xref: /linux/drivers/scsi/advansys.c (revision bcefe12eff5dca6fdfa94ed85e5bee66380d5cd9)
1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4"	/* AdvanSys Driver Version */
3 
4 /*
5  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
6  *
7  * Copyright (c) 1995-2000 Advanced System Products, Inc.
8  * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9  * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10  * All Rights Reserved.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  */
17 
18 /*
19  * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20  * changed its name to ConnectCom Solutions, Inc.
21  * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
22  */
23 
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
42 
43 #include <asm/io.h>
44 #include <asm/system.h>
45 #include <asm/dma.h>
46 
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/scsi.h>
51 #include <scsi/scsi_host.h>
52 
53 /* FIXME:
54  *
55  *  1. Although all of the necessary command mapping places have the
56  *     appropriate dma_map.. APIs, the driver still processes its internal
57  *     queue using bus_to_virt() and virt_to_bus() which are illegal under
58  *     the API.  The entire queue processing structure will need to be
59  *     altered to fix this.
60  *  2. Need to add memory mapping workaround. Test the memory mapping.
61  *     If it doesn't work revert to I/O port access. Can a test be done
62  *     safely?
63  *  3. Handle an interrupt not working. Keep an interrupt counter in
64  *     the interrupt handler. In the timeout function if the interrupt
65  *     has not occurred then print a message and run in polled mode.
66  *  4. Need to add support for target mode commands, cf. CAM XPT.
67  *  5. check DMA mapping functions for failure
68  *  6. Use scsi_transport_spi
69  *  7. advansys_info is not safe against multiple simultaneous callers
70  *  8. Add module_param to override ISA/VLB ioport array
71  */
72 #warning this driver is still not properly converted to the DMA API
73 
74 /* Enable driver /proc statistics. */
75 #define ADVANSYS_STATS
76 
77 /* Enable driver tracing. */
78 #undef ADVANSYS_DEBUG
79 
80 /*
81  * Portable Data Types
82  *
83  * Any instance where a 32-bit long or pointer type is assumed
84  * for precision or HW defined structures, the following define
85  * types must be used. In Linux the char, short, and int types
86  * are all consistent at 8, 16, and 32 bits respectively. Pointers
87  * and long types are 64 bits on Alpha and UltraSPARC.
88  */
89 #define ASC_PADDR __u32		/* Physical/Bus address data type. */
90 #define ASC_VADDR __u32		/* Virtual address data type. */
91 #define ASC_DCNT  __u32		/* Unsigned Data count type. */
92 #define ASC_SDCNT __s32		/* Signed Data count type. */
93 
94 typedef unsigned char uchar;
95 
96 #ifndef TRUE
97 #define TRUE     (1)
98 #endif
99 #ifndef FALSE
100 #define FALSE    (0)
101 #endif
102 
103 #define ERR      (-1)
104 #define UW_ERR   (uint)(0xFFFF)
105 #define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
106 
107 #define PCI_VENDOR_ID_ASP		0x10cd
108 #define PCI_DEVICE_ID_ASP_1200A		0x1100
109 #define PCI_DEVICE_ID_ASP_ABP940	0x1200
110 #define PCI_DEVICE_ID_ASP_ABP940U	0x1300
111 #define PCI_DEVICE_ID_ASP_ABP940UW	0x2300
112 #define PCI_DEVICE_ID_38C0800_REV1	0x2500
113 #define PCI_DEVICE_ID_38C1600_REV1	0x2700
114 
115 /*
116  * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
117  * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
118  * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
119  * SRB structure.
120  */
121 #define CC_VERY_LONG_SG_LIST 0
122 #define ASC_SRB2SCSIQ(srb_ptr)  (srb_ptr)
123 
124 #define PortAddr                 unsigned int	/* port address size  */
125 #define inp(port)                inb(port)
126 #define outp(port, byte)         outb((byte), (port))
127 
128 #define inpw(port)               inw(port)
129 #define outpw(port, word)        outw((word), (port))
130 
131 #define ASC_MAX_SG_QUEUE    7
132 #define ASC_MAX_SG_LIST     255
133 
134 #define ASC_CS_TYPE  unsigned short
135 
136 #define ASC_IS_ISA          (0x0001)
137 #define ASC_IS_ISAPNP       (0x0081)
138 #define ASC_IS_EISA         (0x0002)
139 #define ASC_IS_PCI          (0x0004)
140 #define ASC_IS_PCI_ULTRA    (0x0104)
141 #define ASC_IS_PCMCIA       (0x0008)
142 #define ASC_IS_MCA          (0x0020)
143 #define ASC_IS_VL           (0x0040)
144 #define ASC_IS_WIDESCSI_16  (0x0100)
145 #define ASC_IS_WIDESCSI_32  (0x0200)
146 #define ASC_IS_BIG_ENDIAN   (0x8000)
147 
148 #define ASC_CHIP_MIN_VER_VL      (0x01)
149 #define ASC_CHIP_MAX_VER_VL      (0x07)
150 #define ASC_CHIP_MIN_VER_PCI     (0x09)
151 #define ASC_CHIP_MAX_VER_PCI     (0x0F)
152 #define ASC_CHIP_VER_PCI_BIT     (0x08)
153 #define ASC_CHIP_MIN_VER_ISA     (0x11)
154 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
155 #define ASC_CHIP_MAX_VER_ISA     (0x27)
156 #define ASC_CHIP_VER_ISA_BIT     (0x30)
157 #define ASC_CHIP_VER_ISAPNP_BIT  (0x20)
158 #define ASC_CHIP_VER_ASYN_BUG    (0x21)
159 #define ASC_CHIP_VER_PCI             0x08
160 #define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
161 #define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
162 #define ASC_CHIP_MIN_VER_EISA (0x41)
163 #define ASC_CHIP_MAX_VER_EISA (0x47)
164 #define ASC_CHIP_VER_EISA_BIT (0x40)
165 #define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
166 #define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
167 #define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
168 #define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL)
169 
170 #define ASC_SCSI_ID_BITS  3
171 #define ASC_SCSI_TIX_TYPE     uchar
172 #define ASC_ALL_DEVICE_BIT_SET  0xFF
173 #define ASC_SCSI_BIT_ID_TYPE  uchar
174 #define ASC_MAX_TID       7
175 #define ASC_MAX_LUN       7
176 #define ASC_SCSI_WIDTH_BIT_SET  0xFF
177 #define ASC_MAX_SENSE_LEN   32
178 #define ASC_MIN_SENSE_LEN   14
179 #define ASC_SCSI_RESET_HOLD_TIME_US  60
180 
181 /*
182  * Narrow boards only support 12-byte commands, while wide boards
183  * extend to 16-byte commands.
184  */
185 #define ASC_MAX_CDB_LEN     12
186 #define ADV_MAX_CDB_LEN     16
187 
188 #define MS_SDTR_LEN    0x03
189 #define MS_WDTR_LEN    0x02
190 
191 #define ASC_SG_LIST_PER_Q   7
192 #define QS_FREE        0x00
193 #define QS_READY       0x01
194 #define QS_DISC1       0x02
195 #define QS_DISC2       0x04
196 #define QS_BUSY        0x08
197 #define QS_ABORTED     0x40
198 #define QS_DONE        0x80
199 #define QC_NO_CALLBACK   0x01
200 #define QC_SG_SWAP_QUEUE 0x02
201 #define QC_SG_HEAD       0x04
202 #define QC_DATA_IN       0x08
203 #define QC_DATA_OUT      0x10
204 #define QC_URGENT        0x20
205 #define QC_MSG_OUT       0x40
206 #define QC_REQ_SENSE     0x80
207 #define QCSG_SG_XFER_LIST  0x02
208 #define QCSG_SG_XFER_MORE  0x04
209 #define QCSG_SG_XFER_END   0x08
210 #define QD_IN_PROGRESS       0x00
211 #define QD_NO_ERROR          0x01
212 #define QD_ABORTED_BY_HOST   0x02
213 #define QD_WITH_ERROR        0x04
214 #define QD_INVALID_REQUEST   0x80
215 #define QD_INVALID_HOST_NUM  0x81
216 #define QD_INVALID_DEVICE    0x82
217 #define QD_ERR_INTERNAL      0xFF
218 #define QHSTA_NO_ERROR               0x00
219 #define QHSTA_M_SEL_TIMEOUT          0x11
220 #define QHSTA_M_DATA_OVER_RUN        0x12
221 #define QHSTA_M_DATA_UNDER_RUN       0x12
222 #define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
223 #define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
224 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
225 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
226 #define QHSTA_D_HOST_ABORT_FAILED       0x23
227 #define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
228 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
229 #define QHSTA_D_ASPI_NO_BUF_POOL        0x26
230 #define QHSTA_M_WTM_TIMEOUT         0x41
231 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
232 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
233 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
234 #define QHSTA_M_TARGET_STATUS_BUSY  0x45
235 #define QHSTA_M_BAD_TAG_CODE        0x46
236 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
237 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
238 #define QHSTA_D_LRAM_CMP_ERROR        0x81
239 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
240 #define ASC_FLAG_SCSIQ_REQ        0x01
241 #define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
242 #define ASC_FLAG_BIOS_ASYNC_IO    0x04
243 #define ASC_FLAG_SRB_LINEAR_ADDR  0x08
244 #define ASC_FLAG_WIN16            0x10
245 #define ASC_FLAG_WIN32            0x20
246 #define ASC_FLAG_ISA_OVER_16MB    0x40
247 #define ASC_FLAG_DOS_VM_CALLBACK  0x80
248 #define ASC_TAG_FLAG_EXTRA_BYTES               0x10
249 #define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
250 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
251 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
252 #define ASC_SCSIQ_CPY_BEG              4
253 #define ASC_SCSIQ_SGHD_CPY_BEG         2
254 #define ASC_SCSIQ_B_FWD                0
255 #define ASC_SCSIQ_B_BWD                1
256 #define ASC_SCSIQ_B_STATUS             2
257 #define ASC_SCSIQ_B_QNO                3
258 #define ASC_SCSIQ_B_CNTL               4
259 #define ASC_SCSIQ_B_SG_QUEUE_CNT       5
260 #define ASC_SCSIQ_D_DATA_ADDR          8
261 #define ASC_SCSIQ_D_DATA_CNT          12
262 #define ASC_SCSIQ_B_SENSE_LEN         20
263 #define ASC_SCSIQ_DONE_INFO_BEG       22
264 #define ASC_SCSIQ_D_SRBPTR            22
265 #define ASC_SCSIQ_B_TARGET_IX         26
266 #define ASC_SCSIQ_B_CDB_LEN           28
267 #define ASC_SCSIQ_B_TAG_CODE          29
268 #define ASC_SCSIQ_W_VM_ID             30
269 #define ASC_SCSIQ_DONE_STATUS         32
270 #define ASC_SCSIQ_HOST_STATUS         33
271 #define ASC_SCSIQ_SCSI_STATUS         34
272 #define ASC_SCSIQ_CDB_BEG             36
273 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
274 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
275 #define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
276 #define ASC_SCSIQ_B_SG_WK_QP          49
277 #define ASC_SCSIQ_B_SG_WK_IX          50
278 #define ASC_SCSIQ_W_ALT_DC1           52
279 #define ASC_SCSIQ_B_LIST_CNT          6
280 #define ASC_SCSIQ_B_CUR_LIST_CNT      7
281 #define ASC_SGQ_B_SG_CNTL             4
282 #define ASC_SGQ_B_SG_HEAD_QP          5
283 #define ASC_SGQ_B_SG_LIST_CNT         6
284 #define ASC_SGQ_B_SG_CUR_LIST_CNT     7
285 #define ASC_SGQ_LIST_BEG              8
286 #define ASC_DEF_SCSI1_QNG    4
287 #define ASC_MAX_SCSI1_QNG    4
288 #define ASC_DEF_SCSI2_QNG    16
289 #define ASC_MAX_SCSI2_QNG    32
290 #define ASC_TAG_CODE_MASK    0x23
291 #define ASC_STOP_REQ_RISC_STOP      0x01
292 #define ASC_STOP_ACK_RISC_STOP      0x03
293 #define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
294 #define ASC_STOP_CLEAN_UP_DISC_Q    0x20
295 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
296 #define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
297 #define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
298 #define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
299 #define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
300 #define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
301 #define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
302 #define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
303 
304 typedef struct asc_scsiq_1 {
305 	uchar status;
306 	uchar q_no;
307 	uchar cntl;
308 	uchar sg_queue_cnt;
309 	uchar target_id;
310 	uchar target_lun;
311 	ASC_PADDR data_addr;
312 	ASC_DCNT data_cnt;
313 	ASC_PADDR sense_addr;
314 	uchar sense_len;
315 	uchar extra_bytes;
316 } ASC_SCSIQ_1;
317 
318 typedef struct asc_scsiq_2 {
319 	ASC_VADDR srb_ptr;
320 	uchar target_ix;
321 	uchar flag;
322 	uchar cdb_len;
323 	uchar tag_code;
324 	ushort vm_id;
325 } ASC_SCSIQ_2;
326 
327 typedef struct asc_scsiq_3 {
328 	uchar done_stat;
329 	uchar host_stat;
330 	uchar scsi_stat;
331 	uchar scsi_msg;
332 } ASC_SCSIQ_3;
333 
334 typedef struct asc_scsiq_4 {
335 	uchar cdb[ASC_MAX_CDB_LEN];
336 	uchar y_first_sg_list_qp;
337 	uchar y_working_sg_qp;
338 	uchar y_working_sg_ix;
339 	uchar y_res;
340 	ushort x_req_count;
341 	ushort x_reconnect_rtn;
342 	ASC_PADDR x_saved_data_addr;
343 	ASC_DCNT x_saved_data_cnt;
344 } ASC_SCSIQ_4;
345 
346 typedef struct asc_q_done_info {
347 	ASC_SCSIQ_2 d2;
348 	ASC_SCSIQ_3 d3;
349 	uchar q_status;
350 	uchar q_no;
351 	uchar cntl;
352 	uchar sense_len;
353 	uchar extra_bytes;
354 	uchar res;
355 	ASC_DCNT remain_bytes;
356 } ASC_QDONE_INFO;
357 
358 typedef struct asc_sg_list {
359 	ASC_PADDR addr;
360 	ASC_DCNT bytes;
361 } ASC_SG_LIST;
362 
363 typedef struct asc_sg_head {
364 	ushort entry_cnt;
365 	ushort queue_cnt;
366 	ushort entry_to_copy;
367 	ushort res;
368 	ASC_SG_LIST sg_list[0];
369 } ASC_SG_HEAD;
370 
371 typedef struct asc_scsi_q {
372 	ASC_SCSIQ_1 q1;
373 	ASC_SCSIQ_2 q2;
374 	uchar *cdbptr;
375 	ASC_SG_HEAD *sg_head;
376 	ushort remain_sg_entry_cnt;
377 	ushort next_sg_index;
378 } ASC_SCSI_Q;
379 
380 typedef struct asc_scsi_req_q {
381 	ASC_SCSIQ_1 r1;
382 	ASC_SCSIQ_2 r2;
383 	uchar *cdbptr;
384 	ASC_SG_HEAD *sg_head;
385 	uchar *sense_ptr;
386 	ASC_SCSIQ_3 r3;
387 	uchar cdb[ASC_MAX_CDB_LEN];
388 	uchar sense[ASC_MIN_SENSE_LEN];
389 } ASC_SCSI_REQ_Q;
390 
391 typedef struct asc_scsi_bios_req_q {
392 	ASC_SCSIQ_1 r1;
393 	ASC_SCSIQ_2 r2;
394 	uchar *cdbptr;
395 	ASC_SG_HEAD *sg_head;
396 	uchar *sense_ptr;
397 	ASC_SCSIQ_3 r3;
398 	uchar cdb[ASC_MAX_CDB_LEN];
399 	uchar sense[ASC_MIN_SENSE_LEN];
400 } ASC_SCSI_BIOS_REQ_Q;
401 
402 typedef struct asc_risc_q {
403 	uchar fwd;
404 	uchar bwd;
405 	ASC_SCSIQ_1 i1;
406 	ASC_SCSIQ_2 i2;
407 	ASC_SCSIQ_3 i3;
408 	ASC_SCSIQ_4 i4;
409 } ASC_RISC_Q;
410 
411 typedef struct asc_sg_list_q {
412 	uchar seq_no;
413 	uchar q_no;
414 	uchar cntl;
415 	uchar sg_head_qp;
416 	uchar sg_list_cnt;
417 	uchar sg_cur_list_cnt;
418 } ASC_SG_LIST_Q;
419 
420 typedef struct asc_risc_sg_list_q {
421 	uchar fwd;
422 	uchar bwd;
423 	ASC_SG_LIST_Q sg;
424 	ASC_SG_LIST sg_list[7];
425 } ASC_RISC_SG_LIST_Q;
426 
427 #define ASCQ_ERR_Q_STATUS             0x0D
428 #define ASCQ_ERR_CUR_QNG              0x17
429 #define ASCQ_ERR_SG_Q_LINKS           0x18
430 #define ASCQ_ERR_ISR_RE_ENTRY         0x1A
431 #define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
432 #define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
433 
434 /*
435  * Warning code values are set in ASC_DVC_VAR  'warn_code'.
436  */
437 #define ASC_WARN_NO_ERROR             0x0000
438 #define ASC_WARN_IO_PORT_ROTATE       0x0001
439 #define ASC_WARN_EEPROM_CHKSUM        0x0002
440 #define ASC_WARN_IRQ_MODIFIED         0x0004
441 #define ASC_WARN_AUTO_CONFIG          0x0008
442 #define ASC_WARN_CMD_QNG_CONFLICT     0x0010
443 #define ASC_WARN_EEPROM_RECOVER       0x0020
444 #define ASC_WARN_CFG_MSW_RECOVER      0x0040
445 
446 /*
447  * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
448  */
449 #define ASC_IERR_NO_CARRIER		0x0001	/* No more carrier memory */
450 #define ASC_IERR_MCODE_CHKSUM		0x0002	/* micro code check sum error */
451 #define ASC_IERR_SET_PC_ADDR		0x0004
452 #define ASC_IERR_START_STOP_CHIP	0x0008	/* start/stop chip failed */
453 #define ASC_IERR_ILLEGAL_CONNECTION	0x0010	/* Illegal cable connection */
454 #define ASC_IERR_SINGLE_END_DEVICE	0x0020	/* SE device on DIFF bus */
455 #define ASC_IERR_REVERSED_CABLE		0x0040	/* Narrow flat cable reversed */
456 #define ASC_IERR_SET_SCSI_ID		0x0080	/* set SCSI ID failed */
457 #define ASC_IERR_HVD_DEVICE		0x0100	/* HVD device on LVD port */
458 #define ASC_IERR_BAD_SIGNATURE		0x0200	/* signature not found */
459 #define ASC_IERR_NO_BUS_TYPE		0x0400
460 #define ASC_IERR_BIST_PRE_TEST		0x0800	/* BIST pre-test error */
461 #define ASC_IERR_BIST_RAM_TEST		0x1000	/* BIST RAM test error */
462 #define ASC_IERR_BAD_CHIPTYPE		0x2000	/* Invalid chip_type setting */
463 
464 #define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
465 #define ASC_MIN_TAG_Q_PER_DVC   (0x04)
466 #define ASC_MIN_FREE_Q        (0x02)
467 #define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
468 #define ASC_MAX_TOTAL_QNG 240
469 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
470 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
471 #define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
472 #define ASC_MAX_INRAM_TAG_QNG   16
473 #define ASC_IOADR_GAP   0x10
474 #define ASC_SYN_MAX_OFFSET         0x0F
475 #define ASC_DEF_SDTR_OFFSET        0x0F
476 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
477 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
478 
479 /* The narrow chip only supports a limited selection of transfer rates.
480  * These are encoded in the range 0..7 or 0..15 depending whether the chip
481  * is Ultra-capable or not.  These tables let us convert from one to the other.
482  */
483 static const unsigned char asc_syn_xfer_period[8] = {
484 	25, 30, 35, 40, 50, 60, 70, 85
485 };
486 
487 static const unsigned char asc_syn_ultra_xfer_period[16] = {
488 	12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
489 };
490 
491 typedef struct ext_msg {
492 	uchar msg_type;
493 	uchar msg_len;
494 	uchar msg_req;
495 	union {
496 		struct {
497 			uchar sdtr_xfer_period;
498 			uchar sdtr_req_ack_offset;
499 		} sdtr;
500 		struct {
501 			uchar wdtr_width;
502 		} wdtr;
503 		struct {
504 			uchar mdp_b3;
505 			uchar mdp_b2;
506 			uchar mdp_b1;
507 			uchar mdp_b0;
508 		} mdp;
509 	} u_ext_msg;
510 	uchar res;
511 } EXT_MSG;
512 
513 #define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
514 #define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
515 #define wdtr_width      u_ext_msg.wdtr.wdtr_width
516 #define mdp_b3          u_ext_msg.mdp_b3
517 #define mdp_b2          u_ext_msg.mdp_b2
518 #define mdp_b1          u_ext_msg.mdp_b1
519 #define mdp_b0          u_ext_msg.mdp_b0
520 
521 typedef struct asc_dvc_cfg {
522 	ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
523 	ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
524 	ASC_SCSI_BIT_ID_TYPE disc_enable;
525 	ASC_SCSI_BIT_ID_TYPE sdtr_enable;
526 	uchar chip_scsi_id;
527 	uchar isa_dma_speed;
528 	uchar isa_dma_channel;
529 	uchar chip_version;
530 	ushort mcode_date;
531 	ushort mcode_version;
532 	uchar max_tag_qng[ASC_MAX_TID + 1];
533 	uchar sdtr_period_offset[ASC_MAX_TID + 1];
534 	uchar adapter_info[6];
535 } ASC_DVC_CFG;
536 
537 #define ASC_DEF_DVC_CNTL       0xFFFF
538 #define ASC_DEF_CHIP_SCSI_ID   7
539 #define ASC_DEF_ISA_DMA_SPEED  4
540 #define ASC_INIT_STATE_BEG_GET_CFG   0x0001
541 #define ASC_INIT_STATE_END_GET_CFG   0x0002
542 #define ASC_INIT_STATE_BEG_SET_CFG   0x0004
543 #define ASC_INIT_STATE_END_SET_CFG   0x0008
544 #define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
545 #define ASC_INIT_STATE_END_LOAD_MC   0x0020
546 #define ASC_INIT_STATE_BEG_INQUIRY   0x0040
547 #define ASC_INIT_STATE_END_INQUIRY   0x0080
548 #define ASC_INIT_RESET_SCSI_DONE     0x0100
549 #define ASC_INIT_STATE_WITHOUT_EEP   0x8000
550 #define ASC_BUG_FIX_IF_NOT_DWB       0x0001
551 #define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
552 #define ASC_MIN_TAGGED_CMD  7
553 #define ASC_MAX_SCSI_RESET_WAIT      30
554 #define ASC_OVERRUN_BSIZE		64
555 
556 struct asc_dvc_var;		/* Forward Declaration. */
557 
558 typedef struct asc_dvc_var {
559 	PortAddr iop_base;
560 	ushort err_code;
561 	ushort dvc_cntl;
562 	ushort bug_fix_cntl;
563 	ushort bus_type;
564 	ASC_SCSI_BIT_ID_TYPE init_sdtr;
565 	ASC_SCSI_BIT_ID_TYPE sdtr_done;
566 	ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
567 	ASC_SCSI_BIT_ID_TYPE unit_not_ready;
568 	ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
569 	ASC_SCSI_BIT_ID_TYPE start_motor;
570 	uchar *overrun_buf;
571 	dma_addr_t overrun_dma;
572 	uchar scsi_reset_wait;
573 	uchar chip_no;
574 	char is_in_int;
575 	uchar max_total_qng;
576 	uchar cur_total_qng;
577 	uchar in_critical_cnt;
578 	uchar last_q_shortage;
579 	ushort init_state;
580 	uchar cur_dvc_qng[ASC_MAX_TID + 1];
581 	uchar max_dvc_qng[ASC_MAX_TID + 1];
582 	ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
583 	ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
584 	const uchar *sdtr_period_tbl;
585 	ASC_DVC_CFG *cfg;
586 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
587 	char redo_scam;
588 	ushort res2;
589 	uchar dos_int13_table[ASC_MAX_TID + 1];
590 	ASC_DCNT max_dma_count;
591 	ASC_SCSI_BIT_ID_TYPE no_scam;
592 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
593 	uchar min_sdtr_index;
594 	uchar max_sdtr_index;
595 	struct asc_board *drv_ptr;
596 	int ptr_map_count;
597 	void **ptr_map;
598 	ASC_DCNT uc_break;
599 } ASC_DVC_VAR;
600 
601 typedef struct asc_dvc_inq_info {
602 	uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
603 } ASC_DVC_INQ_INFO;
604 
605 typedef struct asc_cap_info {
606 	ASC_DCNT lba;
607 	ASC_DCNT blk_size;
608 } ASC_CAP_INFO;
609 
610 typedef struct asc_cap_info_array {
611 	ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
612 } ASC_CAP_INFO_ARRAY;
613 
614 #define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
615 #define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
616 #define ASC_CNTL_INITIATOR         (ushort)0x0001
617 #define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
618 #define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
619 #define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
620 #define ASC_CNTL_NO_SCAM           (ushort)0x0010
621 #define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
622 #define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
623 #define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
624 #define ASC_CNTL_RESET_SCSI        (ushort)0x0200
625 #define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
626 #define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
627 #define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
628 #define ASC_CNTL_BURST_MODE        (ushort)0x2000
629 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
630 #define ASC_EEP_DVC_CFG_BEG_VL    2
631 #define ASC_EEP_MAX_DVC_ADDR_VL   15
632 #define ASC_EEP_DVC_CFG_BEG      32
633 #define ASC_EEP_MAX_DVC_ADDR     45
634 #define ASC_EEP_MAX_RETRY        20
635 
636 /*
637  * These macros keep the chip SCSI id and ISA DMA speed
638  * bitfields in board order. C bitfields aren't portable
639  * between big and little-endian platforms so they are
640  * not used.
641  */
642 
643 #define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
644 #define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
645 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
646    ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
647 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
648    ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
649 
650 typedef struct asceep_config {
651 	ushort cfg_lsw;
652 	ushort cfg_msw;
653 	uchar init_sdtr;
654 	uchar disc_enable;
655 	uchar use_cmd_qng;
656 	uchar start_motor;
657 	uchar max_total_qng;
658 	uchar max_tag_qng;
659 	uchar bios_scan;
660 	uchar power_up_wait;
661 	uchar no_scam;
662 	uchar id_speed;		/* low order 4 bits is chip scsi id */
663 	/* high order 4 bits is isa dma speed */
664 	uchar dos_int13_table[ASC_MAX_TID + 1];
665 	uchar adapter_info[6];
666 	ushort cntl;
667 	ushort chksum;
668 } ASCEEP_CONFIG;
669 
670 #define ASC_EEP_CMD_READ          0x80
671 #define ASC_EEP_CMD_WRITE         0x40
672 #define ASC_EEP_CMD_WRITE_ABLE    0x30
673 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
674 #define ASCV_MSGOUT_BEG         0x0000
675 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
676 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
677 #define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
678 #define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
679 #define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
680 #define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
681 #define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
682 #define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
683 #define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
684 #define ASCV_BREAK_ADDR           (ushort)0x0028
685 #define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
686 #define ASCV_BREAK_CONTROL        (ushort)0x002C
687 #define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
688 
689 #define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
690 #define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
691 #define ASCV_MCODE_SIZE_W     (ushort)0x0034
692 #define ASCV_STOP_CODE_B      (ushort)0x0036
693 #define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
694 #define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
695 #define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
696 #define ASCV_HALTCODE_W       (ushort)0x0040
697 #define ASCV_CHKSUM_W         (ushort)0x0042
698 #define ASCV_MC_DATE_W        (ushort)0x0044
699 #define ASCV_MC_VER_W         (ushort)0x0046
700 #define ASCV_NEXTRDY_B        (ushort)0x0048
701 #define ASCV_DONENEXT_B       (ushort)0x0049
702 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
703 #define ASCV_SCSIBUSY_B       (ushort)0x004B
704 #define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
705 #define ASCV_CURCDB_B         (ushort)0x004D
706 #define ASCV_RCLUN_B          (ushort)0x004E
707 #define ASCV_BUSY_QHEAD_B     (ushort)0x004F
708 #define ASCV_DISC1_QHEAD_B    (ushort)0x0050
709 #define ASCV_DISC_ENABLE_B    (ushort)0x0052
710 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
711 #define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
712 #define ASCV_MCODE_CNTL_B     (ushort)0x0056
713 #define ASCV_NULL_TARGET_B    (ushort)0x0057
714 #define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
715 #define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
716 #define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
717 #define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
718 #define ASCV_HOST_FLAG_B      (ushort)0x005D
719 #define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
720 #define ASCV_VER_SERIAL_B     (ushort)0x0065
721 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
722 #define ASCV_WTM_FLAG_B       (ushort)0x0068
723 #define ASCV_RISC_FLAG_B      (ushort)0x006A
724 #define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
725 #define ASC_HOST_FLAG_IN_ISR        0x01
726 #define ASC_HOST_FLAG_ACK_INT       0x02
727 #define ASC_RISC_FLAG_GEN_INT      0x01
728 #define ASC_RISC_FLAG_REQ_SG_LIST  0x02
729 #define IOP_CTRL         (0x0F)
730 #define IOP_STATUS       (0x0E)
731 #define IOP_INT_ACK      IOP_STATUS
732 #define IOP_REG_IFC      (0x0D)
733 #define IOP_SYN_OFFSET    (0x0B)
734 #define IOP_EXTRA_CONTROL (0x0D)
735 #define IOP_REG_PC        (0x0C)
736 #define IOP_RAM_ADDR      (0x0A)
737 #define IOP_RAM_DATA      (0x08)
738 #define IOP_EEP_DATA      (0x06)
739 #define IOP_EEP_CMD       (0x07)
740 #define IOP_VERSION       (0x03)
741 #define IOP_CONFIG_HIGH   (0x04)
742 #define IOP_CONFIG_LOW    (0x02)
743 #define IOP_SIG_BYTE      (0x01)
744 #define IOP_SIG_WORD      (0x00)
745 #define IOP_REG_DC1      (0x0E)
746 #define IOP_REG_DC0      (0x0C)
747 #define IOP_REG_SB       (0x0B)
748 #define IOP_REG_DA1      (0x0A)
749 #define IOP_REG_DA0      (0x08)
750 #define IOP_REG_SC       (0x09)
751 #define IOP_DMA_SPEED    (0x07)
752 #define IOP_REG_FLAG     (0x07)
753 #define IOP_FIFO_H       (0x06)
754 #define IOP_FIFO_L       (0x04)
755 #define IOP_REG_ID       (0x05)
756 #define IOP_REG_QP       (0x03)
757 #define IOP_REG_IH       (0x02)
758 #define IOP_REG_IX       (0x01)
759 #define IOP_REG_AX       (0x00)
760 #define IFC_REG_LOCK      (0x00)
761 #define IFC_REG_UNLOCK    (0x09)
762 #define IFC_WR_EN_FILTER  (0x10)
763 #define IFC_RD_NO_EEPROM  (0x10)
764 #define IFC_SLEW_RATE     (0x20)
765 #define IFC_ACT_NEG       (0x40)
766 #define IFC_INP_FILTER    (0x80)
767 #define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
768 #define SC_SEL   (uchar)(0x80)
769 #define SC_BSY   (uchar)(0x40)
770 #define SC_ACK   (uchar)(0x20)
771 #define SC_REQ   (uchar)(0x10)
772 #define SC_ATN   (uchar)(0x08)
773 #define SC_IO    (uchar)(0x04)
774 #define SC_CD    (uchar)(0x02)
775 #define SC_MSG   (uchar)(0x01)
776 #define SEC_SCSI_CTL         (uchar)(0x80)
777 #define SEC_ACTIVE_NEGATE    (uchar)(0x40)
778 #define SEC_SLEW_RATE        (uchar)(0x20)
779 #define SEC_ENABLE_FILTER    (uchar)(0x10)
780 #define ASC_HALT_EXTMSG_IN     (ushort)0x8000
781 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
782 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
783 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
784 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
785 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
786 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
787 #define ASC_MAX_QNO        0xF8
788 #define ASC_DATA_SEC_BEG   (ushort)0x0080
789 #define ASC_DATA_SEC_END   (ushort)0x0080
790 #define ASC_CODE_SEC_BEG   (ushort)0x0080
791 #define ASC_CODE_SEC_END   (ushort)0x0080
792 #define ASC_QADR_BEG       (0x4000)
793 #define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
794 #define ASC_QADR_END       (ushort)0x7FFF
795 #define ASC_QLAST_ADR      (ushort)0x7FC0
796 #define ASC_QBLK_SIZE      0x40
797 #define ASC_BIOS_DATA_QBEG 0xF8
798 #define ASC_MIN_ACTIVE_QNO 0x01
799 #define ASC_QLINK_END      0xFF
800 #define ASC_EEPROM_WORDS   0x10
801 #define ASC_MAX_MGS_LEN    0x10
802 #define ASC_BIOS_ADDR_DEF  0xDC00
803 #define ASC_BIOS_SIZE      0x3800
804 #define ASC_BIOS_RAM_OFF   0x3800
805 #define ASC_BIOS_RAM_SIZE  0x800
806 #define ASC_BIOS_MIN_ADDR  0xC000
807 #define ASC_BIOS_MAX_ADDR  0xEC00
808 #define ASC_BIOS_BANK_SIZE 0x0400
809 #define ASC_MCODE_START_ADDR  0x0080
810 #define ASC_CFG0_HOST_INT_ON    0x0020
811 #define ASC_CFG0_BIOS_ON        0x0040
812 #define ASC_CFG0_VERA_BURST_ON  0x0080
813 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
814 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
815 #define ASC_CFG1_LRAM_8BITS_ON  0x0800
816 #define ASC_CFG_MSW_CLR_MASK    0x3080
817 #define CSW_TEST1             (ASC_CS_TYPE)0x8000
818 #define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
819 #define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
820 #define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
821 #define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
822 #define CSW_TEST2             (ASC_CS_TYPE)0x0400
823 #define CSW_TEST3             (ASC_CS_TYPE)0x0200
824 #define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
825 #define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
826 #define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
827 #define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
828 #define CSW_HALTED            (ASC_CS_TYPE)0x0010
829 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
830 #define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
831 #define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
832 #define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
833 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
834 #define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
835 #define CIW_TEST1        (ASC_CS_TYPE)0x0200
836 #define CIW_TEST2        (ASC_CS_TYPE)0x0400
837 #define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
838 #define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
839 #define CC_CHIP_RESET   (uchar)0x80
840 #define CC_SCSI_RESET   (uchar)0x40
841 #define CC_HALT         (uchar)0x20
842 #define CC_SINGLE_STEP  (uchar)0x10
843 #define CC_DMA_ABLE     (uchar)0x08
844 #define CC_TEST         (uchar)0x04
845 #define CC_BANK_ONE     (uchar)0x02
846 #define CC_DIAG         (uchar)0x01
847 #define ASC_1000_ID0W      0x04C1
848 #define ASC_1000_ID0W_FIX  0x00C1
849 #define ASC_1000_ID1B      0x25
850 #define ASC_EISA_REV_IOP_MASK  (0x0C83)
851 #define ASC_EISA_CFG_IOP_MASK  (0x0C86)
852 #define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
853 #define INS_HALTINT        (ushort)0x6281
854 #define INS_HALT           (ushort)0x6280
855 #define INS_SINT           (ushort)0x6200
856 #define INS_RFLAG_WTM      (ushort)0x7380
857 #define ASC_MC_SAVE_CODE_WSIZE  0x500
858 #define ASC_MC_SAVE_DATA_WSIZE  0x40
859 
860 typedef struct asc_mc_saved {
861 	ushort data[ASC_MC_SAVE_DATA_WSIZE];
862 	ushort code[ASC_MC_SAVE_CODE_WSIZE];
863 } ASC_MC_SAVED;
864 
865 #define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
866 #define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
867 #define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
868 #define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
869 #define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
870 #define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
871 #define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
872 #define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
873 #define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
874 #define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
875 #define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
876 #define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
877 #define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
878 #define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
879 #define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
880 #define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
881 #define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
882 #define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
883 #define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
884 #define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
885 #define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
886 #define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
887 #define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
888 #define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
889 #define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
890 #define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
891 #define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
892 #define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
893 #define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
894 #define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
895 #define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
896 #define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
897 #define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
898 #define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
899 #define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
900 #define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
901 #define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
902 #define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
903 #define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
904 #define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
905 #define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
906 #define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
907 #define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
908 #define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
909 #define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
910 #define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
911 #define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
912 #define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
913 #define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
914 #define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
915 #define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
916 #define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
917 #define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
918 #define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
919 #define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
920 #define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
921 #define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
922 #define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
923 #define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
924 #define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
925 #define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
926 #define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
927 #define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
928 #define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
929 #define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
930 #define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
931 #define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
932 
933 /*
934  * Portable Data Types
935  *
936  * Any instance where a 32-bit long or pointer type is assumed
937  * for precision or HW defined structures, the following define
938  * types must be used. In Linux the char, short, and int types
939  * are all consistent at 8, 16, and 32 bits respectively. Pointers
940  * and long types are 64 bits on Alpha and UltraSPARC.
941  */
942 #define ADV_PADDR __u32		/* Physical address data type. */
943 #define ADV_VADDR __u32		/* Virtual address data type. */
944 #define ADV_DCNT  __u32		/* Unsigned Data count type. */
945 #define ADV_SDCNT __s32		/* Signed Data count type. */
946 
947 /*
948  * These macros are used to convert a virtual address to a
949  * 32-bit value. This currently can be used on Linux Alpha
950  * which uses 64-bit virtual address but a 32-bit bus address.
951  * This is likely to break in the future, but doing this now
952  * will give us time to change the HW and FW to handle 64-bit
953  * addresses.
954  */
955 #define ADV_VADDR_TO_U32   virt_to_bus
956 #define ADV_U32_TO_VADDR   bus_to_virt
957 
958 #define AdvPortAddr  void __iomem *	/* Virtual memory address size */
959 
960 /*
961  * Define Adv Library required memory access macros.
962  */
963 #define ADV_MEM_READB(addr) readb(addr)
964 #define ADV_MEM_READW(addr) readw(addr)
965 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
966 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
967 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
968 
969 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
970 
971 /*
972  * Define total number of simultaneous maximum element scatter-gather
973  * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
974  * maximum number of outstanding commands per wide host adapter. Each
975  * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
976  * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
977  * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
978  * structures or 255 scatter-gather elements.
979  */
980 #define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
981 
982 /*
983  * Define maximum number of scatter-gather elements per request.
984  */
985 #define ADV_MAX_SG_LIST         255
986 #define NO_OF_SG_PER_BLOCK              15
987 
988 #define ADV_EEP_DVC_CFG_BEGIN           (0x00)
989 #define ADV_EEP_DVC_CFG_END             (0x15)
990 #define ADV_EEP_DVC_CTL_BEGIN           (0x16)	/* location of OEM name */
991 #define ADV_EEP_MAX_WORD_ADDR           (0x1E)
992 
993 #define ADV_EEP_DELAY_MS                100
994 
995 #define ADV_EEPROM_BIG_ENDIAN          0x8000	/* EEPROM Bit 15 */
996 #define ADV_EEPROM_BIOS_ENABLE         0x4000	/* EEPROM Bit 14 */
997 /*
998  * For the ASC3550 Bit 13 is Termination Polarity control bit.
999  * For later ICs Bit 13 controls whether the CIS (Card Information
1000  * Service Section) is loaded from EEPROM.
1001  */
1002 #define ADV_EEPROM_TERM_POL            0x2000	/* EEPROM Bit 13 */
1003 #define ADV_EEPROM_CIS_LD              0x2000	/* EEPROM Bit 13 */
1004 /*
1005  * ASC38C1600 Bit 11
1006  *
1007  * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1008  * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1009  * Function 0 will specify INT B.
1010  *
1011  * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1012  * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1013  * Function 1 will specify INT A.
1014  */
1015 #define ADV_EEPROM_INTAB               0x0800	/* EEPROM Bit 11 */
1016 
1017 typedef struct adveep_3550_config {
1018 	/* Word Offset, Description */
1019 
1020 	ushort cfg_lsw;		/* 00 power up initialization */
1021 	/*  bit 13 set - Term Polarity Control */
1022 	/*  bit 14 set - BIOS Enable */
1023 	/*  bit 15 set - Big Endian Mode */
1024 	ushort cfg_msw;		/* 01 unused      */
1025 	ushort disc_enable;	/* 02 disconnect enable */
1026 	ushort wdtr_able;	/* 03 Wide DTR able */
1027 	ushort sdtr_able;	/* 04 Synchronous DTR able */
1028 	ushort start_motor;	/* 05 send start up motor */
1029 	ushort tagqng_able;	/* 06 tag queuing able */
1030 	ushort bios_scan;	/* 07 BIOS device control */
1031 	ushort scam_tolerant;	/* 08 no scam */
1032 
1033 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1034 	uchar bios_boot_delay;	/*    power up wait */
1035 
1036 	uchar scsi_reset_delay;	/* 10 reset delay */
1037 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1038 	/*    high nibble is lun */
1039 	/*    low nibble is scsi id */
1040 
1041 	uchar termination;	/* 11 0 - automatic */
1042 	/*    1 - low off / high off */
1043 	/*    2 - low off / high on */
1044 	/*    3 - low on  / high on */
1045 	/*    There is no low on  / high off */
1046 
1047 	uchar reserved1;	/*    reserved byte (not used) */
1048 
1049 	ushort bios_ctrl;	/* 12 BIOS control bits */
1050 	/*  bit 0  BIOS don't act as initiator. */
1051 	/*  bit 1  BIOS > 1 GB support */
1052 	/*  bit 2  BIOS > 2 Disk Support */
1053 	/*  bit 3  BIOS don't support removables */
1054 	/*  bit 4  BIOS support bootable CD */
1055 	/*  bit 5  BIOS scan enabled */
1056 	/*  bit 6  BIOS support multiple LUNs */
1057 	/*  bit 7  BIOS display of message */
1058 	/*  bit 8  SCAM disabled */
1059 	/*  bit 9  Reset SCSI bus during init. */
1060 	/*  bit 10 */
1061 	/*  bit 11 No verbose initialization. */
1062 	/*  bit 12 SCSI parity enabled */
1063 	/*  bit 13 */
1064 	/*  bit 14 */
1065 	/*  bit 15 */
1066 	ushort ultra_able;	/* 13 ULTRA speed able */
1067 	ushort reserved2;	/* 14 reserved */
1068 	uchar max_host_qng;	/* 15 maximum host queuing */
1069 	uchar max_dvc_qng;	/*    maximum per device queuing */
1070 	ushort dvc_cntl;	/* 16 control bit for driver */
1071 	ushort bug_fix;		/* 17 control bit for bug fix */
1072 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1073 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1074 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1075 	ushort check_sum;	/* 21 EEP check sum */
1076 	uchar oem_name[16];	/* 22 OEM name */
1077 	ushort dvc_err_code;	/* 30 last device driver error code */
1078 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1079 	ushort adv_err_addr;	/* 32 last uc error address */
1080 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1081 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1082 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1083 	ushort num_of_err;	/* 36 number of error */
1084 } ADVEEP_3550_CONFIG;
1085 
1086 typedef struct adveep_38C0800_config {
1087 	/* Word Offset, Description */
1088 
1089 	ushort cfg_lsw;		/* 00 power up initialization */
1090 	/*  bit 13 set - Load CIS */
1091 	/*  bit 14 set - BIOS Enable */
1092 	/*  bit 15 set - Big Endian Mode */
1093 	ushort cfg_msw;		/* 01 unused      */
1094 	ushort disc_enable;	/* 02 disconnect enable */
1095 	ushort wdtr_able;	/* 03 Wide DTR able */
1096 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1097 	ushort start_motor;	/* 05 send start up motor */
1098 	ushort tagqng_able;	/* 06 tag queuing able */
1099 	ushort bios_scan;	/* 07 BIOS device control */
1100 	ushort scam_tolerant;	/* 08 no scam */
1101 
1102 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1103 	uchar bios_boot_delay;	/*    power up wait */
1104 
1105 	uchar scsi_reset_delay;	/* 10 reset delay */
1106 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1107 	/*    high nibble is lun */
1108 	/*    low nibble is scsi id */
1109 
1110 	uchar termination_se;	/* 11 0 - automatic */
1111 	/*    1 - low off / high off */
1112 	/*    2 - low off / high on */
1113 	/*    3 - low on  / high on */
1114 	/*    There is no low on  / high off */
1115 
1116 	uchar termination_lvd;	/* 11 0 - automatic */
1117 	/*    1 - low off / high off */
1118 	/*    2 - low off / high on */
1119 	/*    3 - low on  / high on */
1120 	/*    There is no low on  / high off */
1121 
1122 	ushort bios_ctrl;	/* 12 BIOS control bits */
1123 	/*  bit 0  BIOS don't act as initiator. */
1124 	/*  bit 1  BIOS > 1 GB support */
1125 	/*  bit 2  BIOS > 2 Disk Support */
1126 	/*  bit 3  BIOS don't support removables */
1127 	/*  bit 4  BIOS support bootable CD */
1128 	/*  bit 5  BIOS scan enabled */
1129 	/*  bit 6  BIOS support multiple LUNs */
1130 	/*  bit 7  BIOS display of message */
1131 	/*  bit 8  SCAM disabled */
1132 	/*  bit 9  Reset SCSI bus during init. */
1133 	/*  bit 10 */
1134 	/*  bit 11 No verbose initialization. */
1135 	/*  bit 12 SCSI parity enabled */
1136 	/*  bit 13 */
1137 	/*  bit 14 */
1138 	/*  bit 15 */
1139 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1140 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1141 	uchar max_host_qng;	/* 15 maximum host queueing */
1142 	uchar max_dvc_qng;	/*    maximum per device queuing */
1143 	ushort dvc_cntl;	/* 16 control bit for driver */
1144 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1145 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1146 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1147 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1148 	ushort check_sum;	/* 21 EEP check sum */
1149 	uchar oem_name[16];	/* 22 OEM name */
1150 	ushort dvc_err_code;	/* 30 last device driver error code */
1151 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1152 	ushort adv_err_addr;	/* 32 last uc error address */
1153 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1154 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1155 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1156 	ushort reserved36;	/* 36 reserved */
1157 	ushort reserved37;	/* 37 reserved */
1158 	ushort reserved38;	/* 38 reserved */
1159 	ushort reserved39;	/* 39 reserved */
1160 	ushort reserved40;	/* 40 reserved */
1161 	ushort reserved41;	/* 41 reserved */
1162 	ushort reserved42;	/* 42 reserved */
1163 	ushort reserved43;	/* 43 reserved */
1164 	ushort reserved44;	/* 44 reserved */
1165 	ushort reserved45;	/* 45 reserved */
1166 	ushort reserved46;	/* 46 reserved */
1167 	ushort reserved47;	/* 47 reserved */
1168 	ushort reserved48;	/* 48 reserved */
1169 	ushort reserved49;	/* 49 reserved */
1170 	ushort reserved50;	/* 50 reserved */
1171 	ushort reserved51;	/* 51 reserved */
1172 	ushort reserved52;	/* 52 reserved */
1173 	ushort reserved53;	/* 53 reserved */
1174 	ushort reserved54;	/* 54 reserved */
1175 	ushort reserved55;	/* 55 reserved */
1176 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1177 	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1178 	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1179 	ushort subsysid;	/* 59 SubSystem ID */
1180 	ushort reserved60;	/* 60 reserved */
1181 	ushort reserved61;	/* 61 reserved */
1182 	ushort reserved62;	/* 62 reserved */
1183 	ushort reserved63;	/* 63 reserved */
1184 } ADVEEP_38C0800_CONFIG;
1185 
1186 typedef struct adveep_38C1600_config {
1187 	/* Word Offset, Description */
1188 
1189 	ushort cfg_lsw;		/* 00 power up initialization */
1190 	/*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1191 	/*       clear - Func. 0 INTA, Func. 1 INTB */
1192 	/*  bit 13 set - Load CIS */
1193 	/*  bit 14 set - BIOS Enable */
1194 	/*  bit 15 set - Big Endian Mode */
1195 	ushort cfg_msw;		/* 01 unused */
1196 	ushort disc_enable;	/* 02 disconnect enable */
1197 	ushort wdtr_able;	/* 03 Wide DTR able */
1198 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1199 	ushort start_motor;	/* 05 send start up motor */
1200 	ushort tagqng_able;	/* 06 tag queuing able */
1201 	ushort bios_scan;	/* 07 BIOS device control */
1202 	ushort scam_tolerant;	/* 08 no scam */
1203 
1204 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1205 	uchar bios_boot_delay;	/*    power up wait */
1206 
1207 	uchar scsi_reset_delay;	/* 10 reset delay */
1208 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1209 	/*    high nibble is lun */
1210 	/*    low nibble is scsi id */
1211 
1212 	uchar termination_se;	/* 11 0 - automatic */
1213 	/*    1 - low off / high off */
1214 	/*    2 - low off / high on */
1215 	/*    3 - low on  / high on */
1216 	/*    There is no low on  / high off */
1217 
1218 	uchar termination_lvd;	/* 11 0 - automatic */
1219 	/*    1 - low off / high off */
1220 	/*    2 - low off / high on */
1221 	/*    3 - low on  / high on */
1222 	/*    There is no low on  / high off */
1223 
1224 	ushort bios_ctrl;	/* 12 BIOS control bits */
1225 	/*  bit 0  BIOS don't act as initiator. */
1226 	/*  bit 1  BIOS > 1 GB support */
1227 	/*  bit 2  BIOS > 2 Disk Support */
1228 	/*  bit 3  BIOS don't support removables */
1229 	/*  bit 4  BIOS support bootable CD */
1230 	/*  bit 5  BIOS scan enabled */
1231 	/*  bit 6  BIOS support multiple LUNs */
1232 	/*  bit 7  BIOS display of message */
1233 	/*  bit 8  SCAM disabled */
1234 	/*  bit 9  Reset SCSI bus during init. */
1235 	/*  bit 10 Basic Integrity Checking disabled */
1236 	/*  bit 11 No verbose initialization. */
1237 	/*  bit 12 SCSI parity enabled */
1238 	/*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1239 	/*  bit 14 */
1240 	/*  bit 15 */
1241 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1242 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1243 	uchar max_host_qng;	/* 15 maximum host queueing */
1244 	uchar max_dvc_qng;	/*    maximum per device queuing */
1245 	ushort dvc_cntl;	/* 16 control bit for driver */
1246 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1247 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1248 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1249 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1250 	ushort check_sum;	/* 21 EEP check sum */
1251 	uchar oem_name[16];	/* 22 OEM name */
1252 	ushort dvc_err_code;	/* 30 last device driver error code */
1253 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1254 	ushort adv_err_addr;	/* 32 last uc error address */
1255 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1256 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1257 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1258 	ushort reserved36;	/* 36 reserved */
1259 	ushort reserved37;	/* 37 reserved */
1260 	ushort reserved38;	/* 38 reserved */
1261 	ushort reserved39;	/* 39 reserved */
1262 	ushort reserved40;	/* 40 reserved */
1263 	ushort reserved41;	/* 41 reserved */
1264 	ushort reserved42;	/* 42 reserved */
1265 	ushort reserved43;	/* 43 reserved */
1266 	ushort reserved44;	/* 44 reserved */
1267 	ushort reserved45;	/* 45 reserved */
1268 	ushort reserved46;	/* 46 reserved */
1269 	ushort reserved47;	/* 47 reserved */
1270 	ushort reserved48;	/* 48 reserved */
1271 	ushort reserved49;	/* 49 reserved */
1272 	ushort reserved50;	/* 50 reserved */
1273 	ushort reserved51;	/* 51 reserved */
1274 	ushort reserved52;	/* 52 reserved */
1275 	ushort reserved53;	/* 53 reserved */
1276 	ushort reserved54;	/* 54 reserved */
1277 	ushort reserved55;	/* 55 reserved */
1278 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1279 	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1280 	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1281 	ushort subsysid;	/* 59 SubSystem ID */
1282 	ushort reserved60;	/* 60 reserved */
1283 	ushort reserved61;	/* 61 reserved */
1284 	ushort reserved62;	/* 62 reserved */
1285 	ushort reserved63;	/* 63 reserved */
1286 } ADVEEP_38C1600_CONFIG;
1287 
1288 /*
1289  * EEPROM Commands
1290  */
1291 #define ASC_EEP_CMD_DONE             0x0200
1292 
1293 /* bios_ctrl */
1294 #define BIOS_CTRL_BIOS               0x0001
1295 #define BIOS_CTRL_EXTENDED_XLAT      0x0002
1296 #define BIOS_CTRL_GT_2_DISK          0x0004
1297 #define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1298 #define BIOS_CTRL_BOOTABLE_CD        0x0010
1299 #define BIOS_CTRL_MULTIPLE_LUN       0x0040
1300 #define BIOS_CTRL_DISPLAY_MSG        0x0080
1301 #define BIOS_CTRL_NO_SCAM            0x0100
1302 #define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1303 #define BIOS_CTRL_INIT_VERBOSE       0x0800
1304 #define BIOS_CTRL_SCSI_PARITY        0x1000
1305 #define BIOS_CTRL_AIPP_DIS           0x2000
1306 
1307 #define ADV_3550_MEMSIZE   0x2000	/* 8 KB Internal Memory */
1308 
1309 #define ADV_38C0800_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1310 
1311 /*
1312  * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1313  * a special 16K Adv Library and Microcode version. After the issue is
1314  * resolved, should restore 32K support.
1315  *
1316  * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1317  */
1318 #define ADV_38C1600_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1319 
1320 /*
1321  * Byte I/O register address from base of 'iop_base'.
