1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Aic94xx SAS/SATA driver SCB management. 4 * 5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 7 */ 8 9 #include <linux/gfp.h> 10 #include <scsi/scsi_host.h> 11 12 #include "aic94xx.h" 13 #include "aic94xx_reg.h" 14 #include "aic94xx_hwi.h" 15 #include "aic94xx_seq.h" 16 17 #include "aic94xx_dump.h" 18 19 /* ---------- EMPTY SCB ---------- */ 20 21 #define DL_PHY_MASK 7 22 #define BYTES_DMAED 0 23 #define PRIMITIVE_RECVD 0x08 24 #define PHY_EVENT 0x10 25 #define LINK_RESET_ERROR 0x18 26 #define TIMER_EVENT 0x20 27 #define REQ_TASK_ABORT 0xF0 28 #define REQ_DEVICE_RESET 0xF1 29 #define SIGNAL_NCQ_ERROR 0xF2 30 #define CLEAR_NCQ_ERROR 0xF3 31 32 #define PHY_EVENTS_STATUS (CURRENT_LOSS_OF_SIGNAL | CURRENT_OOB_DONE \ 33 | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \ 34 | CURRENT_OOB_ERROR) 35 36 static void get_lrate_mode(struct asd_phy *phy, u8 oob_mode) 37 { 38 struct sas_phy *sas_phy = phy->sas_phy.phy; 39 40 switch (oob_mode & 7) { 41 case PHY_SPEED_60: 42 /* FIXME: sas transport class doesn't have this */ 43 phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS; 44 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS; 45 break; 46 case PHY_SPEED_30: 47 phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS; 48 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS; 49 break; 50 case PHY_SPEED_15: 51 phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS; 52 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS; 53 break; 54 } 55 sas_phy->negotiated_linkrate = phy->sas_phy.linkrate; 56 sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_3_0_GBPS; 57 sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; 58 sas_phy->maximum_linkrate = phy->phy_desc->max_sas_lrate; 59 sas_phy->minimum_linkrate = phy->phy_desc->min_sas_lrate; 60 61 if (oob_mode & SAS_MODE) 62 phy->sas_phy.oob_mode = SAS_OOB_MODE; 63 else if (oob_mode & SATA_MODE) 64 phy->sas_phy.oob_mode = SATA_OOB_MODE; 65 } 66 67 static void asd_phy_event_tasklet(struct asd_ascb *ascb, 68 struct done_list_struct *dl) 69 { 70 struct asd_ha_struct *asd_ha = ascb->ha; 71 int phy_id = dl->status_block[0] & DL_PHY_MASK; 72 struct asd_phy *phy = &asd_ha->phys[phy_id]; 73 74 u8 oob_status = dl->status_block[1] & PHY_EVENTS_STATUS; 75 u8 oob_mode = dl->status_block[2]; 76 77 switch (oob_status) { 78 case CURRENT_LOSS_OF_SIGNAL: 79 /* directly attached device was removed */ 80 ASD_DPRINTK("phy%d: device unplugged\n", phy_id); 81 asd_turn_led(asd_ha, phy_id, 0); 82 sas_phy_disconnected(&phy->sas_phy); 83 sas_notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL, 84 GFP_ATOMIC); 85 break; 86 case CURRENT_OOB_DONE: 87 /* hot plugged device */ 88 asd_turn_led(asd_ha, phy_id, 1); 89 get_lrate_mode(phy, oob_mode); 90 ASD_DPRINTK("phy%d device plugged: lrate:0x%x, proto:0x%x\n", 91 phy_id, phy->sas_phy.linkrate, phy->sas_phy.iproto); 92 sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC); 93 break; 94 case CURRENT_SPINUP_HOLD: 95 /* hot plug SATA, no COMWAKE sent */ 96 asd_turn_led(asd_ha, phy_id, 1); 97 sas_notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD, 98 GFP_ATOMIC); 99 break; 100 case CURRENT_GTO_TIMEOUT: 101 case CURRENT_OOB_ERROR: 102 ASD_DPRINTK("phy%d error while OOB: oob status:0x%x\n", phy_id, 103 dl->status_block[1]); 104 asd_turn_led(asd_ha, phy_id, 0); 105 sas_phy_disconnected(&phy->sas_phy); 106 sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR, GFP_ATOMIC); 107 break; 108 } 109 } 110 111 /* If phys are enabled sparsely, this