1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters 4 * 5 * Copyright (c) 1995-2000 Advanced System Products, Inc. 6 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc. 7 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx> 8 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de> 9 * All Rights Reserved. 10 */ 11 12 /* 13 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys) 14 * changed its name to ConnectCom Solutions, Inc. 15 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets 16 */ 17 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/kernel.h> 21 #include <linux/types.h> 22 #include <linux/ioport.h> 23 #include <linux/interrupt.h> 24 #include <linux/delay.h> 25 #include <linux/slab.h> 26 #include <linux/mm.h> 27 #include <linux/proc_fs.h> 28 #include <linux/init.h> 29 #include <linux/blkdev.h> 30 #include <linux/isa.h> 31 #include <linux/eisa.h> 32 #include <linux/pci.h> 33 #include <linux/spinlock.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/firmware.h> 36 #include <linux/dmapool.h> 37 38 #include <asm/io.h> 39 #include <asm/dma.h> 40 41 #include <scsi/scsi_cmnd.h> 42 #include <scsi/scsi_device.h> 43 #include <scsi/scsi_tcq.h> 44 #include <scsi/scsi.h> 45 #include <scsi/scsi_host.h> 46 47 #define DRV_NAME "advansys" 48 #define ASC_VERSION "3.5" /* AdvanSys Driver Version */ 49 50 /* FIXME: 51 * 52 * 1. Use scsi_transport_spi 53 * 2. advansys_info is not safe against multiple simultaneous callers 54 * 3. Add module_param to override ISA/VLB ioport array 55 */ 56 57 /* Enable driver /proc statistics. */ 58 #define ADVANSYS_STATS 59 60 /* Enable driver tracing. */ 61 #undef ADVANSYS_DEBUG 62 63 typedef unsigned char uchar; 64 65 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0) 66 67 #define PCI_VENDOR_ID_ASP 0x10cd 68 #define PCI_DEVICE_ID_ASP_1200A 0x1100 69 #define PCI_DEVICE_ID_ASP_ABP940 0x1200 70 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300 71 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300 72 #define PCI_DEVICE_ID_38C0800_REV1 0x2500 73 #define PCI_DEVICE_ID_38C1600_REV1 0x2700 74 75 #define PortAddr unsigned int /* port address size */ 76 #define inp(port) inb(port) 77 #define outp(port, byte) outb((byte), (port)) 78 79 #define inpw(port) inw(port) 80 #define outpw(port, word) outw((word), (port)) 81 82 #define ASC_MAX_SG_QUEUE 7 83 #define ASC_MAX_SG_LIST 255 84 85 #define ASC_CS_TYPE unsigned short 86 87 #define ASC_IS_EISA (0x0002) 88 #define ASC_IS_PCI (0x0004) 89 #define ASC_IS_PCI_ULTRA (0x0104) 90 #define ASC_IS_PCMCIA (0x0008) 91 #define ASC_IS_MCA (0x0020) 92 #define ASC_IS_VL (0x0040) 93 #define ASC_IS_WIDESCSI_16 (0x0100) 94 #define ASC_IS_WIDESCSI_32 (0x0200) 95 #define ASC_IS_BIG_ENDIAN (0x8000) 96 97 #define ASC_CHIP_MIN_VER_VL (0x01) 98 #define ASC_CHIP_MAX_VER_VL (0x07) 99 #define ASC_CHIP_MIN_VER_PCI (0x09) 100 #define ASC_CHIP_MAX_VER_PCI (0x0F) 101 #define ASC_CHIP_VER_PCI_BIT (0x08) 102 #define ASC_CHIP_VER_ASYN_BUG (0x21) 103 #define ASC_CHIP_VER_PCI 0x08 104 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02) 105 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03) 106 #define ASC_CHIP_MIN_VER_EISA (0x41) 107 #define ASC_CHIP_MAX_VER_EISA (0x47) 108 #define ASC_CHIP_VER_EISA_BIT (0x40) 109 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3) 110 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL) 111 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL) 112 113 #define ASC_SCSI_ID_BITS 3 114 #define ASC_SCSI_TIX_TYPE uchar 115 #define ASC_ALL_DEVICE_BIT_SET 0xFF 116 #define ASC_SCSI_BIT_ID_TYPE uchar 117 #define ASC_MAX_TID 7 118 #define ASC_MAX_LUN 7 119 #define ASC_SCSI_WIDTH_BIT_SET 0xFF 120 #define ASC_MAX_SENSE_LEN 32 121 #define ASC_MIN_SENSE_LEN 14 122 #define ASC_SCSI_RESET_HOLD_TIME_US 60 123 124 /* 125 * Narrow boards only support 12-byte commands, while wide boards 126 * extend to 16-byte commands. 127 */ 128 #define ASC_MAX_CDB_LEN 12 129 #define ADV_MAX_CDB_LEN 16 130 131 #define MS_SDTR_LEN 0x03 132 #define MS_WDTR_LEN 0x02 133 134 #define ASC_SG_LIST_PER_Q 7 135 #define QS_FREE 0x00 136 #define QS_READY 0x01 137 #define QS_DISC1 0x02 138 #define QS_DISC2 0x04 139 #define QS_BUSY 0x08 140 #define QS_ABORTED 0x40 141 #define QS_DONE 0x80 142 #define QC_NO_CALLBACK 0x01 143 #define QC_SG_SWAP_QUEUE 0x02 144 #define QC_SG_HEAD 0x04 145 #define QC_DATA_IN 0x08 146 #define QC_DATA_OUT 0x10 147 #define QC_URGENT 0x20 148 #define QC_MSG_OUT 0x40 149 #define QC_REQ_SENSE 0x80 150 #define QCSG_SG_XFER_LIST 0x02 151 #define QCSG_SG_XFER_MORE 0x04 152 #define QCSG_SG_XFER_END 0x08 153 #define QD_IN_PROGRESS 0x00 154 #define QD_NO_ERROR 0x01 155 #define QD_ABORTED_BY_HOST 0x02 156 #define QD_WITH_ERROR 0x04 157 #define QD_INVALID_REQUEST 0x80 158 #define QD_INVALID_HOST_NUM 0x81 159 #define QD_INVALID_DEVICE 0x82 160 #define QD_ERR_INTERNAL 0xFF 161 #define QHSTA_NO_ERROR 0x00 162 #define QHSTA_M_SEL_TIMEOUT 0x11 163 #define QHSTA_M_DATA_OVER_RUN 0x12 164 #define QHSTA_M_DATA_UNDER_RUN 0x12 165 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 166 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14 167 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21 168 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22 169 #define QHSTA_D_HOST_ABORT_FAILED 0x23 170 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24 171 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25 172 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26 173 #define QHSTA_M_WTM_TIMEOUT 0x41 174 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 175 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 176 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 177 #define QHSTA_M_TARGET_STATUS_BUSY 0x45 178 #define QHSTA_M_BAD_TAG_CODE 0x46 179 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47 180 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48 181 #define QHSTA_D_LRAM_CMP_ERROR 0x81 182 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1 183 #define ASC_FLAG_SCSIQ_REQ 0x01 184 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02 185 #define ASC_FLAG_BIOS_ASYNC_IO 0x04 186 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08 187 #define ASC_FLAG_WIN16 0x10 188 #define ASC_FLAG_WIN32 0x20 189 #define ASC_FLAG_DOS_VM_CALLBACK 0x80 190 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10 191 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04 192 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08 193 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40 194 #define ASC_SCSIQ_CPY_BEG 4 195 #define ASC_SCSIQ_SGHD_CPY_BEG 2 196 #define ASC_SCSIQ_B_FWD 0 197 #define ASC_SCSIQ_B_BWD 1 198 #define ASC_SCSIQ_B_STATUS 2 199 #define ASC_SCSIQ_B_QNO 3 200 #define ASC_SCSIQ_B_CNTL 4 201 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5 202 #define ASC_SCSIQ_D_DATA_ADDR 8 203 #define ASC_SCSIQ_D_DATA_CNT 12 204 #define ASC_SCSIQ_B_SENSE_LEN 20 205 #define ASC_SCSIQ_DONE_INFO_BEG 22 206 #define ASC_SCSIQ_D_SRBPTR 22 207 #define ASC_SCSIQ_B_TARGET_IX 26 208 #define ASC_SCSIQ_B_CDB_LEN 28 209 #define ASC_SCSIQ_B_TAG_CODE 29 210 #define ASC_SCSIQ_W_VM_ID 30 211 #define ASC_SCSIQ_DONE_STATUS 32 212 #define ASC_SCSIQ_HOST_STATUS 33 213 #define ASC_SCSIQ_SCSI_STATUS 34 214 #define ASC_SCSIQ_CDB_BEG 36 215 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56 216 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60 217 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48 218 #define ASC_SCSIQ_B_SG_WK_QP 49 219 #define ASC_SCSIQ_B_SG_WK_IX 50 220 #define ASC_SCSIQ_W_ALT_DC1 52 221 #define ASC_SCSIQ_B_LIST_CNT 6 222 #define ASC_SCSIQ_B_CUR_LIST_CNT 7 223 #define ASC_SGQ_B_SG_CNTL 4 224 #define ASC_SGQ_B_SG_HEAD_QP 5 225 #define ASC_SGQ_B_SG_LIST_CNT 6 226 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7 227 #define ASC_SGQ_LIST_BEG 8 228 #define ASC_DEF_SCSI1_QNG 4 229 #define ASC_MAX_SCSI1_QNG 4 230 #define ASC_DEF_SCSI2_QNG 16 231 #define ASC_MAX_SCSI2_QNG 32 232 #define ASC_TAG_CODE_MASK 0x23 233 #define ASC_STOP_REQ_RISC_STOP 0x01 234 #define ASC_STOP_ACK_RISC_STOP 0x03 235 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10 236 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20 237 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40 238 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS)) 239 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid)) 240 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID)) 241 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID) 242 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID) 243 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN) 244 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6)) 245 246 typedef struct asc_scsiq_1 { 247 uchar status; 248 uchar q_no; 249 uchar cntl; 250 uchar sg_queue_cnt; 251 uchar target_id; 252 uchar target_lun; 253 __le32 data_addr; 254 __le32 data_cnt; 255 __le32 sense_addr; 256 uchar sense_len; 257 uchar extra_bytes; 258 } ASC_SCSIQ_1; 259 260 typedef struct asc_scsiq_2 { 261 u32 srb_tag; 262 uchar target_ix; 263 uchar flag; 264 uchar cdb_len; 265 uchar tag_code; 266 ushort vm_id; 267 } ASC_SCSIQ_2; 268 269 typedef struct asc_scsiq_3 { 270 uchar done_stat; 271 uchar host_stat; 272 uchar scsi_stat; 273 uchar scsi_msg; 274 } ASC_SCSIQ_3; 275 276 typedef struct asc_scsiq_4 { 277 uchar cdb[ASC_MAX_CDB_LEN]; 278 uchar y_first_sg_list_qp; 279 uchar y_working_sg_qp; 280 uchar y_working_sg_ix; 281 uchar y_res; 282 ushort x_req_count; 283 ushort x_reconnect_rtn; 284 __le32 x_saved_data_addr; 285 __le32 x_saved_data_cnt; 286 } ASC_SCSIQ_4; 287 288 typedef struct asc_q_done_info { 289 ASC_SCSIQ_2 d2; 290 ASC_SCSIQ_3 d3; 291 uchar q_status; 292 uchar q_no; 293 uchar cntl; 294 uchar sense_len; 295 uchar extra_bytes; 296 uchar res; 297 u32 remain_bytes; 298 } ASC_QDONE_INFO; 299 300 typedef struct asc_sg_list { 301 __le32 addr; 302 __le32 bytes; 303 } ASC_SG_LIST; 304 305 typedef struct asc_sg_head { 306 ushort entry_cnt; 307 ushort queue_cnt; 308 ushort entry_to_copy; 309 ushort res; 310 ASC_SG_LIST sg_list[]; 311 } ASC_SG_HEAD; 312 313 typedef struct asc_scsi_q { 314 ASC_SCSIQ_1 q1; 315 ASC_SCSIQ_2 q2; 316 uchar *cdbptr; 317 ASC_SG_HEAD *sg_head; 318 ushort remain_sg_entry_cnt; 319 ushort next_sg_index; 320 } ASC_SCSI_Q; 321 322 typedef struct asc_scsi_bios_req_q { 323 ASC_SCSIQ_1 r1; 324 ASC_SCSIQ_2 r2; 325 uchar *cdbptr; 326 ASC_SG_HEAD *sg_head; 327 uchar *sense_ptr; 328 ASC_SCSIQ_3 r3; 329 uchar cdb[ASC_MAX_CDB_LEN]; 330 uchar sense[ASC_MIN_SENSE_LEN]; 331 } ASC_SCSI_BIOS_REQ_Q; 332 333 typedef struct asc_risc_q { 334 uchar fwd; 335 uchar bwd; 336 ASC_SCSIQ_1 i1; 337 ASC_SCSIQ_2 i2; 338 ASC_SCSIQ_3 i3; 339 ASC_SCSIQ_4 i4; 340 } ASC_RISC_Q; 341 342 typedef struct asc_sg_list_q { 343 uchar seq_no; 344 uchar q_no; 345 uchar cntl; 346 uchar sg_head_qp; 347 uchar sg_list_cnt; 348 uchar sg_cur_list_cnt; 349 } ASC_SG_LIST_Q; 350 351 typedef struct asc_risc_sg_list_q { 352 uchar fwd; 353 uchar bwd; 354 ASC_SG_LIST_Q sg; 355 ASC_SG_LIST sg_list[7]; 356 } ASC_RISC_SG_LIST_Q; 357 358 #define ASCQ_ERR_Q_STATUS 0x0D 359 #define ASCQ_ERR_CUR_QNG 0x17 360 #define ASCQ_ERR_SG_Q_LINKS 0x18 361 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A 362 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B 363 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C 364 365 /* 366 * Warning code values are set in ASC_DVC_VAR 'warn_code'. 367 */ 368 #define ASC_WARN_NO_ERROR 0x0000 369 #define ASC_WARN_IO_PORT_ROTATE 0x0001 370 #define ASC_WARN_EEPROM_CHKSUM 0x0002 371 #define ASC_WARN_IRQ_MODIFIED 0x0004 372 #define ASC_WARN_AUTO_CONFIG 0x0008 373 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010 374 #define ASC_WARN_EEPROM_RECOVER 0x0020 375 #define ASC_WARN_CFG_MSW_RECOVER 0x0040 376 377 /* 378 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'. 379 */ 380 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */ 381 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */ 382 #define ASC_IERR_SET_PC_ADDR 0x0004 383 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */ 384 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */ 385 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */ 386 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */ 387 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */ 388 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */ 389 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */ 390 #define ASC_IERR_NO_BUS_TYPE 0x0400 391 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */ 392 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */ 393 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */ 394 395 #define ASC_DEF_MAX_TOTAL_QNG (0xF0) 396 #define ASC_MIN_TAG_Q_PER_DVC (0x04) 397 #define ASC_MIN_FREE_Q (0x02) 398 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q)) 399 #define ASC_MAX_TOTAL_QNG 240 400 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16 401 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8 402 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20 403 #define ASC_MAX_INRAM_TAG_QNG 16 404 #define ASC_IOADR_GAP 0x10 405 #define ASC_SYN_MAX_OFFSET 0x0F 406 #define ASC_DEF_SDTR_OFFSET 0x0F 407 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02 408 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41 409 410 /* The narrow chip only supports a limited selection of transfer rates. 411 * These are encoded in the range 0..7 or 0..15 depending whether the chip 412 * is Ultra-capable or not. These tables let us convert from one to the other. 413 */ 414 static const unsigned char asc_syn_xfer_period[8] = { 415 25, 30, 35, 40, 50, 60, 70, 85 416 }; 417 418 static const unsigned char asc_syn_ultra_xfer_period[16] = { 419 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107 420 }; 421 422 typedef struct ext_msg { 423 uchar msg_type; 424 uchar msg_len; 425 uchar msg_req; 426 union { 427 struct { 428 uchar sdtr_xfer_period; 429 uchar sdtr_req_ack_offset; 430 } sdtr; 431 struct { 432 uchar wdtr_width; 433 } wdtr; 434 struct { 435 uchar mdp_b3; 436 uchar mdp_b2; 437 uchar mdp_b1; 438 uchar mdp_b0; 439 } mdp; 440 } u_ext_msg; 441 uchar res; 442 } EXT_MSG; 443 444 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period 445 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset 446 #define wdtr_width u_ext_msg.wdtr.wdtr_width 447 #define mdp_b3 u_ext_msg.mdp_b3 448 #define mdp_b2 u_ext_msg.mdp_b2 449 #define mdp_b1 u_ext_msg.mdp_b1 450 #define mdp_b0 u_ext_msg.mdp_b0 451 452 typedef struct asc_dvc_cfg { 453 ASC_SCSI_BIT_ID_TYPE can_tagged_qng; 454 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled; 455 ASC_SCSI_BIT_ID_TYPE disc_enable; 456 ASC_SCSI_BIT_ID_TYPE sdtr_enable; 457 uchar chip_scsi_id; 458 uchar chip_version; 459 ushort mcode_date; 460 ushort mcode_version; 461 uchar max_tag_qng[ASC_MAX_TID + 1]; 462 uchar sdtr_period_offset[ASC_MAX_TID + 1]; 463 uchar adapter_info[6]; 464 } ASC_DVC_CFG; 465 466 #define ASC_DEF_DVC_CNTL 0xFFFF 467 #define ASC_DEF_CHIP_SCSI_ID 7 468 #define ASC_DEF_ISA_DMA_SPEED 4 469 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001 470 #define ASC_INIT_STATE_END_GET_CFG 0x0002 471 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004 472 #define ASC_INIT_STATE_END_SET_CFG 0x0008 473 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010 474 #define ASC_INIT_STATE_END_LOAD_MC 0x0020 475 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040 476 #define ASC_INIT_STATE_END_INQUIRY 0x0080 477 #define ASC_INIT_RESET_SCSI_DONE 0x0100 478 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000 479 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001 480 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002 481 #define ASC_MIN_TAGGED_CMD 7 482 #define ASC_MAX_SCSI_RESET_WAIT 30 483 #define ASC_OVERRUN_BSIZE 64 484 485 struct asc_dvc_var; /* Forward Declaration. */ 486 487 typedef struct asc_dvc_var { 488 PortAddr iop_base; 489 ushort err_code; 490 ushort dvc_cntl; 491 ushort bug_fix_cntl; 492 ushort bus_type; 493 ASC_SCSI_BIT_ID_TYPE init_sdtr; 494 ASC_SCSI_BIT_ID_TYPE sdtr_done; 495 ASC_SCSI_BIT_ID_TYPE use_tagged_qng; 496 ASC_SCSI_BIT_ID_TYPE unit_not_ready; 497 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy; 498 ASC_SCSI_BIT_ID_TYPE start_motor; 499 uchar *overrun_buf; 500 dma_addr_t overrun_dma; 501 uchar scsi_reset_wait; 502 uchar chip_no; 503 bool is_in_int; 504 uchar max_total_qng; 505 uchar cur_total_qng; 506 uchar in_critical_cnt; 507 uchar last_q_shortage; 508 ushort init_state; 509 uchar cur_dvc_qng[ASC_MAX_TID + 1]; 510 uchar max_dvc_qng[ASC_MAX_TID + 1]; 511 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1]; 512 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1]; 513 const uchar *sdtr_period_tbl; 514 ASC_DVC_CFG *cfg; 515 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always; 516 char redo_scam; 517 ushort res2; 518 uchar dos_int13_table[ASC_MAX_TID + 1]; 519 unsigned int max_dma_count; 520 ASC_SCSI_BIT_ID_TYPE no_scam; 521 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer; 522 uchar min_sdtr_index; 523 uchar max_sdtr_index; 524 struct asc_board *drv_ptr; 525 unsigned int uc_break; 526 } ASC_DVC_VAR; 527 528 typedef struct asc_dvc_inq_info { 529 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; 530 } ASC_DVC_INQ_INFO; 531 532 typedef struct asc_cap_info { 533 u32 lba; 534 u32 blk_size; 535 } ASC_CAP_INFO; 536 537 typedef struct asc_cap_info_array { 538 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; 539 } ASC_CAP_INFO_ARRAY; 540 541 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001 542 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002 543 #define ASC_CNTL_INITIATOR (ushort)0x0001 544 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002 545 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004 546 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008 547 #define ASC_CNTL_NO_SCAM (ushort)0x0010 548 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080 549 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040 550 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100 551 #define ASC_CNTL_RESET_SCSI (ushort)0x0200 552 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400 553 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800 554 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000 555 #define ASC_CNTL_BURST_MODE (ushort)0x2000 556 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000 557 #define ASC_EEP_DVC_CFG_BEG_VL 2 558 #define ASC_EEP_MAX_DVC_ADDR_VL 15 559 #define ASC_EEP_DVC_CFG_BEG 32 560 #define ASC_EEP_MAX_DVC_ADDR 45 561 #define ASC_EEP_MAX_RETRY 20 562 563 /* 564 * These macros keep the chip SCSI id bitfields in board order. C bitfields 565 * aren't portable between big and little-endian platforms so they are not used. 566 */ 567 568 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f) 569 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4) 570 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \ 571 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID)) 572 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \ 573 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4) 574 575 typedef struct asceep_config { 576 ushort cfg_lsw; 577 ushort cfg_msw; 578 uchar init_sdtr; 579 uchar disc_enable; 580 uchar use_cmd_qng; 581 uchar start_motor; 582 uchar max_total_qng; 583 uchar max_tag_qng; 584 uchar bios_scan; 585 uchar power_up_wait; 586 uchar no_scam; 587 uchar id_speed; /* low order 4 bits is chip scsi id */ 588 /* high order 4 bits is isa dma speed */ 589 uchar dos_int13_table[ASC_MAX_TID + 1]; 590 uchar adapter_info[6]; 591 ushort cntl; 592 ushort chksum; 593 } ASCEEP_CONFIG; 594 595 #define ASC_EEP_CMD_READ 0x80 596 #define ASC_EEP_CMD_WRITE 0x40 597 #define ASC_EEP_CMD_WRITE_ABLE 0x30 598 #define ASC_EEP_CMD_WRITE_DISABLE 0x00 599 #define ASCV_MSGOUT_BEG 0x0000 600 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3) 601 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4) 602 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006 603 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8) 604 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3) 605 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4) 606 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8) 607 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8) 608 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020 609 #define ASCV_BREAK_ADDR (ushort)0x0028 610 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A 611 #define ASCV_BREAK_CONTROL (ushort)0x002C 612 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E 613 614 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030 615 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032 616 #define ASCV_MCODE_SIZE_W (ushort)0x0034 617 #define ASCV_STOP_CODE_B (ushort)0x0036 618 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037 619 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038 620 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C 621 #define ASCV_HALTCODE_W (ushort)0x0040 622 #define ASCV_CHKSUM_W (ushort)0x0042 623 #define ASCV_MC_DATE_W (ushort)0x0044 624 #define ASCV_MC_VER_W (ushort)0x0046 625 #define ASCV_NEXTRDY_B (ushort)0x0048 626 #define ASCV_DONENEXT_B (ushort)0x0049 627 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A 628 #define ASCV_SCSIBUSY_B (ushort)0x004B 629 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C 630 #define ASCV_CURCDB_B (ushort)0x004D 631 #define ASCV_RCLUN_B (ushort)0x004E 632 #define ASCV_BUSY_QHEAD_B (ushort)0x004F 633 #define ASCV_DISC1_QHEAD_B (ushort)0x0050 634 #define ASCV_DISC_ENABLE_B (ushort)0x0052 635 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053 636 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055 637 #define ASCV_MCODE_CNTL_B (ushort)0x0056 638 #define ASCV_NULL_TARGET_B (ushort)0x0057 639 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058 640 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A 641 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1) 642 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1) 643 #define ASCV_HOST_FLAG_B (ushort)0x005D 644 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064 645 #define ASCV_VER_SERIAL_B (ushort)0x0065 646 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066 647 #define ASCV_WTM_FLAG_B (ushort)0x0068 648 #define ASCV_RISC_FLAG_B (ushort)0x006A 649 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B 650 #define ASC_HOST_FLAG_IN_ISR 0x01 651 #define ASC_HOST_FLAG_ACK_INT 0x02 652 #define ASC_RISC_FLAG_GEN_INT 0x01 653 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02 654 #define IOP_CTRL (0x0F) 655 #define IOP_STATUS (0x0E) 656 #define IOP_INT_ACK IOP_STATUS 657 #define IOP_REG_IFC (0x0D) 658 #define IOP_SYN_OFFSET (0x0B) 659 #define IOP_EXTRA_CONTROL (0x0D) 660 #define IOP_REG_PC (0x0C) 661 #define IOP_RAM_ADDR (0x0A) 662 #define IOP_RAM_DATA (0x08) 663 #define IOP_EEP_DATA (0x06) 664 #define IOP_EEP_CMD (0x07) 665 #define IOP_VERSION (0x03) 666 #define IOP_CONFIG_HIGH (0x04) 667 #define IOP_CONFIG_LOW (0x02) 668 #define IOP_SIG_BYTE (0x01) 669 #define IOP_SIG_WORD (0x00) 670 #define IOP_REG_DC1 (0x0E) 671 #define IOP_REG_DC0 (0x0C) 672 #define IOP_REG_SB (0x0B) 673 #define IOP_REG_DA1 (0x0A) 674 #define IOP_REG_DA0 (0x08) 675 #define IOP_REG_SC (0x09) 676 #define IOP_DMA_SPEED (0x07) 677 #define IOP_REG_FLAG (0x07) 678 #define IOP_FIFO_H (0x06) 679 #define IOP_FIFO_L (0x04) 680 #define IOP_REG_ID (0x05) 681 #define IOP_REG_QP (0x03) 682 #define IOP_REG_IH (0x02) 683 #define IOP_REG_IX (0x01) 684 #define IOP_REG_AX (0x00) 685 #define IFC_REG_LOCK (0x00) 686 #define IFC_REG_UNLOCK (0x09) 687 #define IFC_WR_EN_FILTER (0x10) 688 #define IFC_RD_NO_EEPROM (0x10) 689 #define IFC_SLEW_RATE (0x20) 690 #define IFC_ACT_NEG (0x40) 691 #define IFC_INP_FILTER (0x80) 692 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK) 693 #define SC_SEL (uchar)(0x80) 694 #define SC_BSY (uchar)(0x40) 695 #define SC_ACK (uchar)(0x20) 696 #define SC_REQ (uchar)(0x10) 697 #define SC_ATN (uchar)(0x08) 698 #define SC_IO (uchar)(0x04) 699 #define SC_CD (uchar)(0x02) 700 #define SC_MSG (uchar)(0x01) 701 #define SEC_SCSI_CTL (uchar)(0x80) 702 #define SEC_ACTIVE_NEGATE (uchar)(0x40) 703 #define SEC_SLEW_RATE (uchar)(0x20) 704 #define SEC_ENABLE_FILTER (uchar)(0x10) 705 #define ASC_HALT_EXTMSG_IN (ushort)0x8000 706 #define ASC_HALT_CHK_CONDITION (ushort)0x8100 707 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200 708 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300 709 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400 710 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000 711 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000 712 #define ASC_MAX_QNO 0xF8 713 #define ASC_DATA_SEC_BEG (ushort)0x0080 714 #define ASC_DATA_SEC_END (ushort)0x0080 715 #define ASC_CODE_SEC_BEG (ushort)0x0080 716 #define ASC_CODE_SEC_END (ushort)0x0080 717 #define ASC_QADR_BEG (0x4000) 718 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64) 719 #define ASC_QADR_END (ushort)0x7FFF 720 #define ASC_QLAST_ADR (ushort)0x7FC0 721 #define ASC_QBLK_SIZE 0x40 722 #define ASC_BIOS_DATA_QBEG 0xF8 723 #define ASC_MIN_ACTIVE_QNO 0x01 724 #define ASC_QLINK_END 0xFF 725 #define ASC_EEPROM_WORDS 0x10 726 #define ASC_MAX_MGS_LEN 0x10 727 #define ASC_BIOS_ADDR_DEF 0xDC00 728 #define ASC_BIOS_SIZE 0x3800 729 #define ASC_BIOS_RAM_OFF 0x3800 730 #define ASC_BIOS_RAM_SIZE 0x800 731 #define ASC_BIOS_MIN_ADDR 0xC000 732 #define ASC_BIOS_MAX_ADDR 0xEC00 733 #define ASC_BIOS_BANK_SIZE 0x0400 734 #define ASC_MCODE_START_ADDR 0x0080 735 #define ASC_CFG0_HOST_INT_ON 0x0020 736 #define ASC_CFG0_BIOS_ON 0x0040 737 #define ASC_CFG0_VERA_BURST_ON 0x0080 738 #define ASC_CFG0_SCSI_PARITY_ON 0x0800 739 #define ASC_CFG1_SCSI_TARGET_ON 0x0080 740 #define ASC_CFG1_LRAM_8BITS_ON 0x0800 741 #define ASC_CFG_MSW_CLR_MASK 0x3080 742 #define CSW_TEST1 (ASC_CS_TYPE)0x8000 743 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000 744 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000 745 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000 746 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800 747 #define CSW_TEST2 (ASC_CS_TYPE)0x0400 748 #define CSW_TEST3 (ASC_CS_TYPE)0x0200 749 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100 750 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080 751 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040 752 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020 753 #define CSW_HALTED (ASC_CS_TYPE)0x0010 754 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008 755 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004 756 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002 757 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001 758 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000 759 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100 760 #define CIW_TEST1 (ASC_CS_TYPE)0x0200 761 #define CIW_TEST2 (ASC_CS_TYPE)0x0400 762 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800 763 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000 764 #define CC_CHIP_RESET (uchar)0x80 765 #define CC_SCSI_RESET (uchar)0x40 766 #define CC_HALT (uchar)0x20 767 #define CC_SINGLE_STEP (uchar)0x10 768 #define CC_DMA_ABLE (uchar)0x08 769 #define CC_TEST (uchar)0x04 770 #define CC_BANK_ONE (uchar)0x02 771 #define CC_DIAG (uchar)0x01 772 #define ASC_1000_ID0W 0x04C1 773 #define ASC_1000_ID0W_FIX 0x00C1 774 #define ASC_1000_ID1B 0x25 775 #define ASC_EISA_REV_IOP_MASK (0x0C83) 776 #define ASC_EISA_CFG_IOP_MASK (0x0C86) 777 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000) 778 #define INS_HALTINT (ushort)0x6281 779 #define INS_HALT (ushort)0x6280 780 #define INS_SINT (ushort)0x6200 781 #define INS_RFLAG_WTM (ushort)0x7380 782 #define ASC_MC_SAVE_CODE_WSIZE 0x500 783 #define ASC_MC_SAVE_DATA_WSIZE 0x40 784 785 typedef struct asc_mc_saved { 786 ushort data[ASC_MC_SAVE_DATA_WSIZE]; 787 ushort code[ASC_MC_SAVE_CODE_WSIZE]; 788 } ASC_MC_SAVED; 789 790 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B) 791 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val) 792 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W) 793 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W) 794 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val) 795 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val) 796 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B) 797 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B) 798 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val) 799 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val) 800 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data)) 801 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id)) 802 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data) 803 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id)) 804 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE) 805 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD) 806 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION) 807 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW) 808 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH) 809 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data) 810 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data) 811 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD) 812 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data) 813 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA) 814 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data) 815 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR)) 816 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr) 817 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA) 818 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data) 819 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC) 820 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data) 821 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS) 822 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val) 823 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL) 824 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val) 825 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET) 826 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data) 827 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data) 828 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC) 829 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH)) 830 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID) 831 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL) 832 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data) 833 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX) 834 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data) 835 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX) 836 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data) 837 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH) 838 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data) 839 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP) 840 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data) 841 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L) 842 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data) 843 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H) 844 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data) 845 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED) 846 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data) 847 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0) 848 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data) 849 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1) 850 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data) 851 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0) 852 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data) 853 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1) 854 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data) 855 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID) 856 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data) 857 858 #define AdvPortAddr void __iomem * /* Virtual memory address size */ 859 860 /* 861 * Define Adv Library required memory access macros. 862 */ 863 #define ADV_MEM_READB(addr) readb(addr) 864 #define ADV_MEM_READW(addr) readw(addr) 865 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr) 866 #define ADV_MEM_WRITEW(addr, word) writew(word, addr) 867 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr) 868 869 /* 870 * Define total number of simultaneous maximum element scatter-gather 871 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the 872 * maximum number of outstanding commands per wide host adapter. Each 873 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather 874 * elements. Allow each command to have at least one ADV_SG_BLOCK structure. 875 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK 876 * structures or 255 scatter-gather elements. 877 */ 878 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG 879 880 /* 881 * Define maximum number of scatter-gather elements per request. 882 */ 883 #define ADV_MAX_SG_LIST 255 884 #define NO_OF_SG_PER_BLOCK 15 885 886 #define ADV_EEP_DVC_CFG_BEGIN (0x00) 887 #define ADV_EEP_DVC_CFG_END (0x15) 888 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */ 889 #define ADV_EEP_MAX_WORD_ADDR (0x1E) 890 891 #define ADV_EEP_DELAY_MS 100 892 893 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */ 894 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */ 895 /* 896 * For the ASC3550 Bit 13 is Termination Polarity control bit. 897 * For later ICs Bit 13 controls whether the CIS (Card Information 898 * Service Section) is loaded from EEPROM. 899 */ 900 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */ 901 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */ 902 /* 903 * ASC38C1600 Bit 11 904 * 905 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify 906 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then 907 * Function 0 will specify INT B. 908 * 909 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify 910 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then 911 * Function 1 will specify INT A. 912 */ 913 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */ 914 915 typedef struct adveep_3550_config { 916 /* Word Offset, Description */ 917 918 ushort cfg_lsw; /* 00 power up initialization */ 919 /* bit 13 set - Term Polarity Control */ 920 /* bit 14 set - BIOS Enable */ 921 /* bit 15 set - Big Endian Mode */ 922 ushort cfg_msw; /* 01 unused */ 923 ushort disc_enable; /* 02 disconnect enable */ 924 ushort wdtr_able; /* 03 Wide DTR able */ 925 ushort sdtr_able; /* 04 Synchronous DTR able */ 926 ushort start_motor; /* 05 send start up motor */ 927 ushort tagqng_able; /* 06 tag queuing able */ 928 ushort bios_scan; /* 07 BIOS device control */ 929 ushort scam_tolerant; /* 08 no scam */ 930 931 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 932 uchar bios_boot_delay; /* power up wait */ 933 934 uchar scsi_reset_delay; /* 10 reset delay */ 935 uchar bios_id_lun; /* first boot device scsi id & lun */ 936 /* high nibble is lun */ 937 /* low nibble is scsi id */ 938 939 uchar termination; /* 11 0 - automatic */ 940 /* 1 - low off / high off */ 941 /* 2 - low off / high on */ 942 /* 3 - low on / high on */ 943 /* There is no low on / high off */ 944 945 uchar reserved1; /* reserved byte (not used) */ 946 947 ushort bios_ctrl; /* 12 BIOS control bits */ 948 /* bit 0 BIOS don't act as initiator. */ 949 /* bit 1 BIOS > 1 GB support */ 950 /* bit 2 BIOS > 2 Disk Support */ 951 /* bit 3 BIOS don't support removables */ 952 /* bit 4 BIOS support bootable CD */ 953 /* bit 5 BIOS scan enabled */ 954 /* bit 6 BIOS support multiple LUNs */ 955 /* bit 7 BIOS display of message */ 956 /* bit 8 SCAM disabled */ 957 /* bit 9 Reset SCSI bus during init. */ 958 /* bit 10 */ 959 /* bit 11 No verbose initialization. */ 960 /* bit 12 SCSI parity enabled */ 961 /* bit 13 */ 962 /* bit 14 */ 963 /* bit 15 */ 964 ushort ultra_able; /* 13 ULTRA speed able */ 965 ushort reserved2; /* 14 reserved */ 966 uchar max_host_qng; /* 15 maximum host queuing */ 967 uchar max_dvc_qng; /* maximum per device queuing */ 968 ushort dvc_cntl; /* 16 control bit for driver */ 969 ushort bug_fix; /* 17 control bit for bug fix */ 970 ushort serial_number_word1; /* 18 Board serial number word 1 */ 971 ushort serial_number_word2; /* 19 Board serial number word 2 */ 972 ushort serial_number_word3; /* 20 Board serial number word 3 */ 973 ushort check_sum; /* 21 EEP check sum */ 974 uchar oem_name[16]; /* 22 OEM name */ 975 ushort dvc_err_code; /* 30 last device driver error code */ 976 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 977 ushort adv_err_addr; /* 32 last uc error address */ 978 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 979 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 980 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 981 ushort num_of_err; /* 36 number of error */ 982 } ADVEEP_3550_CONFIG; 983 984 typedef struct adveep_38C0800_config { 985 /* Word Offset, Description */ 986 987 ushort cfg_lsw; /* 00 power up initialization */ 988 /* bit 13 set - Load CIS */ 989 /* bit 14 set - BIOS Enable */ 990 /* bit 15 set - Big Endian Mode */ 991 ushort cfg_msw; /* 01 unused */ 992 ushort disc_enable; /* 02 disconnect enable */ 993 ushort wdtr_able; /* 03 Wide DTR able */ 994 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ 995 ushort start_motor; /* 05 send start up motor */ 996 ushort tagqng_able; /* 06 tag queuing able */ 997 ushort bios_scan; /* 07 BIOS device control */ 998 ushort scam_tolerant; /* 08 no scam */ 999 1000 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1001 uchar bios_boot_delay; /* power up wait */ 1002 1003 uchar scsi_reset_delay; /* 10 reset delay */ 1004 uchar bios_id_lun; /* first boot device scsi id & lun */ 1005 /* high nibble is lun */ 1006 /* low nibble is scsi id */ 1007 1008 uchar termination_se; /* 11 0 - automatic */ 1009 /* 1 - low off / high off */ 1010 /* 2 - low off / high on */ 1011 /* 3 - low on / high on */ 1012 /* There is no low on / high off */ 1013 1014 uchar termination_lvd; /* 11 0 - automatic */ 1015 /* 1 - low off / high off */ 1016 /* 2 - low off / high on */ 1017 /* 3 - low on / high on */ 1018 /* There is no low on / high off */ 1019 1020 ushort bios_ctrl; /* 12 BIOS control bits */ 1021 /* bit 0 BIOS don't act as initiator. */ 1022 /* bit 1 BIOS > 1 GB support */ 1023 /* bit 2 BIOS > 2 Disk Support */ 1024 /* bit 3 BIOS don't support removables */ 1025 /* bit 4 BIOS support bootable CD */ 1026 /* bit 5 BIOS scan enabled */ 1027 /* bit 6 BIOS support multiple LUNs */ 1028 /* bit 7 BIOS display of message */ 1029 /* bit 8 SCAM disabled */ 1030 /* bit 9 Reset SCSI bus during init. */ 1031 /* bit 10 */ 1032 /* bit 11 No verbose initialization. */ 1033 /* bit 12 SCSI parity enabled */ 1034 /* bit 13 */ 1035 /* bit 14 */ 1036 /* bit 15 */ 1037 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ 1038 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ 1039 uchar max_host_qng; /* 15 maximum host queueing */ 1040 uchar max_dvc_qng; /* maximum per device queuing */ 1041 ushort dvc_cntl; /* 16 control bit for driver */ 1042 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ 1043 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1044 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1045 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1046 ushort check_sum; /* 21 EEP check sum */ 1047 uchar oem_name[16]; /* 22 OEM name */ 1048 ushort dvc_err_code; /* 30 last device driver error code */ 1049 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1050 ushort adv_err_addr; /* 32 last uc error address */ 1051 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1052 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1053 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1054 ushort reserved36; /* 36 reserved */ 1055 ushort reserved37; /* 37 reserved */ 1056 ushort reserved38; /* 38 reserved */ 1057 ushort reserved39; /* 39 reserved */ 1058 ushort reserved40; /* 40 reserved */ 1059 ushort reserved41; /* 41 reserved */ 1060 ushort reserved42; /* 42 reserved */ 1061 ushort reserved43; /* 43 reserved */ 1062 ushort reserved44; /* 44 reserved */ 1063 ushort reserved45; /* 45 reserved */ 1064 ushort reserved46; /* 46 reserved */ 1065 ushort reserved47; /* 47 reserved */ 1066 ushort reserved48; /* 48 reserved */ 1067 ushort reserved49; /* 49 reserved */ 1068 ushort reserved50; /* 50 reserved */ 1069 ushort reserved51; /* 51 reserved */ 1070 ushort reserved52; /* 52 reserved */ 1071 ushort reserved53; /* 53 reserved */ 1072 ushort reserved54; /* 54 reserved */ 1073 ushort reserved55; /* 55 reserved */ 1074 ushort cisptr_lsw; /* 56 CIS PTR LSW */ 1075 ushort cisprt_msw; /* 57 CIS PTR MSW */ 1076 ushort subsysvid; /* 58 SubSystem Vendor ID */ 1077 ushort subsysid; /* 59 SubSystem ID */ 1078 ushort reserved60; /* 60 reserved */ 1079 ushort reserved61; /* 61 reserved */ 1080 ushort reserved62; /* 62 reserved */ 1081 ushort reserved63; /* 63 reserved */ 1082 } ADVEEP_38C0800_CONFIG; 1083 1084 typedef struct adveep_38C1600_config { 1085 /* Word Offset, Description */ 1086 1087 ushort cfg_lsw; /* 00 power up initialization */ 1088 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */ 1089 /* clear - Func. 0 INTA, Func. 1 INTB */ 1090 /* bit 13 set - Load CIS */ 1091 /* bit 14 set - BIOS Enable */ 1092 /* bit 15 set - Big Endian Mode */ 1093 ushort cfg_msw; /* 01 unused */ 1094 ushort disc_enable; /* 02 disconnect enable */ 1095 ushort wdtr_able; /* 03 Wide DTR able */ 1096 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ 1097 ushort start_motor; /* 05 send start up motor */ 1098 ushort tagqng_able; /* 06 tag queuing able */ 1099 ushort bios_scan; /* 07 BIOS device control */ 1100 ushort scam_tolerant; /* 08 no scam */ 1101 1102 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1103 uchar bios_boot_delay; /* power up wait */ 1104 1105 uchar scsi_reset_delay; /* 10 reset delay */ 1106 uchar bios_id_lun; /* first boot device scsi id & lun */ 1107 /* high nibble is lun */ 1108 /* low nibble is scsi id */ 1109 1110 uchar termination_se; /* 11 0 - automatic */ 1111 /* 1 - low off / high off */ 1112 /* 2 - low off / high on */ 1113 /* 3 - low on / high on */ 1114 /* There is no low on / high off */ 1115 1116 uchar termination_lvd; /* 11 0 - automatic */ 1117 /* 1 - low off / high off */ 1118 /* 2 - low off / high on */ 1119 /* 3 - low on / high on */ 1120 /* There is no low on / high off */ 1121 1122 ushort bios_ctrl; /* 12 BIOS control bits */ 1123 /* bit 0 BIOS don't act as initiator. */ 1124 /* bit 1 BIOS > 1 GB support */ 1125 /* bit 2 BIOS > 2 Disk Support */ 1126 /* bit 3 BIOS don't support removables */ 1127 /* bit 4 BIOS support bootable CD */ 1128 /* bit 5 BIOS scan enabled */ 1129 /* bit 6 BIOS support multiple LUNs */ 1130 /* bit 7 BIOS display of message */ 1131 /* bit 8 SCAM disabled */ 1132 /* bit 9 Reset SCSI bus during init. */ 1133 /* bit 10 Basic Integrity Checking disabled */ 1134 /* bit 11 No verbose initialization. */ 1135 /* bit 12 SCSI parity enabled */ 1136 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */ 1137 /* bit 14 */ 1138 /* bit 15 */ 1139 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ 1140 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ 1141 uchar max_host_qng; /* 15 maximum host queueing */ 1142 uchar max_dvc_qng; /* maximum per device queuing */ 1143 ushort dvc_cntl; /* 16 control bit for driver */ 1144 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ 1145 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1146 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1147 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1148 ushort check_sum; /* 21 EEP check sum */ 1149 uchar oem_name[16]; /* 22 OEM name */ 1150 ushort dvc_err_code; /* 30 last device driver error code */ 1151 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1152 ushort adv_err_addr; /* 32 last uc error address */ 1153 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1154 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1155 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1156 ushort reserved36; /* 36 reserved */ 1157 ushort reserved37; /* 37 reserved */ 1158 ushort reserved38; /* 38 reserved */ 1159 ushort reserved39; /* 39 reserved */ 1160 ushort reserved40; /* 40 reserved */ 1161 ushort reserved41; /* 41 reserved */ 1162 ushort reserved42; /* 42 reserved */ 1163 ushort reserved43; /* 43 reserved */ 1164 ushort reserved44; /* 44 reserved */ 1165 ushort reserved45; /* 45 reserved */ 1166 ushort reserved46; /* 46 reserved */ 1167 ushort reserved47; /* 47 reserved */ 1168 ushort reserved48; /* 48 reserved */ 1169 ushort reserved49; /* 49 reserved */ 1170 ushort reserved50; /* 50 reserved */ 1171 ushort reserved51; /* 51 reserved */ 1172 ushort reserved52; /* 52 reserved */ 1173 ushort reserved53; /* 53 reserved */ 1174 ushort reserved54; /* 54 reserved */ 1175 ushort reserved55; /* 55 reserved */ 1176 ushort cisptr_lsw; /* 56 CIS PTR LSW */ 1177 ushort cisprt_msw; /* 57 CIS PTR MSW */ 1178 ushort subsysvid; /* 58 SubSystem Vendor ID */ 1179 ushort subsysid; /* 59 SubSystem ID */ 1180 ushort reserved60; /* 60 reserved */ 1181 ushort reserved61; /* 61 reserved */ 1182 ushort reserved62; /* 62 reserved */ 1183 ushort reserved63; /* 63 reserved */ 1184 } ADVEEP_38C1600_CONFIG; 1185 1186 /* 1187 * EEPROM Commands 1188 */ 1189 #define ASC_EEP_CMD_DONE 0x0200 1190 1191 /* bios_ctrl */ 1192 #define BIOS_CTRL_BIOS 0x0001 1193 #define BIOS_CTRL_EXTENDED_XLAT 0x0002 1194 #define BIOS_CTRL_GT_2_DISK 0x0004 1195 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008 1196 #define BIOS_CTRL_BOOTABLE_CD 0x0010 1197 #define BIOS_CTRL_MULTIPLE_LUN 0x0040 1198 #define BIOS_CTRL_DISPLAY_MSG 0x0080 1199 #define BIOS_CTRL_NO_SCAM 0x0100 1200 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200 1201 #define BIOS_CTRL_INIT_VERBOSE 0x0800 1202 #define BIOS_CTRL_SCSI_PARITY 0x1000 1203 #define BIOS_CTRL_AIPP_DIS 0x2000 1204 1205 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */ 1206 1207 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */ 1208 1209 /* 1210 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is 1211 * a special 16K Adv Library and Microcode version. After the issue is 1212 * resolved, should restore 32K support. 1213 * 1214 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory * 1215 */ 1216 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */ 1217 1218 /* 1219 * Byte I/O register address from base of 'iop_base'. 