xref: /linux/drivers/scsi/hpsa.c (revision 068df0f34e81bc06c5eb5012ec2eda25624e87aa)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/kthread.h>
51 #include <linux/jiffies.h>
52 #include "hpsa_cmd.h"
53 #include "hpsa.h"
54 
55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56 #define HPSA_DRIVER_VERSION "2.0.2-1"
57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 
59 /* How long to wait (in milliseconds) for board to go into simple mode */
60 #define MAX_CONFIG_WAIT 30000
61 #define MAX_IOCTL_CONFIG_WAIT 1000
62 
63 /*define how many times we will try a command because of bus resets */
64 #define MAX_CMD_RETRIES 3
65 
66 /* Embedded module documentation macros - see modules.h */
67 MODULE_AUTHOR("Hewlett-Packard Company");
68 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
69 	HPSA_DRIVER_VERSION);
70 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
71 MODULE_VERSION(HPSA_DRIVER_VERSION);
72 MODULE_LICENSE("GPL");
73 
74 static int hpsa_allow_any;
75 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
76 MODULE_PARM_DESC(hpsa_allow_any,
77 		"Allow hpsa driver to access unknown HP Smart Array hardware");
78 static int hpsa_simple_mode;
79 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(hpsa_simple_mode,
81 	"Use 'simple mode' rather than 'performant mode'");
82 
83 /* define the PCI info for the cards we can control */
84 static const struct pci_device_id hpsa_pci_device_id[] = {
85 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
100 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
101 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
102 	{0,}
103 };
104 
105 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
106 
107 /*  board_id = Subsystem Device ID & Vendor ID
108  *  product = Marketing Name for the board
109  *  access = Address of the struct of function pointers
110  */
111 static struct board_type products[] = {
112 	{0x3241103C, "Smart Array P212", &SA5_access},
113 	{0x3243103C, "Smart Array P410", &SA5_access},
114 	{0x3245103C, "Smart Array P410i", &SA5_access},
115 	{0x3247103C, "Smart Array P411", &SA5_access},
116 	{0x3249103C, "Smart Array P812", &SA5_access},
117 	{0x324a103C, "Smart Array P712m", &SA5_access},
118 	{0x324b103C, "Smart Array P711m", &SA5_access},
119 	{0x3350103C, "Smart Array", &SA5_access},
120 	{0x3351103C, "Smart Array", &SA5_access},
121 	{0x3352103C, "Smart Array", &SA5_access},
122 	{0x3353103C, "Smart Array", &SA5_access},
123 	{0x3354103C, "Smart Array", &SA5_access},
124 	{0x3355103C, "Smart Array", &SA5_access},
125 	{0x3356103C, "Smart Array", &SA5_access},
126 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
127 };
128 
129 static int number_of_controllers;
130 
131 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
132 static spinlock_t lockup_detector_lock;
133 static struct task_struct *hpsa_lockup_detector;
134 
135 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
136 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
137 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
138 static void start_io(struct ctlr_info *h);
139 
140 #ifdef CONFIG_COMPAT
141 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
142 #endif
143 
144 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
145 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
146 static struct CommandList *cmd_alloc(struct ctlr_info *h);
147 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
148 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
149 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
150 	int cmd_type);
151 
152 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
153 static void hpsa_scan_start(struct Scsi_Host *);
154 static int hpsa_scan_finished(struct Scsi_Host *sh,
155 	unsigned long elapsed_time);
156 static int hpsa_change_queue_depth(struct scsi_device *sdev,
157 	int qdepth, int reason);
158 
159 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
160 static int hpsa_slave_alloc(struct scsi_device *sdev);
161 static void hpsa_slave_destroy(struct scsi_device *sdev);
162 
163 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
164 static int check_for_unit_attention(struct ctlr_info *h,
165 	struct CommandList *c);
166 static void check_ioctl_unit_attention(struct ctlr_info *h,
167 	struct CommandList *c);
168 /* performant mode helper functions */
169 static void calc_bucket_map(int *bucket, int num_buckets,
170 	int nsgs, int *bucket_map);
171 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
172 static inline u32 next_command(struct ctlr_info *h);
173 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
174 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
175 	u64 *cfg_offset);
176 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
177 	unsigned long *memory_bar);
178 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
179 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
180 	void __iomem *vaddr, int wait_for_ready);
181 #define BOARD_NOT_READY 0
182 #define BOARD_READY 1
183 
184 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
185 {
186 	unsigned long *priv = shost_priv(sdev->host);
187 	return (struct ctlr_info *) *priv;
188 }
189 
190 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
191 {
192 	unsigned long *priv = shost_priv(sh);
193 	return (struct ctlr_info *) *priv;
194 }
195 
196 static int check_for_unit_attention(struct ctlr_info *h,
197 	struct CommandList *c)
198 {
199 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
200 		return 0;
201 
202 	switch (c->err_info->SenseInfo[12]) {
203 	case STATE_CHANGED:
204 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
205 			"detected, command retried\n", h->ctlr);
206 		break;
207 	case LUN_FAILED:
208 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
209 			"detected, action required\n", h->ctlr);
210 		break;
211 	case REPORT_LUNS_CHANGED:
212 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
213 			"changed, action required\n", h->ctlr);
214 	/*
215 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
216 	 */
217 		break;
218 	case POWER_OR_RESET:
219 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
220 			"or device reset detected\n", h->ctlr);
221 		break;
222 	case UNIT_ATTENTION_CLEARED:
223 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
224 		    "cleared by another initiator\n", h->ctlr);
225 		break;
226 	default:
227 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
228 			"unit attention detected\n", h->ctlr);
229 		break;
230 	}
231 	return 1;
232 }
233 
234 static ssize_t host_store_rescan(struct device *dev,
235 				 struct device_attribute *attr,
236 				 const char *buf, size_t count)
237 {
238 	struct ctlr_info *h;
239 	struct Scsi_Host *shost = class_to_shost(dev);
240 	h = shost_to_hba(shost);
241 	hpsa_scan_start(h->scsi_host);
242 	return count;
243 }
244 
245 static ssize_t host_show_firmware_revision(struct device *dev,
246 	     struct device_attribute *attr, char *buf)
247 {
248 	struct ctlr_info *h;
249 	struct Scsi_Host *shost = class_to_shost(dev);
250 	unsigned char *fwrev;
251 
252 	h = shost_to_hba(shost);
253 	if (!h->hba_inquiry_data)
254 		return 0;
255 	fwrev = &h->hba_inquiry_data[32];
256 	return snprintf(buf, 20, "%c%c%c%c\n",
257 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
258 }
259 
260 static ssize_t host_show_commands_outstanding(struct device *dev,
261 	     struct device_attribute *attr, char *buf)
262 {
263 	struct Scsi_Host *shost = class_to_shost(dev);
264 	struct ctlr_info *h = shost_to_hba(shost);
265 
266 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
267 }
268 
269 static ssize_t host_show_transport_mode(struct device *dev,
270 	struct device_attribute *attr, char *buf)
271 {
272 	struct ctlr_info *h;
273 	struct Scsi_Host *shost = class_to_shost(dev);
274 
275 	h = shost_to_hba(shost);
276 	return snprintf(buf, 20, "%s\n",
277 		h->transMethod & CFGTBL_Trans_Performant ?
278 			"performant" : "simple");
279 }
280 
281 /* List of controllers which cannot be hard reset on kexec with reset_devices */
282 static u32 unresettable_controller[] = {
283 	0x324a103C, /* Smart Array P712m */
284 	0x324b103C, /* SmartArray P711m */
285 	0x3223103C, /* Smart Array P800 */
286 	0x3234103C, /* Smart Array P400 */
287 	0x3235103C, /* Smart Array P400i */
288 	0x3211103C, /* Smart Array E200i */
289 	0x3212103C, /* Smart Array E200 */
290 	0x3213103C, /* Smart Array E200i */
291 	0x3214103C, /* Smart Array E200i */
292 	0x3215103C, /* Smart Array E200i */
293 	0x3237103C, /* Smart Array E500 */
294 	0x323D103C, /* Smart Array P700m */
295 	0x409C0E11, /* Smart Array 6400 */
296 	0x409D0E11, /* Smart Array 6400 EM */
297 };
298 
299 /* List of controllers which cannot even be soft reset */
300 static u32 soft_unresettable_controller[] = {
301 	/* Exclude 640x boards.  These are two pci devices in one slot
302 	 * which share a battery backed cache module.  One controls the
303 	 * cache, the other accesses the cache through the one that controls
304 	 * it.  If we reset the one controlling the cache, the other will
305 	 * likely not be happy.  Just forbid resetting this conjoined mess.
306 	 * The 640x isn't really supported by hpsa anyway.
307 	 */
308 	0x409C0E11, /* Smart Array 6400 */
309 	0x409D0E11, /* Smart Array 6400 EM */
310 };
311 
312 static int ctlr_is_hard_resettable(u32 board_id)
313 {
314 	int i;
315 
316 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
317 		if (unresettable_controller[i] == board_id)
318 			return 0;
319 	return 1;
320 }
321 
322 static int ctlr_is_soft_resettable(u32 board_id)
323 {
324 	int i;
325 
326 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
327 		if (soft_unresettable_controller[i] == board_id)
328 			return 0;
329 	return 1;
330 }
331 
332 static int ctlr_is_resettable(u32 board_id)
333 {
334 	return ctlr_is_hard_resettable(board_id) ||
335 		ctlr_is_soft_resettable(board_id);
336 }
337 
338 static ssize_t host_show_resettable(struct device *dev,
339 	struct device_attribute *attr, char *buf)
340 {
341 	struct ctlr_info *h;
342 	struct Scsi_Host *shost = class_to_shost(dev);
343 
344 	h = shost_to_hba(shost);
345 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
346 }
347 
348 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
349 {
350 	return (scsi3addr[3] & 0xC0) == 0x40;
351 }
352 
353 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
354 	"UNKNOWN"
355 };
356 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
357 
358 static ssize_t raid_level_show(struct device *dev,
359 	     struct device_attribute *attr, char *buf)
360 {
361 	ssize_t l = 0;
362 	unsigned char rlevel;
363 	struct ctlr_info *h;
364 	struct scsi_device *sdev;
365 	struct hpsa_scsi_dev_t *hdev;
366 	unsigned long flags;
367 
368 	sdev = to_scsi_device(dev);
369 	h = sdev_to_hba(sdev);
370 	spin_lock_irqsave(&h->lock, flags);
371 	hdev = sdev->hostdata;
372 	if (!hdev) {
373 		spin_unlock_irqrestore(&h->lock, flags);
374 		return -ENODEV;
375 	}
376 
377 	/* Is this even a logical drive? */
378 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
379 		spin_unlock_irqrestore(&h->lock, flags);
380 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
381 		return l;
382 	}
383 
384 	rlevel = hdev->raid_level;
385 	spin_unlock_irqrestore(&h->lock, flags);
386 	if (rlevel > RAID_UNKNOWN)
387 		rlevel = RAID_UNKNOWN;
388 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
389 	return l;
390 }
391 
392 static ssize_t lunid_show(struct device *dev,
393 	     struct device_attribute *attr, char *buf)
394 {
395 	struct ctlr_info *h;
396 	struct scsi_device *sdev;
397 	struct hpsa_scsi_dev_t *hdev;
398 	unsigned long flags;
399 	unsigned char lunid[8];
400 
401 	sdev = to_scsi_device(dev);
402 	h = sdev_to_hba(sdev);
403 	spin_lock_irqsave(&h->lock, flags);
404 	hdev = sdev->hostdata;
405 	if (!hdev) {
406 		spin_unlock_irqrestore(&h->lock, flags);
407 		return -ENODEV;
408 	}
409 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
410 	spin_unlock_irqrestore(&h->lock, flags);
411 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
412 		lunid[0], lunid[1], lunid[2], lunid[3],
413 		lunid[4], lunid[5], lunid[6], lunid[7]);
414 }
415 
416 static ssize_t unique_id_show(struct device *dev,
417 	     struct device_attribute *attr, char *buf)
418 {
419 	struct ctlr_info *h;
420 	struct scsi_device *sdev;
421 	struct hpsa_scsi_dev_t *hdev;
422 	unsigned long flags;
423 	unsigned char sn[16];
424 
425 	sdev = to_scsi_device(dev);
426 	h = sdev_to_hba(sdev);
427 	spin_lock_irqsave(&h->lock, flags);
428 	hdev = sdev->hostdata;
429 	if (!hdev) {
430 		spin_unlock_irqrestore(&h->lock, flags);
431 		return -ENODEV;
432 	}
433 	memcpy(sn, hdev->device_id, sizeof(sn));
434 	spin_unlock_irqrestore(&h->lock, flags);
435 	return snprintf(buf, 16 * 2 + 2,
436 			"%02X%02X%02X%02X%02X%02X%02X%02X"
437 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
438 			sn[0], sn[1], sn[2], sn[3],
439 			sn[4], sn[5], sn[6], sn[7],
440 			sn[8], sn[9], sn[10], sn[11],
441 			sn[12], sn[13], sn[14], sn[15]);
442 }
443 
444 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
445 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
446 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
447 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
448 static DEVICE_ATTR(firmware_revision, S_IRUGO,
449 	host_show_firmware_revision, NULL);
450 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
451 	host_show_commands_outstanding, NULL);
452 static DEVICE_ATTR(transport_mode, S_IRUGO,
453 	host_show_transport_mode, NULL);
454 static DEVICE_ATTR(resettable, S_IRUGO,
455 	host_show_resettable, NULL);
456 
457 static struct device_attribute *hpsa_sdev_attrs[] = {
458 	&dev_attr_raid_level,
459 	&dev_attr_lunid,
460 	&dev_attr_unique_id,
461 	NULL,
462 };
463 
464 static struct device_attribute *hpsa_shost_attrs[] = {
465 	&dev_attr_rescan,
466 	&dev_attr_firmware_revision,
467 	&dev_attr_commands_outstanding,
468 	&dev_attr_transport_mode,
469 	&dev_attr_resettable,
470 	NULL,
471 };
472 
473 static struct scsi_host_template hpsa_driver_template = {
474 	.module			= THIS_MODULE,
475 	.name			= "hpsa",
476 	.proc_name		= "hpsa",
477 	.queuecommand		= hpsa_scsi_queue_command,
478 	.scan_start		= hpsa_scan_start,
479 	.scan_finished		= hpsa_scan_finished,
480 	.change_queue_depth	= hpsa_change_queue_depth,
481 	.this_id		= -1,
482 	.use_clustering		= ENABLE_CLUSTERING,
483 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
484 	.ioctl			= hpsa_ioctl,
485 	.slave_alloc		= hpsa_slave_alloc,
486 	.slave_destroy		= hpsa_slave_destroy,
487 #ifdef CONFIG_COMPAT
488 	.compat_ioctl		= hpsa_compat_ioctl,
489 #endif
490 	.sdev_attrs = hpsa_sdev_attrs,
491 	.shost_attrs = hpsa_shost_attrs,
492 	.max_sectors = 8192,
493 };
494 
495 
496 /* Enqueuing and dequeuing functions for cmdlists. */
497 static inline void addQ(struct list_head *list, struct CommandList *c)
498 {
499 	list_add_tail(&c->list, list);
500 }
501 
502 static inline u32 next_command(struct ctlr_info *h)
503 {
504 	u32 a;
505 
506 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
507 		return h->access.command_completed(h);
508 
509 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
510 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
511 		(h->reply_pool_head)++;
512 		h->commands_outstanding--;
513 	} else {
514 		a = FIFO_EMPTY;
515 	}
516 	/* Check for wraparound */
517 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
518 		h->reply_pool_head = h->reply_pool;
519 		h->reply_pool_wraparound ^= 1;
520 	}
521 	return a;
522 }
523 
524 /* set_performant_mode: Modify the tag for cciss performant
525  * set bit 0 for pull model, bits 3-1 for block fetch
526  * register number
527  */
528 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
529 {
530 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
531 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
532 }
533 
534 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
535 	struct CommandList *c)
536 {
537 	unsigned long flags;
538 
539 	set_performant_mode(h, c);
540 	spin_lock_irqsave(&h->lock, flags);
541 	addQ(&h->reqQ, c);
542 	h->Qdepth++;
543 	start_io(h);
544 	spin_unlock_irqrestore(&h->lock, flags);
545 }
546 
547 static inline void removeQ(struct CommandList *c)
548 {
549 	if (WARN_ON(list_empty(&c->list)))
550 		return;
551 	list_del_init(&c->list);
552 }
553 
554 static inline int is_hba_lunid(unsigned char scsi3addr[])
555 {
556 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
557 }
558 
559 static inline int is_scsi_rev_5(struct ctlr_info *h)
560 {
561 	if (!h->hba_inquiry_data)
562 		return 0;
563 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
564 		return 1;
565 	return 0;
566 }
567 
568 static int hpsa_find_target_lun(struct ctlr_info *h,
569 	unsigned char scsi3addr[], int bus, int *target, int *lun)
570 {
571 	/* finds an unused bus, target, lun for a new physical device
572 	 * assumes h->devlock is held
573 	 */
574 	int i, found = 0;
575 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
576 
577 	memset(&lun_taken[0], 0, HPSA_MAX_DEVICES >> 3);
578 
579 	for (i = 0; i < h->ndevices; i++) {
580 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
581 			set_bit(h->dev[i]->target, lun_taken);
582 	}
583 
584 	for (i = 0; i < HPSA_MAX_DEVICES; i++) {
585 		if (!test_bit(i, lun_taken)) {
586 			/* *bus = 1; */
587 			*target = i;
588 			*lun = 0;
589 			found = 1;
590 			break;
591 		}
592 	}
593 	return !found;
594 }
595 
596 /* Add an entry into h->dev[] array. */
597 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
598 		struct hpsa_scsi_dev_t *device,
599 		struct hpsa_scsi_dev_t *added[], int *nadded)
600 {
601 	/* assumes h->devlock is held */
602 	int n = h->ndevices;
603 	int i;
604 	unsigned char addr1[8], addr2[8];
605 	struct hpsa_scsi_dev_t *sd;
606 
607 	if (n >= HPSA_MAX_DEVICES) {
608 		dev_err(&h->pdev->dev, "too many devices, some will be "
609 			"inaccessible.\n");
610 		return -1;
611 	}
612 
613 	/* physical devices do not have lun or target assigned until now. */
614 	if (device->lun != -1)
615 		/* Logical device, lun is already assigned. */
616 		goto lun_assigned;
617 
618 	/* If this device a non-zero lun of a multi-lun device
619 	 * byte 4 of the 8-byte LUN addr will contain the logical
620 	 * unit no, zero otherise.
621 	 */
622 	if (device->scsi3addr[4] == 0) {
623 		/* This is not a non-zero lun of a multi-lun device */
624 		if (hpsa_find_target_lun(h, device->scsi3addr,
625 			device->bus, &device->target, &device->lun) != 0)
626 			return -1;
627 		goto lun_assigned;
628 	}
629 
630 	/* This is a non-zero lun of a multi-lun device.
