1 /* 2 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters 3 * 4 * Copyright (c) 1995-2000 Advanced System Products, Inc. 5 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc. 6 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx> 7 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de> 8 * All Rights Reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 */ 15 16 /* 17 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys) 18 * changed its name to ConnectCom Solutions, Inc. 19 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets 20 */ 21 22 #include <linux/module.h> 23 #include <linux/string.h> 24 #include <linux/kernel.h> 25 #include <linux/types.h> 26 #include <linux/ioport.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/proc_fs.h> 32 #include <linux/init.h> 33 #include <linux/blkdev.h> 34 #include <linux/isa.h> 35 #include <linux/eisa.h> 36 #include <linux/pci.h> 37 #include <linux/spinlock.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/firmware.h> 40 #include <linux/dmapool.h> 41 42 #include <asm/io.h> 43 #include <asm/dma.h> 44 45 #include <scsi/scsi_cmnd.h> 46 #include <scsi/scsi_device.h> 47 #include <scsi/scsi_tcq.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_host.h> 50 51 #define DRV_NAME "advansys" 52 #define ASC_VERSION "3.5" /* AdvanSys Driver Version */ 53 54 /* FIXME: 55 * 56 * 1. Use scsi_transport_spi 57 * 2. advansys_info is not safe against multiple simultaneous callers 58 * 3. Add module_param to override ISA/VLB ioport array 59 */ 60 61 /* Enable driver /proc statistics. */ 62 #define ADVANSYS_STATS 63 64 /* Enable driver tracing. */ 65 #undef ADVANSYS_DEBUG 66 67 typedef unsigned char uchar; 68 69 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0) 70 71 #define PCI_VENDOR_ID_ASP 0x10cd 72 #define PCI_DEVICE_ID_ASP_1200A 0x1100 73 #define PCI_DEVICE_ID_ASP_ABP940 0x1200 74 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300 75 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300 76 #define PCI_DEVICE_ID_38C0800_REV1 0x2500 77 #define PCI_DEVICE_ID_38C1600_REV1 0x2700 78 79 #define PortAddr unsigned int /* port address size */ 80 #define inp(port) inb(port) 81 #define outp(port, byte) outb((byte), (port)) 82 83 #define inpw(port) inw(port) 84 #define outpw(port, word) outw((word), (port)) 85 86 #define ASC_MAX_SG_QUEUE 7 87 #define ASC_MAX_SG_LIST 255 88 89 #define ASC_CS_TYPE unsigned short 90 91 #define ASC_IS_ISA (0x0001) 92 #define ASC_IS_ISAPNP (0x0081) 93 #define ASC_IS_EISA (0x0002) 94 #define ASC_IS_PCI (0x0004) 95 #define ASC_IS_PCI_ULTRA (0x0104) 96 #define ASC_IS_PCMCIA (0x0008) 97 #define ASC_IS_MCA (0x0020) 98 #define ASC_IS_VL (0x0040) 99 #define ASC_IS_WIDESCSI_16 (0x0100) 100 #define ASC_IS_WIDESCSI_32 (0x0200) 101 #define ASC_IS_BIG_ENDIAN (0x8000) 102 103 #define ASC_CHIP_MIN_VER_VL (0x01) 104 #define ASC_CHIP_MAX_VER_VL (0x07) 105 #define ASC_CHIP_MIN_VER_PCI (0x09) 106 #define ASC_CHIP_MAX_VER_PCI (0x0F) 107 #define ASC_CHIP_VER_PCI_BIT (0x08) 108 #define ASC_CHIP_MIN_VER_ISA (0x11) 109 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21) 110 #define ASC_CHIP_MAX_VER_ISA (0x27) 111 #define ASC_CHIP_VER_ISA_BIT (0x30) 112 #define ASC_CHIP_VER_ISAPNP_BIT (0x20) 113 #define ASC_CHIP_VER_ASYN_BUG (0x21) 114 #define ASC_CHIP_VER_PCI 0x08 115 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02) 116 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03) 117 #define ASC_CHIP_MIN_VER_EISA (0x41) 118 #define ASC_CHIP_MAX_VER_EISA (0x47) 119 #define ASC_CHIP_VER_EISA_BIT (0x40) 120 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3) 121 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL) 122 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL) 123 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL) 124 125 #define ASC_SCSI_ID_BITS 3 126 #define ASC_SCSI_TIX_TYPE uchar 127 #define ASC_ALL_DEVICE_BIT_SET 0xFF 128 #define ASC_SCSI_BIT_ID_TYPE uchar 129 #define ASC_MAX_TID 7 130 #define ASC_MAX_LUN 7 131 #define ASC_SCSI_WIDTH_BIT_SET 0xFF 132 #define ASC_MAX_SENSE_LEN 32 133 #define ASC_MIN_SENSE_LEN 14 134 #define ASC_SCSI_RESET_HOLD_TIME_US 60 135 136 /* 137 * Narrow boards only support 12-byte commands, while wide boards 138 * extend to 16-byte commands. 139 */ 140 #define ASC_MAX_CDB_LEN 12 141 #define ADV_MAX_CDB_LEN 16 142 143 #define MS_SDTR_LEN 0x03 144 #define MS_WDTR_LEN 0x02 145 146 #define ASC_SG_LIST_PER_Q 7 147 #define QS_FREE 0x00 148 #define QS_READY 0x01 149 #define QS_DISC1 0x02 150 #define QS_DISC2 0x04 151 #define QS_BUSY 0x08 152 #define QS_ABORTED 0x40 153 #define QS_DONE 0x80 154 #define QC_NO_CALLBACK 0x01 155 #define QC_SG_SWAP_QUEUE 0x02 156 #define QC_SG_HEAD 0x04 157 #define QC_DATA_IN 0x08 158 #define QC_DATA_OUT 0x10 159 #define QC_URGENT 0x20 160 #define QC_MSG_OUT 0x40 161 #define QC_REQ_SENSE 0x80 162 #define QCSG_SG_XFER_LIST 0x02 163 #define QCSG_SG_XFER_MORE 0x04 164 #define QCSG_SG_XFER_END 0x08 165 #define QD_IN_PROGRESS 0x00 166 #define QD_NO_ERROR 0x01 167 #define QD_ABORTED_BY_HOST 0x02 168 #define QD_WITH_ERROR 0x04 169 #define QD_INVALID_REQUEST 0x80 170 #define QD_INVALID_HOST_NUM 0x81 171 #define QD_INVALID_DEVICE 0x82 172 #define QD_ERR_INTERNAL 0xFF 173 #define QHSTA_NO_ERROR 0x00 174 #define QHSTA_M_SEL_TIMEOUT 0x11 175 #define QHSTA_M_DATA_OVER_RUN 0x12 176 #define QHSTA_M_DATA_UNDER_RUN 0x12 177 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 178 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14 179 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21 180 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22 181 #define QHSTA_D_HOST_ABORT_FAILED 0x23 182 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24 183 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25 184 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26 185 #define QHSTA_M_WTM_TIMEOUT 0x41 186 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 187 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 188 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 189 #define QHSTA_M_TARGET_STATUS_BUSY 0x45 190 #define QHSTA_M_BAD_TAG_CODE 0x46 191 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47 192 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48 193 #define QHSTA_D_LRAM_CMP_ERROR 0x81 194 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1 195 #define ASC_FLAG_SCSIQ_REQ 0x01 196 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02 197 #define ASC_FLAG_BIOS_ASYNC_IO 0x04 198 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08 199 #define ASC_FLAG_WIN16 0x10 200 #define ASC_FLAG_WIN32 0x20 201 #define ASC_FLAG_ISA_OVER_16MB 0x40 202 #define ASC_FLAG_DOS_VM_CALLBACK 0x80 203 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10 204 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04 205 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08 206 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40 207 #define ASC_SCSIQ_CPY_BEG 4 208 #define ASC_SCSIQ_SGHD_CPY_BEG 2 209 #define ASC_SCSIQ_B_FWD 0 210 #define ASC_SCSIQ_B_BWD 1 211 #define ASC_SCSIQ_B_STATUS 2 212 #define ASC_SCSIQ_B_QNO 3 213 #define ASC_SCSIQ_B_CNTL 4 214 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5 215 #define ASC_SCSIQ_D_DATA_ADDR 8 216 #define ASC_SCSIQ_D_DATA_CNT 12 217 #define ASC_SCSIQ_B_SENSE_LEN 20 218 #define ASC_SCSIQ_DONE_INFO_BEG 22 219 #define ASC_SCSIQ_D_SRBPTR 22 220 #define ASC_SCSIQ_B_TARGET_IX 26 221 #define ASC_SCSIQ_B_CDB_LEN 28 222 #define ASC_SCSIQ_B_TAG_CODE 29 223 #define ASC_SCSIQ_W_VM_ID 30 224 #define ASC_SCSIQ_DONE_STATUS 32 225 #define ASC_SCSIQ_HOST_STATUS 33 226 #define ASC_SCSIQ_SCSI_STATUS 34 227 #define ASC_SCSIQ_CDB_BEG 36 228 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56 229 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60 230 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48 231 #define ASC_SCSIQ_B_SG_WK_QP 49 232 #define ASC_SCSIQ_B_SG_WK_IX 50 233 #define ASC_SCSIQ_W_ALT_DC1 52 234 #define ASC_SCSIQ_B_LIST_CNT 6 235 #define ASC_SCSIQ_B_CUR_LIST_CNT 7 236 #define ASC_SGQ_B_SG_CNTL 4 237 #define ASC_SGQ_B_SG_HEAD_QP 5 238 #define ASC_SGQ_B_SG_LIST_CNT 6 239 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7 240 #define ASC_SGQ_LIST_BEG 8 241 #define ASC_DEF_SCSI1_QNG 4 242 #define ASC_MAX_SCSI1_QNG 4 243 #define ASC_DEF_SCSI2_QNG 16 244 #define ASC_MAX_SCSI2_QNG 32 245 #define ASC_TAG_CODE_MASK 0x23 246 #define ASC_STOP_REQ_RISC_STOP 0x01 247 #define ASC_STOP_ACK_RISC_STOP 0x03 248 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10 249 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20 250 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40 251 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS)) 252 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid)) 253 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID)) 254 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID) 255 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID) 256 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN) 257 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6)) 258 259 typedef struct asc_scsiq_1 { 260 uchar status; 261 uchar q_no; 262 uchar cntl; 263 uchar sg_queue_cnt; 264 uchar target_id; 265 uchar target_lun; 266 __le32 data_addr; 267 __le32 data_cnt; 268 __le32 sense_addr; 269 uchar sense_len; 270 uchar extra_bytes; 271 } ASC_SCSIQ_1; 272 273 typedef struct asc_scsiq_2 { 274 u32 srb_tag; 275 uchar target_ix; 276 uchar flag; 277 uchar cdb_len; 278 uchar tag_code; 279 ushort vm_id; 280 } ASC_SCSIQ_2; 281 282 typedef struct asc_scsiq_3 { 283 uchar done_stat; 284 uchar host_stat; 285 uchar scsi_stat; 286 uchar scsi_msg; 287 } ASC_SCSIQ_3; 288 289 typedef struct asc_scsiq_4 { 290 uchar cdb[ASC_MAX_CDB_LEN]; 291 uchar y_first_sg_list_qp; 292 uchar y_working_sg_qp; 293 uchar y_working_sg_ix; 294 uchar y_res; 295 ushort x_req_count; 296 ushort x_reconnect_rtn; 297 __le32 x_saved_data_addr; 298 __le32 x_saved_data_cnt; 299 } ASC_SCSIQ_4; 300 301 typedef struct asc_q_done_info { 302 ASC_SCSIQ_2 d2; 303 ASC_SCSIQ_3 d3; 304 uchar q_status; 305 uchar q_no; 306 uchar cntl; 307 uchar sense_len; 308 uchar extra_bytes; 309 uchar res; 310 u32 remain_bytes; 311 } ASC_QDONE_INFO; 312 313 typedef struct asc_sg_list { 314 __le32 addr; 315 __le32 bytes; 316 } ASC_SG_LIST; 317 318 typedef struct asc_sg_head { 319 ushort entry_cnt; 320 ushort queue_cnt; 321 ushort entry_to_copy; 322 ushort res; 323 ASC_SG_LIST sg_list[0]; 324 } ASC_SG_HEAD; 325 326 typedef struct asc_scsi_q { 327 ASC_SCSIQ_1 q1; 328 ASC_SCSIQ_2 q2; 329 uchar *cdbptr; 330 ASC_SG_HEAD *sg_head; 331 ushort remain_sg_entry_cnt; 332 ushort next_sg_index; 333 } ASC_SCSI_Q; 334 335 typedef struct asc_scsi_bios_req_q { 336 ASC_SCSIQ_1 r1; 337 ASC_SCSIQ_2 r2; 338 uchar *cdbptr; 339 ASC_SG_HEAD *sg_head; 340 uchar *sense_ptr; 341 ASC_SCSIQ_3 r3; 342 uchar cdb[ASC_MAX_CDB_LEN]; 343 uchar sense[ASC_MIN_SENSE_LEN]; 344 } ASC_SCSI_BIOS_REQ_Q; 345 346 typedef struct asc_risc_q { 347 uchar fwd; 348 uchar bwd; 349 ASC_SCSIQ_1 i1; 350 ASC_SCSIQ_2 i2; 351 ASC_SCSIQ_3 i3; 352 ASC_SCSIQ_4 i4; 353 } ASC_RISC_Q; 354 355 typedef struct asc_sg_list_q { 356 uchar seq_no; 357 uchar q_no; 358 uchar cntl; 359 uchar sg_head_qp; 360 uchar sg_list_cnt; 361 uchar sg_cur_list_cnt; 362 } ASC_SG_LIST_Q; 363 364 typedef struct asc_risc_sg_list_q { 365 uchar fwd; 366 uchar bwd; 367 ASC_SG_LIST_Q sg; 368 ASC_SG_LIST sg_list[7]; 369 } ASC_RISC_SG_LIST_Q; 370 371 #define ASCQ_ERR_Q_STATUS 0x0D 372 #define ASCQ_ERR_CUR_QNG 0x17 373 #define ASCQ_ERR_SG_Q_LINKS 0x18 374 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A 375 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B 376 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C 377 378 /* 379 * Warning code values are set in ASC_DVC_VAR 'warn_code'. 380 */ 381 #define ASC_WARN_NO_ERROR 0x0000 382 #define ASC_WARN_IO_PORT_ROTATE 0x0001 383 #define ASC_WARN_EEPROM_CHKSUM 0x0002 384 #define ASC_WARN_IRQ_MODIFIED 0x0004 385 #define ASC_WARN_AUTO_CONFIG 0x0008 386 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010 387 #define ASC_WARN_EEPROM_RECOVER 0x0020 388 #define ASC_WARN_CFG_MSW_RECOVER 0x0040 389 390 /* 391 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'. 392 */ 393 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */ 394 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */ 395 #define ASC_IERR_SET_PC_ADDR 0x0004 396 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */ 397 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */ 398 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */ 399 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */ 400 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */ 401 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */ 402 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */ 403 #define ASC_IERR_NO_BUS_TYPE 0x0400 404 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */ 405 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */ 406 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */ 407 408 #define ASC_DEF_MAX_TOTAL_QNG (0xF0) 409 #define ASC_MIN_TAG_Q_PER_DVC (0x04) 410 #define ASC_MIN_FREE_Q (0x02) 411 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q)) 412 #define ASC_MAX_TOTAL_QNG 240 413 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16 414 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8 415 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20 416 #define ASC_MAX_INRAM_TAG_QNG 16 417 #define ASC_IOADR_GAP 0x10 418 #define ASC_SYN_MAX_OFFSET 0x0F 419 #define ASC_DEF_SDTR_OFFSET 0x0F 420 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02 421 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41 422 423 /* The narrow chip only supports a limited selection of transfer rates. 424 * These are encoded in the range 0..7 or 0..15 depending whether the chip 425 * is Ultra-capable or not. These tables let us convert from one to the other. 426 */ 427 static const unsigned char asc_syn_xfer_period[8] = { 428 25, 30, 35, 40, 50, 60, 70, 85 429 }; 430 431 static const unsigned char asc_syn_ultra_xfer_period[16] = { 432 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107 433 }; 434 435 typedef struct ext_msg { 436 uchar msg_type; 437 uchar msg_len; 438 uchar msg_req; 439 union { 440 struct { 441 uchar sdtr_xfer_period; 442 uchar sdtr_req_ack_offset; 443 } sdtr; 444 struct { 445 uchar wdtr_width; 446 } wdtr; 447 struct { 448 uchar mdp_b3; 449 uchar mdp_b2; 450 uchar mdp_b1; 451 uchar mdp_b0; 452 } mdp; 453 } u_ext_msg; 454 uchar res; 455 } EXT_MSG; 456 457 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period 458 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset 459 #define wdtr_width u_ext_msg.wdtr.wdtr_width 460 #define mdp_b3 u_ext_msg.mdp_b3 461 #define mdp_b2 u_ext_msg.mdp_b2 462 #define mdp_b1 u_ext_msg.mdp_b1 463 #define mdp_b0 u_ext_msg.mdp_b0 464 465 typedef struct asc_dvc_cfg { 466 ASC_SCSI_BIT_ID_TYPE can_tagged_qng; 467 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled; 468 ASC_SCSI_BIT_ID_TYPE disc_enable; 469 ASC_SCSI_BIT_ID_TYPE sdtr_enable; 470 uchar chip_scsi_id; 471 uchar isa_dma_speed; 472 uchar isa_dma_channel; 473 uchar chip_version; 474 ushort mcode_date; 475 ushort mcode_version; 476 uchar max_tag_qng[ASC_MAX_TID + 1]; 477 uchar sdtr_period_offset[ASC_MAX_TID + 1]; 478 uchar adapter_info[6]; 479 } ASC_DVC_CFG; 480 481 #define ASC_DEF_DVC_CNTL 0xFFFF 482 #define ASC_DEF_CHIP_SCSI_ID 7 483 #define ASC_DEF_ISA_DMA_SPEED 4 484 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001 485 #define ASC_INIT_STATE_END_GET_CFG 0x0002 486 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004 487 #define ASC_INIT_STATE_END_SET_CFG 0x0008 488 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010 489 #define ASC_INIT_STATE_END_LOAD_MC 0x0020 490 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040 491 #define ASC_INIT_STATE_END_INQUIRY 0x0080 492 #define ASC_INIT_RESET_SCSI_DONE 0x0100 493 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000 494 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001 495 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002 496 #define ASC_MIN_TAGGED_CMD 7 497 #define ASC_MAX_SCSI_RESET_WAIT 30 498 #define ASC_OVERRUN_BSIZE 64 499 500 struct asc_dvc_var; /* Forward Declaration. */ 501 502 typedef struct asc_dvc_var { 503 PortAddr iop_base; 504 ushort err_code; 505 ushort dvc_cntl; 506 ushort bug_fix_cntl; 507 ushort bus_type; 508 ASC_SCSI_BIT_ID_TYPE init_sdtr; 509 ASC_SCSI_BIT_ID_TYPE sdtr_done; 510 ASC_SCSI_BIT_ID_TYPE use_tagged_qng; 511 ASC_SCSI_BIT_ID_TYPE unit_not_ready; 512 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy; 513 ASC_SCSI_BIT_ID_TYPE start_motor; 514 uchar *overrun_buf; 515 dma_addr_t overrun_dma; 516 uchar scsi_reset_wait; 517 uchar chip_no; 518 bool is_in_int; 519 uchar max_total_qng; 520 uchar cur_total_qng; 521 uchar in_critical_cnt; 522 uchar last_q_shortage; 523 ushort init_state; 524 uchar cur_dvc_qng[ASC_MAX_TID + 1]; 525 uchar max_dvc_qng[ASC_MAX_TID + 1]; 526 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1]; 527 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1]; 528 const uchar *sdtr_period_tbl; 529 ASC_DVC_CFG *cfg; 530 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always; 531 char redo_scam; 532 ushort res2; 533 uchar dos_int13_table[ASC_MAX_TID + 1]; 534 unsigned int max_dma_count; 535 ASC_SCSI_BIT_ID_TYPE no_scam; 536 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer; 537 uchar min_sdtr_index; 538 uchar max_sdtr_index; 539 struct asc_board *drv_ptr; 540 unsigned int uc_break; 541 } ASC_DVC_VAR; 542 543 typedef struct asc_dvc_inq_info { 544 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; 545 } ASC_DVC_INQ_INFO; 546 547 typedef struct asc_cap_info { 548 u32 lba; 549 u32 blk_size; 550 } ASC_CAP_INFO; 551 552 typedef struct asc_cap_info_array { 553 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; 554 } ASC_CAP_INFO_ARRAY; 555 556 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001 557 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002 558 #define ASC_CNTL_INITIATOR (ushort)0x0001 559 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002 560 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004 561 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008 562 #define ASC_CNTL_NO_SCAM (ushort)0x0010 563 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080 564 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040 565 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100 566 #define ASC_CNTL_RESET_SCSI (ushort)0x0200 567 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400 568 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800 569 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000 570 #define ASC_CNTL_BURST_MODE (ushort)0x2000 571 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000 572 #define ASC_EEP_DVC_CFG_BEG_VL 2 573 #define ASC_EEP_MAX_DVC_ADDR_VL 15 574 #define ASC_EEP_DVC_CFG_BEG 32 575 #define ASC_EEP_MAX_DVC_ADDR 45 576 #define ASC_EEP_MAX_RETRY 20 577 578 /* 579 * These macros keep the chip SCSI id and ISA DMA speed 580 * bitfields in board order. C bitfields aren't portable 581 * between big and little-endian platforms so they are 582 * not used. 583 */ 584 585 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f) 586 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4) 587 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \ 588 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID)) 589 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \ 590 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4) 591 592 typedef struct asceep_config { 593 ushort cfg_lsw; 594 ushort cfg_msw; 595 uchar init_sdtr; 596 uchar disc_enable; 597 uchar use_cmd_qng; 598 uchar start_motor; 599 uchar max_total_qng; 600 uchar max_tag_qng; 601 uchar bios_scan; 602 uchar power_up_wait; 603 uchar no_scam; 604 uchar id_speed; /* low order 4 bits is chip scsi id */ 605 /* high order 4 bits is isa dma speed */ 606 uchar dos_int13_table[ASC_MAX_TID + 1]; 607 uchar adapter_info[6]; 608 ushort cntl; 609 ushort chksum; 610 } ASCEEP_CONFIG; 611 612 #define ASC_EEP_CMD_READ 0x80 613 #define ASC_EEP_CMD_WRITE 0x40 614 #define ASC_EEP_CMD_WRITE_ABLE 0x30 615 #define ASC_EEP_CMD_WRITE_DISABLE 0x00 616 #define ASCV_MSGOUT_BEG 0x0000 617 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3) 618 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4) 619 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006 620 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8) 621 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3) 622 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4) 623 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8) 624 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8) 625 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020 626 #define ASCV_BREAK_ADDR (ushort)0x0028 627 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A 628 #define ASCV_BREAK_CONTROL (ushort)0x002C 629 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E 630 631 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030 632 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032 633 #define ASCV_MCODE_SIZE_W (ushort)0x0034 634 #define ASCV_STOP_CODE_B (ushort)0x0036 635 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037 636 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038 637 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C 638 #define ASCV_HALTCODE_W (ushort)0x0040 639 #define ASCV_CHKSUM_W (ushort)0x0042 640 #define ASCV_MC_DATE_W (ushort)0x0044 641 #define ASCV_MC_VER_W (ushort)0x0046 642 #define ASCV_NEXTRDY_B (ushort)0x0048 643 #define ASCV_DONENEXT_B (ushort)0x0049 644 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A 645 #define ASCV_SCSIBUSY_B (ushort)0x004B 646 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C 647 #define ASCV_CURCDB_B (ushort)0x004D 648 #define ASCV_RCLUN_B (ushort)0x004E 649 #define ASCV_BUSY_QHEAD_B (ushort)0x004F 650 #define ASCV_DISC1_QHEAD_B (ushort)0x0050 651 #define ASCV_DISC_ENABLE_B (ushort)0x0052 652 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053 653 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055 654 #define ASCV_MCODE_CNTL_B (ushort)0x0056 655 #define ASCV_NULL_TARGET_B (ushort)0x0057 656 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058 657 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A 658 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1) 659 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1) 660 #define ASCV_HOST_FLAG_B (ushort)0x005D 661 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064 662 #define ASCV_VER_SERIAL_B (ushort)0x0065 663 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066 664 #define ASCV_WTM_FLAG_B (ushort)0x0068 665 #define ASCV_RISC_FLAG_B (ushort)0x006A 666 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B 667 #define ASC_HOST_FLAG_IN_ISR 0x01 668 #define ASC_HOST_FLAG_ACK_INT 0x02 669 #define ASC_RISC_FLAG_GEN_INT 0x01 670 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02 671 #define IOP_CTRL (0x0F) 672 #define IOP_STATUS (0x0E) 673 #define IOP_INT_ACK IOP_STATUS 674 #define IOP_REG_IFC (0x0D) 675 #define IOP_SYN_OFFSET (0x0B) 676 #define IOP_EXTRA_CONTROL (0x0D) 677 #define IOP_REG_PC (0x0C) 678 #define IOP_RAM_ADDR (0x0A) 679 #define IOP_RAM_DATA (0x08) 680 #define IOP_EEP_DATA (0x06) 681 #define IOP_EEP_CMD (0x07) 682 #define IOP_VERSION (0x03) 683 #define IOP_CONFIG_HIGH (0x04) 684 #define IOP_CONFIG_LOW (0x02) 685 #define IOP_SIG_BYTE (0x01) 686 #define IOP_SIG_WORD (0x00) 687 #define IOP_REG_DC1 (0x0E) 688 #define IOP_REG_DC0 (0x0C) 689 #define IOP_REG_SB (0x0B) 690 #define IOP_REG_DA1 (0x0A) 691 #define IOP_REG_DA0 (0x08) 692 #define IOP_REG_SC (0x09) 693 #define IOP_DMA_SPEED (0x07) 694 #define IOP_REG_FLAG (0x07) 695 #define IOP_FIFO_H (0x06) 696 #define IOP_FIFO_L (0x04) 697 #define IOP_REG_ID (0x05) 698 #define IOP_REG_QP (0x03) 699 #define IOP_REG_IH (0x02) 700 #define IOP_REG_IX (0x01) 701 #define IOP_REG_AX (0x00) 702 #define IFC_REG_LOCK (0x00) 703 #define IFC_REG_UNLOCK (0x09) 704 #define IFC_WR_EN_FILTER (0x10) 705 #define IFC_RD_NO_EEPROM (0x10) 706 #define IFC_SLEW_RATE (0x20) 707 #define IFC_ACT_NEG (0x40) 708 #define IFC_INP_FILTER (0x80) 709 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK) 710 #define SC_SEL (uchar)(0x80) 711 #define SC_BSY (uchar)(0x40) 712 #define SC_ACK (uchar)(0x20) 713 #define SC_REQ (uchar)(0x10) 714 #define SC_ATN (uchar)(0x08) 715 #define SC_IO (uchar)(0x04) 716 #define SC_CD (uchar)(0x02) 717 #define SC_MSG (uchar)(0x01) 718 #define SEC_SCSI_CTL (uchar)(0x80) 719 #define SEC_ACTIVE_NEGATE (uchar)(0x40) 720 #define SEC_SLEW_RATE (uchar)(0x20) 721 #define SEC_ENABLE_FILTER (uchar)(0x10) 722 #define ASC_HALT_EXTMSG_IN (ushort)0x8000 723 #define ASC_HALT_CHK_CONDITION (ushort)0x8100 724 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200 725 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300 726 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400 727 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000 728 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000 729 #define ASC_MAX_QNO 0xF8 730 #define ASC_DATA_SEC_BEG (ushort)0x0080 731 #define ASC_DATA_SEC_END (ushort)0x0080 732 #define ASC_CODE_SEC_BEG (ushort)0x0080 733 #define ASC_CODE_SEC_END (ushort)0x0080 734 #define ASC_QADR_BEG (0x4000) 735 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64) 736 #define ASC_QADR_END (ushort)0x7FFF 737 #define ASC_QLAST_ADR (ushort)0x7FC0 738 #define ASC_QBLK_SIZE 0x40 739 #define ASC_BIOS_DATA_QBEG 0xF8 740 #define ASC_MIN_ACTIVE_QNO 0x01 741 #define ASC_QLINK_END 0xFF 742 #define ASC_EEPROM_WORDS 0x10 743 #define ASC_MAX_MGS_LEN 0x10 744 #define ASC_BIOS_ADDR_DEF 0xDC00 745 #define ASC_BIOS_SIZE 0x3800 746 #define ASC_BIOS_RAM_OFF 0x3800 747 #define ASC_BIOS_RAM_SIZE 0x800 748 #define ASC_BIOS_MIN_ADDR 0xC000 749 #define ASC_BIOS_MAX_ADDR 0xEC00 750 #define ASC_BIOS_BANK_SIZE 0x0400 751 #define ASC_MCODE_START_ADDR 0x0080 752 #define ASC_CFG0_HOST_INT_ON 0x0020 753 #define ASC_CFG0_BIOS_ON 0x0040 754 #define ASC_CFG0_VERA_BURST_ON 0x0080 755 #define ASC_CFG0_SCSI_PARITY_ON 0x0800 756 #define ASC_CFG1_SCSI_TARGET_ON 0x0080 757 #define ASC_CFG1_LRAM_8BITS_ON 0x0800 758 #define ASC_CFG_MSW_CLR_MASK 0x3080 759 #define CSW_TEST1 (ASC_CS_TYPE)0x8000 760 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000 761 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000 762 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000 763 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800 764 #define CSW_TEST2 (ASC_CS_TYPE)0x0400 765 #define CSW_TEST3 (ASC_CS_TYPE)0x0200 766 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100 767 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080 768 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040 769 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020 770 #define CSW_HALTED (ASC_CS_TYPE)0x0010 771 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008 772 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004 773 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002 774 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001 775 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000 776 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100 777 #define CIW_TEST1 (ASC_CS_TYPE)0x0200 778 #define CIW_TEST2 (ASC_CS_TYPE)0x0400 779 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800 780 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000 781 #define CC_CHIP_RESET (uchar)0x80 782 #define CC_SCSI_RESET (uchar)0x40 783 #define CC_HALT (uchar)0x20 784 #define CC_SINGLE_STEP (uchar)0x10 785 #define CC_DMA_ABLE (uchar)0x08 786 #define CC_TEST (uchar)0x04 787 #define CC_BANK_ONE (uchar)0x02 788 #define CC_DIAG (uchar)0x01 789 #define ASC_1000_ID0W 0x04C1 790 #define ASC_1000_ID0W_FIX 0x00C1 791 #define ASC_1000_ID1B 0x25 792 #define ASC_EISA_REV_IOP_MASK (0x0C83) 793 #define ASC_EISA_CFG_IOP_MASK (0x0C86) 794 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000) 795 #define INS_HALTINT (ushort)0x6281 796 #define INS_HALT (ushort)0x6280 797 #define INS_SINT (ushort)0x6200 798 #define INS_RFLAG_WTM (ushort)0x7380 799 #define ASC_MC_SAVE_CODE_WSIZE 0x500 800 #define ASC_MC_SAVE_DATA_WSIZE 0x40 801 802 typedef struct asc_mc_saved { 803 ushort data[ASC_MC_SAVE_DATA_WSIZE]; 804 ushort code[ASC_MC_SAVE_CODE_WSIZE]; 805 } ASC_MC_SAVED; 806 807 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B) 808 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val) 809 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W) 810 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W) 811 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val) 812 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val) 813 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B) 814 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B) 815 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val) 816 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val) 817 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data)) 818 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id)) 819 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data) 820 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id)) 821 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE) 822 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD) 823 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION) 824 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW) 825 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH) 826 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data) 827 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data) 828 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD) 829 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data) 830 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA) 831 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data) 832 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR)) 833 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr) 834 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA) 835 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data) 836 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC) 837 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data) 838 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS) 839 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val) 840 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL) 841 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val) 842 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET) 843 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data) 844 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data) 845 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC) 846 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH)) 847 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID) 848 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL) 849 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data) 850 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX) 851 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data) 852 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX) 853 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data) 854 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH) 855 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data) 856 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP) 857 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data) 858 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L) 859 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data) 860 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H) 861 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data) 862 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED) 863 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data) 864 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0) 865 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data) 866 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1) 867 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data) 868 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0) 869 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data) 870 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1) 871 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data) 872 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID) 873 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data) 874 875 #define AdvPortAddr void __iomem * /* Virtual memory address size */ 876 877 /* 878 * Define Adv Library required memory access macros. 879 */ 880 #define ADV_MEM_READB(addr) readb(addr) 881 #define ADV_MEM_READW(addr) readw(addr) 882 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr) 883 #define ADV_MEM_WRITEW(addr, word) writew(word, addr) 884 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr) 885 886 /* 887 * Define total number of simultaneous maximum element scatter-gather 888 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the 889 * maximum number of outstanding commands per wide host adapter. Each 890 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather 891 * elements. Allow each command to have at least one ADV_SG_BLOCK structure. 892 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK 893 * structures or 255 scatter-gather elements. 894 */ 895 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG 896 897 /* 898 * Define maximum number of scatter-gather elements per request. 899 */ 900 #define ADV_MAX_SG_LIST 255 901 #define NO_OF_SG_PER_BLOCK 15 902 903 #define ADV_EEP_DVC_CFG_BEGIN (0x00) 904 #define ADV_EEP_DVC_CFG_END (0x15) 905 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */ 906 #define ADV_EEP_MAX_WORD_ADDR (0x1E) 907 908 #define ADV_EEP_DELAY_MS 100 909 910 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */ 911 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */ 912 /* 913 * For the ASC3550 Bit 13 is Termination Polarity control bit. 914 * For later ICs Bit 13 controls whether the CIS (Card Information 915 * Service Section) is loaded from EEPROM. 916 */ 917 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */ 918 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */ 919 /* 920 * ASC38C1600 Bit 11 921 * 922 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify 923 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then 924 * Function 0 will specify INT B. 925 * 926 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify 927 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then 928 * Function 1 will specify INT A. 929 */ 930 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */ 931 932 typedef struct adveep_3550_config { 933 /* Word Offset, Description */ 934 935 ushort cfg_lsw; /* 00 power up initialization */ 936 /* bit 13 set - Term Polarity Control */ 937 /* bit 14 set - BIOS Enable */ 938 /* bit 15 set - Big Endian Mode */ 939 ushort cfg_msw; /* 01 unused */ 940 ushort disc_enable; /* 02 disconnect enable */ 941 ushort wdtr_able; /* 03 Wide DTR able */ 942 ushort sdtr_able; /* 04 Synchronous DTR able */ 943 ushort start_motor; /* 05 send start up motor */ 944 ushort tagqng_able; /* 06 tag queuing able */ 945 ushort bios_scan; /* 07 BIOS device control */ 946 ushort scam_tolerant; /* 08 no scam */ 947 948 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 949 uchar bios_boot_delay; /* power up wait */ 950 951 uchar scsi_reset_delay; /* 10 reset delay */ 952 uchar bios_id_lun; /* first boot device scsi id & lun */ 953 /* high nibble is lun */ 954 /* low nibble is scsi id */ 955 956 uchar termination; /* 11 0 - automatic */ 957 /* 1 - low off / high off */ 958 /* 2 - low off / high on */ 959 /* 3 - low on / high on */ 960 /* There is no low on / high off */ 961 962 uchar reserved1; /* reserved byte (not used) */ 963 964 ushort bios_ctrl; /* 12 BIOS control bits */ 965 /* bit 0 BIOS don't act as initiator. */ 966 /* bit 1 BIOS > 1 GB support */ 967 /* bit 2 BIOS > 2 Disk Support */ 968 /* bit 3 BIOS don't support removables */ 969 /* bit 4 BIOS support bootable CD */ 970 /* bit 5 BIOS scan enabled */ 971 /* bit 6 BIOS support multiple LUNs */ 972 /* bit 7 BIOS display of message */ 973 /* bit 8 SCAM disabled */ 974 /* bit 9 Reset SCSI bus during init. */ 975 /* bit 10 */ 976 /* bit 11 No verbose initialization. */ 977 /* bit 12 SCSI parity enabled */ 978 /* bit 13 */ 979 /* bit 14 */ 980 /* bit 15 */ 981 ushort ultra_able; /* 13 ULTRA speed able */ 982 ushort reserved2; /* 14 reserved */ 983 uchar max_host_qng; /* 15 maximum host queuing */ 984 uchar max_dvc_qng; /* maximum per device queuing */ 985 ushort dvc_cntl; /* 16 control bit for driver */ 986 ushort bug_fix; /* 17 control bit for bug fix */ 987 ushort serial_number_word1; /* 18 Board serial number word 1 */ 988 ushort serial_number_word2; /* 19 Board serial number word 2 */ 989 ushort serial_number_word3; /* 20 Board serial number word 3 */ 990 ushort check_sum; /* 21 EEP check sum */ 991 uchar oem_name[16]; /* 22 OEM name */ 992 ushort dvc_err_code; /* 30 last device driver error code */ 993 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 994 ushort adv_err_addr; /* 32 last uc error address */ 995 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 996 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 997 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 998 ushort num_of_err; /* 36 number of error */ 999 } ADVEEP_3550_CONFIG; 1000 1001 typedef struct adveep_38C0800_config { 1002 /* Word Offset, Description */ 1003 1004 ushort cfg_lsw; /* 00 power up initialization */ 1005 /* bit 13 set - Load CIS */ 1006 /* bit 14 set - BIOS Enable */ 1007 /* bit 15 set - Big Endian Mode */ 1008 ushort cfg_msw; /* 01 unused */ 1009 ushort disc_enable; /* 02 disconnect enable */ 1010 ushort wdtr_able; /* 03 Wide DTR able */ 1011 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ 1012 ushort start_motor; /* 05 send start up motor */ 1013 ushort tagqng_able; /* 06 tag queuing able */ 1014 ushort bios_scan; /* 07 BIOS device control */ 1015 ushort scam_tolerant; /* 08 no scam */ 1016 1017 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1018 uchar bios_boot_delay; /* power up wait */ 1019 1020 uchar scsi_reset_delay; /* 10 reset delay */ 1021 uchar bios_id_lun; /* first boot device scsi id & lun */ 1022 /* high nibble is lun */ 1023 /* low nibble is scsi id */ 1024 1025 uchar termination_se; /* 11 0 - automatic */ 1026 /* 1 - low off / high off */ 1027 /* 2 - low off / high on */ 1028 /* 3 - low on / high on */ 1029 /* There is no low on / high off */ 1030 1031 uchar termination_lvd; /* 11 0 - automatic */ 1032 /* 1 - low off / high off */ 1033 /* 2 - low off / high on */ 1034 /* 3 - low on / high on */ 1035 /* There is no low on / high off */ 1036 1037 ushort bios_ctrl; /* 12 BIOS control bits */ 1038 /* bit 0 BIOS don't act as initiator. */ 1039 /* bit 1 BIOS > 1 GB support */ 1040 /* bit 2 BIOS > 2 Disk Support */ 1041 /* bit 3 BIOS don't support removables */ 1042 /* bit 4 BIOS support bootable CD */ 1043 /* bit 5 BIOS scan enabled */ 1044 /* bit 6 BIOS support multiple LUNs */ 1045 /* bit 7 BIOS display of message */ 1046 /* bit 8 SCAM disabled */ 1047 /* bit 9 Reset SCSI bus during init. */ 1048 /* bit 10 */ 1049 /* bit 11 No verbose initialization. */ 1050 /* bit 12 SCSI parity enabled */ 1051 /* bit 13 */ 1052 /* bit 14 */ 1053 /* bit 15 */ 1054 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ 1055 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ 1056 uchar max_host_qng; /* 15 maximum host queueing */ 1057 uchar max_dvc_qng; /* maximum per device queuing */ 1058 ushort dvc_cntl; /* 16 control bit for driver */ 1059 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ 1060 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1061 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1062 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1063 ushort check_sum; /* 21 EEP check sum */ 1064 uchar oem_name[16]; /* 22 OEM name */ 1065 ushort dvc_err_code; /* 30 last device driver error code */ 1066 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1067 ushort adv_err_addr; /* 32 last uc error address */ 1068 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1069 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1070 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1071 ushort reserved36; /* 36 reserved */ 1072 ushort reserved37; /* 37 reserved */ 1073 ushort reserved38; /* 38 reserved */ 1074 ushort reserved39; /* 39 reserved */ 1075 ushort reserved40; /* 40 reserved */ 1076 ushort reserved41; /* 41 reserved */ 1077 ushort reserved42; /* 42 reserved */ 1078 ushort reserved43; /* 43 reserved */ 1079 ushort reserved44; /* 44 reserved */ 1080 ushort reserved45; /* 45 reserved */ 1081 ushort reserved46; /* 46 reserved */ 1082 ushort reserved47; /* 47 reserved */ 1083 ushort reserved48; /* 48 reserved */ 1084 ushort reserved49; /* 49 reserved */ 1085 ushort reserved50; /* 50 reserved */ 1086 ushort reserved51; /* 51 reserved */ 1087 ushort reserved52; /* 52 reserved */ 1088 ushort reserved53; /* 53 reserved */ 1089 ushort reserved54; /* 54 reserved */ 1090 ushort reserved55; /* 55 reserved */ 1091 ushort cisptr_lsw; /* 56 CIS PTR LSW */ 1092 ushort cisprt_msw; /* 57 CIS PTR MSW */ 1093 ushort subsysvid; /* 58 SubSystem Vendor ID */ 1094 ushort subsysid; /* 59 SubSystem ID */ 1095 ushort reserved60; /* 60 reserved */ 1096 ushort reserved61; /* 61 reserved */ 1097 ushort reserved62; /* 62 reserved */ 1098 ushort reserved63; /* 63 reserved */ 1099 } ADVEEP_38C0800_CONFIG; 1100 1101 typedef struct adveep_38C1600_config { 1102 /* Word Offset, Description */ 1103 1104 ushort cfg_lsw; /* 00 power up initialization */ 1105 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */ 1106 /* clear - Func. 0 INTA, Func. 1 INTB */ 1107 /* bit 13 set - Load CIS */ 1108 /* bit 14 set - BIOS Enable */ 1109 /* bit 15 set - Big Endian Mode */ 1110 ushort cfg_msw; /* 01 unused */ 1111 ushort disc_enable; /* 02 disconnect enable */ 1112 ushort wdtr_able; /* 03 Wide DTR able */ 1113 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ 1114 ushort start_motor; /* 05 send start up motor */ 1115 ushort tagqng_able; /* 06 tag queuing able */ 1116 ushort bios_scan; /* 07 BIOS device control */ 1117 ushort scam_tolerant; /* 08 no scam */ 1118 1119 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1120 uchar bios_boot_delay; /* power up wait */ 1121 1122 uchar scsi_reset_delay; /* 10 reset delay */ 1123 uchar bios_id_lun; /* first boot device scsi id & lun */ 1124 /* high nibble is lun */ 1125 /* low nibble is scsi id */ 1126 1127 uchar termination_se; /* 11 0 - automatic */ 1128 /* 1 - low off / high off */ 1129 /* 2 - low off / high on */ 1130 /* 3 - low on / high on */ 1131 /* There is no low on / high off */ 1132 1133 uchar termination_lvd; /* 11 0 - automatic */ 1134 /* 1 - low off / high off */ 1135 /* 2 - low off / high on */ 1136 /* 3 - low on / high on */ 1137 /* There is no low on / high off */ 1138 1139 ushort bios_ctrl; /* 12 BIOS control bits */ 1140 /* bit 0 BIOS don't act as initiator. */ 1141 /* bit 1 BIOS > 1 GB support */ 1142 /* bit 2 BIOS > 2 Disk Support */ 1143 /* bit 3 BIOS don't support removables */ 1144 /* bit 4 BIOS support bootable CD */ 1145 /* bit 5 BIOS scan enabled */ 1146 /* bit 6 BIOS support multiple LUNs */ 1147 /* bit 7 BIOS display of message */ 1148 /* bit 8 SCAM disabled */ 1149 /* bit 9 Reset SCSI bus during init. */ 1150 /* bit 10 Basic Integrity Checking disabled */ 1151 /* bit 11 No verbose initialization. */ 1152 /* bit 12 SCSI parity enabled */ 1153 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */ 1154 /* bit 14 */ 1155 /* bit 15 */ 1156 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ 1157 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ 1158 uchar max_host_qng; /* 15 maximum host queueing */ 1159 uchar max_dvc_qng; /* maximum per device queuing */ 1160 ushort dvc_cntl; /* 16 control bit for driver */ 1161 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ 1162 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1163 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1164 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1165 ushort check_sum; /* 21 EEP check sum */ 1166 uchar oem_name[16]; /* 22 OEM name */ 1167 ushort dvc_err_code; /* 30 last device driver error code */ 1168 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1169 ushort adv_err_addr; /* 32 last uc error address */ 1170 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1171 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1172 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1173 ushort reserved36; /* 36 reserved */ 1174 ushort reserved37; /* 37 reserved */ 1175 ushort reserved38; /* 38 reserved */ 1176 ushort reserved39; /* 39 reserved */ 1177 ushort reserved40; /* 40 reserved */ 1178 ushort reserved41; /* 41 reserved */ 1179 ushort reserved42; /* 42 reserved */ 1180 ushort reserved43; /* 43 reserved */ 1181 ushort reserved44; /* 44 reserved */ 1182 ushort reserved45; /* 45 reserved */ 1183 ushort reserved46; /* 46 reserved */ 1184 ushort reserved47; /* 47 reserved */ 1185 ushort reserved48; /* 48 reserved */ 1186 ushort reserved49; /* 49 reserved */ 1187 ushort reserved50; /* 50 reserved */ 1188 ushort reserved51; /* 51 reserved */ 1189 ushort reserved52; /* 52 reserved */ 1190 ushort reserved53; /* 53 reserved */ 1191 ushort reserved54; /* 54 reserved */ 1192 ushort reserved55; /* 55 reserved */ 1193 ushort cisptr_lsw; /* 56 CIS PTR LSW */ 1194 ushort cisprt_msw; /* 57 CIS PTR MSW */ 1195 ushort subsysvid; /* 58 SubSystem Vendor ID */ 1196 ushort subsysid; /* 59 SubSystem ID */ 1197 ushort reserved60; /* 60 reserved */ 1198 ushort reserved61; /* 61 reserved */ 1199 ushort reserved62; /* 62 reserved */ 1200 ushort reserved63; /* 63 reserved */ 1201 } ADVEEP_38C1600_CONFIG; 1202 1203 /* 1204 * EEPROM Commands 1205 */ 1206 #define ASC_EEP_CMD_DONE 0x0200 1207 1208 /* bios_ctrl */ 1209 #define BIOS_CTRL_BIOS 0x0001 1210 #define BIOS_CTRL_EXTENDED_XLAT 0x0002 1211 #define BIOS_CTRL_GT_2_DISK 0x0004 1212 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008 1213 #define BIOS_CTRL_BOOTABLE_CD 0x0010 1214 #define BIOS_CTRL_MULTIPLE_LUN 0x0040 1215 #define BIOS_CTRL_DISPLAY_MSG 0x0080 1216 #define BIOS_CTRL_NO_SCAM 0x0100 1217 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200 1218 #define BIOS_CTRL_INIT_VERBOSE 0x0800 1219 #define BIOS_CTRL_SCSI_PARITY 0x1000 1220 #define BIOS_CTRL_AIPP_DIS 0x2000 1221 1222 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */ 1223 1224 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */ 1225 1226 /* 1227 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is 1228 * a special 16K Adv Library and Microcode version. After the issue is 1229 * resolved, should restore 32K support. 1230 * 1231 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory * 1232 */ 1233 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */ 1234 1235 /* 1236 * Byte I/O register address from base of 'iop_base'. 