1220 */ 1221 #define IOPB_INTR_STATUS_REG 0x00 1222 #define IOPB_CHIP_ID_1 0x01 1223 #define IOPB_INTR_ENABLES 0x02 1224 #define IOPB_CHIP_TYPE_REV 0x03 1225 #define IOPB_RES_ADDR_4 0x04 1226 #define IOPB_RES_ADDR_5 0x05 1227 #define IOPB_RAM_DATA 0x06 1228 #define IOPB_RES_ADDR_7 0x07 1229 #define IOPB_FLAG_REG 0x08 1230 #define IOPB_RES_ADDR_9 0x09 1231 #define IOPB_RISC_CSR 0x0A 1232 #define IOPB_RES_ADDR_B 0x0B 1233 #define IOPB_RES_ADDR_C 0x0C 1234 #define IOPB_RES_ADDR_D 0x0D 1235 #define IOPB_SOFT_OVER_WR 0x0E 1236 #define IOPB_RES_ADDR_F 0x0F 1237 #define IOPB_MEM_CFG 0x10 1238 #define IOPB_RES_ADDR_11 0x11 1239 #define IOPB_GPIO_DATA 0x12 1240 #define IOPB_RES_ADDR_13 0x13 1241 #define IOPB_FLASH_PAGE 0x14 1242 #define IOPB_RES_ADDR_15 0x15 1243 #define IOPB_GPIO_CNTL 0x16 1244 #define IOPB_RES_ADDR_17 0x17 1245 #define IOPB_FLASH_DATA 0x18 1246 #define IOPB_RES_ADDR_19 0x19 1247 #define IOPB_RES_ADDR_1A 0x1A 1248 #define IOPB_RES_ADDR_1B 0x1B 1249 #define IOPB_RES_ADDR_1C 0x1C 1250 #define IOPB_RES_ADDR_1D 0x1D 1251 #define IOPB_RES_ADDR_1E 0x1E 1252 #define IOPB_RES_ADDR_1F 0x1F 1253 #define IOPB_DMA_CFG0 0x20 1254 #define IOPB_DMA_CFG1 0x21 1255 #define IOPB_TICKLE 0x22 1256 #define IOPB_DMA_REG_WR 0x23 1257 #define IOPB_SDMA_STATUS 0x24 1258 #define IOPB_SCSI_BYTE_CNT 0x25 1259 #define IOPB_HOST_BYTE_CNT 0x26 1260 #define IOPB_BYTE_LEFT_TO_XFER 0x27 1261 #define IOPB_BYTE_TO_XFER_0 0x28 1262 #define IOPB_BYTE_TO_XFER_1 0x29 1263 #define IOPB_BYTE_TO_XFER_2 0x2A 1264 #define IOPB_BYTE_TO_XFER_3 0x2B 1265 #define IOPB_ACC_GRP 0x2C 1266 #define IOPB_RES_ADDR_2D 0x2D 1267 #define IOPB_DEV_ID 0x2E 1268 #define IOPB_RES_ADDR_2F 0x2F 1269 #define IOPB_SCSI_DATA 0x30 1270 #define IOPB_RES_ADDR_31 0x31 1271 #define IOPB_RES_ADDR_32 0x32 1272 #define IOPB_SCSI_DATA_HSHK 0x33 1273 #define IOPB_SCSI_CTRL 0x34 1274 #define IOPB_RES_ADDR_35 0x35 1275 #define IOPB_RES_ADDR_36 0x36 1276 #define IOPB_RES_ADDR_37 0x37 1277 #define IOPB_RAM_BIST 0x38 1278 #define IOPB_PLL_TEST 0x39 1279 #define IOPB_PCI_INT_CFG 0x3A 1280 #define IOPB_RES_ADDR_3B 0x3B 1281 #define IOPB_RFIFO_CNT 0x3C 1282 #define IOPB_RES_ADDR_3D 0x3D 1283 #define IOPB_RES_ADDR_3E 0x3E 1284 #define IOPB_RES_ADDR_3F 0x3F 1285 1286 /* 1287 * Word I/O register address from base of 'iop_base'. 1288 */ 1289 #define IOPW_CHIP_ID_0 0x00 /* CID0 */ 1290 #define IOPW_CTRL_REG 0x02 /* CC */ 1291 #define IOPW_RAM_ADDR 0x04 /* LA */ 1292 #define IOPW_RAM_DATA 0x06 /* LD */ 1293 #define IOPW_RES_ADDR_08 0x08 1294 #define IOPW_RISC_CSR 0x0A /* CSR */ 1295 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */ 1296 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */ 1297 #define IOPW_RES_ADDR_10 0x10 1298 #define IOPW_SEL_MASK 0x12 /* SM */ 1299 #define IOPW_RES_ADDR_14 0x14 1300 #define IOPW_FLASH_ADDR 0x16 /* FA */ 1301 #define IOPW_RES_ADDR_18 0x18 1302 #define IOPW_EE_CMD 0x1A /* EC */ 1303 #define IOPW_EE_DATA 0x1C /* ED */ 1304 #define IOPW_SFIFO_CNT 0x1E /* SFC */ 1305 #define IOPW_RES_ADDR_20 0x20 1306 #define IOPW_Q_BASE 0x22 /* QB */ 1307 #define IOPW_QP 0x24 /* QP */ 1308 #define IOPW_IX 0x26 /* IX */ 1309 #define IOPW_SP 0x28 /* SP */ 1310 #define IOPW_PC 0x2A /* PC */ 1311 #define IOPW_RES_ADDR_2C 0x2C 1312 #define IOPW_RES_ADDR_2E 0x2E 1313 #define IOPW_SCSI_DATA 0x30 /* SD */ 1314 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */ 1315 #define IOPW_SCSI_CTRL 0x34 /* SC */ 1316 #define IOPW_HSHK_CFG 0x36 /* HCFG */ 1317 #define IOPW_SXFR_STATUS 0x36 /* SXS */ 1318 #define IOPW_SXFR_CNTL 0x38 /* SXL */ 1319 #define IOPW_SXFR_CNTH 0x3A /* SXH */ 1320 #define IOPW_RES_ADDR_3C 0x3C 1321 #define IOPW_RFIFO_DATA 0x3E /* RFD */ 1322 1323 /* 1324 * Doubleword I/O register address from base of 'iop_base'. 1325 */ 1326 #define IOPDW_RES_ADDR_0 0x00 1327 #define IOPDW_RAM_DATA 0x04 1328 #define IOPDW_RES_ADDR_8 0x08 1329 #define IOPDW_RES_ADDR_C 0x0C 1330 #define IOPDW_RES_ADDR_10 0x10 1331 #define IOPDW_COMMA 0x14 1332 #define IOPDW_COMMB 0x18 1333 #define IOPDW_RES_ADDR_1C 0x1C 1334 #define IOPDW_SDMA_ADDR0 0x20 1335 #define IOPDW_SDMA_ADDR1 0x24 1336 #define IOPDW_SDMA_COUNT 0x28 1337 #define IOPDW_SDMA_ERROR 0x2C 1338 #define IOPDW_RDMA_ADDR0 0x30 1339 #define IOPDW_RDMA_ADDR1 0x34 1340 #define IOPDW_RDMA_COUNT 0x38 1341 #define IOPDW_RDMA_ERROR 0x3C 1342 1343 #define ADV_CHIP_ID_BYTE 0x25 1344 #define ADV_CHIP_ID_WORD 0x04C1 1345 1346 #define ADV_INTR_ENABLE_HOST_INTR 0x01 1347 #define ADV_INTR_ENABLE_SEL_INTR 0x02 1348 #define ADV_INTR_ENABLE_DPR_INTR 0x04 1349 #define ADV_INTR_ENABLE_RTA_INTR 0x08 1350 #define ADV_INTR_ENABLE_RMA_INTR 0x10 1351 #define ADV_INTR_ENABLE_RST_INTR 0x20 1352 #define ADV_INTR_ENABLE_DPE_INTR 0x40 1353 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80 1354 1355 #define ADV_INTR_STATUS_INTRA 0x01 1356 #define ADV_INTR_STATUS_INTRB 0x02 1357 #define ADV_INTR_STATUS_INTRC 0x04 1358 1359 #define ADV_RISC_CSR_STOP (0x0000) 1360 #define ADV_RISC_TEST_COND (0x2000) 1361 #define ADV_RISC_CSR_RUN (0x4000) 1362 #define ADV_RISC_CSR_SINGLE_STEP (0x8000) 1363 1364 #define ADV_CTRL_REG_HOST_INTR 0x0100 1365 #define ADV_CTRL_REG_SEL_INTR 0x0200 1366 #define ADV_CTRL_REG_DPR_INTR 0x0400 1367 #define ADV_CTRL_REG_RTA_INTR 0x0800 1368 #define ADV_CTRL_REG_RMA_INTR 0x1000 1369 #define ADV_CTRL_REG_RES_BIT14 0x2000 1370 #define ADV_CTRL_REG_DPE_INTR 0x4000 1371 #define ADV_CTRL_REG_POWER_DONE 0x8000 1372 #define ADV_CTRL_REG_ANY_INTR 0xFF00 1373 1374 #define ADV_CTRL_REG_CMD_RESET 0x00C6 1375 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5 1376 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4 1377 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3 1378 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2 1379 1380 #define ADV_TICKLE_NOP 0x00 1381 #define ADV_TICKLE_A 0x01 1382 #define ADV_TICKLE_B 0x02 1383 #define ADV_TICKLE_C 0x03 1384 1385 #define AdvIsIntPending(port) \ 1386 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR) 1387 1388 /* 1389 * SCSI_CFG0 Register bit definitions 1390 */ 1391 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */ 1392 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */ 1393 #define EVEN_PARITY 0x1000 /* Select Even Parity */ 1394 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */ 1395 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */ 1396 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */ 1397 #define SCAM_EN 0x0080 /* Enable SCAM selection */ 1398 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */ 1399 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */ 1400 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */ 1401 #define OUR_ID 0x000F /* SCSI ID */ 1402 1403 /* 1404 * SCSI_CFG1 Register bit definitions 1405 */ 1406 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */ 1407 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */ 1408 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */ 1409 #define FILTER_SEL 0x0C00 /* Filter Period Selection */ 1410 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */ 1411 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */ 1412 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */ 1413 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */ 1414 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */ 1415 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */ 1416 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */ 1417 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */ 1418 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */ 1419 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */ 1420 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */ 1421 1422 /* 1423 * Addendum for ASC-38C0800 Chip 1424 * 1425 * The ASC-38C1600 Chip uses the same definitions except that the 1426 * bus mode override bits [12:10] have been moved to byte register 1427 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in 1428 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV) 1429 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only. 1430 * Also each ASC-38C1600 function or channel uses only cable bits [5:4] 1431 * and [1:0]. Bits [14], [7:6], [3:2] are unused. 1432 */ 1433 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */ 1434 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */ 1435 #define HVD 0x1000 /* HVD Device Detect */ 1436 #define LVD 0x0800 /* LVD Device Detect */ 1437 #define SE 0x0400 /* SE Device Detect */ 1438 #define TERM_LVD 0x00C0 /* LVD Termination Bits */ 1439 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */ 1440 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */ 1441 #define TERM_SE 0x0030 /* SE Termination Bits */ 1442 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */ 1443 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */ 1444 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */ 1445 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */ 1446 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */ 1447 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */ 1448 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */ 1449 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */ 1450 1451 #define CABLE_ILLEGAL_A 0x7 1452 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */ 1453 1454 #define CABLE_ILLEGAL_B 0xB 1455 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */ 1456 1457 /* 1458 * MEM_CFG Register bit definitions 1459 */ 1460 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */ 1461 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */ 1462 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */ 1463 #define RAM_SZ_2KB 0x00 /* 2 KB */ 1464 #define RAM_SZ_4KB 0x04 /* 4 KB */ 1465 #define RAM_SZ_8KB 0x08 /* 8 KB */ 1466 #define RAM_SZ_16KB 0x0C /* 16 KB */ 1467 #define RAM_SZ_32KB 0x10 /* 32 KB */ 1468 #define RAM_SZ_64KB 0x14 /* 64 KB */ 1469 1470 /* 1471 * DMA_CFG0 Register bit definitions 1472 * 1473 * This register is only accessible to the host. 1474 */ 1475 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */ 1476 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */ 1477 #define FIFO_THRESH_16B 0x00 /* 16 bytes */ 1478 #define FIFO_THRESH_32B 0x20 /* 32 bytes */ 1479 #define FIFO_THRESH_48B 0x30 /* 48 bytes */ 1480 #define FIFO_THRESH_64B 0x40 /* 64 bytes */ 1481 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */ 1482 #define FIFO_THRESH_96B 0x60 /* 96 bytes */ 1483 #define FIFO_THRESH_112B 0x70 /* 112 bytes */ 1484 #define START_CTL 0x0C /* DMA start conditions */ 1485 #define START_CTL_TH 0x00 /* Wait threshold level (default) */ 1486 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */ 1487 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */ 1488 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */ 1489 #define READ_CMD 0x03 /* Memory Read Method */ 1490 #define READ_CMD_MR 0x00 /* Memory Read */ 1491 #define READ_CMD_MRL 0x02 /* Memory Read Long */ 1492 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */ 1493 1494 /* 1495 * ASC-38C0800 RAM BIST Register bit definitions 1496 */ 1497 #define RAM_TEST_MODE 0x80 1498 #define PRE_TEST_MODE 0x40 1499 #define NORMAL_MODE 0x00 1500 #define RAM_TEST_DONE 0x10 1501 #define RAM_TEST_STATUS 0x0F 1502 #define RAM_TEST_HOST_ERROR 0x08 1503 #define RAM_TEST_INTRAM_ERROR 0x04 1504 #define RAM_TEST_RISC_ERROR 0x02 1505 #define RAM_TEST_SCSI_ERROR 0x01 1506 #define RAM_TEST_SUCCESS 0x00 1507 #define PRE_TEST_VALUE 0x05 1508 #define NORMAL_VALUE 0x00 1509 1510 /* 1511 * ASC38C1600 Definitions 1512 * 1513 * IOPB_PCI_INT_CFG Bit Field Definitions 1514 */ 1515 1516 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */ 1517 1518 /* 1519 * Bit 1 can be set to change the interrupt for the Function to operate in 1520 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in 1521 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same 1522 * mode, otherwise the operating mode is undefined. 1523 */ 1524 #define TOTEMPOLE 0x02 1525 1526 /* 1527 * Bit 0 can be used to change the Int Pin for the Function. The value is 1528 * 0 by default for both Functions with Function 0 using INT A and Function 1529 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set, 1530 * INT A is used. 1531 * 1532 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin 1533 * value specified in the PCI Configuration Space. 1534 */ 1535 #define INTAB 0x01 1536 1537 /* 1538 * Adv Library Status Definitions 1539 */ 1540 #define ADV_TRUE 1 1541 #define ADV_FALSE 0 1542 #define ADV_SUCCESS 1 1543 #define ADV_BUSY 0 1544 #define ADV_ERROR (-1) 1545 1546 /* 1547 * ADV_DVC_VAR 'warn_code' values 1548 */ 1549 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */ 1550 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */ 1551 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */ 1552 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */ 1553 1554 #define ADV_MAX_TID 15 /* max. target identifier */ 1555 #define ADV_MAX_LUN 7 /* max. logical unit number */ 1556 1557 /* 1558 * Fixed locations of microcode operating variables. 1559 */ 1560 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */ 1561 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */ 1562 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */ 1563 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */ 1564 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */ 1565 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */ 1566 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */ 1567 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */ 1568 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */ 1569 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */ 1570 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */ 1571 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */ 1572 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */ 1573 #define ASC_MC_CHIP_TYPE 0x009A 1574 #define ASC_MC_INTRB_CODE 0x009B 1575 #define ASC_MC_WDTR_ABLE 0x009C 1576 #define ASC_MC_SDTR_ABLE 0x009E 1577 #define ASC_MC_TAGQNG_ABLE 0x00A0 1578 #define ASC_MC_DISC_ENABLE 0x00A2 1579 #define ASC_MC_IDLE_CMD_STATUS 0x00A4 1580 #define ASC_MC_IDLE_CMD 0x00A6 1581 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8 1582 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC 1583 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE 1584 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0 1585 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2 1586 #define ASC_MC_SDTR_DONE 0x00B6 1587 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0 1588 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0 1589 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100 1590 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */ 1591 #define ASC_MC_WDTR_DONE 0x0124 1592 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */ 1593 #define ASC_MC_ICQ 0x0160 1594 #define ASC_MC_IRQ 0x0164 1595 #define ASC_MC_PPR_ABLE 0x017A 1596 1597 /* 1598 * BIOS LRAM variable absolute offsets. 1599 */ 1600 #define BIOS_CODESEG 0x54 1601 #define BIOS_CODELEN 0x56 1602 #define BIOS_SIGNATURE 0x58 1603 #define BIOS_VERSION 0x5A 1604 1605 /* 1606 * Microcode Control Flags 1607 * 1608 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122) 1609 * and handled by the microcode. 1610 */ 1611 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */ 1612 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */ 1613 1614 /* 1615 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format 1616 */ 1617 #define HSHK_CFG_WIDE_XFR 0x8000 1618 #define HSHK_CFG_RATE 0x0F00 1619 #define HSHK_CFG_OFFSET 0x001F 1620 1621 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */ 1622 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */ 1623 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */ 1624 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */ 1625 1626 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */ 1627 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */ 1628 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */ 1629 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */ 1630 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */ 1631 1632 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */ 1633 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */ 1634 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */ 1635 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */ 1636 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */ 1637 /* 1638 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or 1639 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used. 1640 */ 1641 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */ 1642 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */ 1643 1644 /* 1645 * All fields here are accessed by the board microcode and need to be 1646 * little-endian. 1647 */ 1648 typedef struct adv_carr_t { 1649 __le32 carr_va; /* Carrier Virtual Address */ 1650 __le32 carr_pa; /* Carrier Physical Address */ 1651 __le32 areq_vpa; /* ADV_SCSI_REQ_Q Virtual or Physical Address */ 1652 /* 1653 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer 1654 * 1655 * next_vpa [3:1] Reserved Bits 1656 * next_vpa [0] Done Flag set in Response Queue. 1657 */ 1658 __le32 next_vpa; 1659 } ADV_CARR_T; 1660 1661 /* 1662 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field. 1663 */ 1664 #define ADV_NEXT_VPA_MASK 0xFFFFFFF0 1665 1666 #define ADV_RQ_DONE 0x00000001 1667 #define ADV_RQ_GOOD 0x00000002 1668 #define ADV_CQ_STOPPER 0x00000000 1669 1670 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK) 1671 1672 /* 1673 * Each carrier is 64 bytes, and we need three additional 1674 * carrier for icq, irq, and the termination carrier. 1675 */ 1676 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3) 1677 1678 #define ADV_CARRIER_BUFSIZE \ 1679 (ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) 1680 1681 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */ 1682 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */ 1683 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */ 1684 1685 /* 1686 * Adapter temporary configuration structure 1687 * 1688 * This structure can be discarded after initialization. Don't add 1689 * fields here needed after initialization. 1690 * 1691 * Field naming convention: 1692 * 1693 * *_enable indicates the field enables or disables a feature. The 1694 * value of the field is never reset. 1695 */ 1696 typedef struct adv_dvc_cfg { 1697 ushort disc_enable; /* enable disconnection */ 1698 uchar chip_version; /* chip version */ 1699 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */ 1700 ushort control_flag; /* Microcode Control Flag */ 1701 ushort mcode_date; /* Microcode date */ 1702 ushort mcode_version; /* Microcode version */ 1703 ushort serial1; /* EEPROM serial number word 1 */ 1704 ushort serial2; /* EEPROM serial number word 2 */ 1705 ushort serial3; /* EEPROM serial number word 3 */ 1706 } ADV_DVC_CFG; 1707 1708 struct adv_dvc_var; 1709 struct adv_scsi_req_q; 1710 1711 typedef struct adv_sg_block { 1712 uchar reserved1; 1713 uchar reserved2; 1714 uchar reserved3; 1715 uchar sg_cnt; /* Valid entries in block. */ 1716 __le32 sg_ptr; /* Pointer to next sg block. */ 1717 struct { 1718 __le32 sg_addr; /* SG element address. */ 1719 __le32 sg_count; /* SG element count. */ 1720 } sg_list[NO_OF_SG_PER_BLOCK]; 1721 } ADV_SG_BLOCK; 1722 1723 /* 1724 * ADV_SCSI_REQ_Q - microcode request structure 1725 * 1726 * All fields in this structure up to byte 60 are used by the microcode. 1727 * The microcode makes assumptions about the size and ordering of fields 1728 * in this structure. Do not change the structure definition here without 1729 * coordinating the change with the microcode. 1730 * 1731 * All fields accessed by microcode must be maintained in little_endian 1732 * order. 1733 */ 1734 typedef struct adv_scsi_req_q { 1735 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */ 1736 uchar target_cmd; 1737 uchar target_id; /* Device target identifier. */ 1738 uchar target_lun; /* Device target logical unit number. */ 1739 __le32 data_addr; /* Data buffer physical address. */ 1740 __le32 data_cnt; /* Data count. Ucode sets to residual. */ 1741 __le32 sense_addr; 1742 __le32 carr_pa; 1743 uchar mflag; 1744 uchar sense_len; 1745 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */ 1746 uchar scsi_cntl; 1747 uchar done_status; /* Completion status. */ 1748 uchar scsi_status; /* SCSI status byte. */ 1749 uchar host_status; /* Ucode host status. */ 1750 uchar sg_working_ix; 1751 uchar cdb[12]; /* SCSI CDB bytes 0-11. */ 1752 __le32 sg_real_addr; /* SG list physical address. */ 1753 __le32 scsiq_rptr; 1754 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */ 1755 __le32 scsiq_ptr; 1756 __le32 carr_va; 1757 /* 1758 * End of microcode structure - 60 bytes. The rest of the structure 1759 * is used by the Adv Library and ignored by the microcode. 1760 */ 1761 u32 srb_tag; 1762 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */ 1763 } ADV_SCSI_REQ_Q; 1764 1765 /* 1766 * The following two structures are used to process Wide Board requests. 1767 * 1768 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library 1769 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the 1770 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points 1771 * to the Mid-Level SCSI request structure. 1772 * 1773 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each 1774 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux 1775 * up to 255 scatter-gather elements may be used per request or 1776 * ADV_SCSI_REQ_Q. 1777 * 1778 * Both structures must be 32 byte aligned. 1779 */ 1780 typedef struct adv_sgblk { 1781 ADV_SG_BLOCK sg_block; /* Sgblock structure. */ 1782 dma_addr_t sg_addr; /* Physical address */ 1783 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */ 1784 } adv_sgblk_t; 1785 1786 typedef struct adv_req { 1787 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */ 1788 uchar align[24]; /* Request structure padding. */ 1789 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */ 1790 dma_addr_t req_addr; 1791 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */ 1792 } adv_req_t __aligned(32); 1793 1794 /* 1795 * Adapter operation variable structure. 1796 * 1797 * One structure is required per host adapter. 1798 * 1799 * Field naming convention: 1800 * 1801 * *_able indicates both whether a feature should be enabled or disabled 1802 * and whether a device is capable of the feature. At initialization 1803 * this field may be set, but later if a device is found to be incapable 1804 * of the feature, the field is cleared. 1805 */ 1806 typedef struct adv_dvc_var { 1807 AdvPortAddr iop_base; /* I/O port address */ 1808 ushort err_code; /* fatal error code */ 1809 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */ 1810 ushort wdtr_able; /* try WDTR for a device */ 1811 ushort sdtr_able; /* try SDTR for a device */ 1812 ushort ultra_able; /* try SDTR Ultra speed for a device */ 1813 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */ 1814 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */ 1815 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */ 1816 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */ 1817 ushort tagqng_able; /* try tagged queuing with a device */ 1818 ushort ppr_able; /* PPR message capable per TID bitmask. */ 1819 uchar max_dvc_qng; /* maximum number of tagged commands per device */ 1820 ushort start_motor; /* start motor command allowed */ 1821 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */ 1822 uchar chip_no; /* should be assigned by caller */ 1823 uchar max_host_qng; /* maximum number of Q'ed command allowed */ 1824 ushort no_scam; /* scam_tolerant of EEPROM */ 1825 struct asc_board *drv_ptr; /* driver pointer to private structure */ 1826 uchar chip_scsi_id; /* chip SCSI target ID */ 1827 uchar chip_type; 1828 uchar bist_err_code; 1829 ADV_CARR_T *carrier; 1830 ADV_CARR_T *carr_freelist; /* Carrier free list. */ 1831 dma_addr_t carrier_addr; 1832 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */ 1833 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */ 1834 ushort carr_pending_cnt; /* Count of pending carriers. */ 1835 /* 1836 * Note: The following fields will not be used after initialization. The 1837 * driver may discard the buffer after initialization is done. 1838 */ 1839 ADV_DVC_CFG *cfg; /* temporary configuration structure */ 1840 } ADV_DVC_VAR; 1841 1842 /* 1843 * Microcode idle loop commands 1844 */ 1845 #define IDLE_CMD_COMPLETED 0 1846 #define IDLE_CMD_STOP_CHIP 0x0001 1847 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002 1848 #define IDLE_CMD_SEND_INT 0x0004 1849 #define IDLE_CMD_ABORT 0x0008 1850 #define IDLE_CMD_DEVICE_RESET 0x0010 1851 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */ 1852 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */ 1853 #define IDLE_CMD_SCSIREQ 0x0080 1854 1855 #define IDLE_CMD_STATUS_SUCCESS 0x0001 1856 #define IDLE_CMD_STATUS_FAILURE 0x0002 1857 1858 /* 1859 * AdvSendIdleCmd() flag definitions. 1860 */ 1861 #define ADV_NOWAIT 0x01 1862 1863 /* 1864 * Wait loop time out values. 1865 */ 1866 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */ 1867 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */ 1868 #define SCSI_MAX_RETRY 10 /* retry count */ 1869 1870 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */ 1871 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */ 1872 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */ 1873 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */ 1874 1875 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */ 1876 1877 /* Read byte from a register. */ 1878 #define AdvReadByteRegister(iop_base, reg_off) \ 1879 (ADV_MEM_READB((iop_base) + (reg_off))) 1880 1881 /* Write byte to a register. */ 1882 #define AdvWriteByteRegister(iop_base, reg_off, byte) \ 1883 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte))) 1884 1885 /* Read word (2 bytes) from a register. */ 1886 #define AdvReadWordRegister(iop_base, reg_off) \ 1887 (ADV_MEM_READW((iop_base) + (reg_off))) 1888 1889 /* Write word (2 bytes) to a register. */ 1890 #define AdvWriteWordRegister(iop_base, reg_off, word) \ 1891 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word))) 1892 1893 /* Write dword (4 bytes) to a register. */ 1894 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \ 1895 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword))) 1896 1897 /* Read byte from LRAM. */ 1898 #define AdvReadByteLram(iop_base, addr, byte) \ 1899 do { \ 1900 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ 1901 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \ 1902 } while (0) 1903 1904 /* Write byte to LRAM. */ 1905 #define AdvWriteByteLram(iop_base, addr, byte) \ 1906 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1907 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte))) 1908 1909 /* Read word (2 bytes) from LRAM. */ 1910 #define AdvReadWordLram(iop_base, addr, word) \ 1911 do { \ 1912 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ 1913 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \ 1914 } while (0) 1915 1916 /* Write word (2 bytes) to LRAM. */ 1917 #define AdvWriteWordLram(iop_base, addr, word) \ 1918 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1919 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) 1920 1921 /* Write little-endian double word (4 bytes) to LRAM */ 1922 /* Because of unspecified C language ordering don't use auto-increment. */ 1923 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \ 1924 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1925 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ 1926 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \ 1927 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \ 1928 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ 1929 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF))))) 1930 1931 /* Read word (2 bytes) from LRAM assuming that the address is already set. */ 1932 #define AdvReadWordAutoIncLram(iop_base) \ 1933 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)) 1934 1935 /* Write word (2 bytes) to LRAM assuming that the address is already set. */ 1936 #define AdvWriteWordAutoIncLram(iop_base, word) \ 1937 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) 1938 1939 /* 1940 * Define macro to check for Condor signature. 1941 * 1942 * Evaluate to ADV_TRUE if a Condor chip is found the specified port 1943 * address 'iop_base'. Otherwise evalue to ADV_FALSE. 1944 */ 1945 #define AdvFindSignature(iop_base) \ 1946 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \ 1947 ADV_CHIP_ID_BYTE) && \ 1948 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \ 1949 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE) 1950 1951 /* 1952 * Define macro to Return the version number of the chip at 'iop_base'. 1953 * 1954 * The second parameter 'bus_type' is currently unused. 1955 */ 1956 #define AdvGetChipVersion(iop_base, bus_type) \ 1957 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV) 1958 1959 /* 1960 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must 1961 * match the ADV_SCSI_REQ_Q 'srb_tag' field. 1962 * 1963 * If the request has not yet been sent to the device it will simply be 1964 * aborted from RISC memory. If the request is disconnected it will be 1965 * aborted on reselection by sending an Abort Message to the target ID. 1966 * 1967 * Return value: 1968 * ADV_TRUE(1) - Queue was successfully aborted. 1969 * ADV_FALSE(0) - Queue was not found on the active queue list. 1970 */ 1971 #define AdvAbortQueue(asc_dvc, srb_tag) \ 1972 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \ 1973 (ADV_DCNT) (srb_tag)) 1974 1975 /* 1976 * Send a Bus Device Reset Message to the specified target ID. 1977 * 1978 * All outstanding commands will be purged if sending the 1979 * Bus Device Reset Message is successful. 1980 * 1981 * Return Value: 1982 * ADV_TRUE(1) - All requests on the target are purged. 1983 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests 1984 * are not purged. 1985 */ 1986 #define AdvResetDevice(asc_dvc, target_id) \ 1987 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \ 1988 (ADV_DCNT) (target_id)) 1989 1990 /* 1991 * SCSI Wide Type definition. 1992 */ 1993 #define ADV_SCSI_BIT_ID_TYPE ushort 1994 1995 /* 1996 * AdvInitScsiTarget() 'cntl_flag' options. 1997 */ 1998 #define ADV_SCAN_LUN 0x01 1999 #define ADV_CAPINFO_NOLUN 0x02 2000 2001 /* 2002 * Convert target id to target id bit mask. 2003 */ 2004 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID)) 2005 2006 /* 2007 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values. 2008 */ 2009 2010 #define QD_NO_STATUS 0x00 /* Request not completed yet. */ 2011 #define QD_NO_ERROR 0x01 2012 #define QD_ABORTED_BY_HOST 0x02 2013 #define QD_WITH_ERROR 0x04 2014 2015 #define QHSTA_NO_ERROR 0x00 2016 #define QHSTA_M_SEL_TIMEOUT 0x11 2017 #define QHSTA_M_DATA_OVER_RUN 0x12 2018 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 2019 #define QHSTA_M_QUEUE_ABORTED 0x15 2020 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */ 2021 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */ 2022 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */ 2023 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */ 2024 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */ 2025 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */ 2026 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */ 2027 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */ 2028 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */ 2029 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */ 2030 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */ 2031 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */ 2032 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */ 2033 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */ 2034 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */ 2035 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */ 2036 #define QHSTA_M_WTM_TIMEOUT 0x41 2037 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 2038 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 2039 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 2040 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */ 2041 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */ 2042 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */ 2043 2044 /* Return the address that is aligned at the next doubleword >= to 'addr'. */ 2045 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F) 2046 2047 /* 2048 * Total contiguous memory needed for driver SG blocks. 2049 * 2050 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum 2051 * number of scatter-gather elements the driver supports in a 2052 * single request. 2053 */ 2054 2055 #define ADV_SG_LIST_MAX_BYTE_SIZE \ 2056 (sizeof(ADV_SG_BLOCK) * \ 2057 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK)) 2058 2059 /* struct asc_board flags */ 2060 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */ 2061 2062 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0) 2063 2064 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */ 2065 2066 #define ASC_INFO_SIZE 128 /* advansys_info() line size */ 2067 2068 /* Asc Library return codes */ 2069 #define ASC_TRUE 1 2070 #define ASC_FALSE 0 2071 #define ASC_NOERROR 1 2072 #define ASC_BUSY 0 2073 #define ASC_ERROR (-1) 2074 2075 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1) 2076 #ifndef ADVANSYS_STATS 2077 #define ASC_STATS_ADD(shost, counter, count) 2078 #else /* ADVANSYS_STATS */ 2079 #define ASC_STATS_ADD(shost, counter, count) \ 2080 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count)) 2081 #endif /* ADVANSYS_STATS */ 2082 2083 /* If the result wraps when calculating tenths, return 0. */ 2084 #define ASC_TENTHS(num, den) \ 2085 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \ 2086 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den))))) 2087 2088 /* 2089 * Display a message to the console. 2090 */ 2091 #define ASC_PRINT(s) \ 2092 { \ 2093 printk("advansys: "); \ 2094 printk(s); \ 2095 } 2096 2097 #define ASC_PRINT1(s, a1) \ 2098 { \ 2099 printk("advansys: "); \ 2100 printk((s), (a1)); \ 2101 } 2102 2103 #define ASC_PRINT2(s, a1, a2) \ 2104 { \ 2105 printk("advansys: "); \ 2106 printk((s), (a1), (a2)); \ 2107 } 2108 2109 #define ASC_PRINT3(s, a1, a2, a3) \ 2110 { \ 2111 printk("advansys: "); \ 2112 printk((s), (a1), (a2), (a3)); \ 2113 } 2114 2115 #define ASC_PRINT4(s, a1, a2, a3, a4) \ 2116 { \ 2117 printk("advansys: "); \ 2118 printk((s), (a1), (a2), (a3), (a4)); \ 2119 } 2120 2121 #ifndef ADVANSYS_DEBUG 2122 2123 #define ASC_DBG(lvl, s...) 2124 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) 2125 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) 2126 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) 2127 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) 2128 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) 2129 #define ASC_DBG_PRT_HEX(lvl, name, start, length) 2130 #define ASC_DBG_PRT_CDB(lvl, cdb, len) 2131 #define ASC_DBG_PRT_SENSE(lvl, sense, len) 2132 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) 2133 2134 #else /* ADVANSYS_DEBUG */ 2135 2136 /* 2137 * Debugging Message Levels: 2138 * 0: Errors Only 2139 * 1: High-Level Tracing 2140 * 2-N: Verbose Tracing 2141 */ 2142 2143 #define ASC_DBG(lvl, format, arg...) { \ 2144 if (asc_dbglvl >= (lvl)) \ 2145 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \ 2146 __func__ , ## arg); \ 2147 } 2148 2149 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \ 2150 { \ 2151 if (asc_dbglvl >= (lvl)) { \ 2152 asc_prt_scsi_host(s); \ 2153 } \ 2154 } 2155 2156 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \ 2157 { \ 2158 if (asc_dbglvl >= (lvl)) { \ 2159 asc_prt_asc_scsi_q(scsiqp); \ 2160 } \ 2161 } 2162 2163 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \ 2164 { \ 2165 if (asc_dbglvl >= (lvl)) { \ 2166 asc_prt_asc_qdone_info(qdone); \ 2167 } \ 2168 } 2169 2170 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \ 2171 { \ 2172 if (asc_dbglvl >= (lvl)) { \ 2173 asc_prt_adv_scsi_req_q(scsiqp); \ 2174 } \ 2175 } 2176 2177 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \ 2178 { \ 2179 if (asc_dbglvl >= (lvl)) { \ 2180 asc_prt_hex((name), (start), (length)); \ 2181 } \ 2182 } 2183 2184 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \ 2185 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len)); 2186 2187 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \ 2188 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len)); 2189 2190 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \ 2191 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len)); 2192 #endif /* ADVANSYS_DEBUG */ 2193 2194 #ifdef ADVANSYS_STATS 2195 2196 /* Per board statistics structure */ 2197 struct asc_stats { 2198 /* Driver Entrypoint Statistics */ 2199 unsigned int queuecommand; /* # calls to advansys_queuecommand() */ 2200 unsigned int reset; /* # calls to advansys_eh_bus_reset() */ 2201 unsigned int biosparam; /* # calls to advansys_biosparam() */ 2202 unsigned int interrupt; /* # advansys_interrupt() calls */ 2203 unsigned int callback; /* # calls to asc/adv_isr_callback() */ 2204 unsigned int done; /* # calls to request's scsi_done function */ 2205 unsigned int build_error; /* # asc/adv_build_req() ASC_ERROR returns. */ 2206 unsigned int adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */ 2207 unsigned int adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */ 2208 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */ 2209 unsigned int exe_noerror; /* # ASC_NOERROR returns. */ 2210 unsigned int exe_busy; /* # ASC_BUSY returns. */ 2211 unsigned int exe_error; /* # ASC_ERROR returns. */ 2212 unsigned int exe_unknown; /* # unknown returns. */ 2213 /* Data Transfer Statistics */ 2214 unsigned int xfer_cnt; /* # I/O requests received */ 2215 unsigned int xfer_elem; /* # scatter-gather elements */ 2216 unsigned int xfer_sect; /* # 512-byte blocks */ 2217 }; 2218 #endif /* ADVANSYS_STATS */ 2219 2220 /* 2221 * Structure allocated for each board. 2222 * 2223 * This structure is allocated by scsi_host_alloc() at the end 2224 * of the 'Scsi_Host' structure starting at the 'hostdata' 2225 * field. It is guaranteed to be allocated from DMA-able memory. 2226 */ 2227 struct asc_board { 2228 struct device *dev; 2229 struct Scsi_Host *shost; 2230 uint flags; /* Board flags */ 2231 unsigned int irq; 2232 union { 2233 ASC_DVC_VAR asc_dvc_var; /* Narrow board */ 2234 ADV_DVC_VAR adv_dvc_var; /* Wide board */ 2235 } dvc_var; 2236 union { 2237 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */ 2238 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */ 2239 } dvc_cfg; 2240 ushort asc_n_io_port; /* Number I/O ports. */ 2241 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */ 2242 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */ 2243 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */ 2244 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */ 2245 union { 2246 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */ 2247 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */ 2248 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */ 2249 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */ 2250 } eep_config; 2251 /* /proc/scsi/advansys/[0...] */ 2252 #ifdef ADVANSYS_STATS 2253 struct asc_stats asc_stats; /* Board statistics */ 2254 #endif /* ADVANSYS_STATS */ 2255 /* 2256 * The following fields are used only for Narrow Boards. 2257 */ 2258 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */ 2259 /* 2260 * The following fields are used only for Wide Boards. 2261 */ 2262 void __iomem *ioremap_addr; /* I/O Memory remap address. */ 2263 ushort ioport; /* I/O Port address. */ 2264 adv_req_t *adv_reqp; /* Request structures. */ 2265 dma_addr_t adv_reqp_addr; 2266 size_t adv_reqp_size; 2267 struct dma_pool *adv_sgblk_pool; /* Scatter-gather structures. */ 2268 ushort bios_signature; /* BIOS Signature. */ 2269 ushort bios_version; /* BIOS Version. */ 2270 ushort bios_codeseg; /* BIOS Code Segment. */ 2271 ushort bios_codelen; /* BIOS Code Segment Length. */ 2272 }; 2273 2274 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \ 2275 dvc_var.asc_dvc_var) 2276 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \ 2277 dvc_var.adv_dvc_var) 2278 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev) 2279 2280 struct advansys_cmd { 2281 dma_addr_t dma_handle; 2282 }; 2283 2284 static struct advansys_cmd *advansys_cmd(struct scsi_cmnd *cmd) 2285 { 2286 return scsi_cmd_priv(cmd); 2287 } 2288 2289 #ifdef ADVANSYS_DEBUG 2290 static int asc_dbglvl = 3; 2291 2292 /* 2293 * asc_prt_asc_dvc_var() 2294 */ 2295 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h) 2296 { 2297 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h); 2298 2299 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl " 2300 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl); 2301 2302 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type, 2303 (unsigned)h->init_sdtr); 2304 2305 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, " 2306 "chip_no 0x%x,\n", (unsigned)h->sdtr_done, 2307 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready, 2308 (unsigned)h->chip_no); 2309 2310 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait " 2311 "%u,\n", (unsigned)h->queue_full_or_busy, 2312 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); 2313 2314 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, " 2315 "in_critical_cnt %u,\n", (unsigned)h->is_in_int, 2316 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng, 2317 (unsigned)h->in_critical_cnt); 2318 2319 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, " 2320 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage, 2321 (unsigned)h->init_state, (unsigned)h->no_scam, 2322 (unsigned)h->pci_fix_asyn_xfer); 2323 2324 printk(" cfg 0x%lx\n", (ulong)h->cfg); 2325 } 2326 2327 /* 2328 * asc_prt_asc_dvc_cfg() 2329 */ 2330 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h) 2331 { 2332 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h); 2333 2334 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n", 2335 h->can_tagged_qng, h->cmd_qng_enabled); 2336 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n", 2337 h->disc_enable, h->sdtr_enable); 2338 2339 printk(" chip_scsi_id %d, chip_version %d,\n", 2340 h->chip_scsi_id, h->chip_version); 2341 2342 printk(" mcode_date 0x%x, mcode_version %d\n", 2343 h->mcode_date, h->mcode_version); 2344 } 2345 2346 /* 2347 * asc_prt_adv_dvc_var() 2348 * 2349 * Display an ADV_DVC_VAR structure. 2350 */ 2351 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h) 2352 { 2353 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h); 2354 2355 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n", 2356 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able); 2357 2358 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n", 2359 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able); 2360 2361 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n", 2362 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); 2363 2364 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n", 2365 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng, 2366 h->carr_freelist); 2367 2368 printk(" icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp); 2369 2370 printk(" no_scam 0x%x, tagqng_able 0x%x\n", 2371 (unsigned)h->no_scam, (unsigned)h->tagqng_able); 2372 2373 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n", 2374 (unsigned)h->chip_scsi_id, (ulong)h->cfg); 2375 } 2376 2377 /* 2378 * asc_prt_adv_dvc_cfg() 2379 * 2380 * Display an ADV_DVC_CFG structure. 2381 */ 2382 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h) 2383 { 2384 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h); 2385 2386 printk(" disc_enable 0x%x, termination 0x%x\n", 2387 h->disc_enable, h->termination); 2388 2389 printk(" chip_version 0x%x, mcode_date 0x%x\n", 2390 h->chip_version, h->mcode_date); 2391 2392 printk(" mcode_version 0x%x, control_flag 0x%x\n", 2393 h->mcode_version, h->control_flag); 2394 } 2395 2396 /* 2397 * asc_prt_scsi_host() 2398 */ 2399 static void asc_prt_scsi_host(struct Scsi_Host *s) 2400 { 2401 struct asc_board *boardp = shost_priv(s); 2402 2403 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev)); 2404 printk(" host_no %d,\n", s->host_no); 2405 2406 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n", 2407 (ulong)s->base, (ulong)s->io_port, boardp->irq); 2408 2409 printk(" dma_channel %d, this_id %d, can_queue %d,\n", 2410 s->dma_channel, s->this_id, s->can_queue); 2411 2412 printk(" cmd_per_lun %d, sg_tablesize %d\n", 2413 s->cmd_per_lun, s->sg_tablesize); 2414 2415 if (ASC_NARROW_BOARD(boardp)) { 2416 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var); 2417 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg); 2418 } else { 2419 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var); 2420 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg); 2421 } 2422 } 2423 2424 /* 2425 * asc_prt_hex() 2426 * 2427 * Print hexadecimal output in 4 byte groupings 32 bytes 2428 * or 8 double-words per line. 2429 */ 2430 static void asc_prt_hex(char *f, uchar *s, int l) 2431 { 2432 int i; 2433 int j; 2434 int k; 2435 int m; 2436 2437 printk("%s: (%d bytes)\n", f, l); 2438 2439 for (i = 0; i < l; i += 32) { 2440 2441 /* Display a maximum of 8 double-words per line. */ 2442 if ((k = (l - i) / 4) >= 8) { 2443 k = 8; 2444 m = 0; 2445 } else { 2446 m = (l - i) % 4; 2447 } 2448 2449 for (j = 0; j < k; j++) { 2450 printk(" %2.2X%2.2X%2.2X%2.2X", 2451 (unsigned)s[i + (j * 4)], 2452 (unsigned)s[i + (j * 4) + 1], 2453 (unsigned)s[i + (j * 4) + 2], 2454 (unsigned)s[i + (j * 4) + 3]); 2455 } 2456 2457 switch (m) { 2458 case 0: 2459 default: 2460 break; 2461 case 1: 2462 printk(" %2.2X", (unsigned)s[i + (j * 4)]); 2463 break; 2464 case 2: 2465 printk(" %2.2X%2.2X", 2466 (unsigned)s[i + (j * 4)], 2467 (unsigned)s[i + (j * 4) + 1]); 2468 break; 2469 case 3: 2470 printk(" %2.2X%2.2X%2.2X", 2471 (unsigned)s[i + (j * 4) + 1], 2472 (unsigned)s[i + (j * 4) + 2], 2473 (unsigned)s[i + (j * 4) + 3]); 2474 break; 2475 } 2476 2477 printk("\n"); 2478 } 2479 } 2480 2481 /* 2482 * asc_prt_asc_scsi_q() 2483 */ 2484 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q) 2485 { 2486 ASC_SG_HEAD *sgp; 2487 int i; 2488 2489 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q); 2490 2491 printk 2492 (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n", 2493 q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag, 2494 q->q2.tag_code); 2495 2496 printk 2497 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", 2498 (ulong)le32_to_cpu(q->q1.data_addr), 2499 (ulong)le32_to_cpu(q->q1.data_cnt), 2500 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len); 2501 2502 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n", 2503 (ulong)q->cdbptr, q->q2.cdb_len, 2504 (ulong)q->sg_head, q->q1.sg_queue_cnt); 2505 2506 if (q->sg_head) { 2507 sgp = q->sg_head; 2508 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp); 2509 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt, 2510 sgp->queue_cnt); 2511 for (i = 0; i < sgp->entry_cnt; i++) { 2512 printk(" [%u]: addr 0x%lx, bytes %lu\n", 2513 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr), 2514 (ulong)le32_to_cpu(sgp->sg_list[i].bytes)); 2515 } 2516 2517 } 2518 } 2519 2520 /* 2521 * asc_prt_asc_qdone_info() 2522 */ 2523 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q) 2524 { 2525 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q); 2526 printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n", 2527 q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len, 2528 q->d2.tag_code); 2529 printk 2530 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n", 2531 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg); 2532 } 2533 2534 /* 2535 * asc_prt_adv_sgblock() 2536 * 2537 * Display an ADV_SG_BLOCK structure. 