631 	 * Search through our list and find the device which
632 	 * has the same 8 byte LUN address, excepting byte 4.
633 	 * Assign the same bus and target for this new LUN.
634 	 * Use the logical unit number from the firmware.
635 	 */
636 	memcpy(addr1, device->scsi3addr, 8);
637 	addr1[4] = 0;
638 	for (i = 0; i < n; i++) {
639 		sd = h->dev[i];
640 		memcpy(addr2, sd->scsi3addr, 8);
641 		addr2[4] = 0;
642 		/* differ only in byte 4? */
643 		if (memcmp(addr1, addr2, 8) == 0) {
644 			device->bus = sd->bus;
645 			device->target = sd->target;
646 			device->lun = device->scsi3addr[4];
647 			break;
648 		}
649 	}
650 	if (device->lun == -1) {
651 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
652 			" suspect firmware bug or unsupported hardware "
653 			"configuration.\n");
654 			return -1;
655 	}
656 
657 lun_assigned:
658 
659 	h->dev[n] = device;
660 	h->ndevices++;
661 	added[*nadded] = device;
662 	(*nadded)++;
663 
664 	/* initially, (before registering with scsi layer) we don't
665 	 * know our hostno and we don't want to print anything first
666 	 * time anyway (the scsi layer's inquiries will show that info)
667 	 */
668 	/* if (hostno != -1) */
669 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
670 			scsi_device_type(device->devtype), hostno,
671 			device->bus, device->target, device->lun);
672 	return 0;
673 }
674 
675 /* Replace an entry from h->dev[] array. */
676 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
677 	int entry, struct hpsa_scsi_dev_t *new_entry,
678 	struct hpsa_scsi_dev_t *added[], int *nadded,
679 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
680 {
681 	/* assumes h->devlock is held */
682 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
683 	removed[*nremoved] = h->dev[entry];
684 	(*nremoved)++;
685 
686 	/*
687 	 * New physical devices won't have target/lun assigned yet
688 	 * so we need to preserve the values in the slot we are replacing.
689 	 */
690 	if (new_entry->target == -1) {
691 		new_entry->target = h->dev[entry]->target;
692 		new_entry->lun = h->dev[entry]->lun;
693 	}
694 
695 	h->dev[entry] = new_entry;
696 	added[*nadded] = new_entry;
697 	(*nadded)++;
698 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
699 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
700 			new_entry->target, new_entry->lun);
701 }
702 
703 /* Remove an entry from h->dev[] array. */
704 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
705 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
706 {
707 	/* assumes h->devlock is held */
708 	int i;
709 	struct hpsa_scsi_dev_t *sd;
710 
711 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
712 
713 	sd = h->dev[entry];
714 	removed[*nremoved] = h->dev[entry];
715 	(*nremoved)++;
716 
717 	for (i = entry; i < h->ndevices-1; i++)
718 		h->dev[i] = h->dev[i+1];
719 	h->ndevices--;
720 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
721 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
722 		sd->lun);
723 }
724 
725 #define SCSI3ADDR_EQ(a, b) ( \
726 	(a)[7] == (b)[7] && \
727 	(a)[6] == (b)[6] && \
728 	(a)[5] == (b)[5] && \
729 	(a)[4] == (b)[4] && \
730 	(a)[3] == (b)[3] && \
731 	(a)[2] == (b)[2] && \
732 	(a)[1] == (b)[1] && \
733 	(a)[0] == (b)[0])
734 
735 static void fixup_botched_add(struct ctlr_info *h,
736 	struct hpsa_scsi_dev_t *added)
737 {
738 	/* called when scsi_add_device fails in order to re-adjust
739 	 * h->dev[] to match the mid layer's view.
740 	 */
741 	unsigned long flags;
742 	int i, j;
743 
744 	spin_lock_irqsave(&h->lock, flags);
745 	for (i = 0; i < h->ndevices; i++) {
746 		if (h->dev[i] == added) {
747 			for (j = i; j < h->ndevices-1; j++)
748 				h->dev[j] = h->dev[j+1];
749 			h->ndevices--;
750 			break;
751 		}
752 	}
753 	spin_unlock_irqrestore(&h->lock, flags);
754 	kfree(added);
755 }
756 
757 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
758 	struct hpsa_scsi_dev_t *dev2)
759 {
760 	/* we compare everything except lun and target as these
761 	 * are not yet assigned.  Compare parts likely
762 	 * to differ first
763 	 */
764 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
765 		sizeof(dev1->scsi3addr)) != 0)
766 		return 0;
767 	if (memcmp(dev1->device_id, dev2->device_id,
768 		sizeof(dev1->device_id)) != 0)
769 		return 0;
770 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
771 		return 0;
772 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
773 		return 0;
774 	if (dev1->devtype != dev2->devtype)
775 		return 0;
776 	if (dev1->bus != dev2->bus)
777 		return 0;
778 	return 1;
779 }
780 
781 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
782  * and return needle location in *index.  If scsi3addr matches, but not
783  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
784  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
785  */
786 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
787 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
788 	int *index)
789 {
790 	int i;
791 #define DEVICE_NOT_FOUND 0
792 #define DEVICE_CHANGED 1
793 #define DEVICE_SAME 2
794 	for (i = 0; i < haystack_size; i++) {
795 		if (haystack[i] == NULL) /* previously removed. */
796 			continue;
797 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
798 			*index = i;
799 			if (device_is_the_same(needle, haystack[i]))
800 				return DEVICE_SAME;
801 			else
802 				return DEVICE_CHANGED;
803 		}
804 	}
805 	*index = -1;
806 	return DEVICE_NOT_FOUND;
807 }
808 
809 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
810 	struct hpsa_scsi_dev_t *sd[], int nsds)
811 {
812 	/* sd contains scsi3 addresses and devtypes, and inquiry
813 	 * data.  This function takes what's in sd to be the current
814 	 * reality and updates h->dev[] to reflect that reality.
815 	 */
816 	int i, entry, device_change, changes = 0;
817 	struct hpsa_scsi_dev_t *csd;
818 	unsigned long flags;
819 	struct hpsa_scsi_dev_t **added, **removed;
820 	int nadded, nremoved;
821 	struct Scsi_Host *sh = NULL;
822 
823 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
824 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
825 
826 	if (!added || !removed) {
827 		dev_warn(&h->pdev->dev, "out of memory in "
828 			"adjust_hpsa_scsi_table\n");
829 		goto free_and_out;
830 	}
831 
832 	spin_lock_irqsave(&h->devlock, flags);
833 
834 	/* find any devices in h->dev[] that are not in
835 	 * sd[] and remove them from h->dev[], and for any
836 	 * devices which have changed, remove the old device
837 	 * info and add the new device info.
838 	 */
839 	i = 0;
840 	nremoved = 0;
841 	nadded = 0;
842 	while (i < h->ndevices) {
843 		csd = h->dev[i];
844 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
845 		if (device_change == DEVICE_NOT_FOUND) {
846 			changes++;
847 			hpsa_scsi_remove_entry(h, hostno, i,
848 				removed, &nremoved);
849 			continue; /* remove ^^^, hence i not incremented */
850 		} else if (device_change == DEVICE_CHANGED) {
851 			changes++;
852 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
853 				added, &nadded, removed, &nremoved);
854 			/* Set it to NULL to prevent it from being freed
855 			 * at the bottom of hpsa_update_scsi_devices()
856 			 */
857 			sd[entry] = NULL;
858 		}
859 		i++;
860 	}
861 
862 	/* Now, make sure every device listed in sd[] is also
863 	 * listed in h->dev[], adding them if they aren't found
864 	 */
865 
866 	for (i = 0; i < nsds; i++) {
867 		if (!sd[i]) /* if already added above. */
868 			continue;
869 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
870 					h->ndevices, &entry);
871 		if (device_change == DEVICE_NOT_FOUND) {
872 			changes++;
873 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
874 				added, &nadded) != 0)
875 				break;
876 			sd[i] = NULL; /* prevent from being freed later. */
877 		} else if (device_change == DEVICE_CHANGED) {
878 			/* should never happen... */
879 			changes++;
880 			dev_warn(&h->pdev->dev,
881 				"device unexpectedly changed.\n");
882 			/* but if it does happen, we just ignore that device */
883 		}
884 	}
885 	spin_unlock_irqrestore(&h->devlock, flags);
886 
887 	/* Don't notify scsi mid layer of any changes the first time through
888 	 * (or if there are no changes) scsi_scan_host will do it later the
889 	 * first time through.
890 	 */
891 	if (hostno == -1 || !changes)
892 		goto free_and_out;
893 
894 	sh = h->scsi_host;
895 	/* Notify scsi mid layer of any removed devices */
896 	for (i = 0; i < nremoved; i++) {
897 		struct scsi_device *sdev =
898 			scsi_device_lookup(sh, removed[i]->bus,
899 				removed[i]->target, removed[i]->lun);
900 		if (sdev != NULL) {
901 			scsi_remove_device(sdev);
902 			scsi_device_put(sdev);
903 		} else {
904 			/* We don't expect to get here.
905 			 * future cmds to this device will get selection
906 			 * timeout as if the device was gone.
907 			 */
908 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
909 				" for removal.", hostno, removed[i]->bus,
910 				removed[i]->target, removed[i]->lun);
911 		}
912 		kfree(removed[i]);
913 		removed[i] = NULL;
914 	}
915 
916 	/* Notify scsi mid layer of any added devices */
917 	for (i = 0; i < nadded; i++) {
918 		if (scsi_add_device(sh, added[i]->bus,
919 			added[i]->target, added[i]->lun) == 0)
920 			continue;
921 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
922 			"device not added.\n", hostno, added[i]->bus,
923 			added[i]->target, added[i]->lun);
924 		/* now we have to remove it from h->dev,
925 		 * since it didn't get added to scsi mid layer
926 		 */
927 		fixup_botched_add(h, added[i]);
928 	}
929 
930 free_and_out:
931 	kfree(added);
932 	kfree(removed);
933 }
934 
935 /*
936  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
937  * Assume's h->devlock is held.
938  */
939 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
940 	int bus, int target, int lun)
941 {
942 	int i;
943 	struct hpsa_scsi_dev_t *sd;
944 
945 	for (i = 0; i < h->ndevices; i++) {
946 		sd = h->dev[i];
947 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
948 			return sd;
949 	}
950 	return NULL;
951 }
952 
953 /* link sdev->hostdata to our per-device structure. */
954 static int hpsa_slave_alloc(struct scsi_device *sdev)
955 {
956 	struct hpsa_scsi_dev_t *sd;
957 	unsigned long flags;
958 	struct ctlr_info *h;
959 
960 	h = sdev_to_hba(sdev);
961 	spin_lock_irqsave(&h->devlock, flags);
962 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
963 		sdev_id(sdev), sdev->lun);
964 	if (sd != NULL)
965 		sdev->hostdata = sd;
966 	spin_unlock_irqrestore(&h->devlock, flags);
967 	return 0;
968 }
969 
970 static void hpsa_slave_destroy(struct scsi_device *sdev)
971 {
972 	/* nothing to do. */
973 }
974 
975 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
976 {
977 	int i;
978 
979 	if (!h->cmd_sg_list)
980 		return;
981 	for (i = 0; i < h->nr_cmds; i++) {
982 		kfree(h->cmd_sg_list[i]);
983 		h->cmd_sg_list[i] = NULL;
984 	}
985 	kfree(h->cmd_sg_list);
986 	h->cmd_sg_list = NULL;
987 }
988 
989 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
990 {
991 	int i;
992 
993 	if (h->chainsize <= 0)
994 		return 0;
995 
996 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
997 				GFP_KERNEL);
998 	if (!h->cmd_sg_list)
999 		return -ENOMEM;
1000 	for (i = 0; i < h->nr_cmds; i++) {
1001 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1002 						h->chainsize, GFP_KERNEL);
1003 		if (!h->cmd_sg_list[i])
1004 			goto clean;
1005 	}
1006 	return 0;
1007 
1008 clean:
1009 	hpsa_free_sg_chain_blocks(h);
1010 	return -ENOMEM;
1011 }
1012 
1013 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1014 	struct CommandList *c)
1015 {
1016 	struct SGDescriptor *chain_sg, *chain_block;
1017 	u64 temp64;
1018 
1019 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1020 	chain_block = h->cmd_sg_list[c->cmdindex];
1021 	chain_sg->Ext = HPSA_SG_CHAIN;
1022 	chain_sg->Len = sizeof(*chain_sg) *
1023 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1024 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1025 				PCI_DMA_TODEVICE);
1026 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1027 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1028 }
1029 
1030 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1031 	struct CommandList *c)
1032 {
1033 	struct SGDescriptor *chain_sg;
1034 	union u64bit temp64;
1035 
1036 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1037 		return;
1038 
1039 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1040 	temp64.val32.lower = chain_sg->Addr.lower;
1041 	temp64.val32.upper = chain_sg->Addr.upper;
1042 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1043 }
1044 
1045 static void complete_scsi_command(struct CommandList *cp)
1046 {
1047 	struct scsi_cmnd *cmd;
1048 	struct ctlr_info *h;
1049 	struct ErrorInfo *ei;
1050 
1051 	unsigned char sense_key;
1052 	unsigned char asc;      /* additional sense code */
1053 	unsigned char ascq;     /* additional sense code qualifier */
1054 	unsigned long sense_data_size;
1055 
1056 	ei = cp->err_info;
1057 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1058 	h = cp->h;
1059 
1060 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1061 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1062 		hpsa_unmap_sg_chain_block(h, cp);
1063 
1064 	cmd->result = (DID_OK << 16); 		/* host byte */
1065 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1066 	cmd->result |= ei->ScsiStatus;
1067 
1068 	/* copy the sense data whether we need to or not. */
1069 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1070 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1071 	else
1072 		sense_data_size = sizeof(ei->SenseInfo);
1073 	if (ei->SenseLen < sense_data_size)
1074 		sense_data_size = ei->SenseLen;
1075 
1076 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1077 	scsi_set_resid(cmd, ei->ResidualCnt);
1078 
1079 	if (ei->CommandStatus == 0) {
1080 		cmd->scsi_done(cmd);
1081 		cmd_free(h, cp);
1082 		return;
1083 	}
1084 
1085 	/* an error has occurred */
1086 	switch (ei->CommandStatus) {
1087 
1088 	case CMD_TARGET_STATUS:
1089 		if (ei->ScsiStatus) {
1090 			/* Get sense key */
1091 			sense_key = 0xf & ei->SenseInfo[2];
1092 			/* Get additional sense code */
1093 			asc = ei->SenseInfo[12];
1094 			/* Get addition sense code qualifier */
1095 			ascq = ei->SenseInfo[13];
1096 		}
1097 
1098 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1099 			if (check_for_unit_attention(h, cp)) {
1100 				cmd->result = DID_SOFT_ERROR << 16;
1101 				break;
1102 			}
1103 			if (sense_key == ILLEGAL_REQUEST) {
1104 				/*
1105 				 * SCSI REPORT_LUNS is commonly unsupported on
1106 				 * Smart Array.  Suppress noisy complaint.
1107 				 */
1108 				if (cp->Request.CDB[0] == REPORT_LUNS)
1109 					break;
1110 
1111 				/* If ASC/ASCQ indicate Logical Unit
1112 				 * Not Supported condition,
1113 				 */
1114 				if ((asc == 0x25) && (ascq == 0x0)) {
1115 					dev_warn(&h->pdev->dev, "cp %p "
1116 						"has check condition\n", cp);
1117 					break;
1118 				}
1119 			}
1120 
1121 			if (sense_key == NOT_READY) {
1122 				/* If Sense is Not Ready, Logical Unit
1123 				 * Not ready, Manual Intervention
1124 				 * required
1125 				 */
1126 				if ((asc == 0x04) && (ascq == 0x03)) {
1127 					dev_warn(&h->pdev->dev, "cp %p "
1128 						"has check condition: unit "
1129 						"not ready, manual "
1130 						"intervention required\n", cp);
1131 					break;
1132 				}
1133 			}
1134 			if (sense_key == ABORTED_COMMAND) {
1135 				/* Aborted command is retryable */
1136 				dev_warn(&h->pdev->dev, "cp %p "
1137 					"has check condition: aborted command: "
1138 					"ASC: 0x%x, ASCQ: 0x%x\n",
1139 					cp, asc, ascq);
1140 				cmd->result = DID_SOFT_ERROR << 16;
1141 				break;
1142 			}
1143 			/* Must be some other type of check condition */
1144 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1145 					"unknown type: "
1146 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1147 					"Returning result: 0x%x, "
1148 					"cmd=[%02x %02x %02x %02x %02x "
1149 					"%02x %02x %02x %02x %02x %02x "
1150 					"%02x %02x %02x %02x %02x]\n",
1151 					cp, sense_key, asc, ascq,
1152 					cmd->result,
1153 					cmd->cmnd[0], cmd->cmnd[1],
1154 					cmd->cmnd[2], cmd->cmnd[3],
1155 					cmd->cmnd[4], cmd->cmnd[5],
1156 					cmd->cmnd[6], cmd->cmnd[7],
1157 					cmd->cmnd[8], cmd->cmnd[9],
1158 					cmd->cmnd[10], cmd->cmnd[11],
1159 					cmd->cmnd[12], cmd->cmnd[13],
1160 					cmd->cmnd[14], cmd->cmnd[15]);
1161 			break;
1162 		}
1163 
1164 
1165 		/* Problem was not a check condition
1166 		 * Pass it up to the upper layers...
1167 		 */
1168 		if (ei->ScsiStatus) {
1169 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1170 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1171 				"Returning result: 0x%x\n",
1172 				cp, ei->ScsiStatus,
1173 				sense_key, asc, ascq,
1174 				cmd->result);
1175 		} else {  /* scsi status is zero??? How??? */
1176 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1177 				"Returning no connection.\n", cp),
1178 
1179 			/* Ordinarily, this case should never happen,
1180 			 * but there is a bug in some released firmware
1181 			 * revisions that allows it to happen if, for
1182 			 * example, a 4100 backplane loses power and
1183 			 * the tape drive is in it.  We assume that
1184 			 * it's a fatal error of some kind because we
1185 			 * can't show that it wasn't. We will make it
1186 			 * look like selection timeout since that is
1187 			 * the most common reason for this to occur,
1188 			 * and it's severe enough.
1189 			 */
1190 
1191 			cmd->result = DID_NO_CONNECT << 16;
1192 		}
1193 		break;
1194 
1195 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1196 		break;
1197 	case CMD_DATA_OVERRUN:
1198 		dev_warn(&h->pdev->dev, "cp %p has"
1199 			" completed with data overrun "
1200 			"reported\n", cp);
1201 		break;
1202 	case CMD_INVALID: {
1203 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1204 		print_cmd(cp); */
1205 		/* We get CMD_INVALID if you address a non-existent device
1206 		 * instead of a selection timeout (no response).  You will
1207 		 * see this if you yank out a drive, then try to access it.
