1 /* bnx2fc_hwi.c: QLogic Linux FCoE offload driver. 2 * This file contains the code that low level functions that interact 3 * with 57712 FCoE firmware. 4 * 5 * Copyright (c) 2008-2013 Broadcom Corporation 6 * Copyright (c) 2014-2016 QLogic Corporation 7 * Copyright (c) 2016-2017 Cavium Inc. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation. 12 * 13 * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com) 14 */ 15 16 #include "bnx2fc.h" 17 18 DECLARE_PER_CPU(struct bnx2fc_percpu_s, bnx2fc_percpu); 19 20 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba, 21 struct fcoe_kcqe *new_cqe_kcqe); 22 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba, 23 struct fcoe_kcqe *ofld_kcqe); 24 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba, 25 struct fcoe_kcqe *ofld_kcqe); 26 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code); 27 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba, 28 struct fcoe_kcqe *destroy_kcqe); 29 30 int bnx2fc_send_stat_req(struct bnx2fc_hba *hba) 31 { 32 struct fcoe_kwqe_stat stat_req; 33 struct kwqe *kwqe_arr[2]; 34 int num_kwqes = 1; 35 int rc = 0; 36 37 memset(&stat_req, 0x00, sizeof(struct fcoe_kwqe_stat)); 38 stat_req.hdr.op_code = FCOE_KWQE_OPCODE_STAT; 39 stat_req.hdr.flags = 40 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); 41 42 stat_req.stat_params_addr_lo = (u32) hba->stats_buf_dma; 43 stat_req.stat_params_addr_hi = (u32) ((u64)hba->stats_buf_dma >> 32); 44 45 kwqe_arr[0] = (struct kwqe *) &stat_req; 46 47 if (hba->cnic && hba->cnic->submit_kwqes) 48 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes); 49 50 return rc; 51 } 52 53 /** 54 * bnx2fc_send_fw_fcoe_init_msg - initiates initial handshake with FCoE f/w 55 * 56 * @hba: adapter structure pointer 57 * 58 * Send down FCoE firmware init KWQEs which initiates the initial handshake 59 * with the f/w. 60 * 61 */ 62 int bnx2fc_send_fw_fcoe_init_msg(struct bnx2fc_hba *hba) 63 { 64 struct fcoe_kwqe_init1 fcoe_init1; 65 struct fcoe_kwqe_init2 fcoe_init2; 66 struct fcoe_kwqe_init3 fcoe_init3; 67 struct kwqe *kwqe_arr[3]; 68 int num_kwqes = 3; 69 int rc = 0; 70 71 if (!hba->cnic) { 72 printk(KERN_ERR PFX "hba->cnic NULL during fcoe fw init\n"); 73 return -ENODEV; 74 } 75 76 /* fill init1 KWQE */ 77 memset(&fcoe_init1, 0x00, sizeof(struct fcoe_kwqe_init1)); 78 fcoe_init1.hdr.op_code = FCOE_KWQE_OPCODE_INIT1; 79 fcoe_init1.hdr.flags = (FCOE_KWQE_LAYER_CODE << 80 FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); 81 82 fcoe_init1.num_tasks = hba->max_tasks; 83 fcoe_init1.sq_num_wqes = BNX2FC_SQ_WQES_MAX; 84 fcoe_init1.rq_num_wqes = BNX2FC_RQ_WQES_MAX; 85 fcoe_init1.rq_buffer_log_size = BNX2FC_RQ_BUF_LOG_SZ; 86 fcoe_init1.cq_num_wqes = BNX2FC_CQ_WQES_MAX; 87 fcoe_init1.dummy_buffer_addr_lo = (u32) hba->dummy_buf_dma; 88 fcoe_init1.dummy_buffer_addr_hi = (u32) ((u64)hba->dummy_buf_dma >> 32); 89 fcoe_init1.task_list_pbl_addr_lo = (u32) hba->task_ctx_bd_dma; 90 fcoe_init1.task_list_pbl_addr_hi = 91 (u32) ((u64) hba->task_ctx_bd_dma >> 32); 92 fcoe_init1.mtu = BNX2FC_MINI_JUMBO_MTU; 93 94 fcoe_init1.flags = (PAGE_SHIFT << 95 FCOE_KWQE_INIT1_LOG_PAGE_SIZE_SHIFT); 96 97 fcoe_init1.num_sessions_log = BNX2FC_NUM_MAX_SESS_LOG; 98 99 /* fill init2 KWQE */ 100 memset(&fcoe_init2, 0x00, sizeof(struct fcoe_kwqe_init2)); 101 fcoe_init2.hdr.op_code = FCOE_KWQE_OPCODE_INIT2; 102 fcoe_init2.hdr.flags = (FCOE_KWQE_LAYER_CODE << 103 FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); 104 105 fcoe_init2.hsi_major_version = FCOE_HSI_MAJOR_VERSION; 106 fcoe_init2.hsi_minor_version = FCOE_HSI_MINOR_VERSION; 107 108 109 fcoe_init2.hash_tbl_pbl_addr_lo = (u32) hba->hash_tbl_pbl_dma; 110 fcoe_init2.hash_tbl_pbl_addr_hi = (u32) 111 ((u64) hba->hash_tbl_pbl_dma >> 32); 112 113 fcoe_init2.t2_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_dma; 114 fcoe_init2.t2_hash_tbl_addr_hi = (u32) 115 ((u64) hba->t2_hash_tbl_dma >> 32); 116 117 fcoe_init2.t2_ptr_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_ptr_dma; 118 fcoe_init2.t2_ptr_hash_tbl_addr_hi = (u32) 119 ((u64) hba->t2_hash_tbl_ptr_dma >> 32); 120 121 fcoe_init2.free_list_count = BNX2FC_NUM_MAX_SESS; 122 123 /* fill init3 KWQE */ 124 memset(&fcoe_init3, 0x00, sizeof(struct fcoe_kwqe_init3)); 125 fcoe_init3.hdr.op_code = FCOE_KWQE_OPCODE_INIT3; 126 fcoe_init3.hdr.flags = (FCOE_KWQE_LAYER_CODE << 127 FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); 128 fcoe_init3.error_bit_map_lo = 0xffffffff; 129 fcoe_init3.error_bit_map_hi = 0xffffffff; 130 131 /* 132 * enable both cached connection and cached tasks 133 * 0 = none, 1 = cached connection, 2 = cached tasks, 3 = both 134 */ 135 fcoe_init3.perf_config = 3; 136 137 kwqe_arr[0] = (struct kwqe *) &fcoe_init1; 138 kwqe_arr[1] = (struct kwqe *) &fcoe_init2; 139 kwqe_arr[2] = (struct kwqe *) &fcoe_init3; 140 141 if (hba->cnic && hba->cnic->submit_kwqes) 142 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes); 143 144 return rc; 145 } 146 int bnx2fc_send_fw_fcoe_destroy_msg(struct bnx2fc_hba *hba) 147 { 148 struct fcoe_kwqe_destroy fcoe_destroy; 149 struct kwqe *kwqe_arr[2]; 150 int num_kwqes = 1; 151 int rc = -1; 152 153 /* fill destroy KWQE */ 154 memset(&fcoe_destroy, 0x00, sizeof(struct fcoe_kwqe_destroy)); 155 fcoe_destroy.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY; 156 fcoe_destroy.hdr.flags = (FCOE_KWQE_LAYER_CODE << 157 FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); 158 kwqe_arr[0] = (struct kwqe *) &fcoe_destroy; 159 160 if (hba->cnic && hba->cnic->submit_kwqes) 161 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes); 162 return rc; 163 } 164 165 /** 166 * bnx2fc_send_session_ofld_req - initiates FCoE Session offload process 167 * 168 * @port: port structure pointer 169 * @tgt: bnx2fc_rport structure pointer 170 */ 171 int bnx2fc_send_session_ofld_req(struct fcoe_port *port, 172 struct bnx2fc_rport *tgt) 173 { 174 struct fc_lport *lport = port->lport; 175 struct bnx2fc_interface *interface = port->priv; 176 struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface); 177 struct bnx2fc_hba *hba = interface->hba; 178 struct kwqe *kwqe_arr[4]; 179 struct fcoe_kwqe_conn_offload1 ofld_req1; 180 struct fcoe_kwqe_conn_offload2 ofld_req2; 181 struct fcoe_kwqe_conn_offload3 ofld_req3; 182 struct fcoe_kwqe_conn_offload4 ofld_req4; 183 struct fc_rport_priv *rdata = tgt->rdata; 184 struct fc_rport *rport = tgt->rport; 185 int num_kwqes = 4; 186 u32 port_id; 187 int rc = 0; 188 u16 conn_id; 189 190 /* Initialize offload request 1 structure */ 191 memset(&ofld_req1, 0x00, sizeof(struct fcoe_kwqe_conn_offload1)); 192 193 ofld_req1.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN1; 194 ofld_req1.hdr.flags = 195 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); 196 197 198 conn_id = (u16)tgt->fcoe_conn_id; 199 ofld_req1.fcoe_conn_id = conn_id; 200 201 202 ofld_req1.sq_addr_lo = (u32) tgt->sq_dma; 203 ofld_req1.sq_addr_hi = (u32)((u64) tgt->sq_dma >> 32); 204 205 ofld_req1.rq_pbl_addr_lo = (u32) tgt->rq_pbl_dma; 206 ofld_req1.rq_pbl_addr_hi = (u32)((u64) tgt->rq_pbl_dma >> 32); 207 208 ofld_req1.rq_first_pbe_addr_lo = (u32) tgt->rq_dma; 209 ofld_req1.rq_first_pbe_addr_hi = 210 (u32)((u64) tgt->rq_dma >> 32); 211 212 ofld_req1.rq_prod = 0x8000; 213 214 /* Initialize offload request 2 structure */ 215 memset(&ofld_req2, 0x00, sizeof(struct fcoe_kwqe_conn_offload2)); 216 217 ofld_req2.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN2; 218 ofld_req2.hdr.flags = 219 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); 220 221 ofld_req2.tx_max_fc_pay_len = rdata->maxframe_size; 222 223 ofld_req2.cq_addr_lo = (u32) tgt->cq_dma; 224 ofld_req2.cq_addr_hi = (u32)((u64)tgt->cq_dma >> 32); 225 226 ofld_req2.xferq_addr_lo = (u32) tgt->xferq_dma; 227 ofld_req2.xferq_addr_hi = (u32)((u64)tgt->xferq_dma >> 32); 228 229 ofld_req2.conn_db_addr_lo = (u32)tgt->conn_db_dma; 230 ofld_req2.conn_db_addr_hi = (u32)((u64)tgt->conn_db_dma >> 32); 231 232 /* Initialize offload request 3 structure */ 233 memset(&ofld_req3, 0x00, sizeof(struct fcoe_kwqe_conn_offload3)); 234 235 ofld_req3.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN3; 236 ofld_req3.hdr.flags = 237 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); 238 239 ofld_req3.vlan_tag = interface->vlan_id << 240 FCOE_KWQE_CONN_OFFLOAD3_VLAN_ID_SHIFT; 241 ofld_req3.vlan_tag |= 3 << FCOE_KWQE_CONN_OFFLOAD3_PRIORITY_SHIFT; 242 243 port_id = fc_host_port_id(lport->host); 244 if (port_id == 0) { 245 BNX2FC_HBA_DBG(lport, "ofld_req: port_id = 0, link down?