1237 */ 1238 #define IOPB_INTR_STATUS_REG 0x00 1239 #define IOPB_CHIP_ID_1 0x01 1240 #define IOPB_INTR_ENABLES 0x02 1241 #define IOPB_CHIP_TYPE_REV 0x03 1242 #define IOPB_RES_ADDR_4 0x04 1243 #define IOPB_RES_ADDR_5 0x05 1244 #define IOPB_RAM_DATA 0x06 1245 #define IOPB_RES_ADDR_7 0x07 1246 #define IOPB_FLAG_REG 0x08 1247 #define IOPB_RES_ADDR_9 0x09 1248 #define IOPB_RISC_CSR 0x0A 1249 #define IOPB_RES_ADDR_B 0x0B 1250 #define IOPB_RES_ADDR_C 0x0C 1251 #define IOPB_RES_ADDR_D 0x0D 1252 #define IOPB_SOFT_OVER_WR 0x0E 1253 #define IOPB_RES_ADDR_F 0x0F 1254 #define IOPB_MEM_CFG 0x10 1255 #define IOPB_RES_ADDR_11 0x11 1256 #define IOPB_GPIO_DATA 0x12 1257 #define IOPB_RES_ADDR_13 0x13 1258 #define IOPB_FLASH_PAGE 0x14 1259 #define IOPB_RES_ADDR_15 0x15 1260 #define IOPB_GPIO_CNTL 0x16 1261 #define IOPB_RES_ADDR_17 0x17 1262 #define IOPB_FLASH_DATA 0x18 1263 #define IOPB_RES_ADDR_19 0x19 1264 #define IOPB_RES_ADDR_1A 0x1A 1265 #define IOPB_RES_ADDR_1B 0x1B 1266 #define IOPB_RES_ADDR_1C 0x1C 1267 #define IOPB_RES_ADDR_1D 0x1D 1268 #define IOPB_RES_ADDR_1E 0x1E 1269 #define IOPB_RES_ADDR_1F 0x1F 1270 #define IOPB_DMA_CFG0 0x20 1271 #define IOPB_DMA_CFG1 0x21 1272 #define IOPB_TICKLE 0x22 1273 #define IOPB_DMA_REG_WR 0x23 1274 #define IOPB_SDMA_STATUS 0x24 1275 #define IOPB_SCSI_BYTE_CNT 0x25 1276 #define IOPB_HOST_BYTE_CNT 0x26 1277 #define IOPB_BYTE_LEFT_TO_XFER 0x27 1278 #define IOPB_BYTE_TO_XFER_0 0x28 1279 #define IOPB_BYTE_TO_XFER_1 0x29 1280 #define IOPB_BYTE_TO_XFER_2 0x2A 1281 #define IOPB_BYTE_TO_XFER_3 0x2B 1282 #define IOPB_ACC_GRP 0x2C 1283 #define IOPB_RES_ADDR_2D 0x2D 1284 #define IOPB_DEV_ID 0x2E 1285 #define IOPB_RES_ADDR_2F 0x2F 1286 #define IOPB_SCSI_DATA 0x30 1287 #define IOPB_RES_ADDR_31 0x31 1288 #define IOPB_RES_ADDR_32 0x32 1289 #define IOPB_SCSI_DATA_HSHK 0x33 1290 #define IOPB_SCSI_CTRL 0x34 1291 #define IOPB_RES_ADDR_35 0x35 1292 #define IOPB_RES_ADDR_36 0x36 1293 #define IOPB_RES_ADDR_37 0x37 1294 #define IOPB_RAM_BIST 0x38 1295 #define IOPB_PLL_TEST 0x39 1296 #define IOPB_PCI_INT_CFG 0x3A 1297 #define IOPB_RES_ADDR_3B 0x3B 1298 #define IOPB_RFIFO_CNT 0x3C 1299 #define IOPB_RES_ADDR_3D 0x3D 1300 #define IOPB_RES_ADDR_3E 0x3E 1301 #define IOPB_RES_ADDR_3F 0x3F 1302 1303 /* 1304 * Word I/O register address from base of 'iop_base'. 1305 */ 1306 #define IOPW_CHIP_ID_0 0x00 /* CID0 */ 1307 #define IOPW_CTRL_REG 0x02 /* CC */ 1308 #define IOPW_RAM_ADDR 0x04 /* LA */ 1309 #define IOPW_RAM_DATA 0x06 /* LD */ 1310 #define IOPW_RES_ADDR_08 0x08 1311 #define IOPW_RISC_CSR 0x0A /* CSR */ 1312 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */ 1313 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */ 1314 #define IOPW_RES_ADDR_10 0x10 1315 #define IOPW_SEL_MASK 0x12 /* SM */ 1316 #define IOPW_RES_ADDR_14 0x14 1317 #define IOPW_FLASH_ADDR 0x16 /* FA */ 1318 #define IOPW_RES_ADDR_18 0x18 1319 #define IOPW_EE_CMD 0x1A /* EC */ 1320 #define IOPW_EE_DATA 0x1C /* ED */ 1321 #define IOPW_SFIFO_CNT 0x1E /* SFC */ 1322 #define IOPW_RES_ADDR_20 0x20 1323 #define IOPW_Q_BASE 0x22 /* QB */ 1324 #define IOPW_QP 0x24 /* QP */ 1325 #define IOPW_IX 0x26 /* IX */ 1326 #define IOPW_SP 0x28 /* SP */ 1327 #define IOPW_PC 0x2A /* PC */ 1328 #define IOPW_RES_ADDR_2C 0x2C 1329 #define IOPW_RES_ADDR_2E 0x2E 1330 #define IOPW_SCSI_DATA 0x30 /* SD */ 1331 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */ 1332 #define IOPW_SCSI_CTRL 0x34 /* SC */ 1333 #define IOPW_HSHK_CFG 0x36 /* HCFG */ 1334 #define IOPW_SXFR_STATUS 0x36 /* SXS */ 1335 #define IOPW_SXFR_CNTL 0x38 /* SXL */ 1336 #define IOPW_SXFR_CNTH 0x3A /* SXH */ 1337 #define IOPW_RES_ADDR_3C 0x3C 1338 #define IOPW_RFIFO_DATA 0x3E /* RFD */ 1339 1340 /* 1341 * Doubleword I/O register address from base of 'iop_base'. 1342 */ 1343 #define IOPDW_RES_ADDR_0 0x00 1344 #define IOPDW_RAM_DATA 0x04 1345 #define IOPDW_RES_ADDR_8 0x08 1346 #define IOPDW_RES_ADDR_C 0x0C 1347 #define IOPDW_RES_ADDR_10 0x10 1348 #define IOPDW_COMMA 0x14 1349 #define IOPDW_COMMB 0x18 1350 #define IOPDW_RES_ADDR_1C 0x1C 1351 #define IOPDW_SDMA_ADDR0 0x20 1352 #define IOPDW_SDMA_ADDR1 0x24 1353 #define IOPDW_SDMA_COUNT 0x28 1354 #define IOPDW_SDMA_ERROR 0x2C 1355 #define IOPDW_RDMA_ADDR0 0x30 1356 #define IOPDW_RDMA_ADDR1 0x34 1357 #define IOPDW_RDMA_COUNT 0x38 1358 #define IOPDW_RDMA_ERROR 0x3C 1359 1360 #define ADV_CHIP_ID_BYTE 0x25 1361 #define ADV_CHIP_ID_WORD 0x04C1 1362 1363 #define ADV_INTR_ENABLE_HOST_INTR 0x01 1364 #define ADV_INTR_ENABLE_SEL_INTR 0x02 1365 #define ADV_INTR_ENABLE_DPR_INTR 0x04 1366 #define ADV_INTR_ENABLE_RTA_INTR 0x08 1367 #define ADV_INTR_ENABLE_RMA_INTR 0x10 1368 #define ADV_INTR_ENABLE_RST_INTR 0x20 1369 #define ADV_INTR_ENABLE_DPE_INTR 0x40 1370 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80 1371 1372 #define ADV_INTR_STATUS_INTRA 0x01 1373 #define ADV_INTR_STATUS_INTRB 0x02 1374 #define ADV_INTR_STATUS_INTRC 0x04 1375 1376 #define ADV_RISC_CSR_STOP (0x0000) 1377 #define ADV_RISC_TEST_COND (0x2000) 1378 #define ADV_RISC_CSR_RUN (0x4000) 1379 #define ADV_RISC_CSR_SINGLE_STEP (0x8000) 1380 1381 #define ADV_CTRL_REG_HOST_INTR 0x0100 1382 #define ADV_CTRL_REG_SEL_INTR 0x0200 1383 #define ADV_CTRL_REG_DPR_INTR 0x0400 1384 #define ADV_CTRL_REG_RTA_INTR 0x0800 1385 #define ADV_CTRL_REG_RMA_INTR 0x1000 1386 #define ADV_CTRL_REG_RES_BIT14 0x2000 1387 #define ADV_CTRL_REG_DPE_INTR 0x4000 1388 #define ADV_CTRL_REG_POWER_DONE 0x8000 1389 #define ADV_CTRL_REG_ANY_INTR 0xFF00 1390 1391 #define ADV_CTRL_REG_CMD_RESET 0x00C6 1392 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5 1393 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4 1394 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3 1395 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2 1396 1397 #define ADV_TICKLE_NOP 0x00 1398 #define ADV_TICKLE_A 0x01 1399 #define ADV_TICKLE_B 0x02 1400 #define ADV_TICKLE_C 0x03 1401 1402 #define AdvIsIntPending(port) \ 1403 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR) 1404 1405 /* 1406 * SCSI_CFG0 Register bit definitions 1407 */ 1408 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */ 1409 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */ 1410 #define EVEN_PARITY 0x1000 /* Select Even Parity */ 1411 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */ 1412 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */ 1413 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */ 1414 #define SCAM_EN 0x0080 /* Enable SCAM selection */ 1415 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */ 1416 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */ 1417 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */ 1418 #define OUR_ID 0x000F /* SCSI ID */ 1419 1420 /* 1421 * SCSI_CFG1 Register bit definitions 1422 */ 1423 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */ 1424 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */ 1425 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */ 1426 #define FILTER_SEL 0x0C00 /* Filter Period Selection */ 1427 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */ 1428 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */ 1429 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */ 1430 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */ 1431 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */ 1432 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */ 1433 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */ 1434 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */ 1435 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */ 1436 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */ 1437 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */ 1438 1439 /* 1440 * Addendum for ASC-38C0800 Chip 1441 * 1442 * The ASC-38C1600 Chip uses the same definitions except that the 1443 * bus mode override bits [12:10] have been moved to byte register 1444 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in 1445 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV) 1446 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only. 1447 * Also each ASC-38C1600 function or channel uses only cable bits [5:4] 1448 * and [1:0]. Bits [14], [7:6], [3:2] are unused. 1449 */ 1450 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */ 1451 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */ 1452 #define HVD 0x1000 /* HVD Device Detect */ 1453 #define LVD 0x0800 /* LVD Device Detect */ 1454 #define SE 0x0400 /* SE Device Detect */ 1455 #define TERM_LVD 0x00C0 /* LVD Termination Bits */ 1456 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */ 1457 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */ 1458 #define TERM_SE 0x0030 /* SE Termination Bits */ 1459 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */ 1460 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */ 1461 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */ 1462 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */ 1463 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */ 1464 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */ 1465 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */ 1466 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */ 1467 1468 #define CABLE_ILLEGAL_A 0x7 1469 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */ 1470 1471 #define CABLE_ILLEGAL_B 0xB 1472 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */ 1473 1474 /* 1475 * MEM_CFG Register bit definitions 1476 */ 1477 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */ 1478 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */ 1479 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */ 1480 #define RAM_SZ_2KB 0x00 /* 2 KB */ 1481 #define RAM_SZ_4KB 0x04 /* 4 KB */ 1482 #define RAM_SZ_8KB 0x08 /* 8 KB */ 1483 #define RAM_SZ_16KB 0x0C /* 16 KB */ 1484 #define RAM_SZ_32KB 0x10 /* 32 KB */ 1485 #define RAM_SZ_64KB 0x14 /* 64 KB */ 1486 1487 /* 1488 * DMA_CFG0 Register bit definitions 1489 * 1490 * This register is only accessible to the host. 1491 */ 1492 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */ 1493 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */ 1494 #define FIFO_THRESH_16B 0x00 /* 16 bytes */ 1495 #define FIFO_THRESH_32B 0x20 /* 32 bytes */ 1496 #define FIFO_THRESH_48B 0x30 /* 48 bytes */ 1497 #define FIFO_THRESH_64B 0x40 /* 64 bytes */ 1498 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */ 1499 #define FIFO_THRESH_96B 0x60 /* 96 bytes */ 1500 #define FIFO_THRESH_112B 0x70 /* 112 bytes */ 1501 #define START_CTL 0x0C /* DMA start conditions */ 1502 #define START_CTL_TH 0x00 /* Wait threshold level (default) */ 1503 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */ 1504 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */ 1505 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */ 1506 #define READ_CMD 0x03 /* Memory Read Method */ 1507 #define READ_CMD_MR 0x00 /* Memory Read */ 1508 #define READ_CMD_MRL 0x02 /* Memory Read Long */ 1509 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */ 1510 1511 /* 1512 * ASC-38C0800 RAM BIST Register bit definitions 1513 */ 1514 #define RAM_TEST_MODE 0x80 1515 #define PRE_TEST_MODE 0x40 1516 #define NORMAL_MODE 0x00 1517 #define RAM_TEST_DONE 0x10 1518 #define RAM_TEST_STATUS 0x0F 1519 #define RAM_TEST_HOST_ERROR 0x08 1520 #define RAM_TEST_INTRAM_ERROR 0x04 1521 #define RAM_TEST_RISC_ERROR 0x02 1522 #define RAM_TEST_SCSI_ERROR 0x01 1523 #define RAM_TEST_SUCCESS 0x00 1524 #define PRE_TEST_VALUE 0x05 1525 #define NORMAL_VALUE 0x00 1526 1527 /* 1528 * ASC38C1600 Definitions 1529 * 1530 * IOPB_PCI_INT_CFG Bit Field Definitions 1531 */ 1532 1533 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */ 1534 1535 /* 1536 * Bit 1 can be set to change the interrupt for the Function to operate in 1537 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in 1538 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same 1539 * mode, otherwise the operating mode is undefined. 1540 */ 1541 #define TOTEMPOLE 0x02 1542 1543 /* 1544 * Bit 0 can be used to change the Int Pin for the Function. The value is 1545 * 0 by default for both Functions with Function 0 using INT A and Function 1546 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set, 1547 * INT A is used. 1548 * 1549 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin 1550 * value specified in the PCI Configuration Space. 1551 */ 1552 #define INTAB 0x01 1553 1554 /* 1555 * Adv Library Status Definitions 1556 */ 1557 #define ADV_TRUE 1 1558 #define ADV_FALSE 0 1559 #define ADV_SUCCESS 1 1560 #define ADV_BUSY 0 1561 #define ADV_ERROR (-1) 1562 1563 /* 1564 * ADV_DVC_VAR 'warn_code' values 1565 */ 1566 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */ 1567 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */ 1568 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */ 1569 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */ 1570 1571 #define ADV_MAX_TID 15 /* max. target identifier */ 1572 #define ADV_MAX_LUN 7 /* max. logical unit number */ 1573 1574 /* 1575 * Fixed locations of microcode operating variables. 1576 */ 1577 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */ 1578 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */ 1579 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */ 1580 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */ 1581 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */ 1582 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */ 1583 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */ 1584 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */ 1585 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */ 1586 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */ 1587 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */ 1588 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */ 1589 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */ 1590 #define ASC_MC_CHIP_TYPE 0x009A 1591 #define ASC_MC_INTRB_CODE 0x009B 1592 #define ASC_MC_WDTR_ABLE 0x009C 1593 #define ASC_MC_SDTR_ABLE 0x009E 1594 #define ASC_MC_TAGQNG_ABLE 0x00A0 1595 #define ASC_MC_DISC_ENABLE 0x00A2 1596 #define ASC_MC_IDLE_CMD_STATUS 0x00A4 1597 #define ASC_MC_IDLE_CMD 0x00A6 1598 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8 1599 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC 1600 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE 1601 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0 1602 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2 1603 #define ASC_MC_SDTR_DONE 0x00B6 1604 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0 1605 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0 1606 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100 1607 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */ 1608 #define ASC_MC_WDTR_DONE 0x0124 1609 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */ 1610 #define ASC_MC_ICQ 0x0160 1611 #define ASC_MC_IRQ 0x0164 1612 #define ASC_MC_PPR_ABLE 0x017A 1613 1614 /* 1615 * BIOS LRAM variable absolute offsets. 1616 */ 1617 #define BIOS_CODESEG 0x54 1618 #define BIOS_CODELEN 0x56 1619 #define BIOS_SIGNATURE 0x58 1620 #define BIOS_VERSION 0x5A 1621 1622 /* 1623 * Microcode Control Flags 1624 * 1625 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122) 1626 * and handled by the microcode. 1627 */ 1628 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */ 1629 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */ 1630 1631 /* 1632 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format 1633 */ 1634 #define HSHK_CFG_WIDE_XFR 0x8000 1635 #define HSHK_CFG_RATE 0x0F00 1636 #define HSHK_CFG_OFFSET 0x001F 1637 1638 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */ 1639 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */ 1640 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */ 1641 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */ 1642 1643 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */ 1644 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */ 1645 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */ 1646 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */ 1647 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */ 1648 1649 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */ 1650 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */ 1651 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */ 1652 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */ 1653 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */ 1654 /* 1655 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or 1656 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used. 1657 */ 1658 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */ 1659 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */ 1660 1661 /* 1662 * All fields here are accessed by the board microcode and need to be 1663 * little-endian. 1664 */ 1665 typedef struct adv_carr_t { 1666 __le32 carr_va; /* Carrier Virtual Address */ 1667 __le32 carr_pa; /* Carrier Physical Address */ 1668 __le32 areq_vpa; /* ADV_SCSI_REQ_Q Virtual or Physical Address */ 1669 /* 1670 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer 1671 * 1672 * next_vpa [3:1] Reserved Bits 1673 * next_vpa [0] Done Flag set in Response Queue. 1674 */ 1675 __le32 next_vpa; 1676 } ADV_CARR_T; 1677 1678 /* 1679 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field. 1680 */ 1681 #define ADV_NEXT_VPA_MASK 0xFFFFFFF0 1682 1683 #define ADV_RQ_DONE 0x00000001 1684 #define ADV_RQ_GOOD 0x00000002 1685 #define ADV_CQ_STOPPER 0x00000000 1686 1687 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK) 1688 1689 /* 1690 * Each carrier is 64 bytes, and we need three additional 1691 * carrier for icq, irq, and the termination carrier. 1692 */ 1693 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3) 1694 1695 #define ADV_CARRIER_BUFSIZE \ 1696 (ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) 1697 1698 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */ 1699 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */ 1700 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */ 1701 1702 /* 1703 * Adapter temporary configuration structure 1704 * 1705 * This structure can be discarded after initialization. Don't add 1706 * fields here needed after initialization. 1707 * 1708 * Field naming convention: 1709 * 1710 * *_enable indicates the field enables or disables a feature. The 1711 * value of the field is never reset. 1712 */ 1713 typedef struct adv_dvc_cfg { 1714 ushort disc_enable; /* enable disconnection */ 1715 uchar chip_version; /* chip version */ 1716 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */ 1717 ushort control_flag; /* Microcode Control Flag */ 1718 ushort mcode_date; /* Microcode date */ 1719 ushort mcode_version; /* Microcode version */ 1720 ushort serial1; /* EEPROM serial number word 1 */ 1721 ushort serial2; /* EEPROM serial number word 2 */ 1722 ushort serial3; /* EEPROM serial number word 3 */ 1723 } ADV_DVC_CFG; 1724 1725 struct adv_dvc_var; 1726 struct adv_scsi_req_q; 1727 1728 typedef struct adv_sg_block { 1729 uchar reserved1; 1730 uchar reserved2; 1731 uchar reserved3; 1732 uchar sg_cnt; /* Valid entries in block. */ 1733 __le32 sg_ptr; /* Pointer to next sg block. */ 1734 struct { 1735 __le32 sg_addr; /* SG element address. */ 1736 __le32 sg_count; /* SG element count. */ 1737 } sg_list[NO_OF_SG_PER_BLOCK]; 1738 } ADV_SG_BLOCK; 1739 1740 /* 1741 * ADV_SCSI_REQ_Q - microcode request structure 1742 * 1743 * All fields in this structure up to byte 60 are used by the microcode. 1744 * The microcode makes assumptions about the size and ordering of fields 1745 * in this structure. Do not change the structure definition here without 1746 * coordinating the change with the microcode. 1747 * 1748 * All fields accessed by microcode must be maintained in little_endian 1749 * order. 1750 */ 1751 typedef struct adv_scsi_req_q { 1752 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */ 1753 uchar target_cmd; 1754 uchar target_id; /* Device target identifier. */ 1755 uchar target_lun; /* Device target logical unit number. */ 1756 __le32 data_addr; /* Data buffer physical address. */ 1757 __le32 data_cnt; /* Data count. Ucode sets to residual. */ 1758 __le32 sense_addr; 1759 __le32 carr_pa; 1760 uchar mflag; 1761 uchar sense_len; 1762 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */ 1763 uchar scsi_cntl; 1764 uchar done_status; /* Completion status. */ 1765 uchar scsi_status; /* SCSI status byte. */ 1766 uchar host_status; /* Ucode host status. */ 1767 uchar sg_working_ix; 1768 uchar cdb[12]; /* SCSI CDB bytes 0-11. */ 1769 __le32 sg_real_addr; /* SG list physical address. */ 1770 __le32 scsiq_rptr; 1771 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */ 1772 __le32 scsiq_ptr; 1773 __le32 carr_va; 1774 /* 1775 * End of microcode structure - 60 bytes. The rest of the structure 1776 * is used by the Adv Library and ignored by the microcode. 1777 */ 1778 u32 srb_tag; 1779 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */ 1780 } ADV_SCSI_REQ_Q; 1781 1782 /* 1783 * The following two structures are used to process Wide Board requests. 1784 * 1785 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library 1786 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the 1787 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points 1788 * to the Mid-Level SCSI request structure. 1789 * 1790 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each 1791 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux 1792 * up to 255 scatter-gather elements may be used per request or 1793 * ADV_SCSI_REQ_Q. 1794 * 1795 * Both structures must be 32 byte aligned. 1796 */ 1797 typedef struct adv_sgblk { 1798 ADV_SG_BLOCK sg_block; /* Sgblock structure. */ 1799 dma_addr_t sg_addr; /* Physical address */ 1800 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */ 1801 } adv_sgblk_t; 1802 1803 typedef struct adv_req { 1804 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */ 1805 uchar align[24]; /* Request structure padding. */ 1806 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */ 1807 dma_addr_t req_addr; 1808 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */ 1809 } adv_req_t __aligned(32); 1810 1811 /* 1812 * Adapter operation variable structure. 1813 * 1814 * One structure is required per host adapter. 1815 * 1816 * Field naming convention: 1817 * 1818 * *_able indicates both whether a feature should be enabled or disabled 1819 * and whether a device isi capable of the feature. At initialization 1820 * this field may be set, but later if a device is found to be incapable 1821 * of the feature, the field is cleared. 1822 */ 1823 typedef struct adv_dvc_var { 1824 AdvPortAddr iop_base; /* I/O port address */ 1825 ushort err_code; /* fatal error code */ 1826 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */ 1827 ushort wdtr_able; /* try WDTR for a device */ 1828 ushort sdtr_able; /* try SDTR for a device */ 1829 ushort ultra_able; /* try SDTR Ultra speed for a device */ 1830 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */ 1831 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */ 1832 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */ 1833 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */ 1834 ushort tagqng_able; /* try tagged queuing with a device */ 1835 ushort ppr_able; /* PPR message capable per TID bitmask. */ 1836 uchar max_dvc_qng; /* maximum number of tagged commands per device */ 1837 ushort start_motor; /* start motor command allowed */ 1838 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */ 1839 uchar chip_no; /* should be assigned by caller */ 1840 uchar max_host_qng; /* maximum number of Q'ed command allowed */ 1841 ushort no_scam; /* scam_tolerant of EEPROM */ 1842 struct asc_board *drv_ptr; /* driver pointer to private structure */ 1843 uchar chip_scsi_id; /* chip SCSI target ID */ 1844 uchar chip_type; 1845 uchar bist_err_code; 1846 ADV_CARR_T *carrier; 1847 ADV_CARR_T *carr_freelist; /* Carrier free list. */ 1848 dma_addr_t carrier_addr; 1849 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */ 1850 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */ 1851 ushort carr_pending_cnt; /* Count of pending carriers. */ 1852 /* 1853 * Note: The following fields will not be used after initialization. The 1854 * driver may discard the buffer after initialization is done. 1855 */ 1856 ADV_DVC_CFG *cfg; /* temporary configuration structure */ 1857 } ADV_DVC_VAR; 1858 1859 /* 1860 * Microcode idle loop commands 1861 */ 1862 #define IDLE_CMD_COMPLETED 0 1863 #define IDLE_CMD_STOP_CHIP 0x0001 1864 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002 1865 #define IDLE_CMD_SEND_INT 0x0004 1866 #define IDLE_CMD_ABORT 0x0008 1867 #define IDLE_CMD_DEVICE_RESET 0x0010 1868 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */ 1869 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */ 1870 #define IDLE_CMD_SCSIREQ 0x0080 1871 1872 #define IDLE_CMD_STATUS_SUCCESS 0x0001 1873 #define IDLE_CMD_STATUS_FAILURE 0x0002 1874 1875 /* 1876 * AdvSendIdleCmd() flag definitions. 1877 */ 1878 #define ADV_NOWAIT 0x01 1879 1880 /* 1881 * Wait loop time out values. 1882 */ 1883 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */ 1884 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */ 1885 #define SCSI_MAX_RETRY 10 /* retry count */ 1886 1887 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */ 1888 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */ 1889 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */ 1890 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */ 1891 1892 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */ 1893 1894 /* Read byte from a register. */ 1895 #define AdvReadByteRegister(iop_base, reg_off) \ 1896 (ADV_MEM_READB((iop_base) + (reg_off))) 1897 1898 /* Write byte to a register. */ 1899 #define AdvWriteByteRegister(iop_base, reg_off, byte) \ 1900 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte))) 1901 1902 /* Read word (2 bytes) from a register. */ 1903 #define AdvReadWordRegister(iop_base, reg_off) \ 1904 (ADV_MEM_READW((iop_base) + (reg_off))) 1905 1906 /* Write word (2 bytes) to a register. */ 1907 #define AdvWriteWordRegister(iop_base, reg_off, word) \ 1908 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word))) 1909 1910 /* Write dword (4 bytes) to a register. */ 1911 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \ 1912 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword))) 1913 1914 /* Read byte from LRAM. */ 1915 #define AdvReadByteLram(iop_base, addr, byte) \ 1916 do { \ 1917 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ 1918 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \ 1919 } while (0) 1920 1921 /* Write byte to LRAM. */ 1922 #define AdvWriteByteLram(iop_base, addr, byte) \ 1923 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1924 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte))) 1925 1926 /* Read word (2 bytes) from LRAM. */ 1927 #define AdvReadWordLram(iop_base, addr, word) \ 1928 do { \ 1929 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ 1930 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \ 1931 } while (0) 1932 1933 /* Write word (2 bytes) to LRAM. */ 1934 #define AdvWriteWordLram(iop_base, addr, word) \ 1935 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1936 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) 1937 1938 /* Write little-endian double word (4 bytes) to LRAM */ 1939 /* Because of unspecified C language ordering don't use auto-increment. */ 1940 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \ 1941 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1942 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ 1943 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \ 1944 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \ 1945 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ 1946 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF))))) 1947 1948 /* Read word (2 bytes) from LRAM assuming that the address is already set. */ 1949 #define AdvReadWordAutoIncLram(iop_base) \ 1950 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)) 1951 1952 /* Write word (2 bytes) to LRAM assuming that the address is already set. */ 1953 #define AdvWriteWordAutoIncLram(iop_base, word) \ 1954 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) 1955 1956 /* 1957 * Define macro to check for Condor signature. 1958 * 1959 * Evaluate to ADV_TRUE if a Condor chip is found the specified port 1960 * address 'iop_base'. Otherwise evalue to ADV_FALSE. 1961 */ 1962 #define AdvFindSignature(iop_base) \ 1963 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \ 1964 ADV_CHIP_ID_BYTE) && \ 1965 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \ 1966 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE) 1967 1968 /* 1969 * Define macro to Return the version number of the chip at 'iop_base'. 1970 * 1971 * The second parameter 'bus_type' is currently unused. 1972 */ 1973 #define AdvGetChipVersion(iop_base, bus_type) \ 1974 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV) 1975 1976 /* 1977 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must 1978 * match the ADV_SCSI_REQ_Q 'srb_tag' field. 1979 * 1980 * If the request has not yet been sent to the device it will simply be 1981 * aborted from RISC memory. If the request is disconnected it will be 1982 * aborted on reselection by sending an Abort Message to the target ID. 1983 * 1984 * Return value: 1985 * ADV_TRUE(1) - Queue was successfully aborted. 1986 * ADV_FALSE(0) - Queue was not found on the active queue list. 1987 */ 1988 #define AdvAbortQueue(asc_dvc, srb_tag) \ 1989 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \ 1990 (ADV_DCNT) (srb_tag)) 1991 1992 /* 1993 * Send a Bus Device Reset Message to the specified target ID. 1994 * 1995 * All outstanding commands will be purged if sending the 1996 * Bus Device Reset Message is successful. 1997 * 1998 * Return Value: 1999 * ADV_TRUE(1) - All requests on the target are purged. 2000 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests 2001 * are not purged. 2002 */ 2003 #define AdvResetDevice(asc_dvc, target_id) \ 2004 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \ 2005 (ADV_DCNT) (target_id)) 2006 2007 /* 2008 * SCSI Wide Type definition. 2009 */ 2010 #define ADV_SCSI_BIT_ID_TYPE ushort 2011 2012 /* 2013 * AdvInitScsiTarget() 'cntl_flag' options. 2014 */ 2015 #define ADV_SCAN_LUN 0x01 2016 #define ADV_CAPINFO_NOLUN 0x02 2017 2018 /* 2019 * Convert target id to target id bit mask. 2020 */ 2021 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID)) 2022 2023 /* 2024 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values. 2025 */ 2026 2027 #define QD_NO_STATUS 0x00 /* Request not completed yet. */ 2028 #define QD_NO_ERROR 0x01 2029 #define QD_ABORTED_BY_HOST 0x02 2030 #define QD_WITH_ERROR 0x04 2031 2032 #define QHSTA_NO_ERROR 0x00 2033 #define QHSTA_M_SEL_TIMEOUT 0x11 2034 #define QHSTA_M_DATA_OVER_RUN 0x12 2035 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 2036 #define QHSTA_M_QUEUE_ABORTED 0x15 2037 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */ 2038 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */ 2039 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */ 2040 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */ 2041 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */ 2042 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */ 2043 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */ 2044 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */ 2045 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */ 2046 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */ 2047 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */ 2048 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */ 2049 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */ 2050 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */ 2051 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */ 2052 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */ 2053 #define QHSTA_M_WTM_TIMEOUT 0x41 2054 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 2055 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 2056 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 2057 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */ 2058 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */ 2059 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */ 2060 2061 /* Return the address that is aligned at the next doubleword >= to 'addr'. */ 2062 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F) 2063 2064 /* 2065 * Total contiguous memory needed for driver SG blocks. 2066 * 2067 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum 2068 * number of scatter-gather elements the driver supports in a 2069 * single request. 2070 */ 2071 2072 #define ADV_SG_LIST_MAX_BYTE_SIZE \ 2073 (sizeof(ADV_SG_BLOCK) * \ 2074 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK)) 2075 2076 /* struct asc_board flags */ 2077 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */ 2078 2079 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0) 2080 2081 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */ 2082 2083 #define ASC_INFO_SIZE 128 /* advansys_info() line size */ 2084 2085 /* Asc Library return codes */ 2086 #define ASC_TRUE 1 2087 #define ASC_FALSE 0 2088 #define ASC_NOERROR 1 2089 #define ASC_BUSY 0 2090 #define ASC_ERROR (-1) 2091 2092 /* struct scsi_cmnd function return codes */ 2093 #define STATUS_BYTE(byte) (byte) 2094 #define MSG_BYTE(byte) ((byte) << 8) 2095 #define HOST_BYTE(byte) ((byte) << 16) 2096 #define DRIVER_BYTE(byte) ((byte) << 24) 2097 2098 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1) 2099 #ifndef ADVANSYS_STATS 2100 #define ASC_STATS_ADD(shost, counter, count) 2101 #else /* ADVANSYS_STATS */ 2102 #define ASC_STATS_ADD(shost, counter, count) \ 2103 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count)) 2104 #endif /* ADVANSYS_STATS */ 2105 2106 /* If the result wraps when calculating tenths, return 0. */ 2107 #define ASC_TENTHS(num, den) \ 2108 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \ 2109 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den))))) 2110 2111 /* 2112 * Display a message to the console. 2113 */ 2114 #define ASC_PRINT(s) \ 2115 { \ 2116 printk("advansys: "); \ 2117 printk(s); \ 2118 } 2119 2120 #define ASC_PRINT1(s, a1) \ 2121 { \ 2122 printk("advansys: "); \ 2123 printk((s), (a1)); \ 2124 } 2125 2126 #define ASC_PRINT2(s, a1, a2) \ 2127 { \ 2128 printk("advansys: "); \ 2129 printk((s), (a1), (a2)); \ 2130 } 2131 2132 #define ASC_PRINT3(s, a1, a2, a3) \ 2133 { \ 2134 printk("advansys: "); \ 2135 printk((s), (a1), (a2), (a3)); \ 2136 } 2137 2138 #define ASC_PRINT4(s, a1, a2, a3, a4) \ 2139 { \ 2140 printk("advansys: "); \ 2141 printk((s), (a1), (a2), (a3), (a4)); \ 2142 } 2143 2144 #ifndef ADVANSYS_DEBUG 2145 2146 #define ASC_DBG(lvl, s...) 2147 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) 2148 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) 2149 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) 2150 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) 2151 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) 2152 #define ASC_DBG_PRT_HEX(lvl, name, start, length) 2153 #define ASC_DBG_PRT_CDB(lvl, cdb, len) 2154 #define ASC_DBG_PRT_SENSE(lvl, sense, len) 2155 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) 2156 2157 #else /* ADVANSYS_DEBUG */ 2158 2159 /* 2160 * Debugging Message Levels: 2161 * 0: Errors Only 2162 * 1: High-Level Tracing 2163 * 2-N: Verbose Tracing 2164 */ 2165 2166 #define ASC_DBG(lvl, format, arg...) { \ 2167 if (asc_dbglvl >= (lvl)) \ 2168 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \ 2169 __func__ , ## arg); \ 2170 } 2171 2172 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \ 2173 { \ 2174 if (asc_dbglvl >= (lvl)) { \ 2175 asc_prt_scsi_host(s); \ 2176 } \ 2177 } 2178 2179 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \ 2180 { \ 2181 if (asc_dbglvl >= (lvl)) { \ 2182 asc_prt_asc_scsi_q(scsiqp); \ 2183 } \ 2184 } 2185 2186 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \ 2187 { \ 2188 if (asc_dbglvl >= (lvl)) { \ 2189 asc_prt_asc_qdone_info(qdone); \ 2190 } \ 2191 } 2192 2193 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \ 2194 { \ 2195 if (asc_dbglvl >= (lvl)) { \ 2196 asc_prt_adv_scsi_req_q(scsiqp); \ 2197 } \ 2198 } 2199 2200 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \ 2201 { \ 2202 if (asc_dbglvl >= (lvl)) { \ 2203 asc_prt_hex((name), (start), (length)); \ 2204 } \ 2205 } 2206 2207 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \ 2208 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len)); 2209 2210 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \ 2211 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len)); 2212 2213 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \ 2214 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len)); 2215 #endif /* ADVANSYS_DEBUG */ 2216 2217 #ifdef ADVANSYS_STATS 2218 2219 /* Per board statistics structure */ 2220 struct asc_stats { 2221 /* Driver Entrypoint Statistics */ 2222 unsigned int queuecommand; /* # calls to advansys_queuecommand() */ 2223 unsigned int reset; /* # calls to advansys_eh_bus_reset() */ 2224 unsigned int biosparam; /* # calls to advansys_biosparam() */ 2225 unsigned int interrupt; /* # advansys_interrupt() calls */ 2226 unsigned int callback; /* # calls to asc/adv_isr_callback() */ 2227 unsigned int done; /* # calls to request's scsi_done function */ 2228 unsigned int build_error; /* # asc/adv_build_req() ASC_ERROR returns. */ 2229 unsigned int adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */ 2230 unsigned int adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */ 2231 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */ 2232 unsigned int exe_noerror; /* # ASC_NOERROR returns. */ 2233 unsigned int exe_busy; /* # ASC_BUSY returns. */ 2234 unsigned int exe_error; /* # ASC_ERROR returns. */ 2235 unsigned int exe_unknown; /* # unknown returns. */ 2236 /* Data Transfer Statistics */ 2237 unsigned int xfer_cnt; /* # I/O requests received */ 2238 unsigned int xfer_elem; /* # scatter-gather elements */ 2239 unsigned int xfer_sect; /* # 512-byte blocks */ 2240 }; 2241 #endif /* ADVANSYS_STATS */ 2242 2243 /* 2244 * Structure allocated for each board. 2245 * 2246 * This structure is allocated by scsi_host_alloc() at the end 2247 * of the 'Scsi_Host' structure starting at the 'hostdata' 2248 * field. It is guaranteed to be allocated from DMA-able memory. 2249 */ 2250 struct asc_board { 2251 struct device *dev; 2252 struct Scsi_Host *shost; 2253 uint flags; /* Board flags */ 2254 unsigned int irq; 2255 union { 2256 ASC_DVC_VAR asc_dvc_var; /* Narrow board */ 2257 ADV_DVC_VAR adv_dvc_var; /* Wide board */ 2258 } dvc_var; 2259 union { 2260 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */ 2261 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */ 2262 } dvc_cfg; 2263 ushort asc_n_io_port; /* Number I/O ports. */ 2264 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */ 2265 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */ 2266 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */ 2267 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */ 2268 union { 2269 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */ 2270 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */ 2271 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */ 2272 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */ 2273 } eep_config; 2274 /* /proc/scsi/advansys/[0...] */ 2275 #ifdef ADVANSYS_STATS 2276 struct asc_stats asc_stats; /* Board statistics */ 2277 #endif /* ADVANSYS_STATS */ 2278 /* 2279 * The following fields are used only for Narrow Boards. 2280 */ 2281 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */ 2282 /* 2283 * The following fields are used only for Wide Boards. 2284 */ 2285 void __iomem *ioremap_addr; /* I/O Memory remap address. */ 2286 ushort ioport; /* I/O Port address. */ 2287 adv_req_t *adv_reqp; /* Request structures. */ 2288 dma_addr_t adv_reqp_addr; 2289 size_t adv_reqp_size; 2290 struct dma_pool *adv_sgblk_pool; /* Scatter-gather structures. */ 2291 ushort bios_signature; /* BIOS Signature. */ 2292 ushort bios_version; /* BIOS Version. */ 2293 ushort bios_codeseg; /* BIOS Code Segment. */ 2294 ushort bios_codelen; /* BIOS Code Segment Length. */ 2295 }; 2296 2297 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \ 2298 dvc_var.asc_dvc_var) 2299 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \ 2300 dvc_var.adv_dvc_var) 2301 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev) 2302 2303 #ifdef ADVANSYS_DEBUG 2304 static int asc_dbglvl = 3; 2305 2306 /* 2307 * asc_prt_asc_dvc_var() 2308 */ 2309 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h) 2310 { 2311 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h); 2312 2313 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl " 2314 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl); 2315 2316 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type, 2317 (unsigned)h->init_sdtr); 2318 2319 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, " 2320 "chip_no 0x%x,\n", (unsigned)h->sdtr_done, 2321 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready, 2322 (unsigned)h->chip_no); 2323 2324 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait " 2325 "%u,\n", (unsigned)h->queue_full_or_busy, 2326 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); 2327 2328 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, " 2329 "in_critical_cnt %u,\n", (unsigned)h->is_in_int, 2330 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng, 2331 (unsigned)h->in_critical_cnt); 2332 2333 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, " 2334 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage, 2335 (unsigned)h->init_state, (unsigned)h->no_scam, 2336 (unsigned)h->pci_fix_asyn_xfer); 2337 2338 printk(" cfg 0x%lx\n", (ulong)h->cfg); 2339 } 2340 2341 /* 2342 * asc_prt_asc_dvc_cfg() 2343 */ 2344 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h) 2345 { 2346 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h); 2347 2348 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n", 2349 h->can_tagged_qng, h->cmd_qng_enabled); 2350 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n", 2351 h->disc_enable, h->sdtr_enable); 2352 2353 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, " 2354 "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed, 2355 h->isa_dma_channel, h->chip_version); 2356 2357 printk(" mcode_date 0x%x, mcode_version %d\n", 2358 h->mcode_date, h->mcode_version); 2359 } 2360 2361 /* 2362 * asc_prt_adv_dvc_var() 2363 * 2364 * Display an ADV_DVC_VAR structure. 2365 */ 2366 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h) 2367 { 2368 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h); 2369 2370 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n", 2371 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able); 2372 2373 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n", 2374 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able); 2375 2376 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n", 2377 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); 2378 2379 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n", 2380 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng, 2381 h->carr_freelist); 2382 2383 printk(" icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp); 2384 2385 printk(" no_scam 0x%x, tagqng_able 0x%x\n", 2386 (unsigned)h->no_scam, (unsigned)h->tagqng_able); 2387 2388 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n", 2389 (unsigned)h->chip_scsi_id, (ulong)h->cfg); 2390 } 2391 2392 /* 2393 * asc_prt_adv_dvc_cfg() 2394 * 2395 * Display an ADV_DVC_CFG structure. 2396 */ 2397 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h) 2398 { 2399 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h); 2400 2401 printk(" disc_enable 0x%x, termination 0x%x\n", 2402 h->disc_enable, h->termination); 2403 2404 printk(" chip_version 0x%x, mcode_date 0x%x\n", 2405 h->chip_version, h->mcode_date); 2406 2407 printk(" mcode_version 0x%x, control_flag 0x%x\n", 2408 h->mcode_version, h->control_flag); 2409 } 2410 2411 /* 2412 * asc_prt_scsi_host() 2413 */ 2414 static void asc_prt_scsi_host(struct Scsi_Host *s) 2415 { 2416 struct asc_board *boardp = shost_priv(s); 2417 2418 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev)); 2419 printk(" host_busy %u, host_no %d,\n", 2420 atomic_read(&s->host_busy), s->host_no); 2421 2422 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n", 2423 (ulong)s->base, (ulong)s->io_port, boardp->irq); 2424 2425 printk(" dma_channel %d, this_id %d, can_queue %d,\n", 2426 s->dma_channel, s->this_id, s->can_queue); 2427 2428 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n", 2429 s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma); 2430 2431 if (ASC_NARROW_BOARD(boardp)) { 2432 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var); 2433 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg); 2434 } else { 2435 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var); 2436 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg); 2437 } 2438 } 2439 2440 /* 2441 * asc_prt_hex() 2442 * 2443 * Print hexadecimal output in 4 byte groupings 32 bytes 2444 * or 8 double-words per line. 2445 */ 2446 static void asc_prt_hex(char *f, uchar *s, int l) 2447 { 2448 int i; 2449 int j; 2450 int k; 2451 int m; 2452 2453 printk("%s: (%d bytes)\n", f, l); 2454 2455 for (i = 0; i < l; i += 32) { 2456 2457 /* Display a maximum of 8 double-words per line. */ 2458 if ((k = (l - i) / 4) >= 8) { 2459 k = 8; 2460 m = 0; 2461 } else { 2462 m = (l - i) % 4; 2463 } 2464 2465 for (j = 0; j < k; j++) { 2466 printk(" %2.2X%2.2X%2.2X%2.2X", 2467 (unsigned)s[i + (j * 4)], 2468 (unsigned)s[i + (j * 4) + 1], 2469 (unsigned)s[i + (j * 4) + 2], 2470 (unsigned)s[i + (j * 4) + 3]); 2471 } 2472 2473 switch (m) { 2474 case 0: 2475 default: 2476 break; 2477 case 1: 2478 printk(" %2.2X", (unsigned)s[i + (j * 4)]); 2479 break; 2480 case 2: 2481 printk(" %2.2X%2.2X", 2482 (unsigned)s[i + (j * 4)], 2483 (unsigned)s[i + (j * 4) + 1]); 2484 break; 2485 case 3: 2486 printk(" %2.2X%2.2X%2.2X", 2487 (unsigned)s[i + (j * 4) + 1], 2488 (unsigned)s[i + (j * 4) + 2], 2489 (unsigned)s[i + (j * 4) + 3]); 2490 break; 2491 } 2492 2493 printk("\n"); 2494 } 2495 } 2496 2497 /* 2498 * asc_prt_asc_scsi_q() 2499 */ 2500 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q) 2501 { 2502 ASC_SG_HEAD *sgp; 2503 int i; 2504 2505 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q); 2506 2507 printk 2508 (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n", 2509 q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag, 2510 q->q2.tag_code); 2511 2512 printk 2513 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", 2514 (ulong)le32_to_cpu(q->q1.data_addr), 2515 (ulong)le32_to_cpu(q->q1.data_cnt), 2516 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len); 2517 2518 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n", 2519 (ulong)q->cdbptr, q->q2.cdb_len, 2520 (ulong)q->sg_head, q->q1.sg_queue_cnt); 2521 2522 if (q->sg_head) { 2523 sgp = q->sg_head; 2524 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp); 2525 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt, 2526 sgp->queue_cnt); 2527 for (i = 0; i < sgp->entry_cnt; i++) { 2528 printk(" [%u]: addr 0x%lx, bytes %lu\n", 2529 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr), 2530 (ulong)le32_to_cpu(sgp->sg_list[i].bytes)); 2531 } 2532 2533 } 2534 } 2535 2536 /* 2537 * asc_prt_asc_qdone_info() 2538 */ 2539 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q) 2540 { 2541 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q); 2542 printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n", 2543 q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len, 2544 q->d2.tag_code); 2545 printk 2546 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n", 2547 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg); 2548 } 2549 2550 /* 2551 * asc_prt_adv_sgblock() 2552 * 2553 * Display an ADV_SG_BLOCK structure. 2554 */ 2555 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b) 2556 { 2557 int i; 2558 2559 printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n", 2560 (ulong)b, sgblockno); 2561 printk(" sg_cnt %u, sg_ptr 0x%x\n", 2562 b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr)); 2563 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK); 2564 if (b->sg_ptr != 0) 2565 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK); 2566 for (i = 0; i < b->sg_cnt; i++) { 2567 printk(" [%u]: sg_addr 0x%x, sg_count 0x%x\n", 2568 i, (u32)le32_to_cpu(b->sg_list[i].sg_addr), 2569 (u32)le32_to_cpu(b->sg_list[i].sg_count)); 2570 } 2571 } 2572 2573 /* 2574 * asc_prt_adv_scsi_req_q() 2575 * 2576 * Display an ADV_SCSI_REQ_Q structure. 