xref: /linux/drivers/scsi/advansys.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
4  *
5  * Copyright (c) 1995-2000 Advanced System Products, Inc.
6  * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
7  * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
8  * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
9  * All Rights Reserved.
10  */
11 
12 /*
13  * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
14  * changed its name to ConnectCom Solutions, Inc.
15  * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
16  */
17 
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22 #include <linux/ioport.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/proc_fs.h>
28 #include <linux/init.h>
29 #include <linux/blkdev.h>
30 #include <linux/isa.h>
31 #include <linux/eisa.h>
32 #include <linux/pci.h>
33 #include <linux/spinlock.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/firmware.h>
36 #include <linux/dmapool.h>
37 
38 #include <asm/io.h>
39 #include <asm/dma.h>
40 
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_device.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 
47 #define DRV_NAME "advansys"
48 #define ASC_VERSION "3.5"	/* AdvanSys Driver Version */
49 
50 /* FIXME:
51  *
52  *  1. Use scsi_transport_spi
53  *  2. advansys_info is not safe against multiple simultaneous callers
54  *  3. Add module_param to override ISA/VLB ioport array
55  */
56 
57 /* Enable driver /proc statistics. */
58 #define ADVANSYS_STATS
59 
60 /* Enable driver tracing. */
61 #undef ADVANSYS_DEBUG
62 
63 typedef unsigned char uchar;
64 
65 #define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
66 
67 #define PCI_VENDOR_ID_ASP		0x10cd
68 #define PCI_DEVICE_ID_ASP_1200A		0x1100
69 #define PCI_DEVICE_ID_ASP_ABP940	0x1200
70 #define PCI_DEVICE_ID_ASP_ABP940U	0x1300
71 #define PCI_DEVICE_ID_ASP_ABP940UW	0x2300
72 #define PCI_DEVICE_ID_38C0800_REV1	0x2500
73 #define PCI_DEVICE_ID_38C1600_REV1	0x2700
74 
75 #define PortAddr                 unsigned int	/* port address size  */
76 #define inp(port)                inb(port)
77 #define outp(port, byte)         outb((byte), (port))
78 
79 #define inpw(port)               inw(port)
80 #define outpw(port, word)        outw((word), (port))
81 
82 #define ASC_MAX_SG_QUEUE    7
83 #define ASC_MAX_SG_LIST     255
84 
85 #define ASC_CS_TYPE  unsigned short
86 
87 #define ASC_IS_EISA         (0x0002)
88 #define ASC_IS_PCI          (0x0004)
89 #define ASC_IS_PCI_ULTRA    (0x0104)
90 #define ASC_IS_PCMCIA       (0x0008)
91 #define ASC_IS_MCA          (0x0020)
92 #define ASC_IS_VL           (0x0040)
93 #define ASC_IS_WIDESCSI_16  (0x0100)
94 #define ASC_IS_WIDESCSI_32  (0x0200)
95 #define ASC_IS_BIG_ENDIAN   (0x8000)
96 
97 #define ASC_CHIP_MIN_VER_VL      (0x01)
98 #define ASC_CHIP_MAX_VER_VL      (0x07)
99 #define ASC_CHIP_MIN_VER_PCI     (0x09)
100 #define ASC_CHIP_MAX_VER_PCI     (0x0F)
101 #define ASC_CHIP_VER_PCI_BIT     (0x08)
102 #define ASC_CHIP_VER_ASYN_BUG    (0x21)
103 #define ASC_CHIP_VER_PCI             0x08
104 #define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
105 #define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
106 #define ASC_CHIP_MIN_VER_EISA (0x41)
107 #define ASC_CHIP_MAX_VER_EISA (0x47)
108 #define ASC_CHIP_VER_EISA_BIT (0x40)
109 #define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
110 #define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
111 #define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
112 
113 #define ASC_SCSI_ID_BITS  3
114 #define ASC_SCSI_TIX_TYPE     uchar
115 #define ASC_ALL_DEVICE_BIT_SET  0xFF
116 #define ASC_SCSI_BIT_ID_TYPE  uchar
117 #define ASC_MAX_TID       7
118 #define ASC_MAX_LUN       7
119 #define ASC_SCSI_WIDTH_BIT_SET  0xFF
120 #define ASC_MAX_SENSE_LEN   32
121 #define ASC_MIN_SENSE_LEN   14
122 #define ASC_SCSI_RESET_HOLD_TIME_US  60
123 
124 /*
125  * Narrow boards only support 12-byte commands, while wide boards
126  * extend to 16-byte commands.
127  */
128 #define ASC_MAX_CDB_LEN     12
129 #define ADV_MAX_CDB_LEN     16
130 
131 #define MS_SDTR_LEN    0x03
132 #define MS_WDTR_LEN    0x02
133 
134 #define ASC_SG_LIST_PER_Q   7
135 #define QS_FREE        0x00
136 #define QS_READY       0x01
137 #define QS_DISC1       0x02
138 #define QS_DISC2       0x04
139 #define QS_BUSY        0x08
140 #define QS_ABORTED     0x40
141 #define QS_DONE        0x80
142 #define QC_NO_CALLBACK   0x01
143 #define QC_SG_SWAP_QUEUE 0x02
144 #define QC_SG_HEAD       0x04
145 #define QC_DATA_IN       0x08
146 #define QC_DATA_OUT      0x10
147 #define QC_URGENT        0x20
148 #define QC_MSG_OUT       0x40
149 #define QC_REQ_SENSE     0x80
150 #define QCSG_SG_XFER_LIST  0x02
151 #define QCSG_SG_XFER_MORE  0x04
152 #define QCSG_SG_XFER_END   0x08
153 #define QD_IN_PROGRESS       0x00
154 #define QD_NO_ERROR          0x01
155 #define QD_ABORTED_BY_HOST   0x02
156 #define QD_WITH_ERROR        0x04
157 #define QD_INVALID_REQUEST   0x80
158 #define QD_INVALID_HOST_NUM  0x81
159 #define QD_INVALID_DEVICE    0x82
160 #define QD_ERR_INTERNAL      0xFF
161 #define QHSTA_NO_ERROR               0x00
162 #define QHSTA_M_SEL_TIMEOUT          0x11
163 #define QHSTA_M_DATA_OVER_RUN        0x12
164 #define QHSTA_M_DATA_UNDER_RUN       0x12
165 #define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
166 #define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
167 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
168 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
169 #define QHSTA_D_HOST_ABORT_FAILED       0x23
170 #define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
171 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
172 #define QHSTA_D_ASPI_NO_BUF_POOL        0x26
173 #define QHSTA_M_WTM_TIMEOUT         0x41
174 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
175 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
176 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
177 #define QHSTA_M_TARGET_STATUS_BUSY  0x45
178 #define QHSTA_M_BAD_TAG_CODE        0x46
179 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
180 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
181 #define QHSTA_D_LRAM_CMP_ERROR        0x81
182 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
183 #define ASC_FLAG_SCSIQ_REQ        0x01
184 #define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
185 #define ASC_FLAG_BIOS_ASYNC_IO    0x04
186 #define ASC_FLAG_SRB_LINEAR_ADDR  0x08
187 #define ASC_FLAG_WIN16            0x10
188 #define ASC_FLAG_WIN32            0x20
189 #define ASC_FLAG_DOS_VM_CALLBACK  0x80
190 #define ASC_TAG_FLAG_EXTRA_BYTES               0x10
191 #define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
192 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
193 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
194 #define ASC_SCSIQ_CPY_BEG              4
195 #define ASC_SCSIQ_SGHD_CPY_BEG         2
196 #define ASC_SCSIQ_B_FWD                0
197 #define ASC_SCSIQ_B_BWD                1
198 #define ASC_SCSIQ_B_STATUS             2
199 #define ASC_SCSIQ_B_QNO                3
200 #define ASC_SCSIQ_B_CNTL               4
201 #define ASC_SCSIQ_B_SG_QUEUE_CNT       5
202 #define ASC_SCSIQ_D_DATA_ADDR          8
203 #define ASC_SCSIQ_D_DATA_CNT          12
204 #define ASC_SCSIQ_B_SENSE_LEN         20
205 #define ASC_SCSIQ_DONE_INFO_BEG       22
206 #define ASC_SCSIQ_D_SRBPTR            22
207 #define ASC_SCSIQ_B_TARGET_IX         26
208 #define ASC_SCSIQ_B_CDB_LEN           28
209 #define ASC_SCSIQ_B_TAG_CODE          29
210 #define ASC_SCSIQ_W_VM_ID             30
211 #define ASC_SCSIQ_DONE_STATUS         32
212 #define ASC_SCSIQ_HOST_STATUS         33
213 #define ASC_SCSIQ_SCSI_STATUS         34
214 #define ASC_SCSIQ_CDB_BEG             36
215 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
216 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
217 #define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
218 #define ASC_SCSIQ_B_SG_WK_QP          49
219 #define ASC_SCSIQ_B_SG_WK_IX          50
220 #define ASC_SCSIQ_W_ALT_DC1           52
221 #define ASC_SCSIQ_B_LIST_CNT          6
222 #define ASC_SCSIQ_B_CUR_LIST_CNT      7
223 #define ASC_SGQ_B_SG_CNTL             4
224 #define ASC_SGQ_B_SG_HEAD_QP          5
225 #define ASC_SGQ_B_SG_LIST_CNT         6
226 #define ASC_SGQ_B_SG_CUR_LIST_CNT     7
227 #define ASC_SGQ_LIST_BEG              8
228 #define ASC_DEF_SCSI1_QNG    4
229 #define ASC_MAX_SCSI1_QNG    4
230 #define ASC_DEF_SCSI2_QNG    16
231 #define ASC_MAX_SCSI2_QNG    32
232 #define ASC_TAG_CODE_MASK    0x23
233 #define ASC_STOP_REQ_RISC_STOP      0x01
234 #define ASC_STOP_ACK_RISC_STOP      0x03
235 #define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
236 #define ASC_STOP_CLEAN_UP_DISC_Q    0x20
237 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
238 #define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
239 #define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
240 #define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
241 #define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
242 #define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
243 #define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
244 #define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
245 
246 typedef struct asc_scsiq_1 {
247 	uchar status;
248 	uchar q_no;
249 	uchar cntl;
250 	uchar sg_queue_cnt;
251 	uchar target_id;
252 	uchar target_lun;
253 	__le32 data_addr;
254 	__le32 data_cnt;
255 	__le32 sense_addr;
256 	uchar sense_len;
257 	uchar extra_bytes;
258 } ASC_SCSIQ_1;
259 
260 typedef struct asc_scsiq_2 {
261 	u32 srb_tag;
262 	uchar target_ix;
263 	uchar flag;
264 	uchar cdb_len;
265 	uchar tag_code;
266 	ushort vm_id;
267 } ASC_SCSIQ_2;
268 
269 typedef struct asc_scsiq_3 {
270 	uchar done_stat;
271 	uchar host_stat;
272 	uchar scsi_stat;
273 	uchar scsi_msg;
274 } ASC_SCSIQ_3;
275 
276 typedef struct asc_scsiq_4 {
277 	uchar cdb[ASC_MAX_CDB_LEN];
278 	uchar y_first_sg_list_qp;
279 	uchar y_working_sg_qp;
280 	uchar y_working_sg_ix;
281 	uchar y_res;
282 	ushort x_req_count;
283 	ushort x_reconnect_rtn;
284 	__le32 x_saved_data_addr;
285 	__le32 x_saved_data_cnt;
286 } ASC_SCSIQ_4;
287 
288 typedef struct asc_q_done_info {
289 	ASC_SCSIQ_2 d2;
290 	ASC_SCSIQ_3 d3;
291 	uchar q_status;
292 	uchar q_no;
293 	uchar cntl;
294 	uchar sense_len;
295 	uchar extra_bytes;
296 	uchar res;
297 	u32 remain_bytes;
298 } ASC_QDONE_INFO;
299 
300 typedef struct asc_sg_list {
301 	__le32 addr;
302 	__le32 bytes;
303 } ASC_SG_LIST;
304 
305 typedef struct asc_sg_head {
306 	ushort entry_cnt;
307 	ushort queue_cnt;
308 	ushort entry_to_copy;
309 	ushort res;
310 	ASC_SG_LIST sg_list[];
311 } ASC_SG_HEAD;
312 
313 typedef struct asc_scsi_q {
314 	ASC_SCSIQ_1 q1;
315 	ASC_SCSIQ_2 q2;
316 	uchar *cdbptr;
317 	ASC_SG_HEAD *sg_head;
318 	ushort remain_sg_entry_cnt;
319 	ushort next_sg_index;
320 } ASC_SCSI_Q;
321 
322 typedef struct asc_scsi_bios_req_q {
323 	ASC_SCSIQ_1 r1;
324 	ASC_SCSIQ_2 r2;
325 	uchar *cdbptr;
326 	ASC_SG_HEAD *sg_head;
327 	uchar *sense_ptr;
328 	ASC_SCSIQ_3 r3;
329 	uchar cdb[ASC_MAX_CDB_LEN];
330 	uchar sense[ASC_MIN_SENSE_LEN];
331 } ASC_SCSI_BIOS_REQ_Q;
332 
333 typedef struct asc_risc_q {
334 	uchar fwd;
335 	uchar bwd;
336 	ASC_SCSIQ_1 i1;
337 	ASC_SCSIQ_2 i2;
338 	ASC_SCSIQ_3 i3;
339 	ASC_SCSIQ_4 i4;
340 } ASC_RISC_Q;
341 
342 typedef struct asc_sg_list_q {
343 	uchar seq_no;
344 	uchar q_no;
345 	uchar cntl;
346 	uchar sg_head_qp;
347 	uchar sg_list_cnt;
348 	uchar sg_cur_list_cnt;
349 } ASC_SG_LIST_Q;
350 
351 typedef struct asc_risc_sg_list_q {
352 	uchar fwd;
353 	uchar bwd;
354 	ASC_SG_LIST_Q sg;
355 	ASC_SG_LIST sg_list[7];
356 } ASC_RISC_SG_LIST_Q;
357 
358 #define ASCQ_ERR_Q_STATUS             0x0D
359 #define ASCQ_ERR_CUR_QNG              0x17
360 #define ASCQ_ERR_SG_Q_LINKS           0x18
361 #define ASCQ_ERR_ISR_RE_ENTRY         0x1A
362 #define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
363 #define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
364 
365 /*
366  * Warning code values are set in ASC_DVC_VAR  'warn_code'.
367  */
368 #define ASC_WARN_NO_ERROR             0x0000
369 #define ASC_WARN_IO_PORT_ROTATE       0x0001
370 #define ASC_WARN_EEPROM_CHKSUM        0x0002
371 #define ASC_WARN_IRQ_MODIFIED         0x0004
372 #define ASC_WARN_AUTO_CONFIG          0x0008
373 #define ASC_WARN_CMD_QNG_CONFLICT     0x0010
374 #define ASC_WARN_EEPROM_RECOVER       0x0020
375 #define ASC_WARN_CFG_MSW_RECOVER      0x0040
376 
377 /*
378  * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
379  */
380 #define ASC_IERR_NO_CARRIER		0x0001	/* No more carrier memory */
381 #define ASC_IERR_MCODE_CHKSUM		0x0002	/* micro code check sum error */
382 #define ASC_IERR_SET_PC_ADDR		0x0004
383 #define ASC_IERR_START_STOP_CHIP	0x0008	/* start/stop chip failed */
384 #define ASC_IERR_ILLEGAL_CONNECTION	0x0010	/* Illegal cable connection */
385 #define ASC_IERR_SINGLE_END_DEVICE	0x0020	/* SE device on DIFF bus */
386 #define ASC_IERR_REVERSED_CABLE		0x0040	/* Narrow flat cable reversed */
387 #define ASC_IERR_SET_SCSI_ID		0x0080	/* set SCSI ID failed */
388 #define ASC_IERR_HVD_DEVICE		0x0100	/* HVD device on LVD port */
389 #define ASC_IERR_BAD_SIGNATURE		0x0200	/* signature not found */
390 #define ASC_IERR_NO_BUS_TYPE		0x0400
391 #define ASC_IERR_BIST_PRE_TEST		0x0800	/* BIST pre-test error */
392 #define ASC_IERR_BIST_RAM_TEST		0x1000	/* BIST RAM test error */
393 #define ASC_IERR_BAD_CHIPTYPE		0x2000	/* Invalid chip_type setting */
394 
395 #define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
396 #define ASC_MIN_TAG_Q_PER_DVC   (0x04)
397 #define ASC_MIN_FREE_Q        (0x02)
398 #define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
399 #define ASC_MAX_TOTAL_QNG 240
400 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
401 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
402 #define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
403 #define ASC_MAX_INRAM_TAG_QNG   16
404 #define ASC_IOADR_GAP   0x10
405 #define ASC_SYN_MAX_OFFSET         0x0F
406 #define ASC_DEF_SDTR_OFFSET        0x0F
407 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
408 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
409 
410 /* The narrow chip only supports a limited selection of transfer rates.
411  * These are encoded in the range 0..7 or 0..15 depending whether the chip
412  * is Ultra-capable or not.  These tables let us convert from one to the other.
413  */
414 static const unsigned char asc_syn_xfer_period[8] = {
415 	25, 30, 35, 40, 50, 60, 70, 85
416 };
417 
418 static const unsigned char asc_syn_ultra_xfer_period[16] = {
419 	12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
420 };
421 
422 typedef struct ext_msg {
423 	uchar msg_type;
424 	uchar msg_len;
425 	uchar msg_req;
426 	union {
427 		struct {
428 			uchar sdtr_xfer_period;
429 			uchar sdtr_req_ack_offset;
430 		} sdtr;
431 		struct {
432 			uchar wdtr_width;
433 		} wdtr;
434 		struct {
435 			uchar mdp_b3;
436 			uchar mdp_b2;
437 			uchar mdp_b1;
438 			uchar mdp_b0;
439 		} mdp;
440 	} u_ext_msg;
441 	uchar res;
442 } EXT_MSG;
443 
444 #define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
445 #define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
446 #define wdtr_width      u_ext_msg.wdtr.wdtr_width
447 #define mdp_b3          u_ext_msg.mdp_b3
448 #define mdp_b2          u_ext_msg.mdp_b2
449 #define mdp_b1          u_ext_msg.mdp_b1
450 #define mdp_b0          u_ext_msg.mdp_b0
451 
452 typedef struct asc_dvc_cfg {
453 	ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
454 	ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
455 	ASC_SCSI_BIT_ID_TYPE disc_enable;
456 	ASC_SCSI_BIT_ID_TYPE sdtr_enable;
457 	uchar chip_scsi_id;
458 	uchar chip_version;
459 	ushort mcode_date;
460 	ushort mcode_version;
461 	uchar max_tag_qng[ASC_MAX_TID + 1];
462 	uchar sdtr_period_offset[ASC_MAX_TID + 1];
463 	uchar adapter_info[6];
464 } ASC_DVC_CFG;
465 
466 #define ASC_DEF_DVC_CNTL       0xFFFF
467 #define ASC_DEF_CHIP_SCSI_ID   7
468 #define ASC_DEF_ISA_DMA_SPEED  4
469 #define ASC_INIT_STATE_BEG_GET_CFG   0x0001
470 #define ASC_INIT_STATE_END_GET_CFG   0x0002
471 #define ASC_INIT_STATE_BEG_SET_CFG   0x0004
472 #define ASC_INIT_STATE_END_SET_CFG   0x0008
473 #define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
474 #define ASC_INIT_STATE_END_LOAD_MC   0x0020
475 #define ASC_INIT_STATE_BEG_INQUIRY   0x0040
476 #define ASC_INIT_STATE_END_INQUIRY   0x0080
477 #define ASC_INIT_RESET_SCSI_DONE     0x0100
478 #define ASC_INIT_STATE_WITHOUT_EEP   0x8000
479 #define ASC_BUG_FIX_IF_NOT_DWB       0x0001
480 #define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
481 #define ASC_MIN_TAGGED_CMD  7
482 #define ASC_MAX_SCSI_RESET_WAIT      30
483 #define ASC_OVERRUN_BSIZE		64
484 
485 struct asc_dvc_var;		/* Forward Declaration. */
486 
487 typedef struct asc_dvc_var {
488 	PortAddr iop_base;
489 	ushort err_code;
490 	ushort dvc_cntl;
491 	ushort bug_fix_cntl;
492 	ushort bus_type;
493 	ASC_SCSI_BIT_ID_TYPE init_sdtr;
494 	ASC_SCSI_BIT_ID_TYPE sdtr_done;
495 	ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
496 	ASC_SCSI_BIT_ID_TYPE unit_not_ready;
497 	ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
498 	ASC_SCSI_BIT_ID_TYPE start_motor;
499 	uchar *overrun_buf;
500 	dma_addr_t overrun_dma;
501 	uchar scsi_reset_wait;
502 	uchar chip_no;
503 	bool is_in_int;
504 	uchar max_total_qng;
505 	uchar cur_total_qng;
506 	uchar in_critical_cnt;
507 	uchar last_q_shortage;
508 	ushort init_state;
509 	uchar cur_dvc_qng[ASC_MAX_TID + 1];
510 	uchar max_dvc_qng[ASC_MAX_TID + 1];
511 	ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
512 	ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
513 	const uchar *sdtr_period_tbl;
514 	ASC_DVC_CFG *cfg;
515 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
516 	char redo_scam;
517 	ushort res2;
518 	uchar dos_int13_table[ASC_MAX_TID + 1];
519 	unsigned int max_dma_count;
520 	ASC_SCSI_BIT_ID_TYPE no_scam;
521 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
522 	uchar min_sdtr_index;
523 	uchar max_sdtr_index;
524 	struct asc_board *drv_ptr;
525 	unsigned int uc_break;
526 } ASC_DVC_VAR;
527 
528 typedef struct asc_dvc_inq_info {
529 	uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
530 } ASC_DVC_INQ_INFO;
531 
532 typedef struct asc_cap_info {
533 	u32 lba;
534 	u32 blk_size;
535 } ASC_CAP_INFO;
536 
537 typedef struct asc_cap_info_array {
538 	ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
539 } ASC_CAP_INFO_ARRAY;
540 
541 #define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
542 #define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
543 #define ASC_CNTL_INITIATOR         (ushort)0x0001
544 #define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
545 #define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
546 #define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
547 #define ASC_CNTL_NO_SCAM           (ushort)0x0010
548 #define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
549 #define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
550 #define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
551 #define ASC_CNTL_RESET_SCSI        (ushort)0x0200
552 #define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
553 #define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
554 #define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
555 #define ASC_CNTL_BURST_MODE        (ushort)0x2000
556 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
557 #define ASC_EEP_DVC_CFG_BEG_VL    2
558 #define ASC_EEP_MAX_DVC_ADDR_VL   15
559 #define ASC_EEP_DVC_CFG_BEG      32
560 #define ASC_EEP_MAX_DVC_ADDR     45
561 #define ASC_EEP_MAX_RETRY        20
562 
563 /*
564  * These macros keep the chip SCSI id  bitfields in board order. C bitfields
565  * aren't portable between big and little-endian platforms so they are not used.
566  */
567 
568 #define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
569 #define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
570 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
571    ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
572 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
573    ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
574 
575 typedef struct asceep_config {
576 	ushort cfg_lsw;
577 	ushort cfg_msw;
578 	uchar init_sdtr;
579 	uchar disc_enable;
580 	uchar use_cmd_qng;
581 	uchar start_motor;
582 	uchar max_total_qng;
583 	uchar max_tag_qng;
584 	uchar bios_scan;
585 	uchar power_up_wait;
586 	uchar no_scam;
587 	uchar id_speed;		/* low order 4 bits is chip scsi id */
588 	/* high order 4 bits is isa dma speed */
589 	uchar dos_int13_table[ASC_MAX_TID + 1];
590 	uchar adapter_info[6];
591 	ushort cntl;
592 	ushort chksum;
593 } ASCEEP_CONFIG;
594 
595 #define ASC_EEP_CMD_READ          0x80
596 #define ASC_EEP_CMD_WRITE         0x40
597 #define ASC_EEP_CMD_WRITE_ABLE    0x30
598 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
599 #define ASCV_MSGOUT_BEG         0x0000
600 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
601 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
602 #define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
603 #define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
604 #define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
605 #define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
606 #define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
607 #define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
608 #define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
609 #define ASCV_BREAK_ADDR           (ushort)0x0028
610 #define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
611 #define ASCV_BREAK_CONTROL        (ushort)0x002C
612 #define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
613 
614 #define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
615 #define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
616 #define ASCV_MCODE_SIZE_W     (ushort)0x0034
617 #define ASCV_STOP_CODE_B      (ushort)0x0036
618 #define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
619 #define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
620 #define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
621 #define ASCV_HALTCODE_W       (ushort)0x0040
622 #define ASCV_CHKSUM_W         (ushort)0x0042
623 #define ASCV_MC_DATE_W        (ushort)0x0044
624 #define ASCV_MC_VER_W         (ushort)0x0046
625 #define ASCV_NEXTRDY_B        (ushort)0x0048
626 #define ASCV_DONENEXT_B       (ushort)0x0049
627 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
628 #define ASCV_SCSIBUSY_B       (ushort)0x004B
629 #define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
630 #define ASCV_CURCDB_B         (ushort)0x004D
631 #define ASCV_RCLUN_B          (ushort)0x004E
632 #define ASCV_BUSY_QHEAD_B     (ushort)0x004F
633 #define ASCV_DISC1_QHEAD_B    (ushort)0x0050
634 #define ASCV_DISC_ENABLE_B    (ushort)0x0052
635 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
636 #define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
637 #define ASCV_MCODE_CNTL_B     (ushort)0x0056
638 #define ASCV_NULL_TARGET_B    (ushort)0x0057
639 #define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
640 #define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
641 #define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
642 #define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
643 #define ASCV_HOST_FLAG_B      (ushort)0x005D
644 #define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
645 #define ASCV_VER_SERIAL_B     (ushort)0x0065
646 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
647 #define ASCV_WTM_FLAG_B       (ushort)0x0068
648 #define ASCV_RISC_FLAG_B      (ushort)0x006A
649 #define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
650 #define ASC_HOST_FLAG_IN_ISR        0x01
651 #define ASC_HOST_FLAG_ACK_INT       0x02
652 #define ASC_RISC_FLAG_GEN_INT      0x01
653 #define ASC_RISC_FLAG_REQ_SG_LIST  0x02
654 #define IOP_CTRL         (0x0F)
655 #define IOP_STATUS       (0x0E)
656 #define IOP_INT_ACK      IOP_STATUS
657 #define IOP_REG_IFC      (0x0D)
658 #define IOP_SYN_OFFSET    (0x0B)
659 #define IOP_EXTRA_CONTROL (0x0D)
660 #define IOP_REG_PC        (0x0C)
661 #define IOP_RAM_ADDR      (0x0A)
662 #define IOP_RAM_DATA      (0x08)
663 #define IOP_EEP_DATA      (0x06)
664 #define IOP_EEP_CMD       (0x07)
665 #define IOP_VERSION       (0x03)
666 #define IOP_CONFIG_HIGH   (0x04)
667 #define IOP_CONFIG_LOW    (0x02)
668 #define IOP_SIG_BYTE      (0x01)
669 #define IOP_SIG_WORD      (0x00)
670 #define IOP_REG_DC1      (0x0E)
671 #define IOP_REG_DC0      (0x0C)
672 #define IOP_REG_SB       (0x0B)
673 #define IOP_REG_DA1      (0x0A)
674 #define IOP_REG_DA0      (0x08)
675 #define IOP_REG_SC       (0x09)
676 #define IOP_DMA_SPEED    (0x07)
677 #define IOP_REG_FLAG     (0x07)
678 #define IOP_FIFO_H       (0x06)
679 #define IOP_FIFO_L       (0x04)
680 #define IOP_REG_ID       (0x05)
681 #define IOP_REG_QP       (0x03)
682 #define IOP_REG_IH       (0x02)
683 #define IOP_REG_IX       (0x01)
684 #define IOP_REG_AX       (0x00)
685 #define IFC_REG_LOCK      (0x00)
686 #define IFC_REG_UNLOCK    (0x09)
687 #define IFC_WR_EN_FILTER  (0x10)
688 #define IFC_RD_NO_EEPROM  (0x10)
689 #define IFC_SLEW_RATE     (0x20)
690 #define IFC_ACT_NEG       (0x40)
691 #define IFC_INP_FILTER    (0x80)
692 #define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
693 #define SC_SEL   (uchar)(0x80)
694 #define SC_BSY   (uchar)(0x40)
695 #define SC_ACK   (uchar)(0x20)
696 #define SC_REQ   (uchar)(0x10)
697 #define SC_ATN   (uchar)(0x08)
698 #define SC_IO    (uchar)(0x04)
699 #define SC_CD    (uchar)(0x02)
700 #define SC_MSG   (uchar)(0x01)
701 #define SEC_SCSI_CTL         (uchar)(0x80)
702 #define SEC_ACTIVE_NEGATE    (uchar)(0x40)
703 #define SEC_SLEW_RATE        (uchar)(0x20)
704 #define SEC_ENABLE_FILTER    (uchar)(0x10)
705 #define ASC_HALT_EXTMSG_IN     (ushort)0x8000
706 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
707 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
708 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
709 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
710 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
711 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
712 #define ASC_MAX_QNO        0xF8
713 #define ASC_DATA_SEC_BEG   (ushort)0x0080
714 #define ASC_DATA_SEC_END   (ushort)0x0080
715 #define ASC_CODE_SEC_BEG   (ushort)0x0080
716 #define ASC_CODE_SEC_END   (ushort)0x0080
717 #define ASC_QADR_BEG       (0x4000)
718 #define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
719 #define ASC_QADR_END       (ushort)0x7FFF
720 #define ASC_QLAST_ADR      (ushort)0x7FC0
721 #define ASC_QBLK_SIZE      0x40
722 #define ASC_BIOS_DATA_QBEG 0xF8
723 #define ASC_MIN_ACTIVE_QNO 0x01
724 #define ASC_QLINK_END      0xFF
725 #define ASC_EEPROM_WORDS   0x10
726 #define ASC_MAX_MGS_LEN    0x10
727 #define ASC_BIOS_ADDR_DEF  0xDC00
728 #define ASC_BIOS_SIZE      0x3800
729 #define ASC_BIOS_RAM_OFF   0x3800
730 #define ASC_BIOS_RAM_SIZE  0x800
731 #define ASC_BIOS_MIN_ADDR  0xC000
732 #define ASC_BIOS_MAX_ADDR  0xEC00
733 #define ASC_BIOS_BANK_SIZE 0x0400
734 #define ASC_MCODE_START_ADDR  0x0080
735 #define ASC_CFG0_HOST_INT_ON    0x0020
736 #define ASC_CFG0_BIOS_ON        0x0040
737 #define ASC_CFG0_VERA_BURST_ON  0x0080
738 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
739 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
740 #define ASC_CFG1_LRAM_8BITS_ON  0x0800
741 #define ASC_CFG_MSW_CLR_MASK    0x3080
742 #define CSW_TEST1             (ASC_CS_TYPE)0x8000
743 #define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
744 #define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
745 #define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
746 #define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
747 #define CSW_TEST2             (ASC_CS_TYPE)0x0400
748 #define CSW_TEST3             (ASC_CS_TYPE)0x0200
749 #define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
750 #define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
751 #define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
752 #define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
753 #define CSW_HALTED            (ASC_CS_TYPE)0x0010
754 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
755 #define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
756 #define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
757 #define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
758 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
759 #define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
760 #define CIW_TEST1        (ASC_CS_TYPE)0x0200
761 #define CIW_TEST2        (ASC_CS_TYPE)0x0400
762 #define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
763 #define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
764 #define CC_CHIP_RESET   (uchar)0x80
765 #define CC_SCSI_RESET   (uchar)0x40
766 #define CC_HALT         (uchar)0x20
767 #define CC_SINGLE_STEP  (uchar)0x10
768 #define CC_DMA_ABLE     (uchar)0x08
769 #define CC_TEST         (uchar)0x04
770 #define CC_BANK_ONE     (uchar)0x02
771 #define CC_DIAG         (uchar)0x01
772 #define ASC_1000_ID0W      0x04C1
773 #define ASC_1000_ID0W_FIX  0x00C1
774 #define ASC_1000_ID1B      0x25
775 #define ASC_EISA_REV_IOP_MASK  (0x0C83)
776 #define ASC_EISA_CFG_IOP_MASK  (0x0C86)
777 #define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
778 #define INS_HALTINT        (ushort)0x6281
779 #define INS_HALT           (ushort)0x6280
780 #define INS_SINT           (ushort)0x6200
781 #define INS_RFLAG_WTM      (ushort)0x7380
782 #define ASC_MC_SAVE_CODE_WSIZE  0x500
783 #define ASC_MC_SAVE_DATA_WSIZE  0x40
784 
785 typedef struct asc_mc_saved {
786 	ushort data[ASC_MC_SAVE_DATA_WSIZE];
787 	ushort code[ASC_MC_SAVE_CODE_WSIZE];
788 } ASC_MC_SAVED;
789 
790 #define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
791 #define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
792 #define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
793 #define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
794 #define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
795 #define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
796 #define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
797 #define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
798 #define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
799 #define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
800 #define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
801 #define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
802 #define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
803 #define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
804 #define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
805 #define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
806 #define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
807 #define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
808 #define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
809 #define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
810 #define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
811 #define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
812 #define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
813 #define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
814 #define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
815 #define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
816 #define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
817 #define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
818 #define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
819 #define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
820 #define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
821 #define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
822 #define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
823 #define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
824 #define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
825 #define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
826 #define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
827 #define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
828 #define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
829 #define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
830 #define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
831 #define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
832 #define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
833 #define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
834 #define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
835 #define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
836 #define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
837 #define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
838 #define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
839 #define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
840 #define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
841 #define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
842 #define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
843 #define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
844 #define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
845 #define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
846 #define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
847 #define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
848 #define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
849 #define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
850 #define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
851 #define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
852 #define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
853 #define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
854 #define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
855 #define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
856 #define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
857 
858 #define AdvPortAddr  void __iomem *	/* Virtual memory address size */
859 
860 /*
861  * Define Adv Library required memory access macros.
862  */
863 #define ADV_MEM_READB(addr) readb(addr)
864 #define ADV_MEM_READW(addr) readw(addr)
865 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
866 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
867 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
868 
869 /*
870  * Define total number of simultaneous maximum element scatter-gather
871  * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
872  * maximum number of outstanding commands per wide host adapter. Each
873  * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
874  * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
875  * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
876  * structures or 255 scatter-gather elements.
877  */
878 #define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
879 
880 /*
881  * Define maximum number of scatter-gather elements per request.
882  */
883 #define ADV_MAX_SG_LIST         255
884 #define NO_OF_SG_PER_BLOCK              15
885 
886 #define ADV_EEP_DVC_CFG_BEGIN           (0x00)
887 #define ADV_EEP_DVC_CFG_END             (0x15)
888 #define ADV_EEP_DVC_CTL_BEGIN           (0x16)	/* location of OEM name */
889 #define ADV_EEP_MAX_WORD_ADDR           (0x1E)
890 
891 #define ADV_EEP_DELAY_MS                100
892 
893 #define ADV_EEPROM_BIG_ENDIAN          0x8000	/* EEPROM Bit 15 */
894 #define ADV_EEPROM_BIOS_ENABLE         0x4000	/* EEPROM Bit 14 */
895 /*
896  * For the ASC3550 Bit 13 is Termination Polarity control bit.
897  * For later ICs Bit 13 controls whether the CIS (Card Information
898  * Service Section) is loaded from EEPROM.
899  */
900 #define ADV_EEPROM_TERM_POL            0x2000	/* EEPROM Bit 13 */
901 #define ADV_EEPROM_CIS_LD              0x2000	/* EEPROM Bit 13 */
902 /*
903  * ASC38C1600 Bit 11
904  *
905  * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
906  * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
907  * Function 0 will specify INT B.
908  *
909  * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
910  * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
911  * Function 1 will specify INT A.
912  */
913 #define ADV_EEPROM_INTAB               0x0800	/* EEPROM Bit 11 */
914 
915 typedef struct adveep_3550_config {
916 	/* Word Offset, Description */
917 
918 	ushort cfg_lsw;		/* 00 power up initialization */
919 	/*  bit 13 set - Term Polarity Control */
920 	/*  bit 14 set - BIOS Enable */
921 	/*  bit 15 set - Big Endian Mode */
922 	ushort cfg_msw;		/* 01 unused      */
923 	ushort disc_enable;	/* 02 disconnect enable */
924 	ushort wdtr_able;	/* 03 Wide DTR able */
925 	ushort sdtr_able;	/* 04 Synchronous DTR able */
926 	ushort start_motor;	/* 05 send start up motor */
927 	ushort tagqng_able;	/* 06 tag queuing able */
928 	ushort bios_scan;	/* 07 BIOS device control */
929 	ushort scam_tolerant;	/* 08 no scam */
930 
931 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
932 	uchar bios_boot_delay;	/*    power up wait */
933 
934 	uchar scsi_reset_delay;	/* 10 reset delay */
935 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
936 	/*    high nibble is lun */
937 	/*    low nibble is scsi id */
938 
939 	uchar termination;	/* 11 0 - automatic */
940 	/*    1 - low off / high off */
941 	/*    2 - low off / high on */
942 	/*    3 - low on  / high on */
943 	/*    There is no low on  / high off */
944 
945 	uchar reserved1;	/*    reserved byte (not used) */
946 
947 	ushort bios_ctrl;	/* 12 BIOS control bits */
948 	/*  bit 0  BIOS don't act as initiator. */
949 	/*  bit 1  BIOS > 1 GB support */
950 	/*  bit 2  BIOS > 2 Disk Support */
951 	/*  bit 3  BIOS don't support removables */
952 	/*  bit 4  BIOS support bootable CD */
953 	/*  bit 5  BIOS scan enabled */
954 	/*  bit 6  BIOS support multiple LUNs */
955 	/*  bit 7  BIOS display of message */
956 	/*  bit 8  SCAM disabled */
957 	/*  bit 9  Reset SCSI bus during init. */
958 	/*  bit 10 */
959 	/*  bit 11 No verbose initialization. */
960 	/*  bit 12 SCSI parity enabled */
961 	/*  bit 13 */
962 	/*  bit 14 */
963 	/*  bit 15 */
964 	ushort ultra_able;	/* 13 ULTRA speed able */
965 	ushort reserved2;	/* 14 reserved */
966 	uchar max_host_qng;	/* 15 maximum host queuing */
967 	uchar max_dvc_qng;	/*    maximum per device queuing */
968 	ushort dvc_cntl;	/* 16 control bit for driver */
969 	ushort bug_fix;		/* 17 control bit for bug fix */
970 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
971 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
972 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
973 	ushort check_sum;	/* 21 EEP check sum */
974 	uchar oem_name[16];	/* 22 OEM name */
975 	ushort dvc_err_code;	/* 30 last device driver error code */
976 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
977 	ushort adv_err_addr;	/* 32 last uc error address */
978 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
979 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
980 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
981 	ushort num_of_err;	/* 36 number of error */
982 } ADVEEP_3550_CONFIG;
983 
984 typedef struct adveep_38C0800_config {
985 	/* Word Offset, Description */
986 
987 	ushort cfg_lsw;		/* 00 power up initialization */
988 	/*  bit 13 set - Load CIS */
989 	/*  bit 14 set - BIOS Enable */
990 	/*  bit 15 set - Big Endian Mode */
991 	ushort cfg_msw;		/* 01 unused      */
992 	ushort disc_enable;	/* 02 disconnect enable */
993 	ushort wdtr_able;	/* 03 Wide DTR able */
994 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
995 	ushort start_motor;	/* 05 send start up motor */
996 	ushort tagqng_able;	/* 06 tag queuing able */
997 	ushort bios_scan;	/* 07 BIOS device control */
998 	ushort scam_tolerant;	/* 08 no scam */
999 
1000 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1001 	uchar bios_boot_delay;	/*    power up wait */
1002 
1003 	uchar scsi_reset_delay;	/* 10 reset delay */
1004 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1005 	/*    high nibble is lun */
1006 	/*    low nibble is scsi id */
1007 
1008 	uchar termination_se;	/* 11 0 - automatic */
1009 	/*    1 - low off / high off */
1010 	/*    2 - low off / high on */
1011 	/*    3 - low on  / high on */
1012 	/*    There is no low on  / high off */
1013 
1014 	uchar termination_lvd;	/* 11 0 - automatic */
1015 	/*    1 - low off / high off */
1016 	/*    2 - low off / high on */
1017 	/*    3 - low on  / high on */
1018 	/*    There is no low on  / high off */
1019 
1020 	ushort bios_ctrl;	/* 12 BIOS control bits */
1021 	/*  bit 0  BIOS don't act as initiator. */
1022 	/*  bit 1  BIOS > 1 GB support */
1023 	/*  bit 2  BIOS > 2 Disk Support */
1024 	/*  bit 3  BIOS don't support removables */
1025 	/*  bit 4  BIOS support bootable CD */
1026 	/*  bit 5  BIOS scan enabled */
1027 	/*  bit 6  BIOS support multiple LUNs */
1028 	/*  bit 7  BIOS display of message */
1029 	/*  bit 8  SCAM disabled */
1030 	/*  bit 9  Reset SCSI bus during init. */
1031 	/*  bit 10 */
1032 	/*  bit 11 No verbose initialization. */
1033 	/*  bit 12 SCSI parity enabled */
1034 	/*  bit 13 */
1035 	/*  bit 14 */
1036 	/*  bit 15 */
1037 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1038 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1039 	uchar max_host_qng;	/* 15 maximum host queueing */
1040 	uchar max_dvc_qng;	/*    maximum per device queuing */
1041 	ushort dvc_cntl;	/* 16 control bit for driver */
1042 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1043 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1044 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1045 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1046 	ushort check_sum;	/* 21 EEP check sum */
1047 	uchar oem_name[16];	/* 22 OEM name */
1048 	ushort dvc_err_code;	/* 30 last device driver error code */
1049 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1050 	ushort adv_err_addr;	/* 32 last uc error address */
1051 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1052 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1053 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1054 	ushort reserved36;	/* 36 reserved */
1055 	ushort reserved37;	/* 37 reserved */
1056 	ushort reserved38;	/* 38 reserved */
1057 	ushort reserved39;	/* 39 reserved */
1058 	ushort reserved40;	/* 40 reserved */
1059 	ushort reserved41;	/* 41 reserved */
1060 	ushort reserved42;	/* 42 reserved */
1061 	ushort reserved43;	/* 43 reserved */
1062 	ushort reserved44;	/* 44 reserved */
1063 	ushort reserved45;	/* 45 reserved */
1064 	ushort reserved46;	/* 46 reserved */
1065 	ushort reserved47;	/* 47 reserved */
1066 	ushort reserved48;	/* 48 reserved */
1067 	ushort reserved49;	/* 49 reserved */
1068 	ushort reserved50;	/* 50 reserved */
1069 	ushort reserved51;	/* 51 reserved */
1070 	ushort reserved52;	/* 52 reserved */
1071 	ushort reserved53;	/* 53 reserved */
1072 	ushort reserved54;	/* 54 reserved */
1073 	ushort reserved55;	/* 55 reserved */
1074 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1075 	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1076 	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1077 	ushort subsysid;	/* 59 SubSystem ID */
1078 	ushort reserved60;	/* 60 reserved */
1079 	ushort reserved61;	/* 61 reserved */
1080 	ushort reserved62;	/* 62 reserved */
1081 	ushort reserved63;	/* 63 reserved */
1082 } ADVEEP_38C0800_CONFIG;
1083 
1084 typedef struct adveep_38C1600_config {
1085 	/* Word Offset, Description */
1086 
1087 	ushort cfg_lsw;		/* 00 power up initialization */
1088 	/*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1089 	/*       clear - Func. 0 INTA, Func. 1 INTB */
1090 	/*  bit 13 set - Load CIS */
1091 	/*  bit 14 set - BIOS Enable */
1092 	/*  bit 15 set - Big Endian Mode */
1093 	ushort cfg_msw;		/* 01 unused */
1094 	ushort disc_enable;	/* 02 disconnect enable */
1095 	ushort wdtr_able;	/* 03 Wide DTR able */
1096 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1097 	ushort start_motor;	/* 05 send start up motor */
1098 	ushort tagqng_able;	/* 06 tag queuing able */
1099 	ushort bios_scan;	/* 07 BIOS device control */
1100 	ushort scam_tolerant;	/* 08 no scam */
1101 
1102 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1103 	uchar bios_boot_delay;	/*    power up wait */
1104 
1105 	uchar scsi_reset_delay;	/* 10 reset delay */
1106 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1107 	/*    high nibble is lun */
1108 	/*    low nibble is scsi id */
1109 
1110 	uchar termination_se;	/* 11 0 - automatic */
1111 	/*    1 - low off / high off */
1112 	/*    2 - low off / high on */
1113 	/*    3 - low on  / high on */
1114 	/*    There is no low on  / high off */
1115 
1116 	uchar termination_lvd;	/* 11 0 - automatic */
1117 	/*    1 - low off / high off */
1118 	/*    2 - low off / high on */
1119 	/*    3 - low on  / high on */
1120 	/*    There is no low on  / high off */
1121 
1122 	ushort bios_ctrl;	/* 12 BIOS control bits */
1123 	/*  bit 0  BIOS don't act as initiator. */
1124 	/*  bit 1  BIOS > 1 GB support */
1125 	/*  bit 2  BIOS > 2 Disk Support */
1126 	/*  bit 3  BIOS don't support removables */
1127 	/*  bit 4  BIOS support bootable CD */
1128 	/*  bit 5  BIOS scan enabled */
1129 	/*  bit 6  BIOS support multiple LUNs */
1130 	/*  bit 7  BIOS display of message */
1131 	/*  bit 8  SCAM disabled */
1132 	/*  bit 9  Reset SCSI bus during init. */
1133 	/*  bit 10 Basic Integrity Checking disabled */
1134 	/*  bit 11 No verbose initialization. */
1135 	/*  bit 12 SCSI parity enabled */
1136 	/*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1137 	/*  bit 14 */
1138 	/*  bit 15 */
1139 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1140 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1141 	uchar max_host_qng;	/* 15 maximum host queueing */
1142 	uchar max_dvc_qng;	/*    maximum per device queuing */
1143 	ushort dvc_cntl;	/* 16 control bit for driver */
1144 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1145 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1146 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1147 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1148 	ushort check_sum;	/* 21 EEP check sum */
1149 	uchar oem_name[16];	/* 22 OEM name */
1150 	ushort dvc_err_code;	/* 30 last device driver error code */
1151 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1152 	ushort adv_err_addr;	/* 32 last uc error address */
1153 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1154 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1155 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1156 	ushort reserved36;	/* 36 reserved */
1157 	ushort reserved37;	/* 37 reserved */
1158 	ushort reserved38;	/* 38 reserved */
1159 	ushort reserved39;	/* 39 reserved */
1160 	ushort reserved40;	/* 40 reserved */
1161 	ushort reserved41;	/* 41 reserved */
1162 	ushort reserved42;	/* 42 reserved */
1163 	ushort reserved43;	/* 43 reserved */
1164 	ushort reserved44;	/* 44 reserved */
1165 	ushort reserved45;	/* 45 reserved */
1166 	ushort reserved46;	/* 46 reserved */
1167 	ushort reserved47;	/* 47 reserved */
1168 	ushort reserved48;	/* 48 reserved */
1169 	ushort reserved49;	/* 49 reserved */
1170 	ushort reserved50;	/* 50 reserved */
1171 	ushort reserved51;	/* 51 reserved */
1172 	ushort reserved52;	/* 52 reserved */
1173 	ushort reserved53;	/* 53 reserved */
1174 	ushort reserved54;	/* 54 reserved */
1175 	ushort reserved55;	/* 55 reserved */
1176 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1177 	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1178 	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1179 	ushort subsysid;	/* 59 SubSystem ID */
1180 	ushort reserved60;	/* 60 reserved */
1181 	ushort reserved61;	/* 61 reserved */
1182 	ushort reserved62;	/* 62 reserved */
1183 	ushort reserved63;	/* 63 reserved */
1184 } ADVEEP_38C1600_CONFIG;
1185 
1186 /*
1187  * EEPROM Commands
1188  */
1189 #define ASC_EEP_CMD_DONE             0x0200
1190 
1191 /* bios_ctrl */
1192 #define BIOS_CTRL_BIOS               0x0001
1193 #define BIOS_CTRL_EXTENDED_XLAT      0x0002
1194 #define BIOS_CTRL_GT_2_DISK          0x0004
1195 #define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1196 #define BIOS_CTRL_BOOTABLE_CD        0x0010
1197 #define BIOS_CTRL_MULTIPLE_LUN       0x0040
1198 #define BIOS_CTRL_DISPLAY_MSG        0x0080
1199 #define BIOS_CTRL_NO_SCAM            0x0100
1200 #define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1201 #define BIOS_CTRL_INIT_VERBOSE       0x0800
1202 #define BIOS_CTRL_SCSI_PARITY        0x1000
1203 #define BIOS_CTRL_AIPP_DIS           0x2000
1204 
1205 #define ADV_3550_MEMSIZE   0x2000	/* 8 KB Internal Memory */
1206 
1207 #define ADV_38C0800_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1208 
1209 /*
1210  * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1211  * a special 16K Adv Library and Microcode version. After the issue is
1212  * resolved, should restore 32K support.
