xref: /linux/drivers/scsi/csiostor/csio_hw.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * This file is part of the Chelsio FCoE driver for Linux.
3  *
4  * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
45 
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
49 
50 int csio_force_master;
51 int csio_dbg_level = 0xFEFF;
52 unsigned int csio_port_mask = 0xf;
53 
54 /* Default FW event queue entries. */
55 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
56 
57 /* Default MSI param level */
58 int csio_msi = 2;
59 
60 /* FCoE function instances */
61 static int dev_num;
62 
63 /* FCoE Adapter types & its description */
64 static const struct csio_adap_desc csio_t4_fcoe_adapters[] = {
65 	{"T440-Dbg 10G", "Chelsio T440-Dbg 10G [FCoE]"},
66 	{"T420-CR 10G", "Chelsio T420-CR 10G [FCoE]"},
67 	{"T422-CR 10G/1G", "Chelsio T422-CR 10G/1G [FCoE]"},
68 	{"T440-CR 10G", "Chelsio T440-CR 10G [FCoE]"},
69 	{"T420-BCH 10G", "Chelsio T420-BCH 10G [FCoE]"},
70 	{"T440-BCH 10G", "Chelsio T440-BCH 10G [FCoE]"},
71 	{"T440-CH 10G", "Chelsio T440-CH 10G [FCoE]"},
72 	{"T420-SO 10G", "Chelsio T420-SO 10G [FCoE]"},
73 	{"T420-CX4 10G", "Chelsio T420-CX4 10G [FCoE]"},
74 	{"T420-BT 10G", "Chelsio T420-BT 10G [FCoE]"},
75 	{"T404-BT 1G", "Chelsio T404-BT 1G [FCoE]"},
76 	{"B420-SR 10G", "Chelsio B420-SR 10G [FCoE]"},
77 	{"B404-BT 1G", "Chelsio B404-BT 1G [FCoE]"},
78 	{"T480-CR 10G", "Chelsio T480-CR 10G [FCoE]"},
79 	{"T440-LP-CR 10G", "Chelsio T440-LP-CR 10G [FCoE]"},
80 	{"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
81 	{"HUAWEI T480 10G", "Chelsio HUAWEI T480 10G [FCoE]"},
82 	{"HUAWEI T440 10G", "Chelsio HUAWEI T440 10G [FCoE]"},
83 	{"HUAWEI STG 10G", "Chelsio HUAWEI STG 10G [FCoE]"},
84 	{"ACROMAG XAUI 10G", "Chelsio ACROMAG XAUI 10G [FCoE]"},
85 	{"ACROMAG SFP+ 10G", "Chelsio ACROMAG SFP+ 10G [FCoE]"},
86 	{"QUANTA SFP+ 10G", "Chelsio QUANTA SFP+ 10G [FCoE]"},
87 	{"HUAWEI 10Gbase-T", "Chelsio HUAWEI 10Gbase-T [FCoE]"},
88 	{"HUAWEI T4TOE 10G", "Chelsio HUAWEI T4TOE 10G [FCoE]"}
89 };
90 
91 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
92 	{"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
93 	{"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
94 	{"T522-CR 10G/1G", "Chelsio T452-CR 10G/1G [FCoE]"},
95 	{"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
96 	{"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
97 	{"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
98 	{"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
99 	{"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
100 	{"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
101 	{"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
102 	{"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
103 	{"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
104 	{"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
105 	{"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
106 	{"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
107 	{"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
108 	{"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
109 	{"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
110 	{"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
111 	{"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"}
112 };
113 
114 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
115 static void csio_hw_mbm_cleanup(struct csio_hw *);
116 
117 /* State machine forward declarations */
118 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
119 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
120 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
121 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
122 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
123 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
124 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
125 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
126 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
127 
128 static void csio_hw_initialize(struct csio_hw *hw);
129 static void csio_evtq_stop(struct csio_hw *hw);
130 static void csio_evtq_start(struct csio_hw *hw);
131 
132 int csio_is_hw_ready(struct csio_hw *hw)
133 {
134 	return csio_match_state(hw, csio_hws_ready);
135 }
136 
137 int csio_is_hw_removing(struct csio_hw *hw)
138 {
139 	return csio_match_state(hw, csio_hws_removing);
140 }
141 
142 
143 /*
144  *	csio_hw_wait_op_done_val - wait until an operation is completed
145  *	@hw: the HW module
146  *	@reg: the register to check for completion
147  *	@mask: a single-bit field within @reg that indicates completion
148  *	@polarity: the value of the field when the operation is completed
149  *	@attempts: number of check iterations
150  *	@delay: delay in usecs between iterations
151  *	@valp: where to store the value of the register at completion time
152  *
153  *	Wait until an operation is completed by checking a bit in a register
154  *	up to @attempts times.  If @valp is not NULL the value of the register
155  *	at the time it indicated completion is stored there.  Returns 0 if the
156  *	operation completes and	-EAGAIN	otherwise.
157  */
158 int
159 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
160 			 int polarity, int attempts, int delay, uint32_t *valp)
161 {
162 	uint32_t val;
163 	while (1) {
164 		val = csio_rd_reg32(hw, reg);
165 
166 		if (!!(val & mask) == polarity) {
167 			if (valp)
168 				*valp = val;
169 			return 0;
170 		}
171 
172 		if (--attempts == 0)
173 			return -EAGAIN;
174 		if (delay)
175 			udelay(delay);
176 	}
177 }
178 
179 /*
180  *	csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
181  *	@hw: the adapter
182  *	@addr: the indirect TP register address
183  *	@mask: specifies the field within the register to modify
184  *	@val: new value for the field
185  *
186  *	Sets a field of an indirect TP register to the given value.
187  */
188 void
189 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
190 			unsigned int mask, unsigned int val)
191 {
192 	csio_wr_reg32(hw, addr, TP_PIO_ADDR);
193 	val |= csio_rd_reg32(hw, TP_PIO_DATA) & ~mask;
194 	csio_wr_reg32(hw, val, TP_PIO_DATA);
195 }
196 
197 void
198 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
199 		   uint32_t value)
200 {
201 	uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
202 
203 	csio_wr_reg32(hw, val | value, reg);
204 	/* Flush */
205 	csio_rd_reg32(hw, reg);
206 
207 }
208 
209 static int
210 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
211 {
212 	return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
213 					    addr, len, buf, 0);
214 }
215 
216 /*
217  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
218  */
219 #define EEPROM_MAX_RD_POLL	40
220 #define EEPROM_MAX_WR_POLL	6
221 #define EEPROM_STAT_ADDR	0x7bfc
222 #define VPD_BASE		0x400
223 #define VPD_BASE_OLD		0
224 #define VPD_LEN			1024
225 #define VPD_INFO_FLD_HDR_SIZE	3
226 
227 /*
228  *	csio_hw_seeprom_read - read a serial EEPROM location
229  *	@hw: hw to read
230  *	@addr: EEPROM virtual address
231  *	@data: where to store the read data
232  *
233  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
234  *	VPD capability.  Note that this function must be called with a virtual
235  *	address.
236  */
237 static int
238 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
239 {
240 	uint16_t val = 0;
241 	int attempts = EEPROM_MAX_RD_POLL;
242 	uint32_t base = hw->params.pci.vpd_cap_addr;
243 
244 	if (addr >= EEPROMVSIZE || (addr & 3))
245 		return -EINVAL;
246 
247 	pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
248 
249 	do {
250 		udelay(10);
251 		pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
252 	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
253 
254 	if (!(val & PCI_VPD_ADDR_F)) {
255 		csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
256 		return -EINVAL;
257 	}
258 
259 	pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
260 	*data = le32_to_cpu(*data);
261 
262 	return 0;
263 }
264 
265 /*
266  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
267  * VPD-R sections.
268  */
269 struct t4_vpd_hdr {
270 	u8  id_tag;
271 	u8  id_len[2];
272 	u8  id_data[ID_LEN];
273 	u8  vpdr_tag;
274 	u8  vpdr_len[2];
275 };
276 
277 /*
278  *	csio_hw_get_vpd_keyword_val - Locates an information field keyword in
279  *				      the VPD
280  *	@v: Pointer to buffered vpd data structure
281  *	@kw: The keyword to search for
282  *
283  *	Returns the value of the information field keyword or
284  *	-EINVAL otherwise.
285  */
286 static int
287 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
288 {
289 	int32_t i;
290 	int32_t offset , len;
291 	const uint8_t *buf = &v->id_tag;
292 	const uint8_t *vpdr_len = &v->vpdr_tag;
293 	offset = sizeof(struct t4_vpd_hdr);
294 	len =  (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
295 
296 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
297 		return -EINVAL;
298 
299 	for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
300 		if (memcmp(buf + i , kw, 2) == 0) {
301 			i += VPD_INFO_FLD_HDR_SIZE;
302 			return i;
303 		}
304 
305 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
306 	}
307 
308 	return -EINVAL;
309 }
310 
311 static int
312 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
313 {
314 	*pos = pci_find_capability(pdev, cap);
315 	if (*pos)
316 		return 0;
317 
318 	return -1;
319 }
320 
321 /*
322  *	csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
323  *	@hw: HW module
324  *	@p: where to store the parameters
325  *
326  *	Reads card parameters stored in VPD EEPROM.
327  */
328 static int
329 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
330 {
331 	int i, ret, ec, sn, addr;
332 	uint8_t *vpd, csum;
333 	const struct t4_vpd_hdr *v;
334 	/* To get around compilation warning from strstrip */
335 	char *s;
336 
337 	if (csio_is_valid_vpd(hw))
338 		return 0;
339 
340 	ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
341 				  &hw->params.pci.vpd_cap_addr);
342 	if (ret)
343 		return -EINVAL;
344 
345 	vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
346 	if (vpd == NULL)
347 		return -ENOMEM;
348 
349 	/*
350 	 * Card information normally starts at VPD_BASE but early cards had
351 	 * it at 0.
352 	 */
353 	ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
354 	addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
355 
356 	for (i = 0; i < VPD_LEN; i += 4) {
357 		ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
358 		if (ret) {
359 			kfree(vpd);
360 			return ret;
361 		}
362 	}
363 
364 	/* Reset the VPD flag! */
365 	hw->flags &= (~CSIO_HWF_VPD_VALID);
366 
367 	v = (const struct t4_vpd_hdr *)vpd;
368 
369 #define FIND_VPD_KW(var, name) do { \
370 	var = csio_hw_get_vpd_keyword_val(v, name); \
371 	if (var < 0) { \
372 		csio_err(hw, "missing VPD keyword " name "\n"); \
373 		kfree(vpd); \
374 		return -EINVAL; \
375 	} \
376 } while (0)
377 
378 	FIND_VPD_KW(i, "RV");
379 	for (csum = 0; i >= 0; i--)
380 		csum += vpd[i];
381 
382 	if (csum) {
383 		csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
384 		kfree(vpd);
385 		return -EINVAL;
386 	}
387 	FIND_VPD_KW(ec, "EC");
388 	FIND_VPD_KW(sn, "SN");
389 #undef FIND_VPD_KW
390 
391 	memcpy(p->id, v->id_data, ID_LEN);
392 	s = strstrip(p->id);
393 	memcpy(p->ec, vpd + ec, EC_LEN);
394 	s = strstrip(p->ec);
395 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
396 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
397 	s = strstrip(p->sn);
398 
399 	csio_valid_vpd_copied(hw);
400 
401 	kfree(vpd);
402 	return 0;
403 }
404 
405 /*
406  *	csio_hw_sf1_read - read data from the serial flash
407  *	@hw: the HW module
408  *	@byte_cnt: number of bytes to read
409  *	@cont: whether another operation will be chained
410  *      @lock: whether to lock SF for PL access only
411  *	@valp: where to store the read data
412  *
413  *	Reads up to 4 bytes of data from the serial flash.  The location of
414  *	the read needs to be specified prior to calling this by issuing the
415  *	appropriate commands to the serial flash.
416  */
417 static int
418 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
419 		 int32_t lock, uint32_t *valp)
420 {
421 	int ret;
422 
423 	if (!byte_cnt || byte_cnt > 4)
424 		return -EINVAL;
425 	if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
426 		return -EBUSY;
427 
428 	cont = cont ? SF_CONT : 0;
429 	lock = lock ? SF_LOCK : 0;
430 
431 	csio_wr_reg32(hw, lock | cont | BYTECNT(byte_cnt - 1), SF_OP);
432 	ret = csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
433 					 10, NULL);
434 	if (!ret)
435 		*valp = csio_rd_reg32(hw, SF_DATA);
436 	return ret;
437 }
438 
439 /*
440  *	csio_hw_sf1_write - write data to the serial flash
441  *	@hw: the HW module
442  *	@byte_cnt: number of bytes to write
443  *	@cont: whether another operation will be chained
444  *      @lock: whether to lock SF for PL access only
445  *	@val: value to write
446  *
447  *	Writes up to 4 bytes of data to the serial flash.  The location of
448  *	the write needs to be specified prior to calling this by issuing the
449  *	appropriate commands to the serial flash.
450  */
451 static int
452 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
453 		  int32_t lock, uint32_t val)
454 {
455 	if (!byte_cnt || byte_cnt > 4)
456 		return -EINVAL;
457 	if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
458 		return -EBUSY;
459 
460 	cont = cont ? SF_CONT : 0;
461 	lock = lock ? SF_LOCK : 0;
462 
463 	csio_wr_reg32(hw, val, SF_DATA);
464 	csio_wr_reg32(hw, cont | BYTECNT(byte_cnt - 1) | OP_WR | lock, SF_OP);
465 
466 	return csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
467 					10, NULL);
468 }
469 
470 /*
471  *	csio_hw_flash_wait_op - wait for a flash operation to complete
472  *	@hw: the HW module
473  *	@attempts: max number of polls of the status register
474  *	@delay: delay between polls in ms
475  *
476  *	Wait for a flash operation to complete by polling the status register.
477  */
478 static int
479 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
480 {
481 	int ret;
482 	uint32_t status;
483 
484 	while (1) {
485 		ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
486 		if (ret != 0)
487 			return ret;
488 
489 		ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
490 		if (ret != 0)
491 			return ret;
492 
493 		if (!(status & 1))
494 			return 0;
495 		if (--attempts == 0)
496 			return -EAGAIN;
497 		if (delay)
498 			msleep(delay);
499 	}
500 }
501 
502 /*
503  *	csio_hw_read_flash - read words from serial flash
504  *	@hw: the HW module
505  *	@addr: the start address for the read
506  *	@nwords: how many 32-bit words to read
507  *	@data: where to store the read data
508  *	@byte_oriented: whether to store data as bytes or as words
509  *
510  *	Read the specified number of 32-bit words from the serial flash.
511  *	If @byte_oriented is set the read data is stored as a byte array
512  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
513  *	natural endianess.
514  */
515 static int
516 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
517 		  uint32_t *data, int32_t byte_oriented)
518 {
519 	int ret;
520 
521 	if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
522 		return -EINVAL;
523 
524 	addr = swab32(addr) | SF_RD_DATA_FAST;
525 
526 	ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
527 	if (ret != 0)
528 		return ret;
529 
530 	ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
531 	if (ret != 0)
532 		return ret;
533 
534 	for ( ; nwords; nwords--, data++) {
535 		ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
536 		if (nwords == 1)
537 			csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
538 		if (ret)
539 			return ret;
540 		if (byte_oriented)
541 			*data = htonl(*data);
542 	}
543 	return 0;
544 }
545 
546 /*
547  *	csio_hw_write_flash - write up to a page of data to the serial flash
548  *	@hw: the hw
549  *	@addr: the start address to write
550  *	@n: length of data to write in bytes
551  *	@data: the data to write
552  *
553  *	Writes up to a page of data (256 bytes) to the serial flash starting
554  *	at the given address.  All the data must be written to the same page.
