1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * CXL Flash Device Driver 4 * 5 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 6 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 7 * 8 * Copyright (C) 2015 IBM Corporation 9 */ 10 11 #include <linux/delay.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/pci.h> 15 16 #include <asm/unaligned.h> 17 18 #include <scsi/scsi_cmnd.h> 19 #include <scsi/scsi_host.h> 20 #include <uapi/scsi/cxlflash_ioctl.h> 21 22 #include "main.h" 23 #include "sislite.h" 24 #include "common.h" 25 26 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME); 27 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>"); 28 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>"); 29 MODULE_LICENSE("GPL"); 30 31 static char *cxlflash_devnode(const struct device *dev, umode_t *mode); 32 static const struct class cxlflash_class = { 33 .name = "cxlflash", 34 .devnode = cxlflash_devnode, 35 }; 36 37 static u32 cxlflash_major; 38 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); 39 40 /** 41 * process_cmd_err() - command error handler 42 * @cmd: AFU command that experienced the error. 43 * @scp: SCSI command associated with the AFU command in error. 44 * 45 * Translates error bits from AFU command to SCSI command results. 46 */ 47 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp) 48 { 49 struct afu *afu = cmd->parent; 50 struct cxlflash_cfg *cfg = afu->parent; 51 struct device *dev = &cfg->dev->dev; 52 struct sisl_ioasa *ioasa; 53 u32 resid; 54 55 ioasa = &(cmd->sa); 56 57 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) { 58 resid = ioasa->resid; 59 scsi_set_resid(scp, resid); 60 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n", 61 __func__, cmd, scp, resid); 62 } 63 64 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) { 65 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n", 66 __func__, cmd, scp); 67 scp->result = (DID_ERROR << 16); 68 } 69 70 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x " 71 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__, 72 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc, 73 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra); 74 75 if (ioasa->rc.scsi_rc) { 76 /* We have a SCSI status */ 77 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) { 78 memcpy(scp->sense_buffer, ioasa->sense_data, 79 SISL_SENSE_DATA_LEN); 80 scp->result = ioasa->rc.scsi_rc; 81 } else 82 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16); 83 } 84 85 /* 86 * We encountered an error. Set scp->result based on nature 87 * of error. 88 */ 89 if (ioasa->rc.fc_rc) { 90 /* We have an FC status */ 91 switch (ioasa->rc.fc_rc) { 92 case SISL_FC_RC_LINKDOWN: 93 scp->result = (DID_REQUEUE << 16); 94 break; 95 case SISL_FC_RC_RESID: 96 /* This indicates an FCP resid underrun */ 97 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) { 98 /* If the SISL_RC_FLAGS_OVERRUN flag was set, 99 * then we will handle this error else where. 100 * If not then we must handle it here. 101 * This is probably an AFU bug. 102 */ 103 scp->result = (DID_ERROR << 16); 104 } 105 break; 106 case SISL_FC_RC_RESIDERR: 107 /* Resid mismatch between adapter and device */ 108 case SISL_FC_RC_TGTABORT: 109 case SISL_FC_RC_ABORTOK: 110 case SISL_FC_RC_ABORTFAIL: 111 case SISL_FC_RC_NOLOGI: 112 case SISL_FC_RC_ABORTPEND: 113 case SISL_FC_RC_WRABORTPEND: 114 case SISL_FC_RC_NOEXP: 115 case SISL_FC_RC_INUSE: 116 scp->result = (DID_ERROR << 16); 117 break; 118 } 119 } 120 121 if (ioasa->rc.afu_rc) { 122 /* We have an AFU error */ 123 switch (ioasa->rc.afu_rc) { 124 case SISL_AFU_RC_NO_CHANNELS: 125 scp->result = (DID_NO_CONNECT << 16); 126 break; 127 case SISL_AFU_RC_DATA_DMA_ERR: 128 switch (ioasa->afu_extra) { 129 case SISL_AFU_DMA_ERR_PAGE_IN: 130 /* Retry */ 131 scp->result = (DID_IMM_RETRY << 16); 132 break; 133 case SISL_AFU_DMA_ERR_INVALID_EA: 134 default: 135 scp->result = (DID_ERROR << 16); 136 } 137 break; 138 case SISL_AFU_RC_OUT_OF_DATA_BUFS: 139 /* Retry */ 140 scp->result = (DID_ERROR << 16); 141 break; 142 default: 143 scp->result = (DID_ERROR << 16); 144 } 145 } 146 } 147 148 /** 149 * cmd_complete() - command completion handler 150 * @cmd: AFU command that has completed. 151 * 152 * For SCSI commands this routine prepares and submits commands that have 153 * either completed or timed out to the SCSI stack. For internal commands 154 * (TMF or AFU), this routine simply notifies the originator that the 155 * command has completed. 156 */ 157 static void cmd_complete(struct afu_cmd *cmd) 158 { 159 struct scsi_cmnd *scp; 160 ulong lock_flags; 161 struct afu *afu = cmd->parent; 162 struct cxlflash_cfg *cfg = afu->parent; 163 struct device *dev = &cfg->dev->dev; 164 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 165 166 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 167 list_del(&cmd->list); 168 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 169 170 if (cmd->scp) { 171 scp = cmd->scp; 172 if (unlikely(cmd->sa.ioasc)) 173 process_cmd_err(cmd, scp); 174 else 175 scp->result = (DID_OK << 16); 176 177 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n", 178 __func__, scp, scp->result, cmd->sa.ioasc); 179 scsi_done(scp); 180 } else if (cmd->cmd_tmf) { 181 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 182 cfg->tmf_active = false; 183 wake_up_all_locked(&cfg->tmf_waitq); 184 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 185 } else 186 complete(&cmd->cevent); 187 } 188 189 /** 190 * flush_pending_cmds() - flush all pending commands on this hardware queue 191 * @hwq: Hardware queue to flush. 192 * 193 * The hardware send queue lock associated with this hardware queue must be 194 * held when calling this routine. 195 */ 196 static void flush_pending_cmds(struct hwq *hwq) 197 { 198 struct cxlflash_cfg *cfg = hwq->afu->parent; 199 struct afu_cmd *cmd, *tmp; 200 struct scsi_cmnd *scp; 201 ulong lock_flags; 202 203 list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) { 204 /* Bypass command when on a doneq, cmd_complete() will handle */ 205 if (!list_empty(&cmd->queue)) 206 continue; 207 208 list_del(&cmd->list); 209 210 if (cmd->scp) { 211 scp = cmd->scp; 212 scp->result = (DID_IMM_RETRY << 16); 213 scsi_done(scp); 214 } else { 215 cmd->cmd_aborted = true; 216 217 if (cmd->cmd_tmf) { 218 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 219 cfg->tmf_active = false; 220 wake_up_all_locked(&cfg->tmf_waitq); 221 spin_unlock_irqrestore(&cfg->tmf_slock, 222 lock_flags); 223 } else 224 complete(&cmd->cevent); 225 } 226 } 227 } 228 229 /** 230 * context_reset() - reset context via specified register 231 * @hwq: Hardware queue owning the context to be reset. 232 * @reset_reg: MMIO register to perform reset. 233 * 234 * When the reset is successful, the SISLite specification guarantees that 235 * the AFU has aborted all currently pending I/O. Accordingly, these commands 236 * must be flushed. 237 * 238 * Return: 0 on success, -errno on failure 239 */ 240 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg) 241 { 242 struct cxlflash_cfg *cfg = hwq->afu->parent; 243 struct device *dev = &cfg->dev->dev; 244 int rc = -ETIMEDOUT; 245 int nretry = 0; 246 u64 val = 0x1; 247 ulong lock_flags; 248 249 dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq); 250 251 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 252 253 writeq_be(val, reset_reg); 254 do { 255 val = readq_be(reset_reg); 256 if ((val & 0x1) == 0x0) { 257 rc = 0; 258 break; 259 } 260 261 /* Double delay each time */ 262 udelay(1 << nretry); 263 } while (nretry++ < MC_ROOM_RETRY_CNT); 264 265 if (!rc) 266 flush_pending_cmds(hwq); 267 268 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 269 270 dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n", 271 __func__, rc, val, nretry); 272 return rc; 273 } 274 275 /** 276 * context_reset_ioarrin() - reset context via IOARRIN register 277 * @hwq: Hardware queue owning the context to be reset. 278 * 279 * Return: 0 on success, -errno on failure 280 */ 281 static int context_reset_ioarrin(struct hwq *hwq) 282 { 283 return context_reset(hwq, &hwq->host_map->ioarrin); 284 } 285 286 /** 287 * context_reset_sq() - reset context via SQ_CONTEXT_RESET register 288 * @hwq: Hardware queue owning the context to be reset. 289 * 290 * Return: 0 on success, -errno on failure 291 */ 292 static int context_reset_sq(struct hwq *hwq) 293 { 294 return context_reset(hwq, &hwq->host_map->sq_ctx_reset); 295 } 296 297 /** 298 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register 299 * @afu: AFU associated with the host. 300 * @cmd: AFU command to send. 301 * 302 * Return: 303 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 304 */ 305 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd) 306 { 307 struct cxlflash_cfg *cfg = afu->parent; 308 struct device *dev = &cfg->dev->dev; 309 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 310 int rc = 0; 311 s64 room; 312 ulong lock_flags; 313 314 /* 315 * To avoid the performance penalty of MMIO, spread the update of 316 * 'room' over multiple commands. 317 */ 318 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 319 if (--hwq->room < 0) { 320 room = readq_be(&hwq->host_map->cmd_room); 321 if (room <= 0) { 322 dev_dbg_ratelimited(dev, "%s: no cmd_room to send " 323 "0x%02X, room=0x%016llX\n", 324 __func__, cmd->rcb.cdb[0], room); 325 hwq->room = 0; 326 rc = SCSI_MLQUEUE_HOST_BUSY; 327 goto out; 328 } 329 hwq->room = room - 1; 330 } 331 332 list_add(&cmd->list, &hwq->pending_cmds); 333 writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin); 334 out: 335 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 336 dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", 337 __func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc); 338 return rc; 339 } 340 341 /** 342 * send_cmd_sq() - sends an AFU command via SQ ring 343 * @afu: AFU associated with the host. 344 * @cmd: AFU command to send. 345 * 346 * Return: 347 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 348 */ 349 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd) 350 { 351 struct cxlflash_cfg *cfg = afu->parent; 352 struct device *dev = &cfg->dev->dev; 353 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 354 int rc = 0; 355 int newval; 356 ulong lock_flags; 357 358 newval = atomic_dec_if_positive(&hwq->hsq_credits); 359 if (newval <= 0) { 360 rc = SCSI_MLQUEUE_HOST_BUSY; 361 goto out; 362 } 363 364 cmd->rcb.ioasa = &cmd->sa; 365 366 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 367 368 *hwq->hsq_curr = cmd->rcb; 369 if (hwq->hsq_curr < hwq->hsq_end) 370 hwq->hsq_curr++; 371 else 372 hwq->hsq_curr = hwq->hsq_start; 373 374 list_add(&cmd->list, &hwq->pending_cmds); 375 writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail); 376 377 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 378 out: 379 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p " 380 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len, 381 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr, 382 readq_be(&hwq->host_map->sq_head), 383 readq_be(&hwq->host_map->sq_tail)); 384 return rc; 385 } 386 387 /** 388 * wait_resp() - polls for a response or timeout to a sent AFU command 389 * @afu: AFU associated with the host. 390 * @cmd: AFU command that was sent. 391 * 392 * Return: 0 on success, -errno on failure 393 */ 394 static int wait_resp(struct afu *afu, struct afu_cmd *cmd) 395 { 396 struct cxlflash_cfg *cfg = afu->parent; 397 struct device *dev = &cfg->dev->dev; 398 int rc = 0; 399 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000); 400 401 timeout = wait_for_completion_timeout(&cmd->cevent, timeout); 402 if (!timeout) 403 rc = -ETIMEDOUT; 404 405 if (cmd->cmd_aborted) 406 rc = -EAGAIN; 407 408 if (unlikely(cmd->sa.ioasc != 0)) { 409 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n", 410 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc); 411 rc = -EIO; 412 } 413 414 return rc; 415 } 416 417 /** 418 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command 419 * @host: SCSI host associated with device. 420 * @scp: SCSI command to send. 421 * @afu: SCSI command to send. 422 * 423 * Hashes a command based upon the hardware queue mode. 424 * 425 * Return: Trusted index of target hardware queue 426 */ 427 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp, 428 struct afu *afu) 429 { 430 u32 tag; 431 u32 hwq = 0; 432 433 if (afu->num_hwqs == 1) 434 return 0; 435 436 switch (afu->hwq_mode) { 437 case HWQ_MODE_RR: 438 hwq = afu->hwq_rr_count++ % afu->num_hwqs; 439 break; 440 case HWQ_MODE_TAG: 441 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scp)); 442 hwq = blk_mq_unique_tag_to_hwq(tag); 443 break; 444 case HWQ_MODE_CPU: 445 hwq = smp_processor_id() % afu->num_hwqs; 446 break; 447 default: 448 WARN_ON_ONCE(1); 449 } 450 451 return hwq; 452 } 453 454 /** 455 * send_tmf() - sends a Task Management Function (TMF) 456 * @cfg: Internal structure associated with the host. 457 * @sdev: SCSI device destined for TMF. 458 * @tmfcmd: TMF command to send. 459 * 460 * Return: 461 * 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure 462 */ 463 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev, 464 u64 tmfcmd) 465 { 466 struct afu *afu = cfg->afu; 467 struct afu_cmd *cmd = NULL; 468 struct device *dev = &cfg->dev->dev; 469 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 470 bool needs_deletion = false; 471 char *buf = NULL; 472 ulong lock_flags; 473 int rc = 0; 474 ulong to; 475 476 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); 477 if (unlikely(!buf)) { 478 dev_err(dev, "%s: no memory for command\n", __func__); 479 rc = -ENOMEM; 480 goto out; 481 } 482 483 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); 484 INIT_LIST_HEAD(&cmd->queue); 485 486 /* When Task Management Function is active do not send another */ 487 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 488 if (cfg->tmf_active) 489 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 490 !cfg->tmf_active, 491 cfg->tmf_slock); 492 cfg->tmf_active = true; 493 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 494 495 cmd->parent = afu; 496 cmd->cmd_tmf = true; 497 cmd->hwq_index = hwq->index; 498 499 cmd->rcb.ctx_id = hwq->ctx_hndl; 500 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; 501 cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel); 502 cmd->rcb.lun_id = lun_to_lunid(sdev->lun); 503 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | 504 SISL_REQ_FLAGS_SUP_UNDERRUN | 505 SISL_REQ_FLAGS_TMF_CMD); 506 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd)); 507 508 rc = afu->send_cmd(afu, cmd); 509 if (unlikely(rc)) { 510 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 511 cfg->tmf_active = false; 512 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 513 goto out; 514 } 515 516 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 517 to = msecs_to_jiffies(5000); 518 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq, 519 !cfg->tmf_active, 520 cfg->tmf_slock, 521 to); 522 if (!to) { 523 dev_err(dev, "%s: TMF timed out\n", __func__); 524 rc = -ETIMEDOUT; 525 needs_deletion = true; 526 } else if (cmd->cmd_aborted) { 527 dev_err(dev, "%s: TMF aborted\n", __func__); 528 rc = -EAGAIN; 529 } else if (cmd->sa.ioasc) { 530 dev_err(dev, "%s: TMF failed ioasc=%08x\n", 531 __func__, cmd->sa.ioasc); 532 rc = -EIO; 533 } 534 cfg->tmf_active = false; 535 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 536 537 if (needs_deletion) { 538 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 539 list_del(&cmd->list); 540 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 541 } 542 out: 543 kfree(buf); 544 return rc; 545 } 546 547 /** 548 * cxlflash_driver_info() - information handler for this host driver 549 * @host: SCSI host associated with device. 