xref: /linux/drivers/scsi/csiostor/csio_hw.c (revision bb1c928df78ee6e3665a0d013e74108cc9abf34b)
1 /*
2  * This file is part of the Chelsio FCoE driver for Linux.
3  *
4  * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
45 
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
49 
50 int csio_dbg_level = 0xFEFF;
51 unsigned int csio_port_mask = 0xf;
52 
53 /* Default FW event queue entries. */
54 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
55 
56 /* Default MSI param level */
57 int csio_msi = 2;
58 
59 /* FCoE function instances */
60 static int dev_num;
61 
62 /* FCoE Adapter types & its description */
63 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
64 	{"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
65 	{"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
66 	{"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
67 	{"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
68 	{"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
69 	{"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
70 	{"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
71 	{"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
72 	{"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
73 	{"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
74 	{"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
75 	{"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
76 	{"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
77 	{"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
78 	{"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
79 	{"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
80 	{"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
81 	{"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
82 	{"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
83 	{"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
84 	{"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
85 	{"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
86 };
87 
88 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
89 static void csio_hw_mbm_cleanup(struct csio_hw *);
90 
91 /* State machine forward declarations */
92 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
93 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
94 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
95 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
96 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
97 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
98 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
99 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
100 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
101 
102 static void csio_hw_initialize(struct csio_hw *hw);
103 static void csio_evtq_stop(struct csio_hw *hw);
104 static void csio_evtq_start(struct csio_hw *hw);
105 
106 int csio_is_hw_ready(struct csio_hw *hw)
107 {
108 	return csio_match_state(hw, csio_hws_ready);
109 }
110 
111 int csio_is_hw_removing(struct csio_hw *hw)
112 {
113 	return csio_match_state(hw, csio_hws_removing);
114 }
115 
116 
117 /*
118  *	csio_hw_wait_op_done_val - wait until an operation is completed
119  *	@hw: the HW module
120  *	@reg: the register to check for completion
121  *	@mask: a single-bit field within @reg that indicates completion
122  *	@polarity: the value of the field when the operation is completed
123  *	@attempts: number of check iterations
124  *	@delay: delay in usecs between iterations
125  *	@valp: where to store the value of the register at completion time
126  *
127  *	Wait until an operation is completed by checking a bit in a register
128  *	up to @attempts times.  If @valp is not NULL the value of the register
129  *	at the time it indicated completion is stored there.  Returns 0 if the
130  *	operation completes and	-EAGAIN	otherwise.
131  */
132 int
133 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
134 			 int polarity, int attempts, int delay, uint32_t *valp)
135 {
136 	uint32_t val;
137 	while (1) {
138 		val = csio_rd_reg32(hw, reg);
139 
140 		if (!!(val & mask) == polarity) {
141 			if (valp)
142 				*valp = val;
143 			return 0;
144 		}
145 
146 		if (--attempts == 0)
147 			return -EAGAIN;
148 		if (delay)
149 			udelay(delay);
150 	}
151 }
152 
153 /*
154  *	csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
155  *	@hw: the adapter
156  *	@addr: the indirect TP register address
157  *	@mask: specifies the field within the register to modify
158  *	@val: new value for the field
159  *
160  *	Sets a field of an indirect TP register to the given value.
161  */
162 void
163 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
164 			unsigned int mask, unsigned int val)
165 {
166 	csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
167 	val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
168 	csio_wr_reg32(hw, val, TP_PIO_DATA_A);
169 }
170 
171 void
172 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
173 		   uint32_t value)
174 {
175 	uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
176 
177 	csio_wr_reg32(hw, val | value, reg);
178 	/* Flush */
179 	csio_rd_reg32(hw, reg);
180 
181 }
182 
183 static int
184 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
185 {
186 	return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
187 					    addr, len, buf, 0);
188 }
189 
190 /*
191  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
192  */
193 #define EEPROM_MAX_RD_POLL	40
194 #define EEPROM_MAX_WR_POLL	6
195 #define EEPROM_STAT_ADDR	0x7bfc
196 #define VPD_BASE		0x400
197 #define VPD_BASE_OLD		0
198 #define VPD_LEN			1024
199 #define VPD_INFO_FLD_HDR_SIZE	3
200 
201 /*
202  *	csio_hw_seeprom_read - read a serial EEPROM location
203  *	@hw: hw to read
204  *	@addr: EEPROM virtual address
205  *	@data: where to store the read data
206  *
207  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
208  *	VPD capability.  Note that this function must be called with a virtual
209  *	address.
210  */
211 static int
212 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
213 {
214 	uint16_t val = 0;
215 	int attempts = EEPROM_MAX_RD_POLL;
216 	uint32_t base = hw->params.pci.vpd_cap_addr;
217 
218 	if (addr >= EEPROMVSIZE || (addr & 3))
219 		return -EINVAL;
220 
221 	pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
222 
223 	do {
224 		udelay(10);
225 		pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
226 	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
227 
228 	if (!(val & PCI_VPD_ADDR_F)) {
229 		csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
230 		return -EINVAL;
231 	}
232 
233 	pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
234 	*data = le32_to_cpu(*(__le32 *)data);
235 
236 	return 0;
237 }
238 
239 /*
240  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
241  * VPD-R sections.
242  */
243 struct t4_vpd_hdr {
244 	u8  id_tag;
245 	u8  id_len[2];
246 	u8  id_data[ID_LEN];
247 	u8  vpdr_tag;
248 	u8  vpdr_len[2];
249 };
250 
251 /*
252  *	csio_hw_get_vpd_keyword_val - Locates an information field keyword in
253  *				      the VPD
254  *	@v: Pointer to buffered vpd data structure
255  *	@kw: The keyword to search for
256  *
257  *	Returns the value of the information field keyword or
258  *	-EINVAL otherwise.
259  */
260 static int
261 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
262 {
263 	int32_t i;
264 	int32_t offset , len;
265 	const uint8_t *buf = &v->id_tag;
266 	const uint8_t *vpdr_len = &v->vpdr_tag;
267 	offset = sizeof(struct t4_vpd_hdr);
268 	len =  (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
269 
270 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
271 		return -EINVAL;
272 
273 	for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
274 		if (memcmp(buf + i , kw, 2) == 0) {
275 			i += VPD_INFO_FLD_HDR_SIZE;
276 			return i;
277 		}
278 
279 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
280 	}
281 
282 	return -EINVAL;
283 }
284 
285 static int
286 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
287 {
288 	*pos = pci_find_capability(pdev, cap);
289 	if (*pos)
290 		return 0;
291 
292 	return -1;
293 }
294 
295 /*
296  *	csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
297  *	@hw: HW module
298  *	@p: where to store the parameters
299  *
300  *	Reads card parameters stored in VPD EEPROM.
301  */
302 static int
303 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
304 {
305 	int i, ret, ec, sn, addr;
306 	uint8_t *vpd, csum;
307 	const struct t4_vpd_hdr *v;
308 	/* To get around compilation warning from strstrip */
309 	char *s;
310 
311 	if (csio_is_valid_vpd(hw))
312 		return 0;
313 
314 	ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
315 				  &hw->params.pci.vpd_cap_addr);
316 	if (ret)
317 		return -EINVAL;
318 
319 	vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
320 	if (vpd == NULL)
321 		return -ENOMEM;
322 
323 	/*
324 	 * Card information normally starts at VPD_BASE but early cards had
325 	 * it at 0.
326 	 */
327 	ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
328 	addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
329 
330 	for (i = 0; i < VPD_LEN; i += 4) {
331 		ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
332 		if (ret) {
333 			kfree(vpd);
334 			return ret;
335 		}
336 	}
337 
338 	/* Reset the VPD flag! */
339 	hw->flags &= (~CSIO_HWF_VPD_VALID);
340 
341 	v = (const struct t4_vpd_hdr *)vpd;
342 
343 #define FIND_VPD_KW(var, name) do { \
344 	var = csio_hw_get_vpd_keyword_val(v, name); \
345 	if (var < 0) { \
346 		csio_err(hw, "missing VPD keyword " name "\n"); \
347 		kfree(vpd); \
348 		return -EINVAL; \
349 	} \
350 } while (0)
351 
352 	FIND_VPD_KW(i, "RV");
353 	for (csum = 0; i >= 0; i--)
354 		csum += vpd[i];
355 
356 	if (csum) {
357 		csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
358 		kfree(vpd);
359 		return -EINVAL;
360 	}
361 	FIND_VPD_KW(ec, "EC");
362 	FIND_VPD_KW(sn, "SN");
363 #undef FIND_VPD_KW
364 
365 	memcpy(p->id, v->id_data, ID_LEN);
366 	s = strstrip(p->id);
367 	memcpy(p->ec, vpd + ec, EC_LEN);
368 	s = strstrip(p->ec);
369 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
370 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
371 	s = strstrip(p->sn);
372 
373 	csio_valid_vpd_copied(hw);
374 
375 	kfree(vpd);
376 	return 0;
377 }
378 
379 /*
380  *	csio_hw_sf1_read - read data from the serial flash
381  *	@hw: the HW module
382  *	@byte_cnt: number of bytes to read
383  *	@cont: whether another operation will be chained
384  *      @lock: whether to lock SF for PL access only
385  *	@valp: where to store the read data
386  *
387  *	Reads up to 4 bytes of data from the serial flash.  The location of
388  *	the read needs to be specified prior to calling this by issuing the
389  *	appropriate commands to the serial flash.
390  */
391 static int
392 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
393 		 int32_t lock, uint32_t *valp)
394 {
395 	int ret;
396 
397 	if (!byte_cnt || byte_cnt > 4)
398 		return -EINVAL;
399 	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
400 		return -EBUSY;
401 
402 	csio_wr_reg32(hw,  SF_LOCK_V(lock) | SF_CONT_V(cont) |
403 		      BYTECNT_V(byte_cnt - 1), SF_OP_A);
404 	ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
405 				       10, NULL);
406 	if (!ret)
407 		*valp = csio_rd_reg32(hw, SF_DATA_A);
408 	return ret;
409 }
410 
411 /*
412  *	csio_hw_sf1_write - write data to the serial flash
413  *	@hw: the HW module
414  *	@byte_cnt: number of bytes to write
415  *	@cont: whether another operation will be chained
416  *      @lock: whether to lock SF for PL access only
417  *	@val: value to write
418  *
419  *	Writes up to 4 bytes of data to the serial flash.  The location of
420  *	the write needs to be specified prior to calling this by issuing the
421  *	appropriate commands to the serial flash.
422  */
423 static int
424 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
425 		  int32_t lock, uint32_t val)
426 {
427 	if (!byte_cnt || byte_cnt > 4)
428 		return -EINVAL;
429 	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
430 		return -EBUSY;
431 
432 	csio_wr_reg32(hw, val, SF_DATA_A);
433 	csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
434 		      OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
435 
436 	return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
437 					10, NULL);
438 }
439 
440 /*
441  *	csio_hw_flash_wait_op - wait for a flash operation to complete
442  *	@hw: the HW module
443  *	@attempts: max number of polls of the status register
444  *	@delay: delay between polls in ms
445  *
446  *	Wait for a flash operation to complete by polling the status register.
447  */
448 static int
449 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
450 {
451 	int ret;
452 	uint32_t status;
453 
454 	while (1) {
455 		ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
456 		if (ret != 0)
457 			return ret;
458 
459 		ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
460 		if (ret != 0)
461 			return ret;
462 
463 		if (!(status & 1))
464 			return 0;
465 		if (--attempts == 0)
466 			return -EAGAIN;
467 		if (delay)
468 			msleep(delay);
469 	}
470 }
471 
472 /*
473  *	csio_hw_read_flash - read words from serial flash
474  *	@hw: the HW module
475  *	@addr: the start address for the read
476  *	@nwords: how many 32-bit words to read
477  *	@data: where to store the read data
478  *	@byte_oriented: whether to store data as bytes or as words
479  *
480  *	Read the specified number of 32-bit words from the serial flash.
481  *	If @byte_oriented is set the read data is stored as a byte array
482  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
483  *	natural endianess.
484  */
485 static int
486 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
487 		  uint32_t *data, int32_t byte_oriented)
488 {
489 	int ret;
490 
491 	if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
492 		return -EINVAL;
493 
494 	addr = swab32(addr) | SF_RD_DATA_FAST;
495 
496 	ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
497 	if (ret != 0)
498 		return ret;
499 
500 	ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
501 	if (ret != 0)
502 		return ret;
503 
504 	for ( ; nwords; nwords--, data++) {
505 		ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
506 		if (nwords == 1)
507 			csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
508 		if (ret)
509 			return ret;
510 		if (byte_oriented)
511 			*data = (__force __u32) htonl(*data);
512 	}
513 	return 0;
514 }
515 
516 /*
517  *	csio_hw_write_flash - write up to a page of data to the serial flash
518  *	@hw: the hw
519  *	@addr: the start address to write
520  *	@n: length of data to write in bytes
521  *	@data: the data to write
522  *
523  *	Writes up to a page of data (256 bytes) to the serial flash starting
524  *	at the given address.  All the data must be written to the same page.
525  */
526 static int
527 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
528 		    uint32_t n, const uint8_t *data)
529 {
530 	int ret = -EINVAL;
531 	uint32_t buf[64];
532 	uint32_t i, c, left, val, offset = addr & 0xff;
533 
534 	if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
535 		return -EINVAL;
536 
537 	val = swab32(addr) | SF_PROG_PAGE;
538 
539 	ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
540 	if (ret != 0)
541 		goto unlock;
542 
543 	ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
544 	if (ret != 0)
545 		goto unlock;
546 
547 	for (left = n; left; left -= c) {
548 		c = min(left, 4U);
549 		for (val = 0, i = 0; i < c; ++i)
550 			val = (val << 8) + *data++;
551 
552 		ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
553 		if (ret)
554 			goto unlock;
555 	}
556 	ret = csio_hw_flash_wait_op(hw, 8, 1);
557 	if (ret)
558 		goto unlock;
559 
560 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
561 
562 	/* Read the page to verify the write succeeded */
563 	ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
564 	if (ret)
565 		return ret;
566 
567 	if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
568 		csio_err(hw,
569 			 "failed to correctly write the flash page at %#x\n",
570 			 addr);
571 		return -EINVAL;
572 	}
573 
574 	return 0;
575 
576 unlock:
577 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
578 	return ret;
579 }
580 
581 /*
582  *	csio_hw_flash_erase_sectors - erase a range of flash sectors
583  *	@hw: the HW module
584  *	@start: the first sector to erase
585  *	@end: the last sector to erase
586  *
587  *	Erases the sectors in the given inclusive range.
