1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters 4 * 5 * Copyright (c) 1995-2000 Advanced System Products, Inc. 6 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc. 7 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx> 8 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de> 9 * All Rights Reserved. 10 */ 11 12 /* 13 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys) 14 * changed its name to ConnectCom Solutions, Inc. 15 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets 16 */ 17 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/kernel.h> 21 #include <linux/types.h> 22 #include <linux/ioport.h> 23 #include <linux/interrupt.h> 24 #include <linux/delay.h> 25 #include <linux/slab.h> 26 #include <linux/mm.h> 27 #include <linux/proc_fs.h> 28 #include <linux/init.h> 29 #include <linux/blkdev.h> 30 #include <linux/isa.h> 31 #include <linux/eisa.h> 32 #include <linux/pci.h> 33 #include <linux/spinlock.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/firmware.h> 36 #include <linux/dmapool.h> 37 38 #include <asm/io.h> 39 #include <asm/dma.h> 40 41 #include <scsi/scsi_cmnd.h> 42 #include <scsi/scsi_device.h> 43 #include <scsi/scsi_tcq.h> 44 #include <scsi/scsi.h> 45 #include <scsi/scsi_host.h> 46 47 #define DRV_NAME "advansys" 48 #define ASC_VERSION "3.5" /* AdvanSys Driver Version */ 49 50 /* FIXME: 51 * 52 * 1. Use scsi_transport_spi 53 * 2. advansys_info is not safe against multiple simultaneous callers 54 * 3. Add module_param to override ISA/VLB ioport array 55 */ 56 57 /* Enable driver /proc statistics. */ 58 #define ADVANSYS_STATS 59 60 /* Enable driver tracing. */ 61 #undef ADVANSYS_DEBUG 62 63 typedef unsigned char uchar; 64 65 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0) 66 67 #define PCI_VENDOR_ID_ASP 0x10cd 68 #define PCI_DEVICE_ID_ASP_1200A 0x1100 69 #define PCI_DEVICE_ID_ASP_ABP940 0x1200 70 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300 71 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300 72 #define PCI_DEVICE_ID_38C0800_REV1 0x2500 73 #define PCI_DEVICE_ID_38C1600_REV1 0x2700 74 75 #define PortAddr unsigned int /* port address size */ 76 #define inp(port) inb(port) 77 #define outp(port, byte) outb((byte), (port)) 78 79 #define inpw(port) inw(port) 80 #define outpw(port, word) outw((word), (port)) 81 82 #define ASC_MAX_SG_QUEUE 7 83 #define ASC_MAX_SG_LIST 255 84 85 #define ASC_CS_TYPE unsigned short 86 87 #define ASC_IS_ISA (0x0001) 88 #define ASC_IS_ISAPNP (0x0081) 89 #define ASC_IS_EISA (0x0002) 90 #define ASC_IS_PCI (0x0004) 91 #define ASC_IS_PCI_ULTRA (0x0104) 92 #define ASC_IS_PCMCIA (0x0008) 93 #define ASC_IS_MCA (0x0020) 94 #define ASC_IS_VL (0x0040) 95 #define ASC_IS_WIDESCSI_16 (0x0100) 96 #define ASC_IS_WIDESCSI_32 (0x0200) 97 #define ASC_IS_BIG_ENDIAN (0x8000) 98 99 #define ASC_CHIP_MIN_VER_VL (0x01) 100 #define ASC_CHIP_MAX_VER_VL (0x07) 101 #define ASC_CHIP_MIN_VER_PCI (0x09) 102 #define ASC_CHIP_MAX_VER_PCI (0x0F) 103 #define ASC_CHIP_VER_PCI_BIT (0x08) 104 #define ASC_CHIP_MIN_VER_ISA (0x11) 105 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21) 106 #define ASC_CHIP_MAX_VER_ISA (0x27) 107 #define ASC_CHIP_VER_ISA_BIT (0x30) 108 #define ASC_CHIP_VER_ISAPNP_BIT (0x20) 109 #define ASC_CHIP_VER_ASYN_BUG (0x21) 110 #define ASC_CHIP_VER_PCI 0x08 111 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02) 112 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03) 113 #define ASC_CHIP_MIN_VER_EISA (0x41) 114 #define ASC_CHIP_MAX_VER_EISA (0x47) 115 #define ASC_CHIP_VER_EISA_BIT (0x40) 116 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3) 117 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL) 118 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL) 119 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL) 120 121 #define ASC_SCSI_ID_BITS 3 122 #define ASC_SCSI_TIX_TYPE uchar 123 #define ASC_ALL_DEVICE_BIT_SET 0xFF 124 #define ASC_SCSI_BIT_ID_TYPE uchar 125 #define ASC_MAX_TID 7 126 #define ASC_MAX_LUN 7 127 #define ASC_SCSI_WIDTH_BIT_SET 0xFF 128 #define ASC_MAX_SENSE_LEN 32 129 #define ASC_MIN_SENSE_LEN 14 130 #define ASC_SCSI_RESET_HOLD_TIME_US 60 131 132 /* 133 * Narrow boards only support 12-byte commands, while wide boards 134 * extend to 16-byte commands. 135 */ 136 #define ASC_MAX_CDB_LEN 12 137 #define ADV_MAX_CDB_LEN 16 138 139 #define MS_SDTR_LEN 0x03 140 #define MS_WDTR_LEN 0x02 141 142 #define ASC_SG_LIST_PER_Q 7 143 #define QS_FREE 0x00 144 #define QS_READY 0x01 145 #define QS_DISC1 0x02 146 #define QS_DISC2 0x04 147 #define QS_BUSY 0x08 148 #define QS_ABORTED 0x40 149 #define QS_DONE 0x80 150 #define QC_NO_CALLBACK 0x01 151 #define QC_SG_SWAP_QUEUE 0x02 152 #define QC_SG_HEAD 0x04 153 #define QC_DATA_IN 0x08 154 #define QC_DATA_OUT 0x10 155 #define QC_URGENT 0x20 156 #define QC_MSG_OUT 0x40 157 #define QC_REQ_SENSE 0x80 158 #define QCSG_SG_XFER_LIST 0x02 159 #define QCSG_SG_XFER_MORE 0x04 160 #define QCSG_SG_XFER_END 0x08 161 #define QD_IN_PROGRESS 0x00 162 #define QD_NO_ERROR 0x01 163 #define QD_ABORTED_BY_HOST 0x02 164 #define QD_WITH_ERROR 0x04 165 #define QD_INVALID_REQUEST 0x80 166 #define QD_INVALID_HOST_NUM 0x81 167 #define QD_INVALID_DEVICE 0x82 168 #define QD_ERR_INTERNAL 0xFF 169 #define QHSTA_NO_ERROR 0x00 170 #define QHSTA_M_SEL_TIMEOUT 0x11 171 #define QHSTA_M_DATA_OVER_RUN 0x12 172 #define QHSTA_M_DATA_UNDER_RUN 0x12 173 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 174 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14 175 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21 176 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22 177 #define QHSTA_D_HOST_ABORT_FAILED 0x23 178 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24 179 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25 180 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26 181 #define QHSTA_M_WTM_TIMEOUT 0x41 182 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 183 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 184 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 185 #define QHSTA_M_TARGET_STATUS_BUSY 0x45 186 #define QHSTA_M_BAD_TAG_CODE 0x46 187 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47 188 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48 189 #define QHSTA_D_LRAM_CMP_ERROR 0x81 190 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1 191 #define ASC_FLAG_SCSIQ_REQ 0x01 192 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02 193 #define ASC_FLAG_BIOS_ASYNC_IO 0x04 194 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08 195 #define ASC_FLAG_WIN16 0x10 196 #define ASC_FLAG_WIN32 0x20 197 #define ASC_FLAG_ISA_OVER_16MB 0x40 198 #define ASC_FLAG_DOS_VM_CALLBACK 0x80 199 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10 200 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04 201 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08 202 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40 203 #define ASC_SCSIQ_CPY_BEG 4 204 #define ASC_SCSIQ_SGHD_CPY_BEG 2 205 #define ASC_SCSIQ_B_FWD 0 206 #define ASC_SCSIQ_B_BWD 1 207 #define ASC_SCSIQ_B_STATUS 2 208 #define ASC_SCSIQ_B_QNO 3 209 #define ASC_SCSIQ_B_CNTL 4 210 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5 211 #define ASC_SCSIQ_D_DATA_ADDR 8 212 #define ASC_SCSIQ_D_DATA_CNT 12 213 #define ASC_SCSIQ_B_SENSE_LEN 20 214 #define ASC_SCSIQ_DONE_INFO_BEG 22 215 #define ASC_SCSIQ_D_SRBPTR 22 216 #define ASC_SCSIQ_B_TARGET_IX 26 217 #define ASC_SCSIQ_B_CDB_LEN 28 218 #define ASC_SCSIQ_B_TAG_CODE 29 219 #define ASC_SCSIQ_W_VM_ID 30 220 #define ASC_SCSIQ_DONE_STATUS 32 221 #define ASC_SCSIQ_HOST_STATUS 33 222 #define ASC_SCSIQ_SCSI_STATUS 34 223 #define ASC_SCSIQ_CDB_BEG 36 224 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56 225 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60 226 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48 227 #define ASC_SCSIQ_B_SG_WK_QP 49 228 #define ASC_SCSIQ_B_SG_WK_IX 50 229 #define ASC_SCSIQ_W_ALT_DC1 52 230 #define ASC_SCSIQ_B_LIST_CNT 6 231 #define ASC_SCSIQ_B_CUR_LIST_CNT 7 232 #define ASC_SGQ_B_SG_CNTL 4 233 #define ASC_SGQ_B_SG_HEAD_QP 5 234 #define ASC_SGQ_B_SG_LIST_CNT 6 235 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7 236 #define ASC_SGQ_LIST_BEG 8 237 #define ASC_DEF_SCSI1_QNG 4 238 #define ASC_MAX_SCSI1_QNG 4 239 #define ASC_DEF_SCSI2_QNG 16 240 #define ASC_MAX_SCSI2_QNG 32 241 #define ASC_TAG_CODE_MASK 0x23 242 #define ASC_STOP_REQ_RISC_STOP 0x01 243 #define ASC_STOP_ACK_RISC_STOP 0x03 244 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10 245 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20 246 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40 247 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS)) 248 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid)) 249 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID)) 250 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID) 251 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID) 252 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN) 253 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6)) 254 255 typedef struct asc_scsiq_1 { 256 uchar status; 257 uchar q_no; 258 uchar cntl; 259 uchar sg_queue_cnt; 260 uchar target_id; 261 uchar target_lun; 262 __le32 data_addr; 263 __le32 data_cnt; 264 __le32 sense_addr; 265 uchar sense_len; 266 uchar extra_bytes; 267 } ASC_SCSIQ_1; 268 269 typedef struct asc_scsiq_2 { 270 u32 srb_tag; 271 uchar target_ix; 272 uchar flag; 273 uchar cdb_len; 274 uchar tag_code; 275 ushort vm_id; 276 } ASC_SCSIQ_2; 277 278 typedef struct asc_scsiq_3 { 279 uchar done_stat; 280 uchar host_stat; 281 uchar scsi_stat; 282 uchar scsi_msg; 283 } ASC_SCSIQ_3; 284 285 typedef struct asc_scsiq_4 { 286 uchar cdb[ASC_MAX_CDB_LEN]; 287 uchar y_first_sg_list_qp; 288 uchar y_working_sg_qp; 289 uchar y_working_sg_ix; 290 uchar y_res; 291 ushort x_req_count; 292 ushort x_reconnect_rtn; 293 __le32 x_saved_data_addr; 294 __le32 x_saved_data_cnt; 295 } ASC_SCSIQ_4; 296 297 typedef struct asc_q_done_info { 298 ASC_SCSIQ_2 d2; 299 ASC_SCSIQ_3 d3; 300 uchar q_status; 301 uchar q_no; 302 uchar cntl; 303 uchar sense_len; 304 uchar extra_bytes; 305 uchar res; 306 u32 remain_bytes; 307 } ASC_QDONE_INFO; 308 309 typedef struct asc_sg_list { 310 __le32 addr; 311 __le32 bytes; 312 } ASC_SG_LIST; 313 314 typedef struct asc_sg_head { 315 ushort entry_cnt; 316 ushort queue_cnt; 317 ushort entry_to_copy; 318 ushort res; 319 ASC_SG_LIST sg_list[0]; 320 } ASC_SG_HEAD; 321 322 typedef struct asc_scsi_q { 323 ASC_SCSIQ_1 q1; 324 ASC_SCSIQ_2 q2; 325 uchar *cdbptr; 326 ASC_SG_HEAD *sg_head; 327 ushort remain_sg_entry_cnt; 328 ushort next_sg_index; 329 } ASC_SCSI_Q; 330 331 typedef struct asc_scsi_bios_req_q { 332 ASC_SCSIQ_1 r1; 333 ASC_SCSIQ_2 r2; 334 uchar *cdbptr; 335 ASC_SG_HEAD *sg_head; 336 uchar *sense_ptr; 337 ASC_SCSIQ_3 r3; 338 uchar cdb[ASC_MAX_CDB_LEN]; 339 uchar sense[ASC_MIN_SENSE_LEN]; 340 } ASC_SCSI_BIOS_REQ_Q; 341 342 typedef struct asc_risc_q { 343 uchar fwd; 344 uchar bwd; 345 ASC_SCSIQ_1 i1; 346 ASC_SCSIQ_2 i2; 347 ASC_SCSIQ_3 i3; 348 ASC_SCSIQ_4 i4; 349 } ASC_RISC_Q; 350 351 typedef struct asc_sg_list_q { 352 uchar seq_no; 353 uchar q_no; 354 uchar cntl; 355 uchar sg_head_qp; 356 uchar sg_list_cnt; 357 uchar sg_cur_list_cnt; 358 } ASC_SG_LIST_Q; 359 360 typedef struct asc_risc_sg_list_q { 361 uchar fwd; 362 uchar bwd; 363 ASC_SG_LIST_Q sg; 364 ASC_SG_LIST sg_list[7]; 365 } ASC_RISC_SG_LIST_Q; 366 367 #define ASCQ_ERR_Q_STATUS 0x0D 368 #define ASCQ_ERR_CUR_QNG 0x17 369 #define ASCQ_ERR_SG_Q_LINKS 0x18 370 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A 371 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B 372 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C 373 374 /* 375 * Warning code values are set in ASC_DVC_VAR 'warn_code'. 376 */ 377 #define ASC_WARN_NO_ERROR 0x0000 378 #define ASC_WARN_IO_PORT_ROTATE 0x0001 379 #define ASC_WARN_EEPROM_CHKSUM 0x0002 380 #define ASC_WARN_IRQ_MODIFIED 0x0004 381 #define ASC_WARN_AUTO_CONFIG 0x0008 382 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010 383 #define ASC_WARN_EEPROM_RECOVER 0x0020 384 #define ASC_WARN_CFG_MSW_RECOVER 0x0040 385 386 /* 387 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'. 388 */ 389 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */ 390 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */ 391 #define ASC_IERR_SET_PC_ADDR 0x0004 392 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */ 393 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */ 394 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */ 395 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */ 396 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */ 397 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */ 398 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */ 399 #define ASC_IERR_NO_BUS_TYPE 0x0400 400 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */ 401 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */ 402 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */ 403 404 #define ASC_DEF_MAX_TOTAL_QNG (0xF0) 405 #define ASC_MIN_TAG_Q_PER_DVC (0x04) 406 #define ASC_MIN_FREE_Q (0x02) 407 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q)) 408 #define ASC_MAX_TOTAL_QNG 240 409 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16 410 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8 411 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20 412 #define ASC_MAX_INRAM_TAG_QNG 16 413 #define ASC_IOADR_GAP 0x10 414 #define ASC_SYN_MAX_OFFSET 0x0F 415 #define ASC_DEF_SDTR_OFFSET 0x0F 416 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02 417 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41 418 419 /* The narrow chip only supports a limited selection of transfer rates. 420 * These are encoded in the range 0..7 or 0..15 depending whether the chip 421 * is Ultra-capable or not. These tables let us convert from one to the other. 422 */ 423 static const unsigned char asc_syn_xfer_period[8] = { 424 25, 30, 35, 40, 50, 60, 70, 85 425 }; 426 427 static const unsigned char asc_syn_ultra_xfer_period[16] = { 428 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107 429 }; 430 431 typedef struct ext_msg { 432 uchar msg_type; 433 uchar msg_len; 434 uchar msg_req; 435 union { 436 struct { 437 uchar sdtr_xfer_period; 438 uchar sdtr_req_ack_offset; 439 } sdtr; 440 struct { 441 uchar wdtr_width; 442 } wdtr; 443 struct { 444 uchar mdp_b3; 445 uchar mdp_b2; 446 uchar mdp_b1; 447 uchar mdp_b0; 448 } mdp; 449 } u_ext_msg; 450 uchar res; 451 } EXT_MSG; 452 453 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period 454 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset 455 #define wdtr_width u_ext_msg.wdtr.wdtr_width 456 #define mdp_b3 u_ext_msg.mdp_b3 457 #define mdp_b2 u_ext_msg.mdp_b2 458 #define mdp_b1 u_ext_msg.mdp_b1 459 #define mdp_b0 u_ext_msg.mdp_b0 460 461 typedef struct asc_dvc_cfg { 462 ASC_SCSI_BIT_ID_TYPE can_tagged_qng; 463 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled; 464 ASC_SCSI_BIT_ID_TYPE disc_enable; 465 ASC_SCSI_BIT_ID_TYPE sdtr_enable; 466 uchar chip_scsi_id; 467 uchar isa_dma_speed; 468 uchar isa_dma_channel; 469 uchar chip_version; 470 ushort mcode_date; 471 ushort mcode_version; 472 uchar max_tag_qng[ASC_MAX_TID + 1]; 473 uchar sdtr_period_offset[ASC_MAX_TID + 1]; 474 uchar adapter_info[6]; 475 } ASC_DVC_CFG; 476 477 #define ASC_DEF_DVC_CNTL 0xFFFF 478 #define ASC_DEF_CHIP_SCSI_ID 7 479 #define ASC_DEF_ISA_DMA_SPEED 4 480 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001 481 #define ASC_INIT_STATE_END_GET_CFG 0x0002 482 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004 483 #define ASC_INIT_STATE_END_SET_CFG 0x0008 484 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010 485 #define ASC_INIT_STATE_END_LOAD_MC 0x0020 486 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040 487 #define ASC_INIT_STATE_END_INQUIRY 0x0080 488 #define ASC_INIT_RESET_SCSI_DONE 0x0100 489 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000 490 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001 491 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002 492 #define ASC_MIN_TAGGED_CMD 7 493 #define ASC_MAX_SCSI_RESET_WAIT 30 494 #define ASC_OVERRUN_BSIZE 64 495 496 struct asc_dvc_var; /* Forward Declaration. */ 497 498 typedef struct asc_dvc_var { 499 PortAddr iop_base; 500 ushort err_code; 501 ushort dvc_cntl; 502 ushort bug_fix_cntl; 503 ushort bus_type; 504 ASC_SCSI_BIT_ID_TYPE init_sdtr; 505 ASC_SCSI_BIT_ID_TYPE sdtr_done; 506 ASC_SCSI_BIT_ID_TYPE use_tagged_qng; 507 ASC_SCSI_BIT_ID_TYPE unit_not_ready; 508 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy; 509 ASC_SCSI_BIT_ID_TYPE start_motor; 510 uchar *overrun_buf; 511 dma_addr_t overrun_dma; 512 uchar scsi_reset_wait; 513 uchar chip_no; 514 bool is_in_int; 515 uchar max_total_qng; 516 uchar cur_total_qng; 517 uchar in_critical_cnt; 518 uchar last_q_shortage; 519 ushort init_state; 520 uchar cur_dvc_qng[ASC_MAX_TID + 1]; 521 uchar max_dvc_qng[ASC_MAX_TID + 1]; 522 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1]; 523 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1]; 524 const uchar *sdtr_period_tbl; 525 ASC_DVC_CFG *cfg; 526 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always; 527 char redo_scam; 528 ushort res2; 529 uchar dos_int13_table[ASC_MAX_TID + 1]; 530 unsigned int max_dma_count; 531 ASC_SCSI_BIT_ID_TYPE no_scam; 532 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer; 533 uchar min_sdtr_index; 534 uchar max_sdtr_index; 535 struct asc_board *drv_ptr; 536 unsigned int uc_break; 537 } ASC_DVC_VAR; 538 539 typedef struct asc_dvc_inq_info { 540 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; 541 } ASC_DVC_INQ_INFO; 542 543 typedef struct asc_cap_info { 544 u32 lba; 545 u32 blk_size; 546 } ASC_CAP_INFO; 547 548 typedef struct asc_cap_info_array { 549 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; 550 } ASC_CAP_INFO_ARRAY; 551 552 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001 553 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002 554 #define ASC_CNTL_INITIATOR (ushort)0x0001 555 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002 556 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004 557 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008 558 #define ASC_CNTL_NO_SCAM (ushort)0x0010 559 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080 560 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040 561 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100 562 #define ASC_CNTL_RESET_SCSI (ushort)0x0200 563 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400 564 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800 565 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000 566 #define ASC_CNTL_BURST_MODE (ushort)0x2000 567 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000 568 #define ASC_EEP_DVC_CFG_BEG_VL 2 569 #define ASC_EEP_MAX_DVC_ADDR_VL 15 570 #define ASC_EEP_DVC_CFG_BEG 32 571 #define ASC_EEP_MAX_DVC_ADDR 45 572 #define ASC_EEP_MAX_RETRY 20 573 574 /* 575 * These macros keep the chip SCSI id and ISA DMA speed 576 * bitfields in board order. C bitfields aren't portable 577 * between big and little-endian platforms so they are 578 * not used. 579 */ 580 581 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f) 582 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4) 583 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \ 584 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID)) 585 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \ 586 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4) 587 588 typedef struct asceep_config { 589 ushort cfg_lsw; 590 ushort cfg_msw; 591 uchar init_sdtr; 592 uchar disc_enable; 593 uchar use_cmd_qng; 594 uchar start_motor; 595 uchar max_total_qng; 596 uchar max_tag_qng; 597 uchar bios_scan; 598 uchar power_up_wait; 599 uchar no_scam; 600 uchar id_speed; /* low order 4 bits is chip scsi id */ 601 /* high order 4 bits is isa dma speed */ 602 uchar dos_int13_table[ASC_MAX_TID + 1]; 603 uchar adapter_info[6]; 604 ushort cntl; 605 ushort chksum; 606 } ASCEEP_CONFIG; 607 608 #define ASC_EEP_CMD_READ 0x80 609 #define ASC_EEP_CMD_WRITE 0x40 610 #define ASC_EEP_CMD_WRITE_ABLE 0x30 611 #define ASC_EEP_CMD_WRITE_DISABLE 0x00 612 #define ASCV_MSGOUT_BEG 0x0000 613 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3) 614 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4) 615 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006 616 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8) 617 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3) 618 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4) 619 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8) 620 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8) 621 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020 622 #define ASCV_BREAK_ADDR (ushort)0x0028 623 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A 624 #define ASCV_BREAK_CONTROL (ushort)0x002C 625 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E 626 627 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030 628 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032 629 #define ASCV_MCODE_SIZE_W (ushort)0x0034 630 #define ASCV_STOP_CODE_B (ushort)0x0036 631 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037 632 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038 633 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C 634 #define ASCV_HALTCODE_W (ushort)0x0040 635 #define ASCV_CHKSUM_W (ushort)0x0042 636 #define ASCV_MC_DATE_W (ushort)0x0044 637 #define ASCV_MC_VER_W (ushort)0x0046 638 #define ASCV_NEXTRDY_B (ushort)0x0048 639 #define ASCV_DONENEXT_B (ushort)0x0049 640 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A 641 #define ASCV_SCSIBUSY_B (ushort)0x004B 642 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C 643 #define ASCV_CURCDB_B (ushort)0x004D 644 #define ASCV_RCLUN_B (ushort)0x004E 645 #define ASCV_BUSY_QHEAD_B (ushort)0x004F 646 #define ASCV_DISC1_QHEAD_B (ushort)0x0050 647 #define ASCV_DISC_ENABLE_B (ushort)0x0052 648 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053 649 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055 650 #define ASCV_MCODE_CNTL_B (ushort)0x0056 651 #define ASCV_NULL_TARGET_B (ushort)0x0057 652 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058 653 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A 654 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1) 655 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1) 656 #define ASCV_HOST_FLAG_B (ushort)0x005D 657 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064 658 #define ASCV_VER_SERIAL_B (ushort)0x0065 659 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066 660 #define ASCV_WTM_FLAG_B (ushort)0x0068 661 #define ASCV_RISC_FLAG_B (ushort)0x006A 662 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B 663 #define ASC_HOST_FLAG_IN_ISR 0x01 664 #define ASC_HOST_FLAG_ACK_INT 0x02 665 #define ASC_RISC_FLAG_GEN_INT 0x01 666 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02 667 #define IOP_CTRL (0x0F) 668 #define IOP_STATUS (0x0E) 669 #define IOP_INT_ACK IOP_STATUS 670 #define IOP_REG_IFC (0x0D) 671 #define IOP_SYN_OFFSET (0x0B) 672 #define IOP_EXTRA_CONTROL (0x0D) 673 #define IOP_REG_PC (0x0C) 674 #define IOP_RAM_ADDR (0x0A) 675 #define IOP_RAM_DATA (0x08) 676 #define IOP_EEP_DATA (0x06) 677 #define IOP_EEP_CMD (0x07) 678 #define IOP_VERSION (0x03) 679 #define IOP_CONFIG_HIGH (0x04) 680 #define IOP_CONFIG_LOW (0x02) 681 #define IOP_SIG_BYTE (0x01) 682 #define IOP_SIG_WORD (0x00) 683 #define IOP_REG_DC1 (0x0E) 684 #define IOP_REG_DC0 (0x0C) 685 #define IOP_REG_SB (0x0B) 686 #define IOP_REG_DA1 (0x0A) 687 #define IOP_REG_DA0 (0x08) 688 #define IOP_REG_SC (0x09) 689 #define IOP_DMA_SPEED (0x07) 690 #define IOP_REG_FLAG (0x07) 691 #define IOP_FIFO_H (0x06) 692 #define IOP_FIFO_L (0x04) 693 #define IOP_REG_ID (0x05) 694 #define IOP_REG_QP (0x03) 695 #define IOP_REG_IH (0x02) 696 #define IOP_REG_IX (0x01) 697 #define IOP_REG_AX (0x00) 698 #define IFC_REG_LOCK (0x00) 699 #define IFC_REG_UNLOCK (0x09) 700 #define IFC_WR_EN_FILTER (0x10) 701 #define IFC_RD_NO_EEPROM (0x10) 702 #define IFC_SLEW_RATE (0x20) 703 #define IFC_ACT_NEG (0x40) 704 #define IFC_INP_FILTER (0x80) 705 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK) 706 #define SC_SEL (uchar)(0x80) 707 #define SC_BSY (uchar)(0x40) 708 #define SC_ACK (uchar)(0x20) 709 #define SC_REQ (uchar)(0x10) 710 #define SC_ATN (uchar)(0x08) 711 #define SC_IO (uchar)(0x04) 712 #define SC_CD (uchar)(0x02) 713 #define SC_MSG (uchar)(0x01) 714 #define SEC_SCSI_CTL (uchar)(0x80) 715 #define SEC_ACTIVE_NEGATE (uchar)(0x40) 716 #define SEC_SLEW_RATE (uchar)(0x20) 717 #define SEC_ENABLE_FILTER (uchar)(0x10) 718 #define ASC_HALT_EXTMSG_IN (ushort)0x8000 719 #define ASC_HALT_CHK_CONDITION (ushort)0x8100 720 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200 721 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300 722 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400 723 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000 724 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000 725 #define ASC_MAX_QNO 0xF8 726 #define ASC_DATA_SEC_BEG (ushort)0x0080 727 #define ASC_DATA_SEC_END (ushort)0x0080 728 #define ASC_CODE_SEC_BEG (ushort)0x0080 729 #define ASC_CODE_SEC_END (ushort)0x0080 730 #define ASC_QADR_BEG (0x4000) 731 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64) 732 #define ASC_QADR_END (ushort)0x7FFF 733 #define ASC_QLAST_ADR (ushort)0x7FC0 734 #define ASC_QBLK_SIZE 0x40 735 #define ASC_BIOS_DATA_QBEG 0xF8 736 #define ASC_MIN_ACTIVE_QNO 0x01 737 #define ASC_QLINK_END 0xFF 738 #define ASC_EEPROM_WORDS 0x10 739 #define ASC_MAX_MGS_LEN 0x10 740 #define ASC_BIOS_ADDR_DEF 0xDC00 741 #define ASC_BIOS_SIZE 0x3800 742 #define ASC_BIOS_RAM_OFF 0x3800 743 #define ASC_BIOS_RAM_SIZE 0x800 744 #define ASC_BIOS_MIN_ADDR 0xC000 745 #define ASC_BIOS_MAX_ADDR 0xEC00 746 #define ASC_BIOS_BANK_SIZE 0x0400 747 #define ASC_MCODE_START_ADDR 0x0080 748 #define ASC_CFG0_HOST_INT_ON 0x0020 749 #define ASC_CFG0_BIOS_ON 0x0040 750 #define ASC_CFG0_VERA_BURST_ON 0x0080 751 #define ASC_CFG0_SCSI_PARITY_ON 0x0800 752 #define ASC_CFG1_SCSI_TARGET_ON 0x0080 753 #define ASC_CFG1_LRAM_8BITS_ON 0x0800 754 #define ASC_CFG_MSW_CLR_MASK 0x3080 755 #define CSW_TEST1 (ASC_CS_TYPE)0x8000 756 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000 757 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000 758 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000 759 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800 760 #define CSW_TEST2 (ASC_CS_TYPE)0x0400 761 #define CSW_TEST3 (ASC_CS_TYPE)0x0200 762 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100 763 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080 764 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040 765 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020 766 #define CSW_HALTED (ASC_CS_TYPE)0x0010 767 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008 768 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004 769 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002 770 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001 771 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000 772 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100 773 #define CIW_TEST1 (ASC_CS_TYPE)0x0200 774 #define CIW_TEST2 (ASC_CS_TYPE)0x0400 775 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800 776 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000 777 #define CC_CHIP_RESET (uchar)0x80 778 #define CC_SCSI_RESET (uchar)0x40 779 #define CC_HALT (uchar)0x20 780 #define CC_SINGLE_STEP (uchar)0x10 781 #define CC_DMA_ABLE (uchar)0x08 782 #define CC_TEST (uchar)0x04 783 #define CC_BANK_ONE (uchar)0x02 784 #define CC_DIAG (uchar)0x01 785 #define ASC_1000_ID0W 0x04C1 786 #define ASC_1000_ID0W_FIX 0x00C1 787 #define ASC_1000_ID1B 0x25 788 #define ASC_EISA_REV_IOP_MASK (0x0C83) 789 #define ASC_EISA_CFG_IOP_MASK (0x0C86) 790 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000) 791 #define INS_HALTINT (ushort)0x6281 792 #define INS_HALT (ushort)0x6280 793 #define INS_SINT (ushort)0x6200 794 #define INS_RFLAG_WTM (ushort)0x7380 795 #define ASC_MC_SAVE_CODE_WSIZE 0x500 796 #define ASC_MC_SAVE_DATA_WSIZE 0x40 797 798 typedef struct asc_mc_saved { 799 ushort data[ASC_MC_SAVE_DATA_WSIZE]; 800 ushort code[ASC_MC_SAVE_CODE_WSIZE]; 801 } ASC_MC_SAVED; 802 803 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B) 804 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val) 805 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W) 806 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W) 807 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val) 808 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val) 809 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B) 810 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B) 811 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val) 812 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val) 813 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data)) 814 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id)) 815 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data) 816 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id)) 817 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE) 818 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD) 819 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION) 820 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW) 821 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH) 822 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data) 823 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data) 824 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD) 825 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data) 826 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA) 827 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data) 828 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR)) 829 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr) 830 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA) 831 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data) 832 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC) 833 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data) 834 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS) 835 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val) 836 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL) 837 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val) 838 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET) 839 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data) 840 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data) 841 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC) 842 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH)) 843 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID) 844 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL) 845 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data) 846 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX) 847 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data) 848 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX) 849 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data) 850 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH) 851 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data) 852 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP) 853 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data) 854 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L) 855 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data) 856 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H) 857 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data) 858 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED) 859 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data) 860 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0) 861 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data) 862 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1) 863 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data) 864 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0) 865 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data) 866 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1) 867 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data) 868 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID) 869 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data) 870 871 #define AdvPortAddr void __iomem * /* Virtual memory address size */ 872 873 /* 874 * Define Adv Library required memory access macros. 875 */ 876 #define ADV_MEM_READB(addr) readb(addr) 877 #define ADV_MEM_READW(addr) readw(addr) 878 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr) 879 #define ADV_MEM_WRITEW(addr, word) writew(word, addr) 880 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr) 881 882 /* 883 * Define total number of simultaneous maximum element scatter-gather 884 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the 885 * maximum number of outstanding commands per wide host adapter. Each 886 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather 887 * elements. Allow each command to have at least one ADV_SG_BLOCK structure. 888 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK 889 * structures or 255 scatter-gather elements. 890 */ 891 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG 892 893 /* 894 * Define maximum number of scatter-gather elements per request. 895 */ 896 #define ADV_MAX_SG_LIST 255 897 #define NO_OF_SG_PER_BLOCK 15 898 899 #define ADV_EEP_DVC_CFG_BEGIN (0x00) 900 #define ADV_EEP_DVC_CFG_END (0x15) 901 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */ 902 #define ADV_EEP_MAX_WORD_ADDR (0x1E) 903 904 #define ADV_EEP_DELAY_MS 100 905 906 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */ 907 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */ 908 /* 909 * For the ASC3550 Bit 13 is Termination Polarity control bit. 910 * For later ICs Bit 13 controls whether the CIS (Card Information 911 * Service Section) is loaded from EEPROM. 912 */ 913 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */ 914 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */ 915 /* 916 * ASC38C1600 Bit 11 917 * 918 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify 919 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then 920 * Function 0 will specify INT B. 921 * 922 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify 923 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then 924 * Function 1 will specify INT A. 925 */ 926 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */ 927 928 typedef struct adveep_3550_config { 929 /* Word Offset, Description */ 930 931 ushort cfg_lsw; /* 00 power up initialization */ 932 /* bit 13 set - Term Polarity Control */ 933 /* bit 14 set - BIOS Enable */ 934 /* bit 15 set - Big Endian Mode */ 935 ushort cfg_msw; /* 01 unused */ 936 ushort disc_enable; /* 02 disconnect enable */ 937 ushort wdtr_able; /* 03 Wide DTR able */ 938 ushort sdtr_able; /* 04 Synchronous DTR able */ 939 ushort start_motor; /* 05 send start up motor */ 940 ushort tagqng_able; /* 06 tag queuing able */ 941 ushort bios_scan; /* 07 BIOS device control */ 942 ushort scam_tolerant; /* 08 no scam */ 943 944 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 945 uchar bios_boot_delay; /* power up wait */ 946 947 uchar scsi_reset_delay; /* 10 reset delay */ 948 uchar bios_id_lun; /* first boot device scsi id & lun */ 949 /* high nibble is lun */ 950 /* low nibble is scsi id */ 951 952 uchar termination; /* 11 0 - automatic */ 953 /* 1 - low off / high off */ 954 /* 2 - low off / high on */ 955 /* 3 - low on / high on */ 956 /* There is no low on / high off */ 957 958 uchar reserved1; /* reserved byte (not used) */ 959 960 ushort bios_ctrl; /* 12 BIOS control bits */ 961 /* bit 0 BIOS don't act as initiator. */ 962 /* bit 1 BIOS > 1 GB support */ 963 /* bit 2 BIOS > 2 Disk Support */ 964 /* bit 3 BIOS don't support removables */ 965 /* bit 4 BIOS support bootable CD */ 966 /* bit 5 BIOS scan enabled */ 967 /* bit 6 BIOS support multiple LUNs */ 968 /* bit 7 BIOS display of message */ 969 /* bit 8 SCAM disabled */ 970 /* bit 9 Reset SCSI bus during init. */ 971 /* bit 10 */ 972 /* bit 11 No verbose initialization. */ 973 /* bit 12 SCSI parity enabled */ 974 /* bit 13 */ 975 /* bit 14 */ 976 /* bit 15 */ 977 ushort ultra_able; /* 13 ULTRA speed able */ 978 ushort reserved2; /* 14 reserved */ 979 uchar max_host_qng; /* 15 maximum host queuing */ 980 uchar max_dvc_qng; /* maximum per device queuing */ 981 ushort dvc_cntl; /* 16 control bit for driver */ 982 ushort bug_fix; /* 17 control bit for bug fix */ 983 ushort serial_number_word1; /* 18 Board serial number word 1 */ 984 ushort serial_number_word2; /* 19 Board serial number word 2 */ 985 ushort serial_number_word3; /* 20 Board serial number word 3 */ 986 ushort check_sum; /* 21 EEP check sum */ 987 uchar oem_name[16]; /* 22 OEM name */ 988 ushort dvc_err_code; /* 30 last device driver error code */ 989 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 990 ushort adv_err_addr; /* 32 last uc error address */ 991 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 992 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 993 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 994 ushort num_of_err; /* 36 number of error */ 995 } ADVEEP_3550_CONFIG; 996 997 typedef struct adveep_38C0800_config { 998 /* Word Offset, Description */ 999 1000 ushort cfg_lsw; /* 00 power up initialization */ 1001 /* bit 13 set - Load CIS */ 1002 /* bit 14 set - BIOS Enable */ 1003 /* bit 15 set - Big Endian Mode */ 1004 ushort cfg_msw; /* 01 unused */ 1005 ushort disc_enable; /* 02 disconnect enable */ 1006 ushort wdtr_able; /* 03 Wide DTR able */ 1007 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ 1008 ushort start_motor; /* 05 send start up motor */ 1009 ushort tagqng_able; /* 06 tag queuing able */ 1010 ushort bios_scan; /* 07 BIOS device control */ 1011 ushort scam_tolerant; /* 08 no scam */ 1012 1013 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1014 uchar bios_boot_delay; /* power up wait */ 1015 1016 uchar scsi_reset_delay; /* 10 reset delay */ 1017 uchar bios_id_lun; /* first boot device scsi id & lun */ 1018 /* high nibble is lun */ 1019 /* low nibble is scsi id */ 1020 1021 uchar termination_se; /* 11 0 - automatic */ 1022 /* 1 - low off / high off */ 1023 /* 2 - low off / high on */ 1024 /* 3 - low on / high on */ 1025 /* There is no low on / high off */ 1026 1027 uchar termination_lvd; /* 11 0 - automatic */ 1028 /* 1 - low off / high off */ 1029 /* 2 - low off / high on */ 1030 /* 3 - low on / high on */ 1031 /* There is no low on / high off */ 1032 1033 ushort bios_ctrl; /* 12 BIOS control bits */ 1034 /* bit 0 BIOS don't act as initiator. */ 1035 /* bit 1 BIOS > 1 GB support */ 1036 /* bit 2 BIOS > 2 Disk Support */ 1037 /* bit 3 BIOS don't support removables */ 1038 /* bit 4 BIOS support bootable CD */ 1039 /* bit 5 BIOS scan enabled */ 1040 /* bit 6 BIOS support multiple LUNs */ 1041 /* bit 7 BIOS display of message */ 1042 /* bit 8 SCAM disabled */ 1043 /* bit 9 Reset SCSI bus during init. */ 1044 /* bit 10 */ 1045 /* bit 11 No verbose initialization. */ 1046 /* bit 12 SCSI parity enabled */ 1047 /* bit 13 */ 1048 /* bit 14 */ 1049 /* bit 15 */ 1050 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ 1051 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ 1052 uchar max_host_qng; /* 15 maximum host queueing */ 1053 uchar max_dvc_qng; /* maximum per device queuing */ 1054 ushort dvc_cntl; /* 16 control bit for driver */ 1055 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ 1056 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1057 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1058 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1059 ushort check_sum; /* 21 EEP check sum */ 1060 uchar oem_name[16]; /* 22 OEM name */ 1061 ushort dvc_err_code; /* 30 last device driver error code */ 1062 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1063 ushort adv_err_addr; /* 32 last uc error address */ 1064 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1065 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1066 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1067 ushort reserved36; /* 36 reserved */ 1068 ushort reserved37; /* 37 reserved */ 1069 ushort reserved38; /* 38 reserved */ 1070 ushort reserved39; /* 39 reserved */ 1071 ushort reserved40; /* 40 reserved */ 1072 ushort reserved41; /* 41 reserved */ 1073 ushort reserved42; /* 42 reserved */ 1074 ushort reserved43; /* 43 reserved */ 1075 ushort reserved44; /* 44 reserved */ 1076 ushort reserved45; /* 45 reserved */ 1077 ushort reserved46; /* 46 reserved */ 1078 ushort reserved47; /* 47 reserved */ 1079 ushort reserved48; /* 48 reserved */ 1080 ushort reserved49; /* 49 reserved */ 1081 ushort reserved50; /* 50 reserved */ 1082 ushort reserved51; /* 51 reserved */ 1083 ushort reserved52; /* 52 reserved */ 1084 ushort reserved53; /* 53 reserved */ 1085 ushort reserved54; /* 54 reserved */ 1086 ushort reserved55; /* 55 reserved */ 1087 ushort cisptr_lsw; /* 56 CIS PTR LSW */ 1088 ushort cisprt_msw; /* 57 CIS PTR MSW */ 1089 ushort subsysvid; /* 58 SubSystem Vendor ID */ 1090 ushort subsysid; /* 59 SubSystem ID */ 1091 ushort reserved60; /* 60 reserved */ 1092 ushort reserved61; /* 61 reserved */ 1093 ushort reserved62; /* 62 reserved */ 1094 ushort reserved63; /* 63 reserved */ 1095 } ADVEEP_38C0800_CONFIG; 1096 1097 typedef struct adveep_38C1600_config { 1098 /* Word Offset, Description */ 1099 1100 ushort cfg_lsw; /* 00 power up initialization */ 1101 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */ 1102 /* clear - Func. 0 INTA, Func. 1 INTB */ 1103 /* bit 13 set - Load CIS */ 1104 /* bit 14 set - BIOS Enable */ 1105 /* bit 15 set - Big Endian Mode */ 1106 ushort cfg_msw; /* 01 unused */ 1107 ushort disc_enable; /* 02 disconnect enable */ 1108 ushort wdtr_able; /* 03 Wide DTR able */ 1109 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ 1110 ushort start_motor; /* 05 send start up motor */ 1111 ushort tagqng_able; /* 06 tag queuing able */ 1112 ushort bios_scan; /* 07 BIOS device control */ 1113 ushort scam_tolerant; /* 08 no scam */ 1114 1115 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1116 uchar bios_boot_delay; /* power up wait */ 1117 1118 uchar scsi_reset_delay; /* 10 reset delay */ 1119 uchar bios_id_lun; /* first boot device scsi id & lun */ 1120 /* high nibble is lun */ 1121 /* low nibble is scsi id */ 1122 1123 uchar termination_se; /* 11 0 - automatic */ 1124 /* 1 - low off / high off */ 1125 /* 2 - low off / high on */ 1126 /* 3 - low on / high on */ 1127 /* There is no low on / high off */ 1128 1129 uchar termination_lvd; /* 11 0 - automatic */ 1130 /* 1 - low off / high off */ 1131 /* 2 - low off / high on */ 1132 /* 3 - low on / high on */ 1133 /* There is no low on / high off */ 1134 1135 ushort bios_ctrl; /* 12 BIOS control bits */ 1136 /* bit 0 BIOS don't act as initiator. */ 1137 /* bit 1 BIOS > 1 GB support */ 1138 /* bit 2 BIOS > 2 Disk Support */ 1139 /* bit 3 BIOS don't support removables */ 1140 /* bit 4 BIOS support bootable CD */ 1141 /* bit 5 BIOS scan enabled */ 1142 /* bit 6 BIOS support multiple LUNs */ 1143 /* bit 7 BIOS display of message */ 1144 /* bit 8 SCAM disabled */ 1145 /* bit 9 Reset SCSI bus during init. */ 1146 /* bit 10 Basic Integrity Checking disabled */ 1147 /* bit 11 No verbose initialization. */ 1148 /* bit 12 SCSI parity enabled */ 1149 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */ 1150 /* bit 14 */ 1151 /* bit 15 */ 1152 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ 1153 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ 1154 uchar max_host_qng; /* 15 maximum host queueing */ 1155 uchar max_dvc_qng; /* maximum per device queuing */ 1156 ushort dvc_cntl; /* 16 control bit for driver */ 1157 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ 1158 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1159 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1160 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1161 ushort check_sum; /* 21 EEP check sum */ 1162 uchar oem_name[16]; /* 22 OEM name */ 1163 ushort dvc_err_code; /* 30 last device driver error code */ 1164 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1165 ushort adv_err_addr; /* 32 last uc error address */ 1166 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1167 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1168 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1169 ushort reserved36; /* 36 reserved */ 1170 ushort reserved37; /* 37 reserved */ 1171 ushort reserved38; /* 38 reserved */ 1172 ushort reserved39; /* 39 reserved */ 1173 ushort reserved40; /* 40 reserved */ 1174 ushort reserved41; /* 41 reserved */ 1175 ushort reserved42; /* 42 reserved */ 1176 ushort reserved43; /* 43 reserved */ 1177 ushort reserved44; /* 44 reserved */ 1178 ushort reserved45; /* 45 reserved */ 1179 ushort reserved46; /* 46 reserved */ 1180 ushort reserved47; /* 47 reserved */ 1181 ushort reserved48; /* 48 reserved */ 1182 ushort reserved49; /* 49 reserved */ 1183 ushort reserved50; /* 50 reserved */ 1184 ushort reserved51; /* 51 reserved */ 1185 ushort reserved52; /* 52 reserved */ 1186 ushort reserved53; /* 53 reserved */ 1187 ushort reserved54; /* 54 reserved */ 1188 ushort reserved55; /* 55 reserved */ 1189 ushort cisptr_lsw; /* 56 CIS PTR LSW */ 1190 ushort cisprt_msw; /* 57 CIS PTR MSW */ 1191 ushort subsysvid; /* 58 SubSystem Vendor ID */ 1192 ushort subsysid; /* 59 SubSystem ID */ 1193 ushort reserved60; /* 60 reserved */ 1194 ushort reserved61; /* 61 reserved */ 1195 ushort reserved62; /* 62 reserved */ 1196 ushort reserved63; /* 63 reserved */ 1197 } ADVEEP_38C1600_CONFIG; 1198 1199 /* 1200 * EEPROM Commands 1201 */ 1202 #define ASC_EEP_CMD_DONE 0x0200 1203 1204 /* bios_ctrl */ 1205 #define BIOS_CTRL_BIOS 0x0001 1206 #define BIOS_CTRL_EXTENDED_XLAT 0x0002 1207 #define BIOS_CTRL_GT_2_DISK 0x0004 1208 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008 1209 #define BIOS_CTRL_BOOTABLE_CD 0x0010 1210 #define BIOS_CTRL_MULTIPLE_LUN 0x0040 1211 #define BIOS_CTRL_DISPLAY_MSG 0x0080 1212 #define BIOS_CTRL_NO_SCAM 0x0100 1213 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200 1214 #define BIOS_CTRL_INIT_VERBOSE 0x0800 1215 #define BIOS_CTRL_SCSI_PARITY 0x1000 1216 #define BIOS_CTRL_AIPP_DIS 0x2000 1217 1218 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */ 1219 1220 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */ 1221 1222 /* 1223 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is 1224 * a special 16K Adv Library and Microcode version. After the issue is 1225 * resolved, should restore 32K support. 1226 * 1227 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory * 1228 */ 1229 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */ 1230 1231 /* 1232 * Byte I/O register address from base of 'iop_base'. 