xref: /linux/drivers/scsi/esp_scsi.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* esp_scsi.c: ESP SCSI driver.
2  *
3  * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/delay.h>
10 #include <linux/list.h>
11 #include <linux/completion.h>
12 #include <linux/kallsyms.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/init.h>
16 #include <linux/irqreturn.h>
17 
18 #include <asm/irq.h>
19 #include <asm/io.h>
20 #include <asm/dma.h>
21 
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_host.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_tcq.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_transport_spi.h>
29 
30 #include "esp_scsi.h"
31 
32 #define DRV_MODULE_NAME		"esp"
33 #define PFX DRV_MODULE_NAME	": "
34 #define DRV_VERSION		"2.000"
35 #define DRV_MODULE_RELDATE	"April 19, 2007"
36 
37 /* SCSI bus reset settle time in seconds.  */
38 static int esp_bus_reset_settle = 3;
39 
40 static u32 esp_debug;
41 #define ESP_DEBUG_INTR		0x00000001
42 #define ESP_DEBUG_SCSICMD	0x00000002
43 #define ESP_DEBUG_RESET		0x00000004
44 #define ESP_DEBUG_MSGIN		0x00000008
45 #define ESP_DEBUG_MSGOUT	0x00000010
46 #define ESP_DEBUG_CMDDONE	0x00000020
47 #define ESP_DEBUG_DISCONNECT	0x00000040
48 #define ESP_DEBUG_DATASTART	0x00000080
49 #define ESP_DEBUG_DATADONE	0x00000100
50 #define ESP_DEBUG_RECONNECT	0x00000200
51 #define ESP_DEBUG_AUTOSENSE	0x00000400
52 #define ESP_DEBUG_EVENT		0x00000800
53 #define ESP_DEBUG_COMMAND	0x00001000
54 
55 #define esp_log_intr(f, a...) \
56 do {	if (esp_debug & ESP_DEBUG_INTR) \
57 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
58 } while (0)
59 
60 #define esp_log_reset(f, a...) \
61 do {	if (esp_debug & ESP_DEBUG_RESET) \
62 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
63 } while (0)
64 
65 #define esp_log_msgin(f, a...) \
66 do {	if (esp_debug & ESP_DEBUG_MSGIN) \
67 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
68 } while (0)
69 
70 #define esp_log_msgout(f, a...) \
71 do {	if (esp_debug & ESP_DEBUG_MSGOUT) \
72 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
73 } while (0)
74 
75 #define esp_log_cmddone(f, a...) \
76 do {	if (esp_debug & ESP_DEBUG_CMDDONE) \
77 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
78 } while (0)
79 
80 #define esp_log_disconnect(f, a...) \
81 do {	if (esp_debug & ESP_DEBUG_DISCONNECT) \
82 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
83 } while (0)
84 
85 #define esp_log_datastart(f, a...) \
86 do {	if (esp_debug & ESP_DEBUG_DATASTART) \
87 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
88 } while (0)
89 
90 #define esp_log_datadone(f, a...) \
91 do {	if (esp_debug & ESP_DEBUG_DATADONE) \
92 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
93 } while (0)
94 
95 #define esp_log_reconnect(f, a...) \
96 do {	if (esp_debug & ESP_DEBUG_RECONNECT) \
97 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
98 } while (0)
99 
100 #define esp_log_autosense(f, a...) \
101 do {	if (esp_debug & ESP_DEBUG_AUTOSENSE) \
102 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
103 } while (0)
104 
105 #define esp_log_event(f, a...) \
106 do {   if (esp_debug & ESP_DEBUG_EVENT)	\
107 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
108 } while (0)
109 
110 #define esp_log_command(f, a...) \
111 do {   if (esp_debug & ESP_DEBUG_COMMAND)	\
112 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
113 } while (0)
114 
115 #define esp_read8(REG)		esp->ops->esp_read8(esp, REG)
116 #define esp_write8(VAL,REG)	esp->ops->esp_write8(esp, VAL, REG)
117 
118 static void esp_log_fill_regs(struct esp *esp,
119 			      struct esp_event_ent *p)
120 {
121 	p->sreg = esp->sreg;
122 	p->seqreg = esp->seqreg;
123 	p->sreg2 = esp->sreg2;
124 	p->ireg = esp->ireg;
125 	p->select_state = esp->select_state;
126 	p->event = esp->event;
127 }
128 
129 void scsi_esp_cmd(struct esp *esp, u8 val)
130 {
131 	struct esp_event_ent *p;
132 	int idx = esp->esp_event_cur;
133 
134 	p = &esp->esp_event_log[idx];
135 	p->type = ESP_EVENT_TYPE_CMD;
136 	p->val = val;
137 	esp_log_fill_regs(esp, p);
138 
139 	esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
140 
141 	esp_log_command("cmd[%02x]\n", val);
142 	esp_write8(val, ESP_CMD);
143 }
144 EXPORT_SYMBOL(scsi_esp_cmd);
145 
146 static void esp_send_dma_cmd(struct esp *esp, int len, int max_len, int cmd)
147 {
148 	if (esp->flags & ESP_FLAG_USE_FIFO) {
149 		int i;
150 
151 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
152 		for (i = 0; i < len; i++)
153 			esp_write8(esp->command_block[i], ESP_FDATA);
154 		scsi_esp_cmd(esp, cmd);
155 	} else {
156 		if (esp->rev == FASHME)
157 			scsi_esp_cmd(esp, ESP_CMD_FLUSH);
158 		cmd |= ESP_CMD_DMA;
159 		esp->ops->send_dma_cmd(esp, esp->command_block_dma,
160 				       len, max_len, 0, cmd);
161 	}
162 }
163 
164 static void esp_event(struct esp *esp, u8 val)
165 {
166 	struct esp_event_ent *p;
167 	int idx = esp->esp_event_cur;
168 
169 	p = &esp->esp_event_log[idx];
170 	p->type = ESP_EVENT_TYPE_EVENT;
171 	p->val = val;
172 	esp_log_fill_regs(esp, p);
173 
174 	esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
175 
176 	esp->event = val;
177 }
178 
179 static void esp_dump_cmd_log(struct esp *esp)
180 {
181 	int idx = esp->esp_event_cur;
182 	int stop = idx;
183 
184 	shost_printk(KERN_INFO, esp->host, "Dumping command log\n");
185 	do {
186 		struct esp_event_ent *p = &esp->esp_event_log[idx];
187 
188 		shost_printk(KERN_INFO, esp->host,
189 			     "ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] "
190 			     "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
191 			     idx,
192 			     p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT",
193 			     p->val, p->sreg, p->seqreg,
194 			     p->sreg2, p->ireg, p->select_state, p->event);
195 
196 		idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
197 	} while (idx != stop);
198 }
199 
200 static void esp_flush_fifo(struct esp *esp)
201 {
202 	scsi_esp_cmd(esp, ESP_CMD_FLUSH);
203 	if (esp->rev == ESP236) {
204 		int lim = 1000;
205 
206 		while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
207 			if (--lim == 0) {
208 				shost_printk(KERN_ALERT, esp->host,
209 					     "ESP_FF_BYTES will not clear!\n");
210 				break;
211 			}
212 			udelay(1);
213 		}
214 	}
215 }
216 
217 static void hme_read_fifo(struct esp *esp)
218 {
219 	int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
220 	int idx = 0;
221 
222 	while (fcnt--) {
223 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
224 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
225 	}
226 	if (esp->sreg2 & ESP_STAT2_F1BYTE) {
227 		esp_write8(0, ESP_FDATA);
228 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
229 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
230 	}
231 	esp->fifo_cnt = idx;
232 }
233 
234 static void esp_set_all_config3(struct esp *esp, u8 val)
235 {
236 	int i;
237 
238 	for (i = 0; i < ESP_MAX_TARGET; i++)
239 		esp->target[i].esp_config3 = val;
240 }
241 
242 /* Reset the ESP chip, _not_ the SCSI bus. */
243 static void esp_reset_esp(struct esp *esp)
244 {
245 	u8 family_code, version;
246 
247 	/* Now reset the ESP chip */
248 	scsi_esp_cmd(esp, ESP_CMD_RC);
249 	scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
250 	if (esp->rev == FAST)
251 		esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2);
252 	scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
253 
254 	/* This is the only point at which it is reliable to read
255 	 * the ID-code for a fast ESP chip variants.
256 	 */
257 	esp->max_period = ((35 * esp->ccycle) / 1000);
258 	if (esp->rev == FAST) {
259 		version = esp_read8(ESP_UID);
260 		family_code = (version & 0xf8) >> 3;
261 		if (family_code == 0x02)
262 			esp->rev = FAS236;
263 		else if (family_code == 0x0a)
264 			esp->rev = FASHME; /* Version is usually '5'. */
265 		else
266 			esp->rev = FAS100A;
267 		esp->min_period = ((4 * esp->ccycle) / 1000);
268 	} else {
269 		esp->min_period = ((5 * esp->ccycle) / 1000);
270 	}
271 	if (esp->rev == FAS236) {
272 		/*
273 		 * The AM53c974 chip returns the same ID as FAS236;
274 		 * try to configure glitch eater.