\n"); 246 return -EINVAL; 247 } 248 249 /* 250 * Store s_id of the initiator for further reference. This will 251 * be used during disable/destroy during linkdown processing as 252 * when the lport is reset, the port_id also is reset to 0 253 */ 254 tgt->sid = port_id; 255 ofld_req3.s_id[0] = (port_id & 0x000000FF); 256 ofld_req3.s_id[1] = (port_id & 0x0000FF00) >> 8; 257 ofld_req3.s_id[2] = (port_id & 0x00FF0000) >> 16; 258 259 port_id = rport->port_id; 260 ofld_req3.d_id[0] = (port_id & 0x000000FF); 261 ofld_req3.d_id[1] = (port_id & 0x0000FF00) >> 8; 262 ofld_req3.d_id[2] = (port_id & 0x00FF0000) >> 16; 263 264 ofld_req3.tx_total_conc_seqs = rdata->max_seq; 265 266 ofld_req3.tx_max_conc_seqs_c3 = rdata->max_seq; 267 ofld_req3.rx_max_fc_pay_len = lport->mfs; 268 269 ofld_req3.rx_total_conc_seqs = BNX2FC_MAX_SEQS; 270 ofld_req3.rx_max_conc_seqs_c3 = BNX2FC_MAX_SEQS; 271 ofld_req3.rx_open_seqs_exch_c3 = 1; 272 273 ofld_req3.confq_first_pbe_addr_lo = tgt->confq_dma; 274 ofld_req3.confq_first_pbe_addr_hi = (u32)((u64) tgt->confq_dma >> 32); 275 276 /* set mul_n_port_ids supported flag to 0, until it is supported */ 277 ofld_req3.flags = 0; 278 /* 279 ofld_req3.flags |= (((lport->send_sp_features & FC_SP_FT_MNA) ? 1:0) << 280 FCOE_KWQE_CONN_OFFLOAD3_B_MUL_N_PORT_IDS_SHIFT); 281 */ 282 /* Info from PLOGI response */ 283 ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_EDTR) ? 1 : 0) << 284 FCOE_KWQE_CONN_OFFLOAD3_B_E_D_TOV_RES_SHIFT); 285 286 ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_SEQC) ? 1 : 0) << 287 FCOE_KWQE_CONN_OFFLOAD3_B_CONT_INCR_SEQ_CNT_SHIFT); 288 289 /* 290 * Info from PRLI response, this info is used for sequence level error 291 * recovery support 292 */ 293 if (tgt->dev_type == TYPE_TAPE) { 294 ofld_req3.flags |= 1 << 295 FCOE_KWQE_CONN_OFFLOAD3_B_CONF_REQ_SHIFT; 296 ofld_req3.flags |= (((rdata->flags & FC_RP_FLAGS_REC_SUPPORTED) 297 ? 1 : 0) << 298 FCOE_KWQE_CONN_OFFLOAD3_B_REC_VALID_SHIFT); 299 } 300 301 /* vlan flag */ 302 ofld_req3.flags |= (interface->vlan_enabled << 303 FCOE_KWQE_CONN_OFFLOAD3_B_VLAN_FLAG_SHIFT); 304 305 /* C2_VALID and ACK flags are not set as they are not supported */ 306 307 308 /* Initialize offload request 4 structure */ 309 memset(&ofld_req4, 0x00, sizeof(struct fcoe_kwqe_conn_offload4)); 310 ofld_req4.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN4; 311 ofld_req4.hdr.flags = 312 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); 313 314 ofld_req4.e_d_tov_timer_val = lport->e_d_tov / 20; 315 316 317 ofld_req4.src_mac_addr_lo[0] = port->data_src_addr[5]; 318 /* local mac */ 319 ofld_req4.src_mac_addr_lo[1] = port->data_src_addr[4]; 320 ofld_req4.src_mac_addr_mid[0] = port->data_src_addr[3]; 321 ofld_req4.src_mac_addr_mid[1] = port->data_src_addr[2]; 322 ofld_req4.src_mac_addr_hi[0] = port->data_src_addr[1]; 323 ofld_req4.src_mac_addr_hi[1] = port->data_src_addr[0]; 324 ofld_req4.dst_mac_addr_lo[0] = ctlr->dest_addr[5]; 325 /* fcf mac */ 326 ofld_req4.dst_mac_addr_lo[1] = ctlr->dest_addr[4]; 327 ofld_req4.dst_mac_addr_mid[0] = ctlr->dest_addr[3]; 328 ofld_req4.dst_mac_addr_mid[1] = ctlr->dest_addr[2]; 329 ofld_req4.dst_mac_addr_hi[0] = ctlr->dest_addr[1]; 330 ofld_req4.dst_mac_addr_hi[1] = ctlr->dest_addr[0]; 331 332 ofld_req4.lcq_addr_lo = (u32) tgt->lcq_dma; 333 ofld_req4.lcq_addr_hi = (u32)((u64) tgt->lcq_dma >> 32); 334 335 ofld_req4.confq_pbl_base_addr_lo = (u32) tgt->confq_pbl_dma; 336 ofld_req4.confq_pbl_base_addr_hi = 337 (u32)((u64) tgt->confq_pbl_dma >> 32); 338 339 kwqe_arr[0] = (struct kwqe *) &ofld_req1; 340 kwqe_arr[1] = (struct kwqe *) &ofld_req2; 341 kwqe_arr[2] = (struct kwqe *) &ofld_req3; 342 kwqe_arr[3] = (struct kwqe *) &ofld_req4; 343 344 if (hba->cnic && hba->cnic->submit_kwqes) 345 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes); 346 347 return rc; 348 } 349 350 /** 351 * bnx2fc_send_session_enable_req - initiates FCoE Session enablement 352 * 353 * @port: port structure pointer 354 * @tgt: bnx2fc_rport structure pointer 355 */ 356 int bnx2fc_send_session_enable_req(struct fcoe_port *port, 357 struct bnx2fc_rport *tgt) 358 { 359 struct kwqe *kwqe_arr[2]; 360 struct bnx2fc_interface *interface = port->priv; 361 struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface); 362 struct bnx2fc_hba *hba = interface->hba; 363 struct fcoe_kwqe_conn_enable_disable enbl_req; 364 struct fc_lport *lport = port->lport; 365 struct fc_rport *rport = tgt->rport; 366 int num_kwqes = 1; 367 int rc = 0; 368 u32 port_id; 369 370 memset(&enbl_req, 0x00, 371 sizeof(struct fcoe_kwqe_conn_enable_disable)); 372 enbl_req.hdr.op_code = FCOE_KWQE_OPCODE_ENABLE_CONN; 373 enbl_req.hdr.flags = 374 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); 375 376 enbl_req.src_mac_addr_lo[0] = port->data_src_addr[5]; 377 /* local mac */ 378 enbl_req.src_mac_addr_lo[1] = port->data_src_addr[4]; 379 enbl_req.src_mac_addr_mid[0] = port->data_src_addr[3]; 380 enbl_req.src_mac_addr_mid[1] = port->data_src_addr[2]; 381 enbl_req.src_mac_addr_hi[0] = port->data_src_addr[1]; 382 enbl_req.src_mac_addr_hi[1] = port->data_src_addr[0]; 383 memcpy(tgt->src_addr, port->data_src_addr, ETH_ALEN); 384 385 enbl_req.dst_mac_addr_lo[0] = ctlr->dest_addr[5]; 386 enbl_req.dst_mac_addr_lo[1] = ctlr->dest_addr[4]; 387 enbl_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3]; 388 enbl_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2]; 389 enbl_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1]; 390 enbl_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0]; 391 392 port_id = fc_host_port_id(lport->host); 393 if (port_id != tgt->sid) { 394 printk(KERN_ERR PFX "WARN: enable_req port_id = 0x%x," 395 "sid = 0x%x\n", port_id, tgt->sid); 396 port_id = tgt->sid; 397 } 398 enbl_req.s_id[0] = (port_id & 0x000000FF); 399 enbl_req.s_id[1] = (port_id & 0x0000FF00) >> 8; 400 enbl_req.s_id[2] = (port_id & 0x00FF0000) >> 16; 401 402 port_id = rport->port_id; 403 enbl_req.d_id[0] = (port_id & 0x000000FF); 404 enbl_req.d_id[1] = (port_id & 0x0000FF00) >> 8; 405 enbl_req.d_id[2] = (port_id & 0x00FF0000) >> 16; 406 enbl_req.vlan_tag = interface->vlan_id << 407 FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT; 408 enbl_req.vlan_tag |= 3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT; 409 enbl_req.vlan_flag = interface->vlan_enabled; 410 enbl_req.context_id = tgt->context_id; 411 enbl_req.conn_id = tgt->fcoe_conn_id; 412 413 kwqe_arr[0] = (struct kwqe *) &enbl_req; 414 415 if (hba->cnic && hba->cnic->submit_kwqes) 416 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes); 417 return rc; 418 } 419 420 /** 421 * bnx2fc_send_session_disable_req - initiates FCoE Session disable 422 * 423 * @port: port structure pointer 424 * @tgt: bnx2fc_rport structure pointer 425 */ 426 int bnx2fc_send_session_disable_req(struct fcoe_port *port, 427 struct bnx2fc_rport *tgt) 428 { 429 struct bnx2fc_interface *interface = port->priv; 430 struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface); 431 struct bnx2fc_hba *hba = interface->hba; 432 struct fcoe_kwqe_conn_enable_disable disable_req; 433 struct kwqe *kwqe_arr[2]; 434 struct fc_rport *rport = tgt->rport; 435 int num_kwqes = 1; 436 int rc = 0; 437 u32 port_id; 438 439 memset(&disable_req, 0x00, 440 sizeof(struct fcoe_kwqe_conn_enable_disable)); 441 disable_req.hdr.op_code = FCOE_KWQE_OPCODE_DISABLE_CONN; 442 disable_req.hdr.flags = 443 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); 444 445 disable_req.src_mac_addr_lo[0] = tgt->src_addr[5]; 446 disable_req.src_mac_addr_lo[1] = tgt->src_addr[4]; 447 disable_req.src_mac_addr_mid[0] = tgt->src_addr[3]; 448 disable_req.src_mac_addr_mid[1] = tgt->src_addr[2]; 449 disable_req.src_mac_addr_hi[0] = tgt->src_addr[1]; 450 disable_req.src_mac_addr_hi[1] = tgt->src_addr[0]; 451 452 disable_req.dst_mac_addr_lo[0] = ctlr->dest_addr[5]; 453 disable_req.dst_mac_addr_lo[1] = ctlr->dest_addr[4]; 454 disable_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3]; 455 disable_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2]; 456 disable_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1]; 457 disable_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0]; 458 459 port_id = tgt->sid; 460 disable_req.s_id[0] = (port_id & 0x000000FF); 461 disable_req.s_id[1] = (port_id & 0x0000FF00) >> 8; 462 disable_req.s_id[2] = (port_id & 0x00FF0000) >> 16; 463 464 465 port_id = rport->port_id; 466 disable_req.d_id[0] = (port_id & 0x000000FF); 467 disable_req.d_id[1] = (port_id & 0x0000FF00) >> 8; 468 disable_req.d_id[2] = (port_id & 0x00FF0000) >> 16; 469 disable_req.context_id = tgt->context_id; 470 disable_req.conn_id = tgt->fcoe_conn_id; 471 disable_req.vlan_tag = interface->vlan_id << 472 FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT; 473 disable_req.vlan_tag |= 474 3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT; 475 disable_req.vlan_flag = interface->vlan_enabled; 476 477 kwqe_arr[0] = (struct kwqe *) &disable_req; 478 479 if (hba->cnic && hba->cnic->submit_kwqes) 480 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes); 481 482 return rc; 483 } 484 485 /** 486 * bnx2fc_send_session_destroy_req - initiates FCoE Session destroy 487 * 488 * @hba: adapter structure pointer 489 * @tgt: bnx2fc_rport structure pointer 490 */ 491 int bnx2fc_send_session_destroy_req(struct bnx2fc_hba *hba, 492 struct bnx2fc_rport *tgt) 493 { 494 struct fcoe_kwqe_conn_destroy destroy_req; 495 struct kwqe *kwqe_arr[2]; 496 int num_kwqes = 1; 497 int rc = 0; 498 499 memset(&destroy_req, 0x00, sizeof(struct fcoe_kwqe_conn_destroy)); 500 destroy_req.