1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters 4 * 5 * Copyright (c) 1995-2000 Advanced System Products, Inc. 6 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc. 7 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx> 8 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de> 9 * All Rights Reserved. 10 */ 11 12 /* 13 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys) 14 * changed its name to ConnectCom Solutions, Inc. 15 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets 16 */ 17 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/kernel.h> 21 #include <linux/types.h> 22 #include <linux/ioport.h> 23 #include <linux/interrupt.h> 24 #include <linux/delay.h> 25 #include <linux/slab.h> 26 #include <linux/mm.h> 27 #include <linux/proc_fs.h> 28 #include <linux/init.h> 29 #include <linux/blkdev.h> 30 #include <linux/isa.h> 31 #include <linux/eisa.h> 32 #include <linux/pci.h> 33 #include <linux/spinlock.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/firmware.h> 36 #include <linux/dmapool.h> 37 38 #include <asm/io.h> 39 #include <asm/dma.h> 40 41 #include <scsi/scsi_cmnd.h> 42 #include <scsi/scsi_device.h> 43 #include <scsi/scsi_tcq.h> 44 #include <scsi/scsi.h> 45 #include <scsi/scsi_host.h> 46 47 #define DRV_NAME "advansys" 48 #define ASC_VERSION "3.5" /* AdvanSys Driver Version */ 49 50 /* FIXME: 51 * 52 * 1. Use scsi_transport_spi 53 * 2. advansys_info is not safe against multiple simultaneous callers 54 * 3. Add module_param to override ISA/VLB ioport array 55 */ 56 57 /* Enable driver /proc statistics. */ 58 #define ADVANSYS_STATS 59 60 /* Enable driver tracing. */ 61 #undef ADVANSYS_DEBUG 62 63 typedef unsigned char uchar; 64 65 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0) 66 67 #define PCI_VENDOR_ID_ASP 0x10cd 68 #define PCI_DEVICE_ID_ASP_1200A 0x1100 69 #define PCI_DEVICE_ID_ASP_ABP940 0x1200 70 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300 71 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300 72 #define PCI_DEVICE_ID_38C0800_REV1 0x2500 73 #define PCI_DEVICE_ID_38C1600_REV1 0x2700 74 75 #define PortAddr unsigned int /* port address size */ 76 #define inp(port) inb(port) 77 #define outp(port, byte) outb((byte), (port)) 78 79 #define inpw(port) inw(port) 80 #define outpw(port, word) outw((word), (port)) 81 82 #define ASC_MAX_SG_QUEUE 7 83 #define ASC_MAX_SG_LIST 255 84 85 #define ASC_CS_TYPE unsigned short 86 87 #define ASC_IS_EISA (0x0002) 88 #define ASC_IS_PCI (0x0004) 89 #define ASC_IS_PCI_ULTRA (0x0104) 90 #define ASC_IS_PCMCIA (0x0008) 91 #define ASC_IS_MCA (0x0020) 92 #define ASC_IS_VL (0x0040) 93 #define ASC_IS_WIDESCSI_16 (0x0100) 94 #define ASC_IS_WIDESCSI_32 (0x0200) 95 #define ASC_IS_BIG_ENDIAN (0x8000) 96 97 #define ASC_CHIP_MIN_VER_VL (0x01) 98 #define ASC_CHIP_MAX_VER_VL (0x07) 99 #define ASC_CHIP_MIN_VER_PCI (0x09) 100 #define ASC_CHIP_MAX_VER_PCI (0x0F) 101 #define ASC_CHIP_VER_PCI_BIT (0x08) 102 #define ASC_CHIP_VER_ASYN_BUG (0x21) 103 #define ASC_CHIP_VER_PCI 0x08 104 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02) 105 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03) 106 #define ASC_CHIP_MIN_VER_EISA (0x41) 107 #define ASC_CHIP_MAX_VER_EISA (0x47) 108 #define ASC_CHIP_VER_EISA_BIT (0x40) 109 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3) 110 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL) 111 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL) 112 113 #define ASC_SCSI_ID_BITS 3 114 #define ASC_SCSI_TIX_TYPE uchar 115 #define ASC_ALL_DEVICE_BIT_SET 0xFF 116 #define ASC_SCSI_BIT_ID_TYPE uchar 117 #define ASC_MAX_TID 7 118 #define ASC_MAX_LUN 7 119 #define ASC_SCSI_WIDTH_BIT_SET 0xFF 120 #define ASC_MAX_SENSE_LEN 32 121 #define ASC_MIN_SENSE_LEN 14 122 #define ASC_SCSI_RESET_HOLD_TIME_US 60 123 124 /* 125 * Narrow boards only support 12-byte commands, while wide boards 126 * extend to 16-byte commands. 127 */ 128 #define ASC_MAX_CDB_LEN 12 129 #define ADV_MAX_CDB_LEN 16 130 131 #define MS_SDTR_LEN 0x03 132 #define MS_WDTR_LEN 0x02 133 134 #define ASC_SG_LIST_PER_Q 7 135 #define QS_FREE 0x00 136 #define QS_READY 0x01 137 #define QS_DISC1 0x02 138 #define QS_DISC2 0x04 139 #define QS_BUSY 0x08 140 #define QS_ABORTED 0x40 141 #define QS_DONE 0x80 142 #define QC_NO_CALLBACK 0x01 143 #define QC_SG_SWAP_QUEUE 0x02 144 #define QC_SG_HEAD 0x04 145 #define QC_DATA_IN 0x08 146 #define QC_DATA_OUT 0x10 147 #define QC_URGENT 0x20 148 #define QC_MSG_OUT 0x40 149 #define QC_REQ_SENSE 0x80 150 #define QCSG_SG_XFER_LIST 0x02 151 #define QCSG_SG_XFER_MORE 0x04 152 #define QCSG_SG_XFER_END 0x08 153 #define QD_IN_PROGRESS 0x00 154 #define QD_NO_ERROR 0x01 155 #define QD_ABORTED_BY_HOST 0x02 156 #define QD_WITH_ERROR 0x04 157 #define QD_INVALID_REQUEST 0x80 158 #define QD_INVALID_HOST_NUM 0x81 159 #define QD_INVALID_DEVICE 0x82 160 #define QD_ERR_INTERNAL 0xFF 161 #define QHSTA_NO_ERROR 0x00 162 #define QHSTA_M_SEL_TIMEOUT 0x11 163 #define QHSTA_M_DATA_OVER_RUN 0x12 164 #define QHSTA_M_DATA_UNDER_RUN 0x12 165 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 166 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14 167 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21 168 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22 169 #define QHSTA_D_HOST_ABORT_FAILED 0x23 170 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24 171 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25 172 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26 173 #define QHSTA_M_WTM_TIMEOUT 0x41 174 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 175 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 176 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 177 #define QHSTA_M_TARGET_STATUS_BUSY 0x45 178 #define QHSTA_M_BAD_TAG_CODE 0x46 179 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47 180 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48 181 #define QHSTA_D_LRAM_CMP_ERROR 0x81 182 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1 183 #define ASC_FLAG_SCSIQ_REQ 0x01 184 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02 185 #define ASC_FLAG_BIOS_ASYNC_IO 0x04 186 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08 187 #define ASC_FLAG_WIN16 0x10 188 #define ASC_FLAG_WIN32 0x20 189 #define ASC_FLAG_DOS_VM_CALLBACK 0x80 190 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10 191 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04 192 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08 193 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40 194 #define ASC_SCSIQ_CPY_BEG 4 195 #define ASC_SCSIQ_SGHD_CPY_BEG 2 196 #define ASC_SCSIQ_B_FWD 0 197 #define ASC_SCSIQ_B_BWD 1 198 #define ASC_SCSIQ_B_STATUS 2 199 #define ASC_SCSIQ_B_QNO 3 200 #define ASC_SCSIQ_B_CNTL 4 201 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5 202 #define ASC_SCSIQ_D_DATA_ADDR 8 203 #define ASC_SCSIQ_D_DATA_CNT 12 204 #define ASC_SCSIQ_B_SENSE_LEN 20 205 #define ASC_SCSIQ_DONE_INFO_BEG 22 206 #define ASC_SCSIQ_D_SRBPTR 22 207 #define ASC_SCSIQ_B_TARGET_IX 26 208 #define ASC_SCSIQ_B_CDB_LEN 28 209 #define ASC_SCSIQ_B_TAG_CODE 29 210 #define ASC_SCSIQ_W_VM_ID 30 211 #define ASC_SCSIQ_DONE_STATUS 32 212 #define ASC_SCSIQ_HOST_STATUS 33 213 #define ASC_SCSIQ_SCSI_STATUS 34 214 #define ASC_SCSIQ_CDB_BEG 36 215 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56 216 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60 217 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48 218 #define ASC_SCSIQ_B_SG_WK_QP 49 219 #define ASC_SCSIQ_B_SG_WK_IX 50 220 #define ASC_SCSIQ_W_ALT_DC1 52 221 #define ASC_SCSIQ_B_LIST_CNT 6 222 #define ASC_SCSIQ_B_CUR_LIST_CNT 7 223 #define ASC_SGQ_B_SG_CNTL 4 224 #define ASC_SGQ_B_SG_HEAD_QP 5 225 #define ASC_SGQ_B_SG_LIST_CNT 6 226 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7 227 #define ASC_SGQ_LIST_BEG 8 228 #define ASC_DEF_SCSI1_QNG 4 229 #define ASC_MAX_SCSI1_QNG 4 230 #define ASC_DEF_SCSI2_QNG 16 231 #define ASC_MAX_SCSI2_QNG 32 232 #define ASC_TAG_CODE_MASK 0x23 233 #define ASC_STOP_REQ_RISC_STOP 0x01 234 #define ASC_STOP_ACK_RISC_STOP 0x03 235 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10 236 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20 237 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40 238 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS)) 239 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid)) 240 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID)) 241 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID) 242 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID) 243 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN) 244 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6)) 245 246 typedef struct asc_scsiq_1 { 247 uchar status; 248 uchar q_no; 249 uchar cntl; 250 uchar sg_queue_cnt; 251 uchar target_id; 252 uchar target_lun; 253 __le32 data_addr; 254 __le32 data_cnt; 255 __le32 sense_addr; 256 uchar sense_len; 257 uchar extra_bytes; 258 } ASC_SCSIQ_1; 259 260 typedef struct asc_scsiq_2 { 261 u32 srb_tag; 262 uchar target_ix; 263 uchar flag; 264 uchar cdb_len; 265 uchar tag_code; 266 ushort vm_id; 267 } ASC_SCSIQ_2; 268 269 typedef struct asc_scsiq_3 { 270 uchar done_stat; 271 uchar host_stat; 272 uchar scsi_stat; 273 uchar scsi_msg; 274 } ASC_SCSIQ_3; 275 276 typedef struct asc_scsiq_4 { 277 uchar cdb[ASC_MAX_CDB_LEN]; 278 uchar y_first_sg_list_qp; 279 uchar y_working_sg_qp; 280 uchar y_working_sg_ix; 281 uchar y_res; 282 ushort x_req_count; 283 ushort x_reconnect_rtn; 284 __le32 x_saved_data_addr; 285 __le32 x_saved_data_cnt; 286 } ASC_SCSIQ_4; 287 288 typedef struct asc_q_done_info { 289 ASC_SCSIQ_2 d2; 290 ASC_SCSIQ_3 d3; 291 uchar q_status; 292 uchar q_no; 293 uchar cntl; 294 uchar sense_len; 295 uchar extra_bytes; 296 uchar res; 297 u32 remain_bytes; 298 } ASC_QDONE_INFO; 299 300 typedef struct asc_sg_list { 301 __le32 addr; 302 __le32 bytes; 303 } ASC_SG_LIST; 304 305 typedef struct asc_sg_head { 306 ushort entry_cnt; 307 ushort queue_cnt; 308 ushort entry_to_copy; 309 ushort res; 310 ASC_SG_LIST sg_list[]; 311 } ASC_SG_HEAD; 312 313 typedef struct asc_scsi_q { 314 ASC_SCSIQ_1 q1; 315 ASC_SCSIQ_2 q2; 316 uchar *cdbptr; 317 ASC_SG_HEAD *sg_head; 318 ushort remain_sg_entry_cnt; 319 ushort next_sg_index; 320 } ASC_SCSI_Q; 321 322 typedef struct asc_scsi_bios_req_q { 323 ASC_SCSIQ_1 r1; 324 ASC_SCSIQ_2 r2; 325 uchar *cdbptr; 326 ASC_SG_HEAD *sg_head; 327 uchar *sense_ptr; 328 ASC_SCSIQ_3 r3; 329 uchar cdb[ASC_MAX_CDB_LEN]; 330 uchar sense[ASC_MIN_SENSE_LEN]; 331 } ASC_SCSI_BIOS_REQ_Q; 332 333 typedef struct asc_risc_q { 334 uchar fwd; 335 uchar bwd; 336 ASC_SCSIQ_1 i1; 337 ASC_SCSIQ_2 i2; 338 ASC_SCSIQ_3 i3; 339 ASC_SCSIQ_4 i4; 340 } ASC_RISC_Q; 341 342 typedef struct asc_sg_list_q { 343 uchar seq_no; 344 uchar q_no; 345 uchar cntl; 346 uchar sg_head_qp; 347 uchar sg_list_cnt; 348 uchar sg_cur_list_cnt; 349 } ASC_SG_LIST_Q; 350 351 typedef struct asc_risc_sg_list_q { 352 uchar fwd; 353 uchar bwd; 354 ASC_SG_LIST_Q sg; 355 ASC_SG_LIST sg_list[7]; 356 } ASC_RISC_SG_LIST_Q; 357 358 #define ASCQ_ERR_Q_STATUS 0x0D 359 #define ASCQ_ERR_CUR_QNG 0x17 360 #define ASCQ_ERR_SG_Q_LINKS 0x18 361 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A 362 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B 363 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C 364 365 /* 366 * Warning code values are set in ASC_DVC_VAR 'warn_code'. 367 */ 368 #define ASC_WARN_NO_ERROR 0x0000 369 #define ASC_WARN_IO_PORT_ROTATE 0x0001 370 #define ASC_WARN_EEPROM_CHKSUM 0x0002 371 #define ASC_WARN_IRQ_MODIFIED 0x0004 372 #define ASC_WARN_AUTO_CONFIG 0x0008 373 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010 374 #define ASC_WARN_EEPROM_RECOVER 0x0020 375 #define ASC_WARN_CFG_MSW_RECOVER 0x0040 376 377 /* 378 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'. 379 */ 380 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */ 381 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */ 382 #define ASC_IERR_SET_PC_ADDR 0x0004 383 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */ 384 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */ 385 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */ 386 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */ 387 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */ 388 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */ 389 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */ 390 #define ASC_IERR_NO_BUS_TYPE 0x0400 391 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */ 392 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */ 393 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */ 394 395 #define ASC_DEF_MAX_TOTAL_QNG (0xF0) 396 #define ASC_MIN_TAG_Q_PER_DVC (0x04) 397 #define ASC_MIN_FREE_Q (0x02) 398 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q)) 399 #define ASC_MAX_TOTAL_QNG 240 400 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16 401 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8 402 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20 403 #define ASC_MAX_INRAM_TAG_QNG 16 404 #define ASC_IOADR_GAP 0x10 405 #define ASC_SYN_MAX_OFFSET 0x0F 406 #define ASC_DEF_SDTR_OFFSET 0x0F 407 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02 408 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41 409 410 /* The narrow chip only supports a limited selection of transfer rates. 411 * These are encoded in the range 0..7 or 0..15 depending whether the chip 412 * is Ultra-capable or not. These tables let us convert from one to the other. 413 */ 414 static const unsigned char asc_syn_xfer_period[8] = { 415 25, 30, 35, 40, 50, 60, 70, 85 416 }; 417 418 static const unsigned char asc_syn_ultra_xfer_period[16] = { 419 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107 420 }; 421 422 typedef struct ext_msg { 423 uchar msg_type; 424 uchar msg_len; 425 uchar msg_req; 426 union { 427 struct { 428 uchar sdtr_xfer_period; 429 uchar sdtr_req_ack_offset; 430 } sdtr; 431 struct { 432 uchar wdtr_width; 433 } wdtr; 434 struct { 435 uchar mdp_b3; 436 uchar mdp_b2; 437 uchar mdp_b1; 438 uchar mdp_b0; 439 } mdp; 440 } u_ext_msg; 441 uchar res; 442 } EXT_MSG; 443 444 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period 445 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset 446 #define wdtr_width u_ext_msg.wdtr.wdtr_width 447 #define mdp_b3 u_ext_msg.mdp_b3 448 #define mdp_b2 u_ext_msg.mdp_b2 449 #define mdp_b1 u_ext_msg.mdp_b1 450 #define mdp_b0 u_ext_msg.mdp_b0 451 452 typedef struct asc_dvc_cfg { 453 ASC_SCSI_BIT_ID_TYPE can_tagged_qng; 454 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled; 455 ASC_SCSI_BIT_ID_TYPE disc_enable; 456 ASC_SCSI_BIT_ID_TYPE sdtr_enable; 457 uchar chip_scsi_id; 458 uchar chip_version; 459 ushort mcode_date; 460 ushort mcode_version; 461 uchar max_tag_qng[ASC_MAX_TID + 1]; 462 uchar sdtr_period_offset[ASC_MAX_TID + 1]; 463 uchar adapter_info[6]; 464 } ASC_DVC_CFG; 465 466 #define ASC_DEF_DVC_CNTL 0xFFFF 467 #define ASC_DEF_CHIP_SCSI_ID 7 468 #define ASC_DEF_ISA_DMA_SPEED 4 469 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001 470 #define ASC_INIT_STATE_END_GET_CFG 0x0002 471 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004 472 #define ASC_INIT_STATE_END_SET_CFG 0x0008 473 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010 474 #define ASC_INIT_STATE_END_LOAD_MC 0x0020 475 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040 476 #define ASC_INIT_STATE_END_INQUIRY 0x0080 477 #define ASC_INIT_RESET_SCSI_DONE 0x0100 478 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000 479 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001 480 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002 481 #define ASC_MIN_TAGGED_CMD 7 482 #define ASC_MAX_SCSI_RESET_WAIT 30 483 #define ASC_OVERRUN_BSIZE 64 484 485 struct asc_dvc_var; /* Forward Declaration. */ 486 487 typedef struct asc_dvc_var { 488 PortAddr iop_base; 489 ushort err_code; 490 ushort dvc_cntl; 491 ushort bug_fix_cntl; 492 ushort bus_type; 493 ASC_SCSI_BIT_ID_TYPE init_sdtr; 494 ASC_SCSI_BIT_ID_TYPE sdtr_done; 495 ASC_SCSI_BIT_ID_TYPE use_tagged_qng; 496 ASC_SCSI_BIT_ID_TYPE unit_not_ready; 497 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy; 498 ASC_SCSI_BIT_ID_TYPE start_motor; 499 uchar *overrun_buf; 500 dma_addr_t overrun_dma; 501 uchar scsi_reset_wait; 502 uchar chip_no; 503 bool is_in_int; 504 uchar max_total_qng; 505 uchar cur_total_qng; 506 uchar in_critical_cnt; 507 uchar last_q_shortage; 508 ushort init_state; 509 uchar cur_dvc_qng[ASC_MAX_TID + 1]; 510 uchar max_dvc_qng[ASC_MAX_TID + 1]; 511 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1]; 512 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1]; 513 const uchar *sdtr_period_tbl; 514 ASC_DVC_CFG *cfg; 515 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always; 516 char redo_scam; 517 ushort res2; 518 uchar dos_int13_table[ASC_MAX_TID + 1]; 519 unsigned int max_dma_count; 520 ASC_SCSI_BIT_ID_TYPE no_scam; 521 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer; 522 uchar min_sdtr_index; 523 uchar max_sdtr_index; 524 struct asc_board *drv_ptr; 525 unsigned int uc_break; 526 } ASC_DVC_VAR; 527 528 typedef struct asc_dvc_inq_info { 529 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; 530 } ASC_DVC_INQ_INFO; 531 532 typedef struct asc_cap_info { 533 u32 lba; 534 u32 blk_size; 535 } ASC_CAP_INFO; 536 537 typedef struct asc_cap_info_array { 538 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; 539 } ASC_CAP_INFO_ARRAY; 540 541 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001 542 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002 543 #define ASC_CNTL_INITIATOR (ushort)0x0001 544 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002 545 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004 546 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008 547 #define ASC_CNTL_NO_SCAM (ushort)0x0010 548 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080 549 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040 550 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100 551 #define ASC_CNTL_RESET_SCSI (ushort)0x0200 552 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400 553 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800 554 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000 555 #define ASC_CNTL_BURST_MODE (ushort)0x2000 556 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000 557 #define ASC_EEP_DVC_CFG_BEG_VL 2 558 #define ASC_EEP_MAX_DVC_ADDR_VL 15 559 #define ASC_EEP_DVC_CFG_BEG 32 560 #define ASC_EEP_MAX_DVC_ADDR 45 561 #define ASC_EEP_MAX_RETRY 20 562 563 /* 564 * These macros keep the chip SCSI id bitfields in board order. C bitfields 565 * aren't portable between big and little-endian platforms so they are not used. 566 */ 567 568 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f) 569 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4) 570 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \ 571 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID)) 572 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \ 573 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4) 574 575 typedef struct asceep_config { 576 ushort cfg_lsw; 577 ushort cfg_msw; 578 uchar init_sdtr; 579 uchar disc_enable; 580 uchar use_cmd_qng; 581 uchar start_motor; 582 uchar max_total_qng; 583 uchar max_tag_qng; 584 uchar bios_scan; 585 uchar power_up_wait; 586 uchar no_scam; 587 uchar id_speed; /* low order 4 bits is chip scsi id */ 588 /* high order 4 bits is isa dma speed */ 589 uchar dos_int13_table[ASC_MAX_TID + 1]; 590 uchar adapter_info[6]; 591 ushort cntl; 592 ushort chksum; 593 } ASCEEP_CONFIG; 594 595 #define ASC_EEP_CMD_READ 0x80 596 #define ASC_EEP_CMD_WRITE 0x40 597 #define ASC_EEP_CMD_WRITE_ABLE 0x30 598 #define ASC_EEP_CMD_WRITE_DISABLE 0x00 599 #define ASCV_MSGOUT_BEG 0x0000 600 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3) 601 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4) 602 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006 603 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8) 604 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3) 605 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4) 606 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8) 607 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8) 608 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020 609 #define ASCV_BREAK_ADDR (ushort)0x0028 610 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A 611 #define ASCV_BREAK_CONTROL (ushort)0x002C 612 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E 613 614 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030 615 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032 616 #define ASCV_MCODE_SIZE_W (ushort)0x0034 617 #define ASCV_STOP_CODE_B (ushort)0x0036 618 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037 619 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038 620 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C 621 #define ASCV_HALTCODE_W (ushort)0x0040 622 #define ASCV_CHKSUM_W (ushort)0x0042 623 #define ASCV_MC_DATE_W (ushort)0x0044 624 #define ASCV_MC_VER_W (ushort)0x0046 625 #define ASCV_NEXTRDY_B (ushort)0x0048 626 #define ASCV_DONENEXT_B (ushort)0x0049 627 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A 628 #define ASCV_SCSIBUSY_B (ushort)0x004B 629 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C 630 #define ASCV_CURCDB_B (ushort)0x004D 631 #define ASCV_RCLUN_B (ushort)0x004E 632 #define ASCV_BUSY_QHEAD_B (ushort)0x004F 633 #define ASCV_DISC1_QHEAD_B (ushort)0x0050 634 #define ASCV_DISC_ENABLE_B (ushort)0x0052 635 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053 636 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055 637 #define ASCV_MCODE_CNTL_B (ushort)0x0056 638 #define ASCV_NULL_TARGET_B (ushort)0x0057 639 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058 640 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A 641 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1) 642 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1) 643 #define ASCV_HOST_FLAG_B (ushort)0x005D 644 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064 645 #define ASCV_VER_SERIAL_B (ushort)0x0065 646 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066 647 #define ASCV_WTM_FLAG_B (ushort)0x0068 648 #define ASCV_RISC_FLAG_B (ushort)0x006A 649 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B 650 #define ASC_HOST_FLAG_IN_ISR 0x01 651 #define ASC_HOST_FLAG_ACK_INT 0x02 652 #define ASC_RISC_FLAG_GEN_INT 0x01 653 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02 654 #define IOP_CTRL (0x0F) 655 #define IOP_STATUS (0x0E) 656 #define IOP_INT_ACK IOP_STATUS 657 #define IOP_REG_IFC (0x0D) 658 #define IOP_SYN_OFFSET (0x0B) 659 #define IOP_EXTRA_CONTROL (0x0D) 660 #define IOP_REG_PC (0x0C) 661 #define IOP_RAM_ADDR (0x0A) 662 #define IOP_RAM_DATA (0x08) 663 #define IOP_EEP_DATA (0x06) 664 #define IOP_EEP_CMD (0x07) 665 #define IOP_VERSION (0x03) 666 #define IOP_CONFIG_HIGH (0x04) 667 #define IOP_CONFIG_LOW (0x02) 668 #define IOP_SIG_BYTE (0x01) 669 #define IOP_SIG_WORD (0x00) 670 #define IOP_REG_DC1 (0x0E) 671 #define IOP_REG_DC0 (0x0C) 672 #define IOP_REG_SB (0x0B) 673 #define IOP_REG_DA1 (0x0A) 674 #define IOP_REG_DA0 (0x08) 675 #define IOP_REG_SC (0x09) 676 #define IOP_DMA_SPEED (0x07) 677 #define IOP_REG_FLAG (0x07) 678 #define IOP_FIFO_H (0x06) 679 #define IOP_FIFO_L (0x04) 680 #define IOP_REG_ID (0x05) 681 #define IOP_REG_QP (0x03) 682 #define IOP_REG_IH (0x02) 683 #define IOP_REG_IX (0x01) 684 #define IOP_REG_AX (0x00) 685 #define IFC_REG_LOCK (0x00) 686 #define IFC_REG_UNLOCK (0x09) 687 #define IFC_WR_EN_FILTER (0x10) 688 #define IFC_RD_NO_EEPROM (0x10) 689 #define IFC_SLEW_RATE (0x20) 690 #define IFC_ACT_NEG (0x40) 691 #define IFC_INP_FILTER (0x80) 692 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK) 693 #define SC_SEL (uchar)(0x80) 694 #define SC_BSY (uchar)(0x40) 695 #define SC_ACK (uchar)(0x20) 696 #define SC_REQ (uchar)(0x10) 697 #define SC_ATN (uchar)(0x08) 698 #define SC_IO (uchar)(0x04) 699 #define SC_CD (uchar)(0x02) 700 #define SC_MSG (uchar)(0x01) 701 #define SEC_SCSI_CTL (uchar)(0x80) 702 #define SEC_ACTIVE_NEGATE (uchar)(0x40) 703 #define SEC_SLEW_RATE (uchar)(0x20) 704 #define SEC_ENABLE_FILTER (uchar)(0x10) 705 #define ASC_HALT_EXTMSG_IN (ushort)0x8000 706 #define ASC_HALT_CHK_CONDITION (ushort)0x8100 707 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200 708 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300 709 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400 710 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000 711 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000 712 #define ASC_MAX_QNO 0xF8 713 #define ASC_DATA_SEC_BEG (ushort)0x0080 714 #define ASC_DATA_SEC_END (ushort)0x0080 715 #define ASC_CODE_SEC_BEG (ushort)0x0080 716 #define ASC_CODE_SEC_END (ushort)0x0080 717 #define ASC_QADR_BEG (0x4000) 718 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64) 719 #define ASC_QADR_END (ushort)0x7FFF 720 #define ASC_QLAST_ADR (ushort)0x7FC0 721 #define ASC_QBLK_SIZE 0x40 722 #define ASC_BIOS_DATA_QBEG 0xF8 723 #define ASC_MIN_ACTIVE_QNO 0x01 724 #define ASC_QLINK_END 0xFF 725 #define ASC_EEPROM_WORDS 0x10 726 #define ASC_MAX_MGS_LEN 0x10 727 #define ASC_BIOS_ADDR_DEF 0xDC00 728 #define ASC_BIOS_SIZE 0x3800 729 #define ASC_BIOS_RAM_OFF 0x3800 730 #define ASC_BIOS_RAM_SIZE 0x800 731 #define ASC_BIOS_MIN_ADDR 0xC000 732 #define ASC_BIOS_MAX_ADDR 0xEC00 733 #define ASC_BIOS_BANK_SIZE 0x0400 734 #define ASC_MCODE_START_ADDR 0x0080 735 #define ASC_CFG0_HOST_INT_ON 0x0020 736 #define ASC_CFG0_BIOS_ON 0x0040 737 #define ASC_CFG0_VERA_BURST_ON 0x0080 738 #define ASC_CFG0_SCSI_PARITY_ON 0x0800 739 #define ASC_CFG1_SCSI_TARGET_ON 0x0080 740 #define ASC_CFG1_LRAM_8BITS_ON 0x0800 741 #define ASC_CFG_MSW_CLR_MASK 0x3080 742 #define CSW_TEST1 (ASC_CS_TYPE)0x8000 743 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000 744 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000 745 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000 746 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800 747 #define CSW_TEST2 (ASC_CS_TYPE)0x0400 748 #define CSW_TEST3 (ASC_CS_TYPE)0x0200 749 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100 750 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080 751 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040 752 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020 753 #define CSW_HALTED (ASC_CS_TYPE)0x0010 754 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008 755 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004 756 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002 757 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001 758 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000 759 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100 760 #define CIW_TEST1 (ASC_CS_TYPE)0x0200 761 #define CIW_TEST2 (ASC_CS_TYPE)0x0400 762 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800 763 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000 764 #define CC_CHIP_RESET (uchar)0x80 765 #define CC_SCSI_RESET (uchar)0x40 766 #define CC_HALT (uchar)0x20 767 #define CC_SINGLE_STEP (uchar)0x10 768 #define CC_DMA_ABLE (uchar)0x08 769 #define CC_TEST (uchar)0x04 770 #define CC_BANK_ONE (uchar)0x02 771 #define CC_DIAG (uchar)0x01 772 #define ASC_1000_ID0W 0x04C1 773 #define ASC_1000_ID0W_FIX 0x00C1 774 #define ASC_1000_ID1B 0x25 775 #define ASC_EISA_REV_IOP_MASK (0x0C83) 776 #define ASC_EISA_CFG_IOP_MASK (0x0C86) 777 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000) 778 #define INS_HALTINT (ushort)0x6281 779 #define INS_HALT (ushort)0x6280 780 #define INS_SINT (ushort)0x6200 781 #define INS_RFLAG_WTM (ushort)0x7380 782 #define ASC_MC_SAVE_CODE_WSIZE 0x500 783 #define ASC_MC_SAVE_DATA_WSIZE 0x40 784 785 typedef struct asc_mc_saved { 786 ushort data[ASC_MC_SAVE_DATA_WSIZE]; 787 ushort code[ASC_MC_SAVE_CODE_WSIZE]; 788 } ASC_MC_SAVED; 789 790 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B) 791 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val) 792 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W) 793 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W) 794 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val) 795 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val) 796 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B) 797 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B) 798 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val) 799 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val) 800 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data)) 801 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id)) 802 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data) 803 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id)) 804 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE) 805 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD) 806 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION) 807 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW) 808 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH) 809 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data) 810 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data) 811 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD) 812 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data) 813 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA) 814 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data) 815 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR)) 816 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr) 817 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA) 818 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data) 819 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC) 820 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data) 821 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS) 822 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val) 823 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL) 824 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val) 825 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET) 826 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data) 827 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data) 828 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC) 829 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH)) 830 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID) 831 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL) 832 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data) 833 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX) 834 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data) 835 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX) 836 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data) 837 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH) 838 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data) 839 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP) 840 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data) 841 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L) 842 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data) 843 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H) 844 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data) 845 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED) 846 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data) 847 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0) 848 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data) 849 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1) 850 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data) 851 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0) 852 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data) 853 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1) 854 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data) 855 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID) 856 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data) 857 858 #define AdvPortAddr void __iomem * /* Virtual memory address size */ 859 860 /* 861 * Define Adv Library required memory access macros. 862 */ 863 #define ADV_MEM_READB(addr) readb(addr) 864 #define ADV_MEM_READW(addr) readw(addr) 865 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr) 866 #define ADV_MEM_WRITEW(addr, word) writew(word, addr) 867 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr) 868 869 /* 870 * Define total number of simultaneous maximum element scatter-gather 871 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the 872 * maximum number of outstanding commands per wide host adapter. Each 873 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather 874 * elements. Allow each command to have at least one ADV_SG_BLOCK structure. 875 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK 876 * structures or 255 scatter-gather elements. 877 */ 878 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG 879 880 /* 881 * Define maximum number of scatter-gather elements per request. 882 */ 883 #define ADV_MAX_SG_LIST 255 884 #define NO_OF_SG_PER_BLOCK 15 885 886 #define ADV_EEP_DVC_CFG_BEGIN (0x00) 887 #define ADV_EEP_DVC_CFG_END (0x15) 888 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */ 889 #define ADV_EEP_MAX_WORD_ADDR (0x1E) 890 891 #define ADV_EEP_DELAY_MS 100 892 893 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */ 894 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */ 895 /* 896 * For the ASC3550 Bit 13 is Termination Polarity control bit. 897 * For later ICs Bit 13 controls whether the CIS (Card Information 898 * Service Section) is loaded from EEPROM. 899 */ 900 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */ 901 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */ 902 /* 903 * ASC38C1600 Bit 11 904 * 905 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify 906 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then 907 * Function 0 will specify INT B. 908 * 909 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify 910 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then 911 * Function 1 will specify INT A. 912 */ 913 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */ 914 915 typedef struct adveep_3550_config { 916 /* Word Offset, Description */ 917 918 ushort cfg_lsw; /* 00 power up initialization */ 919 /* bit 13 set - Term Polarity Control */ 920 /* bit 14 set - BIOS Enable */ 921 /* bit 15 set - Big Endian Mode */ 922 ushort cfg_msw; /* 01 unused */ 923 ushort disc_enable; /* 02 disconnect enable */ 924 ushort wdtr_able; /* 03 Wide DTR able */ 925 ushort sdtr_able; /* 04 Synchronous DTR able */ 926 ushort start_motor; /* 05 send start up motor */ 927 ushort tagqng_able; /* 06 tag queuing able */ 928 ushort bios_scan; /* 07 BIOS device control */ 929 ushort scam_tolerant; /* 08 no scam */ 930 931 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 932 uchar bios_boot_delay; /* power up wait */ 933 934 uchar scsi_reset_delay; /* 10 reset delay */ 935 uchar bios_id_lun; /* first boot device scsi id & lun */ 936 /* high nibble is lun */ 937 /* low nibble is scsi id */ 938 939 uchar termination; /* 11 0 - automatic */ 940 /* 1 - low off / high off */ 941 /* 2 - low off / high on */ 942 /* 3 - low on / high on */ 943 /* There is no low on / high off */ 944 945 uchar reserved1; /* reserved byte (not used) */ 946 947 ushort bios_ctrl; /* 12 BIOS control bits */ 948 /* bit 0 BIOS don't act as initiator. */ 949 /* bit 1 BIOS > 1 GB support */ 950 /* bit 2 BIOS > 2 Disk Support */ 951 /* bit 3 BIOS don't support removables */ 952 /* bit 4 BIOS support bootable CD */ 953 /* bit 5 BIOS scan enabled */ 954 /* bit 6 BIOS support multiple LUNs */ 955 /* bit 7 BIOS display of message */ 956 /* bit 8 SCAM disabled */ 957 /* bit 9 Reset SCSI bus during init. */ 958 /* bit 10 */ 959 /* bit 11 No verbose initialization. */ 960 /* bit 12 SCSI parity enabled */ 961 /* bit 13 */ 962 /* bit 14 */ 963 /* bit 15 */ 964 ushort ultra_able; /* 13 ULTRA speed able */ 965 ushort reserved2; /* 14 reserved */ 966 uchar max_host_qng; /* 15 maximum host queuing */ 967 uchar max_dvc_qng; /* maximum per device queuing */ 968 ushort dvc_cntl; /* 16 control bit for driver */ 969 ushort bug_fix; /* 17 control bit for bug fix */ 970 ushort serial_number_word1; /* 18 Board serial number word 1 */ 971 ushort serial_number_word2; /* 19 Board serial number word 2 */ 972 ushort serial_number_word3; /* 20 Board serial number word 3 */ 973 ushort check_sum; /* 21 EEP check sum */ 974 uchar oem_name[16]; /* 22 OEM name */ 975 ushort dvc_err_code; /* 30 last device driver error code */ 976 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 977 ushort adv_err_addr; /* 32 last uc error address */ 978 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 979 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 980 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 981 ushort num_of_err; /* 36 number of error */ 982 } ADVEEP_3550_CONFIG; 983 984 typedef struct adveep_38C0800_config { 985 /* Word Offset, Description */ 986 987 ushort cfg_lsw; /* 00 power up initialization */ 988 /* bit 13 set - Load CIS */ 989 /* bit 14 set - BIOS Enable */ 990 /* bit 15 set - Big Endian Mode */ 991 ushort cfg_msw; /* 01 unused */ 992 ushort disc_enable; /* 02 disconnect enable */ 993 ushort wdtr_able; /* 03 Wide DTR able */ 994 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ 995 ushort start_motor; /* 05 send start up motor */ 996 ushort tagqng_able; /* 06 tag queuing able */ 997 ushort bios_scan; /* 07 BIOS device control */ 998 ushort scam_tolerant; /* 08 no scam */ 999 1000 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1001 uchar bios_boot_delay; /* power up wait */ 1002 1003 uchar scsi_reset_delay; /* 10 reset delay */ 1004 uchar bios_id_lun; /* first boot device scsi id & lun */ 1005 /* high nibble is lun */ 1006 /* low nibble is scsi id */ 1007 1008 uchar termination_se; /* 11 0 - automatic */ 1009 /* 1 - low off / high off */ 1010 /* 2 - low off / high on */ 1011 /* 3 - low on / high on */ 1012 /* There is no low on / high off */ 1013 1014 uchar termination_lvd; /* 11 0 - automatic */ 1015 /* 1 - low off / high off */ 1016 /* 2 - low off / high on */ 1017 /* 3 - low on / high on */ 1018 /* There is no low on / high off */ 1019 1020 ushort bios_ctrl; /* 12 BIOS control bits */ 1021 /* bit 0 BIOS don't act as initiator. */ 1022 /* bit 1 BIOS > 1 GB support */ 1023 /* bit 2 BIOS > 2 Disk Support */ 1024 /* bit 3 BIOS don't support removables */ 1025 /* bit 4 BIOS support bootable CD */ 1026 /* bit 5 BIOS scan enabled */ 1027 /* bit 6 BIOS support multiple LUNs */ 1028 /* bit 7 BIOS display of message */ 1029 /* bit 8 SCAM disabled */ 1030 /* bit 9 Reset SCSI bus during init. */ 1031 /* bit 10 */ 1032 /* bit 11 No verbose initialization. */ 1033 /* bit 12 SCSI parity enabled */ 1034 /* bit 13 */ 1035 /* bit 14 */ 1036 /* bit 15 */ 1037 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ 1038 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ 1039 uchar max_host_qng; /* 15 maximum host queueing */ 1040 uchar max_dvc_qng; /* maximum per device queuing */ 1041 ushort dvc_cntl; /* 16 control bit for driver */ 1042 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ 1043 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1044 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1045 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1046 ushort check_sum; /* 21 EEP check sum */ 1047 uchar oem_name[16]; /* 22 OEM name */ 1048 ushort dvc_err_code; /* 30 last device driver error code */ 1049 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1050 ushort adv_err_addr; /* 32 last uc error address */ 1051 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1052 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1053 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1054 ushort reserved36; /* 36 reserved */ 1055 ushort reserved37; /* 37 reserved */ 1056 ushort reserved38; /* 38 reserved */ 1057 ushort reserved39; /* 39 reserved */ 1058 ushort reserved40; /* 40 reserved */ 1059 ushort reserved41; /* 41 reserved */ 1060 ushort reserved42; /* 42 reserved */ 1061 ushort reserved43; /* 43 reserved */ 1062 ushort reserved44; /* 44 reserved */ 1063 ushort reserved45; /* 45 reserved */ 1064 ushort reserved46; /* 46 reserved */ 1065 ushort reserved47; /* 47 reserved */ 1066 ushort reserved48; /* 48 reserved */ 1067 ushort reserved49; /* 49 reserved */ 1068 ushort reserved50; /* 50 reserved */ 1069 ushort reserved51; /* 51 reserved */ 1070 ushort reserved52; /* 52 reserved */ 1071 ushort reserved53; /* 53 reserved */ 1072 ushort reserved54; /* 54 reserved */ 1073 ushort reserved55; /* 55 reserved */ 1074 ushort cisptr_lsw; /* 56 CIS PTR LSW */ 1075 ushort cisprt_msw; /* 57 CIS PTR MSW */ 1076 ushort subsysvid; /* 58 SubSystem Vendor ID */ 1077 ushort subsysid; /* 59 SubSystem ID */ 1078 ushort reserved60; /* 60 reserved */ 1079 ushort reserved61; /* 61 reserved */ 1080 ushort reserved62; /* 62 reserved */ 1081 ushort reserved63; /* 63 reserved */ 1082 } ADVEEP_38C0800_CONFIG; 1083 1084 typedef struct adveep_38C1600_config { 1085 /* Word Offset, Description */ 1086 1087 ushort cfg_lsw; /* 00 power up initialization */ 1088 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */ 1089 /* clear - Func. 0 INTA, Func. 1 INTB */ 1090 /* bit 13 set - Load CIS */ 1091 /* bit 14 set - BIOS Enable */ 1092 /* bit 15 set - Big Endian Mode */ 1093 ushort cfg_msw; /* 01 unused */ 1094 ushort disc_enable; /* 02 disconnect enable */ 1095 ushort wdtr_able; /* 03 Wide DTR able */ 1096 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ 1097 ushort start_motor; /* 05 send start up motor */ 1098 ushort tagqng_able; /* 06 tag queuing able */ 1099 ushort bios_scan; /* 07 BIOS device control */ 1100 ushort scam_tolerant; /* 08 no scam */ 1101 1102 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1103 uchar bios_boot_delay; /* power up wait */ 1104 1105 uchar scsi_reset_delay; /* 10 reset delay */ 1106 uchar bios_id_lun; /* first boot device scsi id & lun */ 1107 /* high nibble is lun */ 1108 /* low nibble is scsi id */ 1109 1110 uchar termination_se; /* 11 0 - automatic */ 1111 /* 1 - low off / high off */ 1112 /* 2 - low off / high on */ 1113 /* 3 - low on / high on */ 1114 /* There is no low on / high off */ 1115 1116 uchar termination_lvd; /* 11 0 - automatic */ 1117 /* 1 - low off / high off */ 1118 /* 2 - low off / high on */ 1119 /* 3 - low on / high on */ 1120 /* There is no low on / high off */ 1121 1122 ushort bios_ctrl; /* 12 BIOS control bits */ 1123 /* bit 0 BIOS don't act as initiator. */ 1124 /* bit 1 BIOS > 1 GB support */ 1125 /* bit 2 BIOS > 2 Disk Support */ 1126 /* bit 3 BIOS don't support removables */ 1127 /* bit 4 BIOS support bootable CD */ 1128 /* bit 5 BIOS scan enabled */ 1129 /* bit 6 BIOS support multiple LUNs */ 1130 /* bit 7 BIOS display of message */ 1131 /* bit 8 SCAM disabled */ 1132 /* bit 9 Reset SCSI bus during init. */ 1133 /* bit 10 Basic Integrity Checking disabled */ 1134 /* bit 11 No verbose initialization. */ 1135 /* bit 12 SCSI parity enabled */ 1136 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */ 1137 /* bit 14 */ 1138 /* bit 15 */ 1139 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ 1140 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ 1141 uchar max_host_qng; /* 15 maximum host queueing */ 1142 uchar max_dvc_qng; /* maximum per device queuing */ 1143 ushort dvc_cntl; /* 16 control bit for driver */ 1144 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ 1145 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1146 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1147 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1148 ushort check_sum; /* 21 EEP check sum */ 1149 uchar oem_name[16]; /* 22 OEM name */ 1150 ushort dvc_err_code; /* 30 last device driver error code */ 1151 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1152 ushort adv_err_addr; /* 32 last uc error address */ 1153 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1154 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1155 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1156 ushort reserved36; /* 36 reserved */ 1157 ushort reserved37; /* 37 reserved */ 1158 ushort reserved38; /* 38 reserved */ 1159 ushort reserved39; /* 39 reserved */ 1160 ushort reserved40; /* 40 reserved */ 1161 ushort reserved41; /* 41 reserved */ 1162 ushort reserved42; /* 42 reserved */ 1163 ushort reserved43; /* 43 reserved */ 1164 ushort reserved44; /* 44 reserved */ 1165 ushort reserved45; /* 45 reserved */ 1166 ushort reserved46; /* 46 reserved */ 1167 ushort reserved47; /* 47 reserved */ 1168 ushort reserved48; /* 48 reserved */ 1169 ushort reserved49; /* 49 reserved */ 1170 ushort reserved50; /* 50 reserved */ 1171 ushort reserved51; /* 51 reserved */ 1172 ushort reserved52; /* 52 reserved */ 1173 ushort reserved53; /* 53 reserved */ 1174 ushort reserved54; /* 54 reserved */ 1175 ushort reserved55; /* 55 reserved */ 1176 ushort cisptr_lsw; /* 56 CIS PTR LSW */ 1177 ushort cisprt_msw; /* 57 CIS PTR MSW */ 1178 ushort subsysvid; /* 58 SubSystem Vendor ID */ 1179 ushort subsysid; /* 59 SubSystem ID */ 1180 ushort reserved60; /* 60 reserved */ 1181 ushort reserved61; /* 61 reserved */ 1182 ushort reserved62; /* 62 reserved */ 1183 ushort reserved63; /* 63 reserved */ 1184 } ADVEEP_38C1600_CONFIG; 1185 1186 /* 1187 * EEPROM Commands 1188 */ 1189 #define ASC_EEP_CMD_DONE 0x0200 1190 1191 /* bios_ctrl */ 1192 #define BIOS_CTRL_BIOS 0x0001 1193 #define BIOS_CTRL_EXTENDED_XLAT 0x0002 1194 #define BIOS_CTRL_GT_2_DISK 0x0004 1195 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008 1196 #define BIOS_CTRL_BOOTABLE_CD 0x0010 1197 #define BIOS_CTRL_MULTIPLE_LUN 0x0040 1198 #define BIOS_CTRL_DISPLAY_MSG 0x0080 1199 #define BIOS_CTRL_NO_SCAM 0x0100 1200 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200 1201 #define BIOS_CTRL_INIT_VERBOSE 0x0800 1202 #define BIOS_CTRL_SCSI_PARITY 0x1000 1203 #define BIOS_CTRL_AIPP_DIS 0x2000 1204 1205 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */ 1206 1207 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */ 1208 1209 /* 1210 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is 1211 * a special 16K Adv Library and Microcode version. After the issue is 1212 * resolved, should restore 32K support. 1213 * 1214 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory * 1215 */ 1216 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */ 1217 1218 /* 1219 * Byte I/O register address from base of 'iop_base'. 