588  */
589 static int
590 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
591 {
592 	int ret = 0;
593 
594 	while (start <= end) {
595 
596 		ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
597 		if (ret != 0)
598 			goto out;
599 
600 		ret = csio_hw_sf1_write(hw, 4, 0, 1,
601 					SF_ERASE_SECTOR | (start << 8));
602 		if (ret != 0)
603 			goto out;
604 
605 		ret = csio_hw_flash_wait_op(hw, 14, 500);
606 		if (ret != 0)
607 			goto out;
608 
609 		start++;
610 	}
611 out:
612 	if (ret)
613 		csio_err(hw, "erase of flash sector %d failed, error %d\n",
614 			 start, ret);
615 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
616 	return 0;
617 }
618 
619 static void
620 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
621 {
622 	csio_info(hw, "%s: %u.%u.%u.%u\n", str,
623 		    FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
624 		    FW_HDR_FW_VER_MINOR_G(hw->fwrev),
625 		    FW_HDR_FW_VER_MICRO_G(hw->fwrev),
626 		    FW_HDR_FW_VER_BUILD_G(hw->fwrev));
627 }
628 
629 /*
630  * csio_hw_get_fw_version - read the firmware version
631  * @hw: HW module
632  * @vers: where to place the version
633  *
634  * Reads the FW version from flash.
635  */
636 static int
637 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
638 {
639 	return csio_hw_read_flash(hw, FLASH_FW_START +
640 				  offsetof(struct fw_hdr, fw_ver), 1,
641 				  vers, 0);
642 }
643 
644 /*
645  *	csio_hw_get_tp_version - read the TP microcode version
646  *	@hw: HW module
647  *	@vers: where to place the version
648  *
649  *	Reads the TP microcode version from flash.
650  */
651 static int
652 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
653 {
654 	return csio_hw_read_flash(hw, FLASH_FW_START +
655 			offsetof(struct fw_hdr, tp_microcode_ver), 1,
656 			vers, 0);
657 }
658 
659 /*
660  * csio_hw_fw_dload - download firmware.
661  * @hw: HW module
662  * @fw_data: firmware image to write.
663  * @size: image size
664  *
665  * Write the supplied firmware image to the card's serial flash.
666  */
667 static int
668 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
669 {
670 	uint32_t csum;
671 	int32_t addr;
672 	int ret;
673 	uint32_t i;
674 	uint8_t first_page[SF_PAGE_SIZE];
675 	const __be32 *p = (const __be32 *)fw_data;
676 	struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
677 	uint32_t sf_sec_size;
678 
679 	if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
680 		csio_err(hw, "Serial Flash data invalid\n");
681 		return -EINVAL;
682 	}
683 
684 	if (!size) {
685 		csio_err(hw, "FW image has no data\n");
686 		return -EINVAL;
687 	}
688 
689 	if (size & 511) {
690 		csio_err(hw, "FW image size not multiple of 512 bytes\n");
691 		return -EINVAL;
692 	}
693 
694 	if (ntohs(hdr->len512) * 512 != size) {
695 		csio_err(hw, "FW image size differs from size in FW header\n");
696 		return -EINVAL;
697 	}
698 
699 	if (size > FLASH_FW_MAX_SIZE) {
700 		csio_err(hw, "FW image too large, max is %u bytes\n",
701 			    FLASH_FW_MAX_SIZE);
702 		return -EINVAL;
703 	}
704 
705 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
706 		csum += ntohl(p[i]);
707 
708 	if (csum != 0xffffffff) {
709 		csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
710 		return -EINVAL;
711 	}
712 
713 	sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
714 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
715 
716 	csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
717 			  FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
718 
719 	ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
720 					  FLASH_FW_START_SEC + i - 1);
721 	if (ret) {
722 		csio_err(hw, "Flash Erase failed\n");
723 		goto out;
724 	}
725 
726 	/*
727 	 * We write the correct version at the end so the driver can see a bad
728 	 * version if the FW write fails.  Start by writing a copy of the
729 	 * first page with a bad version.
730 	 */
731 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
732 	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
733 	ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
734 	if (ret)
735 		goto out;
736 
737 	csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
738 		    FW_IMG_START, FW_IMG_START + size);
739 
740 	addr = FLASH_FW_START;
741 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
742 		addr += SF_PAGE_SIZE;
743 		fw_data += SF_PAGE_SIZE;
744 		ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
745 		if (ret)
746 			goto out;
747 	}
748 
749 	ret = csio_hw_write_flash(hw,
750 				  FLASH_FW_START +
751 					offsetof(struct fw_hdr, fw_ver),
752 				  sizeof(hdr->fw_ver),
753 				  (const uint8_t *)&hdr->fw_ver);
754 
755 out:
756 	if (ret)
757 		csio_err(hw, "firmware download failed, error %d\n", ret);
758 	return ret;
759 }
760 
761 static int
762 csio_hw_get_flash_params(struct csio_hw *hw)
763 {
764 	int ret;
765 	uint32_t info = 0;
766 
767 	ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
768 	if (!ret)
769 		ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
770 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
771 	if (ret != 0)
772 		return ret;
773 
774 	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
775 		return -EINVAL;
776 	info >>= 16;				/* log2 of size */
777 	if (info >= 0x14 && info < 0x18)
778 		hw->params.sf_nsec = 1 << (info - 16);
779 	else if (info == 0x18)
780 		hw->params.sf_nsec = 64;
781 	else
782 		return -EINVAL;
783 	hw->params.sf_size = 1 << info;
784 
785 	return 0;
786 }
787 
788 /*****************************************************************************/
789 /* HW State machine assists                                                  */
790 /*****************************************************************************/
791 
792 static int
793 csio_hw_dev_ready(struct csio_hw *hw)
794 {
795 	uint32_t reg;
796 	int cnt = 6;
797 	int src_pf;
798 
799 	while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
800 	       (--cnt != 0))
801 		mdelay(100);
802 
803 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
804 		src_pf = SOURCEPF_G(reg);
805 	else
806 		src_pf = T6_SOURCEPF_G(reg);
807 
808 	if ((cnt == 0) && (((int32_t)(src_pf) < 0) ||
809 			   (src_pf >= CSIO_MAX_PFN))) {
810 		csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
811 		return -EIO;
812 	}
813 
814 	hw->pfn = src_pf;
815 
816 	return 0;
817 }
818 
819 /*
820  * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
821  * @hw: HW module
822  * @state: Device state
823  *
824  * FW_HELLO_CMD has to be polled for completion.
825  */
826 static int
827 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
828 {
829 	struct csio_mb	*mbp;
830 	int	rv = 0;
831 	enum fw_retval retval;
832 	uint8_t mpfn;
833 	char state_str[16];
834 	int retries = FW_CMD_HELLO_RETRIES;
835 
836 	memset(state_str, 0, sizeof(state_str));
837 
838 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
839 	if (!mbp) {
840 		rv = -ENOMEM;
841 		CSIO_INC_STATS(hw, n_err_nomem);
842 		goto out;
843 	}
844 
845 retry:
846 	csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
847 		      hw->pfn, CSIO_MASTER_MAY, NULL);
848 
849 	rv = csio_mb_issue(hw, mbp);
850 	if (rv) {
851 		csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
852 		goto out_free_mb;
853 	}
854 
855 	csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
856 	if (retval != FW_SUCCESS) {
857 		csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
858 		rv = -EINVAL;
859 		goto out_free_mb;
860 	}
861 
862 	/* Firmware has designated us to be master */
863 	if (hw->pfn == mpfn) {
864 		hw->flags |= CSIO_HWF_MASTER;
865 	} else if (*state == CSIO_DEV_STATE_UNINIT) {
866 		/*
867 		 * If we're not the Master PF then we need to wait around for
868 		 * the Master PF Driver to finish setting up the adapter.
869 		 *
870 		 * Note that we also do this wait if we're a non-Master-capable
871 		 * PF and there is no current Master PF; a Master PF may show up
872 		 * momentarily and we wouldn't want to fail pointlessly.  (This
873 		 * can happen when an OS loads lots of different drivers rapidly
874 		 * at the same time). In this case, the Master PF returned by
875 		 * the firmware will be PCIE_FW_MASTER_MASK so the test below
876 		 * will work ...
877 		 */
878 
879 		int waiting = FW_CMD_HELLO_TIMEOUT;
880 
881 		/*
882 		 * Wait for the firmware to either indicate an error or
883 		 * initialized state.  If we see either of these we bail out
884 		 * and report the issue to the caller.  If we exhaust the
885 		 * "hello timeout" and we haven't exhausted our retries, try
886 		 * again.  Otherwise bail with a timeout error.
887 		 */
888 		for (;;) {
889 			uint32_t pcie_fw;
890 
891 			spin_unlock_irq(&hw->lock);
892 			msleep(50);
893 			spin_lock_irq(&hw->lock);
894 			waiting -= 50;
895 
896 			/*
897 			 * If neither Error nor Initialialized are indicated
898 			 * by the firmware keep waiting till we exaust our
899 			 * timeout ... and then retry if we haven't exhausted
900 			 * our retries ...
901 			 */
902 			pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
903 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
904 				if (waiting <= 0) {
905 					if (retries-- > 0)
906 						goto retry;
907 
908 					rv = -ETIMEDOUT;
909 					break;
910 				}
911 				continue;
912 			}
913 
914 			/*
915 			 * We either have an Error or Initialized condition
916 			 * report errors preferentially.
917 			 */
918 			if (state) {
919 				if (pcie_fw & PCIE_FW_ERR_F) {
920 					*state = CSIO_DEV_STATE_ERR;
921 					rv = -ETIMEDOUT;
922 				} else if (pcie_fw & PCIE_FW_INIT_F)
923 					*state = CSIO_DEV_STATE_INIT;
924 			}
925 
926 			/*
927 			 * If we arrived before a Master PF was selected and
928 			 * there's not a valid Master PF, grab its identity
929 			 * for our caller.
930 			 */
931 			if (mpfn == PCIE_FW_MASTER_M &&
932 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
933 				mpfn = PCIE_FW_MASTER_G(pcie_fw);
934 			break;
935 		}
936 		hw->flags &= ~CSIO_HWF_MASTER;
937 	}
938 
939 	switch (*state) {
940 	case CSIO_DEV_STATE_UNINIT:
941 		strcpy(state_str, "Initializing");
942 		break;
943 	case CSIO_DEV_STATE_INIT:
944 		strcpy(state_str, "Initialized");
945 		break;
946 	case CSIO_DEV_STATE_ERR:
947 		strcpy(state_str, "Error");
948 		break;
949 	default:
950 		strcpy(state_str, "Unknown");
951 		break;
952 	}
953 
954 	if (hw->pfn == mpfn)
955 		csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
956 			hw->pfn, state_str);
957 	else
958 		csio_info(hw,
959 		    "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
960 		    hw->pfn, mpfn, state_str);
961 
962 out_free_mb:
963 	mempool_free(mbp, hw->mb_mempool);
964 out:
965 	return rv;
966 }
967 
968 /*
969  * csio_do_bye - Perform the BYE FW Mailbox command and process response.
970  * @hw: HW module
971  *
972  */
973 static int
974 csio_do_bye(struct csio_hw *hw)
975 {
976 	struct csio_mb	*mbp;
977 	enum fw_retval retval;
978 
979 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
980 	if (!mbp) {
981 		CSIO_INC_STATS(hw, n_err_nomem);
982 		return -ENOMEM;
983 	}
984 
985 	csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
986 
987 	if (csio_mb_issue(hw, mbp)) {
988 		csio_err(hw, "Issue of BYE command failed\n");
989 		mempool_free(mbp, hw->mb_mempool);
990 		return -EINVAL;
991 	}
992 
993 	retval = csio_mb_fw_retval(mbp);
994 	if (retval != FW_SUCCESS) {
995 		mempool_free(mbp, hw->mb_mempool);
996 		return -EINVAL;
997 	}
998 
999 	mempool_free(mbp, hw->mb_mempool);
1000 
1001 	return 0;
1002 }
1003 
1004 /*
1005  * csio_do_reset- Perform the device reset.
1006  * @hw: HW module
1007  * @fw_rst: FW reset
1008  *
1009  * If fw_rst is set, issues FW reset mbox cmd otherwise
1010  * does PIO reset.
1011  * Performs reset of the function.
1012  */
1013 static int
1014 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1015 {
1016 	struct csio_mb	*mbp;
1017 	enum fw_retval retval;
1018 
1019 	if (!fw_rst) {
1020 		/* PIO reset */
1021 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1022 		mdelay(2000);
1023 		return 0;
1024 	}
1025 
1026 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1027 	if (!mbp) {
1028 		CSIO_INC_STATS(hw, n_err_nomem);
1029 		return -ENOMEM;
1030 	}
1031 
1032 	csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1033 		      PIORSTMODE_F | PIORST_F, 0, NULL);
1034 
1035 	if (csio_mb_issue(hw, mbp)) {
1036 		csio_err(hw, "Issue of RESET command failed.n");
1037 		mempool_free(mbp, hw->mb_mempool);
1038 		return -EINVAL;
1039 	}
1040 
1041 	retval = csio_mb_fw_retval(mbp);
1042 	if (retval != FW_SUCCESS) {
1043 		csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1044 		mempool_free(mbp, hw->mb_mempool);
1045 		return -EINVAL;
1046 	}
1047 
1048 	mempool_free(mbp, hw->mb_mempool);
1049 
1050 	return 0;
1051 }
1052 
1053 static int
1054 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1055 {
1056 	struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1057 	uint16_t caps;
1058 
1059 	caps = ntohs(rsp->fcoecaps);
1060 
1061 	if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1062 		csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1063 		return -EINVAL;
1064 	}
1065 
1066 	if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1067 		csio_err(hw, "No FCoE Control Offload capability\n");
1068 		return -EINVAL;
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 /*
1075  *	csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1076  *	@hw: the HW module
1077  *	@mbox: mailbox to use for the FW RESET command (if desired)
1078  *	@force: force uP into RESET even if FW RESET command fails
1079  *
1080  *	Issues a RESET command to firmware (if desired) with a HALT indication
1081  *	and then puts the microprocessor into RESET state.  The RESET command
1082  *	will only be issued if a legitimate mailbox is provided (mbox <=
1083  *	PCIE_FW_MASTER_MASK).
1084  *
1085  *	This is generally used in order for the host to safely manipulate the
1086  *	adapter without fear of conflicting with whatever the firmware might
1087  *	be doing.  The only way out of this state is to RESTART the firmware
1088  *	...
1089  */
1090 static int
1091 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1092 {
1093 	enum fw_retval retval = 0;
1094 
1095 	/*
1096 	 * If a legitimate mailbox is provided, issue a RESET command
1097 	 * with a HALT indication.
1098 	 */
1099 	if (mbox <= PCIE_FW_MASTER_M) {
1100 		struct csio_mb	*mbp;
1101 
1102 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1103 		if (!mbp) {
1104 			CSIO_INC_STATS(hw, n_err_nomem);
1105 			return -ENOMEM;
1106 		}
1107 
1108 		csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1109 			      PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1110 			      NULL);
1111 
1112 		if (csio_mb_issue(hw, mbp)) {
1113 			csio_err(hw, "Issue of RESET command failed!\n");
1114 			mempool_free(mbp, hw->mb_mempool);
1115 			return -EINVAL;
1116 		}
1117 
1118 		retval = csio_mb_fw_retval(mbp);
1119 		mempool_free(mbp, hw->mb_mempool);
1120 	}
1121 
1122 	/*
1123 	 * Normally we won't complete the operation if the firmware RESET
1124 	 * command fails but if our caller insists we'll go ahead and put the
1125 	 * uP into RESET.  This can be useful if the firmware is hung or even
1126 	 * missing ...  We'll have to take the risk of putting the uP into
1127 	 * RESET without the cooperation of firmware in that case.