550 * 551 * Return: A string describing the device. 552 */ 553 static const char *cxlflash_driver_info(struct Scsi_Host *host) 554 { 555 return CXLFLASH_ADAPTER_NAME; 556 } 557 558 /** 559 * cxlflash_queuecommand() - sends a mid-layer request 560 * @host: SCSI host associated with device. 561 * @scp: SCSI command to send. 562 * 563 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 564 */ 565 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp) 566 { 567 struct cxlflash_cfg *cfg = shost_priv(host); 568 struct afu *afu = cfg->afu; 569 struct device *dev = &cfg->dev->dev; 570 struct afu_cmd *cmd = sc_to_afuci(scp); 571 struct scatterlist *sg = scsi_sglist(scp); 572 int hwq_index = cmd_to_target_hwq(host, scp, afu); 573 struct hwq *hwq = get_hwq(afu, hwq_index); 574 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN; 575 ulong lock_flags; 576 int rc = 0; 577 578 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu " 579 "cdb=(%08x-%08x-%08x-%08x)\n", 580 __func__, scp, host->host_no, scp->device->channel, 581 scp->device->id, scp->device->lun, 582 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 583 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 584 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 585 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 586 587 /* 588 * If a Task Management Function is active, wait for it to complete 589 * before continuing with regular commands. 590 */ 591 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 592 if (cfg->tmf_active) { 593 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 594 rc = SCSI_MLQUEUE_HOST_BUSY; 595 goto out; 596 } 597 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 598 599 switch (cfg->state) { 600 case STATE_PROBING: 601 case STATE_PROBED: 602 case STATE_RESET: 603 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__); 604 rc = SCSI_MLQUEUE_HOST_BUSY; 605 goto out; 606 case STATE_FAILTERM: 607 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__); 608 scp->result = (DID_NO_CONNECT << 16); 609 scsi_done(scp); 610 rc = 0; 611 goto out; 612 default: 613 atomic_inc(&afu->cmds_active); 614 break; 615 } 616 617 if (likely(sg)) { 618 cmd->rcb.data_len = sg->length; 619 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg); 620 } 621 622 cmd->scp = scp; 623 cmd->parent = afu; 624 cmd->hwq_index = hwq_index; 625 626 cmd->sa.ioasc = 0; 627 cmd->rcb.ctx_id = hwq->ctx_hndl; 628 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; 629 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel); 630 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); 631 632 if (scp->sc_data_direction == DMA_TO_DEVICE) 633 req_flags |= SISL_REQ_FLAGS_HOST_WRITE; 634 635 cmd->rcb.req_flags = req_flags; 636 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb)); 637 638 rc = afu->send_cmd(afu, cmd); 639 atomic_dec(&afu->cmds_active); 640 out: 641 return rc; 642 } 643 644 /** 645 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe 646 * @cfg: Internal structure associated with the host. 647 */ 648 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg) 649 { 650 struct pci_dev *pdev = cfg->dev; 651 652 if (pci_channel_offline(pdev)) 653 wait_event_timeout(cfg->reset_waitq, 654 !pci_channel_offline(pdev), 655 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT); 656 } 657 658 /** 659 * free_mem() - free memory associated with the AFU 660 * @cfg: Internal structure associated with the host. 661 */ 662 static void free_mem(struct cxlflash_cfg *cfg) 663 { 664 struct afu *afu = cfg->afu; 665 666 if (cfg->afu) { 667 free_pages((ulong)afu, get_order(sizeof(struct afu))); 668 cfg->afu = NULL; 669 } 670 } 671 672 /** 673 * cxlflash_reset_sync() - synchronizing point for asynchronous resets 674 * @cfg: Internal structure associated with the host. 675 */ 676 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg) 677 { 678 if (cfg->async_reset_cookie == 0) 679 return; 680 681 /* Wait until all async calls prior to this cookie have completed */ 682 async_synchronize_cookie(cfg->async_reset_cookie + 1); 683 cfg->async_reset_cookie = 0; 684 } 685 686 /** 687 * stop_afu() - stops the AFU command timers and unmaps the MMIO space 688 * @cfg: Internal structure associated with the host. 689 * 690 * Safe to call with AFU in a partially allocated/initialized state. 691 * 692 * Cancels scheduled worker threads, waits for any active internal AFU 693 * commands to timeout, disables IRQ polling and then unmaps the MMIO space. 694 */ 695 static void stop_afu(struct cxlflash_cfg *cfg) 696 { 697 struct afu *afu = cfg->afu; 698 struct hwq *hwq; 699 int i; 700 701 cancel_work_sync(&cfg->work_q); 702 if (!current_is_async()) 703 cxlflash_reset_sync(cfg); 704 705 if (likely(afu)) { 706 while (atomic_read(&afu->cmds_active)) 707 ssleep(1); 708 709 if (afu_is_irqpoll_enabled(afu)) { 710 for (i = 0; i < afu->num_hwqs; i++) { 711 hwq = get_hwq(afu, i); 712 713 irq_poll_disable(&hwq->irqpoll); 714 } 715 } 716 717 if (likely(afu->afu_map)) { 718 cfg->ops->psa_unmap(afu->afu_map); 719 afu->afu_map = NULL; 720 } 721 } 722 } 723 724 /** 725 * term_intr() - disables all AFU interrupts 726 * @cfg: Internal structure associated with the host. 727 * @level: Depth of allocation, where to begin waterfall tear down. 728 * @index: Index of the hardware queue. 729 * 730 * Safe to call with AFU/MC in partially allocated/initialized state. 731 */ 732 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level, 733 u32 index) 734 { 735 struct afu *afu = cfg->afu; 736 struct device *dev = &cfg->dev->dev; 737 struct hwq *hwq; 738 739 if (!afu) { 740 dev_err(dev, "%s: returning with NULL afu\n", __func__); 741 return; 742 } 743 744 hwq = get_hwq(afu, index); 745 746 if (!hwq->ctx_cookie) { 747 dev_err(dev, "%s: returning with NULL MC\n", __func__); 748 return; 749 } 750 751 switch (level) { 752 case UNMAP_THREE: 753 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ 754 if (index == PRIMARY_HWQ) 755 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq); 756 fallthrough; 757 case UNMAP_TWO: 758 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq); 759 fallthrough; 760 case UNMAP_ONE: 761 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq); 762 fallthrough; 763 case FREE_IRQ: 764 cfg->ops->free_afu_irqs(hwq->ctx_cookie); 765 fallthrough; 766 case UNDO_NOOP: 767 /* No action required */ 768 break; 769 } 770 } 771 772 /** 773 * term_mc() - terminates the master context 774 * @cfg: Internal structure associated with the host. 775 * @index: Index of the hardware queue. 776 * 777 * Safe to call with AFU/MC in partially allocated/initialized state. 778 */ 779 static void term_mc(struct cxlflash_cfg *cfg, u32 index) 780 { 781 struct afu *afu = cfg->afu; 782 struct device *dev = &cfg->dev->dev; 783 struct hwq *hwq; 784 ulong lock_flags; 785 786 if (!afu) { 787 dev_err(dev, "%s: returning with NULL afu\n", __func__); 788 return; 789 } 790 791 hwq = get_hwq(afu, index); 792 793 if (!hwq->ctx_cookie) { 794 dev_err(dev, "%s: returning with NULL MC\n", __func__); 795 return; 796 } 797 798 WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie)); 799 if (index != PRIMARY_HWQ) 800 WARN_ON(cfg->ops->release_context(hwq->ctx_cookie)); 801 hwq->ctx_cookie = NULL; 802 803 spin_lock_irqsave(&hwq->hrrq_slock, lock_flags); 804 hwq->hrrq_online = false; 805 spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags); 806 807 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 808 flush_pending_cmds(hwq); 809 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 810 } 811 812 /** 813 * term_afu() - terminates the AFU 814 * @cfg: Internal structure associated with the host. 815 * 816 * Safe to call with AFU/MC in partially allocated/initialized state. 817 */ 818 static void term_afu(struct cxlflash_cfg *cfg) 819 { 820 struct device *dev = &cfg->dev->dev; 821 int k; 822 823 /* 824 * Tear down is carefully orchestrated to ensure 825 * no interrupts can come in when the problem state 826 * area is unmapped. 827 * 828 * 1) Disable all AFU interrupts for each master 829 * 2) Unmap the problem state area 830 * 3) Stop each master context 831 */ 832 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) 833 term_intr(cfg, UNMAP_THREE, k); 834 835 stop_afu(cfg); 836 837 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) 838 term_mc(cfg, k); 839 840 dev_dbg(dev, "%s: returning\n", __func__); 841 } 842 843 /** 844 * notify_shutdown() - notifies device of pending shutdown 845 * @cfg: Internal structure associated with the host. 846 * @wait: Whether to wait for shutdown processing to complete. 847 * 848 * This function will notify the AFU that the adapter is being shutdown 849 * and will wait for shutdown processing to complete if wait is true. 850 * This notification should flush pending I/Os to the device and halt 851 * further I/Os until the next AFU reset is issued and device restarted. 852 */ 853 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait) 854 { 855 struct afu *afu = cfg->afu; 856 struct device *dev = &cfg->dev->dev; 857 struct dev_dependent_vals *ddv; 858 __be64 __iomem *fc_port_regs; 859 u64 reg, status; 860 int i, retry_cnt = 0; 861 862 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data; 863 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN)) 864 return; 865 866 if (!afu || !afu->afu_map) { 867 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__); 868 return; 869 } 870 871 /* Notify AFU */ 872 for (i = 0; i < cfg->num_fc_ports; i++) { 873 fc_port_regs = get_fc_port_regs(cfg, i); 874 875 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); 876 reg |= SISL_FC_SHUTDOWN_NORMAL; 877 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); 878 } 879 880 if (!wait) 881 return; 882 883 /* Wait up to 1.5 seconds for shutdown processing to complete */ 884 for (i = 0; i < cfg->num_fc_ports; i++) { 885 fc_port_regs = get_fc_port_regs(cfg, i); 886 retry_cnt = 0; 887 888 while (true) { 889 status = readq_be(&fc_port_regs[FC_STATUS / 8]); 890 if (status & SISL_STATUS_SHUTDOWN_COMPLETE) 891 break; 892 if (++retry_cnt >= MC_RETRY_CNT) { 893 dev_dbg(dev, "%s: port %d shutdown processing " 894 "not yet completed\n", __func__, i); 895 break; 896 } 897 msleep(100 * retry_cnt); 898 } 899 } 900 } 901 902 /** 903 * cxlflash_get_minor() - gets the first available minor number 904 * 905 * Return: Unique minor number that can be used to create the character device. 906 */ 907 static int cxlflash_get_minor(void) 908 { 909 int minor; 910 long bit; 911 912 bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); 913 if (bit >= CXLFLASH_MAX_ADAPTERS) 914 return -1; 915 916 minor = bit & MINORMASK; 917 set_bit(minor, cxlflash_minor); 918 return minor; 919 } 920 921 /** 922 * cxlflash_put_minor() - releases the minor number 923 * @minor: Minor number that is no longer needed. 924 */ 925 static void cxlflash_put_minor(int minor) 926 { 927 clear_bit(minor, cxlflash_minor); 928 } 929 930 /** 931 * cxlflash_release_chrdev() - release the character device for the host 932 * @cfg: Internal structure associated with the host. 933 */ 934 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg) 935 { 936 device_unregister(cfg->chardev); 937 cfg->chardev = NULL; 938 cdev_del(&cfg->cdev); 939 cxlflash_put_minor(MINOR(cfg->cdev.dev)); 940 } 941 942 /** 943 * cxlflash_remove() - PCI entry point to tear down host 944 * @pdev: PCI device associated with the host. 945 * 946 * Safe to use as a cleanup in partially allocated/initialized state. Note that 947 * the reset_waitq is flushed as part of the stop/termination of user contexts. 948 */ 949 static void cxlflash_remove(struct pci_dev *pdev) 950 { 951 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 952 struct device *dev = &pdev->dev; 953 ulong lock_flags; 954 955 if (!pci_is_enabled(pdev)) { 956 dev_dbg(dev, "%s: Device is disabled\n", __func__); 957 return; 958 } 959 960 /* Yield to running recovery threads before continuing with remove */ 961 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && 962 cfg->state != STATE_PROBING); 963 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 964 if (cfg->tmf_active) 965 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 966 !cfg->tmf_active, 967 cfg->tmf_slock); 968 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 969 970 /* Notify AFU and wait for shutdown processing to complete */ 971 notify_shutdown(cfg, true); 972 973 cfg->state = STATE_FAILTERM; 974 cxlflash_stop_term_user_contexts(cfg); 975 976 switch (cfg->init_state) { 977 case INIT_STATE_CDEV: 978 cxlflash_release_chrdev(cfg); 979 fallthrough; 980 case INIT_STATE_SCSI: 981 cxlflash_term_local_luns(cfg); 982 scsi_remove_host(cfg->host); 983 fallthrough; 984 case INIT_STATE_AFU: 985 term_afu(cfg); 986 fallthrough; 987 case INIT_STATE_PCI: 988 cfg->ops->destroy_afu(cfg->afu_cookie); 989 pci_disable_device(pdev); 990 fallthrough; 991 case INIT_STATE_NONE: 992 free_mem(cfg); 993 scsi_host_put(cfg->host); 994 break; 995 } 996 997 dev_dbg(dev, "%s: returning\n", __func__); 998 } 999 1000 /** 1001 * alloc_mem() - allocates the AFU and its command pool 1002 * @cfg: Internal structure associated with the host. 1003 * 1004 * A partially allocated state remains on failure. 1005 * 1006 * Return: 1007 * 0 on success 1008 * -ENOMEM on failure to allocate memory 1009 */ 1010 static int alloc_mem(struct cxlflash_cfg *cfg) 1011 { 1012 int rc = 0; 1013 struct device *dev = &cfg->dev->dev; 1014 1015 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */ 1016 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1017 get_order(sizeof(struct afu))); 1018 if (unlikely(!cfg->afu)) { 1019 dev_err(dev, "%s: cannot get %d free pages\n", 1020 __func__, get_order(sizeof(struct afu))); 1021 rc = -ENOMEM; 1022 goto out; 1023 } 1024 cfg->afu->parent = cfg; 1025 cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS; 1026 cfg->afu->afu_map = NULL; 1027 out: 1028 return rc; 1029 } 1030 1031 /** 1032 * init_pci() - initializes the host as a PCI device 1033 * @cfg: Internal structure associated with the host. 1034 * 1035 * Return: 0 on success, -errno on failure 1036 */ 1037 static int init_pci(struct cxlflash_cfg *cfg) 1038 { 1039 struct pci_dev *pdev = cfg->dev; 1040 struct device *dev = &cfg->dev->dev; 1041 int rc = 0; 1042 1043 rc = pci_enable_device(pdev); 1044 if (rc || pci_channel_offline(pdev)) { 1045 if (pci_channel_offline(pdev)) { 1046 cxlflash_wait_for_pci_err_recovery(cfg); 1047 rc = pci_enable_device(pdev); 1048 } 1049 1050 if (rc) { 1051 dev_err(dev, "%s: Cannot enable adapter\n", __func__); 1052 cxlflash_wait_for_pci_err_recovery(cfg); 1053 goto out; 1054 } 1055 } 1056 1057 out: 1058 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1059 return rc; 1060 } 1061 1062 /** 1063 * init_scsi() - adds the host to the SCSI stack and kicks off host scan 1064 * @cfg: Internal structure associated with the host. 1065 * 1066 * Return: 0 on success, -errno on failure 1067 */ 1068 static int init_scsi(struct cxlflash_cfg *cfg) 1069 { 1070 struct pci_dev *pdev = cfg->dev; 1071 struct device *dev = &cfg->dev->dev; 1072 int rc = 0; 1073 1074 rc = scsi_add_host(cfg->host, &pdev->dev); 1075 if (rc) { 1076 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc); 1077 goto out; 1078 } 1079 1080 scsi_scan_host(cfg->host); 1081 1082 out: 1083 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1084 return rc; 1085 } 1086 1087 /** 1088 * set_port_online() - transitions the specified host FC port to online state 1089 * @fc_regs: Top of MMIO region defined for specified port. 1090 * 1091 * The provided MMIO region must be mapped prior to call. Online state means 1092 * that the FC link layer has synced, completed the handshaking process, and 1093 * is ready for login to start. 