275 		 */
276 		u8 config4 = ESP_CONFIG4_GE1;
277 		esp_write8(config4, ESP_CFG4);
278 		config4 = esp_read8(ESP_CFG4);
279 		if (config4 & ESP_CONFIG4_GE1) {
280 			esp->rev = PCSCSI;
281 			esp_write8(esp->config4, ESP_CFG4);
282 		}
283 	}
284 	esp->max_period = (esp->max_period + 3)>>2;
285 	esp->min_period = (esp->min_period + 3)>>2;
286 
287 	esp_write8(esp->config1, ESP_CFG1);
288 	switch (esp->rev) {
289 	case ESP100:
290 		/* nothing to do */
291 		break;
292 
293 	case ESP100A:
294 		esp_write8(esp->config2, ESP_CFG2);
295 		break;
296 
297 	case ESP236:
298 		/* Slow 236 */
299 		esp_write8(esp->config2, ESP_CFG2);
300 		esp->prev_cfg3 = esp->target[0].esp_config3;
301 		esp_write8(esp->prev_cfg3, ESP_CFG3);
302 		break;
303 
304 	case FASHME:
305 		esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
306 		/* fallthrough... */
307 
308 	case FAS236:
309 	case PCSCSI:
310 		/* Fast 236, AM53c974 or HME */
311 		esp_write8(esp->config2, ESP_CFG2);
312 		if (esp->rev == FASHME) {
313 			u8 cfg3 = esp->target[0].esp_config3;
314 
315 			cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
316 			if (esp->scsi_id >= 8)
317 				cfg3 |= ESP_CONFIG3_IDBIT3;
318 			esp_set_all_config3(esp, cfg3);
319 		} else {
320 			u32 cfg3 = esp->target[0].esp_config3;
321 
322 			cfg3 |= ESP_CONFIG3_FCLK;
323 			esp_set_all_config3(esp, cfg3);
324 		}
325 		esp->prev_cfg3 = esp->target[0].esp_config3;
326 		esp_write8(esp->prev_cfg3, ESP_CFG3);
327 		if (esp->rev == FASHME) {
328 			esp->radelay = 80;
329 		} else {
330 			if (esp->flags & ESP_FLAG_DIFFERENTIAL)
331 				esp->radelay = 0;
332 			else
333 				esp->radelay = 96;
334 		}
335 		break;
336 
337 	case FAS100A:
338 		/* Fast 100a */
339 		esp_write8(esp->config2, ESP_CFG2);
340 		esp_set_all_config3(esp,
341 				    (esp->target[0].esp_config3 |
342 				     ESP_CONFIG3_FCLOCK));
343 		esp->prev_cfg3 = esp->target[0].esp_config3;
344 		esp_write8(esp->prev_cfg3, ESP_CFG3);
345 		esp->radelay = 32;
346 		break;
347 
348 	default:
349 		break;
350 	}
351 
352 	/* Reload the configuration registers */
353 	esp_write8(esp->cfact, ESP_CFACT);
354 
355 	esp->prev_stp = 0;
356 	esp_write8(esp->prev_stp, ESP_STP);
357 
358 	esp->prev_soff = 0;
359 	esp_write8(esp->prev_soff, ESP_SOFF);
360 
361 	esp_write8(esp->neg_defp, ESP_TIMEO);
362 
363 	/* Eat any bitrot in the chip */
364 	esp_read8(ESP_INTRPT);
365 	udelay(100);
366 }
367 
368 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
369 {
370 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
371 	struct scatterlist *sg = scsi_sglist(cmd);
372 	int dir = cmd->sc_data_direction;
373 	int total, i;
374 
375 	if (dir == DMA_NONE)
376 		return;
377 
378 	spriv->u.num_sg = esp->ops->map_sg(esp, sg, scsi_sg_count(cmd), dir);
379 	spriv->cur_residue = sg_dma_len(sg);
380 	spriv->cur_sg = sg;
381 
382 	total = 0;
383 	for (i = 0; i < spriv->u.num_sg; i++)
384 		total += sg_dma_len(&sg[i]);
385 	spriv->tot_residue = total;
386 }
387 
388 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
389 				   struct scsi_cmnd *cmd)
390 {
391 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
392 
393 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
394 		return ent->sense_dma +
395 			(ent->sense_ptr - cmd->sense_buffer);
396 	}
397 
398 	return sg_dma_address(p->cur_sg) +
399 		(sg_dma_len(p->cur_sg) -
400 		 p->cur_residue);
401 }
402 
403 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
404 				    struct scsi_cmnd *cmd)
405 {
406 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
407 
408 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
409 		return SCSI_SENSE_BUFFERSIZE -
410 			(ent->sense_ptr - cmd->sense_buffer);
411 	}
412 	return p->cur_residue;
413 }
414 
415 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
416 			    struct scsi_cmnd *cmd, unsigned int len)
417 {
418 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
419 
420 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
421 		ent->sense_ptr += len;
422 		return;
423 	}
424 
425 	p->cur_residue -= len;
426 	p->tot_residue -= len;
427 	if (p->cur_residue < 0 || p->tot_residue < 0) {
428 		shost_printk(KERN_ERR, esp->host,
429 			     "Data transfer overflow.\n");
430 		shost_printk(KERN_ERR, esp->host,
431 			     "cur_residue[%d] tot_residue[%d] len[%u]\n",
432 			     p->cur_residue, p->tot_residue, len);
433 		p->cur_residue = 0;
434 		p->tot_residue = 0;
435 	}
436 	if (!p->cur_residue && p->tot_residue) {
437 		p->cur_sg++;
438 		p->cur_residue = sg_dma_len(p->cur_sg);
439 	}
440 }
441 
442 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
443 {
444 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
445 	int dir = cmd->sc_data_direction;
446 
447 	if (dir == DMA_NONE)
448 		return;
449 
450 	esp->ops->unmap_sg(esp, scsi_sglist(cmd), spriv->u.num_sg, dir);
451 }
452 
453 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
454 {
455 	struct scsi_cmnd *cmd = ent->cmd;
456 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
457 
458 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
459 		ent->saved_sense_ptr = ent->sense_ptr;
460 		return;
461 	}
462 	ent->saved_cur_residue = spriv->cur_residue;
463 	ent->saved_cur_sg = spriv->cur_sg;
464 	ent->saved_tot_residue = spriv->tot_residue;
465 }
466 
467 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
468 {
469 	struct scsi_cmnd *cmd = ent->cmd;
470 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
471 
472 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
473 		ent->sense_ptr = ent->saved_sense_ptr;
474 		return;
475 	}
476 	spriv->cur_residue = ent->saved_cur_residue;
477 	spriv->cur_sg = ent->saved_cur_sg;
478 	spriv->tot_residue = ent->saved_tot_residue;
479 }
480 
481 static void esp_check_command_len(struct esp *esp, struct scsi_cmnd *cmd)
482 {
483 	if (cmd->cmd_len == 6 ||
484 	    cmd->cmd_len == 10 ||
485 	    cmd->cmd_len == 12) {
486 		esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
487 	} else {
488 		esp->flags |= ESP_FLAG_DOING_SLOWCMD;
489 	}
490 }
491 
492 static void esp_write_tgt_config3(struct esp *esp, int tgt)
493 {
494 	if (esp->rev > ESP100A) {
495 		u8 val = esp->target[tgt].esp_config3;
496 
497 		if (val != esp->prev_cfg3) {
498 			esp->prev_cfg3 = val;
499 			esp_write8(val, ESP_CFG3);
500 		}
501 	}
502 }
503 
504 static void esp_write_tgt_sync(struct esp *esp, int tgt)
505 {
506 	u8 off = esp->target[tgt].esp_offset;
507 	u8 per = esp->target[tgt].esp_period;
508 
509 	if (off != esp->prev_soff) {
510 		esp->prev_soff = off;
511 		esp_write8(off, ESP_SOFF);
512 	}
513 	if (per != esp->prev_stp) {
514 		esp->prev_stp = per;
515 		esp_write8(per, ESP_STP);
516 	}
517 }
518 
519 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
520 {
521 	if (esp->rev == FASHME) {
522 		/* Arbitrary segment boundaries, 24-bit counts.  */
523 		if (dma_len > (1U << 24))
524 			dma_len = (1U << 24);
525 	} else {
526 		u32 base, end;
527 
528 		/* ESP chip limits other variants by 16-bits of transfer
529 		 * count.  Actually on FAS100A and FAS236 we could get
530 		 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
531 		 * in the ESP_CFG2 register but that causes other unwanted
532 		 * changes so we don't use it currently.
533 		 */
534 		if (dma_len > (1U << 16))
535 			dma_len = (1U << 16);
536 
537 		/* All of the DMA variants hooked up to these chips
538 		 * cannot handle crossing a 24-bit address boundary.
539 		 */
540 		base = dma_addr & ((1U << 24) - 1U);
541 		end = base + dma_len;
542 		if (end > (1U << 24))
543 			end = (1U <<24);
544 		dma_len = end - base;
545 	}
546 	return dma_len;
547 }
548 
549 static int esp_need_to_nego_wide(struct esp_target_data *tp)
550 {
551 	struct scsi_target *target = tp->starget;
552 
553 	return spi_width(target) != tp->nego_goal_width;
554 }
555 
556 static int esp_need_to_nego_sync(struct esp_target_data *tp)
557 {
558 	struct scsi_target *target = tp->starget;
559 
560 	/* When offset is zero, period is "don't care".  */
561 	if (!spi_offset(target) && !tp->nego_goal_offset)
562 		return 0;
563 
564 	if (spi_offset(target) == tp->nego_goal_offset &&
565 	    spi_period(target) == tp->nego_goal_period)
566 		return 0;
567 
568 	return 1;
569 }
570 
571 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
572 			     struct esp_lun_data *lp)
573 {
574 	if (!ent->orig_tag[0]) {
575 		/* Non-tagged, slot already taken?  */
576 		if (lp->non_tagged_cmd)
577 			return -EBUSY;
578 
579 		if (lp->hold) {
580 			/* We are being held by active tagged
581 			 * commands.
582 			 */
583 			if (lp->num_tagged)
584 				return -EBUSY;
585 
586 			/* Tagged commands completed, we can unplug
587 			 * the queue and run this untagged command.
588 			 */
589 			lp->hold = 0;
590 		} else if (lp->num_tagged) {
591 			/* Plug the queue until num_tagged decreases
592 			 * to zero in esp_free_lun_tag.
593 			 */
594 			lp->hold = 1;
595 			return -EBUSY;
596 		}
597 
598 		lp->non_tagged_cmd = ent;
599 		return 0;
600 	} else {
601 		/* Tagged command, see if blocked by a
602 		 * non-tagged one.
603 		 */
604 		if (lp->non_tagged_cmd || lp->hold)
605 			return -EBUSY;
606 	}
607 
608 	BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]);
609 
610 	lp->tagged_cmds[ent->orig_tag[1]] = ent;
611 	lp->num_tagged++;
612 
613 	return 0;
614 }
615 
616 static void esp_free_lun_tag(struct esp_cmd_entry *ent,
617 			     struct esp_lun_data *lp)
618 {
619 	if (ent->orig_tag[0]) {
620 		BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent);
621 		lp->tagged_cmds[ent->orig_tag[1]] = NULL;
622 		lp->num_tagged--;
623 	} else {
624 		BUG_ON(lp->non_tagged_cmd != ent);
625 		lp->non_tagged_cmd = NULL;
626 	}
627 }
628 
629 /* When a contingent allegiance conditon is created, we force feed a
630  * REQUEST_SENSE command to the device to fetch the sense data.  I
631  * tried many other schemes, relying on the scsi error handling layer
632  * to send out the REQUEST_SENSE automatically, but this was difficult
633  * to get right especially in the presence of applications like smartd
634  * which use SG_IO to send out their own REQUEST_SENSE commands.
635  */
636 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
637 {
638 	struct scsi_cmnd *cmd = ent->cmd;
639 	struct scsi_device *dev = cmd->device;
640 	int tgt, lun;
641 	u8 *p, val;
642 
643 	tgt = dev->id;
644 	lun = dev->lun;
645 
646 
647 	if (!ent->sense_ptr) {
648 		esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n",
649 				  tgt, lun);
650 
651 		ent->sense_ptr = cmd->sense_buffer;
652 		ent->sense_dma = esp->ops->map_single(esp,
653 						      ent->sense_ptr,
654 						      SCSI_SENSE_BUFFERSIZE,
655 						      DMA_FROM_DEVICE);
656 	}
657 	ent->saved_sense_ptr = ent->sense_ptr;
658 
659 	esp->active_cmd = ent;
660 
661 	p = esp->command_block;
662 	esp->msg_out_len = 0;
663 
664 	*p++ = IDENTIFY(0, lun);
665 	*p++ = REQUEST_SENSE;
666 	*p++ = ((dev->scsi_level <= SCSI_2) ?
667 		(lun << 5) : 0);
668 	*p++ = 0;
669 	*p++ = 0;
670 	*p++ = SCSI_SENSE_BUFFERSIZE;
671 	*p++ = 0;
672 
673 	esp->select_state = ESP_SELECT_BASIC;
674 
675 	val = tgt;
676 	if (esp->rev == FASHME)
677 		val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
678 	esp_write8(val, ESP_BUSID);
679 
680 	esp_write_tgt_sync(esp, tgt);
681 	esp_write_tgt_config3(esp, tgt);
682 
683 	val = (p - esp->command_block);
684 
685 	esp_send_dma_cmd(esp, val, 16, ESP_CMD_SELA);
686 }
687 
688 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
689 {
690 	struct esp_cmd_entry *ent;
691 
692 	list_for_each_entry(ent, &esp->queued_cmds, list) {
693 		struct scsi_cmnd *cmd = ent->cmd;
694 		struct scsi_device *dev = cmd->device;
695 		struct esp_lun_data *lp = dev->hostdata;
696 
697 		if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
698 			ent->tag[0] = 0;
699 			ent->tag[1] = 0;
700 			return ent;
701 		}
702 
703 		if (!spi_populate_tag_msg(&ent->tag[0], cmd)) {
704 			ent->tag[0] = 0;
705 			ent->tag[1] = 0;
706 		}
707 		ent->orig_tag[0] = ent->tag[0];
708 		ent->orig_tag[1] = ent->tag[1];
709 
710 		if (esp_alloc_lun_tag(ent, lp) < 0)
711 			continue;
712 
713 		return ent;
714 	}
715 
716 	return NULL;
717 }
718 
719 static void esp_maybe_execute_command(struct esp *esp)
720 {
721 	struct esp_target_data *tp;
722 	struct esp_lun_data *lp;
723 	struct scsi_device *dev;
724 	struct scsi_cmnd *cmd;
725 	struct esp_cmd_entry *ent;
726 	int tgt, lun, i;
727 	u32 val, start_cmd;
728 	u8 *p;
729 
730 	if (esp->active_cmd ||
731 	    (esp->flags & ESP_FLAG_RESETTING))
732 		return;
733 
734 	ent = find_and_prep_issuable_command(esp);
735 	if (!ent)
736 		return;
737 
738 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
739 		esp_autosense(esp, ent);
740 		return;
741 	}
742 
743 	cmd = ent->cmd;
744 	dev = cmd->device;
745 	tgt = dev->id;
746 	lun = dev->lun;
747 	tp = &esp->target[tgt];
748 	lp = dev->hostdata;
749 
750 	list_move(&ent->list, &esp->active_cmds);
751 
752 	esp->active_cmd = ent;
753 
754 	esp_map_dma(esp, cmd);
755 	esp_save_pointers(esp, ent);
756 
757 	esp_check_command_len(esp, cmd);
758 
759 	p = esp->command_block;
760 
761 	esp->msg_out_len = 0;
762 	if (tp->flags & ESP_TGT_CHECK_NEGO) {
763 		/* Need to negotiate.  If the target is broken
764 		 * go for synchronous transfers and non-wide.