1233 */ 1234 #define IOPB_INTR_STATUS_REG 0x00 1235 #define IOPB_CHIP_ID_1 0x01 1236 #define IOPB_INTR_ENABLES 0x02 1237 #define IOPB_CHIP_TYPE_REV 0x03 1238 #define IOPB_RES_ADDR_4 0x04 1239 #define IOPB_RES_ADDR_5 0x05 1240 #define IOPB_RAM_DATA 0x06 1241 #define IOPB_RES_ADDR_7 0x07 1242 #define IOPB_FLAG_REG 0x08 1243 #define IOPB_RES_ADDR_9 0x09 1244 #define IOPB_RISC_CSR 0x0A 1245 #define IOPB_RES_ADDR_B 0x0B 1246 #define IOPB_RES_ADDR_C 0x0C 1247 #define IOPB_RES_ADDR_D 0x0D 1248 #define IOPB_SOFT_OVER_WR 0x0E 1249 #define IOPB_RES_ADDR_F 0x0F 1250 #define IOPB_MEM_CFG 0x10 1251 #define IOPB_RES_ADDR_11 0x11 1252 #define IOPB_GPIO_DATA 0x12 1253 #define IOPB_RES_ADDR_13 0x13 1254 #define IOPB_FLASH_PAGE 0x14 1255 #define IOPB_RES_ADDR_15 0x15 1256 #define IOPB_GPIO_CNTL 0x16 1257 #define IOPB_RES_ADDR_17 0x17 1258 #define IOPB_FLASH_DATA 0x18 1259 #define IOPB_RES_ADDR_19 0x19 1260 #define IOPB_RES_ADDR_1A 0x1A 1261 #define IOPB_RES_ADDR_1B 0x1B 1262 #define IOPB_RES_ADDR_1C 0x1C 1263 #define IOPB_RES_ADDR_1D 0x1D 1264 #define IOPB_RES_ADDR_1E 0x1E 1265 #define IOPB_RES_ADDR_1F 0x1F 1266 #define IOPB_DMA_CFG0 0x20 1267 #define IOPB_DMA_CFG1 0x21 1268 #define IOPB_TICKLE 0x22 1269 #define IOPB_DMA_REG_WR 0x23 1270 #define IOPB_SDMA_STATUS 0x24 1271 #define IOPB_SCSI_BYTE_CNT 0x25 1272 #define IOPB_HOST_BYTE_CNT 0x26 1273 #define IOPB_BYTE_LEFT_TO_XFER 0x27 1274 #define IOPB_BYTE_TO_XFER_0 0x28 1275 #define IOPB_BYTE_TO_XFER_1 0x29 1276 #define IOPB_BYTE_TO_XFER_2 0x2A 1277 #define IOPB_BYTE_TO_XFER_3 0x2B 1278 #define IOPB_ACC_GRP 0x2C 1279 #define IOPB_RES_ADDR_2D 0x2D 1280 #define IOPB_DEV_ID 0x2E 1281 #define IOPB_RES_ADDR_2F 0x2F 1282 #define IOPB_SCSI_DATA 0x30 1283 #define IOPB_RES_ADDR_31 0x31 1284 #define IOPB_RES_ADDR_32 0x32 1285 #define IOPB_SCSI_DATA_HSHK 0x33 1286 #define IOPB_SCSI_CTRL 0x34 1287 #define IOPB_RES_ADDR_35 0x35 1288 #define IOPB_RES_ADDR_36 0x36 1289 #define IOPB_RES_ADDR_37 0x37 1290 #define IOPB_RAM_BIST 0x38 1291 #define IOPB_PLL_TEST 0x39 1292 #define IOPB_PCI_INT_CFG 0x3A 1293 #define IOPB_RES_ADDR_3B 0x3B 1294 #define IOPB_RFIFO_CNT 0x3C 1295 #define IOPB_RES_ADDR_3D 0x3D 1296 #define IOPB_RES_ADDR_3E 0x3E 1297 #define IOPB_RES_ADDR_3F 0x3F 1298 1299 /* 1300 * Word I/O register address from base of 'iop_base'. 1301 */ 1302 #define IOPW_CHIP_ID_0 0x00 /* CID0 */ 1303 #define IOPW_CTRL_REG 0x02 /* CC */ 1304 #define IOPW_RAM_ADDR 0x04 /* LA */ 1305 #define IOPW_RAM_DATA 0x06 /* LD */ 1306 #define IOPW_RES_ADDR_08 0x08 1307 #define IOPW_RISC_CSR 0x0A /* CSR */ 1308 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */ 1309 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */ 1310 #define IOPW_RES_ADDR_10 0x10 1311 #define IOPW_SEL_MASK 0x12 /* SM */ 1312 #define IOPW_RES_ADDR_14 0x14 1313 #define IOPW_FLASH_ADDR 0x16 /* FA */ 1314 #define IOPW_RES_ADDR_18 0x18 1315 #define IOPW_EE_CMD 0x1A /* EC */ 1316 #define IOPW_EE_DATA 0x1C /* ED */ 1317 #define IOPW_SFIFO_CNT 0x1E /* SFC */ 1318 #define IOPW_RES_ADDR_20 0x20 1319 #define IOPW_Q_BASE 0x22 /* QB */ 1320 #define IOPW_QP 0x24 /* QP */ 1321 #define IOPW_IX 0x26 /* IX */ 1322 #define IOPW_SP 0x28 /* SP */ 1323 #define IOPW_PC 0x2A /* PC */ 1324 #define IOPW_RES_ADDR_2C 0x2C 1325 #define IOPW_RES_ADDR_2E 0x2E 1326 #define IOPW_SCSI_DATA 0x30 /* SD */ 1327 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */ 1328 #define IOPW_SCSI_CTRL 0x34 /* SC */ 1329 #define IOPW_HSHK_CFG 0x36 /* HCFG */ 1330 #define IOPW_SXFR_STATUS 0x36 /* SXS */ 1331 #define IOPW_SXFR_CNTL 0x38 /* SXL */ 1332 #define IOPW_SXFR_CNTH 0x3A /* SXH */ 1333 #define IOPW_RES_ADDR_3C 0x3C 1334 #define IOPW_RFIFO_DATA 0x3E /* RFD */ 1335 1336 /* 1337 * Doubleword I/O register address from base of 'iop_base'. 1338 */ 1339 #define IOPDW_RES_ADDR_0 0x00 1340 #define IOPDW_RAM_DATA 0x04 1341 #define IOPDW_RES_ADDR_8 0x08 1342 #define IOPDW_RES_ADDR_C 0x0C 1343 #define IOPDW_RES_ADDR_10 0x10 1344 #define IOPDW_COMMA 0x14 1345 #define IOPDW_COMMB 0x18 1346 #define IOPDW_RES_ADDR_1C 0x1C 1347 #define IOPDW_SDMA_ADDR0 0x20 1348 #define IOPDW_SDMA_ADDR1 0x24 1349 #define IOPDW_SDMA_COUNT 0x28 1350 #define IOPDW_SDMA_ERROR 0x2C 1351 #define IOPDW_RDMA_ADDR0 0x30 1352 #define IOPDW_RDMA_ADDR1 0x34 1353 #define IOPDW_RDMA_COUNT 0x38 1354 #define IOPDW_RDMA_ERROR 0x3C 1355 1356 #define ADV_CHIP_ID_BYTE 0x25 1357 #define ADV_CHIP_ID_WORD 0x04C1 1358 1359 #define ADV_INTR_ENABLE_HOST_INTR 0x01 1360 #define ADV_INTR_ENABLE_SEL_INTR 0x02 1361 #define ADV_INTR_ENABLE_DPR_INTR 0x04 1362 #define ADV_INTR_ENABLE_RTA_INTR 0x08 1363 #define ADV_INTR_ENABLE_RMA_INTR 0x10 1364 #define ADV_INTR_ENABLE_RST_INTR 0x20 1365 #define ADV_INTR_ENABLE_DPE_INTR 0x40 1366 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80 1367 1368 #define ADV_INTR_STATUS_INTRA 0x01 1369 #define ADV_INTR_STATUS_INTRB 0x02 1370 #define ADV_INTR_STATUS_INTRC 0x04 1371 1372 #define ADV_RISC_CSR_STOP (0x0000) 1373 #define ADV_RISC_TEST_COND (0x2000) 1374 #define ADV_RISC_CSR_RUN (0x4000) 1375 #define ADV_RISC_CSR_SINGLE_STEP (0x8000) 1376 1377 #define ADV_CTRL_REG_HOST_INTR 0x0100 1378 #define ADV_CTRL_REG_SEL_INTR 0x0200 1379 #define ADV_CTRL_REG_DPR_INTR 0x0400 1380 #define ADV_CTRL_REG_RTA_INTR 0x0800 1381 #define ADV_CTRL_REG_RMA_INTR 0x1000 1382 #define ADV_CTRL_REG_RES_BIT14 0x2000 1383 #define ADV_CTRL_REG_DPE_INTR 0x4000 1384 #define ADV_CTRL_REG_POWER_DONE 0x8000 1385 #define ADV_CTRL_REG_ANY_INTR 0xFF00 1386 1387 #define ADV_CTRL_REG_CMD_RESET 0x00C6 1388 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5 1389 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4 1390 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3 1391 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2 1392 1393 #define ADV_TICKLE_NOP 0x00 1394 #define ADV_TICKLE_A 0x01 1395 #define ADV_TICKLE_B 0x02 1396 #define ADV_TICKLE_C 0x03 1397 1398 #define AdvIsIntPending(port) \ 1399 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR) 1400 1401 /* 1402 * SCSI_CFG0 Register bit definitions 1403 */ 1404 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */ 1405 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */ 1406 #define EVEN_PARITY 0x1000 /* Select Even Parity */ 1407 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */ 1408 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */ 1409 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */ 1410 #define SCAM_EN 0x0080 /* Enable SCAM selection */ 1411 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */ 1412 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */ 1413 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */ 1414 #define OUR_ID 0x000F /* SCSI ID */ 1415 1416 /* 1417 * SCSI_CFG1 Register bit definitions 1418 */ 1419 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */ 1420 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */ 1421 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */ 1422 #define FILTER_SEL 0x0C00 /* Filter Period Selection */ 1423 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */ 1424 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */ 1425 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */ 1426 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */ 1427 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */ 1428 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */ 1429 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */ 1430 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */ 1431 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */ 1432 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */ 1433 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */ 1434 1435 /* 1436 * Addendum for ASC-38C0800 Chip 1437 * 1438 * The ASC-38C1600 Chip uses the same definitions except that the 1439 * bus mode override bits [12:10] have been moved to byte register 1440 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in 1441 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV) 1442 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only. 1443 * Also each ASC-38C1600 function or channel uses only cable bits [5:4] 1444 * and [1:0]. Bits [14], [7:6], [3:2] are unused. 1445 */ 1446 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */ 1447 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */ 1448 #define HVD 0x1000 /* HVD Device Detect */ 1449 #define LVD 0x0800 /* LVD Device Detect */ 1450 #define SE 0x0400 /* SE Device Detect */ 1451 #define TERM_LVD 0x00C0 /* LVD Termination Bits */ 1452 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */ 1453 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */ 1454 #define TERM_SE 0x0030 /* SE Termination Bits */ 1455 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */ 1456 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */ 1457 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */ 1458 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */ 1459 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */ 1460 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */ 1461 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */ 1462 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */ 1463 1464 #define CABLE_ILLEGAL_A 0x7 1465 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */ 1466 1467 #define CABLE_ILLEGAL_B 0xB 1468 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */ 1469 1470 /* 1471 * MEM_CFG Register bit definitions 1472 */ 1473 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */ 1474 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */ 1475 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */ 1476 #define RAM_SZ_2KB 0x00 /* 2 KB */ 1477 #define RAM_SZ_4KB 0x04 /* 4 KB */ 1478 #define RAM_SZ_8KB 0x08 /* 8 KB */ 1479 #define RAM_SZ_16KB 0x0C /* 16 KB */ 1480 #define RAM_SZ_32KB 0x10 /* 32 KB */ 1481 #define RAM_SZ_64KB 0x14 /* 64 KB */ 1482 1483 /* 1484 * DMA_CFG0 Register bit definitions 1485 * 1486 * This register is only accessible to the host. 1487 */ 1488 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */ 1489 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */ 1490 #define FIFO_THRESH_16B 0x00 /* 16 bytes */ 1491 #define FIFO_THRESH_32B 0x20 /* 32 bytes */ 1492 #define FIFO_THRESH_48B 0x30 /* 48 bytes */ 1493 #define FIFO_THRESH_64B 0x40 /* 64 bytes */ 1494 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */ 1495 #define FIFO_THRESH_96B 0x60 /* 96 bytes */ 1496 #define FIFO_THRESH_112B 0x70 /* 112 bytes */ 1497 #define START_CTL 0x0C /* DMA start conditions */ 1498 #define START_CTL_TH 0x00 /* Wait threshold level (default) */ 1499 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */ 1500 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */ 1501 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */ 1502 #define READ_CMD 0x03 /* Memory Read Method */ 1503 #define READ_CMD_MR 0x00 /* Memory Read */ 1504 #define READ_CMD_MRL 0x02 /* Memory Read Long */ 1505 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */ 1506 1507 /* 1508 * ASC-38C0800 RAM BIST Register bit definitions 1509 */ 1510 #define RAM_TEST_MODE 0x80 1511 #define PRE_TEST_MODE 0x40 1512 #define NORMAL_MODE 0x00 1513 #define RAM_TEST_DONE 0x10 1514 #define RAM_TEST_STATUS 0x0F 1515 #define RAM_TEST_HOST_ERROR 0x08 1516 #define RAM_TEST_INTRAM_ERROR 0x04 1517 #define RAM_TEST_RISC_ERROR 0x02 1518 #define RAM_TEST_SCSI_ERROR 0x01 1519 #define RAM_TEST_SUCCESS 0x00 1520 #define PRE_TEST_VALUE 0x05 1521 #define NORMAL_VALUE 0x00 1522 1523 /* 1524 * ASC38C1600 Definitions 1525 * 1526 * IOPB_PCI_INT_CFG Bit Field Definitions 1527 */ 1528 1529 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */ 1530 1531 /* 1532 * Bit 1 can be set to change the interrupt for the Function to operate in 1533 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in 1534 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same 1535 * mode, otherwise the operating mode is undefined. 1536 */ 1537 #define TOTEMPOLE 0x02 1538 1539 /* 1540 * Bit 0 can be used to change the Int Pin for the Function. The value is 1541 * 0 by default for both Functions with Function 0 using INT A and Function 1542 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set, 1543 * INT A is used. 1544 * 1545 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin 1546 * value specified in the PCI Configuration Space. 1547 */ 1548 #define INTAB 0x01 1549 1550 /* 1551 * Adv Library Status Definitions 1552 */ 1553 #define ADV_TRUE 1 1554 #define ADV_FALSE 0 1555 #define ADV_SUCCESS 1 1556 #define ADV_BUSY 0 1557 #define ADV_ERROR (-1) 1558 1559 /* 1560 * ADV_DVC_VAR 'warn_code' values 1561 */ 1562 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */ 1563 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */ 1564 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */ 1565 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */ 1566 1567 #define ADV_MAX_TID 15 /* max. target identifier */ 1568 #define ADV_MAX_LUN 7 /* max. logical unit number */ 1569 1570 /* 1571 * Fixed locations of microcode operating variables. 1572 */ 1573 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */ 1574 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */ 1575 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */ 1576 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */ 1577 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */ 1578 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */ 1579 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */ 1580 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */ 1581 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */ 1582 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */ 1583 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */ 1584 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */ 1585 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */ 1586 #define ASC_MC_CHIP_TYPE 0x009A 1587 #define ASC_MC_INTRB_CODE 0x009B 1588 #define ASC_MC_WDTR_ABLE 0x009C 1589 #define ASC_MC_SDTR_ABLE 0x009E 1590 #define ASC_MC_TAGQNG_ABLE 0x00A0 1591 #define ASC_MC_DISC_ENABLE 0x00A2 1592 #define ASC_MC_IDLE_CMD_STATUS 0x00A4 1593 #define ASC_MC_IDLE_CMD 0x00A6 1594 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8 1595 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC 1596 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE 1597 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0 1598 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2 1599 #define ASC_MC_SDTR_DONE 0x00B6 1600 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0 1601 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0 1602 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100 1603 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */ 1604 #define ASC_MC_WDTR_DONE 0x0124 1605 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */ 1606 #define ASC_MC_ICQ 0x0160 1607 #define ASC_MC_IRQ 0x0164 1608 #define ASC_MC_PPR_ABLE 0x017A 1609 1610 /* 1611 * BIOS LRAM variable absolute offsets. 1612 */ 1613 #define BIOS_CODESEG 0x54 1614 #define BIOS_CODELEN 0x56 1615 #define BIOS_SIGNATURE 0x58 1616 #define BIOS_VERSION 0x5A 1617 1618 /* 1619 * Microcode Control Flags 1620 * 1621 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122) 1622 * and handled by the microcode. 1623 */ 1624 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */ 1625 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */ 1626 1627 /* 1628 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format 1629 */ 1630 #define HSHK_CFG_WIDE_XFR 0x8000 1631 #define HSHK_CFG_RATE 0x0F00 1632 #define HSHK_CFG_OFFSET 0x001F 1633 1634 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */ 1635 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */ 1636 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */ 1637 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */ 1638 1639 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */ 1640 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */ 1641 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */ 1642 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */ 1643 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */ 1644 1645 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */ 1646 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */ 1647 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */ 1648 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */ 1649 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */ 1650 /* 1651 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or 1652 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used. 1653 */ 1654 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */ 1655 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */ 1656 1657 /* 1658 * All fields here are accessed by the board microcode and need to be 1659 * little-endian. 1660 */ 1661 typedef struct adv_carr_t { 1662 __le32 carr_va; /* Carrier Virtual Address */ 1663 __le32 carr_pa; /* Carrier Physical Address */ 1664 __le32 areq_vpa; /* ADV_SCSI_REQ_Q Virtual or Physical Address */ 1665 /* 1666 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer 1667 * 1668 * next_vpa [3:1] Reserved Bits 1669 * next_vpa [0] Done Flag set in Response Queue. 1670 */ 1671 __le32 next_vpa; 1672 } ADV_CARR_T; 1673 1674 /* 1675 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field. 1676 */ 1677 #define ADV_NEXT_VPA_MASK 0xFFFFFFF0 1678 1679 #define ADV_RQ_DONE 0x00000001 1680 #define ADV_RQ_GOOD 0x00000002 1681 #define ADV_CQ_STOPPER 0x00000000 1682 1683 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK) 1684 1685 /* 1686 * Each carrier is 64 bytes, and we need three additional 1687 * carrier for icq, irq, and the termination carrier. 1688 */ 1689 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3) 1690 1691 #define ADV_CARRIER_BUFSIZE \ 1692 (ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) 1693 1694 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */ 1695 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */ 1696 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */ 1697 1698 /* 1699 * Adapter temporary configuration structure 1700 * 1701 * This structure can be discarded after initialization. Don't add 1702 * fields here needed after initialization. 1703 * 1704 * Field naming convention: 1705 * 1706 * *_enable indicates the field enables or disables a feature. The 1707 * value of the field is never reset. 1708 */ 1709 typedef struct adv_dvc_cfg { 1710 ushort disc_enable; /* enable disconnection */ 1711 uchar chip_version; /* chip version */ 1712 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */ 1713 ushort control_flag; /* Microcode Control Flag */ 1714 ushort mcode_date; /* Microcode date */ 1715 ushort mcode_version; /* Microcode version */ 1716 ushort serial1; /* EEPROM serial number word 1 */ 1717 ushort serial2; /* EEPROM serial number word 2 */ 1718 ushort serial3; /* EEPROM serial number word 3 */ 1719 } ADV_DVC_CFG; 1720 1721 struct adv_dvc_var; 1722 struct adv_scsi_req_q; 1723 1724 typedef struct adv_sg_block { 1725 uchar reserved1; 1726 uchar reserved2; 1727 uchar reserved3; 1728 uchar sg_cnt; /* Valid entries in block. */ 1729 __le32 sg_ptr; /* Pointer to next sg block. */ 1730 struct { 1731 __le32 sg_addr; /* SG element address. */ 1732 __le32 sg_count; /* SG element count. */ 1733 } sg_list[NO_OF_SG_PER_BLOCK]; 1734 } ADV_SG_BLOCK; 1735 1736 /* 1737 * ADV_SCSI_REQ_Q - microcode request structure 1738 * 1739 * All fields in this structure up to byte 60 are used by the microcode. 1740 * The microcode makes assumptions about the size and ordering of fields 1741 * in this structure. Do not change the structure definition here without 1742 * coordinating the change with the microcode. 1743 * 1744 * All fields accessed by microcode must be maintained in little_endian 1745 * order. 1746 */ 1747 typedef struct adv_scsi_req_q { 1748 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */ 1749 uchar target_cmd; 1750 uchar target_id; /* Device target identifier. */ 1751 uchar target_lun; /* Device target logical unit number. */ 1752 __le32 data_addr; /* Data buffer physical address. */ 1753 __le32 data_cnt; /* Data count. Ucode sets to residual. */ 1754 __le32 sense_addr; 1755 __le32 carr_pa; 1756 uchar mflag; 1757 uchar sense_len; 1758 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */ 1759 uchar scsi_cntl; 1760 uchar done_status; /* Completion status. */ 1761 uchar scsi_status; /* SCSI status byte. */ 1762 uchar host_status; /* Ucode host status. */ 1763 uchar sg_working_ix; 1764 uchar cdb[12]; /* SCSI CDB bytes 0-11. */ 1765 __le32 sg_real_addr; /* SG list physical address. */ 1766 __le32 scsiq_rptr; 1767 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */ 1768 __le32 scsiq_ptr; 1769 __le32 carr_va; 1770 /* 1771 * End of microcode structure - 60 bytes. The rest of the structure 1772 * is used by the Adv Library and ignored by the microcode. 1773 */ 1774 u32 srb_tag; 1775 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */ 1776 } ADV_SCSI_REQ_Q; 1777 1778 /* 1779 * The following two structures are used to process Wide Board requests. 1780 * 1781 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library 1782 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the 1783 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points 1784 * to the Mid-Level SCSI request structure. 1785 * 1786 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each 1787 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux 1788 * up to 255 scatter-gather elements may be used per request or 1789 * ADV_SCSI_REQ_Q. 1790 * 1791 * Both structures must be 32 byte aligned. 1792 */ 1793 typedef struct adv_sgblk { 1794 ADV_SG_BLOCK sg_block; /* Sgblock structure. */ 1795 dma_addr_t sg_addr; /* Physical address */ 1796 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */ 1797 } adv_sgblk_t; 1798 1799 typedef struct adv_req { 1800 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */ 1801 uchar align[24]; /* Request structure padding. */ 1802 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */ 1803 dma_addr_t req_addr; 1804 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */ 1805 } adv_req_t __aligned(32); 1806 1807 /* 1808 * Adapter operation variable structure. 1809 * 1810 * One structure is required per host adapter. 1811 * 1812 * Field naming convention: 1813 * 1814 * *_able indicates both whether a feature should be enabled or disabled 1815 * and whether a device isi capable of the feature. At initialization 1816 * this field may be set, but later if a device is found to be incapable 1817 * of the feature, the field is cleared. 1818 */ 1819 typedef struct adv_dvc_var { 1820 AdvPortAddr iop_base; /* I/O port address */ 1821 ushort err_code; /* fatal error code */ 1822 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */ 1823 ushort wdtr_able; /* try WDTR for a device */ 1824 ushort sdtr_able; /* try SDTR for a device */ 1825 ushort ultra_able; /* try SDTR Ultra speed for a device */ 1826 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */ 1827 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */ 1828 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */ 1829 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */ 1830 ushort tagqng_able; /* try tagged queuing with a device */ 1831 ushort ppr_able; /* PPR message capable per TID bitmask. */ 1832 uchar max_dvc_qng; /* maximum number of tagged commands per device */ 1833 ushort start_motor; /* start motor command allowed */ 1834 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */ 1835 uchar chip_no; /* should be assigned by caller */ 1836 uchar max_host_qng; /* maximum number of Q'ed command allowed */ 1837 ushort no_scam; /* scam_tolerant of EEPROM */ 1838 struct asc_board *drv_ptr; /* driver pointer to private structure */ 1839 uchar chip_scsi_id; /* chip SCSI target ID */ 1840 uchar chip_type; 1841 uchar bist_err_code; 1842 ADV_CARR_T *carrier; 1843 ADV_CARR_T *carr_freelist; /* Carrier free list. */ 1844 dma_addr_t carrier_addr; 1845 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */ 1846 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */ 1847 ushort carr_pending_cnt; /* Count of pending carriers. */ 1848 /* 1849 * Note: The following fields will not be used after initialization. The 1850 * driver may discard the buffer after initialization is done. 1851 */ 1852 ADV_DVC_CFG *cfg; /* temporary configuration structure */ 1853 } ADV_DVC_VAR; 1854 1855 /* 1856 * Microcode idle loop commands 1857 */ 1858 #define IDLE_CMD_COMPLETED 0 1859 #define IDLE_CMD_STOP_CHIP 0x0001 1860 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002 1861 #define IDLE_CMD_SEND_INT 0x0004 1862 #define IDLE_CMD_ABORT 0x0008 1863 #define IDLE_CMD_DEVICE_RESET 0x0010 1864 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */ 1865 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */ 1866 #define IDLE_CMD_SCSIREQ 0x0080 1867 1868 #define IDLE_CMD_STATUS_SUCCESS 0x0001 1869 #define IDLE_CMD_STATUS_FAILURE 0x0002 1870 1871 /* 1872 * AdvSendIdleCmd() flag definitions. 1873 */ 1874 #define ADV_NOWAIT 0x01 1875 1876 /* 1877 * Wait loop time out values. 1878 */ 1879 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */ 1880 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */ 1881 #define SCSI_MAX_RETRY 10 /* retry count */ 1882 1883 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */ 1884 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */ 1885 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */ 1886 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */ 1887 1888 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */ 1889 1890 /* Read byte from a register. */ 1891 #define AdvReadByteRegister(iop_base, reg_off) \ 1892 (ADV_MEM_READB((iop_base) + (reg_off))) 1893 1894 /* Write byte to a register. */ 1895 #define AdvWriteByteRegister(iop_base, reg_off, byte) \ 1896 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte))) 1897 1898 /* Read word (2 bytes) from a register. */ 1899 #define AdvReadWordRegister(iop_base, reg_off) \ 1900 (ADV_MEM_READW((iop_base) + (reg_off))) 1901 1902 /* Write word (2 bytes) to a register. */ 1903 #define AdvWriteWordRegister(iop_base, reg_off, word) \ 1904 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word))) 1905 1906 /* Write dword (4 bytes) to a register. */ 1907 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \ 1908 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword))) 1909 1910 /* Read byte from LRAM. */ 1911 #define AdvReadByteLram(iop_base, addr, byte) \ 1912 do { \ 1913 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ 1914 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \ 1915 } while (0) 1916 1917 /* Write byte to LRAM. */ 1918 #define AdvWriteByteLram(iop_base, addr, byte) \ 1919 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1920 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte))) 1921 1922 /* Read word (2 bytes) from LRAM. */ 1923 #define AdvReadWordLram(iop_base, addr, word) \ 1924 do { \ 1925 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ 1926 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \ 1927 } while (0) 1928 1929 /* Write word (2 bytes) to LRAM. */ 1930 #define AdvWriteWordLram(iop_base, addr, word) \ 1931 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1932 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) 1933 1934 /* Write little-endian double word (4 bytes) to LRAM */ 1935 /* Because of unspecified C language ordering don't use auto-increment. */ 1936 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \ 1937 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1938 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ 1939 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \ 1940 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \ 1941 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ 1942 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF))))) 1943 1944 /* Read word (2 bytes) from LRAM assuming that the address is already set. */ 1945 #define AdvReadWordAutoIncLram(iop_base) \ 1946 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)) 1947 1948 /* Write word (2 bytes) to LRAM assuming that the address is already set. */ 1949 #define AdvWriteWordAutoIncLram(iop_base, word) \ 1950 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) 1951 1952 /* 1953 * Define macro to check for Condor signature. 1954 * 1955 * Evaluate to ADV_TRUE if a Condor chip is found the specified port 1956 * address 'iop_base'. Otherwise evalue to ADV_FALSE. 1957 */ 1958 #define AdvFindSignature(iop_base) \ 1959 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \ 1960 ADV_CHIP_ID_BYTE) && \ 1961 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \ 1962 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE) 1963 1964 /* 1965 * Define macro to Return the version number of the chip at 'iop_base'. 1966 * 1967 * The second parameter 'bus_type' is currently unused. 1968 */ 1969 #define AdvGetChipVersion(iop_base, bus_type) \ 1970 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV) 1971 1972 /* 1973 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must 1974 * match the ADV_SCSI_REQ_Q 'srb_tag' field. 1975 * 1976 * If the request has not yet been sent to the device it will simply be 1977 * aborted from RISC memory. If the request is disconnected it will be 1978 * aborted on reselection by sending an Abort Message to the target ID. 1979 * 1980 * Return value: 1981 * ADV_TRUE(1) - Queue was successfully aborted. 1982 * ADV_FALSE(0) - Queue was not found on the active queue list. 1983 */ 1984 #define AdvAbortQueue(asc_dvc, srb_tag) \ 1985 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \ 1986 (ADV_DCNT) (srb_tag)) 1987 1988 /* 1989 * Send a Bus Device Reset Message to the specified target ID. 1990 * 1991 * All outstanding commands will be purged if sending the 1992 * Bus Device Reset Message is successful. 1993 * 1994 * Return Value: 1995 * ADV_TRUE(1) - All requests on the target are purged. 1996 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests 1997 * are not purged. 1998 */ 1999 #define AdvResetDevice(asc_dvc, target_id) \ 2000 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \ 2001 (ADV_DCNT) (target_id)) 2002 2003 /* 2004 * SCSI Wide Type definition. 2005 */ 2006 #define ADV_SCSI_BIT_ID_TYPE ushort 2007 2008 /* 2009 * AdvInitScsiTarget() 'cntl_flag' options. 2010 */ 2011 #define ADV_SCAN_LUN 0x01 2012 #define ADV_CAPINFO_NOLUN 0x02 2013 2014 /* 2015 * Convert target id to target id bit mask. 2016 */ 2017 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID)) 2018 2019 /* 2020 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values. 2021 */ 2022 2023 #define QD_NO_STATUS 0x00 /* Request not completed yet. */ 2024 #define QD_NO_ERROR 0x01 2025 #define QD_ABORTED_BY_HOST 0x02 2026 #define QD_WITH_ERROR 0x04 2027 2028 #define QHSTA_NO_ERROR 0x00 2029 #define QHSTA_M_SEL_TIMEOUT 0x11 2030 #define QHSTA_M_DATA_OVER_RUN 0x12 2031 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 2032 #define QHSTA_M_QUEUE_ABORTED 0x15 2033 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */ 2034 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */ 2035 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */ 2036 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */ 2037 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */ 2038 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */ 2039 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */ 2040 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */ 2041 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */ 2042 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */ 2043 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */ 2044 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */ 2045 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */ 2046 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */ 2047 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */ 2048 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */ 2049 #define QHSTA_M_WTM_TIMEOUT 0x41 2050 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 2051 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 2052 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 2053 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */ 2054 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */ 2055 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */ 2056 2057 /* Return the address that is aligned at the next doubleword >= to 'addr'. */ 2058 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F) 2059 2060 /* 2061 * Total contiguous memory needed for driver SG blocks. 2062 * 2063 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum 2064 * number of scatter-gather elements the driver supports in a 2065 * single request. 2066 */ 2067 2068 #define ADV_SG_LIST_MAX_BYTE_SIZE \ 2069 (sizeof(ADV_SG_BLOCK) * \ 2070 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK)) 2071 2072 /* struct asc_board flags */ 2073 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */ 2074 2075 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0) 2076 2077 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */ 2078 2079 #define ASC_INFO_SIZE 128 /* advansys_info() line size */ 2080 2081 /* Asc Library return codes */ 2082 #define ASC_TRUE 1 2083 #define ASC_FALSE 0 2084 #define ASC_NOERROR 1 2085 #define ASC_BUSY 0 2086 #define ASC_ERROR (-1) 2087 2088 /* struct scsi_cmnd function return codes */ 2089 #define STATUS_BYTE(byte) (byte) 2090 #define MSG_BYTE(byte) ((byte) << 8) 2091 #define HOST_BYTE(byte) ((byte) << 16) 2092 #define DRIVER_BYTE(byte) ((byte) << 24) 2093 2094 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1) 2095 #ifndef ADVANSYS_STATS 2096 #define ASC_STATS_ADD(shost, counter, count) 2097 #else /* ADVANSYS_STATS */ 2098 #define ASC_STATS_ADD(shost, counter, count) \ 2099 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count)) 2100 #endif /* ADVANSYS_STATS */ 2101 2102 /* If the result wraps when calculating tenths, return 0. */ 2103 #define ASC_TENTHS(num, den) \ 2104 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \ 2105 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den))))) 2106 2107 /* 2108 * Display a message to the console. 2109 */ 2110 #define ASC_PRINT(s) \ 2111 { \ 2112 printk("advansys: "); \ 2113 printk(s); \ 2114 } 2115 2116 #define ASC_PRINT1(s, a1) \ 2117 { \ 2118 printk("advansys: "); \ 2119 printk((s), (a1)); \ 2120 } 2121 2122 #define ASC_PRINT2(s, a1, a2) \ 2123 { \ 2124 printk("advansys: "); \ 2125 printk((s), (a1), (a2)); \ 2126 } 2127 2128 #define ASC_PRINT3(s, a1, a2, a3) \ 2129 { \ 2130 printk("advansys: "); \ 2131 printk((s), (a1), (a2), (a3)); \ 2132 } 2133 2134 #define ASC_PRINT4(s, a1, a2, a3, a4) \ 2135 { \ 2136 printk("advansys: "); \ 2137 printk((s), (a1), (a2), (a3), (a4)); \ 2138 } 2139 2140 #ifndef ADVANSYS_DEBUG 2141 2142 #define ASC_DBG(lvl, s...) 2143 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) 2144 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) 2145 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) 2146 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) 2147 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) 2148 #define ASC_DBG_PRT_HEX(lvl, name, start, length) 2149 #define ASC_DBG_PRT_CDB(lvl, cdb, len) 2150 #define ASC_DBG_PRT_SENSE(lvl, sense, len) 2151 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) 2152 2153 #else /* ADVANSYS_DEBUG */ 2154 2155 /* 2156 * Debugging Message Levels: 2157 * 0: Errors Only 2158 * 1: High-Level Tracing 2159 * 2-N: Verbose Tracing 2160 */ 2161 2162 #define ASC_DBG(lvl, format, arg...) { \ 2163 if (asc_dbglvl >= (lvl)) \ 2164 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \ 2165 __func__ , ## arg); \ 2166 } 2167 2168 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \ 2169 { \ 2170 if (asc_dbglvl >= (lvl)) { \ 2171 asc_prt_scsi_host(s); \ 2172 } \ 2173 } 2174 2175 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \ 2176 { \ 2177 if (asc_dbglvl >= (lvl)) { \ 2178 asc_prt_asc_scsi_q(scsiqp); \ 2179 } \ 2180 } 2181 2182 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \ 2183 { \ 2184 if (asc_dbglvl >= (lvl)) { \ 2185 asc_prt_asc_qdone_info(qdone); \ 2186 } \ 2187 } 2188 2189 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \ 2190 { \ 2191 if (asc_dbglvl >= (lvl)) { \ 2192 asc_prt_adv_scsi_req_q(scsiqp); \ 2193 } \ 2194 } 2195 2196 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \ 2197 { \ 2198 if (asc_dbglvl >= (lvl)) { \ 2199 asc_prt_hex((name), (start), (length)); \ 2200 } \ 2201 } 2202 2203 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \ 2204 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len)); 2205 2206 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \ 2207 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len)); 2208 2209 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \ 2210 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len)); 2211 #endif /* ADVANSYS_DEBUG */ 2212 2213 #ifdef ADVANSYS_STATS 2214 2215 /* Per board statistics structure */ 2216 struct asc_stats { 2217 /* Driver Entrypoint Statistics */ 2218 unsigned int queuecommand; /* # calls to advansys_queuecommand() */ 2219 unsigned int reset; /* # calls to advansys_eh_bus_reset() */ 2220 unsigned int biosparam; /* # calls to advansys_biosparam() */ 2221 unsigned int interrupt; /* # advansys_interrupt() calls */ 2222 unsigned int callback; /* # calls to asc/adv_isr_callback() */ 2223 unsigned int done; /* # calls to request's scsi_done function */ 2224 unsigned int build_error; /* # asc/adv_build_req() ASC_ERROR returns. */ 2225 unsigned int adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */ 2226 unsigned int adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */ 2227 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */ 2228 unsigned int exe_noerror; /* # ASC_NOERROR returns. */ 2229 unsigned int exe_busy; /* # ASC_BUSY returns. */ 2230 unsigned int exe_error; /* # ASC_ERROR returns. */ 2231 unsigned int exe_unknown; /* # unknown returns. */ 2232 /* Data Transfer Statistics */ 2233 unsigned int xfer_cnt; /* # I/O requests received */ 2234 unsigned int xfer_elem; /* # scatter-gather elements */ 2235 unsigned int xfer_sect; /* # 512-byte blocks */ 2236 }; 2237 #endif /* ADVANSYS_STATS */ 2238 2239 /* 2240 * Structure allocated for each board. 2241 * 2242 * This structure is allocated by scsi_host_alloc() at the end 2243 * of the 'Scsi_Host' structure starting at the 'hostdata' 2244 * field. It is guaranteed to be allocated from DMA-able memory. 2245 */ 2246 struct asc_board { 2247 struct device *dev; 2248 struct Scsi_Host *shost; 2249 uint flags; /* Board flags */ 2250 unsigned int irq; 2251 union { 2252 ASC_DVC_VAR asc_dvc_var; /* Narrow board */ 2253 ADV_DVC_VAR adv_dvc_var; /* Wide board */ 2254 } dvc_var; 2255 union { 2256 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */ 2257 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */ 2258 } dvc_cfg; 2259 ushort asc_n_io_port; /* Number I/O ports. */ 2260 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */ 2261 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */ 2262 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */ 2263 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */ 2264 union { 2265 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */ 2266 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */ 2267 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */ 2268 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */ 2269 } eep_config; 2270 /* /proc/scsi/advansys/[0...] */ 2271 #ifdef ADVANSYS_STATS 2272 struct asc_stats asc_stats; /* Board statistics */ 2273 #endif /* ADVANSYS_STATS */ 2274 /* 2275 * The following fields are used only for Narrow Boards. 2276 */ 2277 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */ 2278 /* 2279 * The following fields are used only for Wide Boards. 2280 */ 2281 void __iomem *ioremap_addr; /* I/O Memory remap address. */ 2282 ushort ioport; /* I/O Port address. */ 2283 adv_req_t *adv_reqp; /* Request structures. */ 2284 dma_addr_t adv_reqp_addr; 2285 size_t adv_reqp_size; 2286 struct dma_pool *adv_sgblk_pool; /* Scatter-gather structures. */ 2287 ushort bios_signature; /* BIOS Signature. */ 2288 ushort bios_version; /* BIOS Version. */ 2289 ushort bios_codeseg; /* BIOS Code Segment. */ 2290 ushort bios_codelen; /* BIOS Code Segment Length. */ 2291 }; 2292 2293 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \ 2294 dvc_var.asc_dvc_var) 2295 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \ 2296 dvc_var.adv_dvc_var) 2297 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev) 2298 2299 #ifdef ADVANSYS_DEBUG 2300 static int asc_dbglvl = 3; 2301 2302 /* 2303 * asc_prt_asc_dvc_var() 2304 */ 2305 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h) 2306 { 2307 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h); 2308 2309 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl " 2310 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl); 2311 2312 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type, 2313 (unsigned)h->init_sdtr); 2314 2315 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, " 2316 "chip_no 0x%x,\n", (unsigned)h->sdtr_done, 2317 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready, 2318 (unsigned)h->chip_no); 2319 2320 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait " 2321 "%u,\n", (unsigned)h->queue_full_or_busy, 2322 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); 2323 2324 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, " 2325 "in_critical_cnt %u,\n", (unsigned)h->is_in_int, 2326 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng, 2327 (unsigned)h->in_critical_cnt); 2328 2329 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, " 2330 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage, 2331 (unsigned)h->init_state, (unsigned)h->no_scam, 2332 (unsigned)h->pci_fix_asyn_xfer); 2333 2334 printk(" cfg 0x%lx\n", (ulong)h->cfg); 2335 } 2336 2337 /* 2338 * asc_prt_asc_dvc_cfg() 2339 */ 2340 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h) 2341 { 2342 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h); 2343 2344 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n", 2345 h->can_tagged_qng, h->cmd_qng_enabled); 2346 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n", 2347 h->disc_enable, h->sdtr_enable); 2348 2349 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, " 2350 "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed, 2351 h->isa_dma_channel, h->chip_version); 2352 2353 printk(" mcode_date 0x%x, mcode_version %d\n", 2354 h->mcode_date, h->mcode_version); 2355 } 2356 2357 /* 2358 * asc_prt_adv_dvc_var() 2359 * 2360 * Display an ADV_DVC_VAR structure. 2361 */ 2362 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h) 2363 { 2364 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h); 2365 2366 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n", 2367 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able); 2368 2369 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n", 2370 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able); 2371 2372 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n", 2373 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); 2374 2375 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n", 2376 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng, 2377 h->carr_freelist); 2378 2379 printk(" icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp); 2380 2381 printk(" no_scam 0x%x, tagqng_able 0x%x\n", 2382 (unsigned)h->no_scam, (unsigned)h->tagqng_able); 2383 2384 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n", 2385 (unsigned)h->chip_scsi_id, (ulong)h->cfg); 2386 } 2387 2388 /* 2389 * asc_prt_adv_dvc_cfg() 2390 * 2391 * Display an ADV_DVC_CFG structure. 2392 */ 2393 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h) 2394 { 2395 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h); 2396 2397 printk(" disc_enable 0x%x, termination 0x%x\n", 2398 h->disc_enable, h->termination); 2399 2400 printk(" chip_version 0x%x, mcode_date 0x%x\n", 2401 h->chip_version, h->mcode_date); 2402 2403 printk(" mcode_version 0x%x, control_flag 0x%x\n", 2404 h->mcode_version, h->control_flag); 2405 } 2406 2407 /* 2408 * asc_prt_scsi_host() 2409 */ 2410 static void asc_prt_scsi_host(struct Scsi_Host *s) 2411 { 2412 struct asc_board *boardp = shost_priv(s); 2413 2414 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev)); 2415 printk(" host_busy %d, host_no %d,\n", 2416 scsi_host_busy(s), s->host_no); 2417 2418 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n", 2419 (ulong)s->base, (ulong)s->io_port, boardp->irq); 2420 2421 printk(" dma_channel %d, this_id %d, can_queue %d,\n", 2422 s->dma_channel, s->this_id, s->can_queue); 2423 2424 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n", 2425 s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma); 2426 2427 if (ASC_NARROW_BOARD(boardp)) { 2428 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var); 2429 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg); 2430 } else { 2431 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var); 2432 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg); 2433 } 2434 } 2435 2436 /* 2437 * asc_prt_hex() 2438 * 2439 * Print hexadecimal output in 4 byte groupings 32 bytes 2440 * or 8 double-words per line. 2441 */ 2442 static void asc_prt_hex(char *f, uchar *s, int l) 2443 { 2444 int i; 2445 int j; 2446 int k; 2447 int m; 2448 2449 printk("%s: (%d bytes)\n", f, l); 2450 2451 for (i = 0; i < l; i += 32) { 2452 2453 /* Display a maximum of 8 double-words per line. */ 2454 if ((k = (l - i) / 4) >= 8) { 2455 k = 8; 2456 m = 0; 2457 } else { 2458 m = (l - i) % 4; 2459 } 2460 2461 for (j = 0; j < k; j++) { 2462 printk(" %2.2X%2.2X%2.2X%2.2X", 2463 (unsigned)s[i + (j * 4)], 2464 (unsigned)s[i + (j * 4) + 1], 2465 (unsigned)s[i + (j * 4) + 2], 2466 (unsigned)s[i + (j * 4) + 3]); 2467 } 2468 2469 switch (m) { 2470 case 0: 2471 default: 2472 break; 2473 case 1: 2474 printk(" %2.2X", (unsigned)s[i + (j * 4)]); 2475 break; 2476 case 2: 2477 printk(" %2.2X%2.2X", 2478 (unsigned)s[i + (j * 4)], 2479 (unsigned)s[i + (j * 4) + 1]); 2480 break; 2481 case 3: 2482 printk(" %2.2X%2.2X%2.2X", 2483 (unsigned)s[i + (j * 4) + 1], 2484 (unsigned)s[i + (j * 4) + 2], 2485 (unsigned)s[i + (j * 4) + 3]); 2486 break; 2487 } 2488 2489 printk("\n"); 2490 } 2491 } 2492 2493 /* 2494 * asc_prt_asc_scsi_q() 2495 */ 2496 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q) 2497 { 2498 ASC_SG_HEAD *sgp; 2499 int i; 2500 2501 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q); 2502 2503 printk 2504 (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n", 2505 q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag, 2506 q->q2.tag_code); 2507 2508 printk 2509 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", 2510 (ulong)le32_to_cpu(q->q1.data_addr), 2511 (ulong)le32_to_cpu(q->q1.data_cnt), 2512 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len); 2513 2514 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n", 2515 (ulong)q->cdbptr, q->q2.cdb_len, 2516 (ulong)q->sg_head, q->q1.sg_queue_cnt); 2517 2518 if (q->sg_head) { 2519 sgp = q->sg_head; 2520 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp); 2521 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt, 2522 sgp->queue_cnt); 2523 for (i = 0; i < sgp->entry_cnt; i++) { 2524 printk(" [%u]: addr 0x%lx, bytes %lu\n", 2525 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr), 2526 (ulong)le32_to_cpu(sgp->sg_list[i].bytes)); 2527 } 2528 2529 } 2530 } 2531 2532 /* 2533 * asc_prt_asc_qdone_info() 2534 */ 2535 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q) 2536 { 2537 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q); 2538 printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n", 2539 q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len, 2540 q->d2.tag_code); 2541 printk 2542 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n", 2543 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg); 2544 } 2545 2546 /* 2547 * asc_prt_adv_sgblock() 2548 * 2549 * Display an ADV_SG_BLOCK structure. 2550 */ 2551 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b) 2552 { 2553 int i; 2554 2555 printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n", 2556 (ulong)b, sgblockno); 2557 printk(" sg_cnt %u, sg_ptr 0x%x\n", 2558 b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr)); 2559 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK); 2560 if (b->sg_ptr != 0) 2561 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK); 2562 for (i = 0; i < b->sg_cnt; i++) { 2563 printk(" [%u]: sg_addr 0x%x, sg_count 0x%x\n", 2564 i, (u32)le32_to_cpu(b->sg_list[i].sg_addr), 2565 (u32)le32_to_cpu(b->sg_list[i].sg_count)); 2566 } 2567 } 2568 2569 /* 2570 * asc_prt_adv_scsi_req_q() 2571 * 2572 * Display an ADV_SCSI_REQ_Q structure. 