1094 */ 1095 static void set_port_online(__be64 __iomem *fc_regs) 1096 { 1097 u64 cmdcfg; 1098 1099 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1100 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */ 1101 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */ 1102 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1103 } 1104 1105 /** 1106 * set_port_offline() - transitions the specified host FC port to offline state 1107 * @fc_regs: Top of MMIO region defined for specified port. 1108 * 1109 * The provided MMIO region must be mapped prior to call. 1110 */ 1111 static void set_port_offline(__be64 __iomem *fc_regs) 1112 { 1113 u64 cmdcfg; 1114 1115 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1116 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */ 1117 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */ 1118 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1119 } 1120 1121 /** 1122 * wait_port_online() - waits for the specified host FC port come online 1123 * @fc_regs: Top of MMIO region defined for specified port. 1124 * @delay_us: Number of microseconds to delay between reading port status. 1125 * @nretry: Number of cycles to retry reading port status. 1126 * 1127 * The provided MMIO region must be mapped prior to call. This will timeout 1128 * when the cable is not plugged in. 1129 * 1130 * Return: 1131 * TRUE (1) when the specified port is online 1132 * FALSE (0) when the specified port fails to come online after timeout 1133 */ 1134 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1135 { 1136 u64 status; 1137 1138 WARN_ON(delay_us < 1000); 1139 1140 do { 1141 msleep(delay_us / 1000); 1142 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1143 if (status == U64_MAX) 1144 nretry /= 2; 1145 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE && 1146 nretry--); 1147 1148 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE); 1149 } 1150 1151 /** 1152 * wait_port_offline() - waits for the specified host FC port go offline 1153 * @fc_regs: Top of MMIO region defined for specified port. 1154 * @delay_us: Number of microseconds to delay between reading port status. 1155 * @nretry: Number of cycles to retry reading port status. 1156 * 1157 * The provided MMIO region must be mapped prior to call. 1158 * 1159 * Return: 1160 * TRUE (1) when the specified port is offline 1161 * FALSE (0) when the specified port fails to go offline after timeout 1162 */ 1163 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1164 { 1165 u64 status; 1166 1167 WARN_ON(delay_us < 1000); 1168 1169 do { 1170 msleep(delay_us / 1000); 1171 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1172 if (status == U64_MAX) 1173 nretry /= 2; 1174 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE && 1175 nretry--); 1176 1177 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE); 1178 } 1179 1180 /** 1181 * afu_set_wwpn() - configures the WWPN for the specified host FC port 1182 * @afu: AFU associated with the host that owns the specified FC port. 1183 * @port: Port number being configured. 1184 * @fc_regs: Top of MMIO region defined for specified port. 1185 * @wwpn: The world-wide-port-number previously discovered for port. 1186 * 1187 * The provided MMIO region must be mapped prior to call. As part of the 1188 * sequence to configure the WWPN, the port is toggled offline and then back 1189 * online. This toggling action can cause this routine to delay up to a few 1190 * seconds. When configured to use the internal LUN feature of the AFU, a 1191 * failure to come online is overridden. 1192 */ 1193 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs, 1194 u64 wwpn) 1195 { 1196 struct cxlflash_cfg *cfg = afu->parent; 1197 struct device *dev = &cfg->dev->dev; 1198 1199 set_port_offline(fc_regs); 1200 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1201 FC_PORT_STATUS_RETRY_CNT)) { 1202 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n", 1203 __func__, port); 1204 } 1205 1206 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]); 1207 1208 set_port_online(fc_regs); 1209 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1210 FC_PORT_STATUS_RETRY_CNT)) { 1211 dev_dbg(dev, "%s: wait on port %d to go online timed out\n", 1212 __func__, port); 1213 } 1214 } 1215 1216 /** 1217 * afu_link_reset() - resets the specified host FC port 1218 * @afu: AFU associated with the host that owns the specified FC port. 1219 * @port: Port number being configured. 1220 * @fc_regs: Top of MMIO region defined for specified port. 1221 * 1222 * The provided MMIO region must be mapped prior to call. The sequence to 1223 * reset the port involves toggling it offline and then back online. This 1224 * action can cause this routine to delay up to a few seconds. An effort 1225 * is made to maintain link with the device by switching to host to use 1226 * the alternate port exclusively while the reset takes place. 1227 * failure to come online is overridden. 1228 */ 1229 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs) 1230 { 1231 struct cxlflash_cfg *cfg = afu->parent; 1232 struct device *dev = &cfg->dev->dev; 1233 u64 port_sel; 1234 1235 /* first switch the AFU to the other links, if any */ 1236 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel); 1237 port_sel &= ~(1ULL << port); 1238 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1239 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1240 1241 set_port_offline(fc_regs); 1242 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1243 FC_PORT_STATUS_RETRY_CNT)) 1244 dev_err(dev, "%s: wait on port %d to go offline timed out\n", 1245 __func__, port); 1246 1247 set_port_online(fc_regs); 1248 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1249 FC_PORT_STATUS_RETRY_CNT)) 1250 dev_err(dev, "%s: wait on port %d to go online timed out\n", 1251 __func__, port); 1252 1253 /* switch back to include this port */ 1254 port_sel |= (1ULL << port); 1255 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1256 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1257 1258 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel); 1259 } 1260 1261 /** 1262 * afu_err_intr_init() - clears and initializes the AFU for error interrupts 1263 * @afu: AFU associated with the host. 1264 */ 1265 static void afu_err_intr_init(struct afu *afu) 1266 { 1267 struct cxlflash_cfg *cfg = afu->parent; 1268 __be64 __iomem *fc_port_regs; 1269 int i; 1270 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 1271 u64 reg; 1272 1273 /* global async interrupts: AFU clears afu_ctrl on context exit 1274 * if async interrupts were sent to that context. This prevents 1275 * the AFU form sending further async interrupts when 1276 * there is 1277 * nobody to receive them. 1278 */ 1279 1280 /* mask all */ 1281 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask); 1282 /* set LISN# to send and point to primary master context */ 1283 reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40); 1284 1285 if (afu->internal_lun) 1286 reg |= 1; /* Bit 63 indicates local lun */ 1287 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl); 1288 /* clear all */ 1289 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1290 /* unmask bits that are of interest */ 1291 /* note: afu can send an interrupt after this step */ 1292 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask); 1293 /* clear again in case a bit came on after previous clear but before */ 1294 /* unmask */ 1295 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1296 1297 /* Clear/Set internal lun bits */ 1298 fc_port_regs = get_fc_port_regs(cfg, 0); 1299 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); 1300 reg &= SISL_FC_INTERNAL_MASK; 1301 if (afu->internal_lun) 1302 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT); 1303 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); 1304 1305 /* now clear FC errors */ 1306 for (i = 0; i < cfg->num_fc_ports; i++) { 1307 fc_port_regs = get_fc_port_regs(cfg, i); 1308 1309 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]); 1310 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); 1311 } 1312 1313 /* sync interrupts for master's IOARRIN write */ 1314 /* note that unlike asyncs, there can be no pending sync interrupts */ 1315 /* at this time (this is a fresh context and master has not written */ 1316 /* IOARRIN yet), so there is nothing to clear. */ 1317 1318 /* set LISN#, it is always sent to the context that wrote IOARRIN */ 1319 for (i = 0; i < afu->num_hwqs; i++) { 1320 hwq = get_hwq(afu, i); 1321 1322 reg = readq_be(&hwq->host_map->ctx_ctrl); 1323 WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0); 1324 reg |= SISL_MSI_SYNC_ERROR; 1325 writeq_be(reg, &hwq->host_map->ctx_ctrl); 1326 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask); 1327 } 1328 } 1329 1330 /** 1331 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors 1332 * @irq: Interrupt number. 1333 * @data: Private data provided at interrupt registration, the AFU. 1334 * 1335 * Return: Always return IRQ_HANDLED. 1336 */ 1337 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data) 1338 { 1339 struct hwq *hwq = (struct hwq *)data; 1340 struct cxlflash_cfg *cfg = hwq->afu->parent; 1341 struct device *dev = &cfg->dev->dev; 1342 u64 reg; 1343 u64 reg_unmasked; 1344 1345 reg = readq_be(&hwq->host_map->intr_status); 1346 reg_unmasked = (reg & SISL_ISTATUS_UNMASK); 1347 1348 if (reg_unmasked == 0UL) { 1349 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n", 1350 __func__, reg); 1351 goto cxlflash_sync_err_irq_exit; 1352 } 1353 1354 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n", 1355 __func__, reg); 1356 1357 writeq_be(reg_unmasked, &hwq->host_map->intr_clear); 1358 1359 cxlflash_sync_err_irq_exit: 1360 return IRQ_HANDLED; 1361 } 1362 1363 /** 1364 * process_hrrq() - process the read-response queue 1365 * @hwq: HWQ associated with the host. 1366 * @doneq: Queue of commands harvested from the RRQ. 1367 * @budget: Threshold of RRQ entries to process. 1368 * 1369 * This routine must be called holding the disabled RRQ spin lock. 1370 * 1371 * Return: The number of entries processed. 1372 */ 1373 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget) 1374 { 1375 struct afu *afu = hwq->afu; 1376 struct afu_cmd *cmd; 1377 struct sisl_ioasa *ioasa; 1378 struct sisl_ioarcb *ioarcb; 1379 bool toggle = hwq->toggle; 1380 int num_hrrq = 0; 1381 u64 entry, 1382 *hrrq_start = hwq->hrrq_start, 1383 *hrrq_end = hwq->hrrq_end, 1384 *hrrq_curr = hwq->hrrq_curr; 1385 1386 /* Process ready RRQ entries up to the specified budget (if any) */ 1387 while (true) { 1388 entry = *hrrq_curr; 1389 1390 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle) 1391 break; 1392 1393 entry &= ~SISL_RESP_HANDLE_T_BIT; 1394 1395 if (afu_is_sq_cmd_mode(afu)) { 1396 ioasa = (struct sisl_ioasa *)entry; 1397 cmd = container_of(ioasa, struct afu_cmd, sa); 1398 } else { 1399 ioarcb = (struct sisl_ioarcb *)entry; 1400 cmd = container_of(ioarcb, struct afu_cmd, rcb); 1401 } 1402 1403 list_add_tail(&cmd->queue, doneq); 1404 1405 /* Advance to next entry or wrap and flip the toggle bit */ 1406 if (hrrq_curr < hrrq_end) 1407 hrrq_curr++; 1408 else { 1409 hrrq_curr = hrrq_start; 1410 toggle ^= SISL_RESP_HANDLE_T_BIT; 1411 } 1412 1413 atomic_inc(&hwq->hsq_credits); 1414 num_hrrq++; 1415 1416 if (budget > 0 && num_hrrq >= budget) 1417 break; 1418 } 1419 1420 hwq->hrrq_curr = hrrq_curr; 1421 hwq->toggle = toggle; 1422 1423 return num_hrrq; 1424 } 1425 1426 /** 1427 * process_cmd_doneq() - process a queue of harvested RRQ commands 1428 * @doneq: Queue of completed commands. 1429 * 1430 * Note that upon return the queue can no longer be trusted. 1431 */ 1432 static void process_cmd_doneq(struct list_head *doneq) 1433 { 1434 struct afu_cmd *cmd, *tmp; 1435 1436 WARN_ON(list_empty(doneq)); 1437 1438 list_for_each_entry_safe(cmd, tmp, doneq, queue) 1439 cmd_complete(cmd); 1440 } 1441 1442 /** 1443 * cxlflash_irqpoll() - process a queue of harvested RRQ commands 1444 * @irqpoll: IRQ poll structure associated with queue to poll. 1445 * @budget: Threshold of RRQ entries to process per poll. 1446 * 1447 * Return: The number of entries processed. 1448 */ 1449 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget) 1450 { 1451 struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll); 1452 unsigned long hrrq_flags; 1453 LIST_HEAD(doneq); 1454 int num_entries = 0; 1455 1456 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); 1457 1458 num_entries = process_hrrq(hwq, &doneq, budget); 1459 if (num_entries < budget) 1460 irq_poll_complete(irqpoll); 1461 1462 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1463 1464 process_cmd_doneq(&doneq); 1465 return num_entries; 1466 } 1467 1468 /** 1469 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path) 1470 * @irq: Interrupt number. 1471 * @data: Private data provided at interrupt registration, the AFU. 1472 * 1473 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found. 1474 */ 1475 static irqreturn_t cxlflash_rrq_irq(int irq, void *data) 1476 { 1477 struct hwq *hwq = (struct hwq *)data; 1478 struct afu *afu = hwq->afu; 1479 unsigned long hrrq_flags; 1480 LIST_HEAD(doneq); 1481 int num_entries = 0; 1482 1483 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); 1484 1485 /* Silently drop spurious interrupts when queue is not online */ 1486 if (!hwq->hrrq_online) { 1487 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1488 return IRQ_HANDLED; 1489 } 1490 1491 if (afu_is_irqpoll_enabled(afu)) { 1492 irq_poll_sched(&hwq->irqpoll); 1493 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1494 return IRQ_HANDLED; 1495 } 1496 1497 num_entries = process_hrrq(hwq, &doneq, -1); 1498 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1499 1500 if (num_entries == 0) 1501 return IRQ_NONE; 1502 1503 process_cmd_doneq(&doneq); 1504 return IRQ_HANDLED; 1505 } 1506 1507 /* 1508 * Asynchronous interrupt information table 1509 * 1510 * NOTE: 1511 * - Order matters here as this array is indexed by bit position. 