xref: /linux/drivers/scsi/aacraid/linit.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *   linit.c
28  *
29  * Abstract: Linux Driver entry module for Adaptec RAID Array Controller
30  */
31 
32 
33 #include <linux/compat.h>
34 #include <linux/blkdev.h>
35 #include <linux/completion.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/moduleparam.h>
41 #include <linux/pci.h>
42 #include <linux/aer.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/spinlock.h>
47 #include <linux/syscalls.h>
48 #include <linux/delay.h>
49 #include <linux/kthread.h>
50 
51 #include <scsi/scsi.h>
52 #include <scsi/scsi_cmnd.h>
53 #include <scsi/scsi_device.h>
54 #include <scsi/scsi_host.h>
55 #include <scsi/scsi_tcq.h>
56 #include <scsi/scsicam.h>
57 #include <scsi/scsi_eh.h>
58 
59 #include "aacraid.h"
60 
61 #define AAC_DRIVER_VERSION		"1.2.1"
62 #ifndef AAC_DRIVER_BRANCH
63 #define AAC_DRIVER_BRANCH		""
64 #endif
65 #define AAC_DRIVERNAME			"aacraid"
66 
67 #ifdef AAC_DRIVER_BUILD
68 #define _str(x) #x
69 #define str(x) _str(x)
70 #define AAC_DRIVER_FULL_VERSION	AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH
71 #else
72 #define AAC_DRIVER_FULL_VERSION	AAC_DRIVER_VERSION AAC_DRIVER_BRANCH
73 #endif
74 
75 MODULE_AUTHOR("Red Hat Inc and Adaptec");
76 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, "
77 		   "Adaptec Advanced Raid Products, "
78 		   "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(AAC_DRIVER_FULL_VERSION);
81 
82 static DEFINE_MUTEX(aac_mutex);
83 static LIST_HEAD(aac_devices);
84 static int aac_cfg_major = AAC_CHARDEV_UNREGISTERED;
85 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION;
86 
87 /*
88  * Because of the way Linux names scsi devices, the order in this table has
89  * become important.  Check for on-board Raid first, add-in cards second.
90  *
91  * Note: The last field is used to index into aac_drivers below.
92  */
93 static const struct pci_device_id aac_pci_tbl[] = {
94 	{ 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */
95 	{ 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */
96 	{ 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */
97 	{ 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
98 	{ 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */
99 	{ 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */
100 	{ 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
101 	{ 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */
102 	{ 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */
103 	{ 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */
104 	{ 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */
105 	{ 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */
106 	{ 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */
107 	{ 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */
108 	{ 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */
109 	{ 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */
110 
111 	{ 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */
112 	{ 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */
113 	{ 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
114 	{ 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
115 	{ 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
116 	{ 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */
117 	{ 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */
118 	{ 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */
119 	{ 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */
120 	{ 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */
121 	{ 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */
122 	{ 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */
123 	{ 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */
124 	{ 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */
125 	{ 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */
126 	{ 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */
127 	{ 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */
128 	{ 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */
129 	{ 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */
130 	{ 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */
131 	{ 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
132 	{ 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
133 	{ 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
134 	{ 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
135 	{ 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
136 	{ 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
137 	{ 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
138 	{ 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */
139 	{ 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */
140 	{ 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */
141 	{ 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */
142 	{ 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */
143 	{ 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */
144 	{ 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */
145 	{ 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */
146 	{ 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */
147 	{ 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */
148 	{ 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */
149 
150 	{ 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/
151 	{ 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/
152 	{ 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/
153 	{ 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */
154 	{ 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */
155 
156 	{ 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */
157 	{ 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */
158 	{ 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */
159 	{ 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */
160 	{ 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */
161 	{ 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */
162 	{ 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */
163 	{ 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */
164 	{ 0,}
165 };
166 MODULE_DEVICE_TABLE(pci, aac_pci_tbl);
167 
168 /*
169  * dmb - For now we add the number of channels to this structure.
170  * In the future we should add a fib that reports the number of channels
171  * for the card.  At that time we can remove the channels from here
172  */
173 static struct aac_driver_ident aac_drivers[] = {
174 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */
175 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */
176 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */
177 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
178 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */
179 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */
180 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
181 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */
182 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */
183 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "catapult        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */
184 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "tomcat          ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */
185 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2120S   ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG },		      /* Adaptec 2120S (Crusader) */
186 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG },		      /* Adaptec 2200S (Vulcan) */
187 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */
188 	{ aac_rx_init, "aacraid",  "Legend  ", "Legend S220     ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */
189 	{ aac_rx_init, "aacraid",  "Legend  ", "Legend S230     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */
190 
191 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3230S   ", 2 }, /* Adaptec 3230S (Harrier) */
192 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3240S   ", 2 }, /* Adaptec 3240S (Tornado) */
193 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020ZCR     ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
194 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025ZCR     ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
195 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
196 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */
197 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2820SA      ", 1 }, /* AAR-2820SA (Intruder) */
198 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2620SA      ", 1 }, /* AAR-2620SA (Intruder) */
199 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2420SA      ", 1 }, /* AAR-2420SA (Intruder) */
200 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9024RO       ", 2 }, /* ICP9024RO (Lancer) */
201 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9014RO       ", 1 }, /* ICP9014RO (Lancer) */
202 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9047MA       ", 1 }, /* ICP9047MA (Lancer) */
203 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9087MA       ", 1 }, /* ICP9087MA (Lancer) */
204 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP5445AU       ", 1 }, /* ICP5445AU (Hurricane44) */
205 	{ aac_rx_init, "aacraid",  "ICP     ", "ICP9085LI       ", 1 }, /* ICP9085LI (Marauder-X) */
206 	{ aac_rx_init, "aacraid",  "ICP     ", "ICP5085BR       ", 1 }, /* ICP5085BR (Marauder-E) */
207 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9067MA       ", 1 }, /* ICP9067MA (Intruder-6) */
208 	{ NULL        , "aacraid",  "ADAPTEC ", "Themisto        ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */
209 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "Callisto        ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */
210 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020SA       ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
211 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025SA       ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
212 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
213 	{ aac_rx_init, "aacraid",  "DELL    ", "CERC SR2        ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
214 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
215 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
216 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2026ZCR     ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
217 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2610SA      ", 1 }, /* SATA 6Ch (Bearcat) */
218 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2240S       ", 1 }, /* ASR-2240S (SabreExpress) */
219 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4005        ", 1 }, /* ASR-4005 */
220 	{ aac_rx_init, "ServeRAID","IBM     ", "ServeRAID 8i    ", 1 }, /* IBM 8i (AvonPark) */
221 	{ aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */
222 	{ aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */
223 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4000        ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */
224 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4800SAS     ", 1 }, /* ASR-4800SAS (Marauder-X) */
225 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4805SAS     ", 1 }, /* ASR-4805SAS (Marauder-E) */
226 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-3800        ", 1 }, /* ASR-3800 (Hurricane44) */
227 
228 	{ aac_rx_init, "percraid", "DELL    ", "PERC 320/DC     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/
229 	{ aac_sa_init, "aacraid",  "ADAPTEC ", "Adaptec 5400S   ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
230 	{ aac_sa_init, "aacraid",  "ADAPTEC ", "AAC-364         ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
231 	{ aac_sa_init, "percraid", "DELL    ", "PERCRAID        ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */
232 	{ aac_sa_init, "hpnraid",  "HP      ", "NetRAID         ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */
233 
234 	{ aac_rx_init, "aacraid",  "DELL    ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */
235 	{ aac_rx_init, "aacraid",  "Legend  ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */
236 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Catch All */
237 	{ aac_rkt_init, "aacraid", "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Rocket Catch All */
238 	{ aac_nark_init, "aacraid", "ADAPTEC ", "RAID           ", 2 }, /* Adaptec NEMER/ARK Catch All */
239 	{ aac_src_init, "aacraid", "ADAPTEC ", "RAID            ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 6 (Tupelo) */
240 	{ aac_srcv_init, "aacraid", "ADAPTEC ", "RAID            ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 7 (Denali) */
241 	{ aac_srcv_init, "aacraid", "ADAPTEC ", "RAID            ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 8 */
242 };
243 
244 /**
245  *	aac_queuecommand	-	queue a SCSI command
246  *	@cmd:		SCSI command to queue
247  *	@done:		Function to call on command completion
248  *
249  *	Queues a command for execution by the associated Host Adapter.
