xref: /linux/drivers/scsi/hpsa.c (revision 4e95bc268b915c3a19ec8b9110f61e4ea41a1ed0)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-160"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85 
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 	"Use 'simple mode' rather than 'performant mode'");
90 
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
147 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{0,}
151 };
152 
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154 
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160 	{0x40700E11, "Smart Array 5300", &SA5A_access},
161 	{0x40800E11, "Smart Array 5i", &SA5B_access},
162 	{0x40820E11, "Smart Array 532", &SA5B_access},
163 	{0x40830E11, "Smart Array 5312", &SA5B_access},
164 	{0x409A0E11, "Smart Array 641", &SA5A_access},
165 	{0x409B0E11, "Smart Array 642", &SA5A_access},
166 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
167 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 	{0x40910E11, "Smart Array 6i", &SA5A_access},
169 	{0x3225103C, "Smart Array P600", &SA5A_access},
170 	{0x3223103C, "Smart Array P800", &SA5A_access},
171 	{0x3234103C, "Smart Array P400", &SA5A_access},
172 	{0x3235103C, "Smart Array P400i", &SA5A_access},
173 	{0x3211103C, "Smart Array E200i", &SA5A_access},
174 	{0x3212103C, "Smart Array E200", &SA5A_access},
175 	{0x3213103C, "Smart Array E200i", &SA5A_access},
176 	{0x3214103C, "Smart Array E200i", &SA5A_access},
177 	{0x3215103C, "Smart Array E200i", &SA5A_access},
178 	{0x3237103C, "Smart Array E500", &SA5A_access},
179 	{0x323D103C, "Smart Array P700m", &SA5A_access},
180 	{0x3241103C, "Smart Array P212", &SA5_access},
181 	{0x3243103C, "Smart Array P410", &SA5_access},
182 	{0x3245103C, "Smart Array P410i", &SA5_access},
183 	{0x3247103C, "Smart Array P411", &SA5_access},
184 	{0x3249103C, "Smart Array P812", &SA5_access},
185 	{0x324A103C, "Smart Array P712m", &SA5_access},
186 	{0x324B103C, "Smart Array P711m", &SA5_access},
187 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 	{0x3350103C, "Smart Array P222", &SA5_access},
189 	{0x3351103C, "Smart Array P420", &SA5_access},
190 	{0x3352103C, "Smart Array P421", &SA5_access},
191 	{0x3353103C, "Smart Array P822", &SA5_access},
192 	{0x3354103C, "Smart Array P420i", &SA5_access},
193 	{0x3355103C, "Smart Array P220i", &SA5_access},
194 	{0x3356103C, "Smart Array P721m", &SA5_access},
195 	{0x1920103C, "Smart Array P430i", &SA5_access},
196 	{0x1921103C, "Smart Array P830i", &SA5_access},
197 	{0x1922103C, "Smart Array P430", &SA5_access},
198 	{0x1923103C, "Smart Array P431", &SA5_access},
199 	{0x1924103C, "Smart Array P830", &SA5_access},
200 	{0x1925103C, "Smart Array P831", &SA5_access},
201 	{0x1926103C, "Smart Array P731m", &SA5_access},
202 	{0x1928103C, "Smart Array P230i", &SA5_access},
203 	{0x1929103C, "Smart Array P530", &SA5_access},
204 	{0x21BD103C, "Smart Array P244br", &SA5_access},
205 	{0x21BE103C, "Smart Array P741m", &SA5_access},
206 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
208 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
209 	{0x21C2103C, "Smart Array P440", &SA5_access},
210 	{0x21C3103C, "Smart Array P441", &SA5_access},
211 	{0x21C4103C, "Smart Array", &SA5_access},
212 	{0x21C5103C, "Smart Array P841", &SA5_access},
213 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
214 	{0x21C7103C, "Smart HBA H240", &SA5_access},
215 	{0x21C8103C, "Smart HBA H241", &SA5_access},
216 	{0x21C9103C, "Smart Array", &SA5_access},
217 	{0x21CA103C, "Smart Array P246br", &SA5_access},
218 	{0x21CB103C, "Smart Array P840", &SA5_access},
219 	{0x21CC103C, "Smart Array", &SA5_access},
220 	{0x21CD103C, "Smart Array", &SA5_access},
221 	{0x21CE103C, "Smart HBA", &SA5_access},
222 	{0x05809005, "SmartHBA-SA", &SA5_access},
223 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235 
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 			struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 		struct sas_rphy *rphy);
245 
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251 
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
255 		      void __user *arg);
256 
257 #ifdef CONFIG_COMPAT
258 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
259 	void __user *arg);
260 #endif
261 
262 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
263 static struct CommandList *cmd_alloc(struct ctlr_info *h);
264 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
265 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
266 					    struct scsi_cmnd *scmd);
267 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
268 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
269 	int cmd_type);
270 static void hpsa_free_cmd_pool(struct ctlr_info *h);
271 #define VPD_PAGE (1 << 8)
272 #define HPSA_SIMPLE_ERROR_BITS 0x03
273 
274 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
275 static void hpsa_scan_start(struct Scsi_Host *);
276 static int hpsa_scan_finished(struct Scsi_Host *sh,
277 	unsigned long elapsed_time);
278 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
279 
280 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
281 static int hpsa_slave_alloc(struct scsi_device *sdev);
282 static int hpsa_slave_configure(struct scsi_device *sdev);
283 static void hpsa_slave_destroy(struct scsi_device *sdev);
284 
285 static void hpsa_update_scsi_devices(struct ctlr_info *h);
286 static int check_for_unit_attention(struct ctlr_info *h,
287 	struct CommandList *c);
288 static void check_ioctl_unit_attention(struct ctlr_info *h,
289 	struct CommandList *c);
290 /* performant mode helper functions */
291 static void calc_bucket_map(int *bucket, int num_buckets,
292 	int nsgs, int min_blocks, u32 *bucket_map);
293 static void hpsa_free_performant_mode(struct ctlr_info *h);
294 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
295 static inline u32 next_command(struct ctlr_info *h, u8 q);
296 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
297 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
298 			       u64 *cfg_offset);
299 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
300 				    unsigned long *memory_bar);
301 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
302 				bool *legacy_board);
303 static int wait_for_device_to_become_ready(struct ctlr_info *h,
304 					   unsigned char lunaddr[],
305 					   int reply_queue);
306 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
307 				     int wait_for_ready);
308 static inline void finish_cmd(struct CommandList *c);
309 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
310 #define BOARD_NOT_READY 0
311 #define BOARD_READY 1
312 static void hpsa_drain_accel_commands(struct ctlr_info *h);
313 static void hpsa_flush_cache(struct ctlr_info *h);
314 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
315 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
316 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
317 static void hpsa_command_resubmit_worker(struct work_struct *work);
318 static u32 lockup_detected(struct ctlr_info *h);
319 static int detect_controller_lockup(struct ctlr_info *h);
320 static void hpsa_disable_rld_caching(struct ctlr_info *h);
321 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
322 	struct ReportExtendedLUNdata *buf, int bufsize);
323 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
324 	unsigned char scsi3addr[], u8 page);
325 static int hpsa_luns_changed(struct ctlr_info *h);
326 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
327 			       struct hpsa_scsi_dev_t *dev,
328 			       unsigned char *scsi3addr);
329 
330 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
331 {
332 	unsigned long *priv = shost_priv(sdev->host);
333 	return (struct ctlr_info *) *priv;
334 }
335 
336 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
337 {
338 	unsigned long *priv = shost_priv(sh);
339 	return (struct ctlr_info *) *priv;
340 }
341 
342 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
343 {
344 	return c->scsi_cmd == SCSI_CMD_IDLE;
345 }
346 
347 static inline bool hpsa_is_pending_event(struct CommandList *c)
348 {
349 	return c->reset_pending;
350 }
351 
352 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354 			u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356 	struct scsi_sense_hdr sshdr;
357 	bool rc;
358 
359 	*sense_key = -1;
360 	*asc = -1;
361 	*ascq = -1;
362 
363 	if (sense_data_len < 1)
364 		return;
365 
366 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367 	if (rc) {
368 		*sense_key = sshdr.sense_key;
369 		*asc = sshdr.asc;
370 		*ascq = sshdr.ascq;
371 	}
372 }
373 
374 static int check_for_unit_attention(struct ctlr_info *h,
375 	struct CommandList *c)
376 {
377 	u8 sense_key, asc, ascq;
378 	int sense_len;
379 
380 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381 		sense_len = sizeof(c->err_info->SenseInfo);
382 	else
383 		sense_len = c->err_info->SenseLen;
384 
385 	decode_sense_data(c->err_info->SenseInfo, sense_len,
386 				&sense_key, &asc, &ascq);
387 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
388 		return 0;
389 
390 	switch (asc) {
391 	case STATE_CHANGED:
392 		dev_warn(&h->pdev->dev,
393 			"%s: a state change detected, command retried\n",
394 			h->devname);
395 		break;
396 	case LUN_FAILED:
397 		dev_warn(&h->pdev->dev,
398 			"%s: LUN failure detected\n", h->devname);
399 		break;
400 	case REPORT_LUNS_CHANGED:
401 		dev_warn(&h->pdev->dev,
402 			"%s: report LUN data changed\n", h->devname);
403 	/*
404 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405 	 * target (array) devices.
406 	 */
407 		break;
408 	case POWER_OR_RESET:
409 		dev_warn(&h->pdev->dev,
410 			"%s: a power on or device reset detected\n",
411 			h->devname);
412 		break;
413 	case UNIT_ATTENTION_CLEARED:
414 		dev_warn(&h->pdev->dev,
415 			"%s: unit attention cleared by another initiator\n",
416 			h->devname);
417 		break;
418 	default:
419 		dev_warn(&h->pdev->dev,
420 			"%s: unknown unit attention detected\n",
421 			h->devname);
422 		break;
423 	}
424 	return 1;
425 }
426 
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432 		return 0;
433 	dev_warn(&h->pdev->dev, HPSA "device busy");
434 	return 1;
435 }
436 
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439 		struct device_attribute *attr, char *buf)
440 {
441 	int ld;
442 	struct ctlr_info *h;
443 	struct Scsi_Host *shost = class_to_shost(dev);
444 
445 	h = shost_to_hba(shost);
446 	ld = lockup_detected(h);
447 
448 	return sprintf(buf, "ld=%d\n", ld);
449 }
450 
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452 					 struct device_attribute *attr,
453 					 const char *buf, size_t count)
454 {
455 	int status, len;
456 	struct ctlr_info *h;
457 	struct Scsi_Host *shost = class_to_shost(dev);
458 	char tmpbuf[10];
459 
460 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 		return -EACCES;
462 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 	strncpy(tmpbuf, buf, len);
464 	tmpbuf[len] = '\0';
465 	if (sscanf(tmpbuf, "%d", &status) != 1)
466 		return -EINVAL;
467 	h = shost_to_hba(shost);
468 	h->acciopath_status = !!status;
469 	dev_warn(&h->pdev->dev,
470 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
471 		h->acciopath_status ? "enabled" : "disabled");
472 	return count;
473 }
474 
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476 					 struct device_attribute *attr,
477 					 const char *buf, size_t count)
478 {
479 	int debug_level, len;
480 	struct ctlr_info *h;
481 	struct Scsi_Host *shost = class_to_shost(dev);
482 	char tmpbuf[10];
483 
484 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485 		return -EACCES;
486 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487 	strncpy(tmpbuf, buf, len);
488 	tmpbuf[len] = '\0';
489 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490 		return -EINVAL;
491 	if (debug_level < 0)
492 		debug_level = 0;
493 	h = shost_to_hba(shost);
494 	h->raid_offload_debug = debug_level;
495 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496 		h->raid_offload_debug);
497 	return count;
498 }
499 
500 static ssize_t host_store_rescan(struct device *dev,
501 				 struct device_attribute *attr,
502 				 const char *buf, size_t count)
503 {
504 	struct ctlr_info *h;
505 	struct Scsi_Host *shost = class_to_shost(dev);
506 	h = shost_to_hba(shost);
507 	hpsa_scan_start(h->scsi_host);
508 	return count;
509 }
510 
511 static ssize_t host_show_firmware_revision(struct device *dev,
512 	     struct device_attribute *attr, char *buf)
513 {
514 	struct ctlr_info *h;
515 	struct Scsi_Host *shost = class_to_shost(dev);
516 	unsigned char *fwrev;
517 
518 	h = shost_to_hba(shost);
519 	if (!h->hba_inquiry_data)
520 		return 0;
521 	fwrev = &h->hba_inquiry_data[32];
522 	return snprintf(buf, 20, "%c%c%c%c\n",
523 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
524 }
525 
526 static ssize_t host_show_commands_outstanding(struct device *dev,
527 	     struct device_attribute *attr, char *buf)
528 {
529 	struct Scsi_Host *shost = class_to_shost(dev);
530 	struct ctlr_info *h = shost_to_hba(shost);
531 
532 	return snprintf(buf, 20, "%d\n",
533 			atomic_read(&h->commands_outstanding));
534 }
535 
536 static ssize_t host_show_transport_mode(struct device *dev,
537 	struct device_attribute *attr, char *buf)
538 {
539 	struct ctlr_info *h;
540 	struct Scsi_Host *shost = class_to_shost(dev);
541 
542 	h = shost_to_hba(shost);
543 	return snprintf(buf, 20, "%s\n",
544 		h->transMethod & CFGTBL_Trans_Performant ?
545 			"performant" : "simple");
546 }
547 
548 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
549 	struct device_attribute *attr, char *buf)
550 {
551 	struct ctlr_info *h;
552 	struct Scsi_Host *shost = class_to_shost(dev);
553 
554 	h = shost_to_hba(shost);
555 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
556 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
557 }
558 
559 /* List of controllers which cannot be hard reset on kexec with reset_devices */
560 static u32 unresettable_controller[] = {
561 	0x324a103C, /* Smart Array P712m */
562 	0x324b103C, /* Smart Array P711m */
563 	0x3223103C, /* Smart Array P800 */
564 	0x3234103C, /* Smart Array P400 */
565 	0x3235103C, /* Smart Array P400i */
566 	0x3211103C, /* Smart Array E200i */
567 	0x3212103C, /* Smart Array E200 */
568 	0x3213103C, /* Smart Array E200i */
569 	0x3214103C, /* Smart Array E200i */
570 	0x3215103C, /* Smart Array E200i */
571 	0x3237103C, /* Smart Array E500 */
572 	0x323D103C, /* Smart Array P700m */
573 	0x40800E11, /* Smart Array 5i */
574 	0x409C0E11, /* Smart Array 6400 */
575 	0x409D0E11, /* Smart Array 6400 EM */
576 	0x40700E11, /* Smart Array 5300 */
577 	0x40820E11, /* Smart Array 532 */
578 	0x40830E11, /* Smart Array 5312 */
579 	0x409A0E11, /* Smart Array 641 */
580 	0x409B0E11, /* Smart Array 642 */
581 	0x40910E11, /* Smart Array 6i */
582 };
583 
584 /* List of controllers which cannot even be soft reset */
585 static u32 soft_unresettable_controller[] = {
586 	0x40800E11, /* Smart Array 5i */
587 	0x40700E11, /* Smart Array 5300 */
588 	0x40820E11, /* Smart Array 532 */
589 	0x40830E11, /* Smart Array 5312 */
590 	0x409A0E11, /* Smart Array 641 */
591 	0x409B0E11, /* Smart Array 642 */
592 	0x40910E11, /* Smart Array 6i */
593 	/* Exclude 640x boards.  These are two pci devices in one slot
594 	 * which share a battery backed cache module.  One controls the
595 	 * cache, the other accesses the cache through the one that controls
596 	 * it.  If we reset the one controlling the cache, the other will
597 	 * likely not be happy.  Just forbid resetting this conjoined mess.
598 	 * The 640x isn't really supported by hpsa anyway.
599 	 */
600 	0x409C0E11, /* Smart Array 6400 */
601 	0x409D0E11, /* Smart Array 6400 EM */
602 };
603 
604 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
605 {
606 	int i;
607 
608 	for (i = 0; i < nelems; i++)
609 		if (a[i] == board_id)
610 			return 1;
611 	return 0;
612 }
613 
614 static int ctlr_is_hard_resettable(u32 board_id)
615 {
616 	return !board_id_in_array(unresettable_controller,
617 			ARRAY_SIZE(unresettable_controller), board_id);
618 }
619 
620 static int ctlr_is_soft_resettable(u32 board_id)
621 {
622 	return !board_id_in_array(soft_unresettable_controller,
623 			ARRAY_SIZE(soft_unresettable_controller), board_id);
624 }
625 
626 static int ctlr_is_resettable(u32 board_id)
627 {
628 	return ctlr_is_hard_resettable(board_id) ||
629 		ctlr_is_soft_resettable(board_id);
630 }
631 
632 static ssize_t host_show_resettable(struct device *dev,
633 	struct device_attribute *attr, char *buf)
634 {
635 	struct ctlr_info *h;
636 	struct Scsi_Host *shost = class_to_shost(dev);
637 
638 	h = shost_to_hba(shost);
639 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
640 }
641 
642 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
643 {
644 	return (scsi3addr[3] & 0xC0) == 0x40;
645 }
646 
647 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
648 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
649 };
650 #define HPSA_RAID_0	0
651 #define HPSA_RAID_4	1
652 #define HPSA_RAID_1	2	/* also used for RAID 10 */
653 #define HPSA_RAID_5	3	/* also used for RAID 50 */
654 #define HPSA_RAID_51	4
655 #define HPSA_RAID_6	5	/* also used for RAID 60 */
656 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
657 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
658 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
659 
660 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
661 {
662 	return !device->physical_device;
663 }
664 
665 static ssize_t raid_level_show(struct device *dev,
666 	     struct device_attribute *attr, char *buf)
667 {
668 	ssize_t l = 0;
669 	unsigned char rlevel;
670 	struct ctlr_info *h;
671 	struct scsi_device *sdev;
672 	struct hpsa_scsi_dev_t *hdev;
673 	unsigned long flags;
674 
675 	sdev = to_scsi_device(dev);
676 	h = sdev_to_hba(sdev);
677 	spin_lock_irqsave(&h->lock, flags);
678 	hdev = sdev->hostdata;
679 	if (!hdev) {
680 		spin_unlock_irqrestore(&h->lock, flags);
681 		return -ENODEV;
682 	}
683 
684 	/* Is this even a logical drive? */
685 	if (!is_logical_device(hdev)) {
686 		spin_unlock_irqrestore(&h->lock, flags);
687 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
688 		return l;
689 	}
690 
691 	rlevel = hdev->raid_level;
692 	spin_unlock_irqrestore(&h->lock, flags);
693 	if (rlevel > RAID_UNKNOWN)
694 		rlevel = RAID_UNKNOWN;
695 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
696 	return l;
697 }
698 
699 static ssize_t lunid_show(struct device *dev,
700 	     struct device_attribute *attr, char *buf)
701 {
702 	struct ctlr_info *h;
703 	struct scsi_device *sdev;
704 	struct hpsa_scsi_dev_t *hdev;
705 	unsigned long flags;
706 	unsigned char lunid[8];
707 
708 	sdev = to_scsi_device(dev);
709 	h = sdev_to_hba(sdev);
710 	spin_lock_irqsave(&h->lock, flags);
711 	hdev = sdev->hostdata;
712 	if (!hdev) {
713 		spin_unlock_irqrestore(&h->lock, flags);
714 		return -ENODEV;
715 	}
716 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
717 	spin_unlock_irqrestore(&h->lock, flags);
718 	return snprintf(buf, 20, "0x%8phN\n", lunid);
719 }
720 
721 static ssize_t unique_id_show(struct device *dev,
722 	     struct device_attribute *attr, char *buf)
723 {
724 	struct ctlr_info *h;
725 	struct scsi_device *sdev;
726 	struct hpsa_scsi_dev_t *hdev;
727 	unsigned long flags;
728 	unsigned char sn[16];
729 
730 	sdev = to_scsi_device(dev);
731 	h = sdev_to_hba(sdev);
732 	spin_lock_irqsave(&h->lock, flags);
733 	hdev = sdev->hostdata;
734 	if (!hdev) {
735 		spin_unlock_irqrestore(&h->lock, flags);
736 		return -ENODEV;
737 	}
738 	memcpy(sn, hdev->device_id, sizeof(sn));
739 	spin_unlock_irqrestore(&h->lock, flags);
740 	return snprintf(buf, 16 * 2 + 2,
741 			"%02X%02X%02X%02X%02X%02X%02X%02X"
742 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
743 			sn[0], sn[1], sn[2], sn[3],
744 			sn[4], sn[5], sn[6], sn[7],
745 			sn[8], sn[9], sn[10], sn[11],
746 			sn[12], sn[13], sn[14], sn[15]);
747 }
748 
749 static ssize_t sas_address_show(struct device *dev,
750 	      struct device_attribute *attr, char *buf)
751 {
752 	struct ctlr_info *h;
753 	struct scsi_device *sdev;
754 	struct hpsa_scsi_dev_t *hdev;
755 	unsigned long flags;
756 	u64 sas_address;
757 
758 	sdev = to_scsi_device(dev);
759 	h = sdev_to_hba(sdev);
760 	spin_lock_irqsave(&h->lock, flags);
761 	hdev = sdev->hostdata;
762 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
763 		spin_unlock_irqrestore(&h->lock, flags);
764 		return -ENODEV;
765 	}
766 	sas_address = hdev->sas_address;
767 	spin_unlock_irqrestore(&h->lock, flags);
768 
769 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
770 }
771 
772 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
773 	     struct device_attribute *attr, char *buf)
774 {
775 	struct ctlr_info *h;
776 	struct scsi_device *sdev;
777 	struct hpsa_scsi_dev_t *hdev;
778 	unsigned long flags;
779 	int offload_enabled;
780 
781 	sdev = to_scsi_device(dev);
782 	h = sdev_to_hba(sdev);
783 	spin_lock_irqsave(&h->lock, flags);
784 	hdev = sdev->hostdata;
785 	if (!hdev) {
786 		spin_unlock_irqrestore(&h->lock, flags);
787 		return -ENODEV;
788 	}
789 	offload_enabled = hdev->offload_enabled;
790 	spin_unlock_irqrestore(&h->lock, flags);
791 
792 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
793 		return snprintf(buf, 20, "%d\n", offload_enabled);
794 	else
795 		return snprintf(buf, 40, "%s\n",
796 				"Not applicable for a controller");
797 }
798 
799 #define MAX_PATHS 8
800 static ssize_t path_info_show(struct device *dev,
801 	     struct device_attribute *attr, char *buf)
802 {
803 	struct ctlr_info *h;
804 	struct scsi_device *sdev;
805 	struct hpsa_scsi_dev_t *hdev;
806 	unsigned long flags;
807 	int i;
808 	int output_len = 0;
809 	u8 box;
810 	u8 bay;
811 	u8 path_map_index = 0;
812 	char *active;
813 	unsigned char phys_connector[2];
814 
815 	sdev = to_scsi_device(dev);
816 	h = sdev_to_hba(sdev);
817 	spin_lock_irqsave(&h->devlock, flags);
818 	hdev = sdev->hostdata;
819 	if (!hdev) {
820 		spin_unlock_irqrestore(&h->devlock, flags);
821 		return -ENODEV;
822 	}
823 
824 	bay = hdev->bay;
825 	for (i = 0; i < MAX_PATHS; i++) {
826 		path_map_index = 1<<i;
827 		if (i == hdev->active_path_index)
828 			active = "Active";
829 		else if (hdev->path_map & path_map_index)
830 			active = "Inactive";
831 		else
832 			continue;
833 
834 		output_len += scnprintf(buf + output_len,
835 				PAGE_SIZE - output_len,
836 				"[%d:%d:%d:%d] %20.20s ",
837 				h->scsi_host->host_no,
838 				hdev->bus, hdev->target, hdev->lun,
839 				scsi_device_type(hdev->devtype));
840 
841 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
842 			output_len += scnprintf(buf + output_len,
843 						PAGE_SIZE - output_len,
844 						"%s\n", active);
845 			continue;
846 		}
847 
848 		box = hdev->box[i];
849 		memcpy(&phys_connector, &hdev->phys_connector[i],
850 			sizeof(phys_connector));
851 		if (phys_connector[0] < '0')
852 			phys_connector[0] = '0';
853 		if (phys_connector[1] < '0')
854 			phys_connector[1] = '0';
855 		output_len += scnprintf(buf + output_len,
856 				PAGE_SIZE - output_len,
857 				"PORT: %.2s ",
858 				phys_connector);
859 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
860 			hdev->expose_device) {
861 			if (box == 0 || box == 0xFF) {
862 				output_len += scnprintf(buf + output_len,
863 					PAGE_SIZE - output_len,
864 					"BAY: %hhu %s\n",
865 					bay, active);
866 			} else {
867 				output_len += scnprintf(buf + output_len,
868 					PAGE_SIZE - output_len,
869 					"BOX: %hhu BAY: %hhu %s\n",
870 					box, bay, active);
871 			}
872 		} else if (box != 0 && box != 0xFF) {
873 			output_len += scnprintf(buf + output_len,
874 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
875 				box, active);
876 		} else
877 			output_len += scnprintf(buf + output_len,
878 				PAGE_SIZE - output_len, "%s\n", active);
879 	}
880 
881 	spin_unlock_irqrestore(&h->devlock, flags);
882 	return output_len;
883 }
884 
885 static ssize_t host_show_ctlr_num(struct device *dev,
886 	struct device_attribute *attr, char *buf)
887 {
888 	struct ctlr_info *h;
889 	struct Scsi_Host *shost = class_to_shost(dev);
890 
891 	h = shost_to_hba(shost);
892 	return snprintf(buf, 20, "%d\n", h->ctlr);
893 }
894 
895 static ssize_t host_show_legacy_board(struct device *dev,
896 	struct device_attribute *attr, char *buf)
897 {
898 	struct ctlr_info *h;
899 	struct Scsi_Host *shost = class_to_shost(dev);
900 
901 	h = shost_to_hba(shost);
902 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
903 }
904 
905 static DEVICE_ATTR_RO(raid_level);
906 static DEVICE_ATTR_RO(lunid);
907 static DEVICE_ATTR_RO(unique_id);
908 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
909 static DEVICE_ATTR_RO(sas_address);
910 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
911 			host_show_hp_ssd_smart_path_enabled, NULL);
912 static DEVICE_ATTR_RO(path_info);
913 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
914 		host_show_hp_ssd_smart_path_status,
915 		host_store_hp_ssd_smart_path_status);
916 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
917 			host_store_raid_offload_debug);
918 static DEVICE_ATTR(firmware_revision, S_IRUGO,
919 	host_show_firmware_revision, NULL);
920 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
921 	host_show_commands_outstanding, NULL);
922 static DEVICE_ATTR(transport_mode, S_IRUGO,
923 	host_show_transport_mode, NULL);
924 static DEVICE_ATTR(resettable, S_IRUGO,
925 	host_show_resettable, NULL);
926 static DEVICE_ATTR(lockup_detected, S_IRUGO,
927 	host_show_lockup_detected, NULL);
928 static DEVICE_ATTR(ctlr_num, S_IRUGO,
929 	host_show_ctlr_num, NULL);
930 static DEVICE_ATTR(legacy_board, S_IRUGO,
931 	host_show_legacy_board, NULL);
932 
933 static struct device_attribute *hpsa_sdev_attrs[] = {
934 	&dev_attr_raid_level,
935 	&dev_attr_lunid,
936 	&dev_attr_unique_id,
937 	&dev_attr_hp_ssd_smart_path_enabled,
938 	&dev_attr_path_info,
939 	&dev_attr_sas_address,
940 	NULL,
941 };
942 
943 static struct device_attribute *hpsa_shost_attrs[] = {
944 	&dev_attr_rescan,
945 	&dev_attr_firmware_revision,
946 	&dev_attr_commands_outstanding,
947 	&dev_attr_transport_mode,
948 	&dev_attr_resettable,
949 	&dev_attr_hp_ssd_smart_path_status,
950 	&dev_attr_raid_offload_debug,
951 	&dev_attr_lockup_detected,
952 	&dev_attr_ctlr_num,
953 	&dev_attr_legacy_board,
954 	NULL,
955 };
956 
957 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
958 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
959 
960 static struct scsi_host_template hpsa_driver_template = {
961 	.module			= THIS_MODULE,
962 	.name			= HPSA,
963 	.proc_name		= HPSA,
964 	.queuecommand		= hpsa_scsi_queue_command,
965 	.scan_start		= hpsa_scan_start,
966 	.scan_finished		= hpsa_scan_finished,
967 	.change_queue_depth	= hpsa_change_queue_depth,
968 	.this_id		= -1,
969 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
970 	.ioctl			= hpsa_ioctl,
971 	.slave_alloc		= hpsa_slave_alloc,
972 	.slave_configure	= hpsa_slave_configure,
973 	.slave_destroy		= hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975 	.compat_ioctl		= hpsa_compat_ioctl,
976 #endif
977 	.sdev_attrs = hpsa_sdev_attrs,
978 	.shost_attrs = hpsa_shost_attrs,
979 	.max_sectors = 2048,
980 	.no_write_same = 1,
981 };
982 
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985 	u32 a;
986 	struct reply_queue_buffer *rq = &h->reply_queue[q];
987 
988 	if (h->transMethod & CFGTBL_Trans_io_accel1)
989 		return h->access.command_completed(h, q);
990 
991 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992 		return h->access.command_completed(h, q);
993 
994 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995 		a = rq->head[rq->current_entry];
996 		rq->current_entry++;
997 		atomic_dec(&h->commands_outstanding);
998 	} else {
999 		a = FIFO_EMPTY;
1000 	}
1001 	/* Check for wraparound */
1002 	if (rq->current_entry == h->max_commands) {
1003 		rq->current_entry = 0;
1004 		rq->wraparound ^= 1;
1005 	}
1006 	return a;
1007 }
1008 
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034 
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042 					int reply_queue)
1043 {
1044 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046 		if (unlikely(!h->msix_vectors))
1047 			return;
1048 		c->Header.ReplyQueue = reply_queue;
1049 	}
1050 }
1051 
1052 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053 						struct CommandList *c,
1054 						int reply_queue)
1055 {
1056 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057 
1058 	/*
1059 	 * Tell the controller to post the reply to the queue for this
1060 	 * processor.  This seems to give the best I/O throughput.
1061 	 */
1062 	cp->ReplyQueue = reply_queue;
1063 	/*
1064 	 * Set the bits in the address sent down to include:
1065 	 *  - performant mode bit (bit 0)
1066 	 *  - pull count (bits 1-3)
1067 	 *  - command type (bits 4-6)
1068 	 */
1069 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070 					IOACCEL1_BUSADDR_CMDTYPE;
1071 }
1072 
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074 						struct CommandList *c,
1075 						int reply_queue)
1076 {
1077 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078 		&h->ioaccel2_cmd_pool[c->cmdindex];
1079 
1080 	/* Tell the controller to post the reply to the queue for this
1081 	 * processor.  This seems to give the best I/O throughput.
1082 	 */
1083 	cp->reply_queue = reply_queue;
1084 	/* Set the bits in the address sent down to include:
1085 	 *  - performant mode bit not used in ioaccel mode 2
1086 	 *  - pull count (bits 0-3)
1087 	 *  - command type isn't needed for ioaccel2
1088 	 */
1089 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090 }
1091 
1092 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093 						struct CommandList *c,
1094 						int reply_queue)
1095 {
1096 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097 
1098 	/*
1099 	 * Tell the controller to post the reply to the queue for this
1100 	 * processor.  This seems to give the best I/O throughput.
1101 	 */
1102 	cp->reply_queue = reply_queue;
1103 	/*
1104 	 * Set the bits in the address sent down to include:
1105 	 *  - performant mode bit not used in ioaccel mode 2
1106 	 *  - pull count (bits 0-3)
1107 	 *  - command type isn't needed for ioaccel2
1108 	 */
1109 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110 }
1111 
1112 static int is_firmware_flash_cmd(u8 *cdb)
1113 {
1114 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115 }
1116 
1117 /*
1118  * During firmware flash, the heartbeat register may not update as frequently
1119  * as it should.  So we dial down lockup detection during firmware flash. and
1120  * dial it back up when firmware flash completes.
1121  */
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126 		struct CommandList *c)
1127 {
1128 	if (!is_firmware_flash_cmd(c->Request.CDB))
1129 		return;
1130 	atomic_inc(&h->firmware_flash_in_progress);
1131 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132 }
1133 
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135 		struct CommandList *c)
1136 {
1137 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1138 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1139 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140 }
1141 
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143 	struct CommandList *c, int reply_queue)
1144 {
1145 	dial_down_lockup_detection_during_fw_flash(h, c);
1146 	atomic_inc(&h->commands_outstanding);
1147 
1148 	reply_queue = h->reply_map[raw_smp_processor_id()];
1149 	switch (c->cmd_type) {
1150 	case CMD_IOACCEL1:
1151 		set_ioaccel1_performant_mode(h, c, reply_queue);
1152 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153 		break;
1154 	case CMD_IOACCEL2:
1155 		set_ioaccel2_performant_mode(h, c, reply_queue);
1156 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157 		break;
1158 	case IOACCEL2_TMF:
1159 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161 		break;
1162 	default:
1163 		set_performant_mode(h, c, reply_queue);
1164 		h->access.submit_command(h, c);
1165 	}
1166 }
1167 
1168 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169 {
1170 	if (unlikely(hpsa_is_pending_event(c)))
1171 		return finish_cmd(c);
1172 
1173 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174 }
1175 
1176 static inline int is_hba_lunid(unsigned char scsi3addr[])
1177 {
1178 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179 }
1180 
1181 static inline int is_scsi_rev_5(struct ctlr_info *h)
1182 {
1183 	if (!h->hba_inquiry_data)
1184 		return 0;
1185 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186 		return 1;
1187 	return 0;
1188 }
1189 
1190 static int hpsa_find_target_lun(struct ctlr_info *h,
1191 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1192 {
1193 	/* finds an unused bus, target, lun for a new physical device
1194 	 * assumes h->devlock is held
1195 	 */
1196 	int i, found = 0;
1197 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198 
1199 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200 
1201 	for (i = 0; i < h->ndevices; i++) {
1202 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203 			__set_bit(h->dev[i]->target, lun_taken);
1204 	}
1205 
1206 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207 	if (i < HPSA_MAX_DEVICES) {
1208 		/* *bus = 1; */
1209 		*target = i;
1210 		*lun = 0;
1211 		found = 1;
1212 	}
1213 	return !found;
1214 }
1215 
1216 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217 	struct hpsa_scsi_dev_t *dev, char *description)
1218 {
1219 #define LABEL_SIZE 25
1220 	char label[LABEL_SIZE];
1221 
1222 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223 		return;
1224 
1225 	switch (dev->devtype) {
1226 	case TYPE_RAID:
1227 		snprintf(label, LABEL_SIZE, "controller");
1228 		break;
1229 	case TYPE_ENCLOSURE:
1230 		snprintf(label, LABEL_SIZE, "enclosure");
1231 		break;
1232 	case TYPE_DISK:
1233 	case TYPE_ZBC:
1234 		if (dev->external)
1235 			snprintf(label, LABEL_SIZE, "external");
1236 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237 			snprintf(label, LABEL_SIZE, "%s",
1238 				raid_label[PHYSICAL_DRIVE]);
1239 		else
1240 			snprintf(label, LABEL_SIZE, "RAID-%s",
1241 				dev->raid_level > RAID_UNKNOWN ? "?" :
1242 				raid_label[dev->raid_level]);
1243 		break;
1244 	case TYPE_ROM:
1245 		snprintf(label, LABEL_SIZE, "rom");
1246 		break;
1247 	case TYPE_TAPE:
1248 		snprintf(label, LABEL_SIZE, "tape");
1249 		break;
1250 	case TYPE_MEDIUM_CHANGER:
1251 		snprintf(label, LABEL_SIZE, "changer");
1252 		break;
1253 	default:
1254 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1255 		break;
1256 	}
1257 
1258 	dev_printk(level, &h->pdev->dev,
1259 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261 			description,
1262 			scsi_device_type(dev->devtype),
1263 			dev->vendor,
1264 			dev->model,
1265 			label,
1266 			dev->offload_config ? '+' : '-',
1267 			dev->offload_to_be_enabled ? '+' : '-',
1268 			dev->expose_device);
1269 }
1270 
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273 		struct hpsa_scsi_dev_t *device,
1274 		struct hpsa_scsi_dev_t *added[], int *nadded)
1275 {
1276 	/* assumes h->devlock is held */
1277 	int n = h->ndevices;
1278 	int i;
1279 	unsigned char addr1[8], addr2[8];
1280 	struct hpsa_scsi_dev_t *sd;
1281 
1282 	if (n >= HPSA_MAX_DEVICES) {
1283 		dev_err(&h->pdev->dev, "too many devices, some will be "
1284 			"inaccessible.\n");
1285 		return -1;
1286 	}
1287 
1288 	/* physical devices do not have lun or target assigned until now. */
1289 	if (device->lun != -1)
1290 		/* Logical device, lun is already assigned. */
1291 		goto lun_assigned;
1292 
1293 	/* If this device a non-zero lun of a multi-lun device
1294 	 * byte 4 of the 8-byte LUN addr will contain the logical
1295 	 * unit no, zero otherwise.
1296 	 */
1297 	if (device->scsi3addr[4] == 0) {
1298 		/* This is not a non-zero lun of a multi-lun device */
1299 		if (hpsa_find_target_lun(h, device->scsi3addr,
1300 			device->bus, &device->target, &device->lun) != 0)
1301 			return -1;
1302 		goto lun_assigned;
1303 	}
1304 
1305 	/* This is a non-zero lun of a multi-lun device.
1306 	 * Search through our list and find the device which
1307 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1308 	 * Assign the same bus and target for this new LUN.
1309 	 * Use the logical unit number from the firmware.
1310 	 */
1311 	memcpy(addr1, device->scsi3addr, 8);
1312 	addr1[4] = 0;
1313 	addr1[5] = 0;
1314 	for (i = 0; i < n; i++) {
1315 		sd = h->dev[i];
1316 		memcpy(addr2, sd->scsi3addr, 8);
1317 		addr2[4] = 0;
1318 		addr2[5] = 0;
1319 		/* differ only in byte 4 and 5? */
1320 		if (memcmp(addr1, addr2, 8) == 0) {
1321 			device->bus = sd->bus;
1322 			device->target = sd->target;
1323 			device->lun = device->scsi3addr[4];
1324 			break;
1325 		}
1326 	}
1327 	if (device->lun == -1) {
1328 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329 			" suspect firmware bug or unsupported hardware "
1330 			"configuration.\n");
1331 		return -1;
1332 	}
1333 
1334 lun_assigned:
1335 
1336 	h->dev[n] = device;
1337 	h->ndevices++;
1338 	added[*nadded] = device;
1339 	(*nadded)++;
1340 	hpsa_show_dev_msg(KERN_INFO, h, device,
1341 		device->expose_device ? "added" : "masked");
1342 	return 0;
1343 }
1344 
1345 /*
1346  * Called during a scan operation.
