1 /* 2 * Aic94xx SAS/SATA driver hardware interface. 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This file is part of the aic94xx driver. 10 * 11 * The aic94xx driver is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License as 13 * published by the Free Software Foundation; version 2 of the 14 * License. 15 * 16 * The aic94xx driver is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with the aic94xx driver; if not, write to the Free Software 23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 24 * 25 */ 26 27 #include <linux/pci.h> 28 #include <linux/delay.h> 29 #include <linux/module.h> 30 31 #include "aic94xx.h" 32 #include "aic94xx_reg.h" 33 #include "aic94xx_hwi.h" 34 #include "aic94xx_seq.h" 35 #include "aic94xx_dump.h" 36 37 u32 MBAR0_SWB_SIZE; 38 39 /* ---------- Initialization ---------- */ 40 41 static void asd_get_user_sas_addr(struct asd_ha_struct *asd_ha) 42 { 43 extern char sas_addr_str[]; 44 /* If the user has specified a WWN it overrides other settings 45 */ 46 if (sas_addr_str[0] != '\0') 47 asd_destringify_sas_addr(asd_ha->hw_prof.sas_addr, 48 sas_addr_str); 49 else if (asd_ha->hw_prof.sas_addr[0] != 0) 50 asd_stringify_sas_addr(sas_addr_str, asd_ha->hw_prof.sas_addr); 51 } 52 53 static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha) 54 { 55 int i; 56 57 for (i = 0; i < ASD_MAX_PHYS; i++) { 58 if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0) 59 continue; 60 /* Set a phy's address only if it has none. 61 */ 62 ASD_DPRINTK("setting phy%d addr to %llx\n", i, 63 SAS_ADDR(asd_ha->hw_prof.sas_addr)); 64 memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr, 65 asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE); 66 } 67 } 68 69 /* ---------- PHY initialization ---------- */ 70 71 static void asd_init_phy_identify(struct asd_phy *phy) 72 { 73 phy->identify_frame = phy->id_frm_tok->vaddr; 74 75 memset(phy->identify_frame, 0, sizeof(*phy->identify_frame)); 76 77 phy->identify_frame->dev_type = SAS_END_DEV; 78 if (phy->sas_phy.role & PHY_ROLE_INITIATOR) 79 phy->identify_frame->initiator_bits = phy->sas_phy.iproto; 80 if (phy->sas_phy.role & PHY_ROLE_TARGET) 81 phy->identify_frame->target_bits = phy->sas_phy.tproto; 82 memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr, 83 SAS_ADDR_SIZE); 84 phy->identify_frame->phy_id = phy->sas_phy.id; 85 } 86 87 static int asd_init_phy(struct asd_phy *phy) 88 { 89 struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha; 90 struct asd_sas_phy *sas_phy = &phy->sas_phy; 91 92 sas_phy->enabled = 1; 93 sas_phy->class = SAS; 94 sas_phy->iproto = SAS_PROTOCOL_ALL; 95 sas_phy->tproto = 0; 96 sas_phy->type = PHY_TYPE_PHYSICAL; 97 sas_phy->role = PHY_ROLE_INITIATOR; 98 sas_phy->oob_mode = OOB_NOT_CONNECTED; 99 sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN; 100 101 phy->id_frm_tok = asd_alloc_coherent(asd_ha, 102 sizeof(*phy->identify_frame), 103 GFP_KERNEL); 104 if (!phy->id_frm_tok) { 105 asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id); 106 return -ENOMEM; 107 } else 108 asd_init_phy_identify(phy); 109 110 memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd)); 111 112 return 0; 113 } 114 115 static void asd_init_ports(struct asd_ha_struct *asd_ha) 116 { 117 int i; 118 119 spin_lock_init(&asd_ha->asd_ports_lock); 120 for (i = 0; i < ASD_MAX_PHYS; i++) { 121 struct asd_port *asd_port = &asd_ha->asd_ports[i]; 122 123 memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE); 124 memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE); 125 asd_port->phy_mask = 0; 126 asd_port->num_phys = 0; 127 } 128 } 129 130 static int asd_init_phys(struct asd_ha_struct *asd_ha) 131 { 132 u8 i; 133 u8 phy_mask = asd_ha->hw_prof.enabled_phys; 134 135 for (i = 0; i < ASD_MAX_PHYS; i++) { 136 struct asd_phy *phy = &asd_ha->phys[i]; 137 138 phy->phy_desc = &asd_ha->hw_prof.phy_desc[i]; 139 phy->asd_port = NULL; 140 141 phy->sas_phy.enabled = 0; 142 phy->sas_phy.id = i; 143 phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0]; 144 phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0]; 145 phy->sas_phy.ha = &asd_ha->sas_ha; 146 phy->sas_phy.lldd_phy = phy; 147 } 148 149 /* Now enable and initialize only the enabled phys. */ 150 for_each_phy(phy_mask, phy_mask, i) { 151 int err = asd_init_phy(&asd_ha->phys[i]); 152 if (err) 153 return err; 154 } 155 156 return 0; 157 } 158 159 /* ---------- Sliding windows ---------- */ 160 161 static int asd_init_sw(struct asd_ha_struct *asd_ha) 162 { 163 struct pci_dev *pcidev = asd_ha->pcidev; 164 int err; 165 u32 v; 166 167 /* Unlock MBARs */ 168 err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v); 169 if (err) { 170 asd_printk("couldn't access conf. space of %s\n", 171 pci_name(pcidev)); 172 goto Err; 173 } 174 if (v) 175 err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v); 176 if (err) { 177 asd_printk("couldn't write to MBAR_KEY of %s\n", 178 pci_name(pcidev)); 179 goto Err; 180 } 181 182 /* Set sliding windows A, B and C to point to proper internal 183 * memory regions. 