xref: /linux/drivers/scsi/cxlflash/main.c (revision 5e3992fe72748ed3892be876f09d4d990548b7af)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * CXL Flash Device Driver
4  *
5  * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
6  *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
7  *
8  * Copyright (C) 2015 IBM Corporation
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 
16 #include <asm/unaligned.h>
17 
18 #include <scsi/scsi_cmnd.h>
19 #include <scsi/scsi_host.h>
20 #include <uapi/scsi/cxlflash_ioctl.h>
21 
22 #include "main.h"
23 #include "sislite.h"
24 #include "common.h"
25 
26 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
27 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
28 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
29 MODULE_LICENSE("GPL");
30 
31 static struct class *cxlflash_class;
32 static u32 cxlflash_major;
33 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
34 
35 /**
36  * process_cmd_err() - command error handler
37  * @cmd:	AFU command that experienced the error.
38  * @scp:	SCSI command associated with the AFU command in error.
39  *
40  * Translates error bits from AFU command to SCSI command results.
41  */
42 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
43 {
44 	struct afu *afu = cmd->parent;
45 	struct cxlflash_cfg *cfg = afu->parent;
46 	struct device *dev = &cfg->dev->dev;
47 	struct sisl_ioasa *ioasa;
48 	u32 resid;
49 
50 	ioasa = &(cmd->sa);
51 
52 	if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
53 		resid = ioasa->resid;
54 		scsi_set_resid(scp, resid);
55 		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
56 			__func__, cmd, scp, resid);
57 	}
58 
59 	if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
60 		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
61 			__func__, cmd, scp);
62 		scp->result = (DID_ERROR << 16);
63 	}
64 
65 	dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
66 		"afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
67 		ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
68 		ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
69 
70 	if (ioasa->rc.scsi_rc) {
71 		/* We have a SCSI status */
72 		if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
73 			memcpy(scp->sense_buffer, ioasa->sense_data,
74 			       SISL_SENSE_DATA_LEN);
75 			scp->result = ioasa->rc.scsi_rc;
76 		} else
77 			scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
78 	}
79 
80 	/*
81 	 * We encountered an error. Set scp->result based on nature
82 	 * of error.
83 	 */
84 	if (ioasa->rc.fc_rc) {
85 		/* We have an FC status */
86 		switch (ioasa->rc.fc_rc) {
87 		case SISL_FC_RC_LINKDOWN:
88 			scp->result = (DID_REQUEUE << 16);
89 			break;
90 		case SISL_FC_RC_RESID:
91 			/* This indicates an FCP resid underrun */
92 			if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
93 				/* If the SISL_RC_FLAGS_OVERRUN flag was set,
94 				 * then we will handle this error else where.
95 				 * If not then we must handle it here.
96 				 * This is probably an AFU bug.
97 				 */
98 				scp->result = (DID_ERROR << 16);
99 			}
100 			break;
101 		case SISL_FC_RC_RESIDERR:
102 			/* Resid mismatch between adapter and device */
103 		case SISL_FC_RC_TGTABORT:
104 		case SISL_FC_RC_ABORTOK:
105 		case SISL_FC_RC_ABORTFAIL:
106 		case SISL_FC_RC_NOLOGI:
107 		case SISL_FC_RC_ABORTPEND:
108 		case SISL_FC_RC_WRABORTPEND:
109 		case SISL_FC_RC_NOEXP:
110 		case SISL_FC_RC_INUSE:
111 			scp->result = (DID_ERROR << 16);
112 			break;
113 		}
114 	}
115 
116 	if (ioasa->rc.afu_rc) {
117 		/* We have an AFU error */
118 		switch (ioasa->rc.afu_rc) {
119 		case SISL_AFU_RC_NO_CHANNELS:
120 			scp->result = (DID_NO_CONNECT << 16);
121 			break;
122 		case SISL_AFU_RC_DATA_DMA_ERR:
123 			switch (ioasa->afu_extra) {
124 			case SISL_AFU_DMA_ERR_PAGE_IN:
125 				/* Retry */
126 				scp->result = (DID_IMM_RETRY << 16);
127 				break;
128 			case SISL_AFU_DMA_ERR_INVALID_EA:
129 			default:
130 				scp->result = (DID_ERROR << 16);
131 			}
132 			break;
133 		case SISL_AFU_RC_OUT_OF_DATA_BUFS:
134 			/* Retry */
135 			scp->result = (DID_ERROR << 16);
136 			break;
137 		default:
138 			scp->result = (DID_ERROR << 16);
139 		}
140 	}
141 }
142 
143 /**
144  * cmd_complete() - command completion handler
145  * @cmd:	AFU command that has completed.
146  *
147  * For SCSI commands this routine prepares and submits commands that have
148  * either completed or timed out to the SCSI stack. For internal commands
149  * (TMF or AFU), this routine simply notifies the originator that the
150  * command has completed.
151  */
152 static void cmd_complete(struct afu_cmd *cmd)
153 {
154 	struct scsi_cmnd *scp;
155 	ulong lock_flags;
156 	struct afu *afu = cmd->parent;
157 	struct cxlflash_cfg *cfg = afu->parent;
158 	struct device *dev = &cfg->dev->dev;
159 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
160 
161 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
162 	list_del(&cmd->list);
163 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
164 
165 	if (cmd->scp) {
166 		scp = cmd->scp;
167 		if (unlikely(cmd->sa.ioasc))
168 			process_cmd_err(cmd, scp);
169 		else
170 			scp->result = (DID_OK << 16);
171 
172 		dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
173 				    __func__, scp, scp->result, cmd->sa.ioasc);
174 		scsi_done(scp);
175 	} else if (cmd->cmd_tmf) {
176 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
177 		cfg->tmf_active = false;
178 		wake_up_all_locked(&cfg->tmf_waitq);
179 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
180 	} else
181 		complete(&cmd->cevent);
182 }
183 
184 /**
185  * flush_pending_cmds() - flush all pending commands on this hardware queue
186  * @hwq:	Hardware queue to flush.
187  *
188  * The hardware send queue lock associated with this hardware queue must be
189  * held when calling this routine.
190  */
191 static void flush_pending_cmds(struct hwq *hwq)
192 {
193 	struct cxlflash_cfg *cfg = hwq->afu->parent;
194 	struct afu_cmd *cmd, *tmp;
195 	struct scsi_cmnd *scp;
196 	ulong lock_flags;
197 
198 	list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
199 		/* Bypass command when on a doneq, cmd_complete() will handle */
200 		if (!list_empty(&cmd->queue))
201 			continue;
202 
203 		list_del(&cmd->list);
204 
205 		if (cmd->scp) {
206 			scp = cmd->scp;
207 			scp->result = (DID_IMM_RETRY << 16);
208 			scsi_done(scp);
209 		} else {
210 			cmd->cmd_aborted = true;
211 
212 			if (cmd->cmd_tmf) {
213 				spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
214 				cfg->tmf_active = false;
215 				wake_up_all_locked(&cfg->tmf_waitq);
216 				spin_unlock_irqrestore(&cfg->tmf_slock,
217 						       lock_flags);
218 			} else
219 				complete(&cmd->cevent);
220 		}
221 	}
222 }
223 
224 /**
225  * context_reset() - reset context via specified register
226  * @hwq:	Hardware queue owning the context to be reset.
227  * @reset_reg:	MMIO register to perform reset.
228  *
229  * When the reset is successful, the SISLite specification guarantees that
230  * the AFU has aborted all currently pending I/O. Accordingly, these commands
231  * must be flushed.
232  *
233  * Return: 0 on success, -errno on failure
234  */
235 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
236 {
237 	struct cxlflash_cfg *cfg = hwq->afu->parent;
238 	struct device *dev = &cfg->dev->dev;
239 	int rc = -ETIMEDOUT;
240 	int nretry = 0;
241 	u64 val = 0x1;
242 	ulong lock_flags;
243 
244 	dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
245 
246 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
247 
248 	writeq_be(val, reset_reg);
249 	do {
250 		val = readq_be(reset_reg);
251 		if ((val & 0x1) == 0x0) {
252 			rc = 0;
253 			break;
254 		}
255 
256 		/* Double delay each time */
257 		udelay(1 << nretry);
258 	} while (nretry++ < MC_ROOM_RETRY_CNT);
259 
260 	if (!rc)
261 		flush_pending_cmds(hwq);
262 
263 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
264 
265 	dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
266 		__func__, rc, val, nretry);
267 	return rc;
268 }
269 
270 /**
271  * context_reset_ioarrin() - reset context via IOARRIN register
272  * @hwq:	Hardware queue owning the context to be reset.
273  *
274  * Return: 0 on success, -errno on failure
275  */
276 static int context_reset_ioarrin(struct hwq *hwq)
277 {
278 	return context_reset(hwq, &hwq->host_map->ioarrin);
279 }
280 
281 /**
282  * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
283  * @hwq:	Hardware queue owning the context to be reset.
284  *
285  * Return: 0 on success, -errno on failure
286  */
287 static int context_reset_sq(struct hwq *hwq)
288 {
289 	return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
290 }
291 
292 /**
293  * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
294  * @afu:	AFU associated with the host.
295  * @cmd:	AFU command to send.
296  *
297  * Return:
298  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
299  */
300 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
301 {
302 	struct cxlflash_cfg *cfg = afu->parent;
303 	struct device *dev = &cfg->dev->dev;
304 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
305 	int rc = 0;
306 	s64 room;
307 	ulong lock_flags;
308 
309 	/*
310 	 * To avoid the performance penalty of MMIO, spread the update of
311 	 * 'room' over multiple commands.
312 	 */
313 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
314 	if (--hwq->room < 0) {
315 		room = readq_be(&hwq->host_map->cmd_room);
316 		if (room <= 0) {
317 			dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
318 					    "0x%02X, room=0x%016llX\n",
319 					    __func__, cmd->rcb.cdb[0], room);
320 			hwq->room = 0;
321 			rc = SCSI_MLQUEUE_HOST_BUSY;
322 			goto out;
323 		}
324 		hwq->room = room - 1;
325 	}
326 
327 	list_add(&cmd->list, &hwq->pending_cmds);
328 	writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
329 out:
330 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
331 	dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n",
332 		__func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
333 	return rc;
334 }
335 
336 /**
337  * send_cmd_sq() - sends an AFU command via SQ ring
338  * @afu:	AFU associated with the host.
339  * @cmd:	AFU command to send.
340  *
341  * Return:
342  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
343  */
344 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
345 {
346 	struct cxlflash_cfg *cfg = afu->parent;
347 	struct device *dev = &cfg->dev->dev;
348 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
349 	int rc = 0;
350 	int newval;
351 	ulong lock_flags;
352 
353 	newval = atomic_dec_if_positive(&hwq->hsq_credits);
354 	if (newval <= 0) {
355 		rc = SCSI_MLQUEUE_HOST_BUSY;
356 		goto out;
357 	}
358 
359 	cmd->rcb.ioasa = &cmd->sa;
360 
361 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
362 
363 	*hwq->hsq_curr = cmd->rcb;
364 	if (hwq->hsq_curr < hwq->hsq_end)
365 		hwq->hsq_curr++;
366 	else
367 		hwq->hsq_curr = hwq->hsq_start;
368 
369 	list_add(&cmd->list, &hwq->pending_cmds);
370 	writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
371 
372 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
373 out:
374 	dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
375 	       "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
376 	       cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
377 	       readq_be(&hwq->host_map->sq_head),
378 	       readq_be(&hwq->host_map->sq_tail));
379 	return rc;
380 }
381 
382 /**
383  * wait_resp() - polls for a response or timeout to a sent AFU command
384  * @afu:	AFU associated with the host.
385  * @cmd:	AFU command that was sent.
386  *
387  * Return: 0 on success, -errno on failure
388  */
389 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
390 {
391 	struct cxlflash_cfg *cfg = afu->parent;
392 	struct device *dev = &cfg->dev->dev;
393 	int rc = 0;
394 	ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
395 
396 	timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
397 	if (!timeout)
398 		rc = -ETIMEDOUT;
399 
400 	if (cmd->cmd_aborted)
401 		rc = -EAGAIN;
402 
403 	if (unlikely(cmd->sa.ioasc != 0)) {
404 		dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
405 			__func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
406 		rc = -EIO;
407 	}
408 
409 	return rc;
410 }
411 
412 /**
413  * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
414  * @host:	SCSI host associated with device.
415  * @scp:	SCSI command to send.
416  * @afu:	SCSI command to send.
417  *
418  * Hashes a command based upon the hardware queue mode.
419  *
420  * Return: Trusted index of target hardware queue
421  */
422 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
423 			     struct afu *afu)
424 {
425 	u32 tag;
426 	u32 hwq = 0;
427 
428 	if (afu->num_hwqs == 1)
429 		return 0;
430 
431 	switch (afu->hwq_mode) {
432 	case HWQ_MODE_RR:
433 		hwq = afu->hwq_rr_count++ % afu->num_hwqs;
434 		break;
435 	case HWQ_MODE_TAG:
436 		tag = blk_mq_unique_tag(scsi_cmd_to_rq(scp));
437 		hwq = blk_mq_unique_tag_to_hwq(tag);
438 		break;
439 	case HWQ_MODE_CPU:
440 		hwq = smp_processor_id() % afu->num_hwqs;
441 		break;
442 	default:
443 		WARN_ON_ONCE(1);
444 	}
445 
446 	return hwq;
447 }
448 
449 /**
450  * send_tmf() - sends a Task Management Function (TMF)
451  * @cfg:	Internal structure associated with the host.
452  * @sdev:	SCSI device destined for TMF.
453  * @tmfcmd:	TMF command to send.
454  *
455  * Return:
456  *	0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
457  */
458 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
459 		    u64 tmfcmd)
460 {
461 	struct afu *afu = cfg->afu;
462 	struct afu_cmd *cmd = NULL;
463 	struct device *dev = &cfg->dev->dev;
464 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
465 	bool needs_deletion = false;
466 	char *buf = NULL;
467 	ulong lock_flags;
468 	int rc = 0;
469 	ulong to;
470 
471 	buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
472 	if (unlikely(!buf)) {
473 		dev_err(dev, "%s: no memory for command\n", __func__);
474 		rc = -ENOMEM;
475 		goto out;
476 	}
477 
478 	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
479 	INIT_LIST_HEAD(&cmd->queue);
480 
481 	/* When Task Management Function is active do not send another */
482 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
483 	if (cfg->tmf_active)
484 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
485 						  !cfg->tmf_active,
486 						  cfg->tmf_slock);
487 	cfg->tmf_active = true;
488 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
489 
490 	cmd->parent = afu;
491 	cmd->cmd_tmf = true;
492 	cmd->hwq_index = hwq->index;
493 
494 	cmd->rcb.ctx_id = hwq->ctx_hndl;
495 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
496 	cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
497 	cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
498 	cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
499 			      SISL_REQ_FLAGS_SUP_UNDERRUN |
500 			      SISL_REQ_FLAGS_TMF_CMD);
501 	memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
502 
503 	rc = afu->send_cmd(afu, cmd);
504 	if (unlikely(rc)) {
505 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
506 		cfg->tmf_active = false;
507 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
508 		goto out;
509 	}
510 
511 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
512 	to = msecs_to_jiffies(5000);
513 	to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
514 						       !cfg->tmf_active,
515 						       cfg->tmf_slock,
516 						       to);
517 	if (!to) {
518 		dev_err(dev, "%s: TMF timed out\n", __func__);
519 		rc = -ETIMEDOUT;
520 		needs_deletion = true;
521 	} else if (cmd->cmd_aborted) {
522 		dev_err(dev, "%s: TMF aborted\n", __func__);
523 		rc = -EAGAIN;
524 	} else if (cmd->sa.ioasc) {
525 		dev_err(dev, "%s: TMF failed ioasc=%08x\n",
526 			__func__, cmd->sa.ioasc);
527 		rc = -EIO;
528 	}
529 	cfg->tmf_active = false;
530 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
531 
532 	if (needs_deletion) {
533 		spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
534 		list_del(&cmd->list);
535 		spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
536 	}
537 out:
538 	kfree(buf);
539 	return rc;
540 }
541 
542 /**
543  * cxlflash_driver_info() - information handler for this host driver
544  * @host:	SCSI host associated with device.
545  *
546  * Return: A string describing the device.
