1 /* 2 * This file is part of the Chelsio FCoE driver for Linux. 3 * 4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/string.h> 37 #include <linux/compiler.h> 38 #include <linux/slab.h> 39 #include <asm/page.h> 40 #include <linux/cache.h> 41 42 #include "t4_values.h" 43 #include "csio_hw.h" 44 #include "csio_wr.h" 45 #include "csio_mb.h" 46 #include "csio_defs.h" 47 48 int csio_intr_coalesce_cnt; /* value:SGE_INGRESS_RX_THRESHOLD[0] */ 49 static int csio_sge_thresh_reg; /* SGE_INGRESS_RX_THRESHOLD[0] */ 50 51 int csio_intr_coalesce_time = 10; /* value:SGE_TIMER_VALUE_1 */ 52 static int csio_sge_timer_reg = 1; 53 54 #define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val) \ 55 csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A) 56 57 static void 58 csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg) 59 { 60 sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A + 61 reg * sizeof(uint32_t)); 62 } 63 64 /* Free list buffer size */ 65 static inline uint32_t 66 csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf) 67 { 68 return sge->sge_fl_buf_size[buf->paddr & 0xF]; 69 } 70 71 /* Size of the egress queue status page */ 72 static inline uint32_t 73 csio_wr_qstat_pgsz(struct csio_hw *hw) 74 { 75 return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 76 } 77 78 /* Ring freelist doorbell */ 79 static inline void 80 csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq) 81 { 82 /* 83 * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ 84 * number of bytes in the freelist queue. This translates to atleast 85 * 8 freelist buffer pointers (since each pointer is 8 bytes). 86 */ 87 if (flq->inc_idx >= 8) { 88 csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) | 89 PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F, 90 MYPF_REG(SGE_PF_KDOORBELL_A)); 91 flq->inc_idx &= 7; 92 } 93 } 94 95 /* Write a 0 cidx increment value to enable SGE interrupts for this queue */ 96 static void 97 csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid) 98 { 99 csio_wr_reg32(hw, CIDXINC_V(0) | 100 INGRESSQID_V(iqid) | 101 TIMERREG_V(X_TIMERREG_RESTART_COUNTER), 102 MYPF_REG(SGE_PF_GTS_A)); 103 } 104 105 /* 106 * csio_wr_fill_fl - Populate the FL buffers of a FL queue. 107 * @hw: HW module. 108 * @flq: Freelist queue. 109 * 110 * Fill up freelist buffer entries with buffers of size specified 111 * in the size register. 112 * 113 */ 114 static int 115 csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq) 116 { 117 struct csio_wrm *wrm = csio_hw_to_wrm(hw); 118 struct csio_sge *sge = &wrm->sge; 119 __be64 *d = (__be64 *)(flq->vstart); 120 struct csio_dma_buf *buf = &flq->un.fl.bufs[0]; 121 uint64_t paddr; 122 int sreg = flq->un.fl.sreg; 123 int n = flq->credits; 124 125 while (n--) { 126 buf->len = sge->sge_fl_buf_size[sreg]; 127 buf->vaddr = dma_alloc_coherent(&hw->pdev->dev, buf->len, 128 &buf->paddr, GFP_KERNEL); 129 if (!buf->vaddr) { 130 csio_err(hw, "Could only fill %d buffers!\n", n + 1); 131 return -ENOMEM; 132 } 133 134 paddr = buf->paddr | (sreg & 0xF); 135 136 *d++ = cpu_to_be64(paddr); 137 buf++; 138 } 139 140 return 0; 141 } 142 143 /* 144 * csio_wr_update_fl - 145 * @hw: HW module. 146 * @flq: Freelist queue. 147 * 148 * 149 */ 150 static inline void 151 csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n) 152 { 153 154 flq->inc_idx += n; 155 flq->pidx += n; 156 if (unlikely(flq->pidx >= flq->credits)) 157 flq->pidx -= (uint16_t)flq->credits; 158 159 CSIO_INC_STATS(flq, n_flq_refill); 160 } 161 162 /* 163 * csio_wr_alloc_q - Allocate a WR queue and initialize it. 164 * @hw: HW module 165 * @qsize: Size of the queue in bytes 166 * @wrsize: Since of WR in this queue, if fixed. 167 * @type: Type of queue (Ingress/Egress/Freelist) 168 * @owner: Module that owns this queue. 169 * @nflb: Number of freelist buffers for FL. 170 * @sreg: What is the FL buffer size register? 171 * @iq_int_handler: Ingress queue handler in INTx mode. 172 * 173 * This function allocates and sets up a queue for the caller 174 * of size qsize, aligned at the required boundary. This is subject to 175 * be free entries being available in the queue array. If one is found, 176 * it is initialized with the allocated queue, marked as being used (owner), 177 * and a handle returned to the caller in form of the queue's index 178 * into the q_arr array. 179 * If user has indicated a freelist (by specifying nflb > 0), create 180 * another queue (with its own index into q_arr) for the freelist. Allocate 181 * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist 182 * idx in the ingress queue's flq.idx. This is how a Freelist is associated 183 * with its owning ingress queue. 184 */ 185 int 186 csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize, 187 uint16_t type, void *owner, uint32_t nflb, int sreg, 188 iq_handler_t iq_intx_handler) 189 { 190 struct csio_wrm *wrm = csio_hw_to_wrm(hw); 191 struct csio_q *q, *flq; 192 int free_idx = wrm->free_qidx; 193 int ret_idx = free_idx; 194 uint32_t qsz; 195 int flq_idx; 196 197 if (free_idx >= wrm->num_q) { 198 csio_err(hw, "No more free queues.\n"); 199 return -1; 200 } 201 202 switch (type) { 203 case CSIO_EGRESS: 204 qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw); 205 break; 206 case CSIO_INGRESS: 207 switch (wrsize) { 208 case 16: 209 case 32: 210 case 64: 211 case 128: 212 break; 213 default: 214 csio_err(hw, "Invalid Ingress queue WR size:%d\n", 215 wrsize); 216 return -1; 217 } 218 219 /* 220 * Number of elements must be a multiple of 16 221 * So this includes status page size 222 */ 223 qsz = ALIGN(qsize/wrsize, 16) * wrsize; 224 225 break; 226 case CSIO_FREELIST: 227 qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw); 228 break; 229 default: 230 csio_err(hw, "Invalid queue type: 0x%x\n", type); 231 return -1; 232 } 233 234 q = wrm->q_arr[free_idx]; 235 236 q->vstart = dma_alloc_coherent(&hw->pdev->dev, qsz, &q->pstart, 237 GFP_KERNEL); 238 if (!q->vstart) { 239 csio_err(hw, 240 "Failed to allocate DMA memory for " 241 "queue at id: %d size: %d\n", free_idx, qsize); 242 return -1; 243 } 244 245 q->type = type; 246 q->owner = owner; 247 q->pidx = q->cidx = q->inc_idx = 0; 248 q->size = qsz; 249 q->wr_sz = wrsize; /* If using fixed size WRs */ 250 251 wrm->free_qidx++; 252 253 if (type == CSIO_INGRESS) { 254 /* Since queue area is set to zero */ 255 q->un.iq.genbit = 1; 256 257 /* 258 * Ingress queue status page size is always the size of 259 * the ingress queue entry. 