xref: /linux/drivers/scsi/hpsa.c (revision 171f1bc77c2d34308392841bcffa69b8a22c2e09)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55 
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 
60 /* How long to wait (in milliseconds) for board to go into simple mode */
61 #define MAX_CONFIG_WAIT 30000
62 #define MAX_IOCTL_CONFIG_WAIT 1000
63 
64 /*define how many times we will try a command because of bus resets */
65 #define MAX_CMD_RETRIES 3
66 
67 /* Embedded module documentation macros - see modules.h */
68 MODULE_AUTHOR("Hewlett-Packard Company");
69 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
70 	HPSA_DRIVER_VERSION);
71 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
72 MODULE_VERSION(HPSA_DRIVER_VERSION);
73 MODULE_LICENSE("GPL");
74 
75 static int hpsa_allow_any;
76 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
77 MODULE_PARM_DESC(hpsa_allow_any,
78 		"Allow hpsa driver to access unknown HP Smart Array hardware");
79 static int hpsa_simple_mode;
80 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
81 MODULE_PARM_DESC(hpsa_simple_mode,
82 	"Use 'simple mode' rather than 'performant mode'");
83 
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id hpsa_pci_device_id[] = {
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
101 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
102 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
103 	{0,}
104 };
105 
106 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
107 
108 /*  board_id = Subsystem Device ID & Vendor ID
109  *  product = Marketing Name for the board
110  *  access = Address of the struct of function pointers
111  */
112 static struct board_type products[] = {
113 	{0x3241103C, "Smart Array P212", &SA5_access},
114 	{0x3243103C, "Smart Array P410", &SA5_access},
115 	{0x3245103C, "Smart Array P410i", &SA5_access},
116 	{0x3247103C, "Smart Array P411", &SA5_access},
117 	{0x3249103C, "Smart Array P812", &SA5_access},
118 	{0x324a103C, "Smart Array P712m", &SA5_access},
119 	{0x324b103C, "Smart Array P711m", &SA5_access},
120 	{0x3350103C, "Smart Array", &SA5_access},
121 	{0x3351103C, "Smart Array", &SA5_access},
122 	{0x3352103C, "Smart Array", &SA5_access},
123 	{0x3353103C, "Smart Array", &SA5_access},
124 	{0x3354103C, "Smart Array", &SA5_access},
125 	{0x3355103C, "Smart Array", &SA5_access},
126 	{0x3356103C, "Smart Array", &SA5_access},
127 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
128 };
129 
130 static int number_of_controllers;
131 
132 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
133 static spinlock_t lockup_detector_lock;
134 static struct task_struct *hpsa_lockup_detector;
135 
136 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
137 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
138 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
139 static void start_io(struct ctlr_info *h);
140 
141 #ifdef CONFIG_COMPAT
142 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
143 #endif
144 
145 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
146 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
147 static struct CommandList *cmd_alloc(struct ctlr_info *h);
148 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
149 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
150 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
151 	int cmd_type);
152 
153 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
154 static void hpsa_scan_start(struct Scsi_Host *);
155 static int hpsa_scan_finished(struct Scsi_Host *sh,
156 	unsigned long elapsed_time);
157 static int hpsa_change_queue_depth(struct scsi_device *sdev,
158 	int qdepth, int reason);
159 
160 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
161 static int hpsa_slave_alloc(struct scsi_device *sdev);
162 static void hpsa_slave_destroy(struct scsi_device *sdev);
163 
164 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
165 static int check_for_unit_attention(struct ctlr_info *h,
166 	struct CommandList *c);
167 static void check_ioctl_unit_attention(struct ctlr_info *h,
168 	struct CommandList *c);
169 /* performant mode helper functions */
170 static void calc_bucket_map(int *bucket, int num_buckets,
171 	int nsgs, int *bucket_map);
172 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
173 static inline u32 next_command(struct ctlr_info *h);
174 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
175 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
176 	u64 *cfg_offset);
177 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
178 	unsigned long *memory_bar);
179 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
180 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
181 	void __iomem *vaddr, int wait_for_ready);
182 #define BOARD_NOT_READY 0
183 #define BOARD_READY 1
184 
185 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
186 {
187 	unsigned long *priv = shost_priv(sdev->host);
188 	return (struct ctlr_info *) *priv;
189 }
190 
191 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
192 {
193 	unsigned long *priv = shost_priv(sh);
194 	return (struct ctlr_info *) *priv;
195 }
196 
197 static int check_for_unit_attention(struct ctlr_info *h,
198 	struct CommandList *c)
199 {
200 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
201 		return 0;
202 
203 	switch (c->err_info->SenseInfo[12]) {
204 	case STATE_CHANGED:
205 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
206 			"detected, command retried\n", h->ctlr);
207 		break;
208 	case LUN_FAILED:
209 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
210 			"detected, action required\n", h->ctlr);
211 		break;
212 	case REPORT_LUNS_CHANGED:
213 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
214 			"changed, action required\n", h->ctlr);
215 	/*
216 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
217 	 */
218 		break;
219 	case POWER_OR_RESET:
220 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
221 			"or device reset detected\n", h->ctlr);
222 		break;
223 	case UNIT_ATTENTION_CLEARED:
224 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
225 		    "cleared by another initiator\n", h->ctlr);
226 		break;
227 	default:
228 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
229 			"unit attention detected\n", h->ctlr);
230 		break;
231 	}
232 	return 1;
233 }
234 
235 static ssize_t host_store_rescan(struct device *dev,
236 				 struct device_attribute *attr,
237 				 const char *buf, size_t count)
238 {
239 	struct ctlr_info *h;
240 	struct Scsi_Host *shost = class_to_shost(dev);
241 	h = shost_to_hba(shost);
242 	hpsa_scan_start(h->scsi_host);
243 	return count;
244 }
245 
246 static ssize_t host_show_firmware_revision(struct device *dev,
247 	     struct device_attribute *attr, char *buf)
248 {
249 	struct ctlr_info *h;
250 	struct Scsi_Host *shost = class_to_shost(dev);
251 	unsigned char *fwrev;
252 
253 	h = shost_to_hba(shost);
254 	if (!h->hba_inquiry_data)
255 		return 0;
256 	fwrev = &h->hba_inquiry_data[32];
257 	return snprintf(buf, 20, "%c%c%c%c\n",
258 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
259 }
260 
261 static ssize_t host_show_commands_outstanding(struct device *dev,
262 	     struct device_attribute *attr, char *buf)
263 {
264 	struct Scsi_Host *shost = class_to_shost(dev);
265 	struct ctlr_info *h = shost_to_hba(shost);
266 
267 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
268 }
269 
270 static ssize_t host_show_transport_mode(struct device *dev,
271 	struct device_attribute *attr, char *buf)
272 {
273 	struct ctlr_info *h;
274 	struct Scsi_Host *shost = class_to_shost(dev);
275 
276 	h = shost_to_hba(shost);
277 	return snprintf(buf, 20, "%s\n",
278 		h->transMethod & CFGTBL_Trans_Performant ?
279 			"performant" : "simple");
280 }
281 
282 /* List of controllers which cannot be hard reset on kexec with reset_devices */
283 static u32 unresettable_controller[] = {
284 	0x324a103C, /* Smart Array P712m */
285 	0x324b103C, /* SmartArray P711m */
286 	0x3223103C, /* Smart Array P800 */
287 	0x3234103C, /* Smart Array P400 */
288 	0x3235103C, /* Smart Array P400i */
289 	0x3211103C, /* Smart Array E200i */
290 	0x3212103C, /* Smart Array E200 */
291 	0x3213103C, /* Smart Array E200i */
292 	0x3214103C, /* Smart Array E200i */
293 	0x3215103C, /* Smart Array E200i */
294 	0x3237103C, /* Smart Array E500 */
295 	0x323D103C, /* Smart Array P700m */
296 	0x409C0E11, /* Smart Array 6400 */
297 	0x409D0E11, /* Smart Array 6400 EM */
298 };
299 
300 /* List of controllers which cannot even be soft reset */
301 static u32 soft_unresettable_controller[] = {
302 	/* Exclude 640x boards.  These are two pci devices in one slot
303 	 * which share a battery backed cache module.  One controls the
304 	 * cache, the other accesses the cache through the one that controls
305 	 * it.  If we reset the one controlling the cache, the other will
306 	 * likely not be happy.  Just forbid resetting this conjoined mess.
307 	 * The 640x isn't really supported by hpsa anyway.
308 	 */
309 	0x409C0E11, /* Smart Array 6400 */
310 	0x409D0E11, /* Smart Array 6400 EM */
311 };
312 
313 static int ctlr_is_hard_resettable(u32 board_id)
314 {
315 	int i;
316 
317 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
318 		if (unresettable_controller[i] == board_id)
319 			return 0;
320 	return 1;
321 }
322 
323 static int ctlr_is_soft_resettable(u32 board_id)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
328 		if (soft_unresettable_controller[i] == board_id)
329 			return 0;
330 	return 1;
331 }
332 
333 static int ctlr_is_resettable(u32 board_id)
334 {
335 	return ctlr_is_hard_resettable(board_id) ||
336 		ctlr_is_soft_resettable(board_id);
337 }
338 
339 static ssize_t host_show_resettable(struct device *dev,
340 	struct device_attribute *attr, char *buf)
341 {
342 	struct ctlr_info *h;
343 	struct Scsi_Host *shost = class_to_shost(dev);
344 
345 	h = shost_to_hba(shost);
346 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
347 }
348 
349 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
350 {
351 	return (scsi3addr[3] & 0xC0) == 0x40;
352 }
353 
354 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
355 	"UNKNOWN"
356 };
357 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
358 
359 static ssize_t raid_level_show(struct device *dev,
360 	     struct device_attribute *attr, char *buf)
361 {
362 	ssize_t l = 0;
363 	unsigned char rlevel;
364 	struct ctlr_info *h;
365 	struct scsi_device *sdev;
366 	struct hpsa_scsi_dev_t *hdev;
367 	unsigned long flags;
368 
369 	sdev = to_scsi_device(dev);
370 	h = sdev_to_hba(sdev);
371 	spin_lock_irqsave(&h->lock, flags);
372 	hdev = sdev->hostdata;
373 	if (!hdev) {
374 		spin_unlock_irqrestore(&h->lock, flags);
375 		return -ENODEV;
376 	}
377 
378 	/* Is this even a logical drive? */
379 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
380 		spin_unlock_irqrestore(&h->lock, flags);
381 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
382 		return l;
383 	}
384 
385 	rlevel = hdev->raid_level;
386 	spin_unlock_irqrestore(&h->lock, flags);
387 	if (rlevel > RAID_UNKNOWN)
388 		rlevel = RAID_UNKNOWN;
389 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
390 	return l;
391 }
392 
393 static ssize_t lunid_show(struct device *dev,
394 	     struct device_attribute *attr, char *buf)
395 {
396 	struct ctlr_info *h;
397 	struct scsi_device *sdev;
398 	struct hpsa_scsi_dev_t *hdev;
399 	unsigned long flags;
400 	unsigned char lunid[8];
401 
402 	sdev = to_scsi_device(dev);
403 	h = sdev_to_hba(sdev);
404 	spin_lock_irqsave(&h->lock, flags);
405 	hdev = sdev->hostdata;
406 	if (!hdev) {
407 		spin_unlock_irqrestore(&h->lock, flags);
408 		return -ENODEV;
409 	}
410 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
411 	spin_unlock_irqrestore(&h->lock, flags);
412 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
413 		lunid[0], lunid[1], lunid[2], lunid[3],
414 		lunid[4], lunid[5], lunid[6], lunid[7]);
415 }
416 
417 static ssize_t unique_id_show(struct device *dev,
418 	     struct device_attribute *attr, char *buf)
419 {
420 	struct ctlr_info *h;
421 	struct scsi_device *sdev;
422 	struct hpsa_scsi_dev_t *hdev;
423 	unsigned long flags;
424 	unsigned char sn[16];
425 
426 	sdev = to_scsi_device(dev);
427 	h = sdev_to_hba(sdev);
428 	spin_lock_irqsave(&h->lock, flags);
429 	hdev = sdev->hostdata;
430 	if (!hdev) {
431 		spin_unlock_irqrestore(&h->lock, flags);
432 		return -ENODEV;
433 	}
434 	memcpy(sn, hdev->device_id, sizeof(sn));
435 	spin_unlock_irqrestore(&h->lock, flags);
436 	return snprintf(buf, 16 * 2 + 2,
437 			"%02X%02X%02X%02X%02X%02X%02X%02X"
438 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
439 			sn[0], sn[1], sn[2], sn[3],
440 			sn[4], sn[5], sn[6], sn[7],
441 			sn[8], sn[9], sn[10], sn[11],
442 			sn[12], sn[13], sn[14], sn[15]);
443 }
444 
445 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
446 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
447 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
448 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
449 static DEVICE_ATTR(firmware_revision, S_IRUGO,
450 	host_show_firmware_revision, NULL);
451 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
452 	host_show_commands_outstanding, NULL);
453 static DEVICE_ATTR(transport_mode, S_IRUGO,
454 	host_show_transport_mode, NULL);
455 static DEVICE_ATTR(resettable, S_IRUGO,
456 	host_show_resettable, NULL);
457 
458 static struct device_attribute *hpsa_sdev_attrs[] = {
459 	&dev_attr_raid_level,
460 	&dev_attr_lunid,
461 	&dev_attr_unique_id,
462 	NULL,
463 };
464 
465 static struct device_attribute *hpsa_shost_attrs[] = {
466 	&dev_attr_rescan,
467 	&dev_attr_firmware_revision,
468 	&dev_attr_commands_outstanding,
469 	&dev_attr_transport_mode,
470 	&dev_attr_resettable,
471 	NULL,
472 };
473 
474 static struct scsi_host_template hpsa_driver_template = {
475 	.module			= THIS_MODULE,
476 	.name			= "hpsa",
477 	.proc_name		= "hpsa",
478 	.queuecommand		= hpsa_scsi_queue_command,
479 	.scan_start		= hpsa_scan_start,
480 	.scan_finished		= hpsa_scan_finished,
481 	.change_queue_depth	= hpsa_change_queue_depth,
482 	.this_id		= -1,
483 	.use_clustering		= ENABLE_CLUSTERING,
484 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
485 	.ioctl			= hpsa_ioctl,
486 	.slave_alloc		= hpsa_slave_alloc,
487 	.slave_destroy		= hpsa_slave_destroy,
488 #ifdef CONFIG_COMPAT
489 	.compat_ioctl		= hpsa_compat_ioctl,
490 #endif
491 	.sdev_attrs = hpsa_sdev_attrs,
492 	.shost_attrs = hpsa_shost_attrs,
493 	.max_sectors = 8192,
494 };
495 
496 
497 /* Enqueuing and dequeuing functions for cmdlists. */
498 static inline void addQ(struct list_head *list, struct CommandList *c)
499 {
500 	list_add_tail(&c->list, list);
501 }
502 
503 static inline u32 next_command(struct ctlr_info *h)
504 {
505 	u32 a;
506 
507 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
508 		return h->access.command_completed(h);
509 
510 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
511 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
512 		(h->reply_pool_head)++;
513 		h->commands_outstanding--;
514 	} else {
515 		a = FIFO_EMPTY;
516 	}
517 	/* Check for wraparound */
518 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
519 		h->reply_pool_head = h->reply_pool;
520 		h->reply_pool_wraparound ^= 1;
521 	}
522 	return a;
523 }
524 
525 /* set_performant_mode: Modify the tag for cciss performant
526  * set bit 0 for pull model, bits 3-1 for block fetch
527  * register number
528  */
529 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
530 {
531 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
532 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
533 }
534 
535 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
536 	struct CommandList *c)
537 {
538 	unsigned long flags;
539 
540 	set_performant_mode(h, c);
541 	spin_lock_irqsave(&h->lock, flags);
542 	addQ(&h->reqQ, c);
543 	h->Qdepth++;
544 	start_io(h);
545 	spin_unlock_irqrestore(&h->lock, flags);
546 }
547 
548 static inline void removeQ(struct CommandList *c)
549 {
550 	if (WARN_ON(list_empty(&c->list)))
551 		return;
552 	list_del_init(&c->list);
553 }
554 
555 static inline int is_hba_lunid(unsigned char scsi3addr[])
556 {
557 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
558 }
559 
560 static inline int is_scsi_rev_5(struct ctlr_info *h)
561 {
562 	if (!h->hba_inquiry_data)
563 		return 0;
564 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
565 		return 1;
566 	return 0;
567 }
568 
569 static int hpsa_find_target_lun(struct ctlr_info *h,
570 	unsigned char scsi3addr[], int bus, int *target, int *lun)
571 {
572 	/* finds an unused bus, target, lun for a new physical device
573 	 * assumes h->devlock is held
574 	 */
575 	int i, found = 0;
576 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
577 
578 	memset(&lun_taken[0], 0, HPSA_MAX_DEVICES >> 3);
579 
580 	for (i = 0; i < h->ndevices; i++) {
581 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
582 			set_bit(h->dev[i]->target, lun_taken);
583 	}
584 
585 	for (i = 0; i < HPSA_MAX_DEVICES; i++) {
586 		if (!test_bit(i, lun_taken)) {
587 			/* *bus = 1; */
588 			*target = i;
589 			*lun = 0;
590 			found = 1;
591 			break;
592 		}
593 	}
594 	return !found;
595 }
596 
597 /* Add an entry into h->dev[] array. */
598 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
599 		struct hpsa_scsi_dev_t *device,
600 		struct hpsa_scsi_dev_t *added[], int *nadded)
601 {
602 	/* assumes h->devlock is held */
603 	int n = h->ndevices;
604 	int i;
605 	unsigned char addr1[8], addr2[8];
606 	struct hpsa_scsi_dev_t *sd;
607 
608 	if (n >= HPSA_MAX_DEVICES) {
609 		dev_err(&h->pdev->dev, "too many devices, some will be "
610 			"inaccessible.\n");
611 		return -1;
612 	}
613 
614 	/* physical devices do not have lun or target assigned until now. */
615 	if (device->lun != -1)
616 		/* Logical device, lun is already assigned. */
617 		goto lun_assigned;
618 
619 	/* If this device a non-zero lun of a multi-lun device
620 	 * byte 4 of the 8-byte LUN addr will contain the logical
621 	 * unit no, zero otherise.
622 	 */
623 	if (device->scsi3addr[4] == 0) {
624 		/* This is not a non-zero lun of a multi-lun device */
625 		if (hpsa_find_target_lun(h, device->scsi3addr,
626 			device->bus, &device->target, &device->lun) != 0)
627 			return -1;
628 		goto lun_assigned;
629 	}
630 
631 	/* This is a non-zero lun of a multi-lun device.
632 	 * Search through our list and find the device which
633 	 * has the same 8 byte LUN address, excepting byte 4.
