xref: /linux/drivers/scsi/esp_scsi.c (revision d91517839e5d95adc0cf4b28caa7af62a71de526)
1 /* esp_scsi.c: ESP SCSI driver.
2  *
3  * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/delay.h>
10 #include <linux/list.h>
11 #include <linux/completion.h>
12 #include <linux/kallsyms.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/init.h>
16 #include <linux/irqreturn.h>
17 
18 #include <asm/irq.h>
19 #include <asm/io.h>
20 #include <asm/dma.h>
21 
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_host.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_tcq.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_transport_spi.h>
29 
30 #include "esp_scsi.h"
31 
32 #define DRV_MODULE_NAME		"esp"
33 #define PFX DRV_MODULE_NAME	": "
34 #define DRV_VERSION		"2.000"
35 #define DRV_MODULE_RELDATE	"April 19, 2007"
36 
37 /* SCSI bus reset settle time in seconds.  */
38 static int esp_bus_reset_settle = 3;
39 
40 static u32 esp_debug;
41 #define ESP_DEBUG_INTR		0x00000001
42 #define ESP_DEBUG_SCSICMD	0x00000002
43 #define ESP_DEBUG_RESET		0x00000004
44 #define ESP_DEBUG_MSGIN		0x00000008
45 #define ESP_DEBUG_MSGOUT	0x00000010
46 #define ESP_DEBUG_CMDDONE	0x00000020
47 #define ESP_DEBUG_DISCONNECT	0x00000040
48 #define ESP_DEBUG_DATASTART	0x00000080
49 #define ESP_DEBUG_DATADONE	0x00000100
50 #define ESP_DEBUG_RECONNECT	0x00000200
51 #define ESP_DEBUG_AUTOSENSE	0x00000400
52 
53 #define esp_log_intr(f, a...) \
54 do {	if (esp_debug & ESP_DEBUG_INTR) \
55 		printk(f, ## a); \
56 } while (0)
57 
58 #define esp_log_reset(f, a...) \
59 do {	if (esp_debug & ESP_DEBUG_RESET) \
60 		printk(f, ## a); \
61 } while (0)
62 
63 #define esp_log_msgin(f, a...) \
64 do {	if (esp_debug & ESP_DEBUG_MSGIN) \
65 		printk(f, ## a); \
66 } while (0)
67 
68 #define esp_log_msgout(f, a...) \
69 do {	if (esp_debug & ESP_DEBUG_MSGOUT) \
70 		printk(f, ## a); \
71 } while (0)
72 
73 #define esp_log_cmddone(f, a...) \
74 do {	if (esp_debug & ESP_DEBUG_CMDDONE) \
75 		printk(f, ## a); \
76 } while (0)
77 
78 #define esp_log_disconnect(f, a...) \
79 do {	if (esp_debug & ESP_DEBUG_DISCONNECT) \
80 		printk(f, ## a); \
81 } while (0)
82 
83 #define esp_log_datastart(f, a...) \
84 do {	if (esp_debug & ESP_DEBUG_DATASTART) \
85 		printk(f, ## a); \
86 } while (0)
87 
88 #define esp_log_datadone(f, a...) \
89 do {	if (esp_debug & ESP_DEBUG_DATADONE) \
90 		printk(f, ## a); \
91 } while (0)
92 
93 #define esp_log_reconnect(f, a...) \
94 do {	if (esp_debug & ESP_DEBUG_RECONNECT) \
95 		printk(f, ## a); \
96 } while (0)
97 
98 #define esp_log_autosense(f, a...) \
99 do {	if (esp_debug & ESP_DEBUG_AUTOSENSE) \
100 		printk(f, ## a); \
101 } while (0)
102 
103 #define esp_read8(REG)		esp->ops->esp_read8(esp, REG)
104 #define esp_write8(VAL,REG)	esp->ops->esp_write8(esp, VAL, REG)
105 
106 static void esp_log_fill_regs(struct esp *esp,
107 			      struct esp_event_ent *p)
108 {
109 	p->sreg = esp->sreg;
110 	p->seqreg = esp->seqreg;
111 	p->sreg2 = esp->sreg2;
112 	p->ireg = esp->ireg;
113 	p->select_state = esp->select_state;
114 	p->event = esp->event;
115 }
116 
117 void scsi_esp_cmd(struct esp *esp, u8 val)
118 {
119 	struct esp_event_ent *p;
120 	int idx = esp->esp_event_cur;
121 
122 	p = &esp->esp_event_log[idx];
123 	p->type = ESP_EVENT_TYPE_CMD;
124 	p->val = val;
125 	esp_log_fill_regs(esp, p);
126 
127 	esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
128 
129 	esp_write8(val, ESP_CMD);
130 }
131 EXPORT_SYMBOL(scsi_esp_cmd);
132 
133 static void esp_event(struct esp *esp, u8 val)
134 {
135 	struct esp_event_ent *p;
136 	int idx = esp->esp_event_cur;
137 
138 	p = &esp->esp_event_log[idx];
139 	p->type = ESP_EVENT_TYPE_EVENT;
140 	p->val = val;
141 	esp_log_fill_regs(esp, p);
142 
143 	esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
144 
145 	esp->event = val;
146 }
147 
148 static void esp_dump_cmd_log(struct esp *esp)
149 {
150 	int idx = esp->esp_event_cur;
151 	int stop = idx;
152 
153 	printk(KERN_INFO PFX "esp%d: Dumping command log\n",
154 	       esp->host->unique_id);
155 	do {
156 		struct esp_event_ent *p = &esp->esp_event_log[idx];
157 
158 		printk(KERN_INFO PFX "esp%d: ent[%d] %s ",
159 		       esp->host->unique_id, idx,
160 		       p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT");
161 
162 		printk("val[%02x] sreg[%02x] seqreg[%02x] "
163 		       "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
164 		       p->val, p->sreg, p->seqreg,
165 		       p->sreg2, p->ireg, p->select_state, p->event);
166 
167 		idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
168 	} while (idx != stop);
169 }
170 
171 static void esp_flush_fifo(struct esp *esp)
172 {
173 	scsi_esp_cmd(esp, ESP_CMD_FLUSH);
174 	if (esp->rev == ESP236) {
175 		int lim = 1000;
176 
177 		while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
178 			if (--lim == 0) {
179 				printk(KERN_ALERT PFX "esp%d: ESP_FF_BYTES "
180 				       "will not clear!\n",
181 				       esp->host->unique_id);
182 				break;
183 			}
184 			udelay(1);
185 		}
186 	}
187 }
188 
189 static void hme_read_fifo(struct esp *esp)
190 {
191 	int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
192 	int idx = 0;
193 
194 	while (fcnt--) {
195 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
196 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
197 	}
198 	if (esp->sreg2 & ESP_STAT2_F1BYTE) {
199 		esp_write8(0, ESP_FDATA);
200 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
201 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
202 	}
203 	esp->fifo_cnt = idx;
204 }
205 
206 static void esp_set_all_config3(struct esp *esp, u8 val)
207 {
208 	int i;
209 
210 	for (i = 0; i < ESP_MAX_TARGET; i++)
211 		esp->target[i].esp_config3 = val;
212 }
213 
214 /* Reset the ESP chip, _not_ the SCSI bus. */
215 static void esp_reset_esp(struct esp *esp)
216 {
217 	u8 family_code, version;
218 
219 	/* Now reset the ESP chip */
220 	scsi_esp_cmd(esp, ESP_CMD_RC);
221 	scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
222 	if (esp->rev == FAST)
223 		esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2);
224 	scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
225 
226 	/* This is the only point at which it is reliable to read
227 	 * the ID-code for a fast ESP chip variants.
228 	 */
229 	esp->max_period = ((35 * esp->ccycle) / 1000);
230 	if (esp->rev == FAST) {
231 		version = esp_read8(ESP_UID);
232 		family_code = (version & 0xf8) >> 3;
233 		if (family_code == 0x02)
234 			esp->rev = FAS236;
235 		else if (family_code == 0x0a)
236 			esp->rev = FASHME; /* Version is usually '5'. */
237 		else
238 			esp->rev = FAS100A;
239 		esp->min_period = ((4 * esp->ccycle) / 1000);
240 	} else {
241 		esp->min_period = ((5 * esp->ccycle) / 1000);
242 	}
243 	esp->max_period = (esp->max_period + 3)>>2;
244 	esp->min_period = (esp->min_period + 3)>>2;
245 
246 	esp_write8(esp->config1, ESP_CFG1);
247 	switch (esp->rev) {
248 	case ESP100:
249 		/* nothing to do */
250 		break;
251 
252 	case ESP100A:
253 		esp_write8(esp->config2, ESP_CFG2);
254 		break;
255 
256 	case ESP236:
257 		/* Slow 236 */
258 		esp_write8(esp->config2, ESP_CFG2);
259 		esp->prev_cfg3 = esp->target[0].esp_config3;
260 		esp_write8(esp->prev_cfg3, ESP_CFG3);
261 		break;
262 
263 	case FASHME:
264 		esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
265 		/* fallthrough... */
266 
267 	case FAS236:
268 		/* Fast 236 or HME */
269 		esp_write8(esp->config2, ESP_CFG2);
270 		if (esp->rev == FASHME) {
271 			u8 cfg3 = esp->target[0].esp_config3;
272 
273 			cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
274 			if (esp->scsi_id >= 8)
275 				cfg3 |= ESP_CONFIG3_IDBIT3;
276 			esp_set_all_config3(esp, cfg3);
277 		} else {
278 			u32 cfg3 = esp->target[0].esp_config3;
279 
280 			cfg3 |= ESP_CONFIG3_FCLK;
281 			esp_set_all_config3(esp, cfg3);
282 		}
283 		esp->prev_cfg3 = esp->target[0].esp_config3;
284 		esp_write8(esp->prev_cfg3, ESP_CFG3);
285 		if (esp->rev == FASHME) {
286 			esp->radelay = 80;
287 		} else {
288 			if (esp->flags & ESP_FLAG_DIFFERENTIAL)
289 				esp->radelay = 0;
290 			else
291 				esp->radelay = 96;
292 		}
293 		break;
294 
295 	case FAS100A:
296 		/* Fast 100a */
297 		esp_write8(esp->config2, ESP_CFG2);
298 		esp_set_all_config3(esp,
299 				    (esp->target[0].esp_config3 |
300 				     ESP_CONFIG3_FCLOCK));
301 		esp->prev_cfg3 = esp->target[0].esp_config3;
302 		esp_write8(esp->prev_cfg3, ESP_CFG3);
303 		esp->radelay = 32;
304 		break;
305 
306 	default:
307 		break;
308 	}
309 
310 	/* Reload the configuration registers */
311 	esp_write8(esp->cfact, ESP_CFACT);
312 
313 	esp->prev_stp = 0;
314 	esp_write8(esp->prev_stp, ESP_STP);
315 
316 	esp->prev_soff = 0;
317 	esp_write8(esp->prev_soff, ESP_SOFF);
318 
319 	esp_write8(esp->neg_defp, ESP_TIMEO);
320 
321 	/* Eat any bitrot in the chip */
322 	esp_read8(ESP_INTRPT);
323 	udelay(100);
324 }
325 
326 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
327 {
328 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
329 	struct scatterlist *sg = scsi_sglist(cmd);
330 	int dir = cmd->sc_data_direction;
331 	int total, i;
332 
333 	if (dir == DMA_NONE)
334 		return;
335 
336 	spriv->u.num_sg = esp->ops->map_sg(esp, sg, scsi_sg_count(cmd), dir);
337 	spriv->cur_residue = sg_dma_len(sg);
338 	spriv->cur_sg = sg;
339 
340 	total = 0;
341 	for (i = 0; i < spriv->u.num_sg; i++)
342 		total += sg_dma_len(&sg[i]);
343 	spriv->tot_residue = total;
344 }
345 
346 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
347 				   struct scsi_cmnd *cmd)
348 {
349 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
350 
351 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
352 		return ent->sense_dma +
353 			(ent->sense_ptr - cmd->sense_buffer);
354 	}
355 
356 	return sg_dma_address(p->cur_sg) +
357 		(sg_dma_len(p->cur_sg) -
358 		 p->cur_residue);
359 }
360 
361 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
362 				    struct scsi_cmnd *cmd)
363 {
364 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