260 */ 261 q->credits = (qsz - q->wr_sz) / q->wr_sz; 262 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz 263 - q->wr_sz); 264 265 /* Allocate memory for FL if requested */ 266 if (nflb > 0) { 267 flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64), 268 sizeof(__be64), CSIO_FREELIST, 269 owner, 0, sreg, NULL); 270 if (flq_idx == -1) { 271 csio_err(hw, 272 "Failed to allocate FL queue" 273 " for IQ idx:%d\n", free_idx); 274 return -1; 275 } 276 277 /* Associate the new FL with the Ingress quue */ 278 q->un.iq.flq_idx = flq_idx; 279 280 flq = wrm->q_arr[q->un.iq.flq_idx]; 281 flq->un.fl.bufs = kcalloc(flq->credits, 282 sizeof(struct csio_dma_buf), 283 GFP_KERNEL); 284 if (!flq->un.fl.bufs) { 285 csio_err(hw, 286 "Failed to allocate FL queue bufs" 287 " for IQ idx:%d\n", free_idx); 288 return -1; 289 } 290 291 flq->un.fl.packen = 0; 292 flq->un.fl.offset = 0; 293 flq->un.fl.sreg = sreg; 294 295 /* Fill up the free list buffers */ 296 if (csio_wr_fill_fl(hw, flq)) 297 return -1; 298 299 /* 300 * Make sure in a FLQ, atleast 1 credit (8 FL buffers) 301 * remains unpopulated,otherwise HW thinks 302 * FLQ is empty. 303 */ 304 flq->pidx = flq->inc_idx = flq->credits - 8; 305 } else { 306 q->un.iq.flq_idx = -1; 307 } 308 309 /* Associate the IQ INTx handler. */ 310 q->un.iq.iq_intx_handler = iq_intx_handler; 311 312 csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID; 313 314 } else if (type == CSIO_EGRESS) { 315 q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ; 316 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz 317 - csio_wr_qstat_pgsz(hw)); 318 csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID; 319 } else { /* Freelist */ 320 q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64); 321 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz 322 - csio_wr_qstat_pgsz(hw)); 323 csio_q_flid(hw, ret_idx) = CSIO_MAX_QID; 324 } 325 326 return ret_idx; 327 } 328 329 /* 330 * csio_wr_iq_create_rsp - Response handler for IQ creation. 331 * @hw: The HW module. 332 * @mbp: Mailbox. 333 * @iq_idx: Ingress queue that got created. 334 * 335 * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids. 336 */ 337 static int 338 csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx) 339 { 340 struct csio_iq_params iqp; 341 enum fw_retval retval; 342 uint32_t iq_id; 343 int flq_idx; 344 345 memset(&iqp, 0, sizeof(struct csio_iq_params)); 346 347 csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp); 348 349 if (retval != FW_SUCCESS) { 350 csio_err(hw, "IQ cmd returned 0x%x!\n", retval); 351 mempool_free(mbp, hw->mb_mempool); 352 return -EINVAL; 353 } 354 355 csio_q_iqid(hw, iq_idx) = iqp.iqid; 356 csio_q_physiqid(hw, iq_idx) = iqp.physiqid; 357 csio_q_pidx(hw, iq_idx) = csio_q_cidx(hw, iq_idx) = 0; 358 csio_q_inc_idx(hw, iq_idx) = 0; 359 360 /* Actual iq-id. */ 361 iq_id = iqp.iqid - hw->wrm.fw_iq_start; 362 363 /* Set the iq-id to iq map table. */ 364 if (iq_id >= CSIO_MAX_IQ) { 365 csio_err(hw, 366 "Exceeding MAX_IQ(%d) supported!" 367 " iqid:%d rel_iqid:%d FW iq_start:%d\n", 368 CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start); 369 mempool_free(mbp, hw->mb_mempool); 370 return -EINVAL; 371 } 372 csio_q_set_intr_map(hw, iq_idx, iq_id); 373 374 /* 375 * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE 376 * ingress context of this queue. This will block interrupts to 377 * this queue until the next GTS write. Therefore, we do a 378 * 0-cidx increment GTS write for this queue just to clear the 379 * interrupt_sent bit. This will re-enable interrupts to this 380 * queue. 381 */ 382 csio_wr_sge_intr_enable(hw, iqp.physiqid); 383 384 flq_idx = csio_q_iq_flq_idx(hw, iq_idx); 385 if (flq_idx != -1) { 386 struct csio_q *flq = hw->wrm.q_arr[flq_idx]; 387 388 csio_q_flid(hw, flq_idx) = iqp.fl0id; 389 csio_q_cidx(hw, flq_idx) = 0; 390 csio_q_pidx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8; 391 csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8; 392 393 /* Now update SGE about the buffers allocated during init */ 394 csio_wr_ring_fldb(hw, flq); 395 } 396 397 mempool_free(mbp, hw->mb_mempool); 398 399 return 0; 400 } 401 402 /* 403 * csio_wr_iq_create - Configure an Ingress queue with FW. 404 * @hw: The HW module. 405 * @priv: Private data object. 406 * @iq_idx: Ingress queue index in the WR module. 407 * @vec: MSIX vector. 408 * @portid: PCIE Channel to be associated with this queue. 409 * @async: Is this a FW asynchronous message handling queue? 410 * @cbfn: Completion callback. 411 * 412 * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox 413 * with alloc/write bits set. 414 */ 415 int 416 csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx, 417 uint32_t vec, uint8_t portid, bool async, 418 void (*cbfn) (struct csio_hw *, struct csio_mb *)) 419 { 420 struct csio_mb *mbp; 421 struct csio_iq_params iqp; 422 int flq_idx; 423 424 memset(&iqp, 0, sizeof(struct csio_iq_params)); 425 csio_q_portid(hw, iq_idx) = portid; 426 427 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); 428 if (!mbp) { 429 csio_err(hw, "IQ command out of memory!\n"); 430 return -ENOMEM; 431 } 432 433 switch (hw->intr_mode) { 434 case CSIO_IM_INTX: 435 case CSIO_IM_MSI: 436 /* For interrupt forwarding queue only */ 437 if (hw->intr_iq_idx == iq_idx) 438 iqp.iqandst = X_INTERRUPTDESTINATION_PCIE; 439 else 440 iqp.iqandst = X_INTERRUPTDESTINATION_IQ; 441 iqp.iqandstindex = 442 csio_q_physiqid(hw, hw->intr_iq_idx); 443 break; 444 case CSIO_IM_MSIX: 445 iqp.iqandst = X_INTERRUPTDESTINATION_PCIE; 446 iqp.iqandstindex = (uint16_t)vec; 447 break; 448 case CSIO_IM_NONE: 449 mempool_free(mbp, hw->mb_mempool); 450 return -EINVAL; 451 } 452 453 /* Pass in the ingress queue cmd parameters */ 454 iqp.pfn = hw->pfn; 455 iqp.vfn = 0; 456 iqp.iq_start = 1; 457 iqp.viid = 0; 458 iqp.type = FW_IQ_TYPE_FL_INT_CAP; 459 iqp.iqasynch = async; 460 if (csio_intr_coalesce_cnt) 461 iqp.iqanus = X_UPDATESCHEDULING_COUNTER_OPTTIMER; 462 else 463 iqp.iqanus = X_UPDATESCHEDULING_TIMER; 464 iqp.iqanud = X_UPDATEDELIVERY_INTERRUPT; 465 iqp.iqpciech = portid; 466 iqp.iqintcntthresh = (uint8_t)csio_sge_thresh_reg; 467 468 switch (csio_q_wr_sz(hw, iq_idx)) { 469 case 16: 470 iqp.iqesize = 0; break; 471 case 32: 472 iqp.iqesize = 1; break; 473 case 64: 474 iqp.iqesize = 2; break; 475 case 128: 476 iqp.iqesize = 3; break; 477 } 478 479 iqp.iqsize = csio_q_size(hw, iq_idx) / 480 csio_q_wr_sz(hw, iq_idx); 481 iqp.iqaddr = csio_q_pstart(hw, iq_idx); 482 483 flq_idx = csio_q_iq_flq_idx(hw, iq_idx); 484 if (flq_idx != -1) { 485 enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id); 486 struct csio_q *flq = hw->wrm.q_arr[flq_idx]; 487 488 iqp.fl0paden = 1; 489 iqp.fl0packen = flq->un.fl.packen ? 