547  */
548 static const char *cxlflash_driver_info(struct Scsi_Host *host)
549 {
550 	return CXLFLASH_ADAPTER_NAME;
551 }
552 
553 /**
554  * cxlflash_queuecommand() - sends a mid-layer request
555  * @host:	SCSI host associated with device.
556  * @scp:	SCSI command to send.
557  *
558  * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
559  */
560 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
561 {
562 	struct cxlflash_cfg *cfg = shost_priv(host);
563 	struct afu *afu = cfg->afu;
564 	struct device *dev = &cfg->dev->dev;
565 	struct afu_cmd *cmd = sc_to_afuci(scp);
566 	struct scatterlist *sg = scsi_sglist(scp);
567 	int hwq_index = cmd_to_target_hwq(host, scp, afu);
568 	struct hwq *hwq = get_hwq(afu, hwq_index);
569 	u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
570 	ulong lock_flags;
571 	int rc = 0;
572 
573 	dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
574 			    "cdb=(%08x-%08x-%08x-%08x)\n",
575 			    __func__, scp, host->host_no, scp->device->channel,
576 			    scp->device->id, scp->device->lun,
577 			    get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
578 			    get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
579 			    get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
580 			    get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
581 
582 	/*
583 	 * If a Task Management Function is active, wait for it to complete
584 	 * before continuing with regular commands.
585 	 */
586 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
587 	if (cfg->tmf_active) {
588 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
589 		rc = SCSI_MLQUEUE_HOST_BUSY;
590 		goto out;
591 	}
592 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
593 
594 	switch (cfg->state) {
595 	case STATE_PROBING:
596 	case STATE_PROBED:
597 	case STATE_RESET:
598 		dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
599 		rc = SCSI_MLQUEUE_HOST_BUSY;
600 		goto out;
601 	case STATE_FAILTERM:
602 		dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
603 		scp->result = (DID_NO_CONNECT << 16);
604 		scsi_done(scp);
605 		rc = 0;
606 		goto out;
607 	default:
608 		atomic_inc(&afu->cmds_active);
609 		break;
610 	}
611 
612 	if (likely(sg)) {
613 		cmd->rcb.data_len = sg->length;
614 		cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
615 	}
616 
617 	cmd->scp = scp;
618 	cmd->parent = afu;
619 	cmd->hwq_index = hwq_index;
620 
621 	cmd->sa.ioasc = 0;
622 	cmd->rcb.ctx_id = hwq->ctx_hndl;
623 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
624 	cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
625 	cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
626 
627 	if (scp->sc_data_direction == DMA_TO_DEVICE)
628 		req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
629 
630 	cmd->rcb.req_flags = req_flags;
631 	memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
632 
633 	rc = afu->send_cmd(afu, cmd);
634 	atomic_dec(&afu->cmds_active);
635 out:
636 	return rc;
637 }
638 
639 /**
640  * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
641  * @cfg:	Internal structure associated with the host.
642  */
643 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
644 {
645 	struct pci_dev *pdev = cfg->dev;
646 
647 	if (pci_channel_offline(pdev))
648 		wait_event_timeout(cfg->reset_waitq,
649 				   !pci_channel_offline(pdev),
650 				   CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
651 }
652 
653 /**
654  * free_mem() - free memory associated with the AFU
655  * @cfg:	Internal structure associated with the host.
656  */
657 static void free_mem(struct cxlflash_cfg *cfg)
658 {
659 	struct afu *afu = cfg->afu;
660 
661 	if (cfg->afu) {
662 		free_pages((ulong)afu, get_order(sizeof(struct afu)));
663 		cfg->afu = NULL;
664 	}
665 }
666 
667 /**
668  * cxlflash_reset_sync() - synchronizing point for asynchronous resets
669  * @cfg:	Internal structure associated with the host.
670  */
671 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
672 {
673 	if (cfg->async_reset_cookie == 0)
674 		return;
675 
676 	/* Wait until all async calls prior to this cookie have completed */
677 	async_synchronize_cookie(cfg->async_reset_cookie + 1);
678 	cfg->async_reset_cookie = 0;
679 }
680 
681 /**
682  * stop_afu() - stops the AFU command timers and unmaps the MMIO space
683  * @cfg:	Internal structure associated with the host.
684  *
685  * Safe to call with AFU in a partially allocated/initialized state.
686  *
687  * Cancels scheduled worker threads, waits for any active internal AFU
688  * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
689  */
690 static void stop_afu(struct cxlflash_cfg *cfg)
691 {
692 	struct afu *afu = cfg->afu;
693 	struct hwq *hwq;
694 	int i;
695 
696 	cancel_work_sync(&cfg->work_q);
697 	if (!current_is_async())
698 		cxlflash_reset_sync(cfg);
699 
700 	if (likely(afu)) {
701 		while (atomic_read(&afu->cmds_active))
702 			ssleep(1);
703 
704 		if (afu_is_irqpoll_enabled(afu)) {
705 			for (i = 0; i < afu->num_hwqs; i++) {
706 				hwq = get_hwq(afu, i);
707 
708 				irq_poll_disable(&hwq->irqpoll);
709 			}
710 		}
711 
712 		if (likely(afu->afu_map)) {
713 			cfg->ops->psa_unmap(afu->afu_map);
714 			afu->afu_map = NULL;
715 		}
716 	}
717 }
718 
719 /**
720  * term_intr() - disables all AFU interrupts
721  * @cfg:	Internal structure associated with the host.
722  * @level:	Depth of allocation, where to begin waterfall tear down.
723  * @index:	Index of the hardware queue.
724  *
725  * Safe to call with AFU/MC in partially allocated/initialized state.
726  */
727 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
728 		      u32 index)
729 {
730 	struct afu *afu = cfg->afu;
731 	struct device *dev = &cfg->dev->dev;
732 	struct hwq *hwq;
733 
734 	if (!afu) {
735 		dev_err(dev, "%s: returning with NULL afu\n", __func__);
736 		return;
737 	}
738 
739 	hwq = get_hwq(afu, index);
740 
741 	if (!hwq->ctx_cookie) {
742 		dev_err(dev, "%s: returning with NULL MC\n", __func__);
743 		return;
744 	}
745 
746 	switch (level) {
747 	case UNMAP_THREE:
748 		/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
749 		if (index == PRIMARY_HWQ)
750 			cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq);
751 		fallthrough;
752 	case UNMAP_TWO:
753 		cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq);
754 		fallthrough;
755 	case UNMAP_ONE:
756 		cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq);
757 		fallthrough;
758 	case FREE_IRQ:
759 		cfg->ops->free_afu_irqs(hwq->ctx_cookie);
760 		fallthrough;
761 	case UNDO_NOOP:
762 		/* No action required */
763 		break;
764 	}
765 }
766 
767 /**
768  * term_mc() - terminates the master context
769  * @cfg:	Internal structure associated with the host.
770  * @index:	Index of the hardware queue.
771  *
772  * Safe to call with AFU/MC in partially allocated/initialized state.
773  */
774 static void term_mc(struct cxlflash_cfg *cfg, u32 index)
775 {
776 	struct afu *afu = cfg->afu;
777 	struct device *dev = &cfg->dev->dev;
778 	struct hwq *hwq;
779 	ulong lock_flags;
780 
781 	if (!afu) {
782 		dev_err(dev, "%s: returning with NULL afu\n", __func__);
783 		return;
784 	}
785 
786 	hwq = get_hwq(afu, index);
787 
788 	if (!hwq->ctx_cookie) {
789 		dev_err(dev, "%s: returning with NULL MC\n", __func__);
790 		return;
791 	}
792 
793 	WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie));
794 	if (index != PRIMARY_HWQ)
795 		WARN_ON(cfg->ops->release_context(hwq->ctx_cookie));
796 	hwq->ctx_cookie = NULL;
797 
798 	spin_lock_irqsave(&hwq->hrrq_slock, lock_flags);
799 	hwq->hrrq_online = false;
800 	spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags);
801 
802 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
803 	flush_pending_cmds(hwq);
804 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
805 }
806 
807 /**
808  * term_afu() - terminates the AFU
809  * @cfg:	Internal structure associated with the host.
810  *
811  * Safe to call with AFU/MC in partially allocated/initialized state.
812  */
813 static void term_afu(struct cxlflash_cfg *cfg)
814 {
815 	struct device *dev = &cfg->dev->dev;
816 	int k;
817 
818 	/*
819 	 * Tear down is carefully orchestrated to ensure
820 	 * no interrupts can come in when the problem state
821 	 * area is unmapped.
822 	 *
823 	 * 1) Disable all AFU interrupts for each master
824 	 * 2) Unmap the problem state area
825 	 * 3) Stop each master context
826 	 */
827 	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
828 		term_intr(cfg, UNMAP_THREE, k);
829 
830 	stop_afu(cfg);
831 
832 	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
833 		term_mc(cfg, k);
834 
835 	dev_dbg(dev, "%s: returning\n", __func__);
836 }
837 
838 /**
839  * notify_shutdown() - notifies device of pending shutdown
840  * @cfg:	Internal structure associated with the host.
841  * @wait:	Whether to wait for shutdown processing to complete.
842  *
843  * This function will notify the AFU that the adapter is being shutdown
844  * and will wait for shutdown processing to complete if wait is true.
845  * This notification should flush pending I/Os to the device and halt
846  * further I/Os until the next AFU reset is issued and device restarted.
847  */
848 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
849 {
850 	struct afu *afu = cfg->afu;
851 	struct device *dev = &cfg->dev->dev;
852 	struct dev_dependent_vals *ddv;
853 	__be64 __iomem *fc_port_regs;
854 	u64 reg, status;
855 	int i, retry_cnt = 0;
856 
857 	ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
858 	if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
859 		return;
860 
861 	if (!afu || !afu->afu_map) {
862 		dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
863 		return;
864 	}
865 
866 	/* Notify AFU */
867 	for (i = 0; i < cfg->num_fc_ports; i++) {
868 		fc_port_regs = get_fc_port_regs(cfg, i);
869 
870 		reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
871 		reg |= SISL_FC_SHUTDOWN_NORMAL;
872 		writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
873 	}
874 
875 	if (!wait)
876 		return;
877 
878 	/* Wait up to 1.5 seconds for shutdown processing to complete */
879 	for (i = 0; i < cfg->num_fc_ports; i++) {
880 		fc_port_regs = get_fc_port_regs(cfg, i);
881 		retry_cnt = 0;
882 
883 		while (true) {
884 			status = readq_be(&fc_port_regs[FC_STATUS / 8]);
885 			if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
886 				break;
887 			if (++retry_cnt >= MC_RETRY_CNT) {
888 				dev_dbg(dev, "%s: port %d shutdown processing "
889 					"not yet completed\n", __func__, i);
890 				break;
891 			}
892 			msleep(100 * retry_cnt);
893 		}
894 	}
895 }
896 
897 /**
898  * cxlflash_get_minor() - gets the first available minor number
899  *
900  * Return: Unique minor number that can be used to create the character device.
901  */
902 static int cxlflash_get_minor(void)
903 {
904 	int minor;
905 	long bit;
906 
907 	bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
908 	if (bit >= CXLFLASH_MAX_ADAPTERS)
909 		return -1;
910 
911 	minor = bit & MINORMASK;
912 	set_bit(minor, cxlflash_minor);
913 	return minor;
914 }
915 
916 /**
917  * cxlflash_put_minor() - releases the minor number
918  * @minor:	Minor number that is no longer needed.
919  */
920 static void cxlflash_put_minor(int minor)
921 {
922 	clear_bit(minor, cxlflash_minor);
923 }
924 
925 /**
926  * cxlflash_release_chrdev() - release the character device for the host
927  * @cfg:	Internal structure associated with the host.
928  */
929 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
930 {
931 	device_unregister(cfg->chardev);
932 	cfg->chardev = NULL;
933 	cdev_del(&cfg->cdev);
934 	cxlflash_put_minor(MINOR(cfg->cdev.dev));
935 }
936 
937 /**
938  * cxlflash_remove() - PCI entry point to tear down host
939  * @pdev:	PCI device associated with the host.
940  *
941  * Safe to use as a cleanup in partially allocated/initialized state. Note that
942  * the reset_waitq is flushed as part of the stop/termination of user contexts.
943  */
944 static void cxlflash_remove(struct pci_dev *pdev)
945 {
946 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
947 	struct device *dev = &pdev->dev;
948 	ulong lock_flags;
949 
950 	if (!pci_is_enabled(pdev)) {
951 		dev_dbg(dev, "%s: Device is disabled\n", __func__);
952 		return;
953 	}
954 
955 	/* Yield to running recovery threads before continuing with remove */
956 	wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
957 				     cfg->state != STATE_PROBING);
958 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
959 	if (cfg->tmf_active)
960 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
961 						  !cfg->tmf_active,
962 						  cfg->tmf_slock);
963 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
964 
965 	/* Notify AFU and wait for shutdown processing to complete */
966 	notify_shutdown(cfg, true);
967 
968 	cfg->state = STATE_FAILTERM;
969 	cxlflash_stop_term_user_contexts(cfg);
970 
971 	switch (cfg->init_state) {
972 	case INIT_STATE_CDEV:
973 		cxlflash_release_chrdev(cfg);
974 		fallthrough;
975 	case INIT_STATE_SCSI:
976 		cxlflash_term_local_luns(cfg);
977 		scsi_remove_host(cfg->host);
978 		fallthrough;
979 	case INIT_STATE_AFU:
980 		term_afu(cfg);
981 		fallthrough;
982 	case INIT_STATE_PCI:
983 		cfg->ops->destroy_afu(cfg->afu_cookie);
984 		pci_disable_device(pdev);
985 		fallthrough;
986 	case INIT_STATE_NONE:
987 		free_mem(cfg);
988 		scsi_host_put(cfg->host);
989 		break;
990 	}
991 
992 	dev_dbg(dev, "%s: returning\n", __func__);
993 }
994 
995 /**
996  * alloc_mem() - allocates the AFU and its command pool
997  * @cfg:	Internal structure associated with the host.
998  *
999  * A partially allocated state remains on failure.
1000  *
1001  * Return:
1002  *	0 on success
1003  *	-ENOMEM on failure to allocate memory
1004  */
1005 static int alloc_mem(struct cxlflash_cfg *cfg)
1006 {
1007 	int rc = 0;
1008 	struct device *dev = &cfg->dev->dev;
1009 
1010 	/* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
1011 	cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1012 					    get_order(sizeof(struct afu)));
1013 	if (unlikely(!cfg->afu)) {
1014 		dev_err(dev, "%s: cannot get %d free pages\n",
1015 			__func__, get_order(sizeof(struct afu)));
1016 		rc = -ENOMEM;
1017 		goto out;
1018 	}
1019 	cfg->afu->parent = cfg;
1020 	cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
1021 	cfg->afu->afu_map = NULL;
1022 out:
1023 	return rc;
1024 }
1025 
1026 /**
1027  * init_pci() - initializes the host as a PCI device
1028  * @cfg:	Internal structure associated with the host.
1029  *
1030  * Return: 0 on success, -errno on failure
1031  */
1032 static int init_pci(struct cxlflash_cfg *cfg)
1033 {
1034 	struct pci_dev *pdev = cfg->dev;
1035 	struct device *dev = &cfg->dev->dev;
1036 	int rc = 0;
1037 
1038 	rc = pci_enable_device(pdev);
1039 	if (rc || pci_channel_offline(pdev)) {
1040 		if (pci_channel_offline(pdev)) {
1041 			cxlflash_wait_for_pci_err_recovery(cfg);
1042 			rc = pci_enable_device(pdev);
1043 		}
1044 
1045 		if (rc) {
1046 			dev_err(dev, "%s: Cannot enable adapter\n", __func__);
1047 			cxlflash_wait_for_pci_err_recovery(cfg);
1048 			goto out;
1049 		}
1050 	}
1051 
1052 out:
1053 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1054 	return rc;
1055 }
1056 
1057 /**
1058  * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1059  * @cfg:	Internal structure associated with the host.
