xref: /linux/drivers/scsi/bfa/bfa_core.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
3  * All rights reserved
4  * www.brocade.com
5  *
6  * Linux driver for Brocade Fibre Channel Host Bus Adapter.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License (GPL) Version 2 as
10  * published by the Free Software Foundation
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  */
17 
18 #include "bfa_modules.h"
19 #include "bfi_ctreg.h"
20 #include "bfad_drv.h"
21 
22 BFA_TRC_FILE(HAL, CORE);
23 
24 /**
25  * BFA IOC FC related definitions
26  */
27 
28 /**
29  * IOC local definitions
30  */
31 #define BFA_IOCFC_TOV		5000	/* msecs */
32 
33 enum {
34 	BFA_IOCFC_ACT_NONE	= 0,
35 	BFA_IOCFC_ACT_INIT	= 1,
36 	BFA_IOCFC_ACT_STOP	= 2,
37 	BFA_IOCFC_ACT_DISABLE	= 3,
38 };
39 
40 #define DEF_CFG_NUM_FABRICS		1
41 #define DEF_CFG_NUM_LPORTS		256
42 #define DEF_CFG_NUM_CQS			4
43 #define DEF_CFG_NUM_IOIM_REQS		(BFA_IOIM_MAX)
44 #define DEF_CFG_NUM_TSKIM_REQS		128
45 #define DEF_CFG_NUM_FCXP_REQS		64
46 #define DEF_CFG_NUM_UF_BUFS		64
47 #define DEF_CFG_NUM_RPORTS		1024
48 #define DEF_CFG_NUM_ITNIMS		(DEF_CFG_NUM_RPORTS)
49 #define DEF_CFG_NUM_TINS		256
50 
51 #define DEF_CFG_NUM_SGPGS		2048
52 #define DEF_CFG_NUM_REQQ_ELEMS		256
53 #define DEF_CFG_NUM_RSPQ_ELEMS		64
54 #define DEF_CFG_NUM_SBOOT_TGTS		16
55 #define DEF_CFG_NUM_SBOOT_LUNS		16
56 
57 /**
58  * forward declaration for IOC FC functions
59  */
60 static void bfa_iocfc_enable_cbfn(void *bfa_arg, enum bfa_status status);
61 static void bfa_iocfc_disable_cbfn(void *bfa_arg);
62 static void bfa_iocfc_hbfail_cbfn(void *bfa_arg);
63 static void bfa_iocfc_reset_cbfn(void *bfa_arg);
64 static struct bfa_ioc_cbfn_s bfa_iocfc_cbfn;
65 
66 /**
67  * BFA Interrupt handling functions
68  */
69 static void
70 bfa_msix_errint(struct bfa_s *bfa, u32 intr)
71 {
72 	bfa_ioc_error_isr(&bfa->ioc);
73 }
74 
75 static void
76 bfa_msix_lpu(struct bfa_s *bfa)
77 {
78 	bfa_ioc_mbox_isr(&bfa->ioc);
79 }
80 
81 static void
82 bfa_reqq_resume(struct bfa_s *bfa, int qid)
83 {
84 	struct list_head *waitq, *qe, *qen;
85 	struct bfa_reqq_wait_s *wqe;
86 
87 	waitq = bfa_reqq(bfa, qid);
88 	list_for_each_safe(qe, qen, waitq) {
89 		/**
90 		 * Callback only as long as there is room in request queue
91 		 */
92 		if (bfa_reqq_full(bfa, qid))
93 			break;
94 
95 		list_del(qe);
96 		wqe = (struct bfa_reqq_wait_s *) qe;
97 		wqe->qresume(wqe->cbarg);
98 	}
99 }
100 
101 void
102 bfa_msix_all(struct bfa_s *bfa, int vec)
103 {
104 	bfa_intx(bfa);
105 }
106 
107 /**
108  *  hal_intr_api
109  */
110 bfa_boolean_t
111 bfa_intx(struct bfa_s *bfa)
112 {
113 	u32 intr, qintr;
114 	int queue;
115 
116 	intr = bfa_reg_read(bfa->iocfc.bfa_regs.intr_status);
117 	if (!intr)
118 		return BFA_FALSE;
119 
120 	/**
121 	 * RME completion queue interrupt
122 	 */
123 	qintr = intr & __HFN_INT_RME_MASK;
124 	bfa_reg_write(bfa->iocfc.bfa_regs.intr_status, qintr);
125 
126 	for (queue = 0; queue < BFI_IOC_MAX_CQS_ASIC; queue++) {
127 		if (intr & (__HFN_INT_RME_Q0 << queue))
128 			bfa_msix_rspq(bfa, queue & (BFI_IOC_MAX_CQS - 1));
129 	}
130 	intr &= ~qintr;
131 	if (!intr)
132 		return BFA_TRUE;
133 
134 	/**
135 	 * CPE completion queue interrupt
136 	 */
137 	qintr = intr & __HFN_INT_CPE_MASK;
138 	bfa_reg_write(bfa->iocfc.bfa_regs.intr_status, qintr);
139 
140 	for (queue = 0; queue < BFI_IOC_MAX_CQS_ASIC; queue++) {
141 		if (intr & (__HFN_INT_CPE_Q0 << queue))
142 			bfa_msix_reqq(bfa, queue & (BFI_IOC_MAX_CQS - 1));
143 	}
144 	intr &= ~qintr;
145 	if (!intr)
146 		return BFA_TRUE;
147 
148 	bfa_msix_lpu_err(bfa, intr);
149 
150 	return BFA_TRUE;
151 }
152 
153 void
154 bfa_intx_enable(struct bfa_s *bfa)
155 {
156 	bfa_reg_write(bfa->iocfc.bfa_regs.intr_mask, bfa->iocfc.intr_mask);
157 }
158 
159 void
160 bfa_intx_disable(struct bfa_s *bfa)
161 {
162 	bfa_reg_write(bfa->iocfc.bfa_regs.intr_mask, -1L);
163 }
164 
165 void
166 bfa_isr_enable(struct bfa_s *bfa)
167 {
168 	u32 intr_unmask;
169 	int pci_func = bfa_ioc_pcifn(&bfa->ioc);
170 
171 	bfa_trc(bfa, pci_func);
172 
173 	bfa_msix_install(bfa);
174 	intr_unmask = (__HFN_INT_ERR_EMC | __HFN_INT_ERR_LPU0 |
175 		       __HFN_INT_ERR_LPU1 | __HFN_INT_ERR_PSS |
176 		       __HFN_INT_LL_HALT);
177 
178 	if (pci_func == 0)
179 		intr_unmask |= (__HFN_INT_CPE_Q0 | __HFN_INT_CPE_Q1 |
180 				__HFN_INT_CPE_Q2 | __HFN_INT_CPE_Q3 |
181 				__HFN_INT_RME_Q0 | __HFN_INT_RME_Q1 |
182 				__HFN_INT_RME_Q2 | __HFN_INT_RME_Q3 |
183 				__HFN_INT_MBOX_LPU0);
184 	else
185 		intr_unmask |= (__HFN_INT_CPE_Q4 | __HFN_INT_CPE_Q5 |
186 				__HFN_INT_CPE_Q6 | __HFN_INT_CPE_Q7 |
187 				__HFN_INT_RME_Q4 | __HFN_INT_RME_Q5 |
188 				__HFN_INT_RME_Q6 | __HFN_INT_RME_Q7 |
189 				__HFN_INT_MBOX_LPU1);
190 
191 	bfa_reg_write(bfa->iocfc.bfa_regs.intr_status, intr_unmask);
192 	bfa_reg_write(bfa->iocfc.bfa_regs.intr_mask, ~intr_unmask);
193 	bfa->iocfc.intr_mask = ~intr_unmask;
194 	bfa_isr_mode_set(bfa, bfa->msix.nvecs != 0);
195 }
196 
197 void
198 bfa_isr_disable(struct bfa_s *bfa)
199 {
200 	bfa_isr_mode_set(bfa, BFA_FALSE);
201 	bfa_reg_write(bfa->iocfc.bfa_regs.intr_mask, -1L);
202 	bfa_msix_uninstall(bfa);
203 }
204 
205 void
206 bfa_msix_reqq(struct bfa_s *bfa, int qid)
207 {
208 	struct list_head *waitq;
209 
210 	qid &= (BFI_IOC_MAX_CQS - 1);
211 
212 	bfa->iocfc.hwif.hw_reqq_ack(bfa, qid);
213 
214 	/**
215 	 * Resume any pending requests in the corresponding reqq.