1 : 0; 490 iqp.fl0fbmin = X_FETCHBURSTMIN_64B; 491 iqp.fl0fbmax = ((chip == CHELSIO_T5) ? 492 X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B); 493 iqp.fl0size = csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ; 494 iqp.fl0addr = csio_q_pstart(hw, flq_idx); 495 } 496 497 csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn); 498 499 if (csio_mb_issue(hw, mbp)) { 500 csio_err(hw, "Issue of IQ cmd failed!\n"); 501 mempool_free(mbp, hw->mb_mempool); 502 return -EINVAL; 503 } 504 505 if (cbfn != NULL) 506 return 0; 507 508 return csio_wr_iq_create_rsp(hw, mbp, iq_idx); 509 } 510 511 /* 512 * csio_wr_eq_create_rsp - Response handler for EQ creation. 513 * @hw: The HW module. 514 * @mbp: Mailbox. 515 * @eq_idx: Egress queue that got created. 516 * 517 * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids. 518 */ 519 static int 520 csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx) 521 { 522 struct csio_eq_params eqp; 523 enum fw_retval retval; 524 525 memset(&eqp, 0, sizeof(struct csio_eq_params)); 526 527 csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp); 528 529 if (retval != FW_SUCCESS) { 530 csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval); 531 mempool_free(mbp, hw->mb_mempool); 532 return -EINVAL; 533 } 534 535 csio_q_eqid(hw, eq_idx) = (uint16_t)eqp.eqid; 536 csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid; 537 csio_q_pidx(hw, eq_idx) = csio_q_cidx(hw, eq_idx) = 0; 538 csio_q_inc_idx(hw, eq_idx) = 0; 539 540 mempool_free(mbp, hw->mb_mempool); 541 542 return 0; 543 } 544 545 /* 546 * csio_wr_eq_create - Configure an Egress queue with FW. 547 * @hw: HW module. 548 * @priv: Private data. 549 * @eq_idx: Egress queue index in the WR module. 550 * @iq_idx: Associated ingress queue index. 551 * @cbfn: Completion callback. 552 * 553 * This API configures a offload egress queue with FW by issuing a 554 * FW_EQ_OFLD_CMD (with alloc + write ) mailbox. 555 */ 556 int 557 csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx, 558 int iq_idx, uint8_t portid, 559 void (*cbfn) (struct csio_hw *, struct csio_mb *)) 560 { 561 struct csio_mb *mbp; 562 struct csio_eq_params eqp; 563 564 memset(&eqp, 0, sizeof(struct csio_eq_params)); 565 566 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); 567 if (!mbp) { 568 csio_err(hw, "EQ command out of memory!\n"); 569 return -ENOMEM; 570 } 571 572 eqp.pfn = hw->pfn; 573 eqp.vfn = 0; 574 eqp.eqstart = 1; 575 eqp.hostfcmode = X_HOSTFCMODE_STATUS_PAGE; 576 eqp.iqid = csio_q_iqid(hw, iq_idx); 577 eqp.fbmin = X_FETCHBURSTMIN_64B; 578 eqp.fbmax = X_FETCHBURSTMAX_512B; 579 eqp.cidxfthresh = 0; 580 eqp.pciechn = portid; 581 eqp.eqsize = csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ; 582 eqp.eqaddr = csio_q_pstart(hw, eq_idx); 583 584 csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, 585 &eqp, cbfn); 586 587 if (csio_mb_issue(hw, mbp)) { 588 csio_err(hw, "Issue of EQ OFLD cmd failed!\n"); 589 mempool_free(mbp, hw->mb_mempool); 590 return -EINVAL; 591 } 592 593 if (cbfn != NULL) 594 return 0; 595 596 return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx); 597 } 598 599 /* 600 * csio_wr_iq_destroy_rsp - Response handler for IQ removal. 601 * @hw: The HW module. 602 * @mbp: Mailbox. 603 * @iq_idx: Ingress queue that was freed. 604 * 605 * Handle FW_IQ_CMD (free) mailbox completion. 606 */ 607 static int 608 csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx) 609 { 610 enum fw_retval retval = csio_mb_fw_retval(mbp); 611 int rv = 0; 612 613 if (retval != FW_SUCCESS) 614 rv = -EINVAL; 615 616 mempool_free(mbp, hw->mb_mempool); 617 618 return rv; 619 } 620 621 /* 622 * csio_wr_iq_destroy - Free an ingress queue. 623 * @hw: The HW module. 624 * @priv: Private data object. 625 * @iq_idx: Ingress queue index to destroy 626 * @cbfn: Completion callback. 627 * 628 * This API frees an ingress queue by issuing the FW_IQ_CMD 629 * with the free bit set. 630 */ 631 static int 632 csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx, 633 void (*cbfn)(struct csio_hw *, struct csio_mb *)) 634 { 635 int rv = 0; 636 struct csio_mb *mbp; 637 struct csio_iq_params iqp; 638 int flq_idx; 639 640 memset(&iqp, 0, sizeof(struct csio_iq_params)); 641 642 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); 643 if (!mbp) 644 return -ENOMEM; 645 646 iqp.pfn = hw->pfn; 647 iqp.vfn = 0; 648 iqp.iqid = csio_q_iqid(hw, iq_idx); 649 iqp.type = FW_IQ_TYPE_FL_INT_CAP; 650 651 flq_idx = csio_q_iq_flq_idx(hw, iq_idx); 652 if (flq_idx != -1) 653 iqp.fl0id = csio_q_flid(hw, flq_idx); 654 else 655 iqp.fl0id = 0xFFFF; 656 657 iqp.fl1id = 0xFFFF; 658 659 csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn); 660 661 rv = csio_mb_issue(hw, mbp); 662 if (rv != 0) { 663 mempool_free(mbp, hw->mb_mempool); 664 return rv; 665 } 666 667 if (cbfn != NULL) 668 return 0; 669 670 return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx); 671 } 672 673 /* 674 * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation. 675 * @hw: The HW module. 676 * @mbp: Mailbox. 677 * @eq_idx: Egress queue that was freed. 678 * 679 * Handle FW_OFLD_EQ_CMD (free) mailbox completion. 680 */ 681 static int 682 csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx) 683 { 684 enum fw_retval retval = csio_mb_fw_retval(mbp); 685 int rv = 0; 686 687 if (retval != FW_SUCCESS) 688 rv = -EINVAL; 689 690 mempool_free(mbp, hw->mb_mempool); 691 692 return rv; 693 } 694 695 /* 696 * csio_wr_eq_destroy - Free an Egress queue. 697 * @hw: The HW module. 698 * @priv: Private data object. 