1 /* 2 * CXL Flash Device Driver 3 * 4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 6 * 7 * Copyright (C) 2015 IBM Corporation 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 */ 14 15 #include <linux/syscalls.h> 16 #include <misc/cxl.h> 17 #include <asm/unaligned.h> 18 #include <asm/bitsperlong.h> 19 20 #include <scsi/scsi_cmnd.h> 21 #include <scsi/scsi_host.h> 22 #include <uapi/scsi/cxlflash_ioctl.h> 23 24 #include "sislite.h" 25 #include "common.h" 26 #include "vlun.h" 27 #include "superpipe.h" 28 29 /** 30 * marshal_virt_to_resize() - translate uvirtual to resize structure 31 * @virt: Source structure from which to translate/copy. 32 * @resize: Destination structure for the translate/copy. 33 */ 34 static void marshal_virt_to_resize(struct dk_cxlflash_uvirtual *virt, 35 struct dk_cxlflash_resize *resize) 36 { 37 resize->hdr = virt->hdr; 38 resize->context_id = virt->context_id; 39 resize->rsrc_handle = virt->rsrc_handle; 40 resize->req_size = virt->lun_size; 41 resize->last_lba = virt->last_lba; 42 } 43 44 /** 45 * marshal_clone_to_rele() - translate clone to release structure 46 * @clone: Source structure from which to translate/copy. 47 * @rele: Destination structure for the translate/copy. 48 */ 49 static void marshal_clone_to_rele(struct dk_cxlflash_clone *clone, 50 struct dk_cxlflash_release *release) 51 { 52 release->hdr = clone->hdr; 53 release->context_id = clone->context_id_dst; 54 } 55 56 /** 57 * ba_init() - initializes a block allocator 58 * @ba_lun: Block allocator to initialize. 59 * 60 * Return: 0 on success, -errno on failure 61 */ 62 static int ba_init(struct ba_lun *ba_lun) 63 { 64 struct ba_lun_info *bali = NULL; 65 int lun_size_au = 0, i = 0; 66 int last_word_underflow = 0; 67 u64 *lam; 68 69 pr_debug("%s: Initializing LUN: lun_id = %llX, " 70 "ba_lun->lsize = %lX, ba_lun->au_size = %lX\n", 71 __func__, ba_lun->lun_id, ba_lun->lsize, ba_lun->au_size); 72 73 /* Calculate bit map size */ 74 lun_size_au = ba_lun->lsize / ba_lun->au_size; 75 if (lun_size_au == 0) { 76 pr_debug("%s: Requested LUN size of 0!\n", __func__); 77 return -EINVAL; 78 } 79 80 /* Allocate lun information container */ 81 bali = kzalloc(sizeof(struct ba_lun_info), GFP_KERNEL); 82 if (unlikely(!bali)) { 83 pr_err("%s: Failed to allocate lun_info for lun_id %llX\n", 84 __func__, ba_lun->lun_id); 85 return -ENOMEM; 86 } 87 88 bali->total_aus = lun_size_au; 89 bali->lun_bmap_size = lun_size_au / BITS_PER_LONG; 90 91 if (lun_size_au % BITS_PER_LONG) 92 bali->lun_bmap_size++; 93 94 /* Allocate bitmap space */ 95 bali->lun_alloc_map = kzalloc((bali->lun_bmap_size * sizeof(u64)), 96 GFP_KERNEL); 97 if (unlikely(!bali->lun_alloc_map)) { 98 pr_err("%s: Failed to allocate lun allocation map: " 99 "lun_id = %llX\n", __func__, ba_lun->lun_id); 100 kfree(bali); 101 return -ENOMEM; 102 } 103 104 /* Initialize the bit map size and set all bits to '1' */ 105 bali->free_aun_cnt = lun_size_au; 106 107 for (i = 0; i < bali->lun_bmap_size; i++) 108 bali->lun_alloc_map[i] = 0xFFFFFFFFFFFFFFFFULL; 109 110 /* If the last word not fully utilized, mark extra bits as allocated */ 111 last_word_underflow = (bali->lun_bmap_size * BITS_PER_LONG); 112 last_word_underflow -= bali->free_aun_cnt; 113 if (last_word_underflow > 0) { 114 lam = &bali->lun_alloc_map[bali->lun_bmap_size - 1]; 115 for (i = (HIBIT - last_word_underflow + 1); 116 i < BITS_PER_LONG; 117 i++) 118 clear_bit(i, (ulong *)lam); 119 } 120 121 /* Initialize high elevator index, low/curr already at 0 from kzalloc */ 122 bali->free_high_idx = bali->lun_bmap_size; 123 124 /* Allocate clone map */ 125 bali->aun_clone_map = kzalloc((bali->total_aus * sizeof(u8)), 126 GFP_KERNEL); 127 if (unlikely(!bali->aun_clone_map)) { 128 pr_err("%s: Failed to allocate clone map: lun_id = %llX\n", 129 __func__, ba_lun->lun_id); 130 kfree(bali->lun_alloc_map); 131 kfree(bali); 132 return -ENOMEM; 133 } 134 135 /* Pass the allocated LUN info as a handle to the user */ 136 ba_lun->ba_lun_handle = bali; 137 138 pr_debug("%s: Successfully initialized the LUN: " 139 "lun_id = %llX, bitmap size = %X, free_aun_cnt = %llX\n", 140 __func__, ba_lun->lun_id, bali->lun_bmap_size, 141 bali->free_aun_cnt); 142 return 0; 143 } 144 145 /** 146 * find_free_range() - locates a free bit within the block allocator 147 * @low: First word in block allocator to start search. 148 * @high: Last word in block allocator to search. 149 * @bali: LUN information structure owning the block allocator to search. 