1347  *
1348  * Update an entry in h->dev[] array.
1349  */
1350 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351 	int entry, struct hpsa_scsi_dev_t *new_entry)
1352 {
1353 	/* assumes h->devlock is held */
1354 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355 
1356 	/* Raid level changed. */
1357 	h->dev[entry]->raid_level = new_entry->raid_level;
1358 
1359 	/*
1360 	 * ioacccel_handle may have changed for a dual domain disk
1361 	 */
1362 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363 
1364 	/* Raid offload parameters changed.  Careful about the ordering. */
1365 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366 		/*
1367 		 * if drive is newly offload_enabled, we want to copy the
1368 		 * raid map data first.  If previously offload_enabled and
1369 		 * offload_config were set, raid map data had better be
1370 		 * the same as it was before. If raid map data has changed
1371 		 * then it had better be the case that
1372 		 * h->dev[entry]->offload_enabled is currently 0.
1373 		 */
1374 		h->dev[entry]->raid_map = new_entry->raid_map;
1375 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376 	}
1377 	if (new_entry->offload_to_be_enabled) {
1378 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380 	}
1381 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382 	h->dev[entry]->offload_config = new_entry->offload_config;
1383 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1385 
1386 	/*
1387 	 * We can turn off ioaccel offload now, but need to delay turning
1388 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389 	 * can't do that until all the devices are updated.
1390 	 */
1391 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392 
1393 	/*
1394 	 * turn ioaccel off immediately if told to do so.
1395 	 */
1396 	if (!new_entry->offload_to_be_enabled)
1397 		h->dev[entry]->offload_enabled = 0;
1398 
1399 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400 }
1401 
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404 	int entry, struct hpsa_scsi_dev_t *new_entry,
1405 	struct hpsa_scsi_dev_t *added[], int *nadded,
1406 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407 {
1408 	/* assumes h->devlock is held */
1409 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410 	removed[*nremoved] = h->dev[entry];
1411 	(*nremoved)++;
1412 
1413 	/*
1414 	 * New physical devices won't have target/lun assigned yet
1415 	 * so we need to preserve the values in the slot we are replacing.
1416 	 */
1417 	if (new_entry->target == -1) {
1418 		new_entry->target = h->dev[entry]->target;
1419 		new_entry->lun = h->dev[entry]->lun;
1420 	}
1421 
1422 	h->dev[entry] = new_entry;
1423 	added[*nadded] = new_entry;
1424 	(*nadded)++;
1425 
1426 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427 }
1428 
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433 	/* assumes h->devlock is held */
1434 	int i;
1435 	struct hpsa_scsi_dev_t *sd;
1436 
1437 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438 
1439 	sd = h->dev[entry];
1440 	removed[*nremoved] = h->dev[entry];
1441 	(*nremoved)++;
1442 
1443 	for (i = entry; i < h->ndevices-1; i++)
1444 		h->dev[i] = h->dev[i+1];
1445 	h->ndevices--;
1446 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448 
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450 	(a)[7] == (b)[7] && \
1451 	(a)[6] == (b)[6] && \
1452 	(a)[5] == (b)[5] && \
1453 	(a)[4] == (b)[4] && \
1454 	(a)[3] == (b)[3] && \
1455 	(a)[2] == (b)[2] && \
1456 	(a)[1] == (b)[1] && \
1457 	(a)[0] == (b)[0])
1458 
1459 static void fixup_botched_add(struct ctlr_info *h,
1460 	struct hpsa_scsi_dev_t *added)
1461 {
1462 	/* called when scsi_add_device fails in order to re-adjust
1463 	 * h->dev[] to match the mid layer's view.
1464 	 */
1465 	unsigned long flags;
1466 	int i, j;
1467 
1468 	spin_lock_irqsave(&h->lock, flags);
1469 	for (i = 0; i < h->ndevices; i++) {
1470 		if (h->dev[i] == added) {
1471 			for (j = i; j < h->ndevices-1; j++)
1472 				h->dev[j] = h->dev[j+1];
1473 			h->ndevices--;
1474 			break;
1475 		}
1476 	}
1477 	spin_unlock_irqrestore(&h->lock, flags);
1478 	kfree(added);
1479 }
1480 
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482 	struct hpsa_scsi_dev_t *dev2)
1483 {
1484 	/* we compare everything except lun and target as these
1485 	 * are not yet assigned.  Compare parts likely
1486 	 * to differ first
1487 	 */
1488 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489 		sizeof(dev1->scsi3addr)) != 0)
1490 		return 0;
1491 	if (memcmp(dev1->device_id, dev2->device_id,
1492 		sizeof(dev1->device_id)) != 0)
1493 		return 0;
1494 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495 		return 0;
1496 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497 		return 0;
1498 	if (dev1->devtype != dev2->devtype)
1499 		return 0;
1500 	if (dev1->bus != dev2->bus)
1501 		return 0;
1502 	return 1;
1503 }
1504 
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506 	struct hpsa_scsi_dev_t *dev2)
1507 {
1508 	/* Device attributes that can change, but don't mean
1509 	 * that the device is a different device, nor that the OS
1510 	 * needs to be told anything about the change.
1511 	 */
1512 	if (dev1->raid_level != dev2->raid_level)
1513 		return 1;
1514 	if (dev1->offload_config != dev2->offload_config)
1515 		return 1;
1516 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517 		return 1;
1518 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519 		if (dev1->queue_depth != dev2->queue_depth)
1520 			return 1;
1521 	/*
1522 	 * This can happen for dual domain devices. An active
1523 	 * path change causes the ioaccel handle to change
1524 	 *
1525 	 * for example note the handle differences between p0 and p1
1526 	 * Device                    WWN               ,WWN hash,Handle
1527 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529 	 */
1530 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531 		return 1;
1532 	return 0;
1533 }
1534 
1535 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536  * and return needle location in *index.  If scsi3addr matches, but not
1537  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538  * location in *index.
1539  * In the case of a minor device attribute change, such as RAID level, just
1540  * return DEVICE_UPDATED, along with the updated device's location in index.
1541  * If needle not found, return DEVICE_NOT_FOUND.
1542  */
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545 	int *index)
1546 {
1547 	int i;
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1552 	if (needle == NULL)
1553 		return DEVICE_NOT_FOUND;
1554 
1555 	for (i = 0; i < haystack_size; i++) {
1556 		if (haystack[i] == NULL) /* previously removed. */
1557 			continue;
1558 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559 			*index = i;
1560 			if (device_is_the_same(needle, haystack[i])) {
1561 				if (device_updated(needle, haystack[i]))
1562 					return DEVICE_UPDATED;
1563 				return DEVICE_SAME;
1564 			} else {
1565 				/* Keep offline devices offline */
1566 				if (needle->volume_offline)
1567 					return DEVICE_NOT_FOUND;
1568 				return DEVICE_CHANGED;
1569 			}
1570 		}
1571 	}
1572 	*index = -1;
1573 	return DEVICE_NOT_FOUND;
1574 }
1575 
1576 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577 					unsigned char scsi3addr[])
1578 {
1579 	struct offline_device_entry *device;
1580 	unsigned long flags;
1581 
1582 	/* Check to see if device is already on the list */
1583 	spin_lock_irqsave(&h->offline_device_lock, flags);
1584 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585 		if (memcmp(device->scsi3addr, scsi3addr,
1586 			sizeof(device->scsi3addr)) == 0) {
1587 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588 			return;
1589 		}
1590 	}
1591 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592 
1593 	/* Device is not on the list, add it. */
1594 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1595 	if (!device)
1596 		return;
1597 
1598 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599 	spin_lock_irqsave(&h->offline_device_lock, flags);
1600 	list_add_tail(&device->offline_list, &h->offline_device_list);
1601 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602 }
1603 
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info *h,
1606 	struct hpsa_scsi_dev_t *sd)
1607 {
1608 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609 		dev_info(&h->pdev->dev,
1610 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611 			h->scsi_host->host_no,
1612 			sd->bus, sd->target, sd->lun);
1613 	switch (sd->volume_offline) {
1614 	case HPSA_LV_OK:
1615 		break;
1616 	case HPSA_LV_UNDERGOING_ERASE:
1617 		dev_info(&h->pdev->dev,
1618 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619 			h->scsi_host->host_no,
1620 			sd->bus, sd->target, sd->lun);
1621 		break;
1622 	case HPSA_LV_NOT_AVAILABLE:
1623 		dev_info(&h->pdev->dev,
1624 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625 			h->scsi_host->host_no,
1626 			sd->bus, sd->target, sd->lun);
1627 		break;
1628 	case HPSA_LV_UNDERGOING_RPI:
1629 		dev_info(&h->pdev->dev,
1630 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631 			h->scsi_host->host_no,
1632 			sd->bus, sd->target, sd->lun);
1633 		break;
1634 	case HPSA_LV_PENDING_RPI:
1635 		dev_info(&h->pdev->dev,
1636 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637 			h->scsi_host->host_no,
1638 			sd->bus, sd->target, sd->lun);
1639 		break;
1640 	case HPSA_LV_ENCRYPTED_NO_KEY:
1641 		dev_info(&h->pdev->dev,
1642 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643 			h->scsi_host->host_no,
1644 			sd->bus, sd->target, sd->lun);
1645 		break;
1646 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647 		dev_info(&h->pdev->dev,
1648 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649 			h->scsi_host->host_no,
1650 			sd->bus, sd->target, sd->lun);
1651 		break;
1652 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1653 		dev_info(&h->pdev->dev,
1654 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655 			h->scsi_host->host_no,
1656 			sd->bus, sd->target, sd->lun);
1657 		break;
1658 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659 		dev_info(&h->pdev->dev,
1660 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661 			h->scsi_host->host_no,
1662 			sd->bus, sd->target, sd->lun);
1663 		break;
1664 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665 		dev_info(&h->pdev->dev,
1666 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667 			h->scsi_host->host_no,
1668 			sd->bus, sd->target, sd->lun);
1669 		break;
1670 	case HPSA_LV_PENDING_ENCRYPTION:
1671 		dev_info(&h->pdev->dev,
1672 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673 			h->scsi_host->host_no,
1674 			sd->bus, sd->target, sd->lun);
1675 		break;
1676 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677 		dev_info(&h->pdev->dev,
1678 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679 			h->scsi_host->host_no,
1680 			sd->bus, sd->target, sd->lun);
1681 		break;
1682 	}
1683 }
1684 
1685 /*
1686  * Figure the list of physical drive pointers for a logical drive with
1687  * raid offload configured.
1688  */
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1691 				struct hpsa_scsi_dev_t *logical_drive)
1692 {
1693 	struct raid_map_data *map = &logical_drive->raid_map;
1694 	struct raid_map_disk_data *dd = &map->data[0];
1695 	int i, j;
1696 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697 				le16_to_cpu(map->metadata_disks_per_row);
1698 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699 				le16_to_cpu(map->layout_map_count) *
1700 				total_disks_per_row;
1701 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702 				total_disks_per_row;
1703 	int qdepth;
1704 
1705 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707 
1708 	logical_drive->nphysical_disks = nraid_map_entries;
1709 
1710 	qdepth = 0;
1711 	for (i = 0; i < nraid_map_entries; i++) {
1712 		logical_drive->phys_disk[i] = NULL;
1713 		if (!logical_drive->offload_config)
1714 			continue;
1715 		for (j = 0; j < ndevices; j++) {
1716 			if (dev[j] == NULL)
1717 				continue;
1718 			if (dev[j]->devtype != TYPE_DISK &&
1719 			    dev[j]->devtype != TYPE_ZBC)
1720 				continue;
1721 			if (is_logical_device(dev[j]))
1722 				continue;
1723 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724 				continue;
1725 
1726 			logical_drive->phys_disk[i] = dev[j];
1727 			if (i < nphys_disk)
1728 				qdepth = min(h->nr_cmds, qdepth +
1729 				    logical_drive->phys_disk[i]->queue_depth);
1730 			break;
1731 		}
1732 
1733 		/*
1734 		 * This can happen if a physical drive is removed and
1735 		 * the logical drive is degraded.  In that case, the RAID
1736 		 * map data will refer to a physical disk which isn't actually
1737 		 * present.  And in that case offload_enabled should already
1738 		 * be 0, but we'll turn it off here just in case
1739 		 */
1740 		if (!logical_drive->phys_disk[i]) {
1741 			dev_warn(&h->pdev->dev,
1742 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743 				__func__,
1744 				h->scsi_host->host_no, logical_drive->bus,
1745 				logical_drive->target, logical_drive->lun);
1746 			logical_drive->offload_enabled = 0;
1747 			logical_drive->offload_to_be_enabled = 0;
1748 			logical_drive->queue_depth = 8;
1749 		}
1750 	}
1751 	if (nraid_map_entries)
1752 		/*
1753 		 * This is correct for reads, too high for full stripe writes,
1754 		 * way too high for partial stripe writes
1755 		 */
1756 		logical_drive->queue_depth = qdepth;
1757 	else {
1758 		if (logical_drive->external)
1759 			logical_drive->queue_depth = EXTERNAL_QD;
1760 		else
1761 			logical_drive->queue_depth = h->nr_cmds;
1762 	}
1763 }
1764 
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1767 {
1768 	int i;
1769 
1770 	for (i = 0; i < ndevices; i++) {
1771 		if (dev[i] == NULL)
1772 			continue;
1773 		if (dev[i]->devtype != TYPE_DISK &&
1774 		    dev[i]->devtype != TYPE_ZBC)
1775 			continue;
1776 		if (!is_logical_device(dev[i]))
1777 			continue;
1778 
1779 		/*
1780 		 * If offload is currently enabled, the RAID map and
1781 		 * phys_disk[] assignment *better* not be changing
1782 		 * because we would be changing ioaccel phsy_disk[] pointers
1783 		 * on a ioaccel volume processing I/O requests.
1784 		 *
1785 		 * If an ioaccel volume status changed, initially because it was
1786 		 * re-configured and thus underwent a transformation, or
1787 		 * a drive failed, we would have received a state change
1788 		 * request and ioaccel should have been turned off. When the
1789 		 * transformation completes, we get another state change
1790 		 * request to turn ioaccel back on. In this case, we need
1791 		 * to update the ioaccel information.
1792 		 *
1793 		 * Thus: If it is not currently enabled, but will be after
1794 		 * the scan completes, make sure the ioaccel pointers
1795 		 * are up to date.
1796 		 */
1797 
1798 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800 	}
1801 }
1802 
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804 {
1805 	int rc = 0;
1806 
1807 	if (!h->scsi_host)
1808 		return 1;
1809 
1810 	if (is_logical_device(device)) /* RAID */
1811 		rc = scsi_add_device(h->scsi_host, device->bus,
1812 					device->target, device->lun);
1813 	else /* HBA */
1814 		rc = hpsa_add_sas_device(h->sas_host, device);
1815 
1816 	return rc;
1817 }
1818 
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820 						struct hpsa_scsi_dev_t *dev)
1821 {
1822 	int i;
1823 	int count = 0;
1824 
1825 	for (i = 0; i < h->nr_cmds; i++) {
1826 		struct CommandList *c = h->cmd_pool + i;
1827 		int refcount = atomic_inc_return(&c->refcount);
1828 
1829 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830 				dev->scsi3addr)) {
1831 			unsigned long flags;
1832 
1833 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1834 			if (!hpsa_is_cmd_idle(c))
1835 				++count;
1836 			spin_unlock_irqrestore(&h->lock, flags);
1837 		}
1838 
1839 		cmd_free(h, c);
1840 	}
1841 
1842 	return count;
1843 }
1844 
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846 						struct hpsa_scsi_dev_t *device)
1847 {
1848 	int cmds = 0;
1849 	int waits = 0;
1850 
1851 	while (1) {
1852 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853 		if (cmds == 0)
1854 			break;
1855 		if (++waits > 20)
1856 			break;
1857 		msleep(1000);
1858 	}
1859 
1860 	if (waits > 20)
1861 		dev_warn(&h->pdev->dev,
1862 			"%s: removing device with %d outstanding commands!\n",
1863 			__func__, cmds);
1864 }
1865 
1866 static void hpsa_remove_device(struct ctlr_info *h,
1867 			struct hpsa_scsi_dev_t *device)
1868 {
1869 	struct scsi_device *sdev = NULL;
1870 
1871 	if (!h->scsi_host)
1872 		return;
1873 
1874 	/*
1875 	 * Allow for commands to drain
1876 	 */
1877 	device->removed = 1;
1878 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879 
1880 	if (is_logical_device(device)) { /* RAID */
1881 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882 						device->target, device->lun);
1883 		if (sdev) {
1884 			scsi_remove_device(sdev);
1885 			scsi_device_put(sdev);
1886 		} else {
1887 			/*
1888 			 * We don't expect to get here.  Future commands
1889 			 * to this device will get a selection timeout as
1890 			 * if the device were gone.
1891 			 */
1892 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1893 					"didn't find device for removal.");
1894 		}
1895 	} else { /* HBA */
1896 
1897 		hpsa_remove_sas_device(device);
1898 	}
1899 }
1900 
1901 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902 	struct hpsa_scsi_dev_t *sd[], int nsds)
1903 {
1904 	/* sd contains scsi3 addresses and devtypes, and inquiry
1905 	 * data.  This function takes what's in sd to be the current
1906 	 * reality and updates h->dev[] to reflect that reality.
1907 	 */
1908 	int i, entry, device_change, changes = 0;
1909 	struct hpsa_scsi_dev_t *csd;
1910 	unsigned long flags;
1911 	struct hpsa_scsi_dev_t **added, **removed;
1912 	int nadded, nremoved;
1913 
1914 	/*
1915 	 * A reset can cause a device status to change
1916 	 * re-schedule the scan to see what happened.
1917 	 */
1918 	spin_lock_irqsave(&h->reset_lock, flags);
1919 	if (h->reset_in_progress) {
1920 		h->drv_req_rescan = 1;
1921 		spin_unlock_irqrestore(&h->reset_lock, flags);
1922 		return;
1923 	}
1924 	spin_unlock_irqrestore(&h->reset_lock, flags);
1925 
1926 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1927 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1928 
1929 	if (!added || !removed) {
1930 		dev_warn(&h->pdev->dev, "out of memory in "
1931 			"adjust_hpsa_scsi_table\n");
1932 		goto free_and_out;
1933 	}
1934 
1935 	spin_lock_irqsave(&h->devlock, flags);
1936 
1937 	/* find any devices in h->dev[] that are not in
1938 	 * sd[] and remove them from h->dev[], and for any
1939 	 * devices which have changed, remove the old device
1940 	 * info and add the new device info.
1941 	 * If minor device attributes change, just update
1942 	 * the existing device structure.
1943 	 */
1944 	i = 0;
1945 	nremoved = 0;
1946 	nadded = 0;
1947 	while (i < h->ndevices) {
1948 		csd = h->dev[i];
1949 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950 		if (device_change == DEVICE_NOT_FOUND) {
1951 			changes++;
1952 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953 			continue; /* remove ^^^, hence i not incremented */
1954 		} else if (device_change == DEVICE_CHANGED) {
1955 			changes++;
1956 			hpsa_scsi_replace_entry(h, i, sd[entry],
1957 				added, &nadded, removed, &nremoved);
1958 			/* Set it to NULL to prevent it from being freed
1959 			 * at the bottom of hpsa_update_scsi_devices()
1960 			 */
1961 			sd[entry] = NULL;
1962 		} else if (device_change == DEVICE_UPDATED) {
1963 			hpsa_scsi_update_entry(h, i, sd[entry]);
1964 		}
1965 		i++;
1966 	}
1967 
1968 	/* Now, make sure every device listed in sd[] is also
1969 	 * listed in h->dev[], adding them if they aren't found
1970 	 */
1971 
1972 	for (i = 0; i < nsds; i++) {
1973 		if (!sd[i]) /* if already added above. */
1974 			continue;
1975 
1976 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977 		 * as the SCSI mid-layer does not handle such devices well.
1978 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979 		 * at 160Hz, and prevents the system from coming up.
1980 		 */
1981 		if (sd[i]->volume_offline) {
1982 			hpsa_show_volume_status(h, sd[i]);
1983 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984 			continue;
1985 		}
1986 
1987 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988 					h->ndevices, &entry);
1989 		if (device_change == DEVICE_NOT_FOUND) {
1990 			changes++;
1991 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992 				break;
1993 			sd[i] = NULL; /* prevent from being freed later. */
1994 		} else if (device_change == DEVICE_CHANGED) {
1995 			/* should never happen... */
1996 			changes++;
1997 			dev_warn(&h->pdev->dev,
1998 				"device unexpectedly changed.\n");
1999 			/* but if it does happen, we just ignore that device */
2000 		}
2001 	}
2002 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003 
2004 	/*
2005 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006 	 * any logical drives that need it enabled.
2007 	 *
2008 	 * The raid map should be current by now.
2009 	 *
2010 	 * We are updating the device list used for I/O requests.
2011 	 */
2012 	for (i = 0; i < h->ndevices; i++) {
2013 		if (h->dev[i] == NULL)
2014 			continue;
2015 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016 	}
2017 
2018 	spin_unlock_irqrestore(&h->devlock, flags);
2019 
2020 	/* Monitor devices which are in one of several NOT READY states to be
2021 	 * brought online later. This must be done without holding h->devlock,
2022 	 * so don't touch h->dev[]
2023 	 */
2024 	for (i = 0; i < nsds; i++) {
2025 		if (!sd[i]) /* if already added above. */
2026 			continue;
2027 		if (sd[i]->volume_offline)
2028 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029 	}
2030 
2031 	/* Don't notify scsi mid layer of any changes the first time through
2032 	 * (or if there are no changes) scsi_scan_host will do it later the
2033 	 * first time through.
2034 	 */
2035 	if (!changes)
2036 		goto free_and_out;
2037 
2038 	/* Notify scsi mid layer of any removed devices */
2039 	for (i = 0; i < nremoved; i++) {
2040 		if (removed[i] == NULL)
2041 			continue;
2042 		if (removed[i]->expose_device)
2043 			hpsa_remove_device(h, removed[i]);
2044 		kfree(removed[i]);
2045 		removed[i] = NULL;
2046 	}
2047 
2048 	/* Notify scsi mid layer of any added devices */
2049 	for (i = 0; i < nadded; i++) {
2050 		int rc = 0;
2051 
2052 		if (added[i] == NULL)
2053 			continue;
2054 		if (!(added[i]->expose_device))
2055 			continue;
2056 		rc = hpsa_add_device(h, added[i]);
2057 		if (!rc)
2058 			continue;
2059 		dev_warn(&h->pdev->dev,
2060 			"addition failed %d, device not added.", rc);
2061 		/* now we have to remove it from h->dev,
2062 		 * since it didn't get added to scsi mid layer
2063 		 */
2064 		fixup_botched_add(h, added[i]);
2065 		h->drv_req_rescan = 1;
2066 	}
2067 
2068 free_and_out:
2069 	kfree(added);
2070 	kfree(removed);
2071 }
2072 
2073 /*
2074  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075  * Assume's h->devlock is held.
2076  */
2077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078 	int bus, int target, int lun)
2079 {
2080 	int i;
2081 	struct hpsa_scsi_dev_t *sd;
2082 
2083 	for (i = 0; i < h->ndevices; i++) {
2084 		sd = h->dev[i];
2085 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086 			return sd;
2087 	}
2088 	return NULL;
2089 }
2090 
2091 static int hpsa_slave_alloc(struct scsi_device *sdev)
2092 {
2093 	struct hpsa_scsi_dev_t *sd = NULL;
2094 	unsigned long flags;
2095 	struct ctlr_info *h;
2096 
2097 	h = sdev_to_hba(sdev);
2098 	spin_lock_irqsave(&h->devlock, flags);
2099 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100 		struct scsi_target *starget;
2101 		struct sas_rphy *rphy;
2102 
2103 		starget = scsi_target(sdev);
2104 		rphy = target_to_rphy(starget);
2105 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106 		if (sd) {
2107 			sd->target = sdev_id(sdev);
2108 			sd->lun = sdev->lun;
2109 		}
2110 	}
2111 	if (!sd)
2112 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113 					sdev_id(sdev), sdev->lun);
2114 
2115 	if (sd && sd->expose_device) {
2116 		atomic_set(&sd->ioaccel_cmds_out, 0);
2117 		sdev->hostdata = sd;
2118 	} else
2119 		sdev->hostdata = NULL;
2120 	spin_unlock_irqrestore(&h->devlock, flags);
2121 	return 0;
2122 }
2123 
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device *sdev)
2126 {
2127 	struct hpsa_scsi_dev_t *sd;
2128 	int queue_depth;
2129 
2130 	sd = sdev->hostdata;
2131 	sdev->no_uld_attach = !sd || !sd->expose_device;
2132 
2133 	if (sd) {
2134 		if (sd->external)
2135 			queue_depth = EXTERNAL_QD;
2136 		else
2137 			queue_depth = sd->queue_depth != 0 ?
2138 					sd->queue_depth : sdev->host->can_queue;
2139 	} else
2140 		queue_depth = sdev->host->can_queue;
2141 
2142 	scsi_change_queue_depth(sdev, queue_depth);
2143 
2144 	return 0;
2145 }
2146 
2147 static void hpsa_slave_destroy(struct scsi_device *sdev)
2148 {
2149 	/* nothing to do. */
2150 }
2151 
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153 {
2154 	int i;
2155 
2156 	if (!h->ioaccel2_cmd_sg_list)
2157 		return;
2158 	for (i = 0; i < h->nr_cmds; i++) {
2159 		kfree(h->ioaccel2_cmd_sg_list[i]);
2160 		h->ioaccel2_cmd_sg_list[i] = NULL;
2161 	}
2162 	kfree(h->ioaccel2_cmd_sg_list);
2163 	h->ioaccel2_cmd_sg_list = NULL;
2164 }
2165 
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168 	int i;
2169 
2170 	if (h->chainsize <= 0)
2171 		return 0;
2172 
2173 	h->ioaccel2_cmd_sg_list =
2174 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2175 					GFP_KERNEL);
2176 	if (!h->ioaccel2_cmd_sg_list)
2177 		return -ENOMEM;
2178 	for (i = 0; i < h->nr_cmds; i++) {
2179 		h->ioaccel2_cmd_sg_list[i] =
2180 			kmalloc_array(h->maxsgentries,
2181 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2182 				      GFP_KERNEL);
2183 		if (!h->ioaccel2_cmd_sg_list[i])
2184 			goto clean;
2185 	}
2186 	return 0;
2187 
2188 clean:
2189 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2190 	return -ENOMEM;
2191 }
2192 
2193 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2194 {
2195 	int i;
2196 
2197 	if (!h->cmd_sg_list)
2198 		return;
2199 	for (i = 0; i < h->nr_cmds; i++) {
2200 		kfree(h->cmd_sg_list[i]);
2201 		h->cmd_sg_list[i] = NULL;
2202 	}
2203 	kfree(h->cmd_sg_list);
2204 	h->cmd_sg_list = NULL;
2205 }
2206 
2207 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2208 {
2209 	int i;
2210 
2211 	if (h->chainsize <= 0)
2212 		return 0;
2213 
2214 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2215 				 GFP_KERNEL);
2216 	if (!h->cmd_sg_list)
2217 		return -ENOMEM;
2218 
2219 	for (i = 0; i < h->nr_cmds; i++) {
2220 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2221 						  sizeof(*h->cmd_sg_list[i]),
2222 						  GFP_KERNEL);
2223 		if (!h->cmd_sg_list[i])
2224 			goto clean;
2225 
2226 	}
2227 	return 0;
2228 
2229 clean:
2230 	hpsa_free_sg_chain_blocks(h);
2231 	return -ENOMEM;
2232 }
2233 
2234 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2235 	struct io_accel2_cmd *cp, struct CommandList *c)
2236 {
2237 	struct ioaccel2_sg_element *chain_block;
2238 	u64 temp64;
2239 	u32 chain_size;
2240 
2241 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2242 	chain_size = le32_to_cpu(cp->sg[0].length);
2243 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2244 				DMA_TO_DEVICE);
2245 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2246 		/* prevent subsequent unmapping */
2247 		cp->sg->address = 0;
2248 		return -1;
2249 	}
2250 	cp->sg->address = cpu_to_le64(temp64);
2251 	return 0;
2252 }
2253 
2254 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2255 	struct io_accel2_cmd *cp)
2256 {
2257 	struct ioaccel2_sg_element *chain_sg;
2258 	u64 temp64;
2259 	u32 chain_size;
2260 
2261 	chain_sg = cp->sg;
2262 	temp64 = le64_to_cpu(chain_sg->address);
2263 	chain_size = le32_to_cpu(cp->sg[0].length);
2264 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2265 }
2266 
2267 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2268 	struct CommandList *c)
2269 {
2270 	struct SGDescriptor *chain_sg, *chain_block;
2271 	u64 temp64;
2272 	u32 chain_len;
2273 
2274 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2275 	chain_block = h->cmd_sg_list[c->cmdindex];
2276 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2277 	chain_len = sizeof(*chain_sg) *
2278 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2279 	chain_sg->Len = cpu_to_le32(chain_len);
2280 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2281 				DMA_TO_DEVICE);
2282 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2283 		/* prevent subsequent unmapping */
2284 		chain_sg->Addr = cpu_to_le64(0);
2285 		return -1;
2286 	}
2287 	chain_sg->Addr = cpu_to_le64(temp64);
2288 	return 0;
2289 }
2290 
2291 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2292 	struct CommandList *c)
2293 {
2294 	struct SGDescriptor *chain_sg;
2295 
2296 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2297 		return;
2298 
2299 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2300 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2301 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2302 }
2303 
2304 
2305 /* Decode the various types of errors on ioaccel2 path.
2306  * Return 1 for any error that should generate a RAID path retry.
2307  * Return 0 for errors that don't require a RAID path retry.
2308  */
2309 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2310 					struct CommandList *c,
2311 					struct scsi_cmnd *cmd,
2312 					struct io_accel2_cmd *c2,
2313 					struct hpsa_scsi_dev_t *dev)
2314 {
2315 	int data_len;
2316 	int retry = 0;
2317 	u32 ioaccel2_resid = 0;
2318 
2319 	switch (c2->error_data.serv_response) {
2320 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2321 		switch (c2->error_data.status) {
2322 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2323 			break;
2324 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2325 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2326 			if (c2->error_data.data_present !=
2327 					IOACCEL2_SENSE_DATA_PRESENT) {
2328 				memset(cmd->sense_buffer, 0,
2329 					SCSI_SENSE_BUFFERSIZE);
2330 				break;
2331 			}
2332 			/* copy the sense data */
2333 			data_len = c2->error_data.sense_data_len;
2334 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2335 				data_len = SCSI_SENSE_BUFFERSIZE;
2336 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2337 				data_len =
2338 					sizeof(c2->error_data.sense_data_buff);
2339 			memcpy(cmd->sense_buffer,
2340 				c2->error_data.sense_data_buff, data_len);
2341 			retry = 1;
2342 			break;
2343 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2344 			retry = 1;
2345 			break;
2346 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2347 			retry = 1;
2348 			break;
2349 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2350 			retry = 1;
2351 			break;
2352 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2353 			retry = 1;
2354 			break;
2355 		default:
2356 			retry = 1;
2357 			break;
2358 		}
2359 		break;
2360 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2361 		switch (c2->error_data.status) {
2362 		case IOACCEL2_STATUS_SR_IO_ERROR:
2363 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2364 		case IOACCEL2_STATUS_SR_OVERRUN:
2365 			retry = 1;
2366 			break;
2367 		case IOACCEL2_STATUS_SR_UNDERRUN:
2368 			cmd->result = (DID_OK << 16);		/* host byte */
2369 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2370 			ioaccel2_resid = get_unaligned_le32(
2371 						&c2->error_data.resid_cnt[0]);
2372 			scsi_set_resid(cmd, ioaccel2_resid);
2373 			break;
2374 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2375 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2376 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2377 			/*
2378 			 * Did an HBA disk disappear? We will eventually
2379 			 * get a state change event from the controller but
2380 			 * in the meantime, we need to tell the OS that the
2381 			 * HBA disk is no longer there and stop I/O
2382 			 * from going down. This allows the potential re-insert
2383 			 * of the disk to get the same device node.
2384 			 */
2385 			if (dev->physical_device && dev->expose_device) {
2386 				cmd->result = DID_NO_CONNECT << 16;
2387 				dev->removed = 1;
2388 				h->drv_req_rescan = 1;
2389 				dev_warn(&h->pdev->dev,
2390 					"%s: device is gone!\n", __func__);
2391 			} else
2392 				/*
2393 				 * Retry by sending down the RAID path.
2394 				 * We will get an event from ctlr to
2395 				 * trigger rescan regardless.
2396 				 */
2397 				retry = 1;
2398 			break;
2399 		default:
2400 			retry = 1;
2401 		}
2402 		break;
2403 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2404 		break;
2405 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2406 		break;
2407 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2408 		retry = 1;
2409 		break;
2410 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2411 		break;
2412 	default:
2413 		retry = 1;
2414 		break;
2415 	}
2416 
2417 	return retry;	/* retry on raid path? */
2418 }
2419 
2420 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2421 		struct CommandList *c)
2422 {
2423 	bool do_wake = false;
2424 
2425 	/*
2426 	 * Reset c->scsi_cmd here so that the reset handler will know
2427 	 * this command has completed.  Then, check to see if the handler is
2428 	 * waiting for this command, and, if so, wake it.
2429 	 */
2430 	c->scsi_cmd = SCSI_CMD_IDLE;
2431 	mb();	/* Declare command idle before checking for pending events. */
2432 	if (c->reset_pending) {
2433 		unsigned long flags;
2434 		struct hpsa_scsi_dev_t *dev;
2435 
2436 		/*
2437 		 * There appears to be a reset pending; lock the lock and
2438 		 * reconfirm.  If so, then decrement the count of outstanding
2439 		 * commands and wake the reset command if this is the last one.
2440 		 */
2441 		spin_lock_irqsave(&h->lock, flags);
2442 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2443 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2444 			do_wake = true;
2445 		c->reset_pending = NULL;
2446 		spin_unlock_irqrestore(&h->lock, flags);
2447 	}
2448 
2449 	if (do_wake)
2450 		wake_up_all(&h->event_sync_wait_queue);
2451 }
2452 
2453 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2454 				      struct CommandList *c)
2455 {
2456 	hpsa_cmd_resolve_events(h, c);
2457 	cmd_tagged_free(h, c);
2458 }
2459 
2460 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2461 		struct CommandList *c, struct scsi_cmnd *cmd)
2462 {
2463 	hpsa_cmd_resolve_and_free(h, c);
2464 	if (cmd && cmd->scsi_done)
2465 		cmd->scsi_done(cmd);
2466 }
2467 
2468 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2469 {
2470 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2471 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2472 }
2473 
2474 static void process_ioaccel2_completion(struct ctlr_info *h,
2475 		struct CommandList *c, struct scsi_cmnd *cmd,
2476 		struct hpsa_scsi_dev_t *dev)
2477 {
2478 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2479 
2480 	/* check for good status */
2481 	if (likely(c2->error_data.serv_response == 0 &&
2482 			c2->error_data.status == 0))
2483 		return hpsa_cmd_free_and_done(h, c, cmd);
2484 
2485 	/*
2486 	 * Any RAID offload error results in retry which will use
2487 	 * the normal I/O path so the controller can handle whatever is
2488 	 * wrong.
2489 	 */
2490 	if (is_logical_device(dev) &&
2491 		c2->error_data.serv_response ==
2492 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2493 		if (c2->error_data.status ==
2494 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2495 			dev->offload_enabled = 0;
2496 			dev->offload_to_be_enabled = 0;
2497 		}
2498 
2499 		return hpsa_retry_cmd(h, c);
2500 	}
2501 
2502 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2503 		return hpsa_retry_cmd(h, c);
2504 
2505 	return hpsa_cmd_free_and_done(h, c, cmd);
2506 }
2507 
2508 /* Returns 0 on success, < 0 otherwise. */
2509 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2510 					struct CommandList *cp)
2511 {
2512 	u8 tmf_status = cp->err_info->ScsiStatus;
2513 
2514 	switch (tmf_status) {
2515 	case CISS_TMF_COMPLETE:
2516 		/*
2517 		 * CISS_TMF_COMPLETE never happens, instead,
2518 		 * ei->CommandStatus == 0 for this case.
2519 		 */
2520 	case CISS_TMF_SUCCESS:
2521 		return 0;
2522 	case CISS_TMF_INVALID_FRAME:
2523 	case CISS_TMF_NOT_SUPPORTED:
2524 	case CISS_TMF_FAILED:
2525 	case CISS_TMF_WRONG_LUN:
2526 	case CISS_TMF_OVERLAPPED_TAG:
2527 		break;
2528 	default:
2529 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2530 				tmf_status);
2531 		break;
2532 	}
2533 	return -tmf_status;
2534 }
2535 
2536 static void complete_scsi_command(struct CommandList *cp)
2537 {
2538 	struct scsi_cmnd *cmd;
2539 	struct ctlr_info *h;
2540 	struct ErrorInfo *ei;
2541 	struct hpsa_scsi_dev_t *dev;
2542 	struct io_accel2_cmd *c2;
2543 
2544 	u8 sense_key;
2545 	u8 asc;      /* additional sense code */
2546 	u8 ascq;     /* additional sense code qualifier */
2547 	unsigned long sense_data_size;
2548 
2549 	ei = cp->err_info;
2550 	cmd = cp->scsi_cmd;
2551 	h = cp->h;
2552 
2553 	if (!cmd->device) {
2554 		cmd->result = DID_NO_CONNECT << 16;
2555 		return hpsa_cmd_free_and_done(h, cp, cmd);
2556 	}
2557 
2558 	dev = cmd->device->hostdata;
2559 	if (!dev) {
2560 		cmd->result = DID_NO_CONNECT << 16;
2561 		return hpsa_cmd_free_and_done(h, cp, cmd);
2562 	}
2563 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2564 
2565 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2566 	if ((cp->cmd_type == CMD_SCSI) &&
2567 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2568 		hpsa_unmap_sg_chain_block(h, cp);
2569 
2570 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2571 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2572 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2573 
2574 	cmd->result = (DID_OK << 16); 		/* host byte */
2575 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2576 
2577 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2578 		if (dev->physical_device && dev->expose_device &&
2579 			dev->removed) {
2580 			cmd->result = DID_NO_CONNECT << 16;
2581 			return hpsa_cmd_free_and_done(h, cp, cmd);
2582 		}
2583 		if (likely(cp->phys_disk != NULL))
2584 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2585 	}
2586 
2587 	/*
2588 	 * We check for lockup status here as it may be set for
2589 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2590 	 * fail_all_oustanding_cmds()
2591 	 */
2592 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2593 		/* DID_NO_CONNECT will prevent a retry */
2594 		cmd->result = DID_NO_CONNECT << 16;
2595 		return hpsa_cmd_free_and_done(h, cp, cmd);
2596 	}
2597 
2598 	if ((unlikely(hpsa_is_pending_event(cp))))
2599 		if (cp->reset_pending)
2600 			return hpsa_cmd_free_and_done(h, cp, cmd);
2601 
2602 	if (cp->cmd_type == CMD_IOACCEL2)
2603 		return process_ioaccel2_completion(h, cp, cmd, dev);
2604 
2605 	scsi_set_resid(cmd, ei->ResidualCnt);
2606 	if (ei->CommandStatus == 0)
2607 		return hpsa_cmd_free_and_done(h, cp, cmd);
2608 
2609 	/* For I/O accelerator commands, copy over some fields to the normal
2610 	 * CISS header used below for error handling.