699 * @eq_idx: Egress queue index to destroy 700 * @cbfn: Completion callback. 701 * 702 * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD 703 * with the free bit set. 704 */ 705 static int 706 csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx, 707 void (*cbfn) (struct csio_hw *, struct csio_mb *)) 708 { 709 int rv = 0; 710 struct csio_mb *mbp; 711 struct csio_eq_params eqp; 712 713 memset(&eqp, 0, sizeof(struct csio_eq_params)); 714 715 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); 716 if (!mbp) 717 return -ENOMEM; 718 719 eqp.pfn = hw->pfn; 720 eqp.vfn = 0; 721 eqp.eqid = csio_q_eqid(hw, eq_idx); 722 723 csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn); 724 725 rv = csio_mb_issue(hw, mbp); 726 if (rv != 0) { 727 mempool_free(mbp, hw->mb_mempool); 728 return rv; 729 } 730 731 if (cbfn != NULL) 732 return 0; 733 734 return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx); 735 } 736 737 /* 738 * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page 739 * @hw: HW module 740 * @qidx: Egress queue index 741 * 742 * Cleanup the Egress queue status page. 743 */ 744 static void 745 csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx) 746 { 747 struct csio_q *q = csio_hw_to_wrm(hw)->q_arr[qidx]; 748 struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap; 749 750 memset(stp, 0, sizeof(*stp)); 751 } 752 753 /* 754 * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ 755 * @hw: HW module 756 * @qidx: Ingress queue index 757 * 758 * Cleanup the footer entries in the given ingress queue, 759 * set to 1 the internal copy of genbit. 760 */ 761 static void 762 csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx) 763 { 764 struct csio_wrm *wrm = csio_hw_to_wrm(hw); 765 struct csio_q *q = wrm->q_arr[qidx]; 766 void *wr; 767 struct csio_iqwr_footer *ftr; 768 uint32_t i = 0; 769 770 /* set to 1 since we are just about zero out genbit */ 771 q->un.iq.genbit = 1; 772 773 for (i = 0; i < q->credits; i++) { 774 /* Get the WR */ 775 wr = (void *)((uintptr_t)q->vstart + 776 (i * q->wr_sz)); 777 /* Get the footer */ 778 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr + 779 (q->wr_sz - sizeof(*ftr))); 780 /* Zero out footer */ 781 memset(ftr, 0, sizeof(*ftr)); 782 } 783 } 784 785 int 786 csio_wr_destroy_queues(struct csio_hw *hw, bool cmd) 787 { 788 int i, flq_idx; 789 struct csio_q *q; 790 struct csio_wrm *wrm = csio_hw_to_wrm(hw); 791 int rv; 792 793 for (i = 0; i < wrm->free_qidx; i++) { 794 q = wrm->q_arr[i]; 795 796 switch (q->type) { 797 case CSIO_EGRESS: 798 if (csio_q_eqid(hw, i) != CSIO_MAX_QID) { 799 csio_wr_cleanup_eq_stpg(hw, i); 800 if (!cmd) { 801 csio_q_eqid(hw, i) = CSIO_MAX_QID; 802 continue; 803 } 804 805 rv = csio_wr_eq_destroy(hw, NULL, i, NULL); 806 if ((rv == -EBUSY) || (rv == -ETIMEDOUT)) 807 cmd = false; 808 809 csio_q_eqid(hw, i) = CSIO_MAX_QID; 810 } 811 fallthrough; 812 case CSIO_INGRESS: 813 if (csio_q_iqid(hw, i) != CSIO_MAX_QID) { 814 csio_wr_cleanup_iq_ftr(hw, i); 815 if (!cmd) { 816 csio_q_iqid(hw, i) = CSIO_MAX_QID; 817 flq_idx = csio_q_iq_flq_idx(hw, i); 818 if (flq_idx != -1) 819 csio_q_flid(hw, flq_idx) = 820 CSIO_MAX_QID; 821 continue; 822 } 823 824 rv = csio_wr_iq_destroy(hw, NULL, i, NULL); 825 if ((rv == -EBUSY) || (rv == -ETIMEDOUT)) 826 cmd = false; 827 828 csio_q_iqid(hw, i) = CSIO_MAX_QID; 829 flq_idx = csio_q_iq_flq_idx(hw, i); 830 if (flq_idx != -1) 831 csio_q_flid(hw, flq_idx) = CSIO_MAX_QID; 832 } 833 break; 834 default: 835 break; 836 } 837 } 838 839 hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED; 840 841 return 0; 842 } 843 844 /* 845 * csio_wr_get - Get requested size of WR entry/entries from queue. 846 * @hw: HW module. 847 * @qidx: Index of queue. 848 * @size: Cumulative size of Work request(s). 849 * @wrp: Work request pair. 850 * 851 * If requested credits are available, return the start address of the 852 * work request in the work request pair. Set pidx accordingly and 853 * return. 854 * 855 * NOTE about WR pair: 856 * ================== 857 * A WR can start towards the end of a queue, and then continue at the 858 * beginning, since the queue is considered to be circular. This will 859 * require a pair of address/size to be passed back to the caller - 860 * hence Work request pair format. 861 */ 862 int 863 csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size, 864 struct csio_wr_pair *wrp) 865 { 866 struct csio_wrm *wrm = csio_hw_to_wrm(hw); 867 struct csio_q *q = wrm->q_arr[qidx]; 868 void *cwr = (void *)((uintptr_t)(q->vstart) + 869 (q->pidx * CSIO_QCREDIT_SZ)); 870 struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap; 871 uint16_t cidx = q->cidx = ntohs(stp->cidx); 872 uint16_t pidx = q->pidx; 873 uint32_t req_sz = ALIGN(size, CSIO_QCREDIT_SZ); 874 int req_credits = req_sz / CSIO_QCREDIT_SZ; 875 int credits; 876 877 CSIO_DB_ASSERT(q->owner != NULL); 878 CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx)); 879 CSIO_DB_ASSERT(cidx <= q->credits); 880 881 /* Calculate credits */ 882 if (pidx > cidx) { 883 credits = q->credits - (pidx - cidx) - 1; 884 } else if (cidx > pidx) { 885 credits = cidx - pidx - 1; 886 } else { 887 /* cidx == pidx, empty queue */ 888 credits = q->credits; 889 CSIO_INC_STATS(q, n_qempty); 890 } 891 892 /* 893 * Check if we have enough credits. 894 * credits = 1 implies queue is full. 895 */ 896 if (!credits || (req_credits > credits)) { 897 CSIO_INC_STATS(q, n_qfull); 898 return -EBUSY; 899 } 900 901 /* 902 * If we are here, we have enough credits to satisfy the 903 * request. Check if we are near the end of q, and if WR spills over. 904 * If it does, use the first addr/size to cover the queue until 905 * the end. Fit the remainder portion of the request at the top 906 * of queue and return it in the second addr/len. Set pidx 907 * accordingly. 