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY_CONN; 501 destroy_req.hdr.flags = 502 (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); 503 504 destroy_req.context_id = tgt->context_id; 505 destroy_req.conn_id = tgt->fcoe_conn_id; 506 507 kwqe_arr[0] = (struct kwqe *) &destroy_req; 508 509 if (hba->cnic && hba->cnic->submit_kwqes) 510 rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes); 511 512 return rc; 513 } 514 515 static bool is_valid_lport(struct bnx2fc_hba *hba, struct fc_lport *lport) 516 { 517 struct bnx2fc_lport *blport; 518 519 spin_lock_bh(&hba->hba_lock); 520 list_for_each_entry(blport, &hba->vports, list) { 521 if (blport->lport == lport) { 522 spin_unlock_bh(&hba->hba_lock); 523 return true; 524 } 525 } 526 spin_unlock_bh(&hba->hba_lock); 527 return false; 528 529 } 530 531 532 static void bnx2fc_unsol_els_work(struct work_struct *work) 533 { 534 struct bnx2fc_unsol_els *unsol_els; 535 struct fc_lport *lport; 536 struct bnx2fc_hba *hba; 537 struct fc_frame *fp; 538 539 unsol_els = container_of(work, struct bnx2fc_unsol_els, unsol_els_work); 540 lport = unsol_els->lport; 541 fp = unsol_els->fp; 542 hba = unsol_els->hba; 543 if (is_valid_lport(hba, lport)) 544 fc_exch_recv(lport, fp); 545 kfree(unsol_els); 546 } 547 548 void bnx2fc_process_l2_frame_compl(struct bnx2fc_rport *tgt, 549 unsigned char *buf, 550 u32 frame_len, u16 l2_oxid) 551 { 552 struct fcoe_port *port = tgt->port; 553 struct fc_lport *lport = port->lport; 554 struct bnx2fc_interface *interface = port->priv; 555 struct bnx2fc_unsol_els *unsol_els; 556 struct fc_frame_header *fh; 557 struct fc_frame *fp; 558 struct sk_buff *skb; 559 u32 payload_len; 560 u32 crc; 561 u8 op; 562 563 564 unsol_els = kzalloc(sizeof(*unsol_els), GFP_ATOMIC); 565 if (!unsol_els) { 566 BNX2FC_TGT_DBG(tgt, "Unable to allocate unsol_work\n"); 567 return; 568 } 569 570 BNX2FC_TGT_DBG(tgt, "l2_frame_compl l2_oxid = 0x%x, frame_len = %d\n", 571 l2_oxid, frame_len); 572 573 payload_len = frame_len - sizeof(struct fc_frame_header); 574 575 fp = fc_frame_alloc(lport, payload_len); 576 if (!fp) { 577 printk(KERN_ERR PFX "fc_frame_alloc failure\n"); 578 kfree(unsol_els); 579 return; 580 } 581 582 fh = (struct fc_frame_header *) fc_frame_header_get(fp); 583 /* Copy FC Frame header and payload into the frame */ 584 memcpy(fh, buf, frame_len); 585 586 if (l2_oxid != FC_XID_UNKNOWN) 587 fh->fh_ox_id = htons(l2_oxid); 588 589 skb = fp_skb(fp); 590 591 if ((fh->fh_r_ctl == FC_RCTL_ELS_REQ) || 592 (fh->fh_r_ctl == FC_RCTL_ELS_REP)) { 593 594 if (fh->fh_type == FC_TYPE_ELS) { 595 op = fc_frame_payload_op(fp); 596 if ((op == ELS_TEST) || (op == ELS_ESTC) || 597 (op == ELS_FAN) || (op == ELS_CSU)) { 598 /* 599 * No need to reply for these 600 * ELS requests 601 */ 602 printk(KERN_ERR PFX "dropping ELS 0x%x\n", op); 603 kfree_skb(skb); 604 kfree(unsol_els); 605 return; 606 } 607 } 608 crc = fcoe_fc_crc(fp); 609 fc_frame_init(fp); 610 fr_dev(fp) = lport; 611 fr_sof(fp) = FC_SOF_I3; 612 fr_eof(fp) = FC_EOF_T; 613 fr_crc(fp) = cpu_to_le32(~crc); 614 unsol_els->lport = lport; 615 unsol_els->hba = interface->hba; 616 unsol_els->fp = fp; 617 INIT_WORK(&unsol_els->unsol_els_work, bnx2fc_unsol_els_work); 618 queue_work(bnx2fc_wq, &unsol_els->unsol_els_work); 619 } else { 620 BNX2FC_HBA_DBG(lport, "fh_r_ctl = 0x%x\n", fh->fh_r_ctl); 621 kfree_skb(skb); 622 kfree(unsol_els); 623 } 624 } 625 626 static void bnx2fc_process_unsol_compl(struct bnx2fc_rport *tgt, u16 wqe) 627 { 628 u8 num_rq; 629 struct fcoe_err_report_entry *err_entry; 630 unsigned char *rq_data; 631 unsigned char *buf = NULL, *buf1; 632 int i; 633 u16 xid; 634 u32 frame_len, len; 635 struct bnx2fc_cmd *io_req = NULL; 636 struct bnx2fc_interface *interface = tgt->port->priv; 637 struct bnx2fc_hba *hba = interface->hba; 638 int rc = 0; 639 u64 err_warn_bit_map; 640 u8 err_warn = 0xff; 641 642 643 BNX2FC_TGT_DBG(tgt, "Entered UNSOL COMPLETION wqe = 0x%x\n", wqe); 644 switch (wqe & FCOE_UNSOLICITED_CQE_SUBTYPE) { 645 case FCOE_UNSOLICITED_FRAME_CQE_TYPE: 646 frame_len = (wqe & FCOE_UNSOLICITED_CQE_PKT_LEN) >> 647 FCOE_UNSOLICITED_CQE_PKT_LEN_SHIFT; 648 649 num_rq = (frame_len + BNX2FC_RQ_BUF_SZ - 1) / BNX2FC_RQ_BUF_SZ; 650 651 spin_lock_bh(&tgt->tgt_lock); 652 rq_data = (unsigned char *)bnx2fc_get_next_rqe(tgt, num_rq); 653 spin_unlock_bh(&tgt->tgt_lock); 654 655 if (rq_data) { 656 buf = rq_data; 657 } else { 658 buf1 = buf = kmalloc((num_rq * BNX2FC_RQ_BUF_SZ), 659 GFP_ATOMIC); 660 661 if (!buf1) { 662 BNX2FC_TGT_DBG(tgt, "Memory alloc failure\n"); 663 break; 664 } 665 666 for (i = 0; i < num_rq; i++) { 667 spin_lock_bh(&tgt->tgt_lock); 668 rq_data = (unsigned char *) 669 bnx2fc_get_next_rqe(tgt, 1); 670 spin_unlock_bh(&tgt->tgt_lock); 671 len = BNX2FC_RQ_BUF_SZ; 672 memcpy(buf1, rq_data, len); 673 buf1 += len; 674 } 675 } 676 bnx2fc_process_l2_frame_compl(tgt, buf, frame_len, 677 FC_XID_UNKNOWN); 678 679 if (buf != rq_data) 680 kfree(buf); 681 spin_lock_bh(&tgt->tgt_lock); 682 bnx2fc_return_rqe(tgt, num_rq); 683 spin_unlock_bh(&tgt->tgt_lock); 684 break; 685 686 case FCOE_ERROR_DETECTION_CQE_TYPE: 687 /* 688 * In case of error reporting CQE a single RQ entry 689 * is consumed. 690 */ 691 spin_lock_bh(&tgt->tgt_lock); 692 num_rq = 1; 693 err_entry = (struct fcoe_err_report_entry *) 694 bnx2fc_get_next_rqe(tgt, 1); 695 xid = err_entry->fc_hdr.ox_id; 696 BNX2FC_TGT_DBG(tgt, "Unsol Error Frame OX_ID = 0x%x\n", xid); 697 BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x\n", 698 err_entry->data.err_warn_bitmap_hi, 699 err_entry->data.err_warn_bitmap_lo); 700 BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x\n", 701 err_entry->data.tx_buf_off, err_entry->data.rx_buf_off); 702 703 if (xid > hba->max_xid) { 704 BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n", 705 xid); 706 goto ret_err_rqe; 707 } 708 709 710 io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid]; 711 if (!io_req) 712 goto ret_err_rqe; 713 714 if (io_req->cmd_type != BNX2FC_SCSI_CMD) { 715 printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n"); 716 goto ret_err_rqe; 717 } 718 719 if (test_and_clear_bit(BNX2FC_FLAG_IO_CLEANUP, 720 &io_req->req_flags)) { 721 BNX2FC_IO_DBG(io_req, "unsol_err: cleanup in " 722 "progress.. ignore unsol err\n"); 723 goto ret_err_rqe; 724 } 725 726 err_warn_bit_map = (u64) 727 ((u64)err_entry->data.err_warn_bitmap_hi << 32) | 728 (u64)err_entry->data.err_warn_bitmap_lo; 729 for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) { 730 if (err_warn_bit_map & (u64)((u64)1 << i)) { 731 err_warn = i; 732 break; 733 } 734 } 735 736 /* 737 * If ABTS is already in progress, and FW error is 738 * received after that, do not cancel the timeout_work 739 * and let the error recovery continue by explicitly 740 * logging out the target, when the ABTS eventually 741 * times out. 742 */ 743 if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) { 744 printk(KERN_ERR PFX "err_warn: io_req (0x%x) already " 745 "in ABTS processing\n", xid); 746 goto ret_err_rqe; 747 } 748 BNX2FC_TGT_DBG(tgt, "err = 0x%x\n", err_warn); 749 if (tgt->dev_type != TYPE_TAPE) 750 goto skip_rec; 751 switch (err_warn) { 752 case FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION: 753 case FCOE_ERROR_CODE_DATA_OOO_RO: 754 case FCOE_ERROR_CODE_COMMON_INCORRECT_SEQ_CNT: 755 case FCOE_ERROR_CODE_DATA_SOFI3_SEQ_ACTIVE_SET: 756 case FCOE_ERROR_CODE_FCP_RSP_OPENED_SEQ: 757 case FCOE_ERROR_CODE_DATA_SOFN_SEQ_ACTIVE_RESET: 758 BNX2FC_TGT_DBG(tgt, "REC TOV popped for xid - 0x%x\n", 759 xid); 760 memcpy(&io_req->err_entry, err_entry, 761 sizeof(struct fcoe_err_report_entry)); 762 if (!test_bit(BNX2FC_FLAG_SRR_SENT, 763 &io_req->req_flags)) { 764 spin_unlock_bh(&tgt->tgt_lock); 765 rc = bnx2fc_send_rec(io_req); 766 spin_lock_bh(&tgt->tgt_lock); 767 768 if (rc) 769 goto skip_rec; 770 } else 771 printk(KERN_ERR PFX "SRR in progress\n"); 772 goto ret_err_rqe; 773 default: 774 break; 775 } 776 777 skip_rec: 778 set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags); 779 /* 780 * Cancel the timeout_work, as we received IO 781 * completion with FW error. 782 */ 783 if (cancel_delayed_work(&io_req->timeout_work)) 784 kref_put(&io_req->refcount, bnx2fc_cmd_release); 785 786 rc = bnx2fc_initiate_abts(io_req); 787 if (rc != SUCCESS) { 788 printk(KERN_ERR PFX "err_warn: initiate_abts " 789 "failed xid = 0x%x. issue cleanup\n", 790 io_req->xid); 791 bnx2fc_initiate_cleanup(io_req); 792 } 793 ret_err_rqe: 794 bnx2fc_return_rqe(tgt, 1); 795 spin_unlock_bh(&tgt->tgt_lock); 796 break; 797 798 case FCOE_WARNING_DETECTION_CQE_TYPE: 799 /* 800 *In case of warning reporting CQE a single RQ entry 801 * is consumes. 