1220 */ 1221 #define IOPB_INTR_STATUS_REG 0x00 1222 #define IOPB_CHIP_ID_1 0x01 1223 #define IOPB_INTR_ENABLES 0x02 1224 #define IOPB_CHIP_TYPE_REV 0x03 1225 #define IOPB_RES_ADDR_4 0x04 1226 #define IOPB_RES_ADDR_5 0x05 1227 #define IOPB_RAM_DATA 0x06 1228 #define IOPB_RES_ADDR_7 0x07 1229 #define IOPB_FLAG_REG 0x08 1230 #define IOPB_RES_ADDR_9 0x09 1231 #define IOPB_RISC_CSR 0x0A 1232 #define IOPB_RES_ADDR_B 0x0B 1233 #define IOPB_RES_ADDR_C 0x0C 1234 #define IOPB_RES_ADDR_D 0x0D 1235 #define IOPB_SOFT_OVER_WR 0x0E 1236 #define IOPB_RES_ADDR_F 0x0F 1237 #define IOPB_MEM_CFG 0x10 1238 #define IOPB_RES_ADDR_11 0x11 1239 #define IOPB_GPIO_DATA 0x12 1240 #define IOPB_RES_ADDR_13 0x13 1241 #define IOPB_FLASH_PAGE 0x14 1242 #define IOPB_RES_ADDR_15 0x15 1243 #define IOPB_GPIO_CNTL 0x16 1244 #define IOPB_RES_ADDR_17 0x17 1245 #define IOPB_FLASH_DATA 0x18 1246 #define IOPB_RES_ADDR_19 0x19 1247 #define IOPB_RES_ADDR_1A 0x1A 1248 #define IOPB_RES_ADDR_1B 0x1B 1249 #define IOPB_RES_ADDR_1C 0x1C 1250 #define IOPB_RES_ADDR_1D 0x1D 1251 #define IOPB_RES_ADDR_1E 0x1E 1252 #define IOPB_RES_ADDR_1F 0x1F 1253 #define IOPB_DMA_CFG0 0x20 1254 #define IOPB_DMA_CFG1 0x21 1255 #define IOPB_TICKLE 0x22 1256 #define IOPB_DMA_REG_WR 0x23 1257 #define IOPB_SDMA_STATUS 0x24 1258 #define IOPB_SCSI_BYTE_CNT 0x25 1259 #define IOPB_HOST_BYTE_CNT 0x26 1260 #define IOPB_BYTE_LEFT_TO_XFER 0x27 1261 #define IOPB_BYTE_TO_XFER_0 0x28 1262 #define IOPB_BYTE_TO_XFER_1 0x29 1263 #define IOPB_BYTE_TO_XFER_2 0x2A 1264 #define IOPB_BYTE_TO_XFER_3 0x2B 1265 #define IOPB_ACC_GRP 0x2C 1266 #define IOPB_RES_ADDR_2D 0x2D 1267 #define IOPB_DEV_ID 0x2E 1268 #define IOPB_RES_ADDR_2F 0x2F 1269 #define IOPB_SCSI_DATA 0x30 1270 #define IOPB_RES_ADDR_31 0x31 1271 #define IOPB_RES_ADDR_32 0x32 1272 #define IOPB_SCSI_DATA_HSHK 0x33 1273 #define IOPB_SCSI_CTRL 0x34 1274 #define IOPB_RES_ADDR_35 0x35 1275 #define IOPB_RES_ADDR_36 0x36 1276 #define IOPB_RES_ADDR_37 0x37 1277 #define IOPB_RAM_BIST 0x38 1278 #define IOPB_PLL_TEST 0x39 1279 #define IOPB_PCI_INT_CFG 0x3A 1280 #define IOPB_RES_ADDR_3B 0x3B 1281 #define IOPB_RFIFO_CNT 0x3C 1282 #define IOPB_RES_ADDR_3D 0x3D 1283 #define IOPB_RES_ADDR_3E 0x3E 1284 #define IOPB_RES_ADDR_3F 0x3F 1285 1286 /* 1287 * Word I/O register address from base of 'iop_base'. 1288 */ 1289 #define IOPW_CHIP_ID_0 0x00 /* CID0 */ 1290 #define IOPW_CTRL_REG 0x02 /* CC */ 1291 #define IOPW_RAM_ADDR 0x04 /* LA */ 1292 #define IOPW_RAM_DATA 0x06 /* LD */ 1293 #define IOPW_RES_ADDR_08 0x08 1294 #define IOPW_RISC_CSR 0x0A /* CSR */ 1295 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */ 1296 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */ 1297 #define IOPW_RES_ADDR_10 0x10 1298 #define IOPW_SEL_MASK 0x12 /* SM */ 1299 #define IOPW_RES_ADDR_14 0x14 1300 #define IOPW_FLASH_ADDR 0x16 /* FA */ 1301 #define IOPW_RES_ADDR_18 0x18 1302 #define IOPW_EE_CMD 0x1A /* EC */ 1303 #define IOPW_EE_DATA 0x1C /* ED */ 1304 #define IOPW_SFIFO_CNT 0x1E /* SFC */ 1305 #define IOPW_RES_ADDR_20 0x20 1306 #define IOPW_Q_BASE 0x22 /* QB */ 1307 #define IOPW_QP 0x24 /* QP */ 1308 #define IOPW_IX 0x26 /* IX */ 1309 #define IOPW_SP 0x28 /* SP */ 1310 #define IOPW_PC 0x2A /* PC */ 1311 #define IOPW_RES_ADDR_2C 0x2C 1312 #define IOPW_RES_ADDR_2E 0x2E 1313 #define IOPW_SCSI_DATA 0x30 /* SD */ 1314 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */ 1315 #define IOPW_SCSI_CTRL 0x34 /* SC */ 1316 #define IOPW_HSHK_CFG 0x36 /* HCFG */ 1317 #define IOPW_SXFR_STATUS 0x36 /* SXS */ 1318 #define IOPW_SXFR_CNTL 0x38 /* SXL */ 1319 #define IOPW_SXFR_CNTH 0x3A /* SXH */ 1320 #define IOPW_RES_ADDR_3C 0x3C 1321 #define IOPW_RFIFO_DATA 0x3E /* RFD */ 1322 1323 /* 1324 * Doubleword I/O register address from base of 'iop_base'. 1325 */ 1326 #define IOPDW_RES_ADDR_0 0x00 1327 #define IOPDW_RAM_DATA 0x04 1328 #define IOPDW_RES_ADDR_8 0x08 1329 #define IOPDW_RES_ADDR_C 0x0C 1330 #define IOPDW_RES_ADDR_10 0x10 1331 #define IOPDW_COMMA 0x14 1332 #define IOPDW_COMMB 0x18 1333 #define IOPDW_RES_ADDR_1C 0x1C 1334 #define IOPDW_SDMA_ADDR0 0x20 1335 #define IOPDW_SDMA_ADDR1 0x24 1336 #define IOPDW_SDMA_COUNT 0x28 1337 #define IOPDW_SDMA_ERROR 0x2C 1338 #define IOPDW_RDMA_ADDR0 0x30 1339 #define IOPDW_RDMA_ADDR1 0x34 1340 #define IOPDW_RDMA_COUNT 0x38 1341 #define IOPDW_RDMA_ERROR 0x3C 1342 1343 #define ADV_CHIP_ID_BYTE 0x25 1344 #define ADV_CHIP_ID_WORD 0x04C1 1345 1346 #define ADV_INTR_ENABLE_HOST_INTR 0x01 1347 #define ADV_INTR_ENABLE_SEL_INTR 0x02 1348 #define ADV_INTR_ENABLE_DPR_INTR 0x04 1349 #define ADV_INTR_ENABLE_RTA_INTR 0x08 1350 #define ADV_INTR_ENABLE_RMA_INTR 0x10 1351 #define ADV_INTR_ENABLE_RST_INTR 0x20 1352 #define ADV_INTR_ENABLE_DPE_INTR 0x40 1353 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80 1354 1355 #define ADV_INTR_STATUS_INTRA 0x01 1356 #define ADV_INTR_STATUS_INTRB 0x02 1357 #define ADV_INTR_STATUS_INTRC 0x04 1358 1359 #define ADV_RISC_CSR_STOP (0x0000) 1360 #define ADV_RISC_TEST_COND (0x2000) 1361 #define ADV_RISC_CSR_RUN (0x4000) 1362 #define ADV_RISC_CSR_SINGLE_STEP (0x8000) 1363 1364 #define ADV_CTRL_REG_HOST_INTR 0x0100 1365 #define ADV_CTRL_REG_SEL_INTR 0x0200 1366 #define ADV_CTRL_REG_DPR_INTR 0x0400 1367 #define ADV_CTRL_REG_RTA_INTR 0x0800 1368 #define ADV_CTRL_REG_RMA_INTR 0x1000 1369 #define ADV_CTRL_REG_RES_BIT14 0x2000 1370 #define ADV_CTRL_REG_DPE_INTR 0x4000 1371 #define ADV_CTRL_REG_POWER_DONE 0x8000 1372 #define ADV_CTRL_REG_ANY_INTR 0xFF00 1373 1374 #define ADV_CTRL_REG_CMD_RESET 0x00C6 1375 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5 1376 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4 1377 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3 1378 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2 1379 1380 #define ADV_TICKLE_NOP 0x00 1381 #define ADV_TICKLE_A 0x01 1382 #define ADV_TICKLE_B 0x02 1383 #define ADV_TICKLE_C 0x03 1384 1385 #define AdvIsIntPending(port) \ 1386 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR) 1387 1388 /* 1389 * SCSI_CFG0 Register bit definitions 1390 */ 1391 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */ 1392 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */ 1393 #define EVEN_PARITY 0x1000 /* Select Even Parity */ 1394 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */ 1395 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */ 1396 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */ 1397 #define SCAM_EN 0x0080 /* Enable SCAM selection */ 1398 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */ 1399 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */ 1400 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */ 1401 #define OUR_ID 0x000F /* SCSI ID */ 1402 1403 /* 1404 * SCSI_CFG1 Register bit definitions 1405 */ 1406 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */ 1407 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */ 1408 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */ 1409 #define FILTER_SEL 0x0C00 /* Filter Period Selection */ 1410 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */ 1411 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */ 1412 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */ 1413 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */ 1414 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */ 1415 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */ 1416 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */ 1417 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */ 1418 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */ 1419 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */ 1420 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */ 1421 1422 /* 1423 * Addendum for ASC-38C0800 Chip 1424 * 1425 * The ASC-38C1600 Chip uses the same definitions except that the 1426 * bus mode override bits [12:10] have been moved to byte register 1427 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in 1428 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV) 1429 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only. 1430 * Also each ASC-38C1600 function or channel uses only cable bits [5:4] 1431 * and [1:0]. Bits [14], [7:6], [3:2] are unused. 1432 */ 1433 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */ 1434 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */ 1435 #define HVD 0x1000 /* HVD Device Detect */ 1436 #define LVD 0x0800 /* LVD Device Detect */ 1437 #define SE 0x0400 /* SE Device Detect */ 1438 #define TERM_LVD 0x00C0 /* LVD Termination Bits */ 1439 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */ 1440 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */ 1441 #define TERM_SE 0x0030 /* SE Termination Bits */ 1442 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */ 1443 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */ 1444 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */ 1445 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */ 1446 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */ 1447 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */ 1448 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */ 1449 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */ 1450 1451 #define CABLE_ILLEGAL_A 0x7 1452 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */ 1453 1454 #define CABLE_ILLEGAL_B 0xB 1455 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */ 1456 1457 /* 1458 * MEM_CFG Register bit definitions 1459 */ 1460 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */ 1461 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */ 1462 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */ 1463 #define RAM_SZ_2KB 0x00 /* 2 KB */ 1464 #define RAM_SZ_4KB 0x04 /* 4 KB */ 1465 #define RAM_SZ_8KB 0x08 /* 8 KB */ 1466 #define RAM_SZ_16KB 0x0C /* 16 KB */ 1467 #define RAM_SZ_32KB 0x10 /* 32 KB */ 1468 #define RAM_SZ_64KB 0x14 /* 64 KB */ 1469 1470 /* 1471 * DMA_CFG0 Register bit definitions 1472 * 1473 * This register is only accessible to the host. 1474 */ 1475 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */ 1476 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */ 1477 #define FIFO_THRESH_16B 0x00 /* 16 bytes */ 1478 #define FIFO_THRESH_32B 0x20 /* 32 bytes */ 1479 #define FIFO_THRESH_48B 0x30 /* 48 bytes */ 1480 #define FIFO_THRESH_64B 0x40 /* 64 bytes */ 1481 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */ 1482 #define FIFO_THRESH_96B 0x60 /* 96 bytes */ 1483 #define FIFO_THRESH_112B 0x70 /* 112 bytes */ 1484 #define START_CTL 0x0C /* DMA start conditions */ 1485 #define START_CTL_TH 0x00 /* Wait threshold level (default) */ 1486 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */ 1487 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */ 1488 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */ 1489 #define READ_CMD 0x03 /* Memory Read Method */ 1490 #define READ_CMD_MR 0x00 /* Memory Read */ 1491 #define READ_CMD_MRL 0x02 /* Memory Read Long */ 1492 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */ 1493 1494 /* 1495 * ASC-38C0800 RAM BIST Register bit definitions 1496 */ 1497 #define RAM_TEST_MODE 0x80 1498 #define PRE_TEST_MODE 0x40 1499 #define NORMAL_MODE 0x00 1500 #define RAM_TEST_DONE 0x10 1501 #define RAM_TEST_STATUS 0x0F 1502 #define RAM_TEST_HOST_ERROR 0x08 1503 #define RAM_TEST_INTRAM_ERROR 0x04 1504 #define RAM_TEST_RISC_ERROR 0x02 1505 #define RAM_TEST_SCSI_ERROR 0x01 1506 #define RAM_TEST_SUCCESS 0x00 1507 #define PRE_TEST_VALUE 0x05 1508 #define NORMAL_VALUE 0x00 1509 1510 /* 1511 * ASC38C1600 Definitions 1512 * 1513 * IOPB_PCI_INT_CFG Bit Field Definitions 1514 */ 1515 1516 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */ 1517 1518 /* 1519 * Bit 1 can be set to change the interrupt for the Function to operate in 1520 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in 1521 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same 1522 * mode, otherwise the operating mode is undefined. 1523 */ 1524 #define TOTEMPOLE 0x02 1525 1526 /* 1527 * Bit 0 can be used to change the Int Pin for the Function. The value is 1528 * 0 by default for both Functions with Function 0 using INT A and Function 1529 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set, 1530 * INT A is used. 1531 * 1532 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin 1533 * value specified in the PCI Configuration Space. 1534 */ 1535 #define INTAB 0x01 1536 1537 /* 1538 * Adv Library Status Definitions 1539 */ 1540 #define ADV_TRUE 1 1541 #define ADV_FALSE 0 1542 #define ADV_SUCCESS 1 1543 #define ADV_BUSY 0 1544 #define ADV_ERROR (-1) 1545 1546 /* 1547 * ADV_DVC_VAR 'warn_code' values 1548 */ 1549 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */ 1550 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */ 1551 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */ 1552 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */ 1553 1554 #define ADV_MAX_TID 15 /* max. target identifier */ 1555 #define ADV_MAX_LUN 7 /* max. logical unit number */ 1556 1557 /* 1558 * Fixed locations of microcode operating variables. 1559 */ 1560 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */ 1561 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */ 1562 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */ 1563 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */ 1564 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */ 1565 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */ 1566 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */ 1567 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */ 1568 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */ 1569 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */ 1570 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */ 1571 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */ 1572 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */ 1573 #define ASC_MC_CHIP_TYPE 0x009A 1574 #define ASC_MC_INTRB_CODE 0x009B 1575 #define ASC_MC_WDTR_ABLE 0x009C 1576 #define ASC_MC_SDTR_ABLE 0x009E 1577 #define ASC_MC_TAGQNG_ABLE 0x00A0 1578 #define ASC_MC_DISC_ENABLE 0x00A2 1579 #define ASC_MC_IDLE_CMD_STATUS 0x00A4 1580 #define ASC_MC_IDLE_CMD 0x00A6 1581 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8 1582 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC 1583 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE 1584 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0 1585 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2 1586 #define ASC_MC_SDTR_DONE 0x00B6 1587 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0 1588 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0 1589 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100 1590 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */ 1591 #define ASC_MC_WDTR_DONE 0x0124 1592 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */ 1593 #define ASC_MC_ICQ 0x0160 1594 #define ASC_MC_IRQ 0x0164 1595 #define ASC_MC_PPR_ABLE 0x017A 1596 1597 /* 1598 * BIOS LRAM variable absolute offsets. 1599 */ 1600 #define BIOS_CODESEG 0x54 1601 #define BIOS_CODELEN 0x56 1602 #define BIOS_SIGNATURE 0x58 1603 #define BIOS_VERSION 0x5A 1604 1605 /* 1606 * Microcode Control Flags 1607 * 1608 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122) 1609 * and handled by the microcode. 1610 */ 1611 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */ 1612 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */ 1613 1614 /* 1615 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format 1616 */ 1617 #define HSHK_CFG_WIDE_XFR 0x8000 1618 #define HSHK_CFG_RATE 0x0F00 1619 #define HSHK_CFG_OFFSET 0x001F 1620 1621 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */ 1622 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */ 1623 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */ 1624 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */ 1625 1626 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */ 1627 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */ 1628 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */ 1629 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */ 1630 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */ 1631 1632 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */ 1633 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */ 1634 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */ 1635 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */ 1636 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */ 1637 /* 1638 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or 1639 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used. 1640 */ 1641 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */ 1642 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */ 1643 1644 /* 1645 * All fields here are accessed by the board microcode and need to be 1646 * little-endian. 1647 */ 1648 typedef struct adv_carr_t { 1649 __le32 carr_va; /* Carrier Virtual Address */ 1650 __le32 carr_pa; /* Carrier Physical Address */ 1651 __le32 areq_vpa; /* ADV_SCSI_REQ_Q Virtual or Physical Address */ 1652 /* 1653 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer 1654 * 1655 * next_vpa [3:1] Reserved Bits 1656 * next_vpa [0] Done Flag set in Response Queue. 1657 */ 1658 __le32 next_vpa; 1659 } ADV_CARR_T; 1660 1661 /* 1662 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field. 1663 */ 1664 #define ADV_NEXT_VPA_MASK 0xFFFFFFF0 1665 1666 #define ADV_RQ_DONE 0x00000001 1667 #define ADV_RQ_GOOD 0x00000002 1668 #define ADV_CQ_STOPPER 0x00000000 1669 1670 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK) 1671 1672 /* 1673 * Each carrier is 64 bytes, and we need three additional 1674 * carrier for icq, irq, and the termination carrier. 1675 */ 1676 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3) 1677 1678 #define ADV_CARRIER_BUFSIZE \ 1679 (ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) 1680 1681 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */ 1682 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */ 1683 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */ 1684 1685 /* 1686 * Adapter temporary configuration structure 1687 * 1688 * This structure can be discarded after initialization. Don't add 1689 * fields here needed after initialization. 1690 * 1691 * Field naming convention: 1692 * 1693 * *_enable indicates the field enables or disables a feature. The 1694 * value of the field is never reset. 1695 */ 1696 typedef struct adv_dvc_cfg { 1697 ushort disc_enable; /* enable disconnection */ 1698 uchar chip_version; /* chip version */ 1699 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */ 1700 ushort control_flag; /* Microcode Control Flag */ 1701 ushort mcode_date; /* Microcode date */ 1702 ushort mcode_version; /* Microcode version */ 1703 ushort serial1; /* EEPROM serial number word 1 */ 1704 ushort serial2; /* EEPROM serial number word 2 */ 1705 ushort serial3; /* EEPROM serial number word 3 */ 1706 } ADV_DVC_CFG; 1707 1708 struct adv_dvc_var; 1709 struct adv_scsi_req_q; 1710 1711 typedef struct adv_sg_block { 1712 uchar reserved1; 1713 uchar reserved2; 1714 uchar reserved3; 1715 uchar sg_cnt; /* Valid entries in block. */ 1716 __le32 sg_ptr; /* Pointer to next sg block. */ 1717 struct { 1718 __le32 sg_addr; /* SG element address. */ 1719 __le32 sg_count; /* SG element count. */ 1720 } sg_list[NO_OF_SG_PER_BLOCK]; 1721 } ADV_SG_BLOCK; 1722 1723 /* 1724 * ADV_SCSI_REQ_Q - microcode request structure 1725 * 1726 * All fields in this structure up to byte 60 are used by the microcode. 1727 * The microcode makes assumptions about the size and ordering of fields 1728 * in this structure. Do not change the structure definition here without 1729 * coordinating the change with the microcode. 1730 * 1731 * All fields accessed by microcode must be maintained in little_endian 1732 * order. 1733 */ 1734 typedef struct adv_scsi_req_q { 1735 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */ 1736 uchar target_cmd; 1737 uchar target_id; /* Device target identifier. */ 1738 uchar target_lun; /* Device target logical unit number. */ 1739 __le32 data_addr; /* Data buffer physical address. */ 1740 __le32 data_cnt; /* Data count. Ucode sets to residual. */ 1741 __le32 sense_addr; 1742 __le32 carr_pa; 1743 uchar mflag; 1744 uchar sense_len; 1745 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */ 1746 uchar scsi_cntl; 1747 uchar done_status; /* Completion status. */ 1748 uchar scsi_status; /* SCSI status byte. */ 1749 uchar host_status; /* Ucode host status. */ 1750 uchar sg_working_ix; 1751 uchar cdb[12]; /* SCSI CDB bytes 0-11. */ 1752 __le32 sg_real_addr; /* SG list physical address. */ 1753 __le32 scsiq_rptr; 1754 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */ 1755 __le32 scsiq_ptr; 1756 __le32 carr_va; 1757 /* 1758 * End of microcode structure - 60 bytes. The rest of the structure 1759 * is used by the Adv Library and ignored by the microcode. 1760 */ 1761 u32 srb_tag; 1762 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */ 1763 } ADV_SCSI_REQ_Q; 1764 1765 /* 1766 * The following two structures are used to process Wide Board requests. 1767 * 1768 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library 1769 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the 1770 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points 1771 * to the Mid-Level SCSI request structure. 1772 * 1773 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each 1774 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux 1775 * up to 255 scatter-gather elements may be used per request or 1776 * ADV_SCSI_REQ_Q. 1777 * 1778 * Both structures must be 32 byte aligned. 1779 */ 1780 typedef struct adv_sgblk { 1781 ADV_SG_BLOCK sg_block; /* Sgblock structure. */ 1782 dma_addr_t sg_addr; /* Physical address */ 1783 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */ 1784 } adv_sgblk_t; 1785 1786 typedef struct adv_req { 1787 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */ 1788 uchar align[24]; /* Request structure padding. */ 1789 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */ 1790 dma_addr_t req_addr; 1791 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */ 1792 } adv_req_t __aligned(32); 1793 1794 /* 1795 * Adapter operation variable structure. 1796 * 1797 * One structure is required per host adapter. 1798 * 1799 * Field naming convention: 1800 * 1801 * *_able indicates both whether a feature should be enabled or disabled 1802 * and whether a device is capable of the feature. At initialization 1803 * this field may be set, but later if a device is found to be incapable 1804 * of the feature, the field is cleared. 1805 */ 1806 typedef struct adv_dvc_var { 1807 AdvPortAddr iop_base; /* I/O port address */ 1808 ushort err_code; /* fatal error code */ 1809 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */ 1810 ushort wdtr_able; /* try WDTR for a device */ 1811 ushort sdtr_able; /* try SDTR for a device */ 1812 ushort ultra_able; /* try SDTR Ultra speed for a device */ 1813 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */ 1814 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */ 1815 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */ 1816 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */ 1817 ushort tagqng_able; /* try tagged queuing with a device */ 1818 ushort ppr_able; /* PPR message capable per TID bitmask. */ 1819 uchar max_dvc_qng; /* maximum number of tagged commands per device */ 1820 ushort start_motor; /* start motor command allowed */ 1821 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */ 1822 uchar chip_no; /* should be assigned by caller */ 1823 uchar max_host_qng; /* maximum number of Q'ed command allowed */ 1824 ushort no_scam; /* scam_tolerant of EEPROM */ 1825 struct asc_board *drv_ptr; /* driver pointer to private structure */ 1826 uchar chip_scsi_id; /* chip SCSI target ID */ 1827 uchar chip_type; 1828 uchar bist_err_code; 1829 ADV_CARR_T *carrier; 1830 ADV_CARR_T *carr_freelist; /* Carrier free list. */ 1831 dma_addr_t carrier_addr; 1832 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */ 1833 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */ 1834 ushort carr_pending_cnt; /* Count of pending carriers. */ 1835 /* 1836 * Note: The following fields will not be used after initialization. The 1837 * driver may discard the buffer after initialization is done. 1838 */ 1839 ADV_DVC_CFG *cfg; /* temporary configuration structure */ 1840 } ADV_DVC_VAR; 1841 1842 /* 1843 * Microcode idle loop commands 1844 */ 1845 #define IDLE_CMD_COMPLETED 0 1846 #define IDLE_CMD_STOP_CHIP 0x0001 1847 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002 1848 #define IDLE_CMD_SEND_INT 0x0004 1849 #define IDLE_CMD_ABORT 0x0008 1850 #define IDLE_CMD_DEVICE_RESET 0x0010 1851 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */ 1852 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */ 1853 #define IDLE_CMD_SCSIREQ 0x0080 1854 1855 #define IDLE_CMD_STATUS_SUCCESS 0x0001 1856 #define IDLE_CMD_STATUS_FAILURE 0x0002 1857 1858 /* 1859 * AdvSendIdleCmd() flag definitions. 1860 */ 1861 #define ADV_NOWAIT 0x01 1862 1863 /* 1864 * Wait loop time out values. 1865 */ 1866 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */ 1867 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */ 1868 #define SCSI_MAX_RETRY 10 /* retry count */ 1869 1870 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */ 1871 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */ 1872 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */ 1873 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */ 1874 1875 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */ 1876 1877 /* Read byte from a register. */ 1878 #define AdvReadByteRegister(iop_base, reg_off) \ 1879 (ADV_MEM_READB((iop_base) + (reg_off))) 1880 1881 /* Write byte to a register. */ 1882 #define AdvWriteByteRegister(iop_base, reg_off, byte) \ 1883 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte))) 1884 1885 /* Read word (2 bytes) from a register. */ 1886 #define AdvReadWordRegister(iop_base, reg_off) \ 1887 (ADV_MEM_READW((iop_base) + (reg_off))) 1888 1889 /* Write word (2 bytes) to a register. */ 1890 #define AdvWriteWordRegister(iop_base, reg_off, word) \ 1891 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word))) 1892 1893 /* Write dword (4 bytes) to a register. */ 1894 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \ 1895 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword))) 1896 1897 /* Read byte from LRAM. */ 1898 #define AdvReadByteLram(iop_base, addr, byte) \ 1899 do { \ 1900 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ 1901 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \ 1902 } while (0) 1903 1904 /* Write byte to LRAM. */ 1905 #define AdvWriteByteLram(iop_base, addr, byte) \ 1906 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1907 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte))) 1908 1909 /* Read word (2 bytes) from LRAM. */ 1910 #define AdvReadWordLram(iop_base, addr, word) \ 1911 do { \ 1912 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ 1913 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \ 1914 } while (0) 1915 1916 /* Write word (2 bytes) to LRAM. */ 1917 #define AdvWriteWordLram(iop_base, addr, word) \ 1918 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1919 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) 1920 1921 /* Write little-endian double word (4 bytes) to LRAM */ 1922 /* Because of unspecified C language ordering don't use auto-increment. */ 1923 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \ 1924 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1925 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ 1926 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \ 1927 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \ 1928 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ 1929 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF))))) 1930 1931 /* Read word (2 bytes) from LRAM assuming that the address is already set. */ 1932 #define AdvReadWordAutoIncLram(iop_base) \ 1933 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)) 1934 1935 /* Write word (2 bytes) to LRAM assuming that the address is already set. */ 1936 #define AdvWriteWordAutoIncLram(iop_base, word) \ 1937 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) 1938 1939 /* 1940 * Define macro to check for Condor signature. 1941 * 1942 * Evaluate to ADV_TRUE if a Condor chip is found the specified port 1943 * address 'iop_base'. Otherwise evalue to ADV_FALSE. 1944 */ 1945 #define AdvFindSignature(iop_base) \ 1946 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \ 1947 ADV_CHIP_ID_BYTE) && \ 1948 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \ 1949 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE) 1950 1951 /* 1952 * Define macro to Return the version number of the chip at 'iop_base'. 1953 * 1954 * The second parameter 'bus_type' is currently unused. 1955 */ 1956 #define AdvGetChipVersion(iop_base, bus_type) \ 1957 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV) 1958 1959 /* 1960 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must 1961 * match the ADV_SCSI_REQ_Q 'srb_tag' field. 1962 * 1963 * If the request has not yet been sent to the device it will simply be 1964 * aborted from RISC memory. If the request is disconnected it will be 1965 * aborted on reselection by sending an Abort Message to the target ID. 1966 * 1967 * Return value: 1968 * ADV_TRUE(1) - Queue was successfully aborted. 1969 * ADV_FALSE(0) - Queue was not found on the active queue list. 1970 */ 1971 #define AdvAbortQueue(asc_dvc, srb_tag) \ 1972 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \ 1973 (ADV_DCNT) (srb_tag)) 1974 1975 /* 1976 * Send a Bus Device Reset Message to the specified target ID. 1977 * 1978 * All outstanding commands will be purged if sending the 1979 * Bus Device Reset Message is successful. 1980 * 1981 * Return Value: 1982 * ADV_TRUE(1) - All requests on the target are purged. 1983 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests 1984 * are not purged. 1985 */ 1986 #define AdvResetDevice(asc_dvc, target_id) \ 1987 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \ 1988 (ADV_DCNT) (target_id)) 1989 1990 /* 1991 * SCSI Wide Type definition. 1992 */ 1993 #define ADV_SCSI_BIT_ID_TYPE ushort 1994 1995 /* 1996 * AdvInitScsiTarget() 'cntl_flag' options. 1997 */ 1998 #define ADV_SCAN_LUN 0x01 1999 #define ADV_CAPINFO_NOLUN 0x02 2000 2001 /* 2002 * Convert target id to target id bit mask. 2003 */ 2004 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID)) 2005 2006 /* 2007 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values. 2008 */ 2009 2010 #define QD_NO_STATUS 0x00 /* Request not completed yet. */ 2011 #define QD_NO_ERROR 0x01 2012 #define QD_ABORTED_BY_HOST 0x02 2013 #define QD_WITH_ERROR 0x04 2014 2015 #define QHSTA_NO_ERROR 0x00 2016 #define QHSTA_M_SEL_TIMEOUT 0x11 2017 #define QHSTA_M_DATA_OVER_RUN 0x12 2018 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 2019 #define QHSTA_M_QUEUE_ABORTED 0x15 2020 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */ 2021 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */ 2022 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */ 2023 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */ 2024 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */ 2025 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */ 2026 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */ 2027 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */ 2028 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */ 2029 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */ 2030 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */ 2031 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */ 2032 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */ 2033 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */ 2034 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */ 2035 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */ 2036 #define QHSTA_M_WTM_TIMEOUT 0x41 2037 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 2038 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 2039 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 2040 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */ 2041 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */ 2042 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */ 2043 2044 /* Return the address that is aligned at the next doubleword >= to 'addr'. */ 2045 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F) 2046 2047 /* 2048 * Total contiguous memory needed for driver SG blocks. 2049 * 2050 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum 2051 * number of scatter-gather elements the driver supports in a 2052 * single request. 2053 */ 2054 2055 #define ADV_SG_LIST_MAX_BYTE_SIZE \ 2056 (sizeof(ADV_SG_BLOCK) * \ 2057 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK)) 2058 2059 /* struct asc_board flags */ 2060 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */ 2061 2062 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0) 2063 2064 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */ 2065 2066 #define ASC_INFO_SIZE 128 /* advansys_info() line size */ 2067 2068 /* Asc Library return codes */ 2069 #define ASC_TRUE 1 2070 #define ASC_FALSE 0 2071 #define ASC_NOERROR 1 2072 #define ASC_BUSY 0 2073 #define ASC_ERROR (-1) 2074 2075 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1) 2076 #ifndef ADVANSYS_STATS 2077 #define ASC_STATS_ADD(shost, counter, count) 2078 #else /* ADVANSYS_STATS */ 2079 #define ASC_STATS_ADD(shost, counter, count) \ 2080 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count)) 2081 #endif /* ADVANSYS_STATS */ 2082 2083 /* If the result wraps when calculating tenths, return 0. */ 2084 #define ASC_TENTHS(num, den) \ 2085 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \ 2086 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den))))) 2087 2088 /* 2089 * Display a message to the console. 2090 */ 2091 #define ASC_PRINT(s) \ 2092 { \ 2093 printk("advansys: "); \ 2094 printk(s); \ 2095 } 2096 2097 #define ASC_PRINT1(s, a1) \ 2098 { \ 2099 printk("advansys: "); \ 2100 printk((s), (a1)); \ 2101 } 2102 2103 #define ASC_PRINT2(s, a1, a2) \ 2104 { \ 2105 printk("advansys: "); \ 2106 printk((s), (a1), (a2)); \ 2107 } 2108 2109 #define ASC_PRINT3(s, a1, a2, a3) \ 2110 { \ 2111 printk("advansys: "); \ 2112 printk((s), (a1), (a2), (a3)); \ 2113 } 2114 2115 #define ASC_PRINT4(s, a1, a2, a3, a4) \ 2116 { \ 2117 printk("advansys: "); \ 2118 printk((s), (a1), (a2), (a3), (a4)); \ 2119 } 2120 2121 #ifndef ADVANSYS_DEBUG 2122 2123 #define ASC_DBG(lvl, s...) 2124 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) 2125 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) 2126 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) 2127 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) 2128 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) 2129 #define ASC_DBG_PRT_HEX(lvl, name, start, length) 2130 #define ASC_DBG_PRT_CDB(lvl, cdb, len) 2131 #define ASC_DBG_PRT_SENSE(lvl, sense, len) 2132 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) 2133 2134 #else /* ADVANSYS_DEBUG */ 2135 2136 /* 2137 * Debugging Message Levels: 2138 * 0: Errors Only 2139 * 1: High-Level Tracing 2140 * 2-N: Verbose Tracing 2141 */ 2142 2143 #define ASC_DBG(lvl, format, arg...) { \ 2144 if (asc_dbglvl >= (lvl)) \ 2145 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \ 2146 __func__ , ## arg); \ 2147 } 2148 2149 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \ 2150 { \ 2151 if (asc_dbglvl >= (lvl)) { \ 2152 asc_prt_scsi_host(s); \ 2153 } \ 2154 } 2155 2156 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \ 2157 { \ 2158 if (asc_dbglvl >= (lvl)) { \ 2159 asc_prt_asc_scsi_q(scsiqp); \ 2160 } \ 2161 } 2162 2163 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \ 2164 { \ 2165 if (asc_dbglvl >= (lvl)) { \ 2166 asc_prt_asc_qdone_info(qdone); \ 2167 } \ 2168 } 2169 2170 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \ 2171 { \ 2172 if (asc_dbglvl >= (lvl)) { \ 2173 asc_prt_adv_scsi_req_q(scsiqp); \ 2174 } \ 2175 } 2176 2177 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \ 2178 { \ 2179 if (asc_dbglvl >= (lvl)) { \ 2180 asc_prt_hex((name), (start), (length)); \ 2181 } \ 2182 } 2183 2184 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \ 2185 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len)); 2186 2187 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \ 2188 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len)); 2189 2190 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \ 2191 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len)); 2192 #endif /* ADVANSYS_DEBUG */ 2193 2194 #ifdef ADVANSYS_STATS 2195 2196 /* Per board statistics structure */ 2197 struct asc_stats { 2198 /* Driver Entrypoint Statistics */ 2199 unsigned int queuecommand; /* # calls to advansys_queuecommand() */ 2200 unsigned int reset; /* # calls to advansys_eh_bus_reset() */ 2201 unsigned int biosparam; /* # calls to advansys_biosparam() */ 2202 unsigned int interrupt; /* # advansys_interrupt() calls */ 2203 unsigned int callback; /* # calls to asc/adv_isr_callback() */ 2204 unsigned int done; /* # calls to request's scsi_done function */ 2205 unsigned int build_error; /* # asc/adv_build_req() ASC_ERROR returns. */ 2206 unsigned int adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */ 2207 unsigned int adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */ 2208 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */ 2209 unsigned int exe_noerror; /* # ASC_NOERROR returns. */ 2210 unsigned int exe_busy; /* # ASC_BUSY returns. */ 2211 unsigned int exe_error; /* # ASC_ERROR returns. */ 2212 unsigned int exe_unknown; /* # unknown returns. */ 2213 /* Data Transfer Statistics */ 2214 unsigned int xfer_cnt; /* # I/O requests received */ 2215 unsigned int xfer_elem; /* # scatter-gather elements */ 2216 unsigned int xfer_sect; /* # 512-byte blocks */ 2217 }; 2218 #endif /* ADVANSYS_STATS */ 2219 2220 /* 2221 * Structure allocated for each board. 2222 * 2223 * This structure is allocated by scsi_host_alloc() at the end 2224 * of the 'Scsi_Host' structure starting at the 'hostdata' 2225 * field. It is guaranteed to be allocated from DMA-able memory. 2226 */ 2227 struct asc_board { 2228 struct device *dev; 2229 struct Scsi_Host *shost; 2230 uint flags; /* Board flags */ 2231 unsigned int irq; 2232 union { 2233 ASC_DVC_VAR asc_dvc_var; /* Narrow board */ 2234 ADV_DVC_VAR adv_dvc_var; /* Wide board */ 2235 } dvc_var; 2236 union { 2237 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */ 2238 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */ 2239 } dvc_cfg; 2240 ushort asc_n_io_port; /* Number I/O ports. */ 2241 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */ 2242 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */ 2243 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */ 2244 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */ 2245 union { 2246 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */ 2247 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */ 2248 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */ 2249 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */ 2250 } eep_config; 2251 /* /proc/scsi/advansys/[0...] */ 2252 #ifdef ADVANSYS_STATS 2253 struct asc_stats asc_stats; /* Board statistics */ 2254 #endif /* ADVANSYS_STATS */ 2255 /* 2256 * The following fields are used only for Narrow Boards. 2257 */ 2258 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */ 2259 /* 2260 * The following fields are used only for Wide Boards. 2261 */ 2262 void __iomem *ioremap_addr; /* I/O Memory remap address. */ 2263 ushort ioport; /* I/O Port address. */ 2264 adv_req_t *adv_reqp; /* Request structures. */ 2265 dma_addr_t adv_reqp_addr; 2266 size_t adv_reqp_size; 2267 struct dma_pool *adv_sgblk_pool; /* Scatter-gather structures. */ 2268 ushort bios_signature; /* BIOS Signature. */ 2269 ushort bios_version; /* BIOS Version. */ 2270 ushort bios_codeseg; /* BIOS Code Segment. */ 2271 ushort bios_codelen; /* BIOS Code Segment Length. */ 2272 }; 2273 2274 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \ 2275 dvc_var.asc_dvc_var) 2276 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \ 2277 dvc_var.adv_dvc_var) 2278 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev) 2279 2280 struct advansys_cmd { 2281 dma_addr_t dma_handle; 2282 }; 2283 2284 static struct advansys_cmd *advansys_cmd(struct scsi_cmnd *cmd) 2285 { 2286 return scsi_cmd_priv(cmd); 2287 } 2288 2289 #ifdef ADVANSYS_DEBUG 2290 static int asc_dbglvl = 3; 2291 2292 /* 2293 * asc_prt_asc_dvc_var() 2294 */ 2295 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h) 2296 { 2297 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h); 2298 2299 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl " 2300 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl); 2301 2302 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type, 2303 (unsigned)h->init_sdtr); 2304 2305 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, " 2306 "chip_no 0x%x,\n", (unsigned)h->sdtr_done, 2307 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready, 2308 (unsigned)h->chip_no); 2309 2310 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait " 2311 "%u,\n", (unsigned)h->queue_full_or_busy, 2312 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); 2313 2314 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, " 2315 "in_critical_cnt %u,\n", (unsigned)h->is_in_int, 2316 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng, 2317 (unsigned)h->in_critical_cnt); 2318 2319 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, " 2320 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage, 2321 (unsigned)h->init_state, (unsigned)h->no_scam, 2322 (unsigned)h->pci_fix_asyn_xfer); 2323 2324 printk(" cfg 0x%lx\n", (ulong)h->cfg); 2325 } 2326 2327 /* 2328 * asc_prt_asc_dvc_cfg() 2329 */ 2330 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h) 2331 { 2332 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h); 2333 2334 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n", 2335 h->can_tagged_qng, h->cmd_qng_enabled); 2336 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n", 2337 h->disc_enable, h->sdtr_enable); 2338 2339 printk(" chip_scsi_id %d, chip_version %d,\n", 2340 h->chip_scsi_id, h->chip_version); 2341 2342 printk(" mcode_date 0x%x, mcode_version %d\n", 2343 h->mcode_date, h->mcode_version); 2344 } 2345 2346 /* 2347 * asc_prt_adv_dvc_var() 2348 * 2349 * Display an ADV_DVC_VAR structure. 2350 */ 2351 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h) 2352 { 2353 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h); 2354 2355 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n", 2356 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able); 2357 2358 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n", 2359 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able); 2360 2361 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n", 2362 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); 2363 2364 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n", 2365 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng, 2366 h->carr_freelist); 2367 2368 printk(" icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp); 2369 2370 printk(" no_scam 0x%x, tagqng_able 0x%x\n", 2371 (unsigned)h->no_scam, (unsigned)h->tagqng_able); 2372 2373 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n", 2374 (unsigned)h->chip_scsi_id, (ulong)h->cfg); 2375 } 2376 2377 /* 2378 * asc_prt_adv_dvc_cfg() 2379 * 2380 * Display an ADV_DVC_CFG structure. 2381 */ 2382 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h) 2383 { 2384 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h); 2385 2386 printk(" disc_enable 0x%x, termination 0x%x\n", 2387 h->disc_enable, h->termination); 2388 2389 printk(" chip_version 0x%x, mcode_date 0x%x\n", 2390 h->chip_version, h->mcode_date); 2391 2392 printk(" mcode_version 0x%x, control_flag 0x%x\n", 2393 h->mcode_version, h->control_flag); 2394 } 2395 2396 /* 2397 * asc_prt_scsi_host() 2398 */ 2399 static void asc_prt_scsi_host(struct Scsi_Host *s) 2400 { 2401 struct asc_board *boardp = shost_priv(s); 2402 2403 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev)); 2404 printk(" host_busy %d, host_no %d,\n", 2405 scsi_host_busy(s), s->host_no); 2406 2407 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n", 2408 (ulong)s->base, (ulong)s->io_port, boardp->irq); 2409 2410 printk(" dma_channel %d, this_id %d, can_queue %d,\n", 2411 s->dma_channel, s->this_id, s->can_queue); 2412 2413 printk(" cmd_per_lun %d, sg_tablesize %d\n", 2414 s->cmd_per_lun, s->sg_tablesize); 2415 2416 if (ASC_NARROW_BOARD(boardp)) { 2417 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var); 2418 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg); 2419 } else { 2420 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var); 2421 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg); 2422 } 2423 } 2424 2425 /* 2426 * asc_prt_hex() 2427 * 2428 * Print hexadecimal output in 4 byte groupings 32 bytes 2429 * or 8 double-words per line. 2430 */ 2431 static void asc_prt_hex(char *f, uchar *s, int l) 2432 { 2433 int i; 2434 int j; 2435 int k; 2436 int m; 2437 2438 printk("%s: (%d bytes)\n", f, l); 2439 2440 for (i = 0; i < l; i += 32) { 2441 2442 /* Display a maximum of 8 double-words per line. */ 2443 if ((k = (l - i) / 4) >= 8) { 2444 k = 8; 2445 m = 0; 2446 } else { 2447 m = (l - i) % 4; 2448 } 2449 2450 for (j = 0; j < k; j++) { 2451 printk(" %2.2X%2.2X%2.2X%2.2X", 2452 (unsigned)s[i + (j * 4)], 2453 (unsigned)s[i + (j * 4) + 1], 2454 (unsigned)s[i + (j * 4) + 2], 2455 (unsigned)s[i + (j * 4) + 3]); 2456 } 2457 2458 switch (m) { 2459 case 0: 2460 default: 2461 break; 2462 case 1: 2463 printk(" %2.2X", (unsigned)s[i + (j * 4)]); 2464 break; 2465 case 2: 2466 printk(" %2.2X%2.2X", 2467 (unsigned)s[i + (j * 4)], 2468 (unsigned)s[i + (j * 4) + 1]); 2469 break; 2470 case 3: 2471 printk(" %2.2X%2.2X%2.2X", 2472 (unsigned)s[i + (j * 4) + 1], 2473 (unsigned)s[i + (j * 4) + 2], 2474 (unsigned)s[i + (j * 4) + 3]); 2475 break; 2476 } 2477 2478 printk("\n"); 2479 } 2480 } 2481 2482 /* 2483 * asc_prt_asc_scsi_q() 2484 */ 2485 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q) 2486 { 2487 ASC_SG_HEAD *sgp; 2488 int i; 2489 2490 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q); 2491 2492 printk 2493 (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n", 2494 q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag, 2495 q->q2.tag_code); 2496 2497 printk 2498 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", 2499 (ulong)le32_to_cpu(q->q1.data_addr), 2500 (ulong)le32_to_cpu(q->q1.data_cnt), 2501 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len); 2502 2503 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n", 2504 (ulong)q->cdbptr, q->q2.cdb_len, 2505 (ulong)q->sg_head, q->q1.sg_queue_cnt); 2506 2507 if (q->sg_head) { 2508 sgp = q->sg_head; 2509 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp); 2510 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt, 2511 sgp->queue_cnt); 2512 for (i = 0; i < sgp->entry_cnt; i++) { 2513 printk(" [%u]: addr 0x%lx, bytes %lu\n", 2514 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr), 2515 (ulong)le32_to_cpu(sgp->sg_list[i].bytes)); 2516 } 2517 2518 } 2519 } 2520 2521 /* 2522 * asc_prt_asc_qdone_info() 2523 */ 2524 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q) 2525 { 2526 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q); 2527 printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n", 2528 q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len, 2529 q->d2.tag_code); 2530 printk 2531 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n", 2532 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg); 2533 } 2534 2535 /* 2536 * asc_prt_adv_sgblock() 2537 * 2538 * Display an ADV_SG_BLOCK structure. 