will do the right thing. */ 112 static unsigned ord_phy(struct asd_ha_struct *asd_ha, struct asd_phy *phy) 113 { 114 u8 enabled_mask = asd_ha->hw_prof.enabled_phys; 115 int i, k = 0; 116 117 for_each_phy(enabled_mask, enabled_mask, i) { 118 if (&asd_ha->phys[i] == phy) 119 return k; 120 k++; 121 } 122 return 0; 123 } 124 125 /** 126 * asd_get_attached_sas_addr -- extract/generate attached SAS address 127 * @phy: pointer to asd_phy 128 * @sas_addr: pointer to buffer where the SAS address is to be written 129 * 130 * This function extracts the SAS address from an IDENTIFY frame 131 * received. If OOB is SATA, then a SAS address is generated from the 132 * HA tables. 133 * 134 * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame 135 * buffer. 136 */ 137 static void asd_get_attached_sas_addr(struct asd_phy *phy, u8 *sas_addr) 138 { 139 if (phy->sas_phy.frame_rcvd[0] == 0x34 140 && phy->sas_phy.oob_mode == SATA_OOB_MODE) { 141 struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha; 142 /* FIS device-to-host */ 143 u64 addr = be64_to_cpu(*(__be64 *)phy->phy_desc->sas_addr); 144 145 addr += asd_ha->hw_prof.sata_name_base + ord_phy(asd_ha, phy); 146 *(__be64 *)sas_addr = cpu_to_be64(addr); 147 } else { 148 struct sas_identify_frame *idframe = 149 (void *) phy->sas_phy.frame_rcvd; 150 memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE); 151 } 152 } 153 154 static void asd_form_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy) 155 { 156 int i; 157 struct asd_port *free_port = NULL; 158 struct asd_port *port; 159 struct asd_sas_phy *sas_phy = &phy->sas_phy; 160 unsigned long flags; 161 162 spin_lock_irqsave(&asd_ha->asd_ports_lock, flags); 163 if (!phy->asd_port) { 164 for (i = 0; i < ASD_MAX_PHYS; i++) { 165 port = &asd_ha->asd_ports[i]; 166 167 /* Check for wide port */ 168 if (port->num_phys > 0 && 169 memcmp(port->sas_addr, sas_phy->sas_addr, 170 SAS_ADDR_SIZE) == 0 && 171 memcmp(port->attached_sas_addr, 172 sas_phy->attached_sas_addr, 173 SAS_ADDR_SIZE) == 0) { 174 break; 175 } 176 177 /* Find a free port */ 178 if (port->num_phys == 0 && free_port == NULL) { 179 free_port = port; 180 } 181 } 182 183 /* Use a free port if this doesn't form a wide port */ 184 if (i >= ASD_MAX_PHYS) { 185 port = free_port; 186 BUG_ON(!port); 187 memcpy(port->sas_addr, sas_phy->sas_addr, 188 SAS_ADDR_SIZE); 189 memcpy(port->attached_sas_addr, 190 sas_phy->attached_sas_addr, 191 SAS_ADDR_SIZE); 192 } 193 port->num_phys++; 194 port->phy_mask |= (1U << sas_phy->id); 195 phy->asd_port = port; 196 } 197 ASD_DPRINTK("%s: updating phy_mask 0x%x for phy%d\n", 198 __func__, phy->asd_port->phy_mask, sas_phy->id); 199 asd_update_port_links(asd_ha, phy); 200 spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags); 201 } 202 203 static void asd_deform_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy) 204 { 205 struct asd_port *port = phy->asd_port; 206 struct asd_sas_phy *sas_phy = &phy->sas_phy; 207 unsigned long flags; 208 209 spin_lock_irqsave(&asd_ha->asd_ports_lock, flags); 210 if (port) { 211 port->num_phys--; 212 port->phy_mask &= ~(1U << sas_phy->id); 213 phy->asd_port = NULL; 214 } 215 spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags); 216 } 217 218 static void asd_bytes_dmaed_tasklet(struct asd_ascb *ascb, 219 struct done_list_struct *dl, 220 int edb_id, int phy_id) 221 { 222 unsigned long flags; 223 int edb_el = edb_id + ascb->edb_index; 224 struct asd_dma_tok *edb = ascb->ha->seq.edb_arr[edb_el]; 225 struct asd_phy *phy = &ascb->ha->phys[phy_id]; 226 u16 size = ((dl->status_block[3] & 7) << 8) | dl->status_block[2]; 227 228 size = min(size, (u16) sizeof(phy->frame_rcvd)); 229 230 spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); 231 memcpy(phy->sas_phy.frame_rcvd, edb->vaddr, size); 232 phy->sas_phy.frame_rcvd_size = size; 233 asd_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); 234 spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); 235 asd_dump_frame_rcvd(phy, dl); 236 asd_form_port(ascb->ha, phy); 237 sas_notify_port_event(&phy->sas_phy, PORTE_BYTES_DMAED, GFP_ATOMIC); 238 } 239 240 static void asd_link_reset_err_tasklet(struct asd_ascb *ascb, 241 struct done_list_struct *dl, 242 int phy_id) 243 { 244 struct asd_ha_struct *asd_ha = ascb->ha; 245 struct sas_ha_struct *sas_ha = &asd_ha->sas_ha; 246 struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; 247 struct asd_phy *phy = &asd_ha->phys[phy_id]; 248 u8 lr_error = dl->status_block[1]; 249 u8 retries_left = dl->status_block[2]; 250 251 switch (lr_error) { 252 case 0: 253 ASD_DPRINTK("phy%d: Receive ID timer expired\n", phy_id); 254 break; 255 case 1: 256 ASD_DPRINTK("phy%d: Loss of signal\n", phy_id); 257 break; 258 case 2: 259 ASD_DPRINTK("phy%d: Loss of dword sync\n", phy_id); 260 break; 261 case 3: 262 ASD_DPRINTK("phy%d: Receive FIS timeout\n", phy_id); 263 break; 264 default: 265 ASD_DPRINTK("phy%d: unknown link reset error code: 0x%x\n", 266 phy_id, lr_error); 267 break; 268 } 269 270 asd_turn_led(asd_ha, phy_id, 0); 271 sas_phy_disconnected(sas_phy); 272 asd_deform_port(asd_ha, phy); 273 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, GFP_ATOMIC); 274 275 if (retries_left == 0) { 276 int num = 1; 277 struct asd_ascb *cp = asd_ascb_alloc_list(ascb->ha, &num, 278 GFP_ATOMIC); 279 if (!cp) { 280 asd_printk("%s: out of memory\n", __func__); 281 goto out; 282 } 283 ASD_DPRINTK("phy%d: retries:0 performing link reset seq\n", 284 phy_id); 285 asd_build_control_phy(cp, phy_id, ENABLE_PHY); 286 if (asd_post_ascb_list(ascb->ha, cp, 1) != 0) 287 asd_ascb_free(cp); 288 } 289 out: 290 ; 291 } 292 293 static void asd_primitive_rcvd_tasklet(struct asd_ascb *ascb, 294 struct done_list_struct *dl, 295 int phy_id) 296 { 297 unsigned long flags; 298 struct sas_ha_struct *sas_ha = &ascb->ha->sas_ha; 299 struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; 300 struct asd_ha_struct *asd_ha = ascb->ha; 301 struct asd_phy *phy = &asd_ha->phys[phy_id]; 302 u8 reg = dl->status_block[1]; 303 u32 cont = dl->status_block[2] << ((reg & 3)*8); 304 305 reg &= ~3; 306 switch (reg) { 307 case LmPRMSTAT0BYTE0: 308 switch (cont) { 309 case LmBROADCH: 310 case LmBROADRVCH0: 311 case LmBROADRVCH1: 312 case LmBROADSES: 313 ASD_DPRINTK("phy%d: BROADCAST change received:%d\n", 314 phy_id, cont); 315 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); 316 sas_phy->sas_prim = ffs(cont); 317 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); 318 sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, 319 GFP_ATOMIC); 320 break; 321 322 case LmUNKNOWNP: 323 ASD_DPRINTK("phy%d: unknown BREAK\n", phy_id); 324 break; 325 326 default: 327 ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n", 328 phy_id, reg, cont); 329 break; 330 } 331 break; 332 case LmPRMSTAT1BYTE0: 333 switch (cont) { 334 case LmHARDRST: 335 ASD_DPRINTK("phy%d: HARD_RESET primitive rcvd\n", 336 phy_id); 337 /* The sequencer disables all phys on that port. 338 * We have to re-enable the phys ourselves. */ 339 asd_deform_port(asd_ha, phy); 340 sas_notify_port_event(sas_phy, PORTE_HARD_RESET, 341 GFP_ATOMIC); 