250  *
251  *	TODO: unify with aac_scsi_cmd().
252  */
253 
254 static int aac_queuecommand(struct Scsi_Host *shost,
255 			    struct scsi_cmnd *cmd)
256 {
257 	int r = 0;
258 	cmd->SCp.phase = AAC_OWNER_LOWLEVEL;
259 	r = (aac_scsi_cmd(cmd) ? FAILED : 0);
260 	return r;
261 }
262 
263 /**
264  *	aac_info		-	Returns the host adapter name
265  *	@shost:		Scsi host to report on
266  *
267  *	Returns a static string describing the device in question
268  */
269 
270 static const char *aac_info(struct Scsi_Host *shost)
271 {
272 	struct aac_dev *dev = (struct aac_dev *)shost->hostdata;
273 	return aac_drivers[dev->cardtype].name;
274 }
275 
276 /**
277  *	aac_get_driver_ident
278  *	@devtype: index into lookup table
279  *
280  *	Returns a pointer to the entry in the driver lookup table.
281  */
282 
283 struct aac_driver_ident* aac_get_driver_ident(int devtype)
284 {
285 	return &aac_drivers[devtype];
286 }
287 
288 /**
289  *	aac_biosparm	-	return BIOS parameters for disk
290  *	@sdev: The scsi device corresponding to the disk
291  *	@bdev: the block device corresponding to the disk
292  *	@capacity: the sector capacity of the disk
293  *	@geom: geometry block to fill in
294  *
295  *	Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk.
296  *	The default disk geometry is 64 heads, 32 sectors, and the appropriate
297  *	number of cylinders so as not to exceed drive capacity.  In order for
298  *	disks equal to or larger than 1 GB to be addressable by the BIOS
299  *	without exceeding the BIOS limitation of 1024 cylinders, Extended
300  *	Translation should be enabled.   With Extended Translation enabled,
301  *	drives between 1 GB inclusive and 2 GB exclusive are given a disk
302  *	geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive
303  *	are given a disk geometry of 255 heads and 63 sectors.  However, if
304  *	the BIOS detects that the Extended Translation setting does not match
305  *	the geometry in the partition table, then the translation inferred
306  *	from the partition table will be used by the BIOS, and a warning may
307  *	be displayed.
308  */
309 
310 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev,
311 			sector_t capacity, int *geom)
312 {
313 	struct diskparm *param = (struct diskparm *)geom;
314 	unsigned char *buf;
315 
316 	dprintk((KERN_DEBUG "aac_biosparm.\n"));
317 
318 	/*
319 	 *	Assuming extended translation is enabled - #REVISIT#
320 	 */
321 	if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */
322 		if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */
323 			param->heads = 255;
324 			param->sectors = 63;
325 		} else {
326 			param->heads = 128;
327 			param->sectors = 32;
328 		}
329 	} else {
330 		param->heads = 64;
331 		param->sectors = 32;
332 	}
333 
334 	param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
335 
336 	/*
337 	 *	Read the first 1024 bytes from the disk device, if the boot
338 	 *	sector partition table is valid, search for a partition table
339 	 *	entry whose end_head matches one of the standard geometry
340 	 *	translations ( 64/32, 128/32, 255/63 ).
341 	 */
342 	buf = scsi_bios_ptable(bdev);
343 	if (!buf)
344 		return 0;
345 	if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) {
346 		struct partition *first = (struct partition * )buf;
347 		struct partition *entry = first;
348 		int saved_cylinders = param->cylinders;
349 		int num;
350 		unsigned char end_head, end_sec;
351 
352 		for(num = 0; num < 4; num++) {
353 			end_head = entry->end_head;
354 			end_sec = entry->end_sector & 0x3f;
355 
356 			if(end_head == 63) {
357 				param->heads = 64;
358 				param->sectors = 32;
359 				break;
360 			} else if(end_head == 127) {
361 				param->heads = 128;
362 				param->sectors = 32;
363 				break;
364 			} else if(end_head == 254) {
365 				param->heads = 255;
366 				param->sectors = 63;
367 				break;
368 			}
369 			entry++;
370 		}
371 
372 		if (num == 4) {
373 			end_head = first->end_head;
374 			end_sec = first->end_sector & 0x3f;
375 		}
376 
377 		param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
378 		if (num < 4 && end_sec == param->sectors) {
379 			if (param->cylinders != saved_cylinders)
380 				dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n",
381 					param->heads, param->sectors, num));
382 		} else if (end_head > 0 || end_sec > 0) {
383 			dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n",
384 				end_head + 1, end_sec, num));
385 			dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n",
386 					param->heads, param->sectors));
387 		}
388 	}
389 	kfree(buf);
390 	return 0;
391 }
392 
393 /**
394  *	aac_slave_configure		-	compute queue depths
395  *	@sdev:	SCSI device we are considering
396  *
397  *	Selects queue depths for each target device based on the host adapter's
398  *	total capacity and the queue depth supported by the target device.
399  *	A queue depth of one automatically disables tagged queueing.
400  */
401 
402 static int aac_slave_configure(struct scsi_device *sdev)
403 {
404 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
405 	int chn, tid;
406 	unsigned int depth = 0;
407 	unsigned int set_timeout = 0;
408 
409 	chn = aac_logical_to_phys(sdev_channel(sdev));
410 	tid = sdev_id(sdev);
411 	if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS &&
412 		aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
413 		depth = aac->hba_map[chn][tid].qd_limit;
414 		set_timeout = 1;
415 		goto common_config;
416 	}
417 
418 
419 	if (aac->jbod && (sdev->type == TYPE_DISK))
420 		sdev->removable = 1;
421 
422 	if (sdev->type == TYPE_DISK
423 	 && sdev_channel(sdev) != CONTAINER_CHANNEL
424 	 && (!aac->jbod || sdev->inq_periph_qual)
425 	 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) {
426 
427 		if (expose_physicals == 0)
428 			return -ENXIO;
429 
430 		if (expose_physicals < 0)
431 			sdev->no_uld_attach = 1;
432 	}
433 
434 	if (sdev->tagged_supported
435 	 &&  sdev->type == TYPE_DISK
436 	 &&  (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))
437 	 && !sdev->no_uld_attach) {
438 
439 		struct scsi_device * dev;
440 		struct Scsi_Host *host = sdev->host;
441 		unsigned num_lsu = 0;
442 		unsigned num_one = 0;
443 		unsigned cid;
444 
445 		set_timeout = 1;
446 
447 		for (cid = 0; cid < aac->maximum_num_containers; ++cid)
448 			if (aac->fsa_dev[cid].valid)
449 				++num_lsu;
450 
451 		__shost_for_each_device(dev, host) {
452 			if (dev->tagged_supported
453 			 && dev->type == TYPE_DISK
454 			 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))
455 			 && !dev->no_uld_attach) {
456 				if ((sdev_channel(dev) != CONTAINER_CHANNEL)
457 				 || !aac->fsa_dev[sdev_id(dev)].valid) {
458 					++num_lsu;
459 				}
460 			} else {
461 				++num_one;
462 			}
463 		}
464 
465 		if (num_lsu == 0)
466 			++num_lsu;
467 
468 		depth = (host->can_queue - num_one) / num_lsu;
469 	}
470 
471 common_config:
472 	/*
473 	 * Firmware has an individual device recovery time typically
474 	 * of 35 seconds, give us a margin.
475 	 */
476 	if (set_timeout && sdev->request_queue->rq_timeout < (45 * HZ))
477 		blk_queue_rq_timeout(sdev->request_queue, 45*HZ);
478 
479 	if (depth > 256)
480 		depth = 256;
481 	else if (depth < 1)
482 		depth = 1;
483 
484 	scsi_change_queue_depth(sdev, depth);
485 
486 	sdev->tagged_supported = 1;
487 
488 	return 0;
489 }
490 
491 /**
492  *	aac_change_queue_depth		-	alter queue depths
493  *	@sdev:	SCSI device we are considering
494  *	@depth:	desired queue depth
495  *
496  *	Alters queue depths for target device based on the host adapter's
497  *	total capacity and the queue depth supported by the target device.