2539 */ 2540 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b) 2541 { 2542 int i; 2543 2544 printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n", 2545 (ulong)b, sgblockno); 2546 printk(" sg_cnt %u, sg_ptr 0x%x\n", 2547 b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr)); 2548 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK); 2549 if (b->sg_ptr != 0) 2550 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK); 2551 for (i = 0; i < b->sg_cnt; i++) { 2552 printk(" [%u]: sg_addr 0x%x, sg_count 0x%x\n", 2553 i, (u32)le32_to_cpu(b->sg_list[i].sg_addr), 2554 (u32)le32_to_cpu(b->sg_list[i].sg_count)); 2555 } 2556 } 2557 2558 /* 2559 * asc_prt_adv_scsi_req_q() 2560 * 2561 * Display an ADV_SCSI_REQ_Q structure. 2562 */ 2563 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q) 2564 { 2565 int sg_blk_cnt; 2566 struct adv_sg_block *sg_ptr; 2567 adv_sgblk_t *sgblkp; 2568 2569 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q); 2570 2571 printk(" target_id %u, target_lun %u, srb_tag 0x%x\n", 2572 q->target_id, q->target_lun, q->srb_tag); 2573 2574 printk(" cntl 0x%x, data_addr 0x%lx\n", 2575 q->cntl, (ulong)le32_to_cpu(q->data_addr)); 2576 2577 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", 2578 (ulong)le32_to_cpu(q->data_cnt), 2579 (ulong)le32_to_cpu(q->sense_addr), q->sense_len); 2580 2581 printk 2582 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n", 2583 q->cdb_len, q->done_status, q->host_status, q->scsi_status); 2584 2585 printk(" sg_working_ix 0x%x, target_cmd %u\n", 2586 q->sg_working_ix, q->target_cmd); 2587 2588 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n", 2589 (ulong)le32_to_cpu(q->scsiq_rptr), 2590 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr); 2591 2592 /* Display the request's ADV_SG_BLOCK structures. */ 2593 if (q->sg_list_ptr != NULL) { 2594 sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block); 2595 sg_blk_cnt = 0; 2596 while (sgblkp) { 2597 sg_ptr = &sgblkp->sg_block; 2598 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr); 2599 if (sg_ptr->sg_ptr == 0) { 2600 break; 2601 } 2602 sgblkp = sgblkp->next_sgblkp; 2603 sg_blk_cnt++; 2604 } 2605 } 2606 } 2607 #endif /* ADVANSYS_DEBUG */ 2608 2609 /* 2610 * advansys_info() 2611 * 2612 * Return suitable for printing on the console with the argument 2613 * adapter's configuration information. 2614 * 2615 * Note: The information line should not exceed ASC_INFO_SIZE bytes, 2616 * otherwise the static 'info' array will be overrun. 2617 */ 2618 static const char *advansys_info(struct Scsi_Host *shost) 2619 { 2620 static char info[ASC_INFO_SIZE]; 2621 struct asc_board *boardp = shost_priv(shost); 2622 ASC_DVC_VAR *asc_dvc_varp; 2623 ADV_DVC_VAR *adv_dvc_varp; 2624 char *busname; 2625 char *widename = NULL; 2626 2627 if (ASC_NARROW_BOARD(boardp)) { 2628 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 2629 ASC_DBG(1, "begin\n"); 2630 2631 if (asc_dvc_varp->bus_type & ASC_IS_VL) { 2632 busname = "VL"; 2633 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) { 2634 busname = "EISA"; 2635 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) { 2636 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA) 2637 == ASC_IS_PCI_ULTRA) { 2638 busname = "PCI Ultra"; 2639 } else { 2640 busname = "PCI"; 2641 } 2642 } else { 2643 busname = "?"; 2644 shost_printk(KERN_ERR, shost, "unknown bus " 2645 "type %d\n", asc_dvc_varp->bus_type); 2646 } 2647 sprintf(info, 2648 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X", 2649 ASC_VERSION, busname, (ulong)shost->io_port, 2650 (ulong)shost->io_port + ASC_IOADR_GAP - 1, 2651 boardp->irq); 2652 } else { 2653 /* 2654 * Wide Adapter Information 2655 * 2656 * Memory-mapped I/O is used instead of I/O space to access 2657 * the adapter, but display the I/O Port range. The Memory 2658 * I/O address is displayed through the driver /proc file. 2659 */ 2660 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 2661 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2662 widename = "Ultra-Wide"; 2663 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2664 widename = "Ultra2-Wide"; 2665 } else { 2666 widename = "Ultra3-Wide"; 2667 } 2668 sprintf(info, 2669 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X", 2670 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base, 2671 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq); 2672 } 2673 BUG_ON(strlen(info) >= ASC_INFO_SIZE); 2674 ASC_DBG(1, "end\n"); 2675 return info; 2676 } 2677 2678 #ifdef CONFIG_PROC_FS 2679 2680 /* 2681 * asc_prt_board_devices() 2682 * 2683 * Print driver information for devices attached to the board. 2684 */ 2685 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost) 2686 { 2687 struct asc_board *boardp = shost_priv(shost); 2688 int chip_scsi_id; 2689 int i; 2690 2691 seq_printf(m, 2692 "\nDevice Information for AdvanSys SCSI Host %d:\n", 2693 shost->host_no); 2694 2695 if (ASC_NARROW_BOARD(boardp)) { 2696 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; 2697 } else { 2698 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; 2699 } 2700 2701 seq_puts(m, "Target IDs Detected:"); 2702 for (i = 0; i <= ADV_MAX_TID; i++) { 2703 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) 2704 seq_printf(m, " %X,", i); 2705 } 2706 seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id); 2707 } 2708 2709 /* 2710 * Display Wide Board BIOS Information. 2711 */ 2712 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost) 2713 { 2714 struct asc_board *boardp = shost_priv(shost); 2715 ushort major, minor, letter; 2716 2717 seq_puts(m, "\nROM BIOS Version: "); 2718 2719 /* 2720 * If the BIOS saved a valid signature, then fill in 2721 * the BIOS code segment base address. 2722 */ 2723 if (boardp->bios_signature != 0x55AA) { 2724 seq_puts(m, "Disabled or Pre-3.1\n" 2725 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n" 2726 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n"); 2727 } else { 2728 major = (boardp->bios_version >> 12) & 0xF; 2729 minor = (boardp->bios_version >> 8) & 0xF; 2730 letter = (boardp->bios_version & 0xFF); 2731 2732 seq_printf(m, "%d.%d%c\n", 2733 major, minor, 2734 letter >= 26 ? '?' : letter + 'A'); 2735 /* 2736 * Current available ROM BIOS release is 3.1I for UW 2737 * and 3.2I for U2W. This code doesn't differentiate 2738 * UW and U2W boards. 2739 */ 2740 if (major < 3 || (major <= 3 && minor < 1) || 2741 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) { 2742 seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n" 2743 "ftp://ftp.connectcom.net/pub\n"); 2744 } 2745 } 2746 } 2747 2748 /* 2749 * Add serial number to information bar if signature AAh 2750 * is found in at bit 15-9 (7 bits) of word 1. 2751 * 2752 * Serial Number consists fo 12 alpha-numeric digits. 2753 * 2754 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits) 2755 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits) 2756 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits) 2757 * 5 - Product revision (A-J) Word0: " " 2758 * 2759 * Signature Word1: 15-9 (7 bits) 2760 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit) 2761 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits) 2762 * 2763 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits) 2764 * 2765 * Note 1: Only production cards will have a serial number. 2766 * 2767 * Note 2: Signature is most significant 7 bits (0xFE). 2768 * 2769 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE. 2770 */ 2771 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp) 2772 { 2773 ushort w, num; 2774 2775 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) { 2776 return ASC_FALSE; 2777 } else { 2778 /* 2779 * First word - 6 digits. 2780 */ 2781 w = serialnum[0]; 2782 2783 /* Product type - 1st digit. */ 2784 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') { 2785 /* Product type is P=Prototype */ 2786 *cp += 0x8; 2787 } 2788 cp++; 2789 2790 /* Manufacturing location - 2nd digit. */ 2791 *cp++ = 'A' + ((w & 0x1C00) >> 10); 2792 2793 /* Product ID - 3rd, 4th digits. */ 2794 num = w & 0x3FF; 2795 *cp++ = '0' + (num / 100); 2796 num %= 100; 2797 *cp++ = '0' + (num / 10); 2798 2799 /* Product revision - 5th digit. */ 2800 *cp++ = 'A' + (num % 10); 2801 2802 /* 2803 * Second word 2804 */ 2805 w = serialnum[1]; 2806 2807 /* 2808 * Year - 6th digit. 2809 * 2810 * If bit 15 of third word is set, then the 2811 * last digit of the year is greater than 7. 2812 */ 2813 if (serialnum[2] & 0x8000) { 2814 *cp++ = '8' + ((w & 0x1C0) >> 6); 2815 } else { 2816 *cp++ = '0' + ((w & 0x1C0) >> 6); 2817 } 2818 2819 /* Week of year - 7th, 8th digits. */ 2820 num = w & 0x003F; 2821 *cp++ = '0' + num / 10; 2822 num %= 10; 2823 *cp++ = '0' + num; 2824 2825 /* 2826 * Third word 2827 */ 2828 w = serialnum[2] & 0x7FFF; 2829 2830 /* Serial number - 9th digit. */ 2831 *cp++ = 'A' + (w / 1000); 2832 2833 /* 10th, 11th, 12th digits. */ 2834 num = w % 1000; 2835 *cp++ = '0' + num / 100; 2836 num %= 100; 2837 *cp++ = '0' + num / 10; 2838 num %= 10; 2839 *cp++ = '0' + num; 2840 2841 *cp = '\0'; /* Null Terminate the string. */ 2842 return ASC_TRUE; 2843 } 2844 } 2845 2846 /* 2847 * asc_prt_asc_board_eeprom() 2848 * 2849 * Print board EEPROM configuration. 2850 */ 2851 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) 2852 { 2853 struct asc_board *boardp = shost_priv(shost); 2854 ASCEEP_CONFIG *ep; 2855 int i; 2856 uchar serialstr[13]; 2857 2858 ep = &boardp->eep_config.asc_eep; 2859 2860 seq_printf(m, 2861 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", 2862 shost->host_no); 2863 2864 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr) 2865 == ASC_TRUE) 2866 seq_printf(m, " Serial Number: %s\n", serialstr); 2867 else if (ep->adapter_info[5] == 0xBB) 2868 seq_puts(m, 2869 " Default Settings Used for EEPROM-less Adapter.\n"); 2870 else 2871 seq_puts(m, " Serial Number Signature Not Present.\n"); 2872 2873 seq_printf(m, 2874 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2875 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng, 2876 ep->max_tag_qng); 2877 2878 seq_printf(m, 2879 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam); 2880 2881 seq_puts(m, " Target ID: "); 2882 for (i = 0; i <= ASC_MAX_TID; i++) 2883 seq_printf(m, " %d", i); 2884 2885 seq_puts(m, "\n Disconnects: "); 2886 for (i = 0; i <= ASC_MAX_TID; i++) 2887 seq_printf(m, " %c", 2888 (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2889 2890 seq_puts(m, "\n Command Queuing: "); 2891 for (i = 0; i <= ASC_MAX_TID; i++) 2892 seq_printf(m, " %c", 2893 (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2894 2895 seq_puts(m, "\n Start Motor: "); 2896 for (i = 0; i <= ASC_MAX_TID; i++) 2897 seq_printf(m, " %c", 2898 (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2899 2900 seq_puts(m, "\n Synchronous Transfer:"); 2901 for (i = 0; i <= ASC_MAX_TID; i++) 2902 seq_printf(m, " %c", 2903 (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2904 seq_putc(m, '\n'); 2905 } 2906 2907 /* 2908 * asc_prt_adv_board_eeprom() 2909 * 2910 * Print board EEPROM configuration. 2911 */ 2912 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) 2913 { 2914 struct asc_board *boardp = shost_priv(shost); 2915 ADV_DVC_VAR *adv_dvc_varp; 2916 int i; 2917 char *termstr; 2918 uchar serialstr[13]; 2919 ADVEEP_3550_CONFIG *ep_3550 = NULL; 2920 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL; 2921 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL; 2922 ushort word; 2923 ushort *wordp; 2924 ushort sdtr_speed = 0; 2925 2926 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 2927 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2928 ep_3550 = &boardp->eep_config.adv_3550_eep; 2929 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2930 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; 2931 } else { 2932 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; 2933 } 2934 2935 seq_printf(m, 2936 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", 2937 shost->host_no); 2938 2939 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2940 wordp = &ep_3550->serial_number_word1; 2941 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2942 wordp = &ep_38C0800->serial_number_word1; 2943 } else { 2944 wordp = &ep_38C1600->serial_number_word1; 2945 } 2946 2947 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) 2948 seq_printf(m, " Serial Number: %s\n", serialstr); 2949 else 2950 seq_puts(m, " Serial Number Signature Not Present.\n"); 2951 2952 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) 2953 seq_printf(m, 2954 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2955 ep_3550->adapter_scsi_id, 2956 ep_3550->max_host_qng, ep_3550->max_dvc_qng); 2957 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) 2958 seq_printf(m, 2959 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2960 ep_38C0800->adapter_scsi_id, 2961 ep_38C0800->max_host_qng, 2962 ep_38C0800->max_dvc_qng); 2963 else 2964 seq_printf(m, 2965 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2966 ep_38C1600->adapter_scsi_id, 2967 ep_38C1600->max_host_qng, 2968 ep_38C1600->max_dvc_qng); 2969 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2970 word = ep_3550->termination; 2971 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2972 word = ep_38C0800->termination_lvd; 2973 } else { 2974 word = ep_38C1600->termination_lvd; 2975 } 2976 switch (word) { 2977 case 1: 2978 termstr = "Low Off/High Off"; 2979 break; 2980 case 2: 2981 termstr = "Low Off/High On"; 2982 break; 2983 case 3: 2984 termstr = "Low On/High On"; 2985 break; 2986 default: 2987 case 0: 2988 termstr = "Automatic"; 2989 break; 2990 } 2991 2992 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) 2993 seq_printf(m, 2994 " termination: %u (%s), bios_ctrl: 0x%x\n", 2995 ep_3550->termination, termstr, 2996 ep_3550->bios_ctrl); 2997 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) 2998 seq_printf(m, 2999 " termination: %u (%s), bios_ctrl: 0x%x\n", 3000 ep_38C0800->termination_lvd, termstr, 3001 ep_38C0800->bios_ctrl); 3002 else 3003 seq_printf(m, 3004 " termination: %u (%s), bios_ctrl: 0x%x\n", 3005 ep_38C1600->termination_lvd, termstr, 3006 ep_38C1600->bios_ctrl); 3007 3008 seq_puts(m, " Target ID: "); 3009 for (i = 0; i <= ADV_MAX_TID; i++) 3010 seq_printf(m, " %X", i); 3011 seq_putc(m, '\n'); 3012 3013 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3014 word = ep_3550->disc_enable; 3015 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3016 word = ep_38C0800->disc_enable; 3017 } else { 3018 word = ep_38C1600->disc_enable; 3019 } 3020 seq_puts(m, " Disconnects: "); 3021 for (i = 0; i <= ADV_MAX_TID; i++) 3022 seq_printf(m, " %c", 3023 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3024 seq_putc(m, '\n'); 3025 3026 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3027 word = ep_3550->tagqng_able; 3028 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3029 word = ep_38C0800->tagqng_able; 3030 } else { 3031 word = ep_38C1600->tagqng_able; 3032 } 3033 seq_puts(m, " Command Queuing: "); 3034 for (i = 0; i <= ADV_MAX_TID; i++) 3035 seq_printf(m, " %c", 3036 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3037 seq_putc(m, '\n'); 3038 3039 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3040 word = ep_3550->start_motor; 3041 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3042 word = ep_38C0800->start_motor; 3043 } else { 3044 word = ep_38C1600->start_motor; 3045 } 3046 seq_puts(m, " Start Motor: "); 3047 for (i = 0; i <= ADV_MAX_TID; i++) 3048 seq_printf(m, " %c", 3049 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3050 seq_putc(m, '\n'); 3051 3052 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3053 seq_puts(m, " Synchronous Transfer:"); 3054 for (i = 0; i <= ADV_MAX_TID; i++) 3055 seq_printf(m, " %c", 3056 (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 3057 'Y' : 'N'); 3058 seq_putc(m, '\n'); 3059 } 3060 3061 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3062 seq_puts(m, " Ultra Transfer: "); 3063 for (i = 0; i <= ADV_MAX_TID; i++) 3064 seq_printf(m, " %c", 3065 (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i)) 3066 ? 'Y' : 'N'); 3067 seq_putc(m, '\n'); 3068 } 3069 3070 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3071 word = ep_3550->wdtr_able; 3072 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3073 word = ep_38C0800->wdtr_able; 3074 } else { 3075 word = ep_38C1600->wdtr_able; 3076 } 3077 seq_puts(m, " Wide Transfer: "); 3078 for (i = 0; i <= ADV_MAX_TID; i++) 3079 seq_printf(m, " %c", 3080 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3081 seq_putc(m, '\n'); 3082 3083 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 || 3084 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) { 3085 seq_puts(m, " Synchronous Transfer Speed (Mhz):\n "); 3086 for (i = 0; i <= ADV_MAX_TID; i++) { 3087 char *speed_str; 3088 3089 if (i == 0) { 3090 sdtr_speed = adv_dvc_varp->sdtr_speed1; 3091 } else if (i == 4) { 3092 sdtr_speed = adv_dvc_varp->sdtr_speed2; 3093 } else if (i == 8) { 3094 sdtr_speed = adv_dvc_varp->sdtr_speed3; 3095 } else if (i == 12) { 3096 sdtr_speed = adv_dvc_varp->sdtr_speed4; 3097 } 3098 switch (sdtr_speed & ADV_MAX_TID) { 3099 case 0: 3100 speed_str = "Off"; 3101 break; 3102 case 1: 3103 speed_str = " 5"; 3104 break; 3105 case 2: 3106 speed_str = " 10"; 3107 break; 3108 case 3: 3109 speed_str = " 20"; 3110 break; 3111 case 4: 3112 speed_str = " 40"; 3113 break; 3114 case 5: 3115 speed_str = " 80"; 3116 break; 3117 default: 3118 speed_str = "Unk"; 3119 break; 3120 } 3121 seq_printf(m, "%X:%s ", i, speed_str); 3122 if (i == 7) 3123 seq_puts(m, "\n "); 3124 sdtr_speed >>= 4; 3125 } 3126 seq_putc(m, '\n'); 3127 } 3128 } 3129 3130 /* 3131 * asc_prt_driver_conf() 3132 */ 3133 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost) 3134 { 3135 struct asc_board *boardp = shost_priv(shost); 3136 3137 seq_printf(m, 3138 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n", 3139 shost->host_no); 3140 3141 seq_printf(m, 3142 " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n", 3143 scsi_host_busy(shost), shost->max_id, 3144 shost->max_lun, shost->max_channel); 3145 3146 seq_printf(m, 3147 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n", 3148 shost->unique_id, shost->can_queue, shost->this_id, 3149 shost->sg_tablesize, shost->cmd_per_lun); 3150 3151 seq_printf(m, 3152 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n", 3153 boardp->flags, shost->last_reset, jiffies, 3154 boardp->asc_n_io_port); 3155 3156 seq_printf(m, " io_port 0x%lx\n", shost->io_port); 3157 } 3158 3159 /* 3160 * asc_prt_asc_board_info() 3161 * 3162 * Print dynamic board configuration information. 3163 */ 3164 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost) 3165 { 3166 struct asc_board *boardp = shost_priv(shost); 3167 int chip_scsi_id; 3168 ASC_DVC_VAR *v; 3169 ASC_DVC_CFG *c; 3170 int i; 3171 int renegotiate = 0; 3172 3173 v = &boardp->dvc_var.asc_dvc_var; 3174 c = &boardp->dvc_cfg.asc_dvc_cfg; 3175 chip_scsi_id = c->chip_scsi_id; 3176 3177 seq_printf(m, 3178 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", 3179 shost->host_no); 3180 3181 seq_printf(m, " chip_version %u, mcode_date 0x%x, " 3182 "mcode_version 0x%x, err_code %u\n", 3183 c->chip_version, c->mcode_date, c->mcode_version, 3184 v->err_code); 3185 3186 /* Current number of commands waiting for the host. */ 3187 seq_printf(m, 3188 " Total Command Pending: %d\n", v->cur_total_qng); 3189 3190 seq_puts(m, " Command Queuing:"); 3191 for (i = 0; i <= ASC_MAX_TID; i++) { 3192 if ((chip_scsi_id == i) || 3193 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3194 continue; 3195 } 3196 seq_printf(m, " %X:%c", 3197 i, 3198 (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3199 } 3200 3201 /* Current number of commands waiting for a device. */ 3202 seq_puts(m, "\n Command Queue Pending:"); 3203 for (i = 0; i <= ASC_MAX_TID; i++) { 3204 if ((chip_scsi_id == i) || 3205 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3206 continue; 3207 } 3208 seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]); 3209 } 3210 3211 /* Current limit on number of commands that can be sent to a device. */ 3212 seq_puts(m, "\n Command Queue Limit:"); 3213 for (i = 0; i <= ASC_MAX_TID; i++) { 3214 if ((chip_scsi_id == i) || 3215 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3216 continue; 3217 } 3218 seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]); 3219 } 3220 3221 /* Indicate whether the device has returned queue full status. */ 3222 seq_puts(m, "\n Command Queue Full:"); 3223 for (i = 0; i <= ASC_MAX_TID; i++) { 3224 if ((chip_scsi_id == i) || 3225 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3226 continue; 3227 } 3228 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) 3229 seq_printf(m, " %X:Y-%d", 3230 i, boardp->queue_full_cnt[i]); 3231 else 3232 seq_printf(m, " %X:N", i); 3233 } 3234 3235 seq_puts(m, "\n Synchronous Transfer:"); 3236 for (i = 0; i <= ASC_MAX_TID; i++) { 3237 if ((chip_scsi_id == i) || 3238 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3239 continue; 3240 } 3241 seq_printf(m, " %X:%c", 3242 i, 3243 (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3244 } 3245 seq_putc(m, '\n'); 3246 3247 for (i = 0; i <= ASC_MAX_TID; i++) { 3248 uchar syn_period_ix; 3249 3250 if ((chip_scsi_id == i) || 3251 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || 3252 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) { 3253 continue; 3254 } 3255 3256 seq_printf(m, " %X:", i); 3257 3258 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) { 3259 seq_puts(m, " Asynchronous"); 3260 } else { 3261 syn_period_ix = 3262 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index - 3263 1); 3264 3265 seq_printf(m, 3266 " Transfer Period Factor: %d (%d.%d Mhz),", 3267 v->sdtr_period_tbl[syn_period_ix], 3268 250 / v->sdtr_period_tbl[syn_period_ix], 3269 ASC_TENTHS(250, 3270 v->sdtr_period_tbl[syn_period_ix])); 3271 3272 seq_printf(m, " REQ/ACK Offset: %d", 3273 boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET); 3274 } 3275 3276 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3277 seq_puts(m, "*\n"); 3278 renegotiate = 1; 3279 } else { 3280 seq_putc(m, '\n'); 3281 } 3282 } 3283 3284 if (renegotiate) { 3285 seq_puts(m, " * = Re-negotiation pending before next command.\n"); 3286 } 3287 } 3288 3289 /* 3290 * asc_prt_adv_board_info() 3291 * 3292 * Print dynamic board configuration information. 3293 */ 3294 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost) 3295 { 3296 struct asc_board *boardp = shost_priv(shost); 3297 int i; 3298 ADV_DVC_VAR *v; 3299 ADV_DVC_CFG *c; 3300 AdvPortAddr iop_base; 3301 ushort chip_scsi_id; 3302 ushort lramword; 3303 uchar lrambyte; 3304 ushort tagqng_able; 3305 ushort sdtr_able, wdtr_able; 3306 ushort wdtr_done, sdtr_done; 3307 ushort period = 0; 3308 int renegotiate = 0; 3309 3310 v = &boardp->dvc_var.adv_dvc_var; 3311 c = &boardp->dvc_cfg.adv_dvc_cfg; 3312 iop_base = v->iop_base; 3313 chip_scsi_id = v->chip_scsi_id; 3314 3315 seq_printf(m, 3316 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", 3317 shost->host_no); 3318 3319 seq_printf(m, 3320 " iop_base 0x%p, cable_detect: %X, err_code %u\n", 3321 v->iop_base, 3322 AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT, 3323 v->err_code); 3324 3325 seq_printf(m, " chip_version %u, mcode_date 0x%x, " 3326 "mcode_version 0x%x\n", c->chip_version, 3327 c->mcode_date, c->mcode_version); 3328 3329 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 3330 seq_puts(m, " Queuing Enabled:"); 3331 for (i = 0; i <= ADV_MAX_TID; i++) { 3332 if ((chip_scsi_id == i) || 3333 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3334 continue; 3335 } 3336 3337 seq_printf(m, " %X:%c", 3338 i, 3339 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3340 } 3341 3342 seq_puts(m, "\n Queue Limit:"); 3343 for (i = 0; i <= ADV_MAX_TID; i++) { 3344 if ((chip_scsi_id == i) || 3345 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3346 continue; 3347 } 3348 3349 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i, 3350 lrambyte); 3351 3352 seq_printf(m, " %X:%d", i, lrambyte); 3353 } 3354 3355 seq_puts(m, "\n Command Pending:"); 3356 for (i = 0; i <= ADV_MAX_TID; i++) { 3357 if ((chip_scsi_id == i) || 3358 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3359 continue; 3360 } 3361 3362 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i, 3363 lrambyte); 3364 3365 seq_printf(m, " %X:%d", i, lrambyte); 3366 } 3367 seq_putc(m, '\n'); 3368 3369 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 3370 seq_puts(m, " Wide Enabled:"); 3371 for (i = 0; i <= ADV_MAX_TID; i++) { 3372 if ((chip_scsi_id == i) || 3373 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3374 continue; 3375 } 3376 3377 seq_printf(m, " %X:%c", 3378 i, 3379 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3380 } 3381 seq_putc(m, '\n'); 3382 3383 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done); 3384 seq_puts(m, " Transfer Bit Width:"); 3385 for (i = 0; i <= ADV_MAX_TID; i++) { 3386 if ((chip_scsi_id == i) || 3387 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3388 continue; 3389 } 3390 3391 AdvReadWordLram(iop_base, 3392 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), 3393 lramword); 3394 3395 seq_printf(m, " %X:%d", 3396 i, (lramword & 0x8000) ? 16 : 8); 3397 3398 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) && 3399 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3400 seq_putc(m, '*'); 3401 renegotiate = 1; 3402 } 3403 } 3404 seq_putc(m, '\n'); 3405 3406 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 3407 seq_puts(m, " Synchronous Enabled:"); 3408 for (i = 0; i <= ADV_MAX_TID; i++) { 3409 if ((chip_scsi_id == i) || 3410 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3411 continue; 3412 } 3413 3414 seq_printf(m, " %X:%c", 3415 i, 3416 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3417 } 3418 seq_putc(m, '\n'); 3419 3420 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done); 3421 for (i = 0; i <= ADV_MAX_TID; i++) { 3422 3423 AdvReadWordLram(iop_base, 3424 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), 3425 lramword); 3426 lramword &= ~0x8000; 3427 3428 if ((chip_scsi_id == i) || 3429 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || 3430 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) { 3431 continue; 3432 } 3433 3434 seq_printf(m, " %X:", i); 3435 3436 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */ 3437 seq_puts(m, " Asynchronous"); 3438 } else { 3439 seq_puts(m, " Transfer Period Factor: "); 3440 3441 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */ 3442 seq_puts(m, "9 (80.0 Mhz),"); 3443 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */ 3444 seq_puts(m, "10 (40.0 Mhz),"); 3445 } else { /* 20 Mhz or below. */ 3446 3447 period = (((lramword >> 8) * 25) + 50) / 4; 3448 3449 if (period == 0) { /* Should never happen. */ 3450 seq_printf(m, "%d (? Mhz), ", period); 3451 } else { 3452 seq_printf(m, 3453 "%d (%d.%d Mhz),", 3454 period, 250 / period, 3455 ASC_TENTHS(250, period)); 3456 } 3457 } 3458 3459 seq_printf(m, " REQ/ACK Offset: %d", 3460 lramword & 0x1F); 3461 } 3462 3463 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3464 seq_puts(m, "*\n"); 3465 renegotiate = 1; 3466 } else { 3467 seq_putc(m, '\n'); 3468 } 3469 } 3470 3471 if (renegotiate) { 3472 seq_puts(m, " * = Re-negotiation pending before next command.\n"); 3473 } 3474 } 3475 3476 #ifdef ADVANSYS_STATS 3477 /* 3478 * asc_prt_board_stats() 3479 */ 3480 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost) 3481 { 3482 struct asc_board *boardp = shost_priv(shost); 3483 struct asc_stats *s = &boardp->asc_stats; 3484 3485 seq_printf(m, 3486 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n", 3487 shost->host_no); 3488 3489 seq_printf(m, 3490 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n", 3491 s->queuecommand, s->reset, s->biosparam, 3492 s->interrupt); 3493 3494 seq_printf(m, 3495 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n", 3496 s->callback, s->done, s->build_error, 3497 s->adv_build_noreq, s->adv_build_nosg); 3498 3499 seq_printf(m, 3500 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n", 3501 s->exe_noerror, s->exe_busy, s->exe_error, 3502 s->exe_unknown); 3503 3504 /* 3505 * Display data transfer statistics. 3506 */ 3507 if (s->xfer_cnt > 0) { 3508 seq_printf(m, " xfer_cnt %u, xfer_elem %u, ", 3509 s->xfer_cnt, s->xfer_elem); 3510 3511 seq_printf(m, "xfer_bytes %u.%01u kb\n", 3512 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2)); 3513 3514 /* Scatter gather transfer statistics */ 3515 seq_printf(m, " avg_num_elem %u.%01u, ", 3516 s->xfer_elem / s->xfer_cnt, 3517 ASC_TENTHS(s->xfer_elem, s->xfer_cnt)); 3518 3519 seq_printf(m, "avg_elem_size %u.%01u kb, ", 3520 (s->xfer_sect / 2) / s->xfer_elem, 3521 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem)); 3522 3523 seq_printf(m, "avg_xfer_size %u.%01u kb\n", 3524 (s->xfer_sect / 2) / s->xfer_cnt, 3525 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt)); 3526 } 3527 } 3528 #endif /* ADVANSYS_STATS */ 3529 3530 /* 3531 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...} 3532 * 3533 * m: seq_file to print into 3534 * shost: Scsi_Host 3535 * 3536 * Return the number of bytes read from or written to a 3537 * /proc/scsi/advansys/[0...] file. 3538 */ 3539 static int 3540 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost) 3541 { 3542 struct asc_board *boardp = shost_priv(shost); 3543 3544 ASC_DBG(1, "begin\n"); 3545 3546 /* 3547 * User read of /proc/scsi/advansys/[0...] file. 3548 */ 3549 3550 /* 3551 * Get board configuration information. 3552 * 3553 * advansys_info() returns the board string from its own static buffer. 3554 */ 3555 /* Copy board information. */ 3556 seq_printf(m, "%s\n", (char *)advansys_info(shost)); 3557 /* 3558 * Display Wide Board BIOS Information. 3559 */ 3560 if (!ASC_NARROW_BOARD(boardp)) 3561 asc_prt_adv_bios(m, shost); 3562 3563 /* 3564 * Display driver information for each device attached to the board. 3565 */ 3566 asc_prt_board_devices(m, shost); 3567 3568 /* 3569 * Display EEPROM configuration for the board. 3570 */ 3571 if (ASC_NARROW_BOARD(boardp)) 3572 asc_prt_asc_board_eeprom(m, shost); 3573 else 3574 asc_prt_adv_board_eeprom(m, shost); 3575 3576 /* 3577 * Display driver configuration and information for the board. 3578 */ 3579 asc_prt_driver_conf(m, shost); 3580 3581 #ifdef ADVANSYS_STATS 3582 /* 3583 * Display driver statistics for the board. 3584 */ 3585 asc_prt_board_stats(m, shost); 3586 #endif /* ADVANSYS_STATS */ 3587 3588 /* 3589 * Display Asc Library dynamic configuration information 3590 * for the board. 3591 */ 3592 if (ASC_NARROW_BOARD(boardp)) 3593 asc_prt_asc_board_info(m, shost); 3594 else 3595 asc_prt_adv_board_info(m, shost); 3596 return 0; 3597 } 3598 #endif /* CONFIG_PROC_FS */ 3599 3600 static void asc_scsi_done(struct scsi_cmnd *scp) 3601 { 3602 scsi_dma_unmap(scp); 3603 ASC_STATS(scp->device->host, done); 3604 scsi_done(scp); 3605 } 3606 3607 static void AscSetBank(PortAddr iop_base, uchar bank) 3608 { 3609 uchar val; 3610 3611 val = AscGetChipControl(iop_base) & 3612 (~ 3613 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET | 3614 CC_CHIP_RESET)); 3615 if (bank == 1) { 3616 val |= CC_BANK_ONE; 3617 } else if (bank == 2) { 3618 val |= CC_DIAG | CC_BANK_ONE; 3619 } else { 3620 val &= ~CC_BANK_ONE; 3621 } 3622 AscSetChipControl(iop_base, val); 3623 } 3624 3625 static void AscSetChipIH(PortAddr iop_base, ushort ins_code) 3626 { 3627 AscSetBank(iop_base, 1); 3628 AscWriteChipIH(iop_base, ins_code); 3629 AscSetBank(iop_base, 0); 3630 } 3631 3632 static int AscStartChip(PortAddr iop_base) 3633 { 3634 AscSetChipControl(iop_base, 0); 3635 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { 3636 return (0); 3637 } 3638 return (1); 3639 } 3640 3641 static bool AscStopChip(PortAddr iop_base) 3642 { 3643 uchar cc_val; 3644 3645 cc_val = 3646 AscGetChipControl(iop_base) & 3647 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG)); 3648 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT)); 3649 AscSetChipIH(iop_base, INS_HALT); 3650 AscSetChipIH(iop_base, INS_RFLAG_WTM); 3651 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) { 3652 return false; 3653 } 3654 return true; 3655 } 3656 3657 static bool AscIsChipHalted(PortAddr iop_base) 3658 { 3659 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { 3660 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) { 3661 return true; 3662 } 3663 } 3664 return false; 3665 } 3666 3667 static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc) 3668 { 3669 PortAddr iop_base; 3670 int i = 10; 3671 3672 iop_base = asc_dvc->iop_base; 3673 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE) 3674 && (i-- > 0)) { 3675 mdelay(100); 3676 } 3677 AscStopChip(iop_base); 3678 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT); 3679 udelay(60); 3680 AscSetChipIH(iop_base, INS_RFLAG_WTM); 3681 AscSetChipIH(iop_base, INS_HALT); 3682 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT); 3683 AscSetChipControl(iop_base, CC_HALT); 3684 mdelay(200); 3685 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); 3686 AscSetChipStatus(iop_base, 0); 3687 return (AscIsChipHalted(iop_base)); 3688 } 3689 3690 static int AscFindSignature(PortAddr iop_base) 3691 { 3692 ushort sig_word; 3693 3694 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n", 3695 iop_base, AscGetChipSignatureByte(iop_base)); 3696 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) { 3697 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n", 3698 iop_base, AscGetChipSignatureWord(iop_base)); 3699 sig_word = AscGetChipSignatureWord(iop_base); 3700 if ((sig_word == (ushort)ASC_1000_ID0W) || 3701 (sig_word == (ushort)ASC_1000_ID0W_FIX)) { 3702 return (1); 3703 } 3704 } 3705 return (0); 3706 } 3707 3708 static void AscEnableInterrupt(PortAddr iop_base) 3709 { 3710 ushort cfg; 3711 3712 cfg = AscGetChipCfgLsw(iop_base); 3713 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON); 3714 } 3715 3716 static void AscDisableInterrupt(PortAddr iop_base) 3717 { 3718 ushort cfg; 3719 3720 cfg = AscGetChipCfgLsw(iop_base); 3721 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON)); 3722 } 3723 3724 static uchar AscReadLramByte(PortAddr iop_base, ushort addr) 3725 { 3726 unsigned char byte_data; 3727 unsigned short word_data; 3728 3729 if (isodd_word(addr)) { 3730 AscSetChipLramAddr(iop_base, addr - 1); 3731 word_data = AscGetChipLramData(iop_base); 3732 byte_data = (word_data >> 8) & 0xFF; 3733 } else { 3734 AscSetChipLramAddr(iop_base, addr); 3735 word_data = AscGetChipLramData(iop_base); 3736 byte_data = word_data & 0xFF; 3737 } 3738 return byte_data; 3739 } 3740 3741 static ushort AscReadLramWord(PortAddr iop_base, ushort addr) 3742 { 3743 ushort word_data; 3744 3745 AscSetChipLramAddr(iop_base, addr); 3746 word_data = AscGetChipLramData(iop_base); 3747 return (word_data); 3748 } 3749 3750 static void 3751 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words) 3752 { 3753 int i; 3754 3755 AscSetChipLramAddr(iop_base, s_addr); 3756 for (i = 0; i < words; i++) { 3757 AscSetChipLramData(iop_base, set_wval); 3758 } 3759 } 3760 3761 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val) 3762 { 3763 AscSetChipLramAddr(iop_base, addr); 3764 AscSetChipLramData(iop_base, word_val); 3765 } 3766 3767 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val) 3768 { 3769 ushort word_data; 3770 3771 if (isodd_word(addr)) { 3772 addr--; 3773 word_data = AscReadLramWord(iop_base, addr); 3774 word_data &= 0x00FF; 3775 word_data |= (((ushort)byte_val << 8) & 0xFF00); 3776 } else { 3777 word_data = AscReadLramWord(iop_base, addr); 3778 word_data &= 0xFF00; 3779 word_data |= ((ushort)byte_val & 0x00FF); 3780 } 3781 AscWriteLramWord(iop_base, addr, word_data); 3782 } 3783 3784 /* 3785 * Copy 2 bytes to LRAM. 3786 * 3787 * The source data is assumed to be in little-endian order in memory 3788 * and is maintained in little-endian order when written to LRAM. 3789 */ 3790 static void 3791 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr, 3792 const uchar *s_buffer, int words) 3793 { 3794 int i; 3795 3796 AscSetChipLramAddr(iop_base, s_addr); 3797 for (i = 0; i < 2 * words; i += 2) { 3798 /* 3799 * On a little-endian system the second argument below 3800 * produces a little-endian ushort which is written to 3801 * LRAM in little-endian order. On a big-endian system 3802 * the second argument produces a big-endian ushort which 3803 * is "transparently" byte-swapped by outpw() and written 3804 * in little-endian order to LRAM. 3805 */ 3806 outpw(iop_base + IOP_RAM_DATA, 3807 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); 3808 } 3809 } 3810 3811 /* 3812 * Copy 4 bytes to LRAM. 3813 * 3814 * The source data is assumed to be in little-endian order in memory 3815 * and is maintained in little-endian order when written to LRAM. 3816 */ 3817 static void 3818 AscMemDWordCopyPtrToLram(PortAddr iop_base, 3819 ushort s_addr, uchar *s_buffer, int dwords) 3820 { 3821 int i; 3822 3823 AscSetChipLramAddr(iop_base, s_addr); 3824 for (i = 0; i < 4 * dwords; i += 4) { 3825 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */ 3826 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */ 3827 } 3828 } 3829 3830 /* 3831 * Copy 2 bytes from LRAM. 3832 * 3833 * The source data is assumed to be in little-endian order in LRAM 3834 * and is maintained in little-endian order when written to memory. 3835 */ 3836 static void 3837 AscMemWordCopyPtrFromLram(PortAddr iop_base, 3838 ushort s_addr, uchar *d_buffer, int words) 3839 { 3840 int i; 3841 ushort word; 3842 3843 AscSetChipLramAddr(iop_base, s_addr); 3844 for (i = 0; i < 2 * words; i += 2) { 3845 word = inpw(iop_base + IOP_RAM_DATA); 3846 d_buffer[i] = word & 0xff; 3847 d_buffer[i + 1] = (word >> 8) & 0xff; 3848 } 3849 } 3850 3851 static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words) 3852 { 3853 u32 sum = 0; 3854 int i; 3855 3856 for (i = 0; i < words; i++, s_addr += 2) { 3857 sum += AscReadLramWord(iop_base, s_addr); 3858 } 3859 return (sum); 3860 } 3861 3862 static void AscInitLram(ASC_DVC_VAR *asc_dvc) 3863 { 3864 uchar i; 3865 ushort s_addr; 3866 PortAddr iop_base; 3867 3868 iop_base = asc_dvc->iop_base; 3869 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0, 3870 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) * 3871 64) >> 1)); 3872 i = ASC_MIN_ACTIVE_QNO; 3873 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE; 3874 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3875 (uchar)(i + 1)); 3876 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3877 (uchar)(asc_dvc->max_total_qng)); 3878 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3879 (uchar)i); 3880 i++; 3881 s_addr += ASC_QBLK_SIZE; 3882 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) { 3883 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3884 (uchar)(i + 1)); 3885 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3886 (uchar)(i - 1)); 3887 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3888 (uchar)i); 3889 } 3890 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3891 (uchar)ASC_QLINK_END); 3892 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3893 (uchar)(asc_dvc->max_total_qng - 1)); 3894 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3895 (uchar)asc_dvc->max_total_qng); 3896 i++; 3897 s_addr += ASC_QBLK_SIZE; 3898 for (; i <= (uchar)(asc_dvc->max_total_qng + 3); 3899 i++, s_addr += ASC_QBLK_SIZE) { 3900 AscWriteLramByte(iop_base, 3901 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i); 3902 AscWriteLramByte(iop_base, 3903 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i); 3904 AscWriteLramByte(iop_base, 3905 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i); 3906 } 3907 } 3908 3909 static u32 3910 AscLoadMicroCode(PortAddr iop_base, ushort s_addr, 3911 const uchar *mcode_buf, ushort mcode_size) 3912 { 3913 u32 chksum; 3914 ushort mcode_word_size; 3915 ushort mcode_chksum; 3916 3917 /* Write the microcode buffer starting at LRAM address 0. */ 3918 mcode_word_size = (ushort)(mcode_size >> 1); 3919 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size); 3920 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size); 3921 3922 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size); 3923 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum); 3924 mcode_chksum = (ushort)AscMemSumLramWord(iop_base, 3925 (ushort)ASC_CODE_SEC_BEG, 3926 (ushort)((mcode_size - 3927 s_addr - (ushort) 3928 ASC_CODE_SEC_BEG) / 3929 2)); 3930 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum); 3931 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum); 3932 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size); 3933 return chksum; 3934 } 3935 3936 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc) 3937 { 3938 PortAddr iop_base; 3939 int i; 3940 ushort lram_addr; 3941 3942 iop_base = asc_dvc->iop_base; 3943 AscPutRiscVarFreeQHead(iop_base, 1); 3944 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng); 3945 AscPutVarFreeQHead(iop_base, 1); 3946 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng); 3947 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B, 3948 (uchar)((int)asc_dvc->max_total_qng + 1)); 3949 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B, 3950 (uchar)((int)asc_dvc->max_total_qng + 2)); 3951 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B, 3952 asc_dvc->max_total_qng); 3953 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0); 3954 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 3955 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0); 3956 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0); 3957 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0); 3958 AscPutQDoneInProgress(iop_base, 0); 3959 lram_addr = ASC_QADR_BEG; 3960 for (i = 0; i < 32; i++, lram_addr += 2) { 3961 AscWriteLramWord(iop_base, lram_addr, 0); 3962 } 3963 } 3964 3965 static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc) 3966 { 3967 int i; 3968 int warn_code; 3969 PortAddr iop_base; 3970 __le32 phy_addr; 3971 __le32 phy_size; 3972 struct asc_board *board = asc_dvc_to_board(asc_dvc); 3973 3974 iop_base = asc_dvc->iop_base; 3975 warn_code = 0; 3976 for (i = 0; i <= ASC_MAX_TID; i++) { 3977 AscPutMCodeInitSDTRAtID(iop_base, i, 3978 asc_dvc->cfg->sdtr_period_offset[i]); 3979 } 3980 3981 AscInitQLinkVar(asc_dvc); 3982 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B, 3983 asc_dvc->cfg->disc_enable); 3984 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B, 3985 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id)); 3986 3987 /* Ensure overrun buffer is aligned on an 8 byte boundary. */ 3988 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7); 3989 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf, 3990 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 3991 if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) { 3992 warn_code = -ENOMEM; 3993 goto err_dma_map; 3994 } 3995 phy_addr = cpu_to_le32(asc_dvc->overrun_dma); 3996 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D, 3997 (uchar *)&phy_addr, 1); 3998 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE); 3999 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D, 4000 (uchar *)&phy_size, 1); 4001 4002 asc_dvc->cfg->mcode_date = 4003 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W); 4004 asc_dvc->cfg->mcode_version = 4005 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W); 4006 4007 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); 4008 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { 4009 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; 4010 warn_code = -EINVAL; 4011 goto err_mcode_start; 4012 } 4013 if (AscStartChip(iop_base) != 1) { 4014 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; 4015 warn_code = -EIO; 4016 goto err_mcode_start; 4017 } 4018 4019 return warn_code; 4020 4021 err_mcode_start: 4022 dma_unmap_single(board->dev, asc_dvc->overrun_dma, 4023 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 4024 err_dma_map: 4025 asc_dvc->overrun_dma = 0; 4026 return warn_code; 4027 } 4028 4029 static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc) 4030 { 4031 const struct firmware *fw; 4032 const char fwname[] = "advansys/mcode.bin"; 4033 int err; 4034 unsigned long chksum; 4035 int warn_code; 4036 PortAddr iop_base; 4037 4038 iop_base = asc_dvc->iop_base; 4039 warn_code = 0; 4040 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) && 4041 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) { 4042 AscResetChipAndScsiBus(asc_dvc); 4043 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 4044 } 4045 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC; 4046 if (asc_dvc->err_code != 0) 4047 return ASC_ERROR; 4048 if (!AscFindSignature(asc_dvc->iop_base)) { 4049 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 4050 return warn_code; 4051 } 4052 AscDisableInterrupt(iop_base); 4053 AscInitLram(asc_dvc); 4054 4055 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4056 if (err) { 4057 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4058 fwname, err); 4059 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4060 return err; 4061 } 4062 if (fw->size < 4) { 4063 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4064 fw->size, fwname); 4065 release_firmware(fw); 4066 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4067 return -EINVAL; 4068 } 4069 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4070 (fw->data[1] << 8) | fw->data[0]; 4071 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum); 4072 if (AscLoadMicroCode(iop_base, 0, &fw->data[4], 4073 fw->size - 4) != chksum) { 4074 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4075 release_firmware(fw); 4076 return warn_code; 4077 } 4078 release_firmware(fw); 4079 warn_code |= AscInitMicroCodeVar(asc_dvc); 4080 if (!asc_dvc->overrun_dma) 4081 return warn_code; 4082 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC; 4083 AscEnableInterrupt(iop_base); 4084 return warn_code; 4085 } 4086 4087 /* 4088 * Load the Microcode 4089 * 4090 * Write the microcode image to RISC memory starting at address 0. 