1128 	 *
1129 	 * We also force the firmware's HALT flag to be on in case we bypassed
1130 	 * the firmware RESET command above or we're dealing with old firmware
1131 	 * which doesn't have the HALT capability.  This will serve as a flag
1132 	 * for the incoming firmware to know that it's coming out of a HALT
1133 	 * rather than a RESET ... if it's new enough to understand that ...
1134 	 */
1135 	if (retval == 0 || force) {
1136 		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1137 		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1138 				   PCIE_FW_HALT_F);
1139 	}
1140 
1141 	/*
1142 	 * And we always return the result of the firmware RESET command
1143 	 * even when we force the uP into RESET ...
1144 	 */
1145 	return retval ? -EINVAL : 0;
1146 }
1147 
1148 /*
1149  *	csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1150  *	@hw: the HW module
1151  *	@reset: if we want to do a RESET to restart things
1152  *
1153  *	Restart firmware previously halted by csio_hw_fw_halt().  On successful
1154  *	return the previous PF Master remains as the new PF Master and there
1155  *	is no need to issue a new HELLO command, etc.
1156  *
1157  *	We do this in two ways:
1158  *
1159  *	 1. If we're dealing with newer firmware we'll simply want to take
1160  *	    the chip's microprocessor out of RESET.  This will cause the
1161  *	    firmware to start up from its start vector.  And then we'll loop
1162  *	    until the firmware indicates it's started again (PCIE_FW.HALT
1163  *	    reset to 0) or we timeout.
1164  *
1165  *	 2. If we're dealing with older firmware then we'll need to RESET
1166  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
1167  *	    flag and automatically RESET itself on startup.
1168  */
1169 static int
1170 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1171 {
1172 	if (reset) {
1173 		/*
1174 		 * Since we're directing the RESET instead of the firmware
1175 		 * doing it automatically, we need to clear the PCIE_FW.HALT
1176 		 * bit.
1177 		 */
1178 		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1179 
1180 		/*
1181 		 * If we've been given a valid mailbox, first try to get the
1182 		 * firmware to do the RESET.  If that works, great and we can
1183 		 * return success.  Otherwise, if we haven't been given a
1184 		 * valid mailbox or the RESET command failed, fall back to
1185 		 * hitting the chip with a hammer.
1186 		 */
1187 		if (mbox <= PCIE_FW_MASTER_M) {
1188 			csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1189 			msleep(100);
1190 			if (csio_do_reset(hw, true) == 0)
1191 				return 0;
1192 		}
1193 
1194 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1195 		msleep(2000);
1196 	} else {
1197 		int ms;
1198 
1199 		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1200 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1201 			if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1202 				return 0;
1203 			msleep(100);
1204 			ms += 100;
1205 		}
1206 		return -ETIMEDOUT;
1207 	}
1208 	return 0;
1209 }
1210 
1211 /*
1212  *	csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1213  *	@hw: the HW module
1214  *	@mbox: mailbox to use for the FW RESET command (if desired)
1215  *	@fw_data: the firmware image to write
1216  *	@size: image size
1217  *	@force: force upgrade even if firmware doesn't cooperate
1218  *
1219  *	Perform all of the steps necessary for upgrading an adapter's
1220  *	firmware image.  Normally this requires the cooperation of the
1221  *	existing firmware in order to halt all existing activities
1222  *	but if an invalid mailbox token is passed in we skip that step
1223  *	(though we'll still put the adapter microprocessor into RESET in
1224  *	that case).
1225  *
1226  *	On successful return the new firmware will have been loaded and
1227  *	the adapter will have been fully RESET losing all previous setup
1228  *	state.  On unsuccessful return the adapter may be completely hosed ...
1229  *	positive errno indicates that the adapter is ~probably~ intact, a
1230  *	negative errno indicates that things are looking bad ...
1231  */
1232 static int
1233 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1234 		  const u8 *fw_data, uint32_t size, int32_t force)
1235 {
1236 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1237 	int reset, ret;
1238 
1239 	ret = csio_hw_fw_halt(hw, mbox, force);
1240 	if (ret != 0 && !force)
1241 		return ret;
1242 
1243 	ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1244 	if (ret != 0)
1245 		return ret;
1246 
1247 	/*
1248 	 * Older versions of the firmware don't understand the new
1249 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1250 	 * restart.  So for newly loaded older firmware we'll have to do the
1251 	 * RESET for it so it starts up on a clean slate.  We can tell if
1252 	 * the newly loaded firmware will handle this right by checking
1253 	 * its header flags to see if it advertises the capability.
1254 	 */
1255 	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1256 	return csio_hw_fw_restart(hw, mbox, reset);
1257 }
1258 
1259 /*
1260  * csio_get_device_params - Get device parameters.
1261  * @hw: HW module
1262  *
1263  */
1264 static int
1265 csio_get_device_params(struct csio_hw *hw)
1266 {
1267 	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
1268 	struct csio_mb	*mbp;
1269 	enum fw_retval retval;
1270 	u32 param[6];
1271 	int i, j = 0;
1272 
1273 	/* Initialize portids to -1 */
1274 	for (i = 0; i < CSIO_MAX_PPORTS; i++)
1275 		hw->pport[i].portid = -1;
1276 
1277 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1278 	if (!mbp) {
1279 		CSIO_INC_STATS(hw, n_err_nomem);
1280 		return -ENOMEM;
1281 	}
1282 
1283 	/* Get port vec information. */
1284 	param[0] = FW_PARAM_DEV(PORTVEC);
1285 
1286 	/* Get Core clock. */
1287 	param[1] = FW_PARAM_DEV(CCLK);
1288 
1289 	/* Get EQ id start and end. */
1290 	param[2] = FW_PARAM_PFVF(EQ_START);
1291 	param[3] = FW_PARAM_PFVF(EQ_END);
1292 
1293 	/* Get IQ id start and end. */
1294 	param[4] = FW_PARAM_PFVF(IQFLINT_START);
1295 	param[5] = FW_PARAM_PFVF(IQFLINT_END);
1296 
1297 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1298 		       ARRAY_SIZE(param), param, NULL, false, NULL);
1299 	if (csio_mb_issue(hw, mbp)) {
1300 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1301 		mempool_free(mbp, hw->mb_mempool);
1302 		return -EINVAL;
1303 	}
1304 
1305 	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1306 			ARRAY_SIZE(param), param);
1307 	if (retval != FW_SUCCESS) {
1308 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1309 				retval);
1310 		mempool_free(mbp, hw->mb_mempool);
1311 		return -EINVAL;
1312 	}
1313 
1314 	/* cache the information. */
1315 	hw->port_vec = param[0];
1316 	hw->vpd.cclk = param[1];
1317 	wrm->fw_eq_start = param[2];
1318 	wrm->fw_iq_start = param[4];
1319 
1320 	/* Using FW configured max iqs & eqs */
1321 	if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1322 		!csio_is_hw_master(hw)) {
1323 		hw->cfg_niq = param[5] - param[4] + 1;
1324 		hw->cfg_neq = param[3] - param[2] + 1;
1325 		csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1326 			hw->cfg_niq, hw->cfg_neq);
1327 	}
1328 
1329 	hw->port_vec &= csio_port_mask;
1330 
1331 	hw->num_pports	= hweight32(hw->port_vec);
1332 
1333 	csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1334 		    hw->port_vec, hw->num_pports);
1335 
1336 	for (i = 0; i < hw->num_pports; i++) {
1337 		while ((hw->port_vec & (1 << j)) == 0)
1338 			j++;
1339 		hw->pport[i].portid = j++;
1340 		csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1341 	}
1342 	mempool_free(mbp, hw->mb_mempool);
1343 
1344 	return 0;
1345 }
1346 
1347 
1348 /*
1349  * csio_config_device_caps - Get and set device capabilities.
1350  * @hw: HW module
1351  *
1352  */
1353 static int
1354 csio_config_device_caps(struct csio_hw *hw)
1355 {
1356 	struct csio_mb	*mbp;
1357 	enum fw_retval retval;
1358 	int rv = -EINVAL;
1359 
1360 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1361 	if (!mbp) {
1362 		CSIO_INC_STATS(hw, n_err_nomem);
1363 		return -ENOMEM;
1364 	}
1365 
1366 	/* Get device capabilities */
1367 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1368 
1369 	if (csio_mb_issue(hw, mbp)) {
1370 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1371 		goto out;
1372 	}
1373 
1374 	retval = csio_mb_fw_retval(mbp);
1375 	if (retval != FW_SUCCESS) {
1376 		csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1377 		goto out;
1378 	}
1379 
1380 	/* Validate device capabilities */
1381 	rv = csio_hw_validate_caps(hw, mbp);
1382 	if (rv != 0)
1383 		goto out;
1384 
1385 	/* Don't config device capabilities if already configured */
1386 	if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1387 		rv = 0;
1388 		goto out;
1389 	}
1390 
1391 	/* Write back desired device capabilities */
1392 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1393 			    false, true, NULL);
1394 
1395 	if (csio_mb_issue(hw, mbp)) {
1396 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1397 		goto out;
1398 	}
1399 
1400 	retval = csio_mb_fw_retval(mbp);
1401 	if (retval != FW_SUCCESS) {
1402 		csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1403 		goto out;
1404 	}
1405 
1406 	rv = 0;
1407 out:
1408 	mempool_free(mbp, hw->mb_mempool);
1409 	return rv;
1410 }
1411 
1412 /*
1413  * csio_enable_ports - Bring up all available ports.
1414  * @hw: HW module.
1415  *
1416  */
1417 static int
1418 csio_enable_ports(struct csio_hw *hw)
1419 {
1420 	struct csio_mb  *mbp;
1421 	enum fw_retval retval;
1422 	uint8_t portid;
1423 	int i;
1424 
1425 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1426 	if (!mbp) {
1427 		CSIO_INC_STATS(hw, n_err_nomem);
1428 		return -ENOMEM;
1429 	}
1430 
1431 	for (i = 0; i < hw->num_pports; i++) {
1432 		portid = hw->pport[i].portid;
1433 
1434 		/* Read PORT information */
1435 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1436 			     false, 0, 0, NULL);
1437 
1438 		if (csio_mb_issue(hw, mbp)) {
1439 			csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1440 				 portid);
1441 			mempool_free(mbp, hw->mb_mempool);
1442 			return -EINVAL;
1443 		}
1444 
1445 		csio_mb_process_read_port_rsp(hw, mbp, &retval,
1446 					      &hw->pport[i].pcap);
1447 		if (retval != FW_SUCCESS) {
1448 			csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1449 				 portid, retval);
1450 			mempool_free(mbp, hw->mb_mempool);
1451 			return -EINVAL;
1452 		}
1453 
1454 		/* Write back PORT information */
1455 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1456 			     (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1457 
1458 		if (csio_mb_issue(hw, mbp)) {
1459 			csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1460 				 portid);
1461 			mempool_free(mbp, hw->mb_mempool);
1462 			return -EINVAL;
1463 		}
1464 
1465 		retval = csio_mb_fw_retval(mbp);
1466 		if (retval != FW_SUCCESS) {
1467 			csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1468 				 portid, retval);
1469 			mempool_free(mbp, hw->mb_mempool);
1470 			return -EINVAL;
1471 		}
1472 
1473 	} /* For all ports */
1474 
1475 	mempool_free(mbp, hw->mb_mempool);
1476 
1477 	return 0;
1478 }
1479 
1480 /*
1481  * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1482  * @hw: HW module
1483  * Issued with lock held.
1484  */
1485 static int
1486 csio_get_fcoe_resinfo(struct csio_hw *hw)
1487 {
1488 	struct csio_fcoe_res_info *res_info = &hw->fres_info;
1489 	struct fw_fcoe_res_info_cmd *rsp;
1490 	struct csio_mb  *mbp;
1491 	enum fw_retval retval;
1492 
1493 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1494 	if (!mbp) {
1495 		CSIO_INC_STATS(hw, n_err_nomem);
1496 		return -ENOMEM;
1497 	}
1498 
1499 	/* Get FCoE FW resource information */
1500 	csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1501 
1502 	if (csio_mb_issue(hw, mbp)) {
1503 		csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1504 		mempool_free(mbp, hw->mb_mempool);
1505 		return -EINVAL;
1506 	}
1507 
1508 	rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1509 	retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1510 	if (retval != FW_SUCCESS) {
1511 		csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1512 			 retval);
1513 		mempool_free(mbp, hw->mb_mempool);
1514 		return -EINVAL;
1515 	}
1516 
1517 	res_info->e_d_tov = ntohs(rsp->e_d_tov);
1518 	res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1519 	res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1520 	res_info->r_r_tov = ntohs(rsp->r_r_tov);
1521 	res_info->max_xchgs = ntohl(rsp->max_xchgs);
1522 	res_info->max_ssns = ntohl(rsp->max_ssns);
1523 	res_info->used_xchgs = ntohl(rsp->used_xchgs);
1524 	res_info->used_ssns = ntohl(rsp->used_ssns);
1525 	res_info->max_fcfs = ntohl(rsp->max_fcfs);
1526 	res_info->max_vnps = ntohl(rsp->max_vnps);
1527 	res_info->used_fcfs = ntohl(rsp->used_fcfs);
1528 	res_info->used_vnps = ntohl(rsp->used_vnps);
1529 
1530 	csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1531 						  res_info->max_xchgs);
1532 	mempool_free(mbp, hw->mb_mempool);
1533 
1534 	return 0;
1535 }
1536 
1537 static int
1538 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1539 {
1540 	struct csio_mb	*mbp;
1541 	enum fw_retval retval;
1542 	u32 _param[1];
1543 
1544 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1545 	if (!mbp) {
1546 		CSIO_INC_STATS(hw, n_err_nomem);
1547 		return -ENOMEM;
1548 	}
1549 
1550 	/*
1551 	 * Find out whether we're dealing with a version of
1552 	 * the firmware which has configuration file support.