1213  *
1214  * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1215  */
1216 #define ADV_38C1600_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1217 
1218 /*
1219  * Byte I/O register address from base of 'iop_base'.
1220  */
1221 #define IOPB_INTR_STATUS_REG    0x00
1222 #define IOPB_CHIP_ID_1          0x01
1223 #define IOPB_INTR_ENABLES       0x02
1224 #define IOPB_CHIP_TYPE_REV      0x03
1225 #define IOPB_RES_ADDR_4         0x04
1226 #define IOPB_RES_ADDR_5         0x05
1227 #define IOPB_RAM_DATA           0x06
1228 #define IOPB_RES_ADDR_7         0x07
1229 #define IOPB_FLAG_REG           0x08
1230 #define IOPB_RES_ADDR_9         0x09
1231 #define IOPB_RISC_CSR           0x0A
1232 #define IOPB_RES_ADDR_B         0x0B
1233 #define IOPB_RES_ADDR_C         0x0C
1234 #define IOPB_RES_ADDR_D         0x0D
1235 #define IOPB_SOFT_OVER_WR       0x0E
1236 #define IOPB_RES_ADDR_F         0x0F
1237 #define IOPB_MEM_CFG            0x10
1238 #define IOPB_RES_ADDR_11        0x11
1239 #define IOPB_GPIO_DATA          0x12
1240 #define IOPB_RES_ADDR_13        0x13
1241 #define IOPB_FLASH_PAGE         0x14
1242 #define IOPB_RES_ADDR_15        0x15
1243 #define IOPB_GPIO_CNTL          0x16
1244 #define IOPB_RES_ADDR_17        0x17
1245 #define IOPB_FLASH_DATA         0x18
1246 #define IOPB_RES_ADDR_19        0x19
1247 #define IOPB_RES_ADDR_1A        0x1A
1248 #define IOPB_RES_ADDR_1B        0x1B
1249 #define IOPB_RES_ADDR_1C        0x1C
1250 #define IOPB_RES_ADDR_1D        0x1D
1251 #define IOPB_RES_ADDR_1E        0x1E
1252 #define IOPB_RES_ADDR_1F        0x1F
1253 #define IOPB_DMA_CFG0           0x20
1254 #define IOPB_DMA_CFG1           0x21
1255 #define IOPB_TICKLE             0x22
1256 #define IOPB_DMA_REG_WR         0x23
1257 #define IOPB_SDMA_STATUS        0x24
1258 #define IOPB_SCSI_BYTE_CNT      0x25
1259 #define IOPB_HOST_BYTE_CNT      0x26
1260 #define IOPB_BYTE_LEFT_TO_XFER  0x27
1261 #define IOPB_BYTE_TO_XFER_0     0x28
1262 #define IOPB_BYTE_TO_XFER_1     0x29
1263 #define IOPB_BYTE_TO_XFER_2     0x2A
1264 #define IOPB_BYTE_TO_XFER_3     0x2B
1265 #define IOPB_ACC_GRP            0x2C
1266 #define IOPB_RES_ADDR_2D        0x2D
1267 #define IOPB_DEV_ID             0x2E
1268 #define IOPB_RES_ADDR_2F        0x2F
1269 #define IOPB_SCSI_DATA          0x30
1270 #define IOPB_RES_ADDR_31        0x31
1271 #define IOPB_RES_ADDR_32        0x32
1272 #define IOPB_SCSI_DATA_HSHK     0x33
1273 #define IOPB_SCSI_CTRL          0x34
1274 #define IOPB_RES_ADDR_35        0x35
1275 #define IOPB_RES_ADDR_36        0x36
1276 #define IOPB_RES_ADDR_37        0x37
1277 #define IOPB_RAM_BIST           0x38
1278 #define IOPB_PLL_TEST           0x39
1279 #define IOPB_PCI_INT_CFG        0x3A
1280 #define IOPB_RES_ADDR_3B        0x3B
1281 #define IOPB_RFIFO_CNT          0x3C
1282 #define IOPB_RES_ADDR_3D        0x3D
1283 #define IOPB_RES_ADDR_3E        0x3E
1284 #define IOPB_RES_ADDR_3F        0x3F
1285 
1286 /*
1287  * Word I/O register address from base of 'iop_base'.
1288  */
1289 #define IOPW_CHIP_ID_0          0x00	/* CID0  */
1290 #define IOPW_CTRL_REG           0x02	/* CC    */
1291 #define IOPW_RAM_ADDR           0x04	/* LA    */
1292 #define IOPW_RAM_DATA           0x06	/* LD    */
1293 #define IOPW_RES_ADDR_08        0x08
1294 #define IOPW_RISC_CSR           0x0A	/* CSR   */
1295 #define IOPW_SCSI_CFG0          0x0C	/* CFG0  */
1296 #define IOPW_SCSI_CFG1          0x0E	/* CFG1  */
1297 #define IOPW_RES_ADDR_10        0x10
1298 #define IOPW_SEL_MASK           0x12	/* SM    */
1299 #define IOPW_RES_ADDR_14        0x14
1300 #define IOPW_FLASH_ADDR         0x16	/* FA    */
1301 #define IOPW_RES_ADDR_18        0x18
1302 #define IOPW_EE_CMD             0x1A	/* EC    */
1303 #define IOPW_EE_DATA            0x1C	/* ED    */
1304 #define IOPW_SFIFO_CNT          0x1E	/* SFC   */
1305 #define IOPW_RES_ADDR_20        0x20
1306 #define IOPW_Q_BASE             0x22	/* QB    */
1307 #define IOPW_QP                 0x24	/* QP    */
1308 #define IOPW_IX                 0x26	/* IX    */
1309 #define IOPW_SP                 0x28	/* SP    */
1310 #define IOPW_PC                 0x2A	/* PC    */
1311 #define IOPW_RES_ADDR_2C        0x2C
1312 #define IOPW_RES_ADDR_2E        0x2E
1313 #define IOPW_SCSI_DATA          0x30	/* SD    */
1314 #define IOPW_SCSI_DATA_HSHK     0x32	/* SDH   */
1315 #define IOPW_SCSI_CTRL          0x34	/* SC    */
1316 #define IOPW_HSHK_CFG           0x36	/* HCFG  */
1317 #define IOPW_SXFR_STATUS        0x36	/* SXS   */
1318 #define IOPW_SXFR_CNTL          0x38	/* SXL   */
1319 #define IOPW_SXFR_CNTH          0x3A	/* SXH   */
1320 #define IOPW_RES_ADDR_3C        0x3C
1321 #define IOPW_RFIFO_DATA         0x3E	/* RFD   */
1322 
1323 /*
1324  * Doubleword I/O register address from base of 'iop_base'.
1325  */
1326 #define IOPDW_RES_ADDR_0         0x00
1327 #define IOPDW_RAM_DATA           0x04
1328 #define IOPDW_RES_ADDR_8         0x08
1329 #define IOPDW_RES_ADDR_C         0x0C
1330 #define IOPDW_RES_ADDR_10        0x10
1331 #define IOPDW_COMMA              0x14
1332 #define IOPDW_COMMB              0x18
1333 #define IOPDW_RES_ADDR_1C        0x1C
1334 #define IOPDW_SDMA_ADDR0         0x20
1335 #define IOPDW_SDMA_ADDR1         0x24
1336 #define IOPDW_SDMA_COUNT         0x28
1337 #define IOPDW_SDMA_ERROR         0x2C
1338 #define IOPDW_RDMA_ADDR0         0x30
1339 #define IOPDW_RDMA_ADDR1         0x34
1340 #define IOPDW_RDMA_COUNT         0x38
1341 #define IOPDW_RDMA_ERROR         0x3C
1342 
1343 #define ADV_CHIP_ID_BYTE         0x25
1344 #define ADV_CHIP_ID_WORD         0x04C1
1345 
1346 #define ADV_INTR_ENABLE_HOST_INTR                   0x01
1347 #define ADV_INTR_ENABLE_SEL_INTR                    0x02
1348 #define ADV_INTR_ENABLE_DPR_INTR                    0x04
1349 #define ADV_INTR_ENABLE_RTA_INTR                    0x08
1350 #define ADV_INTR_ENABLE_RMA_INTR                    0x10
1351 #define ADV_INTR_ENABLE_RST_INTR                    0x20
1352 #define ADV_INTR_ENABLE_DPE_INTR                    0x40
1353 #define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1354 
1355 #define ADV_INTR_STATUS_INTRA            0x01
1356 #define ADV_INTR_STATUS_INTRB            0x02
1357 #define ADV_INTR_STATUS_INTRC            0x04
1358 
1359 #define ADV_RISC_CSR_STOP           (0x0000)
1360 #define ADV_RISC_TEST_COND          (0x2000)
1361 #define ADV_RISC_CSR_RUN            (0x4000)
1362 #define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1363 
1364 #define ADV_CTRL_REG_HOST_INTR      0x0100
1365 #define ADV_CTRL_REG_SEL_INTR       0x0200
1366 #define ADV_CTRL_REG_DPR_INTR       0x0400
1367 #define ADV_CTRL_REG_RTA_INTR       0x0800
1368 #define ADV_CTRL_REG_RMA_INTR       0x1000
1369 #define ADV_CTRL_REG_RES_BIT14      0x2000
1370 #define ADV_CTRL_REG_DPE_INTR       0x4000
1371 #define ADV_CTRL_REG_POWER_DONE     0x8000
1372 #define ADV_CTRL_REG_ANY_INTR       0xFF00
1373 
1374 #define ADV_CTRL_REG_CMD_RESET             0x00C6
1375 #define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1376 #define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1377 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1378 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1379 
1380 #define ADV_TICKLE_NOP                      0x00
1381 #define ADV_TICKLE_A                        0x01
1382 #define ADV_TICKLE_B                        0x02
1383 #define ADV_TICKLE_C                        0x03
1384 
1385 #define AdvIsIntPending(port) \
1386     (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1387 
1388 /*
1389  * SCSI_CFG0 Register bit definitions
1390  */
1391 #define TIMER_MODEAB    0xC000	/* Watchdog, Second, and Select. Timer Ctrl. */
1392 #define PARITY_EN       0x2000	/* Enable SCSI Parity Error detection */
1393 #define EVEN_PARITY     0x1000	/* Select Even Parity */
1394 #define WD_LONG         0x0800	/* Watchdog Interval, 1: 57 min, 0: 13 sec */
1395 #define QUEUE_128       0x0400	/* Queue Size, 1: 128 byte, 0: 64 byte */
1396 #define PRIM_MODE       0x0100	/* Primitive SCSI mode */
1397 #define SCAM_EN         0x0080	/* Enable SCAM selection */
1398 #define SEL_TMO_LONG    0x0040	/* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1399 #define CFRM_ID         0x0020	/* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1400 #define OUR_ID_EN       0x0010	/* Enable OUR_ID bits */
1401 #define OUR_ID          0x000F	/* SCSI ID */
1402 
1403 /*
1404  * SCSI_CFG1 Register bit definitions
1405  */
1406 #define BIG_ENDIAN      0x8000	/* Enable Big Endian Mode MIO:15, EEP:15 */
1407 #define TERM_POL        0x2000	/* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1408 #define SLEW_RATE       0x1000	/* SCSI output buffer slew rate */
1409 #define FILTER_SEL      0x0C00	/* Filter Period Selection */
1410 #define  FLTR_DISABLE    0x0000	/* Input Filtering Disabled */
1411 #define  FLTR_11_TO_20NS 0x0800	/* Input Filtering 11ns to 20ns */
1412 #define  FLTR_21_TO_39NS 0x0C00	/* Input Filtering 21ns to 39ns */
1413 #define ACTIVE_DBL      0x0200	/* Disable Active Negation */
1414 #define DIFF_MODE       0x0100	/* SCSI differential Mode (Read-Only) */
1415 #define DIFF_SENSE      0x0080	/* 1: No SE cables, 0: SE cable (Read-Only) */
1416 #define TERM_CTL_SEL    0x0040	/* Enable TERM_CTL_H and TERM_CTL_L */
1417 #define TERM_CTL        0x0030	/* External SCSI Termination Bits */
1418 #define  TERM_CTL_H      0x0020	/* Enable External SCSI Upper Termination */
1419 #define  TERM_CTL_L      0x0010	/* Enable External SCSI Lower Termination */
1420 #define CABLE_DETECT    0x000F	/* External SCSI Cable Connection Status */
1421 
1422 /*
1423  * Addendum for ASC-38C0800 Chip
1424  *
1425  * The ASC-38C1600 Chip uses the same definitions except that the
1426  * bus mode override bits [12:10] have been moved to byte register
1427  * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1428  * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1429  * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1430  * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1431  * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1432  */
1433 #define DIS_TERM_DRV    0x4000	/* 1: Read c_det[3:0], 0: cannot read */
1434 #define HVD_LVD_SE      0x1C00	/* Device Detect Bits */
1435 #define  HVD             0x1000	/* HVD Device Detect */
1436 #define  LVD             0x0800	/* LVD Device Detect */
1437 #define  SE              0x0400	/* SE Device Detect */
1438 #define TERM_LVD        0x00C0	/* LVD Termination Bits */
1439 #define  TERM_LVD_HI     0x0080	/* Enable LVD Upper Termination */
1440 #define  TERM_LVD_LO     0x0040	/* Enable LVD Lower Termination */
1441 #define TERM_SE         0x0030	/* SE Termination Bits */
1442 #define  TERM_SE_HI      0x0020	/* Enable SE Upper Termination */
1443 #define  TERM_SE_LO      0x0010	/* Enable SE Lower Termination */
1444 #define C_DET_LVD       0x000C	/* LVD Cable Detect Bits */
1445 #define  C_DET3          0x0008	/* Cable Detect for LVD External Wide */
1446 #define  C_DET2          0x0004	/* Cable Detect for LVD Internal Wide */
1447 #define C_DET_SE        0x0003	/* SE Cable Detect Bits */
1448 #define  C_DET1          0x0002	/* Cable Detect for SE Internal Wide */
1449 #define  C_DET0          0x0001	/* Cable Detect for SE Internal Narrow */
1450 
1451 #define CABLE_ILLEGAL_A 0x7
1452     /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1453 
1454 #define CABLE_ILLEGAL_B 0xB
1455     /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1456 
1457 /*
1458  * MEM_CFG Register bit definitions
1459  */
1460 #define BIOS_EN         0x40	/* BIOS Enable MIO:14,EEP:14 */
1461 #define FAST_EE_CLK     0x20	/* Diagnostic Bit */
1462 #define RAM_SZ          0x1C	/* Specify size of RAM to RISC */
1463 #define  RAM_SZ_2KB      0x00	/* 2 KB */
1464 #define  RAM_SZ_4KB      0x04	/* 4 KB */
1465 #define  RAM_SZ_8KB      0x08	/* 8 KB */
1466 #define  RAM_SZ_16KB     0x0C	/* 16 KB */
1467 #define  RAM_SZ_32KB     0x10	/* 32 KB */
1468 #define  RAM_SZ_64KB     0x14	/* 64 KB */
1469 
1470 /*
1471  * DMA_CFG0 Register bit definitions
1472  *
1473  * This register is only accessible to the host.
1474  */
1475 #define BC_THRESH_ENB   0x80	/* PCI DMA Start Conditions */
1476 #define FIFO_THRESH     0x70	/* PCI DMA FIFO Threshold */
1477 #define  FIFO_THRESH_16B  0x00	/* 16 bytes */
1478 #define  FIFO_THRESH_32B  0x20	/* 32 bytes */
1479 #define  FIFO_THRESH_48B  0x30	/* 48 bytes */
1480 #define  FIFO_THRESH_64B  0x40	/* 64 bytes */
1481 #define  FIFO_THRESH_80B  0x50	/* 80 bytes (default) */
1482 #define  FIFO_THRESH_96B  0x60	/* 96 bytes */
1483 #define  FIFO_THRESH_112B 0x70	/* 112 bytes */
1484 #define START_CTL       0x0C	/* DMA start conditions */
1485 #define  START_CTL_TH    0x00	/* Wait threshold level (default) */
1486 #define  START_CTL_ID    0x04	/* Wait SDMA/SBUS idle */
1487 #define  START_CTL_THID  0x08	/* Wait threshold and SDMA/SBUS idle */
1488 #define  START_CTL_EMFU  0x0C	/* Wait SDMA FIFO empty/full */
1489 #define READ_CMD        0x03	/* Memory Read Method */
1490 #define  READ_CMD_MR     0x00	/* Memory Read */
1491 #define  READ_CMD_MRL    0x02	/* Memory Read Long */
1492 #define  READ_CMD_MRM    0x03	/* Memory Read Multiple (default) */
1493 
1494 /*
1495  * ASC-38C0800 RAM BIST Register bit definitions
1496  */
1497 #define RAM_TEST_MODE         0x80
1498 #define PRE_TEST_MODE         0x40
1499 #define NORMAL_MODE           0x00
1500 #define RAM_TEST_DONE         0x10
1501 #define RAM_TEST_STATUS       0x0F
1502 #define  RAM_TEST_HOST_ERROR   0x08
1503 #define  RAM_TEST_INTRAM_ERROR 0x04
1504 #define  RAM_TEST_RISC_ERROR   0x02
1505 #define  RAM_TEST_SCSI_ERROR   0x01
1506 #define  RAM_TEST_SUCCESS      0x00
1507 #define PRE_TEST_VALUE        0x05
1508 #define NORMAL_VALUE          0x00
1509 
1510 /*
1511  * ASC38C1600 Definitions
1512  *
1513  * IOPB_PCI_INT_CFG Bit Field Definitions
1514  */
1515 
1516 #define INTAB_LD        0x80	/* Value loaded from EEPROM Bit 11. */
1517 
1518 /*
1519  * Bit 1 can be set to change the interrupt for the Function to operate in
1520  * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1521  * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1522  * mode, otherwise the operating mode is undefined.
1523  */
1524 #define TOTEMPOLE       0x02
1525 
1526 /*
1527  * Bit 0 can be used to change the Int Pin for the Function. The value is
1528  * 0 by default for both Functions with Function 0 using INT A and Function
1529  * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1530  * INT A is used.
1531  *
1532  * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1533  * value specified in the PCI Configuration Space.
1534  */
1535 #define INTAB           0x01
1536 
1537 /*
1538  * Adv Library Status Definitions
1539  */
1540 #define ADV_TRUE        1
1541 #define ADV_FALSE       0
1542 #define ADV_SUCCESS     1
1543 #define ADV_BUSY        0
1544 #define ADV_ERROR       (-1)
1545 
1546 /*
1547  * ADV_DVC_VAR 'warn_code' values
1548  */
1549 #define ASC_WARN_BUSRESET_ERROR         0x0001	/* SCSI Bus Reset error */
1550 #define ASC_WARN_EEPROM_CHKSUM          0x0002	/* EEP check sum error */
1551 #define ASC_WARN_EEPROM_TERMINATION     0x0004	/* EEP termination bad field */
1552 #define ASC_WARN_ERROR                  0xFFFF	/* ADV_ERROR return */
1553 
1554 #define ADV_MAX_TID                     15	/* max. target identifier */
1555 #define ADV_MAX_LUN                     7	/* max. logical unit number */
1556 
1557 /*
1558  * Fixed locations of microcode operating variables.
1559  */
1560 #define ASC_MC_CODE_BEGIN_ADDR          0x0028	/* microcode start address */
1561 #define ASC_MC_CODE_END_ADDR            0x002A	/* microcode end address */
1562 #define ASC_MC_CODE_CHK_SUM             0x002C	/* microcode code checksum */
1563 #define ASC_MC_VERSION_DATE             0x0038	/* microcode version */
1564 #define ASC_MC_VERSION_NUM              0x003A	/* microcode number */
1565 #define ASC_MC_BIOSMEM                  0x0040	/* BIOS RISC Memory Start */
1566 #define ASC_MC_BIOSLEN                  0x0050	/* BIOS RISC Memory Length */
1567 #define ASC_MC_BIOS_SIGNATURE           0x0058	/* BIOS Signature 0x55AA */
1568 #define ASC_MC_BIOS_VERSION             0x005A	/* BIOS Version (2 bytes) */
1569 #define ASC_MC_SDTR_SPEED1              0x0090	/* SDTR Speed for TID 0-3 */
1570 #define ASC_MC_SDTR_SPEED2              0x0092	/* SDTR Speed for TID 4-7 */
1571 #define ASC_MC_SDTR_SPEED3              0x0094	/* SDTR Speed for TID 8-11 */
1572 #define ASC_MC_SDTR_SPEED4              0x0096	/* SDTR Speed for TID 12-15 */
1573 #define ASC_MC_CHIP_TYPE                0x009A
1574 #define ASC_MC_INTRB_CODE               0x009B
1575 #define ASC_MC_WDTR_ABLE                0x009C
1576 #define ASC_MC_SDTR_ABLE                0x009E
1577 #define ASC_MC_TAGQNG_ABLE              0x00A0
1578 #define ASC_MC_DISC_ENABLE              0x00A2
1579 #define ASC_MC_IDLE_CMD_STATUS          0x00A4
1580 #define ASC_MC_IDLE_CMD                 0x00A6
1581 #define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1582 #define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1583 #define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1584 #define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1585 #define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1586 #define ASC_MC_SDTR_DONE                0x00B6
1587 #define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1588 #define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1589 #define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1590 #define ASC_MC_CONTROL_FLAG             0x0122	/* Microcode control flag. */
1591 #define ASC_MC_WDTR_DONE                0x0124
1592 #define ASC_MC_CAM_MODE_MASK            0x015E	/* CAM mode TID bitmask. */
1593 #define ASC_MC_ICQ                      0x0160
1594 #define ASC_MC_IRQ                      0x0164
1595 #define ASC_MC_PPR_ABLE                 0x017A
1596 
1597 /*
1598  * BIOS LRAM variable absolute offsets.
1599  */
1600 #define BIOS_CODESEG    0x54
1601 #define BIOS_CODELEN    0x56
1602 #define BIOS_SIGNATURE  0x58
1603 #define BIOS_VERSION    0x5A
1604 
1605 /*
1606  * Microcode Control Flags
1607  *
1608  * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1609  * and handled by the microcode.
1610  */
1611 #define CONTROL_FLAG_IGNORE_PERR        0x0001	/* Ignore DMA Parity Errors */
1612 #define CONTROL_FLAG_ENABLE_AIPP        0x0002	/* Enabled AIPP checking. */
1613 
1614 /*
1615  * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1616  */
1617 #define HSHK_CFG_WIDE_XFR       0x8000
1618 #define HSHK_CFG_RATE           0x0F00
1619 #define HSHK_CFG_OFFSET         0x001F
1620 
1621 #define ASC_DEF_MAX_HOST_QNG    0xFD	/* Max. number of host commands (253) */
1622 #define ASC_DEF_MIN_HOST_QNG    0x10	/* Min. number of host commands (16) */
1623 #define ASC_DEF_MAX_DVC_QNG     0x3F	/* Max. number commands per device (63) */
1624 #define ASC_DEF_MIN_DVC_QNG     0x04	/* Min. number commands per device (4) */
1625 
1626 #define ASC_QC_DATA_CHECK  0x01	/* Require ASC_QC_DATA_OUT set or clear. */
1627 #define ASC_QC_DATA_OUT    0x02	/* Data out DMA transfer. */
1628 #define ASC_QC_START_MOTOR 0x04	/* Send auto-start motor before request. */
1629 #define ASC_QC_NO_OVERRUN  0x08	/* Don't report overrun. */
1630 #define ASC_QC_FREEZE_TIDQ 0x10	/* Freeze TID queue after request. XXX TBD */
1631 
1632 #define ASC_QSC_NO_DISC     0x01	/* Don't allow disconnect for request. */
1633 #define ASC_QSC_NO_TAGMSG   0x02	/* Don't allow tag queuing for request. */
1634 #define ASC_QSC_NO_SYNC     0x04	/* Don't use Synch. transfer on request. */
1635 #define ASC_QSC_NO_WIDE     0x08	/* Don't use Wide transfer on request. */
1636 #define ASC_QSC_REDO_DTR    0x10	/* Renegotiate WDTR/SDTR before request. */
1637 /*
1638  * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1639  * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1640  */
1641 #define ASC_QSC_HEAD_TAG    0x40	/* Use Head Tag Message (0x21). */
1642 #define ASC_QSC_ORDERED_TAG 0x80	/* Use Ordered Tag Message (0x22). */
1643 
1644 /*
1645  * All fields here are accessed by the board microcode and need to be
1646  * little-endian.
1647  */
1648 typedef struct adv_carr_t {
1649 	__le32 carr_va;	/* Carrier Virtual Address */
1650 	__le32 carr_pa;	/* Carrier Physical Address */
1651 	__le32 areq_vpa;	/* ADV_SCSI_REQ_Q Virtual or Physical Address */
1652 	/*
1653 	 * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1654 	 *
1655 	 * next_vpa [3:1]             Reserved Bits
1656 	 * next_vpa [0]               Done Flag set in Response Queue.
1657 	 */
1658 	__le32 next_vpa;
1659 } ADV_CARR_T;
1660 
1661 /*
1662  * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1663  */
1664 #define ADV_NEXT_VPA_MASK       0xFFFFFFF0
1665 
1666 #define ADV_RQ_DONE             0x00000001
1667 #define ADV_RQ_GOOD             0x00000002
1668 #define ADV_CQ_STOPPER          0x00000000
1669 
1670 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1671 
1672 /*
1673  * Each carrier is 64 bytes, and we need three additional
1674  * carrier for icq, irq, and the termination carrier.
1675  */
1676 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1677 
1678 #define ADV_CARRIER_BUFSIZE \
1679 	(ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1680 
1681 #define ADV_CHIP_ASC3550          0x01	/* Ultra-Wide IC */
1682 #define ADV_CHIP_ASC38C0800       0x02	/* Ultra2-Wide/LVD IC */
1683 #define ADV_CHIP_ASC38C1600       0x03	/* Ultra3-Wide/LVD2 IC */
1684 
1685 /*
1686  * Adapter temporary configuration structure
1687  *
1688  * This structure can be discarded after initialization. Don't add
1689  * fields here needed after initialization.
1690  *
1691  * Field naming convention:
1692  *
1693  *  *_enable indicates the field enables or disables a feature. The
1694  *  value of the field is never reset.
1695  */
1696 typedef struct adv_dvc_cfg {
1697 	ushort disc_enable;	/* enable disconnection */
1698 	uchar chip_version;	/* chip version */
1699 	uchar termination;	/* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1700 	ushort control_flag;	/* Microcode Control Flag */
1701 	ushort mcode_date;	/* Microcode date */
1702 	ushort mcode_version;	/* Microcode version */
1703 	ushort serial1;		/* EEPROM serial number word 1 */
1704 	ushort serial2;		/* EEPROM serial number word 2 */
1705 	ushort serial3;		/* EEPROM serial number word 3 */
1706 } ADV_DVC_CFG;
1707 
1708 struct adv_dvc_var;
1709 struct adv_scsi_req_q;
1710 
1711 typedef struct adv_sg_block {
1712 	uchar reserved1;
1713 	uchar reserved2;
1714 	uchar reserved3;
1715 	uchar sg_cnt;		/* Valid entries in block. */
1716 	__le32 sg_ptr;	/* Pointer to next sg block. */
1717 	struct {
1718 		__le32 sg_addr;	/* SG element address. */
1719 		__le32 sg_count;	/* SG element count. */
1720 	} sg_list[NO_OF_SG_PER_BLOCK];
1721 } ADV_SG_BLOCK;
1722 
1723 /*
1724  * ADV_SCSI_REQ_Q - microcode request structure
1725  *
1726  * All fields in this structure up to byte 60 are used by the microcode.
1727  * The microcode makes assumptions about the size and ordering of fields
1728  * in this structure. Do not change the structure definition here without
1729  * coordinating the change with the microcode.
1730  *
1731  * All fields accessed by microcode must be maintained in little_endian
1732  * order.
1733  */
1734 typedef struct adv_scsi_req_q {
1735 	uchar cntl;		/* Ucode flags and state (ASC_MC_QC_*). */
1736 	uchar target_cmd;
1737 	uchar target_id;	/* Device target identifier. */
1738 	uchar target_lun;	/* Device target logical unit number. */
1739 	__le32 data_addr;	/* Data buffer physical address. */
1740 	__le32 data_cnt;	/* Data count. Ucode sets to residual. */
1741 	__le32 sense_addr;
1742 	__le32 carr_pa;
1743 	uchar mflag;
1744 	uchar sense_len;
1745 	uchar cdb_len;		/* SCSI CDB length. Must <= 16 bytes. */
1746 	uchar scsi_cntl;
1747 	uchar done_status;	/* Completion status. */
1748 	uchar scsi_status;	/* SCSI status byte. */
1749 	uchar host_status;	/* Ucode host status. */
1750 	uchar sg_working_ix;
1751 	uchar cdb[12];		/* SCSI CDB bytes 0-11. */
1752 	__le32 sg_real_addr;	/* SG list physical address. */
1753 	__le32 scsiq_rptr;
1754 	uchar cdb16[4];		/* SCSI CDB bytes 12-15. */
1755 	__le32 scsiq_ptr;
1756 	__le32 carr_va;
1757 	/*
1758 	 * End of microcode structure - 60 bytes. The rest of the structure
1759 	 * is used by the Adv Library and ignored by the microcode.
1760 	 */
1761 	u32 srb_tag;
1762 	ADV_SG_BLOCK *sg_list_ptr;	/* SG list virtual address. */
1763 } ADV_SCSI_REQ_Q;
1764 
1765 /*
1766  * The following two structures are used to process Wide Board requests.
1767  *
1768  * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1769  * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1770  * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1771  * to the Mid-Level SCSI request structure.
1772  *
1773  * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1774  * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1775  * up to 255 scatter-gather elements may be used per request or
1776  * ADV_SCSI_REQ_Q.
1777  *
1778  * Both structures must be 32 byte aligned.
1779  */
1780 typedef struct adv_sgblk {
1781 	ADV_SG_BLOCK sg_block;	/* Sgblock structure. */
1782 	dma_addr_t sg_addr;	/* Physical address */
1783 	struct adv_sgblk *next_sgblkp;	/* Next scatter-gather structure. */
1784 } adv_sgblk_t;
1785 
1786 typedef struct adv_req {
1787 	ADV_SCSI_REQ_Q scsi_req_q;	/* Adv Library request structure. */
1788 	uchar align[24];	/* Request structure padding. */
1789 	struct scsi_cmnd *cmndp;	/* Mid-Level SCSI command pointer. */
1790 	dma_addr_t req_addr;
1791 	adv_sgblk_t *sgblkp;	/* Adv Library scatter-gather pointer. */
1792 } adv_req_t __aligned(32);
1793 
1794 /*
1795  * Adapter operation variable structure.
1796  *
1797  * One structure is required per host adapter.
1798  *
1799  * Field naming convention:
1800  *
1801  *  *_able indicates both whether a feature should be enabled or disabled
1802  *  and whether a device is capable of the feature. At initialization
1803  *  this field may be set, but later if a device is found to be incapable
1804  *  of the feature, the field is cleared.
1805  */
1806 typedef struct adv_dvc_var {
1807 	AdvPortAddr iop_base;	/* I/O port address */
1808 	ushort err_code;	/* fatal error code */
1809 	ushort bios_ctrl;	/* BIOS control word, EEPROM word 12 */
1810 	ushort wdtr_able;	/* try WDTR for a device */
1811 	ushort sdtr_able;	/* try SDTR for a device */
1812 	ushort ultra_able;	/* try SDTR Ultra speed for a device */
1813 	ushort sdtr_speed1;	/* EEPROM SDTR Speed for TID 0-3   */
1814 	ushort sdtr_speed2;	/* EEPROM SDTR Speed for TID 4-7   */
1815 	ushort sdtr_speed3;	/* EEPROM SDTR Speed for TID 8-11  */
1816 	ushort sdtr_speed4;	/* EEPROM SDTR Speed for TID 12-15 */
1817 	ushort tagqng_able;	/* try tagged queuing with a device */
1818 	ushort ppr_able;	/* PPR message capable per TID bitmask. */
1819 	uchar max_dvc_qng;	/* maximum number of tagged commands per device */
1820 	ushort start_motor;	/* start motor command allowed */
1821 	uchar scsi_reset_wait;	/* delay in seconds after scsi bus reset */
1822 	uchar chip_no;		/* should be assigned by caller */
1823 	uchar max_host_qng;	/* maximum number of Q'ed command allowed */
1824 	ushort no_scam;		/* scam_tolerant of EEPROM */
1825 	struct asc_board *drv_ptr;	/* driver pointer to private structure */
1826 	uchar chip_scsi_id;	/* chip SCSI target ID */
1827 	uchar chip_type;
1828 	uchar bist_err_code;
1829 	ADV_CARR_T *carrier;
1830 	ADV_CARR_T *carr_freelist;	/* Carrier free list. */
1831 	dma_addr_t carrier_addr;
1832 	ADV_CARR_T *icq_sp;	/* Initiator command queue stopper pointer. */
1833 	ADV_CARR_T *irq_sp;	/* Initiator response queue stopper pointer. */
1834 	ushort carr_pending_cnt;	/* Count of pending carriers. */
1835 	/*
1836 	 * Note: The following fields will not be used after initialization. The
1837 	 * driver may discard the buffer after initialization is done.
1838 	 */
1839 	ADV_DVC_CFG *cfg;	/* temporary configuration structure  */
1840 } ADV_DVC_VAR;
1841 
1842 /*
1843  * Microcode idle loop commands
1844  */
1845 #define IDLE_CMD_COMPLETED           0
1846 #define IDLE_CMD_STOP_CHIP           0x0001
1847 #define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1848 #define IDLE_CMD_SEND_INT            0x0004
1849 #define IDLE_CMD_ABORT               0x0008
1850 #define IDLE_CMD_DEVICE_RESET        0x0010
1851 #define IDLE_CMD_SCSI_RESET_START    0x0020	/* Assert SCSI Bus Reset */
1852 #define IDLE_CMD_SCSI_RESET_END      0x0040	/* Deassert SCSI Bus Reset */
1853 #define IDLE_CMD_SCSIREQ             0x0080
1854 
1855 #define IDLE_CMD_STATUS_SUCCESS      0x0001
1856 #define IDLE_CMD_STATUS_FAILURE      0x0002
1857 
1858 /*
1859  * AdvSendIdleCmd() flag definitions.
1860  */
1861 #define ADV_NOWAIT     0x01
1862 
1863 /*
1864  * Wait loop time out values.
1865  */
1866 #define SCSI_WAIT_100_MSEC           100UL	/* 100 milliseconds */
1867 #define SCSI_US_PER_MSEC             1000	/* microseconds per millisecond */
1868 #define SCSI_MAX_RETRY               10	/* retry count */
1869 
1870 #define ADV_ASYNC_RDMA_FAILURE          0x01	/* Fatal RDMA failure. */
1871 #define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02	/* Detected SCSI Bus Reset. */
1872 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03	/* Carrier Ready failure. */
1873 #define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04	/* RDMAed-in data invalid. */
1874 
1875 #define ADV_HOST_SCSI_BUS_RESET      0x80	/* Host Initiated SCSI Bus Reset. */
1876 
1877 /* Read byte from a register. */
1878 #define AdvReadByteRegister(iop_base, reg_off) \
1879      (ADV_MEM_READB((iop_base) + (reg_off)))
1880 
1881 /* Write byte to a register. */
1882 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1883      (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1884 
1885 /* Read word (2 bytes) from a register. */
1886 #define AdvReadWordRegister(iop_base, reg_off) \
1887      (ADV_MEM_READW((iop_base) + (reg_off)))
1888 
1889 /* Write word (2 bytes) to a register. */
1890 #define AdvWriteWordRegister(iop_base, reg_off, word) \
1891      (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1892 
1893 /* Write dword (4 bytes) to a register. */
1894 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1895      (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1896 
1897 /* Read byte from LRAM. */
1898 #define AdvReadByteLram(iop_base, addr, byte) \
1899 do { \
1900     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1901     (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1902 } while (0)
1903 
1904 /* Write byte to LRAM. */
1905 #define AdvWriteByteLram(iop_base, addr, byte) \
1906     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1907      ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1908 
1909 /* Read word (2 bytes) from LRAM. */
1910 #define AdvReadWordLram(iop_base, addr, word) \
1911 do { \
1912     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1913     (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1914 } while (0)
1915 
1916 /* Write word (2 bytes) to LRAM. */
1917 #define AdvWriteWordLram(iop_base, addr, word) \
1918     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1919      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1920 
1921 /* Write little-endian double word (4 bytes) to LRAM */
1922 /* Because of unspecified C language ordering don't use auto-increment. */
1923 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1924     ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1925       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1926                      cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1927      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1928       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1929                      cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1930 
1931 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
1932 #define AdvReadWordAutoIncLram(iop_base) \
1933      (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1934 
1935 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
1936 #define AdvWriteWordAutoIncLram(iop_base, word) \
1937      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1938 
1939 /*
1940  * Define macro to check for Condor signature.
1941  *
1942  * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1943  * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1944  */
1945 #define AdvFindSignature(iop_base) \
1946     (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1947     ADV_CHIP_ID_BYTE) && \
1948      (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1949     ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
1950 
1951 /*
1952  * Define macro to Return the version number of the chip at 'iop_base'.
1953  *
1954  * The second parameter 'bus_type' is currently unused.
1955  */
1956 #define AdvGetChipVersion(iop_base, bus_type) \
1957     AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1958 
1959 /*
1960  * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1961  * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1962  *
1963  * If the request has not yet been sent to the device it will simply be
1964  * aborted from RISC memory. If the request is disconnected it will be
1965  * aborted on reselection by sending an Abort Message to the target ID.
1966  *
1967  * Return value:
1968  *      ADV_TRUE(1) - Queue was successfully aborted.
1969  *      ADV_FALSE(0) - Queue was not found on the active queue list.
1970  */
1971 #define AdvAbortQueue(asc_dvc, srb_tag) \
1972      AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1973 		    (ADV_DCNT) (srb_tag))
1974 
1975 /*
1976  * Send a Bus Device Reset Message to the specified target ID.
1977  *
1978  * All outstanding commands will be purged if sending the
1979  * Bus Device Reset Message is successful.
1980  *
1981  * Return Value:
1982  *      ADV_TRUE(1) - All requests on the target are purged.
1983  *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
1984  *                     are not purged.
1985  */
1986 #define AdvResetDevice(asc_dvc, target_id) \
1987      AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET,	\
1988 		    (ADV_DCNT) (target_id))
1989 
1990 /*
1991  * SCSI Wide Type definition.
1992  */
1993 #define ADV_SCSI_BIT_ID_TYPE   ushort
1994 
1995 /*
1996  * AdvInitScsiTarget() 'cntl_flag' options.
1997  */
1998 #define ADV_SCAN_LUN           0x01
1999 #define ADV_CAPINFO_NOLUN      0x02
2000 
2001 /*
2002  * Convert target id to target id bit mask.
2003  */
2004 #define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2005 
2006 /*
2007  * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2008  */
2009 
2010 #define QD_NO_STATUS         0x00	/* Request not completed yet. */
2011 #define QD_NO_ERROR          0x01
2012 #define QD_ABORTED_BY_HOST   0x02
2013 #define QD_WITH_ERROR        0x04
2014 
2015 #define QHSTA_NO_ERROR              0x00
2016 #define QHSTA_M_SEL_TIMEOUT         0x11
2017 #define QHSTA_M_DATA_OVER_RUN       0x12
2018 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2019 #define QHSTA_M_QUEUE_ABORTED       0x15
2020 #define QHSTA_M_SXFR_SDMA_ERR       0x16	/* SXFR_STATUS SCSI DMA Error */
2021 #define QHSTA_M_SXFR_SXFR_PERR      0x17	/* SXFR_STATUS SCSI Bus Parity Error */
2022 #define QHSTA_M_RDMA_PERR           0x18	/* RISC PCI DMA parity error */
2023 #define QHSTA_M_SXFR_OFF_UFLW       0x19	/* SXFR_STATUS Offset Underflow */
2024 #define QHSTA_M_SXFR_OFF_OFLW       0x20	/* SXFR_STATUS Offset Overflow */
2025 #define QHSTA_M_SXFR_WD_TMO         0x21	/* SXFR_STATUS Watchdog Timeout */
2026 #define QHSTA_M_SXFR_DESELECTED     0x22	/* SXFR_STATUS Deselected */
2027 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2028 #define QHSTA_M_SXFR_XFR_OFLW       0x12	/* SXFR_STATUS Transfer Overflow */
2029 #define QHSTA_M_SXFR_XFR_PH_ERR     0x24	/* SXFR_STATUS Transfer Phase Error */
2030 #define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25	/* SXFR_STATUS Unknown Error */
2031 #define QHSTA_M_SCSI_BUS_RESET      0x30	/* Request aborted from SBR */
2032 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31	/* Request aborted from unsol. SBR */
2033 #define QHSTA_M_BUS_DEVICE_RESET    0x32	/* Request aborted from BDR */
2034 #define QHSTA_M_DIRECTION_ERR       0x35	/* Data Phase mismatch */
2035 #define QHSTA_M_DIRECTION_ERR_HUNG  0x36	/* Data Phase mismatch and bus hang */
2036 #define QHSTA_M_WTM_TIMEOUT         0x41
2037 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2038 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2039 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2040 #define QHSTA_M_INVALID_DEVICE      0x45	/* Bad target ID */
2041 #define QHSTA_M_FROZEN_TIDQ         0x46	/* TID Queue frozen. */
2042 #define QHSTA_M_SGBACKUP_ERROR      0x47	/* Scatter-Gather backup error */
2043 
2044 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2045 #define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2046 
2047 /*
2048  * Total contiguous memory needed for driver SG blocks.
2049  *
2050  * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2051  * number of scatter-gather elements the driver supports in a
2052  * single request.
2053  */
2054 
2055 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2056          (sizeof(ADV_SG_BLOCK) * \
2057           ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2058 
2059 /* struct asc_board flags */
2060 #define ASC_IS_WIDE_BOARD       0x04	/* AdvanSys Wide Board */
2061 
2062 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2063 
2064 #define NO_ISA_DMA              0xff	/* No ISA DMA Channel Used */
2065 
2066 #define ASC_INFO_SIZE           128	/* advansys_info() line size */
2067 
2068 /* Asc Library return codes */
2069 #define ASC_TRUE        1
2070 #define ASC_FALSE       0
2071 #define ASC_NOERROR     1
2072 #define ASC_BUSY        0
2073 #define ASC_ERROR       (-1)
2074 
2075 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2076 #ifndef ADVANSYS_STATS
2077 #define ASC_STATS_ADD(shost, counter, count)
2078 #else /* ADVANSYS_STATS */
2079 #define ASC_STATS_ADD(shost, counter, count) \
2080 	(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2081 #endif /* ADVANSYS_STATS */
2082 
2083 /* If the result wraps when calculating tenths, return 0. */
2084 #define ASC_TENTHS(num, den) \
2085     (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2086     0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2087 
2088 /*
2089  * Display a message to the console.
2090  */
2091 #define ASC_PRINT(s) \
2092     { \
2093         printk("advansys: "); \
2094         printk(s); \
2095     }
2096 
2097 #define ASC_PRINT1(s, a1) \
2098     { \
2099         printk("advansys: "); \
2100         printk((s), (a1)); \
2101     }
2102 
2103 #define ASC_PRINT2(s, a1, a2) \
2104     { \
2105         printk("advansys: "); \
2106         printk((s), (a1), (a2)); \
2107     }
2108 
2109 #define ASC_PRINT3(s, a1, a2, a3) \
2110     { \
2111         printk("advansys: "); \
2112         printk((s), (a1), (a2), (a3)); \
2113     }
2114 
2115 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2116     { \
2117         printk("advansys: "); \
2118         printk((s), (a1), (a2), (a3), (a4)); \
2119     }
2120 
2121 #ifndef ADVANSYS_DEBUG
2122 
2123 #define ASC_DBG(lvl, s...)
2124 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2125 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2126 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2127 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2128 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2129 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2130 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2131 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2132 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2133 
2134 #else /* ADVANSYS_DEBUG */
2135 
2136 /*
2137  * Debugging Message Levels:
2138  * 0: Errors Only
2139  * 1: High-Level Tracing
2140  * 2-N: Verbose Tracing
2141  */
2142 
2143 #define ASC_DBG(lvl, format, arg...) {					\
2144 	if (asc_dbglvl >= (lvl))					\
2145 		printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,		\
2146 			__func__ , ## arg);				\
2147 }
2148 
2149 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2150     { \
2151         if (asc_dbglvl >= (lvl)) { \
2152             asc_prt_scsi_host(s); \
2153         } \
2154     }
2155 
2156 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2157     { \
2158         if (asc_dbglvl >= (lvl)) { \
2159             asc_prt_asc_scsi_q(scsiqp); \
2160         } \
2161     }
2162 
2163 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2164     { \
2165         if (asc_dbglvl >= (lvl)) { \
2166             asc_prt_asc_qdone_info(qdone); \
2167         } \
2168     }
2169 
2170 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2171     { \
2172         if (asc_dbglvl >= (lvl)) { \
2173             asc_prt_adv_scsi_req_q(scsiqp); \
2174         } \
2175     }
2176 
2177 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2178     { \
2179         if (asc_dbglvl >= (lvl)) { \
2180             asc_prt_hex((name), (start), (length)); \
2181         } \
2182     }
2183 
2184 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2185         ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2186 
2187 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2188         ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2189 
2190 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2191         ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2192 #endif /* ADVANSYS_DEBUG */
2193 
2194 #ifdef ADVANSYS_STATS
2195 
2196 /* Per board statistics structure */
2197 struct asc_stats {
2198 	/* Driver Entrypoint Statistics */
2199 	unsigned int queuecommand;	/* # calls to advansys_queuecommand() */
2200 	unsigned int reset;		/* # calls to advansys_eh_bus_reset() */
2201 	unsigned int biosparam;	/* # calls to advansys_biosparam() */
2202 	unsigned int interrupt;	/* # advansys_interrupt() calls */
2203 	unsigned int callback;	/* # calls to asc/adv_isr_callback() */
2204 	unsigned int done;		/* # calls to request's scsi_done function */
2205 	unsigned int build_error;	/* # asc/adv_build_req() ASC_ERROR returns. */
2206 	unsigned int adv_build_noreq;	/* # adv_build_req() adv_req_t alloc. fail. */
2207 	unsigned int adv_build_nosg;	/* # adv_build_req() adv_sgblk_t alloc. fail. */
2208 	/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2209 	unsigned int exe_noerror;	/* # ASC_NOERROR returns. */
2210 	unsigned int exe_busy;	/* # ASC_BUSY returns. */
2211 	unsigned int exe_error;	/* # ASC_ERROR returns. */
2212 	unsigned int exe_unknown;	/* # unknown returns. */
2213 	/* Data Transfer Statistics */
2214 	unsigned int xfer_cnt;	/* # I/O requests received */
2215 	unsigned int xfer_elem;	/* # scatter-gather elements */
2216 	unsigned int xfer_sect;	/* # 512-byte blocks */
2217 };
2218 #endif /* ADVANSYS_STATS */
2219 
2220 /*
2221  * Structure allocated for each board.
2222  *
2223  * This structure is allocated by scsi_host_alloc() at the end
2224  * of the 'Scsi_Host' structure starting at the 'hostdata'
2225  * field. It is guaranteed to be allocated from DMA-able memory.
2226  */
2227 struct asc_board {
2228 	struct device *dev;
2229 	struct Scsi_Host *shost;
2230 	uint flags;		/* Board flags */
2231 	unsigned int irq;
2232 	union {
2233 		ASC_DVC_VAR asc_dvc_var;	/* Narrow board */
2234 		ADV_DVC_VAR adv_dvc_var;	/* Wide board */
2235 	} dvc_var;
2236 	union {
2237 		ASC_DVC_CFG asc_dvc_cfg;	/* Narrow board */
2238 		ADV_DVC_CFG adv_dvc_cfg;	/* Wide board */
2239 	} dvc_cfg;
2240 	ushort asc_n_io_port;	/* Number I/O ports. */
2241 	ADV_SCSI_BIT_ID_TYPE init_tidmask;	/* Target init./valid mask */
2242 	ushort reqcnt[ADV_MAX_TID + 1];	/* Starvation request count */
2243 	ADV_SCSI_BIT_ID_TYPE queue_full;	/* Queue full mask */
2244 	ushort queue_full_cnt[ADV_MAX_TID + 1];	/* Queue full count */
2245 	union {
2246 		ASCEEP_CONFIG asc_eep;	/* Narrow EEPROM config. */
2247 		ADVEEP_3550_CONFIG adv_3550_eep;	/* 3550 EEPROM config. */
2248 		ADVEEP_38C0800_CONFIG adv_38C0800_eep;	/* 38C0800 EEPROM config. */
2249 		ADVEEP_38C1600_CONFIG adv_38C1600_eep;	/* 38C1600 EEPROM config. */
2250 	} eep_config;
2251 	/* /proc/scsi/advansys/[0...] */
2252 #ifdef ADVANSYS_STATS
2253 	struct asc_stats asc_stats;	/* Board statistics */
2254 #endif				/* ADVANSYS_STATS */
2255 	/*
2256 	 * The following fields are used only for Narrow Boards.