1322  */
1323 #define IOPB_INTR_STATUS_REG    0x00
1324 #define IOPB_CHIP_ID_1          0x01
1325 #define IOPB_INTR_ENABLES       0x02
1326 #define IOPB_CHIP_TYPE_REV      0x03
1327 #define IOPB_RES_ADDR_4         0x04
1328 #define IOPB_RES_ADDR_5         0x05
1329 #define IOPB_RAM_DATA           0x06
1330 #define IOPB_RES_ADDR_7         0x07
1331 #define IOPB_FLAG_REG           0x08
1332 #define IOPB_RES_ADDR_9         0x09
1333 #define IOPB_RISC_CSR           0x0A
1334 #define IOPB_RES_ADDR_B         0x0B
1335 #define IOPB_RES_ADDR_C         0x0C
1336 #define IOPB_RES_ADDR_D         0x0D
1337 #define IOPB_SOFT_OVER_WR       0x0E
1338 #define IOPB_RES_ADDR_F         0x0F
1339 #define IOPB_MEM_CFG            0x10
1340 #define IOPB_RES_ADDR_11        0x11
1341 #define IOPB_GPIO_DATA          0x12
1342 #define IOPB_RES_ADDR_13        0x13
1343 #define IOPB_FLASH_PAGE         0x14
1344 #define IOPB_RES_ADDR_15        0x15
1345 #define IOPB_GPIO_CNTL          0x16
1346 #define IOPB_RES_ADDR_17        0x17
1347 #define IOPB_FLASH_DATA         0x18
1348 #define IOPB_RES_ADDR_19        0x19
1349 #define IOPB_RES_ADDR_1A        0x1A
1350 #define IOPB_RES_ADDR_1B        0x1B
1351 #define IOPB_RES_ADDR_1C        0x1C
1352 #define IOPB_RES_ADDR_1D        0x1D
1353 #define IOPB_RES_ADDR_1E        0x1E
1354 #define IOPB_RES_ADDR_1F        0x1F
1355 #define IOPB_DMA_CFG0           0x20
1356 #define IOPB_DMA_CFG1           0x21
1357 #define IOPB_TICKLE             0x22
1358 #define IOPB_DMA_REG_WR         0x23
1359 #define IOPB_SDMA_STATUS        0x24
1360 #define IOPB_SCSI_BYTE_CNT      0x25
1361 #define IOPB_HOST_BYTE_CNT      0x26
1362 #define IOPB_BYTE_LEFT_TO_XFER  0x27
1363 #define IOPB_BYTE_TO_XFER_0     0x28
1364 #define IOPB_BYTE_TO_XFER_1     0x29
1365 #define IOPB_BYTE_TO_XFER_2     0x2A
1366 #define IOPB_BYTE_TO_XFER_3     0x2B
1367 #define IOPB_ACC_GRP            0x2C
1368 #define IOPB_RES_ADDR_2D        0x2D
1369 #define IOPB_DEV_ID             0x2E
1370 #define IOPB_RES_ADDR_2F        0x2F
1371 #define IOPB_SCSI_DATA          0x30
1372 #define IOPB_RES_ADDR_31        0x31
1373 #define IOPB_RES_ADDR_32        0x32
1374 #define IOPB_SCSI_DATA_HSHK     0x33
1375 #define IOPB_SCSI_CTRL          0x34
1376 #define IOPB_RES_ADDR_35        0x35
1377 #define IOPB_RES_ADDR_36        0x36
1378 #define IOPB_RES_ADDR_37        0x37
1379 #define IOPB_RAM_BIST           0x38
1380 #define IOPB_PLL_TEST           0x39
1381 #define IOPB_PCI_INT_CFG        0x3A
1382 #define IOPB_RES_ADDR_3B        0x3B
1383 #define IOPB_RFIFO_CNT          0x3C
1384 #define IOPB_RES_ADDR_3D        0x3D
1385 #define IOPB_RES_ADDR_3E        0x3E
1386 #define IOPB_RES_ADDR_3F        0x3F
1387 
1388 /*
1389  * Word I/O register address from base of 'iop_base'.
1390  */
1391 #define IOPW_CHIP_ID_0          0x00	/* CID0  */
1392 #define IOPW_CTRL_REG           0x02	/* CC    */
1393 #define IOPW_RAM_ADDR           0x04	/* LA    */
1394 #define IOPW_RAM_DATA           0x06	/* LD    */
1395 #define IOPW_RES_ADDR_08        0x08
1396 #define IOPW_RISC_CSR           0x0A	/* CSR   */
1397 #define IOPW_SCSI_CFG0          0x0C	/* CFG0  */
1398 #define IOPW_SCSI_CFG1          0x0E	/* CFG1  */
1399 #define IOPW_RES_ADDR_10        0x10
1400 #define IOPW_SEL_MASK           0x12	/* SM    */
1401 #define IOPW_RES_ADDR_14        0x14
1402 #define IOPW_FLASH_ADDR         0x16	/* FA    */
1403 #define IOPW_RES_ADDR_18        0x18
1404 #define IOPW_EE_CMD             0x1A	/* EC    */
1405 #define IOPW_EE_DATA            0x1C	/* ED    */
1406 #define IOPW_SFIFO_CNT          0x1E	/* SFC   */
1407 #define IOPW_RES_ADDR_20        0x20
1408 #define IOPW_Q_BASE             0x22	/* QB    */
1409 #define IOPW_QP                 0x24	/* QP    */
1410 #define IOPW_IX                 0x26	/* IX    */
1411 #define IOPW_SP                 0x28	/* SP    */
1412 #define IOPW_PC                 0x2A	/* PC    */
1413 #define IOPW_RES_ADDR_2C        0x2C
1414 #define IOPW_RES_ADDR_2E        0x2E
1415 #define IOPW_SCSI_DATA          0x30	/* SD    */
1416 #define IOPW_SCSI_DATA_HSHK     0x32	/* SDH   */
1417 #define IOPW_SCSI_CTRL          0x34	/* SC    */
1418 #define IOPW_HSHK_CFG           0x36	/* HCFG  */
1419 #define IOPW_SXFR_STATUS        0x36	/* SXS   */
1420 #define IOPW_SXFR_CNTL          0x38	/* SXL   */
1421 #define IOPW_SXFR_CNTH          0x3A	/* SXH   */
1422 #define IOPW_RES_ADDR_3C        0x3C
1423 #define IOPW_RFIFO_DATA         0x3E	/* RFD   */
1424 
1425 /*
1426  * Doubleword I/O register address from base of 'iop_base'.
1427  */
1428 #define IOPDW_RES_ADDR_0         0x00
1429 #define IOPDW_RAM_DATA           0x04
1430 #define IOPDW_RES_ADDR_8         0x08
1431 #define IOPDW_RES_ADDR_C         0x0C
1432 #define IOPDW_RES_ADDR_10        0x10
1433 #define IOPDW_COMMA              0x14
1434 #define IOPDW_COMMB              0x18
1435 #define IOPDW_RES_ADDR_1C        0x1C
1436 #define IOPDW_SDMA_ADDR0         0x20
1437 #define IOPDW_SDMA_ADDR1         0x24
1438 #define IOPDW_SDMA_COUNT         0x28
1439 #define IOPDW_SDMA_ERROR         0x2C
1440 #define IOPDW_RDMA_ADDR0         0x30
1441 #define IOPDW_RDMA_ADDR1         0x34
1442 #define IOPDW_RDMA_COUNT         0x38
1443 #define IOPDW_RDMA_ERROR         0x3C
1444 
1445 #define ADV_CHIP_ID_BYTE         0x25
1446 #define ADV_CHIP_ID_WORD         0x04C1
1447 
1448 #define ADV_INTR_ENABLE_HOST_INTR                   0x01
1449 #define ADV_INTR_ENABLE_SEL_INTR                    0x02
1450 #define ADV_INTR_ENABLE_DPR_INTR                    0x04
1451 #define ADV_INTR_ENABLE_RTA_INTR                    0x08
1452 #define ADV_INTR_ENABLE_RMA_INTR                    0x10
1453 #define ADV_INTR_ENABLE_RST_INTR                    0x20
1454 #define ADV_INTR_ENABLE_DPE_INTR                    0x40
1455 #define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1456 
1457 #define ADV_INTR_STATUS_INTRA            0x01
1458 #define ADV_INTR_STATUS_INTRB            0x02
1459 #define ADV_INTR_STATUS_INTRC            0x04
1460 
1461 #define ADV_RISC_CSR_STOP           (0x0000)
1462 #define ADV_RISC_TEST_COND          (0x2000)
1463 #define ADV_RISC_CSR_RUN            (0x4000)
1464 #define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1465 
1466 #define ADV_CTRL_REG_HOST_INTR      0x0100
1467 #define ADV_CTRL_REG_SEL_INTR       0x0200
1468 #define ADV_CTRL_REG_DPR_INTR       0x0400
1469 #define ADV_CTRL_REG_RTA_INTR       0x0800
1470 #define ADV_CTRL_REG_RMA_INTR       0x1000
1471 #define ADV_CTRL_REG_RES_BIT14      0x2000
1472 #define ADV_CTRL_REG_DPE_INTR       0x4000
1473 #define ADV_CTRL_REG_POWER_DONE     0x8000
1474 #define ADV_CTRL_REG_ANY_INTR       0xFF00
1475 
1476 #define ADV_CTRL_REG_CMD_RESET             0x00C6
1477 #define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1478 #define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1479 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1480 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1481 
1482 #define ADV_TICKLE_NOP                      0x00
1483 #define ADV_TICKLE_A                        0x01
1484 #define ADV_TICKLE_B                        0x02
1485 #define ADV_TICKLE_C                        0x03
1486 
1487 #define AdvIsIntPending(port) \
1488     (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1489 
1490 /*
1491  * SCSI_CFG0 Register bit definitions
1492  */
1493 #define TIMER_MODEAB    0xC000	/* Watchdog, Second, and Select. Timer Ctrl. */
1494 #define PARITY_EN       0x2000	/* Enable SCSI Parity Error detection */
1495 #define EVEN_PARITY     0x1000	/* Select Even Parity */
1496 #define WD_LONG         0x0800	/* Watchdog Interval, 1: 57 min, 0: 13 sec */
1497 #define QUEUE_128       0x0400	/* Queue Size, 1: 128 byte, 0: 64 byte */
1498 #define PRIM_MODE       0x0100	/* Primitive SCSI mode */
1499 #define SCAM_EN         0x0080	/* Enable SCAM selection */
1500 #define SEL_TMO_LONG    0x0040	/* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1501 #define CFRM_ID         0x0020	/* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1502 #define OUR_ID_EN       0x0010	/* Enable OUR_ID bits */
1503 #define OUR_ID          0x000F	/* SCSI ID */
1504 
1505 /*
1506  * SCSI_CFG1 Register bit definitions
1507  */
1508 #define BIG_ENDIAN      0x8000	/* Enable Big Endian Mode MIO:15, EEP:15 */
1509 #define TERM_POL        0x2000	/* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1510 #define SLEW_RATE       0x1000	/* SCSI output buffer slew rate */
1511 #define FILTER_SEL      0x0C00	/* Filter Period Selection */
1512 #define  FLTR_DISABLE    0x0000	/* Input Filtering Disabled */
1513 #define  FLTR_11_TO_20NS 0x0800	/* Input Filtering 11ns to 20ns */
1514 #define  FLTR_21_TO_39NS 0x0C00	/* Input Filtering 21ns to 39ns */
1515 #define ACTIVE_DBL      0x0200	/* Disable Active Negation */
1516 #define DIFF_MODE       0x0100	/* SCSI differential Mode (Read-Only) */
1517 #define DIFF_SENSE      0x0080	/* 1: No SE cables, 0: SE cable (Read-Only) */
1518 #define TERM_CTL_SEL    0x0040	/* Enable TERM_CTL_H and TERM_CTL_L */
1519 #define TERM_CTL        0x0030	/* External SCSI Termination Bits */
1520 #define  TERM_CTL_H      0x0020	/* Enable External SCSI Upper Termination */
1521 #define  TERM_CTL_L      0x0010	/* Enable External SCSI Lower Termination */
1522 #define CABLE_DETECT    0x000F	/* External SCSI Cable Connection Status */
1523 
1524 /*
1525  * Addendum for ASC-38C0800 Chip
1526  *
1527  * The ASC-38C1600 Chip uses the same definitions except that the
1528  * bus mode override bits [12:10] have been moved to byte register
1529  * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1530  * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1531  * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1532  * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1533  * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1534  */
1535 #define DIS_TERM_DRV    0x4000	/* 1: Read c_det[3:0], 0: cannot read */
1536 #define HVD_LVD_SE      0x1C00	/* Device Detect Bits */
1537 #define  HVD             0x1000	/* HVD Device Detect */
1538 #define  LVD             0x0800	/* LVD Device Detect */
1539 #define  SE              0x0400	/* SE Device Detect */
1540 #define TERM_LVD        0x00C0	/* LVD Termination Bits */
1541 #define  TERM_LVD_HI     0x0080	/* Enable LVD Upper Termination */
1542 #define  TERM_LVD_LO     0x0040	/* Enable LVD Lower Termination */
1543 #define TERM_SE         0x0030	/* SE Termination Bits */
1544 #define  TERM_SE_HI      0x0020	/* Enable SE Upper Termination */
1545 #define  TERM_SE_LO      0x0010	/* Enable SE Lower Termination */
1546 #define C_DET_LVD       0x000C	/* LVD Cable Detect Bits */
1547 #define  C_DET3          0x0008	/* Cable Detect for LVD External Wide */
1548 #define  C_DET2          0x0004	/* Cable Detect for LVD Internal Wide */
1549 #define C_DET_SE        0x0003	/* SE Cable Detect Bits */
1550 #define  C_DET1          0x0002	/* Cable Detect for SE Internal Wide */
1551 #define  C_DET0          0x0001	/* Cable Detect for SE Internal Narrow */
1552 
1553 #define CABLE_ILLEGAL_A 0x7
1554     /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1555 
1556 #define CABLE_ILLEGAL_B 0xB
1557     /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1558 
1559 /*
1560  * MEM_CFG Register bit definitions
1561  */
1562 #define BIOS_EN         0x40	/* BIOS Enable MIO:14,EEP:14 */
1563 #define FAST_EE_CLK     0x20	/* Diagnostic Bit */
1564 #define RAM_SZ          0x1C	/* Specify size of RAM to RISC */
1565 #define  RAM_SZ_2KB      0x00	/* 2 KB */
1566 #define  RAM_SZ_4KB      0x04	/* 4 KB */
1567 #define  RAM_SZ_8KB      0x08	/* 8 KB */
1568 #define  RAM_SZ_16KB     0x0C	/* 16 KB */
1569 #define  RAM_SZ_32KB     0x10	/* 32 KB */
1570 #define  RAM_SZ_64KB     0x14	/* 64 KB */
1571 
1572 /*
1573  * DMA_CFG0 Register bit definitions
1574  *
1575  * This register is only accessible to the host.
1576  */
1577 #define BC_THRESH_ENB   0x80	/* PCI DMA Start Conditions */
1578 #define FIFO_THRESH     0x70	/* PCI DMA FIFO Threshold */
1579 #define  FIFO_THRESH_16B  0x00	/* 16 bytes */
1580 #define  FIFO_THRESH_32B  0x20	/* 32 bytes */
1581 #define  FIFO_THRESH_48B  0x30	/* 48 bytes */
1582 #define  FIFO_THRESH_64B  0x40	/* 64 bytes */
1583 #define  FIFO_THRESH_80B  0x50	/* 80 bytes (default) */
1584 #define  FIFO_THRESH_96B  0x60	/* 96 bytes */
1585 #define  FIFO_THRESH_112B 0x70	/* 112 bytes */
1586 #define START_CTL       0x0C	/* DMA start conditions */
1587 #define  START_CTL_TH    0x00	/* Wait threshold level (default) */
1588 #define  START_CTL_ID    0x04	/* Wait SDMA/SBUS idle */
1589 #define  START_CTL_THID  0x08	/* Wait threshold and SDMA/SBUS idle */
1590 #define  START_CTL_EMFU  0x0C	/* Wait SDMA FIFO empty/full */
1591 #define READ_CMD        0x03	/* Memory Read Method */
1592 #define  READ_CMD_MR     0x00	/* Memory Read */
1593 #define  READ_CMD_MRL    0x02	/* Memory Read Long */
1594 #define  READ_CMD_MRM    0x03	/* Memory Read Multiple (default) */
1595 
1596 /*
1597  * ASC-38C0800 RAM BIST Register bit definitions
1598  */
1599 #define RAM_TEST_MODE         0x80
1600 #define PRE_TEST_MODE         0x40
1601 #define NORMAL_MODE           0x00
1602 #define RAM_TEST_DONE         0x10
1603 #define RAM_TEST_STATUS       0x0F
1604 #define  RAM_TEST_HOST_ERROR   0x08
1605 #define  RAM_TEST_INTRAM_ERROR 0x04
1606 #define  RAM_TEST_RISC_ERROR   0x02
1607 #define  RAM_TEST_SCSI_ERROR   0x01
1608 #define  RAM_TEST_SUCCESS      0x00
1609 #define PRE_TEST_VALUE        0x05
1610 #define NORMAL_VALUE          0x00
1611 
1612 /*
1613  * ASC38C1600 Definitions
1614  *
1615  * IOPB_PCI_INT_CFG Bit Field Definitions
1616  */
1617 
1618 #define INTAB_LD        0x80	/* Value loaded from EEPROM Bit 11. */
1619 
1620 /*
1621  * Bit 1 can be set to change the interrupt for the Function to operate in
1622  * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1623  * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1624  * mode, otherwise the operating mode is undefined.
1625  */
1626 #define TOTEMPOLE       0x02
1627 
1628 /*
1629  * Bit 0 can be used to change the Int Pin for the Function. The value is
1630  * 0 by default for both Functions with Function 0 using INT A and Function
1631  * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1632  * INT A is used.
1633  *
1634  * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1635  * value specified in the PCI Configuration Space.
1636  */
1637 #define INTAB           0x01
1638 
1639 /*
1640  * Adv Library Status Definitions
1641  */
1642 #define ADV_TRUE        1
1643 #define ADV_FALSE       0
1644 #define ADV_SUCCESS     1
1645 #define ADV_BUSY        0
1646 #define ADV_ERROR       (-1)
1647 
1648 /*
1649  * ADV_DVC_VAR 'warn_code' values
1650  */
1651 #define ASC_WARN_BUSRESET_ERROR         0x0001	/* SCSI Bus Reset error */
1652 #define ASC_WARN_EEPROM_CHKSUM          0x0002	/* EEP check sum error */
1653 #define ASC_WARN_EEPROM_TERMINATION     0x0004	/* EEP termination bad field */
1654 #define ASC_WARN_ERROR                  0xFFFF	/* ADV_ERROR return */
1655 
1656 #define ADV_MAX_TID                     15	/* max. target identifier */
1657 #define ADV_MAX_LUN                     7	/* max. logical unit number */
1658 
1659 /*
1660  * Fixed locations of microcode operating variables.
1661  */
1662 #define ASC_MC_CODE_BEGIN_ADDR          0x0028	/* microcode start address */
1663 #define ASC_MC_CODE_END_ADDR            0x002A	/* microcode end address */
1664 #define ASC_MC_CODE_CHK_SUM             0x002C	/* microcode code checksum */
1665 #define ASC_MC_VERSION_DATE             0x0038	/* microcode version */
1666 #define ASC_MC_VERSION_NUM              0x003A	/* microcode number */
1667 #define ASC_MC_BIOSMEM                  0x0040	/* BIOS RISC Memory Start */
1668 #define ASC_MC_BIOSLEN                  0x0050	/* BIOS RISC Memory Length */
1669 #define ASC_MC_BIOS_SIGNATURE           0x0058	/* BIOS Signature 0x55AA */
1670 #define ASC_MC_BIOS_VERSION             0x005A	/* BIOS Version (2 bytes) */
1671 #define ASC_MC_SDTR_SPEED1              0x0090	/* SDTR Speed for TID 0-3 */
1672 #define ASC_MC_SDTR_SPEED2              0x0092	/* SDTR Speed for TID 4-7 */
1673 #define ASC_MC_SDTR_SPEED3              0x0094	/* SDTR Speed for TID 8-11 */
1674 #define ASC_MC_SDTR_SPEED4              0x0096	/* SDTR Speed for TID 12-15 */
1675 #define ASC_MC_CHIP_TYPE                0x009A
1676 #define ASC_MC_INTRB_CODE               0x009B
1677 #define ASC_MC_WDTR_ABLE                0x009C
1678 #define ASC_MC_SDTR_ABLE                0x009E
1679 #define ASC_MC_TAGQNG_ABLE              0x00A0
1680 #define ASC_MC_DISC_ENABLE              0x00A2
1681 #define ASC_MC_IDLE_CMD_STATUS          0x00A4
1682 #define ASC_MC_IDLE_CMD                 0x00A6
1683 #define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1684 #define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1685 #define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1686 #define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1687 #define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1688 #define ASC_MC_SDTR_DONE                0x00B6
1689 #define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1690 #define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1691 #define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1692 #define ASC_MC_CONTROL_FLAG             0x0122	/* Microcode control flag. */
1693 #define ASC_MC_WDTR_DONE                0x0124
1694 #define ASC_MC_CAM_MODE_MASK            0x015E	/* CAM mode TID bitmask. */
1695 #define ASC_MC_ICQ                      0x0160
1696 #define ASC_MC_IRQ                      0x0164
1697 #define ASC_MC_PPR_ABLE                 0x017A
1698 
1699 /*
1700  * BIOS LRAM variable absolute offsets.
1701  */
1702 #define BIOS_CODESEG    0x54
1703 #define BIOS_CODELEN    0x56
1704 #define BIOS_SIGNATURE  0x58
1705 #define BIOS_VERSION    0x5A
1706 
1707 /*
1708  * Microcode Control Flags
1709  *
1710  * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1711  * and handled by the microcode.
1712  */
1713 #define CONTROL_FLAG_IGNORE_PERR        0x0001	/* Ignore DMA Parity Errors */
1714 #define CONTROL_FLAG_ENABLE_AIPP        0x0002	/* Enabled AIPP checking. */
1715 
1716 /*
1717  * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1718  */
1719 #define HSHK_CFG_WIDE_XFR       0x8000
1720 #define HSHK_CFG_RATE           0x0F00
1721 #define HSHK_CFG_OFFSET         0x001F
1722 
1723 #define ASC_DEF_MAX_HOST_QNG    0xFD	/* Max. number of host commands (253) */
1724 #define ASC_DEF_MIN_HOST_QNG    0x10	/* Min. number of host commands (16) */
1725 #define ASC_DEF_MAX_DVC_QNG     0x3F	/* Max. number commands per device (63) */
1726 #define ASC_DEF_MIN_DVC_QNG     0x04	/* Min. number commands per device (4) */
1727 
1728 #define ASC_QC_DATA_CHECK  0x01	/* Require ASC_QC_DATA_OUT set or clear. */
1729 #define ASC_QC_DATA_OUT    0x02	/* Data out DMA transfer. */
1730 #define ASC_QC_START_MOTOR 0x04	/* Send auto-start motor before request. */
1731 #define ASC_QC_NO_OVERRUN  0x08	/* Don't report overrun. */
1732 #define ASC_QC_FREEZE_TIDQ 0x10	/* Freeze TID queue after request. XXX TBD */
1733 
1734 #define ASC_QSC_NO_DISC     0x01	/* Don't allow disconnect for request. */
1735 #define ASC_QSC_NO_TAGMSG   0x02	/* Don't allow tag queuing for request. */
1736 #define ASC_QSC_NO_SYNC     0x04	/* Don't use Synch. transfer on request. */
1737 #define ASC_QSC_NO_WIDE     0x08	/* Don't use Wide transfer on request. */
1738 #define ASC_QSC_REDO_DTR    0x10	/* Renegotiate WDTR/SDTR before request. */
1739 /*
1740  * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1741  * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1742  */
1743 #define ASC_QSC_HEAD_TAG    0x40	/* Use Head Tag Message (0x21). */
1744 #define ASC_QSC_ORDERED_TAG 0x80	/* Use Ordered Tag Message (0x22). */
1745 
1746 /*
1747  * All fields here are accessed by the board microcode and need to be
1748  * little-endian.
1749  */
1750 typedef struct adv_carr_t {
1751 	ADV_VADDR carr_va;	/* Carrier Virtual Address */
1752 	ADV_PADDR carr_pa;	/* Carrier Physical Address */
1753 	ADV_VADDR areq_vpa;	/* ASC_SCSI_REQ_Q Virtual or Physical Address */
1754 	/*
1755 	 * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1756 	 *
1757 	 * next_vpa [3:1]             Reserved Bits
1758 	 * next_vpa [0]               Done Flag set in Response Queue.
1759 	 */
1760 	ADV_VADDR next_vpa;
1761 } ADV_CARR_T;
1762 
1763 /*
1764  * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1765  */
1766 #define ASC_NEXT_VPA_MASK       0xFFFFFFF0
1767 
1768 #define ASC_RQ_DONE             0x00000001
1769 #define ASC_RQ_GOOD             0x00000002
1770 #define ASC_CQ_STOPPER          0x00000000
1771 
1772 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1773 
1774 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1775     (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1776 
1777 #define ADV_CARRIER_BUFSIZE \
1778     ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1779 
1780 /*
1781  * ASC_SCSI_REQ_Q 'a_flag' definitions
1782  *
1783  * The Adv Library should limit use to the lower nibble (4 bits) of
1784  * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1785  */
1786 #define ADV_POLL_REQUEST                0x01	/* poll for request completion */
1787 #define ADV_SCSIQ_DONE                  0x02	/* request done */
1788 #define ADV_DONT_RETRY                  0x08	/* don't do retry */
1789 
1790 #define ADV_CHIP_ASC3550          0x01	/* Ultra-Wide IC */
1791 #define ADV_CHIP_ASC38C0800       0x02	/* Ultra2-Wide/LVD IC */
1792 #define ADV_CHIP_ASC38C1600       0x03	/* Ultra3-Wide/LVD2 IC */
1793 
1794 /*
1795  * Adapter temporary configuration structure
1796  *
1797  * This structure can be discarded after initialization. Don't add
1798  * fields here needed after initialization.
1799  *
1800  * Field naming convention:
1801  *
1802  *  *_enable indicates the field enables or disables a feature. The
1803  *  value of the field is never reset.
1804  */
1805 typedef struct adv_dvc_cfg {
1806 	ushort disc_enable;	/* enable disconnection */
1807 	uchar chip_version;	/* chip version */
1808 	uchar termination;	/* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1809 	ushort control_flag;	/* Microcode Control Flag */
1810 	ushort mcode_date;	/* Microcode date */
1811 	ushort mcode_version;	/* Microcode version */
1812 	ushort serial1;		/* EEPROM serial number word 1 */
1813 	ushort serial2;		/* EEPROM serial number word 2 */
1814 	ushort serial3;		/* EEPROM serial number word 3 */
1815 } ADV_DVC_CFG;
1816 
1817 struct adv_dvc_var;
1818 struct adv_scsi_req_q;
1819 
1820 typedef struct asc_sg_block {
1821 	uchar reserved1;
1822 	uchar reserved2;
1823 	uchar reserved3;
1824 	uchar sg_cnt;		/* Valid entries in block. */
1825 	ADV_PADDR sg_ptr;	/* Pointer to next sg block. */
1826 	struct {
1827 		ADV_PADDR sg_addr;	/* SG element address. */
1828 		ADV_DCNT sg_count;	/* SG element count. */
1829 	} sg_list[NO_OF_SG_PER_BLOCK];
1830 } ADV_SG_BLOCK;
1831 
1832 /*
1833  * ADV_SCSI_REQ_Q - microcode request structure
1834  *
1835  * All fields in this structure up to byte 60 are used by the microcode.
1836  * The microcode makes assumptions about the size and ordering of fields
1837  * in this structure. Do not change the structure definition here without
1838  * coordinating the change with the microcode.
1839  *
1840  * All fields accessed by microcode must be maintained in little_endian
1841  * order.
1842  */
1843 typedef struct adv_scsi_req_q {
1844 	uchar cntl;		/* Ucode flags and state (ASC_MC_QC_*). */
1845 	uchar target_cmd;
1846 	uchar target_id;	/* Device target identifier. */
1847 	uchar target_lun;	/* Device target logical unit number. */
1848 	ADV_PADDR data_addr;	/* Data buffer physical address. */
1849 	ADV_DCNT data_cnt;	/* Data count. Ucode sets to residual. */
1850 	ADV_PADDR sense_addr;
1851 	ADV_PADDR carr_pa;
1852 	uchar mflag;
1853 	uchar sense_len;
1854 	uchar cdb_len;		/* SCSI CDB length. Must <= 16 bytes. */
1855 	uchar scsi_cntl;
1856 	uchar done_status;	/* Completion status. */
1857 	uchar scsi_status;	/* SCSI status byte. */
1858 	uchar host_status;	/* Ucode host status. */
1859 	uchar sg_working_ix;
1860 	uchar cdb[12];		/* SCSI CDB bytes 0-11. */
1861 	ADV_PADDR sg_real_addr;	/* SG list physical address. */
1862 	ADV_PADDR scsiq_rptr;
1863 	uchar cdb16[4];		/* SCSI CDB bytes 12-15. */
1864 	ADV_VADDR scsiq_ptr;
1865 	ADV_VADDR carr_va;
1866 	/*
1867 	 * End of microcode structure - 60 bytes. The rest of the structure
1868 	 * is used by the Adv Library and ignored by the microcode.
1869 	 */
1870 	ADV_VADDR srb_ptr;
1871 	ADV_SG_BLOCK *sg_list_ptr;	/* SG list virtual address. */
1872 	char *vdata_addr;	/* Data buffer virtual address. */
1873 	uchar a_flag;
1874 	uchar pad[2];		/* Pad out to a word boundary. */
1875 } ADV_SCSI_REQ_Q;
1876 
1877 /*
1878  * The following two structures are used to process Wide Board requests.
1879  *
1880  * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1881  * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1882  * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1883  * Mid-Level SCSI request structure.
1884  *
1885  * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1886  * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1887  * up to 255 scatter-gather elements may be used per request or
1888  * ADV_SCSI_REQ_Q.
1889  *
1890  * Both structures must be 32 byte aligned.
1891  */
1892 typedef struct adv_sgblk {
1893 	ADV_SG_BLOCK sg_block;	/* Sgblock structure. */
1894 	uchar align[32];	/* Sgblock structure padding. */
1895 	struct adv_sgblk *next_sgblkp;	/* Next scatter-gather structure. */
1896 } adv_sgblk_t;
1897 
1898 typedef struct adv_req {
1899 	ADV_SCSI_REQ_Q scsi_req_q;	/* Adv Library request structure. */
1900 	uchar align[32];	/* Request structure padding. */
1901 	struct scsi_cmnd *cmndp;	/* Mid-Level SCSI command pointer. */
1902 	adv_sgblk_t *sgblkp;	/* Adv Library scatter-gather pointer. */
1903 	struct adv_req *next_reqp;	/* Next Request Structure. */
1904 } adv_req_t;
1905 
1906 /*
1907  * Adapter operation variable structure.
1908  *
1909  * One structure is required per host adapter.
1910  *
1911  * Field naming convention:
1912  *
1913  *  *_able indicates both whether a feature should be enabled or disabled
1914  *  and whether a device isi capable of the feature. At initialization
1915  *  this field may be set, but later if a device is found to be incapable
1916  *  of the feature, the field is cleared.
1917  */
1918 typedef struct adv_dvc_var {
1919 	AdvPortAddr iop_base;	/* I/O port address */
1920 	ushort err_code;	/* fatal error code */
1921 	ushort bios_ctrl;	/* BIOS control word, EEPROM word 12 */
1922 	ushort wdtr_able;	/* try WDTR for a device */
1923 	ushort sdtr_able;	/* try SDTR for a device */
1924 	ushort ultra_able;	/* try SDTR Ultra speed for a device */
1925 	ushort sdtr_speed1;	/* EEPROM SDTR Speed for TID 0-3   */
1926 	ushort sdtr_speed2;	/* EEPROM SDTR Speed for TID 4-7   */
1927 	ushort sdtr_speed3;	/* EEPROM SDTR Speed for TID 8-11  */
1928 	ushort sdtr_speed4;	/* EEPROM SDTR Speed for TID 12-15 */
1929 	ushort tagqng_able;	/* try tagged queuing with a device */
1930 	ushort ppr_able;	/* PPR message capable per TID bitmask. */
1931 	uchar max_dvc_qng;	/* maximum number of tagged commands per device */
1932 	ushort start_motor;	/* start motor command allowed */
1933 	uchar scsi_reset_wait;	/* delay in seconds after scsi bus reset */
1934 	uchar chip_no;		/* should be assigned by caller */
1935 	uchar max_host_qng;	/* maximum number of Q'ed command allowed */
1936 	ushort no_scam;		/* scam_tolerant of EEPROM */
1937 	struct asc_board *drv_ptr;	/* driver pointer to private structure */
1938 	uchar chip_scsi_id;	/* chip SCSI target ID */
1939 	uchar chip_type;
1940 	uchar bist_err_code;
1941 	ADV_CARR_T *carrier_buf;
1942 	ADV_CARR_T *carr_freelist;	/* Carrier free list. */
1943 	ADV_CARR_T *icq_sp;	/* Initiator command queue stopper pointer. */
1944 	ADV_CARR_T *irq_sp;	/* Initiator response queue stopper pointer. */
1945 	ushort carr_pending_cnt;	/* Count of pending carriers. */
1946 	struct adv_req *orig_reqp;	/* adv_req_t memory block. */
1947 	/*
1948 	 * Note: The following fields will not be used after initialization. The
1949 	 * driver may discard the buffer after initialization is done.
1950 	 */
1951 	ADV_DVC_CFG *cfg;	/* temporary configuration structure  */
1952 } ADV_DVC_VAR;
1953 
1954 /*
1955  * Microcode idle loop commands
1956  */
1957 #define IDLE_CMD_COMPLETED           0
1958 #define IDLE_CMD_STOP_CHIP           0x0001
1959 #define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1960 #define IDLE_CMD_SEND_INT            0x0004
1961 #define IDLE_CMD_ABORT               0x0008
1962 #define IDLE_CMD_DEVICE_RESET        0x0010
1963 #define IDLE_CMD_SCSI_RESET_START    0x0020	/* Assert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSI_RESET_END      0x0040	/* Deassert SCSI Bus Reset */
1965 #define IDLE_CMD_SCSIREQ             0x0080
1966 
1967 #define IDLE_CMD_STATUS_SUCCESS      0x0001
1968 #define IDLE_CMD_STATUS_FAILURE      0x0002
1969 
1970 /*
1971  * AdvSendIdleCmd() flag definitions.
1972  */
1973 #define ADV_NOWAIT     0x01
1974 
1975 /*
1976  * Wait loop time out values.
1977  */
1978 #define SCSI_WAIT_100_MSEC           100UL	/* 100 milliseconds */
1979 #define SCSI_US_PER_MSEC             1000	/* microseconds per millisecond */
1980 #define SCSI_MAX_RETRY               10	/* retry count */
1981 
1982 #define ADV_ASYNC_RDMA_FAILURE          0x01	/* Fatal RDMA failure. */
1983 #define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02	/* Detected SCSI Bus Reset. */
1984 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03	/* Carrier Ready failure. */
1985 #define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04	/* RDMAed-in data invalid. */
1986 
1987 #define ADV_HOST_SCSI_BUS_RESET      0x80	/* Host Initiated SCSI Bus Reset. */
1988 
1989 /* Read byte from a register. */
1990 #define AdvReadByteRegister(iop_base, reg_off) \
1991      (ADV_MEM_READB((iop_base) + (reg_off)))
1992 
1993 /* Write byte to a register. */
1994 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1995      (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1996 
1997 /* Read word (2 bytes) from a register. */
1998 #define AdvReadWordRegister(iop_base, reg_off) \
1999      (ADV_MEM_READW((iop_base) + (reg_off)))
2000 
2001 /* Write word (2 bytes) to a register. */
2002 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2003      (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2004 
2005 /* Write dword (4 bytes) to a register. */
2006 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2007      (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2008 
2009 /* Read byte from LRAM. */
2010 #define AdvReadByteLram(iop_base, addr, byte) \
2011 do { \
2012     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2013     (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2014 } while (0)
2015 
2016 /* Write byte to LRAM. */
2017 #define AdvWriteByteLram(iop_base, addr, byte) \
2018     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2019      ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2020 
2021 /* Read word (2 bytes) from LRAM. */
2022 #define AdvReadWordLram(iop_base, addr, word) \
2023 do { \
2024     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2025     (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2026 } while (0)
2027 
2028 /* Write word (2 bytes) to LRAM. */
2029 #define AdvWriteWordLram(iop_base, addr, word) \
2030     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2031      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2032 
2033 /* Write little-endian double word (4 bytes) to LRAM */
2034 /* Because of unspecified C language ordering don't use auto-increment. */
2035 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2036     ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2037       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2038                      cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2039      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2040       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2041                      cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2042 
2043 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2044 #define AdvReadWordAutoIncLram(iop_base) \
2045      (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2046 
2047 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2048 #define AdvWriteWordAutoIncLram(iop_base, word) \
2049      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2050 
2051 /*
2052  * Define macro to check for Condor signature.
2053  *
2054  * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2055  * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2056  */
2057 #define AdvFindSignature(iop_base) \
2058     (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2059     ADV_CHIP_ID_BYTE) && \
2060      (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2061     ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
2062 
2063 /*
2064  * Define macro to Return the version number of the chip at 'iop_base'.
2065  *
2066  * The second parameter 'bus_type' is currently unused.
2067  */
2068 #define AdvGetChipVersion(iop_base, bus_type) \
2069     AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2070 
2071 /*
2072  * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2073  * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2074  *
2075  * If the request has not yet been sent to the device it will simply be
2076  * aborted from RISC memory. If the request is disconnected it will be
2077  * aborted on reselection by sending an Abort Message to the target ID.
2078  *
2079  * Return value:
2080  *      ADV_TRUE(1) - Queue was successfully aborted.
2081  *      ADV_FALSE(0) - Queue was not found on the active queue list.
2082  */
2083 #define AdvAbortQueue(asc_dvc, scsiq) \
2084         AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2085                        (ADV_DCNT) (scsiq))
2086 
2087 /*
2088  * Send a Bus Device Reset Message to the specified target ID.
2089  *
2090  * All outstanding commands will be purged if sending the
2091  * Bus Device Reset Message is successful.
2092  *
2093  * Return Value:
2094  *      ADV_TRUE(1) - All requests on the target are purged.
2095  *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2096  *                     are not purged.
2097  */
2098 #define AdvResetDevice(asc_dvc, target_id) \
2099         AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2100                     (ADV_DCNT) (target_id))
2101 
2102 /*
2103  * SCSI Wide Type definition.
2104  */
2105 #define ADV_SCSI_BIT_ID_TYPE   ushort
2106 
2107 /*
2108  * AdvInitScsiTarget() 'cntl_flag' options.
2109  */
2110 #define ADV_SCAN_LUN           0x01
2111 #define ADV_CAPINFO_NOLUN      0x02
2112 
2113 /*
2114  * Convert target id to target id bit mask.
2115  */
2116 #define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2117 
2118 /*
2119  * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2120  */
2121 
2122 #define QD_NO_STATUS         0x00	/* Request not completed yet. */
2123 #define QD_NO_ERROR          0x01
2124 #define QD_ABORTED_BY_HOST   0x02
2125 #define QD_WITH_ERROR        0x04
2126 
2127 #define QHSTA_NO_ERROR              0x00
2128 #define QHSTA_M_SEL_TIMEOUT         0x11
2129 #define QHSTA_M_DATA_OVER_RUN       0x12
2130 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2131 #define QHSTA_M_QUEUE_ABORTED       0x15
2132 #define QHSTA_M_SXFR_SDMA_ERR       0x16	/* SXFR_STATUS SCSI DMA Error */
2133 #define QHSTA_M_SXFR_SXFR_PERR      0x17	/* SXFR_STATUS SCSI Bus Parity Error */
2134 #define QHSTA_M_RDMA_PERR           0x18	/* RISC PCI DMA parity error */
2135 #define QHSTA_M_SXFR_OFF_UFLW       0x19	/* SXFR_STATUS Offset Underflow */
2136 #define QHSTA_M_SXFR_OFF_OFLW       0x20	/* SXFR_STATUS Offset Overflow */
2137 #define QHSTA_M_SXFR_WD_TMO         0x21	/* SXFR_STATUS Watchdog Timeout */
2138 #define QHSTA_M_SXFR_DESELECTED     0x22	/* SXFR_STATUS Deselected */
2139 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2140 #define QHSTA_M_SXFR_XFR_OFLW       0x12	/* SXFR_STATUS Transfer Overflow */
2141 #define QHSTA_M_SXFR_XFR_PH_ERR     0x24	/* SXFR_STATUS Transfer Phase Error */
2142 #define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25	/* SXFR_STATUS Unknown Error */
2143 #define QHSTA_M_SCSI_BUS_RESET      0x30	/* Request aborted from SBR */
2144 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31	/* Request aborted from unsol. SBR */
2145 #define QHSTA_M_BUS_DEVICE_RESET    0x32	/* Request aborted from BDR */
2146 #define QHSTA_M_DIRECTION_ERR       0x35	/* Data Phase mismatch */
2147 #define QHSTA_M_DIRECTION_ERR_HUNG  0x36	/* Data Phase mismatch and bus hang */
2148 #define QHSTA_M_WTM_TIMEOUT         0x41
2149 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2150 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2151 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2152 #define QHSTA_M_INVALID_DEVICE      0x45	/* Bad target ID */
2153 #define QHSTA_M_FROZEN_TIDQ         0x46	/* TID Queue frozen. */
2154 #define QHSTA_M_SGBACKUP_ERROR      0x47	/* Scatter-Gather backup error */
2155 
2156 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2157 #define ADV_8BALIGN(addr)      (((ulong) (addr) + 0x7) & ~0x7)
2158 #define ADV_16BALIGN(addr)     (((ulong) (addr) + 0xF) & ~0xF)
2159 #define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2160 
2161 /*
2162  * Total contiguous memory needed for driver SG blocks.
2163  *
2164  * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2165  * number of scatter-gather elements the driver supports in a
2166  * single request.
2167  */
2168 
2169 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2170          (sizeof(ADV_SG_BLOCK) * \
2171           ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2172 
2173 /* struct asc_board flags */
2174 #define ASC_IS_WIDE_BOARD       0x04	/* AdvanSys Wide Board */
2175 
2176 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2177 
2178 #define NO_ISA_DMA              0xff	/* No ISA DMA Channel Used */
2179 
2180 #define ASC_INFO_SIZE           128	/* advansys_info() line size */
2181 
2182 #ifdef CONFIG_PROC_FS
2183 /* /proc/scsi/advansys/[0...] related definitions */
2184 #define ASC_PRTBUF_SIZE         2048
2185 #define ASC_PRTLINE_SIZE        160
2186 
2187 #define ASC_PRT_NEXT() \
2188     if (cp) { \
2189         totlen += len; \
2190         leftlen -= len; \
2191         if (leftlen == 0) { \
2192             return totlen; \
2193         } \
2194         cp += len; \
2195     }
2196 #endif /* CONFIG_PROC_FS */
2197 
2198 /* Asc Library return codes */
2199 #define ASC_TRUE        1
2200 #define ASC_FALSE       0
2201 #define ASC_NOERROR     1
2202 #define ASC_BUSY        0
2203 #define ASC_ERROR       (-1)
2204 
2205 /* struct scsi_cmnd function return codes */
2206 #define STATUS_BYTE(byte)   (byte)
2207 #define MSG_BYTE(byte)      ((byte) << 8)
2208 #define HOST_BYTE(byte)     ((byte) << 16)
2209 #define DRIVER_BYTE(byte)   ((byte) << 24)
2210 
2211 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2212 #ifndef ADVANSYS_STATS
2213 #define ASC_STATS_ADD(shost, counter, count)
2214 #else /* ADVANSYS_STATS */
2215 #define ASC_STATS_ADD(shost, counter, count) \
2216 	(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2217 #endif /* ADVANSYS_STATS */
2218 
2219 /* If the result wraps when calculating tenths, return 0. */
2220 #define ASC_TENTHS(num, den) \
2221     (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2222     0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2223 
2224 /*
2225  * Display a message to the console.
2226  */
2227 #define ASC_PRINT(s) \
2228     { \
2229         printk("advansys: "); \
2230         printk(s); \
2231     }
2232 
2233 #define ASC_PRINT1(s, a1) \
2234     { \
2235         printk("advansys: "); \
2236         printk((s), (a1)); \
2237     }
2238 
2239 #define ASC_PRINT2(s, a1, a2) \
2240     { \
2241         printk("advansys: "); \
2242         printk((s), (a1), (a2)); \
2243     }
2244 
2245 #define ASC_PRINT3(s, a1, a2, a3) \
2246     { \
2247         printk("advansys: "); \
2248         printk((s), (a1), (a2), (a3)); \
2249     }
2250 
2251 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2252     { \
2253         printk("advansys: "); \
2254         printk((s), (a1), (a2), (a3), (a4)); \
2255     }
2256 
2257 #ifndef ADVANSYS_DEBUG
2258 
2259 #define ASC_DBG(lvl, s...)
2260 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2261 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2262 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2263 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2264 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2265 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2266 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2267 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2268 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2269 
2270 #else /* ADVANSYS_DEBUG */
2271 
2272 /*
2273  * Debugging Message Levels:
2274  * 0: Errors Only
2275  * 1: High-Level Tracing
2276  * 2-N: Verbose Tracing
2277  */
2278 
2279 #define ASC_DBG(lvl, format, arg...) {					\
2280 	if (asc_dbglvl >= (lvl))					\
2281 		printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,		\
2282 			__func__ , ## arg);				\
2283 }
2284 
2285 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2286     { \
2287         if (asc_dbglvl >= (lvl)) { \
2288             asc_prt_scsi_host(s); \
2289         } \
2290     }
2291 
2292 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2293     { \
2294         if (asc_dbglvl >= (lvl)) { \
2295             asc_prt_asc_scsi_q(scsiqp); \
2296         } \
2297     }
2298 
2299 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2300     { \
2301         if (asc_dbglvl >= (lvl)) { \
2302             asc_prt_asc_qdone_info(qdone); \
2303         } \
2304     }
2305 
2306 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2307     { \
2308         if (asc_dbglvl >= (lvl)) { \
2309             asc_prt_adv_scsi_req_q(scsiqp); \
2310         } \
2311     }
2312 
2313 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2314     { \
2315         if (asc_dbglvl >= (lvl)) { \
2316             asc_prt_hex((name), (start), (length)); \
2317         } \
2318     }
2319 
2320 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2321         ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2322 
2323 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2324         ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2325 
2326 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2327         ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2328 #endif /* ADVANSYS_DEBUG */
2329 
2330 #ifdef ADVANSYS_STATS
2331 
2332 /* Per board statistics structure */
2333 struct asc_stats {
2334 	/* Driver Entrypoint Statistics */
2335 	ADV_DCNT queuecommand;	/* # calls to advansys_queuecommand() */
2336 	ADV_DCNT reset;		/* # calls to advansys_eh_bus_reset() */
2337 	ADV_DCNT biosparam;	/* # calls to advansys_biosparam() */
2338 	ADV_DCNT interrupt;	/* # advansys_interrupt() calls */
2339 	ADV_DCNT callback;	/* # calls to asc/adv_isr_callback() */
2340 	ADV_DCNT done;		/* # calls to request's scsi_done function */
2341 	ADV_DCNT build_error;	/* # asc/adv_build_req() ASC_ERROR returns. */
2342 	ADV_DCNT adv_build_noreq;	/* # adv_build_req() adv_req_t alloc. fail. */
2343 	ADV_DCNT adv_build_nosg;	/* # adv_build_req() adv_sgblk_t alloc. fail. */
2344 	/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2345 	ADV_DCNT exe_noerror;	/* # ASC_NOERROR returns. */
2346 	ADV_DCNT exe_busy;	/* # ASC_BUSY returns. */
2347 	ADV_DCNT exe_error;	/* # ASC_ERROR returns. */
2348 	ADV_DCNT exe_unknown;	/* # unknown returns. */
2349 	/* Data Transfer Statistics */
2350 	ADV_DCNT xfer_cnt;	/* # I/O requests received */
2351 	ADV_DCNT xfer_elem;	/* # scatter-gather elements */
2352 	ADV_DCNT xfer_sect;	/* # 512-byte blocks */
2353 };
2354 #endif /* ADVANSYS_STATS */
2355 
2356 /*
2357  * Structure allocated for each board.
2358  *
2359  * This structure is allocated by scsi_host_alloc() at the end
2360  * of the 'Scsi_Host' structure starting at the 'hostdata'
2361  * field. It is guaranteed to be allocated from DMA-able memory.
2362  */
2363 struct asc_board {
2364 	struct device *dev;
2365 	uint flags;		/* Board flags */
2366 	unsigned int irq;
2367 	union {
2368 		ASC_DVC_VAR asc_dvc_var;	/* Narrow board */
2369 		ADV_DVC_VAR adv_dvc_var;	/* Wide board */
2370 	} dvc_var;
2371 	union {
2372 		ASC_DVC_CFG asc_dvc_cfg;	/* Narrow board */
2373 		ADV_DVC_CFG adv_dvc_cfg;	/* Wide board */
2374 	} dvc_cfg;
2375 	ushort asc_n_io_port;	/* Number I/O ports. */
2376 	ADV_SCSI_BIT_ID_TYPE init_tidmask;	/* Target init./valid mask */
2377 	ushort reqcnt[ADV_MAX_TID + 1];	/* Starvation request count */
2378 	ADV_SCSI_BIT_ID_TYPE queue_full;	/* Queue full mask */
2379 	ushort queue_full_cnt[ADV_MAX_TID + 1];	/* Queue full count */
2380 	union {
2381 		ASCEEP_CONFIG asc_eep;	/* Narrow EEPROM config. */
2382 		ADVEEP_3550_CONFIG adv_3550_eep;	/* 3550 EEPROM config. */
2383 		ADVEEP_38C0800_CONFIG adv_38C0800_eep;	/* 38C0800 EEPROM config. */
2384 		ADVEEP_38C1600_CONFIG adv_38C1600_eep;	/* 38C1600 EEPROM config. */
2385 	} eep_config;
2386 	ulong last_reset;	/* Saved last reset time */
2387 	/* /proc/scsi/advansys/[0...] */
2388 	char *prtbuf;		/* /proc print buffer */
2389 #ifdef ADVANSYS_STATS
2390 	struct asc_stats asc_stats;	/* Board statistics */
2391 #endif				/* ADVANSYS_STATS */
2392 	/*
2393 	 * The following fields are used only for Narrow Boards.
2394 	 */
2395 	uchar sdtr_data[ASC_MAX_TID + 1];	/* SDTR information */
2396 	/*
2397 	 * The following fields are used only for Wide Boards.
2398 	 */
2399 	void __iomem *ioremap_addr;	/* I/O Memory remap address. */
2400 	ushort ioport;		/* I/O Port address. */
2401 	adv_req_t *adv_reqp;	/* Request structures. */
2402 	adv_sgblk_t *adv_sgblkp;	/* Scatter-gather structures. */
2403 	ushort bios_signature;	/* BIOS Signature. */
2404 	ushort bios_version;	/* BIOS Version. */
2405 	ushort bios_codeseg;	/* BIOS Code Segment. */
2406 	ushort bios_codelen;	/* BIOS Code Segment Length. */
2407 };
2408 
2409 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2410 							dvc_var.asc_dvc_var)
2411 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2412 							dvc_var.adv_dvc_var)
2413 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2414 
2415 #ifdef ADVANSYS_DEBUG
2416 static int asc_dbglvl = 3;
2417 
2418 /*
2419  * asc_prt_asc_dvc_var()
2420  */
2421 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2422 {
2423 	printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2424 
2425 	printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2426 	       "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2427 
2428 	printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2429 		(unsigned)h->init_sdtr);
2430 
2431 	printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2432 	       "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2433 	       (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2434 	       (unsigned)h->chip_no);
2435 
2436 	printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2437 	       "%u,\n", (unsigned)h->queue_full_or_busy,
2438 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2439 
2440 	printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2441 	       "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2442 	       (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2443 	       (unsigned)h->in_critical_cnt);
2444 
2445 	printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2446 	       "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2447 	       (unsigned)h->init_state, (unsigned)h->no_scam,
2448 	       (unsigned)h->pci_fix_asyn_xfer);
2449 
2450 	printk(" cfg 0x%lx\n", (ulong)h->cfg);
2451 }
2452 
2453 /*
2454  * asc_prt_asc_dvc_cfg()
2455  */
2456 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2457 {
2458 	printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2459 
2460 	printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2461 	       h->can_tagged_qng, h->cmd_qng_enabled);
2462 	printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2463 	       h->disc_enable, h->sdtr_enable);
2464 
2465 	printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2466 		"chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2467 		h->isa_dma_channel, h->chip_version);
2468 
2469 	printk(" mcode_date 0x%x, mcode_version %d\n",
2470 		h->mcode_date, h->mcode_version);
2471 }
2472 
2473 /*
2474  * asc_prt_adv_dvc_var()
2475  *
2476  * Display an ADV_DVC_VAR structure.
2477  */
2478 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2479 {
2480 	printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2481 
2482 	printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2483 	       (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2484 
2485 	printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2486 	       (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2487 
2488 	printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2489 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2490 
2491 	printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2492 	       (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2493 	       (ulong)h->carr_freelist);
2494 
2495 	printk("  icq_sp 0x%lx, irq_sp 0x%lx\n",
2496 	       (ulong)h->icq_sp, (ulong)h->irq_sp);
2497 
2498 	printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2499 	       (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2500 
2501 	printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2502 	       (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2503 }
2504 
2505 /*
2506  * asc_prt_adv_dvc_cfg()
2507  *
2508  * Display an ADV_DVC_CFG structure.
2509  */
2510 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2511 {
2512 	printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2513 
2514 	printk("  disc_enable 0x%x, termination 0x%x\n",
2515 	       h->disc_enable, h->termination);
2516 
2517 	printk("  chip_version 0x%x, mcode_date 0x%x\n",
2518 	       h->chip_version, h->mcode_date);
2519 
2520 	printk("  mcode_version 0x%x, control_flag 0x%x\n",
2521 	       h->mcode_version, h->control_flag);
2522 }
2523 
2524 /*
2525  * asc_prt_scsi_host()
2526  */
2527 static void asc_prt_scsi_host(struct Scsi_Host *s)
2528 {
2529 	struct asc_board *boardp = shost_priv(s);
2530 
2531 	printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2532 	printk(" host_busy %u, host_no %d, last_reset %d,\n",
2533 	       s->host_busy, s->host_no, (unsigned)s->last_reset);
2534 
2535 	printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2536 	       (ulong)s->base, (ulong)s->io_port, boardp->irq);
2537 
2538 	printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2539 	       s->dma_channel, s->this_id, s->can_queue);
2540 
2541 	printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2542 	       s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2543 
2544 	if (ASC_NARROW_BOARD(boardp)) {
2545 		asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2546 		asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2547 	} else {
2548 		asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2549 		asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2550 	}
2551 }
2552 
2553 /*
2554  * asc_prt_hex()
2555  *
2556  * Print hexadecimal output in 4 byte groupings 32 bytes
2557  * or 8 double-words per line.
2558  */
2559 static void asc_prt_hex(char *f, uchar *s, int l)
2560 {
2561 	int i;
2562 	int j;
2563 	int k;
2564 	int m;
2565 
2566 	printk("%s: (%d bytes)\n", f, l);
2567 
2568 	for (i = 0; i < l; i += 32) {
2569 
2570 		/* Display a maximum of 8 double-words per line. */
2571 		if ((k = (l - i) / 4) >= 8) {
2572 			k = 8;
2573 			m = 0;
2574 		} else {
2575 			m = (l - i) % 4;
2576 		}
2577 
2578 		for (j = 0; j < k; j++) {
2579 			printk(" %2.2X%2.2X%2.2X%2.2X",
2580 			       (unsigned)s[i + (j * 4)],
2581 			       (unsigned)s[i + (j * 4) + 1],
2582 			       (unsigned)s[i + (j * 4) + 2],
2583 			       (unsigned)s[i + (j * 4) + 3]);
2584 		}
2585 
2586 		switch (m) {
2587 		case 0:
2588 		default:
2589 			break;
2590 		case 1:
2591 			printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2592 			break;
2593 		case 2:
2594 			printk(" %2.2X%2.2X",
2595 			       (unsigned)s[i + (j * 4)],
2596 			       (unsigned)s[i + (j * 4) + 1]);
2597 			break;
2598 		case 3:
2599 			printk(" %2.2X%2.2X%2.2X",
2600 			       (unsigned)s[i + (j * 4) + 1],
2601 			       (unsigned)s[i + (j * 4) + 2],
2602 			       (unsigned)s[i + (j * 4) + 3]);
2603 			break;
2604 		}
2605 
2606 		printk("\n");
2607 	}
2608 }
2609 
2610 /*
2611  * asc_prt_asc_scsi_q()
2612  */
2613 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2614 {
2615 	ASC_SG_HEAD *sgp;
2616 	int i;
2617 
2618 	printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2619 
2620 	printk
2621 	    (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2622 	     q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
2623 	     q->q2.tag_code);
2624 
2625 	printk
2626 	    (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2627 	     (ulong)le32_to_cpu(q->q1.data_addr),
2628 	     (ulong)le32_to_cpu(q->q1.data_cnt),
2629 	     (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2630 
2631 	printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2632 	       (ulong)q->cdbptr, q->q2.cdb_len,
2633 	       (ulong)q->sg_head, q->q1.sg_queue_cnt);
2634 
2635 	if (q->sg_head) {
2636 		sgp = q->sg_head;
2637 		printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2638 		printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2639 		       sgp->queue_cnt);
2640 		for (i = 0; i < sgp->entry_cnt; i++) {
2641 			printk(" [%u]: addr 0x%lx, bytes %lu\n",
2642 			       i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2643 			       (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2644 		}
2645 
2646 	}
2647 }
2648 
2649 /*
2650  * asc_prt_asc_qdone_info()
2651  */
2652 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2653 {
2654 	printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2655 	printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2656 	       (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
2657 	       q->d2.tag_code);
2658 	printk
2659 	    (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2660 	     q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2661 }
2662 
2663 /*
2664  * asc_prt_adv_sgblock()
2665  *
2666  * Display an ADV_SG_BLOCK structure.