216 	 */
217 	waitq = bfa_reqq(bfa, qid);
218 	if (!list_empty(waitq))
219 		bfa_reqq_resume(bfa, qid);
220 }
221 
222 void
223 bfa_isr_unhandled(struct bfa_s *bfa, struct bfi_msg_s *m)
224 {
225 	bfa_trc(bfa, m->mhdr.msg_class);
226 	bfa_trc(bfa, m->mhdr.msg_id);
227 	bfa_trc(bfa, m->mhdr.mtag.i2htok);
228 	bfa_assert(0);
229 	bfa_trc_stop(bfa->trcmod);
230 }
231 
232 void
233 bfa_msix_rspq(struct bfa_s *bfa, int qid)
234 {
235 	struct bfi_msg_s *m;
236 	u32 pi, ci;
237 	struct list_head *waitq;
238 
239 	bfa_trc_fp(bfa, qid);
240 
241 	qid &= (BFI_IOC_MAX_CQS - 1);
242 
243 	bfa->iocfc.hwif.hw_rspq_ack(bfa, qid);
244 
245 	ci = bfa_rspq_ci(bfa, qid);
246 	pi = bfa_rspq_pi(bfa, qid);
247 
248 	bfa_trc_fp(bfa, ci);
249 	bfa_trc_fp(bfa, pi);
250 
251 	if (bfa->rme_process) {
252 		while (ci != pi) {
253 			m = bfa_rspq_elem(bfa, qid, ci);
254 			bfa_assert_fp(m->mhdr.msg_class < BFI_MC_MAX);
255 
256 			bfa_isrs[m->mhdr.msg_class] (bfa, m);
257 
258 			CQ_INCR(ci, bfa->iocfc.cfg.drvcfg.num_rspq_elems);
259 		}
260 	}
261 
262 	/**
263 	 * update CI
264 	 */
265 	bfa_rspq_ci(bfa, qid) = pi;
266 	bfa_reg_write(bfa->iocfc.bfa_regs.rme_q_ci[qid], pi);
267 	mmiowb();
268 
269 	/**
270 	 * Resume any pending requests in the corresponding reqq.
271 	 */
272 	waitq = bfa_reqq(bfa, qid);
273 	if (!list_empty(waitq))
274 		bfa_reqq_resume(bfa, qid);
275 }
276 
277 void
278 bfa_msix_lpu_err(struct bfa_s *bfa, int vec)
279 {
280 	u32 intr, curr_value;
281 
282 	intr = bfa_reg_read(bfa->iocfc.bfa_regs.intr_status);
283 
284 	if (intr & (__HFN_INT_MBOX_LPU0 | __HFN_INT_MBOX_LPU1))
285 		bfa_msix_lpu(bfa);
286 
287 	intr &= (__HFN_INT_ERR_EMC | __HFN_INT_ERR_LPU0 |
288 		__HFN_INT_ERR_LPU1 | __HFN_INT_ERR_PSS | __HFN_INT_LL_HALT);
289 
290 	if (intr) {
291 		if (intr & __HFN_INT_LL_HALT) {
292 			/**
293 			 * If LL_HALT bit is set then FW Init Halt LL Port
294 			 * Register needs to be cleared as well so Interrupt
295 			 * Status Register will be cleared.
296 			 */
297 			curr_value = bfa_reg_read(bfa->ioc.ioc_regs.ll_halt);
298 			curr_value &= ~__FW_INIT_HALT_P;
299 			bfa_reg_write(bfa->ioc.ioc_regs.ll_halt, curr_value);
300 		}
301 
302 		if (intr & __HFN_INT_ERR_PSS) {
303 			/**
304 			 * ERR_PSS bit needs to be cleared as well in case
305 			 * interrups are shared so driver's interrupt handler is
306 			 * still called eventhough it is already masked out.
307 			 */
308 			curr_value = bfa_reg_read(
309 					bfa->ioc.ioc_regs.pss_err_status_reg);
310 			curr_value &= __PSS_ERR_STATUS_SET;
311 			bfa_reg_write(bfa->ioc.ioc_regs.pss_err_status_reg,
312 					curr_value);
313 		}
314 
315 		bfa_reg_write(bfa->iocfc.bfa_regs.intr_status, intr);
316 		bfa_msix_errint(bfa, intr);
317 	}
318 }
319 
320 void
321 bfa_isr_bind(enum bfi_mclass mc, bfa_isr_func_t isr_func)
322 {
323 	bfa_isrs[mc] = isr_func;
324 }
325 
326 /**
327  * BFA IOC FC related functions
328  */
329 
330 /**
331  *  hal_ioc_pvt BFA IOC private functions
332  */
333 
334 static void
335 bfa_iocfc_cqs_sz(struct bfa_iocfc_cfg_s *cfg, u32 *dm_len)
336 {
337 	int		i, per_reqq_sz, per_rspq_sz;
338 
339 	per_reqq_sz = BFA_ROUNDUP((cfg->drvcfg.num_reqq_elems * BFI_LMSG_SZ),
340 				  BFA_DMA_ALIGN_SZ);
341 	per_rspq_sz = BFA_ROUNDUP((cfg->drvcfg.num_rspq_elems * BFI_LMSG_SZ),
342 				  BFA_DMA_ALIGN_SZ);
343 
344 	/*
345 	 * Calculate CQ size
346 	 */
347 	for (i = 0; i < cfg->fwcfg.num_cqs; i++) {
348 		*dm_len = *dm_len + per_reqq_sz;
349 		*dm_len = *dm_len + per_rspq_sz;
350 	}
351 
352 	/*
353 	 * Calculate Shadow CI/PI size
354 	 */
355 	for (i = 0; i < cfg->fwcfg.num_cqs; i++)
356 		*dm_len += (2 * BFA_CACHELINE_SZ);
357 }
358 
359 static void
360 bfa_iocfc_fw_cfg_sz(struct bfa_iocfc_cfg_s *cfg, u32 *dm_len)
361 {
362 	*dm_len +=
363 		BFA_ROUNDUP(sizeof(struct bfi_iocfc_cfg_s), BFA_CACHELINE_SZ);
364 	*dm_len +=
365 		BFA_ROUNDUP(sizeof(struct bfi_iocfc_cfgrsp_s),
366 			    BFA_CACHELINE_SZ);
367 }
368 
369 /**
370  * Use the Mailbox interface to send BFI_IOCFC_H2I_CFG_REQ
371  */
372 static void
373 bfa_iocfc_send_cfg(void *bfa_arg)
374 {
375 	struct bfa_s *bfa = bfa_arg;
376 	struct bfa_iocfc_s *iocfc = &bfa->iocfc;
377 	struct bfi_iocfc_cfg_req_s cfg_req;
378 	struct bfi_iocfc_cfg_s *cfg_info = iocfc->cfginfo;
379 	struct bfa_iocfc_cfg_s	*cfg = &iocfc->cfg;
380 	int		i;
381 
382 	bfa_assert(cfg->fwcfg.num_cqs <= BFI_IOC_MAX_CQS);
383 	bfa_trc(bfa, cfg->fwcfg.num_cqs);
384 
385 	bfa_iocfc_reset_queues(bfa);
386 
387 	/**
388 	 * initialize IOC configuration info
389 	 */
390 	cfg_info->endian_sig = BFI_IOC_ENDIAN_SIG;
391 	cfg_info->num_cqs = cfg->fwcfg.num_cqs;
392 
393 	bfa_dma_be_addr_set(cfg_info->cfgrsp_addr, iocfc->cfgrsp_dma.pa);
394 	/**
395 	 * dma map REQ and RSP circular queues and shadow pointers
396 	 */
397 	for (i = 0; i < cfg->fwcfg.num_cqs; i++) {
398 		bfa_dma_be_addr_set(cfg_info->req_cq_ba[i],
399 				    iocfc->req_cq_ba[i].pa);
400 		bfa_dma_be_addr_set(cfg_info->req_shadow_ci[i],
401 				    iocfc->req_cq_shadow_ci[i].pa);
402 		cfg_info->req_cq_elems[i] =
403 			bfa_os_htons(cfg->drvcfg.num_reqq_elems);
404 
405 		bfa_dma_be_addr_set(cfg_info->rsp_cq_ba[i],
406 				    iocfc->rsp_cq_ba[i].pa);
407 		bfa_dma_be_addr_set(cfg_info->rsp_shadow_pi[i],
408 				    iocfc->rsp_cq_shadow_pi[i].pa);
409 		cfg_info->rsp_cq_elems[i] =
410 			bfa_os_htons(cfg->drvcfg.num_rspq_elems);
411 	}
412 
413 	/**
414 	 * Enable interrupt coalescing if it is driver init path
415 	 * and not ioc disable/enable path.
