, target, lun for a new physical device
1199 	 * assumes h->devlock is held
1200 	 */
1201 	int i, found = 0;
1202 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1203 
1204 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1205 
1206 	for (i = 0; i < h->ndevices; i++) {
1207 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1208 			__set_bit(h->dev[i]->target, lun_taken);
1209 	}
1210 
1211 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1212 	if (i < HPSA_MAX_DEVICES) {
1213 		/* *bus = 1; */
1214 		*target = i;
1215 		*lun = 0;
1216 		found = 1;
1217 	}
1218 	return !found;
1219 }
1220 
1221 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1222 	struct hpsa_scsi_dev_t *dev, char *description)
1223 {
1224 #define LABEL_SIZE 25
1225 	char label[LABEL_SIZE];
1226 
1227 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1228 		return;
1229 
1230 	switch (dev->devtype) {
1231 	case TYPE_RAID:
1232 		snprintf(label, LABEL_SIZE, "controller");
1233 		break;
1234 	case TYPE_ENCLOSURE:
1235 		snprintf(label, LABEL_SIZE, "enclosure");
1236 		break;
1237 	case TYPE_DISK:
1238 	case TYPE_ZBC:
1239 		if (dev->external)
1240 			snprintf(label, LABEL_SIZE, "external");
1241 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1242 			snprintf(label, LABEL_SIZE, "%s",
1243 				raid_label[PHYSICAL_DRIVE]);
1244 		else
1245 			snprintf(label, LABEL_SIZE, "RAID-%s",
1246 				dev->raid_level > RAID_UNKNOWN ? "?" :
1247 				raid_label[dev->raid_level]);
1248 		break;
1249 	case TYPE_ROM:
1250 		snprintf(label, LABEL_SIZE, "rom");
1251 		break;
1252 	case TYPE_TAPE:
1253 		snprintf(label, LABEL_SIZE, "tape");
1254 		break;
1255 	case TYPE_MEDIUM_CHANGER:
1256 		snprintf(label, LABEL_SIZE, "changer");
1257 		break;
1258 	default:
1259 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1260 		break;
1261 	}
1262 
1263 	dev_printk(level, &h->pdev->dev,
1264 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1265 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1266 			description,
1267 			scsi_device_type(dev->devtype),
1268 			dev->vendor,
1269 			dev->model,
1270 			label,
1271 			dev->offload_config ? '+' : '-',
1272 			dev->offload_to_be_enabled ? '+' : '-',
1273 			dev->expose_device);
1274 }
1275 
1276 /* Add an entry into h->dev[] array. */
1277 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1278 		struct hpsa_scsi_dev_t *device,
1279 		struct hpsa_scsi_dev_t *added[], int *nadded)
1280 {
1281 	/* assumes h->devlock is held */
1282 	int n = h->ndevices;
1283 	int i;
1284 	unsigned char addr1[8], addr2[8];
1285 	struct hpsa_scsi_dev_t *sd;
1286 
1287 	if (n >= HPSA_MAX_DEVICES) {
1288 		dev_err(&h->pdev->dev, "too many devices, some will be "
1289 			"inaccessible.\n");
1290 		return -1;
1291 	}
1292 
1293 	/* physical devices do not have lun or target assigned until now. */
1294 	if (device->lun != -1)
1295 		/* Logical device, lun is already assigned. */
1296 		goto lun_assigned;
1297 
1298 	/* If this device a non-zero lun of a multi-lun device
1299 	 * byte 4 of the 8-byte LUN addr will contain the logical
1300 	 * unit no, zero otherwise.
1301 	 */
1302 	if (device->scsi3addr[4] == 0) {
1303 		/* This is not a non-zero lun of a multi-lun device */
1304 		if (hpsa_find_target_lun(h, device->scsi3addr,
1305 			device->bus, &device->target, &device->lun) != 0)
1306 			return -1;
1307 		goto lun_assigned;
1308 	}
1309 
1310 	/* This is a non-zero lun of a multi-lun device.
1311 	 * Search through our list and find the device which
1312 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1313 	 * Assign the same bus and target for this new LUN.
1314 	 * Use the logical unit number from the firmware.
1315 	 */
1316 	memcpy(addr1, device->scsi3addr, 8);
1317 	addr1[4] = 0;
1318 	addr1[5] = 0;
1319 	for (i = 0; i < n; i++) {
1320 		sd = h->dev[i];
1321 		memcpy(addr2, sd->scsi3addr, 8);
1322 		addr2[4] = 0;
1323 		addr2[5] = 0;
1324 		/* differ only in byte 4 and 5? */
1325 		if (memcmp(addr1, addr2, 8) == 0) {
1326 			device->bus = sd->bus;
1327 			device->target = sd->target;
1328 			device->lun = device->scsi3addr[4];
1329 			break;
1330 		}
1331 	}
1332 	if (device->lun == -1) {
1333 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1334 			" suspect firmware bug or unsupported hardware "
1335 			"configuration.\n");
1336 		return -1;
1337 	}
1338 
1339 lun_assigned:
1340 
1341 	h->dev[n] = device;
1342 	h->ndevices++;
1343 	added[*nadded] = device;
1344 	(*nadded)++;
1345 	hpsa_show_dev_msg(KERN_INFO, h, device,
1346 		device->expose_device ? "added" : "masked");
1347 	return 0;
1348 }
1349 
1350 /*
1351  * Called during a scan operation.
1352  *
1353  * Update an entry in h->dev[] array.
1354  */
1355 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1356 	int entry, struct hpsa_scsi_dev_t *new_entry)
1357 {
1358 	/* assumes h->devlock is held */
1359 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1360 
1361 	/* Raid level changed. */
1362 	h->dev[entry]->raid_level = new_entry->raid_level;
1363 
1364 	/*
1365 	 * ioacccel_handle may have changed for a dual domain disk
1366 	 */
1367 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1368 
1369 	/* Raid offload parameters changed.  Careful about the ordering. */
1370 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1371 		/*
1372 		 * if drive is newly offload_enabled, we want to copy the
1373 		 * raid map data first.  If previously offload_enabled and
1374 		 * offload_config were set, raid map data had better be
1375 		 * the same as it was before. If raid map data has changed
1376 		 * then it had better be the case that
1377 		 * h->dev[entry]->offload_enabled is currently 0.
1378 		 */
1379 		h->dev[entry]->raid_map = new_entry->raid_map;
1380 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1381 	}
1382 	if (new_entry->offload_to_be_enabled) {
1383 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1384 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1385 	}
1386 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1387 	h->dev[entry]->offload_config = new_entry->offload_config;
1388 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1389 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1390 
1391 	/*
1392 	 * We can turn off ioaccel offload now, but need to delay turning
1393 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1394 	 * can't do that until all the devices are updated.
1395 	 */
1396 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1397 
1398 	/*
1399 	 * turn ioaccel off immediately if told to do so.
1400 	 */
1401 	if (!new_entry->offload_to_be_enabled)
1402 		h->dev[entry]->offload_enabled = 0;
1403 
1404 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1405 }
1406 
1407 /* Replace an entry from h->dev[] array. */
1408 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1409 	int entry, struct hpsa_scsi_dev_t *new_entry,
1410 	struct hpsa_scsi_dev_t *added[], int *nadded,
1411 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1412 {
1413 	/* assumes h->devlock is held */
1414 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1415 	removed[*nremoved] = h->dev[entry];
1416 	(*nremoved)++;
1417 
1418 	/*
1419 	 * New physical devices won't have target/lun assigned yet
1420 	 * so we need to preserve the values in the slot we are replacing.
1421 	 */
1422 	if (new_entry->target == -1) {
1423 		new_entry->target = h->dev[entry]->target;
1424 		new_entry->lun = h->dev[entry]->lun;
1425 	}
1426 
1427 	h->dev[entry] = new_entry;
1428 	added[*nadded] = new_entry;
1429 	(*nadded)++;
1430 
1431 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1432 }
1433 
1434 /* Remove an entry from h->dev[] array. */
1435 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1436 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1437 {
1438 	/* assumes h->devlock is held */
1439 	int i;
1440 	struct hpsa_scsi_dev_t *sd;
1441 
1442 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1443 
1444 	sd = h->dev[entry];
1445 	removed[*nremoved] = h->dev[entry];
1446 	(*nremoved)++;
1447 
1448 	for (i = entry; i < h->ndevices-1; i++)
1449 		h->dev[i] = h->dev[i+1];
1450 	h->ndevices--;
1451 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1452 }
1453 
1454 #define SCSI3ADDR_EQ(a, b) ( \
1455 	(a)[7] == (b)[7] && \
1456 	(a)[6] == (b)[6] && \
1457 	(a)[5] == (b)[5] && \
1458 	(a)[4] == (b)[4] && \
1459 	(a)[3] == (b)[3] && \
1460 	(a)[2] == (b)[2] && \
1461 	(a)[1] == (b)[1] && \
1462 	(a)[0] == (b)[0])
1463 
1464 static void fixup_botched_add(struct ctlr_info *h,
1465 	struct hpsa_scsi_dev_t *added)
1466 {
1467 	/* called when scsi_add_device fails in order to re-adjust
1468 	 * h->dev[] to match the mid layer's view.
1469 	 */
1470 	unsigned long flags;
1471 	int i, j;
1472 
1473 	spin_lock_irqsave(&h->lock, flags);
1474 	for (i = 0; i < h->ndevices; i++) {
1475 		if (h->dev[i] == added) {
1476 			for (j = i; j < h->ndevices-1; j++)
1477 				h->dev[j] = h->dev[j+1];
1478 			h->ndevices--;
1479 			break;
1480 		}
1481 	}
1482 	spin_unlock_irqrestore(&h->lock, flags);
1483 	kfree(added);
1484 }
1485 
1486 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1487 	struct hpsa_scsi_dev_t *dev2)
1488 {
1489 	/* we compare everything except lun and target as these
1490 	 * are not yet assigned.  Compare parts likely
1491 	 * to differ first
1492 	 */
1493 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1494 		sizeof(dev1->scsi3addr)) != 0)
1495 		return 0;
1496 	if (memcmp(dev1->device_id, dev2->device_id,
1497 		sizeof(dev1->device_id)) != 0)
1498 		return 0;
1499 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1500 		return 0;
1501 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1502 		return 0;
1503 	if (dev1->devtype != dev2->devtype)
1504 		return 0;
1505 	if (dev1->bus != dev2->bus)
1506 		return 0;
1507 	return 1;
1508 }
1509 
1510 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1511 	struct hpsa_scsi_dev_t *dev2)
1512 {
1513 	/* Device attributes that can change, but don't mean
1514 	 * that the device is a different device, nor that the OS
1515 	 * needs to be told anything about the change.
1516 	 */
1517 	if (dev1->raid_level != dev2->raid_level)
1518 		return 1;
1519 	if (dev1->offload_config != dev2->offload_config)
1520 		return 1;
1521 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1522 		return 1;
1523 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1524 		if (dev1->queue_depth != dev2->queue_depth)
1525 			return 1;
1526 	/*
1527 	 * This can happen for dual domain devices. An active
1528 	 * path change causes the ioaccel handle to change
1529 	 *
1530 	 * for example note the handle differences between p0 and p1
1531 	 * Device                    WWN               ,WWN hash,Handle
1532 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1533 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1534 	 */
1535 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1536 		return 1;
1537 	return 0;
1538 }
1539 
1540 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1541  * and return needle location in *index.  If scsi3addr matches, but not
1542  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1543  * location in *index.
1544  * In the case of a minor device attribute change, such as RAID level, just
1545  * return DEVICE_UPDATED, along with the updated device's location in index.
1546  * If needle not found, return DEVICE_NOT_FOUND.
1547  */
1548 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1549 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1550 	int *index)
1551 {
1552 	int i;
1553 #define DEVICE_NOT_FOUND 0
1554 #define DEVICE_CHANGED 1
1555 #define DEVICE_SAME 2
1556 #define DEVICE_UPDATED 3
1557 	if (needle == NULL)
1558 		return DEVICE_NOT_FOUND;
1559 
1560 	for (i = 0; i < haystack_size; i++) {
1561 		if (haystack[i] == NULL) /* previously removed. */
1562 			continue;
1563 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1564 			*index = i;
1565 			if (device_is_the_same(needle, haystack[i])) {
1566 				if (device_updated(needle, haystack[i]))
1567 					return DEVICE_UPDATED;
1568 				return DEVICE_SAME;
1569 			} else {
1570 				/* Keep offline devices offline */
1571 				if (needle->volume_offline)
1572 					return DEVICE_NOT_FOUND;
1573 				return DEVICE_CHANGED;
1574 			}
1575 		}
1576 	}
1577 	*index = -1;
1578 	return DEVICE_NOT_FOUND;
1579 }
1580 
1581 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1582 					unsigned char scsi3addr[])
1583 {
1584 	struct offline_device_entry *device;
1585 	unsigned long flags;
1586 
1587 	/* Check to see if device is already on the list */
1588 	spin_lock_irqsave(&h->offline_device_lock, flags);
1589 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1590 		if (memcmp(device->scsi3addr, scsi3addr,
1591 			sizeof(device->scsi3addr)) == 0) {
1592 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1593 			return;
1594 		}
1595 	}
1596 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1597 
1598 	/* Device is not on the list, add it. */
1599 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1600 	if (!device)
1601 		return;
1602 
1603 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1604 	spin_lock_irqsave(&h->offline_device_lock, flags);
1605 	list_add_tail(&device->offline_list, &h->offline_device_list);
1606 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1607 }
1608 
1609 /* Print a message explaining various offline volume states */
1610 static void hpsa_show_volume_status(struct ctlr_info *h,
1611 	struct hpsa_scsi_dev_t *sd)
1612 {
1613 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1614 		dev_info(&h->pdev->dev,
1615 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1616 			h->scsi_host->host_no,
1617 			sd->bus, sd->target, sd->lun);
1618 	switch (sd->volume_offline) {
1619 	case HPSA_LV_OK:
1620 		break;
1621 	case HPSA_LV_UNDERGOING_ERASE:
1622 		dev_info(&h->pdev->dev,
1623 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1624 			h->scsi_host->host_no,
1625 			sd->bus, sd->target, sd->lun);
1626 		break;
1627 	case HPSA_LV_NOT_AVAILABLE:
1628 		dev_info(&h->pdev->dev,
1629 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1630 			h->scsi_host->host_no,
1631 			sd->bus, sd->target, sd->lun);
1632 		break;
1633 	case HPSA_LV_UNDERGOING_RPI:
1634 		dev_info(&h->pdev->dev,
1635 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1636 			h->scsi_host->host_no,
1637 			sd->bus, sd->target, sd->lun);
1638 		break;
1639 	case HPSA_LV_PENDING_RPI:
1640 		dev_info(&h->pdev->dev,
1641 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1642 			h->scsi_host->host_no,
1643 			sd->bus, sd->target, sd->lun);
1644 		break;
1645 	case HPSA_LV_ENCRYPTED_NO_KEY:
1646 		dev_info(&h->pdev->dev,
1647 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1648 			h->scsi_host->host_no,
1649 			sd->bus, sd->target, sd->lun);
1650 		break;
1651 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1652 		dev_info(&h->pdev->dev,
1653 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1654 			h->scsi_host->host_no,
1655 			sd->bus, sd->target, sd->lun);
1656 		break;
1657 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1658 		dev_info(&h->pdev->dev,
1659 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1660 			h->scsi_host->host_no,
1661 			sd->bus, sd->target, sd->lun);
1662 		break;
1663 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1664 		dev_info(&h->pdev->dev,
1665 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1666 			h->scsi_host->host_no,
1667 			sd->bus, sd->target, sd->lun);
1668 		break;
1669 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1670 		dev_info(&h->pdev->dev,
1671 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1672 			h->scsi_host->host_no,
1673 			sd->bus, sd->target, sd->lun);
1674 		break;
1675 	case HPSA_LV_PENDING_ENCRYPTION:
1676 		dev_info(&h->pdev->dev,
1677 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1678 			h->scsi_host->host_no,
1679 			sd->bus, sd->target, sd->lun);
1680 		break;
1681 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1682 		dev_info(&h->pdev->dev,
1683 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1684 			h->scsi_host->host_no,
1685 			sd->bus, sd->target, sd->lun);
1686 		break;
1687 	}
1688 }
1689 
1690 /*
1691  * Figure the list of physical drive pointers for a logical drive with
1692  * raid offload configured.
1693  */
1694 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1695 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1696 				struct hpsa_scsi_dev_t *logical_drive)
1697 {
1698 	struct raid_map_data *map = &logical_drive->raid_map;
1699 	struct raid_map_disk_data *dd = &map->data[0];
1700 	int i, j;
1701 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1702 				le16_to_cpu(map->metadata_disks_per_row);
1703 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1704 				le16_to_cpu(map->layout_map_count) *
1705 				total_disks_per_row;
1706 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1707 				total_disks_per_row;
1708 	int qdepth;
1709 
1710 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1711 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1712 
1713 	logical_drive->nphysical_disks = nraid_map_entries;
1714 
1715 	qdepth = 0;
1716 	for (i = 0; i < nraid_map_entries; i++) {
1717 		logical_drive->phys_disk[i] = NULL;
1718 		if (!logical_drive->offload_config)
1719 			continue;
1720 		for (j = 0; j < ndevices; j++) {
1721 			if (dev[j] == NULL)
1722 				continue;
1723 			if (dev[j]->devtype != TYPE_DISK &&
1724 			    dev[j]->devtype != TYPE_ZBC)
1725 				continue;
1726 			if (is_logical_device(dev[j]))
1727 				continue;
1728 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1729 				continue;
1730 
1731 			logical_drive->phys_disk[i] = dev[j];
1732 			if (i < nphys_disk)
1733 				qdepth = min(h->nr_cmds, qdepth +
1734 				    logical_drive->phys_disk[i]->queue_depth);
1735 			break;
1736 		}
1737 
1738 		/*
1739 		 * This can happen if a physical drive is removed and
1740 		 * the logical drive is degraded.  In that case, the RAID
1741 		 * map data will refer to a physical disk which isn't actually
1742 		 * present.  And in that case offload_enabled should already
1743 		 * be 0, but we'll turn it off here just in case
1744 		 */
1745 		if (!logical_drive->phys_disk[i]) {
1746 			dev_warn(&h->pdev->dev,
1747 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1748 				__func__,
1749 				h->scsi_host->host_no, logical_drive->bus,
1750 				logical_drive->target, logical_drive->lun);
1751 			hpsa_turn_off_ioaccel_for_device(logical_drive);
1752 			logical_drive->queue_depth = 8;
1753 		}
1754 	}
1755 	if (nraid_map_entries)
1756 		/*
1757 		 * This is correct for reads, too high for full stripe writes,
1758 		 * way too high for partial stripe writes
1759 		 */
1760 		logical_drive->queue_depth = qdepth;
1761 	else {
1762 		if (logical_drive->external)
1763 			logical_drive->queue_depth = EXTERNAL_QD;
1764 		else
1765 			logical_drive->queue_depth = h->nr_cmds;
1766 	}
1767 }
1768 
1769 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1770 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1771 {
1772 	int i;
1773 
1774 	for (i = 0; i < ndevices; i++) {
1775 		if (dev[i] == NULL)
1776 			continue;
1777 		if (dev[i]->devtype != TYPE_DISK &&
1778 		    dev[i]->devtype != TYPE_ZBC)
1779 			continue;
1780 		if (!is_logical_device(dev[i]))
1781 			continue;
1782 
1783 		/*
1784 		 * If offload is currently enabled, the RAID map and
1785 		 * phys_disk[] assignment *better* not be changing
1786 		 * because we would be changing ioaccel phsy_disk[] pointers
1787 		 * on a ioaccel volume processing I/O requests.
1788 		 *
1789 		 * If an ioaccel volume status changed, initially because it was
1790 		 * re-configured and thus underwent a transformation, or
1791 		 * a drive failed, we would have received a state change
1792 		 * request and ioaccel should have been turned off. When the
1793 		 * transformation completes, we get another state change
1794 		 * request to turn ioaccel back on. In this case, we need
1795 		 * to update the ioaccel information.
1796 		 *
1797 		 * Thus: If it is not currently enabled, but will be after
1798 		 * the scan completes, make sure the ioaccel pointers
1799 		 * are up to date.
1800 		 */
1801 
1802 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1803 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1804 	}
1805 }
1806 
1807 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1808 {
1809 	int rc = 0;
1810 
1811 	if (!h->scsi_host)
1812 		return 1;
1813 
1814 	if (is_logical_device(device)) /* RAID */
1815 		rc = scsi_add_device(h->scsi_host, device->bus,
1816 					device->target, device->lun);
1817 	else /* HBA */
1818 		rc = hpsa_add_sas_device(h->sas_host, device);
1819 
1820 	return rc;
1821 }
1822 
1823 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1824 						struct hpsa_scsi_dev_t *dev)
1825 {
1826 	int i;
1827 	int count = 0;
1828 
1829 	for (i = 0; i < h->nr_cmds; i++) {
1830 		struct CommandList *c = h->cmd_pool + i;
1831 		int refcount = atomic_inc_return(&c->refcount);
1832 
1833 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1834 				dev->scsi3addr)) {
1835 			unsigned long flags;
1836 
1837 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1838 			if (!hpsa_is_cmd_idle(c))
1839 				++count;
1840 			spin_unlock_irqrestore(&h->lock, flags);
1841 		}
1842 
1843 		cmd_free(h, c);
1844 	}
1845 
1846 	return count;
1847 }
1848 
1849 #define NUM_WAIT 20
1850 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1851 						struct hpsa_scsi_dev_t *device)
1852 {
1853 	int cmds = 0;
1854 	int waits = 0;
1855 	int num_wait = NUM_WAIT;
1856 
1857 	if (device->external)
1858 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1859 
1860 	while (1) {
1861 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1862 		if (cmds == 0)
1863 			break;
1864 		if (++waits > num_wait)
1865 			break;
1866 		msleep(1000);
1867 	}
1868 
1869 	if (waits > num_wait) {
1870 		dev_warn(&h->pdev->dev,
1871 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1872 			__func__,
1873 			h->scsi_host->host_no,
1874 			device->bus, device->target, device->lun, cmds);
1875 	}
1876 }
1877 
1878 static void hpsa_remove_device(struct ctlr_info *h,
1879 			struct hpsa_scsi_dev_t *device)
1880 {
1881 	struct scsi_device *sdev = NULL;
1882 
1883 	if (!h->scsi_host)
1884 		return;
1885 
1886 	/*
1887 	 * Allow for commands to drain
1888 	 */
1889 	device->removed = 1;
1890 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1891 
1892 	if (is_logical_device(device)) { /* RAID */
1893 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1894 						device->target, device->lun);
1895 		if (sdev) {
1896 			scsi_remove_device(sdev);
1897 			scsi_device_put(sdev);
1898 		} else {
1899 			/*
1900 			 * We don't expect to get here.  Future commands
1901 			 * to this device will get a selection timeout as
1902 			 * if the device were gone.
1903 			 */
1904 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1905 					"didn't find device for removal.");
1906 		}
1907 	} else { /* HBA */
1908 
1909 		hpsa_remove_sas_device(device);
1910 	}
1911 }
1912 
1913 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1914 	struct hpsa_scsi_dev_t *sd[], int nsds)
1915 {
1916 	/* sd contains scsi3 addresses and devtypes, and inquiry
1917 	 * data.  This function takes what's in sd to be the current
1918 	 * reality and updates h->dev[] to reflect that reality.
1919 	 */
1920 	int i, entry, device_change, changes = 0;
1921 	struct hpsa_scsi_dev_t *csd;
1922 	unsigned long flags;
1923 	struct hpsa_scsi_dev_t **added, **removed;
1924 	int nadded, nremoved;
1925 
1926 	/*
1927 	 * A reset can cause a device status to change
1928 	 * re-schedule the scan to see what happened.
1929 	 */
1930 	spin_lock_irqsave(&h->reset_lock, flags);
1931 	if (h->reset_in_progress) {
1932 		h->drv_req_rescan = 1;
1933 		spin_unlock_irqrestore(&h->reset_lock, flags);
1934 		return;
1935 	}
1936 	spin_unlock_irqrestore(&h->reset_lock, flags);
1937 
1938 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1939 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1940 
1941 	if (!added || !removed) {
1942 		dev_warn(&h->pdev->dev, "out of memory in "
1943 			"adjust_hpsa_scsi_table\n");
1944 		goto free_and_out;
1945 	}
1946 
1947 	spin_lock_irqsave(&h->devlock, flags);
1948 
1949 	/* find any devices in h->dev[] that are not in
1950 	 * sd[] and remove them from h->dev[], and for any
1951 	 * devices which have changed, remove the old device
1952 	 * info and add the new device info.
1953 	 * If minor device attributes change, just update
1954 	 * the existing device structure.
1955 	 */
1956 	i = 0;
1957 	nremoved = 0;
1958 	nadded = 0;
1959 	while (i < h->ndevices) {
1960 		csd = h->dev[i];
1961 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1962 		if (device_change == DEVICE_NOT_FOUND) {
1963 			changes++;
1964 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1965 			continue; /* remove ^^^, hence i not incremented */
1966 		} else if (device_change == DEVICE_CHANGED) {
1967 			changes++;
1968 			hpsa_scsi_replace_entry(h, i, sd[entry],
1969 				added, &nadded, removed, &nremoved);
1970 			/* Set it to NULL to prevent it from being freed
1971 			 * at the bottom of hpsa_update_scsi_devices()
1972 			 */
1973 			sd[entry] = NULL;
1974 		} else if (device_change == DEVICE_UPDATED) {
1975 			hpsa_scsi_update_entry(h, i, sd[entry]);
1976 		}
1977 		i++;
1978 	}
1979 
1980 	/* Now, make sure every device listed in sd[] is also
1981 	 * listed in h->dev[], adding them if they aren't found
1982 	 */
1983 
1984 	for (i = 0; i < nsds; i++) {
1985 		if (!sd[i]) /* if already added above. */
1986 			continue;
1987 
1988 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1989 		 * as the SCSI mid-layer does not handle such devices well.
1990 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1991 		 * at 160Hz, and prevents the system from coming up.
1992 		 */
1993 		if (sd[i]->volume_offline) {
1994 			hpsa_show_volume_status(h, sd[i]);
1995 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1996 			continue;
1997 		}
1998 
1999 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2000 					h->ndevices, &entry);
2001 		if (device_change == DEVICE_NOT_FOUND) {
2002 			changes++;
2003 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2004 				break;
2005 			sd[i] = NULL; /* prevent from being freed later. */
2006 		} else if (device_change == DEVICE_CHANGED) {
2007 			/* should never happen... */
2008 			changes++;
2009 			dev_warn(&h->pdev->dev,
2010 				"device unexpectedly changed.\n");
2011 			/* but if it does happen, we just ignore that device */
2012 		}
2013 	}
2014 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2015 
2016 	/*
2017 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2018 	 * any logical drives that need it enabled.
2019 	 *
2020 	 * The raid map should be current by now.
2021 	 *
2022 	 * We are updating the device list used for I/O requests.
2023 	 */
2024 	for (i = 0; i < h->ndevices; i++) {
2025 		if (h->dev[i] == NULL)
2026 			continue;
2027 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2028 	}
2029 
2030 	spin_unlock_irqrestore(&h->devlock, flags);
2031 
2032 	/* Monitor devices which are in one of several NOT READY states to be
2033 	 * brought online later. This must be done without holding h->devlock,
2034 	 * so don't touch h->dev[]
2035 	 */
2036 	for (i = 0; i < nsds; i++) {
2037 		if (!sd[i]) /* if already added above. */
2038 			continue;
2039 		if (sd[i]->volume_offline)
2040 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2041 	}
2042 
2043 	/* Don't notify scsi mid layer of any changes the first time through
2044 	 * (or if there are no changes) scsi_scan_host will do it later the
2045 	 * first time through.
2046 	 */
2047 	if (!changes)
2048 		goto free_and_out;
2049 
2050 	/* Notify scsi mid layer of any removed devices */
2051 	for (i = 0; i < nremoved; i++) {
2052 		if (removed[i] == NULL)
2053 			continue;
2054 		if (removed[i]->expose_device)
2055 			hpsa_remove_device(h, removed[i]);
2056 		kfree(removed[i]);
2057 		removed[i] = NULL;
2058 	}
2059 
2060 	/* Notify scsi mid layer of any added devices */
2061 	for (i = 0; i < nadded; i++) {
2062 		int rc = 0;
2063 
2064 		if (added[i] == NULL)
2065 			continue;
2066 		if (!(added[i]->expose_device))
2067 			continue;
2068 		rc = hpsa_add_device(h, added[i]);
2069 		if (!rc)
2070 			continue;
2071 		dev_warn(&h->pdev->dev,
2072 			"addition failed %d, device not added.", rc);
2073 		/* now we have to remove it from h->dev,
2074 		 * since it didn't get added to scsi mid layer
2075 		 */
2076 		fixup_botched_add(h, added[i]);
2077 		h->drv_req_rescan = 1;
2078 	}
2079 
2080 free_and_out:
2081 	kfree(added);
2082 	kfree(removed);
2083 }
2084 
2085 /*
2086  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2087  * Assume's h->devlock is held.
2088  */
2089 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2090 	int bus, int target, int lun)
2091 {
2092 	int i;
2093 	struct hpsa_scsi_dev_t *sd;
2094 
2095 	for (i = 0; i < h->ndevices; i++) {
2096 		sd = h->dev[i];
2097 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2098 			return sd;
2099 	}
2100 	return NULL;
2101 }
2102 
2103 static int hpsa_sdev_init(struct scsi_device *sdev)
2104 {
2105 	struct hpsa_scsi_dev_t *sd = NULL;
2106 	unsigned long flags;
2107 	struct ctlr_info *h;
2108 
2109 	h = sdev_to_hba(sdev);
2110 	spin_lock_irqsave(&h->devlock, flags);
2111 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2112 		struct scsi_target *starget;
2113 		struct sas_rphy *rphy;
2114 
2115 		starget = scsi_target(sdev);
2116 		rphy = target_to_rphy(starget);
2117 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2118 		if (sd) {
2119 			sd->target = sdev_id(sdev);
2120 			sd->lun = sdev->lun;
2121 		}
2122 	}
2123 	if (!sd)
2124 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2125 					sdev_id(sdev), sdev->lun);
2126 
2127 	if (sd && sd->expose_device) {
2128 		atomic_set(&sd->ioaccel_cmds_out, 0);
2129 		sdev->hostdata = sd;
2130 	} else
2131 		sdev->hostdata = NULL;
2132 	spin_unlock_irqrestore(&h->devlock, flags);
2133 	return 0;
2134 }
2135 
2136 /* configure scsi device based on internal per-device structure */
2137 #define CTLR_TIMEOUT (120 * HZ)
2138 static int hpsa_sdev_configure(struct scsi_device *sdev,
2139 			       struct queue_limits *lim)
2140 {
2141 	struct hpsa_scsi_dev_t *sd;
2142 	int queue_depth;
2143 
2144 	sd = sdev->hostdata;
2145 	sdev->no_uld_attach = !sd || !sd->expose_device;
2146 
2147 	if (sd) {
2148 		sd->was_removed = 0;
2149 		queue_depth = sd->queue_depth != 0 ?
2150 				sd->queue_depth : sdev->host->can_queue;
2151 		if (sd->external) {
2152 			queue_depth = EXTERNAL_QD;
2153 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2154 			blk_queue_rq_timeout(sdev->request_queue,
2155 						HPSA_EH_PTRAID_TIMEOUT);
2156 		}
2157 		if (is_hba_lunid(sd->scsi3addr)) {
2158 			sdev->eh_timeout = CTLR_TIMEOUT;
2159 			blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2160 		}
2161 	} else {
2162 		queue_depth = sdev->host->can_queue;
2163 	}
2164 
2165 	scsi_change_queue_depth(sdev, queue_depth);
2166 
2167 	return 0;
2168 }
2169 
2170 static void hpsa_sdev_destroy(struct scsi_device *sdev)
2171 {
2172 	struct hpsa_scsi_dev_t *hdev = NULL;
2173 
2174 	hdev = sdev->hostdata;
2175 
2176 	if (hdev)
2177 		hdev->was_removed = 1;
2178 }
2179 
2180 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2181 {
2182 	int i;
2183 
2184 	if (!h->ioaccel2_cmd_sg_list)
2185 		return;
2186 	for (i = 0; i < h->nr_cmds; i++) {
2187 		kfree(h->ioaccel2_cmd_sg_list[i]);
2188 		h->ioaccel2_cmd_sg_list[i] = NULL;
2189 	}
2190 	kfree(h->ioaccel2_cmd_sg_list);
2191 	h->ioaccel2_cmd_sg_list = NULL;
2192 }
2193 
2194 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2195 {
2196 	int i;
2197 
2198 	if (h->chainsize <= 0)
2199 		return 0;
2200 
2201 	h->ioaccel2_cmd_sg_list =
2202 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2203 					GFP_KERNEL);
2204 	if (!h->ioaccel2_cmd_sg_list)
2205 		return -ENOMEM;
2206 	for (i = 0; i < h->nr_cmds; i++) {
2207 		h->ioaccel2_cmd_sg_list[i] =
2208 			kmalloc_array(h->maxsgentries,
2209 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2210 				      GFP_KERNEL);
2211 		if (!h->ioaccel2_cmd_sg_list[i])
2212 			goto clean;
2213 	}
2214 	return 0;
2215 
2216 clean:
2217 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2218 	return -ENOMEM;
2219 }
2220 
2221 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2222 {
2223 	int i;
2224 
2225 	if (!h->cmd_sg_list)
2226 		return;
2227 	for (i = 0; i < h->nr_cmds; i++) {
2228 		kfree(h->cmd_sg_list[i]);
2229 		h->cmd_sg_list[i] = NULL;
2230 	}
2231 	kfree(h->cmd_sg_list);
2232 	h->cmd_sg_list = NULL;
2233 }
2234 
2235 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2236 {
2237 	int i;
2238 
2239 	if (h->chainsize <= 0)
2240 		return 0;
2241 
2242 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2243 				 GFP_KERNEL);
2244 	if (!h->cmd_sg_list)
2245 		return -ENOMEM;
2246 
2247 	for (i = 0; i < h->nr_cmds; i++) {
2248 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2249 						  sizeof(*h->cmd_sg_list[i]),
2250 						  GFP_KERNEL);
2251 		if (!h->cmd_sg_list[i])
2252 			goto clean;
2253 
2254 	}
2255 	return 0;
2256 
2257 clean:
2258 	hpsa_free_sg_chain_blocks(h);
2259 	return -ENOMEM;
2260 }
2261 
2262 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2263 	struct io_accel2_cmd *cp, struct CommandList *c)
2264 {
2265 	struct ioaccel2_sg_element *chain_block;
2266 	u64 temp64;
2267 	u32 chain_size;
2268 
2269 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2270 	chain_size = le32_to_cpu(cp->sg[0].length);
2271 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2272 				DMA_TO_DEVICE);
2273 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2274 		/* prevent subsequent unmapping */
2275 		cp->sg->address = 0;
2276 		return -1;
2277 	}
2278 	cp->sg->address = cpu_to_le64(temp64);
2279 	return 0;
2280 }
2281 
2282 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2283 	struct io_accel2_cmd *cp)
2284 {
2285 	struct ioaccel2_sg_element *chain_sg;
2286 	u64 temp64;
2287 	u32 chain_size;
2288 
2289 	chain_sg = cp->sg;
2290 	temp64 = le64_to_cpu(chain_sg->address);
2291 	chain_size = le32_to_cpu(cp->sg[0].length);
2292 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2293 }
2294 
2295 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2296 	struct CommandList *c)
2297 {
2298 	struct SGDescriptor *chain_sg, *chain_block;
2299 	u64 temp64;
2300 	u32 chain_len;
2301 
2302 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2303 	chain_block = h->cmd_sg_list[c->cmdindex];
2304 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2305 	chain_len = sizeof(*chain_sg) *
2306 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2307 	chain_sg->Len = cpu_to_le32(chain_len);
2308 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2309 				DMA_TO_DEVICE);
2310 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2311 		/* prevent subsequent unmapping */
2312 		chain_sg->Addr = cpu_to_le64(0);
2313 		return -1;
2314 	}
2315 	chain_sg->Addr = cpu_to_le64(temp64);
2316 	return 0;
2317 }
2318 
2319 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2320 	struct CommandList *c)
2321 {
2322 	struct SGDescriptor *chain_sg;
2323 
2324 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2325 		return;
2326 
2327 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2328 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2329 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2330 }
2331 
2332 
2333 /* Decode the various types of errors on ioaccel2 path.