1512 * 1513 * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro 1514 * as complex and complains due to a lack of parentheses/braces. 1515 */ 1516 #define ASTATUS_FC(_a, _b, _c, _d) \ 1517 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) } 1518 1519 #define BUILD_SISL_ASTATUS_FC_PORT(_a) \ 1520 ASTATUS_FC(_a, LINK_UP, "link up", 0), \ 1521 ASTATUS_FC(_a, LINK_DN, "link down", 0), \ 1522 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \ 1523 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \ 1524 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \ 1525 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \ 1526 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \ 1527 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET) 1528 1529 static const struct asyc_intr_info ainfo[] = { 1530 BUILD_SISL_ASTATUS_FC_PORT(1), 1531 BUILD_SISL_ASTATUS_FC_PORT(0), 1532 BUILD_SISL_ASTATUS_FC_PORT(3), 1533 BUILD_SISL_ASTATUS_FC_PORT(2) 1534 }; 1535 1536 /** 1537 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors 1538 * @irq: Interrupt number. 1539 * @data: Private data provided at interrupt registration, the AFU. 1540 * 1541 * Return: Always return IRQ_HANDLED. 1542 */ 1543 static irqreturn_t cxlflash_async_err_irq(int irq, void *data) 1544 { 1545 struct hwq *hwq = (struct hwq *)data; 1546 struct afu *afu = hwq->afu; 1547 struct cxlflash_cfg *cfg = afu->parent; 1548 struct device *dev = &cfg->dev->dev; 1549 const struct asyc_intr_info *info; 1550 struct sisl_global_map __iomem *global = &afu->afu_map->global; 1551 __be64 __iomem *fc_port_regs; 1552 u64 reg_unmasked; 1553 u64 reg; 1554 u64 bit; 1555 u8 port; 1556 1557 reg = readq_be(&global->regs.aintr_status); 1558 reg_unmasked = (reg & SISL_ASTATUS_UNMASK); 1559 1560 if (unlikely(reg_unmasked == 0)) { 1561 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n", 1562 __func__, reg); 1563 goto out; 1564 } 1565 1566 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */ 1567 writeq_be(reg_unmasked, &global->regs.aintr_clear); 1568 1569 /* Check each bit that is on */ 1570 for_each_set_bit(bit, (ulong *)®_unmasked, BITS_PER_LONG) { 1571 if (unlikely(bit >= ARRAY_SIZE(ainfo))) { 1572 WARN_ON_ONCE(1); 1573 continue; 1574 } 1575 1576 info = &ainfo[bit]; 1577 if (unlikely(info->status != 1ULL << bit)) { 1578 WARN_ON_ONCE(1); 1579 continue; 1580 } 1581 1582 port = info->port; 1583 fc_port_regs = get_fc_port_regs(cfg, port); 1584 1585 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n", 1586 __func__, port, info->desc, 1587 readq_be(&fc_port_regs[FC_STATUS / 8])); 1588 1589 /* 1590 * Do link reset first, some OTHER errors will set FC_ERROR 1591 * again if cleared before or w/o a reset 1592 */ 1593 if (info->action & LINK_RESET) { 1594 dev_err(dev, "%s: FC Port %d: resetting link\n", 1595 __func__, port); 1596 cfg->lr_state = LINK_RESET_REQUIRED; 1597 cfg->lr_port = port; 1598 schedule_work(&cfg->work_q); 1599 } 1600 1601 if (info->action & CLR_FC_ERROR) { 1602 reg = readq_be(&fc_port_regs[FC_ERROR / 8]); 1603 1604 /* 1605 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP 1606 * should be the same and tracing one is sufficient. 1607 */ 1608 1609 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n", 1610 __func__, port, reg); 1611 1612 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]); 1613 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); 1614 } 1615 1616 if (info->action & SCAN_HOST) { 1617 atomic_inc(&cfg->scan_host_needed); 1618 schedule_work(&cfg->work_q); 1619 } 1620 } 1621 1622 out: 1623 return IRQ_HANDLED; 1624 } 1625 1626 /** 1627 * read_vpd() - obtains the WWPNs from VPD 1628 * @cfg: Internal structure associated with the host. 1629 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs 1630 * 1631 * Return: 0 on success, -errno on failure 1632 */ 1633 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[]) 1634 { 1635 struct device *dev = &cfg->dev->dev; 1636 struct pci_dev *pdev = cfg->dev; 1637 int i, k, rc = 0; 1638 unsigned int kw_size; 1639 ssize_t vpd_size; 1640 char vpd_data[CXLFLASH_VPD_LEN]; 1641 char tmp_buf[WWPN_BUF_LEN] = { 0 }; 1642 const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *) 1643 cfg->dev_id->driver_data; 1644 const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED; 1645 const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" }; 1646 1647 /* Get the VPD data from the device */ 1648 vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data)); 1649 if (unlikely(vpd_size <= 0)) { 1650 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n", 1651 __func__, vpd_size); 1652 rc = -ENODEV; 1653 goto out; 1654 } 1655 1656 /* 1657 * Find the offset of the WWPN tag within the read only 1658 * VPD data and validate the found field (partials are 1659 * no good to us). Convert the ASCII data to an integer 1660 * value. Note that we must copy to a temporary buffer 1661 * because the conversion service requires that the ASCII 1662 * string be terminated. 1663 * 1664 * Allow for WWPN not being found for all devices, setting 1665 * the returned WWPN to zero when not found. Notify with a 1666 * log error for cards that should have had WWPN keywords 1667 * in the VPD - cards requiring WWPN will not have their 1668 * ports programmed and operate in an undefined state. 1669 */ 1670 for (k = 0; k < cfg->num_fc_ports; k++) { 1671 i = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 1672 wwpn_vpd_tags[k], &kw_size); 1673 if (i == -ENOENT) { 1674 if (wwpn_vpd_required) 1675 dev_err(dev, "%s: Port %d WWPN not found\n", 1676 __func__, k); 1677 wwpn[k] = 0ULL; 1678 continue; 1679 } 1680 1681 if (i < 0 || kw_size != WWPN_LEN) { 1682 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n", 1683 __func__, k); 1684 rc = -ENODEV; 1685 goto out; 1686 } 1687 1688 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN); 1689 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]); 1690 if (unlikely(rc)) { 1691 dev_err(dev, "%s: WWPN conversion failed for port %d\n", 1692 __func__, k); 1693 rc = -ENODEV; 1694 goto out; 1695 } 1696 1697 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]); 1698 } 1699 1700 out: 1701 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1702 return rc; 1703 } 1704 1705 /** 1706 * init_pcr() - initialize the provisioning and control registers 1707 * @cfg: Internal structure associated with the host. 1708 * 1709 * Also sets up fast access to the mapped registers and initializes AFU 1710 * command fields that never change. 1711 */ 1712 static void init_pcr(struct cxlflash_cfg *cfg) 1713 { 1714 struct afu *afu = cfg->afu; 1715 struct sisl_ctrl_map __iomem *ctrl_map; 1716 struct hwq *hwq; 1717 void *cookie; 1718 int i; 1719 1720 for (i = 0; i < MAX_CONTEXT; i++) { 1721 ctrl_map = &afu->afu_map->ctrls[i].ctrl; 1722 /* Disrupt any clients that could be running */ 1723 /* e.g. clients that survived a master restart */ 1724 writeq_be(0, &ctrl_map->rht_start); 1725 writeq_be(0, &ctrl_map->rht_cnt_id); 1726 writeq_be(0, &ctrl_map->ctx_cap); 1727 } 1728 1729 /* Copy frequently used fields into hwq */ 1730 for (i = 0; i < afu->num_hwqs; i++) { 1731 hwq = get_hwq(afu, i); 1732 cookie = hwq->ctx_cookie; 1733 1734 hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie); 1735 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host; 1736 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl; 1737 1738 /* Program the Endian Control for the master context */ 1739 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl); 1740 } 1741 } 1742 1743 /** 1744 * init_global() - initialize AFU global registers 1745 * @cfg: Internal structure associated with the host. 1746 */ 1747 static int init_global(struct cxlflash_cfg *cfg) 1748 { 1749 struct afu *afu = cfg->afu; 1750 struct device *dev = &cfg->dev->dev; 1751 struct hwq *hwq; 1752 struct sisl_host_map __iomem *hmap; 1753 __be64 __iomem *fc_port_regs; 1754 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */ 1755 int i = 0, num_ports = 0; 1756 int rc = 0; 1757 int j; 1758 void *ctx; 1759 u64 reg; 1760 1761 rc = read_vpd(cfg, &wwpn[0]); 1762 if (rc) { 1763 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc); 1764 goto out; 1765 } 1766 1767 /* Set up RRQ and SQ in HWQ for master issued cmds */ 1768 for (i = 0; i < afu->num_hwqs; i++) { 1769 hwq = get_hwq(afu, i); 1770 hmap = hwq->host_map; 1771 1772 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start); 1773 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end); 1774 hwq->hrrq_online = true; 1775 1776 if (afu_is_sq_cmd_mode(afu)) { 1777 writeq_be((u64)hwq->hsq_start, &hmap->sq_start); 1778 writeq_be((u64)hwq->hsq_end, &hmap->sq_end); 1779 } 1780 } 1781 1782 /* AFU configuration */ 1783 reg = readq_be(&afu->afu_map->global.regs.afu_config); 1784 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN; 1785 /* enable all auto retry options and control endianness */ 1786 /* leave others at default: */ 1787 /* CTX_CAP write protected, mbox_r does not clear on read and */ 1788 /* checker on if dual afu */ 1789 writeq_be(reg, &afu->afu_map->global.regs.afu_config); 1790 1791 /* Global port select: select either port */ 1792 if (afu->internal_lun) { 1793 /* Only use port 0 */ 1794 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel); 1795 num_ports = 0; 1796 } else { 1797 writeq_be(PORT_MASK(cfg->num_fc_ports), 1798 &afu->afu_map->global.regs.afu_port_sel); 1799 num_ports = cfg->num_fc_ports; 1800 } 1801 1802 for (i = 0; i < num_ports; i++) { 1803 fc_port_regs = get_fc_port_regs(cfg, i); 1804 1805 /* Unmask all errors (but they are still masked at AFU) */ 1806 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]); 1807 /* Clear CRC error cnt & set a threshold */ 1808 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]); 1809 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]); 1810 1811 /* Set WWPNs. If already programmed, wwpn[i] is 0 */ 1812 if (wwpn[i] != 0) 1813 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]); 1814 /* Programming WWPN back to back causes additional 1815 * offline/online transitions and a PLOGI 1816 */ 1817 msleep(100); 1818 } 1819 1820 if (afu_is_ocxl_lisn(afu)) { 1821 /* Set up the LISN effective address for each master */ 1822 for (i = 0; i < afu->num_hwqs; i++) { 1823 hwq = get_hwq(afu, i); 1824 ctx = hwq->ctx_cookie; 1825 1826 for (j = 0; j < hwq->num_irqs; j++) { 1827 reg = cfg->ops->get_irq_objhndl(ctx, j); 1828 writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]); 1829 } 1830 1831 reg = hwq->ctx_hndl; 1832 writeq_be(SISL_LISN_PASID(reg, reg), 1833 &hwq->ctrl_map->lisn_pasid[0]); 1834 writeq_be(SISL_LISN_PASID(0UL, reg), 1835 &hwq->ctrl_map->lisn_pasid[1]); 1836 } 1837 } 1838 1839 /* Set up master's own CTX_CAP to allow real mode, host translation */ 1840 /* tables, afu cmds and read/write GSCSI cmds. */ 1841 /* First, unlock ctx_cap write by reading mbox */ 1842 for (i = 0; i < afu->num_hwqs; i++) { 1843 hwq = get_hwq(afu, i); 1844 1845 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */ 1846 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE | 1847 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD | 1848 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD), 1849 &hwq->ctrl_map->ctx_cap); 1850 } 1851 1852 /* 1853 * Determine write-same unmap support for host by evaluating the unmap 1854 * sector support bit of the context control register associated with 1855 * the primary hardware queue. Note that while this status is reflected 1856 * in a context register, the outcome can be assumed to be host-wide. 1857 */ 1858 hwq = get_hwq(afu, PRIMARY_HWQ); 1859 reg = readq_be(&hwq->host_map->ctx_ctrl); 1860 if (reg & SISL_CTX_CTRL_UNMAP_SECTOR) 1861 cfg->ws_unmap = true; 1862 1863 /* Initialize heartbeat */ 1864 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb); 1865 out: 1866 return rc; 1867 } 1868 1869 /** 1870 * start_afu() - initializes and starts the AFU 1871 * @cfg: Internal structure associated with the host. 1872 */ 1873 static int start_afu(struct cxlflash_cfg *cfg) 1874 { 1875 struct afu *afu = cfg->afu; 1876 struct device *dev = &cfg->dev->dev; 1877 struct hwq *hwq; 1878 int rc = 0; 1879 int i; 1880 1881 init_pcr(cfg); 1882 1883 /* Initialize each HWQ */ 1884 for (i = 0; i < afu->num_hwqs; i++) { 1885 hwq = get_hwq(afu, i); 1886 1887 /* After an AFU reset, RRQ entries are stale, clear them */ 1888 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry)); 1889 1890 /* Initialize RRQ pointers */ 1891 hwq->hrrq_start = &hwq->rrq_entry[0]; 1892 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1]; 1893 hwq->hrrq_curr = hwq->hrrq_start; 1894 hwq->toggle = 1; 1895 1896 /* Initialize spin locks */ 1897 spin_lock_init(&hwq->hrrq_slock); 1898 spin_lock_init(&hwq->hsq_slock); 1899 1900 /* Initialize SQ */ 1901 if (afu_is_sq_cmd_mode(afu)) { 1902 memset(&hwq->sq, 0, sizeof(hwq->sq)); 1903 hwq->hsq_start = &hwq->sq[0]; 1904 hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1]; 1905 hwq->hsq_curr = hwq->hsq_start; 1906 1907 atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1); 1908 } 1909 1910 /* Initialize IRQ poll */ 1911 if (afu_is_irqpoll_enabled(afu)) 1912 irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight, 1913 cxlflash_irqpoll); 1914 1915 } 1916 1917 rc = init_global(cfg); 1918 1919 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1920 return rc; 1921 } 1922 1923 /** 1924 * init_intr() - setup interrupt handlers for the master context 1925 * @cfg: Internal structure associated with the host. 1926 * @hwq: Hardware queue to initialize. 1927 * 1928 * Return: 0 on success, -errno on failure 1929 */ 1930 static enum undo_level init_intr(struct cxlflash_cfg *cfg, 1931 struct hwq *hwq) 1932 { 1933 struct device *dev = &cfg->dev->dev; 1934 void *ctx = hwq->ctx_cookie; 1935 int rc = 0; 1936 enum undo_level level = UNDO_NOOP; 1937 bool is_primary_hwq = (hwq->index == PRIMARY_HWQ); 1938 int num_irqs = hwq->num_irqs; 1939 1940 rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs); 1941 if (unlikely(rc)) { 1942 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n", 1943 __func__, rc); 1944 level = UNDO_NOOP; 1945 goto out; 1946 } 1947 1948 rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq, 1949 "SISL_MSI_SYNC_ERROR"); 1950 if (unlikely(rc <= 0)) { 1951 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__); 1952 level = FREE_IRQ; 1953 goto out; 1954 } 1955 1956 rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq, 1957 "SISL_MSI_RRQ_UPDATED"); 1958 if (unlikely(rc <= 0)) { 1959 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__); 1960 level = UNMAP_ONE; 1961 goto out; 1962 } 1963 1964 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ 1965 if (!is_primary_hwq) 1966 goto out; 1967 1968 rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq, 1969 "SISL_MSI_ASYNC_ERROR"); 1970 if (unlikely(rc <= 0)) { 1971 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__); 1972 level = UNMAP_TWO; 1973 goto out; 1974 } 1975 out: 1976 return level; 1977 } 1978 1979 /** 1980 * init_mc() - create and register as the master context 1981 * @cfg: Internal structure associated with the host. 1982 * @index: HWQ Index of the master context. 