555  */
556 static int
557 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
558 		    uint32_t n, const uint8_t *data)
559 {
560 	int ret = -EINVAL;
561 	uint32_t buf[64];
562 	uint32_t i, c, left, val, offset = addr & 0xff;
563 
564 	if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
565 		return -EINVAL;
566 
567 	val = swab32(addr) | SF_PROG_PAGE;
568 
569 	ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
570 	if (ret != 0)
571 		goto unlock;
572 
573 	ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
574 	if (ret != 0)
575 		goto unlock;
576 
577 	for (left = n; left; left -= c) {
578 		c = min(left, 4U);
579 		for (val = 0, i = 0; i < c; ++i)
580 			val = (val << 8) + *data++;
581 
582 		ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
583 		if (ret)
584 			goto unlock;
585 	}
586 	ret = csio_hw_flash_wait_op(hw, 8, 1);
587 	if (ret)
588 		goto unlock;
589 
590 	csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
591 
592 	/* Read the page to verify the write succeeded */
593 	ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
594 	if (ret)
595 		return ret;
596 
597 	if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
598 		csio_err(hw,
599 			 "failed to correctly write the flash page at %#x\n",
600 			 addr);
601 		return -EINVAL;
602 	}
603 
604 	return 0;
605 
606 unlock:
607 	csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
608 	return ret;
609 }
610 
611 /*
612  *	csio_hw_flash_erase_sectors - erase a range of flash sectors
613  *	@hw: the HW module
614  *	@start: the first sector to erase
615  *	@end: the last sector to erase
616  *
617  *	Erases the sectors in the given inclusive range.
618  */
619 static int
620 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
621 {
622 	int ret = 0;
623 
624 	while (start <= end) {
625 
626 		ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
627 		if (ret != 0)
628 			goto out;
629 
630 		ret = csio_hw_sf1_write(hw, 4, 0, 1,
631 					SF_ERASE_SECTOR | (start << 8));
632 		if (ret != 0)
633 			goto out;
634 
635 		ret = csio_hw_flash_wait_op(hw, 14, 500);
636 		if (ret != 0)
637 			goto out;
638 
639 		start++;
640 	}
641 out:
642 	if (ret)
643 		csio_err(hw, "erase of flash sector %d failed, error %d\n",
644 			 start, ret);
645 	csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
646 	return 0;
647 }
648 
649 static void
650 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
651 {
652 	csio_info(hw, "%s: %u.%u.%u.%u\n", str,
653 		    FW_HDR_FW_VER_MAJOR_GET(hw->fwrev),
654 		    FW_HDR_FW_VER_MINOR_GET(hw->fwrev),
655 		    FW_HDR_FW_VER_MICRO_GET(hw->fwrev),
656 		    FW_HDR_FW_VER_BUILD_GET(hw->fwrev));
657 }
658 
659 /*
660  * csio_hw_get_fw_version - read the firmware version
661  * @hw: HW module
662  * @vers: where to place the version
663  *
664  * Reads the FW version from flash.
665  */
666 static int
667 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
668 {
669 	return csio_hw_read_flash(hw, FW_IMG_START +
670 				  offsetof(struct fw_hdr, fw_ver), 1,
671 				  vers, 0);
672 }
673 
674 /*
675  *	csio_hw_get_tp_version - read the TP microcode version
676  *	@hw: HW module
677  *	@vers: where to place the version
678  *
679  *	Reads the TP microcode version from flash.
680  */
681 static int
682 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
683 {
684 	return csio_hw_read_flash(hw, FLASH_FW_START +
685 			offsetof(struct fw_hdr, tp_microcode_ver), 1,
686 			vers, 0);
687 }
688 
689 /*
690  *	csio_hw_check_fw_version - check if the FW is compatible with
691  *				   this driver
692  *	@hw: HW module
693  *
694  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
695  *	if there's exact match, a negative error if the version could not be
696  *	read or there's a major/minor version mismatch/minor.
697  */
698 static int
699 csio_hw_check_fw_version(struct csio_hw *hw)
700 {
701 	int ret, major, minor, micro;
702 
703 	ret = csio_hw_get_fw_version(hw, &hw->fwrev);
704 	if (!ret)
705 		ret = csio_hw_get_tp_version(hw, &hw->tp_vers);
706 	if (ret)
707 		return ret;
708 
709 	major = FW_HDR_FW_VER_MAJOR_GET(hw->fwrev);
710 	minor = FW_HDR_FW_VER_MINOR_GET(hw->fwrev);
711 	micro = FW_HDR_FW_VER_MICRO_GET(hw->fwrev);
712 
713 	if (major != FW_VERSION_MAJOR(hw)) {	/* major mismatch - fail */
714 		csio_err(hw, "card FW has major version %u, driver wants %u\n",
715 			 major, FW_VERSION_MAJOR(hw));
716 		return -EINVAL;
717 	}
718 
719 	if (minor == FW_VERSION_MINOR(hw) && micro == FW_VERSION_MICRO(hw))
720 		return 0;        /* perfect match */
721 
722 	/* Minor/micro version mismatch */
723 	return -EINVAL;
724 }
725 
726 /*
727  * csio_hw_fw_dload - download firmware.
728  * @hw: HW module
729  * @fw_data: firmware image to write.
730  * @size: image size
731  *
732  * Write the supplied firmware image to the card's serial flash.
733  */
734 static int
735 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
736 {
737 	uint32_t csum;
738 	int32_t addr;
739 	int ret;
740 	uint32_t i;
741 	uint8_t first_page[SF_PAGE_SIZE];
742 	const __be32 *p = (const __be32 *)fw_data;
743 	struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
744 	uint32_t sf_sec_size;
745 
746 	if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
747 		csio_err(hw, "Serial Flash data invalid\n");
748 		return -EINVAL;
749 	}
750 
751 	if (!size) {
752 		csio_err(hw, "FW image has no data\n");
753 		return -EINVAL;
754 	}
755 
756 	if (size & 511) {
757 		csio_err(hw, "FW image size not multiple of 512 bytes\n");
758 		return -EINVAL;
759 	}
760 
761 	if (ntohs(hdr->len512) * 512 != size) {
762 		csio_err(hw, "FW image size differs from size in FW header\n");
763 		return -EINVAL;
764 	}
765 
766 	if (size > FW_MAX_SIZE) {
767 		csio_err(hw, "FW image too large, max is %u bytes\n",
768 			    FW_MAX_SIZE);
769 		return -EINVAL;
770 	}
771 
772 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
773 		csum += ntohl(p[i]);
774 
775 	if (csum != 0xffffffff) {
776 		csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
777 		return -EINVAL;
778 	}
779 
780 	sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
781 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
782 
783 	csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
784 			  FW_START_SEC, FW_START_SEC + i - 1);
785 
786 	ret = csio_hw_flash_erase_sectors(hw, FW_START_SEC,
787 					  FW_START_SEC + i - 1);
788 	if (ret) {
789 		csio_err(hw, "Flash Erase failed\n");
790 		goto out;
791 	}
792 
793 	/*
794 	 * We write the correct version at the end so the driver can see a bad
795 	 * version if the FW write fails.  Start by writing a copy of the
796 	 * first page with a bad version.
797 	 */
798 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
799 	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
800 	ret = csio_hw_write_flash(hw, FW_IMG_START, SF_PAGE_SIZE, first_page);
801 	if (ret)
802 		goto out;
803 
804 	csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
805 		    FW_IMG_START, FW_IMG_START + size);
806 
807 	addr = FW_IMG_START;
808 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
809 		addr += SF_PAGE_SIZE;
810 		fw_data += SF_PAGE_SIZE;
811 		ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
812 		if (ret)
813 			goto out;
814 	}
815 
816 	ret = csio_hw_write_flash(hw,
817 				  FW_IMG_START +
818 					offsetof(struct fw_hdr, fw_ver),
819 				  sizeof(hdr->fw_ver),
820 				  (const uint8_t *)&hdr->fw_ver);
821 
822 out:
823 	if (ret)
824 		csio_err(hw, "firmware download failed, error %d\n", ret);
825 	return ret;
826 }
827 
828 static int
829 csio_hw_get_flash_params(struct csio_hw *hw)
830 {
831 	int ret;
832 	uint32_t info = 0;
833 
834 	ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
835 	if (!ret)
836 		ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
837 	csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
838 	if (ret != 0)
839 		return ret;
840 
841 	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
842 		return -EINVAL;
843 	info >>= 16;				/* log2 of size */
844 	if (info >= 0x14 && info < 0x18)
845 		hw->params.sf_nsec = 1 << (info - 16);
846 	else if (info == 0x18)
847 		hw->params.sf_nsec = 64;
848 	else
849 		return -EINVAL;
850 	hw->params.sf_size = 1 << info;
851 
852 	return 0;
853 }
854 
855 static void
856 csio_set_pcie_completion_timeout(struct csio_hw *hw, u8 range)
857 {
858 	uint16_t val;
859 	int pcie_cap;
860 
861 	if (!csio_pci_capability(hw->pdev, PCI_CAP_ID_EXP, &pcie_cap)) {
862 		pci_read_config_word(hw->pdev,
863 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
864 		val &= 0xfff0;
865 		val |= range ;
866 		pci_write_config_word(hw->pdev,
867 				      pcie_cap + PCI_EXP_DEVCTL2, val);
868 	}
869 }
870 
871 /*****************************************************************************/
872 /* HW State machine assists                                                  */
873 /*****************************************************************************/
874 
875 static int
876 csio_hw_dev_ready(struct csio_hw *hw)
877 {
878 	uint32_t reg;
879 	int cnt = 6;
880 
881 	while (((reg = csio_rd_reg32(hw, PL_WHOAMI)) == 0xFFFFFFFF) &&
882 								(--cnt != 0))
883 		mdelay(100);
884 
885 	if ((cnt == 0) && (((int32_t)(SOURCEPF_GET(reg)) < 0) ||
886 			    (SOURCEPF_GET(reg) >= CSIO_MAX_PFN))) {
887 		csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
888 		return -EIO;
889 	}
890 
891 	hw->pfn = SOURCEPF_GET(reg);
892 
893 	return 0;
894 }
895 
896 /*
897  * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
898  * @hw: HW module
899  * @state: Device state
900  *
901  * FW_HELLO_CMD has to be polled for completion.
902  */
903 static int
904 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
905 {
906 	struct csio_mb	*mbp;
907 	int	rv = 0;
908 	enum csio_dev_master master;
909 	enum fw_retval retval;
910 	uint8_t mpfn;
911 	char state_str[16];
912 	int retries = FW_CMD_HELLO_RETRIES;
913 
914 	memset(state_str, 0, sizeof(state_str));
915 
916 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
917 	if (!mbp) {
918 		rv = -ENOMEM;
919 		CSIO_INC_STATS(hw, n_err_nomem);
920 		goto out;
921 	}
922 
923 	master = csio_force_master ? CSIO_MASTER_MUST : CSIO_MASTER_MAY;
924 
925 retry:
926 	csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
927 		      hw->pfn, master, NULL);
928 
929 	rv = csio_mb_issue(hw, mbp);
930 	if (rv) {
931 		csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
932 		goto out_free_mb;
933 	}
934 
935 	csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
936 	if (retval != FW_SUCCESS) {
937 		csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
938 		rv = -EINVAL;
939 		goto out_free_mb;
940 	}
941 
942 	/* Firmware has designated us to be master */
943 	if (hw->pfn == mpfn) {
944 		hw->flags |= CSIO_HWF_MASTER;
945 	} else if (*state == CSIO_DEV_STATE_UNINIT) {
946 		/*
947 		 * If we're not the Master PF then we need to wait around for
948 		 * the Master PF Driver to finish setting up the adapter.
949 		 *
950 		 * Note that we also do this wait if we're a non-Master-capable
951 		 * PF and there is no current Master PF; a Master PF may show up
952 		 * momentarily and we wouldn't want to fail pointlessly.  (This
953 		 * can happen when an OS loads lots of different drivers rapidly
954 		 * at the same time). In this case, the Master PF returned by
955 		 * the firmware will be PCIE_FW_MASTER_MASK so the test below
956 		 * will work ...
957 		 */
958 
959 		int waiting = FW_CMD_HELLO_TIMEOUT;
960 
961 		/*
962 		 * Wait for the firmware to either indicate an error or
963 		 * initialized state.  If we see either of these we bail out
964 		 * and report the issue to the caller.  If we exhaust the
965 		 * "hello timeout" and we haven't exhausted our retries, try
966 		 * again.  Otherwise bail with a timeout error.
967 		 */
968 		for (;;) {
969 			uint32_t pcie_fw;
970 
971 			spin_unlock_irq(&hw->lock);
972 			msleep(50);
973 			spin_lock_irq(&hw->lock);
974 			waiting -= 50;
975 
976 			/*
977 			 * If neither Error nor Initialialized are indicated
978 			 * by the firmware keep waiting till we exaust our
979 			 * timeout ... and then retry if we haven't exhausted
980 			 * our retries ...
981 			 */
982 			pcie_fw = csio_rd_reg32(hw, PCIE_FW);
983 			if (!(pcie_fw & (PCIE_FW_ERR|PCIE_FW_INIT))) {
984 				if (waiting <= 0) {
985 					if (retries-- > 0)
986 						goto retry;
987 
988 					rv = -ETIMEDOUT;
989 					break;
990 				}
991 				continue;
992 			}
993 
994 			/*
995 			 * We either have an Error or Initialized condition
996 			 * report errors preferentially.
997 			 */
998 			if (state) {
999 				if (pcie_fw & PCIE_FW_ERR) {
1000 					*state = CSIO_DEV_STATE_ERR;
1001 					rv = -ETIMEDOUT;
1002 				} else if (pcie_fw & PCIE_FW_INIT)
1003 					*state = CSIO_DEV_STATE_INIT;
1004 			}
1005 
1006 			/*
1007 			 * If we arrived before a Master PF was selected and
1008 			 * there's not a valid Master PF, grab its identity
1009 			 * for our caller.
1010 			 */
1011 			if (mpfn == PCIE_FW_MASTER_MASK &&
1012 			    (pcie_fw & PCIE_FW_MASTER_VLD))
1013 				mpfn = PCIE_FW_MASTER_GET(pcie_fw);
1014 			break;
1015 		}
1016 		hw->flags &= ~CSIO_HWF_MASTER;
1017 	}
1018 
1019 	switch (*state) {
1020 	case CSIO_DEV_STATE_UNINIT:
1021 		strcpy(state_str, "Initializing");
1022 		break;
1023 	case CSIO_DEV_STATE_INIT:
1024 		strcpy(state_str, "Initialized");
1025 		break;
1026 	case CSIO_DEV_STATE_ERR:
1027 		strcpy(state_str, "Error");
1028 		break;
1029 	default:
1030 		strcpy(state_str, "Unknown");
1031 		break;
1032 	}
1033 
1034 	if (hw->pfn == mpfn)
1035 		csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
1036 			hw->pfn, state_str);
1037 	else
1038 		csio_info(hw,
1039 		    "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
1040 		    hw->pfn, mpfn, state_str);
1041 
1042 out_free_mb:
1043 	mempool_free(mbp, hw->mb_mempool);
1044 out:
1045 	return rv;
1046 }
1047 
1048 /*
1049  * csio_do_bye - Perform the BYE FW Mailbox command and process response.
1050  * @hw: HW module
1051  *
1052  */
1053 static int
1054 csio_do_bye(struct csio_hw *hw)
1055 {
1056 	struct csio_mb	*mbp;
1057 	enum fw_retval retval;
1058 
1059 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1060 	if (!mbp) {
1061 		CSIO_INC_STATS(hw, n_err_nomem);
1062 		return -ENOMEM;
1063 	}
1064 
1065 	csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1066 
1067 	if (csio_mb_issue(hw, mbp)) {
1068 		csio_err(hw, "Issue of BYE command failed\n");
1069 		mempool_free(mbp, hw->mb_mempool);
1070 		return -EINVAL;
1071 	}
1072 
1073 	retval = csio_mb_fw_retval(mbp);
1074 	if (retval != FW_SUCCESS) {
1075 		mempool_free(mbp, hw->mb_mempool);
1076 		return -EINVAL;
1077 	}
1078 
1079 	mempool_free(mbp, hw->mb_mempool);
1080 
1081 	return 0;
1082 }
1083 
1084 /*
1085  * csio_do_reset- Perform the device reset.
