1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * CXL Flash Device Driver 4 * 5 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 6 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 7 * 8 * Copyright (C) 2015 IBM Corporation 9 */ 10 11 #include <linux/interrupt.h> 12 #include <linux/pci.h> 13 #include <linux/syscalls.h> 14 #include <asm/unaligned.h> 15 #include <asm/bitsperlong.h> 16 17 #include <scsi/scsi_cmnd.h> 18 #include <scsi/scsi_host.h> 19 #include <uapi/scsi/cxlflash_ioctl.h> 20 21 #include "sislite.h" 22 #include "common.h" 23 #include "vlun.h" 24 #include "superpipe.h" 25 26 /** 27 * marshal_virt_to_resize() - translate uvirtual to resize structure 28 * @virt: Source structure from which to translate/copy. 29 * @resize: Destination structure for the translate/copy. 30 */ 31 static void marshal_virt_to_resize(struct dk_cxlflash_uvirtual *virt, 32 struct dk_cxlflash_resize *resize) 33 { 34 resize->hdr = virt->hdr; 35 resize->context_id = virt->context_id; 36 resize->rsrc_handle = virt->rsrc_handle; 37 resize->req_size = virt->lun_size; 38 resize->last_lba = virt->last_lba; 39 } 40 41 /** 42 * marshal_clone_to_rele() - translate clone to release structure 43 * @clone: Source structure from which to translate/copy. 44 * @release: Destination structure for the translate/copy. 45 */ 46 static void marshal_clone_to_rele(struct dk_cxlflash_clone *clone, 47 struct dk_cxlflash_release *release) 48 { 49 release->hdr = clone->hdr; 50 release->context_id = clone->context_id_dst; 51 } 52 53 /** 54 * ba_init() - initializes a block allocator 55 * @ba_lun: Block allocator to initialize. 56 * 57 * Return: 0 on success, -errno on failure 58 */ 59 static int ba_init(struct ba_lun *ba_lun) 60 { 61 struct ba_lun_info *bali = NULL; 62 int lun_size_au = 0, i = 0; 63 int last_word_underflow = 0; 64 u64 *lam; 65 66 pr_debug("%s: Initializing LUN: lun_id=%016llx " 67 "ba_lun->lsize=%lx ba_lun->au_size=%lX\n", 68 __func__, ba_lun->lun_id, ba_lun->lsize, ba_lun->au_size); 69 70 /* Calculate bit map size */ 71 lun_size_au = ba_lun->lsize / ba_lun->au_size; 72 if (lun_size_au == 0) { 73 pr_debug("%s: Requested LUN size of 0!\n", __func__); 74 return -EINVAL; 75 } 76 77 /* Allocate lun information container */ 78 bali = kzalloc(sizeof(struct ba_lun_info), GFP_KERNEL); 79 if (unlikely(!bali)) { 80 pr_err("%s: Failed to allocate lun_info lun_id=%016llx\n", 81 __func__, ba_lun->lun_id); 82 return -ENOMEM; 83 } 84 85 bali->total_aus = lun_size_au; 86 bali->lun_bmap_size = lun_size_au / BITS_PER_LONG; 87 88 if (lun_size_au % BITS_PER_LONG) 89 bali->lun_bmap_size++; 90 91 /* Allocate bitmap space */ 92 bali->lun_alloc_map = kzalloc((bali->lun_bmap_size * sizeof(u64)), 93 GFP_KERNEL); 94 if (unlikely(!bali->lun_alloc_map)) { 95 pr_err("%s: Failed to allocate lun allocation map: " 96 "lun_id=%016llx\n", __func__, ba_lun->lun_id); 97 kfree(bali); 98 return -ENOMEM; 99 } 100 101 /* Initialize the bit map size and set all bits to '1' */ 102 bali->free_aun_cnt = lun_size_au; 103 104 for (i = 0; i < bali->lun_bmap_size; i++) 105 bali->lun_alloc_map[i] = 0xFFFFFFFFFFFFFFFFULL; 106 107 /* If the last word not fully utilized, mark extra bits as allocated */ 108 last_word_underflow = (bali->lun_bmap_size * BITS_PER_LONG); 109 last_word_underflow -= bali->free_aun_cnt; 110 if (last_word_underflow > 0) { 111 lam = &bali->lun_alloc_map[bali->lun_bmap_size - 1]; 112 for (i = (HIBIT - last_word_underflow + 1); 113 i < BITS_PER_LONG; 114 i++) 115 clear_bit(i, (ulong *)lam); 116 } 117 118 /* Initialize high elevator index, low/curr already at 0 from kzalloc */ 119 bali->free_high_idx = bali->lun_bmap_size; 120 121 /* Allocate clone map */ 122 bali->aun_clone_map = kzalloc((bali->total_aus * sizeof(u8)), 123 GFP_KERNEL); 124 if (unlikely(!bali->aun_clone_map)) { 125 pr_err("%s: Failed to allocate clone map: lun_id=%016llx\n", 126 __func__, ba_lun->lun_id); 127 kfree(bali->lun_alloc_map); 128 kfree(bali); 129 return -ENOMEM; 130 } 131 132 /* Pass the allocated LUN info as a handle to the user */ 133 ba_lun->ba_lun_handle = bali; 134 135 pr_debug("%s: Successfully initialized the LUN: " 136 "lun_id=%016llx bitmap size=%x, free_aun_cnt=%llx\n", 137 __func__, ba_lun->lun_id, bali->lun_bmap_size, 138 bali->free_aun_cnt); 139 return 0; 140 } 141 142 /** 143 * find_free_range() - locates a free bit within the block allocator 144 * @low: First word in block allocator to start search. 145 * @high: Last word in block allocator to search. 146 * @bali: LUN information structure owning the block allocator to search. 147 * @bit_word: Passes back the word in the block allocator owning the free bit. 148 * 149 * Return: The bit position within the passed back word, -1 on failure 150 */ 151 static int find_free_range(u32 low, 152 u32 high, 153 struct ba_lun_info *bali, int *bit_word) 154 { 155 int i; 156 u64 bit_pos = -1; 157 ulong *lam, num_bits; 158 159 for (i = low; i < high; i++) 160 if (bali->lun_alloc_map[i] != 0) { 161 lam = (ulong *)&bali->lun_alloc_map[i]; 162 num_bits = (sizeof(*lam) * BITS_PER_BYTE); 163 bit_pos = find_first_bit(lam, num_bits); 164 165 pr_devel("%s: Found free bit %llu in LUN " 166 "map entry %016llx at bitmap index = %d\n", 167 __func__, bit_pos, bali->lun_alloc_map[i], i); 168 169 *bit_word = i; 170 bali->free_aun_cnt--; 171 clear_bit(bit_pos, lam); 172 break; 173 } 174 175 return bit_pos; 176 } 177 178 /** 179 * ba_alloc() - allocates a block from the block allocator 180 * @ba_lun: Block allocator from which to allocate a block. 