1060  *
1061  * Return: 0 on success, -errno on failure
1062  */
1063 static int init_scsi(struct cxlflash_cfg *cfg)
1064 {
1065 	struct pci_dev *pdev = cfg->dev;
1066 	struct device *dev = &cfg->dev->dev;
1067 	int rc = 0;
1068 
1069 	rc = scsi_add_host(cfg->host, &pdev->dev);
1070 	if (rc) {
1071 		dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
1072 		goto out;
1073 	}
1074 
1075 	scsi_scan_host(cfg->host);
1076 
1077 out:
1078 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1079 	return rc;
1080 }
1081 
1082 /**
1083  * set_port_online() - transitions the specified host FC port to online state
1084  * @fc_regs:	Top of MMIO region defined for specified port.
1085  *
1086  * The provided MMIO region must be mapped prior to call. Online state means
1087  * that the FC link layer has synced, completed the handshaking process, and
1088  * is ready for login to start.
1089  */
1090 static void set_port_online(__be64 __iomem *fc_regs)
1091 {
1092 	u64 cmdcfg;
1093 
1094 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1095 	cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE);	/* clear OFF_LINE */
1096 	cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE);	/* set ON_LINE */
1097 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1098 }
1099 
1100 /**
1101  * set_port_offline() - transitions the specified host FC port to offline state
1102  * @fc_regs:	Top of MMIO region defined for specified port.
1103  *
1104  * The provided MMIO region must be mapped prior to call.
1105  */
1106 static void set_port_offline(__be64 __iomem *fc_regs)
1107 {
1108 	u64 cmdcfg;
1109 
1110 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1111 	cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE);	/* clear ON_LINE */
1112 	cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE);	/* set OFF_LINE */
1113 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1114 }
1115 
1116 /**
1117  * wait_port_online() - waits for the specified host FC port come online
1118  * @fc_regs:	Top of MMIO region defined for specified port.
1119  * @delay_us:	Number of microseconds to delay between reading port status.
1120  * @nretry:	Number of cycles to retry reading port status.
1121  *
1122  * The provided MMIO region must be mapped prior to call. This will timeout
1123  * when the cable is not plugged in.
1124  *
1125  * Return:
1126  *	TRUE (1) when the specified port is online
1127  *	FALSE (0) when the specified port fails to come online after timeout
1128  */
1129 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1130 {
1131 	u64 status;
1132 
1133 	WARN_ON(delay_us < 1000);
1134 
1135 	do {
1136 		msleep(delay_us / 1000);
1137 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1138 		if (status == U64_MAX)
1139 			nretry /= 2;
1140 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1141 		 nretry--);
1142 
1143 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1144 }
1145 
1146 /**
1147  * wait_port_offline() - waits for the specified host FC port go offline
1148  * @fc_regs:	Top of MMIO region defined for specified port.
1149  * @delay_us:	Number of microseconds to delay between reading port status.
1150  * @nretry:	Number of cycles to retry reading port status.
1151  *
1152  * The provided MMIO region must be mapped prior to call.
1153  *
1154  * Return:
1155  *	TRUE (1) when the specified port is offline
1156  *	FALSE (0) when the specified port fails to go offline after timeout
1157  */
1158 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1159 {
1160 	u64 status;
1161 
1162 	WARN_ON(delay_us < 1000);
1163 
1164 	do {
1165 		msleep(delay_us / 1000);
1166 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1167 		if (status == U64_MAX)
1168 			nretry /= 2;
1169 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1170 		 nretry--);
1171 
1172 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1173 }
1174 
1175 /**
1176  * afu_set_wwpn() - configures the WWPN for the specified host FC port
1177  * @afu:	AFU associated with the host that owns the specified FC port.
1178  * @port:	Port number being configured.
1179  * @fc_regs:	Top of MMIO region defined for specified port.
1180  * @wwpn:	The world-wide-port-number previously discovered for port.
1181  *
1182  * The provided MMIO region must be mapped prior to call. As part of the
1183  * sequence to configure the WWPN, the port is toggled offline and then back
1184  * online. This toggling action can cause this routine to delay up to a few
1185  * seconds. When configured to use the internal LUN feature of the AFU, a
1186  * failure to come online is overridden.
1187  */
1188 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1189 			 u64 wwpn)
1190 {
1191 	struct cxlflash_cfg *cfg = afu->parent;
1192 	struct device *dev = &cfg->dev->dev;
1193 
1194 	set_port_offline(fc_regs);
1195 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1196 			       FC_PORT_STATUS_RETRY_CNT)) {
1197 		dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1198 			__func__, port);
1199 	}
1200 
1201 	writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1202 
1203 	set_port_online(fc_regs);
1204 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1205 			      FC_PORT_STATUS_RETRY_CNT)) {
1206 		dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1207 			__func__, port);
1208 	}
1209 }
1210 
1211 /**
1212  * afu_link_reset() - resets the specified host FC port
1213  * @afu:	AFU associated with the host that owns the specified FC port.
1214  * @port:	Port number being configured.
1215  * @fc_regs:	Top of MMIO region defined for specified port.
1216  *
1217  * The provided MMIO region must be mapped prior to call. The sequence to
1218  * reset the port involves toggling it offline and then back online. This
1219  * action can cause this routine to delay up to a few seconds. An effort
1220  * is made to maintain link with the device by switching to host to use
1221  * the alternate port exclusively while the reset takes place.
1222  * failure to come online is overridden.
1223  */
1224 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1225 {
1226 	struct cxlflash_cfg *cfg = afu->parent;
1227 	struct device *dev = &cfg->dev->dev;
1228 	u64 port_sel;
1229 
1230 	/* first switch the AFU to the other links, if any */
1231 	port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1232 	port_sel &= ~(1ULL << port);
1233 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1234 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1235 
1236 	set_port_offline(fc_regs);
1237 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1238 			       FC_PORT_STATUS_RETRY_CNT))
1239 		dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1240 			__func__, port);
1241 
1242 	set_port_online(fc_regs);
1243 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1244 			      FC_PORT_STATUS_RETRY_CNT))
1245 		dev_err(dev, "%s: wait on port %d to go online timed out\n",
1246 			__func__, port);
1247 
1248 	/* switch back to include this port */
1249 	port_sel |= (1ULL << port);
1250 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1251 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1252 
1253 	dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1254 }
1255 
1256 /**
1257  * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1258  * @afu:	AFU associated with the host.
1259  */
1260 static void afu_err_intr_init(struct afu *afu)
1261 {
1262 	struct cxlflash_cfg *cfg = afu->parent;
1263 	__be64 __iomem *fc_port_regs;
1264 	int i;
1265 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1266 	u64 reg;
1267 
1268 	/* global async interrupts: AFU clears afu_ctrl on context exit
1269 	 * if async interrupts were sent to that context. This prevents
1270 	 * the AFU form sending further async interrupts when
1271 	 * there is
1272 	 * nobody to receive them.
1273 	 */
1274 
1275 	/* mask all */
1276 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1277 	/* set LISN# to send and point to primary master context */
1278 	reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1279 
1280 	if (afu->internal_lun)
1281 		reg |= 1;	/* Bit 63 indicates local lun */
1282 	writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1283 	/* clear all */
1284 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1285 	/* unmask bits that are of interest */
1286 	/* note: afu can send an interrupt after this step */
1287 	writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1288 	/* clear again in case a bit came on after previous clear but before */
1289 	/* unmask */
1290 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1291 
1292 	/* Clear/Set internal lun bits */
1293 	fc_port_regs = get_fc_port_regs(cfg, 0);
1294 	reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1295 	reg &= SISL_FC_INTERNAL_MASK;
1296 	if (afu->internal_lun)
1297 		reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1298 	writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1299 
1300 	/* now clear FC errors */
1301 	for (i = 0; i < cfg->num_fc_ports; i++) {
1302 		fc_port_regs = get_fc_port_regs(cfg, i);
1303 
1304 		writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1305 		writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1306 	}
1307 
1308 	/* sync interrupts for master's IOARRIN write */
1309 	/* note that unlike asyncs, there can be no pending sync interrupts */
1310 	/* at this time (this is a fresh context and master has not written */
1311 	/* IOARRIN yet), so there is nothing to clear. */
1312 
1313 	/* set LISN#, it is always sent to the context that wrote IOARRIN */
1314 	for (i = 0; i < afu->num_hwqs; i++) {
1315 		hwq = get_hwq(afu, i);
1316 
1317 		reg = readq_be(&hwq->host_map->ctx_ctrl);
1318 		WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0);
1319 		reg |= SISL_MSI_SYNC_ERROR;
1320 		writeq_be(reg, &hwq->host_map->ctx_ctrl);
1321 		writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1322 	}
1323 }
1324 
1325 /**
1326  * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1327  * @irq:	Interrupt number.
1328  * @data:	Private data provided at interrupt registration, the AFU.
1329  *
1330  * Return: Always return IRQ_HANDLED.
1331  */
1332 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1333 {
1334 	struct hwq *hwq = (struct hwq *)data;
1335 	struct cxlflash_cfg *cfg = hwq->afu->parent;
1336 	struct device *dev = &cfg->dev->dev;
1337 	u64 reg;
1338 	u64 reg_unmasked;
1339 
1340 	reg = readq_be(&hwq->host_map->intr_status);
1341 	reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1342 
1343 	if (reg_unmasked == 0UL) {
1344 		dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1345 			__func__, reg);
1346 		goto cxlflash_sync_err_irq_exit;
1347 	}
1348 
1349 	dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1350 		__func__, reg);
1351 
1352 	writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1353 
1354 cxlflash_sync_err_irq_exit:
1355 	return IRQ_HANDLED;
1356 }
1357 
1358 /**
1359  * process_hrrq() - process the read-response queue
1360  * @hwq:	HWQ associated with the host.
1361  * @doneq:	Queue of commands harvested from the RRQ.
1362  * @budget:	Threshold of RRQ entries to process.
1363  *
1364  * This routine must be called holding the disabled RRQ spin lock.
1365  *
1366  * Return: The number of entries processed.
1367  */
1368 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1369 {
1370 	struct afu *afu = hwq->afu;
1371 	struct afu_cmd *cmd;
1372 	struct sisl_ioasa *ioasa;
1373 	struct sisl_ioarcb *ioarcb;
1374 	bool toggle = hwq->toggle;
1375 	int num_hrrq = 0;
1376 	u64 entry,
1377 	    *hrrq_start = hwq->hrrq_start,
1378 	    *hrrq_end = hwq->hrrq_end,
1379 	    *hrrq_curr = hwq->hrrq_curr;
1380 
1381 	/* Process ready RRQ entries up to the specified budget (if any) */
1382 	while (true) {
1383 		entry = *hrrq_curr;
1384 
1385 		if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1386 			break;
1387 
1388 		entry &= ~SISL_RESP_HANDLE_T_BIT;
1389 
1390 		if (afu_is_sq_cmd_mode(afu)) {
1391 			ioasa = (struct sisl_ioasa *)entry;
1392 			cmd = container_of(ioasa, struct afu_cmd, sa);
1393 		} else {
1394 			ioarcb = (struct sisl_ioarcb *)entry;
1395 			cmd = container_of(ioarcb, struct afu_cmd, rcb);
1396 		}
1397 
1398 		list_add_tail(&cmd->queue, doneq);
1399 
1400 		/* Advance to next entry or wrap and flip the toggle bit */
1401 		if (hrrq_curr < hrrq_end)
1402 			hrrq_curr++;
1403 		else {
1404 			hrrq_curr = hrrq_start;
1405 			toggle ^= SISL_RESP_HANDLE_T_BIT;
1406 		}
1407 
1408 		atomic_inc(&hwq->hsq_credits);
1409 		num_hrrq++;
1410 
1411 		if (budget > 0 && num_hrrq >= budget)
1412 			break;
1413 	}
1414 
1415 	hwq->hrrq_curr = hrrq_curr;
1416 	hwq->toggle = toggle;
1417 
1418 	return num_hrrq;
1419 }
1420 
1421 /**
1422  * process_cmd_doneq() - process a queue of harvested RRQ commands
1423  * @doneq:	Queue of completed commands.
1424  *
1425  * Note that upon return the queue can no longer be trusted.
1426  */
1427 static void process_cmd_doneq(struct list_head *doneq)
1428 {
1429 	struct afu_cmd *cmd, *tmp;
1430 
1431 	WARN_ON(list_empty(doneq));
1432 
1433 	list_for_each_entry_safe(cmd, tmp, doneq, queue)
1434 		cmd_complete(cmd);
1435 }
1436 
1437 /**
1438  * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1439  * @irqpoll:	IRQ poll structure associated with queue to poll.
1440  * @budget:	Threshold of RRQ entries to process per poll.
1441  *
1442  * Return: The number of entries processed.
1443  */
1444 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1445 {
1446 	struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1447 	unsigned long hrrq_flags;
1448 	LIST_HEAD(doneq);
1449 	int num_entries = 0;
1450 
1451 	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1452 
1453 	num_entries = process_hrrq(hwq, &doneq, budget);
1454 	if (num_entries < budget)
1455 		irq_poll_complete(irqpoll);
1456 
1457 	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1458 
1459 	process_cmd_doneq(&doneq);
1460 	return num_entries;
1461 }
1462 
1463 /**
1464  * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1465  * @irq:	Interrupt number.
1466  * @data:	Private data provided at interrupt registration, the AFU.
1467  *
1468  * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1469  */
1470 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1471 {
1472 	struct hwq *hwq = (struct hwq *)data;
1473 	struct afu *afu = hwq->afu;
1474 	unsigned long hrrq_flags;
1475 	LIST_HEAD(doneq);
1476 	int num_entries = 0;
1477 
1478 	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1479 
1480 	/* Silently drop spurious interrupts when queue is not online */
1481 	if (!hwq->hrrq_online) {
1482 		spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1483 		return IRQ_HANDLED;
1484 	}
1485 
1486 	if (afu_is_irqpoll_enabled(afu)) {
1487 		irq_poll_sched(&hwq->irqpoll);
1488 		spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1489 		return IRQ_HANDLED;
1490 	}
1491 
1492 	num_entries = process_hrrq(hwq, &doneq, -1);
1493 	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1494 
1495 	if (num_entries == 0)
1496 		return IRQ_NONE;
1497 
1498 	process_cmd_doneq(&doneq);
1499 	return IRQ_HANDLED;
1500 }
1501 
1502 /*
1503  * Asynchronous interrupt information table
1504  *
1505  * NOTE:
1506  *	- Order matters here as this array is indexed by bit position.
1507  *
1508  *	- The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1509  *	  as complex and complains due to a lack of parentheses/braces.
1510  */
1511 #define ASTATUS_FC(_a, _b, _c, _d)					 \
1512 	{ SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1513 
1514 #define BUILD_SISL_ASTATUS_FC_PORT(_a)					 \
1515 	ASTATUS_FC(_a, LINK_UP, "link up", 0),				 \
1516 	ASTATUS_FC(_a, LINK_DN, "link down", 0),			 \
1517 	ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST),		 \
1518 	ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR),		 \
1519 	ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1520 	ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET),	 \
1521 	ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0),		 \
1522 	ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1523 
1524 static const struct asyc_intr_info ainfo[] = {
1525 	BUILD_SISL_ASTATUS_FC_PORT(1),
1526 	BUILD_SISL_ASTATUS_FC_PORT(0),
1527 	BUILD_SISL_ASTATUS_FC_PORT(3),
1528 	BUILD_SISL_ASTATUS_FC_PORT(2)
1529 };
1530 
1531 /**
1532  * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1533  * @irq:	Interrupt number.
1534  * @data:	Private data provided at interrupt registration, the AFU.
1535  *
1536  * Return: Always return IRQ_HANDLED.