184 */ 185 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR); 186 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB, 187 REG_BASE_ADDR_CSEQCIO); 188 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI); 189 asd_ha->io_handle[0].swa_base = REG_BASE_ADDR; 190 asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO; 191 asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI; 192 MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80; 193 if (!asd_ha->iospace) { 194 /* MBAR1 will point to OCM (On Chip Memory) */ 195 pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR); 196 asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR; 197 } 198 spin_lock_init(&asd_ha->iolock); 199 Err: 200 return err; 201 } 202 203 /* ---------- SCB initialization ---------- */ 204 205 /** 206 * asd_init_scbs - manually allocate the first SCB. 207 * @asd_ha: pointer to host adapter structure 208 * 209 * This allocates the very first SCB which would be sent to the 210 * sequencer for execution. Its bus address is written to 211 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of 212 * the _next_ scb to be DMA-ed to the host adapter is read from the last 213 * SCB DMA-ed to the host adapter, we have to always stay one step 214 * ahead of the sequencer and keep one SCB already allocated. 215 */ 216 static int asd_init_scbs(struct asd_ha_struct *asd_ha) 217 { 218 struct asd_seq_data *seq = &asd_ha->seq; 219 int bitmap_bytes; 220 221 /* allocate the index array and bitmap */ 222 asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs; 223 asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits* 224 sizeof(void *), GFP_KERNEL); 225 if (!asd_ha->seq.tc_index_array) 226 return -ENOMEM; 227 228 bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8; 229 bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long); 230 asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL); 231 if (!asd_ha->seq.tc_index_bitmap) 232 return -ENOMEM; 233 234 spin_lock_init(&seq->tc_index_lock); 235 236 seq->next_scb.size = sizeof(struct scb); 237 seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL, 238 &seq->next_scb.dma_handle); 239 if (!seq->next_scb.vaddr) { 240 kfree(asd_ha->seq.tc_index_bitmap); 241 kfree(asd_ha->seq.tc_index_array); 242 asd_ha->seq.tc_index_bitmap = NULL; 243 asd_ha->seq.tc_index_array = NULL; 244 return -ENOMEM; 245 } 246 247 seq->pending = 0; 248 spin_lock_init(&seq->pend_q_lock); 249 INIT_LIST_HEAD(&seq->pend_q); 250 251 return 0; 252 } 253 254 static inline void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha) 255 { 256 asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE; 257 asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE; 258 ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n", 259 asd_ha->hw_prof.max_scbs, 260 asd_ha->hw_prof.max_ddbs); 261 } 262 263 /* ---------- Done List initialization ---------- */ 264 265 static void asd_dl_tasklet_handler(unsigned long); 266 267 static int asd_init_dl(struct asd_ha_struct *asd_ha) 268 { 269 asd_ha->seq.actual_dl 270 = asd_alloc_coherent(asd_ha, 271 ASD_DL_SIZE * sizeof(struct done_list_struct), 272 GFP_KERNEL); 273 if (!asd_ha->seq.actual_dl) 274 return -ENOMEM; 275 asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr; 276 asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE; 277 asd_ha->seq.dl_next = 0; 278 tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler, 279 (unsigned long) asd_ha); 280 281 return 0; 282 } 283 284 /* ---------- EDB and ESCB init ---------- */ 285 286 static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags) 287 { 288 struct asd_seq_data *seq = &asd_ha->seq; 289 int i; 290 291 seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags); 292 if (!seq->edb_arr) 293 return -ENOMEM; 294 295 for (i = 0; i < seq->num_edbs; i++) { 296 seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE, 297 gfp_flags); 298 if (!seq->edb_arr[i]) 299 goto Err_unroll; 300 memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE); 301 } 302 303 ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs); 304 305 return 0; 306 307 Err_unroll: 308 for (i-- ; i >= 0; i--) 309 asd_free_coherent(asd_ha, seq->edb_arr[i]); 310 kfree(seq->edb_arr); 311 seq->edb_arr = NULL; 312 313 return -ENOMEM; 314 } 315 316 static int asd_alloc_escbs(struct asd_ha_struct *asd_ha, 317 gfp_t gfp_flags) 318 { 319 struct asd_seq_data *seq = &asd_ha->seq; 320 struct asd_ascb *escb; 321 int i, escbs; 322 323 seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr), 324 gfp_flags); 325 if (!seq->escb_arr) 326 return -ENOMEM; 327 328 escbs = seq->num_escbs; 329 escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags); 330 if (!escb) { 331 asd_printk("couldn't allocate list of escbs\n"); 332 goto Err; 333 } 334 seq->num_escbs -= escbs; /* subtract what was not allocated */ 335 ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs); 336 337 for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next, 338 struct asd_ascb, 339 list)) { 340 seq->escb_arr[i] = escb; 341 escb->scb->header.opcode = EMPTY_SCB; 342 } 343 344 return 0; 345 Err: 346 kfree(seq->escb_arr); 347 seq->escb_arr = NULL; 348 return -ENOMEM; 349 350 } 351 352 static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha) 353 { 354 struct asd_seq_data *seq = &asd_ha->seq; 355 int i, k, z = 0; 356 357 for (i = 0; i < seq->num_escbs; i++) { 358 struct asd_ascb *ascb = seq->escb_arr[i]; 359 struct empty_scb *escb = &ascb->scb->escb; 360 361 ascb->edb_index = z; 362 363 escb->num_valid = ASD_EDBS_PER_SCB; 364 365 for (k = 