765 		 */
766 		if (tp->flags & ESP_TGT_BROKEN) {
767 			tp->flags &= ~ESP_TGT_DISCONNECT;
768 			tp->nego_goal_period = 0;
769 			tp->nego_goal_offset = 0;
770 			tp->nego_goal_width = 0;
771 			tp->nego_goal_tags = 0;
772 		}
773 
774 		/* If the settings are not changing, skip this.  */
775 		if (spi_width(tp->starget) == tp->nego_goal_width &&
776 		    spi_period(tp->starget) == tp->nego_goal_period &&
777 		    spi_offset(tp->starget) == tp->nego_goal_offset) {
778 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
779 			goto build_identify;
780 		}
781 
782 		if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
783 			esp->msg_out_len =
784 				spi_populate_width_msg(&esp->msg_out[0],
785 						       (tp->nego_goal_width ?
786 							1 : 0));
787 			tp->flags |= ESP_TGT_NEGO_WIDE;
788 		} else if (esp_need_to_nego_sync(tp)) {
789 			esp->msg_out_len =
790 				spi_populate_sync_msg(&esp->msg_out[0],
791 						      tp->nego_goal_period,
792 						      tp->nego_goal_offset);
793 			tp->flags |= ESP_TGT_NEGO_SYNC;
794 		} else {
795 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
796 		}
797 
798 		/* Process it like a slow command.  */
799 		if (tp->flags & (ESP_TGT_NEGO_WIDE | ESP_TGT_NEGO_SYNC))
800 			esp->flags |= ESP_FLAG_DOING_SLOWCMD;
801 	}
802 
803 build_identify:
804 	/* If we don't have a lun-data struct yet, we're probing
805 	 * so do not disconnect.  Also, do not disconnect unless
806 	 * we have a tag on this command.
807 	 */
808 	if (lp && (tp->flags & ESP_TGT_DISCONNECT) && ent->tag[0])
809 		*p++ = IDENTIFY(1, lun);
810 	else
811 		*p++ = IDENTIFY(0, lun);
812 
813 	if (ent->tag[0] && esp->rev == ESP100) {
814 		/* ESP100 lacks select w/atn3 command, use select
815 		 * and stop instead.
816 		 */
817 		esp->flags |= ESP_FLAG_DOING_SLOWCMD;
818 	}
819 
820 	if (!(esp->flags & ESP_FLAG_DOING_SLOWCMD)) {
821 		start_cmd = ESP_CMD_SELA;
822 		if (ent->tag[0]) {
823 			*p++ = ent->tag[0];
824 			*p++ = ent->tag[1];
825 
826 			start_cmd = ESP_CMD_SA3;
827 		}
828 
829 		for (i = 0; i < cmd->cmd_len; i++)
830 			*p++ = cmd->cmnd[i];
831 
832 		esp->select_state = ESP_SELECT_BASIC;
833 	} else {
834 		esp->cmd_bytes_left = cmd->cmd_len;
835 		esp->cmd_bytes_ptr = &cmd->cmnd[0];
836 
837 		if (ent->tag[0]) {
838 			for (i = esp->msg_out_len - 1;
839 			     i >= 0; i--)
840 				esp->msg_out[i + 2] = esp->msg_out[i];
841 			esp->msg_out[0] = ent->tag[0];
842 			esp->msg_out[1] = ent->tag[1];
843 			esp->msg_out_len += 2;
844 		}
845 
846 		start_cmd = ESP_CMD_SELAS;
847 		esp->select_state = ESP_SELECT_MSGOUT;
848 	}
849 	val = tgt;
850 	if (esp->rev == FASHME)
851 		val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
852 	esp_write8(val, ESP_BUSID);
853 
854 	esp_write_tgt_sync(esp, tgt);
855 	esp_write_tgt_config3(esp, tgt);
856 
857 	val = (p - esp->command_block);
858 
859 	if (esp_debug & ESP_DEBUG_SCSICMD) {
860 		printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
861 		for (i = 0; i < cmd->cmd_len; i++)
862 			printk("%02x ", cmd->cmnd[i]);
863 		printk("]\n");
864 	}
865 
866 	esp_send_dma_cmd(esp, val, 16, start_cmd);
867 }
868 
869 static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
870 {
871 	struct list_head *head = &esp->esp_cmd_pool;
872 	struct esp_cmd_entry *ret;
873 
874 	if (list_empty(head)) {
875 		ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
876 	} else {
877 		ret = list_entry(head->next, struct esp_cmd_entry, list);
878 		list_del(&ret->list);
879 		memset(ret, 0, sizeof(*ret));
880 	}
881 	return ret;
882 }
883 
884 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
885 {
886 	list_add(&ent->list, &esp->esp_cmd_pool);
887 }
888 
889 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
890 			    struct scsi_cmnd *cmd, unsigned int result)
891 {
892 	struct scsi_device *dev = cmd->device;
893 	int tgt = dev->id;
894 	int lun = dev->lun;
895 
896 	esp->active_cmd = NULL;
897 	esp_unmap_dma(esp, cmd);
898 	esp_free_lun_tag(ent, dev->hostdata);
899 	cmd->result = result;
900 
901 	if (ent->eh_done) {
902 		complete(ent->eh_done);
903 		ent->eh_done = NULL;
904 	}
905 
906 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
907 		esp->ops->unmap_single(esp, ent->sense_dma,
908 				       SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
909 		ent->sense_ptr = NULL;
910 
911 		/* Restore the message/status bytes to what we actually
912 		 * saw originally.  Also, report that we are providing
913 		 * the sense data.
914 		 */
915 		cmd->result = ((DRIVER_SENSE << 24) |
916 			       (DID_OK << 16) |
917 			       (COMMAND_COMPLETE << 8) |
918 			       (SAM_STAT_CHECK_CONDITION << 0));
919 
920 		ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
921 		if (esp_debug & ESP_DEBUG_AUTOSENSE) {
922 			int i;
923 
924 			printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
925 			       esp->host->unique_id, tgt, lun);
926 			for (i = 0; i < 18; i++)
927 				printk("%02x ", cmd->sense_buffer[i]);
928 			printk("]\n");
929 		}
930 	}
931 
932 	cmd->scsi_done(cmd);
933 
934 	list_del(&ent->list);
935 	esp_put_ent(esp, ent);
936 
937 	esp_maybe_execute_command(esp);
938 }
939 
940 static unsigned int compose_result(unsigned int status, unsigned int message,
941 				   unsigned int driver_code)
942 {
943 	return (status | (message << 8) | (driver_code << 16));
944 }
945 
946 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
947 {
948 	struct scsi_device *dev = ent->cmd->device;
949 	struct esp_lun_data *lp = dev->hostdata;
950 
951 	scsi_track_queue_full(dev, lp->num_tagged - 1);
952 }
953 
954 static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
955 {
956 	struct scsi_device *dev = cmd->device;
957 	struct esp *esp = shost_priv(dev->host);
958 	struct esp_cmd_priv *spriv;
959 	struct esp_cmd_entry *ent;
960 
961 	ent = esp_get_ent(esp);
962 	if (!ent)
963 		return SCSI_MLQUEUE_HOST_BUSY;
964 
965 	ent->cmd = cmd;
966 
967 	cmd->scsi_done = done;
968 
969 	spriv = ESP_CMD_PRIV(cmd);
970 	spriv->u.dma_addr = ~(dma_addr_t)0x0;
971 
972 	list_add_tail(&ent->list, &esp->queued_cmds);
973 
974 	esp_maybe_execute_command(esp);
975 
976 	return 0;
977 }
978 
979 static DEF_SCSI_QCMD(esp_queuecommand)
980 
981 static int esp_check_gross_error(struct esp *esp)
982 {
983 	if (esp->sreg & ESP_STAT_SPAM) {
984 		/* Gross Error, could be one of:
985 		 * - top of fifo overwritten
986 		 * - top of command register overwritten
987 		 * - DMA programmed with wrong direction
988 		 * - improper phase change
989 		 */
990 		shost_printk(KERN_ERR, esp->host,
991 			     "Gross error sreg[%02x]\n", esp->sreg);
992 		/* XXX Reset the chip. XXX */
993 		return 1;
994 	}
995 	return 0;
996 }
997 
998 static int esp_check_spur_intr(struct esp *esp)
999 {
1000 	switch (esp->rev) {
1001 	case ESP100:
1002 	case ESP100A:
1003 		/* The interrupt pending bit of the status register cannot
1004 		 * be trusted on these revisions.
1005 		 */
1006 		esp->sreg &= ~ESP_STAT_INTR;
1007 		break;
1008 
1009 	default:
1010 		if (!(esp->sreg & ESP_STAT_INTR)) {
1011 			if (esp->ireg & ESP_INTR_SR)
1012 				return 1;
1013 
1014 			/* If the DMA is indicating interrupt pending and the
1015 			 * ESP is not, the only possibility is a DMA error.
1016 			 */
1017 			if (!esp->ops->dma_error(esp)) {
1018 				shost_printk(KERN_ERR, esp->host,
1019 					     "Spurious irq, sreg=%02x.\n",
1020 					     esp->sreg);
1021 				return -1;
1022 			}
1023 
1024 			shost_printk(KERN_ERR, esp->host, "DMA error\n");
1025 
1026 			/* XXX Reset the chip. XXX */
1027 			return -1;
1028 		}
1029 		break;
1030 	}
1031 
1032 	return 0;
1033 }
1034 
1035 static void esp_schedule_reset(struct esp *esp)
1036 {
1037 	esp_log_reset("esp_schedule_reset() from %pf\n",
1038 		      __builtin_return_address(0));
1039 	esp->flags |= ESP_FLAG_RESETTING;
1040 	esp_event(esp, ESP_EVENT_RESET);
1041 }
1042 
1043 /* In order to avoid having to add a special half-reconnected state
1044  * into the driver we just sit here and poll through the rest of
1045  * the reselection process to get the tag message bytes.
1046  */
1047 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
1048 						    struct esp_lun_data *lp)
1049 {
1050 	struct esp_cmd_entry *ent;
1051 	int i;
1052 
1053 	if (!lp->num_tagged) {
1054 		shost_printk(KERN_ERR, esp->host,
1055 			     "Reconnect w/num_tagged==0\n");
1056 		return NULL;
1057 	}
1058 
1059 	esp_log_reconnect("reconnect tag, ");
1060 
1061 	for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
1062 		if (esp->ops->irq_pending(esp))
1063 			break;
1064 	}
1065 	if (i == ESP_QUICKIRQ_LIMIT) {
1066 		shost_printk(KERN_ERR, esp->host,
1067 			     "Reconnect IRQ1 timeout\n");
1068 		return NULL;
1069 	}
1070 
1071 	esp->sreg = esp_read8(ESP_STATUS);
1072 	esp->ireg = esp_read8(ESP_INTRPT);
1073 
1074 	esp_log_reconnect("IRQ(%d:%x:%x), ",
1075 			  i, esp->ireg, esp->sreg);
1076 
1077 	if (esp->ireg & ESP_INTR_DC) {
1078 		shost_printk(KERN_ERR, esp->host,
1079 			     "Reconnect, got disconnect.\n");
1080 		return NULL;
1081 	}
1082 
1083 	if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
1084 		shost_printk(KERN_ERR, esp->host,
1085 			     "Reconnect, not MIP sreg[%02x].\n", esp->sreg);
1086 		return NULL;
1087 	}
1088 
1089 	/* DMA in the tag bytes... */
1090 	esp->command_block[0] = 0xff;
1091 	esp->command_block[1] = 0xff;
1092 	esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1093 			       2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
1094 
1095 	/* ACK the message.  */
1096 	scsi_esp_cmd(esp, ESP_CMD_MOK);
1097 
1098 	for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
1099 		if (esp->ops->irq_pending(esp)) {
1100 			esp->sreg = esp_read8(ESP_STATUS);
1101 			esp->ireg = esp_read8(ESP_INTRPT);
1102 			if (esp->ireg & ESP_INTR_FDONE)
1103 				break;
1104 		}
1105 		udelay(1);
1106 	}
1107 	if (i == ESP_RESELECT_TAG_LIMIT) {
1108 		shost_printk(KERN_ERR, esp->host, "Reconnect IRQ2 timeout\n");
1109 		return NULL;
1110 	}
1111 	esp->ops->dma_drain(esp);
1112 	esp->ops->dma_invalidate(esp);
1113 
1114 	esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1115 			  i, esp->ireg, esp->sreg,
1116 			  esp->command_block[0],
1117 			  esp->command_block[1]);
1118 
1119 	if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
1120 	    esp->command_block[0] > ORDERED_QUEUE_TAG) {
1121 		shost_printk(KERN_ERR, esp->host,
1122 			     "Reconnect, bad tag type %02x.\n",
1123 			     esp->command_block[0]);
1124 		return NULL;
1125 	}
1126 
1127 	ent = lp->tagged_cmds[esp->command_block[1]];
1128 	if (!ent) {
1129 		shost_printk(KERN_ERR, esp->host,
1130 			     "Reconnect, no entry for tag %02x.\n",
1131 			     esp->command_block[1]);
1132 		return NULL;
1133 	}
1134 
1135 	return ent;
1136 }
1137 
1138 static int esp_reconnect(struct esp *esp)
1139 {
1140 	struct esp_cmd_entry *ent;
1141 	struct esp_target_data *tp;
1142 	struct esp_lun_data *lp;
1143 	struct scsi_device *dev;
1144 	int target, lun;
1145 
1146 	BUG_ON(esp->active_cmd);
1147 	if (esp->rev == FASHME) {
1148 		/* FASHME puts the target and lun numbers directly
1149 		 * into the fifo.