2257 	 */
2258 	uchar sdtr_data[ASC_MAX_TID + 1];	/* SDTR information */
2259 	/*
2260 	 * The following fields are used only for Wide Boards.
2261 	 */
2262 	void __iomem *ioremap_addr;	/* I/O Memory remap address. */
2263 	ushort ioport;		/* I/O Port address. */
2264 	adv_req_t *adv_reqp;	/* Request structures. */
2265 	dma_addr_t adv_reqp_addr;
2266 	size_t adv_reqp_size;
2267 	struct dma_pool *adv_sgblk_pool;	/* Scatter-gather structures. */
2268 	ushort bios_signature;	/* BIOS Signature. */
2269 	ushort bios_version;	/* BIOS Version. */
2270 	ushort bios_codeseg;	/* BIOS Code Segment. */
2271 	ushort bios_codelen;	/* BIOS Code Segment Length. */
2272 };
2273 
2274 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2275 							dvc_var.asc_dvc_var)
2276 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2277 							dvc_var.adv_dvc_var)
2278 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2279 
2280 struct advansys_cmd {
2281 	dma_addr_t dma_handle;
2282 };
2283 
2284 static struct advansys_cmd *advansys_cmd(struct scsi_cmnd *cmd)
2285 {
2286 	return scsi_cmd_priv(cmd);
2287 }
2288 
2289 #ifdef ADVANSYS_DEBUG
2290 static int asc_dbglvl = 3;
2291 
2292 /*
2293  * asc_prt_asc_dvc_var()
2294  */
2295 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2296 {
2297 	printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2298 
2299 	printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2300 	       "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2301 
2302 	printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2303 		(unsigned)h->init_sdtr);
2304 
2305 	printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2306 	       "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2307 	       (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2308 	       (unsigned)h->chip_no);
2309 
2310 	printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2311 	       "%u,\n", (unsigned)h->queue_full_or_busy,
2312 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2313 
2314 	printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2315 	       "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2316 	       (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2317 	       (unsigned)h->in_critical_cnt);
2318 
2319 	printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2320 	       "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2321 	       (unsigned)h->init_state, (unsigned)h->no_scam,
2322 	       (unsigned)h->pci_fix_asyn_xfer);
2323 
2324 	printk(" cfg 0x%lx\n", (ulong)h->cfg);
2325 }
2326 
2327 /*
2328  * asc_prt_asc_dvc_cfg()
2329  */
2330 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2331 {
2332 	printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2333 
2334 	printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2335 	       h->can_tagged_qng, h->cmd_qng_enabled);
2336 	printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2337 	       h->disc_enable, h->sdtr_enable);
2338 
2339 	printk(" chip_scsi_id %d, chip_version %d,\n",
2340 	       h->chip_scsi_id, h->chip_version);
2341 
2342 	printk(" mcode_date 0x%x, mcode_version %d\n",
2343 		h->mcode_date, h->mcode_version);
2344 }
2345 
2346 /*
2347  * asc_prt_adv_dvc_var()
2348  *
2349  * Display an ADV_DVC_VAR structure.
2350  */
2351 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2352 {
2353 	printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2354 
2355 	printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2356 	       (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2357 
2358 	printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2359 	       (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2360 
2361 	printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2362 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2363 
2364 	printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2365 	       (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2366 	       h->carr_freelist);
2367 
2368 	printk("  icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
2369 
2370 	printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2371 	       (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2372 
2373 	printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2374 	       (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2375 }
2376 
2377 /*
2378  * asc_prt_adv_dvc_cfg()
2379  *
2380  * Display an ADV_DVC_CFG structure.
2381  */
2382 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2383 {
2384 	printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2385 
2386 	printk("  disc_enable 0x%x, termination 0x%x\n",
2387 	       h->disc_enable, h->termination);
2388 
2389 	printk("  chip_version 0x%x, mcode_date 0x%x\n",
2390 	       h->chip_version, h->mcode_date);
2391 
2392 	printk("  mcode_version 0x%x, control_flag 0x%x\n",
2393 	       h->mcode_version, h->control_flag);
2394 }
2395 
2396 /*
2397  * asc_prt_scsi_host()
2398  */
2399 static void asc_prt_scsi_host(struct Scsi_Host *s)
2400 {
2401 	struct asc_board *boardp = shost_priv(s);
2402 
2403 	printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2404 	printk(" host_busy %d, host_no %d,\n",
2405 	       scsi_host_busy(s), s->host_no);
2406 
2407 	printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2408 	       (ulong)s->base, (ulong)s->io_port, boardp->irq);
2409 
2410 	printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2411 	       s->dma_channel, s->this_id, s->can_queue);
2412 
2413 	printk(" cmd_per_lun %d, sg_tablesize %d\n",
2414 	       s->cmd_per_lun, s->sg_tablesize);
2415 
2416 	if (ASC_NARROW_BOARD(boardp)) {
2417 		asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2418 		asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2419 	} else {
2420 		asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2421 		asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2422 	}
2423 }
2424 
2425 /*
2426  * asc_prt_hex()
2427  *
2428  * Print hexadecimal output in 4 byte groupings 32 bytes
2429  * or 8 double-words per line.
2430  */
2431 static void asc_prt_hex(char *f, uchar *s, int l)
2432 {
2433 	int i;
2434 	int j;
2435 	int k;
2436 	int m;
2437 
2438 	printk("%s: (%d bytes)\n", f, l);
2439 
2440 	for (i = 0; i < l; i += 32) {
2441 
2442 		/* Display a maximum of 8 double-words per line. */
2443 		if ((k = (l - i) / 4) >= 8) {
2444 			k = 8;
2445 			m = 0;
2446 		} else {
2447 			m = (l - i) % 4;
2448 		}
2449 
2450 		for (j = 0; j < k; j++) {
2451 			printk(" %2.2X%2.2X%2.2X%2.2X",
2452 			       (unsigned)s[i + (j * 4)],
2453 			       (unsigned)s[i + (j * 4) + 1],
2454 			       (unsigned)s[i + (j * 4) + 2],
2455 			       (unsigned)s[i + (j * 4) + 3]);
2456 		}
2457 
2458 		switch (m) {
2459 		case 0:
2460 		default:
2461 			break;
2462 		case 1:
2463 			printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2464 			break;
2465 		case 2:
2466 			printk(" %2.2X%2.2X",
2467 			       (unsigned)s[i + (j * 4)],
2468 			       (unsigned)s[i + (j * 4) + 1]);
2469 			break;
2470 		case 3:
2471 			printk(" %2.2X%2.2X%2.2X",
2472 			       (unsigned)s[i + (j * 4) + 1],
2473 			       (unsigned)s[i + (j * 4) + 2],
2474 			       (unsigned)s[i + (j * 4) + 3]);
2475 			break;
2476 		}
2477 
2478 		printk("\n");
2479 	}
2480 }
2481 
2482 /*
2483  * asc_prt_asc_scsi_q()
2484  */
2485 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2486 {
2487 	ASC_SG_HEAD *sgp;
2488 	int i;
2489 
2490 	printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2491 
2492 	printk
2493 	    (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2494 	     q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
2495 	     q->q2.tag_code);
2496 
2497 	printk
2498 	    (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2499 	     (ulong)le32_to_cpu(q->q1.data_addr),
2500 	     (ulong)le32_to_cpu(q->q1.data_cnt),
2501 	     (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2502 
2503 	printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2504 	       (ulong)q->cdbptr, q->q2.cdb_len,
2505 	       (ulong)q->sg_head, q->q1.sg_queue_cnt);
2506 
2507 	if (q->sg_head) {
2508 		sgp = q->sg_head;
2509 		printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2510 		printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2511 		       sgp->queue_cnt);
2512 		for (i = 0; i < sgp->entry_cnt; i++) {
2513 			printk(" [%u]: addr 0x%lx, bytes %lu\n",
2514 			       i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2515 			       (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2516 		}
2517 
2518 	}
2519 }
2520 
2521 /*
2522  * asc_prt_asc_qdone_info()
2523  */
2524 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2525 {
2526 	printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2527 	printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2528 	       q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
2529 	       q->d2.tag_code);
2530 	printk
2531 	    (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2532 	     q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2533 }
2534 
2535 /*
2536  * asc_prt_adv_sgblock()
2537  *
2538  * Display an ADV_SG_BLOCK structure.
2539  */
2540 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2541 {
2542 	int i;
2543 
2544 	printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2545 	       (ulong)b, sgblockno);
2546 	printk("  sg_cnt %u, sg_ptr 0x%x\n",
2547 	       b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
2548 	BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2549 	if (b->sg_ptr != 0)
2550 		BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2551 	for (i = 0; i < b->sg_cnt; i++) {
2552 		printk("  [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2553 		       i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
2554 		       (u32)le32_to_cpu(b->sg_list[i].sg_count));
2555 	}
2556 }
2557 
2558 /*
2559  * asc_prt_adv_scsi_req_q()
2560  *
2561  * Display an ADV_SCSI_REQ_Q structure.
2562  */
2563 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2564 {
2565 	int sg_blk_cnt;
2566 	struct adv_sg_block *sg_ptr;
2567 	adv_sgblk_t *sgblkp;
2568 
2569 	printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2570 
2571 	printk("  target_id %u, target_lun %u, srb_tag 0x%x\n",
2572 	       q->target_id, q->target_lun, q->srb_tag);
2573 
2574 	printk("  cntl 0x%x, data_addr 0x%lx\n",
2575 	       q->cntl, (ulong)le32_to_cpu(q->data_addr));
2576 
2577 	printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2578 	       (ulong)le32_to_cpu(q->data_cnt),
2579 	       (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2580 
2581 	printk
2582 	    ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2583 	     q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2584 
2585 	printk("  sg_working_ix 0x%x, target_cmd %u\n",
2586 	       q->sg_working_ix, q->target_cmd);
2587 
2588 	printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2589 	       (ulong)le32_to_cpu(q->scsiq_rptr),
2590 	       (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2591 
2592 	/* Display the request's ADV_SG_BLOCK structures. */
2593 	if (q->sg_list_ptr != NULL) {
2594 		sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
2595 		sg_blk_cnt = 0;
2596 		while (sgblkp) {
2597 			sg_ptr = &sgblkp->sg_block;
2598 			asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2599 			if (sg_ptr->sg_ptr == 0) {
2600 				break;
2601 			}
2602 			sgblkp = sgblkp->next_sgblkp;
2603 			sg_blk_cnt++;
2604 		}
2605 	}
2606 }
2607 #endif /* ADVANSYS_DEBUG */
2608 
2609 /*
2610  * advansys_info()
2611  *
2612  * Return suitable for printing on the console with the argument
2613  * adapter's configuration information.
2614  *
2615  * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2616  * otherwise the static 'info' array will be overrun.
2617  */
2618 static const char *advansys_info(struct Scsi_Host *shost)
2619 {
2620 	static char info[ASC_INFO_SIZE];
2621 	struct asc_board *boardp = shost_priv(shost);
2622 	ASC_DVC_VAR *asc_dvc_varp;
2623 	ADV_DVC_VAR *adv_dvc_varp;
2624 	char *busname;
2625 	char *widename = NULL;
2626 
2627 	if (ASC_NARROW_BOARD(boardp)) {
2628 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2629 		ASC_DBG(1, "begin\n");
2630 
2631 		if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2632 			busname = "VL";
2633 		} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2634 			busname = "EISA";
2635 		} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2636 			if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2637 			    == ASC_IS_PCI_ULTRA) {
2638 				busname = "PCI Ultra";
2639 			} else {
2640 				busname = "PCI";
2641 			}
2642 		} else {
2643 			busname = "?";
2644 			shost_printk(KERN_ERR, shost, "unknown bus "
2645 				"type %d\n", asc_dvc_varp->bus_type);
2646 		}
2647 		sprintf(info,
2648 			"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2649 			ASC_VERSION, busname, (ulong)shost->io_port,
2650 			(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2651 			boardp->irq);
2652 	} else {
2653 		/*
2654 		 * Wide Adapter Information
2655 		 *
2656 		 * Memory-mapped I/O is used instead of I/O space to access
2657 		 * the adapter, but display the I/O Port range. The Memory
2658 		 * I/O address is displayed through the driver /proc file.
2659 		 */
2660 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2661 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2662 			widename = "Ultra-Wide";
2663 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2664 			widename = "Ultra2-Wide";
2665 		} else {
2666 			widename = "Ultra3-Wide";
2667 		}
2668 		sprintf(info,
2669 			"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2670 			ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2671 			(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2672 	}
2673 	BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2674 	ASC_DBG(1, "end\n");
2675 	return info;
2676 }
2677 
2678 #ifdef CONFIG_PROC_FS
2679 
2680 /*
2681  * asc_prt_board_devices()
2682  *
2683  * Print driver information for devices attached to the board.
2684  */
2685 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2686 {
2687 	struct asc_board *boardp = shost_priv(shost);
2688 	int chip_scsi_id;
2689 	int i;
2690 
2691 	seq_printf(m,
2692 		   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2693 		   shost->host_no);
2694 
2695 	if (ASC_NARROW_BOARD(boardp)) {
2696 		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2697 	} else {
2698 		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2699 	}
2700 
2701 	seq_puts(m, "Target IDs Detected:");
2702 	for (i = 0; i <= ADV_MAX_TID; i++) {
2703 		if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2704 			seq_printf(m, " %X,", i);
2705 	}
2706 	seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2707 }
2708 
2709 /*
2710  * Display Wide Board BIOS Information.
2711  */
2712 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2713 {
2714 	struct asc_board *boardp = shost_priv(shost);
2715 	ushort major, minor, letter;
2716 
2717 	seq_puts(m, "\nROM BIOS Version: ");
2718 
2719 	/*
2720 	 * If the BIOS saved a valid signature, then fill in
2721 	 * the BIOS code segment base address.
2722 	 */
2723 	if (boardp->bios_signature != 0x55AA) {
2724 		seq_puts(m, "Disabled or Pre-3.1\n"
2725 			"BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2726 			"can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2727 	} else {
2728 		major = (boardp->bios_version >> 12) & 0xF;
2729 		minor = (boardp->bios_version >> 8) & 0xF;
2730 		letter = (boardp->bios_version & 0xFF);
2731 
2732 		seq_printf(m, "%d.%d%c\n",
2733 				   major, minor,
2734 				   letter >= 26 ? '?' : letter + 'A');
2735 		/*
2736 		 * Current available ROM BIOS release is 3.1I for UW
2737 		 * and 3.2I for U2W. This code doesn't differentiate
2738 		 * UW and U2W boards.
2739 		 */
2740 		if (major < 3 || (major <= 3 && minor < 1) ||
2741 		    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2742 			seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2743 				"ftp://ftp.connectcom.net/pub\n");
2744 		}
2745 	}
2746 }
2747 
2748 /*
2749  * Add serial number to information bar if signature AAh
2750  * is found in at bit 15-9 (7 bits) of word 1.
2751  *
2752  * Serial Number consists fo 12 alpha-numeric digits.
2753  *
2754  *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2755  *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2756  *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2757  *       5 - Product revision (A-J)    Word0:  "         "
2758  *
2759  *           Signature                 Word1: 15-9 (7 bits)
2760  *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2761  *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2762  *
2763  *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2764  *
2765  * Note 1: Only production cards will have a serial number.
2766  *
2767  * Note 2: Signature is most significant 7 bits (0xFE).
2768  *
2769  * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2770  */
2771 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2772 {
2773 	ushort w, num;
2774 
2775 	if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2776 		return ASC_FALSE;
2777 	} else {
2778 		/*
2779 		 * First word - 6 digits.
2780 		 */
2781 		w = serialnum[0];
2782 
2783 		/* Product type - 1st digit. */
2784 		if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2785 			/* Product type is P=Prototype */
2786 			*cp += 0x8;
2787 		}
2788 		cp++;
2789 
2790 		/* Manufacturing location - 2nd digit. */
2791 		*cp++ = 'A' + ((w & 0x1C00) >> 10);
2792 
2793 		/* Product ID - 3rd, 4th digits. */
2794 		num = w & 0x3FF;
2795 		*cp++ = '0' + (num / 100);
2796 		num %= 100;
2797 		*cp++ = '0' + (num / 10);
2798 
2799 		/* Product revision - 5th digit. */
2800 		*cp++ = 'A' + (num % 10);
2801 
2802 		/*
2803 		 * Second word
2804 		 */
2805 		w = serialnum[1];
2806 
2807 		/*
2808 		 * Year - 6th digit.
2809 		 *
2810 		 * If bit 15 of third word is set, then the
2811 		 * last digit of the year is greater than 7.
2812 		 */
2813 		if (serialnum[2] & 0x8000) {
2814 			*cp++ = '8' + ((w & 0x1C0) >> 6);
2815 		} else {
2816 			*cp++ = '0' + ((w & 0x1C0) >> 6);
2817 		}
2818 
2819 		/* Week of year - 7th, 8th digits. */
2820 		num = w & 0x003F;
2821 		*cp++ = '0' + num / 10;
2822 		num %= 10;
2823 		*cp++ = '0' + num;
2824 
2825 		/*
2826 		 * Third word
2827 		 */
2828 		w = serialnum[2] & 0x7FFF;
2829 
2830 		/* Serial number - 9th digit. */
2831 		*cp++ = 'A' + (w / 1000);
2832 
2833 		/* 10th, 11th, 12th digits. */
2834 		num = w % 1000;
2835 		*cp++ = '0' + num / 100;
2836 		num %= 100;
2837 		*cp++ = '0' + num / 10;
2838 		num %= 10;
2839 		*cp++ = '0' + num;
2840 
2841 		*cp = '\0';	/* Null Terminate the string. */
2842 		return ASC_TRUE;
2843 	}
2844 }
2845 
2846 /*
2847  * asc_prt_asc_board_eeprom()
2848  *
2849  * Print board EEPROM configuration.
2850  */
2851 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2852 {
2853 	struct asc_board *boardp = shost_priv(shost);
2854 	ASCEEP_CONFIG *ep;
2855 	int i;
2856 	uchar serialstr[13];
2857 
2858 	ep = &boardp->eep_config.asc_eep;
2859 
2860 	seq_printf(m,
2861 		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2862 		   shost->host_no);
2863 
2864 	if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
2865 	    == ASC_TRUE)
2866 		seq_printf(m, " Serial Number: %s\n", serialstr);
2867 	else if (ep->adapter_info[5] == 0xBB)
2868 		seq_puts(m,
2869 			 " Default Settings Used for EEPROM-less Adapter.\n");
2870 	else
2871 		seq_puts(m, " Serial Number Signature Not Present.\n");
2872 
2873 	seq_printf(m,
2874 		   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2875 		   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
2876 		   ep->max_tag_qng);
2877 
2878 	seq_printf(m,
2879 		   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
2880 
2881 	seq_puts(m, " Target ID:           ");
2882 	for (i = 0; i <= ASC_MAX_TID; i++)
2883 		seq_printf(m, " %d", i);
2884 
2885 	seq_puts(m, "\n Disconnects:         ");
2886 	for (i = 0; i <= ASC_MAX_TID; i++)
2887 		seq_printf(m, " %c",
2888 			   (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2889 
2890 	seq_puts(m, "\n Command Queuing:     ");
2891 	for (i = 0; i <= ASC_MAX_TID; i++)
2892 		seq_printf(m, " %c",
2893 			   (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2894 
2895 	seq_puts(m, "\n Start Motor:         ");
2896 	for (i = 0; i <= ASC_MAX_TID; i++)
2897 		seq_printf(m, " %c",
2898 			   (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2899 
2900 	seq_puts(m, "\n Synchronous Transfer:");
2901 	for (i = 0; i <= ASC_MAX_TID; i++)
2902 		seq_printf(m, " %c",
2903 			   (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2904 	seq_putc(m, '\n');
2905 }
2906 
2907 /*
2908  * asc_prt_adv_board_eeprom()
2909  *
2910  * Print board EEPROM configuration.
2911  */
2912 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2913 {
2914 	struct asc_board *boardp = shost_priv(shost);
2915 	ADV_DVC_VAR *adv_dvc_varp;
2916 	int i;
2917 	char *termstr;
2918 	uchar serialstr[13];
2919 	ADVEEP_3550_CONFIG *ep_3550 = NULL;
2920 	ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
2921 	ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
2922 	ushort word;
2923 	ushort *wordp;
2924 	ushort sdtr_speed = 0;
2925 
2926 	adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2927 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2928 		ep_3550 = &boardp->eep_config.adv_3550_eep;
2929 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2930 		ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
2931 	} else {
2932 		ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
2933 	}
2934 
2935 	seq_printf(m,
2936 		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2937 		   shost->host_no);
2938 
2939 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2940 		wordp = &ep_3550->serial_number_word1;
2941 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2942 		wordp = &ep_38C0800->serial_number_word1;
2943 	} else {
2944 		wordp = &ep_38C1600->serial_number_word1;
2945 	}
2946 
2947 	if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
2948 		seq_printf(m, " Serial Number: %s\n", serialstr);
2949 	else
2950 		seq_puts(m, " Serial Number Signature Not Present.\n");
2951 
2952 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2953 		seq_printf(m,
2954 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2955 			   ep_3550->adapter_scsi_id,
2956 			   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
2957 	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2958 		seq_printf(m,
2959 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2960 			   ep_38C0800->adapter_scsi_id,
2961 			   ep_38C0800->max_host_qng,
2962 			   ep_38C0800->max_dvc_qng);
2963 	else
2964 		seq_printf(m,
2965 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2966 			   ep_38C1600->adapter_scsi_id,
2967 			   ep_38C1600->max_host_qng,
2968 			   ep_38C1600->max_dvc_qng);
2969 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2970 		word = ep_3550->termination;
2971 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2972 		word = ep_38C0800->termination_lvd;
2973 	} else {
2974 		word = ep_38C1600->termination_lvd;
2975 	}
2976 	switch (word) {
2977 	case 1:
2978 		termstr = "Low Off/High Off";
2979 		break;
2980 	case 2:
2981 		termstr = "Low Off/High On";
2982 		break;
2983 	case 3:
2984 		termstr = "Low On/High On";
2985 		break;
2986 	default:
2987 	case 0:
2988 		termstr = "Automatic";
2989 		break;
2990 	}
2991 
2992 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2993 		seq_printf(m,
2994 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
2995 			   ep_3550->termination, termstr,
2996 			   ep_3550->bios_ctrl);
2997 	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2998 		seq_printf(m,
2999 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3000 			   ep_38C0800->termination_lvd, termstr,
3001 			   ep_38C0800->bios_ctrl);
3002 	else
3003 		seq_printf(m,
3004 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3005 			   ep_38C1600->termination_lvd, termstr,
3006 			   ep_38C1600->bios_ctrl);
3007 
3008 	seq_puts(m, " Target ID:           ");
3009 	for (i = 0; i <= ADV_MAX_TID; i++)
3010 		seq_printf(m, " %X", i);
3011 	seq_putc(m, '\n');
3012 
3013 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3014 		word = ep_3550->disc_enable;
3015 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3016 		word = ep_38C0800->disc_enable;
3017 	} else {
3018 		word = ep_38C1600->disc_enable;
3019 	}
3020 	seq_puts(m, " Disconnects:         ");
3021 	for (i = 0; i <= ADV_MAX_TID; i++)
3022 		seq_printf(m, " %c",
3023 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3024 	seq_putc(m, '\n');
3025 
3026 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3027 		word = ep_3550->tagqng_able;
3028 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3029 		word = ep_38C0800->tagqng_able;
3030 	} else {
3031 		word = ep_38C1600->tagqng_able;
3032 	}
3033 	seq_puts(m, " Command Queuing:     ");
3034 	for (i = 0; i <= ADV_MAX_TID; i++)
3035 		seq_printf(m, " %c",
3036 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3037 	seq_putc(m, '\n');
3038 
3039 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3040 		word = ep_3550->start_motor;
3041 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3042 		word = ep_38C0800->start_motor;
3043 	} else {
3044 		word = ep_38C1600->start_motor;
3045 	}
3046 	seq_puts(m, " Start Motor:         ");
3047 	for (i = 0; i <= ADV_MAX_TID; i++)
3048 		seq_printf(m, " %c",
3049 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3050 	seq_putc(m, '\n');
3051 
3052 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3053 		seq_puts(m, " Synchronous Transfer:");
3054 		for (i = 0; i <= ADV_MAX_TID; i++)
3055 			seq_printf(m, " %c",
3056 				   (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3057 				   'Y' : 'N');
3058 		seq_putc(m, '\n');
3059 	}
3060 
3061 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3062 		seq_puts(m, " Ultra Transfer:      ");
3063 		for (i = 0; i <= ADV_MAX_TID; i++)
3064 			seq_printf(m, " %c",
3065 				   (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3066 				   ? 'Y' : 'N');
3067 		seq_putc(m, '\n');
3068 	}
3069 
3070 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3071 		word = ep_3550->wdtr_able;
3072 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3073 		word = ep_38C0800->wdtr_able;
3074 	} else {
3075 		word = ep_38C1600->wdtr_able;
3076 	}
3077 	seq_puts(m, " Wide Transfer:       ");
3078 	for (i = 0; i <= ADV_MAX_TID; i++)
3079 		seq_printf(m, " %c",
3080 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3081 	seq_putc(m, '\n');
3082 
3083 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3084 	    adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3085 		seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
3086 		for (i = 0; i <= ADV_MAX_TID; i++) {
3087 			char *speed_str;
3088 
3089 			if (i == 0) {
3090 				sdtr_speed = adv_dvc_varp->sdtr_speed1;
3091 			} else if (i == 4) {
3092 				sdtr_speed = adv_dvc_varp->sdtr_speed2;
3093 			} else if (i == 8) {
3094 				sdtr_speed = adv_dvc_varp->sdtr_speed3;
3095 			} else if (i == 12) {
3096 				sdtr_speed = adv_dvc_varp->sdtr_speed4;
3097 			}
3098 			switch (sdtr_speed & ADV_MAX_TID) {
3099 			case 0:
3100 				speed_str = "Off";
3101 				break;
3102 			case 1:
3103 				speed_str = "  5";
3104 				break;
3105 			case 2:
3106 				speed_str = " 10";
3107 				break;
3108 			case 3:
3109 				speed_str = " 20";
3110 				break;
3111 			case 4:
3112 				speed_str = " 40";
3113 				break;
3114 			case 5:
3115 				speed_str = " 80";
3116 				break;
3117 			default:
3118 				speed_str = "Unk";
3119 				break;
3120 			}
3121 			seq_printf(m, "%X:%s ", i, speed_str);
3122 			if (i == 7)
3123 				seq_puts(m, "\n  ");
3124 			sdtr_speed >>= 4;
3125 		}
3126 		seq_putc(m, '\n');
3127 	}
3128 }
3129 
3130 /*
3131  * asc_prt_driver_conf()
3132  */
3133 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3134 {
3135 	struct asc_board *boardp = shost_priv(shost);
3136 
3137 	seq_printf(m,
3138 		"\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3139 		shost->host_no);
3140 
3141 	seq_printf(m,
3142 		   " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3143 		   scsi_host_busy(shost), shost->max_id,
3144 		   shost->max_lun, shost->max_channel);
3145 
3146 	seq_printf(m,
3147 		   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3148 		   shost->unique_id, shost->can_queue, shost->this_id,
3149 		   shost->sg_tablesize, shost->cmd_per_lun);
3150 
3151 	seq_printf(m,
3152 		   " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3153 		   boardp->flags, shost->last_reset, jiffies,
3154 		   boardp->asc_n_io_port);
3155 
3156 	seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3157 }
3158 
3159 /*
3160  * asc_prt_asc_board_info()
3161  *
3162  * Print dynamic board configuration information.
3163  */
3164 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3165 {
3166 	struct asc_board *boardp = shost_priv(shost);
3167 	int chip_scsi_id;
3168 	ASC_DVC_VAR *v;
3169 	ASC_DVC_CFG *c;
3170 	int i;
3171 	int renegotiate = 0;
3172 
3173 	v = &boardp->dvc_var.asc_dvc_var;
3174 	c = &boardp->dvc_cfg.asc_dvc_cfg;
3175 	chip_scsi_id = c->chip_scsi_id;
3176 
3177 	seq_printf(m,
3178 		   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3179 		   shost->host_no);
3180 
3181 	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3182 		   "mcode_version 0x%x, err_code %u\n",
3183 		   c->chip_version, c->mcode_date, c->mcode_version,
3184 		   v->err_code);
3185 
3186 	/* Current number of commands waiting for the host. */
3187 	seq_printf(m,
3188 		   " Total Command Pending: %d\n", v->cur_total_qng);
3189 
3190 	seq_puts(m, " Command Queuing:");
3191 	for (i = 0; i <= ASC_MAX_TID; i++) {
3192 		if ((chip_scsi_id == i) ||
3193 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3194 			continue;
3195 		}
3196 		seq_printf(m, " %X:%c",
3197 			   i,
3198 			   (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3199 	}
3200 
3201 	/* Current number of commands waiting for a device. */
3202 	seq_puts(m, "\n Command Queue Pending:");
3203 	for (i = 0; i <= ASC_MAX_TID; i++) {
3204 		if ((chip_scsi_id == i) ||
3205 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3206 			continue;
3207 		}
3208 		seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3209 	}
3210 
3211 	/* Current limit on number of commands that can be sent to a device. */
3212 	seq_puts(m, "\n Command Queue Limit:");
3213 	for (i = 0; i <= ASC_MAX_TID; i++) {
3214 		if ((chip_scsi_id == i) ||
3215 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3216 			continue;
3217 		}
3218 		seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3219 	}
3220 
3221 	/* Indicate whether the device has returned queue full status. */
3222 	seq_puts(m, "\n Command Queue Full:");
3223 	for (i = 0; i <= ASC_MAX_TID; i++) {
3224 		if ((chip_scsi_id == i) ||
3225 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3226 			continue;
3227 		}
3228 		if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3229 			seq_printf(m, " %X:Y-%d",
3230 				   i, boardp->queue_full_cnt[i]);
3231 		else
3232 			seq_printf(m, " %X:N", i);
3233 	}
3234 
3235 	seq_puts(m, "\n Synchronous Transfer:");
3236 	for (i = 0; i <= ASC_MAX_TID; i++) {
3237 		if ((chip_scsi_id == i) ||
3238 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3239 			continue;
3240 		}
3241 		seq_printf(m, " %X:%c",
3242 			   i,
3243 			   (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3244 	}
3245 	seq_putc(m, '\n');
3246 
3247 	for (i = 0; i <= ASC_MAX_TID; i++) {
3248 		uchar syn_period_ix;
3249 
3250 		if ((chip_scsi_id == i) ||
3251 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3252 		    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3253 			continue;
3254 		}
3255 
3256 		seq_printf(m, "  %X:", i);
3257 
3258 		if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3259 			seq_puts(m, " Asynchronous");
3260 		} else {
3261 			syn_period_ix =
3262 			    (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3263 							   1);
3264 
3265 			seq_printf(m,
3266 				   " Transfer Period Factor: %d (%d.%d Mhz),",
3267 				   v->sdtr_period_tbl[syn_period_ix],
3268 				   250 / v->sdtr_period_tbl[syn_period_ix],
3269 				   ASC_TENTHS(250,
3270 					      v->sdtr_period_tbl[syn_period_ix]));
3271 
3272 			seq_printf(m, " REQ/ACK Offset: %d",
3273 				   boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3274 		}
3275 
3276 		if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3277 			seq_puts(m, "*\n");
3278 			renegotiate = 1;
3279 		} else {
3280 			seq_putc(m, '\n');
3281 		}
3282 	}
3283 
3284 	if (renegotiate) {
3285 		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3286 	}
3287 }
3288 
3289 /*
3290  * asc_prt_adv_board_info()
3291  *
3292  * Print dynamic board configuration information.
3293  */
3294 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3295 {
3296 	struct asc_board *boardp = shost_priv(shost);
3297 	int i;
3298 	ADV_DVC_VAR *v;
3299 	ADV_DVC_CFG *c;
3300 	AdvPortAddr iop_base;
3301 	ushort chip_scsi_id;
3302 	ushort lramword;
3303 	uchar lrambyte;
3304 	ushort tagqng_able;
3305 	ushort sdtr_able, wdtr_able;
3306 	ushort wdtr_done, sdtr_done;
3307 	ushort period = 0;
3308 	int renegotiate = 0;
3309 
3310 	v = &boardp->dvc_var.adv_dvc_var;
3311 	c = &boardp->dvc_cfg.adv_dvc_cfg;
3312 	iop_base = v->iop_base;
3313 	chip_scsi_id = v->chip_scsi_id;
3314 
3315 	seq_printf(m,
3316 		   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3317 		   shost->host_no);
3318 
3319 	seq_printf(m,
3320 		   " iop_base 0x%p, cable_detect: %X, err_code %u\n",
3321 		   v->iop_base,
3322 		   AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3323 		   v->err_code);
3324 
3325 	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3326 		   "mcode_version 0x%x\n", c->chip_version,
3327 		   c->mcode_date, c->mcode_version);
3328 
3329 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3330 	seq_puts(m, " Queuing Enabled:");
3331 	for (i = 0; i <= ADV_MAX_TID; i++) {
3332 		if ((chip_scsi_id == i) ||
3333 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3334 			continue;
3335 		}
3336 
3337 		seq_printf(m, " %X:%c",
3338 			   i,
3339 			   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3340 	}
3341 
3342 	seq_puts(m, "\n Queue Limit:");
3343 	for (i = 0; i <= ADV_MAX_TID; i++) {
3344 		if ((chip_scsi_id == i) ||
3345 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3346 			continue;
3347 		}
3348 
3349 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3350 				lrambyte);
3351 
3352 		seq_printf(m, " %X:%d", i, lrambyte);
3353 	}
3354 
3355 	seq_puts(m, "\n Command Pending:");
3356 	for (i = 0; i <= ADV_MAX_TID; i++) {
3357 		if ((chip_scsi_id == i) ||
3358 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3359 			continue;
3360 		}
3361 
3362 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3363 				lrambyte);
3364 
3365 		seq_printf(m, " %X:%d", i, lrambyte);
3366 	}
3367 	seq_putc(m, '\n');
3368 
3369 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3370 	seq_puts(m, " Wide Enabled:");
3371 	for (i = 0; i <= ADV_MAX_TID; i++) {
3372 		if ((chip_scsi_id == i) ||
3373 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3374 			continue;
3375 		}
3376 
3377 		seq_printf(m, " %X:%c",
3378 			   i,
3379 			   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3380 	}
3381 	seq_putc(m, '\n');
3382 
3383 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3384 	seq_puts(m, " Transfer Bit Width:");
3385 	for (i = 0; i <= ADV_MAX_TID; i++) {
3386 		if ((chip_scsi_id == i) ||
3387 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3388 			continue;
3389 		}
3390 
3391 		AdvReadWordLram(iop_base,
3392 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3393 				lramword);
3394 
3395 		seq_printf(m, " %X:%d",
3396 			   i, (lramword & 0x8000) ? 16 : 8);
3397 
3398 		if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3399 		    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3400 			seq_putc(m, '*');
3401 			renegotiate = 1;
3402 		}
3403 	}
3404 	seq_putc(m, '\n');
3405 
3406 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3407 	seq_puts(m, " Synchronous Enabled:");
3408 	for (i = 0; i <= ADV_MAX_TID; i++) {
3409 		if ((chip_scsi_id == i) ||
3410 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3411 			continue;
3412 		}
3413 
3414 		seq_printf(m, " %X:%c",
3415 			   i,
3416 			   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3417 	}
3418 	seq_putc(m, '\n');
3419 
3420 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3421 	for (i = 0; i <= ADV_MAX_TID; i++) {
3422 
3423 		AdvReadWordLram(iop_base,
3424 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3425 				lramword);
3426 		lramword &= ~0x8000;
3427 
3428 		if ((chip_scsi_id == i) ||
3429 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3430 		    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3431 			continue;
3432 		}
3433 
3434 		seq_printf(m, "  %X:", i);
3435 
3436 		if ((lramword & 0x1F) == 0) {	/* Check for REQ/ACK Offset 0. */
3437 			seq_puts(m, " Asynchronous");
3438 		} else {
3439 			seq_puts(m, " Transfer Period Factor: ");
3440 
3441 			if ((lramword & 0x1F00) == 0x1100) {	/* 80 Mhz */
3442 				seq_puts(m, "9 (80.0 Mhz),");
3443 			} else if ((lramword & 0x1F00) == 0x1000) {	/* 40 Mhz */
3444 				seq_puts(m, "10 (40.0 Mhz),");
3445 			} else {	/* 20 Mhz or below. */
3446 
3447 				period = (((lramword >> 8) * 25) + 50) / 4;
3448 
3449 				if (period == 0) {	/* Should never happen. */
3450 					seq_printf(m, "%d (? Mhz), ", period);
3451 				} else {
3452 					seq_printf(m,
3453 						   "%d (%d.%d Mhz),",
3454 						   period, 250 / period,
3455 						   ASC_TENTHS(250, period));
3456 				}
3457 			}
3458 
3459 			seq_printf(m, " REQ/ACK Offset: %d",
3460 				   lramword & 0x1F);
3461 		}
3462 
3463 		if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3464 			seq_puts(m, "*\n");
3465 			renegotiate = 1;
3466 		} else {
3467 			seq_putc(m, '\n');
3468 		}
3469 	}
3470 
3471 	if (renegotiate) {
3472 		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3473 	}
3474 }
3475 
3476 #ifdef ADVANSYS_STATS
3477 /*
3478  * asc_prt_board_stats()
3479  */
3480 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3481 {
3482 	struct asc_board *boardp = shost_priv(shost);
3483 	struct asc_stats *s = &boardp->asc_stats;
3484 
3485 	seq_printf(m,
3486 		   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3487 		   shost->host_no);
3488 
3489 	seq_printf(m,
3490 		   " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3491 		   s->queuecommand, s->reset, s->biosparam,
3492 		   s->interrupt);
3493 
3494 	seq_printf(m,
3495 		   " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3496 		   s->callback, s->done, s->build_error,
3497 		   s->adv_build_noreq, s->adv_build_nosg);
3498 
3499 	seq_printf(m,
3500 		   " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3501 		   s->exe_noerror, s->exe_busy, s->exe_error,
3502 		   s->exe_unknown);
3503 
3504 	/*
3505 	 * Display data transfer statistics.
3506 	 */
3507 	if (s->xfer_cnt > 0) {
3508 		seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3509 			   s->xfer_cnt, s->xfer_elem);
3510 
3511 		seq_printf(m, "xfer_bytes %u.%01u kb\n",
3512 			   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3513 
3514 		/* Scatter gather transfer statistics */
3515 		seq_printf(m, " avg_num_elem %u.%01u, ",
3516 			   s->xfer_elem / s->xfer_cnt,
3517 			   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3518 
3519 		seq_printf(m, "avg_elem_size %u.%01u kb, ",
3520 			   (s->xfer_sect / 2) / s->xfer_elem,
3521 			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3522 
3523 		seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3524 			   (s->xfer_sect / 2) / s->xfer_cnt,
3525 			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3526 	}
3527 }
3528 #endif /* ADVANSYS_STATS */
3529 
3530 /*
3531  * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3532  *
3533  * m: seq_file to print into
3534  * shost: Scsi_Host
3535  *
3536  * Return the number of bytes read from or written to a
3537  * /proc/scsi/advansys/[0...] file.
3538  */
3539 static int
3540 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3541 {
3542 	struct asc_board *boardp = shost_priv(shost);
3543 
3544 	ASC_DBG(1, "begin\n");
3545 
3546 	/*
3547 	 * User read of /proc/scsi/advansys/[0...] file.
3548 	 */
3549 
3550 	/*
3551 	 * Get board configuration information.
3552 	 *
3553 	 * advansys_info() returns the board string from its own static buffer.
3554 	 */
3555 	/* Copy board information. */
3556 	seq_printf(m, "%s\n", (char *)advansys_info(shost));
3557 	/*
3558 	 * Display Wide Board BIOS Information.
3559 	 */
3560 	if (!ASC_NARROW_BOARD(boardp))
3561 		asc_prt_adv_bios(m, shost);
3562 
3563 	/*
3564 	 * Display driver information for each device attached to the board.
3565 	 */
3566 	asc_prt_board_devices(m, shost);
3567 
3568 	/*
3569 	 * Display EEPROM configuration for the board.
3570 	 */
3571 	if (ASC_NARROW_BOARD(boardp))
3572 		asc_prt_asc_board_eeprom(m, shost);
3573 	else
3574 		asc_prt_adv_board_eeprom(m, shost);
3575 
3576 	/*
3577 	 * Display driver configuration and information for the board.
3578 	 */
3579 	asc_prt_driver_conf(m, shost);
3580 
3581 #ifdef ADVANSYS_STATS
3582 	/*
3583 	 * Display driver statistics for the board.
3584 	 */
3585 	asc_prt_board_stats(m, shost);
3586 #endif /* ADVANSYS_STATS */
3587 
3588 	/*
3589 	 * Display Asc Library dynamic configuration information
3590 	 * for the board.
3591 	 */
3592 	if (ASC_NARROW_BOARD(boardp))
3593 		asc_prt_asc_board_info(m, shost);
3594 	else
3595 		asc_prt_adv_board_info(m, shost);
3596 	return 0;
3597 }
3598 #endif /* CONFIG_PROC_FS */
3599 
3600 static void asc_scsi_done(struct scsi_cmnd *scp)
3601 {
3602 	scsi_dma_unmap(scp);
3603 	ASC_STATS(scp->device->host, done);
3604 	scsi_done(scp);
3605 }
3606 
3607 static void AscSetBank(PortAddr iop_base, uchar bank)
3608 {
3609 	uchar val;
3610 
3611 	val = AscGetChipControl(iop_base) &
3612 	    (~
3613 	     (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3614 	      CC_CHIP_RESET));
3615 	if (bank == 1) {
3616 		val |= CC_BANK_ONE;
3617 	} else if (bank == 2) {
3618 		val |= CC_DIAG | CC_BANK_ONE;
3619 	} else {
3620 		val &= ~CC_BANK_ONE;
3621 	}
3622 	AscSetChipControl(iop_base, val);
3623 }
3624 
3625 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3626 {
3627 	AscSetBank(iop_base, 1);
3628 	AscWriteChipIH(iop_base, ins_code);
3629 	AscSetBank(iop_base, 0);
3630 }
3631 
3632 static int AscStartChip(PortAddr iop_base)
3633 {
3634 	AscSetChipControl(iop_base, 0);
3635 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3636 		return (0);
3637 	}
3638 	return (1);
3639 }
3640 
3641 static bool AscStopChip(PortAddr iop_base)
3642 {
3643 	uchar cc_val;
3644 
3645 	cc_val =
3646 	    AscGetChipControl(iop_base) &
3647 	    (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3648 	AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3649 	AscSetChipIH(iop_base, INS_HALT);
3650 	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3651 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3652 		return false;
3653 	}
3654 	return true;
3655 }
3656 
3657 static bool AscIsChipHalted(PortAddr iop_base)
3658 {
3659 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3660 		if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3661 			return true;
3662 		}
3663 	}
3664 	return false;
3665 }
3666 
3667 static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3668 {
3669 	PortAddr iop_base;
3670 	int i = 10;
3671 
3672 	iop_base = asc_dvc->iop_base;
3673 	while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3674 	       && (i-- > 0)) {
3675 		mdelay(100);
3676 	}
3677 	AscStopChip(iop_base);
3678 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3679 	udelay(60);
3680 	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3681 	AscSetChipIH(iop_base, INS_HALT);
3682 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3683 	AscSetChipControl(iop_base, CC_HALT);
3684 	mdelay(200);
3685 	AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3686 	AscSetChipStatus(iop_base, 0);
3687 	return (AscIsChipHalted(iop_base));
3688 }
3689 
3690 static int AscFindSignature(PortAddr iop_base)
3691 {
3692 	ushort sig_word;
3693 
3694 	ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3695 		 iop_base, AscGetChipSignatureByte(iop_base));
3696 	if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3697 		ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3698 			 iop_base, AscGetChipSignatureWord(iop_base));
3699 		sig_word = AscGetChipSignatureWord(iop_base);
3700 		if ((sig_word == (ushort)ASC_1000_ID0W) ||
3701 		    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3702 			return (1);
3703 		}
3704 	}
3705 	return (0);
3706 }
3707 
3708 static void AscEnableInterrupt(PortAddr iop_base)
3709 {
3710 	ushort cfg;
3711 
3712 	cfg = AscGetChipCfgLsw(iop_base);
3713 	AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3714 }
3715 
3716 static void AscDisableInterrupt(PortAddr iop_base)
3717 {
3718 	ushort cfg;
3719 
3720 	cfg = AscGetChipCfgLsw(iop_base);
3721 	AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3722 }
3723 
3724 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3725 {
3726 	unsigned char byte_data;
3727 	unsigned short word_data;
3728 
3729 	if (isodd_word(addr)) {
3730 		AscSetChipLramAddr(iop_base, addr - 1);
3731 		word_data = AscGetChipLramData(iop_base);
3732 		byte_data = (word_data >> 8) & 0xFF;
3733 	} else {
3734 		AscSetChipLramAddr(iop_base, addr);
3735 		word_data = AscGetChipLramData(iop_base);
3736 		byte_data = word_data & 0xFF;
3737 	}
3738 	return byte_data;
3739 }
3740 
3741 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3742 {
3743 	ushort word_data;
3744 
3745 	AscSetChipLramAddr(iop_base, addr);
3746 	word_data = AscGetChipLramData(iop_base);
3747 	return (word_data);
3748 }
3749 
3750 static void
3751 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3752 {
3753 	int i;
3754 
3755 	AscSetChipLramAddr(iop_base, s_addr);
3756 	for (i = 0; i < words; i++) {
3757 		AscSetChipLramData(iop_base, set_wval);
3758 	}
3759 }
3760 
3761 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3762 {
3763 	AscSetChipLramAddr(iop_base, addr);
3764 	AscSetChipLramData(iop_base, word_val);
3765 }
3766 
3767 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3768 {
3769 	ushort word_data;
3770 
3771 	if (isodd_word(addr)) {
3772 		addr--;
3773 		word_data = AscReadLramWord(iop_base, addr);
3774 		word_data &= 0x00FF;
3775 		word_data |= (((ushort)byte_val << 8) & 0xFF00);
3776 	} else {
3777 		word_data = AscReadLramWord(iop_base, addr);
3778 		word_data &= 0xFF00;
3779 		word_data |= ((ushort)byte_val & 0x00FF);
3780 	}
3781 	AscWriteLramWord(iop_base, addr, word_data);
3782 }
3783 
3784 /*
3785  * Copy 2 bytes to LRAM.
3786  *
3787  * The source data is assumed to be in little-endian order in memory
3788  * and is maintained in little-endian order when written to LRAM.
3789  */
3790 static void
3791 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
3792 			const uchar *s_buffer, int words)
3793 {
3794 	int i;
3795 
3796 	AscSetChipLramAddr(iop_base, s_addr);
3797 	for (i = 0; i < 2 * words; i += 2) {
3798 		/*
3799 		 * On a little-endian system the second argument below
3800 		 * produces a little-endian ushort which is written to
3801 		 * LRAM in little-endian order. On a big-endian system
3802 		 * the second argument produces a big-endian ushort which
3803 		 * is "transparently" byte-swapped by outpw() and written
3804 		 * in little-endian order to LRAM.
3805 		 */
3806 		outpw(iop_base + IOP_RAM_DATA,
3807 		      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
3808 	}
3809 }
3810 
3811 /*
3812  * Copy 4 bytes to LRAM.
3813  *
3814  * The source data is assumed to be in little-endian order in memory
3815  * and is maintained in little-endian order when written to LRAM.
3816  */
3817 static void
3818 AscMemDWordCopyPtrToLram(PortAddr iop_base,
3819 			 ushort s_addr, uchar *s_buffer, int dwords)
3820 {
3821 	int i;
3822 
3823 	AscSetChipLramAddr(iop_base, s_addr);
3824 	for (i = 0; i < 4 * dwords; i += 4) {
3825 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);	/* LSW */
3826 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);	/* MSW */
3827 	}
3828 }
3829 
3830 /*
3831  * Copy 2 bytes from LRAM.
3832  *
3833  * The source data is assumed to be in little-endian order in LRAM
3834  * and is maintained in little-endian order when written to memory.