0; k < ASD_EDBS_PER_SCB; k++) { 366 struct sg_el *eb = &escb->eb[k]; 367 struct asd_dma_tok *edb = seq->edb_arr[z++]; 368 369 memset(eb, 0, sizeof(*eb)); 370 eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle)); 371 eb->size = cpu_to_le32(((u32) edb->size)); 372 } 373 } 374 } 375 376 /** 377 * asd_init_escbs -- allocate and initialize empty scbs 378 * @asd_ha: pointer to host adapter structure 379 * 380 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers. 381 * They transport sense data, etc. 382 */ 383 static int asd_init_escbs(struct asd_ha_struct *asd_ha) 384 { 385 struct asd_seq_data *seq = &asd_ha->seq; 386 int err = 0; 387 388 /* Allocate two empty data buffers (edb) per sequencer. */ 389 int edbs = 2*(1+asd_ha->hw_prof.num_phys); 390 391 seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB; 392 seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB; 393 394 err = asd_alloc_edbs(asd_ha, GFP_KERNEL); 395 if (err) { 396 asd_printk("couldn't allocate edbs\n"); 397 return err; 398 } 399 400 err = asd_alloc_escbs(asd_ha, GFP_KERNEL); 401 if (err) { 402 asd_printk("couldn't allocate escbs\n"); 403 return err; 404 } 405 406 asd_assign_edbs2escbs(asd_ha); 407 /* In order to insure that normal SCBs do not overfill sequencer 408 * memory and leave no space for escbs (halting condition), 409 * we increment pending here by the number of escbs. However, 410 * escbs are never pending. 411 */ 412 seq->pending = seq->num_escbs; 413 seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2; 414 415 return 0; 416 } 417 418 /* ---------- HW initialization ---------- */ 419 420 /** 421 * asd_chip_hardrst -- hard reset the chip 422 * @asd_ha: pointer to host adapter structure 423 * 424 * This takes 16 cycles and is synchronous to CFCLK, which runs 425 * at 200 MHz, so this should take at most 80 nanoseconds. 426 */ 427 int asd_chip_hardrst(struct asd_ha_struct *asd_ha) 428 { 429 int i; 430 int count = 100; 431 u32 reg; 432 433 for (i = 0 ; i < 4 ; i++) { 434 asd_write_reg_dword(asd_ha, COMBIST, HARDRST); 435 } 436 437 do { 438 udelay(1); 439 reg = asd_read_reg_dword(asd_ha, CHIMINT); 440 if (reg & HARDRSTDET) { 441 asd_write_reg_dword(asd_ha, CHIMINT, 442 HARDRSTDET|PORRSTDET); 443 return 0; 444 } 445 } while (--count > 0); 446 447 return -ENODEV; 448 } 449 450 /** 451 * asd_init_chip -- initialize the chip 452 * @asd_ha: pointer to host adapter structure 453 * 454 * Hard resets the chip, disables HA interrupts, downloads the sequnecer 455 * microcode and starts the sequencers. The caller has to explicitly 456 * enable HA interrupts with asd_enable_ints(asd_ha). 457 */ 458 static int asd_init_chip(struct asd_ha_struct *asd_ha) 459 { 460 int err; 461 462 err = asd_chip_hardrst(asd_ha); 463 if (err) { 464 asd_printk("couldn't hard reset %s\n", 465 pci_name(asd_ha->pcidev)); 466 goto out; 467 } 468 469 asd_disable_ints(asd_ha); 470 471 err = asd_init_seqs(asd_ha); 472 if (err) { 473 asd_printk("couldn't init seqs for %s\n", 474 pci_name(asd_ha->pcidev)); 475 goto out; 476 } 477 478 err = asd_start_seqs(asd_ha); 479 if (err) { 480 asd_printk("coudln't start seqs for %s\n", 481 pci_name(asd_ha->pcidev)); 482 goto out; 483 } 484 out: 485 return err; 486 } 487 488 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE)) 489 490 static int max_devs = 0; 491 module_param_named(max_devs, max_devs, int, S_IRUGO); 492 MODULE_PARM_DESC(max_devs, "\n" 493 "\tMaximum number of SAS devices to support (not LUs).\n" 494 "\tDefault: 2176, Maximum: 65663.\n"); 495 496 static int max_cmnds = 0; 497 module_param_named(max_cmnds, max_cmnds, int, S_IRUGO); 498 MODULE_PARM_DESC(max_cmnds, "\n" 499 "\tMaximum number of commands queuable.\n" 500 "\tDefault: 512, Maximum: 66047.\n"); 501 502 static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha) 503 { 504 unsigned long dma_addr = OCM_BASE_ADDR; 505 u32 d; 506 507 dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE; 508 asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr); 509 d = asd_read_reg_dword(asd_ha, CTXDOMAIN); 510 d |= 4; 511 asd_write_reg_dword(asd_ha, CTXDOMAIN, d); 512 asd_ha->hw_prof.max_ddbs += MAX_DEVS; 513 } 514 515 static int asd_extend_devctx(struct asd_ha_struct *asd_ha) 516 { 517 dma_addr_t dma_handle; 518 unsigned long dma_addr; 519 u32 d; 520 int size; 521 522 asd_extend_devctx_ocm(asd_ha); 523 524 asd_ha->hw_prof.ddb_ext = NULL; 525 if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) { 526 max_devs = asd_ha->hw_prof.max_ddbs; 527 return 0; 528 } 529 530 size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE; 531 532 asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL); 533 if (!asd_ha->hw_prof.ddb_ext) { 534 asd_printk("couldn't allocate memory for %d devices\n", 535 max_devs); 536 max_devs = asd_ha->hw_prof.max_ddbs; 537 return -ENOMEM; 538 } 539 dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle; 540 dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE); 541 dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE; 542 dma_handle = (dma_addr_t) dma_addr; 543 asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle); 544 d = asd_read_reg_dword(asd_ha, CTXDOMAIN); 545 d &= ~4; 546 asd_write_reg_dword(asd_ha, CTXDOMAIN, d); 547 548 asd_ha->hw_prof.max_ddbs = max_devs; 549 550 return 0; 551 } 552 553 