1150 		 */
1151 		target = esp->fifo[0];
1152 		lun = esp->fifo[1] & 0x7;
1153 	} else {
1154 		u8 bits = esp_read8(ESP_FDATA);
1155 
1156 		/* Older chips put the lun directly into the fifo, but
1157 		 * the target is given as a sample of the arbitration
1158 		 * lines on the bus at reselection time.  So we should
1159 		 * see the ID of the ESP and the one reconnecting target
1160 		 * set in the bitmap.
1161 		 */
1162 		if (!(bits & esp->scsi_id_mask))
1163 			goto do_reset;
1164 		bits &= ~esp->scsi_id_mask;
1165 		if (!bits || (bits & (bits - 1)))
1166 			goto do_reset;
1167 
1168 		target = ffs(bits) - 1;
1169 		lun = (esp_read8(ESP_FDATA) & 0x7);
1170 
1171 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1172 		if (esp->rev == ESP100) {
1173 			u8 ireg = esp_read8(ESP_INTRPT);
1174 			/* This chip has a bug during reselection that can
1175 			 * cause a spurious illegal-command interrupt, which
1176 			 * we simply ACK here.  Another possibility is a bus
1177 			 * reset so we must check for that.
1178 			 */
1179 			if (ireg & ESP_INTR_SR)
1180 				goto do_reset;
1181 		}
1182 		scsi_esp_cmd(esp, ESP_CMD_NULL);
1183 	}
1184 
1185 	esp_write_tgt_sync(esp, target);
1186 	esp_write_tgt_config3(esp, target);
1187 
1188 	scsi_esp_cmd(esp, ESP_CMD_MOK);
1189 
1190 	if (esp->rev == FASHME)
1191 		esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
1192 			   ESP_BUSID);
1193 
1194 	tp = &esp->target[target];
1195 	dev = __scsi_device_lookup_by_target(tp->starget, lun);
1196 	if (!dev) {
1197 		shost_printk(KERN_ERR, esp->host,
1198 			     "Reconnect, no lp tgt[%u] lun[%u]\n",
1199 			     target, lun);
1200 		goto do_reset;
1201 	}
1202 	lp = dev->hostdata;
1203 
1204 	ent = lp->non_tagged_cmd;
1205 	if (!ent) {
1206 		ent = esp_reconnect_with_tag(esp, lp);
1207 		if (!ent)
1208 			goto do_reset;
1209 	}
1210 
1211 	esp->active_cmd = ent;
1212 
1213 	if (ent->flags & ESP_CMD_FLAG_ABORT) {
1214 		esp->msg_out[0] = ABORT_TASK_SET;
1215 		esp->msg_out_len = 1;
1216 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1217 	}
1218 
1219 	esp_event(esp, ESP_EVENT_CHECK_PHASE);
1220 	esp_restore_pointers(esp, ent);
1221 	esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1222 	return 1;
1223 
1224 do_reset:
1225 	esp_schedule_reset(esp);
1226 	return 0;
1227 }
1228 
1229 static int esp_finish_select(struct esp *esp)
1230 {
1231 	struct esp_cmd_entry *ent;
1232 	struct scsi_cmnd *cmd;
1233 	u8 orig_select_state;
1234 
1235 	orig_select_state = esp->select_state;
1236 
1237 	/* No longer selecting.  */
1238 	esp->select_state = ESP_SELECT_NONE;
1239 
1240 	esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
1241 	ent = esp->active_cmd;
1242 	cmd = ent->cmd;
1243 
1244 	if (esp->ops->dma_error(esp)) {
1245 		/* If we see a DMA error during or as a result of selection,
1246 		 * all bets are off.
1247 		 */
1248 		esp_schedule_reset(esp);
1249 		esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
1250 		return 0;
1251 	}
1252 
1253 	esp->ops->dma_invalidate(esp);
1254 
1255 	if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
1256 		struct esp_target_data *tp = &esp->target[cmd->device->id];
1257 
1258 		/* Carefully back out of the selection attempt.  Release
1259 		 * resources (such as DMA mapping & TAG) and reset state (such
1260 		 * as message out and command delivery variables).
1261 		 */
1262 		if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1263 			esp_unmap_dma(esp, cmd);
1264 			esp_free_lun_tag(ent, cmd->device->hostdata);
1265 			tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
1266 			esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
1267 			esp->cmd_bytes_ptr = NULL;
1268 			esp->cmd_bytes_left = 0;
1269 		} else {
1270 			esp->ops->unmap_single(esp, ent->sense_dma,
1271 					       SCSI_SENSE_BUFFERSIZE,
1272 					       DMA_FROM_DEVICE);
1273 			ent->sense_ptr = NULL;
1274 		}
1275 
1276 		/* Now that the state is unwound properly, put back onto
1277 		 * the issue queue.  This command is no longer active.
1278 		 */
1279 		list_move(&ent->list, &esp->queued_cmds);
1280 		esp->active_cmd = NULL;
1281 
1282 		/* Return value ignored by caller, it directly invokes
1283 		 * esp_reconnect().
1284 		 */
1285 		return 0;
1286 	}
1287 
1288 	if (esp->ireg == ESP_INTR_DC) {
1289 		struct scsi_device *dev = cmd->device;
1290 
1291 		/* Disconnect.  Make sure we re-negotiate sync and
1292 		 * wide parameters if this target starts responding
1293 		 * again in the future.
1294 		 */
1295 		esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
1296 
1297 		scsi_esp_cmd(esp, ESP_CMD_ESEL);
1298 		esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
1299 		return 1;
1300 	}
1301 
1302 	if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
1303 		/* Selection successful.  On pre-FAST chips we have
1304 		 * to do a NOP and possibly clean out the FIFO.
1305 		 */
1306 		if (esp->rev <= ESP236) {
1307 			int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1308 
1309 			scsi_esp_cmd(esp, ESP_CMD_NULL);
1310 
1311 			if (!fcnt &&
1312 			    (!esp->prev_soff ||
1313 			     ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
1314 				esp_flush_fifo(esp);
1315 		}
1316 
1317 		/* If we are doing a slow command, negotiation, etc.
1318 		 * we'll do the right thing as we transition to the
1319 		 * next phase.
1320 		 */
1321 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1322 		return 0;
1323 	}
1324 
1325 	shost_printk(KERN_INFO, esp->host,
1326 		     "Unexpected selection completion ireg[%x]\n", esp->ireg);
1327 	esp_schedule_reset(esp);
1328 	return 0;
1329 }
1330 
1331 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
1332 			       struct scsi_cmnd *cmd)
1333 {
1334 	int fifo_cnt, ecount, bytes_sent, flush_fifo;
1335 
1336 	fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1337 	if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
1338 		fifo_cnt <<= 1;
1339 
1340 	ecount = 0;
1341 	if (!(esp->sreg & ESP_STAT_TCNT)) {
1342 		ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
1343 			  (((unsigned int)esp_read8(ESP_TCMED)) << 8));
1344 		if (esp->rev == FASHME)
1345 			ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
1346 		if (esp->rev == PCSCSI && (esp->config2 & ESP_CONFIG2_FENAB))
1347 			ecount |= ((unsigned int)esp_read8(ESP_TCHI)) << 16;
1348 	}
1349 
1350 	bytes_sent = esp->data_dma_len;
1351 	bytes_sent -= ecount;
1352 
1353 	/*
1354 	 * The am53c974 has a DMA 'pecularity'. The doc states:
1355 	 * In some odd byte conditions, one residual byte will
1356 	 * be left in the SCSI FIFO, and the FIFO Flags will
1357 	 * never count to '0 '. When this happens, the residual
1358 	 * byte should be retrieved via PIO following completion
1359 	 * of the BLAST operation.
1360 	 */
1361 	if (fifo_cnt == 1 && ent->flags & ESP_CMD_FLAG_RESIDUAL) {
1362 		size_t count = 1;
1363 		size_t offset = bytes_sent;
1364 		u8 bval = esp_read8(ESP_FDATA);
1365 
1366 		if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
1367 			ent->sense_ptr[bytes_sent] = bval;
1368 		else {
1369 			struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
1370 			u8 *ptr;
1371 
1372 			ptr = scsi_kmap_atomic_sg(p->cur_sg, p->u.num_sg,
1373 						  &offset, &count);
1374 			if (likely(ptr)) {
1375 				*(ptr + offset) = bval;
1376 				scsi_kunmap_atomic_sg(ptr);
1377 			}
1378 		}
1379 		bytes_sent += fifo_cnt;
1380 		ent->flags &= ~ESP_CMD_FLAG_RESIDUAL;
1381 	}
1382 	if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1383 		bytes_sent -= fifo_cnt;
1384 
1385 	flush_fifo = 0;
1386 	if (!esp->prev_soff) {
1387 		/* Synchronous data transfer, always flush fifo. */
1388 		flush_fifo = 1;
1389 	} else {
1390 		if (esp->rev == ESP100) {
1391 			u32 fflags, phase;
1392 
1393 			/* ESP100 has a chip bug where in the synchronous data
1394 			 * phase it can mistake a final long REQ pulse from the
1395 			 * target as an extra data byte.  Fun.
1396 			 *
1397 			 * To detect this case we resample the status register
1398 			 * and fifo flags.  If we're still in a data phase and
1399 			 * we see spurious chunks in the fifo, we return error
1400 			 * to the caller which should reset and set things up
1401 			 * such that we only try future transfers to this
1402 			 * target in synchronous mode.