2538 */ 2539 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b) 2540 { 2541 int i; 2542 2543 printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n", 2544 (ulong)b, sgblockno); 2545 printk(" sg_cnt %u, sg_ptr 0x%x\n", 2546 b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr)); 2547 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK); 2548 if (b->sg_ptr != 0) 2549 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK); 2550 for (i = 0; i < b->sg_cnt; i++) { 2551 printk(" [%u]: sg_addr 0x%x, sg_count 0x%x\n", 2552 i, (u32)le32_to_cpu(b->sg_list[i].sg_addr), 2553 (u32)le32_to_cpu(b->sg_list[i].sg_count)); 2554 } 2555 } 2556 2557 /* 2558 * asc_prt_adv_scsi_req_q() 2559 * 2560 * Display an ADV_SCSI_REQ_Q structure. 2561 */ 2562 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q) 2563 { 2564 int sg_blk_cnt; 2565 struct adv_sg_block *sg_ptr; 2566 adv_sgblk_t *sgblkp; 2567 2568 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q); 2569 2570 printk(" target_id %u, target_lun %u, srb_tag 0x%x\n", 2571 q->target_id, q->target_lun, q->srb_tag); 2572 2573 printk(" cntl 0x%x, data_addr 0x%lx\n", 2574 q->cntl, (ulong)le32_to_cpu(q->data_addr)); 2575 2576 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", 2577 (ulong)le32_to_cpu(q->data_cnt), 2578 (ulong)le32_to_cpu(q->sense_addr), q->sense_len); 2579 2580 printk 2581 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n", 2582 q->cdb_len, q->done_status, q->host_status, q->scsi_status); 2583 2584 printk(" sg_working_ix 0x%x, target_cmd %u\n", 2585 q->sg_working_ix, q->target_cmd); 2586 2587 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n", 2588 (ulong)le32_to_cpu(q->scsiq_rptr), 2589 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr); 2590 2591 /* Display the request's ADV_SG_BLOCK structures. */ 2592 if (q->sg_list_ptr != NULL) { 2593 sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block); 2594 sg_blk_cnt = 0; 2595 while (sgblkp) { 2596 sg_ptr = &sgblkp->sg_block; 2597 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr); 2598 if (sg_ptr->sg_ptr == 0) { 2599 break; 2600 } 2601 sgblkp = sgblkp->next_sgblkp; 2602 sg_blk_cnt++; 2603 } 2604 } 2605 } 2606 #endif /* ADVANSYS_DEBUG */ 2607 2608 /* 2609 * advansys_info() 2610 * 2611 * Return suitable for printing on the console with the argument 2612 * adapter's configuration information. 2613 * 2614 * Note: The information line should not exceed ASC_INFO_SIZE bytes, 2615 * otherwise the static 'info' array will be overrun. 2616 */ 2617 static const char *advansys_info(struct Scsi_Host *shost) 2618 { 2619 static char info[ASC_INFO_SIZE]; 2620 struct asc_board *boardp = shost_priv(shost); 2621 ASC_DVC_VAR *asc_dvc_varp; 2622 ADV_DVC_VAR *adv_dvc_varp; 2623 char *busname; 2624 char *widename = NULL; 2625 2626 if (ASC_NARROW_BOARD(boardp)) { 2627 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 2628 ASC_DBG(1, "begin\n"); 2629 2630 if (asc_dvc_varp->bus_type & ASC_IS_VL) { 2631 busname = "VL"; 2632 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) { 2633 busname = "EISA"; 2634 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) { 2635 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA) 2636 == ASC_IS_PCI_ULTRA) { 2637 busname = "PCI Ultra"; 2638 } else { 2639 busname = "PCI"; 2640 } 2641 } else { 2642 busname = "?"; 2643 shost_printk(KERN_ERR, shost, "unknown bus " 2644 "type %d\n", asc_dvc_varp->bus_type); 2645 } 2646 sprintf(info, 2647 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X", 2648 ASC_VERSION, busname, (ulong)shost->io_port, 2649 (ulong)shost->io_port + ASC_IOADR_GAP - 1, 2650 boardp->irq); 2651 } else { 2652 /* 2653 * Wide Adapter Information 2654 * 2655 * Memory-mapped I/O is used instead of I/O space to access 2656 * the adapter, but display the I/O Port range. The Memory 2657 * I/O address is displayed through the driver /proc file. 2658 */ 2659 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 2660 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2661 widename = "Ultra-Wide"; 2662 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2663 widename = "Ultra2-Wide"; 2664 } else { 2665 widename = "Ultra3-Wide"; 2666 } 2667 sprintf(info, 2668 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X", 2669 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base, 2670 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq); 2671 } 2672 BUG_ON(strlen(info) >= ASC_INFO_SIZE); 2673 ASC_DBG(1, "end\n"); 2674 return info; 2675 } 2676 2677 #ifdef CONFIG_PROC_FS 2678 2679 /* 2680 * asc_prt_board_devices() 2681 * 2682 * Print driver information for devices attached to the board. 2683 */ 2684 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost) 2685 { 2686 struct asc_board *boardp = shost_priv(shost); 2687 int chip_scsi_id; 2688 int i; 2689 2690 seq_printf(m, 2691 "\nDevice Information for AdvanSys SCSI Host %d:\n", 2692 shost->host_no); 2693 2694 if (ASC_NARROW_BOARD(boardp)) { 2695 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; 2696 } else { 2697 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; 2698 } 2699 2700 seq_puts(m, "Target IDs Detected:"); 2701 for (i = 0; i <= ADV_MAX_TID; i++) { 2702 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) 2703 seq_printf(m, " %X,", i); 2704 } 2705 seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id); 2706 } 2707 2708 /* 2709 * Display Wide Board BIOS Information. 2710 */ 2711 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost) 2712 { 2713 struct asc_board *boardp = shost_priv(shost); 2714 ushort major, minor, letter; 2715 2716 seq_puts(m, "\nROM BIOS Version: "); 2717 2718 /* 2719 * If the BIOS saved a valid signature, then fill in 2720 * the BIOS code segment base address. 2721 */ 2722 if (boardp->bios_signature != 0x55AA) { 2723 seq_puts(m, "Disabled or Pre-3.1\n" 2724 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n" 2725 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n"); 2726 } else { 2727 major = (boardp->bios_version >> 12) & 0xF; 2728 minor = (boardp->bios_version >> 8) & 0xF; 2729 letter = (boardp->bios_version & 0xFF); 2730 2731 seq_printf(m, "%d.%d%c\n", 2732 major, minor, 2733 letter >= 26 ? '?' : letter + 'A'); 2734 /* 2735 * Current available ROM BIOS release is 3.1I for UW 2736 * and 3.2I for U2W. This code doesn't differentiate 2737 * UW and U2W boards. 2738 */ 2739 if (major < 3 || (major <= 3 && minor < 1) || 2740 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) { 2741 seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n" 2742 "ftp://ftp.connectcom.net/pub\n"); 2743 } 2744 } 2745 } 2746 2747 /* 2748 * Add serial number to information bar if signature AAh 2749 * is found in at bit 15-9 (7 bits) of word 1. 2750 * 2751 * Serial Number consists fo 12 alpha-numeric digits. 2752 * 2753 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits) 2754 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits) 2755 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits) 2756 * 5 - Product revision (A-J) Word0: " " 2757 * 2758 * Signature Word1: 15-9 (7 bits) 2759 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit) 2760 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits) 2761 * 2762 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits) 2763 * 2764 * Note 1: Only production cards will have a serial number. 2765 * 2766 * Note 2: Signature is most significant 7 bits (0xFE). 2767 * 2768 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE. 2769 */ 2770 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp) 2771 { 2772 ushort w, num; 2773 2774 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) { 2775 return ASC_FALSE; 2776 } else { 2777 /* 2778 * First word - 6 digits. 2779 */ 2780 w = serialnum[0]; 2781 2782 /* Product type - 1st digit. */ 2783 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') { 2784 /* Product type is P=Prototype */ 2785 *cp += 0x8; 2786 } 2787 cp++; 2788 2789 /* Manufacturing location - 2nd digit. */ 2790 *cp++ = 'A' + ((w & 0x1C00) >> 10); 2791 2792 /* Product ID - 3rd, 4th digits. */ 2793 num = w & 0x3FF; 2794 *cp++ = '0' + (num / 100); 2795 num %= 100; 2796 *cp++ = '0' + (num / 10); 2797 2798 /* Product revision - 5th digit. */ 2799 *cp++ = 'A' + (num % 10); 2800 2801 /* 2802 * Second word 2803 */ 2804 w = serialnum[1]; 2805 2806 /* 2807 * Year - 6th digit. 2808 * 2809 * If bit 15 of third word is set, then the 2810 * last digit of the year is greater than 7. 2811 */ 2812 if (serialnum[2] & 0x8000) { 2813 *cp++ = '8' + ((w & 0x1C0) >> 6); 2814 } else { 2815 *cp++ = '0' + ((w & 0x1C0) >> 6); 2816 } 2817 2818 /* Week of year - 7th, 8th digits. */ 2819 num = w & 0x003F; 2820 *cp++ = '0' + num / 10; 2821 num %= 10; 2822 *cp++ = '0' + num; 2823 2824 /* 2825 * Third word 2826 */ 2827 w = serialnum[2] & 0x7FFF; 2828 2829 /* Serial number - 9th digit. */ 2830 *cp++ = 'A' + (w / 1000); 2831 2832 /* 10th, 11th, 12th digits. */ 2833 num = w % 1000; 2834 *cp++ = '0' + num / 100; 2835 num %= 100; 2836 *cp++ = '0' + num / 10; 2837 num %= 10; 2838 *cp++ = '0' + num; 2839 2840 *cp = '\0'; /* Null Terminate the string. */ 2841 return ASC_TRUE; 2842 } 2843 } 2844 2845 /* 2846 * asc_prt_asc_board_eeprom() 2847 * 2848 * Print board EEPROM configuration. 2849 */ 2850 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) 2851 { 2852 struct asc_board *boardp = shost_priv(shost); 2853 ASCEEP_CONFIG *ep; 2854 int i; 2855 uchar serialstr[13]; 2856 2857 ep = &boardp->eep_config.asc_eep; 2858 2859 seq_printf(m, 2860 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", 2861 shost->host_no); 2862 2863 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr) 2864 == ASC_TRUE) 2865 seq_printf(m, " Serial Number: %s\n", serialstr); 2866 else if (ep->adapter_info[5] == 0xBB) 2867 seq_puts(m, 2868 " Default Settings Used for EEPROM-less Adapter.\n"); 2869 else 2870 seq_puts(m, " Serial Number Signature Not Present.\n"); 2871 2872 seq_printf(m, 2873 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2874 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng, 2875 ep->max_tag_qng); 2876 2877 seq_printf(m, 2878 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam); 2879 2880 seq_puts(m, " Target ID: "); 2881 for (i = 0; i <= ASC_MAX_TID; i++) 2882 seq_printf(m, " %d", i); 2883 2884 seq_puts(m, "\n Disconnects: "); 2885 for (i = 0; i <= ASC_MAX_TID; i++) 2886 seq_printf(m, " %c", 2887 (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2888 2889 seq_puts(m, "\n Command Queuing: "); 2890 for (i = 0; i <= ASC_MAX_TID; i++) 2891 seq_printf(m, " %c", 2892 (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2893 2894 seq_puts(m, "\n Start Motor: "); 2895 for (i = 0; i <= ASC_MAX_TID; i++) 2896 seq_printf(m, " %c", 2897 (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2898 2899 seq_puts(m, "\n Synchronous Transfer:"); 2900 for (i = 0; i <= ASC_MAX_TID; i++) 2901 seq_printf(m, " %c", 2902 (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2903 seq_putc(m, '\n'); 2904 } 2905 2906 /* 2907 * asc_prt_adv_board_eeprom() 2908 * 2909 * Print board EEPROM configuration. 2910 */ 2911 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) 2912 { 2913 struct asc_board *boardp = shost_priv(shost); 2914 ADV_DVC_VAR *adv_dvc_varp; 2915 int i; 2916 char *termstr; 2917 uchar serialstr[13]; 2918 ADVEEP_3550_CONFIG *ep_3550 = NULL; 2919 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL; 2920 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL; 2921 ushort word; 2922 ushort *wordp; 2923 ushort sdtr_speed = 0; 2924 2925 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 2926 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2927 ep_3550 = &boardp->eep_config.adv_3550_eep; 2928 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2929 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; 2930 } else { 2931 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; 2932 } 2933 2934 seq_printf(m, 2935 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", 2936 shost->host_no); 2937 2938 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2939 wordp = &ep_3550->serial_number_word1; 2940 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2941 wordp = &ep_38C0800->serial_number_word1; 2942 } else { 2943 wordp = &ep_38C1600->serial_number_word1; 2944 } 2945 2946 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) 2947 seq_printf(m, " Serial Number: %s\n", serialstr); 2948 else 2949 seq_puts(m, " Serial Number Signature Not Present.\n"); 2950 2951 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) 2952 seq_printf(m, 2953 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2954 ep_3550->adapter_scsi_id, 2955 ep_3550->max_host_qng, ep_3550->max_dvc_qng); 2956 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) 2957 seq_printf(m, 2958 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2959 ep_38C0800->adapter_scsi_id, 2960 ep_38C0800->max_host_qng, 2961 ep_38C0800->max_dvc_qng); 2962 else 2963 seq_printf(m, 2964 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2965 ep_38C1600->adapter_scsi_id, 2966 ep_38C1600->max_host_qng, 2967 ep_38C1600->max_dvc_qng); 2968 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2969 word = ep_3550->termination; 2970 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2971 word = ep_38C0800->termination_lvd; 2972 } else { 2973 word = ep_38C1600->termination_lvd; 2974 } 2975 switch (word) { 2976 case 1: 2977 termstr = "Low Off/High Off"; 2978 break; 2979 case 2: 2980 termstr = "Low Off/High On"; 2981 break; 2982 case 3: 2983 termstr = "Low On/High On"; 2984 break; 2985 default: 2986 case 0: 2987 termstr = "Automatic"; 2988 break; 2989 } 2990 2991 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) 2992 seq_printf(m, 2993 " termination: %u (%s), bios_ctrl: 0x%x\n", 2994 ep_3550->termination, termstr, 2995 ep_3550->bios_ctrl); 2996 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) 2997 seq_printf(m, 2998 " termination: %u (%s), bios_ctrl: 0x%x\n", 2999 ep_38C0800->termination_lvd, termstr, 3000 ep_38C0800->bios_ctrl); 3001 else 3002 seq_printf(m, 3003 " termination: %u (%s), bios_ctrl: 0x%x\n", 3004 ep_38C1600->termination_lvd, termstr, 3005 ep_38C1600->bios_ctrl); 3006 3007 seq_puts(m, " Target ID: "); 3008 for (i = 0; i <= ADV_MAX_TID; i++) 3009 seq_printf(m, " %X", i); 3010 seq_putc(m, '\n'); 3011 3012 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3013 word = ep_3550->disc_enable; 3014 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3015 word = ep_38C0800->disc_enable; 3016 } else { 3017 word = ep_38C1600->disc_enable; 3018 } 3019 seq_puts(m, " Disconnects: "); 3020 for (i = 0; i <= ADV_MAX_TID; i++) 3021 seq_printf(m, " %c", 3022 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3023 seq_putc(m, '\n'); 3024 3025 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3026 word = ep_3550->tagqng_able; 3027 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3028 word = ep_38C0800->tagqng_able; 3029 } else { 3030 word = ep_38C1600->tagqng_able; 3031 } 3032 seq_puts(m, " Command Queuing: "); 3033 for (i = 0; i <= ADV_MAX_TID; i++) 3034 seq_printf(m, " %c", 3035 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3036 seq_putc(m, '\n'); 3037 3038 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3039 word = ep_3550->start_motor; 3040 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3041 word = ep_38C0800->start_motor; 3042 } else { 3043 word = ep_38C1600->start_motor; 3044 } 3045 seq_puts(m, " Start Motor: "); 3046 for (i = 0; i <= ADV_MAX_TID; i++) 3047 seq_printf(m, " %c", 3048 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3049 seq_putc(m, '\n'); 3050 3051 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3052 seq_puts(m, " Synchronous Transfer:"); 3053 for (i = 0; i <= ADV_MAX_TID; i++) 3054 seq_printf(m, " %c", 3055 (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 3056 'Y' : 'N'); 3057 seq_putc(m, '\n'); 3058 } 3059 3060 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3061 seq_puts(m, " Ultra Transfer: "); 3062 for (i = 0; i <= ADV_MAX_TID; i++) 3063 seq_printf(m, " %c", 3064 (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i)) 3065 ? 'Y' : 'N'); 3066 seq_putc(m, '\n'); 3067 } 3068 3069 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3070 word = ep_3550->wdtr_able; 3071 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3072 word = ep_38C0800->wdtr_able; 3073 } else { 3074 word = ep_38C1600->wdtr_able; 3075 } 3076 seq_puts(m, " Wide Transfer: "); 3077 for (i = 0; i <= ADV_MAX_TID; i++) 3078 seq_printf(m, " %c", 3079 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3080 seq_putc(m, '\n'); 3081 3082 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 || 3083 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) { 3084 seq_puts(m, " Synchronous Transfer Speed (Mhz):\n "); 3085 for (i = 0; i <= ADV_MAX_TID; i++) { 3086 char *speed_str; 3087 3088 if (i == 0) { 3089 sdtr_speed = adv_dvc_varp->sdtr_speed1; 3090 } else if (i == 4) { 3091 sdtr_speed = adv_dvc_varp->sdtr_speed2; 3092 } else if (i == 8) { 3093 sdtr_speed = adv_dvc_varp->sdtr_speed3; 3094 } else if (i == 12) { 3095 sdtr_speed = adv_dvc_varp->sdtr_speed4; 3096 } 3097 switch (sdtr_speed & ADV_MAX_TID) { 3098 case 0: 3099 speed_str = "Off"; 3100 break; 3101 case 1: 3102 speed_str = " 5"; 3103 break; 3104 case 2: 3105 speed_str = " 10"; 3106 break; 3107 case 3: 3108 speed_str = " 20"; 3109 break; 3110 case 4: 3111 speed_str = " 40"; 3112 break; 3113 case 5: 3114 speed_str = " 80"; 3115 break; 3116 default: 3117 speed_str = "Unk"; 3118 break; 3119 } 3120 seq_printf(m, "%X:%s ", i, speed_str); 3121 if (i == 7) 3122 seq_puts(m, "\n "); 3123 sdtr_speed >>= 4; 3124 } 3125 seq_putc(m, '\n'); 3126 } 3127 } 3128 3129 /* 3130 * asc_prt_driver_conf() 3131 */ 3132 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost) 3133 { 3134 struct asc_board *boardp = shost_priv(shost); 3135 3136 seq_printf(m, 3137 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n", 3138 shost->host_no); 3139 3140 seq_printf(m, 3141 " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n", 3142 scsi_host_busy(shost), shost->max_id, 3143 shost->max_lun, shost->max_channel); 3144 3145 seq_printf(m, 3146 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n", 3147 shost->unique_id, shost->can_queue, shost->this_id, 3148 shost->sg_tablesize, shost->cmd_per_lun); 3149 3150 seq_printf(m, 3151 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n", 3152 boardp->flags, shost->last_reset, jiffies, 3153 boardp->asc_n_io_port); 3154 3155 seq_printf(m, " io_port 0x%lx\n", shost->io_port); 3156 } 3157 3158 /* 3159 * asc_prt_asc_board_info() 3160 * 3161 * Print dynamic board configuration information. 3162 */ 3163 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost) 3164 { 3165 struct asc_board *boardp = shost_priv(shost); 3166 int chip_scsi_id; 3167 ASC_DVC_VAR *v; 3168 ASC_DVC_CFG *c; 3169 int i; 3170 int renegotiate = 0; 3171 3172 v = &boardp->dvc_var.asc_dvc_var; 3173 c = &boardp->dvc_cfg.asc_dvc_cfg; 3174 chip_scsi_id = c->chip_scsi_id; 3175 3176 seq_printf(m, 3177 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", 3178 shost->host_no); 3179 3180 seq_printf(m, " chip_version %u, mcode_date 0x%x, " 3181 "mcode_version 0x%x, err_code %u\n", 3182 c->chip_version, c->mcode_date, c->mcode_version, 3183 v->err_code); 3184 3185 /* Current number of commands waiting for the host. */ 3186 seq_printf(m, 3187 " Total Command Pending: %d\n", v->cur_total_qng); 3188 3189 seq_puts(m, " Command Queuing:"); 3190 for (i = 0; i <= ASC_MAX_TID; i++) { 3191 if ((chip_scsi_id == i) || 3192 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3193 continue; 3194 } 3195 seq_printf(m, " %X:%c", 3196 i, 3197 (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3198 } 3199 3200 /* Current number of commands waiting for a device. */ 3201 seq_puts(m, "\n Command Queue Pending:"); 3202 for (i = 0; i <= ASC_MAX_TID; i++) { 3203 if ((chip_scsi_id == i) || 3204 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3205 continue; 3206 } 3207 seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]); 3208 } 3209 3210 /* Current limit on number of commands that can be sent to a device. */ 3211 seq_puts(m, "\n Command Queue Limit:"); 3212 for (i = 0; i <= ASC_MAX_TID; i++) { 3213 if ((chip_scsi_id == i) || 3214 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3215 continue; 3216 } 3217 seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]); 3218 } 3219 3220 /* Indicate whether the device has returned queue full status. */ 3221 seq_puts(m, "\n Command Queue Full:"); 3222 for (i = 0; i <= ASC_MAX_TID; i++) { 3223 if ((chip_scsi_id == i) || 3224 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3225 continue; 3226 } 3227 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) 3228 seq_printf(m, " %X:Y-%d", 3229 i, boardp->queue_full_cnt[i]); 3230 else 3231 seq_printf(m, " %X:N", i); 3232 } 3233 3234 seq_puts(m, "\n Synchronous Transfer:"); 3235 for (i = 0; i <= ASC_MAX_TID; i++) { 3236 if ((chip_scsi_id == i) || 3237 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3238 continue; 3239 } 3240 seq_printf(m, " %X:%c", 3241 i, 3242 (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3243 } 3244 seq_putc(m, '\n'); 3245 3246 for (i = 0; i <= ASC_MAX_TID; i++) { 3247 uchar syn_period_ix; 3248 3249 if ((chip_scsi_id == i) || 3250 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || 3251 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) { 3252 continue; 3253 } 3254 3255 seq_printf(m, " %X:", i); 3256 3257 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) { 3258 seq_puts(m, " Asynchronous"); 3259 } else { 3260 syn_period_ix = 3261 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index - 3262 1); 3263 3264 seq_printf(m, 3265 " Transfer Period Factor: %d (%d.%d Mhz),", 3266 v->sdtr_period_tbl[syn_period_ix], 3267 250 / v->sdtr_period_tbl[syn_period_ix], 3268 ASC_TENTHS(250, 3269 v->sdtr_period_tbl[syn_period_ix])); 3270 3271 seq_printf(m, " REQ/ACK Offset: %d", 3272 boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET); 3273 } 3274 3275 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3276 seq_puts(m, "*\n"); 3277 renegotiate = 1; 3278 } else { 3279 seq_putc(m, '\n'); 3280 } 3281 } 3282 3283 if (renegotiate) { 3284 seq_puts(m, " * = Re-negotiation pending before next command.\n"); 3285 } 3286 } 3287 3288 /* 3289 * asc_prt_adv_board_info() 3290 * 3291 * Print dynamic board configuration information. 3292 */ 3293 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost) 3294 { 3295 struct asc_board *boardp = shost_priv(shost); 3296 int i; 3297 ADV_DVC_VAR *v; 3298 ADV_DVC_CFG *c; 3299 AdvPortAddr iop_base; 3300 ushort chip_scsi_id; 3301 ushort lramword; 3302 uchar lrambyte; 3303 ushort tagqng_able; 3304 ushort sdtr_able, wdtr_able; 3305 ushort wdtr_done, sdtr_done; 3306 ushort period = 0; 3307 int renegotiate = 0; 3308 3309 v = &boardp->dvc_var.adv_dvc_var; 3310 c = &boardp->dvc_cfg.adv_dvc_cfg; 3311 iop_base = v->iop_base; 3312 chip_scsi_id = v->chip_scsi_id; 3313 3314 seq_printf(m, 3315 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", 3316 shost->host_no); 3317 3318 seq_printf(m, 3319 " iop_base 0x%p, cable_detect: %X, err_code %u\n", 3320 v->iop_base, 3321 AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT, 3322 v->err_code); 3323 3324 seq_printf(m, " chip_version %u, mcode_date 0x%x, " 3325 "mcode_version 0x%x\n", c->chip_version, 3326 c->mcode_date, c->mcode_version); 3327 3328 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 3329 seq_puts(m, " Queuing Enabled:"); 3330 for (i = 0; i <= ADV_MAX_TID; i++) { 3331 if ((chip_scsi_id == i) || 3332 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3333 continue; 3334 } 3335 3336 seq_printf(m, " %X:%c", 3337 i, 3338 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3339 } 3340 3341 seq_puts(m, "\n Queue Limit:"); 3342 for (i = 0; i <= ADV_MAX_TID; i++) { 3343 if ((chip_scsi_id == i) || 3344 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3345 continue; 3346 } 3347 3348 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i, 3349 lrambyte); 3350 3351 seq_printf(m, " %X:%d", i, lrambyte); 3352 } 3353 3354 seq_puts(m, "\n Command Pending:"); 3355 for (i = 0; i <= ADV_MAX_TID; i++) { 3356 if ((chip_scsi_id == i) || 3357 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3358 continue; 3359 } 3360 3361 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i, 3362 lrambyte); 3363 3364 seq_printf(m, " %X:%d", i, lrambyte); 3365 } 3366 seq_putc(m, '\n'); 3367 3368 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 3369 seq_puts(m, " Wide Enabled:"); 3370 for (i = 0; i <= ADV_MAX_TID; i++) { 3371 if ((chip_scsi_id == i) || 3372 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3373 continue; 3374 } 3375 3376 seq_printf(m, " %X:%c", 3377 i, 3378 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3379 } 3380 seq_putc(m, '\n'); 3381 3382 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done); 3383 seq_puts(m, " Transfer Bit Width:"); 3384 for (i = 0; i <= ADV_MAX_TID; i++) { 3385 if ((chip_scsi_id == i) || 3386 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3387 continue; 3388 } 3389 3390 AdvReadWordLram(iop_base, 3391 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), 3392 lramword); 3393 3394 seq_printf(m, " %X:%d", 3395 i, (lramword & 0x8000) ? 16 : 8); 3396 3397 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) && 3398 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3399 seq_putc(m, '*'); 3400 renegotiate = 1; 3401 } 3402 } 3403 seq_putc(m, '\n'); 3404 3405 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 3406 seq_puts(m, " Synchronous Enabled:"); 3407 for (i = 0; i <= ADV_MAX_TID; i++) { 3408 if ((chip_scsi_id == i) || 3409 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3410 continue; 3411 } 3412 3413 seq_printf(m, " %X:%c", 3414 i, 3415 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3416 } 3417 seq_putc(m, '\n'); 3418 3419 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done); 3420 for (i = 0; i <= ADV_MAX_TID; i++) { 3421 3422 AdvReadWordLram(iop_base, 3423 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), 3424 lramword); 3425 lramword &= ~0x8000; 3426 3427 if ((chip_scsi_id == i) || 3428 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || 3429 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) { 3430 continue; 3431 } 3432 3433 seq_printf(m, " %X:", i); 3434 3435 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */ 3436 seq_puts(m, " Asynchronous"); 3437 } else { 3438 seq_puts(m, " Transfer Period Factor: "); 3439 3440 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */ 3441 seq_puts(m, "9 (80.0 Mhz),"); 3442 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */ 3443 seq_puts(m, "10 (40.0 Mhz),"); 3444 } else { /* 20 Mhz or below. */ 3445 3446 period = (((lramword >> 8) * 25) + 50) / 4; 3447 3448 if (period == 0) { /* Should never happen. */ 3449 seq_printf(m, "%d (? Mhz), ", period); 3450 } else { 3451 seq_printf(m, 3452 "%d (%d.%d Mhz),", 3453 period, 250 / period, 3454 ASC_TENTHS(250, period)); 3455 } 3456 } 3457 3458 seq_printf(m, " REQ/ACK Offset: %d", 3459 lramword & 0x1F); 3460 } 3461 3462 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3463 seq_puts(m, "*\n"); 3464 renegotiate = 1; 3465 } else { 3466 seq_putc(m, '\n'); 3467 } 3468 } 3469 3470 if (renegotiate) { 3471 seq_puts(m, " * = Re-negotiation pending before next command.\n"); 3472 } 3473 } 3474 3475 #ifdef ADVANSYS_STATS 3476 /* 3477 * asc_prt_board_stats() 3478 */ 3479 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost) 3480 { 3481 struct asc_board *boardp = shost_priv(shost); 3482 struct asc_stats *s = &boardp->asc_stats; 3483 3484 seq_printf(m, 3485 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n", 3486 shost->host_no); 3487 3488 seq_printf(m, 3489 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n", 3490 s->queuecommand, s->reset, s->biosparam, 3491 s->interrupt); 3492 3493 seq_printf(m, 3494 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n", 3495 s->callback, s->done, s->build_error, 3496 s->adv_build_noreq, s->adv_build_nosg); 3497 3498 seq_printf(m, 3499 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n", 3500 s->exe_noerror, s->exe_busy, s->exe_error, 3501 s->exe_unknown); 3502 3503 /* 3504 * Display data transfer statistics. 3505 */ 3506 if (s->xfer_cnt > 0) { 3507 seq_printf(m, " xfer_cnt %u, xfer_elem %u, ", 3508 s->xfer_cnt, s->xfer_elem); 3509 3510 seq_printf(m, "xfer_bytes %u.%01u kb\n", 3511 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2)); 3512 3513 /* Scatter gather transfer statistics */ 3514 seq_printf(m, " avg_num_elem %u.%01u, ", 3515 s->xfer_elem / s->xfer_cnt, 3516 ASC_TENTHS(s->xfer_elem, s->xfer_cnt)); 3517 3518 seq_printf(m, "avg_elem_size %u.%01u kb, ", 3519 (s->xfer_sect / 2) / s->xfer_elem, 3520 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem)); 3521 3522 seq_printf(m, "avg_xfer_size %u.%01u kb\n", 3523 (s->xfer_sect / 2) / s->xfer_cnt, 3524 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt)); 3525 } 3526 } 3527 #endif /* ADVANSYS_STATS */ 3528 3529 /* 3530 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...} 3531 * 3532 * m: seq_file to print into 3533 * shost: Scsi_Host 3534 * 3535 * Return the number of bytes read from or written to a 3536 * /proc/scsi/advansys/[0...] file. 3537 */ 3538 static int 3539 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost) 3540 { 3541 struct asc_board *boardp = shost_priv(shost); 3542 3543 ASC_DBG(1, "begin\n"); 3544 3545 /* 3546 * User read of /proc/scsi/advansys/[0...] file. 3547 */ 3548 3549 /* 3550 * Get board configuration information. 3551 * 3552 * advansys_info() returns the board string from its own static buffer. 3553 */ 3554 /* Copy board information. */ 3555 seq_printf(m, "%s\n", (char *)advansys_info(shost)); 3556 /* 3557 * Display Wide Board BIOS Information. 3558 */ 3559 if (!ASC_NARROW_BOARD(boardp)) 3560 asc_prt_adv_bios(m, shost); 3561 3562 /* 3563 * Display driver information for each device attached to the board. 3564 */ 3565 asc_prt_board_devices(m, shost); 3566 3567 /* 3568 * Display EEPROM configuration for the board. 3569 */ 3570 if (ASC_NARROW_BOARD(boardp)) 3571 asc_prt_asc_board_eeprom(m, shost); 3572 else 3573 asc_prt_adv_board_eeprom(m, shost); 3574 3575 /* 3576 * Display driver configuration and information for the board. 3577 */ 3578 asc_prt_driver_conf(m, shost); 3579 3580 #ifdef ADVANSYS_STATS 3581 /* 3582 * Display driver statistics for the board. 3583 */ 3584 asc_prt_board_stats(m, shost); 3585 #endif /* ADVANSYS_STATS */ 3586 3587 /* 3588 * Display Asc Library dynamic configuration information 3589 * for the board. 3590 */ 3591 if (ASC_NARROW_BOARD(boardp)) 3592 asc_prt_asc_board_info(m, shost); 3593 else 3594 asc_prt_adv_board_info(m, shost); 3595 return 0; 3596 } 3597 #endif /* CONFIG_PROC_FS */ 3598 3599 static void asc_scsi_done(struct scsi_cmnd *scp) 3600 { 3601 scsi_dma_unmap(scp); 3602 ASC_STATS(scp->device->host, done); 3603 scsi_done(scp); 3604 } 3605 3606 static void AscSetBank(PortAddr iop_base, uchar bank) 3607 { 3608 uchar val; 3609 3610 val = AscGetChipControl(iop_base) & 3611 (~ 3612 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET | 3613 CC_CHIP_RESET)); 3614 if (bank == 1) { 3615 val |= CC_BANK_ONE; 3616 } else if (bank == 2) { 3617 val |= CC_DIAG | CC_BANK_ONE; 3618 } else { 3619 val &= ~CC_BANK_ONE; 3620 } 3621 AscSetChipControl(iop_base, val); 3622 } 3623 3624 static void AscSetChipIH(PortAddr iop_base, ushort ins_code) 3625 { 3626 AscSetBank(iop_base, 1); 3627 AscWriteChipIH(iop_base, ins_code); 3628 AscSetBank(iop_base, 0); 3629 } 3630 3631 static int AscStartChip(PortAddr iop_base) 3632 { 3633 AscSetChipControl(iop_base, 0); 3634 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { 3635 return (0); 3636 } 3637 return (1); 3638 } 3639 3640 static bool AscStopChip(PortAddr iop_base) 3641 { 3642 uchar cc_val; 3643 3644 cc_val = 3645 AscGetChipControl(iop_base) & 3646 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG)); 3647 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT)); 3648 AscSetChipIH(iop_base, INS_HALT); 3649 AscSetChipIH(iop_base, INS_RFLAG_WTM); 3650 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) { 3651 return false; 3652 } 3653 return true; 3654 } 3655 3656 static bool AscIsChipHalted(PortAddr iop_base) 3657 { 3658 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { 3659 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) { 3660 return true; 3661 } 3662 } 3663 return false; 3664 } 3665 3666 static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc) 3667 { 3668 PortAddr iop_base; 3669 int i = 10; 3670 3671 iop_base = asc_dvc->iop_base; 3672 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE) 3673 && (i-- > 0)) { 3674 mdelay(100); 3675 } 3676 AscStopChip(iop_base); 3677 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT); 3678 udelay(60); 3679 AscSetChipIH(iop_base, INS_RFLAG_WTM); 3680 AscSetChipIH(iop_base, INS_HALT); 3681 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT); 3682 AscSetChipControl(iop_base, CC_HALT); 3683 mdelay(200); 3684 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); 3685 AscSetChipStatus(iop_base, 0); 3686 return (AscIsChipHalted(iop_base)); 3687 } 3688 3689 static int AscFindSignature(PortAddr iop_base) 3690 { 3691 ushort sig_word; 3692 3693 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n", 3694 iop_base, AscGetChipSignatureByte(iop_base)); 3695 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) { 3696 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n", 3697 iop_base, AscGetChipSignatureWord(iop_base)); 3698 sig_word = AscGetChipSignatureWord(iop_base); 3699 if ((sig_word == (ushort)ASC_1000_ID0W) || 3700 (sig_word == (ushort)ASC_1000_ID0W_FIX)) { 3701 return (1); 3702 } 3703 } 3704 return (0); 3705 } 3706 3707 static void AscEnableInterrupt(PortAddr iop_base) 3708 { 3709 ushort cfg; 3710 3711 cfg = AscGetChipCfgLsw(iop_base); 3712 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON); 3713 } 3714 3715 static void AscDisableInterrupt(PortAddr iop_base) 3716 { 3717 ushort cfg; 3718 3719 cfg = AscGetChipCfgLsw(iop_base); 3720 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON)); 3721 } 3722 3723 static uchar AscReadLramByte(PortAddr iop_base, ushort addr) 3724 { 3725 unsigned char byte_data; 3726 unsigned short word_data; 3727 3728 if (isodd_word(addr)) { 3729 AscSetChipLramAddr(iop_base, addr - 1); 3730 word_data = AscGetChipLramData(iop_base); 3731 byte_data = (word_data >> 8) & 0xFF; 3732 } else { 3733 AscSetChipLramAddr(iop_base, addr); 3734 word_data = AscGetChipLramData(iop_base); 3735 byte_data = word_data & 0xFF; 3736 } 3737 return byte_data; 3738 } 3739 3740 static ushort AscReadLramWord(PortAddr iop_base, ushort addr) 3741 { 3742 ushort word_data; 3743 3744 AscSetChipLramAddr(iop_base, addr); 3745 word_data = AscGetChipLramData(iop_base); 3746 return (word_data); 3747 } 3748 3749 static void 3750 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words) 3751 { 3752 int i; 3753 3754 AscSetChipLramAddr(iop_base, s_addr); 3755 for (i = 0; i < words; i++) { 3756 AscSetChipLramData(iop_base, set_wval); 3757 } 3758 } 3759 3760 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val) 3761 { 3762 AscSetChipLramAddr(iop_base, addr); 3763 AscSetChipLramData(iop_base, word_val); 3764 } 3765 3766 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val) 3767 { 3768 ushort word_data; 3769 3770 if (isodd_word(addr)) { 3771 addr--; 3772 word_data = AscReadLramWord(iop_base, addr); 3773 word_data &= 0x00FF; 3774 word_data |= (((ushort)byte_val << 8) & 0xFF00); 3775 } else { 3776 word_data = AscReadLramWord(iop_base, addr); 3777 word_data &= 0xFF00; 3778 word_data |= ((ushort)byte_val & 0x00FF); 3779 } 3780 AscWriteLramWord(iop_base, addr, word_data); 3781 } 3782 3783 /* 3784 * Copy 2 bytes to LRAM. 3785 * 3786 * The source data is assumed to be in little-endian order in memory 3787 * and is maintained in little-endian order when written to LRAM. 3788 */ 3789 static void 3790 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr, 3791 const uchar *s_buffer, int words) 3792 { 3793 int i; 3794 3795 AscSetChipLramAddr(iop_base, s_addr); 3796 for (i = 0; i < 2 * words; i += 2) { 3797 /* 3798 * On a little-endian system the second argument below 3799 * produces a little-endian ushort which is written to 3800 * LRAM in little-endian order. On a big-endian system 3801 * the second argument produces a big-endian ushort which 3802 * is "transparently" byte-swapped by outpw() and written 3803 * in little-endian order to LRAM. 3804 */ 3805 outpw(iop_base + IOP_RAM_DATA, 3806 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); 3807 } 3808 } 3809 3810 /* 3811 * Copy 4 bytes to LRAM. 3812 * 3813 * The source data is assumed to be in little-endian order in memory 3814 * and is maintained in little-endian order when written to LRAM. 3815 */ 3816 static void 3817 AscMemDWordCopyPtrToLram(PortAddr iop_base, 3818 ushort s_addr, uchar *s_buffer, int dwords) 3819 { 3820 int i; 3821 3822 AscSetChipLramAddr(iop_base, s_addr); 3823 for (i = 0; i < 4 * dwords; i += 4) { 3824 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */ 3825 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */ 3826 } 3827 } 3828 3829 /* 3830 * Copy 2 bytes from LRAM. 3831 * 3832 * The source data is assumed to be in little-endian order in LRAM 3833 * and is maintained in little-endian order when written to memory. 3834 */ 3835 static void 3836 AscMemWordCopyPtrFromLram(PortAddr iop_base, 3837 ushort s_addr, uchar *d_buffer, int words) 3838 { 3839 int i; 3840 ushort word; 3841 3842 AscSetChipLramAddr(iop_base, s_addr); 3843 for (i = 0; i < 2 * words; i += 2) { 3844 word = inpw(iop_base + IOP_RAM_DATA); 3845 d_buffer[i] = word & 0xff; 3846 d_buffer[i + 1] = (word >> 8) & 0xff; 3847 } 3848 } 3849 3850 static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words) 3851 { 3852 u32 sum = 0; 3853 int i; 3854 3855 for (i = 0; i < words; i++, s_addr += 2) { 3856 sum += AscReadLramWord(iop_base, s_addr); 3857 } 3858 return (sum); 3859 } 3860 3861 static void AscInitLram(ASC_DVC_VAR *asc_dvc) 3862 { 3863 uchar i; 3864 ushort s_addr; 3865 PortAddr iop_base; 3866 3867 iop_base = asc_dvc->iop_base; 3868 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0, 3869 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) * 3870 64) >> 1)); 3871 i = ASC_MIN_ACTIVE_QNO; 3872 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE; 3873 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3874 (uchar)(i + 1)); 3875 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3876 (uchar)(asc_dvc->max_total_qng)); 3877 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3878 (uchar)i); 3879 i++; 3880 s_addr += ASC_QBLK_SIZE; 3881 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) { 3882 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3883 (uchar)(i + 1)); 3884 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3885 (uchar)(i - 1)); 3886 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3887 (uchar)i); 3888 } 3889 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3890 (uchar)ASC_QLINK_END); 3891 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3892 (uchar)(asc_dvc->max_total_qng - 1)); 3893 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3894 (uchar)asc_dvc->max_total_qng); 3895 i++; 3896 s_addr += ASC_QBLK_SIZE; 3897 for (; i <= (uchar)(asc_dvc->max_total_qng + 3); 3898 i++, s_addr += ASC_QBLK_SIZE) { 3899 AscWriteLramByte(iop_base, 3900 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i); 3901 AscWriteLramByte(iop_base, 3902 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i); 3903 AscWriteLramByte(iop_base, 3904 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i); 3905 } 3906 } 3907 3908 static u32 3909 AscLoadMicroCode(PortAddr iop_base, ushort s_addr, 3910 const uchar *mcode_buf, ushort mcode_size) 3911 { 3912 u32 chksum; 3913 ushort mcode_word_size; 3914 ushort mcode_chksum; 3915 3916 /* Write the microcode buffer starting at LRAM address 0. */ 3917 mcode_word_size = (ushort)(mcode_size >> 1); 3918 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size); 3919 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size); 3920 3921 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size); 3922 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum); 3923 mcode_chksum = (ushort)AscMemSumLramWord(iop_base, 3924 (ushort)ASC_CODE_SEC_BEG, 3925 (ushort)((mcode_size - 3926 s_addr - (ushort) 3927 ASC_CODE_SEC_BEG) / 3928 2)); 3929 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum); 3930 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum); 3931 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size); 3932 return chksum; 3933 } 3934 3935 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc) 3936 { 3937 PortAddr iop_base; 3938 int i; 3939 ushort lram_addr; 3940 3941 iop_base = asc_dvc->iop_base; 3942 AscPutRiscVarFreeQHead(iop_base, 1); 3943 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng); 3944 AscPutVarFreeQHead(iop_base, 1); 3945 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng); 3946 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B, 3947 (uchar)((int)asc_dvc->max_total_qng + 1)); 3948 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B, 3949 (uchar)((int)asc_dvc->max_total_qng + 2)); 3950 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B, 3951 asc_dvc->max_total_qng); 3952 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0); 3953 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 3954 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0); 3955 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0); 3956 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0); 3957 AscPutQDoneInProgress(iop_base, 0); 3958 lram_addr = ASC_QADR_BEG; 3959 for (i = 0; i < 32; i++, lram_addr += 2) { 3960 AscWriteLramWord(iop_base, lram_addr, 0); 3961 } 3962 } 3963 3964 static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc) 3965 { 3966 int i; 3967 int warn_code; 3968 PortAddr iop_base; 3969 __le32 phy_addr; 3970 __le32 phy_size; 3971 struct asc_board *board = asc_dvc_to_board(asc_dvc); 3972 3973 iop_base = asc_dvc->iop_base; 3974 warn_code = 0; 3975 for (i = 0; i <= ASC_MAX_TID; i++) { 3976 AscPutMCodeInitSDTRAtID(iop_base, i, 3977 asc_dvc->cfg->sdtr_period_offset[i]); 3978 } 3979 3980 AscInitQLinkVar(asc_dvc); 3981 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B, 3982 asc_dvc->cfg->disc_enable); 3983 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B, 3984 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id)); 3985 3986 /* Ensure overrun buffer is aligned on an 8 byte boundary. */ 3987 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7); 3988 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf, 3989 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 3990 if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) { 3991 warn_code = -ENOMEM; 3992 goto err_dma_map; 3993 } 3994 phy_addr = cpu_to_le32(asc_dvc->overrun_dma); 3995 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D, 3996 (uchar *)&phy_addr, 1); 3997 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE); 3998 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D, 3999 (uchar *)&phy_size, 1); 4000 4001 asc_dvc->cfg->mcode_date = 4002 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W); 4003 asc_dvc->cfg->mcode_version = 4004 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W); 4005 4006 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); 4007 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { 4008 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; 4009 warn_code = -EINVAL; 4010 goto err_mcode_start; 4011 } 4012 if (AscStartChip(iop_base) != 1) { 4013 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; 4014 warn_code = -EIO; 4015 goto err_mcode_start; 4016 } 4017 4018 return warn_code; 4019 4020 err_mcode_start: 4021 dma_unmap_single(board->dev, asc_dvc->overrun_dma, 4022 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 4023 err_dma_map: 4024 asc_dvc->overrun_dma = 0; 4025 return warn_code; 4026 } 4027 4028 static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc) 4029 { 4030 const struct firmware *fw; 4031 const char fwname[] = "advansys/mcode.bin"; 4032 int err; 4033 unsigned long chksum; 4034 int warn_code; 4035 PortAddr iop_base; 4036 4037 iop_base = asc_dvc->iop_base; 4038 warn_code = 0; 4039 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) && 4040 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) { 4041 AscResetChipAndScsiBus(asc_dvc); 4042 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 4043 } 4044 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC; 4045 if (asc_dvc->err_code != 0) 4046 return ASC_ERROR; 4047 if (!AscFindSignature(asc_dvc->iop_base)) { 4048 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 4049 return warn_code; 4050 } 4051 AscDisableInterrupt(iop_base); 4052 AscInitLram(asc_dvc); 4053 4054 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4055 if (err) { 4056 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4057 fwname, err); 4058 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4059 return err; 4060 } 4061 if (fw->size < 4) { 4062 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4063 fw->size, fwname); 4064 release_firmware(fw); 4065 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4066 return -EINVAL; 4067 } 4068 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4069 (fw->data[1] << 8) | fw->data[0]; 4070 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum); 4071 if (AscLoadMicroCode(iop_base, 0, &fw->data[4], 4072 fw->size - 4) != chksum) { 4073 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4074 release_firmware(fw); 4075 return warn_code; 4076 } 4077 release_firmware(fw); 4078 warn_code |= AscInitMicroCodeVar(asc_dvc); 4079 if (!asc_dvc->overrun_dma) 4080 return warn_code; 4081 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC; 4082 AscEnableInterrupt(iop_base); 4083 return warn_code; 4084 } 4085 4086 /* 4087 * Load the Microcode 4088 * 4089 * Write the microcode image to RISC memory starting at address 0. 