802 */ 803 spin_lock_bh(&tgt->tgt_lock); 804 num_rq = 1; 805 err_entry = (struct fcoe_err_report_entry *) 806 bnx2fc_get_next_rqe(tgt, 1); 807 xid = cpu_to_be16(err_entry->fc_hdr.ox_id); 808 BNX2FC_TGT_DBG(tgt, "Unsol Warning Frame OX_ID = 0x%x\n", xid); 809 BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x", 810 err_entry->data.err_warn_bitmap_hi, 811 err_entry->data.err_warn_bitmap_lo); 812 BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x", 813 err_entry->data.tx_buf_off, err_entry->data.rx_buf_off); 814 815 if (xid > hba->max_xid) { 816 BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n", xid); 817 goto ret_warn_rqe; 818 } 819 820 err_warn_bit_map = (u64) 821 ((u64)err_entry->data.err_warn_bitmap_hi << 32) | 822 (u64)err_entry->data.err_warn_bitmap_lo; 823 for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) { 824 if (err_warn_bit_map & ((u64)1 << i)) { 825 err_warn = i; 826 break; 827 } 828 } 829 BNX2FC_TGT_DBG(tgt, "warn = 0x%x\n", err_warn); 830 831 io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid]; 832 if (!io_req) 833 goto ret_warn_rqe; 834 835 if (io_req->cmd_type != BNX2FC_SCSI_CMD) { 836 printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n"); 837 goto ret_warn_rqe; 838 } 839 840 memcpy(&io_req->err_entry, err_entry, 841 sizeof(struct fcoe_err_report_entry)); 842 843 if (err_warn == FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION) 844 /* REC_TOV is not a warning code */ 845 BUG_ON(1); 846 else 847 BNX2FC_TGT_DBG(tgt, "Unsolicited warning\n"); 848 ret_warn_rqe: 849 bnx2fc_return_rqe(tgt, 1); 850 spin_unlock_bh(&tgt->tgt_lock); 851 break; 852 853 default: 854 printk(KERN_ERR PFX "Unsol Compl: Invalid CQE Subtype\n"); 855 break; 856 } 857 } 858 859 void bnx2fc_process_cq_compl(struct bnx2fc_rport *tgt, u16 wqe, 860 unsigned char *rq_data, u8 num_rq, 861 struct fcoe_task_ctx_entry *task) 862 { 863 struct fcoe_port *port = tgt->port; 864 struct bnx2fc_interface *interface = port->priv; 865 struct bnx2fc_hba *hba = interface->hba; 866 struct bnx2fc_cmd *io_req; 867 868 u16 xid; 869 u8 cmd_type; 870 u8 rx_state = 0; 871 872 spin_lock_bh(&tgt->tgt_lock); 873 874 xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID; 875 io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid]; 876 877 if (io_req == NULL) { 878 printk(KERN_ERR PFX "ERROR? cq_compl - io_req is NULL\n"); 879 spin_unlock_bh(&tgt->tgt_lock); 880 return; 881 } 882 883 /* Timestamp IO completion time */ 884 cmd_type = io_req->cmd_type; 885 886 rx_state = ((task->rxwr_txrd.var_ctx.rx_flags & 887 FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE) >> 888 FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE_SHIFT); 889 890 /* Process other IO completion types */ 891 switch (cmd_type) { 892 case BNX2FC_SCSI_CMD: 893 if (rx_state == FCOE_TASK_RX_STATE_COMPLETED) { 894 bnx2fc_process_scsi_cmd_compl(io_req, task, num_rq, 895 rq_data); 896 spin_unlock_bh(&tgt->tgt_lock); 897 return; 898 } 899 900 if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED) 901 bnx2fc_process_abts_compl(io_req, task, num_rq); 902 else if (rx_state == 903 FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED) 904 bnx2fc_process_cleanup_compl(io_req, task, num_rq); 905 else 906 printk(KERN_ERR PFX "Invalid rx state - %d\n", 907 rx_state); 908 break; 909 910 case BNX2FC_TASK_MGMT_CMD: 911 BNX2FC_IO_DBG(io_req, "Processing TM complete\n"); 912 bnx2fc_process_tm_compl(io_req, task, num_rq, rq_data); 913 break; 914 915 case BNX2FC_ABTS: 916 /* 917 * ABTS request received by firmware. ABTS response 918 * will be delivered to the task belonging to the IO 919 * that was aborted 920 */ 921 BNX2FC_IO_DBG(io_req, "cq_compl- ABTS sent out by fw\n"); 922 kref_put(&io_req->refcount, bnx2fc_cmd_release); 923 break; 924 925 case BNX2FC_ELS: 926 if (rx_state == FCOE_TASK_RX_STATE_COMPLETED) 927 bnx2fc_process_els_compl(io_req, task, num_rq); 928 else if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED) 929 bnx2fc_process_abts_compl(io_req, task, num_rq); 930 else if (rx_state == 931 FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED) 932 bnx2fc_process_cleanup_compl(io_req, task, num_rq); 933 else 934 printk(KERN_ERR PFX "Invalid rx state = %d\n", 935 rx_state); 936 break; 937 938 case BNX2FC_CLEANUP: 939 BNX2FC_IO_DBG(io_req, "cq_compl- cleanup resp rcvd\n"); 940 kref_put(&io_req->refcount, bnx2fc_cmd_release); 941 break; 942 943 case BNX2FC_SEQ_CLEANUP: 944 BNX2FC_IO_DBG(io_req, "cq_compl(0x%x) - seq cleanup resp\n", 945 io_req->xid); 946 bnx2fc_process_seq_cleanup_compl(io_req, task, rx_state); 947 kref_put(&io_req->refcount, bnx2fc_cmd_release); 948 break; 949 950 default: 951 printk(KERN_ERR PFX "Invalid cmd_type %d\n", cmd_type); 952 break; 953 } 954 spin_unlock_bh(&tgt->tgt_lock); 955 } 956 957 void bnx2fc_arm_cq(struct bnx2fc_rport *tgt) 958 { 959 struct b577xx_fcoe_rx_doorbell *rx_db = &tgt->rx_db; 960 u32 msg; 961 962 wmb(); 963 rx_db->doorbell_cq_cons = tgt->cq_cons_idx | (tgt->cq_curr_toggle_bit << 964 FCOE_CQE_TOGGLE_BIT_SHIFT); 965 msg = *((u32 *)rx_db); 966 writel(cpu_to_le32(msg), tgt->ctx_base); 967 968 } 969 970 static struct bnx2fc_work *bnx2fc_alloc_work(struct bnx2fc_rport *tgt, u16 wqe, 971 unsigned char *rq_data, u8 num_rq, 972 struct fcoe_task_ctx_entry *task) 973 { 974 struct bnx2fc_work *work; 975 work = kzalloc(sizeof(struct bnx2fc_work), GFP_ATOMIC); 976 if (!work) 977 return NULL; 978 979 INIT_LIST_HEAD(&work->list); 980 work->tgt = tgt; 981 work->wqe = wqe; 982 work->num_rq = num_rq; 983 work->task = task; 984 if (rq_data) 985 memcpy(work->rq_data, rq_data, BNX2FC_RQ_BUF_SZ); 986 987 return work; 988 } 989 990 /* Pending work request completion */ 991 static bool bnx2fc_pending_work(struct bnx2fc_rport *tgt, unsigned int wqe) 992 { 993 unsigned int cpu = wqe % num_possible_cpus(); 994 struct bnx2fc_percpu_s *fps; 995 struct bnx2fc_work *work; 996 struct fcoe_task_ctx_entry *task; 997 struct fcoe_task_ctx_entry *task_page; 998 struct fcoe_port *port = tgt->port; 999 struct bnx2fc_interface *interface = port->priv; 1000 struct bnx2fc_hba *hba = interface->hba; 1001 unsigned char *rq_data = NULL; 1002 unsigned char rq_data_buff[BNX2FC_RQ_BUF_SZ]; 1003 int task_idx, index; 1004 u16 xid; 1005 u8 num_rq; 1006 int i; 1007 1008 xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID; 1009 if (xid >= hba->max_tasks) { 1010 pr_err(PFX "ERROR:xid out of range\n"); 1011 return false; 1012 } 1013 1014 task_idx = xid / BNX2FC_TASKS_PER_PAGE; 1015 index = xid % BNX2FC_TASKS_PER_PAGE; 1016 task_page = (struct fcoe_task_ctx_entry *)hba->task_ctx[task_idx]; 1017 task = &task_page[index]; 1018 1019 num_rq = ((task->rxwr_txrd.var_ctx.rx_flags & 1020 FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE) >> 1021 FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE_SHIFT); 1022 1023 memset(rq_data_buff, 0, BNX2FC_RQ_BUF_SZ); 1024 1025 if (!num_rq) 1026 goto num_rq_zero; 1027 1028 rq_data = bnx2fc_get_next_rqe(tgt, 1); 1029 1030 if (num_rq > 1) { 1031 /* We do not need extra sense data */ 1032 for (i = 1; i < num_rq; i++) 1033 bnx2fc_get_next_rqe(tgt, 1); 1034 } 1035 1036 if (rq_data) 1037 memcpy(rq_data_buff, rq_data, BNX2FC_RQ_BUF_SZ); 1038 1039 /* return RQ entries */ 1040 for (i = 0; i < num_rq; i++) 1041 bnx2fc_return_rqe(tgt, 1); 1042 1043 num_rq_zero: 1044 1045 fps = &per_cpu(bnx2fc_percpu, cpu); 1046 spin_lock_bh(&fps->fp_work_lock); 1047 if (fps->iothread) { 1048 work = bnx2fc_alloc_work(tgt, wqe, rq_data_buff, 1049 num_rq, task); 1050 if (work) { 1051 list_add_tail(&work->list, &fps->work_list); 1052 wake_up_process(fps->iothread); 1053 spin_unlock_bh(&fps->fp_work_lock); 1054 return true; 1055 } 1056 } 1057 spin_unlock_bh(&fps->fp_work_lock); 1058 bnx2fc_process_cq_compl(tgt, wqe, 1059 rq_data_buff, num_rq, task); 1060 1061 return true; 1062 } 1063 1064 int bnx2fc_process_new_cqes(struct bnx2fc_rport *tgt) 1065 { 1066 struct fcoe_cqe *cq; 1067 u32 cq_cons; 1068 struct fcoe_cqe *cqe; 1069 u32 num_free_sqes = 0; 1070 u32 num_cqes = 0; 1071 u16 wqe; 1072 1073 /* 1074 * cq_lock is a low contention lock used to protect 1075 * the CQ data structure from being freed up during 1076 * the upload operation 1077 */ 1078 spin_lock_bh(&tgt->cq_lock); 1079 1080 if (!tgt->cq) { 1081 printk(KERN_ERR PFX "process_new_cqes: cq is NULL\n"); 1082 spin_unlock_bh(&tgt->cq_lock); 1083 return 0; 1084 } 1085 cq = tgt->cq; 1086 cq_cons = tgt->cq_cons_idx; 1087 cqe = &cq[cq_cons]; 1088 1089 while (((wqe = cqe->wqe) & FCOE_CQE_TOGGLE_BIT) == 1090 (tgt->cq_curr_toggle_bit << 1091 FCOE_CQE_TOGGLE_BIT_SHIFT)) { 