1086  * @hw: HW module
1087  * @fw_rst: FW reset
1088  *
1089  * If fw_rst is set, issues FW reset mbox cmd otherwise
1090  * does PIO reset.
1091  * Performs reset of the function.
1092  */
1093 static int
1094 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1095 {
1096 	struct csio_mb	*mbp;
1097 	enum fw_retval retval;
1098 
1099 	if (!fw_rst) {
1100 		/* PIO reset */
1101 		csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
1102 		mdelay(2000);
1103 		return 0;
1104 	}
1105 
1106 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1107 	if (!mbp) {
1108 		CSIO_INC_STATS(hw, n_err_nomem);
1109 		return -ENOMEM;
1110 	}
1111 
1112 	csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1113 		      PIORSTMODE | PIORST, 0, NULL);
1114 
1115 	if (csio_mb_issue(hw, mbp)) {
1116 		csio_err(hw, "Issue of RESET command failed.n");
1117 		mempool_free(mbp, hw->mb_mempool);
1118 		return -EINVAL;
1119 	}
1120 
1121 	retval = csio_mb_fw_retval(mbp);
1122 	if (retval != FW_SUCCESS) {
1123 		csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1124 		mempool_free(mbp, hw->mb_mempool);
1125 		return -EINVAL;
1126 	}
1127 
1128 	mempool_free(mbp, hw->mb_mempool);
1129 
1130 	return 0;
1131 }
1132 
1133 static int
1134 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1135 {
1136 	struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1137 	uint16_t caps;
1138 
1139 	caps = ntohs(rsp->fcoecaps);
1140 
1141 	if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1142 		csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1143 		return -EINVAL;
1144 	}
1145 
1146 	if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1147 		csio_err(hw, "No FCoE Control Offload capability\n");
1148 		return -EINVAL;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 /*
1155  *	csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1156  *	@hw: the HW module
1157  *	@mbox: mailbox to use for the FW RESET command (if desired)
1158  *	@force: force uP into RESET even if FW RESET command fails
1159  *
1160  *	Issues a RESET command to firmware (if desired) with a HALT indication
1161  *	and then puts the microprocessor into RESET state.  The RESET command
1162  *	will only be issued if a legitimate mailbox is provided (mbox <=
1163  *	PCIE_FW_MASTER_MASK).
1164  *
1165  *	This is generally used in order for the host to safely manipulate the
1166  *	adapter without fear of conflicting with whatever the firmware might
1167  *	be doing.  The only way out of this state is to RESTART the firmware
1168  *	...
1169  */
1170 static int
1171 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1172 {
1173 	enum fw_retval retval = 0;
1174 
1175 	/*
1176 	 * If a legitimate mailbox is provided, issue a RESET command
1177 	 * with a HALT indication.
1178 	 */
1179 	if (mbox <= PCIE_FW_MASTER_MASK) {
1180 		struct csio_mb	*mbp;
1181 
1182 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1183 		if (!mbp) {
1184 			CSIO_INC_STATS(hw, n_err_nomem);
1185 			return -ENOMEM;
1186 		}
1187 
1188 		csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1189 			      PIORSTMODE | PIORST, FW_RESET_CMD_HALT(1),
1190 			      NULL);
1191 
1192 		if (csio_mb_issue(hw, mbp)) {
1193 			csio_err(hw, "Issue of RESET command failed!\n");
1194 			mempool_free(mbp, hw->mb_mempool);
1195 			return -EINVAL;
1196 		}
1197 
1198 		retval = csio_mb_fw_retval(mbp);
1199 		mempool_free(mbp, hw->mb_mempool);
1200 	}
1201 
1202 	/*
1203 	 * Normally we won't complete the operation if the firmware RESET
1204 	 * command fails but if our caller insists we'll go ahead and put the
1205 	 * uP into RESET.  This can be useful if the firmware is hung or even
1206 	 * missing ...  We'll have to take the risk of putting the uP into
1207 	 * RESET without the cooperation of firmware in that case.
1208 	 *
1209 	 * We also force the firmware's HALT flag to be on in case we bypassed
1210 	 * the firmware RESET command above or we're dealing with old firmware
1211 	 * which doesn't have the HALT capability.  This will serve as a flag
1212 	 * for the incoming firmware to know that it's coming out of a HALT
1213 	 * rather than a RESET ... if it's new enough to understand that ...
1214 	 */
1215 	if (retval == 0 || force) {
1216 		csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, UPCRST);
1217 		csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, PCIE_FW_HALT);
1218 	}
1219 
1220 	/*
1221 	 * And we always return the result of the firmware RESET command
1222 	 * even when we force the uP into RESET ...
1223 	 */
1224 	return retval ? -EINVAL : 0;
1225 }
1226 
1227 /*
1228  *	csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1229  *	@hw: the HW module
1230  *	@reset: if we want to do a RESET to restart things
1231  *
1232  *	Restart firmware previously halted by csio_hw_fw_halt().  On successful
1233  *	return the previous PF Master remains as the new PF Master and there
1234  *	is no need to issue a new HELLO command, etc.
1235  *
1236  *	We do this in two ways:
1237  *
1238  *	 1. If we're dealing with newer firmware we'll simply want to take
1239  *	    the chip's microprocessor out of RESET.  This will cause the
1240  *	    firmware to start up from its start vector.  And then we'll loop
1241  *	    until the firmware indicates it's started again (PCIE_FW.HALT
1242  *	    reset to 0) or we timeout.
1243  *
1244  *	 2. If we're dealing with older firmware then we'll need to RESET
1245  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
1246  *	    flag and automatically RESET itself on startup.
1247  */
1248 static int
1249 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1250 {
1251 	if (reset) {
1252 		/*
1253 		 * Since we're directing the RESET instead of the firmware
1254 		 * doing it automatically, we need to clear the PCIE_FW.HALT
1255 		 * bit.
1256 		 */
1257 		csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, 0);
1258 
1259 		/*
1260 		 * If we've been given a valid mailbox, first try to get the
1261 		 * firmware to do the RESET.  If that works, great and we can
1262 		 * return success.  Otherwise, if we haven't been given a
1263 		 * valid mailbox or the RESET command failed, fall back to
1264 		 * hitting the chip with a hammer.
1265 		 */
1266 		if (mbox <= PCIE_FW_MASTER_MASK) {
1267 			csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
1268 			msleep(100);
1269 			if (csio_do_reset(hw, true) == 0)
1270 				return 0;
1271 		}
1272 
1273 		csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
1274 		msleep(2000);
1275 	} else {
1276 		int ms;
1277 
1278 		csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
1279 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1280 			if (!(csio_rd_reg32(hw, PCIE_FW) & PCIE_FW_HALT))
1281 				return 0;
1282 			msleep(100);
1283 			ms += 100;
1284 		}
1285 		return -ETIMEDOUT;
1286 	}
1287 	return 0;
1288 }
1289 
1290 /*
1291  *	csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1292  *	@hw: the HW module
1293  *	@mbox: mailbox to use for the FW RESET command (if desired)
1294  *	@fw_data: the firmware image to write
1295  *	@size: image size
1296  *	@force: force upgrade even if firmware doesn't cooperate
1297  *
1298  *	Perform all of the steps necessary for upgrading an adapter's
1299  *	firmware image.  Normally this requires the cooperation of the
1300  *	existing firmware in order to halt all existing activities
1301  *	but if an invalid mailbox token is passed in we skip that step
1302  *	(though we'll still put the adapter microprocessor into RESET in
1303  *	that case).
1304  *
1305  *	On successful return the new firmware will have been loaded and
1306  *	the adapter will have been fully RESET losing all previous setup
1307  *	state.  On unsuccessful return the adapter may be completely hosed ...
1308  *	positive errno indicates that the adapter is ~probably~ intact, a
1309  *	negative errno indicates that things are looking bad ...
1310  */
1311 static int
1312 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1313 		  const u8 *fw_data, uint32_t size, int32_t force)
1314 {
1315 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1316 	int reset, ret;
1317 
1318 	ret = csio_hw_fw_halt(hw, mbox, force);
1319 	if (ret != 0 && !force)
1320 		return ret;
1321 
1322 	ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1323 	if (ret != 0)
1324 		return ret;
1325 
1326 	/*
1327 	 * Older versions of the firmware don't understand the new
1328 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1329 	 * restart.  So for newly loaded older firmware we'll have to do the
1330 	 * RESET for it so it starts up on a clean slate.  We can tell if
1331 	 * the newly loaded firmware will handle this right by checking
1332 	 * its header flags to see if it advertises the capability.
1333 	 */
1334 	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1335 	return csio_hw_fw_restart(hw, mbox, reset);
1336 }
1337 
1338 
1339 /*
1340  *	csio_hw_fw_config_file - setup an adapter via a Configuration File
1341  *	@hw: the HW module
1342  *	@mbox: mailbox to use for the FW command
1343  *	@mtype: the memory type where the Configuration File is located
1344  *	@maddr: the memory address where the Configuration File is located
1345  *	@finiver: return value for CF [fini] version
1346  *	@finicsum: return value for CF [fini] checksum
1347  *	@cfcsum: return value for CF computed checksum
1348  *
1349  *	Issue a command to get the firmware to process the Configuration
1350  *	File located at the specified mtype/maddress.  If the Configuration
1351  *	File is processed successfully and return value pointers are
1352  *	provided, the Configuration File "[fini] section version and
1353  *	checksum values will be returned along with the computed checksum.
1354  *	It's up to the caller to decide how it wants to respond to the
1355  *	checksums not matching but it recommended that a prominant warning
1356  *	be emitted in order to help people rapidly identify changed or
1357  *	corrupted Configuration Files.
1358  *
1359  *	Also note that it's possible to modify things like "niccaps",
1360  *	"toecaps",etc. between processing the Configuration File and telling
1361  *	the firmware to use the new configuration.  Callers which want to
1362  *	do this will need to "hand-roll" their own CAPS_CONFIGS commands for
1363  *	Configuration Files if they want to do this.
1364  */
1365 static int
1366 csio_hw_fw_config_file(struct csio_hw *hw,
1367 		      unsigned int mtype, unsigned int maddr,
1368 		      uint32_t *finiver, uint32_t *finicsum, uint32_t *cfcsum)
1369 {
1370 	struct csio_mb	*mbp;
1371 	struct fw_caps_config_cmd *caps_cmd;
1372 	int rv = -EINVAL;
1373 	enum fw_retval ret;
1374 
1375 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1376 	if (!mbp) {
1377 		CSIO_INC_STATS(hw, n_err_nomem);
1378 		return -ENOMEM;
1379 	}
1380 	/*
1381 	 * Tell the firmware to process the indicated Configuration File.
1382 	 * If there are no errors and the caller has provided return value
1383 	 * pointers for the [fini] section version, checksum and computed
1384 	 * checksum, pass those back to the caller.
1385 	 */
1386 	caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1387 	CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1388 	caps_cmd->op_to_write =
1389 		htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1390 		      FW_CMD_REQUEST |
1391 		      FW_CMD_READ);
1392 	caps_cmd->cfvalid_to_len16 =
1393 		htonl(FW_CAPS_CONFIG_CMD_CFVALID |
1394 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1395 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
1396 		      FW_LEN16(*caps_cmd));
1397 
1398 	if (csio_mb_issue(hw, mbp)) {
1399 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
1400 		goto out;
1401 	}
1402 
1403 	ret = csio_mb_fw_retval(mbp);
1404 	if (ret != FW_SUCCESS) {
1405 		csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1406 		goto out;
1407 	}
1408 
1409 	if (finiver)
1410 		*finiver = ntohl(caps_cmd->finiver);
1411 	if (finicsum)
1412 		*finicsum = ntohl(caps_cmd->finicsum);
1413 	if (cfcsum)
1414 		*cfcsum = ntohl(caps_cmd->cfcsum);
1415 
1416 	/* Validate device capabilities */
1417 	if (csio_hw_validate_caps(hw, mbp)) {
1418 		rv = -ENOENT;
1419 		goto out;
1420 	}
1421 
1422 	/*
1423 	 * And now tell the firmware to use the configuration we just loaded.
1424 	 */
1425 	caps_cmd->op_to_write =
1426 		htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1427 		      FW_CMD_REQUEST |
1428 		      FW_CMD_WRITE);
1429 	caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1430 
1431 	if (csio_mb_issue(hw, mbp)) {
1432 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
1433 		goto out;
1434 	}
1435 
1436 	ret = csio_mb_fw_retval(mbp);
1437 	if (ret != FW_SUCCESS) {
1438 		csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1439 		goto out;
1440 	}
1441 
1442 	rv = 0;
1443 out:
1444 	mempool_free(mbp, hw->mb_mempool);
1445 	return rv;
1446 }
1447 
1448 /*
1449  * csio_get_device_params - Get device parameters.
1450  * @hw: HW module
1451  *
1452  */
1453 static int
1454 csio_get_device_params(struct csio_hw *hw)
1455 {
1456 	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
1457 	struct csio_mb	*mbp;
1458 	enum fw_retval retval;
1459 	u32 param[6];
1460 	int i, j = 0;
1461 
1462 	/* Initialize portids to -1 */
1463 	for (i = 0; i < CSIO_MAX_PPORTS; i++)
1464 		hw->pport[i].portid = -1;
1465 
1466 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1467 	if (!mbp) {
1468 		CSIO_INC_STATS(hw, n_err_nomem);
1469 		return -ENOMEM;
1470 	}
1471 
1472 	/* Get port vec information. */
1473 	param[0] = FW_PARAM_DEV(PORTVEC);
1474 
1475 	/* Get Core clock. */
1476 	param[1] = FW_PARAM_DEV(CCLK);
1477 
1478 	/* Get EQ id start and end. */
1479 	param[2] = FW_PARAM_PFVF(EQ_START);
1480 	param[3] = FW_PARAM_PFVF(EQ_END);
1481 
1482 	/* Get IQ id start and end. */
1483 	param[4] = FW_PARAM_PFVF(IQFLINT_START);
1484 	param[5] = FW_PARAM_PFVF(IQFLINT_END);
1485 
1486 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1487 		       ARRAY_SIZE(param), param, NULL, false, NULL);
1488 	if (csio_mb_issue(hw, mbp)) {
1489 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1490 		mempool_free(mbp, hw->mb_mempool);
1491 		return -EINVAL;
1492 	}
1493 
1494 	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1495 			ARRAY_SIZE(param), param);
1496 	if (retval != FW_SUCCESS) {
1497 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1498 				retval);
1499 		mempool_free(mbp, hw->mb_mempool);
1500 		return -EINVAL;
1501 	}
1502 
1503 	/* cache the information. */
1504 	hw->port_vec = param[0];
1505 	hw->vpd.cclk = param[1];
1506 	wrm->fw_eq_start = param[2];
1507 	wrm->fw_iq_start = param[4];
1508 
1509 	/* Using FW configured max iqs & eqs */
1510 	if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1511 		!csio_is_hw_master(hw)) {
1512 		hw->cfg_niq = param[5] - param[4] + 1;
1513 		hw->cfg_neq = param[3] - param[2] + 1;
1514 		csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1515 			hw->cfg_niq, hw->cfg_neq);
1516 	}
1517 
1518 	hw->port_vec &= csio_port_mask;
1519 
1520 	hw->num_pports	= hweight32(hw->port_vec);
1521 
1522 	csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1523 		    hw->port_vec, hw->num_pports);
1524 
1525 	for (i = 0; i < hw->num_pports; i++) {
1526 		while ((hw->port_vec & (1 << j)) == 0)
1527 			j++;
1528 		hw->pport[i].portid = j++;
1529 		csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1530 	}
1531 	mempool_free(mbp, hw->mb_mempool);
1532 
1533 	return 0;
1534 }
1535 
1536 
1537 /*
1538  * csio_config_device_caps - Get and set device capabilities.