1983 * 1984 * Return: 0 on success, -errno on failure 1985 */ 1986 static int init_mc(struct cxlflash_cfg *cfg, u32 index) 1987 { 1988 void *ctx; 1989 struct device *dev = &cfg->dev->dev; 1990 struct hwq *hwq = get_hwq(cfg->afu, index); 1991 int rc = 0; 1992 int num_irqs; 1993 enum undo_level level; 1994 1995 hwq->afu = cfg->afu; 1996 hwq->index = index; 1997 INIT_LIST_HEAD(&hwq->pending_cmds); 1998 1999 if (index == PRIMARY_HWQ) { 2000 ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie); 2001 num_irqs = 3; 2002 } else { 2003 ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie); 2004 num_irqs = 2; 2005 } 2006 if (IS_ERR_OR_NULL(ctx)) { 2007 rc = -ENOMEM; 2008 goto err1; 2009 } 2010 2011 WARN_ON(hwq->ctx_cookie); 2012 hwq->ctx_cookie = ctx; 2013 hwq->num_irqs = num_irqs; 2014 2015 /* Set it up as a master with the CXL */ 2016 cfg->ops->set_master(ctx); 2017 2018 /* Reset AFU when initializing primary context */ 2019 if (index == PRIMARY_HWQ) { 2020 rc = cfg->ops->afu_reset(ctx); 2021 if (unlikely(rc)) { 2022 dev_err(dev, "%s: AFU reset failed rc=%d\n", 2023 __func__, rc); 2024 goto err1; 2025 } 2026 } 2027 2028 level = init_intr(cfg, hwq); 2029 if (unlikely(level)) { 2030 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc); 2031 goto err2; 2032 } 2033 2034 /* Finally, activate the context by starting it */ 2035 rc = cfg->ops->start_context(hwq->ctx_cookie); 2036 if (unlikely(rc)) { 2037 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc); 2038 level = UNMAP_THREE; 2039 goto err2; 2040 } 2041 2042 out: 2043 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2044 return rc; 2045 err2: 2046 term_intr(cfg, level, index); 2047 if (index != PRIMARY_HWQ) 2048 cfg->ops->release_context(ctx); 2049 err1: 2050 hwq->ctx_cookie = NULL; 2051 goto out; 2052 } 2053 2054 /** 2055 * get_num_afu_ports() - determines and configures the number of AFU ports 2056 * @cfg: Internal structure associated with the host. 2057 * 2058 * This routine determines the number of AFU ports by converting the global 2059 * port selection mask. The converted value is only valid following an AFU 2060 * reset (explicit or power-on). This routine must be invoked shortly after 2061 * mapping as other routines are dependent on the number of ports during the 2062 * initialization sequence. 2063 * 2064 * To support legacy AFUs that might not have reflected an initial global 2065 * port mask (value read is 0), default to the number of ports originally 2066 * supported by the cxlflash driver (2) before hardware with other port 2067 * offerings was introduced. 2068 */ 2069 static void get_num_afu_ports(struct cxlflash_cfg *cfg) 2070 { 2071 struct afu *afu = cfg->afu; 2072 struct device *dev = &cfg->dev->dev; 2073 u64 port_mask; 2074 int num_fc_ports = LEGACY_FC_PORTS; 2075 2076 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel); 2077 if (port_mask != 0ULL) 2078 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS); 2079 2080 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n", 2081 __func__, port_mask, num_fc_ports); 2082 2083 cfg->num_fc_ports = num_fc_ports; 2084 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports); 2085 } 2086 2087 /** 2088 * init_afu() - setup as master context and start AFU 2089 * @cfg: Internal structure associated with the host. 2090 * 2091 * This routine is a higher level of control for configuring the 2092 * AFU on probe and reset paths. 2093 * 2094 * Return: 0 on success, -errno on failure 2095 */ 2096 static int init_afu(struct cxlflash_cfg *cfg) 2097 { 2098 u64 reg; 2099 int rc = 0; 2100 struct afu *afu = cfg->afu; 2101 struct device *dev = &cfg->dev->dev; 2102 struct hwq *hwq; 2103 int i; 2104 2105 cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true); 2106 2107 mutex_init(&afu->sync_active); 2108 afu->num_hwqs = afu->desired_hwqs; 2109 for (i = 0; i < afu->num_hwqs; i++) { 2110 rc = init_mc(cfg, i); 2111 if (rc) { 2112 dev_err(dev, "%s: init_mc failed rc=%d index=%d\n", 2113 __func__, rc, i); 2114 goto err1; 2115 } 2116 } 2117 2118 /* Map the entire MMIO space of the AFU using the first context */ 2119 hwq = get_hwq(afu, PRIMARY_HWQ); 2120 afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie); 2121 if (!afu->afu_map) { 2122 dev_err(dev, "%s: psa_map failed\n", __func__); 2123 rc = -ENOMEM; 2124 goto err1; 2125 } 2126 2127 /* No byte reverse on reading afu_version or string will be backwards */ 2128 reg = readq(&afu->afu_map->global.regs.afu_version); 2129 memcpy(afu->version, ®, sizeof(reg)); 2130 afu->interface_version = 2131 readq_be(&afu->afu_map->global.regs.interface_version); 2132 if ((afu->interface_version + 1) == 0) { 2133 dev_err(dev, "Back level AFU, please upgrade. AFU version %s " 2134 "interface version %016llx\n", afu->version, 2135 afu->interface_version); 2136 rc = -EINVAL; 2137 goto err1; 2138 } 2139 2140 if (afu_is_sq_cmd_mode(afu)) { 2141 afu->send_cmd = send_cmd_sq; 2142 afu->context_reset = context_reset_sq; 2143 } else { 2144 afu->send_cmd = send_cmd_ioarrin; 2145 afu->context_reset = context_reset_ioarrin; 2146 } 2147 2148 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__, 2149 afu->version, afu->interface_version); 2150 2151 get_num_afu_ports(cfg); 2152 2153 rc = start_afu(cfg); 2154 if (rc) { 2155 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc); 2156 goto err1; 2157 } 2158 2159 afu_err_intr_init(cfg->afu); 2160 for (i = 0; i < afu->num_hwqs; i++) { 2161 hwq = get_hwq(afu, i); 2162 2163 hwq->room = readq_be(&hwq->host_map->cmd_room); 2164 } 2165 2166 /* Restore the LUN mappings */ 2167 cxlflash_restore_luntable(cfg); 2168 out: 2169 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2170 return rc; 2171 2172 err1: 2173 for (i = afu->num_hwqs - 1; i >= 0; i--) { 2174 term_intr(cfg, UNMAP_THREE, i); 2175 term_mc(cfg, i); 2176 } 2177 goto out; 2178 } 2179 2180 /** 2181 * afu_reset() - resets the AFU 2182 * @cfg: Internal structure associated with the host. 2183 * 2184 * Return: 0 on success, -errno on failure 2185 */ 2186 static int afu_reset(struct cxlflash_cfg *cfg) 2187 { 2188 struct device *dev = &cfg->dev->dev; 2189 int rc = 0; 2190 2191 /* Stop the context before the reset. Since the context is 2192 * no longer available restart it after the reset is complete 2193 */ 2194 term_afu(cfg); 2195 2196 rc = init_afu(cfg); 2197 2198 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2199 return rc; 2200 } 2201 2202 /** 2203 * drain_ioctls() - wait until all currently executing ioctls have completed 2204 * @cfg: Internal structure associated with the host. 2205 * 2206 * Obtain write access to read/write semaphore that wraps ioctl 2207 * handling to 'drain' ioctls currently executing. 2208 */ 2209 static void drain_ioctls(struct cxlflash_cfg *cfg) 2210 { 2211 down_write(&cfg->ioctl_rwsem); 2212 up_write(&cfg->ioctl_rwsem); 2213 } 2214 2215 /** 2216 * cxlflash_async_reset_host() - asynchronous host reset handler 2217 * @data: Private data provided while scheduling reset. 2218 * @cookie: Cookie that can be used for checkpointing. 2219 */ 2220 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie) 2221 { 2222 struct cxlflash_cfg *cfg = data; 2223 struct device *dev = &cfg->dev->dev; 2224 int rc = 0; 2225 2226 if (cfg->state != STATE_RESET) { 2227 dev_dbg(dev, "%s: Not performing a reset, state=%d\n", 2228 __func__, cfg->state); 2229 goto out; 2230 } 2231 2232 drain_ioctls(cfg); 2233 cxlflash_mark_contexts_error(cfg); 2234 rc = afu_reset(cfg); 2235 if (rc) 2236 cfg->state = STATE_FAILTERM; 2237 else 2238 cfg->state = STATE_NORMAL; 2239 wake_up_all(&cfg->reset_waitq); 2240 2241 out: 2242 scsi_unblock_requests(cfg->host); 2243 } 2244 2245 /** 2246 * cxlflash_schedule_async_reset() - schedule an asynchronous host reset 2247 * @cfg: Internal structure associated with the host. 2248 */ 2249 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg) 2250 { 2251 struct device *dev = &cfg->dev->dev; 2252 2253 if (cfg->state != STATE_NORMAL) { 2254 dev_dbg(dev, "%s: Not performing reset state=%d\n", 2255 __func__, cfg->state); 2256 return; 2257 } 2258 2259 cfg->state = STATE_RESET; 2260 scsi_block_requests(cfg->host); 2261 cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host, 2262 cfg); 2263 } 2264 2265 /** 2266 * send_afu_cmd() - builds and sends an internal AFU command 2267 * @afu: AFU associated with the host. 2268 * @rcb: Pre-populated IOARCB describing command to send. 2269 * 2270 * The AFU can only take one internal AFU command at a time. This limitation is 2271 * enforced by using a mutex to provide exclusive access to the AFU during the 2272 * operation. This design point requires calling threads to not be on interrupt 2273 * context due to the possibility of sleeping during concurrent AFU operations. 2274 * 2275 * The command status is optionally passed back to the caller when the caller 2276 * populates the IOASA field of the IOARCB with a pointer to an IOASA structure. 2277 * 2278 * Return: 2279 * 0 on success, -errno on failure 2280 */ 2281 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb) 2282 { 2283 struct cxlflash_cfg *cfg = afu->parent; 2284 struct device *dev = &cfg->dev->dev; 2285 struct afu_cmd *cmd = NULL; 2286 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 2287 ulong lock_flags; 2288 char *buf = NULL; 2289 int rc = 0; 2290 int nretry = 0; 2291 2292 if (cfg->state != STATE_NORMAL) { 2293 dev_dbg(dev, "%s: Sync not required state=%u\n", 2294 __func__, cfg->state); 2295 return 0; 2296 } 2297 2298 mutex_lock(&afu->sync_active); 2299 atomic_inc(&afu->cmds_active); 2300 buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); 2301 if (unlikely(!buf)) { 2302 dev_err(dev, "%s: no memory for command\n", __func__); 2303 rc = -ENOMEM; 2304 goto out; 2305 } 2306 2307 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); 2308 2309 retry: 2310 memset(cmd, 0, sizeof(*cmd)); 2311 memcpy(&cmd->rcb, rcb, sizeof(*rcb)); 2312 INIT_LIST_HEAD(&cmd->queue); 2313 init_completion(&cmd->cevent); 2314 cmd->parent = afu; 2315 cmd->hwq_index = hwq->index; 2316 cmd->rcb.ctx_id = hwq->ctx_hndl; 2317 2318 dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n", 2319 __func__, afu, cmd, cmd->rcb.cdb[0], nretry); 2320 2321 rc = afu->send_cmd(afu, cmd); 2322 if (unlikely(rc)) { 2323 rc = -ENOBUFS; 2324 goto out; 2325 } 2326 2327 rc = wait_resp(afu, cmd); 2328 switch (rc) { 2329 case -ETIMEDOUT: 2330 rc = afu->context_reset(hwq); 2331 if (rc) { 2332 /* Delete the command from pending_cmds list */ 2333 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 2334 list_del(&cmd->list); 2335 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 2336 2337 cxlflash_schedule_async_reset(cfg); 2338 break; 2339 } 2340 fallthrough; /* to retry */ 2341 case -EAGAIN: 2342 if (++nretry < 2) 2343 goto retry; 2344 fallthrough; /* to exit */ 2345 default: 2346 break; 2347 } 2348 2349 if (rcb->ioasa) 2350 *rcb->ioasa = cmd->sa; 2351 out: 2352 atomic_dec(&afu->cmds_active); 2353 mutex_unlock(&afu->sync_active); 2354 kfree(buf); 2355 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2356 return rc; 2357 } 2358 2359 /** 2360 * cxlflash_afu_sync() - builds and sends an AFU sync command 2361 * @afu: AFU associated with the host. 2362 * @ctx: Identifies context requesting sync. 2363 * @res: Identifies resource requesting sync. 2364 * @mode: Type of sync to issue (lightweight, heavyweight, global). 2365 * 2366 * AFU sync operations are only necessary and allowed when the device is 2367 * operating normally. When not operating normally, sync requests can occur as 2368 * part of cleaning up resources associated with an adapter prior to removal. 2369 * In this scenario, these requests are simply ignored (safe due to the AFU 2370 * going away). 2371 * 2372 * Return: 2373 * 0 on success, -errno on failure 2374 */ 2375 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode) 2376 { 2377 struct cxlflash_cfg *cfg = afu->parent; 2378 struct device *dev = &cfg->dev->dev; 2379 struct sisl_ioarcb rcb = { 0 }; 2380 2381 dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n", 2382 __func__, afu, ctx, res, mode); 2383 2384 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 2385 rcb.msi = SISL_MSI_RRQ_UPDATED; 2386 rcb.timeout = MC_AFU_SYNC_TIMEOUT; 2387 2388 rcb.cdb[0] = SISL_AFU_CMD_SYNC; 2389 rcb.cdb[1] = mode; 2390 put_unaligned_be16(ctx, &rcb.cdb[2]); 2391 put_unaligned_be32(res, &rcb.cdb[4]); 2392 2393 return send_afu_cmd(afu, &rcb); 2394 } 2395 2396 /** 2397 * cxlflash_eh_abort_handler() - abort a SCSI command 2398 * @scp: SCSI command to abort. 2399 * 2400 * CXL Flash devices do not support a single command abort. Reset the context 2401 * as per SISLite specification. Flush any pending commands in the hardware 2402 * queue before the reset. 2403 * 2404 * Return: SUCCESS/FAILED as defined in scsi/scsi.h 2405 */ 2406 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp) 2407 { 2408 int rc = FAILED; 2409 struct Scsi_Host *host = scp->device->host; 2410 struct cxlflash_cfg *cfg = shost_priv(host); 2411 struct afu_cmd *cmd = sc_to_afuc(scp); 2412 struct device *dev = &cfg->dev->dev; 2413 struct afu *afu = cfg->afu; 2414 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 2415 2416 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu " 2417 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no, 2418 scp->device->channel, scp->device->id, scp->device->lun, 2419 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 2420 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 2421 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 2422 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 2423 2424 /* When the state is not normal, another reset/reload is in progress. 2425 * Return failed and the mid-layer will invoke host reset handler. 2426 */ 2427 if (cfg->state != STATE_NORMAL) { 2428 dev_dbg(dev, "%s: Invalid state for abort, state=%d\n", 2429 __func__, cfg->state); 2430 goto out; 2431 } 2432 2433 rc = afu->context_reset(hwq); 2434 if (unlikely(rc)) 2435 goto out; 2436 2437 rc = SUCCESS; 2438 2439 out: 2440 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2441 return rc; 2442 } 2443 2444 /** 2445 * cxlflash_eh_device_reset_handler() - reset a single LUN 2446 * @scp: SCSI command to send. 2447 * 2448 * Return: 2449 * SUCCESS as defined in scsi/scsi.h 2450 * FAILED as defined in scsi/scsi.h 2451 */ 2452 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp) 2453 { 2454 int rc = SUCCESS; 2455 struct scsi_device *sdev = scp->device; 2456 struct Scsi_Host *host = sdev->host; 2457 struct cxlflash_cfg *cfg = shost_priv(host); 2458 struct device *dev = &cfg->dev->dev; 2459 int rcr = 0; 2460 2461 dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__, 2462 host->host_no, sdev->channel, sdev->id, sdev->lun); 2463 retry: 2464 switch (cfg->state) { 2465 case STATE_NORMAL: 2466 rcr = send_tmf(cfg, sdev, TMF_LUN_RESET); 2467 if (unlikely(rcr)) 2468 rc = FAILED; 2469 break; 2470 case STATE_RESET: 2471 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2472 goto retry; 2473 default: 2474 rc = FAILED; 2475 break; 2476 } 2477 2478 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2479 return rc; 2480 } 2481 2482 /** 2483 * cxlflash_eh_host_reset_handler() - reset the host adapter 2484 * @scp: SCSI command from stack identifying host. 2485 * 2486 * Following a reset, the state is evaluated again in case an EEH occurred 2487 * during the reset. In such a scenario, the host reset will either yield 2488 * until the EEH recovery is complete or return success or failure based 2489 * upon the current device state. 