1537  */
1538 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1539 {
1540 	struct hwq *hwq = (struct hwq *)data;
1541 	struct afu *afu = hwq->afu;
1542 	struct cxlflash_cfg *cfg = afu->parent;
1543 	struct device *dev = &cfg->dev->dev;
1544 	const struct asyc_intr_info *info;
1545 	struct sisl_global_map __iomem *global = &afu->afu_map->global;
1546 	__be64 __iomem *fc_port_regs;
1547 	u64 reg_unmasked;
1548 	u64 reg;
1549 	u64 bit;
1550 	u8 port;
1551 
1552 	reg = readq_be(&global->regs.aintr_status);
1553 	reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1554 
1555 	if (unlikely(reg_unmasked == 0)) {
1556 		dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1557 			__func__, reg);
1558 		goto out;
1559 	}
1560 
1561 	/* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1562 	writeq_be(reg_unmasked, &global->regs.aintr_clear);
1563 
1564 	/* Check each bit that is on */
1565 	for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1566 		if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1567 			WARN_ON_ONCE(1);
1568 			continue;
1569 		}
1570 
1571 		info = &ainfo[bit];
1572 		if (unlikely(info->status != 1ULL << bit)) {
1573 			WARN_ON_ONCE(1);
1574 			continue;
1575 		}
1576 
1577 		port = info->port;
1578 		fc_port_regs = get_fc_port_regs(cfg, port);
1579 
1580 		dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1581 			__func__, port, info->desc,
1582 		       readq_be(&fc_port_regs[FC_STATUS / 8]));
1583 
1584 		/*
1585 		 * Do link reset first, some OTHER errors will set FC_ERROR
1586 		 * again if cleared before or w/o a reset
1587 		 */
1588 		if (info->action & LINK_RESET) {
1589 			dev_err(dev, "%s: FC Port %d: resetting link\n",
1590 				__func__, port);
1591 			cfg->lr_state = LINK_RESET_REQUIRED;
1592 			cfg->lr_port = port;
1593 			schedule_work(&cfg->work_q);
1594 		}
1595 
1596 		if (info->action & CLR_FC_ERROR) {
1597 			reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1598 
1599 			/*
1600 			 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1601 			 * should be the same and tracing one is sufficient.
1602 			 */
1603 
1604 			dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1605 				__func__, port, reg);
1606 
1607 			writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1608 			writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1609 		}
1610 
1611 		if (info->action & SCAN_HOST) {
1612 			atomic_inc(&cfg->scan_host_needed);
1613 			schedule_work(&cfg->work_q);
1614 		}
1615 	}
1616 
1617 out:
1618 	return IRQ_HANDLED;
1619 }
1620 
1621 /**
1622  * read_vpd() - obtains the WWPNs from VPD
1623  * @cfg:	Internal structure associated with the host.
1624  * @wwpn:	Array of size MAX_FC_PORTS to pass back WWPNs
1625  *
1626  * Return: 0 on success, -errno on failure
1627  */
1628 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1629 {
1630 	struct device *dev = &cfg->dev->dev;
1631 	struct pci_dev *pdev = cfg->dev;
1632 	int i, k, rc = 0;
1633 	unsigned int kw_size;
1634 	ssize_t vpd_size;
1635 	char vpd_data[CXLFLASH_VPD_LEN];
1636 	char tmp_buf[WWPN_BUF_LEN] = { 0 };
1637 	const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
1638 						cfg->dev_id->driver_data;
1639 	const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
1640 	const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1641 
1642 	/* Get the VPD data from the device */
1643 	vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1644 	if (unlikely(vpd_size <= 0)) {
1645 		dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1646 			__func__, vpd_size);
1647 		rc = -ENODEV;
1648 		goto out;
1649 	}
1650 
1651 	/*
1652 	 * Find the offset of the WWPN tag within the read only
1653 	 * VPD data and validate the found field (partials are
1654 	 * no good to us). Convert the ASCII data to an integer
1655 	 * value. Note that we must copy to a temporary buffer
1656 	 * because the conversion service requires that the ASCII
1657 	 * string be terminated.
1658 	 *
1659 	 * Allow for WWPN not being found for all devices, setting
1660 	 * the returned WWPN to zero when not found. Notify with a
1661 	 * log error for cards that should have had WWPN keywords
1662 	 * in the VPD - cards requiring WWPN will not have their
1663 	 * ports programmed and operate in an undefined state.
1664 	 */
1665 	for (k = 0; k < cfg->num_fc_ports; k++) {
1666 		i = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
1667 						 wwpn_vpd_tags[k], &kw_size);
1668 		if (i == -ENOENT) {
1669 			if (wwpn_vpd_required)
1670 				dev_err(dev, "%s: Port %d WWPN not found\n",
1671 					__func__, k);
1672 			wwpn[k] = 0ULL;
1673 			continue;
1674 		}
1675 
1676 		if (i < 0 || kw_size != WWPN_LEN) {
1677 			dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1678 				__func__, k);
1679 			rc = -ENODEV;
1680 			goto out;
1681 		}
1682 
1683 		memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1684 		rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1685 		if (unlikely(rc)) {
1686 			dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1687 				__func__, k);
1688 			rc = -ENODEV;
1689 			goto out;
1690 		}
1691 
1692 		dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1693 	}
1694 
1695 out:
1696 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1697 	return rc;
1698 }
1699 
1700 /**
1701  * init_pcr() - initialize the provisioning and control registers
1702  * @cfg:	Internal structure associated with the host.
1703  *
1704  * Also sets up fast access to the mapped registers and initializes AFU
1705  * command fields that never change.
1706  */
1707 static void init_pcr(struct cxlflash_cfg *cfg)
1708 {
1709 	struct afu *afu = cfg->afu;
1710 	struct sisl_ctrl_map __iomem *ctrl_map;
1711 	struct hwq *hwq;
1712 	void *cookie;
1713 	int i;
1714 
1715 	for (i = 0; i < MAX_CONTEXT; i++) {
1716 		ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1717 		/* Disrupt any clients that could be running */
1718 		/* e.g. clients that survived a master restart */
1719 		writeq_be(0, &ctrl_map->rht_start);
1720 		writeq_be(0, &ctrl_map->rht_cnt_id);
1721 		writeq_be(0, &ctrl_map->ctx_cap);
1722 	}
1723 
1724 	/* Copy frequently used fields into hwq */
1725 	for (i = 0; i < afu->num_hwqs; i++) {
1726 		hwq = get_hwq(afu, i);
1727 		cookie = hwq->ctx_cookie;
1728 
1729 		hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie);
1730 		hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1731 		hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1732 
1733 		/* Program the Endian Control for the master context */
1734 		writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1735 	}
1736 }
1737 
1738 /**
1739  * init_global() - initialize AFU global registers
1740  * @cfg:	Internal structure associated with the host.
1741  */
1742 static int init_global(struct cxlflash_cfg *cfg)
1743 {
1744 	struct afu *afu = cfg->afu;
1745 	struct device *dev = &cfg->dev->dev;
1746 	struct hwq *hwq;
1747 	struct sisl_host_map __iomem *hmap;
1748 	__be64 __iomem *fc_port_regs;
1749 	u64 wwpn[MAX_FC_PORTS];	/* wwpn of AFU ports */
1750 	int i = 0, num_ports = 0;
1751 	int rc = 0;
1752 	int j;
1753 	void *ctx;
1754 	u64 reg;
1755 
1756 	rc = read_vpd(cfg, &wwpn[0]);
1757 	if (rc) {
1758 		dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1759 		goto out;
1760 	}
1761 
1762 	/* Set up RRQ and SQ in HWQ for master issued cmds */
1763 	for (i = 0; i < afu->num_hwqs; i++) {
1764 		hwq = get_hwq(afu, i);
1765 		hmap = hwq->host_map;
1766 
1767 		writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1768 		writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1769 		hwq->hrrq_online = true;
1770 
1771 		if (afu_is_sq_cmd_mode(afu)) {
1772 			writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1773 			writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1774 		}
1775 	}
1776 
1777 	/* AFU configuration */
1778 	reg = readq_be(&afu->afu_map->global.regs.afu_config);
1779 	reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1780 	/* enable all auto retry options and control endianness */
1781 	/* leave others at default: */
1782 	/* CTX_CAP write protected, mbox_r does not clear on read and */
1783 	/* checker on if dual afu */
1784 	writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1785 
1786 	/* Global port select: select either port */
1787 	if (afu->internal_lun) {
1788 		/* Only use port 0 */
1789 		writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1790 		num_ports = 0;
1791 	} else {
1792 		writeq_be(PORT_MASK(cfg->num_fc_ports),
1793 			  &afu->afu_map->global.regs.afu_port_sel);
1794 		num_ports = cfg->num_fc_ports;
1795 	}
1796 
1797 	for (i = 0; i < num_ports; i++) {
1798 		fc_port_regs = get_fc_port_regs(cfg, i);
1799 
1800 		/* Unmask all errors (but they are still masked at AFU) */
1801 		writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1802 		/* Clear CRC error cnt & set a threshold */
1803 		(void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1804 		writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1805 
1806 		/* Set WWPNs. If already programmed, wwpn[i] is 0 */
1807 		if (wwpn[i] != 0)
1808 			afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1809 		/* Programming WWPN back to back causes additional
1810 		 * offline/online transitions and a PLOGI
1811 		 */
1812 		msleep(100);
1813 	}
1814 
1815 	if (afu_is_ocxl_lisn(afu)) {
1816 		/* Set up the LISN effective address for each master */
1817 		for (i = 0; i < afu->num_hwqs; i++) {
1818 			hwq = get_hwq(afu, i);
1819 			ctx = hwq->ctx_cookie;
1820 
1821 			for (j = 0; j < hwq->num_irqs; j++) {
1822 				reg = cfg->ops->get_irq_objhndl(ctx, j);
1823 				writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]);
1824 			}
1825 
1826 			reg = hwq->ctx_hndl;
1827 			writeq_be(SISL_LISN_PASID(reg, reg),
1828 				  &hwq->ctrl_map->lisn_pasid[0]);
1829 			writeq_be(SISL_LISN_PASID(0UL, reg),
1830 				  &hwq->ctrl_map->lisn_pasid[1]);
1831 		}
1832 	}
1833 
1834 	/* Set up master's own CTX_CAP to allow real mode, host translation */
1835 	/* tables, afu cmds and read/write GSCSI cmds. */
1836 	/* First, unlock ctx_cap write by reading mbox */
1837 	for (i = 0; i < afu->num_hwqs; i++) {
1838 		hwq = get_hwq(afu, i);
1839 
1840 		(void)readq_be(&hwq->ctrl_map->mbox_r);	/* unlock ctx_cap */
1841 		writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1842 			SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1843 			SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1844 			&hwq->ctrl_map->ctx_cap);
1845 	}
1846 
1847 	/*
1848 	 * Determine write-same unmap support for host by evaluating the unmap
1849 	 * sector support bit of the context control register associated with
1850 	 * the primary hardware queue. Note that while this status is reflected
1851 	 * in a context register, the outcome can be assumed to be host-wide.
1852 	 */
1853 	hwq = get_hwq(afu, PRIMARY_HWQ);
1854 	reg = readq_be(&hwq->host_map->ctx_ctrl);
1855 	if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
1856 		cfg->ws_unmap = true;
1857 
1858 	/* Initialize heartbeat */
1859 	afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1860 out:
1861 	return rc;
1862 }
1863 
1864 /**
1865  * start_afu() - initializes and starts the AFU
1866  * @cfg:	Internal structure associated with the host.
1867  */
1868 static int start_afu(struct cxlflash_cfg *cfg)
1869 {
1870 	struct afu *afu = cfg->afu;
1871 	struct device *dev = &cfg->dev->dev;
1872 	struct hwq *hwq;
1873 	int rc = 0;
1874 	int i;
1875 
1876 	init_pcr(cfg);
1877 
1878 	/* Initialize each HWQ */
1879 	for (i = 0; i < afu->num_hwqs; i++) {
1880 		hwq = get_hwq(afu, i);
1881 
1882 		/* After an AFU reset, RRQ entries are stale, clear them */
1883 		memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1884 
1885 		/* Initialize RRQ pointers */
1886 		hwq->hrrq_start = &hwq->rrq_entry[0];
1887 		hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1888 		hwq->hrrq_curr = hwq->hrrq_start;
1889 		hwq->toggle = 1;
1890 
1891 		/* Initialize spin locks */
1892 		spin_lock_init(&hwq->hrrq_slock);
1893 		spin_lock_init(&hwq->hsq_slock);
1894 
1895 		/* Initialize SQ */
1896 		if (afu_is_sq_cmd_mode(afu)) {
1897 			memset(&hwq->sq, 0, sizeof(hwq->sq));
1898 			hwq->hsq_start = &hwq->sq[0];
1899 			hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1900 			hwq->hsq_curr = hwq->hsq_start;
1901 
1902 			atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1903 		}
1904 
1905 		/* Initialize IRQ poll */
1906 		if (afu_is_irqpoll_enabled(afu))
1907 			irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1908 				      cxlflash_irqpoll);
1909 
1910 	}
1911 
1912 	rc = init_global(cfg);
1913 
1914 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1915 	return rc;
1916 }
1917 
1918 /**
1919  * init_intr() - setup interrupt handlers for the master context
1920  * @cfg:	Internal structure associated with the host.
1921  * @hwq:	Hardware queue to initialize.
1922  *
1923  * Return: 0 on success, -errno on failure
1924  */
1925 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1926 				 struct hwq *hwq)
1927 {
1928 	struct device *dev = &cfg->dev->dev;
1929 	void *ctx = hwq->ctx_cookie;
1930 	int rc = 0;
1931 	enum undo_level level = UNDO_NOOP;
1932 	bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1933 	int num_irqs = hwq->num_irqs;
1934 
1935 	rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs);
1936 	if (unlikely(rc)) {
1937 		dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1938 			__func__, rc);
1939 		level = UNDO_NOOP;
1940 		goto out;
1941 	}
1942 
1943 	rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1944 				   "SISL_MSI_SYNC_ERROR");
1945 	if (unlikely(rc <= 0)) {
1946 		dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1947 		level = FREE_IRQ;
1948 		goto out;
1949 	}
1950 
1951 	rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1952 				   "SISL_MSI_RRQ_UPDATED");
1953 	if (unlikely(rc <= 0)) {
1954 		dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1955 		level = UNMAP_ONE;
1956 		goto out;
1957 	}
1958 
1959 	/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1960 	if (!is_primary_hwq)
1961 		goto out;
1962 
1963 	rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1964 				   "SISL_MSI_ASYNC_ERROR");
1965 	if (unlikely(rc <= 0)) {
1966 		dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1967 		level = UNMAP_TWO;
1968 		goto out;
1969 	}
1970 out:
1971 	return level;
1972 }
1973 
1974 /**
1975  * init_mc() - create and register as the master context
1976  * @cfg:	Internal structure associated with the host.
1977  * @index:	HWQ Index of the master context.
1978  *
1979  * Return: 0 on success, -errno on failure
1980  */
1981 static int init_mc(struct cxlflash_cfg *cfg, u32 index)
1982 {
1983 	void *ctx;
1984 	struct device *dev = &cfg->dev->dev;
1985 	struct hwq *hwq = get_hwq(cfg->afu, index);
1986 	int rc = 0;
1987 	int num_irqs;
1988 	enum undo_level level;
1989 
1990 	hwq->afu = cfg->afu;
1991 	hwq->index = index;
1992 	INIT_LIST_HEAD(&hwq->pending_cmds);
1993 
1994 	if (index == PRIMARY_HWQ) {
1995 		ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie);
1996 		num_irqs = 3;
1997 	} else {
1998 		ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie);
1999 		num_irqs = 2;
2000 	}
2001 	if (IS_ERR_OR_NULL(ctx)) {
2002 		rc = -ENOMEM;
2003 		goto err1;
2004 	}
2005 
2006 	WARN_ON(hwq->ctx_cookie);
2007 	hwq->ctx_cookie = ctx;
2008 	hwq->num_irqs = num_irqs;
2009 
2010 	/* Set it up as a master with the CXL */
2011 	cfg->ops->set_master(ctx);
2012 
2013 	/* Reset AFU when initializing primary context */
2014 	if (index == PRIMARY_HWQ) {
2015 		rc = cfg->ops->afu_reset(ctx);
2016 		if (unlikely(rc)) {
2017 			dev_err(dev, "%s: AFU reset failed rc=%d\n",
2018 				      __func__, rc);
2019 			goto err1;
2020 		}
2021 	}
2022 
2023 	level = init_intr(cfg, hwq);
2024 	if (unlikely(level)) {
2025 		dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
2026 		goto err2;
2027 	}
2028 
2029 	/* Finally, activate the context by starting it */
2030 	rc = cfg->ops->start_context(hwq->ctx_cookie);
2031 	if (unlikely(rc)) {
2032 		dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
2033 		level = UNMAP_THREE;
2034 		goto err2;
2035 	}
2036 
2037 out:
2038 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2039 	return rc;
2040 err2:
2041 	term_intr(cfg, level, index);
2042 	if (index != PRIMARY_HWQ)
2043 		cfg->ops->release_context(ctx);
2044 err1:
2045 	hwq->ctx_cookie = NULL;
2046 	goto out;
2047 }
2048 
2049 /**
2050  * get_num_afu_ports() - determines and configures the number of AFU ports
2051  * @cfg:	Internal structure associated with the host.