365 
366 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
367 		return SCSI_SENSE_BUFFERSIZE -
368 			(ent->sense_ptr - cmd->sense_buffer);
369 	}
370 	return p->cur_residue;
371 }
372 
373 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
374 			    struct scsi_cmnd *cmd, unsigned int len)
375 {
376 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
377 
378 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
379 		ent->sense_ptr += len;
380 		return;
381 	}
382 
383 	p->cur_residue -= len;
384 	p->tot_residue -= len;
385 	if (p->cur_residue < 0 || p->tot_residue < 0) {
386 		printk(KERN_ERR PFX "esp%d: Data transfer overflow.\n",
387 		       esp->host->unique_id);
388 		printk(KERN_ERR PFX "esp%d: cur_residue[%d] tot_residue[%d] "
389 		       "len[%u]\n",
390 		       esp->host->unique_id,
391 		       p->cur_residue, p->tot_residue, len);
392 		p->cur_residue = 0;
393 		p->tot_residue = 0;
394 	}
395 	if (!p->cur_residue && p->tot_residue) {
396 		p->cur_sg++;
397 		p->cur_residue = sg_dma_len(p->cur_sg);
398 	}
399 }
400 
401 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
402 {
403 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
404 	int dir = cmd->sc_data_direction;
405 
406 	if (dir == DMA_NONE)
407 		return;
408 
409 	esp->ops->unmap_sg(esp, scsi_sglist(cmd), spriv->u.num_sg, dir);
410 }
411 
412 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
413 {
414 	struct scsi_cmnd *cmd = ent->cmd;
415 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
416 
417 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
418 		ent->saved_sense_ptr = ent->sense_ptr;
419 		return;
420 	}
421 	ent->saved_cur_residue = spriv->cur_residue;
422 	ent->saved_cur_sg = spriv->cur_sg;
423 	ent->saved_tot_residue = spriv->tot_residue;
424 }
425 
426 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
427 {
428 	struct scsi_cmnd *cmd = ent->cmd;
429 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
430 
431 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
432 		ent->sense_ptr = ent->saved_sense_ptr;
433 		return;
434 	}
435 	spriv->cur_residue = ent->saved_cur_residue;
436 	spriv->cur_sg = ent->saved_cur_sg;
437 	spriv->tot_residue = ent->saved_tot_residue;
438 }
439 
440 static void esp_check_command_len(struct esp *esp, struct scsi_cmnd *cmd)
441 {
442 	if (cmd->cmd_len == 6 ||
443 	    cmd->cmd_len == 10 ||
444 	    cmd->cmd_len == 12) {
445 		esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
446 	} else {
447 		esp->flags |= ESP_FLAG_DOING_SLOWCMD;
448 	}
449 }
450 
451 static void esp_write_tgt_config3(struct esp *esp, int tgt)
452 {
453 	if (esp->rev > ESP100A) {
454 		u8 val = esp->target[tgt].esp_config3;
455 
456 		if (val != esp->prev_cfg3) {
457 			esp->prev_cfg3 = val;
458 			esp_write8(val, ESP_CFG3);
459 		}
460 	}
461 }
462 
463 static void esp_write_tgt_sync(struct esp *esp, int tgt)
464 {
465 	u8 off = esp->target[tgt].esp_offset;
466 	u8 per = esp->target[tgt].esp_period;
467 
468 	if (off != esp->prev_soff) {
469 		esp->prev_soff = off;
470 		esp_write8(off, ESP_SOFF);
471 	}
472 	if (per != esp->prev_stp) {
473 		esp->prev_stp = per;
474 		esp_write8(per, ESP_STP);
475 	}
476 }
477 
478 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
479 {
480 	if (esp->rev == FASHME) {
481 		/* Arbitrary segment boundaries, 24-bit counts.  */
482 		if (dma_len > (1U << 24))
483 			dma_len = (1U << 24);
484 	} else {
485 		u32 base, end;
486 
487 		/* ESP chip limits other variants by 16-bits of transfer
488 		 * count.  Actually on FAS100A and FAS236 we could get
489 		 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
490 		 * in the ESP_CFG2 register but that causes other unwanted
491 		 * changes so we don't use it currently.
492 		 */
493 		if (dma_len > (1U << 16))
494 			dma_len = (1U << 16);
495 
496 		/* All of the DMA variants hooked up to these chips
497 		 * cannot handle crossing a 24-bit address boundary.
498 		 */
499 		base = dma_addr & ((1U << 24) - 1U);
500 		end = base + dma_len;
501 		if (end > (1U << 24))
502 			end = (1U <<24);
503 		dma_len = end - base;
504 	}
505 	return dma_len;
506 }
507 
508 static int esp_need_to_nego_wide(struct esp_target_data *tp)
509 {
510 	struct scsi_target *target = tp->starget;
511 
512 	return spi_width(target) != tp->nego_goal_width;
513 }
514 
515 static int esp_need_to_nego_sync(struct esp_target_data *tp)
516 {
517 	struct scsi_target *target = tp->starget;
518 
519 	/* When offset is zero, period is "don't care".  */
520 	if (!spi_offset(target) && !tp->nego_goal_offset)
521 		return 0;
522 
523 	if (spi_offset(target) == tp->nego_goal_offset &&
524 	    spi_period(target) == tp->nego_goal_period)
525 		return 0;
526 
527 	return 1;
528 }
529 
530 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
531 			     struct esp_lun_data *lp)
532 {
533 	if (!ent->orig_tag[0]) {
534 		/* Non-tagged, slot already taken?  */
535 		if (lp->non_tagged_cmd)
536 			return -EBUSY;
537 
538 		if (lp->hold) {
539 			/* We are being held by active tagged
540 			 * commands.
541 			 */
542 			if (lp->num_tagged)
543 				return -EBUSY;
544 
545 			/* Tagged commands completed, we can unplug
546 			 * the queue and run this untagged command.
547 			 */
548 			lp->hold = 0;
549 		} else if (lp->num_tagged) {
550 			/* Plug the queue until num_tagged decreases
551 			 * to zero in esp_free_lun_tag.
552 			 */
553 			lp->hold = 1;
554 			return -EBUSY;
555 		}
556 
557 		lp->non_tagged_cmd = ent;
558 		return 0;
559 	} else {
560 		/* Tagged command, see if blocked by a
561 		 * non-tagged one.
562 		 */
563 		if (lp->non_tagged_cmd || lp->hold)
564 			return -EBUSY;
565 	}
566 
567 	BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]);
568 
569 	lp->tagged_cmds[ent->orig_tag[1]] = ent;
570 	lp->num_tagged++;
571 
572 	return 0;
573 }
574 
575 static void esp_free_lun_tag(struct esp_cmd_entry *ent,
576 			     struct esp_lun_data *lp)
577 {
578 	if (ent->orig_tag[0]) {
579 		BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent);
580 		lp->tagged_cmds[ent->orig_tag[1]] = NULL;
581 		lp->num_tagged--;
582 	} else {
583 		BUG_ON(lp->non_tagged_cmd != ent);
584 		lp->non_tagged_cmd = NULL;
585 	}
586 }
587 
588 /* When a contingent allegiance conditon is created, we force feed a
589  * REQUEST_SENSE command to the device to fetch the sense data.  I
590  * tried many other schemes, relying on the scsi error handling layer
591  * to send out the REQUEST_SENSE automatically, but this was difficult
592  * to get right especially in the presence of applications like smartd
593  * which use SG_IO to send out their own REQUEST_SENSE commands.
594  */
595 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
596 {
597 	struct scsi_cmnd *cmd = ent->cmd;
598 	struct scsi_device *dev = cmd->device;
599 	int tgt, lun;
600 	u8 *p, val;
601 
602 	tgt = dev->id;
603 	lun = dev->lun;
604 
605 
606 	if (!ent->sense_ptr) {
607 		esp_log_autosense("esp%d: Doing auto-sense for "
608 				  "tgt[%d] lun[%d]\n",
609 				  esp->host->unique_id, tgt, lun);
610 
611 		ent->sense_ptr = cmd->sense_buffer;
612 		ent->sense_dma = esp->ops->map_single(esp,
613 						      ent->sense_ptr,
614 						      SCSI_SENSE_BUFFERSIZE,
615 						      DMA_FROM_DEVICE);
616 	}
617 	ent->saved_sense_ptr = ent->sense_ptr;
618 
619 	esp->active_cmd = ent;
620 
621 	p = esp->command_block;
622 	esp->msg_out_len = 0;
623 
624 	*p++ = IDENTIFY(0, lun);
625 	*p++ = REQUEST_SENSE;
626 	*p++ = ((dev->scsi_level <= SCSI_2) ?
627 		(lun << 5) : 0);
628 	*p++ = 0;
629 	*p++ = 0;
630 	*p++ = SCSI_SENSE_BUFFERSIZE;
631 	*p++ = 0;
632 
633 	esp->select_state = ESP_SELECT_BASIC;
634 
635 	val = tgt;
636 	if (esp->rev == FASHME)
637 		val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
638 	esp_write8(val, ESP_BUSID);
639 
640 	esp_write_tgt_sync(esp, tgt);
641 	esp_write_tgt_config3(esp, tgt);
642 
643 	val = (p - esp->command_block);
644 
645 	if (esp->rev == FASHME)
646 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
647 	esp->ops->send_dma_cmd(esp, esp->command_block_dma,
648 			       val, 16, 0, ESP_CMD_DMA | ESP_CMD_SELA);
649 }
650 
651 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
652 {
653 	struct esp_cmd_entry *ent;
654 
655 	list_for_each_entry(ent, &esp->queued_cmds, list) {
656 		struct scsi_cmnd *cmd = ent->cmd;
657 		struct scsi_device *dev = cmd->device;
658 		struct esp_lun_data *lp = dev->hostdata;
659 
660 		if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
661 			ent->tag[0] = 0;
662 			ent->tag[1] = 0;
663 			return ent;
664 		}
665 
666 		if (!scsi_populate_tag_msg(cmd, &ent->tag[0])) {
667 			ent->tag[0] = 0;
668 			ent->tag[1] = 0;
669 		}
670 		ent->orig_tag[0] = ent->tag[0];
671 		ent->orig_tag[1] = ent->tag[1];
672 
673 		if (esp_alloc_lun_tag(ent, lp) < 0)
674 			continue;
675 
676 		return ent;
677 	}
678 
679 	return NULL;
680 }
681 
682 static void esp_maybe_execute_command(struct esp *esp)
683 {
684 	struct esp_target_data *tp;
685 	struct esp_lun_data *lp;
686 	struct scsi_device *dev;
687 	struct scsi_cmnd *cmd;
688 	struct esp_cmd_entry *ent;
689 	int tgt, lun, i;
690 	u32 val, start_cmd;
691 	u8 *p;
692 
693 	if (esp->active_cmd ||
694 	    (esp->flags & ESP_FLAG_RESETTING))
695 		return;
696 
697 	ent = find_and_prep_issuable_command(esp);
698 	if (!ent)
699 		return;
700 
701 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
702 		esp_autosense(esp, ent);
703 		return;
704 	}
705 
706 	cmd = ent->cmd;
707 	dev = cmd->device;
708 	tgt = dev->id;
709 	lun = dev->lun;
710 	tp = &esp->target[tgt];
711 	lp = dev->hostdata;
712 
713 	list_move(&ent->list, &esp->active_cmds);
714 
715 	esp->active_cmd = ent;
716 
717 	esp_map_dma(esp, cmd);
718 	esp_save_pointers(esp, ent);
719 
720 	esp_check_command_len(esp, cmd);
721 
722 	p = esp->command_block;
723 
724 	esp->msg_out_len = 0;
725 	if (tp->flags & ESP_TGT_CHECK_NEGO) {
726 		/* Need to negotiate.  If the target is broken
727 		 * go for synchronous transfers and non-wide.