2611 	 */
2612 	if (cp->cmd_type == CMD_IOACCEL1) {
2613 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2614 		cp->Header.SGList = scsi_sg_count(cmd);
2615 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2616 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2617 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2618 		cp->Header.tag = c->tag;
2619 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2620 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2621 
2622 		/* Any RAID offload error results in retry which will use
2623 		 * the normal I/O path so the controller can handle whatever's
2624 		 * wrong.
2625 		 */
2626 		if (is_logical_device(dev)) {
2627 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2628 				dev->offload_enabled = 0;
2629 			return hpsa_retry_cmd(h, cp);
2630 		}
2631 	}
2632 
2633 	/* an error has occurred */
2634 	switch (ei->CommandStatus) {
2635 
2636 	case CMD_TARGET_STATUS:
2637 		cmd->result |= ei->ScsiStatus;
2638 		/* copy the sense data */
2639 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2640 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2641 		else
2642 			sense_data_size = sizeof(ei->SenseInfo);
2643 		if (ei->SenseLen < sense_data_size)
2644 			sense_data_size = ei->SenseLen;
2645 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2646 		if (ei->ScsiStatus)
2647 			decode_sense_data(ei->SenseInfo, sense_data_size,
2648 				&sense_key, &asc, &ascq);
2649 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2650 			switch (sense_key) {
2651 			case ABORTED_COMMAND:
2652 				cmd->result |= DID_SOFT_ERROR << 16;
2653 				break;
2654 			case UNIT_ATTENTION:
2655 				if (asc == 0x3F && ascq == 0x0E)
2656 					h->drv_req_rescan = 1;
2657 				break;
2658 			case ILLEGAL_REQUEST:
2659 				if (asc == 0x25 && ascq == 0x00) {
2660 					dev->removed = 1;
2661 					cmd->result = DID_NO_CONNECT << 16;
2662 				}
2663 				break;
2664 			}
2665 			break;
2666 		}
2667 		/* Problem was not a check condition
2668 		 * Pass it up to the upper layers...
2669 		 */
2670 		if (ei->ScsiStatus) {
2671 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2672 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2673 				"Returning result: 0x%x\n",
2674 				cp, ei->ScsiStatus,
2675 				sense_key, asc, ascq,
2676 				cmd->result);
2677 		} else {  /* scsi status is zero??? How??? */
2678 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2679 				"Returning no connection.\n", cp),
2680 
2681 			/* Ordinarily, this case should never happen,
2682 			 * but there is a bug in some released firmware
2683 			 * revisions that allows it to happen if, for
2684 			 * example, a 4100 backplane loses power and
2685 			 * the tape drive is in it.  We assume that
2686 			 * it's a fatal error of some kind because we
2687 			 * can't show that it wasn't. We will make it
2688 			 * look like selection timeout since that is
2689 			 * the most common reason for this to occur,
2690 			 * and it's severe enough.
2691 			 */
2692 
2693 			cmd->result = DID_NO_CONNECT << 16;
2694 		}
2695 		break;
2696 
2697 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2698 		break;
2699 	case CMD_DATA_OVERRUN:
2700 		dev_warn(&h->pdev->dev,
2701 			"CDB %16phN data overrun\n", cp->Request.CDB);
2702 		break;
2703 	case CMD_INVALID: {
2704 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2705 		print_cmd(cp); */
2706 		/* We get CMD_INVALID if you address a non-existent device
2707 		 * instead of a selection timeout (no response).  You will
2708 		 * see this if you yank out a drive, then try to access it.
2709 		 * This is kind of a shame because it means that any other
2710 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2711 		 * missing target. */
2712 		cmd->result = DID_NO_CONNECT << 16;
2713 	}
2714 		break;
2715 	case CMD_PROTOCOL_ERR:
2716 		cmd->result = DID_ERROR << 16;
2717 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2718 				cp->Request.CDB);
2719 		break;
2720 	case CMD_HARDWARE_ERR:
2721 		cmd->result = DID_ERROR << 16;
2722 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2723 			cp->Request.CDB);
2724 		break;
2725 	case CMD_CONNECTION_LOST:
2726 		cmd->result = DID_ERROR << 16;
2727 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2728 			cp->Request.CDB);
2729 		break;
2730 	case CMD_ABORTED:
2731 		cmd->result = DID_ABORT << 16;
2732 		break;
2733 	case CMD_ABORT_FAILED:
2734 		cmd->result = DID_ERROR << 16;
2735 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2736 			cp->Request.CDB);
2737 		break;
2738 	case CMD_UNSOLICITED_ABORT:
2739 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2740 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2741 			cp->Request.CDB);
2742 		break;
2743 	case CMD_TIMEOUT:
2744 		cmd->result = DID_TIME_OUT << 16;
2745 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2746 			cp->Request.CDB);
2747 		break;
2748 	case CMD_UNABORTABLE:
2749 		cmd->result = DID_ERROR << 16;
2750 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2751 		break;
2752 	case CMD_TMF_STATUS:
2753 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2754 			cmd->result = DID_ERROR << 16;
2755 		break;
2756 	case CMD_IOACCEL_DISABLED:
2757 		/* This only handles the direct pass-through case since RAID
2758 		 * offload is handled above.  Just attempt a retry.
2759 		 */
2760 		cmd->result = DID_SOFT_ERROR << 16;
2761 		dev_warn(&h->pdev->dev,
2762 				"cp %p had HP SSD Smart Path error\n", cp);
2763 		break;
2764 	default:
2765 		cmd->result = DID_ERROR << 16;
2766 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2767 				cp, ei->CommandStatus);
2768 	}
2769 
2770 	return hpsa_cmd_free_and_done(h, cp, cmd);
2771 }
2772 
2773 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2774 		int sg_used, enum dma_data_direction data_direction)
2775 {
2776 	int i;
2777 
2778 	for (i = 0; i < sg_used; i++)
2779 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2780 				le32_to_cpu(c->SG[i].Len),
2781 				data_direction);
2782 }
2783 
2784 static int hpsa_map_one(struct pci_dev *pdev,
2785 		struct CommandList *cp,
2786 		unsigned char *buf,
2787 		size_t buflen,
2788 		enum dma_data_direction data_direction)
2789 {
2790 	u64 addr64;
2791 
2792 	if (buflen == 0 || data_direction == DMA_NONE) {
2793 		cp->Header.SGList = 0;
2794 		cp->Header.SGTotal = cpu_to_le16(0);
2795 		return 0;
2796 	}
2797 
2798 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2799 	if (dma_mapping_error(&pdev->dev, addr64)) {
2800 		/* Prevent subsequent unmap of something never mapped */
2801 		cp->Header.SGList = 0;
2802 		cp->Header.SGTotal = cpu_to_le16(0);
2803 		return -1;
2804 	}
2805 	cp->SG[0].Addr = cpu_to_le64(addr64);
2806 	cp->SG[0].Len = cpu_to_le32(buflen);
2807 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2808 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2809 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2810 	return 0;
2811 }
2812 
2813 #define NO_TIMEOUT ((unsigned long) -1)
2814 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2815 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2816 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2817 {
2818 	DECLARE_COMPLETION_ONSTACK(wait);
2819 
2820 	c->waiting = &wait;
2821 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2822 	if (timeout_msecs == NO_TIMEOUT) {
2823 		/* TODO: get rid of this no-timeout thing */
2824 		wait_for_completion_io(&wait);
2825 		return IO_OK;
2826 	}
2827 	if (!wait_for_completion_io_timeout(&wait,
2828 					msecs_to_jiffies(timeout_msecs))) {
2829 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2830 		return -ETIMEDOUT;
2831 	}
2832 	return IO_OK;
2833 }
2834 
2835 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2836 				   int reply_queue, unsigned long timeout_msecs)
2837 {
2838 	if (unlikely(lockup_detected(h))) {
2839 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2840 		return IO_OK;
2841 	}
2842 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2843 }
2844 
2845 static u32 lockup_detected(struct ctlr_info *h)
2846 {
2847 	int cpu;
2848 	u32 rc, *lockup_detected;
2849 
2850 	cpu = get_cpu();
2851 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2852 	rc = *lockup_detected;
2853 	put_cpu();
2854 	return rc;
2855 }
2856 
2857 #define MAX_DRIVER_CMD_RETRIES 25
2858 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2859 		struct CommandList *c, enum dma_data_direction data_direction,
2860 		unsigned long timeout_msecs)
2861 {
2862 	int backoff_time = 10, retry_count = 0;
2863 	int rc;
2864 
2865 	do {
2866 		memset(c->err_info, 0, sizeof(*c->err_info));
2867 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2868 						  timeout_msecs);
2869 		if (rc)
2870 			break;
2871 		retry_count++;
2872 		if (retry_count > 3) {
2873 			msleep(backoff_time);
2874 			if (backoff_time < 1000)
2875 				backoff_time *= 2;
2876 		}
2877 	} while ((check_for_unit_attention(h, c) ||
2878 			check_for_busy(h, c)) &&
2879 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2880 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2881 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2882 		rc = -EIO;
2883 	return rc;
2884 }
2885 
2886 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2887 				struct CommandList *c)
2888 {
2889 	const u8 *cdb = c->Request.CDB;
2890 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2891 
2892 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2893 		 txt, lun, cdb);
2894 }
2895 
2896 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2897 			struct CommandList *cp)
2898 {
2899 	const struct ErrorInfo *ei = cp->err_info;
2900 	struct device *d = &cp->h->pdev->dev;
2901 	u8 sense_key, asc, ascq;
2902 	int sense_len;
2903 
2904 	switch (ei->CommandStatus) {
2905 	case CMD_TARGET_STATUS:
2906 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2907 			sense_len = sizeof(ei->SenseInfo);
2908 		else
2909 			sense_len = ei->SenseLen;
2910 		decode_sense_data(ei->SenseInfo, sense_len,
2911 					&sense_key, &asc, &ascq);
2912 		hpsa_print_cmd(h, "SCSI status", cp);
2913 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2914 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2915 				sense_key, asc, ascq);
2916 		else
2917 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2918 		if (ei->ScsiStatus == 0)
2919 			dev_warn(d, "SCSI status is abnormally zero.  "
2920 			"(probably indicates selection timeout "
2921 			"reported incorrectly due to a known "
2922 			"firmware bug, circa July, 2001.)\n");
2923 		break;
2924 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2925 		break;
2926 	case CMD_DATA_OVERRUN:
2927 		hpsa_print_cmd(h, "overrun condition", cp);
2928 		break;
2929 	case CMD_INVALID: {
2930 		/* controller unfortunately reports SCSI passthru's
2931 		 * to non-existent targets as invalid commands.
2932 		 */
2933 		hpsa_print_cmd(h, "invalid command", cp);
2934 		dev_warn(d, "probably means device no longer present\n");
2935 		}
2936 		break;
2937 	case CMD_PROTOCOL_ERR:
2938 		hpsa_print_cmd(h, "protocol error", cp);
2939 		break;
2940 	case CMD_HARDWARE_ERR:
2941 		hpsa_print_cmd(h, "hardware error", cp);
2942 		break;
2943 	case CMD_CONNECTION_LOST:
2944 		hpsa_print_cmd(h, "connection lost", cp);
2945 		break;
2946 	case CMD_ABORTED:
2947 		hpsa_print_cmd(h, "aborted", cp);
2948 		break;
2949 	case CMD_ABORT_FAILED:
2950 		hpsa_print_cmd(h, "abort failed", cp);
2951 		break;
2952 	case CMD_UNSOLICITED_ABORT:
2953 		hpsa_print_cmd(h, "unsolicited abort", cp);
2954 		break;
2955 	case CMD_TIMEOUT:
2956 		hpsa_print_cmd(h, "timed out", cp);
2957 		break;
2958 	case CMD_UNABORTABLE:
2959 		hpsa_print_cmd(h, "unabortable", cp);
2960 		break;
2961 	case CMD_CTLR_LOCKUP:
2962 		hpsa_print_cmd(h, "controller lockup detected", cp);
2963 		break;
2964 	default:
2965 		hpsa_print_cmd(h, "unknown status", cp);
2966 		dev_warn(d, "Unknown command status %x\n",
2967 				ei->CommandStatus);
2968 	}
2969 }
2970 
2971 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2972 					u8 page, u8 *buf, size_t bufsize)
2973 {
2974 	int rc = IO_OK;
2975 	struct CommandList *c;
2976 	struct ErrorInfo *ei;
2977 
2978 	c = cmd_alloc(h);
2979 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2980 			page, scsi3addr, TYPE_CMD)) {
2981 		rc = -1;
2982 		goto out;
2983 	}
2984 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2985 			NO_TIMEOUT);
2986 	if (rc)
2987 		goto out;
2988 	ei = c->err_info;
2989 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2990 		hpsa_scsi_interpret_error(h, c);
2991 		rc = -1;
2992 	}
2993 out:
2994 	cmd_free(h, c);
2995 	return rc;
2996 }
2997 
2998 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2999 						u8 *scsi3addr)
3000 {
3001 	u8 *buf;
3002 	u64 sa = 0;
3003 	int rc = 0;
3004 
3005 	buf = kzalloc(1024, GFP_KERNEL);
3006 	if (!buf)
3007 		return 0;
3008 
3009 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3010 					buf, 1024);
3011 
3012 	if (rc)
3013 		goto out;
3014 
3015 	sa = get_unaligned_be64(buf+12);
3016 
3017 out:
3018 	kfree(buf);
3019 	return sa;
3020 }
3021 
3022 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3023 			u16 page, unsigned char *buf,
3024 			unsigned char bufsize)
3025 {
3026 	int rc = IO_OK;
3027 	struct CommandList *c;
3028 	struct ErrorInfo *ei;
3029 
3030 	c = cmd_alloc(h);
3031 
3032 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3033 			page, scsi3addr, TYPE_CMD)) {
3034 		rc = -1;
3035 		goto out;
3036 	}
3037 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3038 			NO_TIMEOUT);
3039 	if (rc)
3040 		goto out;
3041 	ei = c->err_info;
3042 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3043 		hpsa_scsi_interpret_error(h, c);
3044 		rc = -1;
3045 	}
3046 out:
3047 	cmd_free(h, c);
3048 	return rc;
3049 }
3050 
3051 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3052 	u8 reset_type, int reply_queue)
3053 {
3054 	int rc = IO_OK;
3055 	struct CommandList *c;
3056 	struct ErrorInfo *ei;
3057 
3058 	c = cmd_alloc(h);
3059 
3060 
3061 	/* fill_cmd can't fail here, no data buffer to map. */
3062 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3063 			scsi3addr, TYPE_MSG);
3064 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3065 	if (rc) {
3066 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3067 		goto out;
3068 	}
3069 	/* no unmap needed here because no data xfer. */
3070 
3071 	ei = c->err_info;
3072 	if (ei->CommandStatus != 0) {
3073 		hpsa_scsi_interpret_error(h, c);
3074 		rc = -1;
3075 	}
3076 out:
3077 	cmd_free(h, c);
3078 	return rc;
3079 }
3080 
3081 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3082 			       struct hpsa_scsi_dev_t *dev,
3083 			       unsigned char *scsi3addr)
3084 {
3085 	int i;
3086 	bool match = false;
3087 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3088 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3089 
3090 	if (hpsa_is_cmd_idle(c))
3091 		return false;
3092 
3093 	switch (c->cmd_type) {
3094 	case CMD_SCSI:
3095 	case CMD_IOCTL_PEND:
3096 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3097 				sizeof(c->Header.LUN.LunAddrBytes));
3098 		break;
3099 
3100 	case CMD_IOACCEL1:
3101 	case CMD_IOACCEL2:
3102 		if (c->phys_disk == dev) {
3103 			/* HBA mode match */
3104 			match = true;
3105 		} else {
3106 			/* Possible RAID mode -- check each phys dev. */
3107 			/* FIXME:  Do we need to take out a lock here?  If
3108 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3109 			 * instead. */
3110 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3111 				/* FIXME: an alternate test might be
3112 				 *
3113 				 * match = dev->phys_disk[i]->ioaccel_handle
3114 				 *              == c2->scsi_nexus;      */
3115 				match = dev->phys_disk[i] == c->phys_disk;
3116 			}
3117 		}
3118 		break;
3119 
3120 	case IOACCEL2_TMF:
3121 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3122 			match = dev->phys_disk[i]->ioaccel_handle ==
3123 					le32_to_cpu(ac->it_nexus);
3124 		}
3125 		break;
3126 
3127 	case 0:		/* The command is in the middle of being initialized. */
3128 		match = false;
3129 		break;
3130 
3131 	default:
3132 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3133 			c->cmd_type);
3134 		BUG();
3135 	}
3136 
3137 	return match;
3138 }
3139 
3140 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3141 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3142 {
3143 	int i;
3144 	int rc = 0;
3145 
3146 	/* We can really only handle one reset at a time */
3147 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3148 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3149 		return -EINTR;
3150 	}
3151 
3152 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3153 
3154 	for (i = 0; i < h->nr_cmds; i++) {
3155 		struct CommandList *c = h->cmd_pool + i;
3156 		int refcount = atomic_inc_return(&c->refcount);
3157 
3158 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3159 			unsigned long flags;
3160 
3161 			/*
3162 			 * Mark the target command as having a reset pending,
3163 			 * then lock a lock so that the command cannot complete
3164 			 * while we're considering it.  If the command is not
3165 			 * idle then count it; otherwise revoke the event.
3166 			 */
3167 			c->reset_pending = dev;
3168 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3169 			if (!hpsa_is_cmd_idle(c))
3170 				atomic_inc(&dev->reset_cmds_out);
3171 			else
3172 				c->reset_pending = NULL;
3173 			spin_unlock_irqrestore(&h->lock, flags);
3174 		}
3175 
3176 		cmd_free(h, c);
3177 	}
3178 
3179 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3180 	if (!rc)
3181 		wait_event(h->event_sync_wait_queue,
3182 			atomic_read(&dev->reset_cmds_out) == 0 ||
3183 			lockup_detected(h));
3184 
3185 	if (unlikely(lockup_detected(h))) {
3186 		dev_warn(&h->pdev->dev,
3187 			 "Controller lockup detected during reset wait\n");
3188 		rc = -ENODEV;
3189 	}
3190 
3191 	if (unlikely(rc))
3192 		atomic_set(&dev->reset_cmds_out, 0);
3193 	else
3194 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3195 
3196 	mutex_unlock(&h->reset_mutex);
3197 	return rc;
3198 }
3199 
3200 static void hpsa_get_raid_level(struct ctlr_info *h,
3201 	unsigned char *scsi3addr, unsigned char *raid_level)
3202 {
3203 	int rc;
3204 	unsigned char *buf;
3205 
3206 	*raid_level = RAID_UNKNOWN;
3207 	buf = kzalloc(64, GFP_KERNEL);
3208 	if (!buf)
3209 		return;
3210 
3211 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3212 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3213 		goto exit;
3214 
3215 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3216 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3217 
3218 	if (rc == 0)
3219 		*raid_level = buf[8];
3220 	if (*raid_level > RAID_UNKNOWN)
3221 		*raid_level = RAID_UNKNOWN;
3222 exit:
3223 	kfree(buf);
3224 	return;
3225 }
3226 
3227 #define HPSA_MAP_DEBUG
3228 #ifdef HPSA_MAP_DEBUG
3229 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3230 				struct raid_map_data *map_buff)
3231 {
3232 	struct raid_map_disk_data *dd = &map_buff->data[0];
3233 	int map, row, col;
3234 	u16 map_cnt, row_cnt, disks_per_row;
3235 
3236 	if (rc != 0)
3237 		return;
3238 
3239 	/* Show details only if debugging has been activated. */
3240 	if (h->raid_offload_debug < 2)
3241 		return;
3242 
3243 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3244 				le32_to_cpu(map_buff->structure_size));
3245 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3246 			le32_to_cpu(map_buff->volume_blk_size));
3247 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3248 			le64_to_cpu(map_buff->volume_blk_cnt));
3249 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3250 			map_buff->phys_blk_shift);
3251 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3252 			map_buff->parity_rotation_shift);
3253 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3254 			le16_to_cpu(map_buff->strip_size));
3255 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3256 			le64_to_cpu(map_buff->disk_starting_blk));
3257 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3258 			le64_to_cpu(map_buff->disk_blk_cnt));
3259 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3260 			le16_to_cpu(map_buff->data_disks_per_row));
3261 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3262 			le16_to_cpu(map_buff->metadata_disks_per_row));
3263 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3264 			le16_to_cpu(map_buff->row_cnt));
3265 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3266 			le16_to_cpu(map_buff->layout_map_count));
3267 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3268 			le16_to_cpu(map_buff->flags));
3269 	dev_info(&h->pdev->dev, "encryption = %s\n",
3270 			le16_to_cpu(map_buff->flags) &
3271 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3272 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3273 			le16_to_cpu(map_buff->dekindex));
3274 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3275 	for (map = 0; map < map_cnt; map++) {
3276 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3277 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3278 		for (row = 0; row < row_cnt; row++) {
3279 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3280 			disks_per_row =
3281 				le16_to_cpu(map_buff->data_disks_per_row);
3282 			for (col = 0; col < disks_per_row; col++, dd++)
3283 				dev_info(&h->pdev->dev,
3284 					"    D%02u: h=0x%04x xor=%u,%u\n",
3285 					col, dd->ioaccel_handle,
3286 					dd->xor_mult[0], dd->xor_mult[1]);
3287 			disks_per_row =
3288 				le16_to_cpu(map_buff->metadata_disks_per_row);
3289 			for (col = 0; col < disks_per_row; col++, dd++)
3290 				dev_info(&h->pdev->dev,
3291 					"    M%02u: h=0x%04x xor=%u,%u\n",
3292 					col, dd->ioaccel_handle,
3293 					dd->xor_mult[0], dd->xor_mult[1]);
3294 		}
3295 	}
3296 }
3297 #else
3298 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3299 			__attribute__((unused)) int rc,
3300 			__attribute__((unused)) struct raid_map_data *map_buff)
3301 {
3302 }
3303 #endif
3304 
3305 static int hpsa_get_raid_map(struct ctlr_info *h,
3306 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3307 {
3308 	int rc = 0;
3309 	struct CommandList *c;
3310 	struct ErrorInfo *ei;
3311 
3312 	c = cmd_alloc(h);
3313 
3314 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3315 			sizeof(this_device->raid_map), 0,
3316 			scsi3addr, TYPE_CMD)) {
3317 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3318 		cmd_free(h, c);
3319 		return -1;
3320 	}
3321 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3322 			NO_TIMEOUT);
3323 	if (rc)
3324 		goto out;
3325 	ei = c->err_info;
3326 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3327 		hpsa_scsi_interpret_error(h, c);
3328 		rc = -1;
3329 		goto out;
3330 	}
3331 	cmd_free(h, c);
3332 
3333 	/* @todo in the future, dynamically allocate RAID map memory */
3334 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3335 				sizeof(this_device->raid_map)) {
3336 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3337 		rc = -1;
3338 	}
3339 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3340 	return rc;
3341 out:
3342 	cmd_free(h, c);
3343 	return rc;
3344 }
3345 
3346 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3347 		unsigned char scsi3addr[], u16 bmic_device_index,
3348 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3349 {
3350 	int rc = IO_OK;
3351 	struct CommandList *c;
3352 	struct ErrorInfo *ei;
3353 
3354 	c = cmd_alloc(h);
3355 
3356 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3357 		0, RAID_CTLR_LUNID, TYPE_CMD);
3358 	if (rc)
3359 		goto out;
3360 
3361 	c->Request.CDB[2] = bmic_device_index & 0xff;
3362 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3363 
3364 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3365 			NO_TIMEOUT);
3366 	if (rc)
3367 		goto out;
3368 	ei = c->err_info;
3369 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3370 		hpsa_scsi_interpret_error(h, c);
3371 		rc = -1;
3372 	}
3373 out:
3374 	cmd_free(h, c);
3375 	return rc;
3376 }
3377 
3378 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3379 	struct bmic_identify_controller *buf, size_t bufsize)
3380 {
3381 	int rc = IO_OK;
3382 	struct CommandList *c;
3383 	struct ErrorInfo *ei;
3384 
3385 	c = cmd_alloc(h);
3386 
3387 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3388 		0, RAID_CTLR_LUNID, TYPE_CMD);
3389 	if (rc)
3390 		goto out;
3391 
3392 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3393 			NO_TIMEOUT);
3394 	if (rc)
3395 		goto out;
3396 	ei = c->err_info;
3397 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3398 		hpsa_scsi_interpret_error(h, c);
3399 		rc = -1;
3400 	}
3401 out:
3402 	cmd_free(h, c);
3403 	return rc;
3404 }
3405 
3406 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3407 		unsigned char scsi3addr[], u16 bmic_device_index,
3408 		struct bmic_identify_physical_device *buf, size_t bufsize)
3409 {
3410 	int rc = IO_OK;
3411 	struct CommandList *c;
3412 	struct ErrorInfo *ei;
3413 
3414 	c = cmd_alloc(h);
3415 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3416 		0, RAID_CTLR_LUNID, TYPE_CMD);
3417 	if (rc)
3418 		goto out;
3419 
3420 	c->Request.CDB[2] = bmic_device_index & 0xff;
3421 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3422 
3423 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3424 						NO_TIMEOUT);
3425 	ei = c->err_info;
3426 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3427 		hpsa_scsi_interpret_error(h, c);
3428 		rc = -1;
3429 	}
3430 out:
3431 	cmd_free(h, c);
3432 
3433 	return rc;
3434 }
3435 
3436 /*
3437  * get enclosure information
3438  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440  * Uses id_physical_device to determine the box_index.
3441  */
3442 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3443 			unsigned char *scsi3addr,
3444 			struct ReportExtendedLUNdata *rlep, int rle_index,
3445 			struct hpsa_scsi_dev_t *encl_dev)
3446 {
3447 	int rc = -1;
3448 	struct CommandList *c = NULL;
3449 	struct ErrorInfo *ei = NULL;
3450 	struct bmic_sense_storage_box_params *bssbp = NULL;
3451 	struct bmic_identify_physical_device *id_phys = NULL;
3452 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3453 	u16 bmic_device_index = 0;
3454 
3455 	encl_dev->eli =
3456 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3457 
3458 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3459 
3460 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3461 		rc = IO_OK;
3462 		goto out;
3463 	}
3464 
3465 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3466 		rc = IO_OK;
3467 		goto out;
3468 	}
3469 
3470 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3471 	if (!bssbp)
3472 		goto out;
3473 
3474 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3475 	if (!id_phys)
3476 		goto out;
3477 
3478 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3479 						id_phys, sizeof(*id_phys));
3480 	if (rc) {
3481 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3482 			__func__, encl_dev->external, bmic_device_index);
3483 		goto out;
3484 	}
3485 
3486 	c = cmd_alloc(h);
3487 
3488 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3489 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3490 
3491 	if (rc)
3492 		goto out;
3493 
3494 	if (id_phys->phys_connector[1] == 'E')
3495 		c->Request.CDB[5] = id_phys->box_index;
3496 	else
3497 		c->Request.CDB[5] = 0;
3498 
3499 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3500 						NO_TIMEOUT);
3501 	if (rc)
3502 		goto out;
3503 
3504 	ei = c->err_info;
3505 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3506 		rc = -1;
3507 		goto out;
3508 	}
3509 
3510 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3511 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3512 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3513 
3514 	rc = IO_OK;
3515 out:
3516 	kfree(bssbp);
3517 	kfree(id_phys);
3518 
3519 	if (c)
3520 		cmd_free(h, c);
3521 
3522 	if (rc != IO_OK)
3523 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3524 			"Error, could not get enclosure information");
3525 }
3526 
3527 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3528 						unsigned char *scsi3addr)
3529 {
3530 	struct ReportExtendedLUNdata *physdev;
3531 	u32 nphysicals;
3532 	u64 sa = 0;
3533 	int i;
3534 
3535 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3536 	if (!physdev)
3537 		return 0;
3538 
3539 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3540 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3541 		kfree(physdev);
3542 		return 0;
3543 	}
3544 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3545 
3546 	for (i = 0; i < nphysicals; i++)
3547 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3548 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3549 			break;
3550 		}
3551 
3552 	kfree(physdev);
3553 
3554 	return sa;
3555 }
3556 
3557 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3558 					struct hpsa_scsi_dev_t *dev)
3559 {
3560 	int rc;
3561 	u64 sa = 0;
3562 
3563 	if (is_hba_lunid(scsi3addr)) {
3564 		struct bmic_sense_subsystem_info *ssi;
3565 
3566 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3567 		if (!ssi)
3568 			return;
3569 
3570 		rc = hpsa_bmic_sense_subsystem_information(h,
3571 					scsi3addr, 0, ssi, sizeof(*ssi));
3572 		if (rc == 0) {
3573 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3574 			h->sas_address = sa;
3575 		}
3576 
3577 		kfree(ssi);
3578 	} else
3579 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3580 
3581 	dev->sas_address = sa;
3582 }
3583 
3584 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3585 	struct ReportExtendedLUNdata *physdev)
3586 {
3587 	u32 nphysicals;
3588 	int i;
3589 
3590 	if (h->discovery_polling)
3591 		return;
3592 
3593 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3594 
3595 	for (i = 0; i < nphysicals; i++) {
3596 		if (physdev->LUN[i].device_type ==
3597 			BMIC_DEVICE_TYPE_CONTROLLER
3598 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3599 			dev_info(&h->pdev->dev,
3600 				"External controller present, activate discovery polling and disable rld caching\n");
3601 			hpsa_disable_rld_caching(h);
3602 			h->discovery_polling = 1;
3603 			break;
3604 		}
3605 	}
3606 }
3607 
3608 /* Get a device id from inquiry page 0x83 */
3609 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3610 	unsigned char scsi3addr[], u8 page)
3611 {
3612 	int rc;
3613 	int i;
3614 	int pages;
3615 	unsigned char *buf, bufsize;
3616 
3617 	buf = kzalloc(256, GFP_KERNEL);
3618 	if (!buf)
3619 		return false;
3620 
3621 	/* Get the size of the page list first */
3622 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3623 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3624 				buf, HPSA_VPD_HEADER_SZ);
3625 	if (rc != 0)
3626 		goto exit_unsupported;
3627 	pages = buf[3];
3628 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3629 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3630 	else
3631 		bufsize = 255;
3632 
3633 	/* Get the whole VPD page list */
3634 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3635 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3636 				buf, bufsize);
3637 	if (rc != 0)
3638 		goto exit_unsupported;
3639 
3640 	pages = buf[3];
3641 	for (i = 1; i <= pages; i++)
3642 		if (buf[3 + i] == page)
3643 			goto exit_supported;
3644 exit_unsupported:
3645 	kfree(buf);
3646 	return false;
3647 exit_supported:
3648 	kfree(buf);
3649 	return true;
3650 }
3651 
3652 /*
3653  * Called during a scan operation.
3654  * Sets ioaccel status on the new device list, not the existing device list
3655  *
3656  * The device list used during I/O will be updated later in
3657  * adjust_hpsa_scsi_table.
3658  */
3659 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3660 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3661 {
3662 	int rc;
3663 	unsigned char *buf;
3664 	u8 ioaccel_status;
3665 
3666 	this_device->offload_config = 0;
3667 	this_device->offload_enabled = 0;
3668 	this_device->offload_to_be_enabled = 0;
3669 
3670 	buf = kzalloc(64, GFP_KERNEL);
3671 	if (!buf)
3672 		return;
3673 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3674 		goto out;
3675 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3676 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3677 	if (rc != 0)
3678 		goto out;
3679 
3680 #define IOACCEL_STATUS_BYTE 4
3681 #define OFFLOAD_CONFIGURED_BIT 0x01
3682 #define OFFLOAD_ENABLED_BIT 0x02
3683 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3684 	this_device->offload_config =
3685 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3686 	if (this_device->offload_config) {
3687 		this_device->offload_to_be_enabled =
3688 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3689 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3690 			this_device->offload_to_be_enabled = 0;
3691 	}
3692 
3693 out:
3694 	kfree(buf);
3695 	return;
3696 }
3697 
3698 /* Get the device id from inquiry page 0x83 */
3699 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3700 	unsigned char *device_id, int index, int buflen)
3701 {
3702 	int rc;
3703 	unsigned char *buf;
3704 
3705 	/* Does controller have VPD for device id? */
3706 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3707 		return 1; /* not supported */
3708 
3709 	buf = kzalloc(64, GFP_KERNEL);
3710 	if (!buf)
3711 		return -ENOMEM;
3712 
3713 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3714 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3715 	if (rc == 0) {
3716 		if (buflen > 16)
3717 			buflen = 16;
3718 		memcpy(device_id, &buf[8], buflen);
3719 	}
3720 
3721 	kfree(buf);
3722 
3723 	return rc; /*0 - got id,  otherwise, didn't */
3724 }
3725 
3726 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3727 		void *buf, int bufsize,
3728 		int extended_response)
3729 {
3730 	int rc = IO_OK;
3731 	struct CommandList *c;
3732 	unsigned char scsi3addr[8];
3733 	struct ErrorInfo *ei;
3734 
3735 	c = cmd_alloc(h);
3736 
3737 	/* address the controller */
3738 	memset(scsi3addr, 0, sizeof(scsi3addr));
3739 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3740 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3741 		rc = -EAGAIN;
3742 		goto out;
3743 	}
3744 	if (extended_response)
3745 		c->Request.CDB[1] = extended_response;
3746 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3747 			NO_TIMEOUT);
3748 	if (rc)
3749 		goto out;
3750 	ei = c->err_info;
3751 	if (ei->CommandStatus != 0 &&
3752 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3753 		hpsa_scsi_interpret_error(h, c);
3754 		rc = -EIO;
3755 	} else {
3756 		struct ReportLUNdata *rld = buf;
3757 
3758 		if (rld->extended_response_flag != extended_response) {
3759 			if (!h->legacy_board) {
3760 				dev_err(&h->pdev->dev,
3761 					"report luns requested format %u, got %u\n",
3762 					extended_response,
3763 					rld->extended_response_flag);
3764 				rc = -EINVAL;
3765 			} else
3766 				rc = -EOPNOTSUPP;
3767 		}
3768 	}
3769 out:
3770 	cmd_free(h, c);
3771 	return rc;
3772 }
3773 
3774 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3775 		struct ReportExtendedLUNdata *buf, int bufsize)
3776 {
3777 	int rc;
3778 	struct ReportLUNdata *lbuf;
3779 
3780 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3781 				      HPSA_REPORT_PHYS_EXTENDED);
3782 	if (!rc || rc != -EOPNOTSUPP)
3783 		return rc;
3784 
3785 	/* REPORT PHYS EXTENDED is not supported */
3786 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3787 	if (!lbuf)
3788 		return -ENOMEM;
3789 
3790 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3791 	if (!rc) {
3792 		int i;
3793 		u32 nphys;
3794 
3795 		/* Copy ReportLUNdata header */
3796 		memcpy(buf, lbuf, 8);
3797 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3798 		for (i = 0; i < nphys; i++)
3799 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3800 	}
3801 	kfree(lbuf);
3802 	return rc;
3803 }
3804 
3805 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3806 		struct ReportLUNdata *buf, int bufsize)
3807 {
3808 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3809 }
3810 
3811 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3812 	int bus, int target, int lun)
3813 {
3814 	device->bus = bus;
3815 	device->target = target;
3816 	device->lun = lun;
3817 }
3818 
3819 /* Use VPD inquiry to get details of volume status */
3820 static int hpsa_get_volume_status(struct ctlr_info *h,
3821 					unsigned char scsi3addr[])
3822 {
3823 	int rc;
3824 	int status;
3825 	int size;
3826 	unsigned char *buf;
3827 
3828 	buf = kzalloc(64, GFP_KERNEL);
3829 	if (!buf)
3830 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3831 
3832 	/* Does controller have VPD for logical volume status? */
3833 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3834 		goto exit_failed;
3835 
3836 	/* Get the size of the VPD return buffer */
3837 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3838 					buf, HPSA_VPD_HEADER_SZ);
3839 	if (rc != 0)
3840 		goto exit_failed;
3841 	size = buf[3];
3842 
3843 	/* Now get the whole VPD buffer */
3844 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3845 					buf, size + HPSA_VPD_HEADER_SZ);
3846 	if (rc != 0)
3847 		goto exit_failed;
3848 	status = buf[4]; /* status byte */
3849 
3850 	kfree(buf);
3851 	return status;
3852 exit_failed:
3853 	kfree(buf);
3854 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3855 }
3856 
3857 /* Determine offline status of a volume.