2052  *
2053  * This routine determines the number of AFU ports by converting the global
2054  * port selection mask. The converted value is only valid following an AFU
2055  * reset (explicit or power-on). This routine must be invoked shortly after
2056  * mapping as other routines are dependent on the number of ports during the
2057  * initialization sequence.
2058  *
2059  * To support legacy AFUs that might not have reflected an initial global
2060  * port mask (value read is 0), default to the number of ports originally
2061  * supported by the cxlflash driver (2) before hardware with other port
2062  * offerings was introduced.
2063  */
2064 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
2065 {
2066 	struct afu *afu = cfg->afu;
2067 	struct device *dev = &cfg->dev->dev;
2068 	u64 port_mask;
2069 	int num_fc_ports = LEGACY_FC_PORTS;
2070 
2071 	port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
2072 	if (port_mask != 0ULL)
2073 		num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
2074 
2075 	dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
2076 		__func__, port_mask, num_fc_ports);
2077 
2078 	cfg->num_fc_ports = num_fc_ports;
2079 	cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
2080 }
2081 
2082 /**
2083  * init_afu() - setup as master context and start AFU
2084  * @cfg:	Internal structure associated with the host.
2085  *
2086  * This routine is a higher level of control for configuring the
2087  * AFU on probe and reset paths.
2088  *
2089  * Return: 0 on success, -errno on failure
2090  */
2091 static int init_afu(struct cxlflash_cfg *cfg)
2092 {
2093 	u64 reg;
2094 	int rc = 0;
2095 	struct afu *afu = cfg->afu;
2096 	struct device *dev = &cfg->dev->dev;
2097 	struct hwq *hwq;
2098 	int i;
2099 
2100 	cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true);
2101 
2102 	mutex_init(&afu->sync_active);
2103 	afu->num_hwqs = afu->desired_hwqs;
2104 	for (i = 0; i < afu->num_hwqs; i++) {
2105 		rc = init_mc(cfg, i);
2106 		if (rc) {
2107 			dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
2108 				__func__, rc, i);
2109 			goto err1;
2110 		}
2111 	}
2112 
2113 	/* Map the entire MMIO space of the AFU using the first context */
2114 	hwq = get_hwq(afu, PRIMARY_HWQ);
2115 	afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie);
2116 	if (!afu->afu_map) {
2117 		dev_err(dev, "%s: psa_map failed\n", __func__);
2118 		rc = -ENOMEM;
2119 		goto err1;
2120 	}
2121 
2122 	/* No byte reverse on reading afu_version or string will be backwards */
2123 	reg = readq(&afu->afu_map->global.regs.afu_version);
2124 	memcpy(afu->version, &reg, sizeof(reg));
2125 	afu->interface_version =
2126 	    readq_be(&afu->afu_map->global.regs.interface_version);
2127 	if ((afu->interface_version + 1) == 0) {
2128 		dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
2129 			"interface version %016llx\n", afu->version,
2130 		       afu->interface_version);
2131 		rc = -EINVAL;
2132 		goto err1;
2133 	}
2134 
2135 	if (afu_is_sq_cmd_mode(afu)) {
2136 		afu->send_cmd = send_cmd_sq;
2137 		afu->context_reset = context_reset_sq;
2138 	} else {
2139 		afu->send_cmd = send_cmd_ioarrin;
2140 		afu->context_reset = context_reset_ioarrin;
2141 	}
2142 
2143 	dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
2144 		afu->version, afu->interface_version);
2145 
2146 	get_num_afu_ports(cfg);
2147 
2148 	rc = start_afu(cfg);
2149 	if (rc) {
2150 		dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
2151 		goto err1;
2152 	}
2153 
2154 	afu_err_intr_init(cfg->afu);
2155 	for (i = 0; i < afu->num_hwqs; i++) {
2156 		hwq = get_hwq(afu, i);
2157 
2158 		hwq->room = readq_be(&hwq->host_map->cmd_room);
2159 	}
2160 
2161 	/* Restore the LUN mappings */
2162 	cxlflash_restore_luntable(cfg);
2163 out:
2164 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2165 	return rc;
2166 
2167 err1:
2168 	for (i = afu->num_hwqs - 1; i >= 0; i--) {
2169 		term_intr(cfg, UNMAP_THREE, i);
2170 		term_mc(cfg, i);
2171 	}
2172 	goto out;
2173 }
2174 
2175 /**
2176  * afu_reset() - resets the AFU
2177  * @cfg:	Internal structure associated with the host.
2178  *
2179  * Return: 0 on success, -errno on failure
2180  */
2181 static int afu_reset(struct cxlflash_cfg *cfg)
2182 {
2183 	struct device *dev = &cfg->dev->dev;
2184 	int rc = 0;
2185 
2186 	/* Stop the context before the reset. Since the context is
2187 	 * no longer available restart it after the reset is complete
2188 	 */
2189 	term_afu(cfg);
2190 
2191 	rc = init_afu(cfg);
2192 
2193 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2194 	return rc;
2195 }
2196 
2197 /**
2198  * drain_ioctls() - wait until all currently executing ioctls have completed
2199  * @cfg:	Internal structure associated with the host.
2200  *
2201  * Obtain write access to read/write semaphore that wraps ioctl
2202  * handling to 'drain' ioctls currently executing.
2203  */
2204 static void drain_ioctls(struct cxlflash_cfg *cfg)
2205 {
2206 	down_write(&cfg->ioctl_rwsem);
2207 	up_write(&cfg->ioctl_rwsem);
2208 }
2209 
2210 /**
2211  * cxlflash_async_reset_host() - asynchronous host reset handler
2212  * @data:	Private data provided while scheduling reset.
2213  * @cookie:	Cookie that can be used for checkpointing.
2214  */
2215 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
2216 {
2217 	struct cxlflash_cfg *cfg = data;
2218 	struct device *dev = &cfg->dev->dev;
2219 	int rc = 0;
2220 
2221 	if (cfg->state != STATE_RESET) {
2222 		dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
2223 			__func__, cfg->state);
2224 		goto out;
2225 	}
2226 
2227 	drain_ioctls(cfg);
2228 	cxlflash_mark_contexts_error(cfg);
2229 	rc = afu_reset(cfg);
2230 	if (rc)
2231 		cfg->state = STATE_FAILTERM;
2232 	else
2233 		cfg->state = STATE_NORMAL;
2234 	wake_up_all(&cfg->reset_waitq);
2235 
2236 out:
2237 	scsi_unblock_requests(cfg->host);
2238 }
2239 
2240 /**
2241  * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
2242  * @cfg:	Internal structure associated with the host.
2243  */
2244 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
2245 {
2246 	struct device *dev = &cfg->dev->dev;
2247 
2248 	if (cfg->state != STATE_NORMAL) {
2249 		dev_dbg(dev, "%s: Not performing reset state=%d\n",
2250 			__func__, cfg->state);
2251 		return;
2252 	}
2253 
2254 	cfg->state = STATE_RESET;
2255 	scsi_block_requests(cfg->host);
2256 	cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
2257 						 cfg);
2258 }
2259 
2260 /**
2261  * send_afu_cmd() - builds and sends an internal AFU command
2262  * @afu:	AFU associated with the host.
2263  * @rcb:	Pre-populated IOARCB describing command to send.
2264  *
2265  * The AFU can only take one internal AFU command at a time. This limitation is
2266  * enforced by using a mutex to provide exclusive access to the AFU during the
2267  * operation. This design point requires calling threads to not be on interrupt
2268  * context due to the possibility of sleeping during concurrent AFU operations.
2269  *
2270  * The command status is optionally passed back to the caller when the caller
2271  * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
2272  *
2273  * Return:
2274  *	0 on success, -errno on failure
2275  */
2276 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
2277 {
2278 	struct cxlflash_cfg *cfg = afu->parent;
2279 	struct device *dev = &cfg->dev->dev;
2280 	struct afu_cmd *cmd = NULL;
2281 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
2282 	ulong lock_flags;
2283 	char *buf = NULL;
2284 	int rc = 0;
2285 	int nretry = 0;
2286 
2287 	if (cfg->state != STATE_NORMAL) {
2288 		dev_dbg(dev, "%s: Sync not required state=%u\n",
2289 			__func__, cfg->state);
2290 		return 0;
2291 	}
2292 
2293 	mutex_lock(&afu->sync_active);
2294 	atomic_inc(&afu->cmds_active);
2295 	buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2296 	if (unlikely(!buf)) {
2297 		dev_err(dev, "%s: no memory for command\n", __func__);
2298 		rc = -ENOMEM;
2299 		goto out;
2300 	}
2301 
2302 	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2303 
2304 retry:
2305 	memset(cmd, 0, sizeof(*cmd));
2306 	memcpy(&cmd->rcb, rcb, sizeof(*rcb));
2307 	INIT_LIST_HEAD(&cmd->queue);
2308 	init_completion(&cmd->cevent);
2309 	cmd->parent = afu;
2310 	cmd->hwq_index = hwq->index;
2311 	cmd->rcb.ctx_id = hwq->ctx_hndl;
2312 
2313 	dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
2314 		__func__, afu, cmd, cmd->rcb.cdb[0], nretry);
2315 
2316 	rc = afu->send_cmd(afu, cmd);
2317 	if (unlikely(rc)) {
2318 		rc = -ENOBUFS;
2319 		goto out;
2320 	}
2321 
2322 	rc = wait_resp(afu, cmd);
2323 	switch (rc) {
2324 	case -ETIMEDOUT:
2325 		rc = afu->context_reset(hwq);
2326 		if (rc) {
2327 			/* Delete the command from pending_cmds list */
2328 			spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
2329 			list_del(&cmd->list);
2330 			spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
2331 
2332 			cxlflash_schedule_async_reset(cfg);
2333 			break;
2334 		}
2335 		fallthrough;	/* to retry */
2336 	case -EAGAIN:
2337 		if (++nretry < 2)
2338 			goto retry;
2339 		fallthrough;	/* to exit */
2340 	default:
2341 		break;
2342 	}
2343 
2344 	if (rcb->ioasa)
2345 		*rcb->ioasa = cmd->sa;
2346 out:
2347 	atomic_dec(&afu->cmds_active);
2348 	mutex_unlock(&afu->sync_active);
2349 	kfree(buf);
2350 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2351 	return rc;
2352 }
2353 
2354 /**
2355  * cxlflash_afu_sync() - builds and sends an AFU sync command
2356  * @afu:	AFU associated with the host.
2357  * @ctx:	Identifies context requesting sync.
2358  * @res:	Identifies resource requesting sync.
2359  * @mode:	Type of sync to issue (lightweight, heavyweight, global).
2360  *
2361  * AFU sync operations are only necessary and allowed when the device is
2362  * operating normally. When not operating normally, sync requests can occur as
2363  * part of cleaning up resources associated with an adapter prior to removal.
2364  * In this scenario, these requests are simply ignored (safe due to the AFU
2365  * going away).
2366  *
2367  * Return:
2368  *	0 on success, -errno on failure
2369  */
2370 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
2371 {
2372 	struct cxlflash_cfg *cfg = afu->parent;
2373 	struct device *dev = &cfg->dev->dev;
2374 	struct sisl_ioarcb rcb = { 0 };
2375 
2376 	dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
2377 		__func__, afu, ctx, res, mode);
2378 
2379 	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2380 	rcb.msi = SISL_MSI_RRQ_UPDATED;
2381 	rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2382 
2383 	rcb.cdb[0] = SISL_AFU_CMD_SYNC;
2384 	rcb.cdb[1] = mode;
2385 	put_unaligned_be16(ctx, &rcb.cdb[2]);
2386 	put_unaligned_be32(res, &rcb.cdb[4]);
2387 
2388 	return send_afu_cmd(afu, &rcb);
2389 }
2390 
2391 /**
2392  * cxlflash_eh_abort_handler() - abort a SCSI command
2393  * @scp:	SCSI command to abort.
2394  *
2395  * CXL Flash devices do not support a single command abort. Reset the context
2396  * as per SISLite specification. Flush any pending commands in the hardware
2397  * queue before the reset.
2398  *
2399  * Return: SUCCESS/FAILED as defined in scsi/scsi.h
2400  */
2401 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
2402 {
2403 	int rc = FAILED;
2404 	struct Scsi_Host *host = scp->device->host;
2405 	struct cxlflash_cfg *cfg = shost_priv(host);
2406 	struct afu_cmd *cmd = sc_to_afuc(scp);
2407 	struct device *dev = &cfg->dev->dev;
2408 	struct afu *afu = cfg->afu;
2409 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
2410 
2411 	dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2412 		"cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2413 		scp->device->channel, scp->device->id, scp->device->lun,
2414 		get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2415 		get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2416 		get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2417 		get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2418 
2419 	/* When the state is not normal, another reset/reload is in progress.
2420 	 * Return failed and the mid-layer will invoke host reset handler.
2421 	 */
2422 	if (cfg->state != STATE_NORMAL) {
2423 		dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
2424 			__func__, cfg->state);
2425 		goto out;
2426 	}
2427 
2428 	rc = afu->context_reset(hwq);
2429 	if (unlikely(rc))
2430 		goto out;
2431 
2432 	rc = SUCCESS;
2433 
2434 out:
2435 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2436 	return rc;
2437 }
2438 
2439 /**
2440  * cxlflash_eh_device_reset_handler() - reset a single LUN
2441  * @scp:	SCSI command to send.
2442  *
2443  * Return:
2444  *	SUCCESS as defined in scsi/scsi.h
2445  *	FAILED as defined in scsi/scsi.h
2446  */
2447 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2448 {
2449 	int rc = SUCCESS;
2450 	struct scsi_device *sdev = scp->device;
2451 	struct Scsi_Host *host = sdev->host;
2452 	struct cxlflash_cfg *cfg = shost_priv(host);
2453 	struct device *dev = &cfg->dev->dev;
2454 	int rcr = 0;
2455 
2456 	dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
2457 		host->host_no, sdev->channel, sdev->id, sdev->lun);
2458 retry:
2459 	switch (cfg->state) {
2460 	case STATE_NORMAL:
2461 		rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
2462 		if (unlikely(rcr))
2463 			rc = FAILED;
2464 		break;
2465 	case STATE_RESET:
2466 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2467 		goto retry;
2468 	default:
2469 		rc = FAILED;
2470 		break;
2471 	}
2472 
2473 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2474 	return rc;
2475 }
2476 
2477 /**
2478  * cxlflash_eh_host_reset_handler() - reset the host adapter
2479  * @scp:	SCSI command from stack identifying host.
2480  *
2481  * Following a reset, the state is evaluated again in case an EEH occurred
2482  * during the reset. In such a scenario, the host reset will either yield
2483  * until the EEH recovery is complete or return success or failure based
2484  * upon the current device state.
2485  *
2486  * Return:
2487  *	SUCCESS as defined in scsi/scsi.h
2488  *	FAILED as defined in scsi/scsi.h
2489  */
2490 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2491 {
2492 	int rc = SUCCESS;
2493 	int rcr = 0;
2494 	struct Scsi_Host *host = scp->device->host;
2495 	struct cxlflash_cfg *cfg = shost_priv(host);
2496 	struct device *dev = &cfg->dev->dev;
2497 
2498 	dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
2499 
2500 	switch (cfg->state) {
2501 	case STATE_NORMAL:
2502 		cfg->state = STATE_RESET;
2503 		drain_ioctls(cfg);
2504 		cxlflash_mark_contexts_error(cfg);
2505 		rcr = afu_reset(cfg);
2506 		if (rcr) {
2507 			rc = FAILED;
2508 			cfg->state = STATE_FAILTERM;
2509 		} else
2510 			cfg->state = STATE_NORMAL;
2511 		wake_up_all(&cfg->reset_waitq);
2512 		ssleep(1);
2513 		fallthrough;
2514 	case STATE_RESET:
2515 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2516 		if (cfg->state == STATE_NORMAL)
2517 			break;
2518 		fallthrough;
2519 	default:
2520 		rc = FAILED;
2521 		break;
2522 	}
2523 
2524 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2525 	return rc;
2526 }
2527 
2528 /**
2529  * cxlflash_change_queue_depth() - change the queue depth for the device
2530  * @sdev:	SCSI device destined for queue depth change.