416 	 */
417 	if (!iocfc->cfgdone)
418 		cfg_info->intr_attr.coalesce = BFA_TRUE;
419 
420 	iocfc->cfgdone = BFA_FALSE;
421 
422 	/**
423 	 * dma map IOC configuration itself
424 	 */
425 	bfi_h2i_set(cfg_req.mh, BFI_MC_IOCFC, BFI_IOCFC_H2I_CFG_REQ,
426 		    bfa_lpuid(bfa));
427 	bfa_dma_be_addr_set(cfg_req.ioc_cfg_dma_addr, iocfc->cfg_info.pa);
428 
429 	bfa_ioc_mbox_send(&bfa->ioc, &cfg_req,
430 			  sizeof(struct bfi_iocfc_cfg_req_s));
431 }
432 
433 static void
434 bfa_iocfc_init_mem(struct bfa_s *bfa, void *bfad, struct bfa_iocfc_cfg_s *cfg,
435 		   struct bfa_pcidev_s *pcidev)
436 {
437 	struct bfa_iocfc_s	*iocfc = &bfa->iocfc;
438 
439 	bfa->bfad = bfad;
440 	iocfc->bfa = bfa;
441 	iocfc->action = BFA_IOCFC_ACT_NONE;
442 
443 	bfa_os_assign(iocfc->cfg, *cfg);
444 
445 	/**
446 	 * Initialize chip specific handlers.
447 	 */
448 	if (bfa_asic_id_ct(bfa_ioc_devid(&bfa->ioc))) {
449 		iocfc->hwif.hw_reginit = bfa_hwct_reginit;
450 		iocfc->hwif.hw_reqq_ack = bfa_hwct_reqq_ack;
451 		iocfc->hwif.hw_rspq_ack = bfa_hwct_rspq_ack;
452 		iocfc->hwif.hw_msix_init = bfa_hwct_msix_init;
453 		iocfc->hwif.hw_msix_install = bfa_hwct_msix_install;
454 		iocfc->hwif.hw_msix_uninstall = bfa_hwct_msix_uninstall;
455 		iocfc->hwif.hw_isr_mode_set = bfa_hwct_isr_mode_set;
456 		iocfc->hwif.hw_msix_getvecs = bfa_hwct_msix_getvecs;
457 		iocfc->hwif.hw_msix_get_rme_range = bfa_hwct_msix_get_rme_range;
458 	} else {
459 		iocfc->hwif.hw_reginit = bfa_hwcb_reginit;
460 		iocfc->hwif.hw_reqq_ack = bfa_hwcb_reqq_ack;
461 		iocfc->hwif.hw_rspq_ack = bfa_hwcb_rspq_ack;
462 		iocfc->hwif.hw_msix_init = bfa_hwcb_msix_init;
463 		iocfc->hwif.hw_msix_install = bfa_hwcb_msix_install;
464 		iocfc->hwif.hw_msix_uninstall = bfa_hwcb_msix_uninstall;
465 		iocfc->hwif.hw_isr_mode_set = bfa_hwcb_isr_mode_set;
466 		iocfc->hwif.hw_msix_getvecs = bfa_hwcb_msix_getvecs;
467 		iocfc->hwif.hw_msix_get_rme_range = bfa_hwcb_msix_get_rme_range;
468 	}
469 
470 	iocfc->hwif.hw_reginit(bfa);
471 	bfa->msix.nvecs = 0;
472 }
473 
474 static void
475 bfa_iocfc_mem_claim(struct bfa_s *bfa, struct bfa_iocfc_cfg_s *cfg,
476 		    struct bfa_meminfo_s *meminfo)
477 {
478 	u8	       *dm_kva;
479 	u64	dm_pa;
480 	int		i, per_reqq_sz, per_rspq_sz;
481 	struct bfa_iocfc_s  *iocfc = &bfa->iocfc;
482 	int		dbgsz;
483 
484 	dm_kva = bfa_meminfo_dma_virt(meminfo);
485 	dm_pa = bfa_meminfo_dma_phys(meminfo);
486 
487 	/*
488 	 * First allocate dma memory for IOC.