3835  */
3836 static void
3837 AscMemWordCopyPtrFromLram(PortAddr iop_base,
3838 			  ushort s_addr, uchar *d_buffer, int words)
3839 {
3840 	int i;
3841 	ushort word;
3842 
3843 	AscSetChipLramAddr(iop_base, s_addr);
3844 	for (i = 0; i < 2 * words; i += 2) {
3845 		word = inpw(iop_base + IOP_RAM_DATA);
3846 		d_buffer[i] = word & 0xff;
3847 		d_buffer[i + 1] = (word >> 8) & 0xff;
3848 	}
3849 }
3850 
3851 static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
3852 {
3853 	u32 sum = 0;
3854 	int i;
3855 
3856 	for (i = 0; i < words; i++, s_addr += 2) {
3857 		sum += AscReadLramWord(iop_base, s_addr);
3858 	}
3859 	return (sum);
3860 }
3861 
3862 static void AscInitLram(ASC_DVC_VAR *asc_dvc)
3863 {
3864 	uchar i;
3865 	ushort s_addr;
3866 	PortAddr iop_base;
3867 
3868 	iop_base = asc_dvc->iop_base;
3869 	AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
3870 			  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
3871 				    64) >> 1));
3872 	i = ASC_MIN_ACTIVE_QNO;
3873 	s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
3874 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3875 			 (uchar)(i + 1));
3876 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3877 			 (uchar)(asc_dvc->max_total_qng));
3878 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3879 			 (uchar)i);
3880 	i++;
3881 	s_addr += ASC_QBLK_SIZE;
3882 	for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
3883 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3884 				 (uchar)(i + 1));
3885 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3886 				 (uchar)(i - 1));
3887 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3888 				 (uchar)i);
3889 	}
3890 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3891 			 (uchar)ASC_QLINK_END);
3892 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3893 			 (uchar)(asc_dvc->max_total_qng - 1));
3894 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3895 			 (uchar)asc_dvc->max_total_qng);
3896 	i++;
3897 	s_addr += ASC_QBLK_SIZE;
3898 	for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
3899 	     i++, s_addr += ASC_QBLK_SIZE) {
3900 		AscWriteLramByte(iop_base,
3901 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
3902 		AscWriteLramByte(iop_base,
3903 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
3904 		AscWriteLramByte(iop_base,
3905 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
3906 	}
3907 }
3908 
3909 static u32
3910 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
3911 		 const uchar *mcode_buf, ushort mcode_size)
3912 {
3913 	u32 chksum;
3914 	ushort mcode_word_size;
3915 	ushort mcode_chksum;
3916 
3917 	/* Write the microcode buffer starting at LRAM address 0. */
3918 	mcode_word_size = (ushort)(mcode_size >> 1);
3919 	AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
3920 	AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
3921 
3922 	chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
3923 	ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
3924 	mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
3925 						 (ushort)ASC_CODE_SEC_BEG,
3926 						 (ushort)((mcode_size -
3927 							   s_addr - (ushort)
3928 							   ASC_CODE_SEC_BEG) /
3929 							  2));
3930 	ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
3931 	AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
3932 	AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
3933 	return chksum;
3934 }
3935 
3936 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
3937 {
3938 	PortAddr iop_base;
3939 	int i;
3940 	ushort lram_addr;
3941 
3942 	iop_base = asc_dvc->iop_base;
3943 	AscPutRiscVarFreeQHead(iop_base, 1);
3944 	AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3945 	AscPutVarFreeQHead(iop_base, 1);
3946 	AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3947 	AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
3948 			 (uchar)((int)asc_dvc->max_total_qng + 1));
3949 	AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
3950 			 (uchar)((int)asc_dvc->max_total_qng + 2));
3951 	AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
3952 			 asc_dvc->max_total_qng);
3953 	AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
3954 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
3955 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
3956 	AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
3957 	AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
3958 	AscPutQDoneInProgress(iop_base, 0);
3959 	lram_addr = ASC_QADR_BEG;
3960 	for (i = 0; i < 32; i++, lram_addr += 2) {
3961 		AscWriteLramWord(iop_base, lram_addr, 0);
3962 	}
3963 }
3964 
3965 static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
3966 {
3967 	int i;
3968 	int warn_code;
3969 	PortAddr iop_base;
3970 	__le32 phy_addr;
3971 	__le32 phy_size;
3972 	struct asc_board *board = asc_dvc_to_board(asc_dvc);
3973 
3974 	iop_base = asc_dvc->iop_base;
3975 	warn_code = 0;
3976 	for (i = 0; i <= ASC_MAX_TID; i++) {
3977 		AscPutMCodeInitSDTRAtID(iop_base, i,
3978 					asc_dvc->cfg->sdtr_period_offset[i]);
3979 	}
3980 
3981 	AscInitQLinkVar(asc_dvc);
3982 	AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
3983 			 asc_dvc->cfg->disc_enable);
3984 	AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
3985 			 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
3986 
3987 	/* Ensure overrun buffer is aligned on an 8 byte boundary. */
3988 	BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
3989 	asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
3990 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
3991 	if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
3992 		warn_code = -ENOMEM;
3993 		goto err_dma_map;
3994 	}
3995 	phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
3996 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
3997 				 (uchar *)&phy_addr, 1);
3998 	phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
3999 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4000 				 (uchar *)&phy_size, 1);
4001 
4002 	asc_dvc->cfg->mcode_date =
4003 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4004 	asc_dvc->cfg->mcode_version =
4005 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4006 
4007 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4008 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4009 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4010 		warn_code = -EINVAL;
4011 		goto err_mcode_start;
4012 	}
4013 	if (AscStartChip(iop_base) != 1) {
4014 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4015 		warn_code = -EIO;
4016 		goto err_mcode_start;
4017 	}
4018 
4019 	return warn_code;
4020 
4021 err_mcode_start:
4022 	dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4023 			 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4024 err_dma_map:
4025 	asc_dvc->overrun_dma = 0;
4026 	return warn_code;
4027 }
4028 
4029 static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4030 {
4031 	const struct firmware *fw;
4032 	const char fwname[] = "advansys/mcode.bin";
4033 	int err;
4034 	unsigned long chksum;
4035 	int warn_code;
4036 	PortAddr iop_base;
4037 
4038 	iop_base = asc_dvc->iop_base;
4039 	warn_code = 0;
4040 	if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4041 	    !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4042 		AscResetChipAndScsiBus(asc_dvc);
4043 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4044 	}
4045 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4046 	if (asc_dvc->err_code != 0)
4047 		return ASC_ERROR;
4048 	if (!AscFindSignature(asc_dvc->iop_base)) {
4049 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4050 		return warn_code;
4051 	}
4052 	AscDisableInterrupt(iop_base);
4053 	AscInitLram(asc_dvc);
4054 
4055 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4056 	if (err) {
4057 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4058 		       fwname, err);
4059 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4060 		return err;
4061 	}
4062 	if (fw->size < 4) {
4063 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4064 		       fw->size, fwname);
4065 		release_firmware(fw);
4066 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4067 		return -EINVAL;
4068 	}
4069 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4070 		 (fw->data[1] << 8) | fw->data[0];
4071 	ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4072 	if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4073 			     fw->size - 4) != chksum) {
4074 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4075 		release_firmware(fw);
4076 		return warn_code;
4077 	}
4078 	release_firmware(fw);
4079 	warn_code |= AscInitMicroCodeVar(asc_dvc);
4080 	if (!asc_dvc->overrun_dma)
4081 		return warn_code;
4082 	asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4083 	AscEnableInterrupt(iop_base);
4084 	return warn_code;
4085 }
4086 
4087 /*
4088  * Load the Microcode
4089  *
4090  * Write the microcode image to RISC memory starting at address 0.
4091  *
4092  * The microcode is stored compressed in the following format:
4093  *
4094  *  254 word (508 byte) table indexed by byte code followed
4095  *  by the following byte codes:
4096  *
4097  *    1-Byte Code:
4098  *      00: Emit word 0 in table.
4099  *      01: Emit word 1 in table.
4100  *      .
4101  *      FD: Emit word 253 in table.
4102  *
4103  *    Multi-Byte Code:
4104  *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4105  *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4106  *
4107  * Returns 0 or an error if the checksum doesn't match
4108  */
4109 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4110 			    int size, int memsize, int chksum)
4111 {
4112 	int i, j, end, len = 0;
4113 	u32 sum;
4114 
4115 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4116 
4117 	for (i = 253 * 2; i < size; i++) {
4118 		if (buf[i] == 0xff) {
4119 			unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4120 			for (j = 0; j < buf[i + 1]; j++) {
4121 				AdvWriteWordAutoIncLram(iop_base, word);
4122 				len += 2;
4123 			}
4124 			i += 3;
4125 		} else if (buf[i] == 0xfe) {
4126 			unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4127 			AdvWriteWordAutoIncLram(iop_base, word);
4128 			i += 2;
4129 			len += 2;
4130 		} else {
4131 			unsigned int off = buf[i] * 2;
4132 			unsigned short word = (buf[off + 1] << 8) | buf[off];
4133 			AdvWriteWordAutoIncLram(iop_base, word);
4134 			len += 2;
4135 		}
4136 	}
4137 
4138 	end = len;
4139 
4140 	while (len < memsize) {
4141 		AdvWriteWordAutoIncLram(iop_base, 0);
4142 		len += 2;
4143 	}
4144 
4145 	/* Verify the microcode checksum. */
4146 	sum = 0;
4147 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4148 
4149 	for (len = 0; len < end; len += 2) {
4150 		sum += AdvReadWordAutoIncLram(iop_base);
4151 	}
4152 
4153 	if (sum != chksum)
4154 		return ASC_IERR_MCODE_CHKSUM;
4155 
4156 	return 0;
4157 }
4158 
4159 static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
4160 {
4161 	off_t carr_offset = 0, next_offset;
4162 	dma_addr_t carr_paddr;
4163 	int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
4164 
4165 	for (i = 0; i < carr_num; i++) {
4166 		carr_offset = i * sizeof(ADV_CARR_T);
4167 		/* Get physical address of the carrier 'carrp'. */
4168 		carr_paddr = adv_dvc->carrier_addr + carr_offset;
4169 
4170 		adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
4171 		adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
4172 		adv_dvc->carrier[i].areq_vpa = 0;
4173 		next_offset = carr_offset + sizeof(ADV_CARR_T);
4174 		if (i == carr_num)
4175 			next_offset = ~0;
4176 		adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
4177 	}
4178 	/*
4179 	 * We cannot have a carrier with 'carr_va' of '0', as
4180 	 * a reference to this carrier would be interpreted as
4181 	 * list termination.
4182 	 * So start at carrier 1 with the freelist.
4183 	 */
4184 	adv_dvc->carr_freelist = &adv_dvc->carrier[1];
4185 }
4186 
4187 static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
4188 {
4189 	int index;
4190 
4191 	BUG_ON(offset > ADV_CARRIER_BUFSIZE);
4192 
4193 	index = offset / sizeof(ADV_CARR_T);
4194 	return &adv_dvc->carrier[index];
4195 }
4196 
4197 static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
4198 {
4199 	ADV_CARR_T *carrp = adv_dvc->carr_freelist;
4200 	u32 next_vpa = le32_to_cpu(carrp->next_vpa);
4201 
4202 	if (next_vpa == 0 || next_vpa == ~0) {
4203 		ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
4204 		return NULL;
4205 	}
4206 
4207 	adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
4208 	/*
4209 	 * insert stopper carrier to terminate list
4210 	 */
4211 	carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
4212 
4213 	return carrp;
4214 }
4215 
4216 /*
4217  * 'offset' is the index in the request pointer array
4218  */
4219 static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
4220 {
4221 	struct asc_board *boardp = adv_dvc->drv_ptr;
4222 
4223 	BUG_ON(offset > adv_dvc->max_host_qng);
4224 	return &boardp->adv_reqp[offset];
4225 }
4226 
4227 /*
4228  * Send an idle command to the chip and wait for completion.
4229  *
4230  * Command completion is polled for once per microsecond.
4231  *
4232  * The function can be called from anywhere including an interrupt handler.
4233  * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4234  * functions to prevent reentrancy.
4235  *
4236  * Return Values:
4237  *   ADV_TRUE - command completed successfully
4238  *   ADV_FALSE - command failed
4239  *   ADV_ERROR - command timed out
4240  */
4241 static int
4242 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4243 	       ushort idle_cmd, u32 idle_cmd_parameter)
4244 {
4245 	int result, i, j;
4246 	AdvPortAddr iop_base;
4247 
4248 	iop_base = asc_dvc->iop_base;
4249 
4250 	/*
4251 	 * Clear the idle command status which is set by the microcode
4252 	 * to a non-zero value to indicate when the command is completed.
4253 	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4254 	 */
4255 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4256 
4257 	/*
4258 	 * Write the idle command value after the idle command parameter
4259 	 * has been written to avoid a race condition. If the order is not
4260 	 * followed, the microcode may process the idle command before the
4261 	 * parameters have been written to LRAM.
4262 	 */
4263 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4264 				cpu_to_le32(idle_cmd_parameter));
4265 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4266 
4267 	/*
4268 	 * Tickle the RISC to tell it to process the idle command.
4269 	 */
4270 	AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4271 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4272 		/*
4273 		 * Clear the tickle value. In the ASC-3550 the RISC flag
4274 		 * command 'clr_tickle_b' does not work unless the host
4275 		 * value is cleared.
4276 		 */
4277 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4278 	}
4279 
4280 	/* Wait for up to 100 millisecond for the idle command to timeout. */
4281 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4282 		/* Poll once each microsecond for command completion. */
4283 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4284 			AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4285 					result);
4286 			if (result != 0)
4287 				return result;
4288 			udelay(1);
4289 		}
4290 	}
4291 
4292 	BUG();		/* The idle command should never timeout. */
4293 	return ADV_ERROR;
4294 }
4295 
4296 /*
4297  * Reset SCSI Bus and purge all outstanding requests.
4298  *
4299  * Return Value:
4300  *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4301  *      ADV_FALSE(0) -  Microcode command failed.
4302  *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4303  *                      may be hung which requires driver recovery.
4304  */
4305 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4306 {
4307 	int status;
4308 
4309 	/*
4310 	 * Send the SCSI Bus Reset idle start idle command which asserts
4311 	 * the SCSI Bus Reset signal.
4312 	 */
4313 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4314 	if (status != ADV_TRUE) {
4315 		return status;
4316 	}
4317 
4318 	/*
4319 	 * Delay for the specified SCSI Bus Reset hold time.
4320 	 *
4321 	 * The hold time delay is done on the host because the RISC has no
4322 	 * microsecond accurate timer.
4323 	 */
4324 	udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4325 
4326 	/*
4327 	 * Send the SCSI Bus Reset end idle command which de-asserts
4328 	 * the SCSI Bus Reset signal and purges any pending requests.
4329 	 */
4330 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4331 	if (status != ADV_TRUE) {
4332 		return status;
4333 	}
4334 
4335 	mdelay(asc_dvc->scsi_reset_wait * 1000);	/* XXX: msleep? */
4336 
4337 	return status;
4338 }
4339 
4340 /*
4341  * Initialize the ASC-3550.
4342  *
4343  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4344  *
4345  * For a non-fatal error return a warning code. If there are no warnings
4346  * then 0 is returned.
4347  *
4348  * Needed after initialization for error recovery.
4349  */
4350 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4351 {
4352 	const struct firmware *fw;
4353 	const char fwname[] = "advansys/3550.bin";
4354 	AdvPortAddr iop_base;
4355 	ushort warn_code;
4356 	int begin_addr;
4357 	int end_addr;
4358 	ushort code_sum;
4359 	int word;
4360 	int i;
4361 	int err;
4362 	unsigned long chksum;
4363 	ushort scsi_cfg1;
4364 	uchar tid;
4365 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4366 	ushort wdtr_able = 0, sdtr_able, tagqng_able;
4367 	uchar max_cmd[ADV_MAX_TID + 1];
4368 
4369 	/* If there is already an error, don't continue. */
4370 	if (asc_dvc->err_code != 0)
4371 		return ADV_ERROR;
4372 
4373 	/*
4374 	 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4375 	 */
4376 	if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4377 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4378 		return ADV_ERROR;
4379 	}
4380 
4381 	warn_code = 0;
4382 	iop_base = asc_dvc->iop_base;
4383 
4384 	/*
4385 	 * Save the RISC memory BIOS region before writing the microcode.
4386 	 * The BIOS may already be loaded and using its RISC LRAM region
4387 	 * so its region must be saved and restored.
4388 	 *
4389 	 * Note: This code makes the assumption, which is currently true,
4390 	 * that a chip reset does not clear RISC LRAM.
4391 	 */
4392 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4393 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4394 				bios_mem[i]);
4395 	}
4396 
4397 	/*
4398 	 * Save current per TID negotiated values.
4399 	 */
4400 	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4401 		ushort bios_version, major, minor;
4402 
4403 		bios_version =
4404 		    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4405 		major = (bios_version >> 12) & 0xF;
4406 		minor = (bios_version >> 8) & 0xF;
4407 		if (major < 3 || (major == 3 && minor == 1)) {
4408 			/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4409 			AdvReadWordLram(iop_base, 0x120, wdtr_able);
4410 		} else {
4411 			AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4412 		}
4413 	}
4414 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4415 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4416 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4417 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4418 				max_cmd[tid]);
4419 	}
4420 
4421 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4422 	if (err) {
4423 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4424 		       fwname, err);
4425 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4426 		return err;
4427 	}
4428 	if (fw->size < 4) {
4429 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4430 		       fw->size, fwname);
4431 		release_firmware(fw);
4432 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4433 		return -EINVAL;
4434 	}
4435 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4436 		 (fw->data[1] << 8) | fw->data[0];
4437 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4438 					     fw->size - 4, ADV_3550_MEMSIZE,
4439 					     chksum);
4440 	release_firmware(fw);
4441 	if (asc_dvc->err_code)
4442 		return ADV_ERROR;
4443 
4444 	/*
4445 	 * Restore the RISC memory BIOS region.
4446 	 */
4447 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4448 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4449 				 bios_mem[i]);
4450 	}
4451 
4452 	/*
4453 	 * Calculate and write the microcode code checksum to the microcode
4454 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4455 	 */
4456 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4457 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4458 	code_sum = 0;
4459 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4460 	for (word = begin_addr; word < end_addr; word += 2) {
4461 		code_sum += AdvReadWordAutoIncLram(iop_base);
4462 	}
4463 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4464 
4465 	/*
4466 	 * Read and save microcode version and date.
4467 	 */
4468 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4469 			asc_dvc->cfg->mcode_date);
4470 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4471 			asc_dvc->cfg->mcode_version);
4472 
4473 	/*
4474 	 * Set the chip type to indicate the ASC3550.
4475 	 */
4476 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4477 
4478 	/*
4479 	 * If the PCI Configuration Command Register "Parity Error Response
4480 	 * Control" Bit was clear (0), then set the microcode variable
4481 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4482 	 * to ignore DMA parity errors.
4483 	 */
4484 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4485 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4486 		word |= CONTROL_FLAG_IGNORE_PERR;
4487 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4488 	}
4489 
4490 	/*
4491 	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4492 	 * threshold of 128 bytes. This register is only accessible to the host.
4493 	 */
4494 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4495 			     START_CTL_EMFU | READ_CMD_MRM);
4496 
4497 	/*
4498 	 * Microcode operating variables for WDTR, SDTR, and command tag
4499 	 * queuing will be set in slave_configure() based on what a
4500 	 * device reports it is capable of in Inquiry byte 7.
4501 	 *
4502 	 * If SCSI Bus Resets have been disabled, then directly set
4503 	 * SDTR and WDTR from the EEPROM configuration. This will allow
4504 	 * the BIOS and warm boot to work without a SCSI bus hang on
4505 	 * the Inquiry caused by host and target mismatched DTR values.
4506 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
4507 	 * be assumed to be in Asynchronous, Narrow mode.
4508 	 */
4509 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4510 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4511 				 asc_dvc->wdtr_able);
4512 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4513 				 asc_dvc->sdtr_able);
4514 	}
4515 
4516 	/*
4517 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4518 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4519 	 * bitmask. These values determine the maximum SDTR speed negotiated
4520 	 * with a device.
4521 	 *
4522 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4523 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4524 	 * without determining here whether the device supports SDTR.
4525 	 *
4526 	 * 4-bit speed  SDTR speed name
4527 	 * ===========  ===============
4528 	 * 0000b (0x0)  SDTR disabled
4529 	 * 0001b (0x1)  5 Mhz
4530 	 * 0010b (0x2)  10 Mhz
4531 	 * 0011b (0x3)  20 Mhz (Ultra)
4532 	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4533 	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4534 	 * 0110b (0x6)  Undefined
4535 	 * .
4536 	 * 1111b (0xF)  Undefined
4537 	 */
4538 	word = 0;
4539 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4540 		if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4541 			/* Set Ultra speed for TID 'tid'. */
4542 			word |= (0x3 << (4 * (tid % 4)));
4543 		} else {
4544 			/* Set Fast speed for TID 'tid'. */
4545 			word |= (0x2 << (4 * (tid % 4)));
4546 		}
4547 		if (tid == 3) {	/* Check if done with sdtr_speed1. */
4548 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4549 			word = 0;
4550 		} else if (tid == 7) {	/* Check if done with sdtr_speed2. */
4551 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4552 			word = 0;
4553 		} else if (tid == 11) {	/* Check if done with sdtr_speed3. */
4554 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4555 			word = 0;
4556 		} else if (tid == 15) {	/* Check if done with sdtr_speed4. */
4557 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4558 			/* End of loop. */
4559 		}
4560 	}
4561 
4562 	/*
4563 	 * Set microcode operating variable for the disconnect per TID bitmask.
4564 	 */
4565 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4566 			 asc_dvc->cfg->disc_enable);
4567 
4568 	/*
4569 	 * Set SCSI_CFG0 Microcode Default Value.
4570 	 *
4571 	 * The microcode will set the SCSI_CFG0 register using this value
4572 	 * after it is started below.
4573 	 */
4574 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4575 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4576 			 asc_dvc->chip_scsi_id);
4577 
4578 	/*
4579 	 * Determine SCSI_CFG1 Microcode Default Value.
4580 	 *
4581 	 * The microcode will set the SCSI_CFG1 register using this value
4582 	 * after it is started below.
4583 	 */
4584 
4585 	/* Read current SCSI_CFG1 Register value. */
4586 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4587 
4588 	/*
4589 	 * If all three connectors are in use, return an error.
4590 	 */
4591 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4592 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4593 		asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4594 		return ADV_ERROR;
4595 	}
4596 
4597 	/*
4598 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
4599 	 * register signals will be set. Check for and return an error if
4600 	 * this condition is found.
4601 	 */
4602 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4603 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4604 		return ADV_ERROR;
4605 	}
4606 
4607 	/*
4608 	 * If this is a differential board and a single-ended device
4609 	 * is attached to one of the connectors, return an error.
4610 	 */
4611 	if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4612 		asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4613 		return ADV_ERROR;
4614 	}
4615 
4616 	/*
4617 	 * If automatic termination control is enabled, then set the
4618 	 * termination value based on a table listed in a_condor.h.
4619 	 *
4620 	 * If manual termination was specified with an EEPROM setting
4621 	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4622 	 * is ready to be 'ored' into SCSI_CFG1.
4623 	 */
4624 	if (asc_dvc->cfg->termination == 0) {
4625 		/*
4626 		 * The software always controls termination by setting TERM_CTL_SEL.
4627 		 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4628 		 */
4629 		asc_dvc->cfg->termination |= TERM_CTL_SEL;
4630 
4631 		switch (scsi_cfg1 & CABLE_DETECT) {
4632 			/* TERM_CTL_H: on, TERM_CTL_L: on */
4633 		case 0x3:
4634 		case 0x7:
4635 		case 0xB:
4636 		case 0xD:
4637 		case 0xE:
4638 		case 0xF:
4639 			asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4640 			break;
4641 
4642 			/* TERM_CTL_H: on, TERM_CTL_L: off */
4643 		case 0x1:
4644 		case 0x5:
4645 		case 0x9:
4646 		case 0xA:
4647 		case 0xC:
4648 			asc_dvc->cfg->termination |= TERM_CTL_H;
4649 			break;
4650 
4651 			/* TERM_CTL_H: off, TERM_CTL_L: off */
4652 		case 0x2:
4653 		case 0x6:
4654 			break;
4655 		}
4656 	}
4657 
4658 	/*
4659 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4660 	 */
4661 	scsi_cfg1 &= ~TERM_CTL;
4662 
4663 	/*
4664 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4665 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4666 	 * referenced, because the hardware internally inverts
4667 	 * the Termination High and Low bits if TERM_POL is set.
4668 	 */
4669 	scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4670 
4671 	/*
4672 	 * Set SCSI_CFG1 Microcode Default Value
4673 	 *
4674 	 * Set filter value and possibly modified termination control
4675 	 * bits in the Microcode SCSI_CFG1 Register Value.
4676 	 *
4677 	 * The microcode will set the SCSI_CFG1 register using this value
4678 	 * after it is started below.
4679 	 */
4680 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4681 			 FLTR_DISABLE | scsi_cfg1);
4682 
4683 	/*
4684 	 * Set MEM_CFG Microcode Default Value
4685 	 *
4686 	 * The microcode will set the MEM_CFG register using this value
4687 	 * after it is started below.
4688 	 *
4689 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4690 	 * are defined.
4691 	 *
4692 	 * ASC-3550 has 8KB internal memory.
4693 	 */
4694 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4695 			 BIOS_EN | RAM_SZ_8KB);
4696 
4697 	/*
4698 	 * Set SEL_MASK Microcode Default Value
4699 	 *
4700 	 * The microcode will set the SEL_MASK register using this value
4701 	 * after it is started below.
4702 	 */
4703 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4704 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4705 
4706 	AdvBuildCarrierFreelist(asc_dvc);
4707 
4708 	/*
4709 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4710 	 */
4711 
4712 	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
4713 	if (!asc_dvc->icq_sp) {
4714 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4715 		return ADV_ERROR;
4716 	}
4717 
4718 	/*
4719 	 * Set RISC ICQ physical address start value.
4720 	 */
4721 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4722 
4723 	/*
4724 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4725 	 */
4726 	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
4727 	if (!asc_dvc->irq_sp) {
4728 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4729 		return ADV_ERROR;
4730 	}
4731 
4732 	/*
4733 	 * Set RISC IRQ physical address start value.
4734 	 */
4735 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4736 	asc_dvc->carr_pending_cnt = 0;
4737 
4738 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4739 			     (ADV_INTR_ENABLE_HOST_INTR |
4740 			      ADV_INTR_ENABLE_GLOBAL_INTR));
4741 
4742 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4743 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
4744 
4745 	/* finally, finally, gentlemen, start your engine */
4746 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4747 
4748 	/*
4749 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4750 	 * Resets should be performed. The RISC has to be running
4751 	 * to issue a SCSI Bus Reset.
4752 	 */
4753 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4754 		/*
4755 		 * If the BIOS Signature is present in memory, restore the
4756 		 * BIOS Handshake Configuration Table and do not perform
4757 		 * a SCSI Bus Reset.
4758 		 */
4759 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4760 		    0x55AA) {
4761 			/*
4762 			 * Restore per TID negotiated values.
4763 			 */
4764 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4765 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4766 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4767 					 tagqng_able);
4768 			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4769 				AdvWriteByteLram(iop_base,
4770 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4771 						 max_cmd[tid]);
4772 			}
4773 		} else {
4774 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4775 				warn_code = ASC_WARN_BUSRESET_ERROR;
4776 			}
4777 		}
4778 	}
4779 
4780 	return warn_code;
4781 }
4782 
4783 /*
4784  * Initialize the ASC-38C0800.
4785  *
4786  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4787  *
4788  * For a non-fatal error return a warning code. If there are no warnings
4789  * then 0 is returned.
4790  *
4791  * Needed after initialization for error recovery.
4792  */
4793 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
4794 {
4795 	const struct firmware *fw;
4796 	const char fwname[] = "advansys/38C0800.bin";
4797 	AdvPortAddr iop_base;
4798 	ushort warn_code;
4799 	int begin_addr;
4800 	int end_addr;
4801 	ushort code_sum;
4802 	int word;
4803 	int i;
4804 	int err;
4805 	unsigned long chksum;
4806 	ushort scsi_cfg1;
4807 	uchar byte;
4808 	uchar tid;
4809 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4810 	ushort wdtr_able, sdtr_able, tagqng_able;
4811 	uchar max_cmd[ADV_MAX_TID + 1];
4812 
4813 	/* If there is already an error, don't continue. */
4814 	if (asc_dvc->err_code != 0)
4815 		return ADV_ERROR;
4816 
4817 	/*
4818 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4819 	 */
4820 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
4821 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4822 		return ADV_ERROR;
4823 	}
4824 
4825 	warn_code = 0;
4826 	iop_base = asc_dvc->iop_base;
4827 
4828 	/*
4829 	 * Save the RISC memory BIOS region before writing the microcode.
4830 	 * The BIOS may already be loaded and using its RISC LRAM region
4831 	 * so its region must be saved and restored.
4832 	 *
4833 	 * Note: This code makes the assumption, which is currently true,
4834 	 * that a chip reset does not clear RISC LRAM.
4835 	 */
4836 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4837 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4838 				bios_mem[i]);
4839 	}
4840 
4841 	/*
4842 	 * Save current per TID negotiated values.
4843 	 */
4844 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4845 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4846 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4847 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4848 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4849 				max_cmd[tid]);
4850 	}
4851 
4852 	/*
4853 	 * RAM BIST (RAM Built-In Self Test)
4854 	 *
4855 	 * Address : I/O base + offset 0x38h register (byte).
4856 	 * Function: Bit 7-6(RW) : RAM mode
4857 	 *                          Normal Mode   : 0x00
4858 	 *                          Pre-test Mode : 0x40
4859 	 *                          RAM Test Mode : 0x80
4860 	 *           Bit 5       : unused
4861 	 *           Bit 4(RO)   : Done bit
4862 	 *           Bit 3-0(RO) : Status
4863 	 *                          Host Error    : 0x08
4864 	 *                          Int_RAM Error : 0x04
4865 	 *                          RISC Error    : 0x02
4866 	 *                          SCSI Error    : 0x01
4867 	 *                          No Error      : 0x00
4868 	 *
4869 	 * Note: RAM BIST code should be put right here, before loading the
4870 	 * microcode and after saving the RISC memory BIOS region.
4871 	 */
4872 
4873 	/*
4874 	 * LRAM Pre-test
4875 	 *
4876 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4877 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4878 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4879 	 * to NORMAL_MODE, return an error too.
4880 	 */
4881 	for (i = 0; i < 2; i++) {
4882 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
4883 		mdelay(10);	/* Wait for 10ms before reading back. */
4884 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4885 		if ((byte & RAM_TEST_DONE) == 0
4886 		    || (byte & 0x0F) != PRE_TEST_VALUE) {
4887 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4888 			return ADV_ERROR;
4889 		}
4890 
4891 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4892 		mdelay(10);	/* Wait for 10ms before reading back. */
4893 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
4894 		    != NORMAL_VALUE) {
4895 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4896 			return ADV_ERROR;
4897 		}
4898 	}
4899 
4900 	/*
4901 	 * LRAM Test - It takes about 1.5 ms to run through the test.
4902 	 *
4903 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4904 	 * If Done bit not set or Status not 0, save register byte, set the
4905 	 * err_code, and return an error.
4906 	 */
4907 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
4908 	mdelay(10);	/* Wait for 10ms before checking status. */
4909 
4910 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4911 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
4912 		/* Get here if Done bit not set or Status not 0. */
4913 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
4914 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
4915 		return ADV_ERROR;
4916 	}
4917 
4918 	/* We need to reset back to normal mode after LRAM test passes. */
4919 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4920 
4921 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4922 	if (err) {
4923 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4924 		       fwname, err);
4925 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4926 		return err;
4927 	}
4928 	if (fw->size < 4) {
4929 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4930 		       fw->size, fwname);
4931 		release_firmware(fw);
4932 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4933 		return -EINVAL;
4934 	}
4935 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4936 		 (fw->data[1] << 8) | fw->data[0];
4937 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4938 					     fw->size - 4, ADV_38C0800_MEMSIZE,
4939 					     chksum);
4940 	release_firmware(fw);
4941 	if (asc_dvc->err_code)
4942 		return ADV_ERROR;
4943 
4944 	/*
4945 	 * Restore the RISC memory BIOS region.
4946 	 */
4947 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4948 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4949 				 bios_mem[i]);
4950 	}
4951 
4952 	/*
4953 	 * Calculate and write the microcode code checksum to the microcode
4954 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4955 	 */
4956 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4957 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4958 	code_sum = 0;
4959 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4960 	for (word = begin_addr; word < end_addr; word += 2) {
4961 		code_sum += AdvReadWordAutoIncLram(iop_base);
4962 	}
4963 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4964 
4965 	/*
4966 	 * Read microcode version and date.
4967 	 */
4968 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4969 			asc_dvc->cfg->mcode_date);
4970 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4971 			asc_dvc->cfg->mcode_version);
4972 
4973 	/*
4974 	 * Set the chip type to indicate the ASC38C0800.
4975 	 */
4976 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
4977 
4978 	/*
4979 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
4980 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
4981 	 * cable detection and then we are able to read C_DET[3:0].
4982 	 *
4983 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
4984 	 * Microcode Default Value' section below.
4985 	 */
4986 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4987 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
4988 			     scsi_cfg1 | DIS_TERM_DRV);
4989 
4990 	/*
4991 	 * If the PCI Configuration Command Register "Parity Error Response
4992 	 * Control" Bit was clear (0), then set the microcode variable
4993 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4994 	 * to ignore DMA parity errors.
4995 	 */
4996 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4997 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4998 		word |= CONTROL_FLAG_IGNORE_PERR;
4999 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5000 	}
5001 
5002 	/*
5003 	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5004 	 * bits for the default FIFO threshold.
5005 	 *
5006 	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5007 	 *
5008 	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5009 	 */
5010 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5011 			     BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5012 			     READ_CMD_MRM);
5013 
5014 	/*
5015 	 * Microcode operating variables for WDTR, SDTR, and command tag
5016 	 * queuing will be set in slave_configure() based on what a
5017 	 * device reports it is capable of in Inquiry byte 7.
5018 	 *
5019 	 * If SCSI Bus Resets have been disabled, then directly set
5020 	 * SDTR and WDTR from the EEPROM configuration. This will allow
5021 	 * the BIOS and warm boot to work without a SCSI bus hang on
5022 	 * the Inquiry caused by host and target mismatched DTR values.
5023 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5024 	 * be assumed to be in Asynchronous, Narrow mode.
5025 	 */
5026 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5027 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5028 				 asc_dvc->wdtr_able);
5029 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5030 				 asc_dvc->sdtr_able);
5031 	}
5032 
5033 	/*
5034 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5035 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5036 	 * configuration values.
5037 	 *
5038 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5039 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5040 	 * without determining here whether the device supports SDTR.
5041 	 */
5042 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5043 			 asc_dvc->cfg->disc_enable);
5044 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5045 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5046 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5047 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5048 
5049 	/*
5050 	 * Set SCSI_CFG0 Microcode Default Value.
5051 	 *
5052 	 * The microcode will set the SCSI_CFG0 register using this value
5053 	 * after it is started below.
5054 	 */
5055 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5056 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5057 			 asc_dvc->chip_scsi_id);
5058 
5059 	/*
5060 	 * Determine SCSI_CFG1 Microcode Default Value.
5061 	 *
5062 	 * The microcode will set the SCSI_CFG1 register using this value
5063 	 * after it is started below.
5064 	 */
5065 
5066 	/* Read current SCSI_CFG1 Register value. */
5067 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5068 
5069 	/*
5070 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
5071 	 * register signals will be set. Check for and return an error if
5072 	 * this condition is found.
5073 	 */
5074 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5075 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5076 		return ADV_ERROR;
5077 	}
5078 
5079 	/*
5080 	 * All kind of combinations of devices attached to one of four
5081 	 * connectors are acceptable except HVD device attached. For example,
5082 	 * LVD device can be attached to SE connector while SE device attached
5083 	 * to LVD connector.  If LVD device attached to SE connector, it only
5084 	 * runs up to Ultra speed.
5085 	 *
5086 	 * If an HVD device is attached to one of LVD connectors, return an
5087 	 * error.  However, there is no way to detect HVD device attached to
5088 	 * SE connectors.
5089 	 */
5090 	if (scsi_cfg1 & HVD) {
5091 		asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5092 		return ADV_ERROR;
5093 	}
5094 
5095 	/*
5096 	 * If either SE or LVD automatic termination control is enabled, then
5097 	 * set the termination value based on a table listed in a_condor.h.
5098 	 *
5099 	 * If manual termination was specified with an EEPROM setting then
5100 	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5101 	 * to be 'ored' into SCSI_CFG1.
5102 	 */
5103 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5104 		/* SE automatic termination control is enabled. */
5105 		switch (scsi_cfg1 & C_DET_SE) {
5106 			/* TERM_SE_HI: on, TERM_SE_LO: on */
5107 		case 0x1:
5108 		case 0x2:
5109 		case 0x3:
5110 			asc_dvc->cfg->termination |= TERM_SE;
5111 			break;
5112 
5113 			/* TERM_SE_HI: on, TERM_SE_LO: off */
5114 		case 0x0:
5115 			asc_dvc->cfg->termination |= TERM_SE_HI;
5116 			break;
5117 		}
5118 	}
5119 
5120 	if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5121 		/* LVD automatic termination control is enabled. */
5122 		switch (scsi_cfg1 & C_DET_LVD) {
5123 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
5124 		case 0x4:
5125 		case 0x8:
5126 		case 0xC:
5127 			asc_dvc->cfg->termination |= TERM_LVD;
5128 			break;
5129 
5130 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
5131 		case 0x0:
5132 			break;
5133 		}
5134 	}
5135 
5136 	/*
5137 	 * Clear any set TERM_SE and TERM_LVD bits.
5138 	 */
5139 	scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5140 
5141 	/*
5142 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5143 	 */
5144 	scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5145 
5146 	/*
5147 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5148 	 * bits and set possibly modified termination control bits in the
5149 	 * Microcode SCSI_CFG1 Register Value.
5150 	 */
5151 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5152 
5153 	/*
5154 	 * Set SCSI_CFG1 Microcode Default Value
5155 	 *
5156 	 * Set possibly modified termination control and reset DIS_TERM_DRV
5157 	 * bits in the Microcode SCSI_CFG1 Register Value.
5158 	 *
5159 	 * The microcode will set the SCSI_CFG1 register using this value
5160 	 * after it is started below.
5161 	 */
5162 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5163 
5164 	/*
5165 	 * Set MEM_CFG Microcode Default Value
5166 	 *
5167 	 * The microcode will set the MEM_CFG register using this value
5168 	 * after it is started below.
5169 	 *
5170 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5171 	 * are defined.
5172 	 *
5173 	 * ASC-38C0800 has 16KB internal memory.
5174 	 */
5175 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5176 			 BIOS_EN | RAM_SZ_16KB);
5177 
5178 	/*
5179 	 * Set SEL_MASK Microcode Default Value
5180 	 *
5181 	 * The microcode will set the SEL_MASK register using this value
5182 	 * after it is started below.
5183 	 */
5184 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5185 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5186 
5187 	AdvBuildCarrierFreelist(asc_dvc);
5188 
5189 	/*
5190 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5191 	 */
5192 
5193 	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5194 	if (!asc_dvc->icq_sp) {
5195 		ASC_DBG(0, "Failed to get ICQ carrier\n");
5196 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5197 		return ADV_ERROR;
5198 	}
5199 
5200 	/*
5201 	 * Set RISC ICQ physical address start value.
5202 	 * carr_pa is LE, must be native before write
5203 	 */
5204 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5205 
5206 	/*
5207 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5208 	 */
5209 	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5210 	if (!asc_dvc->irq_sp) {
5211 		ASC_DBG(0, "Failed to get IRQ carrier\n");
5212 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5213 		return ADV_ERROR;
5214 	}
5215 
5216 	/*
5217 	 * Set RISC IRQ physical address start value.
5218 	 *
5219 	 * carr_pa is LE, must be native before write *
5220 	 */
5221 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5222 	asc_dvc->carr_pending_cnt = 0;
5223 
5224 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5225 			     (ADV_INTR_ENABLE_HOST_INTR |
5226 			      ADV_INTR_ENABLE_GLOBAL_INTR));
5227 
5228 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5229 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5230 
5231 	/* finally, finally, gentlemen, start your engine */
5232 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5233 
5234 	/*
5235 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5236 	 * Resets should be performed. The RISC has to be running
5237 	 * to issue a SCSI Bus Reset.
5238 	 */
5239 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5240 		/*
5241 		 * If the BIOS Signature is present in memory, restore the
5242 		 * BIOS Handshake Configuration Table and do not perform
5243 		 * a SCSI Bus Reset.
5244 		 */
5245 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5246 		    0x55AA) {
5247 			/*
5248 			 * Restore per TID negotiated values.
5249 			 */
5250 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5251 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5252 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5253 					 tagqng_able);
5254 			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5255 				AdvWriteByteLram(iop_base,
5256 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5257 						 max_cmd[tid]);
5258 			}
5259 		} else {
5260 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5261 				warn_code = ASC_WARN_BUSRESET_ERROR;
5262 			}
5263 		}
5264 	}
5265 
5266 	return warn_code;
5267 }
5268 
5269 /*
5270  * Initialize the ASC-38C1600.
5271  *
5272  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5273  *
5274  * For a non-fatal error return a warning code. If there are no warnings
5275  * then 0 is returned.
5276  *
5277  * Needed after initialization for error recovery.
5278  */
5279 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5280 {
5281 	const struct firmware *fw;
5282 	const char fwname[] = "advansys/38C1600.bin";
5283 	AdvPortAddr iop_base;
5284 	ushort warn_code;
5285 	int begin_addr;
5286 	int end_addr;
5287 	ushort code_sum;
5288 	long word;
5289 	int i;
5290 	int err;
5291 	unsigned long chksum;
5292 	ushort scsi_cfg1;
5293 	uchar byte;
5294 	uchar tid;
5295 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5296 	ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5297 	uchar max_cmd[ASC_MAX_TID + 1];
5298 
5299 	/* If there is already an error, don't continue. */
5300 	if (asc_dvc->err_code != 0) {
5301 		return ADV_ERROR;
5302 	}
5303 
5304 	/*
5305 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5306 	 */
5307 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5308 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5309 		return ADV_ERROR;
5310 	}
5311 
5312 	warn_code = 0;
5313 	iop_base = asc_dvc->iop_base;
5314 
5315 	/*
5316 	 * Save the RISC memory BIOS region before writing the microcode.
5317 	 * The BIOS may already be loaded and using its RISC LRAM region
5318 	 * so its region must be saved and restored.
5319 	 *
5320 	 * Note: This code makes the assumption, which is currently true,
5321 	 * that a chip reset does not clear RISC LRAM.
5322 	 */
5323 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5324 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5325 				bios_mem[i]);
5326 	}
5327 
5328 	/*
5329 	 * Save current per TID negotiated values.
5330 	 */
5331 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5332 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5333 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5334 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5335 	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5336 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5337 				max_cmd[tid]);
5338 	}
5339 
5340 	/*
5341 	 * RAM BIST (Built-In Self Test)
5342 	 *
5343 	 * Address : I/O base + offset 0x38h register (byte).
5344 	 * Function: Bit 7-6(RW) : RAM mode
5345 	 *                          Normal Mode   : 0x00
5346 	 *                          Pre-test Mode : 0x40
5347 	 *                          RAM Test Mode : 0x80
5348 	 *           Bit 5       : unused
5349 	 *           Bit 4(RO)   : Done bit
5350 	 *           Bit 3-0(RO) : Status
5351 	 *                          Host Error    : 0x08
5352 	 *                          Int_RAM Error : 0x04
5353 	 *                          RISC Error    : 0x02
5354 	 *                          SCSI Error    : 0x01
5355 	 *                          No Error      : 0x00
5356 	 *
5357 	 * Note: RAM BIST code should be put right here, before loading the
5358 	 * microcode and after saving the RISC memory BIOS region.
5359 	 */
5360 
5361 	/*
5362 	 * LRAM Pre-test
5363 	 *
5364 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5365 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5366 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5367 	 * to NORMAL_MODE, return an error too.
5368 	 */
5369 	for (i = 0; i < 2; i++) {
5370 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5371 		mdelay(10);	/* Wait for 10ms before reading back. */
5372 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5373 		if ((byte & RAM_TEST_DONE) == 0
5374 		    || (byte & 0x0F) != PRE_TEST_VALUE) {
5375 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5376 			return ADV_ERROR;
5377 		}
5378 
5379 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5380 		mdelay(10);	/* Wait for 10ms before reading back. */
5381 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5382 		    != NORMAL_VALUE) {
5383 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5384 			return ADV_ERROR;
5385 		}
5386 	}
5387 
5388 	/*
5389 	 * LRAM Test - It takes about 1.5 ms to run through the test.
5390 	 *
5391 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5392 	 * If Done bit not set or Status not 0, save register byte, set the
5393 	 * err_code, and return an error.
5394 	 */
5395 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5396 	mdelay(10);	/* Wait for 10ms before checking status. */
5397 
5398 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5399 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5400 		/* Get here if Done bit not set or Status not 0. */
5401 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
5402 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5403 		return ADV_ERROR;
5404 	}
5405 
5406 	/* We need to reset back to normal mode after LRAM test passes. */
5407 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5408 
5409 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5410 	if (err) {
5411 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5412 		       fwname, err);
5413 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5414 		return err;
5415 	}
5416 	if (fw->size < 4) {
5417 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5418 		       fw->size, fwname);
5419 		release_firmware(fw);
5420 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5421 		return -EINVAL;
5422 	}
5423 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5424 		 (fw->data[1] << 8) | fw->data[0];
5425 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5426 					     fw->size - 4, ADV_38C1600_MEMSIZE,
5427 					     chksum);
5428 	release_firmware(fw);
5429 	if (asc_dvc->err_code)
5430 		return ADV_ERROR;
5431 
5432 	/*
5433 	 * Restore the RISC memory BIOS region.
5434 	 */
5435 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5436 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5437 				 bios_mem[i]);
5438 	}
5439 
5440 	/*
5441 	 * Calculate and write the microcode code checksum to the microcode
5442 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5443 	 */
5444 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5445 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5446 	code_sum = 0;
5447 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5448 	for (word = begin_addr; word < end_addr; word += 2) {
5449 		code_sum += AdvReadWordAutoIncLram(iop_base);
5450 	}
5451 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5452 
5453 	/*
5454 	 * Read microcode version and date.
5455 	 */
5456 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5457 			asc_dvc->cfg->mcode_date);
5458 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5459 			asc_dvc->cfg->mcode_version);
5460 
5461 	/*
5462 	 * Set the chip type to indicate the ASC38C1600.
5463 	 */
5464 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5465 
5466 	/*
5467 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5468 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5469 	 * cable detection and then we are able to read C_DET[3:0].
5470 	 *
5471 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5472 	 * Microcode Default Value' section below.
5473 	 */
5474 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5475 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5476 			     scsi_cfg1 | DIS_TERM_DRV);
5477 
5478 	/*
5479 	 * If the PCI Configuration Command Register "Parity Error Response
5480 	 * Control" Bit was clear (0), then set the microcode variable
5481 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5482 	 * to ignore DMA parity errors.
5483 	 */
5484 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5485 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5486 		word |= CONTROL_FLAG_IGNORE_PERR;
5487 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5488 	}
5489 
5490 	/*
5491 	 * If the BIOS control flag AIPP (Asynchronous Information
5492 	 * Phase Protection) disable bit is not set, then set the firmware
5493 	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5494 	 * AIPP checking and encoding.
5495 	 */
5496 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5497 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5498 		word |= CONTROL_FLAG_ENABLE_AIPP;
5499 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5500 	}
5501 
5502 	/*
5503 	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5504 	 * and START_CTL_TH [3:2].
5505 	 */
5506 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5507 			     FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5508 
5509 	/*
5510 	 * Microcode operating variables for WDTR, SDTR, and command tag
5511 	 * queuing will be set in slave_configure() based on what a
5512 	 * device reports it is capable of in Inquiry byte 7.
5513 	 *
5514 	 * If SCSI Bus Resets have been disabled, then directly set
5515 	 * SDTR and WDTR from the EEPROM configuration. This will allow
5516 	 * the BIOS and warm boot to work without a SCSI bus hang on
5517 	 * the Inquiry caused by host and target mismatched DTR values.
5518 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5519 	 * be assumed to be in Asynchronous, Narrow mode.
5520 	 */
5521 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5522 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5523 				 asc_dvc->wdtr_able);
5524 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5525 				 asc_dvc->sdtr_able);
5526 	}
5527 
5528 	/*
5529 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5530 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5531 	 * configuration values.
5532 	 *
5533 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5534 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5535 	 * without determining here whether the device supports SDTR.
5536 	 */
5537 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5538 			 asc_dvc->cfg->disc_enable);
5539 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5540 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5541 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5542 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5543 
5544 	/*
5545 	 * Set SCSI_CFG0 Microcode Default Value.
5546 	 *
5547 	 * The microcode will set the SCSI_CFG0 register using this value
5548 	 * after it is started below.