181 * 182 * Return: The allocated block, -1 on failure 183 */ 184 static u64 ba_alloc(struct ba_lun *ba_lun) 185 { 186 u64 bit_pos = -1; 187 int bit_word = 0; 188 struct ba_lun_info *bali = NULL; 189 190 bali = ba_lun->ba_lun_handle; 191 192 pr_debug("%s: Received block allocation request: " 193 "lun_id=%016llx free_aun_cnt=%llx\n", 194 __func__, ba_lun->lun_id, bali->free_aun_cnt); 195 196 if (bali->free_aun_cnt == 0) { 197 pr_debug("%s: No space left on LUN: lun_id=%016llx\n", 198 __func__, ba_lun->lun_id); 199 return -1ULL; 200 } 201 202 /* Search to find a free entry, curr->high then low->curr */ 203 bit_pos = find_free_range(bali->free_curr_idx, 204 bali->free_high_idx, bali, &bit_word); 205 if (bit_pos == -1) { 206 bit_pos = find_free_range(bali->free_low_idx, 207 bali->free_curr_idx, 208 bali, &bit_word); 209 if (bit_pos == -1) { 210 pr_debug("%s: Could not find an allocation unit on LUN:" 211 " lun_id=%016llx\n", __func__, ba_lun->lun_id); 212 return -1ULL; 213 } 214 } 215 216 /* Update the free_curr_idx */ 217 if (bit_pos == HIBIT) 218 bali->free_curr_idx = bit_word + 1; 219 else 220 bali->free_curr_idx = bit_word; 221 222 pr_debug("%s: Allocating AU number=%llx lun_id=%016llx " 223 "free_aun_cnt=%llx\n", __func__, 224 ((bit_word * BITS_PER_LONG) + bit_pos), ba_lun->lun_id, 225 bali->free_aun_cnt); 226 227 return (u64) ((bit_word * BITS_PER_LONG) + bit_pos); 228 } 229 230 /** 231 * validate_alloc() - validates the specified block has been allocated 232 * @bali: LUN info owning the block allocator. 233 * @aun: Block to validate. 234 * 235 * Return: 0 on success, -1 on failure 236 */ 237 static int validate_alloc(struct ba_lun_info *bali, u64 aun) 238 { 239 int idx = 0, bit_pos = 0; 240 241 idx = aun / BITS_PER_LONG; 242 bit_pos = aun % BITS_PER_LONG; 243 244 if (test_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx])) 245 return -1; 246 247 return 0; 248 } 249 250 /** 251 * ba_free() - frees a block from the block allocator 252 * @ba_lun: Block allocator from which to allocate a block. 253 * @to_free: Block to free. 254 * 255 * Return: 0 on success, -1 on failure 256 */ 257 static int ba_free(struct ba_lun *ba_lun, u64 to_free) 258 { 259 int idx = 0, bit_pos = 0; 260 struct ba_lun_info *bali = NULL; 261 262 bali = ba_lun->ba_lun_handle; 263 264 if (validate_alloc(bali, to_free)) { 265 pr_debug("%s: AUN %llx is not allocated on lun_id=%016llx\n", 266 __func__, to_free, ba_lun->lun_id); 267 return -1; 268 } 269 270 pr_debug("%s: Received a request to free AU=%llx lun_id=%016llx " 271 "free_aun_cnt=%llx\n", __func__, to_free, ba_lun->lun_id, 272 bali->free_aun_cnt); 273 274 if (bali->aun_clone_map[to_free] > 0) { 275 pr_debug("%s: AUN %llx lun_id=%016llx cloned. Clone count=%x\n", 276 __func__, to_free, ba_lun->lun_id, 277 bali->aun_clone_map[to_free]); 278 bali->aun_clone_map[to_free]--; 279 return 0; 280 } 281 282 idx = to_free / BITS_PER_LONG; 283 bit_pos = to_free % BITS_PER_LONG; 284 285 set_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx]); 286 bali->free_aun_cnt++; 287 288 if (idx < bali->free_low_idx) 289 bali->free_low_idx = idx; 290 else if (idx > bali->free_high_idx) 291 bali->free_high_idx = idx; 292 293 pr_debug("%s: Successfully freed AU bit_pos=%x bit map index=%x " 294 "lun_id=%016llx free_aun_cnt=%llx\n", __func__, bit_pos, idx, 295 ba_lun->lun_id, bali->free_aun_cnt); 296 297 return 0; 298 } 299 300 /** 301 * ba_clone() - Clone a chunk of the block allocation table 302 * @ba_lun: Block allocator from which to allocate a block. 303 * @to_clone: Block to clone. 304 * 305 * Return: 0 on success, -1 on failure 306 */ 307 static int ba_clone(struct ba_lun *ba_lun, u64 to_clone) 308 { 309 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 310 311 if (validate_alloc(bali, to_clone)) { 312 pr_debug("%s: AUN=%llx not allocated on lun_id=%016llx\n", 313 __func__, to_clone, ba_lun->lun_id); 314 return -1; 315 } 316 317 pr_debug("%s: Received a request to clone AUN %llx on lun_id=%016llx\n", 318 __func__, to_clone, ba_lun->lun_id); 319 320 if (bali->aun_clone_map[to_clone] == MAX_AUN_CLONE_CNT) { 321 pr_debug("%s: AUN %llx on lun_id=%016llx hit max clones already\n", 322 __func__, to_clone, ba_lun->lun_id); 323 return -1; 324 } 325 326 bali->aun_clone_map[to_clone]++; 327 328 return 0; 329 } 330 331 /** 332 * ba_space() - returns the amount of free space left in the block allocator 333 * @ba_lun: Block allocator. 334 * 335 * Return: Amount of free space in block allocator 336 */ 337 static u64 ba_space(struct ba_lun *ba_lun) 338 { 339 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 340 341 return bali->free_aun_cnt; 342 } 343 344 /** 345 * cxlflash_ba_terminate() - frees resources associated with the block allocator 346 * @ba_lun: Block allocator. 