908 */ 909 if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) { 910 wrp->addr1 = cwr; 911 wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr); 912 wrp->addr2 = q->vstart; 913 wrp->size2 = req_sz - wrp->size1; 914 q->pidx = (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) / 915 CSIO_QCREDIT_SZ); 916 CSIO_INC_STATS(q, n_qwrap); 917 CSIO_INC_STATS(q, n_eq_wr_split); 918 } else { 919 wrp->addr1 = cwr; 920 wrp->size1 = req_sz; 921 wrp->addr2 = NULL; 922 wrp->size2 = 0; 923 q->pidx += (uint16_t)req_credits; 924 925 /* We are the end of queue, roll back pidx to top of queue */ 926 if (unlikely(q->pidx == q->credits)) { 927 q->pidx = 0; 928 CSIO_INC_STATS(q, n_qwrap); 929 } 930 } 931 932 q->inc_idx = (uint16_t)req_credits; 933 934 CSIO_INC_STATS(q, n_tot_reqs); 935 936 return 0; 937 } 938 939 /* 940 * csio_wr_copy_to_wrp - Copies given data into WR. 941 * @data_buf - Data buffer 942 * @wrp - Work request pair. 943 * @wr_off - Work request offset. 944 * @data_len - Data length. 945 * 946 * Copies the given data in Work Request. Work request pair(wrp) specifies 947 * address information of Work request. 948 * Returns: none 949 */ 950 void 951 csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp, 952 uint32_t wr_off, uint32_t data_len) 953 { 954 uint32_t nbytes; 955 956 /* Number of space available in buffer addr1 of WRP */ 957 nbytes = ((wrp->size1 - wr_off) >= data_len) ? 958 data_len : (wrp->size1 - wr_off); 959 960 memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes); 961 data_len -= nbytes; 962 963 /* Write the remaining data from the begining of circular buffer */ 964 if (data_len) { 965 CSIO_DB_ASSERT(data_len <= wrp->size2); 966 CSIO_DB_ASSERT(wrp->addr2 != NULL); 967 memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len); 968 } 969 } 970 971 /* 972 * csio_wr_issue - Notify chip of Work request. 973 * @hw: HW module. 974 * @qidx: Index of queue. 975 * @prio: 0: Low priority, 1: High priority 976 * 977 * Rings the SGE Doorbell by writing the current producer index of the passed 978 * in queue into the register. 979 * 980 */ 981 int 982 csio_wr_issue(struct csio_hw *hw, int qidx, bool prio) 983 { 984 struct csio_wrm *wrm = csio_hw_to_wrm(hw); 985 struct csio_q *q = wrm->q_arr[qidx]; 986 987 CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx)); 988 989 wmb(); 990 /* Ring SGE Doorbell writing q->pidx into it */ 991 csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) | 992 PIDX_T5_V(q->inc_idx) | DBTYPE_F, 993 MYPF_REG(SGE_PF_KDOORBELL_A)); 994 q->inc_idx = 0; 995 996 return 0; 997 } 998 999 static inline uint32_t 1000 csio_wr_avail_qcredits(struct csio_q *q) 1001 { 1002 if (q->pidx > q->cidx) 1003 return q->pidx - q->cidx; 1004 else if (q->cidx > q->pidx) 1005 return q->credits - (q->cidx - q->pidx); 1006 else 1007 return 0; /* cidx == pidx, empty queue */ 1008 } 1009 1010 /* 1011 * csio_wr_inval_flq_buf - Invalidate a free list buffer entry. 1012 * @hw: HW module. 1013 * @flq: The freelist queue. 1014 * 1015 * Invalidate the driver's version of a freelist buffer entry, 1016 * without freeing the associated the DMA memory. The entry 1017 * to be invalidated is picked up from the current Free list 1018 * queue cidx. 1019 * 1020 */ 1021 static inline void 1022 csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq) 1023 { 1024 flq->cidx++; 1025 if (flq->cidx == flq->credits) { 1026 flq->cidx = 0; 1027 CSIO_INC_STATS(flq, n_qwrap); 1028 } 1029 } 1030 1031 /* 1032 * csio_wr_process_fl - Process a freelist completion. 1033 * @hw: HW module. 1034 * @q: The ingress queue attached to the Freelist. 1035 * @wr: The freelist completion WR in the ingress queue. 1036 * @len_to_qid: The lower 32-bits of the first flit of the RSP footer 1037 * @iq_handler: Caller's handler for this completion. 1038 * @priv: Private pointer of caller 1039 * 1040 */ 1041 static inline void 1042 csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q, 1043 void *wr, uint32_t len_to_qid, 1044 void (*iq_handler)(struct csio_hw *, void *, 1045 uint32_t, struct csio_fl_dma_buf *, 1046 void *), 1047 void *priv) 1048 { 1049 struct csio_wrm *wrm = csio_hw_to_wrm(hw); 1050 struct csio_sge *sge = &wrm->sge; 1051 struct csio_fl_dma_buf flb; 1052 struct csio_dma_buf *buf, *fbuf; 1053 uint32_t bufsz, len, lastlen = 0; 1054 struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx]; 1055 1056 CSIO_DB_ASSERT(flq != NULL); 1057 1058 len = len_to_qid; 1059 1060 if (len & IQWRF_NEWBUF) { 1061 if (flq->un.fl.offset > 0) { 1062 csio_wr_inval_flq_buf(hw, flq); 1063 flq->un.fl.offset = 0; 1064 } 1065 len = IQWRF_LEN_GET(len); 1066 } 1067 1068 CSIO_DB_ASSERT(len != 0); 1069 1070 flb.totlen = len; 1071 1072 /* Consume all freelist buffers used for len bytes */ 1073 for (fbuf = flb.flbufs; ; fbuf++) { 1074 buf = &flq->un.fl.bufs[flq->cidx]; 1075 bufsz = csio_wr_fl_bufsz(sge, buf); 1076 1077 fbuf->paddr = buf->paddr; 1078 fbuf->vaddr = buf->vaddr; 1079 1080 flb.offset = flq->un.fl.offset; 1081 lastlen = min(bufsz, len); 1082 fbuf->len = lastlen; 1083 1084 len -= lastlen; 1085 if (!len) 1086 break; 1087 csio_wr_inval_flq_buf(hw, flq); 1088 } 1089 1090 flb.defer_free = flq->un.fl.packen ? 0 : 1; 1091 1092 iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer), 1093 &flb, priv); 1094 1095 if (flq->un.fl.packen) 1096 flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align); 1097 else 1098 csio_wr_inval_flq_buf(hw, flq); 1099 1100 } 1101 1102 /* 1103 * csio_is_new_iqwr - Is this a new Ingress queue entry ? 1104 * @q: Ingress quueue. 1105 * @ftr: Ingress queue WR SGE footer. 1106 * 1107 * The entry is new if our generation bit matches the corresponding 1108 * bit in the footer of the current WR. 1109 */ 1110 static inline bool 1111 csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr) 1112 { 1113 return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT)); 1114 } 1115 1116 /* 1117 * csio_wr_process_iq - Process elements in Ingress queue. 1118 * @hw: HW pointer 1119 * @qidx: Index of queue 1120 * @iq_handler: Handler for this queue 1121 * @priv: Caller's private pointer 1122 * 1123 * This routine walks through every entry of the ingress queue, calling 1124 * the provided iq_handler with the entry, until the generation bit 1125 * flips. 1126 */ 1127 int 1128 csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q, 1129 void (*iq_handler)(struct csio_hw *, void *, 1130 uint32_t, struct csio_fl_dma_buf *, 1131 void *), 1132 void *priv) 1133 { 1134 struct csio_wrm *wrm = csio_hw_to_wrm(hw); 1135 void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz)); 1136 struct csio_iqwr_footer *ftr; 1137 uint32_t wr_type, fw_qid, qid; 1138 struct csio_q *q_completed; 1139 struct csio_q *flq = csio_iq_has_fl(q) ? 