5549 	 */
5550 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5551 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5552 			 asc_dvc->chip_scsi_id);
5553 
5554 	/*
5555 	 * Calculate SCSI_CFG1 Microcode Default Value.
5556 	 *
5557 	 * The microcode will set the SCSI_CFG1 register using this value
5558 	 * after it is started below.
5559 	 *
5560 	 * Each ASC-38C1600 function has only two cable detect bits.
5561 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5562 	 */
5563 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5564 
5565 	/*
5566 	 * If the cable is reversed all of the SCSI_CTRL register signals
5567 	 * will be set. Check for and return an error if this condition is
5568 	 * found.
5569 	 */
5570 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5571 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5572 		return ADV_ERROR;
5573 	}
5574 
5575 	/*
5576 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
5577 	 * can not be connected to either connector. An LVD device or SE device
5578 	 * may be connected to either connecor. If an SE device is connected,
5579 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5580 	 *
5581 	 * If an HVD device is attached, return an error.
5582 	 */
5583 	if (scsi_cfg1 & HVD) {
5584 		asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5585 		return ADV_ERROR;
5586 	}
5587 
5588 	/*
5589 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
5590 	 * termination because there are two connectors for each function. Each
5591 	 * function may use either LVD or SE mode. Corresponding the SE automatic
5592 	 * termination control EEPROM bits are used for each function. Each
5593 	 * function has its own EEPROM. If SE automatic control is enabled for
5594 	 * the function, then set the termination value based on a table listed
5595 	 * in a_condor.h.
5596 	 *
5597 	 * If manual termination is specified in the EEPROM for the function,
5598 	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5599 	 * ready to be 'ored' into SCSI_CFG1.
5600 	 */
5601 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5602 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5603 		/* SE automatic termination control is enabled. */
5604 		switch (scsi_cfg1 & C_DET_SE) {
5605 			/* TERM_SE_HI: on, TERM_SE_LO: on */
5606 		case 0x1:
5607 		case 0x2:
5608 		case 0x3:
5609 			asc_dvc->cfg->termination |= TERM_SE;
5610 			break;
5611 
5612 		case 0x0:
5613 			if (PCI_FUNC(pdev->devfn) == 0) {
5614 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5615 			} else {
5616 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5617 				asc_dvc->cfg->termination |= TERM_SE_HI;
5618 			}
5619 			break;
5620 		}
5621 	}
5622 
5623 	/*
5624 	 * Clear any set TERM_SE bits.
5625 	 */
5626 	scsi_cfg1 &= ~TERM_SE;
5627 
5628 	/*
5629 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5630 	 */
5631 	scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5632 
5633 	/*
5634 	 * Clear Big Endian and Terminator Polarity bits and set possibly
5635 	 * modified termination control bits in the Microcode SCSI_CFG1
5636 	 * Register Value.
5637 	 *
5638 	 * Big Endian bit is not used even on big endian machines.
5639 	 */
5640 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5641 
5642 	/*
5643 	 * Set SCSI_CFG1 Microcode Default Value
5644 	 *
5645 	 * Set possibly modified termination control bits in the Microcode
5646 	 * SCSI_CFG1 Register Value.
5647 	 *
5648 	 * The microcode will set the SCSI_CFG1 register using this value
5649 	 * after it is started below.
5650 	 */
5651 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5652 
5653 	/*
5654 	 * Set MEM_CFG Microcode Default Value
5655 	 *
5656 	 * The microcode will set the MEM_CFG register using this value
5657 	 * after it is started below.
5658 	 *
5659 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5660 	 * are defined.
5661 	 *
5662 	 * ASC-38C1600 has 32KB internal memory.
5663 	 *
5664 	 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5665 	 * out a special 16K Adv Library and Microcode version. After the issue
5666 	 * resolved, we should turn back to the 32K support. Both a_condor.h and
5667 	 * mcode.sas files also need to be updated.
5668 	 *
5669 	 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5670 	 *  BIOS_EN | RAM_SZ_32KB);
5671 	 */
5672 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5673 			 BIOS_EN | RAM_SZ_16KB);
5674 
5675 	/*
5676 	 * Set SEL_MASK Microcode Default Value
5677 	 *
5678 	 * The microcode will set the SEL_MASK register using this value
5679 	 * after it is started below.
5680 	 */
5681 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5682 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5683 
5684 	AdvBuildCarrierFreelist(asc_dvc);
5685 
5686 	/*
5687 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5688 	 */
5689 	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5690 	if (!asc_dvc->icq_sp) {
5691 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5692 		return ADV_ERROR;
5693 	}
5694 
5695 	/*
5696 	 * Set RISC ICQ physical address start value. Initialize the
5697 	 * COMMA register to the same value otherwise the RISC will
5698 	 * prematurely detect a command is available.
5699 	 */
5700 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5701 	AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5702 			      le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5703 
5704 	/*
5705 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5706 	 */
5707 	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5708 	if (!asc_dvc->irq_sp) {
5709 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5710 		return ADV_ERROR;
5711 	}
5712 
5713 	/*
5714 	 * Set RISC IRQ physical address start value.
5715 	 */
5716 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5717 	asc_dvc->carr_pending_cnt = 0;
5718 
5719 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5720 			     (ADV_INTR_ENABLE_HOST_INTR |
5721 			      ADV_INTR_ENABLE_GLOBAL_INTR));
5722 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5723 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5724 
5725 	/* finally, finally, gentlemen, start your engine */
5726 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5727 
5728 	/*
5729 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5730 	 * Resets should be performed. The RISC has to be running
5731 	 * to issue a SCSI Bus Reset.
5732 	 */
5733 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5734 		/*
5735 		 * If the BIOS Signature is present in memory, restore the
5736 		 * per TID microcode operating variables.
5737 		 */
5738 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5739 		    0x55AA) {
5740 			/*
5741 			 * Restore per TID negotiated values.
5742 			 */
5743 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5744 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5745 			AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5746 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5747 					 tagqng_able);
5748 			for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5749 				AdvWriteByteLram(iop_base,
5750 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5751 						 max_cmd[tid]);
5752 			}
5753 		} else {
5754 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5755 				warn_code = ASC_WARN_BUSRESET_ERROR;
5756 			}
5757 		}
5758 	}
5759 
5760 	return warn_code;
5761 }
5762 
5763 /*
5764  * Reset chip and SCSI Bus.
5765  *
5766  * Return Value:
5767  *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
5768  *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
5769  */
5770 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
5771 {
5772 	int status;
5773 	ushort wdtr_able, sdtr_able, tagqng_able;
5774 	ushort ppr_able = 0;
5775 	uchar tid, max_cmd[ADV_MAX_TID + 1];
5776 	AdvPortAddr iop_base;
5777 	ushort bios_sig;
5778 
5779 	iop_base = asc_dvc->iop_base;
5780 
5781 	/*
5782 	 * Save current per TID negotiated values.
5783 	 */
5784 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5785 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5786 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5787 		AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5788 	}
5789 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5790 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5791 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5792 				max_cmd[tid]);
5793 	}
5794 
5795 	/*
5796 	 * Force the AdvInitAsc3550/38C0800Driver() function to
5797 	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
5798 	 * The initialization functions assumes a SCSI Bus Reset is not
5799 	 * needed if the BIOS signature word is present.
5800 	 */
5801 	AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5802 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
5803 
5804 	/*
5805 	 * Stop chip and reset it.
5806 	 */
5807 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
5808 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
5809 	mdelay(100);
5810 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
5811 			     ADV_CTRL_REG_CMD_WR_IO_REG);
5812 
5813 	/*
5814 	 * Reset Adv Library error code, if any, and try
5815 	 * re-initializing the chip.
5816 	 */
5817 	asc_dvc->err_code = 0;
5818 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5819 		status = AdvInitAsc38C1600Driver(asc_dvc);
5820 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
5821 		status = AdvInitAsc38C0800Driver(asc_dvc);
5822 	} else {
5823 		status = AdvInitAsc3550Driver(asc_dvc);
5824 	}
5825 
5826 	/* Translate initialization return value to status value. */
5827 	if (status == 0) {
5828 		status = ADV_TRUE;
5829 	} else {
5830 		status = ADV_FALSE;
5831 	}
5832 
5833 	/*
5834 	 * Restore the BIOS signature word.
5835 	 */
5836 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5837 
5838 	/*
5839 	 * Restore per TID negotiated values.
5840 	 */
5841 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5842 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5843 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5844 		AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5845 	}
5846 	AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5847 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5848 		AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5849 				 max_cmd[tid]);
5850 	}
5851 
5852 	return status;
5853 }
5854 
5855 /*
5856  * adv_async_callback() - Adv Library asynchronous event callback function.
5857  */
5858 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
5859 {
5860 	switch (code) {
5861 	case ADV_ASYNC_SCSI_BUS_RESET_DET:
5862 		/*
5863 		 * The firmware detected a SCSI Bus reset.
5864 		 */
5865 		ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5866 		break;
5867 
5868 	case ADV_ASYNC_RDMA_FAILURE:
5869 		/*
5870 		 * Handle RDMA failure by resetting the SCSI Bus and
5871 		 * possibly the chip if it is unresponsive. Log the error
5872 		 * with a unique code.
5873 		 */
5874 		ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5875 		AdvResetChipAndSB(adv_dvc_varp);
5876 		break;
5877 
5878 	case ADV_HOST_SCSI_BUS_RESET:
5879 		/*
5880 		 * Host generated SCSI bus reset occurred.
5881 		 */
5882 		ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5883 		break;
5884 
5885 	default:
5886 		ASC_DBG(0, "unknown code 0x%x\n", code);
5887 		break;
5888 	}
5889 }
5890 
5891 /*
5892  * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5893  *
5894  * Callback function for the Wide SCSI Adv Library.
5895  */
5896 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
5897 {
5898 	struct asc_board *boardp = adv_dvc_varp->drv_ptr;
5899 	adv_req_t *reqp;
5900 	adv_sgblk_t *sgblkp;
5901 	struct scsi_cmnd *scp;
5902 	u32 resid_cnt;
5903 	dma_addr_t sense_addr;
5904 
5905 	ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5906 		adv_dvc_varp, scsiqp);
5907 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
5908 
5909 	/*
5910 	 * Get the adv_req_t structure for the command that has been
5911 	 * completed. The adv_req_t structure actually contains the
5912 	 * completed ADV_SCSI_REQ_Q structure.
5913 	 */
5914 	scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
5915 
5916 	ASC_DBG(1, "scp 0x%p\n", scp);
5917 	if (scp == NULL) {
5918 		ASC_PRINT
5919 		    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5920 		return;
5921 	}
5922 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
5923 
5924 	reqp = (adv_req_t *)scp->host_scribble;
5925 	ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
5926 	if (reqp == NULL) {
5927 		ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5928 		return;
5929 	}
5930 	/*
5931 	 * Remove backreferences to avoid duplicate
5932 	 * command completions.
5933 	 */
5934 	scp->host_scribble = NULL;
5935 	reqp->cmndp = NULL;
5936 
5937 	ASC_STATS(boardp->shost, callback);
5938 	ASC_DBG(1, "shost 0x%p\n", boardp->shost);
5939 
5940 	sense_addr = le32_to_cpu(scsiqp->sense_addr);
5941 	dma_unmap_single(boardp->dev, sense_addr,
5942 			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
5943 
5944 	/*
5945 	 * 'done_status' contains the command's ending status.
5946 	 */
5947 	scp->result = 0;
5948 	switch (scsiqp->done_status) {
5949 	case QD_NO_ERROR:
5950 		ASC_DBG(2, "QD_NO_ERROR\n");
5951 
5952 		/*
5953 		 * Check for an underrun condition.
5954 		 *
5955 		 * If there was no error and an underrun condition, then
5956 		 * then return the number of underrun bytes.
5957 		 */
5958 		resid_cnt = le32_to_cpu(scsiqp->data_cnt);
5959 		if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
5960 		    resid_cnt <= scsi_bufflen(scp)) {
5961 			ASC_DBG(1, "underrun condition %lu bytes\n",
5962 				 (ulong)resid_cnt);
5963 			scsi_set_resid(scp, resid_cnt);
5964 		}
5965 		break;
5966 
5967 	case QD_WITH_ERROR:
5968 		ASC_DBG(2, "QD_WITH_ERROR\n");
5969 		switch (scsiqp->host_status) {
5970 		case QHSTA_NO_ERROR:
5971 			set_status_byte(scp, scsiqp->scsi_status);
5972 			if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
5973 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
5974 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
5975 						  SCSI_SENSE_BUFFERSIZE);
5976 			}
5977 			break;
5978 
5979 		default:
5980 			/* Some other QHSTA error occurred. */
5981 			ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
5982 			set_host_byte(scp, DID_BAD_TARGET);
5983 			break;
5984 		}
5985 		break;
5986 
5987 	case QD_ABORTED_BY_HOST:
5988 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
5989 		set_status_byte(scp, scsiqp->scsi_status);
5990 		set_host_byte(scp, DID_ABORT);
5991 		break;
5992 
5993 	default:
5994 		ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
5995 		set_status_byte(scp, scsiqp->scsi_status);
5996 		set_host_byte(scp, DID_ERROR);
5997 		break;
5998 	}
5999 
6000 	/*
6001 	 * If the 'init_tidmask' bit isn't already set for the target and the
6002 	 * current request finished normally, then set the bit for the target
6003 	 * to indicate that a device is present.
6004 	 */
6005 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6006 	    scsiqp->done_status == QD_NO_ERROR &&
6007 	    scsiqp->host_status == QHSTA_NO_ERROR) {
6008 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6009 	}
6010 
6011 	asc_scsi_done(scp);
6012 
6013 	/*
6014 	 * Free all 'adv_sgblk_t' structures allocated for the request.
6015 	 */
6016 	while ((sgblkp = reqp->sgblkp) != NULL) {
6017 		/* Remove 'sgblkp' from the request list. */
6018 		reqp->sgblkp = sgblkp->next_sgblkp;
6019 
6020 		dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
6021 			      sgblkp->sg_addr);
6022 	}
6023 
6024 	ASC_DBG(1, "done\n");
6025 }
6026 
6027 /*
6028  * Adv Library Interrupt Service Routine
6029  *
6030  *  This function is called by a driver's interrupt service routine.
6031  *  The function disables and re-enables interrupts.
6032  *
6033  *  When a microcode idle command is completed, the ADV_DVC_VAR
6034  *  'idle_cmd_done' field is set to ADV_TRUE.
6035  *
6036  *  Note: AdvISR() can be called when interrupts are disabled or even
6037  *  when there is no hardware interrupt condition present. It will
6038  *  always check for completed idle commands and microcode requests.
6039  *  This is an important feature that shouldn't be changed because it
6040  *  allows commands to be completed from polling mode loops.
6041  *
6042  * Return:
6043  *   ADV_TRUE(1) - interrupt was pending
6044  *   ADV_FALSE(0) - no interrupt was pending
6045  */
6046 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6047 {
6048 	AdvPortAddr iop_base;
6049 	uchar int_stat;
6050 	ADV_CARR_T *free_carrp;
6051 	__le32 irq_next_vpa;
6052 	ADV_SCSI_REQ_Q *scsiq;
6053 	adv_req_t *reqp;
6054 
6055 	iop_base = asc_dvc->iop_base;
6056 
6057 	/* Reading the register clears the interrupt. */
6058 	int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6059 
6060 	if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6061 			 ADV_INTR_STATUS_INTRC)) == 0) {
6062 		return ADV_FALSE;
6063 	}
6064 
6065 	/*
6066 	 * Notify the driver of an asynchronous microcode condition by
6067 	 * calling the adv_async_callback function. The function
6068 	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6069 	 */
6070 	if (int_stat & ADV_INTR_STATUS_INTRB) {
6071 		uchar intrb_code;
6072 
6073 		AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6074 
6075 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6076 		    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6077 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6078 			    asc_dvc->carr_pending_cnt != 0) {
6079 				AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6080 						     ADV_TICKLE_A);
6081 				if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6082 					AdvWriteByteRegister(iop_base,
6083 							     IOPB_TICKLE,
6084 							     ADV_TICKLE_NOP);
6085 				}
6086 			}
6087 		}
6088 
6089 		adv_async_callback(asc_dvc, intrb_code);
6090 	}
6091 
6092 	/*
6093 	 * Check if the IRQ stopper carrier contains a completed request.
6094 	 */
6095 	while (((irq_next_vpa =
6096 		 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
6097 		/*
6098 		 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6099 		 * The RISC will have set 'areq_vpa' to a virtual address.
6100 		 *
6101 		 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6102 		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6103 		 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6104 		 * in AdvExeScsiQueue().
6105 		 */
6106 		u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
6107 		ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6108 			asc_dvc->irq_sp, pa_offset);
6109 		reqp = adv_get_reqp(asc_dvc, pa_offset);
6110 		scsiq = &reqp->scsi_req_q;
6111 
6112 		/*
6113 		 * Request finished with good status and the queue was not
6114 		 * DMAed to host memory by the firmware. Set all status fields
6115 		 * to indicate good status.
6116 		 */
6117 		if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
6118 			scsiq->done_status = QD_NO_ERROR;
6119 			scsiq->host_status = scsiq->scsi_status = 0;
6120 			scsiq->data_cnt = 0L;
6121 		}
6122 
6123 		/*
6124 		 * Advance the stopper pointer to the next carrier
6125 		 * ignoring the lower four bits. Free the previous
6126 		 * stopper carrier.
6127 		 */
6128 		free_carrp = asc_dvc->irq_sp;
6129 		asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
6130 						  ADV_GET_CARRP(irq_next_vpa));
6131 
6132 		free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
6133 		asc_dvc->carr_freelist = free_carrp;
6134 		asc_dvc->carr_pending_cnt--;
6135 
6136 		/*
6137 		 * Clear request microcode control flag.
6138 		 */
6139 		scsiq->cntl = 0;
6140 
6141 		/*
6142 		 * Notify the driver of the completed request by passing
6143 		 * the ADV_SCSI_REQ_Q pointer to its callback function.
6144 		 */
6145 		adv_isr_callback(asc_dvc, scsiq);
6146 		/*
6147 		 * Note: After the driver callback function is called, 'scsiq'
6148 		 * can no longer be referenced.
6149 		 *
6150 		 * Fall through and continue processing other completed
6151 		 * requests...
6152 		 */
6153 	}
6154 	return ADV_TRUE;
6155 }
6156 
6157 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6158 {
6159 	if (asc_dvc->err_code == 0) {
6160 		asc_dvc->err_code = err_code;
6161 		AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6162 				 err_code);
6163 	}
6164 	return err_code;
6165 }
6166 
6167 static void AscAckInterrupt(PortAddr iop_base)
6168 {
6169 	uchar host_flag;
6170 	uchar risc_flag;
6171 	ushort loop;
6172 
6173 	loop = 0;
6174 	do {
6175 		risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6176 		if (loop++ > 0x7FFF) {
6177 			break;
6178 		}
6179 	} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6180 	host_flag =
6181 	    AscReadLramByte(iop_base,
6182 			    ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6183 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6184 			 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6185 	AscSetChipStatus(iop_base, CIW_INT_ACK);
6186 	loop = 0;
6187 	while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6188 		AscSetChipStatus(iop_base, CIW_INT_ACK);
6189 		if (loop++ > 3) {
6190 			break;
6191 		}
6192 	}
6193 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6194 }
6195 
6196 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6197 {
6198 	const uchar *period_table;
6199 	int max_index;
6200 	int min_index;
6201 	int i;
6202 
6203 	period_table = asc_dvc->sdtr_period_tbl;
6204 	max_index = (int)asc_dvc->max_sdtr_index;
6205 	min_index = (int)asc_dvc->min_sdtr_index;
6206 	if ((syn_time <= period_table[max_index])) {
6207 		for (i = min_index; i < (max_index - 1); i++) {
6208 			if (syn_time <= period_table[i]) {
6209 				return (uchar)i;
6210 			}
6211 		}
6212 		return (uchar)max_index;
6213 	} else {
6214 		return (uchar)(max_index + 1);
6215 	}
6216 }
6217 
6218 static uchar
6219 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6220 {
6221 	PortAddr iop_base = asc_dvc->iop_base;
6222 	uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6223 	EXT_MSG sdtr_buf = {
6224 		.msg_type = EXTENDED_MESSAGE,
6225 		.msg_len = MS_SDTR_LEN,
6226 		.msg_req = EXTENDED_SDTR,
6227 		.xfer_period = sdtr_period,
6228 		.req_ack_offset = sdtr_offset,
6229 	};
6230 	sdtr_offset &= ASC_SYN_MAX_OFFSET;
6231 
6232 	if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6233 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6234 					(uchar *)&sdtr_buf,
6235 					sizeof(EXT_MSG) >> 1);
6236 		return ((sdtr_period_index << 4) | sdtr_offset);
6237 	} else {
6238 		sdtr_buf.req_ack_offset = 0;
6239 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6240 					(uchar *)&sdtr_buf,
6241 					sizeof(EXT_MSG) >> 1);
6242 		return 0;
6243 	}
6244 }
6245 
6246 static uchar
6247 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6248 {
6249 	uchar byte;
6250 	uchar sdtr_period_ix;
6251 
6252 	sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6253 	if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6254 		return 0xFF;
6255 	byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6256 	return byte;
6257 }
6258 
6259 static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6260 {
6261 	ASC_SCSI_BIT_ID_TYPE org_id;
6262 	int i;
6263 	bool sta = true;
6264 
6265 	AscSetBank(iop_base, 1);
6266 	org_id = AscReadChipDvcID(iop_base);
6267 	for (i = 0; i <= ASC_MAX_TID; i++) {
6268 		if (org_id == (0x01 << i))
6269 			break;
6270 	}
6271 	org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6272 	AscWriteChipDvcID(iop_base, id);
6273 	if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6274 		AscSetBank(iop_base, 0);
6275 		AscSetChipSyn(iop_base, sdtr_data);
6276 		if (AscGetChipSyn(iop_base) != sdtr_data) {
6277 			sta = false;
6278 		}
6279 	} else {
6280 		sta = false;
6281 	}
6282 	AscSetBank(iop_base, 1);
6283 	AscWriteChipDvcID(iop_base, org_id);
6284 	AscSetBank(iop_base, 0);
6285 	return (sta);
6286 }
6287 
6288 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6289 {
6290 	AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6291 	AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6292 }
6293 
6294 static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6295 {
6296 	EXT_MSG ext_msg;
6297 	EXT_MSG out_msg;
6298 	ushort halt_q_addr;
6299 	bool sdtr_accept;
6300 	ushort int_halt_code;
6301 	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6302 	ASC_SCSI_BIT_ID_TYPE target_id;
6303 	PortAddr iop_base;
6304 	uchar tag_code;
6305 	uchar q_status;
6306 	uchar halt_qp;
6307 	uchar sdtr_data;
6308 	uchar target_ix;
6309 	uchar q_cntl, tid_no;
6310 	uchar cur_dvc_qng;
6311 	uchar asyn_sdtr;
6312 	uchar scsi_status;
6313 	struct asc_board *boardp;
6314 
6315 	BUG_ON(!asc_dvc->drv_ptr);
6316 	boardp = asc_dvc->drv_ptr;
6317 
6318 	iop_base = asc_dvc->iop_base;
6319 	int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6320 
6321 	halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6322 	halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6323 	target_ix = AscReadLramByte(iop_base,
6324 				    (ushort)(halt_q_addr +
6325 					     (ushort)ASC_SCSIQ_B_TARGET_IX));
6326 	q_cntl = AscReadLramByte(iop_base,
6327 			    (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6328 	tid_no = ASC_TIX_TO_TID(target_ix);
6329 	target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6330 	if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6331 		asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6332 	} else {
6333 		asyn_sdtr = 0;
6334 	}
6335 	if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6336 		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6337 			AscSetChipSDTR(iop_base, 0, tid_no);
6338 			boardp->sdtr_data[tid_no] = 0;
6339 		}
6340 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6341 		return;
6342 	} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6343 		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6344 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6345 			boardp->sdtr_data[tid_no] = asyn_sdtr;
6346 		}
6347 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6348 		return;
6349 	} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6350 		AscMemWordCopyPtrFromLram(iop_base,
6351 					  ASCV_MSGIN_BEG,
6352 					  (uchar *)&ext_msg,
6353 					  sizeof(EXT_MSG) >> 1);
6354 
6355 		if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6356 		    ext_msg.msg_req == EXTENDED_SDTR &&
6357 		    ext_msg.msg_len == MS_SDTR_LEN) {
6358 			sdtr_accept = true;
6359 			if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6360 
6361 				sdtr_accept = false;
6362 				ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6363 			}
6364 			if ((ext_msg.xfer_period <
6365 			     asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6366 			    || (ext_msg.xfer_period >
6367 				asc_dvc->sdtr_period_tbl[asc_dvc->
6368 							 max_sdtr_index])) {
6369 				sdtr_accept = false;
6370 				ext_msg.xfer_period =
6371 				    asc_dvc->sdtr_period_tbl[asc_dvc->
6372 							     min_sdtr_index];
6373 			}
6374 			if (sdtr_accept) {
6375 				sdtr_data =
6376 				    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6377 						   ext_msg.req_ack_offset);
6378 				if (sdtr_data == 0xFF) {
6379 
6380 					q_cntl |= QC_MSG_OUT;
6381 					asc_dvc->init_sdtr &= ~target_id;
6382 					asc_dvc->sdtr_done &= ~target_id;
6383 					AscSetChipSDTR(iop_base, asyn_sdtr,
6384 						       tid_no);
6385 					boardp->sdtr_data[tid_no] = asyn_sdtr;
6386 				}
6387 			}
6388 			if (ext_msg.req_ack_offset == 0) {
6389 
6390 				q_cntl &= ~QC_MSG_OUT;
6391 				asc_dvc->init_sdtr &= ~target_id;
6392 				asc_dvc->sdtr_done &= ~target_id;
6393 				AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6394 			} else {
6395 				if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6396 					q_cntl &= ~QC_MSG_OUT;
6397 					asc_dvc->sdtr_done |= target_id;
6398 					asc_dvc->init_sdtr |= target_id;
6399 					asc_dvc->pci_fix_asyn_xfer &=
6400 					    ~target_id;
6401 					sdtr_data =
6402 					    AscCalSDTRData(asc_dvc,
6403 							   ext_msg.xfer_period,
6404 							   ext_msg.
6405 							   req_ack_offset);
6406 					AscSetChipSDTR(iop_base, sdtr_data,
6407 						       tid_no);
6408 					boardp->sdtr_data[tid_no] = sdtr_data;
6409 				} else {
6410 					q_cntl |= QC_MSG_OUT;
6411 					AscMsgOutSDTR(asc_dvc,
6412 						      ext_msg.xfer_period,
6413 						      ext_msg.req_ack_offset);
6414 					asc_dvc->pci_fix_asyn_xfer &=
6415 					    ~target_id;
6416 					sdtr_data =
6417 					    AscCalSDTRData(asc_dvc,
6418 							   ext_msg.xfer_period,
6419 							   ext_msg.
6420 							   req_ack_offset);
6421 					AscSetChipSDTR(iop_base, sdtr_data,
6422 						       tid_no);
6423 					boardp->sdtr_data[tid_no] = sdtr_data;
6424 					asc_dvc->sdtr_done |= target_id;
6425 					asc_dvc->init_sdtr |= target_id;
6426 				}
6427 			}
6428 
6429 			AscWriteLramByte(iop_base,
6430 					 (ushort)(halt_q_addr +
6431 						  (ushort)ASC_SCSIQ_B_CNTL),
6432 					 q_cntl);
6433 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6434 			return;
6435 		} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6436 			   ext_msg.msg_req == EXTENDED_WDTR &&
6437 			   ext_msg.msg_len == MS_WDTR_LEN) {
6438 
6439 			ext_msg.wdtr_width = 0;
6440 			AscMemWordCopyPtrToLram(iop_base,
6441 						ASCV_MSGOUT_BEG,
6442 						(uchar *)&ext_msg,
6443 						sizeof(EXT_MSG) >> 1);
6444 			q_cntl |= QC_MSG_OUT;
6445 			AscWriteLramByte(iop_base,
6446 					 (ushort)(halt_q_addr +
6447 						  (ushort)ASC_SCSIQ_B_CNTL),
6448 					 q_cntl);
6449 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6450 			return;
6451 		} else {
6452 
6453 			ext_msg.msg_type = MESSAGE_REJECT;
6454 			AscMemWordCopyPtrToLram(iop_base,
6455 						ASCV_MSGOUT_BEG,
6456 						(uchar *)&ext_msg,
6457 						sizeof(EXT_MSG) >> 1);
6458 			q_cntl |= QC_MSG_OUT;
6459 			AscWriteLramByte(iop_base,
6460 					 (ushort)(halt_q_addr +
6461 						  (ushort)ASC_SCSIQ_B_CNTL),
6462 					 q_cntl);
6463 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6464 			return;
6465 		}
6466 	} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6467 
6468 		q_cntl |= QC_REQ_SENSE;
6469 
6470 		if ((asc_dvc->init_sdtr & target_id) != 0) {
6471 
6472 			asc_dvc->sdtr_done &= ~target_id;
6473 
6474 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6475 			q_cntl |= QC_MSG_OUT;
6476 			AscMsgOutSDTR(asc_dvc,
6477 				      asc_dvc->
6478 				      sdtr_period_tbl[(sdtr_data >> 4) &
6479 						      (uchar)(asc_dvc->
6480 							      max_sdtr_index -
6481 							      1)],
6482 				      (uchar)(sdtr_data & (uchar)
6483 					      ASC_SYN_MAX_OFFSET));
6484 		}
6485 
6486 		AscWriteLramByte(iop_base,
6487 				 (ushort)(halt_q_addr +
6488 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6489 
6490 		tag_code = AscReadLramByte(iop_base,
6491 					   (ushort)(halt_q_addr + (ushort)
6492 						    ASC_SCSIQ_B_TAG_CODE));
6493 		tag_code &= 0xDC;
6494 		if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6495 		    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6496 		    ) {
6497 
6498 			tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6499 				     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6500 
6501 		}
6502 		AscWriteLramByte(iop_base,
6503 				 (ushort)(halt_q_addr +
6504 					  (ushort)ASC_SCSIQ_B_TAG_CODE),
6505 				 tag_code);
6506 
6507 		q_status = AscReadLramByte(iop_base,
6508 					   (ushort)(halt_q_addr + (ushort)
6509 						    ASC_SCSIQ_B_STATUS));
6510 		q_status |= (QS_READY | QS_BUSY);
6511 		AscWriteLramByte(iop_base,
6512 				 (ushort)(halt_q_addr +
6513 					  (ushort)ASC_SCSIQ_B_STATUS),
6514 				 q_status);
6515 
6516 		scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6517 		scsi_busy &= ~target_id;
6518 		AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6519 
6520 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6521 		return;
6522 	} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6523 
6524 		AscMemWordCopyPtrFromLram(iop_base,
6525 					  ASCV_MSGOUT_BEG,
6526 					  (uchar *)&out_msg,
6527 					  sizeof(EXT_MSG) >> 1);
6528 
6529 		if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6530 		    (out_msg.msg_len == MS_SDTR_LEN) &&
6531 		    (out_msg.msg_req == EXTENDED_SDTR)) {
6532 
6533 			asc_dvc->init_sdtr &= ~target_id;
6534 			asc_dvc->sdtr_done &= ~target_id;
6535 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6536 			boardp->sdtr_data[tid_no] = asyn_sdtr;
6537 		}
6538 		q_cntl &= ~QC_MSG_OUT;
6539 		AscWriteLramByte(iop_base,
6540 				 (ushort)(halt_q_addr +
6541 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6542 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6543 		return;
6544 	} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6545 
6546 		scsi_status = AscReadLramByte(iop_base,
6547 					      (ushort)((ushort)halt_q_addr +
6548 						       (ushort)
6549 						       ASC_SCSIQ_SCSI_STATUS));
6550 		cur_dvc_qng =
6551 		    AscReadLramByte(iop_base,
6552 				    (ushort)((ushort)ASC_QADR_BEG +
6553 					     (ushort)target_ix));
6554 		if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6555 
6556 			scsi_busy = AscReadLramByte(iop_base,
6557 						    (ushort)ASCV_SCSIBUSY_B);
6558 			scsi_busy |= target_id;
6559 			AscWriteLramByte(iop_base,
6560 					 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6561 			asc_dvc->queue_full_or_busy |= target_id;
6562 
6563 			if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6564 				if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6565 					cur_dvc_qng -= 1;
6566 					asc_dvc->max_dvc_qng[tid_no] =
6567 					    cur_dvc_qng;
6568 
6569 					AscWriteLramByte(iop_base,
6570 							 (ushort)((ushort)
6571 								  ASCV_MAX_DVC_QNG_BEG
6572 								  + (ushort)
6573 								  tid_no),
6574 							 cur_dvc_qng);
6575 
6576 					/*
6577 					 * Set the device queue depth to the
6578 					 * number of active requests when the
6579 					 * QUEUE FULL condition was encountered.
6580 					 */
6581 					boardp->queue_full |= target_id;
6582 					boardp->queue_full_cnt[tid_no] =
6583 					    cur_dvc_qng;
6584 				}
6585 			}
6586 		}
6587 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6588 		return;
6589 	}
6590 	return;
6591 }
6592 
6593 /*
6594  * void
6595  * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6596  *
6597  * Calling/Exit State:
6598  *    none
6599  *
6600  * Description:
6601  *     Input an ASC_QDONE_INFO structure from the chip
6602  */
6603 static void
6604 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6605 {
6606 	int i;
6607 	ushort word;
6608 
6609 	AscSetChipLramAddr(iop_base, s_addr);
6610 	for (i = 0; i < 2 * words; i += 2) {
6611 		if (i == 10) {
6612 			continue;
6613 		}
6614 		word = inpw(iop_base + IOP_RAM_DATA);
6615 		inbuf[i] = word & 0xff;
6616 		inbuf[i + 1] = (word >> 8) & 0xff;
6617 	}
6618 	ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
6619 }
6620 
6621 static uchar
6622 _AscCopyLramScsiDoneQ(PortAddr iop_base,
6623 		      ushort q_addr,
6624 		      ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
6625 {
6626 	ushort _val;
6627 	uchar sg_queue_cnt;
6628 
6629 	DvcGetQinfo(iop_base,
6630 		    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
6631 		    (uchar *)scsiq,
6632 		    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
6633 
6634 	_val = AscReadLramWord(iop_base,
6635 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
6636 	scsiq->q_status = (uchar)_val;
6637 	scsiq->q_no = (uchar)(_val >> 8);
6638 	_val = AscReadLramWord(iop_base,
6639 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6640 	scsiq->cntl = (uchar)_val;
6641 	sg_queue_cnt = (uchar)(_val >> 8);
6642 	_val = AscReadLramWord(iop_base,
6643 			       (ushort)(q_addr +
6644 					(ushort)ASC_SCSIQ_B_SENSE_LEN));
6645 	scsiq->sense_len = (uchar)_val;
6646 	scsiq->extra_bytes = (uchar)(_val >> 8);
6647 
6648 	/*
6649 	 * Read high word of remain bytes from alternate location.
6650 	 */
6651 	scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
6652 						     (ushort)(q_addr +
6653 							      (ushort)
6654 							      ASC_SCSIQ_W_ALT_DC1)))
6655 			       << 16);
6656 	/*
6657 	 * Read low word of remain bytes from original location.
6658 	 */
6659 	scsiq->remain_bytes += AscReadLramWord(iop_base,
6660 					       (ushort)(q_addr + (ushort)
6661 							ASC_SCSIQ_DW_REMAIN_XFER_CNT));
6662 
6663 	scsiq->remain_bytes &= max_dma_count;
6664 	return sg_queue_cnt;
6665 }
6666 
6667 /*
6668  * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6669  *
6670  * Interrupt callback function for the Narrow SCSI Asc Library.
6671  */
6672 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
6673 {
6674 	struct asc_board *boardp = asc_dvc_varp->drv_ptr;
6675 	u32 srb_tag;
6676 	struct scsi_cmnd *scp;
6677 
6678 	ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
6679 	ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
6680 
6681 	/*
6682 	 * Decrease the srb_tag by 1 to find the SCSI command
6683 	 */
6684 	srb_tag = qdonep->d2.srb_tag - 1;
6685 	scp = scsi_host_find_tag(boardp->shost, srb_tag);
6686 	if (!scp)
6687 		return;
6688 
6689 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6690 
6691 	ASC_STATS(boardp->shost, callback);
6692 
6693 	dma_unmap_single(boardp->dev, advansys_cmd(scp)->dma_handle,
6694 			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
6695 	/*
6696 	 * 'qdonep' contains the command's ending status.
6697 	 */
6698 	scp->result = 0;
6699 	switch (qdonep->d3.done_stat) {
6700 	case QD_NO_ERROR:
6701 		ASC_DBG(2, "QD_NO_ERROR\n");
6702 
6703 		/*
6704 		 * Check for an underrun condition.
6705 		 *
6706 		 * If there was no error and an underrun condition, then
6707 		 * return the number of underrun bytes.
6708 		 */
6709 		if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
6710 		    qdonep->remain_bytes <= scsi_bufflen(scp)) {
6711 			ASC_DBG(1, "underrun condition %u bytes\n",
6712 				 (unsigned)qdonep->remain_bytes);
6713 			scsi_set_resid(scp, qdonep->remain_bytes);
6714 		}
6715 		break;
6716 
6717 	case QD_WITH_ERROR:
6718 		ASC_DBG(2, "QD_WITH_ERROR\n");
6719 		switch (qdonep->d3.host_stat) {
6720 		case QHSTA_NO_ERROR:
6721 			set_status_byte(scp, qdonep->d3.scsi_stat);
6722 			if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
6723 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6724 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6725 						  SCSI_SENSE_BUFFERSIZE);
6726 			}
6727 			break;
6728 
6729 		default:
6730 			/* QHSTA error occurred */
6731 			ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
6732 			set_host_byte(scp, DID_BAD_TARGET);
6733 			break;
6734 		}
6735 		break;
6736 
6737 	case QD_ABORTED_BY_HOST:
6738 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6739 		set_status_byte(scp, qdonep->d3.scsi_stat);
6740 		set_host_byte(scp, DID_ABORT);
6741 		break;
6742 
6743 	default:
6744 		ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
6745 		set_status_byte(scp, qdonep->d3.scsi_stat);
6746 		set_host_byte(scp, DID_ERROR);
6747 		break;
6748 	}
6749 
6750 	/*
6751 	 * If the 'init_tidmask' bit isn't already set for the target and the
6752 	 * current request finished normally, then set the bit for the target
6753 	 * to indicate that a device is present.
6754 	 */
6755 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6756 	    qdonep->d3.done_stat == QD_NO_ERROR &&
6757 	    qdonep->d3.host_stat == QHSTA_NO_ERROR) {
6758 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6759 	}
6760 
6761 	asc_scsi_done(scp);
6762 }
6763 
6764 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
6765 {
6766 	uchar next_qp;
6767 	uchar n_q_used;
6768 	uchar sg_list_qp;
6769 	uchar sg_queue_cnt;
6770 	uchar q_cnt;
6771 	uchar done_q_tail;
6772 	uchar tid_no;
6773 	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6774 	ASC_SCSI_BIT_ID_TYPE target_id;
6775 	PortAddr iop_base;
6776 	ushort q_addr;
6777 	ushort sg_q_addr;
6778 	uchar cur_target_qng;
6779 	ASC_QDONE_INFO scsiq_buf;
6780 	ASC_QDONE_INFO *scsiq;
6781 	bool false_overrun;
6782 
6783 	iop_base = asc_dvc->iop_base;
6784 	n_q_used = 1;
6785 	scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
6786 	done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
6787 	q_addr = ASC_QNO_TO_QADDR(done_q_tail);
6788 	next_qp = AscReadLramByte(iop_base,
6789 				  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
6790 	if (next_qp != ASC_QLINK_END) {
6791 		AscPutVarDoneQTail(iop_base, next_qp);
6792 		q_addr = ASC_QNO_TO_QADDR(next_qp);
6793 		sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
6794 						     asc_dvc->max_dma_count);
6795 		AscWriteLramByte(iop_base,
6796 				 (ushort)(q_addr +
6797 					  (ushort)ASC_SCSIQ_B_STATUS),
6798 				 (uchar)(scsiq->
6799 					 q_status & (uchar)~(QS_READY |
6800 							     QS_ABORTED)));
6801 		tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
6802 		target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
6803 		if ((scsiq->cntl & QC_SG_HEAD) != 0) {
6804 			sg_q_addr = q_addr;
6805 			sg_list_qp = next_qp;
6806 			for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
6807 				sg_list_qp = AscReadLramByte(iop_base,
6808 							     (ushort)(sg_q_addr
6809 								      + (ushort)
6810 								      ASC_SCSIQ_B_FWD));
6811 				sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
6812 				if (sg_list_qp == ASC_QLINK_END) {
6813 					AscSetLibErrorCode(asc_dvc,
6814 							   ASCQ_ERR_SG_Q_LINKS);
6815 					scsiq->d3.done_stat = QD_WITH_ERROR;
6816 					scsiq->d3.host_stat =
6817 					    QHSTA_D_QDONE_SG_LIST_CORRUPTED;
6818 					goto FATAL_ERR_QDONE;
6819 				}
6820 				AscWriteLramByte(iop_base,
6821 						 (ushort)(sg_q_addr + (ushort)
6822 							  ASC_SCSIQ_B_STATUS),
6823 						 QS_FREE);
6824 			}
6825 			n_q_used = sg_queue_cnt + 1;
6826 			AscPutVarDoneQTail(iop_base, sg_list_qp);
6827 		}
6828 		if (asc_dvc->queue_full_or_busy & target_id) {
6829 			cur_target_qng = AscReadLramByte(iop_base,
6830 							 (ushort)((ushort)
6831 								  ASC_QADR_BEG
6832 								  + (ushort)
6833 								  scsiq->d2.
6834 								  target_ix));
6835 			if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
6836 				scsi_busy = AscReadLramByte(iop_base, (ushort)
6837 							    ASCV_SCSIBUSY_B);
6838 				scsi_busy &= ~target_id;
6839 				AscWriteLramByte(iop_base,
6840 						 (ushort)ASCV_SCSIBUSY_B,
6841 						 scsi_busy);
6842 				asc_dvc->queue_full_or_busy &= ~target_id;
6843 			}
6844 		}
6845 		if (asc_dvc->cur_total_qng >= n_q_used) {
6846 			asc_dvc->cur_total_qng -= n_q_used;
6847 			if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
6848 				asc_dvc->cur_dvc_qng[tid_no]--;
6849 			}
6850 		} else {
6851 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
6852 			scsiq->d3.done_stat = QD_WITH_ERROR;
6853 			goto FATAL_ERR_QDONE;
6854 		}
6855 		if ((scsiq->d2.srb_tag == 0UL) ||
6856 		    ((scsiq->q_status & QS_ABORTED) != 0)) {
6857 			return (0x11);
6858 		} else if (scsiq->q_status == QS_DONE) {
6859 			/*
6860 			 * This is also curious.
6861 			 * false_overrun will _always_ be set to 'false'
6862 			 */
6863 			false_overrun = false;
6864 			if (scsiq->extra_bytes != 0) {
6865 				scsiq->remain_bytes += scsiq->extra_bytes;
6866 			}
6867 			if (scsiq->d3.done_stat == QD_WITH_ERROR) {
6868 				if (scsiq->d3.host_stat ==
6869 				    QHSTA_M_DATA_OVER_RUN) {
6870 					if ((scsiq->
6871 					     cntl & (QC_DATA_IN | QC_DATA_OUT))
6872 					    == 0) {
6873 						scsiq->d3.done_stat =
6874 						    QD_NO_ERROR;
6875 						scsiq->d3.host_stat =
6876 						    QHSTA_NO_ERROR;
6877 					} else if (false_overrun) {
6878 						scsiq->d3.done_stat =
6879 						    QD_NO_ERROR;
6880 						scsiq->d3.host_stat =
6881 						    QHSTA_NO_ERROR;
6882 					}
6883 				} else if (scsiq->d3.host_stat ==
6884 					   QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
6885 					AscStopChip(iop_base);
6886 					AscSetChipControl(iop_base,
6887 							  (uchar)(CC_SCSI_RESET
6888 								  | CC_HALT));
6889 					udelay(60);
6890 					AscSetChipControl(iop_base, CC_HALT);
6891 					AscSetChipStatus(iop_base,
6892 							 CIW_CLR_SCSI_RESET_INT);
6893 					AscSetChipStatus(iop_base, 0);
6894 					AscSetChipControl(iop_base, 0);
6895 				}
6896 			}
6897 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6898 				asc_isr_callback(asc_dvc, scsiq);
6899 			} else {
6900 				if ((AscReadLramByte(iop_base,
6901 						     (ushort)(q_addr + (ushort)
6902 							      ASC_SCSIQ_CDB_BEG))
6903 				     == START_STOP)) {
6904 					asc_dvc->unit_not_ready &= ~target_id;
6905 					if (scsiq->d3.done_stat != QD_NO_ERROR) {
6906 						asc_dvc->start_motor &=
6907 						    ~target_id;
6908 					}
6909 				}
6910 			}
6911 			return (1);
6912 		} else {
6913 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
6914  FATAL_ERR_QDONE:
6915 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6916 				asc_isr_callback(asc_dvc, scsiq);
6917 			}
6918 			return (0x80);
6919 		}
6920 	}
6921 	return (0);
6922 }
6923 
6924 static int AscISR(ASC_DVC_VAR *asc_dvc)
6925 {
6926 	ASC_CS_TYPE chipstat;
6927 	PortAddr iop_base;
6928 	ushort saved_ram_addr;
6929 	uchar ctrl_reg;
6930 	uchar saved_ctrl_reg;
6931 	int int_pending;
6932 	int status;
6933 	uchar host_flag;
6934 
6935 	iop_base = asc_dvc->iop_base;
6936 	int_pending = ASC_FALSE;
6937 
6938 	if (AscIsIntPending(iop_base) == 0)
6939 		return int_pending;
6940 
6941 	if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
6942 		return ASC_ERROR;
6943 	}
6944 	if (asc_dvc->in_critical_cnt != 0) {
6945 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
6946 		return ASC_ERROR;
6947 	}
6948 	if (asc_dvc->is_in_int) {
6949 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
6950 		return ASC_ERROR;
6951 	}
6952 	asc_dvc->is_in_int = true;
6953 	ctrl_reg = AscGetChipControl(iop_base);
6954 	saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
6955 				       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
6956 	chipstat = AscGetChipStatus(iop_base);
6957 	if (chipstat & CSW_SCSI_RESET_LATCH) {
6958 		if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
6959 			int i = 10;
6960 			int_pending = ASC_TRUE;
6961 			asc_dvc->sdtr_done = 0;
6962 			saved_ctrl_reg &= (uchar)(~CC_HALT);
6963 			while ((AscGetChipStatus(iop_base) &
6964 				CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
6965 				mdelay(100);
6966 			}
6967 			AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
6968 			AscSetChipControl(iop_base, CC_HALT);
6969 			AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
6970 			AscSetChipStatus(iop_base, 0);
6971 			chipstat = AscGetChipStatus(iop_base);
6972 		}
6973 	}
6974 	saved_ram_addr = AscGetChipLramAddr(iop_base);
6975 	host_flag = AscReadLramByte(iop_base,
6976 				    ASCV_HOST_FLAG_B) &
6977 	    (uchar)(~ASC_HOST_FLAG_IN_ISR);
6978 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6979 			 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
6980 	if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
6981 		AscAckInterrupt(iop_base);
6982 		int_pending = ASC_TRUE;
6983 		if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
6984 			AscIsrChipHalted(asc_dvc);
6985 			saved_ctrl_reg &= (uchar)(~CC_HALT);
6986 		} else {
6987 			if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
6988 				while (((status =
6989 					 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
6990 				}
6991 			} else {
6992 				do {
6993 					if ((status =
6994 					     AscIsrQDone(asc_dvc)) == 1) {
6995 						break;
6996 					}
6997 				} while (status == 0x11);
6998 			}
6999 			if ((status & 0x80) != 0)
7000 				int_pending = ASC_ERROR;
7001 		}
7002 	}
7003 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7004 	AscSetChipLramAddr(iop_base, saved_ram_addr);
7005 	AscSetChipControl(iop_base, saved_ctrl_reg);
7006 	asc_dvc->is_in_int = false;
7007 	return int_pending;
7008 }
7009 
7010 /*
7011  * advansys_reset()
7012  *
7013  * Reset the host associated with the command 'scp'.
7014  *
7015  * This function runs its own thread. Interrupts must be blocked but
7016  * sleeping is allowed and no locking other than for host structures is
7017  * required. Returns SUCCESS or FAILED.