1553 	 */
1554 	_param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1555 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1556 
1557 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1558 		       ARRAY_SIZE(_param), _param, NULL, false, NULL);
1559 	if (csio_mb_issue(hw, mbp)) {
1560 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1561 		mempool_free(mbp, hw->mb_mempool);
1562 		return -EINVAL;
1563 	}
1564 
1565 	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1566 			ARRAY_SIZE(_param), _param);
1567 	if (retval != FW_SUCCESS) {
1568 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1569 				retval);
1570 		mempool_free(mbp, hw->mb_mempool);
1571 		return -EINVAL;
1572 	}
1573 
1574 	mempool_free(mbp, hw->mb_mempool);
1575 	*param = _param[0];
1576 
1577 	return 0;
1578 }
1579 
1580 static int
1581 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1582 {
1583 	int ret = 0;
1584 	const struct firmware *cf;
1585 	struct pci_dev *pci_dev = hw->pdev;
1586 	struct device *dev = &pci_dev->dev;
1587 	unsigned int mtype = 0, maddr = 0;
1588 	uint32_t *cfg_data;
1589 	int value_to_add = 0;
1590 	const char *fw_cfg_file;
1591 
1592 	if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
1593 		fw_cfg_file = FW_CFG_NAME_T5;
1594 	else
1595 		fw_cfg_file = FW_CFG_NAME_T6;
1596 
1597 	if (request_firmware(&cf, fw_cfg_file, dev) < 0) {
1598 		csio_err(hw, "could not find config file %s, err: %d\n",
1599 			 fw_cfg_file, ret);
1600 		return -ENOENT;
1601 	}
1602 
1603 	if (cf->size%4 != 0)
1604 		value_to_add = 4 - (cf->size % 4);
1605 
1606 	cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1607 	if (cfg_data == NULL) {
1608 		ret = -ENOMEM;
1609 		goto leave;
1610 	}
1611 
1612 	memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1613 	if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1614 		ret = -EINVAL;
1615 		goto leave;
1616 	}
1617 
1618 	mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1619 	maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1620 
1621 	ret = csio_memory_write(hw, mtype, maddr,
1622 				cf->size + value_to_add, cfg_data);
1623 
1624 	if ((ret == 0) && (value_to_add != 0)) {
1625 		union {
1626 			u32 word;
1627 			char buf[4];
1628 		} last;
1629 		size_t size = cf->size & ~0x3;
1630 		int i;
1631 
1632 		last.word = cfg_data[size >> 2];
1633 		for (i = value_to_add; i < 4; i++)
1634 			last.buf[i] = 0;
1635 		ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1636 	}
1637 	if (ret == 0) {
1638 		csio_info(hw, "config file upgraded to %s\n", fw_cfg_file);
1639 		snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file);
1640 	}
1641 
1642 leave:
1643 	kfree(cfg_data);
1644 	release_firmware(cf);
1645 	return ret;
1646 }
1647 
1648 /*
1649  * HW initialization: contact FW, obtain config, perform basic init.
1650  *
1651  * If the firmware we're dealing with has Configuration File support, then
1652  * we use that to perform all configuration -- either using the configuration
1653  * file stored in flash on the adapter or using a filesystem-local file
1654  * if available.
1655  *
1656  * If we don't have configuration file support in the firmware, then we'll
1657  * have to set things up the old fashioned way with hard-coded register
1658  * writes and firmware commands ...
1659  */
1660 
1661 /*
1662  * Attempt to initialize the HW via a Firmware Configuration File.
1663  */
1664 static int
1665 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1666 {
1667 	struct csio_mb	*mbp = NULL;
1668 	struct fw_caps_config_cmd *caps_cmd;
1669 	unsigned int mtype, maddr;
1670 	int rv = -EINVAL;
1671 	uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
1672 	char path[64];
1673 	char *config_name = NULL;
1674 
1675 	/*
1676 	 * Reset device if necessary
1677 	 */
1678 	if (reset) {
1679 		rv = csio_do_reset(hw, true);
1680 		if (rv != 0)
1681 			goto bye;
1682 	}
1683 
1684 	/*
1685 	 * If we have a configuration file in host ,
1686 	 * then use that.  Otherwise, use the configuration file stored
1687 	 * in the HW flash ...
1688 	 */
1689 	spin_unlock_irq(&hw->lock);
1690 	rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1691 	spin_lock_irq(&hw->lock);
1692 	if (rv != 0) {
1693 		/*
1694 		 * config file was not found. Use default
1695 		 * config file from flash.
1696 		 */
1697 		config_name = "On FLASH";
1698 		mtype = FW_MEMTYPE_CF_FLASH;
1699 		maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
1700 	} else {
1701 		config_name = path;
1702 		mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1703 		maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1704 	}
1705 
1706 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1707 	if (!mbp) {
1708 		CSIO_INC_STATS(hw, n_err_nomem);
1709 		return -ENOMEM;
1710 	}
1711 	/*
1712 	 * Tell the firmware to process the indicated Configuration File.
1713 	 * If there are no errors and the caller has provided return value
1714 	 * pointers for the [fini] section version, checksum and computed
1715 	 * checksum, pass those back to the caller.
1716 	 */
1717 	caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1718 	CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1719 	caps_cmd->op_to_write =
1720 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1721 		      FW_CMD_REQUEST_F |
1722 		      FW_CMD_READ_F);
1723 	caps_cmd->cfvalid_to_len16 =
1724 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
1725 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
1726 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
1727 		      FW_LEN16(*caps_cmd));
1728 
1729 	if (csio_mb_issue(hw, mbp)) {
1730 		rv = -EINVAL;
1731 		goto bye;
1732 	}
1733 
1734 	rv = csio_mb_fw_retval(mbp);
1735 	 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1736 	  * Configuration File in FLASH), our last gasp effort is to use the
1737 	  * Firmware Configuration File which is embedded in the
1738 	  * firmware.  A very few early versions of the firmware didn't
1739 	  * have one embedded but we can ignore those.
1740 	  */
1741 	if (rv == ENOENT) {
1742 		CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1743 		caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1744 					      FW_CMD_REQUEST_F |
1745 					      FW_CMD_READ_F);
1746 		caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1747 
1748 		if (csio_mb_issue(hw, mbp)) {
1749 			rv = -EINVAL;
1750 			goto bye;
1751 		}
1752 
1753 		rv = csio_mb_fw_retval(mbp);
1754 		config_name = "Firmware Default";
1755 	}
1756 	if (rv != FW_SUCCESS)
1757 		goto bye;
1758 
1759 	finiver = ntohl(caps_cmd->finiver);
1760 	finicsum = ntohl(caps_cmd->finicsum);
1761 	cfcsum = ntohl(caps_cmd->cfcsum);
1762 
1763 	/*
1764 	 * And now tell the firmware to use the configuration we just loaded.
1765 	 */
1766 	caps_cmd->op_to_write =
1767 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1768 		      FW_CMD_REQUEST_F |
1769 		      FW_CMD_WRITE_F);
1770 	caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1771 
1772 	if (csio_mb_issue(hw, mbp)) {
1773 		rv = -EINVAL;
1774 		goto bye;
1775 	}
1776 
1777 	rv = csio_mb_fw_retval(mbp);
1778 	if (rv != FW_SUCCESS) {
1779 		csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1780 		goto bye;
1781 	}
1782 
1783 	if (finicsum != cfcsum) {
1784 		csio_warn(hw,
1785 		      "Config File checksum mismatch: csum=%#x, computed=%#x\n",
1786 		      finicsum, cfcsum);
1787 	}
1788 
1789 	/* Validate device capabilities */
1790 	rv = csio_hw_validate_caps(hw, mbp);
1791 	if (rv != 0)
1792 		goto bye;
1793 
1794 	mempool_free(mbp, hw->mb_mempool);
1795 	mbp = NULL;
1796 
1797 	/*
1798 	 * Note that we're operating with parameters
1799 	 * not supplied by the driver, rather than from hard-wired
1800 	 * initialization constants buried in the driver.
1801 	 */
1802 	hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
1803 
1804 	/* device parameters */
1805 	rv = csio_get_device_params(hw);
1806 	if (rv != 0)
1807 		goto bye;
1808 
1809 	/* Configure SGE */
1810 	csio_wr_sge_init(hw);
1811 
1812 	/*
1813 	 * And finally tell the firmware to initialize itself using the
1814 	 * parameters from the Configuration File.
1815 	 */
1816 	/* Post event to notify completion of configuration */
1817 	csio_post_event(&hw->sm, CSIO_HWE_INIT);
1818 
1819 	csio_info(hw, "Successfully configure using Firmware "
1820 		  "Configuration File %s, version %#x, computed checksum %#x\n",
1821 		  config_name, finiver, cfcsum);
1822 	return 0;
1823 
1824 	/*
1825 	 * Something bad happened.  Return the error ...
1826 	 */
1827 bye:
1828 	if (mbp)
1829 		mempool_free(mbp, hw->mb_mempool);
1830 	hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
1831 	csio_warn(hw, "Configuration file error %d\n", rv);
1832 	return rv;
1833 }
1834 
1835 /* Is the given firmware API compatible with the one the driver was compiled
1836  * with?
1837  */
1838 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
1839 {
1840 
1841 	/* short circuit if it's the exact same firmware version */
1842 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
1843 		return 1;
1844 
1845 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
1846 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
1847 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
1848 		return 1;
1849 #undef SAME_INTF
1850 
1851 	return 0;
1852 }
1853 
1854 /* The firmware in the filesystem is usable, but should it be installed?
1855  * This routine explains itself in detail if it indicates the filesystem
1856  * firmware should be installed.
1857  */
1858 static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
1859 				int k, int c)
1860 {
1861 	const char *reason;
1862 
1863 	if (!card_fw_usable) {
1864 		reason = "incompatible or unusable";
1865 		goto install;
1866 	}
1867 
1868 	if (k > c) {
1869 		reason = "older than the version supported with this driver";
1870 		goto install;
1871 	}
1872 
1873 	return 0;
1874 
1875 install:
1876 	csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
1877 		"installing firmware %u.%u.%u.%u on card.\n",
1878 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1879 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
1880 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1881 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1882 
1883 	return 1;
1884 }
1885 
1886 static struct fw_info fw_info_array[] = {
1887 	{
1888 		.chip = CHELSIO_T5,
1889 		.fs_name = FW_CFG_NAME_T5,
1890 		.fw_mod_name = FW_FNAME_T5,
1891 		.fw_hdr = {
1892 			.chip = FW_HDR_CHIP_T5,
1893 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
1894 			.intfver_nic = FW_INTFVER(T5, NIC),
1895 			.intfver_vnic = FW_INTFVER(T5, VNIC),
1896 			.intfver_ri = FW_INTFVER(T5, RI),
1897 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
1898 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
1899 		},
1900 	}, {
1901 		.chip = CHELSIO_T6,
1902 		.fs_name = FW_CFG_NAME_T6,
1903 		.fw_mod_name = FW_FNAME_T6,
1904 		.fw_hdr = {
1905 			.chip = FW_HDR_CHIP_T6,
1906 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
1907 			.intfver_nic = FW_INTFVER(T6, NIC),
1908 			.intfver_vnic = FW_INTFVER(T6, VNIC),
1909 			.intfver_ri = FW_INTFVER(T6, RI),
1910 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
1911 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
1912 		},
1913 	}
1914 };
1915 
1916 static struct fw_info *find_fw_info(int chip)
1917 {
1918 	int i;
1919 
1920 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
1921 		if (fw_info_array[i].chip == chip)
1922 			return &fw_info_array[i];
1923 	}
1924 	return NULL;
1925 }
1926 
1927 static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
1928 	       const u8 *fw_data, unsigned int fw_size,
1929 	       struct fw_hdr *card_fw, enum csio_dev_state state,
1930 	       int *reset)
1931 {
1932 	int ret, card_fw_usable, fs_fw_usable;
1933 	const struct fw_hdr *fs_fw;
1934 	const struct fw_hdr *drv_fw;
1935 
1936 	drv_fw = &fw_info->fw_hdr;
1937 
1938 	/* Read the header of the firmware on the card */
1939 	ret = csio_hw_read_flash(hw, FLASH_FW_START,
1940 			    sizeof(*card_fw) / sizeof(uint32_t),
1941 			    (uint32_t *)card_fw, 1);
1942 	if (ret == 0) {
1943 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
1944 	} else {
1945 		csio_err(hw,
1946 			"Unable to read card's firmware header: %d\n", ret);
1947 		card_fw_usable = 0;
1948 	}
1949 
1950 	if (fw_data != NULL) {
1951 		fs_fw = (const void *)fw_data;
1952 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
1953 	} else {
1954 		fs_fw = NULL;
1955 		fs_fw_usable = 0;
1956 	}
1957 
1958 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
1959 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
1960 		/* Common case: the firmware on the card is an exact match and
1961 		 * the filesystem one is an exact match too, or the filesystem
1962 		 * one is absent/incompatible.