2573 */ 2574 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q) 2575 { 2576 int sg_blk_cnt; 2577 struct adv_sg_block *sg_ptr; 2578 adv_sgblk_t *sgblkp; 2579 2580 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q); 2581 2582 printk(" target_id %u, target_lun %u, srb_tag 0x%x\n", 2583 q->target_id, q->target_lun, q->srb_tag); 2584 2585 printk(" cntl 0x%x, data_addr 0x%lx\n", 2586 q->cntl, (ulong)le32_to_cpu(q->data_addr)); 2587 2588 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", 2589 (ulong)le32_to_cpu(q->data_cnt), 2590 (ulong)le32_to_cpu(q->sense_addr), q->sense_len); 2591 2592 printk 2593 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n", 2594 q->cdb_len, q->done_status, q->host_status, q->scsi_status); 2595 2596 printk(" sg_working_ix 0x%x, target_cmd %u\n", 2597 q->sg_working_ix, q->target_cmd); 2598 2599 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n", 2600 (ulong)le32_to_cpu(q->scsiq_rptr), 2601 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr); 2602 2603 /* Display the request's ADV_SG_BLOCK structures. */ 2604 if (q->sg_list_ptr != NULL) { 2605 sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block); 2606 sg_blk_cnt = 0; 2607 while (sgblkp) { 2608 sg_ptr = &sgblkp->sg_block; 2609 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr); 2610 if (sg_ptr->sg_ptr == 0) { 2611 break; 2612 } 2613 sgblkp = sgblkp->next_sgblkp; 2614 sg_blk_cnt++; 2615 } 2616 } 2617 } 2618 #endif /* ADVANSYS_DEBUG */ 2619 2620 /* 2621 * advansys_info() 2622 * 2623 * Return suitable for printing on the console with the argument 2624 * adapter's configuration information. 2625 * 2626 * Note: The information line should not exceed ASC_INFO_SIZE bytes, 2627 * otherwise the static 'info' array will be overrun. 2628 */ 2629 static const char *advansys_info(struct Scsi_Host *shost) 2630 { 2631 static char info[ASC_INFO_SIZE]; 2632 struct asc_board *boardp = shost_priv(shost); 2633 ASC_DVC_VAR *asc_dvc_varp; 2634 ADV_DVC_VAR *adv_dvc_varp; 2635 char *busname; 2636 char *widename = NULL; 2637 2638 if (ASC_NARROW_BOARD(boardp)) { 2639 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 2640 ASC_DBG(1, "begin\n"); 2641 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 2642 if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) == 2643 ASC_IS_ISAPNP) { 2644 busname = "ISA PnP"; 2645 } else { 2646 busname = "ISA"; 2647 } 2648 sprintf(info, 2649 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X", 2650 ASC_VERSION, busname, 2651 (ulong)shost->io_port, 2652 (ulong)shost->io_port + ASC_IOADR_GAP - 1, 2653 boardp->irq, shost->dma_channel); 2654 } else { 2655 if (asc_dvc_varp->bus_type & ASC_IS_VL) { 2656 busname = "VL"; 2657 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) { 2658 busname = "EISA"; 2659 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) { 2660 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA) 2661 == ASC_IS_PCI_ULTRA) { 2662 busname = "PCI Ultra"; 2663 } else { 2664 busname = "PCI"; 2665 } 2666 } else { 2667 busname = "?"; 2668 shost_printk(KERN_ERR, shost, "unknown bus " 2669 "type %d\n", asc_dvc_varp->bus_type); 2670 } 2671 sprintf(info, 2672 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X", 2673 ASC_VERSION, busname, (ulong)shost->io_port, 2674 (ulong)shost->io_port + ASC_IOADR_GAP - 1, 2675 boardp->irq); 2676 } 2677 } else { 2678 /* 2679 * Wide Adapter Information 2680 * 2681 * Memory-mapped I/O is used instead of I/O space to access 2682 * the adapter, but display the I/O Port range. The Memory 2683 * I/O address is displayed through the driver /proc file. 2684 */ 2685 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 2686 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2687 widename = "Ultra-Wide"; 2688 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2689 widename = "Ultra2-Wide"; 2690 } else { 2691 widename = "Ultra3-Wide"; 2692 } 2693 sprintf(info, 2694 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X", 2695 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base, 2696 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq); 2697 } 2698 BUG_ON(strlen(info) >= ASC_INFO_SIZE); 2699 ASC_DBG(1, "end\n"); 2700 return info; 2701 } 2702 2703 #ifdef CONFIG_PROC_FS 2704 2705 /* 2706 * asc_prt_board_devices() 2707 * 2708 * Print driver information for devices attached to the board. 2709 */ 2710 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost) 2711 { 2712 struct asc_board *boardp = shost_priv(shost); 2713 int chip_scsi_id; 2714 int i; 2715 2716 seq_printf(m, 2717 "\nDevice Information for AdvanSys SCSI Host %d:\n", 2718 shost->host_no); 2719 2720 if (ASC_NARROW_BOARD(boardp)) { 2721 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; 2722 } else { 2723 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; 2724 } 2725 2726 seq_puts(m, "Target IDs Detected:"); 2727 for (i = 0; i <= ADV_MAX_TID; i++) { 2728 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) 2729 seq_printf(m, " %X,", i); 2730 } 2731 seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id); 2732 } 2733 2734 /* 2735 * Display Wide Board BIOS Information. 2736 */ 2737 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost) 2738 { 2739 struct asc_board *boardp = shost_priv(shost); 2740 ushort major, minor, letter; 2741 2742 seq_puts(m, "\nROM BIOS Version: "); 2743 2744 /* 2745 * If the BIOS saved a valid signature, then fill in 2746 * the BIOS code segment base address. 2747 */ 2748 if (boardp->bios_signature != 0x55AA) { 2749 seq_puts(m, "Disabled or Pre-3.1\n" 2750 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n" 2751 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n"); 2752 } else { 2753 major = (boardp->bios_version >> 12) & 0xF; 2754 minor = (boardp->bios_version >> 8) & 0xF; 2755 letter = (boardp->bios_version & 0xFF); 2756 2757 seq_printf(m, "%d.%d%c\n", 2758 major, minor, 2759 letter >= 26 ? '?' : letter + 'A'); 2760 /* 2761 * Current available ROM BIOS release is 3.1I for UW 2762 * and 3.2I for U2W. This code doesn't differentiate 2763 * UW and U2W boards. 2764 */ 2765 if (major < 3 || (major <= 3 && minor < 1) || 2766 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) { 2767 seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n" 2768 "ftp://ftp.connectcom.net/pub\n"); 2769 } 2770 } 2771 } 2772 2773 /* 2774 * Add serial number to information bar if signature AAh 2775 * is found in at bit 15-9 (7 bits) of word 1. 2776 * 2777 * Serial Number consists fo 12 alpha-numeric digits. 2778 * 2779 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits) 2780 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits) 2781 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits) 2782 * 5 - Product revision (A-J) Word0: " " 2783 * 2784 * Signature Word1: 15-9 (7 bits) 2785 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit) 2786 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits) 2787 * 2788 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits) 2789 * 2790 * Note 1: Only production cards will have a serial number. 2791 * 2792 * Note 2: Signature is most significant 7 bits (0xFE). 2793 * 2794 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE. 2795 */ 2796 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp) 2797 { 2798 ushort w, num; 2799 2800 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) { 2801 return ASC_FALSE; 2802 } else { 2803 /* 2804 * First word - 6 digits. 2805 */ 2806 w = serialnum[0]; 2807 2808 /* Product type - 1st digit. */ 2809 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') { 2810 /* Product type is P=Prototype */ 2811 *cp += 0x8; 2812 } 2813 cp++; 2814 2815 /* Manufacturing location - 2nd digit. */ 2816 *cp++ = 'A' + ((w & 0x1C00) >> 10); 2817 2818 /* Product ID - 3rd, 4th digits. */ 2819 num = w & 0x3FF; 2820 *cp++ = '0' + (num / 100); 2821 num %= 100; 2822 *cp++ = '0' + (num / 10); 2823 2824 /* Product revision - 5th digit. */ 2825 *cp++ = 'A' + (num % 10); 2826 2827 /* 2828 * Second word 2829 */ 2830 w = serialnum[1]; 2831 2832 /* 2833 * Year - 6th digit. 2834 * 2835 * If bit 15 of third word is set, then the 2836 * last digit of the year is greater than 7. 2837 */ 2838 if (serialnum[2] & 0x8000) { 2839 *cp++ = '8' + ((w & 0x1C0) >> 6); 2840 } else { 2841 *cp++ = '0' + ((w & 0x1C0) >> 6); 2842 } 2843 2844 /* Week of year - 7th, 8th digits. */ 2845 num = w & 0x003F; 2846 *cp++ = '0' + num / 10; 2847 num %= 10; 2848 *cp++ = '0' + num; 2849 2850 /* 2851 * Third word 2852 */ 2853 w = serialnum[2] & 0x7FFF; 2854 2855 /* Serial number - 9th digit. */ 2856 *cp++ = 'A' + (w / 1000); 2857 2858 /* 10th, 11th, 12th digits. */ 2859 num = w % 1000; 2860 *cp++ = '0' + num / 100; 2861 num %= 100; 2862 *cp++ = '0' + num / 10; 2863 num %= 10; 2864 *cp++ = '0' + num; 2865 2866 *cp = '\0'; /* Null Terminate the string. */ 2867 return ASC_TRUE; 2868 } 2869 } 2870 2871 /* 2872 * asc_prt_asc_board_eeprom() 2873 * 2874 * Print board EEPROM configuration. 2875 */ 2876 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) 2877 { 2878 struct asc_board *boardp = shost_priv(shost); 2879 ASC_DVC_VAR *asc_dvc_varp; 2880 ASCEEP_CONFIG *ep; 2881 int i; 2882 #ifdef CONFIG_ISA 2883 int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 }; 2884 #endif /* CONFIG_ISA */ 2885 uchar serialstr[13]; 2886 2887 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 2888 ep = &boardp->eep_config.asc_eep; 2889 2890 seq_printf(m, 2891 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", 2892 shost->host_no); 2893 2894 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr) 2895 == ASC_TRUE) 2896 seq_printf(m, " Serial Number: %s\n", serialstr); 2897 else if (ep->adapter_info[5] == 0xBB) 2898 seq_puts(m, 2899 " Default Settings Used for EEPROM-less Adapter.\n"); 2900 else 2901 seq_puts(m, " Serial Number Signature Not Present.\n"); 2902 2903 seq_printf(m, 2904 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2905 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng, 2906 ep->max_tag_qng); 2907 2908 seq_printf(m, 2909 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam); 2910 2911 seq_puts(m, " Target ID: "); 2912 for (i = 0; i <= ASC_MAX_TID; i++) 2913 seq_printf(m, " %d", i); 2914 2915 seq_puts(m, "\n Disconnects: "); 2916 for (i = 0; i <= ASC_MAX_TID; i++) 2917 seq_printf(m, " %c", 2918 (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2919 2920 seq_puts(m, "\n Command Queuing: "); 2921 for (i = 0; i <= ASC_MAX_TID; i++) 2922 seq_printf(m, " %c", 2923 (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2924 2925 seq_puts(m, "\n Start Motor: "); 2926 for (i = 0; i <= ASC_MAX_TID; i++) 2927 seq_printf(m, " %c", 2928 (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2929 2930 seq_puts(m, "\n Synchronous Transfer:"); 2931 for (i = 0; i <= ASC_MAX_TID; i++) 2932 seq_printf(m, " %c", 2933 (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2934 seq_putc(m, '\n'); 2935 2936 #ifdef CONFIG_ISA 2937 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 2938 seq_printf(m, 2939 " Host ISA DMA speed: %d MB/S\n", 2940 isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]); 2941 } 2942 #endif /* CONFIG_ISA */ 2943 } 2944 2945 /* 2946 * asc_prt_adv_board_eeprom() 2947 * 2948 * Print board EEPROM configuration. 2949 */ 2950 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) 2951 { 2952 struct asc_board *boardp = shost_priv(shost); 2953 ADV_DVC_VAR *adv_dvc_varp; 2954 int i; 2955 char *termstr; 2956 uchar serialstr[13]; 2957 ADVEEP_3550_CONFIG *ep_3550 = NULL; 2958 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL; 2959 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL; 2960 ushort word; 2961 ushort *wordp; 2962 ushort sdtr_speed = 0; 2963 2964 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 2965 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2966 ep_3550 = &boardp->eep_config.adv_3550_eep; 2967 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2968 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; 2969 } else { 2970 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; 2971 } 2972 2973 seq_printf(m, 2974 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", 2975 shost->host_no); 2976 2977 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2978 wordp = &ep_3550->serial_number_word1; 2979 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2980 wordp = &ep_38C0800->serial_number_word1; 2981 } else { 2982 wordp = &ep_38C1600->serial_number_word1; 2983 } 2984 2985 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) 2986 seq_printf(m, " Serial Number: %s\n", serialstr); 2987 else 2988 seq_puts(m, " Serial Number Signature Not Present.\n"); 2989 2990 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) 2991 seq_printf(m, 2992 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2993 ep_3550->adapter_scsi_id, 2994 ep_3550->max_host_qng, ep_3550->max_dvc_qng); 2995 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) 2996 seq_printf(m, 2997 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2998 ep_38C0800->adapter_scsi_id, 2999 ep_38C0800->max_host_qng, 3000 ep_38C0800->max_dvc_qng); 3001 else 3002 seq_printf(m, 3003 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 3004 ep_38C1600->adapter_scsi_id, 3005 ep_38C1600->max_host_qng, 3006 ep_38C1600->max_dvc_qng); 3007 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3008 word = ep_3550->termination; 3009 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3010 word = ep_38C0800->termination_lvd; 3011 } else { 3012 word = ep_38C1600->termination_lvd; 3013 } 3014 switch (word) { 3015 case 1: 3016 termstr = "Low Off/High Off"; 3017 break; 3018 case 2: 3019 termstr = "Low Off/High On"; 3020 break; 3021 case 3: 3022 termstr = "Low On/High On"; 3023 break; 3024 default: 3025 case 0: 3026 termstr = "Automatic"; 3027 break; 3028 } 3029 3030 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) 3031 seq_printf(m, 3032 " termination: %u (%s), bios_ctrl: 0x%x\n", 3033 ep_3550->termination, termstr, 3034 ep_3550->bios_ctrl); 3035 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) 3036 seq_printf(m, 3037 " termination: %u (%s), bios_ctrl: 0x%x\n", 3038 ep_38C0800->termination_lvd, termstr, 3039 ep_38C0800->bios_ctrl); 3040 else 3041 seq_printf(m, 3042 " termination: %u (%s), bios_ctrl: 0x%x\n", 3043 ep_38C1600->termination_lvd, termstr, 3044 ep_38C1600->bios_ctrl); 3045 3046 seq_puts(m, " Target ID: "); 3047 for (i = 0; i <= ADV_MAX_TID; i++) 3048 seq_printf(m, " %X", i); 3049 seq_putc(m, '\n'); 3050 3051 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3052 word = ep_3550->disc_enable; 3053 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3054 word = ep_38C0800->disc_enable; 3055 } else { 3056 word = ep_38C1600->disc_enable; 3057 } 3058 seq_puts(m, " Disconnects: "); 3059 for (i = 0; i <= ADV_MAX_TID; i++) 3060 seq_printf(m, " %c", 3061 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3062 seq_putc(m, '\n'); 3063 3064 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3065 word = ep_3550->tagqng_able; 3066 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3067 word = ep_38C0800->tagqng_able; 3068 } else { 3069 word = ep_38C1600->tagqng_able; 3070 } 3071 seq_puts(m, " Command Queuing: "); 3072 for (i = 0; i <= ADV_MAX_TID; i++) 3073 seq_printf(m, " %c", 3074 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3075 seq_putc(m, '\n'); 3076 3077 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3078 word = ep_3550->start_motor; 3079 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3080 word = ep_38C0800->start_motor; 3081 } else { 3082 word = ep_38C1600->start_motor; 3083 } 3084 seq_puts(m, " Start Motor: "); 3085 for (i = 0; i <= ADV_MAX_TID; i++) 3086 seq_printf(m, " %c", 3087 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3088 seq_putc(m, '\n'); 3089 3090 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3091 seq_puts(m, " Synchronous Transfer:"); 3092 for (i = 0; i <= ADV_MAX_TID; i++) 3093 seq_printf(m, " %c", 3094 (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 3095 'Y' : 'N'); 3096 seq_putc(m, '\n'); 3097 } 3098 3099 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3100 seq_puts(m, " Ultra Transfer: "); 3101 for (i = 0; i <= ADV_MAX_TID; i++) 3102 seq_printf(m, " %c", 3103 (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i)) 3104 ? 'Y' : 'N'); 3105 seq_putc(m, '\n'); 3106 } 3107 3108 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3109 word = ep_3550->wdtr_able; 3110 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3111 word = ep_38C0800->wdtr_able; 3112 } else { 3113 word = ep_38C1600->wdtr_able; 3114 } 3115 seq_puts(m, " Wide Transfer: "); 3116 for (i = 0; i <= ADV_MAX_TID; i++) 3117 seq_printf(m, " %c", 3118 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3119 seq_putc(m, '\n'); 3120 3121 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 || 3122 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) { 3123 seq_puts(m, " Synchronous Transfer Speed (Mhz):\n "); 3124 for (i = 0; i <= ADV_MAX_TID; i++) { 3125 char *speed_str; 3126 3127 if (i == 0) { 3128 sdtr_speed = adv_dvc_varp->sdtr_speed1; 3129 } else if (i == 4) { 3130 sdtr_speed = adv_dvc_varp->sdtr_speed2; 3131 } else if (i == 8) { 3132 sdtr_speed = adv_dvc_varp->sdtr_speed3; 3133 } else if (i == 12) { 3134 sdtr_speed = adv_dvc_varp->sdtr_speed4; 3135 } 3136 switch (sdtr_speed & ADV_MAX_TID) { 3137 case 0: 3138 speed_str = "Off"; 3139 break; 3140 case 1: 3141 speed_str = " 5"; 3142 break; 3143 case 2: 3144 speed_str = " 10"; 3145 break; 3146 case 3: 3147 speed_str = " 20"; 3148 break; 3149 case 4: 3150 speed_str = " 40"; 3151 break; 3152 case 5: 3153 speed_str = " 80"; 3154 break; 3155 default: 3156 speed_str = "Unk"; 3157 break; 3158 } 3159 seq_printf(m, "%X:%s ", i, speed_str); 3160 if (i == 7) 3161 seq_puts(m, "\n "); 3162 sdtr_speed >>= 4; 3163 } 3164 seq_putc(m, '\n'); 3165 } 3166 } 3167 3168 /* 3169 * asc_prt_driver_conf() 3170 */ 3171 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost) 3172 { 3173 struct asc_board *boardp = shost_priv(shost); 3174 int chip_scsi_id; 3175 3176 seq_printf(m, 3177 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n", 3178 shost->host_no); 3179 3180 seq_printf(m, 3181 " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n", 3182 scsi_host_busy(shost), shost->max_id, 3183 shost->max_lun, shost->max_channel); 3184 3185 seq_printf(m, 3186 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n", 3187 shost->unique_id, shost->can_queue, shost->this_id, 3188 shost->sg_tablesize, shost->cmd_per_lun); 3189 3190 seq_printf(m, 3191 " unchecked_isa_dma %d\n", 3192 shost->unchecked_isa_dma); 3193 3194 seq_printf(m, 3195 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n", 3196 boardp->flags, shost->last_reset, jiffies, 3197 boardp->asc_n_io_port); 3198 3199 seq_printf(m, " io_port 0x%lx\n", shost->io_port); 3200 3201 if (ASC_NARROW_BOARD(boardp)) { 3202 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; 3203 } else { 3204 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; 3205 } 3206 } 3207 3208 /* 3209 * asc_prt_asc_board_info() 3210 * 3211 * Print dynamic board configuration information. 3212 */ 3213 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost) 3214 { 3215 struct asc_board *boardp = shost_priv(shost); 3216 int chip_scsi_id; 3217 ASC_DVC_VAR *v; 3218 ASC_DVC_CFG *c; 3219 int i; 3220 int renegotiate = 0; 3221 3222 v = &boardp->dvc_var.asc_dvc_var; 3223 c = &boardp->dvc_cfg.asc_dvc_cfg; 3224 chip_scsi_id = c->chip_scsi_id; 3225 3226 seq_printf(m, 3227 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", 3228 shost->host_no); 3229 3230 seq_printf(m, " chip_version %u, mcode_date 0x%x, " 3231 "mcode_version 0x%x, err_code %u\n", 3232 c->chip_version, c->mcode_date, c->mcode_version, 3233 v->err_code); 3234 3235 /* Current number of commands waiting for the host. */ 3236 seq_printf(m, 3237 " Total Command Pending: %d\n", v->cur_total_qng); 3238 3239 seq_puts(m, " Command Queuing:"); 3240 for (i = 0; i <= ASC_MAX_TID; i++) { 3241 if ((chip_scsi_id == i) || 3242 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3243 continue; 3244 } 3245 seq_printf(m, " %X:%c", 3246 i, 3247 (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3248 } 3249 3250 /* Current number of commands waiting for a device. */ 3251 seq_puts(m, "\n Command Queue Pending:"); 3252 for (i = 0; i <= ASC_MAX_TID; i++) { 3253 if ((chip_scsi_id == i) || 3254 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3255 continue; 3256 } 3257 seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]); 3258 } 3259 3260 /* Current limit on number of commands that can be sent to a device. */ 3261 seq_puts(m, "\n Command Queue Limit:"); 3262 for (i = 0; i <= ASC_MAX_TID; i++) { 3263 if ((chip_scsi_id == i) || 3264 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3265 continue; 3266 } 3267 seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]); 3268 } 3269 3270 /* Indicate whether the device has returned queue full status. */ 3271 seq_puts(m, "\n Command Queue Full:"); 3272 for (i = 0; i <= ASC_MAX_TID; i++) { 3273 if ((chip_scsi_id == i) || 3274 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3275 continue; 3276 } 3277 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) 3278 seq_printf(m, " %X:Y-%d", 3279 i, boardp->queue_full_cnt[i]); 3280 else 3281 seq_printf(m, " %X:N", i); 3282 } 3283 3284 seq_puts(m, "\n Synchronous Transfer:"); 3285 for (i = 0; i <= ASC_MAX_TID; i++) { 3286 if ((chip_scsi_id == i) || 3287 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3288 continue; 3289 } 3290 seq_printf(m, " %X:%c", 3291 i, 3292 (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3293 } 3294 seq_putc(m, '\n'); 3295 3296 for (i = 0; i <= ASC_MAX_TID; i++) { 3297 uchar syn_period_ix; 3298 3299 if ((chip_scsi_id == i) || 3300 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || 3301 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) { 3302 continue; 3303 } 3304 3305 seq_printf(m, " %X:", i); 3306 3307 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) { 3308 seq_puts(m, " Asynchronous"); 3309 } else { 3310 syn_period_ix = 3311 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index - 3312 1); 3313 3314 seq_printf(m, 3315 " Transfer Period Factor: %d (%d.%d Mhz),", 3316 v->sdtr_period_tbl[syn_period_ix], 3317 250 / v->sdtr_period_tbl[syn_period_ix], 3318 ASC_TENTHS(250, 3319 v->sdtr_period_tbl[syn_period_ix])); 3320 3321 seq_printf(m, " REQ/ACK Offset: %d", 3322 boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET); 3323 } 3324 3325 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3326 seq_puts(m, "*\n"); 3327 renegotiate = 1; 3328 } else { 3329 seq_putc(m, '\n'); 3330 } 3331 } 3332 3333 if (renegotiate) { 3334 seq_puts(m, " * = Re-negotiation pending before next command.\n"); 3335 } 3336 } 3337 3338 /* 3339 * asc_prt_adv_board_info() 3340 * 3341 * Print dynamic board configuration information. 3342 */ 3343 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost) 3344 { 3345 struct asc_board *boardp = shost_priv(shost); 3346 int i; 3347 ADV_DVC_VAR *v; 3348 ADV_DVC_CFG *c; 3349 AdvPortAddr iop_base; 3350 ushort chip_scsi_id; 3351 ushort lramword; 3352 uchar lrambyte; 3353 ushort tagqng_able; 3354 ushort sdtr_able, wdtr_able; 3355 ushort wdtr_done, sdtr_done; 3356 ushort period = 0; 3357 int renegotiate = 0; 3358 3359 v = &boardp->dvc_var.adv_dvc_var; 3360 c = &boardp->dvc_cfg.adv_dvc_cfg; 3361 iop_base = v->iop_base; 3362 chip_scsi_id = v->chip_scsi_id; 3363 3364 seq_printf(m, 3365 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", 3366 shost->host_no); 3367 3368 seq_printf(m, 3369 " iop_base 0x%lx, cable_detect: %X, err_code %u\n", 3370 (unsigned long)v->iop_base, 3371 AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT, 3372 v->err_code); 3373 3374 seq_printf(m, " chip_version %u, mcode_date 0x%x, " 3375 "mcode_version 0x%x\n", c->chip_version, 3376 c->mcode_date, c->mcode_version); 3377 3378 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 3379 seq_puts(m, " Queuing Enabled:"); 3380 for (i = 0; i <= ADV_MAX_TID; i++) { 3381 if ((chip_scsi_id == i) || 3382 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3383 continue; 3384 } 3385 3386 seq_printf(m, " %X:%c", 3387 i, 3388 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3389 } 3390 3391 seq_puts(m, "\n Queue Limit:"); 3392 for (i = 0; i <= ADV_MAX_TID; i++) { 3393 if ((chip_scsi_id == i) || 3394 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3395 continue; 3396 } 3397 3398 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i, 3399 lrambyte); 3400 3401 seq_printf(m, " %X:%d", i, lrambyte); 3402 } 3403 3404 seq_puts(m, "\n Command Pending:"); 3405 for (i = 0; i <= ADV_MAX_TID; i++) { 3406 if ((chip_scsi_id == i) || 3407 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3408 continue; 3409 } 3410 3411 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i, 3412 lrambyte); 3413 3414 seq_printf(m, " %X:%d", i, lrambyte); 3415 } 3416 seq_putc(m, '\n'); 3417 3418 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 3419 seq_puts(m, " Wide Enabled:"); 3420 for (i = 0; i <= ADV_MAX_TID; i++) { 3421 if ((chip_scsi_id == i) || 3422 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3423 continue; 3424 } 3425 3426 seq_printf(m, " %X:%c", 3427 i, 3428 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3429 } 3430 seq_putc(m, '\n'); 3431 3432 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done); 3433 seq_puts(m, " Transfer Bit Width:"); 3434 for (i = 0; i <= ADV_MAX_TID; i++) { 3435 if ((chip_scsi_id == i) || 3436 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3437 continue; 3438 } 3439 3440 AdvReadWordLram(iop_base, 3441 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), 3442 lramword); 3443 3444 seq_printf(m, " %X:%d", 3445 i, (lramword & 0x8000) ? 16 : 8); 3446 3447 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) && 3448 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3449 seq_putc(m, '*'); 3450 renegotiate = 1; 3451 } 3452 } 3453 seq_putc(m, '\n'); 3454 3455 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 3456 seq_puts(m, " Synchronous Enabled:"); 3457 for (i = 0; i <= ADV_MAX_TID; i++) { 3458 if ((chip_scsi_id == i) || 3459 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3460 continue; 3461 } 3462 3463 seq_printf(m, " %X:%c", 3464 i, 3465 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3466 } 3467 seq_putc(m, '\n'); 3468 3469 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done); 3470 for (i = 0; i <= ADV_MAX_TID; i++) { 3471 3472 AdvReadWordLram(iop_base, 3473 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), 3474 lramword); 3475 lramword &= ~0x8000; 3476 3477 if ((chip_scsi_id == i) || 3478 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || 3479 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) { 3480 continue; 3481 } 3482 3483 seq_printf(m, " %X:", i); 3484 3485 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */ 3486 seq_puts(m, " Asynchronous"); 3487 } else { 3488 seq_puts(m, " Transfer Period Factor: "); 3489 3490 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */ 3491 seq_puts(m, "9 (80.0 Mhz),"); 3492 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */ 3493 seq_puts(m, "10 (40.0 Mhz),"); 3494 } else { /* 20 Mhz or below. */ 3495 3496 period = (((lramword >> 8) * 25) + 50) / 4; 3497 3498 if (period == 0) { /* Should never happen. */ 3499 seq_printf(m, "%d (? Mhz), ", period); 3500 } else { 3501 seq_printf(m, 3502 "%d (%d.%d Mhz),", 3503 period, 250 / period, 3504 ASC_TENTHS(250, period)); 3505 } 3506 } 3507 3508 seq_printf(m, " REQ/ACK Offset: %d", 3509 lramword & 0x1F); 3510 } 3511 3512 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3513 seq_puts(m, "*\n"); 3514 renegotiate = 1; 3515 } else { 3516 seq_putc(m, '\n'); 3517 } 3518 } 3519 3520 if (renegotiate) { 3521 seq_puts(m, " * = Re-negotiation pending before next command.\n"); 3522 } 3523 } 3524 3525 #ifdef ADVANSYS_STATS 3526 /* 3527 * asc_prt_board_stats() 3528 */ 3529 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost) 3530 { 3531 struct asc_board *boardp = shost_priv(shost); 3532 struct asc_stats *s = &boardp->asc_stats; 3533 3534 seq_printf(m, 3535 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n", 3536 shost->host_no); 3537 3538 seq_printf(m, 3539 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n", 3540 s->queuecommand, s->reset, s->biosparam, 3541 s->interrupt); 3542 3543 seq_printf(m, 3544 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n", 3545 s->callback, s->done, s->build_error, 3546 s->adv_build_noreq, s->adv_build_nosg); 3547 3548 seq_printf(m, 3549 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n", 3550 s->exe_noerror, s->exe_busy, s->exe_error, 3551 s->exe_unknown); 3552 3553 /* 3554 * Display data transfer statistics. 3555 */ 3556 if (s->xfer_cnt > 0) { 3557 seq_printf(m, " xfer_cnt %u, xfer_elem %u, ", 3558 s->xfer_cnt, s->xfer_elem); 3559 3560 seq_printf(m, "xfer_bytes %u.%01u kb\n", 3561 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2)); 3562 3563 /* Scatter gather transfer statistics */ 3564 seq_printf(m, " avg_num_elem %u.%01u, ", 3565 s->xfer_elem / s->xfer_cnt, 3566 ASC_TENTHS(s->xfer_elem, s->xfer_cnt)); 3567 3568 seq_printf(m, "avg_elem_size %u.%01u kb, ", 3569 (s->xfer_sect / 2) / s->xfer_elem, 3570 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem)); 3571 3572 seq_printf(m, "avg_xfer_size %u.%01u kb\n", 3573 (s->xfer_sect / 2) / s->xfer_cnt, 3574 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt)); 3575 } 3576 } 3577 #endif /* ADVANSYS_STATS */ 3578 3579 /* 3580 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...} 3581 * 3582 * m: seq_file to print into 3583 * shost: Scsi_Host 3584 * 3585 * Return the number of bytes read from or written to a 3586 * /proc/scsi/advansys/[0...] file. 3587 */ 3588 static int 3589 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost) 3590 { 3591 struct asc_board *boardp = shost_priv(shost); 3592 3593 ASC_DBG(1, "begin\n"); 3594 3595 /* 3596 * User read of /proc/scsi/advansys/[0...] file. 3597 */ 3598 3599 /* 3600 * Get board configuration information. 3601 * 3602 * advansys_info() returns the board string from its own static buffer. 3603 */ 3604 /* Copy board information. */ 3605 seq_printf(m, "%s\n", (char *)advansys_info(shost)); 3606 /* 3607 * Display Wide Board BIOS Information. 3608 */ 3609 if (!ASC_NARROW_BOARD(boardp)) 3610 asc_prt_adv_bios(m, shost); 3611 3612 /* 3613 * Display driver information for each device attached to the board. 3614 */ 3615 asc_prt_board_devices(m, shost); 3616 3617 /* 3618 * Display EEPROM configuration for the board. 3619 */ 3620 if (ASC_NARROW_BOARD(boardp)) 3621 asc_prt_asc_board_eeprom(m, shost); 3622 else 3623 asc_prt_adv_board_eeprom(m, shost); 3624 3625 /* 3626 * Display driver configuration and information for the board. 3627 */ 3628 asc_prt_driver_conf(m, shost); 3629 3630 #ifdef ADVANSYS_STATS 3631 /* 3632 * Display driver statistics for the board. 3633 */ 3634 asc_prt_board_stats(m, shost); 3635 #endif /* ADVANSYS_STATS */ 3636 3637 /* 3638 * Display Asc Library dynamic configuration information 3639 * for the board. 3640 */ 3641 if (ASC_NARROW_BOARD(boardp)) 3642 asc_prt_asc_board_info(m, shost); 3643 else 3644 asc_prt_adv_board_info(m, shost); 3645 return 0; 3646 } 3647 #endif /* CONFIG_PROC_FS */ 3648 3649 static void asc_scsi_done(struct scsi_cmnd *scp) 3650 { 3651 scsi_dma_unmap(scp); 3652 ASC_STATS(scp->device->host, done); 3653 scp->scsi_done(scp); 3654 } 3655 3656 static void AscSetBank(PortAddr iop_base, uchar bank) 3657 { 3658 uchar val; 3659 3660 val = AscGetChipControl(iop_base) & 3661 (~ 3662 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET | 3663 CC_CHIP_RESET)); 3664 if (bank == 1) { 3665 val |= CC_BANK_ONE; 3666 } else if (bank == 2) { 3667 val |= CC_DIAG | CC_BANK_ONE; 3668 } else { 3669 val &= ~CC_BANK_ONE; 3670 } 3671 AscSetChipControl(iop_base, val); 3672 } 3673 3674 static void AscSetChipIH(PortAddr iop_base, ushort ins_code) 3675 { 3676 AscSetBank(iop_base, 1); 3677 AscWriteChipIH(iop_base, ins_code); 3678 AscSetBank(iop_base, 0); 3679 } 3680 3681 static int AscStartChip(PortAddr iop_base) 3682 { 3683 AscSetChipControl(iop_base, 0); 3684 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { 3685 return (0); 3686 } 3687 return (1); 3688 } 3689 3690 static bool AscStopChip(PortAddr iop_base) 3691 { 3692 uchar cc_val; 3693 3694 cc_val = 3695 AscGetChipControl(iop_base) & 3696 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG)); 3697 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT)); 3698 AscSetChipIH(iop_base, INS_HALT); 3699 AscSetChipIH(iop_base, INS_RFLAG_WTM); 3700 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) { 3701 return false; 3702 } 3703 return true; 3704 } 3705 3706 static bool AscIsChipHalted(PortAddr iop_base) 3707 { 3708 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { 3709 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) { 3710 return true; 3711 } 3712 } 3713 return false; 3714 } 3715 3716 static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc) 3717 { 3718 PortAddr iop_base; 3719 int i = 10; 3720 3721 iop_base = asc_dvc->iop_base; 3722 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE) 3723 && (i-- > 0)) { 3724 mdelay(100); 3725 } 3726 AscStopChip(iop_base); 3727 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT); 3728 udelay(60); 3729 AscSetChipIH(iop_base, INS_RFLAG_WTM); 3730 AscSetChipIH(iop_base, INS_HALT); 3731 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT); 3732 AscSetChipControl(iop_base, CC_HALT); 3733 mdelay(200); 3734 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); 3735 AscSetChipStatus(iop_base, 0); 3736 return (AscIsChipHalted(iop_base)); 3737 } 3738 3739 static int AscFindSignature(PortAddr iop_base) 3740 { 3741 ushort sig_word; 3742 3743 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n", 3744 iop_base, AscGetChipSignatureByte(iop_base)); 3745 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) { 3746 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n", 3747 iop_base, AscGetChipSignatureWord(iop_base)); 3748 sig_word = AscGetChipSignatureWord(iop_base); 3749 if ((sig_word == (ushort)ASC_1000_ID0W) || 3750 (sig_word == (ushort)ASC_1000_ID0W_FIX)) { 3751 return (1); 3752 } 3753 } 3754 return (0); 3755 } 3756 3757 static void AscEnableInterrupt(PortAddr iop_base) 3758 { 3759 ushort cfg; 3760 3761 cfg = AscGetChipCfgLsw(iop_base); 3762 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON); 3763 } 3764 3765 static void AscDisableInterrupt(PortAddr iop_base) 3766 { 3767 ushort cfg; 3768 3769 cfg = AscGetChipCfgLsw(iop_base); 3770 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON)); 3771 } 3772 3773 static uchar AscReadLramByte(PortAddr iop_base, ushort addr) 3774 { 3775 unsigned char byte_data; 3776 unsigned short word_data; 3777 3778 if (isodd_word(addr)) { 3779 AscSetChipLramAddr(iop_base, addr - 1); 3780 word_data = AscGetChipLramData(iop_base); 3781 byte_data = (word_data >> 8) & 0xFF; 3782 } else { 3783 AscSetChipLramAddr(iop_base, addr); 3784 word_data = AscGetChipLramData(iop_base); 3785 byte_data = word_data & 0xFF; 3786 } 3787 return byte_data; 3788 } 3789 3790 static ushort AscReadLramWord(PortAddr iop_base, ushort addr) 3791 { 3792 ushort word_data; 3793 3794 AscSetChipLramAddr(iop_base, addr); 3795 word_data = AscGetChipLramData(iop_base); 3796 return (word_data); 3797 } 3798 3799 static void 3800 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words) 3801 { 3802 int i; 3803 3804 AscSetChipLramAddr(iop_base, s_addr); 3805 for (i = 0; i < words; i++) { 3806 AscSetChipLramData(iop_base, set_wval); 3807 } 3808 } 3809 3810 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val) 3811 { 3812 AscSetChipLramAddr(iop_base, addr); 3813 AscSetChipLramData(iop_base, word_val); 3814 } 3815 3816 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val) 3817 { 3818 ushort word_data; 3819 3820 if (isodd_word(addr)) { 3821 addr--; 3822 word_data = AscReadLramWord(iop_base, addr); 3823 word_data &= 0x00FF; 3824 word_data |= (((ushort)byte_val << 8) & 0xFF00); 3825 } else { 3826 word_data = AscReadLramWord(iop_base, addr); 3827 word_data &= 0xFF00; 3828 word_data |= ((ushort)byte_val & 0x00FF); 3829 } 3830 AscWriteLramWord(iop_base, addr, word_data); 3831 } 3832 3833 /* 3834 * Copy 2 bytes to LRAM. 3835 * 3836 * The source data is assumed to be in little-endian order in memory 3837 * and is maintained in little-endian order when written to LRAM. 3838 */ 3839 static void 3840 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr, 3841 const uchar *s_buffer, int words) 3842 { 3843 int i; 3844 3845 AscSetChipLramAddr(iop_base, s_addr); 3846 for (i = 0; i < 2 * words; i += 2) { 3847 /* 3848 * On a little-endian system the second argument below 3849 * produces a little-endian ushort which is written to 3850 * LRAM in little-endian order. On a big-endian system 3851 * the second argument produces a big-endian ushort which 3852 * is "transparently" byte-swapped by outpw() and written 3853 * in little-endian order to LRAM. 3854 */ 3855 outpw(iop_base + IOP_RAM_DATA, 3856 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); 3857 } 3858 } 3859 3860 /* 3861 * Copy 4 bytes to LRAM. 3862 * 3863 * The source data is assumed to be in little-endian order in memory 3864 * and is maintained in little-endian order when written to LRAM. 3865 */ 3866 static void 3867 AscMemDWordCopyPtrToLram(PortAddr iop_base, 3868 ushort s_addr, uchar *s_buffer, int dwords) 3869 { 3870 int i; 3871 3872 AscSetChipLramAddr(iop_base, s_addr); 3873 for (i = 0; i < 4 * dwords; i += 4) { 3874 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */ 3875 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */ 3876 } 3877 } 3878 3879 /* 3880 * Copy 2 bytes from LRAM. 3881 * 3882 * The source data is assumed to be in little-endian order in LRAM 3883 * and is maintained in little-endian order when written to memory. 3884 */ 3885 static void 3886 AscMemWordCopyPtrFromLram(PortAddr iop_base, 3887 ushort s_addr, uchar *d_buffer, int words) 3888 { 3889 int i; 3890 ushort word; 3891 3892 AscSetChipLramAddr(iop_base, s_addr); 3893 for (i = 0; i < 2 * words; i += 2) { 3894 word = inpw(iop_base + IOP_RAM_DATA); 3895 d_buffer[i] = word & 0xff; 3896 d_buffer[i + 1] = (word >> 8) & 0xff; 3897 } 3898 } 3899 3900 static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words) 3901 { 3902 u32 sum = 0; 3903 int i; 3904 3905 for (i = 0; i < words; i++, s_addr += 2) { 3906 sum += AscReadLramWord(iop_base, s_addr); 3907 } 3908 return (sum); 3909 } 3910 3911 static void AscInitLram(ASC_DVC_VAR *asc_dvc) 3912 { 3913 uchar i; 3914 ushort s_addr; 3915 PortAddr iop_base; 3916 3917 iop_base = asc_dvc->iop_base; 3918 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0, 3919 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) * 3920 64) >> 1)); 3921 i = ASC_MIN_ACTIVE_QNO; 3922 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE; 3923 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3924 (uchar)(i + 1)); 3925 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3926 (uchar)(asc_dvc->max_total_qng)); 3927 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3928 (uchar)i); 3929 i++; 3930 s_addr += ASC_QBLK_SIZE; 3931 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) { 3932 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3933 (uchar)(i + 1)); 3934 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3935 (uchar)(i - 1)); 3936 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3937 (uchar)i); 3938 } 3939 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3940 (uchar)ASC_QLINK_END); 3941 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3942 (uchar)(asc_dvc->max_total_qng - 1)); 3943 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3944 (uchar)asc_dvc->max_total_qng); 3945 i++; 3946 s_addr += ASC_QBLK_SIZE; 3947 for (; i <= (uchar)(asc_dvc->max_total_qng + 3); 3948 i++, s_addr += ASC_QBLK_SIZE) { 3949 AscWriteLramByte(iop_base, 3950 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i); 3951 AscWriteLramByte(iop_base, 3952 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i); 3953 AscWriteLramByte(iop_base, 3954 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i); 3955 } 3956 } 3957 3958 static u32 3959 AscLoadMicroCode(PortAddr iop_base, ushort s_addr, 3960 const uchar *mcode_buf, ushort mcode_size) 3961 { 3962 u32 chksum; 3963 ushort mcode_word_size; 3964 ushort mcode_chksum; 3965 3966 /* Write the microcode buffer starting at LRAM address 0. */ 3967 mcode_word_size = (ushort)(mcode_size >> 1); 3968 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size); 3969 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size); 3970 3971 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size); 3972 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum); 3973 mcode_chksum = (ushort)AscMemSumLramWord(iop_base, 3974 (ushort)ASC_CODE_SEC_BEG, 3975 (ushort)((mcode_size - 3976 s_addr - (ushort) 3977 ASC_CODE_SEC_BEG) / 3978 2)); 3979 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum); 3980 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum); 3981 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size); 3982 return chksum; 3983 } 3984 3985 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc) 3986 { 3987 PortAddr iop_base; 3988 int i; 3989 ushort lram_addr; 3990 3991 iop_base = asc_dvc->iop_base; 3992 AscPutRiscVarFreeQHead(iop_base, 1); 3993 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng); 3994 AscPutVarFreeQHead(iop_base, 1); 3995 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng); 3996 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B, 3997 (uchar)((int)asc_dvc->max_total_qng + 1)); 3998 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B, 3999 (uchar)((int)asc_dvc->max_total_qng + 2)); 4000 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B, 4001 asc_dvc->max_total_qng); 4002 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0); 4003 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 4004 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0); 4005 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0); 4006 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0); 4007 AscPutQDoneInProgress(iop_base, 0); 4008 lram_addr = ASC_QADR_BEG; 4009 for (i = 0; i < 32; i++, lram_addr += 2) { 4010 AscWriteLramWord(iop_base, lram_addr, 0); 4011 } 4012 } 4013 4014 static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc) 4015 { 4016 int i; 4017 int warn_code; 4018 PortAddr iop_base; 4019 __le32 phy_addr; 4020 __le32 phy_size; 4021 struct asc_board *board = asc_dvc_to_board(asc_dvc); 4022 4023 iop_base = asc_dvc->iop_base; 4024 warn_code = 0; 4025 for (i = 0; i <= ASC_MAX_TID; i++) { 4026 AscPutMCodeInitSDTRAtID(iop_base, i, 4027 asc_dvc->cfg->sdtr_period_offset[i]); 4028 } 4029 4030 AscInitQLinkVar(asc_dvc); 4031 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B, 4032 asc_dvc->cfg->disc_enable); 4033 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B, 4034 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id)); 4035 4036 /* Ensure overrun buffer is aligned on an 8 byte boundary. */ 4037 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7); 4038 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf, 4039 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 4040 if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) { 4041 warn_code = -ENOMEM; 4042 goto err_dma_map; 4043 } 4044 phy_addr = cpu_to_le32(asc_dvc->overrun_dma); 4045 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D, 4046 (uchar *)&phy_addr, 1); 4047 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE); 4048 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D, 4049 (uchar *)&phy_size, 1); 4050 4051 asc_dvc->cfg->mcode_date = 4052 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W); 4053 asc_dvc->cfg->mcode_version = 4054 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W); 4055 4056 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); 4057 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { 4058 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; 4059 warn_code = -EINVAL; 4060 goto err_mcode_start; 4061 } 4062 if (AscStartChip(iop_base) != 1) { 4063 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; 4064 warn_code = -EIO; 4065 goto err_mcode_start; 4066 } 4067 4068 return warn_code; 4069 4070 err_mcode_start: 4071 dma_unmap_single(board->dev, asc_dvc->overrun_dma, 4072 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 4073 err_dma_map: 4074 asc_dvc->overrun_dma = 0; 4075 return warn_code; 4076 } 4077 4078 static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc) 4079 { 4080 const struct firmware *fw; 4081 const char fwname[] = "advansys/mcode.bin"; 4082 int err; 4083 unsigned long chksum; 4084 int warn_code; 4085 PortAddr iop_base; 4086 4087 iop_base = asc_dvc->iop_base; 4088 warn_code = 0; 4089 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) && 4090 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) { 4091 AscResetChipAndScsiBus(asc_dvc); 4092 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 4093 } 4094 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC; 4095 if (asc_dvc->err_code != 0) 4096 return ASC_ERROR; 4097 if (!AscFindSignature(asc_dvc->iop_base)) { 4098 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 4099 return warn_code; 4100 } 4101 AscDisableInterrupt(iop_base); 4102 AscInitLram(asc_dvc); 4103 4104 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4105 if (err) { 4106 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4107 fwname, err); 4108 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4109 return err; 4110 } 4111 if (fw->size < 4) { 4112 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4113 fw->size, fwname); 4114 release_firmware(fw); 4115 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4116 return -EINVAL; 4117 } 4118 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4119 (fw->data[1] << 8) | fw->data[0]; 4120 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum); 4121 if (AscLoadMicroCode(iop_base, 0, &fw->data[4], 4122 fw->size - 4) != chksum) { 4123 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4124 release_firmware(fw); 4125 return warn_code; 4126 } 4127 release_firmware(fw); 4128 warn_code |= AscInitMicroCodeVar(asc_dvc); 4129 if (!asc_dvc->overrun_dma) 4130 return warn_code; 4131 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC; 4132 AscEnableInterrupt(iop_base); 4133 return warn_code; 4134 } 4135 4136 /* 4137 * Load the Microcode 4138 * 4139 * Write the microcode image to RISC memory starting at address 0. 4140 * 4141 * The microcode is stored compressed in the following format: 4142 * 4143 * 254 word (508 byte) table indexed by byte code followed 4144 * by the following byte codes: 4145 * 4146 * 1-Byte Code: 4147 * 00: Emit word 0 in table. 4148 * 01: Emit word 1 in table. 4149 * . 4150 * FD: Emit word 253 in table. 4151 * 4152 * Multi-Byte Code: 4153 * FE WW WW: (3 byte code) Word to emit is the next word WW WW. 4154 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW. 4155 * 4156 * Returns 0 or an error if the checksum doesn't match 4157 */ 4158 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf, 4159 int size, int memsize, int chksum) 4160 { 4161 int i, j, end, len = 0; 4162 u32 sum; 4163 4164 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); 4165 4166 for (i = 253 * 2; i < size; i++) { 4167 if (buf[i] == 0xff) { 4168 unsigned short word = (buf[i + 3] << 8) | buf[i + 2]; 4169 for (j = 0; j < buf[i + 1]; j++) { 4170 AdvWriteWordAutoIncLram(iop_base, word); 4171 len += 2; 4172 } 4173 i += 3; 4174 } else if (buf[i] == 0xfe) { 4175 unsigned short word = (buf[i + 2] << 8) | buf[i + 1]; 4176 AdvWriteWordAutoIncLram(iop_base, word); 4177 i += 2; 4178 len += 2; 4179 } else { 4180 unsigned int off = buf[i] * 2; 4181 unsigned short word = (buf[off + 1] << 8) | buf[off]; 4182 AdvWriteWordAutoIncLram(iop_base, word); 4183 len += 2; 4184 } 4185 } 4186 4187 end = len; 4188 4189 while (len < memsize) { 4190 AdvWriteWordAutoIncLram(iop_base, 0); 4191 len += 2; 4192 } 4193 4194 /* Verify the microcode checksum. */ 4195 sum = 0; 4196 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); 4197 4198 for (len = 0; len < end; len += 2) { 4199 sum += AdvReadWordAutoIncLram(iop_base); 4200 } 4201 4202 if (sum != chksum) 4203 return ASC_IERR_MCODE_CHKSUM; 4204 4205 return 0; 4206 } 4207 4208 static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc) 4209 { 4210 off_t carr_offset = 0, next_offset; 4211 dma_addr_t carr_paddr; 4212 int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i; 4213 4214 for (i = 0; i < carr_num; i++) { 4215 carr_offset = i * sizeof(ADV_CARR_T); 4216 /* Get physical address of the carrier 'carrp'. */ 4217 carr_paddr = adv_dvc->carrier_addr + carr_offset; 4218 4219 adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr); 4220 adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset); 4221 adv_dvc->carrier[i].areq_vpa = 0; 4222 next_offset = carr_offset + sizeof(ADV_CARR_T); 4223 if (i == carr_num) 4224 next_offset = ~0; 4225 adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset); 4226 } 4227 /* 4228 * We cannot have a carrier with 'carr_va' of '0', as 4229 * a reference to this carrier would be interpreted as 4230 * list termination. 