4091 * 4092 * The microcode is stored compressed in the following format: 4093 * 4094 * 254 word (508 byte) table indexed by byte code followed 4095 * by the following byte codes: 4096 * 4097 * 1-Byte Code: 4098 * 00: Emit word 0 in table. 4099 * 01: Emit word 1 in table. 4100 * . 4101 * FD: Emit word 253 in table. 4102 * 4103 * Multi-Byte Code: 4104 * FE WW WW: (3 byte code) Word to emit is the next word WW WW. 4105 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW. 4106 * 4107 * Returns 0 or an error if the checksum doesn't match 4108 */ 4109 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf, 4110 int size, int memsize, int chksum) 4111 { 4112 int i, j, end, len = 0; 4113 u32 sum; 4114 4115 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); 4116 4117 for (i = 253 * 2; i < size; i++) { 4118 if (buf[i] == 0xff) { 4119 unsigned short word = (buf[i + 3] << 8) | buf[i + 2]; 4120 for (j = 0; j < buf[i + 1]; j++) { 4121 AdvWriteWordAutoIncLram(iop_base, word); 4122 len += 2; 4123 } 4124 i += 3; 4125 } else if (buf[i] == 0xfe) { 4126 unsigned short word = (buf[i + 2] << 8) | buf[i + 1]; 4127 AdvWriteWordAutoIncLram(iop_base, word); 4128 i += 2; 4129 len += 2; 4130 } else { 4131 unsigned int off = buf[i] * 2; 4132 unsigned short word = (buf[off + 1] << 8) | buf[off]; 4133 AdvWriteWordAutoIncLram(iop_base, word); 4134 len += 2; 4135 } 4136 } 4137 4138 end = len; 4139 4140 while (len < memsize) { 4141 AdvWriteWordAutoIncLram(iop_base, 0); 4142 len += 2; 4143 } 4144 4145 /* Verify the microcode checksum. */ 4146 sum = 0; 4147 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); 4148 4149 for (len = 0; len < end; len += 2) { 4150 sum += AdvReadWordAutoIncLram(iop_base); 4151 } 4152 4153 if (sum != chksum) 4154 return ASC_IERR_MCODE_CHKSUM; 4155 4156 return 0; 4157 } 4158 4159 static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc) 4160 { 4161 off_t carr_offset = 0, next_offset; 4162 dma_addr_t carr_paddr; 4163 int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i; 4164 4165 for (i = 0; i < carr_num; i++) { 4166 carr_offset = i * sizeof(ADV_CARR_T); 4167 /* Get physical address of the carrier 'carrp'. */ 4168 carr_paddr = adv_dvc->carrier_addr + carr_offset; 4169 4170 adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr); 4171 adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset); 4172 adv_dvc->carrier[i].areq_vpa = 0; 4173 next_offset = carr_offset + sizeof(ADV_CARR_T); 4174 if (i == carr_num) 4175 next_offset = ~0; 4176 adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset); 4177 } 4178 /* 4179 * We cannot have a carrier with 'carr_va' of '0', as 4180 * a reference to this carrier would be interpreted as 4181 * list termination. 4182 * So start at carrier 1 with the freelist. 4183 */ 4184 adv_dvc->carr_freelist = &adv_dvc->carrier[1]; 4185 } 4186 4187 static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset) 4188 { 4189 int index; 4190 4191 BUG_ON(offset > ADV_CARRIER_BUFSIZE); 4192 4193 index = offset / sizeof(ADV_CARR_T); 4194 return &adv_dvc->carrier[index]; 4195 } 4196 4197 static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc) 4198 { 4199 ADV_CARR_T *carrp = adv_dvc->carr_freelist; 4200 u32 next_vpa = le32_to_cpu(carrp->next_vpa); 4201 4202 if (next_vpa == 0 || next_vpa == ~0) { 4203 ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa); 4204 return NULL; 4205 } 4206 4207 adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa); 4208 /* 4209 * insert stopper carrier to terminate list 4210 */ 4211 carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER); 4212 4213 return carrp; 4214 } 4215 4216 /* 4217 * 'offset' is the index in the request pointer array 4218 */ 4219 static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset) 4220 { 4221 struct asc_board *boardp = adv_dvc->drv_ptr; 4222 4223 BUG_ON(offset > adv_dvc->max_host_qng); 4224 return &boardp->adv_reqp[offset]; 4225 } 4226 4227 /* 4228 * Send an idle command to the chip and wait for completion. 4229 * 4230 * Command completion is polled for once per microsecond. 4231 * 4232 * The function can be called from anywhere including an interrupt handler. 4233 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical() 4234 * functions to prevent reentrancy. 4235 * 4236 * Return Values: 4237 * ADV_TRUE - command completed successfully 4238 * ADV_FALSE - command failed 4239 * ADV_ERROR - command timed out 4240 */ 4241 static int 4242 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc, 4243 ushort idle_cmd, u32 idle_cmd_parameter) 4244 { 4245 int result, i, j; 4246 AdvPortAddr iop_base; 4247 4248 iop_base = asc_dvc->iop_base; 4249 4250 /* 4251 * Clear the idle command status which is set by the microcode 4252 * to a non-zero value to indicate when the command is completed. 4253 * The non-zero result is one of the IDLE_CMD_STATUS_* values 4254 */ 4255 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0); 4256 4257 /* 4258 * Write the idle command value after the idle command parameter 4259 * has been written to avoid a race condition. If the order is not 4260 * followed, the microcode may process the idle command before the 4261 * parameters have been written to LRAM. 4262 */ 4263 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER, 4264 cpu_to_le32(idle_cmd_parameter)); 4265 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd); 4266 4267 /* 4268 * Tickle the RISC to tell it to process the idle command. 4269 */ 4270 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B); 4271 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 4272 /* 4273 * Clear the tickle value. In the ASC-3550 the RISC flag 4274 * command 'clr_tickle_b' does not work unless the host 4275 * value is cleared. 4276 */ 4277 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP); 4278 } 4279 4280 /* Wait for up to 100 millisecond for the idle command to timeout. */ 4281 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) { 4282 /* Poll once each microsecond for command completion. */ 4283 for (j = 0; j < SCSI_US_PER_MSEC; j++) { 4284 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, 4285 result); 4286 if (result != 0) 4287 return result; 4288 udelay(1); 4289 } 4290 } 4291 4292 BUG(); /* The idle command should never timeout. */ 4293 return ADV_ERROR; 4294 } 4295 4296 /* 4297 * Reset SCSI Bus and purge all outstanding requests. 4298 * 4299 * Return Value: 4300 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset. 4301 * ADV_FALSE(0) - Microcode command failed. 4302 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC 4303 * may be hung which requires driver recovery. 4304 */ 4305 static int AdvResetSB(ADV_DVC_VAR *asc_dvc) 4306 { 4307 int status; 4308 4309 /* 4310 * Send the SCSI Bus Reset idle start idle command which asserts 4311 * the SCSI Bus Reset signal. 4312 */ 4313 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L); 4314 if (status != ADV_TRUE) { 4315 return status; 4316 } 4317 4318 /* 4319 * Delay for the specified SCSI Bus Reset hold time. 4320 * 4321 * The hold time delay is done on the host because the RISC has no 4322 * microsecond accurate timer. 4323 */ 4324 udelay(ASC_SCSI_RESET_HOLD_TIME_US); 4325 4326 /* 4327 * Send the SCSI Bus Reset end idle command which de-asserts 4328 * the SCSI Bus Reset signal and purges any pending requests. 4329 */ 4330 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L); 4331 if (status != ADV_TRUE) { 4332 return status; 4333 } 4334 4335 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 4336 4337 return status; 4338 } 4339 4340 /* 4341 * Initialize the ASC-3550. 4342 * 4343 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 4344 * 4345 * For a non-fatal error return a warning code. If there are no warnings 4346 * then 0 is returned. 4347 * 4348 * Needed after initialization for error recovery. 4349 */ 4350 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc) 4351 { 4352 const struct firmware *fw; 4353 const char fwname[] = "advansys/3550.bin"; 4354 AdvPortAddr iop_base; 4355 ushort warn_code; 4356 int begin_addr; 4357 int end_addr; 4358 ushort code_sum; 4359 int word; 4360 int i; 4361 int err; 4362 unsigned long chksum; 4363 ushort scsi_cfg1; 4364 uchar tid; 4365 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 4366 ushort wdtr_able = 0, sdtr_able, tagqng_able; 4367 uchar max_cmd[ADV_MAX_TID + 1]; 4368 4369 /* If there is already an error, don't continue. */ 4370 if (asc_dvc->err_code != 0) 4371 return ADV_ERROR; 4372 4373 /* 4374 * The caller must set 'chip_type' to ADV_CHIP_ASC3550. 4375 */ 4376 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) { 4377 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 4378 return ADV_ERROR; 4379 } 4380 4381 warn_code = 0; 4382 iop_base = asc_dvc->iop_base; 4383 4384 /* 4385 * Save the RISC memory BIOS region before writing the microcode. 4386 * The BIOS may already be loaded and using its RISC LRAM region 4387 * so its region must be saved and restored. 4388 * 4389 * Note: This code makes the assumption, which is currently true, 4390 * that a chip reset does not clear RISC LRAM. 4391 */ 4392 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4393 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4394 bios_mem[i]); 4395 } 4396 4397 /* 4398 * Save current per TID negotiated values. 4399 */ 4400 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) { 4401 ushort bios_version, major, minor; 4402 4403 bios_version = 4404 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2]; 4405 major = (bios_version >> 12) & 0xF; 4406 minor = (bios_version >> 8) & 0xF; 4407 if (major < 3 || (major == 3 && minor == 1)) { 4408 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */ 4409 AdvReadWordLram(iop_base, 0x120, wdtr_able); 4410 } else { 4411 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4412 } 4413 } 4414 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4415 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 4416 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4417 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 4418 max_cmd[tid]); 4419 } 4420 4421 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4422 if (err) { 4423 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4424 fwname, err); 4425 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4426 return err; 4427 } 4428 if (fw->size < 4) { 4429 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4430 fw->size, fwname); 4431 release_firmware(fw); 4432 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4433 return -EINVAL; 4434 } 4435 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4436 (fw->data[1] << 8) | fw->data[0]; 4437 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 4438 fw->size - 4, ADV_3550_MEMSIZE, 4439 chksum); 4440 release_firmware(fw); 4441 if (asc_dvc->err_code) 4442 return ADV_ERROR; 4443 4444 /* 4445 * Restore the RISC memory BIOS region. 4446 */ 4447 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4448 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4449 bios_mem[i]); 4450 } 4451 4452 /* 4453 * Calculate and write the microcode code checksum to the microcode 4454 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 4455 */ 4456 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 4457 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 4458 code_sum = 0; 4459 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 4460 for (word = begin_addr; word < end_addr; word += 2) { 4461 code_sum += AdvReadWordAutoIncLram(iop_base); 4462 } 4463 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 4464 4465 /* 4466 * Read and save microcode version and date. 4467 */ 4468 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 4469 asc_dvc->cfg->mcode_date); 4470 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 4471 asc_dvc->cfg->mcode_version); 4472 4473 /* 4474 * Set the chip type to indicate the ASC3550. 4475 */ 4476 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550); 4477 4478 /* 4479 * If the PCI Configuration Command Register "Parity Error Response 4480 * Control" Bit was clear (0), then set the microcode variable 4481 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 4482 * to ignore DMA parity errors. 4483 */ 4484 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 4485 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4486 word |= CONTROL_FLAG_IGNORE_PERR; 4487 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4488 } 4489 4490 /* 4491 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO 4492 * threshold of 128 bytes. This register is only accessible to the host. 4493 */ 4494 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 4495 START_CTL_EMFU | READ_CMD_MRM); 4496 4497 /* 4498 * Microcode operating variables for WDTR, SDTR, and command tag 4499 * queuing will be set in slave_configure() based on what a 4500 * device reports it is capable of in Inquiry byte 7. 4501 * 4502 * If SCSI Bus Resets have been disabled, then directly set 4503 * SDTR and WDTR from the EEPROM configuration. This will allow 4504 * the BIOS and warm boot to work without a SCSI bus hang on 4505 * the Inquiry caused by host and target mismatched DTR values. 4506 * Without the SCSI Bus Reset, before an Inquiry a device can't 4507 * be assumed to be in Asynchronous, Narrow mode. 4508 */ 4509 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 4510 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 4511 asc_dvc->wdtr_able); 4512 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 4513 asc_dvc->sdtr_able); 4514 } 4515 4516 /* 4517 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2, 4518 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID 4519 * bitmask. These values determine the maximum SDTR speed negotiated 4520 * with a device. 4521 * 4522 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 4523 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 4524 * without determining here whether the device supports SDTR. 4525 * 4526 * 4-bit speed SDTR speed name 4527 * =========== =============== 4528 * 0000b (0x0) SDTR disabled 4529 * 0001b (0x1) 5 Mhz 4530 * 0010b (0x2) 10 Mhz 4531 * 0011b (0x3) 20 Mhz (Ultra) 4532 * 0100b (0x4) 40 Mhz (LVD/Ultra2) 4533 * 0101b (0x5) 80 Mhz (LVD2/Ultra3) 4534 * 0110b (0x6) Undefined 4535 * . 4536 * 1111b (0xF) Undefined 4537 */ 4538 word = 0; 4539 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4540 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) { 4541 /* Set Ultra speed for TID 'tid'. */ 4542 word |= (0x3 << (4 * (tid % 4))); 4543 } else { 4544 /* Set Fast speed for TID 'tid'. */ 4545 word |= (0x2 << (4 * (tid % 4))); 4546 } 4547 if (tid == 3) { /* Check if done with sdtr_speed1. */ 4548 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word); 4549 word = 0; 4550 } else if (tid == 7) { /* Check if done with sdtr_speed2. */ 4551 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word); 4552 word = 0; 4553 } else if (tid == 11) { /* Check if done with sdtr_speed3. */ 4554 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word); 4555 word = 0; 4556 } else if (tid == 15) { /* Check if done with sdtr_speed4. */ 4557 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word); 4558 /* End of loop. */ 4559 } 4560 } 4561 4562 /* 4563 * Set microcode operating variable for the disconnect per TID bitmask. 4564 */ 4565 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 4566 asc_dvc->cfg->disc_enable); 4567 4568 /* 4569 * Set SCSI_CFG0 Microcode Default Value. 4570 * 4571 * The microcode will set the SCSI_CFG0 register using this value 4572 * after it is started below. 4573 */ 4574 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 4575 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 4576 asc_dvc->chip_scsi_id); 4577 4578 /* 4579 * Determine SCSI_CFG1 Microcode Default Value. 4580 * 4581 * The microcode will set the SCSI_CFG1 register using this value 4582 * after it is started below. 4583 */ 4584 4585 /* Read current SCSI_CFG1 Register value. */ 4586 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 4587 4588 /* 4589 * If all three connectors are in use, return an error. 4590 */ 4591 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 || 4592 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) { 4593 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION; 4594 return ADV_ERROR; 4595 } 4596 4597 /* 4598 * If the internal narrow cable is reversed all of the SCSI_CTRL 4599 * register signals will be set. Check for and return an error if 4600 * this condition is found. 4601 */ 4602 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 4603 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 4604 return ADV_ERROR; 4605 } 4606 4607 /* 4608 * If this is a differential board and a single-ended device 4609 * is attached to one of the connectors, return an error. 4610 */ 4611 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) { 4612 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE; 4613 return ADV_ERROR; 4614 } 4615 4616 /* 4617 * If automatic termination control is enabled, then set the 4618 * termination value based on a table listed in a_condor.h. 4619 * 4620 * If manual termination was specified with an EEPROM setting 4621 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and 4622 * is ready to be 'ored' into SCSI_CFG1. 4623 */ 4624 if (asc_dvc->cfg->termination == 0) { 4625 /* 4626 * The software always controls termination by setting TERM_CTL_SEL. 4627 * If TERM_CTL_SEL were set to 0, the hardware would set termination. 4628 */ 4629 asc_dvc->cfg->termination |= TERM_CTL_SEL; 4630 4631 switch (scsi_cfg1 & CABLE_DETECT) { 4632 /* TERM_CTL_H: on, TERM_CTL_L: on */ 4633 case 0x3: 4634 case 0x7: 4635 case 0xB: 4636 case 0xD: 4637 case 0xE: 4638 case 0xF: 4639 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L); 4640 break; 4641 4642 /* TERM_CTL_H: on, TERM_CTL_L: off */ 4643 case 0x1: 4644 case 0x5: 4645 case 0x9: 4646 case 0xA: 4647 case 0xC: 4648 asc_dvc->cfg->termination |= TERM_CTL_H; 4649 break; 4650 4651 /* TERM_CTL_H: off, TERM_CTL_L: off */ 4652 case 0x2: 4653 case 0x6: 4654 break; 4655 } 4656 } 4657 4658 /* 4659 * Clear any set TERM_CTL_H and TERM_CTL_L bits. 4660 */ 4661 scsi_cfg1 &= ~TERM_CTL; 4662 4663 /* 4664 * Invert the TERM_CTL_H and TERM_CTL_L bits and then 4665 * set 'scsi_cfg1'. The TERM_POL bit does not need to be 4666 * referenced, because the hardware internally inverts 4667 * the Termination High and Low bits if TERM_POL is set. 4668 */ 4669 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL)); 4670 4671 /* 4672 * Set SCSI_CFG1 Microcode Default Value 4673 * 4674 * Set filter value and possibly modified termination control 4675 * bits in the Microcode SCSI_CFG1 Register Value. 4676 * 4677 * The microcode will set the SCSI_CFG1 register using this value 4678 * after it is started below. 4679 */ 4680 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, 4681 FLTR_DISABLE | scsi_cfg1); 4682 4683 /* 4684 * Set MEM_CFG Microcode Default Value 4685 * 4686 * The microcode will set the MEM_CFG register using this value 4687 * after it is started below. 4688 * 4689 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 4690 * are defined. 4691 * 4692 * ASC-3550 has 8KB internal memory. 4693 */ 4694 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 4695 BIOS_EN | RAM_SZ_8KB); 4696 4697 /* 4698 * Set SEL_MASK Microcode Default Value 4699 * 4700 * The microcode will set the SEL_MASK register using this value 4701 * after it is started below. 4702 */ 4703 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 4704 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 4705 4706 AdvBuildCarrierFreelist(asc_dvc); 4707 4708 /* 4709 * Set-up the Host->RISC Initiator Command Queue (ICQ). 4710 */ 4711 4712 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 4713 if (!asc_dvc->icq_sp) { 4714 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 4715 return ADV_ERROR; 4716 } 4717 4718 /* 4719 * Set RISC ICQ physical address start value. 4720 */ 4721 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 4722 4723 /* 4724 * Set-up the RISC->Host Initiator Response Queue (IRQ). 4725 */ 4726 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 4727 if (!asc_dvc->irq_sp) { 4728 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 4729 return ADV_ERROR; 4730 } 4731 4732 /* 4733 * Set RISC IRQ physical address start value. 4734 */ 4735 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 4736 asc_dvc->carr_pending_cnt = 0; 4737 4738 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 4739 (ADV_INTR_ENABLE_HOST_INTR | 4740 ADV_INTR_ENABLE_GLOBAL_INTR)); 4741 4742 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 4743 AdvWriteWordRegister(iop_base, IOPW_PC, word); 4744 4745 /* finally, finally, gentlemen, start your engine */ 4746 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 4747 4748 /* 4749 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 4750 * Resets should be performed. The RISC has to be running 4751 * to issue a SCSI Bus Reset. 4752 */ 4753 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 4754 /* 4755 * If the BIOS Signature is present in memory, restore the 4756 * BIOS Handshake Configuration Table and do not perform 4757 * a SCSI Bus Reset. 4758 */ 4759 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 4760 0x55AA) { 4761 /* 4762 * Restore per TID negotiated values. 4763 */ 4764 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4765 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4766 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 4767 tagqng_able); 4768 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4769 AdvWriteByteLram(iop_base, 4770 ASC_MC_NUMBER_OF_MAX_CMD + tid, 4771 max_cmd[tid]); 4772 } 4773 } else { 4774 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 4775 warn_code = ASC_WARN_BUSRESET_ERROR; 4776 } 4777 } 4778 } 4779 4780 return warn_code; 4781 } 4782 4783 /* 4784 * Initialize the ASC-38C0800. 4785 * 4786 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 4787 * 4788 * For a non-fatal error return a warning code. If there are no warnings 4789 * then 0 is returned. 4790 * 4791 * Needed after initialization for error recovery. 4792 */ 4793 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc) 4794 { 4795 const struct firmware *fw; 4796 const char fwname[] = "advansys/38C0800.bin"; 4797 AdvPortAddr iop_base; 4798 ushort warn_code; 4799 int begin_addr; 4800 int end_addr; 4801 ushort code_sum; 4802 int word; 4803 int i; 4804 int err; 4805 unsigned long chksum; 4806 ushort scsi_cfg1; 4807 uchar byte; 4808 uchar tid; 4809 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 4810 ushort wdtr_able, sdtr_able, tagqng_able; 4811 uchar max_cmd[ADV_MAX_TID + 1]; 4812 4813 /* If there is already an error, don't continue. */ 4814 if (asc_dvc->err_code != 0) 4815 return ADV_ERROR; 4816 4817 /* 4818 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800. 4819 */ 4820 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) { 4821 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 4822 return ADV_ERROR; 4823 } 4824 4825 warn_code = 0; 4826 iop_base = asc_dvc->iop_base; 4827 4828 /* 4829 * Save the RISC memory BIOS region before writing the microcode. 4830 * The BIOS may already be loaded and using its RISC LRAM region 4831 * so its region must be saved and restored. 4832 * 4833 * Note: This code makes the assumption, which is currently true, 4834 * that a chip reset does not clear RISC LRAM. 4835 */ 4836 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4837 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4838 bios_mem[i]); 4839 } 4840 4841 /* 4842 * Save current per TID negotiated values. 4843 */ 4844 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4845 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4846 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 4847 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4848 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 4849 max_cmd[tid]); 4850 } 4851 4852 /* 4853 * RAM BIST (RAM Built-In Self Test) 4854 * 4855 * Address : I/O base + offset 0x38h register (byte). 4856 * Function: Bit 7-6(RW) : RAM mode 4857 * Normal Mode : 0x00 4858 * Pre-test Mode : 0x40 4859 * RAM Test Mode : 0x80 4860 * Bit 5 : unused 4861 * Bit 4(RO) : Done bit 4862 * Bit 3-0(RO) : Status 4863 * Host Error : 0x08 4864 * Int_RAM Error : 0x04 4865 * RISC Error : 0x02 4866 * SCSI Error : 0x01 4867 * No Error : 0x00 4868 * 4869 * Note: RAM BIST code should be put right here, before loading the 4870 * microcode and after saving the RISC memory BIOS region. 4871 */ 4872 4873 /* 4874 * LRAM Pre-test 4875 * 4876 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. 4877 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return 4878 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset 4879 * to NORMAL_MODE, return an error too. 4880 */ 4881 for (i = 0; i < 2; i++) { 4882 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); 4883 mdelay(10); /* Wait for 10ms before reading back. */ 4884 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 4885 if ((byte & RAM_TEST_DONE) == 0 4886 || (byte & 0x0F) != PRE_TEST_VALUE) { 4887 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 4888 return ADV_ERROR; 4889 } 4890 4891 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 4892 mdelay(10); /* Wait for 10ms before reading back. */ 4893 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) 4894 != NORMAL_VALUE) { 4895 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 4896 return ADV_ERROR; 4897 } 4898 } 4899 4900 /* 4901 * LRAM Test - It takes about 1.5 ms to run through the test. 4902 * 4903 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. 4904 * If Done bit not set or Status not 0, save register byte, set the 4905 * err_code, and return an error. 4906 */ 4907 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); 4908 mdelay(10); /* Wait for 10ms before checking status. */ 4909 4910 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 4911 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { 4912 /* Get here if Done bit not set or Status not 0. */ 4913 asc_dvc->bist_err_code = byte; /* for BIOS display message */ 4914 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; 4915 return ADV_ERROR; 4916 } 4917 4918 /* We need to reset back to normal mode after LRAM test passes. */ 4919 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 4920 4921 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4922 if (err) { 4923 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4924 fwname, err); 4925 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4926 return err; 4927 } 4928 if (fw->size < 4) { 4929 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4930 fw->size, fwname); 4931 release_firmware(fw); 4932 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4933 return -EINVAL; 4934 } 4935 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4936 (fw->data[1] << 8) | fw->data[0]; 4937 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 4938 fw->size - 4, ADV_38C0800_MEMSIZE, 4939 chksum); 4940 release_firmware(fw); 4941 if (asc_dvc->err_code) 4942 return ADV_ERROR; 4943 4944 /* 4945 * Restore the RISC memory BIOS region. 4946 */ 4947 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4948 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4949 bios_mem[i]); 4950 } 4951 4952 /* 4953 * Calculate and write the microcode code checksum to the microcode 4954 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 4955 */ 4956 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 4957 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 4958 code_sum = 0; 4959 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 4960 for (word = begin_addr; word < end_addr; word += 2) { 4961 code_sum += AdvReadWordAutoIncLram(iop_base); 4962 } 4963 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 4964 4965 /* 4966 * Read microcode version and date. 4967 */ 4968 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 4969 asc_dvc->cfg->mcode_date); 4970 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 4971 asc_dvc->cfg->mcode_version); 4972 4973 /* 4974 * Set the chip type to indicate the ASC38C0800. 4975 */ 4976 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800); 4977 4978 /* 4979 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. 4980 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current 4981 * cable detection and then we are able to read C_DET[3:0]. 4982 * 4983 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 4984 * Microcode Default Value' section below. 4985 */ 4986 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 4987 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, 4988 scsi_cfg1 | DIS_TERM_DRV); 4989 4990 /* 4991 * If the PCI Configuration Command Register "Parity Error Response 4992 * Control" Bit was clear (0), then set the microcode variable 4993 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 4994 * to ignore DMA parity errors. 4995 */ 4996 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 4997 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4998 word |= CONTROL_FLAG_IGNORE_PERR; 4999 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5000 } 5001 5002 /* 5003 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2] 5004 * bits for the default FIFO threshold. 5005 * 5006 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes. 5007 * 5008 * For DMA Errata #4 set the BC_THRESH_ENB bit. 5009 */ 5010 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 5011 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | 5012 READ_CMD_MRM); 5013 5014 /* 5015 * Microcode operating variables for WDTR, SDTR, and command tag 5016 * queuing will be set in slave_configure() based on what a 5017 * device reports it is capable of in Inquiry byte 7. 5018 * 5019 * If SCSI Bus Resets have been disabled, then directly set 5020 * SDTR and WDTR from the EEPROM configuration. This will allow 5021 * the BIOS and warm boot to work without a SCSI bus hang on 5022 * the Inquiry caused by host and target mismatched DTR values. 5023 * Without the SCSI Bus Reset, before an Inquiry a device can't 5024 * be assumed to be in Asynchronous, Narrow mode. 5025 */ 5026 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 5027 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 5028 asc_dvc->wdtr_able); 5029 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 5030 asc_dvc->sdtr_able); 5031 } 5032 5033 /* 5034 * Set microcode operating variables for DISC and SDTR_SPEED1, 5035 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM 5036 * configuration values. 5037 * 5038 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 5039 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 5040 * without determining here whether the device supports SDTR. 5041 */ 5042 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 5043 asc_dvc->cfg->disc_enable); 5044 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); 5045 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); 5046 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); 5047 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); 5048 5049 /* 5050 * Set SCSI_CFG0 Microcode Default Value. 5051 * 5052 * The microcode will set the SCSI_CFG0 register using this value 5053 * after it is started below. 5054 */ 5055 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 5056 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 5057 asc_dvc->chip_scsi_id); 5058 5059 /* 5060 * Determine SCSI_CFG1 Microcode Default Value. 5061 * 5062 * The microcode will set the SCSI_CFG1 register using this value 5063 * after it is started below. 5064 */ 5065 5066 /* Read current SCSI_CFG1 Register value. */ 5067 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5068 5069 /* 5070 * If the internal narrow cable is reversed all of the SCSI_CTRL 5071 * register signals will be set. Check for and return an error if 5072 * this condition is found. 5073 */ 5074 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 5075 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 5076 return ADV_ERROR; 5077 } 5078 5079 /* 5080 * All kind of combinations of devices attached to one of four 5081 * connectors are acceptable except HVD device attached. For example, 5082 * LVD device can be attached to SE connector while SE device attached 5083 * to LVD connector. If LVD device attached to SE connector, it only 5084 * runs up to Ultra speed. 5085 * 5086 * If an HVD device is attached to one of LVD connectors, return an 5087 * error. However, there is no way to detect HVD device attached to 5088 * SE connectors. 5089 */ 5090 if (scsi_cfg1 & HVD) { 5091 asc_dvc->err_code = ASC_IERR_HVD_DEVICE; 5092 return ADV_ERROR; 5093 } 5094 5095 /* 5096 * If either SE or LVD automatic termination control is enabled, then 5097 * set the termination value based on a table listed in a_condor.h. 5098 * 5099 * If manual termination was specified with an EEPROM setting then 5100 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready 5101 * to be 'ored' into SCSI_CFG1. 5102 */ 5103 if ((asc_dvc->cfg->termination & TERM_SE) == 0) { 5104 /* SE automatic termination control is enabled. */ 5105 switch (scsi_cfg1 & C_DET_SE) { 5106 /* TERM_SE_HI: on, TERM_SE_LO: on */ 5107 case 0x1: 5108 case 0x2: 5109 case 0x3: 5110 asc_dvc->cfg->termination |= TERM_SE; 5111 break; 5112 5113 /* TERM_SE_HI: on, TERM_SE_LO: off */ 5114 case 0x0: 5115 asc_dvc->cfg->termination |= TERM_SE_HI; 5116 break; 5117 } 5118 } 5119 5120 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) { 5121 /* LVD automatic termination control is enabled. */ 5122 switch (scsi_cfg1 & C_DET_LVD) { 5123 /* TERM_LVD_HI: on, TERM_LVD_LO: on */ 5124 case 0x4: 5125 case 0x8: 5126 case 0xC: 5127 asc_dvc->cfg->termination |= TERM_LVD; 5128 break; 5129 5130 /* TERM_LVD_HI: off, TERM_LVD_LO: off */ 5131 case 0x0: 5132 break; 5133 } 5134 } 5135 5136 /* 5137 * Clear any set TERM_SE and TERM_LVD bits. 5138 */ 5139 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD); 5140 5141 /* 5142 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'. 5143 */ 5144 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0); 5145 5146 /* 5147 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE 5148 * bits and set possibly modified termination control bits in the 5149 * Microcode SCSI_CFG1 Register Value. 5150 */ 5151 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE); 5152 5153 /* 5154 * Set SCSI_CFG1 Microcode Default Value 5155 * 5156 * Set possibly modified termination control and reset DIS_TERM_DRV 5157 * bits in the Microcode SCSI_CFG1 Register Value. 5158 * 5159 * The microcode will set the SCSI_CFG1 register using this value 5160 * after it is started below. 5161 */ 5162 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); 5163 5164 /* 5165 * Set MEM_CFG Microcode Default Value 5166 * 5167 * The microcode will set the MEM_CFG register using this value 5168 * after it is started below. 5169 * 5170 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 5171 * are defined. 5172 * 5173 * ASC-38C0800 has 16KB internal memory. 5174 */ 5175 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5176 BIOS_EN | RAM_SZ_16KB); 5177 5178 /* 5179 * Set SEL_MASK Microcode Default Value 5180 * 5181 * The microcode will set the SEL_MASK register using this value 5182 * after it is started below. 5183 */ 5184 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 5185 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 5186 5187 AdvBuildCarrierFreelist(asc_dvc); 5188 5189 /* 5190 * Set-up the Host->RISC Initiator Command Queue (ICQ). 5191 */ 5192 5193 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 5194 if (!asc_dvc->icq_sp) { 5195 ASC_DBG(0, "Failed to get ICQ carrier\n"); 5196 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5197 return ADV_ERROR; 5198 } 5199 5200 /* 5201 * Set RISC ICQ physical address start value. 5202 * carr_pa is LE, must be native before write 5203 */ 5204 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 5205 5206 /* 5207 * Set-up the RISC->Host Initiator Response Queue (IRQ). 5208 */ 5209 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 5210 if (!asc_dvc->irq_sp) { 5211 ASC_DBG(0, "Failed to get IRQ carrier\n"); 5212 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5213 return ADV_ERROR; 5214 } 5215 5216 /* 5217 * Set RISC IRQ physical address start value. 5218 * 5219 * carr_pa is LE, must be native before write * 5220 */ 5221 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 5222 asc_dvc->carr_pending_cnt = 0; 5223 5224 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 5225 (ADV_INTR_ENABLE_HOST_INTR | 5226 ADV_INTR_ENABLE_GLOBAL_INTR)); 5227 5228 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 5229 AdvWriteWordRegister(iop_base, IOPW_PC, word); 5230 5231 /* finally, finally, gentlemen, start your engine */ 5232 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 5233 5234 /* 5235 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 5236 * Resets should be performed. The RISC has to be running 5237 * to issue a SCSI Bus Reset. 5238 */ 5239 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 5240 /* 5241 * If the BIOS Signature is present in memory, restore the 5242 * BIOS Handshake Configuration Table and do not perform 5243 * a SCSI Bus Reset. 5244 */ 5245 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 5246 0x55AA) { 5247 /* 5248 * Restore per TID negotiated values. 5249 */ 5250 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5251 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5252 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 5253 tagqng_able); 5254 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5255 AdvWriteByteLram(iop_base, 5256 ASC_MC_NUMBER_OF_MAX_CMD + tid, 5257 max_cmd[tid]); 5258 } 5259 } else { 5260 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 5261 warn_code = ASC_WARN_BUSRESET_ERROR; 5262 } 5263 } 5264 } 5265 5266 return warn_code; 5267 } 5268 5269 /* 5270 * Initialize the ASC-38C1600. 5271 * 5272 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. 5273 * 5274 * For a non-fatal error return a warning code. If there are no warnings 5275 * then 0 is returned. 5276 * 5277 * Needed after initialization for error recovery. 5278 */ 5279 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc) 5280 { 5281 const struct firmware *fw; 5282 const char fwname[] = "advansys/38C1600.bin"; 5283 AdvPortAddr iop_base; 5284 ushort warn_code; 5285 int begin_addr; 5286 int end_addr; 5287 ushort code_sum; 5288 long word; 5289 int i; 5290 int err; 5291 unsigned long chksum; 5292 ushort scsi_cfg1; 5293 uchar byte; 5294 uchar tid; 5295 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 5296 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able; 5297 uchar max_cmd[ASC_MAX_TID + 1]; 5298 5299 /* If there is already an error, don't continue. */ 5300 if (asc_dvc->err_code != 0) { 5301 return ADV_ERROR; 5302 } 5303 5304 /* 5305 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600. 5306 */ 5307 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { 5308 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 5309 return ADV_ERROR; 5310 } 5311 5312 warn_code = 0; 5313 iop_base = asc_dvc->iop_base; 5314 5315 /* 5316 * Save the RISC memory BIOS region before writing the microcode. 5317 * The BIOS may already be loaded and using its RISC LRAM region 5318 * so its region must be saved and restored. 5319 * 5320 * Note: This code makes the assumption, which is currently true, 5321 * that a chip reset does not clear RISC LRAM. 5322 */ 5323 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5324 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5325 bios_mem[i]); 5326 } 5327 5328 /* 5329 * Save current per TID negotiated values. 5330 */ 5331 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5332 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5333 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5334 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5335 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 5336 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5337 max_cmd[tid]); 5338 } 5339 5340 /* 5341 * RAM BIST (Built-In Self Test) 5342 * 5343 * Address : I/O base + offset 0x38h register (byte). 5344 * Function: Bit 7-6(RW) : RAM mode 5345 * Normal Mode : 0x00 5346 * Pre-test Mode : 0x40 5347 * RAM Test Mode : 0x80 5348 * Bit 5 : unused 5349 * Bit 4(RO) : Done bit 5350 * Bit 3-0(RO) : Status 5351 * Host Error : 0x08 5352 * Int_RAM Error : 0x04 5353 * RISC Error : 0x02 5354 * SCSI Error : 0x01 5355 * No Error : 0x00 5356 * 5357 * Note: RAM BIST code should be put right here, before loading the 5358 * microcode and after saving the RISC memory BIOS region. 5359 */ 5360 5361 /* 5362 * LRAM Pre-test 5363 * 5364 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. 5365 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return 5366 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset 5367 * to NORMAL_MODE, return an error too. 5368 */ 5369 for (i = 0; i < 2; i++) { 5370 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); 5371 mdelay(10); /* Wait for 10ms before reading back. */ 5372 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5373 if ((byte & RAM_TEST_DONE) == 0 5374 || (byte & 0x0F) != PRE_TEST_VALUE) { 5375 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5376 return ADV_ERROR; 5377 } 5378 5379 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5380 mdelay(10); /* Wait for 10ms before reading back. */ 5381 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) 5382 != NORMAL_VALUE) { 5383 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5384 return ADV_ERROR; 5385 } 5386 } 5387 5388 /* 5389 * LRAM Test - It takes about 1.5 ms to run through the test. 5390 * 5391 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. 5392 * If Done bit not set or Status not 0, save register byte, set the 5393 * err_code, and return an error. 5394 */ 5395 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); 5396 mdelay(10); /* Wait for 10ms before checking status. */ 5397 5398 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5399 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { 5400 /* Get here if Done bit not set or Status not 0. */ 5401 asc_dvc->bist_err_code = byte; /* for BIOS display message */ 5402 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; 5403 return ADV_ERROR; 5404 } 5405 5406 /* We need to reset back to normal mode after LRAM test passes. */ 5407 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5408 5409 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 5410 if (err) { 5411 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 5412 fwname, err); 5413 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5414 return err; 5415 } 5416 if (fw->size < 4) { 5417 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 5418 fw->size, fwname); 5419 release_firmware(fw); 5420 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5421 return -EINVAL; 5422 } 5423 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 5424 (fw->data[1] << 8) | fw->data[0]; 5425 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 5426 fw->size - 4, ADV_38C1600_MEMSIZE, 5427 chksum); 5428 release_firmware(fw); 5429 if (asc_dvc->err_code) 5430 return ADV_ERROR; 5431 5432 /* 5433 * Restore the RISC memory BIOS region. 5434 */ 5435 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5436 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5437 bios_mem[i]); 5438 } 5439 5440 /* 5441 * Calculate and write the microcode code checksum to the microcode 5442 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 5443 */ 5444 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 5445 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 5446 code_sum = 0; 5447 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 5448 for (word = begin_addr; word < end_addr; word += 2) { 5449 code_sum += AdvReadWordAutoIncLram(iop_base); 5450 } 5451 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 5452 5453 /* 5454 * Read microcode version and date. 5455 */ 5456 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 5457 asc_dvc->cfg->mcode_date); 5458 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 5459 asc_dvc->cfg->mcode_version); 5460 5461 /* 5462 * Set the chip type to indicate the ASC38C1600. 5463 */ 5464 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600); 5465 5466 /* 5467 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. 5468 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current 5469 * cable detection and then we are able to read C_DET[3:0]. 5470 * 5471 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 5472 * Microcode Default Value' section below. 5473 */ 5474 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5475 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, 5476 scsi_cfg1 | DIS_TERM_DRV); 5477 5478 /* 5479 * If the PCI Configuration Command Register "Parity Error Response 5480 * Control" Bit was clear (0), then set the microcode variable 5481 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 5482 * to ignore DMA parity errors. 5483 */ 5484 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 5485 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5486 word |= CONTROL_FLAG_IGNORE_PERR; 5487 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5488 } 5489 5490 /* 5491 * If the BIOS control flag AIPP (Asynchronous Information 5492 * Phase Protection) disable bit is not set, then set the firmware 5493 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable 5494 * AIPP checking and encoding. 5495 */ 5496 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) { 5497 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5498 word |= CONTROL_FLAG_ENABLE_AIPP; 5499 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5500 } 5501 5502 /* 5503 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4], 5504 * and START_CTL_TH [3:2]. 5505 */ 5506 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 5507 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM); 5508 5509 /* 5510 * Microcode operating variables for WDTR, SDTR, and command tag 5511 * queuing will be set in slave_configure() based on what a 5512 * device reports it is capable of in Inquiry byte 7. 5513 * 5514 * If SCSI Bus Resets have been disabled, then directly set 5515 * SDTR and WDTR from the EEPROM configuration. This will allow 5516 * the BIOS and warm boot to work without a SCSI bus hang on 5517 * the Inquiry caused by host and target mismatched DTR values. 5518 * Without the SCSI Bus Reset, before an Inquiry a device can't 5519 * be assumed to be in Asynchronous, Narrow mode. 5520 */ 5521 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 5522 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 5523 asc_dvc->wdtr_able); 5524 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 5525 asc_dvc->sdtr_able); 5526 } 5527 5528 /* 5529 * Set microcode operating variables for DISC and SDTR_SPEED1, 5530 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM 5531 * configuration values. 