7018  */
7019 static int advansys_reset(struct scsi_cmnd *scp)
7020 {
7021 	struct Scsi_Host *shost = scp->device->host;
7022 	struct asc_board *boardp = shost_priv(shost);
7023 	unsigned long flags;
7024 	int status;
7025 	int ret = SUCCESS;
7026 
7027 	ASC_DBG(1, "0x%p\n", scp);
7028 
7029 	ASC_STATS(shost, reset);
7030 
7031 	scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
7032 
7033 	if (ASC_NARROW_BOARD(boardp)) {
7034 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7035 
7036 		/* Reset the chip and SCSI bus. */
7037 		ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7038 		status = AscInitAsc1000Driver(asc_dvc);
7039 
7040 		/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7041 		if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7042 			scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
7043 				    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7044 				    status);
7045 			ret = FAILED;
7046 		} else if (status) {
7047 			scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
7048 				    "0x%x\n", status);
7049 		} else {
7050 			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7051 				    "successful\n");
7052 		}
7053 
7054 		ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7055 	} else {
7056 		/*
7057 		 * If the suggest reset bus flags are set, then reset the bus.
7058 		 * Otherwise only reset the device.
7059 		 */
7060 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7061 
7062 		/*
7063 		 * Reset the chip and SCSI bus.
7064 		 */
7065 		ASC_DBG(1, "before AdvResetChipAndSB()\n");
7066 		switch (AdvResetChipAndSB(adv_dvc)) {
7067 		case ASC_TRUE:
7068 			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7069 				    "successful\n");
7070 			break;
7071 		case ASC_FALSE:
7072 		default:
7073 			scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
7074 			ret = FAILED;
7075 			break;
7076 		}
7077 		spin_lock_irqsave(shost->host_lock, flags);
7078 		AdvISR(adv_dvc);
7079 		spin_unlock_irqrestore(shost->host_lock, flags);
7080 	}
7081 
7082 	ASC_DBG(1, "ret %d\n", ret);
7083 
7084 	return ret;
7085 }
7086 
7087 /*
7088  * advansys_biosparam()
7089  *
7090  * Translate disk drive geometry if the "BIOS greater than 1 GB"
7091  * support is enabled for a drive.
7092  *
7093  * ip (information pointer) is an int array with the following definition:
7094  * ip[0]: heads
7095  * ip[1]: sectors
7096  * ip[2]: cylinders
7097  */
7098 static int
7099 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7100 		   sector_t capacity, int ip[])
7101 {
7102 	struct asc_board *boardp = shost_priv(sdev->host);
7103 
7104 	ASC_DBG(1, "begin\n");
7105 	ASC_STATS(sdev->host, biosparam);
7106 	if (ASC_NARROW_BOARD(boardp)) {
7107 		if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7108 		     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7109 			ip[0] = 255;
7110 			ip[1] = 63;
7111 		} else {
7112 			ip[0] = 64;
7113 			ip[1] = 32;
7114 		}
7115 	} else {
7116 		if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7117 		     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7118 			ip[0] = 255;
7119 			ip[1] = 63;
7120 		} else {
7121 			ip[0] = 64;
7122 			ip[1] = 32;
7123 		}
7124 	}
7125 	ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7126 	ASC_DBG(1, "end\n");
7127 	return 0;
7128 }
7129 
7130 /*
7131  * First-level interrupt handler.
7132  *
7133  * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7134  */
7135 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7136 {
7137 	struct Scsi_Host *shost = dev_id;
7138 	struct asc_board *boardp = shost_priv(shost);
7139 	irqreturn_t result = IRQ_NONE;
7140 	unsigned long flags;
7141 
7142 	ASC_DBG(2, "boardp 0x%p\n", boardp);
7143 	spin_lock_irqsave(shost->host_lock, flags);
7144 	if (ASC_NARROW_BOARD(boardp)) {
7145 		if (AscIsIntPending(shost->io_port)) {
7146 			result = IRQ_HANDLED;
7147 			ASC_STATS(shost, interrupt);
7148 			ASC_DBG(1, "before AscISR()\n");
7149 			AscISR(&boardp->dvc_var.asc_dvc_var);
7150 		}
7151 	} else {
7152 		ASC_DBG(1, "before AdvISR()\n");
7153 		if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7154 			result = IRQ_HANDLED;
7155 			ASC_STATS(shost, interrupt);
7156 		}
7157 	}
7158 	spin_unlock_irqrestore(shost->host_lock, flags);
7159 
7160 	ASC_DBG(1, "end\n");
7161 	return result;
7162 }
7163 
7164 static bool AscHostReqRiscHalt(PortAddr iop_base)
7165 {
7166 	int count = 0;
7167 	bool sta = false;
7168 	uchar saved_stop_code;
7169 
7170 	if (AscIsChipHalted(iop_base))
7171 		return true;
7172 	saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7173 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7174 			 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7175 	do {
7176 		if (AscIsChipHalted(iop_base)) {
7177 			sta = true;
7178 			break;
7179 		}
7180 		mdelay(100);
7181 	} while (count++ < 20);
7182 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7183 	return sta;
7184 }
7185 
7186 static bool
7187 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7188 {
7189 	bool sta = false;
7190 
7191 	if (AscHostReqRiscHalt(iop_base)) {
7192 		sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7193 		AscStartChip(iop_base);
7194 	}
7195 	return sta;
7196 }
7197 
7198 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7199 {
7200 	char type = sdev->type;
7201 	ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7202 
7203 	if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7204 		return;
7205 	if (asc_dvc->init_sdtr & tid_bits)
7206 		return;
7207 
7208 	if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7209 		asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7210 
7211 	asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7212 	if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7213 	    (type == TYPE_ROM) || (type == TYPE_TAPE))
7214 		asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7215 
7216 	if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7217 		AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7218 					ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7219 }
7220 
7221 static void
7222 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7223 {
7224 	ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7225 	ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7226 
7227 	if (sdev->lun == 0) {
7228 		ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7229 		if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7230 			asc_dvc->init_sdtr |= tid_bit;
7231 		} else {
7232 			asc_dvc->init_sdtr &= ~tid_bit;
7233 		}
7234 
7235 		if (orig_init_sdtr != asc_dvc->init_sdtr)
7236 			AscAsyncFix(asc_dvc, sdev);
7237 	}
7238 
7239 	if (sdev->tagged_supported) {
7240 		if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7241 			if (sdev->lun == 0) {
7242 				asc_dvc->cfg->can_tagged_qng |= tid_bit;
7243 				asc_dvc->use_tagged_qng |= tid_bit;
7244 			}
7245 			scsi_change_queue_depth(sdev,
7246 						asc_dvc->max_dvc_qng[sdev->id]);
7247 		}
7248 	} else {
7249 		if (sdev->lun == 0) {
7250 			asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7251 			asc_dvc->use_tagged_qng &= ~tid_bit;
7252 		}
7253 	}
7254 
7255 	if ((sdev->lun == 0) &&
7256 	    (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7257 		AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7258 				 asc_dvc->cfg->disc_enable);
7259 		AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7260 				 asc_dvc->use_tagged_qng);
7261 		AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7262 				 asc_dvc->cfg->can_tagged_qng);
7263 
7264 		asc_dvc->max_dvc_qng[sdev->id] =
7265 					asc_dvc->cfg->max_tag_qng[sdev->id];
7266 		AscWriteLramByte(asc_dvc->iop_base,
7267 				 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7268 				 asc_dvc->max_dvc_qng[sdev->id]);
7269 	}
7270 }
7271 
7272 /*
7273  * Wide Transfers
7274  *
7275  * If the EEPROM enabled WDTR for the device and the device supports wide
7276  * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7277  * write the new value to the microcode.
7278  */
7279 static void
7280 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7281 {
7282 	unsigned short cfg_word;
7283 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7284 	if ((cfg_word & tidmask) != 0)
7285 		return;
7286 
7287 	cfg_word |= tidmask;
7288 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7289 
7290 	/*
7291 	 * Clear the microcode SDTR and WDTR negotiation done indicators for
7292 	 * the target to cause it to negotiate with the new setting set above.
7293 	 * WDTR when accepted causes the target to enter asynchronous mode, so
7294 	 * SDTR must be negotiated.
7295 	 */
7296 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7297 	cfg_word &= ~tidmask;
7298 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7299 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7300 	cfg_word &= ~tidmask;
7301 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7302 }
7303 
7304 /*
7305  * Synchronous Transfers
7306  *
7307  * If the EEPROM enabled SDTR for the device and the device
7308  * supports synchronous transfers, then turn on the device's
7309  * 'sdtr_able' bit. Write the new value to the microcode.
7310  */
7311 static void
7312 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7313 {
7314 	unsigned short cfg_word;
7315 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7316 	if ((cfg_word & tidmask) != 0)
7317 		return;
7318 
7319 	cfg_word |= tidmask;
7320 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7321 
7322 	/*
7323 	 * Clear the microcode "SDTR negotiation" done indicator for the
7324 	 * target to cause it to negotiate with the new setting set above.
7325 	 */
7326 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7327 	cfg_word &= ~tidmask;
7328 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7329 }
7330 
7331 /*
7332  * PPR (Parallel Protocol Request) Capable
7333  *
7334  * If the device supports DT mode, then it must be PPR capable.
7335  * The PPR message will be used in place of the SDTR and WDTR
7336  * messages to negotiate synchronous speed and offset, transfer
7337  * width, and protocol options.
7338  */
7339 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7340 				AdvPortAddr iop_base, unsigned short tidmask)
7341 {
7342 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7343 	adv_dvc->ppr_able |= tidmask;
7344 	AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7345 }
7346 
7347 static void
7348 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7349 {
7350 	AdvPortAddr iop_base = adv_dvc->iop_base;
7351 	unsigned short tidmask = 1 << sdev->id;
7352 
7353 	if (sdev->lun == 0) {
7354 		/*
7355 		 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7356 		 * is enabled in the EEPROM and the device supports the
7357 		 * feature, then enable it in the microcode.
7358 		 */
7359 
7360 		if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7361 			advansys_wide_enable_wdtr(iop_base, tidmask);
7362 		if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7363 			advansys_wide_enable_sdtr(iop_base, tidmask);
7364 		if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7365 			advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7366 
7367 		/*
7368 		 * Tag Queuing is disabled for the BIOS which runs in polled
7369 		 * mode and would see no benefit from Tag Queuing. Also by
7370 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7371 		 * bugs will at least work with the BIOS.
7372 		 */
7373 		if ((adv_dvc->tagqng_able & tidmask) &&
7374 		    sdev->tagged_supported) {
7375 			unsigned short cfg_word;
7376 			AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7377 			cfg_word |= tidmask;
7378 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7379 					 cfg_word);
7380 			AdvWriteByteLram(iop_base,
7381 					 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7382 					 adv_dvc->max_dvc_qng);
7383 		}
7384 	}
7385 
7386 	if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7387 		scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7388 }
7389 
7390 /*
7391  * Set the number of commands to queue per device for the
7392  * specified host adapter.
7393  */
7394 static int advansys_slave_configure(struct scsi_device *sdev)
7395 {
7396 	struct asc_board *boardp = shost_priv(sdev->host);
7397 
7398 	if (ASC_NARROW_BOARD(boardp))
7399 		advansys_narrow_slave_configure(sdev,
7400 						&boardp->dvc_var.asc_dvc_var);
7401 	else
7402 		advansys_wide_slave_configure(sdev,
7403 						&boardp->dvc_var.adv_dvc_var);
7404 
7405 	return 0;
7406 }
7407 
7408 static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
7409 {
7410 	struct asc_board *board = shost_priv(scp->device->host);
7411 	struct advansys_cmd *acmd = advansys_cmd(scp);
7412 
7413 	acmd->dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7414 					SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7415 	if (dma_mapping_error(board->dev, acmd->dma_handle)) {
7416 		ASC_DBG(1, "failed to map sense buffer\n");
7417 		return 0;
7418 	}
7419 	return cpu_to_le32(acmd->dma_handle);
7420 }
7421 
7422 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7423 			struct asc_scsi_q *asc_scsi_q)
7424 {
7425 	struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7426 	int use_sg;
7427 	u32 srb_tag;
7428 
7429 	memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7430 
7431 	/*
7432 	 * Set the srb_tag to the command tag + 1, as
7433 	 * srb_tag '0' is used internally by the chip.
7434 	 */
7435 	srb_tag = scsi_cmd_to_rq(scp)->tag + 1;
7436 	asc_scsi_q->q2.srb_tag = srb_tag;
7437 
7438 	/*
7439 	 * Build the ASC_SCSI_Q request.
7440 	 */
7441 	asc_scsi_q->cdbptr = &scp->cmnd[0];
7442 	asc_scsi_q->q2.cdb_len = scp->cmd_len;
7443 	asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7444 	asc_scsi_q->q1.target_lun = scp->device->lun;
7445 	asc_scsi_q->q2.target_ix =
7446 	    ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7447 	asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
7448 	asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7449 	if (!asc_scsi_q->q1.sense_addr)
7450 		return ASC_BUSY;
7451 
7452 	/*
7453 	 * If there are any outstanding requests for the current target,
7454 	 * then every 255th request send an ORDERED request. This heuristic
7455 	 * tries to retain the benefit of request sorting while preventing
7456 	 * request starvation. 255 is the max number of tags or pending commands
7457 	 * a device may have outstanding.
7458 	 *
7459 	 * The request count is incremented below for every successfully
7460 	 * started request.
7461 	 *
7462 	 */
7463 	if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7464 	    (boardp->reqcnt[scp->device->id] % 255) == 0) {
7465 		asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7466 	} else {
7467 		asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7468 	}
7469 
7470 	/* Build ASC_SCSI_Q */
7471 	use_sg = scsi_dma_map(scp);
7472 	if (use_sg < 0) {
7473 		ASC_DBG(1, "failed to map sglist\n");
7474 		return ASC_BUSY;
7475 	} else if (use_sg > 0) {
7476 		int sgcnt;
7477 		struct scatterlist *slp;
7478 		struct asc_sg_head *asc_sg_head;
7479 
7480 		if (use_sg > scp->device->host->sg_tablesize) {
7481 			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7482 				"sg_tablesize %d\n", use_sg,
7483 				scp->device->host->sg_tablesize);
7484 			scsi_dma_unmap(scp);
7485 			set_host_byte(scp, DID_ERROR);
7486 			return ASC_ERROR;
7487 		}
7488 
7489 		asc_sg_head = kzalloc(struct_size(asc_sg_head, sg_list, use_sg),
7490 				      GFP_ATOMIC);
7491 		if (!asc_sg_head) {
7492 			scsi_dma_unmap(scp);
7493 			set_host_byte(scp, DID_SOFT_ERROR);
7494 			return ASC_ERROR;
7495 		}
7496 
7497 		asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7498 		asc_scsi_q->sg_head = asc_sg_head;
7499 		asc_scsi_q->q1.data_cnt = 0;
7500 		asc_scsi_q->q1.data_addr = 0;
7501 		/* This is a byte value, otherwise it would need to be swapped. */
7502 		asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7503 		ASC_STATS_ADD(scp->device->host, xfer_elem,
7504 			      asc_sg_head->entry_cnt);
7505 
7506 		/*
7507 		 * Convert scatter-gather list into ASC_SG_HEAD list.
7508 		 */
7509 		scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7510 			asc_sg_head->sg_list[sgcnt].addr =
7511 			    cpu_to_le32(sg_dma_address(slp));
7512 			asc_sg_head->sg_list[sgcnt].bytes =
7513 			    cpu_to_le32(sg_dma_len(slp));
7514 			ASC_STATS_ADD(scp->device->host, xfer_sect,
7515 				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7516 		}
7517 	}
7518 
7519 	ASC_STATS(scp->device->host, xfer_cnt);
7520 
7521 	ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7522 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7523 
7524 	return ASC_NOERROR;
7525 }
7526 
7527 /*
7528  * Build scatter-gather list for Adv Library (Wide Board).
7529  *
7530  * Additional ADV_SG_BLOCK structures will need to be allocated
7531  * if the total number of scatter-gather elements exceeds
7532  * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7533  * assumed to be physically contiguous.
7534  *
7535  * Return:
7536  *      ADV_SUCCESS(1) - SG List successfully created
7537  *      ADV_ERROR(-1) - SG List creation failed
7538  */
7539 static int
7540 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
7541 	       ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
7542 {
7543 	adv_sgblk_t *sgblkp, *prev_sgblkp;
7544 	struct scatterlist *slp;
7545 	int sg_elem_cnt;
7546 	ADV_SG_BLOCK *sg_block, *prev_sg_block;
7547 	dma_addr_t sgblk_paddr;
7548 	int i;
7549 
7550 	slp = scsi_sglist(scp);
7551 	sg_elem_cnt = use_sg;
7552 	prev_sgblkp = NULL;
7553 	prev_sg_block = NULL;
7554 	reqp->sgblkp = NULL;
7555 
7556 	for (;;) {
7557 		/*
7558 		 * Allocate a 'adv_sgblk_t' structure from the board free
7559 		 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7560 		 * (15) scatter-gather elements.
7561 		 */
7562 		sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
7563 					&sgblk_paddr);
7564 		if (!sgblkp) {
7565 			ASC_DBG(1, "no free adv_sgblk_t\n");
7566 			ASC_STATS(scp->device->host, adv_build_nosg);
7567 
7568 			/*
7569 			 * Allocation failed. Free 'adv_sgblk_t' structures
7570 			 * already allocated for the request.
7571 			 */
7572 			while ((sgblkp = reqp->sgblkp) != NULL) {
7573 				/* Remove 'sgblkp' from the request list. */
7574 				reqp->sgblkp = sgblkp->next_sgblkp;
7575 				sgblkp->next_sgblkp = NULL;
7576 				dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
7577 					      sgblkp->sg_addr);
7578 			}
7579 			return ASC_BUSY;
7580 		}
7581 		/* Complete 'adv_sgblk_t' board allocation. */
7582 		sgblkp->sg_addr = sgblk_paddr;
7583 		sgblkp->next_sgblkp = NULL;
7584 		sg_block = &sgblkp->sg_block;
7585 
7586 		/*
7587 		 * Check if this is the first 'adv_sgblk_t' for the
7588 		 * request.
7589 		 */
7590 		if (reqp->sgblkp == NULL) {
7591 			/* Request's first scatter-gather block. */
7592 			reqp->sgblkp = sgblkp;
7593 
7594 			/*
7595 			 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7596 			 * address pointers.
7597 			 */
7598 			scsiqp->sg_list_ptr = sg_block;
7599 			scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
7600 		} else {
7601 			/* Request's second or later scatter-gather block. */
7602 			prev_sgblkp->next_sgblkp = sgblkp;
7603 
7604 			/*
7605 			 * Point the previous ADV_SG_BLOCK structure to
7606 			 * the newly allocated ADV_SG_BLOCK structure.
7607 			 */
7608 			prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
7609 		}
7610 
7611 		for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
7612 			sg_block->sg_list[i].sg_addr =
7613 					cpu_to_le32(sg_dma_address(slp));
7614 			sg_block->sg_list[i].sg_count =
7615 					cpu_to_le32(sg_dma_len(slp));
7616 			ASC_STATS_ADD(scp->device->host, xfer_sect,
7617 				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7618 
7619 			if (--sg_elem_cnt == 0) {
7620 				/*
7621 				 * Last ADV_SG_BLOCK and scatter-gather entry.
7622 				 */
7623 				sg_block->sg_cnt = i + 1;
7624 				sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
7625 				return ADV_SUCCESS;
7626 			}
7627 			slp = sg_next(slp);
7628 		}
7629 		sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
7630 		prev_sg_block = sg_block;
7631 		prev_sgblkp = sgblkp;
7632 	}
7633 }
7634 
7635 /*
7636  * Build a request structure for the Adv Library (Wide Board).
7637  *
7638  * If an adv_req_t can not be allocated to issue the request,
7639  * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7640  *
7641  * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7642  * microcode for DMA addresses or math operations are byte swapped
7643  * to little-endian order.
7644  */
7645 static int
7646 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7647 	      adv_req_t **adv_reqpp)
7648 {
7649 	u32 srb_tag = scsi_cmd_to_rq(scp)->tag;
7650 	adv_req_t *reqp;
7651 	ADV_SCSI_REQ_Q *scsiqp;
7652 	int ret;
7653 	int use_sg;
7654 	dma_addr_t sense_addr;
7655 
7656 	/*
7657 	 * Allocate an adv_req_t structure from the board to execute
7658 	 * the command.
7659 	 */
7660 	reqp = &boardp->adv_reqp[srb_tag];
7661 	if (reqp->cmndp && reqp->cmndp != scp ) {
7662 		ASC_DBG(1, "no free adv_req_t\n");
7663 		ASC_STATS(scp->device->host, adv_build_noreq);
7664 		return ASC_BUSY;
7665 	}
7666 
7667 	reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
7668 
7669 	scsiqp = &reqp->scsi_req_q;
7670 
7671 	/*
7672 	 * Initialize the structure.
7673 	 */
7674 	scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
7675 
7676 	/*
7677 	 * Set the srb_tag to the command tag.
7678 	 */
7679 	scsiqp->srb_tag = srb_tag;
7680 
7681 	/*
7682 	 * Set 'host_scribble' to point to the adv_req_t structure.
7683 	 */
7684 	reqp->cmndp = scp;
7685 	scp->host_scribble = (void *)reqp;
7686 
7687 	/*
7688 	 * Build the ADV_SCSI_REQ_Q request.
7689 	 */
7690 
7691 	/* Set CDB length and copy it to the request structure.  */
7692 	scsiqp->cdb_len = scp->cmd_len;
7693 	/* Copy first 12 CDB bytes to cdb[]. */
7694 	memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
7695 	/* Copy last 4 CDB bytes, if present, to cdb16[]. */
7696 	if (scp->cmd_len > 12) {
7697 		int cdb16_len = scp->cmd_len - 12;
7698 
7699 		memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
7700 	}
7701 
7702 	scsiqp->target_id = scp->device->id;
7703 	scsiqp->target_lun = scp->device->lun;
7704 
7705 	sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
7706 				    SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7707 	if (dma_mapping_error(boardp->dev, sense_addr)) {
7708 		ASC_DBG(1, "failed to map sense buffer\n");
7709 		ASC_STATS(scp->device->host, adv_build_noreq);
7710 		return ASC_BUSY;
7711 	}
7712 	scsiqp->sense_addr = cpu_to_le32(sense_addr);
7713 	scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
7714 
7715 	/* Build ADV_SCSI_REQ_Q */
7716 
7717 	use_sg = scsi_dma_map(scp);
7718 	if (use_sg < 0) {
7719 		ASC_DBG(1, "failed to map SG list\n");
7720 		ASC_STATS(scp->device->host, adv_build_noreq);
7721 		return ASC_BUSY;
7722 	} else if (use_sg == 0) {
7723 		/* Zero-length transfer */
7724 		reqp->sgblkp = NULL;
7725 		scsiqp->data_cnt = 0;
7726 
7727 		scsiqp->data_addr = 0;
7728 		scsiqp->sg_list_ptr = NULL;
7729 		scsiqp->sg_real_addr = 0;
7730 	} else {
7731 		if (use_sg > ADV_MAX_SG_LIST) {
7732 			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7733 				   "ADV_MAX_SG_LIST %d\n", use_sg,
7734 				   scp->device->host->sg_tablesize);
7735 			scsi_dma_unmap(scp);
7736 			set_host_byte(scp, DID_ERROR);
7737 			reqp->cmndp = NULL;
7738 			scp->host_scribble = NULL;
7739 
7740 			return ASC_ERROR;
7741 		}
7742 
7743 		scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
7744 
7745 		ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
7746 		if (ret != ADV_SUCCESS) {
7747 			scsi_dma_unmap(scp);
7748 			set_host_byte(scp, DID_ERROR);
7749 			reqp->cmndp = NULL;
7750 			scp->host_scribble = NULL;
7751 
7752 			return ret;
7753 		}
7754 
7755 		ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
7756 	}
7757 
7758 	ASC_STATS(scp->device->host, xfer_cnt);
7759 
7760 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
7761 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7762 
7763 	*adv_reqpp = reqp;
7764 
7765 	return ASC_NOERROR;
7766 }
7767 
7768 static int AscSgListToQueue(int sg_list)
7769 {
7770 	int n_sg_list_qs;
7771 
7772 	n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
7773 	if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
7774 		n_sg_list_qs++;
7775 	return n_sg_list_qs + 1;
7776 }
7777 
7778 static uint
7779 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
7780 {
7781 	uint cur_used_qs;
7782 	uint cur_free_qs;
7783 	ASC_SCSI_BIT_ID_TYPE target_id;
7784 	uchar tid_no;
7785 
7786 	target_id = ASC_TIX_TO_TARGET_ID(target_ix);
7787 	tid_no = ASC_TIX_TO_TID(target_ix);
7788 	if ((asc_dvc->unit_not_ready & target_id) ||
7789 	    (asc_dvc->queue_full_or_busy & target_id)) {
7790 		return 0;
7791 	}
7792 	if (n_qs == 1) {
7793 		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7794 		    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
7795 	} else {
7796 		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7797 		    (uint) ASC_MIN_FREE_Q;
7798 	}
7799 	if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
7800 		cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
7801 		if (asc_dvc->cur_dvc_qng[tid_no] >=
7802 		    asc_dvc->max_dvc_qng[tid_no]) {
7803 			return 0;
7804 		}
7805 		return cur_free_qs;
7806 	}
7807 	if (n_qs > 1) {
7808 		if ((n_qs > asc_dvc->last_q_shortage)
7809 		    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
7810 			asc_dvc->last_q_shortage = n_qs;
7811 		}
7812 	}
7813 	return 0;
7814 }
7815 
7816 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
7817 {
7818 	ushort q_addr;
7819 	uchar next_qp;
7820 	uchar q_status;
7821 
7822 	q_addr = ASC_QNO_TO_QADDR(free_q_head);
7823 	q_status = (uchar)AscReadLramByte(iop_base,
7824 					  (ushort)(q_addr +
7825 						   ASC_SCSIQ_B_STATUS));
7826 	next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
7827 	if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
7828 		return next_qp;
7829 	return ASC_QLINK_END;
7830 }
7831 
7832 static uchar
7833 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
7834 {
7835 	uchar i;
7836 
7837 	for (i = 0; i < n_free_q; i++) {
7838 		free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
7839 		if (free_q_head == ASC_QLINK_END)
7840 			break;
7841 	}
7842 	return free_q_head;
7843 }
7844 
7845 /*
7846  * void
7847  * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7848  *
7849  * Calling/Exit State:
7850  *    none
7851  *
7852  * Description:
7853  *     Output an ASC_SCSI_Q structure to the chip
7854  */
7855 static void
7856 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7857 {
7858 	int i;
7859 
7860 	ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
7861 	AscSetChipLramAddr(iop_base, s_addr);
7862 	for (i = 0; i < 2 * words; i += 2) {
7863 		if (i == 4 || i == 20) {
7864 			continue;
7865 		}
7866 		outpw(iop_base + IOP_RAM_DATA,
7867 		      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
7868 	}
7869 }
7870 
7871 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7872 {
7873 	ushort q_addr;
7874 	uchar tid_no;
7875 	uchar sdtr_data;
7876 	uchar syn_period_ix;
7877 	uchar syn_offset;
7878 	PortAddr iop_base;
7879 
7880 	iop_base = asc_dvc->iop_base;
7881 	if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
7882 	    ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
7883 		tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
7884 		sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7885 		syn_period_ix =
7886 		    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
7887 		syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
7888 		AscMsgOutSDTR(asc_dvc,
7889 			      asc_dvc->sdtr_period_tbl[syn_period_ix],
7890 			      syn_offset);
7891 		scsiq->q1.cntl |= QC_MSG_OUT;
7892 	}
7893 	q_addr = ASC_QNO_TO_QADDR(q_no);
7894 	if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
7895 		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
7896 	}
7897 	scsiq->q1.status = QS_FREE;
7898 	AscMemWordCopyPtrToLram(iop_base,
7899 				q_addr + ASC_SCSIQ_CDB_BEG,
7900 				(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
7901 
7902 	DvcPutScsiQ(iop_base,
7903 		    q_addr + ASC_SCSIQ_CPY_BEG,
7904 		    (uchar *)&scsiq->q1.cntl,
7905 		    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
7906 	AscWriteLramWord(iop_base,
7907 			 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
7908 			 (ushort)(((ushort)scsiq->q1.
7909 				   q_no << 8) | (ushort)QS_READY));
7910 	return 1;
7911 }
7912 
7913 static int
7914 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7915 {
7916 	int sta;
7917 	int i;
7918 	ASC_SG_HEAD *sg_head;
7919 	ASC_SG_LIST_Q scsi_sg_q;
7920 	__le32 saved_data_addr;
7921 	__le32 saved_data_cnt;
7922 	PortAddr iop_base;
7923 	ushort sg_list_dwords;
7924 	ushort sg_index;
7925 	ushort sg_entry_cnt;
7926 	ushort q_addr;
7927 	uchar next_qp;
7928 
7929 	iop_base = asc_dvc->iop_base;
7930 	sg_head = scsiq->sg_head;
7931 	saved_data_addr = scsiq->q1.data_addr;
7932 	saved_data_cnt = scsiq->q1.data_cnt;
7933 	scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
7934 	scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
7935 	/*
7936 	 * Set sg_entry_cnt to be the number of SG elements that
7937 	 * will fit in the allocated SG queues. It is minus 1, because
7938 	 * the first SG element is handled above.
7939 	 */
7940 	sg_entry_cnt = sg_head->entry_cnt - 1;
7941 
7942 	if (sg_entry_cnt != 0) {
7943 		scsiq->q1.cntl |= QC_SG_HEAD;
7944 		q_addr = ASC_QNO_TO_QADDR(q_no);
7945 		sg_index = 1;
7946 		scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
7947 		scsi_sg_q.sg_head_qp = q_no;
7948 		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
7949 		for (i = 0; i < sg_head->queue_cnt; i++) {
7950 			scsi_sg_q.seq_no = i + 1;
7951 			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
7952 				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
7953 				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
7954 				if (i == 0) {
7955 					scsi_sg_q.sg_list_cnt =
7956 					    ASC_SG_LIST_PER_Q;
7957 					scsi_sg_q.sg_cur_list_cnt =
7958 					    ASC_SG_LIST_PER_Q;
7959 				} else {
7960 					scsi_sg_q.sg_list_cnt =
7961 					    ASC_SG_LIST_PER_Q - 1;
7962 					scsi_sg_q.sg_cur_list_cnt =
7963 					    ASC_SG_LIST_PER_Q - 1;
7964 				}
7965 			} else {
7966 				scsi_sg_q.cntl |= QCSG_SG_XFER_END;
7967 				sg_list_dwords = sg_entry_cnt << 1;
7968 				if (i == 0) {
7969 					scsi_sg_q.sg_list_cnt = sg_entry_cnt;
7970 					scsi_sg_q.sg_cur_list_cnt =
7971 					    sg_entry_cnt;
7972 				} else {
7973 					scsi_sg_q.sg_list_cnt =
7974 					    sg_entry_cnt - 1;
7975 					scsi_sg_q.sg_cur_list_cnt =
7976 					    sg_entry_cnt - 1;
7977 				}
7978 				sg_entry_cnt = 0;
7979 			}
7980 			next_qp = AscReadLramByte(iop_base,
7981 						  (ushort)(q_addr +
7982 							   ASC_SCSIQ_B_FWD));
7983 			scsi_sg_q.q_no = next_qp;
7984 			q_addr = ASC_QNO_TO_QADDR(next_qp);
7985 			AscMemWordCopyPtrToLram(iop_base,
7986 						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
7987 						(uchar *)&scsi_sg_q,
7988 						sizeof(ASC_SG_LIST_Q) >> 1);
7989 			AscMemDWordCopyPtrToLram(iop_base,
7990 						 q_addr + ASC_SGQ_LIST_BEG,
7991 						 (uchar *)&sg_head->
7992 						 sg_list[sg_index],
7993 						 sg_list_dwords);
7994 			sg_index += ASC_SG_LIST_PER_Q;
7995 			scsiq->next_sg_index = sg_index;
7996 		}
7997 	} else {
7998 		scsiq->q1.cntl &= ~QC_SG_HEAD;
7999 	}
8000 	sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8001 	scsiq->q1.data_addr = saved_data_addr;
8002 	scsiq->q1.data_cnt = saved_data_cnt;
8003 	return (sta);
8004 }
8005 
8006 static int
8007 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8008 {
8009 	PortAddr iop_base;
8010 	uchar free_q_head;
8011 	uchar next_qp;
8012 	uchar tid_no;
8013 	uchar target_ix;
8014 	int sta;
8015 
8016 	iop_base = asc_dvc->iop_base;
8017 	target_ix = scsiq->q2.target_ix;
8018 	tid_no = ASC_TIX_TO_TID(target_ix);
8019 	sta = 0;
8020 	free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8021 	if (n_q_required > 1) {
8022 		next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8023 						    (uchar)n_q_required);
8024 		if (next_qp != ASC_QLINK_END) {
8025 			asc_dvc->last_q_shortage = 0;
8026 			scsiq->sg_head->queue_cnt = n_q_required - 1;
8027 			scsiq->q1.q_no = free_q_head;
8028 			sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8029 						     free_q_head);
8030 		}
8031 	} else if (n_q_required == 1) {
8032 		next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8033 		if (next_qp != ASC_QLINK_END) {
8034 			scsiq->q1.q_no = free_q_head;
8035 			sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8036 		}
8037 	}
8038 	if (sta == 1) {
8039 		AscPutVarFreeQHead(iop_base, next_qp);
8040 		asc_dvc->cur_total_qng += n_q_required;
8041 		asc_dvc->cur_dvc_qng[tid_no]++;
8042 	}
8043 	return sta;
8044 }
8045 
8046 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8047 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8048 	INQUIRY,
8049 	REQUEST_SENSE,
8050 	READ_CAPACITY,
8051 	READ_TOC,
8052 	MODE_SELECT,
8053 	MODE_SENSE,
8054 	MODE_SELECT_10,
8055 	MODE_SENSE_10,
8056 	0xFF,
8057 	0xFF,
8058 	0xFF,
8059 	0xFF,
8060 	0xFF,
8061 	0xFF,
8062 	0xFF,
8063 	0xFF
8064 };
8065 
8066 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8067 {
8068 	PortAddr iop_base;
8069 	int sta;
8070 	int n_q_required;
8071 	bool disable_syn_offset_one_fix;
8072 	int i;
8073 	u32 addr;
8074 	ushort sg_entry_cnt = 0;
8075 	ushort sg_entry_cnt_minus_one = 0;
8076 	uchar target_ix;
8077 	uchar tid_no;
8078 	uchar sdtr_data;
8079 	uchar extra_bytes;
8080 	uchar scsi_cmd;
8081 	uchar disable_cmd;
8082 	ASC_SG_HEAD *sg_head;
8083 	unsigned long data_cnt;
8084 
8085 	iop_base = asc_dvc->iop_base;
8086 	sg_head = scsiq->sg_head;
8087 	if (asc_dvc->err_code != 0)
8088 		return ASC_ERROR;
8089 	scsiq->q1.q_no = 0;
8090 	if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8091 		scsiq->q1.extra_bytes = 0;
8092 	}
8093 	sta = 0;
8094 	target_ix = scsiq->q2.target_ix;
8095 	tid_no = ASC_TIX_TO_TID(target_ix);
8096 	n_q_required = 1;
8097 	if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8098 		if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8099 			asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8100 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8101 			AscMsgOutSDTR(asc_dvc,
8102 				      asc_dvc->
8103 				      sdtr_period_tbl[(sdtr_data >> 4) &
8104 						      (uchar)(asc_dvc->
8105 							      max_sdtr_index -
8106 							      1)],
8107 				      (uchar)(sdtr_data & (uchar)
8108 					      ASC_SYN_MAX_OFFSET));
8109 			scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8110 		}
8111 	}
8112 	if (asc_dvc->in_critical_cnt != 0) {
8113 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8114 		return ASC_ERROR;
8115 	}
8116 	asc_dvc->in_critical_cnt++;
8117 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8118 		if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8119 			asc_dvc->in_critical_cnt--;
8120 			return ASC_ERROR;
8121 		}
8122 		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8123 			asc_dvc->in_critical_cnt--;
8124 			return ASC_ERROR;
8125 		}
8126 		if (sg_entry_cnt == 1) {
8127 			scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8128 			scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8129 			scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8130 		}
8131 		sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8132 	}
8133 	scsi_cmd = scsiq->cdbptr[0];
8134 	disable_syn_offset_one_fix = false;
8135 	if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8136 	    !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8137 		if (scsiq->q1.cntl & QC_SG_HEAD) {
8138 			data_cnt = 0;
8139 			for (i = 0; i < sg_entry_cnt; i++) {
8140 				data_cnt += le32_to_cpu(sg_head->sg_list[i].
8141 							bytes);
8142 			}
8143 		} else {
8144 			data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8145 		}
8146 		if (data_cnt != 0UL) {
8147 			if (data_cnt < 512UL) {
8148 				disable_syn_offset_one_fix = true;
8149 			} else {
8150 				for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8151 				     i++) {
8152 					disable_cmd =
8153 					    _syn_offset_one_disable_cmd[i];
8154 					if (disable_cmd == 0xFF) {
8155 						break;
8156 					}
8157 					if (scsi_cmd == disable_cmd) {
8158 						disable_syn_offset_one_fix =
8159 						    true;
8160 						break;
8161 					}
8162 				}
8163 			}
8164 		}
8165 	}
8166 	if (disable_syn_offset_one_fix) {
8167 		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8168 		scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8169 				       ASC_TAG_FLAG_DISABLE_DISCONNECT);
8170 	} else {
8171 		scsiq->q2.tag_code &= 0x27;
8172 	}
8173 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8174 		if (asc_dvc->bug_fix_cntl) {
8175 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8176 				if ((scsi_cmd == READ_6) ||
8177 				    (scsi_cmd == READ_10)) {
8178 					addr = le32_to_cpu(sg_head->
8179 								   sg_list
8180 								   [sg_entry_cnt_minus_one].
8181 								   addr) +
8182 						le32_to_cpu(sg_head->
8183 								  sg_list
8184 								  [sg_entry_cnt_minus_one].
8185 								  bytes);
8186 					extra_bytes =
8187 					    (uchar)((ushort)addr & 0x0003);
8188 					if ((extra_bytes != 0)
8189 					    &&
8190 					    ((scsiq->q2.
8191 					      tag_code &
8192 					      ASC_TAG_FLAG_EXTRA_BYTES)
8193 					     == 0)) {
8194 						scsiq->q2.tag_code |=
8195 						    ASC_TAG_FLAG_EXTRA_BYTES;
8196 						scsiq->q1.extra_bytes =
8197 						    extra_bytes;
8198 						data_cnt =
8199 						    le32_to_cpu(sg_head->
8200 								sg_list
8201 								[sg_entry_cnt_minus_one].
8202 								bytes);
8203 						data_cnt -= extra_bytes;
8204 						sg_head->
8205 						    sg_list
8206 						    [sg_entry_cnt_minus_one].
8207 						    bytes =
8208 						    cpu_to_le32(data_cnt);
8209 					}
8210 				}
8211 			}
8212 		}
8213 		sg_head->entry_to_copy = sg_head->entry_cnt;
8214 		n_q_required = AscSgListToQueue(sg_entry_cnt);
8215 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8216 		     (uint) n_q_required)
8217 		    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8218 			if ((sta =
8219 			     AscSendScsiQueue(asc_dvc, scsiq,
8220 					      n_q_required)) == 1) {
8221 				asc_dvc->in_critical_cnt--;
8222 				return (sta);
8223 			}
8224 		}
8225 	} else {
8226 		if (asc_dvc->bug_fix_cntl) {
8227 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8228 				if ((scsi_cmd == READ_6) ||
8229 				    (scsi_cmd == READ_10)) {
8230 					addr =
8231 					    le32_to_cpu(scsiq->q1.data_addr) +
8232 					    le32_to_cpu(scsiq->q1.data_cnt);
8233 					extra_bytes =
8234 					    (uchar)((ushort)addr & 0x0003);
8235 					if ((extra_bytes != 0)
8236 					    &&
8237 					    ((scsiq->q2.
8238 					      tag_code &
8239 					      ASC_TAG_FLAG_EXTRA_BYTES)
8240 					     == 0)) {
8241 						data_cnt =
8242 						    le32_to_cpu(scsiq->q1.
8243 								data_cnt);
8244 						if (((ushort)data_cnt & 0x01FF)
8245 						    == 0) {
8246 							scsiq->q2.tag_code |=
8247 							    ASC_TAG_FLAG_EXTRA_BYTES;
8248 							data_cnt -= extra_bytes;
8249 							scsiq->q1.data_cnt =
8250 							    cpu_to_le32
8251 							    (data_cnt);
8252 							scsiq->q1.extra_bytes =
8253 							    extra_bytes;
8254 						}
8255 					}
8256 				}
8257 			}
8258 		}
8259 		n_q_required = 1;
8260 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8261 		    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8262 			if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8263 						    n_q_required)) == 1) {
8264 				asc_dvc->in_critical_cnt--;
8265 				return (sta);
8266 			}
8267 		}
8268 	}
8269 	asc_dvc->in_critical_cnt--;
8270 	return (sta);
8271 }
8272 
8273 /*
8274  * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8275  *
8276  *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8277  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8278  *   RISC to notify it a new command is ready to be executed.
8279  *
8280  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8281  * set to SCSI_MAX_RETRY.
8282  *
8283  * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8284  * for DMA addresses or math operations are byte swapped to little-endian
8285  * order.
8286  *
8287  * Return:
8288  *      ADV_SUCCESS(1) - The request was successfully queued.
8289  *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8290  *                       request completes.
8291  *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8292  *                       host IC error.
8293  */
8294 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
8295 {
8296 	AdvPortAddr iop_base;
8297 	ADV_CARR_T *new_carrp;
8298 	ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
8299 
8300 	/*
8301 	 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8302 	 */
8303 	if (scsiq->target_id > ADV_MAX_TID) {
8304 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8305 		scsiq->done_status = QD_WITH_ERROR;
8306 		return ADV_ERROR;
8307 	}
8308 
8309 	iop_base = asc_dvc->iop_base;
8310 
8311 	/*
8312 	 * Allocate a carrier ensuring at least one carrier always
8313 	 * remains on the freelist and initialize fields.
8314 	 */
8315 	new_carrp = adv_get_next_carrier(asc_dvc);
8316 	if (!new_carrp) {
8317 		ASC_DBG(1, "No free carriers\n");
8318 		return ADV_BUSY;
8319 	}
8320 
8321 	asc_dvc->carr_pending_cnt++;
8322 
8323 	/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8324 	scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
8325 	scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
8326 
8327 	scsiq->carr_va = asc_dvc->icq_sp->carr_va;
8328 	scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8329 
8330 	/*
8331 	 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8332 	 * the microcode. The newly allocated stopper will become the new
8333 	 * stopper.
8334 	 */
8335 	asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
8336 
8337 	/*
8338 	 * Set the 'next_vpa' pointer for the old stopper to be the
8339 	 * physical address of the new stopper. The RISC can only
8340 	 * follow physical addresses.
8341 	 */
8342 	asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8343 
8344 	/*
8345 	 * Set the host adapter stopper pointer to point to the new carrier.
8346 	 */
8347 	asc_dvc->icq_sp = new_carrp;
8348 
8349 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8350 	    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8351 		/*
8352 		 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8353 		 */
8354 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8355 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8356 			/*
8357 			 * Clear the tickle value. In the ASC-3550 the RISC flag
8358 			 * command 'clr_tickle_a' does not work unless the host
8359 			 * value is cleared.
8360 			 */
8361 			AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8362 					     ADV_TICKLE_NOP);
8363 		}
8364 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8365 		/*
8366 		 * Notify the RISC a carrier is ready by writing the physical
8367 		 * address of the new carrier stopper to the COMMA register.
8368 		 */
8369 		AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8370 				      le32_to_cpu(new_carrp->carr_pa));
8371 	}
8372 
8373 	return ADV_SUCCESS;
8374 }
8375 
8376 /*
8377  * Execute a single 'struct scsi_cmnd'.
8378  */
8379 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8380 {
8381 	int ret, err_code;
8382 	struct asc_board *boardp = shost_priv(scp->device->host);
8383 
8384 	ASC_DBG(1, "scp 0x%p\n", scp);
8385 
8386 	if (ASC_NARROW_BOARD(boardp)) {
8387 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8388 		struct asc_scsi_q asc_scsi_q;
8389 
8390 		ret = asc_build_req(boardp, scp, &asc_scsi_q);
8391 		if (ret != ASC_NOERROR) {
8392 			ASC_STATS(scp->device->host, build_error);
8393 			return ret;
8394 		}
8395 
8396 		ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8397 		kfree(asc_scsi_q.sg_head);
8398 		err_code = asc_dvc->err_code;
8399 	} else {
8400 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8401 		adv_req_t *adv_reqp;
8402 
8403 		switch (adv_build_req(boardp, scp, &adv_reqp)) {
8404 		case ASC_NOERROR:
8405 			ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8406 			break;
8407 		case ASC_BUSY:
8408 			ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8409 			/*
8410 			 * The asc_stats fields 'adv_build_noreq' and
8411 			 * 'adv_build_nosg' count wide board busy conditions.
8412 			 * They are updated in adv_build_req and
8413 			 * adv_get_sglist, respectively.
8414 			 */
8415 			return ASC_BUSY;
8416 		case ASC_ERROR:
8417 		default:
8418 			ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8419 			ASC_STATS(scp->device->host, build_error);
8420 			return ASC_ERROR;
8421 		}
8422 
8423 		ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
8424 		err_code = adv_dvc->err_code;
8425 	}
8426 
8427 	switch (ret) {
8428 	case ASC_NOERROR:
8429 		ASC_STATS(scp->device->host, exe_noerror);
8430 		/*
8431 		 * Increment monotonically increasing per device
8432 		 * successful request counter. Wrapping doesn't matter.
8433 		 */
8434 		boardp->reqcnt[scp->device->id]++;
8435 		ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8436 		break;
8437 	case ASC_BUSY:
8438 		ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8439 		ASC_STATS(scp->device->host, exe_busy);
8440 		break;
8441 	case ASC_ERROR:
8442 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8443 			"err_code 0x%x\n", err_code);
8444 		ASC_STATS(scp->device->host, exe_error);
8445 		set_host_byte(scp, DID_ERROR);
8446 		break;
8447 	default:
8448 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8449 			"err_code 0x%x\n", err_code);
8450 		ASC_STATS(scp->device->host, exe_unknown);
8451 		set_host_byte(scp, DID_ERROR);
8452 		break;
8453 	}
8454 
8455 	ASC_DBG(1, "end\n");
8456 	return ret;
8457 }
8458 
8459 /*
8460  * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8461  *
8462  * This function always returns 0. Command return status is saved
8463  * in the 'scp' result field.
8464  */
8465 static int advansys_queuecommand_lck(struct scsi_cmnd *scp)
8466 {
8467 	struct Scsi_Host *shost = scp->device->host;
8468 	int asc_res, result = 0;
8469 
8470 	ASC_STATS(shost, queuecommand);
8471 
8472 	asc_res = asc_execute_scsi_cmnd(scp);
8473 
8474 	switch (asc_res) {
8475 	case ASC_NOERROR:
8476 		break;
8477 	case ASC_BUSY:
8478 		result = SCSI_MLQUEUE_HOST_BUSY;
8479 		break;
8480 	case ASC_ERROR:
8481 	default:
8482 		asc_scsi_done(scp);
8483 		break;
8484 	}
8485 
8486 	return result;
8487 }
8488 
8489 static DEF_SCSI_QCMD(advansys_queuecommand)
8490 
8491 static ushort AscGetEisaChipCfg(PortAddr iop_base)
8492 {
8493 	PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8494 	    (PortAddr) (ASC_EISA_CFG_IOP_MASK);
8495 	return inpw(eisa_cfg_iop);
8496 }
8497 
8498 /*
8499  * Return the BIOS address of the adapter at the specified
8500  * I/O port and with the specified bus type.
8501  */
8502 static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
8503 					    unsigned short bus_type)
8504 {
8505 	unsigned short cfg_lsw;
8506 	unsigned short bios_addr;
8507 
8508 	/*
8509 	 * The PCI BIOS is re-located by the motherboard BIOS. Because
8510 	 * of this the driver can not determine where a PCI BIOS is
8511 	 * loaded and executes.