1140 wrm->q_arr[q->un.iq.flq_idx] : NULL; 1141 int rv = 0; 1142 1143 /* Get the footer */ 1144 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr + 1145 (q->wr_sz - sizeof(*ftr))); 1146 1147 /* 1148 * When q wrapped around last time, driver should have inverted 1149 * ic.genbit as well. 1150 */ 1151 while (csio_is_new_iqwr(q, ftr)) { 1152 1153 CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <= 1154 (uintptr_t)q->vwrap); 1155 rmb(); 1156 wr_type = IQWRF_TYPE_GET(ftr->u.type_gen); 1157 1158 switch (wr_type) { 1159 case X_RSPD_TYPE_CPL: 1160 /* Subtract footer from WR len */ 1161 iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv); 1162 break; 1163 case X_RSPD_TYPE_FLBUF: 1164 csio_wr_process_fl(hw, q, wr, 1165 ntohl(ftr->pldbuflen_qid), 1166 iq_handler, priv); 1167 break; 1168 case X_RSPD_TYPE_INTR: 1169 fw_qid = ntohl(ftr->pldbuflen_qid); 1170 qid = fw_qid - wrm->fw_iq_start; 1171 q_completed = hw->wrm.intr_map[qid]; 1172 1173 if (unlikely(qid == 1174 csio_q_physiqid(hw, hw->intr_iq_idx))) { 1175 /* 1176 * We are already in the Forward Interrupt 1177 * Interrupt Queue Service! Do-not service 1178 * again! 1179 * 1180 */ 1181 } else { 1182 CSIO_DB_ASSERT(q_completed); 1183 CSIO_DB_ASSERT( 1184 q_completed->un.iq.iq_intx_handler); 1185 1186 /* Call the queue handler. */ 1187 q_completed->un.iq.iq_intx_handler(hw, NULL, 1188 0, NULL, (void *)q_completed); 1189 } 1190 break; 1191 default: 1192 csio_warn(hw, "Unknown resp type 0x%x received\n", 1193 wr_type); 1194 CSIO_INC_STATS(q, n_rsp_unknown); 1195 break; 1196 } 1197 1198 /* 1199 * Ingress *always* has fixed size WR entries. Therefore, 1200 * there should always be complete WRs towards the end of 1201 * queue. 1202 */ 1203 if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) { 1204 1205 /* Roll over to start of queue */ 1206 q->cidx = 0; 1207 wr = q->vstart; 1208 1209 /* Toggle genbit */ 1210 q->un.iq.genbit ^= 0x1; 1211 1212 CSIO_INC_STATS(q, n_qwrap); 1213 } else { 1214 q->cidx++; 1215 wr = (void *)((uintptr_t)(q->vstart) + 1216 (q->cidx * q->wr_sz)); 1217 } 1218 1219 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr + 1220 (q->wr_sz - sizeof(*ftr))); 1221 q->inc_idx++; 1222 1223 } /* while (q->un.iq.genbit == hdr->genbit) */ 1224 1225 /* 1226 * We need to re-arm SGE interrupts in case we got a stray interrupt, 1227 * especially in msix mode. With INTx, this may be a common occurence. 1228 */ 1229 if (unlikely(!q->inc_idx)) { 1230 CSIO_INC_STATS(q, n_stray_comp); 1231 rv = -EINVAL; 1232 goto restart; 1233 } 1234 1235 /* Replenish free list buffers if pending falls below low water mark */ 1236 if (flq) { 1237 uint32_t avail = csio_wr_avail_qcredits(flq); 1238 if (avail <= 16) { 1239 /* Make sure in FLQ, atleast 1 credit (8 FL buffers) 1240 * remains unpopulated otherwise HW thinks 1241 * FLQ is empty. 1242 */ 1243 csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail); 1244 csio_wr_ring_fldb(hw, flq); 1245 } 1246 } 1247 1248 restart: 1249 /* Now inform SGE about our incremental index value */ 1250 csio_wr_reg32(hw, CIDXINC_V(q->inc_idx) | 1251 INGRESSQID_V(q->un.iq.physiqid) | 1252 TIMERREG_V(csio_sge_timer_reg), 1253 MYPF_REG(SGE_PF_GTS_A)); 1254 q->stats.n_tot_rsps += q->inc_idx; 1255 1256 q->inc_idx = 0; 1257 1258 return rv; 1259 } 1260 1261 int 1262 csio_wr_process_iq_idx(struct csio_hw *hw, int qidx, 1263 void (*iq_handler)(struct csio_hw *, void *, 1264 uint32_t, struct csio_fl_dma_buf *, 1265 void *), 1266 void *priv) 1267 { 1268 struct csio_wrm *wrm = csio_hw_to_wrm(hw); 1269 struct csio_q *iq = wrm->q_arr[qidx]; 1270 1271 return csio_wr_process_iq(hw, iq, iq_handler, priv); 1272 } 1273 1274 static int 1275 csio_closest_timer(struct csio_sge *s, int time) 1276 { 1277 int i, delta, match = 0, min_delta = INT_MAX; 1278 1279 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1280 delta = time - s->timer_val[i]; 1281 if (delta < 0) 1282 delta = -delta; 1283 if (delta < min_delta) { 1284 min_delta = delta; 1285 match = i; 1286 } 1287 } 1288 return match; 1289 } 1290 1291 static int 1292 csio_closest_thresh(struct csio_sge *s, int cnt) 1293 { 1294 int i, delta, match = 0, min_delta = INT_MAX; 1295 1296 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1297 delta = cnt - s->counter_val[i]; 1298 if (delta < 0) 1299 delta = -delta; 1300 if (delta < min_delta) { 1301 min_delta = delta; 1302 match = i; 1303 } 1304 } 1305 return match; 1306 } 1307 1308 static void 1309 csio_wr_fixup_host_params(struct csio_hw *hw) 1310 { 1311 struct csio_wrm *wrm = csio_hw_to_wrm(hw); 1312 struct csio_sge *sge = &wrm->sge; 1313 uint32_t clsz = L1_CACHE_BYTES; 1314 uint32_t s_hps = PAGE_SHIFT - 10; 1315 uint32_t stat_len = clsz > 64 ? 128 : 64; 1316 u32 fl_align = clsz < 32 ? 32 : clsz; 1317 u32 pack_align; 1318 u32 ingpad, ingpack; 1319 1320 csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) | 1321 HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) | 1322 HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) | 1323 HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps), 1324 SGE_HOST_PAGE_SIZE_A); 1325 1326 /* T5 introduced the separation of the Free List Padding and 1327 * Packing Boundaries. Thus, we can select a smaller Padding 1328 * Boundary to avoid uselessly chewing up PCIe Link and Memory 1329 * Bandwidth, and use a Packing Boundary which is large enough 1330 * to avoid false sharing between CPUs, etc. 1331 * 1332 * For the PCI Link, the smaller the Padding Boundary the 1333 * better. For the Memory Controller, a smaller Padding 1334 * Boundary is better until we cross under the Memory Line 1335 * Size (the minimum unit of transfer to/from Memory). If we 1336 * have a Padding Boundary which is smaller than the Memory 1337 * Line Size, that'll involve a Read-Modify-Write cycle on the 1338 * Memory Controller which is never good. 1339 */ 1340 1341 /* We want the Packing Boundary to be based on the Cache Line 1342 * Size in order to help avoid False Sharing performance 1343 * issues between CPUs, etc. We also want the Packing 1344 * Boundary to incorporate the PCI-E Maximum Payload Size. We 1345 * get best performance when the Packing Boundary is a 1346 * multiple of the Maximum Payload Size. 1347 */ 1348 pack_align = fl_align; 1349 if (pci_is_pcie(hw->pdev)) { 1350 u32 mps, mps_log; 1351 u16 devctl; 1352 1353 /* The PCIe Device Control Maximum Payload Size field 1354 * [bits 7:5] encodes sizes as powers of 2 starting at 1355 * 128 bytes. 