2334  * Return 1 for any error that should generate a RAID path retry.
2335  * Return 0 for errors that don't require a RAID path retry.
2336  */
2337 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2338 					struct CommandList *c,
2339 					struct scsi_cmnd *cmd,
2340 					struct io_accel2_cmd *c2,
2341 					struct hpsa_scsi_dev_t *dev)
2342 {
2343 	int data_len;
2344 	int retry = 0;
2345 	u32 ioaccel2_resid = 0;
2346 
2347 	switch (c2->error_data.serv_response) {
2348 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2349 		switch (c2->error_data.status) {
2350 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2351 			if (cmd)
2352 				cmd->result = 0;
2353 			break;
2354 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2355 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2356 			if (c2->error_data.data_present !=
2357 					IOACCEL2_SENSE_DATA_PRESENT) {
2358 				memset(cmd->sense_buffer, 0,
2359 					SCSI_SENSE_BUFFERSIZE);
2360 				break;
2361 			}
2362 			/* copy the sense data */
2363 			data_len = c2->error_data.sense_data_len;
2364 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2365 				data_len = SCSI_SENSE_BUFFERSIZE;
2366 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2367 				data_len =
2368 					sizeof(c2->error_data.sense_data_buff);
2369 			memcpy(cmd->sense_buffer,
2370 				c2->error_data.sense_data_buff, data_len);
2371 			retry = 1;
2372 			break;
2373 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2374 			retry = 1;
2375 			break;
2376 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2377 			retry = 1;
2378 			break;
2379 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2380 			retry = 1;
2381 			break;
2382 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2383 			retry = 1;
2384 			break;
2385 		default:
2386 			retry = 1;
2387 			break;
2388 		}
2389 		break;
2390 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2391 		switch (c2->error_data.status) {
2392 		case IOACCEL2_STATUS_SR_IO_ERROR:
2393 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2394 		case IOACCEL2_STATUS_SR_OVERRUN:
2395 			retry = 1;
2396 			break;
2397 		case IOACCEL2_STATUS_SR_UNDERRUN:
2398 			cmd->result = (DID_OK << 16);		/* host byte */
2399 			ioaccel2_resid = get_unaligned_le32(
2400 						&c2->error_data.resid_cnt[0]);
2401 			scsi_set_resid(cmd, ioaccel2_resid);
2402 			break;
2403 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2404 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2405 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2406 			/*
2407 			 * Did an HBA disk disappear? We will eventually
2408 			 * get a state change event from the controller but
2409 			 * in the meantime, we need to tell the OS that the
2410 			 * HBA disk is no longer there and stop I/O
2411 			 * from going down. This allows the potential re-insert
2412 			 * of the disk to get the same device node.
2413 			 */
2414 			if (dev->physical_device && dev->expose_device) {
2415 				cmd->result = DID_NO_CONNECT << 16;
2416 				dev->removed = 1;
2417 				h->drv_req_rescan = 1;
2418 				dev_warn(&h->pdev->dev,
2419 					"%s: device is gone!\n", __func__);
2420 			} else
2421 				/*
2422 				 * Retry by sending down the RAID path.
2423 				 * We will get an event from ctlr to
2424 				 * trigger rescan regardless.
2425 				 */
2426 				retry = 1;
2427 			break;
2428 		default:
2429 			retry = 1;
2430 		}
2431 		break;
2432 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2433 		break;
2434 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2435 		break;
2436 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2437 		retry = 1;
2438 		break;
2439 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2440 		break;
2441 	default:
2442 		retry = 1;
2443 		break;
2444 	}
2445 
2446 	if (dev->in_reset)
2447 		retry = 0;
2448 
2449 	return retry;	/* retry on raid path? */
2450 }
2451 
2452 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2453 		struct CommandList *c)
2454 {
2455 	struct hpsa_scsi_dev_t *dev = c->device;
2456 
2457 	/*
2458 	 * Reset c->scsi_cmd here so that the reset handler will know
2459 	 * this command has completed.  Then, check to see if the handler is
2460 	 * waiting for this command, and, if so, wake it.
2461 	 */
2462 	c->scsi_cmd = SCSI_CMD_IDLE;
2463 	mb();	/* Declare command idle before checking for pending events. */
2464 	if (dev) {
2465 		atomic_dec(&dev->commands_outstanding);
2466 		if (dev->in_reset &&
2467 			atomic_read(&dev->commands_outstanding) <= 0)
2468 			wake_up_all(&h->event_sync_wait_queue);
2469 	}
2470 }
2471 
2472 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2473 				      struct CommandList *c)
2474 {
2475 	hpsa_cmd_resolve_events(h, c);
2476 	cmd_tagged_free(h, c);
2477 }
2478 
2479 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2480 		struct CommandList *c, struct scsi_cmnd *cmd)
2481 {
2482 	hpsa_cmd_resolve_and_free(h, c);
2483 	if (cmd)
2484 		scsi_done(cmd);
2485 }
2486 
2487 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2488 {
2489 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2490 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2491 }
2492 
2493 static void process_ioaccel2_completion(struct ctlr_info *h,
2494 		struct CommandList *c, struct scsi_cmnd *cmd,
2495 		struct hpsa_scsi_dev_t *dev)
2496 {
2497 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2498 
2499 	/* check for good status */
2500 	if (likely(c2->error_data.serv_response == 0 &&
2501 			c2->error_data.status == 0)) {
2502 		cmd->result = 0;
2503 		return hpsa_cmd_free_and_done(h, c, cmd);
2504 	}
2505 
2506 	/*
2507 	 * Any RAID offload error results in retry which will use
2508 	 * the normal I/O path so the controller can handle whatever is
2509 	 * wrong.
2510 	 */
2511 	if (is_logical_device(dev) &&
2512 		c2->error_data.serv_response ==
2513 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2514 		if (c2->error_data.status ==
2515 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2516 			hpsa_turn_off_ioaccel_for_device(dev);
2517 		}
2518 
2519 		if (dev->in_reset) {
2520 			cmd->result = DID_RESET << 16;
2521 			return hpsa_cmd_free_and_done(h, c, cmd);
2522 		}
2523 
2524 		return hpsa_retry_cmd(h, c);
2525 	}
2526 
2527 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2528 		return hpsa_retry_cmd(h, c);
2529 
2530 	return hpsa_cmd_free_and_done(h, c, cmd);
2531 }
2532 
2533 /* Returns 0 on success, < 0 otherwise. */
2534 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2535 					struct CommandList *cp)
2536 {
2537 	u8 tmf_status = cp->err_info->ScsiStatus;
2538 
2539 	switch (tmf_status) {
2540 	case CISS_TMF_COMPLETE:
2541 		/*
2542 		 * CISS_TMF_COMPLETE never happens, instead,
2543 		 * ei->CommandStatus == 0 for this case.
2544 		 */
2545 	case CISS_TMF_SUCCESS:
2546 		return 0;
2547 	case CISS_TMF_INVALID_FRAME:
2548 	case CISS_TMF_NOT_SUPPORTED:
2549 	case CISS_TMF_FAILED:
2550 	case CISS_TMF_WRONG_LUN:
2551 	case CISS_TMF_OVERLAPPED_TAG:
2552 		break;
2553 	default:
2554 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2555 				tmf_status);
2556 		break;
2557 	}
2558 	return -tmf_status;
2559 }
2560 
2561 static void complete_scsi_command(struct CommandList *cp)
2562 {
2563 	struct scsi_cmnd *cmd;
2564 	struct ctlr_info *h;
2565 	struct ErrorInfo *ei;
2566 	struct hpsa_scsi_dev_t *dev;
2567 	struct io_accel2_cmd *c2;
2568 
2569 	u8 sense_key;
2570 	u8 asc;      /* additional sense code */
2571 	u8 ascq;     /* additional sense code qualifier */
2572 	unsigned long sense_data_size;
2573 
2574 	ei = cp->err_info;
2575 	cmd = cp->scsi_cmd;
2576 	h = cp->h;
2577 
2578 	if (!cmd->device) {
2579 		cmd->result = DID_NO_CONNECT << 16;
2580 		return hpsa_cmd_free_and_done(h, cp, cmd);
2581 	}
2582 
2583 	dev = cmd->device->hostdata;
2584 	if (!dev) {
2585 		cmd->result = DID_NO_CONNECT << 16;
2586 		return hpsa_cmd_free_and_done(h, cp, cmd);
2587 	}
2588 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2589 
2590 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2591 	if ((cp->cmd_type == CMD_SCSI) &&
2592 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2593 		hpsa_unmap_sg_chain_block(h, cp);
2594 
2595 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2596 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2597 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2598 
2599 	cmd->result = (DID_OK << 16);		/* host byte */
2600 
2601 	/* SCSI command has already been cleaned up in SML */
2602 	if (dev->was_removed) {
2603 		hpsa_cmd_resolve_and_free(h, cp);
2604 		return;
2605 	}
2606 
2607 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2608 		if (dev->physical_device && dev->expose_device &&
2609 			dev->removed) {
2610 			cmd->result = DID_NO_CONNECT << 16;
2611 			return hpsa_cmd_free_and_done(h, cp, cmd);
2612 		}
2613 		if (likely(cp->phys_disk != NULL))
2614 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2615 	}
2616 
2617 	/*
2618 	 * We check for lockup status here as it may be set for
2619 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2620 	 * fail_all_oustanding_cmds()
2621 	 */
2622 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2623 		/* DID_NO_CONNECT will prevent a retry */
2624 		cmd->result = DID_NO_CONNECT << 16;
2625 		return hpsa_cmd_free_and_done(h, cp, cmd);
2626 	}
2627 
2628 	if (cp->cmd_type == CMD_IOACCEL2)
2629 		return process_ioaccel2_completion(h, cp, cmd, dev);
2630 
2631 	scsi_set_resid(cmd, ei->ResidualCnt);
2632 	if (ei->CommandStatus == 0)
2633 		return hpsa_cmd_free_and_done(h, cp, cmd);
2634 
2635 	/* For I/O accelerator commands, copy over some fields to the normal
2636 	 * CISS header used below for error handling.
2637 	 */
2638 	if (cp->cmd_type == CMD_IOACCEL1) {
2639 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2640 		cp->Header.SGList = scsi_sg_count(cmd);
2641 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2642 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2643 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2644 		cp->Header.tag = c->tag;
2645 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2646 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2647 
2648 		/* Any RAID offload error results in retry which will use
2649 		 * the normal I/O path so the controller can handle whatever's
2650 		 * wrong.
2651 		 */
2652 		if (is_logical_device(dev)) {
2653 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2654 				dev->offload_enabled = 0;
2655 			return hpsa_retry_cmd(h, cp);
2656 		}
2657 	}
2658 
2659 	/* an error has occurred */
2660 	switch (ei->CommandStatus) {
2661 
2662 	case CMD_TARGET_STATUS:
2663 		cmd->result |= ei->ScsiStatus;
2664 		/* copy the sense data */
2665 		sense_data_size = min_t(unsigned long, SCSI_SENSE_BUFFERSIZE,
2666 					sizeof(ei->SenseInfo));
2667 		if (ei->SenseLen < sense_data_size)
2668 			sense_data_size = ei->SenseLen;
2669 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2670 		if (ei->ScsiStatus)
2671 			decode_sense_data(ei->SenseInfo, sense_data_size,
2672 				&sense_key, &asc, &ascq);
2673 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2674 			switch (sense_key) {
2675 			case ABORTED_COMMAND:
2676 				cmd->result |= DID_SOFT_ERROR << 16;
2677 				break;
2678 			case UNIT_ATTENTION:
2679 				if (asc == 0x3F && ascq == 0x0E)
2680 					h->drv_req_rescan = 1;
2681 				break;
2682 			case ILLEGAL_REQUEST:
2683 				if (asc == 0x25 && ascq == 0x00) {
2684 					dev->removed = 1;
2685 					cmd->result = DID_NO_CONNECT << 16;
2686 				}
2687 				break;
2688 			}
2689 			break;
2690 		}
2691 		/* Problem was not a check condition
2692 		 * Pass it up to the upper layers...
2693 		 */
2694 		if (ei->ScsiStatus) {
2695 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2696 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2697 				"Returning result: 0x%x\n",
2698 				cp, ei->ScsiStatus,
2699 				sense_key, asc, ascq,
2700 				cmd->result);
2701 		} else {  /* scsi status is zero??? How??? */
2702 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2703 				"Returning no connection.\n", cp),
2704 
2705 			/* Ordinarily, this case should never happen,
2706 			 * but there is a bug in some released firmware
2707 			 * revisions that allows it to happen if, for
2708 			 * example, a 4100 backplane loses power and
2709 			 * the tape drive is in it.  We assume that
2710 			 * it's a fatal error of some kind because we
2711 			 * can't show that it wasn't. We will make it
2712 			 * look like selection timeout since that is
2713 			 * the most common reason for this to occur,
2714 			 * and it's severe enough.
2715 			 */
2716 
2717 			cmd->result = DID_NO_CONNECT << 16;
2718 		}
2719 		break;
2720 
2721 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2722 		break;
2723 	case CMD_DATA_OVERRUN:
2724 		dev_warn(&h->pdev->dev,
2725 			"CDB %16phN data overrun\n", cp->Request.CDB);
2726 		break;
2727 	case CMD_INVALID: {
2728 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2729 		print_cmd(cp); */
2730 		/* We get CMD_INVALID if you address a non-existent device
2731 		 * instead of a selection timeout (no response).  You will
2732 		 * see this if you yank out a drive, then try to access it.
2733 		 * This is kind of a shame because it means that any other
2734 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2735 		 * missing target. */
2736 		cmd->result = DID_NO_CONNECT << 16;
2737 	}
2738 		break;
2739 	case CMD_PROTOCOL_ERR:
2740 		cmd->result = DID_ERROR << 16;
2741 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2742 				cp->Request.CDB);
2743 		break;
2744 	case CMD_HARDWARE_ERR:
2745 		cmd->result = DID_ERROR << 16;
2746 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2747 			cp->Request.CDB);
2748 		break;
2749 	case CMD_CONNECTION_LOST:
2750 		cmd->result = DID_ERROR << 16;
2751 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2752 			cp->Request.CDB);
2753 		break;
2754 	case CMD_ABORTED:
2755 		cmd->result = DID_ABORT << 16;
2756 		break;
2757 	case CMD_ABORT_FAILED:
2758 		cmd->result = DID_ERROR << 16;
2759 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2760 			cp->Request.CDB);
2761 		break;
2762 	case CMD_UNSOLICITED_ABORT:
2763 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2764 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2765 			cp->Request.CDB);
2766 		break;
2767 	case CMD_TIMEOUT:
2768 		cmd->result = DID_TIME_OUT << 16;
2769 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2770 			cp->Request.CDB);
2771 		break;
2772 	case CMD_UNABORTABLE:
2773 		cmd->result = DID_ERROR << 16;
2774 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2775 		break;
2776 	case CMD_TMF_STATUS:
2777 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2778 			cmd->result = DID_ERROR << 16;
2779 		break;
2780 	case CMD_IOACCEL_DISABLED:
2781 		/* This only handles the direct pass-through case since RAID
2782 		 * offload is handled above.  Just attempt a retry.
2783 		 */
2784 		cmd->result = DID_SOFT_ERROR << 16;
2785 		dev_warn(&h->pdev->dev,
2786 				"cp %p had HP SSD Smart Path error\n", cp);
2787 		break;
2788 	default:
2789 		cmd->result = DID_ERROR << 16;
2790 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2791 				cp, ei->CommandStatus);
2792 	}
2793 
2794 	return hpsa_cmd_free_and_done(h, cp, cmd);
2795 }
2796 
2797 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2798 		int sg_used, enum dma_data_direction data_direction)
2799 {
2800 	int i;
2801 
2802 	for (i = 0; i < sg_used; i++)
2803 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2804 				le32_to_cpu(c->SG[i].Len),
2805 				data_direction);
2806 }
2807 
2808 static int hpsa_map_one(struct pci_dev *pdev,
2809 		struct CommandList *cp,
2810 		unsigned char *buf,
2811 		size_t buflen,
2812 		enum dma_data_direction data_direction)
2813 {
2814 	u64 addr64;
2815 
2816 	if (buflen == 0 || data_direction == DMA_NONE) {
2817 		cp->Header.SGList = 0;
2818 		cp->Header.SGTotal = cpu_to_le16(0);
2819 		return 0;
2820 	}
2821 
2822 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2823 	if (dma_mapping_error(&pdev->dev, addr64)) {
2824 		/* Prevent subsequent unmap of something never mapped */
2825 		cp->Header.SGList = 0;
2826 		cp->Header.SGTotal = cpu_to_le16(0);
2827 		return -1;
2828 	}
2829 	cp->SG[0].Addr = cpu_to_le64(addr64);
2830 	cp->SG[0].Len = cpu_to_le32(buflen);
2831 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2832 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2833 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2834 	return 0;
2835 }
2836 
2837 #define NO_TIMEOUT ((unsigned long) -1)
2838 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2839 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2840 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2841 {
2842 	DECLARE_COMPLETION_ONSTACK(wait);
2843 
2844 	c->waiting = &wait;
2845 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2846 	if (timeout_msecs == NO_TIMEOUT) {
2847 		/* TODO: get rid of this no-timeout thing */
2848 		wait_for_completion_io(&wait);
2849 		return IO_OK;
2850 	}
2851 	if (!wait_for_completion_io_timeout(&wait,
2852 					msecs_to_jiffies(timeout_msecs))) {
2853 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2854 		return -ETIMEDOUT;
2855 	}
2856 	return IO_OK;
2857 }
2858 
2859 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2860 				   int reply_queue, unsigned long timeout_msecs)
2861 {
2862 	if (unlikely(lockup_detected(h))) {
2863 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2864 		return IO_OK;
2865 	}
2866 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2867 }
2868 
2869 static u32 lockup_detected(struct ctlr_info *h)
2870 {
2871 	int cpu;
2872 	u32 rc, *lockup_detected;
2873 
2874 	cpu = get_cpu();
2875 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2876 	rc = *lockup_detected;
2877 	put_cpu();
2878 	return rc;
2879 }
2880 
2881 #define MAX_DRIVER_CMD_RETRIES 25
2882 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2883 		struct CommandList *c, enum dma_data_direction data_direction,
2884 		unsigned long timeout_msecs)
2885 {
2886 	int backoff_time = 10, retry_count = 0;
2887 	int rc;
2888 
2889 	do {
2890 		memset(c->err_info, 0, sizeof(*c->err_info));
2891 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2892 						  timeout_msecs);
2893 		if (rc)
2894 			break;
2895 		retry_count++;
2896 		if (retry_count > 3) {
2897 			msleep(backoff_time);
2898 			if (backoff_time < 1000)
2899 				backoff_time *= 2;
2900 		}
2901 	} while ((check_for_unit_attention(h, c) ||
2902 			check_for_busy(h, c)) &&
2903 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2904 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2905 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2906 		rc = -EIO;
2907 	return rc;
2908 }
2909 
2910 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2911 				struct CommandList *c)
2912 {
2913 	const u8 *cdb = c->Request.CDB;
2914 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2915 
2916 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2917 		 txt, lun, cdb);
2918 }
2919 
2920 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2921 			struct CommandList *cp)
2922 {
2923 	const struct ErrorInfo *ei = cp->err_info;
2924 	struct device *d = &cp->h->pdev->dev;
2925 	u8 sense_key, asc, ascq;
2926 	int sense_len;
2927 
2928 	switch (ei->CommandStatus) {
2929 	case CMD_TARGET_STATUS:
2930 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2931 			sense_len = sizeof(ei->SenseInfo);
2932 		else
2933 			sense_len = ei->SenseLen;
2934 		decode_sense_data(ei->SenseInfo, sense_len,
2935 					&sense_key, &asc, &ascq);
2936 		hpsa_print_cmd(h, "SCSI status", cp);
2937 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2938 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2939 				sense_key, asc, ascq);
2940 		else
2941 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2942 		if (ei->ScsiStatus == 0)
2943 			dev_warn(d, "SCSI status is abnormally zero.  "
2944 			"(probably indicates selection timeout "
2945 			"reported incorrectly due to a known "
2946 			"firmware bug, circa July, 2001.)\n");
2947 		break;
2948 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2949 		break;
2950 	case CMD_DATA_OVERRUN:
2951 		hpsa_print_cmd(h, "overrun condition", cp);
2952 		break;
2953 	case CMD_INVALID: {
2954 		/* controller unfortunately reports SCSI passthru's
2955 		 * to non-existent targets as invalid commands.
2956 		 */
2957 		hpsa_print_cmd(h, "invalid command", cp);
2958 		dev_warn(d, "probably means device no longer present\n");
2959 		}
2960 		break;
2961 	case CMD_PROTOCOL_ERR:
2962 		hpsa_print_cmd(h, "protocol error", cp);
2963 		break;
2964 	case CMD_HARDWARE_ERR:
2965 		hpsa_print_cmd(h, "hardware error", cp);
2966 		break;
2967 	case CMD_CONNECTION_LOST:
2968 		hpsa_print_cmd(h, "connection lost", cp);
2969 		break;
2970 	case CMD_ABORTED:
2971 		hpsa_print_cmd(h, "aborted", cp);
2972 		break;
2973 	case CMD_ABORT_FAILED:
2974 		hpsa_print_cmd(h, "abort failed", cp);
2975 		break;
2976 	case CMD_UNSOLICITED_ABORT:
2977 		hpsa_print_cmd(h, "unsolicited abort", cp);
2978 		break;
2979 	case CMD_TIMEOUT:
2980 		hpsa_print_cmd(h, "timed out", cp);
2981 		break;
2982 	case CMD_UNABORTABLE:
2983 		hpsa_print_cmd(h, "unabortable", cp);
2984 		break;
2985 	case CMD_CTLR_LOCKUP:
2986 		hpsa_print_cmd(h, "controller lockup detected", cp);
2987 		break;
2988 	default:
2989 		hpsa_print_cmd(h, "unknown status", cp);
2990 		dev_warn(d, "Unknown command status %x\n",
2991 				ei->CommandStatus);
2992 	}
2993 }
2994 
2995 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2996 					u8 page, u8 *buf, size_t bufsize)
2997 {
2998 	int rc = IO_OK;
2999 	struct CommandList *c;
3000 	struct ErrorInfo *ei;
3001 
3002 	c = cmd_alloc(h);
3003 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3004 			page, scsi3addr, TYPE_CMD)) {
3005 		rc = -1;
3006 		goto out;
3007 	}
3008 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3009 			NO_TIMEOUT);
3010 	if (rc)
3011 		goto out;
3012 	ei = c->err_info;
3013 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3014 		hpsa_scsi_interpret_error(h, c);
3015 		rc = -1;
3016 	}
3017 out:
3018 	cmd_free(h, c);
3019 	return rc;
3020 }
3021 
3022 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3023 						u8 *scsi3addr)
3024 {
3025 	u8 *buf;
3026 	u64 sa = 0;
3027 	int rc = 0;
3028 
3029 	buf = kzalloc(1024, GFP_KERNEL);
3030 	if (!buf)
3031 		return 0;
3032 
3033 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3034 					buf, 1024);
3035 
3036 	if (rc)
3037 		goto out;
3038 
3039 	sa = get_unaligned_be64(buf+12);
3040 
3041 out:
3042 	kfree(buf);
3043 	return sa;
3044 }
3045 
3046 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3047 			u16 page, unsigned char *buf,
3048 			unsigned char bufsize)
3049 {
3050 	int rc = IO_OK;
3051 	struct CommandList *c;
3052 	struct ErrorInfo *ei;
3053 
3054 	c = cmd_alloc(h);
3055 
3056 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3057 			page, scsi3addr, TYPE_CMD)) {
3058 		rc = -1;
3059 		goto out;
3060 	}
3061 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3062 			NO_TIMEOUT);
3063 	if (rc)
3064 		goto out;
3065 	ei = c->err_info;
3066 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3067 		hpsa_scsi_interpret_error(h, c);
3068 		rc = -1;
3069 	}
3070 out:
3071 	cmd_free(h, c);
3072 	return rc;
3073 }
3074 
3075 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3076 	u8 reset_type, int reply_queue)
3077 {
3078 	int rc = IO_OK;
3079 	struct CommandList *c;
3080 	struct ErrorInfo *ei;
3081 
3082 	c = cmd_alloc(h);
3083 	c->device = dev;
3084 
3085 	/* fill_cmd can't fail here, no data buffer to map. */
3086 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3087 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3088 	if (rc) {
3089 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3090 		goto out;
3091 	}
3092 	/* no unmap needed here because no data xfer. */
3093 
3094 	ei = c->err_info;
3095 	if (ei->CommandStatus != 0) {
3096 		hpsa_scsi_interpret_error(h, c);
3097 		rc = -1;
3098 	}
3099 out:
3100 	cmd_free(h, c);
3101 	return rc;
3102 }
3103 
3104 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3105 			       struct hpsa_scsi_dev_t *dev,
3106 			       unsigned char *scsi3addr)
3107 {
3108 	int i;
3109 	bool match = false;
3110 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3111 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3112 
3113 	if (hpsa_is_cmd_idle(c))
3114 		return false;
3115 
3116 	switch (c->cmd_type) {
3117 	case CMD_SCSI:
3118 	case CMD_IOCTL_PEND:
3119 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3120 				sizeof(c->Header.LUN.LunAddrBytes));
3121 		break;
3122 
3123 	case CMD_IOACCEL1:
3124 	case CMD_IOACCEL2:
3125 		if (c->phys_disk == dev) {
3126 			/* HBA mode match */
3127 			match = true;
3128 		} else {
3129 			/* Possible RAID mode -- check each phys dev. */
3130 			/* FIXME:  Do we need to take out a lock here?  If
3131 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3132 			 * instead. */
3133 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3134 				/* FIXME: an alternate test might be
3135 				 *
3136 				 * match = dev->phys_disk[i]->ioaccel_handle
3137 				 *              == c2->scsi_nexus;      */
3138 				match = dev->phys_disk[i] == c->phys_disk;
3139 			}
3140 		}
3141 		break;
3142 
3143 	case IOACCEL2_TMF:
3144 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3145 			match = dev->phys_disk[i]->ioaccel_handle ==
3146 					le32_to_cpu(ac->it_nexus);
3147 		}
3148 		break;
3149 
3150 	case 0:		/* The command is in the middle of being initialized. */
3151 		match = false;
3152 		break;
3153 
3154 	default:
3155 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3156 			c->cmd_type);
3157 		BUG();
3158 	}
3159 
3160 	return match;
3161 }
3162 
3163 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3164 	u8 reset_type, int reply_queue)
3165 {
3166 	int rc = 0;
3167 
3168 	/* We can really only handle one reset at a time */
3169 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3170 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3171 		return -EINTR;
3172 	}
3173 
3174 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3175 	if (!rc) {
3176 		/* incremented by sending the reset request */
3177 		atomic_dec(&dev->commands_outstanding);
3178 		wait_event(h->event_sync_wait_queue,
3179 			atomic_read(&dev->commands_outstanding) <= 0 ||
3180 			lockup_detected(h));
3181 	}
3182 
3183 	if (unlikely(lockup_detected(h))) {
3184 		dev_warn(&h->pdev->dev,
3185 			 "Controller lockup detected during reset wait\n");
3186 		rc = -ENODEV;
3187 	}
3188 
3189 	if (!rc)
3190 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3191 
3192 	mutex_unlock(&h->reset_mutex);
3193 	return rc;
3194 }
3195 
3196 static void hpsa_get_raid_level(struct ctlr_info *h,
3197 	unsigned char *scsi3addr, unsigned char *raid_level)
3198 {
3199 	int rc;
3200 	unsigned char *buf;
3201 
3202 	*raid_level = RAID_UNKNOWN;
3203 	buf = kzalloc(64, GFP_KERNEL);
3204 	if (!buf)
3205 		return;
3206 
3207 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3208 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3209 		goto exit;
3210 
3211 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3212 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3213 
3214 	if (rc == 0)
3215 		*raid_level = buf[8];
3216 	if (*raid_level > RAID_UNKNOWN)
3217 		*raid_level = RAID_UNKNOWN;
3218 exit:
3219 	kfree(buf);
3220 	return;
3221 }
3222 
3223 #define HPSA_MAP_DEBUG
3224 #ifdef HPSA_MAP_DEBUG
3225 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3226 				struct raid_map_data *map_buff)
3227 {
3228 	struct raid_map_disk_data *dd = &map_buff->data[0];
3229 	int map, row, col;
3230 	u16 map_cnt, row_cnt, disks_per_row;
3231 
3232 	if (rc != 0)
3233 		return;
3234 
3235 	/* Show details only if debugging has been activated. */
3236 	if (h->raid_offload_debug < 2)
3237 		return;
3238 
3239 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3240 				le32_to_cpu(map_buff->structure_size));
3241 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3242 			le32_to_cpu(map_buff->volume_blk_size));
3243 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3244 			le64_to_cpu(map_buff->volume_blk_cnt));
3245 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3246 			map_buff->phys_blk_shift);
3247 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3248 			map_buff->parity_rotation_shift);
3249 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3250 			le16_to_cpu(map_buff->strip_size));
3251 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3252 			le64_to_cpu(map_buff->disk_starting_blk));
3253 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3254 			le64_to_cpu(map_buff->disk_blk_cnt));
3255 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3256 			le16_to_cpu(map_buff->data_disks_per_row));
3257 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3258 			le16_to_cpu(map_buff->metadata_disks_per_row));
3259 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3260 			le16_to_cpu(map_buff->row_cnt));
3261 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3262 			le16_to_cpu(map_buff->layout_map_count));
3263 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3264 			le16_to_cpu(map_buff->flags));
3265 	dev_info(&h->pdev->dev, "encryption = %s\n",
3266 			le16_to_cpu(map_buff->flags) &
3267 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3268 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3269 			le16_to_cpu(map_buff->dekindex));
3270 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3271 	for (map = 0; map < map_cnt; map++) {
3272 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3273 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3274 		for (row = 0; row < row_cnt; row++) {
3275 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3276 			disks_per_row =
3277 				le16_to_cpu(map_buff->data_disks_per_row);
3278 			for (col = 0; col < disks_per_row; col++, dd++)
3279 				dev_info(&h->pdev->dev,
3280 					"    D%02u: h=0x%04x xor=%u,%u\n",
3281 					col, dd->ioaccel_handle,
3282 					dd->xor_mult[0], dd->xor_mult[1]);
3283 			disks_per_row =
3284 				le16_to_cpu(map_buff->metadata_disks_per_row);
3285 			for (col = 0; col < disks_per_row; col++, dd++)
3286 				dev_info(&h->pdev->dev,
3287 					"    M%02u: h=0x%04x xor=%u,%u\n",
3288 					col, dd->ioaccel_handle,
3289 					dd->xor_mult[0], dd->xor_mult[1]);
3290 		}
3291 	}
3292 }
3293 #else
3294 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3295 			__attribute__((unused)) int rc,
3296 			__attribute__((unused)) struct raid_map_data *map_buff)
3297 {
3298 }
3299 #endif
3300 
3301 static int hpsa_get_raid_map(struct ctlr_info *h,
3302 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3303 {
3304 	int rc = 0;
3305 	struct CommandList *c;
3306 	struct ErrorInfo *ei;
3307 
3308 	c = cmd_alloc(h);
3309 
3310 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3311 			sizeof(this_device->raid_map), 0,
3312 			scsi3addr, TYPE_CMD)) {
3313 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3314 		cmd_free(h, c);
3315 		return -1;
3316 	}
3317 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3318 			NO_TIMEOUT);
3319 	if (rc)
3320 		goto out;
3321 	ei = c->err_info;
3322 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3323 		hpsa_scsi_interpret_error(h, c);
3324 		rc = -1;
3325 		goto out;
3326 	}
3327 	cmd_free(h, c);
3328 
3329 	/* @todo in the future, dynamically allocate RAID map memory */
3330 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3331 				sizeof(this_device->raid_map)) {
3332 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3333 		rc = -1;
3334 	}
3335 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3336 	return rc;
3337 out:
3338 	cmd_free(h, c);
3339 	return rc;
3340 }
3341 
3342 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3343 		unsigned char scsi3addr[], u16 bmic_device_index,
3344 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3345 {
3346 	int rc = IO_OK;
3347 	struct CommandList *c;
3348 	struct ErrorInfo *ei;
3349 
3350 	c = cmd_alloc(h);
3351 
3352 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3353 		0, RAID_CTLR_LUNID, TYPE_CMD);
3354 	if (rc)
3355 		goto out;
3356 
3357 	c->Request.CDB[2] = bmic_device_index & 0xff;
3358 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3359 
3360 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3361 			NO_TIMEOUT);
3362 	if (rc)
3363 		goto out;
3364 	ei = c->err_info;
3365 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3366 		hpsa_scsi_interpret_error(h, c);
3367 		rc = -1;
3368 	}
3369 out:
3370 	cmd_free(h, c);
3371 	return rc;
3372 }
3373 
3374 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3375 	struct bmic_identify_controller *buf, size_t bufsize)
3376 {
3377 	int rc = IO_OK;
3378 	struct CommandList *c;
3379 	struct ErrorInfo *ei;
3380 
3381 	c = cmd_alloc(h);
3382 
3383 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3384 		0, RAID_CTLR_LUNID, TYPE_CMD);
3385 	if (rc)
3386 		goto out;
3387 
3388 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3389 			NO_TIMEOUT);
3390 	if (rc)
3391 		goto out;
3392 	ei = c->err_info;
3393 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3394 		hpsa_scsi_interpret_error(h, c);
3395 		rc = -1;
3396 	}
3397 out:
3398 	cmd_free(h, c);
3399 	return rc;
3400 }
3401 
3402 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3403 		unsigned char scsi3addr[], u16 bmic_device_index,
3404 		struct bmic_identify_physical_device *buf, size_t bufsize)
3405 {
3406 	int rc = IO_OK;
3407 	struct CommandList *c;
3408 	struct ErrorInfo *ei;
3409 
3410 	c = cmd_alloc(h);
3411 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3412 		0, RAID_CTLR_LUNID, TYPE_CMD);
3413 	if (rc)
3414 		goto out;
3415 
3416 	c->Request.CDB[2] = bmic_device_index & 0xff;
3417 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3418 
3419 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3420 						NO_TIMEOUT);
3421 	ei = c->err_info;
3422 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3423 		hpsa_scsi_interpret_error(h, c);
3424 		rc = -1;
3425 	}
3426 out:
3427 	cmd_free(h, c);
3428 
3429 	return rc;
3430 }
3431 
3432 /*
3433  * get enclosure information
3434  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3435  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3436  * Uses id_physical_device to determine the box_index.