4090 * 4091 * The microcode is stored compressed in the following format: 4092 * 4093 * 254 word (508 byte) table indexed by byte code followed 4094 * by the following byte codes: 4095 * 4096 * 1-Byte Code: 4097 * 00: Emit word 0 in table. 4098 * 01: Emit word 1 in table. 4099 * . 4100 * FD: Emit word 253 in table. 4101 * 4102 * Multi-Byte Code: 4103 * FE WW WW: (3 byte code) Word to emit is the next word WW WW. 4104 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW. 4105 * 4106 * Returns 0 or an error if the checksum doesn't match 4107 */ 4108 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf, 4109 int size, int memsize, int chksum) 4110 { 4111 int i, j, end, len = 0; 4112 u32 sum; 4113 4114 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); 4115 4116 for (i = 253 * 2; i < size; i++) { 4117 if (buf[i] == 0xff) { 4118 unsigned short word = (buf[i + 3] << 8) | buf[i + 2]; 4119 for (j = 0; j < buf[i + 1]; j++) { 4120 AdvWriteWordAutoIncLram(iop_base, word); 4121 len += 2; 4122 } 4123 i += 3; 4124 } else if (buf[i] == 0xfe) { 4125 unsigned short word = (buf[i + 2] << 8) | buf[i + 1]; 4126 AdvWriteWordAutoIncLram(iop_base, word); 4127 i += 2; 4128 len += 2; 4129 } else { 4130 unsigned int off = buf[i] * 2; 4131 unsigned short word = (buf[off + 1] << 8) | buf[off]; 4132 AdvWriteWordAutoIncLram(iop_base, word); 4133 len += 2; 4134 } 4135 } 4136 4137 end = len; 4138 4139 while (len < memsize) { 4140 AdvWriteWordAutoIncLram(iop_base, 0); 4141 len += 2; 4142 } 4143 4144 /* Verify the microcode checksum. */ 4145 sum = 0; 4146 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); 4147 4148 for (len = 0; len < end; len += 2) { 4149 sum += AdvReadWordAutoIncLram(iop_base); 4150 } 4151 4152 if (sum != chksum) 4153 return ASC_IERR_MCODE_CHKSUM; 4154 4155 return 0; 4156 } 4157 4158 static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc) 4159 { 4160 off_t carr_offset = 0, next_offset; 4161 dma_addr_t carr_paddr; 4162 int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i; 4163 4164 for (i = 0; i < carr_num; i++) { 4165 carr_offset = i * sizeof(ADV_CARR_T); 4166 /* Get physical address of the carrier 'carrp'. */ 4167 carr_paddr = adv_dvc->carrier_addr + carr_offset; 4168 4169 adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr); 4170 adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset); 4171 adv_dvc->carrier[i].areq_vpa = 0; 4172 next_offset = carr_offset + sizeof(ADV_CARR_T); 4173 if (i == carr_num) 4174 next_offset = ~0; 4175 adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset); 4176 } 4177 /* 4178 * We cannot have a carrier with 'carr_va' of '0', as 4179 * a reference to this carrier would be interpreted as 4180 * list termination. 4181 * So start at carrier 1 with the freelist. 4182 */ 4183 adv_dvc->carr_freelist = &adv_dvc->carrier[1]; 4184 } 4185 4186 static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset) 4187 { 4188 int index; 4189 4190 BUG_ON(offset > ADV_CARRIER_BUFSIZE); 4191 4192 index = offset / sizeof(ADV_CARR_T); 4193 return &adv_dvc->carrier[index]; 4194 } 4195 4196 static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc) 4197 { 4198 ADV_CARR_T *carrp = adv_dvc->carr_freelist; 4199 u32 next_vpa = le32_to_cpu(carrp->next_vpa); 4200 4201 if (next_vpa == 0 || next_vpa == ~0) { 4202 ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa); 4203 return NULL; 4204 } 4205 4206 adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa); 4207 /* 4208 * insert stopper carrier to terminate list 4209 */ 4210 carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER); 4211 4212 return carrp; 4213 } 4214 4215 /* 4216 * 'offset' is the index in the request pointer array 4217 */ 4218 static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset) 4219 { 4220 struct asc_board *boardp = adv_dvc->drv_ptr; 4221 4222 BUG_ON(offset > adv_dvc->max_host_qng); 4223 return &boardp->adv_reqp[offset]; 4224 } 4225 4226 /* 4227 * Send an idle command to the chip and wait for completion. 4228 * 4229 * Command completion is polled for once per microsecond. 4230 * 4231 * The function can be called from anywhere including an interrupt handler. 4232 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical() 4233 * functions to prevent reentrancy. 4234 * 4235 * Return Values: 4236 * ADV_TRUE - command completed successfully 4237 * ADV_FALSE - command failed 4238 * ADV_ERROR - command timed out 4239 */ 4240 static int 4241 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc, 4242 ushort idle_cmd, u32 idle_cmd_parameter) 4243 { 4244 int result, i, j; 4245 AdvPortAddr iop_base; 4246 4247 iop_base = asc_dvc->iop_base; 4248 4249 /* 4250 * Clear the idle command status which is set by the microcode 4251 * to a non-zero value to indicate when the command is completed. 4252 * The non-zero result is one of the IDLE_CMD_STATUS_* values 4253 */ 4254 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0); 4255 4256 /* 4257 * Write the idle command value after the idle command parameter 4258 * has been written to avoid a race condition. If the order is not 4259 * followed, the microcode may process the idle command before the 4260 * parameters have been written to LRAM. 4261 */ 4262 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER, 4263 cpu_to_le32(idle_cmd_parameter)); 4264 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd); 4265 4266 /* 4267 * Tickle the RISC to tell it to process the idle command. 4268 */ 4269 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B); 4270 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 4271 /* 4272 * Clear the tickle value. In the ASC-3550 the RISC flag 4273 * command 'clr_tickle_b' does not work unless the host 4274 * value is cleared. 4275 */ 4276 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP); 4277 } 4278 4279 /* Wait for up to 100 millisecond for the idle command to timeout. */ 4280 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) { 4281 /* Poll once each microsecond for command completion. */ 4282 for (j = 0; j < SCSI_US_PER_MSEC; j++) { 4283 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, 4284 result); 4285 if (result != 0) 4286 return result; 4287 udelay(1); 4288 } 4289 } 4290 4291 BUG(); /* The idle command should never timeout. */ 4292 return ADV_ERROR; 4293 } 4294 4295 /* 4296 * Reset SCSI Bus and purge all outstanding requests. 4297 * 4298 * Return Value: 4299 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset. 4300 * ADV_FALSE(0) - Microcode command failed. 4301 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC 4302 * may be hung which requires driver recovery. 4303 */ 4304 static int AdvResetSB(ADV_DVC_VAR *asc_dvc) 4305 { 4306 int status; 4307 4308 /* 4309 * Send the SCSI Bus Reset idle start idle command which asserts 4310 * the SCSI Bus Reset signal. 4311 */ 4312 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L); 4313 if (status != ADV_TRUE) { 4314 return status; 4315 } 4316 4317 /* 4318 * Delay for the specified SCSI Bus Reset hold time. 4319 * 4320 * The hold time delay is done on the host because the RISC has no 4321 * microsecond accurate timer. 4322 */ 4323 udelay(ASC_SCSI_RESET_HOLD_TIME_US); 4324 4325 /* 4326 * Send the SCSI Bus Reset end idle command which de-asserts 4327 * the SCSI Bus Reset signal and purges any pending requests. 4328 */ 4329 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L); 4330 if (status != ADV_TRUE) { 4331 return status; 4332 } 4333 4334 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 4335 4336 return status; 4337 } 4338 4339 /* 4340 * Initialize the ASC-3550. 4341 * 4342 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 4343 * 4344 * For a non-fatal error return a warning code. If there are no warnings 4345 * then 0 is returned. 4346 * 4347 * Needed after initialization for error recovery. 4348 */ 4349 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc) 4350 { 4351 const struct firmware *fw; 4352 const char fwname[] = "advansys/3550.bin"; 4353 AdvPortAddr iop_base; 4354 ushort warn_code; 4355 int begin_addr; 4356 int end_addr; 4357 ushort code_sum; 4358 int word; 4359 int i; 4360 int err; 4361 unsigned long chksum; 4362 ushort scsi_cfg1; 4363 uchar tid; 4364 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 4365 ushort wdtr_able = 0, sdtr_able, tagqng_able; 4366 uchar max_cmd[ADV_MAX_TID + 1]; 4367 4368 /* If there is already an error, don't continue. */ 4369 if (asc_dvc->err_code != 0) 4370 return ADV_ERROR; 4371 4372 /* 4373 * The caller must set 'chip_type' to ADV_CHIP_ASC3550. 4374 */ 4375 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) { 4376 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 4377 return ADV_ERROR; 4378 } 4379 4380 warn_code = 0; 4381 iop_base = asc_dvc->iop_base; 4382 4383 /* 4384 * Save the RISC memory BIOS region before writing the microcode. 4385 * The BIOS may already be loaded and using its RISC LRAM region 4386 * so its region must be saved and restored. 4387 * 4388 * Note: This code makes the assumption, which is currently true, 4389 * that a chip reset does not clear RISC LRAM. 4390 */ 4391 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4392 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4393 bios_mem[i]); 4394 } 4395 4396 /* 4397 * Save current per TID negotiated values. 4398 */ 4399 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) { 4400 ushort bios_version, major, minor; 4401 4402 bios_version = 4403 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2]; 4404 major = (bios_version >> 12) & 0xF; 4405 minor = (bios_version >> 8) & 0xF; 4406 if (major < 3 || (major == 3 && minor == 1)) { 4407 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */ 4408 AdvReadWordLram(iop_base, 0x120, wdtr_able); 4409 } else { 4410 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4411 } 4412 } 4413 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4414 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 4415 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4416 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 4417 max_cmd[tid]); 4418 } 4419 4420 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4421 if (err) { 4422 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4423 fwname, err); 4424 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4425 return err; 4426 } 4427 if (fw->size < 4) { 4428 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4429 fw->size, fwname); 4430 release_firmware(fw); 4431 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4432 return -EINVAL; 4433 } 4434 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4435 (fw->data[1] << 8) | fw->data[0]; 4436 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 4437 fw->size - 4, ADV_3550_MEMSIZE, 4438 chksum); 4439 release_firmware(fw); 4440 if (asc_dvc->err_code) 4441 return ADV_ERROR; 4442 4443 /* 4444 * Restore the RISC memory BIOS region. 4445 */ 4446 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4447 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4448 bios_mem[i]); 4449 } 4450 4451 /* 4452 * Calculate and write the microcode code checksum to the microcode 4453 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 4454 */ 4455 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 4456 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 4457 code_sum = 0; 4458 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 4459 for (word = begin_addr; word < end_addr; word += 2) { 4460 code_sum += AdvReadWordAutoIncLram(iop_base); 4461 } 4462 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 4463 4464 /* 4465 * Read and save microcode version and date. 4466 */ 4467 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 4468 asc_dvc->cfg->mcode_date); 4469 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 4470 asc_dvc->cfg->mcode_version); 4471 4472 /* 4473 * Set the chip type to indicate the ASC3550. 4474 */ 4475 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550); 4476 4477 /* 4478 * If the PCI Configuration Command Register "Parity Error Response 4479 * Control" Bit was clear (0), then set the microcode variable 4480 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 4481 * to ignore DMA parity errors. 4482 */ 4483 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 4484 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4485 word |= CONTROL_FLAG_IGNORE_PERR; 4486 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4487 } 4488 4489 /* 4490 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO 4491 * threshold of 128 bytes. This register is only accessible to the host. 4492 */ 4493 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 4494 START_CTL_EMFU | READ_CMD_MRM); 4495 4496 /* 4497 * Microcode operating variables for WDTR, SDTR, and command tag 4498 * queuing will be set in sdev_configure() based on what a 4499 * device reports it is capable of in Inquiry byte 7. 4500 * 4501 * If SCSI Bus Resets have been disabled, then directly set 4502 * SDTR and WDTR from the EEPROM configuration. This will allow 4503 * the BIOS and warm boot to work without a SCSI bus hang on 4504 * the Inquiry caused by host and target mismatched DTR values. 4505 * Without the SCSI Bus Reset, before an Inquiry a device can't 4506 * be assumed to be in Asynchronous, Narrow mode. 4507 */ 4508 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 4509 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 4510 asc_dvc->wdtr_able); 4511 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 4512 asc_dvc->sdtr_able); 4513 } 4514 4515 /* 4516 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2, 4517 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID 4518 * bitmask. These values determine the maximum SDTR speed negotiated 4519 * with a device. 4520 * 4521 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 4522 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 4523 * without determining here whether the device supports SDTR. 4524 * 4525 * 4-bit speed SDTR speed name 4526 * =========== =============== 4527 * 0000b (0x0) SDTR disabled 4528 * 0001b (0x1) 5 Mhz 4529 * 0010b (0x2) 10 Mhz 4530 * 0011b (0x3) 20 Mhz (Ultra) 4531 * 0100b (0x4) 40 Mhz (LVD/Ultra2) 4532 * 0101b (0x5) 80 Mhz (LVD2/Ultra3) 4533 * 0110b (0x6) Undefined 4534 * . 4535 * 1111b (0xF) Undefined 4536 */ 4537 word = 0; 4538 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4539 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) { 4540 /* Set Ultra speed for TID 'tid'. */ 4541 word |= (0x3 << (4 * (tid % 4))); 4542 } else { 4543 /* Set Fast speed for TID 'tid'. */ 4544 word |= (0x2 << (4 * (tid % 4))); 4545 } 4546 if (tid == 3) { /* Check if done with sdtr_speed1. */ 4547 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word); 4548 word = 0; 4549 } else if (tid == 7) { /* Check if done with sdtr_speed2. */ 4550 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word); 4551 word = 0; 4552 } else if (tid == 11) { /* Check if done with sdtr_speed3. */ 4553 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word); 4554 word = 0; 4555 } else if (tid == 15) { /* Check if done with sdtr_speed4. */ 4556 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word); 4557 /* End of loop. */ 4558 } 4559 } 4560 4561 /* 4562 * Set microcode operating variable for the disconnect per TID bitmask. 4563 */ 4564 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 4565 asc_dvc->cfg->disc_enable); 4566 4567 /* 4568 * Set SCSI_CFG0 Microcode Default Value. 4569 * 4570 * The microcode will set the SCSI_CFG0 register using this value 4571 * after it is started below. 4572 */ 4573 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 4574 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 4575 asc_dvc->chip_scsi_id); 4576 4577 /* 4578 * Determine SCSI_CFG1 Microcode Default Value. 4579 * 4580 * The microcode will set the SCSI_CFG1 register using this value 4581 * after it is started below. 4582 */ 4583 4584 /* Read current SCSI_CFG1 Register value. */ 4585 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 4586 4587 /* 4588 * If all three connectors are in use, return an error. 4589 */ 4590 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 || 4591 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) { 4592 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION; 4593 return ADV_ERROR; 4594 } 4595 4596 /* 4597 * If the internal narrow cable is reversed all of the SCSI_CTRL 4598 * register signals will be set. Check for and return an error if 4599 * this condition is found. 4600 */ 4601 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 4602 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 4603 return ADV_ERROR; 4604 } 4605 4606 /* 4607 * If this is a differential board and a single-ended device 4608 * is attached to one of the connectors, return an error. 4609 */ 4610 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) { 4611 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE; 4612 return ADV_ERROR; 4613 } 4614 4615 /* 4616 * If automatic termination control is enabled, then set the 4617 * termination value based on a table listed in a_condor.h. 4618 * 4619 * If manual termination was specified with an EEPROM setting 4620 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and 4621 * is ready to be 'ored' into SCSI_CFG1. 4622 */ 4623 if (asc_dvc->cfg->termination == 0) { 4624 /* 4625 * The software always controls termination by setting TERM_CTL_SEL. 4626 * If TERM_CTL_SEL were set to 0, the hardware would set termination. 4627 */ 4628 asc_dvc->cfg->termination |= TERM_CTL_SEL; 4629 4630 switch (scsi_cfg1 & CABLE_DETECT) { 4631 /* TERM_CTL_H: on, TERM_CTL_L: on */ 4632 case 0x3: 4633 case 0x7: 4634 case 0xB: 4635 case 0xD: 4636 case 0xE: 4637 case 0xF: 4638 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L); 4639 break; 4640 4641 /* TERM_CTL_H: on, TERM_CTL_L: off */ 4642 case 0x1: 4643 case 0x5: 4644 case 0x9: 4645 case 0xA: 4646 case 0xC: 4647 asc_dvc->cfg->termination |= TERM_CTL_H; 4648 break; 4649 4650 /* TERM_CTL_H: off, TERM_CTL_L: off */ 4651 case 0x2: 4652 case 0x6: 4653 break; 4654 } 4655 } 4656 4657 /* 4658 * Clear any set TERM_CTL_H and TERM_CTL_L bits. 4659 */ 4660 scsi_cfg1 &= ~TERM_CTL; 4661 4662 /* 4663 * Invert the TERM_CTL_H and TERM_CTL_L bits and then 4664 * set 'scsi_cfg1'. The TERM_POL bit does not need to be 4665 * referenced, because the hardware internally inverts 4666 * the Termination High and Low bits if TERM_POL is set. 4667 */ 4668 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL)); 4669 4670 /* 4671 * Set SCSI_CFG1 Microcode Default Value 4672 * 4673 * Set filter value and possibly modified termination control 4674 * bits in the Microcode SCSI_CFG1 Register Value. 4675 * 4676 * The microcode will set the SCSI_CFG1 register using this value 4677 * after it is started below. 4678 */ 4679 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, 4680 FLTR_DISABLE | scsi_cfg1); 4681 4682 /* 4683 * Set MEM_CFG Microcode Default Value 4684 * 4685 * The microcode will set the MEM_CFG register using this value 4686 * after it is started below. 4687 * 4688 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 4689 * are defined. 4690 * 4691 * ASC-3550 has 8KB internal memory. 4692 */ 4693 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 4694 BIOS_EN | RAM_SZ_8KB); 4695 4696 /* 4697 * Set SEL_MASK Microcode Default Value 4698 * 4699 * The microcode will set the SEL_MASK register using this value 4700 * after it is started below. 4701 */ 4702 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 4703 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 4704 4705 AdvBuildCarrierFreelist(asc_dvc); 4706 4707 /* 4708 * Set-up the Host->RISC Initiator Command Queue (ICQ). 4709 */ 4710 4711 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 4712 if (!asc_dvc->icq_sp) { 4713 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 4714 return ADV_ERROR; 4715 } 4716 4717 /* 4718 * Set RISC ICQ physical address start value. 4719 */ 4720 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 4721 4722 /* 4723 * Set-up the RISC->Host Initiator Response Queue (IRQ). 4724 */ 4725 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 4726 if (!asc_dvc->irq_sp) { 4727 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 4728 return ADV_ERROR; 4729 } 4730 4731 /* 4732 * Set RISC IRQ physical address start value. 4733 */ 4734 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 4735 asc_dvc->carr_pending_cnt = 0; 4736 4737 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 4738 (ADV_INTR_ENABLE_HOST_INTR | 4739 ADV_INTR_ENABLE_GLOBAL_INTR)); 4740 4741 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 4742 AdvWriteWordRegister(iop_base, IOPW_PC, word); 4743 4744 /* finally, finally, gentlemen, start your engine */ 4745 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 4746 4747 /* 4748 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 4749 * Resets should be performed. The RISC has to be running 4750 * to issue a SCSI Bus Reset. 4751 */ 4752 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 4753 /* 4754 * If the BIOS Signature is present in memory, restore the 4755 * BIOS Handshake Configuration Table and do not perform 4756 * a SCSI Bus Reset. 4757 */ 4758 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 4759 0x55AA) { 4760 /* 4761 * Restore per TID negotiated values. 4762 */ 4763 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4764 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4765 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 4766 tagqng_able); 4767 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4768 AdvWriteByteLram(iop_base, 4769 ASC_MC_NUMBER_OF_MAX_CMD + tid, 4770 max_cmd[tid]); 4771 } 4772 } else { 4773 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 4774 warn_code = ASC_WARN_BUSRESET_ERROR; 4775 } 4776 } 4777 } 4778 4779 return warn_code; 4780 } 4781 4782 /* 4783 * Initialize the ASC-38C0800. 4784 * 4785 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 4786 * 4787 * For a non-fatal error return a warning code. If there are no warnings 4788 * then 0 is returned. 4789 * 4790 * Needed after initialization for error recovery. 4791 */ 4792 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc) 4793 { 4794 const struct firmware *fw; 4795 const char fwname[] = "advansys/38C0800.bin"; 4796 AdvPortAddr iop_base; 4797 ushort warn_code; 4798 int begin_addr; 4799 int end_addr; 4800 ushort code_sum; 4801 int word; 4802 int i; 4803 int err; 4804 unsigned long chksum; 4805 ushort scsi_cfg1; 4806 uchar byte; 4807 uchar tid; 4808 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 4809 ushort wdtr_able, sdtr_able, tagqng_able; 4810 uchar max_cmd[ADV_MAX_TID + 1]; 4811 4812 /* If there is already an error, don't continue. */ 4813 if (asc_dvc->err_code != 0) 4814 return ADV_ERROR; 4815 4816 /* 4817 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800. 4818 */ 4819 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) { 4820 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 4821 return ADV_ERROR; 4822 } 4823 4824 warn_code = 0; 4825 iop_base = asc_dvc->iop_base; 4826 4827 /* 4828 * Save the RISC memory BIOS region before writing the microcode. 4829 * The BIOS may already be loaded and using its RISC LRAM region 4830 * so its region must be saved and restored. 4831 * 4832 * Note: This code makes the assumption, which is currently true, 4833 * that a chip reset does not clear RISC LRAM. 4834 */ 4835 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4836 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4837 bios_mem[i]); 4838 } 4839 4840 /* 4841 * Save current per TID negotiated values. 4842 */ 4843 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4844 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4845 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 4846 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4847 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 4848 max_cmd[tid]); 4849 } 4850 4851 /* 4852 * RAM BIST (RAM Built-In Self Test) 4853 * 4854 * Address : I/O base + offset 0x38h register (byte). 4855 * Function: Bit 7-6(RW) : RAM mode 4856 * Normal Mode : 0x00 4857 * Pre-test Mode : 0x40 4858 * RAM Test Mode : 0x80 4859 * Bit 5 : unused 4860 * Bit 4(RO) : Done bit 4861 * Bit 3-0(RO) : Status 4862 * Host Error : 0x08 4863 * Int_RAM Error : 0x04 4864 * RISC Error : 0x02 4865 * SCSI Error : 0x01 4866 * No Error : 0x00 4867 * 4868 * Note: RAM BIST code should be put right here, before loading the 4869 * microcode and after saving the RISC memory BIOS region. 4870 */ 4871 4872 /* 4873 * LRAM Pre-test 4874 * 4875 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. 4876 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return 4877 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset 4878 * to NORMAL_MODE, return an error too. 4879 */ 4880 for (i = 0; i < 2; i++) { 4881 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); 4882 mdelay(10); /* Wait for 10ms before reading back. */ 4883 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 4884 if ((byte & RAM_TEST_DONE) == 0 4885 || (byte & 0x0F) != PRE_TEST_VALUE) { 4886 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 4887 return ADV_ERROR; 4888 } 4889 4890 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 4891 mdelay(10); /* Wait for 10ms before reading back. */ 4892 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) 4893 != NORMAL_VALUE) { 4894 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 4895 return ADV_ERROR; 4896 } 4897 } 4898 4899 /* 4900 * LRAM Test - It takes about 1.5 ms to run through the test. 4901 * 4902 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. 4903 * If Done bit not set or Status not 0, save register byte, set the 4904 * err_code, and return an error. 4905 */ 4906 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); 4907 mdelay(10); /* Wait for 10ms before checking status. */ 4908 4909 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 4910 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { 4911 /* Get here if Done bit not set or Status not 0. */ 4912 asc_dvc->bist_err_code = byte; /* for BIOS display message */ 4913 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; 4914 return ADV_ERROR; 4915 } 4916 4917 /* We need to reset back to normal mode after LRAM test passes. */ 4918 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 4919 4920 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4921 if (err) { 4922 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4923 fwname, err); 4924 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4925 return err; 4926 } 4927 if (fw->size < 4) { 4928 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4929 fw->size, fwname); 4930 release_firmware(fw); 4931 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4932 return -EINVAL; 4933 } 4934 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4935 (fw->data[1] << 8) | fw->data[0]; 4936 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 4937 fw->size - 4, ADV_38C0800_MEMSIZE, 4938 chksum); 4939 release_firmware(fw); 4940 if (asc_dvc->err_code) 4941 return ADV_ERROR; 4942 4943 /* 4944 * Restore the RISC memory BIOS region. 4945 */ 4946 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4947 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4948 bios_mem[i]); 4949 } 4950 4951 /* 4952 * Calculate and write the microcode code checksum to the microcode 4953 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 4954 */ 4955 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 4956 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 4957 code_sum = 0; 4958 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 4959 for (word = begin_addr; word < end_addr; word += 2) { 4960 code_sum += AdvReadWordAutoIncLram(iop_base); 4961 } 4962 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 4963 4964 /* 4965 * Read microcode version and date. 4966 */ 4967 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 4968 asc_dvc->cfg->mcode_date); 4969 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 4970 asc_dvc->cfg->mcode_version); 4971 4972 /* 4973 * Set the chip type to indicate the ASC38C0800. 4974 */ 4975 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800); 4976 4977 /* 4978 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. 4979 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current 4980 * cable detection and then we are able to read C_DET[3:0]. 4981 * 4982 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 4983 * Microcode Default Value' section below. 4984 */ 4985 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 4986 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, 4987 scsi_cfg1 | DIS_TERM_DRV); 4988 4989 /* 4990 * If the PCI Configuration Command Register "Parity Error Response 4991 * Control" Bit was clear (0), then set the microcode variable 4992 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 4993 * to ignore DMA parity errors. 4994 */ 4995 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 4996 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4997 word |= CONTROL_FLAG_IGNORE_PERR; 4998 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4999 } 5000 5001 /* 5002 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2] 5003 * bits for the default FIFO threshold. 5004 * 5005 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes. 5006 * 5007 * For DMA Errata #4 set the BC_THRESH_ENB bit. 5008 */ 5009 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 5010 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | 5011 READ_CMD_MRM); 5012 5013 /* 5014 * Microcode operating variables for WDTR, SDTR, and command tag 5015 * queuing will be set in sdev_configure() based on what a 5016 * device reports it is capable of in Inquiry byte 7. 5017 * 5018 * If SCSI Bus Resets have been disabled, then directly set 5019 * SDTR and WDTR from the EEPROM configuration. This will allow 5020 * the BIOS and warm boot to work without a SCSI bus hang on 5021 * the Inquiry caused by host and target mismatched DTR values. 5022 * Without the SCSI Bus Reset, before an Inquiry a device can't 5023 * be assumed to be in Asynchronous, Narrow mode. 5024 */ 5025 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 5026 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 5027 asc_dvc->wdtr_able); 5028 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 5029 asc_dvc->sdtr_able); 5030 } 5031 5032 /* 5033 * Set microcode operating variables for DISC and SDTR_SPEED1, 5034 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM 5035 * configuration values. 5036 * 5037 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 5038 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 5039 * without determining here whether the device supports SDTR. 5040 */ 5041 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 5042 asc_dvc->cfg->disc_enable); 5043 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); 5044 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); 5045 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); 5046 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); 5047 5048 /* 5049 * Set SCSI_CFG0 Microcode Default Value. 5050 * 5051 * The microcode will set the SCSI_CFG0 register using this value 5052 * after it is started below. 5053 */ 5054 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 5055 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 5056 asc_dvc->chip_scsi_id); 5057 5058 /* 5059 * Determine SCSI_CFG1 Microcode Default Value. 5060 * 5061 * The microcode will set the SCSI_CFG1 register using this value 5062 * after it is started below. 5063 */ 5064 5065 /* Read current SCSI_CFG1 Register value. */ 5066 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5067 5068 /* 5069 * If the internal narrow cable is reversed all of the SCSI_CTRL 5070 * register signals will be set. Check for and return an error if 5071 * this condition is found. 5072 */ 5073 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 5074 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 5075 return ADV_ERROR; 5076 } 5077 5078 /* 5079 * All kind of combinations of devices attached to one of four 5080 * connectors are acceptable except HVD device attached. For example, 5081 * LVD device can be attached to SE connector while SE device attached 5082 * to LVD connector. If LVD device attached to SE connector, it only 5083 * runs up to Ultra speed. 5084 * 5085 * If an HVD device is attached to one of LVD connectors, return an 5086 * error. However, there is no way to detect HVD device attached to 5087 * SE connectors. 5088 */ 5089 if (scsi_cfg1 & HVD) { 5090 asc_dvc->err_code = ASC_IERR_HVD_DEVICE; 5091 return ADV_ERROR; 5092 } 5093 5094 /* 5095 * If either SE or LVD automatic termination control is enabled, then 5096 * set the termination value based on a table listed in a_condor.h. 5097 * 5098 * If manual termination was specified with an EEPROM setting then 5099 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready 5100 * to be 'ored' into SCSI_CFG1. 5101 */ 5102 if ((asc_dvc->cfg->termination & TERM_SE) == 0) { 5103 /* SE automatic termination control is enabled. */ 5104 switch (scsi_cfg1 & C_DET_SE) { 5105 /* TERM_SE_HI: on, TERM_SE_LO: on */ 5106 case 0x1: 5107 case 0x2: 5108 case 0x3: 5109 asc_dvc->cfg->termination |= TERM_SE; 5110 break; 5111 5112 /* TERM_SE_HI: on, TERM_SE_LO: off */ 5113 case 0x0: 5114 asc_dvc->cfg->termination |= TERM_SE_HI; 5115 break; 5116 } 5117 } 5118 5119 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) { 5120 /* LVD automatic termination control is enabled. */ 5121 switch (scsi_cfg1 & C_DET_LVD) { 5122 /* TERM_LVD_HI: on, TERM_LVD_LO: on */ 5123 case 0x4: 5124 case 0x8: 5125 case 0xC: 5126 asc_dvc->cfg->termination |= TERM_LVD; 5127 break; 5128 5129 /* TERM_LVD_HI: off, TERM_LVD_LO: off */ 5130 case 0x0: 5131 break; 5132 } 5133 } 5134 5135 /* 5136 * Clear any set TERM_SE and TERM_LVD bits. 5137 */ 5138 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD); 5139 5140 /* 5141 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'. 5142 */ 5143 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0); 5144 5145 /* 5146 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE 5147 * bits and set possibly modified termination control bits in the 5148 * Microcode SCSI_CFG1 Register Value. 5149 */ 5150 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE); 5151 5152 /* 5153 * Set SCSI_CFG1 Microcode Default Value 5154 * 5155 * Set possibly modified termination control and reset DIS_TERM_DRV 5156 * bits in the Microcode SCSI_CFG1 Register Value. 5157 * 5158 * The microcode will set the SCSI_CFG1 register using this value 5159 * after it is started below. 5160 */ 5161 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); 5162 5163 /* 5164 * Set MEM_CFG Microcode Default Value 5165 * 5166 * The microcode will set the MEM_CFG register using this value 5167 * after it is started below. 5168 * 5169 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 5170 * are defined. 5171 * 5172 * ASC-38C0800 has 16KB internal memory. 5173 */ 5174 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5175 BIOS_EN | RAM_SZ_16KB); 5176 5177 /* 5178 * Set SEL_MASK Microcode Default Value 5179 * 5180 * The microcode will set the SEL_MASK register using this value 5181 * after it is started below. 5182 */ 5183 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 5184 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 5185 5186 AdvBuildCarrierFreelist(asc_dvc); 5187 5188 /* 5189 * Set-up the Host->RISC Initiator Command Queue (ICQ). 5190 */ 5191 5192 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 5193 if (!asc_dvc->icq_sp) { 5194 ASC_DBG(0, "Failed to get ICQ carrier\n"); 5195 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5196 return ADV_ERROR; 5197 } 5198 5199 /* 5200 * Set RISC ICQ physical address start value. 5201 * carr_pa is LE, must be native before write 5202 */ 5203 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 5204 5205 /* 5206 * Set-up the RISC->Host Initiator Response Queue (IRQ). 5207 */ 5208 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 5209 if (!asc_dvc->irq_sp) { 5210 ASC_DBG(0, "Failed to get IRQ carrier\n"); 5211 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5212 return ADV_ERROR; 5213 } 5214 5215 /* 5216 * Set RISC IRQ physical address start value. 5217 * 5218 * carr_pa is LE, must be native before write * 5219 */ 5220 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 5221 asc_dvc->carr_pending_cnt = 0; 5222 5223 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 5224 (ADV_INTR_ENABLE_HOST_INTR | 5225 ADV_INTR_ENABLE_GLOBAL_INTR)); 5226 5227 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 5228 AdvWriteWordRegister(iop_base, IOPW_PC, word); 5229 5230 /* finally, finally, gentlemen, start your engine */ 5231 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 5232 5233 /* 5234 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 5235 * Resets should be performed. The RISC has to be running 5236 * to issue a SCSI Bus Reset. 5237 */ 5238 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 5239 /* 5240 * If the BIOS Signature is present in memory, restore the 5241 * BIOS Handshake Configuration Table and do not perform 5242 * a SCSI Bus Reset. 5243 */ 5244 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 5245 0x55AA) { 5246 /* 5247 * Restore per TID negotiated values. 5248 */ 5249 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5250 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5251 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 5252 tagqng_able); 5253 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5254 AdvWriteByteLram(iop_base, 5255 ASC_MC_NUMBER_OF_MAX_CMD + tid, 5256 max_cmd[tid]); 5257 } 5258 } else { 5259 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 5260 warn_code = ASC_WARN_BUSRESET_ERROR; 5261 } 5262 } 5263 } 5264 5265 return warn_code; 5266 } 5267 5268 /* 5269 * Initialize the ASC-38C1600. 5270 * 5271 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. 5272 * 5273 * For a non-fatal error return a warning code. If there are no warnings 5274 * then 0 is returned. 5275 * 5276 * Needed after initialization for error recovery. 5277 */ 5278 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc) 5279 { 5280 const struct firmware *fw; 5281 const char fwname[] = "advansys/38C1600.bin"; 5282 AdvPortAddr iop_base; 5283 ushort warn_code; 5284 int begin_addr; 5285 int end_addr; 5286 ushort code_sum; 5287 long word; 5288 int i; 5289 int err; 5290 unsigned long chksum; 5291 ushort scsi_cfg1; 5292 uchar byte; 5293 uchar tid; 5294 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 5295 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able; 5296 uchar max_cmd[ASC_MAX_TID + 1]; 5297 5298 /* If there is already an error, don't continue. */ 5299 if (asc_dvc->err_code != 0) { 5300 return ADV_ERROR; 5301 } 5302 5303 /* 5304 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600. 5305 */ 5306 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { 5307 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 5308 return ADV_ERROR; 5309 } 5310 5311 warn_code = 0; 5312 iop_base = asc_dvc->iop_base; 5313 5314 /* 5315 * Save the RISC memory BIOS region before writing the microcode. 5316 * The BIOS may already be loaded and using its RISC LRAM region 5317 * so its region must be saved and restored. 5318 * 5319 * Note: This code makes the assumption, which is currently true, 5320 * that a chip reset does not clear RISC LRAM. 5321 */ 5322 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5323 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5324 bios_mem[i]); 5325 } 5326 5327 /* 5328 * Save current per TID negotiated values. 5329 */ 5330 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5331 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5332 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5333 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5334 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 5335 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5336 max_cmd[tid]); 5337 } 5338 5339 /* 5340 * RAM BIST (Built-In Self Test) 5341 * 5342 * Address : I/O base + offset 0x38h register (byte). 5343 * Function: Bit 7-6(RW) : RAM mode 5344 * Normal Mode : 0x00 5345 * Pre-test Mode : 0x40 5346 * RAM Test Mode : 0x80 5347 * Bit 5 : unused 5348 * Bit 4(RO) : Done bit 5349 * Bit 3-0(RO) : Status 5350 * Host Error : 0x08 5351 * Int_RAM Error : 0x04 5352 * RISC Error : 0x02 5353 * SCSI Error : 0x01 5354 * No Error : 0x00 5355 * 5356 * Note: RAM BIST code should be put right here, before loading the 5357 * microcode and after saving the RISC memory BIOS region. 5358 */ 5359 5360 /* 5361 * LRAM Pre-test 5362 * 5363 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. 5364 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return 5365 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset 5366 * to NORMAL_MODE, return an error too. 5367 */ 5368 for (i = 0; i < 2; i++) { 5369 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); 5370 mdelay(10); /* Wait for 10ms before reading back. */ 5371 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5372 if ((byte & RAM_TEST_DONE) == 0 5373 || (byte & 0x0F) != PRE_TEST_VALUE) { 5374 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5375 return ADV_ERROR; 5376 } 5377 5378 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5379 mdelay(10); /* Wait for 10ms before reading back. */ 5380 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) 5381 != NORMAL_VALUE) { 5382 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5383 return ADV_ERROR; 5384 } 5385 } 5386 5387 /* 5388 * LRAM Test - It takes about 1.5 ms to run through the test. 5389 * 5390 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. 5391 * If Done bit not set or Status not 0, save register byte, set the 5392 * err_code, and return an error. 5393 */ 5394 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); 5395 mdelay(10); /* Wait for 10ms before checking status. */ 5396 5397 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5398 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { 5399 /* Get here if Done bit not set or Status not 0. */ 5400 asc_dvc->bist_err_code = byte; /* for BIOS display message */ 5401 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; 5402 return ADV_ERROR; 5403 } 5404 5405 /* We need to reset back to normal mode after LRAM test passes. */ 5406 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5407 5408 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 5409 if (err) { 5410 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 5411 fwname, err); 5412 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5413 return err; 5414 } 5415 if (fw->size < 4) { 5416 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 5417 fw->size, fwname); 5418 release_firmware(fw); 5419 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5420 return -EINVAL; 5421 } 5422 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 5423 (fw->data[1] << 8) | fw->data[0]; 5424 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 5425 fw->size - 4, ADV_38C1600_MEMSIZE, 5426 chksum); 5427 release_firmware(fw); 5428 if (asc_dvc->err_code) 5429 return ADV_ERROR; 5430 5431 /* 5432 * Restore the RISC memory BIOS region. 5433 */ 5434 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5435 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5436 bios_mem[i]); 5437 } 5438 5439 /* 5440 * Calculate and write the microcode code checksum to the microcode 5441 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 5442 */ 5443 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 5444 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 5445 code_sum = 0; 5446 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 5447 for (word = begin_addr; word < end_addr; word += 2) { 5448 code_sum += AdvReadWordAutoIncLram(iop_base); 5449 } 5450 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 5451 5452 /* 5453 * Read microcode version and date. 5454 */ 5455 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 5456 asc_dvc->cfg->mcode_date); 5457 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 5458 asc_dvc->cfg->mcode_version); 5459 5460 /* 5461 * Set the chip type to indicate the ASC38C1600. 5462 */ 5463 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600); 5464 5465 /* 5466 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. 5467 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current 5468 * cable detection and then we are able to read C_DET[3:0]. 5469 * 5470 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 5471 * Microcode Default Value' section below. 5472 */ 5473 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5474 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, 5475 scsi_cfg1 | DIS_TERM_DRV); 5476 5477 /* 5478 * If the PCI Configuration Command Register "Parity Error Response 5479 * Control" Bit was clear (0), then set the microcode variable 5480 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 5481 * to ignore DMA parity errors. 5482 */ 5483 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 5484 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5485 word |= CONTROL_FLAG_IGNORE_PERR; 5486 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5487 } 5488 5489 /* 5490 * If the BIOS control flag AIPP (Asynchronous Information 5491 * Phase Protection) disable bit is not set, then set the firmware 5492 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable 5493 * AIPP checking and encoding. 5494 */ 5495 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) { 5496 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5497 word |= CONTROL_FLAG_ENABLE_AIPP; 5498 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5499 } 5500 5501 /* 5502 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4], 5503 * and START_CTL_TH [3:2]. 5504 */ 5505 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 5506 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM); 5507 5508 /* 5509 * Microcode operating variables for WDTR, SDTR, and command tag 5510 * queuing will be set in sdev_configure() based on what a 5511 * device reports it is capable of in Inquiry byte 7. 5512 * 5513 * If SCSI Bus Resets have been disabled, then directly set 5514 * SDTR and WDTR from the EEPROM configuration. This will allow 5515 * the BIOS and warm boot to work without a SCSI bus hang on 5516 * the Inquiry caused by host and target mismatched DTR values. 5517 * Without the SCSI Bus Reset, before an Inquiry a device can't 5518 * be assumed to be in Asynchronous, Narrow mode. 5519 */ 5520 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 5521 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 5522 asc_dvc->wdtr_able); 5523 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 5524 asc_dvc->sdtr_able); 5525 } 5526 5527 /* 5528 * Set microcode operating variables for DISC and SDTR_SPEED1, 5529 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM 5530 * configuration values. 