3858  * Return either:
3859  *  0 (not offline)
3860  *  0xff (offline for unknown reasons)
3861  *  # (integer code indicating one of several NOT READY states
3862  *     describing why a volume is to be kept offline)
3863  */
3864 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3865 					unsigned char scsi3addr[])
3866 {
3867 	struct CommandList *c;
3868 	unsigned char *sense;
3869 	u8 sense_key, asc, ascq;
3870 	int sense_len;
3871 	int rc, ldstat = 0;
3872 	u16 cmd_status;
3873 	u8 scsi_status;
3874 #define ASC_LUN_NOT_READY 0x04
3875 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3876 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3877 
3878 	c = cmd_alloc(h);
3879 
3880 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3881 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3882 					NO_TIMEOUT);
3883 	if (rc) {
3884 		cmd_free(h, c);
3885 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3886 	}
3887 	sense = c->err_info->SenseInfo;
3888 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3889 		sense_len = sizeof(c->err_info->SenseInfo);
3890 	else
3891 		sense_len = c->err_info->SenseLen;
3892 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3893 	cmd_status = c->err_info->CommandStatus;
3894 	scsi_status = c->err_info->ScsiStatus;
3895 	cmd_free(h, c);
3896 
3897 	/* Determine the reason for not ready state */
3898 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3899 
3900 	/* Keep volume offline in certain cases: */
3901 	switch (ldstat) {
3902 	case HPSA_LV_FAILED:
3903 	case HPSA_LV_UNDERGOING_ERASE:
3904 	case HPSA_LV_NOT_AVAILABLE:
3905 	case HPSA_LV_UNDERGOING_RPI:
3906 	case HPSA_LV_PENDING_RPI:
3907 	case HPSA_LV_ENCRYPTED_NO_KEY:
3908 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3909 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3910 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3911 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3912 		return ldstat;
3913 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3914 		/* If VPD status page isn't available,
3915 		 * use ASC/ASCQ to determine state
3916 		 */
3917 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3918 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3919 			return ldstat;
3920 		break;
3921 	default:
3922 		break;
3923 	}
3924 	return HPSA_LV_OK;
3925 }
3926 
3927 static int hpsa_update_device_info(struct ctlr_info *h,
3928 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3929 	unsigned char *is_OBDR_device)
3930 {
3931 
3932 #define OBDR_SIG_OFFSET 43
3933 #define OBDR_TAPE_SIG "$DR-10"
3934 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3935 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3936 
3937 	unsigned char *inq_buff;
3938 	unsigned char *obdr_sig;
3939 	int rc = 0;
3940 
3941 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3942 	if (!inq_buff) {
3943 		rc = -ENOMEM;
3944 		goto bail_out;
3945 	}
3946 
3947 	/* Do an inquiry to the device to see what it is. */
3948 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3949 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3950 		dev_err(&h->pdev->dev,
3951 			"%s: inquiry failed, device will be skipped.\n",
3952 			__func__);
3953 		rc = HPSA_INQUIRY_FAILED;
3954 		goto bail_out;
3955 	}
3956 
3957 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3958 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3959 
3960 	this_device->devtype = (inq_buff[0] & 0x1f);
3961 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3962 	memcpy(this_device->vendor, &inq_buff[8],
3963 		sizeof(this_device->vendor));
3964 	memcpy(this_device->model, &inq_buff[16],
3965 		sizeof(this_device->model));
3966 	this_device->rev = inq_buff[2];
3967 	memset(this_device->device_id, 0,
3968 		sizeof(this_device->device_id));
3969 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3970 		sizeof(this_device->device_id)) < 0) {
3971 		dev_err(&h->pdev->dev,
3972 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3973 			h->ctlr, __func__,
3974 			h->scsi_host->host_no,
3975 			this_device->bus, this_device->target,
3976 			this_device->lun,
3977 			scsi_device_type(this_device->devtype),
3978 			this_device->model);
3979 		rc = HPSA_LV_FAILED;
3980 		goto bail_out;
3981 	}
3982 
3983 	if ((this_device->devtype == TYPE_DISK ||
3984 		this_device->devtype == TYPE_ZBC) &&
3985 		is_logical_dev_addr_mode(scsi3addr)) {
3986 		unsigned char volume_offline;
3987 
3988 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3989 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3990 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3991 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3992 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3993 		    h->legacy_board) {
3994 			/*
3995 			 * Legacy boards might not support volume status
3996 			 */
3997 			dev_info(&h->pdev->dev,
3998 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3999 				 this_device->target, this_device->lun);
4000 			volume_offline = 0;
4001 		}
4002 		this_device->volume_offline = volume_offline;
4003 		if (volume_offline == HPSA_LV_FAILED) {
4004 			rc = HPSA_LV_FAILED;
4005 			dev_err(&h->pdev->dev,
4006 				"%s: LV failed, device will be skipped.\n",
4007 				__func__);
4008 			goto bail_out;
4009 		}
4010 	} else {
4011 		this_device->raid_level = RAID_UNKNOWN;
4012 		this_device->offload_config = 0;
4013 		this_device->offload_enabled = 0;
4014 		this_device->offload_to_be_enabled = 0;
4015 		this_device->hba_ioaccel_enabled = 0;
4016 		this_device->volume_offline = 0;
4017 		this_device->queue_depth = h->nr_cmds;
4018 	}
4019 
4020 	if (this_device->external)
4021 		this_device->queue_depth = EXTERNAL_QD;
4022 
4023 	if (is_OBDR_device) {
4024 		/* See if this is a One-Button-Disaster-Recovery device
4025 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4026 		 */
4027 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4028 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4029 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4030 						OBDR_SIG_LEN) == 0);
4031 	}
4032 	kfree(inq_buff);
4033 	return 0;
4034 
4035 bail_out:
4036 	kfree(inq_buff);
4037 	return rc;
4038 }
4039 
4040 /*
4041  * Helper function to assign bus, target, lun mapping of devices.
4042  * Logical drive target and lun are assigned at this time, but
4043  * physical device lun and target assignment are deferred (assigned
4044  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4045 */
4046 static void figure_bus_target_lun(struct ctlr_info *h,
4047 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4048 {
4049 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4050 
4051 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4052 		/* physical device, target and lun filled in later */
4053 		if (is_hba_lunid(lunaddrbytes)) {
4054 			int bus = HPSA_HBA_BUS;
4055 
4056 			if (!device->rev)
4057 				bus = HPSA_LEGACY_HBA_BUS;
4058 			hpsa_set_bus_target_lun(device,
4059 					bus, 0, lunid & 0x3fff);
4060 		} else
4061 			/* defer target, lun assignment for physical devices */
4062 			hpsa_set_bus_target_lun(device,
4063 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4064 		return;
4065 	}
4066 	/* It's a logical device */
4067 	if (device->external) {
4068 		hpsa_set_bus_target_lun(device,
4069 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4070 			lunid & 0x00ff);
4071 		return;
4072 	}
4073 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4074 				0, lunid & 0x3fff);
4075 }
4076 
4077 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4078 	int i, int nphysicals, int nlocal_logicals)
4079 {
4080 	/* In report logicals, local logicals are listed first,
4081 	* then any externals.
4082 	*/
4083 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4084 
4085 	if (i == raid_ctlr_position)
4086 		return 0;
4087 
4088 	if (i < logicals_start)
4089 		return 0;
4090 
4091 	/* i is in logicals range, but still within local logicals */
4092 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4093 		return 0;
4094 
4095 	return 1; /* it's an external lun */
4096 }
4097 
4098 /*
4099  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4100  * logdev.  The number of luns in physdev and logdev are returned in
4101  * *nphysicals and *nlogicals, respectively.
4102  * Returns 0 on success, -1 otherwise.
4103  */
4104 static int hpsa_gather_lun_info(struct ctlr_info *h,
4105 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4106 	struct ReportLUNdata *logdev, u32 *nlogicals)
4107 {
4108 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4109 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4110 		return -1;
4111 	}
4112 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4113 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4114 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4115 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4116 		*nphysicals = HPSA_MAX_PHYS_LUN;
4117 	}
4118 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4119 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4120 		return -1;
4121 	}
4122 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4123 	/* Reject Logicals in excess of our max capability. */
4124 	if (*nlogicals > HPSA_MAX_LUN) {
4125 		dev_warn(&h->pdev->dev,
4126 			"maximum logical LUNs (%d) exceeded.  "
4127 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4128 			*nlogicals - HPSA_MAX_LUN);
4129 		*nlogicals = HPSA_MAX_LUN;
4130 	}
4131 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4132 		dev_warn(&h->pdev->dev,
4133 			"maximum logical + physical LUNs (%d) exceeded. "
4134 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4135 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4136 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4137 	}
4138 	return 0;
4139 }
4140 
4141 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4142 	int i, int nphysicals, int nlogicals,
4143 	struct ReportExtendedLUNdata *physdev_list,
4144 	struct ReportLUNdata *logdev_list)
4145 {
4146 	/* Helper function, figure out where the LUN ID info is coming from
4147 	 * given index i, lists of physical and logical devices, where in
4148 	 * the list the raid controller is supposed to appear (first or last)
4149 	 */
4150 
4151 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4152 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4153 
4154 	if (i == raid_ctlr_position)
4155 		return RAID_CTLR_LUNID;
4156 
4157 	if (i < logicals_start)
4158 		return &physdev_list->LUN[i -
4159 				(raid_ctlr_position == 0)].lunid[0];
4160 
4161 	if (i < last_device)
4162 		return &logdev_list->LUN[i - nphysicals -
4163 			(raid_ctlr_position == 0)][0];
4164 	BUG();
4165 	return NULL;
4166 }
4167 
4168 /* get physical drive ioaccel handle and queue depth */
4169 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4170 		struct hpsa_scsi_dev_t *dev,
4171 		struct ReportExtendedLUNdata *rlep, int rle_index,
4172 		struct bmic_identify_physical_device *id_phys)
4173 {
4174 	int rc;
4175 	struct ext_report_lun_entry *rle;
4176 
4177 	rle = &rlep->LUN[rle_index];
4178 
4179 	dev->ioaccel_handle = rle->ioaccel_handle;
4180 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4181 		dev->hba_ioaccel_enabled = 1;
4182 	memset(id_phys, 0, sizeof(*id_phys));
4183 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4184 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4185 			sizeof(*id_phys));
4186 	if (!rc)
4187 		/* Reserve space for FW operations */
4188 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4189 #define DRIVE_QUEUE_DEPTH 7
4190 		dev->queue_depth =
4191 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4192 				DRIVE_CMDS_RESERVED_FOR_FW;
4193 	else
4194 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4195 }
4196 
4197 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4198 	struct ReportExtendedLUNdata *rlep, int rle_index,
4199 	struct bmic_identify_physical_device *id_phys)
4200 {
4201 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4202 
4203 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4204 		this_device->hba_ioaccel_enabled = 1;
4205 
4206 	memcpy(&this_device->active_path_index,
4207 		&id_phys->active_path_number,
4208 		sizeof(this_device->active_path_index));
4209 	memcpy(&this_device->path_map,
4210 		&id_phys->redundant_path_present_map,
4211 		sizeof(this_device->path_map));
4212 	memcpy(&this_device->box,
4213 		&id_phys->alternate_paths_phys_box_on_port,
4214 		sizeof(this_device->box));
4215 	memcpy(&this_device->phys_connector,
4216 		&id_phys->alternate_paths_phys_connector,
4217 		sizeof(this_device->phys_connector));
4218 	memcpy(&this_device->bay,
4219 		&id_phys->phys_bay_in_box,
4220 		sizeof(this_device->bay));
4221 }
4222 
4223 /* get number of local logical disks. */
4224 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4225 	struct bmic_identify_controller *id_ctlr,
4226 	u32 *nlocals)
4227 {
4228 	int rc;
4229 
4230 	if (!id_ctlr) {
4231 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4232 			__func__);
4233 		return -ENOMEM;
4234 	}
4235 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4236 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4237 	if (!rc)
4238 		if (id_ctlr->configured_logical_drive_count < 255)
4239 			*nlocals = id_ctlr->configured_logical_drive_count;
4240 		else
4241 			*nlocals = le16_to_cpu(
4242 					id_ctlr->extended_logical_unit_count);
4243 	else
4244 		*nlocals = -1;
4245 	return rc;
4246 }
4247 
4248 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4249 {
4250 	struct bmic_identify_physical_device *id_phys;
4251 	bool is_spare = false;
4252 	int rc;
4253 
4254 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4255 	if (!id_phys)
4256 		return false;
4257 
4258 	rc = hpsa_bmic_id_physical_device(h,
4259 					lunaddrbytes,
4260 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4261 					id_phys, sizeof(*id_phys));
4262 	if (rc == 0)
4263 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4264 
4265 	kfree(id_phys);
4266 	return is_spare;
4267 }
4268 
4269 #define RPL_DEV_FLAG_NON_DISK                           0x1
4270 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4271 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4272 
4273 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4274 
4275 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4276 				struct ext_report_lun_entry *rle)
4277 {
4278 	u8 device_flags;
4279 	u8 device_type;
4280 
4281 	if (!MASKED_DEVICE(lunaddrbytes))
4282 		return false;
4283 
4284 	device_flags = rle->device_flags;
4285 	device_type = rle->device_type;
4286 
4287 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4288 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4289 			return false;
4290 		return true;
4291 	}
4292 
4293 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4294 		return false;
4295 
4296 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4297 		return false;
4298 
4299 	/*
4300 	 * Spares may be spun down, we do not want to
4301 	 * do an Inquiry to a RAID set spare drive as
4302 	 * that would have them spun up, that is a
4303 	 * performance hit because I/O to the RAID device
4304 	 * stops while the spin up occurs which can take
4305 	 * over 50 seconds.
4306 	 */
4307 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4308 		return true;
4309 
4310 	return false;
4311 }
4312 
4313 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4314 {
4315 	/* the idea here is we could get notified
4316 	 * that some devices have changed, so we do a report
4317 	 * physical luns and report logical luns cmd, and adjust
4318 	 * our list of devices accordingly.
4319 	 *
4320 	 * The scsi3addr's of devices won't change so long as the
4321 	 * adapter is not reset.  That means we can rescan and
4322 	 * tell which devices we already know about, vs. new
4323 	 * devices, vs.  disappearing devices.
4324 	 */
4325 	struct ReportExtendedLUNdata *physdev_list = NULL;
4326 	struct ReportLUNdata *logdev_list = NULL;
4327 	struct bmic_identify_physical_device *id_phys = NULL;
4328 	struct bmic_identify_controller *id_ctlr = NULL;
4329 	u32 nphysicals = 0;
4330 	u32 nlogicals = 0;
4331 	u32 nlocal_logicals = 0;
4332 	u32 ndev_allocated = 0;
4333 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4334 	int ncurrent = 0;
4335 	int i, n_ext_target_devs, ndevs_to_allocate;
4336 	int raid_ctlr_position;
4337 	bool physical_device;
4338 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4339 
4340 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4341 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4342 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4343 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4344 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4345 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4346 
4347 	if (!currentsd || !physdev_list || !logdev_list ||
4348 		!tmpdevice || !id_phys || !id_ctlr) {
4349 		dev_err(&h->pdev->dev, "out of memory\n");
4350 		goto out;
4351 	}
4352 	memset(lunzerobits, 0, sizeof(lunzerobits));
4353 
4354 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4355 
4356 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4357 			logdev_list, &nlogicals)) {
4358 		h->drv_req_rescan = 1;
4359 		goto out;
4360 	}
4361 
4362 	/* Set number of local logicals (non PTRAID) */
4363 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4364 		dev_warn(&h->pdev->dev,
4365 			"%s: Can't determine number of local logical devices.\n",
4366 			__func__);
4367 	}
4368 
4369 	/* We might see up to the maximum number of logical and physical disks
4370 	 * plus external target devices, and a device for the local RAID
4371 	 * controller.
4372 	 */
4373 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4374 
4375 	hpsa_ext_ctrl_present(h, physdev_list);
4376 
4377 	/* Allocate the per device structures */
4378 	for (i = 0; i < ndevs_to_allocate; i++) {
4379 		if (i >= HPSA_MAX_DEVICES) {
4380 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4381 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4382 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4383 			break;
4384 		}
4385 
4386 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4387 		if (!currentsd[i]) {
4388 			h->drv_req_rescan = 1;
4389 			goto out;
4390 		}
4391 		ndev_allocated++;
4392 	}
4393 
4394 	if (is_scsi_rev_5(h))
4395 		raid_ctlr_position = 0;
4396 	else
4397 		raid_ctlr_position = nphysicals + nlogicals;
4398 
4399 	/* adjust our table of devices */
4400 	n_ext_target_devs = 0;
4401 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4402 		u8 *lunaddrbytes, is_OBDR = 0;
4403 		int rc = 0;
4404 		int phys_dev_index = i - (raid_ctlr_position == 0);
4405 		bool skip_device = false;
4406 
4407 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4408 
4409 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4410 
4411 		/* Figure out where the LUN ID info is coming from */
4412 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4413 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4414 
4415 		/* Determine if this is a lun from an external target array */
4416 		tmpdevice->external =
4417 			figure_external_status(h, raid_ctlr_position, i,
4418 						nphysicals, nlocal_logicals);
4419 
4420 		/*
4421 		 * Skip over some devices such as a spare.
4422 		 */
4423 		if (!tmpdevice->external && physical_device) {
4424 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4425 					&physdev_list->LUN[phys_dev_index]);
4426 			if (skip_device)
4427 				continue;
4428 		}
4429 
4430 		/* Get device type, vendor, model, device id, raid_map */
4431 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4432 							&is_OBDR);
4433 		if (rc == -ENOMEM) {
4434 			dev_warn(&h->pdev->dev,
4435 				"Out of memory, rescan deferred.\n");
4436 			h->drv_req_rescan = 1;
4437 			goto out;
4438 		}
4439 		if (rc) {
4440 			h->drv_req_rescan = 1;
4441 			continue;
4442 		}
4443 
4444 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4445 		this_device = currentsd[ncurrent];
4446 
4447 		*this_device = *tmpdevice;
4448 		this_device->physical_device = physical_device;
4449 
4450 		/*
4451 		 * Expose all devices except for physical devices that
4452 		 * are masked.
4453 		 */
4454 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4455 			this_device->expose_device = 0;
4456 		else
4457 			this_device->expose_device = 1;
4458 
4459 
4460 		/*
4461 		 * Get the SAS address for physical devices that are exposed.
4462 		 */
4463 		if (this_device->physical_device && this_device->expose_device)
4464 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4465 
4466 		switch (this_device->devtype) {
4467 		case TYPE_ROM:
4468 			/* We don't *really* support actual CD-ROM devices,
4469 			 * just "One Button Disaster Recovery" tape drive
4470 			 * which temporarily pretends to be a CD-ROM drive.
4471 			 * So we check that the device is really an OBDR tape
4472 			 * device by checking for "$DR-10" in bytes 43-48 of
4473 			 * the inquiry data.
4474 			 */
4475 			if (is_OBDR)
4476 				ncurrent++;
4477 			break;
4478 		case TYPE_DISK:
4479 		case TYPE_ZBC:
4480 			if (this_device->physical_device) {
4481 				/* The disk is in HBA mode. */
4482 				/* Never use RAID mapper in HBA mode. */
4483 				this_device->offload_enabled = 0;
4484 				hpsa_get_ioaccel_drive_info(h, this_device,
4485 					physdev_list, phys_dev_index, id_phys);
4486 				hpsa_get_path_info(this_device,
4487 					physdev_list, phys_dev_index, id_phys);
4488 			}
4489 			ncurrent++;
4490 			break;
4491 		case TYPE_TAPE:
4492 		case TYPE_MEDIUM_CHANGER:
4493 			ncurrent++;
4494 			break;
4495 		case TYPE_ENCLOSURE:
4496 			if (!this_device->external)
4497 				hpsa_get_enclosure_info(h, lunaddrbytes,
4498 						physdev_list, phys_dev_index,
4499 						this_device);
4500 			ncurrent++;
4501 			break;
4502 		case TYPE_RAID:
4503 			/* Only present the Smartarray HBA as a RAID controller.
4504 			 * If it's a RAID controller other than the HBA itself
4505 			 * (an external RAID controller, MSA500 or similar)
4506 			 * don't present it.
4507 			 */
4508 			if (!is_hba_lunid(lunaddrbytes))
4509 				break;
4510 			ncurrent++;
4511 			break;
4512 		default:
4513 			break;
4514 		}
4515 		if (ncurrent >= HPSA_MAX_DEVICES)
4516 			break;
4517 	}
4518 
4519 	if (h->sas_host == NULL) {
4520 		int rc = 0;
4521 
4522 		rc = hpsa_add_sas_host(h);
4523 		if (rc) {
4524 			dev_warn(&h->pdev->dev,
4525 				"Could not add sas host %d\n", rc);
4526 			goto out;
4527 		}
4528 	}
4529 
4530 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4531 out:
4532 	kfree(tmpdevice);
4533 	for (i = 0; i < ndev_allocated; i++)
4534 		kfree(currentsd[i]);
4535 	kfree(currentsd);
4536 	kfree(physdev_list);
4537 	kfree(logdev_list);
4538 	kfree(id_ctlr);
4539 	kfree(id_phys);
4540 }
4541 
4542 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4543 				   struct scatterlist *sg)
4544 {
4545 	u64 addr64 = (u64) sg_dma_address(sg);
4546 	unsigned int len = sg_dma_len(sg);
4547 
4548 	desc->Addr = cpu_to_le64(addr64);
4549 	desc->Len = cpu_to_le32(len);
4550 	desc->Ext = 0;
4551 }
4552 
4553 /*
4554  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4555  * dma mapping  and fills in the scatter gather entries of the
4556  * hpsa command, cp.
4557  */
4558 static int hpsa_scatter_gather(struct ctlr_info *h,
4559 		struct CommandList *cp,
4560 		struct scsi_cmnd *cmd)
4561 {
4562 	struct scatterlist *sg;
4563 	int use_sg, i, sg_limit, chained, last_sg;
4564 	struct SGDescriptor *curr_sg;
4565 
4566 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4567 
4568 	use_sg = scsi_dma_map(cmd);
4569 	if (use_sg < 0)
4570 		return use_sg;
4571 
4572 	if (!use_sg)
4573 		goto sglist_finished;
4574 
4575 	/*
4576 	 * If the number of entries is greater than the max for a single list,
4577 	 * then we have a chained list; we will set up all but one entry in the
4578 	 * first list (the last entry is saved for link information);
4579 	 * otherwise, we don't have a chained list and we'll set up at each of
4580 	 * the entries in the one list.
4581 	 */
4582 	curr_sg = cp->SG;
4583 	chained = use_sg > h->max_cmd_sg_entries;
4584 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4585 	last_sg = scsi_sg_count(cmd) - 1;
4586 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4587 		hpsa_set_sg_descriptor(curr_sg, sg);
4588 		curr_sg++;
4589 	}
4590 
4591 	if (chained) {
4592 		/*
4593 		 * Continue with the chained list.  Set curr_sg to the chained
4594 		 * list.  Modify the limit to the total count less the entries
4595 		 * we've already set up.  Resume the scan at the list entry
4596 		 * where the previous loop left off.
4597 		 */
4598 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4599 		sg_limit = use_sg - sg_limit;
4600 		for_each_sg(sg, sg, sg_limit, i) {
4601 			hpsa_set_sg_descriptor(curr_sg, sg);
4602 			curr_sg++;
4603 		}
4604 	}
4605 
4606 	/* Back the pointer up to the last entry and mark it as "last". */
4607 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4608 
4609 	if (use_sg + chained > h->maxSG)
4610 		h->maxSG = use_sg + chained;
4611 
4612 	if (chained) {
4613 		cp->Header.SGList = h->max_cmd_sg_entries;
4614 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4615 		if (hpsa_map_sg_chain_block(h, cp)) {
4616 			scsi_dma_unmap(cmd);
4617 			return -1;
4618 		}
4619 		return 0;
4620 	}
4621 
4622 sglist_finished:
4623 
4624 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4625 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4626 	return 0;
4627 }
4628 
4629 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4630 						u8 *cdb, int cdb_len,
4631 						const char *func)
4632 {
4633 	dev_warn(&h->pdev->dev,
4634 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4635 		 func, cdb_len, cdb);
4636 }
4637 
4638 #define IO_ACCEL_INELIGIBLE 1
4639 /* zero-length transfers trigger hardware errors. */
4640 static bool is_zero_length_transfer(u8 *cdb)
4641 {
4642 	u32 block_cnt;
4643 
4644 	/* Block zero-length transfer sizes on certain commands. */
4645 	switch (cdb[0]) {
4646 	case READ_10:
4647 	case WRITE_10:
4648 	case VERIFY:		/* 0x2F */
4649 	case WRITE_VERIFY:	/* 0x2E */
4650 		block_cnt = get_unaligned_be16(&cdb[7]);
4651 		break;
4652 	case READ_12:
4653 	case WRITE_12:
4654 	case VERIFY_12: /* 0xAF */
4655 	case WRITE_VERIFY_12:	/* 0xAE */
4656 		block_cnt = get_unaligned_be32(&cdb[6]);
4657 		break;
4658 	case READ_16:
4659 	case WRITE_16:
4660 	case VERIFY_16:		/* 0x8F */
4661 		block_cnt = get_unaligned_be32(&cdb[10]);
4662 		break;
4663 	default:
4664 		return false;
4665 	}
4666 
4667 	return block_cnt == 0;
4668 }
4669 
4670 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4671 {
4672 	int is_write = 0;
4673 	u32 block;
4674 	u32 block_cnt;
4675 
4676 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4677 	switch (cdb[0]) {
4678 	case WRITE_6:
4679 	case WRITE_12:
4680 		is_write = 1;
4681 		/* fall through */
4682 	case READ_6:
4683 	case READ_12:
4684 		if (*cdb_len == 6) {
4685 			block = (((cdb[1] & 0x1F) << 16) |
4686 				(cdb[2] << 8) |
4687 				cdb[3]);
4688 			block_cnt = cdb[4];
4689 			if (block_cnt == 0)
4690 				block_cnt = 256;
4691 		} else {
4692 			BUG_ON(*cdb_len != 12);
4693 			block = get_unaligned_be32(&cdb[2]);
4694 			block_cnt = get_unaligned_be32(&cdb[6]);
4695 		}
4696 		if (block_cnt > 0xffff)
4697 			return IO_ACCEL_INELIGIBLE;
4698 
4699 		cdb[0] = is_write ? WRITE_10 : READ_10;
4700 		cdb[1] = 0;
4701 		cdb[2] = (u8) (block >> 24);
4702 		cdb[3] = (u8) (block >> 16);
4703 		cdb[4] = (u8) (block >> 8);
4704 		cdb[5] = (u8) (block);
4705 		cdb[6] = 0;
4706 		cdb[7] = (u8) (block_cnt >> 8);
4707 		cdb[8] = (u8) (block_cnt);
4708 		cdb[9] = 0;
4709 		*cdb_len = 10;
4710 		break;
4711 	}
4712 	return 0;
4713 }
4714 
4715 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4716 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4717 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4718 {
4719 	struct scsi_cmnd *cmd = c->scsi_cmd;
4720 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4721 	unsigned int len;
4722 	unsigned int total_len = 0;
4723 	struct scatterlist *sg;
4724 	u64 addr64;
4725 	int use_sg, i;
4726 	struct SGDescriptor *curr_sg;
4727 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4728 
4729 	/* TODO: implement chaining support */
4730 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4731 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4732 		return IO_ACCEL_INELIGIBLE;
4733 	}
4734 
4735 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4736 
4737 	if (is_zero_length_transfer(cdb)) {
4738 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4739 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4740 		return IO_ACCEL_INELIGIBLE;
4741 	}
4742 
4743 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4744 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4745 		return IO_ACCEL_INELIGIBLE;
4746 	}
4747 
4748 	c->cmd_type = CMD_IOACCEL1;
4749 
4750 	/* Adjust the DMA address to point to the accelerated command buffer */
4751 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4752 				(c->cmdindex * sizeof(*cp));
4753 	BUG_ON(c->busaddr & 0x0000007F);
4754 
4755 	use_sg = scsi_dma_map(cmd);
4756 	if (use_sg < 0) {
4757 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4758 		return use_sg;
4759 	}
4760 
4761 	if (use_sg) {
4762 		curr_sg = cp->SG;
4763 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4764 			addr64 = (u64) sg_dma_address(sg);
4765 			len  = sg_dma_len(sg);
4766 			total_len += len;
4767 			curr_sg->Addr = cpu_to_le64(addr64);
4768 			curr_sg->Len = cpu_to_le32(len);
4769 			curr_sg->Ext = cpu_to_le32(0);
4770 			curr_sg++;
4771 		}
4772 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4773 
4774 		switch (cmd->sc_data_direction) {
4775 		case DMA_TO_DEVICE:
4776 			control |= IOACCEL1_CONTROL_DATA_OUT;
4777 			break;
4778 		case DMA_FROM_DEVICE:
4779 			control |= IOACCEL1_CONTROL_DATA_IN;
4780 			break;
4781 		case DMA_NONE:
4782 			control |= IOACCEL1_CONTROL_NODATAXFER;
4783 			break;
4784 		default:
4785 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4786 			cmd->sc_data_direction);
4787 			BUG();
4788 			break;
4789 		}
4790 	} else {
4791 		control |= IOACCEL1_CONTROL_NODATAXFER;
4792 	}
4793 
4794 	c->Header.SGList = use_sg;
4795 	/* Fill out the command structure to submit */
4796 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4797 	cp->transfer_len = cpu_to_le32(total_len);
4798 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4799 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4800 	cp->control = cpu_to_le32(control);
4801 	memcpy(cp->CDB, cdb, cdb_len);
4802 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4803 	/* Tag was already set at init time. */
4804 	enqueue_cmd_and_start_io(h, c);
4805 	return 0;
4806 }
4807 
4808 /*
4809  * Queue a command directly to a device behind the controller using the
4810  * I/O accelerator path.
4811  */
4812 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4813 	struct CommandList *c)
4814 {
4815 	struct scsi_cmnd *cmd = c->scsi_cmd;
4816 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4817 
4818 	if (!dev)
4819 		return -1;
4820 
4821 	c->phys_disk = dev;
4822 
4823 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4824 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4825 }
4826 
4827 /*
4828  * Set encryption parameters for the ioaccel2 request
4829  */
4830 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4831 	struct CommandList *c, struct io_accel2_cmd *cp)
4832 {
4833 	struct scsi_cmnd *cmd = c->scsi_cmd;
4834 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4835 	struct raid_map_data *map = &dev->raid_map;
4836 	u64 first_block;
4837 
4838 	/* Are we doing encryption on this device */
4839 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4840 		return;
4841 	/* Set the data encryption key index. */
4842 	cp->dekindex = map->dekindex;
4843 
4844 	/* Set the encryption enable flag, encoded into direction field. */
4845 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4846 
4847 	/* Set encryption tweak values based on logical block address
4848 	 * If block size is 512, tweak value is LBA.
4849 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4850 	 */
4851 	switch (cmd->cmnd[0]) {
4852 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4853 	case READ_6:
4854 	case WRITE_6:
4855 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4856 				(cmd->cmnd[2] << 8) |
4857 				cmd->cmnd[3]);
4858 		break;
4859 	case WRITE_10:
4860 	case READ_10:
4861 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4862 	case WRITE_12:
4863 	case READ_12:
4864 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4865 		break;
4866 	case WRITE_16:
4867 	case READ_16:
4868 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4869 		break;
4870 	default:
4871 		dev_err(&h->pdev->dev,
4872 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4873 			__func__, cmd->cmnd[0]);
4874 		BUG();
4875 		break;
4876 	}
4877 
4878 	if (le32_to_cpu(map->volume_blk_size) != 512)
4879 		first_block = first_block *
4880 				le32_to_cpu(map->volume_blk_size)/512;
4881 
4882 	cp->tweak_lower = cpu_to_le32(first_block);
4883 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4884 }
4885 
4886 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4887 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4888 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4889 {
4890 	struct scsi_cmnd *cmd = c->scsi_cmd;
4891 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4892 	struct ioaccel2_sg_element *curr_sg;
4893 	int use_sg, i;
4894 	struct scatterlist *sg;
4895 	u64 addr64;
4896 	u32 len;
4897 	u32 total_len = 0;
4898 
4899 	if (!cmd->device)
4900 		return -1;
4901 
4902 	if (!cmd->device->hostdata)
4903 		return -1;
4904 
4905 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4906 
4907 	if (is_zero_length_transfer(cdb)) {
4908 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4909 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4910 		return IO_ACCEL_INELIGIBLE;
4911 	}
4912 
4913 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4914 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4915 		return IO_ACCEL_INELIGIBLE;
4916 	}
4917 
4918 	c->cmd_type = CMD_IOACCEL2;
4919 	/* Adjust the DMA address to point to the accelerated command buffer */
4920 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4921 				(c->cmdindex * sizeof(*cp));
4922 	BUG_ON(c->busaddr & 0x0000007F);
4923 
4924 	memset(cp, 0, sizeof(*cp));
4925 	cp->IU_type = IOACCEL2_IU_TYPE;
4926 
4927 	use_sg = scsi_dma_map(cmd);
4928 	if (use_sg < 0) {
4929 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4930 		return use_sg;
4931 	}
4932 
4933 	if (use_sg) {
4934 		curr_sg = cp->sg;
4935 		if (use_sg > h->ioaccel_maxsg) {
4936 			addr64 = le64_to_cpu(
4937 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4938 			curr_sg->address = cpu_to_le64(addr64);
4939 			curr_sg->length = 0;
4940 			curr_sg->reserved[0] = 0;
4941 			curr_sg->reserved[1] = 0;
4942 			curr_sg->reserved[2] = 0;
4943 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4944 
4945 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4946 		}
4947 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4948 			addr64 = (u64) sg_dma_address(sg);
4949 			len  = sg_dma_len(sg);
4950 			total_len += len;
4951 			curr_sg->address = cpu_to_le64(addr64);
4952 			curr_sg->length = cpu_to_le32(len);
4953 			curr_sg->reserved[0] = 0;
4954 			curr_sg->reserved[1] = 0;
4955 			curr_sg->reserved[2] = 0;
4956 			curr_sg->chain_indicator = 0;
4957 			curr_sg++;
4958 		}
4959 
4960 		/*
4961 		 * Set the last s/g element bit
4962 		 */
4963 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4964 
4965 		switch (cmd->sc_data_direction) {
4966 		case DMA_TO_DEVICE:
4967 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4968 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4969 			break;
4970 		case DMA_FROM_DEVICE:
4971 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4972 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4973 			break;
4974 		case DMA_NONE:
4975 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4976 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4977 			break;
4978 		default:
4979 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4980 				cmd->sc_data_direction);
4981 			BUG();
4982 			break;
4983 		}
4984 	} else {
4985 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4986 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4987 	}
4988 
4989 	/* Set encryption parameters, if necessary */
4990 	set_encrypt_ioaccel2(h, c, cp);
4991 
4992 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4993 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4994 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4995 
4996 	cp->data_len = cpu_to_le32(total_len);
4997 	cp->err_ptr = cpu_to_le64(c->busaddr +
4998 			offsetof(struct io_accel2_cmd, error_data));
4999 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5000 
5001 	/* fill in sg elements */
5002 	if (use_sg > h->ioaccel_maxsg) {
5003 		cp->sg_count = 1;
5004 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5005 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5006 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5007 			scsi_dma_unmap(cmd);
5008 			return -1;
5009 		}
5010 	} else
5011 		cp->sg_count = (u8) use_sg;
5012 
5013 	enqueue_cmd_and_start_io(h, c);
5014 	return 0;
5015 }
5016 
5017 /*
5018  * Queue a command to the correct I/O accelerator path.
5019  */
5020 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5021 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5022 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5023 {
5024 	if (!c->scsi_cmd->device)
5025 		return -1;
5026 
5027 	if (!c->scsi_cmd->device->hostdata)
5028 		return -1;
5029 
5030 	/* Try to honor the device's queue depth */
5031 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5032 					phys_disk->queue_depth) {
5033 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5034 		return IO_ACCEL_INELIGIBLE;
5035 	}
5036 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5037 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5038 						cdb, cdb_len, scsi3addr,
5039 						phys_disk);
5040 	else
5041 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5042 						cdb, cdb_len, scsi3addr,
5043 						phys_disk);
5044 }
5045 
5046 static void raid_map_helper(struct raid_map_data *map,
5047 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5048 {
5049 	if (offload_to_mirror == 0)  {
5050 		/* use physical disk in the first mirrored group. */
5051 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5052 		return;
5053 	}
5054 	do {
5055 		/* determine mirror group that *map_index indicates */
5056 		*current_group = *map_index /
5057 			le16_to_cpu(map->data_disks_per_row);
5058 		if (offload_to_mirror == *current_group)
5059 			continue;
5060 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5061 			/* select map index from next group */
5062 			*map_index += le16_to_cpu(map->data_disks_per_row);
5063 			(*current_group)++;
5064 		} else {
5065 			/* select map index from first group */
5066 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5067 			*current_group = 0;
5068 		}
5069 	} while (offload_to_mirror != *current_group);
5070 }
5071 
5072 /*
5073  * Attempt to perform offload RAID mapping for a logical volume I/O.