1208 		 * This is kind of a shame because it means that any other
1209 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1210 		 * missing target. */
1211 		cmd->result = DID_NO_CONNECT << 16;
1212 	}
1213 		break;
1214 	case CMD_PROTOCOL_ERR:
1215 		dev_warn(&h->pdev->dev, "cp %p has "
1216 			"protocol error \n", cp);
1217 		break;
1218 	case CMD_HARDWARE_ERR:
1219 		cmd->result = DID_ERROR << 16;
1220 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1221 		break;
1222 	case CMD_CONNECTION_LOST:
1223 		cmd->result = DID_ERROR << 16;
1224 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1225 		break;
1226 	case CMD_ABORTED:
1227 		cmd->result = DID_ABORT << 16;
1228 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1229 				cp, ei->ScsiStatus);
1230 		break;
1231 	case CMD_ABORT_FAILED:
1232 		cmd->result = DID_ERROR << 16;
1233 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1234 		break;
1235 	case CMD_UNSOLICITED_ABORT:
1236 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1237 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1238 			"abort\n", cp);
1239 		break;
1240 	case CMD_TIMEOUT:
1241 		cmd->result = DID_TIME_OUT << 16;
1242 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1243 		break;
1244 	case CMD_UNABORTABLE:
1245 		cmd->result = DID_ERROR << 16;
1246 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1247 		break;
1248 	default:
1249 		cmd->result = DID_ERROR << 16;
1250 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1251 				cp, ei->CommandStatus);
1252 	}
1253 	cmd->scsi_done(cmd);
1254 	cmd_free(h, cp);
1255 }
1256 
1257 static int hpsa_scsi_detect(struct ctlr_info *h)
1258 {
1259 	struct Scsi_Host *sh;
1260 	int error;
1261 
1262 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1263 	if (sh == NULL)
1264 		goto fail;
1265 
1266 	sh->io_port = 0;
1267 	sh->n_io_port = 0;
1268 	sh->this_id = -1;
1269 	sh->max_channel = 3;
1270 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1271 	sh->max_lun = HPSA_MAX_LUN;
1272 	sh->max_id = HPSA_MAX_LUN;
1273 	sh->can_queue = h->nr_cmds;
1274 	sh->cmd_per_lun = h->nr_cmds;
1275 	sh->sg_tablesize = h->maxsgentries;
1276 	h->scsi_host = sh;
1277 	sh->hostdata[0] = (unsigned long) h;
1278 	sh->irq = h->intr[h->intr_mode];
1279 	sh->unique_id = sh->irq;
1280 	error = scsi_add_host(sh, &h->pdev->dev);
1281 	if (error)
1282 		goto fail_host_put;
1283 	scsi_scan_host(sh);
1284 	return 0;
1285 
1286  fail_host_put:
1287 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1288 		" failed for controller %d\n", h->ctlr);
1289 	scsi_host_put(sh);
1290 	return error;
1291  fail:
1292 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1293 		" failed for controller %d\n", h->ctlr);
1294 	return -ENOMEM;
1295 }
1296 
1297 static void hpsa_pci_unmap(struct pci_dev *pdev,
1298 	struct CommandList *c, int sg_used, int data_direction)
1299 {
1300 	int i;
1301 	union u64bit addr64;
1302 
1303 	for (i = 0; i < sg_used; i++) {
1304 		addr64.val32.lower = c->SG[i].Addr.lower;
1305 		addr64.val32.upper = c->SG[i].Addr.upper;
1306 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1307 			data_direction);
1308 	}
1309 }
1310 
1311 static void hpsa_map_one(struct pci_dev *pdev,
1312 		struct CommandList *cp,
1313 		unsigned char *buf,
1314 		size_t buflen,
1315 		int data_direction)
1316 {
1317 	u64 addr64;
1318 
1319 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1320 		cp->Header.SGList = 0;
1321 		cp->Header.SGTotal = 0;
1322 		return;
1323 	}
1324 
1325 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1326 	cp->SG[0].Addr.lower =
1327 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1328 	cp->SG[0].Addr.upper =
1329 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1330 	cp->SG[0].Len = buflen;
1331 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1332 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1333 }
1334 
1335 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1336 	struct CommandList *c)
1337 {
1338 	DECLARE_COMPLETION_ONSTACK(wait);
1339 
1340 	c->waiting = &wait;
1341 	enqueue_cmd_and_start_io(h, c);
1342 	wait_for_completion(&wait);
1343 }
1344 
1345 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1346 	struct CommandList *c)
1347 {
1348 	unsigned long flags;
1349 
1350 	/* If controller lockup detected, fake a hardware error. */
1351 	spin_lock_irqsave(&h->lock, flags);
1352 	if (unlikely(h->lockup_detected)) {
1353 		spin_unlock_irqrestore(&h->lock, flags);
1354 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1355 	} else {
1356 		spin_unlock_irqrestore(&h->lock, flags);
1357 		hpsa_scsi_do_simple_cmd_core(h, c);
1358 	}
1359 }
1360 
1361 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1362 	struct CommandList *c, int data_direction)
1363 {
1364 	int retry_count = 0;
1365 
1366 	do {
1367 		memset(c->err_info, 0, sizeof(*c->err_info));
1368 		hpsa_scsi_do_simple_cmd_core(h, c);
1369 		retry_count++;
1370 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1371 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1372 }
1373 
1374 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1375 {
1376 	struct ErrorInfo *ei;
1377 	struct device *d = &cp->h->pdev->dev;
1378 
1379 	ei = cp->err_info;
1380 	switch (ei->CommandStatus) {
1381 	case CMD_TARGET_STATUS:
1382 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1383 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1384 				ei->ScsiStatus);
1385 		if (ei->ScsiStatus == 0)
1386 			dev_warn(d, "SCSI status is abnormally zero.  "
1387 			"(probably indicates selection timeout "
1388 			"reported incorrectly due to a known "
1389 			"firmware bug, circa July, 2001.)\n");
1390 		break;
1391 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1392 			dev_info(d, "UNDERRUN\n");
1393 		break;
1394 	case CMD_DATA_OVERRUN:
1395 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1396 		break;
1397 	case CMD_INVALID: {
1398 		/* controller unfortunately reports SCSI passthru's
1399 		 * to non-existent targets as invalid commands.
1400 		 */
1401 		dev_warn(d, "cp %p is reported invalid (probably means "
1402 			"target device no longer present)\n", cp);
1403 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1404 		print_cmd(cp);  */
1405 		}
1406 		break;
1407 	case CMD_PROTOCOL_ERR:
1408 		dev_warn(d, "cp %p has protocol error \n", cp);
1409 		break;
1410 	case CMD_HARDWARE_ERR:
1411 		/* cmd->result = DID_ERROR << 16; */
1412 		dev_warn(d, "cp %p had hardware error\n", cp);
1413 		break;
1414 	case CMD_CONNECTION_LOST:
1415 		dev_warn(d, "cp %p had connection lost\n", cp);
1416 		break;
1417 	case CMD_ABORTED:
1418 		dev_warn(d, "cp %p was aborted\n", cp);
1419 		break;
1420 	case CMD_ABORT_FAILED:
1421 		dev_warn(d, "cp %p reports abort failed\n", cp);
1422 		break;
1423 	case CMD_UNSOLICITED_ABORT:
1424 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1425 		break;
1426 	case CMD_TIMEOUT:
1427 		dev_warn(d, "cp %p timed out\n", cp);
1428 		break;
1429 	case CMD_UNABORTABLE:
1430 		dev_warn(d, "Command unabortable\n");
1431 		break;
1432 	default:
1433 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1434 				ei->CommandStatus);
1435 	}
1436 }
1437 
1438 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1439 			unsigned char page, unsigned char *buf,
1440 			unsigned char bufsize)
1441 {
1442 	int rc = IO_OK;
1443 	struct CommandList *c;
1444 	struct ErrorInfo *ei;
1445 
1446 	c = cmd_special_alloc(h);
1447 
1448 	if (c == NULL) {			/* trouble... */
1449 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1450 		return -ENOMEM;
1451 	}
1452 
1453 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1454 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1455 	ei = c->err_info;
1456 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1457 		hpsa_scsi_interpret_error(c);
1458 		rc = -1;
1459 	}
1460 	cmd_special_free(h, c);
1461 	return rc;
1462 }
1463 
1464 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1465 {
1466 	int rc = IO_OK;
1467 	struct CommandList *c;
1468 	struct ErrorInfo *ei;
1469 
1470 	c = cmd_special_alloc(h);
1471 
1472 	if (c == NULL) {			/* trouble... */
1473 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1474 		return -ENOMEM;
1475 	}
1476 
1477 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1478 	hpsa_scsi_do_simple_cmd_core(h, c);
1479 	/* no unmap needed here because no data xfer. */
1480 
1481 	ei = c->err_info;
1482 	if (ei->CommandStatus != 0) {
1483 		hpsa_scsi_interpret_error(c);
1484 		rc = -1;
1485 	}
1486 	cmd_special_free(h, c);
1487 	return rc;
1488 }
1489 
1490 static void hpsa_get_raid_level(struct ctlr_info *h,
1491 	unsigned char *scsi3addr, unsigned char *raid_level)
1492 {
1493 	int rc;
1494 	unsigned char *buf;
1495 
1496 	*raid_level = RAID_UNKNOWN;
1497 	buf = kzalloc(64, GFP_KERNEL);
1498 	if (!buf)
1499 		return;
1500 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1501 	if (rc == 0)
1502 		*raid_level = buf[8];
1503 	if (*raid_level > RAID_UNKNOWN)
1504 		*raid_level = RAID_UNKNOWN;
1505 	kfree(buf);
1506 	return;
1507 }
1508 
1509 /* Get the device id from inquiry page 0x83 */
1510 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1511 	unsigned char *device_id, int buflen)
1512 {
1513 	int rc;
1514 	unsigned char *buf;
1515 
1516 	if (buflen > 16)
1517 		buflen = 16;
1518 	buf = kzalloc(64, GFP_KERNEL);
1519 	if (!buf)
1520 		return -1;
1521 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1522 	if (rc == 0)
1523 		memcpy(device_id, &buf[8], buflen);
1524 	kfree(buf);
1525 	return rc != 0;
1526 }
1527 
1528 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1529 		struct ReportLUNdata *buf, int bufsize,
1530 		int extended_response)
1531 {
1532 	int rc = IO_OK;
1533 	struct CommandList *c;
1534 	unsigned char scsi3addr[8];
1535 	struct ErrorInfo *ei;
1536 
1537 	c = cmd_special_alloc(h);
1538 	if (c == NULL) {			/* trouble... */
1539 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1540 		return -1;
1541 	}
1542 	/* address the controller */
1543 	memset(scsi3addr, 0, sizeof(scsi3addr));
1544 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1545 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1546 	if (extended_response)
1547 		c->Request.CDB[1] = extended_response;
1548 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1549 	ei = c->err_info;
1550 	if (ei->CommandStatus != 0 &&
1551 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1552 		hpsa_scsi_interpret_error(c);
1553 		rc = -1;
1554 	}
1555 	cmd_special_free(h, c);
1556 	return rc;
1557 }
1558 
1559 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1560 		struct ReportLUNdata *buf,
1561 		int bufsize, int extended_response)
1562 {
1563 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1564 }
1565 
1566 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1567 		struct ReportLUNdata *buf, int bufsize)
1568 {
1569 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1570 }
1571 
1572 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1573 	int bus, int target, int lun)
1574 {
1575 	device->bus = bus;
1576 	device->target = target;
1577 	device->lun = lun;
1578 }
1579 
1580 static int hpsa_update_device_info(struct ctlr_info *h,
1581 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1582 	unsigned char *is_OBDR_device)
1583 {
1584 
1585 #define OBDR_SIG_OFFSET 43
1586 #define OBDR_TAPE_SIG "$DR-10"
1587 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1588 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1589 
1590 	unsigned char *inq_buff;
1591 	unsigned char *obdr_sig;
1592 
1593 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1594 	if (!inq_buff)
1595 		goto bail_out;
1596 
1597 	/* Do an inquiry to the device to see what it is. */
1598 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1599 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1600 		/* Inquiry failed (msg printed already) */
1601 		dev_err(&h->pdev->dev,
1602 			"hpsa_update_device_info: inquiry failed\n");
1603 		goto bail_out;
1604 	}
1605 
1606 	this_device->devtype = (inq_buff[0] & 0x1f);
1607 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1608 	memcpy(this_device->vendor, &inq_buff[8],
1609 		sizeof(this_device->vendor));
1610 	memcpy(this_device->model, &inq_buff[16],
1611 		sizeof(this_device->model));
1612 	memset(this_device->device_id, 0,
1613 		sizeof(this_device->device_id));
1614 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1615 		sizeof(this_device->device_id));
1616 
1617 	if (this_device->devtype == TYPE_DISK &&
1618 		is_logical_dev_addr_mode(scsi3addr))
1619 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1620 	else
1621 		this_device->raid_level = RAID_UNKNOWN;
1622 
1623 	if (is_OBDR_device) {
1624 		/* See if this is a One-Button-Disaster-Recovery device
1625 		 * by looking for "$DR-10" at offset 43 in inquiry data.
1626 		 */
1627 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1628 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1629 					strncmp(obdr_sig, OBDR_TAPE_SIG,
1630 						OBDR_SIG_LEN) == 0);
1631 	}
1632 
1633 	kfree(inq_buff);
1634 	return 0;
1635 
1636 bail_out:
1637 	kfree(inq_buff);
1638 	return 1;
1639 }
1640 
1641 static unsigned char *msa2xxx_model[] = {
1642 	"MSA2012",
1643 	"MSA2024",
1644 	"MSA2312",
1645 	"MSA2324",
1646 	"P2000 G3 SAS",
1647 	NULL,
1648 };
1649 
1650 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1651 {
1652 	int i;
1653 
1654 	for (i = 0; msa2xxx_model[i]; i++)
1655 		if (strncmp(device->model, msa2xxx_model[i],
1656 			strlen(msa2xxx_model[i])) == 0)
1657 			return 1;
1658 	return 0;
1659 }
1660 
1661 /* Helper function to assign bus, target, lun mapping of devices.
1662  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1663  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1664  * Logical drive target and lun are assigned at this time, but
1665  * physical device lun and target assignment are deferred (assigned
1666  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1667  */
1668 static void figure_bus_target_lun(struct ctlr_info *h,
1669 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1670 	struct hpsa_scsi_dev_t *device)
1671 {
1672 	u32 lunid;
1673 
1674 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1675 		/* logical device */
1676 		if (unlikely(is_scsi_rev_5(h))) {
1677 			/* p1210m, logical drives lun assignments
1678 			 * match SCSI REPORT LUNS data.
1679 			 */
1680 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1681 			*bus = 0;
1682 			*target = 0;
1683 			*lun = (lunid & 0x3fff) + 1;
1684 		} else {
1685 			/* not p1210m... */
1686 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1687 			if (is_msa2xxx(h, device)) {
1688 				/* msa2xxx way, put logicals on bus 1
1689 				 * and match target/lun numbers box
1690 				 * reports.
1691 				 */
1692 				*bus = 1;
1693 				*target = (lunid >> 16) & 0x3fff;
1694 				*lun = lunid & 0x00ff;
1695 			} else {
1696 				/* Traditional smart array way. */
1697 				*bus = 0;
1698 				*lun = 0;
1699 				*target = lunid & 0x3fff;
1700 			}
1701 		}
1702 	} else {
1703 		/* physical device */
1704 		if (is_hba_lunid(lunaddrbytes))
1705 			if (unlikely(is_scsi_rev_5(h))) {
1706 				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1707 				*target = 0;
1708 				*lun = 0;
1709 				return;
1710 			} else
1711 				*bus = 3; /* traditional smartarray */
1712 		else
1713 			*bus = 2; /* physical disk */
1714 		*target = -1;
1715 		*lun = -1; /* we will fill these in later. */
1716 	}
1717 }
1718 
1719 /*
1720  * If there is no lun 0 on a target, linux won't find any devices.
1721  * For the MSA2xxx boxes, we have to manually detect the enclosure
1722  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1723  * it for some reason.  *tmpdevice is the target we're adding,
1724  * this_device is a pointer into the current element of currentsd[]
1725  * that we're building up in update_scsi_devices(), below.
1726  * lunzerobits is a bitmap that tracks which targets already have a
1727  * lun 0 assigned.
1728  * Returns 1 if an enclosure was added, 0 if not.
1729  */
1730 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1731 	struct hpsa_scsi_dev_t *tmpdevice,
1732 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1733 	int bus, int target, int lun, unsigned long lunzerobits[],
1734 	int *nmsa2xxx_enclosures)
1735 {
1736 	unsigned char scsi3addr[8];
1737 
1738 	if (test_bit(target, lunzerobits))
1739 		return 0; /* There is already a lun 0 on this target. */
1740 
1741 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1742 		return 0; /* It's the logical targets that may lack lun 0. */
1743 
1744 	if (!is_msa2xxx(h, tmpdevice))
1745 		return 0; /* It's only the MSA2xxx that have this problem. */
1746 
1747 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1748 		return 0;
1749 
1750 	memset(scsi3addr, 0, 8);
1751 	scsi3addr[3] = target;
1752 	if (is_hba_lunid(scsi3addr))
1753 		return 0; /* Don't add the RAID controller here. */
1754 
1755 	if (is_scsi_rev_5(h))
1756 		return 0; /* p1210m doesn't need to do this. */
1757 
1758 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1759 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1760 			"enclosures exceeded.  Check your hardware "
1761 			"configuration.");
1762 		return 0;
1763 	}
1764 
1765 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1766 		return 0;
1767 	(*nmsa2xxx_enclosures)++;
1768 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1769 	set_bit(target, lunzerobits);
1770 	return 1;
1771 }
1772 
1773 /*
1774  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1775  * logdev.  The number of luns in physdev and logdev are returned in
1776  * *nphysicals and *nlogicals, respectively.
1777  * Returns 0 on success, -1 otherwise.