1403 			 */
1404 			esp->sreg = esp_read8(ESP_STATUS);
1405 			phase = esp->sreg & ESP_STAT_PMASK;
1406 			fflags = esp_read8(ESP_FFLAGS);
1407 
1408 			if ((phase == ESP_DOP &&
1409 			     (fflags & ESP_FF_ONOTZERO)) ||
1410 			    (phase == ESP_DIP &&
1411 			     (fflags & ESP_FF_FBYTES)))
1412 				return -1;
1413 		}
1414 		if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1415 			flush_fifo = 1;
1416 	}
1417 
1418 	if (flush_fifo)
1419 		esp_flush_fifo(esp);
1420 
1421 	return bytes_sent;
1422 }
1423 
1424 static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
1425 			u8 scsi_period, u8 scsi_offset,
1426 			u8 esp_stp, u8 esp_soff)
1427 {
1428 	spi_period(tp->starget) = scsi_period;
1429 	spi_offset(tp->starget) = scsi_offset;
1430 	spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
1431 
1432 	if (esp_soff) {
1433 		esp_stp &= 0x1f;
1434 		esp_soff |= esp->radelay;
1435 		if (esp->rev >= FAS236) {
1436 			u8 bit = ESP_CONFIG3_FSCSI;
1437 			if (esp->rev >= FAS100A)
1438 				bit = ESP_CONFIG3_FAST;
1439 
1440 			if (scsi_period < 50) {
1441 				if (esp->rev == FASHME)
1442 					esp_soff &= ~esp->radelay;
1443 				tp->esp_config3 |= bit;
1444 			} else {
1445 				tp->esp_config3 &= ~bit;
1446 			}
1447 			esp->prev_cfg3 = tp->esp_config3;
1448 			esp_write8(esp->prev_cfg3, ESP_CFG3);
1449 		}
1450 	}
1451 
1452 	tp->esp_period = esp->prev_stp = esp_stp;
1453 	tp->esp_offset = esp->prev_soff = esp_soff;
1454 
1455 	esp_write8(esp_soff, ESP_SOFF);
1456 	esp_write8(esp_stp, ESP_STP);
1457 
1458 	tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1459 
1460 	spi_display_xfer_agreement(tp->starget);
1461 }
1462 
1463 static void esp_msgin_reject(struct esp *esp)
1464 {
1465 	struct esp_cmd_entry *ent = esp->active_cmd;
1466 	struct scsi_cmnd *cmd = ent->cmd;
1467 	struct esp_target_data *tp;
1468 	int tgt;
1469 
1470 	tgt = cmd->device->id;
1471 	tp = &esp->target[tgt];
1472 
1473 	if (tp->flags & ESP_TGT_NEGO_WIDE) {
1474 		tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
1475 
1476 		if (!esp_need_to_nego_sync(tp)) {
1477 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
1478 			scsi_esp_cmd(esp, ESP_CMD_RATN);
1479 		} else {
1480 			esp->msg_out_len =
1481 				spi_populate_sync_msg(&esp->msg_out[0],
1482 						      tp->nego_goal_period,
1483 						      tp->nego_goal_offset);
1484 			tp->flags |= ESP_TGT_NEGO_SYNC;
1485 			scsi_esp_cmd(esp, ESP_CMD_SATN);
1486 		}
1487 		return;
1488 	}
1489 
1490 	if (tp->flags & ESP_TGT_NEGO_SYNC) {
1491 		tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1492 		tp->esp_period = 0;
1493 		tp->esp_offset = 0;
1494 		esp_setsync(esp, tp, 0, 0, 0, 0);
1495 		scsi_esp_cmd(esp, ESP_CMD_RATN);
1496 		return;
1497 	}
1498 
1499 	esp->msg_out[0] = ABORT_TASK_SET;
1500 	esp->msg_out_len = 1;
1501 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1502 }
1503 
1504 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
1505 {
1506 	u8 period = esp->msg_in[3];
1507 	u8 offset = esp->msg_in[4];
1508 	u8 stp;
1509 
1510 	if (!(tp->flags & ESP_TGT_NEGO_SYNC))
1511 		goto do_reject;
1512 
1513 	if (offset > 15)
1514 		goto do_reject;
1515 
1516 	if (offset) {
1517 		int one_clock;
1518 
1519 		if (period > esp->max_period) {
1520 			period = offset = 0;
1521 			goto do_sdtr;
1522 		}
1523 		if (period < esp->min_period)
1524 			goto do_reject;
1525 
1526 		one_clock = esp->ccycle / 1000;
1527 		stp = DIV_ROUND_UP(period << 2, one_clock);
1528 		if (stp && esp->rev >= FAS236) {
1529 			if (stp >= 50)
1530 				stp--;
1531 		}
1532 	} else {
1533 		stp = 0;
1534 	}
1535 
1536 	esp_setsync(esp, tp, period, offset, stp, offset);
1537 	return;
1538 
1539 do_reject:
1540 	esp->msg_out[0] = MESSAGE_REJECT;
1541 	esp->msg_out_len = 1;
1542 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1543 	return;
1544 
1545 do_sdtr:
1546 	tp->nego_goal_period = period;
1547 	tp->nego_goal_offset = offset;
1548 	esp->msg_out_len =
1549 		spi_populate_sync_msg(&esp->msg_out[0],
1550 				      tp->nego_goal_period,
1551 				      tp->nego_goal_offset);
1552 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1553 }
1554 
1555 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
1556 {
1557 	int size = 8 << esp->msg_in[3];
1558 	u8 cfg3;
1559 
1560 	if (esp->rev != FASHME)
1561 		goto do_reject;
1562 
1563 	if (size != 8 && size != 16)
1564 		goto do_reject;
1565 
1566 	if (!(tp->flags & ESP_TGT_NEGO_WIDE))
1567 		goto do_reject;
1568 
1569 	cfg3 = tp->esp_config3;
1570 	if (size == 16) {
1571 		tp->flags |= ESP_TGT_WIDE;
1572 		cfg3 |= ESP_CONFIG3_EWIDE;
1573 	} else {
1574 		tp->flags &= ~ESP_TGT_WIDE;
1575 		cfg3 &= ~ESP_CONFIG3_EWIDE;
1576 	}
1577 	tp->esp_config3 = cfg3;
1578 	esp->prev_cfg3 = cfg3;
1579 	esp_write8(cfg3, ESP_CFG3);
1580 
1581 	tp->flags &= ~ESP_TGT_NEGO_WIDE;
1582 
1583 	spi_period(tp->starget) = 0;
1584 	spi_offset(tp->starget) = 0;
1585 	if (!esp_need_to_nego_sync(tp)) {
1586 		tp->flags &= ~ESP_TGT_CHECK_NEGO;
1587 		scsi_esp_cmd(esp, ESP_CMD_RATN);
1588 	} else {
1589 		esp->msg_out_len =
1590 			spi_populate_sync_msg(&esp->msg_out[0],
1591 					      tp->nego_goal_period,
1592 					      tp->nego_goal_offset);
1593 		tp->flags |= ESP_TGT_NEGO_SYNC;
1594 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1595 	}
1596 	return;
1597 
1598 do_reject:
1599 	esp->msg_out[0] = MESSAGE_REJECT;
1600 	esp->msg_out_len = 1;
1601 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1602 }
1603 
1604 static void esp_msgin_extended(struct esp *esp)
1605 {
1606 	struct esp_cmd_entry *ent = esp->active_cmd;
1607 	struct scsi_cmnd *cmd = ent->cmd;
1608 	struct esp_target_data *tp;
1609 	int tgt = cmd->device->id;
1610 
1611 	tp = &esp->target[tgt];
1612 	if (esp->msg_in[2] == EXTENDED_SDTR) {
1613 		esp_msgin_sdtr(esp, tp);
1614 		return;
1615 	}
1616 	if (esp->msg_in[2] == EXTENDED_WDTR) {
1617 		esp_msgin_wdtr(esp, tp);
1618 		return;
1619 	}
1620 
1621 	shost_printk(KERN_INFO, esp->host,
1622 		     "Unexpected extended msg type %x\n", esp->msg_in[2]);
1623 
1624 	esp->msg_out[0] = ABORT_TASK_SET;
1625 	esp->msg_out_len = 1;
1626 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1627 }
1628 
1629 /* Analyze msgin bytes received from target so far.  Return non-zero
1630  * if there are more bytes needed to complete the message.
1631  */
1632 static int esp_msgin_process(struct esp *esp)
1633 {
1634 	u8 msg0 = esp->msg_in[0];
1635 	int len = esp->msg_in_len;
1636 
1637 	if (msg0 & 0x80) {
1638 		/* Identify */
1639 		shost_printk(KERN_INFO, esp->host,
1640 			     "Unexpected msgin identify\n");
1641 		return 0;
1642 	}
1643 
1644 	switch (msg0) {
1645 	case EXTENDED_MESSAGE:
1646 		if (len == 1)
1647 			return 1;
1648 		if (len < esp->msg_in[1] + 2)
1649 			return 1;
1650 		esp_msgin_extended(esp);
1651 		return 0;
1652 
1653 	case IGNORE_WIDE_RESIDUE: {
1654 		struct esp_cmd_entry *ent;
1655 		struct esp_cmd_priv *spriv;
1656 		if (len == 1)
1657 			return 1;
1658 
1659 		if (esp->msg_in[1] != 1)
1660 			goto do_reject;
1661 
1662 		ent = esp->active_cmd;
1663 		spriv = ESP_CMD_PRIV(ent->cmd);
1664 
1665 		if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
1666 			spriv->cur_sg--;
1667 			spriv->cur_residue = 1;
1668 		} else
1669 			spriv->cur_residue++;
1670 		spriv->tot_residue++;
1671 		return 0;
1672 	}
1673 	case NOP:
1674 		return 0;
1675 	case RESTORE_POINTERS:
1676 		esp_restore_pointers(esp, esp->active_cmd);
1677 		return 0;
1678 	case SAVE_POINTERS:
1679 		esp_save_pointers(esp, esp->active_cmd);
1680 		return 0;
1681 
1682 	case COMMAND_COMPLETE:
1683 	case DISCONNECT: {
1684 		struct esp_cmd_entry *ent = esp->active_cmd;
1685 
1686 		ent->message = msg0;
1687 		esp_event(esp, ESP_EVENT_FREE_BUS);
1688 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1689 		return 0;
1690 	}
1691 	case MESSAGE_REJECT:
1692 		esp_msgin_reject(esp);
1693 		return 0;
1694 
1695 	default:
1696 	do_reject:
1697 		esp->msg_out[0] = MESSAGE_REJECT;
1698 		esp->msg_out_len = 1;
1699 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1700 		return 0;
1701 	}
1702 }
1703 
1704 static int esp_process_event(struct esp *esp)
1705 {
1706 	int write, i;
1707 
1708 again:
1709 	write = 0;
1710 	esp_log_event("process event %d phase %x\n",
1711 		      esp->event, esp->sreg & ESP_STAT_PMASK);
1712 	switch (esp->event) {
1713 	case ESP_EVENT_CHECK_PHASE:
1714 		switch (esp->sreg & ESP_STAT_PMASK) {
1715 		case ESP_DOP:
1716 			esp_event(esp, ESP_EVENT_DATA_OUT);
1717 			break;
1718 		case ESP_DIP:
1719 			esp_event(esp, ESP_EVENT_DATA_IN);
1720 			break;
1721 		case ESP_STATP:
1722 			esp_flush_fifo(esp);
1723 			scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
1724 			esp_event(esp, ESP_EVENT_STATUS);
1725 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1726 			return 1;
1727 
1728 		case ESP_MOP:
1729 			esp_event(esp, ESP_EVENT_MSGOUT);
1730 			break;
1731 
1732 		case ESP_MIP:
1733 			esp_event(esp, ESP_EVENT_MSGIN);
1734 			break;
1735 
1736 		case ESP_CMDP:
1737 			esp_event(esp, ESP_EVENT_CMD_START);
1738 			break;
1739 
1740 		default:
1741 			shost_printk(KERN_INFO, esp->host,
1742 				     "Unexpected phase, sreg=%02x\n",
1743 				     esp->sreg);
1744 			esp_schedule_reset(esp);
1745 			return 0;
1746 		}
1747 		goto again;
1748 		break;
1749 
1750 	case ESP_EVENT_DATA_IN:
1751 		write = 1;
1752 		/* fallthru */
1753 
1754 	case ESP_EVENT_DATA_OUT: {
1755 		struct esp_cmd_entry *ent = esp->active_cmd;
1756 		struct scsi_cmnd *cmd = ent->cmd;
1757 		dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
1758 		unsigned int dma_len = esp_cur_dma_len(ent, cmd);
1759 
1760 		if (esp->rev == ESP100)
1761 			scsi_esp_cmd(esp, ESP_CMD_NULL);
1762 
1763 		if (write)
1764 			ent->flags |= ESP_CMD_FLAG_WRITE;
1765 		else
1766 			ent->flags &= ~ESP_CMD_FLAG_WRITE;
1767 
1768 		if (esp->ops->dma_length_limit)
1769 			dma_len = esp->ops->dma_length_limit(esp, dma_addr,
1770 							     dma_len);
1771 		else
1772 			dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
1773 
1774 		esp->data_dma_len = dma_len;
1775 
1776 		if (!dma_len) {
1777 			shost_printk(KERN_ERR, esp->host,
1778 				     "DMA length is zero!\n");
1779 			shost_printk(KERN_ERR, esp->host,
1780 				     "cur adr[%08llx] len[%08x]\n",
1781 				     (unsigned long long)esp_cur_dma_addr(ent, cmd),
1782 				     esp_cur_dma_len(ent, cmd));
1783 			esp_schedule_reset(esp);
1784 			return 0;
1785 		}
1786 
1787 		esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n",
1788 				  (unsigned long long)dma_addr, dma_len, write);
1789 
1790 		esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
1791 				       write, ESP_CMD_DMA | ESP_CMD_TI);
1792 		esp_event(esp, ESP_EVENT_DATA_DONE);
1793 		break;
1794 	}
1795 	case ESP_EVENT_DATA_DONE: {
1796 		struct esp_cmd_entry *ent = esp->active_cmd;
1797 		struct scsi_cmnd *cmd = ent->cmd;
1798 		int bytes_sent;
1799 
1800 		if (esp->ops->dma_error(esp)) {
1801 			shost_printk(KERN_INFO, esp->host,
1802 				     "data done, DMA error, resetting\n");
1803 			esp_schedule_reset(esp);
1804 			return 0;
1805 		}
1806 
1807 		if (ent->flags & ESP_CMD_FLAG_WRITE) {
1808 			/* XXX parity errors, etc. XXX */
1809 
1810 			esp->ops->dma_drain(esp);
1811 		}
1812 		esp->ops->dma_invalidate(esp);
1813 
1814 		if (esp->ireg != ESP_INTR_BSERV) {
1815 			/* We should always see exactly a bus-service
1816 			 * interrupt at the end of a successful transfer.