5074  */
5075 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5076 	struct CommandList *c)
5077 {
5078 	struct scsi_cmnd *cmd = c->scsi_cmd;
5079 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5080 	struct raid_map_data *map = &dev->raid_map;
5081 	struct raid_map_disk_data *dd = &map->data[0];
5082 	int is_write = 0;
5083 	u32 map_index;
5084 	u64 first_block, last_block;
5085 	u32 block_cnt;
5086 	u32 blocks_per_row;
5087 	u64 first_row, last_row;
5088 	u32 first_row_offset, last_row_offset;
5089 	u32 first_column, last_column;
5090 	u64 r0_first_row, r0_last_row;
5091 	u32 r5or6_blocks_per_row;
5092 	u64 r5or6_first_row, r5or6_last_row;
5093 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5094 	u32 r5or6_first_column, r5or6_last_column;
5095 	u32 total_disks_per_row;
5096 	u32 stripesize;
5097 	u32 first_group, last_group, current_group;
5098 	u32 map_row;
5099 	u32 disk_handle;
5100 	u64 disk_block;
5101 	u32 disk_block_cnt;
5102 	u8 cdb[16];
5103 	u8 cdb_len;
5104 	u16 strip_size;
5105 #if BITS_PER_LONG == 32
5106 	u64 tmpdiv;
5107 #endif
5108 	int offload_to_mirror;
5109 
5110 	if (!dev)
5111 		return -1;
5112 
5113 	/* check for valid opcode, get LBA and block count */
5114 	switch (cmd->cmnd[0]) {
5115 	case WRITE_6:
5116 		is_write = 1;
5117 		/* fall through */
5118 	case READ_6:
5119 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5120 				(cmd->cmnd[2] << 8) |
5121 				cmd->cmnd[3]);
5122 		block_cnt = cmd->cmnd[4];
5123 		if (block_cnt == 0)
5124 			block_cnt = 256;
5125 		break;
5126 	case WRITE_10:
5127 		is_write = 1;
5128 		/* fall through */
5129 	case READ_10:
5130 		first_block =
5131 			(((u64) cmd->cmnd[2]) << 24) |
5132 			(((u64) cmd->cmnd[3]) << 16) |
5133 			(((u64) cmd->cmnd[4]) << 8) |
5134 			cmd->cmnd[5];
5135 		block_cnt =
5136 			(((u32) cmd->cmnd[7]) << 8) |
5137 			cmd->cmnd[8];
5138 		break;
5139 	case WRITE_12:
5140 		is_write = 1;
5141 		/* fall through */
5142 	case READ_12:
5143 		first_block =
5144 			(((u64) cmd->cmnd[2]) << 24) |
5145 			(((u64) cmd->cmnd[3]) << 16) |
5146 			(((u64) cmd->cmnd[4]) << 8) |
5147 			cmd->cmnd[5];
5148 		block_cnt =
5149 			(((u32) cmd->cmnd[6]) << 24) |
5150 			(((u32) cmd->cmnd[7]) << 16) |
5151 			(((u32) cmd->cmnd[8]) << 8) |
5152 		cmd->cmnd[9];
5153 		break;
5154 	case WRITE_16:
5155 		is_write = 1;
5156 		/* fall through */
5157 	case READ_16:
5158 		first_block =
5159 			(((u64) cmd->cmnd[2]) << 56) |
5160 			(((u64) cmd->cmnd[3]) << 48) |
5161 			(((u64) cmd->cmnd[4]) << 40) |
5162 			(((u64) cmd->cmnd[5]) << 32) |
5163 			(((u64) cmd->cmnd[6]) << 24) |
5164 			(((u64) cmd->cmnd[7]) << 16) |
5165 			(((u64) cmd->cmnd[8]) << 8) |
5166 			cmd->cmnd[9];
5167 		block_cnt =
5168 			(((u32) cmd->cmnd[10]) << 24) |
5169 			(((u32) cmd->cmnd[11]) << 16) |
5170 			(((u32) cmd->cmnd[12]) << 8) |
5171 			cmd->cmnd[13];
5172 		break;
5173 	default:
5174 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5175 	}
5176 	last_block = first_block + block_cnt - 1;
5177 
5178 	/* check for write to non-RAID-0 */
5179 	if (is_write && dev->raid_level != 0)
5180 		return IO_ACCEL_INELIGIBLE;
5181 
5182 	/* check for invalid block or wraparound */
5183 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5184 		last_block < first_block)
5185 		return IO_ACCEL_INELIGIBLE;
5186 
5187 	/* calculate stripe information for the request */
5188 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5189 				le16_to_cpu(map->strip_size);
5190 	strip_size = le16_to_cpu(map->strip_size);
5191 #if BITS_PER_LONG == 32
5192 	tmpdiv = first_block;
5193 	(void) do_div(tmpdiv, blocks_per_row);
5194 	first_row = tmpdiv;
5195 	tmpdiv = last_block;
5196 	(void) do_div(tmpdiv, blocks_per_row);
5197 	last_row = tmpdiv;
5198 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5199 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5200 	tmpdiv = first_row_offset;
5201 	(void) do_div(tmpdiv, strip_size);
5202 	first_column = tmpdiv;
5203 	tmpdiv = last_row_offset;
5204 	(void) do_div(tmpdiv, strip_size);
5205 	last_column = tmpdiv;
5206 #else
5207 	first_row = first_block / blocks_per_row;
5208 	last_row = last_block / blocks_per_row;
5209 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5210 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5211 	first_column = first_row_offset / strip_size;
5212 	last_column = last_row_offset / strip_size;
5213 #endif
5214 
5215 	/* if this isn't a single row/column then give to the controller */
5216 	if ((first_row != last_row) || (first_column != last_column))
5217 		return IO_ACCEL_INELIGIBLE;
5218 
5219 	/* proceeding with driver mapping */
5220 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5221 				le16_to_cpu(map->metadata_disks_per_row);
5222 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5223 				le16_to_cpu(map->row_cnt);
5224 	map_index = (map_row * total_disks_per_row) + first_column;
5225 
5226 	switch (dev->raid_level) {
5227 	case HPSA_RAID_0:
5228 		break; /* nothing special to do */
5229 	case HPSA_RAID_1:
5230 		/* Handles load balance across RAID 1 members.
5231 		 * (2-drive R1 and R10 with even # of drives.)
5232 		 * Appropriate for SSDs, not optimal for HDDs
5233 		 */
5234 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5235 		if (dev->offload_to_mirror)
5236 			map_index += le16_to_cpu(map->data_disks_per_row);
5237 		dev->offload_to_mirror = !dev->offload_to_mirror;
5238 		break;
5239 	case HPSA_RAID_ADM:
5240 		/* Handles N-way mirrors  (R1-ADM)
5241 		 * and R10 with # of drives divisible by 3.)
5242 		 */
5243 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5244 
5245 		offload_to_mirror = dev->offload_to_mirror;
5246 		raid_map_helper(map, offload_to_mirror,
5247 				&map_index, &current_group);
5248 		/* set mirror group to use next time */
5249 		offload_to_mirror =
5250 			(offload_to_mirror >=
5251 			le16_to_cpu(map->layout_map_count) - 1)
5252 			? 0 : offload_to_mirror + 1;
5253 		dev->offload_to_mirror = offload_to_mirror;
5254 		/* Avoid direct use of dev->offload_to_mirror within this
5255 		 * function since multiple threads might simultaneously
5256 		 * increment it beyond the range of dev->layout_map_count -1.
5257 		 */
5258 		break;
5259 	case HPSA_RAID_5:
5260 	case HPSA_RAID_6:
5261 		if (le16_to_cpu(map->layout_map_count) <= 1)
5262 			break;
5263 
5264 		/* Verify first and last block are in same RAID group */
5265 		r5or6_blocks_per_row =
5266 			le16_to_cpu(map->strip_size) *
5267 			le16_to_cpu(map->data_disks_per_row);
5268 		BUG_ON(r5or6_blocks_per_row == 0);
5269 		stripesize = r5or6_blocks_per_row *
5270 			le16_to_cpu(map->layout_map_count);
5271 #if BITS_PER_LONG == 32
5272 		tmpdiv = first_block;
5273 		first_group = do_div(tmpdiv, stripesize);
5274 		tmpdiv = first_group;
5275 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5276 		first_group = tmpdiv;
5277 		tmpdiv = last_block;
5278 		last_group = do_div(tmpdiv, stripesize);
5279 		tmpdiv = last_group;
5280 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5281 		last_group = tmpdiv;
5282 #else
5283 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5284 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5285 #endif
5286 		if (first_group != last_group)
5287 			return IO_ACCEL_INELIGIBLE;
5288 
5289 		/* Verify request is in a single row of RAID 5/6 */
5290 #if BITS_PER_LONG == 32
5291 		tmpdiv = first_block;
5292 		(void) do_div(tmpdiv, stripesize);
5293 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5294 		tmpdiv = last_block;
5295 		(void) do_div(tmpdiv, stripesize);
5296 		r5or6_last_row = r0_last_row = tmpdiv;
5297 #else
5298 		first_row = r5or6_first_row = r0_first_row =
5299 						first_block / stripesize;
5300 		r5or6_last_row = r0_last_row = last_block / stripesize;
5301 #endif
5302 		if (r5or6_first_row != r5or6_last_row)
5303 			return IO_ACCEL_INELIGIBLE;
5304 
5305 
5306 		/* Verify request is in a single column */
5307 #if BITS_PER_LONG == 32
5308 		tmpdiv = first_block;
5309 		first_row_offset = do_div(tmpdiv, stripesize);
5310 		tmpdiv = first_row_offset;
5311 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5312 		r5or6_first_row_offset = first_row_offset;
5313 		tmpdiv = last_block;
5314 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5315 		tmpdiv = r5or6_last_row_offset;
5316 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5317 		tmpdiv = r5or6_first_row_offset;
5318 		(void) do_div(tmpdiv, map->strip_size);
5319 		first_column = r5or6_first_column = tmpdiv;
5320 		tmpdiv = r5or6_last_row_offset;
5321 		(void) do_div(tmpdiv, map->strip_size);
5322 		r5or6_last_column = tmpdiv;
5323 #else
5324 		first_row_offset = r5or6_first_row_offset =
5325 			(u32)((first_block % stripesize) %
5326 						r5or6_blocks_per_row);
5327 
5328 		r5or6_last_row_offset =
5329 			(u32)((last_block % stripesize) %
5330 						r5or6_blocks_per_row);
5331 
5332 		first_column = r5or6_first_column =
5333 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5334 		r5or6_last_column =
5335 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5336 #endif
5337 		if (r5or6_first_column != r5or6_last_column)
5338 			return IO_ACCEL_INELIGIBLE;
5339 
5340 		/* Request is eligible */
5341 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5342 			le16_to_cpu(map->row_cnt);
5343 
5344 		map_index = (first_group *
5345 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5346 			(map_row * total_disks_per_row) + first_column;
5347 		break;
5348 	default:
5349 		return IO_ACCEL_INELIGIBLE;
5350 	}
5351 
5352 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5353 		return IO_ACCEL_INELIGIBLE;
5354 
5355 	c->phys_disk = dev->phys_disk[map_index];
5356 	if (!c->phys_disk)
5357 		return IO_ACCEL_INELIGIBLE;
5358 
5359 	disk_handle = dd[map_index].ioaccel_handle;
5360 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5361 			first_row * le16_to_cpu(map->strip_size) +
5362 			(first_row_offset - first_column *
5363 			le16_to_cpu(map->strip_size));
5364 	disk_block_cnt = block_cnt;
5365 
5366 	/* handle differing logical/physical block sizes */
5367 	if (map->phys_blk_shift) {
5368 		disk_block <<= map->phys_blk_shift;
5369 		disk_block_cnt <<= map->phys_blk_shift;
5370 	}
5371 	BUG_ON(disk_block_cnt > 0xffff);
5372 
5373 	/* build the new CDB for the physical disk I/O */
5374 	if (disk_block > 0xffffffff) {
5375 		cdb[0] = is_write ? WRITE_16 : READ_16;
5376 		cdb[1] = 0;
5377 		cdb[2] = (u8) (disk_block >> 56);
5378 		cdb[3] = (u8) (disk_block >> 48);
5379 		cdb[4] = (u8) (disk_block >> 40);
5380 		cdb[5] = (u8) (disk_block >> 32);
5381 		cdb[6] = (u8) (disk_block >> 24);
5382 		cdb[7] = (u8) (disk_block >> 16);
5383 		cdb[8] = (u8) (disk_block >> 8);
5384 		cdb[9] = (u8) (disk_block);
5385 		cdb[10] = (u8) (disk_block_cnt >> 24);
5386 		cdb[11] = (u8) (disk_block_cnt >> 16);
5387 		cdb[12] = (u8) (disk_block_cnt >> 8);
5388 		cdb[13] = (u8) (disk_block_cnt);
5389 		cdb[14] = 0;
5390 		cdb[15] = 0;
5391 		cdb_len = 16;
5392 	} else {
5393 		cdb[0] = is_write ? WRITE_10 : READ_10;
5394 		cdb[1] = 0;
5395 		cdb[2] = (u8) (disk_block >> 24);
5396 		cdb[3] = (u8) (disk_block >> 16);
5397 		cdb[4] = (u8) (disk_block >> 8);
5398 		cdb[5] = (u8) (disk_block);
5399 		cdb[6] = 0;
5400 		cdb[7] = (u8) (disk_block_cnt >> 8);
5401 		cdb[8] = (u8) (disk_block_cnt);
5402 		cdb[9] = 0;
5403 		cdb_len = 10;
5404 	}
5405 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5406 						dev->scsi3addr,
5407 						dev->phys_disk[map_index]);
5408 }
5409 
5410 /*
5411  * Submit commands down the "normal" RAID stack path
5412  * All callers to hpsa_ciss_submit must check lockup_detected
5413  * beforehand, before (opt.) and after calling cmd_alloc
5414  */
5415 static int hpsa_ciss_submit(struct ctlr_info *h,
5416 	struct CommandList *c, struct scsi_cmnd *cmd,
5417 	unsigned char scsi3addr[])
5418 {
5419 	cmd->host_scribble = (unsigned char *) c;
5420 	c->cmd_type = CMD_SCSI;
5421 	c->scsi_cmd = cmd;
5422 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5423 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5424 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5425 
5426 	/* Fill in the request block... */
5427 
5428 	c->Request.Timeout = 0;
5429 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5430 	c->Request.CDBLen = cmd->cmd_len;
5431 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5432 	switch (cmd->sc_data_direction) {
5433 	case DMA_TO_DEVICE:
5434 		c->Request.type_attr_dir =
5435 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5436 		break;
5437 	case DMA_FROM_DEVICE:
5438 		c->Request.type_attr_dir =
5439 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5440 		break;
5441 	case DMA_NONE:
5442 		c->Request.type_attr_dir =
5443 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5444 		break;
5445 	case DMA_BIDIRECTIONAL:
5446 		/* This can happen if a buggy application does a scsi passthru
5447 		 * and sets both inlen and outlen to non-zero. ( see
5448 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5449 		 */
5450 
5451 		c->Request.type_attr_dir =
5452 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5453 		/* This is technically wrong, and hpsa controllers should
5454 		 * reject it with CMD_INVALID, which is the most correct
5455 		 * response, but non-fibre backends appear to let it
5456 		 * slide by, and give the same results as if this field
5457 		 * were set correctly.  Either way is acceptable for
5458 		 * our purposes here.
5459 		 */
5460 
5461 		break;
5462 
5463 	default:
5464 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5465 			cmd->sc_data_direction);
5466 		BUG();
5467 		break;
5468 	}
5469 
5470 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5471 		hpsa_cmd_resolve_and_free(h, c);
5472 		return SCSI_MLQUEUE_HOST_BUSY;
5473 	}
5474 	enqueue_cmd_and_start_io(h, c);
5475 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5476 	return 0;
5477 }
5478 
5479 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5480 				struct CommandList *c)
5481 {
5482 	dma_addr_t cmd_dma_handle, err_dma_handle;
5483 
5484 	/* Zero out all of commandlist except the last field, refcount */
5485 	memset(c, 0, offsetof(struct CommandList, refcount));
5486 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5487 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5488 	c->err_info = h->errinfo_pool + index;
5489 	memset(c->err_info, 0, sizeof(*c->err_info));
5490 	err_dma_handle = h->errinfo_pool_dhandle
5491 	    + index * sizeof(*c->err_info);
5492 	c->cmdindex = index;
5493 	c->busaddr = (u32) cmd_dma_handle;
5494 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5495 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5496 	c->h = h;
5497 	c->scsi_cmd = SCSI_CMD_IDLE;
5498 }
5499 
5500 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5501 {
5502 	int i;
5503 
5504 	for (i = 0; i < h->nr_cmds; i++) {
5505 		struct CommandList *c = h->cmd_pool + i;
5506 
5507 		hpsa_cmd_init(h, i, c);
5508 		atomic_set(&c->refcount, 0);
5509 	}
5510 }
5511 
5512 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5513 				struct CommandList *c)
5514 {
5515 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5516 
5517 	BUG_ON(c->cmdindex != index);
5518 
5519 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5520 	memset(c->err_info, 0, sizeof(*c->err_info));
5521 	c->busaddr = (u32) cmd_dma_handle;
5522 }
5523 
5524 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5525 		struct CommandList *c, struct scsi_cmnd *cmd,
5526 		unsigned char *scsi3addr)
5527 {
5528 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5529 	int rc = IO_ACCEL_INELIGIBLE;
5530 
5531 	if (!dev)
5532 		return SCSI_MLQUEUE_HOST_BUSY;
5533 
5534 	cmd->host_scribble = (unsigned char *) c;
5535 
5536 	if (dev->offload_enabled) {
5537 		hpsa_cmd_init(h, c->cmdindex, c);
5538 		c->cmd_type = CMD_SCSI;
5539 		c->scsi_cmd = cmd;
5540 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5541 		if (rc < 0)     /* scsi_dma_map failed. */
5542 			rc = SCSI_MLQUEUE_HOST_BUSY;
5543 	} else if (dev->hba_ioaccel_enabled) {
5544 		hpsa_cmd_init(h, c->cmdindex, c);
5545 		c->cmd_type = CMD_SCSI;
5546 		c->scsi_cmd = cmd;
5547 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5548 		if (rc < 0)     /* scsi_dma_map failed. */
5549 			rc = SCSI_MLQUEUE_HOST_BUSY;
5550 	}
5551 	return rc;
5552 }
5553 
5554 static void hpsa_command_resubmit_worker(struct work_struct *work)
5555 {
5556 	struct scsi_cmnd *cmd;
5557 	struct hpsa_scsi_dev_t *dev;
5558 	struct CommandList *c = container_of(work, struct CommandList, work);
5559 
5560 	cmd = c->scsi_cmd;
5561 	dev = cmd->device->hostdata;
5562 	if (!dev) {
5563 		cmd->result = DID_NO_CONNECT << 16;
5564 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5565 	}
5566 	if (c->reset_pending)
5567 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5568 	if (c->cmd_type == CMD_IOACCEL2) {
5569 		struct ctlr_info *h = c->h;
5570 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5571 		int rc;
5572 
5573 		if (c2->error_data.serv_response ==
5574 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5575 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5576 			if (rc == 0)
5577 				return;
5578 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5579 				/*
5580 				 * If we get here, it means dma mapping failed.
5581 				 * Try again via scsi mid layer, which will
5582 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5583 				 */
5584 				cmd->result = DID_IMM_RETRY << 16;
5585 				return hpsa_cmd_free_and_done(h, c, cmd);
5586 			}
5587 			/* else, fall thru and resubmit down CISS path */
5588 		}
5589 	}
5590 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5591 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5592 		/*
5593 		 * If we get here, it means dma mapping failed. Try
5594 		 * again via scsi mid layer, which will then get
5595 		 * SCSI_MLQUEUE_HOST_BUSY.
5596 		 *
5597 		 * hpsa_ciss_submit will have already freed c
5598 		 * if it encountered a dma mapping failure.
5599 		 */
5600 		cmd->result = DID_IMM_RETRY << 16;
5601 		cmd->scsi_done(cmd);
5602 	}
5603 }
5604 
5605 /* Running in struct Scsi_Host->host_lock less mode */
5606 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5607 {
5608 	struct ctlr_info *h;
5609 	struct hpsa_scsi_dev_t *dev;
5610 	unsigned char scsi3addr[8];
5611 	struct CommandList *c;
5612 	int rc = 0;
5613 
5614 	/* Get the ptr to our adapter structure out of cmd->host. */
5615 	h = sdev_to_hba(cmd->device);
5616 
5617 	BUG_ON(cmd->request->tag < 0);
5618 
5619 	dev = cmd->device->hostdata;
5620 	if (!dev) {
5621 		cmd->result = DID_NO_CONNECT << 16;
5622 		cmd->scsi_done(cmd);
5623 		return 0;
5624 	}
5625 
5626 	if (dev->removed) {
5627 		cmd->result = DID_NO_CONNECT << 16;
5628 		cmd->scsi_done(cmd);
5629 		return 0;
5630 	}
5631 
5632 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5633 
5634 	if (unlikely(lockup_detected(h))) {
5635 		cmd->result = DID_NO_CONNECT << 16;
5636 		cmd->scsi_done(cmd);
5637 		return 0;
5638 	}
5639 	c = cmd_tagged_alloc(h, cmd);
5640 
5641 	/*
5642 	 * Call alternate submit routine for I/O accelerated commands.
5643 	 * Retries always go down the normal I/O path.
5644 	 */
5645 	if (likely(cmd->retries == 0 &&
5646 			!blk_rq_is_passthrough(cmd->request) &&
5647 			h->acciopath_status)) {
5648 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5649 		if (rc == 0)
5650 			return 0;
5651 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5652 			hpsa_cmd_resolve_and_free(h, c);
5653 			return SCSI_MLQUEUE_HOST_BUSY;
5654 		}
5655 	}
5656 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5657 }
5658 
5659 static void hpsa_scan_complete(struct ctlr_info *h)
5660 {
5661 	unsigned long flags;
5662 
5663 	spin_lock_irqsave(&h->scan_lock, flags);
5664 	h->scan_finished = 1;
5665 	wake_up(&h->scan_wait_queue);
5666 	spin_unlock_irqrestore(&h->scan_lock, flags);
5667 }
5668 
5669 static void hpsa_scan_start(struct Scsi_Host *sh)
5670 {
5671 	struct ctlr_info *h = shost_to_hba(sh);
5672 	unsigned long flags;
5673 
5674 	/*
5675 	 * Don't let rescans be initiated on a controller known to be locked
5676 	 * up.  If the controller locks up *during* a rescan, that thread is
5677 	 * probably hosed, but at least we can prevent new rescan threads from
5678 	 * piling up on a locked up controller.
5679 	 */
5680 	if (unlikely(lockup_detected(h)))
5681 		return hpsa_scan_complete(h);
5682 
5683 	/*
5684 	 * If a scan is already waiting to run, no need to add another
5685 	 */
5686 	spin_lock_irqsave(&h->scan_lock, flags);
5687 	if (h->scan_waiting) {
5688 		spin_unlock_irqrestore(&h->scan_lock, flags);
5689 		return;
5690 	}
5691 
5692 	spin_unlock_irqrestore(&h->scan_lock, flags);
5693 
5694 	/* wait until any scan already in progress is finished. */
5695 	while (1) {
5696 		spin_lock_irqsave(&h->scan_lock, flags);
5697 		if (h->scan_finished)
5698 			break;
5699 		h->scan_waiting = 1;
5700 		spin_unlock_irqrestore(&h->scan_lock, flags);
5701 		wait_event(h->scan_wait_queue, h->scan_finished);
5702 		/* Note: We don't need to worry about a race between this
5703 		 * thread and driver unload because the midlayer will
5704 		 * have incremented the reference count, so unload won't
5705 		 * happen if we're in here.
5706 		 */
5707 	}
5708 	h->scan_finished = 0; /* mark scan as in progress */
5709 	h->scan_waiting = 0;
5710 	spin_unlock_irqrestore(&h->scan_lock, flags);
5711 
5712 	if (unlikely(lockup_detected(h)))
5713 		return hpsa_scan_complete(h);
5714 
5715 	/*
5716 	 * Do the scan after a reset completion
5717 	 */
5718 	spin_lock_irqsave(&h->reset_lock, flags);
5719 	if (h->reset_in_progress) {
5720 		h->drv_req_rescan = 1;
5721 		spin_unlock_irqrestore(&h->reset_lock, flags);
5722 		hpsa_scan_complete(h);
5723 		return;
5724 	}
5725 	spin_unlock_irqrestore(&h->reset_lock, flags);
5726 
5727 	hpsa_update_scsi_devices(h);
5728 
5729 	hpsa_scan_complete(h);
5730 }
5731 
5732 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5733 {
5734 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5735 
5736 	if (!logical_drive)
5737 		return -ENODEV;
5738 
5739 	if (qdepth < 1)
5740 		qdepth = 1;
5741 	else if (qdepth > logical_drive->queue_depth)
5742 		qdepth = logical_drive->queue_depth;
5743 
5744 	return scsi_change_queue_depth(sdev, qdepth);
5745 }
5746 
5747 static int hpsa_scan_finished(struct Scsi_Host *sh,
5748 	unsigned long elapsed_time)
5749 {
5750 	struct ctlr_info *h = shost_to_hba(sh);
5751 	unsigned long flags;
5752 	int finished;
5753 
5754 	spin_lock_irqsave(&h->scan_lock, flags);
5755 	finished = h->scan_finished;
5756 	spin_unlock_irqrestore(&h->scan_lock, flags);
5757 	return finished;
5758 }
5759 
5760 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5761 {
5762 	struct Scsi_Host *sh;
5763 
5764 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5765 	if (sh == NULL) {
5766 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5767 		return -ENOMEM;
5768 	}
5769 
5770 	sh->io_port = 0;
5771 	sh->n_io_port = 0;
5772 	sh->this_id = -1;
5773 	sh->max_channel = 3;
5774 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5775 	sh->max_lun = HPSA_MAX_LUN;
5776 	sh->max_id = HPSA_MAX_LUN;
5777 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5778 	sh->cmd_per_lun = sh->can_queue;
5779 	sh->sg_tablesize = h->maxsgentries;
5780 	sh->transportt = hpsa_sas_transport_template;
5781 	sh->hostdata[0] = (unsigned long) h;
5782 	sh->irq = pci_irq_vector(h->pdev, 0);
5783 	sh->unique_id = sh->irq;
5784 
5785 	h->scsi_host = sh;
5786 	return 0;
5787 }
5788 
5789 static int hpsa_scsi_add_host(struct ctlr_info *h)
5790 {
5791 	int rv;
5792 
5793 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5794 	if (rv) {
5795 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5796 		return rv;
5797 	}
5798 	scsi_scan_host(h->scsi_host);
5799 	return 0;
5800 }
5801 
5802 /*
5803  * The block layer has already gone to the trouble of picking out a unique,
5804  * small-integer tag for this request.  We use an offset from that value as
5805  * an index to select our command block.  (The offset allows us to reserve the
5806  * low-numbered entries for our own uses.)
5807  */
5808 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5809 {
5810 	int idx = scmd->request->tag;
5811 
5812 	if (idx < 0)
5813 		return idx;
5814 
5815 	/* Offset to leave space for internal cmds. */
5816 	return idx += HPSA_NRESERVED_CMDS;
5817 }
5818 
5819 /*
5820  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5821  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5822  */
5823 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5824 				struct CommandList *c, unsigned char lunaddr[],
5825 				int reply_queue)
5826 {
5827 	int rc;
5828 
5829 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5830 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5831 			NULL, 0, 0, lunaddr, TYPE_CMD);
5832 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5833 	if (rc)
5834 		return rc;
5835 	/* no unmap needed here because no data xfer. */
5836 
5837 	/* Check if the unit is already ready. */
5838 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5839 		return 0;
5840 
5841 	/*
5842 	 * The first command sent after reset will receive "unit attention" to
5843 	 * indicate that the LUN has been reset...this is actually what we're
5844 	 * looking for (but, success is good too).
5845 	 */
5846 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5847 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5848 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5849 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5850 		return 0;
5851 
5852 	return 1;
5853 }
5854 
5855 /*
5856  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5857  * returns zero when the unit is ready, and non-zero when giving up.
5858  */
5859 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5860 				struct CommandList *c,
5861 				unsigned char lunaddr[], int reply_queue)
5862 {
5863 	int rc;
5864 	int count = 0;
5865 	int waittime = 1; /* seconds */
5866 
5867 	/* Send test unit ready until device ready, or give up. */
5868 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5869 
5870 		/*
5871 		 * Wait for a bit.  do this first, because if we send
5872 		 * the TUR right away, the reset will just abort it.
5873 		 */
5874 		msleep(1000 * waittime);
5875 
5876 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5877 		if (!rc)
5878 			break;
5879 
5880 		/* Increase wait time with each try, up to a point. */
5881 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5882 			waittime *= 2;
5883 
5884 		dev_warn(&h->pdev->dev,
5885 			 "waiting %d secs for device to become ready.\n",
5886 			 waittime);
5887 	}
5888 
5889 	return rc;
5890 }
5891 
5892 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5893 					   unsigned char lunaddr[],
5894 					   int reply_queue)
5895 {
5896 	int first_queue;
5897 	int last_queue;
5898 	int rq;
5899 	int rc = 0;
5900 	struct CommandList *c;
5901 
5902 	c = cmd_alloc(h);
5903 
5904 	/*
5905 	 * If no specific reply queue was requested, then send the TUR
5906 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5907 	 * the loop exactly once using only the specified queue.
5908 	 */
5909 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5910 		first_queue = 0;
5911 		last_queue = h->nreply_queues - 1;
5912 	} else {
5913 		first_queue = reply_queue;
5914 		last_queue = reply_queue;
5915 	}
5916 
5917 	for (rq = first_queue; rq <= last_queue; rq++) {
5918 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5919 		if (rc)
5920 			break;
5921 	}
5922 
5923 	if (rc)
5924 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5925 	else
5926 		dev_warn(&h->pdev->dev, "device is ready.\n");
5927 
5928 	cmd_free(h, c);
5929 	return rc;
5930 }
5931 
5932 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5933  * complaining.  Doing a host- or bus-reset can't do anything good here.
5934  */
5935 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5936 {
5937 	int rc = SUCCESS;
5938 	struct ctlr_info *h;
5939 	struct hpsa_scsi_dev_t *dev;
5940 	u8 reset_type;
5941 	char msg[48];
5942 	unsigned long flags;
5943 
5944 	/* find the controller to which the command to be aborted was sent */
5945 	h = sdev_to_hba(scsicmd->device);
5946 	if (h == NULL) /* paranoia */
5947 		return FAILED;
5948 
5949 	spin_lock_irqsave(&h->reset_lock, flags);
5950 	h->reset_in_progress = 1;
5951 	spin_unlock_irqrestore(&h->reset_lock, flags);
5952 
5953 	if (lockup_detected(h)) {
5954 		rc = FAILED;
5955 		goto return_reset_status;
5956 	}
5957 
5958 	dev = scsicmd->device->hostdata;
5959 	if (!dev) {
5960 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5961 		rc = FAILED;
5962 		goto return_reset_status;
5963 	}
5964 
5965 	if (dev->devtype == TYPE_ENCLOSURE) {
5966 		rc = SUCCESS;
5967 		goto return_reset_status;
5968 	}
5969 
5970 	/* if controller locked up, we can guarantee command won't complete */
5971 	if (lockup_detected(h)) {
5972 		snprintf(msg, sizeof(msg),
5973 			 "cmd %d RESET FAILED, lockup detected",
5974 			 hpsa_get_cmd_index(scsicmd));
5975 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5976 		rc = FAILED;
5977 		goto return_reset_status;
5978 	}
5979 
5980 	/* this reset request might be the result of a lockup; check */
5981 	if (detect_controller_lockup(h)) {
5982 		snprintf(msg, sizeof(msg),
5983 			 "cmd %d RESET FAILED, new lockup detected",
5984 			 hpsa_get_cmd_index(scsicmd));
5985 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5986 		rc = FAILED;
5987 		goto return_reset_status;
5988 	}
5989 
5990 	/* Do not attempt on controller */
5991 	if (is_hba_lunid(dev->scsi3addr)) {
5992 		rc = SUCCESS;
5993 		goto return_reset_status;
5994 	}
5995 
5996 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5997 		reset_type = HPSA_DEVICE_RESET_MSG;
5998 	else
5999 		reset_type = HPSA_PHYS_TARGET_RESET;
6000 
6001 	sprintf(msg, "resetting %s",
6002 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6003 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6004 
6005 	/* send a reset to the SCSI LUN which the command was sent to */
6006 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
6007 			   DEFAULT_REPLY_QUEUE);
6008 	if (rc == 0)
6009 		rc = SUCCESS;
6010 	else
6011 		rc = FAILED;
6012 
6013 	sprintf(msg, "reset %s %s",
6014 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6015 		rc == SUCCESS ? "completed successfully" : "failed");
6016 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6017 
6018 return_reset_status:
6019 	spin_lock_irqsave(&h->reset_lock, flags);
6020 	h->reset_in_progress = 0;
6021 	spin_unlock_irqrestore(&h->reset_lock, flags);
6022 	return rc;
6023 }
6024 
6025 /*
6026  * For operations with an associated SCSI command, a command block is allocated
6027  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6028  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6029  * the complement, although cmd_free() may be called instead.
6030  */
6031 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6032 					    struct scsi_cmnd *scmd)
6033 {
6034 	int idx = hpsa_get_cmd_index(scmd);
6035 	struct CommandList *c = h->cmd_pool + idx;
6036 
6037 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6038 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6039 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6040 		/* The index value comes from the block layer, so if it's out of
6041 		 * bounds, it's probably not our bug.
6042 		 */
6043 		BUG();
6044 	}
6045 
6046 	atomic_inc(&c->refcount);
6047 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6048 		/*
6049 		 * We expect that the SCSI layer will hand us a unique tag
6050 		 * value.  Thus, there should never be a collision here between
6051 		 * two requests...because if the selected command isn't idle
6052 		 * then someone is going to be very disappointed.
6053 		 */
6054 		dev_err(&h->pdev->dev,
6055 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6056 			idx);
6057 		if (c->scsi_cmd != NULL)
6058 			scsi_print_command(c->scsi_cmd);
6059 		scsi_print_command(scmd);
6060 	}
6061 
6062 	hpsa_cmd_partial_init(h, idx, c);
6063 	return c;
6064 }
6065 
6066 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6067 {
6068 	/*
6069 	 * Release our reference to the block.  We don't need to do anything
6070 	 * else to free it, because it is accessed by index.
6071 	 */
6072 	(void)atomic_dec(&c->refcount);
6073 }
6074 
6075 /*
6076  * For operations that cannot sleep, a command block is allocated at init,
6077  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6078  * which ones are free or in use.  Lock must be held when calling this.
6079  * cmd_free() is the complement.
6080  * This function never gives up and returns NULL.  If it hangs,
6081  * another thread must call cmd_free() to free some tags.
6082  */
6083 
6084 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6085 {
6086 	struct CommandList *c;
6087 	int refcount, i;
6088 	int offset = 0;
6089 
6090 	/*
6091 	 * There is some *extremely* small but non-zero chance that that
6092 	 * multiple threads could get in here, and one thread could
6093 	 * be scanning through the list of bits looking for a free
6094 	 * one, but the free ones are always behind him, and other
6095 	 * threads sneak in behind him and eat them before he can
6096 	 * get to them, so that while there is always a free one, a
6097 	 * very unlucky thread might be starved anyway, never able to
6098 	 * beat the other threads.  In reality, this happens so
6099 	 * infrequently as to be indistinguishable from never.
6100 	 *
6101 	 * Note that we start allocating commands before the SCSI host structure
6102 	 * is initialized.  Since the search starts at bit zero, this
6103 	 * all works, since we have at least one command structure available;
6104 	 * however, it means that the structures with the low indexes have to be
6105 	 * reserved for driver-initiated requests, while requests from the block
6106 	 * layer will use the higher indexes.
6107 	 */
6108 
6109 	for (;;) {
6110 		i = find_next_zero_bit(h->cmd_pool_bits,
6111 					HPSA_NRESERVED_CMDS,
6112 					offset);
6113 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6114 			offset = 0;
6115 			continue;
6116 		}
6117 		c = h->cmd_pool + i;
6118 		refcount = atomic_inc_return(&c->refcount);
6119 		if (unlikely(refcount > 1)) {
6120 			cmd_free(h, c); /* already in use */
6121 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6122 			continue;
6123 		}
6124 		set_bit(i & (BITS_PER_LONG - 1),
6125 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6126 		break; /* it's ours now. */
6127 	}
6128 	hpsa_cmd_partial_init(h, i, c);
6129 	return c;
6130 }
6131 
6132 /*
6133  * This is the complementary operation to cmd_alloc().  Note, however, in some
6134  * corner cases it may also be used to free blocks allocated by
6135  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6136  * the clear-bit is harmless.