2667  */
2668 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2669 {
2670 	int i;
2671 
2672 	printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2673 	       (ulong)b, sgblockno);
2674 	printk("  sg_cnt %u, sg_ptr 0x%lx\n",
2675 	       b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
2676 	BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2677 	if (b->sg_ptr != 0)
2678 		BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2679 	for (i = 0; i < b->sg_cnt; i++) {
2680 		printk("  [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2681 		       i, (ulong)b->sg_list[i].sg_addr,
2682 		       (ulong)b->sg_list[i].sg_count);
2683 	}
2684 }
2685 
2686 /*
2687  * asc_prt_adv_scsi_req_q()
2688  *
2689  * Display an ADV_SCSI_REQ_Q structure.
2690  */
2691 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2692 {
2693 	int sg_blk_cnt;
2694 	struct asc_sg_block *sg_ptr;
2695 
2696 	printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2697 
2698 	printk("  target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2699 	       q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
2700 
2701 	printk("  cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2702 	       q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr);
2703 
2704 	printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2705 	       (ulong)le32_to_cpu(q->data_cnt),
2706 	       (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2707 
2708 	printk
2709 	    ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2710 	     q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2711 
2712 	printk("  sg_working_ix 0x%x, target_cmd %u\n",
2713 	       q->sg_working_ix, q->target_cmd);
2714 
2715 	printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2716 	       (ulong)le32_to_cpu(q->scsiq_rptr),
2717 	       (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2718 
2719 	/* Display the request's ADV_SG_BLOCK structures. */
2720 	if (q->sg_list_ptr != NULL) {
2721 		sg_blk_cnt = 0;
2722 		while (1) {
2723 			/*
2724 			 * 'sg_ptr' is a physical address. Convert it to a virtual
2725 			 * address by indexing 'sg_blk_cnt' into the virtual address
2726 			 * array 'sg_list_ptr'.
2727 			 *
2728 			 * XXX - Assumes all SG physical blocks are virtually contiguous.
2729 			 */
2730 			sg_ptr =
2731 			    &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
2732 			asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2733 			if (sg_ptr->sg_ptr == 0) {
2734 				break;
2735 			}
2736 			sg_blk_cnt++;
2737 		}
2738 	}
2739 }
2740 #endif /* ADVANSYS_DEBUG */
2741 
2742 /*
2743  * The advansys chip/microcode contains a 32-bit identifier for each command
2744  * known as the 'srb'.  I don't know what it stands for.  The driver used
2745  * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2746  * with bus_to_virt.  Now the driver keeps a per-host map of integers to
2747  * pointers.  It auto-expands when full, unless it can't allocate memory.
2748  * Note that an srb of 0 is treated specially by the chip/firmware, hence
2749  * the return of i+1 in this routine, and the corresponding subtraction in
2750  * the inverse routine.
2751  */
2752 #define BAD_SRB 0
2753 static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
2754 {
2755 	int i;
2756 	void **new_ptr;
2757 
2758 	for (i = 0; i < asc_dvc->ptr_map_count; i++) {
2759 		if (!asc_dvc->ptr_map[i])
2760 			goto out;
2761 	}
2762 
2763 	if (asc_dvc->ptr_map_count == 0)
2764 		asc_dvc->ptr_map_count = 1;
2765 	else
2766 		asc_dvc->ptr_map_count *= 2;
2767 
2768 	new_ptr = krealloc(asc_dvc->ptr_map,
2769 			asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
2770 	if (!new_ptr)
2771 		return BAD_SRB;
2772 	asc_dvc->ptr_map = new_ptr;
2773  out:
2774 	ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
2775 	asc_dvc->ptr_map[i] = ptr;
2776 	return i + 1;
2777 }
2778 
2779 static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
2780 {
2781 	void *ptr;
2782 
2783 	srb--;
2784 	if (srb >= asc_dvc->ptr_map_count) {
2785 		printk("advansys: bad SRB %u, max %u\n", srb,
2786 							asc_dvc->ptr_map_count);
2787 		return NULL;
2788 	}
2789 	ptr = asc_dvc->ptr_map[srb];
2790 	asc_dvc->ptr_map[srb] = NULL;
2791 	ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
2792 	return ptr;
2793 }
2794 
2795 /*
2796  * advansys_info()
2797  *
2798  * Return suitable for printing on the console with the argument
2799  * adapter's configuration information.
2800  *
2801  * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2802  * otherwise the static 'info' array will be overrun.
2803  */
2804 static const char *advansys_info(struct Scsi_Host *shost)
2805 {
2806 	static char info[ASC_INFO_SIZE];
2807 	struct asc_board *boardp = shost_priv(shost);
2808 	ASC_DVC_VAR *asc_dvc_varp;
2809 	ADV_DVC_VAR *adv_dvc_varp;
2810 	char *busname;
2811 	char *widename = NULL;
2812 
2813 	if (ASC_NARROW_BOARD(boardp)) {
2814 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2815 		ASC_DBG(1, "begin\n");
2816 		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2817 			if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2818 			    ASC_IS_ISAPNP) {
2819 				busname = "ISA PnP";
2820 			} else {
2821 				busname = "ISA";
2822 			}
2823 			sprintf(info,
2824 				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2825 				ASC_VERSION, busname,
2826 				(ulong)shost->io_port,
2827 				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2828 				boardp->irq, shost->dma_channel);
2829 		} else {
2830 			if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2831 				busname = "VL";
2832 			} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2833 				busname = "EISA";
2834 			} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2835 				if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2836 				    == ASC_IS_PCI_ULTRA) {
2837 					busname = "PCI Ultra";
2838 				} else {
2839 					busname = "PCI";
2840 				}
2841 			} else {
2842 				busname = "?";
2843 				shost_printk(KERN_ERR, shost, "unknown bus "
2844 					"type %d\n", asc_dvc_varp->bus_type);
2845 			}
2846 			sprintf(info,
2847 				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2848 				ASC_VERSION, busname, (ulong)shost->io_port,
2849 				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2850 				boardp->irq);
2851 		}
2852 	} else {
2853 		/*
2854 		 * Wide Adapter Information
2855 		 *
2856 		 * Memory-mapped I/O is used instead of I/O space to access
2857 		 * the adapter, but display the I/O Port range. The Memory
2858 		 * I/O address is displayed through the driver /proc file.
2859 		 */
2860 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2861 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2862 			widename = "Ultra-Wide";
2863 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2864 			widename = "Ultra2-Wide";
2865 		} else {
2866 			widename = "Ultra3-Wide";
2867 		}
2868 		sprintf(info,
2869 			"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2870 			ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2871 			(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2872 	}
2873 	BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2874 	ASC_DBG(1, "end\n");
2875 	return info;
2876 }
2877 
2878 #ifdef CONFIG_PROC_FS
2879 /*
2880  * asc_prt_line()
2881  *
2882  * If 'cp' is NULL print to the console, otherwise print to a buffer.
2883  *
2884  * Return 0 if printing to the console, otherwise return the number of
2885  * bytes written to the buffer.
2886  *
2887  * Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack
2888  * will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes.
2889  */
2890 static int asc_prt_line(char *buf, int buflen, char *fmt, ...)
2891 {
2892 	va_list args;
2893 	int ret;
2894 	char s[ASC_PRTLINE_SIZE];
2895 
2896 	va_start(args, fmt);
2897 	ret = vsprintf(s, fmt, args);
2898 	BUG_ON(ret >= ASC_PRTLINE_SIZE);
2899 	if (buf == NULL) {
2900 		(void)printk(s);
2901 		ret = 0;
2902 	} else {
2903 		ret = min(buflen, ret);
2904 		memcpy(buf, s, ret);
2905 	}
2906 	va_end(args);
2907 	return ret;
2908 }
2909 
2910 /*
2911  * asc_prt_board_devices()
2912  *
2913  * Print driver information for devices attached to the board.
2914  *
2915  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
2916  * cf. asc_prt_line().
2917  *
2918  * Return the number of characters copied into 'cp'. No more than
2919  * 'cplen' characters will be copied to 'cp'.
2920  */
2921 static int asc_prt_board_devices(struct Scsi_Host *shost, char *cp, int cplen)
2922 {
2923 	struct asc_board *boardp = shost_priv(shost);
2924 	int leftlen;
2925 	int totlen;
2926 	int len;
2927 	int chip_scsi_id;
2928 	int i;
2929 
2930 	leftlen = cplen;
2931 	totlen = len = 0;
2932 
2933 	len = asc_prt_line(cp, leftlen,
2934 			   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2935 			   shost->host_no);
2936 	ASC_PRT_NEXT();
2937 
2938 	if (ASC_NARROW_BOARD(boardp)) {
2939 		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2940 	} else {
2941 		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2942 	}
2943 
2944 	len = asc_prt_line(cp, leftlen, "Target IDs Detected:");
2945 	ASC_PRT_NEXT();
2946 	for (i = 0; i <= ADV_MAX_TID; i++) {
2947 		if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) {
2948 			len = asc_prt_line(cp, leftlen, " %X,", i);
2949 			ASC_PRT_NEXT();
2950 		}
2951 	}
2952 	len = asc_prt_line(cp, leftlen, " (%X=Host Adapter)\n", chip_scsi_id);
2953 	ASC_PRT_NEXT();
2954 
2955 	return totlen;
2956 }
2957 
2958 /*
2959  * Display Wide Board BIOS Information.
2960  */
2961 static int asc_prt_adv_bios(struct Scsi_Host *shost, char *cp, int cplen)
2962 {
2963 	struct asc_board *boardp = shost_priv(shost);
2964 	int leftlen;
2965 	int totlen;
2966 	int len;
2967 	ushort major, minor, letter;
2968 
2969 	leftlen = cplen;
2970 	totlen = len = 0;
2971 
2972 	len = asc_prt_line(cp, leftlen, "\nROM BIOS Version: ");
2973 	ASC_PRT_NEXT();
2974 
2975 	/*
2976 	 * If the BIOS saved a valid signature, then fill in
2977 	 * the BIOS code segment base address.
2978 	 */
2979 	if (boardp->bios_signature != 0x55AA) {
2980 		len = asc_prt_line(cp, leftlen, "Disabled or Pre-3.1\n");
2981 		ASC_PRT_NEXT();
2982 		len = asc_prt_line(cp, leftlen,
2983 				   "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
2984 		ASC_PRT_NEXT();
2985 		len = asc_prt_line(cp, leftlen,
2986 				   "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2987 		ASC_PRT_NEXT();
2988 	} else {
2989 		major = (boardp->bios_version >> 12) & 0xF;
2990 		minor = (boardp->bios_version >> 8) & 0xF;
2991 		letter = (boardp->bios_version & 0xFF);
2992 
2993 		len = asc_prt_line(cp, leftlen, "%d.%d%c\n",
2994 				   major, minor,
2995 				   letter >= 26 ? '?' : letter + 'A');
2996 		ASC_PRT_NEXT();
2997 
2998 		/*
2999 		 * Current available ROM BIOS release is 3.1I for UW
3000 		 * and 3.2I for U2W. This code doesn't differentiate
3001 		 * UW and U2W boards.
3002 		 */
3003 		if (major < 3 || (major <= 3 && minor < 1) ||
3004 		    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
3005 			len = asc_prt_line(cp, leftlen,
3006 					   "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
3007 			ASC_PRT_NEXT();
3008 			len = asc_prt_line(cp, leftlen,
3009 					   "ftp://ftp.connectcom.net/pub\n");
3010 			ASC_PRT_NEXT();
3011 		}
3012 	}
3013 
3014 	return totlen;
3015 }
3016 
3017 /*
3018  * Add serial number to information bar if signature AAh
3019  * is found in at bit 15-9 (7 bits) of word 1.
3020  *
3021  * Serial Number consists fo 12 alpha-numeric digits.
3022  *
3023  *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
3024  *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
3025  *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
3026  *       5 - Product revision (A-J)    Word0:  "         "
3027  *
3028  *           Signature                 Word1: 15-9 (7 bits)
3029  *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
3030  *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
3031  *
3032  *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
3033  *
3034  * Note 1: Only production cards will have a serial number.
3035  *
3036  * Note 2: Signature is most significant 7 bits (0xFE).
3037  *
3038  * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
3039  */
3040 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
3041 {
3042 	ushort w, num;
3043 
3044 	if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
3045 		return ASC_FALSE;
3046 	} else {
3047 		/*
3048 		 * First word - 6 digits.
3049 		 */
3050 		w = serialnum[0];
3051 
3052 		/* Product type - 1st digit. */
3053 		if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
3054 			/* Product type is P=Prototype */
3055 			*cp += 0x8;
3056 		}
3057 		cp++;
3058 
3059 		/* Manufacturing location - 2nd digit. */
3060 		*cp++ = 'A' + ((w & 0x1C00) >> 10);
3061 
3062 		/* Product ID - 3rd, 4th digits. */
3063 		num = w & 0x3FF;
3064 		*cp++ = '0' + (num / 100);
3065 		num %= 100;
3066 		*cp++ = '0' + (num / 10);
3067 
3068 		/* Product revision - 5th digit. */
3069 		*cp++ = 'A' + (num % 10);
3070 
3071 		/*
3072 		 * Second word
3073 		 */
3074 		w = serialnum[1];
3075 
3076 		/*
3077 		 * Year - 6th digit.
3078 		 *
3079 		 * If bit 15 of third word is set, then the
3080 		 * last digit of the year is greater than 7.
3081 		 */
3082 		if (serialnum[2] & 0x8000) {
3083 			*cp++ = '8' + ((w & 0x1C0) >> 6);
3084 		} else {
3085 			*cp++ = '0' + ((w & 0x1C0) >> 6);
3086 		}
3087 
3088 		/* Week of year - 7th, 8th digits. */
3089 		num = w & 0x003F;
3090 		*cp++ = '0' + num / 10;
3091 		num %= 10;
3092 		*cp++ = '0' + num;
3093 
3094 		/*
3095 		 * Third word
3096 		 */
3097 		w = serialnum[2] & 0x7FFF;
3098 
3099 		/* Serial number - 9th digit. */
3100 		*cp++ = 'A' + (w / 1000);
3101 
3102 		/* 10th, 11th, 12th digits. */
3103 		num = w % 1000;
3104 		*cp++ = '0' + num / 100;
3105 		num %= 100;
3106 		*cp++ = '0' + num / 10;
3107 		num %= 10;
3108 		*cp++ = '0' + num;
3109 
3110 		*cp = '\0';	/* Null Terminate the string. */
3111 		return ASC_TRUE;
3112 	}
3113 }
3114 
3115 /*
3116  * asc_prt_asc_board_eeprom()
3117  *
3118  * Print board EEPROM configuration.
3119  *
3120  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3121  * cf. asc_prt_line().
3122  *
3123  * Return the number of characters copied into 'cp'. No more than
3124  * 'cplen' characters will be copied to 'cp'.
3125  */
3126 static int asc_prt_asc_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3127 {
3128 	struct asc_board *boardp = shost_priv(shost);
3129 	ASC_DVC_VAR *asc_dvc_varp;
3130 	int leftlen;
3131 	int totlen;
3132 	int len;
3133 	ASCEEP_CONFIG *ep;
3134 	int i;
3135 #ifdef CONFIG_ISA
3136 	int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3137 #endif /* CONFIG_ISA */
3138 	uchar serialstr[13];
3139 
3140 	asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
3141 	ep = &boardp->eep_config.asc_eep;
3142 
3143 	leftlen = cplen;
3144 	totlen = len = 0;
3145 
3146 	len = asc_prt_line(cp, leftlen,
3147 			   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3148 			   shost->host_no);
3149 	ASC_PRT_NEXT();
3150 
3151 	if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
3152 	    == ASC_TRUE) {
3153 		len =
3154 		    asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3155 				 serialstr);
3156 		ASC_PRT_NEXT();
3157 	} else {
3158 		if (ep->adapter_info[5] == 0xBB) {
3159 			len = asc_prt_line(cp, leftlen,
3160 					   " Default Settings Used for EEPROM-less Adapter.\n");
3161 			ASC_PRT_NEXT();
3162 		} else {
3163 			len = asc_prt_line(cp, leftlen,
3164 					   " Serial Number Signature Not Present.\n");
3165 			ASC_PRT_NEXT();
3166 		}
3167 	}
3168 
3169 	len = asc_prt_line(cp, leftlen,
3170 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3171 			   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
3172 			   ep->max_tag_qng);
3173 	ASC_PRT_NEXT();
3174 
3175 	len = asc_prt_line(cp, leftlen,
3176 			   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
3177 	ASC_PRT_NEXT();
3178 
3179 	len = asc_prt_line(cp, leftlen, " Target ID:           ");
3180 	ASC_PRT_NEXT();
3181 	for (i = 0; i <= ASC_MAX_TID; i++) {
3182 		len = asc_prt_line(cp, leftlen, " %d", i);
3183 		ASC_PRT_NEXT();
3184 	}
3185 	len = asc_prt_line(cp, leftlen, "\n");
3186 	ASC_PRT_NEXT();
3187 
3188 	len = asc_prt_line(cp, leftlen, " Disconnects:         ");
3189 	ASC_PRT_NEXT();
3190 	for (i = 0; i <= ASC_MAX_TID; i++) {
3191 		len = asc_prt_line(cp, leftlen, " %c",
3192 				   (ep->
3193 				    disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3194 				   'N');
3195 		ASC_PRT_NEXT();
3196 	}
3197 	len = asc_prt_line(cp, leftlen, "\n");
3198 	ASC_PRT_NEXT();
3199 
3200 	len = asc_prt_line(cp, leftlen, " Command Queuing:     ");
3201 	ASC_PRT_NEXT();
3202 	for (i = 0; i <= ASC_MAX_TID; i++) {
3203 		len = asc_prt_line(cp, leftlen, " %c",
3204 				   (ep->
3205 				    use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3206 				   'N');
3207 		ASC_PRT_NEXT();
3208 	}
3209 	len = asc_prt_line(cp, leftlen, "\n");
3210 	ASC_PRT_NEXT();
3211 
3212 	len = asc_prt_line(cp, leftlen, " Start Motor:         ");
3213 	ASC_PRT_NEXT();
3214 	for (i = 0; i <= ASC_MAX_TID; i++) {
3215 		len = asc_prt_line(cp, leftlen, " %c",
3216 				   (ep->
3217 				    start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3218 				   'N');
3219 		ASC_PRT_NEXT();
3220 	}
3221 	len = asc_prt_line(cp, leftlen, "\n");
3222 	ASC_PRT_NEXT();
3223 
3224 	len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3225 	ASC_PRT_NEXT();
3226 	for (i = 0; i <= ASC_MAX_TID; i++) {
3227 		len = asc_prt_line(cp, leftlen, " %c",
3228 				   (ep->
3229 				    init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3230 				   'N');
3231 		ASC_PRT_NEXT();
3232 	}
3233 	len = asc_prt_line(cp, leftlen, "\n");
3234 	ASC_PRT_NEXT();
3235 
3236 #ifdef CONFIG_ISA
3237 	if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
3238 		len = asc_prt_line(cp, leftlen,
3239 				   " Host ISA DMA speed:   %d MB/S\n",
3240 				   isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
3241 		ASC_PRT_NEXT();
3242 	}
3243 #endif /* CONFIG_ISA */
3244 
3245 	return totlen;
3246 }
3247 
3248 /*
3249  * asc_prt_adv_board_eeprom()
3250  *
3251  * Print board EEPROM configuration.
3252  *
3253  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3254  * cf. asc_prt_line().
3255  *
3256  * Return the number of characters copied into 'cp'. No more than
3257  * 'cplen' characters will be copied to 'cp'.
3258  */
3259 static int asc_prt_adv_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3260 {
3261 	struct asc_board *boardp = shost_priv(shost);
3262 	ADV_DVC_VAR *adv_dvc_varp;
3263 	int leftlen;
3264 	int totlen;
3265 	int len;
3266 	int i;
3267 	char *termstr;
3268 	uchar serialstr[13];
3269 	ADVEEP_3550_CONFIG *ep_3550 = NULL;
3270 	ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
3271 	ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
3272 	ushort word;
3273 	ushort *wordp;
3274 	ushort sdtr_speed = 0;
3275 
3276 	adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
3277 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3278 		ep_3550 = &boardp->eep_config.adv_3550_eep;
3279 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3280 		ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
3281 	} else {
3282 		ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
3283 	}
3284 
3285 	leftlen = cplen;
3286 	totlen = len = 0;
3287 
3288 	len = asc_prt_line(cp, leftlen,
3289 			   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3290 			   shost->host_no);
3291 	ASC_PRT_NEXT();
3292 
3293 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3294 		wordp = &ep_3550->serial_number_word1;
3295 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3296 		wordp = &ep_38C0800->serial_number_word1;
3297 	} else {
3298 		wordp = &ep_38C1600->serial_number_word1;
3299 	}
3300 
3301 	if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) {
3302 		len =
3303 		    asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3304 				 serialstr);
3305 		ASC_PRT_NEXT();
3306 	} else {
3307 		len = asc_prt_line(cp, leftlen,
3308 				   " Serial Number Signature Not Present.\n");
3309 		ASC_PRT_NEXT();
3310 	}
3311 
3312 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3313 		len = asc_prt_line(cp, leftlen,
3314 				   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3315 				   ep_3550->adapter_scsi_id,
3316 				   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
3317 		ASC_PRT_NEXT();
3318 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3319 		len = asc_prt_line(cp, leftlen,
3320 				   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3321 				   ep_38C0800->adapter_scsi_id,
3322 				   ep_38C0800->max_host_qng,
3323 				   ep_38C0800->max_dvc_qng);
3324 		ASC_PRT_NEXT();
3325 	} else {
3326 		len = asc_prt_line(cp, leftlen,
3327 				   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3328 				   ep_38C1600->adapter_scsi_id,
3329 				   ep_38C1600->max_host_qng,
3330 				   ep_38C1600->max_dvc_qng);
3331 		ASC_PRT_NEXT();
3332 	}
3333 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3334 		word = ep_3550->termination;
3335 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3336 		word = ep_38C0800->termination_lvd;
3337 	} else {
3338 		word = ep_38C1600->termination_lvd;
3339 	}
3340 	switch (word) {
3341 	case 1:
3342 		termstr = "Low Off/High Off";
3343 		break;
3344 	case 2:
3345 		termstr = "Low Off/High On";
3346 		break;
3347 	case 3:
3348 		termstr = "Low On/High On";
3349 		break;
3350 	default:
3351 	case 0:
3352 		termstr = "Automatic";
3353 		break;
3354 	}
3355 
3356 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3357 		len = asc_prt_line(cp, leftlen,
3358 				   " termination: %u (%s), bios_ctrl: 0x%x\n",
3359 				   ep_3550->termination, termstr,
3360 				   ep_3550->bios_ctrl);
3361 		ASC_PRT_NEXT();
3362 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3363 		len = asc_prt_line(cp, leftlen,
3364 				   " termination: %u (%s), bios_ctrl: 0x%x\n",
3365 				   ep_38C0800->termination_lvd, termstr,
3366 				   ep_38C0800->bios_ctrl);
3367 		ASC_PRT_NEXT();
3368 	} else {
3369 		len = asc_prt_line(cp, leftlen,
3370 				   " termination: %u (%s), bios_ctrl: 0x%x\n",
3371 				   ep_38C1600->termination_lvd, termstr,
3372 				   ep_38C1600->bios_ctrl);
3373 		ASC_PRT_NEXT();
3374 	}
3375 
3376 	len = asc_prt_line(cp, leftlen, " Target ID:           ");
3377 	ASC_PRT_NEXT();
3378 	for (i = 0; i <= ADV_MAX_TID; i++) {
3379 		len = asc_prt_line(cp, leftlen, " %X", i);
3380 		ASC_PRT_NEXT();
3381 	}
3382 	len = asc_prt_line(cp, leftlen, "\n");
3383 	ASC_PRT_NEXT();
3384 
3385 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3386 		word = ep_3550->disc_enable;
3387 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3388 		word = ep_38C0800->disc_enable;
3389 	} else {
3390 		word = ep_38C1600->disc_enable;
3391 	}
3392 	len = asc_prt_line(cp, leftlen, " Disconnects:         ");
3393 	ASC_PRT_NEXT();
3394 	for (i = 0; i <= ADV_MAX_TID; i++) {
3395 		len = asc_prt_line(cp, leftlen, " %c",
3396 				   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3397 		ASC_PRT_NEXT();
3398 	}
3399 	len = asc_prt_line(cp, leftlen, "\n");
3400 	ASC_PRT_NEXT();
3401 
3402 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3403 		word = ep_3550->tagqng_able;
3404 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3405 		word = ep_38C0800->tagqng_able;
3406 	} else {
3407 		word = ep_38C1600->tagqng_able;
3408 	}
3409 	len = asc_prt_line(cp, leftlen, " Command Queuing:     ");
3410 	ASC_PRT_NEXT();
3411 	for (i = 0; i <= ADV_MAX_TID; i++) {
3412 		len = asc_prt_line(cp, leftlen, " %c",
3413 				   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3414 		ASC_PRT_NEXT();
3415 	}
3416 	len = asc_prt_line(cp, leftlen, "\n");
3417 	ASC_PRT_NEXT();
3418 
3419 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3420 		word = ep_3550->start_motor;
3421 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3422 		word = ep_38C0800->start_motor;
3423 	} else {
3424 		word = ep_38C1600->start_motor;
3425 	}
3426 	len = asc_prt_line(cp, leftlen, " Start Motor:         ");
3427 	ASC_PRT_NEXT();
3428 	for (i = 0; i <= ADV_MAX_TID; i++) {
3429 		len = asc_prt_line(cp, leftlen, " %c",
3430 				   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3431 		ASC_PRT_NEXT();
3432 	}
3433 	len = asc_prt_line(cp, leftlen, "\n");
3434 	ASC_PRT_NEXT();
3435 
3436 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3437 		len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3438 		ASC_PRT_NEXT();
3439 		for (i = 0; i <= ADV_MAX_TID; i++) {
3440 			len = asc_prt_line(cp, leftlen, " %c",
3441 					   (ep_3550->
3442 					    sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3443 					   'Y' : 'N');
3444 			ASC_PRT_NEXT();
3445 		}
3446 		len = asc_prt_line(cp, leftlen, "\n");
3447 		ASC_PRT_NEXT();
3448 	}
3449 
3450 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3451 		len = asc_prt_line(cp, leftlen, " Ultra Transfer:      ");
3452 		ASC_PRT_NEXT();
3453 		for (i = 0; i <= ADV_MAX_TID; i++) {
3454 			len = asc_prt_line(cp, leftlen, " %c",
3455 					   (ep_3550->
3456 					    ultra_able & ADV_TID_TO_TIDMASK(i))
3457 					   ? 'Y' : 'N');
3458 			ASC_PRT_NEXT();
3459 		}
3460 		len = asc_prt_line(cp, leftlen, "\n");
3461 		ASC_PRT_NEXT();
3462 	}
3463 
3464 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3465 		word = ep_3550->wdtr_able;
3466 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3467 		word = ep_38C0800->wdtr_able;
3468 	} else {
3469 		word = ep_38C1600->wdtr_able;
3470 	}
3471 	len = asc_prt_line(cp, leftlen, " Wide Transfer:       ");
3472 	ASC_PRT_NEXT();
3473 	for (i = 0; i <= ADV_MAX_TID; i++) {
3474 		len = asc_prt_line(cp, leftlen, " %c",
3475 				   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3476 		ASC_PRT_NEXT();
3477 	}
3478 	len = asc_prt_line(cp, leftlen, "\n");
3479 	ASC_PRT_NEXT();
3480 
3481 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3482 	    adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3483 		len = asc_prt_line(cp, leftlen,
3484 				   " Synchronous Transfer Speed (Mhz):\n  ");
3485 		ASC_PRT_NEXT();
3486 		for (i = 0; i <= ADV_MAX_TID; i++) {
3487 			char *speed_str;
3488 
3489 			if (i == 0) {
3490 				sdtr_speed = adv_dvc_varp->sdtr_speed1;
3491 			} else if (i == 4) {
3492 				sdtr_speed = adv_dvc_varp->sdtr_speed2;
3493 			} else if (i == 8) {
3494 				sdtr_speed = adv_dvc_varp->sdtr_speed3;
3495 			} else if (i == 12) {
3496 				sdtr_speed = adv_dvc_varp->sdtr_speed4;
3497 			}
3498 			switch (sdtr_speed & ADV_MAX_TID) {
3499 			case 0:
3500 				speed_str = "Off";
3501 				break;
3502 			case 1:
3503 				speed_str = "  5";
3504 				break;
3505 			case 2:
3506 				speed_str = " 10";
3507 				break;
3508 			case 3:
3509 				speed_str = " 20";
3510 				break;
3511 			case 4:
3512 				speed_str = " 40";
3513 				break;
3514 			case 5:
3515 				speed_str = " 80";
3516 				break;
3517 			default:
3518 				speed_str = "Unk";
3519 				break;
3520 			}
3521 			len = asc_prt_line(cp, leftlen, "%X:%s ", i, speed_str);
3522 			ASC_PRT_NEXT();
3523 			if (i == 7) {
3524 				len = asc_prt_line(cp, leftlen, "\n  ");
3525 				ASC_PRT_NEXT();
3526 			}
3527 			sdtr_speed >>= 4;
3528 		}
3529 		len = asc_prt_line(cp, leftlen, "\n");
3530 		ASC_PRT_NEXT();
3531 	}
3532 
3533 	return totlen;
3534 }
3535 
3536 /*
3537  * asc_prt_driver_conf()
3538  *
3539  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3540  * cf. asc_prt_line().
3541  *
3542  * Return the number of characters copied into 'cp'. No more than
3543  * 'cplen' characters will be copied to 'cp'.
3544  */
3545 static int asc_prt_driver_conf(struct Scsi_Host *shost, char *cp, int cplen)
3546 {
3547 	struct asc_board *boardp = shost_priv(shost);
3548 	int leftlen;
3549 	int totlen;
3550 	int len;
3551 	int chip_scsi_id;
3552 
3553 	leftlen = cplen;
3554 	totlen = len = 0;
3555 
3556 	len = asc_prt_line(cp, leftlen,
3557 			   "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3558 			   shost->host_no);
3559 	ASC_PRT_NEXT();
3560 
3561 	len = asc_prt_line(cp, leftlen,
3562 			   " host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n",
3563 			   shost->host_busy, shost->last_reset, shost->max_id,
3564 			   shost->max_lun, shost->max_channel);
3565 	ASC_PRT_NEXT();
3566 
3567 	len = asc_prt_line(cp, leftlen,
3568 			   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3569 			   shost->unique_id, shost->can_queue, shost->this_id,
3570 			   shost->sg_tablesize, shost->cmd_per_lun);
3571 	ASC_PRT_NEXT();
3572 
3573 	len = asc_prt_line(cp, leftlen,
3574 			   " unchecked_isa_dma %d, use_clustering %d\n",
3575 			   shost->unchecked_isa_dma, shost->use_clustering);
3576 	ASC_PRT_NEXT();
3577 
3578 	len = asc_prt_line(cp, leftlen,
3579 			   " flags 0x%x, last_reset 0x%x, jiffies 0x%x, asc_n_io_port 0x%x\n",
3580 			   boardp->flags, boardp->last_reset, jiffies,
3581 			   boardp->asc_n_io_port);
3582 	ASC_PRT_NEXT();
3583 
3584 	len = asc_prt_line(cp, leftlen, " io_port 0x%x\n", shost->io_port);
3585 	ASC_PRT_NEXT();
3586 
3587 	if (ASC_NARROW_BOARD(boardp)) {
3588 		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3589 	} else {
3590 		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3591 	}
3592 
3593 	return totlen;
3594 }
3595 
3596 /*
3597  * asc_prt_asc_board_info()
3598  *
3599  * Print dynamic board configuration information.
3600  *
3601  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3602  * cf. asc_prt_line().
3603  *
3604  * Return the number of characters copied into 'cp'. No more than
3605  * 'cplen' characters will be copied to 'cp'.
3606  */
3607 static int asc_prt_asc_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3608 {
3609 	struct asc_board *boardp = shost_priv(shost);
3610 	int chip_scsi_id;
3611 	int leftlen;
3612 	int totlen;
3613 	int len;
3614 	ASC_DVC_VAR *v;
3615 	ASC_DVC_CFG *c;
3616 	int i;
3617 	int renegotiate = 0;
3618 
3619 	v = &boardp->dvc_var.asc_dvc_var;
3620 	c = &boardp->dvc_cfg.asc_dvc_cfg;
3621 	chip_scsi_id = c->chip_scsi_id;
3622 
3623 	leftlen = cplen;
3624 	totlen = len = 0;
3625 
3626 	len = asc_prt_line(cp, leftlen,
3627 			   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3628 			   shost->host_no);
3629 	ASC_PRT_NEXT();
3630 
3631 	len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3632 			   "mcode_version 0x%x, err_code %u\n",
3633 			   c->chip_version, c->mcode_date, c->mcode_version,
3634 			   v->err_code);
3635 	ASC_PRT_NEXT();
3636 
3637 	/* Current number of commands waiting for the host. */
3638 	len = asc_prt_line(cp, leftlen,
3639 			   " Total Command Pending: %d\n", v->cur_total_qng);
3640 	ASC_PRT_NEXT();
3641 
3642 	len = asc_prt_line(cp, leftlen, " Command Queuing:");
3643 	ASC_PRT_NEXT();
3644 	for (i = 0; i <= ASC_MAX_TID; i++) {
3645 		if ((chip_scsi_id == i) ||
3646 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3647 			continue;
3648 		}
3649 		len = asc_prt_line(cp, leftlen, " %X:%c",
3650 				   i,
3651 				   (v->
3652 				    use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ?
3653 				   'Y' : 'N');
3654 		ASC_PRT_NEXT();
3655 	}
3656 	len = asc_prt_line(cp, leftlen, "\n");
3657 	ASC_PRT_NEXT();
3658 
3659 	/* Current number of commands waiting for a device. */
3660 	len = asc_prt_line(cp, leftlen, " Command Queue Pending:");
3661 	ASC_PRT_NEXT();
3662 	for (i = 0; i <= ASC_MAX_TID; i++) {
3663 		if ((chip_scsi_id == i) ||
3664 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3665 			continue;
3666 		}
3667 		len = asc_prt_line(cp, leftlen, " %X:%u", i, v->cur_dvc_qng[i]);
3668 		ASC_PRT_NEXT();
3669 	}
3670 	len = asc_prt_line(cp, leftlen, "\n");
3671 	ASC_PRT_NEXT();
3672 
3673 	/* Current limit on number of commands that can be sent to a device. */
3674 	len = asc_prt_line(cp, leftlen, " Command Queue Limit:");
3675 	ASC_PRT_NEXT();
3676 	for (i = 0; i <= ASC_MAX_TID; i++) {
3677 		if ((chip_scsi_id == i) ||
3678 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3679 			continue;
3680 		}
3681 		len = asc_prt_line(cp, leftlen, " %X:%u", i, v->max_dvc_qng[i]);
3682 		ASC_PRT_NEXT();
3683 	}
3684 	len = asc_prt_line(cp, leftlen, "\n");
3685 	ASC_PRT_NEXT();
3686 
3687 	/* Indicate whether the device has returned queue full status. */
3688 	len = asc_prt_line(cp, leftlen, " Command Queue Full:");
3689 	ASC_PRT_NEXT();
3690 	for (i = 0; i <= ASC_MAX_TID; i++) {
3691 		if ((chip_scsi_id == i) ||
3692 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3693 			continue;
3694 		}
3695 		if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) {
3696 			len = asc_prt_line(cp, leftlen, " %X:Y-%d",
3697 					   i, boardp->queue_full_cnt[i]);
3698 		} else {
3699 			len = asc_prt_line(cp, leftlen, " %X:N", i);
3700 		}
3701 		ASC_PRT_NEXT();
3702 	}
3703 	len = asc_prt_line(cp, leftlen, "\n");
3704 	ASC_PRT_NEXT();
3705 
3706 	len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3707 	ASC_PRT_NEXT();
3708 	for (i = 0; i <= ASC_MAX_TID; i++) {
3709 		if ((chip_scsi_id == i) ||
3710 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3711 			continue;
3712 		}
3713 		len = asc_prt_line(cp, leftlen, " %X:%c",
3714 				   i,
3715 				   (v->
3716 				    sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3717 				   'N');
3718 		ASC_PRT_NEXT();
3719 	}
3720 	len = asc_prt_line(cp, leftlen, "\n");
3721 	ASC_PRT_NEXT();
3722 
3723 	for (i = 0; i <= ASC_MAX_TID; i++) {
3724 		uchar syn_period_ix;
3725 
3726 		if ((chip_scsi_id == i) ||
3727 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3728 		    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3729 			continue;
3730 		}
3731 
3732 		len = asc_prt_line(cp, leftlen, "  %X:", i);
3733 		ASC_PRT_NEXT();
3734 
3735 		if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3736 			len = asc_prt_line(cp, leftlen, " Asynchronous");
3737 			ASC_PRT_NEXT();
3738 		} else {
3739 			syn_period_ix =
3740 			    (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3741 							   1);
3742 
3743 			len = asc_prt_line(cp, leftlen,
3744 					   " Transfer Period Factor: %d (%d.%d Mhz),",
3745 					   v->sdtr_period_tbl[syn_period_ix],
3746 					   250 /
3747 					   v->sdtr_period_tbl[syn_period_ix],
3748 					   ASC_TENTHS(250,
3749 						      v->
3750 						      sdtr_period_tbl
3751 						      [syn_period_ix]));
3752 			ASC_PRT_NEXT();
3753 
3754 			len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
3755 					   boardp->
3756 					   sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3757 			ASC_PRT_NEXT();
3758 		}
3759 
3760 		if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3761 			len = asc_prt_line(cp, leftlen, "*\n");
3762 			renegotiate = 1;
3763 		} else {
3764 			len = asc_prt_line(cp, leftlen, "\n");
3765 		}
3766 		ASC_PRT_NEXT();
3767 	}
3768 
3769 	if (renegotiate) {
3770 		len = asc_prt_line(cp, leftlen,
3771 				   " * = Re-negotiation pending before next command.\n");
3772 		ASC_PRT_NEXT();
3773 	}
3774 
3775 	return totlen;
3776 }
3777 
3778 /*
3779  * asc_prt_adv_board_info()
3780  *
3781  * Print dynamic board configuration information.
3782  *
3783  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3784  * cf. asc_prt_line().
3785  *
3786  * Return the number of characters copied into 'cp'. No more than
3787  * 'cplen' characters will be copied to 'cp'.
3788  */
3789 static int asc_prt_adv_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3790 {
3791 	struct asc_board *boardp = shost_priv(shost);
3792 	int leftlen;
3793 	int totlen;
3794 	int len;
3795 	int i;
3796 	ADV_DVC_VAR *v;
3797 	ADV_DVC_CFG *c;
3798 	AdvPortAddr iop_base;
3799 	ushort chip_scsi_id;
3800 	ushort lramword;
3801 	uchar lrambyte;
3802 	ushort tagqng_able;
3803 	ushort sdtr_able, wdtr_able;
3804 	ushort wdtr_done, sdtr_done;
3805 	ushort period = 0;
3806 	int renegotiate = 0;
3807 
3808 	v = &boardp->dvc_var.adv_dvc_var;
3809 	c = &boardp->dvc_cfg.adv_dvc_cfg;
3810 	iop_base = v->iop_base;
3811 	chip_scsi_id = v->chip_scsi_id;
3812 
3813 	leftlen = cplen;
3814 	totlen = len = 0;
3815 
3816 	len = asc_prt_line(cp, leftlen,
3817 			   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3818 			   shost->host_no);
3819 	ASC_PRT_NEXT();
3820 
3821 	len = asc_prt_line(cp, leftlen,
3822 			   " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3823 			   v->iop_base,
3824 			   AdvReadWordRegister(iop_base,
3825 					       IOPW_SCSI_CFG1) & CABLE_DETECT,
3826 			   v->err_code);
3827 	ASC_PRT_NEXT();
3828 
3829 	len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3830 			   "mcode_version 0x%x\n", c->chip_version,
3831 			   c->mcode_date, c->mcode_version);
3832 	ASC_PRT_NEXT();
3833 
3834 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3835 	len = asc_prt_line(cp, leftlen, " Queuing Enabled:");
3836 	ASC_PRT_NEXT();
3837 	for (i = 0; i <= ADV_MAX_TID; i++) {
3838 		if ((chip_scsi_id == i) ||
3839 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3840 			continue;
3841 		}
3842 
3843 		len = asc_prt_line(cp, leftlen, " %X:%c",
3844 				   i,
3845 				   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3846 				   'N');
3847 		ASC_PRT_NEXT();
3848 	}
3849 	len = asc_prt_line(cp, leftlen, "\n");
3850 	ASC_PRT_NEXT();
3851 
3852 	len = asc_prt_line(cp, leftlen, " Queue Limit:");
3853 	ASC_PRT_NEXT();
3854 	for (i = 0; i <= ADV_MAX_TID; i++) {
3855 		if ((chip_scsi_id == i) ||
3856 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3857 			continue;
3858 		}
3859 
3860 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3861 				lrambyte);
3862 
3863 		len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3864 		ASC_PRT_NEXT();
3865 	}
3866 	len = asc_prt_line(cp, leftlen, "\n");
3867 	ASC_PRT_NEXT();
3868 
3869 	len = asc_prt_line(cp, leftlen, " Command Pending:");
3870 	ASC_PRT_NEXT();
3871 	for (i = 0; i <= ADV_MAX_TID; i++) {
3872 		if ((chip_scsi_id == i) ||
3873 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3874 			continue;
3875 		}
3876 
3877 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3878 				lrambyte);
3879 
3880 		len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3881 		ASC_PRT_NEXT();
3882 	}
3883 	len = asc_prt_line(cp, leftlen, "\n");
3884 	ASC_PRT_NEXT();
3885 
3886 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3887 	len = asc_prt_line(cp, leftlen, " Wide Enabled:");
3888 	ASC_PRT_NEXT();
3889 	for (i = 0; i <= ADV_MAX_TID; i++) {
3890 		if ((chip_scsi_id == i) ||
3891 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3892 			continue;
3893 		}
3894 
3895 		len = asc_prt_line(cp, leftlen, " %X:%c",
3896 				   i,
3897 				   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3898 				   'N');
3899 		ASC_PRT_NEXT();
3900 	}
3901 	len = asc_prt_line(cp, leftlen, "\n");
3902 	ASC_PRT_NEXT();
3903 
3904 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3905 	len = asc_prt_line(cp, leftlen, " Transfer Bit Width:");
3906 	ASC_PRT_NEXT();
3907 	for (i = 0; i <= ADV_MAX_TID; i++) {
3908 		if ((chip_scsi_id == i) ||
3909 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3910 			continue;
3911 		}
3912 
3913 		AdvReadWordLram(iop_base,
3914 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3915 				lramword);
3916 
3917 		len = asc_prt_line(cp, leftlen, " %X:%d",
3918 				   i, (lramword & 0x8000) ? 16 : 8);
3919 		ASC_PRT_NEXT();
3920 
3921 		if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3922 		    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3923 			len = asc_prt_line(cp, leftlen, "*");
3924 			ASC_PRT_NEXT();
3925 			renegotiate = 1;
3926 		}
3927 	}
3928 	len = asc_prt_line(cp, leftlen, "\n");
3929 	ASC_PRT_NEXT();
3930 
3931 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3932 	len = asc_prt_line(cp, leftlen, " Synchronous Enabled:");
3933 	ASC_PRT_NEXT();
3934 	for (i = 0; i <= ADV_MAX_TID; i++) {
3935 		if ((chip_scsi_id == i) ||
3936 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3937 			continue;
3938 		}
3939 
3940 		len = asc_prt_line(cp, leftlen, " %X:%c",
3941 				   i,
3942 				   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3943 				   'N');
3944 		ASC_PRT_NEXT();
3945 	}
3946 	len = asc_prt_line(cp, leftlen, "\n");
3947 	ASC_PRT_NEXT();
3948 
3949 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3950 	for (i = 0; i <= ADV_MAX_TID; i++) {
3951 
3952 		AdvReadWordLram(iop_base,
3953 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3954 				lramword);
3955 		lramword &= ~0x8000;
3956 
3957 		if ((chip_scsi_id == i) ||
3958 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3959 		    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3960 			continue;
3961 		}
3962 
3963 		len = asc_prt_line(cp, leftlen, "  %X:", i);
3964 		ASC_PRT_NEXT();
3965 
3966 		if ((lramword & 0x1F) == 0) {	/* Check for REQ/ACK Offset 0. */
3967 			len = asc_prt_line(cp, leftlen, " Asynchronous");
3968 			ASC_PRT_NEXT();
3969 		} else {
3970 			len =
3971 			    asc_prt_line(cp, leftlen,
3972 					 " Transfer Period Factor: ");
3973 			ASC_PRT_NEXT();
3974 
3975 			if ((lramword & 0x1F00) == 0x1100) {	/* 80 Mhz */
3976 				len =
3977 				    asc_prt_line(cp, leftlen, "9 (80.0 Mhz),");
3978 				ASC_PRT_NEXT();
3979 			} else if ((lramword & 0x1F00) == 0x1000) {	/* 40 Mhz */
3980 				len =
3981 				    asc_prt_line(cp, leftlen, "10 (40.0 Mhz),");
3982 				ASC_PRT_NEXT();
3983 			} else {	/* 20 Mhz or below. */
3984 
3985 				period = (((lramword >> 8) * 25) + 50) / 4;
3986 
3987 				if (period == 0) {	/* Should never happen. */
3988 					len =
3989 					    asc_prt_line(cp, leftlen,
3990 							 "%d (? Mhz), ");
3991 					ASC_PRT_NEXT();
3992 				} else {
3993 					len = asc_prt_line(cp, leftlen,
3994 							   "%d (%d.%d Mhz),",
3995 							   period, 250 / period,
3996 							   ASC_TENTHS(250,
3997 								      period));
3998 					ASC_PRT_NEXT();
3999 				}
4000 			}
4001 
4002 			len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
4003 					   lramword & 0x1F);
4004 			ASC_PRT_NEXT();
4005 		}
4006 
4007 		if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
4008 			len = asc_prt_line(cp, leftlen, "*\n");
4009 			renegotiate = 1;
4010 		} else {
4011 			len = asc_prt_line(cp, leftlen, "\n");
4012 		}
4013 		ASC_PRT_NEXT();
4014 	}
4015 
4016 	if (renegotiate) {
4017 		len = asc_prt_line(cp, leftlen,
4018 				   " * = Re-negotiation pending before next command.\n");
4019 		ASC_PRT_NEXT();
4020 	}
4021 
4022 	return totlen;
4023 }
4024 
4025 /*
4026  * asc_proc_copy()
4027  *
4028  * Copy proc information to a read buffer taking into account the current
4029  * read offset in the file and the remaining space in the read buffer.
4030  */
4031 static int
4032 asc_proc_copy(off_t advoffset, off_t offset, char *curbuf, int leftlen,
4033 	      char *cp, int cplen)
4034 {
4035 	int cnt = 0;
4036 
4037 	ASC_DBG(2, "offset %d, advoffset %d, cplen %d\n",
4038 		 (unsigned)offset, (unsigned)advoffset, cplen);
4039 	if (offset <= advoffset) {
4040 		/* Read offset below current offset, copy everything. */
4041 		cnt = min(cplen, leftlen);
4042 		ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4043 			 (ulong)curbuf, (ulong)cp, cnt);
4044 		memcpy(curbuf, cp, cnt);
4045 	} else if (offset < advoffset + cplen) {
4046 		/* Read offset within current range, partial copy. */
4047 		cnt = (advoffset + cplen) - offset;
4048 		cp = (cp + cplen) - cnt;
4049 		cnt = min(cnt, leftlen);
4050 		ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4051 			 (ulong)curbuf, (ulong)cp, cnt);
4052 		memcpy(curbuf, cp, cnt);
4053 	}
4054 	return cnt;
4055 }
4056 
4057 #ifdef ADVANSYS_STATS
4058 /*
4059  * asc_prt_board_stats()
4060  *
4061  * Note: no single line should be greater than ASC_PRTLINE_SIZE,
4062  * cf. asc_prt_line().
4063  *
4064  * Return the number of characters copied into 'cp'. No more than
4065  * 'cplen' characters will be copied to 'cp'.
4066  */
4067 static int asc_prt_board_stats(struct Scsi_Host *shost, char *cp, int cplen)
4068 {
4069 	struct asc_board *boardp = shost_priv(shost);
4070 	struct asc_stats *s = &boardp->asc_stats;
4071 
4072 	int leftlen = cplen;
4073 	int len, totlen = 0;
4074 
4075 	len = asc_prt_line(cp, leftlen,
4076 			   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
4077 			   shost->host_no);
4078 	ASC_PRT_NEXT();
4079 
4080 	len = asc_prt_line(cp, leftlen,
4081 			   " queuecommand %lu, reset %lu, biosparam %lu, interrupt %lu\n",
4082 			   s->queuecommand, s->reset, s->biosparam,
4083 			   s->interrupt);
4084 	ASC_PRT_NEXT();
4085 
4086 	len = asc_prt_line(cp, leftlen,
4087 			   " callback %lu, done %lu, build_error %lu, build_noreq %lu, build_nosg %lu\n",
4088 			   s->callback, s->done, s->build_error,
4089 			   s->adv_build_noreq, s->adv_build_nosg);
4090 	ASC_PRT_NEXT();
4091 
4092 	len = asc_prt_line(cp, leftlen,
4093 			   " exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n",
4094 			   s->exe_noerror, s->exe_busy, s->exe_error,
4095 			   s->exe_unknown);
4096 	ASC_PRT_NEXT();
4097 
4098 	/*
4099 	 * Display data transfer statistics.
4100 	 */
4101 	if (s->xfer_cnt > 0) {
4102 		len = asc_prt_line(cp, leftlen, " xfer_cnt %lu, xfer_elem %lu, ",
4103 				   s->xfer_cnt, s->xfer_elem);
4104 		ASC_PRT_NEXT();
4105 
4106 		len = asc_prt_line(cp, leftlen, "xfer_bytes %lu.%01lu kb\n",
4107 				   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
4108 		ASC_PRT_NEXT();
4109 
4110 		/* Scatter gather transfer statistics */
4111 		len = asc_prt_line(cp, leftlen, " avg_num_elem %lu.%01lu, ",
4112 				   s->xfer_elem / s->xfer_cnt,
4113 				   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
4114 		ASC_PRT_NEXT();
4115 
4116 		len = asc_prt_line(cp, leftlen, "avg_elem_size %lu.%01lu kb, ",
4117 				   (s->xfer_sect / 2) / s->xfer_elem,
4118 				   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
4119 		ASC_PRT_NEXT();
4120 
4121 		len = asc_prt_line(cp, leftlen, "avg_xfer_size %lu.%01lu kb\n",
4122 				   (s->xfer_sect / 2) / s->xfer_cnt,
4123 				   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
4124 		ASC_PRT_NEXT();
4125 	}
4126 
4127 	return totlen;
4128 }
4129 #endif /* ADVANSYS_STATS */
4130 
4131 /*
4132  * advansys_proc_info() - /proc/scsi/advansys/{0,1,2,3,...}
4133  *
4134  * *buffer: I/O buffer
4135  * **start: if inout == FALSE pointer into buffer where user read should start
4136  * offset: current offset into a /proc/scsi/advansys/[0...] file
4137  * length: length of buffer
4138  * hostno: Scsi_Host host_no
4139  * inout: TRUE - user is writing; FALSE - user is reading
4140  *
4141  * Return the number of bytes read from or written to a
4142  * /proc/scsi/advansys/[0...] file.
4143  *
4144  * Note: This function uses the per board buffer 'prtbuf' which is
4145  * allocated when the board is initialized in advansys_detect(). The
4146  * buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is
4147  * used to write to the buffer. The way asc_proc_copy() is written
4148  * if 'prtbuf' is too small it will not be overwritten. Instead the
4149  * user just won't get all the available statistics.
4150  */
4151 static int
4152 advansys_proc_info(struct Scsi_Host *shost, char *buffer, char **start,
4153 		   off_t offset, int length, int inout)
4154 {
4155 	struct asc_board *boardp = shost_priv(shost);
4156 	char *cp;
4157 	int cplen;
4158 	int cnt;
4159 	int totcnt;
4160 	int leftlen;
4161 	char *curbuf;
4162 	off_t advoffset;
4163 
4164 	ASC_DBG(1, "begin\n");
4165 
4166 	/*
4167 	 * User write not supported.
4168 	 */
4169 	if (inout == TRUE)
4170 		return -ENOSYS;
4171 
4172 	/*
4173 	 * User read of /proc/scsi/advansys/[0...] file.
4174 	 */
4175 
4176 	/* Copy read data starting at the beginning of the buffer. */
4177 	*start = buffer;
4178 	curbuf = buffer;
4179 	advoffset = 0;
4180 	totcnt = 0;
4181 	leftlen = length;
4182 
4183 	/*
4184 	 * Get board configuration information.
4185 	 *
4186 	 * advansys_info() returns the board string from its own static buffer.
4187 	 */
4188 	cp = (char *)advansys_info(shost);
4189 	strcat(cp, "\n");
4190 	cplen = strlen(cp);
4191 	/* Copy board information. */
4192 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4193 	totcnt += cnt;
4194 	leftlen -= cnt;
4195 	if (leftlen == 0) {
4196 		ASC_DBG(1, "totcnt %d\n", totcnt);
4197 		return totcnt;
4198 	}
4199 	advoffset += cplen;
4200 	curbuf += cnt;
4201 
4202 	/*
4203 	 * Display Wide Board BIOS Information.
4204 	 */
4205 	if (!ASC_NARROW_BOARD(boardp)) {
4206 		cp = boardp->prtbuf;
4207 		cplen = asc_prt_adv_bios(shost, cp, ASC_PRTBUF_SIZE);
4208 		BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4209 		cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp,
4210 				  cplen);
4211 		totcnt += cnt;
4212 		leftlen -= cnt;
4213 		if (leftlen == 0) {
4214 			ASC_DBG(1, "totcnt %d\n", totcnt);
4215 			return totcnt;
4216 		}
4217 		advoffset += cplen;
4218 		curbuf += cnt;
4219 	}
4220 
4221 	/*
4222 	 * Display driver information for each device attached to the board.
4223 	 */
4224 	cp = boardp->prtbuf;
4225 	cplen = asc_prt_board_devices(shost, cp, ASC_PRTBUF_SIZE);
4226 	BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4227 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4228 	totcnt += cnt;
4229 	leftlen -= cnt;
4230 	if (leftlen == 0) {
4231 		ASC_DBG(1, "totcnt %d\n", totcnt);
4232 		return totcnt;
4233 	}
4234 	advoffset += cplen;
4235 	curbuf += cnt;
4236 
4237 	/*
4238 	 * Display EEPROM configuration for the board.