2490 * 2491 * Return: 2492 * SUCCESS as defined in scsi/scsi.h 2493 * FAILED as defined in scsi/scsi.h 2494 */ 2495 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp) 2496 { 2497 int rc = SUCCESS; 2498 int rcr = 0; 2499 struct Scsi_Host *host = scp->device->host; 2500 struct cxlflash_cfg *cfg = shost_priv(host); 2501 struct device *dev = &cfg->dev->dev; 2502 2503 dev_dbg(dev, "%s: %d\n", __func__, host->host_no); 2504 2505 switch (cfg->state) { 2506 case STATE_NORMAL: 2507 cfg->state = STATE_RESET; 2508 drain_ioctls(cfg); 2509 cxlflash_mark_contexts_error(cfg); 2510 rcr = afu_reset(cfg); 2511 if (rcr) { 2512 rc = FAILED; 2513 cfg->state = STATE_FAILTERM; 2514 } else 2515 cfg->state = STATE_NORMAL; 2516 wake_up_all(&cfg->reset_waitq); 2517 ssleep(1); 2518 fallthrough; 2519 case STATE_RESET: 2520 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2521 if (cfg->state == STATE_NORMAL) 2522 break; 2523 fallthrough; 2524 default: 2525 rc = FAILED; 2526 break; 2527 } 2528 2529 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2530 return rc; 2531 } 2532 2533 /** 2534 * cxlflash_change_queue_depth() - change the queue depth for the device 2535 * @sdev: SCSI device destined for queue depth change. 2536 * @qdepth: Requested queue depth value to set. 2537 * 2538 * The requested queue depth is capped to the maximum supported value. 2539 * 2540 * Return: The actual queue depth set. 2541 */ 2542 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth) 2543 { 2544 2545 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN) 2546 qdepth = CXLFLASH_MAX_CMDS_PER_LUN; 2547 2548 scsi_change_queue_depth(sdev, qdepth); 2549 return sdev->queue_depth; 2550 } 2551 2552 /** 2553 * cxlflash_show_port_status() - queries and presents the current port status 2554 * @port: Desired port for status reporting. 2555 * @cfg: Internal structure associated with the host. 2556 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2557 * 2558 * Return: The size of the ASCII string returned in @buf or -EINVAL. 2559 */ 2560 static ssize_t cxlflash_show_port_status(u32 port, 2561 struct cxlflash_cfg *cfg, 2562 char *buf) 2563 { 2564 struct device *dev = &cfg->dev->dev; 2565 char *disp_status; 2566 u64 status; 2567 __be64 __iomem *fc_port_regs; 2568 2569 WARN_ON(port >= MAX_FC_PORTS); 2570 2571 if (port >= cfg->num_fc_ports) { 2572 dev_info(dev, "%s: Port %d not supported on this card.\n", 2573 __func__, port); 2574 return -EINVAL; 2575 } 2576 2577 fc_port_regs = get_fc_port_regs(cfg, port); 2578 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]); 2579 status &= FC_MTIP_STATUS_MASK; 2580 2581 if (status == FC_MTIP_STATUS_ONLINE) 2582 disp_status = "online"; 2583 else if (status == FC_MTIP_STATUS_OFFLINE) 2584 disp_status = "offline"; 2585 else 2586 disp_status = "unknown"; 2587 2588 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status); 2589 } 2590 2591 /** 2592 * port0_show() - queries and presents the current status of port 0 2593 * @dev: Generic device associated with the host owning the port. 2594 * @attr: Device attribute representing the port. 2595 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2596 * 2597 * Return: The size of the ASCII string returned in @buf. 2598 */ 2599 static ssize_t port0_show(struct device *dev, 2600 struct device_attribute *attr, 2601 char *buf) 2602 { 2603 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2604 2605 return cxlflash_show_port_status(0, cfg, buf); 2606 } 2607 2608 /** 2609 * port1_show() - queries and presents the current status of port 1 2610 * @dev: Generic device associated with the host owning the port. 2611 * @attr: Device attribute representing the port. 2612 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2613 * 2614 * Return: The size of the ASCII string returned in @buf. 2615 */ 2616 static ssize_t port1_show(struct device *dev, 2617 struct device_attribute *attr, 2618 char *buf) 2619 { 2620 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2621 2622 return cxlflash_show_port_status(1, cfg, buf); 2623 } 2624 2625 /** 2626 * port2_show() - queries and presents the current status of port 2 2627 * @dev: Generic device associated with the host owning the port. 2628 * @attr: Device attribute representing the port. 2629 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2630 * 2631 * Return: The size of the ASCII string returned in @buf. 2632 */ 2633 static ssize_t port2_show(struct device *dev, 2634 struct device_attribute *attr, 2635 char *buf) 2636 { 2637 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2638 2639 return cxlflash_show_port_status(2, cfg, buf); 2640 } 2641 2642 /** 2643 * port3_show() - queries and presents the current status of port 3 2644 * @dev: Generic device associated with the host owning the port. 2645 * @attr: Device attribute representing the port. 2646 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2647 * 2648 * Return: The size of the ASCII string returned in @buf. 2649 */ 2650 static ssize_t port3_show(struct device *dev, 2651 struct device_attribute *attr, 2652 char *buf) 2653 { 2654 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2655 2656 return cxlflash_show_port_status(3, cfg, buf); 2657 } 2658 2659 /** 2660 * lun_mode_show() - presents the current LUN mode of the host 2661 * @dev: Generic device associated with the host. 2662 * @attr: Device attribute representing the LUN mode. 2663 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII. 2664 * 2665 * Return: The size of the ASCII string returned in @buf. 2666 */ 2667 static ssize_t lun_mode_show(struct device *dev, 2668 struct device_attribute *attr, char *buf) 2669 { 2670 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2671 struct afu *afu = cfg->afu; 2672 2673 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun); 2674 } 2675 2676 /** 2677 * lun_mode_store() - sets the LUN mode of the host 2678 * @dev: Generic device associated with the host. 2679 * @attr: Device attribute representing the LUN mode. 2680 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII. 2681 * @count: Length of data resizing in @buf. 2682 * 2683 * The CXL Flash AFU supports a dummy LUN mode where the external 2684 * links and storage are not required. Space on the FPGA is used 2685 * to create 1 or 2 small LUNs which are presented to the system 2686 * as if they were a normal storage device. This feature is useful 2687 * during development and also provides manufacturing with a way 2688 * to test the AFU without an actual device. 2689 * 2690 * 0 = external LUN[s] (default) 2691 * 1 = internal LUN (1 x 64K, 512B blocks, id 0) 2692 * 2 = internal LUN (1 x 64K, 4K blocks, id 0) 2693 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1) 2694 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1) 2695 * 2696 * Return: The size of the ASCII string returned in @buf. 2697 */ 2698 static ssize_t lun_mode_store(struct device *dev, 2699 struct device_attribute *attr, 2700 const char *buf, size_t count) 2701 { 2702 struct Scsi_Host *shost = class_to_shost(dev); 2703 struct cxlflash_cfg *cfg = shost_priv(shost); 2704 struct afu *afu = cfg->afu; 2705 int rc; 2706 u32 lun_mode; 2707 2708 rc = kstrtouint(buf, 10, &lun_mode); 2709 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) { 2710 afu->internal_lun = lun_mode; 2711 2712 /* 2713 * When configured for internal LUN, there is only one channel, 2714 * channel number 0, else there will be one less than the number 2715 * of fc ports for this card. 2716 */ 2717 if (afu->internal_lun) 2718 shost->max_channel = 0; 2719 else 2720 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports); 2721 2722 afu_reset(cfg); 2723 scsi_scan_host(cfg->host); 2724 } 2725 2726 return count; 2727 } 2728 2729 /** 2730 * ioctl_version_show() - presents the current ioctl version of the host 2731 * @dev: Generic device associated with the host. 2732 * @attr: Device attribute representing the ioctl version. 2733 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version. 2734 * 2735 * Return: The size of the ASCII string returned in @buf. 2736 */ 2737 static ssize_t ioctl_version_show(struct device *dev, 2738 struct device_attribute *attr, char *buf) 2739 { 2740 ssize_t bytes = 0; 2741 2742 bytes = scnprintf(buf, PAGE_SIZE, 2743 "disk: %u\n", DK_CXLFLASH_VERSION_0); 2744 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2745 "host: %u\n", HT_CXLFLASH_VERSION_0); 2746 2747 return bytes; 2748 } 2749 2750 /** 2751 * cxlflash_show_port_lun_table() - queries and presents the port LUN table 2752 * @port: Desired port for status reporting. 2753 * @cfg: Internal structure associated with the host. 2754 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2755 * 2756 * Return: The size of the ASCII string returned in @buf or -EINVAL. 2757 */ 2758 static ssize_t cxlflash_show_port_lun_table(u32 port, 2759 struct cxlflash_cfg *cfg, 2760 char *buf) 2761 { 2762 struct device *dev = &cfg->dev->dev; 2763 __be64 __iomem *fc_port_luns; 2764 int i; 2765 ssize_t bytes = 0; 2766 2767 WARN_ON(port >= MAX_FC_PORTS); 2768 2769 if (port >= cfg->num_fc_ports) { 2770 dev_info(dev, "%s: Port %d not supported on this card.\n", 2771 __func__, port); 2772 return -EINVAL; 2773 } 2774 2775 fc_port_luns = get_fc_port_luns(cfg, port); 2776 2777 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++) 2778 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2779 "%03d: %016llx\n", 2780 i, readq_be(&fc_port_luns[i])); 2781 return bytes; 2782 } 2783 2784 /** 2785 * port0_lun_table_show() - presents the current LUN table of port 0 2786 * @dev: Generic device associated with the host owning the port. 2787 * @attr: Device attribute representing the port. 2788 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2789 * 2790 * Return: The size of the ASCII string returned in @buf. 2791 */ 2792 static ssize_t port0_lun_table_show(struct device *dev, 2793 struct device_attribute *attr, 2794 char *buf) 2795 { 2796 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2797 2798 return cxlflash_show_port_lun_table(0, cfg, buf); 2799 } 2800 2801 /** 2802 * port1_lun_table_show() - presents the current LUN table of port 1 2803 * @dev: Generic device associated with the host owning the port. 2804 * @attr: Device attribute representing the port. 2805 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2806 * 2807 * Return: The size of the ASCII string returned in @buf. 2808 */ 2809 static ssize_t port1_lun_table_show(struct device *dev, 2810 struct device_attribute *attr, 2811 char *buf) 2812 { 2813 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2814 2815 return cxlflash_show_port_lun_table(1, cfg, buf); 2816 } 2817 2818 /** 2819 * port2_lun_table_show() - presents the current LUN table of port 2 2820 * @dev: Generic device associated with the host owning the port. 2821 * @attr: Device attribute representing the port. 2822 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2823 * 2824 * Return: The size of the ASCII string returned in @buf. 2825 */ 2826 static ssize_t port2_lun_table_show(struct device *dev, 2827 struct device_attribute *attr, 2828 char *buf) 2829 { 2830 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2831 2832 return cxlflash_show_port_lun_table(2, cfg, buf); 2833 } 2834 2835 /** 2836 * port3_lun_table_show() - presents the current LUN table of port 3 2837 * @dev: Generic device associated with the host owning the port. 2838 * @attr: Device attribute representing the port. 2839 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2840 * 2841 * Return: The size of the ASCII string returned in @buf. 2842 */ 2843 static ssize_t port3_lun_table_show(struct device *dev, 2844 struct device_attribute *attr, 2845 char *buf) 2846 { 2847 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2848 2849 return cxlflash_show_port_lun_table(3, cfg, buf); 2850 } 2851 2852 /** 2853 * irqpoll_weight_show() - presents the current IRQ poll weight for the host 2854 * @dev: Generic device associated with the host. 2855 * @attr: Device attribute representing the IRQ poll weight. 2856 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll 2857 * weight in ASCII. 2858 * 2859 * An IRQ poll weight of 0 indicates polling is disabled. 2860 * 2861 * Return: The size of the ASCII string returned in @buf. 2862 */ 2863 static ssize_t irqpoll_weight_show(struct device *dev, 2864 struct device_attribute *attr, char *buf) 2865 { 2866 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2867 struct afu *afu = cfg->afu; 2868 2869 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight); 2870 } 2871 2872 /** 2873 * irqpoll_weight_store() - sets the current IRQ poll weight for the host 2874 * @dev: Generic device associated with the host. 2875 * @attr: Device attribute representing the IRQ poll weight. 2876 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll 2877 * weight in ASCII. 2878 * @count: Length of data resizing in @buf. 2879 * 2880 * An IRQ poll weight of 0 indicates polling is disabled. 2881 * 2882 * Return: The size of the ASCII string returned in @buf. 2883 */ 2884 static ssize_t irqpoll_weight_store(struct device *dev, 2885 struct device_attribute *attr, 2886 const char *buf, size_t count) 2887 { 2888 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2889 struct device *cfgdev = &cfg->dev->dev; 2890 struct afu *afu = cfg->afu; 2891 struct hwq *hwq; 2892 u32 weight; 2893 int rc, i; 2894 2895 rc = kstrtouint(buf, 10, &weight); 2896 if (rc) 2897 return -EINVAL; 2898 2899 if (weight > 256) { 2900 dev_info(cfgdev, 2901 "Invalid IRQ poll weight. It must be 256 or less.\n"); 2902 return -EINVAL; 2903 } 2904 2905 if (weight == afu->irqpoll_weight) { 2906 dev_info(cfgdev, 2907 "Current IRQ poll weight has the same weight.\n"); 2908 return -EINVAL; 2909 } 2910 2911 if (afu_is_irqpoll_enabled(afu)) { 2912 for (i = 0; i < afu->num_hwqs; i++) { 2913 hwq = get_hwq(afu, i); 2914 2915 irq_poll_disable(&hwq->irqpoll); 2916 } 2917 } 2918 2919 afu->irqpoll_weight = weight; 2920 2921 if (weight > 0) { 2922 for (i = 0; i < afu->num_hwqs; i++) { 2923 hwq = get_hwq(afu, i); 2924 2925 irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll); 2926 } 2927 } 2928 2929 return count; 2930 } 2931 2932 /** 2933 * num_hwqs_show() - presents the number of hardware queues for the host 2934 * @dev: Generic device associated with the host. 2935 * @attr: Device attribute representing the number of hardware queues. 2936 * @buf: Buffer of length PAGE_SIZE to report back the number of hardware 2937 * queues in ASCII. 2938 * 2939 * Return: The size of the ASCII string returned in @buf. 2940 */ 2941 static ssize_t num_hwqs_show(struct device *dev, 2942 struct device_attribute *attr, char *buf) 2943 { 2944 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2945 struct afu *afu = cfg->afu; 2946 2947 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs); 2948 } 2949 2950 /** 2951 * num_hwqs_store() - sets the number of hardware queues for the host 2952 * @dev: Generic device associated with the host. 2953 * @attr: Device attribute representing the number of hardware queues. 