342 break; 343 344 default: 345 ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n", 346 phy_id, reg, cont); 347 break; 348 } 349 break; 350 default: 351 ASD_DPRINTK("unknown primitive register:0x%x\n", 352 dl->status_block[1]); 353 break; 354 } 355 } 356 357 /** 358 * asd_invalidate_edb -- invalidate an EDB and if necessary post the ESCB 359 * @ascb: pointer to Empty SCB 360 * @edb_id: index [0,6] to the empty data buffer which is to be invalidated 361 * 362 * After an EDB has been invalidated, if all EDBs in this ESCB have been 363 * invalidated, the ESCB is posted back to the sequencer. 364 * Context is tasklet/IRQ. 365 */ 366 void asd_invalidate_edb(struct asd_ascb *ascb, int edb_id) 367 { 368 struct asd_seq_data *seq = &ascb->ha->seq; 369 struct empty_scb *escb = &ascb->scb->escb; 370 struct sg_el *eb = &escb->eb[edb_id]; 371 struct asd_dma_tok *edb = seq->edb_arr[ascb->edb_index + edb_id]; 372 373 memset(edb->vaddr, 0, ASD_EDB_SIZE); 374 eb->flags |= ELEMENT_NOT_VALID; 375 escb->num_valid--; 376 377 if (escb->num_valid == 0) { 378 int i; 379 /* ASD_DPRINTK("reposting escb: vaddr: 0x%p, " 380 "dma_handle: 0x%08llx, next: 0x%08llx, " 381 "index:%d, opcode:0x%02x\n", 382 ascb->dma_scb.vaddr, 383 (u64)ascb->dma_scb.dma_handle, 384 le64_to_cpu(ascb->scb->header.next_scb), 385 le16_to_cpu(ascb->scb->header.index), 386 ascb->scb->header.opcode); 387 */ 388 escb->num_valid = ASD_EDBS_PER_SCB; 389 for (i = 0; i < ASD_EDBS_PER_SCB; i++) 390 escb->eb[i].flags = 0; 391 if (!list_empty(&ascb->list)) 392 list_del_init(&ascb->list); 393 i = asd_post_escb_list(ascb->ha, ascb, 1); 394 if (i) 395 asd_printk("couldn't post escb, err:%d\n", i); 396 } 397 } 398 399 static void escb_tasklet_complete(struct asd_ascb *ascb, 400 struct done_list_struct *dl) 401 { 402 struct asd_ha_struct *asd_ha = ascb->ha; 403 struct sas_ha_struct *sas_ha = &asd_ha->sas_ha; 404 int edb = (dl->opcode & DL_PHY_MASK) - 1; /* [0xc1,0xc7] -> [0,6] */ 405 u8 sb_opcode = dl->status_block[0]; 406 int phy_id = sb_opcode & DL_PHY_MASK; 407 struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; 408 struct asd_phy *phy = &asd_ha->phys[phy_id]; 409 410 if (edb > 6 || edb < 0) { 411 ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n", 412 edb, dl->opcode); 413 ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n", 414 sb_opcode, phy_id); 415 ASD_DPRINTK("escb: vaddr: 0x%p, " 416 "dma_handle: 0x%llx, next: 0x%llx, " 417 "index:%d, opcode:0x%02x\n", 418 ascb->dma_scb.vaddr, 419 (unsigned long long)ascb->dma_scb.dma_handle, 420 (unsigned long long) 421 le64_to_cpu(ascb->scb->header.next_scb), 422 le16_to_cpu(ascb->scb->header.index), 423 ascb->scb->header.opcode); 424 } 425 426 /* Catch these before we mask off the sb_opcode bits */ 427 switch (sb_opcode) { 428 case REQ_TASK_ABORT: { 429 struct asd_ascb *a, *b; 430 u16 tc_abort; 431 struct domain_device *failed_dev = NULL; 432 433 ASD_DPRINTK("%s: REQ_TASK_ABORT, reason=0x%X\n", 434 __func__, dl->status_block[3]); 435 436 /* 437 * Find the task that caused the abort and abort it first. 438 * The sequencer won't put anything on the done list until 439 * that happens. 440 */ 441 tc_abort = *((u16*)(&dl->status_block[1])); 442 tc_abort = le16_to_cpu(tc_abort); 443 444 list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) { 445 struct sas_task *task = a->uldd_task; 446 447 if (a->tc_index != tc_abort) 448 continue; 449 450 if (task) { 451 failed_dev = task->dev; 452 sas_task_abort(task); 453 } else { 454 ASD_DPRINTK("R_T_A for non TASK scb 0x%x\n", 455 a->scb->header.opcode); 456 } 457 break; 458 } 459 460 if (!failed_dev) { 461 ASD_DPRINTK("%s: Can't find task (tc=%d) to abort!