498  */
499 
500 static int aac_change_queue_depth(struct scsi_device *sdev, int depth)
501 {
502 	struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
503 	int chn, tid, is_native_device = 0;
504 
505 	chn = aac_logical_to_phys(sdev_channel(sdev));
506 	tid = sdev_id(sdev);
507 	if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS &&
508 		aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW)
509 		is_native_device = 1;
510 
511 	if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
512 	    (sdev_channel(sdev) == CONTAINER_CHANNEL)) {
513 		struct scsi_device * dev;
514 		struct Scsi_Host *host = sdev->host;
515 		unsigned num = 0;
516 
517 		__shost_for_each_device(dev, host) {
518 			if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
519 			    (sdev_channel(dev) == CONTAINER_CHANNEL))
520 				++num;
521 			++num;
522 		}
523 		if (num >= host->can_queue)
524 			num = host->can_queue - 1;
525 		if (depth > (host->can_queue - num))
526 			depth = host->can_queue - num;
527 		if (depth > 256)
528 			depth = 256;
529 		else if (depth < 2)
530 			depth = 2;
531 		return scsi_change_queue_depth(sdev, depth);
532 	} else if (is_native_device) {
533 		scsi_change_queue_depth(sdev, aac->hba_map[chn][tid].qd_limit);
534 	} else {
535 		scsi_change_queue_depth(sdev, 1);
536 	}
537 	return sdev->queue_depth;
538 }
539 
540 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf)
541 {
542 	struct scsi_device *sdev = to_scsi_device(dev);
543 	struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
544 	if (sdev_channel(sdev) != CONTAINER_CHANNEL)
545 		return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach
546 		  ? "Hidden\n" :
547 		  ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : ""));
548 	return snprintf(buf, PAGE_SIZE, "%s\n",
549 	  get_container_type(aac->fsa_dev[sdev_id(sdev)].type));
550 }
551 
552 static struct device_attribute aac_raid_level_attr = {
553 	.attr = {
554 		.name = "level",
555 		.mode = S_IRUGO,
556 	},
557 	.show = aac_show_raid_level
558 };
559 
560 static ssize_t aac_show_unique_id(struct device *dev,
561 	     struct device_attribute *attr, char *buf)
562 {
563 	struct scsi_device *sdev = to_scsi_device(dev);
564 	struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
565 	unsigned char sn[16];
566 
567 	memset(sn, 0, sizeof(sn));
568 
569 	if (sdev_channel(sdev) == CONTAINER_CHANNEL)
570 		memcpy(sn, aac->fsa_dev[sdev_id(sdev)].identifier, sizeof(sn));
571 
572 	return snprintf(buf, 16 * 2 + 2,
573 		"%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n",
574 		sn[0], sn[1], sn[2], sn[3],
575 		sn[4], sn[5], sn[6], sn[7],
576 		sn[8], sn[9], sn[10], sn[11],
577 		sn[12], sn[13], sn[14], sn[15]);
578 }
579 
580 static struct device_attribute aac_unique_id_attr = {
581 	.attr = {
582 		.name = "unique_id",
583 		.mode = 0444,
584 	},
585 	.show = aac_show_unique_id
586 };
587 
588 
589 
590 static struct device_attribute *aac_dev_attrs[] = {
591 	&aac_raid_level_attr,
592 	&aac_unique_id_attr,
593 	NULL,
594 };
595 
596 static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg)
597 {
598 	struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
599 	if (!capable(CAP_SYS_RAWIO))
600 		return -EPERM;
601 	return aac_do_ioctl(dev, cmd, arg);
602 }
603 
604 static int aac_eh_abort(struct scsi_cmnd* cmd)
605 {
606 	struct scsi_device * dev = cmd->device;
607 	struct Scsi_Host * host = dev->host;
608 	struct aac_dev * aac = (struct aac_dev *)host->hostdata;
609 	int count, found;
610 	u32 bus, cid;
611 	int ret = FAILED;
612 
613 	bus = aac_logical_to_phys(scmd_channel(cmd));
614 	cid = scmd_id(cmd);
615 	if (aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
616 		struct fib *fib;
617 		struct aac_hba_tm_req *tmf;
618 		int status;
619 		u64 address;
620 		__le32 managed_request_id;
621 
622 		pr_err("%s: Host adapter abort request (%d,%d,%d,%d)\n",
623 		 AAC_DRIVERNAME,
624 		 host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun);
625 
626 		found = 0;
627 		for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
628 			fib = &aac->fibs[count];
629 			if (*(u8 *)fib->hw_fib_va != 0 &&
630 				(fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
631 				(fib->callback_data == cmd)) {
632 				found = 1;
633 				managed_request_id = ((struct aac_hba_cmd_req *)
634 					fib->hw_fib_va)->request_id;
635 				break;
636 			}
637 		}
638 		if (!found)
639 			return ret;
640 
641 		/* start a HBA_TMF_ABORT_TASK TMF request */
642 		fib = aac_fib_alloc(aac);
643 		if (!fib)
644 			return ret;
645 
646 		tmf = (struct aac_hba_tm_req *)fib->hw_fib_va;
647 		memset(tmf, 0, sizeof(*tmf));
648 		tmf->tmf = HBA_TMF_ABORT_TASK;
649 		tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus;
650 		tmf->lun[1] = cmd->device->lun;
651 
652 		address = (u64)fib->hw_error_pa;
653 		tmf->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
654 		tmf->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
655 		tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
656 
657 		fib->hbacmd_size = sizeof(*tmf);
658 		cmd->SCp.sent_command = 0;
659 
660 		status = aac_hba_send(HBA_IU_TYPE_SCSI_TM_REQ, fib,
661 				  (fib_callback) aac_hba_callback,
662 				  (void *) cmd);
663 
664 		/* Wait up to 2 minutes for completion */
665 		for (count = 0; count < 120; ++count) {
666 			if (cmd->SCp.sent_command) {
667 				ret = SUCCESS;
668 				break;
669 			}
670 			msleep(1000);
671 		}
672 
673 		if (ret != SUCCESS)
674 			pr_err("%s: Host adapter abort request timed out\n",
675 			AAC_DRIVERNAME);
676 	} else {
677 		pr_err(
678 			"%s: Host adapter abort request.\n"
679 			"%s: Outstanding commands on (%d,%d,%d,%d):\n",
680 			AAC_DRIVERNAME, AAC_DRIVERNAME,
681 			host->host_no, sdev_channel(dev), sdev_id(dev),
682 			(int)dev->lun);
683 		switch (cmd->cmnd[0]) {
684 		case SERVICE_ACTION_IN_16:
685 			if (!(aac->raw_io_interface) ||
686 			    !(aac->raw_io_64) ||
687 			    ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
688 				break;
689 		case INQUIRY:
690 		case READ_CAPACITY:
691 			/*
692 			 * Mark associated FIB to not complete,
693 			 * eh handler does this
694 			 */
695 			for (count = 0;
696 				count < (host->can_queue + AAC_NUM_MGT_FIB);
697 				++count) {
698 				struct fib *fib = &aac->fibs[count];
699 
700 				if (fib->hw_fib_va->header.XferState &&
701 				(fib->flags & FIB_CONTEXT_FLAG) &&
702 				(fib->callback_data == cmd)) {
703 					fib->flags |=
704 						FIB_CONTEXT_FLAG_TIMED_OUT;
705 					cmd->SCp.phase =
706 						AAC_OWNER_ERROR_HANDLER;
707 					ret = SUCCESS;
708 				}
709 			}
710 			break;
711 		case TEST_UNIT_READY:
712 			/*
713 			 * Mark associated FIB to not complete,
714 			 * eh handler does this
715 			 */
716 			for (count = 0;
717 				count < (host->can_queue + AAC_NUM_MGT_FIB);
718 				++count) {
719 				struct scsi_cmnd *command;
720 				struct fib *fib = &aac->fibs[count];
721 
722 				command = fib->callback_data;