634 	 * Assign the same bus and target for this new LUN.
635 	 * Use the logical unit number from the firmware.
636 	 */
637 	memcpy(addr1, device->scsi3addr, 8);
638 	addr1[4] = 0;
639 	for (i = 0; i < n; i++) {
640 		sd = h->dev[i];
641 		memcpy(addr2, sd->scsi3addr, 8);
642 		addr2[4] = 0;
643 		/* differ only in byte 4? */
644 		if (memcmp(addr1, addr2, 8) == 0) {
645 			device->bus = sd->bus;
646 			device->target = sd->target;
647 			device->lun = device->scsi3addr[4];
648 			break;
649 		}
650 	}
651 	if (device->lun == -1) {
652 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
653 			" suspect firmware bug or unsupported hardware "
654 			"configuration.\n");
655 			return -1;
656 	}
657 
658 lun_assigned:
659 
660 	h->dev[n] = device;
661 	h->ndevices++;
662 	added[*nadded] = device;
663 	(*nadded)++;
664 
665 	/* initially, (before registering with scsi layer) we don't
666 	 * know our hostno and we don't want to print anything first
667 	 * time anyway (the scsi layer's inquiries will show that info)
668 	 */
669 	/* if (hostno != -1) */
670 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
671 			scsi_device_type(device->devtype), hostno,
672 			device->bus, device->target, device->lun);
673 	return 0;
674 }
675 
676 /* Replace an entry from h->dev[] array. */
677 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
678 	int entry, struct hpsa_scsi_dev_t *new_entry,
679 	struct hpsa_scsi_dev_t *added[], int *nadded,
680 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
681 {
682 	/* assumes h->devlock is held */
683 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
684 	removed[*nremoved] = h->dev[entry];
685 	(*nremoved)++;
686 
687 	/*
688 	 * New physical devices won't have target/lun assigned yet
689 	 * so we need to preserve the values in the slot we are replacing.
690 	 */
691 	if (new_entry->target == -1) {
692 		new_entry->target = h->dev[entry]->target;
693 		new_entry->lun = h->dev[entry]->lun;
694 	}
695 
696 	h->dev[entry] = new_entry;
697 	added[*nadded] = new_entry;
698 	(*nadded)++;
699 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
700 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
701 			new_entry->target, new_entry->lun);
702 }
703 
704 /* Remove an entry from h->dev[] array. */
705 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
706 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
707 {
708 	/* assumes h->devlock is held */
709 	int i;
710 	struct hpsa_scsi_dev_t *sd;
711 
712 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
713 
714 	sd = h->dev[entry];
715 	removed[*nremoved] = h->dev[entry];
716 	(*nremoved)++;
717 
718 	for (i = entry; i < h->ndevices-1; i++)
719 		h->dev[i] = h->dev[i+1];
720 	h->ndevices--;
721 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
722 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
723 		sd->lun);
724 }
725 
726 #define SCSI3ADDR_EQ(a, b) ( \
727 	(a)[7] == (b)[7] && \
728 	(a)[6] == (b)[6] && \
729 	(a)[5] == (b)[5] && \
730 	(a)[4] == (b)[4] && \
731 	(a)[3] == (b)[3] && \
732 	(a)[2] == (b)[2] && \
733 	(a)[1] == (b)[1] && \
734 	(a)[0] == (b)[0])
735 
736 static void fixup_botched_add(struct ctlr_info *h,
737 	struct hpsa_scsi_dev_t *added)
738 {
739 	/* called when scsi_add_device fails in order to re-adjust
740 	 * h->dev[] to match the mid layer's view.
741 	 */
742 	unsigned long flags;
743 	int i, j;
744 
745 	spin_lock_irqsave(&h->lock, flags);
746 	for (i = 0; i < h->ndevices; i++) {
747 		if (h->dev[i] == added) {
748 			for (j = i; j < h->ndevices-1; j++)
749 				h->dev[j] = h->dev[j+1];
750 			h->ndevices--;
751 			break;
752 		}
753 	}
754 	spin_unlock_irqrestore(&h->lock, flags);
755 	kfree(added);
756 }
757 
758 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
759 	struct hpsa_scsi_dev_t *dev2)
760 {
761 	/* we compare everything except lun and target as these
762 	 * are not yet assigned.  Compare parts likely
763 	 * to differ first
764 	 */
765 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
766 		sizeof(dev1->scsi3addr)) != 0)
767 		return 0;
768 	if (memcmp(dev1->device_id, dev2->device_id,
769 		sizeof(dev1->device_id)) != 0)
770 		return 0;
771 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
772 		return 0;
773 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
774 		return 0;
775 	if (dev1->devtype != dev2->devtype)
776 		return 0;
777 	if (dev1->bus != dev2->bus)
778 		return 0;
779 	return 1;
780 }
781 
782 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
783  * and return needle location in *index.  If scsi3addr matches, but not
784  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
785  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
786  */
787 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
788 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
789 	int *index)
790 {
791 	int i;
792 #define DEVICE_NOT_FOUND 0
793 #define DEVICE_CHANGED 1
794 #define DEVICE_SAME 2
795 	for (i = 0; i < haystack_size; i++) {
796 		if (haystack[i] == NULL) /* previously removed. */
797 			continue;
798 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
799 			*index = i;
800 			if (device_is_the_same(needle, haystack[i]))
801 				return DEVICE_SAME;
802 			else
803 				return DEVICE_CHANGED;
804 		}
805 	}
806 	*index = -1;
807 	return DEVICE_NOT_FOUND;
808 }
809 
810 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
811 	struct hpsa_scsi_dev_t *sd[], int nsds)
812 {
813 	/* sd contains scsi3 addresses and devtypes, and inquiry
814 	 * data.  This function takes what's in sd to be the current
815 	 * reality and updates h->dev[] to reflect that reality.
816 	 */
817 	int i, entry, device_change, changes = 0;
818 	struct hpsa_scsi_dev_t *csd;
819 	unsigned long flags;
820 	struct hpsa_scsi_dev_t **added, **removed;
821 	int nadded, nremoved;
822 	struct Scsi_Host *sh = NULL;
823 
824 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
825 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
826 
827 	if (!added || !removed) {
828 		dev_warn(&h->pdev->dev, "out of memory in "
829 			"adjust_hpsa_scsi_table\n");
830 		goto free_and_out;
831 	}
832 
833 	spin_lock_irqsave(&h->devlock, flags);
834 
835 	/* find any devices in h->dev[] that are not in
836 	 * sd[] and remove them from h->dev[], and for any
837 	 * devices which have changed, remove the old device
838 	 * info and add the new device info.
839 	 */
840 	i = 0;
841 	nremoved = 0;
842 	nadded = 0;
843 	while (i < h->ndevices) {
844 		csd = h->dev[i];
845 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
846 		if (device_change == DEVICE_NOT_FOUND) {
847 			changes++;
848 			hpsa_scsi_remove_entry(h, hostno, i,
849 				removed, &nremoved);
850 			continue; /* remove ^^^, hence i not incremented */
851 		} else if (device_change == DEVICE_CHANGED) {
852 			changes++;
853 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
854 				added, &nadded, removed, &nremoved);
855 			/* Set it to NULL to prevent it from being freed
856 			 * at the bottom of hpsa_update_scsi_devices()
857 			 */
858 			sd[entry] = NULL;
859 		}
860 		i++;
861 	}
862 
863 	/* Now, make sure every device listed in sd[] is also
864 	 * listed in h->dev[], adding them if they aren't found
865 	 */
866 
867 	for (i = 0; i < nsds; i++) {
868 		if (!sd[i]) /* if already added above. */
869 			continue;
870 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
871 					h->ndevices, &entry);
872 		if (device_change == DEVICE_NOT_FOUND) {
873 			changes++;
874 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
875 				added, &nadded) != 0)
876 				break;
877 			sd[i] = NULL; /* prevent from being freed later. */
878 		} else if (device_change == DEVICE_CHANGED) {
879 			/* should never happen... */
880 			changes++;
881 			dev_warn(&h->pdev->dev,
882 				"device unexpectedly changed.\n");
883 			/* but if it does happen, we just ignore that device */
884 		}
885 	}
886 	spin_unlock_irqrestore(&h->devlock, flags);
887 
888 	/* Don't notify scsi mid layer of any changes the first time through
889 	 * (or if there are no changes) scsi_scan_host will do it later the
890 	 * first time through.
891 	 */
892 	if (hostno == -1 || !changes)
893 		goto free_and_out;
894 
895 	sh = h->scsi_host;
896 	/* Notify scsi mid layer of any removed devices */
897 	for (i = 0; i < nremoved; i++) {
898 		struct scsi_device *sdev =
899 			scsi_device_lookup(sh, removed[i]->bus,
900 				removed[i]->target, removed[i]->lun);
901 		if (sdev != NULL) {
902 			scsi_remove_device(sdev);
903 			scsi_device_put(sdev);
904 		} else {
905 			/* We don't expect to get here.
906 			 * future cmds to this device will get selection
907 			 * timeout as if the device was gone.
908 			 */
909 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
910 				" for removal.", hostno, removed[i]->bus,
911 				removed[i]->target, removed[i]->lun);
912 		}
913 		kfree(removed[i]);
914 		removed[i] = NULL;
915 	}
916 
917 	/* Notify scsi mid layer of any added devices */
918 	for (i = 0; i < nadded; i++) {
919 		if (scsi_add_device(sh, added[i]->bus,
920 			added[i]->target, added[i]->lun) == 0)
921 			continue;
922 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
923 			"device not added.\n", hostno, added[i]->bus,
924 			added[i]->target, added[i]->lun);
925 		/* now we have to remove it from h->dev,
926 		 * since it didn't get added to scsi mid layer
927 		 */
928 		fixup_botched_add(h, added[i]);
929 	}
930 
931 free_and_out:
932 	kfree(added);
933 	kfree(removed);
934 }
935 
936 /*
937  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
938  * Assume's h->devlock is held.
939  */
940 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
941 	int bus, int target, int lun)
942 {
943 	int i;
944 	struct hpsa_scsi_dev_t *sd;
945 
946 	for (i = 0; i < h->ndevices; i++) {
947 		sd = h->dev[i];
948 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
949 			return sd;
950 	}
951 	return NULL;
952 }
953 
954 /* link sdev->hostdata to our per-device structure. */
955 static int hpsa_slave_alloc(struct scsi_device *sdev)
956 {
957 	struct hpsa_scsi_dev_t *sd;
958 	unsigned long flags;
959 	struct ctlr_info *h;
960 
961 	h = sdev_to_hba(sdev);
962 	spin_lock_irqsave(&h->devlock, flags);
963 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
964 		sdev_id(sdev), sdev->lun);
965 	if (sd != NULL)
966 		sdev->hostdata = sd;
967 	spin_unlock_irqrestore(&h->devlock, flags);
968 	return 0;
969 }
970 
971 static void hpsa_slave_destroy(struct scsi_device *sdev)
972 {
973 	/* nothing to do. */
974 }
975 
976 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
977 {
978 	int i;
979 
980 	if (!h->cmd_sg_list)
981 		return;
982 	for (i = 0; i < h->nr_cmds; i++) {
983 		kfree(h->cmd_sg_list[i]);
984 		h->cmd_sg_list[i] = NULL;
985 	}
986 	kfree(h->cmd_sg_list);
987 	h->cmd_sg_list = NULL;
988 }
989 
990 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
991 {
992 	int i;
993 
994 	if (h->chainsize <= 0)
995 		return 0;
996 
997 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
998 				GFP_KERNEL);
999 	if (!h->cmd_sg_list)
1000 		return -ENOMEM;
1001 	for (i = 0; i < h->nr_cmds; i++) {
1002 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1003 						h->chainsize, GFP_KERNEL);
1004 		if (!h->cmd_sg_list[i])
1005 			goto clean;
1006 	}
1007 	return 0;
1008 
1009 clean:
1010 	hpsa_free_sg_chain_blocks(h);
1011 	return -ENOMEM;
1012 }
1013 
1014 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1015 	struct CommandList *c)
1016 {
1017 	struct SGDescriptor *chain_sg, *chain_block;
1018 	u64 temp64;
1019 
1020 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1021 	chain_block = h->cmd_sg_list[c->cmdindex];
1022 	chain_sg->Ext = HPSA_SG_CHAIN;
1023 	chain_sg->Len = sizeof(*chain_sg) *
1024 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1025 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1026 				PCI_DMA_TODEVICE);
1027 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1028 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1029 }
1030 
1031 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1032 	struct CommandList *c)
1033 {
1034 	struct SGDescriptor *chain_sg;
1035 	union u64bit temp64;
1036 
1037 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1038 		return;
1039 
1040 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1041 	temp64.val32.lower = chain_sg->Addr.lower;
1042 	temp64.val32.upper = chain_sg->Addr.upper;
1043 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1044 }
1045 
1046 static void complete_scsi_command(struct CommandList *cp)
1047 {
1048 	struct scsi_cmnd *cmd;
1049 	struct ctlr_info *h;
1050 	struct ErrorInfo *ei;
1051 
1052 	unsigned char sense_key;
1053 	unsigned char asc;      /* additional sense code */
1054 	unsigned char ascq;     /* additional sense code qualifier */
1055 	unsigned long sense_data_size;
1056 
1057 	ei = cp->err_info;
1058 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1059 	h = cp->h;
1060 
1061 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1062 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1063 		hpsa_unmap_sg_chain_block(h, cp);
1064 
1065 	cmd->result = (DID_OK << 16); 		/* host byte */
1066 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1067 	cmd->result |= ei->ScsiStatus;
1068 
1069 	/* copy the sense data whether we need to or not. */
1070 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1071 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1072 	else
1073 		sense_data_size = sizeof(ei->SenseInfo);
1074 	if (ei->SenseLen < sense_data_size)
1075 		sense_data_size = ei->SenseLen;
1076 
1077 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1078 	scsi_set_resid(cmd, ei->ResidualCnt);
1079 
1080 	if (ei->CommandStatus == 0) {
1081 		cmd->scsi_done(cmd);
1082 		cmd_free(h, cp);
1083 		return;
1084 	}
1085 
1086 	/* an error has occurred */
1087 	switch (ei->CommandStatus) {
1088 
1089 	case CMD_TARGET_STATUS:
1090 		if (ei->ScsiStatus) {
1091 			/* Get sense key */
1092 			sense_key = 0xf & ei->SenseInfo[2];
1093 			/* Get additional sense code */
1094 			asc = ei->SenseInfo[12];
1095 			/* Get addition sense code qualifier */
1096 			ascq = ei->SenseInfo[13];
1097 		}
1098 
1099 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1100 			if (check_for_unit_attention(h, cp)) {
1101 				cmd->result = DID_SOFT_ERROR << 16;
1102 				break;
1103 			}
1104 			if (sense_key == ILLEGAL_REQUEST) {
1105 				/*
1106 				 * SCSI REPORT_LUNS is commonly unsupported on
1107 				 * Smart Array.  Suppress noisy complaint.
1108 				 */
1109 				if (cp->Request.CDB[0] == REPORT_LUNS)
1110 					break;
1111 
1112 				/* If ASC/ASCQ indicate Logical Unit
1113 				 * Not Supported condition,
1114 				 */
1115 				if ((asc == 0x25) && (ascq == 0x0)) {
1116 					dev_warn(&h->pdev->dev, "cp %p "
1117 						"has check condition\n", cp);
1118 					break;
1119 				}
1120 			}
1121 
1122 			if (sense_key == NOT_READY) {
1123 				/* If Sense is Not Ready, Logical Unit
1124 				 * Not ready, Manual Intervention
1125 				 * required
1126 				 */
1127 				if ((asc == 0x04) && (ascq == 0x03)) {
1128 					dev_warn(&h->pdev->dev, "cp %p "
1129 						"has check condition: unit "
1130 						"not ready, manual "
1131 						"intervention required\n", cp);
1132 					break;
1133 				}
1134 			}
1135 			if (sense_key == ABORTED_COMMAND) {
1136 				/* Aborted command is retryable */
1137 				dev_warn(&h->pdev->dev, "cp %p "
1138 					"has check condition: aborted command: "
1139 					"ASC: 0x%x, ASCQ: 0x%x\n",
1140 					cp, asc, ascq);
1141 				cmd->result = DID_SOFT_ERROR << 16;
1142 				break;
1143 			}
1144 			/* Must be some other type of check condition */
1145 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1146 					"unknown type: "
1147 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1148 					"Returning result: 0x%x, "
1149 					"cmd=[%02x %02x %02x %02x %02x "
1150 					"%02x %02x %02x %02x %02x %02x "
1151 					"%02x %02x %02x %02x %02x]\n",
1152 					cp, sense_key, asc, ascq,
1153 					cmd->result,
1154 					cmd->cmnd[0], cmd->cmnd[1],
1155 					cmd->cmnd[2], cmd->cmnd[3],
1156 					cmd->cmnd[4], cmd->cmnd[5],
1157 					cmd->cmnd[6], cmd->cmnd[7],
1158 					cmd->cmnd[8], cmd->cmnd[9],
1159 					cmd->cmnd[10], cmd->cmnd[11],
1160 					cmd->cmnd[12], cmd->cmnd[13],
1161 					cmd->cmnd[14], cmd->cmnd[15]);
1162 			break;
1163 		}
1164 
1165 
1166 		/* Problem was not a check condition
1167 		 * Pass it up to the upper layers...
1168 		 */
1169 		if (ei->ScsiStatus) {
1170 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1171 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1172 				"Returning result: 0x%x\n",
1173 				cp, ei->ScsiStatus,
1174 				sense_key, asc, ascq,
1175 				cmd->result);
1176 		} else {  /* scsi status is zero??? How??? */
1177 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1178 				"Returning no connection.\n", cp),
1179 
1180 			/* Ordinarily, this case should never happen,
1181 			 * but there is a bug in some released firmware
1182 			 * revisions that allows it to happen if, for
1183 			 * example, a 4100 backplane loses power and
1184 			 * the tape drive is in it.  We assume that
1185 			 * it's a fatal error of some kind because we
1186 			 * can't show that it wasn't. We will make it
1187 			 * look like selection timeout since that is
1188 			 * the most common reason for this to occur,
1189 			 * and it's severe enough.
1190 			 */
1191 
1192 			cmd->result = DID_NO_CONNECT << 16;
1193 		}
1194 		break;
1195 
1196 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1197 		break;
1198 	case CMD_DATA_OVERRUN:
1199 		dev_warn(&h->pdev->dev, "cp %p has"
1200 			" completed with data overrun "
1201 			"reported\n", cp);
1202 		break;
1203 	case CMD_INVALID: {
1204 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1205 		print_cmd(cp); */
1206 		/* We get CMD_INVALID if you address a non-existent device
1207 		 * instead of a selection timeout (no response).  You will
1208 		 * see this if you yank out a drive, then try to access it.