150 * @bit_word: Passes back the word in the block allocator owning the free bit. 151 * 152 * Return: The bit position within the passed back word, -1 on failure 153 */ 154 static int find_free_range(u32 low, 155 u32 high, 156 struct ba_lun_info *bali, int *bit_word) 157 { 158 int i; 159 u64 bit_pos = -1; 160 ulong *lam, num_bits; 161 162 for (i = low; i < high; i++) 163 if (bali->lun_alloc_map[i] != 0) { 164 lam = (ulong *)&bali->lun_alloc_map[i]; 165 num_bits = (sizeof(*lam) * BITS_PER_BYTE); 166 bit_pos = find_first_bit(lam, num_bits); 167 168 pr_devel("%s: Found free bit %llX in LUN " 169 "map entry %llX at bitmap index = %X\n", 170 __func__, bit_pos, bali->lun_alloc_map[i], 171 i); 172 173 *bit_word = i; 174 bali->free_aun_cnt--; 175 clear_bit(bit_pos, lam); 176 break; 177 } 178 179 return bit_pos; 180 } 181 182 /** 183 * ba_alloc() - allocates a block from the block allocator 184 * @ba_lun: Block allocator from which to allocate a block. 185 * 186 * Return: The allocated block, -1 on failure 187 */ 188 static u64 ba_alloc(struct ba_lun *ba_lun) 189 { 190 u64 bit_pos = -1; 191 int bit_word = 0; 192 struct ba_lun_info *bali = NULL; 193 194 bali = ba_lun->ba_lun_handle; 195 196 pr_debug("%s: Received block allocation request: " 197 "lun_id = %llX, free_aun_cnt = %llX\n", 198 __func__, ba_lun->lun_id, bali->free_aun_cnt); 199 200 if (bali->free_aun_cnt == 0) { 201 pr_debug("%s: No space left on LUN: lun_id = %llX\n", 202 __func__, ba_lun->lun_id); 203 return -1ULL; 204 } 205 206 /* Search to find a free entry, curr->high then low->curr */ 207 bit_pos = find_free_range(bali->free_curr_idx, 208 bali->free_high_idx, bali, &bit_word); 209 if (bit_pos == -1) { 210 bit_pos = find_free_range(bali->free_low_idx, 211 bali->free_curr_idx, 212 bali, &bit_word); 213 if (bit_pos == -1) { 214 pr_debug("%s: Could not find an allocation unit on LUN:" 215 " lun_id = %llX\n", __func__, ba_lun->lun_id); 216 return -1ULL; 217 } 218 } 219 220 /* Update the free_curr_idx */ 221 if (bit_pos == HIBIT) 222 bali->free_curr_idx = bit_word + 1; 223 else 224 bali->free_curr_idx = bit_word; 225 226 pr_debug("%s: Allocating AU number %llX, on lun_id %llX, " 227 "free_aun_cnt = %llX\n", __func__, 228 ((bit_word * BITS_PER_LONG) + bit_pos), ba_lun->lun_id, 229 bali->free_aun_cnt); 230 231 return (u64) ((bit_word * BITS_PER_LONG) + bit_pos); 232 } 233 234 /** 235 * validate_alloc() - validates the specified block has been allocated 236 * @ba_lun_info: LUN info owning the block allocator. 237 * @aun: Block to validate. 238 * 239 * Return: 0 on success, -1 on failure 240 */ 241 static int validate_alloc(struct ba_lun_info *bali, u64 aun) 242 { 243 int idx = 0, bit_pos = 0; 244 245 idx = aun / BITS_PER_LONG; 246 bit_pos = aun % BITS_PER_LONG; 247 248 if (test_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx])) 249 return -1; 250 251 return 0; 252 } 253 254 /** 255 * ba_free() - frees a block from the block allocator 256 * @ba_lun: Block allocator from which to allocate a block. 257 * @to_free: Block to free. 258 * 259 * Return: 0 on success, -1 on failure 260 */ 261 static int ba_free(struct ba_lun *ba_lun, u64 to_free) 262 { 263 int idx = 0, bit_pos = 0; 264 struct ba_lun_info *bali = NULL; 265 266 bali = ba_lun->ba_lun_handle; 267 268 if (validate_alloc(bali, to_free)) { 269 pr_debug("%s: The AUN %llX is not allocated on lun_id %llX\n", 270 __func__, to_free, ba_lun->lun_id); 271 return -1; 272 } 273 274 pr_debug("%s: Received a request to free AU %llX on lun_id %llX, " 275 "free_aun_cnt = %llX\n", __func__, to_free, ba_lun->lun_id, 276 bali->free_aun_cnt); 277 278 if (bali->aun_clone_map[to_free] > 0) { 279 pr_debug("%s: AUN %llX on lun_id %llX has been cloned. Clone " 280 "count = %X\n", __func__, to_free, ba_lun->lun_id, 281 bali->aun_clone_map[to_free]); 282 bali->aun_clone_map[to_free]--; 283 return 0; 284 } 285 286 idx = to_free / BITS_PER_LONG; 287 bit_pos = to_free % BITS_PER_LONG; 288 289 set_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx]); 290 bali->free_aun_cnt++; 291 292 if (idx < bali->free_low_idx) 293 bali->free_low_idx = idx; 294 else if (idx > bali->free_high_idx) 295 bali->free_high_idx = idx; 296 297 pr_debug("%s: Successfully freed AU at bit_pos %X, bit map index %X on " 298 "lun_id %llX, free_aun_cnt = %llX\n", __func__, bit_pos, idx, 299 ba_lun->lun_id, bali->free_aun_cnt); 300 301 return 0; 302 } 303 304 /** 305 * ba_clone() - Clone a chunk of the block allocation table 306 * @ba_lun: Block allocator from which to allocate a block. 307 * @to_free: Block to free. 308 * 309 * Return: 0 on success, -1 on failure 310 */ 311 static int ba_clone(struct ba_lun *ba_lun, u64 to_clone) 312 { 313 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 314 315 if (validate_alloc(bali, to_clone)) { 316 pr_debug("%s: AUN %llX is not allocated on lun_id %llX\n", 317 __func__, to_clone, ba_lun->lun_id); 318 return -1; 319 } 320 321 pr_debug("%s: Received a request to clone AUN %llX on lun_id %llX\n", 322 __func__, to_clone, ba_lun->lun_id); 323 324 if (bali->aun_clone_map[to_clone] == MAX_AUN_CLONE_CNT) { 325 pr_debug("%s: AUN %llX on lun_id %llX hit max clones already\n", 326 __func__, to_clone, ba_lun->lun_id); 327 return -1; 328 } 329 330 bali->aun_clone_map[to_clone]++; 331 332 return 0; 333 } 334 335 /** 336 * ba_space() - returns the amount of free space left in the block allocator 337 * @ba_lun: Block allocator. 