723 
724 				if ((fib->hw_fib_va->header.XferState &
725 					cpu_to_le32
726 					(Async | NoResponseExpected)) &&
727 					(fib->flags & FIB_CONTEXT_FLAG) &&
728 					((command)) &&
729 					(command->device == cmd->device)) {
730 					fib->flags |=
731 						FIB_CONTEXT_FLAG_TIMED_OUT;
732 					command->SCp.phase =
733 						AAC_OWNER_ERROR_HANDLER;
734 					if (command == cmd)
735 						ret = SUCCESS;
736 				}
737 			}
738 			break;
739 		}
740 	}
741 	return ret;
742 }
743 
744 /*
745  *	aac_eh_reset	- Reset command handling
746  *	@scsi_cmd:	SCSI command block causing the reset
747  *
748  */
749 static int aac_eh_reset(struct scsi_cmnd* cmd)
750 {
751 	struct scsi_device * dev = cmd->device;
752 	struct Scsi_Host * host = dev->host;
753 	struct aac_dev * aac = (struct aac_dev *)host->hostdata;
754 	int count;
755 	u32 bus, cid;
756 	int ret = FAILED;
757 
758 	bus = aac_logical_to_phys(scmd_channel(cmd));
759 	cid = scmd_id(cmd);
760 	if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
761 		aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
762 		struct fib *fib;
763 		int status;
764 		u64 address;
765 		u8 command;
766 
767 		pr_err("%s: Host adapter reset request. SCSI hang ?\n",
768 			AAC_DRIVERNAME);
769 
770 		fib = aac_fib_alloc(aac);
771 		if (!fib)
772 			return ret;
773 
774 
775 		if (aac->hba_map[bus][cid].reset_state == 0) {
776 			struct aac_hba_tm_req *tmf;
777 
778 			/* start a HBA_TMF_LUN_RESET TMF request */
779 			tmf = (struct aac_hba_tm_req *)fib->hw_fib_va;
780 			memset(tmf, 0, sizeof(*tmf));
781 			tmf->tmf = HBA_TMF_LUN_RESET;
782 			tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus;
783 			tmf->lun[1] = cmd->device->lun;
784 
785 			address = (u64)fib->hw_error_pa;
786 			tmf->error_ptr_hi = cpu_to_le32
787 					((u32)(address >> 32));
788 			tmf->error_ptr_lo = cpu_to_le32
789 					((u32)(address & 0xffffffff));
790 			tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
791 			fib->hbacmd_size = sizeof(*tmf);
792 
793 			command = HBA_IU_TYPE_SCSI_TM_REQ;
794 			aac->hba_map[bus][cid].reset_state++;
795 		} else if (aac->hba_map[bus][cid].reset_state >= 1) {
796 			struct aac_hba_reset_req *rst;
797 
798 			/* already tried, start a hard reset now */
799 			rst = (struct aac_hba_reset_req *)fib->hw_fib_va;
800 			memset(rst, 0, sizeof(*rst));
801 			/* reset_type is already zero... */
802 			rst->it_nexus = aac->hba_map[bus][cid].rmw_nexus;
803 
804 			address = (u64)fib->hw_error_pa;
805 			rst->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
806 			rst->error_ptr_lo = cpu_to_le32
807 				((u32)(address & 0xffffffff));
808 			rst->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
809 			fib->hbacmd_size = sizeof(*rst);
810 
811 			command = HBA_IU_TYPE_SATA_REQ;
812 			aac->hba_map[bus][cid].reset_state = 0;
813 		}
814 		cmd->SCp.sent_command = 0;
815 
816 		status = aac_hba_send(command, fib,
817 				  (fib_callback) aac_hba_callback,
818 				  (void *) cmd);
819 
820 		/* Wait up to 2 minutes for completion */
821 		for (count = 0; count < 120; ++count) {
822 			if (cmd->SCp.sent_command) {
823 				ret = SUCCESS;
824 				break;
825 			}
826 			msleep(1000);
827 		}
828 
829 		if (ret != SUCCESS)
830 			pr_err("%s: Host adapter reset request timed out\n",
831 			AAC_DRIVERNAME);
832 	} else {
833 		struct scsi_cmnd *command;
834 		unsigned long flags;
835 
836 		/* Mark the assoc. FIB to not complete, eh handler does this */
837 		for (count = 0;
838 			count < (host->can_queue + AAC_NUM_MGT_FIB);
839 			++count) {
840 			struct fib *fib = &aac->fibs[count];
841 
842 			if (fib->hw_fib_va->header.XferState &&
843 				(fib->flags & FIB_CONTEXT_FLAG) &&
844 				(fib->callback_data == cmd)) {
845 				fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
846 				cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
847 			}
848 		}
849 
850 		pr_err("%s: Host adapter reset request. SCSI hang ?\n",
851 					AAC_DRIVERNAME);
852 
853 		count = aac_check_health(aac);
854 		if (count)
855 			return count;
856 		/*
857 		 * Wait for all commands to complete to this specific
858 		 * target (block maximum 60 seconds).
859 		 */
860 		for (count = 60; count; --count) {
861 			int active = aac->in_reset;
862 
863 			if (active == 0)
864 			__shost_for_each_device(dev, host) {
865 				spin_lock_irqsave(&dev->list_lock, flags);
866 				list_for_each_entry(command, &dev->cmd_list,
867 					list) {
868 					if ((command != cmd) &&
869 					(command->SCp.phase ==
870 					AAC_OWNER_FIRMWARE)) {
871 						active++;
872 						break;
873 					}
874 				}
875 				spin_unlock_irqrestore(&dev->list_lock, flags);
876 				if (active)
877 					break;
878 
879 			}
880 			/*
881 			 * We can exit If all the commands are complete
882 			 */
883 			if (active == 0)
884 				return SUCCESS;
885 			ssleep(1);
886 		}
887 		pr_err("%s: SCSI bus appears hung\n", AAC_DRIVERNAME);
888 
889 		/*
890 		 * This adapter needs a blind reset, only do so for
891 		 * Adapters that support a register, instead of a commanded,
892 		 * reset.
893 		 */
894 		if (((aac->supplement_adapter_info.supported_options2 &
895 			  AAC_OPTION_MU_RESET) ||
896 			  (aac->supplement_adapter_info.supported_options2 &
897 			  AAC_OPTION_DOORBELL_RESET)) &&
898 			  aac_check_reset &&
899 			  ((aac_check_reset != 1) ||
900 			   !(aac->supplement_adapter_info.supported_options2 &
901 			    AAC_OPTION_IGNORE_RESET))) {
902 			/* Bypass wait for command quiesce */
903 			aac_reset_adapter(aac, 2, IOP_HWSOFT_RESET);
904 		}
905 		ret = SUCCESS;
906 	}
907 	/*
908 	 * Cause an immediate retry of the command with a ten second delay
909 	 * after successful tur
910 	 */
911 	return ret;
912 }
913 
914 /**
915  *	aac_cfg_open		-	open a configuration file
916  *	@inode: inode being opened
917  *	@file: file handle attached
918  *
919  *	Called when the configuration device is opened. Does the needed
920  *	set up on the handle and then returns
921  *
922  *	Bugs: This needs extending to check a given adapter is present
923  *	so we can support hot plugging, and to ref count adapters.
924  */
925 
926 static int aac_cfg_open(struct inode *inode, struct file *file)
927 {
928 	struct aac_dev *aac;
929 	unsigned minor_number = iminor(inode);
930 	int err = -ENODEV;
931 
932 	mutex_lock(&aac_mutex);  /* BKL pushdown: nothing else protects this list */
933 	list_for_each_entry(aac, &aac_devices, entry) {
934 		if (aac->id == minor_number) {
935 			file->private_data = aac;
936 			err = 0;
937 			break;
938 		}
939 	}
940 	mutex_unlock(&aac_mutex);
941 
942 	return err;
943 }
944 
945 /**
946  *	aac_cfg_ioctl		-	AAC configuration request
947  *	@inode: inode of device
948  *	@file: file handle
949  *	@cmd: ioctl command code
950  *	@arg: argument
951  *
952  *	Handles a configuration ioctl. Currently this involves wrapping it
953  *	up and feeding it into the nasty windowsalike glue layer.