728 		 */
729 		if (tp->flags & ESP_TGT_BROKEN) {
730 			tp->flags &= ~ESP_TGT_DISCONNECT;
731 			tp->nego_goal_period = 0;
732 			tp->nego_goal_offset = 0;
733 			tp->nego_goal_width = 0;
734 			tp->nego_goal_tags = 0;
735 		}
736 
737 		/* If the settings are not changing, skip this.  */
738 		if (spi_width(tp->starget) == tp->nego_goal_width &&
739 		    spi_period(tp->starget) == tp->nego_goal_period &&
740 		    spi_offset(tp->starget) == tp->nego_goal_offset) {
741 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
742 			goto build_identify;
743 		}
744 
745 		if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
746 			esp->msg_out_len =
747 				spi_populate_width_msg(&esp->msg_out[0],
748 						       (tp->nego_goal_width ?
749 							1 : 0));
750 			tp->flags |= ESP_TGT_NEGO_WIDE;
751 		} else if (esp_need_to_nego_sync(tp)) {
752 			esp->msg_out_len =
753 				spi_populate_sync_msg(&esp->msg_out[0],
754 						      tp->nego_goal_period,
755 						      tp->nego_goal_offset);
756 			tp->flags |= ESP_TGT_NEGO_SYNC;
757 		} else {
758 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
759 		}
760 
761 		/* Process it like a slow command.  */
762 		if (tp->flags & (ESP_TGT_NEGO_WIDE | ESP_TGT_NEGO_SYNC))
763 			esp->flags |= ESP_FLAG_DOING_SLOWCMD;
764 	}
765 
766 build_identify:
767 	/* If we don't have a lun-data struct yet, we're probing
768 	 * so do not disconnect.  Also, do not disconnect unless
769 	 * we have a tag on this command.
770 	 */
771 	if (lp && (tp->flags & ESP_TGT_DISCONNECT) && ent->tag[0])
772 		*p++ = IDENTIFY(1, lun);
773 	else
774 		*p++ = IDENTIFY(0, lun);
775 
776 	if (ent->tag[0] && esp->rev == ESP100) {
777 		/* ESP100 lacks select w/atn3 command, use select
778 		 * and stop instead.
779 		 */
780 		esp->flags |= ESP_FLAG_DOING_SLOWCMD;
781 	}
782 
783 	if (!(esp->flags & ESP_FLAG_DOING_SLOWCMD)) {
784 		start_cmd = ESP_CMD_DMA | ESP_CMD_SELA;
785 		if (ent->tag[0]) {
786 			*p++ = ent->tag[0];
787 			*p++ = ent->tag[1];
788 
789 			start_cmd = ESP_CMD_DMA | ESP_CMD_SA3;
790 		}
791 
792 		for (i = 0; i < cmd->cmd_len; i++)
793 			*p++ = cmd->cmnd[i];
794 
795 		esp->select_state = ESP_SELECT_BASIC;
796 	} else {
797 		esp->cmd_bytes_left = cmd->cmd_len;
798 		esp->cmd_bytes_ptr = &cmd->cmnd[0];
799 
800 		if (ent->tag[0]) {
801 			for (i = esp->msg_out_len - 1;
802 			     i >= 0; i--)
803 				esp->msg_out[i + 2] = esp->msg_out[i];
804 			esp->msg_out[0] = ent->tag[0];
805 			esp->msg_out[1] = ent->tag[1];
806 			esp->msg_out_len += 2;
807 		}
808 
809 		start_cmd = ESP_CMD_DMA | ESP_CMD_SELAS;
810 		esp->select_state = ESP_SELECT_MSGOUT;
811 	}
812 	val = tgt;
813 	if (esp->rev == FASHME)
814 		val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
815 	esp_write8(val, ESP_BUSID);
816 
817 	esp_write_tgt_sync(esp, tgt);
818 	esp_write_tgt_config3(esp, tgt);
819 
820 	val = (p - esp->command_block);
821 
822 	if (esp_debug & ESP_DEBUG_SCSICMD) {
823 		printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
824 		for (i = 0; i < cmd->cmd_len; i++)
825 			printk("%02x ", cmd->cmnd[i]);
826 		printk("]\n");
827 	}
828 
829 	if (esp->rev == FASHME)
830 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
831 	esp->ops->send_dma_cmd(esp, esp->command_block_dma,
832 			       val, 16, 0, start_cmd);
833 }
834 
835 static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
836 {
837 	struct list_head *head = &esp->esp_cmd_pool;
838 	struct esp_cmd_entry *ret;
839 
840 	if (list_empty(head)) {
841 		ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
842 	} else {
843 		ret = list_entry(head->next, struct esp_cmd_entry, list);
844 		list_del(&ret->list);
845 		memset(ret, 0, sizeof(*ret));
846 	}
847 	return ret;
848 }
849 
850 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
851 {
852 	list_add(&ent->list, &esp->esp_cmd_pool);
853 }
854 
855 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
856 			    struct scsi_cmnd *cmd, unsigned int result)
857 {
858 	struct scsi_device *dev = cmd->device;
859 	int tgt = dev->id;
860 	int lun = dev->lun;
861 
862 	esp->active_cmd = NULL;
863 	esp_unmap_dma(esp, cmd);
864 	esp_free_lun_tag(ent, dev->hostdata);
865 	cmd->result = result;
866 
867 	if (ent->eh_done) {
868 		complete(ent->eh_done);
869 		ent->eh_done = NULL;
870 	}
871 
872 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
873 		esp->ops->unmap_single(esp, ent->sense_dma,
874 				       SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
875 		ent->sense_ptr = NULL;
876 
877 		/* Restore the message/status bytes to what we actually
878 		 * saw originally.  Also, report that we are providing
879 		 * the sense data.
880 		 */
881 		cmd->result = ((DRIVER_SENSE << 24) |
882 			       (DID_OK << 16) |
883 			       (COMMAND_COMPLETE << 8) |
884 			       (SAM_STAT_CHECK_CONDITION << 0));
885 
886 		ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
887 		if (esp_debug & ESP_DEBUG_AUTOSENSE) {
888 			int i;
889 
890 			printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
891 			       esp->host->unique_id, tgt, lun);
892 			for (i = 0; i < 18; i++)
893 				printk("%02x ", cmd->sense_buffer[i]);
894 			printk("]\n");
895 		}
896 	}
897 
898 	cmd->scsi_done(cmd);
899 
900 	list_del(&ent->list);
901 	esp_put_ent(esp, ent);
902 
903 	esp_maybe_execute_command(esp);
904 }
905 
906 static unsigned int compose_result(unsigned int status, unsigned int message,
907 				   unsigned int driver_code)
908 {
909 	return (status | (message << 8) | (driver_code << 16));
910 }
911 
912 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
913 {
914 	struct scsi_device *dev = ent->cmd->device;
915 	struct esp_lun_data *lp = dev->hostdata;
916 
917 	scsi_track_queue_full(dev, lp->num_tagged - 1);
918 }
919 
920 static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
921 {
922 	struct scsi_device *dev = cmd->device;
923 	struct esp *esp = shost_priv(dev->host);
924 	struct esp_cmd_priv *spriv;
925 	struct esp_cmd_entry *ent;
926 
927 	ent = esp_get_ent(esp);
928 	if (!ent)
929 		return SCSI_MLQUEUE_HOST_BUSY;
930 
931 	ent->cmd = cmd;
932 
933 	cmd->scsi_done = done;
934 
935 	spriv = ESP_CMD_PRIV(cmd);
936 	spriv->u.dma_addr = ~(dma_addr_t)0x0;
937 
938 	list_add_tail(&ent->list, &esp->queued_cmds);
939 
940 	esp_maybe_execute_command(esp);
941 
942 	return 0;
943 }
944 
945 static DEF_SCSI_QCMD(esp_queuecommand)
946 
947 static int esp_check_gross_error(struct esp *esp)
948 {
949 	if (esp->sreg & ESP_STAT_SPAM) {
950 		/* Gross Error, could be one of:
951 		 * - top of fifo overwritten
952 		 * - top of command register overwritten
953 		 * - DMA programmed with wrong direction
954 		 * - improper phase change
955 		 */
956 		printk(KERN_ERR PFX "esp%d: Gross error sreg[%02x]\n",
957 		       esp->host->unique_id, esp->sreg);
958 		/* XXX Reset the chip. XXX */
959 		return 1;
960 	}
961 	return 0;
962 }
963 
964 static int esp_check_spur_intr(struct esp *esp)
965 {
966 	switch (esp->rev) {
967 	case ESP100:
968 	case ESP100A:
969 		/* The interrupt pending bit of the status register cannot
970 		 * be trusted on these revisions.
971 		 */
972 		esp->sreg &= ~ESP_STAT_INTR;
973 		break;
974 
975 	default:
976 		if (!(esp->sreg & ESP_STAT_INTR)) {
977 			esp->ireg = esp_read8(ESP_INTRPT);
978 			if (esp->ireg & ESP_INTR_SR)
979 				return 1;
980 
981 			/* If the DMA is indicating interrupt pending and the
982 			 * ESP is not, the only possibility is a DMA error.
983 			 */
984 			if (!esp->ops->dma_error(esp)) {
985 				printk(KERN_ERR PFX "esp%d: Spurious irq, "
986 				       "sreg=%02x.\n",
987 				       esp->host->unique_id, esp->sreg);
988 				return -1;
989 			}
990 
991 			printk(KERN_ERR PFX "esp%d: DMA error\n",
992 			       esp->host->unique_id);
993 
994 			/* XXX Reset the chip. XXX */
995 			return -1;
996 		}
997 		break;
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 static void esp_schedule_reset(struct esp *esp)
1004 {
1005 	esp_log_reset("ESP: esp_schedule_reset() from %pf\n",
1006 		      __builtin_return_address(0));
1007 	esp->flags |= ESP_FLAG_RESETTING;
1008 	esp_event(esp, ESP_EVENT_RESET);
1009 }
1010 
1011 /* In order to avoid having to add a special half-reconnected state
1012  * into the driver we just sit here and poll through the rest of
1013  * the reselection process to get the tag message bytes.
1014  */
1015 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
1016 						    struct esp_lun_data *lp)
1017 {
1018 	struct esp_cmd_entry *ent;
1019 	int i;
1020 
1021 	if (!lp->num_tagged) {
1022 		printk(KERN_ERR PFX "esp%d: Reconnect w/num_tagged==0\n",
1023 		       esp->host->unique_id);
1024 		return NULL;
1025 	}
1026 
1027 	esp_log_reconnect("ESP: reconnect tag, ");
1028 
1029 	for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
1030 		if (esp->ops->irq_pending(esp))
1031 			break;
1032 	}
1033 	if (i == ESP_QUICKIRQ_LIMIT) {
1034 		printk(KERN_ERR PFX "esp%d: Reconnect IRQ1 timeout\n",
1035 		       esp->host->unique_id);
1036 		return NULL;
1037 	}
1038 
1039 	esp->sreg = esp_read8(ESP_STATUS);
1040 	esp->ireg = esp_read8(ESP_INTRPT);
1041 
1042 	esp_log_reconnect("IRQ(%d:%x:%x), ",
1043 			  i, esp->ireg, esp->sreg);
1044 
1045 	if (esp->ireg & ESP_INTR_DC) {
1046 		printk(KERN_ERR PFX "esp%d: Reconnect, got disconnect.\n",
1047 		       esp->host->unique_id);
1048 		return NULL;
1049 	}
1050 
1051 	if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
1052 		printk(KERN_ERR PFX "esp%d: Reconnect, not MIP sreg[%02x].\n",
1053 		       esp->host->unique_id, esp->sreg);
1054 		return NULL;
1055 	}
1056 
1057 	/* DMA in the tag bytes... */
1058 	esp->command_block[0] = 0xff;
1059 	esp->command_block[1] = 0xff;
1060 	esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1061 			       2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
1062 
1063 	/* ACK the message.  */
1064 	scsi_esp_cmd(esp, ESP_CMD_MOK);
1065 
1066 	for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
1067 		if (esp->ops->irq_pending(esp)) {
1068 			esp->sreg = esp_read8(ESP_STATUS);
1069 			esp->ireg = esp_read8(ESP_INTRPT);
1070 			if (esp->ireg & ESP_INTR_FDONE)
1071 				break;
1072 		}
1073 		udelay(1);
1074 	}
1075 	if (i == ESP_RESELECT_TAG_LIMIT) {
1076 		printk(KERN_ERR PFX "esp%d: Reconnect IRQ2 timeout\n",
1077 		       esp->host->unique_id);
1078 		return NULL;
1079 	}
1080 	esp->ops->dma_drain(esp);
1081 	esp->ops->dma_invalidate(esp);
1082 
1083 	esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1084 			  i, esp->ireg, esp->sreg,
1085 			  esp->command_block[0],
1086 			  esp->command_block[1]);
1087 
1088 	if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
1089 	    esp->command_block[0] > ORDERED_QUEUE_TAG) {
1090 		printk(KERN_ERR PFX "esp%d: Reconnect, bad tag "
1091 		       "type %02x.\n",
1092 		       esp->host->unique_id, esp->command_block[0]);
1093 		return NULL;
1094 	}
1095 
1096 	ent = lp->tagged_cmds[esp->command_block[1]];
1097 	if (!ent) {
1098 		printk(KERN_ERR PFX "esp%d: Reconnect, no entry for "
1099 		       "tag %02x.\n",
1100 		       esp->host->unique_id, esp->command_block[1]);
1101 		return NULL;
1102 	}
1103 
1104 	return ent;
1105 }
1106 
1107 static int esp_reconnect(struct esp *esp)
1108 {
1109 	struct esp_cmd_entry *ent;
1110 	struct esp_target_data *tp;
1111 	struct esp_lun_data *lp;
1112 	struct scsi_device *dev;
1113 	int target, lun;
1114 
1115 	BUG_ON(esp->active_cmd);
1116 	if (esp->rev == FASHME) {
1117 		/* FASHME puts the target and lun numbers directly
1118 		 * into the fifo.