338 * 339 * Return: Amount of free space in block allocator 340 */ 341 static u64 ba_space(struct ba_lun *ba_lun) 342 { 343 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 344 345 return bali->free_aun_cnt; 346 } 347 348 /** 349 * cxlflash_ba_terminate() - frees resources associated with the block allocator 350 * @ba_lun: Block allocator. 351 * 352 * Safe to call in a partially allocated state. 353 */ 354 void cxlflash_ba_terminate(struct ba_lun *ba_lun) 355 { 356 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 357 358 if (bali) { 359 kfree(bali->aun_clone_map); 360 kfree(bali->lun_alloc_map); 361 kfree(bali); 362 ba_lun->ba_lun_handle = NULL; 363 } 364 } 365 366 /** 367 * init_vlun() - initializes a LUN for virtual use 368 * @lun_info: LUN information structure that owns the block allocator. 369 * 370 * Return: 0 on success, -errno on failure 371 */ 372 static int init_vlun(struct llun_info *lli) 373 { 374 int rc = 0; 375 struct glun_info *gli = lli->parent; 376 struct blka *blka = &gli->blka; 377 378 memset(blka, 0, sizeof(*blka)); 379 mutex_init(&blka->mutex); 380 381 /* LUN IDs are unique per port, save the index instead */ 382 blka->ba_lun.lun_id = lli->lun_index; 383 blka->ba_lun.lsize = gli->max_lba + 1; 384 blka->ba_lun.lba_size = gli->blk_len; 385 386 blka->ba_lun.au_size = MC_CHUNK_SIZE; 387 blka->nchunk = blka->ba_lun.lsize / MC_CHUNK_SIZE; 388 389 rc = ba_init(&blka->ba_lun); 390 if (unlikely(rc)) 391 pr_debug("%s: cannot init block_alloc, rc=%d\n", __func__, rc); 392 393 pr_debug("%s: returning rc=%d lli=%p\n", __func__, rc, lli); 394 return rc; 395 } 396 397 /** 398 * write_same16() - sends a SCSI WRITE_SAME16 (0) command to specified LUN 399 * @sdev: SCSI device associated with LUN. 400 * @lba: Logical block address to start write same. 401 * @nblks: Number of logical blocks to write same. 402 * 403 * The SCSI WRITE_SAME16 can take quite a while to complete. Should an EEH occur 404 * while in scsi_execute(), the EEH handler will attempt to recover. As part of 405 * the recovery, the handler drains all currently running ioctls, waiting until 406 * they have completed before proceeding with a reset. As this routine is used 407 * on the ioctl path, this can create a condition where the EEH handler becomes 408 * stuck, infinitely waiting for this ioctl thread. To avoid this behavior, 409 * temporarily unmark this thread as an ioctl thread by releasing the ioctl read 410 * semaphore. This will allow the EEH handler to proceed with a recovery while 411 * this thread is still running. Once the scsi_execute() returns, reacquire the 412 * ioctl read semaphore and check the adapter state in case it changed while 413 * inside of scsi_execute(). The state check will wait if the adapter is still 414 * being recovered or return a failure if the recovery failed. In the event that 415 * the adapter reset failed, simply return the failure as the ioctl would be 416 * unable to continue. 417 * 418 * Note that the above puts a requirement on this routine to only be called on 419 * an ioctl thread. 420 * 421 * Return: 0 on success, -errno on failure 422 */ 423 static int write_same16(struct scsi_device *sdev, 424 u64 lba, 425 u32 nblks) 426 { 427 u8 *cmd_buf = NULL; 428 u8 *scsi_cmd = NULL; 429 u8 *sense_buf = NULL; 430 int rc = 0; 431 int result = 0; 432 int ws_limit = SISLITE_MAX_WS_BLOCKS; 433 u64 offset = lba; 434 int left = nblks; 435 u32 to = sdev->request_queue->rq_timeout; 436 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)sdev->host->hostdata; 437 struct device *dev = &cfg->dev->dev; 438 439 cmd_buf = kzalloc(CMD_BUFSIZE, GFP_KERNEL); 440 scsi_cmd = kzalloc(MAX_COMMAND_SIZE, GFP_KERNEL); 441 sense_buf = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 442 if (unlikely(!cmd_buf || !scsi_cmd || !sense_buf)) { 443 rc = -ENOMEM; 444 goto out; 445 } 446 447 while (left > 0) { 448 449 scsi_cmd[0] = WRITE_SAME_16; 450 put_unaligned_be64(offset, &scsi_cmd[2]); 451 put_unaligned_be32(ws_limit < left ? ws_limit : left, 452 &scsi_cmd[10]); 453 454 /* Drop the ioctl read semahpore across lengthy call */ 455 up_read(&cfg->ioctl_rwsem); 456 result = scsi_execute(sdev, scsi_cmd, DMA_TO_DEVICE, cmd_buf, 457 CMD_BUFSIZE, sense_buf, to, CMD_RETRIES, 458 0, NULL); 459 down_read(&cfg->ioctl_rwsem); 460 rc = check_state(cfg); 461 if (rc) { 462 dev_err(dev, "%s: Failed state! result=0x08%X\n", 463 __func__, result); 464 rc = -ENODEV; 465 goto out; 466 } 467 468 if (result) { 469 dev_err_ratelimited(dev, "%s: command failed for " 470 "offset %lld result=0x%x\n", 471 __func__, offset, result); 472 rc = -EIO; 473 goto out; 474 } 475 left -= ws_limit; 476 offset += ws_limit; 477 } 478 479 out: 480 kfree(cmd_buf); 481 kfree(scsi_cmd); 482 kfree(sense_buf); 483 pr_debug("%s: returning rc=%d\n", __func__, rc); 484 return rc; 485 } 486 487 /** 488 * grow_lxt() - expands the translation table associated with the specified RHTE 489 * @afu: AFU associated with the host. 490 * @sdev: SCSI device associated with LUN. 491 * @ctxid: Context ID of context owning the RHTE. 492 * @rhndl: Resource handle associated with the RHTE. 493 * @rhte: Resource handle entry (RHTE). 