1963 		 */
1964 	} else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
1965 		   csio_should_install_fs_fw(hw, card_fw_usable,
1966 					be32_to_cpu(fs_fw->fw_ver),
1967 					be32_to_cpu(card_fw->fw_ver))) {
1968 		ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
1969 				     fw_size, 0);
1970 		if (ret != 0) {
1971 			csio_err(hw,
1972 				"failed to install firmware: %d\n", ret);
1973 			goto bye;
1974 		}
1975 
1976 		/* Installed successfully, update the cached header too. */
1977 		memcpy(card_fw, fs_fw, sizeof(*card_fw));
1978 		card_fw_usable = 1;
1979 		*reset = 0;	/* already reset as part of load_fw */
1980 	}
1981 
1982 	if (!card_fw_usable) {
1983 		uint32_t d, c, k;
1984 
1985 		d = be32_to_cpu(drv_fw->fw_ver);
1986 		c = be32_to_cpu(card_fw->fw_ver);
1987 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
1988 
1989 		csio_err(hw, "Cannot find a usable firmware: "
1990 			"chip state %d, "
1991 			"driver compiled with %d.%d.%d.%d, "
1992 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
1993 			state,
1994 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
1995 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
1996 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1997 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
1998 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1999 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2000 		ret = EINVAL;
2001 		goto bye;
2002 	}
2003 
2004 	/* We're using whatever's on the card and it's known to be good. */
2005 	hw->fwrev = be32_to_cpu(card_fw->fw_ver);
2006 	hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2007 
2008 bye:
2009 	return ret;
2010 }
2011 
2012 /*
2013  * Returns -EINVAL if attempts to flash the firmware failed
2014  * else returns 0,
2015  * if flashing was not attempted because the card had the
2016  * latest firmware ECANCELED is returned
2017  */
2018 static int
2019 csio_hw_flash_fw(struct csio_hw *hw, int *reset)
2020 {
2021 	int ret = -ECANCELED;
2022 	const struct firmware *fw;
2023 	struct fw_info *fw_info;
2024 	struct fw_hdr *card_fw;
2025 	struct pci_dev *pci_dev = hw->pdev;
2026 	struct device *dev = &pci_dev->dev ;
2027 	const u8 *fw_data = NULL;
2028 	unsigned int fw_size = 0;
2029 	const char *fw_bin_file;
2030 
2031 	/* This is the firmware whose headers the driver was compiled
2032 	 * against
2033 	 */
2034 	fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2035 	if (fw_info == NULL) {
2036 		csio_err(hw,
2037 			"unable to get firmware info for chip %d.\n",
2038 			CHELSIO_CHIP_VERSION(hw->chip_id));
2039 		return -EINVAL;
2040 	}
2041 
2042 	if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
2043 		fw_bin_file = FW_FNAME_T5;
2044 	else
2045 		fw_bin_file = FW_FNAME_T6;
2046 
2047 	if (request_firmware(&fw, fw_bin_file, dev) < 0) {
2048 		csio_err(hw, "could not find firmware image %s, err: %d\n",
2049 			 fw_bin_file, ret);
2050 	} else {
2051 		fw_data = fw->data;
2052 		fw_size = fw->size;
2053 	}
2054 
2055 	/* allocate memory to read the header of the firmware on the
2056 	 * card
2057 	 */
2058 	card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2059 
2060 	/* upgrade FW logic */
2061 	ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2062 			 hw->fw_state, reset);
2063 
2064 	/* Cleaning up */
2065 	if (fw != NULL)
2066 		release_firmware(fw);
2067 	kfree(card_fw);
2068 	return ret;
2069 }
2070 
2071 static int csio_hw_check_fwver(struct csio_hw *hw)
2072 {
2073 	if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) &&
2074 	    (hw->fwrev < CSIO_MIN_T6_FW)) {
2075 		csio_hw_print_fw_version(hw, "T6 unsupported fw");
2076 		return -1;
2077 	}
2078 
2079 	return 0;
2080 }
2081 
2082 /*
2083  * csio_hw_configure - Configure HW
2084  * @hw - HW module
2085  *
2086  */
2087 static void
2088 csio_hw_configure(struct csio_hw *hw)
2089 {
2090 	int reset = 1;
2091 	int rv;
2092 	u32 param[1];
2093 
2094 	rv = csio_hw_dev_ready(hw);
2095 	if (rv != 0) {
2096 		CSIO_INC_STATS(hw, n_err_fatal);
2097 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2098 		goto out;
2099 	}
2100 
2101 	/* HW version */
2102 	hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2103 
2104 	/* Needed for FW download */
2105 	rv = csio_hw_get_flash_params(hw);
2106 	if (rv != 0) {
2107 		csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2108 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2109 		goto out;
2110 	}
2111 
2112 	/* Set PCIe completion timeout to 4 seconds */
2113 	if (pci_is_pcie(hw->pdev))
2114 		pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2115 				PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2116 
2117 	hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2118 
2119 	rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2120 	if (rv != 0)
2121 		goto out;
2122 
2123 	csio_hw_print_fw_version(hw, "Firmware revision");
2124 
2125 	rv = csio_do_hello(hw, &hw->fw_state);
2126 	if (rv != 0) {
2127 		CSIO_INC_STATS(hw, n_err_fatal);
2128 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2129 		goto out;
2130 	}
2131 
2132 	/* Read vpd */
2133 	rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2134 	if (rv != 0)
2135 		goto out;
2136 
2137 	csio_hw_get_fw_version(hw, &hw->fwrev);
2138 	csio_hw_get_tp_version(hw, &hw->tp_vers);
2139 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2140 
2141 			/* Do firmware update */
2142 		spin_unlock_irq(&hw->lock);
2143 		rv = csio_hw_flash_fw(hw, &reset);
2144 		spin_lock_irq(&hw->lock);
2145 
2146 		if (rv != 0)
2147 			goto out;
2148 
2149 		rv = csio_hw_check_fwver(hw);
2150 		if (rv < 0)
2151 			goto out;
2152 
2153 		/* If the firmware doesn't support Configuration Files,
2154 		 * return an error.
2155 		 */
2156 		rv = csio_hw_check_fwconfig(hw, param);
2157 		if (rv != 0) {
2158 			csio_info(hw, "Firmware doesn't support "
2159 				  "Firmware Configuration files\n");
2160 			goto out;
2161 		}
2162 
2163 		/* The firmware provides us with a memory buffer where we can
2164 		 * load a Configuration File from the host if we want to
2165 		 * override the Configuration File in flash.
2166 		 */
2167 		rv = csio_hw_use_fwconfig(hw, reset, param);
2168 		if (rv == -ENOENT) {
2169 			csio_info(hw, "Could not initialize "
2170 				  "adapter, error%d\n", rv);
2171 			goto out;
2172 		}
2173 		if (rv != 0) {
2174 			csio_info(hw, "Could not initialize "
2175 				  "adapter, error%d\n", rv);
2176 			goto out;
2177 		}
2178 
2179 	} else {
2180 		rv = csio_hw_check_fwver(hw);
2181 		if (rv < 0)
2182 			goto out;
2183 
2184 		if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2185 
2186 			hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2187 
2188 			/* device parameters */
2189 			rv = csio_get_device_params(hw);
2190 			if (rv != 0)
2191 				goto out;
2192 
2193 			/* Get device capabilities */
2194 			rv = csio_config_device_caps(hw);
2195 			if (rv != 0)
2196 				goto out;
2197 
2198 			/* Configure SGE */
2199 			csio_wr_sge_init(hw);
2200 
2201 			/* Post event to notify completion of configuration */
2202 			csio_post_event(&hw->sm, CSIO_HWE_INIT);
2203 			goto out;
2204 		}
2205 	} /* if not master */
2206 
2207 out:
2208 	return;
2209 }
2210 
2211 /*
2212  * csio_hw_initialize - Initialize HW
2213  * @hw - HW module
2214  *
2215  */
2216 static void
2217 csio_hw_initialize(struct csio_hw *hw)
2218 {
2219 	struct csio_mb	*mbp;
2220 	enum fw_retval retval;
2221 	int rv;
2222 	int i;
2223 
2224 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2225 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2226 		if (!mbp)
2227 			goto out;
2228 
2229 		csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2230 
2231 		if (csio_mb_issue(hw, mbp)) {
2232 			csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2233 			goto free_and_out;
2234 		}
2235 
2236 		retval = csio_mb_fw_retval(mbp);
2237 		if (retval != FW_SUCCESS) {
2238 			csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2239 				 retval);
2240 			goto free_and_out;
2241 		}
2242 
2243 		mempool_free(mbp, hw->mb_mempool);
2244 	}
2245 
2246 	rv = csio_get_fcoe_resinfo(hw);
2247 	if (rv != 0) {
2248 		csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2249 		goto out;
2250 	}
2251 
2252 	spin_unlock_irq(&hw->lock);
2253 	rv = csio_config_queues(hw);
2254 	spin_lock_irq(&hw->lock);
2255 
2256 	if (rv != 0) {
2257 		csio_err(hw, "Config of queues failed!: %d\n", rv);
2258 		goto out;
2259 	}
2260 
2261 	for (i = 0; i < hw->num_pports; i++)
2262 		hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2263 
2264 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2265 		rv = csio_enable_ports(hw);
2266 		if (rv != 0) {
2267 			csio_err(hw, "Failed to enable ports: %d\n", rv);
2268 			goto out;
2269 		}
2270 	}
2271 
2272 	csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2273 	return;
2274 
2275 free_and_out:
2276 	mempool_free(mbp, hw->mb_mempool);
2277 out:
2278 	return;
2279 }
2280 
2281 #define PF_INTR_MASK (PFSW_F | PFCIM_F)
2282 
2283 /*
2284  * csio_hw_intr_enable - Enable HW interrupts
2285  * @hw: Pointer to HW module.
2286  *
2287  * Enable interrupts in HW registers.
2288  */
2289 static void
2290 csio_hw_intr_enable(struct csio_hw *hw)
2291 {
2292 	uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2293 	u32 pf = 0;
2294 	uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2295 
2296 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2297 		pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2298 	else
2299 		pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2300 
2301 	/*
2302 	 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2303 	 * by FW, so do nothing for INTX.
2304 	 */
2305 	if (hw->intr_mode == CSIO_IM_MSIX)
2306 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2307 				   AIVEC_V(AIVEC_M), vec);
2308 	else if (hw->intr_mode == CSIO_IM_MSI)
2309 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2310 				   AIVEC_V(AIVEC_M), 0);
2311 
2312 	csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2313 
2314 	/* Turn on MB interrupts - this will internally flush PIO as well */
2315 	csio_mb_intr_enable(hw);
2316 
2317 	/* These are common registers - only a master can modify them */
2318 	if (csio_is_hw_master(hw)) {
2319 		/*
2320 		 * Disable the Serial FLASH interrupt, if enabled!
2321 		 */
2322 		pl &= (~SF_F);
2323 		csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2324 
2325 		csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2326 			      EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2327 			      ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2328 			      ERR_DATA_CPL_ON_HIGH_QID1_F |
2329 			      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2330 			      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2331 			      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2332 			      ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2333 			      SGE_INT_ENABLE3_A);
2334 		csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2335 	}
2336 
2337 	hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2338 
2339 }
2340 
2341 /*
2342  * csio_hw_intr_disable - Disable HW interrupts
2343  * @hw: Pointer to HW module.
2344  *
2345  * Turn off Mailbox and PCI_PF_CFG interrupts.
2346  */
2347 void
2348 csio_hw_intr_disable(struct csio_hw *hw)
2349 {
2350 	u32 pf = 0;
2351 
2352 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2353 		pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2354 	else
2355 		pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2356 
2357 	if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2358 		return;
2359 
2360 	hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2361 
2362 	csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2363 	if (csio_is_hw_master(hw))
2364 		csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2365 
2366 	/* Turn off MB interrupts */
2367 	csio_mb_intr_disable(hw);
2368 
2369 }
2370 
2371 void
2372 csio_hw_fatal_err(struct csio_hw *hw)
2373 {
2374 	csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2375 	csio_hw_intr_disable(hw);
2376 
2377 	/* Do not reset HW, we may need FW state for debugging */
2378 	csio_fatal(hw, "HW Fatal error encountered!\n");
2379 }
2380 
2381 /*****************************************************************************/
2382 /* START: HW SM                                                              */
2383 /*****************************************************************************/
2384 /*
2385  * csio_hws_uninit - Uninit state
2386  * @hw - HW module
2387  * @evt - Event
2388  *
2389  */
2390 static void
2391 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2392 {
2393 	hw->prev_evt = hw->cur_evt;
2394 	hw->cur_evt = evt;
2395 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2396 
2397 	switch (evt) {
2398 	case CSIO_HWE_CFG:
2399 		csio_set_state(&hw->sm, csio_hws_configuring);
2400 		csio_hw_configure(hw);
2401 		break;
2402 
2403 	default:
2404 		CSIO_INC_STATS(hw, n_evt_unexp);
2405 		break;
2406 	}
2407 }
2408 
2409 /*
2410  * csio_hws_configuring - Configuring state
2411  * @hw - HW module
2412  * @evt - Event
2413  *
2414  */
2415 static void
2416 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2417 {
2418 	hw->prev_evt = hw->cur_evt;
2419 	hw->cur_evt = evt;
2420 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2421 
2422 	switch (evt) {
2423 	case CSIO_HWE_INIT:
2424 		csio_set_state(&hw->sm, csio_hws_initializing);
2425 		csio_hw_initialize(hw);
2426 		break;
2427 
2428 	case CSIO_HWE_INIT_DONE:
2429 		csio_set_state(&hw->sm, csio_hws_ready);
2430 		/* Fan out event to all lnode SMs */
2431 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2432 		break;
2433 
2434 	case CSIO_HWE_FATAL:
2435 		csio_set_state(&hw->sm, csio_hws_uninit);
2436 		break;
2437 
2438 	case CSIO_HWE_PCI_REMOVE:
2439 		csio_do_bye(hw);
2440 		break;
2441 	default:
2442 		CSIO_INC_STATS(hw, n_evt_unexp);
2443 		break;
2444 	}
2445 }
2446 
2447 /*
2448  * csio_hws_initializing - Initialiazing state
2449  * @hw - HW module
2450  * @evt - Event
2451  *
2452  */
2453 static void
2454 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2455 {
2456 	hw->prev_evt = hw->cur_evt;
2457 	hw->cur_evt = evt;
2458 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2459 
2460 	switch (evt) {
2461 	case CSIO_HWE_INIT_DONE:
2462 		csio_set_state(&hw->sm, csio_hws_ready);
2463 
2464 		/* Fan out event to all lnode SMs */
2465 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2466 
2467 		/* Enable interrupts */
2468 		csio_hw_intr_enable(hw);
2469 		break;
2470 
2471 	case CSIO_HWE_FATAL:
2472 		csio_set_state(&hw->sm, csio_hws_uninit);
2473 		break;
2474 
2475 	case CSIO_HWE_PCI_REMOVE:
2476 		csio_do_bye(hw);
2477 		break;
2478 
2479 	default:
2480 		CSIO_INC_STATS(hw, n_evt_unexp);
2481 		break;
2482 	}
2483 }
2484 
2485 /*
2486  * csio_hws_ready - Ready state
2487  * @hw - HW module
2488  * @evt - Event
2489  *
2490  */
2491 static void
2492 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2493 {
2494 	/* Remember the event */
2495 	hw->evtflag = evt;
2496 
2497 	hw->prev_evt = hw->cur_evt;
2498 	hw->cur_evt = evt;
2499 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2500 
2501 	switch (evt) {
2502 	case CSIO_HWE_HBA_RESET:
2503 	case CSIO_HWE_FW_DLOAD:
2504 	case CSIO_HWE_SUSPEND:
2505 	case CSIO_HWE_PCI_REMOVE:
2506 	case CSIO_HWE_PCIERR_DETECTED:
2507 		csio_set_state(&hw->sm, csio_hws_quiescing);
2508 		/* cleanup all outstanding cmds */
2509 		if (evt == CSIO_HWE_HBA_RESET ||
2510 		    evt == CSIO_HWE_PCIERR_DETECTED)
2511 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2512 		else
2513 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2514 
2515 		csio_hw_intr_disable(hw);
2516 		csio_hw_mbm_cleanup(hw);
2517 		csio_evtq_stop(hw);
2518 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2519 		csio_evtq_flush(hw);
2520 		csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2521 		csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2522 		break;
2523 
2524 	case CSIO_HWE_FATAL:
2525 		csio_set_state(&hw->sm, csio_hws_uninit);
2526 		break;
2527 
2528 	default:
2529 		CSIO_INC_STATS(hw, n_evt_unexp);
2530 		break;
2531 	}
2532 }
2533 
2534 /*
2535  * csio_hws_quiescing - Quiescing state
2536  * @hw - HW module
2537  * @evt - Event
2538  *
2539  */
2540 static void
2541 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2542 {
2543 	hw->prev_evt = hw->cur_evt;
2544 	hw->cur_evt = evt;
2545 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2546 
2547 	switch (evt) {
2548 	case CSIO_HWE_QUIESCED:
2549 		switch (hw->evtflag) {
2550 		case CSIO_HWE_FW_DLOAD:
2551 			csio_set_state(&hw->sm, csio_hws_resetting);
2552 			/* Download firmware */
2553 			/* Fall through */
2554 
2555 		case CSIO_HWE_HBA_RESET:
2556 			csio_set_state(&hw->sm, csio_hws_resetting);
2557 			/* Start reset of the HBA */
2558 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2559 			csio_wr_destroy_queues(hw, false);
2560 			csio_do_reset(hw, false);
2561 			csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2562 			break;
2563 
2564 		case CSIO_HWE_PCI_REMOVE:
2565 			csio_set_state(&hw->sm, csio_hws_removing);
2566 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2567 			csio_wr_destroy_queues(hw, true);
2568 			/* Now send the bye command */
2569 			csio_do_bye(hw);
2570 			break;
2571 
2572 		case CSIO_HWE_SUSPEND:
2573 			csio_set_state(&hw->sm, csio_hws_quiesced);
2574 			break;
2575 
2576 		case CSIO_HWE_PCIERR_DETECTED:
2577 			csio_set_state(&hw->sm, csio_hws_pcierr);
2578 			csio_wr_destroy_queues(hw, false);
2579 			break;
2580 
2581 		default:
2582 			CSIO_INC_STATS(hw, n_evt_unexp);
2583 			break;
2584 
2585 		}
2586 		break;
2587 
2588 	default:
2589 		CSIO_INC_STATS(hw, n_evt_unexp);
2590 		break;
2591 	}
2592 }
2593 
2594 /*
2595  * csio_hws_quiesced - Quiesced state
2596  * @hw - HW module
2597  * @evt - Event
2598  *
2599  */
2600 static void
2601 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2602 {
2603 	hw->prev_evt = hw->cur_evt;
2604 	hw->cur_evt = evt;
2605 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2606 
2607 	switch (evt) {
2608 	case CSIO_HWE_RESUME:
2609 		csio_set_state(&hw->sm, csio_hws_configuring);
2610 		csio_hw_configure(hw);
2611 		break;
2612 
2613 	default:
2614 		CSIO_INC_STATS(hw, n_evt_unexp);
2615 		break;
2616 	}
2617 }
2618 
2619 /*
2620  * csio_hws_resetting - HW Resetting state
2621  * @hw - HW module
2622  * @evt - Event
2623  *
2624  */
2625 static void
2626 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2627 {
2628 	hw->prev_evt = hw->cur_evt;
2629 	hw->cur_evt = evt;
2630 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2631 
2632 	switch (evt) {
2633 	case CSIO_HWE_HBA_RESET_DONE:
2634 		csio_evtq_start(hw);
2635 		csio_set_state(&hw->sm, csio_hws_configuring);
2636 		csio_hw_configure(hw);
2637 		break;
2638 
2639 	default:
2640 		CSIO_INC_STATS(hw, n_evt_unexp);
2641 		break;
2642 	}
2643 }
2644 
2645 /*
2646  * csio_hws_removing - PCI Hotplug removing state
2647  * @hw - HW module
2648  * @evt - Event
2649  *
2650  */
2651 static void
2652 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2653 {
2654 	hw->prev_evt = hw->cur_evt;
2655 	hw->cur_evt = evt;
2656 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2657 
2658 	switch (evt) {
2659 	case CSIO_HWE_HBA_RESET:
2660 		if (!csio_is_hw_master(hw))
2661 			break;
2662 		/*
2663 		 * The BYE should have alerady been issued, so we cant
2664 		 * use the mailbox interface. Hence we use the PL_RST
2665 		 * register directly.