489 	 */
490 	bfa_ioc_mem_claim(&bfa->ioc, dm_kva, dm_pa);
491 	dm_kva += bfa_ioc_meminfo();
492 	dm_pa  += bfa_ioc_meminfo();
493 
494 	/*
495 	 * Claim DMA-able memory for the request/response queues and for shadow
496 	 * ci/pi registers
497 	 */
498 	per_reqq_sz = BFA_ROUNDUP((cfg->drvcfg.num_reqq_elems * BFI_LMSG_SZ),
499 				  BFA_DMA_ALIGN_SZ);
500 	per_rspq_sz = BFA_ROUNDUP((cfg->drvcfg.num_rspq_elems * BFI_LMSG_SZ),
501 				  BFA_DMA_ALIGN_SZ);
502 
503 	for (i = 0; i < cfg->fwcfg.num_cqs; i++) {
504 		iocfc->req_cq_ba[i].kva = dm_kva;
505 		iocfc->req_cq_ba[i].pa = dm_pa;
506 		bfa_os_memset(dm_kva, 0, per_reqq_sz);
507 		dm_kva += per_reqq_sz;
508 		dm_pa += per_reqq_sz;
509 
510 		iocfc->rsp_cq_ba[i].kva = dm_kva;
511 		iocfc->rsp_cq_ba[i].pa = dm_pa;
512 		bfa_os_memset(dm_kva, 0, per_rspq_sz);
513 		dm_kva += per_rspq_sz;
514 		dm_pa += per_rspq_sz;
515 	}
516 
517 	for (i = 0; i < cfg->fwcfg.num_cqs; i++) {
518 		iocfc->req_cq_shadow_ci[i].kva = dm_kva;
519 		iocfc->req_cq_shadow_ci[i].pa = dm_pa;
520 		dm_kva += BFA_CACHELINE_SZ;
521 		dm_pa += BFA_CACHELINE_SZ;
522 
523 		iocfc->rsp_cq_shadow_pi[i].kva = dm_kva;
524 		iocfc->rsp_cq_shadow_pi[i].pa = dm_pa;
525 		dm_kva += BFA_CACHELINE_SZ;
526 		dm_pa += BFA_CACHELINE_SZ;
527 	}
528 
529 	/*
530 	 * Claim DMA-able memory for the config info page
531 	 */
532 	bfa->iocfc.cfg_info.kva = dm_kva;
533 	bfa->iocfc.cfg_info.pa = dm_pa;
534 	bfa->iocfc.cfginfo = (struct bfi_iocfc_cfg_s *) dm_kva;
535 	dm_kva += BFA_ROUNDUP(sizeof(struct bfi_iocfc_cfg_s), BFA_CACHELINE_SZ);
536 	dm_pa += BFA_ROUNDUP(sizeof(struct bfi_iocfc_cfg_s), BFA_CACHELINE_SZ);
537 
538 	/*
539 	 * Claim DMA-able memory for the config response
540 	 */
541 	bfa->iocfc.cfgrsp_dma.kva = dm_kva;
542 	bfa->iocfc.cfgrsp_dma.pa = dm_pa;
543 	bfa->iocfc.cfgrsp = (struct bfi_iocfc_cfgrsp_s *) dm_kva;
544 
545 	dm_kva +=
546 		BFA_ROUNDUP(sizeof(struct bfi_iocfc_cfgrsp_s),
547 			    BFA_CACHELINE_SZ);
548 	dm_pa += BFA_ROUNDUP(sizeof(struct bfi_iocfc_cfgrsp_s),
549 			     BFA_CACHELINE_SZ);
550 
551 
552 	bfa_meminfo_dma_virt(meminfo) = dm_kva;
553 	bfa_meminfo_dma_phys(meminfo) = dm_pa;
554 
555 	dbgsz = bfa_ioc_debug_trcsz(bfa_auto_recover);
556 	if (dbgsz > 0) {
557 		bfa_ioc_debug_memclaim(&bfa->ioc, bfa_meminfo_kva(meminfo));
558 		bfa_meminfo_kva(meminfo) += dbgsz;
559 	}
560 }
561 
562 /**
563  * Start BFA submodules.
564  */
565 static void
566 bfa_iocfc_start_submod(struct bfa_s *bfa)
567 {
568 	int		i;
569 
570 	bfa->rme_process = BFA_TRUE;
571 
572 	for (i = 0; hal_mods[i]; i++)
573 		hal_mods[i]->start(bfa);
574 }
575 
576 /**
577  * Disable BFA submodules.
578  */
579 static void
580 bfa_iocfc_disable_submod(struct bfa_s *bfa)
581 {
582 	int		i;
583 
584 	for (i = 0; hal_mods[i]; i++)
585 		hal_mods[i]->iocdisable(bfa);
586 }
587 
588 static void
589 bfa_iocfc_init_cb(void *bfa_arg, bfa_boolean_t complete)
590 {
591 	struct bfa_s	*bfa = bfa_arg;
592 
593 	if (complete) {
594 		if (bfa->iocfc.cfgdone)
595 			bfa_cb_init(bfa->bfad, BFA_STATUS_OK);
596 		else
597 			bfa_cb_init(bfa->bfad, BFA_STATUS_FAILED);
598 	} else {
599 		if (bfa->iocfc.cfgdone)
600 			bfa->iocfc.action = BFA_IOCFC_ACT_NONE;
601 	}
602 }
603 
604 static void
605 bfa_iocfc_stop_cb(void *bfa_arg, bfa_boolean_t compl)
606 {
607 	struct bfa_s  *bfa = bfa_arg;
608 	struct bfad_s *bfad = bfa->bfad;
609 
610 	if (compl)
611 		complete(&bfad->comp);
612 	else
613 		bfa->iocfc.action = BFA_IOCFC_ACT_NONE;
614 }
615 
616 static void
617 bfa_iocfc_disable_cb(void *bfa_arg, bfa_boolean_t compl)
618 {
619 	struct bfa_s  *bfa = bfa_arg;
620 	struct bfad_s *bfad = bfa->bfad;
621 
622 	if (compl)
623 		complete(&bfad->disable_comp);
624 }
625 
626 /**
627  * Update BFA configuration from firmware configuration.
628  */
629 static void
630 bfa_iocfc_cfgrsp(struct bfa_s *bfa)
631 {
632 	struct bfa_iocfc_s		*iocfc	 = &bfa->iocfc;
633 	struct bfi_iocfc_cfgrsp_s	*cfgrsp	 = iocfc->cfgrsp;
634 	struct bfa_iocfc_fwcfg_s	*fwcfg	 = &cfgrsp->fwcfg;
635 
636 	fwcfg->num_cqs	      = fwcfg->num_cqs;
637 	fwcfg->num_ioim_reqs  = bfa_os_ntohs(fwcfg->num_ioim_reqs);
638 	fwcfg->num_tskim_reqs = bfa_os_ntohs(fwcfg->num_tskim_reqs);
639 	fwcfg->num_fcxp_reqs  = bfa_os_ntohs(fwcfg->num_fcxp_reqs);
640 	fwcfg->num_uf_bufs    = bfa_os_ntohs(fwcfg->num_uf_bufs);
641 	fwcfg->num_rports     = bfa_os_ntohs(fwcfg->num_rports);
642 
643 	iocfc->cfgdone = BFA_TRUE;
644 
645 	/**
646 	 * Configuration is complete - initialize/start submodules
647 	 */
648 	bfa_fcport_init(bfa);
649 
650 	if (iocfc->action == BFA_IOCFC_ACT_INIT)
651 		bfa_cb_queue(bfa, &iocfc->init_hcb_qe, bfa_iocfc_init_cb, bfa);
652 	else
653 		bfa_iocfc_start_submod(bfa);
654 }
655 void
656 bfa_iocfc_reset_queues(struct bfa_s *bfa)
657 {
658 	int		q;
659 
660 	for (q = 0; q < BFI_IOC_MAX_CQS; q++) {
661 		bfa_reqq_ci(bfa, q) = 0;
662 		bfa_reqq_pi(bfa, q) = 0;
663 		bfa_rspq_ci(bfa, q) = 0;
664 		bfa_rspq_pi(bfa, q) = 0;
665 	}
666 }
667 
668 /**
669  * IOC enable request is complete
670  */
671 static void
672 bfa_iocfc_enable_cbfn(void *bfa_arg, enum bfa_status status)
673 {
674 	struct bfa_s	*bfa = bfa_arg;
675 
676 	if (status != BFA_STATUS_OK) {
677 		bfa_isr_disable(bfa);
678 		if (bfa->iocfc.action == BFA_IOCFC_ACT_INIT)
679 			bfa_cb_queue(bfa, &bfa->iocfc.init_hcb_qe,
680 				     bfa_iocfc_init_cb, bfa);
681 		return;
682 	}
683 
684 	bfa_iocfc_send_cfg(bfa);
685 }
686 
687 /**
688  * IOC disable request is complete
689  */
690 static void
691 bfa_iocfc_disable_cbfn(void *bfa_arg)
692 {
693 	struct bfa_s	*bfa = bfa_arg;
694 
695 	bfa_isr_disable(bfa);
696 	bfa_iocfc_disable_submod(bfa);
697 
698 	if (bfa->iocfc.action == BFA_IOCFC_ACT_STOP)
699 		bfa_cb_queue(bfa, &bfa->iocfc.stop_hcb_qe, bfa_iocfc_stop_cb,
700 			     bfa);
701 	else {
702 		bfa_assert(bfa->iocfc.action == BFA_IOCFC_ACT_DISABLE);
703 		bfa_cb_queue(bfa, &bfa->iocfc.dis_hcb_qe, bfa_iocfc_disable_cb,
704 			     bfa);
705 	}
706 }
707 
708 /**
709  * Notify sub-modules of hardware failure.