static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha) 554 { 555 dma_addr_t dma_handle; 556 unsigned long dma_addr; 557 u32 d; 558 int size; 559 560 asd_ha->hw_prof.scb_ext = NULL; 561 if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) { 562 max_cmnds = asd_ha->hw_prof.max_scbs; 563 return 0; 564 } 565 566 size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE; 567 568 asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL); 569 if (!asd_ha->hw_prof.scb_ext) { 570 asd_printk("couldn't allocate memory for %d commands\n", 571 max_cmnds); 572 max_cmnds = asd_ha->hw_prof.max_scbs; 573 return -ENOMEM; 574 } 575 dma_handle = asd_ha->hw_prof.scb_ext->dma_handle; 576 dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE); 577 dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE; 578 dma_handle = (dma_addr_t) dma_addr; 579 asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle); 580 d = asd_read_reg_dword(asd_ha, CTXDOMAIN); 581 d &= ~1; 582 asd_write_reg_dword(asd_ha, CTXDOMAIN, d); 583 584 asd_ha->hw_prof.max_scbs = max_cmnds; 585 586 return 0; 587 } 588 589 /** 590 * asd_init_ctxmem -- initialize context memory 591 * asd_ha: pointer to host adapter structure 592 * 593 * This function sets the maximum number of SCBs and 594 * DDBs which can be used by the sequencer. This is normally 595 * 512 and 128 respectively. If support for more SCBs or more DDBs 596 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are 597 * initialized here to extend context memory to point to host memory, 598 * thus allowing unlimited support for SCBs and DDBs -- only limited 599 * by host memory. 600 */ 601 static int asd_init_ctxmem(struct asd_ha_struct *asd_ha) 602 { 603 int bitmap_bytes; 604 605 asd_get_max_scb_ddb(asd_ha); 606 asd_extend_devctx(asd_ha); 607 asd_extend_cmdctx(asd_ha); 608 609 /* The kernel wants bitmaps to be unsigned long sized. */ 610 bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8; 611 bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long); 612 asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL); 613 if (!asd_ha->hw_prof.ddb_bitmap) 614 return -ENOMEM; 615 spin_lock_init(&asd_ha->hw_prof.ddb_lock); 616 617 return 0; 618 } 619 620 int asd_init_hw(struct asd_ha_struct *asd_ha) 621 { 622 int err; 623 u32 v; 624 625 err = asd_init_sw(asd_ha); 626 if (err) 627 return err; 628 629 err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v); 630 if (err) { 631 asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n", 632 pci_name(asd_ha->pcidev)); 633 return err; 634 } 635 pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, 636 v | SC_TMR_DIS); 637 if (err) { 638 asd_printk("couldn't disable split completion timer of %s\n", 639 pci_name(asd_ha->pcidev)); 640 return err; 641 } 642 643 err = asd_read_ocm(asd_ha); 644 if (err) { 645 asd_printk("couldn't read ocm(%d)\n", err); 646 /* While suspicios, it is not an error that we 647 * couldn't read the OCM. */ 648 } 649 650 err = asd_read_flash(asd_ha); 651 if (err) { 652 asd_printk("couldn't read flash(%d)\n", err); 653 /* While suspicios, it is not an error that we 654 * couldn't read FLASH memory. 655 */ 656 } 657 658 asd_init_ctxmem(asd_ha); 659 660 asd_get_user_sas_addr(asd_ha); 661 if (!asd_ha->hw_prof.sas_addr[0]) { 662 asd_printk("No SAS Address provided for %s\n", 663 pci_name(asd_ha->pcidev)); 664 err = -ENODEV; 665 goto Out; 666 } 667 668 asd_propagate_sas_addr(asd_ha); 669 670 err = asd_init_phys(asd_ha); 671 if (err) { 672 asd_printk("couldn't initialize phys for %s\n", 673 pci_name(asd_ha->pcidev)); 674 goto Out; 675 } 676 677 asd_init_ports(asd_ha); 678 679 err = asd_init_scbs(asd_ha); 680 if (err) { 681 asd_printk("couldn't initialize scbs for %s\n", 682 pci_name(asd_ha->pcidev)); 683 goto Out; 684 } 685 686 err = asd_init_dl(asd_ha); 687 if (err) { 688 asd_printk("couldn't initialize the done list:%d\n", 689 err); 690 goto Out; 691 } 692 693 err = asd_init_escbs(asd_ha); 694 if (err) { 695 asd_printk("couldn't initialize escbs\n"); 696 goto Out; 697 } 698 699 err = asd_init_chip(asd_ha); 700 if (err) { 701 asd_printk("couldn't init the chip\n"); 702 goto Out; 703 } 704 Out: 705 return err; 706 } 707 708 /* ---------- Chip reset ---------- */ 709 710 /** 711 * asd_chip_reset -- reset the host adapter, etc 712 * @asd_ha: pointer to host adapter structure of interest 713 * 714 * Called from the ISR. Hard reset the chip. Let everything 715 * timeout. This should be no different than hot-unplugging the 716 * host adapter. Once everything times out we'll init the chip with 717 * a call to asd_init_chip() and enable interrupts with asd_enable_ints(). 718 * XXX finish. 