1209 		 * This is kind of a shame because it means that any other
1210 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1211 		 * missing target. */
1212 		cmd->result = DID_NO_CONNECT << 16;
1213 	}
1214 		break;
1215 	case CMD_PROTOCOL_ERR:
1216 		dev_warn(&h->pdev->dev, "cp %p has "
1217 			"protocol error \n", cp);
1218 		break;
1219 	case CMD_HARDWARE_ERR:
1220 		cmd->result = DID_ERROR << 16;
1221 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1222 		break;
1223 	case CMD_CONNECTION_LOST:
1224 		cmd->result = DID_ERROR << 16;
1225 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1226 		break;
1227 	case CMD_ABORTED:
1228 		cmd->result = DID_ABORT << 16;
1229 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1230 				cp, ei->ScsiStatus);
1231 		break;
1232 	case CMD_ABORT_FAILED:
1233 		cmd->result = DID_ERROR << 16;
1234 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1235 		break;
1236 	case CMD_UNSOLICITED_ABORT:
1237 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1238 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1239 			"abort\n", cp);
1240 		break;
1241 	case CMD_TIMEOUT:
1242 		cmd->result = DID_TIME_OUT << 16;
1243 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1244 		break;
1245 	case CMD_UNABORTABLE:
1246 		cmd->result = DID_ERROR << 16;
1247 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1248 		break;
1249 	default:
1250 		cmd->result = DID_ERROR << 16;
1251 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1252 				cp, ei->CommandStatus);
1253 	}
1254 	cmd->scsi_done(cmd);
1255 	cmd_free(h, cp);
1256 }
1257 
1258 static int hpsa_scsi_detect(struct ctlr_info *h)
1259 {
1260 	struct Scsi_Host *sh;
1261 	int error;
1262 
1263 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1264 	if (sh == NULL)
1265 		goto fail;
1266 
1267 	sh->io_port = 0;
1268 	sh->n_io_port = 0;
1269 	sh->this_id = -1;
1270 	sh->max_channel = 3;
1271 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1272 	sh->max_lun = HPSA_MAX_LUN;
1273 	sh->max_id = HPSA_MAX_LUN;
1274 	sh->can_queue = h->nr_cmds;
1275 	sh->cmd_per_lun = h->nr_cmds;
1276 	sh->sg_tablesize = h->maxsgentries;
1277 	h->scsi_host = sh;
1278 	sh->hostdata[0] = (unsigned long) h;
1279 	sh->irq = h->intr[h->intr_mode];
1280 	sh->unique_id = sh->irq;
1281 	error = scsi_add_host(sh, &h->pdev->dev);
1282 	if (error)
1283 		goto fail_host_put;
1284 	scsi_scan_host(sh);
1285 	return 0;
1286 
1287  fail_host_put:
1288 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1289 		" failed for controller %d\n", h->ctlr);
1290 	scsi_host_put(sh);
1291 	return error;
1292  fail:
1293 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1294 		" failed for controller %d\n", h->ctlr);
1295 	return -ENOMEM;
1296 }
1297 
1298 static void hpsa_pci_unmap(struct pci_dev *pdev,
1299 	struct CommandList *c, int sg_used, int data_direction)
1300 {
1301 	int i;
1302 	union u64bit addr64;
1303 
1304 	for (i = 0; i < sg_used; i++) {
1305 		addr64.val32.lower = c->SG[i].Addr.lower;
1306 		addr64.val32.upper = c->SG[i].Addr.upper;
1307 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1308 			data_direction);
1309 	}
1310 }
1311 
1312 static void hpsa_map_one(struct pci_dev *pdev,
1313 		struct CommandList *cp,
1314 		unsigned char *buf,
1315 		size_t buflen,
1316 		int data_direction)
1317 {
1318 	u64 addr64;
1319 
1320 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1321 		cp->Header.SGList = 0;
1322 		cp->Header.SGTotal = 0;
1323 		return;
1324 	}
1325 
1326 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1327 	cp->SG[0].Addr.lower =
1328 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1329 	cp->SG[0].Addr.upper =
1330 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1331 	cp->SG[0].Len = buflen;
1332 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1333 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1334 }
1335 
1336 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1337 	struct CommandList *c)
1338 {
1339 	DECLARE_COMPLETION_ONSTACK(wait);
1340 
1341 	c->waiting = &wait;
1342 	enqueue_cmd_and_start_io(h, c);
1343 	wait_for_completion(&wait);
1344 }
1345 
1346 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1347 	struct CommandList *c)
1348 {
1349 	unsigned long flags;
1350 
1351 	/* If controller lockup detected, fake a hardware error. */
1352 	spin_lock_irqsave(&h->lock, flags);
1353 	if (unlikely(h->lockup_detected)) {
1354 		spin_unlock_irqrestore(&h->lock, flags);
1355 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1356 	} else {
1357 		spin_unlock_irqrestore(&h->lock, flags);
1358 		hpsa_scsi_do_simple_cmd_core(h, c);
1359 	}
1360 }
1361 
1362 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1363 	struct CommandList *c, int data_direction)
1364 {
1365 	int retry_count = 0;
1366 
1367 	do {
1368 		memset(c->err_info, 0, sizeof(*c->err_info));
1369 		hpsa_scsi_do_simple_cmd_core(h, c);
1370 		retry_count++;
1371 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1372 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1373 }
1374 
1375 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1376 {
1377 	struct ErrorInfo *ei;
1378 	struct device *d = &cp->h->pdev->dev;
1379 
1380 	ei = cp->err_info;
1381 	switch (ei->CommandStatus) {
1382 	case CMD_TARGET_STATUS:
1383 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1384 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1385 				ei->ScsiStatus);
1386 		if (ei->ScsiStatus == 0)
1387 			dev_warn(d, "SCSI status is abnormally zero.  "
1388 			"(probably indicates selection timeout "
1389 			"reported incorrectly due to a known "
1390 			"firmware bug, circa July, 2001.)\n");
1391 		break;
1392 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1393 			dev_info(d, "UNDERRUN\n");
1394 		break;
1395 	case CMD_DATA_OVERRUN:
1396 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1397 		break;
1398 	case CMD_INVALID: {
1399 		/* controller unfortunately reports SCSI passthru's
1400 		 * to non-existent targets as invalid commands.
1401 		 */
1402 		dev_warn(d, "cp %p is reported invalid (probably means "
1403 			"target device no longer present)\n", cp);
1404 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1405 		print_cmd(cp);  */
1406 		}
1407 		break;
1408 	case CMD_PROTOCOL_ERR:
1409 		dev_warn(d, "cp %p has protocol error \n", cp);
1410 		break;
1411 	case CMD_HARDWARE_ERR:
1412 		/* cmd->result = DID_ERROR << 16; */
1413 		dev_warn(d, "cp %p had hardware error\n", cp);
1414 		break;
1415 	case CMD_CONNECTION_LOST:
1416 		dev_warn(d, "cp %p had connection lost\n", cp);
1417 		break;
1418 	case CMD_ABORTED:
1419 		dev_warn(d, "cp %p was aborted\n", cp);
1420 		break;
1421 	case CMD_ABORT_FAILED:
1422 		dev_warn(d, "cp %p reports abort failed\n", cp);
1423 		break;
1424 	case CMD_UNSOLICITED_ABORT:
1425 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1426 		break;
1427 	case CMD_TIMEOUT:
1428 		dev_warn(d, "cp %p timed out\n", cp);
1429 		break;
1430 	case CMD_UNABORTABLE:
1431 		dev_warn(d, "Command unabortable\n");
1432 		break;
1433 	default:
1434 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1435 				ei->CommandStatus);
1436 	}
1437 }
1438 
1439 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1440 			unsigned char page, unsigned char *buf,
1441 			unsigned char bufsize)
1442 {
1443 	int rc = IO_OK;
1444 	struct CommandList *c;
1445 	struct ErrorInfo *ei;
1446 
1447 	c = cmd_special_alloc(h);
1448 
1449 	if (c == NULL) {			/* trouble... */
1450 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1451 		return -ENOMEM;
1452 	}
1453 
1454 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1455 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1456 	ei = c->err_info;
1457 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1458 		hpsa_scsi_interpret_error(c);
1459 		rc = -1;
1460 	}
1461 	cmd_special_free(h, c);
1462 	return rc;
1463 }
1464 
1465 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1466 {
1467 	int rc = IO_OK;
1468 	struct CommandList *c;
1469 	struct ErrorInfo *ei;
1470 
1471 	c = cmd_special_alloc(h);
1472 
1473 	if (c == NULL) {			/* trouble... */
1474 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1475 		return -ENOMEM;
1476 	}
1477 
1478 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1479 	hpsa_scsi_do_simple_cmd_core(h, c);
1480 	/* no unmap needed here because no data xfer. */
1481 
1482 	ei = c->err_info;
1483 	if (ei->CommandStatus != 0) {
1484 		hpsa_scsi_interpret_error(c);
1485 		rc = -1;
1486 	}
1487 	cmd_special_free(h, c);
1488 	return rc;
1489 }
1490 
1491 static void hpsa_get_raid_level(struct ctlr_info *h,
1492 	unsigned char *scsi3addr, unsigned char *raid_level)
1493 {
1494 	int rc;
1495 	unsigned char *buf;
1496 
1497 	*raid_level = RAID_UNKNOWN;
1498 	buf = kzalloc(64, GFP_KERNEL);
1499 	if (!buf)
1500 		return;
1501 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1502 	if (rc == 0)
1503 		*raid_level = buf[8];
1504 	if (*raid_level > RAID_UNKNOWN)
1505 		*raid_level = RAID_UNKNOWN;
1506 	kfree(buf);
1507 	return;
1508 }
1509 
1510 /* Get the device id from inquiry page 0x83 */
1511 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1512 	unsigned char *device_id, int buflen)
1513 {
1514 	int rc;
1515 	unsigned char *buf;
1516 
1517 	if (buflen > 16)
1518 		buflen = 16;
1519 	buf = kzalloc(64, GFP_KERNEL);
1520 	if (!buf)
1521 		return -1;
1522 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1523 	if (rc == 0)
1524 		memcpy(device_id, &buf[8], buflen);
1525 	kfree(buf);
1526 	return rc != 0;
1527 }
1528 
1529 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1530 		struct ReportLUNdata *buf, int bufsize,
1531 		int extended_response)
1532 {
1533 	int rc = IO_OK;
1534 	struct CommandList *c;
1535 	unsigned char scsi3addr[8];
1536 	struct ErrorInfo *ei;
1537 
1538 	c = cmd_special_alloc(h);
1539 	if (c == NULL) {			/* trouble... */
1540 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1541 		return -1;
1542 	}
1543 	/* address the controller */
1544 	memset(scsi3addr, 0, sizeof(scsi3addr));
1545 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1546 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1547 	if (extended_response)
1548 		c->Request.CDB[1] = extended_response;
1549 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1550 	ei = c->err_info;
1551 	if (ei->CommandStatus != 0 &&
1552 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1553 		hpsa_scsi_interpret_error(c);
1554 		rc = -1;
1555 	}
1556 	cmd_special_free(h, c);
1557 	return rc;
1558 }
1559 
1560 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1561 		struct ReportLUNdata *buf,
1562 		int bufsize, int extended_response)
1563 {
1564 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1565 }
1566 
1567 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1568 		struct ReportLUNdata *buf, int bufsize)
1569 {
1570 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1571 }
1572 
1573 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1574 	int bus, int target, int lun)
1575 {
1576 	device->bus = bus;
1577 	device->target = target;
1578 	device->lun = lun;
1579 }
1580 
1581 static int hpsa_update_device_info(struct ctlr_info *h,
1582 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1583 	unsigned char *is_OBDR_device)
1584 {
1585 
1586 #define OBDR_SIG_OFFSET 43
1587 #define OBDR_TAPE_SIG "$DR-10"
1588 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1589 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1590 
1591 	unsigned char *inq_buff;
1592 	unsigned char *obdr_sig;
1593 
1594 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1595 	if (!inq_buff)
1596 		goto bail_out;
1597 
1598 	/* Do an inquiry to the device to see what it is. */
1599 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1600 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1601 		/* Inquiry failed (msg printed already) */
1602 		dev_err(&h->pdev->dev,
1603 			"hpsa_update_device_info: inquiry failed\n");
1604 		goto bail_out;
1605 	}
1606 
1607 	this_device->devtype = (inq_buff[0] & 0x1f);
1608 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1609 	memcpy(this_device->vendor, &inq_buff[8],
1610 		sizeof(this_device->vendor));
1611 	memcpy(this_device->model, &inq_buff[16],
1612 		sizeof(this_device->model));
1613 	memset(this_device->device_id, 0,
1614 		sizeof(this_device->device_id));
1615 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1616 		sizeof(this_device->device_id));
1617 
1618 	if (this_device->devtype == TYPE_DISK &&
1619 		is_logical_dev_addr_mode(scsi3addr))
1620 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1621 	else
1622 		this_device->raid_level = RAID_UNKNOWN;
1623 
1624 	if (is_OBDR_device) {
1625 		/* See if this is a One-Button-Disaster-Recovery device
1626 		 * by looking for "$DR-10" at offset 43 in inquiry data.
1627 		 */
1628 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1629 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1630 					strncmp(obdr_sig, OBDR_TAPE_SIG,
1631 						OBDR_SIG_LEN) == 0);
1632 	}
1633 
1634 	kfree(inq_buff);
1635 	return 0;
1636 
1637 bail_out:
1638 	kfree(inq_buff);
1639 	return 1;
1640 }
1641 
1642 static unsigned char *msa2xxx_model[] = {
1643 	"MSA2012",
1644 	"MSA2024",
1645 	"MSA2312",
1646 	"MSA2324",
1647 	"P2000 G3 SAS",
1648 	NULL,
1649 };
1650 
1651 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1652 {
1653 	int i;
1654 
1655 	for (i = 0; msa2xxx_model[i]; i++)
1656 		if (strncmp(device->model, msa2xxx_model[i],
1657 			strlen(msa2xxx_model[i])) == 0)
1658 			return 1;
1659 	return 0;
1660 }
1661 
1662 /* Helper function to assign bus, target, lun mapping of devices.
1663  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1664  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1665  * Logical drive target and lun are assigned at this time, but
1666  * physical device lun and target assignment are deferred (assigned
1667  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1668  */
1669 static void figure_bus_target_lun(struct ctlr_info *h,
1670 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1671 	struct hpsa_scsi_dev_t *device)
1672 {
1673 	u32 lunid;
1674 
1675 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1676 		/* logical device */
1677 		if (unlikely(is_scsi_rev_5(h))) {
1678 			/* p1210m, logical drives lun assignments
1679 			 * match SCSI REPORT LUNS data.
1680 			 */
1681 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1682 			*bus = 0;
1683 			*target = 0;
1684 			*lun = (lunid & 0x3fff) + 1;
1685 		} else {
1686 			/* not p1210m... */
1687 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1688 			if (is_msa2xxx(h, device)) {
1689 				/* msa2xxx way, put logicals on bus 1
1690 				 * and match target/lun numbers box
1691 				 * reports.
1692 				 */
1693 				*bus = 1;
1694 				*target = (lunid >> 16) & 0x3fff;
1695 				*lun = lunid & 0x00ff;
1696 			} else {
1697 				/* Traditional smart array way. */
1698 				*bus = 0;
1699 				*lun = 0;
1700 				*target = lunid & 0x3fff;
1701 			}
1702 		}
1703 	} else {
1704 		/* physical device */
1705 		if (is_hba_lunid(lunaddrbytes))
1706 			if (unlikely(is_scsi_rev_5(h))) {
1707 				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1708 				*target = 0;
1709 				*lun = 0;
1710 				return;
1711 			} else
1712 				*bus = 3; /* traditional smartarray */
1713 		else
1714 			*bus = 2; /* physical disk */
1715 		*target = -1;
1716 		*lun = -1; /* we will fill these in later. */
1717 	}
1718 }
1719 
1720 /*
1721  * If there is no lun 0 on a target, linux won't find any devices.
1722  * For the MSA2xxx boxes, we have to manually detect the enclosure
1723  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1724  * it for some reason.  *tmpdevice is the target we're adding,
1725  * this_device is a pointer into the current element of currentsd[]
1726  * that we're building up in update_scsi_devices(), below.
1727  * lunzerobits is a bitmap that tracks which targets already have a
1728  * lun 0 assigned.
1729  * Returns 1 if an enclosure was added, 0 if not.
1730  */
1731 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1732 	struct hpsa_scsi_dev_t *tmpdevice,
1733 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1734 	int bus, int target, int lun, unsigned long lunzerobits[],
1735 	int *nmsa2xxx_enclosures)
1736 {
1737 	unsigned char scsi3addr[8];
1738 
1739 	if (test_bit(target, lunzerobits))
1740 		return 0; /* There is already a lun 0 on this target. */
1741 
1742 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1743 		return 0; /* It's the logical targets that may lack lun 0. */
1744 
1745 	if (!is_msa2xxx(h, tmpdevice))
1746 		return 0; /* It's only the MSA2xxx that have this problem. */
1747 
1748 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1749 		return 0;
1750 
1751 	memset(scsi3addr, 0, 8);
1752 	scsi3addr[3] = target;
1753 	if (is_hba_lunid(scsi3addr))
1754 		return 0; /* Don't add the RAID controller here. */
1755 
1756 	if (is_scsi_rev_5(h))
1757 		return 0; /* p1210m doesn't need to do this. */
1758 
1759 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1760 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1761 			"enclosures exceeded.  Check your hardware "
1762 			"configuration.");
1763 		return 0;
1764 	}
1765 
1766 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1767 		return 0;
1768 	(*nmsa2xxx_enclosures)++;
1769 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1770 	set_bit(target, lunzerobits);
1771 	return 1;
1772 }
1773 
1774 /*
1775  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1776  * logdev.  The number of luns in physdev and logdev are returned in
1777  * *nphysicals and *nlogicals, respectively.
1778  * Returns 0 on success, -1 otherwise.