347 * 348 * Safe to call in a partially allocated state. 349 */ 350 void cxlflash_ba_terminate(struct ba_lun *ba_lun) 351 { 352 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 353 354 if (bali) { 355 kfree(bali->aun_clone_map); 356 kfree(bali->lun_alloc_map); 357 kfree(bali); 358 ba_lun->ba_lun_handle = NULL; 359 } 360 } 361 362 /** 363 * init_vlun() - initializes a LUN for virtual use 364 * @lli: LUN information structure that owns the block allocator. 365 * 366 * Return: 0 on success, -errno on failure 367 */ 368 static int init_vlun(struct llun_info *lli) 369 { 370 int rc = 0; 371 struct glun_info *gli = lli->parent; 372 struct blka *blka = &gli->blka; 373 374 memset(blka, 0, sizeof(*blka)); 375 mutex_init(&blka->mutex); 376 377 /* LUN IDs are unique per port, save the index instead */ 378 blka->ba_lun.lun_id = lli->lun_index; 379 blka->ba_lun.lsize = gli->max_lba + 1; 380 blka->ba_lun.lba_size = gli->blk_len; 381 382 blka->ba_lun.au_size = MC_CHUNK_SIZE; 383 blka->nchunk = blka->ba_lun.lsize / MC_CHUNK_SIZE; 384 385 rc = ba_init(&blka->ba_lun); 386 if (unlikely(rc)) 387 pr_debug("%s: cannot init block_alloc, rc=%d\n", __func__, rc); 388 389 pr_debug("%s: returning rc=%d lli=%p\n", __func__, rc, lli); 390 return rc; 391 } 392 393 /** 394 * write_same16() - sends a SCSI WRITE_SAME16 (0) command to specified LUN 395 * @sdev: SCSI device associated with LUN. 396 * @lba: Logical block address to start write same. 397 * @nblks: Number of logical blocks to write same. 398 * 399 * The SCSI WRITE_SAME16 can take quite a while to complete. Should an EEH occur 400 * while in scsi_execute(), the EEH handler will attempt to recover. As part of 401 * the recovery, the handler drains all currently running ioctls, waiting until 402 * they have completed before proceeding with a reset. As this routine is used 403 * on the ioctl path, this can create a condition where the EEH handler becomes 404 * stuck, infinitely waiting for this ioctl thread. To avoid this behavior, 405 * temporarily unmark this thread as an ioctl thread by releasing the ioctl read 406 * semaphore. This will allow the EEH handler to proceed with a recovery while 407 * this thread is still running. Once the scsi_execute() returns, reacquire the 408 * ioctl read semaphore and check the adapter state in case it changed while 409 * inside of scsi_execute(). The state check will wait if the adapter is still 410 * being recovered or return a failure if the recovery failed. In the event that 411 * the adapter reset failed, simply return the failure as the ioctl would be 412 * unable to continue. 413 * 414 * Note that the above puts a requirement on this routine to only be called on 415 * an ioctl thread. 416 * 417 * Return: 0 on success, -errno on failure 418 */ 419 static int write_same16(struct scsi_device *sdev, 420 u64 lba, 421 u32 nblks) 422 { 423 u8 *cmd_buf = NULL; 424 u8 *scsi_cmd = NULL; 425 int rc = 0; 426 int result = 0; 427 u64 offset = lba; 428 int left = nblks; 429 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 430 struct device *dev = &cfg->dev->dev; 431 const u32 s = ilog2(sdev->sector_size) - 9; 432 const u32 to = sdev->request_queue->rq_timeout; 433 const u32 ws_limit = blk_queue_get_max_sectors(sdev->request_queue, 434 REQ_OP_WRITE_SAME) >> s; 435 436 cmd_buf = kzalloc(CMD_BUFSIZE, GFP_KERNEL); 437 scsi_cmd = kzalloc(MAX_COMMAND_SIZE, GFP_KERNEL); 438 if (unlikely(!cmd_buf || !scsi_cmd)) { 439 rc = -ENOMEM; 440 goto out; 441 } 442 443 while (left > 0) { 444 445 scsi_cmd[0] = WRITE_SAME_16; 446 scsi_cmd[1] = cfg->ws_unmap ? 0x8 : 0; 447 put_unaligned_be64(offset, &scsi_cmd[2]); 448 put_unaligned_be32(ws_limit < left ? ws_limit : left, 449 &scsi_cmd[10]); 450 451 /* Drop the ioctl read semahpore across lengthy call */ 452 up_read(&cfg->ioctl_rwsem); 453 result = scsi_execute(sdev, scsi_cmd, DMA_TO_DEVICE, cmd_buf, 454 CMD_BUFSIZE, NULL, NULL, to, 455 CMD_RETRIES, 0, 0, NULL); 456 down_read(&cfg->ioctl_rwsem); 457 rc = check_state(cfg); 458 if (rc) { 459 dev_err(dev, "%s: Failed state result=%08x\n", 460 __func__, result); 461 rc = -ENODEV; 462 goto out; 463 } 464 465 if (result) { 466 dev_err_ratelimited(dev, "%s: command failed for " 467 "offset=%lld result=%08x\n", 468 __func__, offset, result); 469 rc = -EIO; 470 goto out; 471 } 472 left -= ws_limit; 473 offset += ws_limit; 474 } 475 476 out: 477 kfree(cmd_buf); 478 kfree(scsi_cmd); 479 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 480 return rc; 481 } 482 483 /** 484 * grow_lxt() - expands the translation table associated with the specified RHTE 485 * @afu: AFU associated with the host. 486 * @sdev: SCSI device associated with LUN. 487 * @ctxid: Context ID of context owning the RHTE. 488 * @rhndl: Resource handle associated with the RHTE. 489 * @rhte: Resource handle entry (RHTE). 