4231 * So start at carrier 1 with the freelist. 4232 */ 4233 adv_dvc->carr_freelist = &adv_dvc->carrier[1]; 4234 } 4235 4236 static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset) 4237 { 4238 int index; 4239 4240 BUG_ON(offset > ADV_CARRIER_BUFSIZE); 4241 4242 index = offset / sizeof(ADV_CARR_T); 4243 return &adv_dvc->carrier[index]; 4244 } 4245 4246 static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc) 4247 { 4248 ADV_CARR_T *carrp = adv_dvc->carr_freelist; 4249 u32 next_vpa = le32_to_cpu(carrp->next_vpa); 4250 4251 if (next_vpa == 0 || next_vpa == ~0) { 4252 ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa); 4253 return NULL; 4254 } 4255 4256 adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa); 4257 /* 4258 * insert stopper carrier to terminate list 4259 */ 4260 carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER); 4261 4262 return carrp; 4263 } 4264 4265 /* 4266 * 'offset' is the index in the request pointer array 4267 */ 4268 static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset) 4269 { 4270 struct asc_board *boardp = adv_dvc->drv_ptr; 4271 4272 BUG_ON(offset > adv_dvc->max_host_qng); 4273 return &boardp->adv_reqp[offset]; 4274 } 4275 4276 /* 4277 * Send an idle command to the chip and wait for completion. 4278 * 4279 * Command completion is polled for once per microsecond. 4280 * 4281 * The function can be called from anywhere including an interrupt handler. 4282 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical() 4283 * functions to prevent reentrancy. 4284 * 4285 * Return Values: 4286 * ADV_TRUE - command completed successfully 4287 * ADV_FALSE - command failed 4288 * ADV_ERROR - command timed out 4289 */ 4290 static int 4291 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc, 4292 ushort idle_cmd, u32 idle_cmd_parameter) 4293 { 4294 int result, i, j; 4295 AdvPortAddr iop_base; 4296 4297 iop_base = asc_dvc->iop_base; 4298 4299 /* 4300 * Clear the idle command status which is set by the microcode 4301 * to a non-zero value to indicate when the command is completed. 4302 * The non-zero result is one of the IDLE_CMD_STATUS_* values 4303 */ 4304 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0); 4305 4306 /* 4307 * Write the idle command value after the idle command parameter 4308 * has been written to avoid a race condition. If the order is not 4309 * followed, the microcode may process the idle command before the 4310 * parameters have been written to LRAM. 4311 */ 4312 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER, 4313 cpu_to_le32(idle_cmd_parameter)); 4314 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd); 4315 4316 /* 4317 * Tickle the RISC to tell it to process the idle command. 4318 */ 4319 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B); 4320 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 4321 /* 4322 * Clear the tickle value. In the ASC-3550 the RISC flag 4323 * command 'clr_tickle_b' does not work unless the host 4324 * value is cleared. 4325 */ 4326 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP); 4327 } 4328 4329 /* Wait for up to 100 millisecond for the idle command to timeout. */ 4330 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) { 4331 /* Poll once each microsecond for command completion. */ 4332 for (j = 0; j < SCSI_US_PER_MSEC; j++) { 4333 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, 4334 result); 4335 if (result != 0) 4336 return result; 4337 udelay(1); 4338 } 4339 } 4340 4341 BUG(); /* The idle command should never timeout. */ 4342 return ADV_ERROR; 4343 } 4344 4345 /* 4346 * Reset SCSI Bus and purge all outstanding requests. 4347 * 4348 * Return Value: 4349 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset. 4350 * ADV_FALSE(0) - Microcode command failed. 4351 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC 4352 * may be hung which requires driver recovery. 4353 */ 4354 static int AdvResetSB(ADV_DVC_VAR *asc_dvc) 4355 { 4356 int status; 4357 4358 /* 4359 * Send the SCSI Bus Reset idle start idle command which asserts 4360 * the SCSI Bus Reset signal. 4361 */ 4362 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L); 4363 if (status != ADV_TRUE) { 4364 return status; 4365 } 4366 4367 /* 4368 * Delay for the specified SCSI Bus Reset hold time. 4369 * 4370 * The hold time delay is done on the host because the RISC has no 4371 * microsecond accurate timer. 4372 */ 4373 udelay(ASC_SCSI_RESET_HOLD_TIME_US); 4374 4375 /* 4376 * Send the SCSI Bus Reset end idle command which de-asserts 4377 * the SCSI Bus Reset signal and purges any pending requests. 4378 */ 4379 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L); 4380 if (status != ADV_TRUE) { 4381 return status; 4382 } 4383 4384 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 4385 4386 return status; 4387 } 4388 4389 /* 4390 * Initialize the ASC-3550. 4391 * 4392 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 4393 * 4394 * For a non-fatal error return a warning code. If there are no warnings 4395 * then 0 is returned. 4396 * 4397 * Needed after initialization for error recovery. 4398 */ 4399 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc) 4400 { 4401 const struct firmware *fw; 4402 const char fwname[] = "advansys/3550.bin"; 4403 AdvPortAddr iop_base; 4404 ushort warn_code; 4405 int begin_addr; 4406 int end_addr; 4407 ushort code_sum; 4408 int word; 4409 int i; 4410 int err; 4411 unsigned long chksum; 4412 ushort scsi_cfg1; 4413 uchar tid; 4414 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 4415 ushort wdtr_able = 0, sdtr_able, tagqng_able; 4416 uchar max_cmd[ADV_MAX_TID + 1]; 4417 4418 /* If there is already an error, don't continue. */ 4419 if (asc_dvc->err_code != 0) 4420 return ADV_ERROR; 4421 4422 /* 4423 * The caller must set 'chip_type' to ADV_CHIP_ASC3550. 4424 */ 4425 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) { 4426 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 4427 return ADV_ERROR; 4428 } 4429 4430 warn_code = 0; 4431 iop_base = asc_dvc->iop_base; 4432 4433 /* 4434 * Save the RISC memory BIOS region before writing the microcode. 4435 * The BIOS may already be loaded and using its RISC LRAM region 4436 * so its region must be saved and restored. 4437 * 4438 * Note: This code makes the assumption, which is currently true, 4439 * that a chip reset does not clear RISC LRAM. 4440 */ 4441 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4442 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4443 bios_mem[i]); 4444 } 4445 4446 /* 4447 * Save current per TID negotiated values. 4448 */ 4449 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) { 4450 ushort bios_version, major, minor; 4451 4452 bios_version = 4453 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2]; 4454 major = (bios_version >> 12) & 0xF; 4455 minor = (bios_version >> 8) & 0xF; 4456 if (major < 3 || (major == 3 && minor == 1)) { 4457 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */ 4458 AdvReadWordLram(iop_base, 0x120, wdtr_able); 4459 } else { 4460 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4461 } 4462 } 4463 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4464 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 4465 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4466 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 4467 max_cmd[tid]); 4468 } 4469 4470 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4471 if (err) { 4472 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4473 fwname, err); 4474 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4475 return err; 4476 } 4477 if (fw->size < 4) { 4478 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4479 fw->size, fwname); 4480 release_firmware(fw); 4481 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4482 return -EINVAL; 4483 } 4484 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4485 (fw->data[1] << 8) | fw->data[0]; 4486 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 4487 fw->size - 4, ADV_3550_MEMSIZE, 4488 chksum); 4489 release_firmware(fw); 4490 if (asc_dvc->err_code) 4491 return ADV_ERROR; 4492 4493 /* 4494 * Restore the RISC memory BIOS region. 4495 */ 4496 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4497 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4498 bios_mem[i]); 4499 } 4500 4501 /* 4502 * Calculate and write the microcode code checksum to the microcode 4503 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 4504 */ 4505 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 4506 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 4507 code_sum = 0; 4508 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 4509 for (word = begin_addr; word < end_addr; word += 2) { 4510 code_sum += AdvReadWordAutoIncLram(iop_base); 4511 } 4512 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 4513 4514 /* 4515 * Read and save microcode version and date. 4516 */ 4517 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 4518 asc_dvc->cfg->mcode_date); 4519 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 4520 asc_dvc->cfg->mcode_version); 4521 4522 /* 4523 * Set the chip type to indicate the ASC3550. 4524 */ 4525 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550); 4526 4527 /* 4528 * If the PCI Configuration Command Register "Parity Error Response 4529 * Control" Bit was clear (0), then set the microcode variable 4530 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 4531 * to ignore DMA parity errors. 4532 */ 4533 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 4534 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4535 word |= CONTROL_FLAG_IGNORE_PERR; 4536 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4537 } 4538 4539 /* 4540 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO 4541 * threshold of 128 bytes. This register is only accessible to the host. 4542 */ 4543 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 4544 START_CTL_EMFU | READ_CMD_MRM); 4545 4546 /* 4547 * Microcode operating variables for WDTR, SDTR, and command tag 4548 * queuing will be set in slave_configure() based on what a 4549 * device reports it is capable of in Inquiry byte 7. 4550 * 4551 * If SCSI Bus Resets have been disabled, then directly set 4552 * SDTR and WDTR from the EEPROM configuration. This will allow 4553 * the BIOS and warm boot to work without a SCSI bus hang on 4554 * the Inquiry caused by host and target mismatched DTR values. 4555 * Without the SCSI Bus Reset, before an Inquiry a device can't 4556 * be assumed to be in Asynchronous, Narrow mode. 4557 */ 4558 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 4559 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 4560 asc_dvc->wdtr_able); 4561 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 4562 asc_dvc->sdtr_able); 4563 } 4564 4565 /* 4566 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2, 4567 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID 4568 * bitmask. These values determine the maximum SDTR speed negotiated 4569 * with a device. 4570 * 4571 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 4572 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 4573 * without determining here whether the device supports SDTR. 4574 * 4575 * 4-bit speed SDTR speed name 4576 * =========== =============== 4577 * 0000b (0x0) SDTR disabled 4578 * 0001b (0x1) 5 Mhz 4579 * 0010b (0x2) 10 Mhz 4580 * 0011b (0x3) 20 Mhz (Ultra) 4581 * 0100b (0x4) 40 Mhz (LVD/Ultra2) 4582 * 0101b (0x5) 80 Mhz (LVD2/Ultra3) 4583 * 0110b (0x6) Undefined 4584 * . 4585 * 1111b (0xF) Undefined 4586 */ 4587 word = 0; 4588 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4589 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) { 4590 /* Set Ultra speed for TID 'tid'. */ 4591 word |= (0x3 << (4 * (tid % 4))); 4592 } else { 4593 /* Set Fast speed for TID 'tid'. */ 4594 word |= (0x2 << (4 * (tid % 4))); 4595 } 4596 if (tid == 3) { /* Check if done with sdtr_speed1. */ 4597 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word); 4598 word = 0; 4599 } else if (tid == 7) { /* Check if done with sdtr_speed2. */ 4600 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word); 4601 word = 0; 4602 } else if (tid == 11) { /* Check if done with sdtr_speed3. */ 4603 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word); 4604 word = 0; 4605 } else if (tid == 15) { /* Check if done with sdtr_speed4. */ 4606 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word); 4607 /* End of loop. */ 4608 } 4609 } 4610 4611 /* 4612 * Set microcode operating variable for the disconnect per TID bitmask. 4613 */ 4614 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 4615 asc_dvc->cfg->disc_enable); 4616 4617 /* 4618 * Set SCSI_CFG0 Microcode Default Value. 4619 * 4620 * The microcode will set the SCSI_CFG0 register using this value 4621 * after it is started below. 4622 */ 4623 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 4624 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 4625 asc_dvc->chip_scsi_id); 4626 4627 /* 4628 * Determine SCSI_CFG1 Microcode Default Value. 4629 * 4630 * The microcode will set the SCSI_CFG1 register using this value 4631 * after it is started below. 4632 */ 4633 4634 /* Read current SCSI_CFG1 Register value. */ 4635 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 4636 4637 /* 4638 * If all three connectors are in use, return an error. 4639 */ 4640 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 || 4641 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) { 4642 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION; 4643 return ADV_ERROR; 4644 } 4645 4646 /* 4647 * If the internal narrow cable is reversed all of the SCSI_CTRL 4648 * register signals will be set. Check for and return an error if 4649 * this condition is found. 4650 */ 4651 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 4652 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 4653 return ADV_ERROR; 4654 } 4655 4656 /* 4657 * If this is a differential board and a single-ended device 4658 * is attached to one of the connectors, return an error. 4659 */ 4660 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) { 4661 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE; 4662 return ADV_ERROR; 4663 } 4664 4665 /* 4666 * If automatic termination control is enabled, then set the 4667 * termination value based on a table listed in a_condor.h. 4668 * 4669 * If manual termination was specified with an EEPROM setting 4670 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and 4671 * is ready to be 'ored' into SCSI_CFG1. 4672 */ 4673 if (asc_dvc->cfg->termination == 0) { 4674 /* 4675 * The software always controls termination by setting TERM_CTL_SEL. 4676 * If TERM_CTL_SEL were set to 0, the hardware would set termination. 4677 */ 4678 asc_dvc->cfg->termination |= TERM_CTL_SEL; 4679 4680 switch (scsi_cfg1 & CABLE_DETECT) { 4681 /* TERM_CTL_H: on, TERM_CTL_L: on */ 4682 case 0x3: 4683 case 0x7: 4684 case 0xB: 4685 case 0xD: 4686 case 0xE: 4687 case 0xF: 4688 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L); 4689 break; 4690 4691 /* TERM_CTL_H: on, TERM_CTL_L: off */ 4692 case 0x1: 4693 case 0x5: 4694 case 0x9: 4695 case 0xA: 4696 case 0xC: 4697 asc_dvc->cfg->termination |= TERM_CTL_H; 4698 break; 4699 4700 /* TERM_CTL_H: off, TERM_CTL_L: off */ 4701 case 0x2: 4702 case 0x6: 4703 break; 4704 } 4705 } 4706 4707 /* 4708 * Clear any set TERM_CTL_H and TERM_CTL_L bits. 4709 */ 4710 scsi_cfg1 &= ~TERM_CTL; 4711 4712 /* 4713 * Invert the TERM_CTL_H and TERM_CTL_L bits and then 4714 * set 'scsi_cfg1'. The TERM_POL bit does not need to be 4715 * referenced, because the hardware internally inverts 4716 * the Termination High and Low bits if TERM_POL is set. 4717 */ 4718 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL)); 4719 4720 /* 4721 * Set SCSI_CFG1 Microcode Default Value 4722 * 4723 * Set filter value and possibly modified termination control 4724 * bits in the Microcode SCSI_CFG1 Register Value. 4725 * 4726 * The microcode will set the SCSI_CFG1 register using this value 4727 * after it is started below. 4728 */ 4729 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, 4730 FLTR_DISABLE | scsi_cfg1); 4731 4732 /* 4733 * Set MEM_CFG Microcode Default Value 4734 * 4735 * The microcode will set the MEM_CFG register using this value 4736 * after it is started below. 4737 * 4738 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 4739 * are defined. 4740 * 4741 * ASC-3550 has 8KB internal memory. 4742 */ 4743 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 4744 BIOS_EN | RAM_SZ_8KB); 4745 4746 /* 4747 * Set SEL_MASK Microcode Default Value 4748 * 4749 * The microcode will set the SEL_MASK register using this value 4750 * after it is started below. 4751 */ 4752 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 4753 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 4754 4755 AdvBuildCarrierFreelist(asc_dvc); 4756 4757 /* 4758 * Set-up the Host->RISC Initiator Command Queue (ICQ). 4759 */ 4760 4761 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 4762 if (!asc_dvc->icq_sp) { 4763 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 4764 return ADV_ERROR; 4765 } 4766 4767 /* 4768 * Set RISC ICQ physical address start value. 4769 */ 4770 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 4771 4772 /* 4773 * Set-up the RISC->Host Initiator Response Queue (IRQ). 4774 */ 4775 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 4776 if (!asc_dvc->irq_sp) { 4777 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 4778 return ADV_ERROR; 4779 } 4780 4781 /* 4782 * Set RISC IRQ physical address start value. 4783 */ 4784 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 4785 asc_dvc->carr_pending_cnt = 0; 4786 4787 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 4788 (ADV_INTR_ENABLE_HOST_INTR | 4789 ADV_INTR_ENABLE_GLOBAL_INTR)); 4790 4791 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 4792 AdvWriteWordRegister(iop_base, IOPW_PC, word); 4793 4794 /* finally, finally, gentlemen, start your engine */ 4795 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 4796 4797 /* 4798 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 4799 * Resets should be performed. The RISC has to be running 4800 * to issue a SCSI Bus Reset. 4801 */ 4802 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 4803 /* 4804 * If the BIOS Signature is present in memory, restore the 4805 * BIOS Handshake Configuration Table and do not perform 4806 * a SCSI Bus Reset. 4807 */ 4808 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 4809 0x55AA) { 4810 /* 4811 * Restore per TID negotiated values. 4812 */ 4813 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4814 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4815 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 4816 tagqng_able); 4817 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4818 AdvWriteByteLram(iop_base, 4819 ASC_MC_NUMBER_OF_MAX_CMD + tid, 4820 max_cmd[tid]); 4821 } 4822 } else { 4823 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 4824 warn_code = ASC_WARN_BUSRESET_ERROR; 4825 } 4826 } 4827 } 4828 4829 return warn_code; 4830 } 4831 4832 /* 4833 * Initialize the ASC-38C0800. 4834 * 4835 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 4836 * 4837 * For a non-fatal error return a warning code. If there are no warnings 4838 * then 0 is returned. 4839 * 4840 * Needed after initialization for error recovery. 4841 */ 4842 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc) 4843 { 4844 const struct firmware *fw; 4845 const char fwname[] = "advansys/38C0800.bin"; 4846 AdvPortAddr iop_base; 4847 ushort warn_code; 4848 int begin_addr; 4849 int end_addr; 4850 ushort code_sum; 4851 int word; 4852 int i; 4853 int err; 4854 unsigned long chksum; 4855 ushort scsi_cfg1; 4856 uchar byte; 4857 uchar tid; 4858 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 4859 ushort wdtr_able, sdtr_able, tagqng_able; 4860 uchar max_cmd[ADV_MAX_TID + 1]; 4861 4862 /* If there is already an error, don't continue. */ 4863 if (asc_dvc->err_code != 0) 4864 return ADV_ERROR; 4865 4866 /* 4867 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800. 4868 */ 4869 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) { 4870 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 4871 return ADV_ERROR; 4872 } 4873 4874 warn_code = 0; 4875 iop_base = asc_dvc->iop_base; 4876 4877 /* 4878 * Save the RISC memory BIOS region before writing the microcode. 4879 * The BIOS may already be loaded and using its RISC LRAM region 4880 * so its region must be saved and restored. 4881 * 4882 * Note: This code makes the assumption, which is currently true, 4883 * that a chip reset does not clear RISC LRAM. 4884 */ 4885 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4886 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4887 bios_mem[i]); 4888 } 4889 4890 /* 4891 * Save current per TID negotiated values. 4892 */ 4893 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4894 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4895 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 4896 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4897 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 4898 max_cmd[tid]); 4899 } 4900 4901 /* 4902 * RAM BIST (RAM Built-In Self Test) 4903 * 4904 * Address : I/O base + offset 0x38h register (byte). 4905 * Function: Bit 7-6(RW) : RAM mode 4906 * Normal Mode : 0x00 4907 * Pre-test Mode : 0x40 4908 * RAM Test Mode : 0x80 4909 * Bit 5 : unused 4910 * Bit 4(RO) : Done bit 4911 * Bit 3-0(RO) : Status 4912 * Host Error : 0x08 4913 * Int_RAM Error : 0x04 4914 * RISC Error : 0x02 4915 * SCSI Error : 0x01 4916 * No Error : 0x00 4917 * 4918 * Note: RAM BIST code should be put right here, before loading the 4919 * microcode and after saving the RISC memory BIOS region. 4920 */ 4921 4922 /* 4923 * LRAM Pre-test 4924 * 4925 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. 4926 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return 4927 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset 4928 * to NORMAL_MODE, return an error too. 4929 */ 4930 for (i = 0; i < 2; i++) { 4931 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); 4932 mdelay(10); /* Wait for 10ms before reading back. */ 4933 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 4934 if ((byte & RAM_TEST_DONE) == 0 4935 || (byte & 0x0F) != PRE_TEST_VALUE) { 4936 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 4937 return ADV_ERROR; 4938 } 4939 4940 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 4941 mdelay(10); /* Wait for 10ms before reading back. */ 4942 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) 4943 != NORMAL_VALUE) { 4944 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 4945 return ADV_ERROR; 4946 } 4947 } 4948 4949 /* 4950 * LRAM Test - It takes about 1.5 ms to run through the test. 4951 * 4952 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. 4953 * If Done bit not set or Status not 0, save register byte, set the 4954 * err_code, and return an error. 4955 */ 4956 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); 4957 mdelay(10); /* Wait for 10ms before checking status. */ 4958 4959 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 4960 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { 4961 /* Get here if Done bit not set or Status not 0. */ 4962 asc_dvc->bist_err_code = byte; /* for BIOS display message */ 4963 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; 4964 return ADV_ERROR; 4965 } 4966 4967 /* We need to reset back to normal mode after LRAM test passes. */ 4968 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 4969 4970 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4971 if (err) { 4972 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4973 fwname, err); 4974 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4975 return err; 4976 } 4977 if (fw->size < 4) { 4978 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4979 fw->size, fwname); 4980 release_firmware(fw); 4981 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4982 return -EINVAL; 4983 } 4984 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4985 (fw->data[1] << 8) | fw->data[0]; 4986 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 4987 fw->size - 4, ADV_38C0800_MEMSIZE, 4988 chksum); 4989 release_firmware(fw); 4990 if (asc_dvc->err_code) 4991 return ADV_ERROR; 4992 4993 /* 4994 * Restore the RISC memory BIOS region. 4995 */ 4996 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4997 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4998 bios_mem[i]); 4999 } 5000 5001 /* 5002 * Calculate and write the microcode code checksum to the microcode 5003 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 5004 */ 5005 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 5006 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 5007 code_sum = 0; 5008 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 5009 for (word = begin_addr; word < end_addr; word += 2) { 5010 code_sum += AdvReadWordAutoIncLram(iop_base); 5011 } 5012 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 5013 5014 /* 5015 * Read microcode version and date. 5016 */ 5017 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 5018 asc_dvc->cfg->mcode_date); 5019 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 5020 asc_dvc->cfg->mcode_version); 5021 5022 /* 5023 * Set the chip type to indicate the ASC38C0800. 5024 */ 5025 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800); 5026 5027 /* 5028 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. 5029 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current 5030 * cable detection and then we are able to read C_DET[3:0]. 5031 * 5032 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 5033 * Microcode Default Value' section below. 5034 */ 5035 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5036 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, 5037 scsi_cfg1 | DIS_TERM_DRV); 5038 5039 /* 5040 * If the PCI Configuration Command Register "Parity Error Response 5041 * Control" Bit was clear (0), then set the microcode variable 5042 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 5043 * to ignore DMA parity errors. 5044 */ 5045 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 5046 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5047 word |= CONTROL_FLAG_IGNORE_PERR; 5048 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5049 } 5050 5051 /* 5052 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2] 5053 * bits for the default FIFO threshold. 5054 * 5055 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes. 5056 * 5057 * For DMA Errata #4 set the BC_THRESH_ENB bit. 5058 */ 5059 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 5060 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | 5061 READ_CMD_MRM); 5062 5063 /* 5064 * Microcode operating variables for WDTR, SDTR, and command tag 5065 * queuing will be set in slave_configure() based on what a 5066 * device reports it is capable of in Inquiry byte 7. 5067 * 5068 * If SCSI Bus Resets have been disabled, then directly set 5069 * SDTR and WDTR from the EEPROM configuration. This will allow 5070 * the BIOS and warm boot to work without a SCSI bus hang on 5071 * the Inquiry caused by host and target mismatched DTR values. 5072 * Without the SCSI Bus Reset, before an Inquiry a device can't 5073 * be assumed to be in Asynchronous, Narrow mode. 5074 */ 5075 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 5076 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 5077 asc_dvc->wdtr_able); 5078 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 5079 asc_dvc->sdtr_able); 5080 } 5081 5082 /* 5083 * Set microcode operating variables for DISC and SDTR_SPEED1, 5084 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM 5085 * configuration values. 5086 * 5087 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 5088 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 5089 * without determining here whether the device supports SDTR. 5090 */ 5091 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 5092 asc_dvc->cfg->disc_enable); 5093 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); 5094 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); 5095 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); 5096 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); 5097 5098 /* 5099 * Set SCSI_CFG0 Microcode Default Value. 5100 * 5101 * The microcode will set the SCSI_CFG0 register using this value 5102 * after it is started below. 5103 */ 5104 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 5105 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 5106 asc_dvc->chip_scsi_id); 5107 5108 /* 5109 * Determine SCSI_CFG1 Microcode Default Value. 5110 * 5111 * The microcode will set the SCSI_CFG1 register using this value 5112 * after it is started below. 5113 */ 5114 5115 /* Read current SCSI_CFG1 Register value. */ 5116 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5117 5118 /* 5119 * If the internal narrow cable is reversed all of the SCSI_CTRL 5120 * register signals will be set. Check for and return an error if 5121 * this condition is found. 5122 */ 5123 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 5124 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 5125 return ADV_ERROR; 5126 } 5127 5128 /* 5129 * All kind of combinations of devices attached to one of four 5130 * connectors are acceptable except HVD device attached. For example, 5131 * LVD device can be attached to SE connector while SE device attached 5132 * to LVD connector. If LVD device attached to SE connector, it only 5133 * runs up to Ultra speed. 5134 * 5135 * If an HVD device is attached to one of LVD connectors, return an 5136 * error. However, there is no way to detect HVD device attached to 5137 * SE connectors. 5138 */ 5139 if (scsi_cfg1 & HVD) { 5140 asc_dvc->err_code = ASC_IERR_HVD_DEVICE; 5141 return ADV_ERROR; 5142 } 5143 5144 /* 5145 * If either SE or LVD automatic termination control is enabled, then 5146 * set the termination value based on a table listed in a_condor.h. 5147 * 5148 * If manual termination was specified with an EEPROM setting then 5149 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready 5150 * to be 'ored' into SCSI_CFG1. 5151 */ 5152 if ((asc_dvc->cfg->termination & TERM_SE) == 0) { 5153 /* SE automatic termination control is enabled. */ 5154 switch (scsi_cfg1 & C_DET_SE) { 5155 /* TERM_SE_HI: on, TERM_SE_LO: on */ 5156 case 0x1: 5157 case 0x2: 5158 case 0x3: 5159 asc_dvc->cfg->termination |= TERM_SE; 5160 break; 5161 5162 /* TERM_SE_HI: on, TERM_SE_LO: off */ 5163 case 0x0: 5164 asc_dvc->cfg->termination |= TERM_SE_HI; 5165 break; 5166 } 5167 } 5168 5169 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) { 5170 /* LVD automatic termination control is enabled. */ 5171 switch (scsi_cfg1 & C_DET_LVD) { 5172 /* TERM_LVD_HI: on, TERM_LVD_LO: on */ 5173 case 0x4: 5174 case 0x8: 5175 case 0xC: 5176 asc_dvc->cfg->termination |= TERM_LVD; 5177 break; 5178 5179 /* TERM_LVD_HI: off, TERM_LVD_LO: off */ 5180 case 0x0: 5181 break; 5182 } 5183 } 5184 5185 /* 5186 * Clear any set TERM_SE and TERM_LVD bits. 5187 */ 5188 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD); 5189 5190 /* 5191 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'. 5192 */ 5193 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0); 5194 5195 /* 5196 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE 5197 * bits and set possibly modified termination control bits in the 5198 * Microcode SCSI_CFG1 Register Value. 5199 */ 5200 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE); 5201 5202 /* 5203 * Set SCSI_CFG1 Microcode Default Value 5204 * 5205 * Set possibly modified termination control and reset DIS_TERM_DRV 5206 * bits in the Microcode SCSI_CFG1 Register Value. 5207 * 5208 * The microcode will set the SCSI_CFG1 register using this value 5209 * after it is started below. 5210 */ 5211 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); 5212 5213 /* 5214 * Set MEM_CFG Microcode Default Value 5215 * 5216 * The microcode will set the MEM_CFG register using this value 5217 * after it is started below. 5218 * 5219 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 5220 * are defined. 5221 * 5222 * ASC-38C0800 has 16KB internal memory. 5223 */ 5224 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5225 BIOS_EN | RAM_SZ_16KB); 5226 5227 /* 5228 * Set SEL_MASK Microcode Default Value 5229 * 5230 * The microcode will set the SEL_MASK register using this value 5231 * after it is started below. 5232 */ 5233 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 5234 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 5235 5236 AdvBuildCarrierFreelist(asc_dvc); 5237 5238 /* 5239 * Set-up the Host->RISC Initiator Command Queue (ICQ). 5240 */ 5241 5242 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 5243 if (!asc_dvc->icq_sp) { 5244 ASC_DBG(0, "Failed to get ICQ carrier\n"); 5245 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5246 return ADV_ERROR; 5247 } 5248 5249 /* 5250 * Set RISC ICQ physical address start value. 5251 * carr_pa is LE, must be native before write 5252 */ 5253 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 5254 5255 /* 5256 * Set-up the RISC->Host Initiator Response Queue (IRQ). 5257 */ 5258 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 5259 if (!asc_dvc->irq_sp) { 5260 ASC_DBG(0, "Failed to get IRQ carrier\n"); 5261 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5262 return ADV_ERROR; 5263 } 5264 5265 /* 5266 * Set RISC IRQ physical address start value. 5267 * 5268 * carr_pa is LE, must be native before write * 5269 */ 5270 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 5271 asc_dvc->carr_pending_cnt = 0; 5272 5273 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 5274 (ADV_INTR_ENABLE_HOST_INTR | 5275 ADV_INTR_ENABLE_GLOBAL_INTR)); 5276 5277 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 5278 AdvWriteWordRegister(iop_base, IOPW_PC, word); 5279 5280 /* finally, finally, gentlemen, start your engine */ 5281 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 5282 5283 /* 5284 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 5285 * Resets should be performed. The RISC has to be running 5286 * to issue a SCSI Bus Reset. 5287 */ 5288 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 5289 /* 5290 * If the BIOS Signature is present in memory, restore the 5291 * BIOS Handshake Configuration Table and do not perform 5292 * a SCSI Bus Reset. 5293 */ 5294 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 5295 0x55AA) { 5296 /* 5297 * Restore per TID negotiated values. 5298 */ 5299 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5300 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5301 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 5302 tagqng_able); 5303 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5304 AdvWriteByteLram(iop_base, 5305 ASC_MC_NUMBER_OF_MAX_CMD + tid, 5306 max_cmd[tid]); 5307 } 5308 } else { 5309 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 5310 warn_code = ASC_WARN_BUSRESET_ERROR; 5311 } 5312 } 5313 } 5314 5315 return warn_code; 5316 } 5317 5318 /* 5319 * Initialize the ASC-38C1600. 5320 * 5321 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. 5322 * 5323 * For a non-fatal error return a warning code. If there are no warnings 5324 * then 0 is returned. 5325 * 5326 * Needed after initialization for error recovery. 5327 */ 5328 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc) 5329 { 5330 const struct firmware *fw; 5331 const char fwname[] = "advansys/38C1600.bin"; 5332 AdvPortAddr iop_base; 5333 ushort warn_code; 5334 int begin_addr; 5335 int end_addr; 5336 ushort code_sum; 5337 long word; 5338 int i; 5339 int err; 5340 unsigned long chksum; 5341 ushort scsi_cfg1; 5342 uchar byte; 5343 uchar tid; 5344 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 5345 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able; 5346 uchar max_cmd[ASC_MAX_TID + 1]; 5347 5348 /* If there is already an error, don't continue. */ 5349 if (asc_dvc->err_code != 0) { 5350 return ADV_ERROR; 5351 } 5352 5353 /* 5354 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600. 5355 */ 5356 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { 5357 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 5358 return ADV_ERROR; 5359 } 5360 5361 warn_code = 0; 5362 iop_base = asc_dvc->iop_base; 5363 5364 /* 5365 * Save the RISC memory BIOS region before writing the microcode. 5366 * The BIOS may already be loaded and using its RISC LRAM region 5367 * so its region must be saved and restored. 5368 * 5369 * Note: This code makes the assumption, which is currently true, 5370 * that a chip reset does not clear RISC LRAM. 5371 */ 5372 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5373 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5374 bios_mem[i]); 5375 } 5376 5377 /* 5378 * Save current per TID negotiated values. 5379 */ 5380 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5381 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5382 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5383 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5384 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 5385 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5386 max_cmd[tid]); 5387 } 5388 5389 /* 5390 * RAM BIST (Built-In Self Test) 5391 * 5392 * Address : I/O base + offset 0x38h register (byte). 5393 * Function: Bit 7-6(RW) : RAM mode 5394 * Normal Mode : 0x00 5395 * Pre-test Mode : 0x40 5396 * RAM Test Mode : 0x80 5397 * Bit 5 : unused 5398 * Bit 4(RO) : Done bit 5399 * Bit 3-0(RO) : Status 5400 * Host Error : 0x08 5401 * Int_RAM Error : 0x04 5402 * RISC Error : 0x02 5403 * SCSI Error : 0x01 5404 * No Error : 0x00 5405 * 5406 * Note: RAM BIST code should be put right here, before loading the 5407 * microcode and after saving the RISC memory BIOS region. 5408 */ 5409 5410 /* 5411 * LRAM Pre-test 5412 * 5413 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. 5414 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return 5415 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset 5416 * to NORMAL_MODE, return an error too. 5417 */ 5418 for (i = 0; i < 2; i++) { 5419 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); 5420 mdelay(10); /* Wait for 10ms before reading back. */ 5421 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5422 if ((byte & RAM_TEST_DONE) == 0 5423 || (byte & 0x0F) != PRE_TEST_VALUE) { 5424 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5425 return ADV_ERROR; 5426 } 5427 5428 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5429 mdelay(10); /* Wait for 10ms before reading back. */ 5430 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) 5431 != NORMAL_VALUE) { 5432 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5433 return ADV_ERROR; 5434 } 5435 } 5436 5437 /* 5438 * LRAM Test - It takes about 1.5 ms to run through the test. 5439 * 5440 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. 5441 * If Done bit not set or Status not 0, save register byte, set the 5442 * err_code, and return an error. 5443 */ 5444 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); 5445 mdelay(10); /* Wait for 10ms before checking status. */ 5446 5447 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5448 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { 5449 /* Get here if Done bit not set or Status not 0. */ 5450 asc_dvc->bist_err_code = byte; /* for BIOS display message */ 5451 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; 5452 return ADV_ERROR; 5453 } 5454 5455 /* We need to reset back to normal mode after LRAM test passes. */ 5456 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5457 5458 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 5459 if (err) { 5460 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 5461 fwname, err); 5462 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5463 return err; 5464 } 5465 if (fw->size < 4) { 5466 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 5467 fw->size, fwname); 5468 release_firmware(fw); 5469 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5470 return -EINVAL; 5471 } 5472 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 5473 (fw->data[1] << 8) | fw->data[0]; 5474 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 5475 fw->size - 4, ADV_38C1600_MEMSIZE, 5476 chksum); 5477 release_firmware(fw); 5478 if (asc_dvc->err_code) 5479 return ADV_ERROR; 5480 5481 /* 5482 * Restore the RISC memory BIOS region. 5483 */ 5484 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5485 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5486 bios_mem[i]); 5487 } 5488 5489 /* 5490 * Calculate and write the microcode code checksum to the microcode 5491 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 5492 */ 5493 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 5494 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 5495 code_sum = 0; 5496 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 5497 for (word = begin_addr; word < end_addr; word += 2) { 5498 code_sum += AdvReadWordAutoIncLram(iop_base); 5499 } 5500 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 5501 5502 /* 5503 * Read microcode version and date. 5504 */ 5505 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 5506 asc_dvc->cfg->mcode_date); 5507 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 5508 asc_dvc->cfg->mcode_version); 5509 5510 /* 5511 * Set the chip type to indicate the ASC38C1600. 5512 */ 5513 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600); 5514 5515 /* 5516 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. 5517 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current 5518 * cable detection and then we are able to read C_DET[3:0]. 5519 * 5520 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 5521 * Microcode Default Value' section below. 5522 */ 5523 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5524 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, 5525 scsi_cfg1 | DIS_TERM_DRV); 5526 5527 /* 5528 * If the PCI Configuration Command Register "Parity Error Response 5529 * Control" Bit was clear (0), then set the microcode variable 5530 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 5531 * to ignore DMA parity errors. 5532 */ 5533 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 5534 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5535 word |= CONTROL_FLAG_IGNORE_PERR; 5536 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5537 } 5538 5539 /* 5540 * If the BIOS control flag AIPP (Asynchronous Information 5541 * Phase Protection) disable bit is not set, then set the firmware 5542 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable 5543 * AIPP checking and encoding. 5544 */ 5545 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) { 5546 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5547 word |= CONTROL_FLAG_ENABLE_AIPP; 5548 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5549 } 5550 5551 /* 5552 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4], 5553 * and START_CTL_TH [3:2]. 5554 */ 5555 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 5556 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM); 5557 5558 /* 5559 * Microcode operating variables for WDTR, SDTR, and command tag 5560 * queuing will be set in slave_configure() based on what a 5561 * device reports it is capable of in Inquiry byte 7. 5562 * 5563 * If SCSI Bus Resets have been disabled, then directly set 5564 * SDTR and WDTR from the EEPROM configuration. This will allow 5565 * the BIOS and warm boot to work without a SCSI bus hang on 5566 * the Inquiry caused by host and target mismatched DTR values. 5567 * Without the SCSI Bus Reset, before an Inquiry a device can't 5568 * be assumed to be in Asynchronous, Narrow mode. 5569 */ 5570 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 5571 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 5572 asc_dvc->wdtr_able); 5573 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 5574 asc_dvc->sdtr_able); 5575 } 5576 5577 /* 5578 * Set microcode operating variables for DISC and SDTR_SPEED1, 5579 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM 5580 * configuration values. 5581 * 5582 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 5583 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 5584 * without determining here whether the device supports SDTR. 5585 */ 5586 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 5587 asc_dvc->cfg->disc_enable); 5588 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); 5589 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); 5590 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); 5591 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); 5592 5593 /* 5594 * Set SCSI_CFG0 Microcode Default Value. 5595 * 5596 * The microcode will set the SCSI_CFG0 register using this value 5597 * after it is started below. 5598 */ 5599 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 5600 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 5601 asc_dvc->chip_scsi_id); 5602 5603 /* 5604 * Calculate SCSI_CFG1 Microcode Default Value. 5605 * 5606 * The microcode will set the SCSI_CFG1 register using this value 5607 * after it is started below. 5608 * 5609 * Each ASC-38C1600 function has only two cable detect bits. 5610 * The bus mode override bits are in IOPB_SOFT_OVER_WR. 5611 */ 5612 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5613 5614 /* 5615 * If the cable is reversed all of the SCSI_CTRL register signals 5616 * will be set. Check for and return an error if this condition is 5617 * found. 5618 */ 5619 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 5620 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 5621 return ADV_ERROR; 5622 } 5623 5624 /* 5625 * Each ASC-38C1600 function has two connectors. Only an HVD device 5626 * can not be connected to either connector. An LVD device or SE device 5627 * may be connected to either connecor. If an SE device is connected, 5628 * then at most Ultra speed (20 Mhz) can be used on both connectors. 5629 * 5630 * If an HVD device is attached, return an error. 5631 */ 5632 if (scsi_cfg1 & HVD) { 5633 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE; 5634 return ADV_ERROR; 5635 } 5636 5637 /* 5638 * Each function in the ASC-38C1600 uses only the SE cable detect and 5639 * termination because there are two connectors for each function. Each 5640 * function may use either LVD or SE mode. Corresponding the SE automatic 5641 * termination control EEPROM bits are used for each function. Each 5642 * function has its own EEPROM. If SE automatic control is enabled for 5643 * the function, then set the termination value based on a table listed 5644 * in a_condor.h. 5645 * 5646 * If manual termination is specified in the EEPROM for the function, 5647 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is 5648 * ready to be 'ored' into SCSI_CFG1. 