1817 			 */
1818 			shost_printk(KERN_INFO, esp->host,
1819 				     "data done, not BSERV, resetting\n");
1820 			esp_schedule_reset(esp);
1821 			return 0;
1822 		}
1823 
1824 		bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
1825 
1826 		esp_log_datadone("data done flgs[%x] sent[%d]\n",
1827 				 ent->flags, bytes_sent);
1828 
1829 		if (bytes_sent < 0) {
1830 			/* XXX force sync mode for this target XXX */
1831 			esp_schedule_reset(esp);
1832 			return 0;
1833 		}
1834 
1835 		esp_advance_dma(esp, ent, cmd, bytes_sent);
1836 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1837 		goto again;
1838 	}
1839 
1840 	case ESP_EVENT_STATUS: {
1841 		struct esp_cmd_entry *ent = esp->active_cmd;
1842 
1843 		if (esp->ireg & ESP_INTR_FDONE) {
1844 			ent->status = esp_read8(ESP_FDATA);
1845 			ent->message = esp_read8(ESP_FDATA);
1846 			scsi_esp_cmd(esp, ESP_CMD_MOK);
1847 		} else if (esp->ireg == ESP_INTR_BSERV) {
1848 			ent->status = esp_read8(ESP_FDATA);
1849 			ent->message = 0xff;
1850 			esp_event(esp, ESP_EVENT_MSGIN);
1851 			return 0;
1852 		}
1853 
1854 		if (ent->message != COMMAND_COMPLETE) {
1855 			shost_printk(KERN_INFO, esp->host,
1856 				     "Unexpected message %x in status\n",
1857 				     ent->message);
1858 			esp_schedule_reset(esp);
1859 			return 0;
1860 		}
1861 
1862 		esp_event(esp, ESP_EVENT_FREE_BUS);
1863 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1864 		break;
1865 	}
1866 	case ESP_EVENT_FREE_BUS: {
1867 		struct esp_cmd_entry *ent = esp->active_cmd;
1868 		struct scsi_cmnd *cmd = ent->cmd;
1869 
1870 		if (ent->message == COMMAND_COMPLETE ||
1871 		    ent->message == DISCONNECT)
1872 			scsi_esp_cmd(esp, ESP_CMD_ESEL);
1873 
1874 		if (ent->message == COMMAND_COMPLETE) {
1875 			esp_log_cmddone("Command done status[%x] message[%x]\n",
1876 					ent->status, ent->message);
1877 			if (ent->status == SAM_STAT_TASK_SET_FULL)
1878 				esp_event_queue_full(esp, ent);
1879 
1880 			if (ent->status == SAM_STAT_CHECK_CONDITION &&
1881 			    !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1882 				ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
1883 				esp_autosense(esp, ent);
1884 			} else {
1885 				esp_cmd_is_done(esp, ent, cmd,
1886 						compose_result(ent->status,
1887 							       ent->message,
1888 							       DID_OK));
1889 			}
1890 		} else if (ent->message == DISCONNECT) {
1891 			esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n",
1892 					   cmd->device->id,
1893 					   ent->tag[0], ent->tag[1]);
1894 
1895 			esp->active_cmd = NULL;
1896 			esp_maybe_execute_command(esp);
1897 		} else {
1898 			shost_printk(KERN_INFO, esp->host,
1899 				     "Unexpected message %x in freebus\n",
1900 				     ent->message);
1901 			esp_schedule_reset(esp);
1902 			return 0;
1903 		}
1904 		if (esp->active_cmd)
1905 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1906 		break;
1907 	}
1908 	case ESP_EVENT_MSGOUT: {
1909 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1910 
1911 		if (esp_debug & ESP_DEBUG_MSGOUT) {
1912 			int i;
1913 			printk("ESP: Sending message [ ");
1914 			for (i = 0; i < esp->msg_out_len; i++)
1915 				printk("%02x ", esp->msg_out[i]);
1916 			printk("]\n");
1917 		}
1918 
1919 		if (esp->rev == FASHME) {
1920 			int i;
1921 
1922 			/* Always use the fifo.  */
1923 			for (i = 0; i < esp->msg_out_len; i++) {
1924 				esp_write8(esp->msg_out[i], ESP_FDATA);
1925 				esp_write8(0, ESP_FDATA);
1926 			}
1927 			scsi_esp_cmd(esp, ESP_CMD_TI);
1928 		} else {
1929 			if (esp->msg_out_len == 1) {
1930 				esp_write8(esp->msg_out[0], ESP_FDATA);
1931 				scsi_esp_cmd(esp, ESP_CMD_TI);
1932 			} else if (esp->flags & ESP_FLAG_USE_FIFO) {
1933 				for (i = 0; i < esp->msg_out_len; i++)
1934 					esp_write8(esp->msg_out[i], ESP_FDATA);
1935 				scsi_esp_cmd(esp, ESP_CMD_TI);
1936 			} else {
1937 				/* Use DMA. */
1938 				memcpy(esp->command_block,
1939 				       esp->msg_out,
1940 				       esp->msg_out_len);
1941 
1942 				esp->ops->send_dma_cmd(esp,
1943 						       esp->command_block_dma,
1944 						       esp->msg_out_len,
1945 						       esp->msg_out_len,
1946 						       0,
1947 						       ESP_CMD_DMA|ESP_CMD_TI);
1948 			}
1949 		}
1950 		esp_event(esp, ESP_EVENT_MSGOUT_DONE);
1951 		break;
1952 	}
1953 	case ESP_EVENT_MSGOUT_DONE:
1954 		if (esp->rev == FASHME) {
1955 			scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1956 		} else {
1957 			if (esp->msg_out_len > 1)
1958 				esp->ops->dma_invalidate(esp);
1959 		}
1960 
1961 		if (!(esp->ireg & ESP_INTR_DC)) {
1962 			if (esp->rev != FASHME)
1963 				scsi_esp_cmd(esp, ESP_CMD_NULL);
1964 		}
1965 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1966 		goto again;
1967 	case ESP_EVENT_MSGIN:
1968 		if (esp->ireg & ESP_INTR_BSERV) {
1969 			if (esp->rev == FASHME) {
1970 				if (!(esp_read8(ESP_STATUS2) &
1971 				      ESP_STAT2_FEMPTY))
1972 					scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1973 			} else {
1974 				scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1975 				if (esp->rev == ESP100)
1976 					scsi_esp_cmd(esp, ESP_CMD_NULL);
1977 			}
1978 			scsi_esp_cmd(esp, ESP_CMD_TI);
1979 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1980 			return 1;
1981 		}
1982 		if (esp->ireg & ESP_INTR_FDONE) {
1983 			u8 val;
1984 
1985 			if (esp->rev == FASHME)
1986 				val = esp->fifo[0];
1987 			else
1988 				val = esp_read8(ESP_FDATA);
1989 			esp->msg_in[esp->msg_in_len++] = val;
1990 
1991 			esp_log_msgin("Got msgin byte %x\n", val);
1992 
1993 			if (!esp_msgin_process(esp))
1994 				esp->msg_in_len = 0;
1995 
1996 			if (esp->rev == FASHME)
1997 				scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1998 
1999 			scsi_esp_cmd(esp, ESP_CMD_MOK);
2000 
2001 			if (esp->event != ESP_EVENT_FREE_BUS)
2002 				esp_event(esp, ESP_EVENT_CHECK_PHASE);
2003 		} else {
2004 			shost_printk(KERN_INFO, esp->host,
2005 				     "MSGIN neither BSERV not FDON, resetting");
2006 			esp_schedule_reset(esp);
2007 			return 0;
2008 		}
2009 		break;
2010 	case ESP_EVENT_CMD_START:
2011 		memcpy(esp->command_block, esp->cmd_bytes_ptr,
2012 		       esp->cmd_bytes_left);
2013 		esp_send_dma_cmd(esp, esp->cmd_bytes_left, 16, ESP_CMD_TI);
2014 		esp_event(esp, ESP_EVENT_CMD_DONE);
2015 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
2016 		break;
2017 	case ESP_EVENT_CMD_DONE:
2018 		esp->ops->dma_invalidate(esp);
2019 		if (esp->ireg & ESP_INTR_BSERV) {
2020 			esp_event(esp, ESP_EVENT_CHECK_PHASE);
2021 			goto again;
2022 		}
2023 		esp_schedule_reset(esp);
2024 		return 0;
2025 		break;
2026 
2027 	case ESP_EVENT_RESET:
2028 		scsi_esp_cmd(esp, ESP_CMD_RS);
2029 		break;
2030 
2031 	default:
2032 		shost_printk(KERN_INFO, esp->host,
2033 			     "Unexpected event %x, resetting\n", esp->event);
2034 		esp_schedule_reset(esp);
2035 		return 0;
2036 		break;
2037 	}
2038 	return 1;
2039 }
2040 
2041 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
2042 {
2043 	struct scsi_cmnd *cmd = ent->cmd;
2044 
2045 	esp_unmap_dma(esp, cmd);
2046 	esp_free_lun_tag(ent, cmd->device->hostdata);
2047 	cmd->result = DID_RESET << 16;
2048 
2049 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
2050 		esp->ops->unmap_single(esp, ent->sense_dma,
2051 				       SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
2052 		ent->sense_ptr = NULL;
2053 	}
2054 
2055 	cmd->scsi_done(cmd);
2056 	list_del(&ent->list);
2057 	esp_put_ent(esp, ent);
2058 }
2059 
2060 static void esp_clear_hold(struct scsi_device *dev, void *data)
2061 {
2062 	struct esp_lun_data *lp = dev->hostdata;
2063 
2064 	BUG_ON(lp->num_tagged);
2065 	lp->hold = 0;
2066 }
2067 
2068 static void esp_reset_cleanup(struct esp *esp)
2069 {
2070 	struct esp_cmd_entry *ent, *tmp;
2071 	int i;
2072 
2073 	list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
2074 		struct scsi_cmnd *cmd = ent->cmd;
2075 
2076 		list_del(&ent->list);
2077 		cmd->result = DID_RESET << 16;
2078 		cmd->scsi_done(cmd);
2079 		esp_put_ent(esp, ent);
2080 	}
2081 
2082 	list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
2083 		if (ent == esp->active_cmd)
2084 			esp->active_cmd = NULL;
2085 		esp_reset_cleanup_one(esp, ent);
2086 	}
2087 
2088 	BUG_ON(esp->active_cmd != NULL);
2089 
2090 	/* Force renegotiation of sync/wide transfers.  */
2091 	for (i = 0; i < ESP_MAX_TARGET; i++) {
2092 		struct esp_target_data *tp = &esp->target[i];
2093 
2094 		tp->esp_period = 0;
2095 		tp->esp_offset = 0;
2096 		tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
2097 				     ESP_CONFIG3_FSCSI |
2098 				     ESP_CONFIG3_FAST);
2099 		tp->flags &= ~ESP_TGT_WIDE;
2100 		tp->flags |= ESP_TGT_CHECK_NEGO;
2101 
2102 		if (tp->starget)
2103 			__starget_for_each_device(tp->starget, NULL,
2104 						  esp_clear_hold);
2105 	}
2106 	esp->flags &= ~ESP_FLAG_RESETTING;
2107 }
2108 
2109 /* Runs under host->lock */
2110 static void __esp_interrupt(struct esp *esp)
2111 {
2112 	int finish_reset, intr_done;
2113 	u8 phase;
2114 
2115        /*
2116 	* Once INTRPT is read STATUS and SSTEP are cleared.