1356 */ 1357 pcie_capability_read_word(hw->pdev, PCI_EXP_DEVCTL, &devctl); 1358 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 1359 mps = 1 << mps_log; 1360 if (mps > pack_align) 1361 pack_align = mps; 1362 } 1363 1364 /* T5/T6 have a special interpretation of the "0" 1365 * value for the Packing Boundary. This corresponds to 16 1366 * bytes instead of the expected 32 bytes. 1367 */ 1368 if (pack_align <= 16) { 1369 ingpack = INGPACKBOUNDARY_16B_X; 1370 fl_align = 16; 1371 } else if (pack_align == 32) { 1372 ingpack = INGPACKBOUNDARY_64B_X; 1373 fl_align = 64; 1374 } else { 1375 u32 pack_align_log = fls(pack_align) - 1; 1376 1377 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 1378 fl_align = pack_align; 1379 } 1380 1381 /* Use the smallest Ingress Padding which isn't smaller than 1382 * the Memory Controller Read/Write Size. We'll take that as 1383 * being 8 bytes since we don't know of any system with a 1384 * wider Memory Controller Bus Width. 1385 */ 1386 if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK)) 1387 ingpad = INGPADBOUNDARY_32B_X; 1388 else 1389 ingpad = T6_INGPADBOUNDARY_8B_X; 1390 1391 csio_set_reg_field(hw, SGE_CONTROL_A, 1392 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 1393 EGRSTATUSPAGESIZE_F, 1394 INGPADBOUNDARY_V(ingpad) | 1395 EGRSTATUSPAGESIZE_V(stat_len != 64)); 1396 csio_set_reg_field(hw, SGE_CONTROL2_A, 1397 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 1398 INGPACKBOUNDARY_V(ingpack)); 1399 1400 /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */ 1401 csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A); 1402 1403 /* 1404 * If using hard params, the following will get set correctly 1405 * in csio_wr_set_sge(). 1406 */ 1407 if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) { 1408 csio_wr_reg32(hw, 1409 (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) + 1410 fl_align - 1) & ~(fl_align - 1), 1411 SGE_FL_BUFFER_SIZE2_A); 1412 csio_wr_reg32(hw, 1413 (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) + 1414 fl_align - 1) & ~(fl_align - 1), 1415 SGE_FL_BUFFER_SIZE3_A); 1416 } 1417 1418 sge->csio_fl_align = fl_align; 1419 1420 csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A); 1421 1422 /* default value of rx_dma_offset of the NIC driver */ 1423 csio_set_reg_field(hw, SGE_CONTROL_A, 1424 PKTSHIFT_V(PKTSHIFT_M), 1425 PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET)); 1426 1427 csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A, 1428 CSUM_HAS_PSEUDO_HDR_F, 0); 1429 } 1430 1431 static void 1432 csio_init_intr_coalesce_parms(struct csio_hw *hw) 1433 { 1434 struct csio_wrm *wrm = csio_hw_to_wrm(hw); 1435 struct csio_sge *sge = &wrm->sge; 1436 1437 csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt); 1438 if (csio_intr_coalesce_cnt) { 1439 csio_sge_thresh_reg = 0; 1440 csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER; 1441 return; 1442 } 1443 1444 csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time); 1445 } 1446 1447 /* 1448 * csio_wr_get_sge - Get SGE register values. 1449 * @hw: HW module. 1450 * 1451 * Used by non-master functions and by master-functions relying on config file. 1452 */ 1453 static void 1454 csio_wr_get_sge(struct csio_hw *hw) 1455 { 1456 struct csio_wrm *wrm = csio_hw_to_wrm(hw); 1457 struct csio_sge *sge = &wrm->sge; 1458 uint32_t ingpad; 1459 int i; 1460 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 1461 u32 ingress_rx_threshold; 1462 1463 sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A); 1464 1465 ingpad = INGPADBOUNDARY_G(sge->sge_control); 1466 1467 switch (ingpad) { 1468 case X_INGPCIEBOUNDARY_32B: 1469 sge->csio_fl_align = 32; break; 1470 case X_INGPCIEBOUNDARY_64B: 1471 sge->csio_fl_align = 64; break; 1472 case X_INGPCIEBOUNDARY_128B: 1473 sge->csio_fl_align = 128; break; 1474 case X_INGPCIEBOUNDARY_256B: 1475 sge->csio_fl_align = 256; break; 1476 case X_INGPCIEBOUNDARY_512B: 1477 sge->csio_fl_align = 512; break; 1478 case X_INGPCIEBOUNDARY_1024B: 1479 sge->csio_fl_align = 1024; break; 1480 case X_INGPCIEBOUNDARY_2048B: 1481 sge->csio_fl_align = 2048; break; 1482 case X_INGPCIEBOUNDARY_4096B: 1483 sge->csio_fl_align = 4096; break; 1484 } 1485 1486 for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++) 1487 csio_get_flbuf_size(hw, sge, i); 1488 1489 timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A); 1490 timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A); 1491 timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A); 1492 1493 sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw, 1494 TIMERVALUE0_G(timer_value_0_and_1)); 1495 sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw, 1496 TIMERVALUE1_G(timer_value_0_and_1)); 1497 sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw, 1498 TIMERVALUE2_G(timer_value_2_and_3)); 1499 sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw, 1500 TIMERVALUE3_G(timer_value_2_and_3)); 1501 sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw, 1502 TIMERVALUE4_G(timer_value_4_and_5)); 1503 sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw, 1504 TIMERVALUE5_G(timer_value_4_and_5)); 1505 1506 ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A); 1507 sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 1508 sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 1509 sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 1510 sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 1511 1512 csio_init_intr_coalesce_parms(hw); 1513 } 1514 1515 /* 1516 * csio_wr_set_sge - Initialize SGE registers 1517 * @hw: HW module. 1518 * 1519 * Used by Master function to initialize SGE registers in the absence 1520 * of a config file. 1521 */ 1522 static void 1523 csio_wr_set_sge(struct csio_hw *hw) 1524 { 1525 struct csio_wrm *wrm = csio_hw_to_wrm(hw); 1526 struct csio_sge *sge = &wrm->sge; 1527 int i; 1528 1529 /* 1530 * Set up our basic SGE mode to deliver CPL messages to our Ingress 1531 * Queue and Packet Date to the Free List. 1532 */ 1533 csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F); 1534 1535 sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A); 1536 1537 /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */ 1538 1539 /* 1540 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows 1541 * and generate an interrupt when this occurs so we can recover. 