1778  */
1779 static int hpsa_gather_lun_info(struct ctlr_info *h,
1780 	int reportlunsize,
1781 	struct ReportLUNdata *physdev, u32 *nphysicals,
1782 	struct ReportLUNdata *logdev, u32 *nlogicals)
1783 {
1784 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1785 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1786 		return -1;
1787 	}
1788 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1789 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1790 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1791 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1792 			*nphysicals - HPSA_MAX_PHYS_LUN);
1793 		*nphysicals = HPSA_MAX_PHYS_LUN;
1794 	}
1795 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1796 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1797 		return -1;
1798 	}
1799 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1800 	/* Reject Logicals in excess of our max capability. */
1801 	if (*nlogicals > HPSA_MAX_LUN) {
1802 		dev_warn(&h->pdev->dev,
1803 			"maximum logical LUNs (%d) exceeded.  "
1804 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1805 			*nlogicals - HPSA_MAX_LUN);
1806 			*nlogicals = HPSA_MAX_LUN;
1807 	}
1808 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1809 		dev_warn(&h->pdev->dev,
1810 			"maximum logical + physical LUNs (%d) exceeded. "
1811 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1812 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1813 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1814 	}
1815 	return 0;
1816 }
1817 
1818 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1819 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1820 	struct ReportLUNdata *logdev_list)
1821 {
1822 	/* Helper function, figure out where the LUN ID info is coming from
1823 	 * given index i, lists of physical and logical devices, where in
1824 	 * the list the raid controller is supposed to appear (first or last)
1825 	 */
1826 
1827 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1828 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1829 
1830 	if (i == raid_ctlr_position)
1831 		return RAID_CTLR_LUNID;
1832 
1833 	if (i < logicals_start)
1834 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1835 
1836 	if (i < last_device)
1837 		return &logdev_list->LUN[i - nphysicals -
1838 			(raid_ctlr_position == 0)][0];
1839 	BUG();
1840 	return NULL;
1841 }
1842 
1843 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1844 {
1845 	/* the idea here is we could get notified
1846 	 * that some devices have changed, so we do a report
1847 	 * physical luns and report logical luns cmd, and adjust
1848 	 * our list of devices accordingly.
1849 	 *
1850 	 * The scsi3addr's of devices won't change so long as the
1851 	 * adapter is not reset.  That means we can rescan and
1852 	 * tell which devices we already know about, vs. new
1853 	 * devices, vs.  disappearing devices.
1854 	 */
1855 	struct ReportLUNdata *physdev_list = NULL;
1856 	struct ReportLUNdata *logdev_list = NULL;
1857 	u32 nphysicals = 0;
1858 	u32 nlogicals = 0;
1859 	u32 ndev_allocated = 0;
1860 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1861 	int ncurrent = 0;
1862 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1863 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1864 	int bus, target, lun;
1865 	int raid_ctlr_position;
1866 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1867 
1868 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1869 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1870 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1871 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1872 
1873 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1874 		dev_err(&h->pdev->dev, "out of memory\n");
1875 		goto out;
1876 	}
1877 	memset(lunzerobits, 0, sizeof(lunzerobits));
1878 
1879 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1880 			logdev_list, &nlogicals))
1881 		goto out;
1882 
1883 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1884 	 * but each of them 4 times through different paths.  The plus 1
1885 	 * is for the RAID controller.
1886 	 */
1887 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1888 
1889 	/* Allocate the per device structures */
1890 	for (i = 0; i < ndevs_to_allocate; i++) {
1891 		if (i >= HPSA_MAX_DEVICES) {
1892 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1893 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
1894 				ndevs_to_allocate - HPSA_MAX_DEVICES);
1895 			break;
1896 		}
1897 
1898 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1899 		if (!currentsd[i]) {
1900 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1901 				__FILE__, __LINE__);
1902 			goto out;
1903 		}
1904 		ndev_allocated++;
1905 	}
1906 
1907 	if (unlikely(is_scsi_rev_5(h)))
1908 		raid_ctlr_position = 0;
1909 	else
1910 		raid_ctlr_position = nphysicals + nlogicals;
1911 
1912 	/* adjust our table of devices */
1913 	nmsa2xxx_enclosures = 0;
1914 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1915 		u8 *lunaddrbytes, is_OBDR = 0;
1916 
1917 		/* Figure out where the LUN ID info is coming from */
1918 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1919 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1920 		/* skip masked physical devices. */
1921 		if (lunaddrbytes[3] & 0xC0 &&
1922 			i < nphysicals + (raid_ctlr_position == 0))
1923 			continue;
1924 
1925 		/* Get device type, vendor, model, device id */
1926 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1927 							&is_OBDR))
1928 			continue; /* skip it if we can't talk to it. */
1929 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1930 			tmpdevice);
1931 		this_device = currentsd[ncurrent];
1932 
1933 		/*
1934 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1935 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1936 		 * is nonetheless an enclosure device there.  We have to
1937 		 * present that otherwise linux won't find anything if
1938 		 * there is no lun 0.
1939 		 */
1940 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1941 				lunaddrbytes, bus, target, lun, lunzerobits,
1942 				&nmsa2xxx_enclosures)) {
1943 			ncurrent++;
1944 			this_device = currentsd[ncurrent];
1945 		}
1946 
1947 		*this_device = *tmpdevice;
1948 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1949 
1950 		switch (this_device->devtype) {
1951 		case TYPE_ROM:
1952 			/* We don't *really* support actual CD-ROM devices,
1953 			 * just "One Button Disaster Recovery" tape drive
1954 			 * which temporarily pretends to be a CD-ROM drive.
1955 			 * So we check that the device is really an OBDR tape
1956 			 * device by checking for "$DR-10" in bytes 43-48 of
1957 			 * the inquiry data.
1958 			 */
1959 			if (is_OBDR)
1960 				ncurrent++;
1961 			break;
1962 		case TYPE_DISK:
1963 			if (i < nphysicals)
1964 				break;
1965 			ncurrent++;
1966 			break;
1967 		case TYPE_TAPE:
1968 		case TYPE_MEDIUM_CHANGER:
1969 			ncurrent++;
1970 			break;
1971 		case TYPE_RAID:
1972 			/* Only present the Smartarray HBA as a RAID controller.
1973 			 * If it's a RAID controller other than the HBA itself
1974 			 * (an external RAID controller, MSA500 or similar)
1975 			 * don't present it.
1976 			 */
1977 			if (!is_hba_lunid(lunaddrbytes))
1978 				break;
1979 			ncurrent++;
1980 			break;
1981 		default:
1982 			break;
1983 		}
1984 		if (ncurrent >= HPSA_MAX_DEVICES)
1985 			break;
1986 	}
1987 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1988 out:
1989 	kfree(tmpdevice);
1990 	for (i = 0; i < ndev_allocated; i++)
1991 		kfree(currentsd[i]);
1992 	kfree(currentsd);
1993 	kfree(physdev_list);
1994 	kfree(logdev_list);
1995 }
1996 
1997 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1998  * dma mapping  and fills in the scatter gather entries of the
1999  * hpsa command, cp.
2000  */
2001 static int hpsa_scatter_gather(struct ctlr_info *h,
2002 		struct CommandList *cp,
2003 		struct scsi_cmnd *cmd)
2004 {
2005 	unsigned int len;
2006 	struct scatterlist *sg;
2007 	u64 addr64;
2008 	int use_sg, i, sg_index, chained;
2009 	struct SGDescriptor *curr_sg;
2010 
2011 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2012 
2013 	use_sg = scsi_dma_map(cmd);
2014 	if (use_sg < 0)
2015 		return use_sg;
2016 
2017 	if (!use_sg)
2018 		goto sglist_finished;
2019 
2020 	curr_sg = cp->SG;
2021 	chained = 0;
2022 	sg_index = 0;
2023 	scsi_for_each_sg(cmd, sg, use_sg, i) {
2024 		if (i == h->max_cmd_sg_entries - 1 &&
2025 			use_sg > h->max_cmd_sg_entries) {
2026 			chained = 1;
2027 			curr_sg = h->cmd_sg_list[cp->cmdindex];
2028 			sg_index = 0;
2029 		}
2030 		addr64 = (u64) sg_dma_address(sg);
2031 		len  = sg_dma_len(sg);
2032 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2033 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2034 		curr_sg->Len = len;
2035 		curr_sg->Ext = 0;  /* we are not chaining */
2036 		curr_sg++;
2037 	}
2038 
2039 	if (use_sg + chained > h->maxSG)
2040 		h->maxSG = use_sg + chained;
2041 
2042 	if (chained) {
2043 		cp->Header.SGList = h->max_cmd_sg_entries;
2044 		cp->Header.SGTotal = (u16) (use_sg + 1);
2045 		hpsa_map_sg_chain_block(h, cp);
2046 		return 0;
2047 	}
2048 
2049 sglist_finished:
2050 
2051 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2052 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2053 	return 0;
2054 }
2055 
2056 
2057 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2058 	void (*done)(struct scsi_cmnd *))
2059 {
2060 	struct ctlr_info *h;
2061 	struct hpsa_scsi_dev_t *dev;
2062 	unsigned char scsi3addr[8];
2063 	struct CommandList *c;
2064 	unsigned long flags;
2065 
2066 	/* Get the ptr to our adapter structure out of cmd->host. */
2067 	h = sdev_to_hba(cmd->device);
2068 	dev = cmd->device->hostdata;
2069 	if (!dev) {
2070 		cmd->result = DID_NO_CONNECT << 16;
2071 		done(cmd);
2072 		return 0;
2073 	}
2074 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2075 
2076 	spin_lock_irqsave(&h->lock, flags);
2077 	if (unlikely(h->lockup_detected)) {
2078 		spin_unlock_irqrestore(&h->lock, flags);
2079 		cmd->result = DID_ERROR << 16;
2080 		done(cmd);
2081 		return 0;
2082 	}
2083 	/* Need a lock as this is being allocated from the pool */
2084 	c = cmd_alloc(h);
2085 	spin_unlock_irqrestore(&h->lock, flags);
2086 	if (c == NULL) {			/* trouble... */
2087 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2088 		return SCSI_MLQUEUE_HOST_BUSY;
2089 	}
2090 
2091 	/* Fill in the command list header */
2092 
2093 	cmd->scsi_done = done;    /* save this for use by completion code */
2094 
2095 	/* save c in case we have to abort it  */
2096 	cmd->host_scribble = (unsigned char *) c;
2097 
2098 	c->cmd_type = CMD_SCSI;
2099 	c->scsi_cmd = cmd;
2100 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2101 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2102 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2103 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2104 
2105 	/* Fill in the request block... */
2106 
2107 	c->Request.Timeout = 0;
2108 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2109 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2110 	c->Request.CDBLen = cmd->cmd_len;
2111 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2112 	c->Request.Type.Type = TYPE_CMD;
2113 	c->Request.Type.Attribute = ATTR_SIMPLE;
2114 	switch (cmd->sc_data_direction) {
2115 	case DMA_TO_DEVICE:
2116 		c->Request.Type.Direction = XFER_WRITE;
2117 		break;
2118 	case DMA_FROM_DEVICE:
2119 		c->Request.Type.Direction = XFER_READ;
2120 		break;
2121 	case DMA_NONE:
2122 		c->Request.Type.Direction = XFER_NONE;
2123 		break;
2124 	case DMA_BIDIRECTIONAL:
2125 		/* This can happen if a buggy application does a scsi passthru
2126 		 * and sets both inlen and outlen to non-zero. ( see
2127 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2128 		 */
2129 
2130 		c->Request.Type.Direction = XFER_RSVD;
2131 		/* This is technically wrong, and hpsa controllers should
2132 		 * reject it with CMD_INVALID, which is the most correct
2133 		 * response, but non-fibre backends appear to let it
2134 		 * slide by, and give the same results as if this field
2135 		 * were set correctly.  Either way is acceptable for
2136 		 * our purposes here.
2137 		 */
2138 
2139 		break;
2140 
2141 	default:
2142 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2143 			cmd->sc_data_direction);
2144 		BUG();
2145 		break;
2146 	}
2147 
2148 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2149 		cmd_free(h, c);
2150 		return SCSI_MLQUEUE_HOST_BUSY;
2151 	}
2152 	enqueue_cmd_and_start_io(h, c);
2153 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2154 	return 0;
2155 }
2156 
2157 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2158 
2159 static void hpsa_scan_start(struct Scsi_Host *sh)
2160 {
2161 	struct ctlr_info *h = shost_to_hba(sh);
2162 	unsigned long flags;
2163 
2164 	/* wait until any scan already in progress is finished. */
2165 	while (1) {
2166 		spin_lock_irqsave(&h->scan_lock, flags);
2167 		if (h->scan_finished)
2168 			break;
2169 		spin_unlock_irqrestore(&h->scan_lock, flags);
2170 		wait_event(h->scan_wait_queue, h->scan_finished);
2171 		/* Note: We don't need to worry about a race between this
2172 		 * thread and driver unload because the midlayer will
2173 		 * have incremented the reference count, so unload won't
2174 		 * happen if we're in here.
2175 		 */
2176 	}
2177 	h->scan_finished = 0; /* mark scan as in progress */
2178 	spin_unlock_irqrestore(&h->scan_lock, flags);
2179 
2180 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2181 
2182 	spin_lock_irqsave(&h->scan_lock, flags);
2183 	h->scan_finished = 1; /* mark scan as finished. */
2184 	wake_up_all(&h->scan_wait_queue);
2185 	spin_unlock_irqrestore(&h->scan_lock, flags);
2186 }
2187 
2188 static int hpsa_scan_finished(struct Scsi_Host *sh,
2189 	unsigned long elapsed_time)
2190 {
2191 	struct ctlr_info *h = shost_to_hba(sh);
2192 	unsigned long flags;
2193 	int finished;
2194 
2195 	spin_lock_irqsave(&h->scan_lock, flags);
2196 	finished = h->scan_finished;
2197 	spin_unlock_irqrestore(&h->scan_lock, flags);
2198 	return finished;
2199 }
2200 
2201 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2202 	int qdepth, int reason)
2203 {
2204 	struct ctlr_info *h = sdev_to_hba(sdev);
2205 
2206 	if (reason != SCSI_QDEPTH_DEFAULT)
2207 		return -ENOTSUPP;
2208 
2209 	if (qdepth < 1)
2210 		qdepth = 1;
2211 	else
2212 		if (qdepth > h->nr_cmds)
2213 			qdepth = h->nr_cmds;
2214 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2215 	return sdev->queue_depth;
2216 }
2217 
2218 static void hpsa_unregister_scsi(struct ctlr_info *h)
2219 {
2220 	/* we are being forcibly unloaded, and may not refuse. */
2221 	scsi_remove_host(h->scsi_host);
2222 	scsi_host_put(h->scsi_host);
2223 	h->scsi_host = NULL;
2224 }
2225 
2226 static int hpsa_register_scsi(struct ctlr_info *h)
2227 {
2228 	int rc;
2229 
2230 	rc = hpsa_scsi_detect(h);
2231 	if (rc != 0)
2232 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2233 			" hpsa_scsi_detect(), rc is %d\n", rc);
2234 	return rc;
2235 }
2236 
2237 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2238 	unsigned char lunaddr[])
2239 {
2240 	int rc = 0;
2241 	int count = 0;
2242 	int waittime = 1; /* seconds */
2243 	struct CommandList *c;
2244 
2245 	c = cmd_special_alloc(h);
2246 	if (!c) {
2247 		dev_warn(&h->pdev->dev, "out of memory in "
2248 			"wait_for_device_to_become_ready.\n");
2249 		return IO_ERROR;
2250 	}
2251 
2252 	/* Send test unit ready until device ready, or give up. */
2253 	while (count < HPSA_TUR_RETRY_LIMIT) {
2254 
2255 		/* Wait for a bit.  do this first, because if we send
2256 		 * the TUR right away, the reset will just abort it.
2257 		 */
2258 		msleep(1000 * waittime);
2259 		count++;
2260 
2261 		/* Increase wait time with each try, up to a point. */
2262 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2263 			waittime = waittime * 2;
2264 
2265 		/* Send the Test Unit Ready */
2266 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2267 		hpsa_scsi_do_simple_cmd_core(h, c);
2268 		/* no unmap needed here because no data xfer. */
2269 
2270 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2271 			break;
2272 
2273 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2274 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2275 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2276 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2277 			break;
2278 
2279 		dev_warn(&h->pdev->dev, "waiting %d secs "
2280 			"for device to become ready.\n", waittime);
2281 		rc = 1; /* device not ready. */
2282 	}
2283 
2284 	if (rc)
2285 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2286 	else
2287 		dev_warn(&h->pdev->dev, "device is ready.\n");
2288 
2289 	cmd_special_free(h, c);
2290 	return rc;
2291 }
2292 
2293 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2294  * complaining.  Doing a host- or bus-reset can't do anything good here.
2295  */
2296 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2297 {
2298 	int rc;
2299 	struct ctlr_info *h;
2300 	struct hpsa_scsi_dev_t *dev;
2301 
2302 	/* find the controller to which the command to be aborted was sent */
2303 	h = sdev_to_hba(scsicmd->device);
2304 	if (h == NULL) /* paranoia */
2305 		return FAILED;
2306 	dev = scsicmd->device->hostdata;
2307 	if (!dev) {
2308 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2309 			"device lookup failed.\n");
2310 		return FAILED;
2311 	}
2312 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2313 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2314 	/* send a reset to the SCSI LUN which the command was sent to */
2315 	rc = hpsa_send_reset(h, dev->scsi3addr);
2316 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2317 		return SUCCESS;
2318 
2319 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2320 	return FAILED;
2321 }
2322 
2323 /*
2324  * For operations that cannot sleep, a command block is allocated at init,
2325  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2326  * which ones are free or in use.  Lock must be held when calling this.
2327  * cmd_free() is the complement.
2328  */
2329 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2330 {
2331 	struct CommandList *c;
2332 	int i;
2333 	union u64bit temp64;
2334 	dma_addr_t cmd_dma_handle, err_dma_handle;
2335 
2336 	do {
2337 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2338 		if (i == h->nr_cmds)
2339 			return NULL;
2340 	} while (test_and_set_bit
2341 		 (i & (BITS_PER_LONG - 1),
2342 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2343 	c = h->cmd_pool + i;
2344 	memset(c, 0, sizeof(*c));
2345 	cmd_dma_handle = h->cmd_pool_dhandle
2346 	    + i * sizeof(*c);
2347 	c->err_info = h->errinfo_pool + i;
2348 	memset(c->err_info, 0, sizeof(*c->err_info));
2349 	err_dma_handle = h->errinfo_pool_dhandle
2350 	    + i * sizeof(*c->err_info);
2351 	h->nr_allocs++;
2352 
2353 	c->cmdindex = i;
2354 
2355 	INIT_LIST_HEAD(&c->list);
2356 	c->busaddr = (u32) cmd_dma_handle;
2357 	temp64.val = (u64) err_dma_handle;
2358 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2359 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2360 	c->ErrDesc.Len = sizeof(*c->err_info);
2361 
2362 	c->h = h;
2363 	return c;
2364 }
2365 
2366 /* For operations that can wait for kmalloc to possibly sleep,
2367  * this routine can be called. Lock need not be held to call
2368  * cmd_special_alloc. cmd_special_free() is the complement.