5649 */ 5650 if ((asc_dvc->cfg->termination & TERM_SE) == 0) { 5651 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); 5652 /* SE automatic termination control is enabled. */ 5653 switch (scsi_cfg1 & C_DET_SE) { 5654 /* TERM_SE_HI: on, TERM_SE_LO: on */ 5655 case 0x1: 5656 case 0x2: 5657 case 0x3: 5658 asc_dvc->cfg->termination |= TERM_SE; 5659 break; 5660 5661 case 0x0: 5662 if (PCI_FUNC(pdev->devfn) == 0) { 5663 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */ 5664 } else { 5665 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */ 5666 asc_dvc->cfg->termination |= TERM_SE_HI; 5667 } 5668 break; 5669 } 5670 } 5671 5672 /* 5673 * Clear any set TERM_SE bits. 5674 */ 5675 scsi_cfg1 &= ~TERM_SE; 5676 5677 /* 5678 * Invert the TERM_SE bits and then set 'scsi_cfg1'. 5679 */ 5680 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE); 5681 5682 /* 5683 * Clear Big Endian and Terminator Polarity bits and set possibly 5684 * modified termination control bits in the Microcode SCSI_CFG1 5685 * Register Value. 5686 * 5687 * Big Endian bit is not used even on big endian machines. 5688 */ 5689 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL); 5690 5691 /* 5692 * Set SCSI_CFG1 Microcode Default Value 5693 * 5694 * Set possibly modified termination control bits in the Microcode 5695 * SCSI_CFG1 Register Value. 5696 * 5697 * The microcode will set the SCSI_CFG1 register using this value 5698 * after it is started below. 5699 */ 5700 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); 5701 5702 /* 5703 * Set MEM_CFG Microcode Default Value 5704 * 5705 * The microcode will set the MEM_CFG register using this value 5706 * after it is started below. 5707 * 5708 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 5709 * are defined. 5710 * 5711 * ASC-38C1600 has 32KB internal memory. 5712 * 5713 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come 5714 * out a special 16K Adv Library and Microcode version. After the issue 5715 * resolved, we should turn back to the 32K support. Both a_condor.h and 5716 * mcode.sas files also need to be updated. 5717 * 5718 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5719 * BIOS_EN | RAM_SZ_32KB); 5720 */ 5721 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5722 BIOS_EN | RAM_SZ_16KB); 5723 5724 /* 5725 * Set SEL_MASK Microcode Default Value 5726 * 5727 * The microcode will set the SEL_MASK register using this value 5728 * after it is started below. 5729 */ 5730 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 5731 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 5732 5733 AdvBuildCarrierFreelist(asc_dvc); 5734 5735 /* 5736 * Set-up the Host->RISC Initiator Command Queue (ICQ). 5737 */ 5738 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 5739 if (!asc_dvc->icq_sp) { 5740 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5741 return ADV_ERROR; 5742 } 5743 5744 /* 5745 * Set RISC ICQ physical address start value. Initialize the 5746 * COMMA register to the same value otherwise the RISC will 5747 * prematurely detect a command is available. 5748 */ 5749 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 5750 AdvWriteDWordRegister(iop_base, IOPDW_COMMA, 5751 le32_to_cpu(asc_dvc->icq_sp->carr_pa)); 5752 5753 /* 5754 * Set-up the RISC->Host Initiator Response Queue (IRQ). 5755 */ 5756 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 5757 if (!asc_dvc->irq_sp) { 5758 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5759 return ADV_ERROR; 5760 } 5761 5762 /* 5763 * Set RISC IRQ physical address start value. 5764 */ 5765 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 5766 asc_dvc->carr_pending_cnt = 0; 5767 5768 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 5769 (ADV_INTR_ENABLE_HOST_INTR | 5770 ADV_INTR_ENABLE_GLOBAL_INTR)); 5771 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 5772 AdvWriteWordRegister(iop_base, IOPW_PC, word); 5773 5774 /* finally, finally, gentlemen, start your engine */ 5775 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 5776 5777 /* 5778 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 5779 * Resets should be performed. The RISC has to be running 5780 * to issue a SCSI Bus Reset. 5781 */ 5782 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 5783 /* 5784 * If the BIOS Signature is present in memory, restore the 5785 * per TID microcode operating variables. 5786 */ 5787 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 5788 0x55AA) { 5789 /* 5790 * Restore per TID negotiated values. 5791 */ 5792 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5793 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5794 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5795 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 5796 tagqng_able); 5797 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 5798 AdvWriteByteLram(iop_base, 5799 ASC_MC_NUMBER_OF_MAX_CMD + tid, 5800 max_cmd[tid]); 5801 } 5802 } else { 5803 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 5804 warn_code = ASC_WARN_BUSRESET_ERROR; 5805 } 5806 } 5807 } 5808 5809 return warn_code; 5810 } 5811 5812 /* 5813 * Reset chip and SCSI Bus. 5814 * 5815 * Return Value: 5816 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful. 5817 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure. 5818 */ 5819 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc) 5820 { 5821 int status; 5822 ushort wdtr_able, sdtr_able, tagqng_able; 5823 ushort ppr_able = 0; 5824 uchar tid, max_cmd[ADV_MAX_TID + 1]; 5825 AdvPortAddr iop_base; 5826 ushort bios_sig; 5827 5828 iop_base = asc_dvc->iop_base; 5829 5830 /* 5831 * Save current per TID negotiated values. 5832 */ 5833 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5834 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5835 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5836 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5837 } 5838 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5839 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5840 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5841 max_cmd[tid]); 5842 } 5843 5844 /* 5845 * Force the AdvInitAsc3550/38C0800Driver() function to 5846 * perform a SCSI Bus Reset by clearing the BIOS signature word. 5847 * The initialization functions assumes a SCSI Bus Reset is not 5848 * needed if the BIOS signature word is present. 5849 */ 5850 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); 5851 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0); 5852 5853 /* 5854 * Stop chip and reset it. 5855 */ 5856 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP); 5857 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET); 5858 mdelay(100); 5859 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 5860 ADV_CTRL_REG_CMD_WR_IO_REG); 5861 5862 /* 5863 * Reset Adv Library error code, if any, and try 5864 * re-initializing the chip. 5865 */ 5866 asc_dvc->err_code = 0; 5867 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5868 status = AdvInitAsc38C1600Driver(asc_dvc); 5869 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 5870 status = AdvInitAsc38C0800Driver(asc_dvc); 5871 } else { 5872 status = AdvInitAsc3550Driver(asc_dvc); 5873 } 5874 5875 /* Translate initialization return value to status value. */ 5876 if (status == 0) { 5877 status = ADV_TRUE; 5878 } else { 5879 status = ADV_FALSE; 5880 } 5881 5882 /* 5883 * Restore the BIOS signature word. 5884 */ 5885 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); 5886 5887 /* 5888 * Restore per TID negotiated values. 5889 */ 5890 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5891 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5892 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5893 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5894 } 5895 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5896 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5897 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5898 max_cmd[tid]); 5899 } 5900 5901 return status; 5902 } 5903 5904 /* 5905 * adv_async_callback() - Adv Library asynchronous event callback function. 5906 */ 5907 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code) 5908 { 5909 switch (code) { 5910 case ADV_ASYNC_SCSI_BUS_RESET_DET: 5911 /* 5912 * The firmware detected a SCSI Bus reset. 5913 */ 5914 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n"); 5915 break; 5916 5917 case ADV_ASYNC_RDMA_FAILURE: 5918 /* 5919 * Handle RDMA failure by resetting the SCSI Bus and 5920 * possibly the chip if it is unresponsive. Log the error 5921 * with a unique code. 5922 */ 5923 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n"); 5924 AdvResetChipAndSB(adv_dvc_varp); 5925 break; 5926 5927 case ADV_HOST_SCSI_BUS_RESET: 5928 /* 5929 * Host generated SCSI bus reset occurred. 5930 */ 5931 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n"); 5932 break; 5933 5934 default: 5935 ASC_DBG(0, "unknown code 0x%x\n", code); 5936 break; 5937 } 5938 } 5939 5940 /* 5941 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR(). 5942 * 5943 * Callback function for the Wide SCSI Adv Library. 5944 */ 5945 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp) 5946 { 5947 struct asc_board *boardp = adv_dvc_varp->drv_ptr; 5948 adv_req_t *reqp; 5949 adv_sgblk_t *sgblkp; 5950 struct scsi_cmnd *scp; 5951 u32 resid_cnt; 5952 dma_addr_t sense_addr; 5953 5954 ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n", 5955 adv_dvc_varp, scsiqp); 5956 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); 5957 5958 /* 5959 * Get the adv_req_t structure for the command that has been 5960 * completed. The adv_req_t structure actually contains the 5961 * completed ADV_SCSI_REQ_Q structure. 5962 */ 5963 scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag); 5964 5965 ASC_DBG(1, "scp 0x%p\n", scp); 5966 if (scp == NULL) { 5967 ASC_PRINT 5968 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n"); 5969 return; 5970 } 5971 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); 5972 5973 reqp = (adv_req_t *)scp->host_scribble; 5974 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp); 5975 if (reqp == NULL) { 5976 ASC_PRINT("adv_isr_callback: reqp is NULL\n"); 5977 return; 5978 } 5979 /* 5980 * Remove backreferences to avoid duplicate 5981 * command completions. 5982 */ 5983 scp->host_scribble = NULL; 5984 reqp->cmndp = NULL; 5985 5986 ASC_STATS(boardp->shost, callback); 5987 ASC_DBG(1, "shost 0x%p\n", boardp->shost); 5988 5989 sense_addr = le32_to_cpu(scsiqp->sense_addr); 5990 dma_unmap_single(boardp->dev, sense_addr, 5991 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 5992 5993 /* 5994 * 'done_status' contains the command's ending status. 5995 */ 5996 switch (scsiqp->done_status) { 5997 case QD_NO_ERROR: 5998 ASC_DBG(2, "QD_NO_ERROR\n"); 5999 scp->result = 0; 6000 6001 /* 6002 * Check for an underrun condition. 6003 * 6004 * If there was no error and an underrun condition, then 6005 * then return the number of underrun bytes. 6006 */ 6007 resid_cnt = le32_to_cpu(scsiqp->data_cnt); 6008 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 && 6009 resid_cnt <= scsi_bufflen(scp)) { 6010 ASC_DBG(1, "underrun condition %lu bytes\n", 6011 (ulong)resid_cnt); 6012 scsi_set_resid(scp, resid_cnt); 6013 } 6014 break; 6015 6016 case QD_WITH_ERROR: 6017 ASC_DBG(2, "QD_WITH_ERROR\n"); 6018 switch (scsiqp->host_status) { 6019 case QHSTA_NO_ERROR: 6020 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) { 6021 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); 6022 ASC_DBG_PRT_SENSE(2, scp->sense_buffer, 6023 SCSI_SENSE_BUFFERSIZE); 6024 /* 6025 * Note: The 'status_byte()' macro used by 6026 * target drivers defined in scsi.h shifts the 6027 * status byte returned by host drivers right 6028 * by 1 bit. This is why target drivers also 6029 * use right shifted status byte definitions. 6030 * For instance target drivers use 6031 * CHECK_CONDITION, defined to 0x1, instead of 6032 * the SCSI defined check condition value of 6033 * 0x2. Host drivers are supposed to return 6034 * the status byte as it is defined by SCSI. 6035 */ 6036 scp->result = DRIVER_BYTE(DRIVER_SENSE) | 6037 STATUS_BYTE(scsiqp->scsi_status); 6038 } else { 6039 scp->result = STATUS_BYTE(scsiqp->scsi_status); 6040 } 6041 break; 6042 6043 default: 6044 /* Some other QHSTA error occurred. */ 6045 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status); 6046 scp->result = HOST_BYTE(DID_BAD_TARGET); 6047 break; 6048 } 6049 break; 6050 6051 case QD_ABORTED_BY_HOST: 6052 ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); 6053 scp->result = 6054 HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status); 6055 break; 6056 6057 default: 6058 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status); 6059 scp->result = 6060 HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status); 6061 break; 6062 } 6063 6064 /* 6065 * If the 'init_tidmask' bit isn't already set for the target and the 6066 * current request finished normally, then set the bit for the target 6067 * to indicate that a device is present. 6068 */ 6069 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && 6070 scsiqp->done_status == QD_NO_ERROR && 6071 scsiqp->host_status == QHSTA_NO_ERROR) { 6072 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); 6073 } 6074 6075 asc_scsi_done(scp); 6076 6077 /* 6078 * Free all 'adv_sgblk_t' structures allocated for the request. 6079 */ 6080 while ((sgblkp = reqp->sgblkp) != NULL) { 6081 /* Remove 'sgblkp' from the request list. */ 6082 reqp->sgblkp = sgblkp->next_sgblkp; 6083 6084 dma_pool_free(boardp->adv_sgblk_pool, sgblkp, 6085 sgblkp->sg_addr); 6086 } 6087 6088 ASC_DBG(1, "done\n"); 6089 } 6090 6091 /* 6092 * Adv Library Interrupt Service Routine 6093 * 6094 * This function is called by a driver's interrupt service routine. 6095 * The function disables and re-enables interrupts. 6096 * 6097 * When a microcode idle command is completed, the ADV_DVC_VAR 6098 * 'idle_cmd_done' field is set to ADV_TRUE. 6099 * 6100 * Note: AdvISR() can be called when interrupts are disabled or even 6101 * when there is no hardware interrupt condition present. It will 6102 * always check for completed idle commands and microcode requests. 6103 * This is an important feature that shouldn't be changed because it 6104 * allows commands to be completed from polling mode loops. 6105 * 6106 * Return: 6107 * ADV_TRUE(1) - interrupt was pending 6108 * ADV_FALSE(0) - no interrupt was pending 6109 */ 6110 static int AdvISR(ADV_DVC_VAR *asc_dvc) 6111 { 6112 AdvPortAddr iop_base; 6113 uchar int_stat; 6114 ushort target_bit; 6115 ADV_CARR_T *free_carrp; 6116 __le32 irq_next_vpa; 6117 ADV_SCSI_REQ_Q *scsiq; 6118 adv_req_t *reqp; 6119 6120 iop_base = asc_dvc->iop_base; 6121 6122 /* Reading the register clears the interrupt. */ 6123 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG); 6124 6125 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB | 6126 ADV_INTR_STATUS_INTRC)) == 0) { 6127 return ADV_FALSE; 6128 } 6129 6130 /* 6131 * Notify the driver of an asynchronous microcode condition by 6132 * calling the adv_async_callback function. The function 6133 * is passed the microcode ASC_MC_INTRB_CODE byte value. 6134 */ 6135 if (int_stat & ADV_INTR_STATUS_INTRB) { 6136 uchar intrb_code; 6137 6138 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code); 6139 6140 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || 6141 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 6142 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE && 6143 asc_dvc->carr_pending_cnt != 0) { 6144 AdvWriteByteRegister(iop_base, IOPB_TICKLE, 6145 ADV_TICKLE_A); 6146 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 6147 AdvWriteByteRegister(iop_base, 6148 IOPB_TICKLE, 6149 ADV_TICKLE_NOP); 6150 } 6151 } 6152 } 6153 6154 adv_async_callback(asc_dvc, intrb_code); 6155 } 6156 6157 /* 6158 * Check if the IRQ stopper carrier contains a completed request. 6159 */ 6160 while (((irq_next_vpa = 6161 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) { 6162 /* 6163 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure. 6164 * The RISC will have set 'areq_vpa' to a virtual address. 6165 * 6166 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr 6167 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion 6168 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr' 6169 * in AdvExeScsiQueue(). 6170 */ 6171 u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa); 6172 ASC_DBG(1, "irq_sp %p areq_vpa %u\n", 6173 asc_dvc->irq_sp, pa_offset); 6174 reqp = adv_get_reqp(asc_dvc, pa_offset); 6175 scsiq = &reqp->scsi_req_q; 6176 6177 /* 6178 * Request finished with good status and the queue was not 6179 * DMAed to host memory by the firmware. Set all status fields 6180 * to indicate good status. 6181 */ 6182 if ((irq_next_vpa & ADV_RQ_GOOD) != 0) { 6183 scsiq->done_status = QD_NO_ERROR; 6184 scsiq->host_status = scsiq->scsi_status = 0; 6185 scsiq->data_cnt = 0L; 6186 } 6187 6188 /* 6189 * Advance the stopper pointer to the next carrier 6190 * ignoring the lower four bits. Free the previous 6191 * stopper carrier. 6192 */ 6193 free_carrp = asc_dvc->irq_sp; 6194 asc_dvc->irq_sp = adv_get_carrier(asc_dvc, 6195 ADV_GET_CARRP(irq_next_vpa)); 6196 6197 free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va; 6198 asc_dvc->carr_freelist = free_carrp; 6199 asc_dvc->carr_pending_cnt--; 6200 6201 target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id); 6202 6203 /* 6204 * Clear request microcode control flag. 6205 */ 6206 scsiq->cntl = 0; 6207 6208 /* 6209 * Notify the driver of the completed request by passing 6210 * the ADV_SCSI_REQ_Q pointer to its callback function. 6211 */ 6212 adv_isr_callback(asc_dvc, scsiq); 6213 /* 6214 * Note: After the driver callback function is called, 'scsiq' 6215 * can no longer be referenced. 6216 * 6217 * Fall through and continue processing other completed 6218 * requests... 6219 */ 6220 } 6221 return ADV_TRUE; 6222 } 6223 6224 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code) 6225 { 6226 if (asc_dvc->err_code == 0) { 6227 asc_dvc->err_code = err_code; 6228 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W, 6229 err_code); 6230 } 6231 return err_code; 6232 } 6233 6234 static void AscAckInterrupt(PortAddr iop_base) 6235 { 6236 uchar host_flag; 6237 uchar risc_flag; 6238 ushort loop; 6239 6240 loop = 0; 6241 do { 6242 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B); 6243 if (loop++ > 0x7FFF) { 6244 break; 6245 } 6246 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0); 6247 host_flag = 6248 AscReadLramByte(iop_base, 6249 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT); 6250 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, 6251 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT)); 6252 AscSetChipStatus(iop_base, CIW_INT_ACK); 6253 loop = 0; 6254 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) { 6255 AscSetChipStatus(iop_base, CIW_INT_ACK); 6256 if (loop++ > 3) { 6257 break; 6258 } 6259 } 6260 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); 6261 } 6262 6263 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time) 6264 { 6265 const uchar *period_table; 6266 int max_index; 6267 int min_index; 6268 int i; 6269 6270 period_table = asc_dvc->sdtr_period_tbl; 6271 max_index = (int)asc_dvc->max_sdtr_index; 6272 min_index = (int)asc_dvc->min_sdtr_index; 6273 if ((syn_time <= period_table[max_index])) { 6274 for (i = min_index; i < (max_index - 1); i++) { 6275 if (syn_time <= period_table[i]) { 6276 return (uchar)i; 6277 } 6278 } 6279 return (uchar)max_index; 6280 } else { 6281 return (uchar)(max_index + 1); 6282 } 6283 } 6284 6285 static uchar 6286 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset) 6287 { 6288 PortAddr iop_base = asc_dvc->iop_base; 6289 uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period); 6290 EXT_MSG sdtr_buf = { 6291 .msg_type = EXTENDED_MESSAGE, 6292 .msg_len = MS_SDTR_LEN, 6293 .msg_req = EXTENDED_SDTR, 6294 .xfer_period = sdtr_period, 6295 .req_ack_offset = sdtr_offset, 6296 }; 6297 sdtr_offset &= ASC_SYN_MAX_OFFSET; 6298 6299 if (sdtr_period_index <= asc_dvc->max_sdtr_index) { 6300 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, 6301 (uchar *)&sdtr_buf, 6302 sizeof(EXT_MSG) >> 1); 6303 return ((sdtr_period_index << 4) | sdtr_offset); 6304 } else { 6305 sdtr_buf.req_ack_offset = 0; 6306 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, 6307 (uchar *)&sdtr_buf, 6308 sizeof(EXT_MSG) >> 1); 6309 return 0; 6310 } 6311 } 6312 6313 static uchar 6314 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset) 6315 { 6316 uchar byte; 6317 uchar sdtr_period_ix; 6318 6319 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period); 6320 if (sdtr_period_ix > asc_dvc->max_sdtr_index) 6321 return 0xFF; 6322 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET); 6323 return byte; 6324 } 6325 6326 static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data) 6327 { 6328 ASC_SCSI_BIT_ID_TYPE org_id; 6329 int i; 6330 bool sta = true; 6331 6332 AscSetBank(iop_base, 1); 6333 org_id = AscReadChipDvcID(iop_base); 6334 for (i = 0; i <= ASC_MAX_TID; i++) { 6335 if (org_id == (0x01 << i)) 6336 break; 6337 } 6338 org_id = (ASC_SCSI_BIT_ID_TYPE) i; 6339 AscWriteChipDvcID(iop_base, id); 6340 if (AscReadChipDvcID(iop_base) == (0x01 << id)) { 6341 AscSetBank(iop_base, 0); 6342 AscSetChipSyn(iop_base, sdtr_data); 6343 if (AscGetChipSyn(iop_base) != sdtr_data) { 6344 sta = false; 6345 } 6346 } else { 6347 sta = false; 6348 } 6349 AscSetBank(iop_base, 1); 6350 AscWriteChipDvcID(iop_base, org_id); 6351 AscSetBank(iop_base, 0); 6352 return (sta); 6353 } 6354 6355 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no) 6356 { 6357 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); 6358 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data); 6359 } 6360 6361 static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc) 6362 { 6363 EXT_MSG ext_msg; 6364 EXT_MSG out_msg; 6365 ushort halt_q_addr; 6366 bool sdtr_accept; 6367 ushort int_halt_code; 6368 ASC_SCSI_BIT_ID_TYPE scsi_busy; 6369 ASC_SCSI_BIT_ID_TYPE target_id; 6370 PortAddr iop_base; 6371 uchar tag_code; 6372 uchar q_status; 6373 uchar halt_qp; 6374 uchar sdtr_data; 6375 uchar target_ix; 6376 uchar q_cntl, tid_no; 6377 uchar cur_dvc_qng; 6378 uchar asyn_sdtr; 6379 uchar scsi_status; 6380 struct asc_board *boardp; 6381 6382 BUG_ON(!asc_dvc->drv_ptr); 6383 boardp = asc_dvc->drv_ptr; 6384 6385 iop_base = asc_dvc->iop_base; 6386 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W); 6387 6388 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B); 6389 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp); 6390 target_ix = AscReadLramByte(iop_base, 6391 (ushort)(halt_q_addr + 6392 (ushort)ASC_SCSIQ_B_TARGET_IX)); 6393 q_cntl = AscReadLramByte(iop_base, 6394 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL)); 6395 tid_no = ASC_TIX_TO_TID(target_ix); 6396 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no); 6397 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6398 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB; 6399 } else { 6400 asyn_sdtr = 0; 6401 } 6402 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) { 6403 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6404 AscSetChipSDTR(iop_base, 0, tid_no); 6405 boardp->sdtr_data[tid_no] = 0; 6406 } 6407 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6408 return; 6409 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) { 6410 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6411 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6412 boardp->sdtr_data[tid_no] = asyn_sdtr; 6413 } 6414 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6415 return; 6416 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) { 6417 AscMemWordCopyPtrFromLram(iop_base, 6418 ASCV_MSGIN_BEG, 6419 (uchar *)&ext_msg, 6420 sizeof(EXT_MSG) >> 1); 6421 6422 if (ext_msg.msg_type == EXTENDED_MESSAGE && 6423 ext_msg.msg_req == EXTENDED_SDTR && 6424 ext_msg.msg_len == MS_SDTR_LEN) { 6425 sdtr_accept = true; 6426 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) { 6427 6428 sdtr_accept = false; 6429 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET; 6430 } 6431 if ((ext_msg.xfer_period < 6432 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index]) 6433 || (ext_msg.xfer_period > 6434 asc_dvc->sdtr_period_tbl[asc_dvc-> 6435 max_sdtr_index])) { 6436 sdtr_accept = false; 6437 ext_msg.xfer_period = 6438 asc_dvc->sdtr_period_tbl[asc_dvc-> 6439 min_sdtr_index]; 6440 } 6441 if (sdtr_accept) { 6442 sdtr_data = 6443 AscCalSDTRData(asc_dvc, ext_msg.xfer_period, 6444 ext_msg.req_ack_offset); 6445 if (sdtr_data == 0xFF) { 6446 6447 q_cntl |= QC_MSG_OUT; 6448 asc_dvc->init_sdtr &= ~target_id; 6449 asc_dvc->sdtr_done &= ~target_id; 6450 AscSetChipSDTR(iop_base, asyn_sdtr, 6451 tid_no); 6452 boardp->sdtr_data[tid_no] = asyn_sdtr; 6453 } 6454 } 6455 if (ext_msg.req_ack_offset == 0) { 6456 6457 q_cntl &= ~QC_MSG_OUT; 6458 asc_dvc->init_sdtr &= ~target_id; 6459 asc_dvc->sdtr_done &= ~target_id; 6460 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6461 } else { 6462 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) { 6463 q_cntl &= ~QC_MSG_OUT; 6464 asc_dvc->sdtr_done |= target_id; 6465 asc_dvc->init_sdtr |= target_id; 6466 asc_dvc->pci_fix_asyn_xfer &= 6467 ~target_id; 6468 sdtr_data = 6469 AscCalSDTRData(asc_dvc, 6470 ext_msg.xfer_period, 6471 ext_msg. 6472 req_ack_offset); 6473 AscSetChipSDTR(iop_base, sdtr_data, 6474 tid_no); 6475 boardp->sdtr_data[tid_no] = sdtr_data; 6476 } else { 6477 q_cntl |= QC_MSG_OUT; 6478 AscMsgOutSDTR(asc_dvc, 6479 ext_msg.xfer_period, 6480 ext_msg.req_ack_offset); 6481 asc_dvc->pci_fix_asyn_xfer &= 6482 ~target_id; 6483 sdtr_data = 6484 AscCalSDTRData(asc_dvc, 6485 ext_msg.xfer_period, 6486 ext_msg. 6487 req_ack_offset); 6488 AscSetChipSDTR(iop_base, sdtr_data, 6489 tid_no); 6490 boardp->sdtr_data[tid_no] = sdtr_data; 6491 asc_dvc->sdtr_done |= target_id; 6492 asc_dvc->init_sdtr |= target_id; 6493 } 6494 } 6495 6496 AscWriteLramByte(iop_base, 6497 (ushort)(halt_q_addr + 6498 (ushort)ASC_SCSIQ_B_CNTL), 6499 q_cntl); 6500 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6501 return; 6502 } else if (ext_msg.msg_type == EXTENDED_MESSAGE && 6503 ext_msg.msg_req == EXTENDED_WDTR && 6504 ext_msg.msg_len == MS_WDTR_LEN) { 6505 6506 ext_msg.wdtr_width = 0; 6507 AscMemWordCopyPtrToLram(iop_base, 6508 ASCV_MSGOUT_BEG, 6509 (uchar *)&ext_msg, 6510 sizeof(EXT_MSG) >> 1); 6511 q_cntl |= QC_MSG_OUT; 6512 AscWriteLramByte(iop_base, 6513 (ushort)(halt_q_addr + 6514 (ushort)ASC_SCSIQ_B_CNTL), 6515 q_cntl); 6516 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6517 return; 6518 } else { 6519 6520 ext_msg.msg_type = MESSAGE_REJECT; 6521 AscMemWordCopyPtrToLram(iop_base, 6522 ASCV_MSGOUT_BEG, 6523 (uchar *)&ext_msg, 6524 sizeof(EXT_MSG) >> 1); 6525 q_cntl |= QC_MSG_OUT; 6526 AscWriteLramByte(iop_base, 6527 (ushort)(halt_q_addr + 6528 (ushort)ASC_SCSIQ_B_CNTL), 6529 q_cntl); 6530 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6531 return; 6532 } 6533 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) { 6534 6535 q_cntl |= QC_REQ_SENSE; 6536 6537 if ((asc_dvc->init_sdtr & target_id) != 0) { 6538 6539 asc_dvc->sdtr_done &= ~target_id; 6540 6541 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 6542 q_cntl |= QC_MSG_OUT; 6543 AscMsgOutSDTR(asc_dvc, 6544 asc_dvc-> 6545 sdtr_period_tbl[(sdtr_data >> 4) & 6546 (uchar)(asc_dvc-> 6547 max_sdtr_index - 6548 1)], 6549 (uchar)(sdtr_data & (uchar) 6550 ASC_SYN_MAX_OFFSET)); 6551 } 6552 6553 AscWriteLramByte(iop_base, 6554 (ushort)(halt_q_addr + 6555 (ushort)ASC_SCSIQ_B_CNTL), q_cntl); 6556 6557 tag_code = AscReadLramByte(iop_base, 6558 (ushort)(halt_q_addr + (ushort) 6559 ASC_SCSIQ_B_TAG_CODE)); 6560 tag_code &= 0xDC; 6561 if ((asc_dvc->pci_fix_asyn_xfer & target_id) 6562 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id) 6563 ) { 6564 6565 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT 6566 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX); 6567 6568 } 6569 AscWriteLramByte(iop_base, 6570 (ushort)(halt_q_addr + 6571 (ushort)ASC_SCSIQ_B_TAG_CODE), 6572 tag_code); 6573 6574 q_status = AscReadLramByte(iop_base, 6575 (ushort)(halt_q_addr + (ushort) 6576 ASC_SCSIQ_B_STATUS)); 6577 q_status |= (QS_READY | QS_BUSY); 6578 AscWriteLramByte(iop_base, 6579 (ushort)(halt_q_addr + 6580 (ushort)ASC_SCSIQ_B_STATUS), 6581 q_status); 6582 6583 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B); 6584 scsi_busy &= ~target_id; 6585 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy); 6586 6587 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6588 return; 6589 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) { 6590 6591 AscMemWordCopyPtrFromLram(iop_base, 6592 ASCV_MSGOUT_BEG, 6593 (uchar *)&out_msg, 6594 sizeof(EXT_MSG) >> 1); 6595 6596 if ((out_msg.msg_type == EXTENDED_MESSAGE) && 6597 (out_msg.msg_len == MS_SDTR_LEN) && 6598 (out_msg.msg_req == EXTENDED_SDTR)) { 6599 6600 asc_dvc->init_sdtr &= ~target_id; 6601 asc_dvc->sdtr_done &= ~target_id; 6602 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6603 boardp->sdtr_data[tid_no] = asyn_sdtr; 6604 } 6605 q_cntl &= ~QC_MSG_OUT; 6606 AscWriteLramByte(iop_base, 6607 (ushort)(halt_q_addr + 6608 (ushort)ASC_SCSIQ_B_CNTL), q_cntl); 6609 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6610 return; 6611 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) { 6612 6613 scsi_status = AscReadLramByte(iop_base, 6614 (ushort)((ushort)halt_q_addr + 6615 (ushort) 6616 ASC_SCSIQ_SCSI_STATUS)); 6617 cur_dvc_qng = 6618 AscReadLramByte(iop_base, 6619 (ushort)((ushort)ASC_QADR_BEG + 6620 (ushort)target_ix)); 6621 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) { 6622 6623 scsi_busy = AscReadLramByte(iop_base, 6624 (ushort)ASCV_SCSIBUSY_B); 6625 scsi_busy |= target_id; 6626 AscWriteLramByte(iop_base, 6627 (ushort)ASCV_SCSIBUSY_B, scsi_busy); 6628 asc_dvc->queue_full_or_busy |= target_id; 6629 6630 if (scsi_status == SAM_STAT_TASK_SET_FULL) { 6631 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) { 6632 cur_dvc_qng -= 1; 6633 asc_dvc->max_dvc_qng[tid_no] = 6634 cur_dvc_qng; 6635 6636 AscWriteLramByte(iop_base, 6637 (ushort)((ushort) 6638 ASCV_MAX_DVC_QNG_BEG 6639 + (ushort) 6640 tid_no), 6641 cur_dvc_qng); 6642 6643 /* 6644 * Set the device queue depth to the 6645 * number of active requests when the 6646 * QUEUE FULL condition was encountered. 6647 */ 6648 boardp->queue_full |= target_id; 6649 boardp->queue_full_cnt[tid_no] = 6650 cur_dvc_qng; 6651 } 6652 } 6653 } 6654 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6655 return; 6656 } 6657 return; 6658 } 6659 6660 /* 6661 * void 6662 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) 6663 * 6664 * Calling/Exit State: 6665 * none 6666 * 6667 * Description: 6668 * Input an ASC_QDONE_INFO structure from the chip 6669 */ 6670 static void 6671 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) 6672 { 6673 int i; 6674 ushort word; 6675 6676 AscSetChipLramAddr(iop_base, s_addr); 6677 for (i = 0; i < 2 * words; i += 2) { 6678 if (i == 10) { 6679 continue; 6680 } 6681 word = inpw(iop_base + IOP_RAM_DATA); 6682 inbuf[i] = word & 0xff; 6683 inbuf[i + 1] = (word >> 8) & 0xff; 6684 } 6685 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words); 6686 } 6687 6688 static uchar 6689 _AscCopyLramScsiDoneQ(PortAddr iop_base, 6690 ushort q_addr, 6691 ASC_QDONE_INFO *scsiq, unsigned int max_dma_count) 6692 { 6693 ushort _val; 6694 uchar sg_queue_cnt; 6695 6696 DvcGetQinfo(iop_base, 6697 q_addr + ASC_SCSIQ_DONE_INFO_BEG, 6698 (uchar *)scsiq, 6699 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2); 6700 6701 _val = AscReadLramWord(iop_base, 6702 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS)); 6703 scsiq->q_status = (uchar)_val; 6704 scsiq->q_no = (uchar)(_val >> 8); 6705 _val = AscReadLramWord(iop_base, 6706 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL)); 6707 scsiq->cntl = (uchar)_val; 6708 sg_queue_cnt = (uchar)(_val >> 8); 6709 _val = AscReadLramWord(iop_base, 6710 (ushort)(q_addr + 6711 (ushort)ASC_SCSIQ_B_SENSE_LEN)); 6712 scsiq->sense_len = (uchar)_val; 6713 scsiq->extra_bytes = (uchar)(_val >> 8); 6714 6715 /* 6716 * Read high word of remain bytes from alternate location. 6717 */ 6718 scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base, 6719 (ushort)(q_addr + 6720 (ushort) 6721 ASC_SCSIQ_W_ALT_DC1))) 6722 << 16); 6723 /* 6724 * Read low word of remain bytes from original location. 6725 */ 6726 scsiq->remain_bytes += AscReadLramWord(iop_base, 6727 (ushort)(q_addr + (ushort) 6728 ASC_SCSIQ_DW_REMAIN_XFER_CNT)); 6729 6730 scsiq->remain_bytes &= max_dma_count; 6731 return sg_queue_cnt; 6732 } 6733 6734 /* 6735 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR(). 6736 * 6737 * Interrupt callback function for the Narrow SCSI Asc Library. 6738 */ 6739 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep) 6740 { 6741 struct asc_board *boardp = asc_dvc_varp->drv_ptr; 6742 u32 srb_tag; 6743 struct scsi_cmnd *scp; 6744 6745 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep); 6746 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep); 6747 6748 /* 6749 * Decrease the srb_tag by 1 to find the SCSI command 6750 */ 6751 srb_tag = qdonep->d2.srb_tag - 1; 6752 scp = scsi_host_find_tag(boardp->shost, srb_tag); 6753 if (!scp) 6754 return; 6755 6756 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); 6757 6758 ASC_STATS(boardp->shost, callback); 6759 6760 dma_unmap_single(boardp->dev, scp->SCp.dma_handle, 6761 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 6762 /* 6763 * 'qdonep' contains the command's ending status. 6764 */ 6765 switch (qdonep->d3.done_stat) { 6766 case QD_NO_ERROR: 6767 ASC_DBG(2, "QD_NO_ERROR\n"); 6768 scp->result = 0; 6769 6770 /* 6771 * Check for an underrun condition. 6772 * 6773 * If there was no error and an underrun condition, then 6774 * return the number of underrun bytes. 6775 */ 6776 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 && 6777 qdonep->remain_bytes <= scsi_bufflen(scp)) { 6778 ASC_DBG(1, "underrun condition %u bytes\n", 6779 (unsigned)qdonep->remain_bytes); 6780 scsi_set_resid(scp, qdonep->remain_bytes); 6781 } 6782 break; 6783 6784 case QD_WITH_ERROR: 6785 ASC_DBG(2, "QD_WITH_ERROR\n"); 6786 switch (qdonep->d3.host_stat) { 6787 case QHSTA_NO_ERROR: 6788 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) { 6789 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); 6790 ASC_DBG_PRT_SENSE(2, scp->sense_buffer, 6791 SCSI_SENSE_BUFFERSIZE); 6792 /* 6793 * Note: The 'status_byte()' macro used by 6794 * target drivers defined in scsi.h shifts the 6795 * status byte returned by host drivers right 6796 * by 1 bit. This is why target drivers also 6797 * use right shifted status byte definitions. 6798 * For instance target drivers use 6799 * CHECK_CONDITION, defined to 0x1, instead of 6800 * the SCSI defined check condition value of 6801 * 0x2. Host drivers are supposed to return 6802 * the status byte as it is defined by SCSI. 6803 */ 6804 scp->result = DRIVER_BYTE(DRIVER_SENSE) | 6805 STATUS_BYTE(qdonep->d3.scsi_stat); 6806 } else { 6807 scp->result = STATUS_BYTE(qdonep->d3.scsi_stat); 6808 } 6809 break; 6810 6811 default: 6812 /* QHSTA error occurred */ 6813 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat); 6814 scp->result = HOST_BYTE(DID_BAD_TARGET); 6815 break; 6816 } 6817 break; 6818 6819 case QD_ABORTED_BY_HOST: 6820 ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); 6821 scp->result = 6822 HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3. 6823 scsi_msg) | 6824 STATUS_BYTE(qdonep->d3.scsi_stat); 6825 break; 6826 6827 default: 6828 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat); 6829 scp->result = 6830 HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3. 6831 scsi_msg) | 6832 STATUS_BYTE(qdonep->d3.scsi_stat); 6833 break; 6834 } 6835 6836 /* 6837 * If the 'init_tidmask' bit isn't already set for the target and the 6838 * current request finished normally, then set the bit for the target 6839 * to indicate that a device is present. 6840 */ 6841 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && 6842 qdonep->d3.done_stat == QD_NO_ERROR && 6843 qdonep->d3.host_stat == QHSTA_NO_ERROR) { 6844 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); 6845 } 6846 6847 asc_scsi_done(scp); 6848 } 6849 6850 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc) 6851 { 6852 uchar next_qp; 6853 uchar n_q_used; 6854 uchar sg_list_qp; 6855 uchar sg_queue_cnt; 6856 uchar q_cnt; 6857 uchar done_q_tail; 6858 uchar tid_no; 6859 ASC_SCSI_BIT_ID_TYPE scsi_busy; 6860 ASC_SCSI_BIT_ID_TYPE target_id; 6861 PortAddr iop_base; 6862 ushort q_addr; 6863 ushort sg_q_addr; 6864 uchar cur_target_qng; 6865 ASC_QDONE_INFO scsiq_buf; 6866 ASC_QDONE_INFO *scsiq; 6867 bool false_overrun; 6868 6869 iop_base = asc_dvc->iop_base; 6870 n_q_used = 1; 6871 scsiq = (ASC_QDONE_INFO *)&scsiq_buf; 6872 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base); 6873 q_addr = ASC_QNO_TO_QADDR(done_q_tail); 6874 next_qp = AscReadLramByte(iop_base, 6875 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD)); 6876 if (next_qp != ASC_QLINK_END) { 6877 AscPutVarDoneQTail(iop_base, next_qp); 6878 q_addr = ASC_QNO_TO_QADDR(next_qp); 6879 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq, 6880 asc_dvc->max_dma_count); 6881 AscWriteLramByte(iop_base, 6882 (ushort)(q_addr + 6883 (ushort)ASC_SCSIQ_B_STATUS), 6884 (uchar)(scsiq-> 6885 q_status & (uchar)~(QS_READY | 6886 QS_ABORTED))); 6887 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix); 6888 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix); 6889 if ((scsiq->cntl & QC_SG_HEAD) != 0) { 6890 sg_q_addr = q_addr; 6891 sg_list_qp = next_qp; 6892 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) { 6893 sg_list_qp = AscReadLramByte(iop_base, 6894 (ushort)(sg_q_addr 6895 + (ushort) 6896 ASC_SCSIQ_B_FWD)); 6897 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp); 6898 if (sg_list_qp == ASC_QLINK_END) { 6899 AscSetLibErrorCode(asc_dvc, 6900 ASCQ_ERR_SG_Q_LINKS); 6901 scsiq->d3.done_stat = QD_WITH_ERROR; 6902 scsiq->d3.host_stat = 6903 QHSTA_D_QDONE_SG_LIST_CORRUPTED; 6904 goto FATAL_ERR_QDONE; 6905 } 6906 AscWriteLramByte(iop_base, 6907 (ushort)(sg_q_addr + (ushort) 6908 ASC_SCSIQ_B_STATUS), 6909 QS_FREE); 6910 } 6911 n_q_used = sg_queue_cnt + 1; 6912 AscPutVarDoneQTail(iop_base, sg_list_qp); 6913 } 6914 if (asc_dvc->queue_full_or_busy & target_id) { 6915 cur_target_qng = AscReadLramByte(iop_base, 6916 (ushort)((ushort) 6917 ASC_QADR_BEG 6918 + (ushort) 6919 scsiq->d2. 6920 target_ix)); 6921 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) { 6922 scsi_busy = AscReadLramByte(iop_base, (ushort) 6923 ASCV_SCSIBUSY_B); 6924 scsi_busy &= ~target_id; 6925 AscWriteLramByte(iop_base, 6926 (ushort)ASCV_SCSIBUSY_B, 6927 scsi_busy); 6928 asc_dvc->queue_full_or_busy &= ~target_id; 6929 } 6930 } 6931 if (asc_dvc->cur_total_qng >= n_q_used) { 6932 asc_dvc->cur_total_qng -= n_q_used; 6933 if (asc_dvc->cur_dvc_qng[tid_no] != 0) { 6934 asc_dvc->cur_dvc_qng[tid_no]--; 6935 } 6936 } else { 6937 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG); 6938 scsiq->d3.done_stat = QD_WITH_ERROR; 6939 goto FATAL_ERR_QDONE; 6940 } 6941 if ((scsiq->d2.srb_tag == 0UL) || 6942 ((scsiq->q_status & QS_ABORTED) != 0)) { 6943 return (0x11); 6944 } else if (scsiq->q_status == QS_DONE) { 6945 /* 6946 * This is also curious. 6947 * false_overrun will _always_ be set to 'false' 6948 */ 6949 false_overrun = false; 6950 if (scsiq->extra_bytes != 0) { 6951 scsiq->remain_bytes += scsiq->extra_bytes; 6952 } 6953 if (scsiq->d3.done_stat == QD_WITH_ERROR) { 6954 if (scsiq->d3.host_stat == 6955 QHSTA_M_DATA_OVER_RUN) { 6956 if ((scsiq-> 6957 cntl & (QC_DATA_IN | QC_DATA_OUT)) 6958 == 0) { 6959 scsiq->d3.done_stat = 6960 QD_NO_ERROR; 6961 scsiq->d3.host_stat = 6962 QHSTA_NO_ERROR; 6963 } else if (false_overrun) { 6964 scsiq->d3.done_stat = 6965 QD_NO_ERROR; 6966 scsiq->d3.host_stat = 6967 QHSTA_NO_ERROR; 6968 } 6969 } else if (scsiq->d3.host_stat == 6970 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) { 6971 AscStopChip(iop_base); 6972 AscSetChipControl(iop_base, 6973 (uchar)(CC_SCSI_RESET 6974 | CC_HALT)); 6975 udelay(60); 6976 AscSetChipControl(iop_base, CC_HALT); 6977 AscSetChipStatus(iop_base, 6978 CIW_CLR_SCSI_RESET_INT); 6979 AscSetChipStatus(iop_base, 0); 6980 AscSetChipControl(iop_base, 0); 6981 } 6982 } 6983 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { 6984 asc_isr_callback(asc_dvc, scsiq); 6985 } else { 6986 if ((AscReadLramByte(iop_base, 6987 (ushort)(q_addr + (ushort) 6988 ASC_SCSIQ_CDB_BEG)) 6989 == START_STOP)) { 6990 asc_dvc->unit_not_ready &= ~target_id; 6991 if (scsiq->d3.done_stat != QD_NO_ERROR) { 6992 asc_dvc->start_motor &= 6993 ~target_id; 6994 } 6995 } 6996 } 6997 return (1); 6998 } else { 6999 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS); 7000 FATAL_ERR_QDONE: 7001 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { 7002 asc_isr_callback(asc_dvc, scsiq); 7003 } 7004 return (0x80); 7005 } 7006 } 7007 return (0); 7008 } 7009 7010 static int AscISR(ASC_DVC_VAR *asc_dvc) 7011 { 7012 ASC_CS_TYPE chipstat; 7013 PortAddr iop_base; 7014 ushort saved_ram_addr; 7015 uchar ctrl_reg; 7016 uchar saved_ctrl_reg; 7017 int int_pending; 7018 int status; 7019 uchar host_flag; 7020 7021 iop_base = asc_dvc->iop_base; 7022 int_pending = ASC_FALSE; 7023 7024 if (AscIsIntPending(iop_base) == 0) 7025 return int_pending; 7026 7027 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) { 7028 return ASC_ERROR; 7029 } 7030 if (asc_dvc->in_critical_cnt != 0) { 7031 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL); 7032 return ASC_ERROR; 7033 } 7034 if (asc_dvc->is_in_int) { 7035 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY); 7036 return ASC_ERROR; 7037 } 7038 asc_dvc->is_in_int = true; 7039 ctrl_reg = AscGetChipControl(iop_base); 7040 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET | 7041 CC_SINGLE_STEP | CC_DIAG | CC_TEST)); 7042 chipstat = AscGetChipStatus(iop_base); 7043 if (chipstat & CSW_SCSI_RESET_LATCH) { 7044 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) { 7045 int i = 10; 7046 int_pending = ASC_TRUE; 7047 asc_dvc->sdtr_done = 0; 7048 saved_ctrl_reg &= (uchar)(~CC_HALT); 7049 while ((AscGetChipStatus(iop_base) & 7050 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) { 7051 mdelay(100); 7052 } 7053 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT)); 7054 AscSetChipControl(iop_base, CC_HALT); 7055 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); 7056 AscSetChipStatus(iop_base, 0); 7057 chipstat = AscGetChipStatus(iop_base); 7058 } 7059 } 7060 saved_ram_addr = AscGetChipLramAddr(iop_base); 7061 host_flag = AscReadLramByte(iop_base, 7062 ASCV_HOST_FLAG_B) & 7063 (uchar)(~ASC_HOST_FLAG_IN_ISR); 7064 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, 7065 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR)); 7066 if ((chipstat & CSW_INT_PENDING) || (int_pending)) { 7067 AscAckInterrupt(iop_base); 7068 int_pending = ASC_TRUE; 7069 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) { 7070 AscIsrChipHalted(asc_dvc); 7071 saved_ctrl_reg &= (uchar)(~CC_HALT); 7072 } else { 7073 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) { 7074 while (((status = 7075 AscIsrQDone(asc_dvc)) & 0x01) != 0) { 7076 } 7077 } else { 7078 do { 7079 if ((status = 7080 AscIsrQDone(asc_dvc)) == 1) { 7081 break; 7082 } 7083 } while (status == 0x11); 7084 } 7085 if ((status & 0x80) != 0) 7086 int_pending = ASC_ERROR; 7087 } 7088 } 7089 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); 7090 AscSetChipLramAddr(iop_base, saved_ram_addr); 7091 AscSetChipControl(iop_base, saved_ctrl_reg); 7092 asc_dvc->is_in_int = false; 7093 return int_pending; 7094 } 7095 7096 /* 7097 * advansys_reset() 7098 * 7099 * Reset the host associated with the command 'scp'. 7100 * 7101 * This function runs its own thread. Interrupts must be blocked but 7102 * sleeping is allowed and no locking other than for host structures is 7103 * required. Returns SUCCESS or FAILED. 7104 */ 7105 static int advansys_reset(struct scsi_cmnd *scp) 7106 { 7107 struct Scsi_Host *shost = scp->device->host; 7108 struct asc_board *boardp = shost_priv(shost); 7109 unsigned long flags; 7110 int status; 7111 int ret = SUCCESS; 7112 7113 ASC_DBG(1, "0x%p\n", scp); 7114 7115 ASC_STATS(shost, reset); 7116 7117 scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n"); 7118 7119 if (ASC_NARROW_BOARD(boardp)) { 7120 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; 7121 7122 /* Reset the chip and SCSI bus. */ 7123 ASC_DBG(1, "before AscInitAsc1000Driver()\n"); 7124 status = AscInitAsc1000Driver(asc_dvc); 7125 7126 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */ 7127 if (asc_dvc->err_code || !asc_dvc->overrun_dma) { 7128 scmd_printk(KERN_INFO, scp, "SCSI host reset error: " 7129 "0x%x, status: 0x%x\n", asc_dvc->err_code, 7130 status); 7131 ret = FAILED; 7132 } else if (status) { 7133 scmd_printk(KERN_INFO, scp, "SCSI host reset warning: " 7134 "0x%x\n", status); 7135 } else { 7136 scmd_printk(KERN_INFO, scp, "SCSI host reset " 7137 "successful\n"); 7138 } 7139 7140 ASC_DBG(1, "after AscInitAsc1000Driver()\n"); 7141 } else { 7142 /* 7143 * If the suggest reset bus flags are set, then reset the bus. 7144 * Otherwise only reset the device. 7145 */ 7146 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; 7147 7148 /* 7149 * Reset the chip and SCSI bus. 7150 */ 7151 ASC_DBG(1, "before AdvResetChipAndSB()\n"); 7152 switch (AdvResetChipAndSB(adv_dvc)) { 7153 case ASC_TRUE: 7154 scmd_printk(KERN_INFO, scp, "SCSI host reset " 7155 "successful\n"); 7156 break; 7157 case ASC_FALSE: 7158 default: 7159 scmd_printk(KERN_INFO, scp, "SCSI host reset error\n"); 7160 ret = FAILED; 7161 break; 7162 } 7163 spin_lock_irqsave(shost->host_lock, flags); 7164 AdvISR(adv_dvc); 7165 spin_unlock_irqrestore(shost->host_lock, flags); 7166 } 7167 7168 ASC_DBG(1, "ret %d\n", ret); 7169 7170 return ret; 7171 } 7172 7173 /* 7174 * advansys_biosparam() 7175 * 7176 * Translate disk drive geometry if the "BIOS greater than 1 GB" 7177 * support is enabled for a drive. 7178 * 7179 * ip (information pointer) is an int array with the following definition: 7180 * ip[0]: heads 7181 * ip[1]: sectors 7182 * ip[2]: cylinders 7183 */ 7184 static int 7185 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev, 7186 sector_t capacity, int ip[]) 7187 { 7188 struct asc_board *boardp = shost_priv(sdev->host); 7189 7190 ASC_DBG(1, "begin\n"); 7191 ASC_STATS(sdev->host, biosparam); 7192 if (ASC_NARROW_BOARD(boardp)) { 7193 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl & 7194 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) { 7195 ip[0] = 255; 7196 ip[1] = 63; 7197 } else { 7198 ip[0] = 64; 7199 ip[1] = 32; 7200 } 7201 } else { 7202 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl & 7203 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) { 7204 ip[0] = 255; 7205 ip[1] = 63; 7206 } else { 7207 ip[0] = 64; 7208 ip[1] = 32; 7209 } 7210 } 7211 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]); 7212 ASC_DBG(1, "end\n"); 7213 return 0; 7214 } 7215 7216 /* 7217 * First-level interrupt handler. 