2531  * @qdepth:	Requested queue depth value to set.
2532  *
2533  * The requested queue depth is capped to the maximum supported value.
2534  *
2535  * Return: The actual queue depth set.
2536  */
2537 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2538 {
2539 
2540 	if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2541 		qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2542 
2543 	scsi_change_queue_depth(sdev, qdepth);
2544 	return sdev->queue_depth;
2545 }
2546 
2547 /**
2548  * cxlflash_show_port_status() - queries and presents the current port status
2549  * @port:	Desired port for status reporting.
2550  * @cfg:	Internal structure associated with the host.
2551  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2552  *
2553  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2554  */
2555 static ssize_t cxlflash_show_port_status(u32 port,
2556 					 struct cxlflash_cfg *cfg,
2557 					 char *buf)
2558 {
2559 	struct device *dev = &cfg->dev->dev;
2560 	char *disp_status;
2561 	u64 status;
2562 	__be64 __iomem *fc_port_regs;
2563 
2564 	WARN_ON(port >= MAX_FC_PORTS);
2565 
2566 	if (port >= cfg->num_fc_ports) {
2567 		dev_info(dev, "%s: Port %d not supported on this card.\n",
2568 			__func__, port);
2569 		return -EINVAL;
2570 	}
2571 
2572 	fc_port_regs = get_fc_port_regs(cfg, port);
2573 	status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2574 	status &= FC_MTIP_STATUS_MASK;
2575 
2576 	if (status == FC_MTIP_STATUS_ONLINE)
2577 		disp_status = "online";
2578 	else if (status == FC_MTIP_STATUS_OFFLINE)
2579 		disp_status = "offline";
2580 	else
2581 		disp_status = "unknown";
2582 
2583 	return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2584 }
2585 
2586 /**
2587  * port0_show() - queries and presents the current status of port 0
2588  * @dev:	Generic device associated with the host owning the port.
2589  * @attr:	Device attribute representing the port.
2590  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2591  *
2592  * Return: The size of the ASCII string returned in @buf.
2593  */
2594 static ssize_t port0_show(struct device *dev,
2595 			  struct device_attribute *attr,
2596 			  char *buf)
2597 {
2598 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2599 
2600 	return cxlflash_show_port_status(0, cfg, buf);
2601 }
2602 
2603 /**
2604  * port1_show() - queries and presents the current status of port 1
2605  * @dev:	Generic device associated with the host owning the port.
2606  * @attr:	Device attribute representing the port.
2607  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2608  *
2609  * Return: The size of the ASCII string returned in @buf.
2610  */
2611 static ssize_t port1_show(struct device *dev,
2612 			  struct device_attribute *attr,
2613 			  char *buf)
2614 {
2615 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2616 
2617 	return cxlflash_show_port_status(1, cfg, buf);
2618 }
2619 
2620 /**
2621  * port2_show() - queries and presents the current status of port 2
2622  * @dev:	Generic device associated with the host owning the port.
2623  * @attr:	Device attribute representing the port.
2624  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2625  *
2626  * Return: The size of the ASCII string returned in @buf.
2627  */
2628 static ssize_t port2_show(struct device *dev,
2629 			  struct device_attribute *attr,
2630 			  char *buf)
2631 {
2632 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2633 
2634 	return cxlflash_show_port_status(2, cfg, buf);
2635 }
2636 
2637 /**
2638  * port3_show() - queries and presents the current status of port 3
2639  * @dev:	Generic device associated with the host owning the port.
2640  * @attr:	Device attribute representing the port.
2641  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2642  *
2643  * Return: The size of the ASCII string returned in @buf.
2644  */
2645 static ssize_t port3_show(struct device *dev,
2646 			  struct device_attribute *attr,
2647 			  char *buf)
2648 {
2649 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2650 
2651 	return cxlflash_show_port_status(3, cfg, buf);
2652 }
2653 
2654 /**
2655  * lun_mode_show() - presents the current LUN mode of the host
2656  * @dev:	Generic device associated with the host.
2657  * @attr:	Device attribute representing the LUN mode.
2658  * @buf:	Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2659  *
2660  * Return: The size of the ASCII string returned in @buf.
2661  */
2662 static ssize_t lun_mode_show(struct device *dev,
2663 			     struct device_attribute *attr, char *buf)
2664 {
2665 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2666 	struct afu *afu = cfg->afu;
2667 
2668 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2669 }
2670 
2671 /**
2672  * lun_mode_store() - sets the LUN mode of the host
2673  * @dev:	Generic device associated with the host.
2674  * @attr:	Device attribute representing the LUN mode.
2675  * @buf:	Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2676  * @count:	Length of data resizing in @buf.
2677  *
2678  * The CXL Flash AFU supports a dummy LUN mode where the external
2679  * links and storage are not required. Space on the FPGA is used
2680  * to create 1 or 2 small LUNs which are presented to the system
2681  * as if they were a normal storage device. This feature is useful
2682  * during development and also provides manufacturing with a way
2683  * to test the AFU without an actual device.
2684  *
2685  * 0 = external LUN[s] (default)
2686  * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2687  * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2688  * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2689  * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2690  *
2691  * Return: The size of the ASCII string returned in @buf.
2692  */
2693 static ssize_t lun_mode_store(struct device *dev,
2694 			      struct device_attribute *attr,
2695 			      const char *buf, size_t count)
2696 {
2697 	struct Scsi_Host *shost = class_to_shost(dev);
2698 	struct cxlflash_cfg *cfg = shost_priv(shost);
2699 	struct afu *afu = cfg->afu;
2700 	int rc;
2701 	u32 lun_mode;
2702 
2703 	rc = kstrtouint(buf, 10, &lun_mode);
2704 	if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2705 		afu->internal_lun = lun_mode;
2706 
2707 		/*
2708 		 * When configured for internal LUN, there is only one channel,
2709 		 * channel number 0, else there will be one less than the number
2710 		 * of fc ports for this card.
2711 		 */
2712 		if (afu->internal_lun)
2713 			shost->max_channel = 0;
2714 		else
2715 			shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2716 
2717 		afu_reset(cfg);
2718 		scsi_scan_host(cfg->host);
2719 	}
2720 
2721 	return count;
2722 }
2723 
2724 /**
2725  * ioctl_version_show() - presents the current ioctl version of the host
2726  * @dev:	Generic device associated with the host.
2727  * @attr:	Device attribute representing the ioctl version.
2728  * @buf:	Buffer of length PAGE_SIZE to report back the ioctl version.
2729  *
2730  * Return: The size of the ASCII string returned in @buf.
2731  */
2732 static ssize_t ioctl_version_show(struct device *dev,
2733 				  struct device_attribute *attr, char *buf)
2734 {
2735 	ssize_t bytes = 0;
2736 
2737 	bytes = scnprintf(buf, PAGE_SIZE,
2738 			  "disk: %u\n", DK_CXLFLASH_VERSION_0);
2739 	bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2740 			   "host: %u\n", HT_CXLFLASH_VERSION_0);
2741 
2742 	return bytes;
2743 }
2744 
2745 /**
2746  * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2747  * @port:	Desired port for status reporting.
2748  * @cfg:	Internal structure associated with the host.
2749  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2750  *
2751  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2752  */
2753 static ssize_t cxlflash_show_port_lun_table(u32 port,
2754 					    struct cxlflash_cfg *cfg,
2755 					    char *buf)
2756 {
2757 	struct device *dev = &cfg->dev->dev;
2758 	__be64 __iomem *fc_port_luns;
2759 	int i;
2760 	ssize_t bytes = 0;
2761 
2762 	WARN_ON(port >= MAX_FC_PORTS);
2763 
2764 	if (port >= cfg->num_fc_ports) {
2765 		dev_info(dev, "%s: Port %d not supported on this card.\n",
2766 			__func__, port);
2767 		return -EINVAL;
2768 	}
2769 
2770 	fc_port_luns = get_fc_port_luns(cfg, port);
2771 
2772 	for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2773 		bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2774 				   "%03d: %016llx\n",
2775 				   i, readq_be(&fc_port_luns[i]));
2776 	return bytes;
2777 }
2778 
2779 /**
2780  * port0_lun_table_show() - presents the current LUN table of port 0
2781  * @dev:	Generic device associated with the host owning the port.
2782  * @attr:	Device attribute representing the port.
2783  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2784  *
2785  * Return: The size of the ASCII string returned in @buf.
2786  */
2787 static ssize_t port0_lun_table_show(struct device *dev,
2788 				    struct device_attribute *attr,
2789 				    char *buf)
2790 {
2791 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2792 
2793 	return cxlflash_show_port_lun_table(0, cfg, buf);
2794 }
2795 
2796 /**
2797  * port1_lun_table_show() - presents the current LUN table of port 1
2798  * @dev:	Generic device associated with the host owning the port.
2799  * @attr:	Device attribute representing the port.
2800  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2801  *
2802  * Return: The size of the ASCII string returned in @buf.
2803  */
2804 static ssize_t port1_lun_table_show(struct device *dev,
2805 				    struct device_attribute *attr,
2806 				    char *buf)
2807 {
2808 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2809 
2810 	return cxlflash_show_port_lun_table(1, cfg, buf);
2811 }
2812 
2813 /**
2814  * port2_lun_table_show() - presents the current LUN table of port 2
2815  * @dev:	Generic device associated with the host owning the port.
2816  * @attr:	Device attribute representing the port.
2817  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2818  *
2819  * Return: The size of the ASCII string returned in @buf.
2820  */
2821 static ssize_t port2_lun_table_show(struct device *dev,
2822 				    struct device_attribute *attr,
2823 				    char *buf)
2824 {
2825 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2826 
2827 	return cxlflash_show_port_lun_table(2, cfg, buf);
2828 }
2829 
2830 /**
2831  * port3_lun_table_show() - presents the current LUN table of port 3
2832  * @dev:	Generic device associated with the host owning the port.
2833  * @attr:	Device attribute representing the port.
2834  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2835  *
2836  * Return: The size of the ASCII string returned in @buf.
2837  */
2838 static ssize_t port3_lun_table_show(struct device *dev,
2839 				    struct device_attribute *attr,
2840 				    char *buf)
2841 {
2842 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2843 
2844 	return cxlflash_show_port_lun_table(3, cfg, buf);
2845 }
2846 
2847 /**
2848  * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2849  * @dev:	Generic device associated with the host.
2850  * @attr:	Device attribute representing the IRQ poll weight.
2851  * @buf:	Buffer of length PAGE_SIZE to report back the current IRQ poll
2852  *		weight in ASCII.
2853  *
2854  * An IRQ poll weight of 0 indicates polling is disabled.
2855  *
2856  * Return: The size of the ASCII string returned in @buf.
2857  */
2858 static ssize_t irqpoll_weight_show(struct device *dev,
2859 				   struct device_attribute *attr, char *buf)
2860 {
2861 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2862 	struct afu *afu = cfg->afu;
2863 
2864 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2865 }
2866 
2867 /**
2868  * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2869  * @dev:	Generic device associated with the host.
2870  * @attr:	Device attribute representing the IRQ poll weight.
2871  * @buf:	Buffer of length PAGE_SIZE containing the desired IRQ poll
2872  *		weight in ASCII.
2873  * @count:	Length of data resizing in @buf.
2874  *
2875  * An IRQ poll weight of 0 indicates polling is disabled.
2876  *
2877  * Return: The size of the ASCII string returned in @buf.
2878  */
2879 static ssize_t irqpoll_weight_store(struct device *dev,
2880 				    struct device_attribute *attr,
2881 				    const char *buf, size_t count)
2882 {
2883 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2884 	struct device *cfgdev = &cfg->dev->dev;
2885 	struct afu *afu = cfg->afu;
2886 	struct hwq *hwq;
2887 	u32 weight;
2888 	int rc, i;
2889 
2890 	rc = kstrtouint(buf, 10, &weight);
2891 	if (rc)
2892 		return -EINVAL;
2893 
2894 	if (weight > 256) {
2895 		dev_info(cfgdev,
2896 			 "Invalid IRQ poll weight. It must be 256 or less.\n");
2897 		return -EINVAL;
2898 	}
2899 
2900 	if (weight == afu->irqpoll_weight) {
2901 		dev_info(cfgdev,
2902 			 "Current IRQ poll weight has the same weight.\n");
2903 		return -EINVAL;
2904 	}
2905 
2906 	if (afu_is_irqpoll_enabled(afu)) {
2907 		for (i = 0; i < afu->num_hwqs; i++) {
2908 			hwq = get_hwq(afu, i);
2909 
2910 			irq_poll_disable(&hwq->irqpoll);
2911 		}
2912 	}
2913 
2914 	afu->irqpoll_weight = weight;
2915 
2916 	if (weight > 0) {
2917 		for (i = 0; i < afu->num_hwqs; i++) {
2918 			hwq = get_hwq(afu, i);
2919 
2920 			irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2921 		}
2922 	}
2923 
2924 	return count;
2925 }
2926 
2927 /**
2928  * num_hwqs_show() - presents the number of hardware queues for the host
2929  * @dev:	Generic device associated with the host.
2930  * @attr:	Device attribute representing the number of hardware queues.
2931  * @buf:	Buffer of length PAGE_SIZE to report back the number of hardware
2932  *		queues in ASCII.
2933  *
2934  * Return: The size of the ASCII string returned in @buf.
2935  */
2936 static ssize_t num_hwqs_show(struct device *dev,
2937 			     struct device_attribute *attr, char *buf)
2938 {
2939 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2940 	struct afu *afu = cfg->afu;
2941 
2942 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2943 }
2944 
2945 /**
2946  * num_hwqs_store() - sets the number of hardware queues for the host
2947  * @dev:	Generic device associated with the host.
2948  * @attr:	Device attribute representing the number of hardware queues.
2949  * @buf:	Buffer of length PAGE_SIZE containing the number of hardware
2950  *		queues in ASCII.
2951  * @count:	Length of data resizing in @buf.
2952  *
2953  * n > 0: num_hwqs = n
2954  * n = 0: num_hwqs = num_online_cpus()
2955  * n < 0: num_online_cpus() / abs(n)
2956  *
2957  * Return: The size of the ASCII string returned in @buf.
2958  */
2959 static ssize_t num_hwqs_store(struct device *dev,
2960 			      struct device_attribute *attr,
2961 			      const char *buf, size_t count)
2962 {
2963 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2964 	struct afu *afu = cfg->afu;
2965 	int rc;
2966 	int nhwqs, num_hwqs;
2967 
2968 	rc = kstrtoint(buf, 10, &nhwqs);
2969 	if (rc)
2970 		return -EINVAL;
2971 
2972 	if (nhwqs >= 1)
2973 		num_hwqs = nhwqs;
2974 	else if (nhwqs == 0)
2975 		num_hwqs = num_online_cpus();
2976 	else
2977 		num_hwqs = num_online_cpus() / abs(nhwqs);
2978 
2979 	afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
2980 	WARN_ON_ONCE(afu->desired_hwqs == 0);
2981 
2982 retry:
2983 	switch (cfg->state) {
2984 	case STATE_NORMAL:
2985 		cfg->state = STATE_RESET;
2986 		drain_ioctls(cfg);
2987 		cxlflash_mark_contexts_error(cfg);
2988 		rc = afu_reset(cfg);
2989 		if (rc)
2990 			cfg->state = STATE_FAILTERM;
2991 		else
2992 			cfg->state = STATE_NORMAL;
2993 		wake_up_all(&cfg->reset_waitq);
2994 		break;
2995 	case STATE_RESET:
2996 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2997 		if (cfg->state == STATE_NORMAL)
2998 			goto retry;
2999 		fallthrough;
3000 	default:
3001 		/* Ideally should not happen */
3002 		dev_err(dev, "%s: Device is not ready, state=%d\n",
3003 			__func__, cfg->state);
3004 		break;
3005 	}
3006 
3007 	return count;
3008 }
3009 
3010 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
3011 
3012 /**
3013  * hwq_mode_show() - presents the HWQ steering mode for the host
3014  * @dev:	Generic device associated with the host.
3015  * @attr:	Device attribute representing the HWQ steering mode.
3016  * @buf:	Buffer of length PAGE_SIZE to report back the HWQ steering mode
3017  *		as a character string.