2369  */
2370 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2371 {
2372 	struct CommandList *c;
2373 	union u64bit temp64;
2374 	dma_addr_t cmd_dma_handle, err_dma_handle;
2375 
2376 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2377 	if (c == NULL)
2378 		return NULL;
2379 	memset(c, 0, sizeof(*c));
2380 
2381 	c->cmdindex = -1;
2382 
2383 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2384 		    &err_dma_handle);
2385 
2386 	if (c->err_info == NULL) {
2387 		pci_free_consistent(h->pdev,
2388 			sizeof(*c), c, cmd_dma_handle);
2389 		return NULL;
2390 	}
2391 	memset(c->err_info, 0, sizeof(*c->err_info));
2392 
2393 	INIT_LIST_HEAD(&c->list);
2394 	c->busaddr = (u32) cmd_dma_handle;
2395 	temp64.val = (u64) err_dma_handle;
2396 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2397 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2398 	c->ErrDesc.Len = sizeof(*c->err_info);
2399 
2400 	c->h = h;
2401 	return c;
2402 }
2403 
2404 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2405 {
2406 	int i;
2407 
2408 	i = c - h->cmd_pool;
2409 	clear_bit(i & (BITS_PER_LONG - 1),
2410 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2411 	h->nr_frees++;
2412 }
2413 
2414 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2415 {
2416 	union u64bit temp64;
2417 
2418 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2419 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2420 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2421 			    c->err_info, (dma_addr_t) temp64.val);
2422 	pci_free_consistent(h->pdev, sizeof(*c),
2423 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2424 }
2425 
2426 #ifdef CONFIG_COMPAT
2427 
2428 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2429 {
2430 	IOCTL32_Command_struct __user *arg32 =
2431 	    (IOCTL32_Command_struct __user *) arg;
2432 	IOCTL_Command_struct arg64;
2433 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2434 	int err;
2435 	u32 cp;
2436 
2437 	memset(&arg64, 0, sizeof(arg64));
2438 	err = 0;
2439 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2440 			   sizeof(arg64.LUN_info));
2441 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2442 			   sizeof(arg64.Request));
2443 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2444 			   sizeof(arg64.error_info));
2445 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2446 	err |= get_user(cp, &arg32->buf);
2447 	arg64.buf = compat_ptr(cp);
2448 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2449 
2450 	if (err)
2451 		return -EFAULT;
2452 
2453 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2454 	if (err)
2455 		return err;
2456 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2457 			 sizeof(arg32->error_info));
2458 	if (err)
2459 		return -EFAULT;
2460 	return err;
2461 }
2462 
2463 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2464 	int cmd, void *arg)
2465 {
2466 	BIG_IOCTL32_Command_struct __user *arg32 =
2467 	    (BIG_IOCTL32_Command_struct __user *) arg;
2468 	BIG_IOCTL_Command_struct arg64;
2469 	BIG_IOCTL_Command_struct __user *p =
2470 	    compat_alloc_user_space(sizeof(arg64));
2471 	int err;
2472 	u32 cp;
2473 
2474 	memset(&arg64, 0, sizeof(arg64));
2475 	err = 0;
2476 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2477 			   sizeof(arg64.LUN_info));
2478 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2479 			   sizeof(arg64.Request));
2480 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2481 			   sizeof(arg64.error_info));
2482 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2483 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2484 	err |= get_user(cp, &arg32->buf);
2485 	arg64.buf = compat_ptr(cp);
2486 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2487 
2488 	if (err)
2489 		return -EFAULT;
2490 
2491 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2492 	if (err)
2493 		return err;
2494 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2495 			 sizeof(arg32->error_info));
2496 	if (err)
2497 		return -EFAULT;
2498 	return err;
2499 }
2500 
2501 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2502 {
2503 	switch (cmd) {
2504 	case CCISS_GETPCIINFO:
2505 	case CCISS_GETINTINFO:
2506 	case CCISS_SETINTINFO:
2507 	case CCISS_GETNODENAME:
2508 	case CCISS_SETNODENAME:
2509 	case CCISS_GETHEARTBEAT:
2510 	case CCISS_GETBUSTYPES:
2511 	case CCISS_GETFIRMVER:
2512 	case CCISS_GETDRIVVER:
2513 	case CCISS_REVALIDVOLS:
2514 	case CCISS_DEREGDISK:
2515 	case CCISS_REGNEWDISK:
2516 	case CCISS_REGNEWD:
2517 	case CCISS_RESCANDISK:
2518 	case CCISS_GETLUNINFO:
2519 		return hpsa_ioctl(dev, cmd, arg);
2520 
2521 	case CCISS_PASSTHRU32:
2522 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2523 	case CCISS_BIG_PASSTHRU32:
2524 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2525 
2526 	default:
2527 		return -ENOIOCTLCMD;
2528 	}
2529 }
2530 #endif
2531 
2532 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2533 {
2534 	struct hpsa_pci_info pciinfo;
2535 
2536 	if (!argp)
2537 		return -EINVAL;
2538 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2539 	pciinfo.bus = h->pdev->bus->number;
2540 	pciinfo.dev_fn = h->pdev->devfn;
2541 	pciinfo.board_id = h->board_id;
2542 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2543 		return -EFAULT;
2544 	return 0;
2545 }
2546 
2547 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2548 {
2549 	DriverVer_type DriverVer;
2550 	unsigned char vmaj, vmin, vsubmin;
2551 	int rc;
2552 
2553 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2554 		&vmaj, &vmin, &vsubmin);
2555 	if (rc != 3) {
2556 		dev_info(&h->pdev->dev, "driver version string '%s' "
2557 			"unrecognized.", HPSA_DRIVER_VERSION);
2558 		vmaj = 0;
2559 		vmin = 0;
2560 		vsubmin = 0;
2561 	}
2562 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2563 	if (!argp)
2564 		return -EINVAL;
2565 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2566 		return -EFAULT;
2567 	return 0;
2568 }
2569 
2570 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2571 {
2572 	IOCTL_Command_struct iocommand;
2573 	struct CommandList *c;
2574 	char *buff = NULL;
2575 	union u64bit temp64;
2576 
2577 	if (!argp)
2578 		return -EINVAL;
2579 	if (!capable(CAP_SYS_RAWIO))
2580 		return -EPERM;
2581 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2582 		return -EFAULT;
2583 	if ((iocommand.buf_size < 1) &&
2584 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2585 		return -EINVAL;
2586 	}
2587 	if (iocommand.buf_size > 0) {
2588 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2589 		if (buff == NULL)
2590 			return -EFAULT;
2591 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2592 			/* Copy the data into the buffer we created */
2593 			if (copy_from_user(buff, iocommand.buf,
2594 				iocommand.buf_size)) {
2595 				kfree(buff);
2596 				return -EFAULT;
2597 			}
2598 		} else {
2599 			memset(buff, 0, iocommand.buf_size);
2600 		}
2601 	}
2602 	c = cmd_special_alloc(h);
2603 	if (c == NULL) {
2604 		kfree(buff);
2605 		return -ENOMEM;
2606 	}
2607 	/* Fill in the command type */
2608 	c->cmd_type = CMD_IOCTL_PEND;
2609 	/* Fill in Command Header */
2610 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2611 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2612 		c->Header.SGList = 1;
2613 		c->Header.SGTotal = 1;
2614 	} else	{ /* no buffers to fill */
2615 		c->Header.SGList = 0;
2616 		c->Header.SGTotal = 0;
2617 	}
2618 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2619 	/* use the kernel address the cmd block for tag */
2620 	c->Header.Tag.lower = c->busaddr;
2621 
2622 	/* Fill in Request block */
2623 	memcpy(&c->Request, &iocommand.Request,
2624 		sizeof(c->Request));
2625 
2626 	/* Fill in the scatter gather information */
2627 	if (iocommand.buf_size > 0) {
2628 		temp64.val = pci_map_single(h->pdev, buff,
2629 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2630 		c->SG[0].Addr.lower = temp64.val32.lower;
2631 		c->SG[0].Addr.upper = temp64.val32.upper;
2632 		c->SG[0].Len = iocommand.buf_size;
2633 		c->SG[0].Ext = 0; /* we are not chaining*/
2634 	}
2635 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2636 	if (iocommand.buf_size > 0)
2637 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2638 	check_ioctl_unit_attention(h, c);
2639 
2640 	/* Copy the error information out */
2641 	memcpy(&iocommand.error_info, c->err_info,
2642 		sizeof(iocommand.error_info));
2643 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2644 		kfree(buff);
2645 		cmd_special_free(h, c);
2646 		return -EFAULT;
2647 	}
2648 	if (iocommand.Request.Type.Direction == XFER_READ &&
2649 		iocommand.buf_size > 0) {
2650 		/* Copy the data out of the buffer we created */
2651 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2652 			kfree(buff);
2653 			cmd_special_free(h, c);
2654 			return -EFAULT;
2655 		}
2656 	}
2657 	kfree(buff);
2658 	cmd_special_free(h, c);
2659 	return 0;
2660 }
2661 
2662 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2663 {
2664 	BIG_IOCTL_Command_struct *ioc;
2665 	struct CommandList *c;
2666 	unsigned char **buff = NULL;
2667 	int *buff_size = NULL;
2668 	union u64bit temp64;
2669 	BYTE sg_used = 0;
2670 	int status = 0;
2671 	int i;
2672 	u32 left;
2673 	u32 sz;
2674 	BYTE __user *data_ptr;
2675 
2676 	if (!argp)
2677 		return -EINVAL;
2678 	if (!capable(CAP_SYS_RAWIO))
2679 		return -EPERM;
2680 	ioc = (BIG_IOCTL_Command_struct *)
2681 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2682 	if (!ioc) {
2683 		status = -ENOMEM;
2684 		goto cleanup1;
2685 	}
2686 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2687 		status = -EFAULT;
2688 		goto cleanup1;
2689 	}
2690 	if ((ioc->buf_size < 1) &&
2691 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2692 		status = -EINVAL;
2693 		goto cleanup1;
2694 	}
2695 	/* Check kmalloc limits  using all SGs */
2696 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2697 		status = -EINVAL;
2698 		goto cleanup1;
2699 	}
2700 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2701 		status = -EINVAL;
2702 		goto cleanup1;
2703 	}
2704 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2705 	if (!buff) {
2706 		status = -ENOMEM;
2707 		goto cleanup1;
2708 	}
2709 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2710 	if (!buff_size) {
2711 		status = -ENOMEM;
2712 		goto cleanup1;
2713 	}
2714 	left = ioc->buf_size;
2715 	data_ptr = ioc->buf;
2716 	while (left) {
2717 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2718 		buff_size[sg_used] = sz;
2719 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2720 		if (buff[sg_used] == NULL) {
2721 			status = -ENOMEM;
2722 			goto cleanup1;
2723 		}
2724 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2725 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2726 				status = -ENOMEM;
2727 				goto cleanup1;
2728 			}
2729 		} else
2730 			memset(buff[sg_used], 0, sz);
2731 		left -= sz;
2732 		data_ptr += sz;
2733 		sg_used++;
2734 	}
2735 	c = cmd_special_alloc(h);
2736 	if (c == NULL) {
2737 		status = -ENOMEM;
2738 		goto cleanup1;
2739 	}
2740 	c->cmd_type = CMD_IOCTL_PEND;
2741 	c->Header.ReplyQueue = 0;
2742 	c->Header.SGList = c->Header.SGTotal = sg_used;
2743 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2744 	c->Header.Tag.lower = c->busaddr;
2745 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2746 	if (ioc->buf_size > 0) {
2747 		int i;
2748 		for (i = 0; i < sg_used; i++) {
2749 			temp64.val = pci_map_single(h->pdev, buff[i],
2750 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2751 			c->SG[i].Addr.lower = temp64.val32.lower;
2752 			c->SG[i].Addr.upper = temp64.val32.upper;
2753 			c->SG[i].Len = buff_size[i];
2754 			/* we are not chaining */
2755 			c->SG[i].Ext = 0;
2756 		}
2757 	}
2758 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2759 	if (sg_used)
2760 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2761 	check_ioctl_unit_attention(h, c);
2762 	/* Copy the error information out */
2763 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2764 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2765 		cmd_special_free(h, c);
2766 		status = -EFAULT;
2767 		goto cleanup1;
2768 	}
2769 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2770 		/* Copy the data out of the buffer we created */
2771 		BYTE __user *ptr = ioc->buf;
2772 		for (i = 0; i < sg_used; i++) {
2773 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2774 				cmd_special_free(h, c);
2775 				status = -EFAULT;
2776 				goto cleanup1;
2777 			}
2778 			ptr += buff_size[i];
2779 		}
2780 	}
2781 	cmd_special_free(h, c);
2782 	status = 0;
2783 cleanup1:
2784 	if (buff) {
2785 		for (i = 0; i < sg_used; i++)
2786 			kfree(buff[i]);
2787 		kfree(buff);
2788 	}
2789 	kfree(buff_size);
2790 	kfree(ioc);
2791 	return status;
2792 }
2793 
2794 static void check_ioctl_unit_attention(struct ctlr_info *h,
2795 	struct CommandList *c)
2796 {
2797 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2798 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2799 		(void) check_for_unit_attention(h, c);
2800 }
2801 /*
2802  * ioctl
2803  */
2804 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2805 {
2806 	struct ctlr_info *h;
2807 	void __user *argp = (void __user *)arg;
2808 
2809 	h = sdev_to_hba(dev);
2810 
2811 	switch (cmd) {
2812 	case CCISS_DEREGDISK:
2813 	case CCISS_REGNEWDISK:
2814 	case CCISS_REGNEWD:
2815 		hpsa_scan_start(h->scsi_host);
2816 		return 0;
2817 	case CCISS_GETPCIINFO:
2818 		return hpsa_getpciinfo_ioctl(h, argp);
2819 	case CCISS_GETDRIVVER:
2820 		return hpsa_getdrivver_ioctl(h, argp);
2821 	case CCISS_PASSTHRU:
2822 		return hpsa_passthru_ioctl(h, argp);
2823 	case CCISS_BIG_PASSTHRU:
2824 		return hpsa_big_passthru_ioctl(h, argp);
2825 	default:
2826 		return -ENOTTY;
2827 	}
2828 }
2829 
2830 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2831 	unsigned char *scsi3addr, u8 reset_type)
2832 {
2833 	struct CommandList *c;
2834 
2835 	c = cmd_alloc(h);
2836 	if (!c)
2837 		return -ENOMEM;
2838 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2839 		RAID_CTLR_LUNID, TYPE_MSG);
2840 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2841 	c->waiting = NULL;
2842 	enqueue_cmd_and_start_io(h, c);
2843 	/* Don't wait for completion, the reset won't complete.  Don't free
2844 	 * the command either.  This is the last command we will send before
2845 	 * re-initializing everything, so it doesn't matter and won't leak.
2846 	 */
2847 	return 0;
2848 }
2849 
2850 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2851 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2852 	int cmd_type)
2853 {
2854 	int pci_dir = XFER_NONE;
2855 
2856 	c->cmd_type = CMD_IOCTL_PEND;
2857 	c->Header.ReplyQueue = 0;
2858 	if (buff != NULL && size > 0) {
2859 		c->Header.SGList = 1;
2860 		c->Header.SGTotal = 1;
2861 	} else {
2862 		c->Header.SGList = 0;
2863 		c->Header.SGTotal = 0;
2864 	}
2865 	c->Header.Tag.lower = c->busaddr;
2866 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2867 
2868 	c->Request.Type.Type = cmd_type;
2869 	if (cmd_type == TYPE_CMD) {
2870 		switch (cmd) {
2871 		case HPSA_INQUIRY:
2872 			/* are we trying to read a vital product page */
2873 			if (page_code != 0) {
2874 				c->Request.CDB[1] = 0x01;
2875 				c->Request.CDB[2] = page_code;
2876 			}
2877 			c->Request.CDBLen = 6;
2878 			c->Request.Type.Attribute = ATTR_SIMPLE;
2879 			c->Request.Type.Direction = XFER_READ;
2880 			c->Request.Timeout = 0;
2881 			c->Request.CDB[0] = HPSA_INQUIRY;
2882 			c->Request.CDB[4] = size & 0xFF;
2883 			break;
2884 		case HPSA_REPORT_LOG:
2885 		case HPSA_REPORT_PHYS:
2886 			/* Talking to controller so It's a physical command
2887 			   mode = 00 target = 0.  Nothing to write.
2888 			 */
2889 			c->Request.CDBLen = 12;
2890 			c->Request.Type.Attribute = ATTR_SIMPLE;
2891 			c->Request.Type.Direction = XFER_READ;
2892 			c->Request.Timeout = 0;
2893 			c->Request.CDB[0] = cmd;
2894 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2895 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2896 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2897 			c->Request.CDB[9] = size & 0xFF;
2898 			break;
2899 		case HPSA_CACHE_FLUSH:
2900 			c->Request.CDBLen = 12;
2901 			c->Request.Type.Attribute = ATTR_SIMPLE;
2902 			c->Request.Type.Direction = XFER_WRITE;
2903 			c->Request.Timeout = 0;
2904 			c->Request.CDB[0] = BMIC_WRITE;
2905 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2906 			c->Request.CDB[7] = (size >> 8) & 0xFF;
2907 			c->Request.CDB[8] = size & 0xFF;
2908 			break;
2909 		case TEST_UNIT_READY:
2910 			c->Request.CDBLen = 6;
2911 			c->Request.Type.Attribute = ATTR_SIMPLE;
2912 			c->Request.Type.Direction = XFER_NONE;
2913 			c->Request.Timeout = 0;
2914 			break;
2915 		default:
2916 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2917 			BUG();
2918 			return;
2919 		}
2920 	} else if (cmd_type == TYPE_MSG) {
2921 		switch (cmd) {
2922 
2923 		case  HPSA_DEVICE_RESET_MSG:
2924 			c->Request.CDBLen = 16;
2925 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2926 			c->Request.Type.Attribute = ATTR_SIMPLE;
2927 			c->Request.Type.Direction = XFER_NONE;
2928 			c->Request.Timeout = 0; /* Don't time out */
2929 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2930 			c->Request.CDB[0] =  cmd;
2931 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2932 			/* If bytes 4-7 are zero, it means reset the */
2933 			/* LunID device */
2934 			c->Request.CDB[4] = 0x00;
2935 			c->Request.CDB[5] = 0x00;
2936 			c->Request.CDB[6] = 0x00;
2937 			c->Request.CDB[7] = 0x00;
2938 		break;
2939 
2940 		default:
2941 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2942 				cmd);
2943 			BUG();
2944 		}
2945 	} else {
2946 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2947 		BUG();
2948 	}
2949 
2950 	switch (c->Request.Type.Direction) {
2951 	case XFER_READ:
2952 		pci_dir = PCI_DMA_FROMDEVICE;
2953 		break;
2954 	case XFER_WRITE:
2955 		pci_dir = PCI_DMA_TODEVICE;
2956 		break;
2957 	case XFER_NONE:
2958 		pci_dir = PCI_DMA_NONE;
2959 		break;
2960 	default:
2961 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2962 	}
2963 
2964 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2965 
2966 	return;
2967 }
2968 
2969 /*
2970  * Map (physical) PCI mem into (virtual) kernel space
2971  */
2972 static void __iomem *remap_pci_mem(ulong base, ulong size)
2973 {
2974 	ulong page_base = ((ulong) base) & PAGE_MASK;
2975 	ulong page_offs = ((ulong) base) - page_base;
2976 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2977 
2978 	return page_remapped ? (page_remapped + page_offs) : NULL;
2979 }
2980 
2981 /* Takes cmds off the submission queue and sends them to the hardware,
2982  * then puts them on the queue of cmds waiting for completion.