5531 * 5532 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 5533 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 5534 * without determining here whether the device supports SDTR. 5535 */ 5536 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 5537 asc_dvc->cfg->disc_enable); 5538 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); 5539 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); 5540 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); 5541 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); 5542 5543 /* 5544 * Set SCSI_CFG0 Microcode Default Value. 5545 * 5546 * The microcode will set the SCSI_CFG0 register using this value 5547 * after it is started below. 5548 */ 5549 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 5550 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 5551 asc_dvc->chip_scsi_id); 5552 5553 /* 5554 * Calculate SCSI_CFG1 Microcode Default Value. 5555 * 5556 * The microcode will set the SCSI_CFG1 register using this value 5557 * after it is started below. 5558 * 5559 * Each ASC-38C1600 function has only two cable detect bits. 5560 * The bus mode override bits are in IOPB_SOFT_OVER_WR. 5561 */ 5562 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5563 5564 /* 5565 * If the cable is reversed all of the SCSI_CTRL register signals 5566 * will be set. Check for and return an error if this condition is 5567 * found. 5568 */ 5569 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 5570 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 5571 return ADV_ERROR; 5572 } 5573 5574 /* 5575 * Each ASC-38C1600 function has two connectors. Only an HVD device 5576 * can not be connected to either connector. An LVD device or SE device 5577 * may be connected to either connecor. If an SE device is connected, 5578 * then at most Ultra speed (20 Mhz) can be used on both connectors. 5579 * 5580 * If an HVD device is attached, return an error. 5581 */ 5582 if (scsi_cfg1 & HVD) { 5583 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE; 5584 return ADV_ERROR; 5585 } 5586 5587 /* 5588 * Each function in the ASC-38C1600 uses only the SE cable detect and 5589 * termination because there are two connectors for each function. Each 5590 * function may use either LVD or SE mode. Corresponding the SE automatic 5591 * termination control EEPROM bits are used for each function. Each 5592 * function has its own EEPROM. If SE automatic control is enabled for 5593 * the function, then set the termination value based on a table listed 5594 * in a_condor.h. 5595 * 5596 * If manual termination is specified in the EEPROM for the function, 5597 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is 5598 * ready to be 'ored' into SCSI_CFG1. 5599 */ 5600 if ((asc_dvc->cfg->termination & TERM_SE) == 0) { 5601 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); 5602 /* SE automatic termination control is enabled. */ 5603 switch (scsi_cfg1 & C_DET_SE) { 5604 /* TERM_SE_HI: on, TERM_SE_LO: on */ 5605 case 0x1: 5606 case 0x2: 5607 case 0x3: 5608 asc_dvc->cfg->termination |= TERM_SE; 5609 break; 5610 5611 case 0x0: 5612 if (PCI_FUNC(pdev->devfn) == 0) { 5613 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */ 5614 } else { 5615 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */ 5616 asc_dvc->cfg->termination |= TERM_SE_HI; 5617 } 5618 break; 5619 } 5620 } 5621 5622 /* 5623 * Clear any set TERM_SE bits. 5624 */ 5625 scsi_cfg1 &= ~TERM_SE; 5626 5627 /* 5628 * Invert the TERM_SE bits and then set 'scsi_cfg1'. 5629 */ 5630 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE); 5631 5632 /* 5633 * Clear Big Endian and Terminator Polarity bits and set possibly 5634 * modified termination control bits in the Microcode SCSI_CFG1 5635 * Register Value. 5636 * 5637 * Big Endian bit is not used even on big endian machines. 5638 */ 5639 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL); 5640 5641 /* 5642 * Set SCSI_CFG1 Microcode Default Value 5643 * 5644 * Set possibly modified termination control bits in the Microcode 5645 * SCSI_CFG1 Register Value. 5646 * 5647 * The microcode will set the SCSI_CFG1 register using this value 5648 * after it is started below. 5649 */ 5650 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); 5651 5652 /* 5653 * Set MEM_CFG Microcode Default Value 5654 * 5655 * The microcode will set the MEM_CFG register using this value 5656 * after it is started below. 5657 * 5658 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 5659 * are defined. 5660 * 5661 * ASC-38C1600 has 32KB internal memory. 5662 * 5663 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come 5664 * out a special 16K Adv Library and Microcode version. After the issue 5665 * resolved, we should turn back to the 32K support. Both a_condor.h and 5666 * mcode.sas files also need to be updated. 5667 * 5668 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5669 * BIOS_EN | RAM_SZ_32KB); 5670 */ 5671 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5672 BIOS_EN | RAM_SZ_16KB); 5673 5674 /* 5675 * Set SEL_MASK Microcode Default Value 5676 * 5677 * The microcode will set the SEL_MASK register using this value 5678 * after it is started below. 5679 */ 5680 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 5681 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 5682 5683 AdvBuildCarrierFreelist(asc_dvc); 5684 5685 /* 5686 * Set-up the Host->RISC Initiator Command Queue (ICQ). 5687 */ 5688 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 5689 if (!asc_dvc->icq_sp) { 5690 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5691 return ADV_ERROR; 5692 } 5693 5694 /* 5695 * Set RISC ICQ physical address start value. Initialize the 5696 * COMMA register to the same value otherwise the RISC will 5697 * prematurely detect a command is available. 5698 */ 5699 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 5700 AdvWriteDWordRegister(iop_base, IOPDW_COMMA, 5701 le32_to_cpu(asc_dvc->icq_sp->carr_pa)); 5702 5703 /* 5704 * Set-up the RISC->Host Initiator Response Queue (IRQ). 5705 */ 5706 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 5707 if (!asc_dvc->irq_sp) { 5708 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5709 return ADV_ERROR; 5710 } 5711 5712 /* 5713 * Set RISC IRQ physical address start value. 5714 */ 5715 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 5716 asc_dvc->carr_pending_cnt = 0; 5717 5718 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 5719 (ADV_INTR_ENABLE_HOST_INTR | 5720 ADV_INTR_ENABLE_GLOBAL_INTR)); 5721 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 5722 AdvWriteWordRegister(iop_base, IOPW_PC, word); 5723 5724 /* finally, finally, gentlemen, start your engine */ 5725 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 5726 5727 /* 5728 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 5729 * Resets should be performed. The RISC has to be running 5730 * to issue a SCSI Bus Reset. 5731 */ 5732 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 5733 /* 5734 * If the BIOS Signature is present in memory, restore the 5735 * per TID microcode operating variables. 5736 */ 5737 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 5738 0x55AA) { 5739 /* 5740 * Restore per TID negotiated values. 5741 */ 5742 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5743 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5744 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5745 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 5746 tagqng_able); 5747 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 5748 AdvWriteByteLram(iop_base, 5749 ASC_MC_NUMBER_OF_MAX_CMD + tid, 5750 max_cmd[tid]); 5751 } 5752 } else { 5753 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 5754 warn_code = ASC_WARN_BUSRESET_ERROR; 5755 } 5756 } 5757 } 5758 5759 return warn_code; 5760 } 5761 5762 /* 5763 * Reset chip and SCSI Bus. 5764 * 5765 * Return Value: 5766 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful. 5767 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure. 5768 */ 5769 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc) 5770 { 5771 int status; 5772 ushort wdtr_able, sdtr_able, tagqng_able; 5773 ushort ppr_able = 0; 5774 uchar tid, max_cmd[ADV_MAX_TID + 1]; 5775 AdvPortAddr iop_base; 5776 ushort bios_sig; 5777 5778 iop_base = asc_dvc->iop_base; 5779 5780 /* 5781 * Save current per TID negotiated values. 5782 */ 5783 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5784 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5785 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5786 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5787 } 5788 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5789 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5790 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5791 max_cmd[tid]); 5792 } 5793 5794 /* 5795 * Force the AdvInitAsc3550/38C0800Driver() function to 5796 * perform a SCSI Bus Reset by clearing the BIOS signature word. 5797 * The initialization functions assumes a SCSI Bus Reset is not 5798 * needed if the BIOS signature word is present. 5799 */ 5800 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); 5801 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0); 5802 5803 /* 5804 * Stop chip and reset it. 5805 */ 5806 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP); 5807 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET); 5808 mdelay(100); 5809 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 5810 ADV_CTRL_REG_CMD_WR_IO_REG); 5811 5812 /* 5813 * Reset Adv Library error code, if any, and try 5814 * re-initializing the chip. 5815 */ 5816 asc_dvc->err_code = 0; 5817 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5818 status = AdvInitAsc38C1600Driver(asc_dvc); 5819 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 5820 status = AdvInitAsc38C0800Driver(asc_dvc); 5821 } else { 5822 status = AdvInitAsc3550Driver(asc_dvc); 5823 } 5824 5825 /* Translate initialization return value to status value. */ 5826 if (status == 0) { 5827 status = ADV_TRUE; 5828 } else { 5829 status = ADV_FALSE; 5830 } 5831 5832 /* 5833 * Restore the BIOS signature word. 5834 */ 5835 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); 5836 5837 /* 5838 * Restore per TID negotiated values. 5839 */ 5840 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5841 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5842 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5843 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5844 } 5845 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5846 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5847 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5848 max_cmd[tid]); 5849 } 5850 5851 return status; 5852 } 5853 5854 /* 5855 * adv_async_callback() - Adv Library asynchronous event callback function. 5856 */ 5857 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code) 5858 { 5859 switch (code) { 5860 case ADV_ASYNC_SCSI_BUS_RESET_DET: 5861 /* 5862 * The firmware detected a SCSI Bus reset. 5863 */ 5864 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n"); 5865 break; 5866 5867 case ADV_ASYNC_RDMA_FAILURE: 5868 /* 5869 * Handle RDMA failure by resetting the SCSI Bus and 5870 * possibly the chip if it is unresponsive. Log the error 5871 * with a unique code. 5872 */ 5873 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n"); 5874 AdvResetChipAndSB(adv_dvc_varp); 5875 break; 5876 5877 case ADV_HOST_SCSI_BUS_RESET: 5878 /* 5879 * Host generated SCSI bus reset occurred. 5880 */ 5881 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n"); 5882 break; 5883 5884 default: 5885 ASC_DBG(0, "unknown code 0x%x\n", code); 5886 break; 5887 } 5888 } 5889 5890 /* 5891 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR(). 5892 * 5893 * Callback function for the Wide SCSI Adv Library. 5894 */ 5895 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp) 5896 { 5897 struct asc_board *boardp = adv_dvc_varp->drv_ptr; 5898 adv_req_t *reqp; 5899 adv_sgblk_t *sgblkp; 5900 struct scsi_cmnd *scp; 5901 u32 resid_cnt; 5902 dma_addr_t sense_addr; 5903 5904 ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n", 5905 adv_dvc_varp, scsiqp); 5906 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); 5907 5908 /* 5909 * Get the adv_req_t structure for the command that has been 5910 * completed. The adv_req_t structure actually contains the 5911 * completed ADV_SCSI_REQ_Q structure. 5912 */ 5913 scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag); 5914 5915 ASC_DBG(1, "scp 0x%p\n", scp); 5916 if (scp == NULL) { 5917 ASC_PRINT 5918 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n"); 5919 return; 5920 } 5921 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); 5922 5923 reqp = (adv_req_t *)scp->host_scribble; 5924 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp); 5925 if (reqp == NULL) { 5926 ASC_PRINT("adv_isr_callback: reqp is NULL\n"); 5927 return; 5928 } 5929 /* 5930 * Remove backreferences to avoid duplicate 5931 * command completions. 5932 */ 5933 scp->host_scribble = NULL; 5934 reqp->cmndp = NULL; 5935 5936 ASC_STATS(boardp->shost, callback); 5937 ASC_DBG(1, "shost 0x%p\n", boardp->shost); 5938 5939 sense_addr = le32_to_cpu(scsiqp->sense_addr); 5940 dma_unmap_single(boardp->dev, sense_addr, 5941 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 5942 5943 /* 5944 * 'done_status' contains the command's ending status. 5945 */ 5946 scp->result = 0; 5947 switch (scsiqp->done_status) { 5948 case QD_NO_ERROR: 5949 ASC_DBG(2, "QD_NO_ERROR\n"); 5950 5951 /* 5952 * Check for an underrun condition. 5953 * 5954 * If there was no error and an underrun condition, then 5955 * then return the number of underrun bytes. 5956 */ 5957 resid_cnt = le32_to_cpu(scsiqp->data_cnt); 5958 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 && 5959 resid_cnt <= scsi_bufflen(scp)) { 5960 ASC_DBG(1, "underrun condition %lu bytes\n", 5961 (ulong)resid_cnt); 5962 scsi_set_resid(scp, resid_cnt); 5963 } 5964 break; 5965 5966 case QD_WITH_ERROR: 5967 ASC_DBG(2, "QD_WITH_ERROR\n"); 5968 switch (scsiqp->host_status) { 5969 case QHSTA_NO_ERROR: 5970 set_status_byte(scp, scsiqp->scsi_status); 5971 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) { 5972 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); 5973 ASC_DBG_PRT_SENSE(2, scp->sense_buffer, 5974 SCSI_SENSE_BUFFERSIZE); 5975 } 5976 break; 5977 5978 default: 5979 /* Some other QHSTA error occurred. */ 5980 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status); 5981 set_host_byte(scp, DID_BAD_TARGET); 5982 break; 5983 } 5984 break; 5985 5986 case QD_ABORTED_BY_HOST: 5987 ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); 5988 set_status_byte(scp, scsiqp->scsi_status); 5989 set_host_byte(scp, DID_ABORT); 5990 break; 5991 5992 default: 5993 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status); 5994 set_status_byte(scp, scsiqp->scsi_status); 5995 set_host_byte(scp, DID_ERROR); 5996 break; 5997 } 5998 5999 /* 6000 * If the 'init_tidmask' bit isn't already set for the target and the 6001 * current request finished normally, then set the bit for the target 6002 * to indicate that a device is present. 6003 */ 6004 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && 6005 scsiqp->done_status == QD_NO_ERROR && 6006 scsiqp->host_status == QHSTA_NO_ERROR) { 6007 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); 6008 } 6009 6010 asc_scsi_done(scp); 6011 6012 /* 6013 * Free all 'adv_sgblk_t' structures allocated for the request. 6014 */ 6015 while ((sgblkp = reqp->sgblkp) != NULL) { 6016 /* Remove 'sgblkp' from the request list. */ 6017 reqp->sgblkp = sgblkp->next_sgblkp; 6018 6019 dma_pool_free(boardp->adv_sgblk_pool, sgblkp, 6020 sgblkp->sg_addr); 6021 } 6022 6023 ASC_DBG(1, "done\n"); 6024 } 6025 6026 /* 6027 * Adv Library Interrupt Service Routine 6028 * 6029 * This function is called by a driver's interrupt service routine. 6030 * The function disables and re-enables interrupts. 6031 * 6032 * When a microcode idle command is completed, the ADV_DVC_VAR 6033 * 'idle_cmd_done' field is set to ADV_TRUE. 6034 * 6035 * Note: AdvISR() can be called when interrupts are disabled or even 6036 * when there is no hardware interrupt condition present. It will 6037 * always check for completed idle commands and microcode requests. 6038 * This is an important feature that shouldn't be changed because it 6039 * allows commands to be completed from polling mode loops. 6040 * 6041 * Return: 6042 * ADV_TRUE(1) - interrupt was pending 6043 * ADV_FALSE(0) - no interrupt was pending 6044 */ 6045 static int AdvISR(ADV_DVC_VAR *asc_dvc) 6046 { 6047 AdvPortAddr iop_base; 6048 uchar int_stat; 6049 ADV_CARR_T *free_carrp; 6050 __le32 irq_next_vpa; 6051 ADV_SCSI_REQ_Q *scsiq; 6052 adv_req_t *reqp; 6053 6054 iop_base = asc_dvc->iop_base; 6055 6056 /* Reading the register clears the interrupt. */ 6057 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG); 6058 6059 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB | 6060 ADV_INTR_STATUS_INTRC)) == 0) { 6061 return ADV_FALSE; 6062 } 6063 6064 /* 6065 * Notify the driver of an asynchronous microcode condition by 6066 * calling the adv_async_callback function. The function 6067 * is passed the microcode ASC_MC_INTRB_CODE byte value. 6068 */ 6069 if (int_stat & ADV_INTR_STATUS_INTRB) { 6070 uchar intrb_code; 6071 6072 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code); 6073 6074 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || 6075 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 6076 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE && 6077 asc_dvc->carr_pending_cnt != 0) { 6078 AdvWriteByteRegister(iop_base, IOPB_TICKLE, 6079 ADV_TICKLE_A); 6080 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 6081 AdvWriteByteRegister(iop_base, 6082 IOPB_TICKLE, 6083 ADV_TICKLE_NOP); 6084 } 6085 } 6086 } 6087 6088 adv_async_callback(asc_dvc, intrb_code); 6089 } 6090 6091 /* 6092 * Check if the IRQ stopper carrier contains a completed request. 6093 */ 6094 while (((irq_next_vpa = 6095 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) { 6096 /* 6097 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure. 6098 * The RISC will have set 'areq_vpa' to a virtual address. 6099 * 6100 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr 6101 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion 6102 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr' 6103 * in AdvExeScsiQueue(). 6104 */ 6105 u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa); 6106 ASC_DBG(1, "irq_sp %p areq_vpa %u\n", 6107 asc_dvc->irq_sp, pa_offset); 6108 reqp = adv_get_reqp(asc_dvc, pa_offset); 6109 scsiq = &reqp->scsi_req_q; 6110 6111 /* 6112 * Request finished with good status and the queue was not 6113 * DMAed to host memory by the firmware. Set all status fields 6114 * to indicate good status. 6115 */ 6116 if ((irq_next_vpa & ADV_RQ_GOOD) != 0) { 6117 scsiq->done_status = QD_NO_ERROR; 6118 scsiq->host_status = scsiq->scsi_status = 0; 6119 scsiq->data_cnt = 0L; 6120 } 6121 6122 /* 6123 * Advance the stopper pointer to the next carrier 6124 * ignoring the lower four bits. Free the previous 6125 * stopper carrier. 6126 */ 6127 free_carrp = asc_dvc->irq_sp; 6128 asc_dvc->irq_sp = adv_get_carrier(asc_dvc, 6129 ADV_GET_CARRP(irq_next_vpa)); 6130 6131 free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va; 6132 asc_dvc->carr_freelist = free_carrp; 6133 asc_dvc->carr_pending_cnt--; 6134 6135 /* 6136 * Clear request microcode control flag. 6137 */ 6138 scsiq->cntl = 0; 6139 6140 /* 6141 * Notify the driver of the completed request by passing 6142 * the ADV_SCSI_REQ_Q pointer to its callback function. 6143 */ 6144 adv_isr_callback(asc_dvc, scsiq); 6145 /* 6146 * Note: After the driver callback function is called, 'scsiq' 6147 * can no longer be referenced. 6148 * 6149 * Fall through and continue processing other completed 6150 * requests... 6151 */ 6152 } 6153 return ADV_TRUE; 6154 } 6155 6156 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code) 6157 { 6158 if (asc_dvc->err_code == 0) { 6159 asc_dvc->err_code = err_code; 6160 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W, 6161 err_code); 6162 } 6163 return err_code; 6164 } 6165 6166 static void AscAckInterrupt(PortAddr iop_base) 6167 { 6168 uchar host_flag; 6169 uchar risc_flag; 6170 ushort loop; 6171 6172 loop = 0; 6173 do { 6174 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B); 6175 if (loop++ > 0x7FFF) { 6176 break; 6177 } 6178 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0); 6179 host_flag = 6180 AscReadLramByte(iop_base, 6181 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT); 6182 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, 6183 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT)); 6184 AscSetChipStatus(iop_base, CIW_INT_ACK); 6185 loop = 0; 6186 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) { 6187 AscSetChipStatus(iop_base, CIW_INT_ACK); 6188 if (loop++ > 3) { 6189 break; 6190 } 6191 } 6192 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); 6193 } 6194 6195 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time) 6196 { 6197 const uchar *period_table; 6198 int max_index; 6199 int min_index; 6200 int i; 6201 6202 period_table = asc_dvc->sdtr_period_tbl; 6203 max_index = (int)asc_dvc->max_sdtr_index; 6204 min_index = (int)asc_dvc->min_sdtr_index; 6205 if ((syn_time <= period_table[max_index])) { 6206 for (i = min_index; i < (max_index - 1); i++) { 6207 if (syn_time <= period_table[i]) { 6208 return (uchar)i; 6209 } 6210 } 6211 return (uchar)max_index; 6212 } else { 6213 return (uchar)(max_index + 1); 6214 } 6215 } 6216 6217 static uchar 6218 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset) 6219 { 6220 PortAddr iop_base = asc_dvc->iop_base; 6221 uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period); 6222 EXT_MSG sdtr_buf = { 6223 .msg_type = EXTENDED_MESSAGE, 6224 .msg_len = MS_SDTR_LEN, 6225 .msg_req = EXTENDED_SDTR, 6226 .xfer_period = sdtr_period, 6227 .req_ack_offset = sdtr_offset, 6228 }; 6229 sdtr_offset &= ASC_SYN_MAX_OFFSET; 6230 6231 if (sdtr_period_index <= asc_dvc->max_sdtr_index) { 6232 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, 6233 (uchar *)&sdtr_buf, 6234 sizeof(EXT_MSG) >> 1); 6235 return ((sdtr_period_index << 4) | sdtr_offset); 6236 } else { 6237 sdtr_buf.req_ack_offset = 0; 6238 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, 6239 (uchar *)&sdtr_buf, 6240 sizeof(EXT_MSG) >> 1); 6241 return 0; 6242 } 6243 } 6244 6245 static uchar 6246 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset) 6247 { 6248 uchar byte; 6249 uchar sdtr_period_ix; 6250 6251 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period); 6252 if (sdtr_period_ix > asc_dvc->max_sdtr_index) 6253 return 0xFF; 6254 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET); 6255 return byte; 6256 } 6257 6258 static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data) 6259 { 6260 ASC_SCSI_BIT_ID_TYPE org_id; 6261 int i; 6262 bool sta = true; 6263 6264 AscSetBank(iop_base, 1); 6265 org_id = AscReadChipDvcID(iop_base); 6266 for (i = 0; i <= ASC_MAX_TID; i++) { 6267 if (org_id == (0x01 << i)) 6268 break; 6269 } 6270 org_id = (ASC_SCSI_BIT_ID_TYPE) i; 6271 AscWriteChipDvcID(iop_base, id); 6272 if (AscReadChipDvcID(iop_base) == (0x01 << id)) { 6273 AscSetBank(iop_base, 0); 6274 AscSetChipSyn(iop_base, sdtr_data); 6275 if (AscGetChipSyn(iop_base) != sdtr_data) { 6276 sta = false; 6277 } 6278 } else { 6279 sta = false; 6280 } 6281 AscSetBank(iop_base, 1); 6282 AscWriteChipDvcID(iop_base, org_id); 6283 AscSetBank(iop_base, 0); 6284 return (sta); 6285 } 6286 6287 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no) 6288 { 6289 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); 6290 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data); 6291 } 6292 6293 static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc) 6294 { 6295 EXT_MSG ext_msg; 6296 EXT_MSG out_msg; 6297 ushort halt_q_addr; 6298 bool sdtr_accept; 6299 ushort int_halt_code; 6300 ASC_SCSI_BIT_ID_TYPE scsi_busy; 6301 ASC_SCSI_BIT_ID_TYPE target_id; 6302 PortAddr iop_base; 6303 uchar tag_code; 6304 uchar q_status; 6305 uchar halt_qp; 6306 uchar sdtr_data; 6307 uchar target_ix; 6308 uchar q_cntl, tid_no; 6309 uchar cur_dvc_qng; 6310 uchar asyn_sdtr; 6311 uchar scsi_status; 6312 struct asc_board *boardp; 6313 6314 BUG_ON(!asc_dvc->drv_ptr); 6315 boardp = asc_dvc->drv_ptr; 6316 6317 iop_base = asc_dvc->iop_base; 6318 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W); 6319 6320 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B); 6321 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp); 6322 target_ix = AscReadLramByte(iop_base, 6323 (ushort)(halt_q_addr + 6324 (ushort)ASC_SCSIQ_B_TARGET_IX)); 6325 q_cntl = AscReadLramByte(iop_base, 6326 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL)); 6327 tid_no = ASC_TIX_TO_TID(target_ix); 6328 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no); 6329 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6330 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB; 6331 } else { 6332 asyn_sdtr = 0; 6333 } 6334 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) { 6335 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6336 AscSetChipSDTR(iop_base, 0, tid_no); 6337 boardp->sdtr_data[tid_no] = 0; 6338 } 6339 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6340 return; 6341 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) { 6342 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6343 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6344 boardp->sdtr_data[tid_no] = asyn_sdtr; 6345 } 6346 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6347 return; 6348 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) { 6349 AscMemWordCopyPtrFromLram(iop_base, 6350 ASCV_MSGIN_BEG, 6351 (uchar *)&ext_msg, 6352 sizeof(EXT_MSG) >> 1); 6353 6354 if (ext_msg.msg_type == EXTENDED_MESSAGE && 6355 ext_msg.msg_req == EXTENDED_SDTR && 6356 ext_msg.msg_len == MS_SDTR_LEN) { 6357 sdtr_accept = true; 6358 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) { 6359 6360 sdtr_accept = false; 6361 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET; 6362 } 6363 if ((ext_msg.xfer_period < 6364 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index]) 6365 || (ext_msg.xfer_period > 6366 asc_dvc->sdtr_period_tbl[asc_dvc-> 6367 max_sdtr_index])) { 6368 sdtr_accept = false; 6369 ext_msg.xfer_period = 6370 asc_dvc->sdtr_period_tbl[asc_dvc-> 6371 min_sdtr_index]; 6372 } 6373 if (sdtr_accept) { 6374 sdtr_data = 6375 AscCalSDTRData(asc_dvc, ext_msg.xfer_period, 6376 ext_msg.req_ack_offset); 6377 if (sdtr_data == 0xFF) { 6378 6379 q_cntl |= QC_MSG_OUT; 6380 asc_dvc->init_sdtr &= ~target_id; 6381 asc_dvc->sdtr_done &= ~target_id; 6382 AscSetChipSDTR(iop_base, asyn_sdtr, 6383 tid_no); 6384 boardp->sdtr_data[tid_no] = asyn_sdtr; 6385 } 6386 } 6387 if (ext_msg.req_ack_offset == 0) { 6388 6389 q_cntl &= ~QC_MSG_OUT; 6390 asc_dvc->init_sdtr &= ~target_id; 6391 asc_dvc->sdtr_done &= ~target_id; 6392 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6393 } else { 6394 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) { 6395 q_cntl &= ~QC_MSG_OUT; 6396 asc_dvc->sdtr_done |= target_id; 6397 asc_dvc->init_sdtr |= target_id; 6398 asc_dvc->pci_fix_asyn_xfer &= 6399 ~target_id; 6400 sdtr_data = 6401 AscCalSDTRData(asc_dvc, 6402 ext_msg.xfer_period, 6403 ext_msg. 6404 req_ack_offset); 6405 AscSetChipSDTR(iop_base, sdtr_data, 6406 tid_no); 6407 boardp->sdtr_data[tid_no] = sdtr_data; 6408 } else { 6409 q_cntl |= QC_MSG_OUT; 6410 AscMsgOutSDTR(asc_dvc, 6411 ext_msg.xfer_period, 6412 ext_msg.req_ack_offset); 6413 asc_dvc->pci_fix_asyn_xfer &= 6414 ~target_id; 6415 sdtr_data = 6416 AscCalSDTRData(asc_dvc, 6417 ext_msg.xfer_period, 6418 ext_msg. 6419 req_ack_offset); 6420 AscSetChipSDTR(iop_base, sdtr_data, 6421 tid_no); 6422 boardp->sdtr_data[tid_no] = sdtr_data; 6423 asc_dvc->sdtr_done |= target_id; 6424 asc_dvc->init_sdtr |= target_id; 6425 } 6426 } 6427 6428 AscWriteLramByte(iop_base, 6429 (ushort)(halt_q_addr + 6430 (ushort)ASC_SCSIQ_B_CNTL), 6431 q_cntl); 6432 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6433 return; 6434 } else if (ext_msg.msg_type == EXTENDED_MESSAGE && 6435 ext_msg.msg_req == EXTENDED_WDTR && 6436 ext_msg.msg_len == MS_WDTR_LEN) { 6437 6438 ext_msg.wdtr_width = 0; 6439 AscMemWordCopyPtrToLram(iop_base, 6440 ASCV_MSGOUT_BEG, 6441 (uchar *)&ext_msg, 6442 sizeof(EXT_MSG) >> 1); 6443 q_cntl |= QC_MSG_OUT; 6444 AscWriteLramByte(iop_base, 6445 (ushort)(halt_q_addr + 6446 (ushort)ASC_SCSIQ_B_CNTL), 6447 q_cntl); 6448 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6449 return; 6450 } else { 6451 6452 ext_msg.msg_type = MESSAGE_REJECT; 6453 AscMemWordCopyPtrToLram(iop_base, 6454 ASCV_MSGOUT_BEG, 6455 (uchar *)&ext_msg, 6456 sizeof(EXT_MSG) >> 1); 6457 q_cntl |= QC_MSG_OUT; 6458 AscWriteLramByte(iop_base, 6459 (ushort)(halt_q_addr + 6460 (ushort)ASC_SCSIQ_B_CNTL), 6461 q_cntl); 6462 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6463 return; 6464 } 6465 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) { 6466 6467 q_cntl |= QC_REQ_SENSE; 6468 6469 if ((asc_dvc->init_sdtr & target_id) != 0) { 6470 6471 asc_dvc->sdtr_done &= ~target_id; 6472 6473 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 6474 q_cntl |= QC_MSG_OUT; 6475 AscMsgOutSDTR(asc_dvc, 6476 asc_dvc-> 6477 sdtr_period_tbl[(sdtr_data >> 4) & 6478 (uchar)(asc_dvc-> 6479 max_sdtr_index - 6480 1)], 6481 (uchar)(sdtr_data & (uchar) 6482 ASC_SYN_MAX_OFFSET)); 6483 } 6484 6485 AscWriteLramByte(iop_base, 6486 (ushort)(halt_q_addr + 6487 (ushort)ASC_SCSIQ_B_CNTL), q_cntl); 6488 6489 tag_code = AscReadLramByte(iop_base, 6490 (ushort)(halt_q_addr + (ushort) 6491 ASC_SCSIQ_B_TAG_CODE)); 6492 tag_code &= 0xDC; 6493 if ((asc_dvc->pci_fix_asyn_xfer & target_id) 6494 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id) 6495 ) { 6496 6497 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT 6498 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX); 6499 6500 } 6501 AscWriteLramByte(iop_base, 6502 (ushort)(halt_q_addr + 6503 (ushort)ASC_SCSIQ_B_TAG_CODE), 6504 tag_code); 6505 6506 q_status = AscReadLramByte(iop_base, 6507 (ushort)(halt_q_addr + (ushort) 6508 ASC_SCSIQ_B_STATUS)); 6509 q_status |= (QS_READY | QS_BUSY); 6510 AscWriteLramByte(iop_base, 6511 (ushort)(halt_q_addr + 6512 (ushort)ASC_SCSIQ_B_STATUS), 6513 q_status); 6514 6515 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B); 6516 scsi_busy &= ~target_id; 6517 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy); 6518 6519 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6520 return; 6521 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) { 6522 6523 AscMemWordCopyPtrFromLram(iop_base, 6524 ASCV_MSGOUT_BEG, 6525 (uchar *)&out_msg, 6526 sizeof(EXT_MSG) >> 1); 6527 6528 if ((out_msg.msg_type == EXTENDED_MESSAGE) && 6529 (out_msg.msg_len == MS_SDTR_LEN) && 6530 (out_msg.msg_req == EXTENDED_SDTR)) { 6531 6532 asc_dvc->init_sdtr &= ~target_id; 6533 asc_dvc->sdtr_done &= ~target_id; 6534 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6535 boardp->sdtr_data[tid_no] = asyn_sdtr; 6536 } 6537 q_cntl &= ~QC_MSG_OUT; 6538 AscWriteLramByte(iop_base, 6539 (ushort)(halt_q_addr + 6540 (ushort)ASC_SCSIQ_B_CNTL), q_cntl); 6541 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6542 return; 6543 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) { 6544 6545 scsi_status = AscReadLramByte(iop_base, 6546 (ushort)((ushort)halt_q_addr + 6547 (ushort) 6548 ASC_SCSIQ_SCSI_STATUS)); 6549 cur_dvc_qng = 6550 AscReadLramByte(iop_base, 6551 (ushort)((ushort)ASC_QADR_BEG + 6552 (ushort)target_ix)); 6553 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) { 6554 6555 scsi_busy = AscReadLramByte(iop_base, 6556 (ushort)ASCV_SCSIBUSY_B); 6557 scsi_busy |= target_id; 6558 AscWriteLramByte(iop_base, 6559 (ushort)ASCV_SCSIBUSY_B, scsi_busy); 6560 asc_dvc->queue_full_or_busy |= target_id; 6561 6562 if (scsi_status == SAM_STAT_TASK_SET_FULL) { 6563 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) { 6564 cur_dvc_qng -= 1; 6565 asc_dvc->max_dvc_qng[tid_no] = 6566 cur_dvc_qng; 6567 6568 AscWriteLramByte(iop_base, 6569 (ushort)((ushort) 6570 ASCV_MAX_DVC_QNG_BEG 6571 + (ushort) 6572 tid_no), 6573 cur_dvc_qng); 6574 6575 /* 6576 * Set the device queue depth to the 6577 * number of active requests when the 6578 * QUEUE FULL condition was encountered. 6579 */ 6580 boardp->queue_full |= target_id; 6581 boardp->queue_full_cnt[tid_no] = 6582 cur_dvc_qng; 6583 } 6584 } 6585 } 6586 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6587 return; 6588 } 6589 return; 6590 } 6591 6592 /* 6593 * void 6594 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) 6595 * 6596 * Calling/Exit State: 6597 * none 6598 * 6599 * Description: 6600 * Input an ASC_QDONE_INFO structure from the chip 6601 */ 6602 static void 6603 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) 6604 { 6605 int i; 6606 ushort word; 6607 6608 AscSetChipLramAddr(iop_base, s_addr); 6609 for (i = 0; i < 2 * words; i += 2) { 6610 if (i == 10) { 6611 continue; 6612 } 6613 word = inpw(iop_base + IOP_RAM_DATA); 6614 inbuf[i] = word & 0xff; 6615 inbuf[i + 1] = (word >> 8) & 0xff; 6616 } 6617 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words); 6618 } 6619 6620 static uchar 6621 _AscCopyLramScsiDoneQ(PortAddr iop_base, 6622 ushort q_addr, 6623 ASC_QDONE_INFO *scsiq, unsigned int max_dma_count) 6624 { 6625 ushort _val; 6626 uchar sg_queue_cnt; 6627 6628 DvcGetQinfo(iop_base, 6629 q_addr + ASC_SCSIQ_DONE_INFO_BEG, 6630 (uchar *)scsiq, 6631 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2); 6632 6633 _val = AscReadLramWord(iop_base, 6634 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS)); 6635 scsiq->q_status = (uchar)_val; 6636 scsiq->q_no = (uchar)(_val >> 8); 6637 _val = AscReadLramWord(iop_base, 6638 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL)); 6639 scsiq->cntl = (uchar)_val; 6640 sg_queue_cnt = (uchar)(_val >> 8); 6641 _val = AscReadLramWord(iop_base, 6642 (ushort)(q_addr + 6643 (ushort)ASC_SCSIQ_B_SENSE_LEN)); 6644 scsiq->sense_len = (uchar)_val; 6645 scsiq->extra_bytes = (uchar)(_val >> 8); 6646 6647 /* 6648 * Read high word of remain bytes from alternate location. 6649 */ 6650 scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base, 6651 (ushort)(q_addr + 6652 (ushort) 6653 ASC_SCSIQ_W_ALT_DC1))) 6654 << 16); 6655 /* 6656 * Read low word of remain bytes from original location. 6657 */ 6658 scsiq->remain_bytes += AscReadLramWord(iop_base, 6659 (ushort)(q_addr + (ushort) 6660 ASC_SCSIQ_DW_REMAIN_XFER_CNT)); 6661 6662 scsiq->remain_bytes &= max_dma_count; 6663 return sg_queue_cnt; 6664 } 6665 6666 /* 6667 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR(). 6668 * 6669 * Interrupt callback function for the Narrow SCSI Asc Library. 6670 */ 6671 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep) 6672 { 6673 struct asc_board *boardp = asc_dvc_varp->drv_ptr; 6674 u32 srb_tag; 6675 struct scsi_cmnd *scp; 6676 6677 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep); 6678 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep); 6679 6680 /* 6681 * Decrease the srb_tag by 1 to find the SCSI command 6682 */ 6683 srb_tag = qdonep->d2.srb_tag - 1; 6684 scp = scsi_host_find_tag(boardp->shost, srb_tag); 6685 if (!scp) 6686 return; 6687 6688 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); 6689 6690 ASC_STATS(boardp->shost, callback); 6691 6692 dma_unmap_single(boardp->dev, advansys_cmd(scp)->dma_handle, 6693 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 6694 /* 6695 * 'qdonep' contains the command's ending status. 6696 */ 6697 scp->result = 0; 6698 switch (qdonep->d3.done_stat) { 6699 case QD_NO_ERROR: 6700 ASC_DBG(2, "QD_NO_ERROR\n"); 6701 6702 /* 6703 * Check for an underrun condition. 6704 * 6705 * If there was no error and an underrun condition, then 6706 * return the number of underrun bytes. 6707 */ 6708 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 && 6709 qdonep->remain_bytes <= scsi_bufflen(scp)) { 6710 ASC_DBG(1, "underrun condition %u bytes\n", 6711 (unsigned)qdonep->remain_bytes); 6712 scsi_set_resid(scp, qdonep->remain_bytes); 6713 } 6714 break; 6715 6716 case QD_WITH_ERROR: 6717 ASC_DBG(2, "QD_WITH_ERROR\n"); 6718 switch (qdonep->d3.host_stat) { 6719 case QHSTA_NO_ERROR: 6720 set_status_byte(scp, qdonep->d3.scsi_stat); 6721 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) { 6722 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); 6723 ASC_DBG_PRT_SENSE(2, scp->sense_buffer, 6724 SCSI_SENSE_BUFFERSIZE); 6725 } 6726 break; 6727 6728 default: 6729 /* QHSTA error occurred */ 6730 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat); 6731 set_host_byte(scp, DID_BAD_TARGET); 6732 break; 6733 } 6734 break; 6735 6736 case QD_ABORTED_BY_HOST: 6737 ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); 6738 set_status_byte(scp, qdonep->d3.scsi_stat); 6739 set_host_byte(scp, DID_ABORT); 6740 break; 6741 6742 default: 6743 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat); 6744 set_status_byte(scp, qdonep->d3.scsi_stat); 6745 set_host_byte(scp, DID_ERROR); 6746 break; 6747 } 6748 6749 /* 6750 * If the 'init_tidmask' bit isn't already set for the target and the 6751 * current request finished normally, then set the bit for the target 6752 * to indicate that a device is present. 6753 */ 6754 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && 6755 qdonep->d3.done_stat == QD_NO_ERROR && 6756 qdonep->d3.host_stat == QHSTA_NO_ERROR) { 6757 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); 6758 } 6759 6760 asc_scsi_done(scp); 6761 } 6762 6763 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc) 6764 { 6765 uchar next_qp; 6766 uchar n_q_used; 6767 uchar sg_list_qp; 6768 uchar sg_queue_cnt; 6769 uchar q_cnt; 6770 uchar done_q_tail; 6771 uchar tid_no; 6772 ASC_SCSI_BIT_ID_TYPE scsi_busy; 6773 ASC_SCSI_BIT_ID_TYPE target_id; 6774 PortAddr iop_base; 6775 ushort q_addr; 6776 ushort sg_q_addr; 6777 uchar cur_target_qng; 6778 ASC_QDONE_INFO scsiq_buf; 6779 ASC_QDONE_INFO *scsiq; 6780 bool false_overrun; 6781 6782 iop_base = asc_dvc->iop_base; 6783 n_q_used = 1; 6784 scsiq = (ASC_QDONE_INFO *)&scsiq_buf; 6785 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base); 6786 q_addr = ASC_QNO_TO_QADDR(done_q_tail); 6787 next_qp = AscReadLramByte(iop_base, 6788 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD)); 6789 if (next_qp != ASC_QLINK_END) { 6790 AscPutVarDoneQTail(iop_base, next_qp); 6791 q_addr = ASC_QNO_TO_QADDR(next_qp); 6792 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq, 6793 asc_dvc->max_dma_count); 6794 AscWriteLramByte(iop_base, 6795 (ushort)(q_addr + 6796 (ushort)ASC_SCSIQ_B_STATUS), 6797 (uchar)(scsiq-> 6798 q_status & (uchar)~(QS_READY | 6799 QS_ABORTED))); 6800 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix); 6801 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix); 6802 if ((scsiq->cntl & QC_SG_HEAD) != 0) { 6803 sg_q_addr = q_addr; 6804 sg_list_qp = next_qp; 6805 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) { 6806 sg_list_qp = AscReadLramByte(iop_base, 6807 (ushort)(sg_q_addr 6808 + (ushort) 6809 ASC_SCSIQ_B_FWD)); 6810 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp); 6811 if (sg_list_qp == ASC_QLINK_END) { 6812 AscSetLibErrorCode(asc_dvc, 6813 ASCQ_ERR_SG_Q_LINKS); 6814 scsiq->d3.done_stat = QD_WITH_ERROR; 6815 scsiq->d3.host_stat = 6816 QHSTA_D_QDONE_SG_LIST_CORRUPTED; 6817 goto FATAL_ERR_QDONE; 6818 } 6819 AscWriteLramByte(iop_base, 6820 (ushort)(sg_q_addr + (ushort) 6821 ASC_SCSIQ_B_STATUS), 6822 QS_FREE); 6823 } 6824 n_q_used = sg_queue_cnt + 1; 6825 AscPutVarDoneQTail(iop_base, sg_list_qp); 6826 } 6827 if (asc_dvc->queue_full_or_busy & target_id) { 6828 cur_target_qng = AscReadLramByte(iop_base, 6829 (ushort)((ushort) 6830 ASC_QADR_BEG 6831 + (ushort) 6832 scsiq->d2. 6833 target_ix)); 6834 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) { 6835 scsi_busy = AscReadLramByte(iop_base, (ushort) 6836 ASCV_SCSIBUSY_B); 6837 scsi_busy &= ~target_id; 6838 AscWriteLramByte(iop_base, 6839 (ushort)ASCV_SCSIBUSY_B, 6840 scsi_busy); 6841 asc_dvc->queue_full_or_busy &= ~target_id; 6842 } 6843 } 6844 if (asc_dvc->cur_total_qng >= n_q_used) { 6845 asc_dvc->cur_total_qng -= n_q_used; 6846 if (asc_dvc->cur_dvc_qng[tid_no] != 0) { 6847 asc_dvc->cur_dvc_qng[tid_no]--; 6848 } 6849 } else { 6850 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG); 6851 scsiq->d3.done_stat = QD_WITH_ERROR; 6852 goto FATAL_ERR_QDONE; 6853 } 6854 if ((scsiq->d2.srb_tag == 0UL) || 6855 ((scsiq->q_status & QS_ABORTED) != 0)) { 6856 return (0x11); 6857 } else if (scsiq->q_status == QS_DONE) { 6858 /* 6859 * This is also curious. 6860 * false_overrun will _always_ be set to 'false' 6861 */ 6862 false_overrun = false; 6863 if (scsiq->extra_bytes != 0) { 6864 scsiq->remain_bytes += scsiq->extra_bytes; 6865 } 6866 if (scsiq->d3.done_stat == QD_WITH_ERROR) { 6867 if (scsiq->d3.host_stat == 6868 QHSTA_M_DATA_OVER_RUN) { 6869 if ((scsiq-> 6870 cntl & (QC_DATA_IN | QC_DATA_OUT)) 6871 == 0) { 6872 scsiq->d3.done_stat = 6873 QD_NO_ERROR; 6874 scsiq->d3.host_stat = 6875 QHSTA_NO_ERROR; 6876 } else if (false_overrun) { 6877 scsiq->d3.done_stat = 6878 QD_NO_ERROR; 6879 scsiq->d3.host_stat = 6880 QHSTA_NO_ERROR; 6881 } 6882 } else if (scsiq->d3.host_stat == 6883 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) { 6884 AscStopChip(iop_base); 6885 AscSetChipControl(iop_base, 6886 (uchar)(CC_SCSI_RESET 6887 | CC_HALT)); 6888 udelay(60); 6889 AscSetChipControl(iop_base, CC_HALT); 6890 AscSetChipStatus(iop_base, 6891 CIW_CLR_SCSI_RESET_INT); 6892 AscSetChipStatus(iop_base, 0); 6893 AscSetChipControl(iop_base, 0); 6894 } 6895 } 6896 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { 6897 asc_isr_callback(asc_dvc, scsiq); 6898 } else { 6899 if ((AscReadLramByte(iop_base, 6900 (ushort)(q_addr + (ushort) 6901 ASC_SCSIQ_CDB_BEG)) 6902 == START_STOP)) { 6903 asc_dvc->unit_not_ready &= ~target_id; 6904 if (scsiq->d3.done_stat != QD_NO_ERROR) { 6905 asc_dvc->start_motor &= 6906 ~target_id; 6907 } 6908 } 6909 } 6910 return (1); 6911 } else { 6912 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS); 6913 FATAL_ERR_QDONE: 6914 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { 6915 asc_isr_callback(asc_dvc, scsiq); 6916 } 6917 return (0x80); 6918 } 6919 } 6920 return (0); 6921 } 6922 6923 static int AscISR(ASC_DVC_VAR *asc_dvc) 6924 { 6925 ASC_CS_TYPE chipstat; 6926 PortAddr iop_base; 6927 ushort saved_ram_addr; 6928 uchar ctrl_reg; 6929 uchar saved_ctrl_reg; 6930 int int_pending; 6931 int status; 6932 uchar host_flag; 6933 6934 iop_base = asc_dvc->iop_base; 6935 int_pending = ASC_FALSE; 6936 6937 if (AscIsIntPending(iop_base) == 0) 6938 return int_pending; 6939 6940 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) { 6941 return ASC_ERROR; 6942 } 6943 if (asc_dvc->in_critical_cnt != 0) { 6944 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL); 6945 return ASC_ERROR; 6946 } 6947 if (asc_dvc->is_in_int) { 6948 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY); 6949 return ASC_ERROR; 6950 } 6951 asc_dvc->is_in_int = true; 6952 ctrl_reg = AscGetChipControl(iop_base); 6953 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET | 6954 CC_SINGLE_STEP | CC_DIAG | CC_TEST)); 6955 chipstat = AscGetChipStatus(iop_base); 6956 if (chipstat & CSW_SCSI_RESET_LATCH) { 6957 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) { 6958 int i = 10; 6959 int_pending = ASC_TRUE; 6960 asc_dvc->sdtr_done = 0; 6961 saved_ctrl_reg &= (uchar)(~CC_HALT); 6962 while ((AscGetChipStatus(iop_base) & 6963 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) { 6964 mdelay(100); 6965 } 6966 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT)); 6967 AscSetChipControl(iop_base, CC_HALT); 6968 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); 6969 AscSetChipStatus(iop_base, 0); 6970 chipstat = AscGetChipStatus(iop_base); 6971 } 6972 } 6973 saved_ram_addr = AscGetChipLramAddr(iop_base); 6974 host_flag = AscReadLramByte(iop_base, 6975 ASCV_HOST_FLAG_B) & 6976 (uchar)(~ASC_HOST_FLAG_IN_ISR); 6977 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, 6978 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR)); 6979 if ((chipstat & CSW_INT_PENDING) || (int_pending)) { 6980 AscAckInterrupt(iop_base); 6981 int_pending = ASC_TRUE; 6982 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) { 6983 AscIsrChipHalted(asc_dvc); 6984 saved_ctrl_reg &= (uchar)(~CC_HALT); 6985 } else { 6986 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) { 6987 while (((status = 6988 AscIsrQDone(asc_dvc)) & 0x01) != 0) { 6989 } 6990 } else { 6991 do { 6992 if ((status = 6993 AscIsrQDone(asc_dvc)) == 1) { 6994 break; 6995 } 6996 } while (status == 0x11); 6997 } 6998 if ((status & 0x80) != 0) 6999 int_pending = ASC_ERROR; 7000 } 7001 } 7002 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); 7003 AscSetChipLramAddr(iop_base, saved_ram_addr); 7004 AscSetChipControl(iop_base, saved_ctrl_reg); 7005 asc_dvc->is_in_int = false; 7006 return int_pending; 7007 } 7008 7009 /* 7010 * advansys_reset() 7011 * 7012 * Reset the host associated with the command 'scp'. 7013 * 7014 * This function runs its own thread. Interrupts must be blocked but 7015 * sleeping is allowed and no locking other than for host structures is 7016 * required. Returns SUCCESS or FAILED. 7017 */ 7018 static int advansys_reset(struct scsi_cmnd *scp) 7019 { 7020 struct Scsi_Host *shost = scp->device->host; 7021 struct asc_board *boardp = shost_priv(shost); 7022 unsigned long flags; 7023 int status; 7024 int ret = SUCCESS; 7025 7026 ASC_DBG(1, "0x%p\n", scp); 7027 7028 ASC_STATS(shost, reset); 7029 7030 scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n"); 7031 7032 if (ASC_NARROW_BOARD(boardp)) { 7033 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; 7034 7035 /* Reset the chip and SCSI bus. */ 7036 ASC_DBG(1, "before AscInitAsc1000Driver()\n"); 7037 status = AscInitAsc1000Driver(asc_dvc); 7038 7039 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */ 7040 if (asc_dvc->err_code || !asc_dvc->overrun_dma) { 7041 scmd_printk(KERN_INFO, scp, "SCSI host reset error: " 7042 "0x%x, status: 0x%x\n", asc_dvc->err_code, 7043 status); 7044 ret = FAILED; 7045 } else if (status) { 7046 scmd_printk(KERN_INFO, scp, "SCSI host reset warning: " 7047 "0x%x\n", status); 7048 } else { 7049 scmd_printk(KERN_INFO, scp, "SCSI host reset " 7050 "successful\n"); 7051 } 7052 7053 ASC_DBG(1, "after AscInitAsc1000Driver()\n"); 7054 } else { 7055 /* 7056 * If the suggest reset bus flags are set, then reset the bus. 7057 * Otherwise only reset the device. 