1092 1093 /* new entry on the cq */ 1094 if (wqe & FCOE_CQE_CQE_TYPE) { 1095 /* Unsolicited event notification */ 1096 bnx2fc_process_unsol_compl(tgt, wqe); 1097 } else { 1098 if (bnx2fc_pending_work(tgt, wqe)) 1099 num_free_sqes++; 1100 } 1101 cqe++; 1102 tgt->cq_cons_idx++; 1103 num_cqes++; 1104 1105 if (tgt->cq_cons_idx == BNX2FC_CQ_WQES_MAX) { 1106 tgt->cq_cons_idx = 0; 1107 cqe = cq; 1108 tgt->cq_curr_toggle_bit = 1109 1 - tgt->cq_curr_toggle_bit; 1110 } 1111 } 1112 if (num_cqes) { 1113 /* Arm CQ only if doorbell is mapped */ 1114 if (tgt->ctx_base) 1115 bnx2fc_arm_cq(tgt); 1116 atomic_add(num_free_sqes, &tgt->free_sqes); 1117 } 1118 spin_unlock_bh(&tgt->cq_lock); 1119 return 0; 1120 } 1121 1122 /** 1123 * bnx2fc_fastpath_notification - process global event queue (KCQ) 1124 * 1125 * @hba: adapter structure pointer 1126 * @new_cqe_kcqe: pointer to newly DMA'd KCQ entry 1127 * 1128 * Fast path event notification handler 1129 */ 1130 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba, 1131 struct fcoe_kcqe *new_cqe_kcqe) 1132 { 1133 u32 conn_id = new_cqe_kcqe->fcoe_conn_id; 1134 struct bnx2fc_rport *tgt = hba->tgt_ofld_list[conn_id]; 1135 1136 if (!tgt) { 1137 printk(KERN_ERR PFX "conn_id 0x%x not valid\n", conn_id); 1138 return; 1139 } 1140 1141 bnx2fc_process_new_cqes(tgt); 1142 } 1143 1144 /** 1145 * bnx2fc_process_ofld_cmpl - process FCoE session offload completion 1146 * 1147 * @hba: adapter structure pointer 1148 * @ofld_kcqe: connection offload kcqe pointer 1149 * 1150 * handle session offload completion, enable the session if offload is 1151 * successful. 1152 */ 1153 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba, 1154 struct fcoe_kcqe *ofld_kcqe) 1155 { 1156 struct bnx2fc_rport *tgt; 1157 struct bnx2fc_interface *interface; 1158 u32 conn_id; 1159 u32 context_id; 1160 1161 conn_id = ofld_kcqe->fcoe_conn_id; 1162 context_id = ofld_kcqe->fcoe_conn_context_id; 1163 tgt = hba->tgt_ofld_list[conn_id]; 1164 if (!tgt) { 1165 printk(KERN_ALERT PFX "ERROR:ofld_cmpl: No pending ofld req\n"); 1166 return; 1167 } 1168 BNX2FC_TGT_DBG(tgt, "Entered ofld compl - context_id = 0x%x\n", 1169 ofld_kcqe->fcoe_conn_context_id); 1170 interface = tgt->port->priv; 1171 if (hba != interface->hba) { 1172 printk(KERN_ERR PFX "ERROR:ofld_cmpl: HBA mismatch\n"); 1173 goto ofld_cmpl_err; 1174 } 1175 /* 1176 * cnic has allocated a context_id for this session; use this 1177 * while enabling the session. 1178 */ 1179 tgt->context_id = context_id; 1180 if (ofld_kcqe->completion_status) { 1181 if (ofld_kcqe->completion_status == 1182 FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE) { 1183 printk(KERN_ERR PFX "unable to allocate FCoE context " 1184 "resources\n"); 1185 set_bit(BNX2FC_FLAG_CTX_ALLOC_FAILURE, &tgt->flags); 1186 } 1187 } else { 1188 /* FW offload request successfully completed */ 1189 set_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags); 1190 } 1191 ofld_cmpl_err: 1192 set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags); 1193 wake_up_interruptible(&tgt->ofld_wait); 1194 } 1195 1196 /** 1197 * bnx2fc_process_enable_conn_cmpl - process FCoE session enable completion 1198 * 1199 * @hba: adapter structure pointer 1200 * @ofld_kcqe: connection offload kcqe pointer 1201 * 1202 * handle session enable completion, mark the rport as ready 1203 */ 1204 1205 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba, 1206 struct fcoe_kcqe *ofld_kcqe) 1207 { 1208 struct bnx2fc_rport *tgt; 1209 struct bnx2fc_interface *interface; 1210 u32 conn_id; 1211 u32 context_id; 1212 1213 context_id = ofld_kcqe->fcoe_conn_context_id; 1214 conn_id = ofld_kcqe->fcoe_conn_id; 1215 tgt = hba->tgt_ofld_list[conn_id]; 1216 if (!tgt) { 1217 printk(KERN_ERR PFX "ERROR:enbl_cmpl: No pending ofld req\n"); 1218 return; 1219 } 1220 1221 BNX2FC_TGT_DBG(tgt, "Enable compl - context_id = 0x%x\n", 1222 ofld_kcqe->fcoe_conn_context_id); 1223 1224 /* 1225 * context_id should be the same for this target during offload 1226 * and enable 1227 */ 1228 if (tgt->context_id != context_id) { 1229 printk(KERN_ERR PFX "context id mismatch\n"); 1230 return; 1231 } 1232 interface = tgt->port->priv; 1233 if (hba != interface->hba) { 1234 printk(KERN_ERR PFX "bnx2fc-enbl_cmpl: HBA mismatch\n"); 1235 goto enbl_cmpl_err; 1236 } 1237 if (!ofld_kcqe->completion_status) 1238 /* enable successful - rport ready for issuing IOs */ 1239 set_bit(BNX2FC_FLAG_ENABLED, &tgt->flags); 1240 1241 enbl_cmpl_err: 1242 set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags); 1243 wake_up_interruptible(&tgt->ofld_wait); 1244 } 1245 1246 static void bnx2fc_process_conn_disable_cmpl(struct bnx2fc_hba *hba, 1247 struct fcoe_kcqe *disable_kcqe) 1248 { 1249 1250 struct bnx2fc_rport *tgt; 1251 u32 conn_id; 1252 1253 conn_id = disable_kcqe->fcoe_conn_id; 1254 tgt = hba->tgt_ofld_list[conn_id]; 1255 if (!tgt) { 1256 printk(KERN_ERR PFX "ERROR: disable_cmpl: No disable req\n"); 1257 return; 1258 } 1259 1260 BNX2FC_TGT_DBG(tgt, PFX "disable_cmpl: conn_id %d\n", conn_id); 1261 1262 if (disable_kcqe->completion_status) { 1263 printk(KERN_ERR PFX "Disable failed with cmpl status %d\n", 1264 disable_kcqe->completion_status); 1265 set_bit(BNX2FC_FLAG_DISABLE_FAILED, &tgt->flags); 1266 set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags); 1267 wake_up_interruptible(&tgt->upld_wait); 1268 } else { 1269 /* disable successful */ 1270 BNX2FC_TGT_DBG(tgt, "disable successful\n"); 1271 clear_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags); 1272 clear_bit(BNX2FC_FLAG_ENABLED, &tgt->flags); 1273 set_bit(BNX2FC_FLAG_DISABLED, &tgt->flags); 1274 set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags); 1275 wake_up_interruptible(&tgt->upld_wait); 1276 } 1277 } 1278 1279 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba, 1280 struct fcoe_kcqe *destroy_kcqe) 1281 { 1282 struct bnx2fc_rport *tgt; 1283 u32 conn_id; 1284 1285 conn_id = destroy_kcqe->fcoe_conn_id; 1286 tgt = hba->tgt_ofld_list[conn_id]; 1287 if (!tgt) { 1288 printk(KERN_ERR PFX "destroy_cmpl: No destroy req\n"); 1289 return; 1290 } 1291 1292 BNX2FC_TGT_DBG(tgt, "destroy_cmpl: conn_id %d\n", conn_id); 1293 1294 if (destroy_kcqe->completion_status) { 1295 printk(KERN_ERR PFX "Destroy conn failed, cmpl status %d\n", 1296 destroy_kcqe->completion_status); 1297 return; 1298 } else { 1299 /* destroy successful */ 1300 BNX2FC_TGT_DBG(tgt, "upload successful\n"); 1301 clear_bit(BNX2FC_FLAG_DISABLED, &tgt->flags); 1302 set_bit(BNX2FC_FLAG_DESTROYED, &tgt->flags); 1303 set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags); 1304 wake_up_interruptible(&tgt->upld_wait); 1305 } 1306 } 1307 1308 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code) 1309 { 1310 switch (err_code) { 1311 case FCOE_KCQE_COMPLETION_STATUS_INVALID_OPCODE: 1312 printk(KERN_ERR PFX "init_failure due to invalid opcode\n"); 1313 break; 1314 1315 case FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE: 1316 printk(KERN_ERR PFX "init failed due to ctx alloc failure\n"); 1317 break; 1318 1319 case FCOE_KCQE_COMPLETION_STATUS_NIC_ERROR: 1320 printk(KERN_ERR PFX "init_failure due to NIC error\n"); 1321 break; 1322 case FCOE_KCQE_COMPLETION_STATUS_ERROR: 1323 printk(KERN_ERR PFX "init failure due to compl status err\n"); 1324 break; 1325 case FCOE_KCQE_COMPLETION_STATUS_WRONG_HSI_VERSION: 1326 printk(KERN_ERR PFX "init failure due to HSI mismatch\n"); 1327 break; 1328 default: 1329 printk(KERN_ERR PFX "Unknown Error code %d\n", err_code); 1330 } 1331 } 1332 1333 /** 1334 * bnx2fc_indicate_kcqe() - process KCQE 1335 * 1336 * @context: adapter structure pointer 1337 * @kcq: kcqe pointer 1338 * @num_cqe: Number of completion queue elements 1339 * 1340 * Generic KCQ event handler 1341 */ 1342 void bnx2fc_indicate_kcqe(void *context, struct kcqe *kcq[], 1343 u32 num_cqe) 1344 { 1345 struct bnx2fc_hba *hba = (struct bnx2fc_hba *)context; 1346 int i = 0; 1347 struct fcoe_kcqe *kcqe = NULL; 1348 1349 while (i < num_cqe) { 1350 kcqe = (struct fcoe_kcqe *) kcq[i++]; 1351 1352 switch (kcqe->op_code) { 1353 case FCOE_KCQE_OPCODE_CQ_EVENT_NOTIFICATION: 1354 bnx2fc_fastpath_notification(hba, kcqe); 1355 break; 1356 1357 case FCOE_KCQE_OPCODE_OFFLOAD_CONN: 1358 bnx2fc_process_ofld_cmpl(hba, kcqe); 1359 break; 1360 1361 case FCOE_KCQE_OPCODE_ENABLE_CONN: 1362 bnx2fc_process_enable_conn_cmpl(hba, kcqe); 1363 break; 1364 1365 case FCOE_KCQE_OPCODE_INIT_FUNC: 1366 if (kcqe->completion_status != 1367 FCOE_KCQE_COMPLETION_STATUS_SUCCESS) { 1368 bnx2fc_init_failure(hba, 1369 kcqe->completion_status); 1370 } else { 1371 set_bit(ADAPTER_STATE_UP, &hba->adapter_state); 1372 bnx2fc_get_link_state(hba); 1373 printk(KERN_INFO PFX "[%.2x]: FCOE_INIT passed\n", 1374 (u8)hba->pcidev->bus->number); 1375 } 1376 break; 1377 1378 case FCOE_KCQE_OPCODE_DESTROY_FUNC: 1379 if (kcqe->completion_status != 1380 FCOE_KCQE_COMPLETION_STATUS_SUCCESS) { 1381 1382 printk(KERN_ERR PFX "DESTROY failed\n"); 1383 } else { 1384 printk(KERN_ERR PFX "DESTROY success\n"); 1385 } 1386 set_bit(BNX2FC_FLAG_DESTROY_CMPL, &hba->flags); 1387 wake_up_interruptible(&hba->destroy_wait); 1388 break; 1389 1390 case FCOE_KCQE_OPCODE_DISABLE_CONN: 1391 bnx2fc_process_conn_disable_cmpl(hba, kcqe); 1392 break; 1393 1394 case FCOE_KCQE_OPCODE_DESTROY_CONN: 1395 bnx2fc_process_conn_destroy_cmpl(hba, kcqe); 1396 break; 1397 1398 case FCOE_KCQE_OPCODE_STAT_FUNC: 1399 if (kcqe->completion_status != 1400 FCOE_KCQE_COMPLETION_STATUS_SUCCESS) 1401 printk(KERN_ERR PFX "STAT failed\n"); 1402 complete(&hba->stat_req_done); 1403 break; 1404 1405 case FCOE_KCQE_OPCODE_FCOE_ERROR: 1406 default: 1407 printk(KERN_ERR PFX "unknown opcode 0x%x\n", 1408 kcqe->op_code); 1409 } 1410 } 1411 } 1412 1413 void bnx2fc_add_2_sq(struct bnx2fc_rport *tgt, u16 xid) 1414 { 1415 struct fcoe_sqe *sqe; 1416 1417 sqe = &tgt->sq[tgt->sq_prod_idx]; 1418 1419 /* Fill SQ WQE */ 1420 sqe->wqe = xid << FCOE_SQE_TASK_ID_SHIFT; 1421 sqe->wqe |= tgt->sq_curr_toggle_bit << FCOE_SQE_TOGGLE_BIT_SHIFT; 1422 1423 /* Advance SQ Prod Idx */ 1424 if (++tgt->sq_prod_idx == BNX2FC_SQ_WQES_MAX) { 1425 tgt->sq_prod_idx = 0; 1426 tgt->sq_curr_toggle_bit = 1 - tgt->sq_curr_toggle_bit; 1427 } 1428 } 1429 1430 void bnx2fc_ring_doorbell(struct bnx2fc_rport *tgt) 1431 { 1432 struct b577xx_doorbell_set_prod *sq_db = &tgt->sq_db; 1433 u32 msg; 1434 1435 wmb(); 1436 sq_db->prod = tgt->sq_prod_idx | 1437 (tgt->sq_curr_toggle_bit << 15); 1438 msg = *((u32 *)sq_db); 1439 writel(cpu_to_le32(msg), tgt->ctx_base); 1440 1441 } 1442 1443 int bnx2fc_map_doorbell(struct bnx2fc_rport *tgt) 1444 { 1445 u32 context_id = tgt->context_id; 1446 struct fcoe_port *port = tgt->port; 1447 u32 reg_off; 1448 resource_size_t reg_base; 1449 struct bnx2fc_interface *interface = port->priv; 1450 struct bnx2fc_hba *hba = interface->hba; 1451 1452 reg_base = pci_resource_start(hba->pcidev, 1453 BNX2X_DOORBELL_PCI_BAR); 1454 reg_off = (1 << BNX2X_DB_SHIFT) * (context_id & 0x1FFFF); 1455 tgt->ctx_base = ioremap(reg_base + reg_off, 4); 1456 if (!tgt->ctx_base) 1457 return -ENOMEM; 1458 return 0; 1459 } 1460 1461 char *bnx2fc_get_next_rqe(struct bnx2fc_rport *tgt, u8 num_items) 1462 { 1463 char *buf = (char *)tgt->rq + (tgt->rq_cons_idx * BNX2FC_RQ_BUF_SZ); 1464 1465 if (tgt->rq_cons_idx + num_items > BNX2FC_RQ_WQES_MAX) 1466 return NULL; 1467 1468 tgt->rq_cons_idx += num_items; 1469 1470 if (tgt->rq_cons_idx >= BNX2FC_RQ_WQES_MAX) 1471 tgt->rq_cons_idx -= BNX2FC_RQ_WQES_MAX; 1472 1473 return buf; 1474 } 1475 1476 void bnx2fc_return_rqe(struct bnx2fc_rport *tgt, u8 num_items) 1477 { 1478 /* return the rq buffer */ 1479 u32 next_prod_idx = tgt->rq_prod_idx + num_items; 1480 if ((next_prod_idx & 0x7fff) == BNX2FC_RQ_WQES_MAX) { 1481 /* Wrap around RQ */ 1482 next_prod_idx += 0x8000 - BNX2FC_RQ_WQES_MAX; 1483 } 1484 tgt->rq_prod_idx = next_prod_idx; 1485 tgt->conn_db->rq_prod = tgt->rq_prod_idx; 1486 } 1487 1488 void bnx2fc_init_seq_cleanup_task(struct bnx2fc_cmd *seq_clnp_req, 1489 struct fcoe_task_ctx_entry *task, 1490 struct bnx2fc_cmd *orig_io_req, 1491 u32 offset) 1492 { 1493 struct scsi_cmnd *sc_cmd = orig_io_req->sc_cmd; 1494 struct bnx2fc_rport *tgt = seq_clnp_req->tgt; 1495 struct fcoe_bd_ctx *bd = orig_io_req->bd_tbl->bd_tbl; 1496 struct fcoe_ext_mul_sges_ctx *sgl; 1497 u8 task_type = FCOE_TASK_TYPE_SEQUENCE_CLEANUP; 1498 u8 orig_task_type; 1499 u16 orig_xid = orig_io_req->xid; 1500 u32 context_id = tgt->context_id; 1501 u64 phys_addr = (u64)orig_io_req->bd_tbl->bd_tbl_dma; 1502 u32 orig_offset = offset; 1503 int bd_count; 1504 int i; 1505 1506 memset(task, 0, sizeof(struct fcoe_task_ctx_entry)); 1507 1508 if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) 1509 orig_task_type = FCOE_TASK_TYPE_WRITE; 1510 else 1511 orig_task_type = FCOE_TASK_TYPE_READ; 1512 1513 /* Tx flags */ 1514 task->txwr_rxrd.const_ctx.tx_flags = 1515 FCOE_TASK_TX_STATE_SEQUENCE_CLEANUP << 1516 FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT; 1517 /* init flags */ 1518 task->txwr_rxrd.const_ctx.init_flags = task_type << 1519 FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT; 1520 task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 << 1521 FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT; 1522 task->rxwr_txrd.const_ctx.init_flags = context_id << 1523 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT; 1524 task->rxwr_txrd.const_ctx.init_flags = context_id << 1525 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT; 1526 1527 task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid; 1528 1529 task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_seq_cnt = 0; 1530 task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_data_offset = offset; 1531 1532 bd_count = orig_io_req->bd_tbl->bd_valid; 1533 1534 /* obtain the appropriate bd entry from relative offset */ 1535 for (i = 0; i < bd_count; i++) { 1536 if (offset < bd[i].buf_len) 1537 break; 1538 offset -= bd[i].buf_len; 1539 } 1540 phys_addr += (i * sizeof(struct fcoe_bd_ctx)); 1541 1542 if (orig_task_type == FCOE_TASK_TYPE_WRITE) { 1543 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo = 1544 (u32)phys_addr; 1545 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi = 1546 (u32)((u64)phys_addr >> 32); 1547 task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = 1548 bd_count; 1549 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_off = 1550 offset; /* adjusted offset */ 1551 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_idx = i; 1552 } else { 1553 1554 /* Multiple SGEs were used for this IO */ 1555 sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl; 1556 sgl->mul_sgl.cur_sge_addr.lo = (u32)phys_addr; 1557 sgl->mul_sgl.cur_sge_addr.hi = (u32)((u64)phys_addr >> 32); 1558 sgl->mul_sgl.sgl_size = bd_count; 1559 sgl->mul_sgl.cur_sge_off = offset; /*adjusted offset */ 1560 sgl->mul_sgl.cur_sge_idx = i; 1561 1562 memset(&task->rxwr_only.rx_seq_ctx, 0, 1563 sizeof(struct fcoe_rx_seq_ctx)); 1564 task->rxwr_only.rx_seq_ctx.low_exp_ro = orig_offset; 1565 task->rxwr_only.rx_seq_ctx.high_exp_ro = orig_offset; 1566 } 1567 } 1568 void bnx2fc_init_cleanup_task(struct bnx2fc_cmd *io_req, 1569 struct fcoe_task_ctx_entry *task, 1570 u16 orig_xid) 1571 { 1572 u8 task_type = FCOE_TASK_TYPE_EXCHANGE_CLEANUP; 1573 struct bnx2fc_rport *tgt = io_req->tgt; 1574 u32 context_id = tgt->context_id; 1575 1576 memset(task, 0, sizeof(struct fcoe_task_ctx_entry)); 1577 1578 /* Tx Write Rx Read */ 1579 /* init flags */ 1580 task->txwr_rxrd.const_ctx.init_flags = task_type << 1581 FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT; 1582 task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 << 1583 FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT; 1584 if (tgt->dev_type == TYPE_TAPE) 1585 task->txwr_rxrd.const_ctx.init_flags |= 1586 FCOE_TASK_DEV_TYPE_TAPE << 1587 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT; 1588 else 1589 task->txwr_rxrd.const_ctx.init_flags |= 1590 FCOE_TASK_DEV_TYPE_DISK << 1591 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT; 1592 task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid; 1593 1594 /* Tx flags */ 1595 task->txwr_rxrd.const_ctx.tx_flags = 1596 FCOE_TASK_TX_STATE_EXCHANGE_CLEANUP << 1597 FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT; 1598 1599 /* Rx Read Tx Write */ 1600 task->rxwr_txrd.const_ctx.init_flags = context_id << 1601 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT; 1602 task->rxwr_txrd.var_ctx.rx_flags |= 1 << 1603 FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT; 1604 } 1605 1606 void bnx2fc_init_mp_task(struct bnx2fc_cmd *io_req, 1607 struct fcoe_task_ctx_entry *task) 1608 { 1609 struct bnx2fc_mp_req *mp_req = &(io_req->mp_req); 1610 struct bnx2fc_rport *tgt = io_req->tgt; 1611 struct fc_frame_header *fc_hdr; 1612 struct fcoe_ext_mul_sges_ctx *sgl; 1613 u8 task_type = 0; 1614 u64 *hdr; 1615 u64 temp_hdr[3]; 1616 u32 context_id; 1617 1618 1619 /* Obtain task_type */ 1620 if ((io_req->cmd_type == BNX2FC_TASK_MGMT_CMD) || 1621 (io_req->cmd_type == BNX2FC_ELS)) { 1622 task_type = FCOE_TASK_TYPE_MIDPATH; 1623 } else if (io_req->cmd_type == BNX2FC_ABTS) { 1624 task_type = FCOE_TASK_TYPE_ABTS; 1625 } 1626 1627 memset(task, 0, sizeof(struct fcoe_task_ctx_entry)); 1628 1629 /* Setup the task from io_req for easy reference */ 1630 io_req->task = task; 1631 1632 BNX2FC_IO_DBG(io_req, "Init MP task for cmd_type = %d task_type = %d\n", 1633 io_req->cmd_type, task_type); 1634 1635 /* Tx only */ 1636 if ((task_type == FCOE_TASK_TYPE_MIDPATH) || 1637 (task_type == FCOE_TASK_TYPE_UNSOLICITED)) { 1638 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo = 1639 (u32)mp_req->mp_req_bd_dma; 1640 