710  */
711 static void
712 bfa_iocfc_hbfail_cbfn(void *bfa_arg)
713 {
714 	struct bfa_s	*bfa = bfa_arg;
715 
716 	bfa->rme_process = BFA_FALSE;
717 
718 	bfa_isr_disable(bfa);
719 	bfa_iocfc_disable_submod(bfa);
720 
721 	if (bfa->iocfc.action == BFA_IOCFC_ACT_INIT)
722 		bfa_cb_queue(bfa, &bfa->iocfc.init_hcb_qe, bfa_iocfc_init_cb,
723 			     bfa);
724 }
725 
726 /**
727  * Actions on chip-reset completion.
728  */
729 static void
730 bfa_iocfc_reset_cbfn(void *bfa_arg)
731 {
732 	struct bfa_s	*bfa = bfa_arg;
733 
734 	bfa_iocfc_reset_queues(bfa);
735 	bfa_isr_enable(bfa);
736 }
737 
738 /**
739  *  hal_ioc_public
740  */
741 
742 /**
743  * Query IOC memory requirement information.
744  */
745 void
746 bfa_iocfc_meminfo(struct bfa_iocfc_cfg_s *cfg, u32 *km_len,
747 		  u32 *dm_len)
748 {
749 	/* dma memory for IOC */
750 	*dm_len += bfa_ioc_meminfo();
751 
752 	bfa_iocfc_fw_cfg_sz(cfg, dm_len);
753 	bfa_iocfc_cqs_sz(cfg, dm_len);
754 	*km_len += bfa_ioc_debug_trcsz(bfa_auto_recover);
755 }
756 
757 /**
758  * Query IOC memory requirement information.
759  */
760 void
761 bfa_iocfc_attach(struct bfa_s *bfa, void *bfad, struct bfa_iocfc_cfg_s *cfg,
762 		 struct bfa_meminfo_s *meminfo, struct bfa_pcidev_s *pcidev)
763 {
764 	int		i;
765 	struct bfa_ioc_s *ioc = &bfa->ioc;
766 
767 	bfa_iocfc_cbfn.enable_cbfn = bfa_iocfc_enable_cbfn;
768 	bfa_iocfc_cbfn.disable_cbfn = bfa_iocfc_disable_cbfn;
769 	bfa_iocfc_cbfn.hbfail_cbfn = bfa_iocfc_hbfail_cbfn;
770 	bfa_iocfc_cbfn.reset_cbfn = bfa_iocfc_reset_cbfn;
771 
772 	ioc->trcmod = bfa->trcmod;
773 	bfa_ioc_attach(&bfa->ioc, bfa, &bfa_iocfc_cbfn, &bfa->timer_mod);
774 
775 	/**
776 	 * Set FC mode for BFA_PCI_DEVICE_ID_CT_FC.
777 	 */
778 	if (pcidev->device_id == BFA_PCI_DEVICE_ID_CT_FC)
779 		bfa_ioc_set_fcmode(&bfa->ioc);
780 
781 	bfa_ioc_pci_init(&bfa->ioc, pcidev, BFI_MC_IOCFC);
782 	bfa_ioc_mbox_register(&bfa->ioc, bfa_mbox_isrs);
783 
784 	bfa_iocfc_init_mem(bfa, bfad, cfg, pcidev);
785 	bfa_iocfc_mem_claim(bfa, cfg, meminfo);
786 	bfa_timer_init(&bfa->timer_mod);
787 
788 	INIT_LIST_HEAD(&bfa->comp_q);
789 	for (i = 0; i < BFI_IOC_MAX_CQS; i++)
790 		INIT_LIST_HEAD(&bfa->reqq_waitq[i]);
791 }
792 
793 /**
794  * Query IOC memory requirement information.
795  */
796 void
797 bfa_iocfc_detach(struct bfa_s *bfa)
798 {
799 	bfa_ioc_detach(&bfa->ioc);
800 }
801 
802 /**
803  * Query IOC memory requirement information.
804  */
805 void
806 bfa_iocfc_init(struct bfa_s *bfa)
807 {
808 	bfa->iocfc.action = BFA_IOCFC_ACT_INIT;
809 	bfa_ioc_enable(&bfa->ioc);
810 }
811 
812 /**
813  * IOC start called from bfa_start(). Called to start IOC operations
814  * at driver instantiation for this instance.
815  */
816 void
817 bfa_iocfc_start(struct bfa_s *bfa)
818 {
819 	if (bfa->iocfc.cfgdone)
820 		bfa_iocfc_start_submod(bfa);
821 }
822 
823 /**
824  * IOC stop called from bfa_stop(). Called only when driver is unloaded
825  * for this instance.
826  */
827 void
828 bfa_iocfc_stop(struct bfa_s *bfa)
829 {
830 	bfa->iocfc.action = BFA_IOCFC_ACT_STOP;
831 
832 	bfa->rme_process = BFA_FALSE;
833 	bfa_ioc_disable(&bfa->ioc);
834 }
835 
836 void
837 bfa_iocfc_isr(void *bfaarg, struct bfi_mbmsg_s *m)
838 {
839 	struct bfa_s		*bfa = bfaarg;
840 	struct bfa_iocfc_s	*iocfc = &bfa->iocfc;
841 	union bfi_iocfc_i2h_msg_u	*msg;
842 
843 	msg = (union bfi_iocfc_i2h_msg_u *) m;
844 	bfa_trc(bfa, msg->mh.msg_id);
845 
846 	switch (msg->mh.msg_id) {
847 	case BFI_IOCFC_I2H_CFG_REPLY:
848 		iocfc->cfg_reply = &msg->cfg_reply;
849 		bfa_iocfc_cfgrsp(bfa);
850 		break;
851 	case BFI_IOCFC_I2H_UPDATEQ_RSP:
852 		iocfc->updateq_cbfn(iocfc->updateq_cbarg, BFA_STATUS_OK);
853 		break;
854 	default:
855 		bfa_assert(0);
856 	}
857 }
858 
859 void
860 bfa_adapter_get_attr(struct bfa_s *bfa, struct bfa_adapter_attr_s *ad_attr)
861 {
862 	bfa_ioc_get_adapter_attr(&bfa->ioc, ad_attr);
863 }
864 
865 u64
866 bfa_adapter_get_id(struct bfa_s *bfa)
867 {
868 	return bfa_ioc_get_adid(&bfa->ioc);
869 }
870 
871 void
872 bfa_iocfc_get_attr(struct bfa_s *bfa, struct bfa_iocfc_attr_s *attr)
873 {
874 	struct bfa_iocfc_s	*iocfc = &bfa->iocfc;
875 
876 	attr->intr_attr.coalesce = iocfc->cfginfo->intr_attr.coalesce;
877 
878 	attr->intr_attr.delay = iocfc->cfginfo->intr_attr.delay ?
879 				bfa_os_ntohs(iocfc->cfginfo->intr_attr.delay) :
880 				bfa_os_ntohs(iocfc->cfgrsp->intr_attr.delay);
881 
882 	attr->intr_attr.latency = iocfc->cfginfo->intr_attr.latency ?