2577 */ 2578 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q) 2579 { 2580 int sg_blk_cnt; 2581 struct adv_sg_block *sg_ptr; 2582 adv_sgblk_t *sgblkp; 2583 2584 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q); 2585 2586 printk(" target_id %u, target_lun %u, srb_tag 0x%x\n", 2587 q->target_id, q->target_lun, q->srb_tag); 2588 2589 printk(" cntl 0x%x, data_addr 0x%lx\n", 2590 q->cntl, (ulong)le32_to_cpu(q->data_addr)); 2591 2592 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", 2593 (ulong)le32_to_cpu(q->data_cnt), 2594 (ulong)le32_to_cpu(q->sense_addr), q->sense_len); 2595 2596 printk 2597 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n", 2598 q->cdb_len, q->done_status, q->host_status, q->scsi_status); 2599 2600 printk(" sg_working_ix 0x%x, target_cmd %u\n", 2601 q->sg_working_ix, q->target_cmd); 2602 2603 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n", 2604 (ulong)le32_to_cpu(q->scsiq_rptr), 2605 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr); 2606 2607 /* Display the request's ADV_SG_BLOCK structures. */ 2608 if (q->sg_list_ptr != NULL) { 2609 sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block); 2610 sg_blk_cnt = 0; 2611 while (sgblkp) { 2612 sg_ptr = &sgblkp->sg_block; 2613 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr); 2614 if (sg_ptr->sg_ptr == 0) { 2615 break; 2616 } 2617 sgblkp = sgblkp->next_sgblkp; 2618 sg_blk_cnt++; 2619 } 2620 } 2621 } 2622 #endif /* ADVANSYS_DEBUG */ 2623 2624 /* 2625 * advansys_info() 2626 * 2627 * Return suitable for printing on the console with the argument 2628 * adapter's configuration information. 2629 * 2630 * Note: The information line should not exceed ASC_INFO_SIZE bytes, 2631 * otherwise the static 'info' array will be overrun. 2632 */ 2633 static const char *advansys_info(struct Scsi_Host *shost) 2634 { 2635 static char info[ASC_INFO_SIZE]; 2636 struct asc_board *boardp = shost_priv(shost); 2637 ASC_DVC_VAR *asc_dvc_varp; 2638 ADV_DVC_VAR *adv_dvc_varp; 2639 char *busname; 2640 char *widename = NULL; 2641 2642 if (ASC_NARROW_BOARD(boardp)) { 2643 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 2644 ASC_DBG(1, "begin\n"); 2645 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 2646 if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) == 2647 ASC_IS_ISAPNP) { 2648 busname = "ISA PnP"; 2649 } else { 2650 busname = "ISA"; 2651 } 2652 sprintf(info, 2653 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X", 2654 ASC_VERSION, busname, 2655 (ulong)shost->io_port, 2656 (ulong)shost->io_port + ASC_IOADR_GAP - 1, 2657 boardp->irq, shost->dma_channel); 2658 } else { 2659 if (asc_dvc_varp->bus_type & ASC_IS_VL) { 2660 busname = "VL"; 2661 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) { 2662 busname = "EISA"; 2663 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) { 2664 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA) 2665 == ASC_IS_PCI_ULTRA) { 2666 busname = "PCI Ultra"; 2667 } else { 2668 busname = "PCI"; 2669 } 2670 } else { 2671 busname = "?"; 2672 shost_printk(KERN_ERR, shost, "unknown bus " 2673 "type %d\n", asc_dvc_varp->bus_type); 2674 } 2675 sprintf(info, 2676 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X", 2677 ASC_VERSION, busname, (ulong)shost->io_port, 2678 (ulong)shost->io_port + ASC_IOADR_GAP - 1, 2679 boardp->irq); 2680 } 2681 } else { 2682 /* 2683 * Wide Adapter Information 2684 * 2685 * Memory-mapped I/O is used instead of I/O space to access 2686 * the adapter, but display the I/O Port range. The Memory 2687 * I/O address is displayed through the driver /proc file. 2688 */ 2689 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 2690 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2691 widename = "Ultra-Wide"; 2692 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2693 widename = "Ultra2-Wide"; 2694 } else { 2695 widename = "Ultra3-Wide"; 2696 } 2697 sprintf(info, 2698 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X", 2699 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base, 2700 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq); 2701 } 2702 BUG_ON(strlen(info) >= ASC_INFO_SIZE); 2703 ASC_DBG(1, "end\n"); 2704 return info; 2705 } 2706 2707 #ifdef CONFIG_PROC_FS 2708 2709 /* 2710 * asc_prt_board_devices() 2711 * 2712 * Print driver information for devices attached to the board. 2713 */ 2714 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost) 2715 { 2716 struct asc_board *boardp = shost_priv(shost); 2717 int chip_scsi_id; 2718 int i; 2719 2720 seq_printf(m, 2721 "\nDevice Information for AdvanSys SCSI Host %d:\n", 2722 shost->host_no); 2723 2724 if (ASC_NARROW_BOARD(boardp)) { 2725 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; 2726 } else { 2727 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; 2728 } 2729 2730 seq_puts(m, "Target IDs Detected:"); 2731 for (i = 0; i <= ADV_MAX_TID; i++) { 2732 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) 2733 seq_printf(m, " %X,", i); 2734 } 2735 seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id); 2736 } 2737 2738 /* 2739 * Display Wide Board BIOS Information. 2740 */ 2741 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost) 2742 { 2743 struct asc_board *boardp = shost_priv(shost); 2744 ushort major, minor, letter; 2745 2746 seq_puts(m, "\nROM BIOS Version: "); 2747 2748 /* 2749 * If the BIOS saved a valid signature, then fill in 2750 * the BIOS code segment base address. 2751 */ 2752 if (boardp->bios_signature != 0x55AA) { 2753 seq_puts(m, "Disabled or Pre-3.1\n" 2754 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n" 2755 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n"); 2756 } else { 2757 major = (boardp->bios_version >> 12) & 0xF; 2758 minor = (boardp->bios_version >> 8) & 0xF; 2759 letter = (boardp->bios_version & 0xFF); 2760 2761 seq_printf(m, "%d.%d%c\n", 2762 major, minor, 2763 letter >= 26 ? '?' : letter + 'A'); 2764 /* 2765 * Current available ROM BIOS release is 3.1I for UW 2766 * and 3.2I for U2W. This code doesn't differentiate 2767 * UW and U2W boards. 2768 */ 2769 if (major < 3 || (major <= 3 && minor < 1) || 2770 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) { 2771 seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n" 2772 "ftp://ftp.connectcom.net/pub\n"); 2773 } 2774 } 2775 } 2776 2777 /* 2778 * Add serial number to information bar if signature AAh 2779 * is found in at bit 15-9 (7 bits) of word 1. 2780 * 2781 * Serial Number consists fo 12 alpha-numeric digits. 2782 * 2783 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits) 2784 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits) 2785 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits) 2786 * 5 - Product revision (A-J) Word0: " " 2787 * 2788 * Signature Word1: 15-9 (7 bits) 2789 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit) 2790 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits) 2791 * 2792 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits) 2793 * 2794 * Note 1: Only production cards will have a serial number. 2795 * 2796 * Note 2: Signature is most significant 7 bits (0xFE). 2797 * 2798 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE. 2799 */ 2800 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp) 2801 { 2802 ushort w, num; 2803 2804 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) { 2805 return ASC_FALSE; 2806 } else { 2807 /* 2808 * First word - 6 digits. 2809 */ 2810 w = serialnum[0]; 2811 2812 /* Product type - 1st digit. */ 2813 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') { 2814 /* Product type is P=Prototype */ 2815 *cp += 0x8; 2816 } 2817 cp++; 2818 2819 /* Manufacturing location - 2nd digit. */ 2820 *cp++ = 'A' + ((w & 0x1C00) >> 10); 2821 2822 /* Product ID - 3rd, 4th digits. */ 2823 num = w & 0x3FF; 2824 *cp++ = '0' + (num / 100); 2825 num %= 100; 2826 *cp++ = '0' + (num / 10); 2827 2828 /* Product revision - 5th digit. */ 2829 *cp++ = 'A' + (num % 10); 2830 2831 /* 2832 * Second word 2833 */ 2834 w = serialnum[1]; 2835 2836 /* 2837 * Year - 6th digit. 2838 * 2839 * If bit 15 of third word is set, then the 2840 * last digit of the year is greater than 7. 2841 */ 2842 if (serialnum[2] & 0x8000) { 2843 *cp++ = '8' + ((w & 0x1C0) >> 6); 2844 } else { 2845 *cp++ = '0' + ((w & 0x1C0) >> 6); 2846 } 2847 2848 /* Week of year - 7th, 8th digits. */ 2849 num = w & 0x003F; 2850 *cp++ = '0' + num / 10; 2851 num %= 10; 2852 *cp++ = '0' + num; 2853 2854 /* 2855 * Third word 2856 */ 2857 w = serialnum[2] & 0x7FFF; 2858 2859 /* Serial number - 9th digit. */ 2860 *cp++ = 'A' + (w / 1000); 2861 2862 /* 10th, 11th, 12th digits. */ 2863 num = w % 1000; 2864 *cp++ = '0' + num / 100; 2865 num %= 100; 2866 *cp++ = '0' + num / 10; 2867 num %= 10; 2868 *cp++ = '0' + num; 2869 2870 *cp = '\0'; /* Null Terminate the string. */ 2871 return ASC_TRUE; 2872 } 2873 } 2874 2875 /* 2876 * asc_prt_asc_board_eeprom() 2877 * 2878 * Print board EEPROM configuration. 2879 */ 2880 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) 2881 { 2882 struct asc_board *boardp = shost_priv(shost); 2883 ASC_DVC_VAR *asc_dvc_varp; 2884 ASCEEP_CONFIG *ep; 2885 int i; 2886 #ifdef CONFIG_ISA 2887 int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 }; 2888 #endif /* CONFIG_ISA */ 2889 uchar serialstr[13]; 2890 2891 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 2892 ep = &boardp->eep_config.asc_eep; 2893 2894 seq_printf(m, 2895 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", 2896 shost->host_no); 2897 2898 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr) 2899 == ASC_TRUE) 2900 seq_printf(m, " Serial Number: %s\n", serialstr); 2901 else if (ep->adapter_info[5] == 0xBB) 2902 seq_puts(m, 2903 " Default Settings Used for EEPROM-less Adapter.\n"); 2904 else 2905 seq_puts(m, " Serial Number Signature Not Present.\n"); 2906 2907 seq_printf(m, 2908 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2909 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng, 2910 ep->max_tag_qng); 2911 2912 seq_printf(m, 2913 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam); 2914 2915 seq_puts(m, " Target ID: "); 2916 for (i = 0; i <= ASC_MAX_TID; i++) 2917 seq_printf(m, " %d", i); 2918 2919 seq_puts(m, "\n Disconnects: "); 2920 for (i = 0; i <= ASC_MAX_TID; i++) 2921 seq_printf(m, " %c", 2922 (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2923 2924 seq_puts(m, "\n Command Queuing: "); 2925 for (i = 0; i <= ASC_MAX_TID; i++) 2926 seq_printf(m, " %c", 2927 (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2928 2929 seq_puts(m, "\n Start Motor: "); 2930 for (i = 0; i <= ASC_MAX_TID; i++) 2931 seq_printf(m, " %c", 2932 (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2933 2934 seq_puts(m, "\n Synchronous Transfer:"); 2935 for (i = 0; i <= ASC_MAX_TID; i++) 2936 seq_printf(m, " %c", 2937 (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2938 seq_putc(m, '\n'); 2939 2940 #ifdef CONFIG_ISA 2941 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 2942 seq_printf(m, 2943 " Host ISA DMA speed: %d MB/S\n", 2944 isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]); 2945 } 2946 #endif /* CONFIG_ISA */ 2947 } 2948 2949 /* 2950 * asc_prt_adv_board_eeprom() 2951 * 2952 * Print board EEPROM configuration. 2953 */ 2954 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) 2955 { 2956 struct asc_board *boardp = shost_priv(shost); 2957 ADV_DVC_VAR *adv_dvc_varp; 2958 int i; 2959 char *termstr; 2960 uchar serialstr[13]; 2961 ADVEEP_3550_CONFIG *ep_3550 = NULL; 2962 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL; 2963 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL; 2964 ushort word; 2965 ushort *wordp; 2966 ushort sdtr_speed = 0; 2967 2968 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 2969 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2970 ep_3550 = &boardp->eep_config.adv_3550_eep; 2971 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2972 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; 2973 } else { 2974 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; 2975 } 2976 2977 seq_printf(m, 2978 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", 2979 shost->host_no); 2980 2981 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2982 wordp = &ep_3550->serial_number_word1; 2983 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2984 wordp = &ep_38C0800->serial_number_word1; 2985 } else { 2986 wordp = &ep_38C1600->serial_number_word1; 2987 } 2988 2989 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) 2990 seq_printf(m, " Serial Number: %s\n", serialstr); 2991 else 2992 seq_puts(m, " Serial Number Signature Not Present.\n"); 2993 2994 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) 2995 seq_printf(m, 2996 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2997 ep_3550->adapter_scsi_id, 2998 ep_3550->max_host_qng, ep_3550->max_dvc_qng); 2999 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) 3000 seq_printf(m, 3001 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 3002 ep_38C0800->adapter_scsi_id, 3003 ep_38C0800->max_host_qng, 3004 ep_38C0800->max_dvc_qng); 3005 else 3006 seq_printf(m, 3007 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 3008 ep_38C1600->adapter_scsi_id, 3009 ep_38C1600->max_host_qng, 3010 ep_38C1600->max_dvc_qng); 3011 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3012 word = ep_3550->termination; 3013 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3014 word = ep_38C0800->termination_lvd; 3015 } else { 3016 word = ep_38C1600->termination_lvd; 3017 } 3018 switch (word) { 3019 case 1: 3020 termstr = "Low Off/High Off"; 3021 break; 3022 case 2: 3023 termstr = "Low Off/High On"; 3024 break; 3025 case 3: 3026 termstr = "Low On/High On"; 3027 break; 3028 default: 3029 case 0: 3030 termstr = "Automatic"; 3031 break; 3032 } 3033 3034 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) 3035 seq_printf(m, 3036 " termination: %u (%s), bios_ctrl: 0x%x\n", 3037 ep_3550->termination, termstr, 3038 ep_3550->bios_ctrl); 3039 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) 3040 seq_printf(m, 3041 " termination: %u (%s), bios_ctrl: 0x%x\n", 3042 ep_38C0800->termination_lvd, termstr, 3043 ep_38C0800->bios_ctrl); 3044 else 3045 seq_printf(m, 3046 " termination: %u (%s), bios_ctrl: 0x%x\n", 3047 ep_38C1600->termination_lvd, termstr, 3048 ep_38C1600->bios_ctrl); 3049 3050 seq_puts(m, " Target ID: "); 3051 for (i = 0; i <= ADV_MAX_TID; i++) 3052 seq_printf(m, " %X", i); 3053 seq_putc(m, '\n'); 3054 3055 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3056 word = ep_3550->disc_enable; 3057 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3058 word = ep_38C0800->disc_enable; 3059 } else { 3060 word = ep_38C1600->disc_enable; 3061 } 3062 seq_puts(m, " Disconnects: "); 3063 for (i = 0; i <= ADV_MAX_TID; i++) 3064 seq_printf(m, " %c", 3065 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3066 seq_putc(m, '\n'); 3067 3068 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3069 word = ep_3550->tagqng_able; 3070 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3071 word = ep_38C0800->tagqng_able; 3072 } else { 3073 word = ep_38C1600->tagqng_able; 3074 } 3075 seq_puts(m, " Command Queuing: "); 3076 for (i = 0; i <= ADV_MAX_TID; i++) 3077 seq_printf(m, " %c", 3078 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3079 seq_putc(m, '\n'); 3080 3081 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3082 word = ep_3550->start_motor; 3083 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3084 word = ep_38C0800->start_motor; 3085 } else { 3086 word = ep_38C1600->start_motor; 3087 } 3088 seq_puts(m, " Start Motor: "); 3089 for (i = 0; i <= ADV_MAX_TID; i++) 3090 seq_printf(m, " %c", 3091 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3092 seq_putc(m, '\n'); 3093 3094 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3095 seq_puts(m, " Synchronous Transfer:"); 3096 for (i = 0; i <= ADV_MAX_TID; i++) 3097 seq_printf(m, " %c", 3098 (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 3099 'Y' : 'N'); 3100 seq_putc(m, '\n'); 3101 } 3102 3103 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3104 seq_puts(m, " Ultra Transfer: "); 3105 for (i = 0; i <= ADV_MAX_TID; i++) 3106 seq_printf(m, " %c", 3107 (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i)) 3108 ? 'Y' : 'N'); 3109 seq_putc(m, '\n'); 3110 } 3111 3112 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3113 word = ep_3550->wdtr_able; 3114 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3115 word = ep_38C0800->wdtr_able; 3116 } else { 3117 word = ep_38C1600->wdtr_able; 3118 } 3119 seq_puts(m, " Wide Transfer: "); 3120 for (i = 0; i <= ADV_MAX_TID; i++) 3121 seq_printf(m, " %c", 3122 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3123 seq_putc(m, '\n'); 3124 3125 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 || 3126 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) { 3127 seq_puts(m, " Synchronous Transfer Speed (Mhz):\n "); 3128 for (i = 0; i <= ADV_MAX_TID; i++) { 3129 char *speed_str; 3130 3131 if (i == 0) { 3132 sdtr_speed = adv_dvc_varp->sdtr_speed1; 3133 } else if (i == 4) { 3134 sdtr_speed = adv_dvc_varp->sdtr_speed2; 3135 } else if (i == 8) { 3136 sdtr_speed = adv_dvc_varp->sdtr_speed3; 3137 } else if (i == 12) { 3138 sdtr_speed = adv_dvc_varp->sdtr_speed4; 3139 } 3140 switch (sdtr_speed & ADV_MAX_TID) { 3141 case 0: 3142 speed_str = "Off"; 3143 break; 3144 case 1: 3145 speed_str = " 5"; 3146 break; 3147 case 2: 3148 speed_str = " 10"; 3149 break; 3150 case 3: 3151 speed_str = " 20"; 3152 break; 3153 case 4: 3154 speed_str = " 40"; 3155 break; 3156 case 5: 3157 speed_str = " 80"; 3158 break; 3159 default: 3160 speed_str = "Unk"; 3161 break; 3162 } 3163 seq_printf(m, "%X:%s ", i, speed_str); 3164 if (i == 7) 3165 seq_puts(m, "\n "); 3166 sdtr_speed >>= 4; 3167 } 3168 seq_putc(m, '\n'); 3169 } 3170 } 3171 3172 /* 3173 * asc_prt_driver_conf() 3174 */ 3175 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost) 3176 { 3177 struct asc_board *boardp = shost_priv(shost); 3178 int chip_scsi_id; 3179 3180 seq_printf(m, 3181 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n", 3182 shost->host_no); 3183 3184 seq_printf(m, 3185 " host_busy %u, max_id %u, max_lun %llu, max_channel %u\n", 3186 atomic_read(&shost->host_busy), shost->max_id, 3187 shost->max_lun, shost->max_channel); 3188 3189 seq_printf(m, 3190 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n", 3191 shost->unique_id, shost->can_queue, shost->this_id, 3192 shost->sg_tablesize, shost->cmd_per_lun); 3193 3194 seq_printf(m, 3195 " unchecked_isa_dma %d, use_clustering %d\n", 3196 shost->unchecked_isa_dma, shost->use_clustering); 3197 3198 seq_printf(m, 3199 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n", 3200 boardp->flags, shost->last_reset, jiffies, 3201 boardp->asc_n_io_port); 3202 3203 seq_printf(m, " io_port 0x%lx\n", shost->io_port); 3204 3205 if (ASC_NARROW_BOARD(boardp)) { 3206 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; 3207 } else { 3208 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; 3209 } 3210 } 3211 3212 /* 3213 * asc_prt_asc_board_info() 3214 * 3215 * Print dynamic board configuration information. 3216 */ 3217 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost) 3218 { 3219 struct asc_board *boardp = shost_priv(shost); 3220 int chip_scsi_id; 3221 ASC_DVC_VAR *v; 3222 ASC_DVC_CFG *c; 3223 int i; 3224 int renegotiate = 0; 3225 3226 v = &boardp->dvc_var.asc_dvc_var; 3227 c = &boardp->dvc_cfg.asc_dvc_cfg; 3228 chip_scsi_id = c->chip_scsi_id; 3229 3230 seq_printf(m, 3231 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", 3232 shost->host_no); 3233 3234 seq_printf(m, " chip_version %u, mcode_date 0x%x, " 3235 "mcode_version 0x%x, err_code %u\n", 3236 c->chip_version, c->mcode_date, c->mcode_version, 3237 v->err_code); 3238 3239 /* Current number of commands waiting for the host. */ 3240 seq_printf(m, 3241 " Total Command Pending: %d\n", v->cur_total_qng); 3242 3243 seq_puts(m, " Command Queuing:"); 3244 for (i = 0; i <= ASC_MAX_TID; i++) { 3245 if ((chip_scsi_id == i) || 3246 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3247 continue; 3248 } 3249 seq_printf(m, " %X:%c", 3250 i, 3251 (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3252 } 3253 3254 /* Current number of commands waiting for a device. */ 3255 seq_puts(m, "\n Command Queue Pending:"); 3256 for (i = 0; i <= ASC_MAX_TID; i++) { 3257 if ((chip_scsi_id == i) || 3258 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3259 continue; 3260 } 3261 seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]); 3262 } 3263 3264 /* Current limit on number of commands that can be sent to a device. */ 3265 seq_puts(m, "\n Command Queue Limit:"); 3266 for (i = 0; i <= ASC_MAX_TID; i++) { 3267 if ((chip_scsi_id == i) || 3268 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3269 continue; 3270 } 3271 seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]); 3272 } 3273 3274 /* Indicate whether the device has returned queue full status. */ 3275 seq_puts(m, "\n Command Queue Full:"); 3276 for (i = 0; i <= ASC_MAX_TID; i++) { 3277 if ((chip_scsi_id == i) || 3278 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3279 continue; 3280 } 3281 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) 3282 seq_printf(m, " %X:Y-%d", 3283 i, boardp->queue_full_cnt[i]); 3284 else 3285 seq_printf(m, " %X:N", i); 3286 } 3287 3288 seq_puts(m, "\n Synchronous Transfer:"); 3289 for (i = 0; i <= ASC_MAX_TID; i++) { 3290 if ((chip_scsi_id == i) || 3291 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3292 continue; 3293 } 3294 seq_printf(m, " %X:%c", 3295 i, 3296 (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3297 } 3298 seq_putc(m, '\n'); 3299 3300 for (i = 0; i <= ASC_MAX_TID; i++) { 3301 uchar syn_period_ix; 3302 3303 if ((chip_scsi_id == i) || 3304 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || 3305 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) { 3306 continue; 3307 } 3308 3309 seq_printf(m, " %X:", i); 3310 3311 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) { 3312 seq_puts(m, " Asynchronous"); 3313 } else { 3314 syn_period_ix = 3315 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index - 3316 1); 3317 3318 seq_printf(m, 3319 " Transfer Period Factor: %d (%d.%d Mhz),", 3320 v->sdtr_period_tbl[syn_period_ix], 3321 250 / v->sdtr_period_tbl[syn_period_ix], 3322 ASC_TENTHS(250, 3323 v->sdtr_period_tbl[syn_period_ix])); 3324 3325 seq_printf(m, " REQ/ACK Offset: %d", 3326 boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET); 3327 } 3328 3329 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3330 seq_puts(m, "*\n"); 3331 renegotiate = 1; 3332 } else { 3333 seq_putc(m, '\n'); 3334 } 3335 } 3336 3337 if (renegotiate) { 3338 seq_puts(m, " * = Re-negotiation pending before next command.\n"); 3339 } 3340 } 3341 3342 /* 3343 * asc_prt_adv_board_info() 3344 * 3345 * Print dynamic board configuration information. 3346 */ 3347 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost) 3348 { 3349 struct asc_board *boardp = shost_priv(shost); 3350 int i; 3351 ADV_DVC_VAR *v; 3352 ADV_DVC_CFG *c; 3353 AdvPortAddr iop_base; 3354 ushort chip_scsi_id; 3355 ushort lramword; 3356 uchar lrambyte; 3357 ushort tagqng_able; 3358 ushort sdtr_able, wdtr_able; 3359 ushort wdtr_done, sdtr_done; 3360 ushort period = 0; 3361 int renegotiate = 0; 3362 3363 v = &boardp->dvc_var.adv_dvc_var; 3364 c = &boardp->dvc_cfg.adv_dvc_cfg; 3365 iop_base = v->iop_base; 3366 chip_scsi_id = v->chip_scsi_id; 3367 3368 seq_printf(m, 3369 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", 3370 shost->host_no); 3371 3372 seq_printf(m, 3373 " iop_base 0x%lx, cable_detect: %X, err_code %u\n", 3374 (unsigned long)v->iop_base, 3375 AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT, 3376 v->err_code); 3377 3378 seq_printf(m, " chip_version %u, mcode_date 0x%x, " 3379 "mcode_version 0x%x\n", c->chip_version, 3380 c->mcode_date, c->mcode_version); 3381 3382 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 3383 seq_puts(m, " Queuing Enabled:"); 3384 for (i = 0; i <= ADV_MAX_TID; i++) { 3385 if ((chip_scsi_id == i) || 3386 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3387 continue; 3388 } 3389 3390 seq_printf(m, " %X:%c", 3391 i, 3392 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3393 } 3394 3395 seq_puts(m, "\n Queue Limit:"); 3396 for (i = 0; i <= ADV_MAX_TID; i++) { 3397 if ((chip_scsi_id == i) || 3398 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3399 continue; 3400 } 3401 3402 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i, 3403 lrambyte); 3404 3405 seq_printf(m, " %X:%d", i, lrambyte); 3406 } 3407 3408 seq_puts(m, "\n Command Pending:"); 3409 for (i = 0; i <= ADV_MAX_TID; i++) { 3410 if ((chip_scsi_id == i) || 3411 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3412 continue; 3413 } 3414 3415 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i, 3416 lrambyte); 3417 3418 seq_printf(m, " %X:%d", i, lrambyte); 3419 } 3420 seq_putc(m, '\n'); 3421 3422 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 3423 seq_puts(m, " Wide Enabled:"); 3424 for (i = 0; i <= ADV_MAX_TID; i++) { 3425 if ((chip_scsi_id == i) || 3426 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3427 continue; 3428 } 3429 3430 seq_printf(m, " %X:%c", 3431 i, 3432 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3433 } 3434 seq_putc(m, '\n'); 3435 3436 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done); 3437 seq_puts(m, " Transfer Bit Width:"); 3438 for (i = 0; i <= ADV_MAX_TID; i++) { 3439 if ((chip_scsi_id == i) || 3440 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3441 continue; 3442 } 3443 3444 AdvReadWordLram(iop_base, 3445 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), 3446 lramword); 3447 3448 seq_printf(m, " %X:%d", 3449 i, (lramword & 0x8000) ? 16 : 8); 3450 3451 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) && 3452 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3453 seq_putc(m, '*'); 3454 renegotiate = 1; 3455 } 3456 } 3457 seq_putc(m, '\n'); 3458 3459 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 3460 seq_puts(m, " Synchronous Enabled:"); 3461 for (i = 0; i <= ADV_MAX_TID; i++) { 3462 if ((chip_scsi_id == i) || 3463 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3464 continue; 3465 } 3466 3467 seq_printf(m, " %X:%c", 3468 i, 3469 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3470 } 3471 seq_putc(m, '\n'); 3472 3473 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done); 3474 for (i = 0; i <= ADV_MAX_TID; i++) { 3475 3476 AdvReadWordLram(iop_base, 3477 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), 3478 lramword); 3479 lramword &= ~0x8000; 3480 3481 if ((chip_scsi_id == i) || 3482 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || 3483 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) { 3484 continue; 3485 } 3486 3487 seq_printf(m, " %X:", i); 3488 3489 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */ 3490 seq_puts(m, " Asynchronous"); 3491 } else { 3492 seq_puts(m, " Transfer Period Factor: "); 3493 3494 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */ 3495 seq_puts(m, "9 (80.0 Mhz),"); 3496 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */ 3497 seq_puts(m, "10 (40.0 Mhz),"); 3498 } else { /* 20 Mhz or below. */ 3499 3500 period = (((lramword >> 8) * 25) + 50) / 4; 3501 3502 if (period == 0) { /* Should never happen. */ 3503 seq_printf(m, "%d (? Mhz), ", period); 3504 } else { 3505 seq_printf(m, 3506 "%d (%d.%d Mhz),", 3507 period, 250 / period, 3508 ASC_TENTHS(250, period)); 3509 } 3510 } 3511 3512 seq_printf(m, " REQ/ACK Offset: %d", 3513 lramword & 0x1F); 3514 } 3515 3516 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3517 seq_puts(m, "*\n"); 3518 renegotiate = 1; 3519 } else { 3520 seq_putc(m, '\n'); 3521 } 3522 } 3523 3524 if (renegotiate) { 3525 seq_puts(m, " * = Re-negotiation pending before next command.\n"); 3526 } 3527 } 3528 3529 #ifdef ADVANSYS_STATS 3530 /* 3531 * asc_prt_board_stats() 3532 */ 3533 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost) 3534 { 3535 struct asc_board *boardp = shost_priv(shost); 3536 struct asc_stats *s = &boardp->asc_stats; 3537 3538 seq_printf(m, 3539 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n", 3540 shost->host_no); 3541 3542 seq_printf(m, 3543 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n", 3544 s->queuecommand, s->reset, s->biosparam, 3545 s->interrupt); 3546 3547 seq_printf(m, 3548 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n", 3549 s->callback, s->done, s->build_error, 3550 s->adv_build_noreq, s->adv_build_nosg); 3551 3552 seq_printf(m, 3553 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n", 3554 s->exe_noerror, s->exe_busy, s->exe_error, 3555 s->exe_unknown); 3556 3557 /* 3558 * Display data transfer statistics. 3559 */ 3560 if (s->xfer_cnt > 0) { 3561 seq_printf(m, " xfer_cnt %u, xfer_elem %u, ", 3562 s->xfer_cnt, s->xfer_elem); 3563 3564 seq_printf(m, "xfer_bytes %u.%01u kb\n", 3565 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2)); 3566 3567 /* Scatter gather transfer statistics */ 3568 seq_printf(m, " avg_num_elem %u.%01u, ", 3569 s->xfer_elem / s->xfer_cnt, 3570 ASC_TENTHS(s->xfer_elem, s->xfer_cnt)); 3571 3572 seq_printf(m, "avg_elem_size %u.%01u kb, ", 3573 (s->xfer_sect / 2) / s->xfer_elem, 3574 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem)); 3575 3576 seq_printf(m, "avg_xfer_size %u.%01u kb\n", 3577 (s->xfer_sect / 2) / s->xfer_cnt, 3578 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt)); 3579 } 3580 } 3581 #endif /* ADVANSYS_STATS */ 3582 3583 /* 3584 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...} 3585 * 3586 * m: seq_file to print into 3587 * shost: Scsi_Host 3588 * 3589 * Return the number of bytes read from or written to a 3590 * /proc/scsi/advansys/[0...] file. 3591 */ 3592 static int 3593 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost) 3594 { 3595 struct asc_board *boardp = shost_priv(shost); 3596 3597 ASC_DBG(1, "begin\n"); 3598 3599 /* 3600 * User read of /proc/scsi/advansys/[0...] file. 3601 */ 3602 3603 /* 3604 * Get board configuration information. 3605 * 3606 * advansys_info() returns the board string from its own static buffer. 3607 */ 3608 /* Copy board information. */ 3609 seq_printf(m, "%s\n", (char *)advansys_info(shost)); 3610 /* 3611 * Display Wide Board BIOS Information. 3612 */ 3613 if (!ASC_NARROW_BOARD(boardp)) 3614 asc_prt_adv_bios(m, shost); 3615 3616 /* 3617 * Display driver information for each device attached to the board. 3618 */ 3619 asc_prt_board_devices(m, shost); 3620 3621 /* 3622 * Display EEPROM configuration for the board. 3623 */ 3624 if (ASC_NARROW_BOARD(boardp)) 3625 asc_prt_asc_board_eeprom(m, shost); 3626 else 3627 asc_prt_adv_board_eeprom(m, shost); 3628 3629 /* 3630 * Display driver configuration and information for the board. 3631 */ 3632 asc_prt_driver_conf(m, shost); 3633 3634 #ifdef ADVANSYS_STATS 3635 /* 3636 * Display driver statistics for the board. 3637 */ 3638 asc_prt_board_stats(m, shost); 3639 #endif /* ADVANSYS_STATS */ 3640 3641 /* 3642 * Display Asc Library dynamic configuration information 3643 * for the board. 3644 */ 3645 if (ASC_NARROW_BOARD(boardp)) 3646 asc_prt_asc_board_info(m, shost); 3647 else 3648 asc_prt_adv_board_info(m, shost); 3649 return 0; 3650 } 3651 #endif /* CONFIG_PROC_FS */ 3652 3653 static void asc_scsi_done(struct scsi_cmnd *scp) 3654 { 3655 scsi_dma_unmap(scp); 3656 ASC_STATS(scp->device->host, done); 3657 scp->scsi_done(scp); 3658 } 3659 3660 static void AscSetBank(PortAddr iop_base, uchar bank) 3661 { 3662 uchar val; 3663 3664 val = AscGetChipControl(iop_base) & 3665 (~ 3666 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET | 3667 CC_CHIP_RESET)); 3668 if (bank == 1) { 3669 val |= CC_BANK_ONE; 3670 } else if (bank == 2) { 3671 val |= CC_DIAG | CC_BANK_ONE; 3672 } else { 3673 val &= ~CC_BANK_ONE; 3674 } 3675 AscSetChipControl(iop_base, val); 3676 } 3677 3678 static void AscSetChipIH(PortAddr iop_base, ushort ins_code) 3679 { 3680 AscSetBank(iop_base, 1); 3681 AscWriteChipIH(iop_base, ins_code); 3682 AscSetBank(iop_base, 0); 3683 } 3684 3685 static int AscStartChip(PortAddr iop_base) 3686 { 3687 AscSetChipControl(iop_base, 0); 3688 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { 3689 return (0); 3690 } 3691 return (1); 3692 } 3693 3694 static bool AscStopChip(PortAddr iop_base) 3695 { 3696 uchar cc_val; 3697 3698 cc_val = 3699 AscGetChipControl(iop_base) & 3700 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG)); 3701 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT)); 3702 AscSetChipIH(iop_base, INS_HALT); 3703 AscSetChipIH(iop_base, INS_RFLAG_WTM); 3704 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) { 3705 return false; 3706 } 3707 return true; 3708 } 3709 3710 static bool AscIsChipHalted(PortAddr iop_base) 3711 { 3712 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { 3713 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) { 3714 return true; 3715 } 3716 } 3717 return false; 3718 } 3719 3720 static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc) 3721 { 3722 PortAddr iop_base; 3723 int i = 10; 3724 3725 iop_base = asc_dvc->iop_base; 3726 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE) 3727 && (i-- > 0)) { 3728 mdelay(100); 3729 } 3730 AscStopChip(iop_base); 3731 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT); 3732 udelay(60); 3733 AscSetChipIH(iop_base, INS_RFLAG_WTM); 3734 AscSetChipIH(iop_base, INS_HALT); 3735 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT); 3736 AscSetChipControl(iop_base, CC_HALT); 3737 mdelay(200); 3738 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); 3739 AscSetChipStatus(iop_base, 0); 3740 return (AscIsChipHalted(iop_base)); 3741 } 3742 3743 static int AscFindSignature(PortAddr iop_base) 3744 { 3745 ushort sig_word; 3746 3747 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n", 3748 iop_base, AscGetChipSignatureByte(iop_base)); 3749 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) { 3750 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n", 3751 iop_base, AscGetChipSignatureWord(iop_base)); 3752 sig_word = AscGetChipSignatureWord(iop_base); 3753 if ((sig_word == (ushort)ASC_1000_ID0W) || 3754 (sig_word == (ushort)ASC_1000_ID0W_FIX)) { 3755 return (1); 3756 } 3757 } 3758 return (0); 3759 } 3760 3761 static void AscEnableInterrupt(PortAddr iop_base) 3762 { 3763 ushort cfg; 3764 3765 cfg = AscGetChipCfgLsw(iop_base); 3766 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON); 3767 } 3768 3769 static void AscDisableInterrupt(PortAddr iop_base) 3770 { 3771 ushort cfg; 3772 3773 cfg = AscGetChipCfgLsw(iop_base); 3774 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON)); 3775 } 3776 3777 static uchar AscReadLramByte(PortAddr iop_base, ushort addr) 3778 { 3779 unsigned char byte_data; 3780 unsigned short word_data; 3781 3782 if (isodd_word(addr)) { 3783 AscSetChipLramAddr(iop_base, addr - 1); 3784 word_data = AscGetChipLramData(iop_base); 3785 byte_data = (word_data >> 8) & 0xFF; 3786 } else { 3787 AscSetChipLramAddr(iop_base, addr); 3788 word_data = AscGetChipLramData(iop_base); 3789 byte_data = word_data & 0xFF; 3790 } 3791 return byte_data; 3792 } 3793 3794 static ushort AscReadLramWord(PortAddr iop_base, ushort addr) 3795 { 3796 ushort word_data; 3797 3798 AscSetChipLramAddr(iop_base, addr); 3799 word_data = AscGetChipLramData(iop_base); 3800 return (word_data); 3801 } 3802 3803 static void 3804 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words) 3805 { 3806 int i; 3807 3808 AscSetChipLramAddr(iop_base, s_addr); 3809 for (i = 0; i < words; i++) { 3810 AscSetChipLramData(iop_base, set_wval); 3811 } 3812 } 3813 3814 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val) 3815 { 3816 AscSetChipLramAddr(iop_base, addr); 3817 AscSetChipLramData(iop_base, word_val); 3818 } 3819 3820 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val) 3821 { 3822 ushort word_data; 3823 3824 if (isodd_word(addr)) { 3825 addr--; 3826 word_data = AscReadLramWord(iop_base, addr); 3827 word_data &= 0x00FF; 3828 word_data |= (((ushort)byte_val << 8) & 0xFF00); 3829 } else { 3830 word_data = AscReadLramWord(iop_base, addr); 3831 word_data &= 0xFF00; 3832 word_data |= ((ushort)byte_val & 0x00FF); 3833 } 3834 AscWriteLramWord(iop_base, addr, word_data); 3835 } 3836 3837 /* 3838 * Copy 2 bytes to LRAM. 3839 * 3840 * The source data is assumed to be in little-endian order in memory 3841 * and is maintained in little-endian order when written to LRAM. 3842 */ 3843 static void 3844 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr, 3845 const uchar *s_buffer, int words) 3846 { 3847 int i; 3848 3849 AscSetChipLramAddr(iop_base, s_addr); 3850 for (i = 0; i < 2 * words; i += 2) { 3851 /* 3852 * On a little-endian system the second argument below 3853 * produces a little-endian ushort which is written to 3854 * LRAM in little-endian order. On a big-endian system 3855 * the second argument produces a big-endian ushort which 3856 * is "transparently" byte-swapped by outpw() and written 3857 * in little-endian order to LRAM. 3858 */ 3859 outpw(iop_base + IOP_RAM_DATA, 3860 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); 3861 } 3862 } 3863 3864 /* 3865 * Copy 4 bytes to LRAM. 3866 * 3867 * The source data is assumed to be in little-endian order in memory 3868 * and is maintained in little-endian order when written to LRAM. 3869 */ 3870 static void 3871 AscMemDWordCopyPtrToLram(PortAddr iop_base, 3872 ushort s_addr, uchar *s_buffer, int dwords) 3873 { 3874 int i; 3875 3876 AscSetChipLramAddr(iop_base, s_addr); 3877 for (i = 0; i < 4 * dwords; i += 4) { 3878 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */ 3879 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */ 3880 } 3881 } 3882 3883 /* 3884 * Copy 2 bytes from LRAM. 3885 * 3886 * The source data is assumed to be in little-endian order in LRAM 3887 * and is maintained in little-endian order when written to memory. 3888 */ 3889 static void 3890 AscMemWordCopyPtrFromLram(PortAddr iop_base, 3891 ushort s_addr, uchar *d_buffer, int words) 3892 { 3893 int i; 3894 ushort word; 3895 3896 AscSetChipLramAddr(iop_base, s_addr); 3897 for (i = 0; i < 2 * words; i += 2) { 3898 word = inpw(iop_base + IOP_RAM_DATA); 3899 d_buffer[i] = word & 0xff; 3900 d_buffer[i + 1] = (word >> 8) & 0xff; 3901 } 3902 } 3903 3904 static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words) 3905 { 3906 u32 sum = 0; 3907 int i; 3908 3909 for (i = 0; i < words; i++, s_addr += 2) { 3910 sum += AscReadLramWord(iop_base, s_addr); 3911 } 3912 return (sum); 3913 } 3914 3915 static void AscInitLram(ASC_DVC_VAR *asc_dvc) 3916 { 3917 uchar i; 3918 ushort s_addr; 3919 PortAddr iop_base; 3920 3921 iop_base = asc_dvc->iop_base; 3922 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0, 3923 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) * 3924 64) >> 1)); 3925 i = ASC_MIN_ACTIVE_QNO; 3926 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE; 3927 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3928 (uchar)(i + 1)); 3929 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3930 (uchar)(asc_dvc->max_total_qng)); 3931 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3932 (uchar)i); 3933 i++; 3934 s_addr += ASC_QBLK_SIZE; 3935 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) { 3936 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3937 (uchar)(i + 1)); 3938 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3939 (uchar)(i - 1)); 3940 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3941 (uchar)i); 3942 } 3943 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3944 (uchar)ASC_QLINK_END); 3945 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3946 (uchar)(asc_dvc->max_total_qng - 1)); 3947 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3948 (uchar)asc_dvc->max_total_qng); 3949 i++; 3950 s_addr += ASC_QBLK_SIZE; 3951 for (; i <= (uchar)(asc_dvc->max_total_qng + 3); 3952 i++, s_addr += ASC_QBLK_SIZE) { 3953 AscWriteLramByte(iop_base, 3954 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i); 3955 AscWriteLramByte(iop_base, 3956 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i); 3957 AscWriteLramByte(iop_base, 3958 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i); 3959 } 3960 } 3961 3962 static u32 3963 AscLoadMicroCode(PortAddr iop_base, ushort s_addr, 3964 const uchar *mcode_buf, ushort mcode_size) 3965 { 3966 u32 chksum; 3967 ushort mcode_word_size; 3968 ushort mcode_chksum; 3969 3970 /* Write the microcode buffer starting at LRAM address 0. */ 3971 mcode_word_size = (ushort)(mcode_size >> 1); 3972 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size); 3973 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size); 3974 3975 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size); 3976 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum); 3977 mcode_chksum = (ushort)AscMemSumLramWord(iop_base, 3978 (ushort)ASC_CODE_SEC_BEG, 3979 (ushort)((mcode_size - 3980 s_addr - (ushort) 3981 ASC_CODE_SEC_BEG) / 3982 2)); 3983 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum); 3984 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum); 3985 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size); 3986 return chksum; 3987 } 3988 3989 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc) 3990 { 3991 PortAddr iop_base; 3992 int i; 3993 ushort lram_addr; 3994 3995 iop_base = asc_dvc->iop_base; 3996 AscPutRiscVarFreeQHead(iop_base, 1); 3997 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng); 3998 AscPutVarFreeQHead(iop_base, 1); 3999 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng); 4000 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B, 4001 (uchar)((int)asc_dvc->max_total_qng + 1)); 4002 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B, 4003 (uchar)((int)asc_dvc->max_total_qng + 2)); 4004 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B, 4005 asc_dvc->max_total_qng); 4006 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0); 4007 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 4008 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0); 4009 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0); 4010 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0); 4011 AscPutQDoneInProgress(iop_base, 0); 4012 lram_addr = ASC_QADR_BEG; 4013 for (i = 0; i < 32; i++, lram_addr += 2) { 4014 AscWriteLramWord(iop_base, lram_addr, 0); 4015 } 4016 } 4017 4018 static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc) 4019 { 4020 int i; 4021 int warn_code; 4022 PortAddr iop_base; 4023 __le32 phy_addr; 4024 __le32 phy_size; 4025 struct asc_board *board = asc_dvc_to_board(asc_dvc); 4026 4027 iop_base = asc_dvc->iop_base; 4028 warn_code = 0; 4029 for (i = 0; i <= ASC_MAX_TID; i++) { 4030 AscPutMCodeInitSDTRAtID(iop_base, i, 4031 asc_dvc->cfg->sdtr_period_offset[i]); 4032 } 4033 4034 AscInitQLinkVar(asc_dvc); 4035 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B, 4036 asc_dvc->cfg->disc_enable); 4037 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B, 4038 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id)); 4039 4040 /* Ensure overrun buffer is aligned on an 8 byte boundary. */ 4041 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7); 4042 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf, 4043 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 4044 if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) { 4045 warn_code = -ENOMEM; 4046 goto err_dma_map; 4047 } 4048 phy_addr = cpu_to_le32(asc_dvc->overrun_dma); 4049 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D, 4050 (uchar *)&phy_addr, 1); 4051 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE); 4052 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D, 4053 (uchar *)&phy_size, 1); 4054 4055 asc_dvc->cfg->mcode_date = 4056 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W); 4057 asc_dvc->cfg->mcode_version = 4058 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W); 4059 4060 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); 4061 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { 4062 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; 4063 warn_code = -EINVAL; 4064 goto err_mcode_start; 4065 } 4066 if (AscStartChip(iop_base) != 1) { 4067 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; 4068 warn_code = -EIO; 4069 goto err_mcode_start; 4070 } 4071 4072 return warn_code; 4073 4074 err_mcode_start: 4075 dma_unmap_single(board->dev, asc_dvc->overrun_dma, 4076 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 4077 err_dma_map: 4078 asc_dvc->overrun_dma = 0; 4079 return warn_code; 4080 } 4081 4082 static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc) 4083 { 4084 const struct firmware *fw; 4085 const char fwname[] = "advansys/mcode.bin"; 4086 int err; 4087 unsigned long chksum; 4088 int warn_code; 4089 PortAddr iop_base; 4090 4091 iop_base = asc_dvc->iop_base; 4092 warn_code = 0; 4093 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) && 4094 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) { 4095 AscResetChipAndScsiBus(asc_dvc); 4096 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 4097 } 4098 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC; 4099 if (asc_dvc->err_code != 0) 4100 return ASC_ERROR; 4101 if (!AscFindSignature(asc_dvc->iop_base)) { 4102 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 4103 return warn_code; 4104 } 4105 AscDisableInterrupt(iop_base); 4106 AscInitLram(asc_dvc); 4107 4108 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4109 if (err) { 4110 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4111 fwname, err); 4112 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4113 return err; 4114 } 4115 if (fw->size < 4) { 4116 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4117 fw->size, fwname); 4118 release_firmware(fw); 4119 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4120 return -EINVAL; 4121 } 4122 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4123 (fw->data[1] << 8) | fw->data[0]; 4124 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum); 4125 if (AscLoadMicroCode(iop_base, 0, &fw->data[4], 4126 fw->size - 4) != chksum) { 4127 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4128 release_firmware(fw); 4129 return warn_code; 4130 } 4131 release_firmware(fw); 4132 warn_code |= AscInitMicroCodeVar(asc_dvc); 4133 if (!asc_dvc->overrun_dma) 4134 return warn_code; 4135 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC; 4136 AscEnableInterrupt(iop_base); 4137 return warn_code; 4138 } 4139 4140 /* 4141 * Load the Microcode 4142 * 4143 * Write the microcode image to RISC memory starting at address 0. 4144 * 4145 * The microcode is stored compressed in the following format: 4146 * 4147 * 254 word (508 byte) table indexed by byte code followed 4148 * by the following byte codes: 4149 * 4150 * 1-Byte Code: 4151 * 00: Emit word 0 in table. 4152 * 01: Emit word 1 in table. 4153 * . 4154 * FD: Emit word 253 in table. 4155 * 4156 * Multi-Byte Code: 4157 * FE WW WW: (3 byte code) Word to emit is the next word WW WW. 4158 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW. 4159 * 4160 * Returns 0 or an error if the checksum doesn't match 4161 */ 4162 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf, 4163 int size, int memsize, int chksum) 4164 { 4165 int i, j, end, len = 0; 4166 u32 sum; 4167 4168 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); 4169 4170 for (i = 253 * 2; i < size; i++) { 4171 if (buf[i] == 0xff) { 4172 unsigned short word = (buf[i + 3] << 8) | buf[i + 2]; 4173 for (j = 0; j < buf[i + 1]; j++) { 4174 AdvWriteWordAutoIncLram(iop_base, word); 4175 len += 2; 4176 } 4177 i += 3; 4178 } else if (buf[i] == 0xfe) { 4179 unsigned short word = (buf[i + 2] << 8) | buf[i + 1]; 4180 AdvWriteWordAutoIncLram(iop_base, word); 4181 i += 2; 4182 len += 2; 4183 } else { 4184 unsigned int off = buf[i] * 2; 4185 unsigned short word = (buf[off + 1] << 8) | buf[off]; 4186 AdvWriteWordAutoIncLram(iop_base, word); 4187 len += 2; 4188 } 4189 } 4190 4191 end = len; 4192 4193 while (len < memsize) { 4194 AdvWriteWordAutoIncLram(iop_base, 0); 4195 len += 2; 4196 } 4197 4198 /* Verify the microcode checksum. */ 4199 sum = 0; 4200 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); 4201 4202 for (len = 0; len < end; len += 2) { 4203 sum += AdvReadWordAutoIncLram(iop_base); 4204 } 4205 4206 if (sum != chksum) 4207 return ASC_IERR_MCODE_CHKSUM; 4208 4209 return 0; 4210 } 4211 4212 static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc) 4213 { 4214 off_t carr_offset = 0, next_offset; 4215 dma_addr_t carr_paddr; 4216 int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i; 4217 4218 for (i = 0; i < carr_num; i++) { 4219 carr_offset = i * sizeof(ADV_CARR_T); 4220 /* Get physical address of the carrier 'carrp'. */ 4221 carr_paddr = adv_dvc->carrier_addr + carr_offset; 4222 4223 adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr); 4224 adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset); 4225 adv_dvc->carrier[i].areq_vpa = 0; 4226 next_offset = carr_offset + sizeof(ADV_CARR_T); 4227 if (i == carr_num) 4228 next_offset = ~0; 4229 adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset); 4230 } 4231 /* 4232 * We cannot have a carrier with 'carr_va' of '0', as 4233 * a reference to this carrier would be interpreted as 4234 * list termination. 