\n", 462 __func__, tc_abort); 463 goto out; 464 } 465 466 /* 467 * Now abort everything else for that device (hba?) so 468 * that the EH will wake up and do something. 469 */ 470 list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) { 471 struct sas_task *task = a->uldd_task; 472 473 if (task && 474 task->dev == failed_dev && 475 a->tc_index != tc_abort) 476 sas_task_abort(task); 477 } 478 479 goto out; 480 } 481 case REQ_DEVICE_RESET: { 482 struct asd_ascb *a; 483 u16 conn_handle; 484 unsigned long flags; 485 struct sas_task *last_dev_task = NULL; 486 487 conn_handle = *((u16*)(&dl->status_block[1])); 488 conn_handle = le16_to_cpu(conn_handle); 489 490 ASD_DPRINTK("%s: REQ_DEVICE_RESET, reason=0x%X\n", __func__, 491 dl->status_block[3]); 492 493 /* Find the last pending task for the device... */ 494 list_for_each_entry(a, &asd_ha->seq.pend_q, list) { 495 u16 x; 496 struct domain_device *dev; 497 struct sas_task *task = a->uldd_task; 498 499 if (!task) 500 continue; 501 dev = task->dev; 502 503 x = (unsigned long)dev->lldd_dev; 504 if (x == conn_handle) 505 last_dev_task = task; 506 } 507 508 if (!last_dev_task) { 509 ASD_DPRINTK("%s: Device reset for idle device %d?\n", 510 __func__, conn_handle); 511 goto out; 512 } 513 514 /* ...and set the reset flag */ 515 spin_lock_irqsave(&last_dev_task->task_state_lock, flags); 516 last_dev_task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; 517 spin_unlock_irqrestore(&last_dev_task->task_state_lock, flags); 518 519 /* Kill all pending tasks for the device */ 520 list_for_each_entry(a, &asd_ha->seq.pend_q, list) { 521 u16 x; 522 struct domain_device *dev; 523 struct sas_task *task = a->uldd_task; 524 525 if (!task) 526 continue; 527 dev = task->dev; 528 529 x = (unsigned long)dev->lldd_dev; 530 if (x == conn_handle) 531 sas_task_abort(task); 532 } 533 534 goto out; 535 } 536 case SIGNAL_NCQ_ERROR: 537 ASD_DPRINTK("%s: SIGNAL_NCQ_ERROR\n", __func__); 538 goto out; 539 case CLEAR_NCQ_ERROR: 540 ASD_DPRINTK("%s: CLEAR_NCQ_ERROR\n", __func__); 541 goto out; 542 } 543 544 sb_opcode &= ~DL_PHY_MASK; 545 546 switch (sb_opcode) { 547 case BYTES_DMAED: 548 ASD_DPRINTK("%s: phy%d: BYTES_DMAED\n", __func__, phy_id); 549 asd_bytes_dmaed_tasklet(ascb, dl, edb, phy_id); 550 break; 551 case PRIMITIVE_RECVD: 552 ASD_DPRINTK("%s: phy%d: PRIMITIVE_RECVD\n", __func__, 553 phy_id); 554 asd_primitive_rcvd_tasklet(ascb, dl, phy_id); 555 break; 556 case PHY_EVENT: 557 ASD_DPRINTK("%s: phy%d: PHY_EVENT\n", __func__, phy_id); 558 asd_phy_event_tasklet(ascb, dl); 559 break; 560 case LINK_RESET_ERROR: 561 ASD_DPRINTK("%s: phy%d: LINK_RESET_ERROR\n", __func__, 562 phy_id); 563 asd_link_reset_err_tasklet(ascb, dl, phy_id); 564 break; 565 case TIMER_EVENT: 566 ASD_DPRINTK("%s: phy%d: TIMER_EVENT, lost dw sync\n", 567 __func__, phy_id); 568 asd_turn_led(asd_ha, phy_id, 0); 569 /* the device is gone */ 570 sas_phy_disconnected(sas_phy); 571 asd_deform_port(asd_ha, phy); 572 sas_notify_port_event(sas_phy, PORTE_TIMER_EVENT, GFP_ATOMIC); 573 break; 574 default: 575 ASD_DPRINTK("%s: phy%d: unknown event:0x%x\n", __func__, 576 phy_id, sb_opcode); 577 ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n", 578 edb, dl->opcode); 579 ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n", 580 sb_opcode, phy_id); 581 ASD_DPRINTK("escb: vaddr: 0x%p, " 582 "dma_handle: 0x%llx, next: 0x%llx, " 583 "index:%d, opcode:0x%02x\n", 584 ascb->dma_scb.vaddr, 585 (unsigned long long)ascb->dma_scb.dma_handle, 586 (unsigned long long) 587 le64_to_cpu(ascb->scb->header.next_scb), 588 le16_to_cpu(ascb->scb->header.index), 589 ascb->scb->header.opcode); 590 591 break; 592 } 593 out: 594 asd_invalidate_edb(ascb, edb); 595 } 596 597 int asd_init_post_escbs(struct asd_ha_struct *asd_ha) 598 { 599 struct asd_seq_data *seq = &asd_ha->seq; 600 int i; 601 602 for (i = 0; i < seq->num_escbs; i++) 603 seq->escb_arr[i]->tasklet_complete = escb_tasklet_complete; 604 605 ASD_DPRINTK("posting %d escbs\n", i); 606 return asd_post_escb_list(asd_ha, seq->escb_arr[0], seq->num_escbs); 607 } 608 609 /* ---------- CONTROL PHY ---------- */ 610 611 #define CONTROL_PHY_STATUS (CURRENT_DEVICE_PRESENT | CURRENT_OOB_DONE \ 612 | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \ 613 | CURRENT_OOB_ERROR) 614 615 /** 616 * control_phy_tasklet_complete -- tasklet complete for CONTROL PHY ascb 617 * @ascb: pointer to an ascb 618 * @dl: pointer to the done list entry 619 * 620 * This function completes a CONTROL PHY scb and frees the ascb. 621 * A note on LEDs: 622 * - an LED blinks if there is IO though it, 623 * - if a device is connected to the LED, it is lit, 624 * - if no device is connected to the LED, is is dimmed (off). 625 */ 626 static void control_phy_tasklet_complete(struct asd_ascb *ascb, 627 struct done_list_struct *dl) 628 { 629 struct asd_ha_struct *asd_ha = ascb->ha; 630 struct scb *scb = ascb->scb; 631 struct control_phy *control_phy = &scb->control_phy; 632 u8 phy_id = control_phy->phy_id; 633 struct asd_phy *phy = &ascb->ha->phys[phy_id]; 634 635 u8 status = dl->status_block[0]; 636 u8 oob_status = dl->status_block[1]; 637 u8 oob_mode = dl->status_block[2]; 638 /* u8 oob_signals= dl->status_block[3]; */ 639 640 if (status != 0) { 641 ASD_DPRINTK("%s: phy%d status block opcode:0x%x\n", 642 __func__, phy_id, status); 643 goto out; 644 } 645 646 switch (control_phy->sub_func) { 647 case DISABLE_PHY: 648 asd_ha->hw_prof.enabled_phys &= ~(1 << phy_id); 649 asd_turn_led(asd_ha, phy_id, 0); 650 asd_control_led(asd_ha, phy_id, 0); 651 ASD_DPRINTK("%s: disable phy%d\n", __func__, phy_id); 652 break; 653 654 case ENABLE_PHY: 655 asd_control_led(asd_ha, phy_id, 1); 656 if (oob_status & CURRENT_OOB_DONE) { 657 asd_ha->hw_prof.enabled_phys |= (1 << phy_id); 658 get_lrate_mode(phy, oob_mode); 659 asd_turn_led(asd_ha, phy_id, 1); 660 ASD_DPRINTK("%s: phy%d, lrate:0x%x, proto:0x%x\n", 661 __func__, phy_id,phy->sas_phy.linkrate, 662 phy->sas_phy.iproto); 663 } else if (oob_status & CURRENT_SPINUP_HOLD) { 664 asd_ha->hw_prof.enabled_phys |= (1 << phy_id); 665 asd_turn_led(asd_ha, phy_id, 1); 666 ASD_DPRINTK("%s: phy%d, spinup hold\n", __func__, 667 phy_id); 668 } else if (oob_status & CURRENT_ERR_MASK) { 669 asd_turn_led(asd_ha, phy_id, 0); 670 ASD_DPRINTK("%s: phy%d: error: oob status:0x%02x\n", 671 __func__, phy_id, oob_status); 672 } else if (oob_status & (CURRENT_HOT_PLUG_CNCT 673 | CURRENT_DEVICE_PRESENT)) { 674 asd_ha->hw_prof.enabled_phys |= (1 << phy_id); 675 asd_turn_led(asd_ha, phy_id, 1); 676 ASD_DPRINTK("%s: phy%d: hot plug or device present\n", 677 __func__, phy_id); 678 } else { 679 asd_ha->hw_prof.enabled_phys |= (1 << phy_id); 680 asd_turn_led(asd_ha, phy_id, 0); 681 ASD_DPRINTK("%s: phy%d: no device present: " 682 "oob_status:0x%x\n", 683 __func__, phy_id, oob_status); 684 } 685 break; 686 case RELEASE_SPINUP_HOLD: 687 case PHY_NO_OP: 688 case EXECUTE_HARD_RESET: 689 ASD_DPRINTK("%s: phy%d: sub_func:0x%x\n", __func__, 690 phy_id, control_phy->sub_func); 691 /* XXX finish */ 692 break; 693 default: 694 ASD_DPRINTK("%s: phy%d: sub_func:0x%x?