883 			bfa_os_ntohs(iocfc->cfginfo->intr_attr.latency) :
884 			bfa_os_ntohs(iocfc->cfgrsp->intr_attr.latency);
885 
886 	attr->config	= iocfc->cfg;
887 }
888 
889 bfa_status_t
890 bfa_iocfc_israttr_set(struct bfa_s *bfa, struct bfa_iocfc_intr_attr_s *attr)
891 {
892 	struct bfa_iocfc_s		*iocfc = &bfa->iocfc;
893 	struct bfi_iocfc_set_intr_req_s *m;
894 
895 	iocfc->cfginfo->intr_attr.coalesce = attr->coalesce;
896 	iocfc->cfginfo->intr_attr.delay = bfa_os_htons(attr->delay);
897 	iocfc->cfginfo->intr_attr.latency = bfa_os_htons(attr->latency);
898 
899 	if (!bfa_iocfc_is_operational(bfa))
900 		return BFA_STATUS_OK;
901 
902 	m = bfa_reqq_next(bfa, BFA_REQQ_IOC);
903 	if (!m)
904 		return BFA_STATUS_DEVBUSY;
905 
906 	bfi_h2i_set(m->mh, BFI_MC_IOCFC, BFI_IOCFC_H2I_SET_INTR_REQ,
907 		    bfa_lpuid(bfa));
908 	m->coalesce = iocfc->cfginfo->intr_attr.coalesce;
909 	m->delay    = iocfc->cfginfo->intr_attr.delay;
910 	m->latency  = iocfc->cfginfo->intr_attr.latency;
911 
912 	bfa_trc(bfa, attr->delay);
913 	bfa_trc(bfa, attr->latency);
914 
915 	bfa_reqq_produce(bfa, BFA_REQQ_IOC);
916 	return BFA_STATUS_OK;
917 }
918 
919 void
920 bfa_iocfc_set_snsbase(struct bfa_s *bfa, u64 snsbase_pa)
921 {
922 	struct bfa_iocfc_s	*iocfc = &bfa->iocfc;
923 
924 	iocfc->cfginfo->sense_buf_len = (BFI_IOIM_SNSLEN - 1);
925 	bfa_dma_be_addr_set(iocfc->cfginfo->ioim_snsbase, snsbase_pa);
926 }
927 /**
928  * Enable IOC after it is disabled.
929  */
930 void
931 bfa_iocfc_enable(struct bfa_s *bfa)
932 {
933 	bfa_plog_str(bfa->plog, BFA_PL_MID_HAL, BFA_PL_EID_MISC, 0,
934 		     "IOC Enable");
935 	bfa_ioc_enable(&bfa->ioc);
936 }
937 
938 void
939 bfa_iocfc_disable(struct bfa_s *bfa)
940 {
941 	bfa_plog_str(bfa->plog, BFA_PL_MID_HAL, BFA_PL_EID_MISC, 0,
942 		     "IOC Disable");
943 	bfa->iocfc.action = BFA_IOCFC_ACT_DISABLE;
944 
945 	bfa->rme_process = BFA_FALSE;
946 	bfa_ioc_disable(&bfa->ioc);
947 }
948 
949 
950 bfa_boolean_t
951 bfa_iocfc_is_operational(struct bfa_s *bfa)
952 {
953 	return bfa_ioc_is_operational(&bfa->ioc) && bfa->iocfc.cfgdone;
954 }
955 
956 /**
957  * Return boot target port wwns -- read from boot information in flash.
958  */
959 void
960 bfa_iocfc_get_bootwwns(struct bfa_s *bfa, u8 *nwwns, wwn_t *wwns)
961 {
962 	struct bfa_iocfc_s *iocfc = &bfa->iocfc;
963 	struct bfi_iocfc_cfgrsp_s *cfgrsp = iocfc->cfgrsp;
964 	int i;
965 
966 	if (cfgrsp->pbc_cfg.boot_enabled && cfgrsp->pbc_cfg.nbluns) {
967 		bfa_trc(bfa, cfgrsp->pbc_cfg.nbluns);
968 		*nwwns = cfgrsp->pbc_cfg.nbluns;
969 		for (i = 0; i < cfgrsp->pbc_cfg.nbluns; i++)
970 			wwns[i] = cfgrsp->pbc_cfg.blun[i].tgt_pwwn;
971 
972 		return;
973 	}
974 
975 	*nwwns = cfgrsp->bootwwns.nwwns;
976 	memcpy(wwns, cfgrsp->bootwwns.wwn, sizeof(cfgrsp->bootwwns.wwn));
977 }
978 
979 void
980 bfa_iocfc_get_pbc_boot_cfg(struct bfa_s *bfa, struct bfa_boot_pbc_s *pbcfg)
981 {
982 	struct bfa_iocfc_s *iocfc = &bfa->iocfc;
983 	struct bfi_iocfc_cfgrsp_s *cfgrsp = iocfc->cfgrsp;
984 
985 	pbcfg->enable = cfgrsp->pbc_cfg.boot_enabled;
986 	pbcfg->nbluns = cfgrsp->pbc_cfg.nbluns;
987 	pbcfg->speed = cfgrsp->pbc_cfg.port_speed;
988 	memcpy(pbcfg->pblun, cfgrsp->pbc_cfg.blun, sizeof(pbcfg->pblun));
989 }
990 
991 int
992 bfa_iocfc_get_pbc_vports(struct bfa_s *bfa, struct bfi_pbc_vport_s *pbc_vport)
993 {
994 	struct bfa_iocfc_s *iocfc = &bfa->iocfc;
995 	struct bfi_iocfc_cfgrsp_s *cfgrsp = iocfc->cfgrsp;
996 
997 	memcpy(pbc_vport, cfgrsp->pbc_cfg.vport, sizeof(cfgrsp->pbc_cfg.vport));
998 	return cfgrsp->pbc_cfg.nvports;
999 }
1000 
1001 /**
1002  *  hal_api
1003  */
1004 
1005 /**
1006  * Use this function query the memory requirement of the BFA library.
1007  * This function needs to be called before bfa_attach() to get the
1008  * memory required of the BFA layer for a given driver configuration.
1009  *
1010  * This call will fail, if the cap is out of range compared to pre-defined
1011  * values within the BFA library
1012  *
1013  * @param[in] cfg -	pointer to bfa_ioc_cfg_t. Driver layer should indicate
1014  *			its configuration in this structure.
1015  *			The default values for struct bfa_iocfc_cfg_s can be
1016  *			fetched using bfa_cfg_get_default() API.
1017  *
1018  *			If cap's boundary check fails, the library will use
1019  *			the default bfa_cap_t values (and log a warning msg).
1020  *
1021  * @param[out] meminfo - pointer to bfa_meminfo_t. This content
1022  *			indicates the memory type (see bfa_mem_type_t) and
1023  *			amount of memory required.
1024  *
1025  *			Driver should allocate the memory, populate the
1026  *			starting address for each block and provide the same
1027  *			structure as input parameter to bfa_attach() call.