1539  * @hw: HW module
1540  *
1541  */
1542 static int
1543 csio_config_device_caps(struct csio_hw *hw)
1544 {
1545 	struct csio_mb	*mbp;
1546 	enum fw_retval retval;
1547 	int rv = -EINVAL;
1548 
1549 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1550 	if (!mbp) {
1551 		CSIO_INC_STATS(hw, n_err_nomem);
1552 		return -ENOMEM;
1553 	}
1554 
1555 	/* Get device capabilities */
1556 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1557 
1558 	if (csio_mb_issue(hw, mbp)) {
1559 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1560 		goto out;
1561 	}
1562 
1563 	retval = csio_mb_fw_retval(mbp);
1564 	if (retval != FW_SUCCESS) {
1565 		csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1566 		goto out;
1567 	}
1568 
1569 	/* Validate device capabilities */
1570 	if (csio_hw_validate_caps(hw, mbp))
1571 		goto out;
1572 
1573 	/* Don't config device capabilities if already configured */
1574 	if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1575 		rv = 0;
1576 		goto out;
1577 	}
1578 
1579 	/* Write back desired device capabilities */
1580 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1581 			    false, true, NULL);
1582 
1583 	if (csio_mb_issue(hw, mbp)) {
1584 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1585 		goto out;
1586 	}
1587 
1588 	retval = csio_mb_fw_retval(mbp);
1589 	if (retval != FW_SUCCESS) {
1590 		csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1591 		goto out;
1592 	}
1593 
1594 	rv = 0;
1595 out:
1596 	mempool_free(mbp, hw->mb_mempool);
1597 	return rv;
1598 }
1599 
1600 /*
1601  * csio_enable_ports - Bring up all available ports.
1602  * @hw: HW module.
1603  *
1604  */
1605 static int
1606 csio_enable_ports(struct csio_hw *hw)
1607 {
1608 	struct csio_mb  *mbp;
1609 	enum fw_retval retval;
1610 	uint8_t portid;
1611 	int i;
1612 
1613 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1614 	if (!mbp) {
1615 		CSIO_INC_STATS(hw, n_err_nomem);
1616 		return -ENOMEM;
1617 	}
1618 
1619 	for (i = 0; i < hw->num_pports; i++) {
1620 		portid = hw->pport[i].portid;
1621 
1622 		/* Read PORT information */
1623 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1624 			     false, 0, 0, NULL);
1625 
1626 		if (csio_mb_issue(hw, mbp)) {
1627 			csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1628 				 portid);
1629 			mempool_free(mbp, hw->mb_mempool);
1630 			return -EINVAL;
1631 		}
1632 
1633 		csio_mb_process_read_port_rsp(hw, mbp, &retval,
1634 					      &hw->pport[i].pcap);
1635 		if (retval != FW_SUCCESS) {
1636 			csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1637 				 portid, retval);
1638 			mempool_free(mbp, hw->mb_mempool);
1639 			return -EINVAL;
1640 		}
1641 
1642 		/* Write back PORT information */
1643 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1644 			     (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1645 
1646 		if (csio_mb_issue(hw, mbp)) {
1647 			csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1648 				 portid);
1649 			mempool_free(mbp, hw->mb_mempool);
1650 			return -EINVAL;
1651 		}
1652 
1653 		retval = csio_mb_fw_retval(mbp);
1654 		if (retval != FW_SUCCESS) {
1655 			csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1656 				 portid, retval);
1657 			mempool_free(mbp, hw->mb_mempool);
1658 			return -EINVAL;
1659 		}
1660 
1661 	} /* For all ports */
1662 
1663 	mempool_free(mbp, hw->mb_mempool);
1664 
1665 	return 0;
1666 }
1667 
1668 /*
1669  * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1670  * @hw: HW module
1671  * Issued with lock held.
1672  */
1673 static int
1674 csio_get_fcoe_resinfo(struct csio_hw *hw)
1675 {
1676 	struct csio_fcoe_res_info *res_info = &hw->fres_info;
1677 	struct fw_fcoe_res_info_cmd *rsp;
1678 	struct csio_mb  *mbp;
1679 	enum fw_retval retval;
1680 
1681 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1682 	if (!mbp) {
1683 		CSIO_INC_STATS(hw, n_err_nomem);
1684 		return -ENOMEM;
1685 	}
1686 
1687 	/* Get FCoE FW resource information */
1688 	csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1689 
1690 	if (csio_mb_issue(hw, mbp)) {
1691 		csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1692 		mempool_free(mbp, hw->mb_mempool);
1693 		return -EINVAL;
1694 	}
1695 
1696 	rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1697 	retval = FW_CMD_RETVAL_GET(ntohl(rsp->retval_len16));
1698 	if (retval != FW_SUCCESS) {
1699 		csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1700 			 retval);
1701 		mempool_free(mbp, hw->mb_mempool);
1702 		return -EINVAL;
1703 	}
1704 
1705 	res_info->e_d_tov = ntohs(rsp->e_d_tov);
1706 	res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1707 	res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1708 	res_info->r_r_tov = ntohs(rsp->r_r_tov);
1709 	res_info->max_xchgs = ntohl(rsp->max_xchgs);
1710 	res_info->max_ssns = ntohl(rsp->max_ssns);
1711 	res_info->used_xchgs = ntohl(rsp->used_xchgs);
1712 	res_info->used_ssns = ntohl(rsp->used_ssns);
1713 	res_info->max_fcfs = ntohl(rsp->max_fcfs);
1714 	res_info->max_vnps = ntohl(rsp->max_vnps);
1715 	res_info->used_fcfs = ntohl(rsp->used_fcfs);
1716 	res_info->used_vnps = ntohl(rsp->used_vnps);
1717 
1718 	csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1719 						  res_info->max_xchgs);
1720 	mempool_free(mbp, hw->mb_mempool);
1721 
1722 	return 0;
1723 }
1724 
1725 static int
1726 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1727 {
1728 	struct csio_mb	*mbp;
1729 	enum fw_retval retval;
1730 	u32 _param[1];
1731 
1732 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1733 	if (!mbp) {
1734 		CSIO_INC_STATS(hw, n_err_nomem);
1735 		return -ENOMEM;
1736 	}
1737 
1738 	/*
1739 	 * Find out whether we're dealing with a version of
1740 	 * the firmware which has configuration file support.
1741 	 */
1742 	_param[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1743 		     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
1744 
1745 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1746 		       ARRAY_SIZE(_param), _param, NULL, false, NULL);
1747 	if (csio_mb_issue(hw, mbp)) {
1748 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1749 		mempool_free(mbp, hw->mb_mempool);
1750 		return -EINVAL;
1751 	}
1752 
1753 	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1754 			ARRAY_SIZE(_param), _param);
1755 	if (retval != FW_SUCCESS) {
1756 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1757 				retval);
1758 		mempool_free(mbp, hw->mb_mempool);
1759 		return -EINVAL;
1760 	}
1761 
1762 	mempool_free(mbp, hw->mb_mempool);
1763 	*param = _param[0];
1764 
1765 	return 0;
1766 }
1767 
1768 static int
1769 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1770 {
1771 	int ret = 0;
1772 	const struct firmware *cf;
1773 	struct pci_dev *pci_dev = hw->pdev;
1774 	struct device *dev = &pci_dev->dev;
1775 	unsigned int mtype = 0, maddr = 0;
1776 	uint32_t *cfg_data;
1777 	int value_to_add = 0;
1778 
1779 	if (request_firmware(&cf, CSIO_CF_FNAME(hw), dev) < 0) {
1780 		csio_err(hw, "could not find config file %s, err: %d\n",
1781 			 CSIO_CF_FNAME(hw), ret);
1782 		return -ENOENT;
1783 	}
1784 
1785 	if (cf->size%4 != 0)
1786 		value_to_add = 4 - (cf->size % 4);
1787 
1788 	cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1789 	if (cfg_data == NULL) {
1790 		ret = -ENOMEM;
1791 		goto leave;
1792 	}
1793 
1794 	memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1795 	if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1796 		ret = -EINVAL;
1797 		goto leave;
1798 	}
1799 
1800 	mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param);
1801 	maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16;
1802 
1803 	ret = csio_memory_write(hw, mtype, maddr,
1804 				cf->size + value_to_add, cfg_data);
1805 
1806 	if ((ret == 0) && (value_to_add != 0)) {
1807 		union {
1808 			u32 word;
1809 			char buf[4];
1810 		} last;
1811 		size_t size = cf->size & ~0x3;
1812 		int i;
1813 
1814 		last.word = cfg_data[size >> 2];
1815 		for (i = value_to_add; i < 4; i++)
1816 			last.buf[i] = 0;
1817 		ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1818 	}
1819 	if (ret == 0) {
1820 		csio_info(hw, "config file upgraded to %s\n",
1821 			  CSIO_CF_FNAME(hw));
1822 		snprintf(path, 64, "%s%s", "/lib/firmware/", CSIO_CF_FNAME(hw));
1823 	}
1824 
1825 leave:
1826 	kfree(cfg_data);
1827 	release_firmware(cf);
1828 	return ret;
1829 }
1830 
1831 /*
1832  * HW initialization: contact FW, obtain config, perform basic init.
1833  *
1834  * If the firmware we're dealing with has Configuration File support, then
1835  * we use that to perform all configuration -- either using the configuration
1836  * file stored in flash on the adapter or using a filesystem-local file
1837  * if available.
1838  *
1839  * If we don't have configuration file support in the firmware, then we'll
1840  * have to set things up the old fashioned way with hard-coded register
1841  * writes and firmware commands ...
1842  */
1843 
1844 /*
1845  * Attempt to initialize the HW via a Firmware Configuration File.
1846  */
1847 static int
1848 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1849 {
1850 	unsigned int mtype, maddr;
1851 	int rv;
1852 	uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
1853 	int using_flash;
1854 	char path[64];
1855 
1856 	/*
1857 	 * Reset device if necessary
1858 	 */
1859 	if (reset) {
1860 		rv = csio_do_reset(hw, true);
1861 		if (rv != 0)
1862 			goto bye;
1863 	}
1864 
1865 	/*
1866 	 * If we have a configuration file in host ,
1867 	 * then use that.  Otherwise, use the configuration file stored
1868 	 * in the HW flash ...
1869 	 */
1870 	spin_unlock_irq(&hw->lock);
1871 	rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1872 	spin_lock_irq(&hw->lock);
1873 	if (rv != 0) {
1874 		if (rv == -ENOENT) {
1875 			/*
1876 			 * config file was not found. Use default
1877 			 * config file from flash.
1878 			 */
1879 			mtype = FW_MEMTYPE_CF_FLASH;
1880 			maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
1881 			using_flash = 1;
1882 		} else {
1883 			/*
1884 			 * we revert back to the hardwired config if
1885 			 * flashing failed.
1886 			 */
1887 			goto bye;
1888 		}
1889 	} else {
1890 		mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param);
1891 		maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16;
1892 		using_flash = 0;
1893 	}
1894 
1895 	hw->cfg_store = (uint8_t)mtype;
1896 
1897 	/*
1898 	 * Issue a Capability Configuration command to the firmware to get it
1899 	 * to parse the Configuration File.
1900 	 */
1901 	rv = csio_hw_fw_config_file(hw, mtype, maddr, &finiver,
1902 		&finicsum, &cfcsum);
1903 	if (rv != 0)
1904 		goto bye;
1905 
1906 	hw->cfg_finiver		= finiver;
1907 	hw->cfg_finicsum	= finicsum;
1908 	hw->cfg_cfcsum		= cfcsum;
1909 	hw->cfg_csum_status	= true;
1910 
1911 	if (finicsum != cfcsum) {
1912 		csio_warn(hw,
1913 		      "Config File checksum mismatch: csum=%#x, computed=%#x\n",
1914 		      finicsum, cfcsum);
1915 
1916 		hw->cfg_csum_status = false;
1917 	}
1918 
1919 	/*
1920 	 * Note that we're operating with parameters
1921 	 * not supplied by the driver, rather than from hard-wired
1922 	 * initialization constants buried in the driver.
1923 	 */
1924 	hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
1925 
1926 	/* device parameters */
1927 	rv = csio_get_device_params(hw);
1928 	if (rv != 0)
1929 		goto bye;
1930 
1931 	/* Configure SGE */
1932 	csio_wr_sge_init(hw);
1933 
1934 	/*
1935 	 * And finally tell the firmware to initialize itself using the
1936 	 * parameters from the Configuration File.
1937 	 */
1938 	/* Post event to notify completion of configuration */
1939 	csio_post_event(&hw->sm, CSIO_HWE_INIT);
1940 
1941 	csio_info(hw,
1942 	 "Firmware Configuration File %s, version %#x, computed checksum %#x\n",
1943 		  (using_flash ? "in device FLASH" : path), finiver, cfcsum);
1944 
1945 	return 0;
1946 
1947 	/*
1948 	 * Something bad happened.  Return the error ...
1949 	 */
1950 bye:
1951 	hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
1952 	csio_dbg(hw, "Configuration file error %d\n", rv);
1953 	return rv;
1954 }
1955 
1956 /*
1957  * Attempt to initialize the adapter via hard-coded, driver supplied
1958  * parameters ...
1959  */
1960 static int
1961 csio_hw_no_fwconfig(struct csio_hw *hw, int reset)
1962 {
1963 	int		rv;
1964 	/*
1965 	 * Reset device if necessary
1966 	 */
1967 	if (reset) {
1968 		rv = csio_do_reset(hw, true);
1969 		if (rv != 0)
1970 			goto out;
1971 	}
1972 
1973 	/* Get and set device capabilities */
1974 	rv = csio_config_device_caps(hw);
1975 	if (rv != 0)
1976 		goto out;
1977 
1978 	/* device parameters */
1979 	rv = csio_get_device_params(hw);
1980 	if (rv != 0)
1981 		goto out;
1982 
1983 	/* Configure SGE */
1984 	csio_wr_sge_init(hw);
1985 
1986 	/* Post event to notify completion of configuration */
1987 	csio_post_event(&hw->sm, CSIO_HWE_INIT);
1988 
1989 out:
1990 	return rv;
1991 }
1992 
1993 /*
1994  * Returns -EINVAL if attempts to flash the firmware failed
1995  * else returns 0,
1996  * if flashing was not attempted because the card had the
1997  * latest firmware ECANCELED is returned
1998  */
1999 static int
2000 csio_hw_flash_fw(struct csio_hw *hw)
2001 {
2002 	int ret = -ECANCELED;
2003 	const struct firmware *fw;
2004 	const struct fw_hdr *hdr;
2005 	u32 fw_ver;
2006 	struct pci_dev *pci_dev = hw->pdev;
2007 	struct device *dev = &pci_dev->dev ;
2008 
2009 	if (request_firmware(&fw, CSIO_FW_FNAME(hw), dev) < 0) {
2010 		csio_err(hw, "could not find firmware image %s, err: %d\n",
2011 			 CSIO_FW_FNAME(hw), ret);
2012 		return -EINVAL;
2013 	}
2014 
2015 	hdr = (const struct fw_hdr *)fw->data;
2016 	fw_ver = ntohl(hdr->fw_ver);
2017 	if (FW_HDR_FW_VER_MAJOR_GET(fw_ver) != FW_VERSION_MAJOR(hw))
2018 		return -EINVAL;      /* wrong major version, won't do */
2019 
2020 	/*
2021 	 * If the flash FW is unusable or we found something newer, load it.