4235 * So start at carrier 1 with the freelist. 4236 */ 4237 adv_dvc->carr_freelist = &adv_dvc->carrier[1]; 4238 } 4239 4240 static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset) 4241 { 4242 int index; 4243 4244 BUG_ON(offset > ADV_CARRIER_BUFSIZE); 4245 4246 index = offset / sizeof(ADV_CARR_T); 4247 return &adv_dvc->carrier[index]; 4248 } 4249 4250 static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc) 4251 { 4252 ADV_CARR_T *carrp = adv_dvc->carr_freelist; 4253 u32 next_vpa = le32_to_cpu(carrp->next_vpa); 4254 4255 if (next_vpa == 0 || next_vpa == ~0) { 4256 ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa); 4257 return NULL; 4258 } 4259 4260 adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa); 4261 /* 4262 * insert stopper carrier to terminate list 4263 */ 4264 carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER); 4265 4266 return carrp; 4267 } 4268 4269 /* 4270 * 'offset' is the index in the request pointer array 4271 */ 4272 static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset) 4273 { 4274 struct asc_board *boardp = adv_dvc->drv_ptr; 4275 4276 BUG_ON(offset > adv_dvc->max_host_qng); 4277 return &boardp->adv_reqp[offset]; 4278 } 4279 4280 /* 4281 * Send an idle command to the chip and wait for completion. 4282 * 4283 * Command completion is polled for once per microsecond. 4284 * 4285 * The function can be called from anywhere including an interrupt handler. 4286 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical() 4287 * functions to prevent reentrancy. 4288 * 4289 * Return Values: 4290 * ADV_TRUE - command completed successfully 4291 * ADV_FALSE - command failed 4292 * ADV_ERROR - command timed out 4293 */ 4294 static int 4295 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc, 4296 ushort idle_cmd, u32 idle_cmd_parameter) 4297 { 4298 int result, i, j; 4299 AdvPortAddr iop_base; 4300 4301 iop_base = asc_dvc->iop_base; 4302 4303 /* 4304 * Clear the idle command status which is set by the microcode 4305 * to a non-zero value to indicate when the command is completed. 4306 * The non-zero result is one of the IDLE_CMD_STATUS_* values 4307 */ 4308 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0); 4309 4310 /* 4311 * Write the idle command value after the idle command parameter 4312 * has been written to avoid a race condition. If the order is not 4313 * followed, the microcode may process the idle command before the 4314 * parameters have been written to LRAM. 4315 */ 4316 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER, 4317 cpu_to_le32(idle_cmd_parameter)); 4318 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd); 4319 4320 /* 4321 * Tickle the RISC to tell it to process the idle command. 4322 */ 4323 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B); 4324 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 4325 /* 4326 * Clear the tickle value. In the ASC-3550 the RISC flag 4327 * command 'clr_tickle_b' does not work unless the host 4328 * value is cleared. 4329 */ 4330 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP); 4331 } 4332 4333 /* Wait for up to 100 millisecond for the idle command to timeout. */ 4334 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) { 4335 /* Poll once each microsecond for command completion. */ 4336 for (j = 0; j < SCSI_US_PER_MSEC; j++) { 4337 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, 4338 result); 4339 if (result != 0) 4340 return result; 4341 udelay(1); 4342 } 4343 } 4344 4345 BUG(); /* The idle command should never timeout. */ 4346 return ADV_ERROR; 4347 } 4348 4349 /* 4350 * Reset SCSI Bus and purge all outstanding requests. 4351 * 4352 * Return Value: 4353 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset. 4354 * ADV_FALSE(0) - Microcode command failed. 4355 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC 4356 * may be hung which requires driver recovery. 4357 */ 4358 static int AdvResetSB(ADV_DVC_VAR *asc_dvc) 4359 { 4360 int status; 4361 4362 /* 4363 * Send the SCSI Bus Reset idle start idle command which asserts 4364 * the SCSI Bus Reset signal. 4365 */ 4366 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L); 4367 if (status != ADV_TRUE) { 4368 return status; 4369 } 4370 4371 /* 4372 * Delay for the specified SCSI Bus Reset hold time. 4373 * 4374 * The hold time delay is done on the host because the RISC has no 4375 * microsecond accurate timer. 4376 */ 4377 udelay(ASC_SCSI_RESET_HOLD_TIME_US); 4378 4379 /* 4380 * Send the SCSI Bus Reset end idle command which de-asserts 4381 * the SCSI Bus Reset signal and purges any pending requests. 4382 */ 4383 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L); 4384 if (status != ADV_TRUE) { 4385 return status; 4386 } 4387 4388 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 4389 4390 return status; 4391 } 4392 4393 /* 4394 * Initialize the ASC-3550. 4395 * 4396 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 4397 * 4398 * For a non-fatal error return a warning code. If there are no warnings 4399 * then 0 is returned. 4400 * 4401 * Needed after initialization for error recovery. 4402 */ 4403 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc) 4404 { 4405 const struct firmware *fw; 4406 const char fwname[] = "advansys/3550.bin"; 4407 AdvPortAddr iop_base; 4408 ushort warn_code; 4409 int begin_addr; 4410 int end_addr; 4411 ushort code_sum; 4412 int word; 4413 int i; 4414 int err; 4415 unsigned long chksum; 4416 ushort scsi_cfg1; 4417 uchar tid; 4418 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 4419 ushort wdtr_able = 0, sdtr_able, tagqng_able; 4420 uchar max_cmd[ADV_MAX_TID + 1]; 4421 4422 /* If there is already an error, don't continue. */ 4423 if (asc_dvc->err_code != 0) 4424 return ADV_ERROR; 4425 4426 /* 4427 * The caller must set 'chip_type' to ADV_CHIP_ASC3550. 4428 */ 4429 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) { 4430 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 4431 return ADV_ERROR; 4432 } 4433 4434 warn_code = 0; 4435 iop_base = asc_dvc->iop_base; 4436 4437 /* 4438 * Save the RISC memory BIOS region before writing the microcode. 4439 * The BIOS may already be loaded and using its RISC LRAM region 4440 * so its region must be saved and restored. 4441 * 4442 * Note: This code makes the assumption, which is currently true, 4443 * that a chip reset does not clear RISC LRAM. 4444 */ 4445 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4446 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4447 bios_mem[i]); 4448 } 4449 4450 /* 4451 * Save current per TID negotiated values. 4452 */ 4453 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) { 4454 ushort bios_version, major, minor; 4455 4456 bios_version = 4457 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2]; 4458 major = (bios_version >> 12) & 0xF; 4459 minor = (bios_version >> 8) & 0xF; 4460 if (major < 3 || (major == 3 && minor == 1)) { 4461 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */ 4462 AdvReadWordLram(iop_base, 0x120, wdtr_able); 4463 } else { 4464 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4465 } 4466 } 4467 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4468 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 4469 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4470 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 4471 max_cmd[tid]); 4472 } 4473 4474 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4475 if (err) { 4476 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4477 fwname, err); 4478 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4479 return err; 4480 } 4481 if (fw->size < 4) { 4482 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4483 fw->size, fwname); 4484 release_firmware(fw); 4485 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4486 return -EINVAL; 4487 } 4488 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4489 (fw->data[1] << 8) | fw->data[0]; 4490 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 4491 fw->size - 4, ADV_3550_MEMSIZE, 4492 chksum); 4493 release_firmware(fw); 4494 if (asc_dvc->err_code) 4495 return ADV_ERROR; 4496 4497 /* 4498 * Restore the RISC memory BIOS region. 4499 */ 4500 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4501 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4502 bios_mem[i]); 4503 } 4504 4505 /* 4506 * Calculate and write the microcode code checksum to the microcode 4507 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 4508 */ 4509 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 4510 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 4511 code_sum = 0; 4512 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 4513 for (word = begin_addr; word < end_addr; word += 2) { 4514 code_sum += AdvReadWordAutoIncLram(iop_base); 4515 } 4516 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 4517 4518 /* 4519 * Read and save microcode version and date. 4520 */ 4521 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 4522 asc_dvc->cfg->mcode_date); 4523 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 4524 asc_dvc->cfg->mcode_version); 4525 4526 /* 4527 * Set the chip type to indicate the ASC3550. 4528 */ 4529 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550); 4530 4531 /* 4532 * If the PCI Configuration Command Register "Parity Error Response 4533 * Control" Bit was clear (0), then set the microcode variable 4534 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 4535 * to ignore DMA parity errors. 4536 */ 4537 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 4538 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4539 word |= CONTROL_FLAG_IGNORE_PERR; 4540 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4541 } 4542 4543 /* 4544 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO 4545 * threshold of 128 bytes. This register is only accessible to the host. 4546 */ 4547 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 4548 START_CTL_EMFU | READ_CMD_MRM); 4549 4550 /* 4551 * Microcode operating variables for WDTR, SDTR, and command tag 4552 * queuing will be set in slave_configure() based on what a 4553 * device reports it is capable of in Inquiry byte 7. 4554 * 4555 * If SCSI Bus Resets have been disabled, then directly set 4556 * SDTR and WDTR from the EEPROM configuration. This will allow 4557 * the BIOS and warm boot to work without a SCSI bus hang on 4558 * the Inquiry caused by host and target mismatched DTR values. 4559 * Without the SCSI Bus Reset, before an Inquiry a device can't 4560 * be assumed to be in Asynchronous, Narrow mode. 4561 */ 4562 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 4563 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 4564 asc_dvc->wdtr_able); 4565 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 4566 asc_dvc->sdtr_able); 4567 } 4568 4569 /* 4570 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2, 4571 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID 4572 * bitmask. These values determine the maximum SDTR speed negotiated 4573 * with a device. 4574 * 4575 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 4576 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 4577 * without determining here whether the device supports SDTR. 4578 * 4579 * 4-bit speed SDTR speed name 4580 * =========== =============== 4581 * 0000b (0x0) SDTR disabled 4582 * 0001b (0x1) 5 Mhz 4583 * 0010b (0x2) 10 Mhz 4584 * 0011b (0x3) 20 Mhz (Ultra) 4585 * 0100b (0x4) 40 Mhz (LVD/Ultra2) 4586 * 0101b (0x5) 80 Mhz (LVD2/Ultra3) 4587 * 0110b (0x6) Undefined 4588 * . 4589 * 1111b (0xF) Undefined 4590 */ 4591 word = 0; 4592 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4593 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) { 4594 /* Set Ultra speed for TID 'tid'. */ 4595 word |= (0x3 << (4 * (tid % 4))); 4596 } else { 4597 /* Set Fast speed for TID 'tid'. */ 4598 word |= (0x2 << (4 * (tid % 4))); 4599 } 4600 if (tid == 3) { /* Check if done with sdtr_speed1. */ 4601 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word); 4602 word = 0; 4603 } else if (tid == 7) { /* Check if done with sdtr_speed2. */ 4604 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word); 4605 word = 0; 4606 } else if (tid == 11) { /* Check if done with sdtr_speed3. */ 4607 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word); 4608 word = 0; 4609 } else if (tid == 15) { /* Check if done with sdtr_speed4. */ 4610 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word); 4611 /* End of loop. */ 4612 } 4613 } 4614 4615 /* 4616 * Set microcode operating variable for the disconnect per TID bitmask. 4617 */ 4618 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 4619 asc_dvc->cfg->disc_enable); 4620 4621 /* 4622 * Set SCSI_CFG0 Microcode Default Value. 4623 * 4624 * The microcode will set the SCSI_CFG0 register using this value 4625 * after it is started below. 4626 */ 4627 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 4628 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 4629 asc_dvc->chip_scsi_id); 4630 4631 /* 4632 * Determine SCSI_CFG1 Microcode Default Value. 4633 * 4634 * The microcode will set the SCSI_CFG1 register using this value 4635 * after it is started below. 4636 */ 4637 4638 /* Read current SCSI_CFG1 Register value. */ 4639 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 4640 4641 /* 4642 * If all three connectors are in use, return an error. 4643 */ 4644 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 || 4645 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) { 4646 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION; 4647 return ADV_ERROR; 4648 } 4649 4650 /* 4651 * If the internal narrow cable is reversed all of the SCSI_CTRL 4652 * register signals will be set. Check for and return an error if 4653 * this condition is found. 4654 */ 4655 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 4656 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 4657 return ADV_ERROR; 4658 } 4659 4660 /* 4661 * If this is a differential board and a single-ended device 4662 * is attached to one of the connectors, return an error. 4663 */ 4664 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) { 4665 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE; 4666 return ADV_ERROR; 4667 } 4668 4669 /* 4670 * If automatic termination control is enabled, then set the 4671 * termination value based on a table listed in a_condor.h. 4672 * 4673 * If manual termination was specified with an EEPROM setting 4674 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and 4675 * is ready to be 'ored' into SCSI_CFG1. 4676 */ 4677 if (asc_dvc->cfg->termination == 0) { 4678 /* 4679 * The software always controls termination by setting TERM_CTL_SEL. 4680 * If TERM_CTL_SEL were set to 0, the hardware would set termination. 4681 */ 4682 asc_dvc->cfg->termination |= TERM_CTL_SEL; 4683 4684 switch (scsi_cfg1 & CABLE_DETECT) { 4685 /* TERM_CTL_H: on, TERM_CTL_L: on */ 4686 case 0x3: 4687 case 0x7: 4688 case 0xB: 4689 case 0xD: 4690 case 0xE: 4691 case 0xF: 4692 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L); 4693 break; 4694 4695 /* TERM_CTL_H: on, TERM_CTL_L: off */ 4696 case 0x1: 4697 case 0x5: 4698 case 0x9: 4699 case 0xA: 4700 case 0xC: 4701 asc_dvc->cfg->termination |= TERM_CTL_H; 4702 break; 4703 4704 /* TERM_CTL_H: off, TERM_CTL_L: off */ 4705 case 0x2: 4706 case 0x6: 4707 break; 4708 } 4709 } 4710 4711 /* 4712 * Clear any set TERM_CTL_H and TERM_CTL_L bits. 4713 */ 4714 scsi_cfg1 &= ~TERM_CTL; 4715 4716 /* 4717 * Invert the TERM_CTL_H and TERM_CTL_L bits and then 4718 * set 'scsi_cfg1'. The TERM_POL bit does not need to be 4719 * referenced, because the hardware internally inverts 4720 * the Termination High and Low bits if TERM_POL is set. 4721 */ 4722 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL)); 4723 4724 /* 4725 * Set SCSI_CFG1 Microcode Default Value 4726 * 4727 * Set filter value and possibly modified termination control 4728 * bits in the Microcode SCSI_CFG1 Register Value. 4729 * 4730 * The microcode will set the SCSI_CFG1 register using this value 4731 * after it is started below. 4732 */ 4733 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, 4734 FLTR_DISABLE | scsi_cfg1); 4735 4736 /* 4737 * Set MEM_CFG Microcode Default Value 4738 * 4739 * The microcode will set the MEM_CFG register using this value 4740 * after it is started below. 4741 * 4742 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 4743 * are defined. 4744 * 4745 * ASC-3550 has 8KB internal memory. 4746 */ 4747 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 4748 BIOS_EN | RAM_SZ_8KB); 4749 4750 /* 4751 * Set SEL_MASK Microcode Default Value 4752 * 4753 * The microcode will set the SEL_MASK register using this value 4754 * after it is started below. 4755 */ 4756 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 4757 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 4758 4759 AdvBuildCarrierFreelist(asc_dvc); 4760 4761 /* 4762 * Set-up the Host->RISC Initiator Command Queue (ICQ). 4763 */ 4764 4765 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 4766 if (!asc_dvc->icq_sp) { 4767 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 4768 return ADV_ERROR; 4769 } 4770 4771 /* 4772 * Set RISC ICQ physical address start value. 4773 */ 4774 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 4775 4776 /* 4777 * Set-up the RISC->Host Initiator Response Queue (IRQ). 4778 */ 4779 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 4780 if (!asc_dvc->irq_sp) { 4781 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 4782 return ADV_ERROR; 4783 } 4784 4785 /* 4786 * Set RISC IRQ physical address start value. 4787 */ 4788 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 4789 asc_dvc->carr_pending_cnt = 0; 4790 4791 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 4792 (ADV_INTR_ENABLE_HOST_INTR | 4793 ADV_INTR_ENABLE_GLOBAL_INTR)); 4794 4795 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 4796 AdvWriteWordRegister(iop_base, IOPW_PC, word); 4797 4798 /* finally, finally, gentlemen, start your engine */ 4799 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 4800 4801 /* 4802 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 4803 * Resets should be performed. The RISC has to be running 4804 * to issue a SCSI Bus Reset. 4805 */ 4806 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 4807 /* 4808 * If the BIOS Signature is present in memory, restore the 4809 * BIOS Handshake Configuration Table and do not perform 4810 * a SCSI Bus Reset. 4811 */ 4812 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 4813 0x55AA) { 4814 /* 4815 * Restore per TID negotiated values. 4816 */ 4817 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4818 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4819 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 4820 tagqng_able); 4821 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4822 AdvWriteByteLram(iop_base, 4823 ASC_MC_NUMBER_OF_MAX_CMD + tid, 4824 max_cmd[tid]); 4825 } 4826 } else { 4827 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 4828 warn_code = ASC_WARN_BUSRESET_ERROR; 4829 } 4830 } 4831 } 4832 4833 return warn_code; 4834 } 4835 4836 /* 4837 * Initialize the ASC-38C0800. 4838 * 4839 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 4840 * 4841 * For a non-fatal error return a warning code. If there are no warnings 4842 * then 0 is returned. 4843 * 4844 * Needed after initialization for error recovery. 4845 */ 4846 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc) 4847 { 4848 const struct firmware *fw; 4849 const char fwname[] = "advansys/38C0800.bin"; 4850 AdvPortAddr iop_base; 4851 ushort warn_code; 4852 int begin_addr; 4853 int end_addr; 4854 ushort code_sum; 4855 int word; 4856 int i; 4857 int err; 4858 unsigned long chksum; 4859 ushort scsi_cfg1; 4860 uchar byte; 4861 uchar tid; 4862 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 4863 ushort wdtr_able, sdtr_able, tagqng_able; 4864 uchar max_cmd[ADV_MAX_TID + 1]; 4865 4866 /* If there is already an error, don't continue. */ 4867 if (asc_dvc->err_code != 0) 4868 return ADV_ERROR; 4869 4870 /* 4871 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800. 4872 */ 4873 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) { 4874 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 4875 return ADV_ERROR; 4876 } 4877 4878 warn_code = 0; 4879 iop_base = asc_dvc->iop_base; 4880 4881 /* 4882 * Save the RISC memory BIOS region before writing the microcode. 4883 * The BIOS may already be loaded and using its RISC LRAM region 4884 * so its region must be saved and restored. 4885 * 4886 * Note: This code makes the assumption, which is currently true, 4887 * that a chip reset does not clear RISC LRAM. 4888 */ 4889 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4890 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4891 bios_mem[i]); 4892 } 4893 4894 /* 4895 * Save current per TID negotiated values. 4896 */ 4897 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4898 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4899 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 4900 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4901 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 4902 max_cmd[tid]); 4903 } 4904 4905 /* 4906 * RAM BIST (RAM Built-In Self Test) 4907 * 4908 * Address : I/O base + offset 0x38h register (byte). 4909 * Function: Bit 7-6(RW) : RAM mode 4910 * Normal Mode : 0x00 4911 * Pre-test Mode : 0x40 4912 * RAM Test Mode : 0x80 4913 * Bit 5 : unused 4914 * Bit 4(RO) : Done bit 4915 * Bit 3-0(RO) : Status 4916 * Host Error : 0x08 4917 * Int_RAM Error : 0x04 4918 * RISC Error : 0x02 4919 * SCSI Error : 0x01 4920 * No Error : 0x00 4921 * 4922 * Note: RAM BIST code should be put right here, before loading the 4923 * microcode and after saving the RISC memory BIOS region. 4924 */ 4925 4926 /* 4927 * LRAM Pre-test 4928 * 4929 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. 4930 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return 4931 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset 4932 * to NORMAL_MODE, return an error too. 4933 */ 4934 for (i = 0; i < 2; i++) { 4935 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); 4936 mdelay(10); /* Wait for 10ms before reading back. */ 4937 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 4938 if ((byte & RAM_TEST_DONE) == 0 4939 || (byte & 0x0F) != PRE_TEST_VALUE) { 4940 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 4941 return ADV_ERROR; 4942 } 4943 4944 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 4945 mdelay(10); /* Wait for 10ms before reading back. */ 4946 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) 4947 != NORMAL_VALUE) { 4948 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 4949 return ADV_ERROR; 4950 } 4951 } 4952 4953 /* 4954 * LRAM Test - It takes about 1.5 ms to run through the test. 4955 * 4956 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. 4957 * If Done bit not set or Status not 0, save register byte, set the 4958 * err_code, and return an error. 4959 */ 4960 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); 4961 mdelay(10); /* Wait for 10ms before checking status. */ 4962 4963 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 4964 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { 4965 /* Get here if Done bit not set or Status not 0. */ 4966 asc_dvc->bist_err_code = byte; /* for BIOS display message */ 4967 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; 4968 return ADV_ERROR; 4969 } 4970 4971 /* We need to reset back to normal mode after LRAM test passes. */ 4972 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 4973 4974 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4975 if (err) { 4976 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4977 fwname, err); 4978 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4979 return err; 4980 } 4981 if (fw->size < 4) { 4982 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4983 fw->size, fwname); 4984 release_firmware(fw); 4985 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4986 return -EINVAL; 4987 } 4988 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4989 (fw->data[1] << 8) | fw->data[0]; 4990 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 4991 fw->size - 4, ADV_38C0800_MEMSIZE, 4992 chksum); 4993 release_firmware(fw); 4994 if (asc_dvc->err_code) 4995 return ADV_ERROR; 4996 4997 /* 4998 * Restore the RISC memory BIOS region. 4999 */ 5000 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5001 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5002 bios_mem[i]); 5003 } 5004 5005 /* 5006 * Calculate and write the microcode code checksum to the microcode 5007 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 5008 */ 5009 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 5010 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 5011 code_sum = 0; 5012 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 5013 for (word = begin_addr; word < end_addr; word += 2) { 5014 code_sum += AdvReadWordAutoIncLram(iop_base); 5015 } 5016 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 5017 5018 /* 5019 * Read microcode version and date. 5020 */ 5021 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 5022 asc_dvc->cfg->mcode_date); 5023 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 5024 asc_dvc->cfg->mcode_version); 5025 5026 /* 5027 * Set the chip type to indicate the ASC38C0800. 5028 */ 5029 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800); 5030 5031 /* 5032 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. 5033 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current 5034 * cable detection and then we are able to read C_DET[3:0]. 5035 * 5036 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 5037 * Microcode Default Value' section below. 5038 */ 5039 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5040 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, 5041 scsi_cfg1 | DIS_TERM_DRV); 5042 5043 /* 5044 * If the PCI Configuration Command Register "Parity Error Response 5045 * Control" Bit was clear (0), then set the microcode variable 5046 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 5047 * to ignore DMA parity errors. 5048 */ 5049 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 5050 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5051 word |= CONTROL_FLAG_IGNORE_PERR; 5052 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5053 } 5054 5055 /* 5056 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2] 5057 * bits for the default FIFO threshold. 5058 * 5059 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes. 5060 * 5061 * For DMA Errata #4 set the BC_THRESH_ENB bit. 5062 */ 5063 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 5064 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | 5065 READ_CMD_MRM); 5066 5067 /* 5068 * Microcode operating variables for WDTR, SDTR, and command tag 5069 * queuing will be set in slave_configure() based on what a 5070 * device reports it is capable of in Inquiry byte 7. 5071 * 5072 * If SCSI Bus Resets have been disabled, then directly set 5073 * SDTR and WDTR from the EEPROM configuration. This will allow 5074 * the BIOS and warm boot to work without a SCSI bus hang on 5075 * the Inquiry caused by host and target mismatched DTR values. 5076 * Without the SCSI Bus Reset, before an Inquiry a device can't 5077 * be assumed to be in Asynchronous, Narrow mode. 5078 */ 5079 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 5080 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 5081 asc_dvc->wdtr_able); 5082 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 5083 asc_dvc->sdtr_able); 5084 } 5085 5086 /* 5087 * Set microcode operating variables for DISC and SDTR_SPEED1, 5088 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM 5089 * configuration values. 5090 * 5091 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 5092 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 5093 * without determining here whether the device supports SDTR. 5094 */ 5095 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 5096 asc_dvc->cfg->disc_enable); 5097 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); 5098 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); 5099 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); 5100 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); 5101 5102 /* 5103 * Set SCSI_CFG0 Microcode Default Value. 5104 * 5105 * The microcode will set the SCSI_CFG0 register using this value 5106 * after it is started below. 5107 */ 5108 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 5109 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 5110 asc_dvc->chip_scsi_id); 5111 5112 /* 5113 * Determine SCSI_CFG1 Microcode Default Value. 5114 * 5115 * The microcode will set the SCSI_CFG1 register using this value 5116 * after it is started below. 5117 */ 5118 5119 /* Read current SCSI_CFG1 Register value. */ 5120 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5121 5122 /* 5123 * If the internal narrow cable is reversed all of the SCSI_CTRL 5124 * register signals will be set. Check for and return an error if 5125 * this condition is found. 5126 */ 5127 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 5128 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 5129 return ADV_ERROR; 5130 } 5131 5132 /* 5133 * All kind of combinations of devices attached to one of four 5134 * connectors are acceptable except HVD device attached. For example, 5135 * LVD device can be attached to SE connector while SE device attached 5136 * to LVD connector. If LVD device attached to SE connector, it only 5137 * runs up to Ultra speed. 5138 * 5139 * If an HVD device is attached to one of LVD connectors, return an 5140 * error. However, there is no way to detect HVD device attached to 5141 * SE connectors. 5142 */ 5143 if (scsi_cfg1 & HVD) { 5144 asc_dvc->err_code = ASC_IERR_HVD_DEVICE; 5145 return ADV_ERROR; 5146 } 5147 5148 /* 5149 * If either SE or LVD automatic termination control is enabled, then 5150 * set the termination value based on a table listed in a_condor.h. 5151 * 5152 * If manual termination was specified with an EEPROM setting then 5153 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready 5154 * to be 'ored' into SCSI_CFG1. 5155 */ 5156 if ((asc_dvc->cfg->termination & TERM_SE) == 0) { 5157 /* SE automatic termination control is enabled. */ 5158 switch (scsi_cfg1 & C_DET_SE) { 5159 /* TERM_SE_HI: on, TERM_SE_LO: on */ 5160 case 0x1: 5161 case 0x2: 5162 case 0x3: 5163 asc_dvc->cfg->termination |= TERM_SE; 5164 break; 5165 5166 /* TERM_SE_HI: on, TERM_SE_LO: off */ 5167 case 0x0: 5168 asc_dvc->cfg->termination |= TERM_SE_HI; 5169 break; 5170 } 5171 } 5172 5173 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) { 5174 /* LVD automatic termination control is enabled. */ 5175 switch (scsi_cfg1 & C_DET_LVD) { 5176 /* TERM_LVD_HI: on, TERM_LVD_LO: on */ 5177 case 0x4: 5178 case 0x8: 5179 case 0xC: 5180 asc_dvc->cfg->termination |= TERM_LVD; 5181 break; 5182 5183 /* TERM_LVD_HI: off, TERM_LVD_LO: off */ 5184 case 0x0: 5185 break; 5186 } 5187 } 5188 5189 /* 5190 * Clear any set TERM_SE and TERM_LVD bits. 5191 */ 5192 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD); 5193 5194 /* 5195 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'. 5196 */ 5197 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0); 5198 5199 /* 5200 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE 5201 * bits and set possibly modified termination control bits in the 5202 * Microcode SCSI_CFG1 Register Value. 5203 */ 5204 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE); 5205 5206 /* 5207 * Set SCSI_CFG1 Microcode Default Value 5208 * 5209 * Set possibly modified termination control and reset DIS_TERM_DRV 5210 * bits in the Microcode SCSI_CFG1 Register Value. 5211 * 5212 * The microcode will set the SCSI_CFG1 register using this value 5213 * after it is started below. 5214 */ 5215 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); 5216 5217 /* 5218 * Set MEM_CFG Microcode Default Value 5219 * 5220 * The microcode will set the MEM_CFG register using this value 5221 * after it is started below. 5222 * 5223 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 5224 * are defined. 5225 * 5226 * ASC-38C0800 has 16KB internal memory. 5227 */ 5228 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5229 BIOS_EN | RAM_SZ_16KB); 5230 5231 /* 5232 * Set SEL_MASK Microcode Default Value 5233 * 5234 * The microcode will set the SEL_MASK register using this value 5235 * after it is started below. 5236 */ 5237 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 5238 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 5239 5240 AdvBuildCarrierFreelist(asc_dvc); 5241 5242 /* 5243 * Set-up the Host->RISC Initiator Command Queue (ICQ). 5244 */ 5245 5246 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 5247 if (!asc_dvc->icq_sp) { 5248 ASC_DBG(0, "Failed to get ICQ carrier\n"); 5249 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5250 return ADV_ERROR; 5251 } 5252 5253 /* 5254 * Set RISC ICQ physical address start value. 5255 * carr_pa is LE, must be native before write 5256 */ 5257 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 5258 5259 /* 5260 * Set-up the RISC->Host Initiator Response Queue (IRQ). 5261 */ 5262 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 5263 if (!asc_dvc->irq_sp) { 5264 ASC_DBG(0, "Failed to get IRQ carrier\n"); 5265 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5266 return ADV_ERROR; 5267 } 5268 5269 /* 5270 * Set RISC IRQ physical address start value. 5271 * 5272 * carr_pa is LE, must be native before write * 5273 */ 5274 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 5275 asc_dvc->carr_pending_cnt = 0; 5276 5277 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 5278 (ADV_INTR_ENABLE_HOST_INTR | 5279 ADV_INTR_ENABLE_GLOBAL_INTR)); 5280 5281 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 5282 AdvWriteWordRegister(iop_base, IOPW_PC, word); 5283 5284 /* finally, finally, gentlemen, start your engine */ 5285 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 5286 5287 /* 5288 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 5289 * Resets should be performed. The RISC has to be running 5290 * to issue a SCSI Bus Reset. 5291 */ 5292 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 5293 /* 5294 * If the BIOS Signature is present in memory, restore the 5295 * BIOS Handshake Configuration Table and do not perform 5296 * a SCSI Bus Reset. 5297 */ 5298 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 5299 0x55AA) { 5300 /* 5301 * Restore per TID negotiated values. 5302 */ 5303 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5304 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5305 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 5306 tagqng_able); 5307 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5308 AdvWriteByteLram(iop_base, 5309 ASC_MC_NUMBER_OF_MAX_CMD + tid, 5310 max_cmd[tid]); 5311 } 5312 } else { 5313 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 5314 warn_code = ASC_WARN_BUSRESET_ERROR; 5315 } 5316 } 5317 } 5318 5319 return warn_code; 5320 } 5321 5322 /* 5323 * Initialize the ASC-38C1600. 5324 * 5325 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. 5326 * 5327 * For a non-fatal error return a warning code. If there are no warnings 5328 * then 0 is returned. 5329 * 5330 * Needed after initialization for error recovery. 5331 */ 5332 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc) 5333 { 5334 const struct firmware *fw; 5335 const char fwname[] = "advansys/38C1600.bin"; 5336 AdvPortAddr iop_base; 5337 ushort warn_code; 5338 int begin_addr; 5339 int end_addr; 5340 ushort code_sum; 5341 long word; 5342 int i; 5343 int err; 5344 unsigned long chksum; 5345 ushort scsi_cfg1; 5346 uchar byte; 5347 uchar tid; 5348 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 5349 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able; 5350 uchar max_cmd[ASC_MAX_TID + 1]; 5351 5352 /* If there is already an error, don't continue. */ 5353 if (asc_dvc->err_code != 0) { 5354 return ADV_ERROR; 5355 } 5356 5357 /* 5358 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600. 5359 */ 5360 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { 5361 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 5362 return ADV_ERROR; 5363 } 5364 5365 warn_code = 0; 5366 iop_base = asc_dvc->iop_base; 5367 5368 /* 5369 * Save the RISC memory BIOS region before writing the microcode. 5370 * The BIOS may already be loaded and using its RISC LRAM region 5371 * so its region must be saved and restored. 5372 * 5373 * Note: This code makes the assumption, which is currently true, 5374 * that a chip reset does not clear RISC LRAM. 5375 */ 5376 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5377 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5378 bios_mem[i]); 5379 } 5380 5381 /* 5382 * Save current per TID negotiated values. 5383 */ 5384 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5385 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5386 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5387 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5388 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 5389 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5390 max_cmd[tid]); 5391 } 5392 5393 /* 5394 * RAM BIST (Built-In Self Test) 5395 * 5396 * Address : I/O base + offset 0x38h register (byte). 5397 * Function: Bit 7-6(RW) : RAM mode 5398 * Normal Mode : 0x00 5399 * Pre-test Mode : 0x40 5400 * RAM Test Mode : 0x80 5401 * Bit 5 : unused 5402 * Bit 4(RO) : Done bit 5403 * Bit 3-0(RO) : Status 5404 * Host Error : 0x08 5405 * Int_RAM Error : 0x04 5406 * RISC Error : 0x02 5407 * SCSI Error : 0x01 5408 * No Error : 0x00 5409 * 5410 * Note: RAM BIST code should be put right here, before loading the 5411 * microcode and after saving the RISC memory BIOS region. 5412 */ 5413 5414 /* 5415 * LRAM Pre-test 5416 * 5417 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. 5418 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return 5419 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset 5420 * to NORMAL_MODE, return an error too. 5421 */ 5422 for (i = 0; i < 2; i++) { 5423 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); 5424 mdelay(10); /* Wait for 10ms before reading back. */ 5425 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5426 if ((byte & RAM_TEST_DONE) == 0 5427 || (byte & 0x0F) != PRE_TEST_VALUE) { 5428 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5429 return ADV_ERROR; 5430 } 5431 5432 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5433 mdelay(10); /* Wait for 10ms before reading back. */ 5434 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) 5435 != NORMAL_VALUE) { 5436 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5437 return ADV_ERROR; 5438 } 5439 } 5440 5441 /* 5442 * LRAM Test - It takes about 1.5 ms to run through the test. 5443 * 5444 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. 5445 * If Done bit not set or Status not 0, save register byte, set the 5446 * err_code, and return an error. 5447 */ 5448 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); 5449 mdelay(10); /* Wait for 10ms before checking status. */ 5450 5451 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5452 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { 5453 /* Get here if Done bit not set or Status not 0. */ 5454 asc_dvc->bist_err_code = byte; /* for BIOS display message */ 5455 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; 5456 return ADV_ERROR; 5457 } 5458 5459 /* We need to reset back to normal mode after LRAM test passes. */ 5460 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5461 5462 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 5463 if (err) { 5464 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 5465 fwname, err); 5466 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5467 return err; 5468 } 5469 if (fw->size < 4) { 5470 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 5471 fw->size, fwname); 5472 release_firmware(fw); 5473 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5474 return -EINVAL; 5475 } 5476 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 5477 (fw->data[1] << 8) | fw->data[0]; 5478 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 5479 fw->size - 4, ADV_38C1600_MEMSIZE, 5480 chksum); 5481 release_firmware(fw); 5482 if (asc_dvc->err_code) 5483 return ADV_ERROR; 5484 5485 /* 5486 * Restore the RISC memory BIOS region. 5487 */ 5488 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5489 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5490 bios_mem[i]); 5491 } 5492 5493 /* 5494 * Calculate and write the microcode code checksum to the microcode 5495 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 5496 */ 5497 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 5498 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 5499 code_sum = 0; 5500 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 5501 for (word = begin_addr; word < end_addr; word += 2) { 5502 code_sum += AdvReadWordAutoIncLram(iop_base); 5503 } 5504 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 5505 5506 /* 5507 * Read microcode version and date. 5508 */ 5509 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 5510 asc_dvc->cfg->mcode_date); 5511 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 5512 asc_dvc->cfg->mcode_version); 5513 5514 /* 5515 * Set the chip type to indicate the ASC38C1600. 5516 */ 5517 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600); 5518 5519 /* 5520 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. 5521 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current 5522 * cable detection and then we are able to read C_DET[3:0]. 5523 * 5524 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 5525 * Microcode Default Value' section below. 5526 */ 5527 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5528 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, 5529 scsi_cfg1 | DIS_TERM_DRV); 5530 5531 /* 5532 * If the PCI Configuration Command Register "Parity Error Response 5533 * Control" Bit was clear (0), then set the microcode variable 5534 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 5535 * to ignore DMA parity errors. 5536 */ 5537 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 5538 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5539 word |= CONTROL_FLAG_IGNORE_PERR; 5540 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5541 } 5542 5543 /* 5544 * If the BIOS control flag AIPP (Asynchronous Information 5545 * Phase Protection) disable bit is not set, then set the firmware 5546 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable 5547 * AIPP checking and encoding. 5548 */ 5549 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) { 5550 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5551 word |= CONTROL_FLAG_ENABLE_AIPP; 5552 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5553 } 5554 5555 /* 5556 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4], 5557 * and START_CTL_TH [3:2]. 5558 */ 5559 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 5560 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM); 5561 5562 /* 5563 * Microcode operating variables for WDTR, SDTR, and command tag 5564 * queuing will be set in slave_configure() based on what a 5565 * device reports it is capable of in Inquiry byte 7. 5566 * 5567 * If SCSI Bus Resets have been disabled, then directly set 5568 * SDTR and WDTR from the EEPROM configuration. This will allow 5569 * the BIOS and warm boot to work without a SCSI bus hang on 5570 * the Inquiry caused by host and target mismatched DTR values. 5571 * Without the SCSI Bus Reset, before an Inquiry a device can't 5572 * be assumed to be in Asynchronous, Narrow mode. 5573 */ 5574 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 5575 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 5576 asc_dvc->wdtr_able); 5577 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 5578 asc_dvc->sdtr_able); 5579 } 5580 5581 /* 5582 * Set microcode operating variables for DISC and SDTR_SPEED1, 5583 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM 5584 * configuration values. 5585 * 5586 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 5587 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 5588 * without determining here whether the device supports SDTR. 5589 */ 5590 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 5591 asc_dvc->cfg->disc_enable); 5592 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); 5593 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); 5594 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); 5595 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); 5596 5597 /* 5598 * Set SCSI_CFG0 Microcode Default Value. 5599 * 5600 * The microcode will set the SCSI_CFG0 register using this value 5601 * after it is started below. 5602 */ 5603 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 5604 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 5605 asc_dvc->chip_scsi_id); 5606 5607 /* 5608 * Calculate SCSI_CFG1 Microcode Default Value. 5609 * 5610 * The microcode will set the SCSI_CFG1 register using this value 5611 * after it is started below. 5612 * 5613 * Each ASC-38C1600 function has only two cable detect bits. 5614 * The bus mode override bits are in IOPB_SOFT_OVER_WR. 5615 */ 5616 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5617 5618 /* 5619 * If the cable is reversed all of the SCSI_CTRL register signals 5620 * will be set. Check for and return an error if this condition is 5621 * found. 5622 */ 5623 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 5624 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 5625 return ADV_ERROR; 5626 } 5627 5628 /* 5629 * Each ASC-38C1600 function has two connectors. Only an HVD device 5630 * can not be connected to either connector. An LVD device or SE device 5631 * may be connected to either connecor. If an SE device is connected, 5632 * then at most Ultra speed (20 Mhz) can be used on both connectors. 5633 * 5634 * If an HVD device is attached, return an error. 5635 */ 5636 if (scsi_cfg1 & HVD) { 5637 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE; 5638 return ADV_ERROR; 5639 } 5640 5641 /* 5642 * Each function in the ASC-38C1600 uses only the SE cable detect and 5643 * termination because there are two connectors for each function. Each 5644 * function may use either LVD or SE mode. Corresponding the SE automatic 5645 * termination control EEPROM bits are used for each function. Each 5646 * function has its own EEPROM. If SE automatic control is enabled for 5647 * the function, then set the termination value based on a table listed 5648 * in a_condor.h. 5649 * 5650 * If manual termination is specified in the EEPROM for the function, 5651 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is 5652 * ready to be 'ored' into SCSI_CFG1. 5653 */ 5654 if ((asc_dvc->cfg->termination & TERM_SE) == 0) { 5655 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); 5656 /* SE automatic termination control is enabled. */ 5657 switch (scsi_cfg1 & C_DET_SE) { 5658 /* TERM_SE_HI: on, TERM_SE_LO: on */ 5659 case 0x1: 5660 case 0x2: 5661 case 0x3: 5662 asc_dvc->cfg->termination |= TERM_SE; 5663 break; 5664 5665 case 0x0: 5666 if (PCI_FUNC(pdev->devfn) == 0) { 5667 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */ 5668 } else { 5669 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */ 5670 asc_dvc->cfg->termination |= TERM_SE_HI; 5671 } 5672 break; 5673 } 5674 } 5675 5676 /* 5677 * Clear any set TERM_SE bits. 5678 */ 5679 scsi_cfg1 &= ~TERM_SE; 5680 5681 /* 5682 * Invert the TERM_SE bits and then set 'scsi_cfg1'. 