7058 */ 7059 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; 7060 7061 /* 7062 * Reset the chip and SCSI bus. 7063 */ 7064 ASC_DBG(1, "before AdvResetChipAndSB()\n"); 7065 switch (AdvResetChipAndSB(adv_dvc)) { 7066 case ASC_TRUE: 7067 scmd_printk(KERN_INFO, scp, "SCSI host reset " 7068 "successful\n"); 7069 break; 7070 case ASC_FALSE: 7071 default: 7072 scmd_printk(KERN_INFO, scp, "SCSI host reset error\n"); 7073 ret = FAILED; 7074 break; 7075 } 7076 spin_lock_irqsave(shost->host_lock, flags); 7077 AdvISR(adv_dvc); 7078 spin_unlock_irqrestore(shost->host_lock, flags); 7079 } 7080 7081 ASC_DBG(1, "ret %d\n", ret); 7082 7083 return ret; 7084 } 7085 7086 /* 7087 * advansys_biosparam() 7088 * 7089 * Translate disk drive geometry if the "BIOS greater than 1 GB" 7090 * support is enabled for a drive. 7091 * 7092 * ip (information pointer) is an int array with the following definition: 7093 * ip[0]: heads 7094 * ip[1]: sectors 7095 * ip[2]: cylinders 7096 */ 7097 static int 7098 advansys_biosparam(struct scsi_device *sdev, struct gendisk *unused, 7099 sector_t capacity, int ip[]) 7100 { 7101 struct asc_board *boardp = shost_priv(sdev->host); 7102 7103 ASC_DBG(1, "begin\n"); 7104 ASC_STATS(sdev->host, biosparam); 7105 if (ASC_NARROW_BOARD(boardp)) { 7106 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl & 7107 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) { 7108 ip[0] = 255; 7109 ip[1] = 63; 7110 } else { 7111 ip[0] = 64; 7112 ip[1] = 32; 7113 } 7114 } else { 7115 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl & 7116 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) { 7117 ip[0] = 255; 7118 ip[1] = 63; 7119 } else { 7120 ip[0] = 64; 7121 ip[1] = 32; 7122 } 7123 } 7124 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]); 7125 ASC_DBG(1, "end\n"); 7126 return 0; 7127 } 7128 7129 /* 7130 * First-level interrupt handler. 7131 * 7132 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host. 7133 */ 7134 static irqreturn_t advansys_interrupt(int irq, void *dev_id) 7135 { 7136 struct Scsi_Host *shost = dev_id; 7137 struct asc_board *boardp = shost_priv(shost); 7138 irqreturn_t result = IRQ_NONE; 7139 unsigned long flags; 7140 7141 ASC_DBG(2, "boardp 0x%p\n", boardp); 7142 spin_lock_irqsave(shost->host_lock, flags); 7143 if (ASC_NARROW_BOARD(boardp)) { 7144 if (AscIsIntPending(shost->io_port)) { 7145 result = IRQ_HANDLED; 7146 ASC_STATS(shost, interrupt); 7147 ASC_DBG(1, "before AscISR()\n"); 7148 AscISR(&boardp->dvc_var.asc_dvc_var); 7149 } 7150 } else { 7151 ASC_DBG(1, "before AdvISR()\n"); 7152 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) { 7153 result = IRQ_HANDLED; 7154 ASC_STATS(shost, interrupt); 7155 } 7156 } 7157 spin_unlock_irqrestore(shost->host_lock, flags); 7158 7159 ASC_DBG(1, "end\n"); 7160 return result; 7161 } 7162 7163 static bool AscHostReqRiscHalt(PortAddr iop_base) 7164 { 7165 int count = 0; 7166 bool sta = false; 7167 uchar saved_stop_code; 7168 7169 if (AscIsChipHalted(iop_base)) 7170 return true; 7171 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B); 7172 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 7173 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP); 7174 do { 7175 if (AscIsChipHalted(iop_base)) { 7176 sta = true; 7177 break; 7178 } 7179 mdelay(100); 7180 } while (count++ < 20); 7181 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code); 7182 return sta; 7183 } 7184 7185 static bool 7186 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data) 7187 { 7188 bool sta = false; 7189 7190 if (AscHostReqRiscHalt(iop_base)) { 7191 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); 7192 AscStartChip(iop_base); 7193 } 7194 return sta; 7195 } 7196 7197 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev) 7198 { 7199 char type = sdev->type; 7200 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id; 7201 7202 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN)) 7203 return; 7204 if (asc_dvc->init_sdtr & tid_bits) 7205 return; 7206 7207 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0)) 7208 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits; 7209 7210 asc_dvc->pci_fix_asyn_xfer |= tid_bits; 7211 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) || 7212 (type == TYPE_ROM) || (type == TYPE_TAPE)) 7213 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits; 7214 7215 if (asc_dvc->pci_fix_asyn_xfer & tid_bits) 7216 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id, 7217 ASYN_SDTR_DATA_FIX_PCI_REV_AB); 7218 } 7219 7220 static void 7221 advansys_narrow_sdev_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc) 7222 { 7223 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id; 7224 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng; 7225 7226 if (sdev->lun == 0) { 7227 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr; 7228 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) { 7229 asc_dvc->init_sdtr |= tid_bit; 7230 } else { 7231 asc_dvc->init_sdtr &= ~tid_bit; 7232 } 7233 7234 if (orig_init_sdtr != asc_dvc->init_sdtr) 7235 AscAsyncFix(asc_dvc, sdev); 7236 } 7237 7238 if (sdev->tagged_supported) { 7239 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) { 7240 if (sdev->lun == 0) { 7241 asc_dvc->cfg->can_tagged_qng |= tid_bit; 7242 asc_dvc->use_tagged_qng |= tid_bit; 7243 } 7244 scsi_change_queue_depth(sdev, 7245 asc_dvc->max_dvc_qng[sdev->id]); 7246 } 7247 } else { 7248 if (sdev->lun == 0) { 7249 asc_dvc->cfg->can_tagged_qng &= ~tid_bit; 7250 asc_dvc->use_tagged_qng &= ~tid_bit; 7251 } 7252 } 7253 7254 if ((sdev->lun == 0) && 7255 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) { 7256 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B, 7257 asc_dvc->cfg->disc_enable); 7258 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B, 7259 asc_dvc->use_tagged_qng); 7260 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B, 7261 asc_dvc->cfg->can_tagged_qng); 7262 7263 asc_dvc->max_dvc_qng[sdev->id] = 7264 asc_dvc->cfg->max_tag_qng[sdev->id]; 7265 AscWriteLramByte(asc_dvc->iop_base, 7266 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id), 7267 asc_dvc->max_dvc_qng[sdev->id]); 7268 } 7269 } 7270 7271 /* 7272 * Wide Transfers 7273 * 7274 * If the EEPROM enabled WDTR for the device and the device supports wide 7275 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and 7276 * write the new value to the microcode. 7277 */ 7278 static void 7279 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask) 7280 { 7281 unsigned short cfg_word; 7282 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); 7283 if ((cfg_word & tidmask) != 0) 7284 return; 7285 7286 cfg_word |= tidmask; 7287 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); 7288 7289 /* 7290 * Clear the microcode SDTR and WDTR negotiation done indicators for 7291 * the target to cause it to negotiate with the new setting set above. 7292 * WDTR when accepted causes the target to enter asynchronous mode, so 7293 * SDTR must be negotiated. 7294 */ 7295 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7296 cfg_word &= ~tidmask; 7297 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7298 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); 7299 cfg_word &= ~tidmask; 7300 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); 7301 } 7302 7303 /* 7304 * Synchronous Transfers 7305 * 7306 * If the EEPROM enabled SDTR for the device and the device 7307 * supports synchronous transfers, then turn on the device's 7308 * 'sdtr_able' bit. Write the new value to the microcode. 7309 */ 7310 static void 7311 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask) 7312 { 7313 unsigned short cfg_word; 7314 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); 7315 if ((cfg_word & tidmask) != 0) 7316 return; 7317 7318 cfg_word |= tidmask; 7319 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); 7320 7321 /* 7322 * Clear the microcode "SDTR negotiation" done indicator for the 7323 * target to cause it to negotiate with the new setting set above. 7324 */ 7325 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7326 cfg_word &= ~tidmask; 7327 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7328 } 7329 7330 /* 7331 * PPR (Parallel Protocol Request) Capable 7332 * 7333 * If the device supports DT mode, then it must be PPR capable. 7334 * The PPR message will be used in place of the SDTR and WDTR 7335 * messages to negotiate synchronous speed and offset, transfer 7336 * width, and protocol options. 7337 */ 7338 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc, 7339 AdvPortAddr iop_base, unsigned short tidmask) 7340 { 7341 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); 7342 adv_dvc->ppr_able |= tidmask; 7343 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); 7344 } 7345 7346 static void 7347 advansys_wide_sdev_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc) 7348 { 7349 AdvPortAddr iop_base = adv_dvc->iop_base; 7350 unsigned short tidmask = 1 << sdev->id; 7351 7352 if (sdev->lun == 0) { 7353 /* 7354 * Handle WDTR, SDTR, and Tag Queuing. If the feature 7355 * is enabled in the EEPROM and the device supports the 7356 * feature, then enable it in the microcode. 7357 */ 7358 7359 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr) 7360 advansys_wide_enable_wdtr(iop_base, tidmask); 7361 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr) 7362 advansys_wide_enable_sdtr(iop_base, tidmask); 7363 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr) 7364 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask); 7365 7366 /* 7367 * Tag Queuing is disabled for the BIOS which runs in polled 7368 * mode and would see no benefit from Tag Queuing. Also by 7369 * disabling Tag Queuing in the BIOS devices with Tag Queuing 7370 * bugs will at least work with the BIOS. 7371 */ 7372 if ((adv_dvc->tagqng_able & tidmask) && 7373 sdev->tagged_supported) { 7374 unsigned short cfg_word; 7375 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word); 7376 cfg_word |= tidmask; 7377 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 7378 cfg_word); 7379 AdvWriteByteLram(iop_base, 7380 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id, 7381 adv_dvc->max_dvc_qng); 7382 } 7383 } 7384 7385 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) 7386 scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng); 7387 } 7388 7389 /* 7390 * Set the number of commands to queue per device for the 7391 * specified host adapter. 7392 */ 7393 static int advansys_sdev_configure(struct scsi_device *sdev, 7394 struct queue_limits *lim) 7395 { 7396 struct asc_board *boardp = shost_priv(sdev->host); 7397 7398 if (ASC_NARROW_BOARD(boardp)) 7399 advansys_narrow_sdev_configure(sdev, 7400 &boardp->dvc_var.asc_dvc_var); 7401 else 7402 advansys_wide_sdev_configure(sdev, 7403 &boardp->dvc_var.adv_dvc_var); 7404 7405 return 0; 7406 } 7407 7408 static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp) 7409 { 7410 struct asc_board *board = shost_priv(scp->device->host); 7411 struct advansys_cmd *acmd = advansys_cmd(scp); 7412 7413 acmd->dma_handle = dma_map_single(board->dev, scp->sense_buffer, 7414 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 7415 if (dma_mapping_error(board->dev, acmd->dma_handle)) { 7416 ASC_DBG(1, "failed to map sense buffer\n"); 7417 return 0; 7418 } 7419 return cpu_to_le32(acmd->dma_handle); 7420 } 7421 7422 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, 7423 struct asc_scsi_q *asc_scsi_q) 7424 { 7425 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var; 7426 int use_sg; 7427 u32 srb_tag; 7428 7429 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q)); 7430 7431 /* 7432 * Set the srb_tag to the command tag + 1, as 7433 * srb_tag '0' is used internally by the chip. 7434 */ 7435 srb_tag = scsi_cmd_to_rq(scp)->tag + 1; 7436 asc_scsi_q->q2.srb_tag = srb_tag; 7437 7438 /* 7439 * Build the ASC_SCSI_Q request. 7440 */ 7441 asc_scsi_q->cdbptr = &scp->cmnd[0]; 7442 asc_scsi_q->q2.cdb_len = scp->cmd_len; 7443 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id); 7444 asc_scsi_q->q1.target_lun = scp->device->lun; 7445 asc_scsi_q->q2.target_ix = 7446 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun); 7447 asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp); 7448 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE; 7449 if (!asc_scsi_q->q1.sense_addr) 7450 return ASC_BUSY; 7451 7452 /* 7453 * If there are any outstanding requests for the current target, 7454 * then every 255th request send an ORDERED request. This heuristic 7455 * tries to retain the benefit of request sorting while preventing 7456 * request starvation. 255 is the max number of tags or pending commands 7457 * a device may have outstanding. 7458 * 7459 * The request count is incremented below for every successfully 7460 * started request. 7461 * 7462 */ 7463 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) && 7464 (boardp->reqcnt[scp->device->id] % 255) == 0) { 7465 asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG; 7466 } else { 7467 asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG; 7468 } 7469 7470 /* Build ASC_SCSI_Q */ 7471 use_sg = scsi_dma_map(scp); 7472 if (use_sg < 0) { 7473 ASC_DBG(1, "failed to map sglist\n"); 7474 return ASC_BUSY; 7475 } else if (use_sg > 0) { 7476 int sgcnt; 7477 struct scatterlist *slp; 7478 struct asc_sg_head *asc_sg_head; 7479 7480 if (use_sg > scp->device->host->sg_tablesize) { 7481 scmd_printk(KERN_ERR, scp, "use_sg %d > " 7482 "sg_tablesize %d\n", use_sg, 7483 scp->device->host->sg_tablesize); 7484 scsi_dma_unmap(scp); 7485 set_host_byte(scp, DID_ERROR); 7486 return ASC_ERROR; 7487 } 7488 7489 asc_sg_head = kzalloc(struct_size(asc_sg_head, sg_list, use_sg), 7490 GFP_ATOMIC); 7491 if (!asc_sg_head) { 7492 scsi_dma_unmap(scp); 7493 set_host_byte(scp, DID_SOFT_ERROR); 7494 return ASC_ERROR; 7495 } 7496 7497 asc_scsi_q->q1.cntl |= QC_SG_HEAD; 7498 asc_scsi_q->sg_head = asc_sg_head; 7499 asc_scsi_q->q1.data_cnt = 0; 7500 asc_scsi_q->q1.data_addr = 0; 7501 /* This is a byte value, otherwise it would need to be swapped. */ 7502 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg; 7503 ASC_STATS_ADD(scp->device->host, xfer_elem, 7504 asc_sg_head->entry_cnt); 7505 7506 /* 7507 * Convert scatter-gather list into ASC_SG_HEAD list. 7508 */ 7509 scsi_for_each_sg(scp, slp, use_sg, sgcnt) { 7510 asc_sg_head->sg_list[sgcnt].addr = 7511 cpu_to_le32(sg_dma_address(slp)); 7512 asc_sg_head->sg_list[sgcnt].bytes = 7513 cpu_to_le32(sg_dma_len(slp)); 7514 ASC_STATS_ADD(scp->device->host, xfer_sect, 7515 DIV_ROUND_UP(sg_dma_len(slp), 512)); 7516 } 7517 } 7518 7519 ASC_STATS(scp->device->host, xfer_cnt); 7520 7521 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q); 7522 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); 7523 7524 return ASC_NOERROR; 7525 } 7526 7527 /* 7528 * Build scatter-gather list for Adv Library (Wide Board). 7529 * 7530 * Additional ADV_SG_BLOCK structures will need to be allocated 7531 * if the total number of scatter-gather elements exceeds 7532 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are 7533 * assumed to be physically contiguous. 7534 * 7535 * Return: 7536 * ADV_SUCCESS(1) - SG List successfully created 7537 * ADV_ERROR(-1) - SG List creation failed 7538 */ 7539 static int 7540 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, 7541 ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg) 7542 { 7543 adv_sgblk_t *sgblkp, *prev_sgblkp; 7544 struct scatterlist *slp; 7545 int sg_elem_cnt; 7546 ADV_SG_BLOCK *sg_block, *prev_sg_block; 7547 dma_addr_t sgblk_paddr; 7548 int i; 7549 7550 slp = scsi_sglist(scp); 7551 sg_elem_cnt = use_sg; 7552 prev_sgblkp = NULL; 7553 prev_sg_block = NULL; 7554 reqp->sgblkp = NULL; 7555 7556 for (;;) { 7557 /* 7558 * Allocate a 'adv_sgblk_t' structure from the board free 7559 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK 7560 * (15) scatter-gather elements. 7561 */ 7562 sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC, 7563 &sgblk_paddr); 7564 if (!sgblkp) { 7565 ASC_DBG(1, "no free adv_sgblk_t\n"); 7566 ASC_STATS(scp->device->host, adv_build_nosg); 7567 7568 /* 7569 * Allocation failed. Free 'adv_sgblk_t' structures 7570 * already allocated for the request. 7571 */ 7572 while ((sgblkp = reqp->sgblkp) != NULL) { 7573 /* Remove 'sgblkp' from the request list. */ 7574 reqp->sgblkp = sgblkp->next_sgblkp; 7575 sgblkp->next_sgblkp = NULL; 7576 dma_pool_free(boardp->adv_sgblk_pool, sgblkp, 7577 sgblkp->sg_addr); 7578 } 7579 return ASC_BUSY; 7580 } 7581 /* Complete 'adv_sgblk_t' board allocation. */ 7582 sgblkp->sg_addr = sgblk_paddr; 7583 sgblkp->next_sgblkp = NULL; 7584 sg_block = &sgblkp->sg_block; 7585 7586 /* 7587 * Check if this is the first 'adv_sgblk_t' for the 7588 * request. 7589 */ 7590 if (reqp->sgblkp == NULL) { 7591 /* Request's first scatter-gather block. */ 7592 reqp->sgblkp = sgblkp; 7593 7594 /* 7595 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical 7596 * address pointers. 7597 */ 7598 scsiqp->sg_list_ptr = sg_block; 7599 scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr); 7600 } else { 7601 /* Request's second or later scatter-gather block. */ 7602 prev_sgblkp->next_sgblkp = sgblkp; 7603 7604 /* 7605 * Point the previous ADV_SG_BLOCK structure to 7606 * the newly allocated ADV_SG_BLOCK structure. 7607 */ 7608 prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr); 7609 } 7610 7611 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) { 7612 sg_block->sg_list[i].sg_addr = 7613 cpu_to_le32(sg_dma_address(slp)); 7614 sg_block->sg_list[i].sg_count = 7615 cpu_to_le32(sg_dma_len(slp)); 7616 ASC_STATS_ADD(scp->device->host, xfer_sect, 7617 DIV_ROUND_UP(sg_dma_len(slp), 512)); 7618 7619 if (--sg_elem_cnt == 0) { 7620 /* 7621 * Last ADV_SG_BLOCK and scatter-gather entry. 7622 */ 7623 sg_block->sg_cnt = i + 1; 7624 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */ 7625 return ADV_SUCCESS; 7626 } 7627 slp = sg_next(slp); 7628 } 7629 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK; 7630 prev_sg_block = sg_block; 7631 prev_sgblkp = sgblkp; 7632 } 7633 } 7634 7635 /* 7636 * Build a request structure for the Adv Library (Wide Board). 7637 * 7638 * If an adv_req_t can not be allocated to issue the request, 7639 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR. 7640 * 7641 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the 7642 * microcode for DMA addresses or math operations are byte swapped 7643 * to little-endian order. 7644 */ 7645 static int 7646 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, 7647 adv_req_t **adv_reqpp) 7648 { 7649 u32 srb_tag = scsi_cmd_to_rq(scp)->tag; 7650 adv_req_t *reqp; 7651 ADV_SCSI_REQ_Q *scsiqp; 7652 int ret; 7653 int use_sg; 7654 dma_addr_t sense_addr; 7655 7656 /* 7657 * Allocate an adv_req_t structure from the board to execute 7658 * the command. 7659 */ 7660 reqp = &boardp->adv_reqp[srb_tag]; 7661 if (reqp->cmndp && reqp->cmndp != scp ) { 7662 ASC_DBG(1, "no free adv_req_t\n"); 7663 ASC_STATS(scp->device->host, adv_build_noreq); 7664 return ASC_BUSY; 7665 } 7666 7667 reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t)); 7668 7669 scsiqp = &reqp->scsi_req_q; 7670 7671 /* 7672 * Initialize the structure. 7673 */ 7674 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0; 7675 7676 /* 7677 * Set the srb_tag to the command tag. 7678 */ 7679 scsiqp->srb_tag = srb_tag; 7680 7681 /* 7682 * Set 'host_scribble' to point to the adv_req_t structure. 7683 */ 7684 reqp->cmndp = scp; 7685 scp->host_scribble = (void *)reqp; 7686 7687 /* 7688 * Build the ADV_SCSI_REQ_Q request. 7689 */ 7690 7691 /* Set CDB length and copy it to the request structure. */ 7692 scsiqp->cdb_len = scp->cmd_len; 7693 /* Copy first 12 CDB bytes to cdb[]. */ 7694 memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12); 7695 /* Copy last 4 CDB bytes, if present, to cdb16[]. */ 7696 if (scp->cmd_len > 12) { 7697 int cdb16_len = scp->cmd_len - 12; 7698 7699 memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len); 7700 } 7701 7702 scsiqp->target_id = scp->device->id; 7703 scsiqp->target_lun = scp->device->lun; 7704 7705 sense_addr = dma_map_single(boardp->dev, scp->sense_buffer, 7706 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 7707 if (dma_mapping_error(boardp->dev, sense_addr)) { 7708 ASC_DBG(1, "failed to map sense buffer\n"); 7709 ASC_STATS(scp->device->host, adv_build_noreq); 7710 return ASC_BUSY; 7711 } 7712 scsiqp->sense_addr = cpu_to_le32(sense_addr); 7713 scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE; 7714 7715 /* Build ADV_SCSI_REQ_Q */ 7716 7717 use_sg = scsi_dma_map(scp); 7718 if (use_sg < 0) { 7719 ASC_DBG(1, "failed to map SG list\n"); 7720 ASC_STATS(scp->device->host, adv_build_noreq); 7721 return ASC_BUSY; 7722 } else if (use_sg == 0) { 7723 /* Zero-length transfer */ 7724 reqp->sgblkp = NULL; 7725 scsiqp->data_cnt = 0; 7726 7727 scsiqp->data_addr = 0; 7728 scsiqp->sg_list_ptr = NULL; 7729 scsiqp->sg_real_addr = 0; 7730 } else { 7731 if (use_sg > ADV_MAX_SG_LIST) { 7732 scmd_printk(KERN_ERR, scp, "use_sg %d > " 7733 "ADV_MAX_SG_LIST %d\n", use_sg, 7734 scp->device->host->sg_tablesize); 7735 scsi_dma_unmap(scp); 7736 set_host_byte(scp, DID_ERROR); 7737 reqp->cmndp = NULL; 7738 scp->host_scribble = NULL; 7739 7740 return ASC_ERROR; 7741 } 7742 7743 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp)); 7744 7745 ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg); 7746 if (ret != ADV_SUCCESS) { 7747 scsi_dma_unmap(scp); 7748 set_host_byte(scp, DID_ERROR); 7749 reqp->cmndp = NULL; 7750 scp->host_scribble = NULL; 7751 7752 return ret; 7753 } 7754 7755 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg); 7756 } 7757 7758 ASC_STATS(scp->device->host, xfer_cnt); 7759 7760 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); 7761 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); 7762 7763 *adv_reqpp = reqp; 7764 7765 return ASC_NOERROR; 7766 } 7767 7768 static int AscSgListToQueue(int sg_list) 7769 { 7770 int n_sg_list_qs; 7771 7772 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q); 7773 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0) 7774 n_sg_list_qs++; 7775 return n_sg_list_qs + 1; 7776 } 7777 7778 static uint 7779 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs) 7780 { 7781 uint cur_used_qs; 7782 uint cur_free_qs; 7783 ASC_SCSI_BIT_ID_TYPE target_id; 7784 uchar tid_no; 7785 7786 target_id = ASC_TIX_TO_TARGET_ID(target_ix); 7787 tid_no = ASC_TIX_TO_TID(target_ix); 7788 if ((asc_dvc->unit_not_ready & target_id) || 7789 (asc_dvc->queue_full_or_busy & target_id)) { 7790 return 0; 7791 } 7792 if (n_qs == 1) { 7793 cur_used_qs = (uint) asc_dvc->cur_total_qng + 7794 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q; 7795 } else { 7796 cur_used_qs = (uint) asc_dvc->cur_total_qng + 7797 (uint) ASC_MIN_FREE_Q; 7798 } 7799 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) { 7800 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs; 7801 if (asc_dvc->cur_dvc_qng[tid_no] >= 7802 asc_dvc->max_dvc_qng[tid_no]) { 7803 return 0; 7804 } 7805 return cur_free_qs; 7806 } 7807 if (n_qs > 1) { 7808 if ((n_qs > asc_dvc->last_q_shortage) 7809 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) { 7810 asc_dvc->last_q_shortage = n_qs; 7811 } 7812 } 7813 return 0; 7814 } 7815 7816 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head) 7817 { 7818 ushort q_addr; 7819 uchar next_qp; 7820 uchar q_status; 7821 7822 q_addr = ASC_QNO_TO_QADDR(free_q_head); 7823 q_status = (uchar)AscReadLramByte(iop_base, 7824 (ushort)(q_addr + 7825 ASC_SCSIQ_B_STATUS)); 7826 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD)); 7827 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END)) 7828 return next_qp; 7829 return ASC_QLINK_END; 7830 } 7831 7832 static uchar 7833 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q) 7834 { 7835 uchar i; 7836 7837 for (i = 0; i < n_free_q; i++) { 7838 free_q_head = AscAllocFreeQueue(iop_base, free_q_head); 7839 if (free_q_head == ASC_QLINK_END) 7840 break; 7841 } 7842 return free_q_head; 7843 } 7844 7845 /* 7846 * void 7847 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) 7848 * 7849 * Calling/Exit State: 7850 * none 7851 * 7852 * Description: 7853 * Output an ASC_SCSI_Q structure to the chip 7854 */ 7855 static void 7856 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) 7857 { 7858 int i; 7859 7860 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words); 7861 AscSetChipLramAddr(iop_base, s_addr); 7862 for (i = 0; i < 2 * words; i += 2) { 7863 if (i == 4 || i == 20) { 7864 continue; 7865 } 7866 outpw(iop_base + IOP_RAM_DATA, 7867 ((ushort)outbuf[i + 1] << 8) | outbuf[i]); 7868 } 7869 } 7870 7871 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) 7872 { 7873 ushort q_addr; 7874 uchar tid_no; 7875 uchar sdtr_data; 7876 uchar syn_period_ix; 7877 uchar syn_offset; 7878 PortAddr iop_base; 7879 7880 iop_base = asc_dvc->iop_base; 7881 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) && 7882 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) { 7883 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix); 7884 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 7885 syn_period_ix = 7886 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1); 7887 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET; 7888 AscMsgOutSDTR(asc_dvc, 7889 asc_dvc->sdtr_period_tbl[syn_period_ix], 7890 syn_offset); 7891 scsiq->q1.cntl |= QC_MSG_OUT; 7892 } 7893 q_addr = ASC_QNO_TO_QADDR(q_no); 7894 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) { 7895 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG; 7896 } 7897 scsiq->q1.status = QS_FREE; 7898 AscMemWordCopyPtrToLram(iop_base, 7899 q_addr + ASC_SCSIQ_CDB_BEG, 7900 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1); 7901 7902 DvcPutScsiQ(iop_base, 7903 q_addr + ASC_SCSIQ_CPY_BEG, 7904 (uchar *)&scsiq->q1.cntl, 7905 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1); 7906 AscWriteLramWord(iop_base, 7907 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS), 7908 (ushort)(((ushort)scsiq->q1. 7909 q_no << 8) | (ushort)QS_READY)); 7910 return 1; 7911 } 7912 7913 static int 7914 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) 7915 { 7916 int sta; 7917 int i; 7918 ASC_SG_HEAD *sg_head; 7919 ASC_SG_LIST_Q scsi_sg_q; 7920 __le32 saved_data_addr; 7921 __le32 saved_data_cnt; 7922 PortAddr iop_base; 7923 ushort sg_list_dwords; 7924 ushort sg_index; 7925 ushort sg_entry_cnt; 7926 ushort q_addr; 7927 uchar next_qp; 7928 7929 iop_base = asc_dvc->iop_base; 7930 sg_head = scsiq->sg_head; 7931 saved_data_addr = scsiq->q1.data_addr; 7932 saved_data_cnt = scsiq->q1.data_cnt; 7933 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr); 7934 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes); 7935 /* 7936 * Set sg_entry_cnt to be the number of SG elements that 7937 * will fit in the allocated SG queues. It is minus 1, because 7938 * the first SG element is handled above. 7939 */ 7940 sg_entry_cnt = sg_head->entry_cnt - 1; 7941 7942 if (sg_entry_cnt != 0) { 7943 scsiq->q1.cntl |= QC_SG_HEAD; 7944 q_addr = ASC_QNO_TO_QADDR(q_no); 7945 sg_index = 1; 7946 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt; 7947 scsi_sg_q.sg_head_qp = q_no; 7948 scsi_sg_q.cntl = QCSG_SG_XFER_LIST; 7949 for (i = 0; i < sg_head->queue_cnt; i++) { 7950 scsi_sg_q.seq_no = i + 1; 7951 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { 7952 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2); 7953 sg_entry_cnt -= ASC_SG_LIST_PER_Q; 7954 if (i == 0) { 7955 scsi_sg_q.sg_list_cnt = 7956 ASC_SG_LIST_PER_Q; 7957 scsi_sg_q.sg_cur_list_cnt = 7958 ASC_SG_LIST_PER_Q; 7959 } else { 7960 scsi_sg_q.sg_list_cnt = 7961 ASC_SG_LIST_PER_Q - 1; 7962 scsi_sg_q.sg_cur_list_cnt = 7963 ASC_SG_LIST_PER_Q - 1; 7964 } 7965 } else { 7966 scsi_sg_q.cntl |= QCSG_SG_XFER_END; 7967 sg_list_dwords = sg_entry_cnt << 1; 7968 if (i == 0) { 7969 scsi_sg_q.sg_list_cnt = sg_entry_cnt; 7970 scsi_sg_q.sg_cur_list_cnt = 7971 sg_entry_cnt; 7972 } else { 7973 scsi_sg_q.sg_list_cnt = 7974 sg_entry_cnt - 1; 7975 scsi_sg_q.sg_cur_list_cnt = 7976 sg_entry_cnt - 1; 7977 } 7978 sg_entry_cnt = 0; 7979 } 7980 next_qp = AscReadLramByte(iop_base, 7981 (ushort)(q_addr + 7982 ASC_SCSIQ_B_FWD)); 7983 scsi_sg_q.q_no = next_qp; 7984 q_addr = ASC_QNO_TO_QADDR(next_qp); 7985 AscMemWordCopyPtrToLram(iop_base, 7986 q_addr + ASC_SCSIQ_SGHD_CPY_BEG, 7987 (uchar *)&scsi_sg_q, 7988 sizeof(ASC_SG_LIST_Q) >> 1); 7989 AscMemDWordCopyPtrToLram(iop_base, 7990 q_addr + ASC_SGQ_LIST_BEG, 7991 (uchar *)&sg_head-> 7992 sg_list[sg_index], 7993 sg_list_dwords); 7994 sg_index += ASC_SG_LIST_PER_Q; 7995 scsiq->next_sg_index = sg_index; 7996 } 7997 } else { 7998 scsiq->q1.cntl &= ~QC_SG_HEAD; 7999 } 8000 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no); 8001 scsiq->q1.data_addr = saved_data_addr; 8002 scsiq->q1.data_cnt = saved_data_cnt; 8003 return (sta); 8004 } 8005 8006 static int 8007 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required) 8008 { 8009 PortAddr iop_base; 8010 uchar free_q_head; 8011 uchar next_qp; 8012 uchar tid_no; 8013 uchar target_ix; 8014 int sta; 8015 8016 iop_base = asc_dvc->iop_base; 8017 target_ix = scsiq->q2.target_ix; 8018 tid_no = ASC_TIX_TO_TID(target_ix); 8019 sta = 0; 8020 free_q_head = (uchar)AscGetVarFreeQHead(iop_base); 8021 if (n_q_required > 1) { 8022 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head, 8023 (uchar)n_q_required); 8024 if (next_qp != ASC_QLINK_END) { 8025 asc_dvc->last_q_shortage = 0; 8026 scsiq->sg_head->queue_cnt = n_q_required - 1; 8027 scsiq->q1.q_no = free_q_head; 8028 sta = AscPutReadySgListQueue(asc_dvc, scsiq, 8029 free_q_head); 8030 } 8031 } else if (n_q_required == 1) { 8032 next_qp = AscAllocFreeQueue(iop_base, free_q_head); 8033 if (next_qp != ASC_QLINK_END) { 8034 scsiq->q1.q_no = free_q_head; 8035 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head); 8036 } 8037 } 8038 if (sta == 1) { 8039 AscPutVarFreeQHead(iop_base, next_qp); 8040 asc_dvc->cur_total_qng += n_q_required; 8041 asc_dvc->cur_dvc_qng[tid_no]++; 8042 } 8043 return sta; 8044 } 8045 8046 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16 8047 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = { 8048 INQUIRY, 8049 REQUEST_SENSE, 8050 READ_CAPACITY, 8051 READ_TOC, 8052 MODE_SELECT, 8053 MODE_SENSE, 8054 MODE_SELECT_10, 8055 MODE_SENSE_10, 8056 0xFF, 8057 0xFF, 8058 0xFF, 8059 0xFF, 8060 0xFF, 8061 0xFF, 8062 0xFF, 8063 0xFF 8064 }; 8065 8066 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq) 8067 { 8068 PortAddr iop_base; 8069 int sta; 8070 int n_q_required; 8071 bool disable_syn_offset_one_fix; 8072 int i; 8073 u32 addr; 8074 ushort sg_entry_cnt = 0; 8075 ushort sg_entry_cnt_minus_one = 0; 8076 uchar target_ix; 8077 uchar tid_no; 8078 uchar sdtr_data; 8079 uchar extra_bytes; 8080 uchar scsi_cmd; 8081 uchar disable_cmd; 8082 ASC_SG_HEAD *sg_head; 8083 unsigned long data_cnt; 8084 8085 iop_base = asc_dvc->iop_base; 8086 sg_head = scsiq->sg_head; 8087 if (asc_dvc->err_code != 0) 8088 return ASC_ERROR; 8089 scsiq->q1.q_no = 0; 8090 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) { 8091 scsiq->q1.extra_bytes = 0; 8092 } 8093 sta = 0; 8094 target_ix = scsiq->q2.target_ix; 8095 tid_no = ASC_TIX_TO_TID(target_ix); 8096 n_q_required = 1; 8097 if (scsiq->cdbptr[0] == REQUEST_SENSE) { 8098 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) { 8099 asc_dvc->sdtr_done &= ~scsiq->q1.target_id; 8100 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 8101 AscMsgOutSDTR(asc_dvc, 8102 asc_dvc-> 8103 sdtr_period_tbl[(sdtr_data >> 4) & 8104 (uchar)(asc_dvc-> 8105 max_sdtr_index - 8106 1)], 8107 (uchar)(sdtr_data & (uchar) 8108 ASC_SYN_MAX_OFFSET)); 8109 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT); 8110 } 8111 } 8112 if (asc_dvc->in_critical_cnt != 0) { 8113 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY); 8114 return ASC_ERROR; 8115 } 8116 asc_dvc->in_critical_cnt++; 8117 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { 8118 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) { 8119 asc_dvc->in_critical_cnt--; 8120 return ASC_ERROR; 8121 } 8122 if (sg_entry_cnt > ASC_MAX_SG_LIST) { 8123 asc_dvc->in_critical_cnt--; 8124 return ASC_ERROR; 8125 } 8126 if (sg_entry_cnt == 1) { 8127 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr); 8128 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes); 8129 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE); 8130 } 8131 sg_entry_cnt_minus_one = sg_entry_cnt - 1; 8132 } 8133 scsi_cmd = scsiq->cdbptr[0]; 8134 disable_syn_offset_one_fix = false; 8135 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) && 8136 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) { 8137 if (scsiq->q1.cntl & QC_SG_HEAD) { 8138 data_cnt = 0; 8139 for (i = 0; i < sg_entry_cnt; i++) { 8140 data_cnt += le32_to_cpu(sg_head->sg_list[i]. 8141 bytes); 8142 } 8143 } else { 8144 data_cnt = le32_to_cpu(scsiq->q1.data_cnt); 8145 } 8146 if (data_cnt != 0UL) { 8147 if (data_cnt < 512UL) { 8148 disable_syn_offset_one_fix = true; 8149 } else { 8150 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST; 8151 i++) { 8152 disable_cmd = 8153 _syn_offset_one_disable_cmd[i]; 8154 if (disable_cmd == 0xFF) { 8155 break; 8156 } 8157 if (scsi_cmd == disable_cmd) { 8158 disable_syn_offset_one_fix = 8159 true; 8160 break; 8161 } 8162 } 8163 } 8164 } 8165 } 8166 if (disable_syn_offset_one_fix) { 8167 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG; 8168 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX | 8169 ASC_TAG_FLAG_DISABLE_DISCONNECT); 8170 } else { 8171 scsiq->q2.tag_code &= 0x27; 8172 } 8173 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { 8174 if (asc_dvc->bug_fix_cntl) { 8175 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { 8176 if ((scsi_cmd == READ_6) || 8177 (scsi_cmd == READ_10)) { 8178 addr = le32_to_cpu(sg_head-> 8179 sg_list 8180 [sg_entry_cnt_minus_one]. 8181 addr) + 8182 le32_to_cpu(sg_head-> 8183 sg_list 8184 [sg_entry_cnt_minus_one]. 8185 bytes); 8186 extra_bytes = 8187 (uchar)((ushort)addr & 0x0003); 8188 if ((extra_bytes != 0) 8189 && 8190 ((scsiq->q2. 8191 tag_code & 8192 ASC_TAG_FLAG_EXTRA_BYTES) 8193 == 0)) { 8194 scsiq->q2.tag_code |= 8195 ASC_TAG_FLAG_EXTRA_BYTES; 8196 scsiq->q1.extra_bytes = 8197 extra_bytes; 8198 data_cnt = 8199 le32_to_cpu(sg_head-> 8200 sg_list 8201 [sg_entry_cnt_minus_one]. 8202 bytes); 8203 data_cnt -= extra_bytes; 8204 sg_head-> 8205 sg_list 8206 [sg_entry_cnt_minus_one]. 8207 bytes = 8208 cpu_to_le32(data_cnt); 8209 } 8210 } 8211 } 8212 } 8213 sg_head->entry_to_copy = sg_head->entry_cnt; 8214 n_q_required = AscSgListToQueue(sg_entry_cnt); 8215 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >= 8216 (uint) n_q_required) 8217 || ((scsiq->q1.cntl & QC_URGENT) != 0)) { 8218 if ((sta = 8219 AscSendScsiQueue(asc_dvc, scsiq, 8220 n_q_required)) == 1) { 8221 asc_dvc->in_critical_cnt--; 8222 return (sta); 8223 } 8224 } 8225 } else { 8226 if (asc_dvc->bug_fix_cntl) { 8227 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { 8228 if ((scsi_cmd == READ_6) || 8229 (scsi_cmd == READ_10)) { 8230 addr = 8231 le32_to_cpu(scsiq->q1.data_addr) + 8232 le32_to_cpu(scsiq->q1.data_cnt); 8233 extra_bytes = 8234 (uchar)((ushort)addr & 0x0003); 8235 if ((extra_bytes != 0) 8236 && 8237 ((scsiq->q2. 8238 tag_code & 8239 ASC_TAG_FLAG_EXTRA_BYTES) 8240 == 0)) { 8241 data_cnt = 8242 le32_to_cpu(scsiq->q1. 8243 data_cnt); 8244 if (((ushort)data_cnt & 0x01FF) 8245 == 0) { 8246 scsiq->q2.tag_code |= 8247 ASC_TAG_FLAG_EXTRA_BYTES; 8248 data_cnt -= extra_bytes; 8249 scsiq->q1.data_cnt = 8250 cpu_to_le32 8251 (data_cnt); 8252 scsiq->q1.extra_bytes = 8253 extra_bytes; 8254 } 8255 } 8256 } 8257 } 8258 } 8259 n_q_required = 1; 8260 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) || 8261 ((scsiq->q1.cntl & QC_URGENT) != 0)) { 8262 if ((sta = AscSendScsiQueue(asc_dvc, scsiq, 8263 n_q_required)) == 1) { 8264 asc_dvc->in_critical_cnt--; 8265 return (sta); 8266 } 8267 } 8268 } 8269 asc_dvc->in_critical_cnt--; 8270 return (sta); 8271 } 8272 8273 /* 8274 * AdvExeScsiQueue() - Send a request to the RISC microcode program. 8275 * 8276 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q, 8277 * add the carrier to the ICQ (Initiator Command Queue), and tickle the 8278 * RISC to notify it a new command is ready to be executed. 8279 * 8280 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be 8281 * set to SCSI_MAX_RETRY. 8282 * 8283 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode 8284 * for DMA addresses or math operations are byte swapped to little-endian 8285 * order. 8286 * 8287 * Return: 8288 * ADV_SUCCESS(1) - The request was successfully queued. 8289 * ADV_BUSY(0) - Resource unavailable; Retry again after pending 8290 * request completes. 8291 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure 8292 * host IC error. 8293 */ 8294 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp) 8295 { 8296 AdvPortAddr iop_base; 8297 ADV_CARR_T *new_carrp; 8298 ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q; 8299 8300 /* 8301 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID. 8302 */ 8303 if (scsiq->target_id > ADV_MAX_TID) { 8304 scsiq->host_status = QHSTA_M_INVALID_DEVICE; 8305 scsiq->done_status = QD_WITH_ERROR; 8306 return ADV_ERROR; 8307 } 8308 8309 iop_base = asc_dvc->iop_base; 8310 8311 /* 8312 * Allocate a carrier ensuring at least one carrier always 8313 * remains on the freelist and initialize fields. 8314 */ 8315 new_carrp = adv_get_next_carrier(asc_dvc); 8316 if (!new_carrp) { 8317 ASC_DBG(1, "No free carriers\n"); 8318 return ADV_BUSY; 8319 } 8320 8321 asc_dvc->carr_pending_cnt++; 8322 8323 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */ 8324 scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag); 8325 scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr); 8326 8327 scsiq->carr_va = asc_dvc->icq_sp->carr_va; 8328 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa; 8329 8330 /* 8331 * Use the current stopper to send the ADV_SCSI_REQ_Q command to 8332 * the microcode. The newly allocated stopper will become the new 8333 * stopper. 8334 */ 8335 asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr; 8336 8337 /* 8338 * Set the 'next_vpa' pointer for the old stopper to be the 8339 * physical address of the new stopper. The RISC can only 8340 * follow physical addresses. 8341 */ 8342 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa; 8343 8344 /* 8345 * Set the host adapter stopper pointer to point to the new carrier. 8346 */ 8347 asc_dvc->icq_sp = new_carrp; 8348 8349 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || 8350 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 8351 /* 8352 * Tickle the RISC to tell it to read its Command Queue Head pointer. 8353 */ 8354 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A); 8355 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 8356 /* 8357 * Clear the tickle value. In the ASC-3550 the RISC flag 8358 * command 'clr_tickle_a' does not work unless the host 8359 * value is cleared. 8360 */ 8361 AdvWriteByteRegister(iop_base, IOPB_TICKLE, 8362 ADV_TICKLE_NOP); 8363 } 8364 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 8365 /* 8366 * Notify the RISC a carrier is ready by writing the physical 8367 * address of the new carrier stopper to the COMMA register. 8368 */ 8369 AdvWriteDWordRegister(iop_base, IOPDW_COMMA, 8370 le32_to_cpu(new_carrp->carr_pa)); 8371 } 8372 8373 return ADV_SUCCESS; 8374 } 8375 8376 /* 8377 * Execute a single 'struct scsi_cmnd'. 8378 */ 8379 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp) 8380 { 8381 int ret, err_code; 8382 struct asc_board *boardp = shost_priv(scp->device->host); 8383 8384 ASC_DBG(1, "scp 0x%p\n", scp); 8385 8386 if (ASC_NARROW_BOARD(boardp)) { 8387 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; 8388 struct asc_scsi_q asc_scsi_q; 8389 8390 ret = asc_build_req(boardp, scp, &asc_scsi_q); 8391 if (ret != ASC_NOERROR) { 8392 ASC_STATS(scp->device->host, build_error); 8393 return ret; 8394 } 8395 8396 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q); 8397 kfree(asc_scsi_q.sg_head); 8398 err_code = asc_dvc->err_code; 8399 } else { 8400 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; 8401 adv_req_t *adv_reqp; 8402 8403 switch (adv_build_req(boardp, scp, &adv_reqp)) { 8404 case ASC_NOERROR: 8405 ASC_DBG(3, "adv_build_req ASC_NOERROR\n"); 8406 break; 8407 case ASC_BUSY: 8408 ASC_DBG(1, "adv_build_req ASC_BUSY\n"); 8409 /* 8410 * The asc_stats fields 'adv_build_noreq' and 8411 * 'adv_build_nosg' count wide board busy conditions. 8412 * They are updated in adv_build_req and 8413 * adv_get_sglist, respectively. 8414 */ 8415 return ASC_BUSY; 8416 case ASC_ERROR: 8417 default: 8418 ASC_DBG(1, "adv_build_req ASC_ERROR\n"); 8419 ASC_STATS(scp->device->host, build_error); 8420 return ASC_ERROR; 8421 } 8422 8423 ret = AdvExeScsiQueue(adv_dvc, adv_reqp); 8424 err_code = adv_dvc->err_code; 8425 } 8426 8427 switch (ret) { 8428 case ASC_NOERROR: 8429 ASC_STATS(scp->device->host, exe_noerror); 8430 /* 8431 * Increment monotonically increasing per device 8432 * successful request counter. Wrapping doesn't matter. 8433 */ 8434 boardp->reqcnt[scp->device->id]++; 8435 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n"); 8436 break; 8437 case ASC_BUSY: 8438 ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n"); 8439 ASC_STATS(scp->device->host, exe_busy); 8440 break; 8441 case ASC_ERROR: 8442 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, " 8443 "err_code 0x%x\n", err_code); 8444 ASC_STATS(scp->device->host, exe_error); 8445 set_host_byte(scp, DID_ERROR); 8446 break; 8447 default: 8448 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, " 8449 "err_code 0x%x\n", err_code); 8450 ASC_STATS(scp->device->host, exe_unknown); 8451 set_host_byte(scp, DID_ERROR); 8452 break; 8453 } 8454 8455 ASC_DBG(1, "end\n"); 8456 return ret; 8457 } 8458 8459 /* 8460 * advansys_queuecommand() - interrupt-driven I/O entrypoint. 8461 * 8462 * This function always returns 0. Command return status is saved 8463 * in the 'scp' result field. 8464 */ 8465 static int advansys_queuecommand_lck(struct scsi_cmnd *scp) 8466 { 8467 struct Scsi_Host *shost = scp->device->host; 8468 int asc_res, result = 0; 8469 8470 ASC_STATS(shost, queuecommand); 8471 8472 asc_res = asc_execute_scsi_cmnd(scp); 8473 8474 switch (asc_res) { 8475 case ASC_NOERROR: 8476 break; 8477 case ASC_BUSY: 8478 result = SCSI_MLQUEUE_HOST_BUSY; 8479 break; 8480 case ASC_ERROR: 8481 default: 8482 asc_scsi_done(scp); 8483 break; 8484 } 8485 8486 return result; 8487 } 8488 8489 static DEF_SCSI_QCMD(advansys_queuecommand) 8490 8491 static ushort AscGetEisaChipCfg(PortAddr iop_base) 8492 { 8493 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | 8494 (PortAddr) (ASC_EISA_CFG_IOP_MASK); 8495 return inpw(eisa_cfg_iop); 8496 } 8497 8498 /* 8499 * Return the BIOS address of the adapter at the specified 8500 * I/O port and with the specified bus type. 8501 */ 8502 static unsigned short AscGetChipBiosAddress(PortAddr iop_base, 8503 unsigned short bus_type) 8504 { 8505 unsigned short cfg_lsw; 8506 unsigned short bios_addr; 8507 8508 /* 8509 * The PCI BIOS is re-located by the motherboard BIOS. Because 8510 * of this the driver can not determine where a PCI BIOS is 8511 * loaded and executes. 8512 */ 8513 if (bus_type & ASC_IS_PCI) 8514 return 0; 8515 8516 if ((bus_type & ASC_IS_EISA) != 0) { 8517 cfg_lsw = AscGetEisaChipCfg(iop_base); 8518 cfg_lsw &= 0x000F; 8519 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE; 8520 return bios_addr; 8521 } 8522 8523 cfg_lsw = AscGetChipCfgLsw(iop_base); 8524 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE; 8525 return bios_addr; 8526 } 8527 8528 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id) 8529 { 8530 ushort cfg_lsw; 8531 8532 if (AscGetChipScsiID(iop_base) == new_host_id) { 8533 return (new_host_id); 8534 } 8535 cfg_lsw = AscGetChipCfgLsw(iop_base); 8536 cfg_lsw &= 0xF8FF; 8537 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8); 8538 AscSetChipCfgLsw(iop_base, cfg_lsw); 8539 return (AscGetChipScsiID(iop_base)); 8540 } 8541 8542 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base) 8543 { 8544 unsigned char sc; 8545 8546 AscSetBank(iop_base, 1); 8547 sc = inp(iop_base + IOP_REG_SC); 8548 AscSetBank(iop_base, 0); 8549 return sc; 8550 } 8551 8552 static unsigned char AscGetChipVersion(PortAddr iop_base, 8553 unsigned short bus_type) 8554 { 8555 if (bus_type & ASC_IS_EISA) { 8556 PortAddr eisa_iop; 8557 unsigned char revision; 8558 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | 8559 (PortAddr) ASC_EISA_REV_IOP_MASK; 8560 revision = inp(eisa_iop); 8561 return ASC_CHIP_MIN_VER_EISA - 1 + revision; 8562 } 8563 return AscGetChipVerNo(iop_base); 8564 } 8565 8566 static int AscStopQueueExe(PortAddr iop_base) 8567 { 8568 int count = 0; 8569 8570 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) { 8571 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 8572 ASC_STOP_REQ_RISC_STOP); 8573 do { 8574 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) & 8575 ASC_STOP_ACK_RISC_STOP) { 8576 return (1); 8577 } 8578 mdelay(100); 8579 } while (count++ < 20); 8580 } 8581 return (0); 8582 } 8583 8584 static unsigned int AscGetMaxDmaCount(ushort bus_type) 8585 { 8586 if (bus_type & (ASC_IS_EISA | ASC_IS_VL)) 8587 return ASC_MAX_VL_DMA_COUNT; 8588 return ASC_MAX_PCI_DMA_COUNT; 8589 } 8590 8591 static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc) 8592 { 8593 int i; 8594 PortAddr iop_base; 8595 uchar chip_version; 8596 8597 iop_base = asc_dvc->iop_base; 8598 asc_dvc->err_code = 0; 8599 if ((asc_dvc->bus_type & 8600 (ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) { 8601 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE; 8602 } 8603 AscSetChipControl(iop_base, CC_HALT); 8604 AscSetChipStatus(iop_base, 0); 8605 asc_dvc->bug_fix_cntl = 0; 8606 asc_dvc->pci_fix_asyn_xfer = 0; 8607 asc_dvc->pci_fix_asyn_xfer_always = 0; 8608 /* asc_dvc->init_state initialized in AscInitGetConfig(). */ 8609 asc_dvc->sdtr_done = 0; 8610 asc_dvc->cur_total_qng = 0; 8611 asc_dvc->is_in_int = false; 8612 asc_dvc->in_critical_cnt = 0; 8613 asc_dvc->last_q_shortage = 0; 8614 asc_dvc->use_tagged_qng = 0; 8615 asc_dvc->no_scam = 0; 8616 asc_dvc->unit_not_ready = 0; 8617 asc_dvc->queue_full_or_busy = 0; 8618 asc_dvc->redo_scam = 0; 8619 asc_dvc->res2 = 0; 8620 asc_dvc->min_sdtr_index = 0; 8621 asc_dvc->cfg->can_tagged_qng = 0; 8622 asc_dvc->cfg->cmd_qng_enabled = 0; 8623 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL; 8624 asc_dvc->init_sdtr = 0; 8625 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG; 8626 asc_dvc->scsi_reset_wait = 3; 8627 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET; 8628 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type); 8629 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET; 8630 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET; 8631 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID; 8632 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type); 8633 asc_dvc->cfg->chip_version = chip_version; 8634 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period; 8635 asc_dvc->max_sdtr_index = 7; 8636 if ((asc_dvc->bus_type & ASC_IS_PCI) && 8637 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) { 8638 asc_dvc->bus_type = ASC_IS_PCI_ULTRA; 8639 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period; 8640 asc_dvc->max_sdtr_index = 15; 8641 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) { 8642 AscSetExtraControl(iop_base, 8643 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); 8644 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) { 8645 AscSetExtraControl(iop_base, 8646 (SEC_ACTIVE_NEGATE | 8647 SEC_ENABLE_FILTER)); 8648 } 8649 } 8650 if (asc_dvc->bus_type == ASC_IS_PCI) { 8651 AscSetExtraControl(iop_base, 8652 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); 8653 } 8654 8655 for (i = 0; i <= ASC_MAX_TID; i++) { 8656 asc_dvc->cur_dvc_qng[i] = 0; 8657 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG; 8658 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L; 8659 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L; 8660 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG; 8661 } 8662 } 8663 8664 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg) 8665 { 8666 int retry; 8667 8668 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) { 8669 unsigned char read_back; 8670 AscSetChipEEPCmd(iop_base, cmd_reg); 8671 mdelay(1); 8672 read_back = AscGetChipEEPCmd(iop_base); 8673 if (read_back == cmd_reg) 8674 return 1; 8675 } 8676 return 0; 8677 } 8678 8679 static void AscWaitEEPRead(void) 8680 { 8681 mdelay(1); 8682 } 8683 8684 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr) 8685 { 8686 ushort read_wval; 8687 uchar cmd_reg; 8688 8689 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); 8690 AscWaitEEPRead(); 8691 cmd_reg = addr | ASC_EEP_CMD_READ; 8692 AscWriteEEPCmdReg(iop_base, cmd_reg); 8693 AscWaitEEPRead(); 8694 read_wval = AscGetChipEEPData(iop_base); 8695 AscWaitEEPRead(); 8696 return read_wval; 8697 } 8698 8699 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 8700 ushort bus_type) 8701 { 8702 ushort wval; 8703 ushort sum; 8704 ushort *wbuf; 8705 int cfg_beg; 8706 int cfg_end; 8707 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; 8708 int s_addr; 8709 8710 wbuf = (ushort *)cfg_buf; 8711 sum = 0; 8712 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */ 8713 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 8714 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); 8715 sum += *wbuf; 8716 } 8717 if (bus_type & ASC_IS_VL) { 8718 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 8719 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 8720 } else { 8721 cfg_beg = ASC_EEP_DVC_CFG_BEG; 8722 cfg_end = ASC_EEP_MAX_DVC_ADDR; 8723 } 8724 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 8725 wval = AscReadEEPWord(iop_base, (uchar)s_addr); 8726 if (s_addr <= uchar_end_in_config) { 8727 /* 8728 * Swap all char fields - must unswap bytes already swapped 8729 * by AscReadEEPWord(). 