2666 		 */
2667 		csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2668 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
2669 		mdelay(2000);
2670 		break;
2671 
2672 	/* Should never receive any new events */
2673 	default:
2674 		CSIO_INC_STATS(hw, n_evt_unexp);
2675 		break;
2676 
2677 	}
2678 }
2679 
2680 /*
2681  * csio_hws_pcierr - PCI Error state
2682  * @hw - HW module
2683  * @evt - Event
2684  *
2685  */
2686 static void
2687 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2688 {
2689 	hw->prev_evt = hw->cur_evt;
2690 	hw->cur_evt = evt;
2691 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2692 
2693 	switch (evt) {
2694 	case CSIO_HWE_PCIERR_SLOT_RESET:
2695 		csio_evtq_start(hw);
2696 		csio_set_state(&hw->sm, csio_hws_configuring);
2697 		csio_hw_configure(hw);
2698 		break;
2699 
2700 	default:
2701 		CSIO_INC_STATS(hw, n_evt_unexp);
2702 		break;
2703 	}
2704 }
2705 
2706 /*****************************************************************************/
2707 /* END: HW SM                                                                */
2708 /*****************************************************************************/
2709 
2710 /*
2711  *	csio_handle_intr_status - table driven interrupt handler
2712  *	@hw: HW instance
2713  *	@reg: the interrupt status register to process
2714  *	@acts: table of interrupt actions
2715  *
2716  *	A table driven interrupt handler that applies a set of masks to an
2717  *	interrupt status word and performs the corresponding actions if the
2718  *	interrupts described by the mask have occured.  The actions include
2719  *	optionally emitting a warning or alert message. The table is terminated
2720  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
2721  *	conditions.
2722  */
2723 int
2724 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2725 				 const struct intr_info *acts)
2726 {
2727 	int fatal = 0;
2728 	unsigned int mask = 0;
2729 	unsigned int status = csio_rd_reg32(hw, reg);
2730 
2731 	for ( ; acts->mask; ++acts) {
2732 		if (!(status & acts->mask))
2733 			continue;
2734 		if (acts->fatal) {
2735 			fatal++;
2736 			csio_fatal(hw, "Fatal %s (0x%x)\n",
2737 				    acts->msg, status & acts->mask);
2738 		} else if (acts->msg)
2739 			csio_info(hw, "%s (0x%x)\n",
2740 				    acts->msg, status & acts->mask);
2741 		mask |= acts->mask;
2742 	}
2743 	status &= mask;
2744 	if (status)                           /* clear processed interrupts */
2745 		csio_wr_reg32(hw, status, reg);
2746 	return fatal;
2747 }
2748 
2749 /*
2750  * TP interrupt handler.
2751  */
2752 static void csio_tp_intr_handler(struct csio_hw *hw)
2753 {
2754 	static struct intr_info tp_intr_info[] = {
2755 		{ 0x3fffffff, "TP parity error", -1, 1 },
2756 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2757 		{ 0, NULL, 0, 0 }
2758 	};
2759 
2760 	if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
2761 		csio_hw_fatal_err(hw);
2762 }
2763 
2764 /*
2765  * SGE interrupt handler.
2766  */
2767 static void csio_sge_intr_handler(struct csio_hw *hw)
2768 {
2769 	uint64_t v;
2770 
2771 	static struct intr_info sge_intr_info[] = {
2772 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
2773 		  "SGE received CPL exceeding IQE size", -1, 1 },
2774 		{ ERR_INVALID_CIDX_INC_F,
2775 		  "SGE GTS CIDX increment too large", -1, 0 },
2776 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2777 		{ ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
2778 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2779 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
2780 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2781 		  0 },
2782 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2783 		  0 },
2784 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2785 		  0 },
2786 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2787 		  0 },
2788 		{ ERR_ING_CTXT_PRIO_F,
2789 		  "SGE too many priority ingress contexts", -1, 0 },
2790 		{ ERR_EGR_CTXT_PRIO_F,
2791 		  "SGE too many priority egress contexts", -1, 0 },
2792 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2793 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2794 		{ 0, NULL, 0, 0 }
2795 	};
2796 
2797 	v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
2798 	    ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
2799 	if (v) {
2800 		csio_fatal(hw, "SGE parity error (%#llx)\n",
2801 			    (unsigned long long)v);
2802 		csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
2803 						SGE_INT_CAUSE1_A);
2804 		csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
2805 	}
2806 
2807 	v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
2808 
2809 	if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
2810 	    v != 0)
2811 		csio_hw_fatal_err(hw);
2812 }
2813 
2814 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
2815 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
2816 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
2817 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
2818 
2819 /*
2820  * CIM interrupt handler.
2821  */
2822 static void csio_cim_intr_handler(struct csio_hw *hw)
2823 {
2824 	static struct intr_info cim_intr_info[] = {
2825 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
2826 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2827 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2828 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
2829 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
2830 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
2831 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
2832 		{ 0, NULL, 0, 0 }
2833 	};
2834 	static struct intr_info cim_upintr_info[] = {
2835 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
2836 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
2837 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
2838 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
2839 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
2840 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
2841 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
2842 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
2843 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
2844 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
2845 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
2846 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
2847 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
2848 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
2849 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
2850 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
2851 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
2852 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
2853 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
2854 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
2855 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
2856 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
2857 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
2858 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
2859 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
2860 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
2861 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
2862 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
2863 		{ 0, NULL, 0, 0 }
2864 	};
2865 
2866 	int fat;
2867 
2868 	fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
2869 				      cim_intr_info) +
2870 	      csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
2871 				      cim_upintr_info);
2872 	if (fat)
2873 		csio_hw_fatal_err(hw);
2874 }
2875 
2876 /*
2877  * ULP RX interrupt handler.
2878  */
2879 static void csio_ulprx_intr_handler(struct csio_hw *hw)
2880 {
2881 	static struct intr_info ulprx_intr_info[] = {
2882 		{ 0x1800000, "ULPRX context error", -1, 1 },
2883 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
2884 		{ 0, NULL, 0, 0 }
2885 	};
2886 
2887 	if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
2888 		csio_hw_fatal_err(hw);
2889 }
2890 
2891 /*
2892  * ULP TX interrupt handler.
2893  */
2894 static void csio_ulptx_intr_handler(struct csio_hw *hw)
2895 {
2896 	static struct intr_info ulptx_intr_info[] = {
2897 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
2898 		  0 },
2899 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
2900 		  0 },
2901 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
2902 		  0 },
2903 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
2904 		  0 },
2905 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
2906 		{ 0, NULL, 0, 0 }
2907 	};
2908 
2909 	if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
2910 		csio_hw_fatal_err(hw);
2911 }
2912 
2913 /*
2914  * PM TX interrupt handler.
2915  */
2916 static void csio_pmtx_intr_handler(struct csio_hw *hw)
2917 {
2918 	static struct intr_info pmtx_intr_info[] = {
2919 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
2920 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
2921 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
2922 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
2923 		{ 0xffffff0, "PMTX framing error", -1, 1 },
2924 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
2925 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
2926 		  1 },
2927 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
2928 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
2929 		{ 0, NULL, 0, 0 }
2930 	};
2931 
2932 	if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
2933 		csio_hw_fatal_err(hw);
2934 }
2935 
2936 /*
2937  * PM RX interrupt handler.
2938  */
2939 static void csio_pmrx_intr_handler(struct csio_hw *hw)
2940 {
2941 	static struct intr_info pmrx_intr_info[] = {
2942 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
2943 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
2944 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
2945 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
2946 		  1 },
2947 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
2948 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
2949 		{ 0, NULL, 0, 0 }
2950 	};
2951 
2952 	if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
2953 		csio_hw_fatal_err(hw);
2954 }
2955 
2956 /*
2957  * CPL switch interrupt handler.
2958  */
2959 static void csio_cplsw_intr_handler(struct csio_hw *hw)
2960 {
2961 	static struct intr_info cplsw_intr_info[] = {
2962 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
2963 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
2964 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
2965 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
2966 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
2967 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
2968 		{ 0, NULL, 0, 0 }
2969 	};
2970 
2971 	if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
2972 		csio_hw_fatal_err(hw);
2973 }
2974 
2975 /*
2976  * LE interrupt handler.
2977  */
2978 static void csio_le_intr_handler(struct csio_hw *hw)
2979 {
2980 	enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
2981 
2982 	static struct intr_info le_intr_info[] = {
2983 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
2984 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
2985 		{ PARITYERR_F, "LE parity error", -1, 1 },
2986 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
2987 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
2988 		{ 0, NULL, 0, 0 }
2989 	};
2990 
2991 	static struct intr_info t6_le_intr_info[] = {
2992 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
2993 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
2994 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
2995 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
2996 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
2997 		{ 0, NULL, 0, 0 }
2998 	};
2999 
3000 	if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A,
3001 				    (chip == CHELSIO_T5) ?
3002 				    le_intr_info : t6_le_intr_info))
3003 		csio_hw_fatal_err(hw);
3004 }
3005 
3006 /*
3007  * MPS interrupt handler.
3008  */
3009 static void csio_mps_intr_handler(struct csio_hw *hw)
3010 {
3011 	static struct intr_info mps_rx_intr_info[] = {
3012 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
3013 		{ 0, NULL, 0, 0 }
3014 	};
3015 	static struct intr_info mps_tx_intr_info[] = {
3016 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3017 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3018 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3019 		  -1, 1 },
3020 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3021 		  -1, 1 },
3022 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
3023 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3024 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
3025 		{ 0, NULL, 0, 0 }
3026 	};
3027 	static struct intr_info mps_trc_intr_info[] = {
3028 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3029 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3030 		  -1, 1 },
3031 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3032 		{ 0, NULL, 0, 0 }
3033 	};
3034 	static struct intr_info mps_stat_sram_intr_info[] = {
3035 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3036 		{ 0, NULL, 0, 0 }
3037 	};
3038 	static struct intr_info mps_stat_tx_intr_info[] = {
3039 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3040 		{ 0, NULL, 0, 0 }
3041 	};
3042 	static struct intr_info mps_stat_rx_intr_info[] = {
3043 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3044 		{ 0, NULL, 0, 0 }
3045 	};
3046 	static struct intr_info mps_cls_intr_info[] = {
3047 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3048 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3049 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3050 		{ 0, NULL, 0, 0 }
3051 	};
3052 
3053 	int fat;
3054 
3055 	fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
3056 				      mps_rx_intr_info) +
3057 	      csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
3058 				      mps_tx_intr_info) +
3059 	      csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
3060 				      mps_trc_intr_info) +
3061 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3062 				      mps_stat_sram_intr_info) +
3063 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3064 				      mps_stat_tx_intr_info) +
3065 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3066 				      mps_stat_rx_intr_info) +
3067 	      csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
3068 				      mps_cls_intr_info);
3069 
3070 	csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
3071 	csio_rd_reg32(hw, MPS_INT_CAUSE_A);                    /* flush */
3072 	if (fat)
3073 		csio_hw_fatal_err(hw);
3074 }
3075 
3076 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3077 		      ECC_UE_INT_CAUSE_F)
3078 
3079 /*
3080  * EDC/MC interrupt handler.
3081  */
3082 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3083 {
3084 	static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3085 
3086 	unsigned int addr, cnt_addr, v;
3087 
3088 	if (idx <= MEM_EDC1) {
3089 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3090 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3091 	} else {
3092 		addr = MC_INT_CAUSE_A;
3093 		cnt_addr = MC_ECC_STATUS_A;
3094 	}
3095 
3096 	v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3097 	if (v & PERR_INT_CAUSE_F)
3098 		csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3099 	if (v & ECC_CE_INT_CAUSE_F) {
3100 		uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3101 
3102 		csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3103 		csio_warn(hw, "%u %s correctable ECC data error%s\n",
3104 			    cnt, name[idx], cnt > 1 ? "s" : "");
3105 	}
3106 	if (v & ECC_UE_INT_CAUSE_F)
3107 		csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3108 
3109 	csio_wr_reg32(hw, v, addr);
3110 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3111 		csio_hw_fatal_err(hw);
3112 }
3113 
3114 /*
3115  * MA interrupt handler.