2983  */
2984 static void start_io(struct ctlr_info *h)
2985 {
2986 	struct CommandList *c;
2987 
2988 	while (!list_empty(&h->reqQ)) {
2989 		c = list_entry(h->reqQ.next, struct CommandList, list);
2990 		/* can't do anything if fifo is full */
2991 		if ((h->access.fifo_full(h))) {
2992 			dev_warn(&h->pdev->dev, "fifo full\n");
2993 			break;
2994 		}
2995 
2996 		/* Get the first entry from the Request Q */
2997 		removeQ(c);
2998 		h->Qdepth--;
2999 
3000 		/* Tell the controller execute command */
3001 		h->access.submit_command(h, c);
3002 
3003 		/* Put job onto the completed Q */
3004 		addQ(&h->cmpQ, c);
3005 	}
3006 }
3007 
3008 static inline unsigned long get_next_completion(struct ctlr_info *h)
3009 {
3010 	return h->access.command_completed(h);
3011 }
3012 
3013 static inline bool interrupt_pending(struct ctlr_info *h)
3014 {
3015 	return h->access.intr_pending(h);
3016 }
3017 
3018 static inline long interrupt_not_for_us(struct ctlr_info *h)
3019 {
3020 	return (h->access.intr_pending(h) == 0) ||
3021 		(h->interrupts_enabled == 0);
3022 }
3023 
3024 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3025 	u32 raw_tag)
3026 {
3027 	if (unlikely(tag_index >= h->nr_cmds)) {
3028 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3029 		return 1;
3030 	}
3031 	return 0;
3032 }
3033 
3034 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3035 {
3036 	removeQ(c);
3037 	if (likely(c->cmd_type == CMD_SCSI))
3038 		complete_scsi_command(c);
3039 	else if (c->cmd_type == CMD_IOCTL_PEND)
3040 		complete(c->waiting);
3041 }
3042 
3043 static inline u32 hpsa_tag_contains_index(u32 tag)
3044 {
3045 	return tag & DIRECT_LOOKUP_BIT;
3046 }
3047 
3048 static inline u32 hpsa_tag_to_index(u32 tag)
3049 {
3050 	return tag >> DIRECT_LOOKUP_SHIFT;
3051 }
3052 
3053 
3054 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3055 {
3056 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3057 #define HPSA_SIMPLE_ERROR_BITS 0x03
3058 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3059 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3060 	return tag & ~HPSA_PERF_ERROR_BITS;
3061 }
3062 
3063 /* process completion of an indexed ("direct lookup") command */
3064 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3065 	u32 raw_tag)
3066 {
3067 	u32 tag_index;
3068 	struct CommandList *c;
3069 
3070 	tag_index = hpsa_tag_to_index(raw_tag);
3071 	if (bad_tag(h, tag_index, raw_tag))
3072 		return next_command(h);
3073 	c = h->cmd_pool + tag_index;
3074 	finish_cmd(c, raw_tag);
3075 	return next_command(h);
3076 }
3077 
3078 /* process completion of a non-indexed command */
3079 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3080 	u32 raw_tag)
3081 {
3082 	u32 tag;
3083 	struct CommandList *c = NULL;
3084 
3085 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3086 	list_for_each_entry(c, &h->cmpQ, list) {
3087 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3088 			finish_cmd(c, raw_tag);
3089 			return next_command(h);
3090 		}
3091 	}
3092 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3093 	return next_command(h);
3094 }
3095 
3096 /* Some controllers, like p400, will give us one interrupt
3097  * after a soft reset, even if we turned interrupts off.
3098  * Only need to check for this in the hpsa_xxx_discard_completions
3099  * functions.
3100  */
3101 static int ignore_bogus_interrupt(struct ctlr_info *h)
3102 {
3103 	if (likely(!reset_devices))
3104 		return 0;
3105 
3106 	if (likely(h->interrupts_enabled))
3107 		return 0;
3108 
3109 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3110 		"(known firmware bug.)  Ignoring.\n");
3111 
3112 	return 1;
3113 }
3114 
3115 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3116 {
3117 	struct ctlr_info *h = dev_id;
3118 	unsigned long flags;
3119 	u32 raw_tag;
3120 
3121 	if (ignore_bogus_interrupt(h))
3122 		return IRQ_NONE;
3123 
3124 	if (interrupt_not_for_us(h))
3125 		return IRQ_NONE;
3126 	spin_lock_irqsave(&h->lock, flags);
3127 	h->last_intr_timestamp = get_jiffies_64();
3128 	while (interrupt_pending(h)) {
3129 		raw_tag = get_next_completion(h);
3130 		while (raw_tag != FIFO_EMPTY)
3131 			raw_tag = next_command(h);
3132 	}
3133 	spin_unlock_irqrestore(&h->lock, flags);
3134 	return IRQ_HANDLED;
3135 }
3136 
3137 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3138 {
3139 	struct ctlr_info *h = dev_id;
3140 	unsigned long flags;
3141 	u32 raw_tag;
3142 
3143 	if (ignore_bogus_interrupt(h))
3144 		return IRQ_NONE;
3145 
3146 	spin_lock_irqsave(&h->lock, flags);
3147 	h->last_intr_timestamp = get_jiffies_64();
3148 	raw_tag = get_next_completion(h);
3149 	while (raw_tag != FIFO_EMPTY)
3150 		raw_tag = next_command(h);
3151 	spin_unlock_irqrestore(&h->lock, flags);
3152 	return IRQ_HANDLED;
3153 }
3154 
3155 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3156 {
3157 	struct ctlr_info *h = dev_id;
3158 	unsigned long flags;
3159 	u32 raw_tag;
3160 
3161 	if (interrupt_not_for_us(h))
3162 		return IRQ_NONE;
3163 	spin_lock_irqsave(&h->lock, flags);
3164 	h->last_intr_timestamp = get_jiffies_64();
3165 	while (interrupt_pending(h)) {
3166 		raw_tag = get_next_completion(h);
3167 		while (raw_tag != FIFO_EMPTY) {
3168 			if (hpsa_tag_contains_index(raw_tag))
3169 				raw_tag = process_indexed_cmd(h, raw_tag);
3170 			else
3171 				raw_tag = process_nonindexed_cmd(h, raw_tag);
3172 		}
3173 	}
3174 	spin_unlock_irqrestore(&h->lock, flags);
3175 	return IRQ_HANDLED;
3176 }
3177 
3178 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3179 {
3180 	struct ctlr_info *h = dev_id;
3181 	unsigned long flags;
3182 	u32 raw_tag;
3183 
3184 	spin_lock_irqsave(&h->lock, flags);
3185 	h->last_intr_timestamp = get_jiffies_64();
3186 	raw_tag = get_next_completion(h);
3187 	while (raw_tag != FIFO_EMPTY) {
3188 		if (hpsa_tag_contains_index(raw_tag))
3189 			raw_tag = process_indexed_cmd(h, raw_tag);
3190 		else
3191 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3192 	}
3193 	spin_unlock_irqrestore(&h->lock, flags);
3194 	return IRQ_HANDLED;
3195 }
3196 
3197 /* Send a message CDB to the firmware. Careful, this only works
3198  * in simple mode, not performant mode due to the tag lookup.
3199  * We only ever use this immediately after a controller reset.
3200  */
3201 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3202 						unsigned char type)
3203 {
3204 	struct Command {
3205 		struct CommandListHeader CommandHeader;
3206 		struct RequestBlock Request;
3207 		struct ErrDescriptor ErrorDescriptor;
3208 	};
3209 	struct Command *cmd;
3210 	static const size_t cmd_sz = sizeof(*cmd) +
3211 					sizeof(cmd->ErrorDescriptor);
3212 	dma_addr_t paddr64;
3213 	uint32_t paddr32, tag;
3214 	void __iomem *vaddr;
3215 	int i, err;
3216 
3217 	vaddr = pci_ioremap_bar(pdev, 0);
3218 	if (vaddr == NULL)
3219 		return -ENOMEM;
3220 
3221 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3222 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3223 	 * memory.
3224 	 */
3225 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3226 	if (err) {
3227 		iounmap(vaddr);
3228 		return -ENOMEM;
3229 	}
3230 
3231 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3232 	if (cmd == NULL) {
3233 		iounmap(vaddr);
3234 		return -ENOMEM;
3235 	}
3236 
3237 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3238 	 * although there's no guarantee, we assume that the address is at
3239 	 * least 4-byte aligned (most likely, it's page-aligned).
3240 	 */
3241 	paddr32 = paddr64;
3242 
3243 	cmd->CommandHeader.ReplyQueue = 0;
3244 	cmd->CommandHeader.SGList = 0;
3245 	cmd->CommandHeader.SGTotal = 0;
3246 	cmd->CommandHeader.Tag.lower = paddr32;
3247 	cmd->CommandHeader.Tag.upper = 0;
3248 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3249 
3250 	cmd->Request.CDBLen = 16;
3251 	cmd->Request.Type.Type = TYPE_MSG;
3252 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3253 	cmd->Request.Type.Direction = XFER_NONE;
3254 	cmd->Request.Timeout = 0; /* Don't time out */
3255 	cmd->Request.CDB[0] = opcode;
3256 	cmd->Request.CDB[1] = type;
3257 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3258 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3259 	cmd->ErrorDescriptor.Addr.upper = 0;
3260 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3261 
3262 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3263 
3264 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3265 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3266 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3267 			break;
3268 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3269 	}
3270 
3271 	iounmap(vaddr);
3272 
3273 	/* we leak the DMA buffer here ... no choice since the controller could
3274 	 *  still complete the command.
3275 	 */
3276 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3277 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3278 			opcode, type);
3279 		return -ETIMEDOUT;
3280 	}
3281 
3282 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3283 
3284 	if (tag & HPSA_ERROR_BIT) {
3285 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3286 			opcode, type);
3287 		return -EIO;
3288 	}
3289 
3290 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3291 		opcode, type);
3292 	return 0;
3293 }
3294 
3295 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3296 
3297 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3298 	void * __iomem vaddr, u32 use_doorbell)
3299 {
3300 	u16 pmcsr;
3301 	int pos;
3302 
3303 	if (use_doorbell) {
3304 		/* For everything after the P600, the PCI power state method
3305 		 * of resetting the controller doesn't work, so we have this
3306 		 * other way using the doorbell register.
3307 		 */
3308 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3309 		writel(use_doorbell, vaddr + SA5_DOORBELL);
3310 	} else { /* Try to do it the PCI power state way */
3311 
3312 		/* Quoting from the Open CISS Specification: "The Power
3313 		 * Management Control/Status Register (CSR) controls the power
3314 		 * state of the device.  The normal operating state is D0,
3315 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3316 		 * the controller, place the interface device in D3 then to D0,
3317 		 * this causes a secondary PCI reset which will reset the
3318 		 * controller." */
3319 
3320 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3321 		if (pos == 0) {
3322 			dev_err(&pdev->dev,
3323 				"hpsa_reset_controller: "
3324 				"PCI PM not supported\n");
3325 			return -ENODEV;
3326 		}
3327 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3328 		/* enter the D3hot power management state */
3329 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3330 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3331 		pmcsr |= PCI_D3hot;
3332 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3333 
3334 		msleep(500);
3335 
3336 		/* enter the D0 power management state */
3337 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3338 		pmcsr |= PCI_D0;
3339 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3340 
3341 		/*
3342 		 * The P600 requires a small delay when changing states.
3343 		 * Otherwise we may think the board did not reset and we bail.
3344 		 * This for kdump only and is particular to the P600.
3345 		 */
3346 		msleep(500);
3347 	}
3348 	return 0;
3349 }
3350 
3351 static __devinit void init_driver_version(char *driver_version, int len)
3352 {
3353 	memset(driver_version, 0, len);
3354 	strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3355 }
3356 
3357 static __devinit int write_driver_ver_to_cfgtable(
3358 	struct CfgTable __iomem *cfgtable)
3359 {
3360 	char *driver_version;
3361 	int i, size = sizeof(cfgtable->driver_version);
3362 
3363 	driver_version = kmalloc(size, GFP_KERNEL);
3364 	if (!driver_version)
3365 		return -ENOMEM;
3366 
3367 	init_driver_version(driver_version, size);
3368 	for (i = 0; i < size; i++)
3369 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3370 	kfree(driver_version);
3371 	return 0;
3372 }
3373 
3374 static __devinit void read_driver_ver_from_cfgtable(
3375 	struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3376 {
3377 	int i;
3378 
3379 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3380 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3381 }
3382 
3383 static __devinit int controller_reset_failed(
3384 	struct CfgTable __iomem *cfgtable)
3385 {
3386 
3387 	char *driver_ver, *old_driver_ver;
3388 	int rc, size = sizeof(cfgtable->driver_version);
3389 
3390 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3391 	if (!old_driver_ver)
3392 		return -ENOMEM;
3393 	driver_ver = old_driver_ver + size;
3394 
3395 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3396 	 * should have been changed, otherwise we know the reset failed.
3397 	 */
3398 	init_driver_version(old_driver_ver, size);
3399 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3400 	rc = !memcmp(driver_ver, old_driver_ver, size);
3401 	kfree(old_driver_ver);
3402 	return rc;
3403 }
3404 /* This does a hard reset of the controller using PCI power management
3405  * states or the using the doorbell register.
3406  */
3407 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3408 {
3409 	u64 cfg_offset;
3410 	u32 cfg_base_addr;
3411 	u64 cfg_base_addr_index;
3412 	void __iomem *vaddr;
3413 	unsigned long paddr;
3414 	u32 misc_fw_support;
3415 	int rc;
3416 	struct CfgTable __iomem *cfgtable;
3417 	u32 use_doorbell;
3418 	u32 board_id;
3419 	u16 command_register;
3420 
3421 	/* For controllers as old as the P600, this is very nearly
3422 	 * the same thing as
3423 	 *
3424 	 * pci_save_state(pci_dev);
3425 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3426 	 * pci_set_power_state(pci_dev, PCI_D0);
3427 	 * pci_restore_state(pci_dev);
3428 	 *
3429 	 * For controllers newer than the P600, the pci power state
3430 	 * method of resetting doesn't work so we have another way
3431 	 * using the doorbell register.
3432 	 */
3433 
3434 	rc = hpsa_lookup_board_id(pdev, &board_id);
3435 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3436 		dev_warn(&pdev->dev, "Not resetting device.\n");
3437 		return -ENODEV;
3438 	}
3439 
3440 	/* if controller is soft- but not hard resettable... */
3441 	if (!ctlr_is_hard_resettable(board_id))
3442 		return -ENOTSUPP; /* try soft reset later. */
3443 
3444 	/* Save the PCI command register */
3445 	pci_read_config_word(pdev, 4, &command_register);
3446 	/* Turn the board off.  This is so that later pci_restore_state()
3447 	 * won't turn the board on before the rest of config space is ready.
3448 	 */
3449 	pci_disable_device(pdev);
3450 	pci_save_state(pdev);
3451 
3452 	/* find the first memory BAR, so we can find the cfg table */
3453 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3454 	if (rc)
3455 		return rc;
3456 	vaddr = remap_pci_mem(paddr, 0x250);
3457 	if (!vaddr)
3458 		return -ENOMEM;
3459 
3460 	/* find cfgtable in order to check if reset via doorbell is supported */
3461 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3462 					&cfg_base_addr_index, &cfg_offset);
3463 	if (rc)
3464 		goto unmap_vaddr;
3465 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3466 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3467 	if (!cfgtable) {
3468 		rc = -ENOMEM;
3469 		goto unmap_vaddr;
3470 	}
3471 	rc = write_driver_ver_to_cfgtable(cfgtable);
3472 	if (rc)
3473 		goto unmap_vaddr;
3474 
3475 	/* If reset via doorbell register is supported, use that.
3476 	 * There are two such methods.  Favor the newest method.
3477 	 */
3478 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3479 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3480 	if (use_doorbell) {
3481 		use_doorbell = DOORBELL_CTLR_RESET2;
3482 	} else {
3483 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3484 		if (use_doorbell) {
3485 			dev_warn(&pdev->dev, "Soft reset not supported. "
3486 				"Firmware update is required.\n");
3487 			rc = -ENOTSUPP; /* try soft reset */
3488 			goto unmap_cfgtable;
3489 		}
3490 	}
3491 
3492 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3493 	if (rc)
3494 		goto unmap_cfgtable;
3495 
3496 	pci_restore_state(pdev);
3497 	rc = pci_enable_device(pdev);
3498 	if (rc) {
3499 		dev_warn(&pdev->dev, "failed to enable device.\n");
3500 		goto unmap_cfgtable;
3501 	}
3502 	pci_write_config_word(pdev, 4, command_register);
3503 
3504 	/* Some devices (notably the HP Smart Array 5i Controller)
3505 	   need a little pause here */
3506 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3507 
3508 	/* Wait for board to become not ready, then ready. */
3509 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3510 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3511 	if (rc) {
3512 		dev_warn(&pdev->dev,
3513 			"failed waiting for board to reset."
3514 			" Will try soft reset.\n");
3515 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3516 		goto unmap_cfgtable;
3517 	}
3518 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3519 	if (rc) {
3520 		dev_warn(&pdev->dev,
3521 			"failed waiting for board to become ready "
3522 			"after hard reset\n");
3523 		goto unmap_cfgtable;
3524 	}
3525 
3526 	rc = controller_reset_failed(vaddr);
3527 	if (rc < 0)
3528 		goto unmap_cfgtable;
3529 	if (rc) {
3530 		dev_warn(&pdev->dev, "Unable to successfully reset "
3531 			"controller. Will try soft reset.\n");
3532 		rc = -ENOTSUPP;
3533 	} else {
3534 		dev_info(&pdev->dev, "board ready after hard reset.\n");
3535 	}
3536 
3537 unmap_cfgtable:
3538 	iounmap(cfgtable);
3539 
3540 unmap_vaddr:
3541 	iounmap(vaddr);
3542 	return rc;
3543 }
3544 
3545 /*
3546  *  We cannot read the structure directly, for portability we must use
3547  *   the io functions.
3548  *   This is for debug only.