1028  *
1029  * @return void
1030  *
1031  * Special Considerations: @note
1032  */
1033 void
1034 bfa_cfg_get_meminfo(struct bfa_iocfc_cfg_s *cfg, struct bfa_meminfo_s *meminfo)
1035 {
1036 	int		i;
1037 	u32	km_len = 0, dm_len = 0;
1038 
1039 	bfa_assert((cfg != NULL) && (meminfo != NULL));
1040 
1041 	bfa_os_memset((void *)meminfo, 0, sizeof(struct bfa_meminfo_s));
1042 	meminfo->meminfo[BFA_MEM_TYPE_KVA - 1].mem_type =
1043 		BFA_MEM_TYPE_KVA;
1044 	meminfo->meminfo[BFA_MEM_TYPE_DMA - 1].mem_type =
1045 		BFA_MEM_TYPE_DMA;
1046 
1047 	bfa_iocfc_meminfo(cfg, &km_len, &dm_len);
1048 
1049 	for (i = 0; hal_mods[i]; i++)
1050 		hal_mods[i]->meminfo(cfg, &km_len, &dm_len);
1051 
1052 	dm_len += bfa_port_meminfo();
1053 
1054 	meminfo->meminfo[BFA_MEM_TYPE_KVA - 1].mem_len = km_len;
1055 	meminfo->meminfo[BFA_MEM_TYPE_DMA - 1].mem_len = dm_len;
1056 }
1057 
1058 /**
1059  * Use this function to do attach the driver instance with the BFA
1060  * library. This function will not trigger any HW initialization
1061  * process (which will be done in bfa_init() call)
1062  *
1063  * This call will fail, if the cap is out of range compared to
1064  * pre-defined values within the BFA library
1065  *
1066  * @param[out]	bfa	Pointer to bfa_t.
1067  * @param[in]	bfad	Opaque handle back to the driver's IOC structure
1068  * @param[in]	cfg	Pointer to bfa_ioc_cfg_t. Should be same structure
1069  *			that was used in bfa_cfg_get_meminfo().
1070  * @param[in]	meminfo	Pointer to bfa_meminfo_t. The driver should
1071  *			use the bfa_cfg_get_meminfo() call to
1072  *			find the memory blocks required, allocate the
1073  *			required memory and provide the starting addresses.
1074  * @param[in]	pcidev	pointer to struct bfa_pcidev_s
1075  *
1076  * @return
1077  * void
1078  *
1079  * Special Considerations:
1080  *
1081  * @note
1082  *
1083  */
1084 void
1085 bfa_attach(struct bfa_s *bfa, void *bfad, struct bfa_iocfc_cfg_s *cfg,
1086 	       struct bfa_meminfo_s *meminfo, struct bfa_pcidev_s *pcidev)
1087 {
1088 	int			i;
1089 	struct bfa_mem_elem_s	*melem;
1090 
1091 	bfa->fcs = BFA_FALSE;
1092 
1093 	bfa_assert((cfg != NULL) && (meminfo != NULL));
1094 
1095 	/**
1096 	 * initialize all memory pointers for iterative allocation
1097 	 */
1098 	for (i = 0; i < BFA_MEM_TYPE_MAX; i++) {
1099 		melem = meminfo->meminfo + i;
1100 		melem->kva_curp = melem->kva;
1101 		melem->dma_curp = melem->dma;
1102 	}
1103 
1104 	bfa_iocfc_attach(bfa, bfad, cfg, meminfo, pcidev);
1105 
1106 	for (i = 0; hal_mods[i]; i++)
1107 		hal_mods[i]->attach(bfa, bfad, cfg, meminfo, pcidev);
1108 
1109 	bfa_com_port_attach(bfa, meminfo);
1110 }
1111 
1112 /**
1113  * Use this function to delete a BFA IOC. IOC should be stopped (by
1114  * calling bfa_stop()) before this function call.
1115  *
1116  * @param[in] bfa - pointer to bfa_t.
1117  *
1118  * @return
1119  * void
1120  *
1121  * Special Considerations:
1122  *
1123  * @note
1124  */
1125 void
1126 bfa_detach(struct bfa_s *bfa)
1127 {
1128 	int	i;
1129 
1130 	for (i = 0; hal_mods[i]; i++)
1131 		hal_mods[i]->detach(bfa);
1132 
1133 	bfa_iocfc_detach(bfa);
1134 }
1135 
1136 
1137 void
1138 bfa_init_trc(struct bfa_s *bfa, struct bfa_trc_mod_s *trcmod)
1139 {
1140 	bfa->trcmod = trcmod;
1141 }
1142 
1143 void
1144 bfa_init_plog(struct bfa_s *bfa, struct bfa_plog_s *plog)
1145 {
1146 	bfa->plog = plog;
1147 }
1148 
1149 /**
1150  * Initialize IOC.
1151  *
1152  * This function will return immediately, when the IOC initialization is
1153  * completed, the bfa_cb_init() will be called.
1154  *
1155  * @param[in]	bfa	instance
1156  *
1157  * @return void
1158  *
1159  * Special Considerations:
1160  *
1161  * @note
1162  * When this function returns, the driver should register the interrupt service
1163  * routine(s) and enable the device interrupts. If this is not done,
1164  * bfa_cb_init() will never get called
1165  */
1166 void
1167 bfa_init(struct bfa_s *bfa)
1168 {
1169 	bfa_iocfc_init(bfa);
1170 }
1171 
1172 /**
1173  * Use this function initiate the IOC configuration setup. This function
1174  * will return immediately.
1175  *
1176  * @param[in]	bfa	instance
1177  *
1178  * @return None
1179  */
1180 void
1181 bfa_start(struct bfa_s *bfa)
1182 {
1183 	bfa_iocfc_start(bfa);
1184 }
1185 
1186 /**
1187  * Use this function quiese the IOC. This function will return immediately,
1188  * when the IOC is actually stopped, the bfad->comp will be set.
1189  *
1190  * @param[in]bfa - pointer to bfa_t.
1191  *
1192  * @return None
1193  *
1194  * Special Considerations:
1195  * bfad->comp can be set before or after bfa_stop() returns.
1196  *
1197  * @note
1198  * In case of any failure, we could handle it automatically by doing a
1199  * reset and then succeed the bfa_stop() call.
1200  */
1201 void
1202 bfa_stop(struct bfa_s *bfa)
1203 {
1204 	bfa_iocfc_stop(bfa);
1205 }
1206 
1207 void
1208 bfa_comp_deq(struct bfa_s *bfa, struct list_head *comp_q)
1209 {
1210 	INIT_LIST_HEAD(comp_q);
1211 	list_splice_tail_init(&bfa->comp_q, comp_q);
1212 }
1213 
1214 void
1215 bfa_comp_process(struct bfa_s *bfa, struct list_head *comp_q)
1216 {
1217 	struct list_head		*qe;
1218 	struct list_head		*qen;
1219 	struct bfa_cb_qe_s	*hcb_qe;
1220 
1221 	list_for_each_safe(qe, qen, comp_q) {
1222 		hcb_qe = (struct bfa_cb_qe_s *) qe;
1223 		hcb_qe->cbfn(hcb_qe->cbarg, BFA_TRUE);
1224 	}
1225 }
1226 
1227 void
1228 bfa_comp_free(struct bfa_s *bfa, struct list_head *comp_q)
1229 {
1230 	struct list_head		*qe;
1231 	struct bfa_cb_qe_s	*hcb_qe;
1232 
1233 	while (!list_empty(comp_q)) {
1234 		bfa_q_deq(comp_q, &qe);
1235 		hcb_qe = (struct bfa_cb_qe_s *) qe;
1236 		hcb_qe->cbfn(hcb_qe->cbarg, BFA_FALSE);
1237 	}
1238 }
1239 
1240 void
1241 bfa_attach_fcs(struct bfa_s *bfa)
1242 {
1243 	bfa->fcs = BFA_TRUE;
1244 }
1245 
1246 /**
1247  * Periodic timer heart beat from driver
1248  */
1249 void
1250 bfa_timer_tick(struct bfa_s *bfa)
1251 {
1252 	bfa_timer_beat(&bfa->timer_mod);
1253 }
1254 
1255 /**
1256  * Return the list of PCI vendor/device id lists supported by this
1257  * BFA instance.