4239 	 */
4240 	cp = boardp->prtbuf;
4241 	if (ASC_NARROW_BOARD(boardp)) {
4242 		cplen = asc_prt_asc_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4243 	} else {
4244 		cplen = asc_prt_adv_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4245 	}
4246 	BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4247 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4248 	totcnt += cnt;
4249 	leftlen -= cnt;
4250 	if (leftlen == 0) {
4251 		ASC_DBG(1, "totcnt %d\n", totcnt);
4252 		return totcnt;
4253 	}
4254 	advoffset += cplen;
4255 	curbuf += cnt;
4256 
4257 	/*
4258 	 * Display driver configuration and information for the board.
4259 	 */
4260 	cp = boardp->prtbuf;
4261 	cplen = asc_prt_driver_conf(shost, cp, ASC_PRTBUF_SIZE);
4262 	BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4263 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4264 	totcnt += cnt;
4265 	leftlen -= cnt;
4266 	if (leftlen == 0) {
4267 		ASC_DBG(1, "totcnt %d\n", totcnt);
4268 		return totcnt;
4269 	}
4270 	advoffset += cplen;
4271 	curbuf += cnt;
4272 
4273 #ifdef ADVANSYS_STATS
4274 	/*
4275 	 * Display driver statistics for the board.
4276 	 */
4277 	cp = boardp->prtbuf;
4278 	cplen = asc_prt_board_stats(shost, cp, ASC_PRTBUF_SIZE);
4279 	BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4280 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4281 	totcnt += cnt;
4282 	leftlen -= cnt;
4283 	if (leftlen == 0) {
4284 		ASC_DBG(1, "totcnt %d\n", totcnt);
4285 		return totcnt;
4286 	}
4287 	advoffset += cplen;
4288 	curbuf += cnt;
4289 #endif /* ADVANSYS_STATS */
4290 
4291 	/*
4292 	 * Display Asc Library dynamic configuration information
4293 	 * for the board.
4294 	 */
4295 	cp = boardp->prtbuf;
4296 	if (ASC_NARROW_BOARD(boardp)) {
4297 		cplen = asc_prt_asc_board_info(shost, cp, ASC_PRTBUF_SIZE);
4298 	} else {
4299 		cplen = asc_prt_adv_board_info(shost, cp, ASC_PRTBUF_SIZE);
4300 	}
4301 	BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4302 	cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4303 	totcnt += cnt;
4304 	leftlen -= cnt;
4305 	if (leftlen == 0) {
4306 		ASC_DBG(1, "totcnt %d\n", totcnt);
4307 		return totcnt;
4308 	}
4309 	advoffset += cplen;
4310 	curbuf += cnt;
4311 
4312 	ASC_DBG(1, "totcnt %d\n", totcnt);
4313 
4314 	return totcnt;
4315 }
4316 #endif /* CONFIG_PROC_FS */
4317 
4318 static void asc_scsi_done(struct scsi_cmnd *scp)
4319 {
4320 	scsi_dma_unmap(scp);
4321 	ASC_STATS(scp->device->host, done);
4322 	scp->scsi_done(scp);
4323 }
4324 
4325 static void AscSetBank(PortAddr iop_base, uchar bank)
4326 {
4327 	uchar val;
4328 
4329 	val = AscGetChipControl(iop_base) &
4330 	    (~
4331 	     (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
4332 	      CC_CHIP_RESET));
4333 	if (bank == 1) {
4334 		val |= CC_BANK_ONE;
4335 	} else if (bank == 2) {
4336 		val |= CC_DIAG | CC_BANK_ONE;
4337 	} else {
4338 		val &= ~CC_BANK_ONE;
4339 	}
4340 	AscSetChipControl(iop_base, val);
4341 }
4342 
4343 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
4344 {
4345 	AscSetBank(iop_base, 1);
4346 	AscWriteChipIH(iop_base, ins_code);
4347 	AscSetBank(iop_base, 0);
4348 }
4349 
4350 static int AscStartChip(PortAddr iop_base)
4351 {
4352 	AscSetChipControl(iop_base, 0);
4353 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4354 		return (0);
4355 	}
4356 	return (1);
4357 }
4358 
4359 static int AscStopChip(PortAddr iop_base)
4360 {
4361 	uchar cc_val;
4362 
4363 	cc_val =
4364 	    AscGetChipControl(iop_base) &
4365 	    (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
4366 	AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
4367 	AscSetChipIH(iop_base, INS_HALT);
4368 	AscSetChipIH(iop_base, INS_RFLAG_WTM);
4369 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
4370 		return (0);
4371 	}
4372 	return (1);
4373 }
4374 
4375 static int AscIsChipHalted(PortAddr iop_base)
4376 {
4377 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4378 		if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
4379 			return (1);
4380 		}
4381 	}
4382 	return (0);
4383 }
4384 
4385 static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
4386 {
4387 	PortAddr iop_base;
4388 	int i = 10;
4389 
4390 	iop_base = asc_dvc->iop_base;
4391 	while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
4392 	       && (i-- > 0)) {
4393 		mdelay(100);
4394 	}
4395 	AscStopChip(iop_base);
4396 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
4397 	udelay(60);
4398 	AscSetChipIH(iop_base, INS_RFLAG_WTM);
4399 	AscSetChipIH(iop_base, INS_HALT);
4400 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
4401 	AscSetChipControl(iop_base, CC_HALT);
4402 	mdelay(200);
4403 	AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
4404 	AscSetChipStatus(iop_base, 0);
4405 	return (AscIsChipHalted(iop_base));
4406 }
4407 
4408 static int AscFindSignature(PortAddr iop_base)
4409 {
4410 	ushort sig_word;
4411 
4412 	ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
4413 		 iop_base, AscGetChipSignatureByte(iop_base));
4414 	if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
4415 		ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
4416 			 iop_base, AscGetChipSignatureWord(iop_base));
4417 		sig_word = AscGetChipSignatureWord(iop_base);
4418 		if ((sig_word == (ushort)ASC_1000_ID0W) ||
4419 		    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
4420 			return (1);
4421 		}
4422 	}
4423 	return (0);
4424 }
4425 
4426 static void AscEnableInterrupt(PortAddr iop_base)
4427 {
4428 	ushort cfg;
4429 
4430 	cfg = AscGetChipCfgLsw(iop_base);
4431 	AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
4432 }
4433 
4434 static void AscDisableInterrupt(PortAddr iop_base)
4435 {
4436 	ushort cfg;
4437 
4438 	cfg = AscGetChipCfgLsw(iop_base);
4439 	AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
4440 }
4441 
4442 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
4443 {
4444 	unsigned char byte_data;
4445 	unsigned short word_data;
4446 
4447 	if (isodd_word(addr)) {
4448 		AscSetChipLramAddr(iop_base, addr - 1);
4449 		word_data = AscGetChipLramData(iop_base);
4450 		byte_data = (word_data >> 8) & 0xFF;
4451 	} else {
4452 		AscSetChipLramAddr(iop_base, addr);
4453 		word_data = AscGetChipLramData(iop_base);
4454 		byte_data = word_data & 0xFF;
4455 	}
4456 	return byte_data;
4457 }
4458 
4459 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
4460 {
4461 	ushort word_data;
4462 
4463 	AscSetChipLramAddr(iop_base, addr);
4464 	word_data = AscGetChipLramData(iop_base);
4465 	return (word_data);
4466 }
4467 
4468 #if CC_VERY_LONG_SG_LIST
4469 static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
4470 {
4471 	ushort val_low, val_high;
4472 	ASC_DCNT dword_data;
4473 
4474 	AscSetChipLramAddr(iop_base, addr);
4475 	val_low = AscGetChipLramData(iop_base);
4476 	val_high = AscGetChipLramData(iop_base);
4477 	dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
4478 	return (dword_data);
4479 }
4480 #endif /* CC_VERY_LONG_SG_LIST */
4481 
4482 static void
4483 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
4484 {
4485 	int i;
4486 
4487 	AscSetChipLramAddr(iop_base, s_addr);
4488 	for (i = 0; i < words; i++) {
4489 		AscSetChipLramData(iop_base, set_wval);
4490 	}
4491 }
4492 
4493 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
4494 {
4495 	AscSetChipLramAddr(iop_base, addr);
4496 	AscSetChipLramData(iop_base, word_val);
4497 }
4498 
4499 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
4500 {
4501 	ushort word_data;
4502 
4503 	if (isodd_word(addr)) {
4504 		addr--;
4505 		word_data = AscReadLramWord(iop_base, addr);
4506 		word_data &= 0x00FF;
4507 		word_data |= (((ushort)byte_val << 8) & 0xFF00);
4508 	} else {
4509 		word_data = AscReadLramWord(iop_base, addr);
4510 		word_data &= 0xFF00;
4511 		word_data |= ((ushort)byte_val & 0x00FF);
4512 	}
4513 	AscWriteLramWord(iop_base, addr, word_data);
4514 }
4515 
4516 /*
4517  * Copy 2 bytes to LRAM.
4518  *
4519  * The source data is assumed to be in little-endian order in memory
4520  * and is maintained in little-endian order when written to LRAM.
4521  */
4522 static void
4523 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
4524 			const uchar *s_buffer, int words)
4525 {
4526 	int i;
4527 
4528 	AscSetChipLramAddr(iop_base, s_addr);
4529 	for (i = 0; i < 2 * words; i += 2) {
4530 		/*
4531 		 * On a little-endian system the second argument below
4532 		 * produces a little-endian ushort which is written to
4533 		 * LRAM in little-endian order. On a big-endian system
4534 		 * the second argument produces a big-endian ushort which
4535 		 * is "transparently" byte-swapped by outpw() and written
4536 		 * in little-endian order to LRAM.
4537 		 */
4538 		outpw(iop_base + IOP_RAM_DATA,
4539 		      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
4540 	}
4541 }
4542 
4543 /*
4544  * Copy 4 bytes to LRAM.
4545  *
4546  * The source data is assumed to be in little-endian order in memory
4547  * and is maintained in little-endian order when writen to LRAM.
4548  */
4549 static void
4550 AscMemDWordCopyPtrToLram(PortAddr iop_base,
4551 			 ushort s_addr, uchar *s_buffer, int dwords)
4552 {
4553 	int i;
4554 
4555 	AscSetChipLramAddr(iop_base, s_addr);
4556 	for (i = 0; i < 4 * dwords; i += 4) {
4557 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);	/* LSW */
4558 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);	/* MSW */
4559 	}
4560 }
4561 
4562 /*
4563  * Copy 2 bytes from LRAM.
4564  *
4565  * The source data is assumed to be in little-endian order in LRAM
4566  * and is maintained in little-endian order when written to memory.
4567  */
4568 static void
4569 AscMemWordCopyPtrFromLram(PortAddr iop_base,
4570 			  ushort s_addr, uchar *d_buffer, int words)
4571 {
4572 	int i;
4573 	ushort word;
4574 
4575 	AscSetChipLramAddr(iop_base, s_addr);
4576 	for (i = 0; i < 2 * words; i += 2) {
4577 		word = inpw(iop_base + IOP_RAM_DATA);
4578 		d_buffer[i] = word & 0xff;
4579 		d_buffer[i + 1] = (word >> 8) & 0xff;
4580 	}
4581 }
4582 
4583 static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
4584 {
4585 	ASC_DCNT sum;
4586 	int i;
4587 
4588 	sum = 0L;
4589 	for (i = 0; i < words; i++, s_addr += 2) {
4590 		sum += AscReadLramWord(iop_base, s_addr);
4591 	}
4592 	return (sum);
4593 }
4594 
4595 static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
4596 {
4597 	uchar i;
4598 	ushort s_addr;
4599 	PortAddr iop_base;
4600 	ushort warn_code;
4601 
4602 	iop_base = asc_dvc->iop_base;
4603 	warn_code = 0;
4604 	AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
4605 			  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
4606 				    64) >> 1));
4607 	i = ASC_MIN_ACTIVE_QNO;
4608 	s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
4609 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4610 			 (uchar)(i + 1));
4611 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4612 			 (uchar)(asc_dvc->max_total_qng));
4613 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4614 			 (uchar)i);
4615 	i++;
4616 	s_addr += ASC_QBLK_SIZE;
4617 	for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
4618 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4619 				 (uchar)(i + 1));
4620 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4621 				 (uchar)(i - 1));
4622 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4623 				 (uchar)i);
4624 	}
4625 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4626 			 (uchar)ASC_QLINK_END);
4627 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4628 			 (uchar)(asc_dvc->max_total_qng - 1));
4629 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4630 			 (uchar)asc_dvc->max_total_qng);
4631 	i++;
4632 	s_addr += ASC_QBLK_SIZE;
4633 	for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
4634 	     i++, s_addr += ASC_QBLK_SIZE) {
4635 		AscWriteLramByte(iop_base,
4636 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
4637 		AscWriteLramByte(iop_base,
4638 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
4639 		AscWriteLramByte(iop_base,
4640 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
4641 	}
4642 	return warn_code;
4643 }
4644 
4645 static ASC_DCNT
4646 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
4647 		 const uchar *mcode_buf, ushort mcode_size)
4648 {
4649 	ASC_DCNT chksum;
4650 	ushort mcode_word_size;
4651 	ushort mcode_chksum;
4652 
4653 	/* Write the microcode buffer starting at LRAM address 0. */
4654 	mcode_word_size = (ushort)(mcode_size >> 1);
4655 	AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
4656 	AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
4657 
4658 	chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
4659 	ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
4660 	mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
4661 						 (ushort)ASC_CODE_SEC_BEG,
4662 						 (ushort)((mcode_size -
4663 							   s_addr - (ushort)
4664 							   ASC_CODE_SEC_BEG) /
4665 							  2));
4666 	ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
4667 	AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
4668 	AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
4669 	return chksum;
4670 }
4671 
4672 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
4673 {
4674 	PortAddr iop_base;
4675 	int i;
4676 	ushort lram_addr;
4677 
4678 	iop_base = asc_dvc->iop_base;
4679 	AscPutRiscVarFreeQHead(iop_base, 1);
4680 	AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4681 	AscPutVarFreeQHead(iop_base, 1);
4682 	AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4683 	AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4684 			 (uchar)((int)asc_dvc->max_total_qng + 1));
4685 	AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4686 			 (uchar)((int)asc_dvc->max_total_qng + 2));
4687 	AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4688 			 asc_dvc->max_total_qng);
4689 	AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4690 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4691 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4692 	AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4693 	AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4694 	AscPutQDoneInProgress(iop_base, 0);
4695 	lram_addr = ASC_QADR_BEG;
4696 	for (i = 0; i < 32; i++, lram_addr += 2) {
4697 		AscWriteLramWord(iop_base, lram_addr, 0);
4698 	}
4699 }
4700 
4701 static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4702 {
4703 	int i;
4704 	ushort warn_code;
4705 	PortAddr iop_base;
4706 	ASC_PADDR phy_addr;
4707 	ASC_DCNT phy_size;
4708 	struct asc_board *board = asc_dvc_to_board(asc_dvc);
4709 
4710 	iop_base = asc_dvc->iop_base;
4711 	warn_code = 0;
4712 	for (i = 0; i <= ASC_MAX_TID; i++) {
4713 		AscPutMCodeInitSDTRAtID(iop_base, i,
4714 					asc_dvc->cfg->sdtr_period_offset[i]);
4715 	}
4716 
4717 	AscInitQLinkVar(asc_dvc);
4718 	AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4719 			 asc_dvc->cfg->disc_enable);
4720 	AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4721 			 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4722 
4723 	/* Ensure overrun buffer is aligned on an 8 byte boundary. */
4724 	BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4725 	asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4726 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4727 	phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4728 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4729 				 (uchar *)&phy_addr, 1);
4730 	phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4731 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4732 				 (uchar *)&phy_size, 1);
4733 
4734 	asc_dvc->cfg->mcode_date =
4735 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4736 	asc_dvc->cfg->mcode_version =
4737 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4738 
4739 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4740 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4741 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4742 		return warn_code;
4743 	}
4744 	if (AscStartChip(iop_base) != 1) {
4745 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4746 		return warn_code;
4747 	}
4748 
4749 	return warn_code;
4750 }
4751 
4752 static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4753 {
4754 	const struct firmware *fw;
4755 	const char fwname[] = "advansys/mcode.bin";
4756 	int err;
4757 	unsigned long chksum;
4758 	ushort warn_code;
4759 	PortAddr iop_base;
4760 
4761 	iop_base = asc_dvc->iop_base;
4762 	warn_code = 0;
4763 	if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4764 	    !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4765 		AscResetChipAndScsiBus(asc_dvc);
4766 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4767 	}
4768 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4769 	if (asc_dvc->err_code != 0)
4770 		return UW_ERR;
4771 	if (!AscFindSignature(asc_dvc->iop_base)) {
4772 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4773 		return warn_code;
4774 	}
4775 	AscDisableInterrupt(iop_base);
4776 	warn_code |= AscInitLram(asc_dvc);
4777 	if (asc_dvc->err_code != 0)
4778 		return UW_ERR;
4779 
4780 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4781 	if (err) {
4782 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4783 		       fwname, err);
4784 		return err;
4785 	}
4786 	if (fw->size < 4) {
4787 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4788 		       fw->size, fwname);
4789 		release_firmware(fw);
4790 		return -EINVAL;
4791 	}
4792 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4793 		 (fw->data[1] << 8) | fw->data[0];
4794 	ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4795 	if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4796 			     fw->size - 4) != chksum) {
4797 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4798 		release_firmware(fw);
4799 		return warn_code;
4800 	}
4801 	release_firmware(fw);
4802 	warn_code |= AscInitMicroCodeVar(asc_dvc);
4803 	asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4804 	AscEnableInterrupt(iop_base);
4805 	return warn_code;
4806 }
4807 
4808 /*
4809  * Load the Microcode
4810  *
4811  * Write the microcode image to RISC memory starting at address 0.
4812  *
4813  * The microcode is stored compressed in the following format:
4814  *
4815  *  254 word (508 byte) table indexed by byte code followed
4816  *  by the following byte codes:
4817  *
4818  *    1-Byte Code:
4819  *      00: Emit word 0 in table.
4820  *      01: Emit word 1 in table.
4821  *      .
4822  *      FD: Emit word 253 in table.
4823  *
4824  *    Multi-Byte Code:
4825  *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4826  *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4827  *
4828  * Returns 0 or an error if the checksum doesn't match
4829  */
4830 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4831 			    int size, int memsize, int chksum)
4832 {
4833 	int i, j, end, len = 0;
4834 	ADV_DCNT sum;
4835 
4836 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4837 
4838 	for (i = 253 * 2; i < size; i++) {
4839 		if (buf[i] == 0xff) {
4840 			unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4841 			for (j = 0; j < buf[i + 1]; j++) {
4842 				AdvWriteWordAutoIncLram(iop_base, word);
4843 				len += 2;
4844 			}
4845 			i += 3;
4846 		} else if (buf[i] == 0xfe) {
4847 			unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4848 			AdvWriteWordAutoIncLram(iop_base, word);
4849 			i += 2;
4850 			len += 2;
4851 		} else {
4852 			unsigned int off = buf[i] * 2;
4853 			unsigned short word = (buf[off + 1] << 8) | buf[off];
4854 			AdvWriteWordAutoIncLram(iop_base, word);
4855 			len += 2;
4856 		}
4857 	}
4858 
4859 	end = len;
4860 
4861 	while (len < memsize) {
4862 		AdvWriteWordAutoIncLram(iop_base, 0);
4863 		len += 2;
4864 	}
4865 
4866 	/* Verify the microcode checksum. */
4867 	sum = 0;
4868 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4869 
4870 	for (len = 0; len < end; len += 2) {
4871 		sum += AdvReadWordAutoIncLram(iop_base);
4872 	}
4873 
4874 	if (sum != chksum)
4875 		return ASC_IERR_MCODE_CHKSUM;
4876 
4877 	return 0;
4878 }
4879 
4880 static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
4881 {
4882 	ADV_CARR_T *carrp;
4883 	ADV_SDCNT buf_size;
4884 	ADV_PADDR carr_paddr;
4885 
4886 	carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
4887 	asc_dvc->carr_freelist = NULL;
4888 	if (carrp == asc_dvc->carrier_buf) {
4889 		buf_size = ADV_CARRIER_BUFSIZE;
4890 	} else {
4891 		buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
4892 	}
4893 
4894 	do {
4895 		/* Get physical address of the carrier 'carrp'. */
4896 		carr_paddr = cpu_to_le32(virt_to_bus(carrp));
4897 
4898 		buf_size -= sizeof(ADV_CARR_T);
4899 
4900 		carrp->carr_pa = carr_paddr;
4901 		carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
4902 
4903 		/*
4904 		 * Insert the carrier at the beginning of the freelist.
4905 		 */
4906 		carrp->next_vpa =
4907 			cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
4908 		asc_dvc->carr_freelist = carrp;
4909 
4910 		carrp++;
4911 	} while (buf_size > 0);
4912 }
4913 
4914 /*
4915  * Send an idle command to the chip and wait for completion.
4916  *
4917  * Command completion is polled for once per microsecond.
4918  *
4919  * The function can be called from anywhere including an interrupt handler.
4920  * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4921  * functions to prevent reentrancy.
4922  *
4923  * Return Values:
4924  *   ADV_TRUE - command completed successfully
4925  *   ADV_FALSE - command failed
4926  *   ADV_ERROR - command timed out
4927  */
4928 static int
4929 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4930 	       ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
4931 {
4932 	int result;
4933 	ADV_DCNT i, j;
4934 	AdvPortAddr iop_base;
4935 
4936 	iop_base = asc_dvc->iop_base;
4937 
4938 	/*
4939 	 * Clear the idle command status which is set by the microcode
4940 	 * to a non-zero value to indicate when the command is completed.
4941 	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4942 	 */
4943 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4944 
4945 	/*
4946 	 * Write the idle command value after the idle command parameter
4947 	 * has been written to avoid a race condition. If the order is not
4948 	 * followed, the microcode may process the idle command before the
4949 	 * parameters have been written to LRAM.
4950 	 */
4951 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4952 				cpu_to_le32(idle_cmd_parameter));
4953 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4954 
4955 	/*
4956 	 * Tickle the RISC to tell it to process the idle command.
4957 	 */
4958 	AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4959 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4960 		/*
4961 		 * Clear the tickle value. In the ASC-3550 the RISC flag
4962 		 * command 'clr_tickle_b' does not work unless the host
4963 		 * value is cleared.
4964 		 */
4965 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4966 	}
4967 
4968 	/* Wait for up to 100 millisecond for the idle command to timeout. */
4969 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4970 		/* Poll once each microsecond for command completion. */
4971 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4972 			AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4973 					result);
4974 			if (result != 0)
4975 				return result;
4976 			udelay(1);
4977 		}
4978 	}
4979 
4980 	BUG();		/* The idle command should never timeout. */
4981 	return ADV_ERROR;
4982 }
4983 
4984 /*
4985  * Reset SCSI Bus and purge all outstanding requests.
4986  *
4987  * Return Value:
4988  *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4989  *      ADV_FALSE(0) -  Microcode command failed.
4990  *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4991  *                      may be hung which requires driver recovery.
4992  */
4993 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4994 {
4995 	int status;
4996 
4997 	/*
4998 	 * Send the SCSI Bus Reset idle start idle command which asserts
4999 	 * the SCSI Bus Reset signal.
5000 	 */
5001 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
5002 	if (status != ADV_TRUE) {
5003 		return status;
5004 	}
5005 
5006 	/*
5007 	 * Delay for the specified SCSI Bus Reset hold time.
5008 	 *
5009 	 * The hold time delay is done on the host because the RISC has no
5010 	 * microsecond accurate timer.
5011 	 */
5012 	udelay(ASC_SCSI_RESET_HOLD_TIME_US);
5013 
5014 	/*
5015 	 * Send the SCSI Bus Reset end idle command which de-asserts
5016 	 * the SCSI Bus Reset signal and purges any pending requests.
5017 	 */
5018 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
5019 	if (status != ADV_TRUE) {
5020 		return status;
5021 	}
5022 
5023 	mdelay(asc_dvc->scsi_reset_wait * 1000);	/* XXX: msleep? */
5024 
5025 	return status;
5026 }
5027 
5028 /*
5029  * Initialize the ASC-3550.
5030  *
5031  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5032  *
5033  * For a non-fatal error return a warning code. If there are no warnings
5034  * then 0 is returned.
5035  *
5036  * Needed after initialization for error recovery.
5037  */
5038 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
5039 {
5040 	const struct firmware *fw;
5041 	const char fwname[] = "advansys/3550.bin";
5042 	AdvPortAddr iop_base;
5043 	ushort warn_code;
5044 	int begin_addr;
5045 	int end_addr;
5046 	ushort code_sum;
5047 	int word;
5048 	int i;
5049 	int err;
5050 	unsigned long chksum;
5051 	ushort scsi_cfg1;
5052 	uchar tid;
5053 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5054 	ushort wdtr_able = 0, sdtr_able, tagqng_able;
5055 	uchar max_cmd[ADV_MAX_TID + 1];
5056 
5057 	/* If there is already an error, don't continue. */
5058 	if (asc_dvc->err_code != 0)
5059 		return ADV_ERROR;
5060 
5061 	/*
5062 	 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
5063 	 */
5064 	if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
5065 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5066 		return ADV_ERROR;
5067 	}
5068 
5069 	warn_code = 0;
5070 	iop_base = asc_dvc->iop_base;
5071 
5072 	/*
5073 	 * Save the RISC memory BIOS region before writing the microcode.
5074 	 * The BIOS may already be loaded and using its RISC LRAM region
5075 	 * so its region must be saved and restored.
5076 	 *
5077 	 * Note: This code makes the assumption, which is currently true,
5078 	 * that a chip reset does not clear RISC LRAM.
5079 	 */
5080 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5081 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5082 				bios_mem[i]);
5083 	}
5084 
5085 	/*
5086 	 * Save current per TID negotiated values.
5087 	 */
5088 	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
5089 		ushort bios_version, major, minor;
5090 
5091 		bios_version =
5092 		    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
5093 		major = (bios_version >> 12) & 0xF;
5094 		minor = (bios_version >> 8) & 0xF;
5095 		if (major < 3 || (major == 3 && minor == 1)) {
5096 			/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
5097 			AdvReadWordLram(iop_base, 0x120, wdtr_able);
5098 		} else {
5099 			AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5100 		}
5101 	}
5102 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5103 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5104 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5105 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5106 				max_cmd[tid]);
5107 	}
5108 
5109 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5110 	if (err) {
5111 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5112 		       fwname, err);
5113 		return err;
5114 	}
5115 	if (fw->size < 4) {
5116 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5117 		       fw->size, fwname);
5118 		release_firmware(fw);
5119 		return -EINVAL;
5120 	}
5121 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5122 		 (fw->data[1] << 8) | fw->data[0];
5123 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5124 					     fw->size - 4, ADV_3550_MEMSIZE,
5125 					     chksum);
5126 	release_firmware(fw);
5127 	if (asc_dvc->err_code)
5128 		return ADV_ERROR;
5129 
5130 	/*
5131 	 * Restore the RISC memory BIOS region.
5132 	 */
5133 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5134 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5135 				 bios_mem[i]);
5136 	}
5137 
5138 	/*
5139 	 * Calculate and write the microcode code checksum to the microcode
5140 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5141 	 */
5142 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5143 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5144 	code_sum = 0;
5145 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5146 	for (word = begin_addr; word < end_addr; word += 2) {
5147 		code_sum += AdvReadWordAutoIncLram(iop_base);
5148 	}
5149 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5150 
5151 	/*
5152 	 * Read and save microcode version and date.
5153 	 */
5154 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5155 			asc_dvc->cfg->mcode_date);
5156 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5157 			asc_dvc->cfg->mcode_version);
5158 
5159 	/*
5160 	 * Set the chip type to indicate the ASC3550.
5161 	 */
5162 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
5163 
5164 	/*
5165 	 * If the PCI Configuration Command Register "Parity Error Response
5166 	 * Control" Bit was clear (0), then set the microcode variable
5167 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5168 	 * to ignore DMA parity errors.
5169 	 */
5170 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5171 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5172 		word |= CONTROL_FLAG_IGNORE_PERR;
5173 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5174 	}
5175 
5176 	/*
5177 	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
5178 	 * threshold of 128 bytes. This register is only accessible to the host.
5179 	 */
5180 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5181 			     START_CTL_EMFU | READ_CMD_MRM);
5182 
5183 	/*
5184 	 * Microcode operating variables for WDTR, SDTR, and command tag
5185 	 * queuing will be set in slave_configure() based on what a
5186 	 * device reports it is capable of in Inquiry byte 7.
5187 	 *
5188 	 * If SCSI Bus Resets have been disabled, then directly set
5189 	 * SDTR and WDTR from the EEPROM configuration. This will allow
5190 	 * the BIOS and warm boot to work without a SCSI bus hang on
5191 	 * the Inquiry caused by host and target mismatched DTR values.
5192 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5193 	 * be assumed to be in Asynchronous, Narrow mode.
5194 	 */
5195 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5196 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5197 				 asc_dvc->wdtr_able);
5198 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5199 				 asc_dvc->sdtr_able);
5200 	}
5201 
5202 	/*
5203 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
5204 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
5205 	 * bitmask. These values determine the maximum SDTR speed negotiated
5206 	 * with a device.
5207 	 *
5208 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5209 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5210 	 * without determining here whether the device supports SDTR.
5211 	 *
5212 	 * 4-bit speed  SDTR speed name
5213 	 * ===========  ===============
5214 	 * 0000b (0x0)  SDTR disabled
5215 	 * 0001b (0x1)  5 Mhz
5216 	 * 0010b (0x2)  10 Mhz
5217 	 * 0011b (0x3)  20 Mhz (Ultra)
5218 	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
5219 	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
5220 	 * 0110b (0x6)  Undefined
5221 	 * .
5222 	 * 1111b (0xF)  Undefined
5223 	 */
5224 	word = 0;
5225 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5226 		if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
5227 			/* Set Ultra speed for TID 'tid'. */
5228 			word |= (0x3 << (4 * (tid % 4)));
5229 		} else {
5230 			/* Set Fast speed for TID 'tid'. */
5231 			word |= (0x2 << (4 * (tid % 4)));
5232 		}
5233 		if (tid == 3) {	/* Check if done with sdtr_speed1. */
5234 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
5235 			word = 0;
5236 		} else if (tid == 7) {	/* Check if done with sdtr_speed2. */
5237 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
5238 			word = 0;
5239 		} else if (tid == 11) {	/* Check if done with sdtr_speed3. */
5240 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
5241 			word = 0;
5242 		} else if (tid == 15) {	/* Check if done with sdtr_speed4. */
5243 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
5244 			/* End of loop. */
5245 		}
5246 	}
5247 
5248 	/*
5249 	 * Set microcode operating variable for the disconnect per TID bitmask.
5250 	 */
5251 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5252 			 asc_dvc->cfg->disc_enable);
5253 
5254 	/*
5255 	 * Set SCSI_CFG0 Microcode Default Value.
5256 	 *
5257 	 * The microcode will set the SCSI_CFG0 register using this value
5258 	 * after it is started below.
5259 	 */
5260 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5261 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5262 			 asc_dvc->chip_scsi_id);
5263 
5264 	/*
5265 	 * Determine SCSI_CFG1 Microcode Default Value.
5266 	 *
5267 	 * The microcode will set the SCSI_CFG1 register using this value
5268 	 * after it is started below.
5269 	 */
5270 
5271 	/* Read current SCSI_CFG1 Register value. */
5272 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5273 
5274 	/*
5275 	 * If all three connectors are in use, return an error.
5276 	 */
5277 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
5278 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
5279 		asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
5280 		return ADV_ERROR;
5281 	}
5282 
5283 	/*
5284 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
5285 	 * register signals will be set. Check for and return an error if
5286 	 * this condition is found.
5287 	 */
5288 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5289 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5290 		return ADV_ERROR;
5291 	}
5292 
5293 	/*
5294 	 * If this is a differential board and a single-ended device
5295 	 * is attached to one of the connectors, return an error.
5296 	 */
5297 	if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
5298 		asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
5299 		return ADV_ERROR;
5300 	}
5301 
5302 	/*
5303 	 * If automatic termination control is enabled, then set the
5304 	 * termination value based on a table listed in a_condor.h.
5305 	 *
5306 	 * If manual termination was specified with an EEPROM setting
5307 	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
5308 	 * is ready to be 'ored' into SCSI_CFG1.
5309 	 */
5310 	if (asc_dvc->cfg->termination == 0) {
5311 		/*
5312 		 * The software always controls termination by setting TERM_CTL_SEL.
5313 		 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
5314 		 */
5315 		asc_dvc->cfg->termination |= TERM_CTL_SEL;
5316 
5317 		switch (scsi_cfg1 & CABLE_DETECT) {
5318 			/* TERM_CTL_H: on, TERM_CTL_L: on */
5319 		case 0x3:
5320 		case 0x7:
5321 		case 0xB:
5322 		case 0xD:
5323 		case 0xE:
5324 		case 0xF:
5325 			asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
5326 			break;
5327 
5328 			/* TERM_CTL_H: on, TERM_CTL_L: off */
5329 		case 0x1:
5330 		case 0x5:
5331 		case 0x9:
5332 		case 0xA:
5333 		case 0xC:
5334 			asc_dvc->cfg->termination |= TERM_CTL_H;
5335 			break;
5336 
5337 			/* TERM_CTL_H: off, TERM_CTL_L: off */
5338 		case 0x2:
5339 		case 0x6:
5340 			break;
5341 		}
5342 	}
5343 
5344 	/*
5345 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
5346 	 */
5347 	scsi_cfg1 &= ~TERM_CTL;
5348 
5349 	/*
5350 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
5351 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
5352 	 * referenced, because the hardware internally inverts
5353 	 * the Termination High and Low bits if TERM_POL is set.
5354 	 */
5355 	scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
5356 
5357 	/*
5358 	 * Set SCSI_CFG1 Microcode Default Value
5359 	 *
5360 	 * Set filter value and possibly modified termination control
5361 	 * bits in the Microcode SCSI_CFG1 Register Value.
5362 	 *
5363 	 * The microcode will set the SCSI_CFG1 register using this value
5364 	 * after it is started below.
5365 	 */
5366 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
5367 			 FLTR_DISABLE | scsi_cfg1);
5368 
5369 	/*
5370 	 * Set MEM_CFG Microcode Default Value
5371 	 *
5372 	 * The microcode will set the MEM_CFG register using this value
5373 	 * after it is started below.
5374 	 *
5375 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5376 	 * are defined.
5377 	 *
5378 	 * ASC-3550 has 8KB internal memory.
5379 	 */
5380 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5381 			 BIOS_EN | RAM_SZ_8KB);
5382 
5383 	/*
5384 	 * Set SEL_MASK Microcode Default Value
5385 	 *
5386 	 * The microcode will set the SEL_MASK register using this value
5387 	 * after it is started below.
5388 	 */
5389 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5390 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5391 
5392 	AdvBuildCarrierFreelist(asc_dvc);
5393 
5394 	/*
5395 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5396 	 */
5397 
5398 	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5399 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5400 		return ADV_ERROR;
5401 	}
5402 	asc_dvc->carr_freelist = (ADV_CARR_T *)
5403 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5404 
5405 	/*
5406 	 * The first command issued will be placed in the stopper carrier.
5407 	 */
5408 	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5409 
5410 	/*
5411 	 * Set RISC ICQ physical address start value.
5412 	 */
5413 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5414 
5415 	/*
5416 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5417 	 */
5418 	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5419 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5420 		return ADV_ERROR;
5421 	}
5422 	asc_dvc->carr_freelist = (ADV_CARR_T *)
5423 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5424 
5425 	/*
5426 	 * The first command completed by the RISC will be placed in
5427 	 * the stopper.
5428 	 *
5429 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5430 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
5431 	 */
5432 	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5433 
5434 	/*
5435 	 * Set RISC IRQ physical address start value.
5436 	 */
5437 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5438 	asc_dvc->carr_pending_cnt = 0;
5439 
5440 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5441 			     (ADV_INTR_ENABLE_HOST_INTR |
5442 			      ADV_INTR_ENABLE_GLOBAL_INTR));
5443 
5444 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5445 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5446 
5447 	/* finally, finally, gentlemen, start your engine */
5448 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5449 
5450 	/*
5451 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5452 	 * Resets should be performed. The RISC has to be running
5453 	 * to issue a SCSI Bus Reset.
5454 	 */
5455 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5456 		/*
5457 		 * If the BIOS Signature is present in memory, restore the
5458 		 * BIOS Handshake Configuration Table and do not perform
5459 		 * a SCSI Bus Reset.
5460 		 */
5461 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5462 		    0x55AA) {
5463 			/*
5464 			 * Restore per TID negotiated values.
5465 			 */
5466 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5467 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5468 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5469 					 tagqng_able);
5470 			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5471 				AdvWriteByteLram(iop_base,
5472 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5473 						 max_cmd[tid]);
5474 			}
5475 		} else {
5476 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5477 				warn_code = ASC_WARN_BUSRESET_ERROR;
5478 			}
5479 		}
5480 	}
5481 
5482 	return warn_code;
5483 }
5484 
5485 /*
5486  * Initialize the ASC-38C0800.
5487  *
5488  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5489  *
5490  * For a non-fatal error return a warning code. If there are no warnings
5491  * then 0 is returned.
5492  *
5493  * Needed after initialization for error recovery.
5494  */
5495 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
5496 {
5497 	const struct firmware *fw;
5498 	const char fwname[] = "advansys/38C0800.bin";
5499 	AdvPortAddr iop_base;
5500 	ushort warn_code;
5501 	int begin_addr;
5502 	int end_addr;
5503 	ushort code_sum;
5504 	int word;
5505 	int i;
5506 	int err;
5507 	unsigned long chksum;
5508 	ushort scsi_cfg1;
5509 	uchar byte;
5510 	uchar tid;
5511 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5512 	ushort wdtr_able, sdtr_able, tagqng_able;
5513 	uchar max_cmd[ADV_MAX_TID + 1];
5514 
5515 	/* If there is already an error, don't continue. */
5516 	if (asc_dvc->err_code != 0)
5517 		return ADV_ERROR;
5518 
5519 	/*
5520 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5521 	 */
5522 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
5523 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5524 		return ADV_ERROR;
5525 	}
5526 
5527 	warn_code = 0;
5528 	iop_base = asc_dvc->iop_base;
5529 
5530 	/*
5531 	 * Save the RISC memory BIOS region before writing the microcode.
5532 	 * The BIOS may already be loaded and using its RISC LRAM region
5533 	 * so its region must be saved and restored.
5534 	 *
5535 	 * Note: This code makes the assumption, which is currently true,
5536 	 * that a chip reset does not clear RISC LRAM.
5537 	 */
5538 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5539 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5540 				bios_mem[i]);
5541 	}
5542 
5543 	/*
5544 	 * Save current per TID negotiated values.
5545 	 */
5546 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5547 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5548 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5549 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5550 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5551 				max_cmd[tid]);
5552 	}
5553 
5554 	/*
5555 	 * RAM BIST (RAM Built-In Self Test)
5556 	 *
5557 	 * Address : I/O base + offset 0x38h register (byte).
5558 	 * Function: Bit 7-6(RW) : RAM mode
5559 	 *                          Normal Mode   : 0x00
5560 	 *                          Pre-test Mode : 0x40
5561 	 *                          RAM Test Mode : 0x80
5562 	 *           Bit 5       : unused
5563 	 *           Bit 4(RO)   : Done bit
5564 	 *           Bit 3-0(RO) : Status
5565 	 *                          Host Error    : 0x08
5566 	 *                          Int_RAM Error : 0x04
5567 	 *                          RISC Error    : 0x02
5568 	 *                          SCSI Error    : 0x01
5569 	 *                          No Error      : 0x00
5570 	 *
5571 	 * Note: RAM BIST code should be put right here, before loading the
5572 	 * microcode and after saving the RISC memory BIOS region.
5573 	 */
5574 
5575 	/*
5576 	 * LRAM Pre-test
5577 	 *
5578 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5579 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5580 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5581 	 * to NORMAL_MODE, return an error too.
5582 	 */
5583 	for (i = 0; i < 2; i++) {
5584 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5585 		mdelay(10);	/* Wait for 10ms before reading back. */
5586 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5587 		if ((byte & RAM_TEST_DONE) == 0
5588 		    || (byte & 0x0F) != PRE_TEST_VALUE) {
5589 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5590 			return ADV_ERROR;
5591 		}
5592 
5593 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5594 		mdelay(10);	/* Wait for 10ms before reading back. */
5595 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5596 		    != NORMAL_VALUE) {
5597 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5598 			return ADV_ERROR;
5599 		}
5600 	}
5601 
5602 	/*
5603 	 * LRAM Test - It takes about 1.5 ms to run through the test.
5604 	 *
5605 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5606 	 * If Done bit not set or Status not 0, save register byte, set the
5607 	 * err_code, and return an error.
5608 	 */
5609 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5610 	mdelay(10);	/* Wait for 10ms before checking status. */
5611 
5612 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5613 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5614 		/* Get here if Done bit not set or Status not 0. */
5615 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
5616 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5617 		return ADV_ERROR;
5618 	}
5619 
5620 	/* We need to reset back to normal mode after LRAM test passes. */
5621 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5622 
5623 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5624 	if (err) {
5625 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5626 		       fwname, err);
5627 		return err;
5628 	}
5629 	if (fw->size < 4) {
5630 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5631 		       fw->size, fwname);
5632 		release_firmware(fw);
5633 		return -EINVAL;
5634 	}
5635 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5636 		 (fw->data[1] << 8) | fw->data[0];
5637 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5638 					     fw->size - 4, ADV_38C0800_MEMSIZE,
5639 					     chksum);
5640 	release_firmware(fw);
5641 	if (asc_dvc->err_code)
5642 		return ADV_ERROR;
5643 
5644 	/*
5645 	 * Restore the RISC memory BIOS region.
5646 	 */
5647 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5648 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5649 				 bios_mem[i]);
5650 	}
5651 
5652 	/*
5653 	 * Calculate and write the microcode code checksum to the microcode
5654 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5655 	 */
5656 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5657 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5658 	code_sum = 0;
5659 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5660 	for (word = begin_addr; word < end_addr; word += 2) {
5661 		code_sum += AdvReadWordAutoIncLram(iop_base);
5662 	}
5663 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5664 
5665 	/*
5666 	 * Read microcode version and date.
5667 	 */
5668 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5669 			asc_dvc->cfg->mcode_date);
5670 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5671 			asc_dvc->cfg->mcode_version);
5672 
5673 	/*
5674 	 * Set the chip type to indicate the ASC38C0800.
5675 	 */
5676 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5677 
5678 	/*
5679 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5680 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5681 	 * cable detection and then we are able to read C_DET[3:0].
5682 	 *
5683 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5684 	 * Microcode Default Value' section below.
5685 	 */
5686 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5687 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5688 			     scsi_cfg1 | DIS_TERM_DRV);
5689 
5690 	/*
5691 	 * If the PCI Configuration Command Register "Parity Error Response
5692 	 * Control" Bit was clear (0), then set the microcode variable
5693 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5694 	 * to ignore DMA parity errors.
5695 	 */
5696 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5697 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5698 		word |= CONTROL_FLAG_IGNORE_PERR;
5699 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5700 	}
5701 
5702 	/*
5703 	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5704 	 * bits for the default FIFO threshold.
5705 	 *
5706 	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5707 	 *
5708 	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5709 	 */
5710 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5711 			     BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5712 			     READ_CMD_MRM);
5713 
5714 	/*
5715 	 * Microcode operating variables for WDTR, SDTR, and command tag
5716 	 * queuing will be set in slave_configure() based on what a
5717 	 * device reports it is capable of in Inquiry byte 7.
5718 	 *
5719 	 * If SCSI Bus Resets have been disabled, then directly set
5720 	 * SDTR and WDTR from the EEPROM configuration. This will allow
5721 	 * the BIOS and warm boot to work without a SCSI bus hang on
5722 	 * the Inquiry caused by host and target mismatched DTR values.
5723 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5724 	 * be assumed to be in Asynchronous, Narrow mode.
5725 	 */
5726 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5727 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5728 				 asc_dvc->wdtr_able);
5729 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5730 				 asc_dvc->sdtr_able);
5731 	}
5732 
5733 	/*
5734 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5735 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5736 	 * configuration values.
5737 	 *
5738 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5739 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5740 	 * without determining here whether the device supports SDTR.
5741 	 */
5742 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5743 			 asc_dvc->cfg->disc_enable);
5744 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5745 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5746 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5747 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5748 
5749 	/*
5750 	 * Set SCSI_CFG0 Microcode Default Value.
5751 	 *
5752 	 * The microcode will set the SCSI_CFG0 register using this value
5753 	 * after it is started below.
5754 	 */
5755 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5756 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5757 			 asc_dvc->chip_scsi_id);
5758 
5759 	/*
5760 	 * Determine SCSI_CFG1 Microcode Default Value.
5761 	 *
5762 	 * The microcode will set the SCSI_CFG1 register using this value
5763 	 * after it is started below.
5764 	 */
5765 
5766 	/* Read current SCSI_CFG1 Register value. */
5767 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5768 
5769 	/*
5770 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
5771 	 * register signals will be set. Check for and return an error if
5772 	 * this condition is found.
5773 	 */
5774 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5775 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5776 		return ADV_ERROR;
5777 	}
5778 
5779 	/*
5780 	 * All kind of combinations of devices attached to one of four
5781 	 * connectors are acceptable except HVD device attached. For example,
5782 	 * LVD device can be attached to SE connector while SE device attached
5783 	 * to LVD connector.  If LVD device attached to SE connector, it only
5784 	 * runs up to Ultra speed.
5785 	 *
5786 	 * If an HVD device is attached to one of LVD connectors, return an
5787 	 * error.  However, there is no way to detect HVD device attached to
5788 	 * SE connectors.
5789 	 */
5790 	if (scsi_cfg1 & HVD) {
5791 		asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5792 		return ADV_ERROR;
5793 	}
5794 
5795 	/*
5796 	 * If either SE or LVD automatic termination control is enabled, then
5797 	 * set the termination value based on a table listed in a_condor.h.
5798 	 *
5799 	 * If manual termination was specified with an EEPROM setting then
5800 	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5801 	 * to be 'ored' into SCSI_CFG1.
5802 	 */
5803 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5804 		/* SE automatic termination control is enabled. */
5805 		switch (scsi_cfg1 & C_DET_SE) {
5806 			/* TERM_SE_HI: on, TERM_SE_LO: on */
5807 		case 0x1:
5808 		case 0x2:
5809 		case 0x3:
5810 			asc_dvc->cfg->termination |= TERM_SE;
5811 			break;
5812 
5813 			/* TERM_SE_HI: on, TERM_SE_LO: off */
5814 		case 0x0:
5815 			asc_dvc->cfg->termination |= TERM_SE_HI;
5816 			break;
5817 		}
5818 	}
5819 
5820 	if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5821 		/* LVD automatic termination control is enabled. */
5822 		switch (scsi_cfg1 & C_DET_LVD) {
5823 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
5824 		case 0x4:
5825 		case 0x8:
5826 		case 0xC:
5827 			asc_dvc->cfg->termination |= TERM_LVD;
5828 			break;
5829 
5830 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
5831 		case 0x0:
5832 			break;
5833 		}
5834 	}
5835 
5836 	/*
5837 	 * Clear any set TERM_SE and TERM_LVD bits.
5838 	 */
5839 	scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5840 
5841 	/*
5842 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5843 	 */
5844 	scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5845 
5846 	/*
5847 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5848 	 * bits and set possibly modified termination control bits in the
5849 	 * Microcode SCSI_CFG1 Register Value.
5850 	 */
5851 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5852 
5853 	/*
5854 	 * Set SCSI_CFG1 Microcode Default Value
5855 	 *
5856 	 * Set possibly modified termination control and reset DIS_TERM_DRV
5857 	 * bits in the Microcode SCSI_CFG1 Register Value.
5858 	 *
5859 	 * The microcode will set the SCSI_CFG1 register using this value
5860 	 * after it is started below.
5861 	 */
5862 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5863 
5864 	/*
5865 	 * Set MEM_CFG Microcode Default Value
5866 	 *
5867 	 * The microcode will set the MEM_CFG register using this value
5868 	 * after it is started below.
5869 	 *
5870 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5871 	 * are defined.
5872 	 *
5873 	 * ASC-38C0800 has 16KB internal memory.
5874 	 */
5875 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5876 			 BIOS_EN | RAM_SZ_16KB);
5877 
5878 	/*
5879 	 * Set SEL_MASK Microcode Default Value
5880 	 *
5881 	 * The microcode will set the SEL_MASK register using this value
5882 	 * after it is started below.
5883 	 */
5884 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5885 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5886 
5887 	AdvBuildCarrierFreelist(asc_dvc);
5888 
5889 	/*
5890 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5891 	 */
5892 
5893 	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5894 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5895 		return ADV_ERROR;
5896 	}
5897 	asc_dvc->carr_freelist = (ADV_CARR_T *)
5898 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5899 
5900 	/*
5901 	 * The first command issued will be placed in the stopper carrier.
5902 	 */
5903 	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5904 
5905 	/*
5906 	 * Set RISC ICQ physical address start value.
5907 	 * carr_pa is LE, must be native before write
5908 	 */
5909 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5910 
5911 	/*
5912 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5913 	 */
5914 	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5915 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5916 		return ADV_ERROR;
5917 	}
5918 	asc_dvc->carr_freelist = (ADV_CARR_T *)
5919 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5920 
5921 	/*
5922 	 * The first command completed by the RISC will be placed in
5923 	 * the stopper.
5924 	 *
5925 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5926 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
5927 	 */
5928 	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5929 
5930 	/*
5931 	 * Set RISC IRQ physical address start value.
5932 	 *
5933 	 * carr_pa is LE, must be native before write *
5934 	 */
5935 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5936 	asc_dvc->carr_pending_cnt = 0;
5937 
5938 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5939 			     (ADV_INTR_ENABLE_HOST_INTR |
5940 			      ADV_INTR_ENABLE_GLOBAL_INTR));
5941 
5942 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5943 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5944 
5945 	/* finally, finally, gentlemen, start your engine */
5946 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5947 
5948 	/*
5949 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5950 	 * Resets should be performed. The RISC has to be running
5951 	 * to issue a SCSI Bus Reset.
5952 	 */
5953 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5954 		/*
5955 		 * If the BIOS Signature is present in memory, restore the
5956 		 * BIOS Handshake Configuration Table and do not perform
5957 		 * a SCSI Bus Reset.
5958 		 */
5959 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5960 		    0x55AA) {
5961 			/*
5962 			 * Restore per TID negotiated values.
5963 			 */
5964 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5965 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5966 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5967 					 tagqng_able);
5968 			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5969 				AdvWriteByteLram(iop_base,
5970 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5971 						 max_cmd[tid]);
5972 			}
5973 		} else {
5974 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5975 				warn_code = ASC_WARN_BUSRESET_ERROR;
5976 			}
5977 		}
5978 	}
5979 
5980 	return warn_code;
5981 }
5982 
5983 /*
5984  * Initialize the ASC-38C1600.
5985  *
5986  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5987  *
5988  * For a non-fatal error return a warning code. If there are no warnings
5989  * then 0 is returned.
5990  *
5991  * Needed after initialization for error recovery.
5992  */
5993 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5994 {
5995 	const struct firmware *fw;
5996 	const char fwname[] = "advansys/38C1600.bin";
5997 	AdvPortAddr iop_base;
5998 	ushort warn_code;
5999 	int begin_addr;
6000 	int end_addr;
6001 	ushort code_sum;
6002 	long word;
6003 	int i;
6004 	int err;
6005 	unsigned long chksum;
6006 	ushort scsi_cfg1;
6007 	uchar byte;
6008 	uchar tid;
6009 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
6010 	ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
6011 	uchar max_cmd[ASC_MAX_TID + 1];
6012 
6013 	/* If there is already an error, don't continue. */
6014 	if (asc_dvc->err_code != 0) {
6015 		return ADV_ERROR;
6016 	}
6017 
6018 	/*
6019 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
6020 	 */
6021 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
6022 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
6023 		return ADV_ERROR;
6024 	}
6025 
6026 	warn_code = 0;
6027 	iop_base = asc_dvc->iop_base;
6028 
6029 	/*
6030 	 * Save the RISC memory BIOS region before writing the microcode.
6031 	 * The BIOS may already be loaded and using its RISC LRAM region
6032 	 * so its region must be saved and restored.
6033 	 *
6034 	 * Note: This code makes the assumption, which is currently true,
6035 	 * that a chip reset does not clear RISC LRAM.
6036 	 */
6037 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6038 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6039 				bios_mem[i]);
6040 	}
6041 
6042 	/*
6043 	 * Save current per TID negotiated values.
6044 	 */
6045 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6046 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6047 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6048 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6049 	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6050 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6051 				max_cmd[tid]);
6052 	}
6053 
6054 	/*
6055 	 * RAM BIST (Built-In Self Test)
6056 	 *
6057 	 * Address : I/O base + offset 0x38h register (byte).
6058 	 * Function: Bit 7-6(RW) : RAM mode
6059 	 *                          Normal Mode   : 0x00
6060 	 *                          Pre-test Mode : 0x40
6061 	 *                          RAM Test Mode : 0x80
6062 	 *           Bit 5       : unused
6063 	 *           Bit 4(RO)   : Done bit
6064 	 *           Bit 3-0(RO) : Status
6065 	 *                          Host Error    : 0x08
6066 	 *                          Int_RAM Error : 0x04
6067 	 *                          RISC Error    : 0x02
6068 	 *                          SCSI Error    : 0x01
6069 	 *                          No Error      : 0x00
6070 	 *
6071 	 * Note: RAM BIST code should be put right here, before loading the
6072 	 * microcode and after saving the RISC memory BIOS region.
6073 	 */
6074 
6075 	/*
6076 	 * LRAM Pre-test
6077 	 *
6078 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
6079 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
6080 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
6081 	 * to NORMAL_MODE, return an error too.
6082 	 */
6083 	for (i = 0; i < 2; i++) {
6084 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
6085 		mdelay(10);	/* Wait for 10ms before reading back. */
6086 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6087 		if ((byte & RAM_TEST_DONE) == 0
6088 		    || (byte & 0x0F) != PRE_TEST_VALUE) {
6089 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6090 			return ADV_ERROR;
6091 		}
6092 
6093 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
6094 		mdelay(10);	/* Wait for 10ms before reading back. */
6095 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
6096 		    != NORMAL_VALUE) {
6097 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6098 			return ADV_ERROR;
6099 		}
6100 	}
6101 
6102 	/*
6103 	 * LRAM Test - It takes about 1.5 ms to run through the test.
6104 	 *
6105 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
6106 	 * If Done bit not set or Status not 0, save register byte, set the
6107 	 * err_code, and return an error.
6108 	 */
6109 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
6110 	mdelay(10);	/* Wait for 10ms before checking status. */
6111 
6112 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6113 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
6114 		/* Get here if Done bit not set or Status not 0. */
6115 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
6116 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
6117 		return ADV_ERROR;
6118 	}
6119 
6120 	/* We need to reset back to normal mode after LRAM test passes. */
6121 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
6122 
6123 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
6124 	if (err) {
6125 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
6126 		       fwname, err);
6127 		return err;
6128 	}
6129 	if (fw->size < 4) {
6130 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
6131 		       fw->size, fwname);
6132 		release_firmware(fw);
6133 		return -EINVAL;
6134 	}
6135 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
6136 		 (fw->data[1] << 8) | fw->data[0];
6137 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
6138 					     fw->size - 4, ADV_38C1600_MEMSIZE,
6139 					     chksum);
6140 	release_firmware(fw);
6141 	if (asc_dvc->err_code)
6142 		return ADV_ERROR;
6143 
6144 	/*
6145 	 * Restore the RISC memory BIOS region.