719 */ 720 static void asd_chip_reset(struct asd_ha_struct *asd_ha) 721 { 722 struct sas_ha_struct *sas_ha = &asd_ha->sas_ha; 723 724 ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev)); 725 asd_chip_hardrst(asd_ha); 726 sas_ha->notify_ha_event(sas_ha, HAE_RESET); 727 } 728 729 /* ---------- Done List Routines ---------- */ 730 731 static void asd_dl_tasklet_handler(unsigned long data) 732 { 733 struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data; 734 struct asd_seq_data *seq = &asd_ha->seq; 735 unsigned long flags; 736 737 while (1) { 738 struct done_list_struct *dl = &seq->dl[seq->dl_next]; 739 struct asd_ascb *ascb; 740 741 if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle) 742 break; 743 744 /* find the aSCB */ 745 spin_lock_irqsave(&seq->tc_index_lock, flags); 746 ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index)); 747 spin_unlock_irqrestore(&seq->tc_index_lock, flags); 748 if (unlikely(!ascb)) { 749 ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n"); 750 goto next_1; 751 } else if (ascb->scb->header.opcode == EMPTY_SCB) { 752 goto out; 753 } else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) { 754 goto next_1; 755 } 756 spin_lock_irqsave(&seq->pend_q_lock, flags); 757 list_del_init(&ascb->list); 758 seq->pending--; 759 spin_unlock_irqrestore(&seq->pend_q_lock, flags); 760 out: 761 ascb->tasklet_complete(ascb, dl); 762 763 next_1: 764 seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1); 765 if (!seq->dl_next) 766 seq->dl_toggle ^= DL_TOGGLE_MASK; 767 } 768 } 769 770 /* ---------- Interrupt Service Routines ---------- */ 771 772 /** 773 * asd_process_donelist_isr -- schedule processing of done list entries 774 * @asd_ha: pointer to host adapter structure 775 */ 776 static inline void asd_process_donelist_isr(struct asd_ha_struct *asd_ha) 777 { 778 tasklet_schedule(&asd_ha->seq.dl_tasklet); 779 } 780 781 /** 782 * asd_com_sas_isr -- process device communication interrupt (COMINT) 783 * @asd_ha: pointer to host adapter structure 784 */ 785 static inline void asd_com_sas_isr(struct asd_ha_struct *asd_ha) 786 { 787 u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT); 788 789 /* clear COMSTAT int */ 790 asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF); 791 792 if (comstat & CSBUFPERR) { 793 asd_printk("%s: command/status buffer dma parity error\n", 794 pci_name(asd_ha->pcidev)); 795 } else if (comstat & CSERR) { 796 int i; 797 u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR); 798 dmaerr &= 0xFF; 799 asd_printk("%s: command/status dma error, DMAERR: 0x%02x, " 800 "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n", 801 pci_name(asd_ha->pcidev), 802 dmaerr, 803 asd_read_reg_dword(asd_ha, CSDMAADR), 804 asd_read_reg_dword(asd_ha, CSDMAADR+4)); 805 asd_printk("CSBUFFER:\n"); 806 for (i = 0; i < 8; i++) { 807 asd_printk("%08x %08x %08x %08x\n", 808 asd_read_reg_dword(asd_ha, CSBUFFER), 809 asd_read_reg_dword(asd_ha, CSBUFFER+4), 810 asd_read_reg_dword(asd_ha, CSBUFFER+8), 811 asd_read_reg_dword(asd_ha, CSBUFFER+12)); 812 } 813 asd_dump_seq_state(asd_ha, 0); 814 } else if (comstat & OVLYERR) { 815 u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR); 816 dmaerr = (dmaerr >> 8) & 0xFF; 817 asd_printk("%s: overlay dma error:0x%x\n", 818 pci_name(asd_ha->pcidev), 819 dmaerr); 820 } 821 asd_chip_reset(asd_ha); 822 } 823 824 static inline void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus) 825 { 826 static const char *halt_code[256] = { 827 "UNEXPECTED_INTERRUPT0", 828 "UNEXPECTED_INTERRUPT1", 829 "UNEXPECTED_INTERRUPT2", 830 "UNEXPECTED_INTERRUPT3", 831 "UNEXPECTED_INTERRUPT4", 832 "UNEXPECTED_INTERRUPT5", 833 "UNEXPECTED_INTERRUPT6", 834 "UNEXPECTED_INTERRUPT7", 835 "UNEXPECTED_INTERRUPT8", 836 "UNEXPECTED_INTERRUPT9", 837 "UNEXPECTED_INTERRUPT10", 838 [11 ... 19] = "unknown[11,19]", 839 "NO_FREE_SCB_AVAILABLE", 840 "INVALID_SCB_OPCODE", 841 "INVALID_MBX_OPCODE", 842 "INVALID_ATA_STATE", 843 "ATA_QUEUE_FULL", 844 "ATA_TAG_TABLE_FAULT", 845 "ATA_TAG_MASK_FAULT", 846 "BAD_LINK_QUEUE_STATE", 847 "DMA2CHIM_QUEUE_ERROR", 848 "EMPTY_SCB_LIST_FULL", 849 "unknown[30]", 850 "IN_USE_SCB_ON_FREE_LIST", 851 "BAD_OPEN_WAIT_STATE", 852 "INVALID_STP_AFFILIATION", 853 "unknown[34]", 854 "EXEC_QUEUE_ERROR", 855 "TOO_MANY_EMPTIES_NEEDED", 856 "EMPTY_REQ_QUEUE_ERROR", 857 "Q_MONIRTT_MGMT_ERROR", 858 "TARGET_MODE_FLOW_ERROR", 859 "DEVICE_QUEUE_NOT_FOUND", 860 "START_IRTT_TIMER_ERROR", 861 "ABORT_TASK_ILLEGAL_REQ", 862 [43 ... 255] = "unknown[43,255]" 863 }; 864 865 if (dchstatus & CSEQINT) { 866 u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT); 867 868 if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) { 869 asd_printk("%s: CSEQ arp2int:0x%x\n", 870 pci_name(asd_ha->pcidev), 871 arp2int); 872 } else if (arp2int & ARP2HALTC) 873 asd_printk("%s: CSEQ halted: %s\n", 874 pci_name(asd_ha->pcidev), 875 halt_code[(arp2int>>16)&0xFF]); 876 else 877 asd_printk("%s: CARP2INT:0x%x\n", 878 pci_name(asd_ha->pcidev), 879 arp2int); 880 } 881 if (dchstatus & LSEQINT_MASK) { 882 int lseq; 883 u8 lseq_mask = dchstatus & LSEQINT_MASK; 884 885 for_each_sequencer(lseq_mask, lseq_mask, lseq) { 886 u32 arp2int = asd_read_reg_dword(asd_ha, 887 LmARP2INT(lseq)); 888 if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR 889 | ARP2CIOPERR)) { 890 asd_printk("%s: LSEQ%d arp2int:0x%x\n", 891 pci_name(asd_ha->pcidev), 892 lseq, arp2int); 893 /* XXX we should only do lseq reset */ 894 } else if (arp2int & ARP2HALTC) 895 asd_printk("%s: LSEQ%d halted: %s\n", 896 pci_name(asd_ha->pcidev), 897 lseq,halt_code[(arp2int>>16)&0xFF]); 898 else 899 asd_printk("%s: LSEQ%d ARP2INT:0x%x\n", 900 pci_name(asd_ha->pcidev), lseq, 901 arp2int); 902 } 903 } 904 asd_chip_reset(asd_ha); 905 } 906 907 /** 908 * asd_dch_sas_isr -- process device channel interrupt (DEVINT) 909 * @asd_ha: pointer to host adapter structure 910 */ 911 static inline void asd_dch_sas_isr(struct asd_ha_struct *asd_ha) 912 { 913 u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS); 914 915 if (dchstatus & CFIFTOERR) { 916 asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev)); 917 asd_chip_reset(asd_ha); 918 } else 919 asd_arp2_err(asd_ha, dchstatus); 920 } 921 922 /** 923 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR) 924 * @asd_ha: pointer to host adapter structure 925 */ 926 static inline void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha) 927 { 928 u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R); 929 930 if (!