8730 */ 8731 *wbuf = le16_to_cpu(wval); 8732 } else { 8733 /* Don't swap word field at the end - cntl field. */ 8734 *wbuf = wval; 8735 } 8736 sum += wval; /* Checksum treats all EEPROM data as words. */ 8737 } 8738 /* 8739 * Read the checksum word which will be compared against 'sum' 8740 * by the caller. Word field already swapped. 8741 */ 8742 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); 8743 return sum; 8744 } 8745 8746 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc) 8747 { 8748 PortAddr iop_base; 8749 ushort q_addr; 8750 ushort saved_word; 8751 int sta; 8752 8753 iop_base = asc_dvc->iop_base; 8754 sta = 0; 8755 q_addr = ASC_QNO_TO_QADDR(241); 8756 saved_word = AscReadLramWord(iop_base, q_addr); 8757 AscSetChipLramAddr(iop_base, q_addr); 8758 AscSetChipLramData(iop_base, 0x55AA); 8759 mdelay(10); 8760 AscSetChipLramAddr(iop_base, q_addr); 8761 if (AscGetChipLramData(iop_base) == 0x55AA) { 8762 sta = 1; 8763 AscWriteLramWord(iop_base, q_addr, saved_word); 8764 } 8765 return (sta); 8766 } 8767 8768 static void AscWaitEEPWrite(void) 8769 { 8770 mdelay(20); 8771 } 8772 8773 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg) 8774 { 8775 ushort read_back; 8776 int retry; 8777 8778 retry = 0; 8779 while (true) { 8780 AscSetChipEEPData(iop_base, data_reg); 8781 mdelay(1); 8782 read_back = AscGetChipEEPData(iop_base); 8783 if (read_back == data_reg) { 8784 return (1); 8785 } 8786 if (retry++ > ASC_EEP_MAX_RETRY) { 8787 return (0); 8788 } 8789 } 8790 } 8791 8792 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val) 8793 { 8794 ushort read_wval; 8795 8796 read_wval = AscReadEEPWord(iop_base, addr); 8797 if (read_wval != word_val) { 8798 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE); 8799 AscWaitEEPRead(); 8800 AscWriteEEPDataReg(iop_base, word_val); 8801 AscWaitEEPRead(); 8802 AscWriteEEPCmdReg(iop_base, 8803 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr)); 8804 AscWaitEEPWrite(); 8805 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); 8806 AscWaitEEPRead(); 8807 return (AscReadEEPWord(iop_base, addr)); 8808 } 8809 return (read_wval); 8810 } 8811 8812 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 8813 ushort bus_type) 8814 { 8815 int n_error; 8816 ushort *wbuf; 8817 ushort word; 8818 ushort sum; 8819 int s_addr; 8820 int cfg_beg; 8821 int cfg_end; 8822 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; 8823 8824 wbuf = (ushort *)cfg_buf; 8825 n_error = 0; 8826 sum = 0; 8827 /* Write two config words; AscWriteEEPWord() will swap bytes. */ 8828 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 8829 sum += *wbuf; 8830 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { 8831 n_error++; 8832 } 8833 } 8834 if (bus_type & ASC_IS_VL) { 8835 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 8836 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 8837 } else { 8838 cfg_beg = ASC_EEP_DVC_CFG_BEG; 8839 cfg_end = ASC_EEP_MAX_DVC_ADDR; 8840 } 8841 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 8842 if (s_addr <= uchar_end_in_config) { 8843 /* 8844 * This is a char field. Swap char fields before they are 8845 * swapped again by AscWriteEEPWord(). 8846 */ 8847 word = cpu_to_le16(*wbuf); 8848 if (word != 8849 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) { 8850 n_error++; 8851 } 8852 } else { 8853 /* Don't swap word field at the end - cntl field. */ 8854 if (*wbuf != 8855 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { 8856 n_error++; 8857 } 8858 } 8859 sum += *wbuf; /* Checksum calculated from word values. */ 8860 } 8861 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */ 8862 *wbuf = sum; 8863 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) { 8864 n_error++; 8865 } 8866 8867 /* Read EEPROM back again. */ 8868 wbuf = (ushort *)cfg_buf; 8869 /* 8870 * Read two config words; Byte-swapping done by AscReadEEPWord(). 8871 */ 8872 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 8873 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) { 8874 n_error++; 8875 } 8876 } 8877 if (bus_type & ASC_IS_VL) { 8878 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 8879 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 8880 } else { 8881 cfg_beg = ASC_EEP_DVC_CFG_BEG; 8882 cfg_end = ASC_EEP_MAX_DVC_ADDR; 8883 } 8884 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 8885 if (s_addr <= uchar_end_in_config) { 8886 /* 8887 * Swap all char fields. Must unswap bytes already swapped 8888 * by AscReadEEPWord(). 8889 */ 8890 word = 8891 le16_to_cpu(AscReadEEPWord 8892 (iop_base, (uchar)s_addr)); 8893 } else { 8894 /* Don't swap word field at the end - cntl field. */ 8895 word = AscReadEEPWord(iop_base, (uchar)s_addr); 8896 } 8897 if (*wbuf != word) { 8898 n_error++; 8899 } 8900 } 8901 /* Read checksum; Byte swapping not needed. */ 8902 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) { 8903 n_error++; 8904 } 8905 return n_error; 8906 } 8907 8908 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 8909 ushort bus_type) 8910 { 8911 int retry; 8912 int n_error; 8913 8914 retry = 0; 8915 while (true) { 8916 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf, 8917 bus_type)) == 0) { 8918 break; 8919 } 8920 if (++retry > ASC_EEP_MAX_RETRY) { 8921 break; 8922 } 8923 } 8924 return n_error; 8925 } 8926 8927 static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc) 8928 { 8929 ASCEEP_CONFIG eep_config_buf; 8930 ASCEEP_CONFIG *eep_config; 8931 PortAddr iop_base; 8932 ushort chksum; 8933 ushort warn_code; 8934 ushort cfg_msw, cfg_lsw; 8935 int i; 8936 int write_eep = 0; 8937 8938 iop_base = asc_dvc->iop_base; 8939 warn_code = 0; 8940 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE); 8941 AscStopQueueExe(iop_base); 8942 if ((AscStopChip(iop_base)) || 8943 (AscGetChipScsiCtrl(iop_base) != 0)) { 8944 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE; 8945 AscResetChipAndScsiBus(asc_dvc); 8946 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 8947 } 8948 if (!AscIsChipHalted(iop_base)) { 8949 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; 8950 return (warn_code); 8951 } 8952 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); 8953 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { 8954 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; 8955 return (warn_code); 8956 } 8957 eep_config = (ASCEEP_CONFIG *)&eep_config_buf; 8958 cfg_msw = AscGetChipCfgMsw(iop_base); 8959 cfg_lsw = AscGetChipCfgLsw(iop_base); 8960 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { 8961 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 8962 warn_code |= ASC_WARN_CFG_MSW_RECOVER; 8963 AscSetChipCfgMsw(iop_base, cfg_msw); 8964 } 8965 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type); 8966 ASC_DBG(1, "chksum 0x%x\n", chksum); 8967 if (chksum == 0) { 8968 chksum = 0xaa55; 8969 } 8970 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { 8971 warn_code |= ASC_WARN_AUTO_CONFIG; 8972 if (asc_dvc->cfg->chip_version == 3) { 8973 if (eep_config->cfg_lsw != cfg_lsw) { 8974 warn_code |= ASC_WARN_EEPROM_RECOVER; 8975 eep_config->cfg_lsw = 8976 AscGetChipCfgLsw(iop_base); 8977 } 8978 if (eep_config->cfg_msw != cfg_msw) { 8979 warn_code |= ASC_WARN_EEPROM_RECOVER; 8980 eep_config->cfg_msw = 8981 AscGetChipCfgMsw(iop_base); 8982 } 8983 } 8984 } 8985 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 8986 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON; 8987 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum); 8988 if (chksum != eep_config->chksum) { 8989 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) == 8990 ASC_CHIP_VER_PCI_ULTRA_3050) { 8991 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n"); 8992 eep_config->init_sdtr = 0xFF; 8993 eep_config->disc_enable = 0xFF; 8994 eep_config->start_motor = 0xFF; 8995 eep_config->use_cmd_qng = 0; 8996 eep_config->max_total_qng = 0xF0; 8997 eep_config->max_tag_qng = 0x20; 8998 eep_config->cntl = 0xBFFF; 8999 ASC_EEP_SET_CHIP_ID(eep_config, 7); 9000 eep_config->no_scam = 0; 9001 eep_config->adapter_info[0] = 0; 9002 eep_config->adapter_info[1] = 0; 9003 eep_config->adapter_info[2] = 0; 9004 eep_config->adapter_info[3] = 0; 9005 eep_config->adapter_info[4] = 0; 9006 /* Indicate EEPROM-less board. */ 9007 eep_config->adapter_info[5] = 0xBB; 9008 } else { 9009 ASC_PRINT 9010 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n"); 9011 write_eep = 1; 9012 warn_code |= ASC_WARN_EEPROM_CHKSUM; 9013 } 9014 } 9015 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr; 9016 asc_dvc->cfg->disc_enable = eep_config->disc_enable; 9017 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng; 9018 asc_dvc->start_motor = eep_config->start_motor; 9019 asc_dvc->dvc_cntl = eep_config->cntl; 9020 asc_dvc->no_scam = eep_config->no_scam; 9021 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0]; 9022 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1]; 9023 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2]; 9024 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3]; 9025 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4]; 9026 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5]; 9027 if (!AscTestExternalLram(asc_dvc)) { 9028 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == 9029 ASC_IS_PCI_ULTRA)) { 9030 eep_config->max_total_qng = 9031 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG; 9032 eep_config->max_tag_qng = 9033 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG; 9034 } else { 9035 eep_config->cfg_msw |= 0x0800; 9036 cfg_msw |= 0x0800; 9037 AscSetChipCfgMsw(iop_base, cfg_msw); 9038 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG; 9039 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG; 9040 } 9041 } else { 9042 } 9043 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) { 9044 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG; 9045 } 9046 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) { 9047 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG; 9048 } 9049 if (eep_config->max_tag_qng > eep_config->max_total_qng) { 9050 eep_config->max_tag_qng = eep_config->max_total_qng; 9051 } 9052 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) { 9053 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC; 9054 } 9055 asc_dvc->max_total_qng = eep_config->max_total_qng; 9056 if ((eep_config->use_cmd_qng & eep_config->disc_enable) != 9057 eep_config->use_cmd_qng) { 9058 eep_config->disc_enable = eep_config->use_cmd_qng; 9059 warn_code |= ASC_WARN_CMD_QNG_CONFLICT; 9060 } 9061 ASC_EEP_SET_CHIP_ID(eep_config, 9062 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID); 9063 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config); 9064 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) && 9065 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) { 9066 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX; 9067 } 9068 9069 for (i = 0; i <= ASC_MAX_TID; i++) { 9070 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i]; 9071 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng; 9072 asc_dvc->cfg->sdtr_period_offset[i] = 9073 (uchar)(ASC_DEF_SDTR_OFFSET | 9074 (asc_dvc->min_sdtr_index << 4)); 9075 } 9076 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base); 9077 if (write_eep) { 9078 if ((i = AscSetEEPConfig(iop_base, eep_config, 9079 asc_dvc->bus_type)) != 0) { 9080 ASC_PRINT1 9081 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n", 9082 i); 9083 } else { 9084 ASC_PRINT 9085 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n"); 9086 } 9087 } 9088 return (warn_code); 9089 } 9090 9091 static int AscInitGetConfig(struct Scsi_Host *shost) 9092 { 9093 struct asc_board *board = shost_priv(shost); 9094 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; 9095 unsigned short warn_code = 0; 9096 9097 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG; 9098 if (asc_dvc->err_code != 0) 9099 return asc_dvc->err_code; 9100 9101 if (AscFindSignature(asc_dvc->iop_base)) { 9102 AscInitAscDvcVar(asc_dvc); 9103 warn_code = AscInitFromEEP(asc_dvc); 9104 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG; 9105 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT) 9106 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT; 9107 } else { 9108 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 9109 } 9110 9111 switch (warn_code) { 9112 case 0: /* No error */ 9113 break; 9114 case ASC_WARN_IO_PORT_ROTATE: 9115 shost_printk(KERN_WARNING, shost, "I/O port address " 9116 "modified\n"); 9117 break; 9118 case ASC_WARN_AUTO_CONFIG: 9119 shost_printk(KERN_WARNING, shost, "I/O port increment switch " 9120 "enabled\n"); 9121 break; 9122 case ASC_WARN_EEPROM_CHKSUM: 9123 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); 9124 break; 9125 case ASC_WARN_IRQ_MODIFIED: 9126 shost_printk(KERN_WARNING, shost, "IRQ modified\n"); 9127 break; 9128 case ASC_WARN_CMD_QNG_CONFLICT: 9129 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o " 9130 "disconnects\n"); 9131 break; 9132 default: 9133 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", 9134 warn_code); 9135 break; 9136 } 9137 9138 if (asc_dvc->err_code != 0) 9139 shost_printk(KERN_ERR, shost, "error 0x%x at init_state " 9140 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); 9141 9142 return asc_dvc->err_code; 9143 } 9144 9145 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) 9146 { 9147 struct asc_board *board = shost_priv(shost); 9148 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; 9149 PortAddr iop_base = asc_dvc->iop_base; 9150 unsigned short cfg_msw; 9151 unsigned short warn_code = 0; 9152 9153 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG; 9154 if (asc_dvc->err_code != 0) 9155 return asc_dvc->err_code; 9156 if (!AscFindSignature(asc_dvc->iop_base)) { 9157 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 9158 return asc_dvc->err_code; 9159 } 9160 9161 cfg_msw = AscGetChipCfgMsw(iop_base); 9162 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { 9163 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 9164 warn_code |= ASC_WARN_CFG_MSW_RECOVER; 9165 AscSetChipCfgMsw(iop_base, cfg_msw); 9166 } 9167 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) != 9168 asc_dvc->cfg->cmd_qng_enabled) { 9169 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled; 9170 warn_code |= ASC_WARN_CMD_QNG_CONFLICT; 9171 } 9172 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { 9173 warn_code |= ASC_WARN_AUTO_CONFIG; 9174 } 9175 #ifdef CONFIG_PCI 9176 if (asc_dvc->bus_type & ASC_IS_PCI) { 9177 cfg_msw &= 0xFFC0; 9178 AscSetChipCfgMsw(iop_base, cfg_msw); 9179 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) { 9180 } else { 9181 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || 9182 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { 9183 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB; 9184 asc_dvc->bug_fix_cntl |= 9185 ASC_BUG_FIX_ASYN_USE_SYN; 9186 } 9187 } 9188 } else 9189 #endif /* CONFIG_PCI */ 9190 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) != 9191 asc_dvc->cfg->chip_scsi_id) { 9192 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID; 9193 } 9194 9195 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG; 9196 9197 switch (warn_code) { 9198 case 0: /* No error. */ 9199 break; 9200 case ASC_WARN_IO_PORT_ROTATE: 9201 shost_printk(KERN_WARNING, shost, "I/O port address " 9202 "modified\n"); 9203 break; 9204 case ASC_WARN_AUTO_CONFIG: 9205 shost_printk(KERN_WARNING, shost, "I/O port increment switch " 9206 "enabled\n"); 9207 break; 9208 case ASC_WARN_EEPROM_CHKSUM: 9209 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); 9210 break; 9211 case ASC_WARN_IRQ_MODIFIED: 9212 shost_printk(KERN_WARNING, shost, "IRQ modified\n"); 9213 break; 9214 case ASC_WARN_CMD_QNG_CONFLICT: 9215 shost_printk(KERN_WARNING, shost, "tag queuing w/o " 9216 "disconnects\n"); 9217 break; 9218 default: 9219 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", 9220 warn_code); 9221 break; 9222 } 9223 9224 if (asc_dvc->err_code != 0) 9225 shost_printk(KERN_ERR, shost, "error 0x%x at init_state " 9226 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); 9227 9228 return asc_dvc->err_code; 9229 } 9230 9231 /* 9232 * EEPROM Configuration. 9233 * 9234 * All drivers should use this structure to set the default EEPROM 9235 * configuration. The BIOS now uses this structure when it is built. 9236 * Additional structure information can be found in a_condor.h where 9237 * the structure is defined. 9238 * 9239 * The *_Field_IsChar structs are needed to correct for endianness. 9240 * These values are read from the board 16 bits at a time directly 9241 * into the structs. Because some fields are char, the values will be 9242 * in the wrong order. The *_Field_IsChar tells when to flip the 9243 * bytes. Data read and written to PCI memory is automatically swapped 9244 * on big-endian platforms so char fields read as words are actually being 9245 * unswapped on big-endian platforms. 9246 */ 9247 #ifdef CONFIG_PCI 9248 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = { 9249 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */ 9250 0x0000, /* cfg_msw */ 9251 0xFFFF, /* disc_enable */ 9252 0xFFFF, /* wdtr_able */ 9253 0xFFFF, /* sdtr_able */ 9254 0xFFFF, /* start_motor */ 9255 0xFFFF, /* tagqng_able */ 9256 0xFFFF, /* bios_scan */ 9257 0, /* scam_tolerant */ 9258 7, /* adapter_scsi_id */ 9259 0, /* bios_boot_delay */ 9260 3, /* scsi_reset_delay */ 9261 0, /* bios_id_lun */ 9262 0, /* termination */ 9263 0, /* reserved1 */ 9264 0xFFE7, /* bios_ctrl */ 9265 0xFFFF, /* ultra_able */ 9266 0, /* reserved2 */ 9267 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */ 9268 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9269 0, /* dvc_cntl */ 9270 0, /* bug_fix */ 9271 0, /* serial_number_word1 */ 9272 0, /* serial_number_word2 */ 9273 0, /* serial_number_word3 */ 9274 0, /* check_sum */ 9275 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9276 , /* oem_name[16] */ 9277 0, /* dvc_err_code */ 9278 0, /* adv_err_code */ 9279 0, /* adv_err_addr */ 9280 0, /* saved_dvc_err_code */ 9281 0, /* saved_adv_err_code */ 9282 0, /* saved_adv_err_addr */ 9283 0 /* num_of_err */ 9284 }; 9285 9286 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = { 9287 0, /* cfg_lsw */ 9288 0, /* cfg_msw */ 9289 0, /* -disc_enable */ 9290 0, /* wdtr_able */ 9291 0, /* sdtr_able */ 9292 0, /* start_motor */ 9293 0, /* tagqng_able */ 9294 0, /* bios_scan */ 9295 0, /* scam_tolerant */ 9296 1, /* adapter_scsi_id */ 9297 1, /* bios_boot_delay */ 9298 1, /* scsi_reset_delay */ 9299 1, /* bios_id_lun */ 9300 1, /* termination */ 9301 1, /* reserved1 */ 9302 0, /* bios_ctrl */ 9303 0, /* ultra_able */ 9304 0, /* reserved2 */ 9305 1, /* max_host_qng */ 9306 1, /* max_dvc_qng */ 9307 0, /* dvc_cntl */ 9308 0, /* bug_fix */ 9309 0, /* serial_number_word1 */ 9310 0, /* serial_number_word2 */ 9311 0, /* serial_number_word3 */ 9312 0, /* check_sum */ 9313 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9314 , /* oem_name[16] */ 9315 0, /* dvc_err_code */ 9316 0, /* adv_err_code */ 9317 0, /* adv_err_addr */ 9318 0, /* saved_dvc_err_code */ 9319 0, /* saved_adv_err_code */ 9320 0, /* saved_adv_err_addr */ 9321 0 /* num_of_err */ 9322 }; 9323 9324 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = { 9325 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 9326 0x0000, /* 01 cfg_msw */ 9327 0xFFFF, /* 02 disc_enable */ 9328 0xFFFF, /* 03 wdtr_able */ 9329 0x4444, /* 04 sdtr_speed1 */ 9330 0xFFFF, /* 05 start_motor */ 9331 0xFFFF, /* 06 tagqng_able */ 9332 0xFFFF, /* 07 bios_scan */ 9333 0, /* 08 scam_tolerant */ 9334 7, /* 09 adapter_scsi_id */ 9335 0, /* bios_boot_delay */ 9336 3, /* 10 scsi_reset_delay */ 9337 0, /* bios_id_lun */ 9338 0, /* 11 termination_se */ 9339 0, /* termination_lvd */ 9340 0xFFE7, /* 12 bios_ctrl */ 9341 0x4444, /* 13 sdtr_speed2 */ 9342 0x4444, /* 14 sdtr_speed3 */ 9343 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ 9344 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9345 0, /* 16 dvc_cntl */ 9346 0x4444, /* 17 sdtr_speed4 */ 9347 0, /* 18 serial_number_word1 */ 9348 0, /* 19 serial_number_word2 */ 9349 0, /* 20 serial_number_word3 */ 9350 0, /* 21 check_sum */ 9351 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9352 , /* 22-29 oem_name[16] */ 9353 0, /* 30 dvc_err_code */ 9354 0, /* 31 adv_err_code */ 9355 0, /* 32 adv_err_addr */ 9356 0, /* 33 saved_dvc_err_code */ 9357 0, /* 34 saved_adv_err_code */ 9358 0, /* 35 saved_adv_err_addr */ 9359 0, /* 36 reserved */ 9360 0, /* 37 reserved */ 9361 0, /* 38 reserved */ 9362 0, /* 39 reserved */ 9363 0, /* 40 reserved */ 9364 0, /* 41 reserved */ 9365 0, /* 42 reserved */ 9366 0, /* 43 reserved */ 9367 0, /* 44 reserved */ 9368 0, /* 45 reserved */ 9369 0, /* 46 reserved */ 9370 0, /* 47 reserved */ 9371 0, /* 48 reserved */ 9372 0, /* 49 reserved */ 9373 0, /* 50 reserved */ 9374 0, /* 51 reserved */ 9375 0, /* 52 reserved */ 9376 0, /* 53 reserved */ 9377 0, /* 54 reserved */ 9378 0, /* 55 reserved */ 9379 0, /* 56 cisptr_lsw */ 9380 0, /* 57 cisprt_msw */ 9381 PCI_VENDOR_ID_ASP, /* 58 subsysvid */ 9382 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */ 9383 0, /* 60 reserved */ 9384 0, /* 61 reserved */ 9385 0, /* 62 reserved */ 9386 0 /* 63 reserved */ 9387 }; 9388 9389 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = { 9390 0, /* 00 cfg_lsw */ 9391 0, /* 01 cfg_msw */ 9392 0, /* 02 disc_enable */ 9393 0, /* 03 wdtr_able */ 9394 0, /* 04 sdtr_speed1 */ 9395 0, /* 05 start_motor */ 9396 0, /* 06 tagqng_able */ 9397 0, /* 07 bios_scan */ 9398 0, /* 08 scam_tolerant */ 9399 1, /* 09 adapter_scsi_id */ 9400 1, /* bios_boot_delay */ 9401 1, /* 10 scsi_reset_delay */ 9402 1, /* bios_id_lun */ 9403 1, /* 11 termination_se */ 9404 1, /* termination_lvd */ 9405 0, /* 12 bios_ctrl */ 9406 0, /* 13 sdtr_speed2 */ 9407 0, /* 14 sdtr_speed3 */ 9408 1, /* 15 max_host_qng */ 9409 1, /* max_dvc_qng */ 9410 0, /* 16 dvc_cntl */ 9411 0, /* 17 sdtr_speed4 */ 9412 0, /* 18 serial_number_word1 */ 9413 0, /* 19 serial_number_word2 */ 9414 0, /* 20 serial_number_word3 */ 9415 0, /* 21 check_sum */ 9416 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9417 , /* 22-29 oem_name[16] */ 9418 0, /* 30 dvc_err_code */ 9419 0, /* 31 adv_err_code */ 9420 0, /* 32 adv_err_addr */ 9421 0, /* 33 saved_dvc_err_code */ 9422 0, /* 34 saved_adv_err_code */ 9423 0, /* 35 saved_adv_err_addr */ 9424 0, /* 36 reserved */ 9425 0, /* 37 reserved */ 9426 0, /* 38 reserved */ 9427 0, /* 39 reserved */ 9428 0, /* 40 reserved */ 9429 0, /* 41 reserved */ 9430 0, /* 42 reserved */ 9431 0, /* 43 reserved */ 9432 0, /* 44 reserved */ 9433 0, /* 45 reserved */ 9434 0, /* 46 reserved */ 9435 0, /* 47 reserved */ 9436 0, /* 48 reserved */ 9437 0, /* 49 reserved */ 9438 0, /* 50 reserved */ 9439 0, /* 51 reserved */ 9440 0, /* 52 reserved */ 9441 0, /* 53 reserved */ 9442 0, /* 54 reserved */ 9443 0, /* 55 reserved */ 9444 0, /* 56 cisptr_lsw */ 9445 0, /* 57 cisprt_msw */ 9446 0, /* 58 subsysvid */ 9447 0, /* 59 subsysid */ 9448 0, /* 60 reserved */ 9449 0, /* 61 reserved */ 9450 0, /* 62 reserved */ 9451 0 /* 63 reserved */ 9452 }; 9453 9454 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = { 9455 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 9456 0x0000, /* 01 cfg_msw */ 9457 0xFFFF, /* 02 disc_enable */ 9458 0xFFFF, /* 03 wdtr_able */ 9459 0x5555, /* 04 sdtr_speed1 */ 9460 0xFFFF, /* 05 start_motor */ 9461 0xFFFF, /* 06 tagqng_able */ 9462 0xFFFF, /* 07 bios_scan */ 9463 0, /* 08 scam_tolerant */ 9464 7, /* 09 adapter_scsi_id */ 9465 0, /* bios_boot_delay */ 9466 3, /* 10 scsi_reset_delay */ 9467 0, /* bios_id_lun */ 9468 0, /* 11 termination_se */ 9469 0, /* termination_lvd */ 9470 0xFFE7, /* 12 bios_ctrl */ 9471 0x5555, /* 13 sdtr_speed2 */ 9472 0x5555, /* 14 sdtr_speed3 */ 9473 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ 9474 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9475 0, /* 16 dvc_cntl */ 9476 0x5555, /* 17 sdtr_speed4 */ 9477 0, /* 18 serial_number_word1 */ 9478 0, /* 19 serial_number_word2 */ 9479 0, /* 20 serial_number_word3 */ 9480 0, /* 21 check_sum */ 9481 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9482 , /* 22-29 oem_name[16] */ 9483 0, /* 30 dvc_err_code */ 9484 0, /* 31 adv_err_code */ 9485 0, /* 32 adv_err_addr */ 9486 0, /* 33 saved_dvc_err_code */ 9487 0, /* 34 saved_adv_err_code */ 9488 0, /* 35 saved_adv_err_addr */ 9489 0, /* 36 reserved */ 9490 0, /* 37 reserved */ 9491 0, /* 38 reserved */ 9492 0, /* 39 reserved */ 9493 0, /* 40 reserved */ 9494 0, /* 41 reserved */ 9495 0, /* 42 reserved */ 9496 0, /* 43 reserved */ 9497 0, /* 44 reserved */ 9498 0, /* 45 reserved */ 9499 0, /* 46 reserved */ 9500 0, /* 47 reserved */ 9501 0, /* 48 reserved */ 9502 0, /* 49 reserved */ 9503 0, /* 50 reserved */ 9504 0, /* 51 reserved */ 9505 0, /* 52 reserved */ 9506 0, /* 53 reserved */ 9507 0, /* 54 reserved */ 9508 0, /* 55 reserved */ 9509 0, /* 56 cisptr_lsw */ 9510 0, /* 57 cisprt_msw */ 9511 PCI_VENDOR_ID_ASP, /* 58 subsysvid */ 9512 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */ 9513 0, /* 60 reserved */ 9514 0, /* 61 reserved */ 9515 0, /* 62 reserved */ 9516 0 /* 63 reserved */ 9517 }; 9518 9519 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = { 9520 0, /* 00 cfg_lsw */ 9521 0, /* 01 cfg_msw */ 9522 0, /* 02 disc_enable */ 9523 0, /* 03 wdtr_able */ 9524 0, /* 04 sdtr_speed1 */ 9525 0, /* 05 start_motor */ 9526 0, /* 06 tagqng_able */ 9527 0, /* 07 bios_scan */ 9528 0, /* 08 scam_tolerant */ 9529 1, /* 09 adapter_scsi_id */ 9530 1, /* bios_boot_delay */ 9531 1, /* 10 scsi_reset_delay */ 9532 1, /* bios_id_lun */ 9533 1, /* 11 termination_se */ 9534 1, /* termination_lvd */ 9535 0, /* 12 bios_ctrl */ 9536 0, /* 13 sdtr_speed2 */ 9537 0, /* 14 sdtr_speed3 */ 9538 1, /* 15 max_host_qng */ 9539 1, /* max_dvc_qng */ 9540 0, /* 16 dvc_cntl */ 9541 0, /* 17 sdtr_speed4 */ 9542 0, /* 18 serial_number_word1 */ 9543 0, /* 19 serial_number_word2 */ 9544 0, /* 20 serial_number_word3 */ 9545 0, /* 21 check_sum */ 9546 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9547 , /* 22-29 oem_name[16] */ 9548 0, /* 30 dvc_err_code */ 9549 0, /* 31 adv_err_code */ 9550 0, /* 32 adv_err_addr */ 9551 0, /* 33 saved_dvc_err_code */ 9552 0, /* 34 saved_adv_err_code */ 9553 0, /* 35 saved_adv_err_addr */ 9554 0, /* 36 reserved */ 9555 0, /* 37 reserved */ 9556 0, /* 38 reserved */ 9557 0, /* 39 reserved */ 9558 0, /* 40 reserved */ 9559 0, /* 41 reserved */ 9560 0, /* 42 reserved */ 9561 0, /* 43 reserved */ 9562 0, /* 44 reserved */ 9563 0, /* 45 reserved */ 9564 0, /* 46 reserved */ 9565 0, /* 47 reserved */ 9566 0, /* 48 reserved */ 9567 0, /* 49 reserved */ 9568 0, /* 50 reserved */ 9569 0, /* 51 reserved */ 9570 0, /* 52 reserved */ 9571 0, /* 53 reserved */ 9572 0, /* 54 reserved */ 9573 0, /* 55 reserved */ 9574 0, /* 56 cisptr_lsw */ 9575 0, /* 57 cisprt_msw */ 9576 0, /* 58 subsysvid */ 9577 0, /* 59 subsysid */ 9578 0, /* 60 reserved */ 9579 0, /* 61 reserved */ 9580 0, /* 62 reserved */ 9581 0 /* 63 reserved */ 9582 }; 9583 9584 /* 9585 * Wait for EEPROM command to complete 9586 */ 9587 static void AdvWaitEEPCmd(AdvPortAddr iop_base) 9588 { 9589 int eep_delay_ms; 9590 9591 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) { 9592 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) & 9593 ASC_EEP_CMD_DONE) { 9594 break; 9595 } 9596 mdelay(1); 9597 } 9598 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) == 9599 0) 9600 BUG(); 9601 } 9602 9603 /* 9604 * Read the EEPROM from specified location 9605 */ 9606 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr) 9607 { 9608 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9609 ASC_EEP_CMD_READ | eep_word_addr); 9610 AdvWaitEEPCmd(iop_base); 9611 return AdvReadWordRegister(iop_base, IOPW_EE_DATA); 9612 } 9613 9614 /* 9615 * Write the EEPROM from 'cfg_buf'. 9616 */ 9617 static void AdvSet3550EEPConfig(AdvPortAddr iop_base, 9618 ADVEEP_3550_CONFIG *cfg_buf) 9619 { 9620 ushort *wbuf; 9621 ushort addr, chksum; 9622 ushort *charfields; 9623 9624 wbuf = (ushort *)cfg_buf; 9625 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; 9626 chksum = 0; 9627 9628 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9629 AdvWaitEEPCmd(iop_base); 9630 9631 /* 9632 * Write EEPROM from word 0 to word 20. 9633 */ 9634 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9635 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9636 ushort word; 9637 9638 if (*charfields++) { 9639 word = cpu_to_le16(*wbuf); 9640 } else { 9641 word = *wbuf; 9642 } 9643 chksum += *wbuf; /* Checksum is calculated from word values. */ 9644 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9645 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9646 ASC_EEP_CMD_WRITE | addr); 9647 AdvWaitEEPCmd(iop_base); 9648 mdelay(ADV_EEP_DELAY_MS); 9649 } 9650 9651 /* 9652 * Write EEPROM checksum at word 21. 9653 */ 9654 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9655 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9656 AdvWaitEEPCmd(iop_base); 9657 wbuf++; 9658 charfields++; 9659 9660 /* 9661 * Write EEPROM OEM name at words 22 to 29. 9662 */ 9663 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9664 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9665 ushort word; 9666 9667 if (*charfields++) { 9668 word = cpu_to_le16(*wbuf); 9669 } else { 9670 word = *wbuf; 9671 } 9672 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9673 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9674 ASC_EEP_CMD_WRITE | addr); 9675 AdvWaitEEPCmd(iop_base); 9676 } 9677 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 9678 AdvWaitEEPCmd(iop_base); 9679 } 9680 9681 /* 9682 * Write the EEPROM from 'cfg_buf'. 9683 */ 9684 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base, 9685 ADVEEP_38C0800_CONFIG *cfg_buf) 9686 { 9687 ushort *wbuf; 9688 ushort *charfields; 9689 ushort addr, chksum; 9690 9691 wbuf = (ushort *)cfg_buf; 9692 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; 9693 chksum = 0; 9694 9695 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9696 AdvWaitEEPCmd(iop_base); 9697 9698 /* 9699 * Write EEPROM from word 0 to word 20. 9700 */ 9701 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9702 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9703 ushort word; 9704 9705 if (*charfields++) { 9706 word = cpu_to_le16(*wbuf); 9707 } else { 9708 word = *wbuf; 9709 } 9710 chksum += *wbuf; /* Checksum is calculated from word values. */ 9711 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9712 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9713 ASC_EEP_CMD_WRITE | addr); 9714 AdvWaitEEPCmd(iop_base); 9715 mdelay(ADV_EEP_DELAY_MS); 9716 } 9717 9718 /* 9719 * Write EEPROM checksum at word 21. 9720 */ 9721 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9722 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9723 AdvWaitEEPCmd(iop_base); 9724 wbuf++; 9725 charfields++; 9726 9727 /* 9728 * Write EEPROM OEM name at words 22 to 29. 9729 */ 9730 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9731 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9732 ushort word; 9733 9734 if (*charfields++) { 9735 word = cpu_to_le16(*wbuf); 9736 } else { 9737 word = *wbuf; 9738 } 9739 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9740 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9741 ASC_EEP_CMD_WRITE | addr); 9742 AdvWaitEEPCmd(iop_base); 9743 } 9744 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 9745 AdvWaitEEPCmd(iop_base); 9746 } 9747 9748 /* 9749 * Write the EEPROM from 'cfg_buf'. 9750 */ 9751 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base, 9752 ADVEEP_38C1600_CONFIG *cfg_buf) 9753 { 9754 ushort *wbuf; 9755 ushort *charfields; 9756 ushort addr, chksum; 9757 9758 wbuf = (ushort *)cfg_buf; 9759 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; 9760 chksum = 0; 9761 9762 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9763 AdvWaitEEPCmd(iop_base); 9764 9765 /* 9766 * Write EEPROM from word 0 to word 20. 9767 */ 9768 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9769 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9770 ushort word; 9771 9772 if (*charfields++) { 9773 word = cpu_to_le16(*wbuf); 9774 } else { 9775 word = *wbuf; 9776 } 9777 chksum += *wbuf; /* Checksum is calculated from word values. */ 9778 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9779 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9780 ASC_EEP_CMD_WRITE | addr); 9781 AdvWaitEEPCmd(iop_base); 9782 mdelay(ADV_EEP_DELAY_MS); 9783 } 9784 9785 /* 9786 * Write EEPROM checksum at word 21. 9787 */ 9788 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9789 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9790 AdvWaitEEPCmd(iop_base); 9791 wbuf++; 9792 charfields++; 9793 9794 /* 9795 * Write EEPROM OEM name at words 22 to 29. 9796 */ 9797 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9798 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9799 ushort word; 9800 9801 if (*charfields++) { 9802 word = cpu_to_le16(*wbuf); 9803 } else { 9804 word = *wbuf; 9805 } 9806 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9807 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9808 ASC_EEP_CMD_WRITE | addr); 9809 AdvWaitEEPCmd(iop_base); 9810 } 9811 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 9812 AdvWaitEEPCmd(iop_base); 9813 } 9814 9815 /* 9816 * Read EEPROM configuration into the specified buffer. 9817 * 9818 * Return a checksum based on the EEPROM configuration read. 9819 */ 9820 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base, 9821 ADVEEP_3550_CONFIG *cfg_buf) 9822 { 9823 ushort wval, chksum; 9824 ushort *wbuf; 9825 int eep_addr; 9826 ushort *charfields; 9827 9828 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; 9829 wbuf = (ushort *)cfg_buf; 9830 chksum = 0; 9831 9832 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 9833 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 9834 wval = AdvReadEEPWord(iop_base, eep_addr); 9835 chksum += wval; /* Checksum is calculated from word values. */ 9836 if (*charfields++) { 9837 *wbuf = le16_to_cpu(wval); 9838 } else { 9839 *wbuf = wval; 9840 } 9841 } 9842 /* Read checksum word. */ 9843 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 9844 wbuf++; 9845 charfields++; 9846 9847 /* Read rest of EEPROM not covered by the checksum. */ 9848 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 9849 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 9850 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 9851 if (*charfields++) { 9852 *wbuf = le16_to_cpu(*wbuf); 9853 } 9854 } 9855 return chksum; 9856 } 9857 9858 /* 9859 * Read EEPROM configuration into the specified buffer. 9860 * 9861 * Return a checksum based on the EEPROM configuration read. 9862 */ 9863 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base, 9864 ADVEEP_38C0800_CONFIG *cfg_buf) 9865 { 9866 ushort wval, chksum; 9867 ushort *wbuf; 9868 int eep_addr; 9869 ushort *charfields; 9870 9871 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; 9872 wbuf = (ushort *)cfg_buf; 9873 chksum = 0; 9874 9875 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 9876 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 9877 wval = AdvReadEEPWord(iop_base, eep_addr); 9878 chksum += wval; /* Checksum is calculated from word values. */ 9879 if (*charfields++) { 9880 *wbuf = le16_to_cpu(wval); 9881 } else { 9882 *wbuf = wval; 9883 } 9884 } 9885 /* Read checksum word. */ 9886 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 9887 wbuf++; 9888 charfields++; 9889 9890 /* Read rest of EEPROM not covered by the checksum. */ 9891 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 9892 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 9893 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 9894 if (*charfields++) { 9895 *wbuf = le16_to_cpu(*wbuf); 9896 } 9897 } 9898 return chksum; 9899 } 9900 9901 /* 9902 * Read EEPROM configuration into the specified buffer. 9903 * 9904 * Return a checksum based on the EEPROM configuration read. 9905 */ 9906 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base, 9907 ADVEEP_38C1600_CONFIG *cfg_buf) 9908 { 9909 ushort wval, chksum; 9910 ushort *wbuf; 9911 int eep_addr; 9912 ushort *charfields; 9913 9914 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; 9915 wbuf = (ushort *)cfg_buf; 9916 chksum = 0; 9917 9918 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 9919 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 9920 wval = AdvReadEEPWord(iop_base, eep_addr); 9921 chksum += wval; /* Checksum is calculated from word values. */ 9922 if (*charfields++) { 9923 *wbuf = le16_to_cpu(wval); 9924 } else { 9925 *wbuf = wval; 9926 } 9927 } 9928 /* Read checksum word. */ 9929 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 9930 wbuf++; 9931 charfields++; 9932 9933 /* Read rest of EEPROM not covered by the checksum. */ 9934 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 9935 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 9936 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 9937 if (*charfields++) { 9938 *wbuf = le16_to_cpu(*wbuf); 9939 } 9940 } 9941 return chksum; 9942 } 9943 9944 /* 9945 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and 9946 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while 9947 * all of this is done. 9948 * 9949 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 9950 * 9951 * For a non-fatal error return a warning code. If there are no warnings 9952 * then 0 is returned. 9953 * 9954 * Note: Chip is stopped on entry. 9955 */ 9956 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc) 9957 { 9958 AdvPortAddr iop_base; 9959 ushort warn_code; 9960 ADVEEP_3550_CONFIG eep_config; 9961 9962 iop_base = asc_dvc->iop_base; 9963 9964 warn_code = 0; 9965 9966 /* 9967 * Read the board's EEPROM configuration. 9968 * 9969 * Set default values if a bad checksum is found. 9970 */ 9971 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) { 9972 warn_code |= ASC_WARN_EEPROM_CHKSUM; 9973 9974 /* 9975 * Set EEPROM default values. 9976 */ 9977 memcpy(&eep_config, &Default_3550_EEPROM_Config, 9978 sizeof(ADVEEP_3550_CONFIG)); 9979 9980 /* 9981 * Assume the 6 byte board serial number that was read from 9982 * EEPROM is correct even if the EEPROM checksum failed. 9983 */ 9984 eep_config.serial_number_word3 = 9985 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 9986 9987 eep_config.serial_number_word2 = 9988 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 9989 9990 eep_config.serial_number_word1 = 9991 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 9992 9993 AdvSet3550EEPConfig(iop_base, &eep_config); 9994 } 9995 /* 9996 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the 9997 * EEPROM configuration that was read. 9998 * 9999 * This is the mapping of EEPROM fields to Adv Library fields. 10000 */ 10001 asc_dvc->wdtr_able = eep_config.wdtr_able; 10002 asc_dvc->sdtr_able = eep_config.sdtr_able; 10003 asc_dvc->ultra_able = eep_config.ultra_able; 10004 asc_dvc->tagqng_able = eep_config.tagqng_able; 10005 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10006 asc_dvc->max_host_qng = eep_config.max_host_qng; 10007 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10008 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); 10009 asc_dvc->start_motor = eep_config.start_motor; 10010 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10011 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10012 asc_dvc->no_scam = eep_config.scam_tolerant; 10013 asc_dvc->cfg->serial1 = eep_config.serial_number_word1; 10014 asc_dvc->cfg->serial2 = eep_config.serial_number_word2; 10015 asc_dvc->cfg->serial3 = eep_config.serial_number_word3; 10016 10017 /* 10018 * Set the host maximum queuing (max. 253, min. 16) and the per device 10019 * maximum queuing (max. 63, min. 4). 10020 */ 10021 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10022 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10023 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10024 /* If the value is zero, assume it is uninitialized. */ 10025 if (eep_config.max_host_qng == 0) { 10026 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10027 } else { 10028 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10029 } 10030 } 10031 10032 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10033 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10034 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10035 /* If the value is zero, assume it is uninitialized. */ 10036 if (eep_config.max_dvc_qng == 0) { 10037 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10038 } else { 10039 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10040 } 10041 } 10042 10043 /* 10044 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10045 * set 'max_dvc_qng' to 'max_host_qng'. 10046 */ 10047 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10048 eep_config.max_dvc_qng = eep_config.max_host_qng; 10049 } 10050 10051 /* 10052 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' 10053 * values based on possibly adjusted EEPROM values. 10054 */ 10055 asc_dvc->max_host_qng = eep_config.max_host_qng; 10056 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10057 10058 /* 10059 * If the EEPROM 'termination' field is set to automatic (0), then set 10060 * the ADV_DVC_CFG 'termination' field to automatic also. 10061 * 10062 * If the termination is specified with a non-zero 'termination' 10063 * value check that a legal value is set and set the ADV_DVC_CFG 10064 * 'termination' field appropriately. 10065 */ 10066 if (eep_config.termination == 0) { 10067 asc_dvc->cfg->termination = 0; /* auto termination */ 10068 } else { 10069 /* Enable manual control with low off / high off. */ 10070 if (eep_config.termination == 1) { 10071 asc_dvc->cfg->termination = TERM_CTL_SEL; 10072 10073 /* Enable manual control with low off / high on. */ 10074 } else if (eep_config.termination == 2) { 10075 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H; 10076 10077 /* Enable manual control with low on / high on. */ 10078 } else if (eep_config.termination == 3) { 10079 asc_dvc->cfg->termination = 10080 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L; 10081 } else { 10082 /* 10083 * The EEPROM 'termination' field contains a bad value. Use 10084 * automatic termination instead. 10085 */ 10086 asc_dvc->cfg->termination = 0; 10087 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10088 } 10089 } 10090 10091 return warn_code; 10092 } 10093 10094 /* 10095 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and 10096 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while 10097 * all of this is done. 10098 * 10099 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10100 * 10101 * For a non-fatal error return a warning code. If there are no warnings 10102 * then 0 is returned. 10103 * 10104 * Note: Chip is stopped on entry. 10105 */ 10106 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc) 10107 { 10108 AdvPortAddr iop_base; 10109 ushort warn_code; 10110 ADVEEP_38C0800_CONFIG eep_config; 10111 uchar tid, termination; 10112 ushort sdtr_speed = 0; 10113 10114 iop_base = asc_dvc->iop_base; 10115 10116 warn_code = 0; 10117 10118 /* 10119 * Read the board's EEPROM configuration. 10120 * 10121 * Set default values if a bad checksum is found. 10122 */ 10123 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) != 10124 eep_config.check_sum) { 10125 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10126 10127 /* 10128 * Set EEPROM default values. 10129 */ 10130 memcpy(&eep_config, &Default_38C0800_EEPROM_Config, 10131 sizeof(ADVEEP_38C0800_CONFIG)); 10132 10133 /* 10134 * Assume the 6 byte board serial number that was read from 10135 * EEPROM is correct even if the EEPROM checksum failed. 