494 * @new_size: Number of translation entries associated with RHTE. 495 * 496 * By design, this routine employs a 'best attempt' allocation and will 497 * truncate the requested size down if there is not sufficient space in 498 * the block allocator to satisfy the request but there does exist some 499 * amount of space. The user is made aware of this by returning the size 500 * allocated. 501 * 502 * Return: 0 on success, -errno on failure 503 */ 504 static int grow_lxt(struct afu *afu, 505 struct scsi_device *sdev, 506 ctx_hndl_t ctxid, 507 res_hndl_t rhndl, 508 struct sisl_rht_entry *rhte, 509 u64 *new_size) 510 { 511 struct sisl_lxt_entry *lxt = NULL, *lxt_old = NULL; 512 struct llun_info *lli = sdev->hostdata; 513 struct glun_info *gli = lli->parent; 514 struct blka *blka = &gli->blka; 515 u32 av_size; 516 u32 ngrps, ngrps_old; 517 u64 aun; /* chunk# allocated by block allocator */ 518 u64 delta = *new_size - rhte->lxt_cnt; 519 u64 my_new_size; 520 int i, rc = 0; 521 522 /* 523 * Check what is available in the block allocator before re-allocating 524 * LXT array. This is done up front under the mutex which must not be 525 * released until after allocation is complete. 526 */ 527 mutex_lock(&blka->mutex); 528 av_size = ba_space(&blka->ba_lun); 529 if (unlikely(av_size <= 0)) { 530 pr_debug("%s: ba_space error: av_size %d\n", __func__, av_size); 531 mutex_unlock(&blka->mutex); 532 rc = -ENOSPC; 533 goto out; 534 } 535 536 if (av_size < delta) 537 delta = av_size; 538 539 lxt_old = rhte->lxt_start; 540 ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); 541 ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt + delta); 542 543 if (ngrps != ngrps_old) { 544 /* reallocate to fit new size */ 545 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 546 GFP_KERNEL); 547 if (unlikely(!lxt)) { 548 mutex_unlock(&blka->mutex); 549 rc = -ENOMEM; 550 goto out; 551 } 552 553 /* copy over all old entries */ 554 memcpy(lxt, lxt_old, (sizeof(*lxt) * rhte->lxt_cnt)); 555 } else 556 lxt = lxt_old; 557 558 /* nothing can fail from now on */ 559 my_new_size = rhte->lxt_cnt + delta; 560 561 /* add new entries to the end */ 562 for (i = rhte->lxt_cnt; i < my_new_size; i++) { 563 /* 564 * Due to the earlier check of available space, ba_alloc 565 * cannot fail here. If it did due to internal error, 566 * leave a rlba_base of -1u which will likely be a 567 * invalid LUN (too large). 568 */ 569 aun = ba_alloc(&blka->ba_lun); 570 if ((aun == -1ULL) || (aun >= blka->nchunk)) 571 pr_debug("%s: ba_alloc error: allocated chunk# %llX, " 572 "max %llX\n", __func__, aun, blka->nchunk - 1); 573 574 /* select both ports, use r/w perms from RHT */ 575 lxt[i].rlba_base = ((aun << MC_CHUNK_SHIFT) | 576 (lli->lun_index << LXT_LUNIDX_SHIFT) | 577 (RHT_PERM_RW << LXT_PERM_SHIFT | 578 lli->port_sel)); 579 } 580 581 mutex_unlock(&blka->mutex); 582 583 /* 584 * The following sequence is prescribed in the SISlite spec 585 * for syncing up with the AFU when adding LXT entries. 586 */ 587 dma_wmb(); /* Make LXT updates are visible */ 588 589 rhte->lxt_start = lxt; 590 dma_wmb(); /* Make RHT entry's LXT table update visible */ 591 592 rhte->lxt_cnt = my_new_size; 593 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 594 595 cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); 596 597 /* free old lxt if reallocated */ 598 if (lxt != lxt_old) 599 kfree(lxt_old); 600 *new_size = my_new_size; 601 out: 602 pr_debug("%s: returning rc=%d\n", __func__, rc); 603 return rc; 604 } 605 606 /** 607 * shrink_lxt() - reduces translation table associated with the specified RHTE 608 * @afu: AFU associated with the host. 609 * @sdev: SCSI device associated with LUN. 610 * @rhndl: Resource handle associated with the RHTE. 611 * @rhte: Resource handle entry (RHTE). 612 * @ctxi: Context owning resources. 