1779  */
1780 static int hpsa_gather_lun_info(struct ctlr_info *h,
1781 	int reportlunsize,
1782 	struct ReportLUNdata *physdev, u32 *nphysicals,
1783 	struct ReportLUNdata *logdev, u32 *nlogicals)
1784 {
1785 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1786 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1787 		return -1;
1788 	}
1789 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1790 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1791 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1792 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1793 			*nphysicals - HPSA_MAX_PHYS_LUN);
1794 		*nphysicals = HPSA_MAX_PHYS_LUN;
1795 	}
1796 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1797 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1798 		return -1;
1799 	}
1800 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1801 	/* Reject Logicals in excess of our max capability. */
1802 	if (*nlogicals > HPSA_MAX_LUN) {
1803 		dev_warn(&h->pdev->dev,
1804 			"maximum logical LUNs (%d) exceeded.  "
1805 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1806 			*nlogicals - HPSA_MAX_LUN);
1807 			*nlogicals = HPSA_MAX_LUN;
1808 	}
1809 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1810 		dev_warn(&h->pdev->dev,
1811 			"maximum logical + physical LUNs (%d) exceeded. "
1812 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1813 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1814 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1815 	}
1816 	return 0;
1817 }
1818 
1819 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1820 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1821 	struct ReportLUNdata *logdev_list)
1822 {
1823 	/* Helper function, figure out where the LUN ID info is coming from
1824 	 * given index i, lists of physical and logical devices, where in
1825 	 * the list the raid controller is supposed to appear (first or last)
1826 	 */
1827 
1828 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1829 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1830 
1831 	if (i == raid_ctlr_position)
1832 		return RAID_CTLR_LUNID;
1833 
1834 	if (i < logicals_start)
1835 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1836 
1837 	if (i < last_device)
1838 		return &logdev_list->LUN[i - nphysicals -
1839 			(raid_ctlr_position == 0)][0];
1840 	BUG();
1841 	return NULL;
1842 }
1843 
1844 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1845 {
1846 	/* the idea here is we could get notified
1847 	 * that some devices have changed, so we do a report
1848 	 * physical luns and report logical luns cmd, and adjust
1849 	 * our list of devices accordingly.
1850 	 *
1851 	 * The scsi3addr's of devices won't change so long as the
1852 	 * adapter is not reset.  That means we can rescan and
1853 	 * tell which devices we already know about, vs. new
1854 	 * devices, vs.  disappearing devices.
1855 	 */
1856 	struct ReportLUNdata *physdev_list = NULL;
1857 	struct ReportLUNdata *logdev_list = NULL;
1858 	u32 nphysicals = 0;
1859 	u32 nlogicals = 0;
1860 	u32 ndev_allocated = 0;
1861 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1862 	int ncurrent = 0;
1863 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1864 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1865 	int bus, target, lun;
1866 	int raid_ctlr_position;
1867 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1868 
1869 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1870 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1871 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1872 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1873 
1874 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1875 		dev_err(&h->pdev->dev, "out of memory\n");
1876 		goto out;
1877 	}
1878 	memset(lunzerobits, 0, sizeof(lunzerobits));
1879 
1880 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1881 			logdev_list, &nlogicals))
1882 		goto out;
1883 
1884 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1885 	 * but each of them 4 times through different paths.  The plus 1
1886 	 * is for the RAID controller.
1887 	 */
1888 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1889 
1890 	/* Allocate the per device structures */
1891 	for (i = 0; i < ndevs_to_allocate; i++) {
1892 		if (i >= HPSA_MAX_DEVICES) {
1893 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1894 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
1895 				ndevs_to_allocate - HPSA_MAX_DEVICES);
1896 			break;
1897 		}
1898 
1899 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1900 		if (!currentsd[i]) {
1901 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1902 				__FILE__, __LINE__);
1903 			goto out;
1904 		}
1905 		ndev_allocated++;
1906 	}
1907 
1908 	if (unlikely(is_scsi_rev_5(h)))
1909 		raid_ctlr_position = 0;
1910 	else
1911 		raid_ctlr_position = nphysicals + nlogicals;
1912 
1913 	/* adjust our table of devices */
1914 	nmsa2xxx_enclosures = 0;
1915 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1916 		u8 *lunaddrbytes, is_OBDR = 0;
1917 
1918 		/* Figure out where the LUN ID info is coming from */
1919 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1920 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1921 		/* skip masked physical devices. */
1922 		if (lunaddrbytes[3] & 0xC0 &&
1923 			i < nphysicals + (raid_ctlr_position == 0))
1924 			continue;
1925 
1926 		/* Get device type, vendor, model, device id */
1927 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1928 							&is_OBDR))
1929 			continue; /* skip it if we can't talk to it. */
1930 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1931 			tmpdevice);
1932 		this_device = currentsd[ncurrent];
1933 
1934 		/*
1935 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1936 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1937 		 * is nonetheless an enclosure device there.  We have to
1938 		 * present that otherwise linux won't find anything if
1939 		 * there is no lun 0.
1940 		 */
1941 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1942 				lunaddrbytes, bus, target, lun, lunzerobits,
1943 				&nmsa2xxx_enclosures)) {
1944 			ncurrent++;
1945 			this_device = currentsd[ncurrent];
1946 		}
1947 
1948 		*this_device = *tmpdevice;
1949 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1950 
1951 		switch (this_device->devtype) {
1952 		case TYPE_ROM:
1953 			/* We don't *really* support actual CD-ROM devices,
1954 			 * just "One Button Disaster Recovery" tape drive
1955 			 * which temporarily pretends to be a CD-ROM drive.
1956 			 * So we check that the device is really an OBDR tape
1957 			 * device by checking for "$DR-10" in bytes 43-48 of
1958 			 * the inquiry data.
1959 			 */
1960 			if (is_OBDR)
1961 				ncurrent++;
1962 			break;
1963 		case TYPE_DISK:
1964 			if (i < nphysicals)
1965 				break;
1966 			ncurrent++;
1967 			break;
1968 		case TYPE_TAPE:
1969 		case TYPE_MEDIUM_CHANGER:
1970 			ncurrent++;
1971 			break;
1972 		case TYPE_RAID:
1973 			/* Only present the Smartarray HBA as a RAID controller.
1974 			 * If it's a RAID controller other than the HBA itself
1975 			 * (an external RAID controller, MSA500 or similar)
1976 			 * don't present it.
1977 			 */
1978 			if (!is_hba_lunid(lunaddrbytes))
1979 				break;
1980 			ncurrent++;
1981 			break;
1982 		default:
1983 			break;
1984 		}
1985 		if (ncurrent >= HPSA_MAX_DEVICES)
1986 			break;
1987 	}
1988 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1989 out:
1990 	kfree(tmpdevice);
1991 	for (i = 0; i < ndev_allocated; i++)
1992 		kfree(currentsd[i]);
1993 	kfree(currentsd);
1994 	kfree(physdev_list);
1995 	kfree(logdev_list);
1996 }
1997 
1998 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1999  * dma mapping  and fills in the scatter gather entries of the
2000  * hpsa command, cp.
2001  */
2002 static int hpsa_scatter_gather(struct ctlr_info *h,
2003 		struct CommandList *cp,
2004 		struct scsi_cmnd *cmd)
2005 {
2006 	unsigned int len;
2007 	struct scatterlist *sg;
2008 	u64 addr64;
2009 	int use_sg, i, sg_index, chained;
2010 	struct SGDescriptor *curr_sg;
2011 
2012 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2013 
2014 	use_sg = scsi_dma_map(cmd);
2015 	if (use_sg < 0)
2016 		return use_sg;
2017 
2018 	if (!use_sg)
2019 		goto sglist_finished;
2020 
2021 	curr_sg = cp->SG;
2022 	chained = 0;
2023 	sg_index = 0;
2024 	scsi_for_each_sg(cmd, sg, use_sg, i) {
2025 		if (i == h->max_cmd_sg_entries - 1 &&
2026 			use_sg > h->max_cmd_sg_entries) {
2027 			chained = 1;
2028 			curr_sg = h->cmd_sg_list[cp->cmdindex];
2029 			sg_index = 0;
2030 		}
2031 		addr64 = (u64) sg_dma_address(sg);
2032 		len  = sg_dma_len(sg);
2033 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2034 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2035 		curr_sg->Len = len;
2036 		curr_sg->Ext = 0;  /* we are not chaining */
2037 		curr_sg++;
2038 	}
2039 
2040 	if (use_sg + chained > h->maxSG)
2041 		h->maxSG = use_sg + chained;
2042 
2043 	if (chained) {
2044 		cp->Header.SGList = h->max_cmd_sg_entries;
2045 		cp->Header.SGTotal = (u16) (use_sg + 1);
2046 		hpsa_map_sg_chain_block(h, cp);
2047 		return 0;
2048 	}
2049 
2050 sglist_finished:
2051 
2052 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2053 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2054 	return 0;
2055 }
2056 
2057 
2058 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2059 	void (*done)(struct scsi_cmnd *))
2060 {
2061 	struct ctlr_info *h;
2062 	struct hpsa_scsi_dev_t *dev;
2063 	unsigned char scsi3addr[8];
2064 	struct CommandList *c;
2065 	unsigned long flags;
2066 
2067 	/* Get the ptr to our adapter structure out of cmd->host. */
2068 	h = sdev_to_hba(cmd->device);
2069 	dev = cmd->device->hostdata;
2070 	if (!dev) {
2071 		cmd->result = DID_NO_CONNECT << 16;
2072 		done(cmd);
2073 		return 0;
2074 	}
2075 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2076 
2077 	spin_lock_irqsave(&h->lock, flags);
2078 	if (unlikely(h->lockup_detected)) {
2079 		spin_unlock_irqrestore(&h->lock, flags);
2080 		cmd->result = DID_ERROR << 16;
2081 		done(cmd);
2082 		return 0;
2083 	}
2084 	/* Need a lock as this is being allocated from the pool */
2085 	c = cmd_alloc(h);
2086 	spin_unlock_irqrestore(&h->lock, flags);
2087 	if (c == NULL) {			/* trouble... */
2088 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2089 		return SCSI_MLQUEUE_HOST_BUSY;
2090 	}
2091 
2092 	/* Fill in the command list header */
2093 
2094 	cmd->scsi_done = done;    /* save this for use by completion code */
2095 
2096 	/* save c in case we have to abort it  */
2097 	cmd->host_scribble = (unsigned char *) c;
2098 
2099 	c->cmd_type = CMD_SCSI;
2100 	c->scsi_cmd = cmd;
2101 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2102 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2103 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2104 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2105 
2106 	/* Fill in the request block... */
2107 
2108 	c->Request.Timeout = 0;
2109 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2110 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2111 	c->Request.CDBLen = cmd->cmd_len;
2112 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2113 	c->Request.Type.Type = TYPE_CMD;
2114 	c->Request.Type.Attribute = ATTR_SIMPLE;
2115 	switch (cmd->sc_data_direction) {
2116 	case DMA_TO_DEVICE:
2117 		c->Request.Type.Direction = XFER_WRITE;
2118 		break;
2119 	case DMA_FROM_DEVICE:
2120 		c->Request.Type.Direction = XFER_READ;
2121 		break;
2122 	case DMA_NONE:
2123 		c->Request.Type.Direction = XFER_NONE;
2124 		break;
2125 	case DMA_BIDIRECTIONAL:
2126 		/* This can happen if a buggy application does a scsi passthru
2127 		 * and sets both inlen and outlen to non-zero. ( see
2128 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2129 		 */
2130 
2131 		c->Request.Type.Direction = XFER_RSVD;
2132 		/* This is technically wrong, and hpsa controllers should
2133 		 * reject it with CMD_INVALID, which is the most correct
2134 		 * response, but non-fibre backends appear to let it
2135 		 * slide by, and give the same results as if this field
2136 		 * were set correctly.  Either way is acceptable for
2137 		 * our purposes here.
2138 		 */
2139 
2140 		break;
2141 
2142 	default:
2143 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2144 			cmd->sc_data_direction);
2145 		BUG();
2146 		break;
2147 	}
2148 
2149 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2150 		cmd_free(h, c);
2151 		return SCSI_MLQUEUE_HOST_BUSY;
2152 	}
2153 	enqueue_cmd_and_start_io(h, c);
2154 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2155 	return 0;
2156 }
2157 
2158 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2159 
2160 static void hpsa_scan_start(struct Scsi_Host *sh)
2161 {
2162 	struct ctlr_info *h = shost_to_hba(sh);
2163 	unsigned long flags;
2164 
2165 	/* wait until any scan already in progress is finished. */
2166 	while (1) {
2167 		spin_lock_irqsave(&h->scan_lock, flags);
2168 		if (h->scan_finished)
2169 			break;
2170 		spin_unlock_irqrestore(&h->scan_lock, flags);
2171 		wait_event(h->scan_wait_queue, h->scan_finished);
2172 		/* Note: We don't need to worry about a race between this
2173 		 * thread and driver unload because the midlayer will
2174 		 * have incremented the reference count, so unload won't
2175 		 * happen if we're in here.
2176 		 */
2177 	}
2178 	h->scan_finished = 0; /* mark scan as in progress */
2179 	spin_unlock_irqrestore(&h->scan_lock, flags);
2180 
2181 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2182 
2183 	spin_lock_irqsave(&h->scan_lock, flags);
2184 	h->scan_finished = 1; /* mark scan as finished. */
2185 	wake_up_all(&h->scan_wait_queue);
2186 	spin_unlock_irqrestore(&h->scan_lock, flags);
2187 }
2188 
2189 static int hpsa_scan_finished(struct Scsi_Host *sh,
2190 	unsigned long elapsed_time)
2191 {
2192 	struct ctlr_info *h = shost_to_hba(sh);
2193 	unsigned long flags;
2194 	int finished;
2195 
2196 	spin_lock_irqsave(&h->scan_lock, flags);
2197 	finished = h->scan_finished;
2198 	spin_unlock_irqrestore(&h->scan_lock, flags);
2199 	return finished;
2200 }
2201 
2202 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2203 	int qdepth, int reason)
2204 {
2205 	struct ctlr_info *h = sdev_to_hba(sdev);
2206 
2207 	if (reason != SCSI_QDEPTH_DEFAULT)
2208 		return -ENOTSUPP;
2209 
2210 	if (qdepth < 1)
2211 		qdepth = 1;
2212 	else
2213 		if (qdepth > h->nr_cmds)
2214 			qdepth = h->nr_cmds;
2215 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2216 	return sdev->queue_depth;
2217 }
2218 
2219 static void hpsa_unregister_scsi(struct ctlr_info *h)
2220 {
2221 	/* we are being forcibly unloaded, and may not refuse. */
2222 	scsi_remove_host(h->scsi_host);
2223 	scsi_host_put(h->scsi_host);
2224 	h->scsi_host = NULL;
2225 }
2226 
2227 static int hpsa_register_scsi(struct ctlr_info *h)
2228 {
2229 	int rc;
2230 
2231 	rc = hpsa_scsi_detect(h);
2232 	if (rc != 0)
2233 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2234 			" hpsa_scsi_detect(), rc is %d\n", rc);
2235 	return rc;
2236 }
2237 
2238 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2239 	unsigned char lunaddr[])
2240 {
2241 	int rc = 0;
2242 	int count = 0;
2243 	int waittime = 1; /* seconds */
2244 	struct CommandList *c;
2245 
2246 	c = cmd_special_alloc(h);
2247 	if (!c) {
2248 		dev_warn(&h->pdev->dev, "out of memory in "
2249 			"wait_for_device_to_become_ready.\n");
2250 		return IO_ERROR;
2251 	}
2252 
2253 	/* Send test unit ready until device ready, or give up. */
2254 	while (count < HPSA_TUR_RETRY_LIMIT) {
2255 
2256 		/* Wait for a bit.  do this first, because if we send
2257 		 * the TUR right away, the reset will just abort it.
2258 		 */
2259 		msleep(1000 * waittime);
2260 		count++;
2261 
2262 		/* Increase wait time with each try, up to a point. */
2263 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2264 			waittime = waittime * 2;
2265 
2266 		/* Send the Test Unit Ready */
2267 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2268 		hpsa_scsi_do_simple_cmd_core(h, c);
2269 		/* no unmap needed here because no data xfer. */
2270 
2271 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2272 			break;
2273 
2274 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2275 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2276 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2277 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2278 			break;
2279 
2280 		dev_warn(&h->pdev->dev, "waiting %d secs "
2281 			"for device to become ready.\n", waittime);
2282 		rc = 1; /* device not ready. */
2283 	}
2284 
2285 	if (rc)
2286 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2287 	else
2288 		dev_warn(&h->pdev->dev, "device is ready.\n");
2289 
2290 	cmd_special_free(h, c);
2291 	return rc;
2292 }
2293 
2294 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2295  * complaining.  Doing a host- or bus-reset can't do anything good here.
2296  */
2297 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2298 {
2299 	int rc;
2300 	struct ctlr_info *h;
2301 	struct hpsa_scsi_dev_t *dev;
2302 
2303 	/* find the controller to which the command to be aborted was sent */
2304 	h = sdev_to_hba(scsicmd->device);
2305 	if (h == NULL) /* paranoia */
2306 		return FAILED;
2307 	dev = scsicmd->device->hostdata;
2308 	if (!dev) {
2309 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2310 			"device lookup failed.\n");
2311 		return FAILED;
2312 	}
2313 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2314 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2315 	/* send a reset to the SCSI LUN which the command was sent to */
2316 	rc = hpsa_send_reset(h, dev->scsi3addr);
2317 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2318 		return SUCCESS;
2319 
2320 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2321 	return FAILED;
2322 }
2323 
2324 /*
2325  * For operations that cannot sleep, a command block is allocated at init,
2326  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2327  * which ones are free or in use.  Lock must be held when calling this.
2328  * cmd_free() is the complement.
2329  */
2330 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2331 {
2332 	struct CommandList *c;
2333 	int i;
2334 	union u64bit temp64;
2335 	dma_addr_t cmd_dma_handle, err_dma_handle;
2336 
2337 	do {
2338 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2339 		if (i == h->nr_cmds)
2340 			return NULL;
2341 	} while (test_and_set_bit
2342 		 (i & (BITS_PER_LONG - 1),
2343 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2344 	c = h->cmd_pool + i;
2345 	memset(c, 0, sizeof(*c));
2346 	cmd_dma_handle = h->cmd_pool_dhandle
2347 	    + i * sizeof(*c);
2348 	c->err_info = h->errinfo_pool + i;
2349 	memset(c->err_info, 0, sizeof(*c->err_info));
2350 	err_dma_handle = h->errinfo_pool_dhandle
2351 	    + i * sizeof(*c->err_info);
2352 	h->nr_allocs++;
2353 
2354 	c->cmdindex = i;
2355 
2356 	INIT_LIST_HEAD(&c->list);
2357 	c->busaddr = (u32) cmd_dma_handle;
2358 	temp64.val = (u64) err_dma_handle;
2359 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2360 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2361 	c->ErrDesc.Len = sizeof(*c->err_info);
2362 
2363 	c->h = h;
2364 	return c;
2365 }
2366 
2367 /* For operations that can wait for kmalloc to possibly sleep,
2368  * this routine can be called. Lock need not be held to call
2369  * cmd_special_alloc. cmd_special_free() is the complement.