8512 	 */
8513 	if (bus_type & ASC_IS_PCI)
8514 		return 0;
8515 
8516 	if ((bus_type & ASC_IS_EISA) != 0) {
8517 		cfg_lsw = AscGetEisaChipCfg(iop_base);
8518 		cfg_lsw &= 0x000F;
8519 		bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
8520 		return bios_addr;
8521 	}
8522 
8523 	cfg_lsw = AscGetChipCfgLsw(iop_base);
8524 	bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
8525 	return bios_addr;
8526 }
8527 
8528 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
8529 {
8530 	ushort cfg_lsw;
8531 
8532 	if (AscGetChipScsiID(iop_base) == new_host_id) {
8533 		return (new_host_id);
8534 	}
8535 	cfg_lsw = AscGetChipCfgLsw(iop_base);
8536 	cfg_lsw &= 0xF8FF;
8537 	cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
8538 	AscSetChipCfgLsw(iop_base, cfg_lsw);
8539 	return (AscGetChipScsiID(iop_base));
8540 }
8541 
8542 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
8543 {
8544 	unsigned char sc;
8545 
8546 	AscSetBank(iop_base, 1);
8547 	sc = inp(iop_base + IOP_REG_SC);
8548 	AscSetBank(iop_base, 0);
8549 	return sc;
8550 }
8551 
8552 static unsigned char AscGetChipVersion(PortAddr iop_base,
8553 				       unsigned short bus_type)
8554 {
8555 	if (bus_type & ASC_IS_EISA) {
8556 		PortAddr eisa_iop;
8557 		unsigned char revision;
8558 		eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8559 		    (PortAddr) ASC_EISA_REV_IOP_MASK;
8560 		revision = inp(eisa_iop);
8561 		return ASC_CHIP_MIN_VER_EISA - 1 + revision;
8562 	}
8563 	return AscGetChipVerNo(iop_base);
8564 }
8565 
8566 static int AscStopQueueExe(PortAddr iop_base)
8567 {
8568 	int count = 0;
8569 
8570 	if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
8571 		AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8572 				 ASC_STOP_REQ_RISC_STOP);
8573 		do {
8574 			if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
8575 			    ASC_STOP_ACK_RISC_STOP) {
8576 				return (1);
8577 			}
8578 			mdelay(100);
8579 		} while (count++ < 20);
8580 	}
8581 	return (0);
8582 }
8583 
8584 static unsigned int AscGetMaxDmaCount(ushort bus_type)
8585 {
8586 	if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
8587 		return ASC_MAX_VL_DMA_COUNT;
8588 	return ASC_MAX_PCI_DMA_COUNT;
8589 }
8590 
8591 static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
8592 {
8593 	int i;
8594 	PortAddr iop_base;
8595 	uchar chip_version;
8596 
8597 	iop_base = asc_dvc->iop_base;
8598 	asc_dvc->err_code = 0;
8599 	if ((asc_dvc->bus_type &
8600 	     (ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
8601 		asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
8602 	}
8603 	AscSetChipControl(iop_base, CC_HALT);
8604 	AscSetChipStatus(iop_base, 0);
8605 	asc_dvc->bug_fix_cntl = 0;
8606 	asc_dvc->pci_fix_asyn_xfer = 0;
8607 	asc_dvc->pci_fix_asyn_xfer_always = 0;
8608 	/* asc_dvc->init_state initialized in AscInitGetConfig(). */
8609 	asc_dvc->sdtr_done = 0;
8610 	asc_dvc->cur_total_qng = 0;
8611 	asc_dvc->is_in_int = false;
8612 	asc_dvc->in_critical_cnt = 0;
8613 	asc_dvc->last_q_shortage = 0;
8614 	asc_dvc->use_tagged_qng = 0;
8615 	asc_dvc->no_scam = 0;
8616 	asc_dvc->unit_not_ready = 0;
8617 	asc_dvc->queue_full_or_busy = 0;
8618 	asc_dvc->redo_scam = 0;
8619 	asc_dvc->res2 = 0;
8620 	asc_dvc->min_sdtr_index = 0;
8621 	asc_dvc->cfg->can_tagged_qng = 0;
8622 	asc_dvc->cfg->cmd_qng_enabled = 0;
8623 	asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
8624 	asc_dvc->init_sdtr = 0;
8625 	asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
8626 	asc_dvc->scsi_reset_wait = 3;
8627 	asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
8628 	asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
8629 	asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
8630 	asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
8631 	asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
8632 	chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
8633 	asc_dvc->cfg->chip_version = chip_version;
8634 	asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
8635 	asc_dvc->max_sdtr_index = 7;
8636 	if ((asc_dvc->bus_type & ASC_IS_PCI) &&
8637 	    (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
8638 		asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
8639 		asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
8640 		asc_dvc->max_sdtr_index = 15;
8641 		if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
8642 			AscSetExtraControl(iop_base,
8643 					   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8644 		} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
8645 			AscSetExtraControl(iop_base,
8646 					   (SEC_ACTIVE_NEGATE |
8647 					    SEC_ENABLE_FILTER));
8648 		}
8649 	}
8650 	if (asc_dvc->bus_type == ASC_IS_PCI) {
8651 		AscSetExtraControl(iop_base,
8652 				   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8653 	}
8654 
8655 	for (i = 0; i <= ASC_MAX_TID; i++) {
8656 		asc_dvc->cur_dvc_qng[i] = 0;
8657 		asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
8658 		asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
8659 		asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
8660 		asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
8661 	}
8662 }
8663 
8664 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
8665 {
8666 	int retry;
8667 
8668 	for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
8669 		unsigned char read_back;
8670 		AscSetChipEEPCmd(iop_base, cmd_reg);
8671 		mdelay(1);
8672 		read_back = AscGetChipEEPCmd(iop_base);
8673 		if (read_back == cmd_reg)
8674 			return 1;
8675 	}
8676 	return 0;
8677 }
8678 
8679 static void AscWaitEEPRead(void)
8680 {
8681 	mdelay(1);
8682 }
8683 
8684 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
8685 {
8686 	ushort read_wval;
8687 	uchar cmd_reg;
8688 
8689 	AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8690 	AscWaitEEPRead();
8691 	cmd_reg = addr | ASC_EEP_CMD_READ;
8692 	AscWriteEEPCmdReg(iop_base, cmd_reg);
8693 	AscWaitEEPRead();
8694 	read_wval = AscGetChipEEPData(iop_base);
8695 	AscWaitEEPRead();
8696 	return read_wval;
8697 }
8698 
8699 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8700 			      ushort bus_type)
8701 {
8702 	ushort wval;
8703 	ushort sum;
8704 	ushort *wbuf;
8705 	int cfg_beg;
8706 	int cfg_end;
8707 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8708 	int s_addr;
8709 
8710 	wbuf = (ushort *)cfg_buf;
8711 	sum = 0;
8712 	/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8713 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8714 		*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8715 		sum += *wbuf;
8716 	}
8717 	if (bus_type & ASC_IS_VL) {
8718 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8719 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8720 	} else {
8721 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8722 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8723 	}
8724 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8725 		wval = AscReadEEPWord(iop_base, (uchar)s_addr);
8726 		if (s_addr <= uchar_end_in_config) {
8727 			/*
8728 			 * Swap all char fields - must unswap bytes already swapped
8729 			 * by AscReadEEPWord().
8730 			 */
8731 			*wbuf = le16_to_cpu(wval);
8732 		} else {
8733 			/* Don't swap word field at the end - cntl field. */
8734 			*wbuf = wval;
8735 		}
8736 		sum += wval;	/* Checksum treats all EEPROM data as words. */
8737 	}
8738 	/*
8739 	 * Read the checksum word which will be compared against 'sum'
8740 	 * by the caller. Word field already swapped.
8741 	 */
8742 	*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8743 	return sum;
8744 }
8745 
8746 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
8747 {
8748 	PortAddr iop_base;
8749 	ushort q_addr;
8750 	ushort saved_word;
8751 	int sta;
8752 
8753 	iop_base = asc_dvc->iop_base;
8754 	sta = 0;
8755 	q_addr = ASC_QNO_TO_QADDR(241);
8756 	saved_word = AscReadLramWord(iop_base, q_addr);
8757 	AscSetChipLramAddr(iop_base, q_addr);
8758 	AscSetChipLramData(iop_base, 0x55AA);
8759 	mdelay(10);
8760 	AscSetChipLramAddr(iop_base, q_addr);
8761 	if (AscGetChipLramData(iop_base) == 0x55AA) {
8762 		sta = 1;
8763 		AscWriteLramWord(iop_base, q_addr, saved_word);
8764 	}
8765 	return (sta);
8766 }
8767 
8768 static void AscWaitEEPWrite(void)
8769 {
8770 	mdelay(20);
8771 }
8772 
8773 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
8774 {
8775 	ushort read_back;
8776 	int retry;
8777 
8778 	retry = 0;
8779 	while (true) {
8780 		AscSetChipEEPData(iop_base, data_reg);
8781 		mdelay(1);
8782 		read_back = AscGetChipEEPData(iop_base);
8783 		if (read_back == data_reg) {
8784 			return (1);
8785 		}
8786 		if (retry++ > ASC_EEP_MAX_RETRY) {
8787 			return (0);
8788 		}
8789 	}
8790 }
8791 
8792 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
8793 {
8794 	ushort read_wval;
8795 
8796 	read_wval = AscReadEEPWord(iop_base, addr);
8797 	if (read_wval != word_val) {
8798 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
8799 		AscWaitEEPRead();
8800 		AscWriteEEPDataReg(iop_base, word_val);
8801 		AscWaitEEPRead();
8802 		AscWriteEEPCmdReg(iop_base,
8803 				  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
8804 		AscWaitEEPWrite();
8805 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8806 		AscWaitEEPRead();
8807 		return (AscReadEEPWord(iop_base, addr));
8808 	}
8809 	return (read_wval);
8810 }
8811 
8812 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8813 			       ushort bus_type)
8814 {
8815 	int n_error;
8816 	ushort *wbuf;
8817 	ushort word;
8818 	ushort sum;
8819 	int s_addr;
8820 	int cfg_beg;
8821 	int cfg_end;
8822 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8823 
8824 	wbuf = (ushort *)cfg_buf;
8825 	n_error = 0;
8826 	sum = 0;
8827 	/* Write two config words; AscWriteEEPWord() will swap bytes. */
8828 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8829 		sum += *wbuf;
8830 		if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
8831 			n_error++;
8832 		}
8833 	}
8834 	if (bus_type & ASC_IS_VL) {
8835 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8836 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8837 	} else {
8838 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8839 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8840 	}
8841 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8842 		if (s_addr <= uchar_end_in_config) {
8843 			/*
8844 			 * This is a char field. Swap char fields before they are
8845 			 * swapped again by AscWriteEEPWord().
8846 			 */
8847 			word = cpu_to_le16(*wbuf);
8848 			if (word !=
8849 			    AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
8850 				n_error++;
8851 			}
8852 		} else {
8853 			/* Don't swap word field at the end - cntl field. */
8854 			if (*wbuf !=
8855 			    AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
8856 				n_error++;
8857 			}
8858 		}
8859 		sum += *wbuf;	/* Checksum calculated from word values. */
8860 	}
8861 	/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
8862 	*wbuf = sum;
8863 	if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
8864 		n_error++;
8865 	}
8866 
8867 	/* Read EEPROM back again. */
8868 	wbuf = (ushort *)cfg_buf;
8869 	/*
8870 	 * Read two config words; Byte-swapping done by AscReadEEPWord().
8871 	 */
8872 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8873 		if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
8874 			n_error++;
8875 		}
8876 	}
8877 	if (bus_type & ASC_IS_VL) {
8878 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8879 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8880 	} else {
8881 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8882 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8883 	}
8884 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8885 		if (s_addr <= uchar_end_in_config) {
8886 			/*
8887 			 * Swap all char fields. Must unswap bytes already swapped
8888 			 * by AscReadEEPWord().
8889 			 */
8890 			word =
8891 			    le16_to_cpu(AscReadEEPWord
8892 					(iop_base, (uchar)s_addr));
8893 		} else {
8894 			/* Don't swap word field at the end - cntl field. */
8895 			word = AscReadEEPWord(iop_base, (uchar)s_addr);
8896 		}
8897 		if (*wbuf != word) {
8898 			n_error++;
8899 		}
8900 	}
8901 	/* Read checksum; Byte swapping not needed. */
8902 	if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
8903 		n_error++;
8904 	}
8905 	return n_error;
8906 }
8907 
8908 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8909 			   ushort bus_type)
8910 {
8911 	int retry;
8912 	int n_error;
8913 
8914 	retry = 0;
8915 	while (true) {
8916 		if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
8917 						   bus_type)) == 0) {
8918 			break;
8919 		}
8920 		if (++retry > ASC_EEP_MAX_RETRY) {
8921 			break;
8922 		}
8923 	}
8924 	return n_error;
8925 }
8926 
8927 static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
8928 {
8929 	ASCEEP_CONFIG eep_config_buf;
8930 	ASCEEP_CONFIG *eep_config;
8931 	PortAddr iop_base;
8932 	ushort chksum;
8933 	ushort warn_code;
8934 	ushort cfg_msw, cfg_lsw;
8935 	int i;
8936 	int write_eep = 0;
8937 
8938 	iop_base = asc_dvc->iop_base;
8939 	warn_code = 0;
8940 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
8941 	AscStopQueueExe(iop_base);
8942 	if ((AscStopChip(iop_base)) ||
8943 	    (AscGetChipScsiCtrl(iop_base) != 0)) {
8944 		asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
8945 		AscResetChipAndScsiBus(asc_dvc);
8946 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
8947 	}
8948 	if (!AscIsChipHalted(iop_base)) {
8949 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
8950 		return (warn_code);
8951 	}
8952 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
8953 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
8954 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
8955 		return (warn_code);
8956 	}
8957 	eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
8958 	cfg_msw = AscGetChipCfgMsw(iop_base);
8959 	cfg_lsw = AscGetChipCfgLsw(iop_base);
8960 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
8961 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
8962 		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
8963 		AscSetChipCfgMsw(iop_base, cfg_msw);
8964 	}
8965 	chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
8966 	ASC_DBG(1, "chksum 0x%x\n", chksum);
8967 	if (chksum == 0) {
8968 		chksum = 0xaa55;
8969 	}
8970 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
8971 		warn_code |= ASC_WARN_AUTO_CONFIG;
8972 		if (asc_dvc->cfg->chip_version == 3) {
8973 			if (eep_config->cfg_lsw != cfg_lsw) {
8974 				warn_code |= ASC_WARN_EEPROM_RECOVER;
8975 				eep_config->cfg_lsw =
8976 				    AscGetChipCfgLsw(iop_base);
8977 			}
8978 			if (eep_config->cfg_msw != cfg_msw) {
8979 				warn_code |= ASC_WARN_EEPROM_RECOVER;
8980 				eep_config->cfg_msw =
8981 				    AscGetChipCfgMsw(iop_base);
8982 			}
8983 		}
8984 	}
8985 	eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
8986 	eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
8987 	ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
8988 	if (chksum != eep_config->chksum) {
8989 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
8990 		    ASC_CHIP_VER_PCI_ULTRA_3050) {
8991 			ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
8992 			eep_config->init_sdtr = 0xFF;
8993 			eep_config->disc_enable = 0xFF;
8994 			eep_config->start_motor = 0xFF;
8995 			eep_config->use_cmd_qng = 0;
8996 			eep_config->max_total_qng = 0xF0;
8997 			eep_config->max_tag_qng = 0x20;
8998 			eep_config->cntl = 0xBFFF;
8999 			ASC_EEP_SET_CHIP_ID(eep_config, 7);
9000 			eep_config->no_scam = 0;
9001 			eep_config->adapter_info[0] = 0;
9002 			eep_config->adapter_info[1] = 0;
9003 			eep_config->adapter_info[2] = 0;
9004 			eep_config->adapter_info[3] = 0;
9005 			eep_config->adapter_info[4] = 0;
9006 			/* Indicate EEPROM-less board. */
9007 			eep_config->adapter_info[5] = 0xBB;
9008 		} else {
9009 			ASC_PRINT
9010 			    ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9011 			write_eep = 1;
9012 			warn_code |= ASC_WARN_EEPROM_CHKSUM;
9013 		}
9014 	}
9015 	asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9016 	asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9017 	asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9018 	asc_dvc->start_motor = eep_config->start_motor;
9019 	asc_dvc->dvc_cntl = eep_config->cntl;
9020 	asc_dvc->no_scam = eep_config->no_scam;
9021 	asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9022 	asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9023 	asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9024 	asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9025 	asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9026 	asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9027 	if (!AscTestExternalLram(asc_dvc)) {
9028 		if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9029 		     ASC_IS_PCI_ULTRA)) {
9030 			eep_config->max_total_qng =
9031 			    ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9032 			eep_config->max_tag_qng =
9033 			    ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9034 		} else {
9035 			eep_config->cfg_msw |= 0x0800;
9036 			cfg_msw |= 0x0800;
9037 			AscSetChipCfgMsw(iop_base, cfg_msw);
9038 			eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9039 			eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9040 		}
9041 	} else {
9042 	}
9043 	if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9044 		eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9045 	}
9046 	if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9047 		eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9048 	}
9049 	if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9050 		eep_config->max_tag_qng = eep_config->max_total_qng;
9051 	}
9052 	if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9053 		eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9054 	}
9055 	asc_dvc->max_total_qng = eep_config->max_total_qng;
9056 	if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9057 	    eep_config->use_cmd_qng) {
9058 		eep_config->disc_enable = eep_config->use_cmd_qng;
9059 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9060 	}
9061 	ASC_EEP_SET_CHIP_ID(eep_config,
9062 			    ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9063 	asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9064 	if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9065 	    !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9066 		asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9067 	}
9068 
9069 	for (i = 0; i <= ASC_MAX_TID; i++) {
9070 		asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9071 		asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9072 		asc_dvc->cfg->sdtr_period_offset[i] =
9073 		    (uchar)(ASC_DEF_SDTR_OFFSET |
9074 			    (asc_dvc->min_sdtr_index << 4));
9075 	}
9076 	eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9077 	if (write_eep) {
9078 		if ((i = AscSetEEPConfig(iop_base, eep_config,
9079 				     asc_dvc->bus_type)) != 0) {
9080 			ASC_PRINT1
9081 			    ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9082 			     i);
9083 		} else {
9084 			ASC_PRINT
9085 			    ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9086 		}
9087 	}
9088 	return (warn_code);
9089 }
9090 
9091 static int AscInitGetConfig(struct Scsi_Host *shost)
9092 {
9093 	struct asc_board *board = shost_priv(shost);
9094 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9095 	unsigned short warn_code = 0;
9096 
9097 	asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9098 	if (asc_dvc->err_code != 0)
9099 		return asc_dvc->err_code;
9100 
9101 	if (AscFindSignature(asc_dvc->iop_base)) {
9102 		AscInitAscDvcVar(asc_dvc);
9103 		warn_code = AscInitFromEEP(asc_dvc);
9104 		asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9105 		if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9106 			asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9107 	} else {
9108 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9109 	}
9110 
9111 	switch (warn_code) {
9112 	case 0:	/* No error */
9113 		break;
9114 	case ASC_WARN_IO_PORT_ROTATE:
9115 		shost_printk(KERN_WARNING, shost, "I/O port address "
9116 				"modified\n");
9117 		break;
9118 	case ASC_WARN_AUTO_CONFIG:
9119 		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9120 				"enabled\n");
9121 		break;
9122 	case ASC_WARN_EEPROM_CHKSUM:
9123 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9124 		break;
9125 	case ASC_WARN_IRQ_MODIFIED:
9126 		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9127 		break;
9128 	case ASC_WARN_CMD_QNG_CONFLICT:
9129 		shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9130 				"disconnects\n");
9131 		break;
9132 	default:
9133 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9134 				warn_code);
9135 		break;
9136 	}
9137 
9138 	if (asc_dvc->err_code != 0)
9139 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9140 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9141 
9142 	return asc_dvc->err_code;
9143 }
9144 
9145 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9146 {
9147 	struct asc_board *board = shost_priv(shost);
9148 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9149 	PortAddr iop_base = asc_dvc->iop_base;
9150 	unsigned short cfg_msw;
9151 	unsigned short warn_code = 0;
9152 
9153 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9154 	if (asc_dvc->err_code != 0)
9155 		return asc_dvc->err_code;
9156 	if (!AscFindSignature(asc_dvc->iop_base)) {
9157 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9158 		return asc_dvc->err_code;
9159 	}
9160 
9161 	cfg_msw = AscGetChipCfgMsw(iop_base);
9162 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9163 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9164 		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9165 		AscSetChipCfgMsw(iop_base, cfg_msw);
9166 	}
9167 	if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9168 	    asc_dvc->cfg->cmd_qng_enabled) {
9169 		asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9170 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9171 	}
9172 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9173 		warn_code |= ASC_WARN_AUTO_CONFIG;
9174 	}
9175 #ifdef CONFIG_PCI
9176 	if (asc_dvc->bus_type & ASC_IS_PCI) {
9177 		cfg_msw &= 0xFFC0;
9178 		AscSetChipCfgMsw(iop_base, cfg_msw);
9179 		if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9180 		} else {
9181 			if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9182 			    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9183 				asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9184 				asc_dvc->bug_fix_cntl |=
9185 				    ASC_BUG_FIX_ASYN_USE_SYN;
9186 			}
9187 		}
9188 	} else
9189 #endif /* CONFIG_PCI */
9190 	if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9191 	    asc_dvc->cfg->chip_scsi_id) {
9192 		asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9193 	}
9194 
9195 	asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9196 
9197 	switch (warn_code) {
9198 	case 0:	/* No error. */
9199 		break;
9200 	case ASC_WARN_IO_PORT_ROTATE:
9201 		shost_printk(KERN_WARNING, shost, "I/O port address "
9202 				"modified\n");
9203 		break;
9204 	case ASC_WARN_AUTO_CONFIG:
9205 		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9206 				"enabled\n");
9207 		break;
9208 	case ASC_WARN_EEPROM_CHKSUM:
9209 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9210 		break;
9211 	case ASC_WARN_IRQ_MODIFIED:
9212 		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9213 		break;
9214 	case ASC_WARN_CMD_QNG_CONFLICT:
9215 		shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9216 				"disconnects\n");
9217 		break;
9218 	default:
9219 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9220 				warn_code);
9221 		break;
9222 	}
9223 
9224 	if (asc_dvc->err_code != 0)
9225 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9226 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9227 
9228 	return asc_dvc->err_code;
9229 }
9230 
9231 /*
9232  * EEPROM Configuration.
9233  *
9234  * All drivers should use this structure to set the default EEPROM
9235  * configuration. The BIOS now uses this structure when it is built.
9236  * Additional structure information can be found in a_condor.h where
9237  * the structure is defined.
9238  *
9239  * The *_Field_IsChar structs are needed to correct for endianness.
9240  * These values are read from the board 16 bits at a time directly
9241  * into the structs. Because some fields are char, the values will be
9242  * in the wrong order. The *_Field_IsChar tells when to flip the
9243  * bytes. Data read and written to PCI memory is automatically swapped
9244  * on big-endian platforms so char fields read as words are actually being
9245  * unswapped on big-endian platforms.
9246  */
9247 #ifdef CONFIG_PCI
9248 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9249 	ADV_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
9250 	0x0000,			/* cfg_msw */
9251 	0xFFFF,			/* disc_enable */
9252 	0xFFFF,			/* wdtr_able */
9253 	0xFFFF,			/* sdtr_able */
9254 	0xFFFF,			/* start_motor */
9255 	0xFFFF,			/* tagqng_able */
9256 	0xFFFF,			/* bios_scan */
9257 	0,			/* scam_tolerant */
9258 	7,			/* adapter_scsi_id */
9259 	0,			/* bios_boot_delay */
9260 	3,			/* scsi_reset_delay */
9261 	0,			/* bios_id_lun */
9262 	0,			/* termination */
9263 	0,			/* reserved1 */
9264 	0xFFE7,			/* bios_ctrl */
9265 	0xFFFF,			/* ultra_able */
9266 	0,			/* reserved2 */
9267 	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
9268 	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
9269 	0,			/* dvc_cntl */
9270 	0,			/* bug_fix */
9271 	0,			/* serial_number_word1 */
9272 	0,			/* serial_number_word2 */
9273 	0,			/* serial_number_word3 */
9274 	0,			/* check_sum */
9275 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9276 	,			/* oem_name[16] */
9277 	0,			/* dvc_err_code */
9278 	0,			/* adv_err_code */
9279 	0,			/* adv_err_addr */
9280 	0,			/* saved_dvc_err_code */
9281 	0,			/* saved_adv_err_code */
9282 	0,			/* saved_adv_err_addr */
9283 	0			/* num_of_err */
9284 };
9285 
9286 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9287 	0,			/* cfg_lsw */
9288 	0,			/* cfg_msw */
9289 	0,			/* -disc_enable */
9290 	0,			/* wdtr_able */
9291 	0,			/* sdtr_able */
9292 	0,			/* start_motor */
9293 	0,			/* tagqng_able */
9294 	0,			/* bios_scan */
9295 	0,			/* scam_tolerant */
9296 	1,			/* adapter_scsi_id */
9297 	1,			/* bios_boot_delay */
9298 	1,			/* scsi_reset_delay */
9299 	1,			/* bios_id_lun */
9300 	1,			/* termination */
9301 	1,			/* reserved1 */
9302 	0,			/* bios_ctrl */
9303 	0,			/* ultra_able */
9304 	0,			/* reserved2 */
9305 	1,			/* max_host_qng */
9306 	1,			/* max_dvc_qng */
9307 	0,			/* dvc_cntl */
9308 	0,			/* bug_fix */
9309 	0,			/* serial_number_word1 */
9310 	0,			/* serial_number_word2 */
9311 	0,			/* serial_number_word3 */
9312 	0,			/* check_sum */
9313 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9314 	,			/* oem_name[16] */
9315 	0,			/* dvc_err_code */
9316 	0,			/* adv_err_code */
9317 	0,			/* adv_err_addr */
9318 	0,			/* saved_dvc_err_code */
9319 	0,			/* saved_adv_err_code */
9320 	0,			/* saved_adv_err_addr */
9321 	0			/* num_of_err */
9322 };
9323 
9324 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9325 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9326 	0x0000,			/* 01 cfg_msw */
9327 	0xFFFF,			/* 02 disc_enable */
9328 	0xFFFF,			/* 03 wdtr_able */
9329 	0x4444,			/* 04 sdtr_speed1 */
9330 	0xFFFF,			/* 05 start_motor */
9331 	0xFFFF,			/* 06 tagqng_able */
9332 	0xFFFF,			/* 07 bios_scan */
9333 	0,			/* 08 scam_tolerant */
9334 	7,			/* 09 adapter_scsi_id */
9335 	0,			/*    bios_boot_delay */
9336 	3,			/* 10 scsi_reset_delay */
9337 	0,			/*    bios_id_lun */
9338 	0,			/* 11 termination_se */
9339 	0,			/*    termination_lvd */
9340 	0xFFE7,			/* 12 bios_ctrl */
9341 	0x4444,			/* 13 sdtr_speed2 */
9342 	0x4444,			/* 14 sdtr_speed3 */
9343 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9344 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9345 	0,			/* 16 dvc_cntl */
9346 	0x4444,			/* 17 sdtr_speed4 */
9347 	0,			/* 18 serial_number_word1 */
9348 	0,			/* 19 serial_number_word2 */
9349 	0,			/* 20 serial_number_word3 */
9350 	0,			/* 21 check_sum */
9351 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9352 	,			/* 22-29 oem_name[16] */
9353 	0,			/* 30 dvc_err_code */
9354 	0,			/* 31 adv_err_code */
9355 	0,			/* 32 adv_err_addr */
9356 	0,			/* 33 saved_dvc_err_code */
9357 	0,			/* 34 saved_adv_err_code */
9358 	0,			/* 35 saved_adv_err_addr */
9359 	0,			/* 36 reserved */
9360 	0,			/* 37 reserved */
9361 	0,			/* 38 reserved */
9362 	0,			/* 39 reserved */
9363 	0,			/* 40 reserved */
9364 	0,			/* 41 reserved */
9365 	0,			/* 42 reserved */
9366 	0,			/* 43 reserved */
9367 	0,			/* 44 reserved */
9368 	0,			/* 45 reserved */
9369 	0,			/* 46 reserved */
9370 	0,			/* 47 reserved */
9371 	0,			/* 48 reserved */
9372 	0,			/* 49 reserved */
9373 	0,			/* 50 reserved */
9374 	0,			/* 51 reserved */
9375 	0,			/* 52 reserved */
9376 	0,			/* 53 reserved */
9377 	0,			/* 54 reserved */
9378 	0,			/* 55 reserved */
9379 	0,			/* 56 cisptr_lsw */
9380 	0,			/* 57 cisprt_msw */
9381 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9382 	PCI_DEVICE_ID_38C0800_REV1,	/* 59 subsysid */
9383 	0,			/* 60 reserved */
9384 	0,			/* 61 reserved */
9385 	0,			/* 62 reserved */
9386 	0			/* 63 reserved */
9387 };
9388 
9389 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
9390 	0,			/* 00 cfg_lsw */
9391 	0,			/* 01 cfg_msw */
9392 	0,			/* 02 disc_enable */
9393 	0,			/* 03 wdtr_able */
9394 	0,			/* 04 sdtr_speed1 */
9395 	0,			/* 05 start_motor */
9396 	0,			/* 06 tagqng_able */
9397 	0,			/* 07 bios_scan */
9398 	0,			/* 08 scam_tolerant */
9399 	1,			/* 09 adapter_scsi_id */
9400 	1,			/*    bios_boot_delay */
9401 	1,			/* 10 scsi_reset_delay */
9402 	1,			/*    bios_id_lun */
9403 	1,			/* 11 termination_se */
9404 	1,			/*    termination_lvd */
9405 	0,			/* 12 bios_ctrl */
9406 	0,			/* 13 sdtr_speed2 */
9407 	0,			/* 14 sdtr_speed3 */
9408 	1,			/* 15 max_host_qng */
9409 	1,			/*    max_dvc_qng */
9410 	0,			/* 16 dvc_cntl */
9411 	0,			/* 17 sdtr_speed4 */
9412 	0,			/* 18 serial_number_word1 */
9413 	0,			/* 19 serial_number_word2 */
9414 	0,			/* 20 serial_number_word3 */
9415 	0,			/* 21 check_sum */
9416 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9417 	,			/* 22-29 oem_name[16] */
9418 	0,			/* 30 dvc_err_code */
9419 	0,			/* 31 adv_err_code */
9420 	0,			/* 32 adv_err_addr */
9421 	0,			/* 33 saved_dvc_err_code */
9422 	0,			/* 34 saved_adv_err_code */
9423 	0,			/* 35 saved_adv_err_addr */
9424 	0,			/* 36 reserved */
9425 	0,			/* 37 reserved */
9426 	0,			/* 38 reserved */
9427 	0,			/* 39 reserved */
9428 	0,			/* 40 reserved */
9429 	0,			/* 41 reserved */
9430 	0,			/* 42 reserved */
9431 	0,			/* 43 reserved */
9432 	0,			/* 44 reserved */
9433 	0,			/* 45 reserved */
9434 	0,			/* 46 reserved */
9435 	0,			/* 47 reserved */
9436 	0,			/* 48 reserved */
9437 	0,			/* 49 reserved */
9438 	0,			/* 50 reserved */
9439 	0,			/* 51 reserved */
9440 	0,			/* 52 reserved */
9441 	0,			/* 53 reserved */
9442 	0,			/* 54 reserved */
9443 	0,			/* 55 reserved */
9444 	0,			/* 56 cisptr_lsw */
9445 	0,			/* 57 cisprt_msw */
9446 	0,			/* 58 subsysvid */
9447 	0,			/* 59 subsysid */
9448 	0,			/* 60 reserved */
9449 	0,			/* 61 reserved */
9450 	0,			/* 62 reserved */
9451 	0			/* 63 reserved */
9452 };
9453 
9454 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
9455 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9456 	0x0000,			/* 01 cfg_msw */
9457 	0xFFFF,			/* 02 disc_enable */
9458 	0xFFFF,			/* 03 wdtr_able */
9459 	0x5555,			/* 04 sdtr_speed1 */
9460 	0xFFFF,			/* 05 start_motor */
9461 	0xFFFF,			/* 06 tagqng_able */
9462 	0xFFFF,			/* 07 bios_scan */
9463 	0,			/* 08 scam_tolerant */
9464 	7,			/* 09 adapter_scsi_id */
9465 	0,			/*    bios_boot_delay */
9466 	3,			/* 10 scsi_reset_delay */
9467 	0,			/*    bios_id_lun */
9468 	0,			/* 11 termination_se */
9469 	0,			/*    termination_lvd */
9470 	0xFFE7,			/* 12 bios_ctrl */
9471 	0x5555,			/* 13 sdtr_speed2 */
9472 	0x5555,			/* 14 sdtr_speed3 */
9473 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9474 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9475 	0,			/* 16 dvc_cntl */
9476 	0x5555,			/* 17 sdtr_speed4 */
9477 	0,			/* 18 serial_number_word1 */
9478 	0,			/* 19 serial_number_word2 */
9479 	0,			/* 20 serial_number_word3 */
9480 	0,			/* 21 check_sum */
9481 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9482 	,			/* 22-29 oem_name[16] */
9483 	0,			/* 30 dvc_err_code */
9484 	0,			/* 31 adv_err_code */
9485 	0,			/* 32 adv_err_addr */
9486 	0,			/* 33 saved_dvc_err_code */
9487 	0,			/* 34 saved_adv_err_code */
9488 	0,			/* 35 saved_adv_err_addr */
9489 	0,			/* 36 reserved */
9490 	0,			/* 37 reserved */
9491 	0,			/* 38 reserved */
9492 	0,			/* 39 reserved */
9493 	0,			/* 40 reserved */
9494 	0,			/* 41 reserved */
9495 	0,			/* 42 reserved */
9496 	0,			/* 43 reserved */
9497 	0,			/* 44 reserved */
9498 	0,			/* 45 reserved */
9499 	0,			/* 46 reserved */
9500 	0,			/* 47 reserved */
9501 	0,			/* 48 reserved */
9502 	0,			/* 49 reserved */
9503 	0,			/* 50 reserved */
9504 	0,			/* 51 reserved */
9505 	0,			/* 52 reserved */
9506 	0,			/* 53 reserved */
9507 	0,			/* 54 reserved */
9508 	0,			/* 55 reserved */
9509 	0,			/* 56 cisptr_lsw */
9510 	0,			/* 57 cisprt_msw */
9511 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9512 	PCI_DEVICE_ID_38C1600_REV1,	/* 59 subsysid */
9513 	0,			/* 60 reserved */
9514 	0,			/* 61 reserved */
9515 	0,			/* 62 reserved */
9516 	0			/* 63 reserved */
9517 };
9518 
9519 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
9520 	0,			/* 00 cfg_lsw */
9521 	0,			/* 01 cfg_msw */
9522 	0,			/* 02 disc_enable */
9523 	0,			/* 03 wdtr_able */
9524 	0,			/* 04 sdtr_speed1 */
9525 	0,			/* 05 start_motor */
9526 	0,			/* 06 tagqng_able */
9527 	0,			/* 07 bios_scan */
9528 	0,			/* 08 scam_tolerant */
9529 	1,			/* 09 adapter_scsi_id */
9530 	1,			/*    bios_boot_delay */
9531 	1,			/* 10 scsi_reset_delay */
9532 	1,			/*    bios_id_lun */
9533 	1,			/* 11 termination_se */
9534 	1,			/*    termination_lvd */
9535 	0,			/* 12 bios_ctrl */
9536 	0,			/* 13 sdtr_speed2 */
9537 	0,			/* 14 sdtr_speed3 */
9538 	1,			/* 15 max_host_qng */
9539 	1,			/*    max_dvc_qng */
9540 	0,			/* 16 dvc_cntl */
9541 	0,			/* 17 sdtr_speed4 */
9542 	0,			/* 18 serial_number_word1 */
9543 	0,			/* 19 serial_number_word2 */
9544 	0,			/* 20 serial_number_word3 */
9545 	0,			/* 21 check_sum */
9546 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9547 	,			/* 22-29 oem_name[16] */
9548 	0,			/* 30 dvc_err_code */
9549 	0,			/* 31 adv_err_code */
9550 	0,			/* 32 adv_err_addr */
9551 	0,			/* 33 saved_dvc_err_code */
9552 	0,			/* 34 saved_adv_err_code */
9553 	0,			/* 35 saved_adv_err_addr */
9554 	0,			/* 36 reserved */
9555 	0,			/* 37 reserved */
9556 	0,			/* 38 reserved */
9557 	0,			/* 39 reserved */
9558 	0,			/* 40 reserved */
9559 	0,			/* 41 reserved */
9560 	0,			/* 42 reserved */
9561 	0,			/* 43 reserved */
9562 	0,			/* 44 reserved */
9563 	0,			/* 45 reserved */
9564 	0,			/* 46 reserved */
9565 	0,			/* 47 reserved */
9566 	0,			/* 48 reserved */
9567 	0,			/* 49 reserved */
9568 	0,			/* 50 reserved */
9569 	0,			/* 51 reserved */
9570 	0,			/* 52 reserved */
9571 	0,			/* 53 reserved */
9572 	0,			/* 54 reserved */
9573 	0,			/* 55 reserved */
9574 	0,			/* 56 cisptr_lsw */
9575 	0,			/* 57 cisprt_msw */
9576 	0,			/* 58 subsysvid */
9577 	0,			/* 59 subsysid */
9578 	0,			/* 60 reserved */
9579 	0,			/* 61 reserved */
9580 	0,			/* 62 reserved */
9581 	0			/* 63 reserved */
9582 };
9583 
9584 /*
9585  * Wait for EEPROM command to complete
9586  */
9587 static void AdvWaitEEPCmd(AdvPortAddr iop_base)
9588 {
9589 	int eep_delay_ms;
9590 
9591 	for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
9592 		if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
9593 		    ASC_EEP_CMD_DONE) {
9594 			break;
9595 		}
9596 		mdelay(1);
9597 	}
9598 	if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
9599 	    0)
9600 		BUG();
9601 }
9602 
9603 /*
9604  * Read the EEPROM from specified location
9605  */
9606 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
9607 {
9608 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9609 			     ASC_EEP_CMD_READ | eep_word_addr);
9610 	AdvWaitEEPCmd(iop_base);
9611 	return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
9612 }
9613 
9614 /*
9615  * Write the EEPROM from 'cfg_buf'.
9616  */
9617 static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
9618 				ADVEEP_3550_CONFIG *cfg_buf)
9619 {
9620 	ushort *wbuf;
9621 	ushort addr, chksum;
9622 	ushort *charfields;
9623 
9624 	wbuf = (ushort *)cfg_buf;
9625 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9626 	chksum = 0;
9627 
9628 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9629 	AdvWaitEEPCmd(iop_base);
9630 
9631 	/*
9632 	 * Write EEPROM from word 0 to word 20.
9633 	 */
9634 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9635 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9636 		ushort word;
9637 
9638 		if (*charfields++) {
9639 			word = cpu_to_le16(*wbuf);
9640 		} else {
9641 			word = *wbuf;
9642 		}
9643 		chksum += *wbuf;	/* Checksum is calculated from word values. */
9644 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9645 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9646 				     ASC_EEP_CMD_WRITE | addr);
9647 		AdvWaitEEPCmd(iop_base);
9648 		mdelay(ADV_EEP_DELAY_MS);
9649 	}
9650 
9651 	/*
9652 	 * Write EEPROM checksum at word 21.
9653 	 */
9654 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9655 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9656 	AdvWaitEEPCmd(iop_base);
9657 	wbuf++;
9658 	charfields++;
9659 
9660 	/*
9661 	 * Write EEPROM OEM name at words 22 to 29.
9662 	 */
9663 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9664 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9665 		ushort word;
9666 
9667 		if (*charfields++) {
9668 			word = cpu_to_le16(*wbuf);
9669 		} else {
9670 			word = *wbuf;
9671 		}
9672 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9673 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9674 				     ASC_EEP_CMD_WRITE | addr);
9675 		AdvWaitEEPCmd(iop_base);
9676 	}
9677 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9678 	AdvWaitEEPCmd(iop_base);
9679 }
9680 
9681 /*
9682  * Write the EEPROM from 'cfg_buf'.
9683  */
9684 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
9685 				   ADVEEP_38C0800_CONFIG *cfg_buf)
9686 {
9687 	ushort *wbuf;
9688 	ushort *charfields;
9689 	ushort addr, chksum;
9690 
9691 	wbuf = (ushort *)cfg_buf;
9692 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9693 	chksum = 0;
9694 
9695 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9696 	AdvWaitEEPCmd(iop_base);
9697 
9698 	/*
9699 	 * Write EEPROM from word 0 to word 20.
9700 	 */
9701 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9702 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9703 		ushort word;
9704 
9705 		if (*charfields++) {
9706 			word = cpu_to_le16(*wbuf);
9707 		} else {
9708 			word = *wbuf;
9709 		}
9710 		chksum += *wbuf;	/* Checksum is calculated from word values. */
9711 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9712 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9713 				     ASC_EEP_CMD_WRITE | addr);
9714 		AdvWaitEEPCmd(iop_base);
9715 		mdelay(ADV_EEP_DELAY_MS);
9716 	}
9717 
9718 	/*
9719 	 * Write EEPROM checksum at word 21.
9720 	 */
9721 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9722 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9723 	AdvWaitEEPCmd(iop_base);
9724 	wbuf++;
9725 	charfields++;
9726 
9727 	/*
9728 	 * Write EEPROM OEM name at words 22 to 29.
9729 	 */
9730 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9731 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9732 		ushort word;
9733 
9734 		if (*charfields++) {
9735 			word = cpu_to_le16(*wbuf);
9736 		} else {
9737 			word = *wbuf;
9738 		}
9739 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9740 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9741 				     ASC_EEP_CMD_WRITE | addr);
9742 		AdvWaitEEPCmd(iop_base);
9743 	}
9744 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9745 	AdvWaitEEPCmd(iop_base);
9746 }
9747 
9748 /*
9749  * Write the EEPROM from 'cfg_buf'.
9750  */
9751 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
9752 				   ADVEEP_38C1600_CONFIG *cfg_buf)
9753 {
9754 	ushort *wbuf;
9755 	ushort *charfields;
9756 	ushort addr, chksum;
9757 
9758 	wbuf = (ushort *)cfg_buf;
9759 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9760 	chksum = 0;
9761 
9762 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9763 	AdvWaitEEPCmd(iop_base);
9764 
9765 	/*
9766 	 * Write EEPROM from word 0 to word 20.
9767 	 */
9768 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9769 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9770 		ushort word;
9771 
9772 		if (*charfields++) {
9773 			word = cpu_to_le16(*wbuf);
9774 		} else {
9775 			word = *wbuf;
9776 		}
9777 		chksum += *wbuf;	/* Checksum is calculated from word values. */
9778 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9779 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9780 				     ASC_EEP_CMD_WRITE | addr);
9781 		AdvWaitEEPCmd(iop_base);
9782 		mdelay(ADV_EEP_DELAY_MS);
9783 	}
9784 
9785 	/*
9786 	 * Write EEPROM checksum at word 21.
9787 	 */
9788 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9789 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9790 	AdvWaitEEPCmd(iop_base);
9791 	wbuf++;
9792 	charfields++;
9793 
9794 	/*
9795 	 * Write EEPROM OEM name at words 22 to 29.
9796 	 */
9797 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9798 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9799 		ushort word;
9800 
9801 		if (*charfields++) {
9802 			word = cpu_to_le16(*wbuf);
9803 		} else {
9804 			word = *wbuf;
9805 		}
9806 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9807 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9808 				     ASC_EEP_CMD_WRITE | addr);
9809 		AdvWaitEEPCmd(iop_base);
9810 	}
9811 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9812 	AdvWaitEEPCmd(iop_base);
9813 }
9814 
9815 /*
9816  * Read EEPROM configuration into the specified buffer.
9817  *
9818  * Return a checksum based on the EEPROM configuration read.
9819  */
9820 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
9821 				  ADVEEP_3550_CONFIG *cfg_buf)
9822 {
9823 	ushort wval, chksum;
9824 	ushort *wbuf;
9825 	int eep_addr;
9826 	ushort *charfields;
9827 
9828 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9829 	wbuf = (ushort *)cfg_buf;
9830 	chksum = 0;
9831 
9832 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9833 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9834 		wval = AdvReadEEPWord(iop_base, eep_addr);
9835 		chksum += wval;	/* Checksum is calculated from word values. */
9836 		if (*charfields++) {
9837 			*wbuf = le16_to_cpu(wval);
9838 		} else {
9839 			*wbuf = wval;
9840 		}
9841 	}
9842 	/* Read checksum word. */
9843 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9844 	wbuf++;
9845 	charfields++;
9846 
9847 	/* Read rest of EEPROM not covered by the checksum. */
9848 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9849 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9850 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9851 		if (*charfields++) {
9852 			*wbuf = le16_to_cpu(*wbuf);
9853 		}
9854 	}
9855 	return chksum;
9856 }
9857 
9858 /*
9859  * Read EEPROM configuration into the specified buffer.
9860  *
9861  * Return a checksum based on the EEPROM configuration read.
9862  */
9863 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
9864 				     ADVEEP_38C0800_CONFIG *cfg_buf)
9865 {
9866 	ushort wval, chksum;
9867 	ushort *wbuf;
9868 	int eep_addr;
9869 	ushort *charfields;
9870 
9871 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9872 	wbuf = (ushort *)cfg_buf;
9873 	chksum = 0;
9874 
9875 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9876 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9877 		wval = AdvReadEEPWord(iop_base, eep_addr);
9878 		chksum += wval;	/* Checksum is calculated from word values. */
9879 		if (*charfields++) {
9880 			*wbuf = le16_to_cpu(wval);
9881 		} else {
9882 			*wbuf = wval;
9883 		}
9884 	}
9885 	/* Read checksum word. */
9886 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9887 	wbuf++;
9888 	charfields++;
9889 
9890 	/* Read rest of EEPROM not covered by the checksum. */
9891 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9892 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9893 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9894 		if (*charfields++) {
9895 			*wbuf = le16_to_cpu(*wbuf);
9896 		}
9897 	}
9898 	return chksum;
9899 }
9900 
9901 /*
9902  * Read EEPROM configuration into the specified buffer.
9903  *
9904  * Return a checksum based on the EEPROM configuration read.
9905  */
9906 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
9907 				     ADVEEP_38C1600_CONFIG *cfg_buf)
9908 {
9909 	ushort wval, chksum;
9910 	ushort *wbuf;
9911 	int eep_addr;
9912 	ushort *charfields;
9913 
9914 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9915 	wbuf = (ushort *)cfg_buf;
9916 	chksum = 0;
9917 
9918 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9919 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9920 		wval = AdvReadEEPWord(iop_base, eep_addr);
9921 		chksum += wval;	/* Checksum is calculated from word values. */
9922 		if (*charfields++) {
9923 			*wbuf = le16_to_cpu(wval);
9924 		} else {
9925 			*wbuf = wval;
9926 		}
9927 	}
9928 	/* Read checksum word. */
9929 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9930 	wbuf++;
9931 	charfields++;
9932 
9933 	/* Read rest of EEPROM not covered by the checksum. */
9934 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9935 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9936 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9937 		if (*charfields++) {
9938 			*wbuf = le16_to_cpu(*wbuf);
9939 		}
9940 	}
9941 	return chksum;
9942 }
9943 
9944 /*
9945  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
9946  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
9947  * all of this is done.
9948  *
9949  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
9950  *
9951  * For a non-fatal error return a warning code. If there are no warnings
9952  * then 0 is returned.
9953  *
9954  * Note: Chip is stopped on entry.
9955  */
9956 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
9957 {
9958 	AdvPortAddr iop_base;
9959 	ushort warn_code;
9960 	ADVEEP_3550_CONFIG eep_config;
9961 
9962 	iop_base = asc_dvc->iop_base;
9963 
9964 	warn_code = 0;
9965 
9966 	/*
9967 	 * Read the board's EEPROM configuration.
9968 	 *
9969 	 * Set default values if a bad checksum is found.
9970 	 */
9971 	if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
9972 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
9973 
9974 		/*
9975 		 * Set EEPROM default values.
9976 		 */
9977 		memcpy(&eep_config, &Default_3550_EEPROM_Config,
9978 			sizeof(ADVEEP_3550_CONFIG));
9979 
9980 		/*
9981 		 * Assume the 6 byte board serial number that was read from
9982 		 * EEPROM is correct even if the EEPROM checksum failed.
9983 		 */
9984 		eep_config.serial_number_word3 =
9985 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
9986 
9987 		eep_config.serial_number_word2 =
9988 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
9989 
9990 		eep_config.serial_number_word1 =
9991 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
9992 
9993 		AdvSet3550EEPConfig(iop_base, &eep_config);
9994 	}
9995 	/*
9996 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
9997 	 * EEPROM configuration that was read.
9998 	 *
9999 	 * This is the mapping of EEPROM fields to Adv Library fields.
10000 	 */
10001 	asc_dvc->wdtr_able = eep_config.wdtr_able;
10002 	asc_dvc->sdtr_able = eep_config.sdtr_able;
10003 	asc_dvc->ultra_able = eep_config.ultra_able;
10004 	asc_dvc->tagqng_able = eep_config.tagqng_able;
10005 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10006 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10007 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10008 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10009 	asc_dvc->start_motor = eep_config.start_motor;
10010 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10011 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10012 	asc_dvc->no_scam = eep_config.scam_tolerant;
10013 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10014 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10015 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10016 
10017 	/*
10018 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10019 	 * maximum queuing (max. 63, min. 4).