5532 * 5533 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 5534 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 5535 * without determining here whether the device supports SDTR. 5536 */ 5537 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 5538 asc_dvc->cfg->disc_enable); 5539 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); 5540 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); 5541 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); 5542 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); 5543 5544 /* 5545 * Set SCSI_CFG0 Microcode Default Value. 5546 * 5547 * The microcode will set the SCSI_CFG0 register using this value 5548 * after it is started below. 5549 */ 5550 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 5551 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 5552 asc_dvc->chip_scsi_id); 5553 5554 /* 5555 * Calculate SCSI_CFG1 Microcode Default Value. 5556 * 5557 * The microcode will set the SCSI_CFG1 register using this value 5558 * after it is started below. 5559 * 5560 * Each ASC-38C1600 function has only two cable detect bits. 5561 * The bus mode override bits are in IOPB_SOFT_OVER_WR. 5562 */ 5563 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5564 5565 /* 5566 * If the cable is reversed all of the SCSI_CTRL register signals 5567 * will be set. Check for and return an error if this condition is 5568 * found. 5569 */ 5570 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 5571 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 5572 return ADV_ERROR; 5573 } 5574 5575 /* 5576 * Each ASC-38C1600 function has two connectors. Only an HVD device 5577 * can not be connected to either connector. An LVD device or SE device 5578 * may be connected to either connecor. If an SE device is connected, 5579 * then at most Ultra speed (20 Mhz) can be used on both connectors. 5580 * 5581 * If an HVD device is attached, return an error. 5582 */ 5583 if (scsi_cfg1 & HVD) { 5584 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE; 5585 return ADV_ERROR; 5586 } 5587 5588 /* 5589 * Each function in the ASC-38C1600 uses only the SE cable detect and 5590 * termination because there are two connectors for each function. Each 5591 * function may use either LVD or SE mode. Corresponding the SE automatic 5592 * termination control EEPROM bits are used for each function. Each 5593 * function has its own EEPROM. If SE automatic control is enabled for 5594 * the function, then set the termination value based on a table listed 5595 * in a_condor.h. 5596 * 5597 * If manual termination is specified in the EEPROM for the function, 5598 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is 5599 * ready to be 'ored' into SCSI_CFG1. 5600 */ 5601 if ((asc_dvc->cfg->termination & TERM_SE) == 0) { 5602 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); 5603 /* SE automatic termination control is enabled. */ 5604 switch (scsi_cfg1 & C_DET_SE) { 5605 /* TERM_SE_HI: on, TERM_SE_LO: on */ 5606 case 0x1: 5607 case 0x2: 5608 case 0x3: 5609 asc_dvc->cfg->termination |= TERM_SE; 5610 break; 5611 5612 case 0x0: 5613 if (PCI_FUNC(pdev->devfn) == 0) { 5614 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */ 5615 } else { 5616 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */ 5617 asc_dvc->cfg->termination |= TERM_SE_HI; 5618 } 5619 break; 5620 } 5621 } 5622 5623 /* 5624 * Clear any set TERM_SE bits. 5625 */ 5626 scsi_cfg1 &= ~TERM_SE; 5627 5628 /* 5629 * Invert the TERM_SE bits and then set 'scsi_cfg1'. 5630 */ 5631 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE); 5632 5633 /* 5634 * Clear Big Endian and Terminator Polarity bits and set possibly 5635 * modified termination control bits in the Microcode SCSI_CFG1 5636 * Register Value. 5637 * 5638 * Big Endian bit is not used even on big endian machines. 5639 */ 5640 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL); 5641 5642 /* 5643 * Set SCSI_CFG1 Microcode Default Value 5644 * 5645 * Set possibly modified termination control bits in the Microcode 5646 * SCSI_CFG1 Register Value. 5647 * 5648 * The microcode will set the SCSI_CFG1 register using this value 5649 * after it is started below. 5650 */ 5651 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); 5652 5653 /* 5654 * Set MEM_CFG Microcode Default Value 5655 * 5656 * The microcode will set the MEM_CFG register using this value 5657 * after it is started below. 5658 * 5659 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 5660 * are defined. 5661 * 5662 * ASC-38C1600 has 32KB internal memory. 5663 * 5664 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come 5665 * out a special 16K Adv Library and Microcode version. After the issue 5666 * resolved, we should turn back to the 32K support. Both a_condor.h and 5667 * mcode.sas files also need to be updated. 5668 * 5669 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5670 * BIOS_EN | RAM_SZ_32KB); 5671 */ 5672 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5673 BIOS_EN | RAM_SZ_16KB); 5674 5675 /* 5676 * Set SEL_MASK Microcode Default Value 5677 * 5678 * The microcode will set the SEL_MASK register using this value 5679 * after it is started below. 5680 */ 5681 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 5682 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 5683 5684 AdvBuildCarrierFreelist(asc_dvc); 5685 5686 /* 5687 * Set-up the Host->RISC Initiator Command Queue (ICQ). 5688 */ 5689 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 5690 if (!asc_dvc->icq_sp) { 5691 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5692 return ADV_ERROR; 5693 } 5694 5695 /* 5696 * Set RISC ICQ physical address start value. Initialize the 5697 * COMMA register to the same value otherwise the RISC will 5698 * prematurely detect a command is available. 5699 */ 5700 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 5701 AdvWriteDWordRegister(iop_base, IOPDW_COMMA, 5702 le32_to_cpu(asc_dvc->icq_sp->carr_pa)); 5703 5704 /* 5705 * Set-up the RISC->Host Initiator Response Queue (IRQ). 5706 */ 5707 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 5708 if (!asc_dvc->irq_sp) { 5709 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5710 return ADV_ERROR; 5711 } 5712 5713 /* 5714 * Set RISC IRQ physical address start value. 5715 */ 5716 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 5717 asc_dvc->carr_pending_cnt = 0; 5718 5719 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 5720 (ADV_INTR_ENABLE_HOST_INTR | 5721 ADV_INTR_ENABLE_GLOBAL_INTR)); 5722 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 5723 AdvWriteWordRegister(iop_base, IOPW_PC, word); 5724 5725 /* finally, finally, gentlemen, start your engine */ 5726 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 5727 5728 /* 5729 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 5730 * Resets should be performed. The RISC has to be running 5731 * to issue a SCSI Bus Reset. 5732 */ 5733 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 5734 /* 5735 * If the BIOS Signature is present in memory, restore the 5736 * per TID microcode operating variables. 5737 */ 5738 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 5739 0x55AA) { 5740 /* 5741 * Restore per TID negotiated values. 5742 */ 5743 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5744 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5745 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5746 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 5747 tagqng_able); 5748 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 5749 AdvWriteByteLram(iop_base, 5750 ASC_MC_NUMBER_OF_MAX_CMD + tid, 5751 max_cmd[tid]); 5752 } 5753 } else { 5754 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 5755 warn_code = ASC_WARN_BUSRESET_ERROR; 5756 } 5757 } 5758 } 5759 5760 return warn_code; 5761 } 5762 5763 /* 5764 * Reset chip and SCSI Bus. 5765 * 5766 * Return Value: 5767 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful. 5768 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure. 5769 */ 5770 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc) 5771 { 5772 int status; 5773 ushort wdtr_able, sdtr_able, tagqng_able; 5774 ushort ppr_able = 0; 5775 uchar tid, max_cmd[ADV_MAX_TID + 1]; 5776 AdvPortAddr iop_base; 5777 ushort bios_sig; 5778 5779 iop_base = asc_dvc->iop_base; 5780 5781 /* 5782 * Save current per TID negotiated values. 5783 */ 5784 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5785 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5786 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5787 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5788 } 5789 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5790 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5791 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5792 max_cmd[tid]); 5793 } 5794 5795 /* 5796 * Force the AdvInitAsc3550/38C0800Driver() function to 5797 * perform a SCSI Bus Reset by clearing the BIOS signature word. 5798 * The initialization functions assumes a SCSI Bus Reset is not 5799 * needed if the BIOS signature word is present. 5800 */ 5801 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); 5802 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0); 5803 5804 /* 5805 * Stop chip and reset it. 5806 */ 5807 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP); 5808 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET); 5809 mdelay(100); 5810 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 5811 ADV_CTRL_REG_CMD_WR_IO_REG); 5812 5813 /* 5814 * Reset Adv Library error code, if any, and try 5815 * re-initializing the chip. 5816 */ 5817 asc_dvc->err_code = 0; 5818 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5819 status = AdvInitAsc38C1600Driver(asc_dvc); 5820 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 5821 status = AdvInitAsc38C0800Driver(asc_dvc); 5822 } else { 5823 status = AdvInitAsc3550Driver(asc_dvc); 5824 } 5825 5826 /* Translate initialization return value to status value. */ 5827 if (status == 0) { 5828 status = ADV_TRUE; 5829 } else { 5830 status = ADV_FALSE; 5831 } 5832 5833 /* 5834 * Restore the BIOS signature word. 5835 */ 5836 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); 5837 5838 /* 5839 * Restore per TID negotiated values. 5840 */ 5841 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5842 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5843 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5844 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5845 } 5846 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5847 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5848 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5849 max_cmd[tid]); 5850 } 5851 5852 return status; 5853 } 5854 5855 /* 5856 * adv_async_callback() - Adv Library asynchronous event callback function. 5857 */ 5858 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code) 5859 { 5860 switch (code) { 5861 case ADV_ASYNC_SCSI_BUS_RESET_DET: 5862 /* 5863 * The firmware detected a SCSI Bus reset. 5864 */ 5865 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n"); 5866 break; 5867 5868 case ADV_ASYNC_RDMA_FAILURE: 5869 /* 5870 * Handle RDMA failure by resetting the SCSI Bus and 5871 * possibly the chip if it is unresponsive. Log the error 5872 * with a unique code. 5873 */ 5874 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n"); 5875 AdvResetChipAndSB(adv_dvc_varp); 5876 break; 5877 5878 case ADV_HOST_SCSI_BUS_RESET: 5879 /* 5880 * Host generated SCSI bus reset occurred. 5881 */ 5882 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n"); 5883 break; 5884 5885 default: 5886 ASC_DBG(0, "unknown code 0x%x\n", code); 5887 break; 5888 } 5889 } 5890 5891 /* 5892 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR(). 5893 * 5894 * Callback function for the Wide SCSI Adv Library. 5895 */ 5896 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp) 5897 { 5898 struct asc_board *boardp = adv_dvc_varp->drv_ptr; 5899 adv_req_t *reqp; 5900 adv_sgblk_t *sgblkp; 5901 struct scsi_cmnd *scp; 5902 u32 resid_cnt; 5903 dma_addr_t sense_addr; 5904 5905 ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n", 5906 adv_dvc_varp, scsiqp); 5907 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); 5908 5909 /* 5910 * Get the adv_req_t structure for the command that has been 5911 * completed. The adv_req_t structure actually contains the 5912 * completed ADV_SCSI_REQ_Q structure. 5913 */ 5914 scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag); 5915 5916 ASC_DBG(1, "scp 0x%p\n", scp); 5917 if (scp == NULL) { 5918 ASC_PRINT 5919 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n"); 5920 return; 5921 } 5922 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); 5923 5924 reqp = (adv_req_t *)scp->host_scribble; 5925 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp); 5926 if (reqp == NULL) { 5927 ASC_PRINT("adv_isr_callback: reqp is NULL\n"); 5928 return; 5929 } 5930 /* 5931 * Remove backreferences to avoid duplicate 5932 * command completions. 5933 */ 5934 scp->host_scribble = NULL; 5935 reqp->cmndp = NULL; 5936 5937 ASC_STATS(boardp->shost, callback); 5938 ASC_DBG(1, "shost 0x%p\n", boardp->shost); 5939 5940 sense_addr = le32_to_cpu(scsiqp->sense_addr); 5941 dma_unmap_single(boardp->dev, sense_addr, 5942 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 5943 5944 /* 5945 * 'done_status' contains the command's ending status. 5946 */ 5947 scp->result = 0; 5948 switch (scsiqp->done_status) { 5949 case QD_NO_ERROR: 5950 ASC_DBG(2, "QD_NO_ERROR\n"); 5951 5952 /* 5953 * Check for an underrun condition. 5954 * 5955 * If there was no error and an underrun condition, then 5956 * then return the number of underrun bytes. 5957 */ 5958 resid_cnt = le32_to_cpu(scsiqp->data_cnt); 5959 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 && 5960 resid_cnt <= scsi_bufflen(scp)) { 5961 ASC_DBG(1, "underrun condition %lu bytes\n", 5962 (ulong)resid_cnt); 5963 scsi_set_resid(scp, resid_cnt); 5964 } 5965 break; 5966 5967 case QD_WITH_ERROR: 5968 ASC_DBG(2, "QD_WITH_ERROR\n"); 5969 switch (scsiqp->host_status) { 5970 case QHSTA_NO_ERROR: 5971 set_status_byte(scp, scsiqp->scsi_status); 5972 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) { 5973 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); 5974 ASC_DBG_PRT_SENSE(2, scp->sense_buffer, 5975 SCSI_SENSE_BUFFERSIZE); 5976 } 5977 break; 5978 5979 default: 5980 /* Some other QHSTA error occurred. */ 5981 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status); 5982 set_host_byte(scp, DID_BAD_TARGET); 5983 break; 5984 } 5985 break; 5986 5987 case QD_ABORTED_BY_HOST: 5988 ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); 5989 set_status_byte(scp, scsiqp->scsi_status); 5990 set_host_byte(scp, DID_ABORT); 5991 break; 5992 5993 default: 5994 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status); 5995 set_status_byte(scp, scsiqp->scsi_status); 5996 set_host_byte(scp, DID_ERROR); 5997 break; 5998 } 5999 6000 /* 6001 * If the 'init_tidmask' bit isn't already set for the target and the 6002 * current request finished normally, then set the bit for the target 6003 * to indicate that a device is present. 6004 */ 6005 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && 6006 scsiqp->done_status == QD_NO_ERROR && 6007 scsiqp->host_status == QHSTA_NO_ERROR) { 6008 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); 6009 } 6010 6011 asc_scsi_done(scp); 6012 6013 /* 6014 * Free all 'adv_sgblk_t' structures allocated for the request. 6015 */ 6016 while ((sgblkp = reqp->sgblkp) != NULL) { 6017 /* Remove 'sgblkp' from the request list. */ 6018 reqp->sgblkp = sgblkp->next_sgblkp; 6019 6020 dma_pool_free(boardp->adv_sgblk_pool, sgblkp, 6021 sgblkp->sg_addr); 6022 } 6023 6024 ASC_DBG(1, "done\n"); 6025 } 6026 6027 /* 6028 * Adv Library Interrupt Service Routine 6029 * 6030 * This function is called by a driver's interrupt service routine. 6031 * The function disables and re-enables interrupts. 6032 * 6033 * When a microcode idle command is completed, the ADV_DVC_VAR 6034 * 'idle_cmd_done' field is set to ADV_TRUE. 6035 * 6036 * Note: AdvISR() can be called when interrupts are disabled or even 6037 * when there is no hardware interrupt condition present. It will 6038 * always check for completed idle commands and microcode requests. 6039 * This is an important feature that shouldn't be changed because it 6040 * allows commands to be completed from polling mode loops. 6041 * 6042 * Return: 6043 * ADV_TRUE(1) - interrupt was pending 6044 * ADV_FALSE(0) - no interrupt was pending 6045 */ 6046 static int AdvISR(ADV_DVC_VAR *asc_dvc) 6047 { 6048 AdvPortAddr iop_base; 6049 uchar int_stat; 6050 ADV_CARR_T *free_carrp; 6051 __le32 irq_next_vpa; 6052 ADV_SCSI_REQ_Q *scsiq; 6053 adv_req_t *reqp; 6054 6055 iop_base = asc_dvc->iop_base; 6056 6057 /* Reading the register clears the interrupt. */ 6058 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG); 6059 6060 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB | 6061 ADV_INTR_STATUS_INTRC)) == 0) { 6062 return ADV_FALSE; 6063 } 6064 6065 /* 6066 * Notify the driver of an asynchronous microcode condition by 6067 * calling the adv_async_callback function. The function 6068 * is passed the microcode ASC_MC_INTRB_CODE byte value. 6069 */ 6070 if (int_stat & ADV_INTR_STATUS_INTRB) { 6071 uchar intrb_code; 6072 6073 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code); 6074 6075 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || 6076 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 6077 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE && 6078 asc_dvc->carr_pending_cnt != 0) { 6079 AdvWriteByteRegister(iop_base, IOPB_TICKLE, 6080 ADV_TICKLE_A); 6081 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 6082 AdvWriteByteRegister(iop_base, 6083 IOPB_TICKLE, 6084 ADV_TICKLE_NOP); 6085 } 6086 } 6087 } 6088 6089 adv_async_callback(asc_dvc, intrb_code); 6090 } 6091 6092 /* 6093 * Check if the IRQ stopper carrier contains a completed request. 6094 */ 6095 while (((irq_next_vpa = 6096 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) { 6097 /* 6098 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure. 6099 * The RISC will have set 'areq_vpa' to a virtual address. 6100 * 6101 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr 6102 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion 6103 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr' 6104 * in AdvExeScsiQueue(). 6105 */ 6106 u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa); 6107 ASC_DBG(1, "irq_sp %p areq_vpa %u\n", 6108 asc_dvc->irq_sp, pa_offset); 6109 reqp = adv_get_reqp(asc_dvc, pa_offset); 6110 scsiq = &reqp->scsi_req_q; 6111 6112 /* 6113 * Request finished with good status and the queue was not 6114 * DMAed to host memory by the firmware. Set all status fields 6115 * to indicate good status. 6116 */ 6117 if ((irq_next_vpa & ADV_RQ_GOOD) != 0) { 6118 scsiq->done_status = QD_NO_ERROR; 6119 scsiq->host_status = scsiq->scsi_status = 0; 6120 scsiq->data_cnt = 0L; 6121 } 6122 6123 /* 6124 * Advance the stopper pointer to the next carrier 6125 * ignoring the lower four bits. Free the previous 6126 * stopper carrier. 6127 */ 6128 free_carrp = asc_dvc->irq_sp; 6129 asc_dvc->irq_sp = adv_get_carrier(asc_dvc, 6130 ADV_GET_CARRP(irq_next_vpa)); 6131 6132 free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va; 6133 asc_dvc->carr_freelist = free_carrp; 6134 asc_dvc->carr_pending_cnt--; 6135 6136 /* 6137 * Clear request microcode control flag. 6138 */ 6139 scsiq->cntl = 0; 6140 6141 /* 6142 * Notify the driver of the completed request by passing 6143 * the ADV_SCSI_REQ_Q pointer to its callback function. 6144 */ 6145 adv_isr_callback(asc_dvc, scsiq); 6146 /* 6147 * Note: After the driver callback function is called, 'scsiq' 6148 * can no longer be referenced. 6149 * 6150 * Fall through and continue processing other completed 6151 * requests... 6152 */ 6153 } 6154 return ADV_TRUE; 6155 } 6156 6157 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code) 6158 { 6159 if (asc_dvc->err_code == 0) { 6160 asc_dvc->err_code = err_code; 6161 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W, 6162 err_code); 6163 } 6164 return err_code; 6165 } 6166 6167 static void AscAckInterrupt(PortAddr iop_base) 6168 { 6169 uchar host_flag; 6170 uchar risc_flag; 6171 ushort loop; 6172 6173 loop = 0; 6174 do { 6175 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B); 6176 if (loop++ > 0x7FFF) { 6177 break; 6178 } 6179 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0); 6180 host_flag = 6181 AscReadLramByte(iop_base, 6182 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT); 6183 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, 6184 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT)); 6185 AscSetChipStatus(iop_base, CIW_INT_ACK); 6186 loop = 0; 6187 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) { 6188 AscSetChipStatus(iop_base, CIW_INT_ACK); 6189 if (loop++ > 3) { 6190 break; 6191 } 6192 } 6193 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); 6194 } 6195 6196 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time) 6197 { 6198 const uchar *period_table; 6199 int max_index; 6200 int min_index; 6201 int i; 6202 6203 period_table = asc_dvc->sdtr_period_tbl; 6204 max_index = (int)asc_dvc->max_sdtr_index; 6205 min_index = (int)asc_dvc->min_sdtr_index; 6206 if ((syn_time <= period_table[max_index])) { 6207 for (i = min_index; i < (max_index - 1); i++) { 6208 if (syn_time <= period_table[i]) { 6209 return (uchar)i; 6210 } 6211 } 6212 return (uchar)max_index; 6213 } else { 6214 return (uchar)(max_index + 1); 6215 } 6216 } 6217 6218 static uchar 6219 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset) 6220 { 6221 PortAddr iop_base = asc_dvc->iop_base; 6222 uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period); 6223 EXT_MSG sdtr_buf = { 6224 .msg_type = EXTENDED_MESSAGE, 6225 .msg_len = MS_SDTR_LEN, 6226 .msg_req = EXTENDED_SDTR, 6227 .xfer_period = sdtr_period, 6228 .req_ack_offset = sdtr_offset, 6229 }; 6230 sdtr_offset &= ASC_SYN_MAX_OFFSET; 6231 6232 if (sdtr_period_index <= asc_dvc->max_sdtr_index) { 6233 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, 6234 (uchar *)&sdtr_buf, 6235 sizeof(EXT_MSG) >> 1); 6236 return ((sdtr_period_index << 4) | sdtr_offset); 6237 } else { 6238 sdtr_buf.req_ack_offset = 0; 6239 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, 6240 (uchar *)&sdtr_buf, 6241 sizeof(EXT_MSG) >> 1); 6242 return 0; 6243 } 6244 } 6245 6246 static uchar 6247 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset) 6248 { 6249 uchar byte; 6250 uchar sdtr_period_ix; 6251 6252 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period); 6253 if (sdtr_period_ix > asc_dvc->max_sdtr_index) 6254 return 0xFF; 6255 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET); 6256 return byte; 6257 } 6258 6259 static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data) 6260 { 6261 ASC_SCSI_BIT_ID_TYPE org_id; 6262 int i; 6263 bool sta = true; 6264 6265 AscSetBank(iop_base, 1); 6266 org_id = AscReadChipDvcID(iop_base); 6267 for (i = 0; i <= ASC_MAX_TID; i++) { 6268 if (org_id == (0x01 << i)) 6269 break; 6270 } 6271 org_id = (ASC_SCSI_BIT_ID_TYPE) i; 6272 AscWriteChipDvcID(iop_base, id); 6273 if (AscReadChipDvcID(iop_base) == (0x01 << id)) { 6274 AscSetBank(iop_base, 0); 6275 AscSetChipSyn(iop_base, sdtr_data); 6276 if (AscGetChipSyn(iop_base) != sdtr_data) { 6277 sta = false; 6278 } 6279 } else { 6280 sta = false; 6281 } 6282 AscSetBank(iop_base, 1); 6283 AscWriteChipDvcID(iop_base, org_id); 6284 AscSetBank(iop_base, 0); 6285 return (sta); 6286 } 6287 6288 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no) 6289 { 6290 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); 6291 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data); 6292 } 6293 6294 static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc) 6295 { 6296 EXT_MSG ext_msg; 6297 EXT_MSG out_msg; 6298 ushort halt_q_addr; 6299 bool sdtr_accept; 6300 ushort int_halt_code; 6301 ASC_SCSI_BIT_ID_TYPE scsi_busy; 6302 ASC_SCSI_BIT_ID_TYPE target_id; 6303 PortAddr iop_base; 6304 uchar tag_code; 6305 uchar q_status; 6306 uchar halt_qp; 6307 uchar sdtr_data; 6308 uchar target_ix; 6309 uchar q_cntl, tid_no; 6310 uchar cur_dvc_qng; 6311 uchar asyn_sdtr; 6312 uchar scsi_status; 6313 struct asc_board *boardp; 6314 6315 BUG_ON(!asc_dvc->drv_ptr); 6316 boardp = asc_dvc->drv_ptr; 6317 6318 iop_base = asc_dvc->iop_base; 6319 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W); 6320 6321 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B); 6322 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp); 6323 target_ix = AscReadLramByte(iop_base, 6324 (ushort)(halt_q_addr + 6325 (ushort)ASC_SCSIQ_B_TARGET_IX)); 6326 q_cntl = AscReadLramByte(iop_base, 6327 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL)); 6328 tid_no = ASC_TIX_TO_TID(target_ix); 6329 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no); 6330 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6331 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB; 6332 } else { 6333 asyn_sdtr = 0; 6334 } 6335 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) { 6336 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6337 AscSetChipSDTR(iop_base, 0, tid_no); 6338 boardp->sdtr_data[tid_no] = 0; 6339 } 6340 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6341 return; 6342 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) { 6343 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6344 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6345 boardp->sdtr_data[tid_no] = asyn_sdtr; 6346 } 6347 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6348 return; 6349 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) { 6350 AscMemWordCopyPtrFromLram(iop_base, 6351 ASCV_MSGIN_BEG, 6352 (uchar *)&ext_msg, 6353 sizeof(EXT_MSG) >> 1); 6354 6355 if (ext_msg.msg_type == EXTENDED_MESSAGE && 6356 ext_msg.msg_req == EXTENDED_SDTR && 6357 ext_msg.msg_len == MS_SDTR_LEN) { 6358 sdtr_accept = true; 6359 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) { 6360 6361 sdtr_accept = false; 6362 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET; 6363 } 6364 if ((ext_msg.xfer_period < 6365 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index]) 6366 || (ext_msg.xfer_period > 6367 asc_dvc->sdtr_period_tbl[asc_dvc-> 6368 max_sdtr_index])) { 6369 sdtr_accept = false; 6370 ext_msg.xfer_period = 6371 asc_dvc->sdtr_period_tbl[asc_dvc-> 6372 min_sdtr_index]; 6373 } 6374 if (sdtr_accept) { 6375 sdtr_data = 6376 AscCalSDTRData(asc_dvc, ext_msg.xfer_period, 6377 ext_msg.req_ack_offset); 6378 if (sdtr_data == 0xFF) { 6379 6380 q_cntl |= QC_MSG_OUT; 6381 asc_dvc->init_sdtr &= ~target_id; 6382 asc_dvc->sdtr_done &= ~target_id; 6383 AscSetChipSDTR(iop_base, asyn_sdtr, 6384 tid_no); 6385 boardp->sdtr_data[tid_no] = asyn_sdtr; 6386 } 6387 } 6388 if (ext_msg.req_ack_offset == 0) { 6389 6390 q_cntl &= ~QC_MSG_OUT; 6391 asc_dvc->init_sdtr &= ~target_id; 6392 asc_dvc->sdtr_done &= ~target_id; 6393 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6394 } else { 6395 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) { 6396 q_cntl &= ~QC_MSG_OUT; 6397 asc_dvc->sdtr_done |= target_id; 6398 asc_dvc->init_sdtr |= target_id; 6399 asc_dvc->pci_fix_asyn_xfer &= 6400 ~target_id; 6401 sdtr_data = 6402 AscCalSDTRData(asc_dvc, 6403 ext_msg.xfer_period, 6404 ext_msg. 6405 req_ack_offset); 6406 AscSetChipSDTR(iop_base, sdtr_data, 6407 tid_no); 6408 boardp->sdtr_data[tid_no] = sdtr_data; 6409 } else { 6410 q_cntl |= QC_MSG_OUT; 6411 AscMsgOutSDTR(asc_dvc, 6412 ext_msg.xfer_period, 6413 ext_msg.req_ack_offset); 6414 asc_dvc->pci_fix_asyn_xfer &= 6415 ~target_id; 6416 sdtr_data = 6417 AscCalSDTRData(asc_dvc, 6418 ext_msg.xfer_period, 6419 ext_msg. 6420 req_ack_offset); 6421 AscSetChipSDTR(iop_base, sdtr_data, 6422 tid_no); 6423 boardp->sdtr_data[tid_no] = sdtr_data; 6424 asc_dvc->sdtr_done |= target_id; 6425 asc_dvc->init_sdtr |= target_id; 6426 } 6427 } 6428 6429 AscWriteLramByte(iop_base, 6430 (ushort)(halt_q_addr + 6431 (ushort)ASC_SCSIQ_B_CNTL), 6432 q_cntl); 6433 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6434 return; 6435 } else if (ext_msg.msg_type == EXTENDED_MESSAGE && 6436 ext_msg.msg_req == EXTENDED_WDTR && 6437 ext_msg.msg_len == MS_WDTR_LEN) { 6438 6439 ext_msg.wdtr_width = 0; 6440 AscMemWordCopyPtrToLram(iop_base, 6441 ASCV_MSGOUT_BEG, 6442 (uchar *)&ext_msg, 6443 sizeof(EXT_MSG) >> 1); 6444 q_cntl |= QC_MSG_OUT; 6445 AscWriteLramByte(iop_base, 6446 (ushort)(halt_q_addr + 6447 (ushort)ASC_SCSIQ_B_CNTL), 6448 q_cntl); 6449 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6450 return; 6451 } else { 6452 6453 ext_msg.msg_type = MESSAGE_REJECT; 6454 AscMemWordCopyPtrToLram(iop_base, 6455 ASCV_MSGOUT_BEG, 6456 (uchar *)&ext_msg, 6457 sizeof(EXT_MSG) >> 1); 6458 q_cntl |= QC_MSG_OUT; 6459 AscWriteLramByte(iop_base, 6460 (ushort)(halt_q_addr + 6461 (ushort)ASC_SCSIQ_B_CNTL), 6462 q_cntl); 6463 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6464 return; 6465 } 6466 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) { 6467 6468 q_cntl |= QC_REQ_SENSE; 6469 6470 if ((asc_dvc->init_sdtr & target_id) != 0) { 6471 6472 asc_dvc->sdtr_done &= ~target_id; 6473 6474 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 6475 q_cntl |= QC_MSG_OUT; 6476 AscMsgOutSDTR(asc_dvc, 6477 asc_dvc-> 6478 sdtr_period_tbl[(sdtr_data >> 4) & 6479 (uchar)(asc_dvc-> 6480 max_sdtr_index - 6481 1)], 6482 (uchar)(sdtr_data & (uchar) 6483 ASC_SYN_MAX_OFFSET)); 6484 } 6485 6486 AscWriteLramByte(iop_base, 6487 (ushort)(halt_q_addr + 6488 (ushort)ASC_SCSIQ_B_CNTL), q_cntl); 6489 6490 tag_code = AscReadLramByte(iop_base, 6491 (ushort)(halt_q_addr + (ushort) 6492 ASC_SCSIQ_B_TAG_CODE)); 6493 tag_code &= 0xDC; 6494 if ((asc_dvc->pci_fix_asyn_xfer & target_id) 6495 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id) 6496 ) { 6497 6498 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT 6499 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX); 6500 6501 } 6502 AscWriteLramByte(iop_base, 6503 (ushort)(halt_q_addr + 6504 (ushort)ASC_SCSIQ_B_TAG_CODE), 6505 tag_code); 6506 6507 q_status = AscReadLramByte(iop_base, 6508 (ushort)(halt_q_addr + (ushort) 6509 ASC_SCSIQ_B_STATUS)); 6510 q_status |= (QS_READY | QS_BUSY); 6511 AscWriteLramByte(iop_base, 6512 (ushort)(halt_q_addr + 6513 (ushort)ASC_SCSIQ_B_STATUS), 6514 q_status); 6515 6516 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B); 6517 scsi_busy &= ~target_id; 6518 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy); 6519 6520 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6521 return; 6522 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) { 6523 6524 AscMemWordCopyPtrFromLram(iop_base, 6525 ASCV_MSGOUT_BEG, 6526 (uchar *)&out_msg, 6527 sizeof(EXT_MSG) >> 1); 6528 6529 if ((out_msg.msg_type == EXTENDED_MESSAGE) && 6530 (out_msg.msg_len == MS_SDTR_LEN) && 6531 (out_msg.msg_req == EXTENDED_SDTR)) { 6532 6533 asc_dvc->init_sdtr &= ~target_id; 6534 asc_dvc->sdtr_done &= ~target_id; 6535 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6536 boardp->sdtr_data[tid_no] = asyn_sdtr; 6537 } 6538 q_cntl &= ~QC_MSG_OUT; 6539 AscWriteLramByte(iop_base, 6540 (ushort)(halt_q_addr + 6541 (ushort)ASC_SCSIQ_B_CNTL), q_cntl); 6542 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6543 return; 6544 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) { 6545 6546 scsi_status = AscReadLramByte(iop_base, 6547 (ushort)((ushort)halt_q_addr + 6548 (ushort) 6549 ASC_SCSIQ_SCSI_STATUS)); 6550 cur_dvc_qng = 6551 AscReadLramByte(iop_base, 6552 (ushort)((ushort)ASC_QADR_BEG + 6553 (ushort)target_ix)); 6554 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) { 6555 6556 scsi_busy = AscReadLramByte(iop_base, 6557 (ushort)ASCV_SCSIBUSY_B); 6558 scsi_busy |= target_id; 6559 AscWriteLramByte(iop_base, 6560 (ushort)ASCV_SCSIBUSY_B, scsi_busy); 6561 asc_dvc->queue_full_or_busy |= target_id; 6562 6563 if (scsi_status == SAM_STAT_TASK_SET_FULL) { 6564 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) { 6565 cur_dvc_qng -= 1; 6566 asc_dvc->max_dvc_qng[tid_no] = 6567 cur_dvc_qng; 6568 6569 AscWriteLramByte(iop_base, 6570 (ushort)((ushort) 6571 ASCV_MAX_DVC_QNG_BEG 6572 + (ushort) 6573 tid_no), 6574 cur_dvc_qng); 6575 6576 /* 6577 * Set the device queue depth to the 6578 * number of active requests when the 6579 * QUEUE FULL condition was encountered. 6580 */ 6581 boardp->queue_full |= target_id; 6582 boardp->queue_full_cnt[tid_no] = 6583 cur_dvc_qng; 6584 } 6585 } 6586 } 6587 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6588 return; 6589 } 6590 return; 6591 } 6592 6593 /* 6594 * void 6595 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) 6596 * 6597 * Calling/Exit State: 6598 * none 6599 * 6600 * Description: 6601 * Input an ASC_QDONE_INFO structure from the chip 6602 */ 6603 static void 6604 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) 6605 { 6606 int i; 6607 ushort word; 6608 6609 AscSetChipLramAddr(iop_base, s_addr); 6610 for (i = 0; i < 2 * words; i += 2) { 6611 if (i == 10) { 6612 continue; 6613 } 6614 word = inpw(iop_base + IOP_RAM_DATA); 6615 inbuf[i] = word & 0xff; 6616 inbuf[i + 1] = (word >> 8) & 0xff; 6617 } 6618 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words); 6619 } 6620 6621 static uchar 6622 _AscCopyLramScsiDoneQ(PortAddr iop_base, 6623 ushort q_addr, 6624 ASC_QDONE_INFO *scsiq, unsigned int max_dma_count) 6625 { 6626 ushort _val; 6627 uchar sg_queue_cnt; 6628 6629 DvcGetQinfo(iop_base, 6630 q_addr + ASC_SCSIQ_DONE_INFO_BEG, 6631 (uchar *)scsiq, 6632 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2); 6633 6634 _val = AscReadLramWord(iop_base, 6635 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS)); 6636 scsiq->q_status = (uchar)_val; 6637 scsiq->q_no = (uchar)(_val >> 8); 6638 _val = AscReadLramWord(iop_base, 6639 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL)); 6640 scsiq->cntl = (uchar)_val; 6641 sg_queue_cnt = (uchar)(_val >> 8); 6642 _val = AscReadLramWord(iop_base, 6643 (ushort)(q_addr + 6644 (ushort)ASC_SCSIQ_B_SENSE_LEN)); 6645 scsiq->sense_len = (uchar)_val; 6646 scsiq->extra_bytes = (uchar)(_val >> 8); 6647 6648 /* 6649 * Read high word of remain bytes from alternate location. 6650 */ 6651 scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base, 6652 (ushort)(q_addr + 6653 (ushort) 6654 ASC_SCSIQ_W_ALT_DC1))) 6655 << 16); 6656 /* 6657 * Read low word of remain bytes from original location. 6658 */ 6659 scsiq->remain_bytes += AscReadLramWord(iop_base, 6660 (ushort)(q_addr + (ushort) 6661 ASC_SCSIQ_DW_REMAIN_XFER_CNT)); 6662 6663 scsiq->remain_bytes &= max_dma_count; 6664 return sg_queue_cnt; 6665 } 6666 6667 /* 6668 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR(). 6669 * 6670 * Interrupt callback function for the Narrow SCSI Asc Library. 6671 */ 6672 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep) 6673 { 6674 struct asc_board *boardp = asc_dvc_varp->drv_ptr; 6675 u32 srb_tag; 6676 struct scsi_cmnd *scp; 6677 6678 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep); 6679 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep); 6680 6681 /* 6682 * Decrease the srb_tag by 1 to find the SCSI command 6683 */ 6684 srb_tag = qdonep->d2.srb_tag - 1; 6685 scp = scsi_host_find_tag(boardp->shost, srb_tag); 6686 if (!scp) 6687 return; 6688 6689 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); 6690 6691 ASC_STATS(boardp->shost, callback); 6692 6693 dma_unmap_single(boardp->dev, advansys_cmd(scp)->dma_handle, 6694 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 6695 /* 6696 * 'qdonep' contains the command's ending status. 6697 */ 6698 scp->result = 0; 6699 switch (qdonep->d3.done_stat) { 6700 case QD_NO_ERROR: 6701 ASC_DBG(2, "QD_NO_ERROR\n"); 6702 6703 /* 6704 * Check for an underrun condition. 6705 * 6706 * If there was no error and an underrun condition, then 6707 * return the number of underrun bytes. 6708 */ 6709 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 && 6710 qdonep->remain_bytes <= scsi_bufflen(scp)) { 6711 ASC_DBG(1, "underrun condition %u bytes\n", 6712 (unsigned)qdonep->remain_bytes); 6713 scsi_set_resid(scp, qdonep->remain_bytes); 6714 } 6715 break; 6716 6717 case QD_WITH_ERROR: 6718 ASC_DBG(2, "QD_WITH_ERROR\n"); 6719 switch (qdonep->d3.host_stat) { 6720 case QHSTA_NO_ERROR: 6721 set_status_byte(scp, qdonep->d3.scsi_stat); 6722 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) { 6723 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); 6724 ASC_DBG_PRT_SENSE(2, scp->sense_buffer, 6725 SCSI_SENSE_BUFFERSIZE); 6726 } 6727 break; 6728 6729 default: 6730 /* QHSTA error occurred */ 6731 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat); 6732 set_host_byte(scp, DID_BAD_TARGET); 6733 break; 6734 } 6735 break; 6736 6737 case QD_ABORTED_BY_HOST: 6738 ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); 6739 set_status_byte(scp, qdonep->d3.scsi_stat); 6740 set_host_byte(scp, DID_ABORT); 6741 break; 6742 6743 default: 6744 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat); 6745 set_status_byte(scp, qdonep->d3.scsi_stat); 6746 set_host_byte(scp, DID_ERROR); 6747 break; 6748 } 6749 6750 /* 6751 * If the 'init_tidmask' bit isn't already set for the target and the 6752 * current request finished normally, then set the bit for the target 6753 * to indicate that a device is present. 6754 */ 6755 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && 6756 qdonep->d3.done_stat == QD_NO_ERROR && 6757 qdonep->d3.host_stat == QHSTA_NO_ERROR) { 6758 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); 6759 } 6760 6761 asc_scsi_done(scp); 6762 } 6763 6764 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc) 6765 { 6766 uchar next_qp; 6767 uchar n_q_used; 6768 uchar sg_list_qp; 6769 uchar sg_queue_cnt; 6770 uchar q_cnt; 6771 uchar done_q_tail; 6772 uchar tid_no; 6773 ASC_SCSI_BIT_ID_TYPE scsi_busy; 6774 ASC_SCSI_BIT_ID_TYPE target_id; 6775 PortAddr iop_base; 6776 ushort q_addr; 6777 ushort sg_q_addr; 6778 uchar cur_target_qng; 6779 ASC_QDONE_INFO scsiq_buf; 6780 ASC_QDONE_INFO *scsiq; 6781 bool false_overrun; 6782 6783 iop_base = asc_dvc->iop_base; 6784 n_q_used = 1; 6785 scsiq = (ASC_QDONE_INFO *)&scsiq_buf; 6786 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base); 6787 q_addr = ASC_QNO_TO_QADDR(done_q_tail); 6788 next_qp = AscReadLramByte(iop_base, 6789 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD)); 6790 if (next_qp != ASC_QLINK_END) { 6791 AscPutVarDoneQTail(iop_base, next_qp); 6792 q_addr = ASC_QNO_TO_QADDR(next_qp); 6793 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq, 6794 asc_dvc->max_dma_count); 6795 AscWriteLramByte(iop_base, 6796 (ushort)(q_addr + 6797 (ushort)ASC_SCSIQ_B_STATUS), 6798 (uchar)(scsiq-> 6799 q_status & (uchar)~(QS_READY | 6800 QS_ABORTED))); 6801 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix); 6802 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix); 6803 if ((scsiq->cntl & QC_SG_HEAD) != 0) { 6804 sg_q_addr = q_addr; 6805 sg_list_qp = next_qp; 6806 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) { 6807 sg_list_qp = AscReadLramByte(iop_base, 6808 (ushort)(sg_q_addr 6809 + (ushort) 6810 ASC_SCSIQ_B_FWD)); 6811 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp); 6812 if (sg_list_qp == ASC_QLINK_END) { 6813 AscSetLibErrorCode(asc_dvc, 6814 ASCQ_ERR_SG_Q_LINKS); 6815 scsiq->d3.done_stat = QD_WITH_ERROR; 6816 scsiq->d3.host_stat = 6817 QHSTA_D_QDONE_SG_LIST_CORRUPTED; 6818 goto FATAL_ERR_QDONE; 6819 } 6820 AscWriteLramByte(iop_base, 6821 (ushort)(sg_q_addr + (ushort) 6822 ASC_SCSIQ_B_STATUS), 6823 QS_FREE); 6824 } 6825 n_q_used = sg_queue_cnt + 1; 6826 AscPutVarDoneQTail(iop_base, sg_list_qp); 6827 } 6828 if (asc_dvc->queue_full_or_busy & target_id) { 6829 cur_target_qng = AscReadLramByte(iop_base, 6830 (ushort)((ushort) 6831 ASC_QADR_BEG 6832 + (ushort) 6833 scsiq->d2. 6834 target_ix)); 6835 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) { 6836 scsi_busy = AscReadLramByte(iop_base, (ushort) 6837 ASCV_SCSIBUSY_B); 6838 scsi_busy &= ~target_id; 6839 AscWriteLramByte(iop_base, 6840 (ushort)ASCV_SCSIBUSY_B, 6841 scsi_busy); 6842 asc_dvc->queue_full_or_busy &= ~target_id; 6843 } 6844 } 6845 if (asc_dvc->cur_total_qng >= n_q_used) { 6846 asc_dvc->cur_total_qng -= n_q_used; 6847 if (asc_dvc->cur_dvc_qng[tid_no] != 0) { 6848 asc_dvc->cur_dvc_qng[tid_no]--; 6849 } 6850 } else { 6851 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG); 6852 scsiq->d3.done_stat = QD_WITH_ERROR; 6853 goto FATAL_ERR_QDONE; 6854 } 6855 if ((scsiq->d2.srb_tag == 0UL) || 6856 ((scsiq->q_status & QS_ABORTED) != 0)) { 6857 return (0x11); 6858 } else if (scsiq->q_status == QS_DONE) { 6859 /* 6860 * This is also curious. 6861 * false_overrun will _always_ be set to 'false' 6862 */ 6863 false_overrun = false; 6864 if (scsiq->extra_bytes != 0) { 6865 scsiq->remain_bytes += scsiq->extra_bytes; 6866 } 6867 if (scsiq->d3.done_stat == QD_WITH_ERROR) { 6868 if (scsiq->d3.host_stat == 6869 QHSTA_M_DATA_OVER_RUN) { 6870 if ((scsiq-> 6871 cntl & (QC_DATA_IN | QC_DATA_OUT)) 6872 == 0) { 6873 scsiq->d3.done_stat = 6874 QD_NO_ERROR; 6875 scsiq->d3.host_stat = 6876 QHSTA_NO_ERROR; 6877 } else if (false_overrun) { 6878 scsiq->d3.done_stat = 6879 QD_NO_ERROR; 6880 scsiq->d3.host_stat = 6881 QHSTA_NO_ERROR; 6882 } 6883 } else if (scsiq->d3.host_stat == 6884 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) { 6885 AscStopChip(iop_base); 6886 AscSetChipControl(iop_base, 6887 (uchar)(CC_SCSI_RESET 6888 | CC_HALT)); 6889 udelay(60); 6890 AscSetChipControl(iop_base, CC_HALT); 6891 AscSetChipStatus(iop_base, 6892 CIW_CLR_SCSI_RESET_INT); 6893 AscSetChipStatus(iop_base, 0); 6894 AscSetChipControl(iop_base, 0); 6895 } 6896 } 6897 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { 6898 asc_isr_callback(asc_dvc, scsiq); 6899 } else { 6900 if ((AscReadLramByte(iop_base, 6901 (ushort)(q_addr + (ushort) 6902 ASC_SCSIQ_CDB_BEG)) 6903 == START_STOP)) { 6904 asc_dvc->unit_not_ready &= ~target_id; 6905 if (scsiq->d3.done_stat != QD_NO_ERROR) { 6906 asc_dvc->start_motor &= 6907 ~target_id; 6908 } 6909 } 6910 } 6911 return (1); 6912 } else { 6913 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS); 6914 FATAL_ERR_QDONE: 6915 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { 6916 asc_isr_callback(asc_dvc, scsiq); 6917 } 6918 return (0x80); 6919 } 6920 } 6921 return (0); 6922 } 6923 6924 static int AscISR(ASC_DVC_VAR *asc_dvc) 6925 { 6926 ASC_CS_TYPE chipstat; 6927 PortAddr iop_base; 6928 ushort saved_ram_addr; 6929 uchar ctrl_reg; 6930 uchar saved_ctrl_reg; 6931 int int_pending; 6932 int status; 6933 uchar host_flag; 6934 6935 iop_base = asc_dvc->iop_base; 6936 int_pending = ASC_FALSE; 6937 6938 if (AscIsIntPending(iop_base) == 0) 6939 return int_pending; 6940 6941 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) { 6942 return ASC_ERROR; 6943 } 6944 if (asc_dvc->in_critical_cnt != 0) { 6945 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL); 6946 return ASC_ERROR; 6947 } 6948 if (asc_dvc->is_in_int) { 6949 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY); 6950 return ASC_ERROR; 6951 } 6952 asc_dvc->is_in_int = true; 6953 ctrl_reg = AscGetChipControl(iop_base); 6954 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET | 6955 CC_SINGLE_STEP | CC_DIAG | CC_TEST)); 6956 chipstat = AscGetChipStatus(iop_base); 6957 if (chipstat & CSW_SCSI_RESET_LATCH) { 6958 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) { 6959 int i = 10; 6960 int_pending = ASC_TRUE; 6961 asc_dvc->sdtr_done = 0; 6962 saved_ctrl_reg &= (uchar)(~CC_HALT); 6963 while ((AscGetChipStatus(iop_base) & 6964 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) { 6965 mdelay(100); 6966 } 6967 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT)); 6968 AscSetChipControl(iop_base, CC_HALT); 6969 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); 6970 AscSetChipStatus(iop_base, 0); 6971 chipstat = AscGetChipStatus(iop_base); 6972 } 6973 } 6974 saved_ram_addr = AscGetChipLramAddr(iop_base); 6975 host_flag = AscReadLramByte(iop_base, 6976 ASCV_HOST_FLAG_B) & 6977 (uchar)(~ASC_HOST_FLAG_IN_ISR); 6978 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, 6979 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR)); 6980 if ((chipstat & CSW_INT_PENDING) || (int_pending)) { 6981 AscAckInterrupt(iop_base); 6982 int_pending = ASC_TRUE; 6983 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) { 6984 AscIsrChipHalted(asc_dvc); 6985 saved_ctrl_reg &= (uchar)(~CC_HALT); 6986 } else { 6987 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) { 6988 while (((status = 6989 AscIsrQDone(asc_dvc)) & 0x01) != 0) { 6990 } 6991 } else { 6992 do { 6993 if ((status = 6994 AscIsrQDone(asc_dvc)) == 1) { 6995 break; 6996 } 6997 } while (status == 0x11); 6998 } 6999 if ((status & 0x80) != 0) 7000 int_pending = ASC_ERROR; 7001 } 7002 } 7003 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); 7004 AscSetChipLramAddr(iop_base, saved_ram_addr); 7005 AscSetChipControl(iop_base, saved_ctrl_reg); 7006 asc_dvc->is_in_int = false; 7007 return int_pending; 7008 } 7009 7010 /* 7011 * advansys_reset() 7012 * 7013 * Reset the host associated with the command 'scp'. 7014 * 7015 * This function runs its own thread. Interrupts must be blocked but 7016 * sleeping is allowed and no locking other than for host structures is 7017 * required. Returns SUCCESS or FAILED. 7018 */ 7019 static int advansys_reset(struct scsi_cmnd *scp) 7020 { 7021 struct Scsi_Host *shost = scp->device->host; 7022 struct asc_board *boardp = shost_priv(shost); 7023 unsigned long flags; 7024 int status; 7025 int ret = SUCCESS; 7026 7027 ASC_DBG(1, "0x%p\n", scp); 7028 7029 ASC_STATS(shost, reset); 7030 7031 scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n"); 7032 7033 if (ASC_NARROW_BOARD(boardp)) { 7034 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; 7035 7036 /* Reset the chip and SCSI bus. */ 7037 ASC_DBG(1, "before AscInitAsc1000Driver()\n"); 7038 status = AscInitAsc1000Driver(asc_dvc); 7039 7040 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */ 7041 if (asc_dvc->err_code || !asc_dvc->overrun_dma) { 7042 scmd_printk(KERN_INFO, scp, "SCSI host reset error: " 7043 "0x%x, status: 0x%x\n", asc_dvc->err_code, 7044 status); 7045 ret = FAILED; 7046 } else if (status) { 7047 scmd_printk(KERN_INFO, scp, "SCSI host reset warning: " 7048 "0x%x\n", status); 7049 } else { 7050 scmd_printk(KERN_INFO, scp, "SCSI host reset " 7051 "successful\n"); 7052 } 7053 7054 ASC_DBG(1, "after AscInitAsc1000Driver()\n"); 7055 } else { 7056 /* 7057 * If the suggest reset bus flags are set, then reset the bus. 7058 * Otherwise only reset the device. 