2370  */
2371 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2372 {
2373 	struct CommandList *c;
2374 	union u64bit temp64;
2375 	dma_addr_t cmd_dma_handle, err_dma_handle;
2376 
2377 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2378 	if (c == NULL)
2379 		return NULL;
2380 	memset(c, 0, sizeof(*c));
2381 
2382 	c->cmdindex = -1;
2383 
2384 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2385 		    &err_dma_handle);
2386 
2387 	if (c->err_info == NULL) {
2388 		pci_free_consistent(h->pdev,
2389 			sizeof(*c), c, cmd_dma_handle);
2390 		return NULL;
2391 	}
2392 	memset(c->err_info, 0, sizeof(*c->err_info));
2393 
2394 	INIT_LIST_HEAD(&c->list);
2395 	c->busaddr = (u32) cmd_dma_handle;
2396 	temp64.val = (u64) err_dma_handle;
2397 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2398 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2399 	c->ErrDesc.Len = sizeof(*c->err_info);
2400 
2401 	c->h = h;
2402 	return c;
2403 }
2404 
2405 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2406 {
2407 	int i;
2408 
2409 	i = c - h->cmd_pool;
2410 	clear_bit(i & (BITS_PER_LONG - 1),
2411 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2412 	h->nr_frees++;
2413 }
2414 
2415 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2416 {
2417 	union u64bit temp64;
2418 
2419 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2420 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2421 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2422 			    c->err_info, (dma_addr_t) temp64.val);
2423 	pci_free_consistent(h->pdev, sizeof(*c),
2424 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2425 }
2426 
2427 #ifdef CONFIG_COMPAT
2428 
2429 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2430 {
2431 	IOCTL32_Command_struct __user *arg32 =
2432 	    (IOCTL32_Command_struct __user *) arg;
2433 	IOCTL_Command_struct arg64;
2434 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2435 	int err;
2436 	u32 cp;
2437 
2438 	memset(&arg64, 0, sizeof(arg64));
2439 	err = 0;
2440 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2441 			   sizeof(arg64.LUN_info));
2442 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2443 			   sizeof(arg64.Request));
2444 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2445 			   sizeof(arg64.error_info));
2446 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2447 	err |= get_user(cp, &arg32->buf);
2448 	arg64.buf = compat_ptr(cp);
2449 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2450 
2451 	if (err)
2452 		return -EFAULT;
2453 
2454 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2455 	if (err)
2456 		return err;
2457 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2458 			 sizeof(arg32->error_info));
2459 	if (err)
2460 		return -EFAULT;
2461 	return err;
2462 }
2463 
2464 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2465 	int cmd, void *arg)
2466 {
2467 	BIG_IOCTL32_Command_struct __user *arg32 =
2468 	    (BIG_IOCTL32_Command_struct __user *) arg;
2469 	BIG_IOCTL_Command_struct arg64;
2470 	BIG_IOCTL_Command_struct __user *p =
2471 	    compat_alloc_user_space(sizeof(arg64));
2472 	int err;
2473 	u32 cp;
2474 
2475 	memset(&arg64, 0, sizeof(arg64));
2476 	err = 0;
2477 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2478 			   sizeof(arg64.LUN_info));
2479 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2480 			   sizeof(arg64.Request));
2481 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2482 			   sizeof(arg64.error_info));
2483 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2484 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2485 	err |= get_user(cp, &arg32->buf);
2486 	arg64.buf = compat_ptr(cp);
2487 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2488 
2489 	if (err)
2490 		return -EFAULT;
2491 
2492 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2493 	if (err)
2494 		return err;
2495 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2496 			 sizeof(arg32->error_info));
2497 	if (err)
2498 		return -EFAULT;
2499 	return err;
2500 }
2501 
2502 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2503 {
2504 	switch (cmd) {
2505 	case CCISS_GETPCIINFO:
2506 	case CCISS_GETINTINFO:
2507 	case CCISS_SETINTINFO:
2508 	case CCISS_GETNODENAME:
2509 	case CCISS_SETNODENAME:
2510 	case CCISS_GETHEARTBEAT:
2511 	case CCISS_GETBUSTYPES:
2512 	case CCISS_GETFIRMVER:
2513 	case CCISS_GETDRIVVER:
2514 	case CCISS_REVALIDVOLS:
2515 	case CCISS_DEREGDISK:
2516 	case CCISS_REGNEWDISK:
2517 	case CCISS_REGNEWD:
2518 	case CCISS_RESCANDISK:
2519 	case CCISS_GETLUNINFO:
2520 		return hpsa_ioctl(dev, cmd, arg);
2521 
2522 	case CCISS_PASSTHRU32:
2523 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2524 	case CCISS_BIG_PASSTHRU32:
2525 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2526 
2527 	default:
2528 		return -ENOIOCTLCMD;
2529 	}
2530 }
2531 #endif
2532 
2533 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2534 {
2535 	struct hpsa_pci_info pciinfo;
2536 
2537 	if (!argp)
2538 		return -EINVAL;
2539 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2540 	pciinfo.bus = h->pdev->bus->number;
2541 	pciinfo.dev_fn = h->pdev->devfn;
2542 	pciinfo.board_id = h->board_id;
2543 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2544 		return -EFAULT;
2545 	return 0;
2546 }
2547 
2548 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2549 {
2550 	DriverVer_type DriverVer;
2551 	unsigned char vmaj, vmin, vsubmin;
2552 	int rc;
2553 
2554 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2555 		&vmaj, &vmin, &vsubmin);
2556 	if (rc != 3) {
2557 		dev_info(&h->pdev->dev, "driver version string '%s' "
2558 			"unrecognized.", HPSA_DRIVER_VERSION);
2559 		vmaj = 0;
2560 		vmin = 0;
2561 		vsubmin = 0;
2562 	}
2563 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2564 	if (!argp)
2565 		return -EINVAL;
2566 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2567 		return -EFAULT;
2568 	return 0;
2569 }
2570 
2571 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2572 {
2573 	IOCTL_Command_struct iocommand;
2574 	struct CommandList *c;
2575 	char *buff = NULL;
2576 	union u64bit temp64;
2577 
2578 	if (!argp)
2579 		return -EINVAL;
2580 	if (!capable(CAP_SYS_RAWIO))
2581 		return -EPERM;
2582 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2583 		return -EFAULT;
2584 	if ((iocommand.buf_size < 1) &&
2585 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2586 		return -EINVAL;
2587 	}
2588 	if (iocommand.buf_size > 0) {
2589 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2590 		if (buff == NULL)
2591 			return -EFAULT;
2592 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2593 			/* Copy the data into the buffer we created */
2594 			if (copy_from_user(buff, iocommand.buf,
2595 				iocommand.buf_size)) {
2596 				kfree(buff);
2597 				return -EFAULT;
2598 			}
2599 		} else {
2600 			memset(buff, 0, iocommand.buf_size);
2601 		}
2602 	}
2603 	c = cmd_special_alloc(h);
2604 	if (c == NULL) {
2605 		kfree(buff);
2606 		return -ENOMEM;
2607 	}
2608 	/* Fill in the command type */
2609 	c->cmd_type = CMD_IOCTL_PEND;
2610 	/* Fill in Command Header */
2611 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2612 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2613 		c->Header.SGList = 1;
2614 		c->Header.SGTotal = 1;
2615 	} else	{ /* no buffers to fill */
2616 		c->Header.SGList = 0;
2617 		c->Header.SGTotal = 0;
2618 	}
2619 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2620 	/* use the kernel address the cmd block for tag */
2621 	c->Header.Tag.lower = c->busaddr;
2622 
2623 	/* Fill in Request block */
2624 	memcpy(&c->Request, &iocommand.Request,
2625 		sizeof(c->Request));
2626 
2627 	/* Fill in the scatter gather information */
2628 	if (iocommand.buf_size > 0) {
2629 		temp64.val = pci_map_single(h->pdev, buff,
2630 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2631 		c->SG[0].Addr.lower = temp64.val32.lower;
2632 		c->SG[0].Addr.upper = temp64.val32.upper;
2633 		c->SG[0].Len = iocommand.buf_size;
2634 		c->SG[0].Ext = 0; /* we are not chaining*/
2635 	}
2636 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2637 	if (iocommand.buf_size > 0)
2638 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2639 	check_ioctl_unit_attention(h, c);
2640 
2641 	/* Copy the error information out */
2642 	memcpy(&iocommand.error_info, c->err_info,
2643 		sizeof(iocommand.error_info));
2644 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2645 		kfree(buff);
2646 		cmd_special_free(h, c);
2647 		return -EFAULT;
2648 	}
2649 	if (iocommand.Request.Type.Direction == XFER_READ &&
2650 		iocommand.buf_size > 0) {
2651 		/* Copy the data out of the buffer we created */
2652 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2653 			kfree(buff);
2654 			cmd_special_free(h, c);
2655 			return -EFAULT;
2656 		}
2657 	}
2658 	kfree(buff);
2659 	cmd_special_free(h, c);
2660 	return 0;
2661 }
2662 
2663 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2664 {
2665 	BIG_IOCTL_Command_struct *ioc;
2666 	struct CommandList *c;
2667 	unsigned char **buff = NULL;
2668 	int *buff_size = NULL;
2669 	union u64bit temp64;
2670 	BYTE sg_used = 0;
2671 	int status = 0;
2672 	int i;
2673 	u32 left;
2674 	u32 sz;
2675 	BYTE __user *data_ptr;
2676 
2677 	if (!argp)
2678 		return -EINVAL;
2679 	if (!capable(CAP_SYS_RAWIO))
2680 		return -EPERM;
2681 	ioc = (BIG_IOCTL_Command_struct *)
2682 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2683 	if (!ioc) {
2684 		status = -ENOMEM;
2685 		goto cleanup1;
2686 	}
2687 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2688 		status = -EFAULT;
2689 		goto cleanup1;
2690 	}
2691 	if ((ioc->buf_size < 1) &&
2692 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2693 		status = -EINVAL;
2694 		goto cleanup1;
2695 	}
2696 	/* Check kmalloc limits  using all SGs */
2697 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2698 		status = -EINVAL;
2699 		goto cleanup1;
2700 	}
2701 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2702 		status = -EINVAL;
2703 		goto cleanup1;
2704 	}
2705 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2706 	if (!buff) {
2707 		status = -ENOMEM;
2708 		goto cleanup1;
2709 	}
2710 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2711 	if (!buff_size) {
2712 		status = -ENOMEM;
2713 		goto cleanup1;
2714 	}
2715 	left = ioc->buf_size;
2716 	data_ptr = ioc->buf;
2717 	while (left) {
2718 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2719 		buff_size[sg_used] = sz;
2720 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2721 		if (buff[sg_used] == NULL) {
2722 			status = -ENOMEM;
2723 			goto cleanup1;
2724 		}
2725 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2726 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2727 				status = -ENOMEM;
2728 				goto cleanup1;
2729 			}
2730 		} else
2731 			memset(buff[sg_used], 0, sz);
2732 		left -= sz;
2733 		data_ptr += sz;
2734 		sg_used++;
2735 	}
2736 	c = cmd_special_alloc(h);
2737 	if (c == NULL) {
2738 		status = -ENOMEM;
2739 		goto cleanup1;
2740 	}
2741 	c->cmd_type = CMD_IOCTL_PEND;
2742 	c->Header.ReplyQueue = 0;
2743 	c->Header.SGList = c->Header.SGTotal = sg_used;
2744 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2745 	c->Header.Tag.lower = c->busaddr;
2746 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2747 	if (ioc->buf_size > 0) {
2748 		int i;
2749 		for (i = 0; i < sg_used; i++) {
2750 			temp64.val = pci_map_single(h->pdev, buff[i],
2751 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2752 			c->SG[i].Addr.lower = temp64.val32.lower;
2753 			c->SG[i].Addr.upper = temp64.val32.upper;
2754 			c->SG[i].Len = buff_size[i];
2755 			/* we are not chaining */
2756 			c->SG[i].Ext = 0;
2757 		}
2758 	}
2759 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2760 	if (sg_used)
2761 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2762 	check_ioctl_unit_attention(h, c);
2763 	/* Copy the error information out */
2764 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2765 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2766 		cmd_special_free(h, c);
2767 		status = -EFAULT;
2768 		goto cleanup1;
2769 	}
2770 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2771 		/* Copy the data out of the buffer we created */
2772 		BYTE __user *ptr = ioc->buf;
2773 		for (i = 0; i < sg_used; i++) {
2774 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2775 				cmd_special_free(h, c);
2776 				status = -EFAULT;
2777 				goto cleanup1;
2778 			}
2779 			ptr += buff_size[i];
2780 		}
2781 	}
2782 	cmd_special_free(h, c);
2783 	status = 0;
2784 cleanup1:
2785 	if (buff) {
2786 		for (i = 0; i < sg_used; i++)
2787 			kfree(buff[i]);
2788 		kfree(buff);
2789 	}
2790 	kfree(buff_size);
2791 	kfree(ioc);
2792 	return status;
2793 }
2794 
2795 static void check_ioctl_unit_attention(struct ctlr_info *h,
2796 	struct CommandList *c)
2797 {
2798 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2799 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2800 		(void) check_for_unit_attention(h, c);
2801 }
2802 /*
2803  * ioctl
2804  */
2805 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2806 {
2807 	struct ctlr_info *h;
2808 	void __user *argp = (void __user *)arg;
2809 
2810 	h = sdev_to_hba(dev);
2811 
2812 	switch (cmd) {
2813 	case CCISS_DEREGDISK:
2814 	case CCISS_REGNEWDISK:
2815 	case CCISS_REGNEWD:
2816 		hpsa_scan_start(h->scsi_host);
2817 		return 0;
2818 	case CCISS_GETPCIINFO:
2819 		return hpsa_getpciinfo_ioctl(h, argp);
2820 	case CCISS_GETDRIVVER:
2821 		return hpsa_getdrivver_ioctl(h, argp);
2822 	case CCISS_PASSTHRU:
2823 		return hpsa_passthru_ioctl(h, argp);
2824 	case CCISS_BIG_PASSTHRU:
2825 		return hpsa_big_passthru_ioctl(h, argp);
2826 	default:
2827 		return -ENOTTY;
2828 	}
2829 }
2830 
2831 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2832 	unsigned char *scsi3addr, u8 reset_type)
2833 {
2834 	struct CommandList *c;
2835 
2836 	c = cmd_alloc(h);
2837 	if (!c)
2838 		return -ENOMEM;
2839 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2840 		RAID_CTLR_LUNID, TYPE_MSG);
2841 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2842 	c->waiting = NULL;
2843 	enqueue_cmd_and_start_io(h, c);
2844 	/* Don't wait for completion, the reset won't complete.  Don't free
2845 	 * the command either.  This is the last command we will send before
2846 	 * re-initializing everything, so it doesn't matter and won't leak.
2847 	 */
2848 	return 0;
2849 }
2850 
2851 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2852 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2853 	int cmd_type)
2854 {
2855 	int pci_dir = XFER_NONE;
2856 
2857 	c->cmd_type = CMD_IOCTL_PEND;
2858 	c->Header.ReplyQueue = 0;
2859 	if (buff != NULL && size > 0) {
2860 		c->Header.SGList = 1;
2861 		c->Header.SGTotal = 1;
2862 	} else {
2863 		c->Header.SGList = 0;
2864 		c->Header.SGTotal = 0;
2865 	}
2866 	c->Header.Tag.lower = c->busaddr;
2867 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2868 
2869 	c->Request.Type.Type = cmd_type;
2870 	if (cmd_type == TYPE_CMD) {
2871 		switch (cmd) {
2872 		case HPSA_INQUIRY:
2873 			/* are we trying to read a vital product page */
2874 			if (page_code != 0) {
2875 				c->Request.CDB[1] = 0x01;
2876 				c->Request.CDB[2] = page_code;
2877 			}
2878 			c->Request.CDBLen = 6;
2879 			c->Request.Type.Attribute = ATTR_SIMPLE;
2880 			c->Request.Type.Direction = XFER_READ;
2881 			c->Request.Timeout = 0;
2882 			c->Request.CDB[0] = HPSA_INQUIRY;
2883 			c->Request.CDB[4] = size & 0xFF;
2884 			break;
2885 		case HPSA_REPORT_LOG:
2886 		case HPSA_REPORT_PHYS:
2887 			/* Talking to controller so It's a physical command
2888 			   mode = 00 target = 0.  Nothing to write.
2889 			 */
2890 			c->Request.CDBLen = 12;
2891 			c->Request.Type.Attribute = ATTR_SIMPLE;
2892 			c->Request.Type.Direction = XFER_READ;
2893 			c->Request.Timeout = 0;
2894 			c->Request.CDB[0] = cmd;
2895 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2896 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2897 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2898 			c->Request.CDB[9] = size & 0xFF;
2899 			break;
2900 		case HPSA_CACHE_FLUSH:
2901 			c->Request.CDBLen = 12;
2902 			c->Request.Type.Attribute = ATTR_SIMPLE;
2903 			c->Request.Type.Direction = XFER_WRITE;
2904 			c->Request.Timeout = 0;
2905 			c->Request.CDB[0] = BMIC_WRITE;
2906 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2907 			c->Request.CDB[7] = (size >> 8) & 0xFF;
2908 			c->Request.CDB[8] = size & 0xFF;
2909 			break;
2910 		case TEST_UNIT_READY:
2911 			c->Request.CDBLen = 6;
2912 			c->Request.Type.Attribute = ATTR_SIMPLE;
2913 			c->Request.Type.Direction = XFER_NONE;
2914 			c->Request.Timeout = 0;
2915 			break;
2916 		default:
2917 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2918 			BUG();
2919 			return;
2920 		}
2921 	} else if (cmd_type == TYPE_MSG) {
2922 		switch (cmd) {
2923 
2924 		case  HPSA_DEVICE_RESET_MSG:
2925 			c->Request.CDBLen = 16;
2926 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2927 			c->Request.Type.Attribute = ATTR_SIMPLE;
2928 			c->Request.Type.Direction = XFER_NONE;
2929 			c->Request.Timeout = 0; /* Don't time out */
2930 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2931 			c->Request.CDB[0] =  cmd;
2932 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2933 			/* If bytes 4-7 are zero, it means reset the */
2934 			/* LunID device */
2935 			c->Request.CDB[4] = 0x00;
2936 			c->Request.CDB[5] = 0x00;
2937 			c->Request.CDB[6] = 0x00;
2938 			c->Request.CDB[7] = 0x00;
2939 		break;
2940 
2941 		default:
2942 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2943 				cmd);
2944 			BUG();
2945 		}
2946 	} else {
2947 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2948 		BUG();
2949 	}
2950 
2951 	switch (c->Request.Type.Direction) {
2952 	case XFER_READ:
2953 		pci_dir = PCI_DMA_FROMDEVICE;
2954 		break;
2955 	case XFER_WRITE:
2956 		pci_dir = PCI_DMA_TODEVICE;
2957 		break;
2958 	case XFER_NONE:
2959 		pci_dir = PCI_DMA_NONE;
2960 		break;
2961 	default:
2962 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2963 	}
2964 
2965 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2966 
2967 	return;
2968 }
2969 
2970 /*
2971  * Map (physical) PCI mem into (virtual) kernel space
2972  */
2973 static void __iomem *remap_pci_mem(ulong base, ulong size)
2974 {
2975 	ulong page_base = ((ulong) base) & PAGE_MASK;
2976 	ulong page_offs = ((ulong) base) - page_base;
2977 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2978 
2979 	return page_remapped ? (page_remapped + page_offs) : NULL;
2980 }
2981 
2982 /* Takes cmds off the submission queue and sends them to the hardware,
2983  * then puts them on the queue of cmds waiting for completion.