5683 */ 5684 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE); 5685 5686 /* 5687 * Clear Big Endian and Terminator Polarity bits and set possibly 5688 * modified termination control bits in the Microcode SCSI_CFG1 5689 * Register Value. 5690 * 5691 * Big Endian bit is not used even on big endian machines. 5692 */ 5693 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL); 5694 5695 /* 5696 * Set SCSI_CFG1 Microcode Default Value 5697 * 5698 * Set possibly modified termination control bits in the Microcode 5699 * SCSI_CFG1 Register Value. 5700 * 5701 * The microcode will set the SCSI_CFG1 register using this value 5702 * after it is started below. 5703 */ 5704 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); 5705 5706 /* 5707 * Set MEM_CFG Microcode Default Value 5708 * 5709 * The microcode will set the MEM_CFG register using this value 5710 * after it is started below. 5711 * 5712 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 5713 * are defined. 5714 * 5715 * ASC-38C1600 has 32KB internal memory. 5716 * 5717 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come 5718 * out a special 16K Adv Library and Microcode version. After the issue 5719 * resolved, we should turn back to the 32K support. Both a_condor.h and 5720 * mcode.sas files also need to be updated. 5721 * 5722 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5723 * BIOS_EN | RAM_SZ_32KB); 5724 */ 5725 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5726 BIOS_EN | RAM_SZ_16KB); 5727 5728 /* 5729 * Set SEL_MASK Microcode Default Value 5730 * 5731 * The microcode will set the SEL_MASK register using this value 5732 * after it is started below. 5733 */ 5734 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 5735 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 5736 5737 AdvBuildCarrierFreelist(asc_dvc); 5738 5739 /* 5740 * Set-up the Host->RISC Initiator Command Queue (ICQ). 5741 */ 5742 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 5743 if (!asc_dvc->icq_sp) { 5744 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5745 return ADV_ERROR; 5746 } 5747 5748 /* 5749 * Set RISC ICQ physical address start value. Initialize the 5750 * COMMA register to the same value otherwise the RISC will 5751 * prematurely detect a command is available. 5752 */ 5753 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 5754 AdvWriteDWordRegister(iop_base, IOPDW_COMMA, 5755 le32_to_cpu(asc_dvc->icq_sp->carr_pa)); 5756 5757 /* 5758 * Set-up the RISC->Host Initiator Response Queue (IRQ). 5759 */ 5760 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 5761 if (!asc_dvc->irq_sp) { 5762 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5763 return ADV_ERROR; 5764 } 5765 5766 /* 5767 * Set RISC IRQ physical address start value. 5768 */ 5769 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 5770 asc_dvc->carr_pending_cnt = 0; 5771 5772 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 5773 (ADV_INTR_ENABLE_HOST_INTR | 5774 ADV_INTR_ENABLE_GLOBAL_INTR)); 5775 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 5776 AdvWriteWordRegister(iop_base, IOPW_PC, word); 5777 5778 /* finally, finally, gentlemen, start your engine */ 5779 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 5780 5781 /* 5782 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 5783 * Resets should be performed. The RISC has to be running 5784 * to issue a SCSI Bus Reset. 5785 */ 5786 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 5787 /* 5788 * If the BIOS Signature is present in memory, restore the 5789 * per TID microcode operating variables. 5790 */ 5791 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 5792 0x55AA) { 5793 /* 5794 * Restore per TID negotiated values. 5795 */ 5796 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5797 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5798 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5799 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 5800 tagqng_able); 5801 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 5802 AdvWriteByteLram(iop_base, 5803 ASC_MC_NUMBER_OF_MAX_CMD + tid, 5804 max_cmd[tid]); 5805 } 5806 } else { 5807 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 5808 warn_code = ASC_WARN_BUSRESET_ERROR; 5809 } 5810 } 5811 } 5812 5813 return warn_code; 5814 } 5815 5816 /* 5817 * Reset chip and SCSI Bus. 5818 * 5819 * Return Value: 5820 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful. 5821 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure. 5822 */ 5823 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc) 5824 { 5825 int status; 5826 ushort wdtr_able, sdtr_able, tagqng_able; 5827 ushort ppr_able = 0; 5828 uchar tid, max_cmd[ADV_MAX_TID + 1]; 5829 AdvPortAddr iop_base; 5830 ushort bios_sig; 5831 5832 iop_base = asc_dvc->iop_base; 5833 5834 /* 5835 * Save current per TID negotiated values. 5836 */ 5837 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5838 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5839 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5840 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5841 } 5842 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5843 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5844 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5845 max_cmd[tid]); 5846 } 5847 5848 /* 5849 * Force the AdvInitAsc3550/38C0800Driver() function to 5850 * perform a SCSI Bus Reset by clearing the BIOS signature word. 5851 * The initialization functions assumes a SCSI Bus Reset is not 5852 * needed if the BIOS signature word is present. 5853 */ 5854 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); 5855 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0); 5856 5857 /* 5858 * Stop chip and reset it. 5859 */ 5860 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP); 5861 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET); 5862 mdelay(100); 5863 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 5864 ADV_CTRL_REG_CMD_WR_IO_REG); 5865 5866 /* 5867 * Reset Adv Library error code, if any, and try 5868 * re-initializing the chip. 5869 */ 5870 asc_dvc->err_code = 0; 5871 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5872 status = AdvInitAsc38C1600Driver(asc_dvc); 5873 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 5874 status = AdvInitAsc38C0800Driver(asc_dvc); 5875 } else { 5876 status = AdvInitAsc3550Driver(asc_dvc); 5877 } 5878 5879 /* Translate initialization return value to status value. */ 5880 if (status == 0) { 5881 status = ADV_TRUE; 5882 } else { 5883 status = ADV_FALSE; 5884 } 5885 5886 /* 5887 * Restore the BIOS signature word. 5888 */ 5889 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); 5890 5891 /* 5892 * Restore per TID negotiated values. 5893 */ 5894 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5895 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5896 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5897 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5898 } 5899 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5900 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5901 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5902 max_cmd[tid]); 5903 } 5904 5905 return status; 5906 } 5907 5908 /* 5909 * adv_async_callback() - Adv Library asynchronous event callback function. 5910 */ 5911 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code) 5912 { 5913 switch (code) { 5914 case ADV_ASYNC_SCSI_BUS_RESET_DET: 5915 /* 5916 * The firmware detected a SCSI Bus reset. 5917 */ 5918 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n"); 5919 break; 5920 5921 case ADV_ASYNC_RDMA_FAILURE: 5922 /* 5923 * Handle RDMA failure by resetting the SCSI Bus and 5924 * possibly the chip if it is unresponsive. Log the error 5925 * with a unique code. 5926 */ 5927 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n"); 5928 AdvResetChipAndSB(adv_dvc_varp); 5929 break; 5930 5931 case ADV_HOST_SCSI_BUS_RESET: 5932 /* 5933 * Host generated SCSI bus reset occurred. 5934 */ 5935 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n"); 5936 break; 5937 5938 default: 5939 ASC_DBG(0, "unknown code 0x%x\n", code); 5940 break; 5941 } 5942 } 5943 5944 /* 5945 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR(). 5946 * 5947 * Callback function for the Wide SCSI Adv Library. 5948 */ 5949 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp) 5950 { 5951 struct asc_board *boardp = adv_dvc_varp->drv_ptr; 5952 u32 srb_tag; 5953 adv_req_t *reqp; 5954 adv_sgblk_t *sgblkp; 5955 struct scsi_cmnd *scp; 5956 u32 resid_cnt; 5957 dma_addr_t sense_addr; 5958 5959 ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n", 5960 adv_dvc_varp, scsiqp); 5961 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); 5962 5963 /* 5964 * Get the adv_req_t structure for the command that has been 5965 * completed. The adv_req_t structure actually contains the 5966 * completed ADV_SCSI_REQ_Q structure. 5967 */ 5968 srb_tag = le32_to_cpu(scsiqp->srb_tag); 5969 scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag); 5970 5971 ASC_DBG(1, "scp 0x%p\n", scp); 5972 if (scp == NULL) { 5973 ASC_PRINT 5974 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n"); 5975 return; 5976 } 5977 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); 5978 5979 reqp = (adv_req_t *)scp->host_scribble; 5980 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp); 5981 if (reqp == NULL) { 5982 ASC_PRINT("adv_isr_callback: reqp is NULL\n"); 5983 return; 5984 } 5985 /* 5986 * Remove backreferences to avoid duplicate 5987 * command completions. 5988 */ 5989 scp->host_scribble = NULL; 5990 reqp->cmndp = NULL; 5991 5992 ASC_STATS(boardp->shost, callback); 5993 ASC_DBG(1, "shost 0x%p\n", boardp->shost); 5994 5995 sense_addr = le32_to_cpu(scsiqp->sense_addr); 5996 dma_unmap_single(boardp->dev, sense_addr, 5997 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 5998 5999 /* 6000 * 'done_status' contains the command's ending status. 6001 */ 6002 switch (scsiqp->done_status) { 6003 case QD_NO_ERROR: 6004 ASC_DBG(2, "QD_NO_ERROR\n"); 6005 scp->result = 0; 6006 6007 /* 6008 * Check for an underrun condition. 6009 * 6010 * If there was no error and an underrun condition, then 6011 * then return the number of underrun bytes. 6012 */ 6013 resid_cnt = le32_to_cpu(scsiqp->data_cnt); 6014 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 && 6015 resid_cnt <= scsi_bufflen(scp)) { 6016 ASC_DBG(1, "underrun condition %lu bytes\n", 6017 (ulong)resid_cnt); 6018 scsi_set_resid(scp, resid_cnt); 6019 } 6020 break; 6021 6022 case QD_WITH_ERROR: 6023 ASC_DBG(2, "QD_WITH_ERROR\n"); 6024 switch (scsiqp->host_status) { 6025 case QHSTA_NO_ERROR: 6026 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) { 6027 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); 6028 ASC_DBG_PRT_SENSE(2, scp->sense_buffer, 6029 SCSI_SENSE_BUFFERSIZE); 6030 /* 6031 * Note: The 'status_byte()' macro used by 6032 * target drivers defined in scsi.h shifts the 6033 * status byte returned by host drivers right 6034 * by 1 bit. This is why target drivers also 6035 * use right shifted status byte definitions. 6036 * For instance target drivers use 6037 * CHECK_CONDITION, defined to 0x1, instead of 6038 * the SCSI defined check condition value of 6039 * 0x2. Host drivers are supposed to return 6040 * the status byte as it is defined by SCSI. 6041 */ 6042 scp->result = DRIVER_BYTE(DRIVER_SENSE) | 6043 STATUS_BYTE(scsiqp->scsi_status); 6044 } else { 6045 scp->result = STATUS_BYTE(scsiqp->scsi_status); 6046 } 6047 break; 6048 6049 default: 6050 /* Some other QHSTA error occurred. */ 6051 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status); 6052 scp->result = HOST_BYTE(DID_BAD_TARGET); 6053 break; 6054 } 6055 break; 6056 6057 case QD_ABORTED_BY_HOST: 6058 ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); 6059 scp->result = 6060 HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status); 6061 break; 6062 6063 default: 6064 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status); 6065 scp->result = 6066 HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status); 6067 break; 6068 } 6069 6070 /* 6071 * If the 'init_tidmask' bit isn't already set for the target and the 6072 * current request finished normally, then set the bit for the target 6073 * to indicate that a device is present. 6074 */ 6075 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && 6076 scsiqp->done_status == QD_NO_ERROR && 6077 scsiqp->host_status == QHSTA_NO_ERROR) { 6078 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); 6079 } 6080 6081 asc_scsi_done(scp); 6082 6083 /* 6084 * Free all 'adv_sgblk_t' structures allocated for the request. 6085 */ 6086 while ((sgblkp = reqp->sgblkp) != NULL) { 6087 /* Remove 'sgblkp' from the request list. */ 6088 reqp->sgblkp = sgblkp->next_sgblkp; 6089 6090 dma_pool_free(boardp->adv_sgblk_pool, sgblkp, 6091 sgblkp->sg_addr); 6092 } 6093 6094 ASC_DBG(1, "done\n"); 6095 } 6096 6097 /* 6098 * Adv Library Interrupt Service Routine 6099 * 6100 * This function is called by a driver's interrupt service routine. 6101 * The function disables and re-enables interrupts. 6102 * 6103 * When a microcode idle command is completed, the ADV_DVC_VAR 6104 * 'idle_cmd_done' field is set to ADV_TRUE. 6105 * 6106 * Note: AdvISR() can be called when interrupts are disabled or even 6107 * when there is no hardware interrupt condition present. It will 6108 * always check for completed idle commands and microcode requests. 6109 * This is an important feature that shouldn't be changed because it 6110 * allows commands to be completed from polling mode loops. 6111 * 6112 * Return: 6113 * ADV_TRUE(1) - interrupt was pending 6114 * ADV_FALSE(0) - no interrupt was pending 6115 */ 6116 static int AdvISR(ADV_DVC_VAR *asc_dvc) 6117 { 6118 AdvPortAddr iop_base; 6119 uchar int_stat; 6120 ushort target_bit; 6121 ADV_CARR_T *free_carrp; 6122 __le32 irq_next_vpa; 6123 ADV_SCSI_REQ_Q *scsiq; 6124 adv_req_t *reqp; 6125 6126 iop_base = asc_dvc->iop_base; 6127 6128 /* Reading the register clears the interrupt. */ 6129 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG); 6130 6131 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB | 6132 ADV_INTR_STATUS_INTRC)) == 0) { 6133 return ADV_FALSE; 6134 } 6135 6136 /* 6137 * Notify the driver of an asynchronous microcode condition by 6138 * calling the adv_async_callback function. The function 6139 * is passed the microcode ASC_MC_INTRB_CODE byte value. 6140 */ 6141 if (int_stat & ADV_INTR_STATUS_INTRB) { 6142 uchar intrb_code; 6143 6144 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code); 6145 6146 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || 6147 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 6148 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE && 6149 asc_dvc->carr_pending_cnt != 0) { 6150 AdvWriteByteRegister(iop_base, IOPB_TICKLE, 6151 ADV_TICKLE_A); 6152 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 6153 AdvWriteByteRegister(iop_base, 6154 IOPB_TICKLE, 6155 ADV_TICKLE_NOP); 6156 } 6157 } 6158 } 6159 6160 adv_async_callback(asc_dvc, intrb_code); 6161 } 6162 6163 /* 6164 * Check if the IRQ stopper carrier contains a completed request. 6165 */ 6166 while (((irq_next_vpa = 6167 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) { 6168 /* 6169 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure. 6170 * The RISC will have set 'areq_vpa' to a virtual address. 6171 * 6172 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr 6173 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion 6174 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr' 6175 * in AdvExeScsiQueue(). 6176 */ 6177 u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa); 6178 ASC_DBG(1, "irq_sp %p areq_vpa %u\n", 6179 asc_dvc->irq_sp, pa_offset); 6180 reqp = adv_get_reqp(asc_dvc, pa_offset); 6181 scsiq = &reqp->scsi_req_q; 6182 6183 /* 6184 * Request finished with good status and the queue was not 6185 * DMAed to host memory by the firmware. Set all status fields 6186 * to indicate good status. 6187 */ 6188 if ((irq_next_vpa & ADV_RQ_GOOD) != 0) { 6189 scsiq->done_status = QD_NO_ERROR; 6190 scsiq->host_status = scsiq->scsi_status = 0; 6191 scsiq->data_cnt = 0L; 6192 } 6193 6194 /* 6195 * Advance the stopper pointer to the next carrier 6196 * ignoring the lower four bits. Free the previous 6197 * stopper carrier. 6198 */ 6199 free_carrp = asc_dvc->irq_sp; 6200 asc_dvc->irq_sp = adv_get_carrier(asc_dvc, 6201 ADV_GET_CARRP(irq_next_vpa)); 6202 6203 free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va; 6204 asc_dvc->carr_freelist = free_carrp; 6205 asc_dvc->carr_pending_cnt--; 6206 6207 target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id); 6208 6209 /* 6210 * Clear request microcode control flag. 6211 */ 6212 scsiq->cntl = 0; 6213 6214 /* 6215 * Notify the driver of the completed request by passing 6216 * the ADV_SCSI_REQ_Q pointer to its callback function. 6217 */ 6218 adv_isr_callback(asc_dvc, scsiq); 6219 /* 6220 * Note: After the driver callback function is called, 'scsiq' 6221 * can no longer be referenced. 6222 * 6223 * Fall through and continue processing other completed 6224 * requests... 6225 */ 6226 } 6227 return ADV_TRUE; 6228 } 6229 6230 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code) 6231 { 6232 if (asc_dvc->err_code == 0) { 6233 asc_dvc->err_code = err_code; 6234 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W, 6235 err_code); 6236 } 6237 return err_code; 6238 } 6239 6240 static void AscAckInterrupt(PortAddr iop_base) 6241 { 6242 uchar host_flag; 6243 uchar risc_flag; 6244 ushort loop; 6245 6246 loop = 0; 6247 do { 6248 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B); 6249 if (loop++ > 0x7FFF) { 6250 break; 6251 } 6252 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0); 6253 host_flag = 6254 AscReadLramByte(iop_base, 6255 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT); 6256 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, 6257 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT)); 6258 AscSetChipStatus(iop_base, CIW_INT_ACK); 6259 loop = 0; 6260 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) { 6261 AscSetChipStatus(iop_base, CIW_INT_ACK); 6262 if (loop++ > 3) { 6263 break; 6264 } 6265 } 6266 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); 6267 } 6268 6269 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time) 6270 { 6271 const uchar *period_table; 6272 int max_index; 6273 int min_index; 6274 int i; 6275 6276 period_table = asc_dvc->sdtr_period_tbl; 6277 max_index = (int)asc_dvc->max_sdtr_index; 6278 min_index = (int)asc_dvc->min_sdtr_index; 6279 if ((syn_time <= period_table[max_index])) { 6280 for (i = min_index; i < (max_index - 1); i++) { 6281 if (syn_time <= period_table[i]) { 6282 return (uchar)i; 6283 } 6284 } 6285 return (uchar)max_index; 6286 } else { 6287 return (uchar)(max_index + 1); 6288 } 6289 } 6290 6291 static uchar 6292 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset) 6293 { 6294 EXT_MSG sdtr_buf; 6295 uchar sdtr_period_index; 6296 PortAddr iop_base; 6297 6298 iop_base = asc_dvc->iop_base; 6299 sdtr_buf.msg_type = EXTENDED_MESSAGE; 6300 sdtr_buf.msg_len = MS_SDTR_LEN; 6301 sdtr_buf.msg_req = EXTENDED_SDTR; 6302 sdtr_buf.xfer_period = sdtr_period; 6303 sdtr_offset &= ASC_SYN_MAX_OFFSET; 6304 sdtr_buf.req_ack_offset = sdtr_offset; 6305 sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period); 6306 if (sdtr_period_index <= asc_dvc->max_sdtr_index) { 6307 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, 6308 (uchar *)&sdtr_buf, 6309 sizeof(EXT_MSG) >> 1); 6310 return ((sdtr_period_index << 4) | sdtr_offset); 6311 } else { 6312 sdtr_buf.req_ack_offset = 0; 6313 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, 6314 (uchar *)&sdtr_buf, 6315 sizeof(EXT_MSG) >> 1); 6316 return 0; 6317 } 6318 } 6319 6320 static uchar 6321 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset) 6322 { 6323 uchar byte; 6324 uchar sdtr_period_ix; 6325 6326 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period); 6327 if (sdtr_period_ix > asc_dvc->max_sdtr_index) 6328 return 0xFF; 6329 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET); 6330 return byte; 6331 } 6332 6333 static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data) 6334 { 6335 ASC_SCSI_BIT_ID_TYPE org_id; 6336 int i; 6337 bool sta = true; 6338 6339 AscSetBank(iop_base, 1); 6340 org_id = AscReadChipDvcID(iop_base); 6341 for (i = 0; i <= ASC_MAX_TID; i++) { 6342 if (org_id == (0x01 << i)) 6343 break; 6344 } 6345 org_id = (ASC_SCSI_BIT_ID_TYPE) i; 6346 AscWriteChipDvcID(iop_base, id); 6347 if (AscReadChipDvcID(iop_base) == (0x01 << id)) { 6348 AscSetBank(iop_base, 0); 6349 AscSetChipSyn(iop_base, sdtr_data); 6350 if (AscGetChipSyn(iop_base) != sdtr_data) { 6351 sta = false; 6352 } 6353 } else { 6354 sta = false; 6355 } 6356 AscSetBank(iop_base, 1); 6357 AscWriteChipDvcID(iop_base, org_id); 6358 AscSetBank(iop_base, 0); 6359 return (sta); 6360 } 6361 6362 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no) 6363 { 6364 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); 6365 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data); 6366 } 6367 6368 static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc) 6369 { 6370 EXT_MSG ext_msg; 6371 EXT_MSG out_msg; 6372 ushort halt_q_addr; 6373 bool sdtr_accept; 6374 ushort int_halt_code; 6375 ASC_SCSI_BIT_ID_TYPE scsi_busy; 6376 ASC_SCSI_BIT_ID_TYPE target_id; 6377 PortAddr iop_base; 6378 uchar tag_code; 6379 uchar q_status; 6380 uchar halt_qp; 6381 uchar sdtr_data; 6382 uchar target_ix; 6383 uchar q_cntl, tid_no; 6384 uchar cur_dvc_qng; 6385 uchar asyn_sdtr; 6386 uchar scsi_status; 6387 struct asc_board *boardp; 6388 6389 BUG_ON(!asc_dvc->drv_ptr); 6390 boardp = asc_dvc->drv_ptr; 6391 6392 iop_base = asc_dvc->iop_base; 6393 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W); 6394 6395 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B); 6396 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp); 6397 target_ix = AscReadLramByte(iop_base, 6398 (ushort)(halt_q_addr + 6399 (ushort)ASC_SCSIQ_B_TARGET_IX)); 6400 q_cntl = AscReadLramByte(iop_base, 6401 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL)); 6402 tid_no = ASC_TIX_TO_TID(target_ix); 6403 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no); 6404 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6405 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB; 6406 } else { 6407 asyn_sdtr = 0; 6408 } 6409 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) { 6410 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6411 AscSetChipSDTR(iop_base, 0, tid_no); 6412 boardp->sdtr_data[tid_no] = 0; 6413 } 6414 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6415 return; 6416 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) { 6417 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6418 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6419 boardp->sdtr_data[tid_no] = asyn_sdtr; 6420 } 6421 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6422 return; 6423 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) { 6424 AscMemWordCopyPtrFromLram(iop_base, 6425 ASCV_MSGIN_BEG, 6426 (uchar *)&ext_msg, 6427 sizeof(EXT_MSG) >> 1); 6428 6429 if (ext_msg.msg_type == EXTENDED_MESSAGE && 6430 ext_msg.msg_req == EXTENDED_SDTR && 6431 ext_msg.msg_len == MS_SDTR_LEN) { 6432 sdtr_accept = true; 6433 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) { 6434 6435 sdtr_accept = false; 6436 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET; 6437 } 6438 if ((ext_msg.xfer_period < 6439 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index]) 6440 || (ext_msg.xfer_period > 6441 asc_dvc->sdtr_period_tbl[asc_dvc-> 6442 max_sdtr_index])) { 6443 sdtr_accept = false; 6444 ext_msg.xfer_period = 6445 asc_dvc->sdtr_period_tbl[asc_dvc-> 6446 min_sdtr_index]; 6447 } 6448 if (sdtr_accept) { 6449 sdtr_data = 6450 AscCalSDTRData(asc_dvc, ext_msg.xfer_period, 6451 ext_msg.req_ack_offset); 6452 if ((sdtr_data == 0xFF)) { 6453 6454 q_cntl |= QC_MSG_OUT; 6455 asc_dvc->init_sdtr &= ~target_id; 6456 asc_dvc->sdtr_done &= ~target_id; 6457 AscSetChipSDTR(iop_base, asyn_sdtr, 6458 tid_no); 6459 boardp->sdtr_data[tid_no] = asyn_sdtr; 6460 } 6461 } 6462 if (ext_msg.req_ack_offset == 0) { 6463 6464 q_cntl &= ~QC_MSG_OUT; 6465 asc_dvc->init_sdtr &= ~target_id; 6466 asc_dvc->sdtr_done &= ~target_id; 6467 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6468 } else { 6469 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) { 6470 q_cntl &= ~QC_MSG_OUT; 6471 asc_dvc->sdtr_done |= target_id; 6472 asc_dvc->init_sdtr |= target_id; 6473 asc_dvc->pci_fix_asyn_xfer &= 6474 ~target_id; 6475 sdtr_data = 6476 AscCalSDTRData(asc_dvc, 6477 ext_msg.xfer_period, 6478 ext_msg. 6479 req_ack_offset); 6480 AscSetChipSDTR(iop_base, sdtr_data, 6481 tid_no); 6482 boardp->sdtr_data[tid_no] = sdtr_data; 6483 } else { 6484 q_cntl |= QC_MSG_OUT; 6485 AscMsgOutSDTR(asc_dvc, 6486 ext_msg.xfer_period, 6487 ext_msg.req_ack_offset); 6488 asc_dvc->pci_fix_asyn_xfer &= 6489 ~target_id; 6490 sdtr_data = 6491 AscCalSDTRData(asc_dvc, 6492 ext_msg.xfer_period, 6493 ext_msg. 6494 req_ack_offset); 6495 AscSetChipSDTR(iop_base, sdtr_data, 6496 tid_no); 6497 boardp->sdtr_data[tid_no] = sdtr_data; 6498 asc_dvc->sdtr_done |= target_id; 6499 asc_dvc->init_sdtr |= target_id; 6500 } 6501 } 6502 6503 AscWriteLramByte(iop_base, 6504 (ushort)(halt_q_addr + 6505 (ushort)ASC_SCSIQ_B_CNTL), 6506 q_cntl); 6507 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6508 return; 6509 } else if (ext_msg.msg_type == EXTENDED_MESSAGE && 6510 ext_msg.msg_req == EXTENDED_WDTR && 6511 ext_msg.msg_len == MS_WDTR_LEN) { 6512 6513 ext_msg.wdtr_width = 0; 6514 AscMemWordCopyPtrToLram(iop_base, 6515 ASCV_MSGOUT_BEG, 6516 (uchar *)&ext_msg, 6517 sizeof(EXT_MSG) >> 1); 6518 q_cntl |= QC_MSG_OUT; 6519 AscWriteLramByte(iop_base, 6520 (ushort)(halt_q_addr + 6521 (ushort)ASC_SCSIQ_B_CNTL), 6522 q_cntl); 6523 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6524 return; 6525 } else { 6526 6527 ext_msg.msg_type = MESSAGE_REJECT; 6528 AscMemWordCopyPtrToLram(iop_base, 6529 ASCV_MSGOUT_BEG, 6530 (uchar *)&ext_msg, 6531 sizeof(EXT_MSG) >> 1); 6532 q_cntl |= QC_MSG_OUT; 6533 AscWriteLramByte(iop_base, 6534 (ushort)(halt_q_addr + 6535 (ushort)ASC_SCSIQ_B_CNTL), 6536 q_cntl); 6537 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6538 return; 6539 } 6540 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) { 6541 6542 q_cntl |= QC_REQ_SENSE; 6543 6544 if ((asc_dvc->init_sdtr & target_id) != 0) { 6545 6546 asc_dvc->sdtr_done &= ~target_id; 6547 6548 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 6549 q_cntl |= QC_MSG_OUT; 6550 AscMsgOutSDTR(asc_dvc, 6551 asc_dvc-> 6552 sdtr_period_tbl[(sdtr_data >> 4) & 6553 (uchar)(asc_dvc-> 6554 max_sdtr_index - 6555 1)], 6556 (uchar)(sdtr_data & (uchar) 6557 ASC_SYN_MAX_OFFSET)); 6558 } 6559 6560 AscWriteLramByte(iop_base, 6561 (ushort)(halt_q_addr + 6562 (ushort)ASC_SCSIQ_B_CNTL), q_cntl); 6563 6564 tag_code = AscReadLramByte(iop_base, 6565 (ushort)(halt_q_addr + (ushort) 6566 ASC_SCSIQ_B_TAG_CODE)); 6567 tag_code &= 0xDC; 6568 if ((asc_dvc->pci_fix_asyn_xfer & target_id) 6569 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id) 6570 ) { 6571 6572 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT 6573 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX); 6574 6575 } 6576 AscWriteLramByte(iop_base, 6577 (ushort)(halt_q_addr + 6578 (ushort)ASC_SCSIQ_B_TAG_CODE), 6579 tag_code); 6580 6581 q_status = AscReadLramByte(iop_base, 6582 (ushort)(halt_q_addr + (ushort) 6583 ASC_SCSIQ_B_STATUS)); 6584 q_status |= (QS_READY | QS_BUSY); 6585 AscWriteLramByte(iop_base, 6586 (ushort)(halt_q_addr + 6587 (ushort)ASC_SCSIQ_B_STATUS), 6588 q_status); 6589 6590 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B); 6591 scsi_busy &= ~target_id; 6592 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy); 6593 6594 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6595 return; 6596 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) { 6597 6598 AscMemWordCopyPtrFromLram(iop_base, 6599 ASCV_MSGOUT_BEG, 6600 (uchar *)&out_msg, 6601 sizeof(EXT_MSG) >> 1); 6602 6603 if ((out_msg.msg_type == EXTENDED_MESSAGE) && 6604 (out_msg.msg_len == MS_SDTR_LEN) && 6605 (out_msg.msg_req == EXTENDED_SDTR)) { 6606 6607 asc_dvc->init_sdtr &= ~target_id; 6608 asc_dvc->sdtr_done &= ~target_id; 6609 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6610 boardp->sdtr_data[tid_no] = asyn_sdtr; 6611 } 6612 q_cntl &= ~QC_MSG_OUT; 6613 AscWriteLramByte(iop_base, 6614 (ushort)(halt_q_addr + 6615 (ushort)ASC_SCSIQ_B_CNTL), q_cntl); 6616 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6617 return; 6618 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) { 6619 6620 scsi_status = AscReadLramByte(iop_base, 6621 (ushort)((ushort)halt_q_addr + 6622 (ushort) 6623 ASC_SCSIQ_SCSI_STATUS)); 6624 cur_dvc_qng = 6625 AscReadLramByte(iop_base, 6626 (ushort)((ushort)ASC_QADR_BEG + 6627 (ushort)target_ix)); 6628 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) { 6629 6630 scsi_busy = AscReadLramByte(iop_base, 6631 (ushort)ASCV_SCSIBUSY_B); 6632 scsi_busy |= target_id; 6633 AscWriteLramByte(iop_base, 6634 (ushort)ASCV_SCSIBUSY_B, scsi_busy); 6635 asc_dvc->queue_full_or_busy |= target_id; 6636 6637 if (scsi_status == SAM_STAT_TASK_SET_FULL) { 6638 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) { 6639 cur_dvc_qng -= 1; 6640 asc_dvc->max_dvc_qng[tid_no] = 6641 cur_dvc_qng; 6642 6643 AscWriteLramByte(iop_base, 6644 (ushort)((ushort) 6645 ASCV_MAX_DVC_QNG_BEG 6646 + (ushort) 6647 tid_no), 6648 cur_dvc_qng); 6649 6650 /* 6651 * Set the device queue depth to the 6652 * number of active requests when the 6653 * QUEUE FULL condition was encountered. 6654 */ 6655 boardp->queue_full |= target_id; 6656 boardp->queue_full_cnt[tid_no] = 6657 cur_dvc_qng; 6658 } 6659 } 6660 } 6661 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6662 return; 6663 } 6664 return; 6665 } 6666 6667 /* 6668 * void 6669 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) 6670 * 6671 * Calling/Exit State: 6672 * none 6673 * 6674 * Description: 6675 * Input an ASC_QDONE_INFO structure from the chip 6676 */ 6677 static void 6678 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) 6679 { 6680 int i; 6681 ushort word; 6682 6683 AscSetChipLramAddr(iop_base, s_addr); 6684 for (i = 0; i < 2 * words; i += 2) { 6685 if (i == 10) { 6686 continue; 6687 } 6688 word = inpw(iop_base + IOP_RAM_DATA); 6689 inbuf[i] = word & 0xff; 6690 inbuf[i + 1] = (word >> 8) & 0xff; 6691 } 6692 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words); 6693 } 6694 6695 static uchar 6696 _AscCopyLramScsiDoneQ(PortAddr iop_base, 6697 ushort q_addr, 6698 ASC_QDONE_INFO *scsiq, unsigned int max_dma_count) 6699 { 6700 ushort _val; 6701 uchar sg_queue_cnt; 6702 6703 DvcGetQinfo(iop_base, 6704 q_addr + ASC_SCSIQ_DONE_INFO_BEG, 6705 (uchar *)scsiq, 6706 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2); 6707 6708 _val = AscReadLramWord(iop_base, 6709 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS)); 6710 scsiq->q_status = (uchar)_val; 6711 scsiq->q_no = (uchar)(_val >> 8); 6712 _val = AscReadLramWord(iop_base, 6713 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL)); 6714 scsiq->cntl = (uchar)_val; 6715 sg_queue_cnt = (uchar)(_val >> 8); 6716 _val = AscReadLramWord(iop_base, 6717 (ushort)(q_addr + 6718 (ushort)ASC_SCSIQ_B_SENSE_LEN)); 6719 scsiq->sense_len = (uchar)_val; 6720 scsiq->extra_bytes = (uchar)(_val >> 8); 6721 6722 /* 6723 * Read high word of remain bytes from alternate location. 6724 */ 6725 scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base, 6726 (ushort)(q_addr + 6727 (ushort) 6728 ASC_SCSIQ_W_ALT_DC1))) 6729 << 16); 6730 /* 6731 * Read low word of remain bytes from original location. 6732 */ 6733 scsiq->remain_bytes += AscReadLramWord(iop_base, 6734 (ushort)(q_addr + (ushort) 6735 ASC_SCSIQ_DW_REMAIN_XFER_CNT)); 6736 6737 scsiq->remain_bytes &= max_dma_count; 6738 return sg_queue_cnt; 6739 } 6740 6741 /* 6742 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR(). 6743 * 6744 * Interrupt callback function for the Narrow SCSI Asc Library. 6745 */ 6746 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep) 6747 { 6748 struct asc_board *boardp = asc_dvc_varp->drv_ptr; 6749 u32 srb_tag; 6750 struct scsi_cmnd *scp; 6751 6752 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep); 6753 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep); 6754 6755 /* 6756 * Decrease the srb_tag by 1 to find the SCSI command 6757 */ 6758 srb_tag = qdonep->d2.srb_tag - 1; 6759 scp = scsi_host_find_tag(boardp->shost, srb_tag); 6760 if (!scp) 6761 return; 6762 6763 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); 6764 6765 ASC_STATS(boardp->shost, callback); 6766 6767 dma_unmap_single(boardp->dev, scp->SCp.dma_handle, 6768 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 6769 /* 6770 * 'qdonep' contains the command's ending status. 6771 */ 6772 switch (qdonep->d3.done_stat) { 6773 case QD_NO_ERROR: 6774 ASC_DBG(2, "QD_NO_ERROR\n"); 6775 scp->result = 0; 6776 6777 /* 6778 * Check for an underrun condition. 6779 * 6780 * If there was no error and an underrun condition, then 6781 * return the number of underrun bytes. 6782 */ 6783 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 && 6784 qdonep->remain_bytes <= scsi_bufflen(scp)) { 6785 ASC_DBG(1, "underrun condition %u bytes\n", 6786 (unsigned)qdonep->remain_bytes); 6787 scsi_set_resid(scp, qdonep->remain_bytes); 6788 } 6789 break; 6790 6791 case QD_WITH_ERROR: 6792 ASC_DBG(2, "QD_WITH_ERROR\n"); 6793 switch (qdonep->d3.host_stat) { 6794 case QHSTA_NO_ERROR: 6795 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) { 6796 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); 6797 ASC_DBG_PRT_SENSE(2, scp->sense_buffer, 6798 SCSI_SENSE_BUFFERSIZE); 6799 /* 6800 * Note: The 'status_byte()' macro used by 6801 * target drivers defined in scsi.h shifts the 6802 * status byte returned by host drivers right 6803 * by 1 bit. This is why target drivers also 6804 * use right shifted status byte definitions. 6805 * For instance target drivers use 6806 * CHECK_CONDITION, defined to 0x1, instead of 6807 * the SCSI defined check condition value of 6808 * 0x2. Host drivers are supposed to return 6809 * the status byte as it is defined by SCSI. 6810 */ 6811 scp->result = DRIVER_BYTE(DRIVER_SENSE) | 6812 STATUS_BYTE(qdonep->d3.scsi_stat); 6813 } else { 6814 scp->result = STATUS_BYTE(qdonep->d3.scsi_stat); 6815 } 6816 break; 6817 6818 default: 6819 /* QHSTA error occurred */ 6820 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat); 6821 scp->result = HOST_BYTE(DID_BAD_TARGET); 6822 break; 6823 } 6824 break; 6825 6826 case QD_ABORTED_BY_HOST: 6827 ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); 6828 scp->result = 6829 HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3. 6830 scsi_msg) | 6831 STATUS_BYTE(qdonep->d3.scsi_stat); 6832 break; 6833 6834 default: 6835 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat); 6836 scp->result = 6837 HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3. 6838 scsi_msg) | 6839 STATUS_BYTE(qdonep->d3.scsi_stat); 6840 break; 6841 } 6842 6843 /* 6844 * If the 'init_tidmask' bit isn't already set for the target and the 6845 * current request finished normally, then set the bit for the target 6846 * to indicate that a device is present. 6847 */ 6848 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && 6849 qdonep->d3.done_stat == QD_NO_ERROR && 6850 qdonep->d3.host_stat == QHSTA_NO_ERROR) { 6851 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); 6852 } 6853 6854 asc_scsi_done(scp); 6855 } 6856 6857 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc) 6858 { 6859 uchar next_qp; 6860 uchar n_q_used; 6861 uchar sg_list_qp; 6862 uchar sg_queue_cnt; 6863 uchar q_cnt; 6864 uchar done_q_tail; 6865 uchar tid_no; 6866 ASC_SCSI_BIT_ID_TYPE scsi_busy; 6867 ASC_SCSI_BIT_ID_TYPE target_id; 6868 PortAddr iop_base; 6869 ushort q_addr; 6870 ushort sg_q_addr; 6871 uchar cur_target_qng; 6872 ASC_QDONE_INFO scsiq_buf; 6873 ASC_QDONE_INFO *scsiq; 6874 bool false_overrun; 6875 6876 iop_base = asc_dvc->iop_base; 6877 n_q_used = 1; 6878 scsiq = (ASC_QDONE_INFO *)&scsiq_buf; 6879 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base); 6880 q_addr = ASC_QNO_TO_QADDR(done_q_tail); 6881 next_qp = AscReadLramByte(iop_base, 6882 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD)); 6883 if (next_qp != ASC_QLINK_END) { 6884 AscPutVarDoneQTail(iop_base, next_qp); 6885 q_addr = ASC_QNO_TO_QADDR(next_qp); 6886 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq, 6887 asc_dvc->max_dma_count); 6888 AscWriteLramByte(iop_base, 6889 (ushort)(q_addr + 6890 (ushort)ASC_SCSIQ_B_STATUS), 6891 (uchar)(scsiq-> 6892 q_status & (uchar)~(QS_READY | 6893 QS_ABORTED))); 6894 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix); 6895 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix); 6896 if ((scsiq->cntl & QC_SG_HEAD) != 0) { 6897 sg_q_addr = q_addr; 6898 sg_list_qp = next_qp; 6899 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) { 6900 sg_list_qp = AscReadLramByte(iop_base, 6901 (ushort)(sg_q_addr 6902 + (ushort) 6903 ASC_SCSIQ_B_FWD)); 6904 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp); 6905 if (sg_list_qp == ASC_QLINK_END) { 6906 AscSetLibErrorCode(asc_dvc, 6907 ASCQ_ERR_SG_Q_LINKS); 6908 scsiq->d3.done_stat = QD_WITH_ERROR; 6909 scsiq->d3.host_stat = 6910 QHSTA_D_QDONE_SG_LIST_CORRUPTED; 6911 goto FATAL_ERR_QDONE; 6912 } 6913 AscWriteLramByte(iop_base, 6914 (ushort)(sg_q_addr + (ushort) 6915 ASC_SCSIQ_B_STATUS), 6916 QS_FREE); 6917 } 6918 n_q_used = sg_queue_cnt + 1; 6919 AscPutVarDoneQTail(iop_base, sg_list_qp); 6920 } 6921 if (asc_dvc->queue_full_or_busy & target_id) { 6922 cur_target_qng = AscReadLramByte(iop_base, 6923 (ushort)((ushort) 6924 ASC_QADR_BEG 6925 + (ushort) 6926 scsiq->d2. 6927 target_ix)); 6928 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) { 6929 scsi_busy = AscReadLramByte(iop_base, (ushort) 6930 ASCV_SCSIBUSY_B); 6931 scsi_busy &= ~target_id; 6932 AscWriteLramByte(iop_base, 6933 (ushort)ASCV_SCSIBUSY_B, 6934 scsi_busy); 6935 asc_dvc->queue_full_or_busy &= ~target_id; 6936 } 6937 } 6938 if (asc_dvc->cur_total_qng >= n_q_used) { 6939 asc_dvc->cur_total_qng -= n_q_used; 6940 if (asc_dvc->cur_dvc_qng[tid_no] != 0) { 6941 asc_dvc->cur_dvc_qng[tid_no]--; 6942 } 6943 } else { 6944 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG); 6945 scsiq->d3.done_stat = QD_WITH_ERROR; 6946 goto FATAL_ERR_QDONE; 6947 } 6948 if ((scsiq->d2.srb_tag == 0UL) || 6949 ((scsiq->q_status & QS_ABORTED) != 0)) { 6950 return (0x11); 6951 } else if (scsiq->q_status == QS_DONE) { 6952 /* 6953 * This is also curious. 6954 * false_overrun will _always_ be set to 'false' 6955 */ 6956 false_overrun = false; 6957 if (scsiq->extra_bytes != 0) { 6958 scsiq->remain_bytes += scsiq->extra_bytes; 6959 } 6960 if (scsiq->d3.done_stat == QD_WITH_ERROR) { 6961 if (scsiq->d3.host_stat == 6962 QHSTA_M_DATA_OVER_RUN) { 6963 if ((scsiq-> 6964 cntl & (QC_DATA_IN | QC_DATA_OUT)) 6965 == 0) { 6966 scsiq->d3.done_stat = 6967 QD_NO_ERROR; 6968 scsiq->d3.host_stat = 6969 QHSTA_NO_ERROR; 6970 } else if (false_overrun) { 6971 scsiq->d3.done_stat = 6972 QD_NO_ERROR; 6973 scsiq->d3.host_stat = 6974 QHSTA_NO_ERROR; 6975 } 6976 } else if (scsiq->d3.host_stat == 6977 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) { 6978 AscStopChip(iop_base); 6979 AscSetChipControl(iop_base, 6980 (uchar)(CC_SCSI_RESET 6981 | CC_HALT)); 6982 udelay(60); 6983 AscSetChipControl(iop_base, CC_HALT); 6984 AscSetChipStatus(iop_base, 6985 CIW_CLR_SCSI_RESET_INT); 6986 AscSetChipStatus(iop_base, 0); 6987 AscSetChipControl(iop_base, 0); 6988 } 6989 } 6990 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { 6991 asc_isr_callback(asc_dvc, scsiq); 6992 } else { 6993 if ((AscReadLramByte(iop_base, 6994 (ushort)(q_addr + (ushort) 6995 ASC_SCSIQ_CDB_BEG)) 6996 == START_STOP)) { 6997 asc_dvc->unit_not_ready &= ~target_id; 6998 if (scsiq->d3.done_stat != QD_NO_ERROR) { 6999 asc_dvc->start_motor &= 7000 ~target_id; 7001 } 7002 } 7003 } 7004 return (1); 7005 } else { 7006 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS); 7007 FATAL_ERR_QDONE: 7008 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { 7009 asc_isr_callback(asc_dvc, scsiq); 7010 } 7011 return (0x80); 7012 } 7013 } 7014 return (0); 7015 } 7016 7017 static int AscISR(ASC_DVC_VAR *asc_dvc) 7018 { 7019 ASC_CS_TYPE chipstat; 7020 PortAddr iop_base; 7021 ushort saved_ram_addr; 7022 uchar ctrl_reg; 7023 uchar saved_ctrl_reg; 7024 int int_pending; 7025 int status; 7026 uchar host_flag; 7027 7028 iop_base = asc_dvc->iop_base; 7029 int_pending = ASC_FALSE; 7030 7031 if (AscIsIntPending(iop_base) == 0) 7032 return int_pending; 7033 7034 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) { 7035 return ASC_ERROR; 7036 } 7037 if (asc_dvc->in_critical_cnt != 0) { 7038 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL); 7039 return ASC_ERROR; 7040 } 7041 if (asc_dvc->is_in_int) { 7042 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY); 7043 return ASC_ERROR; 7044 } 7045 asc_dvc->is_in_int = true; 7046 ctrl_reg = AscGetChipControl(iop_base); 7047 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET | 7048 CC_SINGLE_STEP | CC_DIAG | CC_TEST)); 7049 chipstat = AscGetChipStatus(iop_base); 7050 if (chipstat & CSW_SCSI_RESET_LATCH) { 7051 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) { 7052 int i = 10; 7053 int_pending = ASC_TRUE; 7054 asc_dvc->sdtr_done = 0; 7055 saved_ctrl_reg &= (uchar)(~CC_HALT); 7056 while ((AscGetChipStatus(iop_base) & 7057 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) { 7058 mdelay(100); 7059 } 7060 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT)); 7061 AscSetChipControl(iop_base, CC_HALT); 7062 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); 7063 AscSetChipStatus(iop_base, 0); 7064 chipstat = AscGetChipStatus(iop_base); 7065 } 7066 } 7067 saved_ram_addr = AscGetChipLramAddr(iop_base); 7068 host_flag = AscReadLramByte(iop_base, 7069 ASCV_HOST_FLAG_B) & 7070 (uchar)(~ASC_HOST_FLAG_IN_ISR); 7071 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, 7072 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR)); 7073 if ((chipstat & CSW_INT_PENDING) || (int_pending)) { 7074 AscAckInterrupt(iop_base); 7075 int_pending = ASC_TRUE; 7076 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) { 7077 AscIsrChipHalted(asc_dvc); 7078 saved_ctrl_reg &= (uchar)(~CC_HALT); 7079 } else { 7080 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) { 7081 while (((status = 7082 AscIsrQDone(asc_dvc)) & 0x01) != 0) { 7083 } 7084 } else { 7085 do { 7086 if ((status = 7087 AscIsrQDone(asc_dvc)) == 1) { 7088 break; 7089 } 7090 } while (status == 0x11); 7091 } 7092 if ((status & 0x80) != 0) 7093 int_pending = ASC_ERROR; 7094 } 7095 } 7096 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); 7097 AscSetChipLramAddr(iop_base, saved_ram_addr); 7098 AscSetChipControl(iop_base, saved_ctrl_reg); 7099 asc_dvc->is_in_int = false; 7100 return int_pending; 7101 } 7102 7103 /* 7104 * advansys_reset() 7105 * 7106 * Reset the host associated with the command 'scp'. 7107 * 7108 * This function runs its own thread. Interrupts must be blocked but 7109 * sleeping is allowed and no locking other than for host structures is 7110 * required. Returns SUCCESS or FAILED. 7111 */ 7112 static int advansys_reset(struct scsi_cmnd *scp) 7113 { 7114 struct Scsi_Host *shost = scp->device->host; 7115 struct asc_board *boardp = shost_priv(shost); 7116 unsigned long flags; 7117 int status; 7118 int ret = SUCCESS; 7119 7120 ASC_DBG(1, "0x%p\n", scp); 7121 7122 ASC_STATS(shost, reset); 7123 7124 scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n"); 7125 7126 if (ASC_NARROW_BOARD(boardp)) { 7127 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; 7128 7129 /* Reset the chip and SCSI bus. */ 7130 ASC_DBG(1, "before AscInitAsc1000Driver()\n"); 7131 status = AscInitAsc1000Driver(asc_dvc); 7132 7133 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */ 7134 if (asc_dvc->err_code || !asc_dvc->overrun_dma) { 7135 scmd_printk(KERN_INFO, scp, "SCSI host reset error: " 7136 "0x%x, status: 0x%x\n", asc_dvc->err_code, 7137 status); 7138 ret = FAILED; 7139 } else if (status) { 7140 scmd_printk(KERN_INFO, scp, "SCSI host reset warning: " 7141 "0x%x\n", status); 7142 } else { 7143 scmd_printk(KERN_INFO, scp, "SCSI host reset " 7144 "successful\n"); 7145 } 7146 7147 ASC_DBG(1, "after AscInitAsc1000Driver()\n"); 7148 } else { 7149 /* 7150 * If the suggest reset bus flags are set, then reset the bus. 7151 * Otherwise only reset the device. 7152 */ 7153 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; 7154 7155 /* 7156 * Reset the chip and SCSI bus. 7157 */ 7158 ASC_DBG(1, "before AdvResetChipAndSB()\n"); 7159 switch (AdvResetChipAndSB(adv_dvc)) { 7160 case ASC_TRUE: 7161 scmd_printk(KERN_INFO, scp, "SCSI host reset " 7162 "successful\n"); 7163 break; 7164 case ASC_FALSE: 7165 default: 7166 scmd_printk(KERN_INFO, scp, "SCSI host reset error\n"); 7167 ret = FAILED; 7168 break; 7169 } 7170 spin_lock_irqsave(shost->host_lock, flags); 7171 AdvISR(adv_dvc); 7172 spin_unlock_irqrestore(shost->host_lock, flags); 7173 } 7174 7175 ASC_DBG(1, "ret %d\n", ret); 7176 7177 return ret; 7178 } 7179 7180 /* 7181 * advansys_biosparam() 7182 * 7183 * Translate disk drive geometry if the "BIOS greater than 1 GB" 7184 * support is enabled for a drive. 7185 * 7186 * ip (information pointer) is an int array with the following definition: 7187 * ip[0]: heads 7188 * ip[1]: sectors 7189 * ip[2]: cylinders 7190 */ 7191 static int 7192 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev, 7193 sector_t capacity, int ip[]) 7194 { 7195 struct asc_board *boardp = shost_priv(sdev->host); 7196 7197 ASC_DBG(1, "begin\n"); 7198 ASC_STATS(sdev->host, biosparam); 7199 if (ASC_NARROW_BOARD(boardp)) { 7200 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl & 7201 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) { 7202 ip[0] = 255; 7203 ip[1] = 63; 7204 } else { 7205 ip[0] = 64; 7206 ip[1] = 32; 7207 } 7208 } else { 7209 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl & 7210 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) { 7211 ip[0] = 255; 7212 ip[1] = 63; 7213 } else { 7214 ip[0] = 64; 7215 ip[1] = 32; 7216 } 7217 } 7218 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]); 7219 ASC_DBG(1, "end\n"); 7220 return 0; 7221 } 7222 7223 /* 7224 * First-level interrupt handler. 