6137  */
6138 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6139 {
6140 	if (atomic_dec_and_test(&c->refcount)) {
6141 		int i;
6142 
6143 		i = c - h->cmd_pool;
6144 		clear_bit(i & (BITS_PER_LONG - 1),
6145 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6146 	}
6147 }
6148 
6149 #ifdef CONFIG_COMPAT
6150 
6151 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6152 	void __user *arg)
6153 {
6154 	IOCTL32_Command_struct __user *arg32 =
6155 	    (IOCTL32_Command_struct __user *) arg;
6156 	IOCTL_Command_struct arg64;
6157 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6158 	int err;
6159 	u32 cp;
6160 
6161 	memset(&arg64, 0, sizeof(arg64));
6162 	err = 0;
6163 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6164 			   sizeof(arg64.LUN_info));
6165 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6166 			   sizeof(arg64.Request));
6167 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6168 			   sizeof(arg64.error_info));
6169 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6170 	err |= get_user(cp, &arg32->buf);
6171 	arg64.buf = compat_ptr(cp);
6172 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6173 
6174 	if (err)
6175 		return -EFAULT;
6176 
6177 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6178 	if (err)
6179 		return err;
6180 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6181 			 sizeof(arg32->error_info));
6182 	if (err)
6183 		return -EFAULT;
6184 	return err;
6185 }
6186 
6187 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6188 	unsigned int cmd, void __user *arg)
6189 {
6190 	BIG_IOCTL32_Command_struct __user *arg32 =
6191 	    (BIG_IOCTL32_Command_struct __user *) arg;
6192 	BIG_IOCTL_Command_struct arg64;
6193 	BIG_IOCTL_Command_struct __user *p =
6194 	    compat_alloc_user_space(sizeof(arg64));
6195 	int err;
6196 	u32 cp;
6197 
6198 	memset(&arg64, 0, sizeof(arg64));
6199 	err = 0;
6200 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6201 			   sizeof(arg64.LUN_info));
6202 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6203 			   sizeof(arg64.Request));
6204 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6205 			   sizeof(arg64.error_info));
6206 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6207 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6208 	err |= get_user(cp, &arg32->buf);
6209 	arg64.buf = compat_ptr(cp);
6210 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6211 
6212 	if (err)
6213 		return -EFAULT;
6214 
6215 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6216 	if (err)
6217 		return err;
6218 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6219 			 sizeof(arg32->error_info));
6220 	if (err)
6221 		return -EFAULT;
6222 	return err;
6223 }
6224 
6225 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6226 			     void __user *arg)
6227 {
6228 	switch (cmd) {
6229 	case CCISS_GETPCIINFO:
6230 	case CCISS_GETINTINFO:
6231 	case CCISS_SETINTINFO:
6232 	case CCISS_GETNODENAME:
6233 	case CCISS_SETNODENAME:
6234 	case CCISS_GETHEARTBEAT:
6235 	case CCISS_GETBUSTYPES:
6236 	case CCISS_GETFIRMVER:
6237 	case CCISS_GETDRIVVER:
6238 	case CCISS_REVALIDVOLS:
6239 	case CCISS_DEREGDISK:
6240 	case CCISS_REGNEWDISK:
6241 	case CCISS_REGNEWD:
6242 	case CCISS_RESCANDISK:
6243 	case CCISS_GETLUNINFO:
6244 		return hpsa_ioctl(dev, cmd, arg);
6245 
6246 	case CCISS_PASSTHRU32:
6247 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6248 	case CCISS_BIG_PASSTHRU32:
6249 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6250 
6251 	default:
6252 		return -ENOIOCTLCMD;
6253 	}
6254 }
6255 #endif
6256 
6257 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6258 {
6259 	struct hpsa_pci_info pciinfo;
6260 
6261 	if (!argp)
6262 		return -EINVAL;
6263 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6264 	pciinfo.bus = h->pdev->bus->number;
6265 	pciinfo.dev_fn = h->pdev->devfn;
6266 	pciinfo.board_id = h->board_id;
6267 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6268 		return -EFAULT;
6269 	return 0;
6270 }
6271 
6272 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6273 {
6274 	DriverVer_type DriverVer;
6275 	unsigned char vmaj, vmin, vsubmin;
6276 	int rc;
6277 
6278 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6279 		&vmaj, &vmin, &vsubmin);
6280 	if (rc != 3) {
6281 		dev_info(&h->pdev->dev, "driver version string '%s' "
6282 			"unrecognized.", HPSA_DRIVER_VERSION);
6283 		vmaj = 0;
6284 		vmin = 0;
6285 		vsubmin = 0;
6286 	}
6287 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6288 	if (!argp)
6289 		return -EINVAL;
6290 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6291 		return -EFAULT;
6292 	return 0;
6293 }
6294 
6295 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6296 {
6297 	IOCTL_Command_struct iocommand;
6298 	struct CommandList *c;
6299 	char *buff = NULL;
6300 	u64 temp64;
6301 	int rc = 0;
6302 
6303 	if (!argp)
6304 		return -EINVAL;
6305 	if (!capable(CAP_SYS_RAWIO))
6306 		return -EPERM;
6307 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6308 		return -EFAULT;
6309 	if ((iocommand.buf_size < 1) &&
6310 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6311 		return -EINVAL;
6312 	}
6313 	if (iocommand.buf_size > 0) {
6314 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6315 		if (buff == NULL)
6316 			return -ENOMEM;
6317 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6318 			/* Copy the data into the buffer we created */
6319 			if (copy_from_user(buff, iocommand.buf,
6320 				iocommand.buf_size)) {
6321 				rc = -EFAULT;
6322 				goto out_kfree;
6323 			}
6324 		} else {
6325 			memset(buff, 0, iocommand.buf_size);
6326 		}
6327 	}
6328 	c = cmd_alloc(h);
6329 
6330 	/* Fill in the command type */
6331 	c->cmd_type = CMD_IOCTL_PEND;
6332 	c->scsi_cmd = SCSI_CMD_BUSY;
6333 	/* Fill in Command Header */
6334 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6335 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6336 		c->Header.SGList = 1;
6337 		c->Header.SGTotal = cpu_to_le16(1);
6338 	} else	{ /* no buffers to fill */
6339 		c->Header.SGList = 0;
6340 		c->Header.SGTotal = cpu_to_le16(0);
6341 	}
6342 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6343 
6344 	/* Fill in Request block */
6345 	memcpy(&c->Request, &iocommand.Request,
6346 		sizeof(c->Request));
6347 
6348 	/* Fill in the scatter gather information */
6349 	if (iocommand.buf_size > 0) {
6350 		temp64 = dma_map_single(&h->pdev->dev, buff,
6351 			iocommand.buf_size, DMA_BIDIRECTIONAL);
6352 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6353 			c->SG[0].Addr = cpu_to_le64(0);
6354 			c->SG[0].Len = cpu_to_le32(0);
6355 			rc = -ENOMEM;
6356 			goto out;
6357 		}
6358 		c->SG[0].Addr = cpu_to_le64(temp64);
6359 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6360 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6361 	}
6362 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6363 					NO_TIMEOUT);
6364 	if (iocommand.buf_size > 0)
6365 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6366 	check_ioctl_unit_attention(h, c);
6367 	if (rc) {
6368 		rc = -EIO;
6369 		goto out;
6370 	}
6371 
6372 	/* Copy the error information out */
6373 	memcpy(&iocommand.error_info, c->err_info,
6374 		sizeof(iocommand.error_info));
6375 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6376 		rc = -EFAULT;
6377 		goto out;
6378 	}
6379 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6380 		iocommand.buf_size > 0) {
6381 		/* Copy the data out of the buffer we created */
6382 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6383 			rc = -EFAULT;
6384 			goto out;
6385 		}
6386 	}
6387 out:
6388 	cmd_free(h, c);
6389 out_kfree:
6390 	kfree(buff);
6391 	return rc;
6392 }
6393 
6394 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6395 {
6396 	BIG_IOCTL_Command_struct *ioc;
6397 	struct CommandList *c;
6398 	unsigned char **buff = NULL;
6399 	int *buff_size = NULL;
6400 	u64 temp64;
6401 	BYTE sg_used = 0;
6402 	int status = 0;
6403 	u32 left;
6404 	u32 sz;
6405 	BYTE __user *data_ptr;
6406 
6407 	if (!argp)
6408 		return -EINVAL;
6409 	if (!capable(CAP_SYS_RAWIO))
6410 		return -EPERM;
6411 	ioc = vmemdup_user(argp, sizeof(*ioc));
6412 	if (IS_ERR(ioc)) {
6413 		status = PTR_ERR(ioc);
6414 		goto cleanup1;
6415 	}
6416 	if ((ioc->buf_size < 1) &&
6417 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6418 		status = -EINVAL;
6419 		goto cleanup1;
6420 	}
6421 	/* Check kmalloc limits  using all SGs */
6422 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6423 		status = -EINVAL;
6424 		goto cleanup1;
6425 	}
6426 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6427 		status = -EINVAL;
6428 		goto cleanup1;
6429 	}
6430 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6431 	if (!buff) {
6432 		status = -ENOMEM;
6433 		goto cleanup1;
6434 	}
6435 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6436 	if (!buff_size) {
6437 		status = -ENOMEM;
6438 		goto cleanup1;
6439 	}
6440 	left = ioc->buf_size;
6441 	data_ptr = ioc->buf;
6442 	while (left) {
6443 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6444 		buff_size[sg_used] = sz;
6445 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6446 		if (buff[sg_used] == NULL) {
6447 			status = -ENOMEM;
6448 			goto cleanup1;
6449 		}
6450 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6451 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6452 				status = -EFAULT;
6453 				goto cleanup1;
6454 			}
6455 		} else
6456 			memset(buff[sg_used], 0, sz);
6457 		left -= sz;
6458 		data_ptr += sz;
6459 		sg_used++;
6460 	}
6461 	c = cmd_alloc(h);
6462 
6463 	c->cmd_type = CMD_IOCTL_PEND;
6464 	c->scsi_cmd = SCSI_CMD_BUSY;
6465 	c->Header.ReplyQueue = 0;
6466 	c->Header.SGList = (u8) sg_used;
6467 	c->Header.SGTotal = cpu_to_le16(sg_used);
6468 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6469 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6470 	if (ioc->buf_size > 0) {
6471 		int i;
6472 		for (i = 0; i < sg_used; i++) {
6473 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6474 				    buff_size[i], DMA_BIDIRECTIONAL);
6475 			if (dma_mapping_error(&h->pdev->dev,
6476 							(dma_addr_t) temp64)) {
6477 				c->SG[i].Addr = cpu_to_le64(0);
6478 				c->SG[i].Len = cpu_to_le32(0);
6479 				hpsa_pci_unmap(h->pdev, c, i,
6480 					DMA_BIDIRECTIONAL);
6481 				status = -ENOMEM;
6482 				goto cleanup0;
6483 			}
6484 			c->SG[i].Addr = cpu_to_le64(temp64);
6485 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6486 			c->SG[i].Ext = cpu_to_le32(0);
6487 		}
6488 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6489 	}
6490 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6491 						NO_TIMEOUT);
6492 	if (sg_used)
6493 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6494 	check_ioctl_unit_attention(h, c);
6495 	if (status) {
6496 		status = -EIO;
6497 		goto cleanup0;
6498 	}
6499 
6500 	/* Copy the error information out */
6501 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6502 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6503 		status = -EFAULT;
6504 		goto cleanup0;
6505 	}
6506 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6507 		int i;
6508 
6509 		/* Copy the data out of the buffer we created */
6510 		BYTE __user *ptr = ioc->buf;
6511 		for (i = 0; i < sg_used; i++) {
6512 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6513 				status = -EFAULT;
6514 				goto cleanup0;
6515 			}
6516 			ptr += buff_size[i];
6517 		}
6518 	}
6519 	status = 0;
6520 cleanup0:
6521 	cmd_free(h, c);
6522 cleanup1:
6523 	if (buff) {
6524 		int i;
6525 
6526 		for (i = 0; i < sg_used; i++)
6527 			kfree(buff[i]);
6528 		kfree(buff);
6529 	}
6530 	kfree(buff_size);
6531 	kvfree(ioc);
6532 	return status;
6533 }
6534 
6535 static void check_ioctl_unit_attention(struct ctlr_info *h,
6536 	struct CommandList *c)
6537 {
6538 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6539 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6540 		(void) check_for_unit_attention(h, c);
6541 }
6542 
6543 /*
6544  * ioctl
6545  */
6546 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6547 		      void __user *arg)
6548 {
6549 	struct ctlr_info *h;
6550 	void __user *argp = (void __user *)arg;
6551 	int rc;
6552 
6553 	h = sdev_to_hba(dev);
6554 
6555 	switch (cmd) {
6556 	case CCISS_DEREGDISK:
6557 	case CCISS_REGNEWDISK:
6558 	case CCISS_REGNEWD:
6559 		hpsa_scan_start(h->scsi_host);
6560 		return 0;
6561 	case CCISS_GETPCIINFO:
6562 		return hpsa_getpciinfo_ioctl(h, argp);
6563 	case CCISS_GETDRIVVER:
6564 		return hpsa_getdrivver_ioctl(h, argp);
6565 	case CCISS_PASSTHRU:
6566 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6567 			return -EAGAIN;
6568 		rc = hpsa_passthru_ioctl(h, argp);
6569 		atomic_inc(&h->passthru_cmds_avail);
6570 		return rc;
6571 	case CCISS_BIG_PASSTHRU:
6572 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6573 			return -EAGAIN;
6574 		rc = hpsa_big_passthru_ioctl(h, argp);
6575 		atomic_inc(&h->passthru_cmds_avail);
6576 		return rc;
6577 	default:
6578 		return -ENOTTY;
6579 	}
6580 }
6581 
6582 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6583 				u8 reset_type)
6584 {
6585 	struct CommandList *c;
6586 
6587 	c = cmd_alloc(h);
6588 
6589 	/* fill_cmd can't fail here, no data buffer to map */
6590 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6591 		RAID_CTLR_LUNID, TYPE_MSG);
6592 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6593 	c->waiting = NULL;
6594 	enqueue_cmd_and_start_io(h, c);
6595 	/* Don't wait for completion, the reset won't complete.  Don't free
6596 	 * the command either.  This is the last command we will send before
6597 	 * re-initializing everything, so it doesn't matter and won't leak.
6598 	 */
6599 	return;
6600 }
6601 
6602 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6603 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6604 	int cmd_type)
6605 {
6606 	enum dma_data_direction dir = DMA_NONE;
6607 
6608 	c->cmd_type = CMD_IOCTL_PEND;
6609 	c->scsi_cmd = SCSI_CMD_BUSY;
6610 	c->Header.ReplyQueue = 0;
6611 	if (buff != NULL && size > 0) {
6612 		c->Header.SGList = 1;
6613 		c->Header.SGTotal = cpu_to_le16(1);
6614 	} else {
6615 		c->Header.SGList = 0;
6616 		c->Header.SGTotal = cpu_to_le16(0);
6617 	}
6618 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6619 
6620 	if (cmd_type == TYPE_CMD) {
6621 		switch (cmd) {
6622 		case HPSA_INQUIRY:
6623 			/* are we trying to read a vital product page */
6624 			if (page_code & VPD_PAGE) {
6625 				c->Request.CDB[1] = 0x01;
6626 				c->Request.CDB[2] = (page_code & 0xff);
6627 			}
6628 			c->Request.CDBLen = 6;
6629 			c->Request.type_attr_dir =
6630 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6631 			c->Request.Timeout = 0;
6632 			c->Request.CDB[0] = HPSA_INQUIRY;
6633 			c->Request.CDB[4] = size & 0xFF;
6634 			break;
6635 		case RECEIVE_DIAGNOSTIC:
6636 			c->Request.CDBLen = 6;
6637 			c->Request.type_attr_dir =
6638 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6639 			c->Request.Timeout = 0;
6640 			c->Request.CDB[0] = cmd;
6641 			c->Request.CDB[1] = 1;
6642 			c->Request.CDB[2] = 1;
6643 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6644 			c->Request.CDB[4] = size & 0xFF;
6645 			break;
6646 		case HPSA_REPORT_LOG:
6647 		case HPSA_REPORT_PHYS:
6648 			/* Talking to controller so It's a physical command
6649 			   mode = 00 target = 0.  Nothing to write.
6650 			 */
6651 			c->Request.CDBLen = 12;
6652 			c->Request.type_attr_dir =
6653 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6654 			c->Request.Timeout = 0;
6655 			c->Request.CDB[0] = cmd;
6656 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6657 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6658 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6659 			c->Request.CDB[9] = size & 0xFF;
6660 			break;
6661 		case BMIC_SENSE_DIAG_OPTIONS:
6662 			c->Request.CDBLen = 16;
6663 			c->Request.type_attr_dir =
6664 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6665 			c->Request.Timeout = 0;
6666 			/* Spec says this should be BMIC_WRITE */
6667 			c->Request.CDB[0] = BMIC_READ;
6668 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6669 			break;
6670 		case BMIC_SET_DIAG_OPTIONS:
6671 			c->Request.CDBLen = 16;
6672 			c->Request.type_attr_dir =
6673 					TYPE_ATTR_DIR(cmd_type,
6674 						ATTR_SIMPLE, XFER_WRITE);
6675 			c->Request.Timeout = 0;
6676 			c->Request.CDB[0] = BMIC_WRITE;
6677 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6678 			break;
6679 		case HPSA_CACHE_FLUSH:
6680 			c->Request.CDBLen = 12;
6681 			c->Request.type_attr_dir =
6682 					TYPE_ATTR_DIR(cmd_type,
6683 						ATTR_SIMPLE, XFER_WRITE);
6684 			c->Request.Timeout = 0;
6685 			c->Request.CDB[0] = BMIC_WRITE;
6686 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6687 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6688 			c->Request.CDB[8] = size & 0xFF;
6689 			break;
6690 		case TEST_UNIT_READY:
6691 			c->Request.CDBLen = 6;
6692 			c->Request.type_attr_dir =
6693 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6694 			c->Request.Timeout = 0;
6695 			break;
6696 		case HPSA_GET_RAID_MAP:
6697 			c->Request.CDBLen = 12;
6698 			c->Request.type_attr_dir =
6699 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6700 			c->Request.Timeout = 0;
6701 			c->Request.CDB[0] = HPSA_CISS_READ;
6702 			c->Request.CDB[1] = cmd;
6703 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6704 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6705 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6706 			c->Request.CDB[9] = size & 0xFF;
6707 			break;
6708 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6709 			c->Request.CDBLen = 10;
6710 			c->Request.type_attr_dir =
6711 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6712 			c->Request.Timeout = 0;
6713 			c->Request.CDB[0] = BMIC_READ;
6714 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6715 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6716 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6717 			break;
6718 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6719 			c->Request.CDBLen = 10;
6720 			c->Request.type_attr_dir =
6721 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6722 			c->Request.Timeout = 0;
6723 			c->Request.CDB[0] = BMIC_READ;
6724 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6725 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6726 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6727 			break;
6728 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6729 			c->Request.CDBLen = 10;
6730 			c->Request.type_attr_dir =
6731 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6732 			c->Request.Timeout = 0;
6733 			c->Request.CDB[0] = BMIC_READ;
6734 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6735 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6736 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6737 			break;
6738 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6739 			c->Request.CDBLen = 10;
6740 			c->Request.type_attr_dir =
6741 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6742 			c->Request.Timeout = 0;
6743 			c->Request.CDB[0] = BMIC_READ;
6744 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6745 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6746 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6747 			break;
6748 		case BMIC_IDENTIFY_CONTROLLER:
6749 			c->Request.CDBLen = 10;
6750 			c->Request.type_attr_dir =
6751 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6752 			c->Request.Timeout = 0;
6753 			c->Request.CDB[0] = BMIC_READ;
6754 			c->Request.CDB[1] = 0;
6755 			c->Request.CDB[2] = 0;
6756 			c->Request.CDB[3] = 0;
6757 			c->Request.CDB[4] = 0;
6758 			c->Request.CDB[5] = 0;
6759 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6760 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6761 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6762 			c->Request.CDB[9] = 0;
6763 			break;
6764 		default:
6765 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6766 			BUG();
6767 		}
6768 	} else if (cmd_type == TYPE_MSG) {
6769 		switch (cmd) {
6770 
6771 		case  HPSA_PHYS_TARGET_RESET:
6772 			c->Request.CDBLen = 16;
6773 			c->Request.type_attr_dir =
6774 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6775 			c->Request.Timeout = 0; /* Don't time out */
6776 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6777 			c->Request.CDB[0] = HPSA_RESET;
6778 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6779 			/* Physical target reset needs no control bytes 4-7*/
6780 			c->Request.CDB[4] = 0x00;
6781 			c->Request.CDB[5] = 0x00;
6782 			c->Request.CDB[6] = 0x00;
6783 			c->Request.CDB[7] = 0x00;
6784 			break;
6785 		case  HPSA_DEVICE_RESET_MSG:
6786 			c->Request.CDBLen = 16;
6787 			c->Request.type_attr_dir =
6788 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6789 			c->Request.Timeout = 0; /* Don't time out */
6790 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6791 			c->Request.CDB[0] =  cmd;
6792 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6793 			/* If bytes 4-7 are zero, it means reset the */
6794 			/* LunID device */
6795 			c->Request.CDB[4] = 0x00;
6796 			c->Request.CDB[5] = 0x00;
6797 			c->Request.CDB[6] = 0x00;
6798 			c->Request.CDB[7] = 0x00;
6799 			break;
6800 		default:
6801 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6802 				cmd);
6803 			BUG();
6804 		}
6805 	} else {
6806 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6807 		BUG();
6808 	}
6809 
6810 	switch (GET_DIR(c->Request.type_attr_dir)) {
6811 	case XFER_READ:
6812 		dir = DMA_FROM_DEVICE;
6813 		break;
6814 	case XFER_WRITE:
6815 		dir = DMA_TO_DEVICE;
6816 		break;
6817 	case XFER_NONE:
6818 		dir = DMA_NONE;
6819 		break;
6820 	default:
6821 		dir = DMA_BIDIRECTIONAL;
6822 	}
6823 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6824 		return -1;
6825 	return 0;
6826 }
6827 
6828 /*
6829  * Map (physical) PCI mem into (virtual) kernel space
6830  */
6831 static void __iomem *remap_pci_mem(ulong base, ulong size)
6832 {
6833 	ulong page_base = ((ulong) base) & PAGE_MASK;
6834 	ulong page_offs = ((ulong) base) - page_base;
6835 	void __iomem *page_remapped = ioremap_nocache(page_base,
6836 		page_offs + size);
6837 
6838 	return page_remapped ? (page_remapped + page_offs) : NULL;
6839 }
6840 
6841 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6842 {
6843 	return h->access.command_completed(h, q);
6844 }
6845 
6846 static inline bool interrupt_pending(struct ctlr_info *h)
6847 {
6848 	return h->access.intr_pending(h);
6849 }
6850 
6851 static inline long interrupt_not_for_us(struct ctlr_info *h)
6852 {
6853 	return (h->access.intr_pending(h) == 0) ||
6854 		(h->interrupts_enabled == 0);
6855 }
6856 
6857 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6858 	u32 raw_tag)
6859 {
6860 	if (unlikely(tag_index >= h->nr_cmds)) {
6861 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6862 		return 1;
6863 	}
6864 	return 0;
6865 }
6866 
6867 static inline void finish_cmd(struct CommandList *c)
6868 {
6869 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6870 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6871 			|| c->cmd_type == CMD_IOACCEL2))
6872 		complete_scsi_command(c);
6873 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6874 		complete(c->waiting);
6875 }
6876 
6877 /* process completion of an indexed ("direct lookup") command */
6878 static inline void process_indexed_cmd(struct ctlr_info *h,
6879 	u32 raw_tag)
6880 {
6881 	u32 tag_index;
6882 	struct CommandList *c;
6883 
6884 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6885 	if (!bad_tag(h, tag_index, raw_tag)) {
6886 		c = h->cmd_pool + tag_index;
6887 		finish_cmd(c);
6888 	}
6889 }
6890 
6891 /* Some controllers, like p400, will give us one interrupt
6892  * after a soft reset, even if we turned interrupts off.
6893  * Only need to check for this in the hpsa_xxx_discard_completions
6894  * functions.
6895  */
6896 static int ignore_bogus_interrupt(struct ctlr_info *h)
6897 {
6898 	if (likely(!reset_devices))
6899 		return 0;
6900 
6901 	if (likely(h->interrupts_enabled))
6902 		return 0;
6903 
6904 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6905 		"(known firmware bug.)  Ignoring.\n");
6906 
6907 	return 1;
6908 }
6909 
6910 /*
6911  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6912  * Relies on (h-q[x] == x) being true for x such that
6913  * 0 <= x < MAX_REPLY_QUEUES.
6914  */
6915 static struct ctlr_info *queue_to_hba(u8 *queue)
6916 {
6917 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6918 }
6919 
6920 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6921 {
6922 	struct ctlr_info *h = queue_to_hba(queue);
6923 	u8 q = *(u8 *) queue;
6924 	u32 raw_tag;
6925 
6926 	if (ignore_bogus_interrupt(h))
6927 		return IRQ_NONE;
6928 
6929 	if (interrupt_not_for_us(h))
6930 		return IRQ_NONE;
6931 	h->last_intr_timestamp = get_jiffies_64();
6932 	while (interrupt_pending(h)) {
6933 		raw_tag = get_next_completion(h, q);
6934 		while (raw_tag != FIFO_EMPTY)
6935 			raw_tag = next_command(h, q);
6936 	}
6937 	return IRQ_HANDLED;
6938 }
6939 
6940 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6941 {
6942 	struct ctlr_info *h = queue_to_hba(queue);
6943 	u32 raw_tag;
6944 	u8 q = *(u8 *) queue;
6945 
6946 	if (ignore_bogus_interrupt(h))
6947 		return IRQ_NONE;
6948 
6949 	h->last_intr_timestamp = get_jiffies_64();
6950 	raw_tag = get_next_completion(h, q);
6951 	while (raw_tag != FIFO_EMPTY)
6952 		raw_tag = next_command(h, q);
6953 	return IRQ_HANDLED;
6954 }
6955 
6956 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6957 {
6958 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6959 	u32 raw_tag;
6960 	u8 q = *(u8 *) queue;
6961 
6962 	if (interrupt_not_for_us(h))
6963 		return IRQ_NONE;
6964 	h->last_intr_timestamp = get_jiffies_64();
6965 	while (interrupt_pending(h)) {
6966 		raw_tag = get_next_completion(h, q);
6967 		while (raw_tag != FIFO_EMPTY) {
6968 			process_indexed_cmd(h, raw_tag);
6969 			raw_tag = next_command(h, q);
6970 		}
6971 	}
6972 	return IRQ_HANDLED;
6973 }
6974 
6975 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6976 {
6977 	struct ctlr_info *h = queue_to_hba(queue);
6978 	u32 raw_tag;
6979 	u8 q = *(u8 *) queue;
6980 
6981 	h->last_intr_timestamp = get_jiffies_64();
6982 	raw_tag = get_next_completion(h, q);
6983 	while (raw_tag != FIFO_EMPTY) {
6984 		process_indexed_cmd(h, raw_tag);
6985 		raw_tag = next_command(h, q);
6986 	}
6987 	return IRQ_HANDLED;
6988 }
6989 
6990 /* Send a message CDB to the firmware. Careful, this only works
6991  * in simple mode, not performant mode due to the tag lookup.
6992  * We only ever use this immediately after a controller reset.
6993  */
6994 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6995 			unsigned char type)
6996 {
6997 	struct Command {
6998 		struct CommandListHeader CommandHeader;
6999 		struct RequestBlock Request;
7000 		struct ErrDescriptor ErrorDescriptor;
7001 	};
7002 	struct Command *cmd;
7003 	static const size_t cmd_sz = sizeof(*cmd) +
7004 					sizeof(cmd->ErrorDescriptor);
7005 	dma_addr_t paddr64;
7006 	__le32 paddr32;
7007 	u32 tag;
7008 	void __iomem *vaddr;
7009 	int i, err;
7010 
7011 	vaddr = pci_ioremap_bar(pdev, 0);
7012 	if (vaddr == NULL)
7013 		return -ENOMEM;
7014 
7015 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7016 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7017 	 * memory.
7018 	 */
7019 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7020 	if (err) {
7021 		iounmap(vaddr);
7022 		return err;
7023 	}
7024 
7025 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7026 	if (cmd == NULL) {
7027 		iounmap(vaddr);
7028 		return -ENOMEM;
7029 	}
7030 
7031 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7032 	 * although there's no guarantee, we assume that the address is at
7033 	 * least 4-byte aligned (most likely, it's page-aligned).
7034 	 */
7035 	paddr32 = cpu_to_le32(paddr64);
7036 
7037 	cmd->CommandHeader.ReplyQueue = 0;
7038 	cmd->CommandHeader.SGList = 0;
7039 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7040 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7041 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7042 
7043 	cmd->Request.CDBLen = 16;
7044 	cmd->Request.type_attr_dir =
7045 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7046 	cmd->Request.Timeout = 0; /* Don't time out */
7047 	cmd->Request.CDB[0] = opcode;
7048 	cmd->Request.CDB[1] = type;
7049 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7050 	cmd->ErrorDescriptor.Addr =
7051 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7052 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7053 
7054 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7055 
7056 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7057 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7058 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7059 			break;
7060 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7061 	}
7062 
7063 	iounmap(vaddr);
7064 
7065 	/* we leak the DMA buffer here ... no choice since the controller could
7066 	 *  still complete the command.
7067 	 */
7068 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7069 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7070 			opcode, type);
7071 		return -ETIMEDOUT;
7072 	}
7073 
7074 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7075 
7076 	if (tag & HPSA_ERROR_BIT) {
7077 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7078 			opcode, type);
7079 		return -EIO;
7080 	}
7081 
7082 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7083 		opcode, type);
7084 	return 0;
7085 }
7086 
7087 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7088 
7089 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7090 	void __iomem *vaddr, u32 use_doorbell)
7091 {
7092 
7093 	if (use_doorbell) {
7094 		/* For everything after the P600, the PCI power state method
7095 		 * of resetting the controller doesn't work, so we have this
7096 		 * other way using the doorbell register.
7097 		 */
7098 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7099 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7100 
7101 		/* PMC hardware guys tell us we need a 10 second delay after
7102 		 * doorbell reset and before any attempt to talk to the board
7103 		 * at all to ensure that this actually works and doesn't fall
7104 		 * over in some weird corner cases.
7105 		 */
7106 		msleep(10000);
7107 	} else { /* Try to do it the PCI power state way */
7108 
7109 		/* Quoting from the Open CISS Specification: "The Power
7110 		 * Management Control/Status Register (CSR) controls the power
7111 		 * state of the device.  The normal operating state is D0,
7112 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7113 		 * the controller, place the interface device in D3 then to D0,
7114 		 * this causes a secondary PCI reset which will reset the
7115 		 * controller." */
7116 
7117 		int rc = 0;
7118 
7119 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7120 
7121 		/* enter the D3hot power management state */
7122 		rc = pci_set_power_state(pdev, PCI_D3hot);
7123 		if (rc)
7124 			return rc;
7125 
7126 		msleep(500);
7127 
7128 		/* enter the D0 power management state */
7129 		rc = pci_set_power_state(pdev, PCI_D0);
7130 		if (rc)
7131 			return rc;
7132 
7133 		/*
7134 		 * The P600 requires a small delay when changing states.
7135 		 * Otherwise we may think the board did not reset and we bail.
7136 		 * This for kdump only and is particular to the P600.
7137 		 */
7138 		msleep(500);
7139 	}
7140 	return 0;
7141 }
7142 
7143 static void init_driver_version(char *driver_version, int len)
7144 {
7145 	memset(driver_version, 0, len);
7146 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7147 }
7148 
7149 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7150 {
7151 	char *driver_version;
7152 	int i, size = sizeof(cfgtable->driver_version);
7153 
7154 	driver_version = kmalloc(size, GFP_KERNEL);
7155 	if (!driver_version)
7156 		return -ENOMEM;
7157 
7158 	init_driver_version(driver_version, size);
7159 	for (i = 0; i < size; i++)
7160 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7161 	kfree(driver_version);
7162 	return 0;
7163 }
7164 
7165 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7166 					  unsigned char *driver_ver)
7167 {
7168 	int i;
7169 
7170 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7171 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7172 }
7173 
7174 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7175 {
7176 
7177 	char *driver_ver, *old_driver_ver;
7178 	int rc, size = sizeof(cfgtable->driver_version);
7179 
7180 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7181 	if (!old_driver_ver)
7182 		return -ENOMEM;
7183 	driver_ver = old_driver_ver + size;
7184 
7185 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7186 	 * should have been changed, otherwise we know the reset failed.
7187 	 */
7188 	init_driver_version(old_driver_ver, size);
7189 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7190 	rc = !memcmp(driver_ver, old_driver_ver, size);
7191 	kfree(old_driver_ver);
7192 	return rc;
7193 }
7194 /* This does a hard reset of the controller using PCI power management
7195  * states or the using the doorbell register.
7196  */
7197 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7198 {
7199 	u64 cfg_offset;
7200 	u32 cfg_base_addr;
7201 	u64 cfg_base_addr_index;
7202 	void __iomem *vaddr;
7203 	unsigned long paddr;
7204 	u32 misc_fw_support;
7205 	int rc;
7206 	struct CfgTable __iomem *cfgtable;
7207 	u32 use_doorbell;
7208 	u16 command_register;
7209 
7210 	/* For controllers as old as the P600, this is very nearly
7211 	 * the same thing as
7212 	 *
7213 	 * pci_save_state(pci_dev);
7214 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7215 	 * pci_set_power_state(pci_dev, PCI_D0);
7216 	 * pci_restore_state(pci_dev);
7217 	 *
7218 	 * For controllers newer than the P600, the pci power state
7219 	 * method of resetting doesn't work so we have another way
7220 	 * using the doorbell register.
7221 	 */
7222 
7223 	if (!ctlr_is_resettable(board_id)) {
7224 		dev_warn(&pdev->dev, "Controller not resettable\n");
7225 		return -ENODEV;
7226 	}
7227 
7228 	/* if controller is soft- but not hard resettable... */
7229 	if (!ctlr_is_hard_resettable(board_id))
7230 		return -ENOTSUPP; /* try soft reset later. */
7231 
7232 	/* Save the PCI command register */
7233 	pci_read_config_word(pdev, 4, &command_register);
7234 	pci_save_state(pdev);
7235 
7236 	/* find the first memory BAR, so we can find the cfg table */
7237 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7238 	if (rc)
7239 		return rc;
7240 	vaddr = remap_pci_mem(paddr, 0x250);
7241 	if (!vaddr)
7242 		return -ENOMEM;
7243 
7244 	/* find cfgtable in order to check if reset via doorbell is supported */
7245 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7246 					&cfg_base_addr_index, &cfg_offset);
7247 	if (rc)
7248 		goto unmap_vaddr;
7249 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7250 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7251 	if (!cfgtable) {
7252 		rc = -ENOMEM;
7253 		goto unmap_vaddr;
7254 	}
7255 	rc = write_driver_ver_to_cfgtable(cfgtable);
7256 	if (rc)
7257 		goto unmap_cfgtable;
7258 
7259 	/* If reset via doorbell register is supported, use that.
7260 	 * There are two such methods.  Favor the newest method.
7261 	 */
7262 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7263 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7264 	if (use_doorbell) {
7265 		use_doorbell = DOORBELL_CTLR_RESET2;
7266 	} else {
7267 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7268 		if (use_doorbell) {
7269 			dev_warn(&pdev->dev,
7270 				"Soft reset not supported. Firmware update is required.\n");
7271 			rc = -ENOTSUPP; /* try soft reset */
7272 			goto unmap_cfgtable;
7273 		}
7274 	}
7275 
7276 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7277 	if (rc)
7278 		goto unmap_cfgtable;
7279 
7280 	pci_restore_state(pdev);
7281 	pci_write_config_word(pdev, 4, command_register);
7282 
7283 	/* Some devices (notably the HP Smart Array 5i Controller)
7284 	   need a little pause here */
7285 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7286 
7287 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7288 	if (rc) {
7289 		dev_warn(&pdev->dev,
7290 			"Failed waiting for board to become ready after hard reset\n");
7291 		goto unmap_cfgtable;
7292 	}
7293 
7294 	rc = controller_reset_failed(vaddr);
7295 	if (rc < 0)
7296 		goto unmap_cfgtable;
7297 	if (rc) {
7298 		dev_warn(&pdev->dev, "Unable to successfully reset "
7299 			"controller. Will try soft reset.\n");
7300 		rc = -ENOTSUPP;
7301 	} else {
7302 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7303 	}
7304 
7305 unmap_cfgtable:
7306 	iounmap(cfgtable);
7307 
7308 unmap_vaddr:
7309 	iounmap(vaddr);
7310 	return rc;
7311 }
7312 
7313 /*
7314  *  We cannot read the structure directly, for portability we must use
7315  *   the io functions.
7316  *   This is for debug only.
7317  */
7318 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7319 {
7320 #ifdef HPSA_DEBUG
7321 	int i;
7322 	char temp_name[17];
7323 
7324 	dev_info(dev, "Controller Configuration information\n");
7325 	dev_info(dev, "------------------------------------\n");
7326 	for (i = 0; i < 4; i++)
7327 		temp_name[i] = readb(&(tb->Signature[i]));
7328 	temp_name[4] = '\0';
7329 	dev_info(dev, "   Signature = %s\n", temp_name);
7330 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7331 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7332 	       readl(&(tb->TransportSupport)));
7333 	dev_info(dev, "   Transport methods active = 0x%x\n",
7334 	       readl(&(tb->TransportActive)));
7335 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7336 	       readl(&(tb->HostWrite.TransportRequest)));
7337 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7338 	       readl(&(tb->HostWrite.CoalIntDelay)));
7339 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7340 	       readl(&(tb->HostWrite.CoalIntCount)));
7341 	dev_info(dev, "   Max outstanding commands = %d\n",
7342 	       readl(&(tb->CmdsOutMax)));
7343 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7344 	for (i = 0; i < 16; i++)
7345 		temp_name[i] = readb(&(tb->ServerName[i]));
7346 	temp_name[16] = '\0';
7347 	dev_info(dev, "   Server Name = %s\n", temp_name);
7348 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7349 		readl(&(tb->HeartBeat)));
7350 #endif				/* HPSA_DEBUG */
7351 }
7352 
7353 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7354 {
7355 	int i, offset, mem_type, bar_type;
7356 
7357 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7358 		return 0;
7359 	offset = 0;
7360 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7361 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7362 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7363 			offset += 4;
7364 		else {
7365 			mem_type = pci_resource_flags(pdev, i) &
7366 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7367 			switch (mem_type) {
7368 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7369 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7370 				offset += 4;	/* 32 bit */
7371 				break;
7372 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7373 				offset += 8;
7374 				break;
7375 			default:	/* reserved in PCI 2.2 */
7376 				dev_warn(&pdev->dev,
7377 				       "base address is invalid\n");
7378 				return -1;
7379 				break;
7380 			}
7381 		}
7382 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7383 			return i + 1;
7384 	}
7385 	return -1;
7386 }
7387 
7388 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7389 {
7390 	pci_free_irq_vectors(h->pdev);
7391 	h->msix_vectors = 0;
7392 }
7393 
7394 static void hpsa_setup_reply_map(struct ctlr_info *h)
7395 {
7396 	const struct cpumask *mask;
7397 	unsigned int queue, cpu;
7398 
7399 	for (queue = 0; queue < h->msix_vectors; queue++) {
7400 		mask = pci_irq_get_affinity(h->pdev, queue);
7401 		if (!mask)
7402 			goto fallback;
7403 
7404 		for_each_cpu(cpu, mask)
7405 			h->reply_map[cpu] = queue;
7406 	}
7407 	return;
7408 
7409 fallback:
7410 	for_each_possible_cpu(cpu)
7411 		h->reply_map[cpu] = 0;
7412 }
7413 
7414 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7415  * controllers that are capable. If not, we use legacy INTx mode.