1119 		 */
1120 		target = esp->fifo[0];
1121 		lun = esp->fifo[1] & 0x7;
1122 	} else {
1123 		u8 bits = esp_read8(ESP_FDATA);
1124 
1125 		/* Older chips put the lun directly into the fifo, but
1126 		 * the target is given as a sample of the arbitration
1127 		 * lines on the bus at reselection time.  So we should
1128 		 * see the ID of the ESP and the one reconnecting target
1129 		 * set in the bitmap.
1130 		 */
1131 		if (!(bits & esp->scsi_id_mask))
1132 			goto do_reset;
1133 		bits &= ~esp->scsi_id_mask;
1134 		if (!bits || (bits & (bits - 1)))
1135 			goto do_reset;
1136 
1137 		target = ffs(bits) - 1;
1138 		lun = (esp_read8(ESP_FDATA) & 0x7);
1139 
1140 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1141 		if (esp->rev == ESP100) {
1142 			u8 ireg = esp_read8(ESP_INTRPT);
1143 			/* This chip has a bug during reselection that can
1144 			 * cause a spurious illegal-command interrupt, which
1145 			 * we simply ACK here.  Another possibility is a bus
1146 			 * reset so we must check for that.
1147 			 */
1148 			if (ireg & ESP_INTR_SR)
1149 				goto do_reset;
1150 		}
1151 		scsi_esp_cmd(esp, ESP_CMD_NULL);
1152 	}
1153 
1154 	esp_write_tgt_sync(esp, target);
1155 	esp_write_tgt_config3(esp, target);
1156 
1157 	scsi_esp_cmd(esp, ESP_CMD_MOK);
1158 
1159 	if (esp->rev == FASHME)
1160 		esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
1161 			   ESP_BUSID);
1162 
1163 	tp = &esp->target[target];
1164 	dev = __scsi_device_lookup_by_target(tp->starget, lun);
1165 	if (!dev) {
1166 		printk(KERN_ERR PFX "esp%d: Reconnect, no lp "
1167 		       "tgt[%u] lun[%u]\n",
1168 		       esp->host->unique_id, target, lun);
1169 		goto do_reset;
1170 	}
1171 	lp = dev->hostdata;
1172 
1173 	ent = lp->non_tagged_cmd;
1174 	if (!ent) {
1175 		ent = esp_reconnect_with_tag(esp, lp);
1176 		if (!ent)
1177 			goto do_reset;
1178 	}
1179 
1180 	esp->active_cmd = ent;
1181 
1182 	if (ent->flags & ESP_CMD_FLAG_ABORT) {
1183 		esp->msg_out[0] = ABORT_TASK_SET;
1184 		esp->msg_out_len = 1;
1185 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1186 	}
1187 
1188 	esp_event(esp, ESP_EVENT_CHECK_PHASE);
1189 	esp_restore_pointers(esp, ent);
1190 	esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1191 	return 1;
1192 
1193 do_reset:
1194 	esp_schedule_reset(esp);
1195 	return 0;
1196 }
1197 
1198 static int esp_finish_select(struct esp *esp)
1199 {
1200 	struct esp_cmd_entry *ent;
1201 	struct scsi_cmnd *cmd;
1202 	u8 orig_select_state;
1203 
1204 	orig_select_state = esp->select_state;
1205 
1206 	/* No longer selecting.  */
1207 	esp->select_state = ESP_SELECT_NONE;
1208 
1209 	esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
1210 	ent = esp->active_cmd;
1211 	cmd = ent->cmd;
1212 
1213 	if (esp->ops->dma_error(esp)) {
1214 		/* If we see a DMA error during or as a result of selection,
1215 		 * all bets are off.
1216 		 */
1217 		esp_schedule_reset(esp);
1218 		esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
1219 		return 0;
1220 	}
1221 
1222 	esp->ops->dma_invalidate(esp);
1223 
1224 	if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
1225 		struct esp_target_data *tp = &esp->target[cmd->device->id];
1226 
1227 		/* Carefully back out of the selection attempt.  Release
1228 		 * resources (such as DMA mapping & TAG) and reset state (such
1229 		 * as message out and command delivery variables).
1230 		 */
1231 		if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1232 			esp_unmap_dma(esp, cmd);
1233 			esp_free_lun_tag(ent, cmd->device->hostdata);
1234 			tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
1235 			esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
1236 			esp->cmd_bytes_ptr = NULL;
1237 			esp->cmd_bytes_left = 0;
1238 		} else {
1239 			esp->ops->unmap_single(esp, ent->sense_dma,
1240 					       SCSI_SENSE_BUFFERSIZE,
1241 					       DMA_FROM_DEVICE);
1242 			ent->sense_ptr = NULL;
1243 		}
1244 
1245 		/* Now that the state is unwound properly, put back onto
1246 		 * the issue queue.  This command is no longer active.
1247 		 */
1248 		list_move(&ent->list, &esp->queued_cmds);
1249 		esp->active_cmd = NULL;
1250 
1251 		/* Return value ignored by caller, it directly invokes
1252 		 * esp_reconnect().
1253 		 */
1254 		return 0;
1255 	}
1256 
1257 	if (esp->ireg == ESP_INTR_DC) {
1258 		struct scsi_device *dev = cmd->device;
1259 
1260 		/* Disconnect.  Make sure we re-negotiate sync and
1261 		 * wide parameters if this target starts responding
1262 		 * again in the future.
1263 		 */
1264 		esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
1265 
1266 		scsi_esp_cmd(esp, ESP_CMD_ESEL);
1267 		esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
1268 		return 1;
1269 	}
1270 
1271 	if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
1272 		/* Selection successful.  On pre-FAST chips we have
1273 		 * to do a NOP and possibly clean out the FIFO.
1274 		 */
1275 		if (esp->rev <= ESP236) {
1276 			int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1277 
1278 			scsi_esp_cmd(esp, ESP_CMD_NULL);
1279 
1280 			if (!fcnt &&
1281 			    (!esp->prev_soff ||
1282 			     ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
1283 				esp_flush_fifo(esp);
1284 		}
1285 
1286 		/* If we are doing a slow command, negotiation, etc.
1287 		 * we'll do the right thing as we transition to the
1288 		 * next phase.
1289 		 */
1290 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1291 		return 0;
1292 	}
1293 
1294 	printk("ESP: Unexpected selection completion ireg[%x].\n",
1295 	       esp->ireg);
1296 	esp_schedule_reset(esp);
1297 	return 0;
1298 }
1299 
1300 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
1301 			       struct scsi_cmnd *cmd)
1302 {
1303 	int fifo_cnt, ecount, bytes_sent, flush_fifo;
1304 
1305 	fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1306 	if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
1307 		fifo_cnt <<= 1;
1308 
1309 	ecount = 0;
1310 	if (!(esp->sreg & ESP_STAT_TCNT)) {
1311 		ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
1312 			  (((unsigned int)esp_read8(ESP_TCMED)) << 8));
1313 		if (esp->rev == FASHME)
1314 			ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
1315 	}
1316 
1317 	bytes_sent = esp->data_dma_len;
1318 	bytes_sent -= ecount;
1319 
1320 	if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1321 		bytes_sent -= fifo_cnt;
1322 
1323 	flush_fifo = 0;
1324 	if (!esp->prev_soff) {
1325 		/* Synchronous data transfer, always flush fifo. */
1326 		flush_fifo = 1;
1327 	} else {
1328 		if (esp->rev == ESP100) {
1329 			u32 fflags, phase;
1330 
1331 			/* ESP100 has a chip bug where in the synchronous data
1332 			 * phase it can mistake a final long REQ pulse from the
1333 			 * target as an extra data byte.  Fun.
1334 			 *
1335 			 * To detect this case we resample the status register
1336 			 * and fifo flags.  If we're still in a data phase and
1337 			 * we see spurious chunks in the fifo, we return error
1338 			 * to the caller which should reset and set things up
1339 			 * such that we only try future transfers to this
1340 			 * target in synchronous mode.