7225 * 7226 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host. 7227 */ 7228 static irqreturn_t advansys_interrupt(int irq, void *dev_id) 7229 { 7230 struct Scsi_Host *shost = dev_id; 7231 struct asc_board *boardp = shost_priv(shost); 7232 irqreturn_t result = IRQ_NONE; 7233 unsigned long flags; 7234 7235 ASC_DBG(2, "boardp 0x%p\n", boardp); 7236 spin_lock_irqsave(shost->host_lock, flags); 7237 if (ASC_NARROW_BOARD(boardp)) { 7238 if (AscIsIntPending(shost->io_port)) { 7239 result = IRQ_HANDLED; 7240 ASC_STATS(shost, interrupt); 7241 ASC_DBG(1, "before AscISR()\n"); 7242 AscISR(&boardp->dvc_var.asc_dvc_var); 7243 } 7244 } else { 7245 ASC_DBG(1, "before AdvISR()\n"); 7246 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) { 7247 result = IRQ_HANDLED; 7248 ASC_STATS(shost, interrupt); 7249 } 7250 } 7251 spin_unlock_irqrestore(shost->host_lock, flags); 7252 7253 ASC_DBG(1, "end\n"); 7254 return result; 7255 } 7256 7257 static bool AscHostReqRiscHalt(PortAddr iop_base) 7258 { 7259 int count = 0; 7260 bool sta = false; 7261 uchar saved_stop_code; 7262 7263 if (AscIsChipHalted(iop_base)) 7264 return true; 7265 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B); 7266 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 7267 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP); 7268 do { 7269 if (AscIsChipHalted(iop_base)) { 7270 sta = true; 7271 break; 7272 } 7273 mdelay(100); 7274 } while (count++ < 20); 7275 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code); 7276 return sta; 7277 } 7278 7279 static bool 7280 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data) 7281 { 7282 bool sta = false; 7283 7284 if (AscHostReqRiscHalt(iop_base)) { 7285 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); 7286 AscStartChip(iop_base); 7287 } 7288 return sta; 7289 } 7290 7291 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev) 7292 { 7293 char type = sdev->type; 7294 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id; 7295 7296 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN)) 7297 return; 7298 if (asc_dvc->init_sdtr & tid_bits) 7299 return; 7300 7301 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0)) 7302 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits; 7303 7304 asc_dvc->pci_fix_asyn_xfer |= tid_bits; 7305 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) || 7306 (type == TYPE_ROM) || (type == TYPE_TAPE)) 7307 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits; 7308 7309 if (asc_dvc->pci_fix_asyn_xfer & tid_bits) 7310 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id, 7311 ASYN_SDTR_DATA_FIX_PCI_REV_AB); 7312 } 7313 7314 static void 7315 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc) 7316 { 7317 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id; 7318 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng; 7319 7320 if (sdev->lun == 0) { 7321 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr; 7322 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) { 7323 asc_dvc->init_sdtr |= tid_bit; 7324 } else { 7325 asc_dvc->init_sdtr &= ~tid_bit; 7326 } 7327 7328 if (orig_init_sdtr != asc_dvc->init_sdtr) 7329 AscAsyncFix(asc_dvc, sdev); 7330 } 7331 7332 if (sdev->tagged_supported) { 7333 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) { 7334 if (sdev->lun == 0) { 7335 asc_dvc->cfg->can_tagged_qng |= tid_bit; 7336 asc_dvc->use_tagged_qng |= tid_bit; 7337 } 7338 scsi_change_queue_depth(sdev, 7339 asc_dvc->max_dvc_qng[sdev->id]); 7340 } 7341 } else { 7342 if (sdev->lun == 0) { 7343 asc_dvc->cfg->can_tagged_qng &= ~tid_bit; 7344 asc_dvc->use_tagged_qng &= ~tid_bit; 7345 } 7346 } 7347 7348 if ((sdev->lun == 0) && 7349 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) { 7350 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B, 7351 asc_dvc->cfg->disc_enable); 7352 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B, 7353 asc_dvc->use_tagged_qng); 7354 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B, 7355 asc_dvc->cfg->can_tagged_qng); 7356 7357 asc_dvc->max_dvc_qng[sdev->id] = 7358 asc_dvc->cfg->max_tag_qng[sdev->id]; 7359 AscWriteLramByte(asc_dvc->iop_base, 7360 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id), 7361 asc_dvc->max_dvc_qng[sdev->id]); 7362 } 7363 } 7364 7365 /* 7366 * Wide Transfers 7367 * 7368 * If the EEPROM enabled WDTR for the device and the device supports wide 7369 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and 7370 * write the new value to the microcode. 7371 */ 7372 static void 7373 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask) 7374 { 7375 unsigned short cfg_word; 7376 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); 7377 if ((cfg_word & tidmask) != 0) 7378 return; 7379 7380 cfg_word |= tidmask; 7381 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); 7382 7383 /* 7384 * Clear the microcode SDTR and WDTR negotiation done indicators for 7385 * the target to cause it to negotiate with the new setting set above. 7386 * WDTR when accepted causes the target to enter asynchronous mode, so 7387 * SDTR must be negotiated. 7388 */ 7389 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7390 cfg_word &= ~tidmask; 7391 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7392 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); 7393 cfg_word &= ~tidmask; 7394 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); 7395 } 7396 7397 /* 7398 * Synchronous Transfers 7399 * 7400 * If the EEPROM enabled SDTR for the device and the device 7401 * supports synchronous transfers, then turn on the device's 7402 * 'sdtr_able' bit. Write the new value to the microcode. 7403 */ 7404 static void 7405 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask) 7406 { 7407 unsigned short cfg_word; 7408 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); 7409 if ((cfg_word & tidmask) != 0) 7410 return; 7411 7412 cfg_word |= tidmask; 7413 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); 7414 7415 /* 7416 * Clear the microcode "SDTR negotiation" done indicator for the 7417 * target to cause it to negotiate with the new setting set above. 7418 */ 7419 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7420 cfg_word &= ~tidmask; 7421 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7422 } 7423 7424 /* 7425 * PPR (Parallel Protocol Request) Capable 7426 * 7427 * If the device supports DT mode, then it must be PPR capable. 7428 * The PPR message will be used in place of the SDTR and WDTR 7429 * messages to negotiate synchronous speed and offset, transfer 7430 * width, and protocol options. 7431 */ 7432 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc, 7433 AdvPortAddr iop_base, unsigned short tidmask) 7434 { 7435 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); 7436 adv_dvc->ppr_able |= tidmask; 7437 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); 7438 } 7439 7440 static void 7441 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc) 7442 { 7443 AdvPortAddr iop_base = adv_dvc->iop_base; 7444 unsigned short tidmask = 1 << sdev->id; 7445 7446 if (sdev->lun == 0) { 7447 /* 7448 * Handle WDTR, SDTR, and Tag Queuing. If the feature 7449 * is enabled in the EEPROM and the device supports the 7450 * feature, then enable it in the microcode. 7451 */ 7452 7453 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr) 7454 advansys_wide_enable_wdtr(iop_base, tidmask); 7455 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr) 7456 advansys_wide_enable_sdtr(iop_base, tidmask); 7457 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr) 7458 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask); 7459 7460 /* 7461 * Tag Queuing is disabled for the BIOS which runs in polled 7462 * mode and would see no benefit from Tag Queuing. Also by 7463 * disabling Tag Queuing in the BIOS devices with Tag Queuing 7464 * bugs will at least work with the BIOS. 7465 */ 7466 if ((adv_dvc->tagqng_able & tidmask) && 7467 sdev->tagged_supported) { 7468 unsigned short cfg_word; 7469 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word); 7470 cfg_word |= tidmask; 7471 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 7472 cfg_word); 7473 AdvWriteByteLram(iop_base, 7474 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id, 7475 adv_dvc->max_dvc_qng); 7476 } 7477 } 7478 7479 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) 7480 scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng); 7481 } 7482 7483 /* 7484 * Set the number of commands to queue per device for the 7485 * specified host adapter. 7486 */ 7487 static int advansys_slave_configure(struct scsi_device *sdev) 7488 { 7489 struct asc_board *boardp = shost_priv(sdev->host); 7490 7491 if (ASC_NARROW_BOARD(boardp)) 7492 advansys_narrow_slave_configure(sdev, 7493 &boardp->dvc_var.asc_dvc_var); 7494 else 7495 advansys_wide_slave_configure(sdev, 7496 &boardp->dvc_var.adv_dvc_var); 7497 7498 return 0; 7499 } 7500 7501 static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp) 7502 { 7503 struct asc_board *board = shost_priv(scp->device->host); 7504 7505 scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer, 7506 SCSI_SENSE_BUFFERSIZE, 7507 DMA_FROM_DEVICE); 7508 if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) { 7509 ASC_DBG(1, "failed to map sense buffer\n"); 7510 return 0; 7511 } 7512 return cpu_to_le32(scp->SCp.dma_handle); 7513 } 7514 7515 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, 7516 struct asc_scsi_q *asc_scsi_q) 7517 { 7518 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var; 7519 int use_sg; 7520 u32 srb_tag; 7521 7522 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q)); 7523 7524 /* 7525 * Set the srb_tag to the command tag + 1, as 7526 * srb_tag '0' is used internally by the chip. 7527 */ 7528 srb_tag = scp->request->tag + 1; 7529 asc_scsi_q->q2.srb_tag = srb_tag; 7530 7531 /* 7532 * Build the ASC_SCSI_Q request. 7533 */ 7534 asc_scsi_q->cdbptr = &scp->cmnd[0]; 7535 asc_scsi_q->q2.cdb_len = scp->cmd_len; 7536 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id); 7537 asc_scsi_q->q1.target_lun = scp->device->lun; 7538 asc_scsi_q->q2.target_ix = 7539 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun); 7540 asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp); 7541 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE; 7542 if (!asc_scsi_q->q1.sense_addr) 7543 return ASC_BUSY; 7544 7545 /* 7546 * If there are any outstanding requests for the current target, 7547 * then every 255th request send an ORDERED request. This heuristic 7548 * tries to retain the benefit of request sorting while preventing 7549 * request starvation. 255 is the max number of tags or pending commands 7550 * a device may have outstanding. 7551 * 7552 * The request count is incremented below for every successfully 7553 * started request. 7554 * 7555 */ 7556 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) && 7557 (boardp->reqcnt[scp->device->id] % 255) == 0) { 7558 asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG; 7559 } else { 7560 asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG; 7561 } 7562 7563 /* Build ASC_SCSI_Q */ 7564 use_sg = scsi_dma_map(scp); 7565 if (use_sg < 0) { 7566 ASC_DBG(1, "failed to map sglist\n"); 7567 return ASC_BUSY; 7568 } else if (use_sg > 0) { 7569 int sgcnt; 7570 struct scatterlist *slp; 7571 struct asc_sg_head *asc_sg_head; 7572 7573 if (use_sg > scp->device->host->sg_tablesize) { 7574 scmd_printk(KERN_ERR, scp, "use_sg %d > " 7575 "sg_tablesize %d\n", use_sg, 7576 scp->device->host->sg_tablesize); 7577 scsi_dma_unmap(scp); 7578 scp->result = HOST_BYTE(DID_ERROR); 7579 return ASC_ERROR; 7580 } 7581 7582 asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) + 7583 use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC); 7584 if (!asc_sg_head) { 7585 scsi_dma_unmap(scp); 7586 scp->result = HOST_BYTE(DID_SOFT_ERROR); 7587 return ASC_ERROR; 7588 } 7589 7590 asc_scsi_q->q1.cntl |= QC_SG_HEAD; 7591 asc_scsi_q->sg_head = asc_sg_head; 7592 asc_scsi_q->q1.data_cnt = 0; 7593 asc_scsi_q->q1.data_addr = 0; 7594 /* This is a byte value, otherwise it would need to be swapped. */ 7595 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg; 7596 ASC_STATS_ADD(scp->device->host, xfer_elem, 7597 asc_sg_head->entry_cnt); 7598 7599 /* 7600 * Convert scatter-gather list into ASC_SG_HEAD list. 7601 */ 7602 scsi_for_each_sg(scp, slp, use_sg, sgcnt) { 7603 asc_sg_head->sg_list[sgcnt].addr = 7604 cpu_to_le32(sg_dma_address(slp)); 7605 asc_sg_head->sg_list[sgcnt].bytes = 7606 cpu_to_le32(sg_dma_len(slp)); 7607 ASC_STATS_ADD(scp->device->host, xfer_sect, 7608 DIV_ROUND_UP(sg_dma_len(slp), 512)); 7609 } 7610 } 7611 7612 ASC_STATS(scp->device->host, xfer_cnt); 7613 7614 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q); 7615 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); 7616 7617 return ASC_NOERROR; 7618 } 7619 7620 /* 7621 * Build scatter-gather list for Adv Library (Wide Board). 7622 * 7623 * Additional ADV_SG_BLOCK structures will need to be allocated 7624 * if the total number of scatter-gather elements exceeds 7625 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are 7626 * assumed to be physically contiguous. 7627 * 7628 * Return: 7629 * ADV_SUCCESS(1) - SG List successfully created 7630 * ADV_ERROR(-1) - SG List creation failed 7631 */ 7632 static int 7633 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, 7634 ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg) 7635 { 7636 adv_sgblk_t *sgblkp, *prev_sgblkp; 7637 struct scatterlist *slp; 7638 int sg_elem_cnt; 7639 ADV_SG_BLOCK *sg_block, *prev_sg_block; 7640 dma_addr_t sgblk_paddr; 7641 int i; 7642 7643 slp = scsi_sglist(scp); 7644 sg_elem_cnt = use_sg; 7645 prev_sgblkp = NULL; 7646 prev_sg_block = NULL; 7647 reqp->sgblkp = NULL; 7648 7649 for (;;) { 7650 /* 7651 * Allocate a 'adv_sgblk_t' structure from the board free 7652 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK 7653 * (15) scatter-gather elements. 7654 */ 7655 sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC, 7656 &sgblk_paddr); 7657 if (!sgblkp) { 7658 ASC_DBG(1, "no free adv_sgblk_t\n"); 7659 ASC_STATS(scp->device->host, adv_build_nosg); 7660 7661 /* 7662 * Allocation failed. Free 'adv_sgblk_t' structures 7663 * already allocated for the request. 7664 */ 7665 while ((sgblkp = reqp->sgblkp) != NULL) { 7666 /* Remove 'sgblkp' from the request list. */ 7667 reqp->sgblkp = sgblkp->next_sgblkp; 7668 sgblkp->next_sgblkp = NULL; 7669 dma_pool_free(boardp->adv_sgblk_pool, sgblkp, 7670 sgblkp->sg_addr); 7671 } 7672 return ASC_BUSY; 7673 } 7674 /* Complete 'adv_sgblk_t' board allocation. */ 7675 sgblkp->sg_addr = sgblk_paddr; 7676 sgblkp->next_sgblkp = NULL; 7677 sg_block = &sgblkp->sg_block; 7678 7679 /* 7680 * Check if this is the first 'adv_sgblk_t' for the 7681 * request. 7682 */ 7683 if (reqp->sgblkp == NULL) { 7684 /* Request's first scatter-gather block. */ 7685 reqp->sgblkp = sgblkp; 7686 7687 /* 7688 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical 7689 * address pointers. 7690 */ 7691 scsiqp->sg_list_ptr = sg_block; 7692 scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr); 7693 } else { 7694 /* Request's second or later scatter-gather block. */ 7695 prev_sgblkp->next_sgblkp = sgblkp; 7696 7697 /* 7698 * Point the previous ADV_SG_BLOCK structure to 7699 * the newly allocated ADV_SG_BLOCK structure. 7700 */ 7701 prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr); 7702 } 7703 7704 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) { 7705 sg_block->sg_list[i].sg_addr = 7706 cpu_to_le32(sg_dma_address(slp)); 7707 sg_block->sg_list[i].sg_count = 7708 cpu_to_le32(sg_dma_len(slp)); 7709 ASC_STATS_ADD(scp->device->host, xfer_sect, 7710 DIV_ROUND_UP(sg_dma_len(slp), 512)); 7711 7712 if (--sg_elem_cnt == 0) { 7713 /* 7714 * Last ADV_SG_BLOCK and scatter-gather entry. 7715 */ 7716 sg_block->sg_cnt = i + 1; 7717 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */ 7718 return ADV_SUCCESS; 7719 } 7720 slp++; 7721 } 7722 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK; 7723 prev_sg_block = sg_block; 7724 prev_sgblkp = sgblkp; 7725 } 7726 } 7727 7728 /* 7729 * Build a request structure for the Adv Library (Wide Board). 7730 * 7731 * If an adv_req_t can not be allocated to issue the request, 7732 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR. 7733 * 7734 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the 7735 * microcode for DMA addresses or math operations are byte swapped 7736 * to little-endian order. 7737 */ 7738 static int 7739 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, 7740 adv_req_t **adv_reqpp) 7741 { 7742 u32 srb_tag = scp->request->tag; 7743 adv_req_t *reqp; 7744 ADV_SCSI_REQ_Q *scsiqp; 7745 int ret; 7746 int use_sg; 7747 dma_addr_t sense_addr; 7748 7749 /* 7750 * Allocate an adv_req_t structure from the board to execute 7751 * the command. 7752 */ 7753 reqp = &boardp->adv_reqp[srb_tag]; 7754 if (reqp->cmndp && reqp->cmndp != scp ) { 7755 ASC_DBG(1, "no free adv_req_t\n"); 7756 ASC_STATS(scp->device->host, adv_build_noreq); 7757 return ASC_BUSY; 7758 } 7759 7760 reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t)); 7761 7762 scsiqp = &reqp->scsi_req_q; 7763 7764 /* 7765 * Initialize the structure. 7766 */ 7767 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0; 7768 7769 /* 7770 * Set the srb_tag to the command tag. 7771 */ 7772 scsiqp->srb_tag = srb_tag; 7773 7774 /* 7775 * Set 'host_scribble' to point to the adv_req_t structure. 7776 */ 7777 reqp->cmndp = scp; 7778 scp->host_scribble = (void *)reqp; 7779 7780 /* 7781 * Build the ADV_SCSI_REQ_Q request. 7782 */ 7783 7784 /* Set CDB length and copy it to the request structure. */ 7785 scsiqp->cdb_len = scp->cmd_len; 7786 /* Copy first 12 CDB bytes to cdb[]. */ 7787 memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12); 7788 /* Copy last 4 CDB bytes, if present, to cdb16[]. */ 7789 if (scp->cmd_len > 12) { 7790 int cdb16_len = scp->cmd_len - 12; 7791 7792 memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len); 7793 } 7794 7795 scsiqp->target_id = scp->device->id; 7796 scsiqp->target_lun = scp->device->lun; 7797 7798 sense_addr = dma_map_single(boardp->dev, scp->sense_buffer, 7799 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 7800 if (dma_mapping_error(boardp->dev, sense_addr)) { 7801 ASC_DBG(1, "failed to map sense buffer\n"); 7802 ASC_STATS(scp->device->host, adv_build_noreq); 7803 return ASC_BUSY; 7804 } 7805 scsiqp->sense_addr = cpu_to_le32(sense_addr); 7806 scsiqp->sense_len = cpu_to_le32(SCSI_SENSE_BUFFERSIZE); 7807 7808 /* Build ADV_SCSI_REQ_Q */ 7809 7810 use_sg = scsi_dma_map(scp); 7811 if (use_sg < 0) { 7812 ASC_DBG(1, "failed to map SG list\n"); 7813 ASC_STATS(scp->device->host, adv_build_noreq); 7814 return ASC_BUSY; 7815 } else if (use_sg == 0) { 7816 /* Zero-length transfer */ 7817 reqp->sgblkp = NULL; 7818 scsiqp->data_cnt = 0; 7819 7820 scsiqp->data_addr = 0; 7821 scsiqp->sg_list_ptr = NULL; 7822 scsiqp->sg_real_addr = 0; 7823 } else { 7824 if (use_sg > ADV_MAX_SG_LIST) { 7825 scmd_printk(KERN_ERR, scp, "use_sg %d > " 7826 "ADV_MAX_SG_LIST %d\n", use_sg, 7827 scp->device->host->sg_tablesize); 7828 scsi_dma_unmap(scp); 7829 scp->result = HOST_BYTE(DID_ERROR); 7830 reqp->cmndp = NULL; 7831 scp->host_scribble = NULL; 7832 7833 return ASC_ERROR; 7834 } 7835 7836 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp)); 7837 7838 ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg); 7839 if (ret != ADV_SUCCESS) { 7840 scsi_dma_unmap(scp); 7841 scp->result = HOST_BYTE(DID_ERROR); 7842 reqp->cmndp = NULL; 7843 scp->host_scribble = NULL; 7844 7845 return ret; 7846 } 7847 7848 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg); 7849 } 7850 7851 ASC_STATS(scp->device->host, xfer_cnt); 7852 7853 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); 7854 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); 7855 7856 *adv_reqpp = reqp; 7857 7858 return ASC_NOERROR; 7859 } 7860 7861 static int AscSgListToQueue(int sg_list) 7862 { 7863 int n_sg_list_qs; 7864 7865 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q); 7866 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0) 7867 n_sg_list_qs++; 7868 return n_sg_list_qs + 1; 7869 } 7870 7871 static uint 7872 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs) 7873 { 7874 uint cur_used_qs; 7875 uint cur_free_qs; 7876 ASC_SCSI_BIT_ID_TYPE target_id; 7877 uchar tid_no; 7878 7879 target_id = ASC_TIX_TO_TARGET_ID(target_ix); 7880 tid_no = ASC_TIX_TO_TID(target_ix); 7881 if ((asc_dvc->unit_not_ready & target_id) || 7882 (asc_dvc->queue_full_or_busy & target_id)) { 7883 return 0; 7884 } 7885 if (n_qs == 1) { 7886 cur_used_qs = (uint) asc_dvc->cur_total_qng + 7887 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q; 7888 } else { 7889 cur_used_qs = (uint) asc_dvc->cur_total_qng + 7890 (uint) ASC_MIN_FREE_Q; 7891 } 7892 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) { 7893 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs; 7894 if (asc_dvc->cur_dvc_qng[tid_no] >= 7895 asc_dvc->max_dvc_qng[tid_no]) { 7896 return 0; 7897 } 7898 return cur_free_qs; 7899 } 7900 if (n_qs > 1) { 7901 if ((n_qs > asc_dvc->last_q_shortage) 7902 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) { 7903 asc_dvc->last_q_shortage = n_qs; 7904 } 7905 } 7906 return 0; 7907 } 7908 7909 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head) 7910 { 7911 ushort q_addr; 7912 uchar next_qp; 7913 uchar q_status; 7914 7915 q_addr = ASC_QNO_TO_QADDR(free_q_head); 7916 q_status = (uchar)AscReadLramByte(iop_base, 7917 (ushort)(q_addr + 7918 ASC_SCSIQ_B_STATUS)); 7919 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD)); 7920 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END)) 7921 return next_qp; 7922 return ASC_QLINK_END; 7923 } 7924 7925 static uchar 7926 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q) 7927 { 7928 uchar i; 7929 7930 for (i = 0; i < n_free_q; i++) { 7931 free_q_head = AscAllocFreeQueue(iop_base, free_q_head); 7932 if (free_q_head == ASC_QLINK_END) 7933 break; 7934 } 7935 return free_q_head; 7936 } 7937 7938 /* 7939 * void 7940 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) 7941 * 7942 * Calling/Exit State: 7943 * none 7944 * 7945 * Description: 7946 * Output an ASC_SCSI_Q structure to the chip 7947 */ 7948 static void 7949 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) 7950 { 7951 int i; 7952 7953 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words); 7954 AscSetChipLramAddr(iop_base, s_addr); 7955 for (i = 0; i < 2 * words; i += 2) { 7956 if (i == 4 || i == 20) { 7957 continue; 7958 } 7959 outpw(iop_base + IOP_RAM_DATA, 7960 ((ushort)outbuf[i + 1] << 8) | outbuf[i]); 7961 } 7962 } 7963 7964 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) 7965 { 7966 ushort q_addr; 7967 uchar tid_no; 7968 uchar sdtr_data; 7969 uchar syn_period_ix; 7970 uchar syn_offset; 7971 PortAddr iop_base; 7972 7973 iop_base = asc_dvc->iop_base; 7974 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) && 7975 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) { 7976 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix); 7977 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 7978 syn_period_ix = 7979 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1); 7980 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET; 7981 AscMsgOutSDTR(asc_dvc, 7982 asc_dvc->sdtr_period_tbl[syn_period_ix], 7983 syn_offset); 7984 scsiq->q1.cntl |= QC_MSG_OUT; 7985 } 7986 q_addr = ASC_QNO_TO_QADDR(q_no); 7987 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) { 7988 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG; 7989 } 7990 scsiq->q1.status = QS_FREE; 7991 AscMemWordCopyPtrToLram(iop_base, 7992 q_addr + ASC_SCSIQ_CDB_BEG, 7993 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1); 7994 7995 DvcPutScsiQ(iop_base, 7996 q_addr + ASC_SCSIQ_CPY_BEG, 7997 (uchar *)&scsiq->q1.cntl, 7998 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1); 7999 AscWriteLramWord(iop_base, 8000 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS), 8001 (ushort)(((ushort)scsiq->q1. 8002 q_no << 8) | (ushort)QS_READY)); 8003 return 1; 8004 } 8005 8006 static int 8007 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) 8008 { 8009 int sta; 8010 int i; 8011 ASC_SG_HEAD *sg_head; 8012 ASC_SG_LIST_Q scsi_sg_q; 8013 __le32 saved_data_addr; 8014 __le32 saved_data_cnt; 8015 PortAddr iop_base; 8016 ushort sg_list_dwords; 8017 ushort sg_index; 8018 ushort sg_entry_cnt; 8019 ushort q_addr; 8020 uchar next_qp; 8021 8022 iop_base = asc_dvc->iop_base; 8023 sg_head = scsiq->sg_head; 8024 saved_data_addr = scsiq->q1.data_addr; 8025 saved_data_cnt = scsiq->q1.data_cnt; 8026 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr); 8027 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes); 8028 /* 8029 * Set sg_entry_cnt to be the number of SG elements that 8030 * will fit in the allocated SG queues. It is minus 1, because 8031 * the first SG element is handled above. 8032 */ 8033 sg_entry_cnt = sg_head->entry_cnt - 1; 8034 8035 if (sg_entry_cnt != 0) { 8036 scsiq->q1.cntl |= QC_SG_HEAD; 8037 q_addr = ASC_QNO_TO_QADDR(q_no); 8038 sg_index = 1; 8039 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt; 8040 scsi_sg_q.sg_head_qp = q_no; 8041 scsi_sg_q.cntl = QCSG_SG_XFER_LIST; 8042 for (i = 0; i < sg_head->queue_cnt; i++) { 8043 scsi_sg_q.seq_no = i + 1; 8044 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { 8045 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2); 8046 sg_entry_cnt -= ASC_SG_LIST_PER_Q; 8047 if (i == 0) { 8048 scsi_sg_q.sg_list_cnt = 8049 ASC_SG_LIST_PER_Q; 8050 scsi_sg_q.sg_cur_list_cnt = 8051 ASC_SG_LIST_PER_Q; 8052 } else { 8053 scsi_sg_q.sg_list_cnt = 8054 ASC_SG_LIST_PER_Q - 1; 8055 scsi_sg_q.sg_cur_list_cnt = 8056 ASC_SG_LIST_PER_Q - 1; 8057 } 8058 } else { 8059 scsi_sg_q.cntl |= QCSG_SG_XFER_END; 8060 sg_list_dwords = sg_entry_cnt << 1; 8061 if (i == 0) { 8062 scsi_sg_q.sg_list_cnt = sg_entry_cnt; 8063 scsi_sg_q.sg_cur_list_cnt = 8064 sg_entry_cnt; 8065 } else { 8066 scsi_sg_q.sg_list_cnt = 8067 sg_entry_cnt - 1; 8068 scsi_sg_q.sg_cur_list_cnt = 8069 sg_entry_cnt - 1; 8070 } 8071 sg_entry_cnt = 0; 8072 } 8073 next_qp = AscReadLramByte(iop_base, 8074 (ushort)(q_addr + 8075 ASC_SCSIQ_B_FWD)); 8076 scsi_sg_q.q_no = next_qp; 8077 q_addr = ASC_QNO_TO_QADDR(next_qp); 8078 AscMemWordCopyPtrToLram(iop_base, 8079 q_addr + ASC_SCSIQ_SGHD_CPY_BEG, 8080 (uchar *)&scsi_sg_q, 8081 sizeof(ASC_SG_LIST_Q) >> 1); 8082 AscMemDWordCopyPtrToLram(iop_base, 8083 q_addr + ASC_SGQ_LIST_BEG, 8084 (uchar *)&sg_head-> 8085 sg_list[sg_index], 8086 sg_list_dwords); 8087 sg_index += ASC_SG_LIST_PER_Q; 8088 scsiq->next_sg_index = sg_index; 8089 } 8090 } else { 8091 scsiq->q1.cntl &= ~QC_SG_HEAD; 8092 } 8093 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no); 8094 scsiq->q1.data_addr = saved_data_addr; 8095 scsiq->q1.data_cnt = saved_data_cnt; 8096 return (sta); 8097 } 8098 8099 static int 8100 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required) 8101 { 8102 PortAddr iop_base; 8103 uchar free_q_head; 8104 uchar next_qp; 8105 uchar tid_no; 8106 uchar target_ix; 8107 int sta; 8108 8109 iop_base = asc_dvc->iop_base; 8110 target_ix = scsiq->q2.target_ix; 8111 tid_no = ASC_TIX_TO_TID(target_ix); 8112 sta = 0; 8113 free_q_head = (uchar)AscGetVarFreeQHead(iop_base); 8114 if (n_q_required > 1) { 8115 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head, 8116 (uchar)n_q_required); 8117 if (next_qp != ASC_QLINK_END) { 8118 asc_dvc->last_q_shortage = 0; 8119 scsiq->sg_head->queue_cnt = n_q_required - 1; 8120 scsiq->q1.q_no = free_q_head; 8121 sta = AscPutReadySgListQueue(asc_dvc, scsiq, 8122 free_q_head); 8123 } 8124 } else if (n_q_required == 1) { 8125 next_qp = AscAllocFreeQueue(iop_base, free_q_head); 8126 if (next_qp != ASC_QLINK_END) { 8127 scsiq->q1.q_no = free_q_head; 8128 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head); 8129 } 8130 } 8131 if (sta == 1) { 8132 AscPutVarFreeQHead(iop_base, next_qp); 8133 asc_dvc->cur_total_qng += n_q_required; 8134 asc_dvc->cur_dvc_qng[tid_no]++; 8135 } 8136 return sta; 8137 } 8138 8139 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16 8140 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = { 8141 INQUIRY, 8142 REQUEST_SENSE, 8143 READ_CAPACITY, 8144 READ_TOC, 8145 MODE_SELECT, 8146 MODE_SENSE, 8147 MODE_SELECT_10, 8148 MODE_SENSE_10, 8149 0xFF, 8150 0xFF, 8151 0xFF, 8152 0xFF, 8153 0xFF, 8154 0xFF, 8155 0xFF, 8156 0xFF 8157 }; 8158 8159 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq) 8160 { 8161 PortAddr iop_base; 8162 int sta; 8163 int n_q_required; 8164 bool disable_syn_offset_one_fix; 8165 int i; 8166 u32 addr; 8167 ushort sg_entry_cnt = 0; 8168 ushort sg_entry_cnt_minus_one = 0; 8169 uchar target_ix; 8170 uchar tid_no; 8171 uchar sdtr_data; 8172 uchar extra_bytes; 8173 uchar scsi_cmd; 8174 uchar disable_cmd; 8175 ASC_SG_HEAD *sg_head; 8176 unsigned long data_cnt; 8177 8178 iop_base = asc_dvc->iop_base; 8179 sg_head = scsiq->sg_head; 8180 if (asc_dvc->err_code != 0) 8181 return ASC_ERROR; 8182 scsiq->q1.q_no = 0; 8183 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) { 8184 scsiq->q1.extra_bytes = 0; 8185 } 8186 sta = 0; 8187 target_ix = scsiq->q2.target_ix; 8188 tid_no = ASC_TIX_TO_TID(target_ix); 8189 n_q_required = 1; 8190 if (scsiq->cdbptr[0] == REQUEST_SENSE) { 8191 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) { 8192 asc_dvc->sdtr_done &= ~scsiq->q1.target_id; 8193 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 8194 AscMsgOutSDTR(asc_dvc, 8195 asc_dvc-> 8196 sdtr_period_tbl[(sdtr_data >> 4) & 8197 (uchar)(asc_dvc-> 8198 max_sdtr_index - 8199 1)], 8200 (uchar)(sdtr_data & (uchar) 8201 ASC_SYN_MAX_OFFSET)); 8202 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT); 8203 } 8204 } 8205 if (asc_dvc->in_critical_cnt != 0) { 8206 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY); 8207 return ASC_ERROR; 8208 } 8209 asc_dvc->in_critical_cnt++; 8210 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { 8211 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) { 8212 asc_dvc->in_critical_cnt--; 8213 return ASC_ERROR; 8214 } 8215 if (sg_entry_cnt > ASC_MAX_SG_LIST) { 8216 asc_dvc->in_critical_cnt--; 8217 return ASC_ERROR; 8218 } 8219 if (sg_entry_cnt == 1) { 8220 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr); 8221 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes); 8222 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE); 8223 } 8224 sg_entry_cnt_minus_one = sg_entry_cnt - 1; 8225 } 8226 scsi_cmd = scsiq->cdbptr[0]; 8227 disable_syn_offset_one_fix = false; 8228 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) && 8229 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) { 8230 if (scsiq->q1.cntl & QC_SG_HEAD) { 8231 data_cnt = 0; 8232 for (i = 0; i < sg_entry_cnt; i++) { 8233 data_cnt += le32_to_cpu(sg_head->sg_list[i]. 8234 bytes); 8235 } 8236 } else { 8237 data_cnt = le32_to_cpu(scsiq->q1.data_cnt); 8238 } 8239 if (data_cnt != 0UL) { 8240 if (data_cnt < 512UL) { 8241 disable_syn_offset_one_fix = true; 8242 } else { 8243 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST; 8244 i++) { 8245 disable_cmd = 8246 _syn_offset_one_disable_cmd[i]; 8247 if (disable_cmd == 0xFF) { 8248 break; 8249 } 8250 if (scsi_cmd == disable_cmd) { 8251 disable_syn_offset_one_fix = 8252 true; 8253 break; 8254 } 8255 } 8256 } 8257 } 8258 } 8259 if (disable_syn_offset_one_fix) { 8260 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG; 8261 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX | 8262 ASC_TAG_FLAG_DISABLE_DISCONNECT); 8263 } else { 8264 scsiq->q2.tag_code &= 0x27; 8265 } 8266 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { 8267 if (asc_dvc->bug_fix_cntl) { 8268 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { 8269 if ((scsi_cmd == READ_6) || 8270 (scsi_cmd == READ_10)) { 8271 addr = le32_to_cpu(sg_head-> 8272 sg_list 8273 [sg_entry_cnt_minus_one]. 8274 addr) + 8275 le32_to_cpu(sg_head-> 8276 sg_list 8277 [sg_entry_cnt_minus_one]. 8278 bytes); 8279 extra_bytes = 8280 (uchar)((ushort)addr & 0x0003); 8281 if ((extra_bytes != 0) 8282 && 8283 ((scsiq->q2. 8284 tag_code & 8285 ASC_TAG_FLAG_EXTRA_BYTES) 8286 == 0)) { 8287 scsiq->q2.tag_code |= 8288 ASC_TAG_FLAG_EXTRA_BYTES; 8289 scsiq->q1.extra_bytes = 8290 extra_bytes; 8291 data_cnt = 8292 le32_to_cpu(sg_head-> 8293 sg_list 8294 [sg_entry_cnt_minus_one]. 8295 bytes); 8296 data_cnt -= extra_bytes; 8297 sg_head-> 8298 sg_list 8299 [sg_entry_cnt_minus_one]. 8300 bytes = 8301 cpu_to_le32(data_cnt); 8302 } 8303 } 8304 } 8305 } 8306 sg_head->entry_to_copy = sg_head->entry_cnt; 8307 n_q_required = AscSgListToQueue(sg_entry_cnt); 8308 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >= 8309 (uint) n_q_required) 8310 || ((scsiq->q1.cntl & QC_URGENT) != 0)) { 8311 if ((sta = 8312 AscSendScsiQueue(asc_dvc, scsiq, 8313 n_q_required)) == 1) { 8314 asc_dvc->in_critical_cnt--; 8315 return (sta); 8316 } 8317 } 8318 } else { 8319 if (asc_dvc->bug_fix_cntl) { 8320 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { 8321 if ((scsi_cmd == READ_6) || 8322 (scsi_cmd == READ_10)) { 8323 addr = 8324 le32_to_cpu(scsiq->q1.data_addr) + 8325 le32_to_cpu(scsiq->q1.data_cnt); 8326 extra_bytes = 8327 (uchar)((ushort)addr & 0x0003); 8328 if ((extra_bytes != 0) 8329 && 8330 ((scsiq->q2. 8331 tag_code & 8332 ASC_TAG_FLAG_EXTRA_BYTES) 8333 == 0)) { 8334 data_cnt = 8335 le32_to_cpu(scsiq->q1. 8336 data_cnt); 8337 if (((ushort)data_cnt & 0x01FF) 8338 == 0) { 8339 scsiq->q2.tag_code |= 8340 ASC_TAG_FLAG_EXTRA_BYTES; 8341 data_cnt -= extra_bytes; 8342 scsiq->q1.data_cnt = 8343 cpu_to_le32 8344 (data_cnt); 8345 scsiq->q1.extra_bytes = 8346 extra_bytes; 8347 } 8348 } 8349 } 8350 } 8351 } 8352 n_q_required = 1; 8353 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) || 8354 ((scsiq->q1.cntl & QC_URGENT) != 0)) { 8355 if ((sta = AscSendScsiQueue(asc_dvc, scsiq, 8356 n_q_required)) == 1) { 8357 asc_dvc->in_critical_cnt--; 8358 return (sta); 8359 } 8360 } 8361 } 8362 asc_dvc->in_critical_cnt--; 8363 return (sta); 8364 } 8365 8366 /* 8367 * AdvExeScsiQueue() - Send a request to the RISC microcode program. 8368 * 8369 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q, 8370 * add the carrier to the ICQ (Initiator Command Queue), and tickle the 8371 * RISC to notify it a new command is ready to be executed. 8372 * 8373 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be 8374 * set to SCSI_MAX_RETRY. 8375 * 8376 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode 8377 * for DMA addresses or math operations are byte swapped to little-endian 8378 * order. 8379 * 8380 * Return: 8381 * ADV_SUCCESS(1) - The request was successfully queued. 8382 * ADV_BUSY(0) - Resource unavailable; Retry again after pending 8383 * request completes. 8384 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure 8385 * host IC error. 8386 */ 8387 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp) 8388 { 8389 AdvPortAddr iop_base; 8390 ADV_CARR_T *new_carrp; 8391 ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q; 8392 8393 /* 8394 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID. 8395 */ 8396 if (scsiq->target_id > ADV_MAX_TID) { 8397 scsiq->host_status = QHSTA_M_INVALID_DEVICE; 8398 scsiq->done_status = QD_WITH_ERROR; 8399 return ADV_ERROR; 8400 } 8401 8402 iop_base = asc_dvc->iop_base; 8403 8404 /* 8405 * Allocate a carrier ensuring at least one carrier always 8406 * remains on the freelist and initialize fields. 8407 */ 8408 new_carrp = adv_get_next_carrier(asc_dvc); 8409 if (!new_carrp) { 8410 ASC_DBG(1, "No free carriers\n"); 8411 return ADV_BUSY; 8412 } 8413 8414 asc_dvc->carr_pending_cnt++; 8415 8416 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */ 8417 scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag); 8418 scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr); 8419 8420 scsiq->carr_va = asc_dvc->icq_sp->carr_va; 8421 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa; 8422 8423 /* 8424 * Use the current stopper to send the ADV_SCSI_REQ_Q command to 8425 * the microcode. The newly allocated stopper will become the new 8426 * stopper. 8427 */ 8428 asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr; 8429 8430 /* 8431 * Set the 'next_vpa' pointer for the old stopper to be the 8432 * physical address of the new stopper. The RISC can only 8433 * follow physical addresses. 8434 */ 8435 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa; 8436 8437 /* 8438 * Set the host adapter stopper pointer to point to the new carrier. 8439 */ 8440 asc_dvc->icq_sp = new_carrp; 8441 8442 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || 8443 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 8444 /* 8445 * Tickle the RISC to tell it to read its Command Queue Head pointer. 8446 */ 8447 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A); 8448 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 8449 /* 8450 * Clear the tickle value. In the ASC-3550 the RISC flag 8451 * command 'clr_tickle_a' does not work unless the host 8452 * value is cleared. 8453 */ 8454 AdvWriteByteRegister(iop_base, IOPB_TICKLE, 8455 ADV_TICKLE_NOP); 8456 } 8457 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 8458 /* 8459 * Notify the RISC a carrier is ready by writing the physical 8460 * address of the new carrier stopper to the COMMA register. 8461 */ 8462 AdvWriteDWordRegister(iop_base, IOPDW_COMMA, 8463 le32_to_cpu(new_carrp->carr_pa)); 8464 } 8465 8466 return ADV_SUCCESS; 8467 } 8468 8469 /* 8470 * Execute a single 'Scsi_Cmnd'. 8471 */ 8472 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp) 8473 { 8474 int ret, err_code; 8475 struct asc_board *boardp = shost_priv(scp->device->host); 8476 8477 ASC_DBG(1, "scp 0x%p\n", scp); 8478 8479 if (ASC_NARROW_BOARD(boardp)) { 8480 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; 8481 struct asc_scsi_q asc_scsi_q; 8482 8483 ret = asc_build_req(boardp, scp, &asc_scsi_q); 8484 if (ret != ASC_NOERROR) { 8485 ASC_STATS(scp->device->host, build_error); 8486 return ret; 8487 } 8488 8489 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q); 8490 kfree(asc_scsi_q.sg_head); 8491 err_code = asc_dvc->err_code; 8492 } else { 8493 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; 8494 adv_req_t *adv_reqp; 8495 8496 switch (adv_build_req(boardp, scp, &adv_reqp)) { 8497 case ASC_NOERROR: 8498 ASC_DBG(3, "adv_build_req ASC_NOERROR\n"); 8499 break; 8500 case ASC_BUSY: 8501 ASC_DBG(1, "adv_build_req ASC_BUSY\n"); 8502 /* 8503 * The asc_stats fields 'adv_build_noreq' and 8504 * 'adv_build_nosg' count wide board busy conditions. 8505 * They are updated in adv_build_req and 8506 * adv_get_sglist, respectively. 8507 */ 8508 return ASC_BUSY; 8509 case ASC_ERROR: 8510 default: 8511 ASC_DBG(1, "adv_build_req ASC_ERROR\n"); 8512 ASC_STATS(scp->device->host, build_error); 8513 return ASC_ERROR; 8514 } 8515 8516 ret = AdvExeScsiQueue(adv_dvc, adv_reqp); 8517 err_code = adv_dvc->err_code; 8518 } 8519 8520 switch (ret) { 8521 case ASC_NOERROR: 8522 ASC_STATS(scp->device->host, exe_noerror); 8523 /* 8524 * Increment monotonically increasing per device 8525 * successful request counter. Wrapping doesn't matter. 8526 */ 8527 boardp->reqcnt[scp->device->id]++; 8528 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n"); 8529 break; 8530 case ASC_BUSY: 8531 ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n"); 8532 ASC_STATS(scp->device->host, exe_busy); 8533 break; 8534 case ASC_ERROR: 8535 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, " 8536 "err_code 0x%x\n", err_code); 8537 ASC_STATS(scp->device->host, exe_error); 8538 scp->result = HOST_BYTE(DID_ERROR); 8539 break; 8540 default: 8541 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, " 8542 "err_code 0x%x\n", err_code); 8543 ASC_STATS(scp->device->host, exe_unknown); 8544 scp->result = HOST_BYTE(DID_ERROR); 8545 break; 8546 } 8547 8548 ASC_DBG(1, "end\n"); 8549 return ret; 8550 } 8551 8552 /* 8553 * advansys_queuecommand() - interrupt-driven I/O entrypoint. 8554 * 8555 * This function always returns 0. Command return status is saved 8556 * in the 'scp' result field. 8557 */ 8558 static int 8559 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *)) 8560 { 8561 struct Scsi_Host *shost = scp->device->host; 8562 int asc_res, result = 0; 8563 8564 ASC_STATS(shost, queuecommand); 8565 scp->scsi_done = done; 8566 8567 asc_res = asc_execute_scsi_cmnd(scp); 8568 8569 switch (asc_res) { 8570 case ASC_NOERROR: 8571 break; 8572 case ASC_BUSY: 8573 result = SCSI_MLQUEUE_HOST_BUSY; 8574 break; 8575 case ASC_ERROR: 8576 default: 8577 asc_scsi_done(scp); 8578 break; 8579 } 8580 8581 return result; 8582 } 8583 8584 static DEF_SCSI_QCMD(advansys_queuecommand) 8585 8586 static ushort AscGetEisaChipCfg(PortAddr iop_base) 8587 { 8588 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | 8589 (PortAddr) (ASC_EISA_CFG_IOP_MASK); 8590 return inpw(eisa_cfg_iop); 8591 } 8592 8593 /* 8594 * Return the BIOS address of the adapter at the specified 8595 * I/O port and with the specified bus type. 8596 */ 8597 static unsigned short AscGetChipBiosAddress(PortAddr iop_base, 8598 unsigned short bus_type) 8599 { 8600 unsigned short cfg_lsw; 8601 unsigned short bios_addr; 8602 8603 /* 8604 * The PCI BIOS is re-located by the motherboard BIOS. Because 8605 * of this the driver can not determine where a PCI BIOS is 8606 * loaded and executes. 8607 */ 8608 if (bus_type & ASC_IS_PCI) 8609 return 0; 8610 8611 if ((bus_type & ASC_IS_EISA) != 0) { 8612 cfg_lsw = AscGetEisaChipCfg(iop_base); 8613 cfg_lsw &= 0x000F; 8614 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE; 8615 return bios_addr; 8616 } 8617 8618 cfg_lsw = AscGetChipCfgLsw(iop_base); 8619 8620 /* 8621 * ISA PnP uses the top bit as the 32K BIOS flag 8622 */ 8623 if (bus_type == ASC_IS_ISAPNP) 8624 cfg_lsw &= 0x7FFF; 8625 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE; 8626 return bios_addr; 8627 } 8628 8629 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id) 8630 { 8631 ushort cfg_lsw; 8632 8633 if (AscGetChipScsiID(iop_base) == new_host_id) { 8634 return (new_host_id); 8635 } 8636 cfg_lsw = AscGetChipCfgLsw(iop_base); 8637 cfg_lsw &= 0xF8FF; 8638 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8); 8639 AscSetChipCfgLsw(iop_base, cfg_lsw); 8640 return (AscGetChipScsiID(iop_base)); 8641 } 8642 8643 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base) 8644 { 8645 unsigned char sc; 8646 8647 AscSetBank(iop_base, 1); 8648 sc = inp(iop_base + IOP_REG_SC); 8649 AscSetBank(iop_base, 0); 8650 return sc; 8651 } 8652 8653 static unsigned char AscGetChipVersion(PortAddr iop_base, 8654 unsigned short bus_type) 8655 { 8656 if (bus_type & ASC_IS_EISA) { 8657 PortAddr eisa_iop; 8658 unsigned char revision; 8659 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | 8660 (PortAddr) ASC_EISA_REV_IOP_MASK; 8661 revision = inp(eisa_iop); 8662 return ASC_CHIP_MIN_VER_EISA - 1 + revision; 8663 } 8664 return AscGetChipVerNo(iop_base); 8665 } 8666 8667 #ifdef CONFIG_ISA 8668 static void AscEnableIsaDma(uchar dma_channel) 8669 { 8670 if (dma_channel < 4) { 8671 outp(0x000B, (ushort)(0xC0 | dma_channel)); 8672 outp(0x000A, dma_channel); 8673 } else if (dma_channel < 8) { 8674 outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4))); 8675 outp(0x00D4, (ushort)(dma_channel - 4)); 8676 } 8677 } 8678 #endif /* CONFIG_ISA */ 8679 8680 static int AscStopQueueExe(PortAddr iop_base) 8681 { 8682 int count = 0; 8683 8684 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) { 8685 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 8686 ASC_STOP_REQ_RISC_STOP); 8687 do { 8688 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) & 8689 ASC_STOP_ACK_RISC_STOP) { 8690 return (1); 8691 } 8692 mdelay(100); 8693 } while (count++ < 20); 8694 } 8695 return (0); 8696 } 8697 8698 static unsigned int AscGetMaxDmaCount(ushort bus_type) 8699 { 8700 if (bus_type & ASC_IS_ISA) 8701 return ASC_MAX_ISA_DMA_COUNT; 8702 else if (bus_type & (ASC_IS_EISA | ASC_IS_VL)) 8703 return ASC_MAX_VL_DMA_COUNT; 8704 return ASC_MAX_PCI_DMA_COUNT; 8705 } 8706 8707 #ifdef CONFIG_ISA 8708 static ushort AscGetIsaDmaChannel(PortAddr iop_base) 8709 { 8710 ushort channel; 8711 8712 channel = AscGetChipCfgLsw(iop_base) & 0x0003; 8713 if (channel == 0x03) 8714 return (0); 8715 else if (channel == 0x00) 8716 return (7); 8717 return (channel + 4); 8718 } 8719 8720 static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel) 8721 { 8722 ushort cfg_lsw; 8723 uchar value; 8724 8725 if ((dma_channel >= 5) && (dma_channel <= 7)) { 8726 if (dma_channel == 7) 8727 value = 0x00; 8728 else 8729 value = dma_channel - 4; 8730 cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC; 8731 cfg_lsw |= value; 8732 AscSetChipCfgLsw(iop_base, cfg_lsw); 8733 return (AscGetIsaDmaChannel(iop_base)); 8734 } 8735 return 0; 8736 } 8737 8738 static uchar AscGetIsaDmaSpeed(PortAddr iop_base) 8739 { 8740 uchar speed_value; 8741 8742 AscSetBank(iop_base, 1); 8743 speed_value = AscReadChipDmaSpeed(iop_base); 8744 speed_value &= 0x07; 8745 AscSetBank(iop_base, 0); 8746 return speed_value; 8747 } 8748 8749 static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value) 8750 { 8751 speed_value &= 0x07; 8752 AscSetBank(iop_base, 1); 8753 AscWriteChipDmaSpeed(iop_base, speed_value); 8754 AscSetBank(iop_base, 0); 8755 return AscGetIsaDmaSpeed(iop_base); 8756 } 8757 #endif /* CONFIG_ISA */ 8758 8759 static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc) 8760 { 8761 int i; 8762 PortAddr iop_base; 8763 uchar chip_version; 8764 8765 iop_base = asc_dvc->iop_base; 8766 asc_dvc->err_code = 0; 8767 if ((asc_dvc->bus_type & 8768 (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) { 8769 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE; 8770 } 8771 AscSetChipControl(iop_base, CC_HALT); 8772 AscSetChipStatus(iop_base, 0); 8773 asc_dvc->bug_fix_cntl = 0; 8774 asc_dvc->pci_fix_asyn_xfer = 0; 8775 asc_dvc->pci_fix_asyn_xfer_always = 0; 8776 /* asc_dvc->init_state initialized in AscInitGetConfig(). */ 8777 asc_dvc->sdtr_done = 0; 8778 asc_dvc->cur_total_qng = 0; 8779 asc_dvc->is_in_int = false; 8780 asc_dvc->in_critical_cnt = 0; 8781 asc_dvc->last_q_shortage = 0; 8782 asc_dvc->use_tagged_qng = 0; 8783 asc_dvc->no_scam = 0; 8784 asc_dvc->unit_not_ready = 0; 8785 asc_dvc->queue_full_or_busy = 0; 8786 asc_dvc->redo_scam = 0; 8787 asc_dvc->res2 = 0; 8788 asc_dvc->min_sdtr_index = 0; 8789 asc_dvc->cfg->can_tagged_qng = 0; 8790 asc_dvc->cfg->cmd_qng_enabled = 0; 8791 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL; 8792 asc_dvc->init_sdtr = 0; 8793 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG; 8794 asc_dvc->scsi_reset_wait = 3; 8795 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET; 8796 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type); 8797 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET; 8798 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET; 8799 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID; 8800 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type); 8801 asc_dvc->cfg->chip_version = chip_version; 8802 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period; 8803 asc_dvc->max_sdtr_index = 7; 8804 if ((asc_dvc->bus_type & ASC_IS_PCI) && 8805 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) { 8806 asc_dvc->bus_type = ASC_IS_PCI_ULTRA; 8807 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period; 8808 asc_dvc->max_sdtr_index = 15; 8809 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) { 8810 AscSetExtraControl(iop_base, 8811 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); 8812 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) { 8813 AscSetExtraControl(iop_base, 8814 (SEC_ACTIVE_NEGATE | 8815 SEC_ENABLE_FILTER)); 8816 } 8817 } 8818 if (asc_dvc->bus_type == ASC_IS_PCI) { 8819 AscSetExtraControl(iop_base, 8820 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); 8821 } 8822 8823 asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED; 8824 #ifdef CONFIG_ISA 8825 if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) { 8826 if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) { 8827 AscSetChipIFC(iop_base, IFC_INIT_DEFAULT); 8828 asc_dvc->bus_type = ASC_IS_ISAPNP; 8829 } 8830 asc_dvc->cfg->isa_dma_channel = 8831 (uchar)AscGetIsaDmaChannel(iop_base); 8832 } 8833 #endif /* CONFIG_ISA */ 8834 for (i = 0; i <= ASC_MAX_TID; i++) { 8835 asc_dvc->cur_dvc_qng[i] = 0; 8836 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG; 8837 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L; 8838 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L; 8839 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG; 8840 } 8841 } 8842 8843 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg) 8844 { 8845 int retry; 8846 8847 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) { 8848 unsigned char read_back; 8849 AscSetChipEEPCmd(iop_base, cmd_reg); 8850 mdelay(1); 8851 read_back = AscGetChipEEPCmd(iop_base); 8852 if (read_back == cmd_reg) 8853 return 1; 8854 } 8855 return 0; 8856 } 8857 8858 static void AscWaitEEPRead(void) 8859 { 8860 mdelay(1); 8861 } 8862 8863 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr) 8864 { 8865 ushort read_wval; 8866 uchar cmd_reg; 8867 8868 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); 8869 AscWaitEEPRead(); 8870 cmd_reg = addr | ASC_EEP_CMD_READ; 8871 AscWriteEEPCmdReg(iop_base, cmd_reg); 8872 AscWaitEEPRead(); 8873 read_wval = AscGetChipEEPData(iop_base); 8874 AscWaitEEPRead(); 8875 return read_wval; 8876 } 8877 8878 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 8879 ushort bus_type) 8880 { 8881 ushort wval; 8882 ushort sum; 8883 ushort *wbuf; 8884 int cfg_beg; 8885 int cfg_end; 8886 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; 8887 int s_addr; 8888 8889 wbuf = (ushort *)cfg_buf; 8890 sum = 0; 8891 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */ 8892 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 8893 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); 8894 sum += *wbuf; 8895 } 8896 if (bus_type & ASC_IS_VL) { 8897 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 8898 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 8899 } else { 8900 cfg_beg = ASC_EEP_DVC_CFG_BEG; 8901 cfg_end = ASC_EEP_MAX_DVC_ADDR; 8902 } 8903 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 8904 wval = AscReadEEPWord(iop_base, (uchar)s_addr); 8905 if (s_addr <= uchar_end_in_config) { 8906 /* 8907 * Swap all char fields - must unswap bytes already swapped 8908 * by AscReadEEPWord(). 