3116  */
3117 static void csio_ma_intr_handler(struct csio_hw *hw)
3118 {
3119 	uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3120 
3121 	if (status & MEM_PERR_INT_CAUSE_F)
3122 		csio_fatal(hw, "MA parity error, parity status %#x\n",
3123 			    csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3124 	if (status & MEM_WRAP_INT_CAUSE_F) {
3125 		v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3126 		csio_fatal(hw,
3127 		   "MA address wrap-around error by client %u to address %#x\n",
3128 		   MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3129 	}
3130 	csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3131 	csio_hw_fatal_err(hw);
3132 }
3133 
3134 /*
3135  * SMB interrupt handler.
3136  */
3137 static void csio_smb_intr_handler(struct csio_hw *hw)
3138 {
3139 	static struct intr_info smb_intr_info[] = {
3140 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3141 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3142 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3143 		{ 0, NULL, 0, 0 }
3144 	};
3145 
3146 	if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3147 		csio_hw_fatal_err(hw);
3148 }
3149 
3150 /*
3151  * NC-SI interrupt handler.
3152  */
3153 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3154 {
3155 	static struct intr_info ncsi_intr_info[] = {
3156 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3157 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3158 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3159 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3160 		{ 0, NULL, 0, 0 }
3161 	};
3162 
3163 	if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3164 		csio_hw_fatal_err(hw);
3165 }
3166 
3167 /*
3168  * XGMAC interrupt handler.
3169  */
3170 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3171 {
3172 	uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3173 
3174 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3175 	if (!v)
3176 		return;
3177 
3178 	if (v & TXFIFO_PRTY_ERR_F)
3179 		csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3180 	if (v & RXFIFO_PRTY_ERR_F)
3181 		csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3182 	csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3183 	csio_hw_fatal_err(hw);
3184 }
3185 
3186 /*
3187  * PL interrupt handler.
3188  */
3189 static void csio_pl_intr_handler(struct csio_hw *hw)
3190 {
3191 	static struct intr_info pl_intr_info[] = {
3192 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
3193 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3194 		{ 0, NULL, 0, 0 }
3195 	};
3196 
3197 	if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3198 		csio_hw_fatal_err(hw);
3199 }
3200 
3201 /*
3202  *	csio_hw_slow_intr_handler - control path interrupt handler
3203  *	@hw: HW module
3204  *
3205  *	Interrupt handler for non-data global interrupt events, e.g., errors.
3206  *	The designation 'slow' is because it involves register reads, while
3207  *	data interrupts typically don't involve any MMIOs.
3208  */
3209 int
3210 csio_hw_slow_intr_handler(struct csio_hw *hw)
3211 {
3212 	uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3213 
3214 	if (!(cause & CSIO_GLBL_INTR_MASK)) {
3215 		CSIO_INC_STATS(hw, n_plint_unexp);
3216 		return 0;
3217 	}
3218 
3219 	csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3220 
3221 	CSIO_INC_STATS(hw, n_plint_cnt);
3222 
3223 	if (cause & CIM_F)
3224 		csio_cim_intr_handler(hw);
3225 
3226 	if (cause & MPS_F)
3227 		csio_mps_intr_handler(hw);
3228 
3229 	if (cause & NCSI_F)
3230 		csio_ncsi_intr_handler(hw);
3231 
3232 	if (cause & PL_F)
3233 		csio_pl_intr_handler(hw);
3234 
3235 	if (cause & SMB_F)
3236 		csio_smb_intr_handler(hw);
3237 
3238 	if (cause & XGMAC0_F)
3239 		csio_xgmac_intr_handler(hw, 0);
3240 
3241 	if (cause & XGMAC1_F)
3242 		csio_xgmac_intr_handler(hw, 1);
3243 
3244 	if (cause & XGMAC_KR0_F)
3245 		csio_xgmac_intr_handler(hw, 2);
3246 
3247 	if (cause & XGMAC_KR1_F)
3248 		csio_xgmac_intr_handler(hw, 3);
3249 
3250 	if (cause & PCIE_F)
3251 		hw->chip_ops->chip_pcie_intr_handler(hw);
3252 
3253 	if (cause & MC_F)
3254 		csio_mem_intr_handler(hw, MEM_MC);
3255 
3256 	if (cause & EDC0_F)
3257 		csio_mem_intr_handler(hw, MEM_EDC0);
3258 
3259 	if (cause & EDC1_F)
3260 		csio_mem_intr_handler(hw, MEM_EDC1);
3261 
3262 	if (cause & LE_F)
3263 		csio_le_intr_handler(hw);
3264 
3265 	if (cause & TP_F)
3266 		csio_tp_intr_handler(hw);
3267 
3268 	if (cause & MA_F)
3269 		csio_ma_intr_handler(hw);
3270 
3271 	if (cause & PM_TX_F)
3272 		csio_pmtx_intr_handler(hw);
3273 
3274 	if (cause & PM_RX_F)
3275 		csio_pmrx_intr_handler(hw);
3276 
3277 	if (cause & ULP_RX_F)
3278 		csio_ulprx_intr_handler(hw);
3279 
3280 	if (cause & CPL_SWITCH_F)
3281 		csio_cplsw_intr_handler(hw);
3282 
3283 	if (cause & SGE_F)
3284 		csio_sge_intr_handler(hw);
3285 
3286 	if (cause & ULP_TX_F)
3287 		csio_ulptx_intr_handler(hw);
3288 
3289 	/* Clear the interrupts just processed for which we are the master. */
3290 	csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3291 	csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3292 
3293 	return 1;
3294 }
3295 
3296 /*****************************************************************************
3297  * HW <--> mailbox interfacing routines.
3298  ****************************************************************************/
3299 /*
3300  * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3301  *
3302  * @data: Private data pointer.
3303  *
3304  * Called from worker thread context.
3305  */
3306 static void
3307 csio_mberr_worker(void *data)
3308 {
3309 	struct csio_hw *hw = (struct csio_hw *)data;
3310 	struct csio_mbm *mbm = &hw->mbm;
3311 	LIST_HEAD(cbfn_q);
3312 	struct csio_mb *mbp_next;
3313 	int rv;
3314 
3315 	del_timer_sync(&mbm->timer);
3316 
3317 	spin_lock_irq(&hw->lock);
3318 	if (list_empty(&mbm->cbfn_q)) {
3319 		spin_unlock_irq(&hw->lock);
3320 		return;
3321 	}
3322 
3323 	list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3324 	mbm->stats.n_cbfnq = 0;
3325 
3326 	/* Try to start waiting mailboxes */
3327 	if (!list_empty(&mbm->req_q)) {
3328 		mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3329 		list_del_init(&mbp_next->list);
3330 
3331 		rv = csio_mb_issue(hw, mbp_next);
3332 		if (rv != 0)
3333 			list_add_tail(&mbp_next->list, &mbm->req_q);
3334 		else
3335 			CSIO_DEC_STATS(mbm, n_activeq);
3336 	}
3337 	spin_unlock_irq(&hw->lock);
3338 
3339 	/* Now callback completions */
3340 	csio_mb_completions(hw, &cbfn_q);
3341 }
3342 
3343 /*
3344  * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3345  *
3346  * @data: private data pointer
3347  *
3348  **/
3349 static void
3350 csio_hw_mb_timer(uintptr_t data)
3351 {
3352 	struct csio_hw *hw = (struct csio_hw *)data;
3353 	struct csio_mb *mbp = NULL;
3354 
3355 	spin_lock_irq(&hw->lock);
3356 	mbp = csio_mb_tmo_handler(hw);
3357 	spin_unlock_irq(&hw->lock);
3358 
3359 	/* Call back the function for the timed-out Mailbox */
3360 	if (mbp)
3361 		mbp->mb_cbfn(hw, mbp);
3362 
3363 }
3364 
3365 /*
3366  * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3367  * @hw: HW module
3368  *
3369  * Called with lock held, should exit with lock held.
3370  * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3371  * into a local queue. Drops lock and calls the completions. Holds
3372  * lock and returns.
3373  */
3374 static void
3375 csio_hw_mbm_cleanup(struct csio_hw *hw)
3376 {
3377 	LIST_HEAD(cbfn_q);
3378 
3379 	csio_mb_cancel_all(hw, &cbfn_q);
3380 
3381 	spin_unlock_irq(&hw->lock);
3382 	csio_mb_completions(hw, &cbfn_q);
3383 	spin_lock_irq(&hw->lock);
3384 }
3385 
3386 /*****************************************************************************
3387  * Event handling
3388  ****************************************************************************/
3389 int
3390 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3391 			uint16_t len)
3392 {
3393 	struct csio_evt_msg *evt_entry = NULL;
3394 
3395 	if (type >= CSIO_EVT_MAX)
3396 		return -EINVAL;
3397 
3398 	if (len > CSIO_EVT_MSG_SIZE)
3399 		return -EINVAL;
3400 
3401 	if (hw->flags & CSIO_HWF_FWEVT_STOP)
3402 		return -EINVAL;
3403 
3404 	if (list_empty(&hw->evt_free_q)) {
3405 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3406 			 type, len);
3407 		return -ENOMEM;
3408 	}
3409 
3410 	evt_entry = list_first_entry(&hw->evt_free_q,
3411 				     struct csio_evt_msg, list);
3412 	list_del_init(&evt_entry->list);
3413 
3414 	/* copy event msg and queue the event */
3415 	evt_entry->type = type;
3416 	memcpy((void *)evt_entry->data, evt_msg, len);
3417 	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3418 
3419 	CSIO_DEC_STATS(hw, n_evt_freeq);
3420 	CSIO_INC_STATS(hw, n_evt_activeq);
3421 
3422 	return 0;
3423 }
3424 
3425 static int
3426 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3427 			uint16_t len, bool msg_sg)
3428 {
3429 	struct csio_evt_msg *evt_entry = NULL;
3430 	struct csio_fl_dma_buf *fl_sg;
3431 	uint32_t off = 0;
3432 	unsigned long flags;
3433 	int n, ret = 0;
3434 
3435 	if (type >= CSIO_EVT_MAX)
3436 		return -EINVAL;
3437 
3438 	if (len > CSIO_EVT_MSG_SIZE)
3439 		return -EINVAL;
3440 
3441 	spin_lock_irqsave(&hw->lock, flags);
3442 	if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3443 		ret = -EINVAL;
3444 		goto out;
3445 	}
3446 
3447 	if (list_empty(&hw->evt_free_q)) {
3448 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3449 			 type, len);
3450 		ret = -ENOMEM;
3451 		goto out;
3452 	}
3453 
3454 	evt_entry = list_first_entry(&hw->evt_free_q,
3455 				     struct csio_evt_msg, list);
3456 	list_del_init(&evt_entry->list);
3457 
3458 	/* copy event msg and queue the event */
3459 	evt_entry->type = type;
3460 
3461 	/* If Payload in SG list*/
3462 	if (msg_sg) {
3463 		fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3464 		for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3465 			memcpy((void *)((uintptr_t)evt_entry->data + off),
3466 				fl_sg->flbufs[n].vaddr,
3467 				fl_sg->flbufs[n].len);
3468 			off += fl_sg->flbufs[n].len;
3469 		}
3470 	} else
3471 		memcpy((void *)evt_entry->data, evt_msg, len);
3472 
3473 	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3474 	CSIO_DEC_STATS(hw, n_evt_freeq);
3475 	CSIO_INC_STATS(hw, n_evt_activeq);
3476 out:
3477 	spin_unlock_irqrestore(&hw->lock, flags);
3478 	return ret;
3479 }
3480 
3481 static void
3482 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3483 {
3484 	if (evt_entry) {
3485 		spin_lock_irq(&hw->lock);
3486 		list_del_init(&evt_entry->list);
3487 		list_add_tail(&evt_entry->list, &hw->evt_free_q);
3488 		CSIO_DEC_STATS(hw, n_evt_activeq);
3489 		CSIO_INC_STATS(hw, n_evt_freeq);
3490 		spin_unlock_irq(&hw->lock);
3491 	}
3492 }
3493 
3494 void
3495 csio_evtq_flush(struct csio_hw *hw)
3496 {
3497 	uint32_t count;
3498 	count = 30;
3499 	while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3500 		spin_unlock_irq(&hw->lock);
3501 		msleep(2000);
3502 		spin_lock_irq(&hw->lock);
3503 	}
3504 
3505 	CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3506 }
3507 
3508 static void
3509 csio_evtq_stop(struct csio_hw *hw)
3510 {
3511 	hw->flags |= CSIO_HWF_FWEVT_STOP;
3512 }
3513 
3514 static void
3515 csio_evtq_start(struct csio_hw *hw)
3516 {
3517 	hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3518 }
3519 
3520 static void
3521 csio_evtq_cleanup(struct csio_hw *hw)
3522 {
3523 	struct list_head *evt_entry, *next_entry;
3524 
3525 	/* Release outstanding events from activeq to freeq*/
3526 	if (!list_empty(&hw->evt_active_q))
3527 		list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3528 
3529 	hw->stats.n_evt_activeq = 0;
3530 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3531 
3532 	/* Freeup event entry */
3533 	list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3534 		kfree(evt_entry);
3535 		CSIO_DEC_STATS(hw, n_evt_freeq);
3536 	}
3537 
3538 	hw->stats.n_evt_freeq = 0;
3539 }
3540 
3541 
3542 static void
3543 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3544 			  struct csio_fl_dma_buf *flb, void *priv)
3545 {
3546 	__u8 op;
3547 	void *msg = NULL;
3548 	uint32_t msg_len = 0;
3549 	bool msg_sg = 0;
3550 
3551 	op = ((struct rss_header *) wr)->opcode;
3552 	if (op == CPL_FW6_PLD) {
3553 		CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3554 		if (!flb || !flb->totlen) {
3555 			CSIO_INC_STATS(hw, n_cpl_unexp);
3556 			return;
3557 		}
3558 
3559 		msg = (void *) flb;
3560 		msg_len = flb->totlen;
3561 		msg_sg = 1;
3562 	} else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3563 
3564 		CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3565 		/* skip RSS header */
3566 		msg = (void *)((uintptr_t)wr + sizeof(__be64));
3567 		msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3568 			   sizeof(struct cpl_fw4_msg);
3569 	} else {
3570 		csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3571 		CSIO_INC_STATS(hw, n_cpl_unexp);
3572 		return;
3573 	}
3574 
3575 	/*
3576 	 * Enqueue event to EventQ. Events processing happens
3577 	 * in Event worker thread context
3578 	 */
3579 	if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3580 				  (uint16_t)msg_len, msg_sg))
3581 		CSIO_INC_STATS(hw, n_evt_drop);
3582 }
3583 
3584 void
3585 csio_evtq_worker(struct work_struct *work)
3586 {
3587 	struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3588 	struct list_head *evt_entry, *next_entry;
3589 	LIST_HEAD(evt_q);
3590 	struct csio_evt_msg	*evt_msg;
3591 	struct cpl_fw6_msg *msg;
3592 	struct csio_rnode *rn;
3593 	int rv = 0;
3594 	uint8_t evtq_stop = 0;
3595 
3596 	csio_dbg(hw, "event worker thread active evts#%d\n",
3597 		 hw->stats.n_evt_activeq);
3598 
3599 	spin_lock_irq(&hw->lock);
3600 	while (!list_empty(&hw->evt_active_q)) {
3601 		list_splice_tail_init(&hw->evt_active_q, &evt_q);
3602 		spin_unlock_irq(&hw->lock);
3603 
3604 		list_for_each_safe(evt_entry, next_entry, &evt_q) {
3605 			evt_msg = (struct csio_evt_msg *) evt_entry;
3606 
3607 			/* Drop events if queue is STOPPED */
3608 			spin_lock_irq(&hw->lock);
3609 			if (hw->flags & CSIO_HWF_FWEVT_STOP)
3610 				evtq_stop = 1;
3611 			spin_unlock_irq(&hw->lock);
3612 			if (evtq_stop) {
3613 				CSIO_INC_STATS(hw, n_evt_drop);
3614 				goto free_evt;
3615 			}
3616 
3617 			switch (evt_msg->type) {
3618 			case CSIO_EVT_FW:
3619 				msg = (struct cpl_fw6_msg *)(evt_msg->data);
3620 
3621 				if ((msg->opcode == CPL_FW6_MSG ||
3622 				     msg->opcode == CPL_FW4_MSG) &&
3623 				    !msg->type) {
3624 					rv = csio_mb_fwevt_handler(hw,
3625 								msg->data);
3626 					if (!rv)
3627 						break;
3628 					/* Handle any remaining fw events */
3629 					csio_fcoe_fwevt_handler(hw,
3630 							msg->opcode, msg->data);
3631 				} else if (msg->opcode == CPL_FW6_PLD) {
3632 
3633 					csio_fcoe_fwevt_handler(hw,
3634 							msg->opcode, msg->data);
3635 				} else {
3636 					csio_warn(hw,
3637 					     "Unhandled FW msg op %x type %x\n",
3638 						  msg->opcode, msg->type);
3639 					CSIO_INC_STATS(hw, n_evt_drop);
3640 				}
3641 				break;
3642 
3643 			case CSIO_EVT_MBX:
3644 				csio_mberr_worker(hw);
3645 				break;
3646 
3647 			case CSIO_EVT_DEV_LOSS:
3648 				memcpy(&rn, evt_msg->data, sizeof(rn));
3649 				csio_rnode_devloss_handler(rn);
3650 				break;
3651 
3652 			default:
3653 				csio_warn(hw, "Unhandled event %x on evtq\n",
3654 					  evt_msg->type);
3655 				CSIO_INC_STATS(hw, n_evt_unexp);
3656 				break;
3657 			}
3658 free_evt:
3659 			csio_free_evt(hw, evt_msg);
3660 		}
3661 
3662 		spin_lock_irq(&hw->lock);
3663 	}
3664 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3665 	spin_unlock_irq(&hw->lock);
3666 }
3667 
3668 int
3669 csio_fwevtq_handler(struct csio_hw *hw)
3670 {
3671 	int rv;
3672 
3673 	if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3674 		CSIO_INC_STATS(hw, n_int_stray);
3675 		return -EINVAL;
3676 	}
3677 
3678 	rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3679 			   csio_process_fwevtq_entry, NULL);
3680 	return rv;
3681 }
3682 
3683 /****************************************************************************
3684  * Entry points
3685  ****************************************************************************/
3686 
3687 /* Management module */
3688 /*
3689  * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3690  * mgmt - mgmt module
3691  * @io_req - io request
3692  *
3693  * Return - 0:if given IO Req exists in active Q.