490 * @new_size: Number of translation entries associated with RHTE. 491 * 492 * By design, this routine employs a 'best attempt' allocation and will 493 * truncate the requested size down if there is not sufficient space in 494 * the block allocator to satisfy the request but there does exist some 495 * amount of space. The user is made aware of this by returning the size 496 * allocated. 497 * 498 * Return: 0 on success, -errno on failure 499 */ 500 static int grow_lxt(struct afu *afu, 501 struct scsi_device *sdev, 502 ctx_hndl_t ctxid, 503 res_hndl_t rhndl, 504 struct sisl_rht_entry *rhte, 505 u64 *new_size) 506 { 507 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 508 struct device *dev = &cfg->dev->dev; 509 struct sisl_lxt_entry *lxt = NULL, *lxt_old = NULL; 510 struct llun_info *lli = sdev->hostdata; 511 struct glun_info *gli = lli->parent; 512 struct blka *blka = &gli->blka; 513 u32 av_size; 514 u32 ngrps, ngrps_old; 515 u64 aun; /* chunk# allocated by block allocator */ 516 u64 delta = *new_size - rhte->lxt_cnt; 517 u64 my_new_size; 518 int i, rc = 0; 519 520 /* 521 * Check what is available in the block allocator before re-allocating 522 * LXT array. This is done up front under the mutex which must not be 523 * released until after allocation is complete. 524 */ 525 mutex_lock(&blka->mutex); 526 av_size = ba_space(&blka->ba_lun); 527 if (unlikely(av_size <= 0)) { 528 dev_dbg(dev, "%s: ba_space error av_size=%d\n", 529 __func__, av_size); 530 mutex_unlock(&blka->mutex); 531 rc = -ENOSPC; 532 goto out; 533 } 534 535 if (av_size < delta) 536 delta = av_size; 537 538 lxt_old = rhte->lxt_start; 539 ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); 540 ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt + delta); 541 542 if (ngrps != ngrps_old) { 543 /* reallocate to fit new size */ 544 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 545 GFP_KERNEL); 546 if (unlikely(!lxt)) { 547 mutex_unlock(&blka->mutex); 548 rc = -ENOMEM; 549 goto out; 550 } 551 552 /* copy over all old entries */ 553 memcpy(lxt, lxt_old, (sizeof(*lxt) * rhte->lxt_cnt)); 554 } else 555 lxt = lxt_old; 556 557 /* nothing can fail from now on */ 558 my_new_size = rhte->lxt_cnt + delta; 559 560 /* add new entries to the end */ 561 for (i = rhte->lxt_cnt; i < my_new_size; i++) { 562 /* 563 * Due to the earlier check of available space, ba_alloc 564 * cannot fail here. If it did due to internal error, 565 * leave a rlba_base of -1u which will likely be a 566 * invalid LUN (too large). 567 */ 568 aun = ba_alloc(&blka->ba_lun); 569 if ((aun == -1ULL) || (aun >= blka->nchunk)) 570 dev_dbg(dev, "%s: ba_alloc error allocated chunk=%llu " 571 "max=%llu\n", __func__, aun, blka->nchunk - 1); 572 573 /* select both ports, use r/w perms from RHT */ 574 lxt[i].rlba_base = ((aun << MC_CHUNK_SHIFT) | 575 (lli->lun_index << LXT_LUNIDX_SHIFT) | 576 (RHT_PERM_RW << LXT_PERM_SHIFT | 577 lli->port_sel)); 578 } 579 580 mutex_unlock(&blka->mutex); 581 582 /* 583 * The following sequence is prescribed in the SISlite spec 584 * for syncing up with the AFU when adding LXT entries. 585 */ 586 dma_wmb(); /* Make LXT updates are visible */ 587 588 rhte->lxt_start = lxt; 589 dma_wmb(); /* Make RHT entry's LXT table update visible */ 590 591 rhte->lxt_cnt = my_new_size; 592 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 593 594 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); 595 if (unlikely(rc)) 596 rc = -EAGAIN; 597 598 /* free old lxt if reallocated */ 599 if (lxt != lxt_old) 600 kfree(lxt_old); 601 *new_size = my_new_size; 602 out: 603 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 604 return rc; 605 } 606 607 /** 608 * shrink_lxt() - reduces translation table associated with the specified RHTE 609 * @afu: AFU associated with the host. 610 * @sdev: SCSI device associated with LUN. 611 * @rhndl: Resource handle associated with the RHTE. 612 * @rhte: Resource handle entry (RHTE). 613 * @ctxi: Context owning resources. 614 * @new_size: Number of translation entries associated with RHTE. 615 * 616 * Return: 0 on success, -errno on failure 617 */ 618 static int shrink_lxt(struct afu *afu, 619 struct scsi_device *sdev, 620 res_hndl_t rhndl, 621 struct sisl_rht_entry *rhte, 622 struct ctx_info *ctxi, 623 u64 *new_size) 624 { 625 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 626 struct device *dev = &cfg->dev->dev; 627 struct sisl_lxt_entry *lxt, *lxt_old; 628 struct llun_info *lli = sdev->hostdata; 629 struct glun_info *gli = lli->parent; 630 struct blka *blka = &gli->blka; 631 ctx_hndl_t ctxid = DECODE_CTXID(ctxi->ctxid); 632 bool needs_ws = ctxi->rht_needs_ws[rhndl]; 633 bool needs_sync = !ctxi->err_recovery_active; 634 u32 ngrps, ngrps_old; 635 u64 aun; /* chunk# allocated by block allocator */ 636 u64 delta = rhte->lxt_cnt - *new_size; 637 u64 my_new_size; 638 int i, rc = 0; 639 640 lxt_old = rhte->lxt_start; 641 ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); 642 ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt - delta); 643 644 if (ngrps != ngrps_old) { 645 /* Reallocate to fit new size unless new size is 0 */ 646 if (ngrps) { 647 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 648 GFP_KERNEL); 649 if (unlikely(!lxt)) { 650 rc = -ENOMEM; 651 goto out; 652 } 653 654 /* Copy over old entries that will remain */ 655 memcpy(lxt, lxt_old, 656 (sizeof(*lxt) * (rhte->lxt_cnt - delta))); 657 } else 658 lxt = NULL; 659 } else 660 lxt = lxt_old; 661 662 /* Nothing can fail from now on */ 663 my_new_size = rhte->lxt_cnt - delta; 664 665 /* 666 * The following sequence is prescribed in the SISlite spec 667 * for syncing up with the AFU when removing LXT entries. 