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi = 1641 (u32)((u64)mp_req->mp_req_bd_dma >> 32); 1642 task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = 1; 1643 } 1644 1645 /* Tx Write Rx Read */ 1646 /* init flags */ 1647 task->txwr_rxrd.const_ctx.init_flags = task_type << 1648 FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT; 1649 if (tgt->dev_type == TYPE_TAPE) 1650 task->txwr_rxrd.const_ctx.init_flags |= 1651 FCOE_TASK_DEV_TYPE_TAPE << 1652 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT; 1653 else 1654 task->txwr_rxrd.const_ctx.init_flags |= 1655 FCOE_TASK_DEV_TYPE_DISK << 1656 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT; 1657 task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 << 1658 FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT; 1659 1660 /* tx flags */ 1661 task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_INIT << 1662 FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT; 1663 1664 /* Rx Write Tx Read */ 1665 task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len; 1666 1667 /* rx flags */ 1668 task->rxwr_txrd.var_ctx.rx_flags |= 1 << 1669 FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT; 1670 1671 context_id = tgt->context_id; 1672 task->rxwr_txrd.const_ctx.init_flags = context_id << 1673 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT; 1674 1675 fc_hdr = &(mp_req->req_fc_hdr); 1676 if (task_type == FCOE_TASK_TYPE_MIDPATH) { 1677 fc_hdr->fh_ox_id = cpu_to_be16(io_req->xid); 1678 fc_hdr->fh_rx_id = htons(0xffff); 1679 task->rxwr_txrd.var_ctx.rx_id = 0xffff; 1680 } else if (task_type == FCOE_TASK_TYPE_UNSOLICITED) { 1681 fc_hdr->fh_rx_id = cpu_to_be16(io_req->xid); 1682 } 1683 1684 /* Fill FC Header into middle path buffer */ 1685 hdr = (u64 *) &task->txwr_rxrd.union_ctx.tx_frame.fc_hdr; 1686 memcpy(temp_hdr, fc_hdr, sizeof(temp_hdr)); 1687 hdr[0] = cpu_to_be64(temp_hdr[0]); 1688 hdr[1] = cpu_to_be64(temp_hdr[1]); 1689 hdr[2] = cpu_to_be64(temp_hdr[2]); 1690 1691 /* Rx Only */ 1692 if (task_type == FCOE_TASK_TYPE_MIDPATH) { 1693 sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl; 1694 1695 sgl->mul_sgl.cur_sge_addr.lo = (u32)mp_req->mp_resp_bd_dma; 1696 sgl->mul_sgl.cur_sge_addr.hi = 1697 (u32)((u64)mp_req->mp_resp_bd_dma >> 32); 1698 sgl->mul_sgl.sgl_size = 1; 1699 } 1700 } 1701 1702 void bnx2fc_init_task(struct bnx2fc_cmd *io_req, 1703 struct fcoe_task_ctx_entry *task) 1704 { 1705 u8 task_type; 1706 struct scsi_cmnd *sc_cmd = io_req->sc_cmd; 1707 struct io_bdt *bd_tbl = io_req->bd_tbl; 1708 struct bnx2fc_rport *tgt = io_req->tgt; 1709 struct fcoe_cached_sge_ctx *cached_sge; 1710 struct fcoe_ext_mul_sges_ctx *sgl; 1711 int dev_type = tgt->dev_type; 1712 struct fcp_cmnd *fcp_cmnd; 1713 u64 *raw_fcp_cmnd; 1714 u64 tmp_fcp_cmnd[4]; 1715 u32 context_id; 1716 int cnt, i; 1717 int bd_count; 1718 1719 memset(task, 0, sizeof(struct fcoe_task_ctx_entry)); 1720 1721 /* Setup the task from io_req for easy reference */ 1722 io_req->task = task; 1723 1724 if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) 1725 task_type = FCOE_TASK_TYPE_WRITE; 1726 else 1727 task_type = FCOE_TASK_TYPE_READ; 1728 1729 /* Tx only */ 1730 bd_count = bd_tbl->bd_valid; 1731 cached_sge = &task->rxwr_only.union_ctx.read_info.sgl_ctx.cached_sge; 1732 if (task_type == FCOE_TASK_TYPE_WRITE) { 1733 if ((dev_type == TYPE_DISK) && (bd_count == 1)) { 1734 struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl; 1735 1736 task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.lo = 1737 cached_sge->cur_buf_addr.lo = 1738 fcoe_bd_tbl->buf_addr_lo; 1739 task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.hi = 1740 cached_sge->cur_buf_addr.hi = 1741 fcoe_bd_tbl->buf_addr_hi; 1742 task->txwr_only.sgl_ctx.cached_sge.cur_buf_rem = 1743 cached_sge->cur_buf_rem = 1744 fcoe_bd_tbl->buf_len; 1745 1746 task->txwr_rxrd.const_ctx.init_flags |= 1 << 1747 FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT; 1748 } else { 1749 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo = 1750 (u32)bd_tbl->bd_tbl_dma; 1751 task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi = 1752 (u32)((u64)bd_tbl->bd_tbl_dma >> 32); 1753 task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = 1754 bd_tbl->bd_valid; 1755 } 1756 } 1757 1758 /*Tx Write Rx Read */ 1759 /* Init state to NORMAL */ 1760 task->txwr_rxrd.const_ctx.init_flags |= task_type << 1761 FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT; 1762 if (dev_type == TYPE_TAPE) { 1763 task->txwr_rxrd.const_ctx.init_flags |= 1764 FCOE_TASK_DEV_TYPE_TAPE << 1765 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT; 1766 io_req->rec_retry = 0; 1767 io_req->rec_retry = 0; 1768 } else 1769 task->txwr_rxrd.const_ctx.init_flags |= 1770 FCOE_TASK_DEV_TYPE_DISK << 1771 FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT; 1772 task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 << 1773 FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT; 1774 /* tx flags */ 1775 task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_NORMAL << 1776 FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT; 1777 1778 /* Set initial seq counter */ 1779 task->txwr_rxrd.union_ctx.tx_seq.ctx.seq_cnt = 1; 1780 1781 /* Fill FCP_CMND IU */ 1782 fcp_cmnd = (struct fcp_cmnd *)&tmp_fcp_cmnd; 1783 bnx2fc_build_fcp_cmnd(io_req, fcp_cmnd); 1784 int_to_scsilun(sc_cmd->device->lun, &fcp_cmnd->fc_lun); 1785 memcpy(fcp_cmnd->fc_cdb, sc_cmd->cmnd, sc_cmd->cmd_len); 1786 raw_fcp_cmnd = (u64 *) 1787 task->txwr_rxrd.union_ctx.fcp_cmd.opaque; 1788 1789 /* swap fcp_cmnd */ 1790 cnt = sizeof(struct fcp_cmnd) / sizeof(u64); 1791 1792 for (i = 0; i < cnt; i++) { 1793 *raw_fcp_cmnd = cpu_to_be64(tmp_fcp_cmnd[i]); 1794 raw_fcp_cmnd++; 1795 } 1796 1797 /* Rx Write Tx Read */ 1798 task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len; 1799 1800 context_id = tgt->context_id; 1801 task->rxwr_txrd.const_ctx.init_flags = context_id << 1802 FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT; 1803 1804 /* rx flags */ 1805 /* Set state to "waiting for the first packet" */ 1806 task->rxwr_txrd.var_ctx.rx_flags |= 1 << 1807 FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT; 1808 1809 task->rxwr_txrd.var_ctx.rx_id = 0xffff; 1810 1811 /* Rx Only */ 1812 if (task_type != FCOE_TASK_TYPE_READ) 1813 return; 1814 1815 sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl; 1816 bd_count = bd_tbl->bd_valid; 1817 1818 if (dev_type == TYPE_DISK) { 1819 if (bd_count == 1) { 1820 1821 struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl; 1822 1823 cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo; 1824 cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi; 1825 cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len; 1826 task->txwr_rxrd.const_ctx.init_flags |= 1 << 1827 FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT; 1828 } else if (bd_count == 2) { 1829 struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl; 1830 1831 cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo; 1832 cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi; 1833 cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len; 1834 1835 fcoe_bd_tbl++; 1836 cached_sge->second_buf_addr.lo = 1837 fcoe_bd_tbl->buf_addr_lo; 1838 cached_sge->second_buf_addr.hi = 1839 fcoe_bd_tbl->buf_addr_hi; 1840 cached_sge->second_buf_rem = fcoe_bd_tbl->buf_len; 1841 task->txwr_rxrd.const_ctx.init_flags |= 1 << 1842 FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT; 1843 } else { 1844 1845 sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma; 1846 sgl->mul_sgl.cur_sge_addr.hi = 1847 (u32)((u64)bd_tbl->bd_tbl_dma >> 32); 1848 sgl->mul_sgl.sgl_size = bd_count; 1849 } 1850 } else { 1851 sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma; 1852 sgl->mul_sgl.cur_sge_addr.hi = 1853 (u32)((u64)bd_tbl->bd_tbl_dma >> 32); 1854 sgl->mul_sgl.sgl_size = bd_count; 1855 } 1856 } 1857 1858 /** 1859 * bnx2fc_setup_task_ctx - allocate and map task context 1860 * 1861 * @hba: pointer to adapter structure 1862 * 1863 * allocate memory for task context, and associated BD table to be used 1864 * by firmware 1865 * 1866 */ 1867 int bnx2fc_setup_task_ctx(struct bnx2fc_hba *hba) 1868 { 1869 int rc = 0; 1870 struct regpair *task_ctx_bdt; 1871 dma_addr_t addr; 1872 int task_ctx_arr_sz; 1873 int i; 1874 1875 /* 1876 * Allocate task context bd table. A page size of bd table 1877 * can map 256 buffers. Each buffer contains 32 task context 1878 * entries. Hence the limit with one page is 8192 task context 1879 * entries. 