1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * src.c 15 * 16 * Abstract: Hardware Device Interface for PMC SRC based controllers 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/types.h> 22 #include <linux/pci.h> 23 #include <linux/spinlock.h> 24 #include <linux/slab.h> 25 #include <linux/blkdev.h> 26 #include <linux/delay.h> 27 #include <linux/completion.h> 28 #include <linux/time.h> 29 #include <linux/interrupt.h> 30 #include <scsi/scsi_host.h> 31 32 #include "aacraid.h" 33 34 static int aac_src_get_sync_status(struct aac_dev *dev); 35 36 static irqreturn_t aac_src_intr_message(int irq, void *dev_id) 37 { 38 struct aac_msix_ctx *ctx; 39 struct aac_dev *dev; 40 unsigned long bellbits, bellbits_shifted; 41 int vector_no; 42 int isFastResponse, mode; 43 u32 index, handle; 44 45 ctx = (struct aac_msix_ctx *)dev_id; 46 dev = ctx->dev; 47 vector_no = ctx->vector_no; 48 49 if (dev->msi_enabled) { 50 mode = AAC_INT_MODE_MSI; 51 if (vector_no == 0) { 52 bellbits = src_readl(dev, MUnit.ODR_MSI); 53 if (bellbits & 0x40000) 54 mode |= AAC_INT_MODE_AIF; 55 if (bellbits & 0x1000) 56 mode |= AAC_INT_MODE_SYNC; 57 } 58 } else { 59 mode = AAC_INT_MODE_INTX; 60 bellbits = src_readl(dev, MUnit.ODR_R); 61 if (bellbits & PmDoorBellResponseSent) { 62 bellbits = PmDoorBellResponseSent; 63 src_writel(dev, MUnit.ODR_C, bellbits); 64 src_readl(dev, MUnit.ODR_C); 65 } else { 66 bellbits_shifted = (bellbits >> SRC_ODR_SHIFT); 67 src_writel(dev, MUnit.ODR_C, bellbits); 68 src_readl(dev, MUnit.ODR_C); 69 70 if (bellbits_shifted & DoorBellAifPending) 71 mode |= AAC_INT_MODE_AIF; 72 else if (bellbits_shifted & OUTBOUNDDOORBELL_0) 73 mode |= AAC_INT_MODE_SYNC; 74 } 75 } 76 77 if (mode & AAC_INT_MODE_SYNC) { 78 unsigned long sflags; 79 struct list_head *entry; 80 int send_it = 0; 81 extern int aac_sync_mode; 82 83 if (!aac_sync_mode && !dev->msi_enabled) { 84 src_writel(dev, MUnit.ODR_C, bellbits); 85 src_readl(dev, MUnit.ODR_C); 86 } 87 88 if (dev->sync_fib) { 89 if (dev->sync_fib->callback) 90 dev->sync_fib->callback(dev->sync_fib->callback_data, 91 dev->sync_fib); 92 spin_lock_irqsave(&dev->sync_fib->event_lock, sflags); 93 if (dev->sync_fib->flags & FIB_CONTEXT_FLAG_WAIT) { 94 dev->management_fib_count--; 95 complete(&dev->sync_fib->event_wait); 96 } 97 spin_unlock_irqrestore(&dev->sync_fib->event_lock, 98 sflags); 99 spin_lock_irqsave(&dev->sync_lock, sflags); 100 if (!list_empty(&dev->sync_fib_list)) { 101 entry = dev->sync_fib_list.next; 102 dev->sync_fib = list_entry(entry, 103 struct fib, 104 fiblink); 105 list_del(entry); 106 send_it = 1; 107 } else { 108 dev->sync_fib = NULL; 109 } 110 spin_unlock_irqrestore(&dev->sync_lock, sflags); 111 if (send_it) { 112 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, 113 (u32)dev->sync_fib->hw_fib_pa, 114 0, 0, 0, 0, 0, 115 NULL, NULL, NULL, NULL, NULL); 116 } 117 } 118 if (!dev->msi_enabled) 119 mode = 0; 120 121 } 122 123 if (mode & AAC_INT_MODE_AIF) { 124 /* handle AIF */ 125 if (dev->sa_firmware) { 126 u32 events = src_readl(dev, MUnit.SCR0); 127 128 aac_intr_normal(dev, events, 1, 0, NULL); 129 writel(events, &dev->IndexRegs->Mailbox[0]); 130 src_writel(dev, MUnit.IDR, 1 << 23); 131 } else { 132 if (dev->aif_thread && dev->fsa_dev) 133 aac_intr_normal(dev, 0, 2, 0, NULL); 134 } 135 if (dev->msi_enabled) 136 aac_src_access_devreg(dev, AAC_CLEAR_AIF_BIT); 137 mode = 0; 138 } 139 140 if (mode) { 141 index = dev->host_rrq_idx[vector_no]; 142 143 for (;;) { 144 isFastResponse = 0; 145 /* remove toggle bit (31) */ 146 handle = le32_to_cpu((dev->host_rrq[index]) 147 & 0x7fffffff); 148 /* check fast response bits (30, 1) */ 149 if (handle & 0x40000000) 150 isFastResponse = 1; 151 handle &= 0x0000ffff; 152 if (handle == 0) 153 break; 154 handle >>= 2; 155 if (dev->msi_enabled && dev->max_msix > 1) 156 atomic_dec(&dev->rrq_outstanding[vector_no]); 157 aac_intr_normal(dev, handle, 0, isFastResponse, NULL); 158 dev->host_rrq[index++] = 0; 159 if (index == (vector_no + 1) * dev->vector_cap) 160 index = vector_no * dev->vector_cap; 161 dev->host_rrq_idx[vector_no] = index; 162 } 163 mode = 0; 164 } 165 166 return IRQ_HANDLED; 167 } 168 169 /** 170 * aac_src_disable_interrupt - Disable interrupts 171 * @dev: Adapter 172 */ 173 174 static void aac_src_disable_interrupt(struct aac_dev *dev) 175 { 176 src_writel(dev, MUnit.OIMR, dev->OIMR = 0xffffffff); 177 } 178 179 /** 180 * aac_src_enable_interrupt_message - Enable interrupts 181 * @dev: Adapter 182 */ 183 184 static void aac_src_enable_interrupt_message(struct aac_dev *dev) 185 { 186 aac_src_access_devreg(dev, AAC_ENABLE_INTERRUPT); 187 } 188 189 /** 190 * src_sync_cmd - send a command and wait 191 * @dev: Adapter 192 * @command: Command to execute 193 * @p1: first parameter 194 * @p2: second parameter 195 * @p3: third parameter 196 * @p4: forth parameter 197 * @p5: fifth parameter 198 * @p6: sixth parameter 199 * @status: adapter status 200 * @r1: first return value 201 * @r2: second return valu 202 * @r3: third return value 203 * @r4: forth return value 204 * 205 * This routine will send a synchronous command to the adapter and wait 206 * for its completion. 