10136 */ 10137 eep_config.serial_number_word3 = 10138 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10139 10140 eep_config.serial_number_word2 = 10141 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10142 10143 eep_config.serial_number_word1 = 10144 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10145 10146 AdvSet38C0800EEPConfig(iop_base, &eep_config); 10147 } 10148 /* 10149 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the 10150 * EEPROM configuration that was read. 10151 * 10152 * This is the mapping of EEPROM fields to Adv Library fields. 10153 */ 10154 asc_dvc->wdtr_able = eep_config.wdtr_able; 10155 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; 10156 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; 10157 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; 10158 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; 10159 asc_dvc->tagqng_able = eep_config.tagqng_able; 10160 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10161 asc_dvc->max_host_qng = eep_config.max_host_qng; 10162 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10163 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); 10164 asc_dvc->start_motor = eep_config.start_motor; 10165 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10166 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10167 asc_dvc->no_scam = eep_config.scam_tolerant; 10168 asc_dvc->cfg->serial1 = eep_config.serial_number_word1; 10169 asc_dvc->cfg->serial2 = eep_config.serial_number_word2; 10170 asc_dvc->cfg->serial3 = eep_config.serial_number_word3; 10171 10172 /* 10173 * For every Target ID if any of its 'sdtr_speed[1234]' bits 10174 * are set, then set an 'sdtr_able' bit for it. 10175 */ 10176 asc_dvc->sdtr_able = 0; 10177 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 10178 if (tid == 0) { 10179 sdtr_speed = asc_dvc->sdtr_speed1; 10180 } else if (tid == 4) { 10181 sdtr_speed = asc_dvc->sdtr_speed2; 10182 } else if (tid == 8) { 10183 sdtr_speed = asc_dvc->sdtr_speed3; 10184 } else if (tid == 12) { 10185 sdtr_speed = asc_dvc->sdtr_speed4; 10186 } 10187 if (sdtr_speed & ADV_MAX_TID) { 10188 asc_dvc->sdtr_able |= (1 << tid); 10189 } 10190 sdtr_speed >>= 4; 10191 } 10192 10193 /* 10194 * Set the host maximum queuing (max. 253, min. 16) and the per device 10195 * maximum queuing (max. 63, min. 4). 10196 */ 10197 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10198 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10199 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10200 /* If the value is zero, assume it is uninitialized. */ 10201 if (eep_config.max_host_qng == 0) { 10202 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10203 } else { 10204 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10205 } 10206 } 10207 10208 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10209 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10210 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10211 /* If the value is zero, assume it is uninitialized. */ 10212 if (eep_config.max_dvc_qng == 0) { 10213 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10214 } else { 10215 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10216 } 10217 } 10218 10219 /* 10220 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10221 * set 'max_dvc_qng' to 'max_host_qng'. 10222 */ 10223 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10224 eep_config.max_dvc_qng = eep_config.max_host_qng; 10225 } 10226 10227 /* 10228 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' 10229 * values based on possibly adjusted EEPROM values. 10230 */ 10231 asc_dvc->max_host_qng = eep_config.max_host_qng; 10232 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10233 10234 /* 10235 * If the EEPROM 'termination' field is set to automatic (0), then set 10236 * the ADV_DVC_CFG 'termination' field to automatic also. 10237 * 10238 * If the termination is specified with a non-zero 'termination' 10239 * value check that a legal value is set and set the ADV_DVC_CFG 10240 * 'termination' field appropriately. 10241 */ 10242 if (eep_config.termination_se == 0) { 10243 termination = 0; /* auto termination for SE */ 10244 } else { 10245 /* Enable manual control with low off / high off. */ 10246 if (eep_config.termination_se == 1) { 10247 termination = 0; 10248 10249 /* Enable manual control with low off / high on. */ 10250 } else if (eep_config.termination_se == 2) { 10251 termination = TERM_SE_HI; 10252 10253 /* Enable manual control with low on / high on. */ 10254 } else if (eep_config.termination_se == 3) { 10255 termination = TERM_SE; 10256 } else { 10257 /* 10258 * The EEPROM 'termination_se' field contains a bad value. 10259 * Use automatic termination instead. 10260 */ 10261 termination = 0; 10262 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10263 } 10264 } 10265 10266 if (eep_config.termination_lvd == 0) { 10267 asc_dvc->cfg->termination = termination; /* auto termination for LVD */ 10268 } else { 10269 /* Enable manual control with low off / high off. */ 10270 if (eep_config.termination_lvd == 1) { 10271 asc_dvc->cfg->termination = termination; 10272 10273 /* Enable manual control with low off / high on. */ 10274 } else if (eep_config.termination_lvd == 2) { 10275 asc_dvc->cfg->termination = termination | TERM_LVD_HI; 10276 10277 /* Enable manual control with low on / high on. */ 10278 } else if (eep_config.termination_lvd == 3) { 10279 asc_dvc->cfg->termination = termination | TERM_LVD; 10280 } else { 10281 /* 10282 * The EEPROM 'termination_lvd' field contains a bad value. 10283 * Use automatic termination instead. 10284 */ 10285 asc_dvc->cfg->termination = termination; 10286 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10287 } 10288 } 10289 10290 return warn_code; 10291 } 10292 10293 /* 10294 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and 10295 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while 10296 * all of this is done. 10297 * 10298 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. 10299 * 10300 * For a non-fatal error return a warning code. If there are no warnings 10301 * then 0 is returned. 10302 * 10303 * Note: Chip is stopped on entry. 10304 */ 10305 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc) 10306 { 10307 AdvPortAddr iop_base; 10308 ushort warn_code; 10309 ADVEEP_38C1600_CONFIG eep_config; 10310 uchar tid, termination; 10311 ushort sdtr_speed = 0; 10312 10313 iop_base = asc_dvc->iop_base; 10314 10315 warn_code = 0; 10316 10317 /* 10318 * Read the board's EEPROM configuration. 10319 * 10320 * Set default values if a bad checksum is found. 10321 */ 10322 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) != 10323 eep_config.check_sum) { 10324 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); 10325 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10326 10327 /* 10328 * Set EEPROM default values. 10329 */ 10330 memcpy(&eep_config, &Default_38C1600_EEPROM_Config, 10331 sizeof(ADVEEP_38C1600_CONFIG)); 10332 10333 if (PCI_FUNC(pdev->devfn) != 0) { 10334 u8 ints; 10335 /* 10336 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 10337 * and old Mac system booting problem. The Expansion 10338 * ROM must be disabled in Function 1 for these systems 10339 */ 10340 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE; 10341 /* 10342 * Clear the INTAB (bit 11) if the GPIO 0 input 10343 * indicates the Function 1 interrupt line is wired 10344 * to INTB. 10345 * 10346 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input: 10347 * 1 - Function 1 interrupt line wired to INT A. 10348 * 0 - Function 1 interrupt line wired to INT B. 10349 * 10350 * Note: Function 0 is always wired to INTA. 10351 * Put all 5 GPIO bits in input mode and then read 10352 * their input values. 10353 */ 10354 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0); 10355 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA); 10356 if ((ints & 0x01) == 0) 10357 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB; 10358 } 10359 10360 /* 10361 * Assume the 6 byte board serial number that was read from 10362 * EEPROM is correct even if the EEPROM checksum failed. 10363 */ 10364 eep_config.serial_number_word3 = 10365 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10366 eep_config.serial_number_word2 = 10367 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10368 eep_config.serial_number_word1 = 10369 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10370 10371 AdvSet38C1600EEPConfig(iop_base, &eep_config); 10372 } 10373 10374 /* 10375 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the 10376 * EEPROM configuration that was read. 10377 * 10378 * This is the mapping of EEPROM fields to Adv Library fields. 10379 */ 10380 asc_dvc->wdtr_able = eep_config.wdtr_able; 10381 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; 10382 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; 10383 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; 10384 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; 10385 asc_dvc->ppr_able = 0; 10386 asc_dvc->tagqng_able = eep_config.tagqng_able; 10387 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10388 asc_dvc->max_host_qng = eep_config.max_host_qng; 10389 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10390 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID); 10391 asc_dvc->start_motor = eep_config.start_motor; 10392 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10393 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10394 asc_dvc->no_scam = eep_config.scam_tolerant; 10395 10396 /* 10397 * For every Target ID if any of its 'sdtr_speed[1234]' bits 10398 * are set, then set an 'sdtr_able' bit for it. 10399 */ 10400 asc_dvc->sdtr_able = 0; 10401 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 10402 if (tid == 0) { 10403 sdtr_speed = asc_dvc->sdtr_speed1; 10404 } else if (tid == 4) { 10405 sdtr_speed = asc_dvc->sdtr_speed2; 10406 } else if (tid == 8) { 10407 sdtr_speed = asc_dvc->sdtr_speed3; 10408 } else if (tid == 12) { 10409 sdtr_speed = asc_dvc->sdtr_speed4; 10410 } 10411 if (sdtr_speed & ASC_MAX_TID) { 10412 asc_dvc->sdtr_able |= (1 << tid); 10413 } 10414 sdtr_speed >>= 4; 10415 } 10416 10417 /* 10418 * Set the host maximum queuing (max. 253, min. 16) and the per device 10419 * maximum queuing (max. 63, min. 4). 10420 */ 10421 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10422 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10423 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10424 /* If the value is zero, assume it is uninitialized. */ 10425 if (eep_config.max_host_qng == 0) { 10426 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10427 } else { 10428 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10429 } 10430 } 10431 10432 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10433 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10434 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10435 /* If the value is zero, assume it is uninitialized. */ 10436 if (eep_config.max_dvc_qng == 0) { 10437 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10438 } else { 10439 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10440 } 10441 } 10442 10443 /* 10444 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10445 * set 'max_dvc_qng' to 'max_host_qng'. 10446 */ 10447 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10448 eep_config.max_dvc_qng = eep_config.max_host_qng; 10449 } 10450 10451 /* 10452 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng' 10453 * values based on possibly adjusted EEPROM values. 10454 */ 10455 asc_dvc->max_host_qng = eep_config.max_host_qng; 10456 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10457 10458 /* 10459 * If the EEPROM 'termination' field is set to automatic (0), then set 10460 * the ASC_DVC_CFG 'termination' field to automatic also. 10461 * 10462 * If the termination is specified with a non-zero 'termination' 10463 * value check that a legal value is set and set the ASC_DVC_CFG 10464 * 'termination' field appropriately. 10465 */ 10466 if (eep_config.termination_se == 0) { 10467 termination = 0; /* auto termination for SE */ 10468 } else { 10469 /* Enable manual control with low off / high off. */ 10470 if (eep_config.termination_se == 1) { 10471 termination = 0; 10472 10473 /* Enable manual control with low off / high on. */ 10474 } else if (eep_config.termination_se == 2) { 10475 termination = TERM_SE_HI; 10476 10477 /* Enable manual control with low on / high on. */ 10478 } else if (eep_config.termination_se == 3) { 10479 termination = TERM_SE; 10480 } else { 10481 /* 10482 * The EEPROM 'termination_se' field contains a bad value. 10483 * Use automatic termination instead. 10484 */ 10485 termination = 0; 10486 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10487 } 10488 } 10489 10490 if (eep_config.termination_lvd == 0) { 10491 asc_dvc->cfg->termination = termination; /* auto termination for LVD */ 10492 } else { 10493 /* Enable manual control with low off / high off. */ 10494 if (eep_config.termination_lvd == 1) { 10495 asc_dvc->cfg->termination = termination; 10496 10497 /* Enable manual control with low off / high on. */ 10498 } else if (eep_config.termination_lvd == 2) { 10499 asc_dvc->cfg->termination = termination | TERM_LVD_HI; 10500 10501 /* Enable manual control with low on / high on. */ 10502 } else if (eep_config.termination_lvd == 3) { 10503 asc_dvc->cfg->termination = termination | TERM_LVD; 10504 } else { 10505 /* 10506 * The EEPROM 'termination_lvd' field contains a bad value. 10507 * Use automatic termination instead. 10508 */ 10509 asc_dvc->cfg->termination = termination; 10510 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10511 } 10512 } 10513 10514 return warn_code; 10515 } 10516 10517 /* 10518 * Initialize the ADV_DVC_VAR structure. 10519 * 10520 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10521 * 10522 * For a non-fatal error return a warning code. If there are no warnings 10523 * then 0 is returned. 10524 */ 10525 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) 10526 { 10527 struct asc_board *board = shost_priv(shost); 10528 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var; 10529 unsigned short warn_code = 0; 10530 AdvPortAddr iop_base = asc_dvc->iop_base; 10531 u16 cmd; 10532 int status; 10533 10534 asc_dvc->err_code = 0; 10535 10536 /* 10537 * Save the state of the PCI Configuration Command Register 10538 * "Parity Error Response Control" Bit. If the bit is clear (0), 10539 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore 10540 * DMA parity errors. 10541 */ 10542 asc_dvc->cfg->control_flag = 0; 10543 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 10544 if ((cmd & PCI_COMMAND_PARITY) == 0) 10545 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR; 10546 10547 asc_dvc->cfg->chip_version = 10548 AdvGetChipVersion(iop_base, asc_dvc->bus_type); 10549 10550 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n", 10551 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1), 10552 (ushort)ADV_CHIP_ID_BYTE); 10553 10554 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n", 10555 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0), 10556 (ushort)ADV_CHIP_ID_WORD); 10557 10558 /* 10559 * Reset the chip to start and allow register writes. 10560 */ 10561 if (AdvFindSignature(iop_base) == 0) { 10562 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 10563 return ADV_ERROR; 10564 } else { 10565 /* 10566 * The caller must set 'chip_type' to a valid setting. 10567 */ 10568 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 && 10569 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 && 10570 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { 10571 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE; 10572 return ADV_ERROR; 10573 } 10574 10575 /* 10576 * Reset Chip. 10577 */ 10578 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 10579 ADV_CTRL_REG_CMD_RESET); 10580 mdelay(100); 10581 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 10582 ADV_CTRL_REG_CMD_WR_IO_REG); 10583 10584 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 10585 status = AdvInitFrom38C1600EEP(asc_dvc); 10586 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 10587 status = AdvInitFrom38C0800EEP(asc_dvc); 10588 } else { 10589 status = AdvInitFrom3550EEP(asc_dvc); 10590 } 10591 warn_code |= status; 10592 } 10593 10594 if (warn_code != 0) 10595 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code); 10596 10597 if (asc_dvc->err_code) 10598 shost_printk(KERN_ERR, shost, "error code 0x%x\n", 10599 asc_dvc->err_code); 10600 10601 return asc_dvc->err_code; 10602 } 10603 #endif 10604 10605 static const struct scsi_host_template advansys_template = { 10606 .proc_name = DRV_NAME, 10607 #ifdef CONFIG_PROC_FS 10608 .show_info = advansys_show_info, 10609 #endif 10610 .name = DRV_NAME, 10611 .info = advansys_info, 10612 .queuecommand = advansys_queuecommand, 10613 .eh_host_reset_handler = advansys_reset, 10614 .bios_param = advansys_biosparam, 10615 .sdev_configure = advansys_sdev_configure, 10616 .cmd_size = sizeof(struct advansys_cmd), 10617 }; 10618 10619 static int advansys_wide_init_chip(struct Scsi_Host *shost) 10620 { 10621 struct asc_board *board = shost_priv(shost); 10622 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; 10623 size_t sgblk_pool_size; 10624 int warn_code, err_code; 10625 10626 /* 10627 * Allocate buffer carrier structures. The total size 10628 * is about 8 KB, so allocate all at once. 10629 */ 10630 adv_dvc->carrier = dma_alloc_coherent(board->dev, 10631 ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL); 10632 ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier); 10633 10634 if (!adv_dvc->carrier) 10635 goto kmalloc_failed; 10636 10637 /* 10638 * Allocate up to 'max_host_qng' request structures for the Wide 10639 * board. The total size is about 16 KB, so allocate all at once. 10640 * If the allocation fails decrement and try again. 10641 */ 10642 board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t); 10643 if (board->adv_reqp_size & 0x1f) { 10644 ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t)); 10645 board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size); 10646 } 10647 board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size, 10648 &board->adv_reqp_addr, GFP_KERNEL); 10649 10650 if (!board->adv_reqp) 10651 goto kmalloc_failed; 10652 10653 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp, 10654 adv_dvc->max_host_qng, board->adv_reqp_size); 10655 10656 /* 10657 * Allocate up to ADV_TOT_SG_BLOCK request structures for 10658 * the Wide board. Each structure is about 136 bytes. 10659 */ 10660 sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK; 10661 board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev, 10662 sgblk_pool_size, 32, 0); 10663 10664 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK, 10665 sizeof(adv_sgblk_t), sgblk_pool_size); 10666 10667 if (!board->adv_sgblk_pool) 10668 goto kmalloc_failed; 10669 10670 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) { 10671 ASC_DBG(2, "AdvInitAsc3550Driver()\n"); 10672 warn_code = AdvInitAsc3550Driver(adv_dvc); 10673 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) { 10674 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n"); 10675 warn_code = AdvInitAsc38C0800Driver(adv_dvc); 10676 } else { 10677 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n"); 10678 warn_code = AdvInitAsc38C1600Driver(adv_dvc); 10679 } 10680 err_code = adv_dvc->err_code; 10681 10682 if (warn_code || err_code) { 10683 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error " 10684 "0x%x\n", warn_code, err_code); 10685 } 10686 10687 goto exit; 10688 10689 kmalloc_failed: 10690 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n"); 10691 err_code = ADV_ERROR; 10692 exit: 10693 return err_code; 10694 } 10695 10696 static void advansys_wide_free_mem(struct asc_board *board) 10697 { 10698 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; 10699 10700 if (adv_dvc->carrier) { 10701 dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE, 10702 adv_dvc->carrier, adv_dvc->carrier_addr); 10703 adv_dvc->carrier = NULL; 10704 } 10705 if (board->adv_reqp) { 10706 dma_free_coherent(board->dev, board->adv_reqp_size, 10707 board->adv_reqp, board->adv_reqp_addr); 10708 board->adv_reqp = NULL; 10709 } 10710 if (board->adv_sgblk_pool) { 10711 dma_pool_destroy(board->adv_sgblk_pool); 10712 board->adv_sgblk_pool = NULL; 10713 } 10714 } 10715 10716 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop, 10717 int bus_type) 10718 { 10719 struct pci_dev *pdev; 10720 struct asc_board *boardp = shost_priv(shost); 10721 ASC_DVC_VAR *asc_dvc_varp = NULL; 10722 ADV_DVC_VAR *adv_dvc_varp = NULL; 10723 int share_irq, warn_code, ret; 10724 10725 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL; 10726 10727 if (ASC_NARROW_BOARD(boardp)) { 10728 ASC_DBG(1, "narrow board\n"); 10729 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 10730 asc_dvc_varp->bus_type = bus_type; 10731 asc_dvc_varp->drv_ptr = boardp; 10732 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg; 10733 asc_dvc_varp->iop_base = iop; 10734 } else { 10735 #ifdef CONFIG_PCI 10736 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 10737 adv_dvc_varp->drv_ptr = boardp; 10738 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg; 10739 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) { 10740 ASC_DBG(1, "wide board ASC-3550\n"); 10741 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550; 10742 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) { 10743 ASC_DBG(1, "wide board ASC-38C0800\n"); 10744 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800; 10745 } else { 10746 ASC_DBG(1, "wide board ASC-38C1600\n"); 10747 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600; 10748 } 10749 10750 boardp->asc_n_io_port = pci_resource_len(pdev, 1); 10751 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1); 10752 if (!boardp->ioremap_addr) { 10753 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) " 10754 "returned NULL\n", 10755 (long)pci_resource_start(pdev, 1), 10756 boardp->asc_n_io_port); 10757 ret = -ENODEV; 10758 goto err_shost; 10759 } 10760 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr; 10761 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base); 10762 10763 /* 10764 * Even though it isn't used to access wide boards, other 10765 * than for the debug line below, save I/O Port address so 10766 * that it can be reported. 10767 */ 10768 boardp->ioport = iop; 10769 10770 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n", 10771 (ushort)inp(iop + 1), (ushort)inpw(iop)); 10772 #endif /* CONFIG_PCI */ 10773 } 10774 10775 if (ASC_NARROW_BOARD(boardp)) { 10776 /* 10777 * Set the board bus type and PCI IRQ before 10778 * calling AscInitGetConfig(). 10779 */ 10780 switch (asc_dvc_varp->bus_type) { 10781 #ifdef CONFIG_ISA 10782 case ASC_IS_VL: 10783 share_irq = 0; 10784 break; 10785 case ASC_IS_EISA: 10786 share_irq = IRQF_SHARED; 10787 break; 10788 #endif /* CONFIG_ISA */ 10789 #ifdef CONFIG_PCI 10790 case ASC_IS_PCI: 10791 share_irq = IRQF_SHARED; 10792 break; 10793 #endif /* CONFIG_PCI */ 10794 default: 10795 shost_printk(KERN_ERR, shost, "unknown adapter type: " 10796 "%d\n", asc_dvc_varp->bus_type); 10797 share_irq = 0; 10798 break; 10799 } 10800 10801 /* 10802 * NOTE: AscInitGetConfig() may change the board's 10803 * bus_type value. The bus_type value should no 10804 * longer be used. If the bus_type field must be 10805 * referenced only use the bit-wise AND operator "&". 10806 */ 10807 ASC_DBG(2, "AscInitGetConfig()\n"); 10808 ret = AscInitGetConfig(shost) ? -ENODEV : 0; 10809 } else { 10810 #ifdef CONFIG_PCI 10811 /* 10812 * For Wide boards set PCI information before calling 10813 * AdvInitGetConfig(). 10814 */ 10815 share_irq = IRQF_SHARED; 10816 ASC_DBG(2, "AdvInitGetConfig()\n"); 10817 10818 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0; 10819 #else 10820 share_irq = 0; 10821 ret = -ENODEV; 10822 #endif /* CONFIG_PCI */ 10823 } 10824 10825 if (ret) 10826 goto err_unmap; 10827 10828 /* 10829 * Save the EEPROM configuration so that it can be displayed 10830 * from /proc/scsi/advansys/[0...]. 10831 */ 10832 if (ASC_NARROW_BOARD(boardp)) { 10833 10834 ASCEEP_CONFIG *ep; 10835 10836 /* 10837 * Set the adapter's target id bit in the 'init_tidmask' field. 10838 */ 10839 boardp->init_tidmask |= 10840 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id); 10841 10842 /* 10843 * Save EEPROM settings for the board. 10844 */ 10845 ep = &boardp->eep_config.asc_eep; 10846 10847 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable; 10848 ep->disc_enable = asc_dvc_varp->cfg->disc_enable; 10849 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled; 10850 ASC_EEP_SET_DMA_SPD(ep, ASC_DEF_ISA_DMA_SPEED); 10851 ep->start_motor = asc_dvc_varp->start_motor; 10852 ep->cntl = asc_dvc_varp->dvc_cntl; 10853 ep->no_scam = asc_dvc_varp->no_scam; 10854 ep->max_total_qng = asc_dvc_varp->max_total_qng; 10855 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id); 10856 /* 'max_tag_qng' is set to the same value for every device. */ 10857 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0]; 10858 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0]; 10859 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1]; 10860 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2]; 10861 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3]; 10862 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4]; 10863 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5]; 10864 10865 /* 10866 * Modify board configuration. 10867 */ 10868 ASC_DBG(2, "AscInitSetConfig()\n"); 10869 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0; 10870 if (ret) 10871 goto err_unmap; 10872 } else { 10873 ADVEEP_3550_CONFIG *ep_3550; 10874 ADVEEP_38C0800_CONFIG *ep_38C0800; 10875 ADVEEP_38C1600_CONFIG *ep_38C1600; 10876 10877 /* 10878 * Save Wide EEP Configuration Information. 10879 */ 10880 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 10881 ep_3550 = &boardp->eep_config.adv_3550_eep; 10882 10883 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; 10884 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng; 10885 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 10886 ep_3550->termination = adv_dvc_varp->cfg->termination; 10887 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable; 10888 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl; 10889 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able; 10890 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able; 10891 ep_3550->ultra_able = adv_dvc_varp->ultra_able; 10892 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able; 10893 ep_3550->start_motor = adv_dvc_varp->start_motor; 10894 ep_3550->scsi_reset_delay = 10895 adv_dvc_varp->scsi_reset_wait; 10896 ep_3550->serial_number_word1 = 10897 adv_dvc_varp->cfg->serial1; 10898 ep_3550->serial_number_word2 = 10899 adv_dvc_varp->cfg->serial2; 10900 ep_3550->serial_number_word3 = 10901 adv_dvc_varp->cfg->serial3; 10902 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 10903 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; 10904 10905 ep_38C0800->adapter_scsi_id = 10906 adv_dvc_varp->chip_scsi_id; 10907 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng; 10908 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 10909 ep_38C0800->termination_lvd = 10910 adv_dvc_varp->cfg->termination; 10911 ep_38C0800->disc_enable = 10912 adv_dvc_varp->cfg->disc_enable; 10913 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl; 10914 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able; 10915 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; 10916 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; 10917 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; 10918 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; 10919 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; 10920 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; 10921 ep_38C0800->start_motor = adv_dvc_varp->start_motor; 10922 ep_38C0800->scsi_reset_delay = 10923 adv_dvc_varp->scsi_reset_wait; 10924 ep_38C0800->serial_number_word1 = 10925 adv_dvc_varp->cfg->serial1; 10926 ep_38C0800->serial_number_word2 = 10927 adv_dvc_varp->cfg->serial2; 10928 ep_38C0800->serial_number_word3 = 10929 adv_dvc_varp->cfg->serial3; 10930 } else { 10931 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; 10932 10933 ep_38C1600->adapter_scsi_id = 10934 adv_dvc_varp->chip_scsi_id; 10935 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng; 10936 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 10937 ep_38C1600->termination_lvd = 10938 adv_dvc_varp->cfg->termination; 10939 ep_38C1600->disc_enable = 10940 adv_dvc_varp->cfg->disc_enable; 10941 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl; 10942 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able; 10943 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; 10944 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; 10945 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; 10946 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; 10947 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; 10948 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; 10949 ep_38C1600->start_motor = adv_dvc_varp->start_motor; 10950 ep_38C1600->scsi_reset_delay = 10951 adv_dvc_varp->scsi_reset_wait; 10952 ep_38C1600->serial_number_word1 = 10953 adv_dvc_varp->cfg->serial1; 10954 ep_38C1600->serial_number_word2 = 10955 adv_dvc_varp->cfg->serial2; 10956 ep_38C1600->serial_number_word3 = 10957 adv_dvc_varp->cfg->serial3; 10958 } 10959 10960 /* 10961 * Set the adapter's target id bit in the 'init_tidmask' field. 10962 */ 10963 boardp->init_tidmask |= 10964 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id); 10965 } 10966 10967 /* 10968 * Channels are numbered beginning with 0. For AdvanSys one host 10969 * structure supports one channel. Multi-channel boards have a 10970 * separate host structure for each channel. 10971 */ 10972 shost->max_channel = 0; 10973 if (ASC_NARROW_BOARD(boardp)) { 10974 shost->max_id = ASC_MAX_TID + 1; 10975 shost->max_lun = ASC_MAX_LUN + 1; 10976 shost->max_cmd_len = ASC_MAX_CDB_LEN; 10977 10978 shost->io_port = asc_dvc_varp->iop_base; 10979 boardp->asc_n_io_port = ASC_IOADR_GAP; 10980 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id; 10981 10982 /* Set maximum number of queues the adapter can handle. */ 10983 shost->can_queue = asc_dvc_varp->max_total_qng; 10984 } else { 10985 shost->max_id = ADV_MAX_TID + 1; 10986 shost->max_lun = ADV_MAX_LUN + 1; 10987 shost->max_cmd_len = ADV_MAX_CDB_LEN; 10988 10989 /* 10990 * Save the I/O Port address and length even though 10991 * I/O ports are not used to access Wide boards. 10992 * Instead the Wide boards are accessed with 10993 * PCI Memory Mapped I/O. 10994 */ 10995 shost->io_port = iop; 10996 10997 shost->this_id = adv_dvc_varp->chip_scsi_id; 10998 10999 /* Set maximum number of queues the adapter can handle. */ 11000 shost->can_queue = adv_dvc_varp->max_host_qng; 11001 } 11002 11003 /* 11004 * Set the maximum number of scatter-gather elements the 11005 * adapter can handle. 11006 */ 11007 if (ASC_NARROW_BOARD(boardp)) { 11008 /* 11009 * Allow two commands with 'sg_tablesize' scatter-gather 11010 * elements to be executed simultaneously. This value is 11011 * the theoretical hardware limit. It may be decreased 11012 * below. 11013 */ 11014 shost->sg_tablesize = 11015 (((asc_dvc_varp->max_total_qng - 2) / 2) * 11016 ASC_SG_LIST_PER_Q) + 1; 11017 } else { 11018 shost->sg_tablesize = ADV_MAX_SG_LIST; 11019 } 11020 11021 /* 11022 * The value of 'sg_tablesize' can not exceed the SCSI 11023 * mid-level driver definition of SG_ALL. SG_ALL also 11024 * must not be exceeded, because it is used to define the 11025 * size of the scatter-gather table in 'struct asc_sg_head'. 11026 */ 11027 if (shost->sg_tablesize > SG_ALL) { 11028 shost->sg_tablesize = SG_ALL; 11029 } 11030 11031 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize); 11032 11033 /* BIOS start address. */ 11034 if (ASC_NARROW_BOARD(boardp)) { 11035 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base, 11036 asc_dvc_varp->bus_type); 11037 } else { 11038 /* 11039 * Fill-in BIOS board variables. The Wide BIOS saves 11040 * information in LRAM that is used by the driver. 11041 */ 11042 AdvReadWordLram(adv_dvc_varp->iop_base, 11043 BIOS_SIGNATURE, boardp->bios_signature); 11044 AdvReadWordLram(adv_dvc_varp->iop_base, 11045 BIOS_VERSION, boardp->bios_version); 11046 AdvReadWordLram(adv_dvc_varp->iop_base, 11047 BIOS_CODESEG, boardp->bios_codeseg); 11048 AdvReadWordLram(adv_dvc_varp->iop_base, 11049 BIOS_CODELEN, boardp->bios_codelen); 11050 11051 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n", 11052 boardp->bios_signature, boardp->bios_version); 11053 11054 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n", 11055 boardp->bios_codeseg, boardp->bios_codelen); 11056 11057 /* 11058 * If the BIOS saved a valid signature, then fill in 11059 * the BIOS code segment base address. 11060 */ 11061 if (boardp->bios_signature == 0x55AA) { 11062 /* 11063 * Convert x86 realmode code segment to a linear 11064 * address by shifting left 4. 11065 */ 11066 shost->base = ((ulong)boardp->bios_codeseg << 4); 11067 } else { 11068 shost->base = 0; 11069 } 11070 } 11071 11072 /* 11073 * Register Board Resources - I/O Port, DMA, IRQ 11074 */ 11075 11076 /* Register DMA Channel for Narrow boards. */ 11077 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */ 11078 11079 /* Register IRQ Number. */ 11080 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost); 11081 11082 ret = request_irq(boardp->irq, advansys_interrupt, share_irq, 11083 DRV_NAME, shost); 11084 11085 if (ret) { 11086 if (ret == -EBUSY) { 11087 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11088 "already in use\n", boardp->irq); 11089 } else if (ret == -EINVAL) { 11090 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11091 "not valid\n", boardp->irq); 11092 } else { 11093 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11094 "failed with %d\n", boardp->irq, ret); 11095 } 11096 goto err_unmap; 11097 } 11098 11099 /* 11100 * Initialize board RISC chip and enable interrupts. 11101 */ 11102 if (ASC_NARROW_BOARD(boardp)) { 11103 ASC_DBG(2, "AscInitAsc1000Driver()\n"); 11104 11105 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL); 11106 if (!asc_dvc_varp->overrun_buf) { 11107 ret = -ENOMEM; 11108 goto err_free_irq; 11109 } 11110 warn_code = AscInitAsc1000Driver(asc_dvc_varp); 11111 11112 if (warn_code || asc_dvc_varp->err_code) { 11113 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, " 11114 "warn 0x%x, error 0x%x\n", 11115 asc_dvc_varp->init_state, warn_code, 11116 asc_dvc_varp->err_code); 11117 if (!asc_dvc_varp->overrun_dma) { 11118 ret = -ENODEV; 11119 goto err_free_mem; 11120 } 11121 } 11122 } else { 11123 if (advansys_wide_init_chip(shost)) { 11124 ret = -ENODEV; 11125 goto err_free_mem; 11126 } 11127 } 11128 11129 ASC_DBG_PRT_SCSI_HOST(2, shost); 11130 11131 ret = scsi_add_host(shost, boardp->dev); 11132 if (ret) 11133 goto err_free_mem; 11134 11135 scsi_scan_host(shost); 11136 return 0; 11137 11138 err_free_mem: 11139 if (ASC_NARROW_BOARD(boardp)) { 11140 if (asc_dvc_varp->overrun_dma) 11141 dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma, 11142 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 11143 kfree(asc_dvc_varp->overrun_buf); 11144 } else 11145 advansys_wide_free_mem(boardp); 11146 err_free_irq: 11147 free_irq(boardp->irq, shost); 11148 err_unmap: 11149 if (boardp->ioremap_addr) 11150 iounmap(boardp->ioremap_addr); 11151 #ifdef CONFIG_PCI 11152 err_shost: 11153 #endif 11154 return ret; 11155 } 11156 11157 /* 11158 * advansys_release() 11159 * 11160 * Release resources allocated for a single AdvanSys adapter. 11161 */ 11162 static int advansys_release(struct Scsi_Host *shost) 11163 { 11164 struct asc_board *board = shost_priv(shost); 11165 ASC_DBG(1, "begin\n"); 11166 scsi_remove_host(shost); 11167 free_irq(board->irq, shost); 11168 11169 if (ASC_NARROW_BOARD(board)) { 11170 dma_unmap_single(board->dev, 11171 board->dvc_var.asc_dvc_var.overrun_dma, 11172 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 11173 kfree(board->dvc_var.asc_dvc_var.overrun_buf); 11174 } else { 11175 iounmap(board->ioremap_addr); 11176 advansys_wide_free_mem(board); 11177 } 11178 scsi_host_put(shost); 11179 ASC_DBG(1, "end\n"); 11180 return 0; 11181 } 11182 11183 #define ASC_IOADR_TABLE_MAX_IX 11 11184 11185 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = { 11186 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190, 11187 0x0210, 0x0230, 0x0250, 0x0330 11188 }; 11189 11190 static void advansys_vlb_remove(struct device *dev, unsigned int id) 11191 { 11192 int ioport = _asc_def_iop_base[id]; 11193 advansys_release(dev_get_drvdata(dev)); 11194 release_region(ioport, ASC_IOADR_GAP); 11195 } 11196 11197 /* 11198 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as: 11199 * 000: invalid 11200 * 001: 10 11201 * 010: 11 11202 * 011: 12 11203 * 100: invalid 11204 * 101: 14 11205 * 110: 15 11206 * 111: invalid 11207 */ 11208 static unsigned int advansys_vlb_irq_no(PortAddr iop_base) 11209 { 11210 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); 11211 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9; 11212 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15)) 11213 return 0; 11214 return chip_irq; 11215 } 11216 11217 static int advansys_vlb_probe(struct device *dev, unsigned int id) 11218 { 11219 int err = -ENODEV; 11220 PortAddr iop_base = _asc_def_iop_base[id]; 11221 struct Scsi_Host *shost; 11222 struct asc_board *board; 11223 11224 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { 11225 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); 11226 return -ENODEV; 11227 } 11228 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); 11229 if (!AscFindSignature(iop_base)) 11230 goto release_region; 11231 /* 11232 * I don't think this condition can actually happen, but the old 11233 * driver did it, and the chances of finding a VLB setup in 2007 11234 * to do testing with is slight to none. 11235 */ 11236 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL) 11237 goto release_region; 11238 11239 err = -ENOMEM; 11240 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11241 if (!shost) 11242 goto release_region; 11243 11244 board = shost_priv(shost); 11245 board->irq = advansys_vlb_irq_no(iop_base); 11246 board->dev = dev; 11247 board->shost = shost; 11248 11249 err = advansys_board_found(shost, iop_base, ASC_IS_VL); 11250 if (err) 11251 goto free_host; 11252 11253 dev_set_drvdata(dev, shost); 11254 return 0; 11255 11256 free_host: 11257 scsi_host_put(shost); 11258 release_region: 11259 release_region(iop_base, ASC_IOADR_GAP); 11260 return -ENODEV; 11261 } 11262 11263 static struct isa_driver advansys_vlb_driver = { 11264 .probe = advansys_vlb_probe, 11265 .remove = advansys_vlb_remove, 11266 .driver = { 11267 .owner = THIS_MODULE, 11268 .name = "advansys_vlb", 11269 }, 11270 }; 11271 11272 static struct eisa_device_id advansys_eisa_table[] = { 11273 { "ABP7401" }, 11274 { "ABP7501" }, 11275 { "" } 11276 }; 11277 11278 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table); 11279 11280 /* 11281 * EISA is a little more tricky than PCI; each EISA device may have two 11282 * channels, and this driver is written to make each channel its own Scsi_Host 11283 */ 11284 struct eisa_scsi_data { 11285 struct Scsi_Host *host[2]; 11286 }; 11287 11288 /* 11289 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as: 11290 * 000: 10 11291 * 001: 11 11292 * 010: 12 11293 * 011: invalid 11294 * 100: 14 11295 * 101: 15 11296 * 110: invalid 11297 * 111: invalid 11298 */ 11299 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev) 11300 { 11301 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86); 11302 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10; 11303 if ((chip_irq == 13) || (chip_irq > 15)) 11304 return 0; 11305 return chip_irq; 11306 } 11307 11308 static int advansys_eisa_probe(struct device *dev) 11309 { 11310 int i, ioport, irq = 0; 11311 int err; 11312 struct eisa_device *edev = to_eisa_device(dev); 11313 struct eisa_scsi_data *data; 11314 11315 err = -ENOMEM; 11316 data = kzalloc(sizeof(*data), GFP_KERNEL); 11317 if (!data) 11318 goto fail; 11319 ioport = edev->base_addr + 0xc30; 11320 11321 err = -ENODEV; 11322 for (i = 0; i < 2; i++, ioport += 0x20) { 11323 struct asc_board *board; 11324 struct Scsi_Host *shost; 11325 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) { 11326 printk(KERN_WARNING "Region %x-%x busy\n", ioport, 11327 ioport + ASC_IOADR_GAP - 1); 11328 continue; 11329 } 11330 if (!AscFindSignature(ioport)) { 11331 release_region(ioport, ASC_IOADR_GAP); 11332 continue; 11333 } 11334 11335 /* 11336 * I don't know why we need to do this for EISA chips, but 11337 * not for any others. It looks to be equivalent to 11338 * AscGetChipCfgMsw, but I may have overlooked something, 11339 * so I'm not converting it until I get an EISA board to 11340 * test with. 11341 */ 11342 inw(ioport + 4); 11343 11344 if (!irq) 11345 irq = advansys_eisa_irq_no(edev); 11346 11347 err = -ENOMEM; 11348 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11349 if (!shost) 11350 goto release_region; 11351 11352 board = shost_priv(shost); 11353 board->irq = irq; 11354 board->dev = dev; 11355 board->shost = shost; 11356 11357 err = advansys_board_found(shost, ioport, ASC_IS_EISA); 11358 if (!err) { 11359 data->host[i] = shost; 11360 continue; 11361 } 11362 11363 scsi_host_put(shost); 11364 release_region: 11365 release_region(ioport, ASC_IOADR_GAP); 11366 break; 11367 } 11368 11369 if (err) 11370 goto free_data; 11371 dev_set_drvdata(dev, data); 11372 return 0; 11373 11374 free_data: 11375 kfree(data->host[0]); 11376 kfree(data->host[1]); 11377 kfree(data); 11378 fail: 11379 return err; 11380 } 11381 11382 static int advansys_eisa_remove(struct device *dev) 11383 { 11384 int i; 11385 struct eisa_scsi_data *data = dev_get_drvdata(dev); 11386 11387 for (i = 0; i < 2; i++) { 11388 int ioport; 11389 struct Scsi_Host *shost = data->host[i]; 11390 if (!shost) 11391 continue; 11392 ioport = shost->io_port; 11393 advansys_release(shost); 11394 release_region(ioport, ASC_IOADR_GAP); 11395 } 11396 11397 kfree(data); 11398 return 0; 11399 } 11400 11401 static struct eisa_driver advansys_eisa_driver = { 11402 .id_table = advansys_eisa_table, 11403 .driver = { 11404 .name = DRV_NAME, 11405 .probe = advansys_eisa_probe, 11406 .remove = advansys_eisa_remove, 11407 } 11408 }; 11409 11410 /* PCI Devices supported by this driver */ 11411 static const struct pci_device_id advansys_pci_tbl[] = { 11412 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A, 11413 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11414 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940, 11415 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11416 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U, 11417 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11418 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW, 11419 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11420 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1, 11421 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11422 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1, 11423 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11424 {} 11425 }; 11426 11427 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl); 11428 11429 static void advansys_set_latency(struct pci_dev *pdev) 11430 { 11431 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || 11432 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { 11433 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0); 11434 } else { 11435 u8 latency; 11436 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency); 11437 if (latency < 0x20) 11438 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20); 11439 } 11440 } 11441 11442 static int advansys_pci_probe(struct pci_dev *pdev, 11443 const struct pci_device_id *ent) 11444 { 11445 int err, ioport; 11446 struct Scsi_Host *shost; 11447 struct asc_board *board; 11448 11449 err = pci_enable_device(pdev); 11450 if (err) 11451 goto fail; 11452 err = pci_request_regions(pdev, DRV_NAME); 11453 if (err) 11454 goto disable_device; 11455 pci_set_master(pdev); 11456 advansys_set_latency(pdev); 11457 11458 err = -ENODEV; 11459 if (pci_resource_len(pdev, 0) == 0) 11460 goto release_region; 11461 11462 ioport = pci_resource_start(pdev, 0); 11463 11464 err = -ENOMEM; 11465 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11466 if (!shost) 11467 goto release_region; 11468 11469 board = shost_priv(shost); 11470 board->irq = pdev->irq; 11471 board->dev = &pdev->dev; 11472 board->shost = shost; 11473 11474 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW || 11475 pdev->device == PCI_DEVICE_ID_38C0800_REV1 || 11476 pdev->device == PCI_DEVICE_ID_38C1600_REV1) { 11477 board->flags |= ASC_IS_WIDE_BOARD; 11478 } 11479 11480 err = advansys_board_found(shost, ioport, ASC_IS_PCI); 11481 if (err) 11482 goto free_host; 11483 11484 pci_set_drvdata(pdev, shost); 11485 return 0; 11486 11487 free_host: 11488 scsi_host_put(shost); 11489 release_region: 11490 pci_release_regions(pdev); 11491 disable_device: 11492 pci_disable_device(pdev); 11493 fail: 11494 return err; 11495 } 11496 11497 static void advansys_pci_remove(struct pci_dev *pdev) 11498 { 11499 advansys_release(pci_get_drvdata(pdev)); 11500 pci_release_regions(pdev); 11501 pci_disable_device(pdev); 11502 } 11503 11504 static struct pci_driver advansys_pci_driver = { 11505 .name = DRV_NAME, 11506 .id_table = advansys_pci_tbl, 11507 .probe = advansys_pci_probe, 11508 .remove = advansys_pci_remove, 11509 }; 11510 11511 static int __init advansys_init(void) 11512 { 11513 int error; 11514 11515 error = isa_register_driver(&advansys_vlb_driver, 11516 ASC_IOADR_TABLE_MAX_IX); 11517 if (error) 11518 goto fail; 11519 11520 error = eisa_driver_register(&advansys_eisa_driver); 11521 if (error) 11522 goto unregister_vlb; 11523 11524 error = pci_register_driver(&advansys_pci_driver); 11525 if (error) 11526 goto unregister_eisa; 11527 11528 return 0; 11529 11530 unregister_eisa: 11531 eisa_driver_unregister(&advansys_eisa_driver); 11532 unregister_vlb: 11533 isa_unregister_driver(&advansys_vlb_driver); 11534 fail: 11535 return error; 11536 } 11537 11538 static void __exit advansys_exit(void) 11539 { 11540 pci_unregister_driver(&advansys_pci_driver); 11541 eisa_driver_unregister(&advansys_eisa_driver); 11542 isa_unregister_driver(&advansys_vlb_driver); 11543 } 11544 11545 module_init(advansys_init); 11546 module_exit(advansys_exit); 11547 11548 MODULE_DESCRIPTION("AdvanSys SCSI Adapter driver"); 11549 MODULE_LICENSE("GPL"); 11550 MODULE_FIRMWARE("advansys/mcode.bin"); 11551 MODULE_FIRMWARE("advansys/3550.bin"); 11552 MODULE_FIRMWARE("advansys/38C0800.bin"); 11553 MODULE_FIRMWARE("advansys/38C1600.bin"); 11554