2984  */
2985 static void start_io(struct ctlr_info *h)
2986 {
2987 	struct CommandList *c;
2988 
2989 	while (!list_empty(&h->reqQ)) {
2990 		c = list_entry(h->reqQ.next, struct CommandList, list);
2991 		/* can't do anything if fifo is full */
2992 		if ((h->access.fifo_full(h))) {
2993 			dev_warn(&h->pdev->dev, "fifo full\n");
2994 			break;
2995 		}
2996 
2997 		/* Get the first entry from the Request Q */
2998 		removeQ(c);
2999 		h->Qdepth--;
3000 
3001 		/* Tell the controller execute command */
3002 		h->access.submit_command(h, c);
3003 
3004 		/* Put job onto the completed Q */
3005 		addQ(&h->cmpQ, c);
3006 	}
3007 }
3008 
3009 static inline unsigned long get_next_completion(struct ctlr_info *h)
3010 {
3011 	return h->access.command_completed(h);
3012 }
3013 
3014 static inline bool interrupt_pending(struct ctlr_info *h)
3015 {
3016 	return h->access.intr_pending(h);
3017 }
3018 
3019 static inline long interrupt_not_for_us(struct ctlr_info *h)
3020 {
3021 	return (h->access.intr_pending(h) == 0) ||
3022 		(h->interrupts_enabled == 0);
3023 }
3024 
3025 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3026 	u32 raw_tag)
3027 {
3028 	if (unlikely(tag_index >= h->nr_cmds)) {
3029 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3030 		return 1;
3031 	}
3032 	return 0;
3033 }
3034 
3035 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3036 {
3037 	removeQ(c);
3038 	if (likely(c->cmd_type == CMD_SCSI))
3039 		complete_scsi_command(c);
3040 	else if (c->cmd_type == CMD_IOCTL_PEND)
3041 		complete(c->waiting);
3042 }
3043 
3044 static inline u32 hpsa_tag_contains_index(u32 tag)
3045 {
3046 	return tag & DIRECT_LOOKUP_BIT;
3047 }
3048 
3049 static inline u32 hpsa_tag_to_index(u32 tag)
3050 {
3051 	return tag >> DIRECT_LOOKUP_SHIFT;
3052 }
3053 
3054 
3055 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3056 {
3057 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3058 #define HPSA_SIMPLE_ERROR_BITS 0x03
3059 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3060 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3061 	return tag & ~HPSA_PERF_ERROR_BITS;
3062 }
3063 
3064 /* process completion of an indexed ("direct lookup") command */
3065 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3066 	u32 raw_tag)
3067 {
3068 	u32 tag_index;
3069 	struct CommandList *c;
3070 
3071 	tag_index = hpsa_tag_to_index(raw_tag);
3072 	if (bad_tag(h, tag_index, raw_tag))
3073 		return next_command(h);
3074 	c = h->cmd_pool + tag_index;
3075 	finish_cmd(c, raw_tag);
3076 	return next_command(h);
3077 }
3078 
3079 /* process completion of a non-indexed command */
3080 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3081 	u32 raw_tag)
3082 {
3083 	u32 tag;
3084 	struct CommandList *c = NULL;
3085 
3086 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3087 	list_for_each_entry(c, &h->cmpQ, list) {
3088 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3089 			finish_cmd(c, raw_tag);
3090 			return next_command(h);
3091 		}
3092 	}
3093 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3094 	return next_command(h);
3095 }
3096 
3097 /* Some controllers, like p400, will give us one interrupt
3098  * after a soft reset, even if we turned interrupts off.
3099  * Only need to check for this in the hpsa_xxx_discard_completions
3100  * functions.
3101  */
3102 static int ignore_bogus_interrupt(struct ctlr_info *h)
3103 {
3104 	if (likely(!reset_devices))
3105 		return 0;
3106 
3107 	if (likely(h->interrupts_enabled))
3108 		return 0;
3109 
3110 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3111 		"(known firmware bug.)  Ignoring.\n");
3112 
3113 	return 1;
3114 }
3115 
3116 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3117 {
3118 	struct ctlr_info *h = dev_id;
3119 	unsigned long flags;
3120 	u32 raw_tag;
3121 
3122 	if (ignore_bogus_interrupt(h))
3123 		return IRQ_NONE;
3124 
3125 	if (interrupt_not_for_us(h))
3126 		return IRQ_NONE;
3127 	spin_lock_irqsave(&h->lock, flags);
3128 	h->last_intr_timestamp = get_jiffies_64();
3129 	while (interrupt_pending(h)) {
3130 		raw_tag = get_next_completion(h);
3131 		while (raw_tag != FIFO_EMPTY)
3132 			raw_tag = next_command(h);
3133 	}
3134 	spin_unlock_irqrestore(&h->lock, flags);
3135 	return IRQ_HANDLED;
3136 }
3137 
3138 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3139 {
3140 	struct ctlr_info *h = dev_id;
3141 	unsigned long flags;
3142 	u32 raw_tag;
3143 
3144 	if (ignore_bogus_interrupt(h))
3145 		return IRQ_NONE;
3146 
3147 	spin_lock_irqsave(&h->lock, flags);
3148 	h->last_intr_timestamp = get_jiffies_64();
3149 	raw_tag = get_next_completion(h);
3150 	while (raw_tag != FIFO_EMPTY)
3151 		raw_tag = next_command(h);
3152 	spin_unlock_irqrestore(&h->lock, flags);
3153 	return IRQ_HANDLED;
3154 }
3155 
3156 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3157 {
3158 	struct ctlr_info *h = dev_id;
3159 	unsigned long flags;
3160 	u32 raw_tag;
3161 
3162 	if (interrupt_not_for_us(h))
3163 		return IRQ_NONE;
3164 	spin_lock_irqsave(&h->lock, flags);
3165 	h->last_intr_timestamp = get_jiffies_64();
3166 	while (interrupt_pending(h)) {
3167 		raw_tag = get_next_completion(h);
3168 		while (raw_tag != FIFO_EMPTY) {
3169 			if (hpsa_tag_contains_index(raw_tag))
3170 				raw_tag = process_indexed_cmd(h, raw_tag);
3171 			else
3172 				raw_tag = process_nonindexed_cmd(h, raw_tag);
3173 		}
3174 	}
3175 	spin_unlock_irqrestore(&h->lock, flags);
3176 	return IRQ_HANDLED;
3177 }
3178 
3179 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3180 {
3181 	struct ctlr_info *h = dev_id;
3182 	unsigned long flags;
3183 	u32 raw_tag;
3184 
3185 	spin_lock_irqsave(&h->lock, flags);
3186 	h->last_intr_timestamp = get_jiffies_64();
3187 	raw_tag = get_next_completion(h);
3188 	while (raw_tag != FIFO_EMPTY) {
3189 		if (hpsa_tag_contains_index(raw_tag))
3190 			raw_tag = process_indexed_cmd(h, raw_tag);
3191 		else
3192 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3193 	}
3194 	spin_unlock_irqrestore(&h->lock, flags);
3195 	return IRQ_HANDLED;
3196 }
3197 
3198 /* Send a message CDB to the firmware. Careful, this only works
3199  * in simple mode, not performant mode due to the tag lookup.
3200  * We only ever use this immediately after a controller reset.
3201  */
3202 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3203 						unsigned char type)
3204 {
3205 	struct Command {
3206 		struct CommandListHeader CommandHeader;
3207 		struct RequestBlock Request;
3208 		struct ErrDescriptor ErrorDescriptor;
3209 	};
3210 	struct Command *cmd;
3211 	static const size_t cmd_sz = sizeof(*cmd) +
3212 					sizeof(cmd->ErrorDescriptor);
3213 	dma_addr_t paddr64;
3214 	uint32_t paddr32, tag;
3215 	void __iomem *vaddr;
3216 	int i, err;
3217 
3218 	vaddr = pci_ioremap_bar(pdev, 0);
3219 	if (vaddr == NULL)
3220 		return -ENOMEM;
3221 
3222 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3223 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3224 	 * memory.
3225 	 */
3226 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3227 	if (err) {
3228 		iounmap(vaddr);
3229 		return -ENOMEM;
3230 	}
3231 
3232 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3233 	if (cmd == NULL) {
3234 		iounmap(vaddr);
3235 		return -ENOMEM;
3236 	}
3237 
3238 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3239 	 * although there's no guarantee, we assume that the address is at
3240 	 * least 4-byte aligned (most likely, it's page-aligned).
3241 	 */
3242 	paddr32 = paddr64;
3243 
3244 	cmd->CommandHeader.ReplyQueue = 0;
3245 	cmd->CommandHeader.SGList = 0;
3246 	cmd->CommandHeader.SGTotal = 0;
3247 	cmd->CommandHeader.Tag.lower = paddr32;
3248 	cmd->CommandHeader.Tag.upper = 0;
3249 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3250 
3251 	cmd->Request.CDBLen = 16;
3252 	cmd->Request.Type.Type = TYPE_MSG;
3253 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3254 	cmd->Request.Type.Direction = XFER_NONE;
3255 	cmd->Request.Timeout = 0; /* Don't time out */
3256 	cmd->Request.CDB[0] = opcode;
3257 	cmd->Request.CDB[1] = type;
3258 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3259 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3260 	cmd->ErrorDescriptor.Addr.upper = 0;
3261 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3262 
3263 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3264 
3265 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3266 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3267 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3268 			break;
3269 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3270 	}
3271 
3272 	iounmap(vaddr);
3273 
3274 	/* we leak the DMA buffer here ... no choice since the controller could
3275 	 *  still complete the command.
3276 	 */
3277 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3278 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3279 			opcode, type);
3280 		return -ETIMEDOUT;
3281 	}
3282 
3283 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3284 
3285 	if (tag & HPSA_ERROR_BIT) {
3286 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3287 			opcode, type);
3288 		return -EIO;
3289 	}
3290 
3291 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3292 		opcode, type);
3293 	return 0;
3294 }
3295 
3296 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3297 
3298 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3299 	void * __iomem vaddr, u32 use_doorbell)
3300 {
3301 	u16 pmcsr;
3302 	int pos;
3303 
3304 	if (use_doorbell) {
3305 		/* For everything after the P600, the PCI power state method
3306 		 * of resetting the controller doesn't work, so we have this
3307 		 * other way using the doorbell register.
3308 		 */
3309 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3310 		writel(use_doorbell, vaddr + SA5_DOORBELL);
3311 	} else { /* Try to do it the PCI power state way */
3312 
3313 		/* Quoting from the Open CISS Specification: "The Power
3314 		 * Management Control/Status Register (CSR) controls the power
3315 		 * state of the device.  The normal operating state is D0,
3316 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3317 		 * the controller, place the interface device in D3 then to D0,
3318 		 * this causes a secondary PCI reset which will reset the
3319 		 * controller." */
3320 
3321 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3322 		if (pos == 0) {
3323 			dev_err(&pdev->dev,
3324 				"hpsa_reset_controller: "
3325 				"PCI PM not supported\n");
3326 			return -ENODEV;
3327 		}
3328 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3329 		/* enter the D3hot power management state */
3330 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3331 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3332 		pmcsr |= PCI_D3hot;
3333 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3334 
3335 		msleep(500);
3336 
3337 		/* enter the D0 power management state */
3338 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3339 		pmcsr |= PCI_D0;
3340 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3341 
3342 		/*
3343 		 * The P600 requires a small delay when changing states.
3344 		 * Otherwise we may think the board did not reset and we bail.
3345 		 * This for kdump only and is particular to the P600.
3346 		 */
3347 		msleep(500);
3348 	}
3349 	return 0;
3350 }
3351 
3352 static __devinit void init_driver_version(char *driver_version, int len)
3353 {
3354 	memset(driver_version, 0, len);
3355 	strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3356 }
3357 
3358 static __devinit int write_driver_ver_to_cfgtable(
3359 	struct CfgTable __iomem *cfgtable)
3360 {
3361 	char *driver_version;
3362 	int i, size = sizeof(cfgtable->driver_version);
3363 
3364 	driver_version = kmalloc(size, GFP_KERNEL);
3365 	if (!driver_version)
3366 		return -ENOMEM;
3367 
3368 	init_driver_version(driver_version, size);
3369 	for (i = 0; i < size; i++)
3370 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3371 	kfree(driver_version);
3372 	return 0;
3373 }
3374 
3375 static __devinit void read_driver_ver_from_cfgtable(
3376 	struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3377 {
3378 	int i;
3379 
3380 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3381 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3382 }
3383 
3384 static __devinit int controller_reset_failed(
3385 	struct CfgTable __iomem *cfgtable)
3386 {
3387 
3388 	char *driver_ver, *old_driver_ver;
3389 	int rc, size = sizeof(cfgtable->driver_version);
3390 
3391 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3392 	if (!old_driver_ver)
3393 		return -ENOMEM;
3394 	driver_ver = old_driver_ver + size;
3395 
3396 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3397 	 * should have been changed, otherwise we know the reset failed.
3398 	 */
3399 	init_driver_version(old_driver_ver, size);
3400 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3401 	rc = !memcmp(driver_ver, old_driver_ver, size);
3402 	kfree(old_driver_ver);
3403 	return rc;
3404 }
3405 /* This does a hard reset of the controller using PCI power management
3406  * states or the using the doorbell register.
3407  */
3408 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3409 {
3410 	u64 cfg_offset;
3411 	u32 cfg_base_addr;
3412 	u64 cfg_base_addr_index;
3413 	void __iomem *vaddr;
3414 	unsigned long paddr;
3415 	u32 misc_fw_support;
3416 	int rc;
3417 	struct CfgTable __iomem *cfgtable;
3418 	u32 use_doorbell;
3419 	u32 board_id;
3420 	u16 command_register;
3421 
3422 	/* For controllers as old as the P600, this is very nearly
3423 	 * the same thing as
3424 	 *
3425 	 * pci_save_state(pci_dev);
3426 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3427 	 * pci_set_power_state(pci_dev, PCI_D0);
3428 	 * pci_restore_state(pci_dev);
3429 	 *
3430 	 * For controllers newer than the P600, the pci power state
3431 	 * method of resetting doesn't work so we have another way
3432 	 * using the doorbell register.
3433 	 */
3434 
3435 	rc = hpsa_lookup_board_id(pdev, &board_id);
3436 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3437 		dev_warn(&pdev->dev, "Not resetting device.\n");
3438 		return -ENODEV;
3439 	}
3440 
3441 	/* if controller is soft- but not hard resettable... */
3442 	if (!ctlr_is_hard_resettable(board_id))
3443 		return -ENOTSUPP; /* try soft reset later. */
3444 
3445 	/* Save the PCI command register */
3446 	pci_read_config_word(pdev, 4, &command_register);
3447 	/* Turn the board off.  This is so that later pci_restore_state()
3448 	 * won't turn the board on before the rest of config space is ready.
3449 	 */
3450 	pci_disable_device(pdev);
3451 	pci_save_state(pdev);
3452 
3453 	/* find the first memory BAR, so we can find the cfg table */
3454 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3455 	if (rc)
3456 		return rc;
3457 	vaddr = remap_pci_mem(paddr, 0x250);
3458 	if (!vaddr)
3459 		return -ENOMEM;
3460 
3461 	/* find cfgtable in order to check if reset via doorbell is supported */
3462 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3463 					&cfg_base_addr_index, &cfg_offset);
3464 	if (rc)
3465 		goto unmap_vaddr;
3466 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3467 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3468 	if (!cfgtable) {
3469 		rc = -ENOMEM;
3470 		goto unmap_vaddr;
3471 	}
3472 	rc = write_driver_ver_to_cfgtable(cfgtable);
3473 	if (rc)
3474 		goto unmap_vaddr;
3475 
3476 	/* If reset via doorbell register is supported, use that.
3477 	 * There are two such methods.  Favor the newest method.
3478 	 */
3479 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3480 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3481 	if (use_doorbell) {
3482 		use_doorbell = DOORBELL_CTLR_RESET2;
3483 	} else {
3484 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3485 		if (use_doorbell) {
3486 			dev_warn(&pdev->dev, "Soft reset not supported. "
3487 				"Firmware update is required.\n");
3488 			rc = -ENOTSUPP; /* try soft reset */
3489 			goto unmap_cfgtable;
3490 		}
3491 	}
3492 
3493 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3494 	if (rc)
3495 		goto unmap_cfgtable;
3496 
3497 	pci_restore_state(pdev);
3498 	rc = pci_enable_device(pdev);
3499 	if (rc) {
3500 		dev_warn(&pdev->dev, "failed to enable device.\n");
3501 		goto unmap_cfgtable;
3502 	}
3503 	pci_write_config_word(pdev, 4, command_register);
3504 
3505 	/* Some devices (notably the HP Smart Array 5i Controller)
3506 	   need a little pause here */
3507 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3508 
3509 	/* Wait for board to become not ready, then ready. */
3510 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3511 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3512 	if (rc) {
3513 		dev_warn(&pdev->dev,
3514 			"failed waiting for board to reset."
3515 			" Will try soft reset.\n");
3516 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3517 		goto unmap_cfgtable;
3518 	}
3519 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3520 	if (rc) {
3521 		dev_warn(&pdev->dev,
3522 			"failed waiting for board to become ready "
3523 			"after hard reset\n");
3524 		goto unmap_cfgtable;
3525 	}
3526 
3527 	rc = controller_reset_failed(vaddr);
3528 	if (rc < 0)
3529 		goto unmap_cfgtable;
3530 	if (rc) {
3531 		dev_warn(&pdev->dev, "Unable to successfully reset "
3532 			"controller. Will try soft reset.\n");
3533 		rc = -ENOTSUPP;
3534 	} else {
3535 		dev_info(&pdev->dev, "board ready after hard reset.\n");
3536 	}
3537 
3538 unmap_cfgtable:
3539 	iounmap(cfgtable);
3540 
3541 unmap_vaddr:
3542 	iounmap(vaddr);
3543 	return rc;
3544 }
3545 
3546 /*
3547  *  We cannot read the structure directly, for portability we must use
3548  *   the io functions.
3549  *   This is for debug only.