3549  */
3550 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3551 {
3552 #ifdef HPSA_DEBUG
3553 	int i;
3554 	char temp_name[17];
3555 
3556 	dev_info(dev, "Controller Configuration information\n");
3557 	dev_info(dev, "------------------------------------\n");
3558 	for (i = 0; i < 4; i++)
3559 		temp_name[i] = readb(&(tb->Signature[i]));
3560 	temp_name[4] = '\0';
3561 	dev_info(dev, "   Signature = %s\n", temp_name);
3562 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3563 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3564 	       readl(&(tb->TransportSupport)));
3565 	dev_info(dev, "   Transport methods active = 0x%x\n",
3566 	       readl(&(tb->TransportActive)));
3567 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3568 	       readl(&(tb->HostWrite.TransportRequest)));
3569 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3570 	       readl(&(tb->HostWrite.CoalIntDelay)));
3571 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3572 	       readl(&(tb->HostWrite.CoalIntCount)));
3573 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3574 	       readl(&(tb->CmdsOutMax)));
3575 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3576 	for (i = 0; i < 16; i++)
3577 		temp_name[i] = readb(&(tb->ServerName[i]));
3578 	temp_name[16] = '\0';
3579 	dev_info(dev, "   Server Name = %s\n", temp_name);
3580 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3581 		readl(&(tb->HeartBeat)));
3582 #endif				/* HPSA_DEBUG */
3583 }
3584 
3585 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3586 {
3587 	int i, offset, mem_type, bar_type;
3588 
3589 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3590 		return 0;
3591 	offset = 0;
3592 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3593 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3594 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3595 			offset += 4;
3596 		else {
3597 			mem_type = pci_resource_flags(pdev, i) &
3598 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3599 			switch (mem_type) {
3600 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3601 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3602 				offset += 4;	/* 32 bit */
3603 				break;
3604 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3605 				offset += 8;
3606 				break;
3607 			default:	/* reserved in PCI 2.2 */
3608 				dev_warn(&pdev->dev,
3609 				       "base address is invalid\n");
3610 				return -1;
3611 				break;
3612 			}
3613 		}
3614 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3615 			return i + 1;
3616 	}
3617 	return -1;
3618 }
3619 
3620 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3621  * controllers that are capable. If not, we use IO-APIC mode.
3622  */
3623 
3624 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3625 {
3626 #ifdef CONFIG_PCI_MSI
3627 	int err;
3628 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3629 	{0, 2}, {0, 3}
3630 	};
3631 
3632 	/* Some boards advertise MSI but don't really support it */
3633 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3634 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3635 		goto default_int_mode;
3636 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3637 		dev_info(&h->pdev->dev, "MSIX\n");
3638 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3639 		if (!err) {
3640 			h->intr[0] = hpsa_msix_entries[0].vector;
3641 			h->intr[1] = hpsa_msix_entries[1].vector;
3642 			h->intr[2] = hpsa_msix_entries[2].vector;
3643 			h->intr[3] = hpsa_msix_entries[3].vector;
3644 			h->msix_vector = 1;
3645 			return;
3646 		}
3647 		if (err > 0) {
3648 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3649 			       "available\n", err);
3650 			goto default_int_mode;
3651 		} else {
3652 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3653 			       err);
3654 			goto default_int_mode;
3655 		}
3656 	}
3657 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3658 		dev_info(&h->pdev->dev, "MSI\n");
3659 		if (!pci_enable_msi(h->pdev))
3660 			h->msi_vector = 1;
3661 		else
3662 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3663 	}
3664 default_int_mode:
3665 #endif				/* CONFIG_PCI_MSI */
3666 	/* if we get here we're going to use the default interrupt mode */
3667 	h->intr[h->intr_mode] = h->pdev->irq;
3668 }
3669 
3670 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3671 {
3672 	int i;
3673 	u32 subsystem_vendor_id, subsystem_device_id;
3674 
3675 	subsystem_vendor_id = pdev->subsystem_vendor;
3676 	subsystem_device_id = pdev->subsystem_device;
3677 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3678 		    subsystem_vendor_id;
3679 
3680 	for (i = 0; i < ARRAY_SIZE(products); i++)
3681 		if (*board_id == products[i].board_id)
3682 			return i;
3683 
3684 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3685 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3686 		!hpsa_allow_any) {
3687 		dev_warn(&pdev->dev, "unrecognized board ID: "
3688 			"0x%08x, ignoring.\n", *board_id);
3689 			return -ENODEV;
3690 	}
3691 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3692 }
3693 
3694 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3695 {
3696 	u16 command;
3697 
3698 	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3699 	return ((command & PCI_COMMAND_MEMORY) == 0);
3700 }
3701 
3702 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3703 	unsigned long *memory_bar)
3704 {
3705 	int i;
3706 
3707 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3708 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3709 			/* addressing mode bits already removed */
3710 			*memory_bar = pci_resource_start(pdev, i);
3711 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3712 				*memory_bar);
3713 			return 0;
3714 		}
3715 	dev_warn(&pdev->dev, "no memory BAR found\n");
3716 	return -ENODEV;
3717 }
3718 
3719 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3720 	void __iomem *vaddr, int wait_for_ready)
3721 {
3722 	int i, iterations;
3723 	u32 scratchpad;
3724 	if (wait_for_ready)
3725 		iterations = HPSA_BOARD_READY_ITERATIONS;
3726 	else
3727 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3728 
3729 	for (i = 0; i < iterations; i++) {
3730 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3731 		if (wait_for_ready) {
3732 			if (scratchpad == HPSA_FIRMWARE_READY)
3733 				return 0;
3734 		} else {
3735 			if (scratchpad != HPSA_FIRMWARE_READY)
3736 				return 0;
3737 		}
3738 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3739 	}
3740 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
3741 	return -ENODEV;
3742 }
3743 
3744 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3745 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3746 	u64 *cfg_offset)
3747 {
3748 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3749 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3750 	*cfg_base_addr &= (u32) 0x0000ffff;
3751 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3752 	if (*cfg_base_addr_index == -1) {
3753 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3754 		return -ENODEV;
3755 	}
3756 	return 0;
3757 }
3758 
3759 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3760 {
3761 	u64 cfg_offset;
3762 	u32 cfg_base_addr;
3763 	u64 cfg_base_addr_index;
3764 	u32 trans_offset;
3765 	int rc;
3766 
3767 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3768 		&cfg_base_addr_index, &cfg_offset);
3769 	if (rc)
3770 		return rc;
3771 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3772 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3773 	if (!h->cfgtable)
3774 		return -ENOMEM;
3775 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
3776 	if (rc)
3777 		return rc;
3778 	/* Find performant mode table. */
3779 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3780 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3781 				cfg_base_addr_index)+cfg_offset+trans_offset,
3782 				sizeof(*h->transtable));
3783 	if (!h->transtable)
3784 		return -ENOMEM;
3785 	return 0;
3786 }
3787 
3788 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3789 {
3790 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3791 
3792 	/* Limit commands in memory limited kdump scenario. */
3793 	if (reset_devices && h->max_commands > 32)
3794 		h->max_commands = 32;
3795 
3796 	if (h->max_commands < 16) {
3797 		dev_warn(&h->pdev->dev, "Controller reports "
3798 			"max supported commands of %d, an obvious lie. "
3799 			"Using 16.  Ensure that firmware is up to date.\n",
3800 			h->max_commands);
3801 		h->max_commands = 16;
3802 	}
3803 }
3804 
3805 /* Interrogate the hardware for some limits:
3806  * max commands, max SG elements without chaining, and with chaining,
3807  * SG chain block size, etc.
3808  */
3809 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3810 {
3811 	hpsa_get_max_perf_mode_cmds(h);
3812 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3813 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3814 	/*
3815 	 * Limit in-command s/g elements to 32 save dma'able memory.
3816 	 * Howvever spec says if 0, use 31
3817 	 */
3818 	h->max_cmd_sg_entries = 31;
3819 	if (h->maxsgentries > 512) {
3820 		h->max_cmd_sg_entries = 32;
3821 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3822 		h->maxsgentries--; /* save one for chain pointer */
3823 	} else {
3824 		h->maxsgentries = 31; /* default to traditional values */
3825 		h->chainsize = 0;
3826 	}
3827 }
3828 
3829 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3830 {
3831 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3832 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3833 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3834 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3835 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3836 		return false;
3837 	}
3838 	return true;
3839 }
3840 
3841 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3842 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3843 {
3844 #ifdef CONFIG_X86
3845 	u32 prefetch;
3846 
3847 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3848 	prefetch |= 0x100;
3849 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3850 #endif
3851 }
3852 
3853 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3854  * in a prefetch beyond physical memory.
3855  */
3856 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3857 {
3858 	u32 dma_prefetch;
3859 
3860 	if (h->board_id != 0x3225103C)
3861 		return;
3862 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3863 	dma_prefetch |= 0x8000;
3864 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3865 }
3866 
3867 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3868 {
3869 	int i;
3870 	u32 doorbell_value;
3871 	unsigned long flags;
3872 
3873 	/* under certain very rare conditions, this can take awhile.
3874 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3875 	 * as we enter this code.)
3876 	 */
3877 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3878 		spin_lock_irqsave(&h->lock, flags);
3879 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3880 		spin_unlock_irqrestore(&h->lock, flags);
3881 		if (!(doorbell_value & CFGTBL_ChangeReq))
3882 			break;
3883 		/* delay and try again */
3884 		usleep_range(10000, 20000);
3885 	}
3886 }
3887 
3888 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3889 {
3890 	u32 trans_support;
3891 
3892 	trans_support = readl(&(h->cfgtable->TransportSupport));
3893 	if (!(trans_support & SIMPLE_MODE))
3894 		return -ENOTSUPP;
3895 
3896 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3897 	/* Update the field, and then ring the doorbell */
3898 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3899 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3900 	hpsa_wait_for_mode_change_ack(h);
3901 	print_cfg_table(&h->pdev->dev, h->cfgtable);
3902 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3903 		dev_warn(&h->pdev->dev,
3904 			"unable to get board into simple mode\n");
3905 		return -ENODEV;
3906 	}
3907 	h->transMethod = CFGTBL_Trans_Simple;
3908 	return 0;
3909 }
3910 
3911 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3912 {
3913 	int prod_index, err;
3914 
3915 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3916 	if (prod_index < 0)
3917 		return -ENODEV;
3918 	h->product_name = products[prod_index].product_name;
3919 	h->access = *(products[prod_index].access);
3920 
3921 	if (hpsa_board_disabled(h->pdev)) {
3922 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3923 		return -ENODEV;
3924 	}
3925 	err = pci_enable_device(h->pdev);
3926 	if (err) {
3927 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3928 		return err;
3929 	}
3930 
3931 	err = pci_request_regions(h->pdev, "hpsa");
3932 	if (err) {
3933 		dev_err(&h->pdev->dev,
3934 			"cannot obtain PCI resources, aborting\n");
3935 		return err;
3936 	}
3937 	hpsa_interrupt_mode(h);
3938 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3939 	if (err)
3940 		goto err_out_free_res;
3941 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3942 	if (!h->vaddr) {
3943 		err = -ENOMEM;
3944 		goto err_out_free_res;
3945 	}
3946 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3947 	if (err)
3948 		goto err_out_free_res;
3949 	err = hpsa_find_cfgtables(h);
3950 	if (err)
3951 		goto err_out_free_res;
3952 	hpsa_find_board_params(h);
3953 
3954 	if (!hpsa_CISS_signature_present(h)) {
3955 		err = -ENODEV;
3956 		goto err_out_free_res;
3957 	}
3958 	hpsa_enable_scsi_prefetch(h);
3959 	hpsa_p600_dma_prefetch_quirk(h);
3960 	err = hpsa_enter_simple_mode(h);
3961 	if (err)
3962 		goto err_out_free_res;
3963 	return 0;
3964 
3965 err_out_free_res:
3966 	if (h->transtable)
3967 		iounmap(h->transtable);
3968 	if (h->cfgtable)
3969 		iounmap(h->cfgtable);
3970 	if (h->vaddr)
3971 		iounmap(h->vaddr);
3972 	/*
3973 	 * Deliberately omit pci_disable_device(): it does something nasty to
3974 	 * Smart Array controllers that pci_enable_device does not undo
3975 	 */
3976 	pci_release_regions(h->pdev);
3977 	return err;
3978 }
3979 
3980 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3981 {
3982 	int rc;
3983 
3984 #define HBA_INQUIRY_BYTE_COUNT 64
3985 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3986 	if (!h->hba_inquiry_data)
3987 		return;
3988 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3989 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3990 	if (rc != 0) {
3991 		kfree(h->hba_inquiry_data);
3992 		h->hba_inquiry_data = NULL;
3993 	}
3994 }
3995 
3996 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3997 {
3998 	int rc, i;
3999 
4000 	if (!reset_devices)
4001 		return 0;
4002 
4003 	/* Reset the controller with a PCI power-cycle or via doorbell */
4004 	rc = hpsa_kdump_hard_reset_controller(pdev);
4005 
4006 	/* -ENOTSUPP here means we cannot reset the controller
4007 	 * but it's already (and still) up and running in
4008 	 * "performant mode".  Or, it might be 640x, which can't reset
4009 	 * due to concerns about shared bbwc between 6402/6404 pair.
4010 	 */
4011 	if (rc == -ENOTSUPP)
4012 		return rc; /* just try to do the kdump anyhow. */
4013 	if (rc)
4014 		return -ENODEV;
4015 
4016 	/* Now try to get the controller to respond to a no-op */
4017 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4018 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4019 		if (hpsa_noop(pdev) == 0)
4020 			break;
4021 		else
4022 			dev_warn(&pdev->dev, "no-op failed%s\n",
4023 					(i < 11 ? "; re-trying" : ""));
4024 	}
4025 	return 0;
4026 }
4027 
4028 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4029 {
4030 	h->cmd_pool_bits = kzalloc(
4031 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4032 		sizeof(unsigned long), GFP_KERNEL);
4033 	h->cmd_pool = pci_alloc_consistent(h->pdev,
4034 		    h->nr_cmds * sizeof(*h->cmd_pool),
4035 		    &(h->cmd_pool_dhandle));
4036 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4037 		    h->nr_cmds * sizeof(*h->errinfo_pool),
4038 		    &(h->errinfo_pool_dhandle));
4039 	if ((h->cmd_pool_bits == NULL)
4040 	    || (h->cmd_pool == NULL)
4041 	    || (h->errinfo_pool == NULL)) {
4042 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4043 		return -ENOMEM;
4044 	}
4045 	return 0;
4046 }
4047 
4048 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4049 {
4050 	kfree(h->cmd_pool_bits);
4051 	if (h->cmd_pool)
4052 		pci_free_consistent(h->pdev,
4053 			    h->nr_cmds * sizeof(struct CommandList),
4054 			    h->cmd_pool, h->cmd_pool_dhandle);
4055 	if (h->errinfo_pool)
4056 		pci_free_consistent(h->pdev,
4057 			    h->nr_cmds * sizeof(struct ErrorInfo),
4058 			    h->errinfo_pool,
4059 			    h->errinfo_pool_dhandle);
4060 }
4061 
4062 static int hpsa_request_irq(struct ctlr_info *h,
4063 	irqreturn_t (*msixhandler)(int, void *),
4064 	irqreturn_t (*intxhandler)(int, void *))
4065 {
4066 	int rc;
4067 
4068 	if (h->msix_vector || h->msi_vector)
4069 		rc = request_irq(h->intr[h->intr_mode], msixhandler,
4070 				IRQF_DISABLED, h->devname, h);
4071 	else
4072 		rc = request_irq(h->intr[h->intr_mode], intxhandler,
4073 				IRQF_DISABLED, h->devname, h);
4074 	if (rc) {
4075 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4076 		       h->intr[h->intr_mode], h->devname);
4077 		return -ENODEV;
4078 	}
4079 	return 0;
4080 }
4081 
4082 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4083 {
4084 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4085 		HPSA_RESET_TYPE_CONTROLLER)) {
4086 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4087 		return -EIO;
4088 	}
4089 
4090 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4091 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4092 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4093 		return -1;
4094 	}
4095 
4096 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4097 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4098 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4099 			"after soft reset.\n");
4100 		return -1;
4101 	}
4102 
4103 	return 0;
4104 }
4105 
4106 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4107 {
4108 	free_irq(h->intr[h->intr_mode], h);
4109 #ifdef CONFIG_PCI_MSI
4110 	if (h->msix_vector)
4111 		pci_disable_msix(h->pdev);
4112 	else if (h->msi_vector)
4113 		pci_disable_msi(h->pdev);
4114 #endif /* CONFIG_PCI_MSI */
4115 	hpsa_free_sg_chain_blocks(h);
4116 	hpsa_free_cmd_pool(h);
4117 	kfree(h->blockFetchTable);
4118 	pci_free_consistent(h->pdev, h->reply_pool_size,
4119 		h->reply_pool, h->reply_pool_dhandle);
4120 	if (h->vaddr)
4121 		iounmap(h->vaddr);
4122 	if (h->transtable)
4123 		iounmap(h->transtable);
4124 	if (h->cfgtable)
4125 		iounmap(h->cfgtable);
4126 	pci_release_regions(h->pdev);
4127 	kfree(h);
4128 }
4129 
4130 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4131 {
4132 	assert_spin_locked(&lockup_detector_lock);
4133 	if (!hpsa_lockup_detector)
4134 		return;
4135 	if (h->lockup_detected)
4136 		return; /* already stopped the lockup detector */
4137 	list_del(&h->lockup_list);
4138 }
4139 
4140 /* Called when controller lockup detected. */
4141 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4142 {
4143 	struct CommandList *c = NULL;
4144 
4145 	assert_spin_locked(&h->lock);
4146 	/* Mark all outstanding commands as failed and complete them. */
4147 	while (!list_empty(list)) {
4148 		c = list_entry(list->next, struct CommandList, list);
4149 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4150 		finish_cmd(c, c->Header.Tag.lower);
4151 	}
4152 }
4153 
4154 static void controller_lockup_detected(struct ctlr_info *h)
4155 {
4156 	unsigned long flags;
4157 
4158 	assert_spin_locked(&lockup_detector_lock);
4159 	remove_ctlr_from_lockup_detector_list(h);
4160 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4161 	spin_lock_irqsave(&h->lock, flags);
4162 	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4163 	spin_unlock_irqrestore(&h->lock, flags);
4164 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4165 			h->lockup_detected);
4166 	pci_disable_device(h->pdev);
4167 	spin_lock_irqsave(&h->lock, flags);
4168 	fail_all_cmds_on_list(h, &h->cmpQ);
4169 	fail_all_cmds_on_list(h, &h->reqQ);
4170 	spin_unlock_irqrestore(&h->lock, flags);
4171 }
4172 
4173 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4174 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4175 
4176 static void detect_controller_lockup(struct ctlr_info *h)
4177 {
4178 	u64 now;
4179 	u32 heartbeat;
4180 	unsigned long flags;
4181 
4182 	assert_spin_locked(&lockup_detector_lock);
4183 	now = get_jiffies_64();
4184 	/* If we've received an interrupt recently, we're ok. */
4185 	if (time_after64(h->last_intr_timestamp +
4186 				(HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4187 		return;
4188 
4189 	/*
4190 	 * If we've already checked the heartbeat recently, we're ok.