7059 */ 7060 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; 7061 7062 /* 7063 * Reset the chip and SCSI bus. 7064 */ 7065 ASC_DBG(1, "before AdvResetChipAndSB()\n"); 7066 switch (AdvResetChipAndSB(adv_dvc)) { 7067 case ASC_TRUE: 7068 scmd_printk(KERN_INFO, scp, "SCSI host reset " 7069 "successful\n"); 7070 break; 7071 case ASC_FALSE: 7072 default: 7073 scmd_printk(KERN_INFO, scp, "SCSI host reset error\n"); 7074 ret = FAILED; 7075 break; 7076 } 7077 spin_lock_irqsave(shost->host_lock, flags); 7078 AdvISR(adv_dvc); 7079 spin_unlock_irqrestore(shost->host_lock, flags); 7080 } 7081 7082 ASC_DBG(1, "ret %d\n", ret); 7083 7084 return ret; 7085 } 7086 7087 /* 7088 * advansys_biosparam() 7089 * 7090 * Translate disk drive geometry if the "BIOS greater than 1 GB" 7091 * support is enabled for a drive. 7092 * 7093 * ip (information pointer) is an int array with the following definition: 7094 * ip[0]: heads 7095 * ip[1]: sectors 7096 * ip[2]: cylinders 7097 */ 7098 static int 7099 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev, 7100 sector_t capacity, int ip[]) 7101 { 7102 struct asc_board *boardp = shost_priv(sdev->host); 7103 7104 ASC_DBG(1, "begin\n"); 7105 ASC_STATS(sdev->host, biosparam); 7106 if (ASC_NARROW_BOARD(boardp)) { 7107 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl & 7108 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) { 7109 ip[0] = 255; 7110 ip[1] = 63; 7111 } else { 7112 ip[0] = 64; 7113 ip[1] = 32; 7114 } 7115 } else { 7116 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl & 7117 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) { 7118 ip[0] = 255; 7119 ip[1] = 63; 7120 } else { 7121 ip[0] = 64; 7122 ip[1] = 32; 7123 } 7124 } 7125 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]); 7126 ASC_DBG(1, "end\n"); 7127 return 0; 7128 } 7129 7130 /* 7131 * First-level interrupt handler. 7132 * 7133 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host. 7134 */ 7135 static irqreturn_t advansys_interrupt(int irq, void *dev_id) 7136 { 7137 struct Scsi_Host *shost = dev_id; 7138 struct asc_board *boardp = shost_priv(shost); 7139 irqreturn_t result = IRQ_NONE; 7140 unsigned long flags; 7141 7142 ASC_DBG(2, "boardp 0x%p\n", boardp); 7143 spin_lock_irqsave(shost->host_lock, flags); 7144 if (ASC_NARROW_BOARD(boardp)) { 7145 if (AscIsIntPending(shost->io_port)) { 7146 result = IRQ_HANDLED; 7147 ASC_STATS(shost, interrupt); 7148 ASC_DBG(1, "before AscISR()\n"); 7149 AscISR(&boardp->dvc_var.asc_dvc_var); 7150 } 7151 } else { 7152 ASC_DBG(1, "before AdvISR()\n"); 7153 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) { 7154 result = IRQ_HANDLED; 7155 ASC_STATS(shost, interrupt); 7156 } 7157 } 7158 spin_unlock_irqrestore(shost->host_lock, flags); 7159 7160 ASC_DBG(1, "end\n"); 7161 return result; 7162 } 7163 7164 static bool AscHostReqRiscHalt(PortAddr iop_base) 7165 { 7166 int count = 0; 7167 bool sta = false; 7168 uchar saved_stop_code; 7169 7170 if (AscIsChipHalted(iop_base)) 7171 return true; 7172 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B); 7173 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 7174 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP); 7175 do { 7176 if (AscIsChipHalted(iop_base)) { 7177 sta = true; 7178 break; 7179 } 7180 mdelay(100); 7181 } while (count++ < 20); 7182 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code); 7183 return sta; 7184 } 7185 7186 static bool 7187 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data) 7188 { 7189 bool sta = false; 7190 7191 if (AscHostReqRiscHalt(iop_base)) { 7192 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); 7193 AscStartChip(iop_base); 7194 } 7195 return sta; 7196 } 7197 7198 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev) 7199 { 7200 char type = sdev->type; 7201 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id; 7202 7203 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN)) 7204 return; 7205 if (asc_dvc->init_sdtr & tid_bits) 7206 return; 7207 7208 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0)) 7209 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits; 7210 7211 asc_dvc->pci_fix_asyn_xfer |= tid_bits; 7212 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) || 7213 (type == TYPE_ROM) || (type == TYPE_TAPE)) 7214 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits; 7215 7216 if (asc_dvc->pci_fix_asyn_xfer & tid_bits) 7217 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id, 7218 ASYN_SDTR_DATA_FIX_PCI_REV_AB); 7219 } 7220 7221 static void 7222 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc) 7223 { 7224 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id; 7225 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng; 7226 7227 if (sdev->lun == 0) { 7228 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr; 7229 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) { 7230 asc_dvc->init_sdtr |= tid_bit; 7231 } else { 7232 asc_dvc->init_sdtr &= ~tid_bit; 7233 } 7234 7235 if (orig_init_sdtr != asc_dvc->init_sdtr) 7236 AscAsyncFix(asc_dvc, sdev); 7237 } 7238 7239 if (sdev->tagged_supported) { 7240 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) { 7241 if (sdev->lun == 0) { 7242 asc_dvc->cfg->can_tagged_qng |= tid_bit; 7243 asc_dvc->use_tagged_qng |= tid_bit; 7244 } 7245 scsi_change_queue_depth(sdev, 7246 asc_dvc->max_dvc_qng[sdev->id]); 7247 } 7248 } else { 7249 if (sdev->lun == 0) { 7250 asc_dvc->cfg->can_tagged_qng &= ~tid_bit; 7251 asc_dvc->use_tagged_qng &= ~tid_bit; 7252 } 7253 } 7254 7255 if ((sdev->lun == 0) && 7256 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) { 7257 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B, 7258 asc_dvc->cfg->disc_enable); 7259 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B, 7260 asc_dvc->use_tagged_qng); 7261 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B, 7262 asc_dvc->cfg->can_tagged_qng); 7263 7264 asc_dvc->max_dvc_qng[sdev->id] = 7265 asc_dvc->cfg->max_tag_qng[sdev->id]; 7266 AscWriteLramByte(asc_dvc->iop_base, 7267 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id), 7268 asc_dvc->max_dvc_qng[sdev->id]); 7269 } 7270 } 7271 7272 /* 7273 * Wide Transfers 7274 * 7275 * If the EEPROM enabled WDTR for the device and the device supports wide 7276 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and 7277 * write the new value to the microcode. 7278 */ 7279 static void 7280 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask) 7281 { 7282 unsigned short cfg_word; 7283 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); 7284 if ((cfg_word & tidmask) != 0) 7285 return; 7286 7287 cfg_word |= tidmask; 7288 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); 7289 7290 /* 7291 * Clear the microcode SDTR and WDTR negotiation done indicators for 7292 * the target to cause it to negotiate with the new setting set above. 7293 * WDTR when accepted causes the target to enter asynchronous mode, so 7294 * SDTR must be negotiated. 7295 */ 7296 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7297 cfg_word &= ~tidmask; 7298 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7299 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); 7300 cfg_word &= ~tidmask; 7301 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); 7302 } 7303 7304 /* 7305 * Synchronous Transfers 7306 * 7307 * If the EEPROM enabled SDTR for the device and the device 7308 * supports synchronous transfers, then turn on the device's 7309 * 'sdtr_able' bit. Write the new value to the microcode. 7310 */ 7311 static void 7312 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask) 7313 { 7314 unsigned short cfg_word; 7315 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); 7316 if ((cfg_word & tidmask) != 0) 7317 return; 7318 7319 cfg_word |= tidmask; 7320 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); 7321 7322 /* 7323 * Clear the microcode "SDTR negotiation" done indicator for the 7324 * target to cause it to negotiate with the new setting set above. 7325 */ 7326 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7327 cfg_word &= ~tidmask; 7328 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7329 } 7330 7331 /* 7332 * PPR (Parallel Protocol Request) Capable 7333 * 7334 * If the device supports DT mode, then it must be PPR capable. 7335 * The PPR message will be used in place of the SDTR and WDTR 7336 * messages to negotiate synchronous speed and offset, transfer 7337 * width, and protocol options. 7338 */ 7339 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc, 7340 AdvPortAddr iop_base, unsigned short tidmask) 7341 { 7342 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); 7343 adv_dvc->ppr_able |= tidmask; 7344 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); 7345 } 7346 7347 static void 7348 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc) 7349 { 7350 AdvPortAddr iop_base = adv_dvc->iop_base; 7351 unsigned short tidmask = 1 << sdev->id; 7352 7353 if (sdev->lun == 0) { 7354 /* 7355 * Handle WDTR, SDTR, and Tag Queuing. If the feature 7356 * is enabled in the EEPROM and the device supports the 7357 * feature, then enable it in the microcode. 7358 */ 7359 7360 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr) 7361 advansys_wide_enable_wdtr(iop_base, tidmask); 7362 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr) 7363 advansys_wide_enable_sdtr(iop_base, tidmask); 7364 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr) 7365 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask); 7366 7367 /* 7368 * Tag Queuing is disabled for the BIOS which runs in polled 7369 * mode and would see no benefit from Tag Queuing. Also by 7370 * disabling Tag Queuing in the BIOS devices with Tag Queuing 7371 * bugs will at least work with the BIOS. 7372 */ 7373 if ((adv_dvc->tagqng_able & tidmask) && 7374 sdev->tagged_supported) { 7375 unsigned short cfg_word; 7376 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word); 7377 cfg_word |= tidmask; 7378 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 7379 cfg_word); 7380 AdvWriteByteLram(iop_base, 7381 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id, 7382 adv_dvc->max_dvc_qng); 7383 } 7384 } 7385 7386 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) 7387 scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng); 7388 } 7389 7390 /* 7391 * Set the number of commands to queue per device for the 7392 * specified host adapter. 7393 */ 7394 static int advansys_slave_configure(struct scsi_device *sdev) 7395 { 7396 struct asc_board *boardp = shost_priv(sdev->host); 7397 7398 if (ASC_NARROW_BOARD(boardp)) 7399 advansys_narrow_slave_configure(sdev, 7400 &boardp->dvc_var.asc_dvc_var); 7401 else 7402 advansys_wide_slave_configure(sdev, 7403 &boardp->dvc_var.adv_dvc_var); 7404 7405 return 0; 7406 } 7407 7408 static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp) 7409 { 7410 struct asc_board *board = shost_priv(scp->device->host); 7411 struct advansys_cmd *acmd = advansys_cmd(scp); 7412 7413 acmd->dma_handle = dma_map_single(board->dev, scp->sense_buffer, 7414 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 7415 if (dma_mapping_error(board->dev, acmd->dma_handle)) { 7416 ASC_DBG(1, "failed to map sense buffer\n"); 7417 return 0; 7418 } 7419 return cpu_to_le32(acmd->dma_handle); 7420 } 7421 7422 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, 7423 struct asc_scsi_q *asc_scsi_q) 7424 { 7425 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var; 7426 int use_sg; 7427 u32 srb_tag; 7428 7429 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q)); 7430 7431 /* 7432 * Set the srb_tag to the command tag + 1, as 7433 * srb_tag '0' is used internally by the chip. 7434 */ 7435 srb_tag = scsi_cmd_to_rq(scp)->tag + 1; 7436 asc_scsi_q->q2.srb_tag = srb_tag; 7437 7438 /* 7439 * Build the ASC_SCSI_Q request. 7440 */ 7441 asc_scsi_q->cdbptr = &scp->cmnd[0]; 7442 asc_scsi_q->q2.cdb_len = scp->cmd_len; 7443 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id); 7444 asc_scsi_q->q1.target_lun = scp->device->lun; 7445 asc_scsi_q->q2.target_ix = 7446 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun); 7447 asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp); 7448 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE; 7449 if (!asc_scsi_q->q1.sense_addr) 7450 return ASC_BUSY; 7451 7452 /* 7453 * If there are any outstanding requests for the current target, 7454 * then every 255th request send an ORDERED request. This heuristic 7455 * tries to retain the benefit of request sorting while preventing 7456 * request starvation. 255 is the max number of tags or pending commands 7457 * a device may have outstanding. 7458 * 7459 * The request count is incremented below for every successfully 7460 * started request. 7461 * 7462 */ 7463 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) && 7464 (boardp->reqcnt[scp->device->id] % 255) == 0) { 7465 asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG; 7466 } else { 7467 asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG; 7468 } 7469 7470 /* Build ASC_SCSI_Q */ 7471 use_sg = scsi_dma_map(scp); 7472 if (use_sg < 0) { 7473 ASC_DBG(1, "failed to map sglist\n"); 7474 return ASC_BUSY; 7475 } else if (use_sg > 0) { 7476 int sgcnt; 7477 struct scatterlist *slp; 7478 struct asc_sg_head *asc_sg_head; 7479 7480 if (use_sg > scp->device->host->sg_tablesize) { 7481 scmd_printk(KERN_ERR, scp, "use_sg %d > " 7482 "sg_tablesize %d\n", use_sg, 7483 scp->device->host->sg_tablesize); 7484 scsi_dma_unmap(scp); 7485 set_host_byte(scp, DID_ERROR); 7486 return ASC_ERROR; 7487 } 7488 7489 asc_sg_head = kzalloc(struct_size(asc_sg_head, sg_list, use_sg), 7490 GFP_ATOMIC); 7491 if (!asc_sg_head) { 7492 scsi_dma_unmap(scp); 7493 set_host_byte(scp, DID_SOFT_ERROR); 7494 return ASC_ERROR; 7495 } 7496 7497 asc_scsi_q->q1.cntl |= QC_SG_HEAD; 7498 asc_scsi_q->sg_head = asc_sg_head; 7499 asc_scsi_q->q1.data_cnt = 0; 7500 asc_scsi_q->q1.data_addr = 0; 7501 /* This is a byte value, otherwise it would need to be swapped. */ 7502 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg; 7503 ASC_STATS_ADD(scp->device->host, xfer_elem, 7504 asc_sg_head->entry_cnt); 7505 7506 /* 7507 * Convert scatter-gather list into ASC_SG_HEAD list. 7508 */ 7509 scsi_for_each_sg(scp, slp, use_sg, sgcnt) { 7510 asc_sg_head->sg_list[sgcnt].addr = 7511 cpu_to_le32(sg_dma_address(slp)); 7512 asc_sg_head->sg_list[sgcnt].bytes = 7513 cpu_to_le32(sg_dma_len(slp)); 7514 ASC_STATS_ADD(scp->device->host, xfer_sect, 7515 DIV_ROUND_UP(sg_dma_len(slp), 512)); 7516 } 7517 } 7518 7519 ASC_STATS(scp->device->host, xfer_cnt); 7520 7521 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q); 7522 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); 7523 7524 return ASC_NOERROR; 7525 } 7526 7527 /* 7528 * Build scatter-gather list for Adv Library (Wide Board). 7529 * 7530 * Additional ADV_SG_BLOCK structures will need to be allocated 7531 * if the total number of scatter-gather elements exceeds 7532 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are 7533 * assumed to be physically contiguous. 7534 * 7535 * Return: 7536 * ADV_SUCCESS(1) - SG List successfully created 7537 * ADV_ERROR(-1) - SG List creation failed 7538 */ 7539 static int 7540 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, 7541 ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg) 7542 { 7543 adv_sgblk_t *sgblkp, *prev_sgblkp; 7544 struct scatterlist *slp; 7545 int sg_elem_cnt; 7546 ADV_SG_BLOCK *sg_block, *prev_sg_block; 7547 dma_addr_t sgblk_paddr; 7548 int i; 7549 7550 slp = scsi_sglist(scp); 7551 sg_elem_cnt = use_sg; 7552 prev_sgblkp = NULL; 7553 prev_sg_block = NULL; 7554 reqp->sgblkp = NULL; 7555 7556 for (;;) { 7557 /* 7558 * Allocate a 'adv_sgblk_t' structure from the board free 7559 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK 7560 * (15) scatter-gather elements. 7561 */ 7562 sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC, 7563 &sgblk_paddr); 7564 if (!sgblkp) { 7565 ASC_DBG(1, "no free adv_sgblk_t\n"); 7566 ASC_STATS(scp->device->host, adv_build_nosg); 7567 7568 /* 7569 * Allocation failed. Free 'adv_sgblk_t' structures 7570 * already allocated for the request. 7571 */ 7572 while ((sgblkp = reqp->sgblkp) != NULL) { 7573 /* Remove 'sgblkp' from the request list. */ 7574 reqp->sgblkp = sgblkp->next_sgblkp; 7575 sgblkp->next_sgblkp = NULL; 7576 dma_pool_free(boardp->adv_sgblk_pool, sgblkp, 7577 sgblkp->sg_addr); 7578 } 7579 return ASC_BUSY; 7580 } 7581 /* Complete 'adv_sgblk_t' board allocation. */ 7582 sgblkp->sg_addr = sgblk_paddr; 7583 sgblkp->next_sgblkp = NULL; 7584 sg_block = &sgblkp->sg_block; 7585 7586 /* 7587 * Check if this is the first 'adv_sgblk_t' for the 7588 * request. 7589 */ 7590 if (reqp->sgblkp == NULL) { 7591 /* Request's first scatter-gather block. */ 7592 reqp->sgblkp = sgblkp; 7593 7594 /* 7595 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical 7596 * address pointers. 7597 */ 7598 scsiqp->sg_list_ptr = sg_block; 7599 scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr); 7600 } else { 7601 /* Request's second or later scatter-gather block. */ 7602 prev_sgblkp->next_sgblkp = sgblkp; 7603 7604 /* 7605 * Point the previous ADV_SG_BLOCK structure to 7606 * the newly allocated ADV_SG_BLOCK structure. 7607 */ 7608 prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr); 7609 } 7610 7611 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) { 7612 sg_block->sg_list[i].sg_addr = 7613 cpu_to_le32(sg_dma_address(slp)); 7614 sg_block->sg_list[i].sg_count = 7615 cpu_to_le32(sg_dma_len(slp)); 7616 ASC_STATS_ADD(scp->device->host, xfer_sect, 7617 DIV_ROUND_UP(sg_dma_len(slp), 512)); 7618 7619 if (--sg_elem_cnt == 0) { 7620 /* 7621 * Last ADV_SG_BLOCK and scatter-gather entry. 7622 */ 7623 sg_block->sg_cnt = i + 1; 7624 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */ 7625 return ADV_SUCCESS; 7626 } 7627 slp = sg_next(slp); 7628 } 7629 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK; 7630 prev_sg_block = sg_block; 7631 prev_sgblkp = sgblkp; 7632 } 7633 } 7634 7635 /* 7636 * Build a request structure for the Adv Library (Wide Board). 7637 * 7638 * If an adv_req_t can not be allocated to issue the request, 7639 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR. 7640 * 7641 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the 7642 * microcode for DMA addresses or math operations are byte swapped 7643 * to little-endian order. 7644 */ 7645 static int 7646 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, 7647 adv_req_t **adv_reqpp) 7648 { 7649 u32 srb_tag = scsi_cmd_to_rq(scp)->tag; 7650 adv_req_t *reqp; 7651 ADV_SCSI_REQ_Q *scsiqp; 7652 int ret; 7653 int use_sg; 7654 dma_addr_t sense_addr; 7655 7656 /* 7657 * Allocate an adv_req_t structure from the board to execute 7658 * the command. 7659 */ 7660 reqp = &boardp->adv_reqp[srb_tag]; 7661 if (reqp->cmndp && reqp->cmndp != scp ) { 7662 ASC_DBG(1, "no free adv_req_t\n"); 7663 ASC_STATS(scp->device->host, adv_build_noreq); 7664 return ASC_BUSY; 7665 } 7666 7667 reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t)); 7668 7669 scsiqp = &reqp->scsi_req_q; 7670 7671 /* 7672 * Initialize the structure. 7673 */ 7674 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0; 7675 7676 /* 7677 * Set the srb_tag to the command tag. 7678 */ 7679 scsiqp->srb_tag = srb_tag; 7680 7681 /* 7682 * Set 'host_scribble' to point to the adv_req_t structure. 7683 */ 7684 reqp->cmndp = scp; 7685 scp->host_scribble = (void *)reqp; 7686 7687 /* 7688 * Build the ADV_SCSI_REQ_Q request. 7689 */ 7690 7691 /* Set CDB length and copy it to the request structure. */ 7692 scsiqp->cdb_len = scp->cmd_len; 7693 /* Copy first 12 CDB bytes to cdb[]. */ 7694 memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12); 7695 /* Copy last 4 CDB bytes, if present, to cdb16[]. */ 7696 if (scp->cmd_len > 12) { 7697 int cdb16_len = scp->cmd_len - 12; 7698 7699 memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len); 7700 } 7701 7702 scsiqp->target_id = scp->device->id; 7703 scsiqp->target_lun = scp->device->lun; 7704 7705 sense_addr = dma_map_single(boardp->dev, scp->sense_buffer, 7706 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 7707 if (dma_mapping_error(boardp->dev, sense_addr)) { 7708 ASC_DBG(1, "failed to map sense buffer\n"); 7709 ASC_STATS(scp->device->host, adv_build_noreq); 7710 return ASC_BUSY; 7711 } 7712 scsiqp->sense_addr = cpu_to_le32(sense_addr); 7713 scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE; 7714 7715 /* Build ADV_SCSI_REQ_Q */ 7716 7717 use_sg = scsi_dma_map(scp); 7718 if (use_sg < 0) { 7719 ASC_DBG(1, "failed to map SG list\n"); 7720 ASC_STATS(scp->device->host, adv_build_noreq); 7721 return ASC_BUSY; 7722 } else if (use_sg == 0) { 7723 /* Zero-length transfer */ 7724 reqp->sgblkp = NULL; 7725 scsiqp->data_cnt = 0; 7726 7727 scsiqp->data_addr = 0; 7728 scsiqp->sg_list_ptr = NULL; 7729 scsiqp->sg_real_addr = 0; 7730 } else { 7731 if (use_sg > ADV_MAX_SG_LIST) { 7732 scmd_printk(KERN_ERR, scp, "use_sg %d > " 7733 "ADV_MAX_SG_LIST %d\n", use_sg, 7734 scp->device->host->sg_tablesize); 7735 scsi_dma_unmap(scp); 7736 set_host_byte(scp, DID_ERROR); 7737 reqp->cmndp = NULL; 7738 scp->host_scribble = NULL; 7739 7740 return ASC_ERROR; 7741 } 7742 7743 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp)); 7744 7745 ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg); 7746 if (ret != ADV_SUCCESS) { 7747 scsi_dma_unmap(scp); 7748 set_host_byte(scp, DID_ERROR); 7749 reqp->cmndp = NULL; 7750 scp->host_scribble = NULL; 7751 7752 return ret; 7753 } 7754 7755 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg); 7756 } 7757 7758 ASC_STATS(scp->device->host, xfer_cnt); 7759 7760 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); 7761 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); 7762 7763 *adv_reqpp = reqp; 7764 7765 return ASC_NOERROR; 7766 } 7767 7768 static int AscSgListToQueue(int sg_list) 7769 { 7770 int n_sg_list_qs; 7771 7772 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q); 7773 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0) 7774 n_sg_list_qs++; 7775 return n_sg_list_qs + 1; 7776 } 7777 7778 static uint 7779 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs) 7780 { 7781 uint cur_used_qs; 7782 uint cur_free_qs; 7783 ASC_SCSI_BIT_ID_TYPE target_id; 7784 uchar tid_no; 7785 7786 target_id = ASC_TIX_TO_TARGET_ID(target_ix); 7787 tid_no = ASC_TIX_TO_TID(target_ix); 7788 if ((asc_dvc->unit_not_ready & target_id) || 7789 (asc_dvc->queue_full_or_busy & target_id)) { 7790 return 0; 7791 } 7792 if (n_qs == 1) { 7793 cur_used_qs = (uint) asc_dvc->cur_total_qng + 7794 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q; 7795 } else { 7796 cur_used_qs = (uint) asc_dvc->cur_total_qng + 7797 (uint) ASC_MIN_FREE_Q; 7798 } 7799 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) { 7800 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs; 7801 if (asc_dvc->cur_dvc_qng[tid_no] >= 7802 asc_dvc->max_dvc_qng[tid_no]) { 7803 return 0; 7804 } 7805 return cur_free_qs; 7806 } 7807 if (n_qs > 1) { 7808 if ((n_qs > asc_dvc->last_q_shortage) 7809 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) { 7810 asc_dvc->last_q_shortage = n_qs; 7811 } 7812 } 7813 return 0; 7814 } 7815 7816 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head) 7817 { 7818 ushort q_addr; 7819 uchar next_qp; 7820 uchar q_status; 7821 7822 q_addr = ASC_QNO_TO_QADDR(free_q_head); 7823 q_status = (uchar)AscReadLramByte(iop_base, 7824 (ushort)(q_addr + 7825 ASC_SCSIQ_B_STATUS)); 7826 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD)); 7827 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END)) 7828 return next_qp; 7829 return ASC_QLINK_END; 7830 } 7831 7832 static uchar 7833 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q) 7834 { 7835 uchar i; 7836 7837 for (i = 0; i < n_free_q; i++) { 7838 free_q_head = AscAllocFreeQueue(iop_base, free_q_head); 7839 if (free_q_head == ASC_QLINK_END) 7840 break; 7841 } 7842 return free_q_head; 7843 } 7844 7845 /* 7846 * void 7847 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) 7848 * 7849 * Calling/Exit State: 7850 * none 7851 * 7852 * Description: 7853 * Output an ASC_SCSI_Q structure to the chip 7854 */ 7855 static void 7856 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) 7857 { 7858 int i; 7859 7860 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words); 7861 AscSetChipLramAddr(iop_base, s_addr); 7862 for (i = 0; i < 2 * words; i += 2) { 7863 if (i == 4 || i == 20) { 7864 continue; 7865 } 7866 outpw(iop_base + IOP_RAM_DATA, 7867 ((ushort)outbuf[i + 1] << 8) | outbuf[i]); 7868 } 7869 } 7870 7871 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) 7872 { 7873 ushort q_addr; 7874 uchar tid_no; 7875 uchar sdtr_data; 7876 uchar syn_period_ix; 7877 uchar syn_offset; 7878 PortAddr iop_base; 7879 7880 iop_base = asc_dvc->iop_base; 7881 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) && 7882 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) { 7883 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix); 7884 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 7885 syn_period_ix = 7886 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1); 7887 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET; 7888 AscMsgOutSDTR(asc_dvc, 7889 asc_dvc->sdtr_period_tbl[syn_period_ix], 7890 syn_offset); 7891 scsiq->q1.cntl |= QC_MSG_OUT; 7892 } 7893 q_addr = ASC_QNO_TO_QADDR(q_no); 7894 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) { 7895 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG; 7896 } 7897 scsiq->q1.status = QS_FREE; 7898 AscMemWordCopyPtrToLram(iop_base, 7899 q_addr + ASC_SCSIQ_CDB_BEG, 7900 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1); 7901 7902 DvcPutScsiQ(iop_base, 7903 q_addr + ASC_SCSIQ_CPY_BEG, 7904 (uchar *)&scsiq->q1.cntl, 7905 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1); 7906 AscWriteLramWord(iop_base, 7907 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS), 7908 (ushort)(((ushort)scsiq->q1. 7909 q_no << 8) | (ushort)QS_READY)); 7910 return 1; 7911 } 7912 7913 static int 7914 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) 7915 { 7916 int sta; 7917 int i; 7918 ASC_SG_HEAD *sg_head; 7919 ASC_SG_LIST_Q scsi_sg_q; 7920 __le32 saved_data_addr; 7921 __le32 saved_data_cnt; 7922 PortAddr iop_base; 7923 ushort sg_list_dwords; 7924 ushort sg_index; 7925 ushort sg_entry_cnt; 7926 ushort q_addr; 7927 uchar next_qp; 7928 7929 iop_base = asc_dvc->iop_base; 7930 sg_head = scsiq->sg_head; 7931 saved_data_addr = scsiq->q1.data_addr; 7932 saved_data_cnt = scsiq->q1.data_cnt; 7933 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr); 7934 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes); 7935 /* 7936 * Set sg_entry_cnt to be the number of SG elements that 7937 * will fit in the allocated SG queues. It is minus 1, because 7938 * the first SG element is handled above. 7939 */ 7940 sg_entry_cnt = sg_head->entry_cnt - 1; 7941 7942 if (sg_entry_cnt != 0) { 7943 scsiq->q1.cntl |= QC_SG_HEAD; 7944 q_addr = ASC_QNO_TO_QADDR(q_no); 7945 sg_index = 1; 7946 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt; 7947 scsi_sg_q.sg_head_qp = q_no; 7948 scsi_sg_q.cntl = QCSG_SG_XFER_LIST; 7949 for (i = 0; i < sg_head->queue_cnt; i++) { 7950 scsi_sg_q.seq_no = i + 1; 7951 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { 7952 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2); 7953 sg_entry_cnt -= ASC_SG_LIST_PER_Q; 7954 if (i == 0) { 7955 scsi_sg_q.sg_list_cnt = 7956 ASC_SG_LIST_PER_Q; 7957 scsi_sg_q.sg_cur_list_cnt = 7958 ASC_SG_LIST_PER_Q; 7959 } else { 7960 scsi_sg_q.sg_list_cnt = 7961 ASC_SG_LIST_PER_Q - 1; 7962 scsi_sg_q.sg_cur_list_cnt = 7963 ASC_SG_LIST_PER_Q - 1; 7964 } 7965 } else { 7966 scsi_sg_q.cntl |= QCSG_SG_XFER_END; 7967 sg_list_dwords = sg_entry_cnt << 1; 7968 if (i == 0) { 7969 scsi_sg_q.sg_list_cnt = sg_entry_cnt; 7970 scsi_sg_q.sg_cur_list_cnt = 7971 sg_entry_cnt; 7972 } else { 7973 scsi_sg_q.sg_list_cnt = 7974 sg_entry_cnt - 1; 7975 scsi_sg_q.sg_cur_list_cnt = 7976 sg_entry_cnt - 1; 7977 } 7978 sg_entry_cnt = 0; 7979 } 7980 next_qp = AscReadLramByte(iop_base, 7981 (ushort)(q_addr + 7982 ASC_SCSIQ_B_FWD)); 7983 scsi_sg_q.q_no = next_qp; 7984 q_addr = ASC_QNO_TO_QADDR(next_qp); 7985 AscMemWordCopyPtrToLram(iop_base, 7986 q_addr + ASC_SCSIQ_SGHD_CPY_BEG, 7987 (uchar *)&scsi_sg_q, 7988 sizeof(ASC_SG_LIST_Q) >> 1); 7989 AscMemDWordCopyPtrToLram(iop_base, 7990 q_addr + ASC_SGQ_LIST_BEG, 7991 (uchar *)&sg_head-> 7992 sg_list[sg_index], 7993 sg_list_dwords); 7994 sg_index += ASC_SG_LIST_PER_Q; 7995 scsiq->next_sg_index = sg_index; 7996 } 7997 } else { 7998 scsiq->q1.cntl &= ~QC_SG_HEAD; 7999 } 8000 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no); 8001 scsiq->q1.data_addr = saved_data_addr; 8002 scsiq->q1.data_cnt = saved_data_cnt; 8003 return (sta); 8004 } 8005 8006 static int 8007 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required) 8008 { 8009 PortAddr iop_base; 8010 uchar free_q_head; 8011 uchar next_qp; 8012 uchar tid_no; 8013 uchar target_ix; 8014 int sta; 8015 8016 iop_base = asc_dvc->iop_base; 8017 target_ix = scsiq->q2.target_ix; 8018 tid_no = ASC_TIX_TO_TID(target_ix); 8019 sta = 0; 8020 free_q_head = (uchar)AscGetVarFreeQHead(iop_base); 8021 if (n_q_required > 1) { 8022 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head, 8023 (uchar)n_q_required); 8024 if (next_qp != ASC_QLINK_END) { 8025 asc_dvc->last_q_shortage = 0; 8026 scsiq->sg_head->queue_cnt = n_q_required - 1; 8027 scsiq->q1.q_no = free_q_head; 8028 sta = AscPutReadySgListQueue(asc_dvc, scsiq, 8029 free_q_head); 8030 } 8031 } else if (n_q_required == 1) { 8032 next_qp = AscAllocFreeQueue(iop_base, free_q_head); 8033 if (next_qp != ASC_QLINK_END) { 8034 scsiq->q1.q_no = free_q_head; 8035 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head); 8036 } 8037 } 8038 if (sta == 1) { 8039 AscPutVarFreeQHead(iop_base, next_qp); 8040 asc_dvc->cur_total_qng += n_q_required; 8041 asc_dvc->cur_dvc_qng[tid_no]++; 8042 } 8043 return sta; 8044 } 8045 8046 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16 8047 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = { 8048 INQUIRY, 8049 REQUEST_SENSE, 8050 READ_CAPACITY, 8051 READ_TOC, 8052 MODE_SELECT, 8053 MODE_SENSE, 8054 MODE_SELECT_10, 8055 MODE_SENSE_10, 8056 0xFF, 8057 0xFF, 8058 0xFF, 8059 0xFF, 8060 0xFF, 8061 0xFF, 8062 0xFF, 8063 0xFF 8064 }; 8065 8066 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq) 8067 { 8068 PortAddr iop_base; 8069 int sta; 8070 int n_q_required; 8071 bool disable_syn_offset_one_fix; 8072 int i; 8073 u32 addr; 8074 ushort sg_entry_cnt = 0; 8075 ushort sg_entry_cnt_minus_one = 0; 8076 uchar target_ix; 8077 uchar tid_no; 8078 uchar sdtr_data; 8079 uchar extra_bytes; 8080 uchar scsi_cmd; 8081 uchar disable_cmd; 8082 ASC_SG_HEAD *sg_head; 8083 unsigned long data_cnt; 8084 8085 iop_base = asc_dvc->iop_base; 8086 sg_head = scsiq->sg_head; 8087 if (asc_dvc->err_code != 0) 8088 return ASC_ERROR; 8089 scsiq->q1.q_no = 0; 8090 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) { 8091 scsiq->q1.extra_bytes = 0; 8092 } 8093 sta = 0; 8094 target_ix = scsiq->q2.target_ix; 8095 tid_no = ASC_TIX_TO_TID(target_ix); 8096 n_q_required = 1; 8097 if (scsiq->cdbptr[0] == REQUEST_SENSE) { 8098 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) { 8099 asc_dvc->sdtr_done &= ~scsiq->q1.target_id; 8100 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 8101 AscMsgOutSDTR(asc_dvc, 8102 asc_dvc-> 8103 sdtr_period_tbl[(sdtr_data >> 4) & 8104 (uchar)(asc_dvc-> 8105 max_sdtr_index - 8106 1)], 8107 (uchar)(sdtr_data & (uchar) 8108 ASC_SYN_MAX_OFFSET)); 8109 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT); 8110 } 8111 } 8112 if (asc_dvc->in_critical_cnt != 0) { 8113 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY); 8114 return ASC_ERROR; 8115 } 8116 asc_dvc->in_critical_cnt++; 8117 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { 8118 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) { 8119 asc_dvc->in_critical_cnt--; 8120 return ASC_ERROR; 8121 } 8122 if (sg_entry_cnt > ASC_MAX_SG_LIST) { 8123 asc_dvc->in_critical_cnt--; 8124 return ASC_ERROR; 8125 } 8126 if (sg_entry_cnt == 1) { 8127 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr); 8128 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes); 8129 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE); 8130 } 8131 sg_entry_cnt_minus_one = sg_entry_cnt - 1; 8132 } 8133 scsi_cmd = scsiq->cdbptr[0]; 8134 disable_syn_offset_one_fix = false; 8135 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) && 8136 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) { 8137 if (scsiq->q1.cntl & QC_SG_HEAD) { 8138 data_cnt = 0; 8139 for (i = 0; i < sg_entry_cnt; i++) { 8140 data_cnt += le32_to_cpu(sg_head->sg_list[i]. 8141 bytes); 8142 } 8143 } else { 8144 data_cnt = le32_to_cpu(scsiq->q1.data_cnt); 8145 } 8146 if (data_cnt != 0UL) { 8147 if (data_cnt < 512UL) { 8148 disable_syn_offset_one_fix = true; 8149 } else { 8150 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST; 8151 i++) { 8152 disable_cmd = 8153 _syn_offset_one_disable_cmd[i]; 8154 if (disable_cmd == 0xFF) { 8155 break; 8156 } 8157 if (scsi_cmd == disable_cmd) { 8158 disable_syn_offset_one_fix = 8159 true; 8160 break; 8161 } 8162 } 8163 } 8164 } 8165 } 8166 if (disable_syn_offset_one_fix) { 8167 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG; 8168 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX | 8169 ASC_TAG_FLAG_DISABLE_DISCONNECT); 8170 } else { 8171 scsiq->q2.tag_code &= 0x27; 8172 } 8173 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { 8174 if (asc_dvc->bug_fix_cntl) { 8175 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { 8176 if ((scsi_cmd == READ_6) || 8177 (scsi_cmd == READ_10)) { 8178 addr = le32_to_cpu(sg_head-> 8179 sg_list 8180 [sg_entry_cnt_minus_one]. 8181 addr) + 8182 le32_to_cpu(sg_head-> 8183 sg_list 8184 [sg_entry_cnt_minus_one]. 8185 bytes); 8186 extra_bytes = 8187 (uchar)((ushort)addr & 0x0003); 8188 if ((extra_bytes != 0) 8189 && 8190 ((scsiq->q2. 8191 tag_code & 8192 ASC_TAG_FLAG_EXTRA_BYTES) 8193 == 0)) { 8194 scsiq->q2.tag_code |= 8195 ASC_TAG_FLAG_EXTRA_BYTES; 8196 scsiq->q1.extra_bytes = 8197 extra_bytes; 8198 data_cnt = 8199 le32_to_cpu(sg_head-> 8200 sg_list 8201 [sg_entry_cnt_minus_one]. 8202 bytes); 8203 data_cnt -= extra_bytes; 8204 sg_head-> 8205 sg_list 8206 [sg_entry_cnt_minus_one]. 8207 bytes = 8208 cpu_to_le32(data_cnt); 8209 } 8210 } 8211 } 8212 } 8213 sg_head->entry_to_copy = sg_head->entry_cnt; 8214 n_q_required = AscSgListToQueue(sg_entry_cnt); 8215 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >= 8216 (uint) n_q_required) 8217 || ((scsiq->q1.cntl & QC_URGENT) != 0)) { 8218 if ((sta = 8219 AscSendScsiQueue(asc_dvc, scsiq, 8220 n_q_required)) == 1) { 8221 asc_dvc->in_critical_cnt--; 8222 return (sta); 8223 } 8224 } 8225 } else { 8226 if (asc_dvc->bug_fix_cntl) { 8227 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { 8228 if ((scsi_cmd == READ_6) || 8229 (scsi_cmd == READ_10)) { 8230 addr = 8231 le32_to_cpu(scsiq->q1.data_addr) + 8232 le32_to_cpu(scsiq->q1.data_cnt); 8233 extra_bytes = 8234 (uchar)((ushort)addr & 0x0003); 8235 if ((extra_bytes != 0) 8236 && 8237 ((scsiq->q2. 8238 tag_code & 8239 ASC_TAG_FLAG_EXTRA_BYTES) 8240 == 0)) { 8241 data_cnt = 8242 le32_to_cpu(scsiq->q1. 8243 data_cnt); 8244 if (((ushort)data_cnt & 0x01FF) 8245 == 0) { 8246 scsiq->q2.tag_code |= 8247 ASC_TAG_FLAG_EXTRA_BYTES; 8248 data_cnt -= extra_bytes; 8249 scsiq->q1.data_cnt = 8250 cpu_to_le32 8251 (data_cnt); 8252 scsiq->q1.extra_bytes = 8253 extra_bytes; 8254 } 8255 } 8256 } 8257 } 8258 } 8259 n_q_required = 1; 8260 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) || 8261 ((scsiq->q1.cntl & QC_URGENT) != 0)) { 8262 if ((sta = AscSendScsiQueue(asc_dvc, scsiq, 8263 n_q_required)) == 1) { 8264 asc_dvc->in_critical_cnt--; 8265 return (sta); 8266 } 8267 } 8268 } 8269 asc_dvc->in_critical_cnt--; 8270 return (sta); 8271 } 8272 8273 /* 8274 * AdvExeScsiQueue() - Send a request to the RISC microcode program. 8275 * 8276 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q, 8277 * add the carrier to the ICQ (Initiator Command Queue), and tickle the 8278 * RISC to notify it a new command is ready to be executed. 8279 * 8280 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be 8281 * set to SCSI_MAX_RETRY. 8282 * 8283 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode 8284 * for DMA addresses or math operations are byte swapped to little-endian 8285 * order. 8286 * 8287 * Return: 8288 * ADV_SUCCESS(1) - The request was successfully queued. 8289 * ADV_BUSY(0) - Resource unavailable; Retry again after pending 8290 * request completes. 8291 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure 8292 * host IC error. 8293 */ 8294 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp) 8295 { 8296 AdvPortAddr iop_base; 8297 ADV_CARR_T *new_carrp; 8298 ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q; 8299 8300 /* 8301 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID. 8302 */ 8303 if (scsiq->target_id > ADV_MAX_TID) { 8304 scsiq->host_status = QHSTA_M_INVALID_DEVICE; 8305 scsiq->done_status = QD_WITH_ERROR; 8306 return ADV_ERROR; 8307 } 8308 8309 iop_base = asc_dvc->iop_base; 8310 8311 /* 8312 * Allocate a carrier ensuring at least one carrier always 8313 * remains on the freelist and initialize fields. 8314 */ 8315 new_carrp = adv_get_next_carrier(asc_dvc); 8316 if (!new_carrp) { 8317 ASC_DBG(1, "No free carriers\n"); 8318 return ADV_BUSY; 8319 } 8320 8321 asc_dvc->carr_pending_cnt++; 8322 8323 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */ 8324 scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag); 8325 scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr); 8326 8327 scsiq->carr_va = asc_dvc->icq_sp->carr_va; 8328 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa; 8329 8330 /* 8331 * Use the current stopper to send the ADV_SCSI_REQ_Q command to 8332 * the microcode. The newly allocated stopper will become the new 8333 * stopper. 8334 */ 8335 asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr; 8336 8337 /* 8338 * Set the 'next_vpa' pointer for the old stopper to be the 8339 * physical address of the new stopper. The RISC can only 8340 * follow physical addresses. 8341 */ 8342 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa; 8343 8344 /* 8345 * Set the host adapter stopper pointer to point to the new carrier. 8346 */ 8347 asc_dvc->icq_sp = new_carrp; 8348 8349 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || 8350 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 8351 /* 8352 * Tickle the RISC to tell it to read its Command Queue Head pointer. 8353 */ 8354 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A); 8355 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 8356 /* 8357 * Clear the tickle value. In the ASC-3550 the RISC flag 8358 * command 'clr_tickle_a' does not work unless the host 8359 * value is cleared. 8360 */ 8361 AdvWriteByteRegister(iop_base, IOPB_TICKLE, 8362 ADV_TICKLE_NOP); 8363 } 8364 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 8365 /* 8366 * Notify the RISC a carrier is ready by writing the physical 8367 * address of the new carrier stopper to the COMMA register. 8368 */ 8369 AdvWriteDWordRegister(iop_base, IOPDW_COMMA, 8370 le32_to_cpu(new_carrp->carr_pa)); 8371 } 8372 8373 return ADV_SUCCESS; 8374 } 8375 8376 /* 8377 * Execute a single 'struct scsi_cmnd'. 8378 */ 8379 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp) 8380 { 8381 int ret, err_code; 8382 struct asc_board *boardp = shost_priv(scp->device->host); 8383 8384 ASC_DBG(1, "scp 0x%p\n", scp); 8385 8386 if (ASC_NARROW_BOARD(boardp)) { 8387 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; 8388 struct asc_scsi_q asc_scsi_q; 8389 8390 ret = asc_build_req(boardp, scp, &asc_scsi_q); 8391 if (ret != ASC_NOERROR) { 8392 ASC_STATS(scp->device->host, build_error); 8393 return ret; 8394 } 8395 8396 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q); 8397 kfree(asc_scsi_q.sg_head); 8398 err_code = asc_dvc->err_code; 8399 } else { 8400 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; 8401 adv_req_t *adv_reqp; 8402 8403 switch (adv_build_req(boardp, scp, &adv_reqp)) { 8404 case ASC_NOERROR: 8405 ASC_DBG(3, "adv_build_req ASC_NOERROR\n"); 8406 break; 8407 case ASC_BUSY: 8408 ASC_DBG(1, "adv_build_req ASC_BUSY\n"); 8409 /* 8410 * The asc_stats fields 'adv_build_noreq' and 8411 * 'adv_build_nosg' count wide board busy conditions. 8412 * They are updated in adv_build_req and 8413 * adv_get_sglist, respectively. 8414 */ 8415 return ASC_BUSY; 8416 case ASC_ERROR: 8417 default: 8418 ASC_DBG(1, "adv_build_req ASC_ERROR\n"); 8419 ASC_STATS(scp->device->host, build_error); 8420 return ASC_ERROR; 8421 } 8422 8423 ret = AdvExeScsiQueue(adv_dvc, adv_reqp); 8424 err_code = adv_dvc->err_code; 8425 } 8426 8427 switch (ret) { 8428 case ASC_NOERROR: 8429 ASC_STATS(scp->device->host, exe_noerror); 8430 /* 8431 * Increment monotonically increasing per device 8432 * successful request counter. Wrapping doesn't matter. 8433 */ 8434 boardp->reqcnt[scp->device->id]++; 8435 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n"); 8436 break; 8437 case ASC_BUSY: 8438 ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n"); 8439 ASC_STATS(scp->device->host, exe_busy); 8440 break; 8441 case ASC_ERROR: 8442 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, " 8443 "err_code 0x%x\n", err_code); 8444 ASC_STATS(scp->device->host, exe_error); 8445 set_host_byte(scp, DID_ERROR); 8446 break; 8447 default: 8448 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, " 8449 "err_code 0x%x\n", err_code); 8450 ASC_STATS(scp->device->host, exe_unknown); 8451 set_host_byte(scp, DID_ERROR); 8452 break; 8453 } 8454 8455 ASC_DBG(1, "end\n"); 8456 return ret; 8457 } 8458 8459 /* 8460 * advansys_queuecommand() - interrupt-driven I/O entrypoint. 8461 * 8462 * This function always returns 0. Command return status is saved 8463 * in the 'scp' result field. 8464 */ 8465 static int advansys_queuecommand_lck(struct scsi_cmnd *scp) 8466 { 8467 struct Scsi_Host *shost = scp->device->host; 8468 int asc_res, result = 0; 8469 8470 ASC_STATS(shost, queuecommand); 8471 8472 asc_res = asc_execute_scsi_cmnd(scp); 8473 8474 switch (asc_res) { 8475 case ASC_NOERROR: 8476 break; 8477 case ASC_BUSY: 8478 result = SCSI_MLQUEUE_HOST_BUSY; 8479 break; 8480 case ASC_ERROR: 8481 default: 8482 asc_scsi_done(scp); 8483 break; 8484 } 8485 8486 return result; 8487 } 8488 8489 static DEF_SCSI_QCMD(advansys_queuecommand) 8490 8491 static ushort AscGetEisaChipCfg(PortAddr iop_base) 8492 { 8493 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | 8494 (PortAddr) (ASC_EISA_CFG_IOP_MASK); 8495 return inpw(eisa_cfg_iop); 8496 } 8497 8498 /* 8499 * Return the BIOS address of the adapter at the specified 8500 * I/O port and with the specified bus type. 8501 */ 8502 static unsigned short AscGetChipBiosAddress(PortAddr iop_base, 8503 unsigned short bus_type) 8504 { 8505 unsigned short cfg_lsw; 8506 unsigned short bios_addr; 8507 8508 /* 8509 * The PCI BIOS is re-located by the motherboard BIOS. Because 8510 * of this the driver can not determine where a PCI BIOS is 8511 * loaded and executes. 8512 */ 8513 if (bus_type & ASC_IS_PCI) 8514 return 0; 8515 8516 if ((bus_type & ASC_IS_EISA) != 0) { 8517 cfg_lsw = AscGetEisaChipCfg(iop_base); 8518 cfg_lsw &= 0x000F; 8519 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE; 8520 return bios_addr; 8521 } 8522 8523 cfg_lsw = AscGetChipCfgLsw(iop_base); 8524 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE; 8525 return bios_addr; 8526 } 8527 8528 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id) 8529 { 8530 ushort cfg_lsw; 8531 8532 if (AscGetChipScsiID(iop_base) == new_host_id) { 8533 return (new_host_id); 8534 } 8535 cfg_lsw = AscGetChipCfgLsw(iop_base); 8536 cfg_lsw &= 0xF8FF; 8537 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8); 8538 AscSetChipCfgLsw(iop_base, cfg_lsw); 8539 return (AscGetChipScsiID(iop_base)); 8540 } 8541 8542 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base) 8543 { 8544 unsigned char sc; 8545 8546 AscSetBank(iop_base, 1); 8547 sc = inp(iop_base + IOP_REG_SC); 8548 AscSetBank(iop_base, 0); 8549 return sc; 8550 } 8551 8552 static unsigned char AscGetChipVersion(PortAddr iop_base, 8553 unsigned short bus_type) 8554 { 8555 if (bus_type & ASC_IS_EISA) { 8556 PortAddr eisa_iop; 8557 unsigned char revision; 8558 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | 8559 (PortAddr) ASC_EISA_REV_IOP_MASK; 8560 revision = inp(eisa_iop); 8561 return ASC_CHIP_MIN_VER_EISA - 1 + revision; 8562 } 8563 return AscGetChipVerNo(iop_base); 8564 } 8565 8566 static int AscStopQueueExe(PortAddr iop_base) 8567 { 8568 int count = 0; 8569 8570 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) { 8571 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 8572 ASC_STOP_REQ_RISC_STOP); 8573 do { 8574 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) & 8575 ASC_STOP_ACK_RISC_STOP) { 8576 return (1); 8577 } 8578 mdelay(100); 8579 } while (count++ < 20); 8580 } 8581 return (0); 8582 } 8583 8584 static unsigned int AscGetMaxDmaCount(ushort bus_type) 8585 { 8586 if (bus_type & (ASC_IS_EISA | ASC_IS_VL)) 8587 return ASC_MAX_VL_DMA_COUNT; 8588 return ASC_MAX_PCI_DMA_COUNT; 8589 } 8590 8591 static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc) 8592 { 8593 int i; 8594 PortAddr iop_base; 8595 uchar chip_version; 8596 8597 iop_base = asc_dvc->iop_base; 8598 asc_dvc->err_code = 0; 8599 if ((asc_dvc->bus_type & 8600 (ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) { 8601 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE; 8602 } 8603 AscSetChipControl(iop_base, CC_HALT); 8604 AscSetChipStatus(iop_base, 0); 8605 asc_dvc->bug_fix_cntl = 0; 8606 asc_dvc->pci_fix_asyn_xfer = 0; 8607 asc_dvc->pci_fix_asyn_xfer_always = 0; 8608 /* asc_dvc->init_state initialized in AscInitGetConfig(). */ 8609 asc_dvc->sdtr_done = 0; 8610 asc_dvc->cur_total_qng = 0; 8611 asc_dvc->is_in_int = false; 8612 asc_dvc->in_critical_cnt = 0; 8613 asc_dvc->last_q_shortage = 0; 8614 asc_dvc->use_tagged_qng = 0; 8615 asc_dvc->no_scam = 0; 8616 asc_dvc->unit_not_ready = 0; 8617 asc_dvc->queue_full_or_busy = 0; 8618 asc_dvc->redo_scam = 0; 8619 asc_dvc->res2 = 0; 8620 asc_dvc->min_sdtr_index = 0; 8621 asc_dvc->cfg->can_tagged_qng = 0; 8622 asc_dvc->cfg->cmd_qng_enabled = 0; 8623 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL; 8624 asc_dvc->init_sdtr = 0; 8625 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG; 8626 asc_dvc->scsi_reset_wait = 3; 8627 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET; 8628 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type); 8629 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET; 8630 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET; 8631 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID; 8632 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type); 8633 asc_dvc->cfg->chip_version = chip_version; 8634 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period; 8635 asc_dvc->max_sdtr_index = 7; 8636 if ((asc_dvc->bus_type & ASC_IS_PCI) && 8637 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) { 8638 asc_dvc->bus_type = ASC_IS_PCI_ULTRA; 8639 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period; 8640 asc_dvc->max_sdtr_index = 15; 8641 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) { 8642 AscSetExtraControl(iop_base, 8643 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); 8644 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) { 8645 AscSetExtraControl(iop_base, 8646 (SEC_ACTIVE_NEGATE | 8647 SEC_ENABLE_FILTER)); 8648 } 8649 } 8650 if (asc_dvc->bus_type == ASC_IS_PCI) { 8651 AscSetExtraControl(iop_base, 8652 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); 8653 } 8654 8655 for (i = 0; i <= ASC_MAX_TID; i++) { 8656 asc_dvc->cur_dvc_qng[i] = 0; 8657 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG; 8658 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L; 8659 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L; 8660 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG; 8661 } 8662 } 8663 8664 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg) 8665 { 8666 int retry; 8667 8668 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) { 8669 unsigned char read_back; 8670 AscSetChipEEPCmd(iop_base, cmd_reg); 8671 mdelay(1); 8672 read_back = AscGetChipEEPCmd(iop_base); 8673 if (read_back == cmd_reg) 8674 return 1; 8675 } 8676 return 0; 8677 } 8678 8679 static void AscWaitEEPRead(void) 8680 { 8681 mdelay(1); 8682 } 8683 8684 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr) 8685 { 8686 ushort read_wval; 8687 uchar cmd_reg; 8688 8689 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); 8690 AscWaitEEPRead(); 8691 cmd_reg = addr | ASC_EEP_CMD_READ; 8692 AscWriteEEPCmdReg(iop_base, cmd_reg); 8693 AscWaitEEPRead(); 8694 read_wval = AscGetChipEEPData(iop_base); 8695 AscWaitEEPRead(); 8696 return read_wval; 8697 } 8698 8699 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 8700 ushort bus_type) 8701 { 8702 ushort wval; 8703 ushort sum; 8704 ushort *wbuf; 8705 int cfg_beg; 8706 int cfg_end; 8707 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; 8708 int s_addr; 8709 8710 wbuf = (ushort *)cfg_buf; 8711 sum = 0; 8712 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */ 8713 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 8714 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); 8715 sum += *wbuf; 8716 } 8717 if (bus_type & ASC_IS_VL) { 8718 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 8719 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 8720 } else { 8721 cfg_beg = ASC_EEP_DVC_CFG_BEG; 8722 cfg_end = ASC_EEP_MAX_DVC_ADDR; 8723 } 8724 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 8725 wval = AscReadEEPWord(iop_base, (uchar)s_addr); 8726 if (s_addr <= uchar_end_in_config) { 8727 /* 8728 * Swap all char fields - must unswap bytes already swapped 8729 * by AscReadEEPWord(). 