6146 	 */
6147 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6148 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6149 				 bios_mem[i]);
6150 	}
6151 
6152 	/*
6153 	 * Calculate and write the microcode code checksum to the microcode
6154 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
6155 	 */
6156 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
6157 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
6158 	code_sum = 0;
6159 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
6160 	for (word = begin_addr; word < end_addr; word += 2) {
6161 		code_sum += AdvReadWordAutoIncLram(iop_base);
6162 	}
6163 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
6164 
6165 	/*
6166 	 * Read microcode version and date.
6167 	 */
6168 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
6169 			asc_dvc->cfg->mcode_date);
6170 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
6171 			asc_dvc->cfg->mcode_version);
6172 
6173 	/*
6174 	 * Set the chip type to indicate the ASC38C1600.
6175 	 */
6176 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
6177 
6178 	/*
6179 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
6180 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
6181 	 * cable detection and then we are able to read C_DET[3:0].
6182 	 *
6183 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
6184 	 * Microcode Default Value' section below.
6185 	 */
6186 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6187 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
6188 			     scsi_cfg1 | DIS_TERM_DRV);
6189 
6190 	/*
6191 	 * If the PCI Configuration Command Register "Parity Error Response
6192 	 * Control" Bit was clear (0), then set the microcode variable
6193 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
6194 	 * to ignore DMA parity errors.
6195 	 */
6196 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
6197 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6198 		word |= CONTROL_FLAG_IGNORE_PERR;
6199 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6200 	}
6201 
6202 	/*
6203 	 * If the BIOS control flag AIPP (Asynchronous Information
6204 	 * Phase Protection) disable bit is not set, then set the firmware
6205 	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
6206 	 * AIPP checking and encoding.
6207 	 */
6208 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
6209 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6210 		word |= CONTROL_FLAG_ENABLE_AIPP;
6211 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6212 	}
6213 
6214 	/*
6215 	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
6216 	 * and START_CTL_TH [3:2].
6217 	 */
6218 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
6219 			     FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
6220 
6221 	/*
6222 	 * Microcode operating variables for WDTR, SDTR, and command tag
6223 	 * queuing will be set in slave_configure() based on what a
6224 	 * device reports it is capable of in Inquiry byte 7.
6225 	 *
6226 	 * If SCSI Bus Resets have been disabled, then directly set
6227 	 * SDTR and WDTR from the EEPROM configuration. This will allow
6228 	 * the BIOS and warm boot to work without a SCSI bus hang on
6229 	 * the Inquiry caused by host and target mismatched DTR values.
6230 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
6231 	 * be assumed to be in Asynchronous, Narrow mode.
6232 	 */
6233 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
6234 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
6235 				 asc_dvc->wdtr_able);
6236 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
6237 				 asc_dvc->sdtr_able);
6238 	}
6239 
6240 	/*
6241 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
6242 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
6243 	 * configuration values.
6244 	 *
6245 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
6246 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
6247 	 * without determining here whether the device supports SDTR.
6248 	 */
6249 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
6250 			 asc_dvc->cfg->disc_enable);
6251 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
6252 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
6253 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
6254 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
6255 
6256 	/*
6257 	 * Set SCSI_CFG0 Microcode Default Value.
6258 	 *
6259 	 * The microcode will set the SCSI_CFG0 register using this value
6260 	 * after it is started below.
6261 	 */
6262 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
6263 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
6264 			 asc_dvc->chip_scsi_id);
6265 
6266 	/*
6267 	 * Calculate SCSI_CFG1 Microcode Default Value.
6268 	 *
6269 	 * The microcode will set the SCSI_CFG1 register using this value
6270 	 * after it is started below.
6271 	 *
6272 	 * Each ASC-38C1600 function has only two cable detect bits.
6273 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
6274 	 */
6275 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6276 
6277 	/*
6278 	 * If the cable is reversed all of the SCSI_CTRL register signals
6279 	 * will be set. Check for and return an error if this condition is
6280 	 * found.
6281 	 */
6282 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
6283 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
6284 		return ADV_ERROR;
6285 	}
6286 
6287 	/*
6288 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
6289 	 * can not be connected to either connector. An LVD device or SE device
6290 	 * may be connected to either connecor. If an SE device is connected,
6291 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
6292 	 *
6293 	 * If an HVD device is attached, return an error.
6294 	 */
6295 	if (scsi_cfg1 & HVD) {
6296 		asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
6297 		return ADV_ERROR;
6298 	}
6299 
6300 	/*
6301 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
6302 	 * termination because there are two connectors for each function. Each
6303 	 * function may use either LVD or SE mode. Corresponding the SE automatic
6304 	 * termination control EEPROM bits are used for each function. Each
6305 	 * function has its own EEPROM. If SE automatic control is enabled for
6306 	 * the function, then set the termination value based on a table listed
6307 	 * in a_condor.h.
6308 	 *
6309 	 * If manual termination is specified in the EEPROM for the function,
6310 	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
6311 	 * ready to be 'ored' into SCSI_CFG1.
6312 	 */
6313 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
6314 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
6315 		/* SE automatic termination control is enabled. */
6316 		switch (scsi_cfg1 & C_DET_SE) {
6317 			/* TERM_SE_HI: on, TERM_SE_LO: on */
6318 		case 0x1:
6319 		case 0x2:
6320 		case 0x3:
6321 			asc_dvc->cfg->termination |= TERM_SE;
6322 			break;
6323 
6324 		case 0x0:
6325 			if (PCI_FUNC(pdev->devfn) == 0) {
6326 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
6327 			} else {
6328 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
6329 				asc_dvc->cfg->termination |= TERM_SE_HI;
6330 			}
6331 			break;
6332 		}
6333 	}
6334 
6335 	/*
6336 	 * Clear any set TERM_SE bits.
6337 	 */
6338 	scsi_cfg1 &= ~TERM_SE;
6339 
6340 	/*
6341 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
6342 	 */
6343 	scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
6344 
6345 	/*
6346 	 * Clear Big Endian and Terminator Polarity bits and set possibly
6347 	 * modified termination control bits in the Microcode SCSI_CFG1
6348 	 * Register Value.
6349 	 *
6350 	 * Big Endian bit is not used even on big endian machines.
6351 	 */
6352 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
6353 
6354 	/*
6355 	 * Set SCSI_CFG1 Microcode Default Value
6356 	 *
6357 	 * Set possibly modified termination control bits in the Microcode
6358 	 * SCSI_CFG1 Register Value.
6359 	 *
6360 	 * The microcode will set the SCSI_CFG1 register using this value
6361 	 * after it is started below.
6362 	 */
6363 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
6364 
6365 	/*
6366 	 * Set MEM_CFG Microcode Default Value
6367 	 *
6368 	 * The microcode will set the MEM_CFG register using this value
6369 	 * after it is started below.
6370 	 *
6371 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
6372 	 * are defined.
6373 	 *
6374 	 * ASC-38C1600 has 32KB internal memory.
6375 	 *
6376 	 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
6377 	 * out a special 16K Adv Library and Microcode version. After the issue
6378 	 * resolved, we should turn back to the 32K support. Both a_condor.h and
6379 	 * mcode.sas files also need to be updated.
6380 	 *
6381 	 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6382 	 *  BIOS_EN | RAM_SZ_32KB);
6383 	 */
6384 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6385 			 BIOS_EN | RAM_SZ_16KB);
6386 
6387 	/*
6388 	 * Set SEL_MASK Microcode Default Value
6389 	 *
6390 	 * The microcode will set the SEL_MASK register using this value
6391 	 * after it is started below.
6392 	 */
6393 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
6394 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
6395 
6396 	AdvBuildCarrierFreelist(asc_dvc);
6397 
6398 	/*
6399 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
6400 	 */
6401 	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
6402 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6403 		return ADV_ERROR;
6404 	}
6405 	asc_dvc->carr_freelist = (ADV_CARR_T *)
6406 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
6407 
6408 	/*
6409 	 * The first command issued will be placed in the stopper carrier.
6410 	 */
6411 	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
6412 
6413 	/*
6414 	 * Set RISC ICQ physical address start value. Initialize the
6415 	 * COMMA register to the same value otherwise the RISC will
6416 	 * prematurely detect a command is available.
6417 	 */
6418 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
6419 	AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
6420 			      le32_to_cpu(asc_dvc->icq_sp->carr_pa));
6421 
6422 	/*
6423 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
6424 	 */
6425 	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
6426 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6427 		return ADV_ERROR;
6428 	}
6429 	asc_dvc->carr_freelist = (ADV_CARR_T *)
6430 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
6431 
6432 	/*
6433 	 * The first command completed by the RISC will be placed in
6434 	 * the stopper.
6435 	 *
6436 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
6437 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
6438 	 */
6439 	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
6440 
6441 	/*
6442 	 * Set RISC IRQ physical address start value.
6443 	 */
6444 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
6445 	asc_dvc->carr_pending_cnt = 0;
6446 
6447 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
6448 			     (ADV_INTR_ENABLE_HOST_INTR |
6449 			      ADV_INTR_ENABLE_GLOBAL_INTR));
6450 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
6451 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
6452 
6453 	/* finally, finally, gentlemen, start your engine */
6454 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
6455 
6456 	/*
6457 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
6458 	 * Resets should be performed. The RISC has to be running
6459 	 * to issue a SCSI Bus Reset.
6460 	 */
6461 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
6462 		/*
6463 		 * If the BIOS Signature is present in memory, restore the
6464 		 * per TID microcode operating variables.
6465 		 */
6466 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
6467 		    0x55AA) {
6468 			/*
6469 			 * Restore per TID negotiated values.
6470 			 */
6471 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6472 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6473 			AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6474 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
6475 					 tagqng_able);
6476 			for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6477 				AdvWriteByteLram(iop_base,
6478 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
6479 						 max_cmd[tid]);
6480 			}
6481 		} else {
6482 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
6483 				warn_code = ASC_WARN_BUSRESET_ERROR;
6484 			}
6485 		}
6486 	}
6487 
6488 	return warn_code;
6489 }
6490 
6491 /*
6492  * Reset chip and SCSI Bus.
6493  *
6494  * Return Value:
6495  *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
6496  *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
6497  */
6498 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
6499 {
6500 	int status;
6501 	ushort wdtr_able, sdtr_able, tagqng_able;
6502 	ushort ppr_able = 0;
6503 	uchar tid, max_cmd[ADV_MAX_TID + 1];
6504 	AdvPortAddr iop_base;
6505 	ushort bios_sig;
6506 
6507 	iop_base = asc_dvc->iop_base;
6508 
6509 	/*
6510 	 * Save current per TID negotiated values.
6511 	 */
6512 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6513 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6514 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6515 		AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6516 	}
6517 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6518 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6519 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6520 				max_cmd[tid]);
6521 	}
6522 
6523 	/*
6524 	 * Force the AdvInitAsc3550/38C0800Driver() function to
6525 	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
6526 	 * The initialization functions assumes a SCSI Bus Reset is not
6527 	 * needed if the BIOS signature word is present.
6528 	 */
6529 	AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6530 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
6531 
6532 	/*
6533 	 * Stop chip and reset it.
6534 	 */
6535 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
6536 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
6537 	mdelay(100);
6538 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
6539 			     ADV_CTRL_REG_CMD_WR_IO_REG);
6540 
6541 	/*
6542 	 * Reset Adv Library error code, if any, and try
6543 	 * re-initializing the chip.
6544 	 */
6545 	asc_dvc->err_code = 0;
6546 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6547 		status = AdvInitAsc38C1600Driver(asc_dvc);
6548 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6549 		status = AdvInitAsc38C0800Driver(asc_dvc);
6550 	} else {
6551 		status = AdvInitAsc3550Driver(asc_dvc);
6552 	}
6553 
6554 	/* Translate initialization return value to status value. */
6555 	if (status == 0) {
6556 		status = ADV_TRUE;
6557 	} else {
6558 		status = ADV_FALSE;
6559 	}
6560 
6561 	/*
6562 	 * Restore the BIOS signature word.
6563 	 */
6564 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6565 
6566 	/*
6567 	 * Restore per TID negotiated values.
6568 	 */
6569 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6570 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6571 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6572 		AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6573 	}
6574 	AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6575 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6576 		AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6577 				 max_cmd[tid]);
6578 	}
6579 
6580 	return status;
6581 }
6582 
6583 /*
6584  * adv_async_callback() - Adv Library asynchronous event callback function.
6585  */
6586 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
6587 {
6588 	switch (code) {
6589 	case ADV_ASYNC_SCSI_BUS_RESET_DET:
6590 		/*
6591 		 * The firmware detected a SCSI Bus reset.
6592 		 */
6593 		ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6594 		break;
6595 
6596 	case ADV_ASYNC_RDMA_FAILURE:
6597 		/*
6598 		 * Handle RDMA failure by resetting the SCSI Bus and
6599 		 * possibly the chip if it is unresponsive. Log the error
6600 		 * with a unique code.
6601 		 */
6602 		ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6603 		AdvResetChipAndSB(adv_dvc_varp);
6604 		break;
6605 
6606 	case ADV_HOST_SCSI_BUS_RESET:
6607 		/*
6608 		 * Host generated SCSI bus reset occurred.
6609 		 */
6610 		ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6611 		break;
6612 
6613 	default:
6614 		ASC_DBG(0, "unknown code 0x%x\n", code);
6615 		break;
6616 	}
6617 }
6618 
6619 /*
6620  * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6621  *
6622  * Callback function for the Wide SCSI Adv Library.
6623  */
6624 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
6625 {
6626 	struct asc_board *boardp;
6627 	adv_req_t *reqp;
6628 	adv_sgblk_t *sgblkp;
6629 	struct scsi_cmnd *scp;
6630 	struct Scsi_Host *shost;
6631 	ADV_DCNT resid_cnt;
6632 
6633 	ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6634 		 (ulong)adv_dvc_varp, (ulong)scsiqp);
6635 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
6636 
6637 	/*
6638 	 * Get the adv_req_t structure for the command that has been
6639 	 * completed. The adv_req_t structure actually contains the
6640 	 * completed ADV_SCSI_REQ_Q structure.
6641 	 */
6642 	reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
6643 	ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
6644 	if (reqp == NULL) {
6645 		ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6646 		return;
6647 	}
6648 
6649 	/*
6650 	 * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6651 	 * command that has been completed.
6652 	 *
6653 	 * Note: The adv_req_t request structure and adv_sgblk_t structure,
6654 	 * if any, are dropped, because a board structure pointer can not be
6655 	 * determined.
6656 	 */
6657 	scp = reqp->cmndp;
6658 	ASC_DBG(1, "scp 0x%p\n", scp);
6659 	if (scp == NULL) {
6660 		ASC_PRINT
6661 		    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6662 		return;
6663 	}
6664 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6665 
6666 	shost = scp->device->host;
6667 	ASC_STATS(shost, callback);
6668 	ASC_DBG(1, "shost 0x%p\n", shost);
6669 
6670 	boardp = shost_priv(shost);
6671 	BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
6672 
6673 	/*
6674 	 * 'done_status' contains the command's ending status.
6675 	 */
6676 	switch (scsiqp->done_status) {
6677 	case QD_NO_ERROR:
6678 		ASC_DBG(2, "QD_NO_ERROR\n");
6679 		scp->result = 0;
6680 
6681 		/*
6682 		 * Check for an underrun condition.
6683 		 *
6684 		 * If there was no error and an underrun condition, then
6685 		 * then return the number of underrun bytes.
6686 		 */
6687 		resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6688 		if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6689 		    resid_cnt <= scsi_bufflen(scp)) {
6690 			ASC_DBG(1, "underrun condition %lu bytes\n",
6691 				 (ulong)resid_cnt);
6692 			scsi_set_resid(scp, resid_cnt);
6693 		}
6694 		break;
6695 
6696 	case QD_WITH_ERROR:
6697 		ASC_DBG(2, "QD_WITH_ERROR\n");
6698 		switch (scsiqp->host_status) {
6699 		case QHSTA_NO_ERROR:
6700 			if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6701 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6702 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6703 						  SCSI_SENSE_BUFFERSIZE);
6704 				/*
6705 				 * Note: The 'status_byte()' macro used by
6706 				 * target drivers defined in scsi.h shifts the
6707 				 * status byte returned by host drivers right
6708 				 * by 1 bit.  This is why target drivers also
6709 				 * use right shifted status byte definitions.
6710 				 * For instance target drivers use
6711 				 * CHECK_CONDITION, defined to 0x1, instead of
6712 				 * the SCSI defined check condition value of
6713 				 * 0x2. Host drivers are supposed to return
6714 				 * the status byte as it is defined by SCSI.
6715 				 */
6716 				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6717 				    STATUS_BYTE(scsiqp->scsi_status);
6718 			} else {
6719 				scp->result = STATUS_BYTE(scsiqp->scsi_status);
6720 			}
6721 			break;
6722 
6723 		default:
6724 			/* Some other QHSTA error occurred. */
6725 			ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6726 			scp->result = HOST_BYTE(DID_BAD_TARGET);
6727 			break;
6728 		}
6729 		break;
6730 
6731 	case QD_ABORTED_BY_HOST:
6732 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6733 		scp->result =
6734 		    HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6735 		break;
6736 
6737 	default:
6738 		ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6739 		scp->result =
6740 		    HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6741 		break;
6742 	}
6743 
6744 	/*
6745 	 * If the 'init_tidmask' bit isn't already set for the target and the
6746 	 * current request finished normally, then set the bit for the target
6747 	 * to indicate that a device is present.
6748 	 */
6749 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6750 	    scsiqp->done_status == QD_NO_ERROR &&
6751 	    scsiqp->host_status == QHSTA_NO_ERROR) {
6752 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6753 	}
6754 
6755 	asc_scsi_done(scp);
6756 
6757 	/*
6758 	 * Free all 'adv_sgblk_t' structures allocated for the request.
6759 	 */
6760 	while ((sgblkp = reqp->sgblkp) != NULL) {
6761 		/* Remove 'sgblkp' from the request list. */
6762 		reqp->sgblkp = sgblkp->next_sgblkp;
6763 
6764 		/* Add 'sgblkp' to the board free list. */
6765 		sgblkp->next_sgblkp = boardp->adv_sgblkp;
6766 		boardp->adv_sgblkp = sgblkp;
6767 	}
6768 
6769 	/*
6770 	 * Free the adv_req_t structure used with the command by adding
6771 	 * it back to the board free list.
6772 	 */
6773 	reqp->next_reqp = boardp->adv_reqp;
6774 	boardp->adv_reqp = reqp;
6775 
6776 	ASC_DBG(1, "done\n");
6777 }
6778 
6779 /*
6780  * Adv Library Interrupt Service Routine
6781  *
6782  *  This function is called by a driver's interrupt service routine.
6783  *  The function disables and re-enables interrupts.
6784  *
6785  *  When a microcode idle command is completed, the ADV_DVC_VAR
6786  *  'idle_cmd_done' field is set to ADV_TRUE.
6787  *
6788  *  Note: AdvISR() can be called when interrupts are disabled or even
6789  *  when there is no hardware interrupt condition present. It will
6790  *  always check for completed idle commands and microcode requests.
6791  *  This is an important feature that shouldn't be changed because it
6792  *  allows commands to be completed from polling mode loops.
6793  *
6794  * Return:
6795  *   ADV_TRUE(1) - interrupt was pending
6796  *   ADV_FALSE(0) - no interrupt was pending
6797  */
6798 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6799 {
6800 	AdvPortAddr iop_base;
6801 	uchar int_stat;
6802 	ushort target_bit;
6803 	ADV_CARR_T *free_carrp;
6804 	ADV_VADDR irq_next_vpa;
6805 	ADV_SCSI_REQ_Q *scsiq;
6806 
6807 	iop_base = asc_dvc->iop_base;
6808 
6809 	/* Reading the register clears the interrupt. */
6810 	int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6811 
6812 	if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6813 			 ADV_INTR_STATUS_INTRC)) == 0) {
6814 		return ADV_FALSE;
6815 	}
6816 
6817 	/*
6818 	 * Notify the driver of an asynchronous microcode condition by
6819 	 * calling the adv_async_callback function. The function
6820 	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6821 	 */
6822 	if (int_stat & ADV_INTR_STATUS_INTRB) {
6823 		uchar intrb_code;
6824 
6825 		AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6826 
6827 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6828 		    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6829 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6830 			    asc_dvc->carr_pending_cnt != 0) {
6831 				AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6832 						     ADV_TICKLE_A);
6833 				if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6834 					AdvWriteByteRegister(iop_base,
6835 							     IOPB_TICKLE,
6836 							     ADV_TICKLE_NOP);
6837 				}
6838 			}
6839 		}
6840 
6841 		adv_async_callback(asc_dvc, intrb_code);
6842 	}
6843 
6844 	/*
6845 	 * Check if the IRQ stopper carrier contains a completed request.
6846 	 */
6847 	while (((irq_next_vpa =
6848 		 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
6849 		/*
6850 		 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6851 		 * The RISC will have set 'areq_vpa' to a virtual address.
6852 		 *
6853 		 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6854 		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6855 		 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6856 		 * in AdvExeScsiQueue().
6857 		 */
6858 		scsiq = (ADV_SCSI_REQ_Q *)
6859 		    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa));
6860 
6861 		/*
6862 		 * Request finished with good status and the queue was not
6863 		 * DMAed to host memory by the firmware. Set all status fields
6864 		 * to indicate good status.
6865 		 */
6866 		if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
6867 			scsiq->done_status = QD_NO_ERROR;
6868 			scsiq->host_status = scsiq->scsi_status = 0;
6869 			scsiq->data_cnt = 0L;
6870 		}
6871 
6872 		/*
6873 		 * Advance the stopper pointer to the next carrier
6874 		 * ignoring the lower four bits. Free the previous
6875 		 * stopper carrier.
6876 		 */
6877 		free_carrp = asc_dvc->irq_sp;
6878 		asc_dvc->irq_sp = (ADV_CARR_T *)
6879 		    ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
6880 
6881 		free_carrp->next_vpa =
6882 		    cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
6883 		asc_dvc->carr_freelist = free_carrp;
6884 		asc_dvc->carr_pending_cnt--;
6885 
6886 		target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6887 
6888 		/*
6889 		 * Clear request microcode control flag.
6890 		 */
6891 		scsiq->cntl = 0;
6892 
6893 		/*
6894 		 * Notify the driver of the completed request by passing
6895 		 * the ADV_SCSI_REQ_Q pointer to its callback function.
6896 		 */
6897 		scsiq->a_flag |= ADV_SCSIQ_DONE;
6898 		adv_isr_callback(asc_dvc, scsiq);
6899 		/*
6900 		 * Note: After the driver callback function is called, 'scsiq'
6901 		 * can no longer be referenced.
6902 		 *
6903 		 * Fall through and continue processing other completed
6904 		 * requests...
6905 		 */
6906 	}
6907 	return ADV_TRUE;
6908 }
6909 
6910 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6911 {
6912 	if (asc_dvc->err_code == 0) {
6913 		asc_dvc->err_code = err_code;
6914 		AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6915 				 err_code);
6916 	}
6917 	return err_code;
6918 }
6919 
6920 static void AscAckInterrupt(PortAddr iop_base)
6921 {
6922 	uchar host_flag;
6923 	uchar risc_flag;
6924 	ushort loop;
6925 
6926 	loop = 0;
6927 	do {
6928 		risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6929 		if (loop++ > 0x7FFF) {
6930 			break;
6931 		}
6932 	} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6933 	host_flag =
6934 	    AscReadLramByte(iop_base,
6935 			    ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6936 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6937 			 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6938 	AscSetChipStatus(iop_base, CIW_INT_ACK);
6939 	loop = 0;
6940 	while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6941 		AscSetChipStatus(iop_base, CIW_INT_ACK);
6942 		if (loop++ > 3) {
6943 			break;
6944 		}
6945 	}
6946 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6947 }
6948 
6949 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6950 {
6951 	const uchar *period_table;
6952 	int max_index;
6953 	int min_index;
6954 	int i;
6955 
6956 	period_table = asc_dvc->sdtr_period_tbl;
6957 	max_index = (int)asc_dvc->max_sdtr_index;
6958 	min_index = (int)asc_dvc->min_sdtr_index;
6959 	if ((syn_time <= period_table[max_index])) {
6960 		for (i = min_index; i < (max_index - 1); i++) {
6961 			if (syn_time <= period_table[i]) {
6962 				return (uchar)i;
6963 			}
6964 		}
6965 		return (uchar)max_index;
6966 	} else {
6967 		return (uchar)(max_index + 1);
6968 	}
6969 }
6970 
6971 static uchar
6972 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6973 {
6974 	EXT_MSG sdtr_buf;
6975 	uchar sdtr_period_index;
6976 	PortAddr iop_base;
6977 
6978 	iop_base = asc_dvc->iop_base;
6979 	sdtr_buf.msg_type = EXTENDED_MESSAGE;
6980 	sdtr_buf.msg_len = MS_SDTR_LEN;
6981 	sdtr_buf.msg_req = EXTENDED_SDTR;
6982 	sdtr_buf.xfer_period = sdtr_period;
6983 	sdtr_offset &= ASC_SYN_MAX_OFFSET;
6984 	sdtr_buf.req_ack_offset = sdtr_offset;
6985 	sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6986 	if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6987 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6988 					(uchar *)&sdtr_buf,
6989 					sizeof(EXT_MSG) >> 1);
6990 		return ((sdtr_period_index << 4) | sdtr_offset);
6991 	} else {
6992 		sdtr_buf.req_ack_offset = 0;
6993 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6994 					(uchar *)&sdtr_buf,
6995 					sizeof(EXT_MSG) >> 1);
6996 		return 0;
6997 	}
6998 }
6999 
7000 static uchar
7001 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
7002 {
7003 	uchar byte;
7004 	uchar sdtr_period_ix;
7005 
7006 	sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
7007 	if (sdtr_period_ix > asc_dvc->max_sdtr_index)
7008 		return 0xFF;
7009 	byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
7010 	return byte;
7011 }
7012 
7013 static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
7014 {
7015 	ASC_SCSI_BIT_ID_TYPE org_id;
7016 	int i;
7017 	int sta = TRUE;
7018 
7019 	AscSetBank(iop_base, 1);
7020 	org_id = AscReadChipDvcID(iop_base);
7021 	for (i = 0; i <= ASC_MAX_TID; i++) {
7022 		if (org_id == (0x01 << i))
7023 			break;
7024 	}
7025 	org_id = (ASC_SCSI_BIT_ID_TYPE) i;
7026 	AscWriteChipDvcID(iop_base, id);
7027 	if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
7028 		AscSetBank(iop_base, 0);
7029 		AscSetChipSyn(iop_base, sdtr_data);
7030 		if (AscGetChipSyn(iop_base) != sdtr_data) {
7031 			sta = FALSE;
7032 		}
7033 	} else {
7034 		sta = FALSE;
7035 	}
7036 	AscSetBank(iop_base, 1);
7037 	AscWriteChipDvcID(iop_base, org_id);
7038 	AscSetBank(iop_base, 0);
7039 	return (sta);
7040 }
7041 
7042 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
7043 {
7044 	AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7045 	AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
7046 }
7047 
7048 static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
7049 {
7050 	EXT_MSG ext_msg;
7051 	EXT_MSG out_msg;
7052 	ushort halt_q_addr;
7053 	int sdtr_accept;
7054 	ushort int_halt_code;
7055 	ASC_SCSI_BIT_ID_TYPE scsi_busy;
7056 	ASC_SCSI_BIT_ID_TYPE target_id;
7057 	PortAddr iop_base;
7058 	uchar tag_code;
7059 	uchar q_status;
7060 	uchar halt_qp;
7061 	uchar sdtr_data;
7062 	uchar target_ix;
7063 	uchar q_cntl, tid_no;
7064 	uchar cur_dvc_qng;
7065 	uchar asyn_sdtr;
7066 	uchar scsi_status;
7067 	struct asc_board *boardp;
7068 
7069 	BUG_ON(!asc_dvc->drv_ptr);
7070 	boardp = asc_dvc->drv_ptr;
7071 
7072 	iop_base = asc_dvc->iop_base;
7073 	int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
7074 
7075 	halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
7076 	halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
7077 	target_ix = AscReadLramByte(iop_base,
7078 				    (ushort)(halt_q_addr +
7079 					     (ushort)ASC_SCSIQ_B_TARGET_IX));
7080 	q_cntl = AscReadLramByte(iop_base,
7081 			    (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7082 	tid_no = ASC_TIX_TO_TID(target_ix);
7083 	target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
7084 	if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7085 		asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
7086 	} else {
7087 		asyn_sdtr = 0;
7088 	}
7089 	if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
7090 		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7091 			AscSetChipSDTR(iop_base, 0, tid_no);
7092 			boardp->sdtr_data[tid_no] = 0;
7093 		}
7094 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7095 		return (0);
7096 	} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
7097 		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7098 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7099 			boardp->sdtr_data[tid_no] = asyn_sdtr;
7100 		}
7101 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7102 		return (0);
7103 	} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
7104 		AscMemWordCopyPtrFromLram(iop_base,
7105 					  ASCV_MSGIN_BEG,
7106 					  (uchar *)&ext_msg,
7107 					  sizeof(EXT_MSG) >> 1);
7108 
7109 		if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7110 		    ext_msg.msg_req == EXTENDED_SDTR &&
7111 		    ext_msg.msg_len == MS_SDTR_LEN) {
7112 			sdtr_accept = TRUE;
7113 			if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
7114 
7115 				sdtr_accept = FALSE;
7116 				ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
7117 			}
7118 			if ((ext_msg.xfer_period <
7119 			     asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
7120 			    || (ext_msg.xfer_period >
7121 				asc_dvc->sdtr_period_tbl[asc_dvc->
7122 							 max_sdtr_index])) {
7123 				sdtr_accept = FALSE;
7124 				ext_msg.xfer_period =
7125 				    asc_dvc->sdtr_period_tbl[asc_dvc->
7126 							     min_sdtr_index];
7127 			}
7128 			if (sdtr_accept) {
7129 				sdtr_data =
7130 				    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
7131 						   ext_msg.req_ack_offset);
7132 				if ((sdtr_data == 0xFF)) {
7133 
7134 					q_cntl |= QC_MSG_OUT;
7135 					asc_dvc->init_sdtr &= ~target_id;
7136 					asc_dvc->sdtr_done &= ~target_id;
7137 					AscSetChipSDTR(iop_base, asyn_sdtr,
7138 						       tid_no);
7139 					boardp->sdtr_data[tid_no] = asyn_sdtr;
7140 				}
7141 			}
7142 			if (ext_msg.req_ack_offset == 0) {
7143 
7144 				q_cntl &= ~QC_MSG_OUT;
7145 				asc_dvc->init_sdtr &= ~target_id;
7146 				asc_dvc->sdtr_done &= ~target_id;
7147 				AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7148 			} else {
7149 				if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
7150 					q_cntl &= ~QC_MSG_OUT;
7151 					asc_dvc->sdtr_done |= target_id;
7152 					asc_dvc->init_sdtr |= target_id;
7153 					asc_dvc->pci_fix_asyn_xfer &=
7154 					    ~target_id;
7155 					sdtr_data =
7156 					    AscCalSDTRData(asc_dvc,
7157 							   ext_msg.xfer_period,
7158 							   ext_msg.
7159 							   req_ack_offset);
7160 					AscSetChipSDTR(iop_base, sdtr_data,
7161 						       tid_no);
7162 					boardp->sdtr_data[tid_no] = sdtr_data;
7163 				} else {
7164 					q_cntl |= QC_MSG_OUT;
7165 					AscMsgOutSDTR(asc_dvc,
7166 						      ext_msg.xfer_period,
7167 						      ext_msg.req_ack_offset);
7168 					asc_dvc->pci_fix_asyn_xfer &=
7169 					    ~target_id;
7170 					sdtr_data =
7171 					    AscCalSDTRData(asc_dvc,
7172 							   ext_msg.xfer_period,
7173 							   ext_msg.
7174 							   req_ack_offset);
7175 					AscSetChipSDTR(iop_base, sdtr_data,
7176 						       tid_no);
7177 					boardp->sdtr_data[tid_no] = sdtr_data;
7178 					asc_dvc->sdtr_done |= target_id;
7179 					asc_dvc->init_sdtr |= target_id;
7180 				}
7181 			}
7182 
7183 			AscWriteLramByte(iop_base,
7184 					 (ushort)(halt_q_addr +
7185 						  (ushort)ASC_SCSIQ_B_CNTL),
7186 					 q_cntl);
7187 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7188 			return (0);
7189 		} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7190 			   ext_msg.msg_req == EXTENDED_WDTR &&
7191 			   ext_msg.msg_len == MS_WDTR_LEN) {
7192 
7193 			ext_msg.wdtr_width = 0;
7194 			AscMemWordCopyPtrToLram(iop_base,
7195 						ASCV_MSGOUT_BEG,
7196 						(uchar *)&ext_msg,
7197 						sizeof(EXT_MSG) >> 1);
7198 			q_cntl |= QC_MSG_OUT;
7199 			AscWriteLramByte(iop_base,
7200 					 (ushort)(halt_q_addr +
7201 						  (ushort)ASC_SCSIQ_B_CNTL),
7202 					 q_cntl);
7203 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7204 			return (0);
7205 		} else {
7206 
7207 			ext_msg.msg_type = MESSAGE_REJECT;
7208 			AscMemWordCopyPtrToLram(iop_base,
7209 						ASCV_MSGOUT_BEG,
7210 						(uchar *)&ext_msg,
7211 						sizeof(EXT_MSG) >> 1);
7212 			q_cntl |= QC_MSG_OUT;
7213 			AscWriteLramByte(iop_base,
7214 					 (ushort)(halt_q_addr +
7215 						  (ushort)ASC_SCSIQ_B_CNTL),
7216 					 q_cntl);
7217 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7218 			return (0);
7219 		}
7220 	} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
7221 
7222 		q_cntl |= QC_REQ_SENSE;
7223 
7224 		if ((asc_dvc->init_sdtr & target_id) != 0) {
7225 
7226 			asc_dvc->sdtr_done &= ~target_id;
7227 
7228 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7229 			q_cntl |= QC_MSG_OUT;
7230 			AscMsgOutSDTR(asc_dvc,
7231 				      asc_dvc->
7232 				      sdtr_period_tbl[(sdtr_data >> 4) &
7233 						      (uchar)(asc_dvc->
7234 							      max_sdtr_index -
7235 							      1)],
7236 				      (uchar)(sdtr_data & (uchar)
7237 					      ASC_SYN_MAX_OFFSET));
7238 		}
7239 
7240 		AscWriteLramByte(iop_base,
7241 				 (ushort)(halt_q_addr +
7242 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7243 
7244 		tag_code = AscReadLramByte(iop_base,
7245 					   (ushort)(halt_q_addr + (ushort)
7246 						    ASC_SCSIQ_B_TAG_CODE));
7247 		tag_code &= 0xDC;
7248 		if ((asc_dvc->pci_fix_asyn_xfer & target_id)
7249 		    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
7250 		    ) {
7251 
7252 			tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
7253 				     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
7254 
7255 		}
7256 		AscWriteLramByte(iop_base,
7257 				 (ushort)(halt_q_addr +
7258 					  (ushort)ASC_SCSIQ_B_TAG_CODE),
7259 				 tag_code);
7260 
7261 		q_status = AscReadLramByte(iop_base,
7262 					   (ushort)(halt_q_addr + (ushort)
7263 						    ASC_SCSIQ_B_STATUS));
7264 		q_status |= (QS_READY | QS_BUSY);
7265 		AscWriteLramByte(iop_base,
7266 				 (ushort)(halt_q_addr +
7267 					  (ushort)ASC_SCSIQ_B_STATUS),
7268 				 q_status);
7269 
7270 		scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
7271 		scsi_busy &= ~target_id;
7272 		AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7273 
7274 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7275 		return (0);
7276 	} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
7277 
7278 		AscMemWordCopyPtrFromLram(iop_base,
7279 					  ASCV_MSGOUT_BEG,
7280 					  (uchar *)&out_msg,
7281 					  sizeof(EXT_MSG) >> 1);
7282 
7283 		if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
7284 		    (out_msg.msg_len == MS_SDTR_LEN) &&
7285 		    (out_msg.msg_req == EXTENDED_SDTR)) {
7286 
7287 			asc_dvc->init_sdtr &= ~target_id;
7288 			asc_dvc->sdtr_done &= ~target_id;
7289 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7290 			boardp->sdtr_data[tid_no] = asyn_sdtr;
7291 		}
7292 		q_cntl &= ~QC_MSG_OUT;
7293 		AscWriteLramByte(iop_base,
7294 				 (ushort)(halt_q_addr +
7295 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7296 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7297 		return (0);
7298 	} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
7299 
7300 		scsi_status = AscReadLramByte(iop_base,
7301 					      (ushort)((ushort)halt_q_addr +
7302 						       (ushort)
7303 						       ASC_SCSIQ_SCSI_STATUS));
7304 		cur_dvc_qng =
7305 		    AscReadLramByte(iop_base,
7306 				    (ushort)((ushort)ASC_QADR_BEG +
7307 					     (ushort)target_ix));
7308 		if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
7309 
7310 			scsi_busy = AscReadLramByte(iop_base,
7311 						    (ushort)ASCV_SCSIBUSY_B);
7312 			scsi_busy |= target_id;
7313 			AscWriteLramByte(iop_base,
7314 					 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7315 			asc_dvc->queue_full_or_busy |= target_id;
7316 
7317 			if (scsi_status == SAM_STAT_TASK_SET_FULL) {
7318 				if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
7319 					cur_dvc_qng -= 1;
7320 					asc_dvc->max_dvc_qng[tid_no] =
7321 					    cur_dvc_qng;
7322 
7323 					AscWriteLramByte(iop_base,
7324 							 (ushort)((ushort)
7325 								  ASCV_MAX_DVC_QNG_BEG
7326 								  + (ushort)
7327 								  tid_no),
7328 							 cur_dvc_qng);
7329 
7330 					/*
7331 					 * Set the device queue depth to the
7332 					 * number of active requests when the
7333 					 * QUEUE FULL condition was encountered.
7334 					 */
7335 					boardp->queue_full |= target_id;
7336 					boardp->queue_full_cnt[tid_no] =
7337 					    cur_dvc_qng;
7338 				}
7339 			}
7340 		}
7341 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7342 		return (0);
7343 	}
7344 #if CC_VERY_LONG_SG_LIST
7345 	else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
7346 		uchar q_no;
7347 		ushort q_addr;
7348 		uchar sg_wk_q_no;
7349 		uchar first_sg_wk_q_no;
7350 		ASC_SCSI_Q *scsiq;	/* Ptr to driver request. */
7351 		ASC_SG_HEAD *sg_head;	/* Ptr to driver SG request. */
7352 		ASC_SG_LIST_Q scsi_sg_q;	/* Structure written to queue. */
7353 		ushort sg_list_dwords;
7354 		ushort sg_entry_cnt;
7355 		uchar next_qp;
7356 		int i;
7357 
7358 		q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
7359 		if (q_no == ASC_QLINK_END)
7360 			return 0;
7361 
7362 		q_addr = ASC_QNO_TO_QADDR(q_no);
7363 
7364 		/*
7365 		 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
7366 		 * structure pointer using a macro provided by the driver.
7367 		 * The ASC_SCSI_REQ pointer provides a pointer to the
7368 		 * host ASC_SG_HEAD structure.
7369 		 */
7370 		/* Read request's SRB pointer. */
7371 		scsiq = (ASC_SCSI_Q *)
7372 		    ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
7373 								    (ushort)
7374 								    (q_addr +
7375 								     ASC_SCSIQ_D_SRBPTR))));
7376 
7377 		/*
7378 		 * Get request's first and working SG queue.
7379 		 */
7380 		sg_wk_q_no = AscReadLramByte(iop_base,
7381 					     (ushort)(q_addr +
7382 						      ASC_SCSIQ_B_SG_WK_QP));
7383 
7384 		first_sg_wk_q_no = AscReadLramByte(iop_base,
7385 						   (ushort)(q_addr +
7386 							    ASC_SCSIQ_B_FIRST_SG_WK_QP));
7387 
7388 		/*
7389 		 * Reset request's working SG queue back to the
7390 		 * first SG queue.
7391 		 */
7392 		AscWriteLramByte(iop_base,
7393 				 (ushort)(q_addr +
7394 					  (ushort)ASC_SCSIQ_B_SG_WK_QP),
7395 				 first_sg_wk_q_no);
7396 
7397 		sg_head = scsiq->sg_head;
7398 
7399 		/*
7400 		 * Set sg_entry_cnt to the number of SG elements
7401 		 * that will be completed on this interrupt.
7402 		 *
7403 		 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
7404 		 * SG elements. The data_cnt and data_addr fields which
7405 		 * add 1 to the SG element capacity are not used when
7406 		 * restarting SG handling after a halt.
7407 		 */
7408 		if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
7409 			sg_entry_cnt = ASC_MAX_SG_LIST - 1;
7410 
7411 			/*
7412 			 * Keep track of remaining number of SG elements that
7413 			 * will need to be handled on the next interrupt.
7414 			 */
7415 			scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
7416 		} else {
7417 			sg_entry_cnt = scsiq->remain_sg_entry_cnt;
7418 			scsiq->remain_sg_entry_cnt = 0;
7419 		}
7420 
7421 		/*
7422 		 * Copy SG elements into the list of allocated SG queues.
7423 		 *
7424 		 * Last index completed is saved in scsiq->next_sg_index.
7425 		 */
7426 		next_qp = first_sg_wk_q_no;
7427 		q_addr = ASC_QNO_TO_QADDR(next_qp);
7428 		scsi_sg_q.sg_head_qp = q_no;
7429 		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
7430 		for (i = 0; i < sg_head->queue_cnt; i++) {
7431 			scsi_sg_q.seq_no = i + 1;
7432 			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
7433 				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
7434 				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
7435 				/*
7436 				 * After very first SG queue RISC FW uses next
7437 				 * SG queue first element then checks sg_list_cnt
7438 				 * against zero and then decrements, so set
7439 				 * sg_list_cnt 1 less than number of SG elements
7440 				 * in each SG queue.
7441 				 */
7442 				scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
7443 				scsi_sg_q.sg_cur_list_cnt =
7444 				    ASC_SG_LIST_PER_Q - 1;
7445 			} else {
7446 				/*
7447 				 * This is the last SG queue in the list of
7448 				 * allocated SG queues. If there are more
7449 				 * SG elements than will fit in the allocated
7450 				 * queues, then set the QCSG_SG_XFER_MORE flag.
7451 				 */
7452 				if (scsiq->remain_sg_entry_cnt != 0) {
7453 					scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
7454 				} else {
7455 					scsi_sg_q.cntl |= QCSG_SG_XFER_END;
7456 				}
7457 				/* equals sg_entry_cnt * 2 */
7458 				sg_list_dwords = sg_entry_cnt << 1;
7459 				scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
7460 				scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
7461 				sg_entry_cnt = 0;
7462 			}
7463 
7464 			scsi_sg_q.q_no = next_qp;
7465 			AscMemWordCopyPtrToLram(iop_base,
7466 						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
7467 						(uchar *)&scsi_sg_q,
7468 						sizeof(ASC_SG_LIST_Q) >> 1);
7469 
7470 			AscMemDWordCopyPtrToLram(iop_base,
7471 						 q_addr + ASC_SGQ_LIST_BEG,
7472 						 (uchar *)&sg_head->
7473 						 sg_list[scsiq->next_sg_index],
7474 						 sg_list_dwords);
7475 
7476 			scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
7477 
7478 			/*
7479 			 * If the just completed SG queue contained the
7480 			 * last SG element, then no more SG queues need
7481 			 * to be written.
7482 			 */
7483 			if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
7484 				break;
7485 			}
7486 
7487 			next_qp = AscReadLramByte(iop_base,
7488 						  (ushort)(q_addr +
7489 							   ASC_SCSIQ_B_FWD));
7490 			q_addr = ASC_QNO_TO_QADDR(next_qp);
7491 		}
7492 
7493 		/*
7494 		 * Clear the halt condition so the RISC will be restarted
7495 		 * after the return.
7496 		 */
7497 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7498 		return (0);
7499 	}
7500 #endif /* CC_VERY_LONG_SG_LIST */
7501 	return (0);
7502 }
7503 
7504 /*
7505  * void
7506  * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7507  *
7508  * Calling/Exit State:
7509  *    none
7510  *
7511  * Description:
7512  *     Input an ASC_QDONE_INFO structure from the chip
7513  */
7514 static void
7515 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7516 {
7517 	int i;
7518 	ushort word;
7519 
7520 	AscSetChipLramAddr(iop_base, s_addr);
7521 	for (i = 0; i < 2 * words; i += 2) {
7522 		if (i == 10) {
7523 			continue;
7524 		}
7525 		word = inpw(iop_base + IOP_RAM_DATA);
7526 		inbuf[i] = word & 0xff;
7527 		inbuf[i + 1] = (word >> 8) & 0xff;
7528 	}
7529 	ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
7530 }
7531 
7532 static uchar
7533 _AscCopyLramScsiDoneQ(PortAddr iop_base,
7534 		      ushort q_addr,
7535 		      ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
7536 {
7537 	ushort _val;
7538 	uchar sg_queue_cnt;
7539 
7540 	DvcGetQinfo(iop_base,
7541 		    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
7542 		    (uchar *)scsiq,
7543 		    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
7544 
7545 	_val = AscReadLramWord(iop_base,
7546 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
7547 	scsiq->q_status = (uchar)_val;
7548 	scsiq->q_no = (uchar)(_val >> 8);
7549 	_val = AscReadLramWord(iop_base,
7550 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7551 	scsiq->cntl = (uchar)_val;
7552 	sg_queue_cnt = (uchar)(_val >> 8);
7553 	_val = AscReadLramWord(iop_base,
7554 			       (ushort)(q_addr +
7555 					(ushort)ASC_SCSIQ_B_SENSE_LEN));
7556 	scsiq->sense_len = (uchar)_val;
7557 	scsiq->extra_bytes = (uchar)(_val >> 8);
7558 
7559 	/*
7560 	 * Read high word of remain bytes from alternate location.
7561 	 */
7562 	scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
7563 							  (ushort)(q_addr +
7564 								   (ushort)
7565 								   ASC_SCSIQ_W_ALT_DC1)))
7566 			       << 16);
7567 	/*
7568 	 * Read low word of remain bytes from original location.
7569 	 */
7570 	scsiq->remain_bytes += AscReadLramWord(iop_base,
7571 					       (ushort)(q_addr + (ushort)
7572 							ASC_SCSIQ_DW_REMAIN_XFER_CNT));
7573 
7574 	scsiq->remain_bytes &= max_dma_count;
7575 	return sg_queue_cnt;
7576 }
7577 
7578 /*
7579  * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7580  *
7581  * Interrupt callback function for the Narrow SCSI Asc Library.
7582  */
7583 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
7584 {
7585 	struct asc_board *boardp;
7586 	struct scsi_cmnd *scp;
7587 	struct Scsi_Host *shost;
7588 
7589 	ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
7590 	ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
7591 
7592 	scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
7593 	if (!scp)
7594 		return;
7595 
7596 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
7597 
7598 	shost = scp->device->host;
7599 	ASC_STATS(shost, callback);
7600 	ASC_DBG(1, "shost 0x%p\n", shost);
7601 
7602 	boardp = shost_priv(shost);
7603 	BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
7604 
7605 	dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
7606 			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7607 	/*
7608 	 * 'qdonep' contains the command's ending status.
7609 	 */
7610 	switch (qdonep->d3.done_stat) {
7611 	case QD_NO_ERROR:
7612 		ASC_DBG(2, "QD_NO_ERROR\n");
7613 		scp->result = 0;
7614 
7615 		/*
7616 		 * Check for an underrun condition.
7617 		 *
7618 		 * If there was no error and an underrun condition, then
7619 		 * return the number of underrun bytes.
7620 		 */
7621 		if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
7622 		    qdonep->remain_bytes <= scsi_bufflen(scp)) {
7623 			ASC_DBG(1, "underrun condition %u bytes\n",
7624 				 (unsigned)qdonep->remain_bytes);
7625 			scsi_set_resid(scp, qdonep->remain_bytes);
7626 		}
7627 		break;
7628 
7629 	case QD_WITH_ERROR:
7630 		ASC_DBG(2, "QD_WITH_ERROR\n");
7631 		switch (qdonep->d3.host_stat) {
7632 		case QHSTA_NO_ERROR:
7633 			if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
7634 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7635 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
7636 						  SCSI_SENSE_BUFFERSIZE);
7637 				/*
7638 				 * Note: The 'status_byte()' macro used by
7639 				 * target drivers defined in scsi.h shifts the
7640 				 * status byte returned by host drivers right
7641 				 * by 1 bit.  This is why target drivers also
7642 				 * use right shifted status byte definitions.
7643 				 * For instance target drivers use
7644 				 * CHECK_CONDITION, defined to 0x1, instead of
7645 				 * the SCSI defined check condition value of
7646 				 * 0x2. Host drivers are supposed to return
7647 				 * the status byte as it is defined by SCSI.
7648 				 */
7649 				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
7650 				    STATUS_BYTE(qdonep->d3.scsi_stat);
7651 			} else {
7652 				scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
7653 			}
7654 			break;
7655 
7656 		default:
7657 			/* QHSTA error occurred */
7658 			ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
7659 			scp->result = HOST_BYTE(DID_BAD_TARGET);
7660 			break;
7661 		}
7662 		break;
7663 
7664 	case QD_ABORTED_BY_HOST:
7665 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7666 		scp->result =
7667 		    HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
7668 						    scsi_msg) |
7669 		    STATUS_BYTE(qdonep->d3.scsi_stat);
7670 		break;
7671 
7672 	default:
7673 		ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
7674 		scp->result =
7675 		    HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
7676 						    scsi_msg) |
7677 		    STATUS_BYTE(qdonep->d3.scsi_stat);
7678 		break;
7679 	}
7680 
7681 	/*
7682 	 * If the 'init_tidmask' bit isn't already set for the target and the
7683 	 * current request finished normally, then set the bit for the target
7684 	 * to indicate that a device is present.
7685 	 */
7686 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
7687 	    qdonep->d3.done_stat == QD_NO_ERROR &&
7688 	    qdonep->d3.host_stat == QHSTA_NO_ERROR) {
7689 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
7690 	}
7691 
7692 	asc_scsi_done(scp);
7693 }
7694 
7695 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
7696 {
7697 	uchar next_qp;
7698 	uchar n_q_used;
7699 	uchar sg_list_qp;
7700 	uchar sg_queue_cnt;
7701 	uchar q_cnt;
7702 	uchar done_q_tail;
7703 	uchar tid_no;
7704 	ASC_SCSI_BIT_ID_TYPE scsi_busy;
7705 	ASC_SCSI_BIT_ID_TYPE target_id;
7706 	PortAddr iop_base;
7707 	ushort q_addr;
7708 	ushort sg_q_addr;
7709 	uchar cur_target_qng;
7710 	ASC_QDONE_INFO scsiq_buf;
7711 	ASC_QDONE_INFO *scsiq;
7712 	int false_overrun;
7713 
7714 	iop_base = asc_dvc->iop_base;
7715 	n_q_used = 1;
7716 	scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
7717 	done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
7718 	q_addr = ASC_QNO_TO_QADDR(done_q_tail);
7719 	next_qp = AscReadLramByte(iop_base,
7720 				  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
7721 	if (next_qp != ASC_QLINK_END) {
7722 		AscPutVarDoneQTail(iop_base, next_qp);
7723 		q_addr = ASC_QNO_TO_QADDR(next_qp);
7724 		sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
7725 						     asc_dvc->max_dma_count);
7726 		AscWriteLramByte(iop_base,
7727 				 (ushort)(q_addr +
7728 					  (ushort)ASC_SCSIQ_B_STATUS),
7729 				 (uchar)(scsiq->
7730 					 q_status & (uchar)~(QS_READY |
7731 							     QS_ABORTED)));
7732 		tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
7733 		target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
7734 		if ((scsiq->cntl & QC_SG_HEAD) != 0) {
7735 			sg_q_addr = q_addr;
7736 			sg_list_qp = next_qp;
7737 			for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
7738 				sg_list_qp = AscReadLramByte(iop_base,
7739 							     (ushort)(sg_q_addr
7740 								      + (ushort)
7741 								      ASC_SCSIQ_B_FWD));
7742 				sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
7743 				if (sg_list_qp == ASC_QLINK_END) {
7744 					AscSetLibErrorCode(asc_dvc,
7745 							   ASCQ_ERR_SG_Q_LINKS);
7746 					scsiq->d3.done_stat = QD_WITH_ERROR;
7747 					scsiq->d3.host_stat =
7748 					    QHSTA_D_QDONE_SG_LIST_CORRUPTED;
7749 					goto FATAL_ERR_QDONE;
7750 				}
7751 				AscWriteLramByte(iop_base,
7752 						 (ushort)(sg_q_addr + (ushort)
7753 							  ASC_SCSIQ_B_STATUS),
7754 						 QS_FREE);
7755 			}
7756 			n_q_used = sg_queue_cnt + 1;
7757 			AscPutVarDoneQTail(iop_base, sg_list_qp);
7758 		}
7759 		if (asc_dvc->queue_full_or_busy & target_id) {
7760 			cur_target_qng = AscReadLramByte(iop_base,
7761 							 (ushort)((ushort)
7762 								  ASC_QADR_BEG
7763 								  + (ushort)
7764 								  scsiq->d2.