207 */ 208 209 static int src_sync_cmd(struct aac_dev *dev, u32 command, 210 u32 p1, u32 p2, u32 p3, u32 p4, u32 p5, u32 p6, 211 u32 *status, u32 * r1, u32 * r2, u32 * r3, u32 * r4) 212 { 213 unsigned long start; 214 unsigned long delay; 215 int ok; 216 217 /* 218 * Write the command into Mailbox 0 219 */ 220 writel(command, &dev->IndexRegs->Mailbox[0]); 221 /* 222 * Write the parameters into Mailboxes 1 - 6 223 */ 224 writel(p1, &dev->IndexRegs->Mailbox[1]); 225 writel(p2, &dev->IndexRegs->Mailbox[2]); 226 writel(p3, &dev->IndexRegs->Mailbox[3]); 227 writel(p4, &dev->IndexRegs->Mailbox[4]); 228 229 /* 230 * Clear the synch command doorbell to start on a clean slate. 231 */ 232 if (!dev->msi_enabled) 233 src_writel(dev, 234 MUnit.ODR_C, 235 OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT); 236 237 /* 238 * Disable doorbell interrupts 239 */ 240 src_writel(dev, MUnit.OIMR, dev->OIMR = 0xffffffff); 241 242 /* 243 * Force the completion of the mask register write before issuing 244 * the interrupt. 245 */ 246 src_readl(dev, MUnit.OIMR); 247 248 /* 249 * Signal that there is a new synch command 250 */ 251 src_writel(dev, MUnit.IDR, INBOUNDDOORBELL_0 << SRC_IDR_SHIFT); 252 253 if ((!dev->sync_mode || command != SEND_SYNCHRONOUS_FIB) && 254 !dev->in_soft_reset) { 255 ok = 0; 256 start = jiffies; 257 258 if (command == IOP_RESET_ALWAYS) { 259 /* Wait up to 10 sec */ 260 delay = 10*HZ; 261 } else { 262 /* Wait up to 5 minutes */ 263 delay = 300*HZ; 264 } 265 while (time_before(jiffies, start+delay)) { 266 udelay(5); /* Delay 5 microseconds to let Mon960 get info. */ 267 /* 268 * Mon960 will set doorbell0 bit when it has completed the command. 269 */ 270 if (aac_src_get_sync_status(dev) & OUTBOUNDDOORBELL_0) { 271 /* 272 * Clear the doorbell. 273 */ 274 if (dev->msi_enabled) 275 aac_src_access_devreg(dev, 276 AAC_CLEAR_SYNC_BIT); 277 else 278 src_writel(dev, 279 MUnit.ODR_C, 280 OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT); 281 ok = 1; 282 break; 283 } 284 /* 285 * Yield the processor in case we are slow 286 */ 287 msleep(1); 288 } 289 if (unlikely(ok != 1)) { 290 /* 291 * Restore interrupt mask even though we timed out 292 */ 293 aac_adapter_enable_int(dev); 294 return -ETIMEDOUT; 295 } 296 /* 297 * Pull the synch status from Mailbox 0. 298 */ 299 if (status) 300 *status = readl(&dev->IndexRegs->Mailbox[0]); 301 if (r1) 302 *r1 = readl(&dev->IndexRegs->Mailbox[1]); 303 if (r2) 304 *r2 = readl(&dev->IndexRegs->Mailbox[2]); 305 if (r3) 306 *r3 = readl(&dev->IndexRegs->Mailbox[3]); 307 if (r4) 308 *r4 = readl(&dev->IndexRegs->Mailbox[4]); 309 if (command == GET_COMM_PREFERRED_SETTINGS) 310 dev->max_msix = 311 readl(&dev->IndexRegs->Mailbox[5]) & 0xFFFF; 312 /* 313 * Clear the synch command doorbell. 314 */ 315 if (!dev->msi_enabled) 316 src_writel(dev, 317 MUnit.ODR_C, 318 OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT); 319 } 320 321 /* 322 * Restore interrupt mask 323 */ 324 aac_adapter_enable_int(dev); 325 return 0; 326 } 327 328 /** 329 * aac_src_interrupt_adapter - interrupt adapter 330 * @dev: Adapter 331 * 332 * Send an interrupt to the i960 and breakpoint it. 333 */ 334 335 static void aac_src_interrupt_adapter(struct aac_dev *dev) 336 { 337 src_sync_cmd(dev, BREAKPOINT_REQUEST, 338 0, 0, 0, 0, 0, 0, 339 NULL, NULL, NULL, NULL, NULL); 340 } 341 342 /** 343 * aac_src_notify_adapter - send an event to the adapter 344 * @dev: Adapter 345 * @event: Event to send 346 * 347 * Notify the i960 that something it probably cares about has 348 * happened. 349 */ 350 351 static void aac_src_notify_adapter(struct aac_dev *dev, u32 event) 352 { 353 switch (event) { 354 355 case AdapNormCmdQue: 356 src_writel(dev, MUnit.ODR_C, 357 INBOUNDDOORBELL_1 << SRC_ODR_SHIFT); 358 break; 359 case HostNormRespNotFull: 360 src_writel(dev, MUnit.ODR_C, 361 INBOUNDDOORBELL_4 << SRC_ODR_SHIFT); 362 break; 363 case AdapNormRespQue: 364 src_writel(dev, MUnit.ODR_C, 365 INBOUNDDOORBELL_2 << SRC_ODR_SHIFT); 366 break; 367 case HostNormCmdNotFull: 368 src_writel(dev, MUnit.ODR_C, 369 INBOUNDDOORBELL_3 << SRC_ODR_SHIFT); 370 break; 371 case FastIo: 372 src_writel(dev, MUnit.ODR_C, 373 INBOUNDDOORBELL_6 << SRC_ODR_SHIFT); 374 break; 375 case AdapPrintfDone: 376 src_writel(dev, MUnit.ODR_C, 377 INBOUNDDOORBELL_5 << SRC_ODR_SHIFT); 378 break; 379 default: 380 