3437  */
3438 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3439 			unsigned char *scsi3addr,
3440 			struct ReportExtendedLUNdata *rlep, int rle_index,
3441 			struct hpsa_scsi_dev_t *encl_dev)
3442 {
3443 	int rc = -1;
3444 	struct CommandList *c = NULL;
3445 	struct ErrorInfo *ei = NULL;
3446 	struct bmic_sense_storage_box_params *bssbp = NULL;
3447 	struct bmic_identify_physical_device *id_phys = NULL;
3448 	struct ext_report_lun_entry *rle;
3449 	u16 bmic_device_index = 0;
3450 
3451 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3452 		return;
3453 
3454 	rle = &rlep->LUN[rle_index];
3455 
3456 	encl_dev->eli =
3457 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3458 
3459 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3460 
3461 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3462 		rc = IO_OK;
3463 		goto out;
3464 	}
3465 
3466 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3467 		rc = IO_OK;
3468 		goto out;
3469 	}
3470 
3471 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3472 	if (!bssbp)
3473 		goto out;
3474 
3475 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3476 	if (!id_phys)
3477 		goto out;
3478 
3479 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3480 						id_phys, sizeof(*id_phys));
3481 	if (rc) {
3482 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3483 			__func__, encl_dev->external, bmic_device_index);
3484 		goto out;
3485 	}
3486 
3487 	c = cmd_alloc(h);
3488 
3489 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3490 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3491 
3492 	if (rc)
3493 		goto out;
3494 
3495 	if (id_phys->phys_connector[1] == 'E')
3496 		c->Request.CDB[5] = id_phys->box_index;
3497 	else
3498 		c->Request.CDB[5] = 0;
3499 
3500 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3501 						NO_TIMEOUT);
3502 	if (rc)
3503 		goto out;
3504 
3505 	ei = c->err_info;
3506 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3507 		rc = -1;
3508 		goto out;
3509 	}
3510 
3511 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3512 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3513 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3514 
3515 	rc = IO_OK;
3516 out:
3517 	kfree(bssbp);
3518 	kfree(id_phys);
3519 
3520 	if (c)
3521 		cmd_free(h, c);
3522 
3523 	if (rc != IO_OK)
3524 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3525 			"Error, could not get enclosure information");
3526 }
3527 
3528 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3529 						unsigned char *scsi3addr)
3530 {
3531 	struct ReportExtendedLUNdata *physdev;
3532 	u32 nphysicals;
3533 	u64 sa = 0;
3534 	int i;
3535 
3536 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3537 	if (!physdev)
3538 		return 0;
3539 
3540 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3541 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3542 		kfree(physdev);
3543 		return 0;
3544 	}
3545 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3546 
3547 	for (i = 0; i < nphysicals; i++)
3548 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3549 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3550 			break;
3551 		}
3552 
3553 	kfree(physdev);
3554 
3555 	return sa;
3556 }
3557 
3558 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3559 					struct hpsa_scsi_dev_t *dev)
3560 {
3561 	int rc;
3562 	u64 sa = 0;
3563 
3564 	if (is_hba_lunid(scsi3addr)) {
3565 		struct bmic_sense_subsystem_info *ssi;
3566 
3567 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3568 		if (!ssi)
3569 			return;
3570 
3571 		rc = hpsa_bmic_sense_subsystem_information(h,
3572 					scsi3addr, 0, ssi, sizeof(*ssi));
3573 		if (rc == 0) {
3574 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3575 			h->sas_address = sa;
3576 		}
3577 
3578 		kfree(ssi);
3579 	} else
3580 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3581 
3582 	dev->sas_address = sa;
3583 }
3584 
3585 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3586 	struct ReportExtendedLUNdata *physdev)
3587 {
3588 	u32 nphysicals;
3589 	int i;
3590 
3591 	if (h->discovery_polling)
3592 		return;
3593 
3594 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3595 
3596 	for (i = 0; i < nphysicals; i++) {
3597 		if (physdev->LUN[i].device_type ==
3598 			BMIC_DEVICE_TYPE_CONTROLLER
3599 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3600 			dev_info(&h->pdev->dev,
3601 				"External controller present, activate discovery polling and disable rld caching\n");
3602 			hpsa_disable_rld_caching(h);
3603 			h->discovery_polling = 1;
3604 			break;
3605 		}
3606 	}
3607 }
3608 
3609 /* Get a device id from inquiry page 0x83 */
3610 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3611 	unsigned char scsi3addr[], u8 page)
3612 {
3613 	int rc;
3614 	int i;
3615 	int pages;
3616 	unsigned char *buf, bufsize;
3617 
3618 	buf = kzalloc(256, GFP_KERNEL);
3619 	if (!buf)
3620 		return false;
3621 
3622 	/* Get the size of the page list first */
3623 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3624 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3625 				buf, HPSA_VPD_HEADER_SZ);
3626 	if (rc != 0)
3627 		goto exit_unsupported;
3628 	pages = buf[3];
3629 	bufsize = min(pages + HPSA_VPD_HEADER_SZ, 255);
3630 
3631 	/* Get the whole VPD page list */
3632 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3633 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3634 				buf, bufsize);
3635 	if (rc != 0)
3636 		goto exit_unsupported;
3637 
3638 	pages = buf[3];
3639 	for (i = 1; i <= pages; i++)
3640 		if (buf[3 + i] == page)
3641 			goto exit_supported;
3642 exit_unsupported:
3643 	kfree(buf);
3644 	return false;
3645 exit_supported:
3646 	kfree(buf);
3647 	return true;
3648 }
3649 
3650 /*
3651  * Called during a scan operation.
3652  * Sets ioaccel status on the new device list, not the existing device list
3653  *
3654  * The device list used during I/O will be updated later in
3655  * adjust_hpsa_scsi_table.
3656  */
3657 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3658 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3659 {
3660 	int rc;
3661 	unsigned char *buf;
3662 	u8 ioaccel_status;
3663 
3664 	this_device->offload_config = 0;
3665 	this_device->offload_enabled = 0;
3666 	this_device->offload_to_be_enabled = 0;
3667 
3668 	buf = kzalloc(64, GFP_KERNEL);
3669 	if (!buf)
3670 		return;
3671 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3672 		goto out;
3673 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3674 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3675 	if (rc != 0)
3676 		goto out;
3677 
3678 #define IOACCEL_STATUS_BYTE 4
3679 #define OFFLOAD_CONFIGURED_BIT 0x01
3680 #define OFFLOAD_ENABLED_BIT 0x02
3681 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3682 	this_device->offload_config =
3683 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3684 	if (this_device->offload_config) {
3685 		bool offload_enabled =
3686 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3687 		/*
3688 		 * Check to see if offload can be enabled.
3689 		 */
3690 		if (offload_enabled) {
3691 			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3692 			if (rc) /* could not load raid_map */
3693 				goto out;
3694 			this_device->offload_to_be_enabled = 1;
3695 		}
3696 	}
3697 
3698 out:
3699 	kfree(buf);
3700 	return;
3701 }
3702 
3703 /* Get the device id from inquiry page 0x83 */
3704 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3705 	unsigned char *device_id, int index, int buflen)
3706 {
3707 	int rc;
3708 	unsigned char *buf;
3709 
3710 	/* Does controller have VPD for device id? */
3711 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3712 		return 1; /* not supported */
3713 
3714 	buf = kzalloc(64, GFP_KERNEL);
3715 	if (!buf)
3716 		return -ENOMEM;
3717 
3718 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3719 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3720 	if (rc == 0) {
3721 		if (buflen > 16)
3722 			buflen = 16;
3723 		memcpy(device_id, &buf[8], buflen);
3724 	}
3725 
3726 	kfree(buf);
3727 
3728 	return rc; /*0 - got id,  otherwise, didn't */
3729 }
3730 
3731 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3732 		void *buf, int bufsize,
3733 		int extended_response)
3734 {
3735 	int rc = IO_OK;
3736 	struct CommandList *c;
3737 	unsigned char scsi3addr[8];
3738 	struct ErrorInfo *ei;
3739 
3740 	c = cmd_alloc(h);
3741 
3742 	/* address the controller */
3743 	memset(scsi3addr, 0, sizeof(scsi3addr));
3744 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3745 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3746 		rc = -EAGAIN;
3747 		goto out;
3748 	}
3749 	if (extended_response)
3750 		c->Request.CDB[1] = extended_response;
3751 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3752 			NO_TIMEOUT);
3753 	if (rc)
3754 		goto out;
3755 	ei = c->err_info;
3756 	if (ei->CommandStatus != 0 &&
3757 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3758 		hpsa_scsi_interpret_error(h, c);
3759 		rc = -EIO;
3760 	} else {
3761 		struct ReportLUNdata *rld = buf;
3762 
3763 		if (rld->extended_response_flag != extended_response) {
3764 			if (!h->legacy_board) {
3765 				dev_err(&h->pdev->dev,
3766 					"report luns requested format %u, got %u\n",
3767 					extended_response,
3768 					rld->extended_response_flag);
3769 				rc = -EINVAL;
3770 			} else
3771 				rc = -EOPNOTSUPP;
3772 		}
3773 	}
3774 out:
3775 	cmd_free(h, c);
3776 	return rc;
3777 }
3778 
3779 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3780 		struct ReportExtendedLUNdata *buf, int bufsize)
3781 {
3782 	int rc;
3783 	struct ReportLUNdata *lbuf;
3784 
3785 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3786 				      HPSA_REPORT_PHYS_EXTENDED);
3787 	if (!rc || rc != -EOPNOTSUPP)
3788 		return rc;
3789 
3790 	/* REPORT PHYS EXTENDED is not supported */
3791 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3792 	if (!lbuf)
3793 		return -ENOMEM;
3794 
3795 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3796 	if (!rc) {
3797 		int i;
3798 		u32 nphys;
3799 
3800 		/* Copy ReportLUNdata header */
3801 		memcpy(buf, lbuf, 8);
3802 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3803 		for (i = 0; i < nphys; i++)
3804 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3805 	}
3806 	kfree(lbuf);
3807 	return rc;
3808 }
3809 
3810 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3811 		struct ReportLUNdata *buf, int bufsize)
3812 {
3813 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3814 }
3815 
3816 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3817 	int bus, int target, int lun)
3818 {
3819 	device->bus = bus;
3820 	device->target = target;
3821 	device->lun = lun;
3822 }
3823 
3824 /* Use VPD inquiry to get details of volume status */
3825 static int hpsa_get_volume_status(struct ctlr_info *h,
3826 					unsigned char scsi3addr[])
3827 {
3828 	int rc;
3829 	int status;
3830 	int size;
3831 	unsigned char *buf;
3832 
3833 	buf = kzalloc(64, GFP_KERNEL);
3834 	if (!buf)
3835 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3836 
3837 	/* Does controller have VPD for logical volume status? */
3838 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3839 		goto exit_failed;
3840 
3841 	/* Get the size of the VPD return buffer */
3842 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3843 					buf, HPSA_VPD_HEADER_SZ);
3844 	if (rc != 0)
3845 		goto exit_failed;
3846 	size = buf[3];
3847 
3848 	/* Now get the whole VPD buffer */
3849 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3850 					buf, size + HPSA_VPD_HEADER_SZ);
3851 	if (rc != 0)
3852 		goto exit_failed;
3853 	status = buf[4]; /* status byte */
3854 
3855 	kfree(buf);
3856 	return status;
3857 exit_failed:
3858 	kfree(buf);
3859 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3860 }
3861 
3862 /* Determine offline status of a volume.
3863  * Return either:
3864  *  0 (not offline)
3865  *  0xff (offline for unknown reasons)
3866  *  # (integer code indicating one of several NOT READY states
3867  *     describing why a volume is to be kept offline)
3868  */
3869 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3870 					unsigned char scsi3addr[])
3871 {
3872 	struct CommandList *c;
3873 	unsigned char *sense;
3874 	u8 sense_key, asc, ascq;
3875 	int sense_len;
3876 	int rc, ldstat = 0;
3877 #define ASC_LUN_NOT_READY 0x04
3878 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3879 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3880 
3881 	c = cmd_alloc(h);
3882 
3883 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3884 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3885 					NO_TIMEOUT);
3886 	if (rc) {
3887 		cmd_free(h, c);
3888 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3889 	}
3890 	sense = c->err_info->SenseInfo;
3891 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3892 		sense_len = sizeof(c->err_info->SenseInfo);
3893 	else
3894 		sense_len = c->err_info->SenseLen;
3895 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3896 	cmd_free(h, c);
3897 
3898 	/* Determine the reason for not ready state */
3899 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3900 
3901 	/* Keep volume offline in certain cases: */
3902 	switch (ldstat) {
3903 	case HPSA_LV_FAILED:
3904 	case HPSA_LV_UNDERGOING_ERASE:
3905 	case HPSA_LV_NOT_AVAILABLE:
3906 	case HPSA_LV_UNDERGOING_RPI:
3907 	case HPSA_LV_PENDING_RPI:
3908 	case HPSA_LV_ENCRYPTED_NO_KEY:
3909 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3910 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3911 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3912 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3913 		return ldstat;
3914 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3915 		/* If VPD status page isn't available,
3916 		 * use ASC/ASCQ to determine state
3917 		 */
3918 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3919 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3920 			return ldstat;
3921 		break;
3922 	default:
3923 		break;
3924 	}
3925 	return HPSA_LV_OK;
3926 }
3927 
3928 static int hpsa_update_device_info(struct ctlr_info *h,
3929 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3930 	unsigned char *is_OBDR_device)
3931 {
3932 
3933 #define OBDR_SIG_OFFSET 43
3934 #define OBDR_TAPE_SIG "$DR-10"
3935 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3936 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3937 
3938 	unsigned char *inq_buff;
3939 	unsigned char *obdr_sig;
3940 	int rc = 0;
3941 
3942 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3943 	if (!inq_buff) {
3944 		rc = -ENOMEM;
3945 		goto bail_out;
3946 	}
3947 
3948 	/* Do an inquiry to the device to see what it is. */
3949 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3950 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3951 		dev_err(&h->pdev->dev,
3952 			"%s: inquiry failed, device will be skipped.\n",
3953 			__func__);
3954 		rc = HPSA_INQUIRY_FAILED;
3955 		goto bail_out;
3956 	}
3957 
3958 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3959 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3960 
3961 	this_device->devtype = (inq_buff[0] & 0x1f);
3962 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3963 	memcpy(this_device->vendor, &inq_buff[8],
3964 		sizeof(this_device->vendor));
3965 	memcpy(this_device->model, &inq_buff[16],
3966 		sizeof(this_device->model));
3967 	this_device->rev = inq_buff[2];
3968 	memset(this_device->device_id, 0,
3969 		sizeof(this_device->device_id));
3970 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3971 		sizeof(this_device->device_id)) < 0) {
3972 		dev_err(&h->pdev->dev,
3973 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3974 			h->ctlr, __func__,
3975 			h->scsi_host->host_no,
3976 			this_device->bus, this_device->target,
3977 			this_device->lun,
3978 			scsi_device_type(this_device->devtype),
3979 			this_device->model);
3980 		rc = HPSA_LV_FAILED;
3981 		goto bail_out;
3982 	}
3983 
3984 	if ((this_device->devtype == TYPE_DISK ||
3985 		this_device->devtype == TYPE_ZBC) &&
3986 		is_logical_dev_addr_mode(scsi3addr)) {
3987 		unsigned char volume_offline;
3988 
3989 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3990 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3991 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3992 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3993 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3994 		    h->legacy_board) {
3995 			/*
3996 			 * Legacy boards might not support volume status
3997 			 */
3998 			dev_info(&h->pdev->dev,
3999 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
4000 				 this_device->target, this_device->lun);
4001 			volume_offline = 0;
4002 		}
4003 		this_device->volume_offline = volume_offline;
4004 		if (volume_offline == HPSA_LV_FAILED) {
4005 			rc = HPSA_LV_FAILED;
4006 			dev_err(&h->pdev->dev,
4007 				"%s: LV failed, device will be skipped.\n",
4008 				__func__);
4009 			goto bail_out;
4010 		}
4011 	} else {
4012 		this_device->raid_level = RAID_UNKNOWN;
4013 		this_device->offload_config = 0;
4014 		hpsa_turn_off_ioaccel_for_device(this_device);
4015 		this_device->hba_ioaccel_enabled = 0;
4016 		this_device->volume_offline = 0;
4017 		this_device->queue_depth = h->nr_cmds;
4018 	}
4019 
4020 	if (this_device->external)
4021 		this_device->queue_depth = EXTERNAL_QD;
4022 
4023 	if (is_OBDR_device) {
4024 		/* See if this is a One-Button-Disaster-Recovery device
4025 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4026 		 */
4027 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4028 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4029 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4030 						OBDR_SIG_LEN) == 0);
4031 	}
4032 	kfree(inq_buff);
4033 	return 0;
4034 
4035 bail_out:
4036 	kfree(inq_buff);
4037 	return rc;
4038 }
4039 
4040 /*
4041  * Helper function to assign bus, target, lun mapping of devices.
4042  * Logical drive target and lun are assigned at this time, but
4043  * physical device lun and target assignment are deferred (assigned
4044  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4045 */
4046 static void figure_bus_target_lun(struct ctlr_info *h,
4047 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4048 {
4049 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4050 
4051 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4052 		/* physical device, target and lun filled in later */
4053 		if (is_hba_lunid(lunaddrbytes)) {
4054 			int bus = HPSA_HBA_BUS;
4055 
4056 			if (!device->rev)
4057 				bus = HPSA_LEGACY_HBA_BUS;
4058 			hpsa_set_bus_target_lun(device,
4059 					bus, 0, lunid & 0x3fff);
4060 		} else
4061 			/* defer target, lun assignment for physical devices */
4062 			hpsa_set_bus_target_lun(device,
4063 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4064 		return;
4065 	}
4066 	/* It's a logical device */
4067 	if (device->external) {
4068 		hpsa_set_bus_target_lun(device,
4069 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4070 			lunid & 0x00ff);
4071 		return;
4072 	}
4073 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4074 				0, lunid & 0x3fff);
4075 }
4076 
4077 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4078 	int i, int nphysicals, int nlocal_logicals)
4079 {
4080 	/* In report logicals, local logicals are listed first,
4081 	* then any externals.
4082 	*/
4083 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4084 
4085 	if (i == raid_ctlr_position)
4086 		return 0;
4087 
4088 	if (i < logicals_start)
4089 		return 0;
4090 
4091 	/* i is in logicals range, but still within local logicals */
4092 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4093 		return 0;
4094 
4095 	return 1; /* it's an external lun */
4096 }
4097 
4098 /*
4099  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4100  * logdev.  The number of luns in physdev and logdev are returned in
4101  * *nphysicals and *nlogicals, respectively.
4102  * Returns 0 on success, -1 otherwise.
4103  */
4104 static int hpsa_gather_lun_info(struct ctlr_info *h,
4105 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4106 	struct ReportLUNdata *logdev, u32 *nlogicals)
4107 {
4108 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4109 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4110 		return -1;
4111 	}
4112 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4113 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4114 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4115 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4116 		*nphysicals = HPSA_MAX_PHYS_LUN;
4117 	}
4118 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4119 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4120 		return -1;
4121 	}
4122 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4123 	/* Reject Logicals in excess of our max capability. */
4124 	if (*nlogicals > HPSA_MAX_LUN) {
4125 		dev_warn(&h->pdev->dev,
4126 			"maximum logical LUNs (%d) exceeded.  "
4127 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4128 			*nlogicals - HPSA_MAX_LUN);
4129 		*nlogicals = HPSA_MAX_LUN;
4130 	}
4131 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4132 		dev_warn(&h->pdev->dev,
4133 			"maximum logical + physical LUNs (%d) exceeded. "
4134 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4135 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4136 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4137 	}
4138 	return 0;
4139 }
4140 
4141 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4142 	int i, int nphysicals, int nlogicals,
4143 	struct ReportExtendedLUNdata *physdev_list,
4144 	struct ReportLUNdata *logdev_list)
4145 {
4146 	/* Helper function, figure out where the LUN ID info is coming from
4147 	 * given index i, lists of physical and logical devices, where in
4148 	 * the list the raid controller is supposed to appear (first or last)
4149 	 */
4150 
4151 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4152 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4153 
4154 	if (i == raid_ctlr_position)
4155 		return RAID_CTLR_LUNID;
4156 
4157 	if (i < logicals_start)
4158 		return &physdev_list->LUN[i -
4159 				(raid_ctlr_position == 0)].lunid[0];
4160 
4161 	if (i < last_device)
4162 		return &logdev_list->LUN[i - nphysicals -
4163 			(raid_ctlr_position == 0)][0];
4164 	BUG();
4165 	return NULL;
4166 }
4167 
4168 /* get physical drive ioaccel handle and queue depth */
4169 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4170 		struct hpsa_scsi_dev_t *dev,
4171 		struct ReportExtendedLUNdata *rlep, int rle_index,
4172 		struct bmic_identify_physical_device *id_phys)
4173 {
4174 	int rc;
4175 	struct ext_report_lun_entry *rle;
4176 
4177 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4178 		return;
4179 
4180 	rle = &rlep->LUN[rle_index];
4181 
4182 	dev->ioaccel_handle = rle->ioaccel_handle;
4183 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4184 		dev->hba_ioaccel_enabled = 1;
4185 	memset(id_phys, 0, sizeof(*id_phys));
4186 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4187 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4188 			sizeof(*id_phys));
4189 	if (!rc)
4190 		/* Reserve space for FW operations */
4191 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4192 #define DRIVE_QUEUE_DEPTH 7
4193 		dev->queue_depth =
4194 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4195 				DRIVE_CMDS_RESERVED_FOR_FW;
4196 	else
4197 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4198 }
4199 
4200 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4201 	struct ReportExtendedLUNdata *rlep, int rle_index,
4202 	struct bmic_identify_physical_device *id_phys)
4203 {
4204 	struct ext_report_lun_entry *rle;
4205 
4206 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4207 		return;
4208 
4209 	rle = &rlep->LUN[rle_index];
4210 
4211 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4212 		this_device->hba_ioaccel_enabled = 1;
4213 
4214 	memcpy(&this_device->active_path_index,
4215 		&id_phys->active_path_number,
4216 		sizeof(this_device->active_path_index));
4217 	memcpy(&this_device->path_map,
4218 		&id_phys->redundant_path_present_map,
4219 		sizeof(this_device->path_map));
4220 	memcpy(&this_device->box,
4221 		&id_phys->alternate_paths_phys_box_on_port,
4222 		sizeof(this_device->box));
4223 	memcpy(&this_device->phys_connector,
4224 		&id_phys->alternate_paths_phys_connector,
4225 		sizeof(this_device->phys_connector));
4226 	memcpy(&this_device->bay,
4227 		&id_phys->phys_bay_in_box,
4228 		sizeof(this_device->bay));
4229 }
4230 
4231 /* get number of local logical disks. */
4232 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4233 	struct bmic_identify_controller *id_ctlr,
4234 	u32 *nlocals)
4235 {
4236 	int rc;
4237 
4238 	if (!id_ctlr) {
4239 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4240 			__func__);
4241 		return -ENOMEM;
4242 	}
4243 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4244 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4245 	if (!rc)
4246 		if (id_ctlr->configured_logical_drive_count < 255)
4247 			*nlocals = id_ctlr->configured_logical_drive_count;
4248 		else
4249 			*nlocals = le16_to_cpu(
4250 					id_ctlr->extended_logical_unit_count);
4251 	else
4252 		*nlocals = -1;
4253 	return rc;
4254 }
4255 
4256 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4257 {
4258 	struct bmic_identify_physical_device *id_phys;
4259 	bool is_spare = false;
4260 	int rc;
4261 
4262 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4263 	if (!id_phys)
4264 		return false;
4265 
4266 	rc = hpsa_bmic_id_physical_device(h,
4267 					lunaddrbytes,
4268 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4269 					id_phys, sizeof(*id_phys));
4270 	if (rc == 0)
4271 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4272 
4273 	kfree(id_phys);
4274 	return is_spare;
4275 }
4276 
4277 #define RPL_DEV_FLAG_NON_DISK                           0x1
4278 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4279 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4280 
4281 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4282 
4283 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4284 				struct ext_report_lun_entry *rle)
4285 {
4286 	u8 device_flags;
4287 	u8 device_type;
4288 
4289 	if (!MASKED_DEVICE(lunaddrbytes))
4290 		return false;
4291 
4292 	device_flags = rle->device_flags;
4293 	device_type = rle->device_type;
4294 
4295 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4296 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4297 			return false;
4298 		return true;
4299 	}
4300 
4301 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4302 		return false;
4303 
4304 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4305 		return false;
4306 
4307 	/*
4308 	 * Spares may be spun down, we do not want to
4309 	 * do an Inquiry to a RAID set spare drive as
4310 	 * that would have them spun up, that is a
4311 	 * performance hit because I/O to the RAID device
4312 	 * stops while the spin up occurs which can take
4313 	 * over 50 seconds.
4314 	 */
4315 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4316 		return true;
4317 
4318 	return false;
4319 }
4320 
4321 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4322 {
4323 	/* the idea here is we could get notified
4324 	 * that some devices have changed, so we do a report
4325 	 * physical luns and report logical luns cmd, and adjust
4326 	 * our list of devices accordingly.
4327 	 *
4328 	 * The scsi3addr's of devices won't change so long as the
4329 	 * adapter is not reset.  That means we can rescan and
4330 	 * tell which devices we already know about, vs. new
4331 	 * devices, vs.  disappearing devices.
4332 	 */
4333 	struct ReportExtendedLUNdata *physdev_list = NULL;
4334 	struct ReportLUNdata *logdev_list = NULL;
4335 	struct bmic_identify_physical_device *id_phys = NULL;
4336 	struct bmic_identify_controller *id_ctlr = NULL;
4337 	u32 nphysicals = 0;
4338 	u32 nlogicals = 0;
4339 	u32 nlocal_logicals = 0;
4340 	u32 ndev_allocated = 0;
4341 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4342 	int ncurrent = 0;
4343 	int i, ndevs_to_allocate;
4344 	int raid_ctlr_position;
4345 	bool physical_device;
4346 
4347 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4348 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4349 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4350 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4351 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4352 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4353 
4354 	if (!currentsd || !physdev_list || !logdev_list ||
4355 		!tmpdevice || !id_phys || !id_ctlr) {
4356 		dev_err(&h->pdev->dev, "out of memory\n");
4357 		goto out;
4358 	}
4359 
4360 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4361 
4362 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4363 			logdev_list, &nlogicals)) {
4364 		h->drv_req_rescan = 1;
4365 		goto out;
4366 	}
4367 
4368 	/* Set number of local logicals (non PTRAID) */
4369 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4370 		dev_warn(&h->pdev->dev,
4371 			"%s: Can't determine number of local logical devices.\n",
4372 			__func__);
4373 	}
4374 
4375 	/* We might see up to the maximum number of logical and physical disks
4376 	 * plus external target devices, and a device for the local RAID
4377 	 * controller.
4378 	 */
4379 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4380 
4381 	hpsa_ext_ctrl_present(h, physdev_list);
4382 
4383 	/* Allocate the per device structures */
4384 	for (i = 0; i < ndevs_to_allocate; i++) {
4385 		if (i >= HPSA_MAX_DEVICES) {
4386 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4387 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4388 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4389 			break;
4390 		}
4391 
4392 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4393 		if (!currentsd[i]) {
4394 			h->drv_req_rescan = 1;
4395 			goto out;
4396 		}
4397 		ndev_allocated++;
4398 	}
4399 
4400 	if (is_scsi_rev_5(h))
4401 		raid_ctlr_position = 0;
4402 	else
4403 		raid_ctlr_position = nphysicals + nlogicals;
4404 
4405 	/* adjust our table of devices */
4406 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4407 		u8 *lunaddrbytes, is_OBDR = 0;
4408 		int rc = 0;
4409 		int phys_dev_index = i - (raid_ctlr_position == 0);
4410 		bool skip_device = false;
4411 
4412 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4413 
4414 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4415 
4416 		/* Figure out where the LUN ID info is coming from */
4417 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4418 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4419 
4420 		/* Determine if this is a lun from an external target array */
4421 		tmpdevice->external =
4422 			figure_external_status(h, raid_ctlr_position, i,
4423 						nphysicals, nlocal_logicals);
4424 
4425 		/*
4426 		 * Skip over some devices such as a spare.
4427 		 */
4428 		if (phys_dev_index >= 0 && !tmpdevice->external &&
4429 			physical_device) {
4430 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4431 					&physdev_list->LUN[phys_dev_index]);
4432 			if (skip_device)
4433 				continue;
4434 		}
4435 
4436 		/* Get device type, vendor, model, device id, raid_map */
4437 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4438 							&is_OBDR);
4439 		if (rc == -ENOMEM) {
4440 			dev_warn(&h->pdev->dev,
4441 				"Out of memory, rescan deferred.\n");
4442 			h->drv_req_rescan = 1;
4443 			goto out;
4444 		}
4445 		if (rc) {
4446 			h->drv_req_rescan = 1;
4447 			continue;
4448 		}
4449 
4450 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4451 		this_device = currentsd[ncurrent];
4452 
4453 		*this_device = *tmpdevice;
4454 		this_device->physical_device = physical_device;
4455 
4456 		/*
4457 		 * Expose all devices except for physical devices that
4458 		 * are masked.
4459 		 */
4460 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4461 			this_device->expose_device = 0;
4462 		else
4463 			this_device->expose_device = 1;
4464 
4465 
4466 		/*
4467 		 * Get the SAS address for physical devices that are exposed.
4468 		 */
4469 		if (this_device->physical_device && this_device->expose_device)
4470 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4471 
4472 		switch (this_device->devtype) {
4473 		case TYPE_ROM:
4474 			/* We don't *really* support actual CD-ROM devices,
4475 			 * just "One Button Disaster Recovery" tape drive
4476 			 * which temporarily pretends to be a CD-ROM drive.
4477 			 * So we check that the device is really an OBDR tape
4478 			 * device by checking for "$DR-10" in bytes 43-48 of
4479 			 * the inquiry data.
4480 			 */
4481 			if (is_OBDR)
4482 				ncurrent++;
4483 			break;
4484 		case TYPE_DISK:
4485 		case TYPE_ZBC:
4486 			if (this_device->physical_device) {
4487 				/* The disk is in HBA mode. */
4488 				/* Never use RAID mapper in HBA mode. */
4489 				this_device->offload_enabled = 0;
4490 				hpsa_get_ioaccel_drive_info(h, this_device,
4491 					physdev_list, phys_dev_index, id_phys);
4492 				hpsa_get_path_info(this_device,
4493 					physdev_list, phys_dev_index, id_phys);
4494 			}
4495 			ncurrent++;
4496 			break;
4497 		case TYPE_TAPE:
4498 		case TYPE_MEDIUM_CHANGER:
4499 			ncurrent++;
4500 			break;
4501 		case TYPE_ENCLOSURE:
4502 			if (!this_device->external)
4503 				hpsa_get_enclosure_info(h, lunaddrbytes,
4504 						physdev_list, phys_dev_index,
4505 						this_device);
4506 			ncurrent++;
4507 			break;
4508 		case TYPE_RAID:
4509 			/* Only present the Smartarray HBA as a RAID controller.
4510 			 * If it's a RAID controller other than the HBA itself
4511 			 * (an external RAID controller, MSA500 or similar)
4512 			 * don't present it.
4513 			 */
4514 			if (!is_hba_lunid(lunaddrbytes))
4515 				break;
4516 			ncurrent++;
4517 			break;
4518 		default:
4519 			break;
4520 		}
4521 		if (ncurrent >= HPSA_MAX_DEVICES)
4522 			break;
4523 	}
4524 
4525 	if (h->sas_host == NULL) {
4526 		int rc = 0;
4527 
4528 		rc = hpsa_add_sas_host(h);
4529 		if (rc) {
4530 			dev_warn(&h->pdev->dev,
4531 				"Could not add sas host %d\n", rc);
4532 			goto out;
4533 		}
4534 	}
4535 
4536 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4537 out:
4538 	kfree(tmpdevice);
4539 	for (i = 0; i < ndev_allocated; i++)
4540 		kfree(currentsd[i]);
4541 	kfree(currentsd);
4542 	kfree(physdev_list);
4543 	kfree(logdev_list);
4544 	kfree(id_ctlr);
4545 	kfree(id_phys);
4546 }
4547 
4548 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4549 				   struct scatterlist *sg)
4550 {
4551 	u64 addr64 = (u64) sg_dma_address(sg);
4552 	unsigned int len = sg_dma_len(sg);
4553 
4554 	desc->Addr = cpu_to_le64(addr64);
4555 	desc->Len = cpu_to_le32(len);
4556 	desc->Ext = 0;
4557 }
4558 
4559 /*
4560  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4561  * dma mapping  and fills in the scatter gather entries of the
4562  * hpsa command, cp.
4563  */
4564 static int hpsa_scatter_gather(struct ctlr_info *h,
4565 		struct CommandList *cp,
4566 		struct scsi_cmnd *cmd)
4567 {
4568 	struct scatterlist *sg;
4569 	int use_sg, i, sg_limit, chained;
4570 	struct SGDescriptor *curr_sg;
4571 
4572 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4573 
4574 	use_sg = scsi_dma_map(cmd);
4575 	if (use_sg < 0)
4576 		return use_sg;
4577 
4578 	if (!use_sg)
4579 		goto sglist_finished;
4580 
4581 	/*
4582 	 * If the number of entries is greater than the max for a single list,
4583 	 * then we have a chained list; we will set up all but one entry in the
4584 	 * first list (the last entry is saved for link information);
4585 	 * otherwise, we don't have a chained list and we'll set up at each of
4586 	 * the entries in the one list.
4587 	 */
4588 	curr_sg = cp->SG;
4589 	chained = use_sg > h->max_cmd_sg_entries;
4590 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4591 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4592 		hpsa_set_sg_descriptor(curr_sg, sg);
4593 		curr_sg++;
4594 	}
4595 
4596 	if (chained) {
4597 		/*
4598 		 * Continue with the chained list.  Set curr_sg to the chained
4599 		 * list.  Modify the limit to the total count less the entries
4600 		 * we've already set up.  Resume the scan at the list entry
4601 		 * where the previous loop left off.