3550  */
3551 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3552 {
3553 #ifdef HPSA_DEBUG
3554 	int i;
3555 	char temp_name[17];
3556 
3557 	dev_info(dev, "Controller Configuration information\n");
3558 	dev_info(dev, "------------------------------------\n");
3559 	for (i = 0; i < 4; i++)
3560 		temp_name[i] = readb(&(tb->Signature[i]));
3561 	temp_name[4] = '\0';
3562 	dev_info(dev, "   Signature = %s\n", temp_name);
3563 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3564 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3565 	       readl(&(tb->TransportSupport)));
3566 	dev_info(dev, "   Transport methods active = 0x%x\n",
3567 	       readl(&(tb->TransportActive)));
3568 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3569 	       readl(&(tb->HostWrite.TransportRequest)));
3570 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3571 	       readl(&(tb->HostWrite.CoalIntDelay)));
3572 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3573 	       readl(&(tb->HostWrite.CoalIntCount)));
3574 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3575 	       readl(&(tb->CmdsOutMax)));
3576 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3577 	for (i = 0; i < 16; i++)
3578 		temp_name[i] = readb(&(tb->ServerName[i]));
3579 	temp_name[16] = '\0';
3580 	dev_info(dev, "   Server Name = %s\n", temp_name);
3581 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3582 		readl(&(tb->HeartBeat)));
3583 #endif				/* HPSA_DEBUG */
3584 }
3585 
3586 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3587 {
3588 	int i, offset, mem_type, bar_type;
3589 
3590 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3591 		return 0;
3592 	offset = 0;
3593 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3594 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3595 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3596 			offset += 4;
3597 		else {
3598 			mem_type = pci_resource_flags(pdev, i) &
3599 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3600 			switch (mem_type) {
3601 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3602 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3603 				offset += 4;	/* 32 bit */
3604 				break;
3605 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3606 				offset += 8;
3607 				break;
3608 			default:	/* reserved in PCI 2.2 */
3609 				dev_warn(&pdev->dev,
3610 				       "base address is invalid\n");
3611 				return -1;
3612 				break;
3613 			}
3614 		}
3615 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3616 			return i + 1;
3617 	}
3618 	return -1;
3619 }
3620 
3621 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3622  * controllers that are capable. If not, we use IO-APIC mode.
3623  */
3624 
3625 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3626 {
3627 #ifdef CONFIG_PCI_MSI
3628 	int err;
3629 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3630 	{0, 2}, {0, 3}
3631 	};
3632 
3633 	/* Some boards advertise MSI but don't really support it */
3634 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3635 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3636 		goto default_int_mode;
3637 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3638 		dev_info(&h->pdev->dev, "MSIX\n");
3639 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3640 		if (!err) {
3641 			h->intr[0] = hpsa_msix_entries[0].vector;
3642 			h->intr[1] = hpsa_msix_entries[1].vector;
3643 			h->intr[2] = hpsa_msix_entries[2].vector;
3644 			h->intr[3] = hpsa_msix_entries[3].vector;
3645 			h->msix_vector = 1;
3646 			return;
3647 		}
3648 		if (err > 0) {
3649 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3650 			       "available\n", err);
3651 			goto default_int_mode;
3652 		} else {
3653 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3654 			       err);
3655 			goto default_int_mode;
3656 		}
3657 	}
3658 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3659 		dev_info(&h->pdev->dev, "MSI\n");
3660 		if (!pci_enable_msi(h->pdev))
3661 			h->msi_vector = 1;
3662 		else
3663 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3664 	}
3665 default_int_mode:
3666 #endif				/* CONFIG_PCI_MSI */
3667 	/* if we get here we're going to use the default interrupt mode */
3668 	h->intr[h->intr_mode] = h->pdev->irq;
3669 }
3670 
3671 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3672 {
3673 	int i;
3674 	u32 subsystem_vendor_id, subsystem_device_id;
3675 
3676 	subsystem_vendor_id = pdev->subsystem_vendor;
3677 	subsystem_device_id = pdev->subsystem_device;
3678 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3679 		    subsystem_vendor_id;
3680 
3681 	for (i = 0; i < ARRAY_SIZE(products); i++)
3682 		if (*board_id == products[i].board_id)
3683 			return i;
3684 
3685 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3686 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3687 		!hpsa_allow_any) {
3688 		dev_warn(&pdev->dev, "unrecognized board ID: "
3689 			"0x%08x, ignoring.\n", *board_id);
3690 			return -ENODEV;
3691 	}
3692 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3693 }
3694 
3695 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3696 {
3697 	u16 command;
3698 
3699 	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3700 	return ((command & PCI_COMMAND_MEMORY) == 0);
3701 }
3702 
3703 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3704 	unsigned long *memory_bar)
3705 {
3706 	int i;
3707 
3708 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3709 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3710 			/* addressing mode bits already removed */
3711 			*memory_bar = pci_resource_start(pdev, i);
3712 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3713 				*memory_bar);
3714 			return 0;
3715 		}
3716 	dev_warn(&pdev->dev, "no memory BAR found\n");
3717 	return -ENODEV;
3718 }
3719 
3720 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3721 	void __iomem *vaddr, int wait_for_ready)
3722 {
3723 	int i, iterations;
3724 	u32 scratchpad;
3725 	if (wait_for_ready)
3726 		iterations = HPSA_BOARD_READY_ITERATIONS;
3727 	else
3728 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3729 
3730 	for (i = 0; i < iterations; i++) {
3731 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3732 		if (wait_for_ready) {
3733 			if (scratchpad == HPSA_FIRMWARE_READY)
3734 				return 0;
3735 		} else {
3736 			if (scratchpad != HPSA_FIRMWARE_READY)
3737 				return 0;
3738 		}
3739 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3740 	}
3741 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
3742 	return -ENODEV;
3743 }
3744 
3745 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3746 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3747 	u64 *cfg_offset)
3748 {
3749 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3750 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3751 	*cfg_base_addr &= (u32) 0x0000ffff;
3752 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3753 	if (*cfg_base_addr_index == -1) {
3754 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3755 		return -ENODEV;
3756 	}
3757 	return 0;
3758 }
3759 
3760 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3761 {
3762 	u64 cfg_offset;
3763 	u32 cfg_base_addr;
3764 	u64 cfg_base_addr_index;
3765 	u32 trans_offset;
3766 	int rc;
3767 
3768 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3769 		&cfg_base_addr_index, &cfg_offset);
3770 	if (rc)
3771 		return rc;
3772 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3773 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3774 	if (!h->cfgtable)
3775 		return -ENOMEM;
3776 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
3777 	if (rc)
3778 		return rc;
3779 	/* Find performant mode table. */
3780 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3781 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3782 				cfg_base_addr_index)+cfg_offset+trans_offset,
3783 				sizeof(*h->transtable));
3784 	if (!h->transtable)
3785 		return -ENOMEM;
3786 	return 0;
3787 }
3788 
3789 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3790 {
3791 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3792 
3793 	/* Limit commands in memory limited kdump scenario. */
3794 	if (reset_devices && h->max_commands > 32)
3795 		h->max_commands = 32;
3796 
3797 	if (h->max_commands < 16) {
3798 		dev_warn(&h->pdev->dev, "Controller reports "
3799 			"max supported commands of %d, an obvious lie. "
3800 			"Using 16.  Ensure that firmware is up to date.\n",
3801 			h->max_commands);
3802 		h->max_commands = 16;
3803 	}
3804 }
3805 
3806 /* Interrogate the hardware for some limits:
3807  * max commands, max SG elements without chaining, and with chaining,
3808  * SG chain block size, etc.
3809  */
3810 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3811 {
3812 	hpsa_get_max_perf_mode_cmds(h);
3813 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3814 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3815 	/*
3816 	 * Limit in-command s/g elements to 32 save dma'able memory.
3817 	 * Howvever spec says if 0, use 31
3818 	 */
3819 	h->max_cmd_sg_entries = 31;
3820 	if (h->maxsgentries > 512) {
3821 		h->max_cmd_sg_entries = 32;
3822 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3823 		h->maxsgentries--; /* save one for chain pointer */
3824 	} else {
3825 		h->maxsgentries = 31; /* default to traditional values */
3826 		h->chainsize = 0;
3827 	}
3828 }
3829 
3830 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3831 {
3832 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3833 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3834 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3835 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3836 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3837 		return false;
3838 	}
3839 	return true;
3840 }
3841 
3842 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3843 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3844 {
3845 #ifdef CONFIG_X86
3846 	u32 prefetch;
3847 
3848 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3849 	prefetch |= 0x100;
3850 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3851 #endif
3852 }
3853 
3854 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3855  * in a prefetch beyond physical memory.
3856  */
3857 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3858 {
3859 	u32 dma_prefetch;
3860 
3861 	if (h->board_id != 0x3225103C)
3862 		return;
3863 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3864 	dma_prefetch |= 0x8000;
3865 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3866 }
3867 
3868 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3869 {
3870 	int i;
3871 	u32 doorbell_value;
3872 	unsigned long flags;
3873 
3874 	/* under certain very rare conditions, this can take awhile.
3875 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3876 	 * as we enter this code.)
3877 	 */
3878 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3879 		spin_lock_irqsave(&h->lock, flags);
3880 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3881 		spin_unlock_irqrestore(&h->lock, flags);
3882 		if (!(doorbell_value & CFGTBL_ChangeReq))
3883 			break;
3884 		/* delay and try again */
3885 		usleep_range(10000, 20000);
3886 	}
3887 }
3888 
3889 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3890 {
3891 	u32 trans_support;
3892 
3893 	trans_support = readl(&(h->cfgtable->TransportSupport));
3894 	if (!(trans_support & SIMPLE_MODE))
3895 		return -ENOTSUPP;
3896 
3897 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3898 	/* Update the field, and then ring the doorbell */
3899 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3900 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3901 	hpsa_wait_for_mode_change_ack(h);
3902 	print_cfg_table(&h->pdev->dev, h->cfgtable);
3903 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3904 		dev_warn(&h->pdev->dev,
3905 			"unable to get board into simple mode\n");
3906 		return -ENODEV;
3907 	}
3908 	h->transMethod = CFGTBL_Trans_Simple;
3909 	return 0;
3910 }
3911 
3912 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3913 {
3914 	int prod_index, err;
3915 
3916 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3917 	if (prod_index < 0)
3918 		return -ENODEV;
3919 	h->product_name = products[prod_index].product_name;
3920 	h->access = *(products[prod_index].access);
3921 
3922 	if (hpsa_board_disabled(h->pdev)) {
3923 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3924 		return -ENODEV;
3925 	}
3926 
3927 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3928 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3929 
3930 	err = pci_enable_device(h->pdev);
3931 	if (err) {
3932 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3933 		return err;
3934 	}
3935 
3936 	err = pci_request_regions(h->pdev, "hpsa");
3937 	if (err) {
3938 		dev_err(&h->pdev->dev,
3939 			"cannot obtain PCI resources, aborting\n");
3940 		return err;
3941 	}
3942 	hpsa_interrupt_mode(h);
3943 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3944 	if (err)
3945 		goto err_out_free_res;
3946 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3947 	if (!h->vaddr) {
3948 		err = -ENOMEM;
3949 		goto err_out_free_res;
3950 	}
3951 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3952 	if (err)
3953 		goto err_out_free_res;
3954 	err = hpsa_find_cfgtables(h);
3955 	if (err)
3956 		goto err_out_free_res;
3957 	hpsa_find_board_params(h);
3958 
3959 	if (!hpsa_CISS_signature_present(h)) {
3960 		err = -ENODEV;
3961 		goto err_out_free_res;
3962 	}
3963 	hpsa_enable_scsi_prefetch(h);
3964 	hpsa_p600_dma_prefetch_quirk(h);
3965 	err = hpsa_enter_simple_mode(h);
3966 	if (err)
3967 		goto err_out_free_res;
3968 	return 0;
3969 
3970 err_out_free_res:
3971 	if (h->transtable)
3972 		iounmap(h->transtable);
3973 	if (h->cfgtable)
3974 		iounmap(h->cfgtable);
3975 	if (h->vaddr)
3976 		iounmap(h->vaddr);
3977 	/*
3978 	 * Deliberately omit pci_disable_device(): it does something nasty to
3979 	 * Smart Array controllers that pci_enable_device does not undo
3980 	 */
3981 	pci_release_regions(h->pdev);
3982 	return err;
3983 }
3984 
3985 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3986 {
3987 	int rc;
3988 
3989 #define HBA_INQUIRY_BYTE_COUNT 64
3990 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3991 	if (!h->hba_inquiry_data)
3992 		return;
3993 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3994 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3995 	if (rc != 0) {
3996 		kfree(h->hba_inquiry_data);
3997 		h->hba_inquiry_data = NULL;
3998 	}
3999 }
4000 
4001 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4002 {
4003 	int rc, i;
4004 
4005 	if (!reset_devices)
4006 		return 0;
4007 
4008 	/* Reset the controller with a PCI power-cycle or via doorbell */
4009 	rc = hpsa_kdump_hard_reset_controller(pdev);
4010 
4011 	/* -ENOTSUPP here means we cannot reset the controller
4012 	 * but it's already (and still) up and running in
4013 	 * "performant mode".  Or, it might be 640x, which can't reset
4014 	 * due to concerns about shared bbwc between 6402/6404 pair.
4015 	 */
4016 	if (rc == -ENOTSUPP)
4017 		return rc; /* just try to do the kdump anyhow. */
4018 	if (rc)
4019 		return -ENODEV;
4020 
4021 	/* Now try to get the controller to respond to a no-op */
4022 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4023 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4024 		if (hpsa_noop(pdev) == 0)
4025 			break;
4026 		else
4027 			dev_warn(&pdev->dev, "no-op failed%s\n",
4028 					(i < 11 ? "; re-trying" : ""));
4029 	}
4030 	return 0;
4031 }
4032 
4033 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4034 {
4035 	h->cmd_pool_bits = kzalloc(
4036 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4037 		sizeof(unsigned long), GFP_KERNEL);
4038 	h->cmd_pool = pci_alloc_consistent(h->pdev,
4039 		    h->nr_cmds * sizeof(*h->cmd_pool),
4040 		    &(h->cmd_pool_dhandle));
4041 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4042 		    h->nr_cmds * sizeof(*h->errinfo_pool),
4043 		    &(h->errinfo_pool_dhandle));
4044 	if ((h->cmd_pool_bits == NULL)
4045 	    || (h->cmd_pool == NULL)
4046 	    || (h->errinfo_pool == NULL)) {
4047 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4048 		return -ENOMEM;
4049 	}
4050 	return 0;
4051 }
4052 
4053 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4054 {
4055 	kfree(h->cmd_pool_bits);
4056 	if (h->cmd_pool)
4057 		pci_free_consistent(h->pdev,
4058 			    h->nr_cmds * sizeof(struct CommandList),
4059 			    h->cmd_pool, h->cmd_pool_dhandle);
4060 	if (h->errinfo_pool)
4061 		pci_free_consistent(h->pdev,
4062 			    h->nr_cmds * sizeof(struct ErrorInfo),
4063 			    h->errinfo_pool,
4064 			    h->errinfo_pool_dhandle);
4065 }
4066 
4067 static int hpsa_request_irq(struct ctlr_info *h,
4068 	irqreturn_t (*msixhandler)(int, void *),
4069 	irqreturn_t (*intxhandler)(int, void *))
4070 {
4071 	int rc;
4072 
4073 	if (h->msix_vector || h->msi_vector)
4074 		rc = request_irq(h->intr[h->intr_mode], msixhandler,
4075 				IRQF_DISABLED, h->devname, h);
4076 	else
4077 		rc = request_irq(h->intr[h->intr_mode], intxhandler,
4078 				IRQF_DISABLED, h->devname, h);
4079 	if (rc) {
4080 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4081 		       h->intr[h->intr_mode], h->devname);
4082 		return -ENODEV;
4083 	}
4084 	return 0;
4085 }
4086 
4087 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4088 {
4089 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4090 		HPSA_RESET_TYPE_CONTROLLER)) {
4091 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4092 		return -EIO;
4093 	}
4094 
4095 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4096 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4097 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4098 		return -1;
4099 	}
4100 
4101 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4102 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4103 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4104 			"after soft reset.\n");
4105 		return -1;
4106 	}
4107 
4108 	return 0;
4109 }
4110 
4111 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4112 {
4113 	free_irq(h->intr[h->intr_mode], h);
4114 #ifdef CONFIG_PCI_MSI
4115 	if (h->msix_vector)
4116 		pci_disable_msix(h->pdev);
4117 	else if (h->msi_vector)
4118 		pci_disable_msi(h->pdev);
4119 #endif /* CONFIG_PCI_MSI */
4120 	hpsa_free_sg_chain_blocks(h);
4121 	hpsa_free_cmd_pool(h);
4122 	kfree(h->blockFetchTable);
4123 	pci_free_consistent(h->pdev, h->reply_pool_size,
4124 		h->reply_pool, h->reply_pool_dhandle);
4125 	if (h->vaddr)
4126 		iounmap(h->vaddr);
4127 	if (h->transtable)
4128 		iounmap(h->transtable);
4129 	if (h->cfgtable)
4130 		iounmap(h->cfgtable);
4131 	pci_release_regions(h->pdev);
4132 	kfree(h);
4133 }
4134 
4135 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4136 {
4137 	assert_spin_locked(&lockup_detector_lock);
4138 	if (!hpsa_lockup_detector)
4139 		return;
4140 	if (h->lockup_detected)
4141 		return; /* already stopped the lockup detector */
4142 	list_del(&h->lockup_list);
4143 }
4144 
4145 /* Called when controller lockup detected. */
4146 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4147 {
4148 	struct CommandList *c = NULL;
4149 
4150 	assert_spin_locked(&h->lock);
4151 	/* Mark all outstanding commands as failed and complete them. */
4152 	while (!list_empty(list)) {
4153 		c = list_entry(list->next, struct CommandList, list);
4154 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4155 		finish_cmd(c, c->Header.Tag.lower);
4156 	}
4157 }
4158 
4159 static void controller_lockup_detected(struct ctlr_info *h)
4160 {
4161 	unsigned long flags;
4162 
4163 	assert_spin_locked(&lockup_detector_lock);
4164 	remove_ctlr_from_lockup_detector_list(h);
4165 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4166 	spin_lock_irqsave(&h->lock, flags);
4167 	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4168 	spin_unlock_irqrestore(&h->lock, flags);
4169 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4170 			h->lockup_detected);
4171 	pci_disable_device(h->pdev);
4172 	spin_lock_irqsave(&h->lock, flags);
4173 	fail_all_cmds_on_list(h, &h->cmpQ);
4174 	fail_all_cmds_on_list(h, &h->reqQ);
4175 	spin_unlock_irqrestore(&h->lock, flags);
4176 }
4177 
4178 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4179 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4180 
4181 static void detect_controller_lockup(struct ctlr_info *h)
4182 {
4183 	u64 now;
4184 	u32 heartbeat;
4185 	unsigned long flags;
4186 
4187 	assert_spin_locked(&lockup_detector_lock);
4188 	now = get_jiffies_64();
4189 	/* If we've received an interrupt recently, we're ok. */
4190 	if (time_after64(h->last_intr_timestamp +
4191 				(HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4192 		return;
4193 
4194 	/*
4195 	 * If we've already checked the heartbeat recently, we're ok.