BUG(); 381 break; 382 } 383 } 384 385 /** 386 * aac_src_start_adapter - activate adapter 387 * @dev: Adapter 388 * 389 * Start up processing on an i960 based AAC adapter 390 */ 391 392 static void aac_src_start_adapter(struct aac_dev *dev) 393 { 394 union aac_init *init; 395 int i; 396 397 /* reset host_rrq_idx first */ 398 for (i = 0; i < dev->max_msix; i++) { 399 dev->host_rrq_idx[i] = i * dev->vector_cap; 400 atomic_set(&dev->rrq_outstanding[i], 0); 401 } 402 atomic_set(&dev->msix_counter, 0); 403 dev->fibs_pushed_no = 0; 404 405 init = dev->init; 406 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { 407 init->r8.host_elapsed_seconds = 408 cpu_to_le32(ktime_get_real_seconds()); 409 src_sync_cmd(dev, INIT_STRUCT_BASE_ADDRESS, 410 lower_32_bits(dev->init_pa), 411 upper_32_bits(dev->init_pa), 412 sizeof(struct _r8) + 413 AAC_MAX_HRRQ * sizeof(struct _rrq), 414 0, 0, 0, NULL, NULL, NULL, NULL, NULL); 415 } else { 416 init->r7.host_elapsed_seconds = 417 cpu_to_le32(ktime_get_real_seconds()); 418 // We can only use a 32 bit address here 419 src_sync_cmd(dev, INIT_STRUCT_BASE_ADDRESS, 420 (u32)(ulong)dev->init_pa, 0, 0, 0, 0, 0, 421 NULL, NULL, NULL, NULL, NULL); 422 } 423 424 } 425 426 /** 427 * aac_src_check_health 428 * @dev: device to check if healthy 429 * 430 * Will attempt to determine if the specified adapter is alive and 431 * capable of handling requests, returning 0 if alive. 432 */ 433 static int aac_src_check_health(struct aac_dev *dev) 434 { 435 u32 status = src_readl(dev, MUnit.OMR); 436 437 /* 438 * Check to see if the board panic'd. 439 */ 440 if (unlikely(status & KERNEL_PANIC)) 441 goto err_blink; 442 443 /* 444 * Check to see if the board failed any self tests. 445 */ 446 if (unlikely(status & SELF_TEST_FAILED)) 447 goto err_out; 448 449 /* 450 * Check to see if the board failed any self tests. 451 */ 452 if (unlikely(status & MONITOR_PANIC)) 453 goto err_out; 454 455 /* 456 * Wait for the adapter to be up and running. 457 */ 458 if (unlikely(!(status & KERNEL_UP_AND_RUNNING))) 459 return -3; 460 /* 461 * Everything is OK 462 */ 463 return 0; 464 465 err_out: 466 return -1; 467 468 err_blink: 469 return (status >> 16) & 0xFF; 470 } 471 472 static inline u32 aac_get_vector(struct aac_dev *dev) 473 { 474 return atomic_inc_return(&dev->msix_counter)%dev->max_msix; 475 } 476 477 /** 478 * aac_src_deliver_message 479 * @fib: fib to issue 480 * 481 * Will send a fib, returning 0 if successful. 482 */ 483 static int aac_src_deliver_message(struct fib *fib) 484 { 485 struct aac_dev *dev = fib->dev; 486 struct aac_queue *q = &dev->queues->queue[AdapNormCmdQueue]; 487 u32 fibsize; 488 dma_addr_t address; 489 struct aac_fib_xporthdr *pFibX; 490 int native_hba; 491 #if !defined(writeq) 492 unsigned long flags; 493 #endif 494 495 u16 vector_no; 496 497 atomic_inc(&q->numpending); 498 499 native_hba = (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) ? 1 : 0; 500 501 502 if (dev->msi_enabled && dev->max_msix > 1 && 503 (native_hba || fib->hw_fib_va->header.Command != AifRequest)) { 504 505 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) 506 && dev->sa_firmware) 507 vector_no = aac_get_vector(dev); 508 else 509 vector_no = fib->vector_no; 510 511 if (native_hba) { 512 if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) { 513 struct aac_hba_tm_req *tm_req; 514 515 tm_req = (struct aac_hba_tm_req *) 516 fib->hw_fib_va; 517 if (tm_req->iu_type == 518 HBA_IU_TYPE_SCSI_TM_REQ) { 519 ((struct aac_hba_tm_req *) 520 fib->hw_fib_va)->reply_qid 521 = vector_no; 522 ((struct aac_hba_tm_req *) 523 fib->hw_fib_va)->request_id 524 += (vector_no << 16); 525 } else { 526 ((struct aac_hba_reset_req *) 527 fib->hw_fib_va)->reply_qid 528 = vector_no; 529 ((struct aac_hba_reset_req *) 530 fib->hw_fib_va)->request_id 531 += (vector_no << 16); 532 } 533 } else { 534 ((struct aac_hba_cmd_req *) 535 fib->hw_fib_va)->reply_qid 536 = vector_no; 537 ((struct aac_hba_cmd_req *) 538 fib->hw_fib_va)->request_id 539 += (vector_no << 16); 540 } 541 } else { 542 fib->hw_fib_va->header.Handle += (vector_no << 16); 543 } 544 } else { 545 vector_no = 0; 546 } 547 548 atomic_inc(&dev->rrq_outstanding[vector_no]); 549 550 if (native_hba) { 551 address = fib->hw_fib_pa; 552 fibsize = (fib->hbacmd_size + 127) / 128 - 1; 553 if (fibsize > 31) 554 fibsize = 31; 555 address |= fibsize; 556 #if defined(writeq) 557 src_writeq(dev, MUnit.IQN_L, (u64)address); 558 #else 559 spin_lock_irqsave(&fib->dev->iq_lock, flags); 560 src_writel(dev, MUnit.IQN_H, 561 upper_32_bits(address) & 0xffffffff); 562 src_writel(dev, MUnit.IQN_L, address & 0xffffffff); 563 spin_unlock_irqrestore(&fib->dev->iq_lock, flags); 564 #endif 565 } else { 566 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 