4602 		 */
4603 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4604 		sg_limit = use_sg - sg_limit;
4605 		for_each_sg(sg, sg, sg_limit, i) {
4606 			hpsa_set_sg_descriptor(curr_sg, sg);
4607 			curr_sg++;
4608 		}
4609 	}
4610 
4611 	/* Back the pointer up to the last entry and mark it as "last". */
4612 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4613 
4614 	if (use_sg + chained > h->maxSG)
4615 		h->maxSG = use_sg + chained;
4616 
4617 	if (chained) {
4618 		cp->Header.SGList = h->max_cmd_sg_entries;
4619 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4620 		if (hpsa_map_sg_chain_block(h, cp)) {
4621 			scsi_dma_unmap(cmd);
4622 			return -1;
4623 		}
4624 		return 0;
4625 	}
4626 
4627 sglist_finished:
4628 
4629 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4630 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4631 	return 0;
4632 }
4633 
4634 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4635 						u8 *cdb, int cdb_len,
4636 						const char *func)
4637 {
4638 	dev_warn(&h->pdev->dev,
4639 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4640 		 func, cdb_len, cdb);
4641 }
4642 
4643 #define IO_ACCEL_INELIGIBLE 1
4644 /* zero-length transfers trigger hardware errors. */
4645 static bool is_zero_length_transfer(u8 *cdb)
4646 {
4647 	u32 block_cnt;
4648 
4649 	/* Block zero-length transfer sizes on certain commands. */
4650 	switch (cdb[0]) {
4651 	case READ_10:
4652 	case WRITE_10:
4653 	case VERIFY:		/* 0x2F */
4654 	case WRITE_VERIFY:	/* 0x2E */
4655 		block_cnt = get_unaligned_be16(&cdb[7]);
4656 		break;
4657 	case READ_12:
4658 	case WRITE_12:
4659 	case VERIFY_12: /* 0xAF */
4660 	case WRITE_VERIFY_12:	/* 0xAE */
4661 		block_cnt = get_unaligned_be32(&cdb[6]);
4662 		break;
4663 	case READ_16:
4664 	case WRITE_16:
4665 	case VERIFY_16:		/* 0x8F */
4666 		block_cnt = get_unaligned_be32(&cdb[10]);
4667 		break;
4668 	default:
4669 		return false;
4670 	}
4671 
4672 	return block_cnt == 0;
4673 }
4674 
4675 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4676 {
4677 	int is_write = 0;
4678 	u32 block;
4679 	u32 block_cnt;
4680 
4681 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4682 	switch (cdb[0]) {
4683 	case WRITE_6:
4684 	case WRITE_12:
4685 		is_write = 1;
4686 		fallthrough;
4687 	case READ_6:
4688 	case READ_12:
4689 		if (*cdb_len == 6) {
4690 			block = (((cdb[1] & 0x1F) << 16) |
4691 				(cdb[2] << 8) |
4692 				cdb[3]);
4693 			block_cnt = cdb[4];
4694 			if (block_cnt == 0)
4695 				block_cnt = 256;
4696 		} else {
4697 			BUG_ON(*cdb_len != 12);
4698 			block = get_unaligned_be32(&cdb[2]);
4699 			block_cnt = get_unaligned_be32(&cdb[6]);
4700 		}
4701 		if (block_cnt > 0xffff)
4702 			return IO_ACCEL_INELIGIBLE;
4703 
4704 		cdb[0] = is_write ? WRITE_10 : READ_10;
4705 		cdb[1] = 0;
4706 		cdb[2] = (u8) (block >> 24);
4707 		cdb[3] = (u8) (block >> 16);
4708 		cdb[4] = (u8) (block >> 8);
4709 		cdb[5] = (u8) (block);
4710 		cdb[6] = 0;
4711 		cdb[7] = (u8) (block_cnt >> 8);
4712 		cdb[8] = (u8) (block_cnt);
4713 		cdb[9] = 0;
4714 		*cdb_len = 10;
4715 		break;
4716 	}
4717 	return 0;
4718 }
4719 
4720 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4721 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4722 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4723 {
4724 	struct scsi_cmnd *cmd = c->scsi_cmd;
4725 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4726 	unsigned int len;
4727 	unsigned int total_len = 0;
4728 	struct scatterlist *sg;
4729 	u64 addr64;
4730 	int use_sg, i;
4731 	struct SGDescriptor *curr_sg;
4732 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4733 
4734 	/* TODO: implement chaining support */
4735 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4736 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4737 		return IO_ACCEL_INELIGIBLE;
4738 	}
4739 
4740 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4741 
4742 	if (is_zero_length_transfer(cdb)) {
4743 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4744 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4745 		return IO_ACCEL_INELIGIBLE;
4746 	}
4747 
4748 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4749 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4750 		return IO_ACCEL_INELIGIBLE;
4751 	}
4752 
4753 	c->cmd_type = CMD_IOACCEL1;
4754 
4755 	/* Adjust the DMA address to point to the accelerated command buffer */
4756 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4757 				(c->cmdindex * sizeof(*cp));
4758 	BUG_ON(c->busaddr & 0x0000007F);
4759 
4760 	use_sg = scsi_dma_map(cmd);
4761 	if (use_sg < 0) {
4762 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4763 		return use_sg;
4764 	}
4765 
4766 	if (use_sg) {
4767 		curr_sg = cp->SG;
4768 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4769 			addr64 = (u64) sg_dma_address(sg);
4770 			len  = sg_dma_len(sg);
4771 			total_len += len;
4772 			curr_sg->Addr = cpu_to_le64(addr64);
4773 			curr_sg->Len = cpu_to_le32(len);
4774 			curr_sg->Ext = cpu_to_le32(0);
4775 			curr_sg++;
4776 		}
4777 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4778 
4779 		switch (cmd->sc_data_direction) {
4780 		case DMA_TO_DEVICE:
4781 			control |= IOACCEL1_CONTROL_DATA_OUT;
4782 			break;
4783 		case DMA_FROM_DEVICE:
4784 			control |= IOACCEL1_CONTROL_DATA_IN;
4785 			break;
4786 		case DMA_NONE:
4787 			control |= IOACCEL1_CONTROL_NODATAXFER;
4788 			break;
4789 		default:
4790 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4791 			cmd->sc_data_direction);
4792 			BUG();
4793 			break;
4794 		}
4795 	} else {
4796 		control |= IOACCEL1_CONTROL_NODATAXFER;
4797 	}
4798 
4799 	c->Header.SGList = use_sg;
4800 	/* Fill out the command structure to submit */
4801 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4802 	cp->transfer_len = cpu_to_le32(total_len);
4803 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4804 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4805 	cp->control = cpu_to_le32(control);
4806 	memcpy(cp->CDB, cdb, cdb_len);
4807 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4808 	/* Tag was already set at init time. */
4809 	enqueue_cmd_and_start_io(h, c);
4810 	return 0;
4811 }
4812 
4813 /*
4814  * Queue a command directly to a device behind the controller using the
4815  * I/O accelerator path.
4816  */
4817 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4818 	struct CommandList *c)
4819 {
4820 	struct scsi_cmnd *cmd = c->scsi_cmd;
4821 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4822 
4823 	if (!dev)
4824 		return -1;
4825 
4826 	c->phys_disk = dev;
4827 
4828 	if (dev->in_reset)
4829 		return -1;
4830 
4831 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4832 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4833 }
4834 
4835 /*
4836  * Set encryption parameters for the ioaccel2 request
4837  */
4838 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4839 	struct CommandList *c, struct io_accel2_cmd *cp)
4840 {
4841 	struct scsi_cmnd *cmd = c->scsi_cmd;
4842 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4843 	struct raid_map_data *map = &dev->raid_map;
4844 	u64 first_block;
4845 
4846 	/* Are we doing encryption on this device */
4847 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4848 		return;
4849 	/* Set the data encryption key index. */
4850 	cp->dekindex = map->dekindex;
4851 
4852 	/* Set the encryption enable flag, encoded into direction field. */
4853 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4854 
4855 	/* Set encryption tweak values based on logical block address
4856 	 * If block size is 512, tweak value is LBA.
4857 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4858 	 */
4859 	switch (cmd->cmnd[0]) {
4860 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4861 	case READ_6:
4862 	case WRITE_6:
4863 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4864 				(cmd->cmnd[2] << 8) |
4865 				cmd->cmnd[3]);
4866 		break;
4867 	case WRITE_10:
4868 	case READ_10:
4869 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4870 	case WRITE_12:
4871 	case READ_12:
4872 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4873 		break;
4874 	case WRITE_16:
4875 	case READ_16:
4876 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4877 		break;
4878 	default:
4879 		dev_err(&h->pdev->dev,
4880 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4881 			__func__, cmd->cmnd[0]);
4882 		BUG();
4883 		break;
4884 	}
4885 
4886 	if (le32_to_cpu(map->volume_blk_size) != 512)
4887 		first_block = first_block *
4888 				le32_to_cpu(map->volume_blk_size)/512;
4889 
4890 	cp->tweak_lower = cpu_to_le32(first_block);
4891 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4892 }
4893 
4894 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4895 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4896 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4897 {
4898 	struct scsi_cmnd *cmd = c->scsi_cmd;
4899 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4900 	struct ioaccel2_sg_element *curr_sg;
4901 	int use_sg, i;
4902 	struct scatterlist *sg;
4903 	u64 addr64;
4904 	u32 len;
4905 	u32 total_len = 0;
4906 
4907 	if (!cmd->device)
4908 		return -1;
4909 
4910 	if (!cmd->device->hostdata)
4911 		return -1;
4912 
4913 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4914 
4915 	if (is_zero_length_transfer(cdb)) {
4916 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4917 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4918 		return IO_ACCEL_INELIGIBLE;
4919 	}
4920 
4921 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4922 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4923 		return IO_ACCEL_INELIGIBLE;
4924 	}
4925 
4926 	c->cmd_type = CMD_IOACCEL2;
4927 	/* Adjust the DMA address to point to the accelerated command buffer */
4928 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4929 				(c->cmdindex * sizeof(*cp));
4930 	BUG_ON(c->busaddr & 0x0000007F);
4931 
4932 	memset(cp, 0, sizeof(*cp));
4933 	cp->IU_type = IOACCEL2_IU_TYPE;
4934 
4935 	use_sg = scsi_dma_map(cmd);
4936 	if (use_sg < 0) {
4937 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4938 		return use_sg;
4939 	}
4940 
4941 	if (use_sg) {
4942 		curr_sg = cp->sg;
4943 		if (use_sg > h->ioaccel_maxsg) {
4944 			addr64 = le64_to_cpu(
4945 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4946 			curr_sg->address = cpu_to_le64(addr64);
4947 			curr_sg->length = 0;
4948 			curr_sg->reserved[0] = 0;
4949 			curr_sg->reserved[1] = 0;
4950 			curr_sg->reserved[2] = 0;
4951 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4952 
4953 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4954 		}
4955 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4956 			addr64 = (u64) sg_dma_address(sg);
4957 			len  = sg_dma_len(sg);
4958 			total_len += len;
4959 			curr_sg->address = cpu_to_le64(addr64);
4960 			curr_sg->length = cpu_to_le32(len);
4961 			curr_sg->reserved[0] = 0;
4962 			curr_sg->reserved[1] = 0;
4963 			curr_sg->reserved[2] = 0;
4964 			curr_sg->chain_indicator = 0;
4965 			curr_sg++;
4966 		}
4967 
4968 		/*
4969 		 * Set the last s/g element bit
4970 		 */
4971 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4972 
4973 		switch (cmd->sc_data_direction) {
4974 		case DMA_TO_DEVICE:
4975 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4976 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4977 			break;
4978 		case DMA_FROM_DEVICE:
4979 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4980 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4981 			break;
4982 		case DMA_NONE:
4983 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4984 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4985 			break;
4986 		default:
4987 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4988 				cmd->sc_data_direction);
4989 			BUG();
4990 			break;
4991 		}
4992 	} else {
4993 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4994 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4995 	}
4996 
4997 	/* Set encryption parameters, if necessary */
4998 	set_encrypt_ioaccel2(h, c, cp);
4999 
5000 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5001 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5002 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5003 
5004 	cp->data_len = cpu_to_le32(total_len);
5005 	cp->err_ptr = cpu_to_le64(c->busaddr +
5006 			offsetof(struct io_accel2_cmd, error_data));
5007 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5008 
5009 	/* fill in sg elements */
5010 	if (use_sg > h->ioaccel_maxsg) {
5011 		cp->sg_count = 1;
5012 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5013 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5014 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5015 			scsi_dma_unmap(cmd);
5016 			return -1;
5017 		}
5018 	} else
5019 		cp->sg_count = (u8) use_sg;
5020 
5021 	if (phys_disk->in_reset) {
5022 		cmd->result = DID_RESET << 16;
5023 		return -1;
5024 	}
5025 
5026 	enqueue_cmd_and_start_io(h, c);
5027 	return 0;
5028 }
5029 
5030 /*
5031  * Queue a command to the correct I/O accelerator path.
5032  */
5033 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5034 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5035 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5036 {
5037 	if (!c->scsi_cmd->device)
5038 		return -1;
5039 
5040 	if (!c->scsi_cmd->device->hostdata)
5041 		return -1;
5042 
5043 	if (phys_disk->in_reset)
5044 		return -1;
5045 
5046 	/* Try to honor the device's queue depth */
5047 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5048 					phys_disk->queue_depth) {
5049 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5050 		return IO_ACCEL_INELIGIBLE;
5051 	}
5052 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5053 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5054 						cdb, cdb_len, scsi3addr,
5055 						phys_disk);
5056 	else
5057 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5058 						cdb, cdb_len, scsi3addr,
5059 						phys_disk);
5060 }
5061 
5062 static void raid_map_helper(struct raid_map_data *map,
5063 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5064 {
5065 	if (offload_to_mirror == 0)  {
5066 		/* use physical disk in the first mirrored group. */
5067 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5068 		return;
5069 	}
5070 	do {
5071 		/* determine mirror group that *map_index indicates */
5072 		*current_group = *map_index /
5073 			le16_to_cpu(map->data_disks_per_row);
5074 		if (offload_to_mirror == *current_group)
5075 			continue;
5076 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5077 			/* select map index from next group */
5078 			*map_index += le16_to_cpu(map->data_disks_per_row);
5079 			(*current_group)++;
5080 		} else {
5081 			/* select map index from first group */
5082 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5083 			*current_group = 0;
5084 		}
5085 	} while (offload_to_mirror != *current_group);
5086 }
5087 
5088 /*
5089  * Attempt to perform offload RAID mapping for a logical volume I/O.
5090  */
5091 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5092 	struct CommandList *c)
5093 {
5094 	struct scsi_cmnd *cmd = c->scsi_cmd;
5095 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5096 	struct raid_map_data *map = &dev->raid_map;
5097 	struct raid_map_disk_data *dd = &map->data[0];
5098 	int is_write = 0;
5099 	u32 map_index;
5100 	u64 first_block, last_block;
5101 	u32 block_cnt;
5102 	u32 blocks_per_row;
5103 	u64 first_row, last_row;
5104 	u32 first_row_offset, last_row_offset;
5105 	u32 first_column, last_column;
5106 	u64 r0_first_row, r0_last_row;
5107 	u32 r5or6_blocks_per_row;
5108 	u64 r5or6_first_row, r5or6_last_row;
5109 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5110 	u32 r5or6_first_column, r5or6_last_column;
5111 	u32 total_disks_per_row;
5112 	u32 stripesize;
5113 	u32 first_group, last_group, current_group;
5114 	u32 map_row;
5115 	u32 disk_handle;
5116 	u64 disk_block;
5117 	u32 disk_block_cnt;
5118 	u8 cdb[16];
5119 	u8 cdb_len;
5120 	u16 strip_size;
5121 #if BITS_PER_LONG == 32
5122 	u64 tmpdiv;
5123 #endif
5124 	int offload_to_mirror;
5125 
5126 	if (!dev)
5127 		return -1;
5128 
5129 	if (dev->in_reset)
5130 		return -1;
5131 
5132 	/* check for valid opcode, get LBA and block count */
5133 	switch (cmd->cmnd[0]) {
5134 	case WRITE_6:
5135 		is_write = 1;
5136 		fallthrough;
5137 	case READ_6:
5138 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5139 				(cmd->cmnd[2] << 8) |
5140 				cmd->cmnd[3]);
5141 		block_cnt = cmd->cmnd[4];
5142 		if (block_cnt == 0)
5143 			block_cnt = 256;
5144 		break;
5145 	case WRITE_10:
5146 		is_write = 1;
5147 		fallthrough;
5148 	case READ_10:
5149 		first_block =
5150 			(((u64) cmd->cmnd[2]) << 24) |
5151 			(((u64) cmd->cmnd[3]) << 16) |
5152 			(((u64) cmd->cmnd[4]) << 8) |
5153 			cmd->cmnd[5];
5154 		block_cnt =
5155 			(((u32) cmd->cmnd[7]) << 8) |
5156 			cmd->cmnd[8];
5157 		break;
5158 	case WRITE_12:
5159 		is_write = 1;
5160 		fallthrough;
5161 	case READ_12:
5162 		first_block =
5163 			(((u64) cmd->cmnd[2]) << 24) |
5164 			(((u64) cmd->cmnd[3]) << 16) |
5165 			(((u64) cmd->cmnd[4]) << 8) |
5166 			cmd->cmnd[5];
5167 		block_cnt =
5168 			(((u32) cmd->cmnd[6]) << 24) |
5169 			(((u32) cmd->cmnd[7]) << 16) |
5170 			(((u32) cmd->cmnd[8]) << 8) |
5171 		cmd->cmnd[9];
5172 		break;
5173 	case WRITE_16:
5174 		is_write = 1;
5175 		fallthrough;
5176 	case READ_16:
5177 		first_block =
5178 			(((u64) cmd->cmnd[2]) << 56) |
5179 			(((u64) cmd->cmnd[3]) << 48) |
5180 			(((u64) cmd->cmnd[4]) << 40) |
5181 			(((u64) cmd->cmnd[5]) << 32) |
5182 			(((u64) cmd->cmnd[6]) << 24) |
5183 			(((u64) cmd->cmnd[7]) << 16) |
5184 			(((u64) cmd->cmnd[8]) << 8) |
5185 			cmd->cmnd[9];
5186 		block_cnt =
5187 			(((u32) cmd->cmnd[10]) << 24) |
5188 			(((u32) cmd->cmnd[11]) << 16) |
5189 			(((u32) cmd->cmnd[12]) << 8) |
5190 			cmd->cmnd[13];
5191 		break;
5192 	default:
5193 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5194 	}
5195 	last_block = first_block + block_cnt - 1;
5196 
5197 	/* check for write to non-RAID-0 */
5198 	if (is_write && dev->raid_level != 0)
5199 		return IO_ACCEL_INELIGIBLE;
5200 
5201 	/* check for invalid block or wraparound */
5202 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5203 		last_block < first_block)
5204 		return IO_ACCEL_INELIGIBLE;
5205 
5206 	/* calculate stripe information for the request */
5207 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5208 				le16_to_cpu(map->strip_size);
5209 	strip_size = le16_to_cpu(map->strip_size);
5210 #if BITS_PER_LONG == 32
5211 	tmpdiv = first_block;
5212 	(void) do_div(tmpdiv, blocks_per_row);
5213 	first_row = tmpdiv;
5214 	tmpdiv = last_block;
5215 	(void) do_div(tmpdiv, blocks_per_row);
5216 	last_row = tmpdiv;
5217 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5218 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5219 	tmpdiv = first_row_offset;
5220 	(void) do_div(tmpdiv, strip_size);
5221 	first_column = tmpdiv;
5222 	tmpdiv = last_row_offset;
5223 	(void) do_div(tmpdiv, strip_size);
5224 	last_column = tmpdiv;
5225 #else
5226 	first_row = first_block / blocks_per_row;
5227 	last_row = last_block / blocks_per_row;
5228 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5229 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5230 	first_column = first_row_offset / strip_size;
5231 	last_column = last_row_offset / strip_size;
5232 #endif
5233 
5234 	/* if this isn't a single row/column then give to the controller */
5235 	if ((first_row != last_row) || (first_column != last_column))
5236 		return IO_ACCEL_INELIGIBLE;
5237 
5238 	/* proceeding with driver mapping */
5239 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5240 				le16_to_cpu(map->metadata_disks_per_row);
5241 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5242 				le16_to_cpu(map->row_cnt);
5243 	map_index = (map_row * total_disks_per_row) + first_column;
5244 
5245 	switch (dev->raid_level) {
5246 	case HPSA_RAID_0:
5247 		break; /* nothing special to do */
5248 	case HPSA_RAID_1:
5249 		/* Handles load balance across RAID 1 members.
5250 		 * (2-drive R1 and R10 with even # of drives.)
5251 		 * Appropriate for SSDs, not optimal for HDDs
5252 		 * Ensure we have the correct raid_map.
5253 		 */
5254 		if (le16_to_cpu(map->layout_map_count) != 2) {
5255 			hpsa_turn_off_ioaccel_for_device(dev);
5256 			return IO_ACCEL_INELIGIBLE;
5257 		}
5258 		if (dev->offload_to_mirror)
5259 			map_index += le16_to_cpu(map->data_disks_per_row);
5260 		dev->offload_to_mirror = !dev->offload_to_mirror;
5261 		break;
5262 	case HPSA_RAID_ADM:
5263 		/* Handles N-way mirrors  (R1-ADM)
5264 		 * and R10 with # of drives divisible by 3.)
5265 		 * Ensure we have the correct raid_map.
5266 		 */
5267 		if (le16_to_cpu(map->layout_map_count) != 3) {
5268 			hpsa_turn_off_ioaccel_for_device(dev);
5269 			return IO_ACCEL_INELIGIBLE;
5270 		}
5271 
5272 		offload_to_mirror = dev->offload_to_mirror;
5273 		raid_map_helper(map, offload_to_mirror,
5274 				&map_index, &current_group);
5275 		/* set mirror group to use next time */
5276 		offload_to_mirror =
5277 			(offload_to_mirror >=
5278 			le16_to_cpu(map->layout_map_count) - 1)
5279 			? 0 : offload_to_mirror + 1;
5280 		dev->offload_to_mirror = offload_to_mirror;
5281 		/* Avoid direct use of dev->offload_to_mirror within this
5282 		 * function since multiple threads might simultaneously
5283 		 * increment it beyond the range of dev->layout_map_count -1.
5284 		 */
5285 		break;
5286 	case HPSA_RAID_5:
5287 	case HPSA_RAID_6:
5288 		if (le16_to_cpu(map->layout_map_count) <= 1)
5289 			break;
5290 
5291 		/* Verify first and last block are in same RAID group */
5292 		r5or6_blocks_per_row =
5293 			le16_to_cpu(map->strip_size) *
5294 			le16_to_cpu(map->data_disks_per_row);
5295 		if (r5or6_blocks_per_row == 0) {
5296 			hpsa_turn_off_ioaccel_for_device(dev);
5297 			return IO_ACCEL_INELIGIBLE;
5298 		}
5299 		stripesize = r5or6_blocks_per_row *
5300 			le16_to_cpu(map->layout_map_count);
5301 #if BITS_PER_LONG == 32
5302 		tmpdiv = first_block;
5303 		first_group = do_div(tmpdiv, stripesize);
5304 		tmpdiv = first_group;
5305 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5306 		first_group = tmpdiv;
5307 		tmpdiv = last_block;
5308 		last_group = do_div(tmpdiv, stripesize);
5309 		tmpdiv = last_group;
5310 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5311 		last_group = tmpdiv;
5312 #else
5313 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5314 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5315 #endif
5316 		if (first_group != last_group)
5317 			return IO_ACCEL_INELIGIBLE;
5318 
5319 		/* Verify request is in a single row of RAID 5/6 */
5320 #if BITS_PER_LONG == 32
5321 		tmpdiv = first_block;
5322 		(void) do_div(tmpdiv, stripesize);
5323 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5324 		tmpdiv = last_block;
5325 		(void) do_div(tmpdiv, stripesize);
5326 		r5or6_last_row = r0_last_row = tmpdiv;
5327 #else
5328 		first_row = r5or6_first_row = r0_first_row =
5329 						first_block / stripesize;
5330 		r5or6_last_row = r0_last_row = last_block / stripesize;
5331 #endif
5332 		if (r5or6_first_row != r5or6_last_row)
5333 			return IO_ACCEL_INELIGIBLE;
5334 
5335 
5336 		/* Verify request is in a single column */
5337 #if BITS_PER_LONG == 32
5338 		tmpdiv = first_block;
5339 		first_row_offset = do_div(tmpdiv, stripesize);
5340 		tmpdiv = first_row_offset;
5341 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5342 		r5or6_first_row_offset = first_row_offset;
5343 		tmpdiv = last_block;
5344 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5345 		tmpdiv = r5or6_last_row_offset;
5346 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5347 		tmpdiv = r5or6_first_row_offset;
5348 		(void) do_div(tmpdiv, map->strip_size);
5349 		first_column = r5or6_first_column = tmpdiv;
5350 		tmpdiv = r5or6_last_row_offset;
5351 		(void) do_div(tmpdiv, map->strip_size);
5352 		r5or6_last_column = tmpdiv;
5353 #else
5354 		first_row_offset = r5or6_first_row_offset =
5355 			(u32)((first_block % stripesize) %
5356 						r5or6_blocks_per_row);
5357 
5358 		r5or6_last_row_offset =
5359 			(u32)((last_block % stripesize) %
5360 						r5or6_blocks_per_row);
5361 
5362 		first_column = r5or6_first_column =
5363 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5364 		r5or6_last_column =
5365 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5366 #endif
5367 		if (r5or6_first_column != r5or6_last_column)
5368 			return IO_ACCEL_INELIGIBLE;
5369 
5370 		/* Request is eligible */
5371 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5372 			le16_to_cpu(map->row_cnt);
5373 
5374 		map_index = (first_group *
5375 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5376 			(map_row * total_disks_per_row) + first_column;
5377 		break;
5378 	default:
5379 		return IO_ACCEL_INELIGIBLE;
5380 	}
5381 
5382 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5383 		return IO_ACCEL_INELIGIBLE;
5384 
5385 	c->phys_disk = dev->phys_disk[map_index];
5386 	if (!c->phys_disk)
5387 		return IO_ACCEL_INELIGIBLE;
5388 
5389 	disk_handle = dd[map_index].ioaccel_handle;
5390 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5391 			first_row * le16_to_cpu(map->strip_size) +
5392 			(first_row_offset - first_column *
5393 			le16_to_cpu(map->strip_size));
5394 	disk_block_cnt = block_cnt;
5395 
5396 	/* handle differing logical/physical block sizes */
5397 	if (map->phys_blk_shift) {
5398 		disk_block <<= map->phys_blk_shift;
5399 		disk_block_cnt <<= map->phys_blk_shift;
5400 	}
5401 	BUG_ON(disk_block_cnt > 0xffff);
5402 
5403 	/* build the new CDB for the physical disk I/O */
5404 	if (disk_block > 0xffffffff) {
5405 		cdb[0] = is_write ? WRITE_16 : READ_16;
5406 		cdb[1] = 0;
5407 		cdb[2] = (u8) (disk_block >> 56);
5408 		cdb[3] = (u8) (disk_block >> 48);
5409 		cdb[4] = (u8) (disk_block >> 40);
5410 		cdb[5] = (u8) (disk_block >> 32);
5411 		cdb[6] = (u8) (disk_block >> 24);
5412 		cdb[7] = (u8) (disk_block >> 16);
5413 		cdb[8] = (u8) (disk_block >> 8);
5414 		cdb[9] = (u8) (disk_block);
5415 		cdb[10] = (u8) (disk_block_cnt >> 24);
5416 		cdb[11] = (u8) (disk_block_cnt >> 16);
5417 		cdb[12] = (u8) (disk_block_cnt >> 8);
5418 		cdb[13] = (u8) (disk_block_cnt);
5419 		cdb[14] = 0;
5420 		cdb[15] = 0;
5421 		cdb_len = 16;
5422 	} else {
5423 		cdb[0] = is_write ? WRITE_10 : READ_10;
5424 		cdb[1] = 0;
5425 		cdb[2] = (u8) (disk_block >> 24);
5426 		cdb[3] = (u8) (disk_block >> 16);
5427 		cdb[4] = (u8) (disk_block >> 8);
5428 		cdb[5] = (u8) (disk_block);
5429 		cdb[6] = 0;
5430 		cdb[7] = (u8) (disk_block_cnt >> 8);
5431 		cdb[8] = (u8) (disk_block_cnt);
5432 		cdb[9] = 0;
5433 		cdb_len = 10;
5434 	}
5435 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5436 						dev->scsi3addr,
5437 						dev->phys_disk[map_index]);
5438 }
5439 
5440 /*
5441  * Submit commands down the "normal" RAID stack path
5442  * All callers to hpsa_ciss_submit must check lockup_detected
5443  * beforehand, before (opt.) and after calling cmd_alloc
5444  */
5445 static int hpsa_ciss_submit(struct ctlr_info *h,
5446 	struct CommandList *c, struct scsi_cmnd *cmd,
5447 	struct hpsa_scsi_dev_t *dev)
5448 {
5449 	cmd->host_scribble = (unsigned char *) c;
5450 	c->cmd_type = CMD_SCSI;
5451 	c->scsi_cmd = cmd;
5452 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5453 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5454 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5455 
5456 	/* Fill in the request block... */
5457 
5458 	c->Request.Timeout = 0;
5459 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5460 	c->Request.CDBLen = cmd->cmd_len;
5461 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5462 	switch (cmd->sc_data_direction) {
5463 	case DMA_TO_DEVICE:
5464 		c->Request.type_attr_dir =
5465 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5466 		break;
5467 	case DMA_FROM_DEVICE:
5468 		c->Request.type_attr_dir =
5469 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5470 		break;
5471 	case DMA_NONE:
5472 		c->Request.type_attr_dir =
5473 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5474 		break;
5475 	case DMA_BIDIRECTIONAL:
5476 		/* This can happen if a buggy application does a scsi passthru
5477 		 * and sets both inlen and outlen to non-zero. ( see
5478 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5479 		 */
5480 
5481 		c->Request.type_attr_dir =
5482 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5483 		/* This is technically wrong, and hpsa controllers should
5484 		 * reject it with CMD_INVALID, which is the most correct
5485 		 * response, but non-fibre backends appear to let it
5486 		 * slide by, and give the same results as if this field
5487 		 * were set correctly.  Either way is acceptable for
5488 		 * our purposes here.
5489 		 */
5490 
5491 		break;
5492 
5493 	default:
5494 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5495 			cmd->sc_data_direction);
5496 		BUG();
5497 		break;
5498 	}
5499 
5500 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5501 		hpsa_cmd_resolve_and_free(h, c);
5502 		return SCSI_MLQUEUE_HOST_BUSY;
5503 	}
5504 
5505 	if (dev->in_reset) {
5506 		hpsa_cmd_resolve_and_free(h, c);
5507 		return SCSI_MLQUEUE_HOST_BUSY;
5508 	}
5509 
5510 	c->device = dev;
5511 
5512 	enqueue_cmd_and_start_io(h, c);
5513 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5514 	return 0;
5515 }
5516 
5517 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5518 				struct CommandList *c)
5519 {
5520 	dma_addr_t cmd_dma_handle, err_dma_handle;
5521 
5522 	/* Zero out all of commandlist except the last field, refcount */
5523 	memset(c, 0, offsetof(struct CommandList, refcount));
5524 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5525 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5526 	c->err_info = h->errinfo_pool + index;
5527 	memset(c->err_info, 0, sizeof(*c->err_info));
5528 	err_dma_handle = h->errinfo_pool_dhandle
5529 	    + index * sizeof(*c->err_info);
5530 	c->cmdindex = index;
5531 	c->busaddr = (u32) cmd_dma_handle;
5532 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5533 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5534 	c->h = h;
5535 	c->scsi_cmd = SCSI_CMD_IDLE;
5536 }
5537 
5538 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5539 {
5540 	int i;
5541 
5542 	for (i = 0; i < h->nr_cmds; i++) {
5543 		struct CommandList *c = h->cmd_pool + i;
5544 
5545 		hpsa_cmd_init(h, i, c);
5546 		atomic_set(&c->refcount, 0);
5547 	}
5548 }
5549 
5550 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5551 				struct CommandList *c)
5552 {
5553 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5554 
5555 	BUG_ON(c->cmdindex != index);
5556 
5557 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5558 	memset(c->err_info, 0, sizeof(*c->err_info));
5559 	c->busaddr = (u32) cmd_dma_handle;
5560 }
5561 
5562 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5563 		struct CommandList *c, struct scsi_cmnd *cmd,
5564 		bool retry)
5565 {
5566 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5567 	int rc = IO_ACCEL_INELIGIBLE;
5568 
5569 	if (!dev)
5570 		return SCSI_MLQUEUE_HOST_BUSY;
5571 
5572 	if (dev->in_reset)
5573 		return SCSI_MLQUEUE_HOST_BUSY;
5574 
5575 	if (hpsa_simple_mode)
5576 		return IO_ACCEL_INELIGIBLE;
5577 
5578 	cmd->host_scribble = (unsigned char *) c;
5579 
5580 	if (dev->offload_enabled) {
5581 		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5582 		c->cmd_type = CMD_SCSI;
5583 		c->scsi_cmd = cmd;
5584 		c->device = dev;
5585 		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5586 			c->retry_pending = true;
5587 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5588 		if (rc < 0)     /* scsi_dma_map failed. */
5589 			rc = SCSI_MLQUEUE_HOST_BUSY;
5590 	} else if (dev->hba_ioaccel_enabled) {
5591 		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5592 		c->cmd_type = CMD_SCSI;
5593 		c->scsi_cmd = cmd;
5594 		c->device = dev;
5595 		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5596 			c->retry_pending = true;
5597 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5598 		if (rc < 0)     /* scsi_dma_map failed. */
5599 			rc = SCSI_MLQUEUE_HOST_BUSY;
5600 	}
5601 	return rc;
5602 }
5603 
5604 static void hpsa_command_resubmit_worker(struct work_struct *work)
5605 {
5606 	struct scsi_cmnd *cmd;
5607 	struct hpsa_scsi_dev_t *dev;
5608 	struct CommandList *c = container_of(work, struct CommandList, work);
5609 
5610 	cmd = c->scsi_cmd;
5611 	dev = cmd->device->hostdata;
5612 	if (!dev) {
5613 		cmd->result = DID_NO_CONNECT << 16;
5614 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5615 	}
5616 
5617 	if (dev->in_reset) {
5618 		cmd->result = DID_RESET << 16;
5619 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5620 	}
5621 
5622 	if (c->cmd_type == CMD_IOACCEL2) {
5623 		struct ctlr_info *h = c->h;
5624 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5625 		int rc;
5626 
5627 		if (c2->error_data.serv_response ==
5628 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5629 			/* Resubmit with the retry_pending flag set. */
5630 			rc = hpsa_ioaccel_submit(h, c, cmd, true);
5631 			if (rc == 0)
5632 				return;
5633 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5634 				/*
5635 				 * If we get here, it means dma mapping failed.