668 */ 669 rhte->lxt_cnt = my_new_size; 670 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 671 672 rhte->lxt_start = lxt; 673 dma_wmb(); /* Make RHT entry's LXT table update visible */ 674 675 if (needs_sync) { 676 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC); 677 if (unlikely(rc)) 678 rc = -EAGAIN; 679 } 680 681 if (needs_ws) { 682 /* 683 * Mark the context as unavailable, so that we can release 684 * the mutex safely. 685 */ 686 ctxi->unavail = true; 687 mutex_unlock(&ctxi->mutex); 688 } 689 690 /* Free LBAs allocated to freed chunks */ 691 mutex_lock(&blka->mutex); 692 for (i = delta - 1; i >= 0; i--) { 693 aun = lxt_old[my_new_size + i].rlba_base >> MC_CHUNK_SHIFT; 694 if (needs_ws) 695 write_same16(sdev, aun, MC_CHUNK_SIZE); 696 ba_free(&blka->ba_lun, aun); 697 } 698 mutex_unlock(&blka->mutex); 699 700 if (needs_ws) { 701 /* Make the context visible again */ 702 mutex_lock(&ctxi->mutex); 703 ctxi->unavail = false; 704 } 705 706 /* Free old lxt if reallocated */ 707 if (lxt != lxt_old) 708 kfree(lxt_old); 709 *new_size = my_new_size; 710 out: 711 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 712 return rc; 713 } 714 715 /** 716 * _cxlflash_vlun_resize() - changes the size of a virtual LUN 717 * @sdev: SCSI device associated with LUN owning virtual LUN. 718 * @ctxi: Context owning resources. 719 * @resize: Resize ioctl data structure. 720 * 721 * On successful return, the user is informed of the new size (in blocks) 722 * of the virtual LUN in last LBA format. When the size of the virtual 723 * LUN is zero, the last LBA is reflected as -1. See comment in the 724 * prologue for _cxlflash_disk_release() regarding AFU syncs and contexts 725 * on the error recovery list. 726 * 727 * Return: 0 on success, -errno on failure 728 */ 729 int _cxlflash_vlun_resize(struct scsi_device *sdev, 730 struct ctx_info *ctxi, 731 struct dk_cxlflash_resize *resize) 732 { 733 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 734 struct device *dev = &cfg->dev->dev; 735 struct llun_info *lli = sdev->hostdata; 736 struct glun_info *gli = lli->parent; 737 struct afu *afu = cfg->afu; 738 bool put_ctx = false; 739 740 res_hndl_t rhndl = resize->rsrc_handle; 741 u64 new_size; 742 u64 nsectors; 743 u64 ctxid = DECODE_CTXID(resize->context_id), 744 rctxid = resize->context_id; 745 746 struct sisl_rht_entry *rhte; 747 748 int rc = 0; 749 750 /* 751 * The requested size (req_size) is always assumed to be in 4k blocks, 752 * so we have to convert it here from 4k to chunk size. 753 */ 754 nsectors = (resize->req_size * CXLFLASH_BLOCK_SIZE) / gli->blk_len; 755 new_size = DIV_ROUND_UP(nsectors, MC_CHUNK_SIZE); 756 757 dev_dbg(dev, "%s: ctxid=%llu rhndl=%llu req_size=%llu new_size=%llu\n", 758 __func__, ctxid, resize->rsrc_handle, resize->req_size, 759 new_size); 760 761 if (unlikely(gli->mode != MODE_VIRTUAL)) { 762 dev_dbg(dev, "%s: LUN mode does not support resize mode=%d\n", 763 __func__, gli->mode); 764 rc = -EINVAL; 765 goto out; 766 767 } 768 769 if (!ctxi) { 770 ctxi = get_context(cfg, rctxid, lli, CTX_CTRL_ERR_FALLBACK); 771 if (unlikely(!ctxi)) { 772 dev_dbg(dev, "%s: Bad context ctxid=%llu\n", 773 __func__, ctxid); 774 rc = -EINVAL; 775 goto out; 776 } 777 778 put_ctx = true; 779 } 780 781 rhte = get_rhte(ctxi, rhndl, lli); 782 if (unlikely(!rhte)) { 783 dev_dbg(dev, "%s: Bad resource handle rhndl=%u\n", 784 __func__, rhndl); 785 rc = -EINVAL; 786 goto out; 787 } 788 789 if (new_size > rhte->lxt_cnt) 790 rc = grow_lxt(afu, sdev, ctxid, rhndl, rhte, &new_size); 791 else if (new_size < rhte->lxt_cnt) 792 rc = shrink_lxt(afu, sdev, rhndl, rhte, ctxi, &new_size); 793 else { 794 /* 795 * Rare case where there is already sufficient space, just 796 * need to perform a translation sync with the AFU. This 797 * scenario likely follows a previous sync failure during 798 * a resize operation. Accordingly, perform the heavyweight 799 * form of translation sync as it is unknown which type of 800 * resize failed previously. 