2022 	 */
2023 	if (FW_HDR_FW_VER_MAJOR_GET(hw->fwrev) != FW_VERSION_MAJOR(hw) ||
2024 	    fw_ver > hw->fwrev) {
2025 		ret = csio_hw_fw_upgrade(hw, hw->pfn, fw->data, fw->size,
2026 				    /*force=*/false);
2027 		if (!ret)
2028 			csio_info(hw,
2029 				  "firmware upgraded to version %pI4 from %s\n",
2030 				  &hdr->fw_ver, CSIO_FW_FNAME(hw));
2031 		else
2032 			csio_err(hw, "firmware upgrade failed! err=%d\n", ret);
2033 	} else
2034 		ret = -EINVAL;
2035 
2036 	release_firmware(fw);
2037 
2038 	return ret;
2039 }
2040 
2041 
2042 /*
2043  * csio_hw_configure - Configure HW
2044  * @hw - HW module
2045  *
2046  */
2047 static void
2048 csio_hw_configure(struct csio_hw *hw)
2049 {
2050 	int reset = 1;
2051 	int rv;
2052 	u32 param[1];
2053 
2054 	rv = csio_hw_dev_ready(hw);
2055 	if (rv != 0) {
2056 		CSIO_INC_STATS(hw, n_err_fatal);
2057 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2058 		goto out;
2059 	}
2060 
2061 	/* HW version */
2062 	hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV);
2063 
2064 	/* Needed for FW download */
2065 	rv = csio_hw_get_flash_params(hw);
2066 	if (rv != 0) {
2067 		csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2068 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2069 		goto out;
2070 	}
2071 
2072 	/* Set pci completion timeout value to 4 seconds. */
2073 	csio_set_pcie_completion_timeout(hw, 0xd);
2074 
2075 	hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2076 
2077 	rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2078 	if (rv != 0)
2079 		goto out;
2080 
2081 	csio_hw_print_fw_version(hw, "Firmware revision");
2082 
2083 	rv = csio_do_hello(hw, &hw->fw_state);
2084 	if (rv != 0) {
2085 		CSIO_INC_STATS(hw, n_err_fatal);
2086 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2087 		goto out;
2088 	}
2089 
2090 	/* Read vpd */
2091 	rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2092 	if (rv != 0)
2093 		goto out;
2094 
2095 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2096 		rv = csio_hw_check_fw_version(hw);
2097 		if (rv == -EINVAL) {
2098 
2099 			/* Do firmware update */
2100 			spin_unlock_irq(&hw->lock);
2101 			rv = csio_hw_flash_fw(hw);
2102 			spin_lock_irq(&hw->lock);
2103 
2104 			if (rv == 0) {
2105 				reset = 0;
2106 				/*
2107 				 * Note that the chip was reset as part of the
2108 				 * firmware upgrade so we don't reset it again
2109 				 * below and grab the new firmware version.
2110 				 */
2111 				rv = csio_hw_check_fw_version(hw);
2112 			}
2113 		}
2114 		/*
2115 		 * If the firmware doesn't support Configuration
2116 		 * Files, use the old Driver-based, hard-wired
2117 		 * initialization.  Otherwise, try using the
2118 		 * Configuration File support and fall back to the
2119 		 * Driver-based initialization if there's no
2120 		 * Configuration File found.
2121 		 */
2122 		if (csio_hw_check_fwconfig(hw, param) == 0) {
2123 			rv = csio_hw_use_fwconfig(hw, reset, param);
2124 			if (rv == -ENOENT)
2125 				goto out;
2126 			if (rv != 0) {
2127 				csio_info(hw,
2128 				    "No Configuration File present "
2129 				    "on adapter.  Using hard-wired "
2130 				    "configuration parameters.\n");
2131 				rv = csio_hw_no_fwconfig(hw, reset);
2132 			}
2133 		} else {
2134 			rv = csio_hw_no_fwconfig(hw, reset);
2135 		}
2136 
2137 		if (rv != 0)
2138 			goto out;
2139 
2140 	} else {
2141 		if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2142 
2143 			hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2144 
2145 			/* device parameters */
2146 			rv = csio_get_device_params(hw);
2147 			if (rv != 0)
2148 				goto out;
2149 
2150 			/* Get device capabilities */
2151 			rv = csio_config_device_caps(hw);
2152 			if (rv != 0)
2153 				goto out;
2154 
2155 			/* Configure SGE */
2156 			csio_wr_sge_init(hw);
2157 
2158 			/* Post event to notify completion of configuration */
2159 			csio_post_event(&hw->sm, CSIO_HWE_INIT);
2160 			goto out;
2161 		}
2162 	} /* if not master */
2163 
2164 out:
2165 	return;
2166 }
2167 
2168 /*
2169  * csio_hw_initialize - Initialize HW
2170  * @hw - HW module
2171  *
2172  */
2173 static void
2174 csio_hw_initialize(struct csio_hw *hw)
2175 {
2176 	struct csio_mb	*mbp;
2177 	enum fw_retval retval;
2178 	int rv;
2179 	int i;
2180 
2181 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2182 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2183 		if (!mbp)
2184 			goto out;
2185 
2186 		csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2187 
2188 		if (csio_mb_issue(hw, mbp)) {
2189 			csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2190 			goto free_and_out;
2191 		}
2192 
2193 		retval = csio_mb_fw_retval(mbp);
2194 		if (retval != FW_SUCCESS) {
2195 			csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2196 				 retval);
2197 			goto free_and_out;
2198 		}
2199 
2200 		mempool_free(mbp, hw->mb_mempool);
2201 	}
2202 
2203 	rv = csio_get_fcoe_resinfo(hw);
2204 	if (rv != 0) {
2205 		csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2206 		goto out;
2207 	}
2208 
2209 	spin_unlock_irq(&hw->lock);
2210 	rv = csio_config_queues(hw);
2211 	spin_lock_irq(&hw->lock);
2212 
2213 	if (rv != 0) {
2214 		csio_err(hw, "Config of queues failed!: %d\n", rv);
2215 		goto out;
2216 	}
2217 
2218 	for (i = 0; i < hw->num_pports; i++)
2219 		hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2220 
2221 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2222 		rv = csio_enable_ports(hw);
2223 		if (rv != 0) {
2224 			csio_err(hw, "Failed to enable ports: %d\n", rv);
2225 			goto out;
2226 		}
2227 	}
2228 
2229 	csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2230 	return;
2231 
2232 free_and_out:
2233 	mempool_free(mbp, hw->mb_mempool);
2234 out:
2235 	return;
2236 }
2237 
2238 #define PF_INTR_MASK (PFSW | PFCIM)
2239 
2240 /*
2241  * csio_hw_intr_enable - Enable HW interrupts
2242  * @hw: Pointer to HW module.
2243  *
2244  * Enable interrupts in HW registers.
2245  */
2246 static void
2247 csio_hw_intr_enable(struct csio_hw *hw)
2248 {
2249 	uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2250 	uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
2251 	uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE);
2252 
2253 	/*
2254 	 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2255 	 * by FW, so do nothing for INTX.
2256 	 */
2257 	if (hw->intr_mode == CSIO_IM_MSIX)
2258 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
2259 				   AIVEC(AIVEC_MASK), vec);
2260 	else if (hw->intr_mode == CSIO_IM_MSI)
2261 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
2262 				   AIVEC(AIVEC_MASK), 0);
2263 
2264 	csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE));
2265 
2266 	/* Turn on MB interrupts - this will internally flush PIO as well */
2267 	csio_mb_intr_enable(hw);
2268 
2269 	/* These are common registers - only a master can modify them */
2270 	if (csio_is_hw_master(hw)) {
2271 		/*
2272 		 * Disable the Serial FLASH interrupt, if enabled!
2273 		 */
2274 		pl &= (~SF);
2275 		csio_wr_reg32(hw, pl, PL_INT_ENABLE);
2276 
2277 		csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE |
2278 			      EGRESS_SIZE_ERR | ERR_INVALID_CIDX_INC |
2279 			      ERR_CPL_OPCODE_0 | ERR_DROPPED_DB |
2280 			      ERR_DATA_CPL_ON_HIGH_QID1 |
2281 			      ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
2282 			      ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
2283 			      ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
2284 			      ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR,
2285 			      SGE_INT_ENABLE3);
2286 		csio_set_reg_field(hw, PL_INT_MAP0, 0, 1 << pf);
2287 	}
2288 
2289 	hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2290 
2291 }
2292 
2293 /*
2294  * csio_hw_intr_disable - Disable HW interrupts
2295  * @hw: Pointer to HW module.
2296  *
2297  * Turn off Mailbox and PCI_PF_CFG interrupts.
2298  */
2299 void
2300 csio_hw_intr_disable(struct csio_hw *hw)
2301 {
2302 	uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
2303 
2304 	if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2305 		return;
2306 
2307 	hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2308 
2309 	csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE));
2310 	if (csio_is_hw_master(hw))
2311 		csio_set_reg_field(hw, PL_INT_MAP0, 1 << pf, 0);
2312 
2313 	/* Turn off MB interrupts */
2314 	csio_mb_intr_disable(hw);
2315 
2316 }
2317 
2318 void
2319 csio_hw_fatal_err(struct csio_hw *hw)
2320 {
2321 	csio_set_reg_field(hw, SGE_CONTROL, GLOBALENABLE, 0);
2322 	csio_hw_intr_disable(hw);
2323 
2324 	/* Do not reset HW, we may need FW state for debugging */
2325 	csio_fatal(hw, "HW Fatal error encountered!\n");
2326 }
2327 
2328 /*****************************************************************************/
2329 /* START: HW SM                                                              */
2330 /*****************************************************************************/
2331 /*
2332  * csio_hws_uninit - Uninit state
2333  * @hw - HW module
2334  * @evt - Event
2335  *
2336  */
2337 static void
2338 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2339 {
2340 	hw->prev_evt = hw->cur_evt;
2341 	hw->cur_evt = evt;
2342 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2343 
2344 	switch (evt) {
2345 	case CSIO_HWE_CFG:
2346 		csio_set_state(&hw->sm, csio_hws_configuring);
2347 		csio_hw_configure(hw);
2348 		break;
2349 
2350 	default:
2351 		CSIO_INC_STATS(hw, n_evt_unexp);
2352 		break;
2353 	}
2354 }
2355 
2356 /*
2357  * csio_hws_configuring - Configuring state
2358  * @hw - HW module
2359  * @evt - Event
2360  *
2361  */
2362 static void
2363 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2364 {
2365 	hw->prev_evt = hw->cur_evt;
2366 	hw->cur_evt = evt;
2367 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2368 
2369 	switch (evt) {
2370 	case CSIO_HWE_INIT:
2371 		csio_set_state(&hw->sm, csio_hws_initializing);
2372 		csio_hw_initialize(hw);
2373 		break;
2374 
2375 	case CSIO_HWE_INIT_DONE:
2376 		csio_set_state(&hw->sm, csio_hws_ready);
2377 		/* Fan out event to all lnode SMs */
2378 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2379 		break;
2380 
2381 	case CSIO_HWE_FATAL:
2382 		csio_set_state(&hw->sm, csio_hws_uninit);
2383 		break;
2384 
2385 	case CSIO_HWE_PCI_REMOVE:
2386 		csio_do_bye(hw);
2387 		break;
2388 	default:
2389 		CSIO_INC_STATS(hw, n_evt_unexp);
2390 		break;
2391 	}
2392 }
2393 
2394 /*
2395  * csio_hws_initializing - Initialiazing state
2396  * @hw - HW module
2397  * @evt - Event
2398  *
2399  */
2400 static void
2401 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2402 {
2403 	hw->prev_evt = hw->cur_evt;
2404 	hw->cur_evt = evt;
2405 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2406 
2407 	switch (evt) {
2408 	case CSIO_HWE_INIT_DONE:
2409 		csio_set_state(&hw->sm, csio_hws_ready);
2410 
2411 		/* Fan out event to all lnode SMs */
2412 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2413 
2414 		/* Enable interrupts */
2415 		csio_hw_intr_enable(hw);
2416 		break;
2417 
2418 	case CSIO_HWE_FATAL:
2419 		csio_set_state(&hw->sm, csio_hws_uninit);
2420 		break;
2421 
2422 	case CSIO_HWE_PCI_REMOVE:
2423 		csio_do_bye(hw);
2424 		break;
2425 
2426 	default:
2427 		CSIO_INC_STATS(hw, n_evt_unexp);
2428 		break;
2429 	}
2430 }
2431 
2432 /*
2433  * csio_hws_ready - Ready state
2434  * @hw - HW module
2435  * @evt - Event
2436  *
2437  */
2438 static void
2439 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2440 {
2441 	/* Remember the event */
2442 	hw->evtflag = evt;
2443 
2444 	hw->prev_evt = hw->cur_evt;
2445 	hw->cur_evt = evt;
2446 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2447 
2448 	switch (evt) {
2449 	case CSIO_HWE_HBA_RESET:
2450 	case CSIO_HWE_FW_DLOAD:
2451 	case CSIO_HWE_SUSPEND:
2452 	case CSIO_HWE_PCI_REMOVE:
2453 	case CSIO_HWE_PCIERR_DETECTED:
2454 		csio_set_state(&hw->sm, csio_hws_quiescing);
2455 		/* cleanup all outstanding cmds */
2456 		if (evt == CSIO_HWE_HBA_RESET ||
2457 		    evt == CSIO_HWE_PCIERR_DETECTED)
2458 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2459 		else
2460 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2461 
2462 		csio_hw_intr_disable(hw);
2463 		csio_hw_mbm_cleanup(hw);
2464 		csio_evtq_stop(hw);
2465 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2466 		csio_evtq_flush(hw);
2467 		csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2468 		csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2469 		break;
2470 
2471 	case CSIO_HWE_FATAL:
2472 		csio_set_state(&hw->sm, csio_hws_uninit);
2473 		break;
2474 
2475 	default:
2476 		CSIO_INC_STATS(hw, n_evt_unexp);
2477 		break;
2478 	}
2479 }
2480 
2481 /*
2482  * csio_hws_quiescing - Quiescing state
2483  * @hw - HW module
2484  * @evt - Event
2485  *
2486  */
2487 static void
2488 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2489 {
2490 	hw->prev_evt = hw->cur_evt;
2491 	hw->cur_evt = evt;
2492 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2493 
2494 	switch (evt) {
2495 	case CSIO_HWE_QUIESCED:
2496 		switch (hw->evtflag) {
2497 		case CSIO_HWE_FW_DLOAD:
2498 			csio_set_state(&hw->sm, csio_hws_resetting);
2499 			/* Download firmware */
2500 			/* Fall through */
2501 
2502 		case CSIO_HWE_HBA_RESET:
2503 			csio_set_state(&hw->sm, csio_hws_resetting);
2504 			/* Start reset of the HBA */
2505 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2506 			csio_wr_destroy_queues(hw, false);
2507 			csio_do_reset(hw, false);
2508 			csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2509 			break;
2510 
2511 		case CSIO_HWE_PCI_REMOVE:
2512 			csio_set_state(&hw->sm, csio_hws_removing);
2513 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2514 			csio_wr_destroy_queues(hw, true);
2515 			/* Now send the bye command */
2516 			csio_do_bye(hw);
2517 			break;
2518 
2519 		case CSIO_HWE_SUSPEND:
2520 			csio_set_state(&hw->sm, csio_hws_quiesced);
2521 			break;
2522 
2523 		case CSIO_HWE_PCIERR_DETECTED:
2524 			csio_set_state(&hw->sm, csio_hws_pcierr);
2525 			csio_wr_destroy_queues(hw, false);
2526 			break;
2527 
2528 		default:
2529 			CSIO_INC_STATS(hw, n_evt_unexp);
2530 			break;
2531 
2532 		}
2533 		break;
2534 
2535 	default:
2536 		CSIO_INC_STATS(hw, n_evt_unexp);
2537 		break;
2538 	}
2539 }
2540 
2541 /*
2542  * csio_hws_quiesced - Quiesced state
2543  * @hw - HW module
2544  * @evt - Event
2545  *
2546  */
2547 static void
2548 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2549 {
2550 	hw->prev_evt = hw->cur_evt;
2551 	hw->cur_evt = evt;
2552 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2553 
2554 	switch (evt) {
2555 	case CSIO_HWE_RESUME:
2556 		csio_set_state(&hw->sm, csio_hws_configuring);
2557 		csio_hw_configure(hw);
2558 		break;
2559 
2560 	default:
2561 		CSIO_INC_STATS(hw, n_evt_unexp);
2562 		break;
2563 	}
2564 }
2565 
2566 /*
2567  * csio_hws_resetting - HW Resetting state
2568  * @hw - HW module
2569  * @evt - Event
2570  *
2571  */
2572 static void
2573 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2574 {
2575 	hw->prev_evt = hw->cur_evt;
2576 	hw->cur_evt = evt;
2577 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2578 
2579 	switch (evt) {
2580 	case CSIO_HWE_HBA_RESET_DONE:
2581 		csio_evtq_start(hw);
2582 		csio_set_state(&hw->sm, csio_hws_configuring);
2583 		csio_hw_configure(hw);
2584 		break;
2585 
2586 	default:
2587 		CSIO_INC_STATS(hw, n_evt_unexp);
2588 		break;
2589 	}
2590 }
2591 
2592 /*
2593  * csio_hws_removing - PCI Hotplug removing state
2594  * @hw - HW module
2595  * @evt - Event
2596  *
2597  */
2598 static void
2599 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2600 {
2601 	hw->prev_evt = hw->cur_evt;
2602 	hw->cur_evt = evt;
2603 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2604 
2605 	switch (evt) {
2606 	case CSIO_HWE_HBA_RESET:
2607 		if (!csio_is_hw_master(hw))
2608 			break;
2609 		/*
2610 		 * The BYE should have alerady been issued, so we cant
2611 		 * use the mailbox interface. Hence we use the PL_RST
2612 		 * register directly.