1341 			 */
1342 			esp->sreg = esp_read8(ESP_STATUS);
1343 			phase = esp->sreg & ESP_STAT_PMASK;
1344 			fflags = esp_read8(ESP_FFLAGS);
1345 
1346 			if ((phase == ESP_DOP &&
1347 			     (fflags & ESP_FF_ONOTZERO)) ||
1348 			    (phase == ESP_DIP &&
1349 			     (fflags & ESP_FF_FBYTES)))
1350 				return -1;
1351 		}
1352 		if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1353 			flush_fifo = 1;
1354 	}
1355 
1356 	if (flush_fifo)
1357 		esp_flush_fifo(esp);
1358 
1359 	return bytes_sent;
1360 }
1361 
1362 static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
1363 			u8 scsi_period, u8 scsi_offset,
1364 			u8 esp_stp, u8 esp_soff)
1365 {
1366 	spi_period(tp->starget) = scsi_period;
1367 	spi_offset(tp->starget) = scsi_offset;
1368 	spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
1369 
1370 	if (esp_soff) {
1371 		esp_stp &= 0x1f;
1372 		esp_soff |= esp->radelay;
1373 		if (esp->rev >= FAS236) {
1374 			u8 bit = ESP_CONFIG3_FSCSI;
1375 			if (esp->rev >= FAS100A)
1376 				bit = ESP_CONFIG3_FAST;
1377 
1378 			if (scsi_period < 50) {
1379 				if (esp->rev == FASHME)
1380 					esp_soff &= ~esp->radelay;
1381 				tp->esp_config3 |= bit;
1382 			} else {
1383 				tp->esp_config3 &= ~bit;
1384 			}
1385 			esp->prev_cfg3 = tp->esp_config3;
1386 			esp_write8(esp->prev_cfg3, ESP_CFG3);
1387 		}
1388 	}
1389 
1390 	tp->esp_period = esp->prev_stp = esp_stp;
1391 	tp->esp_offset = esp->prev_soff = esp_soff;
1392 
1393 	esp_write8(esp_soff, ESP_SOFF);
1394 	esp_write8(esp_stp, ESP_STP);
1395 
1396 	tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1397 
1398 	spi_display_xfer_agreement(tp->starget);
1399 }
1400 
1401 static void esp_msgin_reject(struct esp *esp)
1402 {
1403 	struct esp_cmd_entry *ent = esp->active_cmd;
1404 	struct scsi_cmnd *cmd = ent->cmd;
1405 	struct esp_target_data *tp;
1406 	int tgt;
1407 
1408 	tgt = cmd->device->id;
1409 	tp = &esp->target[tgt];
1410 
1411 	if (tp->flags & ESP_TGT_NEGO_WIDE) {
1412 		tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
1413 
1414 		if (!esp_need_to_nego_sync(tp)) {
1415 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
1416 			scsi_esp_cmd(esp, ESP_CMD_RATN);
1417 		} else {
1418 			esp->msg_out_len =
1419 				spi_populate_sync_msg(&esp->msg_out[0],
1420 						      tp->nego_goal_period,
1421 						      tp->nego_goal_offset);
1422 			tp->flags |= ESP_TGT_NEGO_SYNC;
1423 			scsi_esp_cmd(esp, ESP_CMD_SATN);
1424 		}
1425 		return;
1426 	}
1427 
1428 	if (tp->flags & ESP_TGT_NEGO_SYNC) {
1429 		tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1430 		tp->esp_period = 0;
1431 		tp->esp_offset = 0;
1432 		esp_setsync(esp, tp, 0, 0, 0, 0);
1433 		scsi_esp_cmd(esp, ESP_CMD_RATN);
1434 		return;
1435 	}
1436 
1437 	esp->msg_out[0] = ABORT_TASK_SET;
1438 	esp->msg_out_len = 1;
1439 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1440 }
1441 
1442 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
1443 {
1444 	u8 period = esp->msg_in[3];
1445 	u8 offset = esp->msg_in[4];
1446 	u8 stp;
1447 
1448 	if (!(tp->flags & ESP_TGT_NEGO_SYNC))
1449 		goto do_reject;
1450 
1451 	if (offset > 15)
1452 		goto do_reject;
1453 
1454 	if (offset) {
1455 		int one_clock;
1456 
1457 		if (period > esp->max_period) {
1458 			period = offset = 0;
1459 			goto do_sdtr;
1460 		}
1461 		if (period < esp->min_period)
1462 			goto do_reject;
1463 
1464 		one_clock = esp->ccycle / 1000;
1465 		stp = DIV_ROUND_UP(period << 2, one_clock);
1466 		if (stp && esp->rev >= FAS236) {
1467 			if (stp >= 50)
1468 				stp--;
1469 		}
1470 	} else {
1471 		stp = 0;
1472 	}
1473 
1474 	esp_setsync(esp, tp, period, offset, stp, offset);
1475 	return;
1476 
1477 do_reject:
1478 	esp->msg_out[0] = MESSAGE_REJECT;
1479 	esp->msg_out_len = 1;
1480 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1481 	return;
1482 
1483 do_sdtr:
1484 	tp->nego_goal_period = period;
1485 	tp->nego_goal_offset = offset;
1486 	esp->msg_out_len =
1487 		spi_populate_sync_msg(&esp->msg_out[0],
1488 				      tp->nego_goal_period,
1489 				      tp->nego_goal_offset);
1490 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1491 }
1492 
1493 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
1494 {
1495 	int size = 8 << esp->msg_in[3];
1496 	u8 cfg3;
1497 
1498 	if (esp->rev != FASHME)
1499 		goto do_reject;
1500 
1501 	if (size != 8 && size != 16)
1502 		goto do_reject;
1503 
1504 	if (!(tp->flags & ESP_TGT_NEGO_WIDE))
1505 		goto do_reject;
1506 
1507 	cfg3 = tp->esp_config3;
1508 	if (size == 16) {
1509 		tp->flags |= ESP_TGT_WIDE;
1510 		cfg3 |= ESP_CONFIG3_EWIDE;
1511 	} else {
1512 		tp->flags &= ~ESP_TGT_WIDE;
1513 		cfg3 &= ~ESP_CONFIG3_EWIDE;
1514 	}
1515 	tp->esp_config3 = cfg3;
1516 	esp->prev_cfg3 = cfg3;
1517 	esp_write8(cfg3, ESP_CFG3);
1518 
1519 	tp->flags &= ~ESP_TGT_NEGO_WIDE;
1520 
1521 	spi_period(tp->starget) = 0;
1522 	spi_offset(tp->starget) = 0;
1523 	if (!esp_need_to_nego_sync(tp)) {
1524 		tp->flags &= ~ESP_TGT_CHECK_NEGO;
1525 		scsi_esp_cmd(esp, ESP_CMD_RATN);
1526 	} else {
1527 		esp->msg_out_len =
1528 			spi_populate_sync_msg(&esp->msg_out[0],
1529 					      tp->nego_goal_period,
1530 					      tp->nego_goal_offset);
1531 		tp->flags |= ESP_TGT_NEGO_SYNC;
1532 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1533 	}
1534 	return;
1535 
1536 do_reject:
1537 	esp->msg_out[0] = MESSAGE_REJECT;
1538 	esp->msg_out_len = 1;
1539 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1540 }
1541 
1542 static void esp_msgin_extended(struct esp *esp)
1543 {
1544 	struct esp_cmd_entry *ent = esp->active_cmd;
1545 	struct scsi_cmnd *cmd = ent->cmd;
1546 	struct esp_target_data *tp;
1547 	int tgt = cmd->device->id;
1548 
1549 	tp = &esp->target[tgt];
1550 	if (esp->msg_in[2] == EXTENDED_SDTR) {
1551 		esp_msgin_sdtr(esp, tp);
1552 		return;
1553 	}
1554 	if (esp->msg_in[2] == EXTENDED_WDTR) {
1555 		esp_msgin_wdtr(esp, tp);
1556 		return;
1557 	}
1558 
1559 	printk("ESP: Unexpected extended msg type %x\n",
1560 	       esp->msg_in[2]);
1561 
1562 	esp->msg_out[0] = ABORT_TASK_SET;
1563 	esp->msg_out_len = 1;
1564 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1565 }
1566 
1567 /* Analyze msgin bytes received from target so far.  Return non-zero
1568  * if there are more bytes needed to complete the message.
1569  */
1570 static int esp_msgin_process(struct esp *esp)
1571 {
1572 	u8 msg0 = esp->msg_in[0];
1573 	int len = esp->msg_in_len;
1574 
1575 	if (msg0 & 0x80) {
1576 		/* Identify */
1577 		printk("ESP: Unexpected msgin identify\n");
1578 		return 0;
1579 	}
1580 
1581 	switch (msg0) {
1582 	case EXTENDED_MESSAGE:
1583 		if (len == 1)
1584 			return 1;
1585 		if (len < esp->msg_in[1] + 2)
1586 			return 1;
1587 		esp_msgin_extended(esp);
1588 		return 0;
1589 
1590 	case IGNORE_WIDE_RESIDUE: {
1591 		struct esp_cmd_entry *ent;
1592 		struct esp_cmd_priv *spriv;
1593 		if (len == 1)
1594 			return 1;
1595 
1596 		if (esp->msg_in[1] != 1)
1597 			goto do_reject;
1598 
1599 		ent = esp->active_cmd;
1600 		spriv = ESP_CMD_PRIV(ent->cmd);
1601 
1602 		if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
1603 			spriv->cur_sg--;
1604 			spriv->cur_residue = 1;
1605 		} else
1606 			spriv->cur_residue++;
1607 		spriv->tot_residue++;
1608 		return 0;
1609 	}
1610 	case NOP:
1611 		return 0;
1612 	case RESTORE_POINTERS:
1613 		esp_restore_pointers(esp, esp->active_cmd);
1614 		return 0;
1615 	case SAVE_POINTERS:
1616 		esp_save_pointers(esp, esp->active_cmd);
1617 		return 0;
1618 
1619 	case COMMAND_COMPLETE:
1620 	case DISCONNECT: {
1621 		struct esp_cmd_entry *ent = esp->active_cmd;
1622 
1623 		ent->message = msg0;
1624 		esp_event(esp, ESP_EVENT_FREE_BUS);
1625 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1626 		return 0;
1627 	}
1628 	case MESSAGE_REJECT:
1629 		esp_msgin_reject(esp);
1630 		return 0;
1631 
1632 	default:
1633 	do_reject:
1634 		esp->msg_out[0] = MESSAGE_REJECT;
1635 		esp->msg_out_len = 1;
1636 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1637 		return 0;
1638 	}
1639 }
1640 
1641 static int esp_process_event(struct esp *esp)
1642 {
1643 	int write;
1644 
1645 again:
1646 	write = 0;
1647 	switch (esp->event) {
1648 	case ESP_EVENT_CHECK_PHASE:
1649 		switch (esp->sreg & ESP_STAT_PMASK) {
1650 		case ESP_DOP:
1651 			esp_event(esp, ESP_EVENT_DATA_OUT);
1652 			break;
1653 		case ESP_DIP:
1654 			esp_event(esp, ESP_EVENT_DATA_IN);
1655 			break;
1656 		case ESP_STATP:
1657 			esp_flush_fifo(esp);
1658 			scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
1659 			esp_event(esp, ESP_EVENT_STATUS);
1660 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1661 			return 1;
1662 
1663 		case ESP_MOP:
1664 			esp_event(esp, ESP_EVENT_MSGOUT);
1665 			break;
1666 
1667 		case ESP_MIP:
1668 			esp_event(esp, ESP_EVENT_MSGIN);
1669 			break;
1670 
1671 		case ESP_CMDP:
1672 			esp_event(esp, ESP_EVENT_CMD_START);
1673 			break;
1674 
1675 		default:
1676 			printk("ESP: Unexpected phase, sreg=%02x\n",
1677 			       esp->sreg);
1678 			esp_schedule_reset(esp);
1679 			return 0;
1680 		}
1681 		goto again;
1682 		break;
1683 
1684 	case ESP_EVENT_DATA_IN:
1685 		write = 1;
1686 		/* fallthru */
1687 
1688 	case ESP_EVENT_DATA_OUT: {
1689 		struct esp_cmd_entry *ent = esp->active_cmd;
1690 		struct scsi_cmnd *cmd = ent->cmd;
1691 		dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
1692 		unsigned int dma_len = esp_cur_dma_len(ent, cmd);
1693 
1694 		if (esp->rev == ESP100)
1695 			scsi_esp_cmd(esp, ESP_CMD_NULL);
1696 
1697 		if (write)
1698 			ent->flags |= ESP_CMD_FLAG_WRITE;
1699 		else
1700 			ent->flags &= ~ESP_CMD_FLAG_WRITE;
1701 
1702 		if (esp->ops->dma_length_limit)
1703 			dma_len = esp->ops->dma_length_limit(esp, dma_addr,
1704 							     dma_len);
1705 		else
1706 			dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
1707 
1708 		esp->data_dma_len = dma_len;
1709 
1710 		if (!dma_len) {
1711 			printk(KERN_ERR PFX "esp%d: DMA length is zero!\n",
1712 			       esp->host->unique_id);
1713 			printk(KERN_ERR PFX "esp%d: cur adr[%08llx] len[%08x]\n",
1714 			       esp->host->unique_id,
1715 			       (unsigned long long)esp_cur_dma_addr(ent, cmd),
1716 			       esp_cur_dma_len(ent, cmd));
1717 			esp_schedule_reset(esp);
1718 			return 0;
1719 		}
1720 
1721 		esp_log_datastart("ESP: start data addr[%08llx] len[%u] "
1722 				  "write(%d)\n",
1723 				  (unsigned long long)dma_addr, dma_len, write);
1724 
1725 		esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
1726 				       write, ESP_CMD_DMA | ESP_CMD_TI);
1727 		esp_event(esp, ESP_EVENT_DATA_DONE);
1728 		break;
1729 	}
1730 	case ESP_EVENT_DATA_DONE: {
1731 		struct esp_cmd_entry *ent = esp->active_cmd;
1732 		struct scsi_cmnd *cmd = ent->cmd;
1733 		int bytes_sent;
1734 
1735 		if (esp->ops->dma_error(esp)) {
1736 			printk("ESP: data done, DMA error, resetting\n");
1737 			esp_schedule_reset(esp);
1738 			return 0;
1739 		}
1740 
1741 		if (ent->flags & ESP_CMD_FLAG_WRITE) {
1742 			/* XXX parity errors, etc. XXX */
1743 
1744 			esp->ops->dma_drain(esp);
1745 		}
1746 		esp->ops->dma_invalidate(esp);
1747 
1748 		if (esp->ireg != ESP_INTR_BSERV) {
1749 			/* We should always see exactly a bus-service
1750 			 * interrupt at the end of a successful transfer.