7416  */
7417 static int hpsa_interrupt_mode(struct ctlr_info *h)
7418 {
7419 	unsigned int flags = PCI_IRQ_LEGACY;
7420 	int ret;
7421 
7422 	/* Some boards advertise MSI but don't really support it */
7423 	switch (h->board_id) {
7424 	case 0x40700E11:
7425 	case 0x40800E11:
7426 	case 0x40820E11:
7427 	case 0x40830E11:
7428 		break;
7429 	default:
7430 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7431 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7432 		if (ret > 0) {
7433 			h->msix_vectors = ret;
7434 			return 0;
7435 		}
7436 
7437 		flags |= PCI_IRQ_MSI;
7438 		break;
7439 	}
7440 
7441 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7442 	if (ret < 0)
7443 		return ret;
7444 	return 0;
7445 }
7446 
7447 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7448 				bool *legacy_board)
7449 {
7450 	int i;
7451 	u32 subsystem_vendor_id, subsystem_device_id;
7452 
7453 	subsystem_vendor_id = pdev->subsystem_vendor;
7454 	subsystem_device_id = pdev->subsystem_device;
7455 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7456 		    subsystem_vendor_id;
7457 
7458 	if (legacy_board)
7459 		*legacy_board = false;
7460 	for (i = 0; i < ARRAY_SIZE(products); i++)
7461 		if (*board_id == products[i].board_id) {
7462 			if (products[i].access != &SA5A_access &&
7463 			    products[i].access != &SA5B_access)
7464 				return i;
7465 			dev_warn(&pdev->dev,
7466 				 "legacy board ID: 0x%08x\n",
7467 				 *board_id);
7468 			if (legacy_board)
7469 			    *legacy_board = true;
7470 			return i;
7471 		}
7472 
7473 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7474 	if (legacy_board)
7475 		*legacy_board = true;
7476 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7477 }
7478 
7479 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7480 				    unsigned long *memory_bar)
7481 {
7482 	int i;
7483 
7484 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7485 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7486 			/* addressing mode bits already removed */
7487 			*memory_bar = pci_resource_start(pdev, i);
7488 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7489 				*memory_bar);
7490 			return 0;
7491 		}
7492 	dev_warn(&pdev->dev, "no memory BAR found\n");
7493 	return -ENODEV;
7494 }
7495 
7496 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7497 				     int wait_for_ready)
7498 {
7499 	int i, iterations;
7500 	u32 scratchpad;
7501 	if (wait_for_ready)
7502 		iterations = HPSA_BOARD_READY_ITERATIONS;
7503 	else
7504 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7505 
7506 	for (i = 0; i < iterations; i++) {
7507 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7508 		if (wait_for_ready) {
7509 			if (scratchpad == HPSA_FIRMWARE_READY)
7510 				return 0;
7511 		} else {
7512 			if (scratchpad != HPSA_FIRMWARE_READY)
7513 				return 0;
7514 		}
7515 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7516 	}
7517 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7518 	return -ENODEV;
7519 }
7520 
7521 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7522 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7523 			       u64 *cfg_offset)
7524 {
7525 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7526 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7527 	*cfg_base_addr &= (u32) 0x0000ffff;
7528 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7529 	if (*cfg_base_addr_index == -1) {
7530 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7531 		return -ENODEV;
7532 	}
7533 	return 0;
7534 }
7535 
7536 static void hpsa_free_cfgtables(struct ctlr_info *h)
7537 {
7538 	if (h->transtable) {
7539 		iounmap(h->transtable);
7540 		h->transtable = NULL;
7541 	}
7542 	if (h->cfgtable) {
7543 		iounmap(h->cfgtable);
7544 		h->cfgtable = NULL;
7545 	}
7546 }
7547 
7548 /* Find and map CISS config table and transfer table
7549 + * several items must be unmapped (freed) later
7550 + * */
7551 static int hpsa_find_cfgtables(struct ctlr_info *h)
7552 {
7553 	u64 cfg_offset;
7554 	u32 cfg_base_addr;
7555 	u64 cfg_base_addr_index;
7556 	u32 trans_offset;
7557 	int rc;
7558 
7559 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7560 		&cfg_base_addr_index, &cfg_offset);
7561 	if (rc)
7562 		return rc;
7563 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7564 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7565 	if (!h->cfgtable) {
7566 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7567 		return -ENOMEM;
7568 	}
7569 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7570 	if (rc)
7571 		return rc;
7572 	/* Find performant mode table. */
7573 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7574 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7575 				cfg_base_addr_index)+cfg_offset+trans_offset,
7576 				sizeof(*h->transtable));
7577 	if (!h->transtable) {
7578 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7579 		hpsa_free_cfgtables(h);
7580 		return -ENOMEM;
7581 	}
7582 	return 0;
7583 }
7584 
7585 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7586 {
7587 #define MIN_MAX_COMMANDS 16
7588 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7589 
7590 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7591 
7592 	/* Limit commands in memory limited kdump scenario. */
7593 	if (reset_devices && h->max_commands > 32)
7594 		h->max_commands = 32;
7595 
7596 	if (h->max_commands < MIN_MAX_COMMANDS) {
7597 		dev_warn(&h->pdev->dev,
7598 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7599 			h->max_commands,
7600 			MIN_MAX_COMMANDS);
7601 		h->max_commands = MIN_MAX_COMMANDS;
7602 	}
7603 }
7604 
7605 /* If the controller reports that the total max sg entries is greater than 512,
7606  * then we know that chained SG blocks work.  (Original smart arrays did not
7607  * support chained SG blocks and would return zero for max sg entries.)
7608  */
7609 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7610 {
7611 	return h->maxsgentries > 512;
7612 }
7613 
7614 /* Interrogate the hardware for some limits:
7615  * max commands, max SG elements without chaining, and with chaining,
7616  * SG chain block size, etc.
7617  */
7618 static void hpsa_find_board_params(struct ctlr_info *h)
7619 {
7620 	hpsa_get_max_perf_mode_cmds(h);
7621 	h->nr_cmds = h->max_commands;
7622 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7623 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7624 	if (hpsa_supports_chained_sg_blocks(h)) {
7625 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7626 		h->max_cmd_sg_entries = 32;
7627 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7628 		h->maxsgentries--; /* save one for chain pointer */
7629 	} else {
7630 		/*
7631 		 * Original smart arrays supported at most 31 s/g entries
7632 		 * embedded inline in the command (trying to use more
7633 		 * would lock up the controller)
7634 		 */
7635 		h->max_cmd_sg_entries = 31;
7636 		h->maxsgentries = 31; /* default to traditional values */
7637 		h->chainsize = 0;
7638 	}
7639 
7640 	/* Find out what task management functions are supported and cache */
7641 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7642 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7643 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7644 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7645 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7646 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7647 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7648 }
7649 
7650 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7651 {
7652 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7653 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7654 		return false;
7655 	}
7656 	return true;
7657 }
7658 
7659 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7660 {
7661 	u32 driver_support;
7662 
7663 	driver_support = readl(&(h->cfgtable->driver_support));
7664 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7665 #ifdef CONFIG_X86
7666 	driver_support |= ENABLE_SCSI_PREFETCH;
7667 #endif
7668 	driver_support |= ENABLE_UNIT_ATTN;
7669 	writel(driver_support, &(h->cfgtable->driver_support));
7670 }
7671 
7672 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7673  * in a prefetch beyond physical memory.
7674  */
7675 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7676 {
7677 	u32 dma_prefetch;
7678 
7679 	if (h->board_id != 0x3225103C)
7680 		return;
7681 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7682 	dma_prefetch |= 0x8000;
7683 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7684 }
7685 
7686 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7687 {
7688 	int i;
7689 	u32 doorbell_value;
7690 	unsigned long flags;
7691 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7692 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7693 		spin_lock_irqsave(&h->lock, flags);
7694 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7695 		spin_unlock_irqrestore(&h->lock, flags);
7696 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7697 			goto done;
7698 		/* delay and try again */
7699 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7700 	}
7701 	return -ENODEV;
7702 done:
7703 	return 0;
7704 }
7705 
7706 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7707 {
7708 	int i;
7709 	u32 doorbell_value;
7710 	unsigned long flags;
7711 
7712 	/* under certain very rare conditions, this can take awhile.
7713 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7714 	 * as we enter this code.)
7715 	 */
7716 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7717 		if (h->remove_in_progress)
7718 			goto done;
7719 		spin_lock_irqsave(&h->lock, flags);
7720 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7721 		spin_unlock_irqrestore(&h->lock, flags);
7722 		if (!(doorbell_value & CFGTBL_ChangeReq))
7723 			goto done;
7724 		/* delay and try again */
7725 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7726 	}
7727 	return -ENODEV;
7728 done:
7729 	return 0;
7730 }
7731 
7732 /* return -ENODEV or other reason on error, 0 on success */
7733 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7734 {
7735 	u32 trans_support;
7736 
7737 	trans_support = readl(&(h->cfgtable->TransportSupport));
7738 	if (!(trans_support & SIMPLE_MODE))
7739 		return -ENOTSUPP;
7740 
7741 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7742 
7743 	/* Update the field, and then ring the doorbell */
7744 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7745 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7746 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7747 	if (hpsa_wait_for_mode_change_ack(h))
7748 		goto error;
7749 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7750 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7751 		goto error;
7752 	h->transMethod = CFGTBL_Trans_Simple;
7753 	return 0;
7754 error:
7755 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7756 	return -ENODEV;
7757 }
7758 
7759 /* free items allocated or mapped by hpsa_pci_init */
7760 static void hpsa_free_pci_init(struct ctlr_info *h)
7761 {
7762 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7763 	iounmap(h->vaddr);			/* pci_init 3 */
7764 	h->vaddr = NULL;
7765 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7766 	/*
7767 	 * call pci_disable_device before pci_release_regions per
7768 	 * Documentation/PCI/pci.txt
7769 	 */
7770 	pci_disable_device(h->pdev);		/* pci_init 1 */
7771 	pci_release_regions(h->pdev);		/* pci_init 2 */
7772 }
7773 
7774 /* several items must be freed later */
7775 static int hpsa_pci_init(struct ctlr_info *h)
7776 {
7777 	int prod_index, err;
7778 	bool legacy_board;
7779 
7780 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7781 	if (prod_index < 0)
7782 		return prod_index;
7783 	h->product_name = products[prod_index].product_name;
7784 	h->access = *(products[prod_index].access);
7785 	h->legacy_board = legacy_board;
7786 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7787 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7788 
7789 	err = pci_enable_device(h->pdev);
7790 	if (err) {
7791 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7792 		pci_disable_device(h->pdev);
7793 		return err;
7794 	}
7795 
7796 	err = pci_request_regions(h->pdev, HPSA);
7797 	if (err) {
7798 		dev_err(&h->pdev->dev,
7799 			"failed to obtain PCI resources\n");
7800 		pci_disable_device(h->pdev);
7801 		return err;
7802 	}
7803 
7804 	pci_set_master(h->pdev);
7805 
7806 	err = hpsa_interrupt_mode(h);
7807 	if (err)
7808 		goto clean1;
7809 
7810 	/* setup mapping between CPU and reply queue */
7811 	hpsa_setup_reply_map(h);
7812 
7813 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7814 	if (err)
7815 		goto clean2;	/* intmode+region, pci */
7816 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7817 	if (!h->vaddr) {
7818 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7819 		err = -ENOMEM;
7820 		goto clean2;	/* intmode+region, pci */
7821 	}
7822 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7823 	if (err)
7824 		goto clean3;	/* vaddr, intmode+region, pci */
7825 	err = hpsa_find_cfgtables(h);
7826 	if (err)
7827 		goto clean3;	/* vaddr, intmode+region, pci */
7828 	hpsa_find_board_params(h);
7829 
7830 	if (!hpsa_CISS_signature_present(h)) {
7831 		err = -ENODEV;
7832 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7833 	}
7834 	hpsa_set_driver_support_bits(h);
7835 	hpsa_p600_dma_prefetch_quirk(h);
7836 	err = hpsa_enter_simple_mode(h);
7837 	if (err)
7838 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7839 	return 0;
7840 
7841 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7842 	hpsa_free_cfgtables(h);
7843 clean3:	/* vaddr, intmode+region, pci */
7844 	iounmap(h->vaddr);
7845 	h->vaddr = NULL;
7846 clean2:	/* intmode+region, pci */
7847 	hpsa_disable_interrupt_mode(h);
7848 clean1:
7849 	/*
7850 	 * call pci_disable_device before pci_release_regions per
7851 	 * Documentation/PCI/pci.txt
7852 	 */
7853 	pci_disable_device(h->pdev);
7854 	pci_release_regions(h->pdev);
7855 	return err;
7856 }
7857 
7858 static void hpsa_hba_inquiry(struct ctlr_info *h)
7859 {
7860 	int rc;
7861 
7862 #define HBA_INQUIRY_BYTE_COUNT 64
7863 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7864 	if (!h->hba_inquiry_data)
7865 		return;
7866 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7867 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7868 	if (rc != 0) {
7869 		kfree(h->hba_inquiry_data);
7870 		h->hba_inquiry_data = NULL;
7871 	}
7872 }
7873 
7874 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7875 {
7876 	int rc, i;
7877 	void __iomem *vaddr;
7878 
7879 	if (!reset_devices)
7880 		return 0;
7881 
7882 	/* kdump kernel is loading, we don't know in which state is
7883 	 * the pci interface. The dev->enable_cnt is equal zero
7884 	 * so we call enable+disable, wait a while and switch it on.
7885 	 */
7886 	rc = pci_enable_device(pdev);
7887 	if (rc) {
7888 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7889 		return -ENODEV;
7890 	}
7891 	pci_disable_device(pdev);
7892 	msleep(260);			/* a randomly chosen number */
7893 	rc = pci_enable_device(pdev);
7894 	if (rc) {
7895 		dev_warn(&pdev->dev, "failed to enable device.\n");
7896 		return -ENODEV;
7897 	}
7898 
7899 	pci_set_master(pdev);
7900 
7901 	vaddr = pci_ioremap_bar(pdev, 0);
7902 	if (vaddr == NULL) {
7903 		rc = -ENOMEM;
7904 		goto out_disable;
7905 	}
7906 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7907 	iounmap(vaddr);
7908 
7909 	/* Reset the controller with a PCI power-cycle or via doorbell */
7910 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7911 
7912 	/* -ENOTSUPP here means we cannot reset the controller
7913 	 * but it's already (and still) up and running in
7914 	 * "performant mode".  Or, it might be 640x, which can't reset
7915 	 * due to concerns about shared bbwc between 6402/6404 pair.
7916 	 */
7917 	if (rc)
7918 		goto out_disable;
7919 
7920 	/* Now try to get the controller to respond to a no-op */
7921 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7922 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7923 		if (hpsa_noop(pdev) == 0)
7924 			break;
7925 		else
7926 			dev_warn(&pdev->dev, "no-op failed%s\n",
7927 					(i < 11 ? "; re-trying" : ""));
7928 	}
7929 
7930 out_disable:
7931 
7932 	pci_disable_device(pdev);
7933 	return rc;
7934 }
7935 
7936 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7937 {
7938 	kfree(h->cmd_pool_bits);
7939 	h->cmd_pool_bits = NULL;
7940 	if (h->cmd_pool) {
7941 		dma_free_coherent(&h->pdev->dev,
7942 				h->nr_cmds * sizeof(struct CommandList),
7943 				h->cmd_pool,
7944 				h->cmd_pool_dhandle);
7945 		h->cmd_pool = NULL;
7946 		h->cmd_pool_dhandle = 0;
7947 	}
7948 	if (h->errinfo_pool) {
7949 		dma_free_coherent(&h->pdev->dev,
7950 				h->nr_cmds * sizeof(struct ErrorInfo),
7951 				h->errinfo_pool,
7952 				h->errinfo_pool_dhandle);
7953 		h->errinfo_pool = NULL;
7954 		h->errinfo_pool_dhandle = 0;
7955 	}
7956 }
7957 
7958 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7959 {
7960 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7961 				   sizeof(unsigned long),
7962 				   GFP_KERNEL);
7963 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7964 		    h->nr_cmds * sizeof(*h->cmd_pool),
7965 		    &h->cmd_pool_dhandle, GFP_KERNEL);
7966 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
7967 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7968 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
7969 	if ((h->cmd_pool_bits == NULL)
7970 	    || (h->cmd_pool == NULL)
7971 	    || (h->errinfo_pool == NULL)) {
7972 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7973 		goto clean_up;
7974 	}
7975 	hpsa_preinitialize_commands(h);
7976 	return 0;
7977 clean_up:
7978 	hpsa_free_cmd_pool(h);
7979 	return -ENOMEM;
7980 }
7981 
7982 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7983 static void hpsa_free_irqs(struct ctlr_info *h)
7984 {
7985 	int i;
7986 
7987 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7988 		/* Single reply queue, only one irq to free */
7989 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7990 		h->q[h->intr_mode] = 0;
7991 		return;
7992 	}
7993 
7994 	for (i = 0; i < h->msix_vectors; i++) {
7995 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7996 		h->q[i] = 0;
7997 	}
7998 	for (; i < MAX_REPLY_QUEUES; i++)
7999 		h->q[i] = 0;
8000 }
8001 
8002 /* returns 0 on success; cleans up and returns -Enn on error */
8003 static int hpsa_request_irqs(struct ctlr_info *h,
8004 	irqreturn_t (*msixhandler)(int, void *),
8005 	irqreturn_t (*intxhandler)(int, void *))
8006 {
8007 	int rc, i;
8008 
8009 	/*
8010 	 * initialize h->q[x] = x so that interrupt handlers know which
8011 	 * queue to process.
8012 	 */
8013 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8014 		h->q[i] = (u8) i;
8015 
8016 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8017 		/* If performant mode and MSI-X, use multiple reply queues */
8018 		for (i = 0; i < h->msix_vectors; i++) {
8019 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8020 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8021 					0, h->intrname[i],
8022 					&h->q[i]);
8023 			if (rc) {
8024 				int j;
8025 
8026 				dev_err(&h->pdev->dev,
8027 					"failed to get irq %d for %s\n",
8028 				       pci_irq_vector(h->pdev, i), h->devname);
8029 				for (j = 0; j < i; j++) {
8030 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8031 					h->q[j] = 0;
8032 				}
8033 				for (; j < MAX_REPLY_QUEUES; j++)
8034 					h->q[j] = 0;
8035 				return rc;
8036 			}
8037 		}
8038 	} else {
8039 		/* Use single reply pool */
8040 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8041 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8042 				h->msix_vectors ? "x" : "");
8043 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8044 				msixhandler, 0,
8045 				h->intrname[0],
8046 				&h->q[h->intr_mode]);
8047 		} else {
8048 			sprintf(h->intrname[h->intr_mode],
8049 				"%s-intx", h->devname);
8050 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8051 				intxhandler, IRQF_SHARED,
8052 				h->intrname[0],
8053 				&h->q[h->intr_mode]);
8054 		}
8055 	}
8056 	if (rc) {
8057 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8058 		       pci_irq_vector(h->pdev, 0), h->devname);
8059 		hpsa_free_irqs(h);
8060 		return -ENODEV;
8061 	}
8062 	return 0;
8063 }
8064 
8065 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8066 {
8067 	int rc;
8068 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8069 
8070 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8071 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8072 	if (rc) {
8073 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8074 		return rc;
8075 	}
8076 
8077 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8078 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8079 	if (rc) {
8080 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8081 			"after soft reset.\n");
8082 		return rc;
8083 	}
8084 
8085 	return 0;
8086 }
8087 
8088 static void hpsa_free_reply_queues(struct ctlr_info *h)
8089 {
8090 	int i;
8091 
8092 	for (i = 0; i < h->nreply_queues; i++) {
8093 		if (!h->reply_queue[i].head)
8094 			continue;
8095 		dma_free_coherent(&h->pdev->dev,
8096 					h->reply_queue_size,
8097 					h->reply_queue[i].head,
8098 					h->reply_queue[i].busaddr);
8099 		h->reply_queue[i].head = NULL;
8100 		h->reply_queue[i].busaddr = 0;
8101 	}
8102 	h->reply_queue_size = 0;
8103 }
8104 
8105 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8106 {
8107 	hpsa_free_performant_mode(h);		/* init_one 7 */
8108 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8109 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8110 	hpsa_free_irqs(h);			/* init_one 4 */
8111 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8112 	h->scsi_host = NULL;			/* init_one 3 */
8113 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8114 	free_percpu(h->lockup_detected);	/* init_one 2 */
8115 	h->lockup_detected = NULL;		/* init_one 2 */
8116 	if (h->resubmit_wq) {
8117 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8118 		h->resubmit_wq = NULL;
8119 	}
8120 	if (h->rescan_ctlr_wq) {
8121 		destroy_workqueue(h->rescan_ctlr_wq);
8122 		h->rescan_ctlr_wq = NULL;
8123 	}
8124 	kfree(h);				/* init_one 1 */
8125 }
8126 
8127 /* Called when controller lockup detected. */
8128 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8129 {
8130 	int i, refcount;
8131 	struct CommandList *c;
8132 	int failcount = 0;
8133 
8134 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8135 	for (i = 0; i < h->nr_cmds; i++) {
8136 		c = h->cmd_pool + i;
8137 		refcount = atomic_inc_return(&c->refcount);
8138 		if (refcount > 1) {
8139 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8140 			finish_cmd(c);
8141 			atomic_dec(&h->commands_outstanding);
8142 			failcount++;
8143 		}
8144 		cmd_free(h, c);
8145 	}
8146 	dev_warn(&h->pdev->dev,
8147 		"failed %d commands in fail_all\n", failcount);
8148 }
8149 
8150 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8151 {
8152 	int cpu;
8153 
8154 	for_each_online_cpu(cpu) {
8155 		u32 *lockup_detected;
8156 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8157 		*lockup_detected = value;
8158 	}
8159 	wmb(); /* be sure the per-cpu variables are out to memory */
8160 }
8161 
8162 static void controller_lockup_detected(struct ctlr_info *h)
8163 {
8164 	unsigned long flags;
8165 	u32 lockup_detected;
8166 
8167 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8168 	spin_lock_irqsave(&h->lock, flags);
8169 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8170 	if (!lockup_detected) {
8171 		/* no heartbeat, but controller gave us a zero. */
8172 		dev_warn(&h->pdev->dev,
8173 			"lockup detected after %d but scratchpad register is zero\n",
8174 			h->heartbeat_sample_interval / HZ);
8175 		lockup_detected = 0xffffffff;
8176 	}
8177 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8178 	spin_unlock_irqrestore(&h->lock, flags);
8179 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8180 			lockup_detected, h->heartbeat_sample_interval / HZ);
8181 	if (lockup_detected == 0xffff0000) {
8182 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8183 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8184 	}
8185 	pci_disable_device(h->pdev);
8186 	fail_all_outstanding_cmds(h);
8187 }
8188 
8189 static int detect_controller_lockup(struct ctlr_info *h)
8190 {
8191 	u64 now;
8192 	u32 heartbeat;
8193 	unsigned long flags;
8194 
8195 	now = get_jiffies_64();
8196 	/* If we've received an interrupt recently, we're ok. */
8197 	if (time_after64(h->last_intr_timestamp +
8198 				(h->heartbeat_sample_interval), now))
8199 		return false;
8200 
8201 	/*
8202 	 * If we've already checked the heartbeat recently, we're ok.
8203 	 * This could happen if someone sends us a signal. We
8204 	 * otherwise don't care about signals in this thread.
8205 	 */
8206 	if (time_after64(h->last_heartbeat_timestamp +
8207 				(h->heartbeat_sample_interval), now))
8208 		return false;
8209 
8210 	/* If heartbeat has not changed since we last looked, we're not ok. */
8211 	spin_lock_irqsave(&h->lock, flags);
8212 	heartbeat = readl(&h->cfgtable->HeartBeat);
8213 	spin_unlock_irqrestore(&h->lock, flags);
8214 	if (h->last_heartbeat == heartbeat) {
8215 		controller_lockup_detected(h);
8216 		return true;
8217 	}
8218 
8219 	/* We're ok. */
8220 	h->last_heartbeat = heartbeat;
8221 	h->last_heartbeat_timestamp = now;
8222 	return false;
8223 }
8224 
8225 /*
8226  * Set ioaccel status for all ioaccel volumes.
8227  *
8228  * Called from monitor controller worker (hpsa_event_monitor_worker)
8229  *
8230  * A Volume (or Volumes that comprise an Array set may be undergoing a
8231  * transformation, so we will be turning off ioaccel for all volumes that
8232  * make up the Array.
8233  */
8234 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8235 {
8236 	int rc;
8237 	int i;
8238 	u8 ioaccel_status;
8239 	unsigned char *buf;
8240 	struct hpsa_scsi_dev_t *device;
8241 
8242 	if (!h)
8243 		return;
8244 
8245 	buf = kmalloc(64, GFP_KERNEL);
8246 	if (!buf)
8247 		return;
8248 
8249 	/*
8250 	 * Run through current device list used during I/O requests.
8251 	 */
8252 	for (i = 0; i < h->ndevices; i++) {
8253 		device = h->dev[i];
8254 
8255 		if (!device)
8256 			continue;
8257 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8258 						HPSA_VPD_LV_IOACCEL_STATUS))
8259 			continue;
8260 
8261 		memset(buf, 0, 64);
8262 
8263 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8264 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8265 					buf, 64);
8266 		if (rc != 0)
8267 			continue;
8268 
8269 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8270 		device->offload_config =
8271 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8272 		if (device->offload_config)
8273 			device->offload_to_be_enabled =
8274 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8275 
8276 		/*
8277 		 * Immediately turn off ioaccel for any volume the
8278 		 * controller tells us to. Some of the reasons could be:
8279 		 *    transformation - change to the LVs of an Array.
8280 		 *    degraded volume - component failure
8281 		 *
8282 		 * If ioaccel is to be re-enabled, re-enable later during the
8283 		 * scan operation so the driver can get a fresh raidmap
8284 		 * before turning ioaccel back on.
8285 		 *
8286 		 */
8287 		if (!device->offload_to_be_enabled)
8288 			device->offload_enabled = 0;
8289 	}
8290 
8291 	kfree(buf);
8292 }
8293 
8294 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8295 {
8296 	char *event_type;
8297 
8298 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8299 		return;
8300 
8301 	/* Ask the controller to clear the events we're handling. */
8302 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8303 			| CFGTBL_Trans_io_accel2)) &&
8304 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8305 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8306 
8307 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8308 			event_type = "state change";
8309 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8310 			event_type = "configuration change";
8311 		/* Stop sending new RAID offload reqs via the IO accelerator */
8312 		scsi_block_requests(h->scsi_host);
8313 		hpsa_set_ioaccel_status(h);
8314 		hpsa_drain_accel_commands(h);
8315 		/* Set 'accelerator path config change' bit */
8316 		dev_warn(&h->pdev->dev,
8317 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8318 			h->events, event_type);
8319 		writel(h->events, &(h->cfgtable->clear_event_notify));
8320 		/* Set the "clear event notify field update" bit 6 */
8321 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8322 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8323 		hpsa_wait_for_clear_event_notify_ack(h);
8324 		scsi_unblock_requests(h->scsi_host);
8325 	} else {
8326 		/* Acknowledge controller notification events. */
8327 		writel(h->events, &(h->cfgtable->clear_event_notify));
8328 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8329 		hpsa_wait_for_clear_event_notify_ack(h);
8330 	}
8331 	return;
8332 }
8333 
8334 /* Check a register on the controller to see if there are configuration
8335  * changes (added/changed/removed logical drives, etc.) which mean that
8336  * we should rescan the controller for devices.
8337  * Also check flag for driver-initiated rescan.
8338  */
8339 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8340 {
8341 	if (h->drv_req_rescan) {
8342 		h->drv_req_rescan = 0;
8343 		return 1;
8344 	}
8345 
8346 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8347 		return 0;
8348 
8349 	h->events = readl(&(h->cfgtable->event_notify));
8350 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8351 }
8352 
8353 /*
8354  * Check if any of the offline devices have become ready
8355  */
8356 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8357 {
8358 	unsigned long flags;
8359 	struct offline_device_entry *d;
8360 	struct list_head *this, *tmp;
8361 
8362 	spin_lock_irqsave(&h->offline_device_lock, flags);
8363 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8364 		d = list_entry(this, struct offline_device_entry,
8365 				offline_list);
8366 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8367 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8368 			spin_lock_irqsave(&h->offline_device_lock, flags);
8369 			list_del(&d->offline_list);
8370 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8371 			return 1;
8372 		}
8373 		spin_lock_irqsave(&h->offline_device_lock, flags);
8374 	}
8375 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8376 	return 0;
8377 }
8378 
8379 static int hpsa_luns_changed(struct ctlr_info *h)
8380 {
8381 	int rc = 1; /* assume there are changes */
8382 	struct ReportLUNdata *logdev = NULL;
8383 
8384 	/* if we can't find out if lun data has changed,
8385 	 * assume that it has.
8386 	 */
8387 
8388 	if (!h->lastlogicals)
8389 		return rc;
8390 
8391 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8392 	if (!logdev)
8393 		return rc;
8394 
8395 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8396 		dev_warn(&h->pdev->dev,
8397 			"report luns failed, can't track lun changes.\n");
8398 		goto out;
8399 	}
8400 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8401 		dev_info(&h->pdev->dev,
8402 			"Lun changes detected.\n");
8403 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8404 		goto out;
8405 	} else
8406 		rc = 0; /* no changes detected. */
8407 out:
8408 	kfree(logdev);
8409 	return rc;
8410 }
8411 
8412 static void hpsa_perform_rescan(struct ctlr_info *h)
8413 {
8414 	struct Scsi_Host *sh = NULL;
8415 	unsigned long flags;
8416 
8417 	/*
8418 	 * Do the scan after the reset
8419 	 */
8420 	spin_lock_irqsave(&h->reset_lock, flags);
8421 	if (h->reset_in_progress) {
8422 		h->drv_req_rescan = 1;
8423 		spin_unlock_irqrestore(&h->reset_lock, flags);
8424 		return;
8425 	}
8426 	spin_unlock_irqrestore(&h->reset_lock, flags);
8427 
8428 	sh = scsi_host_get(h->scsi_host);
8429 	if (sh != NULL) {
8430 		hpsa_scan_start(sh);
8431 		scsi_host_put(sh);
8432 		h->drv_req_rescan = 0;
8433 	}
8434 }
8435 
8436 /*
8437  * watch for controller events
8438  */
8439 static void hpsa_event_monitor_worker(struct work_struct *work)
8440 {
8441 	struct ctlr_info *h = container_of(to_delayed_work(work),
8442 					struct ctlr_info, event_monitor_work);
8443 	unsigned long flags;
8444 
8445 	spin_lock_irqsave(&h->lock, flags);
8446 	if (h->remove_in_progress) {
8447 		spin_unlock_irqrestore(&h->lock, flags);
8448 		return;
8449 	}
8450 	spin_unlock_irqrestore(&h->lock, flags);
8451 
8452 	if (hpsa_ctlr_needs_rescan(h)) {
8453 		hpsa_ack_ctlr_events(h);
8454 		hpsa_perform_rescan(h);
8455 	}
8456 
8457 	spin_lock_irqsave(&h->lock, flags);
8458 	if (!h->remove_in_progress)
8459 		schedule_delayed_work(&h->event_monitor_work,
8460 					HPSA_EVENT_MONITOR_INTERVAL);
8461 	spin_unlock_irqrestore(&h->lock, flags);
8462 }
8463 
8464 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8465 {
8466 	unsigned long flags;
8467 	struct ctlr_info *h = container_of(to_delayed_work(work),
8468 					struct ctlr_info, rescan_ctlr_work);
8469 
8470 	spin_lock_irqsave(&h->lock, flags);
8471 	if (h->remove_in_progress) {
8472 		spin_unlock_irqrestore(&h->lock, flags);
8473 		return;
8474 	}
8475 	spin_unlock_irqrestore(&h->lock, flags);
8476 
8477 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8478 		hpsa_perform_rescan(h);
8479 	} else if (h->discovery_polling) {
8480 		if (hpsa_luns_changed(h)) {
8481 			dev_info(&h->pdev->dev,
8482 				"driver discovery polling rescan.\n");
8483 			hpsa_perform_rescan(h);
8484 		}
8485 	}
8486 	spin_lock_irqsave(&h->lock, flags);
8487 	if (!h->remove_in_progress)
8488 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8489 				h->heartbeat_sample_interval);
8490 	spin_unlock_irqrestore(&h->lock, flags);
8491 }
8492 
8493 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8494 {
8495 	unsigned long flags;
8496 	struct ctlr_info *h = container_of(to_delayed_work(work),
8497 					struct ctlr_info, monitor_ctlr_work);
8498 
8499 	detect_controller_lockup(h);
8500 	if (lockup_detected(h))
8501 		return;
8502 
8503 	spin_lock_irqsave(&h->lock, flags);
8504 	if (!h->remove_in_progress)
8505 		schedule_delayed_work(&h->monitor_ctlr_work,
8506 				h->heartbeat_sample_interval);
8507 	spin_unlock_irqrestore(&h->lock, flags);
8508 }
8509 
8510 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8511 						char *name)
8512 {
8513 	struct workqueue_struct *wq = NULL;
8514 
8515 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8516 	if (!wq)
8517 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8518 
8519 	return wq;
8520 }
8521 
8522 static void hpda_free_ctlr_info(struct ctlr_info *h)
8523 {
8524 	kfree(h->reply_map);
8525 	kfree(h);
8526 }
8527 
8528 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8529 {
8530 	struct ctlr_info *h;
8531 
8532 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8533 	if (!h)
8534 		return NULL;
8535 
8536 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8537 	if (!h->reply_map) {
8538 		kfree(h);
8539 		return NULL;
8540 	}
8541 	return h;
8542 }
8543 
8544 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8545 {
8546 	int dac, rc;
8547 	struct ctlr_info *h;
8548 	int try_soft_reset = 0;
8549 	unsigned long flags;
8550 	u32 board_id;
8551 
8552 	if (number_of_controllers == 0)
8553 		printk(KERN_INFO DRIVER_NAME "\n");
8554 
8555 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8556 	if (rc < 0) {
8557 		dev_warn(&pdev->dev, "Board ID not found\n");
8558 		return rc;
8559 	}
8560 
8561 	rc = hpsa_init_reset_devices(pdev, board_id);
8562 	if (rc) {
8563 		if (rc != -ENOTSUPP)
8564 			return rc;
8565 		/* If the reset fails in a particular way (it has no way to do
8566 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8567 		 * a soft reset once we get the controller configured up to the
8568 		 * point that it can accept a command.
8569 		 */
8570 		try_soft_reset = 1;
8571 		rc = 0;
8572 	}
8573 
8574 reinit_after_soft_reset:
8575 
8576 	/* Command structures must be aligned on a 32-byte boundary because
8577 	 * the 5 lower bits of the address are used by the hardware. and by
8578 	 * the driver.  See comments in hpsa.h for more info.
8579 	 */
8580 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8581 	h = hpda_alloc_ctlr_info();
8582 	if (!h) {
8583 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8584 		return -ENOMEM;
8585 	}
8586 
8587 	h->pdev = pdev;
8588 
8589 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8590 	INIT_LIST_HEAD(&h->offline_device_list);
8591 	spin_lock_init(&h->lock);
8592 	spin_lock_init(&h->offline_device_lock);
8593 	spin_lock_init(&h->scan_lock);
8594 	spin_lock_init(&h->reset_lock);
8595 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8596 
8597 	/* Allocate and clear per-cpu variable lockup_detected */
8598 	h->lockup_detected = alloc_percpu(u32);
8599 	if (!h->lockup_detected) {
8600 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8601 		rc = -ENOMEM;
8602 		goto clean1;	/* aer/h */
8603 	}
8604 	set_lockup_detected_for_all_cpus(h, 0);
8605 
8606 	rc = hpsa_pci_init(h);
8607 	if (rc)
8608 		goto clean2;	/* lu, aer/h */
8609 
8610 	/* relies on h-> settings made by hpsa_pci_init, including
8611 	 * interrupt_mode h->intr */
8612 	rc = hpsa_scsi_host_alloc(h);
8613 	if (rc)
8614 		goto clean2_5;	/* pci, lu, aer/h */
8615 
8616 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8617 	h->ctlr = number_of_controllers;
8618 	number_of_controllers++;
8619 
8620 	/* configure PCI DMA stuff */
8621 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8622 	if (rc == 0) {
8623 		dac = 1;
8624 	} else {
8625 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8626 		if (rc == 0) {
8627 			dac = 0;
8628 		} else {
8629 			dev_err(&pdev->dev, "no suitable DMA available\n");
8630 			goto clean3;	/* shost, pci, lu, aer/h */
8631 		}
8632 	}
8633 
8634 	/* make sure the board interrupts are off */
8635 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8636 
8637 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8638 	if (rc)
8639 		goto clean3;	/* shost, pci, lu, aer/h */
8640 	rc = hpsa_alloc_cmd_pool(h);
8641 	if (rc)
8642 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8643 	rc = hpsa_alloc_sg_chain_blocks(h);
8644 	if (rc)
8645 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8646 	init_waitqueue_head(&h->scan_wait_queue);
8647 	init_waitqueue_head(&h->event_sync_wait_queue);
8648 	mutex_init(&h->reset_mutex);
8649 	h->scan_finished = 1; /* no scan currently in progress */
8650 	h->scan_waiting = 0;
8651 
8652 	pci_set_drvdata(pdev, h);
8653 	h->ndevices = 0;
8654 
8655 	spin_lock_init(&h->devlock);
8656 	rc = hpsa_put_ctlr_into_performant_mode(h);
8657 	if (rc)
8658 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8659 
8660 	/* create the resubmit workqueue */
8661 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8662 	if (!h->rescan_ctlr_wq) {
8663 		rc = -ENOMEM;
8664 		goto clean7;
8665 	}
8666 
8667 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8668 	if (!h->resubmit_wq) {
8669 		rc = -ENOMEM;
8670 		goto clean7;	/* aer/h */
8671 	}
8672 
8673 	/*
8674 	 * At this point, the controller is ready to take commands.
8675 	 * Now, if reset_devices and the hard reset didn't work, try
8676 	 * the soft reset and see if that works.
8677 	 */
8678 	if (try_soft_reset) {
8679 
8680 		/* This is kind of gross.  We may or may not get a completion
8681 		 * from the soft reset command, and if we do, then the value
8682 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8683 		 * after the reset throwing away any completions we get during
8684 		 * that time.  Unregister the interrupt handler and register
8685 		 * fake ones to scoop up any residual completions.
8686 		 */
8687 		spin_lock_irqsave(&h->lock, flags);
8688 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8689 		spin_unlock_irqrestore(&h->lock, flags);
8690 		hpsa_free_irqs(h);
8691 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8692 					hpsa_intx_discard_completions);
8693 		if (rc) {
8694 			dev_warn(&h->pdev->dev,
8695 				"Failed to request_irq after soft reset.\n");
8696 			/*
8697 			 * cannot goto clean7 or free_irqs will be called
8698 			 * again. Instead, do its work
8699 			 */
8700 			hpsa_free_performant_mode(h);	/* clean7 */
8701 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8702 			hpsa_free_cmd_pool(h);		/* clean5 */
8703 			/*
8704 			 * skip hpsa_free_irqs(h) clean4 since that
8705 			 * was just called before request_irqs failed
8706 			 */
8707 			goto clean3;
8708 		}
8709 
8710 		rc = hpsa_kdump_soft_reset(h);
8711 		if (rc)
8712 			/* Neither hard nor soft reset worked, we're hosed. */
8713 			goto clean7;
8714 
8715 		dev_info(&h->pdev->dev, "Board READY.\n");
8716 		dev_info(&h->pdev->dev,
8717 			"Waiting for stale completions to drain.\n");
8718 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8719 		msleep(10000);
8720 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8721 
8722 		rc = controller_reset_failed(h->cfgtable);
8723 		if (rc)
8724 			dev_info(&h->pdev->dev,
8725 				"Soft reset appears to have failed.\n");
8726 
8727 		/* since the controller's reset, we have to go back and re-init
8728 		 * everything.  Easiest to just forget what we've done and do it
8729 		 * all over again.