8730 */ 8731 *wbuf = le16_to_cpu(wval); 8732 } else { 8733 /* Don't swap word field at the end - cntl field. */ 8734 *wbuf = wval; 8735 } 8736 sum += wval; /* Checksum treats all EEPROM data as words. */ 8737 } 8738 /* 8739 * Read the checksum word which will be compared against 'sum' 8740 * by the caller. Word field already swapped. 8741 */ 8742 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); 8743 return sum; 8744 } 8745 8746 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc) 8747 { 8748 PortAddr iop_base; 8749 ushort q_addr; 8750 ushort saved_word; 8751 int sta; 8752 8753 iop_base = asc_dvc->iop_base; 8754 sta = 0; 8755 q_addr = ASC_QNO_TO_QADDR(241); 8756 saved_word = AscReadLramWord(iop_base, q_addr); 8757 AscSetChipLramAddr(iop_base, q_addr); 8758 AscSetChipLramData(iop_base, 0x55AA); 8759 mdelay(10); 8760 AscSetChipLramAddr(iop_base, q_addr); 8761 if (AscGetChipLramData(iop_base) == 0x55AA) { 8762 sta = 1; 8763 AscWriteLramWord(iop_base, q_addr, saved_word); 8764 } 8765 return (sta); 8766 } 8767 8768 static void AscWaitEEPWrite(void) 8769 { 8770 mdelay(20); 8771 } 8772 8773 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg) 8774 { 8775 ushort read_back; 8776 int retry; 8777 8778 retry = 0; 8779 while (true) { 8780 AscSetChipEEPData(iop_base, data_reg); 8781 mdelay(1); 8782 read_back = AscGetChipEEPData(iop_base); 8783 if (read_back == data_reg) { 8784 return (1); 8785 } 8786 if (retry++ > ASC_EEP_MAX_RETRY) { 8787 return (0); 8788 } 8789 } 8790 } 8791 8792 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val) 8793 { 8794 ushort read_wval; 8795 8796 read_wval = AscReadEEPWord(iop_base, addr); 8797 if (read_wval != word_val) { 8798 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE); 8799 AscWaitEEPRead(); 8800 AscWriteEEPDataReg(iop_base, word_val); 8801 AscWaitEEPRead(); 8802 AscWriteEEPCmdReg(iop_base, 8803 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr)); 8804 AscWaitEEPWrite(); 8805 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); 8806 AscWaitEEPRead(); 8807 return (AscReadEEPWord(iop_base, addr)); 8808 } 8809 return (read_wval); 8810 } 8811 8812 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 8813 ushort bus_type) 8814 { 8815 int n_error; 8816 ushort *wbuf; 8817 ushort word; 8818 ushort sum; 8819 int s_addr; 8820 int cfg_beg; 8821 int cfg_end; 8822 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; 8823 8824 wbuf = (ushort *)cfg_buf; 8825 n_error = 0; 8826 sum = 0; 8827 /* Write two config words; AscWriteEEPWord() will swap bytes. */ 8828 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 8829 sum += *wbuf; 8830 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { 8831 n_error++; 8832 } 8833 } 8834 if (bus_type & ASC_IS_VL) { 8835 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 8836 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 8837 } else { 8838 cfg_beg = ASC_EEP_DVC_CFG_BEG; 8839 cfg_end = ASC_EEP_MAX_DVC_ADDR; 8840 } 8841 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 8842 if (s_addr <= uchar_end_in_config) { 8843 /* 8844 * This is a char field. Swap char fields before they are 8845 * swapped again by AscWriteEEPWord(). 8846 */ 8847 word = cpu_to_le16(*wbuf); 8848 if (word != 8849 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) { 8850 n_error++; 8851 } 8852 } else { 8853 /* Don't swap word field at the end - cntl field. */ 8854 if (*wbuf != 8855 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { 8856 n_error++; 8857 } 8858 } 8859 sum += *wbuf; /* Checksum calculated from word values. */ 8860 } 8861 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */ 8862 *wbuf = sum; 8863 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) { 8864 n_error++; 8865 } 8866 8867 /* Read EEPROM back again. */ 8868 wbuf = (ushort *)cfg_buf; 8869 /* 8870 * Read two config words; Byte-swapping done by AscReadEEPWord(). 8871 */ 8872 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 8873 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) { 8874 n_error++; 8875 } 8876 } 8877 if (bus_type & ASC_IS_VL) { 8878 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 8879 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 8880 } else { 8881 cfg_beg = ASC_EEP_DVC_CFG_BEG; 8882 cfg_end = ASC_EEP_MAX_DVC_ADDR; 8883 } 8884 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 8885 if (s_addr <= uchar_end_in_config) { 8886 /* 8887 * Swap all char fields. Must unswap bytes already swapped 8888 * by AscReadEEPWord(). 8889 */ 8890 word = 8891 le16_to_cpu(AscReadEEPWord 8892 (iop_base, (uchar)s_addr)); 8893 } else { 8894 /* Don't swap word field at the end - cntl field. */ 8895 word = AscReadEEPWord(iop_base, (uchar)s_addr); 8896 } 8897 if (*wbuf != word) { 8898 n_error++; 8899 } 8900 } 8901 /* Read checksum; Byte swapping not needed. */ 8902 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) { 8903 n_error++; 8904 } 8905 return n_error; 8906 } 8907 8908 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 8909 ushort bus_type) 8910 { 8911 int retry; 8912 int n_error; 8913 8914 retry = 0; 8915 while (true) { 8916 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf, 8917 bus_type)) == 0) { 8918 break; 8919 } 8920 if (++retry > ASC_EEP_MAX_RETRY) { 8921 break; 8922 } 8923 } 8924 return n_error; 8925 } 8926 8927 static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc) 8928 { 8929 ASCEEP_CONFIG eep_config_buf; 8930 ASCEEP_CONFIG *eep_config; 8931 PortAddr iop_base; 8932 ushort chksum; 8933 ushort warn_code; 8934 ushort cfg_msw, cfg_lsw; 8935 int i; 8936 int write_eep = 0; 8937 8938 iop_base = asc_dvc->iop_base; 8939 warn_code = 0; 8940 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE); 8941 AscStopQueueExe(iop_base); 8942 if ((AscStopChip(iop_base)) || 8943 (AscGetChipScsiCtrl(iop_base) != 0)) { 8944 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE; 8945 AscResetChipAndScsiBus(asc_dvc); 8946 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 8947 } 8948 if (!AscIsChipHalted(iop_base)) { 8949 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; 8950 return (warn_code); 8951 } 8952 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); 8953 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { 8954 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; 8955 return (warn_code); 8956 } 8957 eep_config = (ASCEEP_CONFIG *)&eep_config_buf; 8958 cfg_msw = AscGetChipCfgMsw(iop_base); 8959 cfg_lsw = AscGetChipCfgLsw(iop_base); 8960 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { 8961 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 8962 warn_code |= ASC_WARN_CFG_MSW_RECOVER; 8963 AscSetChipCfgMsw(iop_base, cfg_msw); 8964 } 8965 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type); 8966 ASC_DBG(1, "chksum 0x%x\n", chksum); 8967 if (chksum == 0) { 8968 chksum = 0xaa55; 8969 } 8970 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { 8971 warn_code |= ASC_WARN_AUTO_CONFIG; 8972 if (asc_dvc->cfg->chip_version == 3) { 8973 if (eep_config->cfg_lsw != cfg_lsw) { 8974 warn_code |= ASC_WARN_EEPROM_RECOVER; 8975 eep_config->cfg_lsw = 8976 AscGetChipCfgLsw(iop_base); 8977 } 8978 if (eep_config->cfg_msw != cfg_msw) { 8979 warn_code |= ASC_WARN_EEPROM_RECOVER; 8980 eep_config->cfg_msw = 8981 AscGetChipCfgMsw(iop_base); 8982 } 8983 } 8984 } 8985 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 8986 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON; 8987 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum); 8988 if (chksum != eep_config->chksum) { 8989 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) == 8990 ASC_CHIP_VER_PCI_ULTRA_3050) { 8991 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n"); 8992 eep_config->init_sdtr = 0xFF; 8993 eep_config->disc_enable = 0xFF; 8994 eep_config->start_motor = 0xFF; 8995 eep_config->use_cmd_qng = 0; 8996 eep_config->max_total_qng = 0xF0; 8997 eep_config->max_tag_qng = 0x20; 8998 eep_config->cntl = 0xBFFF; 8999 ASC_EEP_SET_CHIP_ID(eep_config, 7); 9000 eep_config->no_scam = 0; 9001 eep_config->adapter_info[0] = 0; 9002 eep_config->adapter_info[1] = 0; 9003 eep_config->adapter_info[2] = 0; 9004 eep_config->adapter_info[3] = 0; 9005 eep_config->adapter_info[4] = 0; 9006 /* Indicate EEPROM-less board. */ 9007 eep_config->adapter_info[5] = 0xBB; 9008 } else { 9009 ASC_PRINT 9010 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n"); 9011 write_eep = 1; 9012 warn_code |= ASC_WARN_EEPROM_CHKSUM; 9013 } 9014 } 9015 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr; 9016 asc_dvc->cfg->disc_enable = eep_config->disc_enable; 9017 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng; 9018 asc_dvc->start_motor = eep_config->start_motor; 9019 asc_dvc->dvc_cntl = eep_config->cntl; 9020 asc_dvc->no_scam = eep_config->no_scam; 9021 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0]; 9022 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1]; 9023 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2]; 9024 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3]; 9025 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4]; 9026 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5]; 9027 if (!AscTestExternalLram(asc_dvc)) { 9028 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == 9029 ASC_IS_PCI_ULTRA)) { 9030 eep_config->max_total_qng = 9031 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG; 9032 eep_config->max_tag_qng = 9033 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG; 9034 } else { 9035 eep_config->cfg_msw |= 0x0800; 9036 cfg_msw |= 0x0800; 9037 AscSetChipCfgMsw(iop_base, cfg_msw); 9038 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG; 9039 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG; 9040 } 9041 } else { 9042 } 9043 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) { 9044 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG; 9045 } 9046 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) { 9047 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG; 9048 } 9049 if (eep_config->max_tag_qng > eep_config->max_total_qng) { 9050 eep_config->max_tag_qng = eep_config->max_total_qng; 9051 } 9052 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) { 9053 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC; 9054 } 9055 asc_dvc->max_total_qng = eep_config->max_total_qng; 9056 if ((eep_config->use_cmd_qng & eep_config->disc_enable) != 9057 eep_config->use_cmd_qng) { 9058 eep_config->disc_enable = eep_config->use_cmd_qng; 9059 warn_code |= ASC_WARN_CMD_QNG_CONFLICT; 9060 } 9061 ASC_EEP_SET_CHIP_ID(eep_config, 9062 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID); 9063 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config); 9064 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) && 9065 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) { 9066 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX; 9067 } 9068 9069 for (i = 0; i <= ASC_MAX_TID; i++) { 9070 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i]; 9071 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng; 9072 asc_dvc->cfg->sdtr_period_offset[i] = 9073 (uchar)(ASC_DEF_SDTR_OFFSET | 9074 (asc_dvc->min_sdtr_index << 4)); 9075 } 9076 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base); 9077 if (write_eep) { 9078 if ((i = AscSetEEPConfig(iop_base, eep_config, 9079 asc_dvc->bus_type)) != 0) { 9080 ASC_PRINT1 9081 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n", 9082 i); 9083 } else { 9084 ASC_PRINT 9085 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n"); 9086 } 9087 } 9088 return (warn_code); 9089 } 9090 9091 static int AscInitGetConfig(struct Scsi_Host *shost) 9092 { 9093 struct asc_board *board = shost_priv(shost); 9094 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; 9095 unsigned short warn_code = 0; 9096 9097 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG; 9098 if (asc_dvc->err_code != 0) 9099 return asc_dvc->err_code; 9100 9101 if (AscFindSignature(asc_dvc->iop_base)) { 9102 AscInitAscDvcVar(asc_dvc); 9103 warn_code = AscInitFromEEP(asc_dvc); 9104 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG; 9105 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT) 9106 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT; 9107 } else { 9108 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 9109 } 9110 9111 switch (warn_code) { 9112 case 0: /* No error */ 9113 break; 9114 case ASC_WARN_IO_PORT_ROTATE: 9115 shost_printk(KERN_WARNING, shost, "I/O port address " 9116 "modified\n"); 9117 break; 9118 case ASC_WARN_AUTO_CONFIG: 9119 shost_printk(KERN_WARNING, shost, "I/O port increment switch " 9120 "enabled\n"); 9121 break; 9122 case ASC_WARN_EEPROM_CHKSUM: 9123 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); 9124 break; 9125 case ASC_WARN_IRQ_MODIFIED: 9126 shost_printk(KERN_WARNING, shost, "IRQ modified\n"); 9127 break; 9128 case ASC_WARN_CMD_QNG_CONFLICT: 9129 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o " 9130 "disconnects\n"); 9131 break; 9132 default: 9133 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", 9134 warn_code); 9135 break; 9136 } 9137 9138 if (asc_dvc->err_code != 0) 9139 shost_printk(KERN_ERR, shost, "error 0x%x at init_state " 9140 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); 9141 9142 return asc_dvc->err_code; 9143 } 9144 9145 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) 9146 { 9147 struct asc_board *board = shost_priv(shost); 9148 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; 9149 PortAddr iop_base = asc_dvc->iop_base; 9150 unsigned short cfg_msw; 9151 unsigned short warn_code = 0; 9152 9153 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG; 9154 if (asc_dvc->err_code != 0) 9155 return asc_dvc->err_code; 9156 if (!AscFindSignature(asc_dvc->iop_base)) { 9157 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 9158 return asc_dvc->err_code; 9159 } 9160 9161 cfg_msw = AscGetChipCfgMsw(iop_base); 9162 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { 9163 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 9164 warn_code |= ASC_WARN_CFG_MSW_RECOVER; 9165 AscSetChipCfgMsw(iop_base, cfg_msw); 9166 } 9167 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) != 9168 asc_dvc->cfg->cmd_qng_enabled) { 9169 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled; 9170 warn_code |= ASC_WARN_CMD_QNG_CONFLICT; 9171 } 9172 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { 9173 warn_code |= ASC_WARN_AUTO_CONFIG; 9174 } 9175 #ifdef CONFIG_PCI 9176 if (asc_dvc->bus_type & ASC_IS_PCI) { 9177 cfg_msw &= 0xFFC0; 9178 AscSetChipCfgMsw(iop_base, cfg_msw); 9179 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) { 9180 } else { 9181 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || 9182 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { 9183 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB; 9184 asc_dvc->bug_fix_cntl |= 9185 ASC_BUG_FIX_ASYN_USE_SYN; 9186 } 9187 } 9188 } else 9189 #endif /* CONFIG_PCI */ 9190 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) != 9191 asc_dvc->cfg->chip_scsi_id) { 9192 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID; 9193 } 9194 9195 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG; 9196 9197 switch (warn_code) { 9198 case 0: /* No error. */ 9199 break; 9200 case ASC_WARN_IO_PORT_ROTATE: 9201 shost_printk(KERN_WARNING, shost, "I/O port address " 9202 "modified\n"); 9203 break; 9204 case ASC_WARN_AUTO_CONFIG: 9205 shost_printk(KERN_WARNING, shost, "I/O port increment switch " 9206 "enabled\n"); 9207 break; 9208 case ASC_WARN_EEPROM_CHKSUM: 9209 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); 9210 break; 9211 case ASC_WARN_IRQ_MODIFIED: 9212 shost_printk(KERN_WARNING, shost, "IRQ modified\n"); 9213 break; 9214 case ASC_WARN_CMD_QNG_CONFLICT: 9215 shost_printk(KERN_WARNING, shost, "tag queuing w/o " 9216 "disconnects\n"); 9217 break; 9218 default: 9219 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", 9220 warn_code); 9221 break; 9222 } 9223 9224 if (asc_dvc->err_code != 0) 9225 shost_printk(KERN_ERR, shost, "error 0x%x at init_state " 9226 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); 9227 9228 return asc_dvc->err_code; 9229 } 9230 9231 /* 9232 * EEPROM Configuration. 9233 * 9234 * All drivers should use this structure to set the default EEPROM 9235 * configuration. The BIOS now uses this structure when it is built. 9236 * Additional structure information can be found in a_condor.h where 9237 * the structure is defined. 9238 * 9239 * The *_Field_IsChar structs are needed to correct for endianness. 9240 * These values are read from the board 16 bits at a time directly 9241 * into the structs. Because some fields are char, the values will be 9242 * in the wrong order. The *_Field_IsChar tells when to flip the 9243 * bytes. Data read and written to PCI memory is automatically swapped 9244 * on big-endian platforms so char fields read as words are actually being 9245 * unswapped on big-endian platforms. 9246 */ 9247 #ifdef CONFIG_PCI 9248 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = { 9249 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */ 9250 0x0000, /* cfg_msw */ 9251 0xFFFF, /* disc_enable */ 9252 0xFFFF, /* wdtr_able */ 9253 0xFFFF, /* sdtr_able */ 9254 0xFFFF, /* start_motor */ 9255 0xFFFF, /* tagqng_able */ 9256 0xFFFF, /* bios_scan */ 9257 0, /* scam_tolerant */ 9258 7, /* adapter_scsi_id */ 9259 0, /* bios_boot_delay */ 9260 3, /* scsi_reset_delay */ 9261 0, /* bios_id_lun */ 9262 0, /* termination */ 9263 0, /* reserved1 */ 9264 0xFFE7, /* bios_ctrl */ 9265 0xFFFF, /* ultra_able */ 9266 0, /* reserved2 */ 9267 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */ 9268 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9269 0, /* dvc_cntl */ 9270 0, /* bug_fix */ 9271 0, /* serial_number_word1 */ 9272 0, /* serial_number_word2 */ 9273 0, /* serial_number_word3 */ 9274 0, /* check_sum */ 9275 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9276 , /* oem_name[16] */ 9277 0, /* dvc_err_code */ 9278 0, /* adv_err_code */ 9279 0, /* adv_err_addr */ 9280 0, /* saved_dvc_err_code */ 9281 0, /* saved_adv_err_code */ 9282 0, /* saved_adv_err_addr */ 9283 0 /* num_of_err */ 9284 }; 9285 9286 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = { 9287 0, /* cfg_lsw */ 9288 0, /* cfg_msw */ 9289 0, /* -disc_enable */ 9290 0, /* wdtr_able */ 9291 0, /* sdtr_able */ 9292 0, /* start_motor */ 9293 0, /* tagqng_able */ 9294 0, /* bios_scan */ 9295 0, /* scam_tolerant */ 9296 1, /* adapter_scsi_id */ 9297 1, /* bios_boot_delay */ 9298 1, /* scsi_reset_delay */ 9299 1, /* bios_id_lun */ 9300 1, /* termination */ 9301 1, /* reserved1 */ 9302 0, /* bios_ctrl */ 9303 0, /* ultra_able */ 9304 0, /* reserved2 */ 9305 1, /* max_host_qng */ 9306 1, /* max_dvc_qng */ 9307 0, /* dvc_cntl */ 9308 0, /* bug_fix */ 9309 0, /* serial_number_word1 */ 9310 0, /* serial_number_word2 */ 9311 0, /* serial_number_word3 */ 9312 0, /* check_sum */ 9313 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9314 , /* oem_name[16] */ 9315 0, /* dvc_err_code */ 9316 0, /* adv_err_code */ 9317 0, /* adv_err_addr */ 9318 0, /* saved_dvc_err_code */ 9319 0, /* saved_adv_err_code */ 9320 0, /* saved_adv_err_addr */ 9321 0 /* num_of_err */ 9322 }; 9323 9324 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = { 9325 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 9326 0x0000, /* 01 cfg_msw */ 9327 0xFFFF, /* 02 disc_enable */ 9328 0xFFFF, /* 03 wdtr_able */ 9329 0x4444, /* 04 sdtr_speed1 */ 9330 0xFFFF, /* 05 start_motor */ 9331 0xFFFF, /* 06 tagqng_able */ 9332 0xFFFF, /* 07 bios_scan */ 9333 0, /* 08 scam_tolerant */ 9334 7, /* 09 adapter_scsi_id */ 9335 0, /* bios_boot_delay */ 9336 3, /* 10 scsi_reset_delay */ 9337 0, /* bios_id_lun */ 9338 0, /* 11 termination_se */ 9339 0, /* termination_lvd */ 9340 0xFFE7, /* 12 bios_ctrl */ 9341 0x4444, /* 13 sdtr_speed2 */ 9342 0x4444, /* 14 sdtr_speed3 */ 9343 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ 9344 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9345 0, /* 16 dvc_cntl */ 9346 0x4444, /* 17 sdtr_speed4 */ 9347 0, /* 18 serial_number_word1 */ 9348 0, /* 19 serial_number_word2 */ 9349 0, /* 20 serial_number_word3 */ 9350 0, /* 21 check_sum */ 9351 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9352 , /* 22-29 oem_name[16] */ 9353 0, /* 30 dvc_err_code */ 9354 0, /* 31 adv_err_code */ 9355 0, /* 32 adv_err_addr */ 9356 0, /* 33 saved_dvc_err_code */ 9357 0, /* 34 saved_adv_err_code */ 9358 0, /* 35 saved_adv_err_addr */ 9359 0, /* 36 reserved */ 9360 0, /* 37 reserved */ 9361 0, /* 38 reserved */ 9362 0, /* 39 reserved */ 9363 0, /* 40 reserved */ 9364 0, /* 41 reserved */ 9365 0, /* 42 reserved */ 9366 0, /* 43 reserved */ 9367 0, /* 44 reserved */ 9368 0, /* 45 reserved */ 9369 0, /* 46 reserved */ 9370 0, /* 47 reserved */ 9371 0, /* 48 reserved */ 9372 0, /* 49 reserved */ 9373 0, /* 50 reserved */ 9374 0, /* 51 reserved */ 9375 0, /* 52 reserved */ 9376 0, /* 53 reserved */ 9377 0, /* 54 reserved */ 9378 0, /* 55 reserved */ 9379 0, /* 56 cisptr_lsw */ 9380 0, /* 57 cisprt_msw */ 9381 PCI_VENDOR_ID_ASP, /* 58 subsysvid */ 9382 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */ 9383 0, /* 60 reserved */ 9384 0, /* 61 reserved */ 9385 0, /* 62 reserved */ 9386 0 /* 63 reserved */ 9387 }; 9388 9389 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = { 9390 0, /* 00 cfg_lsw */ 9391 0, /* 01 cfg_msw */ 9392 0, /* 02 disc_enable */ 9393 0, /* 03 wdtr_able */ 9394 0, /* 04 sdtr_speed1 */ 9395 0, /* 05 start_motor */ 9396 0, /* 06 tagqng_able */ 9397 0, /* 07 bios_scan */ 9398 0, /* 08 scam_tolerant */ 9399 1, /* 09 adapter_scsi_id */ 9400 1, /* bios_boot_delay */ 9401 1, /* 10 scsi_reset_delay */ 9402 1, /* bios_id_lun */ 9403 1, /* 11 termination_se */ 9404 1, /* termination_lvd */ 9405 0, /* 12 bios_ctrl */ 9406 0, /* 13 sdtr_speed2 */ 9407 0, /* 14 sdtr_speed3 */ 9408 1, /* 15 max_host_qng */ 9409 1, /* max_dvc_qng */ 9410 0, /* 16 dvc_cntl */ 9411 0, /* 17 sdtr_speed4 */ 9412 0, /* 18 serial_number_word1 */ 9413 0, /* 19 serial_number_word2 */ 9414 0, /* 20 serial_number_word3 */ 9415 0, /* 21 check_sum */ 9416 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9417 , /* 22-29 oem_name[16] */ 9418 0, /* 30 dvc_err_code */ 9419 0, /* 31 adv_err_code */ 9420 0, /* 32 adv_err_addr */ 9421 0, /* 33 saved_dvc_err_code */ 9422 0, /* 34 saved_adv_err_code */ 9423 0, /* 35 saved_adv_err_addr */ 9424 0, /* 36 reserved */ 9425 0, /* 37 reserved */ 9426 0, /* 38 reserved */ 9427 0, /* 39 reserved */ 9428 0, /* 40 reserved */ 9429 0, /* 41 reserved */ 9430 0, /* 42 reserved */ 9431 0, /* 43 reserved */ 9432 0, /* 44 reserved */ 9433 0, /* 45 reserved */ 9434 0, /* 46 reserved */ 9435 0, /* 47 reserved */ 9436 0, /* 48 reserved */ 9437 0, /* 49 reserved */ 9438 0, /* 50 reserved */ 9439 0, /* 51 reserved */ 9440 0, /* 52 reserved */ 9441 0, /* 53 reserved */ 9442 0, /* 54 reserved */ 9443 0, /* 55 reserved */ 9444 0, /* 56 cisptr_lsw */ 9445 0, /* 57 cisprt_msw */ 9446 0, /* 58 subsysvid */ 9447 0, /* 59 subsysid */ 9448 0, /* 60 reserved */ 9449 0, /* 61 reserved */ 9450 0, /* 62 reserved */ 9451 0 /* 63 reserved */ 9452 }; 9453 9454 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = { 9455 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 9456 0x0000, /* 01 cfg_msw */ 9457 0xFFFF, /* 02 disc_enable */ 9458 0xFFFF, /* 03 wdtr_able */ 9459 0x5555, /* 04 sdtr_speed1 */ 9460 0xFFFF, /* 05 start_motor */ 9461 0xFFFF, /* 06 tagqng_able */ 9462 0xFFFF, /* 07 bios_scan */ 9463 0, /* 08 scam_tolerant */ 9464 7, /* 09 adapter_scsi_id */ 9465 0, /* bios_boot_delay */ 9466 3, /* 10 scsi_reset_delay */ 9467 0, /* bios_id_lun */ 9468 0, /* 11 termination_se */ 9469 0, /* termination_lvd */ 9470 0xFFE7, /* 12 bios_ctrl */ 9471 0x5555, /* 13 sdtr_speed2 */ 9472 0x5555, /* 14 sdtr_speed3 */ 9473 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ 9474 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9475 0, /* 16 dvc_cntl */ 9476 0x5555, /* 17 sdtr_speed4 */ 9477 0, /* 18 serial_number_word1 */ 9478 0, /* 19 serial_number_word2 */ 9479 0, /* 20 serial_number_word3 */ 9480 0, /* 21 check_sum */ 9481 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9482 , /* 22-29 oem_name[16] */ 9483 0, /* 30 dvc_err_code */ 9484 0, /* 31 adv_err_code */ 9485 0, /* 32 adv_err_addr */ 9486 0, /* 33 saved_dvc_err_code */ 9487 0, /* 34 saved_adv_err_code */ 9488 0, /* 35 saved_adv_err_addr */ 9489 0, /* 36 reserved */ 9490 0, /* 37 reserved */ 9491 0, /* 38 reserved */ 9492 0, /* 39 reserved */ 9493 0, /* 40 reserved */ 9494 0, /* 41 reserved */ 9495 0, /* 42 reserved */ 9496 0, /* 43 reserved */ 9497 0, /* 44 reserved */ 9498 0, /* 45 reserved */ 9499 0, /* 46 reserved */ 9500 0, /* 47 reserved */ 9501 0, /* 48 reserved */ 9502 0, /* 49 reserved */ 9503 0, /* 50 reserved */ 9504 0, /* 51 reserved */ 9505 0, /* 52 reserved */ 9506 0, /* 53 reserved */ 9507 0, /* 54 reserved */ 9508 0, /* 55 reserved */ 9509 0, /* 56 cisptr_lsw */ 9510 0, /* 57 cisprt_msw */ 9511 PCI_VENDOR_ID_ASP, /* 58 subsysvid */ 9512 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */ 9513 0, /* 60 reserved */ 9514 0, /* 61 reserved */ 9515 0, /* 62 reserved */ 9516 0 /* 63 reserved */ 9517 }; 9518 9519 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = { 9520 0, /* 00 cfg_lsw */ 9521 0, /* 01 cfg_msw */ 9522 0, /* 02 disc_enable */ 9523 0, /* 03 wdtr_able */ 9524 0, /* 04 sdtr_speed1 */ 9525 0, /* 05 start_motor */ 9526 0, /* 06 tagqng_able */ 9527 0, /* 07 bios_scan */ 9528 0, /* 08 scam_tolerant */ 9529 1, /* 09 adapter_scsi_id */ 9530 1, /* bios_boot_delay */ 9531 1, /* 10 scsi_reset_delay */ 9532 1, /* bios_id_lun */ 9533 1, /* 11 termination_se */ 9534 1, /* termination_lvd */ 9535 0, /* 12 bios_ctrl */ 9536 0, /* 13 sdtr_speed2 */ 9537 0, /* 14 sdtr_speed3 */ 9538 1, /* 15 max_host_qng */ 9539 1, /* max_dvc_qng */ 9540 0, /* 16 dvc_cntl */ 9541 0, /* 17 sdtr_speed4 */ 9542 0, /* 18 serial_number_word1 */ 9543 0, /* 19 serial_number_word2 */ 9544 0, /* 20 serial_number_word3 */ 9545 0, /* 21 check_sum */ 9546 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9547 , /* 22-29 oem_name[16] */ 9548 0, /* 30 dvc_err_code */ 9549 0, /* 31 adv_err_code */ 9550 0, /* 32 adv_err_addr */ 9551 0, /* 33 saved_dvc_err_code */ 9552 0, /* 34 saved_adv_err_code */ 9553 0, /* 35 saved_adv_err_addr */ 9554 0, /* 36 reserved */ 9555 0, /* 37 reserved */ 9556 0, /* 38 reserved */ 9557 0, /* 39 reserved */ 9558 0, /* 40 reserved */ 9559 0, /* 41 reserved */ 9560 0, /* 42 reserved */ 9561 0, /* 43 reserved */ 9562 0, /* 44 reserved */ 9563 0, /* 45 reserved */ 9564 0, /* 46 reserved */ 9565 0, /* 47 reserved */ 9566 0, /* 48 reserved */ 9567 0, /* 49 reserved */ 9568 0, /* 50 reserved */ 9569 0, /* 51 reserved */ 9570 0, /* 52 reserved */ 9571 0, /* 53 reserved */ 9572 0, /* 54 reserved */ 9573 0, /* 55 reserved */ 9574 0, /* 56 cisptr_lsw */ 9575 0, /* 57 cisprt_msw */ 9576 0, /* 58 subsysvid */ 9577 0, /* 59 subsysid */ 9578 0, /* 60 reserved */ 9579 0, /* 61 reserved */ 9580 0, /* 62 reserved */ 9581 0 /* 63 reserved */ 9582 }; 9583 9584 /* 9585 * Wait for EEPROM command to complete 9586 */ 9587 static void AdvWaitEEPCmd(AdvPortAddr iop_base) 9588 { 9589 int eep_delay_ms; 9590 9591 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) { 9592 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) & 9593 ASC_EEP_CMD_DONE) { 9594 break; 9595 } 9596 mdelay(1); 9597 } 9598 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) == 9599 0) 9600 BUG(); 9601 } 9602 9603 /* 9604 * Read the EEPROM from specified location 9605 */ 9606 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr) 9607 { 9608 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9609 ASC_EEP_CMD_READ | eep_word_addr); 9610 AdvWaitEEPCmd(iop_base); 9611 return AdvReadWordRegister(iop_base, IOPW_EE_DATA); 9612 } 9613 9614 /* 9615 * Write the EEPROM from 'cfg_buf'. 9616 */ 9617 static void AdvSet3550EEPConfig(AdvPortAddr iop_base, 9618 ADVEEP_3550_CONFIG *cfg_buf) 9619 { 9620 ushort *wbuf; 9621 ushort addr, chksum; 9622 ushort *charfields; 9623 9624 wbuf = (ushort *)cfg_buf; 9625 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; 9626 chksum = 0; 9627 9628 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9629 AdvWaitEEPCmd(iop_base); 9630 9631 /* 9632 * Write EEPROM from word 0 to word 20. 9633 */ 9634 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9635 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9636 ushort word; 9637 9638 if (*charfields++) { 9639 word = cpu_to_le16(*wbuf); 9640 } else { 9641 word = *wbuf; 9642 } 9643 chksum += *wbuf; /* Checksum is calculated from word values. */ 9644 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9645 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9646 ASC_EEP_CMD_WRITE | addr); 9647 AdvWaitEEPCmd(iop_base); 9648 mdelay(ADV_EEP_DELAY_MS); 9649 } 9650 9651 /* 9652 * Write EEPROM checksum at word 21. 9653 */ 9654 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9655 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9656 AdvWaitEEPCmd(iop_base); 9657 wbuf++; 9658 charfields++; 9659 9660 /* 9661 * Write EEPROM OEM name at words 22 to 29. 9662 */ 9663 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9664 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9665 ushort word; 9666 9667 if (*charfields++) { 9668 word = cpu_to_le16(*wbuf); 9669 } else { 9670 word = *wbuf; 9671 } 9672 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9673 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9674 ASC_EEP_CMD_WRITE | addr); 9675 AdvWaitEEPCmd(iop_base); 9676 } 9677 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 9678 AdvWaitEEPCmd(iop_base); 9679 } 9680 9681 /* 9682 * Write the EEPROM from 'cfg_buf'. 9683 */ 9684 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base, 9685 ADVEEP_38C0800_CONFIG *cfg_buf) 9686 { 9687 ushort *wbuf; 9688 ushort *charfields; 9689 ushort addr, chksum; 9690 9691 wbuf = (ushort *)cfg_buf; 9692 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; 9693 chksum = 0; 9694 9695 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9696 AdvWaitEEPCmd(iop_base); 9697 9698 /* 9699 * Write EEPROM from word 0 to word 20. 9700 */ 9701 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9702 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9703 ushort word; 9704 9705 if (*charfields++) { 9706 word = cpu_to_le16(*wbuf); 9707 } else { 9708 word = *wbuf; 9709 } 9710 chksum += *wbuf; /* Checksum is calculated from word values. */ 9711 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9712 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9713 ASC_EEP_CMD_WRITE | addr); 9714 AdvWaitEEPCmd(iop_base); 9715 mdelay(ADV_EEP_DELAY_MS); 9716 } 9717 9718 /* 9719 * Write EEPROM checksum at word 21. 9720 */ 9721 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9722 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9723 AdvWaitEEPCmd(iop_base); 9724 wbuf++; 9725 charfields++; 9726 9727 /* 9728 * Write EEPROM OEM name at words 22 to 29. 9729 */ 9730 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9731 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9732 ushort word; 9733 9734 if (*charfields++) { 9735 word = cpu_to_le16(*wbuf); 9736 } else { 9737 word = *wbuf; 9738 } 9739 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9740 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9741 ASC_EEP_CMD_WRITE | addr); 9742 AdvWaitEEPCmd(iop_base); 9743 } 9744 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 9745 AdvWaitEEPCmd(iop_base); 9746 } 9747 9748 /* 9749 * Write the EEPROM from 'cfg_buf'. 9750 */ 9751 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base, 9752 ADVEEP_38C1600_CONFIG *cfg_buf) 9753 { 9754 ushort *wbuf; 9755 ushort *charfields; 9756 ushort addr, chksum; 9757 9758 wbuf = (ushort *)cfg_buf; 9759 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; 9760 chksum = 0; 9761 9762 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9763 AdvWaitEEPCmd(iop_base); 9764 9765 /* 9766 * Write EEPROM from word 0 to word 20. 9767 */ 9768 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9769 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9770 ushort word; 9771 9772 if (*charfields++) { 9773 word = cpu_to_le16(*wbuf); 9774 } else { 9775 word = *wbuf; 9776 } 9777 chksum += *wbuf; /* Checksum is calculated from word values. */ 9778 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9779 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9780 ASC_EEP_CMD_WRITE | addr); 9781 AdvWaitEEPCmd(iop_base); 9782 mdelay(ADV_EEP_DELAY_MS); 9783 } 9784 9785 /* 9786 * Write EEPROM checksum at word 21. 9787 */ 9788 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9789 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9790 AdvWaitEEPCmd(iop_base); 9791 wbuf++; 9792 charfields++; 9793 9794 /* 9795 * Write EEPROM OEM name at words 22 to 29. 9796 */ 9797 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9798 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9799 ushort word; 9800 9801 if (*charfields++) { 9802 word = cpu_to_le16(*wbuf); 9803 } else { 9804 word = *wbuf; 9805 } 9806 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9807 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9808 ASC_EEP_CMD_WRITE | addr); 9809 AdvWaitEEPCmd(iop_base); 9810 } 9811 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 9812 AdvWaitEEPCmd(iop_base); 9813 } 9814 9815 /* 9816 * Read EEPROM configuration into the specified buffer. 9817 * 9818 * Return a checksum based on the EEPROM configuration read. 9819 */ 9820 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base, 9821 ADVEEP_3550_CONFIG *cfg_buf) 9822 { 9823 ushort wval, chksum; 9824 ushort *wbuf; 9825 int eep_addr; 9826 ushort *charfields; 9827 9828 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; 9829 wbuf = (ushort *)cfg_buf; 9830 chksum = 0; 9831 9832 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 9833 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 9834 wval = AdvReadEEPWord(iop_base, eep_addr); 9835 chksum += wval; /* Checksum is calculated from word values. */ 9836 if (*charfields++) { 9837 *wbuf = le16_to_cpu(wval); 9838 } else { 9839 *wbuf = wval; 9840 } 9841 } 9842 /* Read checksum word. */ 9843 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 9844 wbuf++; 9845 charfields++; 9846 9847 /* Read rest of EEPROM not covered by the checksum. */ 9848 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 9849 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 9850 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 9851 if (*charfields++) { 9852 *wbuf = le16_to_cpu(*wbuf); 9853 } 9854 } 9855 return chksum; 9856 } 9857 9858 /* 9859 * Read EEPROM configuration into the specified buffer. 9860 * 9861 * Return a checksum based on the EEPROM configuration read. 9862 */ 9863 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base, 9864 ADVEEP_38C0800_CONFIG *cfg_buf) 9865 { 9866 ushort wval, chksum; 9867 ushort *wbuf; 9868 int eep_addr; 9869 ushort *charfields; 9870 9871 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; 9872 wbuf = (ushort *)cfg_buf; 9873 chksum = 0; 9874 9875 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 9876 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 9877 wval = AdvReadEEPWord(iop_base, eep_addr); 9878 chksum += wval; /* Checksum is calculated from word values. */ 9879 if (*charfields++) { 9880 *wbuf = le16_to_cpu(wval); 9881 } else { 9882 *wbuf = wval; 9883 } 9884 } 9885 /* Read checksum word. */ 9886 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 9887 wbuf++; 9888 charfields++; 9889 9890 /* Read rest of EEPROM not covered by the checksum. */ 9891 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 9892 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 9893 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 9894 if (*charfields++) { 9895 *wbuf = le16_to_cpu(*wbuf); 9896 } 9897 } 9898 return chksum; 9899 } 9900 9901 /* 9902 * Read EEPROM configuration into the specified buffer. 9903 * 9904 * Return a checksum based on the EEPROM configuration read. 9905 */ 9906 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base, 9907 ADVEEP_38C1600_CONFIG *cfg_buf) 9908 { 9909 ushort wval, chksum; 9910 ushort *wbuf; 9911 int eep_addr; 9912 ushort *charfields; 9913 9914 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; 9915 wbuf = (ushort *)cfg_buf; 9916 chksum = 0; 9917 9918 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 9919 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 9920 wval = AdvReadEEPWord(iop_base, eep_addr); 9921 chksum += wval; /* Checksum is calculated from word values. */ 9922 if (*charfields++) { 9923 *wbuf = le16_to_cpu(wval); 9924 } else { 9925 *wbuf = wval; 9926 } 9927 } 9928 /* Read checksum word. */ 9929 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 9930 wbuf++; 9931 charfields++; 9932 9933 /* Read rest of EEPROM not covered by the checksum. */ 9934 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 9935 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 9936 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 9937 if (*charfields++) { 9938 *wbuf = le16_to_cpu(*wbuf); 9939 } 9940 } 9941 return chksum; 9942 } 9943 9944 /* 9945 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and 9946 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while 9947 * all of this is done. 9948 * 9949 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 9950 * 9951 * For a non-fatal error return a warning code. If there are no warnings 9952 * then 0 is returned. 9953 * 9954 * Note: Chip is stopped on entry. 9955 */ 9956 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc) 9957 { 9958 AdvPortAddr iop_base; 9959 ushort warn_code; 9960 ADVEEP_3550_CONFIG eep_config; 9961 9962 iop_base = asc_dvc->iop_base; 9963 9964 warn_code = 0; 9965 9966 /* 9967 * Read the board's EEPROM configuration. 9968 * 9969 * Set default values if a bad checksum is found. 9970 */ 9971 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) { 9972 warn_code |= ASC_WARN_EEPROM_CHKSUM; 9973 9974 /* 9975 * Set EEPROM default values. 9976 */ 9977 memcpy(&eep_config, &Default_3550_EEPROM_Config, 9978 sizeof(ADVEEP_3550_CONFIG)); 9979 9980 /* 9981 * Assume the 6 byte board serial number that was read from 9982 * EEPROM is correct even if the EEPROM checksum failed. 9983 */ 9984 eep_config.serial_number_word3 = 9985 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 9986 9987 eep_config.serial_number_word2 = 9988 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 9989 9990 eep_config.serial_number_word1 = 9991 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 9992 9993 AdvSet3550EEPConfig(iop_base, &eep_config); 9994 } 9995 /* 9996 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the 9997 * EEPROM configuration that was read. 9998 * 9999 * This is the mapping of EEPROM fields to Adv Library fields. 10000 */ 10001 asc_dvc->wdtr_able = eep_config.wdtr_able; 10002 asc_dvc->sdtr_able = eep_config.sdtr_able; 10003 asc_dvc->ultra_able = eep_config.ultra_able; 10004 asc_dvc->tagqng_able = eep_config.tagqng_able; 10005 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10006 asc_dvc->max_host_qng = eep_config.max_host_qng; 10007 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10008 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); 10009 asc_dvc->start_motor = eep_config.start_motor; 10010 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10011 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10012 asc_dvc->no_scam = eep_config.scam_tolerant; 10013 asc_dvc->cfg->serial1 = eep_config.serial_number_word1; 10014 asc_dvc->cfg->serial2 = eep_config.serial_number_word2; 10015 asc_dvc->cfg->serial3 = eep_config.serial_number_word3; 10016 10017 /* 10018 * Set the host maximum queuing (max. 253, min. 16) and the per device 10019 * maximum queuing (max. 63, min. 4). 10020 */ 10021 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10022 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10023 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10024 /* If the value is zero, assume it is uninitialized. */ 10025 if (eep_config.max_host_qng == 0) { 10026 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10027 } else { 10028 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10029 } 10030 } 10031 10032 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10033 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10034 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10035 /* If the value is zero, assume it is uninitialized. */ 10036 if (eep_config.max_dvc_qng == 0) { 10037 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10038 } else { 10039 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10040 } 10041 } 10042 10043 /* 10044 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10045 * set 'max_dvc_qng' to 'max_host_qng'. 10046 */ 10047 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10048 eep_config.max_dvc_qng = eep_config.max_host_qng; 10049 } 10050 10051 /* 10052 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' 10053 * values based on possibly adjusted EEPROM values. 10054 */ 10055 asc_dvc->max_host_qng = eep_config.max_host_qng; 10056 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10057 10058 /* 10059 * If the EEPROM 'termination' field is set to automatic (0), then set 10060 * the ADV_DVC_CFG 'termination' field to automatic also. 10061 * 10062 * If the termination is specified with a non-zero 'termination' 10063 * value check that a legal value is set and set the ADV_DVC_CFG 10064 * 'termination' field appropriately. 10065 */ 10066 if (eep_config.termination == 0) { 10067 asc_dvc->cfg->termination = 0; /* auto termination */ 10068 } else { 10069 /* Enable manual control with low off / high off. */ 10070 if (eep_config.termination == 1) { 10071 asc_dvc->cfg->termination = TERM_CTL_SEL; 10072 10073 /* Enable manual control with low off / high on. */ 10074 } else if (eep_config.termination == 2) { 10075 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H; 10076 10077 /* Enable manual control with low on / high on. */ 10078 } else if (eep_config.termination == 3) { 10079 asc_dvc->cfg->termination = 10080 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L; 10081 } else { 10082 /* 10083 * The EEPROM 'termination' field contains a bad value. Use 10084 * automatic termination instead. 10085 */ 10086 asc_dvc->cfg->termination = 0; 10087 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10088 } 10089 } 10090 10091 return warn_code; 10092 } 10093 10094 /* 10095 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and 10096 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while 10097 * all of this is done. 10098 * 10099 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10100 * 10101 * For a non-fatal error return a warning code. If there are no warnings 10102 * then 0 is returned. 10103 * 10104 * Note: Chip is stopped on entry. 10105 */ 10106 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc) 10107 { 10108 AdvPortAddr iop_base; 10109 ushort warn_code; 10110 ADVEEP_38C0800_CONFIG eep_config; 10111 uchar tid, termination; 10112 ushort sdtr_speed = 0; 10113 10114 iop_base = asc_dvc->iop_base; 10115 10116 warn_code = 0; 10117 10118 /* 10119 * Read the board's EEPROM configuration. 10120 * 10121 * Set default values if a bad checksum is found. 10122 */ 10123 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) != 10124 eep_config.check_sum) { 10125 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10126 10127 /* 10128 * Set EEPROM default values. 10129 */ 10130 memcpy(&eep_config, &Default_38C0800_EEPROM_Config, 10131 sizeof(ADVEEP_38C0800_CONFIG)); 10132 10133 /* 10134 * Assume the 6 byte board serial number that was read from 10135 * EEPROM is correct even if the EEPROM checksum failed. 