613 * @new_size: Number of translation entries associated with RHTE. 614 * 615 * Return: 0 on success, -errno on failure 616 */ 617 static int shrink_lxt(struct afu *afu, 618 struct scsi_device *sdev, 619 res_hndl_t rhndl, 620 struct sisl_rht_entry *rhte, 621 struct ctx_info *ctxi, 622 u64 *new_size) 623 { 624 struct sisl_lxt_entry *lxt, *lxt_old; 625 struct llun_info *lli = sdev->hostdata; 626 struct glun_info *gli = lli->parent; 627 struct blka *blka = &gli->blka; 628 ctx_hndl_t ctxid = DECODE_CTXID(ctxi->ctxid); 629 bool needs_ws = ctxi->rht_needs_ws[rhndl]; 630 bool needs_sync = !ctxi->err_recovery_active; 631 u32 ngrps, ngrps_old; 632 u64 aun; /* chunk# allocated by block allocator */ 633 u64 delta = rhte->lxt_cnt - *new_size; 634 u64 my_new_size; 635 int i, rc = 0; 636 637 lxt_old = rhte->lxt_start; 638 ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); 639 ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt - delta); 640 641 if (ngrps != ngrps_old) { 642 /* Reallocate to fit new size unless new size is 0 */ 643 if (ngrps) { 644 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 645 GFP_KERNEL); 646 if (unlikely(!lxt)) { 647 rc = -ENOMEM; 648 goto out; 649 } 650 651 /* Copy over old entries that will remain */ 652 memcpy(lxt, lxt_old, 653 (sizeof(*lxt) * (rhte->lxt_cnt - delta))); 654 } else 655 lxt = NULL; 656 } else 657 lxt = lxt_old; 658 659 /* Nothing can fail from now on */ 660 my_new_size = rhte->lxt_cnt - delta; 661 662 /* 663 * The following sequence is prescribed in the SISlite spec 664 * for syncing up with the AFU when removing LXT entries. 665 */ 666 rhte->lxt_cnt = my_new_size; 667 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 668 669 rhte->lxt_start = lxt; 670 dma_wmb(); /* Make RHT entry's LXT table update visible */ 671 672 if (needs_sync) 673 cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC); 674 675 if (needs_ws) { 676 /* 677 * Mark the context as unavailable, so that we can release 678 * the mutex safely. 679 */ 680 ctxi->unavail = true; 681 mutex_unlock(&ctxi->mutex); 682 } 683 684 /* Free LBAs allocated to freed chunks */ 685 mutex_lock(&blka->mutex); 686 for (i = delta - 1; i >= 0; i--) { 687 /* Mask the higher 48 bits before shifting, even though 688 * it is a noop 689 */ 690 aun = (lxt_old[my_new_size + i].rlba_base & SISL_ASTATUS_MASK); 691 aun = (aun >> MC_CHUNK_SHIFT); 692 if (needs_ws) 693 write_same16(sdev, aun, MC_CHUNK_SIZE); 694 ba_free(&blka->ba_lun, aun); 695 } 696 mutex_unlock(&blka->mutex); 697 698 if (needs_ws) { 699 /* Make the context visible again */ 700 mutex_lock(&ctxi->mutex); 701 ctxi->unavail = false; 702 } 703 704 /* Free old lxt if reallocated */ 705 if (lxt != lxt_old) 706 kfree(lxt_old); 707 *new_size = my_new_size; 708 out: 709 pr_debug("%s: returning rc=%d\n", __func__, rc); 710 return rc; 711 } 712 713 /** 714 * _cxlflash_vlun_resize() - changes the size of a virtual LUN 715 * @sdev: SCSI device associated with LUN owning virtual LUN. 716 * @ctxi: Context owning resources. 717 * @resize: Resize ioctl data structure. 718 * 719 * On successful return, the user is informed of the new size (in blocks) 720 * of the virtual LUN in last LBA format. When the size of the virtual 721 * LUN is zero, the last LBA is reflected as -1. See comment in the 722 * prologue for _cxlflash_disk_release() regarding AFU syncs and contexts 723 * on the error recovery list. 724 * 725 * Return: 0 on success, -errno on failure 726 */ 727 int _cxlflash_vlun_resize(struct scsi_device *sdev, 728 struct ctx_info *ctxi, 729 struct dk_cxlflash_resize *resize) 730 { 731 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)sdev->host->hostdata; 732 struct llun_info *lli = sdev->hostdata; 733 struct glun_info *gli = lli->parent; 734 struct afu *afu = cfg->afu; 735 bool put_ctx = false; 736 737 res_hndl_t rhndl = resize->rsrc_handle; 738 u64 new_size; 739 u64 nsectors; 740 u64 ctxid = DECODE_CTXID(resize->context_id), 741 rctxid = resize->context_id; 742 743 struct sisl_rht_entry *rhte; 744 745 int rc = 0; 746 747 /* 748 * The requested size (req_size) is always assumed to be in 4k blocks, 749 * so we have to convert it here from 4k to chunk size. 750 */ 751 nsectors = (resize->req_size * CXLFLASH_BLOCK_SIZE) / gli->blk_len; 752 new_size = DIV_ROUND_UP(nsectors, MC_CHUNK_SIZE); 753 754 pr_debug("%s: ctxid=%llu rhndl=0x%llx, req_size=0x%llx," 755 "new_size=%llx\n", __func__, ctxid, resize->rsrc_handle, 756 resize->req_size, new_size); 757 758 if (unlikely(gli->mode != MODE_VIRTUAL)) { 759 pr_debug("%s: LUN mode does not support resize! (%d)\n", 760 __func__, gli->mode); 761 rc = -EINVAL; 762 goto out; 763 764 } 765 766 if (!ctxi) { 767 ctxi = get_context(cfg, rctxid, lli, CTX_CTRL_ERR_FALLBACK); 768 if (unlikely(!ctxi)) { 769 pr_debug("%s: Bad context! (%llu)\n", __func__, ctxid); 770 rc = -EINVAL; 771 goto out; 772 } 773 774 put_ctx = true; 775 } 776 777 rhte = get_rhte(ctxi, rhndl, lli); 778 if (unlikely(!rhte)) { 779 pr_debug("%s: Bad resource handle! (%u)\n", __func__, rhndl); 780 rc = -EINVAL; 781 goto out; 782 } 783 784 if (new_size > rhte->lxt_cnt) 785 rc = grow_lxt(afu, sdev, ctxid, rhndl, rhte, &new_size); 786 else if (new_size < rhte->lxt_cnt) 787 rc = shrink_lxt(afu, sdev, rhndl, rhte, ctxi, &new_size); 788 789 resize->hdr.return_flags = 0; 790 resize->last_lba = (new_size * MC_CHUNK_SIZE * gli->blk_len); 791 resize->last_lba /= CXLFLASH_BLOCK_SIZE; 792 resize->last_lba--; 