1542 */ 1543 csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A, 1544 LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M), 1545 LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH)); 1546 csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A, 1547 HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M), 1548 HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH)); 1549 1550 csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F, 1551 ENABLE_DROP_F); 1552 1553 /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */ 1554 1555 CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1); 1556 csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1) 1557 & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A); 1558 csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1) 1559 & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A); 1560 CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4); 1561 CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5); 1562 CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6); 1563 CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7); 1564 CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8); 1565 1566 for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++) 1567 csio_get_flbuf_size(hw, sge, i); 1568 1569 /* Initialize interrupt coalescing attributes */ 1570 sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0; 1571 sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1; 1572 sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2; 1573 sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3; 1574 sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4; 1575 sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5; 1576 1577 sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0; 1578 sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1; 1579 sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2; 1580 sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3; 1581 1582 csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) | 1583 THRESHOLD_1_V(sge->counter_val[1]) | 1584 THRESHOLD_2_V(sge->counter_val[2]) | 1585 THRESHOLD_3_V(sge->counter_val[3]), 1586 SGE_INGRESS_RX_THRESHOLD_A); 1587 1588 csio_wr_reg32(hw, 1589 TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) | 1590 TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])), 1591 SGE_TIMER_VALUE_0_AND_1_A); 1592 1593 csio_wr_reg32(hw, 1594 TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) | 1595 TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])), 1596 SGE_TIMER_VALUE_2_AND_3_A); 1597 1598 csio_wr_reg32(hw, 1599 TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) | 1600 TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])), 1601 SGE_TIMER_VALUE_4_AND_5_A); 1602 1603 csio_init_intr_coalesce_parms(hw); 1604 } 1605 1606 void 1607 csio_wr_sge_init(struct csio_hw *hw) 1608 { 1609 /* 1610 * If we are master and chip is not initialized: 1611 * - If we plan to use the config file, we need to fixup some 1612 * host specific registers, and read the rest of the SGE 1613 * configuration. 1614 * - If we dont plan to use the config file, we need to initialize 1615 * SGE entirely, including fixing the host specific registers. 1616 * If we are master and chip is initialized, just read and work off of 1617 * the already initialized SGE values. 1618 * If we arent the master, we are only allowed to read and work off of 1619 * the already initialized SGE values. 1620 * 1621 * Therefore, before calling this function, we assume that the master- 1622 * ship of the card, state and whether to use config file or not, have 1623 * already been decided. 1624 */ 1625 if (csio_is_hw_master(hw)) { 1626 if (hw->fw_state != CSIO_DEV_STATE_INIT) 1627 csio_wr_fixup_host_params(hw); 1628 1629 if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) 1630 csio_wr_get_sge(hw); 1631 else 1632 csio_wr_set_sge(hw); 1633 } else 1634 csio_wr_get_sge(hw); 1635 } 1636 1637 /* 1638 * csio_wrm_init - Initialize Work request module. 1639 * @wrm: WR module 1640 * @hw: HW pointer 1641 * 1642 * Allocates memory for an array of queue pointers starting at q_arr. 1643 */ 1644 int 1645 csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw) 1646 { 1647 int i; 1648 1649 if (!wrm->num_q) { 1650 csio_err(hw, "Num queues is not set\n"); 1651 return -EINVAL; 1652 } 1653 1654 wrm->q_arr = kcalloc(wrm->num_q, sizeof(struct csio_q *), GFP_KERNEL); 1655 if (!wrm->q_arr) 1656 goto err; 1657 1658 for (i = 0; i < wrm->num_q; i++) { 1659 wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL); 1660 if (!wrm->q_arr[i]) { 1661 while (--i >= 0) 1662 kfree(wrm->q_arr[i]); 1663 goto err_free_arr; 1664 } 1665 } 1666 wrm->free_qidx = 0; 1667 1668 return 0; 1669 1670 err_free_arr: 1671 kfree(wrm->q_arr); 1672 err: 1673 return -ENOMEM; 1674 } 1675 1676 /* 1677 * csio_wrm_exit - Initialize Work request module. 1678 * @wrm: WR module 1679 * @hw: HW module 1680 * 1681 * Uninitialize WR module. Free q_arr and pointers in it. 1682 * We have the additional job of freeing the DMA memory associated 1683 * with the queues. 1684 */ 1685 void 1686 csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw) 1687 { 1688 int i; 1689 uint32_t j; 1690 struct csio_q *q; 1691 struct csio_dma_buf *buf; 1692 1693 for (i = 0; i < wrm->num_q; i++) { 1694 q = wrm->q_arr[i]; 1695 1696 if (wrm->free_qidx && (i < wrm->free_qidx)) { 1697 if (q->type == CSIO_FREELIST) { 1698 if (!q->un.fl.bufs) 1699 continue; 1700 for (j = 0; j < q->credits; j++) { 1701 buf = &q->un.fl.bufs[j]; 1702 if (!buf->vaddr) 1703 continue; 1704 dma_free_coherent(&hw->pdev->dev, 1705 buf->len, buf->vaddr, 1706 buf->paddr); 1707 } 1708 kfree(q->un.fl.bufs); 1709 } 1710 dma_free_coherent(&hw->pdev->dev, q->size, 1711 q->vstart, q->pstart); 1712 } 1713 kfree(q); 1714 } 1715 1716 hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED; 1717 1718 kfree(wrm->q_arr); 1719 } 1720