567 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { 568 /* Calculate the amount to the fibsize bits */ 569 fibsize = (le16_to_cpu(fib->hw_fib_va->header.Size) 570 + 127) / 128 - 1; 571 /* New FIB header, 32-bit */ 572 address = fib->hw_fib_pa; 573 fib->hw_fib_va->header.StructType = FIB_MAGIC2; 574 fib->hw_fib_va->header.SenderFibAddress = 575 cpu_to_le32((u32)address); 576 fib->hw_fib_va->header.u.TimeStamp = 0; 577 WARN_ON(upper_32_bits(address) != 0L); 578 } else { 579 /* Calculate the amount to the fibsize bits */ 580 fibsize = (sizeof(struct aac_fib_xporthdr) + 581 le16_to_cpu(fib->hw_fib_va->header.Size) 582 + 127) / 128 - 1; 583 /* Fill XPORT header */ 584 pFibX = (struct aac_fib_xporthdr *) 585 ((unsigned char *)fib->hw_fib_va - 586 sizeof(struct aac_fib_xporthdr)); 587 pFibX->Handle = fib->hw_fib_va->header.Handle; 588 pFibX->HostAddress = 589 cpu_to_le64((u64)fib->hw_fib_pa); 590 pFibX->Size = cpu_to_le32( 591 le16_to_cpu(fib->hw_fib_va->header.Size)); 592 address = fib->hw_fib_pa - 593 (u64)sizeof(struct aac_fib_xporthdr); 594 } 595 if (fibsize > 31) 596 fibsize = 31; 597 address |= fibsize; 598 599 #if defined(writeq) 600 src_writeq(dev, MUnit.IQ_L, (u64)address); 601 #else 602 spin_lock_irqsave(&fib->dev->iq_lock, flags); 603 src_writel(dev, MUnit.IQ_H, 604 upper_32_bits(address) & 0xffffffff); 605 src_writel(dev, MUnit.IQ_L, address & 0xffffffff); 606 spin_unlock_irqrestore(&fib->dev->iq_lock, flags); 607 #endif 608 } 609 return 0; 610 } 611 612 /** 613 * aac_src_ioremap 614 * @dev: device ioremap 615 * @size: mapping resize request 616 * 617 */ 618 static int aac_src_ioremap(struct aac_dev *dev, u32 size) 619 { 620 if (!size) { 621 iounmap(dev->regs.src.bar1); 622 dev->regs.src.bar1 = NULL; 623 iounmap(dev->regs.src.bar0); 624 dev->base = dev->regs.src.bar0 = NULL; 625 return 0; 626 } 627 dev->regs.src.bar1 = ioremap(pci_resource_start(dev->pdev, 2), 628 AAC_MIN_SRC_BAR1_SIZE); 629 dev->base = NULL; 630 if (dev->regs.src.bar1 == NULL) 631 return -1; 632 dev->base = dev->regs.src.bar0 = ioremap(dev->base_start, size); 633 if (dev->base == NULL) { 634 iounmap(dev->regs.src.bar1); 635 dev->regs.src.bar1 = NULL; 636 return -1; 637 } 638 dev->IndexRegs = &((struct src_registers __iomem *) 639 dev->base)->u.tupelo.IndexRegs; 640 return 0; 641 } 642 643 /** 644 * aac_srcv_ioremap 645 * @dev: device ioremap 646 * @size: mapping resize request 647 * 648 */ 649 static int aac_srcv_ioremap(struct aac_dev *dev, u32 size) 650 { 651 if (!size) { 652 iounmap(dev->regs.src.bar0); 653 dev->base = dev->regs.src.bar0 = NULL; 654 return 0; 655 } 656 657 dev->regs.src.bar1 = 658 ioremap(pci_resource_start(dev->pdev, 2), AAC_MIN_SRCV_BAR1_SIZE); 659 dev->base = NULL; 660 if (dev->regs.src.bar1 == NULL) 661 return -1; 662 dev->base = dev->regs.src.bar0 = ioremap(dev->base_start, size); 663 if (dev->base == NULL) { 664 iounmap(dev->regs.src.bar1); 665 dev->regs.src.bar1 = NULL; 666 return -1; 667 } 668 dev->IndexRegs = &((struct src_registers __iomem *) 669 dev->base)->u.denali.IndexRegs; 670 return 0; 671 } 672 673 void aac_set_intx_mode(struct aac_dev *dev) 674 { 675 if (dev->msi_enabled) { 676 aac_src_access_devreg(dev, AAC_ENABLE_INTX); 677 dev->msi_enabled = 0; 678 msleep(5000); /* Delay 5 seconds */ 679 } 680 } 681 682 static void aac_clear_omr(struct aac_dev *dev) 683 { 684 u32 omr_value = 0; 685 686 omr_value = src_readl(dev, MUnit.OMR); 687 688 /* 689 * Check for PCI Errors or Kernel Panic 690 */ 691 if ((omr_value == INVALID_OMR) || (omr_value & KERNEL_PANIC)) 692 omr_value = 0; 693 694 /* 695 * Preserve MSIX Value if any 696 */ 697 src_writel(dev, MUnit.OMR, omr_value & AAC_INT_MODE_MSIX); 698 src_readl(dev, MUnit.OMR); 699 } 700 701 static void aac_dump_fw_fib_iop_reset(struct aac_dev *dev) 702 { 703 __le32 supported_options3; 704 705 if (!aac_fib_dump) 706 return; 707 708 supported_options3 = dev->supplement_adapter_info.supported_options3; 709 if (!(supported_options3 & AAC_OPTION_SUPPORTED3_IOP_RESET_FIB_DUMP)) 710 return; 711 712 aac_adapter_sync_cmd(dev, IOP_RESET_FW_FIB_DUMP, 713 0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL); 714 } 715 716 static bool aac_is_ctrl_up_and_running(struct aac_dev *dev) 717 { 718 bool ctrl_up = true; 719 unsigned long status, start; 720 bool is_up = false; 721 722 start = jiffies; 723 do { 724 schedule(); 725 status = src_readl(dev, MUnit.OMR); 726 727 if (status == 0xffffffff) 728 status = 0; 729 730 if (status & KERNEL_BOOTING) { 731 start = jiffies; 732 continue; 733 } 734 735 if (time_after(jiffies, start+HZ*SOFT_RESET_TIME)) { 736 ctrl_up = false; 737 break; 738 } 739 740 is_up = status & KERNEL_UP_AND_RUNNING; 741 742 } while (!is_up); 743 744 return ctrl_up; 745 } 