2954 * @buf: Buffer of length PAGE_SIZE containing the number of hardware 2955 * queues in ASCII. 2956 * @count: Length of data resizing in @buf. 2957 * 2958 * n > 0: num_hwqs = n 2959 * n = 0: num_hwqs = num_online_cpus() 2960 * n < 0: num_online_cpus() / abs(n) 2961 * 2962 * Return: The size of the ASCII string returned in @buf. 2963 */ 2964 static ssize_t num_hwqs_store(struct device *dev, 2965 struct device_attribute *attr, 2966 const char *buf, size_t count) 2967 { 2968 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2969 struct afu *afu = cfg->afu; 2970 int rc; 2971 int nhwqs, num_hwqs; 2972 2973 rc = kstrtoint(buf, 10, &nhwqs); 2974 if (rc) 2975 return -EINVAL; 2976 2977 if (nhwqs >= 1) 2978 num_hwqs = nhwqs; 2979 else if (nhwqs == 0) 2980 num_hwqs = num_online_cpus(); 2981 else 2982 num_hwqs = num_online_cpus() / abs(nhwqs); 2983 2984 afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS); 2985 WARN_ON_ONCE(afu->desired_hwqs == 0); 2986 2987 retry: 2988 switch (cfg->state) { 2989 case STATE_NORMAL: 2990 cfg->state = STATE_RESET; 2991 drain_ioctls(cfg); 2992 cxlflash_mark_contexts_error(cfg); 2993 rc = afu_reset(cfg); 2994 if (rc) 2995 cfg->state = STATE_FAILTERM; 2996 else 2997 cfg->state = STATE_NORMAL; 2998 wake_up_all(&cfg->reset_waitq); 2999 break; 3000 case STATE_RESET: 3001 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 3002 if (cfg->state == STATE_NORMAL) 3003 goto retry; 3004 fallthrough; 3005 default: 3006 /* Ideally should not happen */ 3007 dev_err(dev, "%s: Device is not ready, state=%d\n", 3008 __func__, cfg->state); 3009 break; 3010 } 3011 3012 return count; 3013 } 3014 3015 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" }; 3016 3017 /** 3018 * hwq_mode_show() - presents the HWQ steering mode for the host 3019 * @dev: Generic device associated with the host. 3020 * @attr: Device attribute representing the HWQ steering mode. 3021 * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode 3022 * as a character string. 3023 * 3024 * Return: The size of the ASCII string returned in @buf. 3025 */ 3026 static ssize_t hwq_mode_show(struct device *dev, 3027 struct device_attribute *attr, char *buf) 3028 { 3029 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 3030 struct afu *afu = cfg->afu; 3031 3032 return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]); 3033 } 3034 3035 /** 3036 * hwq_mode_store() - sets the HWQ steering mode for the host 3037 * @dev: Generic device associated with the host. 3038 * @attr: Device attribute representing the HWQ steering mode. 3039 * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode 3040 * as a character string. 3041 * @count: Length of data resizing in @buf. 3042 * 3043 * rr = Round-Robin 3044 * tag = Block MQ Tagging 3045 * cpu = CPU Affinity 3046 * 3047 * Return: The size of the ASCII string returned in @buf. 3048 */ 3049 static ssize_t hwq_mode_store(struct device *dev, 3050 struct device_attribute *attr, 3051 const char *buf, size_t count) 3052 { 3053 struct Scsi_Host *shost = class_to_shost(dev); 3054 struct cxlflash_cfg *cfg = shost_priv(shost); 3055 struct device *cfgdev = &cfg->dev->dev; 3056 struct afu *afu = cfg->afu; 3057 int i; 3058 u32 mode = MAX_HWQ_MODE; 3059 3060 for (i = 0; i < MAX_HWQ_MODE; i++) { 3061 if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) { 3062 mode = i; 3063 break; 3064 } 3065 } 3066 3067 if (mode >= MAX_HWQ_MODE) { 3068 dev_info(cfgdev, "Invalid HWQ steering mode.\n"); 3069 return -EINVAL; 3070 } 3071 3072 afu->hwq_mode = mode; 3073 3074 return count; 3075 } 3076 3077 /** 3078 * mode_show() - presents the current mode of the device 3079 * @dev: Generic device associated with the device. 3080 * @attr: Device attribute representing the device mode. 3081 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII. 3082 * 3083 * Return: The size of the ASCII string returned in @buf. 3084 */ 3085 static ssize_t mode_show(struct device *dev, 3086 struct device_attribute *attr, char *buf) 3087 { 3088 struct scsi_device *sdev = to_scsi_device(dev); 3089 3090 return scnprintf(buf, PAGE_SIZE, "%s\n", 3091 sdev->hostdata ? "superpipe" : "legacy"); 3092 } 3093 3094 /* 3095 * Host attributes 3096 */ 3097 static DEVICE_ATTR_RO(port0); 3098 static DEVICE_ATTR_RO(port1); 3099 static DEVICE_ATTR_RO(port2); 3100 static DEVICE_ATTR_RO(port3); 3101 static DEVICE_ATTR_RW(lun_mode); 3102 static DEVICE_ATTR_RO(ioctl_version); 3103 static DEVICE_ATTR_RO(port0_lun_table); 3104 static DEVICE_ATTR_RO(port1_lun_table); 3105 static DEVICE_ATTR_RO(port2_lun_table); 3106 static DEVICE_ATTR_RO(port3_lun_table); 3107 static DEVICE_ATTR_RW(irqpoll_weight); 3108 static DEVICE_ATTR_RW(num_hwqs); 3109 static DEVICE_ATTR_RW(hwq_mode); 3110 3111 static struct attribute *cxlflash_host_attrs[] = { 3112 &dev_attr_port0.attr, 3113 &dev_attr_port1.attr, 3114 &dev_attr_port2.attr, 3115 &dev_attr_port3.attr, 3116 &dev_attr_lun_mode.attr, 3117 &dev_attr_ioctl_version.attr, 3118 &dev_attr_port0_lun_table.attr, 3119 &dev_attr_port1_lun_table.attr, 3120 &dev_attr_port2_lun_table.attr, 3121 &dev_attr_port3_lun_table.attr, 3122 &dev_attr_irqpoll_weight.attr, 3123 &dev_attr_num_hwqs.attr, 3124 &dev_attr_hwq_mode.attr, 3125 NULL 3126 }; 3127 3128 ATTRIBUTE_GROUPS(cxlflash_host); 3129 3130 /* 3131 * Device attributes 3132 */ 3133 static DEVICE_ATTR_RO(mode); 3134 3135 static struct attribute *cxlflash_dev_attrs[] = { 3136 &dev_attr_mode.attr, 3137 NULL 3138 }; 3139 3140 ATTRIBUTE_GROUPS(cxlflash_dev); 3141 3142 /* 3143 * Host template 3144 */ 3145 static struct scsi_host_template driver_template = { 3146 .module = THIS_MODULE, 3147 .name = CXLFLASH_ADAPTER_NAME, 3148 .info = cxlflash_driver_info, 3149 .ioctl = cxlflash_ioctl, 3150 .proc_name = CXLFLASH_NAME, 3151 .queuecommand = cxlflash_queuecommand, 3152 .eh_abort_handler = cxlflash_eh_abort_handler, 3153 .eh_device_reset_handler = cxlflash_eh_device_reset_handler, 3154 .eh_host_reset_handler = cxlflash_eh_host_reset_handler, 3155 .change_queue_depth = cxlflash_change_queue_depth, 3156 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN, 3157 .can_queue = CXLFLASH_MAX_CMDS, 3158 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1, 3159 .this_id = -1, 3160 .sg_tablesize = 1, /* No scatter gather support */ 3161 .max_sectors = CXLFLASH_MAX_SECTORS, 3162 .shost_groups = cxlflash_host_groups, 3163 .sdev_groups = cxlflash_dev_groups, 3164 }; 3165 3166 /* 3167 * Device dependent values 3168 */ 3169 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS, 3170 CXLFLASH_WWPN_VPD_REQUIRED }; 3171 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS, 3172 CXLFLASH_NOTIFY_SHUTDOWN }; 3173 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS, 3174 (CXLFLASH_NOTIFY_SHUTDOWN | 3175 CXLFLASH_OCXL_DEV) }; 3176 3177 /* 3178 * PCI device binding table 3179 */ 3180 static struct pci_device_id cxlflash_pci_table[] = { 3181 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA, 3182 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals}, 3183 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT, 3184 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals}, 3185 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD, 3186 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals}, 3187 {} 3188 }; 3189 3190 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table); 3191 3192 /** 3193 * cxlflash_worker_thread() - work thread handler for the AFU 3194 * @work: Work structure contained within cxlflash associated with host. 3195 * 3196 * Handles the following events: 3197 * - Link reset which cannot be performed on interrupt context due to 3198 * blocking up to a few seconds 3199 * - Rescan the host 3200 */ 3201 static void cxlflash_worker_thread(struct work_struct *work) 3202 { 3203 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg, 3204 work_q); 3205 struct afu *afu = cfg->afu; 3206 struct device *dev = &cfg->dev->dev; 3207 __be64 __iomem *fc_port_regs; 3208 int port; 3209 ulong lock_flags; 3210 3211 /* Avoid MMIO if the device has failed */ 3212 3213 if (cfg->state != STATE_NORMAL) 3214 return; 3215 3216 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 3217 3218 if (cfg->lr_state == LINK_RESET_REQUIRED) { 3219 port = cfg->lr_port; 3220 if (port < 0) 3221 dev_err(dev, "%s: invalid port index %d\n", 3222 __func__, port); 3223 else { 3224 spin_unlock_irqrestore(cfg->host->host_lock, 3225 lock_flags); 3226 3227 /* The reset can block... */ 3228 fc_port_regs = get_fc_port_regs(cfg, port); 3229 afu_link_reset(afu, port, fc_port_regs); 3230 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 3231 } 3232 3233 cfg->lr_state = LINK_RESET_COMPLETE; 3234 } 3235 3236 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); 3237 3238 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0) 3239 scsi_scan_host(cfg->host); 3240 } 3241 3242 /** 3243 * cxlflash_chr_open() - character device open handler 3244 * @inode: Device inode associated with this character device. 3245 * @file: File pointer for this device. 3246 * 3247 * Only users with admin privileges are allowed to open the character device. 3248 * 3249 * Return: 0 on success, -errno on failure 3250 */ 3251 static int cxlflash_chr_open(struct inode *inode, struct file *file) 3252 { 3253 struct cxlflash_cfg *cfg; 3254 3255 if (!capable(CAP_SYS_ADMIN)) 3256 return -EACCES; 3257 3258 cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev); 3259 file->private_data = cfg; 3260 3261 return 0; 3262 } 3263 3264 /** 3265 * decode_hioctl() - translates encoded host ioctl to easily identifiable string 3266 * @cmd: The host ioctl command to decode. 3267 * 3268 * Return: A string identifying the decoded host ioctl. 3269 */ 3270 static char *decode_hioctl(unsigned int cmd) 3271 { 3272 switch (cmd) { 3273 case HT_CXLFLASH_LUN_PROVISION: 3274 return __stringify_1(HT_CXLFLASH_LUN_PROVISION); 3275 } 3276 3277 return "UNKNOWN"; 3278 } 3279 3280 /** 3281 * cxlflash_lun_provision() - host LUN provisioning handler 3282 * @cfg: Internal structure associated with the host. 3283 * @arg: Kernel copy of userspace ioctl data structure. 3284 * 3285 * Return: 0 on success, -errno on failure 3286 */ 3287 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg, void *arg) 3288 { 3289 struct ht_cxlflash_lun_provision *lunprov = arg; 3290 struct afu *afu = cfg->afu; 3291 struct device *dev = &cfg->dev->dev; 3292 struct sisl_ioarcb rcb; 3293 struct sisl_ioasa asa; 3294 __be64 __iomem *fc_port_regs; 3295 u16 port = lunprov->port; 3296 u16 scmd = lunprov->hdr.subcmd; 3297 u16 type; 3298 u64 reg; 3299 u64 size; 3300 u64 lun_id; 3301 int rc = 0; 3302 3303 if (!afu_is_lun_provision(afu)) { 3304 rc = -ENOTSUPP; 3305 goto out; 3306 } 3307 3308 if (port >= cfg->num_fc_ports) { 3309 rc = -EINVAL; 3310 goto out; 3311 } 3312 3313 switch (scmd) { 3314 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN: 3315 type = SISL_AFU_LUN_PROVISION_CREATE; 3316 size = lunprov->size; 3317 lun_id = 0; 3318 break; 3319 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN: 3320 type = SISL_AFU_LUN_PROVISION_DELETE; 3321 size = 0; 3322 lun_id = lunprov->lun_id; 3323 break; 3324 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT: 3325 fc_port_regs = get_fc_port_regs(cfg, port); 3326 3327 reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]); 3328 lunprov->max_num_luns = reg; 3329 reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]); 3330 lunprov->cur_num_luns = reg; 3331 reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]); 3332 lunprov->max_cap_port = reg; 3333 reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]); 3334 lunprov->cur_cap_port = reg; 3335 3336 goto out; 3337 default: 3338 rc = -EINVAL; 3339 goto out; 3340 } 3341 3342 memset(&rcb, 0, sizeof(rcb)); 3343 memset(&asa, 0, sizeof(asa)); 3344 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 3345 rcb.lun_id = lun_id; 3346 rcb.msi = SISL_MSI_RRQ_UPDATED; 3347 rcb.timeout = MC_LUN_PROV_TIMEOUT; 3348 rcb.ioasa = &asa; 3349 3350 rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION; 3351 rcb.cdb[1] = type; 3352 rcb.cdb[2] = port; 3353 put_unaligned_be64(size, &rcb.cdb[8]); 3354 3355 rc = send_afu_cmd(afu, &rcb); 3356 if (rc) { 3357 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", 3358 __func__, rc, asa.ioasc, asa.afu_extra); 3359 goto out; 3360 } 3361 3362 if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) { 3363 lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo; 3364 memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid)); 3365 } 3366 out: 3367 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3368 return rc; 3369 } 3370 3371 /** 3372 * cxlflash_afu_debug() - host AFU debug handler 3373 * @cfg: Internal structure associated with the host. 3374 * @arg: Kernel copy of userspace ioctl data structure. 3375 * 3376 * For debug requests requiring a data buffer, always provide an aligned 3377 * (cache line) buffer to the AFU to appease any alignment requirements. 3378 * 3379 * Return: 0 on success, -errno on failure 3380 */ 3381 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg, void *arg) 3382 { 3383 struct ht_cxlflash_afu_debug *afu_dbg = arg; 3384 struct afu *afu = cfg->afu; 3385 struct device *dev = &cfg->dev->dev; 3386 struct sisl_ioarcb rcb; 3387 struct sisl_ioasa asa; 3388 char *buf = NULL; 3389 char *kbuf = NULL; 3390 void __user *ubuf = (__force void __user *)afu_dbg->data_ea; 3391 u16 req_flags = SISL_REQ_FLAGS_AFU_CMD; 3392 u32 ulen = afu_dbg->data_len; 3393 bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE; 3394 int rc = 0; 3395 3396 if (!afu_is_afu_debug(afu)) { 3397 rc = -ENOTSUPP; 3398 goto out; 3399 } 3400 3401 if (ulen) { 3402 req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN; 3403 3404 if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) { 3405 rc = -EINVAL; 3406 goto out; 3407 } 3408 3409 buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL); 3410 if (unlikely(!buf)) { 3411 rc = -ENOMEM; 3412 goto out; 3413 } 3414 3415 kbuf = PTR_ALIGN(buf, cache_line_size()); 3416 3417 if (is_write) { 3418 req_flags |= SISL_REQ_FLAGS_HOST_WRITE; 3419 3420 if (copy_from_user(kbuf, ubuf, ulen)) { 3421 rc = -EFAULT; 3422 goto out; 3423 } 3424 } 3425 } 3426 3427 memset(&rcb, 0, sizeof(rcb)); 3428 memset(&asa, 0, sizeof(asa)); 3429 3430 rcb.req_flags = req_flags; 3431 rcb.msi = SISL_MSI_RRQ_UPDATED; 3432 rcb.timeout = MC_AFU_DEBUG_TIMEOUT; 3433 rcb.ioasa = &asa; 3434 3435 if (ulen) { 3436 rcb.data_len = ulen; 3437 rcb.data_ea = (uintptr_t)kbuf; 3438 } 3439 3440 rcb.cdb[0] = SISL_AFU_CMD_DEBUG; 3441 memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd, 3442 HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN); 3443 3444 rc = send_afu_cmd(afu, &rcb); 3445 if (rc) { 3446 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", 3447 __func__, rc, asa.ioasc, asa.afu_extra); 3448 goto out; 3449 } 3450 3451 if (ulen && !is_write) { 3452 if (copy_to_user(ubuf, kbuf, ulen)) 3453 rc = -EFAULT; 3454 } 3455 out: 3456 kfree(buf); 3457 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3458 return rc; 3459 } 3460 3461 /** 3462 * cxlflash_chr_ioctl() - character device IOCTL handler 3463 * @file: File pointer for this device. 