793 794 out: 795 if (put_ctx) 796 put_context(ctxi); 797 pr_debug("%s: resized to %lld returning rc=%d\n", 798 __func__, resize->last_lba, rc); 799 return rc; 800 } 801 802 int cxlflash_vlun_resize(struct scsi_device *sdev, 803 struct dk_cxlflash_resize *resize) 804 { 805 return _cxlflash_vlun_resize(sdev, NULL, resize); 806 } 807 808 /** 809 * cxlflash_restore_luntable() - Restore LUN table to prior state 810 * @cfg: Internal structure associated with the host. 811 */ 812 void cxlflash_restore_luntable(struct cxlflash_cfg *cfg) 813 { 814 struct llun_info *lli, *temp; 815 u32 chan; 816 u32 lind; 817 struct afu *afu = cfg->afu; 818 struct sisl_global_map __iomem *agm = &afu->afu_map->global; 819 820 mutex_lock(&global.mutex); 821 822 list_for_each_entry_safe(lli, temp, &cfg->lluns, list) { 823 if (!lli->in_table) 824 continue; 825 826 lind = lli->lun_index; 827 828 if (lli->port_sel == BOTH_PORTS) { 829 writeq_be(lli->lun_id[0], &agm->fc_port[0][lind]); 830 writeq_be(lli->lun_id[1], &agm->fc_port[1][lind]); 831 pr_debug("%s: Virtual LUN on slot %d id0=%llx, " 832 "id1=%llx\n", __func__, lind, 833 lli->lun_id[0], lli->lun_id[1]); 834 } else { 835 chan = PORT2CHAN(lli->port_sel); 836 writeq_be(lli->lun_id[chan], &agm->fc_port[chan][lind]); 837 pr_debug("%s: Virtual LUN on slot %d chan=%d, " 838 "id=%llx\n", __func__, lind, chan, 839 lli->lun_id[chan]); 840 } 841 } 842 843 mutex_unlock(&global.mutex); 844 } 845 846 /** 847 * init_luntable() - write an entry in the LUN table 848 * @cfg: Internal structure associated with the host. 849 * @lli: Per adapter LUN information structure. 850 * 851 * On successful return, a LUN table entry is created. 852 * At the top for LUNs visible on both ports. 853 * At the bottom for LUNs visible only on one port. 854 * 855 * Return: 0 on success, -errno on failure 856 */ 857 static int init_luntable(struct cxlflash_cfg *cfg, struct llun_info *lli) 858 { 859 u32 chan; 860 u32 lind; 861 int rc = 0; 862 struct afu *afu = cfg->afu; 863 struct sisl_global_map __iomem *agm = &afu->afu_map->global; 864 865 mutex_lock(&global.mutex); 866 867 if (lli->in_table) 868 goto out; 869 870 if (lli->port_sel == BOTH_PORTS) { 871 /* 872 * If this LUN is visible from both ports, we will put 873 * it in the top half of the LUN table. 874 */ 875 if ((cfg->promote_lun_index == cfg->last_lun_index[0]) || 876 (cfg->promote_lun_index == cfg->last_lun_index[1])) { 877 rc = -ENOSPC; 878 goto out; 879 } 880 881 lind = lli->lun_index = cfg->promote_lun_index; 882 writeq_be(lli->lun_id[0], &agm->fc_port[0][lind]); 883 writeq_be(lli->lun_id[1], &agm->fc_port[1][lind]); 884 cfg->promote_lun_index++; 885 pr_debug("%s: Virtual LUN on slot %d id0=%llx, id1=%llx\n", 886 __func__, lind, lli->lun_id[0], lli->lun_id[1]); 887 } else { 888 /* 889 * If this LUN is visible only from one port, we will put 890 * it in the bottom half of the LUN table. 891 */ 892 chan = PORT2CHAN(lli->port_sel); 893 if (cfg->promote_lun_index == cfg->last_lun_index[chan]) { 894 rc = -ENOSPC; 895 goto out; 896 } 897 898 lind = lli->lun_index = cfg->last_lun_index[chan]; 899 writeq_be(lli->lun_id[chan], &agm->fc_port[chan][lind]); 900 cfg->last_lun_index[chan]--; 901 pr_debug("%s: Virtual LUN on slot %d chan=%d, id=%llx\n", 902 __func__, lind, chan, lli->lun_id[chan]); 903 } 904 905 lli->in_table = true; 906 out: 907 mutex_unlock(&global.mutex); 908 pr_debug("%s: returning rc=%d\n", __func__, rc); 909 return rc; 910 } 911 912 /** 913 * cxlflash_disk_virtual_open() - open a virtual disk of specified size 914 * @sdev: SCSI device associated with LUN owning virtual LUN. 915 * @arg: UVirtual ioctl data structure. 916 * 917 * On successful return, the user is informed of the resource handle 918 * to be used to identify the virtual LUN and the size (in blocks) of 919 * the virtual LUN in last LBA format. When the size of the virtual LUN 920 * is zero, the last LBA is reflected as -1. 921 * 922 * Return: 0 on success, -errno on failure 923 */ 924 int cxlflash_disk_virtual_open(struct scsi_device *sdev, void *arg) 925 { 926 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)sdev->host->hostdata; 927 struct device *dev = &cfg->dev->dev; 928 struct llun_info *lli = sdev->hostdata; 929 struct glun_info *gli = lli->parent; 930 931 struct dk_cxlflash_uvirtual *virt = (struct dk_cxlflash_uvirtual *)arg; 932 struct dk_cxlflash_resize resize; 933 934 u64 ctxid = DECODE_CTXID(virt->context_id), 935 rctxid = virt->context_id; 936 u64 lun_size = virt->lun_size; 937 u64 last_lba = 0; 938 u64 rsrc_handle = -1; 939 940 int rc = 0; 941 942 struct ctx_info *ctxi = NULL; 943 struct sisl_rht_entry *rhte = NULL; 944 945 pr_debug("%s: ctxid=%llu ls=0x%llx\n", __func__, ctxid, lun_size); 946 947 /* Setup the LUNs block allocator on first call */ 948 mutex_lock(&gli->mutex); 949 if (gli->mode == MODE_NONE) { 950 rc = init_vlun(lli); 951 if (rc) { 952 dev_err(dev, "%s: call to init_vlun failed rc=%d!