746 747 static void aac_src_drop_io(struct aac_dev *dev) 748 { 749 if (!dev->soft_reset_support) 750 return; 751 752 aac_adapter_sync_cmd(dev, DROP_IO, 753 0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL); 754 } 755 756 static void aac_notify_fw_of_iop_reset(struct aac_dev *dev) 757 { 758 aac_adapter_sync_cmd(dev, IOP_RESET_ALWAYS, 0, 0, 0, 0, 0, 0, NULL, 759 NULL, NULL, NULL, NULL); 760 aac_src_drop_io(dev); 761 } 762 763 static void aac_send_iop_reset(struct aac_dev *dev) 764 { 765 aac_dump_fw_fib_iop_reset(dev); 766 767 aac_notify_fw_of_iop_reset(dev); 768 769 aac_set_intx_mode(dev); 770 771 aac_clear_omr(dev); 772 773 src_writel(dev, MUnit.IDR, IOP_SRC_RESET_MASK); 774 775 msleep(5000); 776 } 777 778 static void aac_send_hardware_soft_reset(struct aac_dev *dev) 779 { 780 u_int32_t val; 781 782 aac_clear_omr(dev); 783 val = readl(((char *)(dev->base) + IBW_SWR_OFFSET)); 784 val |= 0x01; 785 writel(val, ((char *)(dev->base) + IBW_SWR_OFFSET)); 786 msleep_interruptible(20000); 787 } 788 789 static int aac_src_restart_adapter(struct aac_dev *dev, int bled, u8 reset_type) 790 { 791 bool is_ctrl_up; 792 int ret = 0; 793 794 if (bled < 0) 795 goto invalid_out; 796 797 if (bled) 798 dev_err(&dev->pdev->dev, "adapter kernel panic'd %x.\n", bled); 799 800 /* 801 * When there is a BlinkLED, IOP_RESET has not effect 802 */ 803 if (bled >= 2 && dev->sa_firmware && reset_type & HW_IOP_RESET) 804 reset_type &= ~HW_IOP_RESET; 805 806 dev->a_ops.adapter_enable_int = aac_src_disable_interrupt; 807 808 dev_err(&dev->pdev->dev, "Controller reset type is %d\n", reset_type); 809 810 if (reset_type & HW_IOP_RESET) { 811 dev_info(&dev->pdev->dev, "Issuing IOP reset\n"); 812 aac_send_iop_reset(dev); 813 814 /* 815 * Creates a delay or wait till up and running comes thru 816 */ 817 is_ctrl_up = aac_is_ctrl_up_and_running(dev); 818 if (!is_ctrl_up) 819 dev_err(&dev->pdev->dev, "IOP reset failed\n"); 820 else { 821 dev_info(&dev->pdev->dev, "IOP reset succeeded\n"); 822 goto set_startup; 823 } 824 } 825 826 if (!dev->sa_firmware) { 827 dev_err(&dev->pdev->dev, "ARC Reset attempt failed\n"); 828 ret = -ENODEV; 829 goto out; 830 } 831 832 if (reset_type & HW_SOFT_RESET) { 833 dev_info(&dev->pdev->dev, "Issuing SOFT reset\n"); 834 aac_send_hardware_soft_reset(dev); 835 dev->msi_enabled = 0; 836 837 is_ctrl_up = aac_is_ctrl_up_and_running(dev); 838 if (!is_ctrl_up) { 839 dev_err(&dev->pdev->dev, "SOFT reset failed\n"); 840 ret = -ENODEV; 841 goto out; 842 } else 843 dev_info(&dev->pdev->dev, "SOFT reset succeeded\n"); 844 } 845 846 set_startup: 847 if (startup_timeout < 300) 848 startup_timeout = 300; 849 850 out: 851 return ret; 852 853 invalid_out: 854 if (src_readl(dev, MUnit.OMR) & KERNEL_PANIC) 855 ret = -ENODEV; 856 goto out; 857 } 858 859 /** 860 * aac_src_select_comm - Select communications method 861 * @dev: Adapter 862 * @comm: communications method 863 */ 864 static int aac_src_select_comm(struct aac_dev *dev, int comm) 865 { 866 switch (comm) { 867 case AAC_COMM_MESSAGE: 868 dev->a_ops.adapter_intr = aac_src_intr_message; 869 dev->a_ops.adapter_deliver = aac_src_deliver_message; 870 break; 871 default: 872 return 1; 873 } 874 return 0; 875 } 876 877 /** 878 * aac_src_init - initialize an Cardinal Frey Bar card 879 * @dev: device to configure 880 * 881 */ 882 883 int aac_src_init(struct aac_dev *dev) 884 { 885 unsigned long start; 886 unsigned long status; 887 int restart = 0; 888 int instance = dev->id; 889 const char *name = dev->name; 890 891 dev->a_ops.adapter_ioremap = aac_src_ioremap; 892 dev->a_ops.adapter_comm = aac_src_select_comm; 893 894 dev->base_size = AAC_MIN_SRC_BAR0_SIZE; 895 if (aac_adapter_ioremap(dev, dev->base_size)) { 896 printk(KERN_WARNING "%s: unable to map adapter.\n", name); 897 goto error_iounmap; 898 } 899 900 /* Failure to reset here is an option ... */ 901 dev->a_ops.adapter_sync_cmd = src_sync_cmd; 902 dev->a_ops.adapter_enable_int = aac_src_disable_interrupt; 903 904 if (dev->init_reset) { 905 dev->init_reset = false; 906 if (!aac_src_restart_adapter(dev, 0, IOP_HWSOFT_RESET)) 907 ++restart; 908 } 909 910 /* 911 * Check to see if the board panic'd while booting. 912 */ 913 status = src_readl(dev, MUnit.OMR); 914 if (status & KERNEL_PANIC) { 915 if (aac_src_restart_adapter(dev, 916 aac_src_check_health(dev), IOP_HWSOFT_RESET)) 917 goto error_iounmap; 918 ++restart; 919 } 920 /* 921 * Check to see if the board failed any self tests. 922 */ 923 status = src_readl(dev, MUnit.OMR); 924 if (status & SELF_TEST_FAILED) { 925 printk(KERN_ERR "%s%d: adapter self-test failed.\n", 926 dev->name, instance); 927 goto error_iounmap; 928 } 929 /* 930 * Check to see if the monitor panic'd while booting. 