1751 			 */
1752 			printk("ESP: data done, not BSERV, resetting\n");
1753 			esp_schedule_reset(esp);
1754 			return 0;
1755 		}
1756 
1757 		bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
1758 
1759 		esp_log_datadone("ESP: data done flgs[%x] sent[%d]\n",
1760 				 ent->flags, bytes_sent);
1761 
1762 		if (bytes_sent < 0) {
1763 			/* XXX force sync mode for this target XXX */
1764 			esp_schedule_reset(esp);
1765 			return 0;
1766 		}
1767 
1768 		esp_advance_dma(esp, ent, cmd, bytes_sent);
1769 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1770 		goto again;
1771 	}
1772 
1773 	case ESP_EVENT_STATUS: {
1774 		struct esp_cmd_entry *ent = esp->active_cmd;
1775 
1776 		if (esp->ireg & ESP_INTR_FDONE) {
1777 			ent->status = esp_read8(ESP_FDATA);
1778 			ent->message = esp_read8(ESP_FDATA);
1779 			scsi_esp_cmd(esp, ESP_CMD_MOK);
1780 		} else if (esp->ireg == ESP_INTR_BSERV) {
1781 			ent->status = esp_read8(ESP_FDATA);
1782 			ent->message = 0xff;
1783 			esp_event(esp, ESP_EVENT_MSGIN);
1784 			return 0;
1785 		}
1786 
1787 		if (ent->message != COMMAND_COMPLETE) {
1788 			printk("ESP: Unexpected message %x in status\n",
1789 			       ent->message);
1790 			esp_schedule_reset(esp);
1791 			return 0;
1792 		}
1793 
1794 		esp_event(esp, ESP_EVENT_FREE_BUS);
1795 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1796 		break;
1797 	}
1798 	case ESP_EVENT_FREE_BUS: {
1799 		struct esp_cmd_entry *ent = esp->active_cmd;
1800 		struct scsi_cmnd *cmd = ent->cmd;
1801 
1802 		if (ent->message == COMMAND_COMPLETE ||
1803 		    ent->message == DISCONNECT)
1804 			scsi_esp_cmd(esp, ESP_CMD_ESEL);
1805 
1806 		if (ent->message == COMMAND_COMPLETE) {
1807 			esp_log_cmddone("ESP: Command done status[%x] "
1808 					"message[%x]\n",
1809 					ent->status, ent->message);
1810 			if (ent->status == SAM_STAT_TASK_SET_FULL)
1811 				esp_event_queue_full(esp, ent);
1812 
1813 			if (ent->status == SAM_STAT_CHECK_CONDITION &&
1814 			    !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1815 				ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
1816 				esp_autosense(esp, ent);
1817 			} else {
1818 				esp_cmd_is_done(esp, ent, cmd,
1819 						compose_result(ent->status,
1820 							       ent->message,
1821 							       DID_OK));
1822 			}
1823 		} else if (ent->message == DISCONNECT) {
1824 			esp_log_disconnect("ESP: Disconnecting tgt[%d] "
1825 					   "tag[%x:%x]\n",
1826 					   cmd->device->id,
1827 					   ent->tag[0], ent->tag[1]);
1828 
1829 			esp->active_cmd = NULL;
1830 			esp_maybe_execute_command(esp);
1831 		} else {
1832 			printk("ESP: Unexpected message %x in freebus\n",
1833 			       ent->message);
1834 			esp_schedule_reset(esp);
1835 			return 0;
1836 		}
1837 		if (esp->active_cmd)
1838 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1839 		break;
1840 	}
1841 	case ESP_EVENT_MSGOUT: {
1842 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1843 
1844 		if (esp_debug & ESP_DEBUG_MSGOUT) {
1845 			int i;
1846 			printk("ESP: Sending message [ ");
1847 			for (i = 0; i < esp->msg_out_len; i++)
1848 				printk("%02x ", esp->msg_out[i]);
1849 			printk("]\n");
1850 		}
1851 
1852 		if (esp->rev == FASHME) {
1853 			int i;
1854 
1855 			/* Always use the fifo.  */
1856 			for (i = 0; i < esp->msg_out_len; i++) {
1857 				esp_write8(esp->msg_out[i], ESP_FDATA);
1858 				esp_write8(0, ESP_FDATA);
1859 			}
1860 			scsi_esp_cmd(esp, ESP_CMD_TI);
1861 		} else {
1862 			if (esp->msg_out_len == 1) {
1863 				esp_write8(esp->msg_out[0], ESP_FDATA);
1864 				scsi_esp_cmd(esp, ESP_CMD_TI);
1865 			} else {
1866 				/* Use DMA. */
1867 				memcpy(esp->command_block,
1868 				       esp->msg_out,
1869 				       esp->msg_out_len);
1870 
1871 				esp->ops->send_dma_cmd(esp,
1872 						       esp->command_block_dma,
1873 						       esp->msg_out_len,
1874 						       esp->msg_out_len,
1875 						       0,
1876 						       ESP_CMD_DMA|ESP_CMD_TI);
1877 			}
1878 		}
1879 		esp_event(esp, ESP_EVENT_MSGOUT_DONE);
1880 		break;
1881 	}
1882 	case ESP_EVENT_MSGOUT_DONE:
1883 		if (esp->rev == FASHME) {
1884 			scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1885 		} else {
1886 			if (esp->msg_out_len > 1)
1887 				esp->ops->dma_invalidate(esp);
1888 		}
1889 
1890 		if (!(esp->ireg & ESP_INTR_DC)) {
1891 			if (esp->rev != FASHME)
1892 				scsi_esp_cmd(esp, ESP_CMD_NULL);
1893 		}
1894 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1895 		goto again;
1896 	case ESP_EVENT_MSGIN:
1897 		if (esp->ireg & ESP_INTR_BSERV) {
1898 			if (esp->rev == FASHME) {
1899 				if (!(esp_read8(ESP_STATUS2) &
1900 				      ESP_STAT2_FEMPTY))
1901 					scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1902 			} else {
1903 				scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1904 				if (esp->rev == ESP100)
1905 					scsi_esp_cmd(esp, ESP_CMD_NULL);
1906 			}
1907 			scsi_esp_cmd(esp, ESP_CMD_TI);
1908 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1909 			return 1;
1910 		}
1911 		if (esp->ireg & ESP_INTR_FDONE) {
1912 			u8 val;
1913 
1914 			if (esp->rev == FASHME)
1915 				val = esp->fifo[0];
1916 			else
1917 				val = esp_read8(ESP_FDATA);
1918 			esp->msg_in[esp->msg_in_len++] = val;
1919 
1920 			esp_log_msgin("ESP: Got msgin byte %x\n", val);
1921 
1922 			if (!esp_msgin_process(esp))
1923 				esp->msg_in_len = 0;
1924 
1925 			if (esp->rev == FASHME)
1926 				scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1927 
1928 			scsi_esp_cmd(esp, ESP_CMD_MOK);
1929 
1930 			if (esp->event != ESP_EVENT_FREE_BUS)
1931 				esp_event(esp, ESP_EVENT_CHECK_PHASE);
1932 		} else {
1933 			printk("ESP: MSGIN neither BSERV not FDON, resetting");
1934 			esp_schedule_reset(esp);
1935 			return 0;
1936 		}
1937 		break;
1938 	case ESP_EVENT_CMD_START:
1939 		memcpy(esp->command_block, esp->cmd_bytes_ptr,
1940 		       esp->cmd_bytes_left);
1941 		if (esp->rev == FASHME)
1942 			scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1943 		esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1944 				       esp->cmd_bytes_left, 16, 0,
1945 				       ESP_CMD_DMA | ESP_CMD_TI);
1946 		esp_event(esp, ESP_EVENT_CMD_DONE);
1947 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1948 		break;
1949 	case ESP_EVENT_CMD_DONE:
1950 		esp->ops->dma_invalidate(esp);
1951 		if (esp->ireg & ESP_INTR_BSERV) {
1952 			esp_event(esp, ESP_EVENT_CHECK_PHASE);
1953 			goto again;
1954 		}
1955 		esp_schedule_reset(esp);
1956 		return 0;
1957 		break;
1958 
1959 	case ESP_EVENT_RESET:
1960 		scsi_esp_cmd(esp, ESP_CMD_RS);
1961 		break;
1962 
1963 	default:
1964 		printk("ESP: Unexpected event %x, resetting\n",
1965 		       esp->event);
1966 		esp_schedule_reset(esp);
1967 		return 0;
1968 		break;
1969 	}
1970 	return 1;
1971 }
1972 
1973 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
1974 {
1975 	struct scsi_cmnd *cmd = ent->cmd;
1976 
1977 	esp_unmap_dma(esp, cmd);
1978 	esp_free_lun_tag(ent, cmd->device->hostdata);
1979 	cmd->result = DID_RESET << 16;
1980 
1981 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
1982 		esp->ops->unmap_single(esp, ent->sense_dma,
1983 				       SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
1984 		ent->sense_ptr = NULL;
1985 	}
1986 
1987 	cmd->scsi_done(cmd);
1988 	list_del(&ent->list);
1989 	esp_put_ent(esp, ent);
1990 }
1991 
1992 static void esp_clear_hold(struct scsi_device *dev, void *data)
1993 {
1994 	struct esp_lun_data *lp = dev->hostdata;
1995 
1996 	BUG_ON(lp->num_tagged);
1997 	lp->hold = 0;
1998 }
1999 
2000 static void esp_reset_cleanup(struct esp *esp)
2001 {
2002 	struct esp_cmd_entry *ent, *tmp;
2003 	int i;
2004 
2005 	list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
2006 		struct scsi_cmnd *cmd = ent->cmd;
2007 
2008 		list_del(&ent->list);
2009 		cmd->result = DID_RESET << 16;
2010 		cmd->scsi_done(cmd);
2011 		esp_put_ent(esp, ent);
2012 	}
2013 
2014 	list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
2015 		if (ent == esp->active_cmd)
2016 			esp->active_cmd = NULL;
2017 		esp_reset_cleanup_one(esp, ent);
2018 	}
2019 
2020 	BUG_ON(esp->active_cmd != NULL);
2021 
2022 	/* Force renegotiation of sync/wide transfers.  */
2023 	for (i = 0; i < ESP_MAX_TARGET; i++) {
2024 		struct esp_target_data *tp = &esp->target[i];
2025 
2026 		tp->esp_period = 0;
2027 		tp->esp_offset = 0;
2028 		tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
2029 				     ESP_CONFIG3_FSCSI |
2030 				     ESP_CONFIG3_FAST);
2031 		tp->flags &= ~ESP_TGT_WIDE;
2032 		tp->flags |= ESP_TGT_CHECK_NEGO;
2033 
2034 		if (tp->starget)
2035 			__starget_for_each_device(tp->starget, NULL,
2036 						  esp_clear_hold);
2037 	}
2038 	esp->flags &= ~ESP_FLAG_RESETTING;
2039 }
2040 
2041 /* Runs under host->lock */
2042 static void __esp_interrupt(struct esp *esp)
2043 {
2044 	int finish_reset, intr_done;
2045 	u8 phase;
2046 
2047 	esp->sreg = esp_read8(ESP_STATUS);
2048 
2049 	if (esp->flags & ESP_FLAG_RESETTING) {
2050 		finish_reset = 1;
2051 	} else {
2052 		if (esp_check_gross_error(esp))
2053 			return;
2054 
2055 		finish_reset = esp_check_spur_intr(esp);
2056 		if (finish_reset < 0)
2057 			return;
2058 	}
2059 
2060 	esp->ireg = esp_read8(ESP_INTRPT);
2061 
2062 	if (esp->ireg & ESP_INTR_SR)
2063 		finish_reset = 1;
2064 
2065 	if (finish_reset) {
2066 		esp_reset_cleanup(esp);
2067 		if (esp->eh_reset) {
2068 			complete(esp->eh_reset);
2069 			esp->eh_reset = NULL;
2070 		}
2071 		return;
2072 	}
2073 
2074 	phase = (esp->sreg & ESP_STAT_PMASK);
2075 	if (esp->rev == FASHME) {
2076 		if (((phase != ESP_DIP && phase != ESP_DOP) &&
2077 		     esp->select_state == ESP_SELECT_NONE &&
2078 		     esp->event != ESP_EVENT_STATUS &&
2079 		     esp->event != ESP_EVENT_DATA_DONE) ||
2080 		    (esp->ireg & ESP_INTR_RSEL)) {
2081 			esp->sreg2 = esp_read8(ESP_STATUS2);
2082 			if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
2083 			    (esp->sreg2 & ESP_STAT2_F1BYTE))
2084 				hme_read_fifo(esp);
2085 		}
2086 	}
2087 
2088 	esp_log_intr("ESP: intr sreg[%02x] seqreg[%02x] "
2089 		     "sreg2[%02x] ireg[%02x]\n",
2090 		     esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
2091 
2092 	intr_done = 0;
2093 
2094 	if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
2095 		printk("ESP: unexpected IREG %02x\n", esp->ireg);
2096 		if (esp->ireg & ESP_INTR_IC)
2097 			esp_dump_cmd_log(esp);
2098 
2099 		esp_schedule_reset(esp);
2100 	} else {
2101 		if (!(esp->ireg & ESP_INTR_RSEL)) {
2102 			/* Some combination of FDONE, BSERV, DC.  */
2103 			if (esp->select_state != ESP_SELECT_NONE)
2104 				intr_done = esp_finish_select(esp);
2105 		} else if (esp->ireg & ESP_INTR_RSEL) {
2106 			if (esp->active_cmd)
2107 				(void) esp_finish_select(esp);
2108 			intr_done = esp_reconnect(esp);
2109 		}
2110 	}
2111 	while (!intr_done)
2112 		intr_done = esp_process_event(esp);
2113 }
2114 
2115 irqreturn_t scsi_esp_intr(int irq, void *dev_id)
2116 {
2117 	struct esp *esp = dev_id;
2118 	unsigned long flags;
2119 	irqreturn_t ret;
2120 
2121 	spin_lock_irqsave(esp->host->host_lock, flags);
2122 	ret = IRQ_NONE;
2123 	if (esp->ops->irq_pending(esp)) {
2124 		ret = IRQ_HANDLED;
2125 		for (;;) {
2126 			int i;
2127 
2128 			__esp_interrupt(esp);
2129 			if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
2130 				break;
2131 			esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
2132 
2133 			for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
2134 				if (esp->ops->irq_pending(esp))
2135 					break;
2136 			}
2137 			if (i == ESP_QUICKIRQ_LIMIT)
2138 				break;
2139 		}
2140 	}
2141 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2142 
2143 	return ret;
2144 }
2145 EXPORT_SYMBOL(scsi_esp_intr);
2146 
2147 static void esp_get_revision(struct esp *esp)
2148 {
2149 	u8 val;
2150 
2151 	esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
2152 	esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
2153 	esp_write8(esp->config2, ESP_CFG2);
2154 
2155 	val = esp_read8(ESP_CFG2);
2156 	val &= ~ESP_CONFIG2_MAGIC;
2157 	if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
2158 		/* If what we write to cfg2 does not come back, cfg2 is not
2159 		 * implemented, therefore this must be a plain esp100.