10136 */ 10137 eep_config.serial_number_word3 = 10138 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10139 10140 eep_config.serial_number_word2 = 10141 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10142 10143 eep_config.serial_number_word1 = 10144 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10145 10146 AdvSet38C0800EEPConfig(iop_base, &eep_config); 10147 } 10148 /* 10149 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the 10150 * EEPROM configuration that was read. 10151 * 10152 * This is the mapping of EEPROM fields to Adv Library fields. 10153 */ 10154 asc_dvc->wdtr_able = eep_config.wdtr_able; 10155 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; 10156 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; 10157 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; 10158 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; 10159 asc_dvc->tagqng_able = eep_config.tagqng_able; 10160 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10161 asc_dvc->max_host_qng = eep_config.max_host_qng; 10162 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10163 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); 10164 asc_dvc->start_motor = eep_config.start_motor; 10165 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10166 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10167 asc_dvc->no_scam = eep_config.scam_tolerant; 10168 asc_dvc->cfg->serial1 = eep_config.serial_number_word1; 10169 asc_dvc->cfg->serial2 = eep_config.serial_number_word2; 10170 asc_dvc->cfg->serial3 = eep_config.serial_number_word3; 10171 10172 /* 10173 * For every Target ID if any of its 'sdtr_speed[1234]' bits 10174 * are set, then set an 'sdtr_able' bit for it. 10175 */ 10176 asc_dvc->sdtr_able = 0; 10177 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 10178 if (tid == 0) { 10179 sdtr_speed = asc_dvc->sdtr_speed1; 10180 } else if (tid == 4) { 10181 sdtr_speed = asc_dvc->sdtr_speed2; 10182 } else if (tid == 8) { 10183 sdtr_speed = asc_dvc->sdtr_speed3; 10184 } else if (tid == 12) { 10185 sdtr_speed = asc_dvc->sdtr_speed4; 10186 } 10187 if (sdtr_speed & ADV_MAX_TID) { 10188 asc_dvc->sdtr_able |= (1 << tid); 10189 } 10190 sdtr_speed >>= 4; 10191 } 10192 10193 /* 10194 * Set the host maximum queuing (max. 253, min. 16) and the per device 10195 * maximum queuing (max. 63, min. 4). 10196 */ 10197 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10198 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10199 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10200 /* If the value is zero, assume it is uninitialized. */ 10201 if (eep_config.max_host_qng == 0) { 10202 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10203 } else { 10204 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10205 } 10206 } 10207 10208 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10209 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10210 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10211 /* If the value is zero, assume it is uninitialized. */ 10212 if (eep_config.max_dvc_qng == 0) { 10213 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10214 } else { 10215 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10216 } 10217 } 10218 10219 /* 10220 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10221 * set 'max_dvc_qng' to 'max_host_qng'. 10222 */ 10223 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10224 eep_config.max_dvc_qng = eep_config.max_host_qng; 10225 } 10226 10227 /* 10228 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' 10229 * values based on possibly adjusted EEPROM values. 10230 */ 10231 asc_dvc->max_host_qng = eep_config.max_host_qng; 10232 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10233 10234 /* 10235 * If the EEPROM 'termination' field is set to automatic (0), then set 10236 * the ADV_DVC_CFG 'termination' field to automatic also. 10237 * 10238 * If the termination is specified with a non-zero 'termination' 10239 * value check that a legal value is set and set the ADV_DVC_CFG 10240 * 'termination' field appropriately. 10241 */ 10242 if (eep_config.termination_se == 0) { 10243 termination = 0; /* auto termination for SE */ 10244 } else { 10245 /* Enable manual control with low off / high off. */ 10246 if (eep_config.termination_se == 1) { 10247 termination = 0; 10248 10249 /* Enable manual control with low off / high on. */ 10250 } else if (eep_config.termination_se == 2) { 10251 termination = TERM_SE_HI; 10252 10253 /* Enable manual control with low on / high on. */ 10254 } else if (eep_config.termination_se == 3) { 10255 termination = TERM_SE; 10256 } else { 10257 /* 10258 * The EEPROM 'termination_se' field contains a bad value. 10259 * Use automatic termination instead. 10260 */ 10261 termination = 0; 10262 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10263 } 10264 } 10265 10266 if (eep_config.termination_lvd == 0) { 10267 asc_dvc->cfg->termination = termination; /* auto termination for LVD */ 10268 } else { 10269 /* Enable manual control with low off / high off. */ 10270 if (eep_config.termination_lvd == 1) { 10271 asc_dvc->cfg->termination = termination; 10272 10273 /* Enable manual control with low off / high on. */ 10274 } else if (eep_config.termination_lvd == 2) { 10275 asc_dvc->cfg->termination = termination | TERM_LVD_HI; 10276 10277 /* Enable manual control with low on / high on. */ 10278 } else if (eep_config.termination_lvd == 3) { 10279 asc_dvc->cfg->termination = termination | TERM_LVD; 10280 } else { 10281 /* 10282 * The EEPROM 'termination_lvd' field contains a bad value. 10283 * Use automatic termination instead. 10284 */ 10285 asc_dvc->cfg->termination = termination; 10286 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10287 } 10288 } 10289 10290 return warn_code; 10291 } 10292 10293 /* 10294 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and 10295 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while 10296 * all of this is done. 10297 * 10298 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. 10299 * 10300 * For a non-fatal error return a warning code. If there are no warnings 10301 * then 0 is returned. 10302 * 10303 * Note: Chip is stopped on entry. 10304 */ 10305 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc) 10306 { 10307 AdvPortAddr iop_base; 10308 ushort warn_code; 10309 ADVEEP_38C1600_CONFIG eep_config; 10310 uchar tid, termination; 10311 ushort sdtr_speed = 0; 10312 10313 iop_base = asc_dvc->iop_base; 10314 10315 warn_code = 0; 10316 10317 /* 10318 * Read the board's EEPROM configuration. 10319 * 10320 * Set default values if a bad checksum is found. 10321 */ 10322 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) != 10323 eep_config.check_sum) { 10324 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); 10325 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10326 10327 /* 10328 * Set EEPROM default values. 10329 */ 10330 memcpy(&eep_config, &Default_38C1600_EEPROM_Config, 10331 sizeof(ADVEEP_38C1600_CONFIG)); 10332 10333 if (PCI_FUNC(pdev->devfn) != 0) { 10334 u8 ints; 10335 /* 10336 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 10337 * and old Mac system booting problem. The Expansion 10338 * ROM must be disabled in Function 1 for these systems 10339 */ 10340 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE; 10341 /* 10342 * Clear the INTAB (bit 11) if the GPIO 0 input 10343 * indicates the Function 1 interrupt line is wired 10344 * to INTB. 10345 * 10346 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input: 10347 * 1 - Function 1 interrupt line wired to INT A. 10348 * 0 - Function 1 interrupt line wired to INT B. 10349 * 10350 * Note: Function 0 is always wired to INTA. 10351 * Put all 5 GPIO bits in input mode and then read 10352 * their input values. 10353 */ 10354 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0); 10355 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA); 10356 if ((ints & 0x01) == 0) 10357 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB; 10358 } 10359 10360 /* 10361 * Assume the 6 byte board serial number that was read from 10362 * EEPROM is correct even if the EEPROM checksum failed. 10363 */ 10364 eep_config.serial_number_word3 = 10365 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10366 eep_config.serial_number_word2 = 10367 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10368 eep_config.serial_number_word1 = 10369 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10370 10371 AdvSet38C1600EEPConfig(iop_base, &eep_config); 10372 } 10373 10374 /* 10375 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the 10376 * EEPROM configuration that was read. 10377 * 10378 * This is the mapping of EEPROM fields to Adv Library fields. 10379 */ 10380 asc_dvc->wdtr_able = eep_config.wdtr_able; 10381 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; 10382 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; 10383 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; 10384 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; 10385 asc_dvc->ppr_able = 0; 10386 asc_dvc->tagqng_able = eep_config.tagqng_able; 10387 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10388 asc_dvc->max_host_qng = eep_config.max_host_qng; 10389 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10390 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID); 10391 asc_dvc->start_motor = eep_config.start_motor; 10392 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10393 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10394 asc_dvc->no_scam = eep_config.scam_tolerant; 10395 10396 /* 10397 * For every Target ID if any of its 'sdtr_speed[1234]' bits 10398 * are set, then set an 'sdtr_able' bit for it. 10399 */ 10400 asc_dvc->sdtr_able = 0; 10401 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 10402 if (tid == 0) { 10403 sdtr_speed = asc_dvc->sdtr_speed1; 10404 } else if (tid == 4) { 10405 sdtr_speed = asc_dvc->sdtr_speed2; 10406 } else if (tid == 8) { 10407 sdtr_speed = asc_dvc->sdtr_speed3; 10408 } else if (tid == 12) { 10409 sdtr_speed = asc_dvc->sdtr_speed4; 10410 } 10411 if (sdtr_speed & ASC_MAX_TID) { 10412 asc_dvc->sdtr_able |= (1 << tid); 10413 } 10414 sdtr_speed >>= 4; 10415 } 10416 10417 /* 10418 * Set the host maximum queuing (max. 253, min. 16) and the per device 10419 * maximum queuing (max. 63, min. 4). 10420 */ 10421 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10422 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10423 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10424 /* If the value is zero, assume it is uninitialized. */ 10425 if (eep_config.max_host_qng == 0) { 10426 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10427 } else { 10428 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10429 } 10430 } 10431 10432 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10433 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10434 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10435 /* If the value is zero, assume it is uninitialized. */ 10436 if (eep_config.max_dvc_qng == 0) { 10437 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10438 } else { 10439 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10440 } 10441 } 10442 10443 /* 10444 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10445 * set 'max_dvc_qng' to 'max_host_qng'. 10446 */ 10447 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10448 eep_config.max_dvc_qng = eep_config.max_host_qng; 10449 } 10450 10451 /* 10452 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng' 10453 * values based on possibly adjusted EEPROM values. 10454 */ 10455 asc_dvc->max_host_qng = eep_config.max_host_qng; 10456 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10457 10458 /* 10459 * If the EEPROM 'termination' field is set to automatic (0), then set 10460 * the ASC_DVC_CFG 'termination' field to automatic also. 10461 * 10462 * If the termination is specified with a non-zero 'termination' 10463 * value check that a legal value is set and set the ASC_DVC_CFG 10464 * 'termination' field appropriately. 10465 */ 10466 if (eep_config.termination_se == 0) { 10467 termination = 0; /* auto termination for SE */ 10468 } else { 10469 /* Enable manual control with low off / high off. */ 10470 if (eep_config.termination_se == 1) { 10471 termination = 0; 10472 10473 /* Enable manual control with low off / high on. */ 10474 } else if (eep_config.termination_se == 2) { 10475 termination = TERM_SE_HI; 10476 10477 /* Enable manual control with low on / high on. */ 10478 } else if (eep_config.termination_se == 3) { 10479 termination = TERM_SE; 10480 } else { 10481 /* 10482 * The EEPROM 'termination_se' field contains a bad value. 10483 * Use automatic termination instead. 10484 */ 10485 termination = 0; 10486 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10487 } 10488 } 10489 10490 if (eep_config.termination_lvd == 0) { 10491 asc_dvc->cfg->termination = termination; /* auto termination for LVD */ 10492 } else { 10493 /* Enable manual control with low off / high off. */ 10494 if (eep_config.termination_lvd == 1) { 10495 asc_dvc->cfg->termination = termination; 10496 10497 /* Enable manual control with low off / high on. */ 10498 } else if (eep_config.termination_lvd == 2) { 10499 asc_dvc->cfg->termination = termination | TERM_LVD_HI; 10500 10501 /* Enable manual control with low on / high on. */ 10502 } else if (eep_config.termination_lvd == 3) { 10503 asc_dvc->cfg->termination = termination | TERM_LVD; 10504 } else { 10505 /* 10506 * The EEPROM 'termination_lvd' field contains a bad value. 10507 * Use automatic termination instead. 10508 */ 10509 asc_dvc->cfg->termination = termination; 10510 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10511 } 10512 } 10513 10514 return warn_code; 10515 } 10516 10517 /* 10518 * Initialize the ADV_DVC_VAR structure. 10519 * 10520 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10521 * 10522 * For a non-fatal error return a warning code. If there are no warnings 10523 * then 0 is returned. 10524 */ 10525 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) 10526 { 10527 struct asc_board *board = shost_priv(shost); 10528 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var; 10529 unsigned short warn_code = 0; 10530 AdvPortAddr iop_base = asc_dvc->iop_base; 10531 u16 cmd; 10532 int status; 10533 10534 asc_dvc->err_code = 0; 10535 10536 /* 10537 * Save the state of the PCI Configuration Command Register 10538 * "Parity Error Response Control" Bit. If the bit is clear (0), 10539 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore 10540 * DMA parity errors. 10541 */ 10542 asc_dvc->cfg->control_flag = 0; 10543 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 10544 if ((cmd & PCI_COMMAND_PARITY) == 0) 10545 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR; 10546 10547 asc_dvc->cfg->chip_version = 10548 AdvGetChipVersion(iop_base, asc_dvc->bus_type); 10549 10550 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n", 10551 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1), 10552 (ushort)ADV_CHIP_ID_BYTE); 10553 10554 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n", 10555 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0), 10556 (ushort)ADV_CHIP_ID_WORD); 10557 10558 /* 10559 * Reset the chip to start and allow register writes. 10560 */ 10561 if (AdvFindSignature(iop_base) == 0) { 10562 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 10563 return ADV_ERROR; 10564 } else { 10565 /* 10566 * The caller must set 'chip_type' to a valid setting. 10567 */ 10568 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 && 10569 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 && 10570 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { 10571 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE; 10572 return ADV_ERROR; 10573 } 10574 10575 /* 10576 * Reset Chip. 10577 */ 10578 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 10579 ADV_CTRL_REG_CMD_RESET); 10580 mdelay(100); 10581 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 10582 ADV_CTRL_REG_CMD_WR_IO_REG); 10583 10584 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 10585 status = AdvInitFrom38C1600EEP(asc_dvc); 10586 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 10587 status = AdvInitFrom38C0800EEP(asc_dvc); 10588 } else { 10589 status = AdvInitFrom3550EEP(asc_dvc); 10590 } 10591 warn_code |= status; 10592 } 10593 10594 if (warn_code != 0) 10595 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code); 10596 10597 if (asc_dvc->err_code) 10598 shost_printk(KERN_ERR, shost, "error code 0x%x\n", 10599 asc_dvc->err_code); 10600 10601 return asc_dvc->err_code; 10602 } 10603 #endif 10604 10605 static const struct scsi_host_template advansys_template = { 10606 .proc_name = DRV_NAME, 10607 #ifdef CONFIG_PROC_FS 10608 .show_info = advansys_show_info, 10609 #endif 10610 .name = DRV_NAME, 10611 .info = advansys_info, 10612 .queuecommand = advansys_queuecommand, 10613 .eh_host_reset_handler = advansys_reset, 10614 .bios_param = advansys_biosparam, 10615 .slave_configure = advansys_slave_configure, 10616 .cmd_size = sizeof(struct advansys_cmd), 10617 }; 10618 10619 static int advansys_wide_init_chip(struct Scsi_Host *shost) 10620 { 10621 struct asc_board *board = shost_priv(shost); 10622 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; 10623 size_t sgblk_pool_size; 10624 int warn_code, err_code; 10625 10626 /* 10627 * Allocate buffer carrier structures. The total size 10628 * is about 8 KB, so allocate all at once. 10629 */ 10630 adv_dvc->carrier = dma_alloc_coherent(board->dev, 10631 ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL); 10632 ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier); 10633 10634 if (!adv_dvc->carrier) 10635 goto kmalloc_failed; 10636 10637 /* 10638 * Allocate up to 'max_host_qng' request structures for the Wide 10639 * board. The total size is about 16 KB, so allocate all at once. 10640 * If the allocation fails decrement and try again. 10641 */ 10642 board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t); 10643 if (board->adv_reqp_size & 0x1f) { 10644 ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t)); 10645 board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size); 10646 } 10647 board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size, 10648 &board->adv_reqp_addr, GFP_KERNEL); 10649 10650 if (!board->adv_reqp) 10651 goto kmalloc_failed; 10652 10653 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp, 10654 adv_dvc->max_host_qng, board->adv_reqp_size); 10655 10656 /* 10657 * Allocate up to ADV_TOT_SG_BLOCK request structures for 10658 * the Wide board. Each structure is about 136 bytes. 10659 */ 10660 sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK; 10661 board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev, 10662 sgblk_pool_size, 32, 0); 10663 10664 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK, 10665 sizeof(adv_sgblk_t), sgblk_pool_size); 10666 10667 if (!board->adv_sgblk_pool) 10668 goto kmalloc_failed; 10669 10670 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) { 10671 ASC_DBG(2, "AdvInitAsc3550Driver()\n"); 10672 warn_code = AdvInitAsc3550Driver(adv_dvc); 10673 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) { 10674 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n"); 10675 warn_code = AdvInitAsc38C0800Driver(adv_dvc); 10676 } else { 10677 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n"); 10678 warn_code = AdvInitAsc38C1600Driver(adv_dvc); 10679 } 10680 err_code = adv_dvc->err_code; 10681 10682 if (warn_code || err_code) { 10683 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error " 10684 "0x%x\n", warn_code, err_code); 10685 } 10686 10687 goto exit; 10688 10689 kmalloc_failed: 10690 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n"); 10691 err_code = ADV_ERROR; 10692 exit: 10693 return err_code; 10694 } 10695 10696 static void advansys_wide_free_mem(struct asc_board *board) 10697 { 10698 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; 10699 10700 if (adv_dvc->carrier) { 10701 dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE, 10702 adv_dvc->carrier, adv_dvc->carrier_addr); 10703 adv_dvc->carrier = NULL; 10704 } 10705 if (board->adv_reqp) { 10706 dma_free_coherent(board->dev, board->adv_reqp_size, 10707 board->adv_reqp, board->adv_reqp_addr); 10708 board->adv_reqp = NULL; 10709 } 10710 if (board->adv_sgblk_pool) { 10711 dma_pool_destroy(board->adv_sgblk_pool); 10712 board->adv_sgblk_pool = NULL; 10713 } 10714 } 10715 10716 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop, 10717 int bus_type) 10718 { 10719 struct pci_dev *pdev; 10720 struct asc_board *boardp = shost_priv(shost); 10721 ASC_DVC_VAR *asc_dvc_varp = NULL; 10722 ADV_DVC_VAR *adv_dvc_varp = NULL; 10723 int share_irq, warn_code, ret; 10724 10725 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL; 10726 10727 if (ASC_NARROW_BOARD(boardp)) { 10728 ASC_DBG(1, "narrow board\n"); 10729 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 10730 asc_dvc_varp->bus_type = bus_type; 10731 asc_dvc_varp->drv_ptr = boardp; 10732 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg; 10733 asc_dvc_varp->iop_base = iop; 10734 } else { 10735 #ifdef CONFIG_PCI 10736 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 10737 adv_dvc_varp->drv_ptr = boardp; 10738 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg; 10739 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) { 10740 ASC_DBG(1, "wide board ASC-3550\n"); 10741 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550; 10742 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) { 10743 ASC_DBG(1, "wide board ASC-38C0800\n"); 10744 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800; 10745 } else { 10746 ASC_DBG(1, "wide board ASC-38C1600\n"); 10747 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600; 10748 } 10749 10750 boardp->asc_n_io_port = pci_resource_len(pdev, 1); 10751 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1); 10752 if (!boardp->ioremap_addr) { 10753 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) " 10754 "returned NULL\n", 10755 (long)pci_resource_start(pdev, 1), 10756 boardp->asc_n_io_port); 10757 ret = -ENODEV; 10758 goto err_shost; 10759 } 10760 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr; 10761 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base); 10762 10763 /* 10764 * Even though it isn't used to access wide boards, other 10765 * than for the debug line below, save I/O Port address so 10766 * that it can be reported. 10767 */ 10768 boardp->ioport = iop; 10769 10770 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n", 10771 (ushort)inp(iop + 1), (ushort)inpw(iop)); 10772 #endif /* CONFIG_PCI */ 10773 } 10774 10775 if (ASC_NARROW_BOARD(boardp)) { 10776 /* 10777 * Set the board bus type and PCI IRQ before 10778 * calling AscInitGetConfig(). 10779 */ 10780 switch (asc_dvc_varp->bus_type) { 10781 #ifdef CONFIG_ISA 10782 case ASC_IS_VL: 10783 share_irq = 0; 10784 break; 10785 case ASC_IS_EISA: 10786 share_irq = IRQF_SHARED; 10787 break; 10788 #endif /* CONFIG_ISA */ 10789 #ifdef CONFIG_PCI 10790 case ASC_IS_PCI: 10791 share_irq = IRQF_SHARED; 10792 break; 10793 #endif /* CONFIG_PCI */ 10794 default: 10795 shost_printk(KERN_ERR, shost, "unknown adapter type: " 10796 "%d\n", asc_dvc_varp->bus_type); 10797 share_irq = 0; 10798 break; 10799 } 10800 10801 /* 10802 * NOTE: AscInitGetConfig() may change the board's 10803 * bus_type value. The bus_type value should no 10804 * longer be used. If the bus_type field must be 10805 * referenced only use the bit-wise AND operator "&". 10806 */ 10807 ASC_DBG(2, "AscInitGetConfig()\n"); 10808 ret = AscInitGetConfig(shost) ? -ENODEV : 0; 10809 } else { 10810 #ifdef CONFIG_PCI 10811 /* 10812 * For Wide boards set PCI information before calling 10813 * AdvInitGetConfig(). 10814 */ 10815 share_irq = IRQF_SHARED; 10816 ASC_DBG(2, "AdvInitGetConfig()\n"); 10817 10818 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0; 10819 #else 10820 share_irq = 0; 10821 ret = -ENODEV; 10822 #endif /* CONFIG_PCI */ 10823 } 10824 10825 if (ret) 10826 goto err_unmap; 10827 10828 /* 10829 * Save the EEPROM configuration so that it can be displayed 10830 * from /proc/scsi/advansys/[0...]. 10831 */ 10832 if (ASC_NARROW_BOARD(boardp)) { 10833 10834 ASCEEP_CONFIG *ep; 10835 10836 /* 10837 * Set the adapter's target id bit in the 'init_tidmask' field. 10838 */ 10839 boardp->init_tidmask |= 10840 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id); 10841 10842 /* 10843 * Save EEPROM settings for the board. 10844 */ 10845 ep = &boardp->eep_config.asc_eep; 10846 10847 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable; 10848 ep->disc_enable = asc_dvc_varp->cfg->disc_enable; 10849 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled; 10850 ASC_EEP_SET_DMA_SPD(ep, ASC_DEF_ISA_DMA_SPEED); 10851 ep->start_motor = asc_dvc_varp->start_motor; 10852 ep->cntl = asc_dvc_varp->dvc_cntl; 10853 ep->no_scam = asc_dvc_varp->no_scam; 10854 ep->max_total_qng = asc_dvc_varp->max_total_qng; 10855 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id); 10856 /* 'max_tag_qng' is set to the same value for every device. */ 10857 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0]; 10858 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0]; 10859 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1]; 10860 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2]; 10861 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3]; 10862 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4]; 10863 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5]; 10864 10865 /* 10866 * Modify board configuration. 10867 */ 10868 ASC_DBG(2, "AscInitSetConfig()\n"); 10869 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0; 10870 if (ret) 10871 goto err_unmap; 10872 } else { 10873 ADVEEP_3550_CONFIG *ep_3550; 10874 ADVEEP_38C0800_CONFIG *ep_38C0800; 10875 ADVEEP_38C1600_CONFIG *ep_38C1600; 10876 10877 /* 10878 * Save Wide EEP Configuration Information. 10879 */ 10880 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 10881 ep_3550 = &boardp->eep_config.adv_3550_eep; 10882 10883 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; 10884 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng; 10885 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 10886 ep_3550->termination = adv_dvc_varp->cfg->termination; 10887 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable; 10888 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl; 10889 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able; 10890 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able; 10891 ep_3550->ultra_able = adv_dvc_varp->ultra_able; 10892 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able; 10893 ep_3550->start_motor = adv_dvc_varp->start_motor; 10894 ep_3550->scsi_reset_delay = 10895 adv_dvc_varp->scsi_reset_wait; 10896 ep_3550->serial_number_word1 = 10897 adv_dvc_varp->cfg->serial1; 10898 ep_3550->serial_number_word2 = 10899 adv_dvc_varp->cfg->serial2; 10900 ep_3550->serial_number_word3 = 10901 adv_dvc_varp->cfg->serial3; 10902 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 10903 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; 10904 10905 ep_38C0800->adapter_scsi_id = 10906 adv_dvc_varp->chip_scsi_id; 10907 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng; 10908 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 10909 ep_38C0800->termination_lvd = 10910 adv_dvc_varp->cfg->termination; 10911 ep_38C0800->disc_enable = 10912 adv_dvc_varp->cfg->disc_enable; 10913 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl; 10914 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able; 10915 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; 10916 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; 10917 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; 10918 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; 10919 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; 10920 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; 10921 ep_38C0800->start_motor = adv_dvc_varp->start_motor; 10922 ep_38C0800->scsi_reset_delay = 10923 adv_dvc_varp->scsi_reset_wait; 10924 ep_38C0800->serial_number_word1 = 10925 adv_dvc_varp->cfg->serial1; 10926 ep_38C0800->serial_number_word2 = 10927 adv_dvc_varp->cfg->serial2; 10928 ep_38C0800->serial_number_word3 = 10929 adv_dvc_varp->cfg->serial3; 10930 } else { 10931 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; 10932 10933 ep_38C1600->adapter_scsi_id = 10934 adv_dvc_varp->chip_scsi_id; 10935 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng; 10936 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 10937 ep_38C1600->termination_lvd = 10938 adv_dvc_varp->cfg->termination; 10939 ep_38C1600->disc_enable = 10940 adv_dvc_varp->cfg->disc_enable; 10941 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl; 10942 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able; 10943 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; 10944 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; 10945 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; 10946 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; 10947 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; 10948 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; 10949 ep_38C1600->start_motor = adv_dvc_varp->start_motor; 10950 ep_38C1600->scsi_reset_delay = 10951 adv_dvc_varp->scsi_reset_wait; 10952 ep_38C1600->serial_number_word1 = 10953 adv_dvc_varp->cfg->serial1; 10954 ep_38C1600->serial_number_word2 = 10955 adv_dvc_varp->cfg->serial2; 10956 ep_38C1600->serial_number_word3 = 10957 adv_dvc_varp->cfg->serial3; 10958 } 10959 10960 /* 10961 * Set the adapter's target id bit in the 'init_tidmask' field. 10962 */ 10963 boardp->init_tidmask |= 10964 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id); 10965 } 10966 10967 /* 10968 * Channels are numbered beginning with 0. For AdvanSys one host 10969 * structure supports one channel. Multi-channel boards have a 10970 * separate host structure for each channel. 10971 */ 10972 shost->max_channel = 0; 10973 if (ASC_NARROW_BOARD(boardp)) { 10974 shost->max_id = ASC_MAX_TID + 1; 10975 shost->max_lun = ASC_MAX_LUN + 1; 10976 shost->max_cmd_len = ASC_MAX_CDB_LEN; 10977 10978 shost->io_port = asc_dvc_varp->iop_base; 10979 boardp->asc_n_io_port = ASC_IOADR_GAP; 10980 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id; 10981 10982 /* Set maximum number of queues the adapter can handle. */ 10983 shost->can_queue = asc_dvc_varp->max_total_qng; 10984 } else { 10985 shost->max_id = ADV_MAX_TID + 1; 10986 shost->max_lun = ADV_MAX_LUN + 1; 10987 shost->max_cmd_len = ADV_MAX_CDB_LEN; 10988 10989 /* 10990 * Save the I/O Port address and length even though 10991 * I/O ports are not used to access Wide boards. 10992 * Instead the Wide boards are accessed with 10993 * PCI Memory Mapped I/O. 10994 */ 10995 shost->io_port = iop; 10996 10997 shost->this_id = adv_dvc_varp->chip_scsi_id; 10998 10999 /* Set maximum number of queues the adapter can handle. */ 11000 shost->can_queue = adv_dvc_varp->max_host_qng; 11001 } 11002 11003 /* 11004 * Set the maximum number of scatter-gather elements the 11005 * adapter can handle. 11006 */ 11007 if (ASC_NARROW_BOARD(boardp)) { 11008 /* 11009 * Allow two commands with 'sg_tablesize' scatter-gather 11010 * elements to be executed simultaneously. This value is 11011 * the theoretical hardware limit. It may be decreased 11012 * below. 11013 */ 11014 shost->sg_tablesize = 11015 (((asc_dvc_varp->max_total_qng - 2) / 2) * 11016 ASC_SG_LIST_PER_Q) + 1; 11017 } else { 11018 shost->sg_tablesize = ADV_MAX_SG_LIST; 11019 } 11020 11021 /* 11022 * The value of 'sg_tablesize' can not exceed the SCSI 11023 * mid-level driver definition of SG_ALL. SG_ALL also 11024 * must not be exceeded, because it is used to define the 11025 * size of the scatter-gather table in 'struct asc_sg_head'. 11026 */ 11027 if (shost->sg_tablesize > SG_ALL) { 11028 shost->sg_tablesize = SG_ALL; 11029 } 11030 11031 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize); 11032 11033 /* BIOS start address. */ 11034 if (ASC_NARROW_BOARD(boardp)) { 11035 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base, 11036 asc_dvc_varp->bus_type); 11037 } else { 11038 /* 11039 * Fill-in BIOS board variables. The Wide BIOS saves 11040 * information in LRAM that is used by the driver. 11041 */ 11042 AdvReadWordLram(adv_dvc_varp->iop_base, 11043 BIOS_SIGNATURE, boardp->bios_signature); 11044 AdvReadWordLram(adv_dvc_varp->iop_base, 11045 BIOS_VERSION, boardp->bios_version); 11046 AdvReadWordLram(adv_dvc_varp->iop_base, 11047 BIOS_CODESEG, boardp->bios_codeseg); 11048 AdvReadWordLram(adv_dvc_varp->iop_base, 11049 BIOS_CODELEN, boardp->bios_codelen); 11050 11051 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n", 11052 boardp->bios_signature, boardp->bios_version); 11053 11054 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n", 11055 boardp->bios_codeseg, boardp->bios_codelen); 11056 11057 /* 11058 * If the BIOS saved a valid signature, then fill in 11059 * the BIOS code segment base address. 11060 */ 11061 if (boardp->bios_signature == 0x55AA) { 11062 /* 11063 * Convert x86 realmode code segment to a linear 11064 * address by shifting left 4. 11065 */ 11066 shost->base = ((ulong)boardp->bios_codeseg << 4); 11067 } else { 11068 shost->base = 0; 11069 } 11070 } 11071 11072 /* 11073 * Register Board Resources - I/O Port, DMA, IRQ 11074 */ 11075 11076 /* Register DMA Channel for Narrow boards. */ 11077 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */ 11078 11079 /* Register IRQ Number. */ 11080 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost); 11081 11082 ret = request_irq(boardp->irq, advansys_interrupt, share_irq, 11083 DRV_NAME, shost); 11084 11085 if (ret) { 11086 if (ret == -EBUSY) { 11087 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11088 "already in use\n", boardp->irq); 11089 } else if (ret == -EINVAL) { 11090 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11091 "not valid\n", boardp->irq); 11092 } else { 11093 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11094 "failed with %d\n", boardp->irq, ret); 11095 } 11096 goto err_unmap; 11097 } 11098 11099 /* 11100 * Initialize board RISC chip and enable interrupts. 11101 */ 11102 if (ASC_NARROW_BOARD(boardp)) { 11103 ASC_DBG(2, "AscInitAsc1000Driver()\n"); 11104 11105 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL); 11106 if (!asc_dvc_varp->overrun_buf) { 11107 ret = -ENOMEM; 11108 goto err_free_irq; 11109 } 11110 warn_code = AscInitAsc1000Driver(asc_dvc_varp); 11111 11112 if (warn_code || asc_dvc_varp->err_code) { 11113 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, " 11114 "warn 0x%x, error 0x%x\n", 11115 asc_dvc_varp->init_state, warn_code, 11116 asc_dvc_varp->err_code); 11117 if (!asc_dvc_varp->overrun_dma) { 11118 ret = -ENODEV; 11119 goto err_free_mem; 11120 } 11121 } 11122 } else { 11123 if (advansys_wide_init_chip(shost)) { 11124 ret = -ENODEV; 11125 goto err_free_mem; 11126 } 11127 } 11128 11129 ASC_DBG_PRT_SCSI_HOST(2, shost); 11130 11131 ret = scsi_add_host(shost, boardp->dev); 11132 if (ret) 11133 goto err_free_mem; 11134 11135 scsi_scan_host(shost); 11136 return 0; 11137 11138 err_free_mem: 11139 if (ASC_NARROW_BOARD(boardp)) { 11140 if (asc_dvc_varp->overrun_dma) 11141 dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma, 11142 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 11143 kfree(asc_dvc_varp->overrun_buf); 11144 } else 11145 advansys_wide_free_mem(boardp); 11146 err_free_irq: 11147 free_irq(boardp->irq, shost); 11148 err_unmap: 11149 if (boardp->ioremap_addr) 11150 iounmap(boardp->ioremap_addr); 11151 #ifdef CONFIG_PCI 11152 err_shost: 11153 #endif 11154 return ret; 11155 } 11156 11157 /* 11158 * advansys_release() 11159 * 11160 * Release resources allocated for a single AdvanSys adapter. 11161 */ 11162 static int advansys_release(struct Scsi_Host *shost) 11163 { 11164 struct asc_board *board = shost_priv(shost); 11165 ASC_DBG(1, "begin\n"); 11166 scsi_remove_host(shost); 11167 free_irq(board->irq, shost); 11168 11169 if (ASC_NARROW_BOARD(board)) { 11170 dma_unmap_single(board->dev, 11171 board->dvc_var.asc_dvc_var.overrun_dma, 11172 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 11173 kfree(board->dvc_var.asc_dvc_var.overrun_buf); 11174 } else { 11175 iounmap(board->ioremap_addr); 11176 advansys_wide_free_mem(board); 11177 } 11178 scsi_host_put(shost); 11179 ASC_DBG(1, "end\n"); 11180 return 0; 11181 } 11182 11183 #define ASC_IOADR_TABLE_MAX_IX 11 11184 11185 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = { 11186 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190, 11187 0x0210, 0x0230, 0x0250, 0x0330 11188 }; 11189 11190 static void advansys_vlb_remove(struct device *dev, unsigned int id) 11191 { 11192 int ioport = _asc_def_iop_base[id]; 11193 advansys_release(dev_get_drvdata(dev)); 11194 release_region(ioport, ASC_IOADR_GAP); 11195 } 11196 11197 /* 11198 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as: 11199 * 000: invalid 11200 * 001: 10 11201 * 010: 11 11202 * 011: 12 11203 * 100: invalid 11204 * 101: 14 11205 * 110: 15 11206 * 111: invalid 11207 */ 11208 static unsigned int advansys_vlb_irq_no(PortAddr iop_base) 11209 { 11210 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); 11211 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9; 11212 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15)) 11213 return 0; 11214 return chip_irq; 11215 } 11216 11217 static int advansys_vlb_probe(struct device *dev, unsigned int id) 11218 { 11219 int err = -ENODEV; 11220 PortAddr iop_base = _asc_def_iop_base[id]; 11221 struct Scsi_Host *shost; 11222 struct asc_board *board; 11223 11224 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { 11225 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); 11226 return -ENODEV; 11227 } 11228 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); 11229 if (!AscFindSignature(iop_base)) 11230 goto release_region; 11231 /* 11232 * I don't think this condition can actually happen, but the old 11233 * driver did it, and the chances of finding a VLB setup in 2007 11234 * to do testing with is slight to none. 11235 */ 11236 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL) 11237 goto release_region; 11238 11239 err = -ENOMEM; 11240 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11241 if (!shost) 11242 goto release_region; 11243 11244 board = shost_priv(shost); 11245 board->irq = advansys_vlb_irq_no(iop_base); 11246 board->dev = dev; 11247 board->shost = shost; 11248 11249 err = advansys_board_found(shost, iop_base, ASC_IS_VL); 11250 if (err) 11251 goto free_host; 11252 11253 dev_set_drvdata(dev, shost); 11254 return 0; 11255 11256 free_host: 11257 scsi_host_put(shost); 11258 release_region: 11259 release_region(iop_base, ASC_IOADR_GAP); 11260 return -ENODEV; 11261 } 11262 11263 static struct isa_driver advansys_vlb_driver = { 11264 .probe = advansys_vlb_probe, 11265 .remove = advansys_vlb_remove, 11266 .driver = { 11267 .owner = THIS_MODULE, 11268 .name = "advansys_vlb", 11269 }, 11270 }; 11271 11272 static struct eisa_device_id advansys_eisa_table[] = { 11273 { "ABP7401" }, 11274 { "ABP7501" }, 11275 { "" } 11276 }; 11277 11278 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table); 11279 11280 /* 11281 * EISA is a little more tricky than PCI; each EISA device may have two 11282 * channels, and this driver is written to make each channel its own Scsi_Host 11283 */ 11284 struct eisa_scsi_data { 11285 struct Scsi_Host *host[2]; 11286 }; 11287 11288 /* 11289 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as: 11290 * 000: 10 11291 * 001: 11 11292 * 010: 12 11293 * 011: invalid 11294 * 100: 14 11295 * 101: 15 11296 * 110: invalid 11297 * 111: invalid 11298 */ 11299 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev) 11300 { 11301 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86); 11302 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10; 11303 if ((chip_irq == 13) || (chip_irq > 15)) 11304 return 0; 11305 return chip_irq; 11306 } 11307 11308 static int advansys_eisa_probe(struct device *dev) 11309 { 11310 int i, ioport, irq = 0; 11311 int err; 11312 struct eisa_device *edev = to_eisa_device(dev); 11313 struct eisa_scsi_data *data; 11314 11315 err = -ENOMEM; 11316 data = kzalloc(sizeof(*data), GFP_KERNEL); 11317 if (!data) 11318 goto fail; 11319 ioport = edev->base_addr + 0xc30; 11320 11321 err = -ENODEV; 11322 for (i = 0; i < 2; i++, ioport += 0x20) { 11323 struct asc_board *board; 11324 struct Scsi_Host *shost; 11325 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) { 11326 printk(KERN_WARNING "Region %x-%x busy\n", ioport, 11327 ioport + ASC_IOADR_GAP - 1); 11328 continue; 11329 } 11330 if (!AscFindSignature(ioport)) { 11331 release_region(ioport, ASC_IOADR_GAP); 11332 continue; 11333 } 11334 11335 /* 11336 * I don't know why we need to do this for EISA chips, but 11337 * not for any others. It looks to be equivalent to 11338 * AscGetChipCfgMsw, but I may have overlooked something, 11339 * so I'm not converting it until I get an EISA board to 11340 * test with. 11341 */ 11342 inw(ioport + 4); 11343 11344 if (!irq) 11345 irq = advansys_eisa_irq_no(edev); 11346 11347 err = -ENOMEM; 11348 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11349 if (!shost) 11350 goto release_region; 11351 11352 board = shost_priv(shost); 11353 board->irq = irq; 11354 board->dev = dev; 11355 board->shost = shost; 11356 11357 err = advansys_board_found(shost, ioport, ASC_IS_EISA); 11358 if (!err) { 11359 data->host[i] = shost; 11360 continue; 11361 } 11362 11363 scsi_host_put(shost); 11364 release_region: 11365 release_region(ioport, ASC_IOADR_GAP); 11366 break; 11367 } 11368 11369 if (err) 11370 goto free_data; 11371 dev_set_drvdata(dev, data); 11372 return 0; 11373 11374 free_data: 11375 kfree(data->host[0]); 11376 kfree(data->host[1]); 11377 kfree(data); 11378 fail: 11379 return err; 11380 } 11381 11382 static int advansys_eisa_remove(struct device *dev) 11383 { 11384 int i; 11385 struct eisa_scsi_data *data = dev_get_drvdata(dev); 11386 11387 for (i = 0; i < 2; i++) { 11388 int ioport; 11389 struct Scsi_Host *shost = data->host[i]; 11390 if (!shost) 11391 continue; 11392 ioport = shost->io_port; 11393 advansys_release(shost); 11394 release_region(ioport, ASC_IOADR_GAP); 11395 } 11396 11397 kfree(data); 11398 return 0; 11399 } 11400 11401 static struct eisa_driver advansys_eisa_driver = { 11402 .id_table = advansys_eisa_table, 11403 .driver = { 11404 .name = DRV_NAME, 11405 .probe = advansys_eisa_probe, 11406 .remove = advansys_eisa_remove, 11407 } 11408 }; 11409 11410 /* PCI Devices supported by this driver */ 11411 static struct pci_device_id advansys_pci_tbl[] = { 11412 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A, 11413 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11414 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940, 11415 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11416 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U, 11417 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11418 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW, 11419 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11420 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1, 11421 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11422 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1, 11423 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11424 {} 11425 }; 11426 11427 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl); 11428 11429 static void advansys_set_latency(struct pci_dev *pdev) 11430 { 11431 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || 11432 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { 11433 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0); 11434 } else { 11435 u8 latency; 11436 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency); 11437 if (latency < 0x20) 11438 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20); 11439 } 11440 } 11441 11442 static int advansys_pci_probe(struct pci_dev *pdev, 11443 const struct pci_device_id *ent) 11444 { 11445 int err, ioport; 11446 struct Scsi_Host *shost; 11447 struct asc_board *board; 11448 11449 err = pci_enable_device(pdev); 11450 if (err) 11451 goto fail; 11452 err = pci_request_regions(pdev, DRV_NAME); 11453 if (err) 11454 goto disable_device; 11455 pci_set_master(pdev); 11456 advansys_set_latency(pdev); 11457 11458 err = -ENODEV; 11459 if (pci_resource_len(pdev, 0) == 0) 11460 goto release_region; 11461 11462 ioport = pci_resource_start(pdev, 0); 11463 11464 err = -ENOMEM; 11465 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11466 if (!shost) 11467 goto release_region; 11468 11469 board = shost_priv(shost); 11470 board->irq = pdev->irq; 11471 board->dev = &pdev->dev; 11472 board->shost = shost; 11473 11474 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW || 11475 pdev->device == PCI_DEVICE_ID_38C0800_REV1 || 11476 pdev->device == PCI_DEVICE_ID_38C1600_REV1) { 11477 board->flags |= ASC_IS_WIDE_BOARD; 11478 } 11479 11480 err = advansys_board_found(shost, ioport, ASC_IS_PCI); 11481 if (err) 11482 goto free_host; 11483 11484 pci_set_drvdata(pdev, shost); 11485 return 0; 11486 11487 free_host: 11488 scsi_host_put(shost); 11489 release_region: 11490 pci_release_regions(pdev); 11491 disable_device: 11492 pci_disable_device(pdev); 11493 fail: 11494 return err; 11495 } 11496 11497 static void advansys_pci_remove(struct pci_dev *pdev) 11498 { 11499 advansys_release(pci_get_drvdata(pdev)); 11500 pci_release_regions(pdev); 11501 pci_disable_device(pdev); 11502 } 11503 11504 static struct pci_driver advansys_pci_driver = { 11505 .name = DRV_NAME, 11506 .id_table = advansys_pci_tbl, 11507 .probe = advansys_pci_probe, 11508 .remove = advansys_pci_remove, 11509 }; 11510 11511 static int __init advansys_init(void) 11512 { 11513 int error; 11514 11515 error = isa_register_driver(&advansys_vlb_driver, 11516 ASC_IOADR_TABLE_MAX_IX); 11517 if (error) 11518 goto fail; 11519 11520 error = eisa_driver_register(&advansys_eisa_driver); 11521 if (error) 11522 goto unregister_vlb; 11523 11524 error = pci_register_driver(&advansys_pci_driver); 11525 if (error) 11526 goto unregister_eisa; 11527 11528 return 0; 11529 11530 unregister_eisa: 11531 eisa_driver_unregister(&advansys_eisa_driver); 11532 unregister_vlb: 11533 isa_unregister_driver(&advansys_vlb_driver); 11534 fail: 11535 return error; 11536 } 11537 11538 static void __exit advansys_exit(void) 11539 { 11540 pci_unregister_driver(&advansys_pci_driver); 11541 eisa_driver_unregister(&advansys_eisa_driver); 11542 isa_unregister_driver(&advansys_vlb_driver); 11543 } 11544 11545 module_init(advansys_init); 11546 module_exit(advansys_exit); 11547 11548 MODULE_DESCRIPTION("AdvanSys SCSI Adapter driver"); 11549 MODULE_LICENSE("GPL"); 11550 MODULE_FIRMWARE("advansys/mcode.bin"); 11551 MODULE_FIRMWARE("advansys/3550.bin"); 11552 MODULE_FIRMWARE("advansys/38C0800.bin"); 11553 MODULE_FIRMWARE("advansys/38C1600.bin"); 11554