801 */ 802 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC); 803 if (unlikely(rc)) { 804 rc = -EAGAIN; 805 goto out; 806 } 807 } 808 809 resize->hdr.return_flags = 0; 810 resize->last_lba = (new_size * MC_CHUNK_SIZE * gli->blk_len); 811 resize->last_lba /= CXLFLASH_BLOCK_SIZE; 812 resize->last_lba--; 813 814 out: 815 if (put_ctx) 816 put_context(ctxi); 817 dev_dbg(dev, "%s: resized to %llu returning rc=%d\n", 818 __func__, resize->last_lba, rc); 819 return rc; 820 } 821 822 int cxlflash_vlun_resize(struct scsi_device *sdev, 823 struct dk_cxlflash_resize *resize) 824 { 825 return _cxlflash_vlun_resize(sdev, NULL, resize); 826 } 827 828 /** 829 * cxlflash_restore_luntable() - Restore LUN table to prior state 830 * @cfg: Internal structure associated with the host. 831 */ 832 void cxlflash_restore_luntable(struct cxlflash_cfg *cfg) 833 { 834 struct llun_info *lli, *temp; 835 u32 lind; 836 int k; 837 struct device *dev = &cfg->dev->dev; 838 __be64 __iomem *fc_port_luns; 839 840 mutex_lock(&global.mutex); 841 842 list_for_each_entry_safe(lli, temp, &cfg->lluns, list) { 843 if (!lli->in_table) 844 continue; 845 846 lind = lli->lun_index; 847 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind); 848 849 for (k = 0; k < cfg->num_fc_ports; k++) 850 if (lli->port_sel & (1 << k)) { 851 fc_port_luns = get_fc_port_luns(cfg, k); 852 writeq_be(lli->lun_id[k], &fc_port_luns[lind]); 853 dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]); 854 } 855 } 856 857 mutex_unlock(&global.mutex); 858 } 859 860 /** 861 * get_num_ports() - compute number of ports from port selection mask 862 * @psm: Port selection mask. 863 * 864 * Return: Population count of port selection mask 865 */ 866 static inline u8 get_num_ports(u32 psm) 867 { 868 static const u8 bits[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 869 1, 2, 2, 3, 2, 3, 3, 4 }; 870 871 return bits[psm & 0xf]; 872 } 873 874 /** 875 * init_luntable() - write an entry in the LUN table 876 * @cfg: Internal structure associated with the host. 877 * @lli: Per adapter LUN information structure. 878 * 879 * On successful return, a LUN table entry is created: 880 * - at the top for LUNs visible on multiple ports. 881 * - at the bottom for LUNs visible only on one port. 882 * 883 * Return: 0 on success, -errno on failure 884 */ 885 static int init_luntable(struct cxlflash_cfg *cfg, struct llun_info *lli) 886 { 887 u32 chan; 888 u32 lind; 889 u32 nports; 890 int rc = 0; 891 int k; 892 struct device *dev = &cfg->dev->dev; 893 __be64 __iomem *fc_port_luns; 894 895 mutex_lock(&global.mutex); 896 897 if (lli->in_table) 898 goto out; 899 900 nports = get_num_ports(lli->port_sel); 901 if (nports == 0 || nports > cfg->num_fc_ports) { 902 WARN(1, "Unsupported port configuration nports=%u", nports); 903 rc = -EIO; 904 goto out; 905 } 906 907 if (nports > 1) { 908 /* 909 * When LUN is visible from multiple ports, we will put 910 * it in the top half of the LUN table. 911 */ 912 for (k = 0; k < cfg->num_fc_ports; k++) { 913 if (!(lli->port_sel & (1 << k))) 914 continue; 915 916 if (cfg->promote_lun_index == cfg->last_lun_index[k]) { 917 rc = -ENOSPC; 918 goto out; 919 } 920 } 921 922 lind = lli->lun_index = cfg->promote_lun_index; 923 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind); 924 925 for (k = 0; k < cfg->num_fc_ports; k++) { 926 if (!(lli->port_sel & (1 << k))) 927 continue; 928 929 fc_port_luns = get_fc_port_luns(cfg, k); 930 writeq_be(lli->lun_id[k], &fc_port_luns[lind]); 931 dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]); 932 } 933 934 cfg->promote_lun_index++; 935 } else { 936 /* 937 * When LUN is visible only from one port, we will put 938 * it in the bottom half of the LUN table. 939 */ 940 chan = PORTMASK2CHAN(lli->port_sel); 941 if (cfg->promote_lun_index == cfg->last_lun_index[chan]) { 942 rc = -ENOSPC; 943 goto out; 944 } 945 946 lind = lli->lun_index = cfg->last_lun_index[chan]; 947 fc_port_luns = get_fc_port_luns(cfg, chan); 948 writeq_be(lli->lun_id[chan], &fc_port_luns[lind]); 949 cfg->last_lun_index[chan]--; 950 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n\t%d=%llx\n", 951 __func__, lind, chan, lli->lun_id[chan]); 952 } 953 954 lli->in_table = true; 955 out: 956 mutex_unlock(&global.mutex); 957 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 958 return rc; 959 } 960 961 /** 962 * cxlflash_disk_virtual_open() - open a virtual disk of specified size 963 * @sdev: SCSI device associated with LUN owning virtual LUN. 964 * @arg: UVirtual ioctl data structure. 965 * 966 * On successful return, the user is informed of the resource handle 967 * to be used to identify the virtual LUN and the size (in blocks) of 968 * the virtual LUN in last LBA format. When the size of the virtual LUN 969 * is zero, the last LBA is reflected as -1. 970 * 971 * Return: 0 on success, -errno on failure 972 */ 973 int cxlflash_disk_virtual_open(struct scsi_device *sdev, void *arg) 974 { 975 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 976 struct device *dev = &cfg->dev->dev; 977 struct llun_info *lli = sdev->hostdata; 978 struct glun_info *gli = lli->parent; 979 980 struct dk_cxlflash_uvirtual *virt = (struct dk_cxlflash_uvirtual *)arg; 981 struct dk_cxlflash_resize resize; 982 983 u64 ctxid = DECODE_CTXID(virt->context_id), 984 rctxid = virt->context_id; 985 u64 lun_size = virt->lun_size; 986 u64 last_lba = 0; 987 u64 rsrc_handle = -1; 988 989 int rc = 0; 990 991 struct ctx_info *ctxi = NULL; 992 struct sisl_rht_entry *rhte = NULL; 993 994 dev_dbg(dev, "%s: ctxid=%llu ls=%llu\n", __func__, ctxid, lun_size); 995 996 /* Setup the LUNs block allocator on first call */ 997 mutex_lock(&gli->mutex); 