(stat0r & ASIERR)) { 931 asd_printk("hmm, EXSI interrupted but no error?\n"); 932 return; 933 } 934 935 if (stat0r & ASIFMTERR) { 936 asd_printk("ASI SEEPROM format error for %s\n", 937 pci_name(asd_ha->pcidev)); 938 } else if (stat0r & ASISEECHKERR) { 939 u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R); 940 asd_printk("ASI SEEPROM checksum 0x%x error for %s\n", 941 stat1r & CHECKSUM_MASK, 942 pci_name(asd_ha->pcidev)); 943 } else { 944 u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR); 945 946 if (!(statr & CPI2ASIMSTERR_MASK)) { 947 ASD_DPRINTK("hmm, ASIERR?\n"); 948 return; 949 } else { 950 u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR); 951 u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR); 952 953 asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, " 954 "count: 0x%x, byteen: 0x%x, targerr: 0x%x " 955 "master id: 0x%x, master err: 0x%x\n", 956 pci_name(asd_ha->pcidev), 957 addr, data, 958 (statr & CPI2ASIBYTECNT_MASK) >> 16, 959 (statr & CPI2ASIBYTEEN_MASK) >> 12, 960 (statr & CPI2ASITARGERR_MASK) >> 8, 961 (statr & CPI2ASITARGMID_MASK) >> 4, 962 (statr & CPI2ASIMSTERR_MASK)); 963 } 964 } 965 asd_chip_reset(asd_ha); 966 } 967 968 /** 969 * asd_hst_pcix_isr -- process host interface interrupts 970 * @asd_ha: pointer to host adapter structure 971 * 972 * Asserted on PCIX errors: target abort, etc. 973 */ 974 static inline void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha) 975 { 976 u16 status; 977 u32 pcix_status; 978 u32 ecc_status; 979 980 pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status); 981 pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status); 982 pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status); 983 984 if (status & PCI_STATUS_DETECTED_PARITY) 985 asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev)); 986 else if (status & PCI_STATUS_REC_MASTER_ABORT) 987 asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev)); 988 else if (status & PCI_STATUS_REC_TARGET_ABORT) 989 asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev)); 990 else if (status & PCI_STATUS_PARITY) 991 asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev)); 992 else if (pcix_status & RCV_SCE) { 993 asd_printk("received split completion error for %s\n", 994 pci_name(asd_ha->pcidev)); 995 pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status); 996 /* XXX: Abort task? */ 997 return; 998 } else if (pcix_status & UNEXP_SC) { 999 asd_printk("unexpected split completion for %s\n", 1000 pci_name(asd_ha->pcidev)); 1001 pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status); 1002 /* ignore */ 1003 return; 1004 } else if (pcix_status & SC_DISCARD) 1005 asd_printk("split completion discarded for %s\n", 1006 pci_name(asd_ha->pcidev)); 1007 else if (ecc_status & UNCOR_ECCERR) 1008 asd_printk("uncorrectable ECC error for %s\n", 1009 pci_name(asd_ha->pcidev)); 1010 asd_chip_reset(asd_ha); 1011 } 1012 1013 /** 1014 * asd_hw_isr -- host adapter interrupt service routine 1015 * @irq: ignored 1016 * @dev_id: pointer to host adapter structure 1017 * 1018 * The ISR processes done list entries and level 3 error handling. 1019 */ 1020 irqreturn_t asd_hw_isr(int irq, void *dev_id) 1021 { 1022 struct asd_ha_struct *asd_ha = dev_id; 1023 u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT); 1024 1025 if (!chimint) 1026 return IRQ_NONE; 1027 1028 asd_write_reg_dword(asd_ha, CHIMINT, chimint); 1029 (void) asd_read_reg_dword(asd_ha, CHIMINT); 1030 1031 if (chimint & DLAVAIL) 1032 asd_process_donelist_isr(asd_ha); 1033 if (chimint & COMINT) 1034 asd_com_sas_isr(asd_ha); 1035 if (chimint & DEVINT) 1036 asd_dch_sas_isr(asd_ha); 1037 if (chimint & INITERR) 1038 asd_rbi_exsi_isr(asd_ha); 1039 if (chimint & HOSTERR) 1040 asd_hst_pcix_isr(asd_ha); 1041 1042 return IRQ_HANDLED; 1043 } 1044 1045 /* ---------- SCB handling ---------- */ 1046 1047 static inline struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha, 1048 gfp_t gfp_flags) 1049 { 1050 extern struct kmem_cache *asd_ascb_cache; 1051 struct asd_seq_data *seq = &asd_ha->seq; 1052 struct asd_ascb *ascb; 1053 unsigned long flags; 1054 1055 ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags); 1056 1057 if (ascb) { 1058 ascb->dma_scb.size = sizeof(struct scb); 1059 ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, 1060 gfp_flags, 1061 &ascb->dma_scb.dma_handle); 1062 if (!ascb->dma_scb.vaddr) { 1063 kmem_cache_free(asd_ascb_cache, ascb); 1064 return NULL; 1065 } 1066 memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb)); 1067 asd_init_ascb(asd_ha, ascb); 1068 1069 spin_lock_irqsave(&seq->tc_index_lock, flags); 1070 ascb->tc_index = asd_tc_index_get(seq, ascb); 1071 spin_unlock_irqrestore(&seq->tc_index_lock, flags); 1072 if (ascb->tc_index == -1) 1073 goto undo; 1074 1075 ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index); 1076 } 1077 1078 return ascb; 1079 undo: 1080 dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr, 1081 ascb->dma_scb.dma_handle); 1082 kmem_cache_free(asd_ascb_cache, ascb); 1083 ASD_DPRINTK("no index for ascb\n"); 1084 return NULL; 1085 } 1086 1087 /** 1088 * asd_ascb_alloc_list -- allocate a list of aSCBs 1089 * @asd_ha: pointer to host adapter structure 1090 * @num: pointer to integer number of aSCBs 1091 * @gfp_flags: GFP_ flags. 