931 */ 932 if (status & MONITOR_PANIC) { 933 printk(KERN_ERR "%s%d: adapter monitor panic.\n", 934 dev->name, instance); 935 goto error_iounmap; 936 } 937 start = jiffies; 938 /* 939 * Wait for the adapter to be up and running. Wait up to 3 minutes 940 */ 941 while (!((status = src_readl(dev, MUnit.OMR)) & 942 KERNEL_UP_AND_RUNNING)) { 943 if ((restart && 944 (status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC))) || 945 time_after(jiffies, start+HZ*startup_timeout)) { 946 printk(KERN_ERR "%s%d: adapter kernel failed to start, init status = %lx.\n", 947 dev->name, instance, status); 948 goto error_iounmap; 949 } 950 if (!restart && 951 ((status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC)) || 952 time_after(jiffies, start + HZ * 953 ((startup_timeout > 60) 954 ? (startup_timeout - 60) 955 : (startup_timeout / 2))))) { 956 if (likely(!aac_src_restart_adapter(dev, 957 aac_src_check_health(dev), IOP_HWSOFT_RESET))) 958 start = jiffies; 959 ++restart; 960 } 961 msleep(1); 962 } 963 if (restart && aac_commit) 964 aac_commit = 1; 965 /* 966 * Fill in the common function dispatch table. 967 */ 968 dev->a_ops.adapter_interrupt = aac_src_interrupt_adapter; 969 dev->a_ops.adapter_disable_int = aac_src_disable_interrupt; 970 dev->a_ops.adapter_enable_int = aac_src_disable_interrupt; 971 dev->a_ops.adapter_notify = aac_src_notify_adapter; 972 dev->a_ops.adapter_sync_cmd = src_sync_cmd; 973 dev->a_ops.adapter_check_health = aac_src_check_health; 974 dev->a_ops.adapter_restart = aac_src_restart_adapter; 975 dev->a_ops.adapter_start = aac_src_start_adapter; 976 977 /* 978 * First clear out all interrupts. Then enable the one's that we 979 * can handle. 980 */ 981 aac_adapter_comm(dev, AAC_COMM_MESSAGE); 982 aac_adapter_disable_int(dev); 983 src_writel(dev, MUnit.ODR_C, 0xffffffff); 984 aac_adapter_enable_int(dev); 985 986 if (aac_init_adapter(dev) == NULL) 987 goto error_iounmap; 988 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE1) 989 goto error_iounmap; 990 991 dev->msi = !pci_enable_msi(dev->pdev); 992 993 dev->aac_msix[0].vector_no = 0; 994 dev->aac_msix[0].dev = dev; 995 996 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, 997 IRQF_SHARED, "aacraid", &(dev->aac_msix[0])) < 0) { 998 999 if (dev->msi) 1000 pci_disable_msi(dev->pdev); 1001 1002 printk(KERN_ERR "%s%d: Interrupt unavailable.\n", 1003 name, instance); 1004 goto error_iounmap; 1005 } 1006 dev->dbg_base = pci_resource_start(dev->pdev, 2); 1007 dev->dbg_base_mapped = dev->regs.src.bar1; 1008 dev->dbg_size = AAC_MIN_SRC_BAR1_SIZE; 1009 dev->a_ops.adapter_enable_int = aac_src_enable_interrupt_message; 1010 1011 aac_adapter_enable_int(dev); 1012 1013 if (!dev->sync_mode) { 1014 /* 1015 * Tell the adapter that all is configured, and it can 1016 * start accepting requests 1017 */ 1018 aac_src_start_adapter(dev); 1019 } 1020 return 0; 1021 1022 error_iounmap: 1023 1024 return -1; 1025 } 1026 1027 static int aac_src_wait_sync(struct aac_dev *dev, int *status) 1028 { 1029 unsigned long start = jiffies; 1030 unsigned long usecs = 0; 1031 int delay = 5 * HZ; 1032 int rc = 1; 1033 1034 while (time_before(jiffies, start+delay)) { 1035 /* 1036 * Delay 5 microseconds to let Mon960 get info. 1037 */ 1038 udelay(5); 1039 1040 /* 1041 * Mon960 will set doorbell0 bit when it has completed the 1042 * command. 1043 */ 1044 if (aac_src_get_sync_status(dev) & OUTBOUNDDOORBELL_0) { 1045 /* 1046 * Clear: the doorbell. 1047 */ 1048 if (dev->msi_enabled) 1049 aac_src_access_devreg(dev, AAC_CLEAR_SYNC_BIT); 1050 else 1051 src_writel(dev, MUnit.ODR_C, 1052 OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT); 1053 rc = 0; 1054 1055 break; 1056 } 1057 1058 /* 1059 * Yield the processor in case we are slow 1060 */ 1061 usecs = 1 * USEC_PER_MSEC; 1062 usleep_range(usecs, usecs + 50); 1063 } 1064 /* 1065 * Pull the synch status from Mailbox 0. 1066 */ 1067 if (status && !rc) { 1068 status[0] = readl(&dev->IndexRegs->Mailbox[0]); 1069 status[1] = readl(&dev->IndexRegs->Mailbox[1]); 1070 status[2] = readl(&dev->IndexRegs->Mailbox[2]); 1071 status[3] = readl(&dev->IndexRegs->Mailbox[3]); 1072 status[4] = readl(&dev->IndexRegs->Mailbox[4]); 1073 } 1074 1075 return rc; 1076 } 1077 1078 /** 1079 * aac_src_soft_reset - perform soft reset to speed up 1080 * access 1081 * 1082 * Assumptions: That the controller is in a state where we can 1083 * bring it back to life with an init struct. We can only use 1084 * fast sync commands, as the timeout is 5 seconds. 1085 * 1086 * @dev: device to configure 1087 * 1088 */ 1089 1090 static int aac_src_soft_reset(struct aac_dev *dev) 1091 { 1092 u32 status_omr = src_readl(dev, MUnit.OMR); 1093 u32 status[5]; 1094 int rc = 1; 1095 int state = 0; 1096 char *state_str[7] = { 1097 "GET_ADAPTER_PROPERTIES Failed", 1098 "GET_ADAPTER_PROPERTIES timeout", 1099 "SOFT_RESET not supported", 1100 "DROP_IO Failed", 1101 "DROP_IO timeout", 1102 "Check Health failed" 1103 }; 1104 1105 if (status_omr == INVALID_OMR) 1106 return 1; // pcie hosed 1107 1108 if (!