5636 				 * Try again via scsi mid layer, which will
5637 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5638 				 */
5639 				cmd->result = DID_IMM_RETRY << 16;
5640 				return hpsa_cmd_free_and_done(h, c, cmd);
5641 			}
5642 			/* else, fall thru and resubmit down CISS path */
5643 		}
5644 	}
5645 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5646 	/*
5647 	 * Here we have not come in though queue_command, so we
5648 	 * can set the retry_pending flag to true for a driver initiated
5649 	 * retry attempt (I.E. not a SML retry).
5650 	 * I.E. We are submitting a driver initiated retry.
5651 	 * Note: hpsa_ciss_submit does not zero out the command fields like
5652 	 *       ioaccel submit does.
5653 	 */
5654 	c->retry_pending = true;
5655 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5656 		/*
5657 		 * If we get here, it means dma mapping failed. Try
5658 		 * again via scsi mid layer, which will then get
5659 		 * SCSI_MLQUEUE_HOST_BUSY.
5660 		 *
5661 		 * hpsa_ciss_submit will have already freed c
5662 		 * if it encountered a dma mapping failure.
5663 		 */
5664 		cmd->result = DID_IMM_RETRY << 16;
5665 		scsi_done(cmd);
5666 	}
5667 }
5668 
5669 /* Running in struct Scsi_Host->host_lock less mode */
5670 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5671 {
5672 	struct ctlr_info *h;
5673 	struct hpsa_scsi_dev_t *dev;
5674 	struct CommandList *c;
5675 	int rc = 0;
5676 
5677 	/* Get the ptr to our adapter structure out of cmd->host. */
5678 	h = sdev_to_hba(cmd->device);
5679 
5680 	BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0);
5681 
5682 	dev = cmd->device->hostdata;
5683 	if (!dev) {
5684 		cmd->result = DID_NO_CONNECT << 16;
5685 		scsi_done(cmd);
5686 		return 0;
5687 	}
5688 
5689 	if (dev->removed) {
5690 		cmd->result = DID_NO_CONNECT << 16;
5691 		scsi_done(cmd);
5692 		return 0;
5693 	}
5694 
5695 	if (unlikely(lockup_detected(h))) {
5696 		cmd->result = DID_NO_CONNECT << 16;
5697 		scsi_done(cmd);
5698 		return 0;
5699 	}
5700 
5701 	if (dev->in_reset)
5702 		return SCSI_MLQUEUE_DEVICE_BUSY;
5703 
5704 	c = cmd_tagged_alloc(h, cmd);
5705 	if (c == NULL)
5706 		return SCSI_MLQUEUE_DEVICE_BUSY;
5707 
5708 	/*
5709 	 * This is necessary because the SML doesn't zero out this field during
5710 	 * error recovery.
5711 	 */
5712 	cmd->result = 0;
5713 
5714 	/*
5715 	 * Call alternate submit routine for I/O accelerated commands.
5716 	 * Retries always go down the normal I/O path.
5717 	 * Note: If cmd->retries is non-zero, then this is a SML
5718 	 *       initiated retry and not a driver initiated retry.
5719 	 *       This command has been obtained from cmd_tagged_alloc
5720 	 *       and is therefore a brand-new command.
5721 	 */
5722 	if (likely(cmd->retries == 0 &&
5723 			!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) &&
5724 			h->acciopath_status)) {
5725 		/* Submit with the retry_pending flag unset. */
5726 		rc = hpsa_ioaccel_submit(h, c, cmd, false);
5727 		if (rc == 0)
5728 			return 0;
5729 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5730 			hpsa_cmd_resolve_and_free(h, c);
5731 			return SCSI_MLQUEUE_HOST_BUSY;
5732 		}
5733 	}
5734 	return hpsa_ciss_submit(h, c, cmd, dev);
5735 }
5736 
5737 static void hpsa_scan_complete(struct ctlr_info *h)
5738 {
5739 	unsigned long flags;
5740 
5741 	spin_lock_irqsave(&h->scan_lock, flags);
5742 	h->scan_finished = 1;
5743 	wake_up(&h->scan_wait_queue);
5744 	spin_unlock_irqrestore(&h->scan_lock, flags);
5745 }
5746 
5747 static void hpsa_scan_start(struct Scsi_Host *sh)
5748 {
5749 	struct ctlr_info *h = shost_to_hba(sh);
5750 	unsigned long flags;
5751 
5752 	/*
5753 	 * Don't let rescans be initiated on a controller known to be locked
5754 	 * up.  If the controller locks up *during* a rescan, that thread is
5755 	 * probably hosed, but at least we can prevent new rescan threads from
5756 	 * piling up on a locked up controller.
5757 	 */
5758 	if (unlikely(lockup_detected(h)))
5759 		return hpsa_scan_complete(h);
5760 
5761 	/*
5762 	 * If a scan is already waiting to run, no need to add another
5763 	 */
5764 	spin_lock_irqsave(&h->scan_lock, flags);
5765 	if (h->scan_waiting) {
5766 		spin_unlock_irqrestore(&h->scan_lock, flags);
5767 		return;
5768 	}
5769 
5770 	spin_unlock_irqrestore(&h->scan_lock, flags);
5771 
5772 	/* wait until any scan already in progress is finished. */
5773 	while (1) {
5774 		spin_lock_irqsave(&h->scan_lock, flags);
5775 		if (h->scan_finished)
5776 			break;
5777 		h->scan_waiting = 1;
5778 		spin_unlock_irqrestore(&h->scan_lock, flags);
5779 		wait_event(h->scan_wait_queue, h->scan_finished);
5780 		/* Note: We don't need to worry about a race between this
5781 		 * thread and driver unload because the midlayer will
5782 		 * have incremented the reference count, so unload won't
5783 		 * happen if we're in here.
5784 		 */
5785 	}
5786 	h->scan_finished = 0; /* mark scan as in progress */
5787 	h->scan_waiting = 0;
5788 	spin_unlock_irqrestore(&h->scan_lock, flags);
5789 
5790 	if (unlikely(lockup_detected(h)))
5791 		return hpsa_scan_complete(h);
5792 
5793 	/*
5794 	 * Do the scan after a reset completion
5795 	 */
5796 	spin_lock_irqsave(&h->reset_lock, flags);
5797 	if (h->reset_in_progress) {
5798 		h->drv_req_rescan = 1;
5799 		spin_unlock_irqrestore(&h->reset_lock, flags);
5800 		hpsa_scan_complete(h);
5801 		return;
5802 	}
5803 	spin_unlock_irqrestore(&h->reset_lock, flags);
5804 
5805 	hpsa_update_scsi_devices(h);
5806 
5807 	hpsa_scan_complete(h);
5808 }
5809 
5810 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5811 {
5812 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5813 
5814 	if (!logical_drive)
5815 		return -ENODEV;
5816 
5817 	if (qdepth < 1)
5818 		qdepth = 1;
5819 	else if (qdepth > logical_drive->queue_depth)
5820 		qdepth = logical_drive->queue_depth;
5821 
5822 	return scsi_change_queue_depth(sdev, qdepth);
5823 }
5824 
5825 static int hpsa_scan_finished(struct Scsi_Host *sh,
5826 	unsigned long elapsed_time)
5827 {
5828 	struct ctlr_info *h = shost_to_hba(sh);
5829 	unsigned long flags;
5830 	int finished;
5831 
5832 	spin_lock_irqsave(&h->scan_lock, flags);
5833 	finished = h->scan_finished;
5834 	spin_unlock_irqrestore(&h->scan_lock, flags);
5835 	return finished;
5836 }
5837 
5838 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5839 {
5840 	struct Scsi_Host *sh;
5841 
5842 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(struct ctlr_info *));
5843 	if (sh == NULL) {
5844 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5845 		return -ENOMEM;
5846 	}
5847 
5848 	sh->io_port = 0;
5849 	sh->n_io_port = 0;
5850 	sh->this_id = -1;
5851 	sh->max_channel = 3;
5852 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5853 	sh->max_lun = HPSA_MAX_LUN;
5854 	sh->max_id = HPSA_MAX_LUN;
5855 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5856 	sh->cmd_per_lun = sh->can_queue;
5857 	sh->sg_tablesize = h->maxsgentries;
5858 	sh->transportt = hpsa_sas_transport_template;
5859 	sh->hostdata[0] = (unsigned long) h;
5860 	sh->irq = pci_irq_vector(h->pdev, 0);
5861 	sh->unique_id = sh->irq;
5862 
5863 	h->scsi_host = sh;
5864 	return 0;
5865 }
5866 
5867 static int hpsa_scsi_add_host(struct ctlr_info *h)
5868 {
5869 	int rv;
5870 
5871 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5872 	if (rv) {
5873 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5874 		return rv;
5875 	}
5876 	scsi_scan_host(h->scsi_host);
5877 	return 0;
5878 }
5879 
5880 /*
5881  * The block layer has already gone to the trouble of picking out a unique,
5882  * small-integer tag for this request.  We use an offset from that value as
5883  * an index to select our command block.  (The offset allows us to reserve the
5884  * low-numbered entries for our own uses.)
5885  */
5886 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5887 {
5888 	int idx = scsi_cmd_to_rq(scmd)->tag;
5889 
5890 	if (idx < 0)
5891 		return idx;
5892 
5893 	/* Offset to leave space for internal cmds. */
5894 	return idx += HPSA_NRESERVED_CMDS;
5895 }
5896 
5897 /*
5898  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5899  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5900  */
5901 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5902 				struct CommandList *c, unsigned char lunaddr[],
5903 				int reply_queue)
5904 {
5905 	int rc;
5906 
5907 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5908 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5909 			NULL, 0, 0, lunaddr, TYPE_CMD);
5910 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5911 	if (rc)
5912 		return rc;
5913 	/* no unmap needed here because no data xfer. */
5914 
5915 	/* Check if the unit is already ready. */
5916 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5917 		return 0;
5918 
5919 	/*
5920 	 * The first command sent after reset will receive "unit attention" to
5921 	 * indicate that the LUN has been reset...this is actually what we're
5922 	 * looking for (but, success is good too).
5923 	 */
5924 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5925 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5926 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5927 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5928 		return 0;
5929 
5930 	return 1;
5931 }
5932 
5933 /*
5934  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5935  * returns zero when the unit is ready, and non-zero when giving up.
5936  */
5937 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5938 				struct CommandList *c,
5939 				unsigned char lunaddr[], int reply_queue)
5940 {
5941 	int rc;
5942 	int count = 0;
5943 	int waittime = 1; /* seconds */
5944 
5945 	/* Send test unit ready until device ready, or give up. */
5946 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5947 
5948 		/*
5949 		 * Wait for a bit.  do this first, because if we send
5950 		 * the TUR right away, the reset will just abort it.
5951 		 */
5952 		msleep(1000 * waittime);
5953 
5954 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5955 		if (!rc)
5956 			break;
5957 
5958 		/* Increase wait time with each try, up to a point. */
5959 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5960 			waittime *= 2;
5961 
5962 		dev_warn(&h->pdev->dev,
5963 			 "waiting %d secs for device to become ready.\n",
5964 			 waittime);
5965 	}
5966 
5967 	return rc;
5968 }
5969 
5970 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5971 					   unsigned char lunaddr[],
5972 					   int reply_queue)
5973 {
5974 	int first_queue;
5975 	int last_queue;
5976 	int rq;
5977 	int rc = 0;
5978 	struct CommandList *c;
5979 
5980 	c = cmd_alloc(h);
5981 
5982 	/*
5983 	 * If no specific reply queue was requested, then send the TUR
5984 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5985 	 * the loop exactly once using only the specified queue.
5986 	 */
5987 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5988 		first_queue = 0;
5989 		last_queue = h->nreply_queues - 1;
5990 	} else {
5991 		first_queue = reply_queue;
5992 		last_queue = reply_queue;
5993 	}
5994 
5995 	for (rq = first_queue; rq <= last_queue; rq++) {
5996 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5997 		if (rc)
5998 			break;
5999 	}
6000 
6001 	if (rc)
6002 		dev_warn(&h->pdev->dev, "giving up on device.\n");
6003 	else
6004 		dev_warn(&h->pdev->dev, "device is ready.\n");
6005 
6006 	cmd_free(h, c);
6007 	return rc;
6008 }
6009 
6010 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6011  * complaining.  Doing a host- or bus-reset can't do anything good here.
6012  */
6013 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6014 {
6015 	int rc = SUCCESS;
6016 	int i;
6017 	struct ctlr_info *h;
6018 	struct hpsa_scsi_dev_t *dev = NULL;
6019 	u8 reset_type;
6020 	char msg[48];
6021 	unsigned long flags;
6022 
6023 	/* find the controller to which the command to be aborted was sent */
6024 	h = sdev_to_hba(scsicmd->device);
6025 	if (h == NULL) /* paranoia */
6026 		return FAILED;
6027 
6028 	spin_lock_irqsave(&h->reset_lock, flags);
6029 	h->reset_in_progress = 1;
6030 	spin_unlock_irqrestore(&h->reset_lock, flags);
6031 
6032 	if (lockup_detected(h)) {
6033 		rc = FAILED;
6034 		goto return_reset_status;
6035 	}
6036 
6037 	dev = scsicmd->device->hostdata;
6038 	if (!dev) {
6039 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6040 		rc = FAILED;
6041 		goto return_reset_status;
6042 	}
6043 
6044 	if (dev->devtype == TYPE_ENCLOSURE) {
6045 		rc = SUCCESS;
6046 		goto return_reset_status;
6047 	}
6048 
6049 	/* if controller locked up, we can guarantee command won't complete */
6050 	if (lockup_detected(h)) {
6051 		snprintf(msg, sizeof(msg),
6052 			 "cmd %d RESET FAILED, lockup detected",
6053 			 hpsa_get_cmd_index(scsicmd));
6054 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6055 		rc = FAILED;
6056 		goto return_reset_status;
6057 	}
6058 
6059 	/* this reset request might be the result of a lockup; check */
6060 	if (detect_controller_lockup(h)) {
6061 		snprintf(msg, sizeof(msg),
6062 			 "cmd %d RESET FAILED, new lockup detected",
6063 			 hpsa_get_cmd_index(scsicmd));
6064 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6065 		rc = FAILED;
6066 		goto return_reset_status;
6067 	}
6068 
6069 	/* Do not attempt on controller */
6070 	if (is_hba_lunid(dev->scsi3addr)) {
6071 		rc = SUCCESS;
6072 		goto return_reset_status;
6073 	}
6074 
6075 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6076 		reset_type = HPSA_DEVICE_RESET_MSG;
6077 	else
6078 		reset_type = HPSA_PHYS_TARGET_RESET;
6079 
6080 	sprintf(msg, "resetting %s",
6081 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6082 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6083 
6084 	/*
6085 	 * wait to see if any commands will complete before sending reset
6086 	 */
6087 	dev->in_reset = true; /* block any new cmds from OS for this device */
6088 	for (i = 0; i < 10; i++) {
6089 		if (atomic_read(&dev->commands_outstanding) > 0)
6090 			msleep(1000);
6091 		else
6092 			break;
6093 	}
6094 
6095 	/* send a reset to the SCSI LUN which the command was sent to */
6096 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6097 	if (rc == 0)
6098 		rc = SUCCESS;
6099 	else
6100 		rc = FAILED;
6101 
6102 	sprintf(msg, "reset %s %s",
6103 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6104 		rc == SUCCESS ? "completed successfully" : "failed");
6105 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6106 
6107 return_reset_status:
6108 	spin_lock_irqsave(&h->reset_lock, flags);
6109 	h->reset_in_progress = 0;
6110 	if (dev)
6111 		dev->in_reset = false;
6112 	spin_unlock_irqrestore(&h->reset_lock, flags);
6113 	return rc;
6114 }
6115 
6116 /*
6117  * For operations with an associated SCSI command, a command block is allocated
6118  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6119  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6120  * the complement, although cmd_free() may be called instead.
6121  * This function is only called for new requests from queue_command.
6122  */
6123 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6124 					    struct scsi_cmnd *scmd)
6125 {
6126 	int idx = hpsa_get_cmd_index(scmd);
6127 	struct CommandList *c = h->cmd_pool + idx;
6128 
6129 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6130 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6131 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6132 		/* The index value comes from the block layer, so if it's out of
6133 		 * bounds, it's probably not our bug.
6134 		 */
6135 		BUG();
6136 	}
6137 
6138 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6139 		/*
6140 		 * We expect that the SCSI layer will hand us a unique tag
6141 		 * value.  Thus, there should never be a collision here between
6142 		 * two requests...because if the selected command isn't idle
6143 		 * then someone is going to be very disappointed.
6144 		 */
6145 		if (idx != h->last_collision_tag) { /* Print once per tag */
6146 			dev_warn(&h->pdev->dev,
6147 				"%s: tag collision (tag=%d)\n", __func__, idx);
6148 			if (scmd)
6149 				scsi_print_command(scmd);
6150 			h->last_collision_tag = idx;
6151 		}
6152 		return NULL;
6153 	}
6154 
6155 	atomic_inc(&c->refcount);
6156 	hpsa_cmd_partial_init(h, idx, c);
6157 
6158 	/*
6159 	 * This is a new command obtained from queue_command so
6160 	 * there have not been any driver initiated retry attempts.
6161 	 */
6162 	c->retry_pending = false;
6163 
6164 	return c;
6165 }
6166 
6167 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6168 {
6169 	/*
6170 	 * Release our reference to the block.  We don't need to do anything
6171 	 * else to free it, because it is accessed by index.
6172 	 */
6173 	(void)atomic_dec(&c->refcount);
6174 }
6175 
6176 /*
6177  * For operations that cannot sleep, a command block is allocated at init,
6178  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6179  * which ones are free or in use.  Lock must be held when calling this.
6180  * cmd_free() is the complement.
6181  * This function never gives up and returns NULL.  If it hangs,
6182  * another thread must call cmd_free() to free some tags.
6183  */
6184 
6185 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6186 {
6187 	struct CommandList *c;
6188 	int refcount, i;
6189 	int offset = 0;
6190 
6191 	/*
6192 	 * There is some *extremely* small but non-zero chance that that
6193 	 * multiple threads could get in here, and one thread could
6194 	 * be scanning through the list of bits looking for a free
6195 	 * one, but the free ones are always behind him, and other
6196 	 * threads sneak in behind him and eat them before he can
6197 	 * get to them, so that while there is always a free one, a
6198 	 * very unlucky thread might be starved anyway, never able to
6199 	 * beat the other threads.  In reality, this happens so
6200 	 * infrequently as to be indistinguishable from never.
6201 	 *
6202 	 * Note that we start allocating commands before the SCSI host structure
6203 	 * is initialized.  Since the search starts at bit zero, this
6204 	 * all works, since we have at least one command structure available;
6205 	 * however, it means that the structures with the low indexes have to be
6206 	 * reserved for driver-initiated requests, while requests from the block
6207 	 * layer will use the higher indexes.
6208 	 */
6209 
6210 	for (;;) {
6211 		i = find_next_zero_bit(h->cmd_pool_bits,
6212 					HPSA_NRESERVED_CMDS,
6213 					offset);
6214 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6215 			offset = 0;
6216 			continue;
6217 		}
6218 		c = h->cmd_pool + i;
6219 		refcount = atomic_inc_return(&c->refcount);
6220 		if (unlikely(refcount > 1)) {
6221 			cmd_free(h, c); /* already in use */
6222 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6223 			continue;
6224 		}
6225 		set_bit(i, h->cmd_pool_bits);
6226 		break; /* it's ours now. */
6227 	}
6228 	hpsa_cmd_partial_init(h, i, c);
6229 	c->device = NULL;
6230 
6231 	/*
6232 	 * cmd_alloc is for "internal" commands and they are never
6233 	 * retried.
6234 	 */
6235 	c->retry_pending = false;
6236 
6237 	return c;
6238 }
6239 
6240 /*
6241  * This is the complementary operation to cmd_alloc().  Note, however, in some
6242  * corner cases it may also be used to free blocks allocated by
6243  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6244  * the clear-bit is harmless.
6245  */
6246 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6247 {
6248 	if (atomic_dec_and_test(&c->refcount)) {
6249 		int i;
6250 
6251 		i = c - h->cmd_pool;
6252 		clear_bit(i, h->cmd_pool_bits);
6253 	}
6254 }
6255 
6256 #ifdef CONFIG_COMPAT
6257 
6258 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6259 	void __user *arg)
6260 {
6261 	struct ctlr_info *h = sdev_to_hba(dev);
6262 	IOCTL32_Command_struct __user *arg32 = arg;
6263 	IOCTL_Command_struct arg64;
6264 	int err;
6265 	u32 cp;
6266 
6267 	if (!arg)
6268 		return -EINVAL;
6269 
6270 	memset(&arg64, 0, sizeof(arg64));
6271 	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6272 		return -EFAULT;
6273 	if (get_user(cp, &arg32->buf))
6274 		return -EFAULT;
6275 	arg64.buf = compat_ptr(cp);
6276 
6277 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6278 		return -EAGAIN;
6279 	err = hpsa_passthru_ioctl(h, &arg64);
6280 	atomic_inc(&h->passthru_cmds_avail);
6281 	if (err)
6282 		return err;
6283 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6284 			 sizeof(arg32->error_info)))
6285 		return -EFAULT;
6286 	return 0;
6287 }
6288 
6289 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6290 	unsigned int cmd, void __user *arg)
6291 {
6292 	struct ctlr_info *h = sdev_to_hba(dev);
6293 	BIG_IOCTL32_Command_struct __user *arg32 = arg;
6294 	BIG_IOCTL_Command_struct arg64;
6295 	int err;
6296 	u32 cp;
6297 
6298 	if (!arg)
6299 		return -EINVAL;
6300 	memset(&arg64, 0, sizeof(arg64));
6301 	if (copy_from_user(&arg64, arg32,
6302 			   offsetof(BIG_IOCTL32_Command_struct, buf)))
6303 		return -EFAULT;
6304 	if (get_user(cp, &arg32->buf))
6305 		return -EFAULT;
6306 	arg64.buf = compat_ptr(cp);
6307 
6308 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6309 		return -EAGAIN;
6310 	err = hpsa_big_passthru_ioctl(h, &arg64);
6311 	atomic_inc(&h->passthru_cmds_avail);
6312 	if (err)
6313 		return err;
6314 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6315 			 sizeof(arg32->error_info)))
6316 		return -EFAULT;
6317 	return 0;
6318 }
6319 
6320 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6321 			     void __user *arg)
6322 {
6323 	switch (cmd) {
6324 	case CCISS_GETPCIINFO:
6325 	case CCISS_GETINTINFO:
6326 	case CCISS_SETINTINFO:
6327 	case CCISS_GETNODENAME:
6328 	case CCISS_SETNODENAME:
6329 	case CCISS_GETHEARTBEAT:
6330 	case CCISS_GETBUSTYPES:
6331 	case CCISS_GETFIRMVER:
6332 	case CCISS_GETDRIVVER:
6333 	case CCISS_REVALIDVOLS:
6334 	case CCISS_DEREGDISK:
6335 	case CCISS_REGNEWDISK:
6336 	case CCISS_REGNEWD:
6337 	case CCISS_RESCANDISK:
6338 	case CCISS_GETLUNINFO:
6339 		return hpsa_ioctl(dev, cmd, arg);
6340 
6341 	case CCISS_PASSTHRU32:
6342 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6343 	case CCISS_BIG_PASSTHRU32:
6344 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6345 
6346 	default:
6347 		return -ENOIOCTLCMD;
6348 	}
6349 }
6350 #endif
6351 
6352 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6353 {
6354 	struct hpsa_pci_info pciinfo;
6355 
6356 	if (!argp)
6357 		return -EINVAL;
6358 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6359 	pciinfo.bus = h->pdev->bus->number;
6360 	pciinfo.dev_fn = h->pdev->devfn;
6361 	pciinfo.board_id = h->board_id;
6362 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6363 		return -EFAULT;
6364 	return 0;
6365 }
6366 
6367 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6368 {
6369 	DriverVer_type DriverVer;
6370 	unsigned char vmaj, vmin, vsubmin;
6371 	int rc;
6372 
6373 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6374 		&vmaj, &vmin, &vsubmin);
6375 	if (rc != 3) {
6376 		dev_info(&h->pdev->dev, "driver version string '%s' "
6377 			"unrecognized.", HPSA_DRIVER_VERSION);
6378 		vmaj = 0;
6379 		vmin = 0;
6380 		vsubmin = 0;
6381 	}
6382 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6383 	if (!argp)
6384 		return -EINVAL;
6385 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6386 		return -EFAULT;
6387 	return 0;
6388 }
6389 
6390 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6391 			       IOCTL_Command_struct *iocommand)
6392 {
6393 	struct CommandList *c;
6394 	char *buff = NULL;
6395 	u64 temp64;
6396 	int rc = 0;
6397 
6398 	if (!capable(CAP_SYS_RAWIO))
6399 		return -EPERM;
6400 	if ((iocommand->buf_size < 1) &&
6401 	    (iocommand->Request.Type.Direction != XFER_NONE)) {
6402 		return -EINVAL;
6403 	}
6404 	if (iocommand->buf_size > 0) {
6405 		if (iocommand->Request.Type.Direction & XFER_WRITE) {
6406 			buff = memdup_user(iocommand->buf, iocommand->buf_size);
6407 			if (IS_ERR(buff))
6408 				return PTR_ERR(buff);
6409 		} else {
6410 			buff = kzalloc(iocommand->buf_size, GFP_KERNEL);
6411 			if (!buff)
6412 				return -ENOMEM;
6413 		}
6414 	}
6415 	c = cmd_alloc(h);
6416 
6417 	/* Fill in the command type */
6418 	c->cmd_type = CMD_IOCTL_PEND;
6419 	c->scsi_cmd = SCSI_CMD_BUSY;
6420 	/* Fill in Command Header */
6421 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6422 	if (iocommand->buf_size > 0) {	/* buffer to fill */
6423 		c->Header.SGList = 1;
6424 		c->Header.SGTotal = cpu_to_le16(1);
6425 	} else	{ /* no buffers to fill */
6426 		c->Header.SGList = 0;
6427 		c->Header.SGTotal = cpu_to_le16(0);
6428 	}
6429 	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6430 
6431 	/* Fill in Request block */
6432 	memcpy(&c->Request, &iocommand->Request,
6433 		sizeof(c->Request));
6434 
6435 	/* Fill in the scatter gather information */
6436 	if (iocommand->buf_size > 0) {
6437 		temp64 = dma_map_single(&h->pdev->dev, buff,
6438 			iocommand->buf_size, DMA_BIDIRECTIONAL);
6439 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6440 			c->SG[0].Addr = cpu_to_le64(0);
6441 			c->SG[0].Len = cpu_to_le32(0);
6442 			rc = -ENOMEM;
6443 			goto out;
6444 		}
6445 		c->SG[0].Addr = cpu_to_le64(temp64);
6446 		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6447 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6448 	}
6449 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6450 					NO_TIMEOUT);
6451 	if (iocommand->buf_size > 0)
6452 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6453 	check_ioctl_unit_attention(h, c);
6454 	if (rc) {
6455 		rc = -EIO;
6456 		goto out;
6457 	}
6458 
6459 	/* Copy the error information out */
6460 	memcpy(&iocommand->error_info, c->err_info,
6461 		sizeof(iocommand->error_info));
6462 	if ((iocommand->Request.Type.Direction & XFER_READ) &&
6463 		iocommand->buf_size > 0) {
6464 		/* Copy the data out of the buffer we created */
6465 		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6466 			rc = -EFAULT;
6467 			goto out;
6468 		}
6469 	}
6470 out:
6471 	cmd_free(h, c);
6472 	kfree(buff);
6473 	return rc;
6474 }
6475 
6476 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6477 				   BIG_IOCTL_Command_struct *ioc)
6478 {
6479 	struct CommandList *c;
6480 	unsigned char **buff = NULL;
6481 	int *buff_size = NULL;
6482 	u64 temp64;
6483 	BYTE sg_used = 0;
6484 	int status = 0;
6485 	u32 left;
6486 	u32 sz;
6487 	BYTE __user *data_ptr;
6488 
6489 	if (!capable(CAP_SYS_RAWIO))
6490 		return -EPERM;
6491 
6492 	if ((ioc->buf_size < 1) &&
6493 	    (ioc->Request.Type.Direction != XFER_NONE))
6494 		return -EINVAL;
6495 	/* Check kmalloc limits  using all SGs */
6496 	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6497 		return -EINVAL;
6498 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6499 		return -EINVAL;
6500 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6501 	if (!buff) {
6502 		status = -ENOMEM;
6503 		goto cleanup1;
6504 	}
6505 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6506 	if (!buff_size) {
6507 		status = -ENOMEM;
6508 		goto cleanup1;
6509 	}
6510 	left = ioc->buf_size;
6511 	data_ptr = ioc->buf;
6512 	while (left) {
6513 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6514 		buff_size[sg_used] = sz;
6515 
6516 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6517 			buff[sg_used] = memdup_user(data_ptr, sz);
6518 			if (IS_ERR(buff[sg_used])) {
6519 				status = PTR_ERR(buff[sg_used]);
6520 				goto cleanup1;
6521 			}
6522 		} else {
6523 			buff[sg_used] = kzalloc(sz, GFP_KERNEL);
6524 			if (!buff[sg_used]) {
6525 				status = -ENOMEM;
6526 				goto cleanup1;
6527 			}
6528 		}
6529 
6530 		left -= sz;
6531 		data_ptr += sz;
6532 		sg_used++;
6533 	}
6534 	c = cmd_alloc(h);
6535 
6536 	c->cmd_type = CMD_IOCTL_PEND;
6537 	c->scsi_cmd = SCSI_CMD_BUSY;
6538 	c->Header.ReplyQueue = 0;
6539 	c->Header.SGList = (u8) sg_used;
6540 	c->Header.SGTotal = cpu_to_le16(sg_used);
6541 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6542 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6543 	if (ioc->buf_size > 0) {
6544 		int i;
6545 		for (i = 0; i < sg_used; i++) {
6546 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6547 				    buff_size[i], DMA_BIDIRECTIONAL);
6548 			if (dma_mapping_error(&h->pdev->dev,
6549 							(dma_addr_t) temp64)) {
6550 				c->SG[i].Addr = cpu_to_le64(0);
6551 				c->SG[i].Len = cpu_to_le32(0);
6552 				hpsa_pci_unmap(h->pdev, c, i,
6553 					DMA_BIDIRECTIONAL);
6554 				status = -ENOMEM;
6555 				goto cleanup0;
6556 			}
6557 			c->SG[i].Addr = cpu_to_le64(temp64);
6558 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6559 			c->SG[i].Ext = cpu_to_le32(0);
6560 		}
6561 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6562 	}
6563 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6564 						NO_TIMEOUT);
6565 	if (sg_used)
6566 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6567 	check_ioctl_unit_attention(h, c);
6568 	if (status) {
6569 		status = -EIO;
6570 		goto cleanup0;
6571 	}
6572 
6573 	/* Copy the error information out */
6574 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6575 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6576 		int i;
6577 
6578 		/* Copy the data out of the buffer we created */
6579 		BYTE __user *ptr = ioc->buf;
6580 		for (i = 0; i < sg_used; i++) {
6581 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6582 				status = -EFAULT;
6583 				goto cleanup0;
6584 			}
6585 			ptr += buff_size[i];
6586 		}
6587 	}
6588 	status = 0;
6589 cleanup0:
6590 	cmd_free(h, c);
6591 cleanup1:
6592 	if (buff) {
6593 		int i;
6594 
6595 		for (i = 0; i < sg_used; i++)
6596 			kfree(buff[i]);
6597 		kfree(buff);
6598 	}
6599 	kfree(buff_size);
6600 	return status;
6601 }
6602 
6603 static void check_ioctl_unit_attention(struct ctlr_info *h,
6604 	struct CommandList *c)
6605 {
6606 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6607 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6608 		(void) check_for_unit_attention(h, c);
6609 }
6610 
6611 /*
6612  * ioctl
6613  */
6614 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6615 		      void __user *argp)
6616 {
6617 	struct ctlr_info *h = sdev_to_hba(dev);
6618 	int rc;
6619 
6620 	switch (cmd) {
6621 	case CCISS_DEREGDISK:
6622 	case CCISS_REGNEWDISK:
6623 	case CCISS_REGNEWD:
6624 		hpsa_scan_start(h->scsi_host);
6625 		return 0;
6626 	case CCISS_GETPCIINFO:
6627 		return hpsa_getpciinfo_ioctl(h, argp);
6628 	case CCISS_GETDRIVVER:
6629 		return hpsa_getdrivver_ioctl(h, argp);
6630 	case CCISS_PASSTHRU: {
6631 		IOCTL_Command_struct iocommand;
6632 
6633 		if (!argp)
6634 			return -EINVAL;
6635 		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6636 			return -EFAULT;
6637 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6638 			return -EAGAIN;
6639 		rc = hpsa_passthru_ioctl(h, &iocommand);
6640 		atomic_inc(&h->passthru_cmds_avail);
6641 		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6642 			rc = -EFAULT;
6643 		return rc;
6644 	}
6645 	case CCISS_BIG_PASSTHRU: {
6646 		BIG_IOCTL_Command_struct ioc;
6647 		if (!argp)
6648 			return -EINVAL;
6649 		if (copy_from_user(&ioc, argp, sizeof(ioc)))
6650 			return -EFAULT;
6651 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6652 			return -EAGAIN;
6653 		rc = hpsa_big_passthru_ioctl(h, &ioc);
6654 		atomic_inc(&h->passthru_cmds_avail);
6655 		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6656 			rc = -EFAULT;
6657 		return rc;
6658 	}
6659 	default:
6660 		return -ENOTTY;
6661 	}
6662 }
6663 
6664 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6665 {
6666 	struct CommandList *c;
6667 
6668 	c = cmd_alloc(h);
6669 
6670 	/* fill_cmd can't fail here, no data buffer to map */
6671 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6672 		RAID_CTLR_LUNID, TYPE_MSG);
6673 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6674 	c->waiting = NULL;
6675 	enqueue_cmd_and_start_io(h, c);
6676 	/* Don't wait for completion, the reset won't complete.  Don't free
6677 	 * the command either.  This is the last command we will send before
6678 	 * re-initializing everything, so it doesn't matter and won't leak.