1092 * 1093 * This is the only function which is used to allocate aSCBs. 1094 * It can allocate one or many. If more than one, then they form 1095 * a linked list in two ways: by their list field of the ascb struct 1096 * and by the next_scb field of the scb_header. 1097 * 1098 * Returns NULL if no memory was available, else pointer to a list 1099 * of ascbs. When this function returns, @num would be the number 1100 * of SCBs which were not able to be allocated, 0 if all requested 1101 * were able to be allocated. 1102 */ 1103 struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct 1104 *asd_ha, int *num, 1105 gfp_t gfp_flags) 1106 { 1107 struct asd_ascb *first = NULL; 1108 1109 for ( ; *num > 0; --*num) { 1110 struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags); 1111 1112 if (!ascb) 1113 break; 1114 else if (!first) 1115 first = ascb; 1116 else { 1117 struct asd_ascb *last = list_entry(first->list.prev, 1118 struct asd_ascb, 1119 list); 1120 list_add_tail(&ascb->list, &first->list); 1121 last->scb->header.next_scb = 1122 cpu_to_le64(((u64)ascb->dma_scb.dma_handle)); 1123 } 1124 } 1125 1126 return first; 1127 } 1128 1129 /** 1130 * asd_swap_head_scb -- swap the head scb 1131 * @asd_ha: pointer to host adapter structure 1132 * @ascb: pointer to the head of an ascb list 1133 * 1134 * The sequencer knows the DMA address of the next SCB to be DMAed to 1135 * the host adapter, from initialization or from the last list DMAed. 1136 * seq->next_scb keeps the address of this SCB. The sequencer will 1137 * DMA to the host adapter this list of SCBs. But the head (first 1138 * element) of this list is not known to the sequencer. Here we swap 1139 * the head of the list with the known SCB (memcpy()). 1140 * Only one memcpy() is required per list so it is in our interest 1141 * to keep the list of SCB as long as possible so that the ratio 1142 * of number of memcpy calls to the number of SCB DMA-ed is as small 1143 * as possible. 1144 * 1145 * LOCKING: called with the pending list lock held. 1146 */ 1147 static inline void asd_swap_head_scb(struct asd_ha_struct *asd_ha, 1148 struct asd_ascb *ascb) 1149 { 1150 struct asd_seq_data *seq = &asd_ha->seq; 1151 struct asd_ascb *last = list_entry(ascb->list.prev, 1152 struct asd_ascb, 1153 list); 1154 struct asd_dma_tok t = ascb->dma_scb; 1155 1156 memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb)); 1157 ascb->dma_scb = seq->next_scb; 1158 ascb->scb = ascb->dma_scb.vaddr; 1159 seq->next_scb = t; 1160 last->scb->header.next_scb = 1161 cpu_to_le64(((u64)seq->next_scb.dma_handle)); 1162 } 1163 1164 /** 1165 * asd_start_timers -- (add and) start timers of SCBs 1166 * @list: pointer to struct list_head of the scbs 1167 * @to: timeout in jiffies 1168 * 1169 * If an SCB in the @list has no timer function, assign the default 1170 * one, then start the timer of the SCB. This function is 1171 * intended to be called from asd_post_ascb_list(), just prior to 1172 * posting the SCBs to the sequencer. 1173 */ 1174 static inline void asd_start_scb_timers(struct list_head *list) 1175 { 1176 struct asd_ascb *ascb; 1177 list_for_each_entry(ascb, list, list) { 1178 if (!ascb->uldd_timer) { 1179 ascb->timer.data = (unsigned long) ascb; 1180 ascb->timer.function = asd_ascb_timedout; 1181 ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT; 1182 add_timer(&ascb->timer); 1183 } 1184 } 1185 } 1186 1187 /** 1188 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter 1189 * @asd_ha: pointer to a host adapter structure 1190 * @ascb: pointer to the first aSCB in the list 1191 * @num: number of aSCBs in the list (to be posted) 1192 * 1193 * See queueing comment in asd_post_escb_list(). 1194 * 1195 * Additional note on queuing: In order to minimize the ratio of memcpy() 1196 * to the number of ascbs sent, we try to batch-send as many ascbs as possible 1197 * in one go. 1198 * Two cases are possible: 1199 * A) can_queue >= num, 1200 * B) can_queue < num. 1201 * Case A: we can send the whole batch at once. Increment "pending" 1202 * in the beginning of this function, when it is checked, in order to 1203 * eliminate races when this function is called by multiple processes. 