3694  *          -EINVAL  :if lookup fails.
3695  */
3696 int
3697 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3698 {
3699 	struct list_head *tmp;
3700 
3701 	/* Lookup ioreq in the ACTIVEQ */
3702 	list_for_each(tmp, &mgmtm->active_q) {
3703 		if (io_req == (struct csio_ioreq *)tmp)
3704 			return 0;
3705 	}
3706 	return -EINVAL;
3707 }
3708 
3709 #define	ECM_MIN_TMO	1000	/* Minimum timeout value for req */
3710 
3711 /*
3712  * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3713  * @data - Event data.
3714  *
3715  * Return - none.
3716  */
3717 static void
3718 csio_mgmt_tmo_handler(uintptr_t data)
3719 {
3720 	struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
3721 	struct list_head *tmp;
3722 	struct csio_ioreq *io_req;
3723 
3724 	csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3725 
3726 	spin_lock_irq(&mgmtm->hw->lock);
3727 
3728 	list_for_each(tmp, &mgmtm->active_q) {
3729 		io_req = (struct csio_ioreq *) tmp;
3730 		io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3731 
3732 		if (!io_req->tmo) {
3733 			/* Dequeue the request from retry Q. */
3734 			tmp = csio_list_prev(tmp);
3735 			list_del_init(&io_req->sm.sm_list);
3736 			if (io_req->io_cbfn) {
3737 				/* io_req will be freed by completion handler */
3738 				io_req->wr_status = -ETIMEDOUT;
3739 				io_req->io_cbfn(mgmtm->hw, io_req);
3740 			} else {
3741 				CSIO_DB_ASSERT(0);
3742 			}
3743 		}
3744 	}
3745 
3746 	/* If retry queue is not empty, re-arm timer */
3747 	if (!list_empty(&mgmtm->active_q))
3748 		mod_timer(&mgmtm->mgmt_timer,
3749 			  jiffies + msecs_to_jiffies(ECM_MIN_TMO));
3750 	spin_unlock_irq(&mgmtm->hw->lock);
3751 }
3752 
3753 static void
3754 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
3755 {
3756 	struct csio_hw *hw = mgmtm->hw;
3757 	struct csio_ioreq *io_req;
3758 	struct list_head *tmp;
3759 	uint32_t count;
3760 
3761 	count = 30;
3762 	/* Wait for all outstanding req to complete gracefully */
3763 	while ((!list_empty(&mgmtm->active_q)) && count--) {
3764 		spin_unlock_irq(&hw->lock);
3765 		msleep(2000);
3766 		spin_lock_irq(&hw->lock);
3767 	}
3768 
3769 	/* release outstanding req from ACTIVEQ */
3770 	list_for_each(tmp, &mgmtm->active_q) {
3771 		io_req = (struct csio_ioreq *) tmp;
3772 		tmp = csio_list_prev(tmp);
3773 		list_del_init(&io_req->sm.sm_list);
3774 		mgmtm->stats.n_active--;
3775 		if (io_req->io_cbfn) {
3776 			/* io_req will be freed by completion handler */
3777 			io_req->wr_status = -ETIMEDOUT;
3778 			io_req->io_cbfn(mgmtm->hw, io_req);
3779 		}
3780 	}
3781 }
3782 
3783 /*
3784  * csio_mgmt_init - Mgmt module init entry point
3785  * @mgmtsm - mgmt module
3786  * @hw	 - HW module
3787  *
3788  * Initialize mgmt timer, resource wait queue, active queue,
3789  * completion q. Allocate Egress and Ingress
3790  * WR queues and save off the queue index returned by the WR
3791  * module for future use. Allocate and save off mgmt reqs in the
3792  * mgmt_req_freelist for future use. Make sure their SM is initialized
3793  * to uninit state.
3794  * Returns: 0 - on success
3795  *          -ENOMEM   - on error.
3796  */
3797 static int
3798 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
3799 {
3800 	struct timer_list *timer = &mgmtm->mgmt_timer;
3801 
3802 	init_timer(timer);
3803 	timer->function = csio_mgmt_tmo_handler;
3804 	timer->data = (unsigned long)mgmtm;
3805 
3806 	INIT_LIST_HEAD(&mgmtm->active_q);
3807 	INIT_LIST_HEAD(&mgmtm->cbfn_q);
3808 
3809 	mgmtm->hw = hw;
3810 	/*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
3811 
3812 	return 0;
3813 }
3814 
3815 /*
3816  * csio_mgmtm_exit - MGMT module exit entry point
3817  * @mgmtsm - mgmt module
3818  *
3819  * This function called during MGMT module uninit.
3820  * Stop timers, free ioreqs allocated.
3821  * Returns: None
3822  *
3823  */
3824 static void
3825 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
3826 {
3827 	del_timer_sync(&mgmtm->mgmt_timer);
3828 }
3829 
3830 
3831 /**
3832  * csio_hw_start - Kicks off the HW State machine
3833  * @hw:		Pointer to HW module.
3834  *
3835  * It is assumed that the initialization is a synchronous operation.
3836  * So when we return afer posting the event, the HW SM should be in
3837  * the ready state, if there were no errors during init.
3838  */
3839 int
3840 csio_hw_start(struct csio_hw *hw)
3841 {
3842 	spin_lock_irq(&hw->lock);
3843 	csio_post_event(&hw->sm, CSIO_HWE_CFG);
3844 	spin_unlock_irq(&hw->lock);
3845 
3846 	if (csio_is_hw_ready(hw))
3847 		return 0;
3848 	else
3849 		return -EINVAL;
3850 }
3851 
3852 int
3853 csio_hw_stop(struct csio_hw *hw)
3854 {
3855 	csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
3856 
3857 	if (csio_is_hw_removing(hw))
3858 		return 0;
3859 	else
3860 		return -EINVAL;
3861 }
3862 
3863 /* Max reset retries */
3864 #define CSIO_MAX_RESET_RETRIES	3
3865 
3866 /**
3867  * csio_hw_reset - Reset the hardware
3868  * @hw:		HW module.
3869  *
3870  * Caller should hold lock across this function.
3871  */
3872 int
3873 csio_hw_reset(struct csio_hw *hw)
3874 {
3875 	if (!csio_is_hw_master(hw))
3876 		return -EPERM;
3877 
3878 	if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
3879 		csio_dbg(hw, "Max hw reset attempts reached..");
3880 		return -EINVAL;
3881 	}
3882 
3883 	hw->rst_retries++;
3884 	csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
3885 
3886 	if (csio_is_hw_ready(hw)) {
3887 		hw->rst_retries = 0;
3888 		hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
3889 		return 0;
3890 	} else
3891 		return -EINVAL;
3892 }
3893 
3894 /*
3895  * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
3896  * @hw: HW module.
3897  */
3898 static void
3899 csio_hw_get_device_id(struct csio_hw *hw)
3900 {
3901 	/* Is the adapter device id cached already ?*/
3902 	if (csio_is_dev_id_cached(hw))
3903 		return;
3904 
3905 	/* Get the PCI vendor & device id */
3906 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
3907 			     &hw->params.pci.vendor_id);
3908 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
3909 			     &hw->params.pci.device_id);
3910 
3911 	csio_dev_id_cached(hw);
3912 	hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
3913 
3914 } /* csio_hw_get_device_id */
3915 
3916 /*
3917  * csio_hw_set_description - Set the model, description of the hw.
3918  * @hw: HW module.
3919  * @ven_id: PCI Vendor ID
3920  * @dev_id: PCI Device ID
3921  */
3922 static void
3923 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
3924 {
3925 	uint32_t adap_type, prot_type;
3926 
3927 	if (ven_id == CSIO_VENDOR_ID) {
3928 		prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
3929 		adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
3930 
3931 		if (prot_type == CSIO_T5_FCOE_ASIC) {
3932 			memcpy(hw->hw_ver,
3933 			       csio_t5_fcoe_adapters[adap_type].model_no, 16);
3934 			memcpy(hw->model_desc,
3935 			       csio_t5_fcoe_adapters[adap_type].description,
3936 			       32);
3937 		} else {
3938 			char tempName[32] = "Chelsio FCoE Controller";
3939 			memcpy(hw->model_desc, tempName, 32);
3940 		}
3941 	}
3942 } /* csio_hw_set_description */
3943 
3944 /**
3945  * csio_hw_init - Initialize HW module.
3946  * @hw:		Pointer to HW module.
3947  *
3948  * Initialize the members of the HW module.
3949  */
3950 int
3951 csio_hw_init(struct csio_hw *hw)
3952 {
3953 	int rv = -EINVAL;
3954 	uint32_t i;
3955 	uint16_t ven_id, dev_id;
3956 	struct csio_evt_msg	*evt_entry;
3957 
3958 	INIT_LIST_HEAD(&hw->sm.sm_list);
3959 	csio_init_state(&hw->sm, csio_hws_uninit);
3960 	spin_lock_init(&hw->lock);
3961 	INIT_LIST_HEAD(&hw->sln_head);
3962 
3963 	/* Get the PCI vendor & device id */
3964 	csio_hw_get_device_id(hw);
3965 
3966 	strcpy(hw->name, CSIO_HW_NAME);
3967 
3968 	/* Initialize the HW chip ops T5 specific ops */
3969 	hw->chip_ops = &t5_ops;
3970 
3971 	/* Set the model & its description */
3972 
3973 	ven_id = hw->params.pci.vendor_id;
3974 	dev_id = hw->params.pci.device_id;
3975 
3976 	csio_hw_set_description(hw, ven_id, dev_id);
3977 
3978 	/* Initialize default log level */
3979 	hw->params.log_level = (uint32_t) csio_dbg_level;
3980 
3981 	csio_set_fwevt_intr_idx(hw, -1);
3982 	csio_set_nondata_intr_idx(hw, -1);
3983 
3984 	/* Init all the modules: Mailbox, WorkRequest and Transport */
3985 	if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
3986 		goto err;
3987 
3988 	rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
3989 	if (rv)
3990 		goto err_mbm_exit;
3991 
3992 	rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
3993 	if (rv)
3994 		goto err_wrm_exit;
3995 
3996 	rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
3997 	if (rv)
3998 		goto err_scsim_exit;
3999 	/* Pre-allocate evtq and initialize them */
4000 	INIT_LIST_HEAD(&hw->evt_active_q);
4001 	INIT_LIST_HEAD(&hw->evt_free_q);
4002 	for (i = 0; i < csio_evtq_sz; i++) {
4003 
4004 		evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
4005 		if (!evt_entry) {
4006 			rv = -ENOMEM;
4007 			csio_err(hw, "Failed to initialize eventq");
4008 			goto err_evtq_cleanup;
4009 		}
4010 
4011 		list_add_tail(&evt_entry->list, &hw->evt_free_q);
4012 		CSIO_INC_STATS(hw, n_evt_freeq);
4013 	}
4014 
4015 	hw->dev_num = dev_num;
4016 	dev_num++;
4017 
4018 	return 0;
4019 
4020 err_evtq_cleanup:
4021 	csio_evtq_cleanup(hw);
4022 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4023 err_scsim_exit:
4024 	csio_scsim_exit(csio_hw_to_scsim(hw));
4025 err_wrm_exit:
4026 	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4027 err_mbm_exit:
4028 	csio_mbm_exit(csio_hw_to_mbm(hw));
4029 err:
4030 	return rv;
4031 }
4032 
4033 /**
4034  * csio_hw_exit - Un-initialize HW module.
4035  * @hw:		Pointer to HW module.
4036  *
4037  */
4038 void
4039 csio_hw_exit(struct csio_hw *hw)
4040 {
4041 	csio_evtq_cleanup(hw);
4042 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4043 	csio_scsim_exit(csio_hw_to_scsim(hw));
4044 	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4045 	csio_mbm_exit(csio_hw_to_mbm(hw));
4046 }
4047