3018  *
3019  * Return: The size of the ASCII string returned in @buf.
3020  */
3021 static ssize_t hwq_mode_show(struct device *dev,
3022 			     struct device_attribute *attr, char *buf)
3023 {
3024 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
3025 	struct afu *afu = cfg->afu;
3026 
3027 	return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
3028 }
3029 
3030 /**
3031  * hwq_mode_store() - sets the HWQ steering mode for the host
3032  * @dev:	Generic device associated with the host.
3033  * @attr:	Device attribute representing the HWQ steering mode.
3034  * @buf:	Buffer of length PAGE_SIZE containing the HWQ steering mode
3035  *		as a character string.
3036  * @count:	Length of data resizing in @buf.
3037  *
3038  * rr = Round-Robin
3039  * tag = Block MQ Tagging
3040  * cpu = CPU Affinity
3041  *
3042  * Return: The size of the ASCII string returned in @buf.
3043  */
3044 static ssize_t hwq_mode_store(struct device *dev,
3045 			      struct device_attribute *attr,
3046 			      const char *buf, size_t count)
3047 {
3048 	struct Scsi_Host *shost = class_to_shost(dev);
3049 	struct cxlflash_cfg *cfg = shost_priv(shost);
3050 	struct device *cfgdev = &cfg->dev->dev;
3051 	struct afu *afu = cfg->afu;
3052 	int i;
3053 	u32 mode = MAX_HWQ_MODE;
3054 
3055 	for (i = 0; i < MAX_HWQ_MODE; i++) {
3056 		if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
3057 			mode = i;
3058 			break;
3059 		}
3060 	}
3061 
3062 	if (mode >= MAX_HWQ_MODE) {
3063 		dev_info(cfgdev, "Invalid HWQ steering mode.\n");
3064 		return -EINVAL;
3065 	}
3066 
3067 	afu->hwq_mode = mode;
3068 
3069 	return count;
3070 }
3071 
3072 /**
3073  * mode_show() - presents the current mode of the device
3074  * @dev:	Generic device associated with the device.
3075  * @attr:	Device attribute representing the device mode.
3076  * @buf:	Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
3077  *
3078  * Return: The size of the ASCII string returned in @buf.
3079  */
3080 static ssize_t mode_show(struct device *dev,
3081 			 struct device_attribute *attr, char *buf)
3082 {
3083 	struct scsi_device *sdev = to_scsi_device(dev);
3084 
3085 	return scnprintf(buf, PAGE_SIZE, "%s\n",
3086 			 sdev->hostdata ? "superpipe" : "legacy");
3087 }
3088 
3089 /*
3090  * Host attributes
3091  */
3092 static DEVICE_ATTR_RO(port0);
3093 static DEVICE_ATTR_RO(port1);
3094 static DEVICE_ATTR_RO(port2);
3095 static DEVICE_ATTR_RO(port3);
3096 static DEVICE_ATTR_RW(lun_mode);
3097 static DEVICE_ATTR_RO(ioctl_version);
3098 static DEVICE_ATTR_RO(port0_lun_table);
3099 static DEVICE_ATTR_RO(port1_lun_table);
3100 static DEVICE_ATTR_RO(port2_lun_table);
3101 static DEVICE_ATTR_RO(port3_lun_table);
3102 static DEVICE_ATTR_RW(irqpoll_weight);
3103 static DEVICE_ATTR_RW(num_hwqs);
3104 static DEVICE_ATTR_RW(hwq_mode);
3105 
3106 static struct attribute *cxlflash_host_attrs[] = {
3107 	&dev_attr_port0.attr,
3108 	&dev_attr_port1.attr,
3109 	&dev_attr_port2.attr,
3110 	&dev_attr_port3.attr,
3111 	&dev_attr_lun_mode.attr,
3112 	&dev_attr_ioctl_version.attr,
3113 	&dev_attr_port0_lun_table.attr,
3114 	&dev_attr_port1_lun_table.attr,
3115 	&dev_attr_port2_lun_table.attr,
3116 	&dev_attr_port3_lun_table.attr,
3117 	&dev_attr_irqpoll_weight.attr,
3118 	&dev_attr_num_hwqs.attr,
3119 	&dev_attr_hwq_mode.attr,
3120 	NULL
3121 };
3122 
3123 ATTRIBUTE_GROUPS(cxlflash_host);
3124 
3125 /*
3126  * Device attributes
3127  */
3128 static DEVICE_ATTR_RO(mode);
3129 
3130 static struct attribute *cxlflash_dev_attrs[] = {
3131 	&dev_attr_mode.attr,
3132 	NULL
3133 };
3134 
3135 ATTRIBUTE_GROUPS(cxlflash_dev);
3136 
3137 /*
3138  * Host template
3139  */
3140 static struct scsi_host_template driver_template = {
3141 	.module = THIS_MODULE,
3142 	.name = CXLFLASH_ADAPTER_NAME,
3143 	.info = cxlflash_driver_info,
3144 	.ioctl = cxlflash_ioctl,
3145 	.proc_name = CXLFLASH_NAME,
3146 	.queuecommand = cxlflash_queuecommand,
3147 	.eh_abort_handler = cxlflash_eh_abort_handler,
3148 	.eh_device_reset_handler = cxlflash_eh_device_reset_handler,
3149 	.eh_host_reset_handler = cxlflash_eh_host_reset_handler,
3150 	.change_queue_depth = cxlflash_change_queue_depth,
3151 	.cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
3152 	.can_queue = CXLFLASH_MAX_CMDS,
3153 	.cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
3154 	.this_id = -1,
3155 	.sg_tablesize = 1,	/* No scatter gather support */
3156 	.max_sectors = CXLFLASH_MAX_SECTORS,
3157 	.shost_groups = cxlflash_host_groups,
3158 	.sdev_groups = cxlflash_dev_groups,
3159 };
3160 
3161 /*
3162  * Device dependent values
3163  */
3164 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
3165 					CXLFLASH_WWPN_VPD_REQUIRED };
3166 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
3167 					CXLFLASH_NOTIFY_SHUTDOWN };
3168 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
3169 					(CXLFLASH_NOTIFY_SHUTDOWN |
3170 					CXLFLASH_OCXL_DEV) };
3171 
3172 /*
3173  * PCI device binding table
3174  */
3175 static struct pci_device_id cxlflash_pci_table[] = {
3176 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
3177 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
3178 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
3179 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
3180 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
3181 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
3182 	{}
3183 };
3184 
3185 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
3186 
3187 /**
3188  * cxlflash_worker_thread() - work thread handler for the AFU
3189  * @work:	Work structure contained within cxlflash associated with host.
3190  *
3191  * Handles the following events:
3192  * - Link reset which cannot be performed on interrupt context due to
3193  * blocking up to a few seconds
3194  * - Rescan the host
3195  */
3196 static void cxlflash_worker_thread(struct work_struct *work)
3197 {
3198 	struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
3199 						work_q);
3200 	struct afu *afu = cfg->afu;
3201 	struct device *dev = &cfg->dev->dev;
3202 	__be64 __iomem *fc_port_regs;
3203 	int port;
3204 	ulong lock_flags;
3205 
3206 	/* Avoid MMIO if the device has failed */
3207 
3208 	if (cfg->state != STATE_NORMAL)
3209 		return;
3210 
3211 	spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3212 
3213 	if (cfg->lr_state == LINK_RESET_REQUIRED) {
3214 		port = cfg->lr_port;
3215 		if (port < 0)
3216 			dev_err(dev, "%s: invalid port index %d\n",
3217 				__func__, port);
3218 		else {
3219 			spin_unlock_irqrestore(cfg->host->host_lock,
3220 					       lock_flags);
3221 
3222 			/* The reset can block... */
3223 			fc_port_regs = get_fc_port_regs(cfg, port);
3224 			afu_link_reset(afu, port, fc_port_regs);
3225 			spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3226 		}
3227 
3228 		cfg->lr_state = LINK_RESET_COMPLETE;
3229 	}
3230 
3231 	spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
3232 
3233 	if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
3234 		scsi_scan_host(cfg->host);
3235 }
3236 
3237 /**
3238  * cxlflash_chr_open() - character device open handler
3239  * @inode:	Device inode associated with this character device.
3240  * @file:	File pointer for this device.
3241  *
3242  * Only users with admin privileges are allowed to open the character device.
3243  *
3244  * Return: 0 on success, -errno on failure
3245  */
3246 static int cxlflash_chr_open(struct inode *inode, struct file *file)
3247 {
3248 	struct cxlflash_cfg *cfg;
3249 
3250 	if (!capable(CAP_SYS_ADMIN))
3251 		return -EACCES;
3252 
3253 	cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
3254 	file->private_data = cfg;
3255 
3256 	return 0;
3257 }
3258 
3259 /**
3260  * decode_hioctl() - translates encoded host ioctl to easily identifiable string
3261  * @cmd:        The host ioctl command to decode.
3262  *
3263  * Return: A string identifying the decoded host ioctl.
3264  */
3265 static char *decode_hioctl(unsigned int cmd)
3266 {
3267 	switch (cmd) {
3268 	case HT_CXLFLASH_LUN_PROVISION:
3269 		return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
3270 	}
3271 
3272 	return "UNKNOWN";
3273 }
3274 
3275 /**
3276  * cxlflash_lun_provision() - host LUN provisioning handler
3277  * @cfg:	Internal structure associated with the host.
3278  * @lunprov:	Kernel copy of userspace ioctl data structure.
3279  *
3280  * Return: 0 on success, -errno on failure
3281  */
3282 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
3283 				  struct ht_cxlflash_lun_provision *lunprov)
3284 {
3285 	struct afu *afu = cfg->afu;
3286 	struct device *dev = &cfg->dev->dev;
3287 	struct sisl_ioarcb rcb;
3288 	struct sisl_ioasa asa;
3289 	__be64 __iomem *fc_port_regs;
3290 	u16 port = lunprov->port;
3291 	u16 scmd = lunprov->hdr.subcmd;
3292 	u16 type;
3293 	u64 reg;
3294 	u64 size;
3295 	u64 lun_id;
3296 	int rc = 0;
3297 
3298 	if (!afu_is_lun_provision(afu)) {
3299 		rc = -ENOTSUPP;
3300 		goto out;
3301 	}
3302 
3303 	if (port >= cfg->num_fc_ports) {
3304 		rc = -EINVAL;
3305 		goto out;
3306 	}
3307 
3308 	switch (scmd) {
3309 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
3310 		type = SISL_AFU_LUN_PROVISION_CREATE;
3311 		size = lunprov->size;
3312 		lun_id = 0;
3313 		break;
3314 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
3315 		type = SISL_AFU_LUN_PROVISION_DELETE;
3316 		size = 0;
3317 		lun_id = lunprov->lun_id;
3318 		break;
3319 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
3320 		fc_port_regs = get_fc_port_regs(cfg, port);
3321 
3322 		reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
3323 		lunprov->max_num_luns = reg;
3324 		reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
3325 		lunprov->cur_num_luns = reg;
3326 		reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
3327 		lunprov->max_cap_port = reg;
3328 		reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
3329 		lunprov->cur_cap_port = reg;
3330 
3331 		goto out;
3332 	default:
3333 		rc = -EINVAL;
3334 		goto out;
3335 	}
3336 
3337 	memset(&rcb, 0, sizeof(rcb));
3338 	memset(&asa, 0, sizeof(asa));
3339 	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
3340 	rcb.lun_id = lun_id;
3341 	rcb.msi = SISL_MSI_RRQ_UPDATED;
3342 	rcb.timeout = MC_LUN_PROV_TIMEOUT;
3343 	rcb.ioasa = &asa;
3344 
3345 	rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
3346 	rcb.cdb[1] = type;
3347 	rcb.cdb[2] = port;
3348 	put_unaligned_be64(size, &rcb.cdb[8]);
3349 
3350 	rc = send_afu_cmd(afu, &rcb);
3351 	if (rc) {
3352 		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3353 			__func__, rc, asa.ioasc, asa.afu_extra);
3354 		goto out;
3355 	}
3356 
3357 	if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
3358 		lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
3359 		memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
3360 	}
3361 out:
3362 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3363 	return rc;
3364 }
3365 
3366 /**
3367  * cxlflash_afu_debug() - host AFU debug handler
3368  * @cfg:	Internal structure associated with the host.
3369  * @afu_dbg:	Kernel copy of userspace ioctl data structure.
3370  *
3371  * For debug requests requiring a data buffer, always provide an aligned
3372  * (cache line) buffer to the AFU to appease any alignment requirements.
3373  *
3374  * Return: 0 on success, -errno on failure
3375  */
3376 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
3377 			      struct ht_cxlflash_afu_debug *afu_dbg)
3378 {
3379 	struct afu *afu = cfg->afu;
3380 	struct device *dev = &cfg->dev->dev;
3381 	struct sisl_ioarcb rcb;
3382 	struct sisl_ioasa asa;
3383 	char *buf = NULL;
3384 	char *kbuf = NULL;
3385 	void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
3386 	u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
3387 	u32 ulen = afu_dbg->data_len;
3388 	bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
3389 	int rc = 0;
3390 
3391 	if (!afu_is_afu_debug(afu)) {
3392 		rc = -ENOTSUPP;
3393 		goto out;
3394 	}
3395 
3396 	if (ulen) {
3397 		req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
3398 
3399 		if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
3400 			rc = -EINVAL;
3401 			goto out;
3402 		}
3403 
3404 		buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
3405 		if (unlikely(!buf)) {
3406 			rc = -ENOMEM;
3407 			goto out;
3408 		}
3409 
3410 		kbuf = PTR_ALIGN(buf, cache_line_size());
3411 
3412 		if (is_write) {
3413 			req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
3414 
3415 			if (copy_from_user(kbuf, ubuf, ulen)) {
3416 				rc = -EFAULT;
3417 				goto out;
3418 			}
3419 		}
3420 	}
3421 
3422 	memset(&rcb, 0, sizeof(rcb));
3423 	memset(&asa, 0, sizeof(asa));
3424 
3425 	rcb.req_flags = req_flags;
3426 	rcb.msi = SISL_MSI_RRQ_UPDATED;
3427 	rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
3428 	rcb.ioasa = &asa;
3429 
3430 	if (ulen) {
3431 		rcb.data_len = ulen;
3432 		rcb.data_ea = (uintptr_t)kbuf;
3433 	}
3434 
3435 	rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
3436 	memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
3437 	       HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
3438 
3439 	rc = send_afu_cmd(afu, &rcb);
3440 	if (rc) {
3441 		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3442 			__func__, rc, asa.ioasc, asa.afu_extra);
3443 		goto out;
3444 	}
3445 
3446 	if (ulen && !is_write) {
3447 		if (copy_to_user(ubuf, kbuf, ulen))
3448 			rc = -EFAULT;
3449 	}
3450 out:
3451 	kfree(buf);
3452 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3453 	return rc;
3454 }
3455 
3456 /**
3457  * cxlflash_chr_ioctl() - character device IOCTL handler
3458  * @file:	File pointer for this device.
3459  * @cmd:	IOCTL command.
3460  * @arg:	Userspace ioctl data structure.
3461  *
3462  * A read/write semaphore is used to implement a 'drain' of currently
3463  * running ioctls. The read semaphore is taken at the beginning of each
3464  * ioctl thread and released upon concluding execution. Additionally the
3465  * semaphore should be released and then reacquired in any ioctl execution
3466  * path which will wait for an event to occur that is outside the scope of
3467  * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
3468  * a thread simply needs to acquire the write semaphore.