10020 	 */
10021 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10022 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10023 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10024 		/* If the value is zero, assume it is uninitialized. */
10025 		if (eep_config.max_host_qng == 0) {
10026 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10027 		} else {
10028 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10029 		}
10030 	}
10031 
10032 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10033 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10034 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10035 		/* If the value is zero, assume it is uninitialized. */
10036 		if (eep_config.max_dvc_qng == 0) {
10037 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10038 		} else {
10039 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10040 		}
10041 	}
10042 
10043 	/*
10044 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10045 	 * set 'max_dvc_qng' to 'max_host_qng'.
10046 	 */
10047 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10048 		eep_config.max_dvc_qng = eep_config.max_host_qng;
10049 	}
10050 
10051 	/*
10052 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10053 	 * values based on possibly adjusted EEPROM values.
10054 	 */
10055 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10056 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10057 
10058 	/*
10059 	 * If the EEPROM 'termination' field is set to automatic (0), then set
10060 	 * the ADV_DVC_CFG 'termination' field to automatic also.
10061 	 *
10062 	 * If the termination is specified with a non-zero 'termination'
10063 	 * value check that a legal value is set and set the ADV_DVC_CFG
10064 	 * 'termination' field appropriately.
10065 	 */
10066 	if (eep_config.termination == 0) {
10067 		asc_dvc->cfg->termination = 0;	/* auto termination */
10068 	} else {
10069 		/* Enable manual control with low off / high off. */
10070 		if (eep_config.termination == 1) {
10071 			asc_dvc->cfg->termination = TERM_CTL_SEL;
10072 
10073 			/* Enable manual control with low off / high on. */
10074 		} else if (eep_config.termination == 2) {
10075 			asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10076 
10077 			/* Enable manual control with low on / high on. */
10078 		} else if (eep_config.termination == 3) {
10079 			asc_dvc->cfg->termination =
10080 			    TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10081 		} else {
10082 			/*
10083 			 * The EEPROM 'termination' field contains a bad value. Use
10084 			 * automatic termination instead.
10085 			 */
10086 			asc_dvc->cfg->termination = 0;
10087 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10088 		}
10089 	}
10090 
10091 	return warn_code;
10092 }
10093 
10094 /*
10095  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10096  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10097  * all of this is done.
10098  *
10099  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10100  *
10101  * For a non-fatal error return a warning code. If there are no warnings
10102  * then 0 is returned.
10103  *
10104  * Note: Chip is stopped on entry.
10105  */
10106 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10107 {
10108 	AdvPortAddr iop_base;
10109 	ushort warn_code;
10110 	ADVEEP_38C0800_CONFIG eep_config;
10111 	uchar tid, termination;
10112 	ushort sdtr_speed = 0;
10113 
10114 	iop_base = asc_dvc->iop_base;
10115 
10116 	warn_code = 0;
10117 
10118 	/*
10119 	 * Read the board's EEPROM configuration.
10120 	 *
10121 	 * Set default values if a bad checksum is found.
10122 	 */
10123 	if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10124 	    eep_config.check_sum) {
10125 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10126 
10127 		/*
10128 		 * Set EEPROM default values.
10129 		 */
10130 		memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10131 			sizeof(ADVEEP_38C0800_CONFIG));
10132 
10133 		/*
10134 		 * Assume the 6 byte board serial number that was read from
10135 		 * EEPROM is correct even if the EEPROM checksum failed.
10136 		 */
10137 		eep_config.serial_number_word3 =
10138 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10139 
10140 		eep_config.serial_number_word2 =
10141 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10142 
10143 		eep_config.serial_number_word1 =
10144 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10145 
10146 		AdvSet38C0800EEPConfig(iop_base, &eep_config);
10147 	}
10148 	/*
10149 	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10150 	 * EEPROM configuration that was read.
10151 	 *
10152 	 * This is the mapping of EEPROM fields to Adv Library fields.
10153 	 */
10154 	asc_dvc->wdtr_able = eep_config.wdtr_able;
10155 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10156 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10157 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10158 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10159 	asc_dvc->tagqng_able = eep_config.tagqng_able;
10160 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10161 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10162 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10163 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10164 	asc_dvc->start_motor = eep_config.start_motor;
10165 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10166 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10167 	asc_dvc->no_scam = eep_config.scam_tolerant;
10168 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10169 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10170 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10171 
10172 	/*
10173 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10174 	 * are set, then set an 'sdtr_able' bit for it.
10175 	 */
10176 	asc_dvc->sdtr_able = 0;
10177 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10178 		if (tid == 0) {
10179 			sdtr_speed = asc_dvc->sdtr_speed1;
10180 		} else if (tid == 4) {
10181 			sdtr_speed = asc_dvc->sdtr_speed2;
10182 		} else if (tid == 8) {
10183 			sdtr_speed = asc_dvc->sdtr_speed3;
10184 		} else if (tid == 12) {
10185 			sdtr_speed = asc_dvc->sdtr_speed4;
10186 		}
10187 		if (sdtr_speed & ADV_MAX_TID) {
10188 			asc_dvc->sdtr_able |= (1 << tid);
10189 		}
10190 		sdtr_speed >>= 4;
10191 	}
10192 
10193 	/*
10194 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10195 	 * maximum queuing (max. 63, min. 4).
10196 	 */
10197 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10198 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10199 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10200 		/* If the value is zero, assume it is uninitialized. */
10201 		if (eep_config.max_host_qng == 0) {
10202 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10203 		} else {
10204 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10205 		}
10206 	}
10207 
10208 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10209 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10210 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10211 		/* If the value is zero, assume it is uninitialized. */
10212 		if (eep_config.max_dvc_qng == 0) {
10213 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10214 		} else {
10215 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10216 		}
10217 	}
10218 
10219 	/*
10220 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10221 	 * set 'max_dvc_qng' to 'max_host_qng'.
10222 	 */
10223 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10224 		eep_config.max_dvc_qng = eep_config.max_host_qng;
10225 	}
10226 
10227 	/*
10228 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10229 	 * values based on possibly adjusted EEPROM values.
10230 	 */
10231 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10232 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10233 
10234 	/*
10235 	 * If the EEPROM 'termination' field is set to automatic (0), then set
10236 	 * the ADV_DVC_CFG 'termination' field to automatic also.
10237 	 *
10238 	 * If the termination is specified with a non-zero 'termination'
10239 	 * value check that a legal value is set and set the ADV_DVC_CFG
10240 	 * 'termination' field appropriately.
10241 	 */
10242 	if (eep_config.termination_se == 0) {
10243 		termination = 0;	/* auto termination for SE */
10244 	} else {
10245 		/* Enable manual control with low off / high off. */
10246 		if (eep_config.termination_se == 1) {
10247 			termination = 0;
10248 
10249 			/* Enable manual control with low off / high on. */
10250 		} else if (eep_config.termination_se == 2) {
10251 			termination = TERM_SE_HI;
10252 
10253 			/* Enable manual control with low on / high on. */
10254 		} else if (eep_config.termination_se == 3) {
10255 			termination = TERM_SE;
10256 		} else {
10257 			/*
10258 			 * The EEPROM 'termination_se' field contains a bad value.
10259 			 * Use automatic termination instead.
10260 			 */
10261 			termination = 0;
10262 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10263 		}
10264 	}
10265 
10266 	if (eep_config.termination_lvd == 0) {
10267 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10268 	} else {
10269 		/* Enable manual control with low off / high off. */
10270 		if (eep_config.termination_lvd == 1) {
10271 			asc_dvc->cfg->termination = termination;
10272 
10273 			/* Enable manual control with low off / high on. */
10274 		} else if (eep_config.termination_lvd == 2) {
10275 			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10276 
10277 			/* Enable manual control with low on / high on. */
10278 		} else if (eep_config.termination_lvd == 3) {
10279 			asc_dvc->cfg->termination = termination | TERM_LVD;
10280 		} else {
10281 			/*
10282 			 * The EEPROM 'termination_lvd' field contains a bad value.
10283 			 * Use automatic termination instead.
10284 			 */
10285 			asc_dvc->cfg->termination = termination;
10286 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10287 		}
10288 	}
10289 
10290 	return warn_code;
10291 }
10292 
10293 /*
10294  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10295  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10296  * all of this is done.
10297  *
10298  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10299  *
10300  * For a non-fatal error return a warning code. If there are no warnings
10301  * then 0 is returned.
10302  *
10303  * Note: Chip is stopped on entry.
10304  */
10305 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10306 {
10307 	AdvPortAddr iop_base;
10308 	ushort warn_code;
10309 	ADVEEP_38C1600_CONFIG eep_config;
10310 	uchar tid, termination;
10311 	ushort sdtr_speed = 0;
10312 
10313 	iop_base = asc_dvc->iop_base;
10314 
10315 	warn_code = 0;
10316 
10317 	/*
10318 	 * Read the board's EEPROM configuration.
10319 	 *
10320 	 * Set default values if a bad checksum is found.
10321 	 */
10322 	if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10323 	    eep_config.check_sum) {
10324 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10325 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10326 
10327 		/*
10328 		 * Set EEPROM default values.
10329 		 */
10330 		memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10331 			sizeof(ADVEEP_38C1600_CONFIG));
10332 
10333 		if (PCI_FUNC(pdev->devfn) != 0) {
10334 			u8 ints;
10335 			/*
10336 			 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10337 			 * and old Mac system booting problem. The Expansion
10338 			 * ROM must be disabled in Function 1 for these systems
10339 			 */
10340 			eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10341 			/*
10342 			 * Clear the INTAB (bit 11) if the GPIO 0 input
10343 			 * indicates the Function 1 interrupt line is wired
10344 			 * to INTB.
10345 			 *
10346 			 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10347 			 *   1 - Function 1 interrupt line wired to INT A.
10348 			 *   0 - Function 1 interrupt line wired to INT B.
10349 			 *
10350 			 * Note: Function 0 is always wired to INTA.
10351 			 * Put all 5 GPIO bits in input mode and then read
10352 			 * their input values.
10353 			 */
10354 			AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10355 			ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10356 			if ((ints & 0x01) == 0)
10357 				eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10358 		}
10359 
10360 		/*
10361 		 * Assume the 6 byte board serial number that was read from
10362 		 * EEPROM is correct even if the EEPROM checksum failed.
10363 		 */
10364 		eep_config.serial_number_word3 =
10365 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10366 		eep_config.serial_number_word2 =
10367 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10368 		eep_config.serial_number_word1 =
10369 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10370 
10371 		AdvSet38C1600EEPConfig(iop_base, &eep_config);
10372 	}
10373 
10374 	/*
10375 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10376 	 * EEPROM configuration that was read.
10377 	 *
10378 	 * This is the mapping of EEPROM fields to Adv Library fields.
10379 	 */
10380 	asc_dvc->wdtr_able = eep_config.wdtr_able;
10381 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10382 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10383 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10384 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10385 	asc_dvc->ppr_able = 0;
10386 	asc_dvc->tagqng_able = eep_config.tagqng_able;
10387 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10388 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10389 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10390 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
10391 	asc_dvc->start_motor = eep_config.start_motor;
10392 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10393 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10394 	asc_dvc->no_scam = eep_config.scam_tolerant;
10395 
10396 	/*
10397 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10398 	 * are set, then set an 'sdtr_able' bit for it.
10399 	 */
10400 	asc_dvc->sdtr_able = 0;
10401 	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
10402 		if (tid == 0) {
10403 			sdtr_speed = asc_dvc->sdtr_speed1;
10404 		} else if (tid == 4) {
10405 			sdtr_speed = asc_dvc->sdtr_speed2;
10406 		} else if (tid == 8) {
10407 			sdtr_speed = asc_dvc->sdtr_speed3;
10408 		} else if (tid == 12) {
10409 			sdtr_speed = asc_dvc->sdtr_speed4;
10410 		}
10411 		if (sdtr_speed & ASC_MAX_TID) {
10412 			asc_dvc->sdtr_able |= (1 << tid);
10413 		}
10414 		sdtr_speed >>= 4;
10415 	}
10416 
10417 	/*
10418 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10419 	 * maximum queuing (max. 63, min. 4).
10420 	 */
10421 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10422 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10423 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10424 		/* If the value is zero, assume it is uninitialized. */
10425 		if (eep_config.max_host_qng == 0) {
10426 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10427 		} else {
10428 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10429 		}
10430 	}
10431 
10432 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10433 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10434 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10435 		/* If the value is zero, assume it is uninitialized. */
10436 		if (eep_config.max_dvc_qng == 0) {
10437 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10438 		} else {
10439 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10440 		}
10441 	}
10442 
10443 	/*
10444 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10445 	 * set 'max_dvc_qng' to 'max_host_qng'.
10446 	 */
10447 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10448 		eep_config.max_dvc_qng = eep_config.max_host_qng;
10449 	}
10450 
10451 	/*
10452 	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10453 	 * values based on possibly adjusted EEPROM values.
10454 	 */
10455 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10456 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10457 
10458 	/*
10459 	 * If the EEPROM 'termination' field is set to automatic (0), then set
10460 	 * the ASC_DVC_CFG 'termination' field to automatic also.
10461 	 *
10462 	 * If the termination is specified with a non-zero 'termination'
10463 	 * value check that a legal value is set and set the ASC_DVC_CFG
10464 	 * 'termination' field appropriately.
10465 	 */
10466 	if (eep_config.termination_se == 0) {
10467 		termination = 0;	/* auto termination for SE */
10468 	} else {
10469 		/* Enable manual control with low off / high off. */
10470 		if (eep_config.termination_se == 1) {
10471 			termination = 0;
10472 
10473 			/* Enable manual control with low off / high on. */
10474 		} else if (eep_config.termination_se == 2) {
10475 			termination = TERM_SE_HI;
10476 
10477 			/* Enable manual control with low on / high on. */
10478 		} else if (eep_config.termination_se == 3) {
10479 			termination = TERM_SE;
10480 		} else {
10481 			/*
10482 			 * The EEPROM 'termination_se' field contains a bad value.
10483 			 * Use automatic termination instead.
10484 			 */
10485 			termination = 0;
10486 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10487 		}
10488 	}
10489 
10490 	if (eep_config.termination_lvd == 0) {
10491 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10492 	} else {
10493 		/* Enable manual control with low off / high off. */
10494 		if (eep_config.termination_lvd == 1) {
10495 			asc_dvc->cfg->termination = termination;
10496 
10497 			/* Enable manual control with low off / high on. */
10498 		} else if (eep_config.termination_lvd == 2) {
10499 			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10500 
10501 			/* Enable manual control with low on / high on. */
10502 		} else if (eep_config.termination_lvd == 3) {
10503 			asc_dvc->cfg->termination = termination | TERM_LVD;
10504 		} else {
10505 			/*
10506 			 * The EEPROM 'termination_lvd' field contains a bad value.
10507 			 * Use automatic termination instead.
10508 			 */
10509 			asc_dvc->cfg->termination = termination;
10510 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10511 		}
10512 	}
10513 
10514 	return warn_code;
10515 }
10516 
10517 /*
10518  * Initialize the ADV_DVC_VAR structure.
10519  *
10520  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10521  *
10522  * For a non-fatal error return a warning code. If there are no warnings
10523  * then 0 is returned.
10524  */
10525 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10526 {
10527 	struct asc_board *board = shost_priv(shost);
10528 	ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
10529 	unsigned short warn_code = 0;
10530 	AdvPortAddr iop_base = asc_dvc->iop_base;
10531 	u16 cmd;
10532 	int status;
10533 
10534 	asc_dvc->err_code = 0;
10535 
10536 	/*
10537 	 * Save the state of the PCI Configuration Command Register
10538 	 * "Parity Error Response Control" Bit. If the bit is clear (0),
10539 	 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10540 	 * DMA parity errors.
10541 	 */
10542 	asc_dvc->cfg->control_flag = 0;
10543 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
10544 	if ((cmd & PCI_COMMAND_PARITY) == 0)
10545 		asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
10546 
10547 	asc_dvc->cfg->chip_version =
10548 	    AdvGetChipVersion(iop_base, asc_dvc->bus_type);
10549 
10550 	ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10551 		 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
10552 		 (ushort)ADV_CHIP_ID_BYTE);
10553 
10554 	ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10555 		 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
10556 		 (ushort)ADV_CHIP_ID_WORD);
10557 
10558 	/*
10559 	 * Reset the chip to start and allow register writes.
10560 	 */
10561 	if (AdvFindSignature(iop_base) == 0) {
10562 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10563 		return ADV_ERROR;
10564 	} else {
10565 		/*
10566 		 * The caller must set 'chip_type' to a valid setting.
10567 		 */
10568 		if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
10569 		    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
10570 		    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
10571 			asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
10572 			return ADV_ERROR;
10573 		}
10574 
10575 		/*
10576 		 * Reset Chip.
10577 		 */
10578 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10579 				     ADV_CTRL_REG_CMD_RESET);
10580 		mdelay(100);
10581 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10582 				     ADV_CTRL_REG_CMD_WR_IO_REG);
10583 
10584 		if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
10585 			status = AdvInitFrom38C1600EEP(asc_dvc);
10586 		} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10587 			status = AdvInitFrom38C0800EEP(asc_dvc);
10588 		} else {
10589 			status = AdvInitFrom3550EEP(asc_dvc);
10590 		}
10591 		warn_code |= status;
10592 	}
10593 
10594 	if (warn_code != 0)
10595 		shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
10596 
10597 	if (asc_dvc->err_code)
10598 		shost_printk(KERN_ERR, shost, "error code 0x%x\n",
10599 				asc_dvc->err_code);
10600 
10601 	return asc_dvc->err_code;
10602 }
10603 #endif
10604 
10605 static const struct scsi_host_template advansys_template = {
10606 	.proc_name = DRV_NAME,
10607 #ifdef CONFIG_PROC_FS
10608 	.show_info = advansys_show_info,
10609 #endif
10610 	.name = DRV_NAME,
10611 	.info = advansys_info,
10612 	.queuecommand = advansys_queuecommand,
10613 	.eh_host_reset_handler = advansys_reset,
10614 	.bios_param = advansys_biosparam,
10615 	.slave_configure = advansys_slave_configure,
10616 	.cmd_size = sizeof(struct advansys_cmd),
10617 };
10618 
10619 static int advansys_wide_init_chip(struct Scsi_Host *shost)
10620 {
10621 	struct asc_board *board = shost_priv(shost);
10622 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10623 	size_t sgblk_pool_size;
10624 	int warn_code, err_code;
10625 
10626 	/*
10627 	 * Allocate buffer carrier structures. The total size
10628 	 * is about 8 KB, so allocate all at once.
10629 	 */
10630 	adv_dvc->carrier = dma_alloc_coherent(board->dev,
10631 		ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
10632 	ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
10633 
10634 	if (!adv_dvc->carrier)
10635 		goto kmalloc_failed;
10636 
10637 	/*
10638 	 * Allocate up to 'max_host_qng' request structures for the Wide
10639 	 * board. The total size is about 16 KB, so allocate all at once.
10640 	 * If the allocation fails decrement and try again.
10641 	 */
10642 	board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
10643 	if (board->adv_reqp_size & 0x1f) {
10644 		ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
10645 		board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
10646 	}
10647 	board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
10648 		&board->adv_reqp_addr, GFP_KERNEL);
10649 
10650 	if (!board->adv_reqp)
10651 		goto kmalloc_failed;
10652 
10653 	ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
10654 		adv_dvc->max_host_qng, board->adv_reqp_size);
10655 
10656 	/*
10657 	 * Allocate up to ADV_TOT_SG_BLOCK request structures for
10658 	 * the Wide board. Each structure is about 136 bytes.
10659 	 */
10660 	sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
10661 	board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
10662 						sgblk_pool_size, 32, 0);
10663 
10664 	ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
10665 		sizeof(adv_sgblk_t), sgblk_pool_size);
10666 
10667 	if (!board->adv_sgblk_pool)
10668 		goto kmalloc_failed;
10669 
10670 	if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
10671 		ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10672 		warn_code = AdvInitAsc3550Driver(adv_dvc);
10673 	} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10674 		ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10675 		warn_code = AdvInitAsc38C0800Driver(adv_dvc);
10676 	} else {
10677 		ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10678 		warn_code = AdvInitAsc38C1600Driver(adv_dvc);
10679 	}
10680 	err_code = adv_dvc->err_code;
10681 
10682 	if (warn_code || err_code) {
10683 		shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
10684 			"0x%x\n", warn_code, err_code);
10685 	}
10686 
10687 	goto exit;
10688 
10689  kmalloc_failed:
10690 	shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
10691 	err_code = ADV_ERROR;
10692  exit:
10693 	return err_code;
10694 }
10695 
10696 static void advansys_wide_free_mem(struct asc_board *board)
10697 {
10698 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10699 
10700 	if (adv_dvc->carrier) {
10701 		dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
10702 				  adv_dvc->carrier, adv_dvc->carrier_addr);
10703 		adv_dvc->carrier = NULL;
10704 	}
10705 	if (board->adv_reqp) {
10706 		dma_free_coherent(board->dev, board->adv_reqp_size,
10707 				  board->adv_reqp, board->adv_reqp_addr);
10708 		board->adv_reqp = NULL;
10709 	}
10710 	if (board->adv_sgblk_pool) {
10711 		dma_pool_destroy(board->adv_sgblk_pool);
10712 		board->adv_sgblk_pool = NULL;
10713 	}
10714 }
10715 
10716 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
10717 				int bus_type)
10718 {
10719 	struct pci_dev *pdev;
10720 	struct asc_board *boardp = shost_priv(shost);
10721 	ASC_DVC_VAR *asc_dvc_varp = NULL;
10722 	ADV_DVC_VAR *adv_dvc_varp = NULL;
10723 	int share_irq, warn_code, ret;
10724 
10725 	pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
10726 
10727 	if (ASC_NARROW_BOARD(boardp)) {
10728 		ASC_DBG(1, "narrow board\n");
10729 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
10730 		asc_dvc_varp->bus_type = bus_type;
10731 		asc_dvc_varp->drv_ptr = boardp;
10732 		asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
10733 		asc_dvc_varp->iop_base = iop;
10734 	} else {
10735 #ifdef CONFIG_PCI
10736 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
10737 		adv_dvc_varp->drv_ptr = boardp;
10738 		adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
10739 		if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
10740 			ASC_DBG(1, "wide board ASC-3550\n");
10741 			adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
10742 		} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
10743 			ASC_DBG(1, "wide board ASC-38C0800\n");
10744 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
10745 		} else {
10746 			ASC_DBG(1, "wide board ASC-38C1600\n");
10747 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
10748 		}
10749 
10750 		boardp->asc_n_io_port = pci_resource_len(pdev, 1);
10751 		boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
10752 		if (!boardp->ioremap_addr) {
10753 			shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
10754 					"returned NULL\n",
10755 					(long)pci_resource_start(pdev, 1),
10756 					boardp->asc_n_io_port);
10757 			ret = -ENODEV;
10758 			goto err_shost;
10759 		}
10760 		adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
10761 		ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
10762 
10763 		/*
10764 		 * Even though it isn't used to access wide boards, other
10765 		 * than for the debug line below, save I/O Port address so
10766 		 * that it can be reported.
10767 		 */
10768 		boardp->ioport = iop;
10769 
10770 		ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10771 				(ushort)inp(iop + 1), (ushort)inpw(iop));
10772 #endif /* CONFIG_PCI */
10773 	}
10774 
10775 	if (ASC_NARROW_BOARD(boardp)) {
10776 		/*
10777 		 * Set the board bus type and PCI IRQ before
10778 		 * calling AscInitGetConfig().
10779 		 */
10780 		switch (asc_dvc_varp->bus_type) {
10781 #ifdef CONFIG_ISA
10782 		case ASC_IS_VL:
10783 			share_irq = 0;
10784 			break;
10785 		case ASC_IS_EISA:
10786 			share_irq = IRQF_SHARED;
10787 			break;
10788 #endif /* CONFIG_ISA */
10789 #ifdef CONFIG_PCI
10790 		case ASC_IS_PCI:
10791 			share_irq = IRQF_SHARED;
10792 			break;
10793 #endif /* CONFIG_PCI */
10794 		default:
10795 			shost_printk(KERN_ERR, shost, "unknown adapter type: "
10796 					"%d\n", asc_dvc_varp->bus_type);
10797 			share_irq = 0;
10798 			break;
10799 		}
10800 
10801 		/*
10802 		 * NOTE: AscInitGetConfig() may change the board's
10803 		 * bus_type value. The bus_type value should no
10804 		 * longer be used. If the bus_type field must be
10805 		 * referenced only use the bit-wise AND operator "&".
10806 		 */
10807 		ASC_DBG(2, "AscInitGetConfig()\n");
10808 		ret = AscInitGetConfig(shost) ? -ENODEV : 0;
10809 	} else {
10810 #ifdef CONFIG_PCI
10811 		/*
10812 		 * For Wide boards set PCI information before calling
10813 		 * AdvInitGetConfig().
10814 		 */
10815 		share_irq = IRQF_SHARED;
10816 		ASC_DBG(2, "AdvInitGetConfig()\n");
10817 
10818 		ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
10819 #else
10820 		share_irq = 0;
10821 		ret = -ENODEV;
10822 #endif /* CONFIG_PCI */
10823 	}
10824 
10825 	if (ret)
10826 		goto err_unmap;
10827 
10828 	/*
10829 	 * Save the EEPROM configuration so that it can be displayed
10830 	 * from /proc/scsi/advansys/[0...].
10831 	 */
10832 	if (ASC_NARROW_BOARD(boardp)) {
10833 
10834 		ASCEEP_CONFIG *ep;
10835 
10836 		/*
10837 		 * Set the adapter's target id bit in the 'init_tidmask' field.
10838 		 */
10839 		boardp->init_tidmask |=
10840 		    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
10841 
10842 		/*
10843 		 * Save EEPROM settings for the board.
10844 		 */
10845 		ep = &boardp->eep_config.asc_eep;
10846 
10847 		ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
10848 		ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
10849 		ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
10850 		ASC_EEP_SET_DMA_SPD(ep, ASC_DEF_ISA_DMA_SPEED);
10851 		ep->start_motor = asc_dvc_varp->start_motor;
10852 		ep->cntl = asc_dvc_varp->dvc_cntl;
10853 		ep->no_scam = asc_dvc_varp->no_scam;
10854 		ep->max_total_qng = asc_dvc_varp->max_total_qng;
10855 		ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
10856 		/* 'max_tag_qng' is set to the same value for every device. */
10857 		ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
10858 		ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
10859 		ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
10860 		ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
10861 		ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
10862 		ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
10863 		ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
10864 
10865 		/*
10866 		 * Modify board configuration.
10867 		 */
10868 		ASC_DBG(2, "AscInitSetConfig()\n");
10869 		ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
10870 		if (ret)
10871 			goto err_unmap;
10872 	} else {
10873 		ADVEEP_3550_CONFIG *ep_3550;
10874 		ADVEEP_38C0800_CONFIG *ep_38C0800;
10875 		ADVEEP_38C1600_CONFIG *ep_38C1600;
10876 
10877 		/*
10878 		 * Save Wide EEP Configuration Information.
10879 		 */
10880 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
10881 			ep_3550 = &boardp->eep_config.adv_3550_eep;
10882 
10883 			ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
10884 			ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
10885 			ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10886 			ep_3550->termination = adv_dvc_varp->cfg->termination;
10887 			ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
10888 			ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
10889 			ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
10890 			ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
10891 			ep_3550->ultra_able = adv_dvc_varp->ultra_able;
10892 			ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
10893 			ep_3550->start_motor = adv_dvc_varp->start_motor;
10894 			ep_3550->scsi_reset_delay =
10895 			    adv_dvc_varp->scsi_reset_wait;
10896 			ep_3550->serial_number_word1 =
10897 			    adv_dvc_varp->cfg->serial1;
10898 			ep_3550->serial_number_word2 =
10899 			    adv_dvc_varp->cfg->serial2;
10900 			ep_3550->serial_number_word3 =
10901 			    adv_dvc_varp->cfg->serial3;
10902 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
10903 			ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
10904 
10905 			ep_38C0800->adapter_scsi_id =
10906 			    adv_dvc_varp->chip_scsi_id;
10907 			ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
10908 			ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10909 			ep_38C0800->termination_lvd =
10910 			    adv_dvc_varp->cfg->termination;
10911 			ep_38C0800->disc_enable =
10912 			    adv_dvc_varp->cfg->disc_enable;
10913 			ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
10914 			ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
10915 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
10916 			ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
10917 			ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
10918 			ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
10919 			ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
10920 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
10921 			ep_38C0800->start_motor = adv_dvc_varp->start_motor;
10922 			ep_38C0800->scsi_reset_delay =
10923 			    adv_dvc_varp->scsi_reset_wait;
10924 			ep_38C0800->serial_number_word1 =
10925 			    adv_dvc_varp->cfg->serial1;
10926 			ep_38C0800->serial_number_word2 =
10927 			    adv_dvc_varp->cfg->serial2;
10928 			ep_38C0800->serial_number_word3 =
10929 			    adv_dvc_varp->cfg->serial3;
10930 		} else {
10931 			ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
10932 
10933 			ep_38C1600->adapter_scsi_id =
10934 			    adv_dvc_varp->chip_scsi_id;
10935 			ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
10936 			ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10937 			ep_38C1600->termination_lvd =
10938 			    adv_dvc_varp->cfg->termination;
10939 			ep_38C1600->disc_enable =
10940 			    adv_dvc_varp->cfg->disc_enable;
10941 			ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
10942 			ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
10943 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
10944 			ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
10945 			ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
10946 			ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
10947 			ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
10948 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
10949 			ep_38C1600->start_motor = adv_dvc_varp->start_motor;
10950 			ep_38C1600->scsi_reset_delay =
10951 			    adv_dvc_varp->scsi_reset_wait;
10952 			ep_38C1600->serial_number_word1 =
10953 			    adv_dvc_varp->cfg->serial1;
10954 			ep_38C1600->serial_number_word2 =
10955 			    adv_dvc_varp->cfg->serial2;
10956 			ep_38C1600->serial_number_word3 =
10957 			    adv_dvc_varp->cfg->serial3;
10958 		}
10959 
10960 		/*
10961 		 * Set the adapter's target id bit in the 'init_tidmask' field.
10962 		 */
10963 		boardp->init_tidmask |=
10964 		    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
10965 	}
10966 
10967 	/*
10968 	 * Channels are numbered beginning with 0. For AdvanSys one host
10969 	 * structure supports one channel. Multi-channel boards have a
10970 	 * separate host structure for each channel.
10971 	 */
10972 	shost->max_channel = 0;
10973 	if (ASC_NARROW_BOARD(boardp)) {
10974 		shost->max_id = ASC_MAX_TID + 1;
10975 		shost->max_lun = ASC_MAX_LUN + 1;
10976 		shost->max_cmd_len = ASC_MAX_CDB_LEN;
10977 
10978 		shost->io_port = asc_dvc_varp->iop_base;
10979 		boardp->asc_n_io_port = ASC_IOADR_GAP;
10980 		shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
10981 
10982 		/* Set maximum number of queues the adapter can handle. */
10983 		shost->can_queue = asc_dvc_varp->max_total_qng;
10984 	} else {
10985 		shost->max_id = ADV_MAX_TID + 1;
10986 		shost->max_lun = ADV_MAX_LUN + 1;
10987 		shost->max_cmd_len = ADV_MAX_CDB_LEN;
10988 
10989 		/*
10990 		 * Save the I/O Port address and length even though
10991 		 * I/O ports are not used to access Wide boards.
10992 		 * Instead the Wide boards are accessed with
10993 		 * PCI Memory Mapped I/O.
10994 		 */
10995 		shost->io_port = iop;
10996 
10997 		shost->this_id = adv_dvc_varp->chip_scsi_id;
10998 
10999 		/* Set maximum number of queues the adapter can handle. */
11000 		shost->can_queue = adv_dvc_varp->max_host_qng;
11001 	}
11002 
11003 	/*
11004 	 * Set the maximum number of scatter-gather elements the
11005 	 * adapter can handle.
11006 	 */
11007 	if (ASC_NARROW_BOARD(boardp)) {
11008 		/*
11009 		 * Allow two commands with 'sg_tablesize' scatter-gather
11010 		 * elements to be executed simultaneously. This value is
11011 		 * the theoretical hardware limit. It may be decreased
11012 		 * below.
11013 		 */
11014 		shost->sg_tablesize =
11015 		    (((asc_dvc_varp->max_total_qng - 2) / 2) *
11016 		     ASC_SG_LIST_PER_Q) + 1;
11017 	} else {
11018 		shost->sg_tablesize = ADV_MAX_SG_LIST;
11019 	}
11020 
11021 	/*
11022 	 * The value of 'sg_tablesize' can not exceed the SCSI
11023 	 * mid-level driver definition of SG_ALL. SG_ALL also
11024 	 * must not be exceeded, because it is used to define the
11025 	 * size of the scatter-gather table in 'struct asc_sg_head'.
11026 	 */
11027 	if (shost->sg_tablesize > SG_ALL) {
11028 		shost->sg_tablesize = SG_ALL;
11029 	}
11030 
11031 	ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11032 
11033 	/* BIOS start address. */
11034 	if (ASC_NARROW_BOARD(boardp)) {
11035 		shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11036 						    asc_dvc_varp->bus_type);
11037 	} else {
11038 		/*
11039 		 * Fill-in BIOS board variables. The Wide BIOS saves
11040 		 * information in LRAM that is used by the driver.
11041 		 */
11042 		AdvReadWordLram(adv_dvc_varp->iop_base,
11043 				BIOS_SIGNATURE, boardp->bios_signature);
11044 		AdvReadWordLram(adv_dvc_varp->iop_base,
11045 				BIOS_VERSION, boardp->bios_version);
11046 		AdvReadWordLram(adv_dvc_varp->iop_base,
11047 				BIOS_CODESEG, boardp->bios_codeseg);
11048 		AdvReadWordLram(adv_dvc_varp->iop_base,
11049 				BIOS_CODELEN, boardp->bios_codelen);
11050 
11051 		ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11052 			 boardp->bios_signature, boardp->bios_version);
11053 
11054 		ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11055 			 boardp->bios_codeseg, boardp->bios_codelen);
11056 
11057 		/*
11058 		 * If the BIOS saved a valid signature, then fill in
11059 		 * the BIOS code segment base address.
11060 		 */
11061 		if (boardp->bios_signature == 0x55AA) {
11062 			/*
11063 			 * Convert x86 realmode code segment to a linear
11064 			 * address by shifting left 4.
11065 			 */
11066 			shost->base = ((ulong)boardp->bios_codeseg << 4);
11067 		} else {
11068 			shost->base = 0;
11069 		}
11070 	}
11071 
11072 	/*
11073 	 * Register Board Resources - I/O Port, DMA, IRQ
11074 	 */
11075 
11076 	/* Register DMA Channel for Narrow boards. */
11077 	shost->dma_channel = NO_ISA_DMA;	/* Default to no ISA DMA. */
11078 
11079 	/* Register IRQ Number. */
11080 	ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11081 
11082 	ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11083 			  DRV_NAME, shost);
11084 
11085 	if (ret) {
11086 		if (ret == -EBUSY) {
11087 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11088 					"already in use\n", boardp->irq);
11089 		} else if (ret == -EINVAL) {
11090 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11091 					"not valid\n", boardp->irq);
11092 		} else {
11093 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11094 					"failed with %d\n", boardp->irq, ret);
11095 		}
11096 		goto err_unmap;
11097 	}
11098 
11099 	/*
11100 	 * Initialize board RISC chip and enable interrupts.
11101 	 */
11102 	if (ASC_NARROW_BOARD(boardp)) {
11103 		ASC_DBG(2, "AscInitAsc1000Driver()\n");
11104 
11105 		asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11106 		if (!asc_dvc_varp->overrun_buf) {
11107 			ret = -ENOMEM;
11108 			goto err_free_irq;
11109 		}
11110 		warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11111 
11112 		if (warn_code || asc_dvc_varp->err_code) {
11113 			shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11114 					"warn 0x%x, error 0x%x\n",
11115 					asc_dvc_varp->init_state, warn_code,
11116 					asc_dvc_varp->err_code);
11117 			if (!asc_dvc_varp->overrun_dma) {
11118 				ret = -ENODEV;
11119 				goto err_free_mem;
11120 			}
11121 		}
11122 	} else {
11123 		if (advansys_wide_init_chip(shost)) {
11124 			ret = -ENODEV;
11125 			goto err_free_mem;
11126 		}
11127 	}
11128 
11129 	ASC_DBG_PRT_SCSI_HOST(2, shost);
11130 
11131 	ret = scsi_add_host(shost, boardp->dev);
11132 	if (ret)
11133 		goto err_free_mem;
11134 
11135 	scsi_scan_host(shost);
11136 	return 0;
11137 
11138  err_free_mem:
11139 	if (ASC_NARROW_BOARD(boardp)) {
11140 		if (asc_dvc_varp->overrun_dma)
11141 			dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11142 					 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11143 		kfree(asc_dvc_varp->overrun_buf);
11144 	} else
11145 		advansys_wide_free_mem(boardp);
11146  err_free_irq:
11147 	free_irq(boardp->irq, shost);
11148  err_unmap:
11149 	if (boardp->ioremap_addr)
11150 		iounmap(boardp->ioremap_addr);
11151 #ifdef CONFIG_PCI
11152  err_shost:
11153 #endif
11154 	return ret;
11155 }
11156 
11157 /*
11158  * advansys_release()
11159  *
11160  * Release resources allocated for a single AdvanSys adapter.
11161  */
11162 static int advansys_release(struct Scsi_Host *shost)
11163 {
11164 	struct asc_board *board = shost_priv(shost);
11165 	ASC_DBG(1, "begin\n");
11166 	scsi_remove_host(shost);
11167 	free_irq(board->irq, shost);
11168 
11169 	if (ASC_NARROW_BOARD(board)) {
11170 		dma_unmap_single(board->dev,
11171 					board->dvc_var.asc_dvc_var.overrun_dma,
11172 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11173 		kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11174 	} else {
11175 		iounmap(board->ioremap_addr);
11176 		advansys_wide_free_mem(board);
11177 	}
11178 	scsi_host_put(shost);
11179 	ASC_DBG(1, "end\n");
11180 	return 0;
11181 }
11182 
11183 #define ASC_IOADR_TABLE_MAX_IX  11
11184 
11185 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11186 	0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11187 	0x0210, 0x0230, 0x0250, 0x0330
11188 };
11189 
11190 static void advansys_vlb_remove(struct device *dev, unsigned int id)
11191 {
11192 	int ioport = _asc_def_iop_base[id];
11193 	advansys_release(dev_get_drvdata(dev));
11194 	release_region(ioport, ASC_IOADR_GAP);
11195 }
11196 
11197 /*
11198  * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11199  * 000: invalid
11200  * 001: 10
11201  * 010: 11
11202  * 011: 12
11203  * 100: invalid
11204  * 101: 14
11205  * 110: 15
11206  * 111: invalid
11207  */
11208 static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11209 {
11210 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11211 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11212 	if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11213 		return 0;
11214 	return chip_irq;
11215 }
11216 
11217 static int advansys_vlb_probe(struct device *dev, unsigned int id)
11218 {
11219 	int err = -ENODEV;
11220 	PortAddr iop_base = _asc_def_iop_base[id];
11221 	struct Scsi_Host *shost;
11222 	struct asc_board *board;
11223 
11224 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11225 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11226 		return -ENODEV;
11227 	}
11228 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11229 	if (!AscFindSignature(iop_base))
11230 		goto release_region;
11231 	/*
11232 	 * I don't think this condition can actually happen, but the old
11233 	 * driver did it, and the chances of finding a VLB setup in 2007
11234 	 * to do testing with is slight to none.
11235 	 */
11236 	if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
11237 		goto release_region;
11238 
11239 	err = -ENOMEM;
11240 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11241 	if (!shost)
11242 		goto release_region;
11243 
11244 	board = shost_priv(shost);
11245 	board->irq = advansys_vlb_irq_no(iop_base);
11246 	board->dev = dev;
11247 	board->shost = shost;
11248 
11249 	err = advansys_board_found(shost, iop_base, ASC_IS_VL);
11250 	if (err)
11251 		goto free_host;
11252 
11253 	dev_set_drvdata(dev, shost);
11254 	return 0;
11255 
11256  free_host:
11257 	scsi_host_put(shost);
11258  release_region:
11259 	release_region(iop_base, ASC_IOADR_GAP);
11260 	return -ENODEV;
11261 }
11262 
11263 static struct isa_driver advansys_vlb_driver = {
11264 	.probe		= advansys_vlb_probe,
11265 	.remove		= advansys_vlb_remove,
11266 	.driver = {
11267 		.owner	= THIS_MODULE,
11268 		.name	= "advansys_vlb",
11269 	},
11270 };
11271 
11272 static struct eisa_device_id advansys_eisa_table[] = {
11273 	{ "ABP7401" },
11274 	{ "ABP7501" },
11275 	{ "" }
11276 };
11277 
11278 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
11279 
11280 /*
11281  * EISA is a little more tricky than PCI; each EISA device may have two
11282  * channels, and this driver is written to make each channel its own Scsi_Host
11283  */
11284 struct eisa_scsi_data {
11285 	struct Scsi_Host *host[2];
11286 };
11287 
11288 /*
11289  * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
11290  * 000: 10
11291  * 001: 11
11292  * 010: 12
11293  * 011: invalid
11294  * 100: 14
11295  * 101: 15
11296  * 110: invalid
11297  * 111: invalid
11298  */
11299 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
11300 {
11301 	unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
11302 	unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
11303 	if ((chip_irq == 13) || (chip_irq > 15))
11304 		return 0;
11305 	return chip_irq;
11306 }
11307 
11308 static int advansys_eisa_probe(struct device *dev)
11309 {
11310 	int i, ioport, irq = 0;
11311 	int err;
11312 	struct eisa_device *edev = to_eisa_device(dev);
11313 	struct eisa_scsi_data *data;
11314 
11315 	err = -ENOMEM;
11316 	data = kzalloc(sizeof(*data), GFP_KERNEL);
11317 	if (!data)
11318 		goto fail;
11319 	ioport = edev->base_addr + 0xc30;
11320 
11321 	err = -ENODEV;
11322 	for (i = 0; i < 2; i++, ioport += 0x20) {
11323 		struct asc_board *board;
11324 		struct Scsi_Host *shost;
11325 		if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
11326 			printk(KERN_WARNING "Region %x-%x busy\n", ioport,
11327 			       ioport + ASC_IOADR_GAP - 1);
11328 			continue;
11329 		}
11330 		if (!AscFindSignature(ioport)) {
11331 			release_region(ioport, ASC_IOADR_GAP);
11332 			continue;
11333 		}
11334 
11335 		/*
11336 		 * I don't know why we need to do this for EISA chips, but
11337 		 * not for any others.  It looks to be equivalent to
11338 		 * AscGetChipCfgMsw, but I may have overlooked something,
11339 		 * so I'm not converting it until I get an EISA board to
11340 		 * test with.
11341 		 */
11342 		inw(ioport + 4);
11343 
11344 		if (!irq)
11345 			irq = advansys_eisa_irq_no(edev);
11346 
11347 		err = -ENOMEM;
11348 		shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11349 		if (!shost)
11350 			goto release_region;
11351 
11352 		board = shost_priv(shost);
11353 		board->irq = irq;
11354 		board->dev = dev;
11355 		board->shost = shost;
11356 
11357 		err = advansys_board_found(shost, ioport, ASC_IS_EISA);
11358 		if (!err) {
11359 			data->host[i] = shost;
11360 			continue;
11361 		}
11362 
11363 		scsi_host_put(shost);
11364  release_region:
11365 		release_region(ioport, ASC_IOADR_GAP);
11366 		break;
11367 	}
11368 
11369 	if (err)
11370 		goto free_data;
11371 	dev_set_drvdata(dev, data);
11372 	return 0;
11373 
11374  free_data:
11375 	kfree(data->host[0]);
11376 	kfree(data->host[1]);
11377 	kfree(data);
11378  fail:
11379 	return err;
11380 }
11381 
11382 static int advansys_eisa_remove(struct device *dev)
11383 {
11384 	int i;
11385 	struct eisa_scsi_data *data = dev_get_drvdata(dev);
11386 
11387 	for (i = 0; i < 2; i++) {
11388 		int ioport;
11389 		struct Scsi_Host *shost = data->host[i];
11390 		if (!shost)
11391 			continue;
11392 		ioport = shost->io_port;
11393 		advansys_release(shost);
11394 		release_region(ioport, ASC_IOADR_GAP);
11395 	}
11396 
11397 	kfree(data);
11398 	return 0;
11399 }
11400 
11401 static struct eisa_driver advansys_eisa_driver = {
11402 	.id_table =		advansys_eisa_table,
11403 	.driver = {
11404 		.name =		DRV_NAME,
11405 		.probe =	advansys_eisa_probe,
11406 		.remove =	advansys_eisa_remove,
11407 	}
11408 };
11409 
11410 /* PCI Devices supported by this driver */
11411 static struct pci_device_id advansys_pci_tbl[] = {
11412 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
11413 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11414 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
11415 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11416 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
11417 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11418 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
11419 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11420 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
11421 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11422 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
11423 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11424 	{}
11425 };
11426 
11427 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
11428 
11429 static void advansys_set_latency(struct pci_dev *pdev)
11430 {
11431 	if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
11432 	    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
11433 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
11434 	} else {
11435 		u8 latency;
11436 		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
11437 		if (latency < 0x20)
11438 			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
11439 	}
11440 }
11441 
11442 static int advansys_pci_probe(struct pci_dev *pdev,
11443 			      const struct pci_device_id *ent)
11444 {
11445 	int err, ioport;
11446 	struct Scsi_Host *shost;
11447 	struct asc_board *board;
11448 
11449 	err = pci_enable_device(pdev);
11450 	if (err)
11451 		goto fail;
11452 	err = pci_request_regions(pdev, DRV_NAME);
11453 	if (err)
11454 		goto disable_device;
11455 	pci_set_master(pdev);
11456 	advansys_set_latency(pdev);
11457 
11458 	err = -ENODEV;
11459 	if (pci_resource_len(pdev, 0) == 0)
11460 		goto release_region;
11461 
11462 	ioport = pci_resource_start(pdev, 0);
11463 
11464 	err = -ENOMEM;
11465 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11466 	if (!shost)
11467 		goto release_region;
11468 
11469 	board = shost_priv(shost);
11470 	board->irq = pdev->irq;
11471 	board->dev = &pdev->dev;
11472 	board->shost = shost;
11473 
11474 	if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
11475 	    pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
11476 	    pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
11477 		board->flags |= ASC_IS_WIDE_BOARD;
11478 	}
11479 
11480 	err = advansys_board_found(shost, ioport, ASC_IS_PCI);
11481 	if (err)
11482 		goto free_host;
11483 
11484 	pci_set_drvdata(pdev, shost);
11485 	return 0;
11486 
11487  free_host:
11488 	scsi_host_put(shost);
11489  release_region:
11490 	pci_release_regions(pdev);
11491  disable_device:
11492 	pci_disable_device(pdev);
11493  fail:
11494 	return err;
11495 }
11496 
11497 static void advansys_pci_remove(struct pci_dev *pdev)
11498 {
11499 	advansys_release(pci_get_drvdata(pdev));
11500 	pci_release_regions(pdev);
11501 	pci_disable_device(pdev);
11502 }
11503 
11504 static struct pci_driver advansys_pci_driver = {
11505 	.name =		DRV_NAME,
11506 	.id_table =	advansys_pci_tbl,
11507 	.probe =	advansys_pci_probe,
11508 	.remove =	advansys_pci_remove,
11509 };
11510 
11511 static int __init advansys_init(void)
11512 {
11513 	int error;
11514 
11515 	error = isa_register_driver(&advansys_vlb_driver,
11516 				    ASC_IOADR_TABLE_MAX_IX);
11517 	if (error)
11518 		goto fail;
11519 
11520 	error = eisa_driver_register(&advansys_eisa_driver);
11521 	if (error)
11522 		goto unregister_vlb;
11523 
11524 	error = pci_register_driver(&advansys_pci_driver);
11525 	if (error)
11526 		goto unregister_eisa;
11527 
11528 	return 0;
11529 
11530  unregister_eisa:
11531 	eisa_driver_unregister(&advansys_eisa_driver);
11532  unregister_vlb:
11533 	isa_unregister_driver(&advansys_vlb_driver);
11534  fail:
11535 	return error;
11536 }
11537 
11538 static void __exit advansys_exit(void)
11539 {
11540 	pci_unregister_driver(&advansys_pci_driver);
11541 	eisa_driver_unregister(&advansys_eisa_driver);
11542 	isa_unregister_driver(&advansys_vlb_driver);
11543 }
11544 
11545 module_init(advansys_init);
11546 module_exit(advansys_exit);
11547 
11548 MODULE_DESCRIPTION("AdvanSys SCSI Adapter driver");
11549 MODULE_LICENSE("GPL");
11550 MODULE_FIRMWARE("advansys/mcode.bin");
11551 MODULE_FIRMWARE("advansys/3550.bin");
11552 MODULE_FIRMWARE("advansys/38C0800.bin");
11553 MODULE_FIRMWARE("advansys/38C1600.bin");
11554