\n", 953 __func__, rc); 954 rc = -ENOMEM; 955 goto err0; 956 } 957 } 958 959 rc = cxlflash_lun_attach(gli, MODE_VIRTUAL, true); 960 if (unlikely(rc)) { 961 dev_err(dev, "%s: Failed to attach to LUN! (VIRTUAL)\n", 962 __func__); 963 goto err0; 964 } 965 mutex_unlock(&gli->mutex); 966 967 rc = init_luntable(cfg, lli); 968 if (rc) { 969 dev_err(dev, "%s: call to init_luntable failed rc=%d!\n", 970 __func__, rc); 971 goto err1; 972 } 973 974 ctxi = get_context(cfg, rctxid, lli, 0); 975 if (unlikely(!ctxi)) { 976 dev_err(dev, "%s: Bad context! (%llu)\n", __func__, ctxid); 977 rc = -EINVAL; 978 goto err1; 979 } 980 981 rhte = rhte_checkout(ctxi, lli); 982 if (unlikely(!rhte)) { 983 dev_err(dev, "%s: too many opens for this context\n", __func__); 984 rc = -EMFILE; /* too many opens */ 985 goto err1; 986 } 987 988 rsrc_handle = (rhte - ctxi->rht_start); 989 990 /* Populate RHT format 0 */ 991 rhte->nmask = MC_RHT_NMASK; 992 rhte->fp = SISL_RHT_FP(0U, ctxi->rht_perms); 993 994 /* Resize even if requested size is 0 */ 995 marshal_virt_to_resize(virt, &resize); 996 resize.rsrc_handle = rsrc_handle; 997 rc = _cxlflash_vlun_resize(sdev, ctxi, &resize); 998 if (rc) { 999 dev_err(dev, "%s: resize failed rc %d\n", __func__, rc); 1000 goto err2; 1001 } 1002 last_lba = resize.last_lba; 1003 1004 if (virt->hdr.flags & DK_CXLFLASH_UVIRTUAL_NEED_WRITE_SAME) 1005 ctxi->rht_needs_ws[rsrc_handle] = true; 1006 1007 virt->hdr.return_flags = 0; 1008 virt->last_lba = last_lba; 1009 virt->rsrc_handle = rsrc_handle; 1010 1011 if (lli->port_sel == BOTH_PORTS) 1012 virt->hdr.return_flags |= DK_CXLFLASH_ALL_PORTS_ACTIVE; 1013 out: 1014 if (likely(ctxi)) 1015 put_context(ctxi); 1016 pr_debug("%s: returning handle 0x%llx rc=%d llba %lld\n", 1017 __func__, rsrc_handle, rc, last_lba); 1018 return rc; 1019 1020 err2: 1021 rhte_checkin(ctxi, rhte); 1022 err1: 1023 cxlflash_lun_detach(gli); 1024 goto out; 1025 err0: 1026 /* Special common cleanup prior to successful LUN attach */ 1027 cxlflash_ba_terminate(&gli->blka.ba_lun); 1028 mutex_unlock(&gli->mutex); 1029 goto out; 1030 } 1031 1032 /** 1033 * clone_lxt() - copies translation tables from source to destination RHTE 1034 * @afu: AFU associated with the host. 1035 * @blka: Block allocator associated with LUN. 1036 * @ctxid: Context ID of context owning the RHTE. 1037 * @rhndl: Resource handle associated with the RHTE. 1038 * @rhte: Destination resource handle entry (RHTE). 1039 * @rhte_src: Source resource handle entry (RHTE). 1040 * 1041 * Return: 0 on success, -errno on failure 1042 */ 1043 static int clone_lxt(struct afu *afu, 1044 struct blka *blka, 1045 ctx_hndl_t ctxid, 1046 res_hndl_t rhndl, 1047 struct sisl_rht_entry *rhte, 1048 struct sisl_rht_entry *rhte_src) 1049 { 1050 struct sisl_lxt_entry *lxt; 1051 u32 ngrps; 1052 u64 aun; /* chunk# allocated by block allocator */ 1053 int i, j; 1054 1055 ngrps = LXT_NUM_GROUPS(rhte_src->lxt_cnt); 1056 1057 if (ngrps) { 1058 /* allocate new LXTs for clone */ 1059 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 1060 GFP_KERNEL); 1061 if (unlikely(!lxt)) 1062 return -ENOMEM; 1063 1064 /* copy over */ 1065 memcpy(lxt, rhte_src->lxt_start, 1066 (sizeof(*lxt) * rhte_src->lxt_cnt)); 1067 1068 /* clone the LBAs in block allocator via ref_cnt */ 1069 mutex_lock(&blka->mutex); 1070 for (i = 0; i < rhte_src->lxt_cnt; i++) { 1071 aun = (lxt[i].rlba_base >> MC_CHUNK_SHIFT); 1072 if (ba_clone(&blka->ba_lun, aun) == -1ULL) { 1073 /* free the clones already made */ 1074 for (j = 0; j < i; j++) { 1075 aun = (lxt[j].rlba_base >> 1076 MC_CHUNK_SHIFT); 1077 ba_free(&blka->ba_lun, aun); 1078 } 1079 1080 mutex_unlock(&blka->mutex); 1081 kfree(lxt); 1082 return -EIO; 1083 } 1084 } 1085 mutex_unlock(&blka->mutex); 1086 } else { 1087 lxt = NULL; 1088 } 1089 1090 /* 1091 * The following sequence is prescribed in the SISlite spec 1092 * for syncing up with the AFU when adding LXT entries. 1093 */ 1094 dma_wmb(); /* Make LXT updates are visible */ 1095 1096 rhte->lxt_start = lxt; 1097 dma_wmb(); /* Make RHT entry's LXT table update visible */ 1098 1099 rhte->lxt_cnt = rhte_src->lxt_cnt; 1100 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 1101 1102 cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); 1103 1104 pr_debug("%s: returning\n", __func__); 1105 return 0; 1106 } 1107 1108 /** 1109 * cxlflash_disk_clone() - clone a context by making snapshot of another 1110 * @sdev: SCSI device associated with LUN owning virtual LUN. 1111 * @clone: Clone ioctl data structure. 1112 * 1113 * This routine effectively performs cxlflash_disk_open operation for each 1114 * in-use virtual resource in the source context. Note that the destination 1115 * context must be in pristine state and cannot have any resource handles 1116 * open at the time of the clone. 