6679 	 */
6680 	return;
6681 }
6682 
6683 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6684 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6685 	int cmd_type)
6686 {
6687 	enum dma_data_direction dir = DMA_NONE;
6688 
6689 	c->cmd_type = CMD_IOCTL_PEND;
6690 	c->scsi_cmd = SCSI_CMD_BUSY;
6691 	c->Header.ReplyQueue = 0;
6692 	if (buff != NULL && size > 0) {
6693 		c->Header.SGList = 1;
6694 		c->Header.SGTotal = cpu_to_le16(1);
6695 	} else {
6696 		c->Header.SGList = 0;
6697 		c->Header.SGTotal = cpu_to_le16(0);
6698 	}
6699 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6700 
6701 	if (cmd_type == TYPE_CMD) {
6702 		switch (cmd) {
6703 		case HPSA_INQUIRY:
6704 			/* are we trying to read a vital product page */
6705 			if (page_code & VPD_PAGE) {
6706 				c->Request.CDB[1] = 0x01;
6707 				c->Request.CDB[2] = (page_code & 0xff);
6708 			}
6709 			c->Request.CDBLen = 6;
6710 			c->Request.type_attr_dir =
6711 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6712 			c->Request.Timeout = 0;
6713 			c->Request.CDB[0] = HPSA_INQUIRY;
6714 			c->Request.CDB[4] = size & 0xFF;
6715 			break;
6716 		case RECEIVE_DIAGNOSTIC:
6717 			c->Request.CDBLen = 6;
6718 			c->Request.type_attr_dir =
6719 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6720 			c->Request.Timeout = 0;
6721 			c->Request.CDB[0] = cmd;
6722 			c->Request.CDB[1] = 1;
6723 			c->Request.CDB[2] = 1;
6724 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6725 			c->Request.CDB[4] = size & 0xFF;
6726 			break;
6727 		case HPSA_REPORT_LOG:
6728 		case HPSA_REPORT_PHYS:
6729 			/* Talking to controller so It's a physical command
6730 			   mode = 00 target = 0.  Nothing to write.
6731 			 */
6732 			c->Request.CDBLen = 12;
6733 			c->Request.type_attr_dir =
6734 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6735 			c->Request.Timeout = 0;
6736 			c->Request.CDB[0] = cmd;
6737 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6738 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6739 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6740 			c->Request.CDB[9] = size & 0xFF;
6741 			break;
6742 		case BMIC_SENSE_DIAG_OPTIONS:
6743 			c->Request.CDBLen = 16;
6744 			c->Request.type_attr_dir =
6745 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6746 			c->Request.Timeout = 0;
6747 			/* Spec says this should be BMIC_WRITE */
6748 			c->Request.CDB[0] = BMIC_READ;
6749 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6750 			break;
6751 		case BMIC_SET_DIAG_OPTIONS:
6752 			c->Request.CDBLen = 16;
6753 			c->Request.type_attr_dir =
6754 					TYPE_ATTR_DIR(cmd_type,
6755 						ATTR_SIMPLE, XFER_WRITE);
6756 			c->Request.Timeout = 0;
6757 			c->Request.CDB[0] = BMIC_WRITE;
6758 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6759 			break;
6760 		case HPSA_CACHE_FLUSH:
6761 			c->Request.CDBLen = 12;
6762 			c->Request.type_attr_dir =
6763 					TYPE_ATTR_DIR(cmd_type,
6764 						ATTR_SIMPLE, XFER_WRITE);
6765 			c->Request.Timeout = 0;
6766 			c->Request.CDB[0] = BMIC_WRITE;
6767 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6768 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6769 			c->Request.CDB[8] = size & 0xFF;
6770 			break;
6771 		case TEST_UNIT_READY:
6772 			c->Request.CDBLen = 6;
6773 			c->Request.type_attr_dir =
6774 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6775 			c->Request.Timeout = 0;
6776 			break;
6777 		case HPSA_GET_RAID_MAP:
6778 			c->Request.CDBLen = 12;
6779 			c->Request.type_attr_dir =
6780 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6781 			c->Request.Timeout = 0;
6782 			c->Request.CDB[0] = HPSA_CISS_READ;
6783 			c->Request.CDB[1] = cmd;
6784 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6785 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6786 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6787 			c->Request.CDB[9] = size & 0xFF;
6788 			break;
6789 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6790 			c->Request.CDBLen = 10;
6791 			c->Request.type_attr_dir =
6792 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6793 			c->Request.Timeout = 0;
6794 			c->Request.CDB[0] = BMIC_READ;
6795 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6796 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6797 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6798 			break;
6799 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6800 			c->Request.CDBLen = 10;
6801 			c->Request.type_attr_dir =
6802 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6803 			c->Request.Timeout = 0;
6804 			c->Request.CDB[0] = BMIC_READ;
6805 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6806 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6807 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6808 			break;
6809 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6810 			c->Request.CDBLen = 10;
6811 			c->Request.type_attr_dir =
6812 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6813 			c->Request.Timeout = 0;
6814 			c->Request.CDB[0] = BMIC_READ;
6815 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6816 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6817 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6818 			break;
6819 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6820 			c->Request.CDBLen = 10;
6821 			c->Request.type_attr_dir =
6822 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6823 			c->Request.Timeout = 0;
6824 			c->Request.CDB[0] = BMIC_READ;
6825 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6826 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6827 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6828 			break;
6829 		case BMIC_IDENTIFY_CONTROLLER:
6830 			c->Request.CDBLen = 10;
6831 			c->Request.type_attr_dir =
6832 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6833 			c->Request.Timeout = 0;
6834 			c->Request.CDB[0] = BMIC_READ;
6835 			c->Request.CDB[1] = 0;
6836 			c->Request.CDB[2] = 0;
6837 			c->Request.CDB[3] = 0;
6838 			c->Request.CDB[4] = 0;
6839 			c->Request.CDB[5] = 0;
6840 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6841 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6842 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6843 			c->Request.CDB[9] = 0;
6844 			break;
6845 		default:
6846 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6847 			BUG();
6848 		}
6849 	} else if (cmd_type == TYPE_MSG) {
6850 		switch (cmd) {
6851 
6852 		case  HPSA_PHYS_TARGET_RESET:
6853 			c->Request.CDBLen = 16;
6854 			c->Request.type_attr_dir =
6855 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6856 			c->Request.Timeout = 0; /* Don't time out */
6857 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6858 			c->Request.CDB[0] = HPSA_RESET;
6859 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6860 			/* Physical target reset needs no control bytes 4-7*/
6861 			c->Request.CDB[4] = 0x00;
6862 			c->Request.CDB[5] = 0x00;
6863 			c->Request.CDB[6] = 0x00;
6864 			c->Request.CDB[7] = 0x00;
6865 			break;
6866 		case  HPSA_DEVICE_RESET_MSG:
6867 			c->Request.CDBLen = 16;
6868 			c->Request.type_attr_dir =
6869 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6870 			c->Request.Timeout = 0; /* Don't time out */
6871 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6872 			c->Request.CDB[0] =  cmd;
6873 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6874 			/* If bytes 4-7 are zero, it means reset the */
6875 			/* LunID device */
6876 			c->Request.CDB[4] = 0x00;
6877 			c->Request.CDB[5] = 0x00;
6878 			c->Request.CDB[6] = 0x00;
6879 			c->Request.CDB[7] = 0x00;
6880 			break;
6881 		default:
6882 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6883 				cmd);
6884 			BUG();
6885 		}
6886 	} else {
6887 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6888 		BUG();
6889 	}
6890 
6891 	switch (GET_DIR(c->Request.type_attr_dir)) {
6892 	case XFER_READ:
6893 		dir = DMA_FROM_DEVICE;
6894 		break;
6895 	case XFER_WRITE:
6896 		dir = DMA_TO_DEVICE;
6897 		break;
6898 	case XFER_NONE:
6899 		dir = DMA_NONE;
6900 		break;
6901 	default:
6902 		dir = DMA_BIDIRECTIONAL;
6903 	}
6904 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6905 		return -1;
6906 	return 0;
6907 }
6908 
6909 /*
6910  * Map (physical) PCI mem into (virtual) kernel space
6911  */
6912 static void __iomem *remap_pci_mem(ulong base, ulong size)
6913 {
6914 	ulong page_base = ((ulong) base) & PAGE_MASK;
6915 	ulong page_offs = ((ulong) base) - page_base;
6916 	void __iomem *page_remapped = ioremap(page_base,
6917 		page_offs + size);
6918 
6919 	return page_remapped ? (page_remapped + page_offs) : NULL;
6920 }
6921 
6922 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6923 {
6924 	return h->access.command_completed(h, q);
6925 }
6926 
6927 static inline bool interrupt_pending(struct ctlr_info *h)
6928 {
6929 	return h->access.intr_pending(h);
6930 }
6931 
6932 static inline long interrupt_not_for_us(struct ctlr_info *h)
6933 {
6934 	return (h->access.intr_pending(h) == 0) ||
6935 		(h->interrupts_enabled == 0);
6936 }
6937 
6938 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6939 	u32 raw_tag)
6940 {
6941 	if (unlikely(tag_index >= h->nr_cmds)) {
6942 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6943 		return 1;
6944 	}
6945 	return 0;
6946 }
6947 
6948 static inline void finish_cmd(struct CommandList *c)
6949 {
6950 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6951 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6952 			|| c->cmd_type == CMD_IOACCEL2))
6953 		complete_scsi_command(c);
6954 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6955 		complete(c->waiting);
6956 }
6957 
6958 /* process completion of an indexed ("direct lookup") command */
6959 static inline void process_indexed_cmd(struct ctlr_info *h,
6960 	u32 raw_tag)
6961 {
6962 	u32 tag_index;
6963 	struct CommandList *c;
6964 
6965 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6966 	if (!bad_tag(h, tag_index, raw_tag)) {
6967 		c = h->cmd_pool + tag_index;
6968 		finish_cmd(c);
6969 	}
6970 }
6971 
6972 /* Some controllers, like p400, will give us one interrupt
6973  * after a soft reset, even if we turned interrupts off.
6974  * Only need to check for this in the hpsa_xxx_discard_completions
6975  * functions.
6976  */
6977 static int ignore_bogus_interrupt(struct ctlr_info *h)
6978 {
6979 	if (likely(!reset_devices))
6980 		return 0;
6981 
6982 	if (likely(h->interrupts_enabled))
6983 		return 0;
6984 
6985 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6986 		"(known firmware bug.)  Ignoring.\n");
6987 
6988 	return 1;
6989 }
6990 
6991 /*
6992  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6993  * Relies on (h-q[x] == x) being true for x such that
6994  * 0 <= x < MAX_REPLY_QUEUES.
6995  */
6996 static struct ctlr_info *queue_to_hba(u8 *queue)
6997 {
6998 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6999 }
7000 
7001 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7002 {
7003 	struct ctlr_info *h = queue_to_hba(queue);
7004 	u8 q = *(u8 *) queue;
7005 	u32 raw_tag;
7006 
7007 	if (ignore_bogus_interrupt(h))
7008 		return IRQ_NONE;
7009 
7010 	if (interrupt_not_for_us(h))
7011 		return IRQ_NONE;
7012 	h->last_intr_timestamp = get_jiffies_64();
7013 	while (interrupt_pending(h)) {
7014 		raw_tag = get_next_completion(h, q);
7015 		while (raw_tag != FIFO_EMPTY)
7016 			raw_tag = next_command(h, q);
7017 	}
7018 	return IRQ_HANDLED;
7019 }
7020 
7021 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7022 {
7023 	struct ctlr_info *h = queue_to_hba(queue);
7024 	u32 raw_tag;
7025 	u8 q = *(u8 *) queue;
7026 
7027 	if (ignore_bogus_interrupt(h))
7028 		return IRQ_NONE;
7029 
7030 	h->last_intr_timestamp = get_jiffies_64();
7031 	raw_tag = get_next_completion(h, q);
7032 	while (raw_tag != FIFO_EMPTY)
7033 		raw_tag = next_command(h, q);
7034 	return IRQ_HANDLED;
7035 }
7036 
7037 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7038 {
7039 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7040 	u32 raw_tag;
7041 	u8 q = *(u8 *) queue;
7042 
7043 	if (interrupt_not_for_us(h))
7044 		return IRQ_NONE;
7045 	h->last_intr_timestamp = get_jiffies_64();
7046 	while (interrupt_pending(h)) {
7047 		raw_tag = get_next_completion(h, q);
7048 		while (raw_tag != FIFO_EMPTY) {
7049 			process_indexed_cmd(h, raw_tag);
7050 			raw_tag = next_command(h, q);
7051 		}
7052 	}
7053 	return IRQ_HANDLED;
7054 }
7055 
7056 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7057 {
7058 	struct ctlr_info *h = queue_to_hba(queue);
7059 	u32 raw_tag;
7060 	u8 q = *(u8 *) queue;
7061 
7062 	h->last_intr_timestamp = get_jiffies_64();
7063 	raw_tag = get_next_completion(h, q);
7064 	while (raw_tag != FIFO_EMPTY) {
7065 		process_indexed_cmd(h, raw_tag);
7066 		raw_tag = next_command(h, q);
7067 	}
7068 	return IRQ_HANDLED;
7069 }
7070 
7071 /* Send a message CDB to the firmware. Careful, this only works
7072  * in simple mode, not performant mode due to the tag lookup.
7073  * We only ever use this immediately after a controller reset.
7074  */
7075 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7076 			unsigned char type)
7077 {
7078 	struct Command {
7079 		struct CommandListHeader CommandHeader;
7080 		struct RequestBlock Request;
7081 		struct ErrDescriptor ErrorDescriptor;
7082 	};
7083 	struct Command *cmd;
7084 	static const size_t cmd_sz = sizeof(*cmd) +
7085 					sizeof(cmd->ErrorDescriptor);
7086 	dma_addr_t paddr64;
7087 	__le32 paddr32;
7088 	u32 tag;
7089 	void __iomem *vaddr;
7090 	int i, err;
7091 
7092 	vaddr = pci_ioremap_bar(pdev, 0);
7093 	if (vaddr == NULL)
7094 		return -ENOMEM;
7095 
7096 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7097 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7098 	 * memory.
7099 	 */
7100 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7101 	if (err) {
7102 		iounmap(vaddr);
7103 		return err;
7104 	}
7105 
7106 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7107 	if (cmd == NULL) {
7108 		iounmap(vaddr);
7109 		return -ENOMEM;
7110 	}
7111 
7112 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7113 	 * although there's no guarantee, we assume that the address is at
7114 	 * least 4-byte aligned (most likely, it's page-aligned).
7115 	 */
7116 	paddr32 = cpu_to_le32(paddr64);
7117 
7118 	cmd->CommandHeader.ReplyQueue = 0;
7119 	cmd->CommandHeader.SGList = 0;
7120 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7121 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7122 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7123 
7124 	cmd->Request.CDBLen = 16;
7125 	cmd->Request.type_attr_dir =
7126 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7127 	cmd->Request.Timeout = 0; /* Don't time out */
7128 	cmd->Request.CDB[0] = opcode;
7129 	cmd->Request.CDB[1] = type;
7130 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7131 	cmd->ErrorDescriptor.Addr =
7132 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7133 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7134 
7135 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7136 
7137 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7138 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7139 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7140 			break;
7141 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7142 	}
7143 
7144 	iounmap(vaddr);
7145 
7146 	/* we leak the DMA buffer here ... no choice since the controller could
7147 	 *  still complete the command.
7148 	 */
7149 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7150 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7151 			opcode, type);
7152 		return -ETIMEDOUT;
7153 	}
7154 
7155 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7156 
7157 	if (tag & HPSA_ERROR_BIT) {
7158 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7159 			opcode, type);
7160 		return -EIO;
7161 	}
7162 
7163 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7164 		opcode, type);
7165 	return 0;
7166 }
7167 
7168 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7169 
7170 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7171 	void __iomem *vaddr, u32 use_doorbell)
7172 {
7173 
7174 	if (use_doorbell) {
7175 		/* For everything after the P600, the PCI power state method
7176 		 * of resetting the controller doesn't work, so we have this
7177 		 * other way using the doorbell register.
7178 		 */
7179 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7180 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7181 
7182 		/* PMC hardware guys tell us we need a 10 second delay after
7183 		 * doorbell reset and before any attempt to talk to the board
7184 		 * at all to ensure that this actually works and doesn't fall
7185 		 * over in some weird corner cases.
7186 		 */
7187 		msleep(10000);
7188 	} else { /* Try to do it the PCI power state way */
7189 
7190 		/* Quoting from the Open CISS Specification: "The Power
7191 		 * Management Control/Status Register (CSR) controls the power
7192 		 * state of the device.  The normal operating state is D0,
7193 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7194 		 * the controller, place the interface device in D3 then to D0,
7195 		 * this causes a secondary PCI reset which will reset the
7196 		 * controller." */
7197 
7198 		int rc = 0;
7199 
7200 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7201 
7202 		/* enter the D3hot power management state */
7203 		rc = pci_set_power_state(pdev, PCI_D3hot);
7204 		if (rc)
7205 			return rc;
7206 
7207 		msleep(500);
7208 
7209 		/* enter the D0 power management state */
7210 		rc = pci_set_power_state(pdev, PCI_D0);
7211 		if (rc)
7212 			return rc;
7213 
7214 		/*
7215 		 * The P600 requires a small delay when changing states.
7216 		 * Otherwise we may think the board did not reset and we bail.
7217 		 * This for kdump only and is particular to the P600.
7218 		 */
7219 		msleep(500);
7220 	}
7221 	return 0;
7222 }
7223 
7224 static void init_driver_version(char *driver_version, int len)
7225 {
7226 	strscpy_pad(driver_version, HPSA " " HPSA_DRIVER_VERSION, len);
7227 }
7228 
7229 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7230 {
7231 	char *driver_version;
7232 	int i, size = sizeof(cfgtable->driver_version);
7233 
7234 	driver_version = kmalloc(size, GFP_KERNEL);
7235 	if (!driver_version)
7236 		return -ENOMEM;
7237 
7238 	init_driver_version(driver_version, size);
7239 	for (i = 0; i < size; i++)
7240 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7241 	kfree(driver_version);
7242 	return 0;
7243 }
7244 
7245 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7246 					  unsigned char *driver_ver)
7247 {
7248 	int i;
7249 
7250 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7251 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7252 }
7253 
7254 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7255 {
7256 
7257 	char *driver_ver, *old_driver_ver;
7258 	int rc, size = sizeof(cfgtable->driver_version);
7259 
7260 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7261 	if (!old_driver_ver)
7262 		return -ENOMEM;
7263 	driver_ver = old_driver_ver + size;
7264 
7265 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7266 	 * should have been changed, otherwise we know the reset failed.
7267 	 */
7268 	init_driver_version(old_driver_ver, size);
7269 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7270 	rc = !memcmp(driver_ver, old_driver_ver, size);
7271 	kfree(old_driver_ver);
7272 	return rc;
7273 }
7274 /* This does a hard reset of the controller using PCI power management
7275  * states or the using the doorbell register.
7276  */
7277 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7278 {
7279 	u64 cfg_offset;
7280 	u32 cfg_base_addr;
7281 	u64 cfg_base_addr_index;
7282 	void __iomem *vaddr;
7283 	unsigned long paddr;
7284 	u32 misc_fw_support;
7285 	int rc;
7286 	struct CfgTable __iomem *cfgtable;
7287 	u32 use_doorbell;
7288 	u16 command_register;
7289 
7290 	/* For controllers as old as the P600, this is very nearly
7291 	 * the same thing as
7292 	 *
7293 	 * pci_save_state(pci_dev);
7294 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7295 	 * pci_set_power_state(pci_dev, PCI_D0);
7296 	 * pci_restore_state(pci_dev);
7297 	 *
7298 	 * For controllers newer than the P600, the pci power state
7299 	 * method of resetting doesn't work so we have another way
7300 	 * using the doorbell register.
7301 	 */
7302 
7303 	if (!ctlr_is_resettable(board_id)) {
7304 		dev_warn(&pdev->dev, "Controller not resettable\n");
7305 		return -ENODEV;
7306 	}
7307 
7308 	/* if controller is soft- but not hard resettable... */
7309 	if (!ctlr_is_hard_resettable(board_id))
7310 		return -ENOTSUPP; /* try soft reset later. */
7311 
7312 	/* Save the PCI command register */
7313 	pci_read_config_word(pdev, 4, &command_register);
7314 	pci_save_state(pdev);
7315 
7316 	/* find the first memory BAR, so we can find the cfg table */
7317 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7318 	if (rc)
7319 		return rc;
7320 	vaddr = remap_pci_mem(paddr, 0x250);
7321 	if (!vaddr)
7322 		return -ENOMEM;
7323 
7324 	/* find cfgtable in order to check if reset via doorbell is supported */
7325 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7326 					&cfg_base_addr_index, &cfg_offset);
7327 	if (rc)
7328 		goto unmap_vaddr;
7329 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7330 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7331 	if (!cfgtable) {
7332 		rc = -ENOMEM;
7333 		goto unmap_vaddr;
7334 	}
7335 	rc = write_driver_ver_to_cfgtable(cfgtable);
7336 	if (rc)
7337 		goto unmap_cfgtable;
7338 
7339 	/* If reset via doorbell register is supported, use that.
7340 	 * There are two such methods.  Favor the newest method.
7341 	 */
7342 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7343 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7344 	if (use_doorbell) {
7345 		use_doorbell = DOORBELL_CTLR_RESET2;
7346 	} else {
7347 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7348 		if (use_doorbell) {
7349 			dev_warn(&pdev->dev,
7350 				"Soft reset not supported. Firmware update is required.\n");
7351 			rc = -ENOTSUPP; /* try soft reset */
7352 			goto unmap_cfgtable;
7353 		}
7354 	}
7355 
7356 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7357 	if (rc)
7358 		goto unmap_cfgtable;
7359 
7360 	pci_restore_state(pdev);
7361 	pci_write_config_word(pdev, 4, command_register);
7362 
7363 	/* Some devices (notably the HP Smart Array 5i Controller)
7364 	   need a little pause here */
7365 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7366 
7367 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7368 	if (rc) {
7369 		dev_warn(&pdev->dev,
7370 			"Failed waiting for board to become ready after hard reset\n");
7371 		goto unmap_cfgtable;
7372 	}
7373 
7374 	rc = controller_reset_failed(vaddr);
7375 	if (rc < 0)
7376 		goto unmap_cfgtable;
7377 	if (rc) {
7378 		dev_warn(&pdev->dev, "Unable to successfully reset "
7379 			"controller. Will try soft reset.\n");
7380 		rc = -ENOTSUPP;
7381 	} else {
7382 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7383 	}
7384 
7385 unmap_cfgtable:
7386 	iounmap(cfgtable);
7387 
7388 unmap_vaddr:
7389 	iounmap(vaddr);
7390 	return rc;
7391 }
7392 
7393 /*
7394  *  We cannot read the structure directly, for portability we must use
7395  *   the io functions.
7396  *   This is for debug only.
7397  */
7398 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7399 {
7400 #ifdef HPSA_DEBUG
7401 	int i;
7402 	char temp_name[17];
7403 
7404 	dev_info(dev, "Controller Configuration information\n");
7405 	dev_info(dev, "------------------------------------\n");
7406 	for (i = 0; i < 4; i++)
7407 		temp_name[i] = readb(&(tb->Signature[i]));
7408 	temp_name[4] = '\0';
7409 	dev_info(dev, "   Signature = %s\n", temp_name);
7410 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7411 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7412 	       readl(&(tb->TransportSupport)));
7413 	dev_info(dev, "   Transport methods active = 0x%x\n",
7414 	       readl(&(tb->TransportActive)));
7415 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7416 	       readl(&(tb->HostWrite.TransportRequest)));
7417 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7418 	       readl(&(tb->HostWrite.CoalIntDelay)));
7419 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7420 	       readl(&(tb->HostWrite.CoalIntCount)));
7421 	dev_info(dev, "   Max outstanding commands = %d\n",
7422 	       readl(&(tb->CmdsOutMax)));
7423 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7424 	for (i = 0; i < 16; i++)
7425 		temp_name[i] = readb(&(tb->ServerName[i]));
7426 	temp_name[16] = '\0';
7427 	dev_info(dev, "   Server Name = %s\n", temp_name);
7428 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7429 		readl(&(tb->HeartBeat)));
7430 #endif				/* HPSA_DEBUG */
7431 }
7432 
7433 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7434 {
7435 	int i, offset, mem_type, bar_type;
7436 
7437 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7438 		return 0;
7439 	offset = 0;
7440 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7441 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7442 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7443 			offset += 4;
7444 		else {
7445 			mem_type = pci_resource_flags(pdev, i) &
7446 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7447 			switch (mem_type) {
7448 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7449 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7450 				offset += 4;	/* 32 bit */
7451 				break;
7452 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7453 				offset += 8;
7454 				break;
7455 			default:	/* reserved in PCI 2.2 */
7456 				dev_warn(&pdev->dev,
7457 				       "base address is invalid\n");
7458 				return -1;
7459 			}
7460 		}
7461 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7462 			return i + 1;
7463 	}
7464 	return -1;
7465 }
7466 
7467 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7468 {
7469 	pci_free_irq_vectors(h->pdev);
7470 	h->msix_vectors = 0;
7471 }
7472 
7473 static void hpsa_setup_reply_map(struct ctlr_info *h)
7474 {
7475 	const struct cpumask *mask;
7476 	unsigned int queue, cpu;
7477 
7478 	for (queue = 0; queue < h->msix_vectors; queue++) {
7479 		mask = pci_irq_get_affinity(h->pdev, queue);
7480 		if (!mask)
7481 			goto fallback;
7482 
7483 		for_each_cpu(cpu, mask)
7484 			h->reply_map[cpu] = queue;
7485 	}
7486 	return;
7487 
7488 fallback:
7489 	for_each_possible_cpu(cpu)
7490 		h->reply_map[cpu] = 0;
7491 }
7492 
7493 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7494  * controllers that are capable. If not, we use legacy INTx mode.
7495  */
7496 static int hpsa_interrupt_mode(struct ctlr_info *h)
7497 {
7498 	unsigned int flags = PCI_IRQ_INTX;
7499 	int ret;
7500 
7501 	/* Some boards advertise MSI but don't really support it */
7502 	switch (h->board_id) {
7503 	case 0x40700E11:
7504 	case 0x40800E11:
7505 	case 0x40820E11:
7506 	case 0x40830E11:
7507 		break;
7508 	default:
7509 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7510 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7511 		if (ret > 0) {
7512 			h->msix_vectors = ret;
7513 			return 0;
7514 		}
7515 
7516 		flags |= PCI_IRQ_MSI;
7517 		break;
7518 	}
7519 
7520 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7521 	if (ret < 0)
7522 		return ret;
7523 	return 0;
7524 }
7525 
7526 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7527 				bool *legacy_board)
7528 {
7529 	int i;
7530 	u32 subsystem_vendor_id, subsystem_device_id;
7531 
7532 	subsystem_vendor_id = pdev->subsystem_vendor;
7533 	subsystem_device_id = pdev->subsystem_device;
7534 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7535 		    subsystem_vendor_id;
7536 
7537 	if (legacy_board)
7538 		*legacy_board = false;
7539 	for (i = 0; i < ARRAY_SIZE(products); i++)
7540 		if (*board_id == products[i].board_id) {
7541 			if (products[i].access != &SA5A_access &&
7542 			    products[i].access != &SA5B_access)
7543 				return i;
7544 			dev_warn(&pdev->dev,
7545 				 "legacy board ID: 0x%08x\n",
7546 				 *board_id);
7547 			if (legacy_board)
7548 			    *legacy_board = true;
7549 			return i;
7550 		}
7551 
7552 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7553 	if (legacy_board)
7554 		*legacy_board = true;
7555 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7556 }
7557 
7558 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7559 				    unsigned long *memory_bar)
7560 {
7561 	int i;
7562 
7563 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7564 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7565 			/* addressing mode bits already removed */
7566 			*memory_bar = pci_resource_start(pdev, i);
7567 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7568 				*memory_bar);
7569 			return 0;
7570 		}
7571 	dev_warn(&pdev->dev, "no memory BAR found\n");
7572 	return -ENODEV;
7573 }
7574 
7575 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7576 				     int wait_for_ready)
7577 {
7578 	int i, iterations;
7579 	u32 scratchpad;
7580 	if (wait_for_ready)
7581 		iterations = HPSA_BOARD_READY_ITERATIONS;
7582 	else
7583 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7584 
7585 	for (i = 0; i < iterations; i++) {
7586 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7587 		if (wait_for_ready) {
7588 			if (scratchpad == HPSA_FIRMWARE_READY)
7589 				return 0;
7590 		} else {
7591 			if (scratchpad != HPSA_FIRMWARE_READY)
7592 				return 0;
7593 		}
7594 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7595 	}
7596 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7597 	return -ENODEV;
7598 }
7599 
7600 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7601 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7602 			       u64 *cfg_offset)
7603 {
7604 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7605 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7606 	*cfg_base_addr &= (u32) 0x0000ffff;
7607 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7608 	if (*cfg_base_addr_index == -1) {
7609 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7610 		return -ENODEV;
7611 	}
7612 	return 0;
7613 }
7614 
7615 static void hpsa_free_cfgtables(struct ctlr_info *h)
7616 {
7617 	if (h->transtable) {
7618 		iounmap(h->transtable);
7619 		h->transtable = NULL;
7620 	}
7621 	if (h->cfgtable) {
7622 		iounmap(h->cfgtable);
7623 		h->cfgtable = NULL;
7624 	}
7625 }
7626 
7627 /* Find and map CISS config table and transfer table
7628  * several items must be unmapped (freed) later
7629  */
7630 static int hpsa_find_cfgtables(struct ctlr_info *h)
7631 {
7632 	u64 cfg_offset;
7633 	u32 cfg_base_addr;
7634 	u64 cfg_base_addr_index;
7635 	u32 trans_offset;
7636 	int rc;
7637 
7638 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7639 		&cfg_base_addr_index, &cfg_offset);
7640 	if (rc)
7641 		return rc;
7642 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7643 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7644 	if (!h->cfgtable) {
7645 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7646 		return -ENOMEM;
7647 	}
7648 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7649 	if (rc)
7650 		return rc;
7651 	/* Find performant mode table. */
7652 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7653 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7654 				cfg_base_addr_index)+cfg_offset+trans_offset,
7655 				sizeof(*h->transtable));
7656 	if (!h->transtable) {
7657 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7658 		hpsa_free_cfgtables(h);
7659 		return -ENOMEM;
7660 	}
7661 	return 0;
7662 }
7663 
7664 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7665 {
7666 #define MIN_MAX_COMMANDS 16
7667 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7668 
7669 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7670 
7671 	/* Limit commands in memory limited kdump scenario. */
7672 	if (reset_devices && h->max_commands > 32)
7673 		h->max_commands = 32;
7674 
7675 	if (h->max_commands < MIN_MAX_COMMANDS) {
7676 		dev_warn(&h->pdev->dev,
7677 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7678 			h->max_commands,
7679 			MIN_MAX_COMMANDS);
7680 		h->max_commands = MIN_MAX_COMMANDS;
7681 	}
7682 }
7683 
7684 /* If the controller reports that the total max sg entries is greater than 512,
7685  * then we know that chained SG blocks work.  (Original smart arrays did not
7686  * support chained SG blocks and would return zero for max sg entries.)
7687  */
7688 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7689 {
7690 	return h->maxsgentries > 512;
7691 }
7692 
7693 /* Interrogate the hardware for some limits:
7694  * max commands, max SG elements without chaining, and with chaining,
7695  * SG chain block size, etc.
7696  */
7697 static void hpsa_find_board_params(struct ctlr_info *h)
7698 {
7699 	hpsa_get_max_perf_mode_cmds(h);
7700 	h->nr_cmds = h->max_commands;
7701 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7702 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7703 	if (hpsa_supports_chained_sg_blocks(h)) {
7704 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7705 		h->max_cmd_sg_entries = 32;
7706 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7707 		h->maxsgentries--; /* save one for chain pointer */
7708 	} else {
7709 		/*
7710 		 * Original smart arrays supported at most 31 s/g entries
7711 		 * embedded inline in the command (trying to use more
7712 		 * would lock up the controller)
7713 		 */
7714 		h->max_cmd_sg_entries = 31;
7715 		h->maxsgentries = 31; /* default to traditional values */
7716 		h->chainsize = 0;
7717 	}
7718 
7719 	/* Find out what task management functions are supported and cache */
7720 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7721 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7722 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7723 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7724 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7725 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7726 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7727 }
7728 
7729 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7730 {
7731 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7732 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7733 		return false;
7734 	}
7735 	return true;
7736 }
7737 
7738 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7739 {
7740 	u32 driver_support;
7741 
7742 	driver_support = readl(&(h->cfgtable->driver_support));
7743 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7744 #ifdef CONFIG_X86
7745 	driver_support |= ENABLE_SCSI_PREFETCH;
7746 #endif
7747 	driver_support |= ENABLE_UNIT_ATTN;
7748 	writel(driver_support, &(h->cfgtable->driver_support));
7749 }
7750 
7751 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7752  * in a prefetch beyond physical memory.
7753  */
7754 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7755 {
7756 	u32 dma_prefetch;
7757 
7758 	if (h->board_id != 0x3225103C)
7759 		return;
7760 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7761 	dma_prefetch |= 0x8000;
7762 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7763 }
7764 
7765 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7766 {
7767 	int i;
7768 	u32 doorbell_value;
7769 	unsigned long flags;
7770 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7771 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7772 		spin_lock_irqsave(&h->lock, flags);
7773 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7774 		spin_unlock_irqrestore(&h->lock, flags);
7775 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7776 			goto done;
7777 		/* delay and try again */
7778 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7779 	}
7780 	return -ENODEV;
7781 done:
7782 	return 0;
7783 }
7784 
7785 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7786 {
7787 	int i;
7788 	u32 doorbell_value;
7789 	unsigned long flags;
7790 
7791 	/* under certain very rare conditions, this can take awhile.
7792 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7793 	 * as we enter this code.)