7765 								  target_ix));
7766 			if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
7767 				scsi_busy = AscReadLramByte(iop_base, (ushort)
7768 							    ASCV_SCSIBUSY_B);
7769 				scsi_busy &= ~target_id;
7770 				AscWriteLramByte(iop_base,
7771 						 (ushort)ASCV_SCSIBUSY_B,
7772 						 scsi_busy);
7773 				asc_dvc->queue_full_or_busy &= ~target_id;
7774 			}
7775 		}
7776 		if (asc_dvc->cur_total_qng >= n_q_used) {
7777 			asc_dvc->cur_total_qng -= n_q_used;
7778 			if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
7779 				asc_dvc->cur_dvc_qng[tid_no]--;
7780 			}
7781 		} else {
7782 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
7783 			scsiq->d3.done_stat = QD_WITH_ERROR;
7784 			goto FATAL_ERR_QDONE;
7785 		}
7786 		if ((scsiq->d2.srb_ptr == 0UL) ||
7787 		    ((scsiq->q_status & QS_ABORTED) != 0)) {
7788 			return (0x11);
7789 		} else if (scsiq->q_status == QS_DONE) {
7790 			false_overrun = FALSE;
7791 			if (scsiq->extra_bytes != 0) {
7792 				scsiq->remain_bytes +=
7793 				    (ADV_DCNT)scsiq->extra_bytes;
7794 			}
7795 			if (scsiq->d3.done_stat == QD_WITH_ERROR) {
7796 				if (scsiq->d3.host_stat ==
7797 				    QHSTA_M_DATA_OVER_RUN) {
7798 					if ((scsiq->
7799 					     cntl & (QC_DATA_IN | QC_DATA_OUT))
7800 					    == 0) {
7801 						scsiq->d3.done_stat =
7802 						    QD_NO_ERROR;
7803 						scsiq->d3.host_stat =
7804 						    QHSTA_NO_ERROR;
7805 					} else if (false_overrun) {
7806 						scsiq->d3.done_stat =
7807 						    QD_NO_ERROR;
7808 						scsiq->d3.host_stat =
7809 						    QHSTA_NO_ERROR;
7810 					}
7811 				} else if (scsiq->d3.host_stat ==
7812 					   QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
7813 					AscStopChip(iop_base);
7814 					AscSetChipControl(iop_base,
7815 							  (uchar)(CC_SCSI_RESET
7816 								  | CC_HALT));
7817 					udelay(60);
7818 					AscSetChipControl(iop_base, CC_HALT);
7819 					AscSetChipStatus(iop_base,
7820 							 CIW_CLR_SCSI_RESET_INT);
7821 					AscSetChipStatus(iop_base, 0);
7822 					AscSetChipControl(iop_base, 0);
7823 				}
7824 			}
7825 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7826 				asc_isr_callback(asc_dvc, scsiq);
7827 			} else {
7828 				if ((AscReadLramByte(iop_base,
7829 						     (ushort)(q_addr + (ushort)
7830 							      ASC_SCSIQ_CDB_BEG))
7831 				     == START_STOP)) {
7832 					asc_dvc->unit_not_ready &= ~target_id;
7833 					if (scsiq->d3.done_stat != QD_NO_ERROR) {
7834 						asc_dvc->start_motor &=
7835 						    ~target_id;
7836 					}
7837 				}
7838 			}
7839 			return (1);
7840 		} else {
7841 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7842  FATAL_ERR_QDONE:
7843 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7844 				asc_isr_callback(asc_dvc, scsiq);
7845 			}
7846 			return (0x80);
7847 		}
7848 	}
7849 	return (0);
7850 }
7851 
7852 static int AscISR(ASC_DVC_VAR *asc_dvc)
7853 {
7854 	ASC_CS_TYPE chipstat;
7855 	PortAddr iop_base;
7856 	ushort saved_ram_addr;
7857 	uchar ctrl_reg;
7858 	uchar saved_ctrl_reg;
7859 	int int_pending;
7860 	int status;
7861 	uchar host_flag;
7862 
7863 	iop_base = asc_dvc->iop_base;
7864 	int_pending = FALSE;
7865 
7866 	if (AscIsIntPending(iop_base) == 0)
7867 		return int_pending;
7868 
7869 	if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7870 		return ERR;
7871 	}
7872 	if (asc_dvc->in_critical_cnt != 0) {
7873 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7874 		return ERR;
7875 	}
7876 	if (asc_dvc->is_in_int) {
7877 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7878 		return ERR;
7879 	}
7880 	asc_dvc->is_in_int = TRUE;
7881 	ctrl_reg = AscGetChipControl(iop_base);
7882 	saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7883 				       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7884 	chipstat = AscGetChipStatus(iop_base);
7885 	if (chipstat & CSW_SCSI_RESET_LATCH) {
7886 		if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7887 			int i = 10;
7888 			int_pending = TRUE;
7889 			asc_dvc->sdtr_done = 0;
7890 			saved_ctrl_reg &= (uchar)(~CC_HALT);
7891 			while ((AscGetChipStatus(iop_base) &
7892 				CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7893 				mdelay(100);
7894 			}
7895 			AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7896 			AscSetChipControl(iop_base, CC_HALT);
7897 			AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7898 			AscSetChipStatus(iop_base, 0);
7899 			chipstat = AscGetChipStatus(iop_base);
7900 		}
7901 	}
7902 	saved_ram_addr = AscGetChipLramAddr(iop_base);
7903 	host_flag = AscReadLramByte(iop_base,
7904 				    ASCV_HOST_FLAG_B) &
7905 	    (uchar)(~ASC_HOST_FLAG_IN_ISR);
7906 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7907 			 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7908 	if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7909 		AscAckInterrupt(iop_base);
7910 		int_pending = TRUE;
7911 		if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7912 			if (AscIsrChipHalted(asc_dvc) == ERR) {
7913 				goto ISR_REPORT_QDONE_FATAL_ERROR;
7914 			} else {
7915 				saved_ctrl_reg &= (uchar)(~CC_HALT);
7916 			}
7917 		} else {
7918  ISR_REPORT_QDONE_FATAL_ERROR:
7919 			if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7920 				while (((status =
7921 					 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7922 				}
7923 			} else {
7924 				do {
7925 					if ((status =
7926 					     AscIsrQDone(asc_dvc)) == 1) {
7927 						break;
7928 					}
7929 				} while (status == 0x11);
7930 			}
7931 			if ((status & 0x80) != 0)
7932 				int_pending = ERR;
7933 		}
7934 	}
7935 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7936 	AscSetChipLramAddr(iop_base, saved_ram_addr);
7937 	AscSetChipControl(iop_base, saved_ctrl_reg);
7938 	asc_dvc->is_in_int = FALSE;
7939 	return int_pending;
7940 }
7941 
7942 /*
7943  * advansys_reset()
7944  *
7945  * Reset the bus associated with the command 'scp'.
7946  *
7947  * This function runs its own thread. Interrupts must be blocked but
7948  * sleeping is allowed and no locking other than for host structures is
7949  * required. Returns SUCCESS or FAILED.
7950  */
7951 static int advansys_reset(struct scsi_cmnd *scp)
7952 {
7953 	struct Scsi_Host *shost = scp->device->host;
7954 	struct asc_board *boardp = shost_priv(shost);
7955 	unsigned long flags;
7956 	int status;
7957 	int ret = SUCCESS;
7958 
7959 	ASC_DBG(1, "0x%p\n", scp);
7960 
7961 	ASC_STATS(shost, reset);
7962 
7963 	scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
7964 
7965 	if (ASC_NARROW_BOARD(boardp)) {
7966 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7967 
7968 		/* Reset the chip and SCSI bus. */
7969 		ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7970 		status = AscInitAsc1000Driver(asc_dvc);
7971 
7972 		/* Refer to ASC_IERR_* defintions for meaning of 'err_code'. */
7973 		if (asc_dvc->err_code) {
7974 			scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
7975 				    "0x%x\n", asc_dvc->err_code);
7976 			ret = FAILED;
7977 		} else if (status) {
7978 			scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
7979 				    "0x%x\n", status);
7980 		} else {
7981 			scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7982 				    "successful\n");
7983 		}
7984 
7985 		ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7986 		spin_lock_irqsave(shost->host_lock, flags);
7987 	} else {
7988 		/*
7989 		 * If the suggest reset bus flags are set, then reset the bus.
7990 		 * Otherwise only reset the device.
7991 		 */
7992 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7993 
7994 		/*
7995 		 * Reset the target's SCSI bus.
7996 		 */
7997 		ASC_DBG(1, "before AdvResetChipAndSB()\n");
7998 		switch (AdvResetChipAndSB(adv_dvc)) {
7999 		case ASC_TRUE:
8000 			scmd_printk(KERN_INFO, scp, "SCSI bus reset "
8001 				    "successful\n");
8002 			break;
8003 		case ASC_FALSE:
8004 		default:
8005 			scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
8006 			ret = FAILED;
8007 			break;
8008 		}
8009 		spin_lock_irqsave(shost->host_lock, flags);
8010 		AdvISR(adv_dvc);
8011 	}
8012 
8013 	/* Save the time of the most recently completed reset. */
8014 	boardp->last_reset = jiffies;
8015 	spin_unlock_irqrestore(shost->host_lock, flags);
8016 
8017 	ASC_DBG(1, "ret %d\n", ret);
8018 
8019 	return ret;
8020 }
8021 
8022 /*
8023  * advansys_biosparam()
8024  *
8025  * Translate disk drive geometry if the "BIOS greater than 1 GB"
8026  * support is enabled for a drive.
8027  *
8028  * ip (information pointer) is an int array with the following definition:
8029  * ip[0]: heads
8030  * ip[1]: sectors
8031  * ip[2]: cylinders
8032  */
8033 static int
8034 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
8035 		   sector_t capacity, int ip[])
8036 {
8037 	struct asc_board *boardp = shost_priv(sdev->host);
8038 
8039 	ASC_DBG(1, "begin\n");
8040 	ASC_STATS(sdev->host, biosparam);
8041 	if (ASC_NARROW_BOARD(boardp)) {
8042 		if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
8043 		     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
8044 			ip[0] = 255;
8045 			ip[1] = 63;
8046 		} else {
8047 			ip[0] = 64;
8048 			ip[1] = 32;
8049 		}
8050 	} else {
8051 		if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
8052 		     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
8053 			ip[0] = 255;
8054 			ip[1] = 63;
8055 		} else {
8056 			ip[0] = 64;
8057 			ip[1] = 32;
8058 		}
8059 	}
8060 	ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
8061 	ASC_DBG(1, "end\n");
8062 	return 0;
8063 }
8064 
8065 /*
8066  * First-level interrupt handler.
8067  *
8068  * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
8069  */
8070 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
8071 {
8072 	struct Scsi_Host *shost = dev_id;
8073 	struct asc_board *boardp = shost_priv(shost);
8074 	irqreturn_t result = IRQ_NONE;
8075 
8076 	ASC_DBG(2, "boardp 0x%p\n", boardp);
8077 	spin_lock(shost->host_lock);
8078 	if (ASC_NARROW_BOARD(boardp)) {
8079 		if (AscIsIntPending(shost->io_port)) {
8080 			result = IRQ_HANDLED;
8081 			ASC_STATS(shost, interrupt);
8082 			ASC_DBG(1, "before AscISR()\n");
8083 			AscISR(&boardp->dvc_var.asc_dvc_var);
8084 		}
8085 	} else {
8086 		ASC_DBG(1, "before AdvISR()\n");
8087 		if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
8088 			result = IRQ_HANDLED;
8089 			ASC_STATS(shost, interrupt);
8090 		}
8091 	}
8092 	spin_unlock(shost->host_lock);
8093 
8094 	ASC_DBG(1, "end\n");
8095 	return result;
8096 }
8097 
8098 static int AscHostReqRiscHalt(PortAddr iop_base)
8099 {
8100 	int count = 0;
8101 	int sta = 0;
8102 	uchar saved_stop_code;
8103 
8104 	if (AscIsChipHalted(iop_base))
8105 		return (1);
8106 	saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
8107 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8108 			 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
8109 	do {
8110 		if (AscIsChipHalted(iop_base)) {
8111 			sta = 1;
8112 			break;
8113 		}
8114 		mdelay(100);
8115 	} while (count++ < 20);
8116 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
8117 	return (sta);
8118 }
8119 
8120 static int
8121 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
8122 {
8123 	int sta = FALSE;
8124 
8125 	if (AscHostReqRiscHalt(iop_base)) {
8126 		sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
8127 		AscStartChip(iop_base);
8128 	}
8129 	return sta;
8130 }
8131 
8132 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
8133 {
8134 	char type = sdev->type;
8135 	ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
8136 
8137 	if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
8138 		return;
8139 	if (asc_dvc->init_sdtr & tid_bits)
8140 		return;
8141 
8142 	if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
8143 		asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
8144 
8145 	asc_dvc->pci_fix_asyn_xfer |= tid_bits;
8146 	if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
8147 	    (type == TYPE_ROM) || (type == TYPE_TAPE))
8148 		asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
8149 
8150 	if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
8151 		AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
8152 					ASYN_SDTR_DATA_FIX_PCI_REV_AB);
8153 }
8154 
8155 static void
8156 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
8157 {
8158 	ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
8159 	ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
8160 
8161 	if (sdev->lun == 0) {
8162 		ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
8163 		if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
8164 			asc_dvc->init_sdtr |= tid_bit;
8165 		} else {
8166 			asc_dvc->init_sdtr &= ~tid_bit;
8167 		}
8168 
8169 		if (orig_init_sdtr != asc_dvc->init_sdtr)
8170 			AscAsyncFix(asc_dvc, sdev);
8171 	}
8172 
8173 	if (sdev->tagged_supported) {
8174 		if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
8175 			if (sdev->lun == 0) {
8176 				asc_dvc->cfg->can_tagged_qng |= tid_bit;
8177 				asc_dvc->use_tagged_qng |= tid_bit;
8178 			}
8179 			scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
8180 						asc_dvc->max_dvc_qng[sdev->id]);
8181 		}
8182 	} else {
8183 		if (sdev->lun == 0) {
8184 			asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
8185 			asc_dvc->use_tagged_qng &= ~tid_bit;
8186 		}
8187 		scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8188 	}
8189 
8190 	if ((sdev->lun == 0) &&
8191 	    (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
8192 		AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
8193 				 asc_dvc->cfg->disc_enable);
8194 		AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
8195 				 asc_dvc->use_tagged_qng);
8196 		AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
8197 				 asc_dvc->cfg->can_tagged_qng);
8198 
8199 		asc_dvc->max_dvc_qng[sdev->id] =
8200 					asc_dvc->cfg->max_tag_qng[sdev->id];
8201 		AscWriteLramByte(asc_dvc->iop_base,
8202 				 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
8203 				 asc_dvc->max_dvc_qng[sdev->id]);
8204 	}
8205 }
8206 
8207 /*
8208  * Wide Transfers
8209  *
8210  * If the EEPROM enabled WDTR for the device and the device supports wide
8211  * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
8212  * write the new value to the microcode.
8213  */
8214 static void
8215 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
8216 {
8217 	unsigned short cfg_word;
8218 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8219 	if ((cfg_word & tidmask) != 0)
8220 		return;
8221 
8222 	cfg_word |= tidmask;
8223 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8224 
8225 	/*
8226 	 * Clear the microcode SDTR and WDTR negotiation done indicators for
8227 	 * the target to cause it to negotiate with the new setting set above.
8228 	 * WDTR when accepted causes the target to enter asynchronous mode, so
8229 	 * SDTR must be negotiated.
8230 	 */
8231 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8232 	cfg_word &= ~tidmask;
8233 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8234 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8235 	cfg_word &= ~tidmask;
8236 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8237 }
8238 
8239 /*
8240  * Synchronous Transfers
8241  *
8242  * If the EEPROM enabled SDTR for the device and the device
8243  * supports synchronous transfers, then turn on the device's
8244  * 'sdtr_able' bit. Write the new value to the microcode.
8245  */
8246 static void
8247 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
8248 {
8249 	unsigned short cfg_word;
8250 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8251 	if ((cfg_word & tidmask) != 0)
8252 		return;
8253 
8254 	cfg_word |= tidmask;
8255 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8256 
8257 	/*
8258 	 * Clear the microcode "SDTR negotiation" done indicator for the
8259 	 * target to cause it to negotiate with the new setting set above.
8260 	 */
8261 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8262 	cfg_word &= ~tidmask;
8263 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8264 }
8265 
8266 /*
8267  * PPR (Parallel Protocol Request) Capable
8268  *
8269  * If the device supports DT mode, then it must be PPR capable.
8270  * The PPR message will be used in place of the SDTR and WDTR
8271  * messages to negotiate synchronous speed and offset, transfer
8272  * width, and protocol options.
8273  */
8274 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
8275 				AdvPortAddr iop_base, unsigned short tidmask)
8276 {
8277 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8278 	adv_dvc->ppr_able |= tidmask;
8279 	AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8280 }
8281 
8282 static void
8283 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
8284 {
8285 	AdvPortAddr iop_base = adv_dvc->iop_base;
8286 	unsigned short tidmask = 1 << sdev->id;
8287 
8288 	if (sdev->lun == 0) {
8289 		/*
8290 		 * Handle WDTR, SDTR, and Tag Queuing. If the feature
8291 		 * is enabled in the EEPROM and the device supports the
8292 		 * feature, then enable it in the microcode.
8293 		 */
8294 
8295 		if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
8296 			advansys_wide_enable_wdtr(iop_base, tidmask);
8297 		if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
8298 			advansys_wide_enable_sdtr(iop_base, tidmask);
8299 		if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
8300 			advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
8301 
8302 		/*
8303 		 * Tag Queuing is disabled for the BIOS which runs in polled
8304 		 * mode and would see no benefit from Tag Queuing. Also by
8305 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
8306 		 * bugs will at least work with the BIOS.
8307 		 */
8308 		if ((adv_dvc->tagqng_able & tidmask) &&
8309 		    sdev->tagged_supported) {
8310 			unsigned short cfg_word;
8311 			AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
8312 			cfg_word |= tidmask;
8313 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
8314 					 cfg_word);
8315 			AdvWriteByteLram(iop_base,
8316 					 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
8317 					 adv_dvc->max_dvc_qng);
8318 		}
8319 	}
8320 
8321 	if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) {
8322 		scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
8323 					adv_dvc->max_dvc_qng);
8324 	} else {
8325 		scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8326 	}
8327 }
8328 
8329 /*
8330  * Set the number of commands to queue per device for the
8331  * specified host adapter.
8332  */
8333 static int advansys_slave_configure(struct scsi_device *sdev)
8334 {
8335 	struct asc_board *boardp = shost_priv(sdev->host);
8336 
8337 	if (ASC_NARROW_BOARD(boardp))
8338 		advansys_narrow_slave_configure(sdev,
8339 						&boardp->dvc_var.asc_dvc_var);
8340 	else
8341 		advansys_wide_slave_configure(sdev,
8342 						&boardp->dvc_var.adv_dvc_var);
8343 
8344 	return 0;
8345 }
8346 
8347 static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
8348 {
8349 	struct asc_board *board = shost_priv(scp->device->host);
8350 	scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
8351 					     SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
8352 	dma_cache_sync(board->dev, scp->sense_buffer,
8353 		       SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
8354 	return cpu_to_le32(scp->SCp.dma_handle);
8355 }
8356 
8357 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8358 			struct asc_scsi_q *asc_scsi_q)
8359 {
8360 	struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8361 	int use_sg;
8362 
8363 	memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
8364 
8365 	/*
8366 	 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
8367 	 */
8368 	asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
8369 	if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
8370 		scp->result = HOST_BYTE(DID_SOFT_ERROR);
8371 		return ASC_ERROR;
8372 	}
8373 
8374 	/*
8375 	 * Build the ASC_SCSI_Q request.
8376 	 */
8377 	asc_scsi_q->cdbptr = &scp->cmnd[0];
8378 	asc_scsi_q->q2.cdb_len = scp->cmd_len;
8379 	asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
8380 	asc_scsi_q->q1.target_lun = scp->device->lun;
8381 	asc_scsi_q->q2.target_ix =
8382 	    ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
8383 	asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
8384 	asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
8385 
8386 	/*
8387 	 * If there are any outstanding requests for the current target,
8388 	 * then every 255th request send an ORDERED request. This heuristic
8389 	 * tries to retain the benefit of request sorting while preventing
8390 	 * request starvation. 255 is the max number of tags or pending commands
8391 	 * a device may have outstanding.
8392 	 *
8393 	 * The request count is incremented below for every successfully
8394 	 * started request.
8395 	 *
8396 	 */
8397 	if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
8398 	    (boardp->reqcnt[scp->device->id] % 255) == 0) {
8399 		asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG;
8400 	} else {
8401 		asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG;
8402 	}
8403 
8404 	/* Build ASC_SCSI_Q */
8405 	use_sg = scsi_dma_map(scp);
8406 	if (use_sg != 0) {
8407 		int sgcnt;
8408 		struct scatterlist *slp;
8409 		struct asc_sg_head *asc_sg_head;
8410 
8411 		if (use_sg > scp->device->host->sg_tablesize) {
8412 			scmd_printk(KERN_ERR, scp, "use_sg %d > "
8413 				"sg_tablesize %d\n", use_sg,
8414 				scp->device->host->sg_tablesize);
8415 			scsi_dma_unmap(scp);
8416 			scp->result = HOST_BYTE(DID_ERROR);
8417 			return ASC_ERROR;
8418 		}
8419 
8420 		asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
8421 			use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
8422 		if (!asc_sg_head) {
8423 			scsi_dma_unmap(scp);
8424 			scp->result = HOST_BYTE(DID_SOFT_ERROR);
8425 			return ASC_ERROR;
8426 		}
8427 
8428 		asc_scsi_q->q1.cntl |= QC_SG_HEAD;
8429 		asc_scsi_q->sg_head = asc_sg_head;
8430 		asc_scsi_q->q1.data_cnt = 0;
8431 		asc_scsi_q->q1.data_addr = 0;
8432 		/* This is a byte value, otherwise it would need to be swapped. */
8433 		asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
8434 		ASC_STATS_ADD(scp->device->host, xfer_elem,
8435 			      asc_sg_head->entry_cnt);
8436 
8437 		/*
8438 		 * Convert scatter-gather list into ASC_SG_HEAD list.
8439 		 */
8440 		scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
8441 			asc_sg_head->sg_list[sgcnt].addr =
8442 			    cpu_to_le32(sg_dma_address(slp));
8443 			asc_sg_head->sg_list[sgcnt].bytes =
8444 			    cpu_to_le32(sg_dma_len(slp));
8445 			ASC_STATS_ADD(scp->device->host, xfer_sect,
8446 				      DIV_ROUND_UP(sg_dma_len(slp), 512));
8447 		}
8448 	}
8449 
8450 	ASC_STATS(scp->device->host, xfer_cnt);
8451 
8452 	ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
8453 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8454 
8455 	return ASC_NOERROR;
8456 }
8457 
8458 /*
8459  * Build scatter-gather list for Adv Library (Wide Board).
8460  *
8461  * Additional ADV_SG_BLOCK structures will need to be allocated
8462  * if the total number of scatter-gather elements exceeds
8463  * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
8464  * assumed to be physically contiguous.
8465  *
8466  * Return:
8467  *      ADV_SUCCESS(1) - SG List successfully created
8468  *      ADV_ERROR(-1) - SG List creation failed
8469  */
8470 static int
8471 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
8472 	       int use_sg)
8473 {
8474 	adv_sgblk_t *sgblkp;
8475 	ADV_SCSI_REQ_Q *scsiqp;
8476 	struct scatterlist *slp;
8477 	int sg_elem_cnt;
8478 	ADV_SG_BLOCK *sg_block, *prev_sg_block;
8479 	ADV_PADDR sg_block_paddr;
8480 	int i;
8481 
8482 	scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8483 	slp = scsi_sglist(scp);
8484 	sg_elem_cnt = use_sg;
8485 	prev_sg_block = NULL;
8486 	reqp->sgblkp = NULL;
8487 
8488 	for (;;) {
8489 		/*
8490 		 * Allocate a 'adv_sgblk_t' structure from the board free
8491 		 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
8492 		 * (15) scatter-gather elements.
8493 		 */
8494 		if ((sgblkp = boardp->adv_sgblkp) == NULL) {
8495 			ASC_DBG(1, "no free adv_sgblk_t\n");
8496 			ASC_STATS(scp->device->host, adv_build_nosg);
8497 
8498 			/*
8499 			 * Allocation failed. Free 'adv_sgblk_t' structures
8500 			 * already allocated for the request.
8501 			 */
8502 			while ((sgblkp = reqp->sgblkp) != NULL) {
8503 				/* Remove 'sgblkp' from the request list. */
8504 				reqp->sgblkp = sgblkp->next_sgblkp;
8505 
8506 				/* Add 'sgblkp' to the board free list. */
8507 				sgblkp->next_sgblkp = boardp->adv_sgblkp;
8508 				boardp->adv_sgblkp = sgblkp;
8509 			}
8510 			return ASC_BUSY;
8511 		}
8512 
8513 		/* Complete 'adv_sgblk_t' board allocation. */
8514 		boardp->adv_sgblkp = sgblkp->next_sgblkp;
8515 		sgblkp->next_sgblkp = NULL;
8516 
8517 		/*
8518 		 * Get 8 byte aligned virtual and physical addresses
8519 		 * for the allocated ADV_SG_BLOCK structure.
8520 		 */
8521 		sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
8522 		sg_block_paddr = virt_to_bus(sg_block);
8523 
8524 		/*
8525 		 * Check if this is the first 'adv_sgblk_t' for the
8526 		 * request.
8527 		 */
8528 		if (reqp->sgblkp == NULL) {
8529 			/* Request's first scatter-gather block. */
8530 			reqp->sgblkp = sgblkp;
8531 
8532 			/*
8533 			 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8534 			 * address pointers.
8535 			 */
8536 			scsiqp->sg_list_ptr = sg_block;
8537 			scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
8538 		} else {
8539 			/* Request's second or later scatter-gather block. */
8540 			sgblkp->next_sgblkp = reqp->sgblkp;
8541 			reqp->sgblkp = sgblkp;
8542 
8543 			/*
8544 			 * Point the previous ADV_SG_BLOCK structure to
8545 			 * the newly allocated ADV_SG_BLOCK structure.
8546 			 */
8547 			prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
8548 		}
8549 
8550 		for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
8551 			sg_block->sg_list[i].sg_addr =
8552 					cpu_to_le32(sg_dma_address(slp));
8553 			sg_block->sg_list[i].sg_count =
8554 					cpu_to_le32(sg_dma_len(slp));
8555 			ASC_STATS_ADD(scp->device->host, xfer_sect,
8556 				      DIV_ROUND_UP(sg_dma_len(slp), 512));
8557 
8558 			if (--sg_elem_cnt == 0) {	/* Last ADV_SG_BLOCK and scatter-gather entry. */
8559 				sg_block->sg_cnt = i + 1;
8560 				sg_block->sg_ptr = 0L;	/* Last ADV_SG_BLOCK in list. */
8561 				return ADV_SUCCESS;
8562 			}
8563 			slp++;
8564 		}
8565 		sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
8566 		prev_sg_block = sg_block;
8567 	}
8568 }
8569 
8570 /*
8571  * Build a request structure for the Adv Library (Wide Board).
8572  *
8573  * If an adv_req_t can not be allocated to issue the request,
8574  * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8575  *
8576  * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8577  * microcode for DMA addresses or math operations are byte swapped
8578  * to little-endian order.
8579  */
8580 static int
8581 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8582 	      ADV_SCSI_REQ_Q **adv_scsiqpp)
8583 {
8584 	adv_req_t *reqp;
8585 	ADV_SCSI_REQ_Q *scsiqp;
8586 	int i;
8587 	int ret;
8588 	int use_sg;
8589 
8590 	/*
8591 	 * Allocate an adv_req_t structure from the board to execute
8592 	 * the command.
8593 	 */
8594 	if (boardp->adv_reqp == NULL) {
8595 		ASC_DBG(1, "no free adv_req_t\n");
8596 		ASC_STATS(scp->device->host, adv_build_noreq);
8597 		return ASC_BUSY;
8598 	} else {
8599 		reqp = boardp->adv_reqp;
8600 		boardp->adv_reqp = reqp->next_reqp;
8601 		reqp->next_reqp = NULL;
8602 	}
8603 
8604 	/*
8605 	 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8606 	 */
8607 	scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8608 
8609 	/*
8610 	 * Initialize the structure.
8611 	 */
8612 	scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
8613 
8614 	/*
8615 	 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8616 	 */
8617 	scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
8618 
8619 	/*
8620 	 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8621 	 */
8622 	reqp->cmndp = scp;
8623 
8624 	/*
8625 	 * Build the ADV_SCSI_REQ_Q request.
8626 	 */
8627 
8628 	/* Set CDB length and copy it to the request structure.  */
8629 	scsiqp->cdb_len = scp->cmd_len;
8630 	/* Copy first 12 CDB bytes to cdb[]. */
8631 	for (i = 0; i < scp->cmd_len && i < 12; i++) {
8632 		scsiqp->cdb[i] = scp->cmnd[i];
8633 	}
8634 	/* Copy last 4 CDB bytes, if present, to cdb16[]. */
8635 	for (; i < scp->cmd_len; i++) {
8636 		scsiqp->cdb16[i - 12] = scp->cmnd[i];
8637 	}
8638 
8639 	scsiqp->target_id = scp->device->id;
8640 	scsiqp->target_lun = scp->device->lun;
8641 
8642 	scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
8643 	scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
8644 
8645 	/* Build ADV_SCSI_REQ_Q */
8646 
8647 	use_sg = scsi_dma_map(scp);
8648 	if (use_sg == 0) {
8649 		/* Zero-length transfer */
8650 		reqp->sgblkp = NULL;
8651 		scsiqp->data_cnt = 0;
8652 		scsiqp->vdata_addr = NULL;
8653 
8654 		scsiqp->data_addr = 0;
8655 		scsiqp->sg_list_ptr = NULL;
8656 		scsiqp->sg_real_addr = 0;
8657 	} else {
8658 		if (use_sg > ADV_MAX_SG_LIST) {
8659 			scmd_printk(KERN_ERR, scp, "use_sg %d > "
8660 				   "ADV_MAX_SG_LIST %d\n", use_sg,
8661 				   scp->device->host->sg_tablesize);
8662 			scsi_dma_unmap(scp);
8663 			scp->result = HOST_BYTE(DID_ERROR);
8664 
8665 			/*
8666 			 * Free the 'adv_req_t' structure by adding it back
8667 			 * to the board free list.
8668 			 */
8669 			reqp->next_reqp = boardp->adv_reqp;
8670 			boardp->adv_reqp = reqp;
8671 
8672 			return ASC_ERROR;
8673 		}
8674 
8675 		scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
8676 
8677 		ret = adv_get_sglist(boardp, reqp, scp, use_sg);
8678 		if (ret != ADV_SUCCESS) {
8679 			/*
8680 			 * Free the adv_req_t structure by adding it back to
8681 			 * the board free list.
8682 			 */
8683 			reqp->next_reqp = boardp->adv_reqp;
8684 			boardp->adv_reqp = reqp;
8685 
8686 			return ret;
8687 		}
8688 
8689 		ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
8690 	}
8691 
8692 	ASC_STATS(scp->device->host, xfer_cnt);
8693 
8694 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
8695 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8696 
8697 	*adv_scsiqpp = scsiqp;
8698 
8699 	return ASC_NOERROR;
8700 }
8701 
8702 static int AscSgListToQueue(int sg_list)
8703 {
8704 	int n_sg_list_qs;
8705 
8706 	n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
8707 	if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
8708 		n_sg_list_qs++;
8709 	return n_sg_list_qs + 1;
8710 }
8711 
8712 static uint
8713 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
8714 {
8715 	uint cur_used_qs;
8716 	uint cur_free_qs;
8717 	ASC_SCSI_BIT_ID_TYPE target_id;
8718 	uchar tid_no;
8719 
8720 	target_id = ASC_TIX_TO_TARGET_ID(target_ix);
8721 	tid_no = ASC_TIX_TO_TID(target_ix);
8722 	if ((asc_dvc->unit_not_ready & target_id) ||
8723 	    (asc_dvc->queue_full_or_busy & target_id)) {
8724 		return 0;
8725 	}
8726 	if (n_qs == 1) {
8727 		cur_used_qs = (uint) asc_dvc->cur_total_qng +
8728 		    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
8729 	} else {
8730 		cur_used_qs = (uint) asc_dvc->cur_total_qng +
8731 		    (uint) ASC_MIN_FREE_Q;
8732 	}
8733 	if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
8734 		cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
8735 		if (asc_dvc->cur_dvc_qng[tid_no] >=
8736 		    asc_dvc->max_dvc_qng[tid_no]) {
8737 			return 0;
8738 		}
8739 		return cur_free_qs;
8740 	}
8741 	if (n_qs > 1) {
8742 		if ((n_qs > asc_dvc->last_q_shortage)
8743 		    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
8744 			asc_dvc->last_q_shortage = n_qs;
8745 		}
8746 	}
8747 	return 0;
8748 }
8749 
8750 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
8751 {
8752 	ushort q_addr;
8753 	uchar next_qp;
8754 	uchar q_status;
8755 
8756 	q_addr = ASC_QNO_TO_QADDR(free_q_head);
8757 	q_status = (uchar)AscReadLramByte(iop_base,
8758 					  (ushort)(q_addr +
8759 						   ASC_SCSIQ_B_STATUS));
8760 	next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
8761 	if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
8762 		return next_qp;
8763 	return ASC_QLINK_END;
8764 }
8765 
8766 static uchar
8767 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
8768 {
8769 	uchar i;
8770 
8771 	for (i = 0; i < n_free_q; i++) {
8772 		free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
8773 		if (free_q_head == ASC_QLINK_END)
8774 			break;
8775 	}
8776 	return free_q_head;
8777 }
8778 
8779 /*
8780  * void
8781  * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8782  *
8783  * Calling/Exit State:
8784  *    none
8785  *
8786  * Description:
8787  *     Output an ASC_SCSI_Q structure to the chip
8788  */
8789 static void
8790 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8791 {
8792 	int i;
8793 
8794 	ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
8795 	AscSetChipLramAddr(iop_base, s_addr);
8796 	for (i = 0; i < 2 * words; i += 2) {
8797 		if (i == 4 || i == 20) {
8798 			continue;
8799 		}
8800 		outpw(iop_base + IOP_RAM_DATA,
8801 		      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
8802 	}
8803 }
8804 
8805 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8806 {
8807 	ushort q_addr;
8808 	uchar tid_no;
8809 	uchar sdtr_data;
8810 	uchar syn_period_ix;
8811 	uchar syn_offset;
8812 	PortAddr iop_base;
8813 
8814 	iop_base = asc_dvc->iop_base;
8815 	if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
8816 	    ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
8817 		tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
8818 		sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8819 		syn_period_ix =
8820 		    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
8821 		syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
8822 		AscMsgOutSDTR(asc_dvc,
8823 			      asc_dvc->sdtr_period_tbl[syn_period_ix],
8824 			      syn_offset);
8825 		scsiq->q1.cntl |= QC_MSG_OUT;
8826 	}
8827 	q_addr = ASC_QNO_TO_QADDR(q_no);
8828 	if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
8829 		scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
8830 	}
8831 	scsiq->q1.status = QS_FREE;
8832 	AscMemWordCopyPtrToLram(iop_base,
8833 				q_addr + ASC_SCSIQ_CDB_BEG,
8834 				(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
8835 
8836 	DvcPutScsiQ(iop_base,
8837 		    q_addr + ASC_SCSIQ_CPY_BEG,
8838 		    (uchar *)&scsiq->q1.cntl,
8839 		    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
8840 	AscWriteLramWord(iop_base,
8841 			 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8842 			 (ushort)(((ushort)scsiq->q1.
8843 				   q_no << 8) | (ushort)QS_READY));
8844 	return 1;
8845 }
8846 
8847 static int
8848 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8849 {
8850 	int sta;
8851 	int i;
8852 	ASC_SG_HEAD *sg_head;
8853 	ASC_SG_LIST_Q scsi_sg_q;
8854 	ASC_DCNT saved_data_addr;
8855 	ASC_DCNT saved_data_cnt;
8856 	PortAddr iop_base;
8857 	ushort sg_list_dwords;
8858 	ushort sg_index;
8859 	ushort sg_entry_cnt;
8860 	ushort q_addr;
8861 	uchar next_qp;
8862 
8863 	iop_base = asc_dvc->iop_base;
8864 	sg_head = scsiq->sg_head;
8865 	saved_data_addr = scsiq->q1.data_addr;
8866 	saved_data_cnt = scsiq->q1.data_cnt;
8867 	scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
8868 	scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
8869 #if CC_VERY_LONG_SG_LIST
8870 	/*
8871 	 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8872 	 * then not all SG elements will fit in the allocated queues.
8873 	 * The rest of the SG elements will be copied when the RISC
8874 	 * completes the SG elements that fit and halts.
8875 	 */
8876 	if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8877 		/*
8878 		 * Set sg_entry_cnt to be the number of SG elements that
8879 		 * will fit in the allocated SG queues. It is minus 1, because
8880 		 * the first SG element is handled above. ASC_MAX_SG_LIST is
8881 		 * already inflated by 1 to account for this. For example it
8882 		 * may be 50 which is 1 + 7 queues * 7 SG elements.
8883 		 */
8884 		sg_entry_cnt = ASC_MAX_SG_LIST - 1;
8885 
8886 		/*
8887 		 * Keep track of remaining number of SG elements that will
8888 		 * need to be handled from a_isr.c.
8889 		 */
8890 		scsiq->remain_sg_entry_cnt =
8891 		    sg_head->entry_cnt - ASC_MAX_SG_LIST;
8892 	} else {
8893 #endif /* CC_VERY_LONG_SG_LIST */
8894 		/*
8895 		 * Set sg_entry_cnt to be the number of SG elements that
8896 		 * will fit in the allocated SG queues. It is minus 1, because
8897 		 * the first SG element is handled above.
8898 		 */
8899 		sg_entry_cnt = sg_head->entry_cnt - 1;
8900 #if CC_VERY_LONG_SG_LIST
8901 	}
8902 #endif /* CC_VERY_LONG_SG_LIST */
8903 	if (sg_entry_cnt != 0) {
8904 		scsiq->q1.cntl |= QC_SG_HEAD;
8905 		q_addr = ASC_QNO_TO_QADDR(q_no);
8906 		sg_index = 1;
8907 		scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8908 		scsi_sg_q.sg_head_qp = q_no;
8909 		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8910 		for (i = 0; i < sg_head->queue_cnt; i++) {
8911 			scsi_sg_q.seq_no = i + 1;
8912 			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8913 				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8914 				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8915 				if (i == 0) {
8916 					scsi_sg_q.sg_list_cnt =
8917 					    ASC_SG_LIST_PER_Q;
8918 					scsi_sg_q.sg_cur_list_cnt =
8919 					    ASC_SG_LIST_PER_Q;
8920 				} else {
8921 					scsi_sg_q.sg_list_cnt =
8922 					    ASC_SG_LIST_PER_Q - 1;
8923 					scsi_sg_q.sg_cur_list_cnt =
8924 					    ASC_SG_LIST_PER_Q - 1;
8925 				}
8926 			} else {
8927 #if CC_VERY_LONG_SG_LIST
8928 				/*
8929 				 * This is the last SG queue in the list of
8930 				 * allocated SG queues. If there are more
8931 				 * SG elements than will fit in the allocated
8932 				 * queues, then set the QCSG_SG_XFER_MORE flag.
8933 				 */
8934 				if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8935 					scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
8936 				} else {
8937 #endif /* CC_VERY_LONG_SG_LIST */
8938 					scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8939 #if CC_VERY_LONG_SG_LIST
8940 				}
8941 #endif /* CC_VERY_LONG_SG_LIST */
8942 				sg_list_dwords = sg_entry_cnt << 1;
8943 				if (i == 0) {
8944 					scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8945 					scsi_sg_q.sg_cur_list_cnt =
8946 					    sg_entry_cnt;
8947 				} else {
8948 					scsi_sg_q.sg_list_cnt =
8949 					    sg_entry_cnt - 1;
8950 					scsi_sg_q.sg_cur_list_cnt =
8951 					    sg_entry_cnt - 1;
8952 				}
8953 				sg_entry_cnt = 0;
8954 			}
8955 			next_qp = AscReadLramByte(iop_base,
8956 						  (ushort)(q_addr +
8957 							   ASC_SCSIQ_B_FWD));
8958 			scsi_sg_q.q_no = next_qp;
8959 			q_addr = ASC_QNO_TO_QADDR(next_qp);
8960 			AscMemWordCopyPtrToLram(iop_base,
8961 						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8962 						(uchar *)&scsi_sg_q,
8963 						sizeof(ASC_SG_LIST_Q) >> 1);
8964 			AscMemDWordCopyPtrToLram(iop_base,
8965 						 q_addr + ASC_SGQ_LIST_BEG,
8966 						 (uchar *)&sg_head->
8967 						 sg_list[sg_index],
8968 						 sg_list_dwords);
8969 			sg_index += ASC_SG_LIST_PER_Q;
8970 			scsiq->next_sg_index = sg_index;
8971 		}
8972 	} else {
8973 		scsiq->q1.cntl &= ~QC_SG_HEAD;
8974 	}
8975 	sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8976 	scsiq->q1.data_addr = saved_data_addr;
8977 	scsiq->q1.data_cnt = saved_data_cnt;
8978 	return (sta);
8979 }
8980 
8981 static int
8982 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8983 {
8984 	PortAddr iop_base;
8985 	uchar free_q_head;
8986 	uchar next_qp;
8987 	uchar tid_no;
8988 	uchar target_ix;
8989 	int sta;
8990 
8991 	iop_base = asc_dvc->iop_base;
8992 	target_ix = scsiq->q2.target_ix;
8993 	tid_no = ASC_TIX_TO_TID(target_ix);
8994 	sta = 0;
8995 	free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8996 	if (n_q_required > 1) {
8997 		next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8998 						    (uchar)n_q_required);
8999 		if (next_qp != ASC_QLINK_END) {
9000 			asc_dvc->last_q_shortage = 0;
9001 			scsiq->sg_head->queue_cnt = n_q_required - 1;
9002 			scsiq->q1.q_no = free_q_head;
9003 			sta = AscPutReadySgListQueue(asc_dvc, scsiq,
9004 						     free_q_head);
9005 		}
9006 	} else if (n_q_required == 1) {
9007 		next_qp = AscAllocFreeQueue(iop_base, free_q_head);
9008 		if (next_qp != ASC_QLINK_END) {
9009 			scsiq->q1.q_no = free_q_head;
9010 			sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
9011 		}
9012 	}
9013 	if (sta == 1) {
9014 		AscPutVarFreeQHead(iop_base, next_qp);
9015 		asc_dvc->cur_total_qng += n_q_required;
9016 		asc_dvc->cur_dvc_qng[tid_no]++;
9017 	}
9018 	return sta;
9019 }
9020 
9021 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
9022 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
9023 	INQUIRY,
9024 	REQUEST_SENSE,
9025 	READ_CAPACITY,
9026 	READ_TOC,
9027 	MODE_SELECT,
9028 	MODE_SENSE,
9029 	MODE_SELECT_10,
9030 	MODE_SENSE_10,
9031 	0xFF,
9032 	0xFF,
9033 	0xFF,
9034 	0xFF,
9035 	0xFF,
9036 	0xFF,
9037 	0xFF,
9038 	0xFF
9039 };
9040 
9041 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
9042 {
9043 	PortAddr iop_base;
9044 	int sta;
9045 	int n_q_required;
9046 	int disable_syn_offset_one_fix;
9047 	int i;
9048 	ASC_PADDR addr;
9049 	ushort sg_entry_cnt = 0;
9050 	ushort sg_entry_cnt_minus_one = 0;
9051 	uchar target_ix;
9052 	uchar tid_no;
9053 	uchar sdtr_data;
9054 	uchar extra_bytes;
9055 	uchar scsi_cmd;
9056 	uchar disable_cmd;
9057 	ASC_SG_HEAD *sg_head;
9058 	ASC_DCNT data_cnt;
9059 
9060 	iop_base = asc_dvc->iop_base;
9061 	sg_head = scsiq->sg_head;
9062 	if (asc_dvc->err_code != 0)
9063 		return (ERR);
9064 	scsiq->q1.q_no = 0;
9065 	if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
9066 		scsiq->q1.extra_bytes = 0;
9067 	}
9068 	sta = 0;
9069 	target_ix = scsiq->q2.target_ix;
9070 	tid_no = ASC_TIX_TO_TID(target_ix);
9071 	n_q_required = 1;
9072 	if (scsiq->cdbptr[0] == REQUEST_SENSE) {
9073 		if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
9074 			asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
9075 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
9076 			AscMsgOutSDTR(asc_dvc,
9077 				      asc_dvc->
9078 				      sdtr_period_tbl[(sdtr_data >> 4) &
9079 						      (uchar)(asc_dvc->
9080 							      max_sdtr_index -
9081 							      1)],
9082 				      (uchar)(sdtr_data & (uchar)
9083 					      ASC_SYN_MAX_OFFSET));
9084 			scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
9085 		}
9086 	}
9087 	if (asc_dvc->in_critical_cnt != 0) {
9088 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
9089 		return (ERR);
9090 	}
9091 	asc_dvc->in_critical_cnt++;
9092 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9093 		if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
9094 			asc_dvc->in_critical_cnt--;
9095 			return (ERR);
9096 		}
9097 #if !CC_VERY_LONG_SG_LIST
9098 		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9099 			asc_dvc->in_critical_cnt--;
9100 			return (ERR);
9101 		}
9102 #endif /* !CC_VERY_LONG_SG_LIST */
9103 		if (sg_entry_cnt == 1) {
9104 			scsiq->q1.data_addr =
9105 			    (ADV_PADDR)sg_head->sg_list[0].addr;
9106 			scsiq->q1.data_cnt =
9107 			    (ADV_DCNT)sg_head->sg_list[0].bytes;
9108 			scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
9109 		}
9110 		sg_entry_cnt_minus_one = sg_entry_cnt - 1;
9111 	}
9112 	scsi_cmd = scsiq->cdbptr[0];
9113 	disable_syn_offset_one_fix = FALSE;
9114 	if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
9115 	    !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
9116 		if (scsiq->q1.cntl & QC_SG_HEAD) {
9117 			data_cnt = 0;
9118 			for (i = 0; i < sg_entry_cnt; i++) {
9119 				data_cnt +=
9120 				    (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
9121 							  bytes);
9122 			}
9123 		} else {
9124 			data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
9125 		}
9126 		if (data_cnt != 0UL) {
9127 			if (data_cnt < 512UL) {
9128 				disable_syn_offset_one_fix = TRUE;
9129 			} else {
9130 				for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
9131 				     i++) {
9132 					disable_cmd =
9133 					    _syn_offset_one_disable_cmd[i];
9134 					if (disable_cmd == 0xFF) {
9135 						break;
9136 					}
9137 					if (scsi_cmd == disable_cmd) {
9138 						disable_syn_offset_one_fix =
9139 						    TRUE;
9140 						break;
9141 					}
9142 				}
9143 			}
9144 		}
9145 	}
9146 	if (disable_syn_offset_one_fix) {
9147 		scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
9148 		scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
9149 				       ASC_TAG_FLAG_DISABLE_DISCONNECT);
9150 	} else {
9151 		scsiq->q2.tag_code &= 0x27;
9152 	}
9153 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9154 		if (asc_dvc->bug_fix_cntl) {
9155 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9156 				if ((scsi_cmd == READ_6) ||
9157 				    (scsi_cmd == READ_10)) {
9158 					addr =
9159 					    (ADV_PADDR)le32_to_cpu(sg_head->
9160 								   sg_list
9161 								   [sg_entry_cnt_minus_one].
9162 								   addr) +
9163 					    (ADV_DCNT)le32_to_cpu(sg_head->
9164 								  sg_list
9165 								  [sg_entry_cnt_minus_one].
9166 								  bytes);
9167 					extra_bytes =
9168 					    (uchar)((ushort)addr & 0x0003);
9169 					if ((extra_bytes != 0)
9170 					    &&
9171 					    ((scsiq->q2.
9172 					      tag_code &
9173 					      ASC_TAG_FLAG_EXTRA_BYTES)
9174 					     == 0)) {
9175 						scsiq->q2.tag_code |=
9176 						    ASC_TAG_FLAG_EXTRA_BYTES;
9177 						scsiq->q1.extra_bytes =
9178 						    extra_bytes;
9179 						data_cnt =
9180 						    le32_to_cpu(sg_head->
9181 								sg_list
9182 								[sg_entry_cnt_minus_one].
9183 								bytes);
9184 						data_cnt -=
9185 						    (ASC_DCNT) extra_bytes;
9186 						sg_head->
9187 						    sg_list
9188 						    [sg_entry_cnt_minus_one].
9189 						    bytes =
9190 						    cpu_to_le32(data_cnt);
9191 					}
9192 				}
9193 			}
9194 		}
9195 		sg_head->entry_to_copy = sg_head->entry_cnt;
9196 #if CC_VERY_LONG_SG_LIST
9197 		/*
9198 		 * Set the sg_entry_cnt to the maximum possible. The rest of
9199 		 * the SG elements will be copied when the RISC completes the
9200 		 * SG elements that fit and halts.
9201 		 */
9202 		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9203 			sg_entry_cnt = ASC_MAX_SG_LIST;
9204 		}
9205 #endif /* CC_VERY_LONG_SG_LIST */
9206 		n_q_required = AscSgListToQueue(sg_entry_cnt);
9207 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
9208 		     (uint) n_q_required)
9209 		    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9210 			if ((sta =
9211 			     AscSendScsiQueue(asc_dvc, scsiq,
9212 					      n_q_required)) == 1) {
9213 				asc_dvc->in_critical_cnt--;
9214 				return (sta);
9215 			}
9216 		}
9217 	} else {
9218 		if (asc_dvc->bug_fix_cntl) {
9219 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9220 				if ((scsi_cmd == READ_6) ||
9221 				    (scsi_cmd == READ_10)) {
9222 					addr =
9223 					    le32_to_cpu(scsiq->q1.data_addr) +
9224 					    le32_to_cpu(scsiq->q1.data_cnt);
9225 					extra_bytes =
9226 					    (uchar)((ushort)addr & 0x0003);
9227 					if ((extra_bytes != 0)
9228 					    &&
9229 					    ((scsiq->q2.
9230 					      tag_code &
9231 					      ASC_TAG_FLAG_EXTRA_BYTES)
9232 					     == 0)) {
9233 						data_cnt =
9234 						    le32_to_cpu(scsiq->q1.
9235 								data_cnt);
9236 						if (((ushort)data_cnt & 0x01FF)
9237 						    == 0) {
9238 							scsiq->q2.tag_code |=
9239 							    ASC_TAG_FLAG_EXTRA_BYTES;
9240 							data_cnt -= (ASC_DCNT)
9241 							    extra_bytes;
9242 							scsiq->q1.data_cnt =
9243 							    cpu_to_le32
9244 							    (data_cnt);
9245 							scsiq->q1.extra_bytes =
9246 							    extra_bytes;
9247 						}
9248 					}
9249 				}
9250 			}
9251 		}
9252 		n_q_required = 1;
9253 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
9254 		    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9255 			if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
9256 						    n_q_required)) == 1) {
9257 				asc_dvc->in_critical_cnt--;
9258 				return (sta);
9259 			}
9260 		}
9261 	}
9262 	asc_dvc->in_critical_cnt--;
9263 	return (sta);
9264 }
9265 
9266 /*
9267  * AdvExeScsiQueue() - Send a request to the RISC microcode program.
9268  *
9269  *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
9270  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
9271  *   RISC to notify it a new command is ready to be executed.
9272  *
9273  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
9274  * set to SCSI_MAX_RETRY.
9275  *
9276  * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
9277  * for DMA addresses or math operations are byte swapped to little-endian
9278  * order.
9279  *
9280  * Return:
9281  *      ADV_SUCCESS(1) - The request was successfully queued.
9282  *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
9283  *                       request completes.
9284  *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
9285  *                       host IC error.
9286  */
9287 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
9288 {
9289 	AdvPortAddr iop_base;
9290 	ADV_PADDR req_paddr;
9291 	ADV_CARR_T *new_carrp;
9292 
9293 	/*
9294 	 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
9295 	 */
9296 	if (scsiq->target_id > ADV_MAX_TID) {
9297 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
9298 		scsiq->done_status = QD_WITH_ERROR;
9299 		return ADV_ERROR;
9300 	}
9301 
9302 	iop_base = asc_dvc->iop_base;
9303 
9304 	/*
9305 	 * Allocate a carrier ensuring at least one carrier always
9306 	 * remains on the freelist and initialize fields.
9307 	 */
9308 	if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
9309 		return ADV_BUSY;
9310 	}
9311 	asc_dvc->carr_freelist = (ADV_CARR_T *)
9312 	    ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
9313 	asc_dvc->carr_pending_cnt++;
9314 
9315 	/*
9316 	 * Set the carrier to be a stopper by setting 'next_vpa'
9317 	 * to the stopper value. The current stopper will be changed
9318 	 * below to point to the new stopper.
9319 	 */
9320 	new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
9321 
9322 	/*
9323 	 * Clear the ADV_SCSI_REQ_Q done flag.
9324 	 */
9325 	scsiq->a_flag &= ~ADV_SCSIQ_DONE;
9326 
9327 	req_paddr = virt_to_bus(scsiq);
9328 	BUG_ON(req_paddr & 31);
9329 	/* Wait for assertion before making little-endian */
9330 	req_paddr = cpu_to_le32(req_paddr);
9331 
9332 	/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
9333 	scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
9334 	scsiq->scsiq_rptr = req_paddr;
9335 
9336 	scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
9337 	/*
9338 	 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
9339 	 * order during initialization.
9340 	 */
9341 	scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
9342 
9343 	/*
9344 	 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
9345 	 * the microcode. The newly allocated stopper will become the new
9346 	 * stopper.
9347 	 */
9348 	asc_dvc->icq_sp->areq_vpa = req_paddr;
9349 
9350 	/*
9351 	 * Set the 'next_vpa' pointer for the old stopper to be the
9352 	 * physical address of the new stopper. The RISC can only
9353 	 * follow physical addresses.
9354 	 */
9355 	asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
9356 
9357 	/*
9358 	 * Set the host adapter stopper pointer to point to the new carrier.
9359 	 */
9360 	asc_dvc->icq_sp = new_carrp;
9361 
9362 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
9363 	    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
9364 		/*
9365 		 * Tickle the RISC to tell it to read its Command Queue Head pointer.
9366 		 */
9367 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
9368 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
9369 			/*
9370 			 * Clear the tickle value. In the ASC-3550 the RISC flag
9371 			 * command 'clr_tickle_a' does not work unless the host
9372 			 * value is cleared.
9373 			 */
9374 			AdvWriteByteRegister(iop_base, IOPB_TICKLE,
9375 					     ADV_TICKLE_NOP);
9376 		}
9377 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
9378 		/*
9379 		 * Notify the RISC a carrier is ready by writing the physical
9380 		 * address of the new carrier stopper to the COMMA register.
9381 		 */
9382 		AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
9383 				      le32_to_cpu(new_carrp->carr_pa));
9384 	}
9385 
9386 	return ADV_SUCCESS;
9387 }
9388 
9389 /*
9390  * Execute a single 'Scsi_Cmnd'.
9391  */
9392 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
9393 {
9394 	int ret, err_code;
9395 	struct asc_board *boardp = shost_priv(scp->device->host);
9396 
9397 	ASC_DBG(1, "scp 0x%p\n", scp);
9398 
9399 	if (ASC_NARROW_BOARD(boardp)) {
9400 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
9401 		struct asc_scsi_q asc_scsi_q;
9402 
9403 		/* asc_build_req() can not return ASC_BUSY. */
9404 		ret = asc_build_req(boardp, scp, &asc_scsi_q);
9405 		if (ret == ASC_ERROR) {
9406 			ASC_STATS(scp->device->host, build_error);
9407 			return ASC_ERROR;
9408 		}
9409 
9410 		ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
9411 		kfree(asc_scsi_q.sg_head);
9412 		err_code = asc_dvc->err_code;
9413 	} else {
9414 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
9415 		ADV_SCSI_REQ_Q *adv_scsiqp;
9416 
9417 		switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
9418 		case ASC_NOERROR:
9419 			ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
9420 			break;
9421 		case ASC_BUSY:
9422 			ASC_DBG(1, "adv_build_req ASC_BUSY\n");
9423 			/*
9424 			 * The asc_stats fields 'adv_build_noreq' and
9425 			 * 'adv_build_nosg' count wide board busy conditions.
9426 			 * They are updated in adv_build_req and
9427 			 * adv_get_sglist, respectively.
9428 			 */
9429 			return ASC_BUSY;
9430 		case ASC_ERROR:
9431 		default:
9432 			ASC_DBG(1, "adv_build_req ASC_ERROR\n");
9433 			ASC_STATS(scp->device->host, build_error);
9434 			return ASC_ERROR;
9435 		}
9436 
9437 		ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
9438 		err_code = adv_dvc->err_code;
9439 	}
9440 
9441 	switch (ret) {
9442 	case ASC_NOERROR:
9443 		ASC_STATS(scp->device->host, exe_noerror);
9444 		/*
9445 		 * Increment monotonically increasing per device
9446 		 * successful request counter. Wrapping doesn't matter.