954  *
955  *	Bugs: Needs locking against parallel ioctls lower down
956  *	Bugs: Needs to handle hot plugging
957  */
958 
959 static long aac_cfg_ioctl(struct file *file,
960 		unsigned int cmd, unsigned long arg)
961 {
962 	struct aac_dev *aac = (struct aac_dev *)file->private_data;
963 
964 	if (!capable(CAP_SYS_RAWIO))
965 		return -EPERM;
966 
967 	return aac_do_ioctl(aac, cmd, (void __user *)arg);
968 }
969 
970 #ifdef CONFIG_COMPAT
971 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg)
972 {
973 	long ret;
974 	switch (cmd) {
975 	case FSACTL_MINIPORT_REV_CHECK:
976 	case FSACTL_SENDFIB:
977 	case FSACTL_OPEN_GET_ADAPTER_FIB:
978 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
979 	case FSACTL_SEND_RAW_SRB:
980 	case FSACTL_GET_PCI_INFO:
981 	case FSACTL_QUERY_DISK:
982 	case FSACTL_DELETE_DISK:
983 	case FSACTL_FORCE_DELETE_DISK:
984 	case FSACTL_GET_CONTAINERS:
985 	case FSACTL_SEND_LARGE_FIB:
986 		ret = aac_do_ioctl(dev, cmd, (void __user *)arg);
987 		break;
988 
989 	case FSACTL_GET_NEXT_ADAPTER_FIB: {
990 		struct fib_ioctl __user *f;
991 
992 		f = compat_alloc_user_space(sizeof(*f));
993 		ret = 0;
994 		if (clear_user(f, sizeof(*f)))
995 			ret = -EFAULT;
996 		if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32)))
997 			ret = -EFAULT;
998 		if (!ret)
999 			ret = aac_do_ioctl(dev, cmd, f);
1000 		break;
1001 	}
1002 
1003 	default:
1004 		ret = -ENOIOCTLCMD;
1005 		break;
1006 	}
1007 	return ret;
1008 }
1009 
1010 static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg)
1011 {
1012 	struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
1013 	if (!capable(CAP_SYS_RAWIO))
1014 		return -EPERM;
1015 	return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg);
1016 }
1017 
1018 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1019 {
1020 	if (!capable(CAP_SYS_RAWIO))
1021 		return -EPERM;
1022 	return aac_compat_do_ioctl(file->private_data, cmd, arg);
1023 }
1024 #endif
1025 
1026 static ssize_t aac_show_model(struct device *device,
1027 			      struct device_attribute *attr, char *buf)
1028 {
1029 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1030 	int len;
1031 
1032 	if (dev->supplement_adapter_info.adapter_type_text[0]) {
1033 		char *cp = dev->supplement_adapter_info.adapter_type_text;
1034 		while (*cp && *cp != ' ')
1035 			++cp;
1036 		while (*cp == ' ')
1037 			++cp;
1038 		len = snprintf(buf, PAGE_SIZE, "%s\n", cp);
1039 	} else
1040 		len = snprintf(buf, PAGE_SIZE, "%s\n",
1041 		  aac_drivers[dev->cardtype].model);
1042 	return len;
1043 }
1044 
1045 static ssize_t aac_show_vendor(struct device *device,
1046 			       struct device_attribute *attr, char *buf)
1047 {
1048 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1049 	struct aac_supplement_adapter_info *sup_adap_info;
1050 	int len;
1051 
1052 	sup_adap_info = &dev->supplement_adapter_info;
1053 	if (sup_adap_info->adapter_type_text[0]) {
1054 		char *cp = sup_adap_info->adapter_type_text;
1055 		while (*cp && *cp != ' ')
1056 			++cp;
1057 		len = snprintf(buf, PAGE_SIZE, "%.*s\n",
1058 			(int)(cp - (char *)sup_adap_info->adapter_type_text),
1059 					sup_adap_info->adapter_type_text);
1060 	} else
1061 		len = snprintf(buf, PAGE_SIZE, "%s\n",
1062 			aac_drivers[dev->cardtype].vname);
1063 	return len;
1064 }
1065 
1066 static ssize_t aac_show_flags(struct device *cdev,
1067 			      struct device_attribute *attr, char *buf)
1068 {
1069 	int len = 0;
1070 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata;
1071 
1072 	if (nblank(dprintk(x)))
1073 		len = snprintf(buf, PAGE_SIZE, "dprintk\n");
1074 #ifdef AAC_DETAILED_STATUS_INFO
1075 	len += snprintf(buf + len, PAGE_SIZE - len,
1076 			"AAC_DETAILED_STATUS_INFO\n");
1077 #endif
1078 	if (dev->raw_io_interface && dev->raw_io_64)
1079 		len += snprintf(buf + len, PAGE_SIZE - len,
1080 				"SAI_READ_CAPACITY_16\n");
1081 	if (dev->jbod)
1082 		len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n");
1083 	if (dev->supplement_adapter_info.supported_options2 &
1084 		AAC_OPTION_POWER_MANAGEMENT)
1085 		len += snprintf(buf + len, PAGE_SIZE - len,
1086 				"SUPPORTED_POWER_MANAGEMENT\n");
1087 	if (dev->msi)
1088 		len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n");
1089 	return len;
1090 }
1091 
1092 static ssize_t aac_show_kernel_version(struct device *device,
1093 				       struct device_attribute *attr,
1094 				       char *buf)
1095 {
1096 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1097 	int len, tmp;
1098 
1099 	tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1100 	len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1101 	  tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1102 	  le32_to_cpu(dev->adapter_info.kernelbuild));
1103 	return len;
1104 }
1105 
1106 static ssize_t aac_show_monitor_version(struct device *device,
1107 					struct device_attribute *attr,
1108 					char *buf)
1109 {
1110 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1111 	int len, tmp;
1112 
1113 	tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1114 	len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1115 	  tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1116 	  le32_to_cpu(dev->adapter_info.monitorbuild));
1117 	return len;
1118 }
1119 
1120 static ssize_t aac_show_bios_version(struct device *device,
1121 				     struct device_attribute *attr,
1122 				     char *buf)
1123 {
1124 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1125 	int len, tmp;
1126 
1127 	tmp = le32_to_cpu(dev->adapter_info.biosrev);
1128 	len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1129 	  tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1130 	  le32_to_cpu(dev->adapter_info.biosbuild));
1131 	return len;
1132 }
1133 
1134 static ssize_t aac_show_driver_version(struct device *device,
1135 					struct device_attribute *attr,
1136 					char *buf)
1137 {
1138 	return snprintf(buf, PAGE_SIZE, "%s\n", aac_driver_version);
1139 }
1140 
1141 static ssize_t aac_show_serial_number(struct device *device,
1142 			       struct device_attribute *attr, char *buf)
1143 {
1144 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1145 	int len = 0;
1146 
1147 	if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
1148 		len = snprintf(buf, 16, "%06X\n",
1149 		  le32_to_cpu(dev->adapter_info.serial[0]));
1150 	if (len &&
1151 	  !memcmp(&dev->supplement_adapter_info.mfg_pcba_serial_no[
1152 	    sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no)-len],
1153 	  buf, len-1))
1154 		len = snprintf(buf, 16, "%.*s\n",
1155 		  (int)sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no),
1156 		  dev->supplement_adapter_info.mfg_pcba_serial_no);
1157 
1158 	return min(len, 16);
1159 }
1160 
1161 static ssize_t aac_show_max_channel(struct device *device,
1162 				    struct device_attribute *attr, char *buf)
1163 {
1164 	return snprintf(buf, PAGE_SIZE, "%d\n",
1165 	  class_to_shost(device)->max_channel);
1166 }
1167 
1168 static ssize_t aac_show_max_id(struct device *device,
1169 			       struct device_attribute *attr, char *buf)
1170 {
1171 	return snprintf(buf, PAGE_SIZE, "%d\n",
1172 	  class_to_shost(device)->max_id);
1173 }
1174 
1175 static ssize_t aac_store_reset_adapter(struct device *device,
1176 				       struct device_attribute *attr,
1177 				       const char *buf, size_t count)
1178 {
1179 	int retval = -EACCES;
1180 	int bled = 0;
1181 	struct aac_dev *aac;
1182 
1183 
1184 	if (!capable(CAP_SYS_ADMIN))
1185 		return retval;
1186 
1187 	aac = (struct aac_dev *)class_to_shost(device)->hostdata;
1188 	bled = buf[0] == '!' ? 1:0;
1189 	retval = aac_reset_adapter(aac, bled, IOP_HWSOFT_RESET);
1190 	if (retval >= 0)
1191 		retval = count;
1192 	return retval;
1193 }
1194 
1195 static ssize_t aac_show_reset_adapter(struct device *device,