2117 	*/
2118 	esp->sreg = esp_read8(ESP_STATUS);
2119 	esp->seqreg = esp_read8(ESP_SSTEP);
2120 	esp->ireg = esp_read8(ESP_INTRPT);
2121 
2122 	if (esp->flags & ESP_FLAG_RESETTING) {
2123 		finish_reset = 1;
2124 	} else {
2125 		if (esp_check_gross_error(esp))
2126 			return;
2127 
2128 		finish_reset = esp_check_spur_intr(esp);
2129 		if (finish_reset < 0)
2130 			return;
2131 	}
2132 
2133 	if (esp->ireg & ESP_INTR_SR)
2134 		finish_reset = 1;
2135 
2136 	if (finish_reset) {
2137 		esp_reset_cleanup(esp);
2138 		if (esp->eh_reset) {
2139 			complete(esp->eh_reset);
2140 			esp->eh_reset = NULL;
2141 		}
2142 		return;
2143 	}
2144 
2145 	phase = (esp->sreg & ESP_STAT_PMASK);
2146 	if (esp->rev == FASHME) {
2147 		if (((phase != ESP_DIP && phase != ESP_DOP) &&
2148 		     esp->select_state == ESP_SELECT_NONE &&
2149 		     esp->event != ESP_EVENT_STATUS &&
2150 		     esp->event != ESP_EVENT_DATA_DONE) ||
2151 		    (esp->ireg & ESP_INTR_RSEL)) {
2152 			esp->sreg2 = esp_read8(ESP_STATUS2);
2153 			if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
2154 			    (esp->sreg2 & ESP_STAT2_F1BYTE))
2155 				hme_read_fifo(esp);
2156 		}
2157 	}
2158 
2159 	esp_log_intr("intr sreg[%02x] seqreg[%02x] "
2160 		     "sreg2[%02x] ireg[%02x]\n",
2161 		     esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
2162 
2163 	intr_done = 0;
2164 
2165 	if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
2166 		shost_printk(KERN_INFO, esp->host,
2167 			     "unexpected IREG %02x\n", esp->ireg);
2168 		if (esp->ireg & ESP_INTR_IC)
2169 			esp_dump_cmd_log(esp);
2170 
2171 		esp_schedule_reset(esp);
2172 	} else {
2173 		if (!(esp->ireg & ESP_INTR_RSEL)) {
2174 			/* Some combination of FDONE, BSERV, DC.  */
2175 			if (esp->select_state != ESP_SELECT_NONE)
2176 				intr_done = esp_finish_select(esp);
2177 		} else if (esp->ireg & ESP_INTR_RSEL) {
2178 			if (esp->active_cmd)
2179 				(void) esp_finish_select(esp);
2180 			intr_done = esp_reconnect(esp);
2181 		}
2182 	}
2183 	while (!intr_done)
2184 		intr_done = esp_process_event(esp);
2185 }
2186 
2187 irqreturn_t scsi_esp_intr(int irq, void *dev_id)
2188 {
2189 	struct esp *esp = dev_id;
2190 	unsigned long flags;
2191 	irqreturn_t ret;
2192 
2193 	spin_lock_irqsave(esp->host->host_lock, flags);
2194 	ret = IRQ_NONE;
2195 	if (esp->ops->irq_pending(esp)) {
2196 		ret = IRQ_HANDLED;
2197 		for (;;) {
2198 			int i;
2199 
2200 			__esp_interrupt(esp);
2201 			if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
2202 				break;
2203 			esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
2204 
2205 			for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
2206 				if (esp->ops->irq_pending(esp))
2207 					break;
2208 			}
2209 			if (i == ESP_QUICKIRQ_LIMIT)
2210 				break;
2211 		}
2212 	}
2213 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2214 
2215 	return ret;
2216 }
2217 EXPORT_SYMBOL(scsi_esp_intr);
2218 
2219 static void esp_get_revision(struct esp *esp)
2220 {
2221 	u8 val;
2222 
2223 	esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
2224 	if (esp->config2 == 0) {
2225 		esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
2226 		esp_write8(esp->config2, ESP_CFG2);
2227 
2228 		val = esp_read8(ESP_CFG2);
2229 		val &= ~ESP_CONFIG2_MAGIC;
2230 
2231 		esp->config2 = 0;
2232 		if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
2233 			/*
2234 			 * If what we write to cfg2 does not come back,
2235 			 * cfg2 is not implemented.
2236 			 * Therefore this must be a plain esp100.
2237 			 */
2238 			esp->rev = ESP100;
2239 			return;
2240 		}
2241 	}
2242 
2243 	esp_set_all_config3(esp, 5);
2244 	esp->prev_cfg3 = 5;
2245 	esp_write8(esp->config2, ESP_CFG2);
2246 	esp_write8(0, ESP_CFG3);
2247 	esp_write8(esp->prev_cfg3, ESP_CFG3);
2248 
2249 	val = esp_read8(ESP_CFG3);
2250 	if (val != 5) {
2251 		/* The cfg2 register is implemented, however
2252 		 * cfg3 is not, must be esp100a.
2253 		 */
2254 		esp->rev = ESP100A;
2255 	} else {
2256 		esp_set_all_config3(esp, 0);
2257 		esp->prev_cfg3 = 0;
2258 		esp_write8(esp->prev_cfg3, ESP_CFG3);
2259 
2260 		/* All of cfg{1,2,3} implemented, must be one of
2261 		 * the fas variants, figure out which one.
2262 		 */
2263 		if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
2264 			esp->rev = FAST;
2265 			esp->sync_defp = SYNC_DEFP_FAST;
2266 		} else {
2267 			esp->rev = ESP236;
2268 		}
2269 	}
2270 }
2271 
2272 static void esp_init_swstate(struct esp *esp)
2273 {
2274 	int i;
2275 
2276 	INIT_LIST_HEAD(&esp->queued_cmds);
2277 	INIT_LIST_HEAD(&esp->active_cmds);
2278 	INIT_LIST_HEAD(&esp->esp_cmd_pool);
2279 
2280 	/* Start with a clear state, domain validation (via ->slave_configure,
2281 	 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2282 	 * commands.
2283 	 */
2284 	for (i = 0 ; i < ESP_MAX_TARGET; i++) {
2285 		esp->target[i].flags = 0;
2286 		esp->target[i].nego_goal_period = 0;
2287 		esp->target[i].nego_goal_offset = 0;
2288 		esp->target[i].nego_goal_width = 0;
2289 		esp->target[i].nego_goal_tags = 0;
2290 	}
2291 }
2292 
2293 /* This places the ESP into a known state at boot time. */
2294 static void esp_bootup_reset(struct esp *esp)
2295 {
2296 	u8 val;
2297 
2298 	/* Reset the DMA */
2299 	esp->ops->reset_dma(esp);
2300 
2301 	/* Reset the ESP */
2302 	esp_reset_esp(esp);
2303 
2304 	/* Reset the SCSI bus, but tell ESP not to generate an irq */
2305 	val = esp_read8(ESP_CFG1);
2306 	val |= ESP_CONFIG1_SRRDISAB;
2307 	esp_write8(val, ESP_CFG1);
2308 
2309 	scsi_esp_cmd(esp, ESP_CMD_RS);
2310 	udelay(400);
2311 
2312 	esp_write8(esp->config1, ESP_CFG1);
2313 
2314 	/* Eat any bitrot in the chip and we are done... */
2315 	esp_read8(ESP_INTRPT);
2316 }
2317 
2318 static void esp_set_clock_params(struct esp *esp)
2319 {
2320 	int fhz;
2321 	u8 ccf;
2322 
2323 	/* This is getting messy but it has to be done correctly or else
2324 	 * you get weird behavior all over the place.  We are trying to
2325 	 * basically figure out three pieces of information.
2326 	 *
2327 	 * a) Clock Conversion Factor
2328 	 *
2329 	 *    This is a representation of the input crystal clock frequency
2330 	 *    going into the ESP on this machine.  Any operation whose timing
2331 	 *    is longer than 400ns depends on this value being correct.  For
2332 	 *    example, you'll get blips for arbitration/selection during high
2333 	 *    load or with multiple targets if this is not set correctly.
2334 	 *
2335 	 * b) Selection Time-Out
2336 	 *
2337 	 *    The ESP isn't very bright and will arbitrate for the bus and try
2338 	 *    to select a target forever if you let it.  This value tells the
2339 	 *    ESP when it has taken too long to negotiate and that it should
2340 	 *    interrupt the CPU so we can see what happened.  The value is
2341 	 *    computed as follows (from NCR/Symbios chip docs).
2342 	 *
2343 	 *          (Time Out Period) *  (Input Clock)
2344 	 *    STO = ----------------------------------
2345 	 *          (8192) * (Clock Conversion Factor)
2346 	 *
2347 	 *    We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2348 	 *
2349 	 * c) Imperical constants for synchronous offset and transfer period
2350          *    register values
2351 	 *
2352 	 *    This entails the smallest and largest sync period we could ever
2353 	 *    handle on this ESP.
2354 	 */
2355 	fhz = esp->cfreq;
2356 
2357 	ccf = ((fhz / 1000000) + 4) / 5;
2358 	if (ccf == 1)
2359 		ccf = 2;
2360 
2361 	/* If we can't find anything reasonable, just assume 20MHZ.
2362 	 * This is the clock frequency of the older sun4c's where I've
2363 	 * been unable to find the clock-frequency PROM property.  All
2364 	 * other machines provide useful values it seems.
2365 	 */
2366 	if (fhz <= 5000000 || ccf < 1 || ccf > 8) {
2367 		fhz = 20000000;
2368 		ccf = 4;
2369 	}
2370 
2371 	esp->cfact = (ccf == 8 ? 0 : ccf);
2372 	esp->cfreq = fhz;
2373 	esp->ccycle = ESP_HZ_TO_CYCLE(fhz);
2374 	esp->ctick = ESP_TICK(ccf, esp->ccycle);
2375 	esp->neg_defp = ESP_NEG_DEFP(fhz, ccf);
2376 	esp->sync_defp = SYNC_DEFP_SLOW;
2377 }
2378 
2379 static const char *esp_chip_names[] = {
2380 	"ESP100",
2381 	"ESP100A",
2382 	"ESP236",
2383 	"FAS236",
2384 	"FAS100A",
2385 	"FAST",
2386 	"FASHME",
2387 	"AM53C974",
2388 };
2389 
2390 static struct scsi_transport_template *esp_transport_template;
2391 
2392 int scsi_esp_register(struct esp *esp, struct device *dev)
2393 {
2394 	static int instance;
2395 	int err;
2396 
2397 	if (!esp->num_tags)
2398 		esp->num_tags = ESP_DEFAULT_TAGS;
2399 	esp->host->transportt = esp_transport_template;
2400 	esp->host->max_lun = ESP_MAX_LUN;
2401 	esp->host->cmd_per_lun = 2;
2402 	esp->host->unique_id = instance;
2403 
2404 	esp_set_clock_params(esp);
2405 
2406 	esp_get_revision(esp);
2407 
2408 	esp_init_swstate(esp);
2409 
2410 	esp_bootup_reset(esp);
2411 
2412 	dev_printk(KERN_INFO, dev, "esp%u: regs[%1p:%1p] irq[%u]\n",
2413 		   esp->host->unique_id, esp->regs, esp->dma_regs,
2414 		   esp->host->irq);
2415 	dev_printk(KERN_INFO, dev,
2416 		   "esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2417 		   esp->host->unique_id, esp_chip_names[esp->rev],
2418 		   esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
2419 
2420 	/* Let the SCSI bus reset settle. */
2421 	ssleep(esp_bus_reset_settle);
2422 
2423 	err = scsi_add_host(esp->host, dev);
2424 	if (err)
2425 		return err;
2426 
2427 	instance++;
2428 
2429 	scsi_scan_host(esp->host);
2430 
2431 	return 0;
2432 }
2433 EXPORT_SYMBOL(scsi_esp_register);
2434 
2435 void scsi_esp_unregister(struct esp *esp)
2436 {
2437 	scsi_remove_host(esp->host);
2438 }
2439 EXPORT_SYMBOL(scsi_esp_unregister);
2440 
2441 static int esp_target_alloc(struct scsi_target *starget)
2442 {
2443 	struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2444 	struct esp_target_data *tp = &esp->target[starget->id];
2445 
2446 	tp->starget = starget;
2447 
2448 	return 0;
2449 }
2450 
2451 static void esp_target_destroy(struct scsi_target *starget)
2452 {
2453 	struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2454 	struct esp_target_data *tp = &esp->target[starget->id];
2455 
2456 	tp->starget = NULL;
2457 }
2458 
2459 static int esp_slave_alloc(struct scsi_device *dev)
2460 {
2461 	struct esp *esp = shost_priv(dev->host);
2462 	struct esp_target_data *tp = &esp->target[dev->id];
2463 	struct esp_lun_data *lp;
2464 
2465 	lp = kzalloc(sizeof(*lp), GFP_KERNEL);
2466 	if (!lp)
2467 		return -ENOMEM;
2468 	dev->hostdata = lp;
2469 
2470 	spi_min_period(tp->starget) = esp->min_period;
2471 	spi_max_offset(tp->starget) = 15;
2472 
2473 	if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
2474 		spi_max_width(tp->starget) = 1;
2475 	else
2476 		spi_max_width(tp->starget) = 0;
2477 
2478 	return 0;
2479 }
2480 
2481 static int esp_slave_configure(struct scsi_device *dev)
2482 {
2483 	struct esp *esp = shost_priv(dev->host);
2484 	struct esp_target_data *tp = &esp->target[dev->id];
2485 
2486 	if (dev->tagged_supported)
2487 		scsi_change_queue_depth(dev, esp->num_tags);
2488 
2489 	tp->flags |= ESP_TGT_DISCONNECT;
2490 
2491 	if (!spi_initial_dv(dev->sdev_target))
2492 		spi_dv_device(dev);
2493 
2494 	return 0;
2495 }
2496 
2497 static void esp_slave_destroy(struct scsi_device *dev)
2498 {
2499 	struct esp_lun_data *lp = dev->hostdata;
2500 
2501 	kfree(lp);
2502 	dev->hostdata = NULL;
2503 }
2504 
2505 static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
2506 {
2507 	struct esp *esp = shost_priv(cmd->device->host);
2508 	struct esp_cmd_entry *ent, *tmp;
2509 	struct completion eh_done;
2510 	unsigned long flags;
2511 
2512 	/* XXX This helps a lot with debugging but might be a bit
2513 	 * XXX much for the final driver.