1117 * 1118 * Return: 0 on success, -errno on failure 1119 */ 1120 int cxlflash_disk_clone(struct scsi_device *sdev, 1121 struct dk_cxlflash_clone *clone) 1122 { 1123 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)sdev->host->hostdata; 1124 struct llun_info *lli = sdev->hostdata; 1125 struct glun_info *gli = lli->parent; 1126 struct blka *blka = &gli->blka; 1127 struct afu *afu = cfg->afu; 1128 struct dk_cxlflash_release release = { { 0 }, 0 }; 1129 1130 struct ctx_info *ctxi_src = NULL, 1131 *ctxi_dst = NULL; 1132 struct lun_access *lun_access_src, *lun_access_dst; 1133 u32 perms; 1134 u64 ctxid_src = DECODE_CTXID(clone->context_id_src), 1135 ctxid_dst = DECODE_CTXID(clone->context_id_dst), 1136 rctxid_src = clone->context_id_src, 1137 rctxid_dst = clone->context_id_dst; 1138 int adap_fd_src = clone->adap_fd_src; 1139 int i, j; 1140 int rc = 0; 1141 bool found; 1142 LIST_HEAD(sidecar); 1143 1144 pr_debug("%s: ctxid_src=%llu ctxid_dst=%llu adap_fd_src=%d\n", 1145 __func__, ctxid_src, ctxid_dst, adap_fd_src); 1146 1147 /* Do not clone yourself */ 1148 if (unlikely(rctxid_src == rctxid_dst)) { 1149 rc = -EINVAL; 1150 goto out; 1151 } 1152 1153 if (unlikely(gli->mode != MODE_VIRTUAL)) { 1154 rc = -EINVAL; 1155 pr_debug("%s: Clone not supported on physical LUNs! (%d)\n", 1156 __func__, gli->mode); 1157 goto out; 1158 } 1159 1160 ctxi_src = get_context(cfg, rctxid_src, lli, CTX_CTRL_CLONE); 1161 ctxi_dst = get_context(cfg, rctxid_dst, lli, 0); 1162 if (unlikely(!ctxi_src || !ctxi_dst)) { 1163 pr_debug("%s: Bad context! (%llu,%llu)\n", __func__, 1164 ctxid_src, ctxid_dst); 1165 rc = -EINVAL; 1166 goto out; 1167 } 1168 1169 if (unlikely(adap_fd_src != ctxi_src->lfd)) { 1170 pr_debug("%s: Invalid source adapter fd! (%d)\n", 1171 __func__, adap_fd_src); 1172 rc = -EINVAL; 1173 goto out; 1174 } 1175 1176 /* Verify there is no open resource handle in the destination context */ 1177 for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) 1178 if (ctxi_dst->rht_start[i].nmask != 0) { 1179 rc = -EINVAL; 1180 goto out; 1181 } 1182 1183 /* Clone LUN access list */ 1184 list_for_each_entry(lun_access_src, &ctxi_src->luns, list) { 1185 found = false; 1186 list_for_each_entry(lun_access_dst, &ctxi_dst->luns, list) 1187 if (lun_access_dst->sdev == lun_access_src->sdev) { 1188 found = true; 1189 break; 1190 } 1191 1192 if (!found) { 1193 lun_access_dst = kzalloc(sizeof(*lun_access_dst), 1194 GFP_KERNEL); 1195 if (unlikely(!lun_access_dst)) { 1196 pr_err("%s: Unable to allocate lun_access!\n", 1197 __func__); 1198 rc = -ENOMEM; 1199 goto out; 1200 } 1201 1202 *lun_access_dst = *lun_access_src; 1203 list_add(&lun_access_dst->list, &sidecar); 1204 } 1205 } 1206 1207 if (unlikely(!ctxi_src->rht_out)) { 1208 pr_debug("%s: Nothing to clone!\n", __func__); 1209 goto out_success; 1210 } 1211 1212 /* User specified permission on attach */ 1213 perms = ctxi_dst->rht_perms; 1214 1215 /* 1216 * Copy over checked-out RHT (and their associated LXT) entries by 1217 * hand, stopping after we've copied all outstanding entries and 1218 * cleaning up if the clone fails. 1219 * 1220 * Note: This loop is equivalent to performing cxlflash_disk_open and 1221 * cxlflash_vlun_resize. As such, LUN accounting needs to be taken into 1222 * account by attaching after each successful RHT entry clone. In the 1223 * event that a clone failure is experienced, the LUN detach is handled 1224 * via the cleanup performed by _cxlflash_disk_release. 1225 */ 1226 for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) { 1227 if (ctxi_src->rht_out == ctxi_dst->rht_out) 1228 break; 1229 if (ctxi_src->rht_start[i].nmask == 0) 1230 continue; 1231 1232 /* Consume a destination RHT entry */ 1233 ctxi_dst->rht_out++; 1234 ctxi_dst->rht_start[i].nmask = ctxi_src->rht_start[i].nmask; 1235 ctxi_dst->rht_start[i].fp = 1236 SISL_RHT_FP_CLONE(ctxi_src->rht_start[i].fp, perms); 1237 ctxi_dst->rht_lun[i] = ctxi_src->rht_lun[i]; 1238 1239 rc = clone_lxt(afu, blka, ctxid_dst, i, 1240 &ctxi_dst->rht_start[i], 1241 &ctxi_src->rht_start[i]); 1242 if (rc) { 1243 marshal_clone_to_rele(clone, &release); 1244 for (j = 0; j < i; j++) { 1245 release.rsrc_handle = j; 1246 _cxlflash_disk_release(sdev, ctxi_dst, 1247 &release); 1248 } 1249 1250 /* Put back the one we failed on */ 1251 rhte_checkin(ctxi_dst, &ctxi_dst->rht_start[i]); 1252 goto err; 1253 } 1254 1255 cxlflash_lun_attach(gli, gli->mode, false); 1256 } 1257 1258 out_success: 1259 list_splice(&sidecar, &ctxi_dst->luns); 1260 sys_close(adap_fd_src); 1261 1262 /* fall through */ 1263 out: 1264 if (ctxi_src) 1265 put_context(ctxi_src); 1266 if (ctxi_dst) 1267 put_context(ctxi_dst); 1268 pr_debug("%s: returning rc=%d\n", __func__, rc); 1269 return rc; 1270 1271 err: 1272 list_for_each_entry_safe(lun_access_src, lun_access_dst, &sidecar, list) 1273 kfree(lun_access_src); 1274 goto out; 1275 } 1276