1880 */ 1881 hba->task_ctx_bd_tbl = dma_alloc_coherent(&hba->pcidev->dev, 1882 PAGE_SIZE, 1883 &hba->task_ctx_bd_dma, 1884 GFP_KERNEL); 1885 if (!hba->task_ctx_bd_tbl) { 1886 printk(KERN_ERR PFX "unable to allocate task context BDT\n"); 1887 rc = -1; 1888 goto out; 1889 } 1890 1891 /* 1892 * Allocate task_ctx which is an array of pointers pointing to 1893 * a page containing 32 task contexts 1894 */ 1895 task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE); 1896 hba->task_ctx = kzalloc((task_ctx_arr_sz * sizeof(void *)), 1897 GFP_KERNEL); 1898 if (!hba->task_ctx) { 1899 printk(KERN_ERR PFX "unable to allocate task context array\n"); 1900 rc = -1; 1901 goto out1; 1902 } 1903 1904 /* 1905 * Allocate task_ctx_dma which is an array of dma addresses 1906 */ 1907 hba->task_ctx_dma = kmalloc((task_ctx_arr_sz * 1908 sizeof(dma_addr_t)), GFP_KERNEL); 1909 if (!hba->task_ctx_dma) { 1910 printk(KERN_ERR PFX "unable to alloc context mapping array\n"); 1911 rc = -1; 1912 goto out2; 1913 } 1914 1915 task_ctx_bdt = (struct regpair *)hba->task_ctx_bd_tbl; 1916 for (i = 0; i < task_ctx_arr_sz; i++) { 1917 1918 hba->task_ctx[i] = dma_alloc_coherent(&hba->pcidev->dev, 1919 PAGE_SIZE, 1920 &hba->task_ctx_dma[i], 1921 GFP_KERNEL); 1922 if (!hba->task_ctx[i]) { 1923 printk(KERN_ERR PFX "unable to alloc task context\n"); 1924 rc = -1; 1925 goto out3; 1926 } 1927 addr = (u64)hba->task_ctx_dma[i]; 1928 task_ctx_bdt->hi = cpu_to_le32((u64)addr >> 32); 1929 task_ctx_bdt->lo = cpu_to_le32((u32)addr); 1930 task_ctx_bdt++; 1931 } 1932 return 0; 1933 1934 out3: 1935 for (i = 0; i < task_ctx_arr_sz; i++) { 1936 if (hba->task_ctx[i]) { 1937 1938 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE, 1939 hba->task_ctx[i], hba->task_ctx_dma[i]); 1940 hba->task_ctx[i] = NULL; 1941 } 1942 } 1943 1944 kfree(hba->task_ctx_dma); 1945 hba->task_ctx_dma = NULL; 1946 out2: 1947 kfree(hba->task_ctx); 1948 hba->task_ctx = NULL; 1949 out1: 1950 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE, 1951 hba->task_ctx_bd_tbl, hba->task_ctx_bd_dma); 1952 hba->task_ctx_bd_tbl = NULL; 1953 out: 1954 return rc; 1955 } 1956 1957 void bnx2fc_free_task_ctx(struct bnx2fc_hba *hba) 1958 { 1959 int task_ctx_arr_sz; 1960 int i; 1961 1962 if (hba->task_ctx_bd_tbl) { 1963 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE, 1964 hba->task_ctx_bd_tbl, 1965 hba->task_ctx_bd_dma); 1966 hba->task_ctx_bd_tbl = NULL; 1967 } 1968 1969 task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE); 1970 if (hba->task_ctx) { 1971 for (i = 0; i < task_ctx_arr_sz; i++) { 1972 if (hba->task_ctx[i]) { 1973 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE, 1974 hba->task_ctx[i], 1975 hba->task_ctx_dma[i]); 1976 hba->task_ctx[i] = NULL; 1977 } 1978 } 1979 kfree(hba->task_ctx); 1980 hba->task_ctx = NULL; 1981 } 1982 1983 kfree(hba->task_ctx_dma); 1984 hba->task_ctx_dma = NULL; 1985 } 1986 1987 static void bnx2fc_free_hash_table(struct bnx2fc_hba *hba) 1988 { 1989 int i; 1990 int segment_count; 1991 u32 *pbl; 1992 1993 if (hba->hash_tbl_segments) { 1994 1995 pbl = hba->hash_tbl_pbl; 1996 if (pbl) { 1997 segment_count = hba->hash_tbl_segment_count; 1998 for (i = 0; i < segment_count; ++i) { 1999 dma_addr_t dma_address; 2000 2001 dma_address = le32_to_cpu(*pbl); 2002 ++pbl; 2003 dma_address += ((u64)le32_to_cpu(*pbl)) << 32; 2004 ++pbl; 2005 dma_free_coherent(&hba->pcidev->dev, 2006 BNX2FC_HASH_TBL_CHUNK_SIZE, 2007 hba->hash_tbl_segments[i], 2008 dma_address); 2009 } 2010 } 2011 2012 kfree(hba->hash_tbl_segments); 2013 hba->hash_tbl_segments = NULL; 2014 } 2015 2016 if (hba->hash_tbl_pbl) { 2017 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE, 2018 hba->hash_tbl_pbl, 2019 hba->hash_tbl_pbl_dma); 2020 hba->hash_tbl_pbl = NULL; 2021 } 2022 } 2023 2024 static int bnx2fc_allocate_hash_table(struct bnx2fc_hba *hba) 2025 { 2026 int i; 2027 int hash_table_size; 2028 int segment_count; 2029 int segment_array_size; 2030 int dma_segment_array_size; 2031 dma_addr_t *dma_segment_array; 2032 u32 *pbl; 2033 2034 hash_table_size = BNX2FC_NUM_MAX_SESS * BNX2FC_MAX_ROWS_IN_HASH_TBL * 2035 sizeof(struct fcoe_hash_table_entry); 2036 2037 segment_count = hash_table_size + BNX2FC_HASH_TBL_CHUNK_SIZE - 1; 2038 segment_count /= BNX2FC_HASH_TBL_CHUNK_SIZE; 2039 hba->hash_tbl_segment_count = segment_count; 2040 2041 segment_array_size = segment_count * sizeof(*hba->hash_tbl_segments); 2042 hba->hash_tbl_segments = kzalloc(segment_array_size, GFP_KERNEL); 2043 if (!hba->hash_tbl_segments) { 2044 printk(KERN_ERR PFX "hash table pointers alloc failed\n"); 2045 return -ENOMEM; 2046 } 2047 dma_segment_array_size = segment_count * sizeof(*dma_segment_array); 2048 dma_segment_array = kzalloc(dma_segment_array_size, GFP_KERNEL); 2049 if (!dma_segment_array) { 2050 printk(KERN_ERR PFX "hash table pointers (dma) alloc failed\n"); 2051 goto cleanup_ht; 2052 } 2053 2054 for (i = 0; i < segment_count; ++i) { 2055 hba->hash_tbl_segments[i] = dma_alloc_coherent(&hba->pcidev->dev, 2056 BNX2FC_HASH_TBL_CHUNK_SIZE, 2057 &dma_segment_array[i], 2058 GFP_KERNEL); 2059 if (!hba->hash_tbl_segments[i]) { 2060 printk(KERN_ERR PFX "hash segment alloc failed\n"); 2061 goto cleanup_dma; 2062 } 2063 } 2064 2065 hba->hash_tbl_pbl = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE, 2066 &hba->hash_tbl_pbl_dma, 2067 GFP_KERNEL); 2068 if (!hba->hash_tbl_pbl) { 2069 printk(KERN_ERR PFX "hash table pbl alloc failed\n"); 2070 goto cleanup_dma; 2071 } 2072 2073 pbl = hba->hash_tbl_pbl; 2074 for (i = 0; i < segment_count; ++i) { 2075 u64 paddr = dma_segment_array[i]; 2076 *pbl = cpu_to_le32((u32) paddr); 2077 ++pbl; 2078 *pbl = cpu_to_le32((u32) (paddr >> 32)); 2079 ++pbl; 2080 } 2081 pbl = hba->hash_tbl_pbl; 2082 i = 0; 2083 while (*pbl && *(pbl + 1)) { 2084 ++pbl; 2085 ++pbl; 2086 ++i; 2087 } 2088 kfree(dma_segment_array); 2089 return 0; 2090 2091 cleanup_dma: 2092 for (i = 0; i < segment_count; ++i) { 2093 if (hba->hash_tbl_segments[i]) 2094 dma_free_coherent(&hba->pcidev->dev, 2095 BNX2FC_HASH_TBL_CHUNK_SIZE, 2096 hba->hash_tbl_segments[i], 2097 dma_segment_array[i]); 2098 } 2099 2100 kfree(dma_segment_array); 2101 2102 cleanup_ht: 2103 kfree(hba->hash_tbl_segments); 2104 hba->hash_tbl_segments = NULL; 2105 return -ENOMEM; 2106 } 2107 2108 /** 2109 * bnx2fc_setup_fw_resc - Allocate and map hash table and dummy buffer 2110 * 2111 * @hba: Pointer to adapter structure 2112 * 2113 */ 2114 int bnx2fc_setup_fw_resc(struct bnx2fc_hba *hba) 2115 { 2116 u64 addr; 2117 u32 mem_size; 2118 int i; 2119 2120 if (bnx2fc_allocate_hash_table(hba)) 2121 return -ENOMEM; 2122 2123 mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair); 2124 hba->t2_hash_tbl_ptr = dma_alloc_coherent(&hba->pcidev->dev, mem_size, 2125 &hba->t2_hash_tbl_ptr_dma, 2126 GFP_KERNEL); 2127 if (!hba->t2_hash_tbl_ptr) { 2128 printk(KERN_ERR PFX "unable to allocate t2 hash table ptr\n"); 2129 bnx2fc_free_fw_resc(hba); 2130 return -ENOMEM; 2131 } 2132 2133 mem_size = BNX2FC_NUM_MAX_SESS * 2134 sizeof(struct fcoe_t2_hash_table_entry); 2135 hba->t2_hash_tbl = dma_alloc_coherent(&hba->pcidev->dev, mem_size, 2136 &hba->t2_hash_tbl_dma, 2137 GFP_KERNEL); 2138 if (!hba->t2_hash_tbl) { 2139 printk(KERN_ERR PFX "unable to allocate t2 hash table\n"); 2140 bnx2fc_free_fw_resc(hba); 2141 return -ENOMEM; 2142 } 2143 for (i = 0; i < BNX2FC_NUM_MAX_SESS; i++) { 2144 addr = (unsigned long) hba->t2_hash_tbl_dma + 2145 ((i+1) * sizeof(struct fcoe_t2_hash_table_entry)); 2146 hba->t2_hash_tbl[i].next.lo = addr & 0xffffffff; 2147 hba->t2_hash_tbl[i].next.hi = addr >> 32; 2148 } 2149 2150 hba->dummy_buffer = dma_alloc_coherent(&hba->pcidev->dev, 2151 PAGE_SIZE, &hba->dummy_buf_dma, 2152 GFP_KERNEL); 2153 if (!hba->dummy_buffer) { 2154 printk(KERN_ERR PFX "unable to alloc MP Dummy Buffer\n"); 2155 bnx2fc_free_fw_resc(hba); 2156 return -ENOMEM; 2157 } 2158 2159 hba->stats_buffer = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE, 2160 &hba->stats_buf_dma, 2161 GFP_KERNEL); 2162 if (!hba->stats_buffer) { 2163 printk(KERN_ERR PFX "unable to alloc Stats Buffer\n"); 2164 bnx2fc_free_fw_resc(hba); 2165 return -ENOMEM; 2166 } 2167 2168 return 0; 2169 } 2170 2171 void bnx2fc_free_fw_resc(struct bnx2fc_hba *hba) 2172 { 2173 u32 mem_size; 2174 2175 if (hba->stats_buffer) { 2176 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE, 2177 hba->stats_buffer, hba->stats_buf_dma); 2178 hba->stats_buffer = NULL; 2179 } 2180 2181 if (hba->dummy_buffer) { 2182 dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE, 2183 hba->dummy_buffer, hba->dummy_buf_dma); 2184 hba->dummy_buffer = NULL; 2185 } 2186 2187 if (hba->t2_hash_tbl_ptr) { 2188 mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair); 2189 dma_free_coherent(&hba->pcidev->dev, mem_size, 2190 hba->t2_hash_tbl_ptr, 2191 hba->t2_hash_tbl_ptr_dma); 2192 hba->t2_hash_tbl_ptr = NULL; 2193 } 2194 2195 if (hba->t2_hash_tbl) { 2196 mem_size = BNX2FC_NUM_MAX_SESS * 2197 sizeof(struct fcoe_t2_hash_table_entry); 2198 dma_free_coherent(&hba->pcidev->dev, mem_size, 2199 hba->t2_hash_tbl, hba->t2_hash_tbl_dma); 2200 hba->t2_hash_tbl = NULL; 2201 } 2202 bnx2fc_free_hash_table(hba); 2203 } 2204