8909 */ 8910 *wbuf = le16_to_cpu(wval); 8911 } else { 8912 /* Don't swap word field at the end - cntl field. */ 8913 *wbuf = wval; 8914 } 8915 sum += wval; /* Checksum treats all EEPROM data as words. */ 8916 } 8917 /* 8918 * Read the checksum word which will be compared against 'sum' 8919 * by the caller. Word field already swapped. 8920 */ 8921 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); 8922 return sum; 8923 } 8924 8925 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc) 8926 { 8927 PortAddr iop_base; 8928 ushort q_addr; 8929 ushort saved_word; 8930 int sta; 8931 8932 iop_base = asc_dvc->iop_base; 8933 sta = 0; 8934 q_addr = ASC_QNO_TO_QADDR(241); 8935 saved_word = AscReadLramWord(iop_base, q_addr); 8936 AscSetChipLramAddr(iop_base, q_addr); 8937 AscSetChipLramData(iop_base, 0x55AA); 8938 mdelay(10); 8939 AscSetChipLramAddr(iop_base, q_addr); 8940 if (AscGetChipLramData(iop_base) == 0x55AA) { 8941 sta = 1; 8942 AscWriteLramWord(iop_base, q_addr, saved_word); 8943 } 8944 return (sta); 8945 } 8946 8947 static void AscWaitEEPWrite(void) 8948 { 8949 mdelay(20); 8950 } 8951 8952 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg) 8953 { 8954 ushort read_back; 8955 int retry; 8956 8957 retry = 0; 8958 while (true) { 8959 AscSetChipEEPData(iop_base, data_reg); 8960 mdelay(1); 8961 read_back = AscGetChipEEPData(iop_base); 8962 if (read_back == data_reg) { 8963 return (1); 8964 } 8965 if (retry++ > ASC_EEP_MAX_RETRY) { 8966 return (0); 8967 } 8968 } 8969 } 8970 8971 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val) 8972 { 8973 ushort read_wval; 8974 8975 read_wval = AscReadEEPWord(iop_base, addr); 8976 if (read_wval != word_val) { 8977 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE); 8978 AscWaitEEPRead(); 8979 AscWriteEEPDataReg(iop_base, word_val); 8980 AscWaitEEPRead(); 8981 AscWriteEEPCmdReg(iop_base, 8982 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr)); 8983 AscWaitEEPWrite(); 8984 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); 8985 AscWaitEEPRead(); 8986 return (AscReadEEPWord(iop_base, addr)); 8987 } 8988 return (read_wval); 8989 } 8990 8991 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 8992 ushort bus_type) 8993 { 8994 int n_error; 8995 ushort *wbuf; 8996 ushort word; 8997 ushort sum; 8998 int s_addr; 8999 int cfg_beg; 9000 int cfg_end; 9001 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; 9002 9003 wbuf = (ushort *)cfg_buf; 9004 n_error = 0; 9005 sum = 0; 9006 /* Write two config words; AscWriteEEPWord() will swap bytes. */ 9007 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 9008 sum += *wbuf; 9009 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { 9010 n_error++; 9011 } 9012 } 9013 if (bus_type & ASC_IS_VL) { 9014 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 9015 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 9016 } else { 9017 cfg_beg = ASC_EEP_DVC_CFG_BEG; 9018 cfg_end = ASC_EEP_MAX_DVC_ADDR; 9019 } 9020 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 9021 if (s_addr <= uchar_end_in_config) { 9022 /* 9023 * This is a char field. Swap char fields before they are 9024 * swapped again by AscWriteEEPWord(). 9025 */ 9026 word = cpu_to_le16(*wbuf); 9027 if (word != 9028 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) { 9029 n_error++; 9030 } 9031 } else { 9032 /* Don't swap word field at the end - cntl field. */ 9033 if (*wbuf != 9034 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { 9035 n_error++; 9036 } 9037 } 9038 sum += *wbuf; /* Checksum calculated from word values. */ 9039 } 9040 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */ 9041 *wbuf = sum; 9042 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) { 9043 n_error++; 9044 } 9045 9046 /* Read EEPROM back again. */ 9047 wbuf = (ushort *)cfg_buf; 9048 /* 9049 * Read two config words; Byte-swapping done by AscReadEEPWord(). 9050 */ 9051 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 9052 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) { 9053 n_error++; 9054 } 9055 } 9056 if (bus_type & ASC_IS_VL) { 9057 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 9058 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 9059 } else { 9060 cfg_beg = ASC_EEP_DVC_CFG_BEG; 9061 cfg_end = ASC_EEP_MAX_DVC_ADDR; 9062 } 9063 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 9064 if (s_addr <= uchar_end_in_config) { 9065 /* 9066 * Swap all char fields. Must unswap bytes already swapped 9067 * by AscReadEEPWord(). 9068 */ 9069 word = 9070 le16_to_cpu(AscReadEEPWord 9071 (iop_base, (uchar)s_addr)); 9072 } else { 9073 /* Don't swap word field at the end - cntl field. */ 9074 word = AscReadEEPWord(iop_base, (uchar)s_addr); 9075 } 9076 if (*wbuf != word) { 9077 n_error++; 9078 } 9079 } 9080 /* Read checksum; Byte swapping not needed. */ 9081 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) { 9082 n_error++; 9083 } 9084 return n_error; 9085 } 9086 9087 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 9088 ushort bus_type) 9089 { 9090 int retry; 9091 int n_error; 9092 9093 retry = 0; 9094 while (true) { 9095 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf, 9096 bus_type)) == 0) { 9097 break; 9098 } 9099 if (++retry > ASC_EEP_MAX_RETRY) { 9100 break; 9101 } 9102 } 9103 return n_error; 9104 } 9105 9106 static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc) 9107 { 9108 ASCEEP_CONFIG eep_config_buf; 9109 ASCEEP_CONFIG *eep_config; 9110 PortAddr iop_base; 9111 ushort chksum; 9112 ushort warn_code; 9113 ushort cfg_msw, cfg_lsw; 9114 int i; 9115 int write_eep = 0; 9116 9117 iop_base = asc_dvc->iop_base; 9118 warn_code = 0; 9119 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE); 9120 AscStopQueueExe(iop_base); 9121 if ((AscStopChip(iop_base)) || 9122 (AscGetChipScsiCtrl(iop_base) != 0)) { 9123 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE; 9124 AscResetChipAndScsiBus(asc_dvc); 9125 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 9126 } 9127 if (!AscIsChipHalted(iop_base)) { 9128 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; 9129 return (warn_code); 9130 } 9131 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); 9132 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { 9133 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; 9134 return (warn_code); 9135 } 9136 eep_config = (ASCEEP_CONFIG *)&eep_config_buf; 9137 cfg_msw = AscGetChipCfgMsw(iop_base); 9138 cfg_lsw = AscGetChipCfgLsw(iop_base); 9139 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { 9140 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 9141 warn_code |= ASC_WARN_CFG_MSW_RECOVER; 9142 AscSetChipCfgMsw(iop_base, cfg_msw); 9143 } 9144 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type); 9145 ASC_DBG(1, "chksum 0x%x\n", chksum); 9146 if (chksum == 0) { 9147 chksum = 0xaa55; 9148 } 9149 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { 9150 warn_code |= ASC_WARN_AUTO_CONFIG; 9151 if (asc_dvc->cfg->chip_version == 3) { 9152 if (eep_config->cfg_lsw != cfg_lsw) { 9153 warn_code |= ASC_WARN_EEPROM_RECOVER; 9154 eep_config->cfg_lsw = 9155 AscGetChipCfgLsw(iop_base); 9156 } 9157 if (eep_config->cfg_msw != cfg_msw) { 9158 warn_code |= ASC_WARN_EEPROM_RECOVER; 9159 eep_config->cfg_msw = 9160 AscGetChipCfgMsw(iop_base); 9161 } 9162 } 9163 } 9164 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 9165 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON; 9166 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum); 9167 if (chksum != eep_config->chksum) { 9168 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) == 9169 ASC_CHIP_VER_PCI_ULTRA_3050) { 9170 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n"); 9171 eep_config->init_sdtr = 0xFF; 9172 eep_config->disc_enable = 0xFF; 9173 eep_config->start_motor = 0xFF; 9174 eep_config->use_cmd_qng = 0; 9175 eep_config->max_total_qng = 0xF0; 9176 eep_config->max_tag_qng = 0x20; 9177 eep_config->cntl = 0xBFFF; 9178 ASC_EEP_SET_CHIP_ID(eep_config, 7); 9179 eep_config->no_scam = 0; 9180 eep_config->adapter_info[0] = 0; 9181 eep_config->adapter_info[1] = 0; 9182 eep_config->adapter_info[2] = 0; 9183 eep_config->adapter_info[3] = 0; 9184 eep_config->adapter_info[4] = 0; 9185 /* Indicate EEPROM-less board. */ 9186 eep_config->adapter_info[5] = 0xBB; 9187 } else { 9188 ASC_PRINT 9189 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n"); 9190 write_eep = 1; 9191 warn_code |= ASC_WARN_EEPROM_CHKSUM; 9192 } 9193 } 9194 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr; 9195 asc_dvc->cfg->disc_enable = eep_config->disc_enable; 9196 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng; 9197 asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config); 9198 asc_dvc->start_motor = eep_config->start_motor; 9199 asc_dvc->dvc_cntl = eep_config->cntl; 9200 asc_dvc->no_scam = eep_config->no_scam; 9201 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0]; 9202 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1]; 9203 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2]; 9204 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3]; 9205 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4]; 9206 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5]; 9207 if (!AscTestExternalLram(asc_dvc)) { 9208 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == 9209 ASC_IS_PCI_ULTRA)) { 9210 eep_config->max_total_qng = 9211 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG; 9212 eep_config->max_tag_qng = 9213 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG; 9214 } else { 9215 eep_config->cfg_msw |= 0x0800; 9216 cfg_msw |= 0x0800; 9217 AscSetChipCfgMsw(iop_base, cfg_msw); 9218 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG; 9219 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG; 9220 } 9221 } else { 9222 } 9223 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) { 9224 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG; 9225 } 9226 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) { 9227 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG; 9228 } 9229 if (eep_config->max_tag_qng > eep_config->max_total_qng) { 9230 eep_config->max_tag_qng = eep_config->max_total_qng; 9231 } 9232 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) { 9233 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC; 9234 } 9235 asc_dvc->max_total_qng = eep_config->max_total_qng; 9236 if ((eep_config->use_cmd_qng & eep_config->disc_enable) != 9237 eep_config->use_cmd_qng) { 9238 eep_config->disc_enable = eep_config->use_cmd_qng; 9239 warn_code |= ASC_WARN_CMD_QNG_CONFLICT; 9240 } 9241 ASC_EEP_SET_CHIP_ID(eep_config, 9242 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID); 9243 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config); 9244 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) && 9245 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) { 9246 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX; 9247 } 9248 9249 for (i = 0; i <= ASC_MAX_TID; i++) { 9250 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i]; 9251 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng; 9252 asc_dvc->cfg->sdtr_period_offset[i] = 9253 (uchar)(ASC_DEF_SDTR_OFFSET | 9254 (asc_dvc->min_sdtr_index << 4)); 9255 } 9256 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base); 9257 if (write_eep) { 9258 if ((i = AscSetEEPConfig(iop_base, eep_config, 9259 asc_dvc->bus_type)) != 0) { 9260 ASC_PRINT1 9261 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n", 9262 i); 9263 } else { 9264 ASC_PRINT 9265 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n"); 9266 } 9267 } 9268 return (warn_code); 9269 } 9270 9271 static int AscInitGetConfig(struct Scsi_Host *shost) 9272 { 9273 struct asc_board *board = shost_priv(shost); 9274 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; 9275 unsigned short warn_code = 0; 9276 9277 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG; 9278 if (asc_dvc->err_code != 0) 9279 return asc_dvc->err_code; 9280 9281 if (AscFindSignature(asc_dvc->iop_base)) { 9282 AscInitAscDvcVar(asc_dvc); 9283 warn_code = AscInitFromEEP(asc_dvc); 9284 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG; 9285 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT) 9286 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT; 9287 } else { 9288 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 9289 } 9290 9291 switch (warn_code) { 9292 case 0: /* No error */ 9293 break; 9294 case ASC_WARN_IO_PORT_ROTATE: 9295 shost_printk(KERN_WARNING, shost, "I/O port address " 9296 "modified\n"); 9297 break; 9298 case ASC_WARN_AUTO_CONFIG: 9299 shost_printk(KERN_WARNING, shost, "I/O port increment switch " 9300 "enabled\n"); 9301 break; 9302 case ASC_WARN_EEPROM_CHKSUM: 9303 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); 9304 break; 9305 case ASC_WARN_IRQ_MODIFIED: 9306 shost_printk(KERN_WARNING, shost, "IRQ modified\n"); 9307 break; 9308 case ASC_WARN_CMD_QNG_CONFLICT: 9309 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o " 9310 "disconnects\n"); 9311 break; 9312 default: 9313 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", 9314 warn_code); 9315 break; 9316 } 9317 9318 if (asc_dvc->err_code != 0) 9319 shost_printk(KERN_ERR, shost, "error 0x%x at init_state " 9320 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); 9321 9322 return asc_dvc->err_code; 9323 } 9324 9325 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) 9326 { 9327 struct asc_board *board = shost_priv(shost); 9328 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; 9329 PortAddr iop_base = asc_dvc->iop_base; 9330 unsigned short cfg_msw; 9331 unsigned short warn_code = 0; 9332 9333 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG; 9334 if (asc_dvc->err_code != 0) 9335 return asc_dvc->err_code; 9336 if (!AscFindSignature(asc_dvc->iop_base)) { 9337 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 9338 return asc_dvc->err_code; 9339 } 9340 9341 cfg_msw = AscGetChipCfgMsw(iop_base); 9342 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { 9343 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 9344 warn_code |= ASC_WARN_CFG_MSW_RECOVER; 9345 AscSetChipCfgMsw(iop_base, cfg_msw); 9346 } 9347 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) != 9348 asc_dvc->cfg->cmd_qng_enabled) { 9349 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled; 9350 warn_code |= ASC_WARN_CMD_QNG_CONFLICT; 9351 } 9352 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { 9353 warn_code |= ASC_WARN_AUTO_CONFIG; 9354 } 9355 #ifdef CONFIG_PCI 9356 if (asc_dvc->bus_type & ASC_IS_PCI) { 9357 cfg_msw &= 0xFFC0; 9358 AscSetChipCfgMsw(iop_base, cfg_msw); 9359 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) { 9360 } else { 9361 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || 9362 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { 9363 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB; 9364 asc_dvc->bug_fix_cntl |= 9365 ASC_BUG_FIX_ASYN_USE_SYN; 9366 } 9367 } 9368 } else 9369 #endif /* CONFIG_PCI */ 9370 if (asc_dvc->bus_type == ASC_IS_ISAPNP) { 9371 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) 9372 == ASC_CHIP_VER_ASYN_BUG) { 9373 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN; 9374 } 9375 } 9376 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) != 9377 asc_dvc->cfg->chip_scsi_id) { 9378 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID; 9379 } 9380 #ifdef CONFIG_ISA 9381 if (asc_dvc->bus_type & ASC_IS_ISA) { 9382 AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel); 9383 AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed); 9384 } 9385 #endif /* CONFIG_ISA */ 9386 9387 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG; 9388 9389 switch (warn_code) { 9390 case 0: /* No error. */ 9391 break; 9392 case ASC_WARN_IO_PORT_ROTATE: 9393 shost_printk(KERN_WARNING, shost, "I/O port address " 9394 "modified\n"); 9395 break; 9396 case ASC_WARN_AUTO_CONFIG: 9397 shost_printk(KERN_WARNING, shost, "I/O port increment switch " 9398 "enabled\n"); 9399 break; 9400 case ASC_WARN_EEPROM_CHKSUM: 9401 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); 9402 break; 9403 case ASC_WARN_IRQ_MODIFIED: 9404 shost_printk(KERN_WARNING, shost, "IRQ modified\n"); 9405 break; 9406 case ASC_WARN_CMD_QNG_CONFLICT: 9407 shost_printk(KERN_WARNING, shost, "tag queuing w/o " 9408 "disconnects\n"); 9409 break; 9410 default: 9411 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", 9412 warn_code); 9413 break; 9414 } 9415 9416 if (asc_dvc->err_code != 0) 9417 shost_printk(KERN_ERR, shost, "error 0x%x at init_state " 9418 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); 9419 9420 return asc_dvc->err_code; 9421 } 9422 9423 /* 9424 * EEPROM Configuration. 9425 * 9426 * All drivers should use this structure to set the default EEPROM 9427 * configuration. The BIOS now uses this structure when it is built. 9428 * Additional structure information can be found in a_condor.h where 9429 * the structure is defined. 9430 * 9431 * The *_Field_IsChar structs are needed to correct for endianness. 9432 * These values are read from the board 16 bits at a time directly 9433 * into the structs. Because some fields are char, the values will be 9434 * in the wrong order. The *_Field_IsChar tells when to flip the 9435 * bytes. Data read and written to PCI memory is automatically swapped 9436 * on big-endian platforms so char fields read as words are actually being 9437 * unswapped on big-endian platforms. 9438 */ 9439 #ifdef CONFIG_PCI 9440 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = { 9441 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */ 9442 0x0000, /* cfg_msw */ 9443 0xFFFF, /* disc_enable */ 9444 0xFFFF, /* wdtr_able */ 9445 0xFFFF, /* sdtr_able */ 9446 0xFFFF, /* start_motor */ 9447 0xFFFF, /* tagqng_able */ 9448 0xFFFF, /* bios_scan */ 9449 0, /* scam_tolerant */ 9450 7, /* adapter_scsi_id */ 9451 0, /* bios_boot_delay */ 9452 3, /* scsi_reset_delay */ 9453 0, /* bios_id_lun */ 9454 0, /* termination */ 9455 0, /* reserved1 */ 9456 0xFFE7, /* bios_ctrl */ 9457 0xFFFF, /* ultra_able */ 9458 0, /* reserved2 */ 9459 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */ 9460 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9461 0, /* dvc_cntl */ 9462 0, /* bug_fix */ 9463 0, /* serial_number_word1 */ 9464 0, /* serial_number_word2 */ 9465 0, /* serial_number_word3 */ 9466 0, /* check_sum */ 9467 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9468 , /* oem_name[16] */ 9469 0, /* dvc_err_code */ 9470 0, /* adv_err_code */ 9471 0, /* adv_err_addr */ 9472 0, /* saved_dvc_err_code */ 9473 0, /* saved_adv_err_code */ 9474 0, /* saved_adv_err_addr */ 9475 0 /* num_of_err */ 9476 }; 9477 9478 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = { 9479 0, /* cfg_lsw */ 9480 0, /* cfg_msw */ 9481 0, /* -disc_enable */ 9482 0, /* wdtr_able */ 9483 0, /* sdtr_able */ 9484 0, /* start_motor */ 9485 0, /* tagqng_able */ 9486 0, /* bios_scan */ 9487 0, /* scam_tolerant */ 9488 1, /* adapter_scsi_id */ 9489 1, /* bios_boot_delay */ 9490 1, /* scsi_reset_delay */ 9491 1, /* bios_id_lun */ 9492 1, /* termination */ 9493 1, /* reserved1 */ 9494 0, /* bios_ctrl */ 9495 0, /* ultra_able */ 9496 0, /* reserved2 */ 9497 1, /* max_host_qng */ 9498 1, /* max_dvc_qng */ 9499 0, /* dvc_cntl */ 9500 0, /* bug_fix */ 9501 0, /* serial_number_word1 */ 9502 0, /* serial_number_word2 */ 9503 0, /* serial_number_word3 */ 9504 0, /* check_sum */ 9505 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9506 , /* oem_name[16] */ 9507 0, /* dvc_err_code */ 9508 0, /* adv_err_code */ 9509 0, /* adv_err_addr */ 9510 0, /* saved_dvc_err_code */ 9511 0, /* saved_adv_err_code */ 9512 0, /* saved_adv_err_addr */ 9513 0 /* num_of_err */ 9514 }; 9515 9516 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = { 9517 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 9518 0x0000, /* 01 cfg_msw */ 9519 0xFFFF, /* 02 disc_enable */ 9520 0xFFFF, /* 03 wdtr_able */ 9521 0x4444, /* 04 sdtr_speed1 */ 9522 0xFFFF, /* 05 start_motor */ 9523 0xFFFF, /* 06 tagqng_able */ 9524 0xFFFF, /* 07 bios_scan */ 9525 0, /* 08 scam_tolerant */ 9526 7, /* 09 adapter_scsi_id */ 9527 0, /* bios_boot_delay */ 9528 3, /* 10 scsi_reset_delay */ 9529 0, /* bios_id_lun */ 9530 0, /* 11 termination_se */ 9531 0, /* termination_lvd */ 9532 0xFFE7, /* 12 bios_ctrl */ 9533 0x4444, /* 13 sdtr_speed2 */ 9534 0x4444, /* 14 sdtr_speed3 */ 9535 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ 9536 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9537 0, /* 16 dvc_cntl */ 9538 0x4444, /* 17 sdtr_speed4 */ 9539 0, /* 18 serial_number_word1 */ 9540 0, /* 19 serial_number_word2 */ 9541 0, /* 20 serial_number_word3 */ 9542 0, /* 21 check_sum */ 9543 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9544 , /* 22-29 oem_name[16] */ 9545 0, /* 30 dvc_err_code */ 9546 0, /* 31 adv_err_code */ 9547 0, /* 32 adv_err_addr */ 9548 0, /* 33 saved_dvc_err_code */ 9549 0, /* 34 saved_adv_err_code */ 9550 0, /* 35 saved_adv_err_addr */ 9551 0, /* 36 reserved */ 9552 0, /* 37 reserved */ 9553 0, /* 38 reserved */ 9554 0, /* 39 reserved */ 9555 0, /* 40 reserved */ 9556 0, /* 41 reserved */ 9557 0, /* 42 reserved */ 9558 0, /* 43 reserved */ 9559 0, /* 44 reserved */ 9560 0, /* 45 reserved */ 9561 0, /* 46 reserved */ 9562 0, /* 47 reserved */ 9563 0, /* 48 reserved */ 9564 0, /* 49 reserved */ 9565 0, /* 50 reserved */ 9566 0, /* 51 reserved */ 9567 0, /* 52 reserved */ 9568 0, /* 53 reserved */ 9569 0, /* 54 reserved */ 9570 0, /* 55 reserved */ 9571 0, /* 56 cisptr_lsw */ 9572 0, /* 57 cisprt_msw */ 9573 PCI_VENDOR_ID_ASP, /* 58 subsysvid */ 9574 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */ 9575 0, /* 60 reserved */ 9576 0, /* 61 reserved */ 9577 0, /* 62 reserved */ 9578 0 /* 63 reserved */ 9579 }; 9580 9581 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = { 9582 0, /* 00 cfg_lsw */ 9583 0, /* 01 cfg_msw */ 9584 0, /* 02 disc_enable */ 9585 0, /* 03 wdtr_able */ 9586 0, /* 04 sdtr_speed1 */ 9587 0, /* 05 start_motor */ 9588 0, /* 06 tagqng_able */ 9589 0, /* 07 bios_scan */ 9590 0, /* 08 scam_tolerant */ 9591 1, /* 09 adapter_scsi_id */ 9592 1, /* bios_boot_delay */ 9593 1, /* 10 scsi_reset_delay */ 9594 1, /* bios_id_lun */ 9595 1, /* 11 termination_se */ 9596 1, /* termination_lvd */ 9597 0, /* 12 bios_ctrl */ 9598 0, /* 13 sdtr_speed2 */ 9599 0, /* 14 sdtr_speed3 */ 9600 1, /* 15 max_host_qng */ 9601 1, /* max_dvc_qng */ 9602 0, /* 16 dvc_cntl */ 9603 0, /* 17 sdtr_speed4 */ 9604 0, /* 18 serial_number_word1 */ 9605 0, /* 19 serial_number_word2 */ 9606 0, /* 20 serial_number_word3 */ 9607 0, /* 21 check_sum */ 9608 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9609 , /* 22-29 oem_name[16] */ 9610 0, /* 30 dvc_err_code */ 9611 0, /* 31 adv_err_code */ 9612 0, /* 32 adv_err_addr */ 9613 0, /* 33 saved_dvc_err_code */ 9614 0, /* 34 saved_adv_err_code */ 9615 0, /* 35 saved_adv_err_addr */ 9616 0, /* 36 reserved */ 9617 0, /* 37 reserved */ 9618 0, /* 38 reserved */ 9619 0, /* 39 reserved */ 9620 0, /* 40 reserved */ 9621 0, /* 41 reserved */ 9622 0, /* 42 reserved */ 9623 0, /* 43 reserved */ 9624 0, /* 44 reserved */ 9625 0, /* 45 reserved */ 9626 0, /* 46 reserved */ 9627 0, /* 47 reserved */ 9628 0, /* 48 reserved */ 9629 0, /* 49 reserved */ 9630 0, /* 50 reserved */ 9631 0, /* 51 reserved */ 9632 0, /* 52 reserved */ 9633 0, /* 53 reserved */ 9634 0, /* 54 reserved */ 9635 0, /* 55 reserved */ 9636 0, /* 56 cisptr_lsw */ 9637 0, /* 57 cisprt_msw */ 9638 0, /* 58 subsysvid */ 9639 0, /* 59 subsysid */ 9640 0, /* 60 reserved */ 9641 0, /* 61 reserved */ 9642 0, /* 62 reserved */ 9643 0 /* 63 reserved */ 9644 }; 9645 9646 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = { 9647 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 9648 0x0000, /* 01 cfg_msw */ 9649 0xFFFF, /* 02 disc_enable */ 9650 0xFFFF, /* 03 wdtr_able */ 9651 0x5555, /* 04 sdtr_speed1 */ 9652 0xFFFF, /* 05 start_motor */ 9653 0xFFFF, /* 06 tagqng_able */ 9654 0xFFFF, /* 07 bios_scan */ 9655 0, /* 08 scam_tolerant */ 9656 7, /* 09 adapter_scsi_id */ 9657 0, /* bios_boot_delay */ 9658 3, /* 10 scsi_reset_delay */ 9659 0, /* bios_id_lun */ 9660 0, /* 11 termination_se */ 9661 0, /* termination_lvd */ 9662 0xFFE7, /* 12 bios_ctrl */ 9663 0x5555, /* 13 sdtr_speed2 */ 9664 0x5555, /* 14 sdtr_speed3 */ 9665 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ 9666 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9667 0, /* 16 dvc_cntl */ 9668 0x5555, /* 17 sdtr_speed4 */ 9669 0, /* 18 serial_number_word1 */ 9670 0, /* 19 serial_number_word2 */ 9671 0, /* 20 serial_number_word3 */ 9672 0, /* 21 check_sum */ 9673 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9674 , /* 22-29 oem_name[16] */ 9675 0, /* 30 dvc_err_code */ 9676 0, /* 31 adv_err_code */ 9677 0, /* 32 adv_err_addr */ 9678 0, /* 33 saved_dvc_err_code */ 9679 0, /* 34 saved_adv_err_code */ 9680 0, /* 35 saved_adv_err_addr */ 9681 0, /* 36 reserved */ 9682 0, /* 37 reserved */ 9683 0, /* 38 reserved */ 9684 0, /* 39 reserved */ 9685 0, /* 40 reserved */ 9686 0, /* 41 reserved */ 9687 0, /* 42 reserved */ 9688 0, /* 43 reserved */ 9689 0, /* 44 reserved */ 9690 0, /* 45 reserved */ 9691 0, /* 46 reserved */ 9692 0, /* 47 reserved */ 9693 0, /* 48 reserved */ 9694 0, /* 49 reserved */ 9695 0, /* 50 reserved */ 9696 0, /* 51 reserved */ 9697 0, /* 52 reserved */ 9698 0, /* 53 reserved */ 9699 0, /* 54 reserved */ 9700 0, /* 55 reserved */ 9701 0, /* 56 cisptr_lsw */ 9702 0, /* 57 cisprt_msw */ 9703 PCI_VENDOR_ID_ASP, /* 58 subsysvid */ 9704 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */ 9705 0, /* 60 reserved */ 9706 0, /* 61 reserved */ 9707 0, /* 62 reserved */ 9708 0 /* 63 reserved */ 9709 }; 9710 9711 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = { 9712 0, /* 00 cfg_lsw */ 9713 0, /* 01 cfg_msw */ 9714 0, /* 02 disc_enable */ 9715 0, /* 03 wdtr_able */ 9716 0, /* 04 sdtr_speed1 */ 9717 0, /* 05 start_motor */ 9718 0, /* 06 tagqng_able */ 9719 0, /* 07 bios_scan */ 9720 0, /* 08 scam_tolerant */ 9721 1, /* 09 adapter_scsi_id */ 9722 1, /* bios_boot_delay */ 9723 1, /* 10 scsi_reset_delay */ 9724 1, /* bios_id_lun */ 9725 1, /* 11 termination_se */ 9726 1, /* termination_lvd */ 9727 0, /* 12 bios_ctrl */ 9728 0, /* 13 sdtr_speed2 */ 9729 0, /* 14 sdtr_speed3 */ 9730 1, /* 15 max_host_qng */ 9731 1, /* max_dvc_qng */ 9732 0, /* 16 dvc_cntl */ 9733 0, /* 17 sdtr_speed4 */ 9734 0, /* 18 serial_number_word1 */ 9735 0, /* 19 serial_number_word2 */ 9736 0, /* 20 serial_number_word3 */ 9737 0, /* 21 check_sum */ 9738 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9739 , /* 22-29 oem_name[16] */ 9740 0, /* 30 dvc_err_code */ 9741 0, /* 31 adv_err_code */ 9742 0, /* 32 adv_err_addr */ 9743 0, /* 33 saved_dvc_err_code */ 9744 0, /* 34 saved_adv_err_code */ 9745 0, /* 35 saved_adv_err_addr */ 9746 0, /* 36 reserved */ 9747 0, /* 37 reserved */ 9748 0, /* 38 reserved */ 9749 0, /* 39 reserved */ 9750 0, /* 40 reserved */ 9751 0, /* 41 reserved */ 9752 0, /* 42 reserved */ 9753 0, /* 43 reserved */ 9754 0, /* 44 reserved */ 9755 0, /* 45 reserved */ 9756 0, /* 46 reserved */ 9757 0, /* 47 reserved */ 9758 0, /* 48 reserved */ 9759 0, /* 49 reserved */ 9760 0, /* 50 reserved */ 9761 0, /* 51 reserved */ 9762 0, /* 52 reserved */ 9763 0, /* 53 reserved */ 9764 0, /* 54 reserved */ 9765 0, /* 55 reserved */ 9766 0, /* 56 cisptr_lsw */ 9767 0, /* 57 cisprt_msw */ 9768 0, /* 58 subsysvid */ 9769 0, /* 59 subsysid */ 9770 0, /* 60 reserved */ 9771 0, /* 61 reserved */ 9772 0, /* 62 reserved */ 9773 0 /* 63 reserved */ 9774 }; 9775 9776 /* 9777 * Wait for EEPROM command to complete 9778 */ 9779 static void AdvWaitEEPCmd(AdvPortAddr iop_base) 9780 { 9781 int eep_delay_ms; 9782 9783 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) { 9784 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) & 9785 ASC_EEP_CMD_DONE) { 9786 break; 9787 } 9788 mdelay(1); 9789 } 9790 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) == 9791 0) 9792 BUG(); 9793 } 9794 9795 /* 9796 * Read the EEPROM from specified location 9797 */ 9798 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr) 9799 { 9800 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9801 ASC_EEP_CMD_READ | eep_word_addr); 9802 AdvWaitEEPCmd(iop_base); 9803 return AdvReadWordRegister(iop_base, IOPW_EE_DATA); 9804 } 9805 9806 /* 9807 * Write the EEPROM from 'cfg_buf'. 9808 */ 9809 static void AdvSet3550EEPConfig(AdvPortAddr iop_base, 9810 ADVEEP_3550_CONFIG *cfg_buf) 9811 { 9812 ushort *wbuf; 9813 ushort addr, chksum; 9814 ushort *charfields; 9815 9816 wbuf = (ushort *)cfg_buf; 9817 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; 9818 chksum = 0; 9819 9820 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9821 AdvWaitEEPCmd(iop_base); 9822 9823 /* 9824 * Write EEPROM from word 0 to word 20. 9825 */ 9826 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9827 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9828 ushort word; 9829 9830 if (*charfields++) { 9831 word = cpu_to_le16(*wbuf); 9832 } else { 9833 word = *wbuf; 9834 } 9835 chksum += *wbuf; /* Checksum is calculated from word values. */ 9836 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9837 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9838 ASC_EEP_CMD_WRITE | addr); 9839 AdvWaitEEPCmd(iop_base); 9840 mdelay(ADV_EEP_DELAY_MS); 9841 } 9842 9843 /* 9844 * Write EEPROM checksum at word 21. 9845 */ 9846 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9847 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9848 AdvWaitEEPCmd(iop_base); 9849 wbuf++; 9850 charfields++; 9851 9852 /* 9853 * Write EEPROM OEM name at words 22 to 29. 9854 */ 9855 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9856 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9857 ushort word; 9858 9859 if (*charfields++) { 9860 word = cpu_to_le16(*wbuf); 9861 } else { 9862 word = *wbuf; 9863 } 9864 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9865 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9866 ASC_EEP_CMD_WRITE | addr); 9867 AdvWaitEEPCmd(iop_base); 9868 } 9869 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 9870 AdvWaitEEPCmd(iop_base); 9871 } 9872 9873 /* 9874 * Write the EEPROM from 'cfg_buf'. 9875 */ 9876 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base, 9877 ADVEEP_38C0800_CONFIG *cfg_buf) 9878 { 9879 ushort *wbuf; 9880 ushort *charfields; 9881 ushort addr, chksum; 9882 9883 wbuf = (ushort *)cfg_buf; 9884 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; 9885 chksum = 0; 9886 9887 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9888 AdvWaitEEPCmd(iop_base); 9889 9890 /* 9891 * Write EEPROM from word 0 to word 20. 9892 */ 9893 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9894 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9895 ushort word; 9896 9897 if (*charfields++) { 9898 word = cpu_to_le16(*wbuf); 9899 } else { 9900 word = *wbuf; 9901 } 9902 chksum += *wbuf; /* Checksum is calculated from word values. */ 9903 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9904 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9905 ASC_EEP_CMD_WRITE | addr); 9906 AdvWaitEEPCmd(iop_base); 9907 mdelay(ADV_EEP_DELAY_MS); 9908 } 9909 9910 /* 9911 * Write EEPROM checksum at word 21. 9912 */ 9913 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9914 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9915 AdvWaitEEPCmd(iop_base); 9916 wbuf++; 9917 charfields++; 9918 9919 /* 9920 * Write EEPROM OEM name at words 22 to 29. 9921 */ 9922 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9923 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9924 ushort word; 9925 9926 if (*charfields++) { 9927 word = cpu_to_le16(*wbuf); 9928 } else { 9929 word = *wbuf; 9930 } 9931 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9932 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9933 ASC_EEP_CMD_WRITE | addr); 9934 AdvWaitEEPCmd(iop_base); 9935 } 9936 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 9937 AdvWaitEEPCmd(iop_base); 9938 } 9939 9940 /* 9941 * Write the EEPROM from 'cfg_buf'. 9942 */ 9943 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base, 9944 ADVEEP_38C1600_CONFIG *cfg_buf) 9945 { 9946 ushort *wbuf; 9947 ushort *charfields; 9948 ushort addr, chksum; 9949 9950 wbuf = (ushort *)cfg_buf; 9951 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; 9952 chksum = 0; 9953 9954 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9955 AdvWaitEEPCmd(iop_base); 9956 9957 /* 9958 * Write EEPROM from word 0 to word 20. 9959 */ 9960 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9961 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9962 ushort word; 9963 9964 if (*charfields++) { 9965 word = cpu_to_le16(*wbuf); 9966 } else { 9967 word = *wbuf; 9968 } 9969 chksum += *wbuf; /* Checksum is calculated from word values. */ 9970 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9971 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9972 ASC_EEP_CMD_WRITE | addr); 9973 AdvWaitEEPCmd(iop_base); 9974 mdelay(ADV_EEP_DELAY_MS); 9975 } 9976 9977 /* 9978 * Write EEPROM checksum at word 21. 9979 */ 9980 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9981 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9982 AdvWaitEEPCmd(iop_base); 9983 wbuf++; 9984 charfields++; 9985 9986 /* 9987 * Write EEPROM OEM name at words 22 to 29. 9988 */ 9989 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9990 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9991 ushort word; 9992 9993 if (*charfields++) { 9994 word = cpu_to_le16(*wbuf); 9995 } else { 9996 word = *wbuf; 9997 } 9998 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9999 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10000 ASC_EEP_CMD_WRITE | addr); 10001 AdvWaitEEPCmd(iop_base); 10002 } 10003 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 10004 AdvWaitEEPCmd(iop_base); 10005 } 10006 10007 /* 10008 * Read EEPROM configuration into the specified buffer. 10009 * 10010 * Return a checksum based on the EEPROM configuration read. 10011 */ 10012 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base, 10013 ADVEEP_3550_CONFIG *cfg_buf) 10014 { 10015 ushort wval, chksum; 10016 ushort *wbuf; 10017 int eep_addr; 10018 ushort *charfields; 10019 10020 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; 10021 wbuf = (ushort *)cfg_buf; 10022 chksum = 0; 10023 10024 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 10025 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 10026 wval = AdvReadEEPWord(iop_base, eep_addr); 10027 chksum += wval; /* Checksum is calculated from word values. */ 10028 if (*charfields++) { 10029 *wbuf = le16_to_cpu(wval); 10030 } else { 10031 *wbuf = wval; 10032 } 10033 } 10034 /* Read checksum word. */ 10035 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10036 wbuf++; 10037 charfields++; 10038 10039 /* Read rest of EEPROM not covered by the checksum. */ 10040 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 10041 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 10042 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10043 if (*charfields++) { 10044 *wbuf = le16_to_cpu(*wbuf); 10045 } 10046 } 10047 return chksum; 10048 } 10049 10050 /* 10051 * Read EEPROM configuration into the specified buffer. 10052 * 10053 * Return a checksum based on the EEPROM configuration read. 10054 */ 10055 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base, 10056 ADVEEP_38C0800_CONFIG *cfg_buf) 10057 { 10058 ushort wval, chksum; 10059 ushort *wbuf; 10060 int eep_addr; 10061 ushort *charfields; 10062 10063 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; 10064 wbuf = (ushort *)cfg_buf; 10065 chksum = 0; 10066 10067 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 10068 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 10069 wval = AdvReadEEPWord(iop_base, eep_addr); 10070 chksum += wval; /* Checksum is calculated from word values. */ 10071 if (*charfields++) { 10072 *wbuf = le16_to_cpu(wval); 10073 } else { 10074 *wbuf = wval; 10075 } 10076 } 10077 /* Read checksum word. */ 10078 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10079 wbuf++; 10080 charfields++; 10081 10082 /* Read rest of EEPROM not covered by the checksum. */ 10083 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 10084 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 10085 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10086 if (*charfields++) { 10087 *wbuf = le16_to_cpu(*wbuf); 10088 } 10089 } 10090 return chksum; 10091 } 10092 10093 /* 10094 * Read EEPROM configuration into the specified buffer. 10095 * 10096 * Return a checksum based on the EEPROM configuration read. 10097 */ 10098 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base, 10099 ADVEEP_38C1600_CONFIG *cfg_buf) 10100 { 10101 ushort wval, chksum; 10102 ushort *wbuf; 10103 int eep_addr; 10104 ushort *charfields; 10105 10106 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; 10107 wbuf = (ushort *)cfg_buf; 10108 chksum = 0; 10109 10110 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 10111 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 10112 wval = AdvReadEEPWord(iop_base, eep_addr); 10113 chksum += wval; /* Checksum is calculated from word values. */ 10114 if (*charfields++) { 10115 *wbuf = le16_to_cpu(wval); 10116 } else { 10117 *wbuf = wval; 10118 } 10119 } 10120 /* Read checksum word. */ 10121 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10122 wbuf++; 10123 charfields++; 10124 10125 /* Read rest of EEPROM not covered by the checksum. */ 10126 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 10127 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 10128 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10129 if (*charfields++) { 10130 *wbuf = le16_to_cpu(*wbuf); 10131 } 10132 } 10133 return chksum; 10134 } 10135 10136 /* 10137 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and 10138 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while 10139 * all of this is done. 10140 * 10141 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10142 * 10143 * For a non-fatal error return a warning code. If there are no warnings 10144 * then 0 is returned. 10145 * 10146 * Note: Chip is stopped on entry. 10147 */ 10148 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc) 10149 { 10150 AdvPortAddr iop_base; 10151 ushort warn_code; 10152 ADVEEP_3550_CONFIG eep_config; 10153 10154 iop_base = asc_dvc->iop_base; 10155 10156 warn_code = 0; 10157 10158 /* 10159 * Read the board's EEPROM configuration. 10160 * 10161 * Set default values if a bad checksum is found. 10162 */ 10163 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) { 10164 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10165 10166 /* 10167 * Set EEPROM default values. 10168 */ 10169 memcpy(&eep_config, &Default_3550_EEPROM_Config, 10170 sizeof(ADVEEP_3550_CONFIG)); 10171 10172 /* 10173 * Assume the 6 byte board serial number that was read from 10174 * EEPROM is correct even if the EEPROM checksum failed. 10175 */ 10176 eep_config.serial_number_word3 = 10177 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10178 10179 eep_config.serial_number_word2 = 10180 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10181 10182 eep_config.serial_number_word1 = 10183 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10184 10185 AdvSet3550EEPConfig(iop_base, &eep_config); 10186 } 10187 /* 10188 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the 10189 * EEPROM configuration that was read. 10190 * 10191 * This is the mapping of EEPROM fields to Adv Library fields. 10192 */ 10193 asc_dvc->wdtr_able = eep_config.wdtr_able; 10194 asc_dvc->sdtr_able = eep_config.sdtr_able; 10195 asc_dvc->ultra_able = eep_config.ultra_able; 10196 asc_dvc->tagqng_able = eep_config.tagqng_able; 10197 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10198 asc_dvc->max_host_qng = eep_config.max_host_qng; 10199 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10200 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); 10201 asc_dvc->start_motor = eep_config.start_motor; 10202 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10203 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10204 asc_dvc->no_scam = eep_config.scam_tolerant; 10205 asc_dvc->cfg->serial1 = eep_config.serial_number_word1; 10206 asc_dvc->cfg->serial2 = eep_config.serial_number_word2; 10207 asc_dvc->cfg->serial3 = eep_config.serial_number_word3; 10208 10209 /* 10210 * Set the host maximum queuing (max. 253, min. 16) and the per device 10211 * maximum queuing (max. 63, min. 4). 10212 */ 10213 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10214 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10215 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10216 /* If the value is zero, assume it is uninitialized. */ 10217 if (eep_config.max_host_qng == 0) { 10218 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10219 } else { 10220 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10221 } 10222 } 10223 10224 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10225 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10226 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10227 /* If the value is zero, assume it is uninitialized. */ 10228 if (eep_config.max_dvc_qng == 0) { 10229 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10230 } else { 10231 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10232 } 10233 } 10234 10235 /* 10236 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10237 * set 'max_dvc_qng' to 'max_host_qng'. 10238 */ 10239 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10240 eep_config.max_dvc_qng = eep_config.max_host_qng; 10241 } 10242 10243 /* 10244 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' 10245 * values based on possibly adjusted EEPROM values. 10246 */ 10247 asc_dvc->max_host_qng = eep_config.max_host_qng; 10248 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10249 10250 /* 10251 * If the EEPROM 'termination' field is set to automatic (0), then set 10252 * the ADV_DVC_CFG 'termination' field to automatic also. 10253 * 10254 * If the termination is specified with a non-zero 'termination' 10255 * value check that a legal value is set and set the ADV_DVC_CFG 10256 * 'termination' field appropriately. 10257 */ 10258 if (eep_config.termination == 0) { 10259 asc_dvc->cfg->termination = 0; /* auto termination */ 10260 } else { 10261 /* Enable manual control with low off / high off. */ 10262 if (eep_config.termination == 1) { 10263 asc_dvc->cfg->termination = TERM_CTL_SEL; 10264 10265 /* Enable manual control with low off / high on. */ 10266 } else if (eep_config.termination == 2) { 10267 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H; 10268 10269 /* Enable manual control with low on / high on. */ 10270 } else if (eep_config.termination == 3) { 10271 asc_dvc->cfg->termination = 10272 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L; 10273 } else { 10274 /* 10275 * The EEPROM 'termination' field contains a bad value. Use 10276 * automatic termination instead. 10277 */ 10278 asc_dvc->cfg->termination = 0; 10279 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10280 } 10281 } 10282 10283 return warn_code; 10284 } 10285 10286 /* 10287 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and 10288 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while 10289 * all of this is done. 10290 * 10291 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10292 * 10293 * For a non-fatal error return a warning code. If there are no warnings 10294 * then 0 is returned. 10295 * 10296 * Note: Chip is stopped on entry. 10297 */ 10298 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc) 10299 { 10300 AdvPortAddr iop_base; 10301 ushort warn_code; 10302 ADVEEP_38C0800_CONFIG eep_config; 10303 uchar tid, termination; 10304 ushort sdtr_speed = 0; 10305 10306 iop_base = asc_dvc->iop_base; 10307 10308 warn_code = 0; 10309 10310 /* 10311 * Read the board's EEPROM configuration. 10312 * 10313 * Set default values if a bad checksum is found. 10314 */ 10315 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) != 10316 eep_config.check_sum) { 10317 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10318 10319 /* 10320 * Set EEPROM default values. 10321 */ 10322 memcpy(&eep_config, &Default_38C0800_EEPROM_Config, 10323 sizeof(ADVEEP_38C0800_CONFIG)); 10324 10325 /* 10326 * Assume the 6 byte board serial number that was read from 10327 * EEPROM is correct even if the EEPROM checksum failed. 10328 */ 10329 eep_config.serial_number_word3 = 10330 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10331 10332 eep_config.serial_number_word2 = 10333 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10334 10335 eep_config.serial_number_word1 = 10336 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10337 10338 AdvSet38C0800EEPConfig(iop_base, &eep_config); 10339 } 10340 /* 10341 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the 10342 * EEPROM configuration that was read. 10343 * 10344 * This is the mapping of EEPROM fields to Adv Library fields. 10345 */ 10346 asc_dvc->wdtr_able = eep_config.wdtr_able; 10347 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; 10348 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; 10349 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; 10350 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; 10351 asc_dvc->tagqng_able = eep_config.tagqng_able; 10352 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10353 asc_dvc->max_host_qng = eep_config.max_host_qng; 10354 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10355 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); 10356 asc_dvc->start_motor = eep_config.start_motor; 10357 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10358 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10359 asc_dvc->no_scam = eep_config.scam_tolerant; 10360 asc_dvc->cfg->serial1 = eep_config.serial_number_word1; 10361 asc_dvc->cfg->serial2 = eep_config.serial_number_word2; 10362 asc_dvc->cfg->serial3 = eep_config.serial_number_word3; 10363 10364 /* 10365 * For every Target ID if any of its 'sdtr_speed[1234]' bits 10366 * are set, then set an 'sdtr_able' bit for it. 10367 */ 10368 asc_dvc->sdtr_able = 0; 10369 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 10370 if (tid == 0) { 10371 sdtr_speed = asc_dvc->sdtr_speed1; 10372 } else if (tid == 4) { 10373 sdtr_speed = asc_dvc->sdtr_speed2; 10374 } else if (tid == 8) { 10375 sdtr_speed = asc_dvc->sdtr_speed3; 10376 } else if (tid == 12) { 10377 sdtr_speed = asc_dvc->sdtr_speed4; 10378 } 10379 if (sdtr_speed & ADV_MAX_TID) { 10380 asc_dvc->sdtr_able |= (1 << tid); 10381 } 10382 sdtr_speed >>= 4; 10383 } 10384 10385 /* 10386 * Set the host maximum queuing (max. 253, min. 16) and the per device 10387 * maximum queuing (max. 63, min. 4). 