8730 		 */
8731 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8732 		try_soft_reset = 0;
8733 		if (rc)
8734 			/* don't goto clean, we already unallocated */
8735 			return -ENODEV;
8736 
8737 		goto reinit_after_soft_reset;
8738 	}
8739 
8740 	/* Enable Accelerated IO path at driver layer */
8741 	h->acciopath_status = 1;
8742 	/* Disable discovery polling.*/
8743 	h->discovery_polling = 0;
8744 
8745 
8746 	/* Turn the interrupts on so we can service requests */
8747 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8748 
8749 	hpsa_hba_inquiry(h);
8750 
8751 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8752 	if (!h->lastlogicals)
8753 		dev_info(&h->pdev->dev,
8754 			"Can't track change to report lun data\n");
8755 
8756 	/* hook into SCSI subsystem */
8757 	rc = hpsa_scsi_add_host(h);
8758 	if (rc)
8759 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8760 
8761 	/* Monitor the controller for firmware lockups */
8762 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8763 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8764 	schedule_delayed_work(&h->monitor_ctlr_work,
8765 				h->heartbeat_sample_interval);
8766 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8767 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8768 				h->heartbeat_sample_interval);
8769 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8770 	schedule_delayed_work(&h->event_monitor_work,
8771 				HPSA_EVENT_MONITOR_INTERVAL);
8772 	return 0;
8773 
8774 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8775 	hpsa_free_performant_mode(h);
8776 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8777 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8778 	hpsa_free_sg_chain_blocks(h);
8779 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8780 	hpsa_free_cmd_pool(h);
8781 clean4: /* irq, shost, pci, lu, aer/h */
8782 	hpsa_free_irqs(h);
8783 clean3: /* shost, pci, lu, aer/h */
8784 	scsi_host_put(h->scsi_host);
8785 	h->scsi_host = NULL;
8786 clean2_5: /* pci, lu, aer/h */
8787 	hpsa_free_pci_init(h);
8788 clean2: /* lu, aer/h */
8789 	if (h->lockup_detected) {
8790 		free_percpu(h->lockup_detected);
8791 		h->lockup_detected = NULL;
8792 	}
8793 clean1:	/* wq/aer/h */
8794 	if (h->resubmit_wq) {
8795 		destroy_workqueue(h->resubmit_wq);
8796 		h->resubmit_wq = NULL;
8797 	}
8798 	if (h->rescan_ctlr_wq) {
8799 		destroy_workqueue(h->rescan_ctlr_wq);
8800 		h->rescan_ctlr_wq = NULL;
8801 	}
8802 	kfree(h);
8803 	return rc;
8804 }
8805 
8806 static void hpsa_flush_cache(struct ctlr_info *h)
8807 {
8808 	char *flush_buf;
8809 	struct CommandList *c;
8810 	int rc;
8811 
8812 	if (unlikely(lockup_detected(h)))
8813 		return;
8814 	flush_buf = kzalloc(4, GFP_KERNEL);
8815 	if (!flush_buf)
8816 		return;
8817 
8818 	c = cmd_alloc(h);
8819 
8820 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8821 		RAID_CTLR_LUNID, TYPE_CMD)) {
8822 		goto out;
8823 	}
8824 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8825 			DEFAULT_TIMEOUT);
8826 	if (rc)
8827 		goto out;
8828 	if (c->err_info->CommandStatus != 0)
8829 out:
8830 		dev_warn(&h->pdev->dev,
8831 			"error flushing cache on controller\n");
8832 	cmd_free(h, c);
8833 	kfree(flush_buf);
8834 }
8835 
8836 /* Make controller gather fresh report lun data each time we
8837  * send down a report luns request
8838  */
8839 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8840 {
8841 	u32 *options;
8842 	struct CommandList *c;
8843 	int rc;
8844 
8845 	/* Don't bother trying to set diag options if locked up */
8846 	if (unlikely(h->lockup_detected))
8847 		return;
8848 
8849 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8850 	if (!options)
8851 		return;
8852 
8853 	c = cmd_alloc(h);
8854 
8855 	/* first, get the current diag options settings */
8856 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8857 		RAID_CTLR_LUNID, TYPE_CMD))
8858 		goto errout;
8859 
8860 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8861 			NO_TIMEOUT);
8862 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8863 		goto errout;
8864 
8865 	/* Now, set the bit for disabling the RLD caching */
8866 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8867 
8868 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8869 		RAID_CTLR_LUNID, TYPE_CMD))
8870 		goto errout;
8871 
8872 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8873 			NO_TIMEOUT);
8874 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8875 		goto errout;
8876 
8877 	/* Now verify that it got set: */
8878 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8879 		RAID_CTLR_LUNID, TYPE_CMD))
8880 		goto errout;
8881 
8882 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8883 			NO_TIMEOUT);
8884 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8885 		goto errout;
8886 
8887 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8888 		goto out;
8889 
8890 errout:
8891 	dev_err(&h->pdev->dev,
8892 			"Error: failed to disable report lun data caching.\n");
8893 out:
8894 	cmd_free(h, c);
8895 	kfree(options);
8896 }
8897 
8898 static void __hpsa_shutdown(struct pci_dev *pdev)
8899 {
8900 	struct ctlr_info *h;
8901 
8902 	h = pci_get_drvdata(pdev);
8903 	/* Turn board interrupts off  and send the flush cache command
8904 	 * sendcmd will turn off interrupt, and send the flush...
8905 	 * To write all data in the battery backed cache to disks
8906 	 */
8907 	hpsa_flush_cache(h);
8908 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8909 	hpsa_free_irqs(h);			/* init_one 4 */
8910 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8911 }
8912 
8913 static void hpsa_shutdown(struct pci_dev *pdev)
8914 {
8915 	__hpsa_shutdown(pdev);
8916 	pci_disable_device(pdev);
8917 }
8918 
8919 static void hpsa_free_device_info(struct ctlr_info *h)
8920 {
8921 	int i;
8922 
8923 	for (i = 0; i < h->ndevices; i++) {
8924 		kfree(h->dev[i]);
8925 		h->dev[i] = NULL;
8926 	}
8927 }
8928 
8929 static void hpsa_remove_one(struct pci_dev *pdev)
8930 {
8931 	struct ctlr_info *h;
8932 	unsigned long flags;
8933 
8934 	if (pci_get_drvdata(pdev) == NULL) {
8935 		dev_err(&pdev->dev, "unable to remove device\n");
8936 		return;
8937 	}
8938 	h = pci_get_drvdata(pdev);
8939 
8940 	/* Get rid of any controller monitoring work items */
8941 	spin_lock_irqsave(&h->lock, flags);
8942 	h->remove_in_progress = 1;
8943 	spin_unlock_irqrestore(&h->lock, flags);
8944 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8945 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8946 	cancel_delayed_work_sync(&h->event_monitor_work);
8947 	destroy_workqueue(h->rescan_ctlr_wq);
8948 	destroy_workqueue(h->resubmit_wq);
8949 
8950 	hpsa_delete_sas_host(h);
8951 
8952 	/*
8953 	 * Call before disabling interrupts.
8954 	 * scsi_remove_host can trigger I/O operations especially
8955 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8956 	 * operations which cannot complete and will hang the system.
8957 	 */
8958 	if (h->scsi_host)
8959 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8960 	/* includes hpsa_free_irqs - init_one 4 */
8961 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8962 	__hpsa_shutdown(pdev);
8963 
8964 	hpsa_free_device_info(h);		/* scan */
8965 
8966 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8967 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8968 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8969 	hpsa_free_performant_mode(h);			/* init_one 7 */
8970 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8971 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8972 	kfree(h->lastlogicals);
8973 
8974 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8975 
8976 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8977 	h->scsi_host = NULL;				/* init_one 3 */
8978 
8979 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8980 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8981 
8982 	free_percpu(h->lockup_detected);		/* init_one 2 */
8983 	h->lockup_detected = NULL;			/* init_one 2 */
8984 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8985 
8986 	hpda_free_ctlr_info(h);				/* init_one 1 */
8987 }
8988 
8989 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8990 	__attribute__((unused)) pm_message_t state)
8991 {
8992 	return -ENOSYS;
8993 }
8994 
8995 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8996 {
8997 	return -ENOSYS;
8998 }
8999 
9000 static struct pci_driver hpsa_pci_driver = {
9001 	.name = HPSA,
9002 	.probe = hpsa_init_one,
9003 	.remove = hpsa_remove_one,
9004 	.id_table = hpsa_pci_device_id,	/* id_table */
9005 	.shutdown = hpsa_shutdown,
9006 	.suspend = hpsa_suspend,
9007 	.resume = hpsa_resume,
9008 };
9009 
9010 /* Fill in bucket_map[], given nsgs (the max number of
9011  * scatter gather elements supported) and bucket[],
9012  * which is an array of 8 integers.  The bucket[] array
9013  * contains 8 different DMA transfer sizes (in 16
9014  * byte increments) which the controller uses to fetch
9015  * commands.  This function fills in bucket_map[], which
9016  * maps a given number of scatter gather elements to one of
9017  * the 8 DMA transfer sizes.  The point of it is to allow the
9018  * controller to only do as much DMA as needed to fetch the
9019  * command, with the DMA transfer size encoded in the lower
9020  * bits of the command address.
9021  */
9022 static void  calc_bucket_map(int bucket[], int num_buckets,
9023 	int nsgs, int min_blocks, u32 *bucket_map)
9024 {
9025 	int i, j, b, size;
9026 
9027 	/* Note, bucket_map must have nsgs+1 entries. */
9028 	for (i = 0; i <= nsgs; i++) {
9029 		/* Compute size of a command with i SG entries */
9030 		size = i + min_blocks;
9031 		b = num_buckets; /* Assume the biggest bucket */
9032 		/* Find the bucket that is just big enough */
9033 		for (j = 0; j < num_buckets; j++) {
9034 			if (bucket[j] >= size) {
9035 				b = j;
9036 				break;
9037 			}
9038 		}
9039 		/* for a command with i SG entries, use bucket b. */
9040 		bucket_map[i] = b;
9041 	}
9042 }
9043 
9044 /*
9045  * return -ENODEV on err, 0 on success (or no action)
9046  * allocates numerous items that must be freed later
9047  */
9048 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9049 {
9050 	int i;
9051 	unsigned long register_value;
9052 	unsigned long transMethod = CFGTBL_Trans_Performant |
9053 			(trans_support & CFGTBL_Trans_use_short_tags) |
9054 				CFGTBL_Trans_enable_directed_msix |
9055 			(trans_support & (CFGTBL_Trans_io_accel1 |
9056 				CFGTBL_Trans_io_accel2));
9057 	struct access_method access = SA5_performant_access;
9058 
9059 	/* This is a bit complicated.  There are 8 registers on
9060 	 * the controller which we write to to tell it 8 different
9061 	 * sizes of commands which there may be.  It's a way of
9062 	 * reducing the DMA done to fetch each command.  Encoded into
9063 	 * each command's tag are 3 bits which communicate to the controller
9064 	 * which of the eight sizes that command fits within.  The size of
9065 	 * each command depends on how many scatter gather entries there are.
9066 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9067 	 * with the number of 16-byte blocks a command of that size requires.
9068 	 * The smallest command possible requires 5 such 16 byte blocks.
9069 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9070 	 * blocks.  Note, this only extends to the SG entries contained
9071 	 * within the command block, and does not extend to chained blocks
9072 	 * of SG elements.   bft[] contains the eight values we write to
9073 	 * the registers.  They are not evenly distributed, but have more
9074 	 * sizes for small commands, and fewer sizes for larger commands.
9075 	 */
9076 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9077 #define MIN_IOACCEL2_BFT_ENTRY 5
9078 #define HPSA_IOACCEL2_HEADER_SZ 4
9079 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9080 			13, 14, 15, 16, 17, 18, 19,
9081 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9082 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9083 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9084 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9085 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9086 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9087 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9088 	/*  5 = 1 s/g entry or 4k
9089 	 *  6 = 2 s/g entry or 8k
9090 	 *  8 = 4 s/g entry or 16k
9091 	 * 10 = 6 s/g entry or 24k
9092 	 */
9093 
9094 	/* If the controller supports either ioaccel method then
9095 	 * we can also use the RAID stack submit path that does not
9096 	 * perform the superfluous readl() after each command submission.
9097 	 */
9098 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9099 		access = SA5_performant_access_no_read;
9100 
9101 	/* Controller spec: zero out this buffer. */
9102 	for (i = 0; i < h->nreply_queues; i++)
9103 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9104 
9105 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9106 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9107 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9108 	for (i = 0; i < 8; i++)
9109 		writel(bft[i], &h->transtable->BlockFetch[i]);
9110 
9111 	/* size of controller ring buffer */
9112 	writel(h->max_commands, &h->transtable->RepQSize);
9113 	writel(h->nreply_queues, &h->transtable->RepQCount);
9114 	writel(0, &h->transtable->RepQCtrAddrLow32);
9115 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9116 
9117 	for (i = 0; i < h->nreply_queues; i++) {
9118 		writel(0, &h->transtable->RepQAddr[i].upper);
9119 		writel(h->reply_queue[i].busaddr,
9120 			&h->transtable->RepQAddr[i].lower);
9121 	}
9122 
9123 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9124 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9125 	/*
9126 	 * enable outbound interrupt coalescing in accelerator mode;
9127 	 */
9128 	if (trans_support & CFGTBL_Trans_io_accel1) {
9129 		access = SA5_ioaccel_mode1_access;
9130 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9131 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9132 	} else
9133 		if (trans_support & CFGTBL_Trans_io_accel2)
9134 			access = SA5_ioaccel_mode2_access;
9135 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9136 	if (hpsa_wait_for_mode_change_ack(h)) {
9137 		dev_err(&h->pdev->dev,
9138 			"performant mode problem - doorbell timeout\n");
9139 		return -ENODEV;
9140 	}
9141 	register_value = readl(&(h->cfgtable->TransportActive));
9142 	if (!(register_value & CFGTBL_Trans_Performant)) {
9143 		dev_err(&h->pdev->dev,
9144 			"performant mode problem - transport not active\n");
9145 		return -ENODEV;
9146 	}
9147 	/* Change the access methods to the performant access methods */
9148 	h->access = access;
9149 	h->transMethod = transMethod;
9150 
9151 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9152 		(trans_support & CFGTBL_Trans_io_accel2)))
9153 		return 0;
9154 
9155 	if (trans_support & CFGTBL_Trans_io_accel1) {
9156 		/* Set up I/O accelerator mode */
9157 		for (i = 0; i < h->nreply_queues; i++) {
9158 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9159 			h->reply_queue[i].current_entry =
9160 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9161 		}
9162 		bft[7] = h->ioaccel_maxsg + 8;
9163 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9164 				h->ioaccel1_blockFetchTable);
9165 
9166 		/* initialize all reply queue entries to unused */
9167 		for (i = 0; i < h->nreply_queues; i++)
9168 			memset(h->reply_queue[i].head,
9169 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9170 				h->reply_queue_size);
9171 
9172 		/* set all the constant fields in the accelerator command
9173 		 * frames once at init time to save CPU cycles later.
9174 		 */
9175 		for (i = 0; i < h->nr_cmds; i++) {
9176 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9177 
9178 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9179 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9180 					(i * sizeof(struct ErrorInfo)));
9181 			cp->err_info_len = sizeof(struct ErrorInfo);
9182 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9183 			cp->host_context_flags =
9184 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9185 			cp->timeout_sec = 0;
9186 			cp->ReplyQueue = 0;
9187 			cp->tag =
9188 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9189 			cp->host_addr =
9190 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9191 					(i * sizeof(struct io_accel1_cmd)));
9192 		}
9193 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9194 		u64 cfg_offset, cfg_base_addr_index;
9195 		u32 bft2_offset, cfg_base_addr;
9196 		int rc;
9197 
9198 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9199 			&cfg_base_addr_index, &cfg_offset);
9200 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9201 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9202 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9203 				4, h->ioaccel2_blockFetchTable);
9204 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9205 		BUILD_BUG_ON(offsetof(struct CfgTable,
9206 				io_accel_request_size_offset) != 0xb8);
9207 		h->ioaccel2_bft2_regs =
9208 			remap_pci_mem(pci_resource_start(h->pdev,
9209 					cfg_base_addr_index) +
9210 					cfg_offset + bft2_offset,
9211 					ARRAY_SIZE(bft2) *
9212 					sizeof(*h->ioaccel2_bft2_regs));
9213 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9214 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9215 	}
9216 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9217 	if (hpsa_wait_for_mode_change_ack(h)) {
9218 		dev_err(&h->pdev->dev,
9219 			"performant mode problem - enabling ioaccel mode\n");
9220 		return -ENODEV;
9221 	}
9222 	return 0;
9223 }
9224 
9225 /* Free ioaccel1 mode command blocks and block fetch table */
9226 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9227 {
9228 	if (h->ioaccel_cmd_pool) {
9229 		pci_free_consistent(h->pdev,
9230 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9231 			h->ioaccel_cmd_pool,
9232 			h->ioaccel_cmd_pool_dhandle);
9233 		h->ioaccel_cmd_pool = NULL;
9234 		h->ioaccel_cmd_pool_dhandle = 0;
9235 	}
9236 	kfree(h->ioaccel1_blockFetchTable);
9237 	h->ioaccel1_blockFetchTable = NULL;
9238 }
9239 
9240 /* Allocate ioaccel1 mode command blocks and block fetch table */
9241 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9242 {
9243 	h->ioaccel_maxsg =
9244 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9245 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9246 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9247 
9248 	/* Command structures must be aligned on a 128-byte boundary
9249 	 * because the 7 lower bits of the address are used by the
9250 	 * hardware.
9251 	 */
9252 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9253 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9254 	h->ioaccel_cmd_pool =
9255 		dma_alloc_coherent(&h->pdev->dev,
9256 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9257 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9258 
9259 	h->ioaccel1_blockFetchTable =
9260 		kmalloc(((h->ioaccel_maxsg + 1) *
9261 				sizeof(u32)), GFP_KERNEL);
9262 
9263 	if ((h->ioaccel_cmd_pool == NULL) ||
9264 		(h->ioaccel1_blockFetchTable == NULL))
9265 		goto clean_up;
9266 
9267 	memset(h->ioaccel_cmd_pool, 0,
9268 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9269 	return 0;
9270 
9271 clean_up:
9272 	hpsa_free_ioaccel1_cmd_and_bft(h);
9273 	return -ENOMEM;
9274 }
9275 
9276 /* Free ioaccel2 mode command blocks and block fetch table */
9277 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9278 {
9279 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9280 
9281 	if (h->ioaccel2_cmd_pool) {
9282 		pci_free_consistent(h->pdev,
9283 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9284 			h->ioaccel2_cmd_pool,
9285 			h->ioaccel2_cmd_pool_dhandle);
9286 		h->ioaccel2_cmd_pool = NULL;
9287 		h->ioaccel2_cmd_pool_dhandle = 0;
9288 	}
9289 	kfree(h->ioaccel2_blockFetchTable);
9290 	h->ioaccel2_blockFetchTable = NULL;
9291 }
9292 
9293 /* Allocate ioaccel2 mode command blocks and block fetch table */
9294 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9295 {
9296 	int rc;
9297 
9298 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9299 
9300 	h->ioaccel_maxsg =
9301 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9302 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9303 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9304 
9305 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9306 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9307 	h->ioaccel2_cmd_pool =
9308 		dma_alloc_coherent(&h->pdev->dev,
9309 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9310 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9311 
9312 	h->ioaccel2_blockFetchTable =
9313 		kmalloc(((h->ioaccel_maxsg + 1) *
9314 				sizeof(u32)), GFP_KERNEL);
9315 
9316 	if ((h->ioaccel2_cmd_pool == NULL) ||
9317 		(h->ioaccel2_blockFetchTable == NULL)) {
9318 		rc = -ENOMEM;
9319 		goto clean_up;
9320 	}
9321 
9322 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9323 	if (rc)
9324 		goto clean_up;
9325 
9326 	memset(h->ioaccel2_cmd_pool, 0,
9327 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9328 	return 0;
9329 
9330 clean_up:
9331 	hpsa_free_ioaccel2_cmd_and_bft(h);
9332 	return rc;
9333 }
9334 
9335 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9336 static void hpsa_free_performant_mode(struct ctlr_info *h)
9337 {
9338 	kfree(h->blockFetchTable);
9339 	h->blockFetchTable = NULL;
9340 	hpsa_free_reply_queues(h);
9341 	hpsa_free_ioaccel1_cmd_and_bft(h);
9342 	hpsa_free_ioaccel2_cmd_and_bft(h);
9343 }
9344 
9345 /* return -ENODEV on error, 0 on success (or no action)
9346  * allocates numerous items that must be freed later
9347  */
9348 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9349 {
9350 	u32 trans_support;
9351 	unsigned long transMethod = CFGTBL_Trans_Performant |
9352 					CFGTBL_Trans_use_short_tags;
9353 	int i, rc;
9354 
9355 	if (hpsa_simple_mode)
9356 		return 0;
9357 
9358 	trans_support = readl(&(h->cfgtable->TransportSupport));
9359 	if (!(trans_support & PERFORMANT_MODE))
9360 		return 0;
9361 
9362 	/* Check for I/O accelerator mode support */
9363 	if (trans_support & CFGTBL_Trans_io_accel1) {
9364 		transMethod |= CFGTBL_Trans_io_accel1 |
9365 				CFGTBL_Trans_enable_directed_msix;
9366 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9367 		if (rc)
9368 			return rc;
9369 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9370 		transMethod |= CFGTBL_Trans_io_accel2 |
9371 				CFGTBL_Trans_enable_directed_msix;
9372 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9373 		if (rc)
9374 			return rc;
9375 	}
9376 
9377 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9378 	hpsa_get_max_perf_mode_cmds(h);
9379 	/* Performant mode ring buffer and supporting data structures */
9380 	h->reply_queue_size = h->max_commands * sizeof(u64);
9381 
9382 	for (i = 0; i < h->nreply_queues; i++) {
9383 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9384 						h->reply_queue_size,
9385 						&h->reply_queue[i].busaddr,
9386 						GFP_KERNEL);
9387 		if (!h->reply_queue[i].head) {
9388 			rc = -ENOMEM;
9389 			goto clean1;	/* rq, ioaccel */
9390 		}
9391 		h->reply_queue[i].size = h->max_commands;
9392 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9393 		h->reply_queue[i].current_entry = 0;
9394 	}
9395 
9396 	/* Need a block fetch table for performant mode */
9397 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9398 				sizeof(u32)), GFP_KERNEL);
9399 	if (!h->blockFetchTable) {
9400 		rc = -ENOMEM;
9401 		goto clean1;	/* rq, ioaccel */
9402 	}
9403 
9404 	rc = hpsa_enter_performant_mode(h, trans_support);
9405 	if (rc)
9406 		goto clean2;	/* bft, rq, ioaccel */
9407 	return 0;
9408 
9409 clean2:	/* bft, rq, ioaccel */
9410 	kfree(h->blockFetchTable);
9411 	h->blockFetchTable = NULL;
9412 clean1:	/* rq, ioaccel */
9413 	hpsa_free_reply_queues(h);
9414 	hpsa_free_ioaccel1_cmd_and_bft(h);
9415 	hpsa_free_ioaccel2_cmd_and_bft(h);
9416 	return rc;
9417 }
9418 
9419 static int is_accelerated_cmd(struct CommandList *c)
9420 {
9421 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9422 }
9423 
9424 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9425 {
9426 	struct CommandList *c = NULL;
9427 	int i, accel_cmds_out;
9428 	int refcount;
9429 
9430 	do { /* wait for all outstanding ioaccel commands to drain out */
9431 		accel_cmds_out = 0;
9432 		for (i = 0; i < h->nr_cmds; i++) {
9433 			c = h->cmd_pool + i;
9434 			refcount = atomic_inc_return(&c->refcount);
9435 			if (refcount > 1) /* Command is allocated */
9436 				accel_cmds_out += is_accelerated_cmd(c);
9437 			cmd_free(h, c);
9438 		}
9439 		if (accel_cmds_out <= 0)
9440 			break;
9441 		msleep(100);
9442 	} while (1);
9443 }
9444 
9445 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9446 				struct hpsa_sas_port *hpsa_sas_port)
9447 {
9448 	struct hpsa_sas_phy *hpsa_sas_phy;
9449 	struct sas_phy *phy;
9450 
9451 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9452 	if (!hpsa_sas_phy)
9453 		return NULL;
9454 
9455 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9456 		hpsa_sas_port->next_phy_index);
9457 	if (!phy) {
9458 		kfree(hpsa_sas_phy);
9459 		return NULL;
9460 	}
9461 
9462 	hpsa_sas_port->next_phy_index++;
9463 	hpsa_sas_phy->phy = phy;
9464 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9465 
9466 	return hpsa_sas_phy;
9467 }
9468 
9469 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9470 {
9471 	struct sas_phy *phy = hpsa_sas_phy->phy;
9472 
9473 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9474 	if (hpsa_sas_phy->added_to_port)
9475 		list_del(&hpsa_sas_phy->phy_list_entry);
9476 	sas_phy_delete(phy);
9477 	kfree(hpsa_sas_phy);
9478 }
9479 
9480 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9481 {
9482 	int rc;
9483 	struct hpsa_sas_port *hpsa_sas_port;
9484 	struct sas_phy *phy;
9485 	struct sas_identify *identify;
9486 
9487 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9488 	phy = hpsa_sas_phy->phy;
9489 
9490 	identify = &phy->identify;
9491 	memset(identify, 0, sizeof(*identify));
9492 	identify->sas_address = hpsa_sas_port->sas_address;
9493 	identify->device_type = SAS_END_DEVICE;
9494 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9495 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9496 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9497 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9498 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9499 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9500 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9501 
9502 	rc = sas_phy_add(hpsa_sas_phy->phy);
9503 	if (rc)
9504 		return rc;
9505 
9506 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9507 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9508 			&hpsa_sas_port->phy_list_head);
9509 	hpsa_sas_phy->added_to_port = true;
9510 
9511 	return 0;
9512 }
9513 
9514 static int
9515 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9516 				struct sas_rphy *rphy)
9517 {
9518 	struct sas_identify *identify;
9519 
9520 	identify = &rphy->identify;
9521 	identify->sas_address = hpsa_sas_port->sas_address;
9522 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9523 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9524 
9525 	return sas_rphy_add(rphy);
9526 }
9527 
9528 static struct hpsa_sas_port
9529 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9530 				u64 sas_address)
9531 {
9532 	int rc;
9533 	struct hpsa_sas_port *hpsa_sas_port;
9534 	struct sas_port *port;
9535 
9536 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9537 	if (!hpsa_sas_port)
9538 		return NULL;
9539 
9540 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9541 	hpsa_sas_port->parent_node = hpsa_sas_node;
9542 
9543 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9544 	if (!port)
9545 		goto free_hpsa_port;
9546 
9547 	rc = sas_port_add(port);
9548 	if (rc)
9549 		goto free_sas_port;
9550 
9551 	hpsa_sas_port->port = port;
9552 	hpsa_sas_port->sas_address = sas_address;
9553 	list_add_tail(&hpsa_sas_port->port_list_entry,
9554 			&hpsa_sas_node->port_list_head);
9555 
9556 	return hpsa_sas_port;
9557 
9558 free_sas_port:
9559 	sas_port_free(port);
9560 free_hpsa_port:
9561 	kfree(hpsa_sas_port);
9562 
9563 	return NULL;
9564 }
9565 
9566 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9567 {
9568 	struct hpsa_sas_phy *hpsa_sas_phy;
9569 	struct hpsa_sas_phy *next;
9570 
9571 	list_for_each_entry_safe(hpsa_sas_phy, next,
9572 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9573 		hpsa_free_sas_phy(hpsa_sas_phy);
9574 
9575 	sas_port_delete(hpsa_sas_port->port);
9576 	list_del(&hpsa_sas_port->port_list_entry);
9577 	kfree(hpsa_sas_port);
9578 }
9579 
9580 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9581 {
9582 	struct hpsa_sas_node *hpsa_sas_node;
9583 
9584 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9585 	if (hpsa_sas_node) {
9586 		hpsa_sas_node->parent_dev = parent_dev;
9587 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9588 	}
9589 
9590 	return hpsa_sas_node;
9591 }
9592 
9593 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9594 {
9595 	struct hpsa_sas_port *hpsa_sas_port;
9596 	struct hpsa_sas_port *next;
9597 
9598 	if (!hpsa_sas_node)
9599 		return;
9600 
9601 	list_for_each_entry_safe(hpsa_sas_port, next,
9602 			&hpsa_sas_node->port_list_head, port_list_entry)
9603 		hpsa_free_sas_port(hpsa_sas_port);
9604 
9605 	kfree(hpsa_sas_node);
9606 }
9607 
9608 static struct hpsa_scsi_dev_t
9609 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9610 					struct sas_rphy *rphy)
9611 {
9612 	int i;
9613 	struct hpsa_scsi_dev_t *device;
9614 
9615 	for (i = 0; i < h->ndevices; i++) {
9616 		device = h->dev[i];
9617 		if (!device->sas_port)
9618 			continue;
9619 		if (device->sas_port->rphy == rphy)
9620 			return device;
9621 	}
9622 
9623 	return NULL;
9624 }
9625 
9626 static int hpsa_add_sas_host(struct ctlr_info *h)
9627 {
9628 	int rc;
9629 	struct device *parent_dev;
9630 	struct hpsa_sas_node *hpsa_sas_node;
9631 	struct hpsa_sas_port *hpsa_sas_port;
9632 	struct hpsa_sas_phy *hpsa_sas_phy;
9633 
9634 	parent_dev = &h->scsi_host->shost_dev;
9635 
9636 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9637 	if (!hpsa_sas_node)
9638 		return -ENOMEM;
9639 
9640 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9641 	if (!hpsa_sas_port) {
9642 		rc = -ENODEV;
9643 		goto free_sas_node;
9644 	}
9645 
9646 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9647 	if (!hpsa_sas_phy) {
9648 		rc = -ENODEV;
9649 		goto free_sas_port;
9650 	}
9651 
9652 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9653 	if (rc)
9654 		goto free_sas_phy;
9655 
9656 	h->sas_host = hpsa_sas_node;
9657 
9658 	return 0;
9659 
9660 free_sas_phy:
9661 	hpsa_free_sas_phy(hpsa_sas_phy);
9662 free_sas_port:
9663 	hpsa_free_sas_port(hpsa_sas_port);
9664 free_sas_node:
9665 	hpsa_free_sas_node(hpsa_sas_node);
9666 
9667 	return rc;
9668 }
9669 
9670 static void hpsa_delete_sas_host(struct ctlr_info *h)
9671 {
9672 	hpsa_free_sas_node(h->sas_host);
9673 }
9674 
9675 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9676 				struct hpsa_scsi_dev_t *device)
9677 {
9678 	int rc;
9679 	struct hpsa_sas_port *hpsa_sas_port;
9680 	struct sas_rphy *rphy;
9681 
9682 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9683 	if (!hpsa_sas_port)
9684 		return -ENOMEM;
9685 
9686 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9687 	if (!rphy) {
9688 		rc = -ENODEV;
9689 		goto free_sas_port;
9690 	}
9691 
9692 	hpsa_sas_port->rphy = rphy;
9693 	device->sas_port = hpsa_sas_port;
9694 
9695 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9696 	if (rc)
9697 		goto free_sas_port;
9698 
9699 	return 0;
9700 
9701 free_sas_port:
9702 	hpsa_free_sas_port(hpsa_sas_port);
9703 	device->sas_port = NULL;
9704 
9705 	return rc;
9706 }
9707 
9708 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9709 {
9710 	if (device->sas_port) {
9711 		hpsa_free_sas_port(device->sas_port);
9712 		device->sas_port = NULL;
9713 	}
9714 }
9715 
9716 static int
9717 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9718 {
9719 	return 0;
9720 }
9721 
9722 static int
9723 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9724 {
9725 	struct Scsi_Host *shost = phy_to_shost(rphy);
9726 	struct ctlr_info *h;
9727 	struct hpsa_scsi_dev_t *sd;
9728 
9729 	if (!shost)
9730 		return -ENXIO;
9731 
9732 	h = shost_to_hba(shost);
9733 
9734 	if (!h)
9735 		return -ENXIO;
9736 
9737 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9738 	if (!sd)
9739 		return -ENXIO;
9740 
9741 	*identifier = sd->eli;
9742 
9743 	return 0;
9744 }
9745 
9746 static int
9747 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9748 {
9749 	return -ENXIO;
9750 }
9751 
9752 static int
9753 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9754 {
9755 	return 0;
9756 }
9757 
9758 static int
9759 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9760 {
9761 	return 0;
9762 }
9763 
9764 static int
9765 hpsa_sas_phy_setup(struct sas_phy *phy)
9766 {
9767 	return 0;
9768 }
9769 
9770 static void
9771 hpsa_sas_phy_release(struct sas_phy *phy)
9772 {
9773 }
9774 
9775 static int
9776 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9777 {
9778 	return -EINVAL;
9779 }
9780 
9781 static struct sas_function_template hpsa_sas_transport_functions = {
9782 	.get_linkerrors = hpsa_sas_get_linkerrors,
9783 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9784 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9785 	.phy_reset = hpsa_sas_phy_reset,
9786 	.phy_enable = hpsa_sas_phy_enable,
9787 	.phy_setup = hpsa_sas_phy_setup,
9788 	.phy_release = hpsa_sas_phy_release,
9789 	.set_phy_speed = hpsa_sas_phy_speed,
9790 };
9791 
9792 /*
9793  *  This is it.  Register the PCI driver information for the cards we control
9794  *  the OS will call our registered routines when it finds one of our cards.
9795  */
9796 static int __init hpsa_init(void)
9797 {
9798 	int rc;
9799 
9800 	hpsa_sas_transport_template =
9801 		sas_attach_transport(&hpsa_sas_transport_functions);
9802 	if (!hpsa_sas_transport_template)
9803 		return -ENODEV;
9804 
9805 	rc = pci_register_driver(&hpsa_pci_driver);
9806 
9807 	if (rc)
9808 		sas_release_transport(hpsa_sas_transport_template);
9809 
9810 	return rc;
9811 }
9812 
9813 static void __exit hpsa_cleanup(void)
9814 {
9815 	pci_unregister_driver(&hpsa_pci_driver);
9816 	sas_release_transport(hpsa_sas_transport_template);
9817 }
9818 
9819 static void __attribute__((unused)) verify_offsets(void)
9820 {
9821 #define VERIFY_OFFSET(member, offset) \
9822 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9823 
9824 	VERIFY_OFFSET(structure_size, 0);
9825 	VERIFY_OFFSET(volume_blk_size, 4);
9826 	VERIFY_OFFSET(volume_blk_cnt, 8);
9827 	VERIFY_OFFSET(phys_blk_shift, 16);
9828 	VERIFY_OFFSET(parity_rotation_shift, 17);
9829 	VERIFY_OFFSET(strip_size, 18);
9830 	VERIFY_OFFSET(disk_starting_blk, 20);
9831 	VERIFY_OFFSET(disk_blk_cnt, 28);
9832 	VERIFY_OFFSET(data_disks_per_row, 36);
9833 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9834 	VERIFY_OFFSET(row_cnt, 40);
9835 	VERIFY_OFFSET(layout_map_count, 42);
9836 	VERIFY_OFFSET(flags, 44);
9837 	VERIFY_OFFSET(dekindex, 46);
9838 	/* VERIFY_OFFSET(reserved, 48 */
9839 	VERIFY_OFFSET(data, 64);
9840 
9841 #undef VERIFY_OFFSET
9842 
9843 #define VERIFY_OFFSET(member, offset) \
9844 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9845 
9846 	VERIFY_OFFSET(IU_type, 0);
9847 	VERIFY_OFFSET(direction, 1);
9848 	VERIFY_OFFSET(reply_queue, 2);
9849 	/* VERIFY_OFFSET(reserved1, 3);  */
9850 	VERIFY_OFFSET(scsi_nexus, 4);
9851 	VERIFY_OFFSET(Tag, 8);
9852 	VERIFY_OFFSET(cdb, 16);
9853 	VERIFY_OFFSET(cciss_lun, 32);
9854 	VERIFY_OFFSET(data_len, 40);
9855 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9856 	VERIFY_OFFSET(sg_count, 45);
9857 	/* VERIFY_OFFSET(reserved3 */
9858 	VERIFY_OFFSET(err_ptr, 48);
9859 	VERIFY_OFFSET(err_len, 56);
9860 	/* VERIFY_OFFSET(reserved4  */
9861 	VERIFY_OFFSET(sg, 64);
9862 
9863 #undef VERIFY_OFFSET
9864 
9865 #define VERIFY_OFFSET(member, offset) \
9866 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9867 
9868 	VERIFY_OFFSET(dev_handle, 0x00);
9869 	VERIFY_OFFSET(reserved1, 0x02);
9870 	VERIFY_OFFSET(function, 0x03);
9871 	VERIFY_OFFSET(reserved2, 0x04);
9872 	VERIFY_OFFSET(err_info, 0x0C);
9873 	VERIFY_OFFSET(reserved3, 0x10);
9874 	VERIFY_OFFSET(err_info_len, 0x12);
9875 	VERIFY_OFFSET(reserved4, 0x13);
9876 	VERIFY_OFFSET(sgl_offset, 0x14);
9877 	VERIFY_OFFSET(reserved5, 0x15);
9878 	VERIFY_OFFSET(transfer_len, 0x1C);
9879 	VERIFY_OFFSET(reserved6, 0x20);
9880 	VERIFY_OFFSET(io_flags, 0x24);
9881 	VERIFY_OFFSET(reserved7, 0x26);
9882 	VERIFY_OFFSET(LUN, 0x34);
9883 	VERIFY_OFFSET(control, 0x3C);
9884 	VERIFY_OFFSET(CDB, 0x40);
9885 	VERIFY_OFFSET(reserved8, 0x50);
9886 	VERIFY_OFFSET(host_context_flags, 0x60);
9887 	VERIFY_OFFSET(timeout_sec, 0x62);
9888 	VERIFY_OFFSET(ReplyQueue, 0x64);
9889 	VERIFY_OFFSET(reserved9, 0x65);
9890 	VERIFY_OFFSET(tag, 0x68);
9891 	VERIFY_OFFSET(host_addr, 0x70);
9892 	VERIFY_OFFSET(CISS_LUN, 0x78);
9893 	VERIFY_OFFSET(SG, 0x78 + 8);
9894 #undef VERIFY_OFFSET
9895 }
9896 
9897 module_init(hpsa_init);
9898 module_exit(hpsa_cleanup);
9899