2514 	 */
2515 	spin_lock_irqsave(esp->host->host_lock, flags);
2516 	shost_printk(KERN_ERR, esp->host, "Aborting command [%p:%02x]\n",
2517 		     cmd, cmd->cmnd[0]);
2518 	ent = esp->active_cmd;
2519 	if (ent)
2520 		shost_printk(KERN_ERR, esp->host,
2521 			     "Current command [%p:%02x]\n",
2522 			     ent->cmd, ent->cmd->cmnd[0]);
2523 	list_for_each_entry(ent, &esp->queued_cmds, list) {
2524 		shost_printk(KERN_ERR, esp->host, "Queued command [%p:%02x]\n",
2525 			     ent->cmd, ent->cmd->cmnd[0]);
2526 	}
2527 	list_for_each_entry(ent, &esp->active_cmds, list) {
2528 		shost_printk(KERN_ERR, esp->host, " Active command [%p:%02x]\n",
2529 			     ent->cmd, ent->cmd->cmnd[0]);
2530 	}
2531 	esp_dump_cmd_log(esp);
2532 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2533 
2534 	spin_lock_irqsave(esp->host->host_lock, flags);
2535 
2536 	ent = NULL;
2537 	list_for_each_entry(tmp, &esp->queued_cmds, list) {
2538 		if (tmp->cmd == cmd) {
2539 			ent = tmp;
2540 			break;
2541 		}
2542 	}
2543 
2544 	if (ent) {
2545 		/* Easiest case, we didn't even issue the command
2546 		 * yet so it is trivial to abort.
2547 		 */
2548 		list_del(&ent->list);
2549 
2550 		cmd->result = DID_ABORT << 16;
2551 		cmd->scsi_done(cmd);
2552 
2553 		esp_put_ent(esp, ent);
2554 
2555 		goto out_success;
2556 	}
2557 
2558 	init_completion(&eh_done);
2559 
2560 	ent = esp->active_cmd;
2561 	if (ent && ent->cmd == cmd) {
2562 		/* Command is the currently active command on
2563 		 * the bus.  If we already have an output message
2564 		 * pending, no dice.
2565 		 */
2566 		if (esp->msg_out_len)
2567 			goto out_failure;
2568 
2569 		/* Send out an abort, encouraging the target to
2570 		 * go to MSGOUT phase by asserting ATN.
2571 		 */
2572 		esp->msg_out[0] = ABORT_TASK_SET;
2573 		esp->msg_out_len = 1;
2574 		ent->eh_done = &eh_done;
2575 
2576 		scsi_esp_cmd(esp, ESP_CMD_SATN);
2577 	} else {
2578 		/* The command is disconnected.  This is not easy to
2579 		 * abort.  For now we fail and let the scsi error
2580 		 * handling layer go try a scsi bus reset or host
2581 		 * reset.
2582 		 *
2583 		 * What we could do is put together a scsi command
2584 		 * solely for the purpose of sending an abort message
2585 		 * to the target.  Coming up with all the code to
2586 		 * cook up scsi commands, special case them everywhere,
2587 		 * etc. is for questionable gain and it would be better
2588 		 * if the generic scsi error handling layer could do at
2589 		 * least some of that for us.
2590 		 *
2591 		 * Anyways this is an area for potential future improvement
2592 		 * in this driver.
2593 		 */
2594 		goto out_failure;
2595 	}
2596 
2597 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2598 
2599 	if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
2600 		spin_lock_irqsave(esp->host->host_lock, flags);
2601 		ent->eh_done = NULL;
2602 		spin_unlock_irqrestore(esp->host->host_lock, flags);
2603 
2604 		return FAILED;
2605 	}
2606 
2607 	return SUCCESS;
2608 
2609 out_success:
2610 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2611 	return SUCCESS;
2612 
2613 out_failure:
2614 	/* XXX This might be a good location to set ESP_TGT_BROKEN
2615 	 * XXX since we know which target/lun in particular is
2616 	 * XXX causing trouble.
2617 	 */
2618 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2619 	return FAILED;
2620 }
2621 
2622 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
2623 {
2624 	struct esp *esp = shost_priv(cmd->device->host);
2625 	struct completion eh_reset;
2626 	unsigned long flags;
2627 
2628 	init_completion(&eh_reset);
2629 
2630 	spin_lock_irqsave(esp->host->host_lock, flags);
2631 
2632 	esp->eh_reset = &eh_reset;
2633 
2634 	/* XXX This is too simple... We should add lots of
2635 	 * XXX checks here so that if we find that the chip is
2636 	 * XXX very wedged we return failure immediately so
2637 	 * XXX that we can perform a full chip reset.
2638 	 */
2639 	esp->flags |= ESP_FLAG_RESETTING;
2640 	scsi_esp_cmd(esp, ESP_CMD_RS);
2641 
2642 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2643 
2644 	ssleep(esp_bus_reset_settle);
2645 
2646 	if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
2647 		spin_lock_irqsave(esp->host->host_lock, flags);
2648 		esp->eh_reset = NULL;
2649 		spin_unlock_irqrestore(esp->host->host_lock, flags);
2650 
2651 		return FAILED;
2652 	}
2653 
2654 	return SUCCESS;
2655 }
2656 
2657 /* All bets are off, reset the entire device.  */
2658 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
2659 {
2660 	struct esp *esp = shost_priv(cmd->device->host);
2661 	unsigned long flags;
2662 
2663 	spin_lock_irqsave(esp->host->host_lock, flags);
2664 	esp_bootup_reset(esp);
2665 	esp_reset_cleanup(esp);
2666 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2667 
2668 	ssleep(esp_bus_reset_settle);
2669 
2670 	return SUCCESS;
2671 }
2672 
2673 static const char *esp_info(struct Scsi_Host *host)
2674 {
2675 	return "esp";
2676 }
2677 
2678 struct scsi_host_template scsi_esp_template = {
2679 	.module			= THIS_MODULE,
2680 	.name			= "esp",
2681 	.info			= esp_info,
2682 	.queuecommand		= esp_queuecommand,
2683 	.target_alloc		= esp_target_alloc,
2684 	.target_destroy		= esp_target_destroy,
2685 	.slave_alloc		= esp_slave_alloc,
2686 	.slave_configure	= esp_slave_configure,
2687 	.slave_destroy		= esp_slave_destroy,
2688 	.eh_abort_handler	= esp_eh_abort_handler,
2689 	.eh_bus_reset_handler	= esp_eh_bus_reset_handler,
2690 	.eh_host_reset_handler	= esp_eh_host_reset_handler,
2691 	.can_queue		= 7,
2692 	.this_id		= 7,
2693 	.sg_tablesize		= SG_ALL,
2694 	.use_clustering		= ENABLE_CLUSTERING,
2695 	.max_sectors		= 0xffff,
2696 	.skip_settle_delay	= 1,
2697 };
2698 EXPORT_SYMBOL(scsi_esp_template);
2699 
2700 static void esp_get_signalling(struct Scsi_Host *host)
2701 {
2702 	struct esp *esp = shost_priv(host);
2703 	enum spi_signal_type type;
2704 
2705 	if (esp->flags & ESP_FLAG_DIFFERENTIAL)
2706 		type = SPI_SIGNAL_HVD;
2707 	else
2708 		type = SPI_SIGNAL_SE;
2709 
2710 	spi_signalling(host) = type;
2711 }
2712 
2713 static void esp_set_offset(struct scsi_target *target, int offset)
2714 {
2715 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2716 	struct esp *esp = shost_priv(host);
2717 	struct esp_target_data *tp = &esp->target[target->id];
2718 
2719 	if (esp->flags & ESP_FLAG_DISABLE_SYNC)
2720 		tp->nego_goal_offset = 0;
2721 	else
2722 		tp->nego_goal_offset = offset;
2723 	tp->flags |= ESP_TGT_CHECK_NEGO;
2724 }
2725 
2726 static void esp_set_period(struct scsi_target *target, int period)
2727 {
2728 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2729 	struct esp *esp = shost_priv(host);
2730 	struct esp_target_data *tp = &esp->target[target->id];
2731 
2732 	tp->nego_goal_period = period;
2733 	tp->flags |= ESP_TGT_CHECK_NEGO;
2734 }
2735 
2736 static void esp_set_width(struct scsi_target *target, int width)
2737 {
2738 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2739 	struct esp *esp = shost_priv(host);
2740 	struct esp_target_data *tp = &esp->target[target->id];
2741 
2742 	tp->nego_goal_width = (width ? 1 : 0);
2743 	tp->flags |= ESP_TGT_CHECK_NEGO;
2744 }
2745 
2746 static struct spi_function_template esp_transport_ops = {
2747 	.set_offset		= esp_set_offset,
2748 	.show_offset		= 1,
2749 	.set_period		= esp_set_period,
2750 	.show_period		= 1,
2751 	.set_width		= esp_set_width,
2752 	.show_width		= 1,
2753 	.get_signalling		= esp_get_signalling,
2754 };
2755 
2756 static int __init esp_init(void)
2757 {
2758 	BUILD_BUG_ON(sizeof(struct scsi_pointer) <
2759 		     sizeof(struct esp_cmd_priv));
2760 
2761 	esp_transport_template = spi_attach_transport(&esp_transport_ops);
2762 	if (!esp_transport_template)
2763 		return -ENODEV;
2764 
2765 	return 0;
2766 }
2767 
2768 static void __exit esp_exit(void)
2769 {
2770 	spi_release_transport(esp_transport_template);
2771 }
2772 
2773 MODULE_DESCRIPTION("ESP SCSI driver core");
2774 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2775 MODULE_LICENSE("GPL");
2776 MODULE_VERSION(DRV_VERSION);
2777 
2778 module_param(esp_bus_reset_settle, int, 0);
2779 MODULE_PARM_DESC(esp_bus_reset_settle,
2780 		 "ESP scsi bus reset delay in seconds");
2781 
2782 module_param(esp_debug, int, 0);
2783 MODULE_PARM_DESC(esp_debug,
2784 "ESP bitmapped debugging message enable value:\n"
2785 "	0x00000001	Log interrupt events\n"
2786 "	0x00000002	Log scsi commands\n"
2787 "	0x00000004	Log resets\n"
2788 "	0x00000008	Log message in events\n"
2789 "	0x00000010	Log message out events\n"
2790 "	0x00000020	Log command completion\n"
2791 "	0x00000040	Log disconnects\n"
2792 "	0x00000080	Log data start\n"
2793 "	0x00000100	Log data done\n"
2794 "	0x00000200	Log reconnects\n"
2795 "	0x00000400	Log auto-sense data\n"
2796 );
2797 
2798 module_init(esp_init);
2799 module_exit(esp_exit);
2800