10388 */ 10389 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10390 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10391 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10392 /* If the value is zero, assume it is uninitialized. */ 10393 if (eep_config.max_host_qng == 0) { 10394 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10395 } else { 10396 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10397 } 10398 } 10399 10400 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10401 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10402 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10403 /* If the value is zero, assume it is uninitialized. */ 10404 if (eep_config.max_dvc_qng == 0) { 10405 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10406 } else { 10407 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10408 } 10409 } 10410 10411 /* 10412 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10413 * set 'max_dvc_qng' to 'max_host_qng'. 10414 */ 10415 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10416 eep_config.max_dvc_qng = eep_config.max_host_qng; 10417 } 10418 10419 /* 10420 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' 10421 * values based on possibly adjusted EEPROM values. 10422 */ 10423 asc_dvc->max_host_qng = eep_config.max_host_qng; 10424 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10425 10426 /* 10427 * If the EEPROM 'termination' field is set to automatic (0), then set 10428 * the ADV_DVC_CFG 'termination' field to automatic also. 10429 * 10430 * If the termination is specified with a non-zero 'termination' 10431 * value check that a legal value is set and set the ADV_DVC_CFG 10432 * 'termination' field appropriately. 10433 */ 10434 if (eep_config.termination_se == 0) { 10435 termination = 0; /* auto termination for SE */ 10436 } else { 10437 /* Enable manual control with low off / high off. */ 10438 if (eep_config.termination_se == 1) { 10439 termination = 0; 10440 10441 /* Enable manual control with low off / high on. */ 10442 } else if (eep_config.termination_se == 2) { 10443 termination = TERM_SE_HI; 10444 10445 /* Enable manual control with low on / high on. */ 10446 } else if (eep_config.termination_se == 3) { 10447 termination = TERM_SE; 10448 } else { 10449 /* 10450 * The EEPROM 'termination_se' field contains a bad value. 10451 * Use automatic termination instead. 10452 */ 10453 termination = 0; 10454 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10455 } 10456 } 10457 10458 if (eep_config.termination_lvd == 0) { 10459 asc_dvc->cfg->termination = termination; /* auto termination for LVD */ 10460 } else { 10461 /* Enable manual control with low off / high off. */ 10462 if (eep_config.termination_lvd == 1) { 10463 asc_dvc->cfg->termination = termination; 10464 10465 /* Enable manual control with low off / high on. */ 10466 } else if (eep_config.termination_lvd == 2) { 10467 asc_dvc->cfg->termination = termination | TERM_LVD_HI; 10468 10469 /* Enable manual control with low on / high on. */ 10470 } else if (eep_config.termination_lvd == 3) { 10471 asc_dvc->cfg->termination = termination | TERM_LVD; 10472 } else { 10473 /* 10474 * The EEPROM 'termination_lvd' field contains a bad value. 10475 * Use automatic termination instead. 10476 */ 10477 asc_dvc->cfg->termination = termination; 10478 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10479 } 10480 } 10481 10482 return warn_code; 10483 } 10484 10485 /* 10486 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and 10487 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while 10488 * all of this is done. 10489 * 10490 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. 10491 * 10492 * For a non-fatal error return a warning code. If there are no warnings 10493 * then 0 is returned. 10494 * 10495 * Note: Chip is stopped on entry. 10496 */ 10497 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc) 10498 { 10499 AdvPortAddr iop_base; 10500 ushort warn_code; 10501 ADVEEP_38C1600_CONFIG eep_config; 10502 uchar tid, termination; 10503 ushort sdtr_speed = 0; 10504 10505 iop_base = asc_dvc->iop_base; 10506 10507 warn_code = 0; 10508 10509 /* 10510 * Read the board's EEPROM configuration. 10511 * 10512 * Set default values if a bad checksum is found. 10513 */ 10514 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) != 10515 eep_config.check_sum) { 10516 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); 10517 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10518 10519 /* 10520 * Set EEPROM default values. 10521 */ 10522 memcpy(&eep_config, &Default_38C1600_EEPROM_Config, 10523 sizeof(ADVEEP_38C1600_CONFIG)); 10524 10525 if (PCI_FUNC(pdev->devfn) != 0) { 10526 u8 ints; 10527 /* 10528 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 10529 * and old Mac system booting problem. The Expansion 10530 * ROM must be disabled in Function 1 for these systems 10531 */ 10532 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE; 10533 /* 10534 * Clear the INTAB (bit 11) if the GPIO 0 input 10535 * indicates the Function 1 interrupt line is wired 10536 * to INTB. 10537 * 10538 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input: 10539 * 1 - Function 1 interrupt line wired to INT A. 10540 * 0 - Function 1 interrupt line wired to INT B. 10541 * 10542 * Note: Function 0 is always wired to INTA. 10543 * Put all 5 GPIO bits in input mode and then read 10544 * their input values. 10545 */ 10546 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0); 10547 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA); 10548 if ((ints & 0x01) == 0) 10549 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB; 10550 } 10551 10552 /* 10553 * Assume the 6 byte board serial number that was read from 10554 * EEPROM is correct even if the EEPROM checksum failed. 10555 */ 10556 eep_config.serial_number_word3 = 10557 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10558 eep_config.serial_number_word2 = 10559 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10560 eep_config.serial_number_word1 = 10561 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10562 10563 AdvSet38C1600EEPConfig(iop_base, &eep_config); 10564 } 10565 10566 /* 10567 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the 10568 * EEPROM configuration that was read. 10569 * 10570 * This is the mapping of EEPROM fields to Adv Library fields. 10571 */ 10572 asc_dvc->wdtr_able = eep_config.wdtr_able; 10573 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; 10574 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; 10575 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; 10576 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; 10577 asc_dvc->ppr_able = 0; 10578 asc_dvc->tagqng_able = eep_config.tagqng_able; 10579 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10580 asc_dvc->max_host_qng = eep_config.max_host_qng; 10581 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10582 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID); 10583 asc_dvc->start_motor = eep_config.start_motor; 10584 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10585 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10586 asc_dvc->no_scam = eep_config.scam_tolerant; 10587 10588 /* 10589 * For every Target ID if any of its 'sdtr_speed[1234]' bits 10590 * are set, then set an 'sdtr_able' bit for it. 10591 */ 10592 asc_dvc->sdtr_able = 0; 10593 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 10594 if (tid == 0) { 10595 sdtr_speed = asc_dvc->sdtr_speed1; 10596 } else if (tid == 4) { 10597 sdtr_speed = asc_dvc->sdtr_speed2; 10598 } else if (tid == 8) { 10599 sdtr_speed = asc_dvc->sdtr_speed3; 10600 } else if (tid == 12) { 10601 sdtr_speed = asc_dvc->sdtr_speed4; 10602 } 10603 if (sdtr_speed & ASC_MAX_TID) { 10604 asc_dvc->sdtr_able |= (1 << tid); 10605 } 10606 sdtr_speed >>= 4; 10607 } 10608 10609 /* 10610 * Set the host maximum queuing (max. 253, min. 16) and the per device 10611 * maximum queuing (max. 63, min. 4). 10612 */ 10613 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10614 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10615 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10616 /* If the value is zero, assume it is uninitialized. */ 10617 if (eep_config.max_host_qng == 0) { 10618 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10619 } else { 10620 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10621 } 10622 } 10623 10624 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10625 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10626 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10627 /* If the value is zero, assume it is uninitialized. */ 10628 if (eep_config.max_dvc_qng == 0) { 10629 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10630 } else { 10631 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10632 } 10633 } 10634 10635 /* 10636 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10637 * set 'max_dvc_qng' to 'max_host_qng'. 10638 */ 10639 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10640 eep_config.max_dvc_qng = eep_config.max_host_qng; 10641 } 10642 10643 /* 10644 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng' 10645 * values based on possibly adjusted EEPROM values. 10646 */ 10647 asc_dvc->max_host_qng = eep_config.max_host_qng; 10648 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10649 10650 /* 10651 * If the EEPROM 'termination' field is set to automatic (0), then set 10652 * the ASC_DVC_CFG 'termination' field to automatic also. 10653 * 10654 * If the termination is specified with a non-zero 'termination' 10655 * value check that a legal value is set and set the ASC_DVC_CFG 10656 * 'termination' field appropriately. 10657 */ 10658 if (eep_config.termination_se == 0) { 10659 termination = 0; /* auto termination for SE */ 10660 } else { 10661 /* Enable manual control with low off / high off. */ 10662 if (eep_config.termination_se == 1) { 10663 termination = 0; 10664 10665 /* Enable manual control with low off / high on. */ 10666 } else if (eep_config.termination_se == 2) { 10667 termination = TERM_SE_HI; 10668 10669 /* Enable manual control with low on / high on. */ 10670 } else if (eep_config.termination_se == 3) { 10671 termination = TERM_SE; 10672 } else { 10673 /* 10674 * The EEPROM 'termination_se' field contains a bad value. 10675 * Use automatic termination instead. 10676 */ 10677 termination = 0; 10678 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10679 } 10680 } 10681 10682 if (eep_config.termination_lvd == 0) { 10683 asc_dvc->cfg->termination = termination; /* auto termination for LVD */ 10684 } else { 10685 /* Enable manual control with low off / high off. */ 10686 if (eep_config.termination_lvd == 1) { 10687 asc_dvc->cfg->termination = termination; 10688 10689 /* Enable manual control with low off / high on. */ 10690 } else if (eep_config.termination_lvd == 2) { 10691 asc_dvc->cfg->termination = termination | TERM_LVD_HI; 10692 10693 /* Enable manual control with low on / high on. */ 10694 } else if (eep_config.termination_lvd == 3) { 10695 asc_dvc->cfg->termination = termination | TERM_LVD; 10696 } else { 10697 /* 10698 * The EEPROM 'termination_lvd' field contains a bad value. 10699 * Use automatic termination instead. 10700 */ 10701 asc_dvc->cfg->termination = termination; 10702 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10703 } 10704 } 10705 10706 return warn_code; 10707 } 10708 10709 /* 10710 * Initialize the ADV_DVC_VAR structure. 10711 * 10712 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10713 * 10714 * For a non-fatal error return a warning code. If there are no warnings 10715 * then 0 is returned. 10716 */ 10717 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) 10718 { 10719 struct asc_board *board = shost_priv(shost); 10720 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var; 10721 unsigned short warn_code = 0; 10722 AdvPortAddr iop_base = asc_dvc->iop_base; 10723 u16 cmd; 10724 int status; 10725 10726 asc_dvc->err_code = 0; 10727 10728 /* 10729 * Save the state of the PCI Configuration Command Register 10730 * "Parity Error Response Control" Bit. If the bit is clear (0), 10731 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore 10732 * DMA parity errors. 10733 */ 10734 asc_dvc->cfg->control_flag = 0; 10735 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 10736 if ((cmd & PCI_COMMAND_PARITY) == 0) 10737 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR; 10738 10739 asc_dvc->cfg->chip_version = 10740 AdvGetChipVersion(iop_base, asc_dvc->bus_type); 10741 10742 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n", 10743 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1), 10744 (ushort)ADV_CHIP_ID_BYTE); 10745 10746 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n", 10747 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0), 10748 (ushort)ADV_CHIP_ID_WORD); 10749 10750 /* 10751 * Reset the chip to start and allow register writes. 10752 */ 10753 if (AdvFindSignature(iop_base) == 0) { 10754 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 10755 return ADV_ERROR; 10756 } else { 10757 /* 10758 * The caller must set 'chip_type' to a valid setting. 10759 */ 10760 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 && 10761 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 && 10762 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { 10763 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE; 10764 return ADV_ERROR; 10765 } 10766 10767 /* 10768 * Reset Chip. 10769 */ 10770 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 10771 ADV_CTRL_REG_CMD_RESET); 10772 mdelay(100); 10773 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 10774 ADV_CTRL_REG_CMD_WR_IO_REG); 10775 10776 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 10777 status = AdvInitFrom38C1600EEP(asc_dvc); 10778 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 10779 status = AdvInitFrom38C0800EEP(asc_dvc); 10780 } else { 10781 status = AdvInitFrom3550EEP(asc_dvc); 10782 } 10783 warn_code |= status; 10784 } 10785 10786 if (warn_code != 0) 10787 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code); 10788 10789 if (asc_dvc->err_code) 10790 shost_printk(KERN_ERR, shost, "error code 0x%x\n", 10791 asc_dvc->err_code); 10792 10793 return asc_dvc->err_code; 10794 } 10795 #endif 10796 10797 static struct scsi_host_template advansys_template = { 10798 .proc_name = DRV_NAME, 10799 #ifdef CONFIG_PROC_FS 10800 .show_info = advansys_show_info, 10801 #endif 10802 .name = DRV_NAME, 10803 .info = advansys_info, 10804 .queuecommand = advansys_queuecommand, 10805 .eh_host_reset_handler = advansys_reset, 10806 .bios_param = advansys_biosparam, 10807 .slave_configure = advansys_slave_configure, 10808 /* 10809 * Because the driver may control an ISA adapter 'unchecked_isa_dma' 10810 * must be set. The flag will be cleared in advansys_board_found 10811 * for non-ISA adapters. 10812 */ 10813 .unchecked_isa_dma = true, 10814 /* 10815 * All adapters controlled by this driver are capable of large 10816 * scatter-gather lists. According to the mid-level SCSI documentation 10817 * this obviates any performance gain provided by setting 10818 * 'use_clustering'. But empirically while CPU utilization is increased 10819 * by enabling clustering, I/O throughput increases as well. 10820 */ 10821 .use_clustering = ENABLE_CLUSTERING, 10822 .use_blk_tags = 1, 10823 }; 10824 10825 static int advansys_wide_init_chip(struct Scsi_Host *shost) 10826 { 10827 struct asc_board *board = shost_priv(shost); 10828 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; 10829 size_t sgblk_pool_size; 10830 int warn_code, err_code; 10831 10832 /* 10833 * Allocate buffer carrier structures. The total size 10834 * is about 8 KB, so allocate all at once. 10835 */ 10836 adv_dvc->carrier = dma_alloc_coherent(board->dev, 10837 ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL); 10838 ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier); 10839 10840 if (!adv_dvc->carrier) 10841 goto kmalloc_failed; 10842 10843 /* 10844 * Allocate up to 'max_host_qng' request structures for the Wide 10845 * board. The total size is about 16 KB, so allocate all at once. 10846 * If the allocation fails decrement and try again. 10847 */ 10848 board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t); 10849 if (board->adv_reqp_size & 0x1f) { 10850 ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t)); 10851 board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size); 10852 } 10853 board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size, 10854 &board->adv_reqp_addr, GFP_KERNEL); 10855 10856 if (!board->adv_reqp) 10857 goto kmalloc_failed; 10858 10859 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp, 10860 adv_dvc->max_host_qng, board->adv_reqp_size); 10861 10862 /* 10863 * Allocate up to ADV_TOT_SG_BLOCK request structures for 10864 * the Wide board. Each structure is about 136 bytes. 10865 */ 10866 sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK; 10867 board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev, 10868 sgblk_pool_size, 32, 0); 10869 10870 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK, 10871 sizeof(adv_sgblk_t), sgblk_pool_size); 10872 10873 if (!board->adv_sgblk_pool) 10874 goto kmalloc_failed; 10875 10876 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) { 10877 ASC_DBG(2, "AdvInitAsc3550Driver()\n"); 10878 warn_code = AdvInitAsc3550Driver(adv_dvc); 10879 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) { 10880 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n"); 10881 warn_code = AdvInitAsc38C0800Driver(adv_dvc); 10882 } else { 10883 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n"); 10884 warn_code = AdvInitAsc38C1600Driver(adv_dvc); 10885 } 10886 err_code = adv_dvc->err_code; 10887 10888 if (warn_code || err_code) { 10889 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error " 10890 "0x%x\n", warn_code, err_code); 10891 } 10892 10893 goto exit; 10894 10895 kmalloc_failed: 10896 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n"); 10897 err_code = ADV_ERROR; 10898 exit: 10899 return err_code; 10900 } 10901 10902 static void advansys_wide_free_mem(struct asc_board *board) 10903 { 10904 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; 10905 10906 if (adv_dvc->carrier) { 10907 dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE, 10908 adv_dvc->carrier, adv_dvc->carrier_addr); 10909 adv_dvc->carrier = NULL; 10910 } 10911 if (board->adv_reqp) { 10912 dma_free_coherent(board->dev, board->adv_reqp_size, 10913 board->adv_reqp, board->adv_reqp_addr); 10914 board->adv_reqp = NULL; 10915 } 10916 if (board->adv_sgblk_pool) { 10917 dma_pool_destroy(board->adv_sgblk_pool); 10918 board->adv_sgblk_pool = NULL; 10919 } 10920 } 10921 10922 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop, 10923 int bus_type) 10924 { 10925 struct pci_dev *pdev; 10926 struct asc_board *boardp = shost_priv(shost); 10927 ASC_DVC_VAR *asc_dvc_varp = NULL; 10928 ADV_DVC_VAR *adv_dvc_varp = NULL; 10929 int share_irq, warn_code, ret; 10930 10931 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL; 10932 10933 if (ASC_NARROW_BOARD(boardp)) { 10934 ASC_DBG(1, "narrow board\n"); 10935 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 10936 asc_dvc_varp->bus_type = bus_type; 10937 asc_dvc_varp->drv_ptr = boardp; 10938 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg; 10939 asc_dvc_varp->iop_base = iop; 10940 } else { 10941 #ifdef CONFIG_PCI 10942 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 10943 adv_dvc_varp->drv_ptr = boardp; 10944 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg; 10945 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) { 10946 ASC_DBG(1, "wide board ASC-3550\n"); 10947 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550; 10948 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) { 10949 ASC_DBG(1, "wide board ASC-38C0800\n"); 10950 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800; 10951 } else { 10952 ASC_DBG(1, "wide board ASC-38C1600\n"); 10953 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600; 10954 } 10955 10956 boardp->asc_n_io_port = pci_resource_len(pdev, 1); 10957 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1); 10958 if (!boardp->ioremap_addr) { 10959 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) " 10960 "returned NULL\n", 10961 (long)pci_resource_start(pdev, 1), 10962 boardp->asc_n_io_port); 10963 ret = -ENODEV; 10964 goto err_shost; 10965 } 10966 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr; 10967 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base); 10968 10969 /* 10970 * Even though it isn't used to access wide boards, other 10971 * than for the debug line below, save I/O Port address so 10972 * that it can be reported. 10973 */ 10974 boardp->ioport = iop; 10975 10976 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n", 10977 (ushort)inp(iop + 1), (ushort)inpw(iop)); 10978 #endif /* CONFIG_PCI */ 10979 } 10980 10981 if (ASC_NARROW_BOARD(boardp)) { 10982 /* 10983 * Set the board bus type and PCI IRQ before 10984 * calling AscInitGetConfig(). 10985 */ 10986 switch (asc_dvc_varp->bus_type) { 10987 #ifdef CONFIG_ISA 10988 case ASC_IS_ISA: 10989 shost->unchecked_isa_dma = true; 10990 share_irq = 0; 10991 break; 10992 case ASC_IS_VL: 10993 shost->unchecked_isa_dma = false; 10994 share_irq = 0; 10995 break; 10996 case ASC_IS_EISA: 10997 shost->unchecked_isa_dma = false; 10998 share_irq = IRQF_SHARED; 10999 break; 11000 #endif /* CONFIG_ISA */ 11001 #ifdef CONFIG_PCI 11002 case ASC_IS_PCI: 11003 shost->unchecked_isa_dma = false; 11004 share_irq = IRQF_SHARED; 11005 break; 11006 #endif /* CONFIG_PCI */ 11007 default: 11008 shost_printk(KERN_ERR, shost, "unknown adapter type: " 11009 "%d\n", asc_dvc_varp->bus_type); 11010 shost->unchecked_isa_dma = false; 11011 share_irq = 0; 11012 break; 11013 } 11014 11015 /* 11016 * NOTE: AscInitGetConfig() may change the board's 11017 * bus_type value. The bus_type value should no 11018 * longer be used. If the bus_type field must be 11019 * referenced only use the bit-wise AND operator "&". 11020 */ 11021 ASC_DBG(2, "AscInitGetConfig()\n"); 11022 ret = AscInitGetConfig(shost) ? -ENODEV : 0; 11023 } else { 11024 #ifdef CONFIG_PCI 11025 /* 11026 * For Wide boards set PCI information before calling 11027 * AdvInitGetConfig(). 11028 */ 11029 shost->unchecked_isa_dma = false; 11030 share_irq = IRQF_SHARED; 11031 ASC_DBG(2, "AdvInitGetConfig()\n"); 11032 11033 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0; 11034 #endif /* CONFIG_PCI */ 11035 } 11036 11037 if (ret) 11038 goto err_unmap; 11039 11040 /* 11041 * Save the EEPROM configuration so that it can be displayed 11042 * from /proc/scsi/advansys/[0...]. 11043 */ 11044 if (ASC_NARROW_BOARD(boardp)) { 11045 11046 ASCEEP_CONFIG *ep; 11047 11048 /* 11049 * Set the adapter's target id bit in the 'init_tidmask' field. 11050 */ 11051 boardp->init_tidmask |= 11052 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id); 11053 11054 /* 11055 * Save EEPROM settings for the board. 11056 */ 11057 ep = &boardp->eep_config.asc_eep; 11058 11059 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable; 11060 ep->disc_enable = asc_dvc_varp->cfg->disc_enable; 11061 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled; 11062 ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed); 11063 ep->start_motor = asc_dvc_varp->start_motor; 11064 ep->cntl = asc_dvc_varp->dvc_cntl; 11065 ep->no_scam = asc_dvc_varp->no_scam; 11066 ep->max_total_qng = asc_dvc_varp->max_total_qng; 11067 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id); 11068 /* 'max_tag_qng' is set to the same value for every device. */ 11069 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0]; 11070 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0]; 11071 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1]; 11072 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2]; 11073 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3]; 11074 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4]; 11075 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5]; 11076 11077 /* 11078 * Modify board configuration. 11079 */ 11080 ASC_DBG(2, "AscInitSetConfig()\n"); 11081 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0; 11082 if (ret) 11083 goto err_unmap; 11084 } else { 11085 ADVEEP_3550_CONFIG *ep_3550; 11086 ADVEEP_38C0800_CONFIG *ep_38C0800; 11087 ADVEEP_38C1600_CONFIG *ep_38C1600; 11088 11089 /* 11090 * Save Wide EEP Configuration Information. 11091 */ 11092 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 11093 ep_3550 = &boardp->eep_config.adv_3550_eep; 11094 11095 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; 11096 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng; 11097 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 11098 ep_3550->termination = adv_dvc_varp->cfg->termination; 11099 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable; 11100 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl; 11101 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able; 11102 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able; 11103 ep_3550->ultra_able = adv_dvc_varp->ultra_able; 11104 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able; 11105 ep_3550->start_motor = adv_dvc_varp->start_motor; 11106 ep_3550->scsi_reset_delay = 11107 adv_dvc_varp->scsi_reset_wait; 11108 ep_3550->serial_number_word1 = 11109 adv_dvc_varp->cfg->serial1; 11110 ep_3550->serial_number_word2 = 11111 adv_dvc_varp->cfg->serial2; 11112 ep_3550->serial_number_word3 = 11113 adv_dvc_varp->cfg->serial3; 11114 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 11115 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; 11116 11117 ep_38C0800->adapter_scsi_id = 11118 adv_dvc_varp->chip_scsi_id; 11119 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng; 11120 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 11121 ep_38C0800->termination_lvd = 11122 adv_dvc_varp->cfg->termination; 11123 ep_38C0800->disc_enable = 11124 adv_dvc_varp->cfg->disc_enable; 11125 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl; 11126 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able; 11127 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; 11128 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; 11129 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; 11130 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; 11131 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; 11132 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; 11133 ep_38C0800->start_motor = adv_dvc_varp->start_motor; 11134 ep_38C0800->scsi_reset_delay = 11135 adv_dvc_varp->scsi_reset_wait; 11136 ep_38C0800->serial_number_word1 = 11137 adv_dvc_varp->cfg->serial1; 11138 ep_38C0800->serial_number_word2 = 11139 adv_dvc_varp->cfg->serial2; 11140 ep_38C0800->serial_number_word3 = 11141 adv_dvc_varp->cfg->serial3; 11142 } else { 11143 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; 11144 11145 ep_38C1600->adapter_scsi_id = 11146 adv_dvc_varp->chip_scsi_id; 11147 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng; 11148 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 11149 ep_38C1600->termination_lvd = 11150 adv_dvc_varp->cfg->termination; 11151 ep_38C1600->disc_enable = 11152 adv_dvc_varp->cfg->disc_enable; 11153 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl; 11154 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able; 11155 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; 11156 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; 11157 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; 11158 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; 11159 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; 11160 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; 11161 ep_38C1600->start_motor = adv_dvc_varp->start_motor; 11162 ep_38C1600->scsi_reset_delay = 11163 adv_dvc_varp->scsi_reset_wait; 11164 ep_38C1600->serial_number_word1 = 11165 adv_dvc_varp->cfg->serial1; 11166 ep_38C1600->serial_number_word2 = 11167 adv_dvc_varp->cfg->serial2; 11168 ep_38C1600->serial_number_word3 = 11169 adv_dvc_varp->cfg->serial3; 11170 } 11171 11172 /* 11173 * Set the adapter's target id bit in the 'init_tidmask' field. 11174 */ 11175 boardp->init_tidmask |= 11176 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id); 11177 } 11178 11179 /* 11180 * Channels are numbered beginning with 0. For AdvanSys one host 11181 * structure supports one channel. Multi-channel boards have a 11182 * separate host structure for each channel. 11183 */ 11184 shost->max_channel = 0; 11185 if (ASC_NARROW_BOARD(boardp)) { 11186 shost->max_id = ASC_MAX_TID + 1; 11187 shost->max_lun = ASC_MAX_LUN + 1; 11188 shost->max_cmd_len = ASC_MAX_CDB_LEN; 11189 11190 shost->io_port = asc_dvc_varp->iop_base; 11191 boardp->asc_n_io_port = ASC_IOADR_GAP; 11192 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id; 11193 11194 /* Set maximum number of queues the adapter can handle. */ 11195 shost->can_queue = asc_dvc_varp->max_total_qng; 11196 } else { 11197 shost->max_id = ADV_MAX_TID + 1; 11198 shost->max_lun = ADV_MAX_LUN + 1; 11199 shost->max_cmd_len = ADV_MAX_CDB_LEN; 11200 11201 /* 11202 * Save the I/O Port address and length even though 11203 * I/O ports are not used to access Wide boards. 11204 * Instead the Wide boards are accessed with 11205 * PCI Memory Mapped I/O. 11206 */ 11207 shost->io_port = iop; 11208 11209 shost->this_id = adv_dvc_varp->chip_scsi_id; 11210 11211 /* Set maximum number of queues the adapter can handle. */ 11212 shost->can_queue = adv_dvc_varp->max_host_qng; 11213 } 11214 ret = scsi_init_shared_tag_map(shost, shost->can_queue); 11215 if (ret) { 11216 shost_printk(KERN_ERR, shost, "init tag map failed\n"); 11217 goto err_free_dma; 11218 } 11219 11220 /* 11221 * Set the maximum number of scatter-gather elements the 11222 * adapter can handle. 11223 */ 11224 if (ASC_NARROW_BOARD(boardp)) { 11225 /* 11226 * Allow two commands with 'sg_tablesize' scatter-gather 11227 * elements to be executed simultaneously. This value is 11228 * the theoretical hardware limit. It may be decreased 11229 * below. 11230 */ 11231 shost->sg_tablesize = 11232 (((asc_dvc_varp->max_total_qng - 2) / 2) * 11233 ASC_SG_LIST_PER_Q) + 1; 11234 } else { 11235 shost->sg_tablesize = ADV_MAX_SG_LIST; 11236 } 11237 11238 /* 11239 * The value of 'sg_tablesize' can not exceed the SCSI 11240 * mid-level driver definition of SG_ALL. SG_ALL also 11241 * must not be exceeded, because it is used to define the 11242 * size of the scatter-gather table in 'struct asc_sg_head'. 11243 */ 11244 if (shost->sg_tablesize > SG_ALL) { 11245 shost->sg_tablesize = SG_ALL; 11246 } 11247 11248 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize); 11249 11250 /* BIOS start address. */ 11251 if (ASC_NARROW_BOARD(boardp)) { 11252 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base, 11253 asc_dvc_varp->bus_type); 11254 } else { 11255 /* 11256 * Fill-in BIOS board variables. The Wide BIOS saves 11257 * information in LRAM that is used by the driver. 11258 */ 11259 AdvReadWordLram(adv_dvc_varp->iop_base, 11260 BIOS_SIGNATURE, boardp->bios_signature); 11261 AdvReadWordLram(adv_dvc_varp->iop_base, 11262 BIOS_VERSION, boardp->bios_version); 11263 AdvReadWordLram(adv_dvc_varp->iop_base, 11264 BIOS_CODESEG, boardp->bios_codeseg); 11265 AdvReadWordLram(adv_dvc_varp->iop_base, 11266 BIOS_CODELEN, boardp->bios_codelen); 11267 11268 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n", 11269 boardp->bios_signature, boardp->bios_version); 11270 11271 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n", 11272 boardp->bios_codeseg, boardp->bios_codelen); 11273 11274 /* 11275 * If the BIOS saved a valid signature, then fill in 11276 * the BIOS code segment base address. 11277 */ 11278 if (boardp->bios_signature == 0x55AA) { 11279 /* 11280 * Convert x86 realmode code segment to a linear 11281 * address by shifting left 4. 11282 */ 11283 shost->base = ((ulong)boardp->bios_codeseg << 4); 11284 } else { 11285 shost->base = 0; 11286 } 11287 } 11288 11289 /* 11290 * Register Board Resources - I/O Port, DMA, IRQ 11291 */ 11292 11293 /* Register DMA Channel for Narrow boards. */ 11294 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */ 11295 #ifdef CONFIG_ISA 11296 if (ASC_NARROW_BOARD(boardp)) { 11297 /* Register DMA channel for ISA bus. */ 11298 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 11299 shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel; 11300 ret = request_dma(shost->dma_channel, DRV_NAME); 11301 if (ret) { 11302 shost_printk(KERN_ERR, shost, "request_dma() " 11303 "%d failed %d\n", 11304 shost->dma_channel, ret); 11305 goto err_unmap; 11306 } 11307 AscEnableIsaDma(shost->dma_channel); 11308 } 11309 } 11310 #endif /* CONFIG_ISA */ 11311 11312 /* Register IRQ Number. */ 11313 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost); 11314 11315 ret = request_irq(boardp->irq, advansys_interrupt, share_irq, 11316 DRV_NAME, shost); 11317 11318 if (ret) { 11319 if (ret == -EBUSY) { 11320 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11321 "already in use\n", boardp->irq); 11322 } else if (ret == -EINVAL) { 11323 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11324 "not valid\n", boardp->irq); 11325 } else { 11326 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11327 "failed with %d\n", boardp->irq, ret); 11328 } 11329 goto err_free_dma; 11330 } 11331 11332 /* 11333 * Initialize board RISC chip and enable interrupts. 11334 */ 11335 if (ASC_NARROW_BOARD(boardp)) { 11336 ASC_DBG(2, "AscInitAsc1000Driver()\n"); 11337 11338 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL); 11339 if (!asc_dvc_varp->overrun_buf) { 11340 ret = -ENOMEM; 11341 goto err_free_irq; 11342 } 11343 warn_code = AscInitAsc1000Driver(asc_dvc_varp); 11344 11345 if (warn_code || asc_dvc_varp->err_code) { 11346 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, " 11347 "warn 0x%x, error 0x%x\n", 11348 asc_dvc_varp->init_state, warn_code, 11349 asc_dvc_varp->err_code); 11350 if (!asc_dvc_varp->overrun_dma) { 11351 ret = -ENODEV; 11352 goto err_free_mem; 11353 } 11354 } 11355 } else { 11356 if (advansys_wide_init_chip(shost)) { 11357 ret = -ENODEV; 11358 goto err_free_mem; 11359 } 11360 } 11361 11362 ASC_DBG_PRT_SCSI_HOST(2, shost); 11363 11364 ret = scsi_add_host(shost, boardp->dev); 11365 if (ret) 11366 goto err_free_mem; 11367 11368 scsi_scan_host(shost); 11369 return 0; 11370 11371 err_free_mem: 11372 if (ASC_NARROW_BOARD(boardp)) { 11373 if (asc_dvc_varp->overrun_dma) 11374 dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma, 11375 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 11376 kfree(asc_dvc_varp->overrun_buf); 11377 } else 11378 advansys_wide_free_mem(boardp); 11379 err_free_irq: 11380 free_irq(boardp->irq, shost); 11381 err_free_dma: 11382 #ifdef CONFIG_ISA 11383 if (shost->dma_channel != NO_ISA_DMA) 11384 free_dma(shost->dma_channel); 11385 #endif 11386 err_unmap: 11387 if (boardp->ioremap_addr) 11388 iounmap(boardp->ioremap_addr); 11389 #ifdef CONFIG_PCI 11390 err_shost: 11391 #endif 11392 return ret; 11393 } 11394 11395 /* 11396 * advansys_release() 11397 * 11398 * Release resources allocated for a single AdvanSys adapter. 11399 */ 11400 static int advansys_release(struct Scsi_Host *shost) 11401 { 11402 struct asc_board *board = shost_priv(shost); 11403 ASC_DBG(1, "begin\n"); 11404 scsi_remove_host(shost); 11405 free_irq(board->irq, shost); 11406 #ifdef CONFIG_ISA 11407 if (shost->dma_channel != NO_ISA_DMA) { 11408 ASC_DBG(1, "free_dma()\n"); 11409 free_dma(shost->dma_channel); 11410 } 11411 #endif 11412 if (ASC_NARROW_BOARD(board)) { 11413 dma_unmap_single(board->dev, 11414 board->dvc_var.asc_dvc_var.overrun_dma, 11415 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 11416 kfree(board->dvc_var.asc_dvc_var.overrun_buf); 11417 } else { 11418 iounmap(board->ioremap_addr); 11419 advansys_wide_free_mem(board); 11420 } 11421 scsi_host_put(shost); 11422 ASC_DBG(1, "end\n"); 11423 return 0; 11424 } 11425 11426 #define ASC_IOADR_TABLE_MAX_IX 11 11427 11428 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = { 11429 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190, 11430 0x0210, 0x0230, 0x0250, 0x0330 11431 }; 11432 11433 /* 11434 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as: 11435 * 00: 10 11436 * 01: 11 11437 * 10: 12 11438 * 11: 15 11439 */ 11440 static unsigned int advansys_isa_irq_no(PortAddr iop_base) 11441 { 11442 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); 11443 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10; 11444 if (chip_irq == 13) 11445 chip_irq = 15; 11446 return chip_irq; 11447 } 11448 11449 static int advansys_isa_probe(struct device *dev, unsigned int id) 11450 { 11451 int err = -ENODEV; 11452 PortAddr iop_base = _asc_def_iop_base[id]; 11453 struct Scsi_Host *shost; 11454 struct asc_board *board; 11455 11456 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { 11457 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); 11458 return -ENODEV; 11459 } 11460 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); 11461 if (!AscFindSignature(iop_base)) 11462 goto release_region; 11463 if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT)) 11464 goto release_region; 11465 11466 err = -ENOMEM; 11467 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11468 if (!shost) 11469 goto release_region; 11470 11471 board = shost_priv(shost); 11472 board->irq = advansys_isa_irq_no(iop_base); 11473 board->dev = dev; 11474 board->shost = shost; 11475 11476 err = advansys_board_found(shost, iop_base, ASC_IS_ISA); 11477 if (err) 11478 goto free_host; 11479 11480 dev_set_drvdata(dev, shost); 11481 return 0; 11482 11483 free_host: 11484 scsi_host_put(shost); 11485 release_region: 11486 release_region(iop_base, ASC_IOADR_GAP); 11487 return err; 11488 } 11489 11490 static int advansys_isa_remove(struct device *dev, unsigned int id) 11491 { 11492 int ioport = _asc_def_iop_base[id]; 11493 advansys_release(dev_get_drvdata(dev)); 11494 release_region(ioport, ASC_IOADR_GAP); 11495 return 0; 11496 } 11497 11498 static struct isa_driver advansys_isa_driver = { 11499 .probe = advansys_isa_probe, 11500 .remove = advansys_isa_remove, 11501 .driver = { 11502 .owner = THIS_MODULE, 11503 .name = DRV_NAME, 11504 }, 11505 }; 11506 11507 /* 11508 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as: 11509 * 000: invalid 11510 * 001: 10 11511 * 010: 11 11512 * 011: 12 11513 * 100: invalid 11514 * 101: 14 11515 * 110: 15 11516 * 111: invalid 11517 */ 11518 static unsigned int advansys_vlb_irq_no(PortAddr iop_base) 11519 { 11520 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); 11521 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9; 11522 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15)) 11523 return 0; 11524 return chip_irq; 11525 } 11526 11527 static int advansys_vlb_probe(struct device *dev, unsigned int id) 11528 { 11529 int err = -ENODEV; 11530 PortAddr iop_base = _asc_def_iop_base[id]; 11531 struct Scsi_Host *shost; 11532 struct asc_board *board; 11533 11534 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { 11535 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); 11536 return -ENODEV; 11537 } 11538 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); 11539 if (!AscFindSignature(iop_base)) 11540 goto release_region; 11541 /* 11542 * I don't think this condition can actually happen, but the old 11543 * driver did it, and the chances of finding a VLB setup in 2007 11544 * to do testing with is slight to none. 11545 */ 11546 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL) 11547 goto release_region; 11548 11549 err = -ENOMEM; 11550 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11551 if (!shost) 11552 goto release_region; 11553 11554 board = shost_priv(shost); 11555 board->irq = advansys_vlb_irq_no(iop_base); 11556 board->dev = dev; 11557 board->shost = shost; 11558 11559 err = advansys_board_found(shost, iop_base, ASC_IS_VL); 11560 if (err) 11561 goto free_host; 11562 11563 dev_set_drvdata(dev, shost); 11564 return 0; 11565 11566 free_host: 11567 scsi_host_put(shost); 11568 release_region: 11569 release_region(iop_base, ASC_IOADR_GAP); 11570 return -ENODEV; 11571 } 11572 11573 static struct isa_driver advansys_vlb_driver = { 11574 .probe = advansys_vlb_probe, 11575 .remove = advansys_isa_remove, 11576 .driver = { 11577 .owner = THIS_MODULE, 11578 .name = "advansys_vlb", 11579 }, 11580 }; 11581 11582 static struct eisa_device_id advansys_eisa_table[] = { 11583 { "ABP7401" }, 11584 { "ABP7501" }, 11585 { "" } 11586 }; 11587 11588 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table); 11589 11590 /* 11591 * EISA is a little more tricky than PCI; each EISA device may have two 11592 * channels, and this driver is written to make each channel its own Scsi_Host 11593 */ 11594 struct eisa_scsi_data { 11595 struct Scsi_Host *host[2]; 11596 }; 11597 11598 /* 11599 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as: 11600 * 000: 10 11601 * 001: 11 11602 * 010: 12 11603 * 011: invalid 11604 * 100: 14 11605 * 101: 15 11606 * 110: invalid 11607 * 111: invalid 11608 */ 11609 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev) 11610 { 11611 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86); 11612 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10; 11613 if ((chip_irq == 13) || (chip_irq > 15)) 11614 return 0; 11615 return chip_irq; 11616 } 11617 11618 static int advansys_eisa_probe(struct device *dev) 11619 { 11620 int i, ioport, irq = 0; 11621 int err; 11622 struct eisa_device *edev = to_eisa_device(dev); 11623 struct eisa_scsi_data *data; 11624 11625 err = -ENOMEM; 11626 data = kzalloc(sizeof(*data), GFP_KERNEL); 11627 if (!data) 11628 goto fail; 11629 ioport = edev->base_addr + 0xc30; 11630 11631 err = -ENODEV; 11632 for (i = 0; i < 2; i++, ioport += 0x20) { 11633 struct asc_board *board; 11634 struct Scsi_Host *shost; 11635 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) { 11636 printk(KERN_WARNING "Region %x-%x busy\n", ioport, 11637 ioport + ASC_IOADR_GAP - 1); 11638 continue; 11639 } 11640 if (!AscFindSignature(ioport)) { 11641 release_region(ioport, ASC_IOADR_GAP); 11642 continue; 11643 } 11644 11645 /* 11646 * I don't know why we need to do this for EISA chips, but 11647 * not for any others. It looks to be equivalent to 11648 * AscGetChipCfgMsw, but I may have overlooked something, 11649 * so I'm not converting it until I get an EISA board to 11650 * test with. 11651 */ 11652 inw(ioport + 4); 11653 11654 if (!irq) 11655 irq = advansys_eisa_irq_no(edev); 11656 11657 err = -ENOMEM; 11658 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11659 if (!shost) 11660 goto release_region; 11661 11662 board = shost_priv(shost); 11663 board->irq = irq; 11664 board->dev = dev; 11665 board->shost = shost; 11666 11667 err = advansys_board_found(shost, ioport, ASC_IS_EISA); 11668 if (!err) { 11669 data->host[i] = shost; 11670 continue; 11671 } 11672 11673 scsi_host_put(shost); 11674 release_region: 11675 release_region(ioport, ASC_IOADR_GAP); 11676 break; 11677 } 11678 11679 if (err) 11680 goto free_data; 11681 dev_set_drvdata(dev, data); 11682 return 0; 11683 11684 free_data: 11685 kfree(data->host[0]); 11686 kfree(data->host[1]); 11687 kfree(data); 11688 fail: 11689 return err; 11690 } 11691 11692 static int advansys_eisa_remove(struct device *dev) 11693 { 11694 int i; 11695 struct eisa_scsi_data *data = dev_get_drvdata(dev); 11696 11697 for (i = 0; i < 2; i++) { 11698 int ioport; 11699 struct Scsi_Host *shost = data->host[i]; 11700 if (!shost) 11701 continue; 11702 ioport = shost->io_port; 11703 advansys_release(shost); 11704 release_region(ioport, ASC_IOADR_GAP); 11705 } 11706 11707 kfree(data); 11708 return 0; 11709 } 11710 11711 static struct eisa_driver advansys_eisa_driver = { 11712 .id_table = advansys_eisa_table, 11713 .driver = { 11714 .name = DRV_NAME, 11715 .probe = advansys_eisa_probe, 11716 .remove = advansys_eisa_remove, 11717 } 11718 }; 11719 11720 /* PCI Devices supported by this driver */ 11721 static struct pci_device_id advansys_pci_tbl[] = { 11722 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A, 11723 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11724 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940, 11725 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11726 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U, 11727 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11728 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW, 11729 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11730 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1, 11731 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11732 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1, 11733 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11734 {} 11735 }; 11736 11737 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl); 11738 11739 static void advansys_set_latency(struct pci_dev *pdev) 11740 { 11741 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || 11742 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { 11743 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0); 11744 } else { 11745 u8 latency; 11746 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency); 11747 if (latency < 0x20) 11748 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20); 11749 } 11750 } 11751 11752 static int advansys_pci_probe(struct pci_dev *pdev, 11753 const struct pci_device_id *ent) 11754 { 11755 int err, ioport; 11756 struct Scsi_Host *shost; 11757 struct asc_board *board; 11758 11759 err = pci_enable_device(pdev); 11760 if (err) 11761 goto fail; 11762 err = pci_request_regions(pdev, DRV_NAME); 11763 if (err) 11764 goto disable_device; 11765 pci_set_master(pdev); 11766 advansys_set_latency(pdev); 11767 11768 err = -ENODEV; 11769 if (pci_resource_len(pdev, 0) == 0) 11770 goto release_region; 11771 11772 ioport = pci_resource_start(pdev, 0); 11773 11774 err = -ENOMEM; 11775 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11776 if (!shost) 11777 goto release_region; 11778 11779 board = shost_priv(shost); 11780 board->irq = pdev->irq; 11781 board->dev = &pdev->dev; 11782 board->shost = shost; 11783 11784 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW || 11785 pdev->device == PCI_DEVICE_ID_38C0800_REV1 || 11786 pdev->device == PCI_DEVICE_ID_38C1600_REV1) { 11787 board->flags |= ASC_IS_WIDE_BOARD; 11788 } 11789 11790 err = advansys_board_found(shost, ioport, ASC_IS_PCI); 11791 if (err) 11792 goto free_host; 11793 11794 pci_set_drvdata(pdev, shost); 11795 return 0; 11796 11797 free_host: 11798 scsi_host_put(shost); 11799 release_region: 11800 pci_release_regions(pdev); 11801 disable_device: 11802 pci_disable_device(pdev); 11803 fail: 11804 return err; 11805 } 11806 11807 static void advansys_pci_remove(struct pci_dev *pdev) 11808 { 11809 advansys_release(pci_get_drvdata(pdev)); 11810 pci_release_regions(pdev); 11811 pci_disable_device(pdev); 11812 } 11813 11814 static struct pci_driver advansys_pci_driver = { 11815 .name = DRV_NAME, 11816 .id_table = advansys_pci_tbl, 11817 .probe = advansys_pci_probe, 11818 .remove = advansys_pci_remove, 11819 }; 11820 11821 static int __init advansys_init(void) 11822 { 11823 int error; 11824 11825 error = isa_register_driver(&advansys_isa_driver, 11826 ASC_IOADR_TABLE_MAX_IX); 11827 if (error) 11828 goto fail; 11829 11830 error = isa_register_driver(&advansys_vlb_driver, 11831 ASC_IOADR_TABLE_MAX_IX); 11832 if (error) 11833 goto unregister_isa; 11834 11835 error = eisa_driver_register(&advansys_eisa_driver); 11836 if (error) 11837 goto unregister_vlb; 11838 11839 error = pci_register_driver(&advansys_pci_driver); 11840 if (error) 11841 goto unregister_eisa; 11842 11843 return 0; 11844 11845 unregister_eisa: 11846 eisa_driver_unregister(&advansys_eisa_driver); 11847 unregister_vlb: 11848 isa_unregister_driver(&advansys_vlb_driver); 11849 unregister_isa: 11850 isa_unregister_driver(&advansys_isa_driver); 11851 fail: 11852 return error; 11853 } 11854 11855 static void __exit advansys_exit(void) 11856 { 11857 pci_unregister_driver(&advansys_pci_driver); 11858 eisa_driver_unregister(&advansys_eisa_driver); 11859 isa_unregister_driver(&advansys_vlb_driver); 11860 isa_unregister_driver(&advansys_isa_driver); 11861 } 11862 11863 module_init(advansys_init); 11864 module_exit(advansys_exit); 11865 11866 MODULE_LICENSE("GPL"); 11867 MODULE_FIRMWARE("advansys/mcode.bin"); 11868 MODULE_FIRMWARE("advansys/3550.bin"); 11869 MODULE_FIRMWARE("advansys/38C0800.bin"); 11870 MODULE_FIRMWARE("advansys/38C1600.bin"); 11871