4191 	 * This could happen if someone sends us a signal. We
4192 	 * otherwise don't care about signals in this thread.
4193 	 */
4194 	if (time_after64(h->last_heartbeat_timestamp +
4195 				(HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4196 		return;
4197 
4198 	/* If heartbeat has not changed since we last looked, we're not ok. */
4199 	spin_lock_irqsave(&h->lock, flags);
4200 	heartbeat = readl(&h->cfgtable->HeartBeat);
4201 	spin_unlock_irqrestore(&h->lock, flags);
4202 	if (h->last_heartbeat == heartbeat) {
4203 		controller_lockup_detected(h);
4204 		return;
4205 	}
4206 
4207 	/* We're ok. */
4208 	h->last_heartbeat = heartbeat;
4209 	h->last_heartbeat_timestamp = now;
4210 }
4211 
4212 static int detect_controller_lockup_thread(void *notused)
4213 {
4214 	struct ctlr_info *h;
4215 	unsigned long flags;
4216 
4217 	while (1) {
4218 		struct list_head *this, *tmp;
4219 
4220 		schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4221 		if (kthread_should_stop())
4222 			break;
4223 		spin_lock_irqsave(&lockup_detector_lock, flags);
4224 		list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4225 			h = list_entry(this, struct ctlr_info, lockup_list);
4226 			detect_controller_lockup(h);
4227 		}
4228 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4229 	}
4230 	return 0;
4231 }
4232 
4233 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4234 {
4235 	unsigned long flags;
4236 
4237 	spin_lock_irqsave(&lockup_detector_lock, flags);
4238 	list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4239 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4240 }
4241 
4242 static void start_controller_lockup_detector(struct ctlr_info *h)
4243 {
4244 	/* Start the lockup detector thread if not already started */
4245 	if (!hpsa_lockup_detector) {
4246 		spin_lock_init(&lockup_detector_lock);
4247 		hpsa_lockup_detector =
4248 			kthread_run(detect_controller_lockup_thread,
4249 						NULL, "hpsa");
4250 	}
4251 	if (!hpsa_lockup_detector) {
4252 		dev_warn(&h->pdev->dev,
4253 			"Could not start lockup detector thread\n");
4254 		return;
4255 	}
4256 	add_ctlr_to_lockup_detector_list(h);
4257 }
4258 
4259 static void stop_controller_lockup_detector(struct ctlr_info *h)
4260 {
4261 	unsigned long flags;
4262 
4263 	spin_lock_irqsave(&lockup_detector_lock, flags);
4264 	remove_ctlr_from_lockup_detector_list(h);
4265 	/* If the list of ctlr's to monitor is empty, stop the thread */
4266 	if (list_empty(&hpsa_ctlr_list)) {
4267 		kthread_stop(hpsa_lockup_detector);
4268 		hpsa_lockup_detector = NULL;
4269 	}
4270 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4271 }
4272 
4273 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4274 				    const struct pci_device_id *ent)
4275 {
4276 	int dac, rc;
4277 	struct ctlr_info *h;
4278 	int try_soft_reset = 0;
4279 	unsigned long flags;
4280 
4281 	if (number_of_controllers == 0)
4282 		printk(KERN_INFO DRIVER_NAME "\n");
4283 
4284 	rc = hpsa_init_reset_devices(pdev);
4285 	if (rc) {
4286 		if (rc != -ENOTSUPP)
4287 			return rc;
4288 		/* If the reset fails in a particular way (it has no way to do
4289 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4290 		 * a soft reset once we get the controller configured up to the
4291 		 * point that it can accept a command.
4292 		 */
4293 		try_soft_reset = 1;
4294 		rc = 0;
4295 	}
4296 
4297 reinit_after_soft_reset:
4298 
4299 	/* Command structures must be aligned on a 32-byte boundary because
4300 	 * the 5 lower bits of the address are used by the hardware. and by
4301 	 * the driver.  See comments in hpsa.h for more info.
4302 	 */
4303 #define COMMANDLIST_ALIGNMENT 32
4304 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4305 	h = kzalloc(sizeof(*h), GFP_KERNEL);
4306 	if (!h)
4307 		return -ENOMEM;
4308 
4309 	h->pdev = pdev;
4310 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4311 	INIT_LIST_HEAD(&h->cmpQ);
4312 	INIT_LIST_HEAD(&h->reqQ);
4313 	spin_lock_init(&h->lock);
4314 	spin_lock_init(&h->scan_lock);
4315 	rc = hpsa_pci_init(h);
4316 	if (rc != 0)
4317 		goto clean1;
4318 
4319 	sprintf(h->devname, "hpsa%d", number_of_controllers);
4320 	h->ctlr = number_of_controllers;
4321 	number_of_controllers++;
4322 
4323 	/* configure PCI DMA stuff */
4324 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4325 	if (rc == 0) {
4326 		dac = 1;
4327 	} else {
4328 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4329 		if (rc == 0) {
4330 			dac = 0;
4331 		} else {
4332 			dev_err(&pdev->dev, "no suitable DMA available\n");
4333 			goto clean1;
4334 		}
4335 	}
4336 
4337 	/* make sure the board interrupts are off */
4338 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4339 
4340 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4341 		goto clean2;
4342 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4343 	       h->devname, pdev->device,
4344 	       h->intr[h->intr_mode], dac ? "" : " not");
4345 	if (hpsa_allocate_cmd_pool(h))
4346 		goto clean4;
4347 	if (hpsa_allocate_sg_chain_blocks(h))
4348 		goto clean4;
4349 	init_waitqueue_head(&h->scan_wait_queue);
4350 	h->scan_finished = 1; /* no scan currently in progress */
4351 
4352 	pci_set_drvdata(pdev, h);
4353 	h->ndevices = 0;
4354 	h->scsi_host = NULL;
4355 	spin_lock_init(&h->devlock);
4356 	hpsa_put_ctlr_into_performant_mode(h);
4357 
4358 	/* At this point, the controller is ready to take commands.
4359 	 * Now, if reset_devices and the hard reset didn't work, try
4360 	 * the soft reset and see if that works.
4361 	 */
4362 	if (try_soft_reset) {
4363 
4364 		/* This is kind of gross.  We may or may not get a completion
4365 		 * from the soft reset command, and if we do, then the value
4366 		 * from the fifo may or may not be valid.  So, we wait 10 secs
4367 		 * after the reset throwing away any completions we get during
4368 		 * that time.  Unregister the interrupt handler and register
4369 		 * fake ones to scoop up any residual completions.
4370 		 */
4371 		spin_lock_irqsave(&h->lock, flags);
4372 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4373 		spin_unlock_irqrestore(&h->lock, flags);
4374 		free_irq(h->intr[h->intr_mode], h);
4375 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4376 					hpsa_intx_discard_completions);
4377 		if (rc) {
4378 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4379 				"soft reset.\n");
4380 			goto clean4;
4381 		}
4382 
4383 		rc = hpsa_kdump_soft_reset(h);
4384 		if (rc)
4385 			/* Neither hard nor soft reset worked, we're hosed. */
4386 			goto clean4;
4387 
4388 		dev_info(&h->pdev->dev, "Board READY.\n");
4389 		dev_info(&h->pdev->dev,
4390 			"Waiting for stale completions to drain.\n");
4391 		h->access.set_intr_mask(h, HPSA_INTR_ON);
4392 		msleep(10000);
4393 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4394 
4395 		rc = controller_reset_failed(h->cfgtable);
4396 		if (rc)
4397 			dev_info(&h->pdev->dev,
4398 				"Soft reset appears to have failed.\n");
4399 
4400 		/* since the controller's reset, we have to go back and re-init
4401 		 * everything.  Easiest to just forget what we've done and do it
4402 		 * all over again.
4403 		 */
4404 		hpsa_undo_allocations_after_kdump_soft_reset(h);
4405 		try_soft_reset = 0;
4406 		if (rc)
4407 			/* don't go to clean4, we already unallocated */
4408 			return -ENODEV;
4409 
4410 		goto reinit_after_soft_reset;
4411 	}
4412 
4413 	/* Turn the interrupts on so we can service requests */
4414 	h->access.set_intr_mask(h, HPSA_INTR_ON);
4415 
4416 	hpsa_hba_inquiry(h);
4417 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4418 	start_controller_lockup_detector(h);
4419 	return 1;
4420 
4421 clean4:
4422 	hpsa_free_sg_chain_blocks(h);
4423 	hpsa_free_cmd_pool(h);
4424 	free_irq(h->intr[h->intr_mode], h);
4425 clean2:
4426 clean1:
4427 	kfree(h);
4428 	return rc;
4429 }
4430 
4431 static void hpsa_flush_cache(struct ctlr_info *h)
4432 {
4433 	char *flush_buf;
4434 	struct CommandList *c;
4435 
4436 	flush_buf = kzalloc(4, GFP_KERNEL);
4437 	if (!flush_buf)
4438 		return;
4439 
4440 	c = cmd_special_alloc(h);
4441 	if (!c) {
4442 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4443 		goto out_of_memory;
4444 	}
4445 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4446 		RAID_CTLR_LUNID, TYPE_CMD);
4447 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4448 	if (c->err_info->CommandStatus != 0)
4449 		dev_warn(&h->pdev->dev,
4450 			"error flushing cache on controller\n");
4451 	cmd_special_free(h, c);
4452 out_of_memory:
4453 	kfree(flush_buf);
4454 }
4455 
4456 static void hpsa_shutdown(struct pci_dev *pdev)
4457 {
4458 	struct ctlr_info *h;
4459 
4460 	h = pci_get_drvdata(pdev);
4461 	/* Turn board interrupts off  and send the flush cache command
4462 	 * sendcmd will turn off interrupt, and send the flush...
4463 	 * To write all data in the battery backed cache to disks
4464 	 */
4465 	hpsa_flush_cache(h);
4466 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4467 	free_irq(h->intr[h->intr_mode], h);
4468 #ifdef CONFIG_PCI_MSI
4469 	if (h->msix_vector)
4470 		pci_disable_msix(h->pdev);
4471 	else if (h->msi_vector)
4472 		pci_disable_msi(h->pdev);
4473 #endif				/* CONFIG_PCI_MSI */
4474 }
4475 
4476 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4477 {
4478 	struct ctlr_info *h;
4479 
4480 	if (pci_get_drvdata(pdev) == NULL) {
4481 		dev_err(&pdev->dev, "unable to remove device\n");
4482 		return;
4483 	}
4484 	h = pci_get_drvdata(pdev);
4485 	stop_controller_lockup_detector(h);
4486 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
4487 	hpsa_shutdown(pdev);
4488 	iounmap(h->vaddr);
4489 	iounmap(h->transtable);
4490 	iounmap(h->cfgtable);
4491 	hpsa_free_sg_chain_blocks(h);
4492 	pci_free_consistent(h->pdev,
4493 		h->nr_cmds * sizeof(struct CommandList),
4494 		h->cmd_pool, h->cmd_pool_dhandle);
4495 	pci_free_consistent(h->pdev,
4496 		h->nr_cmds * sizeof(struct ErrorInfo),
4497 		h->errinfo_pool, h->errinfo_pool_dhandle);
4498 	pci_free_consistent(h->pdev, h->reply_pool_size,
4499 		h->reply_pool, h->reply_pool_dhandle);
4500 	kfree(h->cmd_pool_bits);
4501 	kfree(h->blockFetchTable);
4502 	kfree(h->hba_inquiry_data);
4503 	/*
4504 	 * Deliberately omit pci_disable_device(): it does something nasty to
4505 	 * Smart Array controllers that pci_enable_device does not undo
4506 	 */
4507 	pci_release_regions(pdev);
4508 	pci_set_drvdata(pdev, NULL);
4509 	kfree(h);
4510 }
4511 
4512 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4513 	__attribute__((unused)) pm_message_t state)
4514 {
4515 	return -ENOSYS;
4516 }
4517 
4518 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4519 {
4520 	return -ENOSYS;
4521 }
4522 
4523 static struct pci_driver hpsa_pci_driver = {
4524 	.name = "hpsa",
4525 	.probe = hpsa_init_one,
4526 	.remove = __devexit_p(hpsa_remove_one),
4527 	.id_table = hpsa_pci_device_id,	/* id_table */
4528 	.shutdown = hpsa_shutdown,
4529 	.suspend = hpsa_suspend,
4530 	.resume = hpsa_resume,
4531 };
4532 
4533 /* Fill in bucket_map[], given nsgs (the max number of
4534  * scatter gather elements supported) and bucket[],
4535  * which is an array of 8 integers.  The bucket[] array
4536  * contains 8 different DMA transfer sizes (in 16
4537  * byte increments) which the controller uses to fetch
4538  * commands.  This function fills in bucket_map[], which
4539  * maps a given number of scatter gather elements to one of
4540  * the 8 DMA transfer sizes.  The point of it is to allow the
4541  * controller to only do as much DMA as needed to fetch the
4542  * command, with the DMA transfer size encoded in the lower
4543  * bits of the command address.
4544  */
4545 static void  calc_bucket_map(int bucket[], int num_buckets,
4546 	int nsgs, int *bucket_map)
4547 {
4548 	int i, j, b, size;
4549 
4550 	/* even a command with 0 SGs requires 4 blocks */
4551 #define MINIMUM_TRANSFER_BLOCKS 4
4552 #define NUM_BUCKETS 8
4553 	/* Note, bucket_map must have nsgs+1 entries. */
4554 	for (i = 0; i <= nsgs; i++) {
4555 		/* Compute size of a command with i SG entries */
4556 		size = i + MINIMUM_TRANSFER_BLOCKS;
4557 		b = num_buckets; /* Assume the biggest bucket */
4558 		/* Find the bucket that is just big enough */
4559 		for (j = 0; j < 8; j++) {
4560 			if (bucket[j] >= size) {
4561 				b = j;
4562 				break;
4563 			}
4564 		}
4565 		/* for a command with i SG entries, use bucket b. */
4566 		bucket_map[i] = b;
4567 	}
4568 }
4569 
4570 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4571 	u32 use_short_tags)
4572 {
4573 	int i;
4574 	unsigned long register_value;
4575 
4576 	/* This is a bit complicated.  There are 8 registers on
4577 	 * the controller which we write to to tell it 8 different
4578 	 * sizes of commands which there may be.  It's a way of
4579 	 * reducing the DMA done to fetch each command.  Encoded into
4580 	 * each command's tag are 3 bits which communicate to the controller
4581 	 * which of the eight sizes that command fits within.  The size of
4582 	 * each command depends on how many scatter gather entries there are.
4583 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4584 	 * with the number of 16-byte blocks a command of that size requires.
4585 	 * The smallest command possible requires 5 such 16 byte blocks.
4586 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4587 	 * blocks.  Note, this only extends to the SG entries contained
4588 	 * within the command block, and does not extend to chained blocks
4589 	 * of SG elements.   bft[] contains the eight values we write to
4590 	 * the registers.  They are not evenly distributed, but have more
4591 	 * sizes for small commands, and fewer sizes for larger commands.
4592 	 */
4593 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4594 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4595 	/*  5 = 1 s/g entry or 4k
4596 	 *  6 = 2 s/g entry or 8k
4597 	 *  8 = 4 s/g entry or 16k
4598 	 * 10 = 6 s/g entry or 24k
4599 	 */
4600 
4601 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4602 
4603 	/* Controller spec: zero out this buffer. */
4604 	memset(h->reply_pool, 0, h->reply_pool_size);
4605 	h->reply_pool_head = h->reply_pool;
4606 
4607 	bft[7] = h->max_sg_entries + 4;
4608 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4609 	for (i = 0; i < 8; i++)
4610 		writel(bft[i], &h->transtable->BlockFetch[i]);
4611 
4612 	/* size of controller ring buffer */
4613 	writel(h->max_commands, &h->transtable->RepQSize);
4614 	writel(1, &h->transtable->RepQCount);
4615 	writel(0, &h->transtable->RepQCtrAddrLow32);
4616 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4617 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4618 	writel(0, &h->transtable->RepQAddr0High32);
4619 	writel(CFGTBL_Trans_Performant | use_short_tags,
4620 		&(h->cfgtable->HostWrite.TransportRequest));
4621 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4622 	hpsa_wait_for_mode_change_ack(h);
4623 	register_value = readl(&(h->cfgtable->TransportActive));
4624 	if (!(register_value & CFGTBL_Trans_Performant)) {
4625 		dev_warn(&h->pdev->dev, "unable to get board into"
4626 					" performant mode\n");
4627 		return;
4628 	}
4629 	/* Change the access methods to the performant access methods */
4630 	h->access = SA5_performant_access;
4631 	h->transMethod = CFGTBL_Trans_Performant;
4632 }
4633 
4634 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4635 {
4636 	u32 trans_support;
4637 
4638 	if (hpsa_simple_mode)
4639 		return;
4640 
4641 	trans_support = readl(&(h->cfgtable->TransportSupport));
4642 	if (!(trans_support & PERFORMANT_MODE))
4643 		return;
4644 
4645 	hpsa_get_max_perf_mode_cmds(h);
4646 	h->max_sg_entries = 32;
4647 	/* Performant mode ring buffer and supporting data structures */
4648 	h->reply_pool_size = h->max_commands * sizeof(u64);
4649 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4650 				&(h->reply_pool_dhandle));
4651 
4652 	/* Need a block fetch table for performant mode */
4653 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4654 				sizeof(u32)), GFP_KERNEL);
4655 
4656 	if ((h->reply_pool == NULL)
4657 		|| (h->blockFetchTable == NULL))
4658 		goto clean_up;
4659 
4660 	hpsa_enter_performant_mode(h,
4661 		trans_support & CFGTBL_Trans_use_short_tags);
4662 
4663 	return;
4664 
4665 clean_up:
4666 	if (h->reply_pool)
4667 		pci_free_consistent(h->pdev, h->reply_pool_size,
4668 			h->reply_pool, h->reply_pool_dhandle);
4669 	kfree(h->blockFetchTable);
4670 }
4671 
4672 /*
4673  *  This is it.  Register the PCI driver information for the cards we control
4674  *  the OS will call our registered routines when it finds one of our cards.
4675  */
4676 static int __init hpsa_init(void)
4677 {
4678 	return pci_register_driver(&hpsa_pci_driver);
4679 }
4680 
4681 static void __exit hpsa_cleanup(void)
4682 {
4683 	pci_unregister_driver(&hpsa_pci_driver);
4684 }
4685 
4686 module_init(hpsa_init);
4687 module_exit(hpsa_cleanup);
4688