2160 		 */
2161 		esp->rev = ESP100;
2162 	} else {
2163 		esp->config2 = 0;
2164 		esp_set_all_config3(esp, 5);
2165 		esp->prev_cfg3 = 5;
2166 		esp_write8(esp->config2, ESP_CFG2);
2167 		esp_write8(0, ESP_CFG3);
2168 		esp_write8(esp->prev_cfg3, ESP_CFG3);
2169 
2170 		val = esp_read8(ESP_CFG3);
2171 		if (val != 5) {
2172 			/* The cfg2 register is implemented, however
2173 			 * cfg3 is not, must be esp100a.
2174 			 */
2175 			esp->rev = ESP100A;
2176 		} else {
2177 			esp_set_all_config3(esp, 0);
2178 			esp->prev_cfg3 = 0;
2179 			esp_write8(esp->prev_cfg3, ESP_CFG3);
2180 
2181 			/* All of cfg{1,2,3} implemented, must be one of
2182 			 * the fas variants, figure out which one.
2183 			 */
2184 			if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
2185 				esp->rev = FAST;
2186 				esp->sync_defp = SYNC_DEFP_FAST;
2187 			} else {
2188 				esp->rev = ESP236;
2189 			}
2190 			esp->config2 = 0;
2191 			esp_write8(esp->config2, ESP_CFG2);
2192 		}
2193 	}
2194 }
2195 
2196 static void esp_init_swstate(struct esp *esp)
2197 {
2198 	int i;
2199 
2200 	INIT_LIST_HEAD(&esp->queued_cmds);
2201 	INIT_LIST_HEAD(&esp->active_cmds);
2202 	INIT_LIST_HEAD(&esp->esp_cmd_pool);
2203 
2204 	/* Start with a clear state, domain validation (via ->slave_configure,
2205 	 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2206 	 * commands.
2207 	 */
2208 	for (i = 0 ; i < ESP_MAX_TARGET; i++) {
2209 		esp->target[i].flags = 0;
2210 		esp->target[i].nego_goal_period = 0;
2211 		esp->target[i].nego_goal_offset = 0;
2212 		esp->target[i].nego_goal_width = 0;
2213 		esp->target[i].nego_goal_tags = 0;
2214 	}
2215 }
2216 
2217 /* This places the ESP into a known state at boot time. */
2218 static void esp_bootup_reset(struct esp *esp)
2219 {
2220 	u8 val;
2221 
2222 	/* Reset the DMA */
2223 	esp->ops->reset_dma(esp);
2224 
2225 	/* Reset the ESP */
2226 	esp_reset_esp(esp);
2227 
2228 	/* Reset the SCSI bus, but tell ESP not to generate an irq */
2229 	val = esp_read8(ESP_CFG1);
2230 	val |= ESP_CONFIG1_SRRDISAB;
2231 	esp_write8(val, ESP_CFG1);
2232 
2233 	scsi_esp_cmd(esp, ESP_CMD_RS);
2234 	udelay(400);
2235 
2236 	esp_write8(esp->config1, ESP_CFG1);
2237 
2238 	/* Eat any bitrot in the chip and we are done... */
2239 	esp_read8(ESP_INTRPT);
2240 }
2241 
2242 static void esp_set_clock_params(struct esp *esp)
2243 {
2244 	int fhz;
2245 	u8 ccf;
2246 
2247 	/* This is getting messy but it has to be done correctly or else
2248 	 * you get weird behavior all over the place.  We are trying to
2249 	 * basically figure out three pieces of information.
2250 	 *
2251 	 * a) Clock Conversion Factor
2252 	 *
2253 	 *    This is a representation of the input crystal clock frequency
2254 	 *    going into the ESP on this machine.  Any operation whose timing
2255 	 *    is longer than 400ns depends on this value being correct.  For
2256 	 *    example, you'll get blips for arbitration/selection during high
2257 	 *    load or with multiple targets if this is not set correctly.
2258 	 *
2259 	 * b) Selection Time-Out
2260 	 *
2261 	 *    The ESP isn't very bright and will arbitrate for the bus and try
2262 	 *    to select a target forever if you let it.  This value tells the
2263 	 *    ESP when it has taken too long to negotiate and that it should
2264 	 *    interrupt the CPU so we can see what happened.  The value is
2265 	 *    computed as follows (from NCR/Symbios chip docs).
2266 	 *
2267 	 *          (Time Out Period) *  (Input Clock)
2268 	 *    STO = ----------------------------------
2269 	 *          (8192) * (Clock Conversion Factor)
2270 	 *
2271 	 *    We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2272 	 *
2273 	 * c) Imperical constants for synchronous offset and transfer period
2274          *    register values
2275 	 *
2276 	 *    This entails the smallest and largest sync period we could ever
2277 	 *    handle on this ESP.
2278 	 */
2279 	fhz = esp->cfreq;
2280 
2281 	ccf = ((fhz / 1000000) + 4) / 5;
2282 	if (ccf == 1)
2283 		ccf = 2;
2284 
2285 	/* If we can't find anything reasonable, just assume 20MHZ.
2286 	 * This is the clock frequency of the older sun4c's where I've
2287 	 * been unable to find the clock-frequency PROM property.  All
2288 	 * other machines provide useful values it seems.
2289 	 */
2290 	if (fhz <= 5000000 || ccf < 1 || ccf > 8) {
2291 		fhz = 20000000;
2292 		ccf = 4;
2293 	}
2294 
2295 	esp->cfact = (ccf == 8 ? 0 : ccf);
2296 	esp->cfreq = fhz;
2297 	esp->ccycle = ESP_HZ_TO_CYCLE(fhz);
2298 	esp->ctick = ESP_TICK(ccf, esp->ccycle);
2299 	esp->neg_defp = ESP_NEG_DEFP(fhz, ccf);
2300 	esp->sync_defp = SYNC_DEFP_SLOW;
2301 }
2302 
2303 static const char *esp_chip_names[] = {
2304 	"ESP100",
2305 	"ESP100A",
2306 	"ESP236",
2307 	"FAS236",
2308 	"FAS100A",
2309 	"FAST",
2310 	"FASHME",
2311 };
2312 
2313 static struct scsi_transport_template *esp_transport_template;
2314 
2315 int scsi_esp_register(struct esp *esp, struct device *dev)
2316 {
2317 	static int instance;
2318 	int err;
2319 
2320 	esp->host->transportt = esp_transport_template;
2321 	esp->host->max_lun = ESP_MAX_LUN;
2322 	esp->host->cmd_per_lun = 2;
2323 	esp->host->unique_id = instance;
2324 
2325 	esp_set_clock_params(esp);
2326 
2327 	esp_get_revision(esp);
2328 
2329 	esp_init_swstate(esp);
2330 
2331 	esp_bootup_reset(esp);
2332 
2333 	printk(KERN_INFO PFX "esp%u, regs[%1p:%1p] irq[%u]\n",
2334 	       esp->host->unique_id, esp->regs, esp->dma_regs,
2335 	       esp->host->irq);
2336 	printk(KERN_INFO PFX "esp%u is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2337 	       esp->host->unique_id, esp_chip_names[esp->rev],
2338 	       esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
2339 
2340 	/* Let the SCSI bus reset settle. */
2341 	ssleep(esp_bus_reset_settle);
2342 
2343 	err = scsi_add_host(esp->host, dev);
2344 	if (err)
2345 		return err;
2346 
2347 	instance++;
2348 
2349 	scsi_scan_host(esp->host);
2350 
2351 	return 0;
2352 }
2353 EXPORT_SYMBOL(scsi_esp_register);
2354 
2355 void scsi_esp_unregister(struct esp *esp)
2356 {
2357 	scsi_remove_host(esp->host);
2358 }
2359 EXPORT_SYMBOL(scsi_esp_unregister);
2360 
2361 static int esp_target_alloc(struct scsi_target *starget)
2362 {
2363 	struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2364 	struct esp_target_data *tp = &esp->target[starget->id];
2365 
2366 	tp->starget = starget;
2367 
2368 	return 0;
2369 }
2370 
2371 static void esp_target_destroy(struct scsi_target *starget)
2372 {
2373 	struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2374 	struct esp_target_data *tp = &esp->target[starget->id];
2375 
2376 	tp->starget = NULL;
2377 }
2378 
2379 static int esp_slave_alloc(struct scsi_device *dev)
2380 {
2381 	struct esp *esp = shost_priv(dev->host);
2382 	struct esp_target_data *tp = &esp->target[dev->id];
2383 	struct esp_lun_data *lp;
2384 
2385 	lp = kzalloc(sizeof(*lp), GFP_KERNEL);
2386 	if (!lp)
2387 		return -ENOMEM;
2388 	dev->hostdata = lp;
2389 
2390 	spi_min_period(tp->starget) = esp->min_period;
2391 	spi_max_offset(tp->starget) = 15;
2392 
2393 	if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
2394 		spi_max_width(tp->starget) = 1;
2395 	else
2396 		spi_max_width(tp->starget) = 0;
2397 
2398 	return 0;
2399 }
2400 
2401 static int esp_slave_configure(struct scsi_device *dev)
2402 {
2403 	struct esp *esp = shost_priv(dev->host);
2404 	struct esp_target_data *tp = &esp->target[dev->id];
2405 	int goal_tags, queue_depth;
2406 
2407 	goal_tags = 0;
2408 
2409 	if (dev->tagged_supported) {
2410 		/* XXX make this configurable somehow XXX */
2411 		goal_tags = ESP_DEFAULT_TAGS;
2412 
2413 		if (goal_tags > ESP_MAX_TAG)
2414 			goal_tags = ESP_MAX_TAG;
2415 	}
2416 
2417 	queue_depth = goal_tags;
2418 	if (queue_depth < dev->host->cmd_per_lun)
2419 		queue_depth = dev->host->cmd_per_lun;
2420 
2421 	if (goal_tags) {
2422 		scsi_set_tag_type(dev, MSG_ORDERED_TAG);
2423 		scsi_activate_tcq(dev, queue_depth);
2424 	} else {
2425 		scsi_deactivate_tcq(dev, queue_depth);
2426 	}
2427 	tp->flags |= ESP_TGT_DISCONNECT;
2428 
2429 	if (!spi_initial_dv(dev->sdev_target))
2430 		spi_dv_device(dev);
2431 
2432 	return 0;
2433 }
2434 
2435 static void esp_slave_destroy(struct scsi_device *dev)
2436 {
2437 	struct esp_lun_data *lp = dev->hostdata;
2438 
2439 	kfree(lp);
2440 	dev->hostdata = NULL;
2441 }
2442 
2443 static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
2444 {
2445 	struct esp *esp = shost_priv(cmd->device->host);
2446 	struct esp_cmd_entry *ent, *tmp;
2447 	struct completion eh_done;
2448 	unsigned long flags;
2449 
2450 	/* XXX This helps a lot with debugging but might be a bit
2451 	 * XXX much for the final driver.