7218 * 7219 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host. 7220 */ 7221 static irqreturn_t advansys_interrupt(int irq, void *dev_id) 7222 { 7223 struct Scsi_Host *shost = dev_id; 7224 struct asc_board *boardp = shost_priv(shost); 7225 irqreturn_t result = IRQ_NONE; 7226 unsigned long flags; 7227 7228 ASC_DBG(2, "boardp 0x%p\n", boardp); 7229 spin_lock_irqsave(shost->host_lock, flags); 7230 if (ASC_NARROW_BOARD(boardp)) { 7231 if (AscIsIntPending(shost->io_port)) { 7232 result = IRQ_HANDLED; 7233 ASC_STATS(shost, interrupt); 7234 ASC_DBG(1, "before AscISR()\n"); 7235 AscISR(&boardp->dvc_var.asc_dvc_var); 7236 } 7237 } else { 7238 ASC_DBG(1, "before AdvISR()\n"); 7239 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) { 7240 result = IRQ_HANDLED; 7241 ASC_STATS(shost, interrupt); 7242 } 7243 } 7244 spin_unlock_irqrestore(shost->host_lock, flags); 7245 7246 ASC_DBG(1, "end\n"); 7247 return result; 7248 } 7249 7250 static bool AscHostReqRiscHalt(PortAddr iop_base) 7251 { 7252 int count = 0; 7253 bool sta = false; 7254 uchar saved_stop_code; 7255 7256 if (AscIsChipHalted(iop_base)) 7257 return true; 7258 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B); 7259 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 7260 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP); 7261 do { 7262 if (AscIsChipHalted(iop_base)) { 7263 sta = true; 7264 break; 7265 } 7266 mdelay(100); 7267 } while (count++ < 20); 7268 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code); 7269 return sta; 7270 } 7271 7272 static bool 7273 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data) 7274 { 7275 bool sta = false; 7276 7277 if (AscHostReqRiscHalt(iop_base)) { 7278 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); 7279 AscStartChip(iop_base); 7280 } 7281 return sta; 7282 } 7283 7284 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev) 7285 { 7286 char type = sdev->type; 7287 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id; 7288 7289 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN)) 7290 return; 7291 if (asc_dvc->init_sdtr & tid_bits) 7292 return; 7293 7294 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0)) 7295 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits; 7296 7297 asc_dvc->pci_fix_asyn_xfer |= tid_bits; 7298 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) || 7299 (type == TYPE_ROM) || (type == TYPE_TAPE)) 7300 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits; 7301 7302 if (asc_dvc->pci_fix_asyn_xfer & tid_bits) 7303 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id, 7304 ASYN_SDTR_DATA_FIX_PCI_REV_AB); 7305 } 7306 7307 static void 7308 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc) 7309 { 7310 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id; 7311 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng; 7312 7313 if (sdev->lun == 0) { 7314 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr; 7315 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) { 7316 asc_dvc->init_sdtr |= tid_bit; 7317 } else { 7318 asc_dvc->init_sdtr &= ~tid_bit; 7319 } 7320 7321 if (orig_init_sdtr != asc_dvc->init_sdtr) 7322 AscAsyncFix(asc_dvc, sdev); 7323 } 7324 7325 if (sdev->tagged_supported) { 7326 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) { 7327 if (sdev->lun == 0) { 7328 asc_dvc->cfg->can_tagged_qng |= tid_bit; 7329 asc_dvc->use_tagged_qng |= tid_bit; 7330 } 7331 scsi_change_queue_depth(sdev, 7332 asc_dvc->max_dvc_qng[sdev->id]); 7333 } 7334 } else { 7335 if (sdev->lun == 0) { 7336 asc_dvc->cfg->can_tagged_qng &= ~tid_bit; 7337 asc_dvc->use_tagged_qng &= ~tid_bit; 7338 } 7339 } 7340 7341 if ((sdev->lun == 0) && 7342 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) { 7343 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B, 7344 asc_dvc->cfg->disc_enable); 7345 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B, 7346 asc_dvc->use_tagged_qng); 7347 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B, 7348 asc_dvc->cfg->can_tagged_qng); 7349 7350 asc_dvc->max_dvc_qng[sdev->id] = 7351 asc_dvc->cfg->max_tag_qng[sdev->id]; 7352 AscWriteLramByte(asc_dvc->iop_base, 7353 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id), 7354 asc_dvc->max_dvc_qng[sdev->id]); 7355 } 7356 } 7357 7358 /* 7359 * Wide Transfers 7360 * 7361 * If the EEPROM enabled WDTR for the device and the device supports wide 7362 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and 7363 * write the new value to the microcode. 7364 */ 7365 static void 7366 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask) 7367 { 7368 unsigned short cfg_word; 7369 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); 7370 if ((cfg_word & tidmask) != 0) 7371 return; 7372 7373 cfg_word |= tidmask; 7374 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); 7375 7376 /* 7377 * Clear the microcode SDTR and WDTR negotiation done indicators for 7378 * the target to cause it to negotiate with the new setting set above. 7379 * WDTR when accepted causes the target to enter asynchronous mode, so 7380 * SDTR must be negotiated. 7381 */ 7382 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7383 cfg_word &= ~tidmask; 7384 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7385 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); 7386 cfg_word &= ~tidmask; 7387 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); 7388 } 7389 7390 /* 7391 * Synchronous Transfers 7392 * 7393 * If the EEPROM enabled SDTR for the device and the device 7394 * supports synchronous transfers, then turn on the device's 7395 * 'sdtr_able' bit. Write the new value to the microcode. 7396 */ 7397 static void 7398 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask) 7399 { 7400 unsigned short cfg_word; 7401 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); 7402 if ((cfg_word & tidmask) != 0) 7403 return; 7404 7405 cfg_word |= tidmask; 7406 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); 7407 7408 /* 7409 * Clear the microcode "SDTR negotiation" done indicator for the 7410 * target to cause it to negotiate with the new setting set above. 7411 */ 7412 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7413 cfg_word &= ~tidmask; 7414 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7415 } 7416 7417 /* 7418 * PPR (Parallel Protocol Request) Capable 7419 * 7420 * If the device supports DT mode, then it must be PPR capable. 7421 * The PPR message will be used in place of the SDTR and WDTR 7422 * messages to negotiate synchronous speed and offset, transfer 7423 * width, and protocol options. 7424 */ 7425 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc, 7426 AdvPortAddr iop_base, unsigned short tidmask) 7427 { 7428 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); 7429 adv_dvc->ppr_able |= tidmask; 7430 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); 7431 } 7432 7433 static void 7434 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc) 7435 { 7436 AdvPortAddr iop_base = adv_dvc->iop_base; 7437 unsigned short tidmask = 1 << sdev->id; 7438 7439 if (sdev->lun == 0) { 7440 /* 7441 * Handle WDTR, SDTR, and Tag Queuing. If the feature 7442 * is enabled in the EEPROM and the device supports the 7443 * feature, then enable it in the microcode. 7444 */ 7445 7446 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr) 7447 advansys_wide_enable_wdtr(iop_base, tidmask); 7448 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr) 7449 advansys_wide_enable_sdtr(iop_base, tidmask); 7450 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr) 7451 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask); 7452 7453 /* 7454 * Tag Queuing is disabled for the BIOS which runs in polled 7455 * mode and would see no benefit from Tag Queuing. Also by 7456 * disabling Tag Queuing in the BIOS devices with Tag Queuing 7457 * bugs will at least work with the BIOS. 7458 */ 7459 if ((adv_dvc->tagqng_able & tidmask) && 7460 sdev->tagged_supported) { 7461 unsigned short cfg_word; 7462 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word); 7463 cfg_word |= tidmask; 7464 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 7465 cfg_word); 7466 AdvWriteByteLram(iop_base, 7467 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id, 7468 adv_dvc->max_dvc_qng); 7469 } 7470 } 7471 7472 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) 7473 scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng); 7474 } 7475 7476 /* 7477 * Set the number of commands to queue per device for the 7478 * specified host adapter. 7479 */ 7480 static int advansys_slave_configure(struct scsi_device *sdev) 7481 { 7482 struct asc_board *boardp = shost_priv(sdev->host); 7483 7484 if (ASC_NARROW_BOARD(boardp)) 7485 advansys_narrow_slave_configure(sdev, 7486 &boardp->dvc_var.asc_dvc_var); 7487 else 7488 advansys_wide_slave_configure(sdev, 7489 &boardp->dvc_var.adv_dvc_var); 7490 7491 return 0; 7492 } 7493 7494 static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp) 7495 { 7496 struct asc_board *board = shost_priv(scp->device->host); 7497 7498 scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer, 7499 SCSI_SENSE_BUFFERSIZE, 7500 DMA_FROM_DEVICE); 7501 if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) { 7502 ASC_DBG(1, "failed to map sense buffer\n"); 7503 return 0; 7504 } 7505 return cpu_to_le32(scp->SCp.dma_handle); 7506 } 7507 7508 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, 7509 struct asc_scsi_q *asc_scsi_q) 7510 { 7511 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var; 7512 int use_sg; 7513 u32 srb_tag; 7514 7515 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q)); 7516 7517 /* 7518 * Set the srb_tag to the command tag + 1, as 7519 * srb_tag '0' is used internally by the chip. 7520 */ 7521 srb_tag = scp->request->tag + 1; 7522 asc_scsi_q->q2.srb_tag = srb_tag; 7523 7524 /* 7525 * Build the ASC_SCSI_Q request. 7526 */ 7527 asc_scsi_q->cdbptr = &scp->cmnd[0]; 7528 asc_scsi_q->q2.cdb_len = scp->cmd_len; 7529 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id); 7530 asc_scsi_q->q1.target_lun = scp->device->lun; 7531 asc_scsi_q->q2.target_ix = 7532 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun); 7533 asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp); 7534 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE; 7535 if (!asc_scsi_q->q1.sense_addr) 7536 return ASC_BUSY; 7537 7538 /* 7539 * If there are any outstanding requests for the current target, 7540 * then every 255th request send an ORDERED request. This heuristic 7541 * tries to retain the benefit of request sorting while preventing 7542 * request starvation. 255 is the max number of tags or pending commands 7543 * a device may have outstanding. 7544 * 7545 * The request count is incremented below for every successfully 7546 * started request. 7547 * 7548 */ 7549 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) && 7550 (boardp->reqcnt[scp->device->id] % 255) == 0) { 7551 asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG; 7552 } else { 7553 asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG; 7554 } 7555 7556 /* Build ASC_SCSI_Q */ 7557 use_sg = scsi_dma_map(scp); 7558 if (use_sg < 0) { 7559 ASC_DBG(1, "failed to map sglist\n"); 7560 return ASC_BUSY; 7561 } else if (use_sg > 0) { 7562 int sgcnt; 7563 struct scatterlist *slp; 7564 struct asc_sg_head *asc_sg_head; 7565 7566 if (use_sg > scp->device->host->sg_tablesize) { 7567 scmd_printk(KERN_ERR, scp, "use_sg %d > " 7568 "sg_tablesize %d\n", use_sg, 7569 scp->device->host->sg_tablesize); 7570 scsi_dma_unmap(scp); 7571 scp->result = HOST_BYTE(DID_ERROR); 7572 return ASC_ERROR; 7573 } 7574 7575 asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) + 7576 use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC); 7577 if (!asc_sg_head) { 7578 scsi_dma_unmap(scp); 7579 scp->result = HOST_BYTE(DID_SOFT_ERROR); 7580 return ASC_ERROR; 7581 } 7582 7583 asc_scsi_q->q1.cntl |= QC_SG_HEAD; 7584 asc_scsi_q->sg_head = asc_sg_head; 7585 asc_scsi_q->q1.data_cnt = 0; 7586 asc_scsi_q->q1.data_addr = 0; 7587 /* This is a byte value, otherwise it would need to be swapped. */ 7588 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg; 7589 ASC_STATS_ADD(scp->device->host, xfer_elem, 7590 asc_sg_head->entry_cnt); 7591 7592 /* 7593 * Convert scatter-gather list into ASC_SG_HEAD list. 7594 */ 7595 scsi_for_each_sg(scp, slp, use_sg, sgcnt) { 7596 asc_sg_head->sg_list[sgcnt].addr = 7597 cpu_to_le32(sg_dma_address(slp)); 7598 asc_sg_head->sg_list[sgcnt].bytes = 7599 cpu_to_le32(sg_dma_len(slp)); 7600 ASC_STATS_ADD(scp->device->host, xfer_sect, 7601 DIV_ROUND_UP(sg_dma_len(slp), 512)); 7602 } 7603 } 7604 7605 ASC_STATS(scp->device->host, xfer_cnt); 7606 7607 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q); 7608 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); 7609 7610 return ASC_NOERROR; 7611 } 7612 7613 /* 7614 * Build scatter-gather list for Adv Library (Wide Board). 7615 * 7616 * Additional ADV_SG_BLOCK structures will need to be allocated 7617 * if the total number of scatter-gather elements exceeds 7618 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are 7619 * assumed to be physically contiguous. 7620 * 7621 * Return: 7622 * ADV_SUCCESS(1) - SG List successfully created 7623 * ADV_ERROR(-1) - SG List creation failed 7624 */ 7625 static int 7626 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, 7627 ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg) 7628 { 7629 adv_sgblk_t *sgblkp, *prev_sgblkp; 7630 struct scatterlist *slp; 7631 int sg_elem_cnt; 7632 ADV_SG_BLOCK *sg_block, *prev_sg_block; 7633 dma_addr_t sgblk_paddr; 7634 int i; 7635 7636 slp = scsi_sglist(scp); 7637 sg_elem_cnt = use_sg; 7638 prev_sgblkp = NULL; 7639 prev_sg_block = NULL; 7640 reqp->sgblkp = NULL; 7641 7642 for (;;) { 7643 /* 7644 * Allocate a 'adv_sgblk_t' structure from the board free 7645 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK 7646 * (15) scatter-gather elements. 7647 */ 7648 sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC, 7649 &sgblk_paddr); 7650 if (!sgblkp) { 7651 ASC_DBG(1, "no free adv_sgblk_t\n"); 7652 ASC_STATS(scp->device->host, adv_build_nosg); 7653 7654 /* 7655 * Allocation failed. Free 'adv_sgblk_t' structures 7656 * already allocated for the request. 7657 */ 7658 while ((sgblkp = reqp->sgblkp) != NULL) { 7659 /* Remove 'sgblkp' from the request list. */ 7660 reqp->sgblkp = sgblkp->next_sgblkp; 7661 sgblkp->next_sgblkp = NULL; 7662 dma_pool_free(boardp->adv_sgblk_pool, sgblkp, 7663 sgblkp->sg_addr); 7664 } 7665 return ASC_BUSY; 7666 } 7667 /* Complete 'adv_sgblk_t' board allocation. */ 7668 sgblkp->sg_addr = sgblk_paddr; 7669 sgblkp->next_sgblkp = NULL; 7670 sg_block = &sgblkp->sg_block; 7671 7672 /* 7673 * Check if this is the first 'adv_sgblk_t' for the 7674 * request. 7675 */ 7676 if (reqp->sgblkp == NULL) { 7677 /* Request's first scatter-gather block. */ 7678 reqp->sgblkp = sgblkp; 7679 7680 /* 7681 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical 7682 * address pointers. 7683 */ 7684 scsiqp->sg_list_ptr = sg_block; 7685 scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr); 7686 } else { 7687 /* Request's second or later scatter-gather block. */ 7688 prev_sgblkp->next_sgblkp = sgblkp; 7689 7690 /* 7691 * Point the previous ADV_SG_BLOCK structure to 7692 * the newly allocated ADV_SG_BLOCK structure. 7693 */ 7694 prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr); 7695 } 7696 7697 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) { 7698 sg_block->sg_list[i].sg_addr = 7699 cpu_to_le32(sg_dma_address(slp)); 7700 sg_block->sg_list[i].sg_count = 7701 cpu_to_le32(sg_dma_len(slp)); 7702 ASC_STATS_ADD(scp->device->host, xfer_sect, 7703 DIV_ROUND_UP(sg_dma_len(slp), 512)); 7704 7705 if (--sg_elem_cnt == 0) { 7706 /* 7707 * Last ADV_SG_BLOCK and scatter-gather entry. 7708 */ 7709 sg_block->sg_cnt = i + 1; 7710 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */ 7711 return ADV_SUCCESS; 7712 } 7713 slp = sg_next(slp); 7714 } 7715 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK; 7716 prev_sg_block = sg_block; 7717 prev_sgblkp = sgblkp; 7718 } 7719 } 7720 7721 /* 7722 * Build a request structure for the Adv Library (Wide Board). 7723 * 7724 * If an adv_req_t can not be allocated to issue the request, 7725 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR. 7726 * 7727 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the 7728 * microcode for DMA addresses or math operations are byte swapped 7729 * to little-endian order. 7730 */ 7731 static int 7732 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, 7733 adv_req_t **adv_reqpp) 7734 { 7735 u32 srb_tag = scp->request->tag; 7736 adv_req_t *reqp; 7737 ADV_SCSI_REQ_Q *scsiqp; 7738 int ret; 7739 int use_sg; 7740 dma_addr_t sense_addr; 7741 7742 /* 7743 * Allocate an adv_req_t structure from the board to execute 7744 * the command. 7745 */ 7746 reqp = &boardp->adv_reqp[srb_tag]; 7747 if (reqp->cmndp && reqp->cmndp != scp ) { 7748 ASC_DBG(1, "no free adv_req_t\n"); 7749 ASC_STATS(scp->device->host, adv_build_noreq); 7750 return ASC_BUSY; 7751 } 7752 7753 reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t)); 7754 7755 scsiqp = &reqp->scsi_req_q; 7756 7757 /* 7758 * Initialize the structure. 7759 */ 7760 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0; 7761 7762 /* 7763 * Set the srb_tag to the command tag. 7764 */ 7765 scsiqp->srb_tag = srb_tag; 7766 7767 /* 7768 * Set 'host_scribble' to point to the adv_req_t structure. 7769 */ 7770 reqp->cmndp = scp; 7771 scp->host_scribble = (void *)reqp; 7772 7773 /* 7774 * Build the ADV_SCSI_REQ_Q request. 7775 */ 7776 7777 /* Set CDB length and copy it to the request structure. */ 7778 scsiqp->cdb_len = scp->cmd_len; 7779 /* Copy first 12 CDB bytes to cdb[]. */ 7780 memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12); 7781 /* Copy last 4 CDB bytes, if present, to cdb16[]. */ 7782 if (scp->cmd_len > 12) { 7783 int cdb16_len = scp->cmd_len - 12; 7784 7785 memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len); 7786 } 7787 7788 scsiqp->target_id = scp->device->id; 7789 scsiqp->target_lun = scp->device->lun; 7790 7791 sense_addr = dma_map_single(boardp->dev, scp->sense_buffer, 7792 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 7793 if (dma_mapping_error(boardp->dev, sense_addr)) { 7794 ASC_DBG(1, "failed to map sense buffer\n"); 7795 ASC_STATS(scp->device->host, adv_build_noreq); 7796 return ASC_BUSY; 7797 } 7798 scsiqp->sense_addr = cpu_to_le32(sense_addr); 7799 scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE; 7800 7801 /* Build ADV_SCSI_REQ_Q */ 7802 7803 use_sg = scsi_dma_map(scp); 7804 if (use_sg < 0) { 7805 ASC_DBG(1, "failed to map SG list\n"); 7806 ASC_STATS(scp->device->host, adv_build_noreq); 7807 return ASC_BUSY; 7808 } else if (use_sg == 0) { 7809 /* Zero-length transfer */ 7810 reqp->sgblkp = NULL; 7811 scsiqp->data_cnt = 0; 7812 7813 scsiqp->data_addr = 0; 7814 scsiqp->sg_list_ptr = NULL; 7815 scsiqp->sg_real_addr = 0; 7816 } else { 7817 if (use_sg > ADV_MAX_SG_LIST) { 7818 scmd_printk(KERN_ERR, scp, "use_sg %d > " 7819 "ADV_MAX_SG_LIST %d\n", use_sg, 7820 scp->device->host->sg_tablesize); 7821 scsi_dma_unmap(scp); 7822 scp->result = HOST_BYTE(DID_ERROR); 7823 reqp->cmndp = NULL; 7824 scp->host_scribble = NULL; 7825 7826 return ASC_ERROR; 7827 } 7828 7829 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp)); 7830 7831 ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg); 7832 if (ret != ADV_SUCCESS) { 7833 scsi_dma_unmap(scp); 7834 scp->result = HOST_BYTE(DID_ERROR); 7835 reqp->cmndp = NULL; 7836 scp->host_scribble = NULL; 7837 7838 return ret; 7839 } 7840 7841 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg); 7842 } 7843 7844 ASC_STATS(scp->device->host, xfer_cnt); 7845 7846 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); 7847 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); 7848 7849 *adv_reqpp = reqp; 7850 7851 return ASC_NOERROR; 7852 } 7853 7854 static int AscSgListToQueue(int sg_list) 7855 { 7856 int n_sg_list_qs; 7857 7858 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q); 7859 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0) 7860 n_sg_list_qs++; 7861 return n_sg_list_qs + 1; 7862 } 7863 7864 static uint 7865 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs) 7866 { 7867 uint cur_used_qs; 7868 uint cur_free_qs; 7869 ASC_SCSI_BIT_ID_TYPE target_id; 7870 uchar tid_no; 7871 7872 target_id = ASC_TIX_TO_TARGET_ID(target_ix); 7873 tid_no = ASC_TIX_TO_TID(target_ix); 7874 if ((asc_dvc->unit_not_ready & target_id) || 7875 (asc_dvc->queue_full_or_busy & target_id)) { 7876 return 0; 7877 } 7878 if (n_qs == 1) { 7879 cur_used_qs = (uint) asc_dvc->cur_total_qng + 7880 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q; 7881 } else { 7882 cur_used_qs = (uint) asc_dvc->cur_total_qng + 7883 (uint) ASC_MIN_FREE_Q; 7884 } 7885 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) { 7886 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs; 7887 if (asc_dvc->cur_dvc_qng[tid_no] >= 7888 asc_dvc->max_dvc_qng[tid_no]) { 7889 return 0; 7890 } 7891 return cur_free_qs; 7892 } 7893 if (n_qs > 1) { 7894 if ((n_qs > asc_dvc->last_q_shortage) 7895 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) { 7896 asc_dvc->last_q_shortage = n_qs; 7897 } 7898 } 7899 return 0; 7900 } 7901 7902 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head) 7903 { 7904 ushort q_addr; 7905 uchar next_qp; 7906 uchar q_status; 7907 7908 q_addr = ASC_QNO_TO_QADDR(free_q_head); 7909 q_status = (uchar)AscReadLramByte(iop_base, 7910 (ushort)(q_addr + 7911 ASC_SCSIQ_B_STATUS)); 7912 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD)); 7913 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END)) 7914 return next_qp; 7915 return ASC_QLINK_END; 7916 } 7917 7918 static uchar 7919 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q) 7920 { 7921 uchar i; 7922 7923 for (i = 0; i < n_free_q; i++) { 7924 free_q_head = AscAllocFreeQueue(iop_base, free_q_head); 7925 if (free_q_head == ASC_QLINK_END) 7926 break; 7927 } 7928 return free_q_head; 7929 } 7930 7931 /* 7932 * void 7933 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) 7934 * 7935 * Calling/Exit State: 7936 * none 7937 * 7938 * Description: 7939 * Output an ASC_SCSI_Q structure to the chip 7940 */ 7941 static void 7942 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) 7943 { 7944 int i; 7945 7946 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words); 7947 AscSetChipLramAddr(iop_base, s_addr); 7948 for (i = 0; i < 2 * words; i += 2) { 7949 if (i == 4 || i == 20) { 7950 continue; 7951 } 7952 outpw(iop_base + IOP_RAM_DATA, 7953 ((ushort)outbuf[i + 1] << 8) | outbuf[i]); 7954 } 7955 } 7956 7957 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) 7958 { 7959 ushort q_addr; 7960 uchar tid_no; 7961 uchar sdtr_data; 7962 uchar syn_period_ix; 7963 uchar syn_offset; 7964 PortAddr iop_base; 7965 7966 iop_base = asc_dvc->iop_base; 7967 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) && 7968 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) { 7969 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix); 7970 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 7971 syn_period_ix = 7972 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1); 7973 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET; 7974 AscMsgOutSDTR(asc_dvc, 7975 asc_dvc->sdtr_period_tbl[syn_period_ix], 7976 syn_offset); 7977 scsiq->q1.cntl |= QC_MSG_OUT; 7978 } 7979 q_addr = ASC_QNO_TO_QADDR(q_no); 7980 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) { 7981 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG; 7982 } 7983 scsiq->q1.status = QS_FREE; 7984 AscMemWordCopyPtrToLram(iop_base, 7985 q_addr + ASC_SCSIQ_CDB_BEG, 7986 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1); 7987 7988 DvcPutScsiQ(iop_base, 7989 q_addr + ASC_SCSIQ_CPY_BEG, 7990 (uchar *)&scsiq->q1.cntl, 7991 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1); 7992 AscWriteLramWord(iop_base, 7993 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS), 7994 (ushort)(((ushort)scsiq->q1. 7995 q_no << 8) | (ushort)QS_READY)); 7996 return 1; 7997 } 7998 7999 static int 8000 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) 8001 { 8002 int sta; 8003 int i; 8004 ASC_SG_HEAD *sg_head; 8005 ASC_SG_LIST_Q scsi_sg_q; 8006 __le32 saved_data_addr; 8007 __le32 saved_data_cnt; 8008 PortAddr iop_base; 8009 ushort sg_list_dwords; 8010 ushort sg_index; 8011 ushort sg_entry_cnt; 8012 ushort q_addr; 8013 uchar next_qp; 8014 8015 iop_base = asc_dvc->iop_base; 8016 sg_head = scsiq->sg_head; 8017 saved_data_addr = scsiq->q1.data_addr; 8018 saved_data_cnt = scsiq->q1.data_cnt; 8019 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr); 8020 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes); 8021 /* 8022 * Set sg_entry_cnt to be the number of SG elements that 8023 * will fit in the allocated SG queues. It is minus 1, because 8024 * the first SG element is handled above. 8025 */ 8026 sg_entry_cnt = sg_head->entry_cnt - 1; 8027 8028 if (sg_entry_cnt != 0) { 8029 scsiq->q1.cntl |= QC_SG_HEAD; 8030 q_addr = ASC_QNO_TO_QADDR(q_no); 8031 sg_index = 1; 8032 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt; 8033 scsi_sg_q.sg_head_qp = q_no; 8034 scsi_sg_q.cntl = QCSG_SG_XFER_LIST; 8035 for (i = 0; i < sg_head->queue_cnt; i++) { 8036 scsi_sg_q.seq_no = i + 1; 8037 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { 8038 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2); 8039 sg_entry_cnt -= ASC_SG_LIST_PER_Q; 8040 if (i == 0) { 8041 scsi_sg_q.sg_list_cnt = 8042 ASC_SG_LIST_PER_Q; 8043 scsi_sg_q.sg_cur_list_cnt = 8044 ASC_SG_LIST_PER_Q; 8045 } else { 8046 scsi_sg_q.sg_list_cnt = 8047 ASC_SG_LIST_PER_Q - 1; 8048 scsi_sg_q.sg_cur_list_cnt = 8049 ASC_SG_LIST_PER_Q - 1; 8050 } 8051 } else { 8052 scsi_sg_q.cntl |= QCSG_SG_XFER_END; 8053 sg_list_dwords = sg_entry_cnt << 1; 8054 if (i == 0) { 8055 scsi_sg_q.sg_list_cnt = sg_entry_cnt; 8056 scsi_sg_q.sg_cur_list_cnt = 8057 sg_entry_cnt; 8058 } else { 8059 scsi_sg_q.sg_list_cnt = 8060 sg_entry_cnt - 1; 8061 scsi_sg_q.sg_cur_list_cnt = 8062 sg_entry_cnt - 1; 8063 } 8064 sg_entry_cnt = 0; 8065 } 8066 next_qp = AscReadLramByte(iop_base, 8067 (ushort)(q_addr + 8068 ASC_SCSIQ_B_FWD)); 8069 scsi_sg_q.q_no = next_qp; 8070 q_addr = ASC_QNO_TO_QADDR(next_qp); 8071 AscMemWordCopyPtrToLram(iop_base, 8072 q_addr + ASC_SCSIQ_SGHD_CPY_BEG, 8073 (uchar *)&scsi_sg_q, 8074 sizeof(ASC_SG_LIST_Q) >> 1); 8075 AscMemDWordCopyPtrToLram(iop_base, 8076 q_addr + ASC_SGQ_LIST_BEG, 8077 (uchar *)&sg_head-> 8078 sg_list[sg_index], 8079 sg_list_dwords); 8080 sg_index += ASC_SG_LIST_PER_Q; 8081 scsiq->next_sg_index = sg_index; 8082 } 8083 } else { 8084 scsiq->q1.cntl &= ~QC_SG_HEAD; 8085 } 8086 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no); 8087 scsiq->q1.data_addr = saved_data_addr; 8088 scsiq->q1.data_cnt = saved_data_cnt; 8089 return (sta); 8090 } 8091 8092 static int 8093 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required) 8094 { 8095 PortAddr iop_base; 8096 uchar free_q_head; 8097 uchar next_qp; 8098 uchar tid_no; 8099 uchar target_ix; 8100 int sta; 8101 8102 iop_base = asc_dvc->iop_base; 8103 target_ix = scsiq->q2.target_ix; 8104 tid_no = ASC_TIX_TO_TID(target_ix); 8105 sta = 0; 8106 free_q_head = (uchar)AscGetVarFreeQHead(iop_base); 8107 if (n_q_required > 1) { 8108 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head, 8109 (uchar)n_q_required); 8110 if (next_qp != ASC_QLINK_END) { 8111 asc_dvc->last_q_shortage = 0; 8112 scsiq->sg_head->queue_cnt = n_q_required - 1; 8113 scsiq->q1.q_no = free_q_head; 8114 sta = AscPutReadySgListQueue(asc_dvc, scsiq, 8115 free_q_head); 8116 } 8117 } else if (n_q_required == 1) { 8118 next_qp = AscAllocFreeQueue(iop_base, free_q_head); 8119 if (next_qp != ASC_QLINK_END) { 8120 scsiq->q1.q_no = free_q_head; 8121 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head); 8122 } 8123 } 8124 if (sta == 1) { 8125 AscPutVarFreeQHead(iop_base, next_qp); 8126 asc_dvc->cur_total_qng += n_q_required; 8127 asc_dvc->cur_dvc_qng[tid_no]++; 8128 } 8129 return sta; 8130 } 8131 8132 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16 8133 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = { 8134 INQUIRY, 8135 REQUEST_SENSE, 8136 READ_CAPACITY, 8137 READ_TOC, 8138 MODE_SELECT, 8139 MODE_SENSE, 8140 MODE_SELECT_10, 8141 MODE_SENSE_10, 8142 0xFF, 8143 0xFF, 8144 0xFF, 8145 0xFF, 8146 0xFF, 8147 0xFF, 8148 0xFF, 8149 0xFF 8150 }; 8151 8152 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq) 8153 { 8154 PortAddr iop_base; 8155 int sta; 8156 int n_q_required; 8157 bool disable_syn_offset_one_fix; 8158 int i; 8159 u32 addr; 8160 ushort sg_entry_cnt = 0; 8161 ushort sg_entry_cnt_minus_one = 0; 8162 uchar target_ix; 8163 uchar tid_no; 8164 uchar sdtr_data; 8165 uchar extra_bytes; 8166 uchar scsi_cmd; 8167 uchar disable_cmd; 8168 ASC_SG_HEAD *sg_head; 8169 unsigned long data_cnt; 8170 8171 iop_base = asc_dvc->iop_base; 8172 sg_head = scsiq->sg_head; 8173 if (asc_dvc->err_code != 0) 8174 return ASC_ERROR; 8175 scsiq->q1.q_no = 0; 8176 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) { 8177 scsiq->q1.extra_bytes = 0; 8178 } 8179 sta = 0; 8180 target_ix = scsiq->q2.target_ix; 8181 tid_no = ASC_TIX_TO_TID(target_ix); 8182 n_q_required = 1; 8183 if (scsiq->cdbptr[0] == REQUEST_SENSE) { 8184 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) { 8185 asc_dvc->sdtr_done &= ~scsiq->q1.target_id; 8186 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 8187 AscMsgOutSDTR(asc_dvc, 8188 asc_dvc-> 8189 sdtr_period_tbl[(sdtr_data >> 4) & 8190 (uchar)(asc_dvc-> 8191 max_sdtr_index - 8192 1)], 8193 (uchar)(sdtr_data & (uchar) 8194 ASC_SYN_MAX_OFFSET)); 8195 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT); 8196 } 8197 } 8198 if (asc_dvc->in_critical_cnt != 0) { 8199 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY); 8200 return ASC_ERROR; 8201 } 8202 asc_dvc->in_critical_cnt++; 8203 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { 8204 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) { 8205 asc_dvc->in_critical_cnt--; 8206 return ASC_ERROR; 8207 } 8208 if (sg_entry_cnt > ASC_MAX_SG_LIST) { 8209 asc_dvc->in_critical_cnt--; 8210 return ASC_ERROR; 8211 } 8212 if (sg_entry_cnt == 1) { 8213 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr); 8214 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes); 8215 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE); 8216 } 8217 sg_entry_cnt_minus_one = sg_entry_cnt - 1; 8218 } 8219 scsi_cmd = scsiq->cdbptr[0]; 8220 disable_syn_offset_one_fix = false; 8221 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) && 8222 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) { 8223 if (scsiq->q1.cntl & QC_SG_HEAD) { 8224 data_cnt = 0; 8225 for (i = 0; i < sg_entry_cnt; i++) { 8226 data_cnt += le32_to_cpu(sg_head->sg_list[i]. 8227 bytes); 8228 } 8229 } else { 8230 data_cnt = le32_to_cpu(scsiq->q1.data_cnt); 8231 } 8232 if (data_cnt != 0UL) { 8233 if (data_cnt < 512UL) { 8234 disable_syn_offset_one_fix = true; 8235 } else { 8236 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST; 8237 i++) { 8238 disable_cmd = 8239 _syn_offset_one_disable_cmd[i]; 8240 if (disable_cmd == 0xFF) { 8241 break; 8242 } 8243 if (scsi_cmd == disable_cmd) { 8244 disable_syn_offset_one_fix = 8245 true; 8246 break; 8247 } 8248 } 8249 } 8250 } 8251 } 8252 if (disable_syn_offset_one_fix) { 8253 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG; 8254 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX | 8255 ASC_TAG_FLAG_DISABLE_DISCONNECT); 8256 } else { 8257 scsiq->q2.tag_code &= 0x27; 8258 } 8259 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { 8260 if (asc_dvc->bug_fix_cntl) { 8261 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { 8262 if ((scsi_cmd == READ_6) || 8263 (scsi_cmd == READ_10)) { 8264 addr = le32_to_cpu(sg_head-> 8265 sg_list 8266 [sg_entry_cnt_minus_one]. 8267 addr) + 8268 le32_to_cpu(sg_head-> 8269 sg_list 8270 [sg_entry_cnt_minus_one]. 8271 bytes); 8272 extra_bytes = 8273 (uchar)((ushort)addr & 0x0003); 8274 if ((extra_bytes != 0) 8275 && 8276 ((scsiq->q2. 8277 tag_code & 8278 ASC_TAG_FLAG_EXTRA_BYTES) 8279 == 0)) { 8280 scsiq->q2.tag_code |= 8281 ASC_TAG_FLAG_EXTRA_BYTES; 8282 scsiq->q1.extra_bytes = 8283 extra_bytes; 8284 data_cnt = 8285 le32_to_cpu(sg_head-> 8286 sg_list 8287 [sg_entry_cnt_minus_one]. 8288 bytes); 8289 data_cnt -= extra_bytes; 8290 sg_head-> 8291 sg_list 8292 [sg_entry_cnt_minus_one]. 8293 bytes = 8294 cpu_to_le32(data_cnt); 8295 } 8296 } 8297 } 8298 } 8299 sg_head->entry_to_copy = sg_head->entry_cnt; 8300 n_q_required = AscSgListToQueue(sg_entry_cnt); 8301 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >= 8302 (uint) n_q_required) 8303 || ((scsiq->q1.cntl & QC_URGENT) != 0)) { 8304 if ((sta = 8305 AscSendScsiQueue(asc_dvc, scsiq, 8306 n_q_required)) == 1) { 8307 asc_dvc->in_critical_cnt--; 8308 return (sta); 8309 } 8310 } 8311 } else { 8312 if (asc_dvc->bug_fix_cntl) { 8313 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { 8314 if ((scsi_cmd == READ_6) || 8315 (scsi_cmd == READ_10)) { 8316 addr = 8317 le32_to_cpu(scsiq->q1.data_addr) + 8318 le32_to_cpu(scsiq->q1.data_cnt); 8319 extra_bytes = 8320 (uchar)((ushort)addr & 0x0003); 8321 if ((extra_bytes != 0) 8322 && 8323 ((scsiq->q2. 8324 tag_code & 8325 ASC_TAG_FLAG_EXTRA_BYTES) 8326 == 0)) { 8327 data_cnt = 8328 le32_to_cpu(scsiq->q1. 8329 data_cnt); 8330 if (((ushort)data_cnt & 0x01FF) 8331 == 0) { 8332 scsiq->q2.tag_code |= 8333 ASC_TAG_FLAG_EXTRA_BYTES; 8334 data_cnt -= extra_bytes; 8335 scsiq->q1.data_cnt = 8336 cpu_to_le32 8337 (data_cnt); 8338 scsiq->q1.extra_bytes = 8339 extra_bytes; 8340 } 8341 } 8342 } 8343 } 8344 } 8345 n_q_required = 1; 8346 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) || 8347 ((scsiq->q1.cntl & QC_URGENT) != 0)) { 8348 if ((sta = AscSendScsiQueue(asc_dvc, scsiq, 8349 n_q_required)) == 1) { 8350 asc_dvc->in_critical_cnt--; 8351 return (sta); 8352 } 8353 } 8354 } 8355 asc_dvc->in_critical_cnt--; 8356 return (sta); 8357 } 8358 8359 /* 8360 * AdvExeScsiQueue() - Send a request to the RISC microcode program. 8361 * 8362 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q, 8363 * add the carrier to the ICQ (Initiator Command Queue), and tickle the 8364 * RISC to notify it a new command is ready to be executed. 8365 * 8366 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be 8367 * set to SCSI_MAX_RETRY. 8368 * 8369 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode 8370 * for DMA addresses or math operations are byte swapped to little-endian 8371 * order. 8372 * 8373 * Return: 8374 * ADV_SUCCESS(1) - The request was successfully queued. 8375 * ADV_BUSY(0) - Resource unavailable; Retry again after pending 8376 * request completes. 8377 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure 8378 * host IC error. 8379 */ 8380 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp) 8381 { 8382 AdvPortAddr iop_base; 8383 ADV_CARR_T *new_carrp; 8384 ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q; 8385 8386 /* 8387 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID. 8388 */ 8389 if (scsiq->target_id > ADV_MAX_TID) { 8390 scsiq->host_status = QHSTA_M_INVALID_DEVICE; 8391 scsiq->done_status = QD_WITH_ERROR; 8392 return ADV_ERROR; 8393 } 8394 8395 iop_base = asc_dvc->iop_base; 8396 8397 /* 8398 * Allocate a carrier ensuring at least one carrier always 8399 * remains on the freelist and initialize fields. 8400 */ 8401 new_carrp = adv_get_next_carrier(asc_dvc); 8402 if (!new_carrp) { 8403 ASC_DBG(1, "No free carriers\n"); 8404 return ADV_BUSY; 8405 } 8406 8407 asc_dvc->carr_pending_cnt++; 8408 8409 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */ 8410 scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag); 8411 scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr); 8412 8413 scsiq->carr_va = asc_dvc->icq_sp->carr_va; 8414 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa; 8415 8416 /* 8417 * Use the current stopper to send the ADV_SCSI_REQ_Q command to 8418 * the microcode. The newly allocated stopper will become the new 8419 * stopper. 8420 */ 8421 asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr; 8422 8423 /* 8424 * Set the 'next_vpa' pointer for the old stopper to be the 8425 * physical address of the new stopper. The RISC can only 8426 * follow physical addresses. 8427 */ 8428 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa; 8429 8430 /* 8431 * Set the host adapter stopper pointer to point to the new carrier. 8432 */ 8433 asc_dvc->icq_sp = new_carrp; 8434 8435 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || 8436 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 8437 /* 8438 * Tickle the RISC to tell it to read its Command Queue Head pointer. 8439 */ 8440 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A); 8441 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 8442 /* 8443 * Clear the tickle value. In the ASC-3550 the RISC flag 8444 * command 'clr_tickle_a' does not work unless the host 8445 * value is cleared. 8446 */ 8447 AdvWriteByteRegister(iop_base, IOPB_TICKLE, 8448 ADV_TICKLE_NOP); 8449 } 8450 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 8451 /* 8452 * Notify the RISC a carrier is ready by writing the physical 8453 * address of the new carrier stopper to the COMMA register. 8454 */ 8455 AdvWriteDWordRegister(iop_base, IOPDW_COMMA, 8456 le32_to_cpu(new_carrp->carr_pa)); 8457 } 8458 8459 return ADV_SUCCESS; 8460 } 8461 8462 /* 8463 * Execute a single 'struct scsi_cmnd'. 8464 */ 8465 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp) 8466 { 8467 int ret, err_code; 8468 struct asc_board *boardp = shost_priv(scp->device->host); 8469 8470 ASC_DBG(1, "scp 0x%p\n", scp); 8471 8472 if (ASC_NARROW_BOARD(boardp)) { 8473 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; 8474 struct asc_scsi_q asc_scsi_q; 8475 8476 ret = asc_build_req(boardp, scp, &asc_scsi_q); 8477 if (ret != ASC_NOERROR) { 8478 ASC_STATS(scp->device->host, build_error); 8479 return ret; 8480 } 8481 8482 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q); 8483 kfree(asc_scsi_q.sg_head); 8484 err_code = asc_dvc->err_code; 8485 } else { 8486 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; 8487 adv_req_t *adv_reqp; 8488 8489 switch (adv_build_req(boardp, scp, &adv_reqp)) { 8490 case ASC_NOERROR: 8491 ASC_DBG(3, "adv_build_req ASC_NOERROR\n"); 8492 break; 8493 case ASC_BUSY: 8494 ASC_DBG(1, "adv_build_req ASC_BUSY\n"); 8495 /* 8496 * The asc_stats fields 'adv_build_noreq' and 8497 * 'adv_build_nosg' count wide board busy conditions. 8498 * They are updated in adv_build_req and 8499 * adv_get_sglist, respectively. 8500 */ 8501 return ASC_BUSY; 8502 case ASC_ERROR: 8503 default: 8504 ASC_DBG(1, "adv_build_req ASC_ERROR\n"); 8505 ASC_STATS(scp->device->host, build_error); 8506 return ASC_ERROR; 8507 } 8508 8509 ret = AdvExeScsiQueue(adv_dvc, adv_reqp); 8510 err_code = adv_dvc->err_code; 8511 } 8512 8513 switch (ret) { 8514 case ASC_NOERROR: 8515 ASC_STATS(scp->device->host, exe_noerror); 8516 /* 8517 * Increment monotonically increasing per device 8518 * successful request counter. Wrapping doesn't matter. 8519 */ 8520 boardp->reqcnt[scp->device->id]++; 8521 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n"); 8522 break; 8523 case ASC_BUSY: 8524 ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n"); 8525 ASC_STATS(scp->device->host, exe_busy); 8526 break; 8527 case ASC_ERROR: 8528 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, " 8529 "err_code 0x%x\n", err_code); 8530 ASC_STATS(scp->device->host, exe_error); 8531 scp->result = HOST_BYTE(DID_ERROR); 8532 break; 8533 default: 8534 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, " 8535 "err_code 0x%x\n", err_code); 8536 ASC_STATS(scp->device->host, exe_unknown); 8537 scp->result = HOST_BYTE(DID_ERROR); 8538 break; 8539 } 8540 8541 ASC_DBG(1, "end\n"); 8542 return ret; 8543 } 8544 8545 /* 8546 * advansys_queuecommand() - interrupt-driven I/O entrypoint. 8547 * 8548 * This function always returns 0. Command return status is saved 8549 * in the 'scp' result field. 8550 */ 8551 static int 8552 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *)) 8553 { 8554 struct Scsi_Host *shost = scp->device->host; 8555 int asc_res, result = 0; 8556 8557 ASC_STATS(shost, queuecommand); 8558 scp->scsi_done = done; 8559 8560 asc_res = asc_execute_scsi_cmnd(scp); 8561 8562 switch (asc_res) { 8563 case ASC_NOERROR: 8564 break; 8565 case ASC_BUSY: 8566 result = SCSI_MLQUEUE_HOST_BUSY; 8567 break; 8568 case ASC_ERROR: 8569 default: 8570 asc_scsi_done(scp); 8571 break; 8572 } 8573 8574 return result; 8575 } 8576 8577 static DEF_SCSI_QCMD(advansys_queuecommand) 8578 8579 static ushort AscGetEisaChipCfg(PortAddr iop_base) 8580 { 8581 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | 8582 (PortAddr) (ASC_EISA_CFG_IOP_MASK); 8583 return inpw(eisa_cfg_iop); 8584 } 8585 8586 /* 8587 * Return the BIOS address of the adapter at the specified 8588 * I/O port and with the specified bus type. 8589 */ 8590 static unsigned short AscGetChipBiosAddress(PortAddr iop_base, 8591 unsigned short bus_type) 8592 { 8593 unsigned short cfg_lsw; 8594 unsigned short bios_addr; 8595 8596 /* 8597 * The PCI BIOS is re-located by the motherboard BIOS. Because 8598 * of this the driver can not determine where a PCI BIOS is 8599 * loaded and executes. 8600 */ 8601 if (bus_type & ASC_IS_PCI) 8602 return 0; 8603 8604 if ((bus_type & ASC_IS_EISA) != 0) { 8605 cfg_lsw = AscGetEisaChipCfg(iop_base); 8606 cfg_lsw &= 0x000F; 8607 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE; 8608 return bios_addr; 8609 } 8610 8611 cfg_lsw = AscGetChipCfgLsw(iop_base); 8612 8613 /* 8614 * ISA PnP uses the top bit as the 32K BIOS flag 8615 */ 8616 if (bus_type == ASC_IS_ISAPNP) 8617 cfg_lsw &= 0x7FFF; 8618 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE; 8619 return bios_addr; 8620 } 8621 8622 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id) 8623 { 8624 ushort cfg_lsw; 8625 8626 if (AscGetChipScsiID(iop_base) == new_host_id) { 8627 return (new_host_id); 8628 } 8629 cfg_lsw = AscGetChipCfgLsw(iop_base); 8630 cfg_lsw &= 0xF8FF; 8631 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8); 8632 AscSetChipCfgLsw(iop_base, cfg_lsw); 8633 return (AscGetChipScsiID(iop_base)); 8634 } 8635 8636 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base) 8637 { 8638 unsigned char sc; 8639 8640 AscSetBank(iop_base, 1); 8641 sc = inp(iop_base + IOP_REG_SC); 8642 AscSetBank(iop_base, 0); 8643 return sc; 8644 } 8645 8646 static unsigned char AscGetChipVersion(PortAddr iop_base, 8647 unsigned short bus_type) 8648 { 8649 if (bus_type & ASC_IS_EISA) { 8650 PortAddr eisa_iop; 8651 unsigned char revision; 8652 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | 8653 (PortAddr) ASC_EISA_REV_IOP_MASK; 8654 revision = inp(eisa_iop); 8655 return ASC_CHIP_MIN_VER_EISA - 1 + revision; 8656 } 8657 return AscGetChipVerNo(iop_base); 8658 } 8659 8660 #ifdef CONFIG_ISA 8661 static void AscEnableIsaDma(uchar dma_channel) 8662 { 8663 if (dma_channel < 4) { 8664 outp(0x000B, (ushort)(0xC0 | dma_channel)); 8665 outp(0x000A, dma_channel); 8666 } else if (dma_channel < 8) { 8667 outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4))); 8668 outp(0x00D4, (ushort)(dma_channel - 4)); 8669 } 8670 } 8671 #endif /* CONFIG_ISA */ 8672 8673 static int AscStopQueueExe(PortAddr iop_base) 8674 { 8675 int count = 0; 8676 8677 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) { 8678 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 8679 ASC_STOP_REQ_RISC_STOP); 8680 do { 8681 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) & 8682 ASC_STOP_ACK_RISC_STOP) { 8683 return (1); 8684 } 8685 mdelay(100); 8686 } while (count++ < 20); 8687 } 8688 return (0); 8689 } 8690 8691 static unsigned int AscGetMaxDmaCount(ushort bus_type) 8692 { 8693 if (bus_type & ASC_IS_ISA) 8694 return ASC_MAX_ISA_DMA_COUNT; 8695 else if (bus_type & (ASC_IS_EISA | ASC_IS_VL)) 8696 return ASC_MAX_VL_DMA_COUNT; 8697 return ASC_MAX_PCI_DMA_COUNT; 8698 } 8699 8700 #ifdef CONFIG_ISA 8701 static ushort AscGetIsaDmaChannel(PortAddr iop_base) 8702 { 8703 ushort channel; 8704 8705 channel = AscGetChipCfgLsw(iop_base) & 0x0003; 8706 if (channel == 0x03) 8707 return (0); 8708 else if (channel == 0x00) 8709 return (7); 8710 return (channel + 4); 8711 } 8712 8713 static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel) 8714 { 8715 ushort cfg_lsw; 8716 uchar value; 8717 8718 if ((dma_channel >= 5) && (dma_channel <= 7)) { 8719 if (dma_channel == 7) 8720 value = 0x00; 8721 else 8722 value = dma_channel - 4; 8723 cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC; 8724 cfg_lsw |= value; 8725 AscSetChipCfgLsw(iop_base, cfg_lsw); 8726 return (AscGetIsaDmaChannel(iop_base)); 8727 } 8728 return 0; 8729 } 8730 8731 static uchar AscGetIsaDmaSpeed(PortAddr iop_base) 8732 { 8733 uchar speed_value; 8734 8735 AscSetBank(iop_base, 1); 8736 speed_value = AscReadChipDmaSpeed(iop_base); 8737 speed_value &= 0x07; 8738 AscSetBank(iop_base, 0); 8739 return speed_value; 8740 } 8741 8742 static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value) 8743 { 8744 speed_value &= 0x07; 8745 AscSetBank(iop_base, 1); 8746 AscWriteChipDmaSpeed(iop_base, speed_value); 8747 AscSetBank(iop_base, 0); 8748 return AscGetIsaDmaSpeed(iop_base); 8749 } 8750 #endif /* CONFIG_ISA */ 8751 8752 static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc) 8753 { 8754 int i; 8755 PortAddr iop_base; 8756 uchar chip_version; 8757 8758 iop_base = asc_dvc->iop_base; 8759 asc_dvc->err_code = 0; 8760 if ((asc_dvc->bus_type & 8761 (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) { 8762 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE; 8763 } 8764 AscSetChipControl(iop_base, CC_HALT); 8765 AscSetChipStatus(iop_base, 0); 8766 asc_dvc->bug_fix_cntl = 0; 8767 asc_dvc->pci_fix_asyn_xfer = 0; 8768 asc_dvc->pci_fix_asyn_xfer_always = 0; 8769 /* asc_dvc->init_state initialized in AscInitGetConfig(). */ 8770 asc_dvc->sdtr_done = 0; 8771 asc_dvc->cur_total_qng = 0; 8772 asc_dvc->is_in_int = false; 8773 asc_dvc->in_critical_cnt = 0; 8774 asc_dvc->last_q_shortage = 0; 8775 asc_dvc->use_tagged_qng = 0; 8776 asc_dvc->no_scam = 0; 8777 asc_dvc->unit_not_ready = 0; 8778 asc_dvc->queue_full_or_busy = 0; 8779 asc_dvc->redo_scam = 0; 8780 asc_dvc->res2 = 0; 8781 asc_dvc->min_sdtr_index = 0; 8782 asc_dvc->cfg->can_tagged_qng = 0; 8783 asc_dvc->cfg->cmd_qng_enabled = 0; 8784 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL; 8785 asc_dvc->init_sdtr = 0; 8786 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG; 8787 asc_dvc->scsi_reset_wait = 3; 8788 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET; 8789 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type); 8790 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET; 8791 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET; 8792 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID; 8793 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type); 8794 asc_dvc->cfg->chip_version = chip_version; 8795 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period; 8796 asc_dvc->max_sdtr_index = 7; 8797 if ((asc_dvc->bus_type & ASC_IS_PCI) && 8798 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) { 8799 asc_dvc->bus_type = ASC_IS_PCI_ULTRA; 8800 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period; 8801 asc_dvc->max_sdtr_index = 15; 8802 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) { 8803 AscSetExtraControl(iop_base, 8804 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); 8805 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) { 8806 AscSetExtraControl(iop_base, 8807 (SEC_ACTIVE_NEGATE | 8808 SEC_ENABLE_FILTER)); 8809 } 8810 } 8811 if (asc_dvc->bus_type == ASC_IS_PCI) { 8812 AscSetExtraControl(iop_base, 8813 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); 8814 } 8815 8816 asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED; 8817 #ifdef CONFIG_ISA 8818 if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) { 8819 if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) { 8820 AscSetChipIFC(iop_base, IFC_INIT_DEFAULT); 8821 asc_dvc->bus_type = ASC_IS_ISAPNP; 8822 } 8823 asc_dvc->cfg->isa_dma_channel = 8824 (uchar)AscGetIsaDmaChannel(iop_base); 8825 } 8826 #endif /* CONFIG_ISA */ 8827 for (i = 0; i <= ASC_MAX_TID; i++) { 8828 asc_dvc->cur_dvc_qng[i] = 0; 8829 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG; 8830 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L; 8831 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L; 8832 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG; 8833 } 8834 } 8835 8836 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg) 8837 { 8838 int retry; 8839 8840 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) { 8841 unsigned char read_back; 8842 AscSetChipEEPCmd(iop_base, cmd_reg); 8843 mdelay(1); 8844 read_back = AscGetChipEEPCmd(iop_base); 8845 if (read_back == cmd_reg) 8846 return 1; 8847 } 8848 return 0; 8849 } 8850 8851 static void AscWaitEEPRead(void) 8852 { 8853 mdelay(1); 8854 } 8855 8856 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr) 8857 { 8858 ushort read_wval; 8859 uchar cmd_reg; 8860 8861 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); 8862 AscWaitEEPRead(); 8863 cmd_reg = addr | ASC_EEP_CMD_READ; 8864 AscWriteEEPCmdReg(iop_base, cmd_reg); 8865 AscWaitEEPRead(); 8866 read_wval = AscGetChipEEPData(iop_base); 8867 AscWaitEEPRead(); 8868 return read_wval; 8869 } 8870 8871 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 8872 ushort bus_type) 8873 { 8874 ushort wval; 8875 ushort sum; 8876 ushort *wbuf; 8877 int cfg_beg; 8878 int cfg_end; 8879 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; 8880 int s_addr; 8881 8882 wbuf = (ushort *)cfg_buf; 8883 sum = 0; 8884 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */ 8885 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 8886 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); 8887 sum += *wbuf; 8888 } 8889 if (bus_type & ASC_IS_VL) { 8890 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 8891 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 8892 } else { 8893 cfg_beg = ASC_EEP_DVC_CFG_BEG; 8894 cfg_end = ASC_EEP_MAX_DVC_ADDR; 8895 } 8896 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 8897 wval = AscReadEEPWord(iop_base, (uchar)s_addr); 8898 if (s_addr <= uchar_end_in_config) { 8899 /* 8900 * Swap all char fields - must unswap bytes already swapped 8901 * by AscReadEEPWord(). 