3464 * @cmd: IOCTL command. 3465 * @arg: Userspace ioctl data structure. 3466 * 3467 * A read/write semaphore is used to implement a 'drain' of currently 3468 * running ioctls. The read semaphore is taken at the beginning of each 3469 * ioctl thread and released upon concluding execution. Additionally the 3470 * semaphore should be released and then reacquired in any ioctl execution 3471 * path which will wait for an event to occur that is outside the scope of 3472 * the ioctl (i.e. an adapter reset). To drain the ioctls currently running, 3473 * a thread simply needs to acquire the write semaphore. 3474 * 3475 * Return: 0 on success, -errno on failure 3476 */ 3477 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd, 3478 unsigned long arg) 3479 { 3480 typedef int (*hioctl) (struct cxlflash_cfg *, void *); 3481 3482 struct cxlflash_cfg *cfg = file->private_data; 3483 struct device *dev = &cfg->dev->dev; 3484 char buf[sizeof(union cxlflash_ht_ioctls)]; 3485 void __user *uarg = (void __user *)arg; 3486 struct ht_cxlflash_hdr *hdr; 3487 size_t size = 0; 3488 bool known_ioctl = false; 3489 int idx = 0; 3490 int rc = 0; 3491 hioctl do_ioctl = NULL; 3492 3493 static const struct { 3494 size_t size; 3495 hioctl ioctl; 3496 } ioctl_tbl[] = { /* NOTE: order matters here */ 3497 { sizeof(struct ht_cxlflash_lun_provision), cxlflash_lun_provision }, 3498 { sizeof(struct ht_cxlflash_afu_debug), cxlflash_afu_debug }, 3499 }; 3500 3501 /* Hold read semaphore so we can drain if needed */ 3502 down_read(&cfg->ioctl_rwsem); 3503 3504 dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n", 3505 __func__, cmd, idx, sizeof(ioctl_tbl)); 3506 3507 switch (cmd) { 3508 case HT_CXLFLASH_LUN_PROVISION: 3509 case HT_CXLFLASH_AFU_DEBUG: 3510 known_ioctl = true; 3511 idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd); 3512 size = ioctl_tbl[idx].size; 3513 do_ioctl = ioctl_tbl[idx].ioctl; 3514 3515 if (likely(do_ioctl)) 3516 break; 3517 3518 fallthrough; 3519 default: 3520 rc = -EINVAL; 3521 goto out; 3522 } 3523 3524 if (unlikely(copy_from_user(&buf, uarg, size))) { 3525 dev_err(dev, "%s: copy_from_user() fail " 3526 "size=%lu cmd=%d (%s) uarg=%p\n", 3527 __func__, size, cmd, decode_hioctl(cmd), uarg); 3528 rc = -EFAULT; 3529 goto out; 3530 } 3531 3532 hdr = (struct ht_cxlflash_hdr *)&buf; 3533 if (hdr->version != HT_CXLFLASH_VERSION_0) { 3534 dev_dbg(dev, "%s: Version %u not supported for %s\n", 3535 __func__, hdr->version, decode_hioctl(cmd)); 3536 rc = -EINVAL; 3537 goto out; 3538 } 3539 3540 if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) { 3541 dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__); 3542 rc = -EINVAL; 3543 goto out; 3544 } 3545 3546 rc = do_ioctl(cfg, (void *)&buf); 3547 if (likely(!rc)) 3548 if (unlikely(copy_to_user(uarg, &buf, size))) { 3549 dev_err(dev, "%s: copy_to_user() fail " 3550 "size=%lu cmd=%d (%s) uarg=%p\n", 3551 __func__, size, cmd, decode_hioctl(cmd), uarg); 3552 rc = -EFAULT; 3553 } 3554 3555 /* fall through to exit */ 3556 3557 out: 3558 up_read(&cfg->ioctl_rwsem); 3559 if (unlikely(rc && known_ioctl)) 3560 dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n", 3561 __func__, decode_hioctl(cmd), cmd, rc); 3562 else 3563 dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n", 3564 __func__, decode_hioctl(cmd), cmd, rc); 3565 return rc; 3566 } 3567 3568 /* 3569 * Character device file operations 3570 */ 3571 static const struct file_operations cxlflash_chr_fops = { 3572 .owner = THIS_MODULE, 3573 .open = cxlflash_chr_open, 3574 .unlocked_ioctl = cxlflash_chr_ioctl, 3575 .compat_ioctl = compat_ptr_ioctl, 3576 }; 3577 3578 /** 3579 * init_chrdev() - initialize the character device for the host 3580 * @cfg: Internal structure associated with the host. 3581 * 3582 * Return: 0 on success, -errno on failure 3583 */ 3584 static int init_chrdev(struct cxlflash_cfg *cfg) 3585 { 3586 struct device *dev = &cfg->dev->dev; 3587 struct device *char_dev; 3588 dev_t devno; 3589 int minor; 3590 int rc = 0; 3591 3592 minor = cxlflash_get_minor(); 3593 if (unlikely(minor < 0)) { 3594 dev_err(dev, "%s: Exhausted allowed adapters\n", __func__); 3595 rc = -ENOSPC; 3596 goto out; 3597 } 3598 3599 devno = MKDEV(cxlflash_major, minor); 3600 cdev_init(&cfg->cdev, &cxlflash_chr_fops); 3601 3602 rc = cdev_add(&cfg->cdev, devno, 1); 3603 if (rc) { 3604 dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc); 3605 goto err1; 3606 } 3607 3608 char_dev = device_create(&cxlflash_class, NULL, devno, 3609 NULL, "cxlflash%d", minor); 3610 if (IS_ERR(char_dev)) { 3611 rc = PTR_ERR(char_dev); 3612 dev_err(dev, "%s: device_create failed rc=%d\n", 3613 __func__, rc); 3614 goto err2; 3615 } 3616 3617 cfg->chardev = char_dev; 3618 out: 3619 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3620 return rc; 3621 err2: 3622 cdev_del(&cfg->cdev); 3623 err1: 3624 cxlflash_put_minor(minor); 3625 goto out; 3626 } 3627 3628 /** 3629 * cxlflash_probe() - PCI entry point to add host 3630 * @pdev: PCI device associated with the host. 3631 * @dev_id: PCI device id associated with device. 3632 * 3633 * The device will initially start out in a 'probing' state and 3634 * transition to the 'normal' state at the end of a successful 3635 * probe. Should an EEH event occur during probe, the notification 3636 * thread (error_detected()) will wait until the probe handler 3637 * is nearly complete. At that time, the device will be moved to 3638 * a 'probed' state and the EEH thread woken up to drive the slot 3639 * reset and recovery (device moves to 'normal' state). Meanwhile, 3640 * the probe will be allowed to exit successfully. 3641 * 3642 * Return: 0 on success, -errno on failure 3643 */ 3644 static int cxlflash_probe(struct pci_dev *pdev, 3645 const struct pci_device_id *dev_id) 3646 { 3647 struct Scsi_Host *host; 3648 struct cxlflash_cfg *cfg = NULL; 3649 struct device *dev = &pdev->dev; 3650 struct dev_dependent_vals *ddv; 3651 int rc = 0; 3652 int k; 3653 3654 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n", 3655 __func__, pdev->irq); 3656 3657 ddv = (struct dev_dependent_vals *)dev_id->driver_data; 3658 driver_template.max_sectors = ddv->max_sectors; 3659 3660 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg)); 3661 if (!host) { 3662 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__); 3663 rc = -ENOMEM; 3664 goto out; 3665 } 3666 3667 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS; 3668 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET; 3669 host->unique_id = host->host_no; 3670 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN; 3671 3672 cfg = shost_priv(host); 3673 cfg->state = STATE_PROBING; 3674 cfg->host = host; 3675 rc = alloc_mem(cfg); 3676 if (rc) { 3677 dev_err(dev, "%s: alloc_mem failed\n", __func__); 3678 rc = -ENOMEM; 3679 scsi_host_put(cfg->host); 3680 goto out; 3681 } 3682 3683 cfg->init_state = INIT_STATE_NONE; 3684 cfg->dev = pdev; 3685 cfg->cxl_fops = cxlflash_cxl_fops; 3686 cfg->ops = cxlflash_assign_ops(ddv); 3687 WARN_ON_ONCE(!cfg->ops); 3688 3689 /* 3690 * Promoted LUNs move to the top of the LUN table. The rest stay on 3691 * the bottom half. The bottom half grows from the end (index = 255), 3692 * whereas the top half grows from the beginning (index = 0). 3693 * 3694 * Initialize the last LUN index for all possible ports. 3695 */ 3696 cfg->promote_lun_index = 0; 3697 3698 for (k = 0; k < MAX_FC_PORTS; k++) 3699 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1; 3700 3701 cfg->dev_id = (struct pci_device_id *)dev_id; 3702 3703 init_waitqueue_head(&cfg->tmf_waitq); 3704 init_waitqueue_head(&cfg->reset_waitq); 3705 3706 INIT_WORK(&cfg->work_q, cxlflash_worker_thread); 3707 cfg->lr_state = LINK_RESET_INVALID; 3708 cfg->lr_port = -1; 3709 spin_lock_init(&cfg->tmf_slock); 3710 mutex_init(&cfg->ctx_tbl_list_mutex); 3711 mutex_init(&cfg->ctx_recovery_mutex); 3712 init_rwsem(&cfg->ioctl_rwsem); 3713 INIT_LIST_HEAD(&cfg->ctx_err_recovery); 3714 INIT_LIST_HEAD(&cfg->lluns); 3715 3716 pci_set_drvdata(pdev, cfg); 3717 3718 rc = init_pci(cfg); 3719 if (rc) { 3720 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc); 3721 goto out_remove; 3722 } 3723 cfg->init_state = INIT_STATE_PCI; 3724 3725 cfg->afu_cookie = cfg->ops->create_afu(pdev); 3726 if (unlikely(!cfg->afu_cookie)) { 3727 dev_err(dev, "%s: create_afu failed\n", __func__); 3728 rc = -ENOMEM; 3729 goto out_remove; 3730 } 3731 3732 rc = init_afu(cfg); 3733 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) { 3734 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc); 3735 goto out_remove; 3736 } 3737 cfg->init_state = INIT_STATE_AFU; 3738 3739 rc = init_scsi(cfg); 3740 if (rc) { 3741 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc); 3742 goto out_remove; 3743 } 3744 cfg->init_state = INIT_STATE_SCSI; 3745 3746 rc = init_chrdev(cfg); 3747 if (rc) { 3748 dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc); 3749 goto out_remove; 3750 } 3751 cfg->init_state = INIT_STATE_CDEV; 3752 3753 if (wq_has_sleeper(&cfg->reset_waitq)) { 3754 cfg->state = STATE_PROBED; 3755 wake_up_all(&cfg->reset_waitq); 3756 } else 3757 cfg->state = STATE_NORMAL; 3758 out: 3759 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3760 return rc; 3761 3762 out_remove: 3763 cfg->state = STATE_PROBED; 3764 cxlflash_remove(pdev); 3765 goto out; 3766 } 3767 3768 /** 3769 * cxlflash_pci_error_detected() - called when a PCI error is detected 3770 * @pdev: PCI device struct. 3771 * @state: PCI channel state. 3772 * 3773 * When an EEH occurs during an active reset, wait until the reset is 3774 * complete and then take action based upon the device state. 3775 * 3776 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT 3777 */ 3778 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev, 3779 pci_channel_state_t state) 3780 { 3781 int rc = 0; 3782 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3783 struct device *dev = &cfg->dev->dev; 3784 3785 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state); 3786 3787 switch (state) { 3788 case pci_channel_io_frozen: 3789 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && 3790 cfg->state != STATE_PROBING); 3791 if (cfg->state == STATE_FAILTERM) 3792 return PCI_ERS_RESULT_DISCONNECT; 3793 3794 cfg->state = STATE_RESET; 3795 scsi_block_requests(cfg->host); 3796 drain_ioctls(cfg); 3797 rc = cxlflash_mark_contexts_error(cfg); 3798 if (unlikely(rc)) 3799 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n", 3800 __func__, rc); 3801 term_afu(cfg); 3802 return PCI_ERS_RESULT_NEED_RESET; 3803 case pci_channel_io_perm_failure: 3804 cfg->state = STATE_FAILTERM; 3805 wake_up_all(&cfg->reset_waitq); 3806 scsi_unblock_requests(cfg->host); 3807 return PCI_ERS_RESULT_DISCONNECT; 3808 default: 3809 break; 3810 } 3811 return PCI_ERS_RESULT_NEED_RESET; 3812 } 3813 3814 /** 3815 * cxlflash_pci_slot_reset() - called when PCI slot has been reset 3816 * @pdev: PCI device struct. 3817 * 3818 * This routine is called by the pci error recovery code after the PCI 3819 * slot has been reset, just before we should resume normal operations. 3820 * 3821 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT 3822 */ 3823 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev) 3824 { 3825 int rc = 0; 3826 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3827 struct device *dev = &cfg->dev->dev; 3828 3829 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 3830 3831 rc = init_afu(cfg); 3832 if (unlikely(rc)) { 3833 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc); 3834 return PCI_ERS_RESULT_DISCONNECT; 3835 } 3836 3837 return PCI_ERS_RESULT_RECOVERED; 3838 } 3839 3840 /** 3841 * cxlflash_pci_resume() - called when normal operation can resume 3842 * @pdev: PCI device struct 3843 */ 3844 static void cxlflash_pci_resume(struct pci_dev *pdev) 3845 { 3846 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3847 struct device *dev = &cfg->dev->dev; 3848 3849 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 3850 3851 cfg->state = STATE_NORMAL; 3852 wake_up_all(&cfg->reset_waitq); 3853 scsi_unblock_requests(cfg->host); 3854 } 3855 3856 /** 3857 * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class 3858 * @dev: Character device. 3859 * @mode: Mode that can be used to verify access. 3860 * 3861 * Return: Allocated string describing the devtmpfs structure. 3862 */ 3863 static char *cxlflash_devnode(const struct device *dev, umode_t *mode) 3864 { 3865 return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev)); 3866 } 3867 3868 /** 3869 * cxlflash_class_init() - create character device class 3870 * 3871 * Return: 0 on success, -errno on failure 3872 */ 3873 static int cxlflash_class_init(void) 3874 { 3875 dev_t devno; 3876 int rc = 0; 3877 3878 rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash"); 3879 if (unlikely(rc)) { 3880 pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc); 3881 goto out; 3882 } 3883 3884 cxlflash_major = MAJOR(devno); 3885 3886 rc = class_register(&cxlflash_class); 3887 if (rc) { 3888 pr_err("%s: class_create failed rc=%d\n", __func__, rc); 3889 goto err; 3890 } 3891 3892 out: 3893 pr_debug("%s: returning rc=%d\n", __func__, rc); 3894 return rc; 3895 err: 3896 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); 3897 goto out; 3898 } 3899 3900 /** 3901 * cxlflash_class_exit() - destroy character device class 3902 */ 3903 static void cxlflash_class_exit(void) 3904 { 3905 dev_t devno = MKDEV(cxlflash_major, 0); 3906 3907 class_unregister(&cxlflash_class); 3908 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); 3909 } 3910 3911 static const struct pci_error_handlers cxlflash_err_handler = { 3912 .error_detected = cxlflash_pci_error_detected, 3913 .slot_reset = cxlflash_pci_slot_reset, 3914 .resume = cxlflash_pci_resume, 3915 }; 3916 3917 /* 3918 * PCI device structure 3919 */ 3920 static struct pci_driver cxlflash_driver = { 3921 .name = CXLFLASH_NAME, 3922 .id_table = cxlflash_pci_table, 3923 .probe = cxlflash_probe, 3924 .remove = cxlflash_remove, 3925 .shutdown = cxlflash_remove, 3926 .err_handler = &cxlflash_err_handler, 3927 }; 3928 3929 /** 3930 * init_cxlflash() - module entry point 3931 * 3932 * Return: 0 on success, -errno on failure 3933 */ 3934 static int __init init_cxlflash(void) 3935 { 3936 int rc; 3937 3938 check_sizes(); 3939 cxlflash_list_init(); 3940 rc = cxlflash_class_init(); 3941 if (unlikely(rc)) 3942 goto out; 3943 3944 rc = pci_register_driver(&cxlflash_driver); 3945 if (unlikely(rc)) 3946 goto err; 3947 out: 3948 pr_debug("%s: returning rc=%d\n", __func__, rc); 3949 return rc; 3950 err: 3951 cxlflash_class_exit(); 3952 goto out; 3953 } 3954 3955 /** 3956 * exit_cxlflash() - module exit point 3957 */ 3958 static void __exit exit_cxlflash(void) 3959 { 3960 cxlflash_term_global_luns(); 3961 cxlflash_free_errpage(); 3962 3963 pci_unregister_driver(&cxlflash_driver); 3964 cxlflash_class_exit(); 3965 } 3966 3967 module_init(init_cxlflash); 3968 module_exit(exit_cxlflash); 3969