1196 				      struct device_attribute *attr,
1197 				      char *buf)
1198 {
1199 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1200 	int len, tmp;
1201 
1202 	tmp = aac_adapter_check_health(dev);
1203 	if ((tmp == 0) && dev->in_reset)
1204 		tmp = -EBUSY;
1205 	len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp);
1206 	return len;
1207 }
1208 
1209 static struct device_attribute aac_model = {
1210 	.attr = {
1211 		.name = "model",
1212 		.mode = S_IRUGO,
1213 	},
1214 	.show = aac_show_model,
1215 };
1216 static struct device_attribute aac_vendor = {
1217 	.attr = {
1218 		.name = "vendor",
1219 		.mode = S_IRUGO,
1220 	},
1221 	.show = aac_show_vendor,
1222 };
1223 static struct device_attribute aac_flags = {
1224 	.attr = {
1225 		.name = "flags",
1226 		.mode = S_IRUGO,
1227 	},
1228 	.show = aac_show_flags,
1229 };
1230 static struct device_attribute aac_kernel_version = {
1231 	.attr = {
1232 		.name = "hba_kernel_version",
1233 		.mode = S_IRUGO,
1234 	},
1235 	.show = aac_show_kernel_version,
1236 };
1237 static struct device_attribute aac_monitor_version = {
1238 	.attr = {
1239 		.name = "hba_monitor_version",
1240 		.mode = S_IRUGO,
1241 	},
1242 	.show = aac_show_monitor_version,
1243 };
1244 static struct device_attribute aac_bios_version = {
1245 	.attr = {
1246 		.name = "hba_bios_version",
1247 		.mode = S_IRUGO,
1248 	},
1249 	.show = aac_show_bios_version,
1250 };
1251 static struct device_attribute aac_lld_version = {
1252 	.attr = {
1253 		.name = "driver_version",
1254 		.mode = 0444,
1255 	},
1256 	.show = aac_show_driver_version,
1257 };
1258 static struct device_attribute aac_serial_number = {
1259 	.attr = {
1260 		.name = "serial_number",
1261 		.mode = S_IRUGO,
1262 	},
1263 	.show = aac_show_serial_number,
1264 };
1265 static struct device_attribute aac_max_channel = {
1266 	.attr = {
1267 		.name = "max_channel",
1268 		.mode = S_IRUGO,
1269 	},
1270 	.show = aac_show_max_channel,
1271 };
1272 static struct device_attribute aac_max_id = {
1273 	.attr = {
1274 		.name = "max_id",
1275 		.mode = S_IRUGO,
1276 	},
1277 	.show = aac_show_max_id,
1278 };
1279 static struct device_attribute aac_reset = {
1280 	.attr = {
1281 		.name = "reset_host",
1282 		.mode = S_IWUSR|S_IRUGO,
1283 	},
1284 	.store = aac_store_reset_adapter,
1285 	.show = aac_show_reset_adapter,
1286 };
1287 
1288 static struct device_attribute *aac_attrs[] = {
1289 	&aac_model,
1290 	&aac_vendor,
1291 	&aac_flags,
1292 	&aac_kernel_version,
1293 	&aac_monitor_version,
1294 	&aac_bios_version,
1295 	&aac_lld_version,
1296 	&aac_serial_number,
1297 	&aac_max_channel,
1298 	&aac_max_id,
1299 	&aac_reset,
1300 	NULL
1301 };
1302 
1303 ssize_t aac_get_serial_number(struct device *device, char *buf)
1304 {
1305 	return aac_show_serial_number(device, &aac_serial_number, buf);
1306 }
1307 
1308 static const struct file_operations aac_cfg_fops = {
1309 	.owner		= THIS_MODULE,
1310 	.unlocked_ioctl	= aac_cfg_ioctl,
1311 #ifdef CONFIG_COMPAT
1312 	.compat_ioctl   = aac_compat_cfg_ioctl,
1313 #endif
1314 	.open		= aac_cfg_open,
1315 	.llseek		= noop_llseek,
1316 };
1317 
1318 static struct scsi_host_template aac_driver_template = {
1319 	.module				= THIS_MODULE,
1320 	.name				= "AAC",
1321 	.proc_name			= AAC_DRIVERNAME,
1322 	.info				= aac_info,
1323 	.ioctl				= aac_ioctl,
1324 #ifdef CONFIG_COMPAT
1325 	.compat_ioctl			= aac_compat_ioctl,
1326 #endif
1327 	.queuecommand			= aac_queuecommand,
1328 	.bios_param			= aac_biosparm,
1329 	.shost_attrs			= aac_attrs,
1330 	.slave_configure		= aac_slave_configure,
1331 	.change_queue_depth		= aac_change_queue_depth,
1332 	.sdev_attrs			= aac_dev_attrs,
1333 	.eh_abort_handler		= aac_eh_abort,
1334 	.eh_host_reset_handler		= aac_eh_reset,
1335 	.can_queue			= AAC_NUM_IO_FIB,
1336 	.this_id			= MAXIMUM_NUM_CONTAINERS,
1337 	.sg_tablesize			= 16,
1338 	.max_sectors			= 128,
1339 #if (AAC_NUM_IO_FIB > 256)
1340 	.cmd_per_lun			= 256,
1341 #else
1342 	.cmd_per_lun			= AAC_NUM_IO_FIB,
1343 #endif
1344 	.use_clustering			= ENABLE_CLUSTERING,
1345 	.emulated			= 1,
1346 	.no_write_same			= 1,
1347 };
1348 
1349 static void __aac_shutdown(struct aac_dev * aac)
1350 {
1351 	int i;
1352 
1353 	aac->adapter_shutdown = 1;
1354 	aac_send_shutdown(aac);
1355 
1356 	if (aac->aif_thread) {
1357 		int i;
1358 		/* Clear out events first */
1359 		for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) {
1360 			struct fib *fib = &aac->fibs[i];
1361 			if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1362 			    (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected)))
1363 				up(&fib->event_wait);
1364 		}
1365 		kthread_stop(aac->thread);
1366 	}
1367 	aac_adapter_disable_int(aac);
1368 	if (aac->pdev->device == PMC_DEVICE_S6 ||
1369 	    aac->pdev->device == PMC_DEVICE_S7 ||
1370 	    aac->pdev->device == PMC_DEVICE_S8 ||
1371 	    aac->pdev->device == PMC_DEVICE_S9) {
1372 		if (aac->max_msix > 1) {
1373 			for (i = 0; i < aac->max_msix; i++) {
1374 				free_irq(pci_irq_vector(aac->pdev, i),
1375 					 &(aac->aac_msix[i]));
1376 			}
1377 		} else {
1378 			free_irq(aac->pdev->irq,
1379 				 &(aac->aac_msix[0]));
1380 		}
1381 	} else {
1382 		free_irq(aac->pdev->irq, aac);
1383 	}
1384 	if (aac->msi)
1385 		pci_disable_msi(aac->pdev);
1386 	else if (aac->max_msix > 1)
1387 		pci_disable_msix(aac->pdev);
1388 }
1389 static void aac_init_char(void)
1390 {
1391 	aac_cfg_major = register_chrdev(0, "aac", &aac_cfg_fops);
1392 	if (aac_cfg_major < 0) {
1393 		pr_err("aacraid: unable to register \"aac\" device.\n");
1394 	}
1395 }
1396 
1397 static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
1398 {
1399 	unsigned index = id->driver_data;
1400 	struct Scsi_Host *shost;
1401 	struct aac_dev *aac;
1402 	struct list_head *insert = &aac_devices;
1403 	int error = -ENODEV;
1404 	int unique_id = 0;
1405 	u64 dmamask;
1406 	extern int aac_sync_mode;
1407 
1408 	/*
1409 	 * Only series 7 needs freset.
1410 	 */
1411 	 if (pdev->device == PMC_DEVICE_S7)
1412 		pdev->needs_freset = 1;
1413 
1414 	list_for_each_entry(aac, &aac_devices, entry) {
1415 		if (aac->id > unique_id)
1416 			break;
1417 		insert = &aac->entry;
1418 		unique_id++;
1419 	}
1420 
1421 	pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 |
1422 			       PCIE_LINK_STATE_CLKPM);
1423 
1424 	error = pci_enable_device(pdev);
1425 	if (error)
1426 		goto out;
1427 	error = -ENODEV;
1428 
1429 	/*
1430 	 * If the quirk31 bit is set, the adapter needs adapter
1431 	 * to driver communication memory to be allocated below 2gig
1432 	 */
1433 	if (aac_drivers[index].quirks & AAC_QUIRK_31BIT)
1434 		dmamask = DMA_BIT_MASK(31);
1435 	else
1436 		dmamask = DMA_BIT_MASK(32);
1437 
1438 	if (pci_set_dma_mask(pdev, dmamask) ||
1439 			pci_set_consistent_dma_mask(pdev, dmamask))
1440 		goto out_disable_pdev;
1441 
1442 	pci_set_master(pdev);
1443 
1444 	shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev));
1445 	if (!shost)
1446 		goto out_disable_pdev;
1447 
1448 	shost->irq = pdev->irq;
1449 	shost->unique_id = unique_id;
1450 	shost->max_cmd_len = 16;
1451 	shost->use_cmd_list = 1;
1452 
1453 	if (aac_cfg_major == AAC_CHARDEV_NEEDS_REINIT)
1454 		aac_init_char();
1455 
1456 	aac = (struct aac_dev *)shost->hostdata;
1457 	aac->base_start = pci_resource_start(pdev, 0);
1458 	aac->scsi_host_ptr = shost;
1459 	aac->pdev = pdev;
1460 	aac->name = aac_driver_template.name;
1461 	aac->id = shost->unique_id;
1462 	aac->cardtype = index;
1463 	INIT_LIST_HEAD(&aac->entry);
1464 
1465 	aac->fibs = kzalloc(sizeof(struct fib) * (shost->can_queue + AAC_NUM_MGT_FIB), GFP_KERNEL);
1466 	if (!aac->fibs)
1467 		goto out_free_host;
1468 	spin_lock_init(&aac->fib_lock);
1469 
1470 	mutex_init(&aac->ioctl_mutex);
1471 	/*
1472 	 *	Map in the registers from the adapter.