2452 	 */
2453 	spin_lock_irqsave(esp->host->host_lock, flags);
2454 	printk(KERN_ERR PFX "esp%d: Aborting command [%p:%02x]\n",
2455 	       esp->host->unique_id, cmd, cmd->cmnd[0]);
2456 	ent = esp->active_cmd;
2457 	if (ent)
2458 		printk(KERN_ERR PFX "esp%d: Current command [%p:%02x]\n",
2459 		       esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2460 	list_for_each_entry(ent, &esp->queued_cmds, list) {
2461 		printk(KERN_ERR PFX "esp%d: Queued command [%p:%02x]\n",
2462 		       esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2463 	}
2464 	list_for_each_entry(ent, &esp->active_cmds, list) {
2465 		printk(KERN_ERR PFX "esp%d: Active command [%p:%02x]\n",
2466 		       esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2467 	}
2468 	esp_dump_cmd_log(esp);
2469 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2470 
2471 	spin_lock_irqsave(esp->host->host_lock, flags);
2472 
2473 	ent = NULL;
2474 	list_for_each_entry(tmp, &esp->queued_cmds, list) {
2475 		if (tmp->cmd == cmd) {
2476 			ent = tmp;
2477 			break;
2478 		}
2479 	}
2480 
2481 	if (ent) {
2482 		/* Easiest case, we didn't even issue the command
2483 		 * yet so it is trivial to abort.
2484 		 */
2485 		list_del(&ent->list);
2486 
2487 		cmd->result = DID_ABORT << 16;
2488 		cmd->scsi_done(cmd);
2489 
2490 		esp_put_ent(esp, ent);
2491 
2492 		goto out_success;
2493 	}
2494 
2495 	init_completion(&eh_done);
2496 
2497 	ent = esp->active_cmd;
2498 	if (ent && ent->cmd == cmd) {
2499 		/* Command is the currently active command on
2500 		 * the bus.  If we already have an output message
2501 		 * pending, no dice.
2502 		 */
2503 		if (esp->msg_out_len)
2504 			goto out_failure;
2505 
2506 		/* Send out an abort, encouraging the target to
2507 		 * go to MSGOUT phase by asserting ATN.
2508 		 */
2509 		esp->msg_out[0] = ABORT_TASK_SET;
2510 		esp->msg_out_len = 1;
2511 		ent->eh_done = &eh_done;
2512 
2513 		scsi_esp_cmd(esp, ESP_CMD_SATN);
2514 	} else {
2515 		/* The command is disconnected.  This is not easy to
2516 		 * abort.  For now we fail and let the scsi error
2517 		 * handling layer go try a scsi bus reset or host
2518 		 * reset.
2519 		 *
2520 		 * What we could do is put together a scsi command
2521 		 * solely for the purpose of sending an abort message
2522 		 * to the target.  Coming up with all the code to
2523 		 * cook up scsi commands, special case them everywhere,
2524 		 * etc. is for questionable gain and it would be better
2525 		 * if the generic scsi error handling layer could do at
2526 		 * least some of that for us.
2527 		 *
2528 		 * Anyways this is an area for potential future improvement
2529 		 * in this driver.
2530 		 */
2531 		goto out_failure;
2532 	}
2533 
2534 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2535 
2536 	if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
2537 		spin_lock_irqsave(esp->host->host_lock, flags);
2538 		ent->eh_done = NULL;
2539 		spin_unlock_irqrestore(esp->host->host_lock, flags);
2540 
2541 		return FAILED;
2542 	}
2543 
2544 	return SUCCESS;
2545 
2546 out_success:
2547 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2548 	return SUCCESS;
2549 
2550 out_failure:
2551 	/* XXX This might be a good location to set ESP_TGT_BROKEN
2552 	 * XXX since we know which target/lun in particular is
2553 	 * XXX causing trouble.
2554 	 */
2555 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2556 	return FAILED;
2557 }
2558 
2559 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
2560 {
2561 	struct esp *esp = shost_priv(cmd->device->host);
2562 	struct completion eh_reset;
2563 	unsigned long flags;
2564 
2565 	init_completion(&eh_reset);
2566 
2567 	spin_lock_irqsave(esp->host->host_lock, flags);
2568 
2569 	esp->eh_reset = &eh_reset;
2570 
2571 	/* XXX This is too simple... We should add lots of
2572 	 * XXX checks here so that if we find that the chip is
2573 	 * XXX very wedged we return failure immediately so
2574 	 * XXX that we can perform a full chip reset.
2575 	 */
2576 	esp->flags |= ESP_FLAG_RESETTING;
2577 	scsi_esp_cmd(esp, ESP_CMD_RS);
2578 
2579 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2580 
2581 	ssleep(esp_bus_reset_settle);
2582 
2583 	if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
2584 		spin_lock_irqsave(esp->host->host_lock, flags);
2585 		esp->eh_reset = NULL;
2586 		spin_unlock_irqrestore(esp->host->host_lock, flags);
2587 
2588 		return FAILED;
2589 	}
2590 
2591 	return SUCCESS;
2592 }
2593 
2594 /* All bets are off, reset the entire device.  */
2595 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
2596 {
2597 	struct esp *esp = shost_priv(cmd->device->host);
2598 	unsigned long flags;
2599 
2600 	spin_lock_irqsave(esp->host->host_lock, flags);
2601 	esp_bootup_reset(esp);
2602 	esp_reset_cleanup(esp);
2603 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2604 
2605 	ssleep(esp_bus_reset_settle);
2606 
2607 	return SUCCESS;
2608 }
2609 
2610 static const char *esp_info(struct Scsi_Host *host)
2611 {
2612 	return "esp";
2613 }
2614 
2615 struct scsi_host_template scsi_esp_template = {
2616 	.module			= THIS_MODULE,
2617 	.name			= "esp",
2618 	.info			= esp_info,
2619 	.queuecommand		= esp_queuecommand,
2620 	.target_alloc		= esp_target_alloc,
2621 	.target_destroy		= esp_target_destroy,
2622 	.slave_alloc		= esp_slave_alloc,
2623 	.slave_configure	= esp_slave_configure,
2624 	.slave_destroy		= esp_slave_destroy,
2625 	.eh_abort_handler	= esp_eh_abort_handler,
2626 	.eh_bus_reset_handler	= esp_eh_bus_reset_handler,
2627 	.eh_host_reset_handler	= esp_eh_host_reset_handler,
2628 	.can_queue		= 7,
2629 	.this_id		= 7,
2630 	.sg_tablesize		= SG_ALL,
2631 	.use_clustering		= ENABLE_CLUSTERING,
2632 	.max_sectors		= 0xffff,
2633 	.skip_settle_delay	= 1,
2634 };
2635 EXPORT_SYMBOL(scsi_esp_template);
2636 
2637 static void esp_get_signalling(struct Scsi_Host *host)
2638 {
2639 	struct esp *esp = shost_priv(host);
2640 	enum spi_signal_type type;
2641 
2642 	if (esp->flags & ESP_FLAG_DIFFERENTIAL)
2643 		type = SPI_SIGNAL_HVD;
2644 	else
2645 		type = SPI_SIGNAL_SE;
2646 
2647 	spi_signalling(host) = type;
2648 }
2649 
2650 static void esp_set_offset(struct scsi_target *target, int offset)
2651 {
2652 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2653 	struct esp *esp = shost_priv(host);
2654 	struct esp_target_data *tp = &esp->target[target->id];
2655 
2656 	if (esp->flags & ESP_FLAG_DISABLE_SYNC)
2657 		tp->nego_goal_offset = 0;
2658 	else
2659 		tp->nego_goal_offset = offset;
2660 	tp->flags |= ESP_TGT_CHECK_NEGO;
2661 }
2662 
2663 static void esp_set_period(struct scsi_target *target, int period)
2664 {
2665 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2666 	struct esp *esp = shost_priv(host);
2667 	struct esp_target_data *tp = &esp->target[target->id];
2668 
2669 	tp->nego_goal_period = period;
2670 	tp->flags |= ESP_TGT_CHECK_NEGO;
2671 }
2672 
2673 static void esp_set_width(struct scsi_target *target, int width)
2674 {
2675 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2676 	struct esp *esp = shost_priv(host);
2677 	struct esp_target_data *tp = &esp->target[target->id];
2678 
2679 	tp->nego_goal_width = (width ? 1 : 0);
2680 	tp->flags |= ESP_TGT_CHECK_NEGO;
2681 }
2682 
2683 static struct spi_function_template esp_transport_ops = {
2684 	.set_offset		= esp_set_offset,
2685 	.show_offset		= 1,
2686 	.set_period		= esp_set_period,
2687 	.show_period		= 1,
2688 	.set_width		= esp_set_width,
2689 	.show_width		= 1,
2690 	.get_signalling		= esp_get_signalling,
2691 };
2692 
2693 static int __init esp_init(void)
2694 {
2695 	BUILD_BUG_ON(sizeof(struct scsi_pointer) <
2696 		     sizeof(struct esp_cmd_priv));
2697 
2698 	esp_transport_template = spi_attach_transport(&esp_transport_ops);
2699 	if (!esp_transport_template)
2700 		return -ENODEV;
2701 
2702 	return 0;
2703 }
2704 
2705 static void __exit esp_exit(void)
2706 {
2707 	spi_release_transport(esp_transport_template);
2708 }
2709 
2710 MODULE_DESCRIPTION("ESP SCSI driver core");
2711 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2712 MODULE_LICENSE("GPL");
2713 MODULE_VERSION(DRV_VERSION);
2714 
2715 module_param(esp_bus_reset_settle, int, 0);
2716 MODULE_PARM_DESC(esp_bus_reset_settle,
2717 		 "ESP scsi bus reset delay in seconds");
2718 
2719 module_param(esp_debug, int, 0);
2720 MODULE_PARM_DESC(esp_debug,
2721 "ESP bitmapped debugging message enable value:\n"
2722 "	0x00000001	Log interrupt events\n"
2723 "	0x00000002	Log scsi commands\n"
2724 "	0x00000004	Log resets\n"
2725 "	0x00000008	Log message in events\n"
2726 "	0x00000010	Log message out events\n"
2727 "	0x00000020	Log command completion\n"
2728 "	0x00000040	Log disconnects\n"
2729 "	0x00000080	Log data start\n"
2730 "	0x00000100	Log data done\n"
2731 "	0x00000200	Log reconnects\n"
2732 "	0x00000400	Log auto-sense data\n"
2733 );
2734 
2735 module_init(esp_init);
2736 module_exit(esp_exit);
2737