7794 	 */
7795 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7796 		if (h->remove_in_progress)
7797 			goto done;
7798 		spin_lock_irqsave(&h->lock, flags);
7799 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7800 		spin_unlock_irqrestore(&h->lock, flags);
7801 		if (!(doorbell_value & CFGTBL_ChangeReq))
7802 			goto done;
7803 		/* delay and try again */
7804 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7805 	}
7806 	return -ENODEV;
7807 done:
7808 	return 0;
7809 }
7810 
7811 /* return -ENODEV or other reason on error, 0 on success */
7812 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7813 {
7814 	u32 trans_support;
7815 
7816 	trans_support = readl(&(h->cfgtable->TransportSupport));
7817 	if (!(trans_support & SIMPLE_MODE))
7818 		return -ENOTSUPP;
7819 
7820 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7821 
7822 	/* Update the field, and then ring the doorbell */
7823 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7824 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7825 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7826 	if (hpsa_wait_for_mode_change_ack(h))
7827 		goto error;
7828 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7829 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7830 		goto error;
7831 	h->transMethod = CFGTBL_Trans_Simple;
7832 	return 0;
7833 error:
7834 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7835 	return -ENODEV;
7836 }
7837 
7838 /* free items allocated or mapped by hpsa_pci_init */
7839 static void hpsa_free_pci_init(struct ctlr_info *h)
7840 {
7841 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7842 	iounmap(h->vaddr);			/* pci_init 3 */
7843 	h->vaddr = NULL;
7844 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7845 	/*
7846 	 * call pci_disable_device before pci_release_regions per
7847 	 * Documentation/driver-api/pci/pci.rst
7848 	 */
7849 	pci_disable_device(h->pdev);		/* pci_init 1 */
7850 	pci_release_regions(h->pdev);		/* pci_init 2 */
7851 }
7852 
7853 /* several items must be freed later */
7854 static int hpsa_pci_init(struct ctlr_info *h)
7855 {
7856 	int prod_index, err;
7857 	bool legacy_board;
7858 
7859 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7860 	if (prod_index < 0)
7861 		return prod_index;
7862 	h->product_name = products[prod_index].product_name;
7863 	h->access = *(products[prod_index].access);
7864 	h->legacy_board = legacy_board;
7865 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7866 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7867 
7868 	err = pci_enable_device(h->pdev);
7869 	if (err) {
7870 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7871 		pci_disable_device(h->pdev);
7872 		return err;
7873 	}
7874 
7875 	err = pci_request_regions(h->pdev, HPSA);
7876 	if (err) {
7877 		dev_err(&h->pdev->dev,
7878 			"failed to obtain PCI resources\n");
7879 		pci_disable_device(h->pdev);
7880 		return err;
7881 	}
7882 
7883 	pci_set_master(h->pdev);
7884 
7885 	err = hpsa_interrupt_mode(h);
7886 	if (err)
7887 		goto clean1;
7888 
7889 	/* setup mapping between CPU and reply queue */
7890 	hpsa_setup_reply_map(h);
7891 
7892 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7893 	if (err)
7894 		goto clean2;	/* intmode+region, pci */
7895 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7896 	if (!h->vaddr) {
7897 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7898 		err = -ENOMEM;
7899 		goto clean2;	/* intmode+region, pci */
7900 	}
7901 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7902 	if (err)
7903 		goto clean3;	/* vaddr, intmode+region, pci */
7904 	err = hpsa_find_cfgtables(h);
7905 	if (err)
7906 		goto clean3;	/* vaddr, intmode+region, pci */
7907 	hpsa_find_board_params(h);
7908 
7909 	if (!hpsa_CISS_signature_present(h)) {
7910 		err = -ENODEV;
7911 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7912 	}
7913 	hpsa_set_driver_support_bits(h);
7914 	hpsa_p600_dma_prefetch_quirk(h);
7915 	err = hpsa_enter_simple_mode(h);
7916 	if (err)
7917 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7918 	return 0;
7919 
7920 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7921 	hpsa_free_cfgtables(h);
7922 clean3:	/* vaddr, intmode+region, pci */
7923 	iounmap(h->vaddr);
7924 	h->vaddr = NULL;
7925 clean2:	/* intmode+region, pci */
7926 	hpsa_disable_interrupt_mode(h);
7927 clean1:
7928 	/*
7929 	 * call pci_disable_device before pci_release_regions per
7930 	 * Documentation/driver-api/pci/pci.rst
7931 	 */
7932 	pci_disable_device(h->pdev);
7933 	pci_release_regions(h->pdev);
7934 	return err;
7935 }
7936 
7937 static void hpsa_hba_inquiry(struct ctlr_info *h)
7938 {
7939 	int rc;
7940 
7941 #define HBA_INQUIRY_BYTE_COUNT 64
7942 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7943 	if (!h->hba_inquiry_data)
7944 		return;
7945 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7946 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7947 	if (rc != 0) {
7948 		kfree(h->hba_inquiry_data);
7949 		h->hba_inquiry_data = NULL;
7950 	}
7951 }
7952 
7953 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7954 {
7955 	int rc, i;
7956 	void __iomem *vaddr;
7957 
7958 	if (!reset_devices)
7959 		return 0;
7960 
7961 	/* kdump kernel is loading, we don't know in which state is
7962 	 * the pci interface. The dev->enable_cnt is equal zero
7963 	 * so we call enable+disable, wait a while and switch it on.
7964 	 */
7965 	rc = pci_enable_device(pdev);
7966 	if (rc) {
7967 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7968 		return -ENODEV;
7969 	}
7970 	pci_disable_device(pdev);
7971 	msleep(260);			/* a randomly chosen number */
7972 	rc = pci_enable_device(pdev);
7973 	if (rc) {
7974 		dev_warn(&pdev->dev, "failed to enable device.\n");
7975 		return -ENODEV;
7976 	}
7977 
7978 	pci_set_master(pdev);
7979 
7980 	vaddr = pci_ioremap_bar(pdev, 0);
7981 	if (vaddr == NULL) {
7982 		rc = -ENOMEM;
7983 		goto out_disable;
7984 	}
7985 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7986 	iounmap(vaddr);
7987 
7988 	/* Reset the controller with a PCI power-cycle or via doorbell */
7989 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7990 
7991 	/* -ENOTSUPP here means we cannot reset the controller
7992 	 * but it's already (and still) up and running in
7993 	 * "performant mode".  Or, it might be 640x, which can't reset
7994 	 * due to concerns about shared bbwc between 6402/6404 pair.
7995 	 */
7996 	if (rc)
7997 		goto out_disable;
7998 
7999 	/* Now try to get the controller to respond to a no-op */
8000 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8001 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8002 		if (hpsa_noop(pdev) == 0)
8003 			break;
8004 		else
8005 			dev_warn(&pdev->dev, "no-op failed%s\n",
8006 					(i < 11 ? "; re-trying" : ""));
8007 	}
8008 
8009 out_disable:
8010 
8011 	pci_disable_device(pdev);
8012 	return rc;
8013 }
8014 
8015 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8016 {
8017 	bitmap_free(h->cmd_pool_bits);
8018 	h->cmd_pool_bits = NULL;
8019 	if (h->cmd_pool) {
8020 		dma_free_coherent(&h->pdev->dev,
8021 				h->nr_cmds * sizeof(struct CommandList),
8022 				h->cmd_pool,
8023 				h->cmd_pool_dhandle);
8024 		h->cmd_pool = NULL;
8025 		h->cmd_pool_dhandle = 0;
8026 	}
8027 	if (h->errinfo_pool) {
8028 		dma_free_coherent(&h->pdev->dev,
8029 				h->nr_cmds * sizeof(struct ErrorInfo),
8030 				h->errinfo_pool,
8031 				h->errinfo_pool_dhandle);
8032 		h->errinfo_pool = NULL;
8033 		h->errinfo_pool_dhandle = 0;
8034 	}
8035 }
8036 
8037 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8038 {
8039 	h->cmd_pool_bits = bitmap_zalloc(h->nr_cmds, GFP_KERNEL);
8040 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8041 		    h->nr_cmds * sizeof(*h->cmd_pool),
8042 		    &h->cmd_pool_dhandle, GFP_KERNEL);
8043 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8044 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8045 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8046 	if ((h->cmd_pool_bits == NULL)
8047 	    || (h->cmd_pool == NULL)
8048 	    || (h->errinfo_pool == NULL)) {
8049 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8050 		goto clean_up;
8051 	}
8052 	hpsa_preinitialize_commands(h);
8053 	return 0;
8054 clean_up:
8055 	hpsa_free_cmd_pool(h);
8056 	return -ENOMEM;
8057 }
8058 
8059 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8060 static void hpsa_free_irqs(struct ctlr_info *h)
8061 {
8062 	int i;
8063 	int irq_vector = 0;
8064 
8065 	if (hpsa_simple_mode)
8066 		irq_vector = h->intr_mode;
8067 
8068 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8069 		/* Single reply queue, only one irq to free */
8070 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8071 				&h->q[h->intr_mode]);
8072 		h->q[h->intr_mode] = 0;
8073 		return;
8074 	}
8075 
8076 	for (i = 0; i < h->msix_vectors; i++) {
8077 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8078 		h->q[i] = 0;
8079 	}
8080 	for (; i < MAX_REPLY_QUEUES; i++)
8081 		h->q[i] = 0;
8082 }
8083 
8084 /* returns 0 on success; cleans up and returns -Enn on error */
8085 static int hpsa_request_irqs(struct ctlr_info *h,
8086 	irqreturn_t (*msixhandler)(int, void *),
8087 	irqreturn_t (*intxhandler)(int, void *))
8088 {
8089 	int rc, i;
8090 	int irq_vector = 0;
8091 
8092 	if (hpsa_simple_mode)
8093 		irq_vector = h->intr_mode;
8094 
8095 	/*
8096 	 * initialize h->q[x] = x so that interrupt handlers know which
8097 	 * queue to process.
8098 	 */
8099 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8100 		h->q[i] = (u8) i;
8101 
8102 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8103 		/* If performant mode and MSI-X, use multiple reply queues */
8104 		for (i = 0; i < h->msix_vectors; i++) {
8105 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8106 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8107 					0, h->intrname[i],
8108 					&h->q[i]);
8109 			if (rc) {
8110 				int j;
8111 
8112 				dev_err(&h->pdev->dev,
8113 					"failed to get irq %d for %s\n",
8114 				       pci_irq_vector(h->pdev, i), h->devname);
8115 				for (j = 0; j < i; j++) {
8116 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8117 					h->q[j] = 0;
8118 				}
8119 				for (; j < MAX_REPLY_QUEUES; j++)
8120 					h->q[j] = 0;
8121 				return rc;
8122 			}
8123 		}
8124 	} else {
8125 		/* Use single reply pool */
8126 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8127 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8128 				h->msix_vectors ? "x" : "");
8129 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8130 				msixhandler, 0,
8131 				h->intrname[0],
8132 				&h->q[h->intr_mode]);
8133 		} else {
8134 			sprintf(h->intrname[h->intr_mode],
8135 				"%s-intx", h->devname);
8136 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8137 				intxhandler, IRQF_SHARED,
8138 				h->intrname[0],
8139 				&h->q[h->intr_mode]);
8140 		}
8141 	}
8142 	if (rc) {
8143 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8144 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8145 		hpsa_free_irqs(h);
8146 		return -ENODEV;
8147 	}
8148 	return 0;
8149 }
8150 
8151 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8152 {
8153 	int rc;
8154 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8155 
8156 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8157 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8158 	if (rc) {
8159 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8160 		return rc;
8161 	}
8162 
8163 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8164 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8165 	if (rc) {
8166 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8167 			"after soft reset.\n");
8168 		return rc;
8169 	}
8170 
8171 	return 0;
8172 }
8173 
8174 static void hpsa_free_reply_queues(struct ctlr_info *h)
8175 {
8176 	int i;
8177 
8178 	for (i = 0; i < h->nreply_queues; i++) {
8179 		if (!h->reply_queue[i].head)
8180 			continue;
8181 		dma_free_coherent(&h->pdev->dev,
8182 					h->reply_queue_size,
8183 					h->reply_queue[i].head,
8184 					h->reply_queue[i].busaddr);
8185 		h->reply_queue[i].head = NULL;
8186 		h->reply_queue[i].busaddr = 0;
8187 	}
8188 	h->reply_queue_size = 0;
8189 }
8190 
8191 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8192 {
8193 	hpsa_free_performant_mode(h);		/* init_one 7 */
8194 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8195 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8196 	hpsa_free_irqs(h);			/* init_one 4 */
8197 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8198 	h->scsi_host = NULL;			/* init_one 3 */
8199 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8200 	free_percpu(h->lockup_detected);	/* init_one 2 */
8201 	h->lockup_detected = NULL;		/* init_one 2 */
8202 	if (h->resubmit_wq) {
8203 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8204 		h->resubmit_wq = NULL;
8205 	}
8206 	if (h->rescan_ctlr_wq) {
8207 		destroy_workqueue(h->rescan_ctlr_wq);
8208 		h->rescan_ctlr_wq = NULL;
8209 	}
8210 	if (h->monitor_ctlr_wq) {
8211 		destroy_workqueue(h->monitor_ctlr_wq);
8212 		h->monitor_ctlr_wq = NULL;
8213 	}
8214 
8215 	kfree(h);				/* init_one 1 */
8216 }
8217 
8218 /* Called when controller lockup detected. */
8219 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8220 {
8221 	int i, refcount;
8222 	struct CommandList *c;
8223 	int failcount = 0;
8224 
8225 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8226 	for (i = 0; i < h->nr_cmds; i++) {
8227 		c = h->cmd_pool + i;
8228 		refcount = atomic_inc_return(&c->refcount);
8229 		if (refcount > 1) {
8230 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8231 			finish_cmd(c);
8232 			atomic_dec(&h->commands_outstanding);
8233 			failcount++;
8234 		}
8235 		cmd_free(h, c);
8236 	}
8237 	dev_warn(&h->pdev->dev,
8238 		"failed %d commands in fail_all\n", failcount);
8239 }
8240 
8241 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8242 {
8243 	int cpu;
8244 
8245 	for_each_online_cpu(cpu) {
8246 		u32 *lockup_detected;
8247 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8248 		*lockup_detected = value;
8249 	}
8250 	wmb(); /* be sure the per-cpu variables are out to memory */
8251 }
8252 
8253 static void controller_lockup_detected(struct ctlr_info *h)
8254 {
8255 	unsigned long flags;
8256 	u32 lockup_detected;
8257 
8258 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8259 	spin_lock_irqsave(&h->lock, flags);
8260 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8261 	if (!lockup_detected) {
8262 		/* no heartbeat, but controller gave us a zero. */
8263 		dev_warn(&h->pdev->dev,
8264 			"lockup detected after %d but scratchpad register is zero\n",
8265 			h->heartbeat_sample_interval / HZ);
8266 		lockup_detected = 0xffffffff;
8267 	}
8268 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8269 	spin_unlock_irqrestore(&h->lock, flags);
8270 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8271 			lockup_detected, h->heartbeat_sample_interval / HZ);
8272 	if (lockup_detected == 0xffff0000) {
8273 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8274 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8275 	}
8276 	pci_disable_device(h->pdev);
8277 	fail_all_outstanding_cmds(h);
8278 }
8279 
8280 static int detect_controller_lockup(struct ctlr_info *h)
8281 {
8282 	u64 now;
8283 	u32 heartbeat;
8284 	unsigned long flags;
8285 
8286 	now = get_jiffies_64();
8287 	/* If we've received an interrupt recently, we're ok. */
8288 	if (time_after64(h->last_intr_timestamp +
8289 				(h->heartbeat_sample_interval), now))
8290 		return false;
8291 
8292 	/*
8293 	 * If we've already checked the heartbeat recently, we're ok.
8294 	 * This could happen if someone sends us a signal. We
8295 	 * otherwise don't care about signals in this thread.
8296 	 */
8297 	if (time_after64(h->last_heartbeat_timestamp +
8298 				(h->heartbeat_sample_interval), now))
8299 		return false;
8300 
8301 	/* If heartbeat has not changed since we last looked, we're not ok. */
8302 	spin_lock_irqsave(&h->lock, flags);
8303 	heartbeat = readl(&h->cfgtable->HeartBeat);
8304 	spin_unlock_irqrestore(&h->lock, flags);
8305 	if (h->last_heartbeat == heartbeat) {
8306 		controller_lockup_detected(h);
8307 		return true;
8308 	}
8309 
8310 	/* We're ok. */
8311 	h->last_heartbeat = heartbeat;
8312 	h->last_heartbeat_timestamp = now;
8313 	return false;
8314 }
8315 
8316 /*
8317  * Set ioaccel status for all ioaccel volumes.
8318  *
8319  * Called from monitor controller worker (hpsa_event_monitor_worker)
8320  *
8321  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8322  * transformation, so we will be turning off ioaccel for all volumes that
8323  * make up the Array.
8324  */
8325 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8326 {
8327 	int rc;
8328 	int i;
8329 	u8 ioaccel_status;
8330 	unsigned char *buf;
8331 	struct hpsa_scsi_dev_t *device;
8332 
8333 	if (!h)
8334 		return;
8335 
8336 	buf = kmalloc(64, GFP_KERNEL);
8337 	if (!buf)
8338 		return;
8339 
8340 	/*
8341 	 * Run through current device list used during I/O requests.
8342 	 */
8343 	for (i = 0; i < h->ndevices; i++) {
8344 		int offload_to_be_enabled = 0;
8345 		int offload_config = 0;
8346 
8347 		device = h->dev[i];
8348 
8349 		if (!device)
8350 			continue;
8351 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8352 						HPSA_VPD_LV_IOACCEL_STATUS))
8353 			continue;
8354 
8355 		memset(buf, 0, 64);
8356 
8357 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8358 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8359 					buf, 64);
8360 		if (rc != 0)
8361 			continue;
8362 
8363 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8364 
8365 		/*
8366 		 * Check if offload is still configured on
8367 		 */
8368 		offload_config =
8369 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8370 		/*
8371 		 * If offload is configured on, check to see if ioaccel
8372 		 * needs to be enabled.
8373 		 */
8374 		if (offload_config)
8375 			offload_to_be_enabled =
8376 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8377 
8378 		/*
8379 		 * If ioaccel is to be re-enabled, re-enable later during the
8380 		 * scan operation so the driver can get a fresh raidmap
8381 		 * before turning ioaccel back on.
8382 		 */
8383 		if (offload_to_be_enabled)
8384 			continue;
8385 
8386 		/*
8387 		 * Immediately turn off ioaccel for any volume the
8388 		 * controller tells us to. Some of the reasons could be:
8389 		 *    transformation - change to the LVs of an Array.
8390 		 *    degraded volume - component failure
8391 		 */
8392 		hpsa_turn_off_ioaccel_for_device(device);
8393 	}
8394 
8395 	kfree(buf);
8396 }
8397 
8398 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8399 {
8400 	char *event_type;
8401 
8402 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8403 		return;
8404 
8405 	/* Ask the controller to clear the events we're handling. */
8406 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8407 			| CFGTBL_Trans_io_accel2)) &&
8408 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8409 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8410 
8411 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8412 			event_type = "state change";
8413 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8414 			event_type = "configuration change";
8415 		/* Stop sending new RAID offload reqs via the IO accelerator */
8416 		scsi_block_requests(h->scsi_host);
8417 		hpsa_set_ioaccel_status(h);
8418 		hpsa_drain_accel_commands(h);
8419 		/* Set 'accelerator path config change' bit */
8420 		dev_warn(&h->pdev->dev,
8421 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8422 			h->events, event_type);
8423 		writel(h->events, &(h->cfgtable->clear_event_notify));
8424 		/* Set the "clear event notify field update" bit 6 */
8425 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8426 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8427 		hpsa_wait_for_clear_event_notify_ack(h);
8428 		scsi_unblock_requests(h->scsi_host);
8429 	} else {
8430 		/* Acknowledge controller notification events. */
8431 		writel(h->events, &(h->cfgtable->clear_event_notify));
8432 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8433 		hpsa_wait_for_clear_event_notify_ack(h);
8434 	}
8435 	return;
8436 }
8437 
8438 /* Check a register on the controller to see if there are configuration
8439  * changes (added/changed/removed logical drives, etc.) which mean that
8440  * we should rescan the controller for devices.
8441  * Also check flag for driver-initiated rescan.
8442  */
8443 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8444 {
8445 	if (h->drv_req_rescan) {
8446 		h->drv_req_rescan = 0;
8447 		return 1;
8448 	}
8449 
8450 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8451 		return 0;
8452 
8453 	h->events = readl(&(h->cfgtable->event_notify));
8454 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8455 }
8456 
8457 /*
8458  * Check if any of the offline devices have become ready
8459  */
8460 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8461 {
8462 	unsigned long flags;
8463 	struct offline_device_entry *d;
8464 	struct list_head *this, *tmp;
8465 
8466 	spin_lock_irqsave(&h->offline_device_lock, flags);
8467 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8468 		d = list_entry(this, struct offline_device_entry,
8469 				offline_list);
8470 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8471 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8472 			spin_lock_irqsave(&h->offline_device_lock, flags);
8473 			list_del(&d->offline_list);
8474 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8475 			return 1;
8476 		}
8477 		spin_lock_irqsave(&h->offline_device_lock, flags);
8478 	}
8479 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8480 	return 0;
8481 }
8482 
8483 static int hpsa_luns_changed(struct ctlr_info *h)
8484 {
8485 	int rc = 1; /* assume there are changes */
8486 	struct ReportLUNdata *logdev = NULL;
8487 
8488 	/* if we can't find out if lun data has changed,
8489 	 * assume that it has.
8490 	 */
8491 
8492 	if (!h->lastlogicals)
8493 		return rc;
8494 
8495 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8496 	if (!logdev)
8497 		return rc;
8498 
8499 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8500 		dev_warn(&h->pdev->dev,
8501 			"report luns failed, can't track lun changes.\n");
8502 		goto out;
8503 	}
8504 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8505 		dev_info(&h->pdev->dev,
8506 			"Lun changes detected.\n");
8507 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8508 		goto out;
8509 	} else
8510 		rc = 0; /* no changes detected. */
8511 out:
8512 	kfree(logdev);
8513 	return rc;
8514 }
8515 
8516 static void hpsa_perform_rescan(struct ctlr_info *h)
8517 {
8518 	struct Scsi_Host *sh = NULL;
8519 	unsigned long flags;
8520 
8521 	/*
8522 	 * Do the scan after the reset
8523 	 */
8524 	spin_lock_irqsave(&h->reset_lock, flags);
8525 	if (h->reset_in_progress) {
8526 		h->drv_req_rescan = 1;
8527 		spin_unlock_irqrestore(&h->reset_lock, flags);
8528 		return;
8529 	}
8530 	spin_unlock_irqrestore(&h->reset_lock, flags);
8531 
8532 	sh = scsi_host_get(h->scsi_host);
8533 	if (sh != NULL) {
8534 		hpsa_scan_start(sh);
8535 		scsi_host_put(sh);
8536 		h->drv_req_rescan = 0;
8537 	}
8538 }
8539 
8540 /*
8541  * watch for controller events
8542  */
8543 static void hpsa_event_monitor_worker(struct work_struct *work)
8544 {
8545 	struct ctlr_info *h = container_of(to_delayed_work(work),
8546 					struct ctlr_info, event_monitor_work);
8547 	unsigned long flags;
8548 
8549 	spin_lock_irqsave(&h->lock, flags);
8550 	if (h->remove_in_progress) {
8551 		spin_unlock_irqrestore(&h->lock, flags);
8552 		return;
8553 	}
8554 	spin_unlock_irqrestore(&h->lock, flags);
8555 
8556 	if (hpsa_ctlr_needs_rescan(h)) {
8557 		hpsa_ack_ctlr_events(h);
8558 		hpsa_perform_rescan(h);
8559 	}
8560 
8561 	spin_lock_irqsave(&h->lock, flags);
8562 	if (!h->remove_in_progress)
8563 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8564 				HPSA_EVENT_MONITOR_INTERVAL);
8565 	spin_unlock_irqrestore(&h->lock, flags);
8566 }
8567 
8568 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8569 {
8570 	unsigned long flags;
8571 	struct ctlr_info *h = container_of(to_delayed_work(work),
8572 					struct ctlr_info, rescan_ctlr_work);
8573 
8574 	spin_lock_irqsave(&h->lock, flags);
8575 	if (h->remove_in_progress) {
8576 		spin_unlock_irqrestore(&h->lock, flags);
8577 		return;
8578 	}
8579 	spin_unlock_irqrestore(&h->lock, flags);
8580 
8581 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8582 		hpsa_perform_rescan(h);
8583 	} else if (h->discovery_polling) {
8584 		if (hpsa_luns_changed(h)) {
8585 			dev_info(&h->pdev->dev,
8586 				"driver discovery polling rescan.\n");
8587 			hpsa_perform_rescan(h);
8588 		}
8589 	}
8590 	spin_lock_irqsave(&h->lock, flags);
8591 	if (!h->remove_in_progress)
8592 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8593 				h->heartbeat_sample_interval);
8594 	spin_unlock_irqrestore(&h->lock, flags);
8595 }
8596 
8597 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8598 {
8599 	unsigned long flags;
8600 	struct ctlr_info *h = container_of(to_delayed_work(work),
8601 					struct ctlr_info, monitor_ctlr_work);
8602 
8603 	detect_controller_lockup(h);
8604 	if (lockup_detected(h))
8605 		return;
8606 
8607 	spin_lock_irqsave(&h->lock, flags);
8608 	if (!h->remove_in_progress)
8609 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8610 				h->heartbeat_sample_interval);
8611 	spin_unlock_irqrestore(&h->lock, flags);
8612 }
8613 
8614 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8615 						char *name)
8616 {
8617 	struct workqueue_struct *wq = NULL;
8618 
8619 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8620 	if (!wq)
8621 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8622 
8623 	return wq;
8624 }
8625 
8626 static void hpda_free_ctlr_info(struct ctlr_info *h)
8627 {
8628 	kfree(h->reply_map);
8629 	kfree(h);
8630 }
8631 
8632 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8633 {
8634 	struct ctlr_info *h;
8635 
8636 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8637 	if (!h)
8638 		return NULL;
8639 
8640 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8641 	if (!h->reply_map) {
8642 		kfree(h);
8643 		return NULL;
8644 	}
8645 	return h;
8646 }
8647 
8648 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8649 {
8650 	int rc;
8651 	struct ctlr_info *h;
8652 	int try_soft_reset = 0;
8653 	unsigned long flags;
8654 	u32 board_id;
8655 
8656 	if (number_of_controllers == 0)
8657 		printk(KERN_INFO DRIVER_NAME "\n");
8658 
8659 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8660 	if (rc < 0) {
8661 		dev_warn(&pdev->dev, "Board ID not found\n");
8662 		return rc;
8663 	}
8664 
8665 	rc = hpsa_init_reset_devices(pdev, board_id);
8666 	if (rc) {
8667 		if (rc != -ENOTSUPP)
8668 			return rc;
8669 		/* If the reset fails in a particular way (it has no way to do
8670 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8671 		 * a soft reset once we get the controller configured up to the
8672 		 * point that it can accept a command.
8673 		 */
8674 		try_soft_reset = 1;
8675 		rc = 0;
8676 	}
8677 
8678 reinit_after_soft_reset:
8679 
8680 	/* Command structures must be aligned on a 32-byte boundary because
8681 	 * the 5 lower bits of the address are used by the hardware. and by
8682 	 * the driver.  See comments in hpsa.h for more info.
8683 	 */
8684 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8685 	h = hpda_alloc_ctlr_info();
8686 	if (!h) {
8687 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8688 		return -ENOMEM;
8689 	}
8690 
8691 	h->pdev = pdev;
8692 
8693 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8694 	INIT_LIST_HEAD(&h->offline_device_list);
8695 	spin_lock_init(&h->lock);
8696 	spin_lock_init(&h->offline_device_lock);
8697 	spin_lock_init(&h->scan_lock);
8698 	spin_lock_init(&h->reset_lock);
8699 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8700 
8701 	/* Allocate and clear per-cpu variable lockup_detected */
8702 	h->lockup_detected = alloc_percpu(u32);
8703 	if (!h->lockup_detected) {
8704 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8705 		rc = -ENOMEM;
8706 		goto clean1;	/* aer/h */
8707 	}
8708 	set_lockup_detected_for_all_cpus(h, 0);
8709 
8710 	rc = hpsa_pci_init(h);
8711 	if (rc)
8712 		goto clean2;	/* lu, aer/h */
8713 
8714 	/* relies on h-> settings made by hpsa_pci_init, including
8715 	 * interrupt_mode h->intr */
8716 	rc = hpsa_scsi_host_alloc(h);
8717 	if (rc)
8718 		goto clean2_5;	/* pci, lu, aer/h */
8719 
8720 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8721 	h->ctlr = number_of_controllers;
8722 	number_of_controllers++;
8723 
8724 	/* configure PCI DMA stuff */
8725 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8726 	if (rc != 0) {
8727 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8728 		if (rc != 0) {
8729 			dev_err(&pdev->dev, "no suitable DMA available\n");
8730 			goto clean3;	/* shost, pci, lu, aer/h */
8731 		}
8732 	}
8733 
8734 	/* make sure the board interrupts are off */
8735 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8736 
8737 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8738 	if (rc)
8739 		goto clean3;	/* shost, pci, lu, aer/h */
8740 	rc = hpsa_alloc_cmd_pool(h);
8741 	if (rc)
8742 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8743 	rc = hpsa_alloc_sg_chain_blocks(h);
8744 	if (rc)
8745 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8746 	init_waitqueue_head(&h->scan_wait_queue);
8747 	init_waitqueue_head(&h->event_sync_wait_queue);
8748 	mutex_init(&h->reset_mutex);
8749 	h->scan_finished = 1; /* no scan currently in progress */
8750 	h->scan_waiting = 0;
8751 
8752 	pci_set_drvdata(pdev, h);
8753 	h->ndevices = 0;
8754 
8755 	spin_lock_init(&h->devlock);
8756 	rc = hpsa_put_ctlr_into_performant_mode(h);
8757 	if (rc)
8758 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8759 
8760 	/* create the resubmit workqueue */
8761 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8762 	if (!h->rescan_ctlr_wq) {
8763 		rc = -ENOMEM;
8764 		goto clean7;
8765 	}
8766 
8767 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8768 	if (!h->resubmit_wq) {
8769 		rc = -ENOMEM;
8770 		goto clean7;	/* aer/h */
8771 	}
8772 
8773 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8774 	if (!h->monitor_ctlr_wq) {
8775 		rc = -ENOMEM;
8776 		goto clean7;
8777 	}
8778 
8779 	/*
8780 	 * At this point, the controller is ready to take commands.
8781 	 * Now, if reset_devices and the hard reset didn't work, try
8782 	 * the soft reset and see if that works.
8783 	 */
8784 	if (try_soft_reset) {
8785 
8786 		/* This is kind of gross.  We may or may not get a completion
8787 		 * from the soft reset command, and if we do, then the value
8788 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8789 		 * after the reset throwing away any completions we get during
8790 		 * that time.  Unregister the interrupt handler and register
8791 		 * fake ones to scoop up any residual completions.
8792 		 */
8793 		spin_lock_irqsave(&h->lock, flags);
8794 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8795 		spin_unlock_irqrestore(&h->lock, flags);
8796 		hpsa_free_irqs(h);
8797 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8798 					hpsa_intx_discard_completions);
8799 		if (rc) {
8800 			dev_warn(&h->pdev->dev,
8801 				"Failed to request_irq after soft reset.\n");
8802 			/*
8803 			 * cannot goto clean7 or free_irqs will be called
8804 			 * again. Instead, do its work
8805 			 */
8806 			hpsa_free_performant_mode(h);	/* clean7 */
8807 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8808 			hpsa_free_cmd_pool(h);		/* clean5 */
8809 			/*
8810 			 * skip hpsa_free_irqs(h) clean4 since that
8811 			 * was just called before request_irqs failed
8812 			 */
8813 			goto clean3;
8814 		}
8815 
8816 		rc = hpsa_kdump_soft_reset(h);
8817 		if (rc)
8818 			/* Neither hard nor soft reset worked, we're hosed. */
8819 			goto clean7;
8820 
8821 		dev_info(&h->pdev->dev, "Board READY.\n");
8822 		dev_info(&h->pdev->dev,
8823 			"Waiting for stale completions to drain.\n");
8824 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8825 		msleep(10000);
8826 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8827 
8828 		rc = controller_reset_failed(h->cfgtable);
8829 		if (rc)
8830 			dev_info(&h->pdev->dev,
8831 				"Soft reset appears to have failed.\n");
8832 
8833 		/* since the controller's reset, we have to go back and re-init
8834 		 * everything.  Easiest to just forget what we've done and do it
8835 		 * all over again.
8836 		 */
8837 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8838 		try_soft_reset = 0;
8839 		if (rc)
8840 			/* don't goto clean, we already unallocated */
8841 			return -ENODEV;
8842 
8843 		goto reinit_after_soft_reset;
8844 	}
8845 
8846 	/* Enable Accelerated IO path at driver layer */
8847 	h->acciopath_status = 1;
8848 	/* Disable discovery polling.*/
8849 	h->discovery_polling = 0;
8850 
8851 
8852 	/* Turn the interrupts on so we can service requests */
8853 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8854 
8855 	hpsa_hba_inquiry(h);
8856 
8857 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8858 	if (!h->lastlogicals)
8859 		dev_info(&h->pdev->dev,
8860 			"Can't track change to report lun data\n");
8861 
8862 	/* hook into SCSI subsystem */
8863 	rc = hpsa_scsi_add_host(h);
8864 	if (rc)
8865 		goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8866 
8867 	/* Monitor the controller for firmware lockups */
8868 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8869 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8870 	schedule_delayed_work(&h->monitor_ctlr_work,
8871 				h->heartbeat_sample_interval);
8872 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8873 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8874 				h->heartbeat_sample_interval);
8875 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8876 	schedule_delayed_work(&h->event_monitor_work,
8877 				HPSA_EVENT_MONITOR_INTERVAL);
8878 	return 0;
8879 
8880 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8881 	kfree(h->lastlogicals);
8882 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8883 	hpsa_free_performant_mode(h);
8884 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8885 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8886 	hpsa_free_sg_chain_blocks(h);
8887 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8888 	hpsa_free_cmd_pool(h);
8889 clean4: /* irq, shost, pci, lu, aer/h */
8890 	hpsa_free_irqs(h);
8891 clean3: /* shost, pci, lu, aer/h */
8892 	scsi_host_put(h->scsi_host);
8893 	h->scsi_host = NULL;
8894 clean2_5: /* pci, lu, aer/h */
8895 	hpsa_free_pci_init(h);
8896 clean2: /* lu, aer/h */
8897 	if (h->lockup_detected) {
8898 		free_percpu(h->lockup_detected);
8899 		h->lockup_detected = NULL;
8900 	}
8901 clean1:	/* wq/aer/h */
8902 	if (h->resubmit_wq) {
8903 		destroy_workqueue(h->resubmit_wq);
8904 		h->resubmit_wq = NULL;
8905 	}
8906 	if (h->rescan_ctlr_wq) {
8907 		destroy_workqueue(h->rescan_ctlr_wq);
8908 		h->rescan_ctlr_wq = NULL;
8909 	}
8910 	if (h->monitor_ctlr_wq) {
8911 		destroy_workqueue(h->monitor_ctlr_wq);
8912 		h->monitor_ctlr_wq = NULL;
8913 	}
8914 	hpda_free_ctlr_info(h);
8915 	return rc;
8916 }
8917 
8918 static void hpsa_flush_cache(struct ctlr_info *h)
8919 {
8920 	char *flush_buf;
8921 	struct CommandList *c;
8922 	int rc;
8923 
8924 	if (unlikely(lockup_detected(h)))
8925 		return;
8926 	flush_buf = kzalloc(4, GFP_KERNEL);
8927 	if (!flush_buf)
8928 		return;
8929 
8930 	c = cmd_alloc(h);
8931 
8932 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8933 		RAID_CTLR_LUNID, TYPE_CMD)) {
8934 		goto out;
8935 	}
8936 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8937 			DEFAULT_TIMEOUT);
8938 	if (rc)
8939 		goto out;
8940 	if (c->err_info->CommandStatus != 0)
8941 out:
8942 		dev_warn(&h->pdev->dev,
8943 			"error flushing cache on controller\n");
8944 	cmd_free(h, c);
8945 	kfree(flush_buf);
8946 }
8947 
8948 /* Make controller gather fresh report lun data each time we
8949  * send down a report luns request
8950  */
8951 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8952 {
8953 	u32 *options;
8954 	struct CommandList *c;
8955 	int rc;
8956 
8957 	/* Don't bother trying to set diag options if locked up */
8958 	if (unlikely(h->lockup_detected))
8959 		return;
8960 
8961 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8962 	if (!options)
8963 		return;
8964 
8965 	c = cmd_alloc(h);
8966 
8967 	/* first, get the current diag options settings */
8968 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8969 		RAID_CTLR_LUNID, TYPE_CMD))
8970 		goto errout;
8971 
8972 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8973 			NO_TIMEOUT);
8974 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8975 		goto errout;
8976 
8977 	/* Now, set the bit for disabling the RLD caching */
8978 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8979 
8980 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8981 		RAID_CTLR_LUNID, TYPE_CMD))
8982 		goto errout;
8983 
8984 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8985 			NO_TIMEOUT);
8986 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8987 		goto errout;
8988 
8989 	/* Now verify that it got set: */
8990 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8991 		RAID_CTLR_LUNID, TYPE_CMD))
8992 		goto errout;
8993 
8994 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8995 			NO_TIMEOUT);
8996 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8997 		goto errout;
8998 
8999 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9000 		goto out;
9001 
9002 errout:
9003 	dev_err(&h->pdev->dev,
9004 			"Error: failed to disable report lun data caching.\n");
9005 out:
9006 	cmd_free(h, c);
9007 	kfree(options);
9008 }
9009 
9010 static void __hpsa_shutdown(struct pci_dev *pdev)
9011 {
9012 	struct ctlr_info *h;
9013 
9014 	h = pci_get_drvdata(pdev);
9015 	/* Turn board interrupts off  and send the flush cache command
9016 	 * sendcmd will turn off interrupt, and send the flush...