\n", __func__, 695 phy_id, control_phy->sub_func); 696 break; 697 } 698 out: 699 asd_ascb_free(ascb); 700 } 701 702 static void set_speed_mask(u8 *speed_mask, struct asd_phy_desc *pd) 703 { 704 /* disable all speeds, then enable defaults */ 705 *speed_mask = SAS_SPEED_60_DIS | SAS_SPEED_30_DIS | SAS_SPEED_15_DIS 706 | SATA_SPEED_30_DIS | SATA_SPEED_15_DIS; 707 708 switch (pd->max_sas_lrate) { 709 case SAS_LINK_RATE_6_0_GBPS: 710 *speed_mask &= ~SAS_SPEED_60_DIS; 711 fallthrough; 712 default: 713 case SAS_LINK_RATE_3_0_GBPS: 714 *speed_mask &= ~SAS_SPEED_30_DIS; 715 fallthrough; 716 case SAS_LINK_RATE_1_5_GBPS: 717 *speed_mask &= ~SAS_SPEED_15_DIS; 718 } 719 720 switch (pd->min_sas_lrate) { 721 case SAS_LINK_RATE_6_0_GBPS: 722 *speed_mask |= SAS_SPEED_30_DIS; 723 fallthrough; 724 case SAS_LINK_RATE_3_0_GBPS: 725 *speed_mask |= SAS_SPEED_15_DIS; 726 fallthrough; 727 default: 728 case SAS_LINK_RATE_1_5_GBPS: 729 /* nothing to do */ 730 ; 731 } 732 733 switch (pd->max_sata_lrate) { 734 case SAS_LINK_RATE_3_0_GBPS: 735 *speed_mask &= ~SATA_SPEED_30_DIS; 736 fallthrough; 737 default: 738 case SAS_LINK_RATE_1_5_GBPS: 739 *speed_mask &= ~SATA_SPEED_15_DIS; 740 } 741 742 switch (pd->min_sata_lrate) { 743 case SAS_LINK_RATE_3_0_GBPS: 744 *speed_mask |= SATA_SPEED_15_DIS; 745 fallthrough; 746 default: 747 case SAS_LINK_RATE_1_5_GBPS: 748 /* nothing to do */ 749 ; 750 } 751 } 752 753 /** 754 * asd_build_control_phy -- build a CONTROL PHY SCB 755 * @ascb: pointer to an ascb 756 * @phy_id: phy id to control, integer 757 * @subfunc: subfunction, what to actually to do the phy 758 * 759 * This function builds a CONTROL PHY scb. No allocation of any kind 760 * is performed. @ascb is allocated with the list function. 761 * The caller can override the ascb->tasklet_complete to point 762 * to its own callback function. It must call asd_ascb_free() 763 * at its tasklet complete function. 764 * See the default implementation. 765 */ 766 void asd_build_control_phy(struct asd_ascb *ascb, int phy_id, u8 subfunc) 767 { 768 struct asd_phy *phy = &ascb->ha->phys[phy_id]; 769 struct scb *scb = ascb->scb; 770 struct control_phy *control_phy = &scb->control_phy; 771 772 scb->header.opcode = CONTROL_PHY; 773 control_phy->phy_id = (u8) phy_id; 774 control_phy->sub_func = subfunc; 775 776 switch (subfunc) { 777 case EXECUTE_HARD_RESET: /* 0x81 */ 778 case ENABLE_PHY: /* 0x01 */ 779 /* decide hot plug delay */ 780 control_phy->hot_plug_delay = HOTPLUG_DELAY_TIMEOUT; 781 782 /* decide speed mask */ 783 set_speed_mask(&control_phy->speed_mask, phy->phy_desc); 784 785 /* initiator port settings are in the hi nibble */ 786 if (phy->sas_phy.role == PHY_ROLE_INITIATOR) 787 control_phy->port_type = SAS_PROTOCOL_ALL << 4; 788 else if (phy->sas_phy.role == PHY_ROLE_TARGET) 789 control_phy->port_type = SAS_PROTOCOL_ALL; 790 else 791 control_phy->port_type = 792 (SAS_PROTOCOL_ALL << 4) | SAS_PROTOCOL_ALL; 793 794 /* link reset retries, this should be nominal */ 795 control_phy->link_reset_retries = 10; 796 fallthrough; 797 798 case RELEASE_SPINUP_HOLD: /* 0x02 */ 799 /* decide the func_mask */ 800 control_phy->func_mask = FUNCTION_MASK_DEFAULT; 801 if (phy->phy_desc->flags & ASD_SATA_SPINUP_HOLD) 802 control_phy->func_mask &= ~SPINUP_HOLD_DIS; 803 else 804 control_phy->func_mask |= SPINUP_HOLD_DIS; 805 } 806 807 control_phy->conn_handle = cpu_to_le16(0xFFFF); 808 809 ascb->tasklet_complete = control_phy_tasklet_complete; 810 } 811 812 /* ---------- INITIATE LINK ADM TASK ---------- */ 813 814 #if 0 815 816 static void link_adm_tasklet_complete(struct asd_ascb *ascb, 817 struct done_list_struct *dl) 818 { 819 u8 opcode = dl->opcode; 820 struct initiate_link_adm *link_adm = &ascb->scb->link_adm; 821 u8 phy_id = link_adm->phy_id; 822 823 if (opcode != TC_NO_ERROR) { 824 asd_printk("phy%d: link adm task 0x%x completed with error " 825 "0x%x\n", phy_id, link_adm->sub_func, opcode); 826 } 827 ASD_DPRINTK("phy%d: link adm task 0x%x: 0x%x\n", 828 phy_id, link_adm->sub_func, opcode); 829 830 asd_ascb_free(ascb); 831 } 832 833 void asd_build_initiate_link_adm_task(struct asd_ascb *ascb, int phy_id, 834 u8 subfunc) 835 { 836 struct scb *scb = ascb->scb; 837 struct initiate_link_adm *link_adm = &scb->link_adm; 838 839 scb->header.opcode = INITIATE_LINK_ADM_TASK; 840 841 link_adm->phy_id = phy_id; 842 link_adm->sub_func = subfunc; 843 link_adm->conn_handle = cpu_to_le16(0xFFFF); 844 845 ascb->tasklet_complete = link_adm_tasklet_complete; 846 } 847 848 #endif /* 0 */ 849 850 /* ---------- SCB timer ---------- */ 851 852 /** 853 * asd_ascb_timedout -- called when a pending SCB's timer has expired 854 * @t: Timer context used to fetch the SCB 855 * 856 * This is the default timeout function which does the most necessary. 857 * Upper layers can implement their own timeout function, say to free 858 * resources they have with this SCB, and then call this one at the 859 * end of their timeout function. To do this, one should initialize 860 * the ascb->timer.{function, expires} prior to calling the post 861 * function. The timer is started by the post function. 862 */ 863 void asd_ascb_timedout(struct timer_list *t) 864 { 865 struct asd_ascb *ascb = from_timer(ascb, t, timer); 866 struct asd_seq_data *seq = &ascb->ha->seq; 867 unsigned long flags; 868 869 ASD_DPRINTK("scb:0x%x timed out\n", ascb->scb->header.opcode); 870 871 spin_lock_irqsave(&seq->pend_q_lock, flags); 872 seq->pending--; 873 list_del_init(&ascb->list); 874 spin_unlock_irqrestore(&seq->pend_q_lock, flags); 875 876 asd_ascb_free(ascb); 877 } 878 879 /* ---------- CONTROL PHY ---------- */ 880 881 /* Given the spec value, return a driver value. */ 882 static const int phy_func_table[] = { 883 [PHY_FUNC_NOP] = PHY_NO_OP, 884 [PHY_FUNC_LINK_RESET] = ENABLE_PHY, 885 [PHY_FUNC_HARD_RESET] = EXECUTE_HARD_RESET, 886 [PHY_FUNC_DISABLE] = DISABLE_PHY, 887 [PHY_FUNC_RELEASE_SPINUP_HOLD] = RELEASE_SPINUP_HOLD, 888 }; 889 890 int asd_control_phy(struct asd_sas_phy *phy, enum phy_func func, void *arg) 891 { 892 struct asd_ha_struct *asd_ha = phy->ha->lldd_ha; 893 struct asd_phy_desc *pd = asd_ha->phys[phy->id].phy_desc; 894 struct asd_ascb *ascb; 895 struct sas_phy_linkrates *rates; 896 int res = 1; 897 898 switch (func) { 899 case PHY_FUNC_CLEAR_ERROR_LOG: 900 case PHY_FUNC_GET_EVENTS: 901 return -ENOSYS; 902 case PHY_FUNC_SET_LINK_RATE: 903 rates = arg; 904 if (rates->minimum_linkrate) { 905 pd->min_sas_lrate = rates->minimum_linkrate; 906 pd->min_sata_lrate = rates->minimum_linkrate; 907 } 908 if (rates->maximum_linkrate) { 909 pd->max_sas_lrate = rates->maximum_linkrate; 910 pd->max_sata_lrate = rates->maximum_linkrate; 911 } 912 func = PHY_FUNC_LINK_RESET; 913 break; 914 default: 915 break; 916 } 917 918 ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL); 919 if (!ascb) 920 return -ENOMEM; 921 922 asd_build_control_phy(ascb, phy->id, phy_func_table[func]); 923 res = asd_post_ascb_list(asd_ha, ascb , 1); 924 if (res) 925 asd_ascb_free(ascb); 926 927 return res; 928 } 929