9447 		 */
9448 		boardp->reqcnt[scp->device->id]++;
9449 		ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
9450 		break;
9451 	case ASC_BUSY:
9452 		ASC_STATS(scp->device->host, exe_busy);
9453 		break;
9454 	case ASC_ERROR:
9455 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
9456 			"err_code 0x%x\n", err_code);
9457 		ASC_STATS(scp->device->host, exe_error);
9458 		scp->result = HOST_BYTE(DID_ERROR);
9459 		break;
9460 	default:
9461 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
9462 			"err_code 0x%x\n", err_code);
9463 		ASC_STATS(scp->device->host, exe_unknown);
9464 		scp->result = HOST_BYTE(DID_ERROR);
9465 		break;
9466 	}
9467 
9468 	ASC_DBG(1, "end\n");
9469 	return ret;
9470 }
9471 
9472 /*
9473  * advansys_queuecommand() - interrupt-driven I/O entrypoint.
9474  *
9475  * This function always returns 0. Command return status is saved
9476  * in the 'scp' result field.
9477  */
9478 static int
9479 advansys_queuecommand(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
9480 {
9481 	struct Scsi_Host *shost = scp->device->host;
9482 	int asc_res, result = 0;
9483 
9484 	ASC_STATS(shost, queuecommand);
9485 	scp->scsi_done = done;
9486 
9487 	asc_res = asc_execute_scsi_cmnd(scp);
9488 
9489 	switch (asc_res) {
9490 	case ASC_NOERROR:
9491 		break;
9492 	case ASC_BUSY:
9493 		result = SCSI_MLQUEUE_HOST_BUSY;
9494 		break;
9495 	case ASC_ERROR:
9496 	default:
9497 		asc_scsi_done(scp);
9498 		break;
9499 	}
9500 
9501 	return result;
9502 }
9503 
9504 static ushort __devinit AscGetEisaChipCfg(PortAddr iop_base)
9505 {
9506 	PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9507 	    (PortAddr) (ASC_EISA_CFG_IOP_MASK);
9508 	return inpw(eisa_cfg_iop);
9509 }
9510 
9511 /*
9512  * Return the BIOS address of the adapter at the specified
9513  * I/O port and with the specified bus type.
9514  */
9515 static unsigned short __devinit
9516 AscGetChipBiosAddress(PortAddr iop_base, unsigned short bus_type)
9517 {
9518 	unsigned short cfg_lsw;
9519 	unsigned short bios_addr;
9520 
9521 	/*
9522 	 * The PCI BIOS is re-located by the motherboard BIOS. Because
9523 	 * of this the driver can not determine where a PCI BIOS is
9524 	 * loaded and executes.
9525 	 */
9526 	if (bus_type & ASC_IS_PCI)
9527 		return 0;
9528 
9529 	if ((bus_type & ASC_IS_EISA) != 0) {
9530 		cfg_lsw = AscGetEisaChipCfg(iop_base);
9531 		cfg_lsw &= 0x000F;
9532 		bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
9533 		return bios_addr;
9534 	}
9535 
9536 	cfg_lsw = AscGetChipCfgLsw(iop_base);
9537 
9538 	/*
9539 	 *  ISA PnP uses the top bit as the 32K BIOS flag
9540 	 */
9541 	if (bus_type == ASC_IS_ISAPNP)
9542 		cfg_lsw &= 0x7FFF;
9543 	bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
9544 	return bios_addr;
9545 }
9546 
9547 static uchar __devinit AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
9548 {
9549 	ushort cfg_lsw;
9550 
9551 	if (AscGetChipScsiID(iop_base) == new_host_id) {
9552 		return (new_host_id);
9553 	}
9554 	cfg_lsw = AscGetChipCfgLsw(iop_base);
9555 	cfg_lsw &= 0xF8FF;
9556 	cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
9557 	AscSetChipCfgLsw(iop_base, cfg_lsw);
9558 	return (AscGetChipScsiID(iop_base));
9559 }
9560 
9561 static unsigned char __devinit AscGetChipScsiCtrl(PortAddr iop_base)
9562 {
9563 	unsigned char sc;
9564 
9565 	AscSetBank(iop_base, 1);
9566 	sc = inp(iop_base + IOP_REG_SC);
9567 	AscSetBank(iop_base, 0);
9568 	return sc;
9569 }
9570 
9571 static unsigned char __devinit
9572 AscGetChipVersion(PortAddr iop_base, unsigned short bus_type)
9573 {
9574 	if (bus_type & ASC_IS_EISA) {
9575 		PortAddr eisa_iop;
9576 		unsigned char revision;
9577 		eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9578 		    (PortAddr) ASC_EISA_REV_IOP_MASK;
9579 		revision = inp(eisa_iop);
9580 		return ASC_CHIP_MIN_VER_EISA - 1 + revision;
9581 	}
9582 	return AscGetChipVerNo(iop_base);
9583 }
9584 
9585 #ifdef CONFIG_ISA
9586 static void __devinit AscEnableIsaDma(uchar dma_channel)
9587 {
9588 	if (dma_channel < 4) {
9589 		outp(0x000B, (ushort)(0xC0 | dma_channel));
9590 		outp(0x000A, dma_channel);
9591 	} else if (dma_channel < 8) {
9592 		outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
9593 		outp(0x00D4, (ushort)(dma_channel - 4));
9594 	}
9595 }
9596 #endif /* CONFIG_ISA */
9597 
9598 static int AscStopQueueExe(PortAddr iop_base)
9599 {
9600 	int count = 0;
9601 
9602 	if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
9603 		AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
9604 				 ASC_STOP_REQ_RISC_STOP);
9605 		do {
9606 			if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
9607 			    ASC_STOP_ACK_RISC_STOP) {
9608 				return (1);
9609 			}
9610 			mdelay(100);
9611 		} while (count++ < 20);
9612 	}
9613 	return (0);
9614 }
9615 
9616 static ASC_DCNT __devinit AscGetMaxDmaCount(ushort bus_type)
9617 {
9618 	if (bus_type & ASC_IS_ISA)
9619 		return ASC_MAX_ISA_DMA_COUNT;
9620 	else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
9621 		return ASC_MAX_VL_DMA_COUNT;
9622 	return ASC_MAX_PCI_DMA_COUNT;
9623 }
9624 
9625 #ifdef CONFIG_ISA
9626 static ushort __devinit AscGetIsaDmaChannel(PortAddr iop_base)
9627 {
9628 	ushort channel;
9629 
9630 	channel = AscGetChipCfgLsw(iop_base) & 0x0003;
9631 	if (channel == 0x03)
9632 		return (0);
9633 	else if (channel == 0x00)
9634 		return (7);
9635 	return (channel + 4);
9636 }
9637 
9638 static ushort __devinit AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
9639 {
9640 	ushort cfg_lsw;
9641 	uchar value;
9642 
9643 	if ((dma_channel >= 5) && (dma_channel <= 7)) {
9644 		if (dma_channel == 7)
9645 			value = 0x00;
9646 		else
9647 			value = dma_channel - 4;
9648 		cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
9649 		cfg_lsw |= value;
9650 		AscSetChipCfgLsw(iop_base, cfg_lsw);
9651 		return (AscGetIsaDmaChannel(iop_base));
9652 	}
9653 	return 0;
9654 }
9655 
9656 static uchar __devinit AscGetIsaDmaSpeed(PortAddr iop_base)
9657 {
9658 	uchar speed_value;
9659 
9660 	AscSetBank(iop_base, 1);
9661 	speed_value = AscReadChipDmaSpeed(iop_base);
9662 	speed_value &= 0x07;
9663 	AscSetBank(iop_base, 0);
9664 	return speed_value;
9665 }
9666 
9667 static uchar __devinit AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
9668 {
9669 	speed_value &= 0x07;
9670 	AscSetBank(iop_base, 1);
9671 	AscWriteChipDmaSpeed(iop_base, speed_value);
9672 	AscSetBank(iop_base, 0);
9673 	return AscGetIsaDmaSpeed(iop_base);
9674 }
9675 #endif /* CONFIG_ISA */
9676 
9677 static ushort __devinit AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
9678 {
9679 	int i;
9680 	PortAddr iop_base;
9681 	ushort warn_code;
9682 	uchar chip_version;
9683 
9684 	iop_base = asc_dvc->iop_base;
9685 	warn_code = 0;
9686 	asc_dvc->err_code = 0;
9687 	if ((asc_dvc->bus_type &
9688 	     (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
9689 		asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
9690 	}
9691 	AscSetChipControl(iop_base, CC_HALT);
9692 	AscSetChipStatus(iop_base, 0);
9693 	asc_dvc->bug_fix_cntl = 0;
9694 	asc_dvc->pci_fix_asyn_xfer = 0;
9695 	asc_dvc->pci_fix_asyn_xfer_always = 0;
9696 	/* asc_dvc->init_state initalized in AscInitGetConfig(). */
9697 	asc_dvc->sdtr_done = 0;
9698 	asc_dvc->cur_total_qng = 0;
9699 	asc_dvc->is_in_int = 0;
9700 	asc_dvc->in_critical_cnt = 0;
9701 	asc_dvc->last_q_shortage = 0;
9702 	asc_dvc->use_tagged_qng = 0;
9703 	asc_dvc->no_scam = 0;
9704 	asc_dvc->unit_not_ready = 0;
9705 	asc_dvc->queue_full_or_busy = 0;
9706 	asc_dvc->redo_scam = 0;
9707 	asc_dvc->res2 = 0;
9708 	asc_dvc->min_sdtr_index = 0;
9709 	asc_dvc->cfg->can_tagged_qng = 0;
9710 	asc_dvc->cfg->cmd_qng_enabled = 0;
9711 	asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
9712 	asc_dvc->init_sdtr = 0;
9713 	asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
9714 	asc_dvc->scsi_reset_wait = 3;
9715 	asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
9716 	asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
9717 	asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
9718 	asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
9719 	asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
9720 	chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
9721 	asc_dvc->cfg->chip_version = chip_version;
9722 	asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
9723 	asc_dvc->max_sdtr_index = 7;
9724 	if ((asc_dvc->bus_type & ASC_IS_PCI) &&
9725 	    (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
9726 		asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
9727 		asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
9728 		asc_dvc->max_sdtr_index = 15;
9729 		if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
9730 			AscSetExtraControl(iop_base,
9731 					   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9732 		} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
9733 			AscSetExtraControl(iop_base,
9734 					   (SEC_ACTIVE_NEGATE |
9735 					    SEC_ENABLE_FILTER));
9736 		}
9737 	}
9738 	if (asc_dvc->bus_type == ASC_IS_PCI) {
9739 		AscSetExtraControl(iop_base,
9740 				   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9741 	}
9742 
9743 	asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
9744 #ifdef CONFIG_ISA
9745 	if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
9746 		if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
9747 			AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
9748 			asc_dvc->bus_type = ASC_IS_ISAPNP;
9749 		}
9750 		asc_dvc->cfg->isa_dma_channel =
9751 		    (uchar)AscGetIsaDmaChannel(iop_base);
9752 	}
9753 #endif /* CONFIG_ISA */
9754 	for (i = 0; i <= ASC_MAX_TID; i++) {
9755 		asc_dvc->cur_dvc_qng[i] = 0;
9756 		asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
9757 		asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
9758 		asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
9759 		asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
9760 	}
9761 	return warn_code;
9762 }
9763 
9764 static int __devinit AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
9765 {
9766 	int retry;
9767 
9768 	for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
9769 		unsigned char read_back;
9770 		AscSetChipEEPCmd(iop_base, cmd_reg);
9771 		mdelay(1);
9772 		read_back = AscGetChipEEPCmd(iop_base);
9773 		if (read_back == cmd_reg)
9774 			return 1;
9775 	}
9776 	return 0;
9777 }
9778 
9779 static void __devinit AscWaitEEPRead(void)
9780 {
9781 	mdelay(1);
9782 }
9783 
9784 static ushort __devinit AscReadEEPWord(PortAddr iop_base, uchar addr)
9785 {
9786 	ushort read_wval;
9787 	uchar cmd_reg;
9788 
9789 	AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9790 	AscWaitEEPRead();
9791 	cmd_reg = addr | ASC_EEP_CMD_READ;
9792 	AscWriteEEPCmdReg(iop_base, cmd_reg);
9793 	AscWaitEEPRead();
9794 	read_wval = AscGetChipEEPData(iop_base);
9795 	AscWaitEEPRead();
9796 	return read_wval;
9797 }
9798 
9799 static ushort __devinit
9800 AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9801 {
9802 	ushort wval;
9803 	ushort sum;
9804 	ushort *wbuf;
9805 	int cfg_beg;
9806 	int cfg_end;
9807 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9808 	int s_addr;
9809 
9810 	wbuf = (ushort *)cfg_buf;
9811 	sum = 0;
9812 	/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9813 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9814 		*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9815 		sum += *wbuf;
9816 	}
9817 	if (bus_type & ASC_IS_VL) {
9818 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9819 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9820 	} else {
9821 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9822 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9823 	}
9824 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9825 		wval = AscReadEEPWord(iop_base, (uchar)s_addr);
9826 		if (s_addr <= uchar_end_in_config) {
9827 			/*
9828 			 * Swap all char fields - must unswap bytes already swapped
9829 			 * by AscReadEEPWord().
9830 			 */
9831 			*wbuf = le16_to_cpu(wval);
9832 		} else {
9833 			/* Don't swap word field at the end - cntl field. */
9834 			*wbuf = wval;
9835 		}
9836 		sum += wval;	/* Checksum treats all EEPROM data as words. */
9837 	}
9838 	/*
9839 	 * Read the checksum word which will be compared against 'sum'
9840 	 * by the caller. Word field already swapped.
9841 	 */
9842 	*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9843 	return sum;
9844 }
9845 
9846 static int __devinit AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
9847 {
9848 	PortAddr iop_base;
9849 	ushort q_addr;
9850 	ushort saved_word;
9851 	int sta;
9852 
9853 	iop_base = asc_dvc->iop_base;
9854 	sta = 0;
9855 	q_addr = ASC_QNO_TO_QADDR(241);
9856 	saved_word = AscReadLramWord(iop_base, q_addr);
9857 	AscSetChipLramAddr(iop_base, q_addr);
9858 	AscSetChipLramData(iop_base, 0x55AA);
9859 	mdelay(10);
9860 	AscSetChipLramAddr(iop_base, q_addr);
9861 	if (AscGetChipLramData(iop_base) == 0x55AA) {
9862 		sta = 1;
9863 		AscWriteLramWord(iop_base, q_addr, saved_word);
9864 	}
9865 	return (sta);
9866 }
9867 
9868 static void __devinit AscWaitEEPWrite(void)
9869 {
9870 	mdelay(20);
9871 }
9872 
9873 static int __devinit AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
9874 {
9875 	ushort read_back;
9876 	int retry;
9877 
9878 	retry = 0;
9879 	while (TRUE) {
9880 		AscSetChipEEPData(iop_base, data_reg);
9881 		mdelay(1);
9882 		read_back = AscGetChipEEPData(iop_base);
9883 		if (read_back == data_reg) {
9884 			return (1);
9885 		}
9886 		if (retry++ > ASC_EEP_MAX_RETRY) {
9887 			return (0);
9888 		}
9889 	}
9890 }
9891 
9892 static ushort __devinit
9893 AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
9894 {
9895 	ushort read_wval;
9896 
9897 	read_wval = AscReadEEPWord(iop_base, addr);
9898 	if (read_wval != word_val) {
9899 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
9900 		AscWaitEEPRead();
9901 		AscWriteEEPDataReg(iop_base, word_val);
9902 		AscWaitEEPRead();
9903 		AscWriteEEPCmdReg(iop_base,
9904 				  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
9905 		AscWaitEEPWrite();
9906 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9907 		AscWaitEEPRead();
9908 		return (AscReadEEPWord(iop_base, addr));
9909 	}
9910 	return (read_wval);
9911 }
9912 
9913 static int __devinit
9914 AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9915 {
9916 	int n_error;
9917 	ushort *wbuf;
9918 	ushort word;
9919 	ushort sum;
9920 	int s_addr;
9921 	int cfg_beg;
9922 	int cfg_end;
9923 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9924 
9925 	wbuf = (ushort *)cfg_buf;
9926 	n_error = 0;
9927 	sum = 0;
9928 	/* Write two config words; AscWriteEEPWord() will swap bytes. */
9929 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9930 		sum += *wbuf;
9931 		if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9932 			n_error++;
9933 		}
9934 	}
9935 	if (bus_type & ASC_IS_VL) {
9936 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9937 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9938 	} else {
9939 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9940 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9941 	}
9942 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9943 		if (s_addr <= uchar_end_in_config) {
9944 			/*
9945 			 * This is a char field. Swap char fields before they are
9946 			 * swapped again by AscWriteEEPWord().
9947 			 */
9948 			word = cpu_to_le16(*wbuf);
9949 			if (word !=
9950 			    AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9951 				n_error++;
9952 			}
9953 		} else {
9954 			/* Don't swap word field at the end - cntl field. */
9955 			if (*wbuf !=
9956 			    AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9957 				n_error++;
9958 			}
9959 		}
9960 		sum += *wbuf;	/* Checksum calculated from word values. */
9961 	}
9962 	/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9963 	*wbuf = sum;
9964 	if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9965 		n_error++;
9966 	}
9967 
9968 	/* Read EEPROM back again. */
9969 	wbuf = (ushort *)cfg_buf;
9970 	/*
9971 	 * Read two config words; Byte-swapping done by AscReadEEPWord().
9972 	 */
9973 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9974 		if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9975 			n_error++;
9976 		}
9977 	}
9978 	if (bus_type & ASC_IS_VL) {
9979 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9980 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9981 	} else {
9982 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9983 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9984 	}
9985 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9986 		if (s_addr <= uchar_end_in_config) {
9987 			/*
9988 			 * Swap all char fields. Must unswap bytes already swapped
9989 			 * by AscReadEEPWord().
9990 			 */
9991 			word =
9992 			    le16_to_cpu(AscReadEEPWord
9993 					(iop_base, (uchar)s_addr));
9994 		} else {
9995 			/* Don't swap word field at the end - cntl field. */
9996 			word = AscReadEEPWord(iop_base, (uchar)s_addr);
9997 		}
9998 		if (*wbuf != word) {
9999 			n_error++;
10000 		}
10001 	}
10002 	/* Read checksum; Byte swapping not needed. */
10003 	if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
10004 		n_error++;
10005 	}
10006 	return n_error;
10007 }
10008 
10009 static int __devinit
10010 AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
10011 {
10012 	int retry;
10013 	int n_error;
10014 
10015 	retry = 0;
10016 	while (TRUE) {
10017 		if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
10018 						   bus_type)) == 0) {
10019 			break;
10020 		}
10021 		if (++retry > ASC_EEP_MAX_RETRY) {
10022 			break;
10023 		}
10024 	}
10025 	return n_error;
10026 }
10027 
10028 static ushort __devinit AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
10029 {
10030 	ASCEEP_CONFIG eep_config_buf;
10031 	ASCEEP_CONFIG *eep_config;
10032 	PortAddr iop_base;
10033 	ushort chksum;
10034 	ushort warn_code;
10035 	ushort cfg_msw, cfg_lsw;
10036 	int i;
10037 	int write_eep = 0;
10038 
10039 	iop_base = asc_dvc->iop_base;
10040 	warn_code = 0;
10041 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
10042 	AscStopQueueExe(iop_base);
10043 	if ((AscStopChip(iop_base) == FALSE) ||
10044 	    (AscGetChipScsiCtrl(iop_base) != 0)) {
10045 		asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
10046 		AscResetChipAndScsiBus(asc_dvc);
10047 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
10048 	}
10049 	if (AscIsChipHalted(iop_base) == FALSE) {
10050 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
10051 		return (warn_code);
10052 	}
10053 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
10054 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
10055 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
10056 		return (warn_code);
10057 	}
10058 	eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
10059 	cfg_msw = AscGetChipCfgMsw(iop_base);
10060 	cfg_lsw = AscGetChipCfgLsw(iop_base);
10061 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10062 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10063 		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10064 		AscSetChipCfgMsw(iop_base, cfg_msw);
10065 	}
10066 	chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
10067 	ASC_DBG(1, "chksum 0x%x\n", chksum);
10068 	if (chksum == 0) {
10069 		chksum = 0xaa55;
10070 	}
10071 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10072 		warn_code |= ASC_WARN_AUTO_CONFIG;
10073 		if (asc_dvc->cfg->chip_version == 3) {
10074 			if (eep_config->cfg_lsw != cfg_lsw) {
10075 				warn_code |= ASC_WARN_EEPROM_RECOVER;
10076 				eep_config->cfg_lsw =
10077 				    AscGetChipCfgLsw(iop_base);
10078 			}
10079 			if (eep_config->cfg_msw != cfg_msw) {
10080 				warn_code |= ASC_WARN_EEPROM_RECOVER;
10081 				eep_config->cfg_msw =
10082 				    AscGetChipCfgMsw(iop_base);
10083 			}
10084 		}
10085 	}
10086 	eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10087 	eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
10088 	ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
10089 	if (chksum != eep_config->chksum) {
10090 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
10091 		    ASC_CHIP_VER_PCI_ULTRA_3050) {
10092 			ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
10093 			eep_config->init_sdtr = 0xFF;
10094 			eep_config->disc_enable = 0xFF;
10095 			eep_config->start_motor = 0xFF;
10096 			eep_config->use_cmd_qng = 0;
10097 			eep_config->max_total_qng = 0xF0;
10098 			eep_config->max_tag_qng = 0x20;
10099 			eep_config->cntl = 0xBFFF;
10100 			ASC_EEP_SET_CHIP_ID(eep_config, 7);
10101 			eep_config->no_scam = 0;
10102 			eep_config->adapter_info[0] = 0;
10103 			eep_config->adapter_info[1] = 0;
10104 			eep_config->adapter_info[2] = 0;
10105 			eep_config->adapter_info[3] = 0;
10106 			eep_config->adapter_info[4] = 0;
10107 			/* Indicate EEPROM-less board. */
10108 			eep_config->adapter_info[5] = 0xBB;
10109 		} else {
10110 			ASC_PRINT
10111 			    ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
10112 			write_eep = 1;
10113 			warn_code |= ASC_WARN_EEPROM_CHKSUM;
10114 		}
10115 	}
10116 	asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
10117 	asc_dvc->cfg->disc_enable = eep_config->disc_enable;
10118 	asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
10119 	asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
10120 	asc_dvc->start_motor = eep_config->start_motor;
10121 	asc_dvc->dvc_cntl = eep_config->cntl;
10122 	asc_dvc->no_scam = eep_config->no_scam;
10123 	asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
10124 	asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
10125 	asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
10126 	asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
10127 	asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
10128 	asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
10129 	if (!AscTestExternalLram(asc_dvc)) {
10130 		if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
10131 		     ASC_IS_PCI_ULTRA)) {
10132 			eep_config->max_total_qng =
10133 			    ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
10134 			eep_config->max_tag_qng =
10135 			    ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
10136 		} else {
10137 			eep_config->cfg_msw |= 0x0800;
10138 			cfg_msw |= 0x0800;
10139 			AscSetChipCfgMsw(iop_base, cfg_msw);
10140 			eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
10141 			eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
10142 		}
10143 	} else {
10144 	}
10145 	if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
10146 		eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
10147 	}
10148 	if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
10149 		eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
10150 	}
10151 	if (eep_config->max_tag_qng > eep_config->max_total_qng) {
10152 		eep_config->max_tag_qng = eep_config->max_total_qng;
10153 	}
10154 	if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
10155 		eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
10156 	}
10157 	asc_dvc->max_total_qng = eep_config->max_total_qng;
10158 	if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
10159 	    eep_config->use_cmd_qng) {
10160 		eep_config->disc_enable = eep_config->use_cmd_qng;
10161 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10162 	}
10163 	ASC_EEP_SET_CHIP_ID(eep_config,
10164 			    ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
10165 	asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
10166 	if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
10167 	    !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
10168 		asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
10169 	}
10170 
10171 	for (i = 0; i <= ASC_MAX_TID; i++) {
10172 		asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
10173 		asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
10174 		asc_dvc->cfg->sdtr_period_offset[i] =
10175 		    (uchar)(ASC_DEF_SDTR_OFFSET |
10176 			    (asc_dvc->min_sdtr_index << 4));
10177 	}
10178 	eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
10179 	if (write_eep) {
10180 		if ((i = AscSetEEPConfig(iop_base, eep_config,
10181 				     asc_dvc->bus_type)) != 0) {
10182 			ASC_PRINT1
10183 			    ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
10184 			     i);
10185 		} else {
10186 			ASC_PRINT
10187 			    ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
10188 		}
10189 	}
10190 	return (warn_code);
10191 }
10192 
10193 static int __devinit AscInitGetConfig(struct Scsi_Host *shost)
10194 {
10195 	struct asc_board *board = shost_priv(shost);
10196 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10197 	unsigned short warn_code = 0;
10198 
10199 	asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
10200 	if (asc_dvc->err_code != 0)
10201 		return asc_dvc->err_code;
10202 
10203 	if (AscFindSignature(asc_dvc->iop_base)) {
10204 		warn_code |= AscInitAscDvcVar(asc_dvc);
10205 		warn_code |= AscInitFromEEP(asc_dvc);
10206 		asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
10207 		if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
10208 			asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
10209 	} else {
10210 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10211 	}
10212 
10213 	switch (warn_code) {
10214 	case 0:	/* No error */
10215 		break;
10216 	case ASC_WARN_IO_PORT_ROTATE:
10217 		shost_printk(KERN_WARNING, shost, "I/O port address "
10218 				"modified\n");
10219 		break;
10220 	case ASC_WARN_AUTO_CONFIG:
10221 		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10222 				"enabled\n");
10223 		break;
10224 	case ASC_WARN_EEPROM_CHKSUM:
10225 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10226 		break;
10227 	case ASC_WARN_IRQ_MODIFIED:
10228 		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10229 		break;
10230 	case ASC_WARN_CMD_QNG_CONFLICT:
10231 		shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
10232 				"disconnects\n");
10233 		break;
10234 	default:
10235 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10236 				warn_code);
10237 		break;
10238 	}
10239 
10240 	if (asc_dvc->err_code != 0)
10241 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10242 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10243 
10244 	return asc_dvc->err_code;
10245 }
10246 
10247 static int __devinit AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10248 {
10249 	struct asc_board *board = shost_priv(shost);
10250 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10251 	PortAddr iop_base = asc_dvc->iop_base;
10252 	unsigned short cfg_msw;
10253 	unsigned short warn_code = 0;
10254 
10255 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
10256 	if (asc_dvc->err_code != 0)
10257 		return asc_dvc->err_code;
10258 	if (!AscFindSignature(asc_dvc->iop_base)) {
10259 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10260 		return asc_dvc->err_code;
10261 	}
10262 
10263 	cfg_msw = AscGetChipCfgMsw(iop_base);
10264 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10265 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10266 		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10267 		AscSetChipCfgMsw(iop_base, cfg_msw);
10268 	}
10269 	if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
10270 	    asc_dvc->cfg->cmd_qng_enabled) {
10271 		asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
10272 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10273 	}
10274 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10275 		warn_code |= ASC_WARN_AUTO_CONFIG;
10276 	}
10277 #ifdef CONFIG_PCI
10278 	if (asc_dvc->bus_type & ASC_IS_PCI) {
10279 		cfg_msw &= 0xFFC0;
10280 		AscSetChipCfgMsw(iop_base, cfg_msw);
10281 		if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
10282 		} else {
10283 			if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
10284 			    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
10285 				asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
10286 				asc_dvc->bug_fix_cntl |=
10287 				    ASC_BUG_FIX_ASYN_USE_SYN;
10288 			}
10289 		}
10290 	} else
10291 #endif /* CONFIG_PCI */
10292 	if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
10293 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
10294 		    == ASC_CHIP_VER_ASYN_BUG) {
10295 			asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
10296 		}
10297 	}
10298 	if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
10299 	    asc_dvc->cfg->chip_scsi_id) {
10300 		asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
10301 	}
10302 #ifdef CONFIG_ISA
10303 	if (asc_dvc->bus_type & ASC_IS_ISA) {
10304 		AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
10305 		AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
10306 	}
10307 #endif /* CONFIG_ISA */
10308 
10309 	asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
10310 
10311 	switch (warn_code) {
10312 	case 0:	/* No error. */
10313 		break;
10314 	case ASC_WARN_IO_PORT_ROTATE:
10315 		shost_printk(KERN_WARNING, shost, "I/O port address "
10316 				"modified\n");
10317 		break;
10318 	case ASC_WARN_AUTO_CONFIG:
10319 		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10320 				"enabled\n");
10321 		break;
10322 	case ASC_WARN_EEPROM_CHKSUM:
10323 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10324 		break;
10325 	case ASC_WARN_IRQ_MODIFIED:
10326 		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10327 		break;
10328 	case ASC_WARN_CMD_QNG_CONFLICT:
10329 		shost_printk(KERN_WARNING, shost, "tag queuing w/o "
10330 				"disconnects\n");
10331 		break;
10332 	default:
10333 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10334 				warn_code);
10335 		break;
10336 	}
10337 
10338 	if (asc_dvc->err_code != 0)
10339 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10340 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10341 
10342 	return asc_dvc->err_code;
10343 }
10344 
10345 /*
10346  * EEPROM Configuration.
10347  *
10348  * All drivers should use this structure to set the default EEPROM
10349  * configuration. The BIOS now uses this structure when it is built.
10350  * Additional structure information can be found in a_condor.h where
10351  * the structure is defined.
10352  *
10353  * The *_Field_IsChar structs are needed to correct for endianness.
10354  * These values are read from the board 16 bits at a time directly
10355  * into the structs. Because some fields are char, the values will be
10356  * in the wrong order. The *_Field_IsChar tells when to flip the
10357  * bytes. Data read and written to PCI memory is automatically swapped
10358  * on big-endian platforms so char fields read as words are actually being
10359  * unswapped on big-endian platforms.
10360  */
10361 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config __devinitdata = {
10362 	ADV_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
10363 	0x0000,			/* cfg_msw */
10364 	0xFFFF,			/* disc_enable */
10365 	0xFFFF,			/* wdtr_able */
10366 	0xFFFF,			/* sdtr_able */
10367 	0xFFFF,			/* start_motor */
10368 	0xFFFF,			/* tagqng_able */
10369 	0xFFFF,			/* bios_scan */
10370 	0,			/* scam_tolerant */
10371 	7,			/* adapter_scsi_id */
10372 	0,			/* bios_boot_delay */
10373 	3,			/* scsi_reset_delay */
10374 	0,			/* bios_id_lun */
10375 	0,			/* termination */
10376 	0,			/* reserved1 */
10377 	0xFFE7,			/* bios_ctrl */
10378 	0xFFFF,			/* ultra_able */
10379 	0,			/* reserved2 */
10380 	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
10381 	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
10382 	0,			/* dvc_cntl */
10383 	0,			/* bug_fix */
10384 	0,			/* serial_number_word1 */
10385 	0,			/* serial_number_word2 */
10386 	0,			/* serial_number_word3 */
10387 	0,			/* check_sum */
10388 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10389 	,			/* oem_name[16] */
10390 	0,			/* dvc_err_code */
10391 	0,			/* adv_err_code */
10392 	0,			/* adv_err_addr */
10393 	0,			/* saved_dvc_err_code */
10394 	0,			/* saved_adv_err_code */
10395 	0,			/* saved_adv_err_addr */
10396 	0			/* num_of_err */
10397 };
10398 
10399 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar __devinitdata = {
10400 	0,			/* cfg_lsw */
10401 	0,			/* cfg_msw */
10402 	0,			/* -disc_enable */
10403 	0,			/* wdtr_able */
10404 	0,			/* sdtr_able */
10405 	0,			/* start_motor */
10406 	0,			/* tagqng_able */
10407 	0,			/* bios_scan */
10408 	0,			/* scam_tolerant */
10409 	1,			/* adapter_scsi_id */
10410 	1,			/* bios_boot_delay */
10411 	1,			/* scsi_reset_delay */
10412 	1,			/* bios_id_lun */
10413 	1,			/* termination */
10414 	1,			/* reserved1 */
10415 	0,			/* bios_ctrl */
10416 	0,			/* ultra_able */
10417 	0,			/* reserved2 */
10418 	1,			/* max_host_qng */
10419 	1,			/* max_dvc_qng */
10420 	0,			/* dvc_cntl */
10421 	0,			/* bug_fix */
10422 	0,			/* serial_number_word1 */
10423 	0,			/* serial_number_word2 */
10424 	0,			/* serial_number_word3 */
10425 	0,			/* check_sum */
10426 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10427 	,			/* oem_name[16] */
10428 	0,			/* dvc_err_code */
10429 	0,			/* adv_err_code */
10430 	0,			/* adv_err_addr */
10431 	0,			/* saved_dvc_err_code */
10432 	0,			/* saved_adv_err_code */
10433 	0,			/* saved_adv_err_addr */
10434 	0			/* num_of_err */
10435 };
10436 
10437 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config __devinitdata = {
10438 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
10439 	0x0000,			/* 01 cfg_msw */
10440 	0xFFFF,			/* 02 disc_enable */
10441 	0xFFFF,			/* 03 wdtr_able */
10442 	0x4444,			/* 04 sdtr_speed1 */
10443 	0xFFFF,			/* 05 start_motor */
10444 	0xFFFF,			/* 06 tagqng_able */
10445 	0xFFFF,			/* 07 bios_scan */
10446 	0,			/* 08 scam_tolerant */
10447 	7,			/* 09 adapter_scsi_id */
10448 	0,			/*    bios_boot_delay */
10449 	3,			/* 10 scsi_reset_delay */
10450 	0,			/*    bios_id_lun */
10451 	0,			/* 11 termination_se */
10452 	0,			/*    termination_lvd */
10453 	0xFFE7,			/* 12 bios_ctrl */
10454 	0x4444,			/* 13 sdtr_speed2 */
10455 	0x4444,			/* 14 sdtr_speed3 */
10456 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
10457 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
10458 	0,			/* 16 dvc_cntl */
10459 	0x4444,			/* 17 sdtr_speed4 */
10460 	0,			/* 18 serial_number_word1 */
10461 	0,			/* 19 serial_number_word2 */
10462 	0,			/* 20 serial_number_word3 */
10463 	0,			/* 21 check_sum */
10464 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10465 	,			/* 22-29 oem_name[16] */
10466 	0,			/* 30 dvc_err_code */
10467 	0,			/* 31 adv_err_code */
10468 	0,			/* 32 adv_err_addr */
10469 	0,			/* 33 saved_dvc_err_code */
10470 	0,			/* 34 saved_adv_err_code */
10471 	0,			/* 35 saved_adv_err_addr */
10472 	0,			/* 36 reserved */
10473 	0,			/* 37 reserved */
10474 	0,			/* 38 reserved */
10475 	0,			/* 39 reserved */
10476 	0,			/* 40 reserved */
10477 	0,			/* 41 reserved */
10478 	0,			/* 42 reserved */
10479 	0,			/* 43 reserved */
10480 	0,			/* 44 reserved */
10481 	0,			/* 45 reserved */
10482 	0,			/* 46 reserved */
10483 	0,			/* 47 reserved */
10484 	0,			/* 48 reserved */
10485 	0,			/* 49 reserved */
10486 	0,			/* 50 reserved */
10487 	0,			/* 51 reserved */
10488 	0,			/* 52 reserved */
10489 	0,			/* 53 reserved */
10490 	0,			/* 54 reserved */
10491 	0,			/* 55 reserved */
10492 	0,			/* 56 cisptr_lsw */
10493 	0,			/* 57 cisprt_msw */
10494 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
10495 	PCI_DEVICE_ID_38C0800_REV1,	/* 59 subsysid */
10496 	0,			/* 60 reserved */
10497 	0,			/* 61 reserved */
10498 	0,			/* 62 reserved */
10499 	0			/* 63 reserved */
10500 };
10501 
10502 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar __devinitdata = {
10503 	0,			/* 00 cfg_lsw */
10504 	0,			/* 01 cfg_msw */
10505 	0,			/* 02 disc_enable */
10506 	0,			/* 03 wdtr_able */
10507 	0,			/* 04 sdtr_speed1 */
10508 	0,			/* 05 start_motor */
10509 	0,			/* 06 tagqng_able */
10510 	0,			/* 07 bios_scan */
10511 	0,			/* 08 scam_tolerant */
10512 	1,			/* 09 adapter_scsi_id */
10513 	1,			/*    bios_boot_delay */
10514 	1,			/* 10 scsi_reset_delay */
10515 	1,			/*    bios_id_lun */
10516 	1,			/* 11 termination_se */
10517 	1,			/*    termination_lvd */
10518 	0,			/* 12 bios_ctrl */
10519 	0,			/* 13 sdtr_speed2 */
10520 	0,			/* 14 sdtr_speed3 */
10521 	1,			/* 15 max_host_qng */
10522 	1,			/*    max_dvc_qng */
10523 	0,			/* 16 dvc_cntl */
10524 	0,			/* 17 sdtr_speed4 */
10525 	0,			/* 18 serial_number_word1 */
10526 	0,			/* 19 serial_number_word2 */
10527 	0,			/* 20 serial_number_word3 */
10528 	0,			/* 21 check_sum */
10529 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10530 	,			/* 22-29 oem_name[16] */
10531 	0,			/* 30 dvc_err_code */
10532 	0,			/* 31 adv_err_code */
10533 	0,			/* 32 adv_err_addr */
10534 	0,			/* 33 saved_dvc_err_code */
10535 	0,			/* 34 saved_adv_err_code */
10536 	0,			/* 35 saved_adv_err_addr */
10537 	0,			/* 36 reserved */
10538 	0,			/* 37 reserved */
10539 	0,			/* 38 reserved */
10540 	0,			/* 39 reserved */
10541 	0,			/* 40 reserved */
10542 	0,			/* 41 reserved */
10543 	0,			/* 42 reserved */
10544 	0,			/* 43 reserved */
10545 	0,			/* 44 reserved */
10546 	0,			/* 45 reserved */
10547 	0,			/* 46 reserved */
10548 	0,			/* 47 reserved */
10549 	0,			/* 48 reserved */
10550 	0,			/* 49 reserved */
10551 	0,			/* 50 reserved */
10552 	0,			/* 51 reserved */
10553 	0,			/* 52 reserved */
10554 	0,			/* 53 reserved */
10555 	0,			/* 54 reserved */
10556 	0,			/* 55 reserved */
10557 	0,			/* 56 cisptr_lsw */
10558 	0,			/* 57 cisprt_msw */
10559 	0,			/* 58 subsysvid */
10560 	0,			/* 59 subsysid */
10561 	0,			/* 60 reserved */
10562 	0,			/* 61 reserved */
10563 	0,			/* 62 reserved */
10564 	0			/* 63 reserved */
10565 };
10566 
10567 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config __devinitdata = {
10568 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
10569 	0x0000,			/* 01 cfg_msw */
10570 	0xFFFF,			/* 02 disc_enable */
10571 	0xFFFF,			/* 03 wdtr_able */
10572 	0x5555,			/* 04 sdtr_speed1 */
10573 	0xFFFF,			/* 05 start_motor */
10574 	0xFFFF,			/* 06 tagqng_able */
10575 	0xFFFF,			/* 07 bios_scan */
10576 	0,			/* 08 scam_tolerant */
10577 	7,			/* 09 adapter_scsi_id */
10578 	0,			/*    bios_boot_delay */
10579 	3,			/* 10 scsi_reset_delay */
10580 	0,			/*    bios_id_lun */
10581 	0,			/* 11 termination_se */
10582 	0,			/*    termination_lvd */
10583 	0xFFE7,			/* 12 bios_ctrl */
10584 	0x5555,			/* 13 sdtr_speed2 */
10585 	0x5555,			/* 14 sdtr_speed3 */
10586 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
10587 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
10588 	0,			/* 16 dvc_cntl */
10589 	0x5555,			/* 17 sdtr_speed4 */
10590 	0,			/* 18 serial_number_word1 */
10591 	0,			/* 19 serial_number_word2 */
10592 	0,			/* 20 serial_number_word3 */
10593 	0,			/* 21 check_sum */
10594 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10595 	,			/* 22-29 oem_name[16] */
10596 	0,			/* 30 dvc_err_code */
10597 	0,			/* 31 adv_err_code */
10598 	0,			/* 32 adv_err_addr */
10599 	0,			/* 33 saved_dvc_err_code */
10600 	0,			/* 34 saved_adv_err_code */
10601 	0,			/* 35 saved_adv_err_addr */
10602 	0,			/* 36 reserved */
10603 	0,			/* 37 reserved */
10604 	0,			/* 38 reserved */
10605 	0,			/* 39 reserved */
10606 	0,			/* 40 reserved */
10607 	0,			/* 41 reserved */
10608 	0,			/* 42 reserved */
10609 	0,			/* 43 reserved */
10610 	0,			/* 44 reserved */
10611 	0,			/* 45 reserved */
10612 	0,			/* 46 reserved */
10613 	0,			/* 47 reserved */
10614 	0,			/* 48 reserved */
10615 	0,			/* 49 reserved */
10616 	0,			/* 50 reserved */
10617 	0,			/* 51 reserved */
10618 	0,			/* 52 reserved */
10619 	0,			/* 53 reserved */
10620 	0,			/* 54 reserved */
10621 	0,			/* 55 reserved */
10622 	0,			/* 56 cisptr_lsw */
10623 	0,			/* 57 cisprt_msw */
10624 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
10625 	PCI_DEVICE_ID_38C1600_REV1,	/* 59 subsysid */
10626 	0,			/* 60 reserved */
10627 	0,			/* 61 reserved */
10628 	0,			/* 62 reserved */
10629 	0			/* 63 reserved */
10630 };
10631 
10632 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar __devinitdata = {
10633 	0,			/* 00 cfg_lsw */
10634 	0,			/* 01 cfg_msw */
10635 	0,			/* 02 disc_enable */
10636 	0,			/* 03 wdtr_able */
10637 	0,			/* 04 sdtr_speed1 */
10638 	0,			/* 05 start_motor */
10639 	0,			/* 06 tagqng_able */
10640 	0,			/* 07 bios_scan */
10641 	0,			/* 08 scam_tolerant */
10642 	1,			/* 09 adapter_scsi_id */
10643 	1,			/*    bios_boot_delay */
10644 	1,			/* 10 scsi_reset_delay */
10645 	1,			/*    bios_id_lun */
10646 	1,			/* 11 termination_se */
10647 	1,			/*    termination_lvd */
10648 	0,			/* 12 bios_ctrl */
10649 	0,			/* 13 sdtr_speed2 */
10650 	0,			/* 14 sdtr_speed3 */
10651 	1,			/* 15 max_host_qng */
10652 	1,			/*    max_dvc_qng */
10653 	0,			/* 16 dvc_cntl */
10654 	0,			/* 17 sdtr_speed4 */
10655 	0,			/* 18 serial_number_word1 */
10656 	0,			/* 19 serial_number_word2 */
10657 	0,			/* 20 serial_number_word3 */
10658 	0,			/* 21 check_sum */
10659 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10660 	,			/* 22-29 oem_name[16] */
10661 	0,			/* 30 dvc_err_code */
10662 	0,			/* 31 adv_err_code */
10663 	0,			/* 32 adv_err_addr */
10664 	0,			/* 33 saved_dvc_err_code */
10665 	0,			/* 34 saved_adv_err_code */
10666 	0,			/* 35 saved_adv_err_addr */
10667 	0,			/* 36 reserved */
10668 	0,			/* 37 reserved */
10669 	0,			/* 38 reserved */
10670 	0,			/* 39 reserved */
10671 	0,			/* 40 reserved */
10672 	0,			/* 41 reserved */
10673 	0,			/* 42 reserved */
10674 	0,			/* 43 reserved */
10675 	0,			/* 44 reserved */
10676 	0,			/* 45 reserved */
10677 	0,			/* 46 reserved */
10678 	0,			/* 47 reserved */
10679 	0,			/* 48 reserved */
10680 	0,			/* 49 reserved */
10681 	0,			/* 50 reserved */
10682 	0,			/* 51 reserved */
10683 	0,			/* 52 reserved */
10684 	0,			/* 53 reserved */
10685 	0,			/* 54 reserved */
10686 	0,			/* 55 reserved */
10687 	0,			/* 56 cisptr_lsw */
10688 	0,			/* 57 cisprt_msw */
10689 	0,			/* 58 subsysvid */
10690 	0,			/* 59 subsysid */
10691 	0,			/* 60 reserved */
10692 	0,			/* 61 reserved */
10693 	0,			/* 62 reserved */
10694 	0			/* 63 reserved */
10695 };
10696 
10697 #ifdef CONFIG_PCI
10698 /*
10699  * Wait for EEPROM command to complete
10700  */
10701 static void __devinit AdvWaitEEPCmd(AdvPortAddr iop_base)
10702 {
10703 	int eep_delay_ms;
10704 
10705 	for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
10706 		if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
10707 		    ASC_EEP_CMD_DONE) {
10708 			break;
10709 		}
10710 		mdelay(1);
10711 	}
10712 	if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
10713 	    0)
10714 		BUG();
10715 }
10716 
10717 /*
10718  * Read the EEPROM from specified location
10719  */
10720 static ushort __devinit AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
10721 {
10722 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10723 			     ASC_EEP_CMD_READ | eep_word_addr);
10724 	AdvWaitEEPCmd(iop_base);
10725 	return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
10726 }
10727 
10728 /*
10729  * Write the EEPROM from 'cfg_buf'.
10730  */
10731 static void __devinit
10732 AdvSet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10733 {
10734 	ushort *wbuf;
10735 	ushort addr, chksum;
10736 	ushort *charfields;
10737 
10738 	wbuf = (ushort *)cfg_buf;
10739 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10740 	chksum = 0;
10741 
10742 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10743 	AdvWaitEEPCmd(iop_base);
10744 
10745 	/*
10746 	 * Write EEPROM from word 0 to word 20.
10747 	 */
10748 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
10749 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10750 		ushort word;
10751 
10752 		if (*charfields++) {
10753 			word = cpu_to_le16(*wbuf);
10754 		} else {
10755 			word = *wbuf;
10756 		}
10757 		chksum += *wbuf;	/* Checksum is calculated from word values. */
10758 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10759 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10760 				     ASC_EEP_CMD_WRITE | addr);
10761 		AdvWaitEEPCmd(iop_base);
10762 		mdelay(ADV_EEP_DELAY_MS);
10763 	}
10764 
10765 	/*
10766 	 * Write EEPROM checksum at word 21.
10767 	 */
10768 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10769 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10770 	AdvWaitEEPCmd(iop_base);
10771 	wbuf++;
10772 	charfields++;
10773 
10774 	/*
10775 	 * Write EEPROM OEM name at words 22 to 29.
10776 	 */
10777 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
10778 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10779 		ushort word;
10780 
10781 		if (*charfields++) {
10782 			word = cpu_to_le16(*wbuf);
10783 		} else {
10784 			word = *wbuf;
10785 		}
10786 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10787 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10788 				     ASC_EEP_CMD_WRITE | addr);
10789 		AdvWaitEEPCmd(iop_base);
10790 	}
10791 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10792 	AdvWaitEEPCmd(iop_base);
10793 }
10794 
10795 /*
10796  * Write the EEPROM from 'cfg_buf'.
10797  */
10798 static void __devinit
10799 AdvSet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
10800 {
10801 	ushort *wbuf;
10802 	ushort *charfields;
10803 	ushort addr, chksum;
10804 
10805 	wbuf = (ushort *)cfg_buf;
10806 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10807 	chksum = 0;
10808 
10809 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10810 	AdvWaitEEPCmd(iop_base);
10811 
10812 	/*
10813 	 * Write EEPROM from word 0 to word 20.
10814 	 */
10815 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
10816 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10817 		ushort word;
10818 
10819 		if (*charfields++) {
10820 			word = cpu_to_le16(*wbuf);
10821 		} else {
10822 			word = *wbuf;
10823 		}
10824 		chksum += *wbuf;	/* Checksum is calculated from word values. */
10825 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10826 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10827 				     ASC_EEP_CMD_WRITE | addr);
10828 		AdvWaitEEPCmd(iop_base);
10829 		mdelay(ADV_EEP_DELAY_MS);
10830 	}
10831 
10832 	/*
10833 	 * Write EEPROM checksum at word 21.
10834 	 */
10835 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10836 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10837 	AdvWaitEEPCmd(iop_base);
10838 	wbuf++;
10839 	charfields++;
10840 
10841 	/*
10842 	 * Write EEPROM OEM name at words 22 to 29.
10843 	 */
10844 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
10845 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10846 		ushort word;
10847 
10848 		if (*charfields++) {
10849 			word = cpu_to_le16(*wbuf);
10850 		} else {
10851 			word = *wbuf;
10852 		}
10853 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10854 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10855 				     ASC_EEP_CMD_WRITE | addr);
10856 		AdvWaitEEPCmd(iop_base);
10857 	}
10858 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10859 	AdvWaitEEPCmd(iop_base);
10860 }
10861 
10862 /*
10863  * Write the EEPROM from 'cfg_buf'.
10864  */
10865 static void __devinit
10866 AdvSet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
10867 {
10868 	ushort *wbuf;
10869 	ushort *charfields;
10870 	ushort addr, chksum;
10871 
10872 	wbuf = (ushort *)cfg_buf;
10873 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10874 	chksum = 0;
10875 
10876 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10877 	AdvWaitEEPCmd(iop_base);
10878 
10879 	/*
10880 	 * Write EEPROM from word 0 to word 20.
10881 	 */
10882 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
10883 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10884 		ushort word;
10885 
10886 		if (*charfields++) {
10887 			word = cpu_to_le16(*wbuf);
10888 		} else {
10889 			word = *wbuf;
10890 		}
10891 		chksum += *wbuf;	/* Checksum is calculated from word values. */
10892 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10893 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10894 				     ASC_EEP_CMD_WRITE | addr);
10895 		AdvWaitEEPCmd(iop_base);
10896 		mdelay(ADV_EEP_DELAY_MS);
10897 	}
10898 
10899 	/*
10900 	 * Write EEPROM checksum at word 21.
10901 	 */
10902 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10903 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10904 	AdvWaitEEPCmd(iop_base);
10905 	wbuf++;
10906 	charfields++;
10907 
10908 	/*
10909 	 * Write EEPROM OEM name at words 22 to 29.
10910 	 */
10911 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
10912 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10913 		ushort word;
10914 
10915 		if (*charfields++) {
10916 			word = cpu_to_le16(*wbuf);
10917 		} else {
10918 			word = *wbuf;
10919 		}
10920 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10921 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10922 				     ASC_EEP_CMD_WRITE | addr);
10923 		AdvWaitEEPCmd(iop_base);
10924 	}
10925 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10926 	AdvWaitEEPCmd(iop_base);
10927 }
10928 
10929 /*
10930  * Read EEPROM configuration into the specified buffer.
10931  *
10932  * Return a checksum based on the EEPROM configuration read.
10933  */
10934 static ushort __devinit
10935 AdvGet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10936 {
10937 	ushort wval, chksum;
10938 	ushort *wbuf;
10939 	int eep_addr;
10940 	ushort *charfields;
10941 
10942 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10943 	wbuf = (ushort *)cfg_buf;
10944 	chksum = 0;
10945 
10946 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10947 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10948 		wval = AdvReadEEPWord(iop_base, eep_addr);
10949 		chksum += wval;	/* Checksum is calculated from word values. */
10950 		if (*charfields++) {
10951 			*wbuf = le16_to_cpu(wval);
10952 		} else {
10953 			*wbuf = wval;
10954 		}
10955 	}
10956 	/* Read checksum word. */
10957 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10958 	wbuf++;
10959 	charfields++;
10960 
10961 	/* Read rest of EEPROM not covered by the checksum. */
10962 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10963 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10964 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10965 		if (*charfields++) {
10966 			*wbuf = le16_to_cpu(*wbuf);
10967 		}
10968 	}
10969 	return chksum;
10970 }
10971 
10972 /*
10973  * Read EEPROM configuration into the specified buffer.
10974  *
10975  * Return a checksum based on the EEPROM configuration read.
10976  */
10977 static ushort __devinit
10978 AdvGet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
10979 {
10980 	ushort wval, chksum;
10981 	ushort *wbuf;
10982 	int eep_addr;
10983 	ushort *charfields;
10984 
10985 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10986 	wbuf = (ushort *)cfg_buf;
10987 	chksum = 0;
10988 
10989 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10990 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10991 		wval = AdvReadEEPWord(iop_base, eep_addr);
10992 		chksum += wval;	/* Checksum is calculated from word values. */
10993 		if (*charfields++) {
10994 			*wbuf = le16_to_cpu(wval);
10995 		} else {
10996 			*wbuf = wval;
10997 		}
10998 	}
10999 	/* Read checksum word. */
11000 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
11001 	wbuf++;
11002 	charfields++;
11003 
11004 	/* Read rest of EEPROM not covered by the checksum. */
11005 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11006 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11007 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
11008 		if (*charfields++) {
11009 			*wbuf = le16_to_cpu(*wbuf);
11010 		}
11011 	}
11012 	return chksum;
11013 }
11014 
11015 /*
11016  * Read EEPROM configuration into the specified buffer.
11017  *
11018  * Return a checksum based on the EEPROM configuration read.
11019  */
11020 static ushort __devinit
11021 AdvGet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
11022 {
11023 	ushort wval, chksum;
11024 	ushort *wbuf;
11025 	int eep_addr;
11026 	ushort *charfields;
11027 
11028 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
11029 	wbuf = (ushort *)cfg_buf;
11030 	chksum = 0;
11031 
11032 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
11033 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
11034 		wval = AdvReadEEPWord(iop_base, eep_addr);
11035 		chksum += wval;	/* Checksum is calculated from word values. */
11036 		if (*charfields++) {
11037 			*wbuf = le16_to_cpu(wval);
11038 		} else {
11039 			*wbuf = wval;
11040 		}
11041 	}
11042 	/* Read checksum word. */
11043 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
11044 	wbuf++;
11045 	charfields++;
11046 
11047 	/* Read rest of EEPROM not covered by the checksum. */
11048 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11049 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11050 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
11051 		if (*charfields++) {
11052 			*wbuf = le16_to_cpu(*wbuf);
11053 		}
11054 	}
11055 	return chksum;
11056 }
11057 
11058 /*
11059  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11060  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11061  * all of this is done.
11062  *
11063  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11064  *
11065  * For a non-fatal error return a warning code. If there are no warnings
11066  * then 0 is returned.
11067  *
11068  * Note: Chip is stopped on entry.
11069  */
11070 static int __devinit AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
11071 {
11072 	AdvPortAddr iop_base;
11073 	ushort warn_code;
11074 	ADVEEP_3550_CONFIG eep_config;
11075 
11076 	iop_base = asc_dvc->iop_base;
11077 
11078 	warn_code = 0;
11079 
11080 	/*
11081 	 * Read the board's EEPROM configuration.
11082 	 *
11083 	 * Set default values if a bad checksum is found.
11084 	 */
11085 	if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
11086 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
11087 
11088 		/*
11089 		 * Set EEPROM default values.
11090 		 */
11091 		memcpy(&eep_config, &Default_3550_EEPROM_Config,
11092 			sizeof(ADVEEP_3550_CONFIG));
11093 
11094 		/*
11095 		 * Assume the 6 byte board serial number that was read from
11096 		 * EEPROM is correct even if the EEPROM checksum failed.
11097 		 */
11098 		eep_config.serial_number_word3 =
11099 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11100 
11101 		eep_config.serial_number_word2 =
11102 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11103 
11104 		eep_config.serial_number_word1 =
11105 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11106 
11107 		AdvSet3550EEPConfig(iop_base, &eep_config);
11108 	}
11109 	/*
11110 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11111 	 * EEPROM configuration that was read.
11112 	 *
11113 	 * This is the mapping of EEPROM fields to Adv Library fields.