2613 		 */
2614 		csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2615 		csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
2616 		mdelay(2000);
2617 		break;
2618 
2619 	/* Should never receive any new events */
2620 	default:
2621 		CSIO_INC_STATS(hw, n_evt_unexp);
2622 		break;
2623 
2624 	}
2625 }
2626 
2627 /*
2628  * csio_hws_pcierr - PCI Error state
2629  * @hw - HW module
2630  * @evt - Event
2631  *
2632  */
2633 static void
2634 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2635 {
2636 	hw->prev_evt = hw->cur_evt;
2637 	hw->cur_evt = evt;
2638 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2639 
2640 	switch (evt) {
2641 	case CSIO_HWE_PCIERR_SLOT_RESET:
2642 		csio_evtq_start(hw);
2643 		csio_set_state(&hw->sm, csio_hws_configuring);
2644 		csio_hw_configure(hw);
2645 		break;
2646 
2647 	default:
2648 		CSIO_INC_STATS(hw, n_evt_unexp);
2649 		break;
2650 	}
2651 }
2652 
2653 /*****************************************************************************/
2654 /* END: HW SM                                                                */
2655 /*****************************************************************************/
2656 
2657 /*
2658  *	csio_handle_intr_status - table driven interrupt handler
2659  *	@hw: HW instance
2660  *	@reg: the interrupt status register to process
2661  *	@acts: table of interrupt actions
2662  *
2663  *	A table driven interrupt handler that applies a set of masks to an
2664  *	interrupt status word and performs the corresponding actions if the
2665  *	interrupts described by the mask have occured.  The actions include
2666  *	optionally emitting a warning or alert message. The table is terminated
2667  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
2668  *	conditions.
2669  */
2670 int
2671 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2672 				 const struct intr_info *acts)
2673 {
2674 	int fatal = 0;
2675 	unsigned int mask = 0;
2676 	unsigned int status = csio_rd_reg32(hw, reg);
2677 
2678 	for ( ; acts->mask; ++acts) {
2679 		if (!(status & acts->mask))
2680 			continue;
2681 		if (acts->fatal) {
2682 			fatal++;
2683 			csio_fatal(hw, "Fatal %s (0x%x)\n",
2684 				    acts->msg, status & acts->mask);
2685 		} else if (acts->msg)
2686 			csio_info(hw, "%s (0x%x)\n",
2687 				    acts->msg, status & acts->mask);
2688 		mask |= acts->mask;
2689 	}
2690 	status &= mask;
2691 	if (status)                           /* clear processed interrupts */
2692 		csio_wr_reg32(hw, status, reg);
2693 	return fatal;
2694 }
2695 
2696 /*
2697  * TP interrupt handler.
2698  */
2699 static void csio_tp_intr_handler(struct csio_hw *hw)
2700 {
2701 	static struct intr_info tp_intr_info[] = {
2702 		{ 0x3fffffff, "TP parity error", -1, 1 },
2703 		{ FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
2704 		{ 0, NULL, 0, 0 }
2705 	};
2706 
2707 	if (csio_handle_intr_status(hw, TP_INT_CAUSE, tp_intr_info))
2708 		csio_hw_fatal_err(hw);
2709 }
2710 
2711 /*
2712  * SGE interrupt handler.
2713  */
2714 static void csio_sge_intr_handler(struct csio_hw *hw)
2715 {
2716 	uint64_t v;
2717 
2718 	static struct intr_info sge_intr_info[] = {
2719 		{ ERR_CPL_EXCEED_IQE_SIZE,
2720 		  "SGE received CPL exceeding IQE size", -1, 1 },
2721 		{ ERR_INVALID_CIDX_INC,
2722 		  "SGE GTS CIDX increment too large", -1, 0 },
2723 		{ ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
2724 		{ ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
2725 		{ ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
2726 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
2727 		{ ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
2728 		  0 },
2729 		{ ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
2730 		  0 },
2731 		{ ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
2732 		  0 },
2733 		{ ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
2734 		  0 },
2735 		{ ERR_ING_CTXT_PRIO,
2736 		  "SGE too many priority ingress contexts", -1, 0 },
2737 		{ ERR_EGR_CTXT_PRIO,
2738 		  "SGE too many priority egress contexts", -1, 0 },
2739 		{ INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
2740 		{ EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
2741 		{ 0, NULL, 0, 0 }
2742 	};
2743 
2744 	v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1) |
2745 	    ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2) << 32);
2746 	if (v) {
2747 		csio_fatal(hw, "SGE parity error (%#llx)\n",
2748 			    (unsigned long long)v);
2749 		csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
2750 						SGE_INT_CAUSE1);
2751 		csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2);
2752 	}
2753 
2754 	v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info);
2755 
2756 	if (csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info) ||
2757 	    v != 0)
2758 		csio_hw_fatal_err(hw);
2759 }
2760 
2761 #define CIM_OBQ_INTR (OBQULP0PARERR | OBQULP1PARERR | OBQULP2PARERR |\
2762 		      OBQULP3PARERR | OBQSGEPARERR | OBQNCSIPARERR)
2763 #define CIM_IBQ_INTR (IBQTP0PARERR | IBQTP1PARERR | IBQULPPARERR |\
2764 		      IBQSGEHIPARERR | IBQSGELOPARERR | IBQNCSIPARERR)
2765 
2766 /*
2767  * CIM interrupt handler.
2768  */
2769 static void csio_cim_intr_handler(struct csio_hw *hw)
2770 {
2771 	static struct intr_info cim_intr_info[] = {
2772 		{ PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
2773 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2774 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2775 		{ MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
2776 		{ MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
2777 		{ TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
2778 		{ TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
2779 		{ 0, NULL, 0, 0 }
2780 	};
2781 	static struct intr_info cim_upintr_info[] = {
2782 		{ RSVDSPACEINT, "CIM reserved space access", -1, 1 },
2783 		{ ILLTRANSINT, "CIM illegal transaction", -1, 1 },
2784 		{ ILLWRINT, "CIM illegal write", -1, 1 },
2785 		{ ILLRDINT, "CIM illegal read", -1, 1 },
2786 		{ ILLRDBEINT, "CIM illegal read BE", -1, 1 },
2787 		{ ILLWRBEINT, "CIM illegal write BE", -1, 1 },
2788 		{ SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
2789 		{ SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
2790 		{ BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
2791 		{ SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
2792 		{ SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
2793 		{ BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
2794 		{ SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
2795 		{ SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
2796 		{ BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
2797 		{ BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
2798 		{ SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
2799 		{ SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
2800 		{ BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
2801 		{ BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
2802 		{ SGLRDPLINT , "CIM single read from PL space", -1, 1 },
2803 		{ SGLWRPLINT , "CIM single write to PL space", -1, 1 },
2804 		{ BLKRDPLINT , "CIM block read from PL space", -1, 1 },
2805 		{ BLKWRPLINT , "CIM block write to PL space", -1, 1 },
2806 		{ REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
2807 		{ RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
2808 		{ TIMEOUTINT , "CIM PIF timeout", -1, 1 },
2809 		{ TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
2810 		{ 0, NULL, 0, 0 }
2811 	};
2812 
2813 	int fat;
2814 
2815 	fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE,
2816 				    cim_intr_info) +
2817 	      csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE,
2818 				    cim_upintr_info);
2819 	if (fat)
2820 		csio_hw_fatal_err(hw);
2821 }
2822 
2823 /*
2824  * ULP RX interrupt handler.
2825  */
2826 static void csio_ulprx_intr_handler(struct csio_hw *hw)
2827 {
2828 	static struct intr_info ulprx_intr_info[] = {
2829 		{ 0x1800000, "ULPRX context error", -1, 1 },
2830 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
2831 		{ 0, NULL, 0, 0 }
2832 	};
2833 
2834 	if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE, ulprx_intr_info))
2835 		csio_hw_fatal_err(hw);
2836 }
2837 
2838 /*
2839  * ULP TX interrupt handler.
2840  */
2841 static void csio_ulptx_intr_handler(struct csio_hw *hw)
2842 {
2843 	static struct intr_info ulptx_intr_info[] = {
2844 		{ PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
2845 		  0 },
2846 		{ PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
2847 		  0 },
2848 		{ PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
2849 		  0 },
2850 		{ PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
2851 		  0 },
2852 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
2853 		{ 0, NULL, 0, 0 }
2854 	};
2855 
2856 	if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE, ulptx_intr_info))
2857 		csio_hw_fatal_err(hw);
2858 }
2859 
2860 /*
2861  * PM TX interrupt handler.
2862  */
2863 static void csio_pmtx_intr_handler(struct csio_hw *hw)
2864 {
2865 	static struct intr_info pmtx_intr_info[] = {
2866 		{ PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
2867 		{ PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
2868 		{ PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
2869 		{ ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
2870 		{ 0xffffff0, "PMTX framing error", -1, 1 },
2871 		{ OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
2872 		{ DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
2873 		  1 },
2874 		{ ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
2875 		{ C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
2876 		{ 0, NULL, 0, 0 }
2877 	};
2878 
2879 	if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE, pmtx_intr_info))
2880 		csio_hw_fatal_err(hw);
2881 }
2882 
2883 /*
2884  * PM RX interrupt handler.
2885  */
2886 static void csio_pmrx_intr_handler(struct csio_hw *hw)
2887 {
2888 	static struct intr_info pmrx_intr_info[] = {
2889 		{ ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
2890 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
2891 		{ OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
2892 		{ DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
2893 		  1 },
2894 		{ IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
2895 		{ E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
2896 		{ 0, NULL, 0, 0 }
2897 	};
2898 
2899 	if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE, pmrx_intr_info))
2900 		csio_hw_fatal_err(hw);
2901 }
2902 
2903 /*
2904  * CPL switch interrupt handler.
2905  */
2906 static void csio_cplsw_intr_handler(struct csio_hw *hw)
2907 {
2908 	static struct intr_info cplsw_intr_info[] = {
2909 		{ CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
2910 		{ CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
2911 		{ TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
2912 		{ SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
2913 		{ CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
2914 		{ ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
2915 		{ 0, NULL, 0, 0 }
2916 	};
2917 
2918 	if (csio_handle_intr_status(hw, CPL_INTR_CAUSE, cplsw_intr_info))
2919 		csio_hw_fatal_err(hw);
2920 }
2921 
2922 /*
2923  * LE interrupt handler.
2924  */
2925 static void csio_le_intr_handler(struct csio_hw *hw)
2926 {
2927 	static struct intr_info le_intr_info[] = {
2928 		{ LIPMISS, "LE LIP miss", -1, 0 },
2929 		{ LIP0, "LE 0 LIP error", -1, 0 },
2930 		{ PARITYERR, "LE parity error", -1, 1 },
2931 		{ UNKNOWNCMD, "LE unknown command", -1, 1 },
2932 		{ REQQPARERR, "LE request queue parity error", -1, 1 },
2933 		{ 0, NULL, 0, 0 }
2934 	};
2935 
2936 	if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE, le_intr_info))
2937 		csio_hw_fatal_err(hw);
2938 }
2939 
2940 /*
2941  * MPS interrupt handler.
2942  */
2943 static void csio_mps_intr_handler(struct csio_hw *hw)
2944 {
2945 	static struct intr_info mps_rx_intr_info[] = {
2946 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
2947 		{ 0, NULL, 0, 0 }
2948 	};
2949 	static struct intr_info mps_tx_intr_info[] = {
2950 		{ TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
2951 		{ NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2952 		{ TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
2953 		{ TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
2954 		{ BUBBLE, "MPS Tx underflow", -1, 1 },
2955 		{ SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
2956 		{ FRMERR, "MPS Tx framing error", -1, 1 },
2957 		{ 0, NULL, 0, 0 }
2958 	};
2959 	static struct intr_info mps_trc_intr_info[] = {
2960 		{ FILTMEM, "MPS TRC filter parity error", -1, 1 },
2961 		{ PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
2962 		{ MISCPERR, "MPS TRC misc parity error", -1, 1 },
2963 		{ 0, NULL, 0, 0 }
2964 	};
2965 	static struct intr_info mps_stat_sram_intr_info[] = {
2966 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2967 		{ 0, NULL, 0, 0 }
2968 	};
2969 	static struct intr_info mps_stat_tx_intr_info[] = {
2970 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2971 		{ 0, NULL, 0, 0 }
2972 	};
2973 	static struct intr_info mps_stat_rx_intr_info[] = {
2974 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2975 		{ 0, NULL, 0, 0 }
2976 	};
2977 	static struct intr_info mps_cls_intr_info[] = {
2978 		{ MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
2979 		{ MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
2980 		{ HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
2981 		{ 0, NULL, 0, 0 }
2982 	};
2983 
2984 	int fat;
2985 
2986 	fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE,
2987 				    mps_rx_intr_info) +
2988 	      csio_handle_intr_status(hw, MPS_TX_INT_CAUSE,
2989 				    mps_tx_intr_info) +
2990 	      csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE,
2991 				    mps_trc_intr_info) +
2992 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM,
2993 				    mps_stat_sram_intr_info) +
2994 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
2995 				    mps_stat_tx_intr_info) +
2996 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
2997 				    mps_stat_rx_intr_info) +
2998 	      csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE,
2999 				    mps_cls_intr_info);
3000 
3001 	csio_wr_reg32(hw, 0, MPS_INT_CAUSE);
3002 	csio_rd_reg32(hw, MPS_INT_CAUSE);                    /* flush */
3003 	if (fat)
3004 		csio_hw_fatal_err(hw);
3005 }
3006 
3007 #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
3008 
3009 /*
3010  * EDC/MC interrupt handler.
3011  */
3012 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3013 {
3014 	static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3015 
3016 	unsigned int addr, cnt_addr, v;
3017 
3018 	if (idx <= MEM_EDC1) {
3019 		addr = EDC_REG(EDC_INT_CAUSE, idx);
3020 		cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
3021 	} else {
3022 		addr = MC_INT_CAUSE;
3023 		cnt_addr = MC_ECC_STATUS;
3024 	}
3025 
3026 	v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3027 	if (v & PERR_INT_CAUSE)
3028 		csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3029 	if (v & ECC_CE_INT_CAUSE) {
3030 		uint32_t cnt = ECC_CECNT_GET(csio_rd_reg32(hw, cnt_addr));
3031 
3032 		csio_wr_reg32(hw, ECC_CECNT_MASK, cnt_addr);
3033 		csio_warn(hw, "%u %s correctable ECC data error%s\n",
3034 			    cnt, name[idx], cnt > 1 ? "s" : "");
3035 	}
3036 	if (v & ECC_UE_INT_CAUSE)
3037 		csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3038 
3039 	csio_wr_reg32(hw, v, addr);
3040 	if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
3041 		csio_hw_fatal_err(hw);
3042 }
3043 
3044 /*
3045  * MA interrupt handler.