(status_omr & KERNEL_UP_AND_RUNNING)) 1109 return 1; // not up and running 1110 1111 /* 1112 * We go into soft reset mode to allow us to handle response 1113 */ 1114 dev->in_soft_reset = 1; 1115 dev->msi_enabled = status_omr & AAC_INT_MODE_MSIX; 1116 1117 /* Get adapter properties */ 1118 rc = aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES, 0, 0, 0, 1119 0, 0, 0, status+0, status+1, status+2, status+3, status+4); 1120 if (rc) 1121 goto out; 1122 1123 state++; 1124 if (aac_src_wait_sync(dev, status)) { 1125 rc = 1; 1126 goto out; 1127 } 1128 1129 state++; 1130 if (!(status[1] & le32_to_cpu(AAC_OPT_EXTENDED) && 1131 (status[4] & le32_to_cpu(AAC_EXTOPT_SOFT_RESET)))) { 1132 rc = 2; 1133 goto out; 1134 } 1135 1136 if ((status[1] & le32_to_cpu(AAC_OPT_EXTENDED)) && 1137 (status[4] & le32_to_cpu(AAC_EXTOPT_SA_FIRMWARE))) 1138 dev->sa_firmware = 1; 1139 1140 state++; 1141 rc = aac_adapter_sync_cmd(dev, DROP_IO, 0, 0, 0, 0, 0, 0, 1142 status+0, status+1, status+2, status+3, status+4); 1143 1144 if (rc) 1145 goto out; 1146 1147 state++; 1148 if (aac_src_wait_sync(dev, status)) { 1149 rc = 3; 1150 goto out; 1151 } 1152 1153 if (status[1]) 1154 dev_err(&dev->pdev->dev, "%s: %d outstanding I/O pending\n", 1155 __func__, status[1]); 1156 1157 state++; 1158 rc = aac_src_check_health(dev); 1159 1160 out: 1161 dev->in_soft_reset = 0; 1162 dev->msi_enabled = 0; 1163 if (rc) 1164 dev_err(&dev->pdev->dev, "%s: %s status = %d", __func__, 1165 state_str[state], rc); 1166 1167 return rc; 1168 } 1169 /** 1170 * aac_srcv_init - initialize an SRCv card 1171 * @dev: device to configure 1172 * 1173 */ 1174 1175 int aac_srcv_init(struct aac_dev *dev) 1176 { 1177 unsigned long start; 1178 unsigned long status; 1179 int restart = 0; 1180 int instance = dev->id; 1181 const char *name = dev->name; 1182 1183 dev->a_ops.adapter_ioremap = aac_srcv_ioremap; 1184 dev->a_ops.adapter_comm = aac_src_select_comm; 1185 1186 dev->base_size = AAC_MIN_SRCV_BAR0_SIZE; 1187 if (aac_adapter_ioremap(dev, dev->base_size)) { 1188 printk(KERN_WARNING "%s: unable to map adapter.\n", name); 1189 goto error_iounmap; 1190 } 1191 1192 /* Failure to reset here is an option ... */ 1193 dev->a_ops.adapter_sync_cmd = src_sync_cmd; 1194 dev->a_ops.adapter_enable_int = aac_src_disable_interrupt; 1195 1196 if (dev->init_reset) { 1197 dev->init_reset = false; 1198 if (aac_src_soft_reset(dev)) { 1199 aac_src_restart_adapter(dev, 0, IOP_HWSOFT_RESET); 1200 ++restart; 1201 } 1202 } 1203 1204 /* 1205 * Check to see if flash update is running. 1206 * Wait for the adapter to be up and running. Wait up to 5 minutes 1207 */ 1208 status = src_readl(dev, MUnit.OMR); 1209 if (status & FLASH_UPD_PENDING) { 1210 start = jiffies; 1211 do { 1212 status = src_readl(dev, MUnit.OMR); 1213 if (time_after(jiffies, start+HZ*FWUPD_TIMEOUT)) { 1214 printk(KERN_ERR "%s%d: adapter flash update failed.\n", 1215 dev->name, instance); 1216 goto error_iounmap; 1217 } 1218 } while (!(status & FLASH_UPD_SUCCESS) && 1219 !(status & FLASH_UPD_FAILED)); 1220 /* Delay 10 seconds. 1221 * Because right now FW is doing a soft reset, 1222 * do not read scratch pad register at this time 1223 */ 1224 ssleep(10); 1225 } 1226 /* 1227 * Check to see if the board panic'd while booting. 1228 */ 1229 status = src_readl(dev, MUnit.OMR); 1230 if (status & KERNEL_PANIC) { 1231 if (aac_src_restart_adapter(dev, 1232 aac_src_check_health(dev), IOP_HWSOFT_RESET)) 1233 goto error_iounmap; 1234 ++restart; 1235 } 1236 /* 1237 * Check to see if the board failed any self tests. 1238 */ 1239 status = src_readl(dev, MUnit.OMR); 1240 if (status & SELF_TEST_FAILED) { 1241 printk(KERN_ERR "%s%d: adapter self-test failed.\n", dev->name, instance); 1242 goto error_iounmap; 1243 } 1244 /* 1245 * Check to see if the monitor panic'd while booting. 1246 */ 1247 if (status & MONITOR_PANIC) { 1248 printk(KERN_ERR "%s%d: adapter monitor panic.\n", dev->name, instance); 1249 goto error_iounmap; 1250 } 1251 1252 start = jiffies; 1253 /* 1254 * Wait for the adapter to be up and running. Wait up to 3 minutes 1255 */ 1256 do { 1257 status = src_readl(dev, MUnit.OMR); 1258 if (status == INVALID_OMR) 1259 status = 0; 1260 1261 if ((restart && 1262 (status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC))) || 1263 time_after(jiffies, start+HZ*startup_timeout)) { 1264 printk(KERN_ERR "%s%d: adapter kernel failed to start, init status = %lx.