3469  *
3470  * Return: 0 on success, -errno on failure
3471  */
3472 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
3473 			       unsigned long arg)
3474 {
3475 	typedef int (*hioctl) (struct cxlflash_cfg *, void *);
3476 
3477 	struct cxlflash_cfg *cfg = file->private_data;
3478 	struct device *dev = &cfg->dev->dev;
3479 	char buf[sizeof(union cxlflash_ht_ioctls)];
3480 	void __user *uarg = (void __user *)arg;
3481 	struct ht_cxlflash_hdr *hdr;
3482 	size_t size = 0;
3483 	bool known_ioctl = false;
3484 	int idx = 0;
3485 	int rc = 0;
3486 	hioctl do_ioctl = NULL;
3487 
3488 	static const struct {
3489 		size_t size;
3490 		hioctl ioctl;
3491 	} ioctl_tbl[] = {	/* NOTE: order matters here */
3492 	{ sizeof(struct ht_cxlflash_lun_provision),
3493 		(hioctl)cxlflash_lun_provision },
3494 	{ sizeof(struct ht_cxlflash_afu_debug),
3495 		(hioctl)cxlflash_afu_debug },
3496 	};
3497 
3498 	/* Hold read semaphore so we can drain if needed */
3499 	down_read(&cfg->ioctl_rwsem);
3500 
3501 	dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
3502 		__func__, cmd, idx, sizeof(ioctl_tbl));
3503 
3504 	switch (cmd) {
3505 	case HT_CXLFLASH_LUN_PROVISION:
3506 	case HT_CXLFLASH_AFU_DEBUG:
3507 		known_ioctl = true;
3508 		idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
3509 		size = ioctl_tbl[idx].size;
3510 		do_ioctl = ioctl_tbl[idx].ioctl;
3511 
3512 		if (likely(do_ioctl))
3513 			break;
3514 
3515 		fallthrough;
3516 	default:
3517 		rc = -EINVAL;
3518 		goto out;
3519 	}
3520 
3521 	if (unlikely(copy_from_user(&buf, uarg, size))) {
3522 		dev_err(dev, "%s: copy_from_user() fail "
3523 			"size=%lu cmd=%d (%s) uarg=%p\n",
3524 			__func__, size, cmd, decode_hioctl(cmd), uarg);
3525 		rc = -EFAULT;
3526 		goto out;
3527 	}
3528 
3529 	hdr = (struct ht_cxlflash_hdr *)&buf;
3530 	if (hdr->version != HT_CXLFLASH_VERSION_0) {
3531 		dev_dbg(dev, "%s: Version %u not supported for %s\n",
3532 			__func__, hdr->version, decode_hioctl(cmd));
3533 		rc = -EINVAL;
3534 		goto out;
3535 	}
3536 
3537 	if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
3538 		dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
3539 		rc = -EINVAL;
3540 		goto out;
3541 	}
3542 
3543 	rc = do_ioctl(cfg, (void *)&buf);
3544 	if (likely(!rc))
3545 		if (unlikely(copy_to_user(uarg, &buf, size))) {
3546 			dev_err(dev, "%s: copy_to_user() fail "
3547 				"size=%lu cmd=%d (%s) uarg=%p\n",
3548 				__func__, size, cmd, decode_hioctl(cmd), uarg);
3549 			rc = -EFAULT;
3550 		}
3551 
3552 	/* fall through to exit */
3553 
3554 out:
3555 	up_read(&cfg->ioctl_rwsem);
3556 	if (unlikely(rc && known_ioctl))
3557 		dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3558 			__func__, decode_hioctl(cmd), cmd, rc);
3559 	else
3560 		dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3561 			__func__, decode_hioctl(cmd), cmd, rc);
3562 	return rc;
3563 }
3564 
3565 /*
3566  * Character device file operations
3567  */
3568 static const struct file_operations cxlflash_chr_fops = {
3569 	.owner          = THIS_MODULE,
3570 	.open           = cxlflash_chr_open,
3571 	.unlocked_ioctl	= cxlflash_chr_ioctl,
3572 	.compat_ioctl	= compat_ptr_ioctl,
3573 };
3574 
3575 /**
3576  * init_chrdev() - initialize the character device for the host
3577  * @cfg:	Internal structure associated with the host.
3578  *
3579  * Return: 0 on success, -errno on failure
3580  */
3581 static int init_chrdev(struct cxlflash_cfg *cfg)
3582 {
3583 	struct device *dev = &cfg->dev->dev;
3584 	struct device *char_dev;
3585 	dev_t devno;
3586 	int minor;
3587 	int rc = 0;
3588 
3589 	minor = cxlflash_get_minor();
3590 	if (unlikely(minor < 0)) {
3591 		dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
3592 		rc = -ENOSPC;
3593 		goto out;
3594 	}
3595 
3596 	devno = MKDEV(cxlflash_major, minor);
3597 	cdev_init(&cfg->cdev, &cxlflash_chr_fops);
3598 
3599 	rc = cdev_add(&cfg->cdev, devno, 1);
3600 	if (rc) {
3601 		dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
3602 		goto err1;
3603 	}
3604 
3605 	char_dev = device_create(cxlflash_class, NULL, devno,
3606 				 NULL, "cxlflash%d", minor);
3607 	if (IS_ERR(char_dev)) {
3608 		rc = PTR_ERR(char_dev);
3609 		dev_err(dev, "%s: device_create failed rc=%d\n",
3610 			__func__, rc);
3611 		goto err2;
3612 	}
3613 
3614 	cfg->chardev = char_dev;
3615 out:
3616 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3617 	return rc;
3618 err2:
3619 	cdev_del(&cfg->cdev);
3620 err1:
3621 	cxlflash_put_minor(minor);
3622 	goto out;
3623 }
3624 
3625 /**
3626  * cxlflash_probe() - PCI entry point to add host
3627  * @pdev:	PCI device associated with the host.
3628  * @dev_id:	PCI device id associated with device.
3629  *
3630  * The device will initially start out in a 'probing' state and
3631  * transition to the 'normal' state at the end of a successful
3632  * probe. Should an EEH event occur during probe, the notification
3633  * thread (error_detected()) will wait until the probe handler
3634  * is nearly complete. At that time, the device will be moved to
3635  * a 'probed' state and the EEH thread woken up to drive the slot
3636  * reset and recovery (device moves to 'normal' state). Meanwhile,
3637  * the probe will be allowed to exit successfully.
3638  *
3639  * Return: 0 on success, -errno on failure
3640  */
3641 static int cxlflash_probe(struct pci_dev *pdev,
3642 			  const struct pci_device_id *dev_id)
3643 {
3644 	struct Scsi_Host *host;
3645 	struct cxlflash_cfg *cfg = NULL;
3646 	struct device *dev = &pdev->dev;
3647 	struct dev_dependent_vals *ddv;
3648 	int rc = 0;
3649 	int k;
3650 
3651 	dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
3652 		__func__, pdev->irq);
3653 
3654 	ddv = (struct dev_dependent_vals *)dev_id->driver_data;
3655 	driver_template.max_sectors = ddv->max_sectors;
3656 
3657 	host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
3658 	if (!host) {
3659 		dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
3660 		rc = -ENOMEM;
3661 		goto out;
3662 	}
3663 
3664 	host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
3665 	host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
3666 	host->unique_id = host->host_no;
3667 	host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
3668 
3669 	cfg = shost_priv(host);
3670 	cfg->state = STATE_PROBING;
3671 	cfg->host = host;
3672 	rc = alloc_mem(cfg);
3673 	if (rc) {
3674 		dev_err(dev, "%s: alloc_mem failed\n", __func__);
3675 		rc = -ENOMEM;
3676 		scsi_host_put(cfg->host);
3677 		goto out;
3678 	}
3679 
3680 	cfg->init_state = INIT_STATE_NONE;
3681 	cfg->dev = pdev;
3682 	cfg->cxl_fops = cxlflash_cxl_fops;
3683 	cfg->ops = cxlflash_assign_ops(ddv);
3684 	WARN_ON_ONCE(!cfg->ops);
3685 
3686 	/*
3687 	 * Promoted LUNs move to the top of the LUN table. The rest stay on
3688 	 * the bottom half. The bottom half grows from the end (index = 255),
3689 	 * whereas the top half grows from the beginning (index = 0).
3690 	 *
3691 	 * Initialize the last LUN index for all possible ports.
3692 	 */
3693 	cfg->promote_lun_index = 0;
3694 
3695 	for (k = 0; k < MAX_FC_PORTS; k++)
3696 		cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
3697 
3698 	cfg->dev_id = (struct pci_device_id *)dev_id;
3699 
3700 	init_waitqueue_head(&cfg->tmf_waitq);
3701 	init_waitqueue_head(&cfg->reset_waitq);
3702 
3703 	INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3704 	cfg->lr_state = LINK_RESET_INVALID;
3705 	cfg->lr_port = -1;
3706 	spin_lock_init(&cfg->tmf_slock);
3707 	mutex_init(&cfg->ctx_tbl_list_mutex);
3708 	mutex_init(&cfg->ctx_recovery_mutex);
3709 	init_rwsem(&cfg->ioctl_rwsem);
3710 	INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3711 	INIT_LIST_HEAD(&cfg->lluns);
3712 
3713 	pci_set_drvdata(pdev, cfg);
3714 
3715 	rc = init_pci(cfg);
3716 	if (rc) {
3717 		dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
3718 		goto out_remove;
3719 	}
3720 	cfg->init_state = INIT_STATE_PCI;
3721 
3722 	cfg->afu_cookie = cfg->ops->create_afu(pdev);
3723 	if (unlikely(!cfg->afu_cookie)) {
3724 		dev_err(dev, "%s: create_afu failed\n", __func__);
3725 		rc = -ENOMEM;
3726 		goto out_remove;
3727 	}
3728 
3729 	rc = init_afu(cfg);
3730 	if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
3731 		dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
3732 		goto out_remove;
3733 	}
3734 	cfg->init_state = INIT_STATE_AFU;
3735 
3736 	rc = init_scsi(cfg);
3737 	if (rc) {
3738 		dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
3739 		goto out_remove;
3740 	}
3741 	cfg->init_state = INIT_STATE_SCSI;
3742 
3743 	rc = init_chrdev(cfg);
3744 	if (rc) {
3745 		dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
3746 		goto out_remove;
3747 	}
3748 	cfg->init_state = INIT_STATE_CDEV;
3749 
3750 	if (wq_has_sleeper(&cfg->reset_waitq)) {
3751 		cfg->state = STATE_PROBED;
3752 		wake_up_all(&cfg->reset_waitq);
3753 	} else
3754 		cfg->state = STATE_NORMAL;
3755 out:
3756 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3757 	return rc;
3758 
3759 out_remove:
3760 	cfg->state = STATE_PROBED;
3761 	cxlflash_remove(pdev);
3762 	goto out;
3763 }
3764 
3765 /**
3766  * cxlflash_pci_error_detected() - called when a PCI error is detected
3767  * @pdev:	PCI device struct.
3768  * @state:	PCI channel state.
3769  *
3770  * When an EEH occurs during an active reset, wait until the reset is
3771  * complete and then take action based upon the device state.
3772  *
3773  * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3774  */
3775 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3776 						    pci_channel_state_t state)
3777 {
3778 	int rc = 0;
3779 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3780 	struct device *dev = &cfg->dev->dev;
3781 
3782 	dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3783 
3784 	switch (state) {
3785 	case pci_channel_io_frozen:
3786 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3787 					     cfg->state != STATE_PROBING);
3788 		if (cfg->state == STATE_FAILTERM)
3789 			return PCI_ERS_RESULT_DISCONNECT;
3790 
3791 		cfg->state = STATE_RESET;
3792 		scsi_block_requests(cfg->host);
3793 		drain_ioctls(cfg);
3794 		rc = cxlflash_mark_contexts_error(cfg);
3795 		if (unlikely(rc))
3796 			dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
3797 				__func__, rc);
3798 		term_afu(cfg);
3799 		return PCI_ERS_RESULT_NEED_RESET;
3800 	case pci_channel_io_perm_failure:
3801 		cfg->state = STATE_FAILTERM;
3802 		wake_up_all(&cfg->reset_waitq);
3803 		scsi_unblock_requests(cfg->host);
3804 		return PCI_ERS_RESULT_DISCONNECT;
3805 	default:
3806 		break;
3807 	}
3808 	return PCI_ERS_RESULT_NEED_RESET;
3809 }
3810 
3811 /**
3812  * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3813  * @pdev:	PCI device struct.
3814  *
3815  * This routine is called by the pci error recovery code after the PCI
3816  * slot has been reset, just before we should resume normal operations.
3817  *
3818  * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3819  */
3820 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3821 {
3822 	int rc = 0;
3823 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3824 	struct device *dev = &cfg->dev->dev;
3825 
3826 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3827 
3828 	rc = init_afu(cfg);
3829 	if (unlikely(rc)) {
3830 		dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
3831 		return PCI_ERS_RESULT_DISCONNECT;
3832 	}
3833 
3834 	return PCI_ERS_RESULT_RECOVERED;
3835 }
3836 
3837 /**
3838  * cxlflash_pci_resume() - called when normal operation can resume
3839  * @pdev:	PCI device struct
3840  */
3841 static void cxlflash_pci_resume(struct pci_dev *pdev)
3842 {
3843 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3844 	struct device *dev = &cfg->dev->dev;
3845 
3846 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3847 
3848 	cfg->state = STATE_NORMAL;
3849 	wake_up_all(&cfg->reset_waitq);
3850 	scsi_unblock_requests(cfg->host);
3851 }
3852 
3853 /**
3854  * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
3855  * @dev:	Character device.
3856  * @mode:	Mode that can be used to verify access.
3857  *
3858  * Return: Allocated string describing the devtmpfs structure.
3859  */
3860 static char *cxlflash_devnode(const struct device *dev, umode_t *mode)
3861 {
3862 	return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
3863 }
3864 
3865 /**
3866  * cxlflash_class_init() - create character device class
3867  *
3868  * Return: 0 on success, -errno on failure
3869  */
3870 static int cxlflash_class_init(void)
3871 {
3872 	dev_t devno;
3873 	int rc = 0;
3874 
3875 	rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
3876 	if (unlikely(rc)) {
3877 		pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
3878 		goto out;
3879 	}
3880 
3881 	cxlflash_major = MAJOR(devno);
3882 
3883 	cxlflash_class = class_create("cxlflash");
3884 	if (IS_ERR(cxlflash_class)) {
3885 		rc = PTR_ERR(cxlflash_class);
3886 		pr_err("%s: class_create failed rc=%d\n", __func__, rc);
3887 		goto err;
3888 	}
3889 
3890 	cxlflash_class->devnode = cxlflash_devnode;
3891 out:
3892 	pr_debug("%s: returning rc=%d\n", __func__, rc);
3893 	return rc;
3894 err:
3895 	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3896 	goto out;
3897 }
3898 
3899 /**
3900  * cxlflash_class_exit() - destroy character device class
3901  */
3902 static void cxlflash_class_exit(void)
3903 {
3904 	dev_t devno = MKDEV(cxlflash_major, 0);
3905 
3906 	class_destroy(cxlflash_class);
3907 	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3908 }
3909 
3910 static const struct pci_error_handlers cxlflash_err_handler = {
3911 	.error_detected = cxlflash_pci_error_detected,
3912 	.slot_reset = cxlflash_pci_slot_reset,
3913 	.resume = cxlflash_pci_resume,
3914 };
3915 
3916 /*
3917  * PCI device structure
3918  */
3919 static struct pci_driver cxlflash_driver = {
3920 	.name = CXLFLASH_NAME,
3921 	.id_table = cxlflash_pci_table,
3922 	.probe = cxlflash_probe,
3923 	.remove = cxlflash_remove,
3924 	.shutdown = cxlflash_remove,
3925 	.err_handler = &cxlflash_err_handler,
3926 };
3927 
3928 /**
3929  * init_cxlflash() - module entry point
3930  *
3931  * Return: 0 on success, -errno on failure
3932  */
3933 static int __init init_cxlflash(void)
3934 {
3935 	int rc;
3936 
3937 	check_sizes();
3938 	cxlflash_list_init();
3939 	rc = cxlflash_class_init();
3940 	if (unlikely(rc))
3941 		goto out;
3942 
3943 	rc = pci_register_driver(&cxlflash_driver);
3944 	if (unlikely(rc))
3945 		goto err;
3946 out:
3947 	pr_debug("%s: returning rc=%d\n", __func__, rc);
3948 	return rc;
3949 err:
3950 	cxlflash_class_exit();
3951 	goto out;
3952 }
3953 
3954 /**
3955  * exit_cxlflash() - module exit point
3956  */
3957 static void __exit exit_cxlflash(void)
3958 {
3959 	cxlflash_term_global_luns();
3960 	cxlflash_free_errpage();
3961 
3962 	pci_unregister_driver(&cxlflash_driver);
3963 	cxlflash_class_exit();
3964 }
3965 
3966 module_init(init_cxlflash);
3967 module_exit(exit_cxlflash);
3968