998 if (gli->mode == MODE_NONE) { 999 rc = init_vlun(lli); 1000 if (rc) { 1001 dev_err(dev, "%s: init_vlun failed rc=%d\n", 1002 __func__, rc); 1003 rc = -ENOMEM; 1004 goto err0; 1005 } 1006 } 1007 1008 rc = cxlflash_lun_attach(gli, MODE_VIRTUAL, true); 1009 if (unlikely(rc)) { 1010 dev_err(dev, "%s: Failed attach to LUN (VIRTUAL)\n", __func__); 1011 goto err0; 1012 } 1013 mutex_unlock(&gli->mutex); 1014 1015 rc = init_luntable(cfg, lli); 1016 if (rc) { 1017 dev_err(dev, "%s: init_luntable failed rc=%d\n", __func__, rc); 1018 goto err1; 1019 } 1020 1021 ctxi = get_context(cfg, rctxid, lli, 0); 1022 if (unlikely(!ctxi)) { 1023 dev_err(dev, "%s: Bad context ctxid=%llu\n", __func__, ctxid); 1024 rc = -EINVAL; 1025 goto err1; 1026 } 1027 1028 rhte = rhte_checkout(ctxi, lli); 1029 if (unlikely(!rhte)) { 1030 dev_err(dev, "%s: too many opens ctxid=%llu\n", 1031 __func__, ctxid); 1032 rc = -EMFILE; /* too many opens */ 1033 goto err1; 1034 } 1035 1036 rsrc_handle = (rhte - ctxi->rht_start); 1037 1038 /* Populate RHT format 0 */ 1039 rhte->nmask = MC_RHT_NMASK; 1040 rhte->fp = SISL_RHT_FP(0U, ctxi->rht_perms); 1041 1042 /* Resize even if requested size is 0 */ 1043 marshal_virt_to_resize(virt, &resize); 1044 resize.rsrc_handle = rsrc_handle; 1045 rc = _cxlflash_vlun_resize(sdev, ctxi, &resize); 1046 if (rc) { 1047 dev_err(dev, "%s: resize failed rc=%d\n", __func__, rc); 1048 goto err2; 1049 } 1050 last_lba = resize.last_lba; 1051 1052 if (virt->hdr.flags & DK_CXLFLASH_UVIRTUAL_NEED_WRITE_SAME) 1053 ctxi->rht_needs_ws[rsrc_handle] = true; 1054 1055 virt->hdr.return_flags = 0; 1056 virt->last_lba = last_lba; 1057 virt->rsrc_handle = rsrc_handle; 1058 1059 if (get_num_ports(lli->port_sel) > 1) 1060 virt->hdr.return_flags |= DK_CXLFLASH_ALL_PORTS_ACTIVE; 1061 out: 1062 if (likely(ctxi)) 1063 put_context(ctxi); 1064 dev_dbg(dev, "%s: returning handle=%llu rc=%d llba=%llu\n", 1065 __func__, rsrc_handle, rc, last_lba); 1066 return rc; 1067 1068 err2: 1069 rhte_checkin(ctxi, rhte); 1070 err1: 1071 cxlflash_lun_detach(gli); 1072 goto out; 1073 err0: 1074 /* Special common cleanup prior to successful LUN attach */ 1075 cxlflash_ba_terminate(&gli->blka.ba_lun); 1076 mutex_unlock(&gli->mutex); 1077 goto out; 1078 } 1079 1080 /** 1081 * clone_lxt() - copies translation tables from source to destination RHTE 1082 * @afu: AFU associated with the host. 1083 * @blka: Block allocator associated with LUN. 1084 * @ctxid: Context ID of context owning the RHTE. 1085 * @rhndl: Resource handle associated with the RHTE. 1086 * @rhte: Destination resource handle entry (RHTE). 1087 * @rhte_src: Source resource handle entry (RHTE). 1088 * 1089 * Return: 0 on success, -errno on failure 1090 */ 1091 static int clone_lxt(struct afu *afu, 1092 struct blka *blka, 1093 ctx_hndl_t ctxid, 1094 res_hndl_t rhndl, 1095 struct sisl_rht_entry *rhte, 1096 struct sisl_rht_entry *rhte_src) 1097 { 1098 struct cxlflash_cfg *cfg = afu->parent; 1099 struct device *dev = &cfg->dev->dev; 1100 struct sisl_lxt_entry *lxt = NULL; 1101 bool locked = false; 1102 u32 ngrps; 1103 u64 aun; /* chunk# allocated by block allocator */ 1104 int j; 1105 int i = 0; 1106 int rc = 0; 1107 1108 ngrps = LXT_NUM_GROUPS(rhte_src->lxt_cnt); 1109 1110 if (ngrps) { 1111 /* allocate new LXTs for clone */ 1112 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 1113 GFP_KERNEL); 1114 if (unlikely(!lxt)) { 1115 rc = -ENOMEM; 1116 goto out; 1117 } 1118 1119 /* copy over */ 1120 memcpy(lxt, rhte_src->lxt_start, 1121 (sizeof(*lxt) * rhte_src->lxt_cnt)); 1122 1123 /* clone the LBAs in block allocator via ref_cnt, note that the 1124 * block allocator mutex must be held until it is established 1125 * that this routine will complete without the need for a 1126 * cleanup. 1127 */ 1128 mutex_lock(&blka->mutex); 1129 locked = true; 1130 for (i = 0; i < rhte_src->lxt_cnt; i++) { 1131 aun = (lxt[i].rlba_base >> MC_CHUNK_SHIFT); 1132 if (ba_clone(&blka->ba_lun, aun) == -1ULL) { 1133 rc = -EIO; 1134 goto err; 1135 } 1136 } 1137 } 1138 1139 /* 1140 * The following sequence is prescribed in the SISlite spec 1141 * for syncing up with the AFU when adding LXT entries. 1142 */ 1143 dma_wmb(); /* Make LXT updates are visible */ 1144 1145 rhte->lxt_start = lxt; 1146 dma_wmb(); /* Make RHT entry's LXT table update visible */ 1147 1148 rhte->lxt_cnt = rhte_src->lxt_cnt; 1149 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 1150 1151 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); 1152 if (unlikely(rc)) { 1153 rc = -EAGAIN; 1154 goto err2; 1155 } 1156 1157 out: 1158 if (locked) 1159 mutex_unlock(&blka->mutex); 1160 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1161 return rc; 1162 err2: 1163 /* Reset the RHTE */ 1164 rhte->lxt_cnt = 0; 1165 dma_wmb(); 1166 rhte->lxt_start = NULL; 1167 dma_wmb(); 1168 err: 1169 /* free the clones already made */ 1170 for (j = 0; j < i; j++) { 1171 aun = (lxt[j].rlba_base >> MC_CHUNK_SHIFT); 1172 ba_free(&blka->ba_lun, aun); 1173 } 1174 kfree(lxt); 1175 goto out; 1176 } 1177 1178 /** 1179 * cxlflash_disk_clone() - clone a context by making snapshot of another 1180 * @sdev: SCSI device associated with LUN owning virtual LUN. 1181 * @clone: Clone ioctl data structure. 