8902 */ 8903 *wbuf = le16_to_cpu(wval); 8904 } else { 8905 /* Don't swap word field at the end - cntl field. */ 8906 *wbuf = wval; 8907 } 8908 sum += wval; /* Checksum treats all EEPROM data as words. */ 8909 } 8910 /* 8911 * Read the checksum word which will be compared against 'sum' 8912 * by the caller. Word field already swapped. 8913 */ 8914 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); 8915 return sum; 8916 } 8917 8918 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc) 8919 { 8920 PortAddr iop_base; 8921 ushort q_addr; 8922 ushort saved_word; 8923 int sta; 8924 8925 iop_base = asc_dvc->iop_base; 8926 sta = 0; 8927 q_addr = ASC_QNO_TO_QADDR(241); 8928 saved_word = AscReadLramWord(iop_base, q_addr); 8929 AscSetChipLramAddr(iop_base, q_addr); 8930 AscSetChipLramData(iop_base, 0x55AA); 8931 mdelay(10); 8932 AscSetChipLramAddr(iop_base, q_addr); 8933 if (AscGetChipLramData(iop_base) == 0x55AA) { 8934 sta = 1; 8935 AscWriteLramWord(iop_base, q_addr, saved_word); 8936 } 8937 return (sta); 8938 } 8939 8940 static void AscWaitEEPWrite(void) 8941 { 8942 mdelay(20); 8943 } 8944 8945 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg) 8946 { 8947 ushort read_back; 8948 int retry; 8949 8950 retry = 0; 8951 while (true) { 8952 AscSetChipEEPData(iop_base, data_reg); 8953 mdelay(1); 8954 read_back = AscGetChipEEPData(iop_base); 8955 if (read_back == data_reg) { 8956 return (1); 8957 } 8958 if (retry++ > ASC_EEP_MAX_RETRY) { 8959 return (0); 8960 } 8961 } 8962 } 8963 8964 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val) 8965 { 8966 ushort read_wval; 8967 8968 read_wval = AscReadEEPWord(iop_base, addr); 8969 if (read_wval != word_val) { 8970 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE); 8971 AscWaitEEPRead(); 8972 AscWriteEEPDataReg(iop_base, word_val); 8973 AscWaitEEPRead(); 8974 AscWriteEEPCmdReg(iop_base, 8975 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr)); 8976 AscWaitEEPWrite(); 8977 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); 8978 AscWaitEEPRead(); 8979 return (AscReadEEPWord(iop_base, addr)); 8980 } 8981 return (read_wval); 8982 } 8983 8984 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 8985 ushort bus_type) 8986 { 8987 int n_error; 8988 ushort *wbuf; 8989 ushort word; 8990 ushort sum; 8991 int s_addr; 8992 int cfg_beg; 8993 int cfg_end; 8994 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; 8995 8996 wbuf = (ushort *)cfg_buf; 8997 n_error = 0; 8998 sum = 0; 8999 /* Write two config words; AscWriteEEPWord() will swap bytes. */ 9000 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 9001 sum += *wbuf; 9002 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { 9003 n_error++; 9004 } 9005 } 9006 if (bus_type & ASC_IS_VL) { 9007 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 9008 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 9009 } else { 9010 cfg_beg = ASC_EEP_DVC_CFG_BEG; 9011 cfg_end = ASC_EEP_MAX_DVC_ADDR; 9012 } 9013 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 9014 if (s_addr <= uchar_end_in_config) { 9015 /* 9016 * This is a char field. Swap char fields before they are 9017 * swapped again by AscWriteEEPWord(). 9018 */ 9019 word = cpu_to_le16(*wbuf); 9020 if (word != 9021 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) { 9022 n_error++; 9023 } 9024 } else { 9025 /* Don't swap word field at the end - cntl field. */ 9026 if (*wbuf != 9027 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { 9028 n_error++; 9029 } 9030 } 9031 sum += *wbuf; /* Checksum calculated from word values. */ 9032 } 9033 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */ 9034 *wbuf = sum; 9035 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) { 9036 n_error++; 9037 } 9038 9039 /* Read EEPROM back again. */ 9040 wbuf = (ushort *)cfg_buf; 9041 /* 9042 * Read two config words; Byte-swapping done by AscReadEEPWord(). 9043 */ 9044 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 9045 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) { 9046 n_error++; 9047 } 9048 } 9049 if (bus_type & ASC_IS_VL) { 9050 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 9051 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 9052 } else { 9053 cfg_beg = ASC_EEP_DVC_CFG_BEG; 9054 cfg_end = ASC_EEP_MAX_DVC_ADDR; 9055 } 9056 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 9057 if (s_addr <= uchar_end_in_config) { 9058 /* 9059 * Swap all char fields. Must unswap bytes already swapped 9060 * by AscReadEEPWord(). 9061 */ 9062 word = 9063 le16_to_cpu(AscReadEEPWord 9064 (iop_base, (uchar)s_addr)); 9065 } else { 9066 /* Don't swap word field at the end - cntl field. */ 9067 word = AscReadEEPWord(iop_base, (uchar)s_addr); 9068 } 9069 if (*wbuf != word) { 9070 n_error++; 9071 } 9072 } 9073 /* Read checksum; Byte swapping not needed. */ 9074 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) { 9075 n_error++; 9076 } 9077 return n_error; 9078 } 9079 9080 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 9081 ushort bus_type) 9082 { 9083 int retry; 9084 int n_error; 9085 9086 retry = 0; 9087 while (true) { 9088 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf, 9089 bus_type)) == 0) { 9090 break; 9091 } 9092 if (++retry > ASC_EEP_MAX_RETRY) { 9093 break; 9094 } 9095 } 9096 return n_error; 9097 } 9098 9099 static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc) 9100 { 9101 ASCEEP_CONFIG eep_config_buf; 9102 ASCEEP_CONFIG *eep_config; 9103 PortAddr iop_base; 9104 ushort chksum; 9105 ushort warn_code; 9106 ushort cfg_msw, cfg_lsw; 9107 int i; 9108 int write_eep = 0; 9109 9110 iop_base = asc_dvc->iop_base; 9111 warn_code = 0; 9112 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE); 9113 AscStopQueueExe(iop_base); 9114 if ((AscStopChip(iop_base)) || 9115 (AscGetChipScsiCtrl(iop_base) != 0)) { 9116 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE; 9117 AscResetChipAndScsiBus(asc_dvc); 9118 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 9119 } 9120 if (!AscIsChipHalted(iop_base)) { 9121 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; 9122 return (warn_code); 9123 } 9124 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); 9125 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { 9126 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; 9127 return (warn_code); 9128 } 9129 eep_config = (ASCEEP_CONFIG *)&eep_config_buf; 9130 cfg_msw = AscGetChipCfgMsw(iop_base); 9131 cfg_lsw = AscGetChipCfgLsw(iop_base); 9132 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { 9133 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 9134 warn_code |= ASC_WARN_CFG_MSW_RECOVER; 9135 AscSetChipCfgMsw(iop_base, cfg_msw); 9136 } 9137 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type); 9138 ASC_DBG(1, "chksum 0x%x\n", chksum); 9139 if (chksum == 0) { 9140 chksum = 0xaa55; 9141 } 9142 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { 9143 warn_code |= ASC_WARN_AUTO_CONFIG; 9144 if (asc_dvc->cfg->chip_version == 3) { 9145 if (eep_config->cfg_lsw != cfg_lsw) { 9146 warn_code |= ASC_WARN_EEPROM_RECOVER; 9147 eep_config->cfg_lsw = 9148 AscGetChipCfgLsw(iop_base); 9149 } 9150 if (eep_config->cfg_msw != cfg_msw) { 9151 warn_code |= ASC_WARN_EEPROM_RECOVER; 9152 eep_config->cfg_msw = 9153 AscGetChipCfgMsw(iop_base); 9154 } 9155 } 9156 } 9157 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 9158 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON; 9159 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum); 9160 if (chksum != eep_config->chksum) { 9161 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) == 9162 ASC_CHIP_VER_PCI_ULTRA_3050) { 9163 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n"); 9164 eep_config->init_sdtr = 0xFF; 9165 eep_config->disc_enable = 0xFF; 9166 eep_config->start_motor = 0xFF; 9167 eep_config->use_cmd_qng = 0; 9168 eep_config->max_total_qng = 0xF0; 9169 eep_config->max_tag_qng = 0x20; 9170 eep_config->cntl = 0xBFFF; 9171 ASC_EEP_SET_CHIP_ID(eep_config, 7); 9172 eep_config->no_scam = 0; 9173 eep_config->adapter_info[0] = 0; 9174 eep_config->adapter_info[1] = 0; 9175 eep_config->adapter_info[2] = 0; 9176 eep_config->adapter_info[3] = 0; 9177 eep_config->adapter_info[4] = 0; 9178 /* Indicate EEPROM-less board. */ 9179 eep_config->adapter_info[5] = 0xBB; 9180 } else { 9181 ASC_PRINT 9182 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n"); 9183 write_eep = 1; 9184 warn_code |= ASC_WARN_EEPROM_CHKSUM; 9185 } 9186 } 9187 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr; 9188 asc_dvc->cfg->disc_enable = eep_config->disc_enable; 9189 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng; 9190 asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config); 9191 asc_dvc->start_motor = eep_config->start_motor; 9192 asc_dvc->dvc_cntl = eep_config->cntl; 9193 asc_dvc->no_scam = eep_config->no_scam; 9194 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0]; 9195 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1]; 9196 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2]; 9197 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3]; 9198 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4]; 9199 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5]; 9200 if (!AscTestExternalLram(asc_dvc)) { 9201 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == 9202 ASC_IS_PCI_ULTRA)) { 9203 eep_config->max_total_qng = 9204 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG; 9205 eep_config->max_tag_qng = 9206 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG; 9207 } else { 9208 eep_config->cfg_msw |= 0x0800; 9209 cfg_msw |= 0x0800; 9210 AscSetChipCfgMsw(iop_base, cfg_msw); 9211 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG; 9212 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG; 9213 } 9214 } else { 9215 } 9216 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) { 9217 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG; 9218 } 9219 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) { 9220 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG; 9221 } 9222 if (eep_config->max_tag_qng > eep_config->max_total_qng) { 9223 eep_config->max_tag_qng = eep_config->max_total_qng; 9224 } 9225 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) { 9226 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC; 9227 } 9228 asc_dvc->max_total_qng = eep_config->max_total_qng; 9229 if ((eep_config->use_cmd_qng & eep_config->disc_enable) != 9230 eep_config->use_cmd_qng) { 9231 eep_config->disc_enable = eep_config->use_cmd_qng; 9232 warn_code |= ASC_WARN_CMD_QNG_CONFLICT; 9233 } 9234 ASC_EEP_SET_CHIP_ID(eep_config, 9235 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID); 9236 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config); 9237 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) && 9238 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) { 9239 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX; 9240 } 9241 9242 for (i = 0; i <= ASC_MAX_TID; i++) { 9243 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i]; 9244 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng; 9245 asc_dvc->cfg->sdtr_period_offset[i] = 9246 (uchar)(ASC_DEF_SDTR_OFFSET | 9247 (asc_dvc->min_sdtr_index << 4)); 9248 } 9249 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base); 9250 if (write_eep) { 9251 if ((i = AscSetEEPConfig(iop_base, eep_config, 9252 asc_dvc->bus_type)) != 0) { 9253 ASC_PRINT1 9254 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n", 9255 i); 9256 } else { 9257 ASC_PRINT 9258 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n"); 9259 } 9260 } 9261 return (warn_code); 9262 } 9263 9264 static int AscInitGetConfig(struct Scsi_Host *shost) 9265 { 9266 struct asc_board *board = shost_priv(shost); 9267 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; 9268 unsigned short warn_code = 0; 9269 9270 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG; 9271 if (asc_dvc->err_code != 0) 9272 return asc_dvc->err_code; 9273 9274 if (AscFindSignature(asc_dvc->iop_base)) { 9275 AscInitAscDvcVar(asc_dvc); 9276 warn_code = AscInitFromEEP(asc_dvc); 9277 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG; 9278 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT) 9279 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT; 9280 } else { 9281 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 9282 } 9283 9284 switch (warn_code) { 9285 case 0: /* No error */ 9286 break; 9287 case ASC_WARN_IO_PORT_ROTATE: 9288 shost_printk(KERN_WARNING, shost, "I/O port address " 9289 "modified\n"); 9290 break; 9291 case ASC_WARN_AUTO_CONFIG: 9292 shost_printk(KERN_WARNING, shost, "I/O port increment switch " 9293 "enabled\n"); 9294 break; 9295 case ASC_WARN_EEPROM_CHKSUM: 9296 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); 9297 break; 9298 case ASC_WARN_IRQ_MODIFIED: 9299 shost_printk(KERN_WARNING, shost, "IRQ modified\n"); 9300 break; 9301 case ASC_WARN_CMD_QNG_CONFLICT: 9302 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o " 9303 "disconnects\n"); 9304 break; 9305 default: 9306 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", 9307 warn_code); 9308 break; 9309 } 9310 9311 if (asc_dvc->err_code != 0) 9312 shost_printk(KERN_ERR, shost, "error 0x%x at init_state " 9313 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); 9314 9315 return asc_dvc->err_code; 9316 } 9317 9318 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) 9319 { 9320 struct asc_board *board = shost_priv(shost); 9321 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; 9322 PortAddr iop_base = asc_dvc->iop_base; 9323 unsigned short cfg_msw; 9324 unsigned short warn_code = 0; 9325 9326 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG; 9327 if (asc_dvc->err_code != 0) 9328 return asc_dvc->err_code; 9329 if (!AscFindSignature(asc_dvc->iop_base)) { 9330 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 9331 return asc_dvc->err_code; 9332 } 9333 9334 cfg_msw = AscGetChipCfgMsw(iop_base); 9335 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { 9336 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 9337 warn_code |= ASC_WARN_CFG_MSW_RECOVER; 9338 AscSetChipCfgMsw(iop_base, cfg_msw); 9339 } 9340 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) != 9341 asc_dvc->cfg->cmd_qng_enabled) { 9342 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled; 9343 warn_code |= ASC_WARN_CMD_QNG_CONFLICT; 9344 } 9345 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { 9346 warn_code |= ASC_WARN_AUTO_CONFIG; 9347 } 9348 #ifdef CONFIG_PCI 9349 if (asc_dvc->bus_type & ASC_IS_PCI) { 9350 cfg_msw &= 0xFFC0; 9351 AscSetChipCfgMsw(iop_base, cfg_msw); 9352 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) { 9353 } else { 9354 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || 9355 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { 9356 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB; 9357 asc_dvc->bug_fix_cntl |= 9358 ASC_BUG_FIX_ASYN_USE_SYN; 9359 } 9360 } 9361 } else 9362 #endif /* CONFIG_PCI */ 9363 if (asc_dvc->bus_type == ASC_IS_ISAPNP) { 9364 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) 9365 == ASC_CHIP_VER_ASYN_BUG) { 9366 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN; 9367 } 9368 } 9369 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) != 9370 asc_dvc->cfg->chip_scsi_id) { 9371 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID; 9372 } 9373 #ifdef CONFIG_ISA 9374 if (asc_dvc->bus_type & ASC_IS_ISA) { 9375 AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel); 9376 AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed); 9377 } 9378 #endif /* CONFIG_ISA */ 9379 9380 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG; 9381 9382 switch (warn_code) { 9383 case 0: /* No error. */ 9384 break; 9385 case ASC_WARN_IO_PORT_ROTATE: 9386 shost_printk(KERN_WARNING, shost, "I/O port address " 9387 "modified\n"); 9388 break; 9389 case ASC_WARN_AUTO_CONFIG: 9390 shost_printk(KERN_WARNING, shost, "I/O port increment switch " 9391 "enabled\n"); 9392 break; 9393 case ASC_WARN_EEPROM_CHKSUM: 9394 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); 9395 break; 9396 case ASC_WARN_IRQ_MODIFIED: 9397 shost_printk(KERN_WARNING, shost, "IRQ modified\n"); 9398 break; 9399 case ASC_WARN_CMD_QNG_CONFLICT: 9400 shost_printk(KERN_WARNING, shost, "tag queuing w/o " 9401 "disconnects\n"); 9402 break; 9403 default: 9404 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", 9405 warn_code); 9406 break; 9407 } 9408 9409 if (asc_dvc->err_code != 0) 9410 shost_printk(KERN_ERR, shost, "error 0x%x at init_state " 9411 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); 9412 9413 return asc_dvc->err_code; 9414 } 9415 9416 /* 9417 * EEPROM Configuration. 9418 * 9419 * All drivers should use this structure to set the default EEPROM 9420 * configuration. The BIOS now uses this structure when it is built. 9421 * Additional structure information can be found in a_condor.h where 9422 * the structure is defined. 9423 * 9424 * The *_Field_IsChar structs are needed to correct for endianness. 9425 * These values are read from the board 16 bits at a time directly 9426 * into the structs. Because some fields are char, the values will be 9427 * in the wrong order. The *_Field_IsChar tells when to flip the 9428 * bytes. Data read and written to PCI memory is automatically swapped 9429 * on big-endian platforms so char fields read as words are actually being 9430 * unswapped on big-endian platforms. 9431 */ 9432 #ifdef CONFIG_PCI 9433 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = { 9434 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */ 9435 0x0000, /* cfg_msw */ 9436 0xFFFF, /* disc_enable */ 9437 0xFFFF, /* wdtr_able */ 9438 0xFFFF, /* sdtr_able */ 9439 0xFFFF, /* start_motor */ 9440 0xFFFF, /* tagqng_able */ 9441 0xFFFF, /* bios_scan */ 9442 0, /* scam_tolerant */ 9443 7, /* adapter_scsi_id */ 9444 0, /* bios_boot_delay */ 9445 3, /* scsi_reset_delay */ 9446 0, /* bios_id_lun */ 9447 0, /* termination */ 9448 0, /* reserved1 */ 9449 0xFFE7, /* bios_ctrl */ 9450 0xFFFF, /* ultra_able */ 9451 0, /* reserved2 */ 9452 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */ 9453 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9454 0, /* dvc_cntl */ 9455 0, /* bug_fix */ 9456 0, /* serial_number_word1 */ 9457 0, /* serial_number_word2 */ 9458 0, /* serial_number_word3 */ 9459 0, /* check_sum */ 9460 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9461 , /* oem_name[16] */ 9462 0, /* dvc_err_code */ 9463 0, /* adv_err_code */ 9464 0, /* adv_err_addr */ 9465 0, /* saved_dvc_err_code */ 9466 0, /* saved_adv_err_code */ 9467 0, /* saved_adv_err_addr */ 9468 0 /* num_of_err */ 9469 }; 9470 9471 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = { 9472 0, /* cfg_lsw */ 9473 0, /* cfg_msw */ 9474 0, /* -disc_enable */ 9475 0, /* wdtr_able */ 9476 0, /* sdtr_able */ 9477 0, /* start_motor */ 9478 0, /* tagqng_able */ 9479 0, /* bios_scan */ 9480 0, /* scam_tolerant */ 9481 1, /* adapter_scsi_id */ 9482 1, /* bios_boot_delay */ 9483 1, /* scsi_reset_delay */ 9484 1, /* bios_id_lun */ 9485 1, /* termination */ 9486 1, /* reserved1 */ 9487 0, /* bios_ctrl */ 9488 0, /* ultra_able */ 9489 0, /* reserved2 */ 9490 1, /* max_host_qng */ 9491 1, /* max_dvc_qng */ 9492 0, /* dvc_cntl */ 9493 0, /* bug_fix */ 9494 0, /* serial_number_word1 */ 9495 0, /* serial_number_word2 */ 9496 0, /* serial_number_word3 */ 9497 0, /* check_sum */ 9498 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9499 , /* oem_name[16] */ 9500 0, /* dvc_err_code */ 9501 0, /* adv_err_code */ 9502 0, /* adv_err_addr */ 9503 0, /* saved_dvc_err_code */ 9504 0, /* saved_adv_err_code */ 9505 0, /* saved_adv_err_addr */ 9506 0 /* num_of_err */ 9507 }; 9508 9509 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = { 9510 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 9511 0x0000, /* 01 cfg_msw */ 9512 0xFFFF, /* 02 disc_enable */ 9513 0xFFFF, /* 03 wdtr_able */ 9514 0x4444, /* 04 sdtr_speed1 */ 9515 0xFFFF, /* 05 start_motor */ 9516 0xFFFF, /* 06 tagqng_able */ 9517 0xFFFF, /* 07 bios_scan */ 9518 0, /* 08 scam_tolerant */ 9519 7, /* 09 adapter_scsi_id */ 9520 0, /* bios_boot_delay */ 9521 3, /* 10 scsi_reset_delay */ 9522 0, /* bios_id_lun */ 9523 0, /* 11 termination_se */ 9524 0, /* termination_lvd */ 9525 0xFFE7, /* 12 bios_ctrl */ 9526 0x4444, /* 13 sdtr_speed2 */ 9527 0x4444, /* 14 sdtr_speed3 */ 9528 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ 9529 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9530 0, /* 16 dvc_cntl */ 9531 0x4444, /* 17 sdtr_speed4 */ 9532 0, /* 18 serial_number_word1 */ 9533 0, /* 19 serial_number_word2 */ 9534 0, /* 20 serial_number_word3 */ 9535 0, /* 21 check_sum */ 9536 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9537 , /* 22-29 oem_name[16] */ 9538 0, /* 30 dvc_err_code */ 9539 0, /* 31 adv_err_code */ 9540 0, /* 32 adv_err_addr */ 9541 0, /* 33 saved_dvc_err_code */ 9542 0, /* 34 saved_adv_err_code */ 9543 0, /* 35 saved_adv_err_addr */ 9544 0, /* 36 reserved */ 9545 0, /* 37 reserved */ 9546 0, /* 38 reserved */ 9547 0, /* 39 reserved */ 9548 0, /* 40 reserved */ 9549 0, /* 41 reserved */ 9550 0, /* 42 reserved */ 9551 0, /* 43 reserved */ 9552 0, /* 44 reserved */ 9553 0, /* 45 reserved */ 9554 0, /* 46 reserved */ 9555 0, /* 47 reserved */ 9556 0, /* 48 reserved */ 9557 0, /* 49 reserved */ 9558 0, /* 50 reserved */ 9559 0, /* 51 reserved */ 9560 0, /* 52 reserved */ 9561 0, /* 53 reserved */ 9562 0, /* 54 reserved */ 9563 0, /* 55 reserved */ 9564 0, /* 56 cisptr_lsw */ 9565 0, /* 57 cisprt_msw */ 9566 PCI_VENDOR_ID_ASP, /* 58 subsysvid */ 9567 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */ 9568 0, /* 60 reserved */ 9569 0, /* 61 reserved */ 9570 0, /* 62 reserved */ 9571 0 /* 63 reserved */ 9572 }; 9573 9574 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = { 9575 0, /* 00 cfg_lsw */ 9576 0, /* 01 cfg_msw */ 9577 0, /* 02 disc_enable */ 9578 0, /* 03 wdtr_able */ 9579 0, /* 04 sdtr_speed1 */ 9580 0, /* 05 start_motor */ 9581 0, /* 06 tagqng_able */ 9582 0, /* 07 bios_scan */ 9583 0, /* 08 scam_tolerant */ 9584 1, /* 09 adapter_scsi_id */ 9585 1, /* bios_boot_delay */ 9586 1, /* 10 scsi_reset_delay */ 9587 1, /* bios_id_lun */ 9588 1, /* 11 termination_se */ 9589 1, /* termination_lvd */ 9590 0, /* 12 bios_ctrl */ 9591 0, /* 13 sdtr_speed2 */ 9592 0, /* 14 sdtr_speed3 */ 9593 1, /* 15 max_host_qng */ 9594 1, /* max_dvc_qng */ 9595 0, /* 16 dvc_cntl */ 9596 0, /* 17 sdtr_speed4 */ 9597 0, /* 18 serial_number_word1 */ 9598 0, /* 19 serial_number_word2 */ 9599 0, /* 20 serial_number_word3 */ 9600 0, /* 21 check_sum */ 9601 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9602 , /* 22-29 oem_name[16] */ 9603 0, /* 30 dvc_err_code */ 9604 0, /* 31 adv_err_code */ 9605 0, /* 32 adv_err_addr */ 9606 0, /* 33 saved_dvc_err_code */ 9607 0, /* 34 saved_adv_err_code */ 9608 0, /* 35 saved_adv_err_addr */ 9609 0, /* 36 reserved */ 9610 0, /* 37 reserved */ 9611 0, /* 38 reserved */ 9612 0, /* 39 reserved */ 9613 0, /* 40 reserved */ 9614 0, /* 41 reserved */ 9615 0, /* 42 reserved */ 9616 0, /* 43 reserved */ 9617 0, /* 44 reserved */ 9618 0, /* 45 reserved */ 9619 0, /* 46 reserved */ 9620 0, /* 47 reserved */ 9621 0, /* 48 reserved */ 9622 0, /* 49 reserved */ 9623 0, /* 50 reserved */ 9624 0, /* 51 reserved */ 9625 0, /* 52 reserved */ 9626 0, /* 53 reserved */ 9627 0, /* 54 reserved */ 9628 0, /* 55 reserved */ 9629 0, /* 56 cisptr_lsw */ 9630 0, /* 57 cisprt_msw */ 9631 0, /* 58 subsysvid */ 9632 0, /* 59 subsysid */ 9633 0, /* 60 reserved */ 9634 0, /* 61 reserved */ 9635 0, /* 62 reserved */ 9636 0 /* 63 reserved */ 9637 }; 9638 9639 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = { 9640 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 9641 0x0000, /* 01 cfg_msw */ 9642 0xFFFF, /* 02 disc_enable */ 9643 0xFFFF, /* 03 wdtr_able */ 9644 0x5555, /* 04 sdtr_speed1 */ 9645 0xFFFF, /* 05 start_motor */ 9646 0xFFFF, /* 06 tagqng_able */ 9647 0xFFFF, /* 07 bios_scan */ 9648 0, /* 08 scam_tolerant */ 9649 7, /* 09 adapter_scsi_id */ 9650 0, /* bios_boot_delay */ 9651 3, /* 10 scsi_reset_delay */ 9652 0, /* bios_id_lun */ 9653 0, /* 11 termination_se */ 9654 0, /* termination_lvd */ 9655 0xFFE7, /* 12 bios_ctrl */ 9656 0x5555, /* 13 sdtr_speed2 */ 9657 0x5555, /* 14 sdtr_speed3 */ 9658 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ 9659 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9660 0, /* 16 dvc_cntl */ 9661 0x5555, /* 17 sdtr_speed4 */ 9662 0, /* 18 serial_number_word1 */ 9663 0, /* 19 serial_number_word2 */ 9664 0, /* 20 serial_number_word3 */ 9665 0, /* 21 check_sum */ 9666 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9667 , /* 22-29 oem_name[16] */ 9668 0, /* 30 dvc_err_code */ 9669 0, /* 31 adv_err_code */ 9670 0, /* 32 adv_err_addr */ 9671 0, /* 33 saved_dvc_err_code */ 9672 0, /* 34 saved_adv_err_code */ 9673 0, /* 35 saved_adv_err_addr */ 9674 0, /* 36 reserved */ 9675 0, /* 37 reserved */ 9676 0, /* 38 reserved */ 9677 0, /* 39 reserved */ 9678 0, /* 40 reserved */ 9679 0, /* 41 reserved */ 9680 0, /* 42 reserved */ 9681 0, /* 43 reserved */ 9682 0, /* 44 reserved */ 9683 0, /* 45 reserved */ 9684 0, /* 46 reserved */ 9685 0, /* 47 reserved */ 9686 0, /* 48 reserved */ 9687 0, /* 49 reserved */ 9688 0, /* 50 reserved */ 9689 0, /* 51 reserved */ 9690 0, /* 52 reserved */ 9691 0, /* 53 reserved */ 9692 0, /* 54 reserved */ 9693 0, /* 55 reserved */ 9694 0, /* 56 cisptr_lsw */ 9695 0, /* 57 cisprt_msw */ 9696 PCI_VENDOR_ID_ASP, /* 58 subsysvid */ 9697 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */ 9698 0, /* 60 reserved */ 9699 0, /* 61 reserved */ 9700 0, /* 62 reserved */ 9701 0 /* 63 reserved */ 9702 }; 9703 9704 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = { 9705 0, /* 00 cfg_lsw */ 9706 0, /* 01 cfg_msw */ 9707 0, /* 02 disc_enable */ 9708 0, /* 03 wdtr_able */ 9709 0, /* 04 sdtr_speed1 */ 9710 0, /* 05 start_motor */ 9711 0, /* 06 tagqng_able */ 9712 0, /* 07 bios_scan */ 9713 0, /* 08 scam_tolerant */ 9714 1, /* 09 adapter_scsi_id */ 9715 1, /* bios_boot_delay */ 9716 1, /* 10 scsi_reset_delay */ 9717 1, /* bios_id_lun */ 9718 1, /* 11 termination_se */ 9719 1, /* termination_lvd */ 9720 0, /* 12 bios_ctrl */ 9721 0, /* 13 sdtr_speed2 */ 9722 0, /* 14 sdtr_speed3 */ 9723 1, /* 15 max_host_qng */ 9724 1, /* max_dvc_qng */ 9725 0, /* 16 dvc_cntl */ 9726 0, /* 17 sdtr_speed4 */ 9727 0, /* 18 serial_number_word1 */ 9728 0, /* 19 serial_number_word2 */ 9729 0, /* 20 serial_number_word3 */ 9730 0, /* 21 check_sum */ 9731 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9732 , /* 22-29 oem_name[16] */ 9733 0, /* 30 dvc_err_code */ 9734 0, /* 31 adv_err_code */ 9735 0, /* 32 adv_err_addr */ 9736 0, /* 33 saved_dvc_err_code */ 9737 0, /* 34 saved_adv_err_code */ 9738 0, /* 35 saved_adv_err_addr */ 9739 0, /* 36 reserved */ 9740 0, /* 37 reserved */ 9741 0, /* 38 reserved */ 9742 0, /* 39 reserved */ 9743 0, /* 40 reserved */ 9744 0, /* 41 reserved */ 9745 0, /* 42 reserved */ 9746 0, /* 43 reserved */ 9747 0, /* 44 reserved */ 9748 0, /* 45 reserved */ 9749 0, /* 46 reserved */ 9750 0, /* 47 reserved */ 9751 0, /* 48 reserved */ 9752 0, /* 49 reserved */ 9753 0, /* 50 reserved */ 9754 0, /* 51 reserved */ 9755 0, /* 52 reserved */ 9756 0, /* 53 reserved */ 9757 0, /* 54 reserved */ 9758 0, /* 55 reserved */ 9759 0, /* 56 cisptr_lsw */ 9760 0, /* 57 cisprt_msw */ 9761 0, /* 58 subsysvid */ 9762 0, /* 59 subsysid */ 9763 0, /* 60 reserved */ 9764 0, /* 61 reserved */ 9765 0, /* 62 reserved */ 9766 0 /* 63 reserved */ 9767 }; 9768 9769 /* 9770 * Wait for EEPROM command to complete 9771 */ 9772 static void AdvWaitEEPCmd(AdvPortAddr iop_base) 9773 { 9774 int eep_delay_ms; 9775 9776 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) { 9777 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) & 9778 ASC_EEP_CMD_DONE) { 9779 break; 9780 } 9781 mdelay(1); 9782 } 9783 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) == 9784 0) 9785 BUG(); 9786 } 9787 9788 /* 9789 * Read the EEPROM from specified location 9790 */ 9791 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr) 9792 { 9793 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9794 ASC_EEP_CMD_READ | eep_word_addr); 9795 AdvWaitEEPCmd(iop_base); 9796 return AdvReadWordRegister(iop_base, IOPW_EE_DATA); 9797 } 9798 9799 /* 9800 * Write the EEPROM from 'cfg_buf'. 9801 */ 9802 static void AdvSet3550EEPConfig(AdvPortAddr iop_base, 9803 ADVEEP_3550_CONFIG *cfg_buf) 9804 { 9805 ushort *wbuf; 9806 ushort addr, chksum; 9807 ushort *charfields; 9808 9809 wbuf = (ushort *)cfg_buf; 9810 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; 9811 chksum = 0; 9812 9813 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9814 AdvWaitEEPCmd(iop_base); 9815 9816 /* 9817 * Write EEPROM from word 0 to word 20. 9818 */ 9819 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9820 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9821 ushort word; 9822 9823 if (*charfields++) { 9824 word = cpu_to_le16(*wbuf); 9825 } else { 9826 word = *wbuf; 9827 } 9828 chksum += *wbuf; /* Checksum is calculated from word values. */ 9829 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9830 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9831 ASC_EEP_CMD_WRITE | addr); 9832 AdvWaitEEPCmd(iop_base); 9833 mdelay(ADV_EEP_DELAY_MS); 9834 } 9835 9836 /* 9837 * Write EEPROM checksum at word 21. 9838 */ 9839 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9840 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9841 AdvWaitEEPCmd(iop_base); 9842 wbuf++; 9843 charfields++; 9844 9845 /* 9846 * Write EEPROM OEM name at words 22 to 29. 9847 */ 9848 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9849 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9850 ushort word; 9851 9852 if (*charfields++) { 9853 word = cpu_to_le16(*wbuf); 9854 } else { 9855 word = *wbuf; 9856 } 9857 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9858 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9859 ASC_EEP_CMD_WRITE | addr); 9860 AdvWaitEEPCmd(iop_base); 9861 } 9862 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 9863 AdvWaitEEPCmd(iop_base); 9864 } 9865 9866 /* 9867 * Write the EEPROM from 'cfg_buf'. 9868 */ 9869 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base, 9870 ADVEEP_38C0800_CONFIG *cfg_buf) 9871 { 9872 ushort *wbuf; 9873 ushort *charfields; 9874 ushort addr, chksum; 9875 9876 wbuf = (ushort *)cfg_buf; 9877 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; 9878 chksum = 0; 9879 9880 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9881 AdvWaitEEPCmd(iop_base); 9882 9883 /* 9884 * Write EEPROM from word 0 to word 20. 9885 */ 9886 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9887 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9888 ushort word; 9889 9890 if (*charfields++) { 9891 word = cpu_to_le16(*wbuf); 9892 } else { 9893 word = *wbuf; 9894 } 9895 chksum += *wbuf; /* Checksum is calculated from word values. */ 9896 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9897 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9898 ASC_EEP_CMD_WRITE | addr); 9899 AdvWaitEEPCmd(iop_base); 9900 mdelay(ADV_EEP_DELAY_MS); 9901 } 9902 9903 /* 9904 * Write EEPROM checksum at word 21. 9905 */ 9906 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9907 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9908 AdvWaitEEPCmd(iop_base); 9909 wbuf++; 9910 charfields++; 9911 9912 /* 9913 * Write EEPROM OEM name at words 22 to 29. 9914 */ 9915 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9916 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9917 ushort word; 9918 9919 if (*charfields++) { 9920 word = cpu_to_le16(*wbuf); 9921 } else { 9922 word = *wbuf; 9923 } 9924 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9925 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9926 ASC_EEP_CMD_WRITE | addr); 9927 AdvWaitEEPCmd(iop_base); 9928 } 9929 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 9930 AdvWaitEEPCmd(iop_base); 9931 } 9932 9933 /* 9934 * Write the EEPROM from 'cfg_buf'. 9935 */ 9936 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base, 9937 ADVEEP_38C1600_CONFIG *cfg_buf) 9938 { 9939 ushort *wbuf; 9940 ushort *charfields; 9941 ushort addr, chksum; 9942 9943 wbuf = (ushort *)cfg_buf; 9944 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; 9945 chksum = 0; 9946 9947 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9948 AdvWaitEEPCmd(iop_base); 9949 9950 /* 9951 * Write EEPROM from word 0 to word 20. 9952 */ 9953 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9954 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9955 ushort word; 9956 9957 if (*charfields++) { 9958 word = cpu_to_le16(*wbuf); 9959 } else { 9960 word = *wbuf; 9961 } 9962 chksum += *wbuf; /* Checksum is calculated from word values. */ 9963 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9964 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9965 ASC_EEP_CMD_WRITE | addr); 9966 AdvWaitEEPCmd(iop_base); 9967 mdelay(ADV_EEP_DELAY_MS); 9968 } 9969 9970 /* 9971 * Write EEPROM checksum at word 21. 9972 */ 9973 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9974 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9975 AdvWaitEEPCmd(iop_base); 9976 wbuf++; 9977 charfields++; 9978 9979 /* 9980 * Write EEPROM OEM name at words 22 to 29. 9981 */ 9982 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9983 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9984 ushort word; 9985 9986 if (*charfields++) { 9987 word = cpu_to_le16(*wbuf); 9988 } else { 9989 word = *wbuf; 9990 } 9991 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9992 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9993 ASC_EEP_CMD_WRITE | addr); 9994 AdvWaitEEPCmd(iop_base); 9995 } 9996 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 9997 AdvWaitEEPCmd(iop_base); 9998 } 9999 10000 /* 10001 * Read EEPROM configuration into the specified buffer. 10002 * 10003 * Return a checksum based on the EEPROM configuration read. 10004 */ 10005 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base, 10006 ADVEEP_3550_CONFIG *cfg_buf) 10007 { 10008 ushort wval, chksum; 10009 ushort *wbuf; 10010 int eep_addr; 10011 ushort *charfields; 10012 10013 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; 10014 wbuf = (ushort *)cfg_buf; 10015 chksum = 0; 10016 10017 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 10018 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 10019 wval = AdvReadEEPWord(iop_base, eep_addr); 10020 chksum += wval; /* Checksum is calculated from word values. */ 10021 if (*charfields++) { 10022 *wbuf = le16_to_cpu(wval); 10023 } else { 10024 *wbuf = wval; 10025 } 10026 } 10027 /* Read checksum word. */ 10028 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10029 wbuf++; 10030 charfields++; 10031 10032 /* Read rest of EEPROM not covered by the checksum. */ 10033 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 10034 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 10035 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10036 if (*charfields++) { 10037 *wbuf = le16_to_cpu(*wbuf); 10038 } 10039 } 10040 return chksum; 10041 } 10042 10043 /* 10044 * Read EEPROM configuration into the specified buffer. 10045 * 10046 * Return a checksum based on the EEPROM configuration read. 10047 */ 10048 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base, 10049 ADVEEP_38C0800_CONFIG *cfg_buf) 10050 { 10051 ushort wval, chksum; 10052 ushort *wbuf; 10053 int eep_addr; 10054 ushort *charfields; 10055 10056 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; 10057 wbuf = (ushort *)cfg_buf; 10058 chksum = 0; 10059 10060 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 10061 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 10062 wval = AdvReadEEPWord(iop_base, eep_addr); 10063 chksum += wval; /* Checksum is calculated from word values. */ 10064 if (*charfields++) { 10065 *wbuf = le16_to_cpu(wval); 10066 } else { 10067 *wbuf = wval; 10068 } 10069 } 10070 /* Read checksum word. */ 10071 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10072 wbuf++; 10073 charfields++; 10074 10075 /* Read rest of EEPROM not covered by the checksum. */ 10076 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 10077 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 10078 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10079 if (*charfields++) { 10080 *wbuf = le16_to_cpu(*wbuf); 10081 } 10082 } 10083 return chksum; 10084 } 10085 10086 /* 10087 * Read EEPROM configuration into the specified buffer. 10088 * 10089 * Return a checksum based on the EEPROM configuration read. 10090 */ 10091 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base, 10092 ADVEEP_38C1600_CONFIG *cfg_buf) 10093 { 10094 ushort wval, chksum; 10095 ushort *wbuf; 10096 int eep_addr; 10097 ushort *charfields; 10098 10099 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; 10100 wbuf = (ushort *)cfg_buf; 10101 chksum = 0; 10102 10103 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 10104 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 10105 wval = AdvReadEEPWord(iop_base, eep_addr); 10106 chksum += wval; /* Checksum is calculated from word values. */ 10107 if (*charfields++) { 10108 *wbuf = le16_to_cpu(wval); 10109 } else { 10110 *wbuf = wval; 10111 } 10112 } 10113 /* Read checksum word. */ 10114 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10115 wbuf++; 10116 charfields++; 10117 10118 /* Read rest of EEPROM not covered by the checksum. */ 10119 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 10120 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 10121 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10122 if (*charfields++) { 10123 *wbuf = le16_to_cpu(*wbuf); 10124 } 10125 } 10126 return chksum; 10127 } 10128 10129 /* 10130 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and 10131 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while 10132 * all of this is done. 10133 * 10134 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10135 * 10136 * For a non-fatal error return a warning code. If there are no warnings 10137 * then 0 is returned. 10138 * 10139 * Note: Chip is stopped on entry. 10140 */ 10141 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc) 10142 { 10143 AdvPortAddr iop_base; 10144 ushort warn_code; 10145 ADVEEP_3550_CONFIG eep_config; 10146 10147 iop_base = asc_dvc->iop_base; 10148 10149 warn_code = 0; 10150 10151 /* 10152 * Read the board's EEPROM configuration. 10153 * 10154 * Set default values if a bad checksum is found. 10155 */ 10156 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) { 10157 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10158 10159 /* 10160 * Set EEPROM default values. 10161 */ 10162 memcpy(&eep_config, &Default_3550_EEPROM_Config, 10163 sizeof(ADVEEP_3550_CONFIG)); 10164 10165 /* 10166 * Assume the 6 byte board serial number that was read from 10167 * EEPROM is correct even if the EEPROM checksum failed. 10168 */ 10169 eep_config.serial_number_word3 = 10170 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10171 10172 eep_config.serial_number_word2 = 10173 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10174 10175 eep_config.serial_number_word1 = 10176 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10177 10178 AdvSet3550EEPConfig(iop_base, &eep_config); 10179 } 10180 /* 10181 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the 10182 * EEPROM configuration that was read. 10183 * 10184 * This is the mapping of EEPROM fields to Adv Library fields. 10185 */ 10186 asc_dvc->wdtr_able = eep_config.wdtr_able; 10187 asc_dvc->sdtr_able = eep_config.sdtr_able; 10188 asc_dvc->ultra_able = eep_config.ultra_able; 10189 asc_dvc->tagqng_able = eep_config.tagqng_able; 10190 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10191 asc_dvc->max_host_qng = eep_config.max_host_qng; 10192 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10193 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); 10194 asc_dvc->start_motor = eep_config.start_motor; 10195 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10196 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10197 asc_dvc->no_scam = eep_config.scam_tolerant; 10198 asc_dvc->cfg->serial1 = eep_config.serial_number_word1; 10199 asc_dvc->cfg->serial2 = eep_config.serial_number_word2; 10200 asc_dvc->cfg->serial3 = eep_config.serial_number_word3; 10201 10202 /* 10203 * Set the host maximum queuing (max. 253, min. 16) and the per device 10204 * maximum queuing (max. 63, min. 4). 10205 */ 10206 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10207 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10208 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10209 /* If the value is zero, assume it is uninitialized. */ 10210 if (eep_config.max_host_qng == 0) { 10211 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10212 } else { 10213 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10214 } 10215 } 10216 10217 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10218 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10219 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10220 /* If the value is zero, assume it is uninitialized. */ 10221 if (eep_config.max_dvc_qng == 0) { 10222 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10223 } else { 10224 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10225 } 10226 } 10227 10228 /* 10229 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10230 * set 'max_dvc_qng' to 'max_host_qng'. 10231 */ 10232 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10233 eep_config.max_dvc_qng = eep_config.max_host_qng; 10234 } 10235 10236 /* 10237 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' 10238 * values based on possibly adjusted EEPROM values. 10239 */ 10240 asc_dvc->max_host_qng = eep_config.max_host_qng; 10241 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10242 10243 /* 10244 * If the EEPROM 'termination' field is set to automatic (0), then set 10245 * the ADV_DVC_CFG 'termination' field to automatic also. 10246 * 10247 * If the termination is specified with a non-zero 'termination' 10248 * value check that a legal value is set and set the ADV_DVC_CFG 10249 * 'termination' field appropriately. 10250 */ 10251 if (eep_config.termination == 0) { 10252 asc_dvc->cfg->termination = 0; /* auto termination */ 10253 } else { 10254 /* Enable manual control with low off / high off. */ 10255 if (eep_config.termination == 1) { 10256 asc_dvc->cfg->termination = TERM_CTL_SEL; 10257 10258 /* Enable manual control with low off / high on. */ 10259 } else if (eep_config.termination == 2) { 10260 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H; 10261 10262 /* Enable manual control with low on / high on. */ 10263 } else if (eep_config.termination == 3) { 10264 asc_dvc->cfg->termination = 10265 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L; 10266 } else { 10267 /* 10268 * The EEPROM 'termination' field contains a bad value. Use 10269 * automatic termination instead. 10270 */ 10271 asc_dvc->cfg->termination = 0; 10272 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10273 } 10274 } 10275 10276 return warn_code; 10277 } 10278 10279 /* 10280 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and 10281 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while 10282 * all of this is done. 10283 * 10284 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10285 * 10286 * For a non-fatal error return a warning code. If there are no warnings 10287 * then 0 is returned. 10288 * 10289 * Note: Chip is stopped on entry. 10290 */ 10291 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc) 10292 { 10293 AdvPortAddr iop_base; 10294 ushort warn_code; 10295 ADVEEP_38C0800_CONFIG eep_config; 10296 uchar tid, termination; 10297 ushort sdtr_speed = 0; 10298 10299 iop_base = asc_dvc->iop_base; 10300 10301 warn_code = 0; 10302 10303 /* 10304 * Read the board's EEPROM configuration. 10305 * 10306 * Set default values if a bad checksum is found. 10307 */ 10308 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) != 10309 eep_config.check_sum) { 10310 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10311 10312 /* 10313 * Set EEPROM default values. 10314 */ 10315 memcpy(&eep_config, &Default_38C0800_EEPROM_Config, 10316 sizeof(ADVEEP_38C0800_CONFIG)); 10317 10318 /* 10319 * Assume the 6 byte board serial number that was read from 10320 * EEPROM is correct even if the EEPROM checksum failed. 10321 */ 10322 eep_config.serial_number_word3 = 10323 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10324 10325 eep_config.serial_number_word2 = 10326 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10327 10328 eep_config.serial_number_word1 = 10329 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10330 10331 AdvSet38C0800EEPConfig(iop_base, &eep_config); 10332 } 10333 /* 10334 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the 10335 * EEPROM configuration that was read. 10336 * 10337 * This is the mapping of EEPROM fields to Adv Library fields. 10338 */ 10339 asc_dvc->wdtr_able = eep_config.wdtr_able; 10340 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; 10341 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; 10342 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; 10343 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; 10344 asc_dvc->tagqng_able = eep_config.tagqng_able; 10345 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10346 asc_dvc->max_host_qng = eep_config.max_host_qng; 10347 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10348 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); 10349 asc_dvc->start_motor = eep_config.start_motor; 10350 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10351 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10352 asc_dvc->no_scam = eep_config.scam_tolerant; 10353 asc_dvc->cfg->serial1 = eep_config.serial_number_word1; 10354 asc_dvc->cfg->serial2 = eep_config.serial_number_word2; 10355 asc_dvc->cfg->serial3 = eep_config.serial_number_word3; 10356 10357 /* 10358 * For every Target ID if any of its 'sdtr_speed[1234]' bits 10359 * are set, then set an 'sdtr_able' bit for it. 10360 */ 10361 asc_dvc->sdtr_able = 0; 10362 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 10363 if (tid == 0) { 10364 sdtr_speed = asc_dvc->sdtr_speed1; 10365 } else if (tid == 4) { 10366 sdtr_speed = asc_dvc->sdtr_speed2; 10367 } else if (tid == 8) { 10368 sdtr_speed = asc_dvc->sdtr_speed3; 10369 } else if (tid == 12) { 10370 sdtr_speed = asc_dvc->sdtr_speed4; 10371 } 10372 if (sdtr_speed & ADV_MAX_TID) { 10373 asc_dvc->sdtr_able |= (1 << tid); 10374 } 10375 sdtr_speed >>= 4; 10376 } 10377 10378 /* 10379 * Set the host maximum queuing (max. 253, min. 16) and the per device 10380 * maximum queuing (max. 63, min. 4). 