3046  */
3047 static void csio_ma_intr_handler(struct csio_hw *hw)
3048 {
3049 	uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE);
3050 
3051 	if (status & MEM_PERR_INT_CAUSE)
3052 		csio_fatal(hw, "MA parity error, parity status %#x\n",
3053 			    csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS));
3054 	if (status & MEM_WRAP_INT_CAUSE) {
3055 		v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS);
3056 		csio_fatal(hw,
3057 		   "MA address wrap-around error by client %u to address %#x\n",
3058 		   MEM_WRAP_CLIENT_NUM_GET(v), MEM_WRAP_ADDRESS_GET(v) << 4);
3059 	}
3060 	csio_wr_reg32(hw, status, MA_INT_CAUSE);
3061 	csio_hw_fatal_err(hw);
3062 }
3063 
3064 /*
3065  * SMB interrupt handler.
3066  */
3067 static void csio_smb_intr_handler(struct csio_hw *hw)
3068 {
3069 	static struct intr_info smb_intr_info[] = {
3070 		{ MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
3071 		{ MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
3072 		{ SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
3073 		{ 0, NULL, 0, 0 }
3074 	};
3075 
3076 	if (csio_handle_intr_status(hw, SMB_INT_CAUSE, smb_intr_info))
3077 		csio_hw_fatal_err(hw);
3078 }
3079 
3080 /*
3081  * NC-SI interrupt handler.
3082  */
3083 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3084 {
3085 	static struct intr_info ncsi_intr_info[] = {
3086 		{ CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
3087 		{ MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
3088 		{ TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
3089 		{ RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
3090 		{ 0, NULL, 0, 0 }
3091 	};
3092 
3093 	if (csio_handle_intr_status(hw, NCSI_INT_CAUSE, ncsi_intr_info))
3094 		csio_hw_fatal_err(hw);
3095 }
3096 
3097 /*
3098  * XGMAC interrupt handler.
3099  */
3100 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3101 {
3102 	uint32_t v = csio_rd_reg32(hw, CSIO_MAC_INT_CAUSE_REG(hw, port));
3103 
3104 	v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
3105 	if (!v)
3106 		return;
3107 
3108 	if (v & TXFIFO_PRTY_ERR)
3109 		csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3110 	if (v & RXFIFO_PRTY_ERR)
3111 		csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3112 	csio_wr_reg32(hw, v, CSIO_MAC_INT_CAUSE_REG(hw, port));
3113 	csio_hw_fatal_err(hw);
3114 }
3115 
3116 /*
3117  * PL interrupt handler.
3118  */
3119 static void csio_pl_intr_handler(struct csio_hw *hw)
3120 {
3121 	static struct intr_info pl_intr_info[] = {
3122 		{ FATALPERR, "T4 fatal parity error", -1, 1 },
3123 		{ PERRVFID, "PL VFID_MAP parity error", -1, 1 },
3124 		{ 0, NULL, 0, 0 }
3125 	};
3126 
3127 	if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE, pl_intr_info))
3128 		csio_hw_fatal_err(hw);
3129 }
3130 
3131 /*
3132  *	csio_hw_slow_intr_handler - control path interrupt handler
3133  *	@hw: HW module
3134  *
3135  *	Interrupt handler for non-data global interrupt events, e.g., errors.
3136  *	The designation 'slow' is because it involves register reads, while
3137  *	data interrupts typically don't involve any MMIOs.
3138  */
3139 int
3140 csio_hw_slow_intr_handler(struct csio_hw *hw)
3141 {
3142 	uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE);
3143 
3144 	if (!(cause & CSIO_GLBL_INTR_MASK)) {
3145 		CSIO_INC_STATS(hw, n_plint_unexp);
3146 		return 0;
3147 	}
3148 
3149 	csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3150 
3151 	CSIO_INC_STATS(hw, n_plint_cnt);
3152 
3153 	if (cause & CIM)
3154 		csio_cim_intr_handler(hw);
3155 
3156 	if (cause & MPS)
3157 		csio_mps_intr_handler(hw);
3158 
3159 	if (cause & NCSI)
3160 		csio_ncsi_intr_handler(hw);
3161 
3162 	if (cause & PL)
3163 		csio_pl_intr_handler(hw);
3164 
3165 	if (cause & SMB)
3166 		csio_smb_intr_handler(hw);
3167 
3168 	if (cause & XGMAC0)
3169 		csio_xgmac_intr_handler(hw, 0);
3170 
3171 	if (cause & XGMAC1)
3172 		csio_xgmac_intr_handler(hw, 1);
3173 
3174 	if (cause & XGMAC_KR0)
3175 		csio_xgmac_intr_handler(hw, 2);
3176 
3177 	if (cause & XGMAC_KR1)
3178 		csio_xgmac_intr_handler(hw, 3);
3179 
3180 	if (cause & PCIE)
3181 		hw->chip_ops->chip_pcie_intr_handler(hw);
3182 
3183 	if (cause & MC)
3184 		csio_mem_intr_handler(hw, MEM_MC);
3185 
3186 	if (cause & EDC0)
3187 		csio_mem_intr_handler(hw, MEM_EDC0);
3188 
3189 	if (cause & EDC1)
3190 		csio_mem_intr_handler(hw, MEM_EDC1);
3191 
3192 	if (cause & LE)
3193 		csio_le_intr_handler(hw);
3194 
3195 	if (cause & TP)
3196 		csio_tp_intr_handler(hw);
3197 
3198 	if (cause & MA)
3199 		csio_ma_intr_handler(hw);
3200 
3201 	if (cause & PM_TX)
3202 		csio_pmtx_intr_handler(hw);
3203 
3204 	if (cause & PM_RX)
3205 		csio_pmrx_intr_handler(hw);
3206 
3207 	if (cause & ULP_RX)
3208 		csio_ulprx_intr_handler(hw);
3209 
3210 	if (cause & CPL_SWITCH)
3211 		csio_cplsw_intr_handler(hw);
3212 
3213 	if (cause & SGE)
3214 		csio_sge_intr_handler(hw);
3215 
3216 	if (cause & ULP_TX)
3217 		csio_ulptx_intr_handler(hw);
3218 
3219 	/* Clear the interrupts just processed for which we are the master. */
3220 	csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE);
3221 	csio_rd_reg32(hw, PL_INT_CAUSE); /* flush */
3222 
3223 	return 1;
3224 }
3225 
3226 /*****************************************************************************
3227  * HW <--> mailbox interfacing routines.
3228  ****************************************************************************/
3229 /*
3230  * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3231  *
3232  * @data: Private data pointer.
3233  *
3234  * Called from worker thread context.
3235  */
3236 static void
3237 csio_mberr_worker(void *data)
3238 {
3239 	struct csio_hw *hw = (struct csio_hw *)data;
3240 	struct csio_mbm *mbm = &hw->mbm;
3241 	LIST_HEAD(cbfn_q);
3242 	struct csio_mb *mbp_next;
3243 	int rv;
3244 
3245 	del_timer_sync(&mbm->timer);
3246 
3247 	spin_lock_irq(&hw->lock);
3248 	if (list_empty(&mbm->cbfn_q)) {
3249 		spin_unlock_irq(&hw->lock);
3250 		return;
3251 	}
3252 
3253 	list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3254 	mbm->stats.n_cbfnq = 0;
3255 
3256 	/* Try to start waiting mailboxes */
3257 	if (!list_empty(&mbm->req_q)) {
3258 		mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3259 		list_del_init(&mbp_next->list);
3260 
3261 		rv = csio_mb_issue(hw, mbp_next);
3262 		if (rv != 0)
3263 			list_add_tail(&mbp_next->list, &mbm->req_q);
3264 		else
3265 			CSIO_DEC_STATS(mbm, n_activeq);
3266 	}
3267 	spin_unlock_irq(&hw->lock);
3268 
3269 	/* Now callback completions */
3270 	csio_mb_completions(hw, &cbfn_q);
3271 }
3272 
3273 /*
3274  * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3275  *
3276  * @data: private data pointer
3277  *
3278  **/
3279 static void
3280 csio_hw_mb_timer(uintptr_t data)
3281 {
3282 	struct csio_hw *hw = (struct csio_hw *)data;
3283 	struct csio_mb *mbp = NULL;
3284 
3285 	spin_lock_irq(&hw->lock);
3286 	mbp = csio_mb_tmo_handler(hw);
3287 	spin_unlock_irq(&hw->lock);
3288 
3289 	/* Call back the function for the timed-out Mailbox */
3290 	if (mbp)
3291 		mbp->mb_cbfn(hw, mbp);
3292 
3293 }
3294 
3295 /*
3296  * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3297  * @hw: HW module
3298  *
3299  * Called with lock held, should exit with lock held.
3300  * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3301  * into a local queue. Drops lock and calls the completions. Holds
3302  * lock and returns.
3303  */
3304 static void
3305 csio_hw_mbm_cleanup(struct csio_hw *hw)
3306 {
3307 	LIST_HEAD(cbfn_q);
3308 
3309 	csio_mb_cancel_all(hw, &cbfn_q);
3310 
3311 	spin_unlock_irq(&hw->lock);
3312 	csio_mb_completions(hw, &cbfn_q);
3313 	spin_lock_irq(&hw->lock);
3314 }
3315 
3316 /*****************************************************************************
3317  * Event handling
3318  ****************************************************************************/
3319 int
3320 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3321 			uint16_t len)
3322 {
3323 	struct csio_evt_msg *evt_entry = NULL;
3324 
3325 	if (type >= CSIO_EVT_MAX)
3326 		return -EINVAL;
3327 
3328 	if (len > CSIO_EVT_MSG_SIZE)
3329 		return -EINVAL;
3330 
3331 	if (hw->flags & CSIO_HWF_FWEVT_STOP)
3332 		return -EINVAL;
3333 
3334 	if (list_empty(&hw->evt_free_q)) {
3335 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3336 			 type, len);
3337 		return -ENOMEM;
3338 	}
3339 
3340 	evt_entry = list_first_entry(&hw->evt_free_q,
3341 				     struct csio_evt_msg, list);
3342 	list_del_init(&evt_entry->list);
3343 
3344 	/* copy event msg and queue the event */
3345 	evt_entry->type = type;
3346 	memcpy((void *)evt_entry->data, evt_msg, len);
3347 	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3348 
3349 	CSIO_DEC_STATS(hw, n_evt_freeq);
3350 	CSIO_INC_STATS(hw, n_evt_activeq);
3351 
3352 	return 0;
3353 }
3354 
3355 static int
3356 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3357 			uint16_t len, bool msg_sg)
3358 {
3359 	struct csio_evt_msg *evt_entry = NULL;
3360 	struct csio_fl_dma_buf *fl_sg;
3361 	uint32_t off = 0;
3362 	unsigned long flags;
3363 	int n, ret = 0;
3364 
3365 	if (type >= CSIO_EVT_MAX)
3366 		return -EINVAL;
3367 
3368 	if (len > CSIO_EVT_MSG_SIZE)
3369 		return -EINVAL;
3370 
3371 	spin_lock_irqsave(&hw->lock, flags);
3372 	if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3373 		ret = -EINVAL;
3374 		goto out;
3375 	}
3376 
3377 	if (list_empty(&hw->evt_free_q)) {
3378 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3379 			 type, len);
3380 		ret = -ENOMEM;
3381 		goto out;
3382 	}
3383 
3384 	evt_entry = list_first_entry(&hw->evt_free_q,
3385 				     struct csio_evt_msg, list);
3386 	list_del_init(&evt_entry->list);
3387 
3388 	/* copy event msg and queue the event */
3389 	evt_entry->type = type;
3390 
3391 	/* If Payload in SG list*/
3392 	if (msg_sg) {
3393 		fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3394 		for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3395 			memcpy((void *)((uintptr_t)evt_entry->data + off),
3396 				fl_sg->flbufs[n].vaddr,
3397 				fl_sg->flbufs[n].len);
3398 			off += fl_sg->flbufs[n].len;
3399 		}
3400 	} else
3401 		memcpy((void *)evt_entry->data, evt_msg, len);
3402 
3403 	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3404 	CSIO_DEC_STATS(hw, n_evt_freeq);
3405 	CSIO_INC_STATS(hw, n_evt_activeq);
3406 out:
3407 	spin_unlock_irqrestore(&hw->lock, flags);
3408 	return ret;
3409 }
3410 
3411 static void
3412 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3413 {
3414 	if (evt_entry) {
3415 		spin_lock_irq(&hw->lock);
3416 		list_del_init(&evt_entry->list);
3417 		list_add_tail(&evt_entry->list, &hw->evt_free_q);
3418 		CSIO_DEC_STATS(hw, n_evt_activeq);
3419 		CSIO_INC_STATS(hw, n_evt_freeq);
3420 		spin_unlock_irq(&hw->lock);
3421 	}
3422 }
3423 
3424 void
3425 csio_evtq_flush(struct csio_hw *hw)
3426 {
3427 	uint32_t count;
3428 	count = 30;
3429 	while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3430 		spin_unlock_irq(&hw->lock);
3431 		msleep(2000);
3432 		spin_lock_irq(&hw->lock);
3433 	}
3434 
3435 	CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3436 }
3437 
3438 static void
3439 csio_evtq_stop(struct csio_hw *hw)
3440 {
3441 	hw->flags |= CSIO_HWF_FWEVT_STOP;
3442 }
3443 
3444 static void
3445 csio_evtq_start(struct csio_hw *hw)
3446 {
3447 	hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3448 }
3449 
3450 static void
3451 csio_evtq_cleanup(struct csio_hw *hw)
3452 {
3453 	struct list_head *evt_entry, *next_entry;
3454 
3455 	/* Release outstanding events from activeq to freeq*/
3456 	if (!list_empty(&hw->evt_active_q))
3457 		list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3458 
3459 	hw->stats.n_evt_activeq = 0;
3460 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3461 
3462 	/* Freeup event entry */
3463 	list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3464 		kfree(evt_entry);
3465 		CSIO_DEC_STATS(hw, n_evt_freeq);
3466 	}
3467 
3468 	hw->stats.n_evt_freeq = 0;
3469 }
3470 
3471 
3472 static void
3473 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3474 			  struct csio_fl_dma_buf *flb, void *priv)
3475 {
3476 	__u8 op;
3477 	void *msg = NULL;
3478 	uint32_t msg_len = 0;
3479 	bool msg_sg = 0;
3480 
3481 	op = ((struct rss_header *) wr)->opcode;
3482 	if (op == CPL_FW6_PLD) {
3483 		CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3484 		if (!flb || !flb->totlen) {
3485 			CSIO_INC_STATS(hw, n_cpl_unexp);
3486 			return;
3487 		}
3488 
3489 		msg = (void *) flb;
3490 		msg_len = flb->totlen;
3491 		msg_sg = 1;
3492 	} else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3493 
3494 		CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3495 		/* skip RSS header */
3496 		msg = (void *)((uintptr_t)wr + sizeof(__be64));
3497 		msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3498 			   sizeof(struct cpl_fw4_msg);
3499 	} else {
3500 		csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3501 		CSIO_INC_STATS(hw, n_cpl_unexp);
3502 		return;
3503 	}
3504 
3505 	/*
3506 	 * Enqueue event to EventQ. Events processing happens
3507 	 * in Event worker thread context
3508 	 */
3509 	if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3510 				  (uint16_t)msg_len, msg_sg))
3511 		CSIO_INC_STATS(hw, n_evt_drop);
3512 }
3513 
3514 void
3515 csio_evtq_worker(struct work_struct *work)
3516 {
3517 	struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3518 	struct list_head *evt_entry, *next_entry;
3519 	LIST_HEAD(evt_q);
3520 	struct csio_evt_msg	*evt_msg;
3521 	struct cpl_fw6_msg *msg;
3522 	struct csio_rnode *rn;
3523 	int rv = 0;
3524 	uint8_t evtq_stop = 0;
3525 
3526 	csio_dbg(hw, "event worker thread active evts#%d\n",
3527 		 hw->stats.n_evt_activeq);
3528 
3529 	spin_lock_irq(&hw->lock);
3530 	while (!list_empty(&hw->evt_active_q)) {
3531 		list_splice_tail_init(&hw->evt_active_q, &evt_q);
3532 		spin_unlock_irq(&hw->lock);
3533 
3534 		list_for_each_safe(evt_entry, next_entry, &evt_q) {
3535 			evt_msg = (struct csio_evt_msg *) evt_entry;
3536 
3537 			/* Drop events if queue is STOPPED */
3538 			spin_lock_irq(&hw->lock);
3539 			if (hw->flags & CSIO_HWF_FWEVT_STOP)
3540 				evtq_stop = 1;
3541 			spin_unlock_irq(&hw->lock);
3542 			if (evtq_stop) {
3543 				CSIO_INC_STATS(hw, n_evt_drop);
3544 				goto free_evt;
3545 			}
3546 
3547 			switch (evt_msg->type) {
3548 			case CSIO_EVT_FW:
3549 				msg = (struct cpl_fw6_msg *)(evt_msg->data);
3550 
3551 				if ((msg->opcode == CPL_FW6_MSG ||
3552 				     msg->opcode == CPL_FW4_MSG) &&
3553 				    !msg->type) {
3554 					rv = csio_mb_fwevt_handler(hw,
3555 								msg->data);
3556 					if (!rv)
3557 						break;
3558 					/* Handle any remaining fw events */
3559 					csio_fcoe_fwevt_handler(hw,
3560 							msg->opcode, msg->data);
3561 				} else if (msg->opcode == CPL_FW6_PLD) {
3562 
3563 					csio_fcoe_fwevt_handler(hw,
3564 							msg->opcode, msg->data);
3565 				} else {
3566 					csio_warn(hw,
3567 					     "Unhandled FW msg op %x type %x\n",
3568 						  msg->opcode, msg->type);
3569 					CSIO_INC_STATS(hw, n_evt_drop);
3570 				}
3571 				break;
3572 
3573 			case CSIO_EVT_MBX:
3574 				csio_mberr_worker(hw);
3575 				break;
3576 
3577 			case CSIO_EVT_DEV_LOSS:
3578 				memcpy(&rn, evt_msg->data, sizeof(rn));
3579 				csio_rnode_devloss_handler(rn);
3580 				break;
3581 
3582 			default:
3583 				csio_warn(hw, "Unhandled event %x on evtq\n",
3584 					  evt_msg->type);
3585 				CSIO_INC_STATS(hw, n_evt_unexp);
3586 				break;
3587 			}
3588 free_evt:
3589 			csio_free_evt(hw, evt_msg);
3590 		}
3591 
3592 		spin_lock_irq(&hw->lock);
3593 	}
3594 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3595 	spin_unlock_irq(&hw->lock);
3596 }
3597 
3598 int
3599 csio_fwevtq_handler(struct csio_hw *hw)
3600 {
3601 	int rv;
3602 
3603 	if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3604 		CSIO_INC_STATS(hw, n_int_stray);
3605 		return -EINVAL;
3606 	}
3607 
3608 	rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3609 			   csio_process_fwevtq_entry, NULL);
3610 	return rv;
3611 }
3612 
3613 /****************************************************************************
3614  * Entry points
3615  ****************************************************************************/
3616 
3617 /* Management module */
3618 /*
3619  * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3620  * mgmt - mgmt module
3621  * @io_req - io request
3622  *
3623  * Return - 0:if given IO Req exists in active Q.