1258  */
1259 void
1260 bfa_get_pciids(struct bfa_pciid_s **pciids, int *npciids)
1261 {
1262 	static struct bfa_pciid_s __pciids[] = {
1263 		{BFA_PCI_VENDOR_ID_BROCADE, BFA_PCI_DEVICE_ID_FC_8G2P},
1264 		{BFA_PCI_VENDOR_ID_BROCADE, BFA_PCI_DEVICE_ID_FC_8G1P},
1265 		{BFA_PCI_VENDOR_ID_BROCADE, BFA_PCI_DEVICE_ID_CT},
1266 		{BFA_PCI_VENDOR_ID_BROCADE, BFA_PCI_DEVICE_ID_CT_FC},
1267 	};
1268 
1269 	*npciids = sizeof(__pciids) / sizeof(__pciids[0]);
1270 	*pciids = __pciids;
1271 }
1272 
1273 /**
1274  * Use this function query the default struct bfa_iocfc_cfg_s value (compiled
1275  * into BFA layer). The OS driver can then turn back and overwrite entries that
1276  * have been configured by the user.
1277  *
1278  * @param[in] cfg - pointer to bfa_ioc_cfg_t
1279  *
1280  * @return
1281  *	void
1282  *
1283  * Special Considerations:
1284  * note
1285  */
1286 void
1287 bfa_cfg_get_default(struct bfa_iocfc_cfg_s *cfg)
1288 {
1289 	cfg->fwcfg.num_fabrics = DEF_CFG_NUM_FABRICS;
1290 	cfg->fwcfg.num_lports = DEF_CFG_NUM_LPORTS;
1291 	cfg->fwcfg.num_rports = DEF_CFG_NUM_RPORTS;
1292 	cfg->fwcfg.num_ioim_reqs = DEF_CFG_NUM_IOIM_REQS;
1293 	cfg->fwcfg.num_tskim_reqs = DEF_CFG_NUM_TSKIM_REQS;
1294 	cfg->fwcfg.num_fcxp_reqs = DEF_CFG_NUM_FCXP_REQS;
1295 	cfg->fwcfg.num_uf_bufs = DEF_CFG_NUM_UF_BUFS;
1296 	cfg->fwcfg.num_cqs = DEF_CFG_NUM_CQS;
1297 
1298 	cfg->drvcfg.num_reqq_elems = DEF_CFG_NUM_REQQ_ELEMS;
1299 	cfg->drvcfg.num_rspq_elems = DEF_CFG_NUM_RSPQ_ELEMS;
1300 	cfg->drvcfg.num_sgpgs = DEF_CFG_NUM_SGPGS;
1301 	cfg->drvcfg.num_sboot_tgts = DEF_CFG_NUM_SBOOT_TGTS;
1302 	cfg->drvcfg.num_sboot_luns = DEF_CFG_NUM_SBOOT_LUNS;
1303 	cfg->drvcfg.path_tov = BFA_FCPIM_PATHTOV_DEF;
1304 	cfg->drvcfg.ioc_recover = BFA_FALSE;
1305 	cfg->drvcfg.delay_comp = BFA_FALSE;
1306 
1307 }
1308 
1309 void
1310 bfa_cfg_get_min(struct bfa_iocfc_cfg_s *cfg)
1311 {
1312 	bfa_cfg_get_default(cfg);
1313 	cfg->fwcfg.num_ioim_reqs   = BFA_IOIM_MIN;
1314 	cfg->fwcfg.num_tskim_reqs  = BFA_TSKIM_MIN;
1315 	cfg->fwcfg.num_fcxp_reqs   = BFA_FCXP_MIN;
1316 	cfg->fwcfg.num_uf_bufs     = BFA_UF_MIN;
1317 	cfg->fwcfg.num_rports      = BFA_RPORT_MIN;
1318 
1319 	cfg->drvcfg.num_sgpgs      = BFA_SGPG_MIN;
1320 	cfg->drvcfg.num_reqq_elems = BFA_REQQ_NELEMS_MIN;
1321 	cfg->drvcfg.num_rspq_elems = BFA_RSPQ_NELEMS_MIN;
1322 	cfg->drvcfg.min_cfg	   = BFA_TRUE;
1323 }
1324 
1325 void
1326 bfa_get_attr(struct bfa_s *bfa, struct bfa_ioc_attr_s *ioc_attr)
1327 {
1328 	bfa_ioc_get_attr(&bfa->ioc, ioc_attr);
1329 }
1330 
1331 /**
1332  * Retrieve firmware trace information on IOC failure.
1333  */
1334 bfa_status_t
1335 bfa_debug_fwsave(struct bfa_s *bfa, void *trcdata, int *trclen)
1336 {
1337 	return bfa_ioc_debug_fwsave(&bfa->ioc, trcdata, trclen);
1338 }
1339 
1340 /**
1341  * Clear the saved firmware trace information of an IOC.
1342  */
1343 void
1344 bfa_debug_fwsave_clear(struct bfa_s *bfa)
1345 {
1346 	bfa_ioc_debug_fwsave_clear(&bfa->ioc);
1347 }
1348 
1349 /**
1350  * Fetch firmware trace data.
1351  *
1352  * @param[in]		bfa			BFA instance
1353  * @param[out]		trcdata		Firmware trace buffer
1354  * @param[in,out]	trclen		Firmware trace buffer len
1355  *
1356  * @retval BFA_STATUS_OK			Firmware trace is fetched.
1357  * @retval BFA_STATUS_INPROGRESS	Firmware trace fetch is in progress.
1358  */
1359 bfa_status_t
1360 bfa_debug_fwtrc(struct bfa_s *bfa, void *trcdata, int *trclen)
1361 {
1362 	return bfa_ioc_debug_fwtrc(&bfa->ioc, trcdata, trclen);
1363 }
1364 
1365 /**
1366  * Dump firmware memory.
1367  *
1368  * @param[in]		bfa		BFA instance
1369  * @param[out]		buf		buffer for dump
1370  * @param[in,out]	offset		smem offset to start read
1371  * @param[in,out]	buflen		length of buffer
1372  *
1373  * @retval BFA_STATUS_OK		Firmware memory is dumped.
1374  * @retval BFA_STATUS_INPROGRESS	Firmware memory dump is in progress.
1375  */
1376 bfa_status_t
1377 bfa_debug_fwcore(struct bfa_s *bfa, void *buf, u32 *offset, int *buflen)
1378 {
1379 	return bfa_ioc_debug_fwcore(&bfa->ioc, buf, offset, buflen);
1380 }
1381 /**
1382  * Reset hw semaphore & usage cnt regs and initialize.
1383  */
1384 void
1385 bfa_chip_reset(struct bfa_s *bfa)
1386 {
1387 	bfa_ioc_ownership_reset(&bfa->ioc);
1388 	bfa_ioc_pll_init(&bfa->ioc);
1389 }
1390 
1391 /**
1392  * Fetch firmware statistics data.
1393  *
1394  * @param[in]		bfa		BFA instance
1395  * @param[out]		data		Firmware stats buffer
1396  *
1397  * @retval BFA_STATUS_OK		Firmware trace is fetched.
1398  */
1399 bfa_status_t
1400 bfa_fw_stats_get(struct bfa_s *bfa, void *data)
1401 {
1402 	return bfa_ioc_fw_stats_get(&bfa->ioc, data);
1403 }
1404 
1405 bfa_status_t
1406 bfa_fw_stats_clear(struct bfa_s *bfa)
1407 {
1408 	return bfa_ioc_fw_stats_clear(&bfa->ioc);
1409 }
1410