1473 	 */
1474 	aac->base_size = AAC_MIN_FOOTPRINT_SIZE;
1475 	if ((*aac_drivers[index].init)(aac))
1476 		goto out_unmap;
1477 
1478 	if (aac->sync_mode) {
1479 		if (aac_sync_mode)
1480 			printk(KERN_INFO "%s%d: Sync. mode enforced "
1481 				"by driver parameter. This will cause "
1482 				"a significant performance decrease!\n",
1483 				aac->name,
1484 				aac->id);
1485 		else
1486 			printk(KERN_INFO "%s%d: Async. mode not supported "
1487 				"by current driver, sync. mode enforced."
1488 				"\nPlease update driver to get full performance.\n",
1489 				aac->name,
1490 				aac->id);
1491 	}
1492 
1493 	/*
1494 	 *	Start any kernel threads needed
1495 	 */
1496 	aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME);
1497 	if (IS_ERR(aac->thread)) {
1498 		printk(KERN_ERR "aacraid: Unable to create command thread.\n");
1499 		error = PTR_ERR(aac->thread);
1500 		aac->thread = NULL;
1501 		goto out_deinit;
1502 	}
1503 
1504 	/*
1505 	 * If we had set a smaller DMA mask earlier, set it to 4gig
1506 	 * now since the adapter can dma data to at least a 4gig
1507 	 * address space.
1508 	 */
1509 	if (aac_drivers[index].quirks & AAC_QUIRK_31BIT)
1510 		if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
1511 			goto out_deinit;
1512 
1513 	aac->maximum_num_channels = aac_drivers[index].channels;
1514 	error = aac_get_adapter_info(aac);
1515 	if (error < 0)
1516 		goto out_deinit;
1517 
1518 	/*
1519 	 * Lets override negotiations and drop the maximum SG limit to 34
1520 	 */
1521 	if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) &&
1522 			(shost->sg_tablesize > 34)) {
1523 		shost->sg_tablesize = 34;
1524 		shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1525 	}
1526 
1527 	if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) &&
1528 			(shost->sg_tablesize > 17)) {
1529 		shost->sg_tablesize = 17;
1530 		shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1531 	}
1532 
1533 	error = pci_set_dma_max_seg_size(pdev,
1534 		(aac->adapter_info.options & AAC_OPT_NEW_COMM) ?
1535 			(shost->max_sectors << 9) : 65536);
1536 	if (error)
1537 		goto out_deinit;
1538 
1539 	/*
1540 	 * Firmware printf works only with older firmware.
1541 	 */
1542 	if (aac_drivers[index].quirks & AAC_QUIRK_34SG)
1543 		aac->printf_enabled = 1;
1544 	else
1545 		aac->printf_enabled = 0;
1546 
1547 	/*
1548 	 * max channel will be the physical channels plus 1 virtual channel
1549 	 * all containers are on the virtual channel 0 (CONTAINER_CHANNEL)
1550 	 * physical channels are address by their actual physical number+1
1551 	 */
1552 	if (aac->nondasd_support || expose_physicals || aac->jbod)
1553 		shost->max_channel = aac->maximum_num_channels;
1554 	else
1555 		shost->max_channel = 0;
1556 
1557 	aac_get_config_status(aac, 0);
1558 	aac_get_containers(aac);
1559 	list_add(&aac->entry, insert);
1560 
1561 	shost->max_id = aac->maximum_num_containers;
1562 	if (shost->max_id < aac->maximum_num_physicals)
1563 		shost->max_id = aac->maximum_num_physicals;
1564 	if (shost->max_id < MAXIMUM_NUM_CONTAINERS)
1565 		shost->max_id = MAXIMUM_NUM_CONTAINERS;
1566 	else
1567 		shost->this_id = shost->max_id;
1568 
1569 	if (!aac->sa_firmware && aac_drivers[index].quirks & AAC_QUIRK_SRC)
1570 		aac_intr_normal(aac, 0, 2, 0, NULL);
1571 
1572 	/*
1573 	 * dmb - we may need to move the setting of these parms somewhere else once
1574 	 * we get a fib that can report the actual numbers
1575 	 */
1576 	shost->max_lun = AAC_MAX_LUN;
1577 
1578 	pci_set_drvdata(pdev, shost);
1579 
1580 	error = scsi_add_host(shost, &pdev->dev);
1581 	if (error)
1582 		goto out_deinit;
1583 	scsi_scan_host(shost);
1584 
1585 	pci_enable_pcie_error_reporting(pdev);
1586 	pci_save_state(pdev);
1587 
1588 	return 0;
1589 
1590  out_deinit:
1591 	__aac_shutdown(aac);
1592  out_unmap:
1593 	aac_fib_map_free(aac);
1594 	if (aac->comm_addr)
1595 		pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr,
1596 		  aac->comm_phys);
1597 	kfree(aac->queues);
1598 	aac_adapter_ioremap(aac, 0);
1599 	kfree(aac->fibs);
1600 	kfree(aac->fsa_dev);
1601  out_free_host:
1602 	scsi_host_put(shost);
1603  out_disable_pdev:
1604 	pci_disable_device(pdev);
1605  out:
1606 	return error;
1607 }
1608 
1609 static void aac_release_resources(struct aac_dev *aac)
1610 {
1611 	aac_adapter_disable_int(aac);
1612 	aac_free_irq(aac);
1613 }
1614 
1615 static int aac_acquire_resources(struct aac_dev *dev)
1616 {
1617 	unsigned long status;
1618 	/*
1619 	 *	First clear out all interrupts.  Then enable the one's that we
1620 	 *	can handle.
1621 	 */
1622 	while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING)
1623 		|| status == 0xffffffff)
1624 			msleep(20);
1625 
1626 	aac_adapter_disable_int(dev);
1627 	aac_adapter_enable_int(dev);
1628 
1629 
1630 	if ((dev->pdev->device == PMC_DEVICE_S7 ||
1631 	     dev->pdev->device == PMC_DEVICE_S8 ||
1632 	     dev->pdev->device == PMC_DEVICE_S9))
1633 		aac_define_int_mode(dev);
1634 
1635 	if (dev->msi_enabled)
1636 		aac_src_access_devreg(dev, AAC_ENABLE_MSIX);
1637 
1638 	if (aac_acquire_irq(dev))
1639 		goto error_iounmap;
1640 
1641 	aac_adapter_enable_int(dev);
1642 
1643 	/*max msix may change  after EEH
1644 	 * Re-assign vectors to fibs
1645 	 */
1646 	aac_fib_vector_assign(dev);
1647 
1648 	if (!dev->sync_mode) {
1649 		/* After EEH recovery or suspend resume, max_msix count
1650 		 * may change, therefore updating in init as well.