3624  *          -EINVAL  :if lookup fails.
3625  */
3626 int
3627 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3628 {
3629 	struct list_head *tmp;
3630 
3631 	/* Lookup ioreq in the ACTIVEQ */
3632 	list_for_each(tmp, &mgmtm->active_q) {
3633 		if (io_req == (struct csio_ioreq *)tmp)
3634 			return 0;
3635 	}
3636 	return -EINVAL;
3637 }
3638 
3639 #define	ECM_MIN_TMO	1000	/* Minimum timeout value for req */
3640 
3641 /*
3642  * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3643  * @data - Event data.
3644  *
3645  * Return - none.
3646  */
3647 static void
3648 csio_mgmt_tmo_handler(uintptr_t data)
3649 {
3650 	struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
3651 	struct list_head *tmp;
3652 	struct csio_ioreq *io_req;
3653 
3654 	csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3655 
3656 	spin_lock_irq(&mgmtm->hw->lock);
3657 
3658 	list_for_each(tmp, &mgmtm->active_q) {
3659 		io_req = (struct csio_ioreq *) tmp;
3660 		io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3661 
3662 		if (!io_req->tmo) {
3663 			/* Dequeue the request from retry Q. */
3664 			tmp = csio_list_prev(tmp);
3665 			list_del_init(&io_req->sm.sm_list);
3666 			if (io_req->io_cbfn) {
3667 				/* io_req will be freed by completion handler */
3668 				io_req->wr_status = -ETIMEDOUT;
3669 				io_req->io_cbfn(mgmtm->hw, io_req);
3670 			} else {
3671 				CSIO_DB_ASSERT(0);
3672 			}
3673 		}
3674 	}
3675 
3676 	/* If retry queue is not empty, re-arm timer */
3677 	if (!list_empty(&mgmtm->active_q))
3678 		mod_timer(&mgmtm->mgmt_timer,
3679 			  jiffies + msecs_to_jiffies(ECM_MIN_TMO));
3680 	spin_unlock_irq(&mgmtm->hw->lock);
3681 }
3682 
3683 static void
3684 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
3685 {
3686 	struct csio_hw *hw = mgmtm->hw;
3687 	struct csio_ioreq *io_req;
3688 	struct list_head *tmp;
3689 	uint32_t count;
3690 
3691 	count = 30;
3692 	/* Wait for all outstanding req to complete gracefully */
3693 	while ((!list_empty(&mgmtm->active_q)) && count--) {
3694 		spin_unlock_irq(&hw->lock);
3695 		msleep(2000);
3696 		spin_lock_irq(&hw->lock);
3697 	}
3698 
3699 	/* release outstanding req from ACTIVEQ */
3700 	list_for_each(tmp, &mgmtm->active_q) {
3701 		io_req = (struct csio_ioreq *) tmp;
3702 		tmp = csio_list_prev(tmp);
3703 		list_del_init(&io_req->sm.sm_list);
3704 		mgmtm->stats.n_active--;
3705 		if (io_req->io_cbfn) {
3706 			/* io_req will be freed by completion handler */
3707 			io_req->wr_status = -ETIMEDOUT;
3708 			io_req->io_cbfn(mgmtm->hw, io_req);
3709 		}
3710 	}
3711 }
3712 
3713 /*
3714  * csio_mgmt_init - Mgmt module init entry point
3715  * @mgmtsm - mgmt module
3716  * @hw	 - HW module
3717  *
3718  * Initialize mgmt timer, resource wait queue, active queue,
3719  * completion q. Allocate Egress and Ingress
3720  * WR queues and save off the queue index returned by the WR
3721  * module for future use. Allocate and save off mgmt reqs in the
3722  * mgmt_req_freelist for future use. Make sure their SM is initialized
3723  * to uninit state.
3724  * Returns: 0 - on success
3725  *          -ENOMEM   - on error.
3726  */
3727 static int
3728 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
3729 {
3730 	struct timer_list *timer = &mgmtm->mgmt_timer;
3731 
3732 	init_timer(timer);
3733 	timer->function = csio_mgmt_tmo_handler;
3734 	timer->data = (unsigned long)mgmtm;
3735 
3736 	INIT_LIST_HEAD(&mgmtm->active_q);
3737 	INIT_LIST_HEAD(&mgmtm->cbfn_q);
3738 
3739 	mgmtm->hw = hw;
3740 	/*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
3741 
3742 	return 0;
3743 }
3744 
3745 /*
3746  * csio_mgmtm_exit - MGMT module exit entry point
3747  * @mgmtsm - mgmt module
3748  *
3749  * This function called during MGMT module uninit.
3750  * Stop timers, free ioreqs allocated.
3751  * Returns: None
3752  *
3753  */
3754 static void
3755 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
3756 {
3757 	del_timer_sync(&mgmtm->mgmt_timer);
3758 }
3759 
3760 
3761 /**
3762  * csio_hw_start - Kicks off the HW State machine
3763  * @hw:		Pointer to HW module.
3764  *
3765  * It is assumed that the initialization is a synchronous operation.
3766  * So when we return afer posting the event, the HW SM should be in
3767  * the ready state, if there were no errors during init.
3768  */
3769 int
3770 csio_hw_start(struct csio_hw *hw)
3771 {
3772 	spin_lock_irq(&hw->lock);
3773 	csio_post_event(&hw->sm, CSIO_HWE_CFG);
3774 	spin_unlock_irq(&hw->lock);
3775 
3776 	if (csio_is_hw_ready(hw))
3777 		return 0;
3778 	else
3779 		return -EINVAL;
3780 }
3781 
3782 int
3783 csio_hw_stop(struct csio_hw *hw)
3784 {
3785 	csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
3786 
3787 	if (csio_is_hw_removing(hw))
3788 		return 0;
3789 	else
3790 		return -EINVAL;
3791 }
3792 
3793 /* Max reset retries */
3794 #define CSIO_MAX_RESET_RETRIES	3
3795 
3796 /**
3797  * csio_hw_reset - Reset the hardware
3798  * @hw:		HW module.
3799  *
3800  * Caller should hold lock across this function.
3801  */
3802 int
3803 csio_hw_reset(struct csio_hw *hw)
3804 {
3805 	if (!csio_is_hw_master(hw))
3806 		return -EPERM;
3807 
3808 	if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
3809 		csio_dbg(hw, "Max hw reset attempts reached..");
3810 		return -EINVAL;
3811 	}
3812 
3813 	hw->rst_retries++;
3814 	csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
3815 
3816 	if (csio_is_hw_ready(hw)) {
3817 		hw->rst_retries = 0;
3818 		hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
3819 		return 0;
3820 	} else
3821 		return -EINVAL;
3822 }
3823 
3824 /*
3825  * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
3826  * @hw: HW module.
3827  */
3828 static void
3829 csio_hw_get_device_id(struct csio_hw *hw)
3830 {
3831 	/* Is the adapter device id cached already ?*/
3832 	if (csio_is_dev_id_cached(hw))
3833 		return;
3834 
3835 	/* Get the PCI vendor & device id */
3836 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
3837 			     &hw->params.pci.vendor_id);
3838 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
3839 			     &hw->params.pci.device_id);
3840 
3841 	csio_dev_id_cached(hw);
3842 	hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
3843 
3844 } /* csio_hw_get_device_id */
3845 
3846 /*
3847  * csio_hw_set_description - Set the model, description of the hw.
3848  * @hw: HW module.
3849  * @ven_id: PCI Vendor ID
3850  * @dev_id: PCI Device ID
3851  */
3852 static void
3853 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
3854 {
3855 	uint32_t adap_type, prot_type;
3856 
3857 	if (ven_id == CSIO_VENDOR_ID) {
3858 		prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
3859 		adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
3860 
3861 		if (prot_type == CSIO_T4_FCOE_ASIC) {
3862 			memcpy(hw->hw_ver,
3863 			       csio_t4_fcoe_adapters[adap_type].model_no, 16);
3864 			memcpy(hw->model_desc,
3865 			       csio_t4_fcoe_adapters[adap_type].description,
3866 			       32);
3867 		} else if (prot_type == CSIO_T5_FCOE_ASIC) {
3868 			memcpy(hw->hw_ver,
3869 			       csio_t5_fcoe_adapters[adap_type].model_no, 16);
3870 			memcpy(hw->model_desc,
3871 			       csio_t5_fcoe_adapters[adap_type].description,
3872 			       32);
3873 		} else {
3874 			char tempName[32] = "Chelsio FCoE Controller";
3875 			memcpy(hw->model_desc, tempName, 32);
3876 		}
3877 	}
3878 } /* csio_hw_set_description */
3879 
3880 /**
3881  * csio_hw_init - Initialize HW module.
3882  * @hw:		Pointer to HW module.
3883  *
3884  * Initialize the members of the HW module.
3885  */
3886 int
3887 csio_hw_init(struct csio_hw *hw)
3888 {
3889 	int rv = -EINVAL;
3890 	uint32_t i;
3891 	uint16_t ven_id, dev_id;
3892 	struct csio_evt_msg	*evt_entry;
3893 
3894 	INIT_LIST_HEAD(&hw->sm.sm_list);
3895 	csio_init_state(&hw->sm, csio_hws_uninit);
3896 	spin_lock_init(&hw->lock);
3897 	INIT_LIST_HEAD(&hw->sln_head);
3898 
3899 	/* Get the PCI vendor & device id */
3900 	csio_hw_get_device_id(hw);
3901 
3902 	strcpy(hw->name, CSIO_HW_NAME);
3903 
3904 	/* Initialize the HW chip ops with T4/T5 specific ops */
3905 	hw->chip_ops = csio_is_t4(hw->chip_id) ? &t4_ops : &t5_ops;
3906 
3907 	/* Set the model & its description */
3908 
3909 	ven_id = hw->params.pci.vendor_id;
3910 	dev_id = hw->params.pci.device_id;
3911 
3912 	csio_hw_set_description(hw, ven_id, dev_id);
3913 
3914 	/* Initialize default log level */
3915 	hw->params.log_level = (uint32_t) csio_dbg_level;
3916 
3917 	csio_set_fwevt_intr_idx(hw, -1);
3918 	csio_set_nondata_intr_idx(hw, -1);
3919 
3920 	/* Init all the modules: Mailbox, WorkRequest and Transport */
3921 	if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
3922 		goto err;
3923 
3924 	rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
3925 	if (rv)
3926 		goto err_mbm_exit;
3927 
3928 	rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
3929 	if (rv)
3930 		goto err_wrm_exit;
3931 
3932 	rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
3933 	if (rv)
3934 		goto err_scsim_exit;
3935 	/* Pre-allocate evtq and initialize them */
3936 	INIT_LIST_HEAD(&hw->evt_active_q);
3937 	INIT_LIST_HEAD(&hw->evt_free_q);
3938 	for (i = 0; i < csio_evtq_sz; i++) {
3939 
3940 		evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
3941 		if (!evt_entry) {
3942 			csio_err(hw, "Failed to initialize eventq");
3943 			goto err_evtq_cleanup;
3944 		}
3945 
3946 		list_add_tail(&evt_entry->list, &hw->evt_free_q);
3947 		CSIO_INC_STATS(hw, n_evt_freeq);
3948 	}
3949 
3950 	hw->dev_num = dev_num;
3951 	dev_num++;
3952 
3953 	return 0;
3954 
3955 err_evtq_cleanup:
3956 	csio_evtq_cleanup(hw);
3957 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3958 err_scsim_exit:
3959 	csio_scsim_exit(csio_hw_to_scsim(hw));
3960 err_wrm_exit:
3961 	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3962 err_mbm_exit:
3963 	csio_mbm_exit(csio_hw_to_mbm(hw));
3964 err:
3965 	return rv;
3966 }
3967 
3968 /**
3969  * csio_hw_exit - Un-initialize HW module.
3970  * @hw:		Pointer to HW module.
3971  *
3972  */
3973 void
3974 csio_hw_exit(struct csio_hw *hw)
3975 {
3976 	csio_evtq_cleanup(hw);
3977 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3978 	csio_scsim_exit(csio_hw_to_scsim(hw));
3979 	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3980 	csio_mbm_exit(csio_hw_to_mbm(hw));
3981 }
3982