9017 	 * To write all data in the battery backed cache to disks
9018 	 */
9019 	hpsa_flush_cache(h);
9020 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9021 	hpsa_free_irqs(h);			/* init_one 4 */
9022 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9023 }
9024 
9025 static void hpsa_shutdown(struct pci_dev *pdev)
9026 {
9027 	__hpsa_shutdown(pdev);
9028 	pci_disable_device(pdev);
9029 }
9030 
9031 static void hpsa_free_device_info(struct ctlr_info *h)
9032 {
9033 	int i;
9034 
9035 	for (i = 0; i < h->ndevices; i++) {
9036 		kfree(h->dev[i]);
9037 		h->dev[i] = NULL;
9038 	}
9039 }
9040 
9041 static void hpsa_remove_one(struct pci_dev *pdev)
9042 {
9043 	struct ctlr_info *h;
9044 	unsigned long flags;
9045 
9046 	if (pci_get_drvdata(pdev) == NULL) {
9047 		dev_err(&pdev->dev, "unable to remove device\n");
9048 		return;
9049 	}
9050 	h = pci_get_drvdata(pdev);
9051 
9052 	/* Get rid of any controller monitoring work items */
9053 	spin_lock_irqsave(&h->lock, flags);
9054 	h->remove_in_progress = 1;
9055 	spin_unlock_irqrestore(&h->lock, flags);
9056 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9057 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9058 	cancel_delayed_work_sync(&h->event_monitor_work);
9059 	destroy_workqueue(h->rescan_ctlr_wq);
9060 	destroy_workqueue(h->resubmit_wq);
9061 	destroy_workqueue(h->monitor_ctlr_wq);
9062 
9063 	hpsa_delete_sas_host(h);
9064 
9065 	/*
9066 	 * Call before disabling interrupts.
9067 	 * scsi_remove_host can trigger I/O operations especially
9068 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9069 	 * operations which cannot complete and will hang the system.
9070 	 */
9071 	if (h->scsi_host)
9072 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9073 	/* includes hpsa_free_irqs - init_one 4 */
9074 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9075 	__hpsa_shutdown(pdev);
9076 
9077 	hpsa_free_device_info(h);		/* scan */
9078 
9079 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9080 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9081 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9082 	hpsa_free_performant_mode(h);			/* init_one 7 */
9083 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9084 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9085 	kfree(h->lastlogicals);
9086 
9087 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9088 
9089 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9090 	h->scsi_host = NULL;				/* init_one 3 */
9091 
9092 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9093 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9094 
9095 	free_percpu(h->lockup_detected);		/* init_one 2 */
9096 	h->lockup_detected = NULL;			/* init_one 2 */
9097 
9098 	hpda_free_ctlr_info(h);				/* init_one 1 */
9099 }
9100 
9101 static int __maybe_unused hpsa_suspend(
9102 	__attribute__((unused)) struct device *dev)
9103 {
9104 	return -ENOSYS;
9105 }
9106 
9107 static int __maybe_unused hpsa_resume
9108 	(__attribute__((unused)) struct device *dev)
9109 {
9110 	return -ENOSYS;
9111 }
9112 
9113 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9114 
9115 static struct pci_driver hpsa_pci_driver = {
9116 	.name = HPSA,
9117 	.probe = hpsa_init_one,
9118 	.remove = hpsa_remove_one,
9119 	.id_table = hpsa_pci_device_id,	/* id_table */
9120 	.shutdown = hpsa_shutdown,
9121 	.driver.pm = &hpsa_pm_ops,
9122 };
9123 
9124 /* Fill in bucket_map[], given nsgs (the max number of
9125  * scatter gather elements supported) and bucket[],
9126  * which is an array of 8 integers.  The bucket[] array
9127  * contains 8 different DMA transfer sizes (in 16
9128  * byte increments) which the controller uses to fetch
9129  * commands.  This function fills in bucket_map[], which
9130  * maps a given number of scatter gather elements to one of
9131  * the 8 DMA transfer sizes.  The point of it is to allow the
9132  * controller to only do as much DMA as needed to fetch the
9133  * command, with the DMA transfer size encoded in the lower
9134  * bits of the command address.
9135  */
9136 static void  calc_bucket_map(int bucket[], int num_buckets,
9137 	int nsgs, int min_blocks, u32 *bucket_map)
9138 {
9139 	int i, j, b, size;
9140 
9141 	/* Note, bucket_map must have nsgs+1 entries. */
9142 	for (i = 0; i <= nsgs; i++) {
9143 		/* Compute size of a command with i SG entries */
9144 		size = i + min_blocks;
9145 		b = num_buckets; /* Assume the biggest bucket */
9146 		/* Find the bucket that is just big enough */
9147 		for (j = 0; j < num_buckets; j++) {
9148 			if (bucket[j] >= size) {
9149 				b = j;
9150 				break;
9151 			}
9152 		}
9153 		/* for a command with i SG entries, use bucket b. */
9154 		bucket_map[i] = b;
9155 	}
9156 }
9157 
9158 /*
9159  * return -ENODEV on err, 0 on success (or no action)
9160  * allocates numerous items that must be freed later
9161  */
9162 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9163 {
9164 	int i;
9165 	unsigned long register_value;
9166 	unsigned long transMethod = CFGTBL_Trans_Performant |
9167 			(trans_support & CFGTBL_Trans_use_short_tags) |
9168 				CFGTBL_Trans_enable_directed_msix |
9169 			(trans_support & (CFGTBL_Trans_io_accel1 |
9170 				CFGTBL_Trans_io_accel2));
9171 	struct access_method access = SA5_performant_access;
9172 
9173 	/* This is a bit complicated.  There are 8 registers on
9174 	 * the controller which we write to to tell it 8 different
9175 	 * sizes of commands which there may be.  It's a way of
9176 	 * reducing the DMA done to fetch each command.  Encoded into
9177 	 * each command's tag are 3 bits which communicate to the controller
9178 	 * which of the eight sizes that command fits within.  The size of
9179 	 * each command depends on how many scatter gather entries there are.
9180 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9181 	 * with the number of 16-byte blocks a command of that size requires.
9182 	 * The smallest command possible requires 5 such 16 byte blocks.
9183 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9184 	 * blocks.  Note, this only extends to the SG entries contained
9185 	 * within the command block, and does not extend to chained blocks
9186 	 * of SG elements.   bft[] contains the eight values we write to
9187 	 * the registers.  They are not evenly distributed, but have more
9188 	 * sizes for small commands, and fewer sizes for larger commands.
9189 	 */
9190 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9191 #define MIN_IOACCEL2_BFT_ENTRY 5
9192 #define HPSA_IOACCEL2_HEADER_SZ 4
9193 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9194 			13, 14, 15, 16, 17, 18, 19,
9195 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9196 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9197 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9198 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9199 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9200 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9201 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9202 	/*  5 = 1 s/g entry or 4k
9203 	 *  6 = 2 s/g entry or 8k
9204 	 *  8 = 4 s/g entry or 16k
9205 	 * 10 = 6 s/g entry or 24k
9206 	 */
9207 
9208 	/* If the controller supports either ioaccel method then
9209 	 * we can also use the RAID stack submit path that does not
9210 	 * perform the superfluous readl() after each command submission.
9211 	 */
9212 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9213 		access = SA5_performant_access_no_read;
9214 
9215 	/* Controller spec: zero out this buffer. */
9216 	for (i = 0; i < h->nreply_queues; i++)
9217 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9218 
9219 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9220 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9221 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9222 	for (i = 0; i < 8; i++)
9223 		writel(bft[i], &h->transtable->BlockFetch[i]);
9224 
9225 	/* size of controller ring buffer */
9226 	writel(h->max_commands, &h->transtable->RepQSize);
9227 	writel(h->nreply_queues, &h->transtable->RepQCount);
9228 	writel(0, &h->transtable->RepQCtrAddrLow32);
9229 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9230 
9231 	for (i = 0; i < h->nreply_queues; i++) {
9232 		writel(0, &h->transtable->RepQAddr[i].upper);
9233 		writel(h->reply_queue[i].busaddr,
9234 			&h->transtable->RepQAddr[i].lower);
9235 	}
9236 
9237 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9238 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9239 	/*
9240 	 * enable outbound interrupt coalescing in accelerator mode;
9241 	 */
9242 	if (trans_support & CFGTBL_Trans_io_accel1) {
9243 		access = SA5_ioaccel_mode1_access;
9244 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9245 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9246 	} else
9247 		if (trans_support & CFGTBL_Trans_io_accel2)
9248 			access = SA5_ioaccel_mode2_access;
9249 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9250 	if (hpsa_wait_for_mode_change_ack(h)) {
9251 		dev_err(&h->pdev->dev,
9252 			"performant mode problem - doorbell timeout\n");
9253 		return -ENODEV;
9254 	}
9255 	register_value = readl(&(h->cfgtable->TransportActive));
9256 	if (!(register_value & CFGTBL_Trans_Performant)) {
9257 		dev_err(&h->pdev->dev,
9258 			"performant mode problem - transport not active\n");
9259 		return -ENODEV;
9260 	}
9261 	/* Change the access methods to the performant access methods */
9262 	h->access = access;
9263 	h->transMethod = transMethod;
9264 
9265 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9266 		(trans_support & CFGTBL_Trans_io_accel2)))
9267 		return 0;
9268 
9269 	if (trans_support & CFGTBL_Trans_io_accel1) {
9270 		/* Set up I/O accelerator mode */
9271 		for (i = 0; i < h->nreply_queues; i++) {
9272 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9273 			h->reply_queue[i].current_entry =
9274 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9275 		}
9276 		bft[7] = h->ioaccel_maxsg + 8;
9277 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9278 				h->ioaccel1_blockFetchTable);
9279 
9280 		/* initialize all reply queue entries to unused */
9281 		for (i = 0; i < h->nreply_queues; i++)
9282 			memset(h->reply_queue[i].head,
9283 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9284 				h->reply_queue_size);
9285 
9286 		/* set all the constant fields in the accelerator command
9287 		 * frames once at init time to save CPU cycles later.
9288 		 */
9289 		for (i = 0; i < h->nr_cmds; i++) {
9290 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9291 
9292 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9293 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9294 					(i * sizeof(struct ErrorInfo)));
9295 			cp->err_info_len = sizeof(struct ErrorInfo);
9296 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9297 			cp->host_context_flags =
9298 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9299 			cp->timeout_sec = 0;
9300 			cp->ReplyQueue = 0;
9301 			cp->tag =
9302 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9303 			cp->host_addr =
9304 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9305 					(i * sizeof(struct io_accel1_cmd)));
9306 		}
9307 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9308 		u64 cfg_offset, cfg_base_addr_index;
9309 		u32 bft2_offset, cfg_base_addr;
9310 
9311 		hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9312 				    &cfg_base_addr_index, &cfg_offset);
9313 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9314 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9315 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9316 				4, h->ioaccel2_blockFetchTable);
9317 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9318 		BUILD_BUG_ON(offsetof(struct CfgTable,
9319 				io_accel_request_size_offset) != 0xb8);
9320 		h->ioaccel2_bft2_regs =
9321 			remap_pci_mem(pci_resource_start(h->pdev,
9322 					cfg_base_addr_index) +
9323 					cfg_offset + bft2_offset,
9324 					ARRAY_SIZE(bft2) *
9325 					sizeof(*h->ioaccel2_bft2_regs));
9326 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9327 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9328 	}
9329 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9330 	if (hpsa_wait_for_mode_change_ack(h)) {
9331 		dev_err(&h->pdev->dev,
9332 			"performant mode problem - enabling ioaccel mode\n");
9333 		return -ENODEV;
9334 	}
9335 	return 0;
9336 }
9337 
9338 /* Free ioaccel1 mode command blocks and block fetch table */
9339 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9340 {
9341 	if (h->ioaccel_cmd_pool) {
9342 		dma_free_coherent(&h->pdev->dev,
9343 				  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9344 				  h->ioaccel_cmd_pool,
9345 				  h->ioaccel_cmd_pool_dhandle);
9346 		h->ioaccel_cmd_pool = NULL;
9347 		h->ioaccel_cmd_pool_dhandle = 0;
9348 	}
9349 	kfree(h->ioaccel1_blockFetchTable);
9350 	h->ioaccel1_blockFetchTable = NULL;
9351 }
9352 
9353 /* Allocate ioaccel1 mode command blocks and block fetch table */
9354 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9355 {
9356 	h->ioaccel_maxsg =
9357 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9358 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9359 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9360 
9361 	/* Command structures must be aligned on a 128-byte boundary
9362 	 * because the 7 lower bits of the address are used by the
9363 	 * hardware.
9364 	 */
9365 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9366 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9367 	h->ioaccel_cmd_pool =
9368 		dma_alloc_coherent(&h->pdev->dev,
9369 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9370 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9371 
9372 	h->ioaccel1_blockFetchTable =
9373 		kmalloc(((h->ioaccel_maxsg + 1) *
9374 				sizeof(u32)), GFP_KERNEL);
9375 
9376 	if ((h->ioaccel_cmd_pool == NULL) ||
9377 		(h->ioaccel1_blockFetchTable == NULL))
9378 		goto clean_up;
9379 
9380 	memset(h->ioaccel_cmd_pool, 0,
9381 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9382 	return 0;
9383 
9384 clean_up:
9385 	hpsa_free_ioaccel1_cmd_and_bft(h);
9386 	return -ENOMEM;
9387 }
9388 
9389 /* Free ioaccel2 mode command blocks and block fetch table */
9390 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9391 {
9392 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9393 
9394 	if (h->ioaccel2_cmd_pool) {
9395 		dma_free_coherent(&h->pdev->dev,
9396 				  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9397 				  h->ioaccel2_cmd_pool,
9398 				  h->ioaccel2_cmd_pool_dhandle);
9399 		h->ioaccel2_cmd_pool = NULL;
9400 		h->ioaccel2_cmd_pool_dhandle = 0;
9401 	}
9402 	kfree(h->ioaccel2_blockFetchTable);
9403 	h->ioaccel2_blockFetchTable = NULL;
9404 }
9405 
9406 /* Allocate ioaccel2 mode command blocks and block fetch table */
9407 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9408 {
9409 	int rc;
9410 
9411 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9412 
9413 	h->ioaccel_maxsg =
9414 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9415 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9416 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9417 
9418 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9419 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9420 	h->ioaccel2_cmd_pool =
9421 		dma_alloc_coherent(&h->pdev->dev,
9422 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9423 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9424 
9425 	h->ioaccel2_blockFetchTable =
9426 		kmalloc(((h->ioaccel_maxsg + 1) *
9427 				sizeof(u32)), GFP_KERNEL);
9428 
9429 	if ((h->ioaccel2_cmd_pool == NULL) ||
9430 		(h->ioaccel2_blockFetchTable == NULL)) {
9431 		rc = -ENOMEM;
9432 		goto clean_up;
9433 	}
9434 
9435 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9436 	if (rc)
9437 		goto clean_up;
9438 
9439 	memset(h->ioaccel2_cmd_pool, 0,
9440 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9441 	return 0;
9442 
9443 clean_up:
9444 	hpsa_free_ioaccel2_cmd_and_bft(h);
9445 	return rc;
9446 }
9447 
9448 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9449 static void hpsa_free_performant_mode(struct ctlr_info *h)
9450 {
9451 	kfree(h->blockFetchTable);
9452 	h->blockFetchTable = NULL;
9453 	hpsa_free_reply_queues(h);
9454 	hpsa_free_ioaccel1_cmd_and_bft(h);
9455 	hpsa_free_ioaccel2_cmd_and_bft(h);
9456 }
9457 
9458 /* return -ENODEV on error, 0 on success (or no action)
9459  * allocates numerous items that must be freed later
9460  */
9461 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9462 {
9463 	u32 trans_support;
9464 	int i, rc;
9465 
9466 	if (hpsa_simple_mode)
9467 		return 0;
9468 
9469 	trans_support = readl(&(h->cfgtable->TransportSupport));
9470 	if (!(trans_support & PERFORMANT_MODE))
9471 		return 0;
9472 
9473 	/* Check for I/O accelerator mode support */
9474 	if (trans_support & CFGTBL_Trans_io_accel1) {
9475 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9476 		if (rc)
9477 			return rc;
9478 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9479 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9480 		if (rc)
9481 			return rc;
9482 	}
9483 
9484 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9485 	hpsa_get_max_perf_mode_cmds(h);
9486 	/* Performant mode ring buffer and supporting data structures */
9487 	h->reply_queue_size = h->max_commands * sizeof(u64);
9488 
9489 	for (i = 0; i < h->nreply_queues; i++) {
9490 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9491 						h->reply_queue_size,
9492 						&h->reply_queue[i].busaddr,
9493 						GFP_KERNEL);
9494 		if (!h->reply_queue[i].head) {
9495 			rc = -ENOMEM;
9496 			goto clean1;	/* rq, ioaccel */
9497 		}
9498 		h->reply_queue[i].size = h->max_commands;
9499 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9500 		h->reply_queue[i].current_entry = 0;
9501 	}
9502 
9503 	/* Need a block fetch table for performant mode */
9504 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9505 				sizeof(u32)), GFP_KERNEL);
9506 	if (!h->blockFetchTable) {
9507 		rc = -ENOMEM;
9508 		goto clean1;	/* rq, ioaccel */
9509 	}
9510 
9511 	rc = hpsa_enter_performant_mode(h, trans_support);
9512 	if (rc)
9513 		goto clean2;	/* bft, rq, ioaccel */
9514 	return 0;
9515 
9516 clean2:	/* bft, rq, ioaccel */
9517 	kfree(h->blockFetchTable);
9518 	h->blockFetchTable = NULL;
9519 clean1:	/* rq, ioaccel */
9520 	hpsa_free_reply_queues(h);
9521 	hpsa_free_ioaccel1_cmd_and_bft(h);
9522 	hpsa_free_ioaccel2_cmd_and_bft(h);
9523 	return rc;
9524 }
9525 
9526 static int is_accelerated_cmd(struct CommandList *c)
9527 {
9528 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9529 }
9530 
9531 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9532 {
9533 	struct CommandList *c = NULL;
9534 	int i, accel_cmds_out;
9535 	int refcount;
9536 
9537 	do { /* wait for all outstanding ioaccel commands to drain out */
9538 		accel_cmds_out = 0;
9539 		for (i = 0; i < h->nr_cmds; i++) {
9540 			c = h->cmd_pool + i;
9541 			refcount = atomic_inc_return(&c->refcount);
9542 			if (refcount > 1) /* Command is allocated */
9543 				accel_cmds_out += is_accelerated_cmd(c);
9544 			cmd_free(h, c);
9545 		}
9546 		if (accel_cmds_out <= 0)
9547 			break;
9548 		msleep(100);
9549 	} while (1);
9550 }
9551 
9552 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9553 				struct hpsa_sas_port *hpsa_sas_port)
9554 {
9555 	struct hpsa_sas_phy *hpsa_sas_phy;
9556 	struct sas_phy *phy;
9557 
9558 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9559 	if (!hpsa_sas_phy)
9560 		return NULL;
9561 
9562 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9563 		hpsa_sas_port->next_phy_index);
9564 	if (!phy) {
9565 		kfree(hpsa_sas_phy);
9566 		return NULL;
9567 	}
9568 
9569 	hpsa_sas_port->next_phy_index++;
9570 	hpsa_sas_phy->phy = phy;
9571 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9572 
9573 	return hpsa_sas_phy;
9574 }
9575 
9576 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9577 {
9578 	struct sas_phy *phy = hpsa_sas_phy->phy;
9579 
9580 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9581 	if (hpsa_sas_phy->added_to_port)
9582 		list_del(&hpsa_sas_phy->phy_list_entry);
9583 	sas_phy_delete(phy);
9584 	kfree(hpsa_sas_phy);
9585 }
9586 
9587 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9588 {
9589 	int rc;
9590 	struct hpsa_sas_port *hpsa_sas_port;
9591 	struct sas_phy *phy;
9592 	struct sas_identify *identify;
9593 
9594 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9595 	phy = hpsa_sas_phy->phy;
9596 
9597 	identify = &phy->identify;
9598 	memset(identify, 0, sizeof(*identify));
9599 	identify->sas_address = hpsa_sas_port->sas_address;
9600 	identify->device_type = SAS_END_DEVICE;
9601 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9602 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9603 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9604 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9605 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9606 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9607 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9608 
9609 	rc = sas_phy_add(hpsa_sas_phy->phy);
9610 	if (rc)
9611 		return rc;
9612 
9613 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9614 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9615 			&hpsa_sas_port->phy_list_head);
9616 	hpsa_sas_phy->added_to_port = true;
9617 
9618 	return 0;
9619 }
9620 
9621 static int
9622 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9623 				struct sas_rphy *rphy)
9624 {
9625 	struct sas_identify *identify;
9626 
9627 	identify = &rphy->identify;
9628 	identify->sas_address = hpsa_sas_port->sas_address;
9629 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9630 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9631 
9632 	return sas_rphy_add(rphy);
9633 }
9634 
9635 static struct hpsa_sas_port
9636 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9637 				u64 sas_address)
9638 {
9639 	int rc;
9640 	struct hpsa_sas_port *hpsa_sas_port;
9641 	struct sas_port *port;
9642 
9643 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9644 	if (!hpsa_sas_port)
9645 		return NULL;
9646 
9647 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9648 	hpsa_sas_port->parent_node = hpsa_sas_node;
9649 
9650 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9651 	if (!port)
9652 		goto free_hpsa_port;
9653 
9654 	rc = sas_port_add(port);
9655 	if (rc)
9656 		goto free_sas_port;
9657 
9658 	hpsa_sas_port->port = port;
9659 	hpsa_sas_port->sas_address = sas_address;
9660 	list_add_tail(&hpsa_sas_port->port_list_entry,
9661 			&hpsa_sas_node->port_list_head);
9662 
9663 	return hpsa_sas_port;
9664 
9665 free_sas_port:
9666 	sas_port_free(port);
9667 free_hpsa_port:
9668 	kfree(hpsa_sas_port);
9669 
9670 	return NULL;
9671 }
9672 
9673 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9674 {
9675 	struct hpsa_sas_phy *hpsa_sas_phy;
9676 	struct hpsa_sas_phy *next;
9677 
9678 	list_for_each_entry_safe(hpsa_sas_phy, next,
9679 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9680 		hpsa_free_sas_phy(hpsa_sas_phy);
9681 
9682 	sas_port_delete(hpsa_sas_port->port);
9683 	list_del(&hpsa_sas_port->port_list_entry);
9684 	kfree(hpsa_sas_port);
9685 }
9686 
9687 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9688 {
9689 	struct hpsa_sas_node *hpsa_sas_node;
9690 
9691 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9692 	if (hpsa_sas_node) {
9693 		hpsa_sas_node->parent_dev = parent_dev;
9694 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9695 	}
9696 
9697 	return hpsa_sas_node;
9698 }
9699 
9700 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9701 {
9702 	struct hpsa_sas_port *hpsa_sas_port;
9703 	struct hpsa_sas_port *next;
9704 
9705 	if (!hpsa_sas_node)
9706 		return;
9707 
9708 	list_for_each_entry_safe(hpsa_sas_port, next,
9709 			&hpsa_sas_node->port_list_head, port_list_entry)
9710 		hpsa_free_sas_port(hpsa_sas_port);
9711 
9712 	kfree(hpsa_sas_node);
9713 }
9714 
9715 static struct hpsa_scsi_dev_t
9716 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9717 					struct sas_rphy *rphy)
9718 {
9719 	int i;
9720 	struct hpsa_scsi_dev_t *device;
9721 
9722 	for (i = 0; i < h->ndevices; i++) {
9723 		device = h->dev[i];
9724 		if (!device->sas_port)
9725 			continue;
9726 		if (device->sas_port->rphy == rphy)
9727 			return device;
9728 	}
9729 
9730 	return NULL;
9731 }
9732 
9733 static int hpsa_add_sas_host(struct ctlr_info *h)
9734 {
9735 	int rc;
9736 	struct device *parent_dev;
9737 	struct hpsa_sas_node *hpsa_sas_node;
9738 	struct hpsa_sas_port *hpsa_sas_port;
9739 	struct hpsa_sas_phy *hpsa_sas_phy;
9740 
9741 	parent_dev = &h->scsi_host->shost_dev;
9742 
9743 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9744 	if (!hpsa_sas_node)
9745 		return -ENOMEM;
9746 
9747 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9748 	if (!hpsa_sas_port) {
9749 		rc = -ENODEV;
9750 		goto free_sas_node;
9751 	}
9752 
9753 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9754 	if (!hpsa_sas_phy) {
9755 		rc = -ENODEV;
9756 		goto free_sas_port;
9757 	}
9758 
9759 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9760 	if (rc)
9761 		goto free_sas_phy;
9762 
9763 	h->sas_host = hpsa_sas_node;
9764 
9765 	return 0;
9766 
9767 free_sas_phy:
9768 	sas_phy_free(hpsa_sas_phy->phy);
9769 	kfree(hpsa_sas_phy);
9770 free_sas_port:
9771 	hpsa_free_sas_port(hpsa_sas_port);
9772 free_sas_node:
9773 	hpsa_free_sas_node(hpsa_sas_node);
9774 
9775 	return rc;
9776 }
9777 
9778 static void hpsa_delete_sas_host(struct ctlr_info *h)
9779 {
9780 	hpsa_free_sas_node(h->sas_host);
9781 }
9782 
9783 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9784 				struct hpsa_scsi_dev_t *device)
9785 {
9786 	int rc;
9787 	struct hpsa_sas_port *hpsa_sas_port;
9788 	struct sas_rphy *rphy;
9789 
9790 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9791 	if (!hpsa_sas_port)
9792 		return -ENOMEM;
9793 
9794 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9795 	if (!rphy) {
9796 		rc = -ENODEV;
9797 		goto free_sas_port;
9798 	}
9799 
9800 	hpsa_sas_port->rphy = rphy;
9801 	device->sas_port = hpsa_sas_port;
9802 
9803 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9804 	if (rc)
9805 		goto free_sas_rphy;
9806 
9807 	return 0;
9808 
9809 free_sas_rphy:
9810 	sas_rphy_free(rphy);
9811 free_sas_port:
9812 	hpsa_free_sas_port(hpsa_sas_port);
9813 	device->sas_port = NULL;
9814 
9815 	return rc;
9816 }
9817 
9818 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9819 {
9820 	if (device->sas_port) {
9821 		hpsa_free_sas_port(device->sas_port);
9822 		device->sas_port = NULL;
9823 	}
9824 }
9825 
9826 static int
9827 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9828 {
9829 	return 0;
9830 }
9831 
9832 static int
9833 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9834 {
9835 	struct Scsi_Host *shost = phy_to_shost(rphy);
9836 	struct ctlr_info *h;
9837 	struct hpsa_scsi_dev_t *sd;
9838 
9839 	if (!shost)
9840 		return -ENXIO;
9841 
9842 	h = shost_to_hba(shost);
9843 
9844 	if (!h)
9845 		return -ENXIO;
9846 
9847 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9848 	if (!sd)
9849 		return -ENXIO;
9850 
9851 	*identifier = sd->eli;
9852 
9853 	return 0;
9854 }
9855 
9856 static int
9857 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9858 {
9859 	return -ENXIO;
9860 }
9861 
9862 static int
9863 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9864 {
9865 	return 0;
9866 }
9867 
9868 static int
9869 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9870 {
9871 	return 0;
9872 }
9873 
9874 static int
9875 hpsa_sas_phy_setup(struct sas_phy *phy)
9876 {
9877 	return 0;
9878 }
9879 
9880 static void
9881 hpsa_sas_phy_release(struct sas_phy *phy)
9882 {
9883 }
9884 
9885 static int
9886 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9887 {
9888 	return -EINVAL;
9889 }
9890 
9891 static struct sas_function_template hpsa_sas_transport_functions = {
9892 	.get_linkerrors = hpsa_sas_get_linkerrors,
9893 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9894 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9895 	.phy_reset = hpsa_sas_phy_reset,
9896 	.phy_enable = hpsa_sas_phy_enable,
9897 	.phy_setup = hpsa_sas_phy_setup,
9898 	.phy_release = hpsa_sas_phy_release,
9899 	.set_phy_speed = hpsa_sas_phy_speed,
9900 };
9901 
9902 /*
9903  *  This is it.  Register the PCI driver information for the cards we control
9904  *  the OS will call our registered routines when it finds one of our cards.
9905  */
9906 static int __init hpsa_init(void)
9907 {
9908 	int rc;
9909 
9910 	hpsa_sas_transport_template =
9911 		sas_attach_transport(&hpsa_sas_transport_functions);
9912 	if (!hpsa_sas_transport_template)
9913 		return -ENODEV;
9914 
9915 	rc = pci_register_driver(&hpsa_pci_driver);
9916 
9917 	if (rc)
9918 		sas_release_transport(hpsa_sas_transport_template);
9919 
9920 	return rc;
9921 }
9922 
9923 static void __exit hpsa_cleanup(void)
9924 {
9925 	pci_unregister_driver(&hpsa_pci_driver);
9926 	sas_release_transport(hpsa_sas_transport_template);
9927 }
9928 
9929 static void __attribute__((unused)) verify_offsets(void)
9930 {
9931 #define VERIFY_OFFSET(member, offset) \
9932 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9933 
9934 	VERIFY_OFFSET(structure_size, 0);
9935 	VERIFY_OFFSET(volume_blk_size, 4);
9936 	VERIFY_OFFSET(volume_blk_cnt, 8);
9937 	VERIFY_OFFSET(phys_blk_shift, 16);
9938 	VERIFY_OFFSET(parity_rotation_shift, 17);
9939 	VERIFY_OFFSET(strip_size, 18);
9940 	VERIFY_OFFSET(disk_starting_blk, 20);
9941 	VERIFY_OFFSET(disk_blk_cnt, 28);
9942 	VERIFY_OFFSET(data_disks_per_row, 36);
9943 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9944 	VERIFY_OFFSET(row_cnt, 40);
9945 	VERIFY_OFFSET(layout_map_count, 42);
9946 	VERIFY_OFFSET(flags, 44);
9947 	VERIFY_OFFSET(dekindex, 46);
9948 	/* VERIFY_OFFSET(reserved, 48 */
9949 	VERIFY_OFFSET(data, 64);
9950 
9951 #undef VERIFY_OFFSET
9952 
9953 #define VERIFY_OFFSET(member, offset) \
9954 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9955 
9956 	VERIFY_OFFSET(IU_type, 0);
9957 	VERIFY_OFFSET(direction, 1);
9958 	VERIFY_OFFSET(reply_queue, 2);
9959 	/* VERIFY_OFFSET(reserved1, 3);  */
9960 	VERIFY_OFFSET(scsi_nexus, 4);
9961 	VERIFY_OFFSET(Tag, 8);
9962 	VERIFY_OFFSET(cdb, 16);
9963 	VERIFY_OFFSET(cciss_lun, 32);
9964 	VERIFY_OFFSET(data_len, 40);
9965 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9966 	VERIFY_OFFSET(sg_count, 45);
9967 	/* VERIFY_OFFSET(reserved3 */
9968 	VERIFY_OFFSET(err_ptr, 48);
9969 	VERIFY_OFFSET(err_len, 56);
9970 	/* VERIFY_OFFSET(reserved4  */
9971 	VERIFY_OFFSET(sg, 64);
9972 
9973 #undef VERIFY_OFFSET
9974 
9975 #define VERIFY_OFFSET(member, offset) \
9976 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9977 
9978 	VERIFY_OFFSET(dev_handle, 0x00);
9979 	VERIFY_OFFSET(reserved1, 0x02);
9980 	VERIFY_OFFSET(function, 0x03);
9981 	VERIFY_OFFSET(reserved2, 0x04);
9982 	VERIFY_OFFSET(err_info, 0x0C);
9983 	VERIFY_OFFSET(reserved3, 0x10);
9984 	VERIFY_OFFSET(err_info_len, 0x12);
9985 	VERIFY_OFFSET(reserved4, 0x13);
9986 	VERIFY_OFFSET(sgl_offset, 0x14);
9987 	VERIFY_OFFSET(reserved5, 0x15);
9988 	VERIFY_OFFSET(transfer_len, 0x1C);
9989 	VERIFY_OFFSET(reserved6, 0x20);
9990 	VERIFY_OFFSET(io_flags, 0x24);
9991 	VERIFY_OFFSET(reserved7, 0x26);
9992 	VERIFY_OFFSET(LUN, 0x34);
9993 	VERIFY_OFFSET(control, 0x3C);
9994 	VERIFY_OFFSET(CDB, 0x40);
9995 	VERIFY_OFFSET(reserved8, 0x50);
9996 	VERIFY_OFFSET(host_context_flags, 0x60);
9997 	VERIFY_OFFSET(timeout_sec, 0x62);
9998 	VERIFY_OFFSET(ReplyQueue, 0x64);
9999 	VERIFY_OFFSET(reserved9, 0x65);
10000 	VERIFY_OFFSET(tag, 0x68);
10001 	VERIFY_OFFSET(host_addr, 0x70);
10002 	VERIFY_OFFSET(CISS_LUN, 0x78);
10003 	VERIFY_OFFSET(SG, 0x78 + 8);
10004 #undef VERIFY_OFFSET
10005 }
10006 
10007 module_init(hpsa_init);
10008 module_exit(hpsa_cleanup);
10009