1204 * Case B: should never happen if the managing layer considers 1205 * lldd_queue_size. 1206 */ 1207 int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb, 1208 int num) 1209 { 1210 unsigned long flags; 1211 LIST_HEAD(list); 1212 int can_queue; 1213 1214 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags); 1215 can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending; 1216 if (can_queue >= num) 1217 asd_ha->seq.pending += num; 1218 else 1219 can_queue = 0; 1220 1221 if (!can_queue) { 1222 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags); 1223 asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev)); 1224 return -SAS_QUEUE_FULL; 1225 } 1226 1227 asd_swap_head_scb(asd_ha, ascb); 1228 1229 __list_add(&list, ascb->list.prev, &ascb->list); 1230 1231 asd_start_scb_timers(&list); 1232 1233 asd_ha->seq.scbpro += num; 1234 list_splice_init(&list, asd_ha->seq.pend_q.prev); 1235 asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro); 1236 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags); 1237 1238 return 0; 1239 } 1240 1241 /** 1242 * asd_post_escb_list -- post a list of 1 or more empty scb 1243 * @asd_ha: pointer to a host adapter structure 1244 * @ascb: pointer to the first empty SCB in the list 1245 * @num: number of aSCBs in the list (to be posted) 1246 * 1247 * This is essentially the same as asd_post_ascb_list, but we do not 1248 * increment pending, add those to the pending list or get indexes. 1249 * See asd_init_escbs() and asd_init_post_escbs(). 1250 * 1251 * Since sending a list of ascbs is a superset of sending a single 1252 * ascb, this function exists to generalize this. More specifically, 1253 * when sending a list of those, we want to do only a _single_ 1254 * memcpy() at swap head, as opposed to for each ascb sent (in the 1255 * case of sending them one by one). That is, we want to minimize the 1256 * ratio of memcpy() operations to the number of ascbs sent. The same 1257 * logic applies to asd_post_ascb_list(). 1258 */ 1259 int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb, 1260 int num) 1261 { 1262 unsigned long flags; 1263 1264 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags); 1265 asd_swap_head_scb(asd_ha, ascb); 1266 asd_ha->seq.scbpro += num; 1267 asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro); 1268 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags); 1269 1270 return 0; 1271 } 1272 1273 /* ---------- LED ---------- */ 1274 1275 /** 1276 * asd_turn_led -- turn on/off an LED 1277 * @asd_ha: pointer to host adapter structure 1278 * @phy_id: the PHY id whose LED we want to manupulate 1279 * @op: 1 to turn on, 0 to turn off 1280 */ 1281 void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op) 1282 { 1283 if (phy_id < ASD_MAX_PHYS) { 1284 u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id)); 1285 if (op) 1286 v |= LEDPOL; 1287 else 1288 v &= ~LEDPOL; 1289 asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v); 1290 } 1291 } 1292 1293 /** 1294 * asd_control_led -- enable/disable an LED on the board 1295 * @asd_ha: pointer to host adapter structure 1296 * @phy_id: integer, the phy id 1297 * @op: integer, 1 to enable, 0 to disable the LED 1298 * 1299 * First we output enable the LED, then we set the source 1300 * to be an external module. 1301 */ 1302 void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op) 1303 { 1304 if (phy_id < ASD_MAX_PHYS) { 1305 u32 v; 1306 1307 v = asd_read_reg_dword(asd_ha, GPIOOER); 1308 if (op) 1309 v |= (1 << phy_id); 1310 else 1311 v &= ~(1 << phy_id); 1312 asd_write_reg_dword(asd_ha, GPIOOER, v); 1313 1314 v = asd_read_reg_dword(asd_ha, GPIOCNFGR); 1315 if (op) 1316 v |= (1 << phy_id); 1317 else 1318 v &= ~(1 << phy_id); 1319 asd_write_reg_dword(asd_ha, GPIOCNFGR, v); 1320 } 1321 } 1322 1323 /* ---------- PHY enable ---------- */ 1324 1325 static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id) 1326 { 1327 struct asd_phy *phy = &asd_ha->phys[phy_id]; 1328 1329 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0); 1330 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY), 1331 HOTPLUG_DELAY_TIMEOUT); 1332 1333 /* Get defaults from manuf. sector */ 1334 /* XXX we need defaults for those in case MS is broken. */ 1335 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0), 1336 phy->phy_desc->phy_control_0); 1337 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1), 1338 phy->phy_desc->phy_control_1); 1339 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2), 1340 phy->phy_desc->phy_control_2); 1341 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3), 1342 phy->phy_desc->phy_control_3); 1343 1344 asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id), 1345 ASD_COMINIT_TIMEOUT); 1346 1347 asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id), 1348 phy->id_frm_tok->dma_handle); 1349 1350 asd_control_led(asd_ha, phy_id, 1); 1351 1352 return 0; 1353 } 1354 1355 int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask) 1356 { 1357 u8 phy_m; 1358 u8 i; 1359 int num = 0, k; 1360 struct asd_ascb *ascb; 1361 struct asd_ascb *ascb_list; 1362 1363 if (!phy_mask) { 1364 asd_printk("%s called with phy_mask of 0!?\n", __FUNCTION__); 1365 return 0; 1366 } 1367 1368 for_each_phy(phy_mask, phy_m, i) { 1369 num++; 1370 asd_enable_phy(asd_ha, i); 1371 } 1372 1373 k = num; 1374 ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL); 1375 if (!ascb_list) { 1376 asd_printk("no memory for control phy ascb list\n"); 1377 return -ENOMEM; 1378 } 1379 num -= k; 1380 1381 ascb = ascb_list; 1382 for_each_phy(phy_mask, phy_m, i) { 1383 asd_build_control_phy(ascb, i, ENABLE_PHY); 1384 ascb = list_entry(ascb->list.next, struct asd_ascb, list); 1385 } 1386 ASD_DPRINTK("posting %d control phy scbs\n", num); 1387 k = asd_post_ascb_list(asd_ha, ascb_list, num); 1388 if (k) 1389 asd_ascb_free_list(ascb_list); 1390 1391 return k; 1392 } 1393