10381 */ 10382 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10383 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10384 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10385 /* If the value is zero, assume it is uninitialized. */ 10386 if (eep_config.max_host_qng == 0) { 10387 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10388 } else { 10389 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10390 } 10391 } 10392 10393 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10394 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10395 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10396 /* If the value is zero, assume it is uninitialized. */ 10397 if (eep_config.max_dvc_qng == 0) { 10398 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10399 } else { 10400 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10401 } 10402 } 10403 10404 /* 10405 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10406 * set 'max_dvc_qng' to 'max_host_qng'. 10407 */ 10408 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10409 eep_config.max_dvc_qng = eep_config.max_host_qng; 10410 } 10411 10412 /* 10413 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' 10414 * values based on possibly adjusted EEPROM values. 10415 */ 10416 asc_dvc->max_host_qng = eep_config.max_host_qng; 10417 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10418 10419 /* 10420 * If the EEPROM 'termination' field is set to automatic (0), then set 10421 * the ADV_DVC_CFG 'termination' field to automatic also. 10422 * 10423 * If the termination is specified with a non-zero 'termination' 10424 * value check that a legal value is set and set the ADV_DVC_CFG 10425 * 'termination' field appropriately. 10426 */ 10427 if (eep_config.termination_se == 0) { 10428 termination = 0; /* auto termination for SE */ 10429 } else { 10430 /* Enable manual control with low off / high off. */ 10431 if (eep_config.termination_se == 1) { 10432 termination = 0; 10433 10434 /* Enable manual control with low off / high on. */ 10435 } else if (eep_config.termination_se == 2) { 10436 termination = TERM_SE_HI; 10437 10438 /* Enable manual control with low on / high on. */ 10439 } else if (eep_config.termination_se == 3) { 10440 termination = TERM_SE; 10441 } else { 10442 /* 10443 * The EEPROM 'termination_se' field contains a bad value. 10444 * Use automatic termination instead. 10445 */ 10446 termination = 0; 10447 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10448 } 10449 } 10450 10451 if (eep_config.termination_lvd == 0) { 10452 asc_dvc->cfg->termination = termination; /* auto termination for LVD */ 10453 } else { 10454 /* Enable manual control with low off / high off. */ 10455 if (eep_config.termination_lvd == 1) { 10456 asc_dvc->cfg->termination = termination; 10457 10458 /* Enable manual control with low off / high on. */ 10459 } else if (eep_config.termination_lvd == 2) { 10460 asc_dvc->cfg->termination = termination | TERM_LVD_HI; 10461 10462 /* Enable manual control with low on / high on. */ 10463 } else if (eep_config.termination_lvd == 3) { 10464 asc_dvc->cfg->termination = termination | TERM_LVD; 10465 } else { 10466 /* 10467 * The EEPROM 'termination_lvd' field contains a bad value. 10468 * Use automatic termination instead. 10469 */ 10470 asc_dvc->cfg->termination = termination; 10471 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10472 } 10473 } 10474 10475 return warn_code; 10476 } 10477 10478 /* 10479 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and 10480 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while 10481 * all of this is done. 10482 * 10483 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. 10484 * 10485 * For a non-fatal error return a warning code. If there are no warnings 10486 * then 0 is returned. 10487 * 10488 * Note: Chip is stopped on entry. 10489 */ 10490 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc) 10491 { 10492 AdvPortAddr iop_base; 10493 ushort warn_code; 10494 ADVEEP_38C1600_CONFIG eep_config; 10495 uchar tid, termination; 10496 ushort sdtr_speed = 0; 10497 10498 iop_base = asc_dvc->iop_base; 10499 10500 warn_code = 0; 10501 10502 /* 10503 * Read the board's EEPROM configuration. 10504 * 10505 * Set default values if a bad checksum is found. 10506 */ 10507 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) != 10508 eep_config.check_sum) { 10509 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); 10510 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10511 10512 /* 10513 * Set EEPROM default values. 10514 */ 10515 memcpy(&eep_config, &Default_38C1600_EEPROM_Config, 10516 sizeof(ADVEEP_38C1600_CONFIG)); 10517 10518 if (PCI_FUNC(pdev->devfn) != 0) { 10519 u8 ints; 10520 /* 10521 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 10522 * and old Mac system booting problem. The Expansion 10523 * ROM must be disabled in Function 1 for these systems 10524 */ 10525 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE; 10526 /* 10527 * Clear the INTAB (bit 11) if the GPIO 0 input 10528 * indicates the Function 1 interrupt line is wired 10529 * to INTB. 10530 * 10531 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input: 10532 * 1 - Function 1 interrupt line wired to INT A. 10533 * 0 - Function 1 interrupt line wired to INT B. 10534 * 10535 * Note: Function 0 is always wired to INTA. 10536 * Put all 5 GPIO bits in input mode and then read 10537 * their input values. 10538 */ 10539 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0); 10540 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA); 10541 if ((ints & 0x01) == 0) 10542 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB; 10543 } 10544 10545 /* 10546 * Assume the 6 byte board serial number that was read from 10547 * EEPROM is correct even if the EEPROM checksum failed. 10548 */ 10549 eep_config.serial_number_word3 = 10550 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10551 eep_config.serial_number_word2 = 10552 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10553 eep_config.serial_number_word1 = 10554 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10555 10556 AdvSet38C1600EEPConfig(iop_base, &eep_config); 10557 } 10558 10559 /* 10560 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the 10561 * EEPROM configuration that was read. 10562 * 10563 * This is the mapping of EEPROM fields to Adv Library fields. 10564 */ 10565 asc_dvc->wdtr_able = eep_config.wdtr_able; 10566 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; 10567 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; 10568 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; 10569 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; 10570 asc_dvc->ppr_able = 0; 10571 asc_dvc->tagqng_able = eep_config.tagqng_able; 10572 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10573 asc_dvc->max_host_qng = eep_config.max_host_qng; 10574 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10575 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID); 10576 asc_dvc->start_motor = eep_config.start_motor; 10577 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10578 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10579 asc_dvc->no_scam = eep_config.scam_tolerant; 10580 10581 /* 10582 * For every Target ID if any of its 'sdtr_speed[1234]' bits 10583 * are set, then set an 'sdtr_able' bit for it. 10584 */ 10585 asc_dvc->sdtr_able = 0; 10586 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 10587 if (tid == 0) { 10588 sdtr_speed = asc_dvc->sdtr_speed1; 10589 } else if (tid == 4) { 10590 sdtr_speed = asc_dvc->sdtr_speed2; 10591 } else if (tid == 8) { 10592 sdtr_speed = asc_dvc->sdtr_speed3; 10593 } else if (tid == 12) { 10594 sdtr_speed = asc_dvc->sdtr_speed4; 10595 } 10596 if (sdtr_speed & ASC_MAX_TID) { 10597 asc_dvc->sdtr_able |= (1 << tid); 10598 } 10599 sdtr_speed >>= 4; 10600 } 10601 10602 /* 10603 * Set the host maximum queuing (max. 253, min. 16) and the per device 10604 * maximum queuing (max. 63, min. 4). 10605 */ 10606 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10607 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10608 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10609 /* If the value is zero, assume it is uninitialized. */ 10610 if (eep_config.max_host_qng == 0) { 10611 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10612 } else { 10613 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10614 } 10615 } 10616 10617 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10618 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10619 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10620 /* If the value is zero, assume it is uninitialized. */ 10621 if (eep_config.max_dvc_qng == 0) { 10622 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10623 } else { 10624 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10625 } 10626 } 10627 10628 /* 10629 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10630 * set 'max_dvc_qng' to 'max_host_qng'. 10631 */ 10632 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10633 eep_config.max_dvc_qng = eep_config.max_host_qng; 10634 } 10635 10636 /* 10637 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng' 10638 * values based on possibly adjusted EEPROM values. 10639 */ 10640 asc_dvc->max_host_qng = eep_config.max_host_qng; 10641 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10642 10643 /* 10644 * If the EEPROM 'termination' field is set to automatic (0), then set 10645 * the ASC_DVC_CFG 'termination' field to automatic also. 10646 * 10647 * If the termination is specified with a non-zero 'termination' 10648 * value check that a legal value is set and set the ASC_DVC_CFG 10649 * 'termination' field appropriately. 10650 */ 10651 if (eep_config.termination_se == 0) { 10652 termination = 0; /* auto termination for SE */ 10653 } else { 10654 /* Enable manual control with low off / high off. */ 10655 if (eep_config.termination_se == 1) { 10656 termination = 0; 10657 10658 /* Enable manual control with low off / high on. */ 10659 } else if (eep_config.termination_se == 2) { 10660 termination = TERM_SE_HI; 10661 10662 /* Enable manual control with low on / high on. */ 10663 } else if (eep_config.termination_se == 3) { 10664 termination = TERM_SE; 10665 } else { 10666 /* 10667 * The EEPROM 'termination_se' field contains a bad value. 10668 * Use automatic termination instead. 10669 */ 10670 termination = 0; 10671 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10672 } 10673 } 10674 10675 if (eep_config.termination_lvd == 0) { 10676 asc_dvc->cfg->termination = termination; /* auto termination for LVD */ 10677 } else { 10678 /* Enable manual control with low off / high off. */ 10679 if (eep_config.termination_lvd == 1) { 10680 asc_dvc->cfg->termination = termination; 10681 10682 /* Enable manual control with low off / high on. */ 10683 } else if (eep_config.termination_lvd == 2) { 10684 asc_dvc->cfg->termination = termination | TERM_LVD_HI; 10685 10686 /* Enable manual control with low on / high on. */ 10687 } else if (eep_config.termination_lvd == 3) { 10688 asc_dvc->cfg->termination = termination | TERM_LVD; 10689 } else { 10690 /* 10691 * The EEPROM 'termination_lvd' field contains a bad value. 10692 * Use automatic termination instead. 10693 */ 10694 asc_dvc->cfg->termination = termination; 10695 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10696 } 10697 } 10698 10699 return warn_code; 10700 } 10701 10702 /* 10703 * Initialize the ADV_DVC_VAR structure. 10704 * 10705 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10706 * 10707 * For a non-fatal error return a warning code. If there are no warnings 10708 * then 0 is returned. 10709 */ 10710 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) 10711 { 10712 struct asc_board *board = shost_priv(shost); 10713 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var; 10714 unsigned short warn_code = 0; 10715 AdvPortAddr iop_base = asc_dvc->iop_base; 10716 u16 cmd; 10717 int status; 10718 10719 asc_dvc->err_code = 0; 10720 10721 /* 10722 * Save the state of the PCI Configuration Command Register 10723 * "Parity Error Response Control" Bit. If the bit is clear (0), 10724 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore 10725 * DMA parity errors. 10726 */ 10727 asc_dvc->cfg->control_flag = 0; 10728 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 10729 if ((cmd & PCI_COMMAND_PARITY) == 0) 10730 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR; 10731 10732 asc_dvc->cfg->chip_version = 10733 AdvGetChipVersion(iop_base, asc_dvc->bus_type); 10734 10735 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n", 10736 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1), 10737 (ushort)ADV_CHIP_ID_BYTE); 10738 10739 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n", 10740 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0), 10741 (ushort)ADV_CHIP_ID_WORD); 10742 10743 /* 10744 * Reset the chip to start and allow register writes. 10745 */ 10746 if (AdvFindSignature(iop_base) == 0) { 10747 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 10748 return ADV_ERROR; 10749 } else { 10750 /* 10751 * The caller must set 'chip_type' to a valid setting. 10752 */ 10753 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 && 10754 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 && 10755 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { 10756 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE; 10757 return ADV_ERROR; 10758 } 10759 10760 /* 10761 * Reset Chip. 10762 */ 10763 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 10764 ADV_CTRL_REG_CMD_RESET); 10765 mdelay(100); 10766 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 10767 ADV_CTRL_REG_CMD_WR_IO_REG); 10768 10769 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 10770 status = AdvInitFrom38C1600EEP(asc_dvc); 10771 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 10772 status = AdvInitFrom38C0800EEP(asc_dvc); 10773 } else { 10774 status = AdvInitFrom3550EEP(asc_dvc); 10775 } 10776 warn_code |= status; 10777 } 10778 10779 if (warn_code != 0) 10780 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code); 10781 10782 if (asc_dvc->err_code) 10783 shost_printk(KERN_ERR, shost, "error code 0x%x\n", 10784 asc_dvc->err_code); 10785 10786 return asc_dvc->err_code; 10787 } 10788 #endif 10789 10790 static struct scsi_host_template advansys_template = { 10791 .proc_name = DRV_NAME, 10792 #ifdef CONFIG_PROC_FS 10793 .show_info = advansys_show_info, 10794 #endif 10795 .name = DRV_NAME, 10796 .info = advansys_info, 10797 .queuecommand = advansys_queuecommand, 10798 .eh_host_reset_handler = advansys_reset, 10799 .bios_param = advansys_biosparam, 10800 .slave_configure = advansys_slave_configure, 10801 /* 10802 * Because the driver may control an ISA adapter 'unchecked_isa_dma' 10803 * must be set. The flag will be cleared in advansys_board_found 10804 * for non-ISA adapters. 10805 */ 10806 .unchecked_isa_dma = true, 10807 }; 10808 10809 static int advansys_wide_init_chip(struct Scsi_Host *shost) 10810 { 10811 struct asc_board *board = shost_priv(shost); 10812 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; 10813 size_t sgblk_pool_size; 10814 int warn_code, err_code; 10815 10816 /* 10817 * Allocate buffer carrier structures. The total size 10818 * is about 8 KB, so allocate all at once. 10819 */ 10820 adv_dvc->carrier = dma_alloc_coherent(board->dev, 10821 ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL); 10822 ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier); 10823 10824 if (!adv_dvc->carrier) 10825 goto kmalloc_failed; 10826 10827 /* 10828 * Allocate up to 'max_host_qng' request structures for the Wide 10829 * board. The total size is about 16 KB, so allocate all at once. 10830 * If the allocation fails decrement and try again. 10831 */ 10832 board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t); 10833 if (board->adv_reqp_size & 0x1f) { 10834 ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t)); 10835 board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size); 10836 } 10837 board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size, 10838 &board->adv_reqp_addr, GFP_KERNEL); 10839 10840 if (!board->adv_reqp) 10841 goto kmalloc_failed; 10842 10843 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp, 10844 adv_dvc->max_host_qng, board->adv_reqp_size); 10845 10846 /* 10847 * Allocate up to ADV_TOT_SG_BLOCK request structures for 10848 * the Wide board. Each structure is about 136 bytes. 10849 */ 10850 sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK; 10851 board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev, 10852 sgblk_pool_size, 32, 0); 10853 10854 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK, 10855 sizeof(adv_sgblk_t), sgblk_pool_size); 10856 10857 if (!board->adv_sgblk_pool) 10858 goto kmalloc_failed; 10859 10860 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) { 10861 ASC_DBG(2, "AdvInitAsc3550Driver()\n"); 10862 warn_code = AdvInitAsc3550Driver(adv_dvc); 10863 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) { 10864 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n"); 10865 warn_code = AdvInitAsc38C0800Driver(adv_dvc); 10866 } else { 10867 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n"); 10868 warn_code = AdvInitAsc38C1600Driver(adv_dvc); 10869 } 10870 err_code = adv_dvc->err_code; 10871 10872 if (warn_code || err_code) { 10873 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error " 10874 "0x%x\n", warn_code, err_code); 10875 } 10876 10877 goto exit; 10878 10879 kmalloc_failed: 10880 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n"); 10881 err_code = ADV_ERROR; 10882 exit: 10883 return err_code; 10884 } 10885 10886 static void advansys_wide_free_mem(struct asc_board *board) 10887 { 10888 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; 10889 10890 if (adv_dvc->carrier) { 10891 dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE, 10892 adv_dvc->carrier, adv_dvc->carrier_addr); 10893 adv_dvc->carrier = NULL; 10894 } 10895 if (board->adv_reqp) { 10896 dma_free_coherent(board->dev, board->adv_reqp_size, 10897 board->adv_reqp, board->adv_reqp_addr); 10898 board->adv_reqp = NULL; 10899 } 10900 if (board->adv_sgblk_pool) { 10901 dma_pool_destroy(board->adv_sgblk_pool); 10902 board->adv_sgblk_pool = NULL; 10903 } 10904 } 10905 10906 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop, 10907 int bus_type) 10908 { 10909 struct pci_dev *pdev; 10910 struct asc_board *boardp = shost_priv(shost); 10911 ASC_DVC_VAR *asc_dvc_varp = NULL; 10912 ADV_DVC_VAR *adv_dvc_varp = NULL; 10913 int share_irq, warn_code, ret; 10914 10915 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL; 10916 10917 if (ASC_NARROW_BOARD(boardp)) { 10918 ASC_DBG(1, "narrow board\n"); 10919 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 10920 asc_dvc_varp->bus_type = bus_type; 10921 asc_dvc_varp->drv_ptr = boardp; 10922 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg; 10923 asc_dvc_varp->iop_base = iop; 10924 } else { 10925 #ifdef CONFIG_PCI 10926 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 10927 adv_dvc_varp->drv_ptr = boardp; 10928 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg; 10929 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) { 10930 ASC_DBG(1, "wide board ASC-3550\n"); 10931 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550; 10932 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) { 10933 ASC_DBG(1, "wide board ASC-38C0800\n"); 10934 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800; 10935 } else { 10936 ASC_DBG(1, "wide board ASC-38C1600\n"); 10937 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600; 10938 } 10939 10940 boardp->asc_n_io_port = pci_resource_len(pdev, 1); 10941 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1); 10942 if (!boardp->ioremap_addr) { 10943 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) " 10944 "returned NULL\n", 10945 (long)pci_resource_start(pdev, 1), 10946 boardp->asc_n_io_port); 10947 ret = -ENODEV; 10948 goto err_shost; 10949 } 10950 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr; 10951 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base); 10952 10953 /* 10954 * Even though it isn't used to access wide boards, other 10955 * than for the debug line below, save I/O Port address so 10956 * that it can be reported. 10957 */ 10958 boardp->ioport = iop; 10959 10960 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n", 10961 (ushort)inp(iop + 1), (ushort)inpw(iop)); 10962 #endif /* CONFIG_PCI */ 10963 } 10964 10965 if (ASC_NARROW_BOARD(boardp)) { 10966 /* 10967 * Set the board bus type and PCI IRQ before 10968 * calling AscInitGetConfig(). 10969 */ 10970 switch (asc_dvc_varp->bus_type) { 10971 #ifdef CONFIG_ISA 10972 case ASC_IS_ISA: 10973 shost->unchecked_isa_dma = true; 10974 share_irq = 0; 10975 break; 10976 case ASC_IS_VL: 10977 shost->unchecked_isa_dma = false; 10978 share_irq = 0; 10979 break; 10980 case ASC_IS_EISA: 10981 shost->unchecked_isa_dma = false; 10982 share_irq = IRQF_SHARED; 10983 break; 10984 #endif /* CONFIG_ISA */ 10985 #ifdef CONFIG_PCI 10986 case ASC_IS_PCI: 10987 shost->unchecked_isa_dma = false; 10988 share_irq = IRQF_SHARED; 10989 break; 10990 #endif /* CONFIG_PCI */ 10991 default: 10992 shost_printk(KERN_ERR, shost, "unknown adapter type: " 10993 "%d\n", asc_dvc_varp->bus_type); 10994 shost->unchecked_isa_dma = false; 10995 share_irq = 0; 10996 break; 10997 } 10998 10999 /* 11000 * NOTE: AscInitGetConfig() may change the board's 11001 * bus_type value. The bus_type value should no 11002 * longer be used. If the bus_type field must be 11003 * referenced only use the bit-wise AND operator "&". 11004 */ 11005 ASC_DBG(2, "AscInitGetConfig()\n"); 11006 ret = AscInitGetConfig(shost) ? -ENODEV : 0; 11007 } else { 11008 #ifdef CONFIG_PCI 11009 /* 11010 * For Wide boards set PCI information before calling 11011 * AdvInitGetConfig(). 11012 */ 11013 shost->unchecked_isa_dma = false; 11014 share_irq = IRQF_SHARED; 11015 ASC_DBG(2, "AdvInitGetConfig()\n"); 11016 11017 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0; 11018 #else 11019 share_irq = 0; 11020 ret = -ENODEV; 11021 #endif /* CONFIG_PCI */ 11022 } 11023 11024 if (ret) 11025 goto err_unmap; 11026 11027 /* 11028 * Save the EEPROM configuration so that it can be displayed 11029 * from /proc/scsi/advansys/[0...]. 11030 */ 11031 if (ASC_NARROW_BOARD(boardp)) { 11032 11033 ASCEEP_CONFIG *ep; 11034 11035 /* 11036 * Set the adapter's target id bit in the 'init_tidmask' field. 11037 */ 11038 boardp->init_tidmask |= 11039 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id); 11040 11041 /* 11042 * Save EEPROM settings for the board. 11043 */ 11044 ep = &boardp->eep_config.asc_eep; 11045 11046 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable; 11047 ep->disc_enable = asc_dvc_varp->cfg->disc_enable; 11048 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled; 11049 ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed); 11050 ep->start_motor = asc_dvc_varp->start_motor; 11051 ep->cntl = asc_dvc_varp->dvc_cntl; 11052 ep->no_scam = asc_dvc_varp->no_scam; 11053 ep->max_total_qng = asc_dvc_varp->max_total_qng; 11054 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id); 11055 /* 'max_tag_qng' is set to the same value for every device. */ 11056 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0]; 11057 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0]; 11058 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1]; 11059 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2]; 11060 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3]; 11061 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4]; 11062 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5]; 11063 11064 /* 11065 * Modify board configuration. 11066 */ 11067 ASC_DBG(2, "AscInitSetConfig()\n"); 11068 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0; 11069 if (ret) 11070 goto err_unmap; 11071 } else { 11072 ADVEEP_3550_CONFIG *ep_3550; 11073 ADVEEP_38C0800_CONFIG *ep_38C0800; 11074 ADVEEP_38C1600_CONFIG *ep_38C1600; 11075 11076 /* 11077 * Save Wide EEP Configuration Information. 11078 */ 11079 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 11080 ep_3550 = &boardp->eep_config.adv_3550_eep; 11081 11082 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; 11083 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng; 11084 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 11085 ep_3550->termination = adv_dvc_varp->cfg->termination; 11086 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable; 11087 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl; 11088 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able; 11089 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able; 11090 ep_3550->ultra_able = adv_dvc_varp->ultra_able; 11091 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able; 11092 ep_3550->start_motor = adv_dvc_varp->start_motor; 11093 ep_3550->scsi_reset_delay = 11094 adv_dvc_varp->scsi_reset_wait; 11095 ep_3550->serial_number_word1 = 11096 adv_dvc_varp->cfg->serial1; 11097 ep_3550->serial_number_word2 = 11098 adv_dvc_varp->cfg->serial2; 11099 ep_3550->serial_number_word3 = 11100 adv_dvc_varp->cfg->serial3; 11101 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 11102 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; 11103 11104 ep_38C0800->adapter_scsi_id = 11105 adv_dvc_varp->chip_scsi_id; 11106 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng; 11107 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 11108 ep_38C0800->termination_lvd = 11109 adv_dvc_varp->cfg->termination; 11110 ep_38C0800->disc_enable = 11111 adv_dvc_varp->cfg->disc_enable; 11112 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl; 11113 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able; 11114 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; 11115 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; 11116 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; 11117 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; 11118 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; 11119 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; 11120 ep_38C0800->start_motor = adv_dvc_varp->start_motor; 11121 ep_38C0800->scsi_reset_delay = 11122 adv_dvc_varp->scsi_reset_wait; 11123 ep_38C0800->serial_number_word1 = 11124 adv_dvc_varp->cfg->serial1; 11125 ep_38C0800->serial_number_word2 = 11126 adv_dvc_varp->cfg->serial2; 11127 ep_38C0800->serial_number_word3 = 11128 adv_dvc_varp->cfg->serial3; 11129 } else { 11130 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; 11131 11132 ep_38C1600->adapter_scsi_id = 11133 adv_dvc_varp->chip_scsi_id; 11134 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng; 11135 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 11136 ep_38C1600->termination_lvd = 11137 adv_dvc_varp->cfg->termination; 11138 ep_38C1600->disc_enable = 11139 adv_dvc_varp->cfg->disc_enable; 11140 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl; 11141 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able; 11142 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; 11143 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; 11144 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; 11145 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; 11146 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; 11147 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; 11148 ep_38C1600->start_motor = adv_dvc_varp->start_motor; 11149 ep_38C1600->scsi_reset_delay = 11150 adv_dvc_varp->scsi_reset_wait; 11151 ep_38C1600->serial_number_word1 = 11152 adv_dvc_varp->cfg->serial1; 11153 ep_38C1600->serial_number_word2 = 11154 adv_dvc_varp->cfg->serial2; 11155 ep_38C1600->serial_number_word3 = 11156 adv_dvc_varp->cfg->serial3; 11157 } 11158 11159 /* 11160 * Set the adapter's target id bit in the 'init_tidmask' field. 11161 */ 11162 boardp->init_tidmask |= 11163 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id); 11164 } 11165 11166 /* 11167 * Channels are numbered beginning with 0. For AdvanSys one host 11168 * structure supports one channel. Multi-channel boards have a 11169 * separate host structure for each channel. 11170 */ 11171 shost->max_channel = 0; 11172 if (ASC_NARROW_BOARD(boardp)) { 11173 shost->max_id = ASC_MAX_TID + 1; 11174 shost->max_lun = ASC_MAX_LUN + 1; 11175 shost->max_cmd_len = ASC_MAX_CDB_LEN; 11176 11177 shost->io_port = asc_dvc_varp->iop_base; 11178 boardp->asc_n_io_port = ASC_IOADR_GAP; 11179 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id; 11180 11181 /* Set maximum number of queues the adapter can handle. */ 11182 shost->can_queue = asc_dvc_varp->max_total_qng; 11183 } else { 11184 shost->max_id = ADV_MAX_TID + 1; 11185 shost->max_lun = ADV_MAX_LUN + 1; 11186 shost->max_cmd_len = ADV_MAX_CDB_LEN; 11187 11188 /* 11189 * Save the I/O Port address and length even though 11190 * I/O ports are not used to access Wide boards. 11191 * Instead the Wide boards are accessed with 11192 * PCI Memory Mapped I/O. 11193 */ 11194 shost->io_port = iop; 11195 11196 shost->this_id = adv_dvc_varp->chip_scsi_id; 11197 11198 /* Set maximum number of queues the adapter can handle. */ 11199 shost->can_queue = adv_dvc_varp->max_host_qng; 11200 } 11201 11202 /* 11203 * Set the maximum number of scatter-gather elements the 11204 * adapter can handle. 11205 */ 11206 if (ASC_NARROW_BOARD(boardp)) { 11207 /* 11208 * Allow two commands with 'sg_tablesize' scatter-gather 11209 * elements to be executed simultaneously. This value is 11210 * the theoretical hardware limit. It may be decreased 11211 * below. 11212 */ 11213 shost->sg_tablesize = 11214 (((asc_dvc_varp->max_total_qng - 2) / 2) * 11215 ASC_SG_LIST_PER_Q) + 1; 11216 } else { 11217 shost->sg_tablesize = ADV_MAX_SG_LIST; 11218 } 11219 11220 /* 11221 * The value of 'sg_tablesize' can not exceed the SCSI 11222 * mid-level driver definition of SG_ALL. SG_ALL also 11223 * must not be exceeded, because it is used to define the 11224 * size of the scatter-gather table in 'struct asc_sg_head'. 11225 */ 11226 if (shost->sg_tablesize > SG_ALL) { 11227 shost->sg_tablesize = SG_ALL; 11228 } 11229 11230 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize); 11231 11232 /* BIOS start address. */ 11233 if (ASC_NARROW_BOARD(boardp)) { 11234 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base, 11235 asc_dvc_varp->bus_type); 11236 } else { 11237 /* 11238 * Fill-in BIOS board variables. The Wide BIOS saves 11239 * information in LRAM that is used by the driver. 11240 */ 11241 AdvReadWordLram(adv_dvc_varp->iop_base, 11242 BIOS_SIGNATURE, boardp->bios_signature); 11243 AdvReadWordLram(adv_dvc_varp->iop_base, 11244 BIOS_VERSION, boardp->bios_version); 11245 AdvReadWordLram(adv_dvc_varp->iop_base, 11246 BIOS_CODESEG, boardp->bios_codeseg); 11247 AdvReadWordLram(adv_dvc_varp->iop_base, 11248 BIOS_CODELEN, boardp->bios_codelen); 11249 11250 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n", 11251 boardp->bios_signature, boardp->bios_version); 11252 11253 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n", 11254 boardp->bios_codeseg, boardp->bios_codelen); 11255 11256 /* 11257 * If the BIOS saved a valid signature, then fill in 11258 * the BIOS code segment base address. 11259 */ 11260 if (boardp->bios_signature == 0x55AA) { 11261 /* 11262 * Convert x86 realmode code segment to a linear 11263 * address by shifting left 4. 11264 */ 11265 shost->base = ((ulong)boardp->bios_codeseg << 4); 11266 } else { 11267 shost->base = 0; 11268 } 11269 } 11270 11271 /* 11272 * Register Board Resources - I/O Port, DMA, IRQ 11273 */ 11274 11275 /* Register DMA Channel for Narrow boards. */ 11276 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */ 11277 #ifdef CONFIG_ISA 11278 if (ASC_NARROW_BOARD(boardp)) { 11279 /* Register DMA channel for ISA bus. */ 11280 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 11281 shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel; 11282 ret = request_dma(shost->dma_channel, DRV_NAME); 11283 if (ret) { 11284 shost_printk(KERN_ERR, shost, "request_dma() " 11285 "%d failed %d\n", 11286 shost->dma_channel, ret); 11287 goto err_unmap; 11288 } 11289 AscEnableIsaDma(shost->dma_channel); 11290 } 11291 } 11292 #endif /* CONFIG_ISA */ 11293 11294 /* Register IRQ Number. */ 11295 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost); 11296 11297 ret = request_irq(boardp->irq, advansys_interrupt, share_irq, 11298 DRV_NAME, shost); 11299 11300 if (ret) { 11301 if (ret == -EBUSY) { 11302 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11303 "already in use\n", boardp->irq); 11304 } else if (ret == -EINVAL) { 11305 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11306 "not valid\n", boardp->irq); 11307 } else { 11308 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11309 "failed with %d\n", boardp->irq, ret); 11310 } 11311 goto err_free_dma; 11312 } 11313 11314 /* 11315 * Initialize board RISC chip and enable interrupts. 11316 */ 11317 if (ASC_NARROW_BOARD(boardp)) { 11318 ASC_DBG(2, "AscInitAsc1000Driver()\n"); 11319 11320 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL); 11321 if (!asc_dvc_varp->overrun_buf) { 11322 ret = -ENOMEM; 11323 goto err_free_irq; 11324 } 11325 warn_code = AscInitAsc1000Driver(asc_dvc_varp); 11326 11327 if (warn_code || asc_dvc_varp->err_code) { 11328 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, " 11329 "warn 0x%x, error 0x%x\n", 11330 asc_dvc_varp->init_state, warn_code, 11331 asc_dvc_varp->err_code); 11332 if (!asc_dvc_varp->overrun_dma) { 11333 ret = -ENODEV; 11334 goto err_free_mem; 11335 } 11336 } 11337 } else { 11338 if (advansys_wide_init_chip(shost)) { 11339 ret = -ENODEV; 11340 goto err_free_mem; 11341 } 11342 } 11343 11344 ASC_DBG_PRT_SCSI_HOST(2, shost); 11345 11346 ret = scsi_add_host(shost, boardp->dev); 11347 if (ret) 11348 goto err_free_mem; 11349 11350 scsi_scan_host(shost); 11351 return 0; 11352 11353 err_free_mem: 11354 if (ASC_NARROW_BOARD(boardp)) { 11355 if (asc_dvc_varp->overrun_dma) 11356 dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma, 11357 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 11358 kfree(asc_dvc_varp->overrun_buf); 11359 } else 11360 advansys_wide_free_mem(boardp); 11361 err_free_irq: 11362 free_irq(boardp->irq, shost); 11363 err_free_dma: 11364 #ifdef CONFIG_ISA 11365 if (shost->dma_channel != NO_ISA_DMA) 11366 free_dma(shost->dma_channel); 11367 #endif 11368 err_unmap: 11369 if (boardp->ioremap_addr) 11370 iounmap(boardp->ioremap_addr); 11371 #ifdef CONFIG_PCI 11372 err_shost: 11373 #endif 11374 return ret; 11375 } 11376 11377 /* 11378 * advansys_release() 11379 * 11380 * Release resources allocated for a single AdvanSys adapter. 11381 */ 11382 static int advansys_release(struct Scsi_Host *shost) 11383 { 11384 struct asc_board *board = shost_priv(shost); 11385 ASC_DBG(1, "begin\n"); 11386 scsi_remove_host(shost); 11387 free_irq(board->irq, shost); 11388 #ifdef CONFIG_ISA 11389 if (shost->dma_channel != NO_ISA_DMA) { 11390 ASC_DBG(1, "free_dma()\n"); 11391 free_dma(shost->dma_channel); 11392 } 11393 #endif 11394 if (ASC_NARROW_BOARD(board)) { 11395 dma_unmap_single(board->dev, 11396 board->dvc_var.asc_dvc_var.overrun_dma, 11397 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 11398 kfree(board->dvc_var.asc_dvc_var.overrun_buf); 11399 } else { 11400 iounmap(board->ioremap_addr); 11401 advansys_wide_free_mem(board); 11402 } 11403 scsi_host_put(shost); 11404 ASC_DBG(1, "end\n"); 11405 return 0; 11406 } 11407 11408 #define ASC_IOADR_TABLE_MAX_IX 11 11409 11410 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = { 11411 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190, 11412 0x0210, 0x0230, 0x0250, 0x0330 11413 }; 11414 11415 /* 11416 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as: 11417 * 00: 10 11418 * 01: 11 11419 * 10: 12 11420 * 11: 15 11421 */ 11422 static unsigned int advansys_isa_irq_no(PortAddr iop_base) 11423 { 11424 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); 11425 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10; 11426 if (chip_irq == 13) 11427 chip_irq = 15; 11428 return chip_irq; 11429 } 11430 11431 static int advansys_isa_probe(struct device *dev, unsigned int id) 11432 { 11433 int err = -ENODEV; 11434 PortAddr iop_base = _asc_def_iop_base[id]; 11435 struct Scsi_Host *shost; 11436 struct asc_board *board; 11437 11438 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { 11439 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); 11440 return -ENODEV; 11441 } 11442 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); 11443 if (!AscFindSignature(iop_base)) 11444 goto release_region; 11445 if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT)) 11446 goto release_region; 11447 11448 err = -ENOMEM; 11449 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11450 if (!shost) 11451 goto release_region; 11452 11453 board = shost_priv(shost); 11454 board->irq = advansys_isa_irq_no(iop_base); 11455 board->dev = dev; 11456 board->shost = shost; 11457 11458 err = advansys_board_found(shost, iop_base, ASC_IS_ISA); 11459 if (err) 11460 goto free_host; 11461 11462 dev_set_drvdata(dev, shost); 11463 return 0; 11464 11465 free_host: 11466 scsi_host_put(shost); 11467 release_region: 11468 release_region(iop_base, ASC_IOADR_GAP); 11469 return err; 11470 } 11471 11472 static int advansys_isa_remove(struct device *dev, unsigned int id) 11473 { 11474 int ioport = _asc_def_iop_base[id]; 11475 advansys_release(dev_get_drvdata(dev)); 11476 release_region(ioport, ASC_IOADR_GAP); 11477 return 0; 11478 } 11479 11480 static struct isa_driver advansys_isa_driver = { 11481 .probe = advansys_isa_probe, 11482 .remove = advansys_isa_remove, 11483 .driver = { 11484 .owner = THIS_MODULE, 11485 .name = DRV_NAME, 11486 }, 11487 }; 11488 11489 /* 11490 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as: 11491 * 000: invalid 11492 * 001: 10 11493 * 010: 11 11494 * 011: 12 11495 * 100: invalid 11496 * 101: 14 11497 * 110: 15 11498 * 111: invalid 11499 */ 11500 static unsigned int advansys_vlb_irq_no(PortAddr iop_base) 11501 { 11502 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); 11503 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9; 11504 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15)) 11505 return 0; 11506 return chip_irq; 11507 } 11508 11509 static int advansys_vlb_probe(struct device *dev, unsigned int id) 11510 { 11511 int err = -ENODEV; 11512 PortAddr iop_base = _asc_def_iop_base[id]; 11513 struct Scsi_Host *shost; 11514 struct asc_board *board; 11515 11516 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { 11517 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); 11518 return -ENODEV; 11519 } 11520 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); 11521 if (!AscFindSignature(iop_base)) 11522 goto release_region; 11523 /* 11524 * I don't think this condition can actually happen, but the old 11525 * driver did it, and the chances of finding a VLB setup in 2007 11526 * to do testing with is slight to none. 11527 */ 11528 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL) 11529 goto release_region; 11530 11531 err = -ENOMEM; 11532 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11533 if (!shost) 11534 goto release_region; 11535 11536 board = shost_priv(shost); 11537 board->irq = advansys_vlb_irq_no(iop_base); 11538 board->dev = dev; 11539 board->shost = shost; 11540 11541 err = advansys_board_found(shost, iop_base, ASC_IS_VL); 11542 if (err) 11543 goto free_host; 11544 11545 dev_set_drvdata(dev, shost); 11546 return 0; 11547 11548 free_host: 11549 scsi_host_put(shost); 11550 release_region: 11551 release_region(iop_base, ASC_IOADR_GAP); 11552 return -ENODEV; 11553 } 11554 11555 static struct isa_driver advansys_vlb_driver = { 11556 .probe = advansys_vlb_probe, 11557 .remove = advansys_isa_remove, 11558 .driver = { 11559 .owner = THIS_MODULE, 11560 .name = "advansys_vlb", 11561 }, 11562 }; 11563 11564 static struct eisa_device_id advansys_eisa_table[] = { 11565 { "ABP7401" }, 11566 { "ABP7501" }, 11567 { "" } 11568 }; 11569 11570 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table); 11571 11572 /* 11573 * EISA is a little more tricky than PCI; each EISA device may have two 11574 * channels, and this driver is written to make each channel its own Scsi_Host 11575 */ 11576 struct eisa_scsi_data { 11577 struct Scsi_Host *host[2]; 11578 }; 11579 11580 /* 11581 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as: 11582 * 000: 10 11583 * 001: 11 11584 * 010: 12 11585 * 011: invalid 11586 * 100: 14 11587 * 101: 15 11588 * 110: invalid 11589 * 111: invalid 11590 */ 11591 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev) 11592 { 11593 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86); 11594 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10; 11595 if ((chip_irq == 13) || (chip_irq > 15)) 11596 return 0; 11597 return chip_irq; 11598 } 11599 11600 static int advansys_eisa_probe(struct device *dev) 11601 { 11602 int i, ioport, irq = 0; 11603 int err; 11604 struct eisa_device *edev = to_eisa_device(dev); 11605 struct eisa_scsi_data *data; 11606 11607 err = -ENOMEM; 11608 data = kzalloc(sizeof(*data), GFP_KERNEL); 11609 if (!data) 11610 goto fail; 11611 ioport = edev->base_addr + 0xc30; 11612 11613 err = -ENODEV; 11614 for (i = 0; i < 2; i++, ioport += 0x20) { 11615 struct asc_board *board; 11616 struct Scsi_Host *shost; 11617 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) { 11618 printk(KERN_WARNING "Region %x-%x busy\n", ioport, 11619 ioport + ASC_IOADR_GAP - 1); 11620 continue; 11621 } 11622 if (!AscFindSignature(ioport)) { 11623 release_region(ioport, ASC_IOADR_GAP); 11624 continue; 11625 } 11626 11627 /* 11628 * I don't know why we need to do this for EISA chips, but 11629 * not for any others. It looks to be equivalent to 11630 * AscGetChipCfgMsw, but I may have overlooked something, 11631 * so I'm not converting it until I get an EISA board to 11632 * test with. 11633 */ 11634 inw(ioport + 4); 11635 11636 if (!irq) 11637 irq = advansys_eisa_irq_no(edev); 11638 11639 err = -ENOMEM; 11640 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11641 if (!shost) 11642 goto release_region; 11643 11644 board = shost_priv(shost); 11645 board->irq = irq; 11646 board->dev = dev; 11647 board->shost = shost; 11648 11649 err = advansys_board_found(shost, ioport, ASC_IS_EISA); 11650 if (!err) { 11651 data->host[i] = shost; 11652 continue; 11653 } 11654 11655 scsi_host_put(shost); 11656 release_region: 11657 release_region(ioport, ASC_IOADR_GAP); 11658 break; 11659 } 11660 11661 if (err) 11662 goto free_data; 11663 dev_set_drvdata(dev, data); 11664 return 0; 11665 11666 free_data: 11667 kfree(data->host[0]); 11668 kfree(data->host[1]); 11669 kfree(data); 11670 fail: 11671 return err; 11672 } 11673 11674 static int advansys_eisa_remove(struct device *dev) 11675 { 11676 int i; 11677 struct eisa_scsi_data *data = dev_get_drvdata(dev); 11678 11679 for (i = 0; i < 2; i++) { 11680 int ioport; 11681 struct Scsi_Host *shost = data->host[i]; 11682 if (!shost) 11683 continue; 11684 ioport = shost->io_port; 11685 advansys_release(shost); 11686 release_region(ioport, ASC_IOADR_GAP); 11687 } 11688 11689 kfree(data); 11690 return 0; 11691 } 11692 11693 static struct eisa_driver advansys_eisa_driver = { 11694 .id_table = advansys_eisa_table, 11695 .driver = { 11696 .name = DRV_NAME, 11697 .probe = advansys_eisa_probe, 11698 .remove = advansys_eisa_remove, 11699 } 11700 }; 11701 11702 /* PCI Devices supported by this driver */ 11703 static struct pci_device_id advansys_pci_tbl[] = { 11704 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A, 11705 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11706 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940, 11707 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11708 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U, 11709 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11710 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW, 11711 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11712 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1, 11713 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11714 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1, 11715 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11716 {} 11717 }; 11718 11719 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl); 11720 11721 static void advansys_set_latency(struct pci_dev *pdev) 11722 { 11723 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || 11724 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { 11725 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0); 11726 } else { 11727 u8 latency; 11728 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency); 11729 if (latency < 0x20) 11730 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20); 11731 } 11732 } 11733 11734 static int advansys_pci_probe(struct pci_dev *pdev, 11735 const struct pci_device_id *ent) 11736 { 11737 int err, ioport; 11738 struct Scsi_Host *shost; 11739 struct asc_board *board; 11740 11741 err = pci_enable_device(pdev); 11742 if (err) 11743 goto fail; 11744 err = pci_request_regions(pdev, DRV_NAME); 11745 if (err) 11746 goto disable_device; 11747 pci_set_master(pdev); 11748 advansys_set_latency(pdev); 11749 11750 err = -ENODEV; 11751 if (pci_resource_len(pdev, 0) == 0) 11752 goto release_region; 11753 11754 ioport = pci_resource_start(pdev, 0); 11755 11756 err = -ENOMEM; 11757 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11758 if (!shost) 11759 goto release_region; 11760 11761 board = shost_priv(shost); 11762 board->irq = pdev->irq; 11763 board->dev = &pdev->dev; 11764 board->shost = shost; 11765 11766 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW || 11767 pdev->device == PCI_DEVICE_ID_38C0800_REV1 || 11768 pdev->device == PCI_DEVICE_ID_38C1600_REV1) { 11769 board->flags |= ASC_IS_WIDE_BOARD; 11770 } 11771 11772 err = advansys_board_found(shost, ioport, ASC_IS_PCI); 11773 if (err) 11774 goto free_host; 11775 11776 pci_set_drvdata(pdev, shost); 11777 return 0; 11778 11779 free_host: 11780 scsi_host_put(shost); 11781 release_region: 11782 pci_release_regions(pdev); 11783 disable_device: 11784 pci_disable_device(pdev); 11785 fail: 11786 return err; 11787 } 11788 11789 static void advansys_pci_remove(struct pci_dev *pdev) 11790 { 11791 advansys_release(pci_get_drvdata(pdev)); 11792 pci_release_regions(pdev); 11793 pci_disable_device(pdev); 11794 } 11795 11796 static struct pci_driver advansys_pci_driver = { 11797 .name = DRV_NAME, 11798 .id_table = advansys_pci_tbl, 11799 .probe = advansys_pci_probe, 11800 .remove = advansys_pci_remove, 11801 }; 11802 11803 static int __init advansys_init(void) 11804 { 11805 int error; 11806 11807 error = isa_register_driver(&advansys_isa_driver, 11808 ASC_IOADR_TABLE_MAX_IX); 11809 if (error) 11810 goto fail; 11811 11812 error = isa_register_driver(&advansys_vlb_driver, 11813 ASC_IOADR_TABLE_MAX_IX); 11814 if (error) 11815 goto unregister_isa; 11816 11817 error = eisa_driver_register(&advansys_eisa_driver); 11818 if (error) 11819 goto unregister_vlb; 11820 11821 error = pci_register_driver(&advansys_pci_driver); 11822 if (error) 11823 goto unregister_eisa; 11824 11825 return 0; 11826 11827 unregister_eisa: 11828 eisa_driver_unregister(&advansys_eisa_driver); 11829 unregister_vlb: 11830 isa_unregister_driver(&advansys_vlb_driver); 11831 unregister_isa: 11832 isa_unregister_driver(&advansys_isa_driver); 11833 fail: 11834 return error; 11835 } 11836 11837 static void __exit advansys_exit(void) 11838 { 11839 pci_unregister_driver(&advansys_pci_driver); 11840 eisa_driver_unregister(&advansys_eisa_driver); 11841 isa_unregister_driver(&advansys_vlb_driver); 11842 isa_unregister_driver(&advansys_isa_driver); 11843 } 11844 11845 module_init(advansys_init); 11846 module_exit(advansys_exit); 11847 11848 MODULE_LICENSE("GPL"); 11849 MODULE_FIRMWARE("advansys/mcode.bin"); 11850 MODULE_FIRMWARE("advansys/3550.bin"); 11851 MODULE_FIRMWARE("advansys/38C0800.bin"); 11852 MODULE_FIRMWARE("advansys/38C1600.bin"); 11853