\n", 1265 dev->name, instance, status); 1266 goto error_iounmap; 1267 } 1268 if (!restart && 1269 ((status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC)) || 1270 time_after(jiffies, start + HZ * 1271 ((startup_timeout > 60) 1272 ? (startup_timeout - 60) 1273 : (startup_timeout / 2))))) { 1274 if (likely(!aac_src_restart_adapter(dev, 1275 aac_src_check_health(dev), IOP_HWSOFT_RESET))) 1276 start = jiffies; 1277 ++restart; 1278 } 1279 msleep(1); 1280 } while (!(status & KERNEL_UP_AND_RUNNING)); 1281 1282 if (restart && aac_commit) 1283 aac_commit = 1; 1284 /* 1285 * Fill in the common function dispatch table. 1286 */ 1287 dev->a_ops.adapter_interrupt = aac_src_interrupt_adapter; 1288 dev->a_ops.adapter_disable_int = aac_src_disable_interrupt; 1289 dev->a_ops.adapter_enable_int = aac_src_disable_interrupt; 1290 dev->a_ops.adapter_notify = aac_src_notify_adapter; 1291 dev->a_ops.adapter_sync_cmd = src_sync_cmd; 1292 dev->a_ops.adapter_check_health = aac_src_check_health; 1293 dev->a_ops.adapter_restart = aac_src_restart_adapter; 1294 dev->a_ops.adapter_start = aac_src_start_adapter; 1295 1296 /* 1297 * First clear out all interrupts. Then enable the one's that we 1298 * can handle. 1299 */ 1300 aac_adapter_comm(dev, AAC_COMM_MESSAGE); 1301 aac_adapter_disable_int(dev); 1302 src_writel(dev, MUnit.ODR_C, 0xffffffff); 1303 aac_adapter_enable_int(dev); 1304 1305 if (aac_init_adapter(dev) == NULL) 1306 goto error_iounmap; 1307 if ((dev->comm_interface != AAC_COMM_MESSAGE_TYPE2) && 1308 (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)) 1309 goto error_iounmap; 1310 if (dev->msi_enabled) 1311 aac_src_access_devreg(dev, AAC_ENABLE_MSIX); 1312 1313 if (aac_acquire_irq(dev)) 1314 goto error_iounmap; 1315 1316 dev->dbg_base = pci_resource_start(dev->pdev, 2); 1317 dev->dbg_base_mapped = dev->regs.src.bar1; 1318 dev->dbg_size = AAC_MIN_SRCV_BAR1_SIZE; 1319 dev->a_ops.adapter_enable_int = aac_src_enable_interrupt_message; 1320 1321 aac_adapter_enable_int(dev); 1322 1323 if (!dev->sync_mode) { 1324 /* 1325 * Tell the adapter that all is configured, and it can 1326 * start accepting requests 1327 */ 1328 aac_src_start_adapter(dev); 1329 } 1330 return 0; 1331 1332 error_iounmap: 1333 1334 return -1; 1335 } 1336 1337 void aac_src_access_devreg(struct aac_dev *dev, int mode) 1338 { 1339 u_int32_t val; 1340 1341 switch (mode) { 1342 case AAC_ENABLE_INTERRUPT: 1343 src_writel(dev, 1344 MUnit.OIMR, 1345 dev->OIMR = (dev->msi_enabled ? 1346 AAC_INT_ENABLE_TYPE1_MSIX : 1347 AAC_INT_ENABLE_TYPE1_INTX)); 1348 break; 1349 1350 case AAC_DISABLE_INTERRUPT: 1351 src_writel(dev, 1352 MUnit.OIMR, 1353 dev->OIMR = AAC_INT_DISABLE_ALL); 1354 break; 1355 1356 case AAC_ENABLE_MSIX: 1357 /* set bit 6 */ 1358 val = src_readl(dev, MUnit.IDR); 1359 val |= 0x40; 1360 src_writel(dev, MUnit.IDR, val); 1361 src_readl(dev, MUnit.IDR); 1362 /* unmask int. */ 1363 val = PMC_ALL_INTERRUPT_BITS; 1364 src_writel(dev, MUnit.IOAR, val); 1365 val = src_readl(dev, MUnit.OIMR); 1366 src_writel(dev, 1367 MUnit.OIMR, 1368 val & (~(PMC_GLOBAL_INT_BIT2 | PMC_GLOBAL_INT_BIT0))); 1369 break; 1370 1371 case AAC_DISABLE_MSIX: 1372 /* reset bit 6 */ 1373 val = src_readl(dev, MUnit.IDR); 1374 val &= ~0x40; 1375 src_writel(dev, MUnit.IDR, val); 1376 src_readl(dev, MUnit.IDR); 1377 break; 1378 1379 case AAC_CLEAR_AIF_BIT: 1380 /* set bit 5 */ 1381 val = src_readl(dev, MUnit.IDR); 1382 val |= 0x20; 1383 src_writel(dev, MUnit.IDR, val); 1384 src_readl(dev, MUnit.IDR); 1385 break; 1386 1387 case AAC_CLEAR_SYNC_BIT: 1388 /* set bit 4 */ 1389 val = src_readl(dev, MUnit.IDR); 1390 val |= 0x10; 1391 src_writel(dev, MUnit.IDR, val); 1392 src_readl(dev, MUnit.IDR); 1393 break; 1394 1395 case AAC_ENABLE_INTX: 1396 /* set bit 7 */ 1397 val = src_readl(dev, MUnit.IDR); 1398 val |= 0x80; 1399 src_writel(dev, MUnit.IDR, val); 1400 src_readl(dev, MUnit.IDR); 1401 /* unmask int. */ 1402 val = PMC_ALL_INTERRUPT_BITS; 1403 src_writel(dev, MUnit.IOAR, val); 1404 src_readl(dev, MUnit.IOAR); 1405 val = src_readl(dev, MUnit.OIMR); 1406 src_writel(dev, MUnit.OIMR, 1407 val & (~(PMC_GLOBAL_INT_BIT2))); 1408 break; 1409 1410 default: 1411 break; 1412 } 1413 } 1414 1415 static int aac_src_get_sync_status(struct aac_dev *dev) 1416 { 1417 int msix_val = 0; 1418 int legacy_val = 0; 1419 1420 msix_val = src_readl(dev, MUnit.ODR_MSI) & SRC_MSI_READ_MASK ? 1 : 0; 1421 1422 if (!dev->msi_enabled) { 1423 /* 1424 * if Legacy int status indicates cmd is not complete 1425 * sample MSIx register to see if it indiactes cmd complete, 1426 * if yes set the controller in MSIx mode and consider cmd 1427 * completed 1428 */ 1429 legacy_val = src_readl(dev, MUnit.ODR_R) >> SRC_ODR_SHIFT; 1430 if (!(legacy_val & 1) && msix_val) 1431 dev->msi_enabled = 1; 1432 return legacy_val; 1433 } 1434 1435 return msix_val; 1436 } 1437