1182 * 1183 * This routine effectively performs cxlflash_disk_open operation for each 1184 * in-use virtual resource in the source context. Note that the destination 1185 * context must be in pristine state and cannot have any resource handles 1186 * open at the time of the clone. 1187 * 1188 * Return: 0 on success, -errno on failure 1189 */ 1190 int cxlflash_disk_clone(struct scsi_device *sdev, 1191 struct dk_cxlflash_clone *clone) 1192 { 1193 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 1194 struct device *dev = &cfg->dev->dev; 1195 struct llun_info *lli = sdev->hostdata; 1196 struct glun_info *gli = lli->parent; 1197 struct blka *blka = &gli->blka; 1198 struct afu *afu = cfg->afu; 1199 struct dk_cxlflash_release release = { { 0 }, 0 }; 1200 1201 struct ctx_info *ctxi_src = NULL, 1202 *ctxi_dst = NULL; 1203 struct lun_access *lun_access_src, *lun_access_dst; 1204 u32 perms; 1205 u64 ctxid_src = DECODE_CTXID(clone->context_id_src), 1206 ctxid_dst = DECODE_CTXID(clone->context_id_dst), 1207 rctxid_src = clone->context_id_src, 1208 rctxid_dst = clone->context_id_dst; 1209 int i, j; 1210 int rc = 0; 1211 bool found; 1212 LIST_HEAD(sidecar); 1213 1214 dev_dbg(dev, "%s: ctxid_src=%llu ctxid_dst=%llu\n", 1215 __func__, ctxid_src, ctxid_dst); 1216 1217 /* Do not clone yourself */ 1218 if (unlikely(rctxid_src == rctxid_dst)) { 1219 rc = -EINVAL; 1220 goto out; 1221 } 1222 1223 if (unlikely(gli->mode != MODE_VIRTUAL)) { 1224 rc = -EINVAL; 1225 dev_dbg(dev, "%s: Only supported on virtual LUNs mode=%u\n", 1226 __func__, gli->mode); 1227 goto out; 1228 } 1229 1230 ctxi_src = get_context(cfg, rctxid_src, lli, CTX_CTRL_CLONE); 1231 ctxi_dst = get_context(cfg, rctxid_dst, lli, 0); 1232 if (unlikely(!ctxi_src || !ctxi_dst)) { 1233 dev_dbg(dev, "%s: Bad context ctxid_src=%llu ctxid_dst=%llu\n", 1234 __func__, ctxid_src, ctxid_dst); 1235 rc = -EINVAL; 1236 goto out; 1237 } 1238 1239 /* Verify there is no open resource handle in the destination context */ 1240 for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) 1241 if (ctxi_dst->rht_start[i].nmask != 0) { 1242 rc = -EINVAL; 1243 goto out; 1244 } 1245 1246 /* Clone LUN access list */ 1247 list_for_each_entry(lun_access_src, &ctxi_src->luns, list) { 1248 found = false; 1249 list_for_each_entry(lun_access_dst, &ctxi_dst->luns, list) 1250 if (lun_access_dst->sdev == lun_access_src->sdev) { 1251 found = true; 1252 break; 1253 } 1254 1255 if (!found) { 1256 lun_access_dst = kzalloc(sizeof(*lun_access_dst), 1257 GFP_KERNEL); 1258 if (unlikely(!lun_access_dst)) { 1259 dev_err(dev, "%s: lun_access allocation fail\n", 1260 __func__); 1261 rc = -ENOMEM; 1262 goto out; 1263 } 1264 1265 *lun_access_dst = *lun_access_src; 1266 list_add(&lun_access_dst->list, &sidecar); 1267 } 1268 } 1269 1270 if (unlikely(!ctxi_src->rht_out)) { 1271 dev_dbg(dev, "%s: Nothing to clone\n", __func__); 1272 goto out_success; 1273 } 1274 1275 /* User specified permission on attach */ 1276 perms = ctxi_dst->rht_perms; 1277 1278 /* 1279 * Copy over checked-out RHT (and their associated LXT) entries by 1280 * hand, stopping after we've copied all outstanding entries and 1281 * cleaning up if the clone fails. 1282 * 1283 * Note: This loop is equivalent to performing cxlflash_disk_open and 1284 * cxlflash_vlun_resize. As such, LUN accounting needs to be taken into 1285 * account by attaching after each successful RHT entry clone. In the 1286 * event that a clone failure is experienced, the LUN detach is handled 1287 * via the cleanup performed by _cxlflash_disk_release. 1288 */ 1289 for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) { 1290 if (ctxi_src->rht_out == ctxi_dst->rht_out) 1291 break; 1292 if (ctxi_src->rht_start[i].nmask == 0) 1293 continue; 1294 1295 /* Consume a destination RHT entry */ 1296 ctxi_dst->rht_out++; 1297 ctxi_dst->rht_start[i].nmask = ctxi_src->rht_start[i].nmask; 1298 ctxi_dst->rht_start[i].fp = 1299 SISL_RHT_FP_CLONE(ctxi_src->rht_start[i].fp, perms); 1300 ctxi_dst->rht_lun[i] = ctxi_src->rht_lun[i]; 1301 1302 rc = clone_lxt(afu, blka, ctxid_dst, i, 1303 &ctxi_dst->rht_start[i], 1304 &ctxi_src->rht_start[i]); 1305 if (rc) { 1306 marshal_clone_to_rele(clone, &release); 1307 for (j = 0; j < i; j++) { 1308 release.rsrc_handle = j; 1309 _cxlflash_disk_release(sdev, ctxi_dst, 1310 &release); 1311 } 1312 1313 /* Put back the one we failed on */ 1314 rhte_checkin(ctxi_dst, &ctxi_dst->rht_start[i]); 1315 goto err; 1316 } 1317 1318 cxlflash_lun_attach(gli, gli->mode, false); 1319 } 1320 1321 out_success: 1322 list_splice(&sidecar, &ctxi_dst->luns); 1323 1324 /* fall through */ 1325 out: 1326 if (ctxi_src) 1327 put_context(ctxi_src); 1328 if (ctxi_dst) 1329 put_context(ctxi_dst); 1330 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1331 return rc; 1332 1333 err: 1334 list_for_each_entry_safe(lun_access_src, lun_access_dst, &sidecar, list) 1335 kfree(lun_access_src); 1336 goto out; 1337 } 1338