1651 		 */
1652 		dev->init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix);
1653 		aac_adapter_start(dev);
1654 	}
1655 	return 0;
1656 
1657 error_iounmap:
1658 	return -1;
1659 
1660 }
1661 
1662 #if (defined(CONFIG_PM))
1663 static int aac_suspend(struct pci_dev *pdev, pm_message_t state)
1664 {
1665 
1666 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1667 	struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1668 
1669 	scsi_block_requests(shost);
1670 	aac_send_shutdown(aac);
1671 
1672 	aac_release_resources(aac);
1673 
1674 	pci_set_drvdata(pdev, shost);
1675 	pci_save_state(pdev);
1676 	pci_disable_device(pdev);
1677 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
1678 
1679 	return 0;
1680 }
1681 
1682 static int aac_resume(struct pci_dev *pdev)
1683 {
1684 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1685 	struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1686 	int r;
1687 
1688 	pci_set_power_state(pdev, PCI_D0);
1689 	pci_enable_wake(pdev, PCI_D0, 0);
1690 	pci_restore_state(pdev);
1691 	r = pci_enable_device(pdev);
1692 
1693 	if (r)
1694 		goto fail_device;
1695 
1696 	pci_set_master(pdev);
1697 	if (aac_acquire_resources(aac))
1698 		goto fail_device;
1699 	/*
1700 	* reset this flag to unblock ioctl() as it was set at
1701 	* aac_send_shutdown() to block ioctls from upperlayer
1702 	*/
1703 	aac->adapter_shutdown = 0;
1704 	scsi_unblock_requests(shost);
1705 
1706 	return 0;
1707 
1708 fail_device:
1709 	printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id);
1710 	scsi_host_put(shost);
1711 	pci_disable_device(pdev);
1712 	return -ENODEV;
1713 }
1714 #endif
1715 
1716 static void aac_shutdown(struct pci_dev *dev)
1717 {
1718 	struct Scsi_Host *shost = pci_get_drvdata(dev);
1719 	scsi_block_requests(shost);
1720 	__aac_shutdown((struct aac_dev *)shost->hostdata);
1721 }
1722 
1723 static void aac_remove_one(struct pci_dev *pdev)
1724 {
1725 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1726 	struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1727 
1728 	scsi_remove_host(shost);
1729 
1730 	__aac_shutdown(aac);
1731 	aac_fib_map_free(aac);
1732 	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr,
1733 			aac->comm_phys);
1734 	kfree(aac->queues);
1735 
1736 	aac_adapter_ioremap(aac, 0);
1737 
1738 	kfree(aac->fibs);
1739 	kfree(aac->fsa_dev);
1740 
1741 	list_del(&aac->entry);
1742 	scsi_host_put(shost);
1743 	pci_disable_device(pdev);
1744 	if (list_empty(&aac_devices)) {
1745 		unregister_chrdev(aac_cfg_major, "aac");
1746 		aac_cfg_major = AAC_CHARDEV_NEEDS_REINIT;
1747 	}
1748 }
1749 
1750 static void aac_flush_ios(struct aac_dev *aac)
1751 {
1752 	int i;
1753 	struct scsi_cmnd *cmd;
1754 
1755 	for (i = 0; i < aac->scsi_host_ptr->can_queue; i++) {
1756 		cmd = (struct scsi_cmnd *)aac->fibs[i].callback_data;
1757 		if (cmd && (cmd->SCp.phase == AAC_OWNER_FIRMWARE)) {
1758 			scsi_dma_unmap(cmd);
1759 
1760 			if (aac->handle_pci_error)
1761 				cmd->result = DID_NO_CONNECT << 16;
1762 			else
1763 				cmd->result = DID_RESET << 16;
1764 
1765 			cmd->scsi_done(cmd);
1766 		}
1767 	}
1768 }
1769 
1770 static pci_ers_result_t aac_pci_error_detected(struct pci_dev *pdev,
1771 					enum pci_channel_state error)
1772 {
1773 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1774 	struct aac_dev *aac = shost_priv(shost);
1775 
1776 	dev_err(&pdev->dev, "aacraid: PCI error detected %x\n", error);
1777 
1778 	switch (error) {
1779 	case pci_channel_io_normal:
1780 		return PCI_ERS_RESULT_CAN_RECOVER;
1781 	case pci_channel_io_frozen:
1782 		aac->handle_pci_error = 1;
1783 
1784 		scsi_block_requests(aac->scsi_host_ptr);
1785 		aac_flush_ios(aac);
1786 		aac_release_resources(aac);
1787 
1788 		pci_disable_pcie_error_reporting(pdev);
1789 		aac_adapter_ioremap(aac, 0);
1790 
1791 		return PCI_ERS_RESULT_NEED_RESET;
1792 	case pci_channel_io_perm_failure:
1793 		aac->handle_pci_error = 1;
1794 
1795 		aac_flush_ios(aac);
1796 		return PCI_ERS_RESULT_DISCONNECT;
1797 	}
1798 
1799 	return PCI_ERS_RESULT_NEED_RESET;
1800 }
1801 
1802 static pci_ers_result_t aac_pci_mmio_enabled(struct pci_dev *pdev)
1803 {
1804 	dev_err(&pdev->dev, "aacraid: PCI error - mmio enabled\n");
1805 	return PCI_ERS_RESULT_NEED_RESET;
1806 }
1807 
1808 static pci_ers_result_t aac_pci_slot_reset(struct pci_dev *pdev)
1809 {
1810 	dev_err(&pdev->dev, "aacraid: PCI error - slot reset\n");
1811 	pci_restore_state(pdev);
1812 	if (pci_enable_device(pdev)) {
1813 		dev_warn(&pdev->dev,
1814 			"aacraid: failed to enable slave\n");
1815 		goto fail_device;
1816 	}
1817 
1818 	pci_set_master(pdev);
1819 
1820 	if (pci_enable_device_mem(pdev)) {
1821 		dev_err(&pdev->dev, "pci_enable_device_mem failed\n");
1822 		goto fail_device;
1823 	}
1824 
1825 	return PCI_ERS_RESULT_RECOVERED;
1826 
1827 fail_device:
1828 	dev_err(&pdev->dev, "aacraid: PCI error - slot reset failed\n");
1829 	return PCI_ERS_RESULT_DISCONNECT;
1830 }
1831 
1832 
1833 static void aac_pci_resume(struct pci_dev *pdev)
1834 {
1835 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1836 	struct scsi_device *sdev = NULL;
1837 	struct aac_dev *aac = (struct aac_dev *)shost_priv(shost);
1838 
1839 	pci_cleanup_aer_uncorrect_error_status(pdev);
1840 
1841 	if (aac_adapter_ioremap(aac, aac->base_size)) {
1842 
1843 		dev_err(&pdev->dev, "aacraid: ioremap failed\n");
1844 		/* remap failed, go back ... */
1845 		aac->comm_interface = AAC_COMM_PRODUCER;
1846 		if (aac_adapter_ioremap(aac, AAC_MIN_FOOTPRINT_SIZE)) {
1847 			dev_warn(&pdev->dev,
1848 				"aacraid: unable to map adapter.\n");
1849 
1850 			return;
1851 		}
1852 	}
1853 
1854 	msleep(10000);
1855 
1856 	aac_acquire_resources(aac);
1857 
1858 	/*
1859 	 * reset this flag to unblock ioctl() as it was set
1860 	 * at aac_send_shutdown() to block ioctls from upperlayer
1861 	 */
1862 	aac->adapter_shutdown = 0;
1863 	aac->handle_pci_error = 0;
1864 
1865 	shost_for_each_device(sdev, shost)
1866 		if (sdev->sdev_state == SDEV_OFFLINE)
1867 			sdev->sdev_state = SDEV_RUNNING;
1868 	scsi_unblock_requests(aac->scsi_host_ptr);
1869 	scsi_scan_host(aac->scsi_host_ptr);
1870 	pci_save_state(pdev);
1871 
1872 	dev_err(&pdev->dev, "aacraid: PCI error - resume\n");
1873 }
1874 
1875 static struct pci_error_handlers aac_pci_err_handler = {
1876 	.error_detected		= aac_pci_error_detected,
1877 	.mmio_enabled		= aac_pci_mmio_enabled,
1878 	.slot_reset		= aac_pci_slot_reset,
1879 	.resume			= aac_pci_resume,
1880 };
1881 
1882 static struct pci_driver aac_pci_driver = {
1883 	.name		= AAC_DRIVERNAME,
1884 	.id_table	= aac_pci_tbl,
1885 	.probe		= aac_probe_one,
1886 	.remove		= aac_remove_one,
1887 #if (defined(CONFIG_PM))
1888 	.suspend	= aac_suspend,
1889 	.resume		= aac_resume,
1890 #endif
1891 	.shutdown	= aac_shutdown,
1892 	.err_handler    = &aac_pci_err_handler,
1893 };
1894 
1895 static int __init aac_init(void)
1896 {
1897 	int error;
1898 
1899 	printk(KERN_INFO "Adaptec %s driver %s\n",
1900 	  AAC_DRIVERNAME, aac_driver_version);
1901 
1902 	error = pci_register_driver(&aac_pci_driver);
1903 	if (error < 0)
1904 		return error;
1905 
1906 	aac_init_char();
1907 
1908 
1909 	return 0;
1910 }
1911 
1912 static void __exit aac_exit(void)
1913 {
1914 	if (aac_cfg_major > -1)
1915 		unregister_chrdev(aac_cfg_major, "aac");
1916 	pci_unregister_driver(&aac_pci_driver);
1917 }
1918 
1919 module_init(aac_init);
1920 module_exit(aac_exit);
1921