11114 	 */
11115 	asc_dvc->wdtr_able = eep_config.wdtr_able;
11116 	asc_dvc->sdtr_able = eep_config.sdtr_able;
11117 	asc_dvc->ultra_able = eep_config.ultra_able;
11118 	asc_dvc->tagqng_able = eep_config.tagqng_able;
11119 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11120 	asc_dvc->max_host_qng = eep_config.max_host_qng;
11121 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11122 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11123 	asc_dvc->start_motor = eep_config.start_motor;
11124 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11125 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11126 	asc_dvc->no_scam = eep_config.scam_tolerant;
11127 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11128 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11129 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11130 
11131 	/*
11132 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
11133 	 * maximum queuing (max. 63, min. 4).
11134 	 */
11135 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11136 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11137 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11138 		/* If the value is zero, assume it is uninitialized. */
11139 		if (eep_config.max_host_qng == 0) {
11140 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11141 		} else {
11142 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11143 		}
11144 	}
11145 
11146 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11147 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11148 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11149 		/* If the value is zero, assume it is uninitialized. */
11150 		if (eep_config.max_dvc_qng == 0) {
11151 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11152 		} else {
11153 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11154 		}
11155 	}
11156 
11157 	/*
11158 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11159 	 * set 'max_dvc_qng' to 'max_host_qng'.
11160 	 */
11161 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11162 		eep_config.max_dvc_qng = eep_config.max_host_qng;
11163 	}
11164 
11165 	/*
11166 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11167 	 * values based on possibly adjusted EEPROM values.
11168 	 */
11169 	asc_dvc->max_host_qng = eep_config.max_host_qng;
11170 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11171 
11172 	/*
11173 	 * If the EEPROM 'termination' field is set to automatic (0), then set
11174 	 * the ADV_DVC_CFG 'termination' field to automatic also.
11175 	 *
11176 	 * If the termination is specified with a non-zero 'termination'
11177 	 * value check that a legal value is set and set the ADV_DVC_CFG
11178 	 * 'termination' field appropriately.
11179 	 */
11180 	if (eep_config.termination == 0) {
11181 		asc_dvc->cfg->termination = 0;	/* auto termination */
11182 	} else {
11183 		/* Enable manual control with low off / high off. */
11184 		if (eep_config.termination == 1) {
11185 			asc_dvc->cfg->termination = TERM_CTL_SEL;
11186 
11187 			/* Enable manual control with low off / high on. */
11188 		} else if (eep_config.termination == 2) {
11189 			asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
11190 
11191 			/* Enable manual control with low on / high on. */
11192 		} else if (eep_config.termination == 3) {
11193 			asc_dvc->cfg->termination =
11194 			    TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
11195 		} else {
11196 			/*
11197 			 * The EEPROM 'termination' field contains a bad value. Use
11198 			 * automatic termination instead.
11199 			 */
11200 			asc_dvc->cfg->termination = 0;
11201 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
11202 		}
11203 	}
11204 
11205 	return warn_code;
11206 }
11207 
11208 /*
11209  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11210  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11211  * all of this is done.
11212  *
11213  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11214  *
11215  * For a non-fatal error return a warning code. If there are no warnings
11216  * then 0 is returned.
11217  *
11218  * Note: Chip is stopped on entry.
11219  */
11220 static int __devinit AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
11221 {
11222 	AdvPortAddr iop_base;
11223 	ushort warn_code;
11224 	ADVEEP_38C0800_CONFIG eep_config;
11225 	uchar tid, termination;
11226 	ushort sdtr_speed = 0;
11227 
11228 	iop_base = asc_dvc->iop_base;
11229 
11230 	warn_code = 0;
11231 
11232 	/*
11233 	 * Read the board's EEPROM configuration.
11234 	 *
11235 	 * Set default values if a bad checksum is found.
11236 	 */
11237 	if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
11238 	    eep_config.check_sum) {
11239 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
11240 
11241 		/*
11242 		 * Set EEPROM default values.
11243 		 */
11244 		memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
11245 			sizeof(ADVEEP_38C0800_CONFIG));
11246 
11247 		/*
11248 		 * Assume the 6 byte board serial number that was read from
11249 		 * EEPROM is correct even if the EEPROM checksum failed.
11250 		 */
11251 		eep_config.serial_number_word3 =
11252 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11253 
11254 		eep_config.serial_number_word2 =
11255 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11256 
11257 		eep_config.serial_number_word1 =
11258 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11259 
11260 		AdvSet38C0800EEPConfig(iop_base, &eep_config);
11261 	}
11262 	/*
11263 	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
11264 	 * EEPROM configuration that was read.
11265 	 *
11266 	 * This is the mapping of EEPROM fields to Adv Library fields.
11267 	 */
11268 	asc_dvc->wdtr_able = eep_config.wdtr_able;
11269 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11270 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11271 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11272 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11273 	asc_dvc->tagqng_able = eep_config.tagqng_able;
11274 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11275 	asc_dvc->max_host_qng = eep_config.max_host_qng;
11276 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11277 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11278 	asc_dvc->start_motor = eep_config.start_motor;
11279 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11280 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11281 	asc_dvc->no_scam = eep_config.scam_tolerant;
11282 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11283 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11284 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11285 
11286 	/*
11287 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11288 	 * are set, then set an 'sdtr_able' bit for it.
11289 	 */
11290 	asc_dvc->sdtr_able = 0;
11291 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
11292 		if (tid == 0) {
11293 			sdtr_speed = asc_dvc->sdtr_speed1;
11294 		} else if (tid == 4) {
11295 			sdtr_speed = asc_dvc->sdtr_speed2;
11296 		} else if (tid == 8) {
11297 			sdtr_speed = asc_dvc->sdtr_speed3;
11298 		} else if (tid == 12) {
11299 			sdtr_speed = asc_dvc->sdtr_speed4;
11300 		}
11301 		if (sdtr_speed & ADV_MAX_TID) {
11302 			asc_dvc->sdtr_able |= (1 << tid);
11303 		}
11304 		sdtr_speed >>= 4;
11305 	}
11306 
11307 	/*
11308 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
11309 	 * maximum queuing (max. 63, min. 4).
11310 	 */
11311 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11312 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11313 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11314 		/* If the value is zero, assume it is uninitialized. */
11315 		if (eep_config.max_host_qng == 0) {
11316 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11317 		} else {
11318 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11319 		}
11320 	}
11321 
11322 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11323 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11324 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11325 		/* If the value is zero, assume it is uninitialized. */
11326 		if (eep_config.max_dvc_qng == 0) {
11327 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11328 		} else {
11329 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11330 		}
11331 	}
11332 
11333 	/*
11334 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11335 	 * set 'max_dvc_qng' to 'max_host_qng'.
11336 	 */
11337 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11338 		eep_config.max_dvc_qng = eep_config.max_host_qng;
11339 	}
11340 
11341 	/*
11342 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11343 	 * values based on possibly adjusted EEPROM values.
11344 	 */
11345 	asc_dvc->max_host_qng = eep_config.max_host_qng;
11346 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11347 
11348 	/*
11349 	 * If the EEPROM 'termination' field is set to automatic (0), then set
11350 	 * the ADV_DVC_CFG 'termination' field to automatic also.
11351 	 *
11352 	 * If the termination is specified with a non-zero 'termination'
11353 	 * value check that a legal value is set and set the ADV_DVC_CFG
11354 	 * 'termination' field appropriately.
11355 	 */
11356 	if (eep_config.termination_se == 0) {
11357 		termination = 0;	/* auto termination for SE */
11358 	} else {
11359 		/* Enable manual control with low off / high off. */
11360 		if (eep_config.termination_se == 1) {
11361 			termination = 0;
11362 
11363 			/* Enable manual control with low off / high on. */
11364 		} else if (eep_config.termination_se == 2) {
11365 			termination = TERM_SE_HI;
11366 
11367 			/* Enable manual control with low on / high on. */
11368 		} else if (eep_config.termination_se == 3) {
11369 			termination = TERM_SE;
11370 		} else {
11371 			/*
11372 			 * The EEPROM 'termination_se' field contains a bad value.
11373 			 * Use automatic termination instead.
11374 			 */
11375 			termination = 0;
11376 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
11377 		}
11378 	}
11379 
11380 	if (eep_config.termination_lvd == 0) {
11381 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
11382 	} else {
11383 		/* Enable manual control with low off / high off. */
11384 		if (eep_config.termination_lvd == 1) {
11385 			asc_dvc->cfg->termination = termination;
11386 
11387 			/* Enable manual control with low off / high on. */
11388 		} else if (eep_config.termination_lvd == 2) {
11389 			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11390 
11391 			/* Enable manual control with low on / high on. */
11392 		} else if (eep_config.termination_lvd == 3) {
11393 			asc_dvc->cfg->termination = termination | TERM_LVD;
11394 		} else {
11395 			/*
11396 			 * The EEPROM 'termination_lvd' field contains a bad value.
11397 			 * Use automatic termination instead.
11398 			 */
11399 			asc_dvc->cfg->termination = termination;
11400 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
11401 		}
11402 	}
11403 
11404 	return warn_code;
11405 }
11406 
11407 /*
11408  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
11409  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
11410  * all of this is done.
11411  *
11412  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
11413  *
11414  * For a non-fatal error return a warning code. If there are no warnings
11415  * then 0 is returned.
11416  *
11417  * Note: Chip is stopped on entry.
11418  */
11419 static int __devinit AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
11420 {
11421 	AdvPortAddr iop_base;
11422 	ushort warn_code;
11423 	ADVEEP_38C1600_CONFIG eep_config;
11424 	uchar tid, termination;
11425 	ushort sdtr_speed = 0;
11426 
11427 	iop_base = asc_dvc->iop_base;
11428 
11429 	warn_code = 0;
11430 
11431 	/*
11432 	 * Read the board's EEPROM configuration.
11433 	 *
11434 	 * Set default values if a bad checksum is found.
11435 	 */
11436 	if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
11437 	    eep_config.check_sum) {
11438 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
11439 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
11440 
11441 		/*
11442 		 * Set EEPROM default values.
11443 		 */
11444 		memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
11445 			sizeof(ADVEEP_38C1600_CONFIG));
11446 
11447 		if (PCI_FUNC(pdev->devfn) != 0) {
11448 			u8 ints;
11449 			/*
11450 			 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
11451 			 * and old Mac system booting problem. The Expansion
11452 			 * ROM must be disabled in Function 1 for these systems
11453 			 */
11454 			eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
11455 			/*
11456 			 * Clear the INTAB (bit 11) if the GPIO 0 input
11457 			 * indicates the Function 1 interrupt line is wired
11458 			 * to INTB.
11459 			 *
11460 			 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
11461 			 *   1 - Function 1 interrupt line wired to INT A.
11462 			 *   0 - Function 1 interrupt line wired to INT B.
11463 			 *
11464 			 * Note: Function 0 is always wired to INTA.
11465 			 * Put all 5 GPIO bits in input mode and then read
11466 			 * their input values.
11467 			 */
11468 			AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
11469 			ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
11470 			if ((ints & 0x01) == 0)
11471 				eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
11472 		}
11473 
11474 		/*
11475 		 * Assume the 6 byte board serial number that was read from
11476 		 * EEPROM is correct even if the EEPROM checksum failed.
11477 		 */
11478 		eep_config.serial_number_word3 =
11479 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11480 		eep_config.serial_number_word2 =
11481 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11482 		eep_config.serial_number_word1 =
11483 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11484 
11485 		AdvSet38C1600EEPConfig(iop_base, &eep_config);
11486 	}
11487 
11488 	/*
11489 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11490 	 * EEPROM configuration that was read.
11491 	 *
11492 	 * This is the mapping of EEPROM fields to Adv Library fields.
11493 	 */
11494 	asc_dvc->wdtr_able = eep_config.wdtr_able;
11495 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11496 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11497 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11498 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11499 	asc_dvc->ppr_able = 0;
11500 	asc_dvc->tagqng_able = eep_config.tagqng_able;
11501 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11502 	asc_dvc->max_host_qng = eep_config.max_host_qng;
11503 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11504 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
11505 	asc_dvc->start_motor = eep_config.start_motor;
11506 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11507 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11508 	asc_dvc->no_scam = eep_config.scam_tolerant;
11509 
11510 	/*
11511 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11512 	 * are set, then set an 'sdtr_able' bit for it.
11513 	 */
11514 	asc_dvc->sdtr_able = 0;
11515 	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
11516 		if (tid == 0) {
11517 			sdtr_speed = asc_dvc->sdtr_speed1;
11518 		} else if (tid == 4) {
11519 			sdtr_speed = asc_dvc->sdtr_speed2;
11520 		} else if (tid == 8) {
11521 			sdtr_speed = asc_dvc->sdtr_speed3;
11522 		} else if (tid == 12) {
11523 			sdtr_speed = asc_dvc->sdtr_speed4;
11524 		}
11525 		if (sdtr_speed & ASC_MAX_TID) {
11526 			asc_dvc->sdtr_able |= (1 << tid);
11527 		}
11528 		sdtr_speed >>= 4;
11529 	}
11530 
11531 	/*
11532 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
11533 	 * maximum queuing (max. 63, min. 4).
11534 	 */
11535 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11536 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11537 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11538 		/* If the value is zero, assume it is uninitialized. */
11539 		if (eep_config.max_host_qng == 0) {
11540 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11541 		} else {
11542 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11543 		}
11544 	}
11545 
11546 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11547 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11548 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11549 		/* If the value is zero, assume it is uninitialized. */
11550 		if (eep_config.max_dvc_qng == 0) {
11551 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11552 		} else {
11553 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11554 		}
11555 	}
11556 
11557 	/*
11558 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11559 	 * set 'max_dvc_qng' to 'max_host_qng'.
11560 	 */
11561 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11562 		eep_config.max_dvc_qng = eep_config.max_host_qng;
11563 	}
11564 
11565 	/*
11566 	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11567 	 * values based on possibly adjusted EEPROM values.
11568 	 */
11569 	asc_dvc->max_host_qng = eep_config.max_host_qng;
11570 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11571 
11572 	/*
11573 	 * If the EEPROM 'termination' field is set to automatic (0), then set
11574 	 * the ASC_DVC_CFG 'termination' field to automatic also.
11575 	 *
11576 	 * If the termination is specified with a non-zero 'termination'
11577 	 * value check that a legal value is set and set the ASC_DVC_CFG
11578 	 * 'termination' field appropriately.
11579 	 */
11580 	if (eep_config.termination_se == 0) {
11581 		termination = 0;	/* auto termination for SE */
11582 	} else {
11583 		/* Enable manual control with low off / high off. */
11584 		if (eep_config.termination_se == 1) {
11585 			termination = 0;
11586 
11587 			/* Enable manual control with low off / high on. */
11588 		} else if (eep_config.termination_se == 2) {
11589 			termination = TERM_SE_HI;
11590 
11591 			/* Enable manual control with low on / high on. */
11592 		} else if (eep_config.termination_se == 3) {
11593 			termination = TERM_SE;
11594 		} else {
11595 			/*
11596 			 * The EEPROM 'termination_se' field contains a bad value.
11597 			 * Use automatic termination instead.
11598 			 */
11599 			termination = 0;
11600 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
11601 		}
11602 	}
11603 
11604 	if (eep_config.termination_lvd == 0) {
11605 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
11606 	} else {
11607 		/* Enable manual control with low off / high off. */
11608 		if (eep_config.termination_lvd == 1) {
11609 			asc_dvc->cfg->termination = termination;
11610 
11611 			/* Enable manual control with low off / high on. */
11612 		} else if (eep_config.termination_lvd == 2) {
11613 			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11614 
11615 			/* Enable manual control with low on / high on. */
11616 		} else if (eep_config.termination_lvd == 3) {
11617 			asc_dvc->cfg->termination = termination | TERM_LVD;
11618 		} else {
11619 			/*
11620 			 * The EEPROM 'termination_lvd' field contains a bad value.
11621 			 * Use automatic termination instead.
11622 			 */
11623 			asc_dvc->cfg->termination = termination;
11624 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
11625 		}
11626 	}
11627 
11628 	return warn_code;
11629 }
11630 
11631 /*
11632  * Initialize the ADV_DVC_VAR structure.
11633  *
11634  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11635  *
11636  * For a non-fatal error return a warning code. If there are no warnings
11637  * then 0 is returned.
11638  */
11639 static int __devinit
11640 AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
11641 {
11642 	struct asc_board *board = shost_priv(shost);
11643 	ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
11644 	unsigned short warn_code = 0;
11645 	AdvPortAddr iop_base = asc_dvc->iop_base;
11646 	u16 cmd;
11647 	int status;
11648 
11649 	asc_dvc->err_code = 0;
11650 
11651 	/*
11652 	 * Save the state of the PCI Configuration Command Register
11653 	 * "Parity Error Response Control" Bit. If the bit is clear (0),
11654 	 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11655 	 * DMA parity errors.
11656 	 */
11657 	asc_dvc->cfg->control_flag = 0;
11658 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
11659 	if ((cmd & PCI_COMMAND_PARITY) == 0)
11660 		asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
11661 
11662 	asc_dvc->cfg->chip_version =
11663 	    AdvGetChipVersion(iop_base, asc_dvc->bus_type);
11664 
11665 	ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11666 		 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
11667 		 (ushort)ADV_CHIP_ID_BYTE);
11668 
11669 	ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11670 		 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
11671 		 (ushort)ADV_CHIP_ID_WORD);
11672 
11673 	/*
11674 	 * Reset the chip to start and allow register writes.
11675 	 */
11676 	if (AdvFindSignature(iop_base) == 0) {
11677 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
11678 		return ADV_ERROR;
11679 	} else {
11680 		/*
11681 		 * The caller must set 'chip_type' to a valid setting.
11682 		 */
11683 		if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
11684 		    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
11685 		    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
11686 			asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
11687 			return ADV_ERROR;
11688 		}
11689 
11690 		/*
11691 		 * Reset Chip.
11692 		 */
11693 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11694 				     ADV_CTRL_REG_CMD_RESET);
11695 		mdelay(100);
11696 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11697 				     ADV_CTRL_REG_CMD_WR_IO_REG);
11698 
11699 		if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
11700 			status = AdvInitFrom38C1600EEP(asc_dvc);
11701 		} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11702 			status = AdvInitFrom38C0800EEP(asc_dvc);
11703 		} else {
11704 			status = AdvInitFrom3550EEP(asc_dvc);
11705 		}
11706 		warn_code |= status;
11707 	}
11708 
11709 	if (warn_code != 0)
11710 		shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
11711 
11712 	if (asc_dvc->err_code)
11713 		shost_printk(KERN_ERR, shost, "error code 0x%x\n",
11714 				asc_dvc->err_code);
11715 
11716 	return asc_dvc->err_code;
11717 }
11718 #endif
11719 
11720 static struct scsi_host_template advansys_template = {
11721 	.proc_name = DRV_NAME,
11722 #ifdef CONFIG_PROC_FS
11723 	.proc_info = advansys_proc_info,
11724 #endif
11725 	.name = DRV_NAME,
11726 	.info = advansys_info,
11727 	.queuecommand = advansys_queuecommand,
11728 	.eh_bus_reset_handler = advansys_reset,
11729 	.bios_param = advansys_biosparam,
11730 	.slave_configure = advansys_slave_configure,
11731 	/*
11732 	 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11733 	 * must be set. The flag will be cleared in advansys_board_found
11734 	 * for non-ISA adapters.
11735 	 */
11736 	.unchecked_isa_dma = 1,
11737 	/*
11738 	 * All adapters controlled by this driver are capable of large
11739 	 * scatter-gather lists. According to the mid-level SCSI documentation
11740 	 * this obviates any performance gain provided by setting
11741 	 * 'use_clustering'. But empirically while CPU utilization is increased
11742 	 * by enabling clustering, I/O throughput increases as well.
11743 	 */
11744 	.use_clustering = ENABLE_CLUSTERING,
11745 };
11746 
11747 static int __devinit advansys_wide_init_chip(struct Scsi_Host *shost)
11748 {
11749 	struct asc_board *board = shost_priv(shost);
11750 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11751 	int req_cnt = 0;
11752 	adv_req_t *reqp = NULL;
11753 	int sg_cnt = 0;
11754 	adv_sgblk_t *sgp;
11755 	int warn_code, err_code;
11756 
11757 	/*
11758 	 * Allocate buffer carrier structures. The total size
11759 	 * is about 4 KB, so allocate all at once.
11760 	 */
11761 	adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL);
11762 	ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
11763 
11764 	if (!adv_dvc->carrier_buf)
11765 		goto kmalloc_failed;
11766 
11767 	/*
11768 	 * Allocate up to 'max_host_qng' request structures for the Wide
11769 	 * board. The total size is about 16 KB, so allocate all at once.
11770 	 * If the allocation fails decrement and try again.
11771 	 */
11772 	for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
11773 		reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
11774 
11775 		ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
11776 			 (ulong)sizeof(adv_req_t) * req_cnt);
11777 
11778 		if (reqp)
11779 			break;
11780 	}
11781 
11782 	if (!reqp)
11783 		goto kmalloc_failed;
11784 
11785 	adv_dvc->orig_reqp = reqp;
11786 
11787 	/*
11788 	 * Allocate up to ADV_TOT_SG_BLOCK request structures for
11789 	 * the Wide board. Each structure is about 136 bytes.
11790 	 */
11791 	board->adv_sgblkp = NULL;
11792 	for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
11793 		sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
11794 
11795 		if (!sgp)
11796 			break;
11797 
11798 		sgp->next_sgblkp = board->adv_sgblkp;
11799 		board->adv_sgblkp = sgp;
11800 
11801 	}
11802 
11803 	ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
11804 		 sizeof(adv_sgblk_t) * sg_cnt);
11805 
11806 	if (!board->adv_sgblkp)
11807 		goto kmalloc_failed;
11808 
11809 	/*
11810 	 * Point 'adv_reqp' to the request structures and
11811 	 * link them together.
11812 	 */
11813 	req_cnt--;
11814 	reqp[req_cnt].next_reqp = NULL;
11815 	for (; req_cnt > 0; req_cnt--) {
11816 		reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
11817 	}
11818 	board->adv_reqp = &reqp[0];
11819 
11820 	if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
11821 		ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11822 		warn_code = AdvInitAsc3550Driver(adv_dvc);
11823 	} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11824 		ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11825 		warn_code = AdvInitAsc38C0800Driver(adv_dvc);
11826 	} else {
11827 		ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11828 		warn_code = AdvInitAsc38C1600Driver(adv_dvc);
11829 	}
11830 	err_code = adv_dvc->err_code;
11831 
11832 	if (warn_code || err_code) {
11833 		shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
11834 			"0x%x\n", warn_code, err_code);
11835 	}
11836 
11837 	goto exit;
11838 
11839  kmalloc_failed:
11840 	shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
11841 	err_code = ADV_ERROR;
11842  exit:
11843 	return err_code;
11844 }
11845 
11846 static void advansys_wide_free_mem(struct asc_board *board)
11847 {
11848 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11849 	kfree(adv_dvc->carrier_buf);
11850 	adv_dvc->carrier_buf = NULL;
11851 	kfree(adv_dvc->orig_reqp);
11852 	adv_dvc->orig_reqp = board->adv_reqp = NULL;
11853 	while (board->adv_sgblkp) {
11854 		adv_sgblk_t *sgp = board->adv_sgblkp;
11855 		board->adv_sgblkp = sgp->next_sgblkp;
11856 		kfree(sgp);
11857 	}
11858 }
11859 
11860 static int __devinit advansys_board_found(struct Scsi_Host *shost,
11861 					  unsigned int iop, int bus_type)
11862 {
11863 	struct pci_dev *pdev;
11864 	struct asc_board *boardp = shost_priv(shost);
11865 	ASC_DVC_VAR *asc_dvc_varp = NULL;
11866 	ADV_DVC_VAR *adv_dvc_varp = NULL;
11867 	int share_irq, warn_code, ret;
11868 
11869 	pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
11870 
11871 	if (ASC_NARROW_BOARD(boardp)) {
11872 		ASC_DBG(1, "narrow board\n");
11873 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
11874 		asc_dvc_varp->bus_type = bus_type;
11875 		asc_dvc_varp->drv_ptr = boardp;
11876 		asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
11877 		asc_dvc_varp->iop_base = iop;
11878 	} else {
11879 #ifdef CONFIG_PCI
11880 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
11881 		adv_dvc_varp->drv_ptr = boardp;
11882 		adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
11883 		if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
11884 			ASC_DBG(1, "wide board ASC-3550\n");
11885 			adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
11886 		} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
11887 			ASC_DBG(1, "wide board ASC-38C0800\n");
11888 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
11889 		} else {
11890 			ASC_DBG(1, "wide board ASC-38C1600\n");
11891 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
11892 		}
11893 
11894 		boardp->asc_n_io_port = pci_resource_len(pdev, 1);
11895 		boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
11896 		if (!boardp->ioremap_addr) {
11897 			shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
11898 					"returned NULL\n",
11899 					(long)pci_resource_start(pdev, 1),
11900 					boardp->asc_n_io_port);
11901 			ret = -ENODEV;
11902 			goto err_shost;
11903 		}
11904 		adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
11905 		ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
11906 
11907 		/*
11908 		 * Even though it isn't used to access wide boards, other
11909 		 * than for the debug line below, save I/O Port address so
11910 		 * that it can be reported.
11911 		 */
11912 		boardp->ioport = iop;
11913 
11914 		ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11915 				(ushort)inp(iop + 1), (ushort)inpw(iop));
11916 #endif /* CONFIG_PCI */
11917 	}
11918 
11919 #ifdef CONFIG_PROC_FS
11920 	/*
11921 	 * Allocate buffer for printing information from
11922 	 * /proc/scsi/advansys/[0...].
11923 	 */
11924 	boardp->prtbuf = kmalloc(ASC_PRTBUF_SIZE, GFP_KERNEL);
11925 	if (!boardp->prtbuf) {
11926 		shost_printk(KERN_ERR, shost, "kmalloc(%d) returned NULL\n",
11927 				ASC_PRTBUF_SIZE);
11928 		ret = -ENOMEM;
11929 		goto err_unmap;
11930 	}
11931 #endif /* CONFIG_PROC_FS */
11932 
11933 	if (ASC_NARROW_BOARD(boardp)) {
11934 		/*
11935 		 * Set the board bus type and PCI IRQ before
11936 		 * calling AscInitGetConfig().
11937 		 */
11938 		switch (asc_dvc_varp->bus_type) {
11939 #ifdef CONFIG_ISA
11940 		case ASC_IS_ISA:
11941 			shost->unchecked_isa_dma = TRUE;
11942 			share_irq = 0;
11943 			break;
11944 		case ASC_IS_VL:
11945 			shost->unchecked_isa_dma = FALSE;
11946 			share_irq = 0;
11947 			break;
11948 		case ASC_IS_EISA:
11949 			shost->unchecked_isa_dma = FALSE;
11950 			share_irq = IRQF_SHARED;
11951 			break;
11952 #endif /* CONFIG_ISA */
11953 #ifdef CONFIG_PCI
11954 		case ASC_IS_PCI:
11955 			shost->unchecked_isa_dma = FALSE;
11956 			share_irq = IRQF_SHARED;
11957 			break;
11958 #endif /* CONFIG_PCI */
11959 		default:
11960 			shost_printk(KERN_ERR, shost, "unknown adapter type: "
11961 					"%d\n", asc_dvc_varp->bus_type);
11962 			shost->unchecked_isa_dma = TRUE;
11963 			share_irq = 0;
11964 			break;
11965 		}
11966 
11967 		/*
11968 		 * NOTE: AscInitGetConfig() may change the board's
11969 		 * bus_type value. The bus_type value should no
11970 		 * longer be used. If the bus_type field must be
11971 		 * referenced only use the bit-wise AND operator "&".
11972 		 */
11973 		ASC_DBG(2, "AscInitGetConfig()\n");
11974 		ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11975 	} else {
11976 #ifdef CONFIG_PCI
11977 		/*
11978 		 * For Wide boards set PCI information before calling
11979 		 * AdvInitGetConfig().
11980 		 */
11981 		shost->unchecked_isa_dma = FALSE;
11982 		share_irq = IRQF_SHARED;
11983 		ASC_DBG(2, "AdvInitGetConfig()\n");
11984 
11985 		ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11986 #endif /* CONFIG_PCI */
11987 	}
11988 
11989 	if (ret)
11990 		goto err_free_proc;
11991 
11992 	/*
11993 	 * Save the EEPROM configuration so that it can be displayed
11994 	 * from /proc/scsi/advansys/[0...].
11995 	 */
11996 	if (ASC_NARROW_BOARD(boardp)) {
11997 
11998 		ASCEEP_CONFIG *ep;
11999 
12000 		/*
12001 		 * Set the adapter's target id bit in the 'init_tidmask' field.
12002 		 */
12003 		boardp->init_tidmask |=
12004 		    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
12005 
12006 		/*
12007 		 * Save EEPROM settings for the board.
12008 		 */
12009 		ep = &boardp->eep_config.asc_eep;
12010 
12011 		ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
12012 		ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
12013 		ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
12014 		ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
12015 		ep->start_motor = asc_dvc_varp->start_motor;
12016 		ep->cntl = asc_dvc_varp->dvc_cntl;
12017 		ep->no_scam = asc_dvc_varp->no_scam;
12018 		ep->max_total_qng = asc_dvc_varp->max_total_qng;
12019 		ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
12020 		/* 'max_tag_qng' is set to the same value for every device. */
12021 		ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
12022 		ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
12023 		ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
12024 		ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
12025 		ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
12026 		ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
12027 		ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
12028 
12029 		/*
12030 		 * Modify board configuration.
12031 		 */
12032 		ASC_DBG(2, "AscInitSetConfig()\n");
12033 		ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
12034 		if (ret)
12035 			goto err_free_proc;
12036 	} else {
12037 		ADVEEP_3550_CONFIG *ep_3550;
12038 		ADVEEP_38C0800_CONFIG *ep_38C0800;
12039 		ADVEEP_38C1600_CONFIG *ep_38C1600;
12040 
12041 		/*
12042 		 * Save Wide EEP Configuration Information.
12043 		 */
12044 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
12045 			ep_3550 = &boardp->eep_config.adv_3550_eep;
12046 
12047 			ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
12048 			ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
12049 			ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12050 			ep_3550->termination = adv_dvc_varp->cfg->termination;
12051 			ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
12052 			ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
12053 			ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
12054 			ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
12055 			ep_3550->ultra_able = adv_dvc_varp->ultra_able;
12056 			ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
12057 			ep_3550->start_motor = adv_dvc_varp->start_motor;
12058 			ep_3550->scsi_reset_delay =
12059 			    adv_dvc_varp->scsi_reset_wait;
12060 			ep_3550->serial_number_word1 =
12061 			    adv_dvc_varp->cfg->serial1;
12062 			ep_3550->serial_number_word2 =
12063 			    adv_dvc_varp->cfg->serial2;
12064 			ep_3550->serial_number_word3 =
12065 			    adv_dvc_varp->cfg->serial3;
12066 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
12067 			ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
12068 
12069 			ep_38C0800->adapter_scsi_id =
12070 			    adv_dvc_varp->chip_scsi_id;
12071 			ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
12072 			ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12073 			ep_38C0800->termination_lvd =
12074 			    adv_dvc_varp->cfg->termination;
12075 			ep_38C0800->disc_enable =
12076 			    adv_dvc_varp->cfg->disc_enable;
12077 			ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
12078 			ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
12079 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12080 			ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12081 			ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12082 			ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12083 			ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12084 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12085 			ep_38C0800->start_motor = adv_dvc_varp->start_motor;
12086 			ep_38C0800->scsi_reset_delay =
12087 			    adv_dvc_varp->scsi_reset_wait;
12088 			ep_38C0800->serial_number_word1 =
12089 			    adv_dvc_varp->cfg->serial1;
12090 			ep_38C0800->serial_number_word2 =
12091 			    adv_dvc_varp->cfg->serial2;
12092 			ep_38C0800->serial_number_word3 =
12093 			    adv_dvc_varp->cfg->serial3;
12094 		} else {
12095 			ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
12096 
12097 			ep_38C1600->adapter_scsi_id =
12098 			    adv_dvc_varp->chip_scsi_id;
12099 			ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
12100 			ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12101 			ep_38C1600->termination_lvd =
12102 			    adv_dvc_varp->cfg->termination;
12103 			ep_38C1600->disc_enable =
12104 			    adv_dvc_varp->cfg->disc_enable;
12105 			ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
12106 			ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
12107 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12108 			ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12109 			ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12110 			ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12111 			ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12112 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12113 			ep_38C1600->start_motor = adv_dvc_varp->start_motor;
12114 			ep_38C1600->scsi_reset_delay =
12115 			    adv_dvc_varp->scsi_reset_wait;
12116 			ep_38C1600->serial_number_word1 =
12117 			    adv_dvc_varp->cfg->serial1;
12118 			ep_38C1600->serial_number_word2 =
12119 			    adv_dvc_varp->cfg->serial2;
12120 			ep_38C1600->serial_number_word3 =
12121 			    adv_dvc_varp->cfg->serial3;
12122 		}
12123 
12124 		/*
12125 		 * Set the adapter's target id bit in the 'init_tidmask' field.
12126 		 */
12127 		boardp->init_tidmask |=
12128 		    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
12129 	}
12130 
12131 	/*
12132 	 * Channels are numbered beginning with 0. For AdvanSys one host
12133 	 * structure supports one channel. Multi-channel boards have a
12134 	 * separate host structure for each channel.
12135 	 */
12136 	shost->max_channel = 0;
12137 	if (ASC_NARROW_BOARD(boardp)) {
12138 		shost->max_id = ASC_MAX_TID + 1;
12139 		shost->max_lun = ASC_MAX_LUN + 1;
12140 		shost->max_cmd_len = ASC_MAX_CDB_LEN;
12141 
12142 		shost->io_port = asc_dvc_varp->iop_base;
12143 		boardp->asc_n_io_port = ASC_IOADR_GAP;
12144 		shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
12145 
12146 		/* Set maximum number of queues the adapter can handle. */
12147 		shost->can_queue = asc_dvc_varp->max_total_qng;
12148 	} else {
12149 		shost->max_id = ADV_MAX_TID + 1;
12150 		shost->max_lun = ADV_MAX_LUN + 1;
12151 		shost->max_cmd_len = ADV_MAX_CDB_LEN;
12152 
12153 		/*
12154 		 * Save the I/O Port address and length even though
12155 		 * I/O ports are not used to access Wide boards.
12156 		 * Instead the Wide boards are accessed with
12157 		 * PCI Memory Mapped I/O.
12158 		 */
12159 		shost->io_port = iop;
12160 
12161 		shost->this_id = adv_dvc_varp->chip_scsi_id;
12162 
12163 		/* Set maximum number of queues the adapter can handle. */
12164 		shost->can_queue = adv_dvc_varp->max_host_qng;
12165 	}
12166 
12167 	/*
12168 	 * Following v1.3.89, 'cmd_per_lun' is no longer needed
12169 	 * and should be set to zero.
12170 	 *
12171 	 * But because of a bug introduced in v1.3.89 if the driver is
12172 	 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
12173 	 * SCSI function 'allocate_device' will panic. To allow the driver
12174 	 * to work as a module in these kernels set 'cmd_per_lun' to 1.
12175 	 *
12176 	 * Note: This is wrong.  cmd_per_lun should be set to the depth
12177 	 * you want on untagged devices always.
12178 	 #ifdef MODULE
12179 	 */
12180 	shost->cmd_per_lun = 1;
12181 /* #else
12182             shost->cmd_per_lun = 0;
12183 #endif */
12184 
12185 	/*
12186 	 * Set the maximum number of scatter-gather elements the
12187 	 * adapter can handle.
12188 	 */
12189 	if (ASC_NARROW_BOARD(boardp)) {
12190 		/*
12191 		 * Allow two commands with 'sg_tablesize' scatter-gather
12192 		 * elements to be executed simultaneously. This value is
12193 		 * the theoretical hardware limit. It may be decreased
12194 		 * below.
12195 		 */
12196 		shost->sg_tablesize =
12197 		    (((asc_dvc_varp->max_total_qng - 2) / 2) *
12198 		     ASC_SG_LIST_PER_Q) + 1;
12199 	} else {
12200 		shost->sg_tablesize = ADV_MAX_SG_LIST;
12201 	}
12202 
12203 	/*
12204 	 * The value of 'sg_tablesize' can not exceed the SCSI
12205 	 * mid-level driver definition of SG_ALL. SG_ALL also
12206 	 * must not be exceeded, because it is used to define the
12207 	 * size of the scatter-gather table in 'struct asc_sg_head'.
12208 	 */
12209 	if (shost->sg_tablesize > SG_ALL) {
12210 		shost->sg_tablesize = SG_ALL;
12211 	}
12212 
12213 	ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
12214 
12215 	/* BIOS start address. */
12216 	if (ASC_NARROW_BOARD(boardp)) {
12217 		shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
12218 						    asc_dvc_varp->bus_type);
12219 	} else {
12220 		/*
12221 		 * Fill-in BIOS board variables. The Wide BIOS saves
12222 		 * information in LRAM that is used by the driver.
12223 		 */
12224 		AdvReadWordLram(adv_dvc_varp->iop_base,
12225 				BIOS_SIGNATURE, boardp->bios_signature);
12226 		AdvReadWordLram(adv_dvc_varp->iop_base,
12227 				BIOS_VERSION, boardp->bios_version);
12228 		AdvReadWordLram(adv_dvc_varp->iop_base,
12229 				BIOS_CODESEG, boardp->bios_codeseg);
12230 		AdvReadWordLram(adv_dvc_varp->iop_base,
12231 				BIOS_CODELEN, boardp->bios_codelen);
12232 
12233 		ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
12234 			 boardp->bios_signature, boardp->bios_version);
12235 
12236 		ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
12237 			 boardp->bios_codeseg, boardp->bios_codelen);
12238 
12239 		/*
12240 		 * If the BIOS saved a valid signature, then fill in
12241 		 * the BIOS code segment base address.
12242 		 */
12243 		if (boardp->bios_signature == 0x55AA) {
12244 			/*
12245 			 * Convert x86 realmode code segment to a linear
12246 			 * address by shifting left 4.
12247 			 */
12248 			shost->base = ((ulong)boardp->bios_codeseg << 4);
12249 		} else {
12250 			shost->base = 0;
12251 		}
12252 	}
12253 
12254 	/*
12255 	 * Register Board Resources - I/O Port, DMA, IRQ
12256 	 */
12257 
12258 	/* Register DMA Channel for Narrow boards. */
12259 	shost->dma_channel = NO_ISA_DMA;	/* Default to no ISA DMA. */
12260 #ifdef CONFIG_ISA
12261 	if (ASC_NARROW_BOARD(boardp)) {
12262 		/* Register DMA channel for ISA bus. */
12263 		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
12264 			shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
12265 			ret = request_dma(shost->dma_channel, DRV_NAME);
12266 			if (ret) {
12267 				shost_printk(KERN_ERR, shost, "request_dma() "
12268 						"%d failed %d\n",
12269 						shost->dma_channel, ret);
12270 				goto err_free_proc;
12271 			}
12272 			AscEnableIsaDma(shost->dma_channel);
12273 		}
12274 	}
12275 #endif /* CONFIG_ISA */
12276 
12277 	/* Register IRQ Number. */
12278 	ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
12279 
12280 	ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
12281 			  DRV_NAME, shost);
12282 
12283 	if (ret) {
12284 		if (ret == -EBUSY) {
12285 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12286 					"already in use\n", boardp->irq);
12287 		} else if (ret == -EINVAL) {
12288 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12289 					"not valid\n", boardp->irq);
12290 		} else {
12291 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12292 					"failed with %d\n", boardp->irq, ret);
12293 		}
12294 		goto err_free_dma;
12295 	}
12296 
12297 	/*
12298 	 * Initialize board RISC chip and enable interrupts.
12299 	 */
12300 	if (ASC_NARROW_BOARD(boardp)) {
12301 		ASC_DBG(2, "AscInitAsc1000Driver()\n");
12302 
12303 		asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
12304 		if (!asc_dvc_varp->overrun_buf) {
12305 			ret = -ENOMEM;
12306 			goto err_free_wide_mem;
12307 		}
12308 		warn_code = AscInitAsc1000Driver(asc_dvc_varp);
12309 
12310 		if (warn_code || asc_dvc_varp->err_code) {
12311 			shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
12312 					"warn 0x%x, error 0x%x\n",
12313 					asc_dvc_varp->init_state, warn_code,
12314 					asc_dvc_varp->err_code);
12315 			if (asc_dvc_varp->err_code) {
12316 				ret = -ENODEV;
12317 				kfree(asc_dvc_varp->overrun_buf);
12318 			}
12319 		}
12320 	} else {
12321 		if (advansys_wide_init_chip(shost))
12322 			ret = -ENODEV;
12323 	}
12324 
12325 	if (ret)
12326 		goto err_free_wide_mem;
12327 
12328 	ASC_DBG_PRT_SCSI_HOST(2, shost);
12329 
12330 	ret = scsi_add_host(shost, boardp->dev);
12331 	if (ret)
12332 		goto err_free_wide_mem;
12333 
12334 	scsi_scan_host(shost);
12335 	return 0;
12336 
12337  err_free_wide_mem:
12338 	advansys_wide_free_mem(boardp);
12339 	free_irq(boardp->irq, shost);
12340  err_free_dma:
12341 #ifdef CONFIG_ISA
12342 	if (shost->dma_channel != NO_ISA_DMA)
12343 		free_dma(shost->dma_channel);
12344 #endif
12345  err_free_proc:
12346 	kfree(boardp->prtbuf);
12347  err_unmap:
12348 	if (boardp->ioremap_addr)
12349 		iounmap(boardp->ioremap_addr);
12350  err_shost:
12351 	return ret;
12352 }
12353 
12354 /*
12355  * advansys_release()
12356  *
12357  * Release resources allocated for a single AdvanSys adapter.
12358  */
12359 static int advansys_release(struct Scsi_Host *shost)
12360 {
12361 	struct asc_board *board = shost_priv(shost);
12362 	ASC_DBG(1, "begin\n");
12363 	scsi_remove_host(shost);
12364 	free_irq(board->irq, shost);
12365 #ifdef CONFIG_ISA
12366 	if (shost->dma_channel != NO_ISA_DMA) {
12367 		ASC_DBG(1, "free_dma()\n");
12368 		free_dma(shost->dma_channel);
12369 	}
12370 #endif
12371 	if (ASC_NARROW_BOARD(board)) {
12372 		dma_unmap_single(board->dev,
12373 					board->dvc_var.asc_dvc_var.overrun_dma,
12374 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
12375 		kfree(board->dvc_var.asc_dvc_var.overrun_buf);
12376 	} else {
12377 		iounmap(board->ioremap_addr);
12378 		advansys_wide_free_mem(board);
12379 	}
12380 	kfree(board->prtbuf);
12381 	scsi_host_put(shost);
12382 	ASC_DBG(1, "end\n");
12383 	return 0;
12384 }
12385 
12386 #define ASC_IOADR_TABLE_MAX_IX  11
12387 
12388 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
12389 	0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
12390 	0x0210, 0x0230, 0x0250, 0x0330
12391 };
12392 
12393 /*
12394  * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as:
12395  * 00: 10
12396  * 01: 11
12397  * 10: 12
12398  * 11: 15
12399  */
12400 static unsigned int __devinit advansys_isa_irq_no(PortAddr iop_base)
12401 {
12402 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12403 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
12404 	if (chip_irq == 13)
12405 		chip_irq = 15;
12406 	return chip_irq;
12407 }
12408 
12409 static int __devinit advansys_isa_probe(struct device *dev, unsigned int id)
12410 {
12411 	int err = -ENODEV;
12412 	PortAddr iop_base = _asc_def_iop_base[id];
12413 	struct Scsi_Host *shost;
12414 	struct asc_board *board;
12415 
12416 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12417 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12418 		return -ENODEV;
12419 	}
12420 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12421 	if (!AscFindSignature(iop_base))
12422 		goto release_region;
12423 	if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
12424 		goto release_region;
12425 
12426 	err = -ENOMEM;
12427 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12428 	if (!shost)
12429 		goto release_region;
12430 
12431 	board = shost_priv(shost);
12432 	board->irq = advansys_isa_irq_no(iop_base);
12433 	board->dev = dev;
12434 
12435 	err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
12436 	if (err)
12437 		goto free_host;
12438 
12439 	dev_set_drvdata(dev, shost);
12440 	return 0;
12441 
12442  free_host:
12443 	scsi_host_put(shost);
12444  release_region:
12445 	release_region(iop_base, ASC_IOADR_GAP);
12446 	return err;
12447 }
12448 
12449 static int __devexit advansys_isa_remove(struct device *dev, unsigned int id)
12450 {
12451 	int ioport = _asc_def_iop_base[id];
12452 	advansys_release(dev_get_drvdata(dev));
12453 	release_region(ioport, ASC_IOADR_GAP);
12454 	return 0;
12455 }
12456 
12457 static struct isa_driver advansys_isa_driver = {
12458 	.probe		= advansys_isa_probe,
12459 	.remove		= __devexit_p(advansys_isa_remove),
12460 	.driver = {
12461 		.owner	= THIS_MODULE,
12462 		.name	= DRV_NAME,
12463 	},
12464 };
12465 
12466 /*
12467  * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
12468  * 000: invalid
12469  * 001: 10
12470  * 010: 11
12471  * 011: 12
12472  * 100: invalid
12473  * 101: 14
12474  * 110: 15
12475  * 111: invalid
12476  */
12477 static unsigned int __devinit advansys_vlb_irq_no(PortAddr iop_base)
12478 {
12479 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12480 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
12481 	if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
12482 		return 0;
12483 	return chip_irq;
12484 }
12485 
12486 static int __devinit advansys_vlb_probe(struct device *dev, unsigned int id)
12487 {
12488 	int err = -ENODEV;
12489 	PortAddr iop_base = _asc_def_iop_base[id];
12490 	struct Scsi_Host *shost;
12491 	struct asc_board *board;
12492 
12493 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12494 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12495 		return -ENODEV;
12496 	}
12497 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12498 	if (!AscFindSignature(iop_base))
12499 		goto release_region;
12500 	/*
12501 	 * I don't think this condition can actually happen, but the old
12502 	 * driver did it, and the chances of finding a VLB setup in 2007
12503 	 * to do testing with is slight to none.
12504 	 */
12505 	if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
12506 		goto release_region;
12507 
12508 	err = -ENOMEM;
12509 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12510 	if (!shost)
12511 		goto release_region;
12512 
12513 	board = shost_priv(shost);
12514 	board->irq = advansys_vlb_irq_no(iop_base);
12515 	board->dev = dev;
12516 
12517 	err = advansys_board_found(shost, iop_base, ASC_IS_VL);
12518 	if (err)
12519 		goto free_host;
12520 
12521 	dev_set_drvdata(dev, shost);
12522 	return 0;
12523 
12524  free_host:
12525 	scsi_host_put(shost);
12526  release_region:
12527 	release_region(iop_base, ASC_IOADR_GAP);
12528 	return -ENODEV;
12529 }
12530 
12531 static struct isa_driver advansys_vlb_driver = {
12532 	.probe		= advansys_vlb_probe,
12533 	.remove		= __devexit_p(advansys_isa_remove),
12534 	.driver = {
12535 		.owner	= THIS_MODULE,
12536 		.name	= "advansys_vlb",
12537 	},
12538 };
12539 
12540 static struct eisa_device_id advansys_eisa_table[] __devinitdata = {
12541 	{ "ABP7401" },
12542 	{ "ABP7501" },
12543 	{ "" }
12544 };
12545 
12546 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
12547 
12548 /*
12549  * EISA is a little more tricky than PCI; each EISA device may have two
12550  * channels, and this driver is written to make each channel its own Scsi_Host
12551  */
12552 struct eisa_scsi_data {
12553 	struct Scsi_Host *host[2];
12554 };
12555 
12556 /*
12557  * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
12558  * 000: 10
12559  * 001: 11
12560  * 010: 12
12561  * 011: invalid
12562  * 100: 14
12563  * 101: 15
12564  * 110: invalid
12565  * 111: invalid
12566  */
12567 static unsigned int __devinit advansys_eisa_irq_no(struct eisa_device *edev)
12568 {
12569 	unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
12570 	unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
12571 	if ((chip_irq == 13) || (chip_irq > 15))
12572 		return 0;
12573 	return chip_irq;
12574 }
12575 
12576 static int __devinit advansys_eisa_probe(struct device *dev)
12577 {
12578 	int i, ioport, irq = 0;
12579 	int err;
12580 	struct eisa_device *edev = to_eisa_device(dev);
12581 	struct eisa_scsi_data *data;
12582 
12583 	err = -ENOMEM;
12584 	data = kzalloc(sizeof(*data), GFP_KERNEL);
12585 	if (!data)
12586 		goto fail;
12587 	ioport = edev->base_addr + 0xc30;
12588 
12589 	err = -ENODEV;
12590 	for (i = 0; i < 2; i++, ioport += 0x20) {
12591 		struct asc_board *board;
12592 		struct Scsi_Host *shost;
12593 		if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
12594 			printk(KERN_WARNING "Region %x-%x busy\n", ioport,
12595 			       ioport + ASC_IOADR_GAP - 1);
12596 			continue;
12597 		}
12598 		if (!AscFindSignature(ioport)) {
12599 			release_region(ioport, ASC_IOADR_GAP);
12600 			continue;
12601 		}
12602 
12603 		/*
12604 		 * I don't know why we need to do this for EISA chips, but
12605 		 * not for any others.  It looks to be equivalent to
12606 		 * AscGetChipCfgMsw, but I may have overlooked something,
12607 		 * so I'm not converting it until I get an EISA board to
12608 		 * test with.
12609 		 */
12610 		inw(ioport + 4);
12611 
12612 		if (!irq)
12613 			irq = advansys_eisa_irq_no(edev);
12614 
12615 		err = -ENOMEM;
12616 		shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12617 		if (!shost)
12618 			goto release_region;
12619 
12620 		board = shost_priv(shost);
12621 		board->irq = irq;
12622 		board->dev = dev;
12623 
12624 		err = advansys_board_found(shost, ioport, ASC_IS_EISA);
12625 		if (!err) {
12626 			data->host[i] = shost;
12627 			continue;
12628 		}
12629 
12630 		scsi_host_put(shost);
12631  release_region:
12632 		release_region(ioport, ASC_IOADR_GAP);
12633 		break;
12634 	}
12635 
12636 	if (err)
12637 		goto free_data;
12638 	dev_set_drvdata(dev, data);
12639 	return 0;
12640 
12641  free_data:
12642 	kfree(data->host[0]);
12643 	kfree(data->host[1]);
12644 	kfree(data);
12645  fail:
12646 	return err;
12647 }
12648 
12649 static __devexit int advansys_eisa_remove(struct device *dev)
12650 {
12651 	int i;
12652 	struct eisa_scsi_data *data = dev_get_drvdata(dev);
12653 
12654 	for (i = 0; i < 2; i++) {
12655 		int ioport;
12656 		struct Scsi_Host *shost = data->host[i];
12657 		if (!shost)
12658 			continue;
12659 		ioport = shost->io_port;
12660 		advansys_release(shost);
12661 		release_region(ioport, ASC_IOADR_GAP);
12662 	}
12663 
12664 	kfree(data);
12665 	return 0;
12666 }
12667 
12668 static struct eisa_driver advansys_eisa_driver = {
12669 	.id_table =		advansys_eisa_table,
12670 	.driver = {
12671 		.name =		DRV_NAME,
12672 		.probe =	advansys_eisa_probe,
12673 		.remove =	__devexit_p(advansys_eisa_remove),
12674 	}
12675 };
12676 
12677 /* PCI Devices supported by this driver */
12678 static struct pci_device_id advansys_pci_tbl[] __devinitdata = {
12679 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
12680 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12681 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
12682 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12683 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
12684 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12685 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
12686 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12687 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
12688 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12689 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
12690 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12691 	{}
12692 };
12693 
12694 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
12695 
12696 static void __devinit advansys_set_latency(struct pci_dev *pdev)
12697 {
12698 	if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
12699 	    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
12700 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
12701 	} else {
12702 		u8 latency;
12703 		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
12704 		if (latency < 0x20)
12705 			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
12706 	}
12707 }
12708 
12709 static int __devinit
12710 advansys_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
12711 {
12712 	int err, ioport;
12713 	struct Scsi_Host *shost;
12714 	struct asc_board *board;
12715 
12716 	err = pci_enable_device(pdev);
12717 	if (err)
12718 		goto fail;
12719 	err = pci_request_regions(pdev, DRV_NAME);
12720 	if (err)
12721 		goto disable_device;
12722 	pci_set_master(pdev);
12723 	advansys_set_latency(pdev);
12724 
12725 	err = -ENODEV;
12726 	if (pci_resource_len(pdev, 0) == 0)
12727 		goto release_region;
12728 
12729 	ioport = pci_resource_start(pdev, 0);
12730 
12731 	err = -ENOMEM;
12732 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12733 	if (!shost)
12734 		goto release_region;
12735 
12736 	board = shost_priv(shost);
12737 	board->irq = pdev->irq;
12738 	board->dev = &pdev->dev;
12739 
12740 	if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
12741 	    pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
12742 	    pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
12743 		board->flags |= ASC_IS_WIDE_BOARD;
12744 	}
12745 
12746 	err = advansys_board_found(shost, ioport, ASC_IS_PCI);
12747 	if (err)
12748 		goto free_host;
12749 
12750 	pci_set_drvdata(pdev, shost);
12751 	return 0;
12752 
12753  free_host:
12754 	scsi_host_put(shost);
12755  release_region:
12756 	pci_release_regions(pdev);
12757  disable_device:
12758 	pci_disable_device(pdev);
12759  fail:
12760 	return err;
12761 }
12762 
12763 static void __devexit advansys_pci_remove(struct pci_dev *pdev)
12764 {
12765 	advansys_release(pci_get_drvdata(pdev));
12766 	pci_release_regions(pdev);
12767 	pci_disable_device(pdev);
12768 }
12769 
12770 static struct pci_driver advansys_pci_driver = {
12771 	.name =		DRV_NAME,
12772 	.id_table =	advansys_pci_tbl,
12773 	.probe =	advansys_pci_probe,
12774 	.remove =	__devexit_p(advansys_pci_remove),
12775 };
12776 
12777 static int __init advansys_init(void)
12778 {
12779 	int error;
12780 
12781 	error = isa_register_driver(&advansys_isa_driver,
12782 				    ASC_IOADR_TABLE_MAX_IX);
12783 	if (error)
12784 		goto fail;
12785 
12786 	error = isa_register_driver(&advansys_vlb_driver,
12787 				    ASC_IOADR_TABLE_MAX_IX);
12788 	if (error)
12789 		goto unregister_isa;
12790 
12791 	error = eisa_driver_register(&advansys_eisa_driver);
12792 	if (error)
12793 		goto unregister_vlb;
12794 
12795 	error = pci_register_driver(&advansys_pci_driver);
12796 	if (error)
12797 		goto unregister_eisa;
12798 
12799 	return 0;
12800 
12801  unregister_eisa:
12802 	eisa_driver_unregister(&advansys_eisa_driver);
12803  unregister_vlb:
12804 	isa_unregister_driver(&advansys_vlb_driver);
12805  unregister_isa:
12806 	isa_unregister_driver(&advansys_isa_driver);
12807  fail:
12808 	return error;
12809 }
12810 
12811 static void __exit advansys_exit(void)
12812 {
12813 	pci_unregister_driver(&advansys_pci_driver);
12814 	eisa_driver_unregister(&advansys_eisa_driver);
12815 	isa_unregister_driver(&advansys_vlb_driver);
12816 	isa_unregister_driver(&advansys_isa_driver);
12817 }
12818 
12819 module_init(advansys_init);
12820 module_exit(advansys_exit);
12821 
12822 MODULE_LICENSE("GPL");
12823 MODULE_FIRMWARE("advansys/mcode.bin");
12824 MODULE_FIRMWARE("advansys/3550.bin");
12825 MODULE_FIRMWARE("advansys/38C0800.bin");
12826 MODULE_FIRMWARE("advansys/38C1600.bin");
12827