4196 	 * This could happen if someone sends us a signal. We
4197 	 * otherwise don't care about signals in this thread.
4198 	 */
4199 	if (time_after64(h->last_heartbeat_timestamp +
4200 				(HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4201 		return;
4202 
4203 	/* If heartbeat has not changed since we last looked, we're not ok. */
4204 	spin_lock_irqsave(&h->lock, flags);
4205 	heartbeat = readl(&h->cfgtable->HeartBeat);
4206 	spin_unlock_irqrestore(&h->lock, flags);
4207 	if (h->last_heartbeat == heartbeat) {
4208 		controller_lockup_detected(h);
4209 		return;
4210 	}
4211 
4212 	/* We're ok. */
4213 	h->last_heartbeat = heartbeat;
4214 	h->last_heartbeat_timestamp = now;
4215 }
4216 
4217 static int detect_controller_lockup_thread(void *notused)
4218 {
4219 	struct ctlr_info *h;
4220 	unsigned long flags;
4221 
4222 	while (1) {
4223 		struct list_head *this, *tmp;
4224 
4225 		schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4226 		if (kthread_should_stop())
4227 			break;
4228 		spin_lock_irqsave(&lockup_detector_lock, flags);
4229 		list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4230 			h = list_entry(this, struct ctlr_info, lockup_list);
4231 			detect_controller_lockup(h);
4232 		}
4233 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4234 	}
4235 	return 0;
4236 }
4237 
4238 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4239 {
4240 	unsigned long flags;
4241 
4242 	spin_lock_irqsave(&lockup_detector_lock, flags);
4243 	list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4244 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4245 }
4246 
4247 static void start_controller_lockup_detector(struct ctlr_info *h)
4248 {
4249 	/* Start the lockup detector thread if not already started */
4250 	if (!hpsa_lockup_detector) {
4251 		spin_lock_init(&lockup_detector_lock);
4252 		hpsa_lockup_detector =
4253 			kthread_run(detect_controller_lockup_thread,
4254 						NULL, "hpsa");
4255 	}
4256 	if (!hpsa_lockup_detector) {
4257 		dev_warn(&h->pdev->dev,
4258 			"Could not start lockup detector thread\n");
4259 		return;
4260 	}
4261 	add_ctlr_to_lockup_detector_list(h);
4262 }
4263 
4264 static void stop_controller_lockup_detector(struct ctlr_info *h)
4265 {
4266 	unsigned long flags;
4267 
4268 	spin_lock_irqsave(&lockup_detector_lock, flags);
4269 	remove_ctlr_from_lockup_detector_list(h);
4270 	/* If the list of ctlr's to monitor is empty, stop the thread */
4271 	if (list_empty(&hpsa_ctlr_list)) {
4272 		kthread_stop(hpsa_lockup_detector);
4273 		hpsa_lockup_detector = NULL;
4274 	}
4275 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4276 }
4277 
4278 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4279 				    const struct pci_device_id *ent)
4280 {
4281 	int dac, rc;
4282 	struct ctlr_info *h;
4283 	int try_soft_reset = 0;
4284 	unsigned long flags;
4285 
4286 	if (number_of_controllers == 0)
4287 		printk(KERN_INFO DRIVER_NAME "\n");
4288 
4289 	rc = hpsa_init_reset_devices(pdev);
4290 	if (rc) {
4291 		if (rc != -ENOTSUPP)
4292 			return rc;
4293 		/* If the reset fails in a particular way (it has no way to do
4294 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4295 		 * a soft reset once we get the controller configured up to the
4296 		 * point that it can accept a command.
4297 		 */
4298 		try_soft_reset = 1;
4299 		rc = 0;
4300 	}
4301 
4302 reinit_after_soft_reset:
4303 
4304 	/* Command structures must be aligned on a 32-byte boundary because
4305 	 * the 5 lower bits of the address are used by the hardware. and by
4306 	 * the driver.  See comments in hpsa.h for more info.
4307 	 */
4308 #define COMMANDLIST_ALIGNMENT 32
4309 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4310 	h = kzalloc(sizeof(*h), GFP_KERNEL);
4311 	if (!h)
4312 		return -ENOMEM;
4313 
4314 	h->pdev = pdev;
4315 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4316 	INIT_LIST_HEAD(&h->cmpQ);
4317 	INIT_LIST_HEAD(&h->reqQ);
4318 	spin_lock_init(&h->lock);
4319 	spin_lock_init(&h->scan_lock);
4320 	rc = hpsa_pci_init(h);
4321 	if (rc != 0)
4322 		goto clean1;
4323 
4324 	sprintf(h->devname, "hpsa%d", number_of_controllers);
4325 	h->ctlr = number_of_controllers;
4326 	number_of_controllers++;
4327 
4328 	/* configure PCI DMA stuff */
4329 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4330 	if (rc == 0) {
4331 		dac = 1;
4332 	} else {
4333 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4334 		if (rc == 0) {
4335 			dac = 0;
4336 		} else {
4337 			dev_err(&pdev->dev, "no suitable DMA available\n");
4338 			goto clean1;
4339 		}
4340 	}
4341 
4342 	/* make sure the board interrupts are off */
4343 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4344 
4345 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4346 		goto clean2;
4347 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4348 	       h->devname, pdev->device,
4349 	       h->intr[h->intr_mode], dac ? "" : " not");
4350 	if (hpsa_allocate_cmd_pool(h))
4351 		goto clean4;
4352 	if (hpsa_allocate_sg_chain_blocks(h))
4353 		goto clean4;
4354 	init_waitqueue_head(&h->scan_wait_queue);
4355 	h->scan_finished = 1; /* no scan currently in progress */
4356 
4357 	pci_set_drvdata(pdev, h);
4358 	h->ndevices = 0;
4359 	h->scsi_host = NULL;
4360 	spin_lock_init(&h->devlock);
4361 	hpsa_put_ctlr_into_performant_mode(h);
4362 
4363 	/* At this point, the controller is ready to take commands.
4364 	 * Now, if reset_devices and the hard reset didn't work, try
4365 	 * the soft reset and see if that works.
4366 	 */
4367 	if (try_soft_reset) {
4368 
4369 		/* This is kind of gross.  We may or may not get a completion
4370 		 * from the soft reset command, and if we do, then the value
4371 		 * from the fifo may or may not be valid.  So, we wait 10 secs
4372 		 * after the reset throwing away any completions we get during
4373 		 * that time.  Unregister the interrupt handler and register
4374 		 * fake ones to scoop up any residual completions.
4375 		 */
4376 		spin_lock_irqsave(&h->lock, flags);
4377 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4378 		spin_unlock_irqrestore(&h->lock, flags);
4379 		free_irq(h->intr[h->intr_mode], h);
4380 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4381 					hpsa_intx_discard_completions);
4382 		if (rc) {
4383 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4384 				"soft reset.\n");
4385 			goto clean4;
4386 		}
4387 
4388 		rc = hpsa_kdump_soft_reset(h);
4389 		if (rc)
4390 			/* Neither hard nor soft reset worked, we're hosed. */
4391 			goto clean4;
4392 
4393 		dev_info(&h->pdev->dev, "Board READY.\n");
4394 		dev_info(&h->pdev->dev,
4395 			"Waiting for stale completions to drain.\n");
4396 		h->access.set_intr_mask(h, HPSA_INTR_ON);
4397 		msleep(10000);
4398 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4399 
4400 		rc = controller_reset_failed(h->cfgtable);
4401 		if (rc)
4402 			dev_info(&h->pdev->dev,
4403 				"Soft reset appears to have failed.\n");
4404 
4405 		/* since the controller's reset, we have to go back and re-init
4406 		 * everything.  Easiest to just forget what we've done and do it
4407 		 * all over again.
4408 		 */
4409 		hpsa_undo_allocations_after_kdump_soft_reset(h);
4410 		try_soft_reset = 0;
4411 		if (rc)
4412 			/* don't go to clean4, we already unallocated */
4413 			return -ENODEV;
4414 
4415 		goto reinit_after_soft_reset;
4416 	}
4417 
4418 	/* Turn the interrupts on so we can service requests */
4419 	h->access.set_intr_mask(h, HPSA_INTR_ON);
4420 
4421 	hpsa_hba_inquiry(h);
4422 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4423 	start_controller_lockup_detector(h);
4424 	return 1;
4425 
4426 clean4:
4427 	hpsa_free_sg_chain_blocks(h);
4428 	hpsa_free_cmd_pool(h);
4429 	free_irq(h->intr[h->intr_mode], h);
4430 clean2:
4431 clean1:
4432 	kfree(h);
4433 	return rc;
4434 }
4435 
4436 static void hpsa_flush_cache(struct ctlr_info *h)
4437 {
4438 	char *flush_buf;
4439 	struct CommandList *c;
4440 
4441 	flush_buf = kzalloc(4, GFP_KERNEL);
4442 	if (!flush_buf)
4443 		return;
4444 
4445 	c = cmd_special_alloc(h);
4446 	if (!c) {
4447 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4448 		goto out_of_memory;
4449 	}
4450 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4451 		RAID_CTLR_LUNID, TYPE_CMD);
4452 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4453 	if (c->err_info->CommandStatus != 0)
4454 		dev_warn(&h->pdev->dev,
4455 			"error flushing cache on controller\n");
4456 	cmd_special_free(h, c);
4457 out_of_memory:
4458 	kfree(flush_buf);
4459 }
4460 
4461 static void hpsa_shutdown(struct pci_dev *pdev)
4462 {
4463 	struct ctlr_info *h;
4464 
4465 	h = pci_get_drvdata(pdev);
4466 	/* Turn board interrupts off  and send the flush cache command
4467 	 * sendcmd will turn off interrupt, and send the flush...
4468 	 * To write all data in the battery backed cache to disks
4469 	 */
4470 	hpsa_flush_cache(h);
4471 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4472 	free_irq(h->intr[h->intr_mode], h);
4473 #ifdef CONFIG_PCI_MSI
4474 	if (h->msix_vector)
4475 		pci_disable_msix(h->pdev);
4476 	else if (h->msi_vector)
4477 		pci_disable_msi(h->pdev);
4478 #endif				/* CONFIG_PCI_MSI */
4479 }
4480 
4481 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4482 {
4483 	struct ctlr_info *h;
4484 
4485 	if (pci_get_drvdata(pdev) == NULL) {
4486 		dev_err(&pdev->dev, "unable to remove device\n");
4487 		return;
4488 	}
4489 	h = pci_get_drvdata(pdev);
4490 	stop_controller_lockup_detector(h);
4491 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
4492 	hpsa_shutdown(pdev);
4493 	iounmap(h->vaddr);
4494 	iounmap(h->transtable);
4495 	iounmap(h->cfgtable);
4496 	hpsa_free_sg_chain_blocks(h);
4497 	pci_free_consistent(h->pdev,
4498 		h->nr_cmds * sizeof(struct CommandList),
4499 		h->cmd_pool, h->cmd_pool_dhandle);
4500 	pci_free_consistent(h->pdev,
4501 		h->nr_cmds * sizeof(struct ErrorInfo),
4502 		h->errinfo_pool, h->errinfo_pool_dhandle);
4503 	pci_free_consistent(h->pdev, h->reply_pool_size,
4504 		h->reply_pool, h->reply_pool_dhandle);
4505 	kfree(h->cmd_pool_bits);
4506 	kfree(h->blockFetchTable);
4507 	kfree(h->hba_inquiry_data);
4508 	/*
4509 	 * Deliberately omit pci_disable_device(): it does something nasty to
4510 	 * Smart Array controllers that pci_enable_device does not undo
4511 	 */
4512 	pci_release_regions(pdev);
4513 	pci_set_drvdata(pdev, NULL);
4514 	kfree(h);
4515 }
4516 
4517 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4518 	__attribute__((unused)) pm_message_t state)
4519 {
4520 	return -ENOSYS;
4521 }
4522 
4523 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4524 {
4525 	return -ENOSYS;
4526 }
4527 
4528 static struct pci_driver hpsa_pci_driver = {
4529 	.name = "hpsa",
4530 	.probe = hpsa_init_one,
4531 	.remove = __devexit_p(hpsa_remove_one),
4532 	.id_table = hpsa_pci_device_id,	/* id_table */
4533 	.shutdown = hpsa_shutdown,
4534 	.suspend = hpsa_suspend,
4535 	.resume = hpsa_resume,
4536 };
4537 
4538 /* Fill in bucket_map[], given nsgs (the max number of
4539  * scatter gather elements supported) and bucket[],
4540  * which is an array of 8 integers.  The bucket[] array
4541  * contains 8 different DMA transfer sizes (in 16
4542  * byte increments) which the controller uses to fetch
4543  * commands.  This function fills in bucket_map[], which
4544  * maps a given number of scatter gather elements to one of
4545  * the 8 DMA transfer sizes.  The point of it is to allow the
4546  * controller to only do as much DMA as needed to fetch the
4547  * command, with the DMA transfer size encoded in the lower
4548  * bits of the command address.
4549  */
4550 static void  calc_bucket_map(int bucket[], int num_buckets,
4551 	int nsgs, int *bucket_map)
4552 {
4553 	int i, j, b, size;
4554 
4555 	/* even a command with 0 SGs requires 4 blocks */
4556 #define MINIMUM_TRANSFER_BLOCKS 4
4557 #define NUM_BUCKETS 8
4558 	/* Note, bucket_map must have nsgs+1 entries. */
4559 	for (i = 0; i <= nsgs; i++) {
4560 		/* Compute size of a command with i SG entries */
4561 		size = i + MINIMUM_TRANSFER_BLOCKS;
4562 		b = num_buckets; /* Assume the biggest bucket */
4563 		/* Find the bucket that is just big enough */
4564 		for (j = 0; j < 8; j++) {
4565 			if (bucket[j] >= size) {
4566 				b = j;
4567 				break;
4568 			}
4569 		}
4570 		/* for a command with i SG entries, use bucket b. */
4571 		bucket_map[i] = b;
4572 	}
4573 }
4574 
4575 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4576 	u32 use_short_tags)
4577 {
4578 	int i;
4579 	unsigned long register_value;
4580 
4581 	/* This is a bit complicated.  There are 8 registers on
4582 	 * the controller which we write to to tell it 8 different
4583 	 * sizes of commands which there may be.  It's a way of
4584 	 * reducing the DMA done to fetch each command.  Encoded into
4585 	 * each command's tag are 3 bits which communicate to the controller
4586 	 * which of the eight sizes that command fits within.  The size of
4587 	 * each command depends on how many scatter gather entries there are.
4588 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4589 	 * with the number of 16-byte blocks a command of that size requires.
4590 	 * The smallest command possible requires 5 such 16 byte blocks.
4591 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4592 	 * blocks.  Note, this only extends to the SG entries contained
4593 	 * within the command block, and does not extend to chained blocks
4594 	 * of SG elements.   bft[] contains the eight values we write to
4595 	 * the registers.  They are not evenly distributed, but have more
4596 	 * sizes for small commands, and fewer sizes for larger commands.
4597 	 */
4598 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4599 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4600 	/*  5 = 1 s/g entry or 4k
4601 	 *  6 = 2 s/g entry or 8k
4602 	 *  8 = 4 s/g entry or 16k
4603 	 * 10 = 6 s/g entry or 24k
4604 	 */
4605 
4606 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4607 
4608 	/* Controller spec: zero out this buffer. */
4609 	memset(h->reply_pool, 0, h->reply_pool_size);
4610 	h->reply_pool_head = h->reply_pool;
4611 
4612 	bft[7] = h->max_sg_entries + 4;
4613 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4614 	for (i = 0; i < 8; i++)
4615 		writel(bft[i], &h->transtable->BlockFetch[i]);
4616 
4617 	/* size of controller ring buffer */
4618 	writel(h->max_commands, &h->transtable->RepQSize);
4619 	writel(1, &h->transtable->RepQCount);
4620 	writel(0, &h->transtable->RepQCtrAddrLow32);
4621 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4622 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4623 	writel(0, &h->transtable->RepQAddr0High32);
4624 	writel(CFGTBL_Trans_Performant | use_short_tags,
4625 		&(h->cfgtable->HostWrite.TransportRequest));
4626 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4627 	hpsa_wait_for_mode_change_ack(h);
4628 	register_value = readl(&(h->cfgtable->TransportActive));
4629 	if (!(register_value & CFGTBL_Trans_Performant)) {
4630 		dev_warn(&h->pdev->dev, "unable to get board into"
4631 					" performant mode\n");
4632 		return;
4633 	}
4634 	/* Change the access methods to the performant access methods */
4635 	h->access = SA5_performant_access;
4636 	h->transMethod = CFGTBL_Trans_Performant;
4637 }
4638 
4639 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4640 {
4641 	u32 trans_support;
4642 
4643 	if (hpsa_simple_mode)
4644 		return;
4645 
4646 	trans_support = readl(&(h->cfgtable->TransportSupport));
4647 	if (!(trans_support & PERFORMANT_MODE))
4648 		return;
4649 
4650 	hpsa_get_max_perf_mode_cmds(h);
4651 	h->max_sg_entries = 32;
4652 	/* Performant mode ring buffer and supporting data structures */
4653 	h->reply_pool_size = h->max_commands * sizeof(u64);
4654 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4655 				&(h->reply_pool_dhandle));
4656 
4657 	/* Need a block fetch table for performant mode */
4658 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4659 				sizeof(u32)), GFP_KERNEL);
4660 
4661 	if ((h->reply_pool == NULL)
4662 		|| (h->blockFetchTable == NULL))
4663 		goto clean_up;
4664 
4665 	hpsa_enter_performant_mode(h,
4666 		trans_support & CFGTBL_Trans_use_short_tags);
4667 
4668 	return;
4669 
4670 clean_up:
4671 	if (h->reply_pool)
4672 		pci_free_consistent(h->pdev, h->reply_pool_size,
4673 			h->reply_pool, h->reply_pool_dhandle);
4674 	kfree(h->blockFetchTable);
4675 }
4676 
4677 /*
4678  *  This is it.  Register the PCI driver information for the cards we control
4679  *  the OS will call our registered routines when it finds one of our cards.
4680  */
4681 static int __init hpsa_init(void)
4682 {
4683 	return pci_register_driver(&hpsa_pci_driver);
4684 }
4685 
4686 static void __exit hpsa_cleanup(void)
4687 {
4688 	pci_unregister_driver(&hpsa_pci_driver);
4689 }
4690 
4691 module_init(hpsa_init);
4692 module_exit(hpsa_cleanup);
4693